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Chapter 1

Introduction

1.1 Motivation

Ionization of atoms and molecules is a fundamental process in nature. Ionization
may happen through electron scattering, heavy ion collisions or electromagnetic wave
interaction with matter. Ionization processes occur in the upper atmosphere, or in
the sun corona and not at last in fusion-plasmas. Fusion research needs ionization
cross sections for processes which can occur in plasmas e.g. highly charged ions
enter the plasma from the wall as contamination.

The helium atom or two electron ions are the simplest systems, where the electron
correlation plays an important role. A further experimental advantage of helium is
its noble gas property.

The single-ionization by very fast, fully stripped projectile ions colliding with light
atoms is well understood both theoretically [Inok71], [Inok78] and experimentally
[Haug82|; for multiple ionization processes the level of knowledge is substantially
lower. This is due to the fact that the electron-electron correlation can not be ne-
glected. To handle the electron-electron correlation is still far from routine. The
theory must go beyond the independent-electron model. The role of the wave func-
tion is essential as was shown in [Byr66].

In the following thesis we study collisions of heavy ions on helium with the coupled-
channel method.

When a heavy ion (every charged particle which is equal or heavier than a proton
will be called heavy ion in the following) collides with a helium atom the following
processes in helium can happen:

e Excitation: one or both electrons ’jump’ to a higher orbital, remaining bound
to the nucleus.



CHAPTER 1. INTRODUCTION 5

e Single-ionization: one of the electrons becomes free and leaves the helium
atom, the other electron remains bound.

e Double-ionization: both of the electrons become free and leave the helium
atom.

e Single-transfer: one of the electrons leaves the proximity of the helium atom
and is captured by the projectile, the other electron remains bound.

e Double-electron transfer: both bound electrons leave the helium atom and are
captured by the projectile.

It is very important to classify the collisions in order to say which of the above
mentioned process are important. There are three different cases: [Knu84]

2é < 0.1 (1.1)
Up

(where v, is the projectile velocity in atomic units and Z, is the projectile
charge). This is the perturbative region, which means that the Born approxi-
mation (or the lowest order perturbation theory) is valid to describe the process
properly. In this case the projectile is a fast particle, and no electron transfer
happens. (The cross section for transfer can be seven(!) orders of magnitude
lower than the ionization cross sections [Ber92a].)
The field of the projectile ion is so strong that the bound electron-electron
interaction is negligible:

Z
0.1<2-2 < 1. (1.2)
Up

In the intermediate region, the projectile charge becomes higher and/or the
velocity lower. The strength of the electron-electron interaction is comparable
to the projectile-electron interaction. The results of the Born-approximation
deviate from experimental data. The one-centre

coupled-channel* calculation or other non-perturbative methods are needed to
get acceptable results.

2% 5 1 (1.3)
Up

*in the following ‘coupled-channel’ or ‘close-coupling’ means the same
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In the strong interaction region, the field of the projectile exceeds the electron-
electron interaction. When the impact-parameter b is in the magnitude of the
atomic radius, b & 7 40m, than molecular orbitals can be formed. To describe
this phenomena double-centre coupled-channel calculations must be used.

In the last two cases a further quantity is also needed to qualify whether electron
transfer may occur or not. We define n = =2 where v, is the velocity of the projectile,
and v, is the velocity of the bound electron For slow collisions, v, ~ v, and for small
impact parameters b & 74, the capture process becomes relevant and the above
mentioned two-centre calculation is needed. In our work we use only the one-centre
model.

In the field of the ionization of helium in collisions with electrons or ions many ex-
periments were done. Without completeness we mention some of them.
Electron-helium collision:

[Ada66], [Sch66], [Nag80], [Ste80] and some newer ones:

[Roes91], [UlI97], [Dor99], [Khe99]

Proton-helium collision:

[Knu84|, [And86], [Sha85], [Ber99], [Mer97], [McGO00]

Exotic projectiles such as antiproton on helium:

[And90], [And87], [Hve94], [Knu92]

Heavy ion-helium collisions:

[Hau81], [McG87] [Sha85], [Ber92a], [Ber92b], [Knu84].

We used the last four publications as experimental data for comparison with our
calculations. There are several experimental publications on heavy-ion helium colli-
sions, but only few of them contain total cross sections, sometimes only the double-
to-single-ionisation ratio is measured e.g. [Heb90).

In the GSI in Darmstadt several experiments were done which are relevant for this
study. The important ones are mentioned above. In the GSI not only total but
differential cross sections can be measured. Nowadays the ‘kinematically-complete’
measurement is also available which gives further information about the outgoing
electrons, all momentum components can be measured for both electrons. The
method is called RIMS (Recoil-Ton-Momentum-Spectroscopy) [Mos94] where the
ion beam crosses a supersonic ‘cold’ helium atom beam, (‘cold’ means that the tem-
perature is about 10 mK). In this collision the out-coming particles are electrically
and magnetically deflected and analyzed with a position sensitive Channel-Plate-
Detector. With the help of the detected charge all the momentum components of
the fragments can be derived from the time-of-flight.

There are monographs on ion-atom collisions including ionization. Now I will list
some of them without completeness. At first I should mention [Bra83] "The Brandsen
Book’ which is not the newest one but gives a overview on the atomic collision
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theory. A newer one is [Bra92] from the same author, which concentrates on two
centre coupled-channel calculations for charge transfer, ’simple’ ionization is also
discussed. The [McG97] gives methods and ideas used in atomic-collision theory.
[Jan84] is the book which describes the physics of highly charged ions, different
processes are described, not only ionization. All the books mentioned above are
theoretical works with no respect to experimental methods. The book of [Stol97]
Stolterfolth gives a small overview of the experimental methods and problems as
well. The monograph of Lin [Lin93] gives an overview of fundamental processes in
atoms and ions, new ideas methods and out-looks are presented. An example is
the chaotic behavior of the atomic electrons in external electric and magnetic fields.
The "Relativistic Atomic Collisions’ [Eich90] from Eichler concentrates on the fully
relativistic description and uses the Dirac rather than the Schrodinger equation
to describe the bound electrons. Ionization, electron-transfer, pair production and
different recombination processes are also discussed.

In our further study we apply the one-center coupled-channel and the first order
Born approximation models to calculate total cross sections for different heavy ion
helium collisions. We concentrate much more on the coupled-channel description
because we investigate systems where the projectile field is in the intermediate or in
the strong interaction region.

Different studies were done to describe excitation, ionization or electron transfer
with the help of different coupled-channel models. We mention some of them with-
out completeness.

The stopping powers for intermediate-energy light ions penetrating atomic H and
He targets were calculated with the coupled-channel model by [Sch90].

The hyper-spherical wave function was used in a coupled-channel calculation by
[Mor91] to describe double-electron-excitation processes in the few MeV/amu pro-
jectile energy range.

For double-excitation there is a study from [Fri89] which uses the one-center atomic-
orbital expansion in the coupled-channel model.

Ionization and electron-transfer were calculated by [Gra89] with a Gaussian basis
set, for the low energy He-He collision system.

In the first work of [Hil90] the low energy proton helium collision system was studied
with Gaussian basis. Ionization and electron transfer cross sections were calculated
in the 5-200 keV energy range.

In later works of [Hil94] or [Hil95] the He™ + He collision problem was examined with
three active electrons. Ionization, excitation and electron transfer were calculated
in the 3-1000 keV energy range. Gaussian orbitals were used as basis.

A newer coupled-channel study was done by [Bus96] for the H- — H™ collision sys-
tem.

For heavier systems (Z=2-8) [Tos94] made two-center coupled-channel calculations
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in the energy range 1 to 400 keV with Gaussian type orbitals. Ionization and trans-
fer were calculated.

The two-coupled channel plane wave Born approximation was used by [Tir97] to
calculate proton and antiproton on helium in the incident energy range of about 50
keV-20 MeV.

Ford and Reading [For94| used the Forced-Impulse Method (FIM), which is also a
coupled-channel method and made many calculations for low energy proton helium
and antiproton helium collision systems. The results agree well with the experimen-
tal data.

Slater wave functions were used as basis in the works of [Pfe96] and [Pfe99] to de-
scribe single- and double-ionization of helium in relativistic heavy ion collisions. All
the above mentioned works approximate the continuum states with bound state
wave functions.

As we know, there is only one coupled-channel calculation study for ionization of
helium colliding with heavy ions (heavier than alpha particles) for energies higher
than 5 MeV /amu.[Pfe99].

Our study is a further development of the last mentioned works [Pfe96] and [Pfe99].
We implemented the one-centre coupled-channel method and calculated the single-
and double-ionization in various helium heavy-ion collision systems.

We describe the continuum states with Coulomb wave packages. The states created
with the help of wave packages have a better physical interpretation as ionized
states than the states approximated only with bound state functions. These new
states have much larger spatial range and much more nodes than the states without
packages. Coulomb wave functions in the continuum are characteristically much
more complicated than bound state wave functions like Slater wave functions, which
raises new problems.

The following work is divided into six larger chapters. The second one is a short
overview of different theoretical methods, such as, the coupled-channel method,
the Born Approximation, the forced-impulse and CTMC theories. The theory of
coupled-channels will be discussed in details. In the third chapter the structure
of the helium atom will be studied. The used basis and the calculated structure
will also be presented. The fourth chapter presents the ionization calculations, and
the technical details including different interaction operators. Our results will be
presented and discussed in the fifth chapter. The whole study closes with a summary
and outlook. A German summary ‘Zusammenfassung’ is also given. The work ends
with the bibliography and acknowledgements.



CHAPTER 1. INTRODUCTION 9

1.2 Units

In the whole study atomic units (a.u.) will be used. It means that the Planck’s
constant divided by two pi, the electron mass and the electron charge are equal to
unity

h =1,

With the help of this substitution the equations and the calculation become more
transparent. The Schrodinger equation will lose all the electron masses and the As.

Melectron = 1, € =1, 4me =1. (1.4)

Using these three fundamental constants, every physical dimension can be expressed
[Bet57]. The speed of light in this system is: ¢ ~ 137.036 a.u.

At last I mention some useful conversion formulas which will be used below:

e to get the projectile velocity in a.u. when the collision energy is given in MeV:
v[a.u.] = 6.35/E[MeV]/A where A is the number of the nucleons. This is a

non-relativistic formula.

e to get the relativistic gamma factor from collision energy given in MeV [Eic90]:
Y =1+ E[MeV/A]/931.494,

e to get the cross section in cm? instead of a.u.:
olem™%] = ofa.u.] * 0.53?



Chapter 2

Theories for excitation and
ionization

The ionization or excitation of helium atoms in heavy-ion collisions can be examined
with different theoretical methods. The description can be quantum mechanical or
even fully classical. In this chapter we mention four different models. The coupled-
channel and the first order perturbation theory was used by us, and the CTMC and
the forced-impulse methods were used by other authors to describe the same collision
systems. This gives a good chance to test the validity of the different models. The
discrepancies from experimental values are also discussed in the fifth chapter.

There are other theoretical models that we cannot present here, e.g.: Eikonal-
Distorted-Wave- Born-Approximation (EDWBA) or Glauber-Approximation which
can be found in [Hof93], [Ull94a], and in [Knu84]. The Magnus or (sudden) approx-
imation is used in [Eic77]. The simplest model for ionization is the Independent
Particle Model (IPM) which assumes that the electrons move independently. With
this assumption the double ionization is traced back to a single electron problem.
More on IPM can be found in [Knu84|, [McG82].

2.1 Theory of coupled-channels

For a scattering system where the velocities of the bound electrons are much lower
than the velocity of light, the Schrodinger equation is valid. We describe the elec-
trons quantum mechanically and the projectile classically. The projectile is a clas-
sical point charge, without internal structure, moving on a straight line, which
is the semi-classical approximation. The corresponding projectile-electron inter-
action is the classical time-dependent Liénard-Wiechert potential. To solve this

10
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time-dependent Hamiltonian we make an expansion of the wave function with time
dependent coefficients. This leads to the coupled-channel equations for the coeffi-
cients as will be shown later.

Contrary to this model when the projectile is for example an electron or a proton
and the whole system can be described fully quantum mechanically, than the time
independent close-coupling method which is described elsewhere, e.g. [Das97] can
be applied.

Let’s start now with the time dependent Schrodinger equation:

0 L P, o
qul(rlarbt) = (HHB(TlaTQ) + V(T17T2:p1ap2;t7 b))\II(T'l,T'Q,t) (21)

where the H 1e(T1,72) is the operator of unperturbed helium atom, which will be
specified in the next chapter. The V(Fl,FQ, D1, P2, t,b) is the time-dependent inter-
action between the target electrons and the projectile. In our case this is the so
called Liénard-Wiechert potential. The term will be given in a more explicit form
in Chapter 4.

The whole Hamiltonian is the following:

(71 + A7, 1,b))? L (P A(7y, 1, b))

ﬁ(FbFZ;ﬁlaﬁZat’ b) =
i ¢(Fla ta b) - ¢(F27ta b) (22)

The first two terms contain the kinetic energy of the electrons and the vector po-
tential of the projectile, the next three terms are the electron-target nucleon and
the electron-electron interactions, and the last two are the time-dependent scalar
potentials induced by the moving projectile. The whole form of the time dependent
interaction will be shown later. The wave function can be expanded in terms of
eigenstates of the Hy., satisfying the stationary Schrodinger equation:

ﬁHe(FI;FQ)(Dj(FlaFZ) = E;®;(7, ) (2.3)

The solution of this equation (diagonalization) and all the related questions will be
analyzed in the next chapter.
To solve the time-dependent equation the following ansatz is made:

7‘17 T?) Za’] Tla )e*ZE]t (24)

Our wave function ®,(7,72) is a configuration-interaction (CI) wave function which
is a sum of properly symmetrized products of two single-electron orbitals. For single-
electron orbitals we use Slater functions and regular Coulomb wave packages. The
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concrete form will be shown in chapter 3.

The a,(t) are the so-called expansion coefficients. These are essential to get the total
cross sections. Inserting this ansatz into the time-dependent Schrodinger equation
(2.1) leads to:

N N
i Z a] (t)¢] (Fla FQ)eiiEjt + Z aj(t)@](ﬂ, FQ)EjeiiEjt =
j=1

=1

~ ~ N -
(Hpye(F1,7) + V (71, T, B, Doy 1,0)) D a;(8)®,(71, o) e il (2.5)
=1

With the help of the eigenvalue equation (2.3) we get the form:

N

i) a4 ()57, P)e =Y V(i T, B, B, £, b)ag (1) (71, e Bt (2.6)

=1 =1

We multiply this equation from left with ®F (7, 7)ef* to reach a system of first-

order differential equations for the expansion coefficients ay(t):

1 E a;(t e!F - E)t//@* T 7’1;T2)d37'1d37“2=
7T

N
Zaﬂ'(t) //q’* 71, 7)V 7“1,T2,p1,p2,t b)®; (71, 7o) d’rdPrs. (2.7)
j=1 P

With the help of

H]th - //(D* V rl:r25p15p27t b)(bj(FlaFZ)dsrld37'2 (28)

which is the coupling matrix (Int means interaction), we get the final form for the
coupled-channel equations:

i aR(t) = Zﬂgyt ca;(t) (k=1,..,N) (2.9)

This is a differential equation system of first order, hence the vectorial notation can
also be used:

at) =

sll—‘

— (Hy")-a(t)  (k=1...N) (2.10)
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where @(t) forms a vector.

In practical calculations it is better to pull out the oscillating factor eZx—Eit from

the matrix elements. Let’s define:
ay(t) = ay(t)e " #x! (2.11)

and
H{M = H{M e Pl (2.12)

With these quantities the coupled-channel equations have a slightly different form:

i ag(t) = EN: (ﬁf,g;” + 5kjEk) a;(t) (2.13)

J=1

This form is quicker to solve and enhances the accuracy of the calculations. To solve
this equation system we need the following initial condition:

1-¢" k=1

. Et 1 (2.14)

dk(t—>—00)={

(¢ is an arbitrary phase factor). This means that long before the collision only
one state is populated, the helium atom is in the unperturbed (1'S) ground-state
(k = 1). The above condition can be slightly modified to simulate realistic ion
sources where metastable states could also exist. In this cases some double excited
states, e.g. (2s2s) are also populated.

The transformation (2.12) helps us to interpolate the coupling matrix without the
oscillating energy factor. This coupling matrix has a simple decaying behavior in
time and is easy to interpolate in contrast to the energy factor which is analytic and
no problem to evaluate to any time point. This calculation trick helps us to save
some time consuming integrals and to enhance the numerical accuracy. The practical
solution of the coupled-channel equations will be discussed in Chapter 4. To solve
the coupled-channel equations we use a five point Runge-Kutta-Fehlberg-Method.

The transition probabilities are the absolute squares of the coefficients at infinity:
Pib,t — 00) =| ax(t = 00) |? (2.15)

The coefficients have no explicit impact parameter dependence they depend on the
impact parameter only through the coupling matrix. For a given channel the total
cross section reads:

o0

o =27 /bPk(b,t — OO)db (216)
0
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This method is the so called "Impact Parameter-Method” and can be found in
[Bra83]. The total cross section for single- or double-ionization is the sum of all the
corresponding channels. The number and the properties of the channels used will
be also discussed later on.

2.1.1 Conservation of the norm

The interpretation of the |a;(¢)|> as a population probability for the state j has
only sense when the sum of all |a;(¢)|* is unity for any time during the collision,
otherwise the norm conservation is violated. Let’s calculate the time derivative of
the coefficients:

glarwae) = [ Gar 0] a0 + a0 | Zaw| -
0] a0 @ | gao), (2.17)
where 4+ means complex conjugation, the usage of (2.1) leads to:
Sl a) = [~ (a)) ) +at ) [ ()]

=it (t) (H) " @) —at (t) (H) a). (2.18)

Now we prove that the coupling matrix H. ,{yt is hermitian. The energy of the whole
collision system is a real measurable quantity hence it is hermitian. The unper-
turbed helium Hamiltonian is hermitian, the energy eigenvalues are real. Now the
remaining coupling matrix also has to be hermitian (H;*)" = (H}"). Using all this
information gives

< (@ mate)] = o (2:19)
Z at(t)a(t) = const (2.20)

This criterion must be fulfilled during the whole collision. In our numerical calcula-
tions this quantity is continously observed, the norm conservation is always fulfilled
better than 107°.
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2.2 The Born Approximation

When the projectile-electron interaction is much larger than the electron-electron
interaction in the target then the Born approximation is valid as was shown before.
We apply this model parallel with the coupled-channel model to compare them and
check their range of validity. The general Born approximation method has been
described in detail elsewhere e.g. [McG97]. In the following we sketch the first-
order calculations only. The transition amplitude for the electrons being ionized

reads
400

a(l) = _i/dtei(EfEi)t<q)f‘v(7?15FQ:ﬁlaﬁ?:tab)‘¢i>’ (221)

—0o0

where |®;), E; and (®;|, E; are the initial and the final states and energies respec-
tively. The interaction operator is the same as for the coupled-channel model was.
To evaluate the cross section for a channel the usual impact parameter integration
(2.16) is needed. The single- or double-ionization cross section is a simple sum of
all the corresponding channels.

For the description of the initial and final wave functions exist plenty of ways.
Without the claim of completeness we mention some of them:

e For the initial wave function one can use correlated Hylleraas-type wave func-
tions [Spi99]. These are wave functions which depend on the difference of the
two electron coordinates, hence automatically include electron-electron corre-
lation.

e For the final states 2C' or 3C wave functions can be used. The 2C' function con-
sists of two incoming Coulomb waves and the 3C' function contains a Coulomb
distortion factor for the electron-electron repulsion. This wave function can
be found in [Spi99] also.

e A new but complicated way to approximate the final state is the so called ®,
function. This function is a generalization of the 1Fi(a, b; ¢; z) function for two
variables and includes correlations obviously [Col98].

These kind of wave functions, in principle, can be used in our coupled-channel
calculations as well. The only problem is how to build wave packages from the 2C,
3C" and ®, functions to incorporate to a finite basis.

Our Born calculations are ‘simplified’ coupled-channel calculations which means
that we use only the first row of the coupled-channel matrix. The coupled-channel
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equations are given once again:

da () al
k . i 5.
= ;:1 Vije' BBt (1) (k= 1....N), (2.22)

where V; is the coupling matrix. When NV =1, no sum is considered. Then we have
the 'normal’ perturbation theory and the time integration can be formally written
as in (2.21).

Our initial wave function (from its internal CI property) contains also ionized elec-
tron configurations that would not be needed. This configuration mixing is negligi-
ble.

The usage of the perturbation theory is a good help to find out the significant
channels contributing to the cross section. Then we use the relevant channels in the
coupled-channel calculation.

2.3 The Forced-Impulse Method (FIM)

J. F. Reading and A. L. Ford developed an ab initio method which is also a kind
of coupled-channel calculation and includes the electron-electron correlation in an
exact manner. The FIM method divides the collision time into sequential short
segments. The electron-electron interaction is neglected and only the projectile-
electron interaction acts. At the end of each segment the system is projected to
fully correlated states which are the initial state of the next time segment. With
this method a large number of states can be examined and the correlation can be
fully included. With the help of this method more than a thousand channels can be
included in a calculation. The above mentioned group has been developing their code
more than a decade and angular correlated wave functions are already used. The
physical idea and the mathematical details of the method are underlined in [Rea87].
As we know the method was predominately used to understand low energy proton
helium and low energy antiproton helium collisions. A review article is [Knu92].

2.4 Classical Trajectory Monte Carlo (CTMC)

There is a completely different way to study ion-atom collisions purely classically.
This method is the Classical Trajectory Monte Carlo (CTMC) theory. The method
is based on the solution of the classical Hamiltonian equations of motion for the four-
body system which includes the incident ion, target nucleus and the two electrons
initially bound to the target nucleus. The equations are solved for a variety of sets
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of initial conditions, including impact parameters, relative velocities of projectile to
target, and positions and momenta of electrons. For each set of initial conditions, the
classical trajectories of the nuclei are calculated from a large internuclear separation
to the distance of closest approach and out again to large internuclear separations.
After each simulation the energies of the electrons are taken to decide weather
ionization has occurred. For a good statistical distribution defining the cross sections
more than ten thousand trajectories have to be calculated.

One of the basic dilemmas of any classical calculations is that it is impossible to
correctly describe the bound initial two electron ground state. Different sophisti-
cated conditions are needed to prevent the collapse of the helium atom as well as to
impose the Heisenberg uncertainty principle. The angle between the two electron
coordinate vectors has to remain 180° during the whole process; otherwise the atom
falls apart without any outer perturbation. As we know more than two electron
atoms or ions can not be hold together even in the ground state. A uniformly ran-
dom number generator is essential [Hof93]. The theory itself can be learnt from the
early works of Olson [Ols77] or [Ols78].



Chapter 3

The structure of the helium atom

3.1 The helium Hamiltonian

Before we begin the coupled-channel calculation the unperturbed helium Hamilto-
nian has to be diagonalized to get the spectrum and the wave functions. In this
chapter we show how this procedure can be done. The main problem is now to solve
the following eigenvalue equation (only the spatial part is presented, the spin comes
later on):

HHeQ(T_”l,T_"Q) - E(P(Fl,FQ) (31)

where Hp, is the non-relativistic, spin independent helium Hamiltonian, ® (7, )
is the two-particle spatial wave function, and E is the energy of the whole system.
The Hamiltonian Hg, has the following form:

2 2 1

1 1 1 - o
Hie= —— A — — Dy — =V Vym = — = 4 = 3.2
H S T Y VA S T2+r12 (3:2)

The first two terms are the kinetic energy operators of the two electrons, u is the
reduced mass of the electron with respect to the mass of the nucleus M.

m-M

= 3.3
a m+ M (3.3)

The third term with the two gradient operator stands for the mass-polarization.
The precise derivation of this term can be found in [Bra83]. The next two terms are
the electron-nucleon Coulomb interactions and the last is the electron-electron one.
The figure (3.1) helps to understand the coordinates.

18
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Figure 3.1: The schematic figure of the helium atom

The mass M is about 7300 larger then the mass of the electron. Due to this the
electron mass can be used in the first two terms instead of the reduced mass. The
mass polarization term can be neglected. The eigenvalue equation reads as follows:

1 1 2 2 1
_ A - — Ay — — — — — | ®(7,7) = E®(7, 7 3.4
om 1 om 2 ) Ty + 1 (7'1,7'2) (TI;TQ) ( )

Having exchanged the two electrons the solution of the eigenvalue equation must not
change. Let’s introduce the electron exchange operator P, in the following manner:

O(7, ) = Pra®(f, 1) (3.5)
Now try to solve the eigenvalue equation of the previous operator.
AD(7y, 71) = Pro® (7, ) (3.6)
Let’s act the operator once again
PioPra®(71,75) = APp®(7, 75) = N® (7, 75) = (71, 7). (3.7)
The solution is now obvious:

MN=1=A=41= 0@, 7) =107, ) (3.8)
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The states with positive sign are the symmetric (or para-) states and the states
with minus sign are the anti-symmetric (or ortho-) states with respect to the spatial
wave function. The spin dependence of the Hamiltonian is neglected. The spin-orbit
interaction and the spin-spin interaction contributes very little to the energy of the
helium bound states.

Now let’s discuss the question of the spin. Up to the two electron system the total
wave function can be separated into two independent parts, the spin part x(1,2)
and the spatial part @ (7, 7%):

U(1,2) = (1, 72) - x(1,2) (3.9)

The complete wave function has to be anti-symmetric due to the Pauli principle.
This conditions can be satisfied in two ways:

e The spatial part is symmetric, and the spin-dependent part is anti-symmetric.
This can be realized with a single spin function. Therefore it is called ’spin-
singlet’ state.

e The spatial part is anti-symmetric, and the spin-dependent part is symmetric.
This can be achieved with three different spin functions that is why it is called
‘spin-triplet’ state.

A detailed description can be found e.g. in [Bra83] in Chapter 6.

When the helium Hamiltonian does not contain any spin-dependent operators, no
transition between the singlet and triplet states can happen. We calculate both the
singlet and the triplet spectrum but in the following only the singlet spectrum will
be used and examined. We neglect the singlet-triplet transitions in our collision
calculations. These transitions contribute only a little to the cross sections in light
systems.

3.2 The wave function

We expand the helium eigenstates ®;(7,7%) in terms of linear independent two-
particle basis functions f,

(71, 7) = Y b f(Fy, 7) (3.10)
7]

This is the configuration interaction (CI) approximation. Here

f(71,72) = N(o1(71) d2(72) £ ¢2(71)p1(72)) (3.11)
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is a normalized, symmetrized or anti-symmetrized product of two single-particle
wave functions. The positive sign stands for singlet states and the negative for triplet
states. To describe the bound part of the spectrum we use Slater-type functions and
regular Coulomb wave packages for the continuum states

The one-particle functions are not orthogonal to each other. There is a finite overlap
between different Slater-Slater and Slater-Coulomb wave packet functions. Due to
this the normalization constant is not the well known N = % but

1
N = .
V22 (01(71)]2(72))?

In practical calculations the factor NV can be neglected because the total CI wave

function has to be normalized to one and our diagonalization procedure ensures it
automatically.

(3.12)

3.2.1 Slater functions

The complete form of the Slater function is
Sppmr(F) = c(n, &)r" e Y, (0, ¢), (3.13)

where ¢(n, k) is the normalization constant:

(2I€)n+1/2

V(@)

The n,l, m are the principal, azimuthal, and magnetic quantum numbers respec-
tively. The k is the screening factor, (which is rather a parameter and not a real
quantum number). Typical k values lie between 0.14 — 3.25. Large screening factors
mean more localized orbitals than the smaller screening factors. To describe bound
states, Gauss functions can be also used, as in quantum chemistry or in earlier works
(in this field) of Busic [Bus96], Hildenbrand [Hil94], and Gramlich [Gra89]. Gauss
functions have the advantage that the electron-electron interaction matrix elements
can be analytically calculated. In electron transfer processes [Bus96], translation
factors appear and in this case the Gauss functions have a further advantage, since
the matrix elements can be done analytically.

c(n, k) = (3.14)

3.2.2 Coulomb wave package

For the ionized states regular Coulomb wave packages* will be used:

*From now on the different expressions ‘Coulomb wave functions‘, ‘Coulomb package‘, or simply
‘package‘ or ‘packet’ will be used to avoid continuous repetition; they all mean the same.
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k2/24A2 /4
Coams @ = a0 AR [ Fy (5 )hdbYin (0, ) (3.15)
k2/2—A2/4
where ¢(k, Ak) is the normalization constant
2

VAE -k

Ak stands for the width of the package and k& = (k+ (k + Ak))/2 is the mean value
of the package.

q(k, Ak) = (3.16)

The regular Coulomb function is F; ;(k,r) where Z is the effective charge of the
particle. The spherical harmonic Y, (6, ¢) provides for proper angular dependence.

The integration over the Coulomb function F, ;(k,7) is needed, to have discrete
number of wave functions in the continuum, and in this way it can be incorporated
into our finite basis. The regular Coulomb wave function is used (instead of the
irregular ones) because it has no singularity at the origin and matrix elements can
be calculated easily. It can be shown [Abr70] that the radial Coulomb wave function
is real.

The properties of the Coulomb wave function can be found in different books e.g.
[Abr70], [Lan68]. The well known ‘Dirac delta normalization’ of the Coulomb func-
tion is not suitable for a finite basis-set calculation, that is why the packets are
constructed. A package wave function created in the energy interval [Ey — AE/2 :
Ey + AE}/2] is orthogonal to all the other packages which lie outside this energy
interval. When two different packages have an overlapping energy range, then the
corresponding overlap matrix element is also not zero. With a clever selection of the
energy ranges this is avoidable.

The radial Coulomb wave function reads
zZ b —ikr ;7
Fg(k,r) = yfZes Sl | T(14+1—iZ/k) | x
P (141 +4Z/k, 21 + 2, 2ikr) (3.17)

Here, I' is the Gamma function, and 1F} is the confluent hyper-geometric function
with complex argument [Abr70]. The Coulomb wave function has an oscillating
behavior. The above mentioned additional £ integration produces an extra ‘bumpy-
like’ character. To give a qualitative explanation for this behavior let us consider
the following integral:

/ cos(kr)dk = sin((k" + Ak")r) — sin(k’r). (3.18)

r
kl
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Figure 3.2: A Coulomb wave package with the parameter set:
=0, Z=2, k=35a.u.and Ak =0.5 a.u.

We may say that the oscillation of the Coulomb wave function comes from its sine
or cosine dependence, if we integrate it on a small finite interval than we get two
waves with slightly different frequencies. The ‘bumpy-like’ character is simply the
interference between this two frequencies.

A nice packet is visualized in figure 3.2. The quick oscillations come from the energy
of the package p = kr and the 'bumpy-like’ oscillations comes from the integration.
The visualized package has a relative high energy £ = 3.5 a.u. In our later basis we
will use packages with lower energy, because the soft electrons give the predominant
contributions to the ionization cross section.

In our code we calculate and tabulate the packages up to distances of 300 or 400
a.u. and save them in tables. Later spline or polynomial interpolation is used to get
their value at any position. The packages are normalized to unity with an accuracy
better than 99,3 percent.

The whole diagonalization process has three different kind of parameters; the Slater
functions have the screening factors « and the Coulomb packets the values of Z which
is the effective charge; the width of the Coulomb packet Ak is also a parameter. The
screening factors have to be optimized, to have accurate bound states. Two different
kind of Coulomb wave packets are used; the first is with Z = 1 for the single-ionized
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states, and Z = 2 when both of the electrons are ionized. The packages with Z = 2
show quicker oscillations than the ones with Z = 1; due to this feature all the
corresponding matrix elements are smaller. Z, the effective charge can be different
from one or two, but it does not make much difference. We would rather operate with
the width and the number of packages in our basis to create favorable states. This
two kind of wave packets (Z = 1,2) are not orthogonal, and give a contribution
to the overlap matrix element which can not be neglected. The major difference
between the s, p, d Coulomb wave functions (or packages) is at in the origin. All the
three packages in Fig 3.3 have the same parameters Z =2k=0,Ak =0.5. The
s packet starts linearly from a non-zero value, the p packet starts linearly from the
origin and the d packet starts quadratically from the origin, as one can recognize
from Fig 3.3.

This characteristics makes it possible to calculate the electron-electron interaction
matrix element at the origin with the help of the multiple series.

To evaluate the energy integral (to get a package) we used a simple Romberg in-
tegration. To calculate the Coulomb wave function we used different approaches

(p=krn=1%):
-Small arguments (p < 2): We used the well-known series expansion from [Abr70],
(formulas: [14.1.3-14.1.7])

Fi(n, p) = Ci(n)p' ' ®u(n, p), (3.19)

where the normalization constant contains a complex gamma function:

_ 2le=™/2|T(1 4 1 + in)|

Ci(n) = 3.20
For ®,(n, p) exists a convergent sum:
@i, p) = > A" (3.21)
k=1+1
and for the coefficients the following recursion relation:
(k+D(k—1+1)A =24l  — AL o (k>1+2), (3.22)
where the first two values are
n
Al=1, A, = T (3.23)
-Larger arguments(p > 2) An expansion in terms of Bessel functions
[Abr70][14.4.1] was used:
20+1) _ >
Fi(n,p) = Cl(ﬂ)Wﬂ LN bt L(2vE), (3.24)

k=20+1
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where t = 2np and n > 0. The recurrence relation for by is

An*(k — 20)bgyy + kb 1 +bp 2 =0 (k> 20+2) (3.25)
with b21_|_1 == 0, b2l+2 = 0.

-for the d functions the recurrence relation [Abr70][14.2.3] was applied

I(1+1)

[+ 1) + 22, p) = (21 +1) [n .

} Fy(n, p) -
(+ D[P+ 2R (0, p) (3.26)
-For large asymptotic r values the asymptotic [Bet57][3.32] formula was taken

Flryoo = k) p(V870) (3.27)

272r

where ¢(k) is a constant. The matching points were optimized by hand.

The wave function is tabulated up to some hundred a.u. Later, interpolation formu-
las are used to get the approximate value between two tabulated points. For small r
(r < first tabulated value of the wave function), a 4-point interpolation polynomial
is used, otherwise a linear combination of sine and cosine functions.

3.3 Matrix elements

To solve the eigenvalue problem of the helium, the matrix elements have to be
calculated first. Different integrals arise, due to the different properties of the Slater
functions and Coulomb wave packets. We use different effective charges Z = 1 and
Z = 2 to make a better approximation for the single and double continuum states.
This causes more matrix elements, because the wave packets with different charges
are not orthogonal anymore. To distinguish between the Slater and the Coulomb
packet functions, let us use the following notation: Sy ;. . for Slater functions and
Cy 1.m,z for Coulomb packages. The quantities which have to be calculated are:

e the overlap integrals:

(Sn1,l1,m1,le1 (f) |Sn2,l2,m2,162 (fj)
<Sn,l1,m1,n (7—") |Ck,lz,m2,2 (7:‘»
<Ck1,l1,m1,21 (7:‘)|Ck2,l2,m2,22 (7:‘)> (328)
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Package(r)

rina.u.

Figure 3.3: Radial wave functions in the origin

e the potential energy:

2
<Sn1,l1,m1,n1 (7”)‘ - ; ‘Sn2,l2,m2,n2 (F)>

2
<Sn,l1,m1,n (7’.—‘) | - ; |Ck,l2,m2,2 (T_I)>
2
<Ck1,l1,m1,21 (f‘)| - ;‘Ckz,lz,m%ZZ (T_')> (329)

e the kinetic energy:

1 )
<Sn1,l1,mhf€1 (T_‘) | - §A‘Sn2,l2,m2,f€2 (T»

R | i
(St ma e (T)] = §A|Ck,lz,m2,2 (7))

1

<Ck1,l1,m1,21 (f‘)‘ - §A|Ck2,l2,m2,22 (F)> (330)

e the electron-electron interaction:
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— — ]' — —
<Sn1 J1,mi,k (Tl)Sns,ls,ma,m (7'2) | a |Sn2,lz,m2,l€2 (Tl) Sn4,l4,m4,n4 (T2)>

— — ]‘ — —
<Sn1,l1 1 ,K1 (Tl) Sns,ls,m:a,lﬁs (TQ) | E ‘Snz,lz,mz,nz (T1)0k4,l4,m4,24 (T2)>

— — 1 — —
<Sn1 Sl1,ma K (Tl)ckg,l3,m3,23 (T2) | T_12 |Sn2;l27m21'52 (T1)0k4,l4,m4,24 (T2)>

— —

1 — —
<Ck1 ,ll ,m1,Z~1 (Tl)ckg,ls,ms,zg (TZ) | T_ |Sn27l25m2;’<‘2 (’rl) S’I’l4,l4,m4,l€4 (T2)>

12
— — ]‘ — —
<Ck1,l1,m1,21 (Tl)ckg,l;;,mg,Zg (T2) | T'_12 ‘Ck}Q,lQ,mQ,ZQ (rl)Sn4,l4,m4,n4 (T2)>
1 —

—

<Ck1,l1,m1,21 (T1)0k3,13,m3,23 (FQ) | E |Ck2,l2,m2,22 (T1)0k4,l4,m4,24 (,F2)> (331)

3.3.1 The overlap

We start with the simplest case, the Slater-Slater overlap:

<Sﬂ1,l1,m1,l€1|Sn2,l2,m2,l€2> = /S;:l,ll,ml,m (F)Sn2,l2,m2,l€2 (F)d?’f‘ =

7

00
C(’I’Ll, nl)c(nz, ,{2) /7.m+n22e(n1+n2)rrgdr %
0

/ / Vi (0, 0) Yo (0, 0) sin(0)dodp.  (3.32)
0 ¢

The integration of the spherical harmonics Y}, (6, ¢) will not be written down in
the following because it is analytic (and always the same):

2w
/ /Yif,ml (0’ (P)Yim"m (9’ QD) s1n(0)d9dg0 = 5l1;l2 : (5m1,m2- (333)
0 0

The radial part is the well-known Borel integral:

= |

ni+ns —(m—l—ng)’rd — (nl + n2)' 3.34
/T ‘ "7 (o mg)mrmat” (3.54)
0
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The whole matrix element is at last:

(’I'Ll + ng)'
K1 + ,{2)n1+n2+1

<Sn1,l1,m1,l€1 |Sn2,l2,m2,l~t2> = 5l1,l2 : 5m1,m2 : C(nla Kl) ) C(n% HQ) : ( (3'35)
When all the quantum numbers nq, l1, m1, k1 are equal with no, l5, mo, k9, the overlap
gives one.

The Slater-packet overlap:

<Sn,l1,m1,lﬁ(Fl)|Ck,l2,m2,Z~(FZ)> = /S:z,ll,ml,n(F)Ck,b,mg,Z"(F)dsr =
7
k+Ak

c(n, k) - q(k, Ak) - 01, 1, Oy ms - /r”_le_” . / F,(Z/k, kr)dkr®dr  (3.36)
0 k

Plugging the Coulomb function into the equation (without the normalization con-
stants and deltas) we get for the radial integral:

o0 k+Ak 5%
<S"7l1’m1’“(r)|Ck,l2,m2,z~(r)> = /rnlem" . / ?e%fikr >
0 k
(2hr)" ; ) o
(2l +1)! | T(lo+1—iZ/k) 1 Fi(1+ 1o +iZ ]k, 2ls + 2, 2ikr)dkrodr  (3.37)
2 .

Let us consider now only the right hand side of the equation and exchange the order
of the integration, writing first the k£ integration and then the radial one:

k+Ak
[2k sz > (2k)"
(Snsts s 0 (1) [ Chty g2 (1)) = / —e | T(ly+1—4Z/k) | L+ 1) 1)!dk X
k

/ FL (14 1y +iZ )k, 2y + 2, 2ikr)r2 T te e 2 i3 38)
0
The r integral has a closed form [Gra81][Volume 2, 7.621-4]:

Ry, 11(k, K, Z/k, lg) = /1F1(1 + 1+ ’iZ/k‘, 2y + 2, 2ikr)rl2tn e Rk 2 g —
0

(3.39)

7 2i 1)!
g <"+l2+2,1+l2+iZ/k;2l2+2; ik ) (n+l+1)

k+ik) (k+ k)t
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The definition of the hyper-geometric function oF} is [Abr70][15.1.1] :

(@0t () XT(a+n)(b+n)2"
2 ©)n 7! F(“)F(b)gﬁ (3.40)

2F1(aa ba G Z) - -

l

s [(c+n) n!

It is clear that oF](a, b; c; 2) =2 F1(b, a;c; z) is symmetric in the first two variables.
In our equation the variables a and c are integer numbers.

e If a = ¢, it means: n = ly. Using [Abr70][15.1.8] we find:

F(a,b;b;2) = (1 —2)“ (3.41)
So the radial integral has the final form:
(205 +1)! 1
Ry, 1(k) = —— =
2t 1K) (k + 1k)*2 42 (1 — 2k / (k + ik)) 1 a7 /k
2 1)!
@+ 1! L (3.42)
(K + k) t1-i2/k (15 — jk)\+a+iZ/k
e if n > [y, let us introduce ¢q=mn — ly;
1) —Z '
Ryii,1(k) = /rn —lz o 2atgkro—ikr o By (. )r2dr =
0
- 1 )9-2LpR (3.43)
8&‘1 20> +1 -

To understand the formula above: when n > [, we may derive the Iy,
integral with respect to x to pull down an extra » monomial dependence. The
expression is even true after the use of [Abr70][15.1.8]:

01 1 1
_ = (=192 +1 - = .
Rnpip-1(k) = (=1)7(20 + )3,{,1 {(K,_;’_z'k)(lg—l—l—iz/k) (k — ik)(l2+1+iZ/k)}
(3.44)
With complete induction the following formula can be proved:
(2l + 1)! 1 2 b\ (k- ik T
R, k)= - .
+l2+1( ) (/€2 + k2)l2+1 (Ii _ lk‘)”_l ; S K+ ik X
Pl +1—iZ/k)- Py_iy_s(lo + 1 +1iZ/k) (3.45)
where the Pochammer symbols are defined through the following relation:
1 for k=0
Pr(a) = r k . 3.46
«(a) ala+1)---(a+k—1) :M (for k #0) (3.46)

['(a)
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e For the case n < ls no formula exists, because [, is always smaller than /5 the
angular integral is already zero.

At last the complete matrix element is:

<Sn,l1,m1,n(F1)|Ck,l2,m2,Z~(7?2)> = C(n: K’) ) Q(k7 Ak) ) (5l1,l2 X

k+Ak Qk )
6m1,m2 - / R2l2+1(k)“ —6% | F(ZQ + 1-— ’LZ/k) | dk (347)
Vs
k

To evaluate the remaining k integral we use the Romberg algorithm, as explained
above.
The package-package overlap:

<Ck1,llam1,21 (f)|ck2,l2,m2,22 (T_)> (348)

If the Z values are the same and the k intervals are different than there is no overlap.
The wave packages are orthogonal to each other. (Numerically, there is an overlap
~ 1075; this is a further check for the accuracy of the calculation.) If the effective
charges are different, there exists a small finite overlap. This was calculated straight
numerically. A practical way to get satisfactory accuracy is the following: search for
the first zero of the two package wave functions, choose the lower one, integrate from
zero up to this value, then add this distance up as long as convergence is achieved.
A last remark on this matrix element:

Calculations neglecting the overlap between packages with a different effective nu-
clear charge Z can push the ground state slightly lower than the experimental value.
This contradicts the variational principle and is wrong.

3.3.2 The potential energy

The Slater-Slater case:

Z 1
<Sn1,l1,m1,n1| - 7|Sn2,l2,m2,n2> = _Zt/S:hh,mhm (F) ;Snz,lz,mmliz (F)d?”f‘ =

7
(77,1 —+ ng — 1)'
(K/l + ,{2)”1‘1‘”2

Oty * Omy,my - €(111, K1) - (2, K2) - (3.49)

The only difference between the overlap and the potential energy matrix elements
is in the r dependence of the exponent. Instead of the former 7"1*"2~2 now we have
an r™*17273 because there is an extra r in the denominator.
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The Slater-packet case:

The method is the same as for the overlap: the only difference is: ¢ = n—1—1
because the 1/r potential lowers the exponent with the principle quantum number
by one.

The packet-packet case:
The radial integral can be calculated only numerically with the method mentioned
at the discussion of the overlap.

3.3.3 The kinetic energy

The Slater-Slater case:
To calculate this matrix element we need the Laplace operator in spherical coordi-
nates:

Cr20r or r?sin(f) 06 06 r2sin?(0) 0p?
10 0 1.
— ( 2 ) +5W (3.50)

r2 or T@

where W is the angular part. The solution of its eigenvalue problem is well known:

A~

Wyimmz (‘97 SD) = _l2(l2 + 1)}/22,7712 (07 QO)' (351)

Let the radial part act on the Slater function:

10 0
T_QE <7’2§(7‘n2_16_nzr)) — [nQ(n2 _ 1) — 2rkons + 7.2,{3] . ,rnz—3 .eher (3.52)

Using all this formulas, the final form reads:

1
<Sn17l11m17’<’1| - §A|Sn27l2;m2;n2> = 5l1;l2 : 5m15m2 : C(nl’ Kl) : C(n27 K;Z) X

(n1 —+ Ng — 2)'
(51 + Kz)nﬁ—nzfl

1
50l 1) = nafrs = 1)

(n1 +7’L2—1)' 1 9 (n1+n2)'
kan2 (Kfl + ,{2)n1+n2 o 5”2 (’fl + K2)n1+n2+1 (353)

The other two kinds of matrix elements are calculated with the help of the
single-particle Schrodinger equation. Applying the kinetic energy operator plus the
potential energy operator to the wave function gives the wave function multiplied
with the corresponding energy. This is equivalent to saying that the sum of the
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overlap and the potential matrix element is equal with the kinetic energy. With this
trick no derivation of package wave function is needed.

We also tried a numerical derivation of the wave package but we showed that this
method is unstable and may affect spurious sharp peaks. The detailed derivation
will be shown for the package-package case only.

The Slater-package case

In this simple case we need to add the potential and the overlap matrix elements
together The potential matrix element has to be multiplied by the charge of the
corresponding wave package.

1
(Sntnma o (F)] = SAICy ymg,2(7)) =

~ 1 1
6l1,l2 : 6m1,m2 | Z- <Sn,l1,m1,li(77)|_|ck la,mo Z~(7_1‘)> + _5E1,E2 (El + EQ) (354)
o BB 4

The package-package case
The single-particle radial Schrodinger equation with a wave package reads:

(—%W — %) q(k, Ak) / F/(Z/k, kr)kdk = Eq(k, Ak) / F(Z [k, kr)kdk (3.55)

We use V2 instead of A from now on to avoid misunderstanding. Fj(Z/k, kr) means
now the radial Coulomb wave. The package has the average energy E. The angular
part can be treated separately as usual and attracts no attention. Let us construct
the mean value of the previous equation with another wave package with different
parameters:

o0 k1+Ak1

. 1 7.
q(k1, Aky) - Q(k2,Ak2)/ / Fi,(Z1/k1, k1) k1dky (—§V2 — —2) X

T
0 k1
ka+Aka

F,(Za [k, ko) kodky | 72dr = q(ky, Aky) - q(ka, Aky) X

k2
o0 k1+Ak1 ko+Aks
/ / El (Zl/kl, ’I”kl)kldkl . / E2E2 (Zg/kg,rkg)kgdkg T'QdT' (356)
0 kl k2

Let us use the well known relation: Fy = k3/2 and put the potential energy term on
the right hand side of the equation. To make the equation more transparent ignore
the normalization constants for a while on both sides. The radial part of the kinetic
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energy matrix element is:

o0 k1+Aky 1 ka+Aka
/ / El (Zl/kl,rkl)kldkl <—§V2) / E2 (ZQ/kQ,T‘kQ)dekQ T‘2d7‘ =
0 kl kZ

k1+Aky

~ ka+Aks

Z ~
El Zl/kl,’f'k )kldkl (7) / E2(Z2/k2"f'k2) - kgdkg T’2d7'+
k1 k2

o0

0

[e’s) k1+Akq ko+Aks
0

2

~ k
El Zl/lfl, ’l"kl)k dk‘l / EQ (Zz/kg,rk'g) . ?2 . kg . dk'g r2dr (357)

k1 k2

The first part is simply the potential energy matrix element mentioned above, mul-
tiplied with the effective charge of the corresponding package. We concentrate now

on the second part: Insert ¢(k, Ak) = 1/ Ak - k into the last equation

1 / k3

kldkl/ dk‘g/ﬂl Z/kl,rkl)ﬂz(Z/kg,Tk‘g)T dT‘ (3 58)

V Ak - ky \/Ak2 s .
:5(E2 1)

The Coulomb wave functions are orthogonal to each other and normalized to the
delta function in energy. By using some identities the Dirac delta function has
another equivalent form:

6(Ey— E1) =0 (%% - %) = 20((ka — k1) (ko + k1)) = (S(kQTQkI) (3.59)

Qne of the two k integrations with the Dirac delta results k; = ky. If we insert
k = (k + (k + Ak))/2 then the normalization constant cancels two terms namely
Ak =ky — k, and k = (kg + kp) /2. After some algebraic manipulation we get:

= (3.60)

Ak -k Ak-k 8

a

1 k3dk_ 1 (k;}—kﬁ):1<k§+k§>
2 2

The kinetic energy matrix element reads after all:

1
<Ck‘1,l1,m1,21 (T_‘)| - §V2|Ck2,l2,m2,22 (T_‘)> =

N 1 1
bt Sosins (O O3 Cop a0 + (P (Eut B)) (300)
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3.3.4 The electron-electron interaction

The electron-electron interaction is represented by a two particle matrix element
which means double-fold integration over 7; and 7. Only six different combinations
of the functions exist, all the other combination can be lead back to one of them
using a cyclic permutation of the order of the wave functions. The six different
kinds of integrals are given (3.31). Now we show how the matrix element can be
calculated using a multipole expansion. In the following we outline the calculation,
for the purely Slater case. The quantum numbers are n,l,m,x and for the wave
package case k, [, m, Z. The electron-electron interaction matrix element with our
general wave functions reads:

. Ly 1 . .
e = (0 0m(31) TP () 1. (32) P2 210 2 o (32) TP ) e (31) 2)
(3.62)

Let us use now the well-known multipole expansion for the electron-electron inter-
action:

]- > ]_ T<)l

s = — | — ) P(cosb =

|T1 _7'2| §T> (7‘> l( 12)
S .
Z 2041 f—fl Z Yi,m(al’ <,01)Y2,m(92, 802) (3.63)
=0 m=-—1

where
o ri for ri<mr and 1o — ry for 71y > (3.64)
Sl for m<n T e for m>my '

Using this formula the matrix element reads:

o0

4T
Ioe =Nio34- Z X
P 20+ 1

l
3 / Vi (01, 00) Y o (81, 01) Vigs (1, 1) X

m:—lQ1

/Yi,m(em @2)}/}:@3 (92, 902)1/24,m4 (025 §02)dQ2 X

Qo

l
[ [ Zzo0ostmiontystrriviina, (3.65)

L T2
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To avoid confusions it is useful to introduce the shorthand notation N; 34 which
stands for the product of all the normalization constants. The angular momentum
integrals, for example,

rmorms / Vi (2, 327 v, (B, 62) Yis s (B2 62)2, (3.66)
Qo

can be evaluated with the help of the Wigner 3j symbols. The last row of (3.65) is
the radial part of the integral giving most of the work:

l
WlE//%%(T1)¢3(7'2)¢2(7“1)6254(T2)Tf7'§d7“1d7“2- (3.67)
>

T1T T2

At first we analyze the angular integrals. The properties of the Wigner 3j symbols
can be found in different books e.g. [Edm63] or [Cov81].

Cmmm4_04yw¢@k+n@h+n@g+l)l Iy s Loy Uy
bala 4 0 0 0/\m —m3 my

N J/

Wigner 3:; symbols
(3.68)
The Wigner 3j symbols are defined through the Clebsch-Gordan-coefficients. In our
case:

(lo i lo4>=<—1>”3-(2z4+1>%- (1,0, 15, 0]1s, 0) (3.69)
————
Clebsch- Gordan-coefficient

and for the second part:

=

(l7 m, l31 _m3|l4, _m4) (370)

- v

Clebsch-Gor(};}n-coefﬁcient

<n1l bl ) = (C1)lm (21,4 1)

—m3 My

Now the ¢ coefficient reads:

. 1 (21 + 1)(2l5 + 1) (2l + 1)
m,m3,ma __ ( m3—m4 .
Clisty (-1) Myt 1 \/ i X

(Z,O, l3,0|l4,0) . (l,m, lg,—m3|l4,—m4). (371)

The Clebsch-Gordan coefficients are needed when we want to couple two single-
particle wave functions With_‘ an_g‘ulall momentum /; and l, to a wave function with
a total angular momentum [ = [y + /5.

Direct definitions for the 3-j symbols or for the Clebsch-Gordan coefficients are too
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elaborate to mention here. These definitions can be found in the literature given

above. The ¢;;") "™ c"1*™ coefficients have some important symmetry properties:

it is always zero unless:
m=my+m; and m=mg+my (3.72)
For the angular momentum, the triangular inequality is valid in any case:
=l <T<L+1, s =l <1 <l3+14 (3.73)
|m| <[ is trivially true for all angular momenta. For the parity it is true

l+1;+1; even

=L +l—13—1 3.74
413+ 1 even} A ( )

In our work the maximal value of the total angular momentum of the helium wave
function is [ = 2, so the summation is not a long process.
At last let us analyze the remaining radial integral:

!
VVlE//%Qﬁ(T1)¢3(7‘2)¢2(7“1)¢4(7“2)7’%7€d7“1d7“2 (3.75)
>

r1 T2

If all four single-particle wave functions are Slater functions than the integral has a
recursive solution. The detailed calculation can be found elsewhere [Pfe96]. In the
following we present the starting formula of the calculation:

Wi(n1 + ng, ng + na, kK1 + Ko, kK3 + K4) =

oo

o

9 _ -3 _
/r?l+n2+l e ("‘1“2)”/7“33%4 =g (Ratra)rag 2 g r 2y +
0

o0
/r?ﬁnz e K“LM)”/ natnati=2p—(rstra)r2g2 g2 (3.76)
0

0

For a more clear result some substitutions are needed:
ki=n1+n9; ko =ng+ng; ¢ =K1+ Ky, Co= K3+ ks Now briefly the result:

I/I/vl(klv k?, Cy, CZ) =

1 (kg—l—l)'(]f1+l)' C1 C1
T (CI ) P ~ Dortrako—tor ) F Thorskao |
Cc2

) (3.77)

2 2
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To evaluate the quantity 7" we need the starting expression:

T = =1 (5 - o) (3.78)

o (e+1)H
where 4 = k1 + ks ¢ = ¢1/co and the recurrence formula:

(p—1)!

g (c+ 1)»

u,s(c) =S Tu—l,S—l(C) -

for pu>s (3.79)

In all other cases when Coulomb wave packages enter, the double-fold radial integral
can only be evaluated numerically. If the wave functions are Coulomb waves rather
than wave packages further analytic manipulation would be possible as was shown
before in the case of Slater-packet potential matrix element. In our code we have
simply integrated the expressions numerically. The wave packages are tabulated and
can be evaluated (with spline interpolation) at any r value. To evaluate this kind of
integrals is not an easy task. We use the distance between r, = 0 and the ry value of
the first zero of the package as a unit length for a 32-point Gauss integration routine.
Then this length will be added to the r-value of the first zero and the integration
will be repeated until the needed accuracy is achieved. When both wave functions
are different packages with different oscillating behavior than the smaller first zero
has to be taken. The product of the differently oscillating functions is an even more
quickly oscillating function. We could not find faster way to solve this problem with
high accuracy. Of course, the above mentioned algorithm has to be applied for both
of the variables. This process is time consuming: calculation of a matrix element
with 4 wave packages takes about 1-3 seconds even on a 300-600 MHz Pentium PC.

3.4 Diagonalization and densities

Having done the matrix element calculations, the complete Hamiltonian matrix has
to be built up.

Only s, p and d single particle orbitals are included in the calculation. All the
possible couplings of wave functions are done up to total angular momentum of
L = 2 with the Clebsch-Gordon formalism. Here, the spin part of the wave function
is separated, so the coupling was done only for the orbital momentum.

I 15
fll,lQ,L,M(FI’FQ) = Z Z C(llalQamlamQ;L: M)fll,l2,m1,m2(7?1ﬂf2) (380)

mi=—Il1 ma=—1Is
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C are the Clebsch-Gordon (CG) vector coupling coefficients, and can be calculated
with the help of the 3-j symbol [Cov81]. In atomic structure calculations the M
must be equal with m1 + m2 which reduces the double sum to a single one.

l1
Frdopa (P, 72) = Cll, loyma, M = my; L, M) fiy gy my vt (71, 72) - (3.81)

mi1=—11

The definition of the 3-j symbol is the following:

li I L
L M =(=1 lh—lo+M 2L 1 1/2 1 2 89
C(llaZZ;m17m27 ) ) ( ) [ + ] my Mo - M (3 8 )

With two d single-particle wave functions or with a p and a d wave function higher
L = 3,4 angular momentum states can be calculated. That would mean too many
channels for the collision calculation. Therefore, we neglect them. The first table
presents the possible couplings up to L = 2.

| Total Spin | Parity | L=0 | L=1 | L=2 |
0 Even | ss+pp+dd | pp’+dd’ | sd+pp+dd
0 Odd — sp+pd pd
1 Even | ss+pp+dd | pp+dd | sd+pp+dd
1 Odd — sp+pd pd

Table I. The possible couplings up to L = 2

The states with different spin, parity and total angular momenta are diagonalized
separately, because no mixture is allowed among states with different symmetry
properties. (No further interaction is considered in the Hamiltonian.) The notation
pp’ + dd’ means that the corresponding p or d functions have to be different (non-
equivalent electrons) otherwise the coupling gives zero.

The single particle wavefunctions are not orthogonal to each other, so the generalized
eigenvalue problem has to be solved. Let us plug the wave function (3.11) into the
time independent Schrédinger equation (3.1)

N

> BHHS, (7, 7) = E; Zb fo (7, (3.83)

v=1

Multiply it from left with another wave function and integrate over all the variables
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we get
N
sz[/]]//f;(ﬂ,7?2)Hfu(7“1,7“2)d37‘1d37’2 =
v=1 1 T2
N
BY W [ [ s (3.84)
v=1 F1 T2
With the abbreviations
fm,://]mﬁjaﬁﬂ@;@m%ﬁ%Z (3.85)
1 T2
and
Fu,u = //f;(Fl, FQ)fU(Fl, 7‘“’2)d37“1d3r2 (386)

(3.84) is equivalent to writing:
HO9 = B, FpU), (3.87)

H is the Hamiltonian matrix and the F' is the overlap matrix. Both of the matrices
have to be symmetric and real, because the operators are hermitian. For the nu-
merical solution of (3.87) we use a routine from the GSI IMSL-Library. The routine
has an extra condition for the overlap; it has to be positive definite, otherwise no
numerical solution can be achieved [Wil65].

The diagonalization itself does not consume much time and computer capacity. Just
to compare: to calculate the Hamiltonian matrix and the overlap matrix with a
realistic basis (25-30 single-particle wave functions) with Coulomb wave packages
takes some hours and the diagonalization is about half a minute on a normal Pentium

PC.

The routine has a double precision accuracy which is more than enough. For the
ground state of the helium atom E = —2.904 a.u. three digits after the comma is
sufficient.

The number of the eigenvalues is proportional to the square of the number of the
single-particle wave functions. This will be shown in the next section.

The diagonalization procedure gives different eigenvalues (and eigenvectors) which
have to be characterized first. An energy eigenvalue lying over 0 a.u. can be a
single- or a double-ionized state as well, it is hard to say the right answer in fact. To
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calculate the single and double total ionization cross sections we must unequivocally
qualify all the states lying in the continuum.

There are different methods to solve this problem, we mention now three of them:
1, Analyzing the electron densities

One way is to calculate the electron densities for the corresponding energy state
and then investigate it. The electron density allows us to distinguish between the
different states. The following formula gives the expectation value of the density:

p;i(7) = <¢>j(ﬁ,r§) Z(S(F— ;) cbj(ﬁ,rg)> -

/\@ 7 [* d®ry +/\<I> )| dPrs (3.88)

The Dirac delta functions are the density operator. The integrals on the right side are
symmetric in the case of symmetric and antisymmetric wave functions. According
to this, the density reads:

=2 / (71, 7)? dPry (3.89)

We calculated the radial electron density 7?p(r) multiplied by r2.

Let us discuss the results:

The densities for the ground state or for single-excited states are well localized with
some well-defined peaks. The 115 ground state has only one peak at r ~ 2a.u.
which is approximately the atomic radius of the helium atom. All other single ex-
cited states have more than one peak. This densities show an exponential decay as
function of the distance. Figure 3.4 shows the radial electron densities of the three
lowest states.

The next figure 3.5 shows two low-lying auto-ionizing states which are quasi-bound
states.

The auto-ionizing states can be quite simply recognized. There are different large
CI calculations which give us their exact energy value( [Bac91], [She77] or [Lip77]).
The single ionized states have a sharp peak close to the origin due to the bound
electron and then some oscillations even up to large distances. The essential differ-
ence between a single-ionized state approximated purely with bound functions and
with Coulomb packets can be seen in figure 3.6.

The pure Slater case has very few and very broad oscillations and has still an ex-
ponential decay for large distances. The package case looks more realistic with its
long-range oscillating behavior. The oscillations can be seen even at 300 a.u. dis-
tance in our calculations.
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For double-ionized states the effect is the same. Without packets the density is still
of bound state-types there are several peaks at small distances and the ‘far away’
(r > 20 a.u.) oscillations can practically not be seen. In contrast to this the mixed
case has very nice equidistant oscillations up to large distances. Densities of two
double-ionized states are presented on figure 3.7.

The total density is normalized to two because we have two electrons. Check of the
norm via the density is another way to test the accuracy. In our calculations it is
always satisfied with an accuracy better than 99.8 percent.

The densities presented above are all for the total angular momentum L = 0 case
without any angular correlated parts. In the L = 1 and 2 (angular momentum) cases
the densities depend on the angles # and ¢. To visualize the radial dependence, the
angles must be fixed to a certain value. The properties of the angular dependent
densities are the same as in the case of spherical densities.

At last we should mention the handicap of this method.

In realistic calculations with two or three hundred states there are several prob-
lematic densities. An example: with the help of the packages the low lying single
continuum, slightly above -2 a.u. can be nicely covered with states but when we
look at the densities of the corresponding states we can not see any oscillations at
all. These states are high-lying bound states e.g. 515 or 61S or even higher, badly
approximated and lying in the continuum. Of course they have some single-ionized
parts, but only with the help of the densities we can not go any further in their
characterization. Several calculations show that if we consider these important low-
lying states as completely ionized states than our cross sections will be enormous.
Conclusion: The investigation of the densities is not satisfactory. The diagonaliza-
tion produces wave functions which are a complete mixture of all the configurations,
and hinds their interpretation.

2, Projection method

A better method is the projection operator formalism of Feshbach. It is commonly
used in atomic or nuclear physics. The idea is simple: one splits the Hilbert space
into different sub-spaces, which are sub-spaces with bound, ionized and mixed states.
Operators are constructed and projected on the wave functions to filter out the states
of interest.

In our context the formalism is quite simple. We get our wave function after the
diagonalization in the form of (3.10)

[®;(71, 7)) = Y B (7, 7) (3.90)
W

The sum contains all the symmetrized product combination of the single-particle
wave functions, from the lowest ss Slater-Slater combination up to the energetically
highest packet-packet combination.



CHAPTER 3. THE STRUCTURE OF THE HELIUM ATOM 42

rr2*rho(r)

..........................................
.....

rina.u.

Figure 3.4: Electron density of the ground state and the following two single-excited

states.
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Figure 3.5: Electron densities of double-excited states.
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Figure 3.6: Electron densities of single-ionized states, solid line: with packages and
dashed line: without packages.
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Figure 3.7: Electron densities of double-ionized states, solid line: with packages and
dashed line: without packages.
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Now we need another Hilbert space which is split into three orthogonal sub-spaces
containing bound-bound, bound-ionized, and IONIZED-IONIZED states.

There are different ways to construct these Hilbert spaces. For the bound-bound
sub-space bound-bound wave functions can be used e.g. from different CI or from
Hartree-Fock calculations. For the IONIZED-IONIZED sub-space the 2C or even the
fully correlated 3C symmetrized Coulomb wave function can be used [Spi99].

In former times even ionized states were approximated only by the sum of Slater-
like orbitals where the exponents k; = af3, a2, a3, ..., Y are a geometrical
sequence with given ay and 8. One can find more about this and about the pseudo-
potential-Feshbach method in [Bac91].

Our idea is to use almost the same single-particle wave function set as for the
diagonalization, but we orthogonalize it first.

To do this we take the same single-particle wave function set as before use it as
a basis for the He™ (or even for the hydrogen) problem and diagonalize it. The
solution is an orthogonal single-particle wave function basis set. After that we may
say that all the positive energies and the corresponding wave functions represent
ionized electron states. The negative energy states are considered as bound states.
With this assumption the three sub-spaces are constructed automatically. This
statement is still not rigorously true, but gives a practical way to classify the states.

When using two orthogonalized single-particle wave functions with the proper nor-
malizations and couplings between them, the helium wave functions can be con-
structed. Why are these wave functions approximately equal to the original helium
wave functions (3.90) ? Because in the helium basis we use two different effective
charges to distinct the single- and the double-ionized electrons.

This is the crucial point: If the effective charge of the He™ wave function is changed
the result will be slightly different.

The formula for this projection reads:

ort ort

- >
-~

alPo—bo]

{@ory " (71, 72) | @pre(71, 7)) D" (71, 7) +

~~
albo—ion]

(@27 7) | B (71, 72)) BTN (7, 7o) (3.91)

TV
q[toN—10N]

Dpgo(73,75) = (@827, 75) | @irel7i, 72) ) OB P27, 75) +

®y. stands for the diagonalized helium wave function and the different ®,,; stands
for the helium wave function built up from orthogonalized single-particle orbitals.
The first therm on the right hand side stands for bound-bound states, the second
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for bound-ionized, and the last for DOUBLE-IONIZED sates. The three sub spaces are
orthogonal to each other. The normalization is giving us

1= 37 (|l 4 a4 o) (3.92)
The coefficients |a;|? are the probabilities of the states being single- or double-ionized

or not. Extensive analysis of the diagonalized spectrum will be given using this
method in the following section.

At last we show a scheme which helps to understand how to calculate the projection
explained above:

<8 (Z ai¢i(F1)) : (Z %‘¢j(fz))

S stands for symmetrization. The ‘ket‘ state is clear, this is the helium wave function
that comes from the diagonalization, and the ‘bra’ state is the symmetrized product
of the orthogonalized single-particle orbitals.

Z oS {p1(7) - ¢2(F2)}l> (3.93)

The CI wave functions always have all the three components, this is why they are
called Configuration Interaction wave functions. Having done the projection we do
not have any problem with the classification any more. After the time-evolution
or even after the impact parameter integration, before the last summation all the
channels have to be multiplied with the probabilities they contribute to single- and
double-ionization or excitation. The only problem remaining is to have a preferably
complete spectrum.

3, Method of complex coordinates

There is a mathematically correct method to filter out the resonances in the con-
tinuum. In this method all the r-coordinate in the Hamiltonian are multiplied with
a complex phase factor: » — 7 - €. Then the Hamiltonian matrix is built up and
diagonalized. The real part of the eigenvalues remain unchanged but the eigenvalues
have an imaginary part. With the variation of the complex factor €’ the imaginary
part of the eigenvalue defines a curve in the complex plane. The imaginary parts of
a single-ionized states are on a straight line as well as those of double-excited states.
The gradient of the straight lines are characteristically different. This method is of-
ten used to filter out resonance states in the continuum. The benefit of this method
to select single- and double-ionized states in the continuum is not much. The com-
plex eigenvalues of the double-ionized states have much more difficult properties.
The essential handicap of this method is (in our point of view) the complicated
implementation and that no standard routines exist to solve the complex general
eigenvalue problem. More about the complex-coordinate rotation method in [Ho79],
[Ho87].
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3.5 The helium spectrum

The qualitative spectrum of the helium atom is presented in figure 3.8.
It contains three basically different ranges:

e [—2.904... — 2] a.u. Here lie the ground state and the single-excited states.
Bound wave functions are obviously needed to describe these states.

e [—2.0...0] a.u. Low-lying single-ionized continua with embedded double-excited
states. These double-excited states are the so-called auto-ionizing states,
metastable states emitting one electron after decay. A typical example is the
2s2s state. As mentioned before these states are easy to recognize. They are
tabulated and the spatial densities are characteristical. To describe the soft
single electron spectrum some states are needed between -2 a.u. and the first
auto-ionizing state (for the L=0 spectrum it is -0.72 a.u.). This is of course
true for the L=1 and L=2 spectra as well.

e [0...00] a.u. This energy range is the most complex one and essential for
us. This is the double-ionized spectrum overlapped with the highly energetic
single-continuum. For our purposes the upper limit is about 20 a.u. which is
more than enough as it will be shown later on.

The main goal of the diagonalization is not only to have a highly accurate bound
helium spectrum, but the low lying states have to be approximated as accurate as
possible. In this calculation no spin-orbit, spin-spin interaction, mass polarization
or any other relativistic interactions are considered. The only effect which was taken
into account is the correlation by the electron-electron interaction. If we use only
s functions to approximate the ground state than the best energy value which can
be reached is -2.879 a.u. This can not be lowered. Using p, d one-particle functions
with the proper couplings the ground state value can be lowered. With 3s, 2p, 1d
Slater function the calculated value is: —2.903 a.u. There is a well-detailed study on
this topic [Ack95] where the non-relativistic helium Schrédinger equation is solved
with the finite-element method on a lattice. The lowest ground-state energy for He
which can be achieved is: -2.903 724 377 021 a.u. and for H~ the value is: -0.527 751
016 532 a.u. Precise calculations for the low-lying states of helium (or for helium-like
ions) including relativistic, QED, and recoil corrections were given by Drake [Dra88|,
who combined variational methods and the relativistic 1/Z expansion in his unified
method. For higher nuclear charge 4 < Z < 92 relativistic configuration-interaction
calculations for the ground state can be found in [Che94].

Table II. presents the nine lowest levels of the helium spectrum, the energies are
experimental data, including relativistic corrections accordingly.
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Spectrum of the helium atom

t E(au)

Single + double
continuum

0.0 Double-ionization
treshold

2525 —0.722 Single continuum
+ autoionization
states

20 loinization treshold
125 -2.144

Only bound states

—2.904 Ground State 1sls

Figure 3.8: The L=0 spectrum of the helium atom, the ionization thresholds and
two bound states.
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| L=0[L=1] L=2|
4S 4'p 4'D
-2.0336 | -2.0308 | -2.0312
31S 3P 3D
-2.0612 | -2.0551 | -2.0556
218 2Lp -
-2.1459 | -2.1238 -
'S - -
-2.9043 - -
Table II. The nine lowest energy levels of the helium spectrum, experimental data
from [MooT1].

These nine bound states are important to include in the coupled-channel calcula-
tions.

Now we present our basis functions and the corresponding spectra.

This is a non-angular-correlated calculation. This means that the L = 0 states
are approximated only by s wave functions. The affect of the angular correlation
presents itself by lowering the ground state. In the collision calculations the affect
of the angular-correlated ground-state wave function can not be seen. All other
low lying states such as 1s2s,1s2p an so on can be slightly lowered by any further
correlation, but in our case it is irrelevant. The angular correlation make the wave
functions much more complicated and the spectrum will be much more complex.
The interpretation and the classification of this spectrum is much harder and many
states contribute only very little to the cross sections. At last some fully correlated
calculation will also be discussed, but these are much more complex and will not be
discussed always in detail here.

For fully angular correlated calculations the former screening factors x have to be
slightly modified. The number of the eigenvalues can be easily calculated from the
number of the single-particle wave functions. A simple example for better under-
standing is the following:

Let us suppose that only two s single-particle wave functions are given, No. 1. and
No. 2. In the singlet states, the spin part is antisymmetric and the space-dependent
part must be symmetric. This means three possible combinations:

e both electrons are in the same state 1 (same wave function No. 1.)
e the two electrons are in different states (No. 1. and No. 2.)

e both electrons are in the same state 2 (same wave function No. 2.)
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When the two electrons are in a spin triplet state, then the space part has to be
anti-symmetric, and that can be realized only with different wave functions.

In table III. we present the number of the available energy levels. Let us abbrevi-
ate the number of the s single-particle wave functions with N, the number of the
p single-particle wave functions with N, and number of the d single-particle wave
functions with Ny respectively. For a more transparent description let us introduce
following abbreviations:

(the index s stands for singlet and ¢ is for triplet states)

Nss = Nyx (Ns+1)/2 Nsy = Ng+ (Ns—1)/2

Nps; =N, * (N, +1)/2 Npy= N, *(N,—1)/2

Nd; = Ng* (Ng+1)/2 Ndy = Ng* (Ng—1)/2

Where Nsg means the number of different helium singlet states which can be ap-
proximated with Ny single-particle s wave functions. With two different functions
three different configurations can be realized as was shown above.

Total Spin | Parity L=0 L=1 L=2
0 Even | Ns; + Np, + Nd; * Ns; - Ng+ Nps + Nd,
0 Odd — Ng - N, + N, - Ny N, - Ny
1 Even | Ns;, + Np; + Nd; Np; + Nd; Ny - Ng+ Np; + Nd;
1 Odd — Ny - Np+ Np- Ny N, - Ng

Table II1. The number of the available energy levels. The * means a more
complicated formula.

It is obvious from the table that the angular correlation enhances the number of
the eigenvalues enormously. As was mentioned above, only the ground state will
be lowered by the angular correlation, the additional energies due to the angular
correlation belong to highly lying single- or double-ionized states. In the following
tables we list the parameters of the wave function and the calculated energies. The
star for L = 1 stands for a more complicated formula which is now irrelevant.

The number of Slater functions and their screening constants x are well known from
earlier calculations [Pfe96]. The number of packages is nearly as big as the number
of bound state functions, this is needed but even more is better. Now we show why
this kind of packages were taken. As we mentioned the ( —2.0 : —0.72 a.u.) -‘hole’
has to be filled up with single-ionized states to cover the soft electron spectrum. As
a rule-of-thumb we can say that every new package gives a new state in this energy
range if the parameters are chosen adequately. If we need the first state at -1.8 a.u
then we need roughly a following packet:

Ei=02au=k2,;/2 — kmia=063 — kmpia— Ak <k <kpia+ Ak
The width of the desired packet is [kmia — Ak @ kmia + Ak]. The desired energy
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dictates only the middle value of the package. To choose the Ak we have some
freedom. If we need a second state in the continuum with E5 = 0.4 a.u. then we
take

(kmia, + Ak1) < (kmig, — Aky),

otherwise we have a needless overlap between the packages. In this way the contin-
uum can be covered equidistantly in energy, which means that the packages become
always narrower as the k value increases.

Of course, we have electron-electron interaction and the Slater functions also produce
states in this low lying region. Therefore the obtained energy will be slightly different
from the given value. This concept works also for the double continuum, but Z must
be equal to two. As a last consequence this is valid for the L=1 and L=2 spectrum
as well. In the last two cases the s packets also interact with the p and d packages,
which shifts the energy values slightly a bit higher.

It is important to mention that the high-lying single- or double-ionized states pro-
duced purely by Slater functions remain or even go to higher values of the energy.
Regardless of the parameters of the used packages, some highly-lying non-physical
states remain due to the bound functions enclosed. These states give a relative
big contribution to the single-ionized cross section if they are included in coupled-
channel calculations. The following basis and the corresponding spectrum success-
fully covers the double continuum up to 6 a.u. The higher region between [6...12]
a.u. is not or very barely presented. The highest energy range [12...17] is not so
relevant for our calculations.

Some further remarks: .
The distributions of packages with effective charge Z = 1 and 2 are different. This
helps us to approximate the two different kind of continua a bit better.

In tables IV, V and VI we present the parameters of the basis functions. After that
a long table (Table VII.) follows, where all the spectrum states are enumerated. The
table contains the energy of the states, the classification of the state and weather it
is used in the collision calculation or not. To understand this table some explanation
is needed for the shorthand notations used:

1x mn: A single-ionized state which is not used in the coupled-channel calculations.
2 x  y: A double-ionized state which is used in the coupled-channel calculations.
b>1x y: A state which must be a single-ionized state (because of its energy)
but its bound part is larger than the single-ionized part.

b~ 1x y: A state which is a half-to-half mixture of the bound and the single-
ionized configurations.

1x &~ 2x y: A state with a half-to-half combination of single- and double-ionized
configurations. After a careful analysis of the spectrum it turns out that pure
double-ionized states are rare. This is an intrinsic property of our model.
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Table IV. the s wave functions (I =0):

Function Type Quantum numbers and parameters

Slater n=1, k=2.35

Slater n=1, k=1.27

Slater n=2, k= 1.48

Slater n=2, k=0.52

Slater n=3, k=1.30

Slater n=3, k=0.30

Slater n=4, k= 1.00

Slater n=4, k=0.25

Slater n=>5, k=1.50
Coulomb k=1.022, Ak =0.185, Z =1.0, 2.0
Coulomb k=1.207, Ak =0.157, Z =1.0, 2.0
Coulomb k=1.362, Ak =0.145, Z =1.0, 2.0
Coulomb k=1.507, Ak =0.131, Z=1.0,2.0

Table V. the p wave functions (I =1):

Function Type Quantum numbers and parameters
Slater n=2,k=0.48
Slater n=3,k=1.00
Slater n=3,k= 0.29
Slater n=4,k=1.00
Slater n=4,k=0.22
Slater n=5,k=1.00

Coulomb Z =1.0, k=0.530, Ak =0.260; Z =2.0, k=1.860, Ak = 0.250

Coulomb | Z=1.0, k=0.790, Ak = 0.230; Z =2.0, k =2.110, Ak = 0.224

Coulomb | Z=1.0, k=1.022, Ak =0.185; Z = 2.0, k = 2.330, Ak = 0.204

Coulomb | Z =1.0, k = 1.207, Ak = 0.157; Z = 2.0, k = 2.530, Ak = 0.189

Coulomb | Z=1.0, k=1.362, Ak =0.145; Z =2.0, k= 2.710, Ak = 0.180

Coulomb | Z=1.0, k=1507, Ak=0.131; Z =20, k=2.890, Ak =0.172

Table VI. the d wave functions (I = 2):

Function Type Quantum numbers and parameters

Slater n=3, x=1.00

Slater n=3, k=0.33

Slater n=4, k= 1.00

Slater n=4, k=0.23
Coulomb Z =1.0, k=0.530, Ak =0.260; Z =2.0, k=1.860, Ak =0.250
Coulomb Z =10, k=0.790, Ak =0.230; Z=2.0, k=2.110, Ak =0.224
Coulomb Z =10, k=1.022, Ak =0.185; Z=2.0, k=2.330, Ak =0.204
Coulomb | Z=1.0, k=1.207, Ak =0.157; Z =20, k= 2.530, Ak = 0.189
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No.

Energy
in a.u.

Config./
Used (y) or not (n)

L=0 Spectrum

1 -2.877 1S vy
2 -2.144 218y
3 -2.060 3LS
4 | -2.033 418y
) -1.985 515 n
6 -1.792 b>1x y
7 | -1.369 b>1x y
8 -1.186 br1x n
9 -1.155 1x y
10 | -0.963 1x n
11 | -0.880 1x n
12 | -0.729 2525 n
13 | -0.717 1x n
14 | -0.571 253s y
15 | -0.537 2s4s y
16 | -0.507 2555 Yy
17 | -0.360 1x y
18 | -0.318 1x y
19 | -0.264 1x y
20 | -0.241 1x y
21 | -0.181 1x y
22 | -0.153 1x n
23 | -0.133 1x y
24 | -0.114 1x n
25 | -0.077 1x vy
26 | -0.052 1x vy
27 | 0.021 1x y
28 | 0.045 1x n
29 | 0.213 1x y
30 | 0.257 1x n
31 | 0.274 1x n
32 | 0.293 1x n
33 | 0.411 1x n
34 | 0.468 1x vy
35 | 0.530 1x y
36 | 0.603 1x n
37 | 0.606 1x n
38 | 0.632 1x y
39 | 0.701 Islx vy
40 | 0.716 1x n
41 | 0.760 1x n

No. | Energy Config./
in a.u. | Used (y) or not (n)
42 0.782 1x n
43 | 0.795 1x n
44 0.818 1x n
45 | 0.869 1x y
46 | 0.903 1x y
47 | 0.944 1x n
48 | 0.971 1x n
49 | 0.985 1x n
50 | 1.032 Ix g
51 | 1.051 Ix vy
52 1.058 1x n
53 1.119 1x n
o4 1.151 1x n
95 1.204 1x n
56 1.230 1x n
Y 1.411 1x n
o8 1.428 1x n
59 1.594 1x n
60 | 1.706 Ix y
61 1.770 1x n
62 1.839 1x n
63 1.856 1x n
64 | 1.961 Ix y
65 1.971 1x n
66 1.996 1x n
67 | 2.019 1x gy
68 2.029 1x n
69 | 2.085 1x n
70 | 2.197 1x n
71 | 2.248 1x y
72 2.428 1x n
73 | 2.610 1x g
74 2.845 1x n
75 2.941 1x n
76 | 3.200 2x n
77 | 3.715 2%y
78 | 4.897 2%y
79 | 11.938 2%y
80 | 12.462 2X n
81 | 12.548 2%y
82 | 12.576 1x n
83 | 12.593 1x vy
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No. | Energy Config./
in a.u. | Used (y) or not (n)
84 | 12.636 2%y
85 | 12.923 2X n
86 | 13.078 2x n
87 | 13.325 2Xx n
88 | 13.516 2X n
89 | 13.855 2x n
90 | 16.500 2x n
91 | 27.385 2xX n
L=1 Spectrum

1 [ -2.123 TPy
2 | -2.055 3Py
3 | -2.030 4'p vy
4 -1.922 5!P n
5 | -1.735 1x y
6 | -1.313 1x y
7 -0.648 2s2p y
8 -0.581 2s3p y
9 -0.545 2sdp y
10 | -0.535 2sbp
11 | -0.517 2s6p y
12 | -0.501 2sTp y
13 | -0.454 Tx y
14 | -0.353 1x y
15 | -0.321 1x n
16 | -0.287 1x gy
17 | -0.273 1x n
18 | -0.251 1x n
19 | -0.244 1x n
20 | -0.211 1x n
21 | -0.165 Tx vy
22 | -0.162 1x n
23 | -0.142 1x n
24 | -0.134 1x n
25 | -0.105 1x n
26 | -0.102 1x n
27 | -0.075 1x
28 | -0.058 1x n
29 | -0.042 1x n
30 | -0.021 1x n
31 | 0.020 1x y
32 | 0.064 1x

53
No. | Energy Config./
in a.u. | Used (y) or not (n)
33 0.103 1x n
34 | 0.121 Ix y
35 | 0.216 Ix vy
36 0.261 1x n
37 0.283 1x n
38 | 0.292 Ix g
39 | 0.321 Ix y
40 0.346 1x n
A1 | 0.369 Ix y
42 | 0.414 Ix vy
43 | 0.476 Ix vy
44 | 0.499 1x vy
45 | 0.545 1x y
46 | 0.611 Ix y
47 0.627 1x n
48 0.628 1x n
49 0.636 1x n
50 0.728 1x n
51 | 0.732 Ix g
52 0.748 1x n
53 0.796 1x n
54 | 0.821 Ix y
55 0.869 1x n
56 0.882 1x n
57 0.922 1x n
58 0.950 1x n
59 0.975 1x n
60 | 1.044 Ix y
61 1.070 1x n
62 1.121 1x n
63 1.122 1x n
64 1.133 1x n
65 1.153 1x n
66 1.243 1x n
67 1.300 1x n
68 1.450 1x n
69 1.566 1x n
70 1.598 1x n
71 1.632 1x n
72 | 1.861 Ix vy
73 1.869 1x n
74 1.942 I1x n
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No. | Energy Config./
in a.u. | Used (y) or not (n)
75 1.968 1x n
76 1.972 1x n
7 1.999 1x n
78 2.003 1x n
79 | 2.048 Ix vy
80 2.076 1x n
81 2.122 1x n
82 2.214 1x n
83 2.385 1x n
84 2.437 1x n
85 2.464 1x n
86 2.489 1x n
87 2.493 1x n
88 2.571 1x n
89 2.603 1x n
90 2.644 1x n
91 2.686 1x n
92 2.861 1x n
93 2.879 1x n
94 2.940 1x n
95 2.963 1x n
96 2.971 1x n
97 | 3.027 1x g
98 3.048 1x n
99 3.087 1x n
100 | 3.177 1x n
101 | 3.277 1x n
102 | 3.293 1x n
103 | 3.351 1x vy
104 | 3.367 1x n
105 | 3.280 1x n
106 | 3.453 1x n
107 | 3.457 1x n
108 | 3.476 1x n
109 | 3.578 1Xx n
110 | 3.665 1x n
111 | 3.709 1x n
112 | 3.775 Ix v
113 | 3.784 1x n
114 | 3.812 1x n
115 | 3.843 1x n

54
No. | Energy Config./
in a.u. | Used (y) or not (n)
116 | 3.880 1x n
117 | 3.900 1x n
118 | 3.953 1x n
119 | 3.991 1x n
120 | 4.084 Ix y
121 | 4.149 1x n
122 | 4.208 1x n
123 | 4.270 1x n
124 | 4.287 1x n
125 | 4.294 1x n
126 | 4.319 1x n
127 | 4.352 1x n.
128 | 4.395 1x n
129 | 4.512 1x n
130 | 4.573 1x n
131 | 4.621 1x n
132 | 4.757 2%y
133 | 4.784 1x n
134 | 4.837 2X n
135 | 5.014 2%y
136 | 5.035 2X n
137 | 5.141 2X n
138 | 5.228 2X n
139 | 5.337 2X n
140 | 5.445 2X n
141 | 5.537 2xX n
142 | 5.729 2X n
143 | 5.892 2X n
144 | 6.376 2%y
145 | 12.467 1x n
146 | 12.549 1x n
147 | 12.576 1x n
148 | 12.668 1x n
149 | 12.837 1x n
150 | 13.269 Ix y
151 | 14.294 1x y
152 | 14.820 1x n
153 | 15.312 Ix y
154 | 15.747 1x n
155 | 16.178 1x y
156 | 16.667 1x n
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No. | Energy Config./
in a.u. | Used (y) or not (n)
L=2 Spectrum
1 | -2.055 31D y
2 | -2.031 4D y
3 -1.938 5!D n
i | -1.325 b>1x
5 -0.554 2s3p y
6 -0.530 2534 n
7 -0.437 1x n
8 | -0.303 1x gy
9 | -0.266 ix g
10 | -0.258 Ix y
11 | -0.241 1x n
12 | -0.223 1x n
13 | -0.172 1x y
14 | -0.156 1x n
15 | -0.146 1x n
16 | -0.122 1x n
17 | -0.108 1x n
18 | -0.072 1x n
19 | -0.046 1x n
20 | -0.011 1x n
21 | 0.029 1x g
22 | 0.167 Ix vy
23 0.205 1x n
24 0.228 1x n
25 0.237 1x n
26 0.266 1x n
27 | 0.310 1x n
28 | 0.376 1x n
29 | 0.494 ix g
30 0.536 1x n
31 0.610 1x n
32 0.636 1x n
33 | 0.724 Ix vy
34 0.767 1x n
35 | 0.799 1x n
36 0.823 1x n
37 | 0.878 1x n
38 0.951 1x n
39 0.976 1x n
40 0.989 1x n

55
No. | Energy Config./
in a.u. | Used (y) or not (n)

41 | 1.020 Ix y
42 1.038 1x n
43 1.123 1x n
44 | 1.154 Ix v
45 1.206 11X n
46 1.344 1Xx n
47 1.487 1x n
48 1.504 1x n
49 1.727 1x n
50 1.795 1x n
51 1.821 1x n
52 1.908 1x n
53 1.970 1x n
54 1.988 1x n
55 2.000 1x n
56 2.073 1x n
57 2.230 1x n
58 2.298 1x n
59 2.312 1x n
60 2.325 1x n
61 | 2.412 Ix v
62 2.481 1x n.
63 2.608 1x n
64 2.685 1x n
65 2.731 1x n
66 2.805 1x n
67 2.812 1x n
68 2.833 1x n
69 2.886 1x n
70 2.916 1x n
71 2.936 bound n
72 3.085 2X n
73 3.178 1x n
74 3.293 2X n
75 3.310 Ix ~2x
76 3.385 1x n
7 3.578 2x n
y 78 | 3.671 1x n
79 3.780 2X n
80 3.864 2X n
81 3.872 1x n
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No. | Energy Config./
in a.u. | Used (y) or not (n)
82 4.061 2X n
83 4.253 2X n
84 4.400 2X n
85 4.411 2X n
86 4.648 1x ~ 2x
87 4.723 1x ~ 2x
88 4.752 1x ~ 2%
89 4.836 1x n
90 4.875 1x n
91 5.237 1x n
92 5.581 1x n
93 5.783 1x n
94 5.984 2X n
95 | 6.191 2%y
96 6.790 2X n
97 | 12.550 1x n
98 | 12.577 1x n
99 | 12.659 1x n
100 | 13.23 1x n
101 | 14.173 1x n
102 | 14.681 1x n
103 | 15.175 1x n
104 | 17.113 1x n

After these tables we present two diagrams to visualize the distribution of the of
states figure. (3.9) and the distribution of the channels used in the collision calcu-
lations figure (3.10).

In the interval between 6 and 11 a.u. we found no states. It is worth to mention
that an L = 1 state splits into three different channels and the L = 2 state into
five due to their magnetic quantum number dependence. The second figure (3.10)
presents set of used channels, but also other sets were used in the calculations. This
will be discussed in Chapter 5 in detail.
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Figure 3.9: The energy distribution of the energy levels produced by the basis given
above. All91 L =0 156 L =1 and 104 L = 2 states are presented. The first bar
means the energy range between (-3...-2 a.u.) the second between (-2...-1 a.u.) and
SO on.
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Figure 3.10: The energy distribution of the used channels (all together 277). The
notation is the same as before.



Chapter 4

The collision process

4.1 Coordinate system

We have chosen a coordinate system with the z-axis parallel with the projectile
beam. Figure 4.1 shows the situation of the collision process. The target nucleus
(now the helium nucleus) is in the origin. The projectile flies in the xy plane parallel
with the z-axis on a straight-line from left to right. The minimal distance between
the target and the projectile is at the time £ = 0, when the projectile crosses the z-
axis. The minimal distance between the two nuclei is the so-called impact parameter.

In this study the projectile is described as a classically moving point charge. For
‘naked’ fully ionized projectiles this is a good approximation for any impact param-
eter. For not fully ionized projectiles this approximation can be questionable at the
small impact parameter region. We carried out calculations for U°** which is not
fully ionized but is a strongly bound system compared with the helium atom, and
has a relatively small ion radius.

4.2 The time-dependent Hamiltonian

In the following section the time-dependent interaction between the projectile and
the electrons of the helium atom will be discussed and analyzed. The total Hamil-
tonian can be separated into two parts as was already shown in (2.1). Let’s now
start with the full Hamiltonian using the minimal coupling for the vector potential:

B+ A7, )2 (o + A(7, 1))?
+
2 2
—— = — 4 — = ®(7, 1) — D(7H, 1). (4.1)

ﬁ(FhFQ:t) =
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Figure 4.1: The coordinate system
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The electromagnetic field induced by the projectile contains the scalar potential
®(7,t) and the vector potential A(7 ¢). The velocity of light is already included in
the operator A(7,t). The explicite form of the operators will be shown below.

To separate the electromagnetic potentials from the kinetic energy we need to square
the canonical impulse:

Z. Z. 1 I
H(Tl,TQ, ) = ——Al — —AQ _ar 2T +— + % lelA(Tl, ) + 2—id1V2A(T2,t) +

1 7’2 T12

2—/1(7"1, t)grad, + 2—Z,A(772,t)grad2 + §A (re,t) + A (r1,t) — (71, 1) — (7, 1)(4.2)
The first five terms are well known from the former chapter; the remaining eight
terms need further investigation. The divergence terms can be reformulated:

div (/T(F, t)qﬁ(f')) — (7 (div A, t)) + A(7,1) (grad ¢(7)) (4.3)

where ¢(7) is the wave function. The velocity of the projectile is comparable to the
velocity of light that is why the retardation effects have to be taken into account.
The projectile is considered as a point particle. The Compton wavelength of the
projectile is negligible short compared to the wavelength of the electrons that is
why the semiclassical approximation is valid. A further simplification is that the
projectile moves on a straight-line trajectory. This is a good approximation which
is justified for heavy ions. The variation of the kinetic energy of the projectile after
the collision is only a couple of meV [Knu84]. The classical fields are the well known
Liénard-Wiechert potentials [Jac81]

LN VpZp 1= L %opZp
(M) = R(?) A(rt) = 2 R(?) €z- (4.4)
with
R = \fe =P+ fe—ntl = @9

We take the derivative of the vector potential with respect to z in such a way that
only the z coordinate is not zero. Then it reads as following:

0 1 (z — vpt)

—A, — vy 2y P 4.6
Oz ( ) c2 Up 71) p [R(t)]g ( )
Inserting the Liénard-Wiechert potentials into the Schrodinger equation the projectile-
electron interaction operator V' (¢) has the final form:

divA(7,t) =
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V1:¢(F1,Jtl+¢(ﬁz,t) Vo=1(A(F1 )1+ A(72,t)52)
. ” 1 17 g 17 1 8 1 o171
V()= —Z, | —— + } - Z,— [ + —] +
) = =1 [Rl(t) Ro(2) s | ) 0 T Ra(t) 92
Va = A2(ri,t) 2+ A%(r3,t) /2 Va=g; (div(A (rl,t))+dzv(A(r3,t)))

rvzszz 1 1 .Upvap 21 — upt ZQ_Upt‘
2 [[Rl(t)]“[m(t)]?} TTga [[m(t)]s*mz(tm} 4.7

The single operators VJ are apiece not hermitian but the sum of all four is hermitian.
In this study the spin-magnetic field interaction is neglected. In the case of helium
or light helium-like targets this interaction is three orders of magnitude smaller than
the scalar interaction. Just to mention, the spin-magnetic field interaction has the
following form:

Hgpin = —fi B(r) — fiaB(ry) with B = curlA = rotA (4.8)

This interaction mixes the triplet and the singlet states. This means that the number
of the channels automatically would increase with a factor of two.

4.2.1 The calculation of the coupling matrix

The first step to solve the coupled-channel-equations is to build up the coupling
matrix.

For singlet states the wave function is a linear combination of symmetrized single-
particle wave functions as was shown in the chapter before. The interaction operator
is a sum of two one-electron matrix elements because the target has two electrons:

V (71, 7, t) = V(71 1) + V (7, t). (4.9)

To calculate the coupling matrix we need to evaluate the following expression:
M
= <Zbﬁ}[¢1(71)¢2(772) + ¢2(71) $1(72)] ‘V(Fl t)+
p=1

T?a

Zb [63(71) 4 (72) +¢4(7”1)</53(7"2)]> (4.10)
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The indeces 1,2,3,4 stand for the four (different) quantum number sets with respect
to the corresponding wave functions. Let us go one formal step further:

=223 - (81 Y (75, )l 65 (70)) - (8a(75) (7)) +

(01(72)[04(72)) - <¢2(“1)|V(7‘1,t)|¢3(f'1)> (61(72) 93 (7%2)) - (Sa(F) [V (71, ) 6 (7)) +
(D2(72) |65 (72)) - (62 (F)|V (71, 1) |6a(71)) | - (4.11)

The two electrons are indistinguishable that is why the factor two arises. It is enough
to calculate the matrix element only once:

(31(F) |V (71, 1) |93 (71)) = (b1 (7) [V (72, 1) B3 (72)).- (4.12)

As in the structure calculation, we here need three different kinds of matrix elements
to calculate:

<Sn1,l1,m1,l’»1 (F)| ( )‘Snz,lz,mz,lﬁz (F)>
<Sn,ll,m1,n(m ‘V(F, t)' kya,ma,Z (7:')> or <Ck 1,ma,2 (_’) (F’ t) ‘Sﬂ l2,ma,K (F»
<Ck1,l1,m1,21 (f) |V(T7 t) |Ck2 lz,mz,Zz (fj>

(4.13)

The pure Slater case is the easiest work and the package-package is the most com-
plicated and time consuming case.

4.2.2 The matrix elements for operator V;

As it was shown before the Vg contains a differential operator —z which acts on
the wave function standing behind. The operator can be expressed with spherical
coordinates in the following way:

o 0 sin(d) 0
a = COS(G)E - , %

(4.14)

The radial derivation can be done analytically only for the Slater wave function case.
In the packet wave function case we use an analytic derivative of the interpolating
polynomial or sinus function. The angular derivation means no problem for any
wave function. The general formula reads:

D 16 Yisn(6,0)] = cos(t) - ¥in(0, ) -0(r) — P sin(0) Dyin(.0) (1.15)

r
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In [Edm63] there are two useful formulas for the angular part:

2 _ 2 2 _ 2
cos(0)Y,, = \/ (U412 —m Yiiim + \/( (1) —m Y1, (4.16)

(204+1)- (20 +3) 20—1)- (21 +1)

and

) 0 (1)2 — m? (I+1)2—m?
—sin(0) 5gYim = (1+ 1)\/(21 D @i el \/(2l 1) @ +3) Jm
(4.17)

With the help of these relations and with the first derivative of the Slater function a
long and complicated formula can be achieved for the cases where the ket function
is a Slater one. From the last two formulas it is clear that this interaction gives
contribution only between different angular momentum states.

4.2.3 Symmetries

The calculation of the matrix elements is time consuming that is why it is essential to
take advantage of all the symmetry properties. The matrix elements with Lienard-
Wiechert potentials have three different symmetry properties:

e time reversal symmetry
e azimuthal symmetry

e symmetry in the magnetic quantum numbers

With the proper usage of all these symmetries the calculation time can be reduced
drastically, already the time-reversal symmetry helps us to save up 50 percent of the
calculations. The exploitation of the symmetry in the magnetic quantum numbers
for the [ = 1 angular momentum matrix elements gives us a further 30 percent
shrinkage of the calculation. In the case of [ = 2 this setback is even more.

Time reversal symmetry

Here we show that the matrix elements for positive and negative times are the same
up to a sign. We show the prove for the scalar potential term only:

24+ Y2+ 72 (2 — vyt)?

(61170162 = 2 [ V(x_b)“ﬁ’f(%(” Pr (418)
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Time reversal means: the sign of v,t will change from minus to plus in the denom-
inator. To see what happens after this operation we have to transform the matrix
element back to the initial form. Let us use Cartesian coordinates and introduce
the following substitution:

z——2, dz— —dz, and t— —t

/ F(z,y,z,—t)dt = — / F(z,y,—z,—t)dz (4.19)

After this transformation the sign of the z coordinate of the wave function also
changes to ¢(x,y, —z). In the language of spherical coordinates this simply means
the following:

(T’ 07 QO) z‘>7z} (Ta ™= 07 (P) (420)

If we mirror a vector on the xy plane, then only the 6 coordinate changes. With the
help of the well known parity transformation: [Bra83]

Yim(m = 0,0 +7) = (=1)' - Yim(0, ) (4.21)
and with the former transition z — —z we get:

Yim(m = 0,0) = (=1)" - Yim(0, 0) - ¢ 7 = (1) Yy (0, ). (4.22)
=(-1m

The full matrix element for V(7,t) = V; + V; after all:

(@1(P) |V (7, =1)|¢2(7)) = (1) FEFmMm2 (g, (7)|V (7, 1) 61 (7)) (4.23)

This relation is valid for the real operators: Vl, \73 For the complex operators as:
Vo, V4 an extra —1 enters in the exponent.

(S1(PVa(7, —1)|$a(F) = (—1)"Hrmmett (g (7) | Va(7, 1) | 62(7) (4.24)

The cause of this is the existence of the first derivative in V;(,t). In V3(7,t) the
numerator contains an extra (z — v,t) term which needs another identity transfor-
mation:

(—z 4+ vpt) = —(2 — vpt) (4.25)

With the help of this symmetry relation the matrix elements are easily calculated
for negative time.
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Azimuthal-symmetry of the matrix elements

To show the azimuthal-symmetry of the matrix elements let us use now spherical
coordinates for the distance R(t) given in the interaction:

R(t) = \/(9E —b)2 + 2 +72(z — vyt)? =

\/(rsinO cosp — b)? + (rsinf sing)? + 2 - (rcost) — vyt)? (4.26)

The sinus and cosines functions are periodic to 27:

cos(2m — ) = cos(yp) and sin®(21 — ¢) = sin®(¢) therefore R(t) is symmetric to
Y =m.

The ¢ dependence of the wave function part of the matrix element reads:

f(p) = itmmma)e (4.27)

which has a symmetric real and and antisymmetric imaginary part. The matrix
elements with the operators: Vl, Vg, V, are symmetric to ¢ = 7 and the complex part
is antisymmetric. The imaginary part gives zero after all, and needs no integration.
The V, contains four parts like Vi and has the same property as the other three.
(This symmetry enhances the accuracy e.g. integration routines in general produce
better results when the used interval is smaller.)

Symmetry of the magnetic quantum numbers

Choosing the coordinate system mentioned above gives us a further symmetry. A
symmetry between matrix elements with positive and negative magnetic quantum
numbers. There is a formula which connects the spherical harmonics with positive
and negative magnetic quantum number:

= (=)™ Vi (4.28)

lym

It we apply this to our matrix elements then we get the following:

(m,

V] ma) = (1™ (6.,

\7‘ Y (4.29)

For p single-particle wave functions 30 percent of the integrals can be saved, for d
functions it is 40 percent.
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Figure 4.2: Different multipoles for b= 1.6 a.u, t= 0.8 a.u and v = 3.1. The solid
line is for 1=0 transitions, the dotted line is for s-p transition with m=0 and the
dashed line is for s-p transition with magnetic quantum number difference m = 1.

4.2.4 The angular integration

The Liénard-Wiechert potential matrix elements have an angular dependence and
that means a threefold integrations for every time point and for every impact pa-
rameter. Without any tricks even a Slater-Slater matrix element took some seconds
on a modern workstation in the year of 2001. The general package-package matrix
element is rather not to mention (10-25 seconds!). In a realistic calculation when
the number of the matrix elements is in the magnitude of ten thousands (or even
more) this method breaks down.

In the following I will show, that the angular integration can be ’pulled out’ from
every matrix element at every different time point and impact parameter.

Different methods can be applied to solve this problem, one of them is used in
[Bal91]. This is a multipole decomposition, the method is too complex to imple-
ment in our calculation. This method was successfully applied for pair-productions.
[Gai01]. Another multipole expansion method can be found in [Meh89].

In most of the cases the ¢ integration can be done analytically which is also a great
help. Now I show how it can be done. Let us look at the term:
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. 1
Vi(Ft) = =2y | =—=—| - 4.30
60 =7 | | (4.30)
The corresponding matrix element has the form:

(61(P)|D(7,1)|¢2(7)) =

oo 2w w

_/// Vo Zp®1(r)p2(r) Y7 10y (0, 0) Vi ms (0, ) sin(0)
0 V/(rsin(6) cos(¢) — b)2 + (rsin(8) sin(p))? + ¥2(r cos(6) — vyt)

= dodfridr.

(4.32)
Let us concentrate only on the ¢ dependence. After some algebraic manipulation
the ¢ integral has the following form:

h(r, 0) cos((mg — m1)p)
\/f b,r,0) — b 7, 0)cos(y)

(4.33)

The h(r,0), f(r,0,b) and g(b,0) are functions but behave like constants in the ¢
integration. The numerator has a simple cosines dependence remaining from the
spherical harmonics due to the symmetry. The given integral is the Elliptic Integral
of the First Kind [Abr70]. For the simplest case where both wave functions are s
functions, the result is the following:

Elhptch [(— )
f(bir9) (”’"’))h(r, 0) (4.34)
Vf(b,r,0) — g(b,7,0)
The properties of the EllipticK function can be found in [Abr70]. This result looks
nice, but there are several problems with it:

e the f integrand becomes complicated hence it can not be done analytically, (two
further numerical integrations remain),

e to get a good routine to calculate the EllipticK function up to /2 is hard,
convergence problems emerge at the upper border,

e for different spherical harmonics Y (6, @), the integral has a different form,
containing more and more terms,

e not only V;(7,t) but also the A2 term is needed. This gives much more com-
plicated formulas.
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Due to these problems, we don’t use this method. We simply follow the easiest way
and integrate the two variables numerically.

}/il,ml (0’ QO)* : Yiz,mz (9’ QD)
R(r,0,¢,7,b,t)

Multipole(r, vy, b,t) = / ds (4.35)

We use s, p, d single-particle wave functions as already mentioned. Considering
all the different angular and magnetic quantum numbers for both wave functions
(keeping out the symmetries), 45 different cases emerge. Some of them contributes
quite small, e.g.:

(O(F)1—2.m——2| P (7, 1) |p(F)i—0.m=0)- The two spherical harmonics in the matrix ele-
ments are orthogonal to each other but the Coulomb term between makes a small
modification at ‘not so small’ distances; due to this, a small contribution remains.
When both spherical harmonics are the same the corresponding integral will be the
largest. Figure 4.2 shows three different multipole moments equ. 4.35 for physically
relevant parameters. The solid line is for s-s transitions the dotted line corresponds
to s-p transitions with magnetic quantum number m=0 and the dashed line corre-
sponds to s-p transition with m=1. The maxima lies at rmax = /6% +7% (vp - ¢)
and becomes ‘peaky’ as v gets larger. The presented moments are for collision with
v = 3.14. The figure shows multipole momentums only for the ﬁ dependent
operators such as V; and for Va; the remaining two have a different dependence and
give negligible contributions. The most accurate calculations are needed for small ¢

and b when rmax = ' Atomic Radius

4.2.5 The radial integration

As we mentioned before three different kind of matrix elements exist, namely:
1, Slater-Slater type,

2, Slater-Coulomb package or Coulomb package-Slater like and

3. the pure package-package like.

The interaction matrix elements scale with Zproj only, and those with Vs scale with
VA Due to this only one projectile charge is needed to calculate at a given

ro

colilisjion energy. This is usually the proton.

Let us now discuss the integrals and start with the first case:

The Slater functions are positive at any distance so the matrix elements conserve
their sign. The Slater functions have an exponential decay, which gives no contri-
butions for larger distances. The range of the integrals can be limited to 7,,,, = 50
a.u. since for usual screening constant k we have e~ (1527 < 10=6 otherwise. The
multipole momentum function which was discussed above is a peaky function with
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changing properties. For huge time it is flat and the maximum lies out of the 7.,
range. This means no interactions. The time-dependent matrix elements for some
fixed impact parameters have a nice decaying property. Thirty different time points
are enough for every impact parameter.

The second matrix elements are the mixed type. The range is enhanced compared
with the former case, but not much. The package wave function has a long oscillating
tale which can be seen when the screening factor is small (the damping is also small).

The Z = 2 matrix elements are always smaller than the Z = 1 ones due their larger
oscillatory behavior.

The third type is when both radial wave functions are the Coulomb packages. These
are of the hardest type to calculate properly. When the energy difference is large,
then the knots are not far from each other and many oscillations come into play. Due
to their slow decay even the far distance Coulomb interaction gives relevant contri-
butions. The highly energetic wave functions oscillate rapidly and for small distances
small time steps have to be taken. The figure 4.3 shows the radial dependence of
two different package-package matrix elements for a given impact parameter. The
solid line shows a matrix element where both packages have the same parameters.
The result looks like the density of an ionized electron multiplied with a peaky mul-
tipole momentum showed above. This gives a global minimum of the integrand.
The whole integrand has a minus sign. The dashed line presents an even interesting
interaction. The two packages are different in energy and width. According to this
a further envelope oscillation comes up and the integrand becomes even positive at
some distances.

The matrix elements give non-vanishing contributions even for large projectile-
target distances due to the long Coulomb tail. The matrix elements containing
only Coulomb wave packages have different signs. The channels which contain this
kind of matrix elements have a much larger amplitude diversity than the channel
containing only Slater-Slater matrix elements.

For a not-so-modest basis calculation, which means more then two hundred channels,
many ten thousands of three dimensional integrals have to be calculated.

4.2.6 The symmetry of the channels

With the help of the matrix elements the whole coupling matrix is built up. Due
to the different symmetries of the matrix elements the channels have different sym-
metries in time also. The figure 4.4 shows two basically different channels. The
solid line is the third channel which is the 3'S state; it is a bound state without
oscillations, and has an even parity. Contrary to this the dashed line shows the
channel 119. with £ = 0.414. This is an L = 1 single-ionized state with magnetic
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Figure 4.3: Typical radial integrands of the package-package matrix elements, the
two packages P1 and P2 have different energies.

quantum number m=+1, hence has odd parity. This is a favorable low energetic
single-ionized channel with oscillating behavior.

4.2.7 The question of different interaction operators

The rigorous usage of the minimal coupling gives us four interaction terms as:

&, A2, divA, Ap. The Ap gives further four terms as was shown before. Inclusion of
all these terms without any approximation makes the whole calculations enormous
even on many powerful workstations. Let us calculate now the number of the matrix
elements for the basis given above:

We have 13 s, 12 p and 8 d single-particle wave functions. Due to the magnetic
quantum number dependence the sp transitions give three channels and the sd
transitions five. Note that this number becomes larger for further pd and dd tran-
sitions. Define now: N = (13s+12p*3+8dx*5). The number of the matrix elements
(using the hermiticity or antihermiticity) for a given time and impact parameter is:
7Tx Nx(N+1)/2 = 7x%4005 = 28035 The factor seven stands for the different
interactions shown above. To obtain sufficient accuracy the whole calculation has to
be repeated for different time points and impact parameters. An example for eight
different impact parameters with 25 time points each 25 x 8 x 28035 = 5.607.000
numerical integrations are needed.
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Figure 4.4: The time-dependence of different channels with different symmetries.
The solid line shows the time-dependence of the 3.5 channel, the dashed line is a
single-ionized L = 1 channel (E =0.414 a.u.).

A former study [Pfe99] obviously says that the scalar therm ®(,t) is the only
contributing term in the range of small gamma values v < 3.1 All the other three
interaction term can be neglected in this situation. In our case the highest energy
is 1 Gev/nucleus which corresponds to v = 2.07. We used only the scalar term in
our calculations. Only in the highly charged uranium case was the A? term taken
into account; this term scales with Zl%roj and we wanted to test this contribution.

Even in this case this interaction can be neglected.

4.3 Time-evolution

After having built up the coupling matrix the resulting differential equation system
has to be solved. The first order perturbation theory is a special case of the coupled-
channel equation, namely by considering only the first row. This row contains the
transition matrix elements from the ground state to the final state.

The following pictures 4.5 and 4.6 show how the absolute square of the probabilities
is changing in time. We consider the collision of helium with 500 MeV /amu K736+
projectile at an impact parameter b=>5 a.u. The first figure 4.5 shows the probability
of the ground state, which starts from unity and reaches a finite value after the
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Figure 4.5: A time evolution of the ground state along the collision process. The
projectile is 500 Mev/amu K736*, the impact parameter is b = 5 a.u.
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Figure 4.6: A typical time evolutions of two single-ionized channels along the col-
lision process with different symmetries. The solid line shows a channel with even
and the dashed line with odd parity. The energy of the channels is £ = —0.454 a.u.
the total angular momentum is L = 1, collisions system is the same as above.
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collision. The second figure 4.6 shows how the population of different channels
(Channel 82 and Channel 83) with different symmetries changes in time. These
channels have the same energy £ = —0.454 and total angular momenta L = 1. The
solid line shows a channel with even parity and the dashed line shows a channel with
odd parity.

To solve the differential equations we used a fifth order Runge-Kutta-Fehlberg for-
mula which automatically adjusts the smallest time step [Sch86]. The coupling
matrix was interpolated with a quadratic spline to enhance the accuracy [Pre86].
The only handicap of this method is the enormous memory claim. The whole cou-
pling matrix is needed at all calculated time points at a given impact parameter.
This condition limits the number of channels to 300-500.

The conservation of the norm is always fulfilled, and differs only 10~8 from unity
after about 50000 time steps.

The whole time integration is a quick numerical process compared with the matrix
element calculation.

It is worth to mention, that for different impact parameters different time intervals
are needed to get the asymptotic ({ — oo) coupling matrices. At small impact
parameters the amplitudes are very sharp and have a quick decay (short range),
contrary for large impact parameters the amplitudes are very small but decay slowly.
This means that for large impact parameters less time points are enough to get
satisfying accuracy but for small impact parameters the number of time steps must
be much higher. When we include packages in our basis, then for small impact
parameters b & 74, the t=0 region becomes very sensitive and needs more time
points than the pure Slater basis set.

In ionization we only need to represent the soft electron continuum sufficiently, con-
trary to pair production calculations where the high energetic electrons and positrons
are also important [Gai01]. The high energetic packages oscillate very rapidly and
the coupling matrix must be calculated very densely in time. In our case when k4,
is lower than 4-5 a.u. then no extra time step is needed for the packages.

4.4 The impact-parameter integration

After having done the time-evolution, we have the probabilities for the different
channels. To get the total cross sections we finally have to integrate over the impact

parameter:
o

S / bPy(b, t — o0)db (4.36)
0
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Figure 4.7: A typical bP(b) dependence.

To reach a satisfactory accuracy, 8-11 different impact parameter are needed. A
typical set of impact parameters(in a.u.) is:

b{0.003, 0.008, 0.5, 1.6, 2.6, 5, 9, 16, 30, 90}

For the uranium case we used an extra b= 200 a.u. impact parameter. The maxi-
mum of the integrand lies between 2 — 10 a.u. for helium, depending on the channel.
When the impact parameter is as large as the atomic radius then the distance be-
tween the electrons and the projectile is minimal, hence the weighted ionization
probability is the greatest. The maximum impact parameter needed depends on the
energy.

For v~ 1 bmax = 30, for higher values of y-s by = 200 is needed. A typical bP(b)
function is shown in figure 4.7.

For the single-ionized channel (Ch. No. 99) E=0.064 a.u. for a 2.31 MeV/amu
alpha projectile. The function has one maximum and then an exponential decay.
The single- or double-ionized states have a longer tail than the bound states. As it
was mentioned before, after the impact parameter integration all the channel cross
sections are multiplied with the probabilities for the separation in excitation, single-
and double-ionization (which are the results of the projection) and then summed

up.
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Results

In this chapter, we present our results and discuss them.

At first the numerical routines had to be tested. The test of the diagonalization was
already mentioned.

The test of the scattering calculations is much more difficult, because all the three
calculations (coupling matrix, time evolution and impact parameter integration)
must be correct and only the final results, the cross sections, are what one can
compare with other theories or experimental data.

To make the test calculations easier we calculated only some well known excitation
cross sections. The following table VIII shows some state-selective excitation cross
sections for proton helium collision at a given energy.

Experimental data  Results of coupled-

([Hip74]) channel calculations
E,=10 MeV

o(2'P) 4.91 4.72
o(3'P) 1.26 1.31
o(4'P) 0.53 0.54

Table VIII. State-selective cross sections (in 107** ¢cm? ) for
proton helium collision.

It is worth to mention, that the results above are independent of the usage of any
packets. We made two calculations at first with Slater basis functions without
packages and after this with the packets. The deviation between the two calculations
are only one or two percent.

After this we went further to a system which was calculated before but only with
Slater basis functions.

75
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The low energy proton-helium collision is a benchmark to test and compare different
theories. We choose a projectile velocity of v, = 12 a.u. corresponding to E = 3.6
MeV. The Massey-Parameter is Z, /v, = 0.08 which lies in the perturbative region.
The table IX. shows different results for this system. The presented experimental
value was interpolated between two measured data from [Sha85]. The first row gives
the kind of the calculation. The first calculation is a coupled channel calculations,
which was done without packages. The second is a bit modified including some wave
packages. The third one is our calculation with the basis discussed. The last three
results come from FIM perturbation calculations. The 9s9p means the applied basis.
The FIM method was briefly discussed in the first Chapter.

Art of result: Single-Ion. Double-ion. Ratio

ot (107em? oTF(1072Y)em?  (1073)
Exp. value [Sha85] 70.7 19.2 2.71
CC Calc.[Pfe99] 58.58 6.59 1.12
[Pfe99]+ 6s4p Packet 65.20 16.08 2.46
Our basis 66.52 18.66 2.80
FIM [For94] 9s9p 62.45 12.24 1.96
FIM [For94] 9s9p5d 68.2 23.69 3.03
FIM [For94] 9s9p9d 70.0 18.9 2.70

Table IX. Different calculations for the 3.6 MeV /amu
proton helium collision system.

We chose this energy to study the effect of the packages. We can see the very
nice convergence behavior of the different calculations. Without any Coulomb wave
packages [Pfe99] the double continuum is badly approximated. As we apply some
packages even without d functions the double ionization cross sections become rea-
sonably higher. With the help of d functions our calculations become more realistic
and come closer to the experimental value.

The Forced Impulse Method calculations from Ford and Reading are more accurate
including more than a thousand states. The FIM calculations were done at 3 MeV
which we interpolate to get comparable data at E=3.6 MeV. In this perturbative
region the cross sections can be interpolated with a straight line.

After this calculation we made a calculation for the antiproton helium system. The
results are in Table X. The basis and the projectile energy remains the same, only the
sign of the matrix elements were changed. The understanding the difference between
the proton and antiproton collision is an open problem since long time. There are
many calculations (and also measurements) available for the proton-helium and
antiproton-helium collision system. More on this see [Knu92].

Our results are as good as for the proton case.



CHAPTER 5. RESULTS 7

Art of result: Single-Ion. Double-ion. Ratio
oT(107em? o™ (107N em?  (1073)
Exp. value [Hve94] 70.08 27.9 3.98
Our Basis 66.11 25.12 3.7
FIM [For94] 9s9p 62.01 15.5 2.50
FIM [For94] 9s9b5d 68.2 28.6 4.2
FIM [For94] 9s9b9d 70.04 27.7 3.96

Table X. Different calculations for the 3.6 MeV/amu
antiproton helium collision system. The notation is the same as before.

After exhaustive tests we choose some systems which were also investigated in ex-
periments.

U?" with 1GeV/amu [Mos97]

U?" with 60,120,420 MeV/amu [Ber92b]

Kr*®* with 1GeV/amu and 500 MeV /amu [Ber92a]
C%* with 100MeV/amu [Bap98]

He?", Li**, B®" and C®" with 2.31 MeV/amu [Knu84]

O =

These collisions cover the whole range from light to very heavy projectiles.

For systems where the projectile fields are not so strong, even the first Born approx-
imation gives good results. There is a scaling rule of the first Born cross sections
for the single-ionization:

Zproj
0 bP(B) o lf” o | (9| T )% o 2y (1)
The last four projectiles have the same energy which means that it is sufficient to
make the first order calculations only for one projectile. It is worth to mention that
the coupled-channel method does not have this scaling property.

The following three tables XI., XII. and XIII. show the single- and double-ionization
total cross sections and the ratio for the above mentioned systems. The tables
contain the energy of the projectile, the corresponding v value and the Massey-
parameter Z,/v, which is the ratio of the charge to the velocity of the projectile.
This quantity was already analyzed in the first chapter. The table additionally
contains the experimental values of the total cross section and the results of the
coupled-channel calculations (C. C.) and the first order Born approximation. For
the first three systems (1.,2.,3.) the perturbation can not be applied since the Z,/v,
ratio is too high.
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Table XI. Single-ionization total cross sections (o):
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Proj. Energy ¥ v | Z/v Exp. value C. C. I. Born
MeV /amu amu | amu [10~%cm?] [1071%cm?] | [1016em?]
| U | 1000 | 2.07[120.01]0.76 [ 744+30% [ 48 | 121 |
790+ 60 | 1.06 | 46.58 | 1.92 [| 13 =77% + 150% 9.25 35.3
o0+ 120 | 1.12 | 63.43 | 1.41 || 38 —50% + 190% 18.6 28.2
o0+ 420 | 1.45| 98.64 | 0.91 || 9.8 —70% + 200% 12.1 21
Kr36F 500 | 1.53 ] 98.71] 0.36 | 0.9 —50% + 50% 1.09 6.5
Kr36F 1000 | 2.07 | 120.01 | 0.30 || 0.72 —50% + 50% 0.9 5.9
| C°F | 100 1.1] 5876 | 01] 01+430% | 0097 | 011 |
He*" 2.31 [ 1.002 | 9.65|020] 044+<5% 0.40 0.46
LT ? v »[031] 098+<5% 0.90 1.038
B> ? ” 7 [051] 244+ <8% 2.11 2.88
ot ? ” 7 10.62 33£<8% 3.05 4.15
Table XII. Double-ionization total cross sections (o*F):
Proj. Energy 0% v | Z/v Exp. value C. C. I. Born
MeV /amu amu | amu (1076 em?] [107cm?] | [10~%cm?]
| U7 | 1000 | 2.07[120.01]0.76 ] 015+30% | 014 | 052 |
i 60 | 1.06 | 46.58 | 1.92 || 0.9 —70% + 200% 0.56 2.4
U0+ 120 | 1.12 ] 63.43 ] 1.41 || 1.8 —50% + 100% 0.7 2.8
o0+ 420 | 1.45| 98.64 | 0.91 || 0.3 —70% + 200% 0.57 1.46
Kr36+ 500 | 1.53 | 98.71 | 0.36 0.016 +50% 0.010 0.07
K130+ 1000 | 2.07 [ 120.01 | 0.30 0.011 +50% 0.012 0.016
| c° | 100 | 1.1] 58.76 | 0.1 0.00026 £30% | 0.00022 | 0.0003 ||
He*" 2.31]1.002 | 9.65] 0.20 || 0.0022 + <10 % | 0.0026 0.003
Lt ? v ”» 1031 ] 0.0085 £+ <10% | 0.0059 0.007
Bt ? v 7 [051] 0059 +<11% 0.032 0.015
ot ? ” 7062 0.092+<11% 0.15 0.025
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Table XIII. The Ratio: R = f—f

Proj. Energy 0% v | Z/v Exp. value C.C. | 1. Born
MeV /amu amu | amu [1072] [107%] | [1073]
| U7 | 1000 | 2.07 [ 120.01 | 0.76 || 20.27 £30 % | 29.1 | 429 |
Ut 60 | 1.06 | 46.58 | 1.92 [[ 63 —40% +33% | 60 67.9
790+ 120 | 1.12 ] 63.43 [ 1.41 [ 50 —35% 4+ 25% | 37 99.2
o0+ 420 [ 1.45 | 98.64 | 0.91 || 30 —40% +33% | 47.1 | 69.5
Kr36F 500 | 1.53 | 98.71 | 0.36 17.2 9.1 10.7
K736+ 1000 | 2.07 | 120.01 | 0.30 14.3 13 2.7
| C* | 100 11] 58.76] 0.1 | 2.6 | 26 | 272 |
He*" 231[1.002| 9.65]020] 50+<9% 6.5 6.5
Lt ? v »[031] 86+<9% 6.5 6.7
BT ? v [ 051] 243+<9% | 151 5.2
Cc5* i § 7 [062] 280+£<9% | 491 | 6.32

To visualize the agreement and the discrepancy between the different theories and
the experiment it is useful to present the scaled cross sections on logarithmic scale
shown in Figs. 5.2, and 5.3. The open symbols are theoretical results the full
symbols are experimental values. For all our single-ionization results we fitted a
regression line. Let us begin to discuss our results now:

Of course we changed the number of used channels a bit to describe different collision
systems, the ’one-fits-all’ attitude of mind comes to little results. The systems we
chose are basically different, fast and heavy charged projectiles produce quicker
ionized electrons than the light and slow projectiles. This means that we used extra
twenty channels over the £ = 5 a.u. energy range. For slow and light projectiles
the electron spectrum is completely low energetic which means that many channels
were taken from the [0 — 2] a.u. double continuum and channels with energy more
than 7 a.u. were completely neglected.

In the first four systems the projectiles are fast uranium nuclei which represent a
strong perturbation. It is clear that the perturbation theory breakes down. In the
second system, the perturbation Z,/v, is approximately 2 the discrepancy between
the coupled-channel result and the first Born value for the single-ionization is a factor
of 8.5. In all the other cases the discrepancy is a bit lower. It is interesting that
even for the double-ionization the perturbation theory gives larger results than the
coupled-channel calculations. In an earlier work [Pfe99] the double ionization cross
sections for strongly interacting systems are always smaller than coupled-channel
results due to the poor representation of the double continuum. In the following
tables the ratios of partial cross sections are showed. In this strongly interacting
case the L = 1,2 contributions are dominant. Only about 10 % come from the
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L = 0 momenta states. The tables present results only with the scalar term. We
did some other calculation with all the other terms, but the results are not much
different. It is true that the A% term scales with Z2,,; but 7 is still small. For the
first projectile system the single-ionization cross section is enhanced by a factor of
5 percent from the tabulated value:

oraxr. = 4.8 - 10 %em? o4 =5.04- 10 %cm?

The first value is from the table and the second one contains the contribution from
the A2 term. For the double-ionization cross section it is about the same:

oraepxrir. = 0.14 - 10~ 16em? O 42 = 0.16 - 10~ 6¢em?

At last some words about the channels were used here.

Figure (5.1) shows the distribution of the channel cross sections in the energy for the
1 GeV/amu K13 system. We can see very clearly that the most contributing states
are the soft electrons. The energy range from 0-6 a.u. contributes most to the cross
section. The contributions decay exponentially in this region. In the higher energy
range [12 — 17] a.u. the contributions enhance enormously. This can be explained
by the properties of the Slater type functions. They produce highly energetic states
which show less oscillating behavior than the states produced with Coulomb wave
packages. This states gives us a large contribution to the cross sections but can not
be interpreted as physical as the states built from packages. These states remain in
the basis in any case. When we look further for higher energy range £ > 20 a.u.
we can see that the contribution of this unphysical kind of states also decay. We
present only one channel for £ = 27.38 a.u. but all the other channels have the
same property.

The first four systems are our well-studied candidates. We tried to make calculation
with completely angular-correlated wave functions also. This means that we used
pp and dd configurations to describe the L=0 states. The essence is that helium
ground-state is lowered as was mentioned before. The low energetic continuum
becomes much more complicated and the states are a complete mixture of all possible
configurations. The unphysical high energetic states due to the disliked behavior of
the Slater packets remain. Our result is negative, we could not find a reasonable
channel set for our system. The calculated cross sections are much lower than they
should be. This remark is only to inform about the complexity of this problem.

Now we carry on with the discussion for the K73t projectile. For this system the

coupled-channel calculations gives a good result for both cross sections. The used
channels are practically the same, the basis is only a bit shifted to the low energetic
range which means 4 or 6 extra channels. We used only the scalar term as usual.
The first Born approximation works not too well still a factor five exists between
the two different results.

For 100 MeV /amu C%* system the coupled channel calculations and the first Born
give us the same results. The channels with energy higher than 6 a.u. were com-
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Figure 5.1: The distribution of all the 277 channel cross sections in energy for the 1
GeV/amu K73+ helium collision system.

pletely neglected.

The last four collision systems have the same energy. The perturbation enhances as
the projectile charge increases. The projectile velocity is small, so all the channels
with energy larger than 6 a.u. were neglected. The first Born single-ionization cross
sections scale as was mentioned above. The coupled-channel results do not.

In figures 5.2 and 5.3 we present our couple-channel results, that give us a better
review. The first Born results are not presented. The cross sections are scaled
with the charge of the projectile. This helps us to show all our results on the same
plot. For the single-ionization we calculated regression line to show the approximate
scaling behavior. The equation of the regression is:

(20 — .86 — 08715 2 5.2
&) Z = 9.00 — U.o/lg Z) (5.2)
Just to compare we cite now the regression line from [Pfe99].
ot v2
lg( =) =363-0.781g| -2 5.3
£(7,) =s00-0mi(7) 6

In the equations /g means base ten logarithm. We do not present a regression line
for the double-ionization cross sections because no linear scaling is verified.
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At last the ratios of partial cross sections are presented. The discussion will follow
the tables.
Table XIV. Ratios of partial single-ionization cross sections

Proj. Energy | Z/v U+fffo) in % % in % U+EfL+:2) in %
MeV/amu
| U7 | 1000 | 0.76 | 8.45 | 91.42 | 0.13 |
U+ 60 | 1.92 4.37 95.23 0.21
o0+ 120 | 1.41 6.6 93.22 0.18
70+ 420 | 0.91 9.19 90.66 0.15
Kr36+ 500 | 0.36 10.28 89.62 0.10
Kr36F 1000 | 0.30 10.39 89.50 0.11
| c° | 100 01 1103 | 88.92 | 0.05 |
He*" 2.31 [ 0.20 10.51 89.4 0.09
Lt 7 10.31 10.39 89.50 0.11
BT 7 [0.51 10.04 89.84 0.12
cot ” 10.62 9.84 90.02 0.14

Table XV. Ratios of partial double-ionization cross sections

Proj. Energy | Z/v ‘7+J;+L+ 9 in % G+J;+L+ U in % U+:+L+ 2 in %
MeV /amu

| U | 1000 | 0.76 | 7.66 | 91.49 | 0.85 |
oo+ 60 | 1.92 4.05 89.39 6.56
790+ 120 | 1.41 1.53 95.97 2.50
o0+ 420 | 0.91 0.82 98.65 0.53
K36+ 500 | 0.36 6.79 92.42 0.79
Kr36F 1000 | 0.30 1.18 98.75 0.07
| ¢ | 100 | 0.1 ] 7.21 | 90.80 | 1.99 |
He?™ 2.31 ] 0.20 7.78 90.65 1.57
Lt 7 10.31 6.99 90.19 2.82

B5F ” [ 0.51 7.75 88.85 3.40

Co* ” 1 0.62 7.76 87.66 4.58
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As we can see the dipole transition is dominant in both ionization processes.

For the single-ionization the trend is clearer: the stronger the interaction the higher
the dipole dominance. In the single-ionization case the L = 2 contribution is always
two magnitudes smaller than the contribution from the L = 0 transitions, because
that the number of the L=2 transitions channels is not high enough.

The distributions for double-ionization cross sections are not as clear. In some cases
the L=0 and 2 partial cross sections are of similar magnitude. We can explain it
only when we remember that all the states are classified with a projection onto
another Hilbert space. All the states have single and double-ionization and a bound
part. The question is the choice of the Hilbert space for projection. If we change
this slightly than the cross sections and the angular distributions also change. This
uncertainty is about 10-20 percent which is important to mention.

At last a remark on the double-to-single- ionization ratio. It is well known that
for proton helium collisions a high energy shake-off limit exists. This value is:
R = 2.5 x 1072 which was already experimentally verified. For heavier systems this
limit is still not reached.

We also tried to calculate differential cross sections with respect to the projec-
tile. In the small-angle region the eikonal-approximation is valid for the projectile.
This approximation gives us the following formulas for the differential cross section

[Bra92][3.232]
do

— =|f(0,d)|? A4
=150,9) (54)
where the amplitude is the Bessel transformed of the solution of the coupled-channel
calculations:

o0

£(0,8) = ivgrojeap|—iAmg](i)>™ / bJ s (10pro;) pel. (5.5)
0

Here, p is the reduced mass of the system, vp,,; is the velocity of the projectile,
and Am is the difference between the magnetic quantum numbers of the bra and
the ket state. In our model we use a priori the Straight-Line Approximation. Since
the projectiles are very heavy, these calculations give nothing new. The differential
cross sections contribute only for the forward direction 6 ~ 0.
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Figure 5.2: Scaled single-ionization cross sections. All the full symbols are exper-
imental data and the open ones are theoretical results. The open circles are our
calculations and full circles are the experimental data respectively. The full line
is a regression line through our data points (Equ. (5.3)). The dashed line repre-
sents the CTMC results by McKenzie and Olson [McK87]. The open triangles and
open diamonds are results of FIM calculations of [For94] and of IEV calculations
of [For97| respectively for low energy protons. The open squares are close coupling
calculations by [Pfe99]. The full diamonds are experimental data from [Knu84| for
2<Z,<8, 013 < E <15MeV/amu. The full triangles are further experimen-
tal data from [Ber92a] for the systems: 24 < Z, < 92 up to 1 GeV/amu. The
full squares are further experimental results for p*, He, Li in the energy range:
50 < FE < 2380keV/amu [Sha85]
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are as in Fig. 5.2.



Chapter 6

Summary and Outlook

In our work an implementation of the coupled-channel method was presented and
was applied to different collision systems. The first chapter gives an introduction
and the motivation of this work.

The second chapter shows different theories which can be used to solve different
ionization problems.

Chapter 3 shows the spectrum of a two-electron atom (or ion) and how it can be
calculated. Physical and technical details were mentioned as well.

The fourth chapter gives a detailed description how the ion-atom collision process
can be solved with the help of the coupled-channel or perturbation methods. All
the problems which come into play were discussed.

In chapter 5 our results are presented and discussed. We may say that our calcula-
tions give a new verification that the one-centre coupled-channel model is a reliable
non-perturbative method which gives us quantitatively good results.

The goal of this chapter is to outline the advantages and the disadvantages of the
used method and to give further ideas for developments and applications. This will
be done in four items:

e Advantages:

The coupled-channel method is a powerful tool to describe ionization and ex-
citation in the strongly coupled interaction region. As some results show the
deviation between the experimental and the calculated values can be better
than 5 percent. With the help of the straight-line approximation and the
minimal-coupling of the Liénard-Wiechert fields the theory is well defined and
‘exact’ compared to other methods. It does not contain free parameters. The
only ‘degree of freedom’ is the size and the quality of the basis. Of course
there are ‘technical parameters’ emerging in the implementation e.g. the re-
alization of the Coulomb wave packages. Different effective charges or widths
are possible.

86
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e Disadvantages:

Even in our times (2001) to calculate numerically some hundred thousands of
three dimensional integrals 'is a problem’. The accuracy and the complexity
of the coupled-channel calculation is the great handicap of the method. The
clear classification of the states without any contradiction and ‘hand waving’
is also an unsolved problem. This kind of coupled-channel method gives us
only the total cross sections. Differential cross sections with respect to the
ionized electrons are not so easy to calculate in this model.

e Further development:

The real challenge is to make the coupled-channel calculation more quicker.
Maybe it is possible with using the multipole approximation for the Liénard-
Wiechert potentials shown in [Bal91]. Sophisticated algorithms can be de-
veloped to optimize the number of time points for each impact parameter
to reduce computation time. To include spin-orbit interaction would be also
interesting but not essential for light systems. To include additional angular-
correlations for the wave function is a straightforward development way. The
dark side of this development is that the wave functions become more compli-
cated and the classification of the states would be even harder.

The Lienard-Wiechert potentials can be easily exchanged by other interactions
e.g. neglecting retardation, or simply using the dipole approximation. This is
a simplification rather than a positive development but would be interesting
to test.

The Coulomb wave packages can be also calculated in another way. Here we
simply used non-overlapping neighboring energy intervals. Is is possible to use
an envelope function on this interval e.g. a Gauss function. With this trick the
corresponding package will show less oscillations which makes the calculation
of the integrals easier. Of course the normalization and the overlaps have to
be revised. In our case this function is one, all the k values contribute the
same in the integral, we have ’average value packages’.

To calculate angular or energy differential cross sections in respect to the
outgoing electron or electrons can be done also.

e Further application:
When the charge of the target is changed (e.q. Z =1,3,4...), then ionization
of helium-like ions can be easily calculated. H~ as the strongest correlated
system would be the first interesting candidate. In this case the basis has to
be revised, the screening-factors have to be re-optimized. In the cases with
Z = 3,4, ... the electron-electron interaction is essential. For heavier systems it
can be neglected. A detailed study for proton and antiproton helium collision
would be essential up to 3 MeV/amu. We did only one test calculation for this
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systems as was shown. The most interesting system would be the antiproton
H~ collision.



Chapter 7

Zusammenfassung
(Summary in German)

Die Ionisation von Helium in Schwerionen- Kollisionen ist ein fundamentales atom-
physikalisches Problem. Die gebundenen Elektronen in He-Atom sind stark kor-
reliert. Insbesondere auf den Doppeltionisationsquerschnitt hat diese Korrelation
entscheidenden Einfluf.

Im Rahmen dieser Arbeit wurde das Einzentren-Gekoppelte-Kanéle-Modell realisiert
und fiir unterschiedliche Stofisysteme Rechnungen durchgefiihrt.

Unter den vielfaltigen Modellen zur Beschreibung des lonisationsprozesses zeich-
net sich die Methode der Gekoppelten Kanéle dadurch aus, dass sie die Korrela-
tion vollstandig beriicksichtigt. Fiir hochgeladene Projektile und langsame Kollisio-
nen,bei denen das Verhéltnis Zp,,;/vpro; in der Groessenordnung 1 ist, liefert die
Born’sche Storungstheorie falsche Ergebnisse.

Im ersten Schritt muss man eine Basis wihlen und den Helium-Hamiltonoperator
diagonalisieren. Unsere Idee war, dass wir nicht nur gebundene Slater-Funktionen,
sondern auch reguldre Coulomb-Wellenpakete nehmen, womit wir das Einfach- und
Doppel-Kontinuum besser beschreiben konnen. Wir approximieren die Helium-
Wellenfunktion durch eine Summe symmetrisierter Einteilchen-Wellenfunktionen.

Mit ausschliefflich Slater-Funktionen kann man praktisch nur die gebundenen
Zusténde (Grundzustand, einfach und doppelt angeregte Zustinde) gut beschreiben.
Der Diagonalisationsprozess liefert Pseudo-Zustinde, welche als einfach bzw. dop-
pelt ionisiert interpretiert werden konnen. Diese Zustande haben nicht-lokalisierte
Wellenfunktionen mit unendlich vielen Knotenpunkten. Solche Wellenfunktionen
sind mit nur gebundenen Funktionen gar nicht oder hochstens sehr schlecht real-
isierbar.
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Wenn man regulare Coulomb-Wellenpakete in die Basis mit einbezieht, dann liefert
die Diagonalisation Zustdnde, deren wesentlicher Anteil durch diese Pakete gegeben
ist. Allerdings miissen diese Zustande noch klassifiziert werden. Nur die En-
ergieeigenwerte und die zugehorigen Elektrondichten anzusehen, ist dazu nicht aus-
reichend. Testrechnungen zeigen, dass die tiefliegenden einfach ionisierten Zustande
einen groflen Anteil von angeregten Zustanden haben. Wenn man diese Zusténde als
rein einfach ionisiert betrachtet, hebt das die Wirkungsquerschnitte unphysikalisch
hoch.

Das Klassifikationsproblem haben wir teilweise gelost. Wir orthogonalisieren unsere
Einteilchen-Wellenfunktionen dadurch, dass wir aus Wasserstoff-ahnlichen Einteilchen-
Wellenfunktionen die Zweiteilchen-Wellenfunktion aufbauen. Das Wasserstoffatom
hat orthogonale gebundene und kontinuierliche Zustidnde. Wenn ein Zustand ener-
getisch tiber Null liegt, definieren wir ihn als ionisiert; liegt er unter Null, definieren
wir ihn als gebunden. Beim Helium haben wir drei orthogonale Hilbert-Unterraume:
beide Elektronen sind gebunden,

ein Elektron ist gebunden und eines ist ionisiert,

beide Elektronen sind ionisiert.

Diese Klassifikation ist mathematisch nicht streng korrekt, aber sie stellt eine brauch-
bare Methode dar. Wenn allerdings die Zahl der Coulomb-Wellenpakete wesentlich
grofer als die Zahl der Slater-Funktionen ist, dann ist diese Narung fast exakt.

Wir projizieren unsere urspriingliche Helium-Wellenfunktion auf diese neue aus
orthogonalisierten Einteilchen-Wellenfunktion aufgebaute Helium-Wellenfunktion.
Die quadrierten Koeffizienten liefern die Warscheinlichkeiten fiir den doppelt gebun-
denen, einfach ionisierten oder doppelt ionisierten Anteil. Diese drei Anteile miissen
zusammen 1 ergeben.

Mit dieser Methode kénnen wir den Vorteil der Konfigurations Wechselwirkung
Wellenfunktion ausnutzen. Alle Zustédnde sind eine Mischung aus allen moglichen
Konfigurationen.

Fiir praktische Rechnungen brauchen wir eine moglichst vollstdndige Basis.

In dieser Arbeit wurde eine Basis mit s-, p- und d-Funktionen benutzt. Ihre Zusam-
mensetzung aus Einteilchenfunktionen lautet wie folgt:

9 gebundene s-Funktionen, 4 s-Coulombpakete,

4 gebundene p-Funktionen, 6 p-Coulombpakete, und

4 gebundene d-Funktionen, 4 d-Coulombpakete.

Ohne weitere Winkelkorrelationen liefert der Diagonalisationprozess 91 Zustéinde
mit Gesamtdrehimpuls L=0, 156 Zustinde mit L=1 und 104 Zustidnde mit L=2.
Mit dieser Basis ist das niederenergetische Kontinuum bis E = 5 a.u. aquidistant
bedeckt. Dieses Energieintervall liefert den iiberwiegenden Beitrag zur Ionisation.
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Die Projektil-Potentiale sind die Liénard-Wiechert- Potentiale, die mit dem
Elektronen-Impuls minimal gekoppelt werden.

Wir betrachen die Projektile als Punktladungen, die auf klassischen geraden Bahnen
laufen (’Straight-Line-Approximation’ in der ’Semiklassischen Naherung’).

Frithere Arbeiten zeigen [Pfe99], dass fiir nicht sehr grofie Geschwindigkeiten (y < 3)
der Potential-Term den dominanten Beitrag liefert. Alle andere Terme sind eine oder
mehrere Grofenordnungen kleiner und damit vernachlassigbar. Dies gilt sogar fiir
sehr hochgeladene U%?*-Projektile in diesem Energiebereich.

Das Liénard-Wiechert-Potential hat eine Winkelabhangigkeit. Deswegen
miissen die zugehorigen Matrixelemente dreifach integriert werden.

Die Abhéngigkeit von der magnetischen Quantenzahl spaltet die L=1-Zustinde in
drei und die L=2-Zustande in fiinf Kanale auf.

Aus der oben beschriebenen Basis haben wir die wichtigsten Zustinde ausgewahlt;
sie liefern 277 Kanéle.

Die Wechselwirkungsmatrixelemente sind nur numerisch berechenbar. Die Rech-
nung muss fiir jeden Stofiparameter und fiir jeden Zeitpunkt ausgefiihrt werden.
In unserem Fall bedeutet dies mehrere zehntausend numerische Integrale. Die
gesamte Berechnung kann durch Ausnutzung von Symmetrien beschleunigt werden.
Die Matrixelemente haben drei verschiedene Symmetrien: Zeitumkehr-Symmetrie,
Azimutal-Symmetrie und Symmetrie beziiglich der magnetischen Quantenzahlen.
Zusatzliche Zeit kann man durch die Beobachtung einsparen, dass die Winkelin-
tegrale fiir alle Einteilchen-Wellenfunktionen identisch sind mit [ = 0,1,2. Daher
geniigt es, die Integrale nur einmal auszurechnen. Diese Idee zahlt sich besonders
bei grofleren Basen aus.

Nach der Berechnung der Wechselwirkungs-Matrixelemente muss die Kopplungs-
Matrix aufgebaut und die Gekoppelten-Kanale-Gleichungen gelost werden. Die
quadrierten Absolutwerte der Koeffizienten sind die Wahrscheinlichkeiten fiir die
verschiedene Kanale.

Multipliziert man die Wahrscheinlichkeiten mit dem Stofiparameter und integriert
iiber diesen, so erhédlt man den totalen Wirkungsquerschnitt.

Wir haben fiir zwolf verschiedene StoBlysteme, fiir die Messdaten verfiigbar sind,
Rechungen durchgefiihrt.

Neben dem Verfahren der gekoppelte-Kanile haben wir zum Vergleich auflerdem die
erste Ordnung der Born’schen Storungstheorie benutzt. Unsere Ergebnisse sind auf
den Seiten 77-88 tabelliert. Die Resulate aus den Gekoppelten-Kanile-Rechnungen
stimmen mit den experimentellen Werten gut iiberein. Die Born’sche Rechnungen
liefern hingegen fiir grole Werte von Zp,,;/vpro; zu hohe Querschnitte.
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Appendix

To get the cross-sections, various numerical steps are needed. In the next we sum-
marise the codes which were needed for the computation. Major parts of the codes
were developed personally. The usage of external codes will be mentioned.

e Packet.for
Calculates and tabulates the Coulomb wave packets with different energy,
packet size, and effective charge. A library routine is used for the complex
gamma function. Different formulas are used for the Coulomb wave function.
The packet integration is done with the Romberg algorithm. The code was
partially developed by Prof. Griin.

e Diag.for
Solves the diagonalisation problem, with the help of a International Mathe-
matical & Statistical Library (IMSL) Routine. The results are the eigenvalues
and the eigenvectors. The code was developed here. For the Clebsch-Gordon
coefficients we used a ready Routine from R. Shyam.

e Channel.for

Calculates the time-dependent matrix elements and builds up the coupling
matrix, different projectile-electron operators can be used: complete coupled
channel, only potential term, with-or without retardation. The above men-
tioned Clebsch-Gordon algorithm is also used here. From [Pre86] we used rou-
tines for the spline integration, and routines for calculate integration points
and weights for different Gauss integrations. A further SLATEC Common
Mathematical Library routine is applied to calculate singular integrations.

e Diffsolv.for
Solves the coupled-channel equations with a five-point Runge-Kutta algorithm.
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The code has a modified version for the perturbation calculation. This code
was partially developed by Christian Pfeiffer.

e Sigma.for
Integrates the probabilities over the impact parameter to get the total cross
section. For better accuracy a spline interpolation is used. This was partially
written by C. Pfeiffer.

e Kalss.for
A small program which projects the helium wave function onto another helium
wave function built up from orthogonalised single particle wave functions to
get the bound and single and double ionisation probabilities of a given state.
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