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Zusammenfassung

Das Ziel dieser Dissertation ist der Beweis eines Hopfverzweigungssatzes
fiir Differentialgleichungen mit zustandsabhéngiger Verzogerung, wie es ihn
fiir gewohnliche und partielle Differentialgleichungen sowie fiir Differential-
gleichungen mit konstanter Verzogerung bereits gibt.

Dieser Satz sollte auf Gleichungen der folgenden Form angewandt werden

konnen:
7' (t) = f(a,x(t — r(xt))>, teR, aeJCR
Hierbei ist
f:JxR" - R,
J C R ein Intervall, eine 2 - fach stetig differenzierbare Abbildung. Das
Segment z;, t € R, ist ein Element des Raumes C([—h, 0]|R") stetig dif-

ferenzierbarer Funktionen ¢ : [—h,0] — R™, h > 0. In vielen Beispielen wird

r implizit durch eine Gleichung wie
r=x(—r)+x(0)+ D,

D eine nichtnegative Konstante, gegeben.

Wenn man von Hopfverzweigung spricht, erwartet man die folgende Situa-
tion:

Es sei C(|—h,0]|R™) der Raum stetiger reellwertiger Funktionen ¢ : [—h,0] —
R"™.

Fir o € J sei L(a) : C([—h,0]|R™) — R™ ein beschrdnkter linearer Ope--
rator. Es sei F(a, @) := f(a,¢(—r(¢))> — L(a)g, fir ¢ € CY([—h,0]|R™)
und o € J.

Damit wird die Ausgangsgleichung in die Form
' (t) = L(a)zy + F(o,2¢), teER, a€ld

umgestellt.

FEs gebe ein Gleichgewicht, das heisst eine konstante Funktion ¢* € C([—h,0]|R"),
so dass F(a, qb*) =0 fir alle o € J gilt.

Dariiberhinaus gebe es einen Zweig einfacher Eigenwerte \«), o € I C J,

I C J ein Intervall, die zur linearen parametrisierten Gleichung

y'(t)=L(a)y, teR, acl,



gehoren und die imagindre Achse bei einem kritischen Parameter ag € 1
kreuzen.

Dann erwartet man, eine Parametrisierung
R>Q3aw— (ala),¢(a),T(a)) € J x C*([—h,0]|R") x R,

Q C R ein Intervall, zu erhalten, fir die das Folgende gilt:

0 € Q. Fiir jedes a € Q existiert eine T'(a) - periodische Lésung x*(a) der
obigen Gleichung zum Parameter a(a) mit x*(a)i=o = ¢(a) fir a € Q, sowie
a(0) = ap, AN(0) = Ao und ¢(0) = ¢*.

Eine der ersten Arbeiten zum Thema wurde von Hal Smith (siehe [9])
veroffentlicht:

Bei der Betrachtung einer Differentialgleichung mit zustandsabhangiger Verzo-
gerung setzte er L(a)y := Daf (o, ¢*(0)) (x(—7(¢%))) fiir x € C([—h,0]|R™),
und erhielt einen Zweig von Eigenwerten A(a), a € I, in Verbindung mit
L(a), a € I, der die imaginédre Achse bei einem kritischen Parameter oy
kreuzte. Der Ansatz fiir L(«), a € I, stammte dabei von Cooke und Huang
(siehe [1]). Smith ging davon aus, dass bei dem Beispiel eine Hopfverzwei-
gung vorlag. Aber er konnte seine Vermutung nicht beweisen.

Als die Arbeit an dieser Dissertation begann, war es naheliegend zu ver-
suchen, dhnlich wie in [7] die Hopfverzweigung mit Hilfe von Dimensionsre-
duktion iiber eine invariante Zentrumsmannigfaltigkeit zu beweisen. Dann
hétte man auf das reduzierte System einen Verzweigungssatz fiir gewShnliche
Differentialgleichungen, wie er in [7] zu finden ist, anwenden kénnen. Die
Existenz einer Lipschitzstetigen Zentrumsmannigfaltigkeit in der Nahe eines
Gleichgewichtes bei Differentialgleichungen mit zustandsabhéangiger Verzo -
gerung wurde in [4] bewiesen. Dariiberhinaus gibt es derzeit noch keine
weiteren Erkenntnisse zur Glattheit von Zentrumsmannigfaltigkeiten fiir
Differentialgleichungen mit zustandsabhéngiger Verzogerung. Bekannt sind
bislang lediglich Ergebnisse iiber die Existenz glatter instabiler Mannig-
faltigkeiten in der Nihe eines hyperbolischen Gleichgewichtes, verdffentlicht
in [6] und [5], sowie iiber die Existenz eines Halbflusses auf einer Losungs -
mannigfaltigkeit, ver6ffentlicht in [11].

Wir werden deshalb die Hopfverzweigung mittels eines funktionalanalyti-

schen Ansatzes beweisen, der ohne die Existenz von Zentrumsmannig-



faltigkeiten und eines Halbflusses auskommt. Dieser Ansatz verwendet den
Satz iiber die Fredholm - Alternative, zu finden als Satz 1.1.4.1 im er-
sten Abschnitt unseres ersten Kapitels. Mit Hilfe dieses Satzes konnte man
Hopfverzweigungen fiir Differentialgleichungen mit konstanter Verzogerung
in [3], Kapitel 11.1, Hopf bifurcation, beweisen.

Im ersten Kapitel dieser Dissertation, Hopf bifurcation, werden wir die Be-
weisschritte des Hopfverzweigungssatzes aus [3] unter Beriicksichtigung der
besonderen Differenzierbarkeitseigenschaften der Abbildung F', zusammenge-
fasst als H 1) bis H 6) am Anfang des ersten Kapitels, modifizieren. Auf diese
Weise werden wir einen Hopfverzweigungssatz fiir Differentialgleichungen
mit zustandsabhéngiger Verzogerung mit allen dazu notwendigen Voraus-
setzungen prasentieren und beweisen konnen. Die exakte Herangehensweise
an diesen Beweis wird im ersten Kapitel, Abschnitt General approach of the
proof of local Hopf- bifurcation, beschrieben werden.

Im zweiten Kapitel, The robot arm, werden wir eine Anwendung beschreiben,
um zu zeigen, dass das Phéanomen Hopfverzweigung im Falle von Differen-
tialgleichungen mit zustandsabhéangiger Verzégerung tatsichlich auftritt:
Das Differentialgleichungssystem, welches wir betrachten werden, beschreibt
die Bewegung eines Roboterarmes iiber einem darunterliegenden Objekt.
Der Roboterarm berechnet seine Position aus der Laufzeit eines Signales,
das zum Zeitpunkt t — r vom Arm ausgesandt und vom Objekt reflektiert
wird, um zum Zeitpunkt ¢ wieder vom Arm empfangen zu werden.

Dieses System wurde in [11] als ein Beispiel fiir den Halbfluss auf der Losungs-
mannigfaltigkeit préisentiert.

Das letzte Kapitel Appendiz enthalt wichtige Werkzeuge, die fiir den Beweis
der Hopverzweigung niitzlich sein werden.

Wir werden mit einem Abschnitt General settings beginnen, in dem wir De-
finitionen und Schreibweisen présentieren werden, die fiir die gesamte Arbeit

giiltig sein werden.



Introduction

The goal of this doctoral dissertation is the proof of a local Hopf bifurcation
Theorem for delay differential equations with state - dependent delays such
as it is known for ordinary differential equations, partial differential equa-
tions or delay differential equations with constant delays.

This theorem should be applicable to parametrized delay differential equa-

tions of the form
2 (t) = f(a,x(t - r(azt))>, teR, aceJCR

Here

f:JxR" - R"
J C R an interval, is 2 times continuously differentiable. The segment x4,
t € R, is an element of the space C!([—h, 0]|R™) of continuously differentiable
real - valued functions ¢ : [—h,0] — R™ h > 0. In many examples r is

implicitly given by an equation like
r=x(—r)+x(0)+ D,

D a nonnegative constant.

When dealing with Hopf bifurcation one considers the following situation:
Let C([—h,0][R™) be the space of continuous real - valued functions ¢ :
[—h,0] — R".

For a € J let L(«) : C([—h,0]|R™) — R™ be a bounded linear operator. Let
Fla,¢) == f(a, (;S(—r(qb))) — L(a)¢, for ¢ € CY([~h,0]|R™) and a € J.

Hence, our equation becomes

2'(t) = L(a)zy + Fla,z¢), teR, a€.J

Suppose there exists an equilibrium, i.e., a constant function ¢* € C*([—h,0]|R"),
such that F(a, qﬁ*) =0 foralla e J.

Furthermore, suppose there exists a branch of simple eigenvalues A\(«), « €

I C J, I C J an interval, belonging to the linear parametrized functional

differential equation

y'(t)=L(a)y, teR, acl,



which crosses the imaginary azis at a critical parameter ag € 1. (See detailed
explanation in 1.1.2 and 1.1.3)

Then one expects to get a parametrization
QCR>ar (a,(a),¢(a), T(a)) € J x C'(RR") x R,

Q C R an interval, such that the following holds:

0 € Q. For every a € Q, there exists a periodic solution x*(a) : R — R"
of the equation above with parameter a(a), period T'(a) and x(a)i=o = ¢(a).
Furthermore, a(0) = ap, ¢(0) = ¢* and A(0) = Xo.

One of the first papers on Hopf bifurcation for state dependent delay equa-
tions was published by Hal Smith, [9]: When investigating an example of
delay differential equations he set L(a)x := Daf(cr, *(0)) (x(—r(¢*))), for
X € C([—h,0]|R™), and observed a branch of simple eigenvalues A(«), o € I
associated with L(«a), a € I, crossing the imaginary axis at a critical para-
meter ag. The Ansatz for L(«), a € I, was motivated by Cooke and Huang,
[1]. Consequently, he supposed there might be a Hopf bifurcation. But he
could not give a proof of his hypothesis.

When starting the work on this thesis the first idea of proving Hopf bifur-
cation was to follow the standard approach of reducing the dimension via
invariant finite - dimensional center manifolds as described in [7] and to ap-
ply a Hopf bifurcation Theorem for ordinary differential equations also to
be found in [7]. But yet, we have no center manifolds of class C? associated
with our problem of delay differential equations. There are only results on
the following issues:

Existence of centermanifolds close to a nonhyperbolic equilibrium as stated
in [4], existence of unstable manifolds close to a hyperbolic equilibrium as
stated in [6] and [5], and existence of a C'! - semiflow on a solution manifold
as stated in [11].

Therefore, we will proof Hopf bifurcation by applying a functionalanalytic
approach which avoids the existence of a semiflow and a centermanifold.
This approach uses the Fredholm alternative Theorem 1.1.4.1 as stated in
the first section of our first chapter. Given that theorem one was able to
prove Hopf bifurcation in the case of differential equations with constant de-

lays in [3], chapter 11.1, Hopf bifurcation. In the first chapter of this thesis,



Hopf bifurcation, we will modify the steps of the proof of Hopf bifurcation in
[3]. The differentiability properties of the mapping F' (assumed as H 1) to
H 6) at the beginning of the first chapter) make this approach more difficult
than the original one in [3]. A detailed description of the proof is contained
in the first section of chapter 1, General approach of the proof of local Hopf-
bifurcation.

In the second chapter, The robot arm, we will give an example in order
to show that Hopf bifurcation really occurs in the case of delay differential
equations with state dependent delays:

The system of delay differential equations we will concentrate on describes
the movement of a robot arm over an object below. The robot arm com-
putes its position from the running time r of a signal of speed ¢, emitted at
time t — r, reflected by the object and absorbed at time t.

This system was introduced in [11] as an example for the semiflow on the
solution manifold.

The last chapter, Appendiz, contains some important tools which will be
useful for the proof of Hopf bifurcation.

We will start by introducing some general settings which will be used through-

out all chapters.



0.1 General Settings

Let T' € R be a positive real number, let n € N, i € {0,1,2}.
C' denotes the Banach space of i - times continuously differentiable functions

u :[0,T] — R™ equipped with the norm

lulli == max sup [[u®®)(£)][gn
0<5<i 4e(0,1]

for u € C* where u(¥)(t) denotes the ith derivative of u in t € [0, T).

For any (2 times ) continuously differentiable function = : I — R™, where
I C R is an interval, we will also denote the first (and second derivative) of
zin s € I by 2/(s) (and 2(s)).

C% denotes the space of ¢ - times continuously differentiable T - periodic

functions u : R — R"™, equipped with the norm ||uHCzT = |luljo,mllci for
u € Ch.
Let h > 0 be a real number. C’;L denotes the space of ¢ - times continuously

differentiable functions ¢ : [—h, 0] — R", equipped with the norm

®||oi = max  sup ) (0)||gn
ol = guas, sup 1690l

for ¢ € C’,il. We set Cg = C}. For any i - times continuously differentiable
mapping z : R — R™ and ¢ € R we define the segment x; € C} by z4(0) :=
z(t +0), for 6 € [—h,0].

Let B and D be Banach spaces. Let L(B|D) denote the space of bounded
linear mappings x : B — D, equipped with the norm

IXllLeipy == sup  [Ix(®)lp
be B
[bllp =1

for x € L(B|D).

Let B; and By be Banach spaces, let O; C B; and Oy C By open sub-
sets. Then L(Bj, B2|D) denotes the space of bounded bilinear mappings
X : B1 X Bo — D, equipped with the norm
IXIlz(By,B: D) = sup Ix(b1)(b2) I
(bl,bz) (S Bl X 32
1b1]lB, = 1, [[b2]lB, =1

10



for x € L(By, B2|D). Let L?*(B|D) denote the space of bounded symmetric
bilinear mappings x : B x B — D. We can equip that space with the norm

Ixll == sup [Ix(b1)(b2)] D
(bl,bg) € Bx B

b1l = 1, [[b2llp =1

for x € L*(B|D).

One can easily show that this norm is equivalent to

Ix[[ = sup [Ix(®)(®)lp
beB

1ol =1
for x € L?(B|D). So we set

IXllz2Bipy == sup  [[x(0)(b)llp
be B

1ol =1

for x € L?(B|D).

For any continuously differentiable mapping
7:(01 XOQ)C(BIXBQ)%D,

Jj e {1,2}, let
Djy(z1,22) € L(B;|D)

denote the partial derivative of v with respect to z; in (z1,22) € O1 x Oa.

For any 2 times continuously differentiable mapping
v:(01 x Og) C (By x By) — D,
je{1,2},ie{1,2},
D;(Diy)(z1,x2) € L(Bj]L(BZ-\D))

denotes the partial derivative of D;y(x1,z2) with respect to x; in (21, 22) €

01 x Og. 7 being 2 times continuously differentiable the identity
Di(Dj)y(w1, 22) () (bi) = Dj(Di)y(x1, 22)(bi) (b))

11



holds for i,5 = 1,2, b; € B; and b; € B;.
Therefore, we can define D;Djy(x1,x2) = D;Djy(x1,22) as an element of
L?(Bi, Bj| D) by setting D; Dy (a1, x2)(b;)(b;) := Di(D3)y(1,22)(b;) (b)) for
(b,t/) € Bj x Bj. In the case i = j = 2 we say that D;D;y(z1,22) =
D?~(z1,12) € L?(B;| D) is the second partial derivative of v with respect to
x; in (z1,22) € O1 X Os.
If

v:I CR— D,

I C R an open subset, is a continuously differentiable mapping then we set
DA(@)1 := DA(a)(1)
We will often write 7/(x) instead of D~y(x)1, for x € I.
If
vy:ICR—D

is a 2 times continuously differentiable mapping then we will often write
7" (z) instead of D2~y (z)(1)(1), for z € I.
We finish by recalling the definition of some standard symbols - and nota-

tions which will be valid throughout the whole dissertation:

a) For any matrix B € R™*™ the transposed matrix is denoted by B! €

R™x™,
b) N denotes the set of natural numbers {1,2...}.
¢) Z denotes the set of integers {... —2,—1,0,1,2...}.
d) Q denotes the set of rational numbers {£,p € Z,q € N\ {0}}.
e) R denotes the set of real numbers.

f) C denotes the set of complex numbers.

12



Chapter 1

Hopf bifurcation

1.1 General approach of the proof of local Hopf-
bifurcation
1.1.1 General Assumptions

Let J C R be an interval, 2 C C,ll and Q* C C}QL be open subsets such that
Q" =QNC? Let g : J x Q — R" be a mapping satisfying the following

assumptions:

H 1): The mapping g : J x  — R" is continuously differentiable. There
exists a constant function ¢* € Q* such that g(a,¢*) = 0 for all
ac J.

H 2): For any (a, ¢) € Jx € the partial derivative Daog(, ¢) € L(C}HR™) of g
with respect to ¢ extends to a bounded linear mapping D3 ¢tg(c, @) :
Cy — R"”.

H 3): The mapping
JxQxCh 3 (a,0,x) — Daerrg(e, d)(x) € R"
1S continuous.

H 4): The mapping ¢g* := g|sxo+ is 2 times continuously differentiable.

13



H 5): The second partial derivative D3g*(a, ¢) € L*(C?|R™) of g* with re-
spect to ¢ in (a, @) € J x Q* extends to a continuous bilinear mapping
D%yextg*(a,qﬁ) : C,i X C,i — R™.

H 6): Let Joz2 c1 denote the continuous embedding from C? to C}.
The mappings

J X x Cp x CF 3 (a, ¢, X1, x2) = D3 019 (0, 6) (x1) (x2) € R”

and
D%yext’lg* 1 J X QF % C,% — L(C,?L\R”),
defined by
D%,eztg*(a7 ¢)(X) (JCEL,C,IL (1/))),

for (a, ¢, x) € J x * x C} and ) € C?, are continuous.

Note that H 3) does not include the continuity of

J x> (Oé,(b) = D2,extg(a7¢) € L(Ch|Rn)

H 6) does not include the continuity of

Jx Q3 (0, 0) = D3 iy (0, ¢) € L*(Cy|R™).

In this work we will consider the problem of Hopf bifurcation for a differential

equation like
(1.1) 2'(t)=g(a,zt), tER, aelJ

where the function ¢ satisfies all assumptions H1) to H6).

We assume the linearization L(«) := D .g(a, ¢*), o € J, to have a branch
of simple eigenvalues A(a) € C, @ € I C J which crosses the imaginary
axis at a critical parameter oy € I (an exact definition follows in section
1.1.3). As we described in the introduction we want to get an open intervall
0 € @ C R such that for every a € @) there exists a periodic solution z*(a)
of equation (1.1) with parameter a(a), period T'(a) and x*(a)i=g = ¢(a).

14



Furthermore, the identities a(0) = ap, ¢(0) = ¢* and A(0) = A¢ should
hold.

We will prove the Hopf Bifurcation Theorem by applying the Fredholm Al-
ternative Theorem as stated by 1.1.4.1. This theorem yields necessary and
sufficient conditions for the existence of periodic solutions of the following

nonautonomous equation
(1.2) 2'(t) = Lay + f(t),

where L € L(C,|R™) and f: R — R" is a continuous 7" - periodic function.
Therefore, we will consider equation 1.1 as a perturbation of the linear

autonomous equation

y'(t) = L(ao)y:-

First, we recall some basic knowledge about linear problems which we will

need throughout the whole thesis.

1.1.2 Linear problems
Let L € L(Cp|R™). The linear functional differential equation
(1.3) y'(t) =Ly, teR

leads to a semigroup of continuous operators T'(t):>0:

For t > 0 the operator T'(t) maps ¢ € C}, onto the segment yf € C}, which
is the solution of (1.3) at time ¢ > 0, satisfying yg = ¢.

The infinitesimal generator A : D(A) C Cy, — C}, is defined in the following

way:
D(A) :={¢ € C}| lgr(l) W exists in  Cp}
and
) = iy D)=
for ¢ € D(A).

One can show that D(A) = {¢ € C}|¢/(0) = L¢} and A(¢p) = ¢ for
¢ € D(A).

The spectrum of A consists of the roots of the characteristic function

char(z) = det((L exp(z);) — Idgn - z), z e C.

1<j<n

15



0

Here, (exp(z);) € (), is given by exp(z);(f) = €*” - e;, where ¢;

1<j<n
denotes the jth uiriig - vector in R"™, for § € [—h,0] and 1 < j < n.

The spectrum is discrete, and every eigenvalue \ of A generates a finite
- dimensional generalized eigenspace E) C C}, which is invariant under
T(t)e>0-

T(t), t > 0 extends to a group T'(¢), t € R, on Ey. Hence, T'(t)¢ = yf solves
(1.3) for all t € R and ¢ € Ej.

Furthermore, all eigenfunctions ¢ € E) are C®. If ¢ € E,, all ¢, ¢ etc.
are elements of F).

Thus, we can define continuous embeddings Jg, co, Jg, ¢1 and Jg, o2 from
Ey to CY, C! and C? respectively:

Let y(t) := y(0), for ¢ € By and t € [0,T]. Then Jg,_i(¢)(t) := yo(t),
for i € {0,1,2}. The continuity of Jg, co is a consequence of the fact that
all mappings Cp > ¢ — yf’ , t >0, are continuous.

The continuity of Jp, ¢i, 4 € {1,2}, follows from the fact that all Jg, i (E)),
i € {0,1,2}, are equal and finite - dimensional, and that norms on finite
spaces are equivalent.

If for any eigenvalue Ag € C of A, E), is such that yf, t € R, is T - periodic
for all ¢ € E),, we can analogously define continuous embeddings J Exg,C9
J Exg Ok and J Fxg.C2 from E), to C%, C} and C% respectively.

Now we can exactly explain what we mean by a branch of eigenvalues \(«) €
C, a € I C J, associated with L(«), which crosses the imaginary azis at a

critical parameter o).

1.1.3 First hypothesis for Hopf bifurcation

When dealing with Hopf bifurcation we assume that the linearization L(a),
a € J, satisfies the following conditions:

There exists an interval I C J and a9 € I and a parametrization I 5 « —
A(«) € C onto eigenvalues of the infinitesimal generator A(«) belonging to
the continuous semigroup 7'(«)(t):>0 associated with L(a).

The parametrization I 3 a — A(a) € C must satisfy the following proper-

ties:

L1): Map) = Ao = w-4, w = % a real number, is a purely imaginary

16



simple eigenvalue of the infinitesimal generator A(«y) of the semigroup
T'(ap)(t)s>0 associated with L(ag). There exists no further eigenvalue
of A(ap) but A\g = —w - 1.

L 2): The mapping I > a — A(a) € C is continuously differentiable with
R[(N ()] # 0.

L 3): Ma) for a € I is a simple eigenvalue of the infinitesimal generator

A(ar) belonging to the semigroup T'(«v)(t)+>0 associated with L(«).

1.1.4 The Fredholm alternative Theorem, necessary and suf-
ficient conditions for the existence of periodic solutions
of 1.1

Let £ € N and P be the k - dimensional space of continuous 1" - periodic

solutions of

(1.4) y'(t) = Ly.

There exists a basis ¢1,..., ¢, of P such that gzﬁé-(s) ~¢i(s) = 65 for 4,1 €
{1,...,k} and s € R. We set ¢ := (d)l, ...,d)k).

The Fredholm alternative Theorem can be stated as follows:

Theorem 1.1.4.1. (Fredholm alternative, see Corollary 4.1 in Chapter 6 of
[3]) The necessary and sufficient condition for the existence of T' - periodic
solutions of (1.2) is

T
/ & (5)f(s)ds = 0.
0

Furthermore, there exists a continuous projection J : C% — P and a bounded
linear operator K : (Id — J)(C%) — C% such that K(f) is the unique T -
periodic solution of (1.2) for f € (Id — J)(CY) .

This leads us to the approach of finding periodic solutions of (1.1), which
was used in [3], chapter 11.1, Hopf bifurcation:

Let ®* : R — R" be a constant function such that ®*|¢, = ¢*. Let 2 : R —
R™ be a continuously differentiable function. Let 5 € (—1/2,1/2), t € R.
Let u : R — R™ be defined by u(t) := z(t- (1 + 3)) + ®*(¢- (1 + 8)). Then

17



the identity u(7+6/(1+ 3)) := z(t + ) — ®* (¢t +6) holds for 7 := ¢/(1+ 3)
and 6 € [—h,0].

Let u; € C} be defined by u,(0) := u(r + 6) for 7 € R and § € [—h,0].
Let urg € C} be defined by u,g(f) := u(r + 6/(1 + 3)) for 7 € R and
6 € [—h,0].

Then 2y = u, g for t = (1 + §)7 and z is a periodic solution of (1.1) with
period (1 + ) - T if and only if u is a periodic solution of

(15) UI(T) = (1 =+ ﬁ) : g(OZ,UTﬂ + ¢*)> TEC Ra acJ

with period T
Let L : J — L(Cy|R™) be given by L() = Da cqtg (e, ¢*) for a € J.
We define

g:JxQxR—-R"

by
gla,9,8) == 1+ B)g(a, ¢+ ¢7),
for (a,¢,0) € J x Q x R, and

G: JxOxOxR—-R"

by
G(O[, ¢)Xa B) = g(aa QZ),B) - L(QO)X)

for (a, ¢, x, ) € J x Q x Q x R. Then we may rewrite (1.5) as
(1) = L(a)ur + G(o,ur g, ur, 8), TER, a€ld pe(-1/2,1/2)

which is a perturbation of the linear autonomous equation

(1.6) y'(t) = L(ao)ye.

From here on we assume the space P of T - periodic solutions of (1.6) to
have dimension 2. (Note that in L. 1) we requested A\g = w - i to be simple)
Let @1 (), P2(c) denote a basis of P and let ®(cg) = (®1(ap), P2(c)).

We recall a fact which is well known from the case of linear ordinary differ-

ential equations in dimension 2:

18



For any p € P there exist (a,b) € R x R such that p(7 —b) = ®(ag)(7)(a,0)!
for all 7 € R.

Hence, as a consequence of Theorem 1.1.4.1 u € C% will be a T' - periodic
solution of (1.5) if and only if there exist (a,b) € R x R such that v, defined

by v(7) := u(r —b), for 7 € R, is a solution of both equations

(L7 o) = @(ag)()(a,0)' + (Ko [Id - 3)(G(a,.5,v.6))

and

T
(1.8) 0= /@(ao)t(s)G(a,vswg,vs,ﬁ)ds
0

forr € R, « € J and € (—1/2,1/2). Considering that the map ¢ is now
restricted by the properties H1) to H6) we need to show that the equations
(1.7) and (1.8) yield a continuously differentiable mapping O 3 a — @ € Ct

onto solutions of both equations.

1.1.5 Steps of the proof of Hopf bifurcation

We will begin in Section 1.2 dealing with the general case of higher deriva-
tives of mappings with restricted differentiability properties. In Section 1.3

we will apply these results to the mapping
(1.9) T xQx(=1/2,1/2) 3 (o, u, B) — G(a,u.g,u., 3) € C.

Here, ) C CL is an open subset such that (u,g,u;) € Q x Q for u € Q) and
(1,8) e R x (—1/2,1/2).

Having established the differentiability properties of the map 1.9 we will
concentrate on the proof of Hopf bifurcation in Section 1.4. This proof will
be divided into two parts:

First part:

We will use the results on the mapping (1.9) in order to solve equation (1.7).
This is more difficult than proofs of Hopf bifurcation results which apply to
partial differential equations or delay equations with constant delay.

Due to the particular differentiability properties of g from assumption H1)

- H6), the Implicit Function Theorem will yield mappings

(1.10) 0 3 (a,a,3) — i(a,a,B) € CH
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and
(1.11) 0* 3 (a,a,0) — u*(a,a, ) € C2

onto solutions of (1.7) which are continuously differentiable. Here O and
O* are suitable subsets of J x R x (=1/2,1/2). But we need one of these
mappings to be 2 times continuously differentiable. This will be achieved
by an application of Theorem 3.3.2 from Appendix III, to both mappings
(1.10) and (1.11). Theorem 3.3.2 will yield a subset O C J xR x (—1/2,1/2)

and a 2 times continuously differentiable mapping

(1.12) 03 (o, a,B) — a(a,a,B) € C

which satisfies i = .

Second part:

We will then follow a standard approach of proving Hopf bifurcation:

We will insert (1.10), (1.11) and (1.12) into equation (1.8) and solve the

resulting equation for v and 8 as a function of a.
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1.2 Higher derivatives for mappings with restricted

differentiability properties

In this section we suppose the following:

Let A, B,C, D, F be Banach spaces such that both B and C are dense in
C and FE respectively. Let ;3 C C, Q] C B and Q2 C A be open subsets
such that Qf = Q1 N B. Let k € N be an integer and A C R* be an open
bounded subset.

Let h, j and j be mappings for which we make the following assumptions:
h1): h:Q; C C — D is continuously differentiable.

h 2): For every ¢ € 1 C C the first derivative Dh(c) € L(C|D) of h with

respect to ¢ extends to a linear continuous mapping

De¢yih(c) : E— D.

h 3): The mapping
O X E 3 (¢,e) — Deyth(e)(e) € D

1s continuous.

h 4): h* := h|g: : Q] C B — D is 2 times continuously differentiable.

h 5): For every b € Qf C B the second derivative D?>h*(b) € L?(B|D) of h*

with respect to b extends to a bilinear continuous mapping

D2,h*(b): C x C — D.

ext

h 6): Let Jp ¢ denote the continuous embedding from B to C.
Both mappings

U x CxC3(bed)— D2h*b)(c)(d) € D
and

Dgzt,lh* : QT xC — L(B|D)7
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defined by
D2,h(b)(c)(Ip,c(b)),

for (b,c) € Qf x C and b’ € B, are continuous.
j1):j:Qax A — Qf C B is continuous. For every s € A the mapping
j(+,8) : A — Bislinear and bounded. Furthermore, sup ||5(-, s)||r(45) <

SEA
Q.

j 2): The mapping
jr=Jpcoj:lxA—-Q CC

is continuously differentiable. For every s € A the mapping
Doj*(+,8) : A — L(R¥|C) is linear and bounded.

Furthermore, sup || D2j* (-, 8)|| 1(a,rk|c) < 00
sEA

J 3): Let Jo g denote the continuous embedding from C to E. The mapping
i =Jogoj’: Q x A — Eis 2 times continuously differentiable.

j4):j: Qe x A O C C is continuous. For every s € A the mapping
j(,8) + A — C'is linear and bounded. Furthermore, sup [|j(-, s)||5(ajc) <

SEA
Q.

J 5): Let Jc g denote the continuous embedding from C to E. The mapping

J¥=JoEroj: Q2 x A — E is continuously differentiable.
Note that do not assume the following properties:

e The continuity of
Q) C C 3¢+ Deyth(c) € L(E|D)
in h 3)
e The continuity of
Qf € B3 b+ D?,h*(b) € L*(C|D)

in h 6)
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e The continuity of
A>3 s+ j(-,s) e L(AB)

injl)
e The continuity of
A3 s Dyj*(-,s) € L(A,R¥|0)
in j 2)
e The continuity of
A>3 s—j(,s) e L(A|IC)
inj4)
Lemma 1.2.0.1. Let h be a mapping such that h 1), h 2) and h 3) are
satisfied.

Let j be a mapping such that j 4) and j 5) are satisfied.
Then the mapping

Q2 x A > (a,s) — Dh(j(a,s))(i(-,s)) € L(A|D)
18 continuous.

Proof. For simplicity we only consider the case 1 = C and Q5 = A.
We show that the mapping

C x A>3 (c,s)— Dh(c)(j(-,s)) € L(A|D)

is continuous. The claim of the lemma then follows from the continuity of
the mapping
AxA> (a,s) —jla,s) e C.

We have to show that for given (¢,s) € C' x A and given € > 0 there exists
a 0 > 0 such that

sip |Dh(e)(i(v,5)) — Dh(e)(§(v,5)lp < ¢
veA
Jvlla=1
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for (¢,s') € C x A with |[c = d||c <6, |s — §'|gr < 0.

We know that the mapping

C > — Dh(d) € L(C|D)
is continuous and that for given ¢’ € C' the mapping

Dhey(c): E— D

is linear and bounded. Also we know that sup 13 8 Lajey < oo
Hence, for given ¢ € C there exists a 6> Ossiﬁh that

[Death(c)(e —€')[p < 1/2-€
and

| Dh(c) — Dh(c)| i) - SS}éIi 13, 8) iy < 1/2-€

for (e,e’) € E x E, with |le — €|z < 8, and ¢ € C, with |jc — [|¢ < 6.

Hypothesis 7 5) implies the continuity of
A>s—j(-s) € L(AIE).
Hence, one gets the existence of 6 > 0 such that for given s € A

sup  [|j*(v,8) —j (v, 8)lp <6
ve A

[ola=1

for &' € A, with ||s — s'||gr < 4.

We set 0 := min{d,d}.

Hence, by observing the identity Dh(c’)(j(v,s’)) = Degth(c')(j* (v, s)) for
all (¢,s") € C' x A, the inequality

sup || Dh(c)(j(v,5)) — Dh(¢)(j(v,s"))lIp
vEA

[o]a =1

< sup | Dh(c)(j(v,s")) — Dh(c)(j(v,s"))|Ip
veEA
[vfla=1
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+ sup | Dexth(c) (j*(v, 3)) — Degth(c) (j*(?), 3/)) 175
veEA

[vlla=1
< [[Dh(e) — Dh(d)|| D) - sup 13 s Laje)
s'e

+  sup [ Degth(c)(§* (v, s) = (v, 8)lIp
ve A

[o]la=1

<1/2-€4+1/2-e=¢

holds for (¢, s") € C' x A with |lc — || <9, |s — §'|ge < 6.
Thus,
C x A > (c,s) — Dh(c)(j(-,s)) € L(A|D)

is continuous. UJ

Lemma 1.2.0.2. Let h be a mapping such thath 1)h 2), h 8), h 4), h 5),
h 6)are satisfied.

Let j be a mapping such that j 1), j 2) and j 3) are satisfied.

Then the mapping

Dy x A > (a,s) — D2h*(j(a, $)((9)(4(-,9)) € L*(A|D)
18 continuous.

Proof. For simplicity we only consider the case ; = C, Q] = B and {); = A.
We show that the mapping

B x A3 (b,s) — D*h*(b)(j(,s))(j(-,s)) € L*(A|D)

is continuous. The claim of the lemma then follows from the continuity of
the mapping
Ax A3 (a,s)— (j(a,s),s) € BxA.
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We have to show that for given (b,s) € B x A and given € > 0 there exists
0 > 0 such that

sup  ||D*h*(b) (4 (v, ) (§(v,5)) — D*h*(b) (j (v, 5")) (j(v,8)) D < €
veEA

[o][a =1

for (b',s") € B x A with ||[b—bV||p <6, |s — &' |ge < 4.
We know that the mapping

B>V — D?h*(V) € L*(B|D)
is continuous and that for given ¥’ € B the mapping

D2, h*(t)):CxC— D

ext

is bilinear and bounded.

Also we know that sup [|5(-,s')|[(45) < oo
s'eA
Hence, for given b € B there exists a § > 0 such that

|D2, b7 (8)(c)(¢) — D2, (B)()()l|p < 1/2- €

ext ext

and
|D*h*(b) — D*h* (V)| 12(pD) - sup 17C, ) cas) <1/2- €
s'e

for (¢,d) € C x C, with ||¢ — ||c < 8, and ¥/ € B, with ||b — /|| < 4.
Hypothesis j 3) yields the continuity of

A3 s j7(,s) € L(A|C).
Hence, one gets the existence of § > 0 such that for given s € A

sSup Hj*('l),S) - j*(’l),SI)HC < S
veEA
[vlla=1

for s’ € A, with ||s — '||gr < 4.
We set 0 := min{d,d}.
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Hence, by observing the identity D*h*(¥')(j(-,s")) = DZ,h*(b)(5*(, )
for all (V/,s’) € B x A, the inequality

sup  [[D*h*(b) (5 (v, 5)) (§ (v, 5)) — D (V) (5 (v, 8")) (3 (v, 8")) [
veEA
[v]la =1

< sup  [[D*h*(b)(j(v,5")) (§ (v, ") = D*h* (V') (j(v,5")) (3 (v, s")lIp
veEA

[o]la=1

+  sup  [|DZ,;h*(b) (5% (v, 8)) (75 (v, 5)) — DZ,h* (D) (5% (v, 8')) (5% (v, 8")) I
veEA
[vfla=1

< [|D*h*(b) — D*h* (V)| L2(mp) - sup (VIGES1IP0:)
s'e

+  sup  [|DZ,;h*(b) (5% (v, 8)) (75 (v, 5)) — DZ,h* (D) (5% (v, 8')) (5% (v, 8")) I
veEA
[vfla=1

<1/2-€e+4+1/2-e=¢
holds for (b, s") € B x A with ||[b—bV||p <6, |s — &'|gx < 9.
Thus,
B x A3 (b,s) — D*h*(b)(j(,s))(j(-,s)) € L*(A|D)

is continuous. O

Lemma 1.2.0.3. Let h be a mapping such that h 1), h 2) and h 3) are
satisfied.

Let j be a mapping such that j 4) and j 5) are satisfied.

Then the mapping H : Q3 x A 5 (a,s) — h(j(a, s)) € D has a partial
derivative DoH (a,s) € L(R¥|D) with respect to s in every (a,s) € Qg x A.
Furthermore, the mapping Q2 x A > (a,s) — DyH(a,s) € L(R¥|D) is

continuous.
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Proof. We study the case where £ = 1. The case k£ > 1 would follow the
steps of the proof of k = 1 by examining the existence and continuity of all
directional derivatives D;(-,-)H1: Qo X A — D, i € {2,....k + 1}.

We claim that DyoH (a, s)1 = Degih(j(a, s)) (D2j*(a,s)1) € D is the deriva-
tive of H with respect to s in (a, s) € Q2 x A and that the mapping

DyH(-,-)1: Q9 x A 3 (a, s) — Dezh(j(a, s)) (D2j*(a,s)1) € D

is continuous:

The identity
1

h(c+c)—h(c) = /Dh(c+ q-)()dq
0
holds for (¢,d') € C x C with ¢ + ¢ € Qp due to the fact that h|c is

continuously differentiable. By replacing Dh with its extension D.,:h we

rewrite this identity as
1
h(c+c)—h(c) = /Dwth(c +q-)(Jee(d))dg.
0

Thus, we get that the identity

1. H(a,s+¢)— Ha,s)=

=

-h(j(a,s+¢€)) —h(j(a,s) =

1
gDmh(j(a, s) +qli(a, s +¢) —j(a,8)]) (¢ - (*(a, s +¢) = §*(a, 5))dg

holds for (a, s,€) € Qo x A x A, € # 0 sufficiently small. The last expression
then tends to Demth(j(a, s)l) (ng*(a, s)), as € — 0, due to the continuity of
the mappings

C x E 3 (c,e) — Deyih(c)(e) € D,

jiax A —C,

and due to A x A 3 (a,s) — j*(a,s) € E being continuously differentiable.
The continuity of DoH : Ax A — D again is a consequence of the continuity

of the mappings

C x E > (c,e) — Deyth(c)(e) € D,
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jiQaxA—C,

and
DQj*ZQQXAHE.

O

Lemma 1.2.0.4. Let h be a mapping such thath 1)h 2), h 8),h 4), h 5),
h 6)are satisfied.

Let j be a mapping such that j 1), j 2) and j 3) are satisfied.

Then the mapping

H*: Qs x Ax A5 (a,s,8)— Dh*(j(a,s))(j(-,s")) € L(A|D)

has a partial derivative DyH*(a,s,s') € L(R, L(A|D)) with respect to s in
every (a,s,s') € Qa x A x A. Furthermore, the mapping

Q2 x A x A3 (a,s,5) — DyH*(a,s,8') € L(RF, L(A|D))
1S continuous.

Proof. We study the case where K = 1. The case k£ > 1 would follow the
steps of the proof of k = 1 by examining the existence and continuity of all
directional derivatives D; H*(+,-,-)1: Qo X A x A — L(A|D), i € {1, ..., k}.
We claim that the mapping

1: Qs x A3 (a,s)— Dh*(j(a,s)) € L(B|D)

has a partial derivative with respect to s in every (a,s) € Q2 x A.
Let

Aﬂgs) = %[j(a, s+1t) — j(a,s)]
and A 1
w = 2l (a5 + 1) = *(a,9)

for (a,s,t) € Qo x A x A, t # 0 sufficiently small.
The identity

1
Dh*(by + by)(b3) — Dh*(by)(b3) = /D?h*(b1 + ¢ - by)(b)(b3)dg
0
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holds for (b1, b2,b3) € B x B x B such that by +ba € QF due to the fact that
h* is 2 times continuously differentiable. By replacing D?h* with Dgwt’lh*

we rewrite this identity as

Dh*(bl + bg)(bg) — Dh*(bl)(bg,) = /szt,lh*(bl + q- b2)(JB7C<b2))(b3)dq.

Therefore, the inequality

I7[Dh* (j(a, s +1)) (0) — Dh*(j(a, 5)) (b)] = DZyy 10" (j(a, 5)) (D25*(a, 5)1) (b)Ip =

HfDml “(jla, s +q-t- 2L (AL () — D2 h*(j(a, 5)) ((D2j*(a, $)1) (b)dgl|p <

f\\Dml “(jla, s +q-t- 2L (AT P2 b (j(a, s)) ((D2j* (. $)1) | s 16l pdg

holds for all (a,s,t,b) € Qo x A x A x B, t # 0 sufficiently small. Hence,

due to the continuity of

h* 1 QF x C — L(B|D)

eact

and due to the fact that for a € A
Aj*
03 Dy (a8,
as t — 0, we get that

lim I7[i(a, s +t) = Ua, 5)] — D2,y 1h*(5(a, 5)) (D25 (a, $)1) | (1p) =

lim  sup I$[Dh* (j(a, s +1)) (v) — Dh*(j(a, 5)) (v)] = D2, 1h*(5(a, 8)) (D27*(a, )1) (v)[|p <
veEB
vl =1

1
. Aj(a,s Aj*(a,s [ - %
lim [ D2 10" (70, s+ - ¢+ S550) (HE2) = Db (50, 9) (D" (@, 9)1) [ qsioyda = 0.
Therefore, the mapping
1: Qs x A3 (a,s)— Dh*(j(a,s)) € L(B|D)
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has a partial derivative with respect to s in every (a,s) € Q4 x A which
is given by Dsl(a,s) := D2, h*(j(a,s))((D2j*(a,s)1) € L(B|D). The
decomposition H*(-,-,s') = Bo Ay with

Ay : Ax A3 (a,s)— (I(a,s),j(,s")) € L(B|D) x L(A|B)

and
B:L(B|D) x L(A|B) > (T,S)— T oS € L(A|D)

yields that the mapping H* has a partial derivative with respect to s, given
by

DyH*(a,s,8")1 = D2, 1h*(j(a,s))(D2j*(a,$)1) (j (-, s") € L(A|D)
in (a,s,s') € Ax A x A. The proof of the continuity of
Qo x AxA>3(a,s,8)— ngh* (j(a,s))(D2j*(a,$)1)(j(-,s") € L(A|D)
would follow the same steps as the proof of the continuity of
Q2 x A > (a,s) — Dh(j(a,s))(i(-,s)) € L(A|D)

in Lemma 1.2.0.1:

In the situation of that lemma we showed that the mapping
Q1 x A3 (¢,s) — Dh(c) (j(-,s)) € L(A|D)
is continuous. The continuity of
Qs x A5 (a,5) = Dh(j(a,s)) (i(s)) € L(A|D)
then followed from the continuity of
Q2 x A>3 (a,s) —ja,s) e C.

The following conditions were satisfied by assumption:
Dh(c) € L(C|D) extends to Deyth(c) € L(E|D) for ¢ € Q.
Both mappings

Q1 x E 3 (c,e) — Degih(c)(e) € D
and

A3 s—j*(-,s) € L(A|E)
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are continuous.
The inequality

sup [ (-, 8)l(ajc) < o0
SEA

holds.

Now we are in the situation that for (b,c) € Qf x C
D2, 1h*(b) (c) € L(B|D)

extends to
D2,,h*(b)(c) € L(C|D)

where the mapping
Qf x C x C 3 (be,d)— D2,h*(b)(c)()) € D

ext

is assumed to be continuous. Furthermore, the mapping
A > s (-, s) € L(A|C)
is continuous and j satisfies the inequality

sup [|5(-, 8) [l L(aBy < 00
SEA
Thus, the steps of the proof of the continuity of
Q1 x A 3 (¢, s) — Dh(c)(j(, s)) € L(A|D)
in Lemma 1.2.0.1 may be analogously applied to the mapping

Qf x C x A3 (b,e,s) — D2, h*(b)(c)((§ (-, s)) € L(A|D)

which therefore is continuous.

The continuity of
Qo x Ax A > (a,s,8) — Dgxt,lh* (j(a,s))(D25*(a,s))(j(-,s") € L(A|D)
then follows from the continuity of the mappings

Qy x A> (a,s) — jla,s) € B
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and
Qo x A3 (a,s) — Dyj*(a,s) € C.

Hence, the partial derivative Do H*(a, s, s’) of H* with respect to s exists in
every (a,s,s’) € Q3 x A x A and the mapping Q3 x A X A > (a,s,s’) —
DyH*(a,s,s") € L(A|D) is continuous. O

Lemma 1.2.0.5. Let h be a mapping such thath 1)h 2), h 8), h 4), h 5),
h 6)are satisfied.
Then the mapping

H* : Q] x C' > (b,c) = Dh(Jpc(b))(c) € D

has a partial derivative DyH**(b, ¢) = D2, 1h*(b)(c) € L(B|D) with respect

to b in every (b,c) € Qf x C. Furthermore, the mapping Q2 x C' 3 (b, c) —
DiH**(b,c) € L(B|D) is continuous.

Proof. We have to show that

s - 1P (B, (b + h))(c) = Dh(Jp.c(b))(c) = Dy b (b)(e)(h)[p — 0

as h — 0. Suppose V' is an element of B. Due to the fact that h* : Qf — D

is 2 times continuously differentiable the identity
1
Dh*(b+ h)(b') — Dh*(b) (V') = [ D*h*(b+ s - h)(h)(V)ds
0

holds for (b,V', h) € Qf x Qf x B, h sufficiently small.
As D*n*(b)(b')(b") = D2, 10*(b) (Jp,c(b)) (b") and Dh*(b) (V') = Degih*(b) (Jp,o (V)
for (b,b',b") € Qf x B x B we rewrite this identity as

Degth*(b+ h) (Jp,c(V)) — Degth*(b) (Jp,c (b)) = ({1 D2, h*(b+s-h)(Jp,c(t))(h)ds.

Now suppose c is an element of C. B C C' being dense one gets a sequence
(V)nen € such that b, — cin C, as n — oo. Then Dh(Jgc(b))(c) =
lim Degth*(b)(Jp,c(b),)) for any b € Q*. Therefore and due to the conti-
;ui?czf of

Q} x C' 3 (b,e) — D2, 1h*(b)(c) € L(B|D),

ext,1
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one gets that the following identity
Dh(JB,C(b + h))(c) — Dh(JB,C(b))(c) =
Jim_ Degih®(b+ 1) (J5.0(8,)) = Death®(0) (Jp.c (b)) =

1
lim [ D2, h*(b+ s - h)(b),)(h)ds =
n—oo 0 ’

fDe:ct 1h* b+3 h’)( )(h)ds

holds for ¢ € C, b € Qf and h € B sufficiently small. With this identity

holding we get the estimation

s - 1Ph(Jc(b+ h)(e) = Dh(Jp,c(b))(e) = Dy h*(0)(h)(e)|p =

g | fDm 1h*(b+ s h)(c)(h) — DZ,y 1h*(b)(c)(h)ds||p <

1
OfHDeztlh* (b+s-h)(c) = D2y 1h* (0) ()l L(mipydslIhll s =

fHDextlh* (b+s-h)(c) = D2y 1 h*(0)(0) | L(mip)ds

for (b,h) €N xQfand ce C.

Due to the continuity of
Qi x C 3 (b,¢c) — D2, 1h*(b)(c) € L(B|D).

the expression

JID2 b b5 1)(e) = D b )iy

tends to 0, as h — 0. Thus, H** is partially differentiable with respect to b
in every (b,c) € Qf x C.

The continuity of Qf x C' > (b,¢) — DH**(b,c) € L(B|D) again is a conse-
quence of h 6). ]
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Lemma 1.2.0.6. Let h be a mapping such thath 1)h 2),h 3),h 4), h 5),
h 6)are satisfied.

Let j be a mapping such that j 1), j 2),7 3) are satisfied.

Then the mapping

H:Q xAxA>(a,s,s)— Dh(j*(a,s") (5%(-,s)) € L(A|D)

has a partial derivative DoH (a,s,s') € L(R¥, L(A|D)) with respect to s in
every (a,s,s’) € Qa2 x A x A. Furthermore, the mapping

Qo x Ax A3 (a,s,8)— DyH(a,s,s') € L(R*, L(A|D))
1S continuous.

Proof. We study the case where k = 1. The case k > 1 would follow the steps
of the proof of £ = 1 by examining the existence and continuity of all direc-
tional derivatives D;H (-,-,-)1: Qy x A x A — L(A|D), i € {2,....k + 1}.
. A x Qo — E is 2 times continuously differentiable by assumption.
Therefore, and by the fact that j** : A x A — FE is 2 times continuously
differentiable with D;j**(a,s)(a) = j7**(a,s) and Dy(D1j**)(a,s)(a)l =
Dyj**(a, s)1 for (a,a,s) € A x A x A one gets that
lim Hi (j ('73+6> —J ('75)) — Dyj (75)1“L(A|E) =0.
As Dh(j*(a,s')) € L(C|D) extends to Deyth(j*(a,s')) € L(E|D) one gets

the following result:

lim [ Dh(j* (0, ) (£ (5 (o5 +€) = 5*(, )] = Death(7* () (D2 ()1l ) =

i | Dot (50, )L - (575 + ) = 77(9) = Dag™ () camy = O
Therefore,
H:QxAxA>(a,s,s)— Dh(j*(a,s")) (5*(-,s)) € L(A|D)

has a partial derivative DyH(a,s,s’) = Degth(j*(a,s")) (D2j**(-,8)1) €
L(A|D) with respect to s in every (a,s,s’) € Qa x A x A.
The continuity of

DyH* : Q9 x A x A3 (a,s,5") — Degth(j*(a,8")) (D2j™ (-, s)1) € L(A|D)
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can be shown in the following way:

First we observe that the identity
Degth(j*(a,s')) (D25 (v, 5)1) = Dh(j*(a,s")) (D2j* (v, s)1)

holds for all (a,s,s’) € Q3 x A x A and v € A. The proof of the continuity
of

Q2 x Ax A>3 (a,s,8)— Dh(j*(a, ")) (D2j*(-,s)1) € L(A|D)
is similar to the proof of the continuity of
Q2 x A3 (a,s) — Dh(j(a,s))(i(-,s)) € L(A|D)

in Lemma 1.2.0.1:

In the situation of that lemma we showed that the mapping
Q1 x A3 (¢,s) — Dh(c)(j(-,s)) € L(A|D)
is continuous. The continuity of
Q2 x A 3 (a,s) — Dh(j(a,s))(i(-,s)) € L(A|D)
then followed from the continuity of
Ny x A > (a,s)— jla,s) € C.

The following conditions were satisfied by assumption:
Dh(c) € L(C|D) extends to Deyth(c) € L(E|D) for ¢ € Q1.
Both mappings

Q1 X E > (c,e) — Degth(c)(e) € D
and

A>s—j(,s) € L(AE)
are continuous.
The inequality
Sup 13C )l Leajey < o0

holds.

Now like in Lemma 1.2.0.1 we are in the situation that for ¢ € €

Dh(c) € L(C|D)
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extends to
Degth(c) € L(E|D)

where the mapping
O x E > (ce) — Dexth(c) (e) eD

is assumed to be continuous.
Again, by the fact that j** : AXA +— F is 2 times continuously differentiable
with Da(D15**)(a,s)(a)l = Daj**(a, s)1 for (a,a,s) € A x A x A one gets
that

A > s— Dyj*™(-,s)1 € L(A|E)

is continuous.

Furthermore, in j 2) we assumed that Doj* satisfies the inequality
sup || Daj* (-, )1 L(a)c) < 00-
SEA
Thus, the steps of the proof of the continuity of the mapping
Q1 x A3 (¢,s) — Dh(c)(j(-,s))
in Lemma 1.2.0.1 may be analogously applied to the mapping
Q1 x A3 (¢,s) — Dh(c)(D2j*(-,5)1) € L(A|D)

which therefore is continuous.

The continuity of
Q2 x Ax A3 (a,s,8)— Dh(j*(a,s")) (D2j*(-,s)1) € L(A|D)
then follows from the continuity of
Dy x A > (a,s) — j*(a,s) € C.
O

Lemma 1.2.0.7. Let h be a mapping such thath 1)h 2),h 8),h 4), h 5),
h 6)are satisfied.
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Let j be a mapping such that j 1), j 2),j 8) are satisfied.
Then the mapping

H: Qs x A>3 (a,s) — Dh(j*(a,s))(D2j*(a,s)) € L(RF|D)

has a partial derivative D1H(a,s) € L(A,R¥|D) with respect to a in every
(a,s) € Qo x A. Furthermore, the mapping

Q9 x A3 (a,s) — D1H(a,s) € L(A,R¥|D)
1S continuous.

Proof. We study the case where k = 1.
We prove the claim in two steps:

First step:

We show that

Hi: Qo x Qo x A3 (a,d,s) — Dh(j*(d’,s))(D2j*(a,s)1) € D

has a partial derivative D1 Hi(a,d’,s) € L(A|D) with respect to a in every
(a,d’,s) € Q2 x Q9 x A and that the mapping

Qy x Qo x A3 (a,d,s) — D1Hi(a,d,s) € L(A|D)

is continuous.

For fixed s € A the mapping Dsj**(-,s)1 : A — E is linear and bounded.
On the other hand Dh(j*(d/,s)) € L(C|D) extends to Degeh(j*(d’,s)) €
L(E|D). Therefore, the identity

Hi(a,d’,s) = Death(57(d', 5)) (D2j** (a, s)1)

holds for all (a, d’, s) € QaxQ9x A. Hence, the partial derivative Dlﬁ(a, a,s) e
L(A|D) of H, with respect to a in (a,a’,s) € Qo x Qg X A 'is given by
Degth(5*(d,5)) (D2j** (-, s)1) € L(A|D). The proof of the continuity of

DiH: Qo x Q9 x AD (a,a,s) — Dexth(j*(al,s)) (ng**(-, 5)1) € L(A|D)
is similar to the proof of the continuity of
DoH : Qo x Ax A3 (a,s,8) — Deth(j%(a,8')) (Dag*™ (-, 8)1) € L(A|D)
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in the previous lemma.
Second step:
We show that

Hy: Qo x Qo x A3 (a,d,s) — Dh(j*(a,s))(D2j*(d',s)1) € D

has a partial derivative D1 Hy(a,d’,s) € L(A|D) with respect to a in every
(a,d,s) € Qy X Q3 X A and that the mapping

Oy X Qe x A3 (a,d,s) — DiHy(a,d',s) € L(A|D)

1S continuous

In Lemma 1.2.0.5 we proved that the mapping
H* : Q} x C 5 (b,¢) — Dh(Jpc(b))(c) € D

has a partial derivative Di{H**(b,¢) € L(B|D) with respect to b in every
(b,c) € Qf x C which is given by DiH**(b,¢) = DZ,, 1h*(b)(c) € L(B|D).
On one hand Dyj*(d’, s) is an element of C for every (a’,s) € Q2 x A. On
the other hand, as for fixed s € A the mapping j(-,s) : A — B is linear
and bounded we have that Djj(a,s) exists with Djj(a,s)(a) = j(a,s) for
(a,4) € A x A.

Therefore, the decomposition f[g(-,a’,s) = H**(-,ng*(a’,s))oj(-,s) for
(', S) € A x A yields that

Q9 x Q2 x A 3 (a,d,s) — Dh(j*(a,s))(D2j*(d,s)) € D

has a partial derivative with respect to a in every (a,a’,s) € Qs x Qg x A

which is given by
Db (5(a,9)) (D" (d/,9)) (3 (- 5)) € L(A|D).
The proof of the continuity of
Qy x Qo x A3 (a,d,s) — Dgxt71h* (j(a,s))(D2j*(d’,5))((i(-,s)) € L(A|ID)
is similar to the proof of the continuity of
DoH* : QoxAxA S (a,s,s') — szt,lh* (j(a, s))(ng*(a, s))((j(-,s')) € L(A|D)
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in Lemma 1.2.0.4.
Both of these steps combined yield that the mapping

H: Qo x A > (a,s) — Dh(j*(a,s))(D2j*(a,s)) € D

has a partial derivative D1 H (a,s) € L(A|D) with respect to a in every
(a,s) € Q2 x A and that the mapping

QO x A3 (a,s)— D1H(a,s) € L(A|D)
is continuous. L]

Lemma 1.2.0.8. Let h be a mapping such thath 1)h 2),h 3),h /), h 5),
h 6)are satisfied.

Let j be a mapping such that j 1), j 2),7 3) are satisfied.

Then the mapping

H:Qy x A3 (a,s) — Dh(j*(a,s))(D2j*(a,s)1) € L(RF|D)

has a partial derivative DoH (a,s) € L*(RF|D) with respect to s in every
(a,s) € Qo x A. Furthermore, the mapping

Qs x A 3 (a,s) — DyH(a,s) € L*(R*|D)
18 continuous.

Proof. We study the case where & = 1. The case k£ > 1 would follow the
steps of the proof of k = 1 by examining the existence and continuity of all
directional derivatives D;H (-, -, )1 : Qa9 x Ax A — L(A|D), i € {2,...,k+1}.
Again we prove the claim in two steps:

First step:

We show that the mapping

H':Qy x Ax A5 (a,s,8) — Dh(j*(a, ")) (D2j*(a,s))1 € D

has a partial derivative Dy H(a, s, s') € D with respect to s in every (a, s, s') €

Qs x A x A and that the mapping

Qs x Ax A3 (a,s,5) — DyH' (a,s,5)1 € D
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is continuous.

Dh(j*(a,s")) € L(C|D) extending to Deyth(j*(a,s")) € L(E|D) and j** :
Q9 x A — E being 2 times continuously differentiable it is clear that the par-
tial derivative Do H'(a, s, s')1 of H with respect to s in (a, s,s') € Qa x Ax A
is given by DoH(a, s,8')1 = Deyh(5*(a, s')) (D35 (a, s)(1)(1)) € D:

lim L (DR (j(a,5)) (Daj*(a, 5 + €)1) = Dh(j*(a, ) (Daj*(a,9)1) ) =

e—0

lim (Demth(j*(a, s’)) (%[ng**(a, s+ €)1l — Doj**(a, s)l])) =

e—0

Deth(j*(a,8")) (D35 (a, 5)(1)(1))
The continuity of
Qo x A x A3 (a,s,5) — Dexth(5%(a, s)) (D35 (a, s)(1)(1)) € D
is a consequence of the fact that all three mappings
0 X E 3 (c,e) — Degih(c)(e) € D,

j*:QQXA—)C

and
D3 :Qy x A — E.

are assumed to be continuous.
Second step:
We show that the mapping

H?: Qs x A x A3 (a,s,s) — Dh(j*(a,s))(Daj*(a,s)1) € D

has a partial derivative Dgf]z(a,s,s’)l € D with respect to s in every

(a,s,8") € Q3 x A x A and that the mapping
Qe x AX A3 (a,s,5) — DyH?(a,s,5')1 € D

is continuous.

Lemma 1.2.0.5 tells us that the mapping
H* : Q} x C 5 (b,c) — Dh(Jpc(b))(c) € D
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has a partial derivative D1H**(b,c) € L(B|D) with respect to b in (b,c) €
Q7 x C which is given by

DZ, 1" (0)(c) € L(B|D).
As Dyj*(a,s')1 € C for a € Qy and s’ € A the identity

Dh(j*(a,s + €)) (D2j*(a,s')1) — Dh(j*(a,s)) (D2j*(a,s')1) =

H**(j(a,s+¢€), Daj*(a,s')1) — H*(j(a,s), D2j*(a,s')1) =

fDm 1h*(j(a, 8) +q-[i(a, s + €) = j(a, 5)] ) (Dag*(a,s)1) (j(a, s +€) — j(a, 5))dg

holds for a € Qo, (s,8') € A x A and € € R sufficiently small.
On the other hand j* : Q2 x A — C is continuously differentiable. By
\h* with D2 h* and due to the continuity of

ext

replacing D?

ext,
Q x C xC 3 (bed)— D>, h*b)(c)(d) € D

ext

one gets that

lim ¢ (Dh( *(a,s +€)) (D2j*(a,s')1) — Dh(j*(a, s)) (D2j*(a, s’)l)) =

e—0

hmeea:t “(ia,s) + g [i(a,s +€) = j(a,s) ])(D2j*(a, ) 1) (£ [5*(a, s + €) — j*(a, 5)])dg =

D2, b (j(a, ) (Daj*(a,)1) (Daj*(a, 5)1).

Thus, the partial derivative of
Q2 x A x A3 (a,s,8') — Dh(j*(a,s)) (D2j*(a,s")1) € D

with respect to s exists in every (a,s,s’) € Q2 x A X A.

The continuity of
Qo x A x A3 (a,s,8) — DZ,h*(j(a,s)) (D25 (a,s')1) (D2j*(a,s)1) € D
is again a consequence of the continuity of
X CxC3(bed)— D? h*b)(c)(c)eD

ext
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and the continuity of both
j : QQ x A — B

and

ng*:QQXA%C.

Both steps combined yield that the mapping
H:Qyx A>3 (a,s) — Dh(j*(a, s)) (D2j*(a,s)) € D

has a partial derivative Dy H (a,s)1 € D with respect to s in every

(a,s) € Q2 x A and that the mapping
Q9 x A3 (a,s) — DyH(a,s)1 € D
is continuous. ]

Theorem 1.2.1. 1. Let h be a mapping such that h 1), h 2) and h 3)
are satisfied.
Let j be a mapping such that j 4) and j 5) are satisfied.
Then the mappinghoj: Qo x A — D is continuously differentiable.

2. Let h be a mapping such thath 1)h 2), h 3), h 4), h 5), h 6)are
satisfied.
Let j be a mapping such that j 1), j 2),j 8) are satisfied.
Then h* o j: Qo x A — D is 2 times continuously differentiable.

Proof. 1. We prove the claim in two steps.

First step:

We show that there exists a partial derivative Di(h o j)(a,s) € L(A|D)
of h o j with respect to a in every (a,s) € Q9 x A and that the mapping
Oy x A3 (a,s) — Di(hoj)(a,s) € L(A|D) is continuous.

h: Q; — D is continuously differentiable and for fixed s € A the mapping
j(-,8) : A — C is linear and bounded. Therefore, the derivative of hoj with
respect to a is given by Dh(j(a,s))(j(v,s)) for every (a,s) € Q2 x A and
v € A. The continuity of

Q2 x A 3 (a,s) = Dh(j(a,s))(i(-,s)) € L(A|D)
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is shown in Lemma 1.2.0.1.

Second step:

We have to show that there exists a partial derivative Dy(h o j)(a,s) €
L(R*|D) of h o j with respect to s in every (a,s) € Q2 x A and that the
mapping Qs x A 3 (a,s) — Da(hoj)(a,s) € L(R¥|D) is continuous.

But this is a consequence of Lemma 1.2.0.3.

Both steps combined yield that the mapping hoj: Qs x A — D is continu-
ously differentiable.

2.

As the identity (h*oj)(a,s) = (hoj*)(a,s) holds for all (a,s) € Qs x A the
first part of this theorem yields that the mapping h* o j : Qs x A — D is

continuously differentiable with its derivative being given by

D(h* o j)(a,s)(v,s') = Dh(j*(a, s)) (j*(v, s))
(1.13)

—|—Dh(j*(a, s)) (ng*(a, s)(s’))
for (a,s) € Q2 x A and (v,s’) € A x R¥. Observing the identity
(114) Dh(J*(aa S)) (.]*(7 8)) = Dh* (.j(aa 3)) (.7(7 8))7
for all (a,s) € Q2 x A we may rewrite (1.13) as

D(h* o j)(a,s)(v,s’) = Dh* (j(a, s)) (j(v, s))
(1.15)

+Dh(j*(a, 5)) (Daj*(a, 5)(s"))

for (a,s) € Qo x A and (v,s’) € A x R¥. First we look at the first term of
(1.15), which is
Dh*(j(a,s)) (j(v,s))

for (a,s) € Q2 x A and v € A, and show that the mapping
H:Qy x A > (a,s) — Dh*(j(a,s))(j(-,s)) € L(A|D)

is continuously differentiable.

h* : Q] — D is 2 times continuously differentiable and for fixed s € A the
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mapping j(-,s) : A — B is linear and bounded. Therefore, the decomposi-
tion H = F o H with

H:Ax A>3 (a,s)— (j(a,s),j(-,s)) € Bx L(A|B)

and
F:Bx L(A|B) > (b,T) — Dh*(b) o T € L(A|D)

and an application of the chainrule yields that the mapping
H:Qy x A > (a,s) — Dh*(j(a,s))(j(-,s)) € L(A|D)

has a partial derivative D1H(a, s) = D*h*(j(a, s)) (j (-, s)) (-, s)) € L*(A|D)

with respect to a in every (a, s) € Q2 x A. The continuity of
QQ XA (a7 S) = DZh* (j(a7 S)) (](7 S)) (](7 S)) S LQ(A‘D)

is shown in Lemma 1.2.0.2.

Furthermore, we have to show that the mapping
H:Qy x A > (a,s) — Dh*(j(a,s))(j(-,s)) € L(A|D)

has a partial derivative DoH(a, s) € L(R¥, A|D) with respect to s in every
(a,s) € Q9 x A and that the mapping Qs X A > (a,s) — DyH(a,s) €
L(R¥, A|D is continuous:

We prove this in two steps:

First step:

We observe the identity (1.14), and apply Lemma 1.2.0.6 which shows that
the mapping

H:Qyx AxA>(a,s,8)— Dh(j*(a,s))(5%(-,s)) € L(A|D)

has a partial derivative DyH(a,s,s’) € L(R¥, A|D) with respect to s in
every (a,s,s’) € Q3 x A X A and that the mapping Qs x A x A 3 (a,s,s’) —
DyH(a,s,s') € L(RF, A|D) is continuous.

Thus,

H;: Qy x Ax A>3 (a,s,8)— Dh*(j(a,s))(j(-,s)) € L(A|D)
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has a partial derivative DoyHj(a,s,s’) € L(R* A|D) with respect to s in
every (a,s,s’) € Q3 x A x A and the mapping Q3 x A X A 3 (a,s,s’) —
DyH(a, s,s') € L(R*, A|D) is continuous.

Second step:

Lemma 1.2.0.4 shows that the mapping

H*: Q9 x Ax A3 (a,s,s") — Dh*(j(a,s))(j(, ")) € L(A|D)

has a partial derivative DoH*(a,s,s') € L(R¥, A|D) with respect to s in
every (a,s,s’) € Q2 x A X A and that the mapping Qo x A X A > (a,s,s') —
DyH*(a,s,s') € L(R*, A|D) is continuous.

Both steps combined yield that the mapping

H: O x A>3 (a,s) — Dh*(j(a,s))(j(-,s)) € L(A|D)

has a partial derivative DoH(a, s) € L(R¥, A|D) with respect to s in every
(a,s) € Q2 x A and that the mapping Qs X A > (a,s) — DyH(a,s) €
L(R¥, A|D) is continuous.

Therefore, the mapping

H:Q x A>3 (a,s) — Dh*(j(a,s))(j(-,s)) € L(A|D)

is continuously differentiable.

Now we look at the second term of (1.15), which is
Dh(j*(a. ) (Daj* (a.5)(s"))
for (a,s) € Q2 x A and s’ € R, and show that the mapping
H: Qs x A3 (a,s) — Dh(j*(a,s))(D2j*(a,s)) € L(R*|D)

is continuously differentiable. But this is a consequence of Lemma 1.2.0.7
and Lemma 1.2.0.8.
Both results on both terms of (1.15) yield that the mapping

Q2 x A 3 (a,s) — D(h*oj)(a,s) € L(R*, A|D)

is continuously differentiable.

Hence, h* 0o j: Q9 x A — D is 2 times continuously differentiable. O
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1.3 Differentiability properties of the mapping (1.9)
In this section we will state a theorem (Theorem 1.3.2.1) on the differentia-
bility properties of the mapping (1.9), we defined in section 1.1.5:

Jx Q0 x(=1/2,1/2) 3 (a,u, ) — G(a,u. g,u., B) € CY
Recall the definition of G which was

G(, ¢, x, B) = g, ¢, B) — L(awo)x
for (o, ¢, x, ) € J x Q x Q x R. The mapping
g:JxQxR—-R"

was defined by g(a, ¢, 8) := (14 8)g(a, ¢ + ¢*) for (a, ¢, 8) € J x Q x R.
As g is satisfying H 1) to H6) g satisfies the following assumptions:

o H 1): The mapping g : J x © x R — R" is continuously differentiable
and the identity g(«, 0, 3) = 0 holds for all 5 € (—1/2,1/2) and « € J.

o H 2): The partial derivative Dag(cv, ¢, 3) € L(C}|R™) of g with respect
to ¢ in (o, ¢,3) € J x Q x R extends to a linear bounded mapping
D2,emtg(a7 d)aﬁ) : Ch — R".

e H 3): The mapping
Jx QxR x Ch = (aa¢a B’X) = D2,extg(a’¢vﬂ)(X) € R"
1S continuous.

o H 4): The mapping g* := g|sxq+xRr is 2 times continuously differen-
tiable.

e H 5): The second partial derivative D2g*(a, ¢, 3) € L*(C?R") of g
with respect to ¢ in (o, ¢,3) € J x Q* x R extends to a continuous

bilinear mapping Dg,mg*(a, b, 3) : Cfll X Cflz — R™

e H6): Let Joz2 c1 denote the continuous embedding from C? to C}.

The mappings
Jx W xRxC}xC}

2 (aa(;bw@le’XQ) = D%7extg*(a7¢7ﬁ)()(1)(x2) eR”
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and
D%ext,lg* :J x QO x Rx Cl — L(CF|R"),

defined by
Dg,eztg*(aa ¢a ﬁ) (X) (JCEL,C,IL (@Z})) 3

for (a, ¢, B3,x) € J x Q* x R x C} and ¢ € C3, are continuous.

Note that in H 3) does not include the continuity of

I x QxR (a,¢, ) — Daengle, ¢, 3) € L(Ch|R™).

H 6) does not include the continuity of
Jx QxR 3 (o, 0, 8) = D3 8" (a, ¢, B) € L*(CH|R™).

We divide this section into two subsections:
We start with a subsection of preparations for the proof of Theorem 1.3.2.1.

Then we state the theorem itself.

1.3.1 Preparations

Lemma 1.3.1.0.1. Let I C R be an interval.

1. The mapping
H': C; x I > (u,s) — u(s) € R"

is continuously differentiable.

2. The mapping
H?:C% x I3 (u,s) — u(s) € R"

is 2 times continuously differentiable.

Proof. We only show 2. The proof of 1. is similar and simple.

As, for fixed s € I, the mapping C% > u — H?*(u,s) = u(s) € R" is
linear and bounded the partial derivative of H? in (u,s) € C% x I with
respect to u is given by Dy H?(u, s)(v) = v(s) for v € C%. The continuity of
C2 x 15 (u,s) — D1H?(u,s) € L(CZ|R") is obtained in the following way:
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We take a sequence (up,sp)nen € C% x I such that (un,s,) — (u,s) as

n — o0. Then the inequality

sup  [lu(s) = v(s)llan <
veCs

lellos =1

sup ( sup |V () ||gn - |s — sn\) <
veCs
Jolls =1 te 0,7

sup HU”C%“S_Sn’ = [s — sn|
veCs
lolles =1
holds for all n € N. The last expression |s — s, | tends to 0, as n — 0.
Thus, C2 x I > (u,s) — D1H?*(u,s) € L(C4|R") is continuous.
The partial derivative of H? with respect to s in (u, s) € C2 x I is given by
DH?(u,s)1 = u/(s). The continuity of C2 x I > (u,s) — DoH?(u,s)1 € R"
is obtained in the following way:
Being given any sequence (i, $p)nen € C% x I such that (un, sn) — (u, s),

as n — 00, the inequality
[0/ (s) = up(sn)[[rn < [[u'(s) — o (sn) lrn + [0 (s0) — up,(sn) [[rn

holds for n € N. The first term of the right hand side of this inequality
tends to 0, as n — oo, by the fact that s, — s, as n — oo and due to the
continuity of ' : R — R™. We may estimate the second term from above by

sup |[|u/(t) — up, (t) g < lu — unlloz
t€[0,7)

for n € N. The right hand side of this inequality tends to 0, as n — oo, by
assumption. Therefore, C2 x I 3 (u,s) — DaH?(u, s)1 € R" is continuous.
Note that for the proof of existence and continuity of D1 H? and DyH? we
did not need u to be in CZ. It would have been sufficient to have u € Ci.
Thus, we even proved that H' : CL x I 3 (u, s) — u(s) € R™ is continuously
differentiable.

49



The partial derivative of Dy H?(u,s) with respect to u in (u, s) is obviously
zero. The partial derivative of D1 H?(u, s) with respect to s in (u, s) is given
by D2D1H?(u, s)(v)1 = /(s) for v € CZ. For the continuity of

CF x I3 (u,s) — DyD1H*(u,5)1 € L(C[R™)

we take a a sequence (Un, Sp)neny € C#% x I such that (un,s,) — (u,s), as

n — 00. Then we get by estimation that

sup  [[v'(s) — o/ (su)llgn <

sup 0" (8) 1z - s = sal) <

( sup
v e C2 te[0,7]

ol = 1

sup  |vllez - s — sl = |s — snl
v e C2
[vllcz =1

holds for all n € N. The last expression |s — s, | tends to 0, as n — co. Thus,
C2 x I > (u,8) — DaD1H?(u,s)1 € L(C2|R™) is continuous.

Considering that for fixed s € I the mapping C% > u +— DyH?*(u,s) =
u/(s) € R" is linear and bounded the derivative of Dy H? with respect to u in
(u,s) € C2 x I is given by D1 DaH?(u, s)(v)1 = v'(s) = DaD1H?(u, s)(v)1,
for v € CZ. The continuity of C2x I 3 (u, s) — DoD1H?(u, s)1 € L(CZ|R™)
was already shown. The derivative of DoH? in (u,s) € C% x I with respect
to s is given by D3H?(u,s)(1)(1) = u”(s). The continuity of C% x I
(u,8) — D3H?(u,s)(1)(1) € R™ is obtained in the following way:

Being given any sequence (un, $p)nen € C% x I such that (un, sn) — (u, s),

as n — oo one gets that the inequality
[u”(5) =y (sn)llre < [lu”(s) — " (sn)llrn + U (sn) — up (sn)[|ren

holds for n € N. The first term of the right hand side of this inequality

tends to 0, as n — oo, by the fact that s, — s, as n — oo, and due to the
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continuity of u” : R — R™. We estimate the second term from above by
o [u”(t) — up (®) g < llu —unllcg

for n € N. The right hand side of this estimation tends to 0, as n — oo,

by assumption. Therefore, C2 x I > (u,s) — D3H?*(u,s)(1)(1) € R" is

continuous.

Hence, the mapping
Crx 15 (u,s) — H' (u,s) € R"
is continuously differentiable and the mapping
C% x 15 (u,s) — H?*(u,s) € R
is 2 times continuously differentiable. ]

Lemma 1.3.1.0.2. Let S* C R be an open bounded interval such that
[0,T] C S*. Then the following properties hold:

1. Let € (—=1/2,1/2) and T € S* be real numbers.
If w € Cf, then urg, defined by ur () := u(r + /(1 + B)), for
—h <0 <0 is an element of C,ll.
The mapping E} : Ck x (=1/2,1/2) x §* > (u,B,7) — urp € C} is
continuous. For every (8,7) € (—1/2,1/2) x S* the mapping

Ct3v—Ej(v,8,7) € C)
is linear and bounded. Furthermore, the inequality
=1
s LIE B e b < o0
(/877—)6(_1/271/2)XS*

holds.

2. Let € (—1/2,1/2) and T € S* be real numbers.
If u € C2, then u, g, defined by u, (0) := u(T+ 0/(1 —}—ﬁ)), for —h <
0 <0 is an element of C2. The mapping Z3 : C2 x (—1/2,1/2) x S* >
(u,B3,7) — urg € C? is continuous. For every (3,7) € (—=1/2,1/2) x
S* the mapping
C% 30w Z3(v,B,7) € C?
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1s linear and bounded. Furthermore, the inequality
=2
s 1B e } < 0
(8,7)e(—1/2,1/2)xS*

holds.

3. The mapping =§ : CL x (=1/2,1/2) x S* 5 (u, 3,7) + urg € Cy, is

continuously differentiable.

4. The mapping E3 : C% x (—=1/2,1/2) x §* > (u,B,7) — u,p5 € C} is
continuously differentiable.
For (u,8,7) € C2 x (— 1/2 1/2) x S* let D3 1E%(u, 3,7) € L(R?|C})
denote the derivative of Z3 with respect to (3,7) in (u,B,7) € C4 x

(—=1/2,1/2) x S*.

Then for every (B,7) € (—1/2,1/2) x S* the mapping

072“ SV D(B,T)E%(’Uaﬁv T) € L(R2|C}lz)
1s linear and bounded. Furthermore, the inequality

sup D 22(-, 8, T 2101y ¢ < 00
(5,T>e<1/2,1/2)xs*{” (3:m)=i )”L(WvCT'Ch)}

holds.

5. The mapping =3 : C% x (—1/2,1/2) x S* 3 (u, 3,7) — ur 5 € C, is 2

times continuously differentiable.

Proof. We only show 2., 5. and 4. The proofs of 1. and 3. is similar to 2.
and 5. respectively and simple.

2. In the previous lemma we have seen that for any interval I C R the map-
ping H%: C2 x I > (u, s) — u(s) € R™ is 2 times continuously differentiable.
Thus, by applying the chain rule the mapping

C2x(—1/2,1/2)xS*x[=h,0] 3 (u, 5, 7,0) — u, 5(0) = H*(u, 7+0/(1+)) € R"

is 2 times continuously differentiable.
Therefore, an application of part six of Theorem 3.1.1 in Appendix I yields
the continuity of the mapping

=302 x (—1/2,1/2) x S* 2 (u, 3,7) = u, 5 € CF.
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For v € C2 let v(9 := v, v := ¢/ and v := v". Then it is obvious that

for every s € R all mappings
C73v—0(s) eR"

i € {0,1,2} are linear and bounded. It is easy to see that for any (3,7) €
(—=1/2,1/2) x S* the mapping

C23vv,5€C
is linear and bounded. If we define b: (—1/2,1/2) x S* x [—=h,0] — R by
b(B,71,0) :=74+0/(1+ )

for 6 € [—h,0] and (B,7) € (—1/2,1/2) x S* then the mapping b is con-
tinuously differentiable. Dsb(8,7,0) = 1/(1 + 8) < 2 for all (8,7) €
(=1/2,1,2) x S*. Thus, the inequality

sup sup { max H,U(Z) (b(/B77—7 9))HR” (D3b(677_7 9))1} <o
(8,7,0)€(~1/2,1/2)x S* x[—h,0] 9 i€{0,1,2}
veCOp
ooz =1

holds.

Hence, we get that even the inequality

—2
sup = '7/67T 2 |2 < 0
(B,7)€(—1/2,1/2)x S* {H 2( )HL(CTlch)}

holds.
5. In the proof of 2. we have seen that the mapping

C%x(—l/Q, 1/2)xS*x[=h,0] > (u,B,7,0) — u;5(0) = H2(u,7+9/(1+ﬁ)) eR”

is 2 times continuously differentiable.

By applying the fourth part of Theorem 3.1.1 we get that the mapping
=3 0% x (—1/2,1/2) x §* 3 (u, 3,7) v ur3 € Oy

is 2 times continuously differentiable.

4. An application of the fifth part of Theorem 3.1.1 in Appendix I shows
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that the mapping 27 : C% x (—1/2,1/2) x S* 3 (u,,7) +— ur5 € C} is
continuously differentiable.

As the identity

E%(u,ﬂ,T)(Q) = U(T+ 0/(1 +5)) =b(B,7,0)

holds for (u, 3,7,0) € CZ x (—=1/2,1/2) x S* x [—h,0] and by the fact that
u and b are continuously differentiable an application of part 2 of Theorem
3.1.1 in Appendix I yields that the derivative D ZE3(u,3,7) € L(R?*|C})
of Z2 with respect to (3,7) in (u,3,7) € C% x (—1/2,1/2) x S* is given by

(D(s.) =3 (u, B,7) (B, 7)) (0) = . 5(0) D.\b(53, 7, 0) (B, 7)

for 6 € [—h,0] and (3,7) € R2.
Like in the proof of 2. we can show that for any (4,7) € (—1/2,1/2) x S*
the mapping

07% 2V U‘/r,,@D(ﬁ,T)b(ﬁ7Ta ) € L(R2|Oli)

is linear and bounded and that the inequality

sup D 22(-, 8, T 2101 ¢ < 00
(ﬂ,r)€(1/2,1/2)xs*{H (o) =i )HL(’R2’CT‘Ch)}

holds. O

Lemma 1.3.1.0.3. Let g : J x Q2 xR — R" be a mapping such that all

assumptions H 1) to H 6) are satisfied. And let the mappings Z}, =3, Z{,

=2, 22 be defined like in the previous lemma.

Let ) C} be an open subset such that u.z € Q for u € Q and (B,7) €
(—=1/2,1/2) x S*.

Let 0 :=Qn C’%.

Then the following properties hold:

1. The mapping
gl : JXQX (_]‘/2? 1/2) x S* 3 (a’u7ﬁa7—) = g(O[,E%(U,B,T),B) e R"

is continuously differentiable.
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2. The mapping
& IxQx(—1/2,1/2)x S* 3 (a,u, B,7) — g*(a,Z3(u, B,7), B) € R"
is 2 times continuously differentiable.

Proof. We want to apply Theorem 1.2.1:

g satisfying H 1) - H 6) we set h := g, h* := g*, C := R x C} xR,
B:=RxC}xR,E:=RxCp, xR, Q1 :=JxQxR,Qf:=JxQ" xR
and D :=R".

Thus, h satisfies all assumptions h 1) - h 6).

For the proof of 1. we set A := R x R x Ch, Qy := J x (=1/2,1/2) x Q,
k:=3. Let A = (—1/2,1/2) x S* which is an open bounded subset of R3.
We define the mapping

jJiWxA—-Q CcC

by
j(avs) = (aauT,ﬁUﬂ) = (a,E% (’U,,ﬂ/,T),,B)

for a := (o, B,u) and s := (', 7). Then, due to the first part of the previous

lemma, j is continuous. The linearity and boundedness of the mapping
As>arja,s) eC,

for fixed s € A, is a consequence of the fact that for any
(B',7) € (—-1/2,1/2) x S* the mapping

Ct 3 v Ei(v,f,7) € C,

is linear and bounded (see again the first part of the previous lemma). Fur-

thermore, the inequality
sup [[j(+; $) ||l Lcajcy < o0
SEA

holds because of the fact that as a result of the first part of the previous

lemma the inequality

—1 /
su =10 ﬂ y T 11 < 00
(B,7)(—1/2,1/2)x S* { it )HL(CT\Ch)}
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holds.
We define
J: W xA—-FE

by j* = Jo,g oj if Jo,g denotes the embedding from C' to E. Then the
identity j*(a,s) = (a,E%(u,B’,T),B) holds for a = (a, 8,u) € R x R x C},
and s = (8',7) € (—1/2,1/2) x S*. Hence, due to the third part of the
previous lemma, j* is continuously differentiable. Therefore, j satisfies j 4)
and j 5).

Thus, by applying the first part of Theorem 1.2.1 one gets that the mapping

Q2 x A > (a,s) — h(j(a,s)) € D
which here is
(Ix(=1/2,1/2)xQ) x ((~1/2,1/2)xS*) > ((a, B,u), (8, 7)) + g(a, E}(u, B, 7), B) € R"

is continuously differentiable. An application of the chainrule yields that

the mapping
€T x Q% (-1/2,1/2) x §* 3 (a,u, B, 7) = g(, Ei(u, B, 7), 5) € R

is continuously differentiable.

For the proof of 2. we set A ;= R x R x C%, Qy := J x (—1/2,1/2) x Q,
k=3 and A := (-1/2,1/2) x S* which is a bounded open subset of R3.
We define the mapping

J:QexA—-Q]CB
by
j(a7 S) = (avu’r,ﬁ’aﬂ) = (C%E% (U,/BI,T),ﬁ)

for a := (o, B,u) and s := (#',7). Then, due to the second part of the

previous lemma, j is continuous. The linearity and boundedness of the

mapping
A>aw j(a,s) € B,

for fixed s € A, is a consequence of the fact that for any
(0',71) € (-1/2,1/2) x S* the mapping

Ct 20 Ej(v,0,7) € G
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is linear and bounded (see again the second part of the previous lemma).

Furthermore, the inequality
sup [|7(-, 8)l|L(ajpy < o0
sEA

holds because of the fact that as a result of the second part of the previous

lemma the inequality

=56, 8, Dllzczien | < 0

sup {]
(B',7)E(—1/2,1/2)x S*
holds.

We define
JFiAXA—=C

by j* = Jp,c o j if Jpc denotes the embedding from B to C. Then the
identity j*(a, s) = (a, 23 (u, ', 7), 8) holds for a = (a, 3,u) € RxRxC#% and
s=(0',7) € (—1/2,1/2) x S*. Hence, due to the fourth part of the previous
lemma, j* is continuously differentiable. The linearity and boundedness of
the mapping

A3 a— Dyj*(a,s) € L(R3C),

for fixed s € A, is a consequence of the fact that for any
(8',7) € (-1/2,1/2) x S* the mapping

C% SV — D(B/J.)E%(’U,ﬁ/,’r) S L(RQIC}L)

is linear and bounded (see again the fourth part of the previous lemma).

Furthermore, the inequality

sup || Daj* (-, 8) || s, a)c) < o0
SEA

holds because of the fact that as a result of the fourth part of the previous
lemma the inequality
s {ID 8 Dllecaion | < o0
(B,7)e(=1/2,1/2)x5*

holds.
We define
J* i AXA - E
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by j** = Jo,g o j*, if Jo g denotes the embedding from C to E. Then the
identity j**(a,s) = (a,E%(u,ﬁ',T),ﬁ) holds for a = (o, B,u) € R x R x C2
and s = (',7) € (—1/2,1/2) x S*. Hence, due to the last part of the previ-
ous lemma, j**
j1),72) and j 3).

Thus, by applying the second part of Theorem 1.2.1 one gets that the map-

is 2 times continuously differentiable. Therefore, j satisfies

ping
Q2 x A3 (a,s) — h*(j(a,s)) €D

which here is
(Ix(=1/2,1/2)xQ)x ((—1/2,1/2)xS*) 5 ((ev, ), (3,8, 7)) — &* (e, Z3(u, B, 7), B) € R"

is 2 times continuously differentiable. An application of the chain rule yields

that the mapping
2T xQx (=1/2,1/2) x §* 3 (o, u, B,7) — g*(a,E%(u,ﬁ, 7),B) € R"

is 2 times continuously differentiable. O

1.3.2 Theorem on the differentiability properties of the map-
ping (1.9)

Now we are able to state a theorem on the differentiability - properties of
the mapping (1.9). Recall the definition of the mappings Ez, i,7 €40,1,2}
and &, j € {1,2} which we introduced in the last section. Therefore, the

mapping (1.9) will also be presented in new notation.

Theorem 1.3.2.1. Let g: J x Q xR — R" be given with all assumptions
H 1) to H 6) being satisfied. Let oy € I be the critical parameter as stated
in L 1). Let Oc Cilp, Qc C’% and the mappings €', €2 be defined like in
Lemma 1.5.1.0.5.

Let the mappings E[l), =2 be defined like in Lemma 1.3.1.0.2.

Furthermore, suppose that u, € Q) for u € Q and T € R,

Then the following properties hold:

1. The mapping
GY:JxQx(-1/2,1/2) — CY,
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defined by
G (a,u, B)(7) = & (e, u, B,7) — L{a0)Zg(u, 0, 7),

for (a,u, ) € J x Q x (=1/2,1/2) and 7 € R, is continuously differ-
entiable.

The identities G°(ap,0,0) = 0 and D2G°(ag,0,0) = 0 hold
2. The mapping

Gl:JxQx(-1/2,1/2) — Ck,
defined by

Gl(a,u,ﬂ)(T) = 52(oz, u, 8,7) — L(ayp)

E%(u, 0,7)
and

(G (o, u, 8))'(7) := Dag?(a,u, B,7) — L(g) D3E (u, 0,7),

for (a,u,8) € J x Q x (=1/2,1/2) and T € R, is continuously differ-
entiable.

The identities G*(ap,0,0) = 0 and DG (ap,0,0) = 0 hold
3. The mapping

G?:JxQx(-1/2,1/2) — CY,
defined by

G*(a,u, B)(7) = (v, u, B, 7) — L(o)Ef(u, 0,7),

for (a,u,B) € J x Q x (=1/2,1/2) and T € R, is 2 times continuously
differentiable.

The identities G%(ap,0,0) = 0 and DyG?(ap,0,0) = 0 hold.
Proof. With no loss of generality let ¢* = 0.

1. In Lemma 1.3.1.0.3 we have seen that the mapping

€ T x QU x (=1/2,1/2) x §* 3 (a,u, B,7) — g(a,ur 5, 0) € R"
is continuously differentiable.

Lemma 1.3.1.0.2 yields that the mapping

E(l) : C%v X (—1/2,1/2) x S* 3 (U,ﬂ,T) = Urg € Ch
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is continuously differentiable.
Hence, both restrictions £1|J><Q><(71/2,1/2)><[0,T] and E(l)|c;x(71/2,1/2)x[o,ﬂ are
continuously differentiable.
An application of the second part of Theorem 3.1.1 in Appendix I yields
that

g’ I xQx(-1/2,1/2) — C°

defined by
go(a7 u, /8) (7—) = 51 (O{, u, ﬂ7 T) - L(QO)E(l)(Uﬂ 07 T);

for (o, u, 8) € J x Q x (=1/2,1/2) and 7 € [0,T], is continuously differen-
tiable. As u was T - periodic we can extend g°(a,u, () to a T - periodic
continuous function G°(av, u, 8) on R for (a,u, 8) € J x 0 x (=1/2,1/2):
If 7 € [nT, (n+ 1)T], for n € Z, we set G%(a, u, B)(1) := g% (v, u, B)(7).

By the fact that ||vHC% = ||v]|co for v € Ck it easily follows that g° extends

to a continuously differentiable mapping
G J xQx(=1/2,1/2) — C2.

The identities G°(ap, 0,0) = 0 and DyG(ap,0,0) = 0 are a consequence of
the definition of ¢! and ZJ.

2. In Lemma 1.3.1.0.3 we have seen that the mapping
€2 T xQx(=1/2,1/2) x $* 3 (o, u, B,7) — g*(a,ur3,3) € R"

is 2 times continuously differentiable.

Lemma 1.3.1.0.2 yields that the mapping
2202 x (—1/2,1/2) x S* 3 (u,3,7) > ur 5 € Oy

is 2 times continuously differentiable.

e . 2 —2
Hence, both restrictions & ‘J><Q><(—1/2,1/2)><[0,T] and HOIC%X(_UQJ/Q)X[O,T} are
2 times continuously differentiable.

An application of the fifth part of Theorem 3.1.1 in Appendix I yields that
gh: JxQx(-1/2,1/2) — C!
defined by
g'(a,u, B)(7) == (o, u, B,7) — L(c)=3(u, 0,7)
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and

(gl(a,u,ﬁ))’(T) = Dy (o, u, B,7) — L(ao)DgE%(u, 0,7),
for (a,u,) € J x Q x (=1/2,1/2) and 7 € [0,T], is continuously differ-
entiable. As u was T - periodic we can extend g'(a,u,) to a T - pe-
riodic continuously differentiable function G!(a,u, 3) on R for (a,u,3) €
Jx Qx (—=1/2,1/2):
If 7 € [nT, (n+ 1)T), for n € Z, we set G'(a,u, 3)(7) := g'(a, u, B)(7) and

(G (o, 8))'(7) = (g (0w, 9)) (7).
By the fact that [|v][c1 = [Jv]lcr for v € C1. it easily follows that g! extends

to a continuously differentiable mapping
Gl:JxQx(-1/2,1/2) — CL.

The identities G'(ag,0,0) = 0 and D2G'(ap,0,0) = 0 are a consequence of
the definition of £2 and Eg.

3. In Lemma 1.3.1.0.3 we have seen that the mapping
€2 JxQx (—1/2,1/2) x S* 3 (o, u, B,7) — g" (o, ur g, B) € R™

is 2 times continuously differentiable.

Lemma 1.3.1.0.2 yields that the mapping
=302 x (—1/2,1/2) x S* > (u, 3,7) v ur53 € Oy

is 2 times continuously differentiable.
.. 2 =2
2 times continuously differentiable.

An application of the fourth part of Theorem 3.1.1 in Appendix I yields that
g2 JxQx(-1/2,1/2) - C°
defined by
g’ (a, u, B)(7) := (@, u, 8,7) — L) E§(u,0,7),

for (a,u,B) € J x Q x (=1/2,1/2) and 7 € [0,T], is 2 times continuously
differentiable. As u was T - periodic we can extend g?(a,u,f) to a T

- periodic continuous function G2?(a,u,3) on R for (a,u,3) € J x Q x
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(—1/2,1/2):
If 7 € [nT, (n + 1)T], for n € Z, we set G%(a, u, 3)(1) := g*(v, u, B)(7).
By the fact that ||1)HC% = ||v]|co for v € CY it easily follows that g? extends

to a 2 times continuously differentiable mapping
G?:JxQx(-1/2,1/2) — C2.

The identities G%(ap,0,0) = 0 and D2G2(ap,0,0) = 0 are a consequence of
the definition of ¢2 and =3. O
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1.4 Hopf Bifurcation Theorem

We repeat the conditions which are necessary for Hopf bifurcation as stated
in section 1.1.3:

There exists an interval I C J and a parametrization I 3 a — A(«a) € C
onto eigenvalues of the infinitesimal generator of L(a).

This parametrization has the following properties:

L1): Mag) = Ao = w+i, w = Z a real number, is a purely imaginary

simple eigenvalue of the infinitesimal generator A(«y) of the semigroup
T'(ap)(t)s>0 associated with L(ag). There exists no further eigenvalue
of A(ag) but A\g = —w - 1.

L 2): The mapping I > a — A(a) € C is continuously differentiable with
R[(N (20))] # 0.

L 3): Ma) for a € I is a simple eigenvalue of the infinitesimal generator

A(cr) belonging to the semigroup T'(«)(t)+>0 associated with L(«).

We divide this section into two subsections.
In the first one we will prove that there exists a 2 times continuously differ-

entiable mapping

03 (wa,0) = u(a,a,f) € C’%

onto solutions of (1.7) , where O is a suitable open subsets of J x R x
(—=1/2,1/2).

In the second subsection we will follow a standard approach to Hopf bifur-
cation which is plugging @ into equation (1.8) and solving it for v and £,
given the assumptions L 1) to L 3). This will be done in the proof of the
Hopf bifurcation Theorem (Theorem 1.4.2.1).

1.4.1 Solutions of (1.7)

Lemma 1.4.1.0.1. Let L € L(ChUR”) and f be a T - periodic function.

Let x : R — R"™ be a continuous T - periodic solution of
(1.16) 2'(t)=Lx+ f(t), teR
Then the following results hold:
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1. If f € CY, then x € Ck and the inequality
@10 lelloy < (10, (g, pn) +2) - lelleg + 17y
holds.

2. If f € CL, then x € C2 and the inequality

< 2 ) .
”xHC% = (HL||L(Ch|R") + HL||L(Ch|R") + 1 ||x||0%
(1.18)

(120, gypme) +1) - flloy
holds.

Proof. 1. x is a solution of equation (1.16). Then, due to the continuity of
the right hand side of (1.16) the mapping = : R — R needs to be continu-

ously differentiable. Hence, one gets by estimation that the inequality

sup_|[l2'(t)[lrr < sup ([[Laifrn + || f(¢)[rn) <
te[0,T] te[0,T)

L e Iy

holds. On the other hand

sup [z(t)[lr» = [|2llcg.-

)

Thus, the inequality

lzllcy, = max{ sup |lz(t)[lr=, sup |[[a'(t)]rn} <
t€[0,T t€[0,T

(120 gy +2) - lallcg + 17y

holds.
2. x satisfying (1.16), where

Rt~ f(t) e R"

and

Rot—xz€Cy
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are continuously differentiable one may again differentiate the whole equa-

tion (1.16) which then becomes
(1.19) 2"(t) = Lay + f'(t), teR

Thus, z : R — R" is 2 times continuously differentiable and, analogously to

1., one gets by estimation that the inequality

sup [[z”(t)[rn < sup (|[Laifrn + [ f'(t)[lrn) <
te[0,7T] t€(0,7

121 gy g, + 17
holds. In 1.we have seen that =’ satisfies

2'llco. = sup [l2'(t)[lrn < sup ([|Lz¢llrn + [[f(t)]rn) <
te[0,T] te[0,T]

L1 ¢y g + 117y
Thus, the inequality

sup |2 (1)|[zn <
te[0,T]

120, 0y ) (121 ) - Bellog. + 17T )
£ ey <

L)%

2 (o) Wellog + (121, ey 1) <1l

holds. Hence, the inequality

[2llcz = max{ sup |lz(t)llz=, sup [[2'(t)||gn, sup [la"(t)[|r=} <
te[0,T] te[0,T] t€[0,T]

2 .
(I ey 10 ) + 1) ey

(120 gypp) +1) - 1oy

holds. O
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Lemma 1.4.1.0.2. Let the results of the previous lemma be given and let

the operators K and J be defined like in Theorem 1.1.4.1.

1. If f € CY then the function (Ko [Id— J])(f) is an element of Ck and
the operator (Ko [Id—J])! : C% — Ck. defined by (Ko [Id—J))(f) for

f € CY is linear and bounded.

2. If f € Ck then the function (Ko [Id— J])(f) is an element of C% and
the operator (Ko [Id—J])?: CL — C% defined by (Ko [Id—J))(f) for

f € C}. is linear and bounded.

Proof. 1. As (Ko[Id—J])(f) is the unique continuous 7" - periodic solution
of
'(t) = Loy + [1d — J](£)(t)

the first part of Lemma 1.4.1.0.1 tells us that (K o [Id — J])(f) € CF,
Furthermore, (Ko [Id—J])(f) has to satisfy inequality (1.17). Thus, we get
by estimation that the inequality

|(K o [zd = 3 (Pllez, <
(120 gy +1) N 0 [1d = I)(Flcg + T7d = 3}y, <

(VI ey +1) 0K 0 [ = T segiogy + 117 = Tllgiegien) )| 1l

holds.
2. As (Ko[Id—J])(f) is the unique continuously differentiable 7" - periodic

solution of
2'(t) = Lay + [Id — J)(f)(t)

the second part of Lemma 1.4.1.0.1 tells us that (K o [Id — J])(f) € C2.
Furthermore, (Ko [Id—J])(f) has to satisfy inequality (1.18). Thus, we get
the by estimation that the inequality

1K o [1d ~ 3)*()ll o5, <

(I ey 1 ) + 1) 100 1A= ID (Dl
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+<HLHL(C;ZURH) + 1) IZd = JI](lley, <
[0y )+ 10 ) 1)

N o [7d = o1y + (11 ¢, ey + 1)1 = Ty lnicpion ] 17y

holds. In the last step we used the continuity of J |C% which is a consequence

of the two following facts:

1. The restriction of J to C’ilp is the projection along the kernel of the

continuous linear functional

T
Cro>fm /(I)t(s)f(s)ds c R?
0

as defined in Theorem 1.1.4.1.
2. This kernel has finite codimension.

O]

Lemma 1.4.1.0.3. Let the results of the previous lemma be given. Let the

mappings G°, G and G? be defined like in Theorem 1.3.2.1: Then the
following results hold:

1. The mapping
(Ko [Id—J)' oGY:JxQx(-1/2,1/2) — Ck
is continuously differentiable.
2. The mapping
(Ko[Id—J))?oG!:JxQx(-1/2,1/2) — C2
is continuously differentiable.
3. The mapping
(Ko[Id—J)'oG?:J xQx(-1/2,1/2) — Ck

is 2 times continuously differentiable.
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Proof. 1. The mapping
GY: T xQx(-1/2,1/2) — CY
being continuously differentiable and
(Ko [Id—J)':C% — CH
being linear and bounded it is clear that the mapping
(Ko[Id—JI)' o GY: J x 1 x (-1/2,1/2) — Ck

is continuously differentiable.
2. The mapping
Gl':JxQx(-1/2,1/2) — Ck

being continuously differentiable and
(Kol[ld—J))?:C} — C%
being linear and bounded it is clear that the mapping
(Ko[ld—J))?oG:JxQx(-1/2,1/2) — C%

is continuously differentiable.
3. The mapping
G?:JxQx(~1/2,1/2) — CY

being 2 times continuously differentiable and
(Ko [Id—J)':C% — C}
being linear and bounded it is clear that the mapping
(Ko[ld—J)' oG?:J xQx(-1/2,1/2) — Ck

is 2 times continuously differentiable.

Theorem 1.4.1.1. Let all assumptions H 1) to H 6) be satisfied.
Let all assumptions L 1) to L 3) be satisfied.
let the mappings G, G and G? be defined like in Theorem 1.3.2.1.
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Let ¢1(ao), ¢2(an) denote a basis of Eyqy. Let ‘]EA(QO),C% and JEA(%)C%
denote the continuous embeddings of the eigenspace Ey (o) into C’:lp and C’%,
respectively, as defined in Section 1.1.2

Let b: R — Ey(q,) be defined by b(a) := a - ¢1(aw), the scalar multiplication
of a scalar a with the vector ¢1(ap).

Then there exist neighborhoods S C J x R x (—=1/2,1/2) of (a,0,0) € R?
and A C Q of 0 € C’;lp such that for every (a,a, ) € S there is a solution
u*(a,a,B) € ANQ of the equation

U= JEMQO%C% (b(a)) + (Ko [Id — J])* o (G' (v, u, 3))

which in fact is equation (1.7) rewritten in different notation.
Any solution u* of (1.7) in A at parameter (o, a, 3) € S must have the form
u* =u*(a,a,f).
There are subsets O C O* C S such that the following properties hold:
The identity u*(«, 0, 3) = 0 holds for all (o, 3) such that (,0,3) € O*.
The mapping

w0 - ANQcC?

is continuously differentiable.

If 4 := JC%,C% ou*|5 then the mapping

@:0—AcCQcCk
is 2 times continuously differentiable.

Proof. With no loss of generality let ¢* = 0 and a9 = 0.

We want to apply Theorem 3.3.2 in Appendix III.

As a result of the previous lemma the mappings (K o [Id — J])! o G? and
(Ko [Id — J])? o G! are continuously differentiable.

The mapping (K o [Id — J])! o G2 is 2 times continuously differentiable.

Furthermore, the mappings
1
Ro>aw— JEA(oyC% (b(a)) e Cr

and
R3>arJg .02 (b(a)) € c2.
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are 2 times continuously differentiable.
Thus, the following holds:
1. Let Y := C} and X := R3. Let By C X be an open subset such that
(0,0,0) € By € J xR x (—1/2,1/2) and let By := Q.
The mapping
K :B) x By - YY=0C}),

defined by
K ((aya.8),u) = T, o3 (@) + (K o [1d— I)' 0 G, u, ),

for
((a,a,ﬂ),u) € By x Bo,

is continuously differentiable.

2. Let B; := BaN C% = Qand Y2 := C%. The mapping
K*: By x B} — Y*(=C3),
defined by
K*((a,a,8),u) := Ty 0).C2 (b(a)) + (Ko [Id — J])* o G!(a, u, B),

for
((a,a,ﬂ),u) € By x B3,

is continuously differentiable.
3. The mapping
K :B) x B} —» Y(=C}),

defined by
K((a,a,B),u) = Ty 0).Ch (b(a)) + (Ko [Id — J))! o G*(a, u, B),

for
((a,a,ﬂ),u) € By x B3,

is 2 times continuously differentiable.
Clearly, K(B; x Bj) C Y2,
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We know from Theorem 1.3.2.1 that the identities G°(0,0,0) = 0, G(0,0,0) =
0, D2G(0,0,0) = 0 and D2G(0,0,0) = 0 hold. Thus, the identities
K*((0,0,0),0) = K((0,0,0),0) =0,

Idyr — D2 K((0,0,0),0) = Idys
and

Idy2 — D2 K*((0,0,0),0) = Idy-=
hold.
Here, D2K((0,0,0),0) € L(Y![Y!) and DoK*((0,0,0),0) € L(Y?Y?) de-
note the partial derivatives of K and K* with respect to u in ((0, 0,0), O) €
Y! and ((0,0,0),0) € Y? respectively.
Therefore, the Implicit Function Theorem yields the existence of open neigh-
borhoods O C By and O* C By of (0,0,0) and A € Q of 0 € Y2 C Y such
that the follwing holds:

There are continuously differentiable mappings
i:0— ByCY?
and
u*: O* — By CY?,
respectively, satisfying K (O, A) C A and
f(((a,a,ﬁ),ﬂ(a,a,ﬂ)) =u(a,a,0), (a,a,0)€ 0,

and K*(0*,ANQ) c ANQ and
K*((a,a,ﬁ),u*(a,a,ﬂ)) = U*(a7a7ﬂ)7 (avaa ﬂ) E 0*7

respectively. By the fact that K* ((a, 0,05), 0) = 0 it follows that u*(«, 0, 8) =
0 for all (o, B) such that («,0,53) € O. With no loss of generality we sup-
pose that O* C O. It is clear that for reasons of uniqueness @ must satisfy
o = (z]c%7c% ou*).

Therefore, the assumptions of Theorem 3.3.2 are satisfied and thus there is
a neighborhood O C B of (0,0,0) such that the mapping 4 := @, is 2

times continuously differentiable. Furthermore, the identity
K ((a,a, ), ila,a, 8)) = (e, a, )
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~

holds for (a,a,f) € With no loss of generality we suppose that O C

0.
O* C O and set S := O. This completes the proof. O

Corollary 1.4.1.1.1. Let all assumptions of the previous theorem be satis-

fied. Let u* be the solution of
u= JEM%%C% (b(a)) + (Ko [Id — J))? o GY(a,u, B)

which we found in the previous Theorem.

Then the mapping

~

05 (a,a,0) — G*(a,u*(av,a, 8), B) € O}
is 2 times continuously differentiable.

Proof. With no loss of generality let ag = 0.
We want to apply Theorem 3.2.1 in Appendix II:
We know the following:

o If A} C J x Q) x (=1/2,1/2) is an open subset such that @(0) C A

then the mapping G°| 4, is continuously differentiable.

e The set
A=A N (J xQx(-1/2,1/2))

is an open subset of J x € x (—=1/2,1/2) such that v*(O) C Ay. Fur-

thermore, the mapping G?2|4, is 2 times continuously differentiable.
On the other hand u* has the following properties:

e The mapping
w0 —QcC?

is continuously differentiable. (Recall that as a result of the previous

theorem O C O*. Thus, we may restrict u* to O)

e The mapping
’ITL:JC’%yc%OU*OA—)QCC%W

is 2 times continuously differentiable.
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Hence, by considering the map
03 (a,a,0) = (a,u(a,a, ), ) € T x Qx (~1/2,1/2)

we realize that we are exactly in the situation of Theorem 3.2.1. Thus, the
mapping
02 (a,a,B) = G*(a,u’(av,0, ), ) € CP

is 2 times continuously differentiable. O

1.4.2 Standard approach of proving Hopf bifurcation

In this subsection we continue the proof of Hopf bifurcation as stated in
[3] by plugging 4 into equation (1.8) and solving it for o and 3, given the
assumptions L 1) to L 3) of the linearization L(«), for o € J.

The presentation of the steps on the proof will be more explicit than in [3].
We suppose that the following properties associated with the linearization
L(a), for a € J, are satisfied:

(Compare [3], section 7)

e Forael,ie{0,1,2} let JE)\(a%Cz‘ denote the continuous embedding
from E)(q) to C*, such as defined in section 1.1.2.
For a = a, i € {0, 1,2}, let JEA(ao)»C% denote the continuous embed-
ding from F)(4,) to Cf, such as defined in section 1.1.2.
For a € I let {¢1(a), p2(r)} denote a basis of the eigenspace E)(q) of
the infinitesimal generator A(«) of L(«) corresponding to the eigen-
value A\(«). This basis satisfies ¢l(s) - ¢;(s) = d;5, 1,7 = 1,2.
Let ®1(a) = Jg, ) co (¢1(a)) and Do) = Ty (a0 (¢2(a)) and
P(a) = (P1(a), P2(a)).
Hence, the identity

B(0)'(5)®(a)(s) = < (1) ? )

holds for aw € I and s € [0, 7.
Analogously, for a = ag, ®(ap) = (P1(), P2(ap)) where ®(ag) =

B () C2 (¢1(a0)) and Pa(ap) = By (0 2 (¢2(c)).
Recall the definition of the mapping b : R — E,, in Theorem 1.4.1.1
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which is b(a) := ¢1() - a, for a € R.
Then,
Ty, i, (b(a)) (5) = @(0)(s)(a,0)"
for s € [0, 7] and i € {0,1,2}.
e The mapping
Isa— ®a)eC®xC
is continuously differentiable.
e There exists a continuously differentiable mapping

I > aw— B(a) € R?*?

such that the identities

and

8 (a)(s) = exp(~B(0)s) @ (a)(0)
hold for s € [0,7] and o € I

e The identity

holds for o € 1.

Lemma 1.4.2.0.1. Let the assumptions H 1) - H 6) and L 1) to L 3)be
satisfied and the results of Section 1.4.1 be given. If we define

n:C% — R?

T
n(6) = / B(0)!()¢(s)ds
0

for ¢ € C’% then the mapping
(1.20)

%n[Gz(a,u*(a,a,ﬁ),ﬂ)], a#0
I': 05 (a,a,8) —

n [Dng (a, u (a,a, B), ﬁ) ( (Dgu*(a, a, ﬁ)l)} , a=0
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1s continuously differentiable.

Proof. With no loss of generality let ¢* = 0 and ag = 0.
In Corollary 1.4.1.1.1 we have seen that the mapping

03 (a,a,B) — G2(a,u*(a,a,ﬁ),ﬁ) € C’%
is 2 times continuously differentiable. On the other hand
n:CY — R

is a bounded linear mapping. Hence, the claim follows from a well known
fact:

If H:Q C R — R?2 Q C R? an open subset, is a 2 times continuously
differentiable mapping, which satisfies H(0,y, z) = 0, for all (y, z) such that
(0,y,2) € Q, then the modified mapping

LH(z,y,2) eR? z#0

z
Q> (z,y,2) —
DiH(z,y,2)1€R? =0

is continuously differentiable. O

Lemma 1.4.2.0.2. Let the assumptions H 1) - H 6) and L 1) to L 3) be
satisfied and let the results of Section 1.4.1 be given. Let

r:0—R?
g ) 0
be defined like in the previous lemma. Then DsI'(ag,0,0)1 = ( 0 )
T

Proof. With no loss of generality let ¢* = 0 and oy = 0.
Let S C (—1/2,1/2) be an open set such that (0,0, ) € O for all 3 € S.
i, a, B) € Ck satisfying the fixed point equation
u= T, 3 (b)) + (Ko [1d — 3))' 0 G*(au, 9

for (o, a, ) € O it follows that its derivative Dyt a, 3) with respect to a
in every (a,a, ) € O is given by

Dyi(ev,a, )1 =

JEMO),C% (b/(a)) + (K © [Id - J])l ° D2G0 (Oé, ’EL(O&, a, /8)5 /3) (DQQ(av a, ﬂ)l) .
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Recall that in Lemma 1.3.1.0.2 we defined
2l Ch x (~1/2,1/2) x [0,T] — C}
by
El(u, B,7) = urp
for (u,3,7) € CL x (—1/2,1/2) x [0,T]. Furthermore, we set =} := Jorcr e

=1

=i
We proved in the same lemma that, for fixed (8,7) € (—1/2,1/2) x[0,T], =}
and Z} are linear with respect to u and that ZJ is continuously differentiable.
We observe the identities ©*(0,0, 3) = 0 and Ds ¢,+g(0,0,3) = (1 + 5)L(0),
for all € S, as well as the definition of G° which is

Go(a,u,ﬂ)(s) = g(a, E%(u,ﬁ, s),ﬂ)fL(O)E(l)(u, 0,s) = g(a, us 3, 3)—L(0)us,

for (e, u, ) € I x Q x (—1/2,1/2) and s € [0, T]. Then, by an application
of the chain rule which involves the evaluation map in s € [0,7] it follows

that

(D2G%(0,4(0,0, ), 8)(¢)) (s) = (D2G"(0,0, 8)(9))(s) =
D2g(0, 0, ﬁ) (E%((b, ﬂ, S)) — L(O)Eé(¢, O, 3) = D2,extg(07 Oa ﬁ) (E(l)(¢a ﬁa 3)) - L(O)E’(l)(d)v 07 8) =

(1+ B)L(0)(Z5(¢, B, ) — L(0)¢s = (1 + B)L(0)¢s,5 — L(0) s

for all 8 € S, ¢ € Cf and s € [0,T]. Furthermore, (D2@(0,0,0)1)(s) =
T B 0),Ch (1'(0))(s) = @(0)(s)(1,0)*, for s € [0,T].

Therefore,

T
r(0,0,8) = /@(O)t(s) [(1+ﬂ)L(O)Eé(D2ﬂ(O,O,ﬂ)l,ﬁ, s)—L(0)Z¢(D2u(0,0, 3)1,0, s)}ds
0

for all 5 € S. Hence,

D3F<O7 076)1 =

oy

®(0)!(s) [L(O)E}) (Di(0,0, B)1, 8, s)} ds+
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B(0)"(s) [(1 + B)L(0)Z} (D3 Dyi(0,0, )1, B, 5) + (1 + B)L(0) D=} (Daii(0,0, B)1, 8, s)} ds

oy

T
—{@(O)t(s)L(O)Eg(nga(o,o,ﬂ)(l)u),o,s)}ds

for all 5 € S. Thus,

T
DsT'(0,0,0)1 = /(D(O)t(s) [L(O)Eg(pza(o,o,())l,0,s)+L(0)D255(D2a(0,0,0)1,o,s)]ds.
0

By observing the identities (D24(0,0,0)1)(s) = ®(0)(s)(1,0)" and

E6(D22(0,0,8)1, 8,5) = Jeu oo (D21(0,0, 5)5.5) = ®(0)s,,

for f € S and s € [0,T], it follows that the derivative 7/(0) of the mapping

y:S3 8 /@(o)f(s) (14 B)L(0)®, 5(0) — L(0)®,(0)] (1,0)'ds
0

in =0 is equal to DsI'(0,0,0)1.
(Recall the definition of ®(0), 3 € C}, x C}, which is
®(0)5,5(0) = ®(0)(s+6/(1+ 3)), for 6 € [—h,0])

Separating the integral in two parts yields

T
1(9) = [ 2(0)'(3 [(1+ B)L(0)®, 5(0)] (1, 0)1ds

— [ [2(0)(s)L(0)4(0)] (1,0)'ds

for § € S. Changing s into z := s/(1 + ) in the first integral yields

T/(1+8)
(1.21) | 0@+ 9L08.0)] 1,0
0
for 3 € S. By the fact that ®(0) = (®1(0), ®2(0)) where ®(0)1, ®(0); denote
a basis of the subspace P C C’% of T - periodic solutions of

du(s)
ds

= L(0)us
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it follows that

‘M’g(s)(l,o)t = L(0)®4(1,0)", scR.

(dlzl—gs) means that we derive u with respect to s)

Recall that the segment @, 5(1,0)" € C} was defined such that

‘W(Loy (14 B)L(0)®, 5(1,0)', s €R.
holds for g € (—1/2,1/2).
Hence,
Cl(mc(l)z)(z)u,o)t = L(0)®, 5(1,0)"

holds for z = s/(1 + ().

Thus, we can rewrite (1.21) as

T/(1+p)
[ eorela+ 20 0re

0

for § € S. Changing z back into s = z(1 4 [3) yields

T
/‘P(O)t(S) [(1 + ﬂ)@(;s)(s)} (1,0)'ds.

0
Observing the identities

d®(0)(s) _
ds

and

for s € [0,T], one gets that

v(B) = ;fﬁ - B(0)(1,0)'ds

and

T
V(8) = [ BOL0)ds
0



for g e S.

Therefore, and by observing

it follows that

DsT(0,0,0)1 = +/(0) = ( T%())\(O) ) |

Thus, by observing IA(0) = w one gets that
0 0
D3T(0,0,0)1 = - .
wT 2T

Lemma 1.4.2.0.3. Let the assumptions L1) to L3) be satisfied. Let La(a)(x) :=
Dag* (v, ¢*) for a € I and x € C2. Then Ly defines a continuously differ-
entiable mapping from I to L(C?R™) and the identity

O

®(ao)"(s)Ly(a0) ®s(ao) = B'(ao)
holds for all s € [0,T].

Proof. With no loss of generality let ap = 0.

The fact that Lo is continuously differentiable is a consequence of H 4).
We recall that for a € I, {¢1(), ¢2(a)} denotes a base of E),). Further-
more, ®(a) € C° x CY is defined by

(1(a), ®2(0)) = (i, o) 00 (91(0)), Ty o) 00 (2(0), )

for a € I. By the fact that for a € I, T'(a)(s), s > 0, extends to a group
T(a)(s), s € R, on Ey(,), we can extend ®(a) : [0,7] — R" x R" to a
mapping ®(a)ey : R — R™ x R™ in the following way:

We set &(a)ear(s) = (T(a)(s)(gbl(a)),T(a)(s)(¢2(a))), for s € R, s ¢
[0,7], and ®()eqt(s) := (P1(c), ®2(a))(s), for s € [0,T].
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Analogously, for a € I, let ®(a)l,,(s), s € R be defined such that the
identities ®(a)l,,(s) = (<I>1(a),<1>2(a))t(s), s €1]0,T], and

ext

B()(5)B(0)ear(5) = ( (1) (1’ ) ,

s € R, hold.
Lemma 3.9 in section 7.3 of [3] tells us that the derivative of the mapping
B : I — R?*2 gatisfies

B'(ar) = ®()gq (0) Ly () (P()eat)

in all @ € I. This identity is independent from the choice of the basis of
E)\(a)- Ex(a) being invariant under T(a)(s), s € [0,T], {(Ql(a)ewt)s, (<I>2(a)e$t)s},
for s € [0, 7], denotes another base of E)(,). Thus, the identity

B(a)ig(s) L' () (B()eat) , = B'(a)

holds for this new base.
As for a = 0, ®1(0) € C% and ®2(0) € C%, the identities ®(0)(s) =
D(0)eqt(s) and ®(0)(s) = ®(0)%,,(s) hold for s € R.

Hence,

©(0)"(s) L5(0)2(0)s = B'(0)
for s € [0,T]. O
Lemma 1.4.2.0.4. Let the assumptions H 1) - H 6) and L 1) to L 3)be

satisfied and the results of Section 1.4.1 be given. Let
r:0—R?

be defined like in Lemma 1.4.2.0.1. Then the following holds: The partial
derivative D1T'(a,0,0)1 of T in (o, 0,0) is given by

R(N(0

DII‘(aO,O,O)l =T- ( ( )) .

F(N(0))
Proof. With no loss of generality let ap = 0.
Let B C I be an open set such that («,0,0) € O for all @ € B. First we

realize that

T
T'(a,0,0) = /(@(o)t(s)L(a)Eg(Dga(a,0,0)1,0, s)—cb(o)t(s)L(O)Eg(Dga(a,0,0)1,o,s))ds
0
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holds for alla € B. Ly : I — L(C}%\R”) and B 3 a — Dsii(a,0,0)1 € C

are continuously differentiable with Lo(a) = L(oz)|cle, a € I. Furthermore
=8(Daa(a,0,0)1,0,s) = Z3(Dau*(a,0,0)1,0, 5)

for « in a sufficiently small neighborhood of «y and s € [0,7].
Therefore, and by applying Theorem 3.2.1 in Appendix II one can easily
show that the derivative of the mapping B 3 o — I'(«,0,0) € R? in a € B

is given by

DiT(a,0,0)1 =

®(0)!(s)Ly(a)=3 (Dgu* (,0,0)1,0, s) ds+

T
g(@(O)t(s)L(a)Eé (D1 Dyii(a,0,0)(1)(1),0,s) — @(0)4(s)L(0)=} (D1 Daii(ax, 0,0)(1)(1),0, s))ds.

Hence, by observing (D2@(0,0,0)1)(s) = ®(0)(s)(1,0)" for s € [0,T], the
identity

T
DyT(0,0,0)1 = / B(0)(5) L4 (0)®(0)5(1, 0)'ds
0

holds.
By applying the previous lemma one gets that D,T'(0,0,0)1 = B’(0)(T,0)".

Thus,
D1I'(0,0,0) =T - < %(X(O)) ) .
S(N(0))

Theorem 1.4.2.1. (Hopf bifurcation)
Let all assumptions H 1) to H 6) on g be satisfied.
Let all assumptions L 1) to L 3) be satisfied.

Then there exists a continuously differentiable mapping
Q>a— (gb(a),a(a),T(a)) €Qx1Ix][0,00)

Q C R an interval, such that the following properties are satisfied:
0 € Q. For every a € Q, there exists a nontrivial periodic solution x*(a) :
R — R of the equation above with parameter a(a), period T'(a) and z*(a)i=¢ =

¢(a). Furthermore, a(0) = ag, ¢(0) = ¢*, T(0) =T and A(0) = Ao.
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If * : R — R" is a constant function such that ®j_, = ¢* then there exists
a neighborhood M of (ag, T, ®*) € I x R x C3. such that the following holds:
Let T > 0. If there exists a nontrivial periodic solution & : R — R™ of (1.1)
with parameter & and period T such that (d,f,a?) € M, then there must be
a€Q andb e R such that #—, = ¢(a), T = T(a) and & = a(a).

Proof. With no loss of generality let ¢* = 0 and oy = 0.

g satisfying H 1) to H 6) we know that g satisfies H 1) to H 6). There-
fore, Theorem 1.4.1.1 yields the existence of a 2 times continuously dif-
ferentiable mapping 4 : O — C1 satisfying equation (1.7). On the other
hand Lemma 1.4.2.0.2 and Lemma 1.4.2.0.4 show that the partial derivative
D0, T(0,0,0) of T": O — R? with respect to (a, 8) in (0,0,0) is given by

Dia,3T(0,0,0) =T - ( DR(A0)) 0 > |

DS(A(0)) 2m/T

As in L 3) we assumed DR(A(0)) # 0 it follows that D, T'(0,0,0) is in-
vertible. Furthermore, we observe that I'(0,0,0) = 0.

Thus, the assumptions of the Implicit Function Theorem are satisfied. Hence
there exists an interval 0 € @ C R and a continuously differentiable mapping
Q2 a— (afa),B(a)) € Ix(—1/2,1/2) such that the identity I'(a(a), a, B(a)) =
0 holds for all a € Q. Thus,

0=a-T(a(a),a,B(a) =

f@t(s)g(a(a), a(a(a),a, B(a))sa, B(a))ds

0

holds for all @ € Q. The last expression belongs to equation (1.8) which now
is satisfied. Therefore, @(a(a),a, B(a)) is solving both equations (1.7) and
(1.8) for all a € @ and thus solving

u' (1) =1+ B)g(a(a),urp), TER

with period T
If x*(a) : R — R™ is defined by

z*(a)(t +0) = i(a(a), a, B(a)) ((t +0)/[1 + B(a)]),
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for t € R and 6 € [—h,0], then 2*(a) is a solution of equation (1.1) with
parameter «(a) and period T'(a) := (1 + ﬁ( ))

Clearly, «(0) =0, T'(0) =T and z ( )=

Furthermore, z}(a) = u*(a(a), a, B(a ) holds for all t € R with t =

(1 + B(a))7, in particular z}_y(a) = u*(a(a )TZO B(a)
We claim that the mapping

Qaan—wu(()aﬂ()) )eCh

is continuously differentiable:
By observing the properties of the mapping u* in Theorem 1.4.1.1 one sees

that the identity

ﬂ(a(a), a, ﬁ(a))oﬂ(a) = E% (u* (a(a), a, ﬁ(a)),ﬁ(a), 0)

holds for a € Q.
The claim then follows from the fact that the mappings

Q>ar u*(a(a),a,ﬂ(a)) e

and
C7 x (=1/2,1/2) xR > (u, B, 7) = ZE3(u, 8,7) € C}

are continuously differentiable.

We set ¢(a) := @(a(a),a, B(a))y ) for a € Q.

Clearly, the Implicit Function Theorem guaranties the existence of a neigh-
borhood M of (0,0,0) € I x R x C} such that the following holds:

If there exist 3 € (—=1/2,1/2), @ € I, b € R and z* a periodic solution of
(1.1) with parameter &, period (14-3)T and (@&, (1+6)T, #=) € M and z_,
a solution to (1.8), then there must be an a € Q with & = a(a), 8 = B(a)
and 4(a)(T+60/(1 + B)) =25 (t+b+0), fort =(1+3)-7,0€[-h,0].
Hence, there exists a neighborhood M of (0,7,0) € I x R x Ck such that
the following uniqueness property is satisfied:

If there exists a nontrivial periodic solution z : R — R"™ of (1.1) with para-
meter & and period T such that (d,T, Z) € M, then there must be a € @
and b € R such that Z,—, = ¢(a), T = T(a) and & = a(a).

This completes the proof. O



Chapter 2

The robot arm

In this chapter we want to apply our results on Hopf bifurcation to a problem
of differential equations with state dependent delay from robotics:

Let D, c and « be nonnegative reals and let a : R — R be a function having
continuous first and second derivatives, and satisfying a(0) = 0. Consider

the following system:

2"(t) = —aa'(t) + a(§r(xs) — D)
(2.1)
er =x(t —r)+x(t) + 2D.

This system was studied in [10] and [11] and models an object (a robot arm)
which moves on a ray given by —D < x, and regulates its distance x from
the position z = 0 in the following way:

Signals travel at constant speed ¢ from the object to the reference point
at —D, are reflected, and then received by the object. At time t the ob-
ject measures the running time r(t) of the signal emitted at time ¢ — r(¢),

computes from r = r(t) a position & according to

C
P = —r—D.
X 27"

This gives the true position at least if z(t) = 0 = (¢t —r(24)), and then uses

Newton’s law with force a(z) and damping to react.
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Like in [11] we rewrite the system as

y'(t) = —ay(t) + aldy)

er(zy) =x(t —r) + x(t) + 2D,

where &y = $7(2¢) + D. We set ¢ =1, and h > 2D.

For technical reasons we rewrite the spaces C°([—h,0]|R?), C1([-h,0]|R2)

and C?([—h, 0]|R2) as CO([—h, 0]|R)xC°([—h, 0]|R), C([~h, O]|R)x Ct([~h, 0]|R)
and C2([—h,0]|R) x C?([~h,0]|R) respectively. We set

Cy, == C'([~h, O)|R),

C? .= C*([~h,0]|R)

and
Cy, == C°([~h,0]|R).

Lemma 2.0.0.1. There are open subsets Q) C C% X C}L, O C C,?L X C,?L and

an open interval J C R such that the following holds:

Q*=Qn(Cq x CF)

and a(¢y) is well defined for all (¢s, dy) € Q.
The mapping g : J x Q — R? defined by

¢y(0)
2.2 a, Py Gy) = N
22 900 Ga: ) ( —a¢y(0>+a(¢x>)

for (o, ¢p, dy) € R x Q satisfy all properties H1) to H6).

Proof. H1):
Proposition 8 in [11] shows the existence of an open subset U C C} such that
for every ¢ € U thereisanr(¢) € [—h, 0] satisfying r(¢) = ¢(—r)+¢(0)+2D.
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The mapping r : U — [0, h] is continuously differentiable. The derivative of
r with respect to ¢ is given by

x(=7(¢)) + x(0)

DO =

for (¢,x) € U x C}.

Thus, the mapping U 5 ¢ — a(¢) € R, defined by a(¢) = %r(qb) + D, for
¢ € U, is continuously differentiable. Hence, by setting  := U x C} and
choosing an open interval J C R the mapping g : J x Q2 — R? is continuously
differentiable. The partial derivative D(, ,)g(, ¢z, ¢y) € L(C} x C}R?) of
g with respect to (¢, ¢y) in (o, ¢, ¢y) € J x 2 is given by

Xy(0)
D(z,y)g(av ¢xa ¢y)(sz Xy) =
1/2- a/(éx)DT(ﬁbx)(Xx) — axy(0),

for (xz,xy) € C} x C}. Obviously the mapping
T X Q3 (a,6n, 8y) = Diay)9(er, b, by) € L(C, x C4[R?)
has a partial derivative
Dey(a,y) g(a, ¢z, ¢y) € L(Ch X Ch|R2)

with respect to « in every o € J and (¢, ¢) € 2 and the mapping Doz, 9
J x Q — L(C} x C}R?) is obviously continuous.

Clearly the right hand side of (2.2) has first and second partial derivatives
Dig(a, ¢z, ¢y) € R? and Dig(a, ¢z, ¢y) € R? with respect to the parameter
a in every (o, ¢z, ¢y) € J x Q.

The mappings Dig : J x @ — R? and Dig : J x Q — R? are obviously
continuous.

H2): It is also remarked in [11] that D, ,\g(a, ¢z, ¢y)) € L(C} x Cp|R?)

extends to a bounded linear mapping

D( z,y) extg( v¢xa¢y)) 1 Cp, ><C’h_>]R2

for o € J and (¢4, ¢,) € Q:
Dr satisfying




for (¢,x) € UxC}, Dr(¢) € L(C}R) obviously extends to a linear bounded
mapping
x(=7(¢)) +x(0)

o (o)

Deyyr(¢) : Cp 2 x —

Hence, D, \9(, ¢z, ¢y) € L(C} x C}|R?) extends to a bounded linear
mapping
D (g ) ,extg(t; oz y) : Cp X Cp, — R2.

H3) We claim that the mapping

Dpyyeat 9% J X Qx Cp x Cy 3 (a, b, by Xas Xy)

= D(x ) e:ctg( Cbm, ¢y))(X:E7 Xy) c RQ

is continuous:

Obviously the mapping

x(—=r(9)) + x(0)
1+ ¢/ (—r(9))

U xCh3(¢,x) — Dr(¢)(x) =

is continuous. Hence, by the continuity of U 3 ¢ — a(qg) € R and by the
fact that C, > x — x(0) € R is continuous the mapping

Xy(0>
JXQXChXChB(a7¢$7¢y7X$7Xy)H €R®

1/2- a/(dsx)Dr(@:)(Xw) - aXy(O)

is continuous.

H4) We set Q* := QN (C? x C?). We have to prove the existence of a second
partial derivative D(Zx’y)g*(a, buy Oy) € L2(CF x C2R?) of g* = g|sxo+ with
respect to (¢, ¢y) in every (o, ¢z, ¢y) € J x QF.

Furthermore, we have to show that the mapping

T X Q3 (, bu, by) = DY, 9" (@, b2, 6y) € L*(Cf x CRIR?)

is continuous.

It is obvious that there exists a first partial derivative D(, ,)g*(cv, ¢z, ¢y)
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of g* with respect to (¢g, ¢y) in every (o, ¢z, ¢y) € J x Q* and that it is
given the same way as the first partial derivative Dy, ) g(a, ¢z, py) of g with
respect to (¢z, ¢y) in (o, ¢z, ¢y) € J x Q. Furthermore, g* has first and
second partial derivatives Dig*(a, ¢z, ¢y) € R? and Dig*(a, ¢y, dy) € R2
with respect to the parameter a in every (o, ¢, ¢y) € J x Q.

The mappings D1g* : J x Q* — R? and D?g* : J x Q* — R? are obviously
continuous.

Therefore, we have to concentrate on the existence of a second partial deriv-

ative D(2x y)g*(a, buy Py) € L2(C? x C2|R?) and the continuity of

D, 9"+ J x QF — L(C x CRIR?).

Let Q* := UNC2.

We first show that r* := r|g~ is 2 times continuously differentiable. Clearly

r* is continuously differentiable with its derivative being given by

x(=r(¢)) + x(0)
1+ ¢/ (—r(9) '

Drr(¢)(x) =

for ¢ € Q* andeCﬁ
Hence, we have to prove the existence of a derivative D*r*(¢) € L*(C?|R)
of

(2.3) Dr*: Q* — L(CF|R).

in every ¢ € Q* and, furthermore, we have to show the continuity of
Q" 3 ¢ — D*r*(¢) € L*(C{IR).

In Lemma 1.3.1.0.1 we have seen that for any interval I C R the mapping
H?:C% x 15 (u,s) — u(s) € R"

is 2 times continuously differentiable with D1 H?(u, s)(v) = v(s) and Do D1 H?(u, s)(v)(1) =
v'(s) for (u,s) € C2 x I and v € C2. Analogously one can show that the

mapping
H: CF x [~h,0] > (¢,s) — t(s) € R"
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is continuously differentiable with D1H(4, s)(x) = x(s) and DaD1H(3), s)(x)(1) =
X'(s) for (x,s) € C? x [=h,0] and v € CA.
Hence, the mapping

Ev:[-h,0] — L(C’,ﬂR)

defined by Ev(s)(x) := D1H(O0, s)x(—s) = x(s) for s € [~h,0] and x € C?

is continuously differentiable with

EV'(s)(x) = —x'(—s).

Therefore, an application of the product rule yields that the derivative of
(2.3) is given by

« 29X v)
(2.4) D*r*(¢)(x, ¥) = TN

for o € QF, x € C’% and ¢ € C,QL, where

(2.5)
Z(d)(x:¥) = =X (=1*(¢)) Dr(d) () - (L + ¢/ (=17()))

—X(=1*(9)) - [¢" (=7*(¢)) Dr* () (¢) + %' (=1*(9))]
and

N(@) = (1+¢'(-r(#)))>.

Again, by applying chain - and product rule, the mapping D, ,)g* : J X
Q* — L(C? x C3|R?) is continuously differentiable.

The derivative D%Ly)g*(a,qu,(ﬁy) of D(y4)g* with respect to (¢z,¢,) in
(0, ¢z, By) € J x QF is given by

(2-6) D(Qac,y)g*(a7¢x’¢y)(XmaXy)(¢x,¢y) = )
M*(¢z)(Xa) (¥z)

for (xz, xy) € C7 x C} and (¢5,¢y) € CF x C}?, where

M*(¢2)(Xar) ($2) 1= 1/2:0/ () D1 (62) (X Pu) +1/4-0" ($2) Dr* () () DI () (1)
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H5) Let Jy; denote the continuous embedding from C’,% to C’é.
Then for every ¢ € Q* the mapping

Z(@):ClxCl =R
defined by

Z(@)x.¥) = =X (=1(¢)) Dr(J2,1(¢)) () - (1 + ¢'(=1*()))

—X(=r7(0)) - [¢" (=r*()) Dr (J2,1(¢)) () + ¢/ (=r*(¢))]

for (x, %) € C} x C}, is continuous.

Obviously, Z(¢)(J2,1(x)) (Jo1(¥)) = Z*(¢) (x) () for all ¢ € Q* and (¢, x) €
C? x C2.
Hence, for every ¢ € Q*, D*r*(¢) € L*(C}R) extends to a continuous
bilinear mapping
D21 (9) : Ch x Gy — R
which is given by
DZyr*(9)(x, ) =

for g € Q*, x € Cl and ¢ € C}.

Next, for ¢ € Q*, we define the continuous bilinear mapping
M(p):CLxCF =R
by

M($)(x) (1) = 1/2:0'(¢) D2, (6)(x, %) +1/4-a" ($) Dr (J21(6)) (x) Dr (J2,1(9)) (),

for x € C,i and ¢ € C’%.

Clearly, M(6) (J2,1(x)) (Ja.1 (1)) = M*(6)(x)(&) for all ¢ € Q* and (1, x) €
C? x C3.

Therefore, D(2 )g*(oz, Gz, Py) € L(C? x C?|R?) extends to a continuous

x?y
bilinear mapping

D?x,y),extg*(a7¢$?¢y) : (CI% X CI%) X (CflL X Cflz) - RQ»
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for (o, ¢z, py) € J x *, which is given by

D%x,y),extg* (Oé, ¢$7 ¢y)(Xx> Xy)(wmv %) =
M (¢2)(Xe)(tha)

for (xa, xy) € C} x C} and (14,10y) € C} x C}.
H6) All mappings

Q* x Gy, 3 (6,x) = —xX'(—17(9)) €R,
Q" x Cp 3 (¢,x) = —x(—"(¢2)) €R,
Q" 3¢~ ¢ (—r"(9) €R,

Q"3 ¢ ¢"(—r*(9)) €R

and
Q* x Cy 3 (¢, x) = Dr(J21())(x) €R

are continuous. Therefore, the mapping

Q* x O x C} 3 (¢, x,¥) = Z(¢)(x,¥) € R

is continuous.

Observing the continuity of

Q" >¢— N(¢) R
the mapping

Q" x Ck x C}y 3 (¢, x,¥) — D2, (6)(x) () € R

is continuous and, consequently, the mapping

Q" x Cjy x Ch 3 (v, 9) = M(¢)()(¥) €R
is continuous. Hence,

J x OF x (0}1)4 = (047¢:c7¢anz7Xy7¢xawy) =

D(%):,y),e:rtg* (Od, Pa ¢y)(Xx7 Xy)(%, wy) € R?
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is continuous.

We know that

« _ Z(9) ) ()
D2, () (x, ¥) = TN

holds for all (¢, x,%) € @* x C} x C}. On the other hand

Z@) )W) = —xX'(=r*(9)) Dr(J2,1(8))(¥) - (¢ + ¢' (="(9)))

~X(=r(9)) - [¢" (=r*(6)) Dr (J2,1(9)) (4) + v/ (=7°(9))]

holds for (¢, x,%) € Q* x C} x C}.
Then,
Z* . Q* x C} — L(C}|R),

defined, by

Z#@))W) == =X'(=r*(0)) Dr*(¢)(¥) - (c + ¢'(—17(¢)))

—x(=r*(9)) - [¢" (=7*(9)) Dr*(¢)(v) — Ev' ()]

for (¢, x) € Q* x C} and ¢ € C?, is continuous.
Clearly, Z**(6)(x) () = Z(6)(x)(J21(8)) for (6,X) € Q" x C} and ¢ € C2.

Observing the continuity of

Q*>2¢— N(p) €R

the mapping
Diprar™ : Q* x Cy 3 (6, ) —

g e L(chlR)

is continuous.

Therefore, the mapping
M* : Q* x Cp — L(C;|R)

defined by

M ($)(x) = 1/2- () D2y 17 (9) (X) + 1/4 - a"($) Dr (J2,1(9)) (x) Dr*(9),
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for (¢, x) € Q*xC}, is continuous. The identity M**(¢)(x)(¥) = M(¢)(x)(J2,1(¥))
holds for all (¢, x) € @* x C} and ¢ € C?.
Hence, the mapping

D, ) a9 I X @ x Ol x Ch — L((C,%)Q‘]RQ),

defined by

M (¢2)(Xa) (1ha)
for (a, pu, By, Xa» Xy) € J X Q* x C} x C} and (¢5,¢,) € C? x C2, is con-

tinuous.

It is clear that

D%{E,y),ezt,lg*(a’ Pz, gby)(XI? Xy)(wxv 7[)@/) =

DY, et (@ 0o, 8y) (Xas Xy) (T2,1 (V) J2,1(1hy))

for (ct, Gy Gy Xas Xy) € J X 2 x CL x CL and (¢, 1,) € C2 x C2. O

Lemma 2.0.0.2. If a satisfies a’(0) = —7?/8D? and J C R is an interval
such that oy := /4D € J, then the linearization

L(a) = D(a:,y),e:ctg(aa 0, 0)

of the right hand side of (2.2) in the equilibrium (¢}, ¢;) = (0,0) satisfies
all assumptions L1) to L3) for a € J.

Proof. We have to find the solutions of the characteristic equation of the
robot - problem. The linearization of the right hand side of (2.2) in (0,0) is
given by

¢y(0)
L(a)(¢x, ¢y) =
1/2- a’(O)(¢x(—2D) + ¢:v(0)) — agy(0)

for o € J and (¢, ¢y) € C} x Cj.

The characteristic function is given by
char(z,a) = 2> + az — 1/2 - a'(0) (exp(—2Dz) + 1)
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for o« € J and z € C.
Plugging z = k- 7/4D - i, a/(0) = —7%/8D?% and ag = 7/4D into the
characteristic functions yields

2

1gD2(_k2 tki—i+1), keN.

char(z,a) =

The right hand side of the last expression is not equal to zero unless k£ = 1.
Hence, zg = w/4D-i is a purely imaginary root of the characteristic equation
char(z,a) = 0 given the parameter ap = 7/4D and a’(0) = —7?/8D? and
there is no k € N, k > 1, such that k- 7/4D - i is another solution of the
characteristic equation:

The characteristic function char : C x J — C is continuously differentiable.

By deriving char with respect to z one gets
Dichar(z,a) =2z +a+2D-1/2-d'(0) exp(—2Dz)
for z € C and « € J. Substituting ag, a/(0) and 2y as above yields
Dychar(m/4D -i,7/4D) = 7 /4D + (n/2D + 72 /8D)i # 0.

Therefore, the Implicit Function Theorem yields the existence of an interval
I C J and a parametrization I 5 a — z(a) € Csuch that ag € I, z(ap) = 20
and z(«) is a simple root of the characteristic equation for all a € 1.

It remains to investigate whether the derivative 2z’ in ap = 7/4D has a non-
vanishing real part. Replacing z with z(«) for all a € I in the characteristic

equation and differentiating it with respect to alpha one gets

Dichar(z(), @) - 2'(a) + Dachar (z(), o) =
Z(a) - (22() + a+2D - 1/2-d/(0) exp(—2Dz(a))) + z(cr) = 0.

Plugging in ag = 7/4D, a'(0) = —72/8D? and zy = 7/4D - i and solving
this equation for 2’ yields

—72/8D? — 73/32D? — 72 /16D? - i
|Dychar(m/AD, w /4D - i)|?

2 (m/4D) =

whose real part does not vanish. Therefore, the robot problem satisfies all

assumptions L1) to L3). O
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Theorem 2.0.1. Suppose that the results of the previous lemma are given.
Then the robot - problem (2.1) has a Hopf bifurcation from the equilibrium
(0,0) at parameter o = 7/4D.

Proof. We have seen that the right hand side of (2.2) satisfies all assumptions
H1) to H6). On the other hand by setting ag = 7/4D, a/(0) = —72?/8D? and
2o = w/4D - i the previous lemma shows that the linearization L(«) in the
equilibrium (0,0) € C} x C} satisfies all assumptions L1) to L3). Hence, the
Hopf Bifurcation Theorem (Theorem 1.4.2.1) can be applied which yields
an open interval @) C R such that 0 € @) and a continuously differentiable

mapping
Q3 b (D), dy(b),a(d), T(b)) € CL x Cj x I xR

such that (¢2(0), ¢,(0)) = (0,0) and T'(0) = 8D hold. Hence, for all b € Q,
there exists a periodic solution (2*(b), y*(b)) : R — R x R of the robot prob-
lem with parameter a(b) and period T'(b). Furthermore, (z*(b),y*(b)),_, =
(¢2(b), dy(b)) for all b € Q and (x*(O),y*(O))t:O = (0,0). O

95



Chapter 3

Appendix

3.1 Appendix I: Smoothness of the substitution

operator

Theorem 3.1.1. Let X,Y be Banach spaces, [a,b] C R an interval, U C X
an open subset and f : X X [a,b] — Y a mapping:

Let C(Ja,b],Y) be the space of continuous functions ¢ : [a,b] — Y equipped
with the norm ||d|lc(japy) = sup ||6(s)|ly, for ¢ € C(la,b][Y) and sup-

s€la,b

pose f is continuous. If we set F(xz)(t) := f(x,t) for x € X and t € [a,b]
then F' defines a mapping from X to C([a,b],Y).

Let C'([a,b],Y) be the space of continuously differentiable functions ¢ :
[a,b] — Y with the norm

10l fa,p),y) = max{[|9llc(an),v)s 19 lc(an )}
for ¢ € C([a,b],Y) and suppose f is continuously differentiable:
If we set F(z)(t) := f(x,t) forx € X and t € [a,b] then F defines a map-
ping from X to C1([a,b],Y) with (F(w))/(t) = Daf(z,t)1 for z € X and
t € [a,b].
Let C?%([a,b],Y) be the space of continuously differentiable functions ¢ :
[a,b] — Y with the norm

lllcr vy = max{||ollc(an,y) 19l c o, v), 16" (ap,v)}

for ¢ € C%([a,b],Y) and suppose f is 2 times continuously differentiable.
If we set F(z)(t) := f(x,t) forz € X andt € [a,b] then F' defines a mapping
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from X to C'([a,b],Y) with (F(az))/(t) = Daof(z,t)1 and (F(az))”(t) =
D3f(x,t)(1)(1), forx € X and t € [a,b].

Furthermore, the following results hold:

1. If f is continuous then F is continuous.

2. If f is continuously differentiable then F' is continuously differentiable
8. If f is continuously differentiable then F is continuous.

4. If f is 2 times continuously differentiable then F is 2 times continu-

ously differentiable.

5. If f is 2 times continuously differentiable then F is continuously dif-

ferentiable.
6. If f is 2 times continuously differentiable then F is continuous.

Proof. With no loss of generality let U := X.

For the proof of 1., 2. and 4. we apply Lemma 1.5 in [2], Appendix IV,
which states the following:

Let E and E' be Banach spaces, I C R a compact interval. Let C(I|E)
and C(I|E") be the spaces of continuous mappings ¢ : I — E and ¢ : [ —
E', equipped with the supremum -norm. Let g : E — E' be a k times
continuously differentiable mapping.

Then go ¢, for ¢ € C(I|E) defines a continuous mapping from I to E'. The
substitution operator G : C(I|E) — C(I|E'), defined by G(¢) := g o ¢, for
¢ € C(I|E), is k times continuously differentiable.

We set E/ := Y, F := X xR, I := [a,b] and g := f. The mapping
¢ : X — C(I|E), defined by ¢(z)(t) := (x,t), for z € X and t € I, is linear
and bounded.

Hence, Lemma 1.5 in [2], Appendix IV, yields that g o ¢(x) is an element of
C([a,b]|Y) for z € X and that the mapping F' : X — C([a,b]|Y"), defined by

F(z)(t) = (g0 ¢(2))(t), tEla,0],

for x € X, is continuous, continuously differentiable, 2 times continuously

differentiable, if f is continuous, continuously differentiable, 2 times contin-
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uously differentiable, respectively, with

(DF@)(#) (1) = (D(g0 6(x)()) (1)) (1) = Drf(aw )(R), € [o,],

and

(D2F(2)() (1) = (D?(g00()()) (b, ) k2, ) ) (1) = D3 f(, ) () (ha), ¢ € [a ]

for (x,h, hy,he) € X4

5. First we claim that F(z), z € X is an element of C'([a,b]|Y). Again,
weset B/ ==Y, F:=X xR, I:=]ab],g:=fand ¢ : X — C(I|E), by
¢(z)(t) == (x,t), forz € X and t € I.

Then Lemma 1.5. in [2], Appendix IV, yields that g o ¢(x) is an element of
C([a,b])|Y). Deriving F(z) = g o ¢(z) with respect to ¢ yields

(F(2)' (1) := Dg(6(@)®) ((¢(2))' (1)) = Daf (@)1, t€ [a.b]

Analogously to 1., 2. and 4. one may now apply Lemma 1.5. in [2], Appendix
IV, to get that

D(g o 6(@)() ((6(2))'()
is an element of C([a, b]|Y).
Hence F(z) is an element of C'([a,b]|Y) with (F(:c)),(t) = Dy f(x,t)1 for
x € X and t € [a,b].
Again, analogously to 1., 2. and 4. we can show that

X 32 D(go o)) ((6(2))'()) = Daf(.)1 € C(la, |Y)
is continuously differentiable with
D[D(go6(@)()) ((6())'())|(h) = DiD2f(, ) (W)
for (z,h) € X2
Therefore, F : X — C'([a,b]|Y) is continuously differentiable with
DF(z)(v)(t) = Dy f(, 1)(v)
and
(DP()(v))'(t) = DaD1 f(,£)(v)(1)
for v e X and t € [a, b)].
The proof of 3. and 6. is similar to the proof of 5. O
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3.2 Appendix II: Chain rule for mappings with re-

stricted differentiability conditions

Theorem 3.2.1. Let X,Y,Y' Z be Banach spaces, let Y be continuously
embedded in'Y' and Ay C X and Ay CY and Ay C Y’ be open subsets such
that Ay = A1 NY.

Let the mapping K : Ay CY' — Z be continuously differentiable and let the
restriction K := I~(|A2 Ay CY — Z be 2 times continuously differentiable.
Let the mapping u : Ag C X — As C Y be continuously differentiable.

Let Jyy denote the continuous embedding from Y to Y’ and let mapping
U := Jyyrou be 2 times continuously differentiable.

Then the mapping K ou : Ag — Z is 2 times continuously differentiable.

Proof. Clearly by applying the chain rule the first derivative of K o u in
z € Ay is given by DK (u(z))(Du(z)) € L(X|Z) and is continuous with
respect to x.

Now we have to show that the mapping
Ay C X 3z — DK (u(z)) (Du(z)) € L(X|Z)

is continuously differentiable.

We prove this in two steps:

First step:

We define A : L(Y|Z) x L(X|Y) — L(X|Z) — by A(T,S) := T o S for
(T,S) € L(Y|Z)x L(X|Y)and B : (Agx Ap) C (XxX) — L(Y|Z)xL(X|Y)
by (DK(u(x)),Du(:c’)) for (z,2") € Ag x Ay.

We show that the mapping

AOB:(AOXAO>C(XXX>—>L(X’Z)

has a partial derivative with respect to x in every (z,2’) € Ag x Ap which is
given by D1 (A o B)(z,2') = D*K (u(z)) (Du(x)) (Du(z')) € L(X|L(X|Z)).

Furthermore, we show that the mapping
Di(AoB): (Ag x Ag) C (X x X) — L(X|L(X|2))

is continuous.

On one hand K : As CY — Z is 2 times continuously differentiable. Thus,
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the mapping Ao CY >y — DK(y) € L(Y|Z) has a derivative with respect
to y in every y € Ay which is given by D?K (y) € L*(Y'|Z) for y € As.
u : Ay C X — Y being continuously differentiable it is clear that the

mapping
Ao C X 52— DK (u(z)) € L(Y|2)

has a derivative with respect to « in every o € Ay given by DK (u(z)) (Du(z)) €
L(X|L(Y|Z)). On the other hand Du(z') € L(X|Y') for all 2’ € Ay.
Thus, an application of the chain rule yields that the mapping

AOB:(AQXA())C(XXX)HL(X|Z)

has a partial derivative with respect to = in every (x,2') € Ag x Ay which

is given by
Di(4 0 B)(,a') = DK (u(a)) (Du(@)) ((Du(a) € L(X|L(X|2).
for (z,2") € Ag X Ap. The continuity of
Di(AoB): (Ag x Ag) C (X x X) — L(X|L(X|2))
is a consequence of the continuity of
Ag C X 52" — Du(z') € L(X]|Y)
and

Ap C X 32— D?°K (u(z)) € L*(Y|Z2)

Second step:
Let A and B be defined like in the first step of the proof.
We show that the mapping

AoB: (Ayx Ag) C (X x X) 3 («,2) — L(X|2)

has a partial derivative with respect to z in every (a/,z) € Ag X Ap which
is given by Dy(A o B)(2',z) = DK(u(x’)) (D?u(x)) € L*(X|Z).
Then we show that

Dy(AoB): (Ag x Ag) C (X x X) — L*(X|Z2)
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is continuous.

In order to show this we replace DK with DK and w with @ and de-
fine B : (Ag X Ag) C (X x X) — L(Y'|Z) x L(X|Y") by B(z/,z) :=
(Df((u(ac’)), Dﬂ(x)) and A : L(Y'|Z) x L(X|Y") — L(X|Z) by A(T, S) :=
ToS for (T,5) e LY'|Z) x L(X|Y").

Then the identity A o B = A o B holds.

Now we show that

AoB: (Ag x Ay) C (X x X) — L(X|Z)

has a partial derivative with respect to x in every (z,2’) € Agx Ag. We know

that @ : Ag C X — Y is 2 times continuously differentiable. Therefore, the

mapping
Ap C X 3z~ Di(z) € L(X|Y')

has a derivative in 2 € Ay which is given by D?u(z) € L*(X|Y").
On the other hand DK (u(2')) € L(Y’|Z) for every ' € Aj.
Thus, by an application of the chain rule one gets that the mapping

AoB: (Agx Ag) C (X x X) — L(X|Z)

has a partial derivative with respect to = in every (x,2') € Ay x Ay which
is given by
Dy(AoB)(2',x) = DK (a(2')) (D*u(x)) € L*(X|Z)
for (xz,2') € Ap x Ag. The continuity of
D(AoB): (Ag x Ap) C (X x X) — L*(X|Z2)
is a consequence of the continuity of

Ay C X 32’ — DK(u(z)) € L(Y'|Z)

and
Ag C X 3z D%u(z) € L*(X|Y).

Both steps combined yield that the mapping
Ap C X 52 — DK (u(z)) (Du(z)) € L(X|Z)

is continuously differentiable. O
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3.3 Appendix III: A theorem about the existence

of second derivatives

In this section we want to state a theorem about existence of second deriv-
atives. For the proof of that theorem we will mainly apply a version of a
theorem of van Gils and Vanderbauwhede (to be found as Lemma 2.8 in

chapter 5 of [12]) which we present here:

Theorem 3.3.1. Suppose that Yy, Y, Y1, and A are Banach spaces and
that Yy is continuously embedded in'Y and Y is continuously embedded in
Y1 with embedding operators Jy : Yo — Y and J :'Y — Y1, respectively.
Assume that a mapping f 1Y x A — Y satisfies the following properties:

1. Jf: Y x A — Y] has a partial derivative D1(J f)(y,x) € L(Y'|Y1) with
respect to y in every (y,z) € Y x A.
Furthermore,
Dy(Jf):Y x A— L(Y|Y7)

18 continuous.
There exist mappings f1: Y xA — L(Y|Y) and f{ : Y xA — L(Y1|Y1)
such that the identity

Di(f))(y,x) =Jf (y,2) = fl(y,x) o J, (y,2) €Y x A,
holds.
2. The mapping fo: Yo x A — Y, defined by
foly, ) .= f(Jo(y),x), (y,2) € Yo x A,

has a partial derivative Dy fo(y,x) € L(A|Y") with respect to z in every
(y,x) € Yo x A. Furthermore, the mapping

Dy fo: Yo x A — L(AY)
18 continuous.
3. There exists a constant 0 < g < 1 such that the inequalities
1£(y,2) = £ 2)ly < ally = lly,
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I . 2) vy < g
and
1w 2) Loy < a

hold for (y,y') €Y x Y and z € A.

4. There exists a continuous mapping y5 : A — Yy such that for any
x € A, y*(x) := (Jopoyo)(x) is the unique solution of the fized point
equation y = f(y,x).

Then the mapping y* : A — Y 1is Lipschitz continuous and yj := Joy* : A —
Y1 is continuously differentiable with Dy (x) = J(A*(z)), € A, where, for
each v € A, A*(x) € L(A|Y) is the unique solution of the equation

A= Yy (2), 2) (A) + Dafo(yi(x), z)
in L(AY).

Theorem 3.3.2. Let Y' Y2 X be Banach spaces such that Y? is continu-
ously embedded in Y1 and let B C X, B> C Y, B C Y? be open subsets
such that B = Y2 N By. Let the mapping K : (B; x By) C (X x Y1) = Y?!
be continuously differentiable. Suppose that f((Bl x B3) C Y2 and let the
induced mapping K* : (By x B3) C (X x Y?) — Y2, defined by K*(x,y) :=
K(z,y) for (z,y) € By x B3, be continuously differentiable. Let Jy2y1 de-
note the continuous embedding from Y? to Y and let the mapping

K = Jy2y1 0 K* be 2 times continuously differentiable.

Suppose that for both equations y = K*(x,y) in Y2 and y = K(z,y) in
Y1 the following conditions are satisfied in a point (xo,yo0) € By X Bj:
K (z0,90) = yo = K*(x0,y0) and

| DaK* (0, yo) | Lv2y2) < 1 and |[DaK (20, y0)|l L(y1y1) < 1 such that

Idy> — DoK*(x0,10) : Y? — Y?

and
Idy — Dg.f((xo,yo) A

are isomorphisms.

Let O* C B; and O cC By be open subsets and u* and @ be continuously
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differentiable mappings from O* to B3 and from O to By, respectively, with
u*(20) = yo = w(xo) and solving K(x,u(x)) = u(x) for all x € O and
K*(xz,u*(x)) = u*(z) for all x € O* respectively.

Then there exists an open subset O c O such that the mapping U := 1y is

2 times continuously differentiable.

Proof. We want to apply the Theorem of van Gils and Vanderbauwede (The-
orem 3.3.1) to the fixed point equations for the first derivatives of @ and u*.
As the conditions of the Implicit Function Theorem are satisfied we get that

the following identities for the derivatives of v* and 4,

Du*(z) = DoK*(z,u*(2)) (Du*(z)) + D1 K*(z,u*(z))

in L(X|Y?) and

Dii(z) = Do K (v, i(z)) (Di(z)) + D1 K (v, i(z))

in L(X|Y"), hold. This leads to the fixed point equations

A" = DoK* (z,u*(2)) (A") + D1 K* (z,u*(z))

in L(X|Y?) and

A= DQ.[N((I', u(x)) (/Nl) + D1I~((:U, u(x))

in L(X|Y1).

We will now check all four conditions that are needed in the Theorem of
van Gils and Vanderbauwhede. Following the notation of van Gils and
Vanderbauwhede we set Yy := L(X|Y?), Y := L(X|Y!) and Y7 := Y. Let
Jo : Yo — Y be the given continuous embedding from Yy to Y. We may
suppose that the Theorem of van Gils and Vanderbauwhede is valid if A is an
open subset of a Banach space and set A :== O*NO. Thus, @(z) = Jy (u*(x))
for all z € A.

1. The mapping f : Y x A — Y defined by

F(A.w) = DoR (. Jo(u* (@) ) (A) + DiF (. Jo(u (@)
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for (/Nl, x) € Y x A has a partial derivative with respect to A given by
Dif(4,z) = DJ((x, Jo (u*(x))> e LY]Y)

in every (/Nl,:n) €Y x A.
Furthermore, the mapping

Y x A3 (A,z)— Dif(A z) € LY|Y)

1S continuous.

As in this case Y7 =Y, the following points are clearly satisfied:

e The mapping
Jof: Y xA—-Y,

if J denotes the identity in Y = Y7, has a partial derivative
Di(Jo f)(A,z) € L(Y|Y1) with respect to A in in every (4,z) €
Y x A and the mapping

Di(Jof):Y x A — L(Y|Y1)

1s continuous.

e By defining
VY x A — LY[Y)

and
FV Y x A — LV 1)

by U (A,x)= Dif(A,z) and f{V (4,2) = D1 f(4,z) for (4,z) €
Y x A it follows that the identities

Di(T o f)(A,z) = (T o fV)(A,2) = (1 (A,2) 0 )
are satisfied for (4,z) € Y x A.
2. We claim that the mapping
fo:Yox A=Y

defined by
fo(A*,ac) = f(Jo(A*),x)
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for (A*,z) € Yy x A has a partial derivative D fo(A*,z) € L(A]Y)
with respect to x in every (A*, 3:) € Yy x A.

Furthermore, we claim that the mapping
Yo x A > (A*,z) — Dafo(A*,z) € L(A]Y)

is continuous.

Observing the identity
fo(A*, z) = Dﬂ%(m, u*(z)) (A) + le(a:, u*(z)),

for (A*, x) € Yy x A, it is clear that this is an ultimate consequence of

the assumption on K which is:
(Bix B3) C (X xY?) 3 (2,y) = K(z,y) €Y'

is 2 times continuously differentiable.
Therefore and due to the fact that u* : A — B} C Y2 is continuously
differentiable, both mappings

Yox A (A% z) — Dgf((&?,u*(:c)) (A) ey

and
A>z— DllA((a:,u*(x)) ey

are continuously differentiable.
Therefore, the sum fy of both mappings must be continuously differ-

entiable.
. We claim that there exists a constant ¢ < 1 such that both inequalities
1f(A,z) = f(B,z)lly <qllA- Blly,

and
ID1f (A, ) leviyy < g
hold for (A, B,z) € Y x Y x A.

Due to the continuity of

A5 @ Do (w, Jo(u'()) € LYY,
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and by the fact that

|02 (0, Jo (" @0)) ) vy = ID2K (w0,90) iy < ¢/ < 1

by assumption, there must be a neighborhood O’ C B; of 2y and a

constant ¢ < 1 such that the inequality

ID2 (2, 9o (w* (@) ) ey < @

holds for all z € O'. One can easily show that DQK(.T, Jo (u*(m)))
defines a bounded linear mapping from L(X|Y!) to L(X|Y!) with

Dg.f((x, Jo (u*(m))) (A) := Dg.f((x, Jo (u*(x))) oA
for A€ L(X|Y!) and

R O L G ) e

L(X|Y1>) '
Hence, the inquality

ID2E (i, Jo (u(2)) )| <q

L(L(X|Y1)

L(X|Y1)>

holds for all z € O'. With no loss of generality we suppose that O’ = A.

Therefore, both inequalities

”le(A7x)HL(Y|Y) =

<

||D2f(<$a Jo (“*(x)» HL(L(X|Y1)

L(X|Y1)>

and

1f(A,z) = f(B,z)lly =
HDQf((x, Jo(u*(x))> (A-B)|y

< g¢llA=Blly = qllA = Blly
hold for all (4,B,z) € Y xY x A as requested. As in this case the
identity D1 f(A,z) = O (4,2) = £V (A, z) holds for (4,z) € Y x A

both inequalities
1D (A2 lpvwy < a0 1 (A 2) lnam) < 4
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have to hold, too.

4. The last condition is satisfied by assumption:
There exists a continuously differentiable mapping u* : A — B C Y?
such that u*(z) = K*(z,u*(z)) for all z € A. Therefore, the derivative

of u* with respect to x satisfies
Du*(z) = Do K*(z,u*(2)) (Du*(x)) + D1 K*(z,u*(z))
in all z € A. Hence, Jo(Du*(z)) € Y is the unique solution of
A= f(A, :c)
for all x € A.

These four conditions being satisfied Theorem 3.3.1 yields that Jy o Du* :
A — Y is continuously differentiable. By setting O := A we get that the

mapping i := Jo o u*|5 = 14 is 2 times continuously differentiable. O]
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