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Zusammenfassung

Das Ziel dieser Dissertation ist der Beweis eines Hopfverzweigungssatzes

für Differentialgleichungen mit zustandsabhängiger Verzögerung, wie es ihn

für gewöhnliche und partielle Differentialgleichungen sowie für Differential-

gleichungen mit konstanter Verzögerung bereits gibt.

Dieser Satz sollte auf Gleichungen der folgenden Form angewandt werden

können:

x′(t) = f
(
α, x

(
t− r(xt)

))
, t ∈ R, α ∈ J ⊂ R.

Hierbei ist

f : J × Rn → Rn,

J ⊂ R ein Intervall, eine 2 - fach stetig differenzierbare Abbildung. Das

Segment xt, t ∈ R, ist ein Element des Raumes C1([−h, 0]|Rn) stetig dif-

ferenzierbarer Funktionen φ : [−h, 0] → Rn, h > 0. In vielen Beispielen wird

r implizit durch eine Gleichung wie

r = x(−r) + x(0) + D,

D eine nichtnegative Konstante, gegeben.

Wenn man von Hopfverzweigung spricht, erwartet man die folgende Situa-

tion:

Es sei C([−h, 0]|Rn) der Raum stetiger reellwertiger Funktionen φ : [−h, 0] →
Rn.

Für α ∈ J sei L(α) : C([−h, 0]|Rn) → Rn ein beschränkter linearer Ope--

rator. Es sei F (α, φ) := f
(
α, φ

(−r(φ)
)) − L(α)φ, für φ ∈ C1([−h, 0]|Rn)

und α ∈ J .

Damit wird die Ausgangsgleichung in die Form

x′(t) = L(α)xt + F (α, xt), t ∈ R, α ∈ J

umgestellt.

Es gebe ein Gleichgewicht, das heisst eine konstante Funktion φ∗ ∈ C([−h, 0]|Rn),

so dass F
(
α, φ∗

)
= 0 für alle α ∈ J gilt.

Darüberhinaus gebe es einen Zweig einfacher Eigenwerte λ(α), α ∈ I ⊂ J ,

I ⊂ J ein Intervall, die zur linearen parametrisierten Gleichung

y′(t) = L(α)yt, t ∈ R, α ∈ J,
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gehören und die imaginäre Achse bei einem kritischen Parameter α0 ∈ I

kreuzen.

Dann erwartet man, eine Parametrisierung

R ⊃ Q 3 a 7→ (
α(a), φ(a), T (a)

) ∈ J × C1([−h, 0]|Rn)× R,

Q ⊂ R ein Intervall, zu erhalten, für die das Folgende gilt:

0 ∈ Q. Für jedes a ∈ Q existiert eine T (a) - periodische Lösung x∗(a) der

obigen Gleichung zum Parameter α(a) mit x∗(a)t=0 = φ(a) für a ∈ Q, sowie

α(0) = α0, λ(0) = λ0 und φ(0) = φ∗.

Eine der ersten Arbeiten zum Thema wurde von Hal Smith (siehe [9])

veröffentlicht:

Bei der Betrachtung einer Differentialgleichung mit zustandsabhängiger Verzö-

gerung setzte er L(α)χ := D2f
(
α, φ∗(0)

)(
χ(−r(φ∗))

)
für χ ∈ C([−h, 0]|Rn),

und erhielt einen Zweig von Eigenwerten λ(α), α ∈ I, in Verbindung mit

L(α), α ∈ I, der die imaginäre Achse bei einem kritischen Parameter α0

kreuzte. Der Ansatz für L(α), α ∈ I, stammte dabei von Cooke und Huang

(siehe [1]). Smith ging davon aus, dass bei dem Beispiel eine Hopfverzwei-

gung vorlag. Aber er konnte seine Vermutung nicht beweisen.

Als die Arbeit an dieser Dissertation begann, war es naheliegend zu ver-

suchen, ähnlich wie in [7] die Hopfverzweigung mit Hilfe von Dimensionsre-

duktion über eine invariante Zentrumsmannigfaltigkeit zu beweisen. Dann

hätte man auf das reduzierte System einen Verzweigungssatz für gewöhnliche

Differentialgleichungen, wie er in [7] zu finden ist, anwenden können. Die

Existenz einer Lipschitzstetigen Zentrumsmannigfaltigkeit in der Nähe eines

Gleichgewichtes bei Differentialgleichungen mit zustandsabhängiger Verzö -

gerung wurde in [4] bewiesen. Darüberhinaus gibt es derzeit noch keine

weiteren Erkenntnisse zur Glattheit von Zentrumsmannigfaltigkeiten für

Differentialgleichungen mit zustandsabhängiger Verzögerung. Bekannt sind

bislang lediglich Ergebnisse über die Existenz glatter instabiler Mannig-

faltigkeiten in der Nähe eines hyperbolischen Gleichgewichtes, veröffentlicht

in [6] und [5], sowie über die Existenz eines Halbflusses auf einer Lösungs -

mannigfaltigkeit, veröffentlicht in [11].

Wir werden deshalb die Hopfverzweigung mittels eines funktionalanalyti-

schen Ansatzes beweisen, der ohne die Existenz von Zentrumsmannig-
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faltigkeiten und eines Halbflusses auskommt. Dieser Ansatz verwendet den

Satz über die Fredholm - Alternative, zu finden als Satz 1.1.4.1 im er-

sten Abschnitt unseres ersten Kapitels. Mit Hilfe dieses Satzes konnte man

Hopfverzweigungen für Differentialgleichungen mit konstanter Verzögerung

in [3], Kapitel 11.1, Hopf bifurcation, beweisen.

Im ersten Kapitel dieser Dissertation, Hopf bifurcation, werden wir die Be-

weisschritte des Hopfverzweigungssatzes aus [3] unter Berücksichtigung der

besonderen Differenzierbarkeitseigenschaften der Abbildung F , zusammenge-

fasst als H 1) bis H 6) am Anfang des ersten Kapitels, modifizieren. Auf diese

Weise werden wir einen Hopfverzweigungssatz für Differentialgleichungen

mit zustandsabhängiger Verzögerung mit allen dazu notwendigen Voraus-

setzungen präsentieren und beweisen können. Die exakte Herangehensweise

an diesen Beweis wird im ersten Kapitel, Abschnitt General approach of the

proof of local Hopf- bifurcation, beschrieben werden.

Im zweiten Kapitel, The robot arm, werden wir eine Anwendung beschreiben,

um zu zeigen, dass das Phänomen Hopfverzweigung im Falle von Differen-

tialgleichungen mit zustandsabhängiger Verzögerung tatsächlich auftritt:

Das Differentialgleichungssystem, welches wir betrachten werden, beschreibt

die Bewegung eines Roboterarmes über einem darunterliegenden Objekt.

Der Roboterarm berechnet seine Position aus der Laufzeit eines Signales,

das zum Zeitpunkt t − r vom Arm ausgesandt und vom Objekt reflektiert

wird, um zum Zeitpunkt t wieder vom Arm empfangen zu werden.

Dieses System wurde in [11] als ein Beispiel für den Halbfluss auf der Lösungs-

mannigfaltigkeit präsentiert.

Das letzte Kapitel Appendix enthält wichtige Werkzeuge, die für den Beweis

der Hopverzweigung nützlich sein werden.

Wir werden mit einem Abschnitt General settings beginnen, in dem wir De-

finitionen und Schreibweisen präsentieren werden, die für die gesamte Arbeit

gültig sein werden.
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Introduction

The goal of this doctoral dissertation is the proof of a local Hopf bifurcation

Theorem for delay differential equations with state - dependent delays such

as it is known for ordinary differential equations, partial differential equa-

tions or delay differential equations with constant delays.

This theorem should be applicable to parametrized delay differential equa-

tions of the form

x′(t) = f
(
α, x

(
t− r(xt)

))
, t ∈ R, α ∈ J ⊂ R.

Here

f : J × Rn → Rn,

J ⊂ R an interval, is 2 times continuously differentiable. The segment xt,

t ∈ R, is an element of the space C1([−h, 0]|Rn) of continuously differentiable

real - valued functions φ : [−h, 0] → Rn, h > 0. In many examples r is

implicitly given by an equation like

r = x(−r) + x(0) + D,

D a nonnegative constant.

When dealing with Hopf bifurcation one considers the following situation:

Let C([−h, 0]|Rn) be the space of continuous real - valued functions φ :

[−h, 0] → Rn.

For α ∈ J let L(α) : C([−h, 0]|Rn) → Rn be a bounded linear operator. Let

F (α, φ) := f
(
α, φ

(−r(φ)
))− L(α)φ, for φ ∈ C1([−h, 0]|Rn) and α ∈ J .

Hence, our equation becomes

x′(t) = L(α)xt + F (α, xt), t ∈ R, α ∈ J.

Suppose there exists an equilibrium, i.e., a constant function φ∗ ∈ C1([−h, 0]|Rn),

such that F
(
α, φ∗

)
= 0 for all α ∈ J .

Furthermore, suppose there exists a branch of simple eigenvalues λ(α), α ∈
I ⊂ J , I ⊂ J an interval, belonging to the linear parametrized functional

differential equation

y′(t) = L(α)yt, t ∈ R, α ∈ J,
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which crosses the imaginary axis at a critical parameter α0 ∈ I. (See detailed

explanation in 1.1.2 and 1.1.3)

Then one expects to get a parametrization

Q ⊂ R 3 a 7→ (
α, (a), φ(a), T (a)

) ∈ J × C1(R|Rn)× R,

Q ⊂ R an interval, such that the following holds:

0 ∈ Q. For every a ∈ Q, there exists a periodic solution x∗(a) : R → Rn

of the equation above with parameter α(a), period T (a) and x(a)t=0 = φ(a).

Furthermore, α(0) = α0, φ(0) = φ∗ and λ(0) = λ0.

One of the first papers on Hopf bifurcation for state dependent delay equa-

tions was published by Hal Smith, [9]: When investigating an example of

delay differential equations he set L(α)χ := D2f
(
α, φ∗(0)

)(
χ(−r(φ∗))

)
, for

χ ∈ C([−h, 0]|Rn), and observed a branch of simple eigenvalues λ(α), α ∈ I

associated with L(α), α ∈ I, crossing the imaginary axis at a critical para-

meter α0. The Ansatz for L(α), α ∈ I, was motivated by Cooke and Huang,

[1]. Consequently, he supposed there might be a Hopf bifurcation. But he

could not give a proof of his hypothesis.

When starting the work on this thesis the first idea of proving Hopf bifur-

cation was to follow the standard approach of reducing the dimension via

invariant finite - dimensional center manifolds as described in [7] and to ap-

ply a Hopf bifurcation Theorem for ordinary differential equations also to

be found in [7]. But yet, we have no center manifolds of class C2 associated

with our problem of delay differential equations. There are only results on

the following issues:

Existence of centermanifolds close to a nonhyperbolic equilibrium as stated

in [4], existence of unstable manifolds close to a hyperbolic equilibrium as

stated in [6] and [5], and existence of a C1 - semiflow on a solution manifold

as stated in [11].

Therefore, we will proof Hopf bifurcation by applying a functionalanalytic

approach which avoids the existence of a semiflow and a centermanifold.

This approach uses the Fredholm alternative Theorem 1.1.4.1 as stated in

the first section of our first chapter. Given that theorem one was able to

prove Hopf bifurcation in the case of differential equations with constant de-

lays in [3], chapter 11.1, Hopf bifurcation. In the first chapter of this thesis,
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Hopf bifurcation, we will modify the steps of the proof of Hopf bifurcation in

[3]. The differentiability properties of the mapping F (assumed as H 1) to

H 6) at the beginning of the first chapter) make this approach more difficult

than the original one in [3]. A detailed description of the proof is contained

in the first section of chapter 1, General approach of the proof of local Hopf-

bifurcation.

In the second chapter, The robot arm, we will give an example in order

to show that Hopf bifurcation really occurs in the case of delay differential

equations with state dependent delays:

The system of delay differential equations we will concentrate on describes

the movement of a robot arm over an object below. The robot arm com-

putes its position from the running time r of a signal of speed c, emitted at

time t− r, reflected by the object and absorbed at time t.

This system was introduced in [11] as an example for the semiflow on the

solution manifold.

The last chapter, Appendix, contains some important tools which will be

useful for the proof of Hopf bifurcation.

We will start by introducing some general settings which will be used through-

out all chapters.
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0.1 General Settings

Let T ∈ R be a positive real number, let n ∈ N, i ∈ {0, 1, 2}.
Ci denotes the Banach space of i - times continuously differentiable functions

u : [0, T ] → Rn equipped with the norm

‖u‖Ci := max
0≤s≤i

sup
t∈[0,T ]

‖u(s)(t)‖Rn

for u ∈ Ci where u(i)(t) denotes the ith derivative of u in t ∈ [0, T ].

For any (2 times ) continuously differentiable function x : I → Rn, where

I ⊂ R is an interval, we will also denote the first (and second derivative) of

x in s ∈ I by x′(s) (and x′′(s)).

Ci
T denotes the space of i - times continuously differentiable T - periodic

functions u : R → Rn, equipped with the norm ‖u‖Ci
T

:= ‖u|[0,T ]‖Ci for

u ∈ Ci
T .

Let h > 0 be a real number. Ci
h denotes the space of i - times continuously

differentiable functions φ : [−h, 0] → Rn, equipped with the norm

‖φ‖Ci
h

:= max
0≤s≤i

sup
θ∈[−h,0]

‖φ(s)(θ)‖Rn

for φ ∈ Ci
h. We set C0

h = Ch. For any i - times continuously differentiable

mapping x : R → Rn and t ∈ R we define the segment xt ∈ Ci
h by xt(θ) :=

x(t + θ), for θ ∈ [−h, 0].

Let B and D be Banach spaces. Let L(B|D) denote the space of bounded

linear mappings χ : B → D, equipped with the norm

‖χ‖L(B|D) := sup
b ∈ B

‖b‖B = 1

‖χ(b)‖D

for χ ∈ L(B|D).

Let B1 and B2 be Banach spaces, let O1 ⊂ B1 and O2 ⊂ B2 open sub-

sets. Then L(B1, B2|D) denotes the space of bounded bilinear mappings

χ : B1 ×B2 → D, equipped with the norm

‖χ‖L(B1,B2|D) := sup
(b1, b2) ∈ B1 ×B2

‖b1‖B1 = 1, ‖b2‖B2 = 1

‖χ(b1)(b2)‖D
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for χ ∈ L(B1, B2|D). Let L2(B|D) denote the space of bounded symmetric

bilinear mappings χ : B ×B → D. We can equip that space with the norm

‖χ‖ := sup
(b1, b2) ∈ B ×B

‖b1‖ = 1, ‖b2‖B = 1

‖χ(b1)(b2)‖D

for χ ∈ L2(B|D).

One can easily show that this norm is equivalent to

‖χ‖ := sup
b ∈ B

‖b‖ = 1

‖χ(b)(b)‖D

for χ ∈ L2(B|D). So we set

‖χ‖L2(B|D) := sup
b ∈ B

‖b‖ = 1

‖χ(b)(b)‖D

for χ ∈ L2(B|D).

For any continuously differentiable mapping

γ : (O1 ×O2) ⊂ (B1 ×B2) → D,

j ∈ {1, 2}, let

Djγ(x1, x2) ∈ L(Bj |D)

denote the partial derivative of γ with respect to xj in (x1, x2) ∈ O1 ×O2.

For any 2 times continuously differentiable mapping

γ : (O1 ×O2) ⊂ (B1 ×B2) → D,

j ∈ {1, 2}, i ∈ {1, 2},

Dj(Diγ)(x1, x2) ∈ L
(
Bj |L(Bi|D)

)

denotes the partial derivative of Diγ(x1, x2) with respect to xj in (x1, x2) ∈
O1 ×O2. γ being 2 times continuously differentiable the identity

Di(Dj)γ(x1, x2)(bj)(bi) = Dj(Di)γ(x1, x2)(bi)(bj)
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holds for i, j = 1, 2, bi ∈ Bi and bj ∈ Bj .

Therefore, we can define DiDjγ(x1, x2) = DiDjγ(x1, x2) as an element of

L2(Bi, Bj |D) by setting DiDjγ(x1, x2)(bi)(bj) := Di(D2
j )γ(x1, x2)(bi)(bj) for

(b, b′) ∈ Bj × Bj . In the case i = j = 2 we say that DiDiγ(x1, x2) =

D2
i γ(x1, x2) ∈ L2(Bi|D) is the second partial derivative of γ with respect to

xi in (x1, x2) ∈ O1 ×O2.

If

γ : I ⊂ R→ D,

I ⊂ R an open subset, is a continuously differentiable mapping then we set

Dγ(x)1 := Dγ(x)(1)

We will often write γ′(x) instead of Dγ(x)1, for x ∈ I.

If

γ : I ⊂ R→ D

is a 2 times continuously differentiable mapping then we will often write

γ′′(x) instead of D2γ(x)(1)(1), for x ∈ I.

We finish by recalling the definition of some standard symbols - and nota-

tions which will be valid throughout the whole dissertation:

a) For any matrix B ∈ Rn×m the transposed matrix is denoted by Bt ∈
Rm×n.

b) N denotes the set of natural numbers {1, 2...}.

c) Z denotes the set of integers {...− 2,−1, 0, 1, 2...}.

d) Q denotes the set of rational numbers {p
q , p ∈ Z, q ∈ N \ {0}}.

e) R denotes the set of real numbers.

f) C denotes the set of complex numbers.
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Chapter 1

Hopf bifurcation

1.1 General approach of the proof of local Hopf-

bifurcation

1.1.1 General Assumptions

Let J ⊂ R be an interval, Ω ⊂ C1
h and Ω∗ ⊂ C2

h be open subsets such that

Ω∗ = Ω ∩ C2
h. Let g : J × Ω → Rn be a mapping satisfying the following

assumptions:

H 1): The mapping g : J × Ω → Rn is continuously differentiable. There

exists a constant function φ∗ ∈ Ω∗ such that g(α, φ∗) = 0 for all

α ∈ J .

H 2): For any (α, φ) ∈ J×Ω the partial derivative D2g(α, φ) ∈ L(C1
h|Rn) of g

with respect to φ extends to a bounded linear mapping D2,extg(α, φ) :

Ch → Rn.

H 3): The mapping

J × Ω× Ch 3 (α, φ, χ) 7→ D2,extg(α, φ)(χ) ∈ Rn

is continuous.

H 4): The mapping g∗ := g|J×Ω∗ is 2 times continuously differentiable.
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H 5): The second partial derivative D2
2g
∗(α, φ) ∈ L2(C2

h|Rn) of g∗ with re-

spect to φ in (α, φ) ∈ J×Ω∗ extends to a continuous bilinear mapping

D2
2,extg

∗(α, φ) : C1
h × C1

h → Rn.

H 6): Let JC2
h,C1

h
denote the continuous embedding from C2

h to C1
h.

The mappings

J × Ω∗ × C1
h × C1

h 3 (α, φ, χ1, χ2) 7→ D2
2,extg

∗(α, φ)(χ1)(χ2) ∈ Rn

and

D2
2,ext,1g

∗ : J × Ω∗ × C1
h → L(C2

h|Rn),

defined by

D2
2,extg

∗(α, φ)(χ)
(
JC2

h,C1
h
(ψ)

)
,

for (α, φ, χ) ∈ J × Ω∗ × C1
h and ψ ∈ C2

h, are continuous.

Note that H 3) does not include the continuity of

J × Ω 3 (α, φ) 7→ D2,extg(α, φ) ∈ L(Ch|Rn).

H 6) does not include the continuity of

J × Ω∗ 3 (α, φ) 7→ D2
2,extg

∗(α, φ) ∈ L2(C1
h|Rn).

In this work we will consider the problem of Hopf bifurcation for a differential

equation like

(1.1) x′(t) = g(α, xt), t ∈ R, α ∈ J

where the function g satisfies all assumptions H1) to H6).

We assume the linearization L(α) := D2,eg(α, φ∗), α ∈ J , to have a branch

of simple eigenvalues λ(α) ∈ C, α ∈ I ⊂ J which crosses the imaginary

axis at a critical parameter α0 ∈ I (an exact definition follows in section

1.1.3). As we described in the introduction we want to get an open intervall

0 ∈ Q ⊂ R such that for every a ∈ Q there exists a periodic solution x∗(a)

of equation (1.1) with parameter α(a), period T (a) and x∗(a)t=0 = φ(a).

14



Furthermore, the identities α(0) = α0, φ(0) = φ∗ and λ(0) = λ0 should

hold.

We will prove the Hopf Bifurcation Theorem by applying the Fredholm Al-

ternative Theorem as stated by 1.1.4.1. This theorem yields necessary and

sufficient conditions for the existence of periodic solutions of the following

nonautonomous equation

(1.2) x′(t) = Lxt + f(t),

where L ∈ L(Ch|Rn) and f : R→ Rn is a continuous T - periodic function.

Therefore, we will consider equation 1.1 as a perturbation of the linear

autonomous equation

y′(t) = L(α0)yt.

First, we recall some basic knowledge about linear problems which we will

need throughout the whole thesis.

1.1.2 Linear problems

Let L ∈ L(Ch|Rn). The linear functional differential equation

(1.3) y′(t) = Lyt, t ∈ R

leads to a semigroup of continuous operators T (t)t≥0:

For t ≥ 0 the operator T (t) maps φ ∈ Ch onto the segment yφ
t ∈ Ch which

is the solution of (1.3) at time t ≥ 0, satisfying yφ
0 = φ.

The infinitesimal generator A : D(A) ⊂ Ch → Ch is defined in the following

way:

D(A) := {φ ∈ Ch| lim
ε→0

T (ε)(φ)− φ

ε
exists in Ch}

and

A(φ) := lim
ε→0

T (ε)(φ)− φ

ε

for φ ∈ D
(
A

)
.

One can show that D(A) = {φ ∈ C1
h|φ′(0) = Lφ} and A(φ) = φ′ for

φ ∈ D(A).

The spectrum of A consists of the roots of the characteristic function

char(z) = det
((

L exp(z)j

)
1≤j≤n

− IdRn · z
)
, z ∈ C.
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Here,
(
exp(z)j

)
1≤j≤n

∈ Ch is given by exp(z)j(θ) := ez·θ · ej , where ej

denotes the jth unit - vector in Rn, for θ ∈ [−h, 0] and 1 ≤ j ≤ n.

The spectrum is discrete, and every eigenvalue λ of A generates a finite

- dimensional generalized eigenspace Eλ ⊂ Ch, which is invariant under

T (t)t≥0.

T (t), t ≥ 0 extends to a group T (t), t ∈ R, on Eλ. Hence, T (t)φ = yφ
t solves

(1.3) for all t ∈ R and φ ∈ Eλ.

Furthermore, all eigenfunctions φ ∈ Eλ are C∞. If φ ∈ Eλ, all φ′, φ′′ etc.

are elements of Eλ.

Thus, we can define continuous embeddings JEλ,C0 , JEλ,C1 and JEλ,C2 from

Eλ to C0, C1 and C2 respectively:

Let yφ(t) := yφ
t (0), for φ ∈ Eλ and t ∈ [0, T ]. Then JEλ,Ci(φ)(t) := yφ(t),

for i ∈ {0, 1, 2}. The continuity of JEλ,C0 is a consequence of the fact that

all mappings Ch 3 φ 7→ yφ
t , t ≥ 0, are continuous.

The continuity of JEλ,Ci , i ∈ {1, 2}, follows from the fact that all JEλ,Ci(Eλ),

i ∈ {0, 1, 2}, are equal and finite - dimensional, and that norms on finite

spaces are equivalent.

If for any eigenvalue λ0 ∈ C of A, Eλ0 is such that yφ
t , t ∈ R, is T - periodic

for all φ ∈ Eλ0 , we can analogously define continuous embeddings JEλ0
,C0

T
,

JEλ0
,C1

T
and JEλ0

,C2
T

from Eλ0 to C0
T , C1

T and C2
T respectively.

Now we can exactly explain what we mean by a branch of eigenvalues λ(α) ∈
C, α ∈ I ⊂ J , associated with L(α), which crosses the imaginary axis at a

critical parameter α0.

1.1.3 First hypothesis for Hopf bifurcation

When dealing with Hopf bifurcation we assume that the linearization L(α),

α ∈ J , satisfies the following conditions:

There exists an interval I ⊂ J and α0 ∈ I and a parametrization I 3 α 7→
λ(α) ∈ C onto eigenvalues of the infinitesimal generator A(α) belonging to

the continuous semigroup T (α)(t)t≥0 associated with L(α).

The parametrization I 3 α 7→ λ(α) ∈ C must satisfy the following proper-

ties:

L 1): λ(α0) = λ0 = ω · i, ω = 2π
T a real number, is a purely imaginary
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simple eigenvalue of the infinitesimal generator A(α0) of the semigroup

T (α0)(t)t≥0 associated with L(α0). There exists no further eigenvalue

of A(α0) but λ̄0 = −ω · i.

L 2): The mapping I 3 α → λ(α) ∈ C is continuously differentiable with

<[(λ′(α0))] 6= 0.

L 3): λ(α) for α ∈ I is a simple eigenvalue of the infinitesimal generator

A(α) belonging to the semigroup T (α)(t)t≥0 associated with L(α).

1.1.4 The Fredholm alternative Theorem, necessary and suf-

ficient conditions for the existence of periodic solutions

of 1.1

Let k ∈ N and P be the k - dimensional space of continuous T - periodic

solutions of

(1.4) y′(t) = Lyt.

There exists a basis φ1, ..., φk of P such that φt
j(s) · φl(s) = δjl for j, l ∈

{1, ..., k} and s ∈ R. We set Φ :=
(
φ1, ..., φk

)
.

The Fredholm alternative Theorem can be stated as follows:

Theorem 1.1.4.1. (Fredholm alternative, see Corollary 4.1 in Chapter 6 of

[3]) The necessary and sufficient condition for the existence of T - periodic

solutions of (1.2) is
T∫

0

Φt(s)f(s)ds = 0.

Furthermore, there exists a continuous projection J : C0
T → P and a bounded

linear operator K : (Id − J)(C0
T ) → C0

T such that K(f) is the unique T -

periodic solution of (1.2) for f ∈ (Id− J)(C0
T ) .

This leads us to the approach of finding periodic solutions of (1.1), which

was used in [3], chapter 11.1, Hopf bifurcation:

Let Φ∗ : R→ Rn be a constant function such that Φ∗|Ch
= φ∗. Let x : R→

Rn be a continuously differentiable function. Let β ∈ (−1/2, 1/2), t ∈ R.

Let u : R→ Rn be defined by u(t) := x
(
t · (1 + β)

)
+ Φ∗

(
t · (1 + β)

)
. Then
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the identity u
(
τ + θ/(1+β)

)
:= x(t+ θ)−Φ∗(t+ θ) holds for τ := t/(1+β)

and θ ∈ [−h, 0].

Let uτ ∈ C1
h be defined by uτ (θ) := u(τ + θ) for τ ∈ R and θ ∈ [−h, 0].

Let uτ,β ∈ C1
h be defined by uτ,β(θ) := u

(
τ + θ/(1 + β)

)
for τ ∈ R and

θ ∈ [−h, 0].

Then xt = uτ,β for t = (1 + β)τ and x is a periodic solution of (1.1) with

period (1 + β) · T if and only if u is a periodic solution of

(1.5) u′(τ) = (1 + β) · g(
α, uτ,β + φ∗), τ ∈ R, α ∈ J

with period T .

Let L : J → L(Ch|Rn) be given by L(α) = D2,extg
(
α, φ∗) for α ∈ J .

We define

g : J × Ω× R→ Rn

by

g(α, φ, β) := (1 + β)g(α, φ + φ∗),

for (α, φ, β) ∈ J × Ω× R, and

G : J × Ω× Ω× R→ Rn

by

G(α, φ, χ, β) := g(α, φ, β)− L(α0)χ,

for (α, φ, χ, β) ∈ J × Ω× Ω× R. Then we may rewrite (1.5) as

u′(τ) = L(α)uτ + G(α, uτ,β , uτ , β), τ ∈ R, α ∈ J, β ∈ (−1/2, 1/2)

which is a perturbation of the linear autonomous equation

(1.6) y′(t) = L(α0)yt.

From here on we assume the space P of T - periodic solutions of (1.6) to

have dimension 2. (Note that in L 1) we requested λ0 = ω · i to be simple)

Let Φ1(α0), Φ2(α0) denote a basis of P and let Φ(α0) =
(
Φ1(α0), Φ2(α0)

)
.

We recall a fact which is well known from the case of linear ordinary differ-

ential equations in dimension 2:
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For any p ∈ P there exist (a, b) ∈ R×R such that p(τ − b) = Φ(α0)(τ)(a, 0)t

for all τ ∈ R.

Hence, as a consequence of Theorem 1.1.4.1 u ∈ C1
T will be a T - periodic

solution of (1.5) if and only if there exist (a, b) ∈ R×R such that v, defined

by v(τ) := u(τ − b), for τ ∈ R, is a solution of both equations

(1.7) v(·) = Φ(α0)(·)(a, 0)t + (K ◦ [Id− J])
(
G(α, v·,β, v·, β)

)

and

(1.8) 0 =

T∫

0

Φ(α0)t(s)G(α, vs,β , vs, β)ds

for τ ∈ R, α ∈ J and β ∈ (−1/2, 1/2). Considering that the map g is now

restricted by the properties H1) to H6) we need to show that the equations

(1.7) and (1.8) yield a continuously differentiable mapping Ô 3 a 7→ û ∈ C1
T

onto solutions of both equations.

1.1.5 Steps of the proof of Hopf bifurcation

We will begin in Section 1.2 dealing with the general case of higher deriva-

tives of mappings with restricted differentiability properties. In Section 1.3

we will apply these results to the mapping

(1.9) J × Ω̂× (−1/2, 1/2) 3 (α, u, β) 7→ G(α, u·,β, u·, β) ∈ C0
T .

Here, Ω̂ ⊂ C1
T is an open subset such that (uτ,β , uτ ) ∈ Ω× Ω for u ∈ Ω̂ and

(τ, β) ∈ R× (−1/2, 1/2).

Having established the differentiability properties of the map 1.9 we will

concentrate on the proof of Hopf bifurcation in Section 1.4. This proof will

be divided into two parts:

First part:

We will use the results on the mapping (1.9) in order to solve equation (1.7).

This is more difficult than proofs of Hopf bifurcation results which apply to

partial differential equations or delay equations with constant delay.

Due to the particular differentiability properties of g from assumption H1)

- H6), the Implicit Function Theorem will yield mappings

(1.10) Õ 3 (α, a, β) → ũ(α, a, β) ∈ C1
T
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and

(1.11) O∗ 3 (α, a, β) → u∗(α, a, β) ∈ C2
T

onto solutions of (1.7) which are continuously differentiable. Here Õ and

O∗ are suitable subsets of J × R × (−1/2, 1/2). But we need one of these

mappings to be 2 times continuously differentiable. This will be achieved

by an application of Theorem 3.3.2 from Appendix III, to both mappings

(1.10) and (1.11). Theorem 3.3.2 will yield a subset Ô ⊂ J×R×(−1/2, 1/2)

and a 2 times continuously differentiable mapping

(1.12) Ô 3 (α, a, β) → û(α, a, β) ∈ C1
T

which satisfies ũ|Ô = û.

Second part:

We will then follow a standard approach of proving Hopf bifurcation:

We will insert (1.10), (1.11) and (1.12) into equation (1.8) and solve the

resulting equation for α and β as a function of a.

20



1.2 Higher derivatives for mappings with restricted

differentiability properties

In this section we suppose the following:

Let A,B, C, D, E be Banach spaces such that both B and C are dense in

C and E respectively. Let Ω1 ⊂ C, Ω∗1 ⊂ B and Ω2 ⊂ A be open subsets

such that Ω∗1 = Ω1 ∩ B. Let k ∈ N be an integer and ∆ ⊂ Rk be an open

bounded subset.

Let h, j and j be mappings for which we make the following assumptions:

h 1): h : Ω1 ⊂ C → D is continuously differentiable.

h 2): For every c ∈ Ω1 ⊂ C the first derivative Dh(c) ∈ L(C|D) of h with

respect to c extends to a linear continuous mapping

Dexth(c) : E → D.

h 3): The mapping

Ω1 × E 3 (c, e) 7→ Dexth(c)(e) ∈ D

is continuous.

h 4): h∗ := h|Ω∗1 : Ω∗1 ⊂ B → D is 2 times continuously differentiable.

h 5): For every b ∈ Ω∗1 ⊂ B the second derivative D2h∗(b) ∈ L2(B|D) of h∗

with respect to b extends to a bilinear continuous mapping

D2
exth

∗(b) : C × C → D.

h 6): Let JB,C denote the continuous embedding from B to C.

Both mappings

Ω∗1 × C × C 3 (b, c, c′) 7→ D2
exth

∗(b)(c)(c′) ∈ D

and

D2
ext,1h

∗ : Ω∗1 × C → L(B|D),
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defined by

D2
exth(b)(c)

(
JB,C(b′)

)
,

for (b, c) ∈ Ω∗1 × C and b′ ∈ B, are continuous.

j 1): j : Ω2 × ∆ → Ω∗1 ⊂ B is continuous. For every s ∈ ∆ the mapping

j(·, s) : A → B is linear and bounded. Furthermore, sup
s∈∆

‖j(·, s)‖L(A|B) <

∞.

j 2): The mapping

j∗ := JB,C ◦ j : Ω2 ×∆ → Ω1 ⊂ C

is continuously differentiable. For every s ∈ ∆ the mapping

D2j
∗(·, s) : A → L(Rk|C) is linear and bounded.

Furthermore, sup
s∈∆

‖D2j
∗(·, s)‖L(A,Rk|C) < ∞.

j 3): Let JC,E denote the continuous embedding from C to E. The mapping

j∗∗ := JC,E ◦ j∗ : Ω2 ×∆ → E is 2 times continuously differentiable.

j 4): j : Ω2 × ∆ 7→ Ω1 ⊂ C is continuous. For every s ∈ ∆ the mapping

j(·, s) : A → C is linear and bounded. Furthermore, sup
s∈∆

‖j(·, s)‖L(A|C) <

∞.

j 5): Let JC,E denote the continuous embedding from C to E. The mapping

j∗ := JC,E ◦ j : Ω2 ×∆ → E is continuously differentiable.

Note that do not assume the following properties:

• The continuity of

Ω1 ⊂ C 3 c 7→ Dexth(c) ∈ L(E|D)

in h 3)

• The continuity of

Ω∗1 ⊂ B 3 b 7→ D2
exth

∗(b) ∈ L2(C|D)

in h 6)
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• The continuity of

∆ 3 s 7→ j(·, s) ∈ L(A|B)

in j 1)

• The continuity of

∆ 3 s 7→ D2j
∗(·, s) ∈ L(A,Rk|C)

in j 2)

• The continuity of

∆ 3 s 7→ j(·, s) ∈ L(A|C)

in j 4)

Lemma 1.2.0.1. Let h be a mapping such that h 1), h 2) and h 3) are

satisfied.

Let j be a mapping such that j 4) and j 5) are satisfied.

Then the mapping

Ω2 ×∆ 3 (a, s) 7→ Dh
(
j(a, s)

)(
j(·, s)) ∈ L(A|D)

is continuous.

Proof. For simplicity we only consider the case Ω1 = C and Ω2 = A.

We show that the mapping

C ×∆ 3 (c, s) 7→ Dh(c)
(
j(·, s)) ∈ L(A|D)

is continuous. The claim of the lemma then follows from the continuity of

the mapping

A×∆ 3 (a, s) 7→ j(a, s) ∈ C.

We have to show that for given (c, s) ∈ C ×∆ and given ε > 0 there exists

a δ > 0 such that

sup
v ∈ A

‖v‖A = 1

‖Dh(c)
(
j(v, s)

)−Dh(c′)
(
j(v, s′)

)‖D < ε
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for (c′, s′) ∈ C ×∆ with ‖c− c′‖C ≤ δ, |s− s′|Rk ≤ δ.

We know that the mapping

C 3 c′ 7→ Dh(c′) ∈ L(C|D)

is continuous and that for given c′ ∈ C the mapping

Dhext(c′) : E → D

is linear and bounded. Also we know that sup
s′∈∆

‖j(·, s′)‖L(A|C) < ∞.

Hence, for given c ∈ C there exists a δ̃ > 0 such that

‖Dexth(c)(e− e′)‖D ≤ 1/2 · ε

and

‖Dh(c)−Dh(c′)‖L(C|D) · sup
s′∈∆

‖j(·, s′)‖L(A|C) ≤ 1/2 · ε

for (e, e′) ∈ E × E, with ‖e− e′‖E ≤ δ̃, and c′ ∈ C, with ‖c− c′‖C ≤ δ̃.

Hypothesis j 5) implies the continuity of

∆ 3 s 7→ j∗(·, s) ∈ L(A|E).

Hence, one gets the existence of δ̂ > 0 such that for given s ∈ ∆

sup
v ∈ A

‖v‖A = 1

‖j∗(v, s)− j∗(v, s′)‖E ≤ δ̃

for s′ ∈ ∆, with ‖s− s′‖Rk ≤ δ̂.

We set δ := min{δ̃, δ̂}.
Hence, by observing the identity Dh(c′)

(
j(v, s′)

)
= Dexth(c′)

(
j∗(v, s′)

)
for

all (c′, s′) ∈ C ×∆, the inequality

sup
v ∈ A

‖v‖A = 1

‖Dh(c)
(
j(v, s)

)−Dh(c′)
(
j(v, s′)

)‖D

≤ sup
v ∈ A

‖v‖A = 1

‖Dh(c)
(
j(v, s′)

)−Dh(c′)
(
j(v, s′)

)‖D
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+ sup
v ∈ A

‖v‖A = 1

‖Dexth(c)
(
j∗(v, s)

)−Dexth(c)
(
j∗(v, s′)

)‖D

≤ ‖Dh(c)−Dh(c′)‖L(C|D) · sup
s′∈∆

‖j(·, s′)‖L(A|C)

+ sup
v ∈ A

‖v‖A = 1

‖Dexth(c)
(
j∗(v, s)− j∗(v, s′)

)‖D

≤ 1/2 · ε + 1/2 · ε = ε

holds for (c′, s′) ∈ C ×∆ with ‖c− c′‖C ≤ δ, |s− s′|Rk ≤ δ.

Thus,

C ×∆ 3 (c, s) 7→ Dh(c)
(
j(·, s)) ∈ L(A|D)

is continuous.

Lemma 1.2.0.2. Let h be a mapping such that h 1),h 2), h 3), h 4), h 5),

h 6)are satisfied.

Let j be a mapping such that j 1), j 2) and j 3) are satisfied.

Then the mapping

Ω2 ×∆ 3 (a, s) 7→ D2h∗
(
j(a, s)

)(
j(·, s))(j(·, s)) ∈ L2(A|D)

is continuous.

Proof. For simplicity we only consider the case Ω1 = C, Ω∗1 = B and Ω2 = A.

We show that the mapping

B ×∆ 3 (b, s) 7→ D2h∗(b)
(
j(·, s))(j(·, s)) ∈ L2(A|D)

is continuous. The claim of the lemma then follows from the continuity of

the mapping

A×∆ 3 (a, s) 7→ (
j(a, s), s

) ∈ B ×∆.
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We have to show that for given (b, s) ∈ B ×∆ and given ε > 0 there exists

δ > 0 such that

sup
v ∈ A

‖v‖A = 1

‖D2h∗(b)
(
j(v, s)

)(
j(v, s)

)−D2h∗(b)
(
j(v, s′)

)(
j(v, s′)

)‖D < ε

for (b′, s′) ∈ B ×∆ with ‖b− b′‖B ≤ δ, |s− s′|Rk ≤ δ.

We know that the mapping

B 3 b′ 7→ D2h∗(b′) ∈ L2(B|D)

is continuous and that for given b′ ∈ B the mapping

D2
exth

∗(b′) : C × C → D

is bilinear and bounded.

Also we know that sup
s′∈∆

‖j(·, s′)‖L(A|B) < ∞.

Hence, for given b ∈ B there exists a δ̃ > 0 such that

‖D2
exth

∗(b)(c)(c)−D2
exth

∗(b)(c′)(c′)‖D ≤ 1/2 · ε

and

‖D2h∗(b)−D2h∗(b′)‖L2(B|D) · sup
s′∈∆

‖j(·, s′)‖L(A|B) ≤ 1/2 · ε

for (c, c′) ∈ C × C, with ‖c− c′‖C ≤ δ̃, and b′ ∈ B, with ‖b− b′‖B ≤ δ̃.

Hypothesis j 3) yields the continuity of

∆ 3 s 7→ j∗(·, s) ∈ L(A|C).

Hence, one gets the existence of δ̂ > 0 such that for given s ∈ ∆

sup
v ∈ A

‖v‖A = 1

‖j∗(v, s)− j∗(v, s′)‖C ≤ δ̃

for s′ ∈ ∆, with ‖s− s′‖Rk ≤ δ̂.

We set δ := min{δ̃, δ̂}.
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Hence, by observing the identity D2h∗(b′)
(
j(·, s′)) = D2

exth
∗(b′)

(
j∗(·, s′))

for all (b′, s′) ∈ B ×∆, the inequality

sup
v ∈ A

‖v‖A = 1

‖D2h∗(b)
(
j(v, s)

)(
j(v, s)

)−D2h∗(b′)
(
j(v, s′)

)(
j(v, s′)

)‖D

≤ sup
v ∈ A

‖v‖A = 1

‖D2h∗(b)
(
j(v, s′)

)(
j(v, s′)

)−D2h∗(b′)
(
j(v, s′)

)(
j(v, s′)

)‖D

+ sup
v ∈ A

‖v‖A = 1

‖D2
exth

∗(b)
(
j∗(v, s)

)(
j∗(v, s)

)−D2
exth

∗(b)
(
j∗(v, s′)

)(
j∗(v, s′)

)‖D

≤ ‖D2h∗(b)−D2h∗(b′)‖L2(B|D) · sup
s′∈∆

‖j(·, s′)‖L(A|B)

+ sup
v ∈ A

‖v‖A = 1

‖D2
exth

∗(b)
(
j∗(v, s)

)(
j∗(v, s)

)−D2
exth

∗(b)
(
j∗(v, s′)

)(
j∗(v, s′)

)‖D

≤ 1/2 · ε + 1/2 · ε = ε

holds for (b′, s′) ∈ B ×∆ with ‖b− b′‖B ≤ δ, |s− s′|Rk ≤ δ.

Thus,

B ×∆ 3 (b, s) 7→ D2h∗(b)
(
j(·, s))(j(·, s)) ∈ L2(A|D)

is continuous.

Lemma 1.2.0.3. Let h be a mapping such that h 1), h 2) and h 3) are

satisfied.

Let j be a mapping such that j 4) and j 5) are satisfied.

Then the mapping H : Ω2 × ∆ 3 (a, s) 7→ h
(
j(a, s)

) ∈ D has a partial

derivative D2H(a, s) ∈ L(Rk|D) with respect to s in every (a, s) ∈ Ω2 ×∆.

Furthermore, the mapping Ω2 × ∆ 3 (a, s) 7→ D2H(a, s) ∈ L(Rk|D) is

continuous.
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Proof. We study the case where k = 1. The case k > 1 would follow the

steps of the proof of k = 1 by examining the existence and continuity of all

directional derivatives Di(·, ·)H1 : Ω2 ×∆ → D, i ∈ {2, ..., k + 1}.
We claim that D2H(a, s)1 = Dexth

(
j(a, s)

)(
D2j∗(a, s)1

) ∈ D is the deriva-

tive of H with respect to s in (a, s) ∈ Ω2 ×∆ and that the mapping

D2H(·, ·)1 : Ω2 ×∆ 3 (a, s) 7→ Dexth
(
j(a, s)

)(
D2j∗(a, s)1

) ∈ D

is continuous:

The identity

h(c + c′)− h(c) =

1∫

0

Dh(c + q · c′)(c′)dq

holds for (c, c′) ∈ C × C with c + c′ ∈ Ω1 due to the fact that h|C is

continuously differentiable. By replacing Dh with its extension Dexth we

rewrite this identity as

h(c + c′)− h(c) =

1∫

0

Dexth(c + q · c′)(JC,E(c′)
)
dq.

Thus, we get that the identity

1
ε ·H(a, s + ε)−H(a, s) =

1
ε · h

(
j(a, s + ε)

)− h
(
j(a, s)

)
=

1∫
0

Dexth
(
j(a, s) + q[j(a, s + ε)− j(a, s)]

)(
1
ε ·

(
j∗(a, s + ε)− j∗(a, s)

)
dq

holds for (a, s, ε) ∈ Ω2×∆×∆, ε 6= 0 sufficiently small. The last expression

then tends to Dexth
(
j(a, s)1

)(
D2j∗(a, s)

)
, as ε → 0, due to the continuity of

the mappings

C × E 3 (c, e) 7→ Dexth(c)(e) ∈ D,

j : Ω2 ×∆ → C,

and due to A×∆ 3 (a, s) 7→ j∗(a, s) ∈ E being continuously differentiable.

The continuity of D2H : A×∆ → D again is a consequence of the continuity

of the mappings

C × E 3 (c, e) 7→ Dexth(c)(e) ∈ D,
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j : Ω2 ×∆ → C,

and

D2j∗ : Ω2 ×∆ → E.

Lemma 1.2.0.4. Let h be a mapping such that h 1),h 2), h 3), h 4), h 5),

h 6)are satisfied.

Let j be a mapping such that j 1), j 2) and j 3) are satisfied.

Then the mapping

H∗ : Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dh∗
(
j(a, s)

)(
j(·, s′)) ∈ L(A|D)

has a partial derivative D2H
∗(a, s, s′) ∈ L

(
Rk, L(A|D)

)
with respect to s in

every (a, s, s′) ∈ Ω2 ×∆×∆. Furthermore, the mapping

Ω2 ×∆×∆ 3 (a, s, s′) 7→ D2H
∗(a, s, s′) ∈ L

(
Rk, L(A|D)

)

is continuous.

Proof. We study the case where k = 1. The case k > 1 would follow the

steps of the proof of k = 1 by examining the existence and continuity of all

directional derivatives DiH
∗(·, ·, ·)1 : Ω2 ×∆×∆ → L(A|D), i ∈ {1, ..., k}.

We claim that the mapping

l : Ω2 ×∆ 3 (a, s) 7→ Dh∗
(
j(a, s)

) ∈ L(B|D)

has a partial derivative with respect to s in every (a, s) ∈ Ω2 ×∆.

Let
∆j(a, s)

∆t
:=

1
t
[j(a, s + t)− j(a, s)]

and
∆j∗(a, s)

∆t
:=

1
t
[j∗(a, s + t)− j∗(a, s)]

for (a, s, t) ∈ Ω2 ×∆×∆, t 6= 0 sufficiently small.

The identity

Dh∗(b1 + b2)(b3)−Dh∗(b1)(b3) =

1∫

0

D2h∗(b1 + q · b2)(b2)(b3)dq
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holds for (b1, b2, b3) ∈ B×B×B such that b1 + b2 ∈ Ω∗1 due to the fact that

h∗ is 2 times continuously differentiable. By replacing D2h∗ with D2
ext,1h

∗

we rewrite this identity as

Dh∗(b1 + b2)(b3)−Dh∗(b1)(b3) =

1∫

0

D2
ext,1h

∗(b1 + q · b2)
(
JB,C(b2)

)
(b3)dq.

Therefore, the inequality

‖1
t [Dh∗

(
j(a, s + t)

)
(b)−Dh∗

(
j(a, s)

)
(b)]−D2

ext,1h
∗(j(a, s)

)(
D2j

∗(a, s)1
)
(b)‖D =

‖
1∫
0

D2
ext,1h

∗(j(a, s + q · t · ∆j(a,s)
∆t )

)(∆j∗(a,s)
∆t

)
(b)−D2

ext,1h
∗(j(a, s)

)(
(D2j

∗(a, s)1
)
(b)dq‖D ≤

1∫
0

‖D2
ext,1h

∗(j(a, s + q · t · ∆j(a,s)
∆t )

)(∆j∗(a,s)
∆t

)−D2
ext,1h

∗(j(a, s)
)(

(D2j
∗(a, s)1

)‖L(B|D)‖b‖Bdq

holds for all (a, s, t, b) ∈ Ω2 × ∆ × ∆ × B, t 6= 0 sufficiently small. Hence,

due to the continuity of

D2
ext,1h

∗ : Ω∗1 × C → L(B|D)

and due to the fact that for a ∈ A

∆j∗(a, s)
∆t

→ D2j
∗(a, s)1,

as t → 0, we get that

lim
t→0

‖1
t [l(a, s + t)− l(a, s)]−D2

ext,1h
∗(j(a, s)

)(
(D2j

∗(a, s)1
)‖L(B|D) =

lim
t→0

sup
v ∈ B

‖v‖B = 1

‖1
t [Dh∗

(
j(a, s + t)

)
(v)−Dh∗

(
j(a, s)

)
(v)]−D2

ext,1h
∗(j(a, s)

)(
(D2j

∗(a, s)1
)
(v)‖D ≤

lim
t→0

1∫
0

‖D2
ext,1h

∗(j(a, s + q · t · ∆j(a,s)
∆t )

)(∆j∗(a,s)
∆t

)−D2
ext,1h

∗(j(a, s)
)(

(D2j
∗(a, s)1

)‖L(B|D)dq = 0.

Therefore, the mapping

l : Ω2 ×∆ 3 (a, s) 7→ Dh∗
(
j(a, s)

) ∈ L(B|D)
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has a partial derivative with respect to s in every (a, s) ∈ Ω∗2 × ∆ which

is given by D2l(a, s) := D2
ext,1h

∗(j(a, s)
)(

(D2j
∗(a, s)1

) ∈ L(B|D). The

decomposition H∗(·, ·, s′) = B ◦ As′ with

As′ : A×∆ 3 (a, s) 7→ (
l(a, s), j(·, s′)) ∈ L(B|D)× L(A|B)

and

B : L(B|D)× L(A|B) 3 (T, S) 7→ T ◦ S ∈ L(A|D)

yields that the mapping H∗ has a partial derivative with respect to s, given

by

D2H
∗(a, s, s′)1 = D2

ext,1h
∗(j(a, s)

)(
D2j

∗(a, s)1
)(

j(·, s′) ∈ L(A|D)

in (a, s, s′) ∈ A×∆×∆. The proof of the continuity of

Ω2 ×∆×∆ 3 (a, s, s′) 7→ D2
ext,1h

∗(j(a, s)
)(

D2j
∗(a, s)1

)(
j(·, s′) ∈ L(A|D)

would follow the same steps as the proof of the continuity of

Ω2 ×∆ 3 (a, s) 7→ Dh
(
j(a, s)

)(
j(·, s)) ∈ L(A|D)

in Lemma 1.2.0.1:

In the situation of that lemma we showed that the mapping

Ω1 ×∆ 3 (c, s) 7→ Dh(c)
(
j(·, s)) ∈ L(A|D)

is continuous. The continuity of

Ω2 ×∆ 3 (a, s) 7→ Dh
(
j(a, s)

)(
j(·, s)) ∈ L(A|D)

then followed from the continuity of

Ω2 ×∆ 3 (a, s) 7→ j(a, s) ∈ C.

The following conditions were satisfied by assumption:

Dh
(
c
) ∈ L(C|D) extends to Dexth

(
c
) ∈ L(E|D) for c ∈ Ω1.

Both mappings

Ω1 × E 3 (c, e) 7→ Dexth
(
c
)
(e) ∈ D

and

∆ 3 s 7→ j∗(·, s) ∈ L(A|E)
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are continuous.

The inequality

sup
s∈∆

‖j(·, s)‖L(A|C) < ∞

holds.

Now we are in the situation that for (b, c) ∈ Ω∗1 × C

D2
ext,1h

∗(b)(c) ∈ L(B|D)

extends to

D2
exth

∗(b)(c) ∈ L(C|D)

where the mapping

Ω∗1 × C × C 3 (b, c, c′) 7→ D2
exth

∗(b)(c)(c′)) ∈ D

is assumed to be continuous. Furthermore, the mapping

∆ 3 s 7→ j∗(·, s) ∈ L(A|C)

is continuous and j satisfies the inequality

sup
s∈∆

‖j(·, s)‖L(A|B) < ∞

Thus, the steps of the proof of the continuity of

Ω1 ×∆ 3 (c, s) 7→ Dh(c)
(
j(·, s)) ∈ L(A|D)

in Lemma 1.2.0.1 may be analogously applied to the mapping

Ω∗1 × C ×∆ 3 (b, c, s) 7→ D2
ext,1h

∗(b)(c)(
(
j(·, s)) ∈ L(A|D)

which therefore is continuous.

The continuity of

Ω2 ×∆×∆ 3 (a, s, s′) 7→ D2
ext,1h

∗(j(a, s)
)(

D2j
∗(a, s)

)(
j(·, s′) ∈ L(A|D)

then follows from the continuity of the mappings

Ω2 ×∆ 3 (a, s) 7→ j(a, s) ∈ B
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and

Ω2 ×∆ 3 (a, s) 7→ D2j
∗(a, s) ∈ C.

Hence, the partial derivative D2H
∗(a, s, s′) of H∗ with respect to s exists in

every (a, s, s′) ∈ Ω2 × ∆ × ∆ and the mapping Ω2 × ∆ × ∆ 3 (a, s, s′) 7→
D2H

∗(a, s, s′) ∈ L(A|D) is continuous.

Lemma 1.2.0.5. Let h be a mapping such that h 1),h 2), h 3), h 4), h 5),

h 6)are satisfied.

Then the mapping

H∗∗ : Ω∗1 × C 3 (b, c) → Dh
(
JB,C(b)

)
(c) ∈ D

has a partial derivative D1H∗∗(b, c) = D2
ext,1h

∗(b)(c) ∈ L(B|D) with respect

to b in every (b, c) ∈ Ω∗1 × C. Furthermore, the mapping Ω∗1 × C 3 (b, c) 7→
D1H∗∗(b, c) ∈ L(B|D) is continuous.

Proof. We have to show that

1
‖h‖B

· ‖Dh
(
JB,C(b + h)

)
(c)−Dh

(
JB,C(b)

)
(c)−D2

ext,1h
∗(b)(c)(h)‖D → 0

as h → 0. Suppose b′ is an element of B. Due to the fact that h∗ : Ω∗1 → D

is 2 times continuously differentiable the identity

Dh∗(b + h)(b′)−Dh∗(b)(b′) =
1∫
0

D2h∗(b + s · h)(h)(b′)ds

holds for (b, b′, h) ∈ Ω∗1 × Ω∗1 ×B, h sufficiently small.

As D2h∗(b)(b′)(b′′) = D2
ext,1h

∗(b)
(
JB,C(b′)

)
(b′′) and Dh∗(b)(b′) = Dexth∗(b)

(
JB,C(b′)

)

for (b, b′, b′′) ∈ Ω∗1 ×B ×B we rewrite this identity as

Dexth∗(b + h)
(
JB,C(b′)

)−Dexth∗(b)
(
JB,C(b′)

)
=

1∫
0

D2
ext,1h

∗(b + s · h)
(
JB,C(b′)

)
(h)ds.

Now suppose c is an element of C. B ⊂ C being dense one gets a sequence

(b′)n∈N ∈ such that b′n → c in C, as n → ∞. Then Dh
(
JB,C(b)

)
(c) =

lim
n→∞Dexth∗(b)

(
JB,C(b′n)

)
for any b ∈ Ω∗. Therefore and due to the conti-

nuity of

Ω∗1 × C 3 (b, c) → D2
ext,1h

∗(b)(c) ∈ L(B|D),
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one gets that the following identity

Dh
(
JB,C(b + h)

)
(c)−Dh

(
JB,C(b)

)
(c) =

lim
n→∞Dexth∗(b + h)

(
JB,C(b′n)

)−Dexth∗(b)
(
JB,C(b′n)

)
=

lim
n→∞

1∫
0

D2
ext,1h

∗(b + s · h)(b′n)(h)ds =

1∫
0

D2
ext,1h

∗(b + s · h)(c)(h)ds

holds for c ∈ C, b ∈ Ω∗1 and h ∈ B sufficiently small. With this identity

holding we get the estimation

1
‖h‖B

· ‖Dh
(
JB,C(b + h)

)
(c)−Dh

(
JB,C(b)

)
(c)−D2

ext,1h
∗(b)(h)(c)‖D =

1
‖h‖B

· ‖
1∫
0

D2
ext,1h

∗(b + s · h)(c)(h)−D2
ext,1h

∗(b)(c)(h)ds‖D ≤

1
‖h‖B

·
1∫
0

‖D2
ext,1h

∗(b + s · h)(c)−D2
ext,1h

∗(b)(c)‖L(B|D)ds‖h‖B =

1∫
0

‖D2
ext,1h

∗(b + s · h)(c)−D2
ext,1h

∗(b)(c)‖L(B|D)ds

for (b, h) ∈ Ω∗1 × Ω∗1 and c ∈ C.

Due to the continuity of

Ω∗1 × C 3 (b, c) → D2
ext,1h

∗(b)(c) ∈ L(B|D).

the expression

1∫

0

‖D2
ext,1h

∗(b + s · h)(c)−D2
ext,1h

∗(b)(c)‖L(B|D)ds

tends to 0, as h → 0. Thus, H∗∗ is partially differentiable with respect to b

in every (b, c) ∈ Ω∗1 × C.

The continuity of Ω∗1 × C 3 (b, c) 7→ DH∗∗(b, c) ∈ L(B|D) again is a conse-

quence of h 6).
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Lemma 1.2.0.6. Let h be a mapping such that h 1),h 2), h 3), h 4), h 5),

h 6)are satisfied.

Let j be a mapping such that j 1), j 2),j 3) are satisfied.

Then the mapping

H̃ : Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dh
(
j∗(a, s′)

)(
j∗(·, s)) ∈ L(A|D)

has a partial derivative D2H̃(a, s, s′) ∈ L
(
Rk, L(A|D)

)
with respect to s in

every (a, s, s′) ∈ Ω2 ×∆×∆. Furthermore, the mapping

Ω2 ×∆×∆ 3 (a, s, s′) 7→ D2H̃(a, s, s′) ∈ L
(
Rk, L(A|D)

)

is continuous.

Proof. We study the case where k = 1. The case k > 1 would follow the steps

of the proof of k = 1 by examining the existence and continuity of all direc-

tional derivatives DiH̃(·, ·, ·)1 : Ω2 ×∆×∆ → L(A|D), i ∈ {2, ..., k + 1}.
j∗∗ : A × Ω2 → E is 2 times continuously differentiable by assumption.

Therefore, and by the fact that j∗∗ : A × ∆ → E is 2 times continuously

differentiable with D1j
∗∗(a, s)(â) = j∗∗(â, s) and D2(D1j

∗∗)(a, s)(â)1 =

D2j
∗∗(â, s)1 for (a, â, s) ∈ A×A×∆ one gets that

lim
ε→0

‖1
ε
· (j∗∗(·, s + ε)− j∗∗(·, s))−D2j

∗∗(·, s)1‖L(A|E) = 0.

As Dh
(
j∗(a, s′)

) ∈ L(C|D) extends to Dexth
(
j∗(a, s′)

) ∈ L(E|D) one gets

the following result:

lim
ε→0

‖Dh
(
j∗(a, s′)

)
[1ε ·

(
j∗(·, s + ε)− j∗(·, s))]−Dexth

(
j∗(a, s′)

)
[D2j

∗∗(·, s)1]‖(L(A|D) =

lim
ε→0

‖Dexth
(
j∗(a, s′)

)
[1ε ·

(
j∗∗(·, s + ε)− j∗∗(·, s))−D2j

∗∗(·, s)1]‖L(A|D) = 0

Therefore,

H̃ : Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dh
(
j∗(a, s′)

)(
j∗(·, s)) ∈ L(A|D)

has a partial derivative D2H̃(a, s, s′) = Dexth
(
j∗(a, s′)

)(
D2j

∗∗(·, s)1) ∈
L(A|D) with respect to s in every (a, s, s′) ∈ Ω2 ×∆×∆.

The continuity of

D2H
∗ : Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dexth

(
j∗(a, s′)

)(
D2j

∗∗(·, s)1) ∈ L(A|D)
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can be shown in the following way:

First we observe that the identity

Dexth
(
j∗(a, s′)

)(
D2j

∗∗(v, s)1
)

= Dh
(
j∗(a, s′)

)(
D2j

∗(v, s)1
)

holds for all (a, s, s′) ∈ Ω2 ×∆×∆ and v ∈ A. The proof of the continuity

of

Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dh
(
j∗(a, s′)

)(
D2j

∗(·, s)1) ∈ L(A|D)

is similar to the proof of the continuity of

Ω2 ×∆ 3 (a, s) 7→ Dh
(
j(a, s)

)(
j(·, s)) ∈ L(A|D)

in Lemma 1.2.0.1:

In the situation of that lemma we showed that the mapping

Ω1 ×∆ 3 (c, s) 7→ Dh(c)
(
j(·, s)) ∈ L(A|D)

is continuous. The continuity of

Ω2 ×∆ 3 (a, s) 7→ Dh
(
j(a, s)

)(
j(·, s)) ∈ L(A|D)

then followed from the continuity of

Ω2 ×∆ 3 (a, s) 7→ j(a, s) ∈ C.

The following conditions were satisfied by assumption:

Dh
(
c
) ∈ L(C|D) extends to Dexth

(
c
) ∈ L(E|D) for c ∈ Ω1.

Both mappings

Ω1 × E 3 (c, e) 7→ Dexth
(
c
)
(e) ∈ D

and

∆ 3 s 7→ j∗(·, s) ∈ L(A|E)

are continuous.

The inequality

sup
s∈∆

‖j(·, s)‖L(A|C) < ∞

holds.

Now like in Lemma 1.2.0.1 we are in the situation that for c ∈ Ω1

Dh
(
c
) ∈ L(C|D)
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extends to

Dexth
(
c
) ∈ L(E|D)

where the mapping

Ω1 ×E 3 (c, e) 7→ Dexth
(
c
)(

e
) ∈ D

is assumed to be continuous.

Again, by the fact that j∗∗ : A×∆ 7→ E is 2 times continuously differentiable

with D2(D1j
∗∗)(a, s)(â)1 = D2j

∗∗(â, s)1 for (a, â, s) ∈ A × A ×∆ one gets

that

∆ 3 s 7→ D2j
∗∗(·, s)1 ∈ L(A|E)

is continuous.

Furthermore, in j 2) we assumed that D2j
∗ satisfies the inequality

sup
s∈∆

‖D2j
∗(·, s)1‖L(A|C) < ∞.

Thus, the steps of the proof of the continuity of the mapping

Ω1 ×∆ 3 (c, s) 7→ Dh(c)
(
j(·, s))

in Lemma 1.2.0.1 may be analogously applied to the mapping

Ω1 ×∆ 3 (c, s) 7→ Dh(c)
(
D2j

∗(·, s)1) ∈ L(A|D)

which therefore is continuous.

The continuity of

Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dh
(
j∗(a, s′)

)(
D2j

∗(·, s)1) ∈ L(A|D)

then follows from the continuity of

Ω2 ×∆ 3 (a, s) 7→ j∗(a, s) ∈ C.

Lemma 1.2.0.7. Let h be a mapping such that h 1),h 2), h 3), h 4), h 5),

h 6)are satisfied.
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Let j be a mapping such that j 1), j 2),j 3) are satisfied.

Then the mapping

Ĥ : Ω2 ×∆ 3 (a, s) 7→ Dh
(
j∗(a, s)

)(
D2j

∗(a, s)
) ∈ L(Rk|D)

has a partial derivative D1Ĥ(a, s) ∈ L(A,Rk|D) with respect to a in every

(a, s) ∈ Ω2 ×∆. Furthermore, the mapping

Ω2 ×∆ 3 (a, s) 7→ D1Ĥ(a, s) ∈ L(A,Rk|D)

is continuous.

Proof. We study the case where k = 1.

We prove the claim in two steps:

First step:

We show that

Ĥ1 : Ω2 × Ω2 ×∆ 3 (a, a′, s) 7→ Dh
(
j∗(a′, s)

)(
D2j

∗(a, s)1
) ∈ D

has a partial derivative D1Ĥ1(a, a′, s) ∈ L(A|D) with respect to a in every

(a, a′, s) ∈ Ω2 × Ω2 ×∆ and that the mapping

Ω2 × Ω2 ×∆ 3 (a, a′, s) 7→ D1Ĥ1(a, a′, s) ∈ L(A|D)

is continuous.

For fixed s ∈ ∆ the mapping D2j
∗∗(·, s)1 : A → E is linear and bounded.

On the other hand Dh
(
j∗(a′, s)

) ∈ L(C|D) extends to Dexth
(
j∗(a′, s)

) ∈
L(E|D). Therefore, the identity

Ĥ1(a, a′, s) = Dexth
(
j∗(a′, s)

)(
D2j

∗∗(a, s)1
)

holds for all (a, a′, s) ∈ Ω2×Ω2×∆. Hence, the partial derivative D1Ĥ(a, a′, s) ∈
L(A|D) of Ĥ1 with respect to a in (a, a′, s) ∈ Ω2 × Ω2 ×∆ is given by

Dexth
(
j∗(a′, s)

)(
D2j

∗∗(·, s)1) ∈ L(A|D). The proof of the continuity of

D1Ĥ : Ω2 × Ω2 ×∆ 3 (a, a′, s) 7→ Dexth
(
j∗(a′, s)

)(
D2j

∗∗(·, s)1) ∈ L(A|D)

is similar to the proof of the continuity of

D2H̃ : Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dexth
(
j∗(a, s′)

)(
D2j

∗∗(·, s)1) ∈ L(A|D)

38



in the previous lemma.

Second step:

We show that

Ĥ2 : Ω2 × Ω2 ×∆ 3 (a, a′, s) 7→ Dh
(
j∗(a, s)

)(
D2j

∗(a′, s)1
) ∈ D

has a partial derivative D1Ĥ2(a, a′, s) ∈ L(A|D) with respect to a in every

(a, a′, s) ∈ Ω2 × Ω2 ×∆ and that the mapping

Ω2 × Ω2 ×∆ 3 (a, a′, s) 7→ D1Ĥ2(a, a′, s) ∈ L(A|D)

is continuous

In Lemma 1.2.0.5 we proved that the mapping

H∗∗ : Ω∗1 × C 3 (b, c) 7→ Dh
(
JB,C(b)

)
(c) ∈ D

has a partial derivative D1H∗∗(b, c) ∈ L(B|D) with respect to b in every

(b, c) ∈ Ω∗1 × C which is given by D1H∗∗(b, c) = D2
ext,1h

∗(b)(c) ∈ L(B|D).

On one hand D2j
∗(a′, s) is an element of C for every (a′, s) ∈ Ω2 ×∆. On

the other hand, as for fixed s ∈ ∆ the mapping j(·, s) : A → B is linear

and bounded we have that D1j(a, s) exists with D1j(a, s)(â) = j(â, s) for

(a, â) ∈ A×A.

Therefore, the decomposition Ĥ2(·, a′, s) = H∗∗(·, D2j
∗(a′, s)

)◦j(·, s) for

(a′, S) ∈ A×∆ yields that

Ω2 × Ω2 ×∆ 3 (a, a′, s) 7→ Dh
(
j∗(a, s)

)(
D2j

∗(a′, s)
) ∈ D

has a partial derivative with respect to a in every (a, a′, s) ∈ Ω2 × Ω2 ×∆

which is given by

D2
ext,1h

∗(j(a, s)
)(

D2j
∗(a′, s)

)
(
(
j(·, s)) ∈ L(A|D).

The proof of the continuity of

Ω2 ×Ω2 ×∆ 3 (a, a′, s) 7→ D2
ext,1h

∗(j(a, s)
)(

D2j
∗(a′, s)

)
(
(
j(·, s)) ∈ L(A|D)

is similar to the proof of the continuity of

D2H
∗ : Ω2×∆×∆ 3 (a, s, s′) 7→ D2

ext,1h
∗(j(a, s)

)(
D2j

∗(a, s)
)
(
(
j(·, s′)) ∈ L(A|D)
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in Lemma 1.2.0.4.

Both of these steps combined yield that the mapping

Ĥ : Ω2 ×∆ 3 (a, s) 7→ Dh
(
j∗(a, s)

)(
D2j

∗(a, s)
) ∈ D

has a partial derivative D1Ĥ(a, s) ∈ L(A|D) with respect to a in every

(a, s) ∈ Ω2 ×∆ and that the mapping

Ω×∆ 3 (a, s) 7→ D1Ĥ(a, s) ∈ L(A|D)

is continuous.

Lemma 1.2.0.8. Let h be a mapping such that h 1),h 2), h 3), h 4), h 5),

h 6)are satisfied.

Let j be a mapping such that j 1), j 2),j 3) are satisfied.

Then the mapping

Ĥ : Ω2 ×∆ 3 (a, s) 7→ Dh
(
j∗(a, s)

)(
D2j

∗(a, s)1
) ∈ L(Rk|D)

has a partial derivative D2Ĥ(a, s) ∈ L2(Rk|D) with respect to s in every

(a, s) ∈ Ω2 ×∆. Furthermore, the mapping

Ω2 ×∆ 3 (a, s) 7→ D2Ĥ(a, s) ∈ L2(Rk|D)

is continuous.

Proof. We study the case where k = 1. The case k > 1 would follow the

steps of the proof of k = 1 by examining the existence and continuity of all

directional derivatives DiĤ(·, ·, ·)1 : Ω2×∆×∆ → L(A|D), i ∈ {2, ..., k+1}.
Again we prove the claim in two steps:

First step:

We show that the mapping

Ĥ1 : Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dh
(
j∗(a, s′)

)(
D2j

∗(a, s)
)
1 ∈ D

has a partial derivative D2Ĥ
1(a, s, s′) ∈ D with respect to s in every (a, s, s′) ∈

Ω2 ×∆×∆ and that the mapping

Ω2 ×∆×∆ 3 (a, s, s′) 7→ D2Ĥ
1(a, s, s′)1 ∈ D
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is continuous.

Dh
(
j∗(a, s′)

) ∈ L(C|D) extending to Dexth
(
j∗(a, s′)

) ∈ L(E|D) and j∗∗ :

Ω2×∆ → E being 2 times continuously differentiable it is clear that the par-

tial derivative D2Ĥ
1(a, s, s′)1 of Ĥ with respect to s in (a, s, s′) ∈ Ω2×∆×∆

is given by D2Ĥ
1(a, s, s′)1 = Dexth

(
j∗(a, s′)

)(
D2

2j
∗∗(a, s)(1)(1)

) ∈ D:

lim
ε→0

1
ε

(
Dh

(
j∗(a, s′)

)(
D2j

∗(a, s + ε)1
)−Dh

(
j∗(a, s′)

)(
D2j

∗(a, s)1
))

=

lim
ε→0

(
Dexth

(
j∗(a, s′)

)(
1
ε [D2j

∗∗(a, s + ε)1−D2j
∗∗(a, s)1]

))
=

Dexth
(
j∗(a, s′)

)(
D2

2j
∗∗(a, s)(1)(1)

)

The continuity of

Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dexth
(
j∗(a, s′)

)(
D2

2j
∗∗(a, s)(1)(1)

) ∈ D

is a consequence of the fact that all three mappings

Ω1 ×E 3 (c, e) 7→ Dexth(c)(e) ∈ D,

j∗ : Ω2 ×∆ → C

and

D2
2j
∗∗ : Ω2 ×∆ → E.

are assumed to be continuous.

Second step:

We show that the mapping

Ĥ2 : Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dh
(
j∗(a, s)

)(
D2j

∗(a, s′)1
) ∈ D

has a partial derivative D2Ĥ
2(a, s, s′)1 ∈ D with respect to s in every

(a, s, s′) ∈ Ω2 ×∆×∆ and that the mapping

Ω2 ×∆×∆ 3 (a, s, s′) 7→ D2Ĥ
2(a, s, s′)1 ∈ D

is continuous.

Lemma 1.2.0.5 tells us that the mapping

H∗∗ : Ω∗1 × C 3 (b, c) 7→ Dh
(
JB,C(b)

)
(c) ∈ D
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has a partial derivative D1H∗∗(b, c) ∈ L(B|D) with respect to b in (b, c) ∈
Ω∗1 × C which is given by

D2
ext,1h

∗(b)(c) ∈ L(B|D).

As D2j
∗(a, s′)1 ∈ C for a ∈ Ω2 and s′ ∈ ∆ the identity

Dh
(
j∗(a, s + ε)

)(
D2j

∗(a, s′)1
)−Dh

(
j∗(a, s)

)(
D2j

∗(a, s′)1
)

=

H∗∗(j(a, s + ε), D2j
∗(a, s′)1

)−H∗∗(j(a, s), D2j
∗(a, s′)1

)
=

1∫
0

D2
ext,1h

∗(j(a, s) + q · [j(a, s + ε)− j(a, s)]
)
(D2j

∗(a, s′)1)
(
j(a, s + ε)− j(a, s)

)
dq

holds for a ∈ Ω2, (s, s′) ∈ ∆×∆ and ε ∈ R sufficiently small.

On the other hand j∗ : Ω2 × ∆ → C is continuously differentiable. By

replacing D2
ext,1h

∗ with D2
exth

∗ and due to the continuity of

Ω∗1 × C × C 3 (b, c, c′) 7→ D2
exth

∗(b)(c)(c′) ∈ D

one gets that

lim
ε→0

1
ε

(
Dh

(
j∗(a, s + ε)

)(
D2j

∗(a, s′)1
)−Dh

(
j∗(a, s)

)(
D2j

∗(a, s′)1
))

=

lim
ε→0

1∫
0

D2
exth

∗(j(a, s) + q · [j(a, s + ε)− j(a, s) ]
)
(D2j

∗(a, s′)1)
(

1
ε [j

∗(a, s + ε)− j∗(a, s)]
)
dq =

D2
exth

∗(j(a, s)
)(

D2j
∗(a, s′)1

)(
D2j

∗(a, s)1
)
.

Thus, the partial derivative of

Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dh
(
j∗(a, s)

)(
D2j

∗(a, s′)1
) ∈ D

with respect to s exists in every (a, s, s′) ∈ Ω2 ×∆×∆.

The continuity of

Ω2 ×∆×∆ 3 (a, s, s′) 7→ D2
exth

∗(j(a, s)
)(

D2j
∗(a, s′)1

)(
D2j

∗(a, s)1
) ∈ D

is again a consequence of the continuity of

Ω∗1 × C × C 3 (b, c, c′) 7→ D2
exth

∗(b)(c)(c′) ∈ D
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and the continuity of both

j : Ω2 ×∆ → B

and

D2j
∗ : Ω2 ×∆ → C.

Both steps combined yield that the mapping

Ĥ : Ω2 ×∆ 3 (a, s) 7→ Dh
(
j∗(a, s)

)(
D2j

∗(a, s)
) ∈ D

has a partial derivative D2Ĥ(a, s)1 ∈ D with respect to s in every

(a, s) ∈ Ω2 ×∆ and that the mapping

Ω2 ×∆ 3 (a, s) 7→ D2Ĥ(a, s)1 ∈ D

is continuous.

Theorem 1.2.1. 1. Let h be a mapping such that h 1), h 2) and h 3)

are satisfied.

Let j be a mapping such that j 4) and j 5) are satisfied.

Then the mapping h ◦ j : Ω2 ×∆ → D is continuously differentiable.

2. Let h be a mapping such that h 1),h 2), h 3), h 4), h 5), h 6)are

satisfied.

Let j be a mapping such that j 1), j 2),j 3) are satisfied.

Then h∗ ◦ j : Ω2 ×∆ → D is 2 times continuously differentiable.

Proof. 1. We prove the claim in two steps.

First step:

We show that there exists a partial derivative D1(h ◦ j)(a, s) ∈ L(A|D)

of h ◦ j with respect to a in every (a, s) ∈ Ω2 × ∆ and that the mapping

Ω2 ×∆ 3 (a, s) 7→ D1(h ◦ j)(a, s) ∈ L(A|D) is continuous.

h : Ω1 → D is continuously differentiable and for fixed s ∈ ∆ the mapping

j(·, s) : A → C is linear and bounded. Therefore, the derivative of h ◦ j with

respect to a is given by Dh
(
j(a, s)

)(
j(v, s)

)
for every (a, s) ∈ Ω2 × ∆ and

v ∈ A. The continuity of

Ω2 ×∆ 3 (a, s) → Dh
(
j(a, s)

)(
j(·, s)) ∈ L(A|D)
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is shown in Lemma 1.2.0.1.

Second step:

We have to show that there exists a partial derivative D2(h ◦ j)(a, s) ∈
L(Rk|D) of h ◦ j with respect to s in every (a, s) ∈ Ω2 × ∆ and that the

mapping Ω2 ×∆ 3 (a, s) 7→ D2(h ◦ j)(a, s) ∈ L(Rk|D) is continuous.

But this is a consequence of Lemma 1.2.0.3.

Both steps combined yield that the mapping h ◦ j : Ω2×∆ → D is continu-

ously differentiable.

2.

As the identity (h∗ ◦ j)(a, s) = (h ◦ j∗)(a, s) holds for all (a, s) ∈ Ω2×∆ the

first part of this theorem yields that the mapping h∗ ◦ j : Ω2 × ∆ → D is

continuously differentiable with its derivative being given by

(1.13)

D(h∗ ◦ j)(a, s)(v, s′) = Dh
(
j∗(a, s)

)(
j∗(v, s)

)

+Dh
(
j∗(a, s)

)(
D2j

∗(a, s)(s′)
)

for (a, s) ∈ Ω2 ×∆ and (v, s′) ∈ A× Rk. Observing the identity

(1.14) Dh
(
j∗(a, s)

)(
j∗(·, s)) = Dh∗

(
j(a, s)

)(
j(·, s)),

for all (a, s) ∈ Ω2 ×∆ we may rewrite (1.13) as

(1.15)

D(h∗ ◦ j)(a, s)(v, s′) = Dh∗
(
j(a, s)

)(
j(v, s)

)

+Dh
(
j∗(a, s)

)(
D2j

∗(a, s)(s′)
)

for (a, s) ∈ Ω2 ×∆ and (v, s′) ∈ A × Rk. First we look at the first term of

(1.15), which is

Dh∗
(
j(a, s)

)(
j(v, s)

)

for (a, s) ∈ Ω2 ×∆ and v ∈ A, and show that the mapping

H : Ω2 ×∆ 3 (a, s) 7→ Dh∗
(
j(a, s)

)(
j(·, s)) ∈ L(A|D)

is continuously differentiable.

h∗ : Ω∗1 → D is 2 times continuously differentiable and for fixed s ∈ ∆ the
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mapping j(·, s) : A → B is linear and bounded. Therefore, the decomposi-

tion H = F ◦H with

H : A×∆ 3 (a, s) 7→ (
j(a, s), j(·, s)) ∈ B × L(A|B)

and

F : B × L(A|B) 3 (b, T ) 7→ Dh∗(b) ◦ T ∈ L(A|D)

and an application of the chainrule yields that the mapping

H : Ω2 ×∆ 3 (a, s) 7→ Dh∗
(
j(a, s)

)(
j(·, s)) ∈ L(A|D)

has a partial derivative D1H(a, s) = D2h∗
(
j(a, s)

)(
j(·, s))(j(·, s)) ∈ L2(A|D)

with respect to a in every (a, s) ∈ Ω2 ×∆. The continuity of

Ω2 ×∆ 3 (a, s) 7→ D2h∗
(
j(a, s)

)(
j(·, s))(j(·, s)) ∈ L2(A|D)

is shown in Lemma 1.2.0.2.

Furthermore, we have to show that the mapping

H : Ω2 ×∆ 3 (a, s) 7→ Dh∗
(
j(a, s)

)(
j(·, s)) ∈ L(A|D)

has a partial derivative D2H(a, s) ∈ L(Rk, A|D) with respect to s in every

(a, s) ∈ Ω2 × ∆ and that the mapping Ω2 × ∆ 3 (a, s) 7→ D2H(a, s) ∈
L(Rk, A|D is continuous:

We prove this in two steps:

First step:

We observe the identity (1.14), and apply Lemma 1.2.0.6 which shows that

the mapping

H̃ : Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dh
(
j∗(a, s′)

)(
j∗(·, s)) ∈ L(A|D)

has a partial derivative D2H̃(a, s, s′) ∈ L(Rk, A|D) with respect to s in

every (a, s, s′) ∈ Ω2×∆×∆ and that the mapping Ω2×∆×∆ 3 (a, s, s′) 7→
D2H̃(a, s, s′) ∈ L(Rk, A|D) is continuous.

Thus,

H1 : Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dh∗
(
j(a, s′)

)(
j(·, s)) ∈ L(A|D)
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has a partial derivative D2H1(a, s, s′) ∈ L(Rk, A|D) with respect to s in

every (a, s, s′) ∈ Ω2 × ∆ × ∆ and the mapping Ω2 × ∆ × ∆ 3 (a, s, s′) 7→
D2H(a, s, s′) ∈ L(Rk, A|D) is continuous.

Second step:

Lemma 1.2.0.4 shows that the mapping

H∗ : Ω2 ×∆×∆ 3 (a, s, s′) 7→ Dh∗
(
j(a, s)

)(
j(·, s′)) ∈ L(A|D)

has a partial derivative D2H
∗(a, s, s′) ∈ L(Rk, A|D) with respect to s in

every (a, s, s′) ∈ Ω2×∆×∆ and that the mapping Ω2×∆×∆ 3 (a, s, s′) 7→
D2H

∗(a, s, s′) ∈ L(Rk, A|D) is continuous.

Both steps combined yield that the mapping

H : Ω2 ×∆ 3 (a, s) 7→ Dh∗
(
j(a, s)

)(
j(·, s)) ∈ L(A|D)

has a partial derivative D2H(a, s) ∈ L(Rk, A|D) with respect to s in every

(a, s) ∈ Ω2 × ∆ and that the mapping Ω2 × ∆ 3 (a, s) 7→ D2H(a, s) ∈
L(Rk, A|D) is continuous.

Therefore, the mapping

H : Ω2 ×∆ 3 (a, s) 7→ Dh∗
(
j(a, s)

)(
j(·, s)) ∈ L(A|D)

is continuously differentiable.

Now we look at the second term of (1.15), which is

Dh
(
j∗(a, s)

)(
D2j

∗(a, s)(s′)
)

for (a, s) ∈ Ω2 ×∆ and s′ ∈ R, and show that the mapping

Ĥ : Ω2 ×∆ 3 (a, s) 7→ Dh
(
j∗(a, s)

)(
D2j

∗(a, s)
) ∈ L(Rk|D)

is continuously differentiable. But this is a consequence of Lemma 1.2.0.7

and Lemma 1.2.0.8.

Both results on both terms of (1.15) yield that the mapping

Ω2 ×∆ 3 (a, s) 7→ D(h∗ ◦ j)(a, s) ∈ L(Rk, A|D)

is continuously differentiable.

Hence, h∗ ◦ j : Ω2 ×∆ → D is 2 times continuously differentiable.

46



1.3 Differentiability properties of the mapping (1.9)

In this section we will state a theorem (Theorem 1.3.2.1) on the differentia-

bility properties of the mapping (1.9), we defined in section 1.1.5:

J × Ω̂× (−1/2, 1/2) 3 (α, u, β) 7→ G(α, u·,β, u·, β) ∈ C0
T

Recall the definition of G which was

G(α, φ, χ, β) = g(α, φ, β)− L(α0)χ

for (α, φ, χ, β) ∈ J × Ω× Ω× R. The mapping

g : J × Ω× R→ Rn

was defined by g(α, φ, β) := (1 + β)g(α, φ + φ∗) for (α, φ, β) ∈ J × Ω× R.

As g is satisfying H 1) to H6) g satisfies the following assumptions:

• H̃ 1): The mapping g : J ×Ω×R→ Rn is continuously differentiable

and the identity g(α, 0, β) = 0 holds for all β ∈ (−1/2, 1/2) and α ∈ J .

• H̃ 2): The partial derivative D2g(α, φ, β) ∈ L(C1
h|Rn) of g with respect

to φ in (α, φ, β) ∈ J × Ω × R extends to a linear bounded mapping

D2,extg(α, φ, β) : Ch → Rn.

• H̃ 3): The mapping

J × Ω× R× Ch 3 (α, φ, β, χ) 7→ D2,extg(α, φ, β)(χ) ∈ Rn

is continuous.

• H̃ 4): The mapping g∗ := g|J×Ω∗×R is 2 times continuously differen-

tiable.

• H̃ 5): The second partial derivative D2
2g
∗(α, φ, β) ∈ L2(C2

h|Rn) of g

with respect to φ in (α, φ, β) ∈ J × Ω∗ × R extends to a continuous

bilinear mapping D2
2,extg

∗(α, φ, β) : C1
h × C1

h → Rn.

• H̃ 6): Let JC2
h,C1

h
denote the continuous embedding from C2

h to C1
h.

The mappings

J × Ω∗ × R× C1
h × C1

h

3 (α, φ, β, χ1, χ2) 7→ D2
2,extg

∗(α, φ, β)(χ1)(χ2) ∈ Rn
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and

D2
2,ext,1g

∗ : J × Ω∗ × R× C1
h → L(C2

h|Rn),

defined by

D2
2,extg

∗(α, φ, β)(χ)
(
JC2

h,C1
h
(ψ)

)
,

for (α, φ, β, χ) ∈ J × Ω∗ × R× C1
h and ψ ∈ C2

h, are continuous.

Note that in H̃ 3) does not include the continuity of

J × Ω× R 3 (α, φ, β) 7→ D2,extg(α, φ, β) ∈ L(Ch|Rn).

H̃ 6) does not include the continuity of

J × Ω∗ × R 3 (α, φ, β) 7→ D2
2,extg

∗(α, φ, β) ∈ L2(C1
h|Rn).

We divide this section into two subsections:

We start with a subsection of preparations for the proof of Theorem 1.3.2.1.

Then we state the theorem itself.

1.3.1 Preparations

Lemma 1.3.1.0.1. Let I ⊂ R be an interval.

1. The mapping

H1 : C1
T × I 3 (u, s) 7→ u(s) ∈ Rn

is continuously differentiable.

2. The mapping

H2 : C2
T × I 3 (u, s) 7→ u(s) ∈ Rn

is 2 times continuously differentiable.

Proof. We only show 2. The proof of 1. is similar and simple.

As, for fixed s ∈ I, the mapping C2
T 3 u 7→ H2(u, s) = u(s) ∈ Rn is

linear and bounded the partial derivative of H2 in (u, s) ∈ C2
T × I with

respect to u is given by D1H
2(u, s)(v) = v(s) for v ∈ C2

T . The continuity of

C2
T × I 3 (u, s) 7→ D1H

2(u, s) ∈ L(C2
T |Rn) is obtained in the following way:
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We take a sequence (un, sn)n∈N ∈ C2
T × I such that (un, sn) → (u, s) as

n →∞. Then the inequality

sup
v ∈ C2

T

‖v‖C2
T

= 1

‖v(s)− v(sn)‖Rn ≤

sup
v ∈ C2

T

‖v‖C2
T

= 1

(
sup

t ∈ [0, T ]

‖v′(t)‖Rn · |s− sn|
)
≤

sup
v ∈ C2

T

‖v‖C2
T

= 1

‖v‖C2
T
· |s− sn| = |s− sn|

holds for all n ∈ N. The last expression |s− sn| tends to 0, as n →∞.

Thus, C2
T × I 3 (u, s) 7→ D1H

2(u, s) ∈ L(C2
T |Rn) is continuous.

The partial derivative of H2 with respect to s in (u, s) ∈ C2
T × I is given by

DH2(u, s)1 = u′(s). The continuity of C2
T × I 3 (u, s) 7→ D2H

2(u, s)1 ∈ Rn

is obtained in the following way:

Being given any sequence (un, sn)n∈N ∈ C2
T × I such that (un, sn) → (u, s),

as n →∞, the inequality

‖u′(s)− u′n(sn)‖Rn ≤ ‖u′(s)− u′(sn)‖Rn + ‖u′(sn)− u′n(sn)‖Rn

holds for n ∈ N. The first term of the right hand side of this inequality

tends to 0, as n → ∞, by the fact that sn → s, as n → ∞ and due to the

continuity of u′ : R→ Rn. We may estimate the second term from above by

sup
t∈[0,T ]

‖u′(t)− u′n(t)‖Rn ≤ ‖u− un‖C2
T

for n ∈ N. The right hand side of this inequality tends to 0, as n →∞, by

assumption. Therefore, C2
T × I 3 (u, s) 7→ D2H

2(u, s)1 ∈ Rn is continuous.

Note that for the proof of existence and continuity of D1H
2 and D2H

2 we

did not need u to be in C2
T . It would have been sufficient to have u ∈ C1

T .

Thus, we even proved that H1 : C1
T × I 3 (u, s) 7→ u(s) ∈ Rn is continuously

differentiable.
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The partial derivative of D1H
2(u, s) with respect to u in (u, s) is obviously

zero. The partial derivative of D1H
2(u, s) with respect to s in (u, s) is given

by D2D1H
2(u, s)(v)1 = v′(s) for v ∈ C2

T . For the continuity of

C2
T × I 3 (u, s) 7→ D2D1H

2(u, s)1 ∈ L(C2
T |Rn)

we take a a sequence (un, sn)n∈N ∈ C2
T × I such that (un, sn) → (u, s), as

n →∞. Then we get by estimation that

sup
v ∈ C2

T

‖v‖C2
T

= 1

‖v′(s)− v′(sn)‖Rn ≤

sup
v ∈ C2

T

‖v‖C2
T

= 1

(
sup

t∈[0,T ]

‖v′′(t)‖Rn · |s− sn|
)
≤

sup
v ∈ C2

T

‖v‖C2
T

= 1

‖v‖C2
T
· |s− sn| = |s− sn|

holds for all n ∈ N. The last expression |s−sn| tends to 0, as n →∞. Thus,

C2
T × I 3 (u, s) 7→ D2D1H

2(u, s)1 ∈ L(C2
T |Rn) is continuous.

Considering that for fixed s ∈ I the mapping C2
T 3 u 7→ D2H

2(u, s) =

u′(s) ∈ Rn is linear and bounded the derivative of D2H
2 with respect to u in

(u, s) ∈ C2
T × I is given by D1D2H

2(u, s)(v)1 = v′(s) = D2D1H
2(u, s)(v)1,

for v ∈ C2
T . The continuity of C2

T×I 3 (u, s) 7→ D2D1H
2(u, s)1 ∈ L(C2

T |Rn)

was already shown. The derivative of D2H
2 in (u, s) ∈ C2

T × I with respect

to s is given by D2
2H

2(u, s)(1)(1) = u′′(s). The continuity of C2
T × I 3

(u, s) 7→ D2
2H

2(u, s)(1)(1) ∈ Rn is obtained in the following way:

Being given any sequence (un, sn)n∈N ∈ C2
T × I such that (un, sn) → (u, s),

as n →∞ one gets that the inequality

‖u′′(s)− u′′n(sn)‖Rn ≤ ‖u′′(s)− u′′(sn)‖Rn + ‖u′′(sn)− u′′n(sn)‖Rn

holds for n ∈ N. The first term of the right hand side of this inequality

tends to 0, as n → ∞, by the fact that sn → s, as n → ∞, and due to the
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continuity of u′′ : R→ Rn. We estimate the second term from above by

sup
t∈[0,T ]

‖u′′(t)− u′′n(t)‖Rn ≤ ‖u− un‖C2
T

for n ∈ N. The right hand side of this estimation tends to 0, as n → ∞,

by assumption. Therefore, C2
T × I 3 (u, s) 7→ D2

2H
2(u, s)(1)(1) ∈ Rn is

continuous.

Hence, the mapping

C1
T × I 3 (u, s) 7→ H1(u, s) ∈ Rn

is continuously differentiable and the mapping

C2
T × I 3 (u, s) 7→ H2(u, s) ∈ Rn

is 2 times continuously differentiable.

Lemma 1.3.1.0.2. Let S∗ ⊂ R be an open bounded interval such that

[0, T ] ⊂ S∗. Then the following properties hold:

1. Let β ∈ (−1/2, 1/2) and τ ∈ S∗ be real numbers.

If u ∈ C1
T , then uτ,β, defined by uτ,β(θ) := u

(
τ + θ/(1 + β)

)
, for

−h ≤ θ ≤ 0 is an element of C1
h.

The mapping Ξ1
1 : C1

T × (−1/2, 1/2) × S∗ 3 (u, β, τ) 7→ uτ,β ∈ C1
h is

continuous. For every (β, τ) ∈ (−1/2, 1/2)× S∗ the mapping

C1
T 3 v 7→ Ξ1

1(v, β, τ) ∈ C1
h

is linear and bounded. Furthermore, the inequality

sup
(β,τ)∈(−1/2,1/2)×S∗

{
‖Ξ1

1(·, β, τ)‖L(C1
T |C1

h)

}
< ∞

holds.

2. Let β ∈ (−1/2, 1/2) and τ ∈ S∗ be real numbers.

If u ∈ C2
T , then uτ,β, defined by uτ,β(θ) := u

(
τ + θ/(1 + β)

)
, for −h ≤

θ ≤ 0 is an element of C2
h. The mapping Ξ2

2 : C2
T × (−1/2, 1/2)×S∗ 3

(u, β, τ) 7→ uτ,β ∈ C2
h is continuous. For every (β, τ) ∈ (−1/2, 1/2)×

S∗ the mapping

C2
T 3 v 7→ Ξ2

2(v, β, τ) ∈ C2
h
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is linear and bounded. Furthermore, the inequality

sup
(β,τ)∈(−1/2,1/2)×S∗

{
‖Ξ2

2(·, β, τ)‖L(C2
T |C2

h)

}
< ∞

holds.

3. The mapping Ξ1
0 : C1

T × (−1/2, 1/2) × S∗ 3 (u, β, τ) 7→ uτ,β ∈ Ch is

continuously differentiable.

4. The mapping Ξ2
1 : C2

T × (−1/2, 1/2) × S∗ 3 (u, β, τ) 7→ uτ,β ∈ C1
h is

continuously differentiable.

For (u, β, τ) ∈ C2
T × (−1/2, 1/2)× S∗ let D(β,τ)Ξ2

1(u, β, τ) ∈ L(R2|C1
h)

denote the derivative of Ξ2
1 with respect to (β, τ) in (u, β, τ) ∈ C2

T ×
(−1/2, 1/2)× S∗.

Then for every (β, τ) ∈ (−1/2, 1/2)× S∗ the mapping

C2
T 3 v 7→ D(β,τ)Ξ

2
1(v, β, τ) ∈ L(R2|C1

h)

is linear and bounded. Furthermore, the inequality

sup
(β,τ)∈(−1/2,1/2)×S∗

{
‖D(β,τ)Ξ

2
1(·, β, τ)‖L(R2,C2

T |C1
h)

}
< ∞

holds.

5. The mapping Ξ2
0 : C2

T × (−1/2, 1/2)× S∗ 3 (u, β, τ) 7→ uτ,β ∈ Ch is 2

times continuously differentiable.

Proof. We only show 2., 5. and 4. The proofs of 1. and 3. is similar to 2.

and 5. respectively and simple.

2. In the previous lemma we have seen that for any interval I ⊂ R the map-

ping H2 : C2
T ×I 3 (u, s) 7→ u(s) ∈ Rn is 2 times continuously differentiable.

Thus, by applying the chain rule the mapping

C2
T×(−1/2, 1/2)×S∗×[−h, 0] 3 (u, β, τ, θ) 7→ uτ,β(θ) = H2

(
u, τ+θ/(1+β)

) ∈ Rn

is 2 times continuously differentiable.

Therefore, an application of part six of Theorem 3.1.1 in Appendix I yields

the continuity of the mapping

Ξ2
2 : C2

T × (−1/2, 1/2)× S∗ 3 (u, β, τ) 7→ uτ,β ∈ C2
h.
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For v ∈ C2
T let v(0) := v, v(1) := v′ and v(2) := v′′. Then it is obvious that

for every s ∈ R all mappings

C2
T 3 v 7→ v(i)(s) ∈ Rn

i ∈ {0, 1, 2} are linear and bounded. It is easy to see that for any (β, τ) ∈
(−1/2, 1/2)× S∗ the mapping

C2
T 3 v 7→ vτ,β ∈ C2

h

is linear and bounded. If we define b : (−1/2, 1/2)× S∗ × [−h, 0] → R by

b(β, τ, θ) := τ + θ/(1 + β)

for θ ∈ [−h, 0] and (β, τ) ∈ (−1/2, 1/2) × S∗ then the mapping b is con-

tinuously differentiable. D3b(β, τ, θ) = 1/(1 + β) < 2 for all (β, τ) ∈
(−1/2, 1, 2)× S∗. Thus, the inequality

sup
(β,τ,θ)∈(−1/2,1/2)×S∗×[−h,0]

sup
v ∈ C2

T

‖v‖C2
T

= 1

{
max

i∈{0,1,2}
‖v(i)

(
b(β, τ, θ)

)‖Rn

(
D3b(β, τ, θ)

)i
}

< ∞

holds.

Hence, we get that even the inequality

sup
(β,τ)∈(−1/2,1/2)×S∗

{
‖Ξ2

2(·, β, τ)‖L(C2
T |C2

h)

}
< ∞

holds.

5. In the proof of 2. we have seen that the mapping

C2
T×(−1/2, 1/2)×S∗×[−h, 0] 3 (u, β, τ, θ) 7→ uτ,β(θ) = H2

(
u, τ+θ/(1+β)

) ∈ Rn

is 2 times continuously differentiable.

By applying the fourth part of Theorem 3.1.1 we get that the mapping

Ξ2
0 : C2

T × (−1/2, 1/2)× S∗ 3 (u, β, τ) 7→ uτ,β ∈ Ch

is 2 times continuously differentiable.

4. An application of the fifth part of Theorem 3.1.1 in Appendix I shows
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that the mapping Ξ2
1 : C2

T × (−1/2, 1/2) × S∗ 3 (u, β, τ) 7→ uτ,β ∈ C1
h is

continuously differentiable.

As the identity

Ξ2
1(u, β, τ)(θ) = u

(
τ + θ/(1 + β)

)
= b(β, τ, θ)

holds for (u, β, τ, θ) ∈ C2
T × (−1/2, 1/2)× S∗ × [−h, 0] and by the fact that

u and b are continuously differentiable an application of part 2 of Theorem

3.1.1 in Appendix I yields that the derivative D(β,τ)Ξ2
1(u, β, τ) ∈ L(R2|C1

h)

of Ξ2
1 with respect to (β, τ) in (u, β, τ) ∈ C2

T × (−1/2, 1/2)× S∗ is given by

(
D(β,τ)Ξ

2
1(u, β, τ)(β̃, τ̃)

)
(θ) = u′τ,β(θ)D(β,τ)b(β, τ, θ)(β̃, τ̃)

for θ ∈ [−h, 0] and (β̃, τ̃) ∈ R2.

Like in the proof of 2. we can show that for any (β, τ) ∈ (−1/2, 1/2) × S∗

the mapping

C2
T 3 v 7→ v′τ,βD(β,τ)b(β, τ, ·) ∈ L(R2|C1

h)

is linear and bounded and that the inequality

sup
(β,τ)∈(−1/2,1/2)×S∗

{
‖D(β,τ)Ξ

2
1(·, β, τ)‖L(,R2,C2

T |C1
h)

}
< ∞

holds.

Lemma 1.3.1.0.3. Let g : J × Ω × R → Rn be a mapping such that all

assumptions H̃ 1) to H̃ 6) are satisfied. And let the mappings Ξ1
1, Ξ2

2, Ξ1
0,

Ξ2
1, Ξ2

0 be defined like in the previous lemma.

Let Ω̂ ⊂ C1
T be an open subset such that uτ,β ∈ Ω for u ∈ Ω̂ and (β, τ) ∈

(−1/2, 1/2)× S∗.

Let Ω̃ := Ω̂ ∩ C2
T .

Then the following properties hold:

1. The mapping

ξ1 : J × Ω̂× (−1/2, 1/2)×S∗ 3 (α, u, β, τ) 7→ g
(
α, Ξ1

1(u, β, τ), β
) ∈ Rn

is continuously differentiable.
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2. The mapping

ξ2 : J×Ω̃×(−1/2, 1/2)×S∗ 3 (α, u, β, τ) 7→ g∗
(
α, Ξ2

2(u, β, τ), β
) ∈ Rn

is 2 times continuously differentiable.

Proof. We want to apply Theorem 1.2.1:

g satisfying H̃ 1) - H̃ 6) we set h := g, h∗ := g∗, C := R × C1
h × R,

B := R × C2
h × R, E := R × Ch × R, Ω1 := J × Ω × R, Ω∗1 := J × Ω∗ × R

and D := Rn.

Thus, h satisfies all assumptions h 1) - h 6).

For the proof of 1. we set A := R × R × C1
T , Ω2 := J × (−1/2, 1/2) × Ω̂,

k := 3. Let ∆ = (−1/2, 1/2) × S∗ which is an open bounded subset of R3.

We define the mapping

j : Ω2 ×∆ → Ω1 ⊂ C

by

j(a, s) := (α, uτ,β′ , β) = (α, Ξ1
1

(
u, β′, τ), β

)

for a := (α, β, u) and s := (β′, τ). Then, due to the first part of the previous

lemma, j is continuous. The linearity and boundedness of the mapping

A 3 a 7→ j(a, s) ∈ C,

for fixed s ∈ ∆, is a consequence of the fact that for any

(β′, τ) ∈ (−1/2, 1/2)× S∗ the mapping

C1
T 3 v 7→ Ξ1

1(v, β′, τ) ∈ C1
h

is linear and bounded (see again the first part of the previous lemma). Fur-

thermore, the inequality

sup
s∈∆

‖j(·, s)‖L(A|C) < ∞

holds because of the fact that as a result of the first part of the previous

lemma the inequality

sup
(β′,τ)∈(−1/2,1/2)×S∗

{
‖Ξ1

1(·, β′, τ)‖L(C1
T |C1

h)

}
< ∞

55



holds.

We define

j∗ : Ω2 ×∆ → E

by j∗ = JC,E ◦ j if JC,E denotes the embedding from C to E. Then the

identity j∗(a, s) = (α, Ξ1
0

(
u, β′, τ), β

)
holds for a = (α, β, u) ∈ R × R × C1

T

and s = (β′, τ) ∈ (−1/2, 1/2) × S∗. Hence, due to the third part of the

previous lemma, j∗ is continuously differentiable. Therefore, j satisfies j 4)

and j 5).

Thus, by applying the first part of Theorem 1.2.1 one gets that the mapping

Ω2 ×∆ 3 (a, s) 7→ h
(
j(a, s)

) ∈ D

which here is

(
J×(−1/2, 1/2)×Ω̂

)×(
(−1/2, 1/2)×S∗

) 3 (
(α, β, u), (β′, τ)

) 7→ g
(
α, Ξ1

1(u, β′, τ), β
) ∈ Rn

is continuously differentiable. An application of the chainrule yields that

the mapping

ξ1 : J × Ω̂× (−1/2, 1/2)× S∗ 3 (α, u, β, τ) 7→ g
(
α, Ξ1

1(u, β, τ), β
) ∈ Rn

is continuously differentiable.

For the proof of 2. we set A := R × R × C2
T , Ω2 := J × (−1/2, 1/2) × Ω̃,

k := 3 and ∆ := (−1/2, 1/2) × S∗ which is a bounded open subset of R3.

We define the mapping

j : Ω2 ×∆ → Ω∗1 ⊂ B

by

j(a, s) := (α, uτ,β′ , β) = (α,Ξ2
2

(
u, β′, τ), β

)

for a := (α, β, u) and s := (β′, τ). Then, due to the second part of the

previous lemma, j is continuous. The linearity and boundedness of the

mapping

A 3 a 7→ j(a, s) ∈ B,

for fixed s ∈ ∆, is a consequence of the fact that for any

(β′, τ) ∈ (−1/2, 1/2)× S∗ the mapping

C2
T 3 v 7→ Ξ2

2(v, β′, τ) ∈ C2
h
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is linear and bounded (see again the second part of the previous lemma).

Furthermore, the inequality

sup
s∈∆

‖j(·, s)‖L(A|B) < ∞

holds because of the fact that as a result of the second part of the previous

lemma the inequality

sup
(β′,τ)∈(−1/2,1/2)×S∗

{
‖Ξ2

2(·, β′, τ)‖L(C2
T |C2

h)

}
< ∞

holds.

We define

j∗ : A×∆ → C

by j∗ = JB,C ◦ j if JB,C denotes the embedding from B to C. Then the

identity j∗(a, s) = (α, Ξ2
1

(
u, β′, τ), β

)
holds for a = (α, β, u) ∈ R×R×C2

T and

s = (β′, τ) ∈ (−1/2, 1/2)×S∗. Hence, due to the fourth part of the previous

lemma, j∗ is continuously differentiable. The linearity and boundedness of

the mapping

A 3 a 7→ D2j
∗(a, s) ∈ L(R3|C),

for fixed s ∈ ∆, is a consequence of the fact that for any

(β′, τ) ∈ (−1/2, 1/2)× S∗ the mapping

C2
T 3 v 7→ D(β′,τ)Ξ

2
1(v, β′, τ) ∈ L(R2|C1

h)

is linear and bounded (see again the fourth part of the previous lemma).

Furthermore, the inequality

sup
s∈∆

‖D2j
∗(·, s)‖L(R3,A|C) < ∞

holds because of the fact that as a result of the fourth part of the previous

lemma the inequality

sup
(β′,τ)∈(−1/2,1/2)×S∗

{
‖D(β′,τ)Ξ

2
1(·, β′, τ)‖L(R2,C2

T |C1
h)

}
< ∞

holds.

We define

j∗∗ : A×∆ → E
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by j∗∗ = JC,E ◦ j∗, if JC,E denotes the embedding from C to E. Then the

identity j∗∗(a, s) = (α,Ξ2
0

(
u, β′, τ), β

)
holds for a = (α, β, u) ∈ R× R× C2

T

and s = (β′, τ) ∈ (−1/2, 1/2)×S∗. Hence, due to the last part of the previ-

ous lemma, j∗∗ is 2 times continuously differentiable. Therefore, j satisfies

j 1), j 2) and j 3).

Thus, by applying the second part of Theorem 1.2.1 one gets that the map-

ping

Ω2 ×∆ 3 (a, s) 7→ h∗
(
j(a, s)

) ∈ D

which here is

(
J×(−1/2, 1/2)×Ω̃

)×(
(−1/2, 1/2)×S∗

) 3 (
(α, u), (β, β′, τ)

) 7→ g∗
(
α, Ξ2

2(u, β′, τ), β
) ∈ Rn

is 2 times continuously differentiable. An application of the chain rule yields

that the mapping

ξ2 : J × Ω̃× (−1/2, 1/2)× S∗ 3 (α, u, β, τ) 7→ g∗
(
α, Ξ2

2(u, β, τ), β
) ∈ Rn

is 2 times continuously differentiable.

1.3.2 Theorem on the differentiability properties of the map-

ping (1.9)

Now we are able to state a theorem on the differentiability - properties of

the mapping (1.9). Recall the definition of the mappings Ξj
i , i, j ∈ {0, 1, 2}

and ξj , j ∈ {1, 2} which we introduced in the last section. Therefore, the

mapping (1.9) will also be presented in new notation.

Theorem 1.3.2.1. Let g : J × Ω × R → Rn be given with all assumptions

H̃ 1) to H̃ 6) being satisfied. Let α0 ∈ I be the critical parameter as stated

in L 1). Let Ω̂ ⊂ C1
T , Ω̃ ⊂ C2

T and the mappings ξ1, ξ2 be defined like in

Lemma 1.3.1.0.3.

Let the mappings Ξ1
0, Ξ2

0 be defined like in Lemma 1.3.1.0.2.

Furthermore, suppose that uτ ∈ Ω for u ∈ Ω̂ and τ ∈ R.

Then the following properties hold:

1. The mapping

G0 : J × Ω̂× (−1/2, 1/2) → C0
T ,
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defined by

G0(α, u, β)(τ) := ξ1(α, u, β, τ)− L(α0)Ξ1
0(u, 0, τ),

for (α, u, β) ∈ J × Ω̂× (−1/2, 1/2) and τ ∈ R, is continuously differ-

entiable.

The identities G0(α0, 0, 0) = 0 and D2G0(α0, 0, 0) = 0 hold.

2. The mapping

G1 : J × Ω̃× (−1/2, 1/2) → C1
T ,

defined by

G1(α, u, β)(τ) := ξ2(α, u, β, τ)− L(α0)Ξ2
0(u, 0, τ)

and

(
G1(α, u, β)

)′(τ) := D4ξ
2(α, u, β, τ)− L(α0)D3Ξ2

0(u, 0, τ),

for (α, u, β) ∈ J × Ω̃× (−1/2, 1/2) and τ ∈ R, is continuously differ-

entiable.

The identities G1(α0, 0, 0) = 0 and D2G1(α0, 0, 0) = 0 hold.

3. The mapping

G2 : J × Ω̃× (−1/2, 1/2) → C0
T ,

defined by

G2(α, u, β)(τ) := ξ2(α, u, β, τ)− L(α0)Ξ2
0(u, 0, τ),

for (α, u, β) ∈ J × Ω̃× (−1/2, 1/2) and τ ∈ R, is 2 times continuously

differentiable.

The identities G2(α0, 0, 0) = 0 and D2G2(α0, 0, 0) = 0 hold.

Proof. With no loss of generality let φ∗ = 0.

1. In Lemma 1.3.1.0.3 we have seen that the mapping

ξ1 : J × Ω̂× (−1/2, 1/2)× S∗ 3 (α, u, β, τ) 7→ g(α, uτ,β , β) ∈ Rn

is continuously differentiable.

Lemma 1.3.1.0.2 yields that the mapping

Ξ1
0 : C1

T × (−1/2, 1/2)× S∗ 3 (u, β, τ) 7→ uτ,β ∈ Ch
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is continuously differentiable.

Hence, both restrictions ξ1|J×Ω̂×(−1/2,1/2)×[0,T ] and Ξ1
0|C1

T×(−1/2,1/2)×[0,T ] are

continuously differentiable.

An application of the second part of Theorem 3.1.1 in Appendix I yields

that

g0 : J × Ω̂× (−1/2, 1/2) → C0

defined by

g0(α, u, β)(τ) := ξ1(α, u, β, τ)− L(α0)Ξ1
0(u, 0, τ),

for (α, u, β) ∈ J × Ω̂ × (−1/2, 1/2) and τ ∈ [0, T ], is continuously differen-

tiable. As u was T - periodic we can extend g0(α, u, β) to a T - periodic

continuous function G0(α, u, β) on R for (α, u, β) ∈ J × Ω̂× (−1/2, 1/2):

If τ ∈ [nT, (n + 1)T ], for n ∈ Z, we set G0(α, u, β)(τ) := g0(α, u, β)(τ).

By the fact that ‖v‖C0
T

= ‖v‖C0 for v ∈ C1
T it easily follows that g0 extends

to a continuously differentiable mapping

G0 : J × Ω̂× (−1/2, 1/2) → C0
T .

The identities G0(α0, 0, 0) = 0 and D2G0(α0, 0, 0) = 0 are a consequence of

the definition of ξ1 and Ξ1
0.

2. In Lemma 1.3.1.0.3 we have seen that the mapping

ξ2 : J × Ω̃× (−1/2, 1/2)× S∗ 3 (α, u, β, τ) 7→ g∗(α, uτ,β , β) ∈ Rn

is 2 times continuously differentiable.

Lemma 1.3.1.0.2 yields that the mapping

Ξ2
0 : C2

T × (−1/2, 1/2)× S∗ 3 (u, β, τ) 7→ uτ,β ∈ Ch

is 2 times continuously differentiable.

Hence, both restrictions ξ2|J×Ω̃×(−1/2,1/2)×[0,T ] and Ξ2
0|C2

T×(−1/2,1/2)×[0,T ] are

2 times continuously differentiable.

An application of the fifth part of Theorem 3.1.1 in Appendix I yields that

g1 : J × Ω̃× (−1/2, 1/2) → C1

defined by

g1(α, u, β)(τ) := ξ2(α, u, β, τ)− L(α0)Ξ2
0(u, 0, τ)
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and (
g1(α, u, β)

)′(τ) := D4ξ
2(α, u, β, τ)− L(α0)D3Ξ2

0(u, 0, τ),

for (α, u, β) ∈ J × Ω̃ × (−1/2, 1/2) and τ ∈ [0, T ], is continuously differ-

entiable. As u was T - periodic we can extend g1(α, u, β) to a T - pe-

riodic continuously differentiable function G1(α, u, β) on R for (α, u, β) ∈
J × Ω̃× (−1/2, 1/2):

If τ ∈ [nT, (n + 1)T ], for n ∈ Z, we set G1(α, u, β)(τ) := g1(α, u, β)(τ) and(
G1(α, u, β)

)′(τ) :=
(
g1(α, u, β)

)′(τ).

By the fact that ‖v‖C1
T

= ‖v‖C1 for v ∈ C1
T it easily follows that g1 extends

to a continuously differentiable mapping

G1 : J × Ω̃× (−1/2, 1/2) → C1
T .

The identities G1(α0, 0, 0) = 0 and D2G1(α0, 0, 0) = 0 are a consequence of

the definition of ξ2 and Ξ2
0.

3. In Lemma 1.3.1.0.3 we have seen that the mapping

ξ2 : J × Ω̃× (−1/2, 1/2)× S∗ 3 (α, u, β, τ) 7→ g∗(α, uτ,β , β) ∈ Rn

is 2 times continuously differentiable.

Lemma 1.3.1.0.2 yields that the mapping

Ξ2
0 : C2

T × (−1/2, 1/2)× S∗ 3 (u, β, τ) 7→ uτ,β ∈ Ch

is 2 times continuously differentiable.

Hence, both restrictions ξ2|J×Ω̃×(−1/2,1/2)×[0,T ] and Ξ2
0|C2

T×(−1/2,1/2)×[0,T ] are

2 times continuously differentiable.

An application of the fourth part of Theorem 3.1.1 in Appendix I yields that

g2 : J × Ω̃× (−1/2, 1/2) → C0

defined by

g2(α, u, β)(τ) := ξ2(α, u, β, τ)− L(α0)Ξ2
0(u, 0, τ),

for (α, u, β) ∈ J × Ω̃ × (−1/2, 1/2) and τ ∈ [0, T ], is 2 times continuously

differentiable. As u was T - periodic we can extend g2(α, u, β) to a T

- periodic continuous function G2(α, u, β) on R for (α, u, β) ∈ J × Ω̃ ×
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(−1/2, 1/2):

If τ ∈ [nT, (n + 1)T ], for n ∈ Z, we set G2(α, u, β)(τ) := g2(α, u, β)(τ).

By the fact that ‖v‖C0
T

= ‖v‖C0 for v ∈ C0
T it easily follows that g2 extends

to a 2 times continuously differentiable mapping

G2 : J × Ω̃× (−1/2, 1/2) → C0
T .

The identities G2(α0, 0, 0) = 0 and D2G2(α0, 0, 0) = 0 are a consequence of

the definition of ξ2 and Ξ2
0.
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1.4 Hopf Bifurcation Theorem

We repeat the conditions which are necessary for Hopf bifurcation as stated

in section 1.1.3:

There exists an interval I ⊂ J and a parametrization I 3 α 7→ λ(α) ∈ C
onto eigenvalues of the infinitesimal generator of L(α).

This parametrization has the following properties:

L 1): λ(α0) = λ0 = ω · i, ω = 2π
T a real number, is a purely imaginary

simple eigenvalue of the infinitesimal generator A(α0) of the semigroup

T (α0)(t)t≥0 associated with L(α0). There exists no further eigenvalue

of A(α0) but λ̄0 = −ω · i.

L 2): The mapping I 3 α → λ(α) ∈ C is continuously differentiable with

<[(λ′(α0))] 6= 0.

L 3): λ(α) for α ∈ I is a simple eigenvalue of the infinitesimal generator

A(α) belonging to the semigroup T (α)(t)t≥0 associated with L(α).

We divide this section into two subsections.

In the first one we will prove that there exists a 2 times continuously differ-

entiable mapping

Ô 3 (α, a, β) → û(α, a, β) ∈ C1
T

onto solutions of (1.7) , where Ô is a suitable open subsets of J × R ×
(−1/2, 1/2).

In the second subsection we will follow a standard approach to Hopf bifur-

cation which is plugging û into equation (1.8) and solving it for γ and β,

given the assumptions L 1) to L 3). This will be done in the proof of the

Hopf bifurcation Theorem (Theorem 1.4.2.1).

1.4.1 Solutions of (1.7)

Lemma 1.4.1.0.1. Let L ∈ L
(
Ch|Rn

)
and f be a T - periodic function.

Let x : R→ Rn be a continuous T - periodic solution of

(1.16) x′(t) = Lxt + f(t), t ∈ R

Then the following results hold:
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1. If f ∈ C0
T , then x ∈ C1

T and the inequality

(1.17) ‖x‖C1
T
≤

(
‖L‖

L
(
Ch|Rn

) + 1
)
· ‖x‖C0

T
+ ‖f‖C0

T

holds.

2. If f ∈ C1
T , then x ∈ C2

T and the inequality

(1.18)

‖x‖C2
T
≤

(
‖L‖2

L
(
Ch|Rn

) + ‖L‖
L
(
Ch|Rn

) + 1
)
· ‖x‖C0

T

+
(
‖L‖

L
(
Ch|Rn

) + 1
)
· ‖f‖C1

T

holds.

Proof. 1. x is a solution of equation (1.16). Then, due to the continuity of

the right hand side of (1.16) the mapping x : R→ Rn needs to be continu-

ously differentiable. Hence, one gets by estimation that the inequality

sup
t∈[0,T ]

‖x′(t)‖Rn ≤ sup
t∈[0,T ]

(‖Lxt‖Rn + ‖f(t)‖Rn) ≤

‖L‖
L
(
Ch|Rn

)‖x‖C0
T

+ ‖f‖C0
T

holds. On the other hand

sup
t∈[0,T ]

‖x(t)‖Rn = ‖x‖C0
T
.

Thus, the inequality

‖x‖C1
T

= max{ sup
t∈[0,T ]

‖x(t)‖Rn , sup
t∈[0,T ]

‖x′(t)‖Rn} ≤

(
‖L‖

L
(
Ch|Rn

) + 1
)
· ‖x‖C0

T
+ ‖f‖C0

T

holds.

2. x satisfying (1.16), where

R 3 t 7→ f(t) ∈ Rn

and

R 3 t 7→ xt ∈ Ch
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are continuously differentiable one may again differentiate the whole equa-

tion (1.16) which then becomes

(1.19) x′′(t) = Lx′t + f ′(t), t ∈ R

Thus, x : R→ Rn is 2 times continuously differentiable and, analogously to

1., one gets by estimation that the inequality

sup
t∈[0,T ]

‖x′′(t)‖Rn ≤ sup
t∈[0,T ]

(‖Lx′t‖Rn + ‖f ′(t)‖Rn) ≤

‖L‖
L
(
Ch|Rn

)‖x′‖C0
T

+ ‖f ′‖C0
T

holds. In 1.we have seen that x′ satisfies

‖x′‖C0
T

= sup
t∈[0,T ]

‖x′(t)‖Rn ≤ sup
t∈[0,T ]

(‖Lxt‖Rn + ‖f(t)‖Rn) ≤

‖L‖
L
(
Ch|Rn

)‖x‖C0
T

+ ‖f‖C0
T
.

Thus, the inequality

sup
t∈[0,T ]

‖x′′(t)‖Rn ≤

‖L‖
L
(
Ch|Rn

)(
‖L‖

L
(
Ch|Rn

) · ‖x‖C0
T

+ ‖f‖C0
T

)

+‖f ′‖C0
T
≤

‖L‖2

L
(
Ch|Rn

) · ‖x‖C0
T

+
(
‖L‖

L
(
Ch|Rn

) + 1
)
· ‖f‖C1

T

holds. Hence, the inequality

‖x‖C2
T

= max{ sup
t∈[0,T ]

‖x(t)‖Rn , sup
t∈[0,T ]

‖x′(t)‖Rn , sup
t∈[0,T ]

‖x′′(t)‖Rn} ≤

(
‖L‖2

L
(
Ch|Rn

) + ‖L‖
L
(
Ch|Rn

) + 1
)
· ‖x‖C0

T

+
(
‖L‖

L
(
Ch|Rn

) + 1
)
· ‖f‖C1

T

holds.
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Lemma 1.4.1.0.2. Let the results of the previous lemma be given and let

the operators K and J be defined like in Theorem 1.1.4.1.

1. If f ∈ C0
T then the function (K ◦ [Id−J])(f) is an element of C1

T and

the operator (K ◦ [Id−J])1 : C0
T → C1

T defined by (K ◦ [Id−J])(f) for

f ∈ C0
T is linear and bounded.

2. If f ∈ C1
T then the function (K ◦ [Id−J])(f) is an element of C2

T and

the operator (K ◦ [Id−J])2 : C1
T → C2

T defined by (K ◦ [Id−J])(f) for

f ∈ C1
T is linear and bounded.

Proof. 1. As (K◦ [Id−J])(f) is the unique continuous T - periodic solution

of

x′(t) = Lxt + [Id− J](f)(t)

the first part of Lemma 1.4.1.0.1 tells us that (K ◦ [Id − J])(f) ∈ C1
T ,

Furthermore, (K◦ [Id−J])(f) has to satisfy inequality (1.17). Thus, we get

by estimation that the inequality

‖(K ◦ [Id− J])1(f)‖C1
T
≤

(
‖L‖

L
(
Ch|Rn

) + 1
)
· ‖(K ◦ [Id− J])(f)‖C0

T
+ ‖[Id− J](f)‖C0

T
≤

[(
‖L‖

L
(
Ch|Rn

) + 1
)
· ‖(K ◦ [Id− J])‖L(C0

T |C0
T ) + ‖[Id− J]‖L(C0

T |C0
T )

)]
‖f‖C0

T

holds.

2. As (K ◦ [Id−J])(f) is the unique continuously differentiable T - periodic

solution of

x′(t) = Lxt + [Id− J](f)(t)

the second part of Lemma 1.4.1.0.1 tells us that (K ◦ [Id − J])(f) ∈ C2
T .

Furthermore, (K◦ [Id−J])(f) has to satisfy inequality (1.18). Thus, we get

the by estimation that the inequality

‖(K ◦ [Id− J])2(f)‖C2
T
≤

(
‖L‖2

L
(
Ch|Rn

) + ‖L‖
L
(
Ch|Rn

) + 1
)
· ‖(K ◦ [Id− J])(f)‖C0

T
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+
(
‖L‖

L
(
Ch|Rn

) + 1
)
‖[Id− J](f)‖C1

T
≤

[(
‖L‖2

L
(
Ch|Rn

) + ‖L‖
L
(
Ch|Rn

) + 1
)

·‖(K ◦ [Id− J])‖L(C0
T |C0

T ) +
(
‖L‖

L
(
Ch|Rn

) + 1
)
‖[Id− J]|C1

T
‖L(C1

T |C1
T )

]
‖f‖C1

T

holds. In the last step we used the continuity of J|C1
T

which is a consequence

of the two following facts:

1. The restriction of J to C1
T is the projection along the kernel of the

continuous linear functional

C1
T 3 f 7→

T∫

0

Φt(s)f(s)ds ∈ R2,

as defined in Theorem 1.1.4.1.

2. This kernel has finite codimension.

Lemma 1.4.1.0.3. Let the results of the previous lemma be given. Let the

mappings G0, G1 and G2 be defined like in Theorem 1.3.2.1: Then the

following results hold:

1. The mapping

(K ◦ [Id− J])1 ◦G0 : J × Ω̂× (−1/2, 1/2) → C1
T

is continuously differentiable.

2. The mapping

(K ◦ [Id− J])2 ◦G1 : J × Ω̃× (−1/2, 1/2) → C2
T

is continuously differentiable.

3. The mapping

(K ◦ [Id− J])1 ◦G2 : J × Ω̃× (−1/2, 1/2) → C1
T

is 2 times continuously differentiable.
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Proof. 1. The mapping

G0 : J × Ω̂× (−1/2, 1/2) → C0
T

being continuously differentiable and

(K ◦ [Id− J])1 : C0
T → C1

T

being linear and bounded it is clear that the mapping

(K ◦ [Id− J])1 ◦G0 : J × Ω̂× (−1/2, 1/2) → C1
T

is continuously differentiable.

2. The mapping

G1 : J × Ω̃× (−1/2, 1/2) → C1
T

being continuously differentiable and

(K ◦ [Id− J])2 : C1
T → C2

T

being linear and bounded it is clear that the mapping

(K ◦ [Id− J])2 ◦G1 : J × Ω̃× (−1/2, 1/2) → C2
T

is continuously differentiable.

3. The mapping

G2 : J × Ω̃× (−1/2, 1/2) → C0
T

being 2 times continuously differentiable and

(K ◦ [Id− J])1 : C0
T → C1

T

being linear and bounded it is clear that the mapping

(K ◦ [Id− J])1 ◦G2 : J × Ω̃× (−1/2, 1/2) → C1
T

is 2 times continuously differentiable.

Theorem 1.4.1.1. Let all assumptions H̃ 1) to H̃ 6) be satisfied.

Let all assumptions L 1) to L 3) be satisfied.

let the mappings G0, G1 and G2 be defined like in Theorem 1.3.2.1.
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Let φ1(α0), φ2(α0) denote a basis of Eλ(0). Let JEλ(α0),C
1
T

and JEλ(α0),C
2
T

denote the continuous embeddings of the eigenspace Eλ(α0) into C1
T and C2

T ,

respectively, as defined in Section 1.1.2

Let b : R→ Eλ(α0) be defined by b(a) := a · φ1(α0), the scalar multiplication

of a scalar a with the vector φ1(α0).

Then there exist neighborhoods S ⊂ J × R × (−1/2, 1/2) of (α0, 0, 0) ∈ R3

and A ⊂ Ω̂ of 0 ∈ C1
T such that for every (α, a, β) ∈ S there is a solution

u∗(α, a, β) ∈ A ∩ Ω̃ of the equation

u = JEλ(α0),C
2
T

(
b(a)

)
+ (K ◦ [Id− J])2 ◦ (

G1(α, u, β)
)

which in fact is equation (1.7) rewritten in different notation.

Any solution u∗ of (1.7) in A at parameter (α, a, β) ∈ S must have the form

u∗ = u∗(α, a, β).

There are subsets Ô ⊂ O∗ ⊂ S such that the following properties hold:

The identity u∗(α, 0, β) = 0 holds for all (α, β) such that (α, 0, β) ∈ O∗.

The mapping

u∗ : O∗ → A ∩ Ω̃ ⊂ C2
T

is continuously differentiable.

If û := JC2
T ,C1

T
◦ u∗|Ô then the mapping

û : Ô → A ⊂ Ω̂ ⊂ C1
T

is 2 times continuously differentiable.

Proof. With no loss of generality let φ∗ = 0 and α0 = 0.

We want to apply Theorem 3.3.2 in Appendix III.

As a result of the previous lemma the mappings (K ◦ [Id − J])1 ◦G0 and

(K ◦ [Id− J])2 ◦G1 are continuously differentiable.

The mapping (K ◦ [Id − J])1 ◦ G2 is 2 times continuously differentiable.

Furthermore, the mappings

R 3 a 7→ JEλ(0),C
1
T

(
b(a)

) ∈ C1
T

and

R 3 a 7→ JEλ(0),C
2
T

(
b(a)

) ∈ C2
T
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are 2 times continuously differentiable.

Thus, the following holds:

1. Let Y 1 := C1
T and X := R3. Let B1 ⊂ X be an open subset such that

(0, 0, 0) ∈ B1 ⊂ J × R× (−1/2, 1/2) and let B2 := Ω̂.

The mapping

K̃ : B1 ×B2 → Y 1(= C1
T ),

defined by

K̃
(
(α, a, β), u

)
:= JEλ(0),C

1
T

(
b(a)

)
+ (K ◦ [Id− J])1 ◦G0(α, u, β),

for (
(α, a, β), u

) ∈ B1 ×B2,

is continuously differentiable.

2. Let B∗
2 := B2 ∩ C2

T = Ω̃ and Y 2 := C2
T . The mapping

K∗ : B1 ×B∗
2 → Y 2(= C2

T ),

defined by

K∗((α, a, β), u
)

:= JEλ(0),C
2
T

(
b(a)

)
+ (K ◦ [Id− J])2 ◦G1(α, u, β),

for (
(α, a, β), u

) ∈ B1 ×B∗
2 ,

is continuously differentiable.

3. The mapping

K̂ : B1 ×B∗
2 → Y 1(= C1

T ),

defined by

K̂
(
(α, a, β), u

)
:= JEλ(0),C

1
T

(
b(a)

)
+ (K ◦ [Id− J])1 ◦G2(α, u, β),

for (
(α, a, β), u

) ∈ B1 ×B∗
2 ,

is 2 times continuously differentiable.

Clearly, K̃(B1 ×B∗
2) ⊂ Y 2.
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We know from Theorem 1.3.2.1 that the identities G0(0, 0, 0) = 0, G1(0, 0, 0) =

0, D2G0(0, 0, 0) = 0 and D2G1(0, 0, 0) = 0 hold. Thus, the identities

K∗((0, 0, 0), 0
)

= K̃
(
(0, 0, 0), 0

)
= 0,

IdY 1 −D2K̃(
(
0, 0, 0), 0

)
= IdY 1

and

IdY 2 −D2K
∗((0, 0, 0), 0

)
= IdY 2

hold.

Here, D2K̃(
(
0, 0, 0), 0

) ∈ L(Y 1|Y 1) and D2K
∗(

(
0, 0, 0), 0

) ∈ L(Y 2|Y 2) de-

note the partial derivatives of K̃ and K∗ with respect to u in
(
(0, 0, 0), 0

) ∈
Y 1 and

(
(0, 0, 0), 0

) ∈ Y 2 respectively.

Therefore, the Implicit Function Theorem yields the existence of open neigh-

borhoods Õ ⊂ B1 and O∗ ⊂ B1 of (0, 0, 0) and A ⊂ Ω̂ of 0 ∈ Y 2 ⊂ Y 1 such

that the follwing holds:

There are continuously differentiable mappings

ũ : Õ → B2 ⊂ Y 1

and

u∗ : O∗ → B∗
2 ⊂ Y 2,

respectively, satisfying K̃
(
Õ,A

) ⊂ A and

K̃
(
(α, a, β), ũ(α, a, β)

)
= ũ(α, a, β), (α, a, β) ∈ Õ,

and K∗(O∗,A ∩ Ω̃
) ⊂ A ∩ Ω̃ and

K∗((α, a, β), u∗(α, a, β)
)

= u∗(α, a, β), (α, a, β) ∈ O∗,

respectively. By the fact that K∗((α, 0, β), 0
)

= 0 it follows that u∗(α, 0, β) =

0 for all (α, β) such that (α, 0, β) ∈ Õ. With no loss of generality we sup-

pose that O∗ ⊂ Õ. It is clear that for reasons of uniqueness ũ must satisfy

ũ|O∗ = (JC2
T ,C1

T
◦ u∗).

Therefore, the assumptions of Theorem 3.3.2 are satisfied and thus there is

a neighborhood Ô ⊂ B1 of (0, 0, 0) such that the mapping û := ũ|Ô is 2

times continuously differentiable. Furthermore, the identity

K̂
(
(α, a, β), û(α, a, β)

)
= û(α, a, β)

71



holds for (α, a, β) ∈ Ô. With no loss of generality we suppose that Ô ⊂
O∗ ⊂ Õ and set S := Õ. This completes the proof.

Corollary 1.4.1.1.1. Let all assumptions of the previous theorem be satis-

fied. Let u∗ be the solution of

u = JEλ(α0),C
2
T

(
b(a)

)
+ (K ◦ [Id− J])2 ◦G1(α, u, β)

which we found in the previous Theorem.

Then the mapping

Ô 3 (α, a, β) 7→ G2
(
α, u∗(α, a, β), β

) ∈ C0
T

is 2 times continuously differentiable.

Proof. With no loss of generality let α0 = 0.

We want to apply Theorem 3.2.1 in Appendix II:

We know the following:

• If A1 ⊂ J × Ω̂ × (−1/2, 1/2) is an open subset such that û(Ô) ⊂ A1

then the mapping G0|A1 is continuously differentiable.

• The set

A2 := A1 ∩ (J × Ω̃× (−1/2, 1/2))

is an open subset of J × Ω̃× (−1/2, 1/2) such that u∗(Ô) ⊂ A2. Fur-

thermore, the mapping G2|A2 is 2 times continuously differentiable.

On the other hand u∗ has the following properties:

• The mapping

u∗ : Ô → Ω̃ ⊂ C2
T

is continuously differentiable. (Recall that as a result of the previous

theorem Ô ⊂ O∗. Thus, we may restrict u∗ to Ô.)

• The mapping

û = JC2
T ,C1

T
◦ u∗ : Ô → Ω̂ ⊂ C1

T

is 2 times continuously differentiable.

72



Hence, by considering the map

Ô 3 (α, a, β) 7→ (
α, u∗(α, a, β), β

) ∈ J × Ω̃× (−1/2, 1/2)

we realize that we are exactly in the situation of Theorem 3.2.1. Thus, the

mapping

Ô 3 (α, a, β) 7→ G2
(
α, u∗(α, a, β), β

) ∈ C0
T

is 2 times continuously differentiable.

1.4.2 Standard approach of proving Hopf bifurcation

In this subsection we continue the proof of Hopf bifurcation as stated in

[3] by plugging û into equation (1.8) and solving it for α and β, given the

assumptions L 1) to L 3) of the linearization L(α), for α ∈ J .

The presentation of the steps on the proof will be more explicit than in [3].

We suppose that the following properties associated with the linearization

L(α), for α ∈ J , are satisfied:

(Compare [3], section 7)

• For α ∈ I, i ∈ {0, 1, 2}, let JEλ(α),C
i denote the continuous embedding

from Eλ(α) to Ci, such as defined in section 1.1.2.

For α = α0, i ∈ {0, 1, 2}, let JEλ(α0),C
i
T

denote the continuous embed-

ding from Eλ(α0) to Ci
T , such as defined in section 1.1.2.

For α ∈ I let {φ1(α), φ2(α)} denote a basis of the eigenspace Eλ(α) of

the infinitesimal generator A(α) of L(α) corresponding to the eigen-

value λ(α). This basis satisfies φt
i(s) · φj(s) = δij , i, j = 1, 2.

Let Φ1(α) = JEλ(α),C
0

(
φ1(α)

)
and Φ2(α) = JEλ(α),C

0

(
φ2(α)

)
and

Φ(α) =
(
Φ1(α), Φ2(α)

)
.

Hence, the identity

Φ(α)t(s)Φ(α)(s) =

(
1 0

0 1

)

holds for α ∈ I and s ∈ [0, T ].

Analogously, for α = α0, Φ(α0) =
(
Φ1(α0), Φ2(α0)

)
where Φ1(α0) =

JEλ(α0),C
0
T

(
φ1(α0)

)
and Φ2(α0) = JEλ(α0),C

0
T

(
φ2(α0)

)
.

Recall the definition of the mapping b : R → Eλ0 in Theorem 1.4.1.1

73



which is b(a) := φ1(α0) · a, for a ∈ R.

Then,

JEλ0
,Ci

T

(
b(a)

)
(s) = Φ(0)(s)(a, 0)t

for s ∈ [0, T ] and i ∈ {0, 1, 2}.

• The mapping

I 3 α 7→ Φ(α) ∈ C0 × C0

is continuously differentiable.

• There exists a continuously differentiable mapping

I 3 α 7→ B(α) ∈ R2×2

such that the identities

Φ(α)(s) = Φ(α)(0) exp
(
B(α)s

)

and

Φt(α)(s) = exp
(−B(α)s

)
Φt(α)(0)

hold for s ∈ [0, T ] and α ∈ I

• The identity

B(α) =

(
<(

λ(α)
) −=(

λ(α)
)

=(
λ(α)

) <(
λ(α)

)
)

holds for α ∈ I.

Lemma 1.4.2.0.1. Let the assumptions H̃ 1) - H̃ 6) and L 1) to L 3)be

satisfied and the results of Section 1.4.1 be given. If we define

η : C0
T → R2

by

η(φ) =

T∫

0

Φ(0)t(s)φ(s)ds

for φ ∈ C0
T then the mapping

(1.20)

Γ : Ô 3 (α, a, β) 7→





1
aη

[
G2

(
α, u∗(α, a, β), β

)]
, a 6= 0

η
[
D2G2

(
α, u∗(α, a, β), β

)
(
(
D2u

∗(α, a, β)1
)]

, a = 0




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is continuously differentiable.

Proof. With no loss of generality let φ∗ = 0 and α0 = 0.

In Corollary 1.4.1.1.1 we have seen that the mapping

Ô 3 (α, a, β) 7→ G2
(
α, u∗(α, a, β), β

) ∈ C0
T

is 2 times continuously differentiable. On the other hand

η : C0
T → R2

is a bounded linear mapping. Hence, the claim follows from a well known

fact:

If H : Ω ⊂ R3 → R2, Ω ⊂ R3 an open subset, is a 2 times continuously

differentiable mapping, which satisfies H(0, y, z) = 0, for all (y, z) such that

(0, y, z) ∈ Ω, then the modified mapping

Ω 3 (x, y, z) 7→





1
xH(x, y, z) ∈ R2 x 6= 0

D1H(x, y, z)1 ∈ R2 x = 0





is continuously differentiable.

Lemma 1.4.2.0.2. Let the assumptions H̃ 1) - H̃ 6) and L 1) to L 3) be

satisfied and let the results of Section 1.4.1 be given. Let

Γ : Ô → R2

be defined like in the previous lemma. Then D3Γ(α0, 0, 0)1 =

(
0

2π

)
.

Proof. With no loss of generality let φ∗ = 0 and α0 = 0.

Let S ⊂ (−1/2, 1/2) be an open set such that (0, 0, β) ∈ Ô for all β ∈ S.

û(α, a, β) ∈ C1
T satisfying the fixed point equation

u = JEλ(0),C
1
T

(
b(a)

)
+ (K ◦ [Id− J])1 ◦G0(α, u, β)

for (α, a, β) ∈ Ô it follows that its derivative D2û(α, a, β) with respect to a

in every (α, a, β) ∈ Ô is given by

D2û(α, a, β)1 =

JEλ(0),C
1
T

(
b′(a)

)
+ (K ◦ [Id− J])1 ◦D2G0

(
α, û(α, a, β), β

)(
D2û(α, a, β)1

)
.
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Recall that in Lemma 1.3.1.0.2 we defined

Ξ1
1 : C1

T × (−1/2, 1/2)× [0, T ] → C1
h

by

Ξ1
1(u, β, τ) := uτ,β

for (u, β, τ) ∈ C1
T × (−1/2, 1/2)× [0, T ]. Furthermore, we set Ξ1

0 := JC1
T ,CT

0
◦

Ξ1
1.

We proved in the same lemma that, for fixed (β, τ) ∈ (−1/2, 1/2)× [0, T ], Ξ1
1

and Ξ1
0 are linear with respect to u and that Ξ1

0 is continuously differentiable.

We observe the identities u∗(0, 0, β) = 0 and D2,extg(0, 0, β) = (1 + β)L(0),

for all β ∈ S, as well as the definition of G0 which is

G0(α, u, β)(s) = g
(
α, Ξ1

1(u, β, s), β
)−L(0)Ξ1

0(u, 0, s) = g(α, us,β , β)−L(0)us,

for (α, u, β) ∈ I × Ω̂ × (−1/2, 1/2) and s ∈ [0, T ]. Then, by an application

of the chain rule which involves the evaluation map in s ∈ [0, T ] it follows

that
(
D2G0

(
0, û(0, 0, β), β

)
(φ)

)
(s) =

(
D2G0(0, 0, β)(φ)

)
(s) =

D2g(0, 0, β)
(
Ξ1

1(φ, β, s)
)− L(0)Ξ1

0(φ, 0, s) = D2,extg(0, 0, β)
(
Ξ1

0(φ, β, s)
)− L(0)Ξ1

0(φ, 0, s) =

(1 + β)L(0)
(
Ξ1

0(φ, β, s)
)− L(0)φs = (1 + β)L(0)φs,β − L(0)φs

for all β ∈ S, φ ∈ C1
T and s ∈ [0, T ]. Furthermore,

(
D2û(0, 0, 0)1

)
(s) =

JEλ(0),C
1
T

(
b′(0)

)
(s) = Φ(0)(s)(1, 0)t, for s ∈ [0, T ].

Therefore,

Γ(0, 0, β) =

T∫

0

Φ(0)t(s)
[
(1+β)L(0)Ξ1

0

(
D2û(0, 0, β)1, β, s

)−L(0)Ξ1
0

(
D2û(0, 0, β)1, 0, s

)]
ds

for all β ∈ S. Hence,

D3Γ(0, 0, β)1 =

T∫
0

Φ(0)t(s)
[
L(0)Ξ1

0

(
D2û(0, 0, β)1, β, s

)]
ds+

76



T∫
0

Φ(0)t(s)
[
(1 + β)L(0)Ξ1

0

(
D3D2û(0, 0, β)1, β, s

)
+ (1 + β)L(0)D2Ξ1

0

(
D2û(0, 0, β)1, β, s

)]
ds

−
T∫
0

Φ(0)t(s)L(0)Ξ1
0

(
D3D2û(0, 0, β)(1)(1), 0, s

)]
ds

for all β ∈ S. Thus,

D3Γ(0, 0, 0)1 =

T∫

0

Φ(0)t(s)
[
L(0)Ξ1

0

(
D2û(0, 0, 0)1, 0, s

)
+L(0)D2Ξ1

0

(
D2û(0, 0, 0)1, 0, s

)
]ds.

By observing the identities
(
D2û(0, 0, 0)1

)
(s) = Φ(0)(s)(1, 0)t and

Ξ1
0

(
D2û(0, 0, β)1, β, s

)
= JC1

T ,C0
T

(
D2û(0, 0, β)s,β

)
= Φ(0)s,β ,

for β ∈ S and s ∈ [0, T ], it follows that the derivative γ′(0) of the mapping

γ : S 3 β 7→
T∫

0

Φ(0)t(s)
[
(1 + β)L(0)Φs,β(0)− L(0)Φs(0)

]
(1, 0)tds

in β = 0 is equal to D3Γ(0, 0, 0)1.

(Recall the definition of Φ(0)s,β ∈ Ch × Ch which is

Φ(0)s,β(θ) = Φ(0)
(
s + θ/(1 + β)

)
, for θ ∈ [−h, 0])

Separating the integral in two parts yields

γ(β) =
T∫
0

Φ(0)t(s)
[
(1 + β)L(0)Φs,β(0)

]
(1, 0)tds

−
T∫
0

[
Φ(0)t(s)L(0)Φs(0)

]
(1, 0)tds

for β ∈ S. Changing s into z := s/(1 + β) in the first integral yields

(1.21)

T/(1+β)∫

0

Φ(0)t(z)
[
(1 + β)2L(0)Φz,β(0)

]
(1, 0)tdz

for β ∈ S. By the fact that Φ(0) =
(
Φ1(0),Φ2(0)

)
where Φ(0)1,Φ(0)2 denote

a basis of the subspace P ⊂ C2
T of T - periodic solutions of

du(s)
ds

= L(0)us
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it follows that

dΦ(0)(s)
ds

(1, 0)t = L(0)Φs(1, 0)t, s ∈ R.

(du(s)
ds means that we derive u with respect to s)

Recall that the segment Φs,β(1, 0)t ∈ C1
h was defined such that

dΦ(0)(s)
ds

(1, 0)t = (1 + β)L(0)Φs,β(1, 0)t, s ∈ R.

holds for β ∈ (−1/2, 1/2).

Hence,
dΦ(0)(z)

dz
(1, 0)t = L(0)Φz,β(1, 0)t

holds for z = s/(1 + β).

Thus, we can rewrite (1.21) as

T/(1+β)∫

0

Φ(0)t(z)
[
(1 + β)2

dΦ(0)(z)
dz

]
(1, 0)tdz

for β ∈ S. Changing z back into s = z(1 + β) yields

T∫

0

Φ(0)t(s)
[
(1 + β)

dΦ(0)(s)
ds

]
(1, 0)tds.

Observing the identities

dΦ(0)(s)
ds

= Φ(0)(0)eB(0)sB(0) = Φ(0)(s)B(0),

and

Φt(0)(s)Φ(0)(s) =

(
1 0

0 1

)

for s ∈ [0, T ], one gets that

γ(β) =
T∫
0

β ·B(0)(1, 0)tds

and

γ′(β) =

T∫

0

B(0)(1, 0)tds
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for β ∈ S.

Therefore, and by observing

B(0) =




0 −=λ(0)

=λ(0) 0


 ,

it follows that

D3Γ(0, 0, 0)1 = γ′(0) =

(
0

T=λ(0)

)
.

Thus, by observing =λ(0) = ω one gets that

D3Γ(0, 0, 0)1 =

(
0

ωT

)
=

(
0

2π

)
.

Lemma 1.4.2.0.3. Let the assumptions L1) to L3) be satisfied. Let L2(α)(χ) :=

D2g
∗(α, φ∗) for α ∈ I and χ ∈ C2

h. Then L2 defines a continuously differ-

entiable mapping from I to L(C2
h|Rn) and the identity

Φ(α0)t(s)L′2(α0)Φs(α0) = B′(α0)

holds for all s ∈ [0, T ].

Proof. With no loss of generality let α0 = 0.

The fact that L2 is continuously differentiable is a consequence of H 4).

We recall that for α ∈ I, {φ1(α), φ2(α)} denotes a base of Eλ(α). Further-

more, Φ(α) ∈ C0 × C0 is defined by

(
Φ1(α), Φ2(α)

)
:=

(
JEλ(α),C

0

(
φ1(α)

)
, JEλ(α),C

0

(
φ2(α)

)
,
)

for α ∈ I. By the fact that for α ∈ I, T (α)(s), s ≥ 0, extends to a group

T (α)(s), s ∈ R, on Eλ(α), we can extend Φ(α) : [0, T ] → Rn × Rn to a

mapping Φ(α)ext : R→ Rn × Rn in the following way:

We set Φ(α)ext(s) :=
(
T (α)(s)

(
φ1(α)

)
, T (α)(s)

(
φ2(α)

))
, for s ∈ R, s 6∈

[0, T ], and Φ(α)ext(s) :=
(
Φ1(α), Φ2(α)

)
(s), for s ∈ [0, T ].
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Analogously, for α ∈ I, let Φ(α)t
ext(s), s ∈ R be defined such that the

identities Φ(α)t
ext(s) =

(
Φ1(α), Φ2(α)

)t(s), s ∈ [0, T ], and

Φ(α)t
ext(s)Φ(α)ext(s) =

(
1 0

0 1

)
,

s ∈ R, hold.

Lemma 3.9 in section 7.3 of [3] tells us that the derivative of the mapping

B : I → R2×2 satisfies

B′(α) = Φ(α)t
ext(0)L′2(α)

(
Φ(α)ext

)
0

in all α ∈ I. This identity is independent from the choice of the basis of

Eλ(α). Eλ(α) being invariant under T (α)(s), s ∈ [0, T ], {(Φ1(α)ext

)
s
,
(
Φ2(α)ext

)
s
},

for s ∈ [0, T ], denotes another base of Eλ(α). Thus, the identity

Φ(α)t
ext(s)L

′(α)
(
Φ(α)ext

)
s

= B′(α)

holds for this new base.

As for α = 0, Φ1(0) ∈ C2
T and Φ2(0) ∈ C2

T , the identities Φ(0)(s) =

Φ(0)ext(s) and Φ(0)t(s) = Φ(0)t
ext(s) hold for s ∈ R.

Hence,

Φ(0)t(s)L′2(0)Φ(0)s = B′(0)

for s ∈ [0, T ].

Lemma 1.4.2.0.4. Let the assumptions H̃ 1) - H̃ 6) and L 1) to L 3)be

satisfied and the results of Section 1.4.1 be given. Let

Γ : Ô → R2

be defined like in Lemma 1.4.2.0.1. Then the following holds: The partial

derivative D1Γ(α0, 0, 0)1 of Γ in (α0, 0, 0) is given by

D1Γ(α0, 0, 0)1 = T ·
(
<(

λ′(0)
)

=(
λ′(0)

)
)

.

Proof. With no loss of generality let α0 = 0.

Let B ⊂ I be an open set such that (α, 0, 0) ∈ Ô for all α ∈ B. First we

realize that

Γ(α, 0, 0) =

T∫

0

(
Φ(0)t(s)L(α)Ξ1

0

(
D2û(α, 0, 0)1, 0, s

)−Φ(0)t(s)L(0)Ξ1
0

(
D2û(α, 0, 0)1, 0, s

))
ds
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holds for all α ∈ B. L2 : I → L
(
C2

h|Rn
)

and B 3 α 7→ D2û(α, 0, 0)1 ∈ C1
T

are continuously differentiable with L2(α) = L(α)|C2
h
, α ∈ I. Furthermore

Ξ1
0

(
D2û(α, 0, 0)1, 0, s

)
= Ξ2

2

(
D2u

∗(α, 0, 0)1, 0, s
)

for α in a sufficiently small neighborhood of α0 and s ∈ [0, T ].

Therefore, and by applying Theorem 3.2.1 in Appendix II one can easily

show that the derivative of the mapping B 3 α 7→ Γ(α, 0, 0) ∈ R2 in α ∈ B

is given by

D1Γ(α, 0, 0)1 =
T∫
0

Φ(0)t(s)L′2(α)Ξ2
2

(
D2u

∗(α, 0, 0)1, 0, s
)
ds+

T∫
0

(
Φ(0)t(s)L(α)Ξ1

0

(
D1D2û(α, 0, 0)(1)(1), 0, s

)− Φ(0)t(s)L(0)Ξ1
0

(
D1D2û(α, 0, 0)(1)(1), 0, s

))
ds.

Hence, by observing
(
D2û(0, 0, 0)1

)
(s) = Φ(0)(s)(1, 0)t for s ∈ [0, T ], the

identity

D1Γ(0, 0, 0)1 =

T∫

0

Φt(0)(s)L′2(0)Φ(0)s(1, 0)tds

holds.

By applying the previous lemma one gets that D1Γ(0, 0, 0)1 = B′(0)(T, 0)t.

Thus,

D1Γ(0, 0, 0) = T ·
(
<(

λ′(0)
)

=(
λ′(0)

)
)

.

Theorem 1.4.2.1. (Hopf bifurcation)

Let all assumptions H 1) to H 6) on g be satisfied.

Let all assumptions L 1) to L 3) be satisfied.

Then there exists a continuously differentiable mapping

Q 3 a 7→ (
φ(a), α(a), T (a)

) ∈ Ω× I × [0,∞)

Q ⊂ R an interval, such that the following properties are satisfied:

0 ∈ Q. For every a ∈ Q, there exists a nontrivial periodic solution x∗(a) :

R→ Rn of the equation above with parameter α(a), period T (a) and x∗(a)t=0 =

φ(a). Furthermore, α(0) = α0, φ(0) = φ∗, T (0) = T and λ(0) = λ0.
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If Φ∗ : R→ Rn is a constant function such that Φ∗t=0 = φ∗ then there exists

a neighborhood M of (α0, T,Φ∗) ∈ I ×R×C1
T such that the following holds:

Let T̃ > 0. If there exists a nontrivial periodic solution x̃ : R→ Rn of (1.1)

with parameter α̃ and period T̃ such that (α̃, T̃ , x̃) ∈ M, then there must be

a ∈ Q and b ∈ R such that x̃t=b = φ(a), T̃ = T (a) and α̃ = α(a).

Proof. With no loss of generality let φ∗ = 0 and α0 = 0.

g satisfying H 1) to H 6) we know that g satisfies H̃ 1) to H̃ 6). There-

fore, Theorem 1.4.1.1 yields the existence of a 2 times continuously dif-

ferentiable mapping û : Ô 7→ C1
T satisfying equation (1.7). On the other

hand Lemma 1.4.2.0.2 and Lemma 1.4.2.0.4 show that the partial derivative

D(α,β)Γ(0, 0, 0) of Γ : Ô 7→ R2 with respect to (α, β) in (0, 0, 0) is given by

D(α,β)Γ(0, 0, 0) = T ·
(

D<(
λ(0)

)
0

D=(
λ(0)

)
2π/T

)
.

As in L 3) we assumed D<(λ(0)) 6= 0 it follows that D(α,β)Γ(0, 0, 0) is in-

vertible. Furthermore, we observe that Γ(0, 0, 0) = 0.

Thus, the assumptions of the Implicit Function Theorem are satisfied. Hence

there exists an interval 0 ∈ Q ⊂ R and a continuously differentiable mapping

Q 3 a → (
α(a), β(a)

) ∈ I×(−1/2, 1/2) such that the identity Γ
(
α(a), a, β(a)

)
=

0 holds for all a ∈ Q. Thus,

0 = a · Γ(
α(a), a, β(a)

)
=

T∫
0

Φt(s)g
(
α(a), û

(
α(a), a, β(a))s,β , β(a)

)
ds

holds for all a ∈ Q. The last expression belongs to equation (1.8) which now

is satisfied. Therefore, û
(
α(a), a, β(a)

)
is solving both equations (1.7) and

(1.8) for all a ∈ Q and thus solving

u′(τ) = (1 + β)g
(
α(a), uτ,β

)
, τ ∈ R

with period T .

If x∗(a) : R→ Rn is defined by

x∗(a)(t + θ) = û
(
α(a), a, β(a)

)(
(t + θ)/[1 + β(a)]

)
,
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for t ∈ R and θ ∈ [−h, 0], then x∗(a) is a solution of equation (1.1) with

parameter α(a) and period T (a) :=
(
1 + β(a)

) · T .

Clearly, α(0) = 0, T (0) = T and x∗(0) = 0.

Furthermore, x∗t (a) = u∗
(
α(a), a, β(a)

)
τ,β(a)

holds for all t ∈ R with t =

(1 + β(a))τ , in particular x∗t=0(a) = u∗
(
α(a), a, β(a)

)
τ=0,β(a)

We claim that the mapping

Q 3 a 7→ û
(
α(a), a, β(a)

)
0,β(a)

∈ C1
h

is continuously differentiable:

By observing the properties of the mapping u∗ in Theorem 1.4.1.1 one sees

that the identity

û
(
α(a), a, β(a)

)
0,β(a)

= Ξ2
1

(
u∗

(
α(a), a, β(a)

)
, β

(
a), 0

)

holds for a ∈ Q.

The claim then follows from the fact that the mappings

Q 3 a 7→ u∗
(
α(a), a, β(a)

) ∈ C2
T

and

C2
T × (−1/2, 1/2)× R 3 (u, β, τ) 7→ Ξ2

1(u, β, τ) ∈ C1
h

are continuously differentiable.

We set φ(a) := û
(
α(a), a, β(a))0,β(a) for a ∈ Q.

Clearly, the Implicit Function Theorem guaranties the existence of a neigh-

borhood M̃ of (0, 0, 0) ∈ I × R× C1
h such that the following holds:

If there exist β̃ ∈ (−1/2, 1/2), α̃ ∈ I, b ∈ R and x∗ a periodic solution of

(1.1) with parameter α̃, period (1+β̃)T and (α̃, (1+β̃)T, x̃t=b) ∈ M̃ and x∗t=b

a solution to (1.8), then there must be an a ∈ Q with α̃ = α(a), β̃ = β(a)

and û(a)(τ + θ/(1 + β̃)
)

= x∗(t + b + θ), for t = (1 + β̃) · τ , θ ∈ [−h, 0].

Hence, there exists a neighborhood M of (0, T, 0) ∈ I × R × C1
T such that

the following uniqueness property is satisfied:

If there exists a nontrivial periodic solution x̃ : R→ Rn of (1.1) with para-

meter α̃ and period T̃ such that (α̃, T̃ , x̃) ∈ M, then there must be a ∈ Q

and b ∈ R such that x̃t=b = φ(a), T̃ = T (a) and α̃ = α(a).

This completes the proof.
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Chapter 2

The robot arm

In this chapter we want to apply our results on Hopf bifurcation to a problem

of differential equations with state dependent delay from robotics:

Let D, c and α be nonnegative reals and let a : R→ R be a function having

continuous first and second derivatives, and satisfying a(0) = 0. Consider

the following system:

(2.1)

x′′(t) = −αx′(t) + a( c
2r(xt)−D)

cr = x(t− r) + x(t) + 2D.

This system was studied in [10] and [11] and models an object (a robot arm)

which moves on a ray given by −D < x, and regulates its distance x from

the position x = 0 in the following way:

Signals travel at constant speed c from the object to the reference point

at −D, are reflected, and then received by the object. At time t the ob-

ject measures the running time r(t) of the signal emitted at time t − r(t),

computes from r = r(t) a position x̂ according to

x̂ =
c

2
r −D.

This gives the true position at least if x(t) = 0 = x
(
t−r(xt)

)
, and then uses

Newton’s law with force a(x̂) and damping to react.
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Like in [11] we rewrite the system as

x′(t) = y(t)

y′(t) = −αy(t) + a(x̂t)

cr(xt) = x(t− r) + x(t) + 2D,

where x̂t = c
2r(xt) + D. We set c = 1, and h > 2D.

For technical reasons we rewrite the spaces C0([−h, 0]|R2), C1([−h, 0]|R2)

and C2([−h, 0]|R2) as C0([−h, 0]|R)×C0([−h, 0]|R), C1([−h, 0]|R)×C1([−h, 0]|R)

and C2([−h, 0]|R)× C2([−h, 0]|R) respectively. We set

C1
h := C1([−h, 0]|R),

C2
h := C2([−h, 0]|R)

and

Ch := C0([−h, 0]|R).

Lemma 2.0.0.1. There are open subsets Ω ⊂ C1
h × C1

h, Ω∗ ⊂ C2
h × C2

h and

an open interval J ⊂ R such that the following holds:

Ω∗ = Ω ∩ (
C2

h × C2
h

)

and a(φ̂x) is well defined for all (φx, φy) ∈ Ω.

The mapping g : J × Ω → R2 defined by

(2.2) g(α, φx, φy) :=

(
φy(0)

−αφy(0) + a(φ̂x)

)

for (α, φx, φy) ∈ R× Ω satisfy all properties H1) to H6).

Proof. H1):

Proposition 8 in [11] shows the existence of an open subset U ⊂ C1
h such that

for every φ ∈ U there is an r(φ) ∈ [−h, 0] satisfying r(φ) = φ(−r)+φ(0)+2D.
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The mapping r : U → [0, h] is continuously differentiable. The derivative of

r with respect to φ is given by

Dr(φ)(χ) =
χ
(−r(φ)

)
+ χ(0)

1 + φ′
(−r(φ)

) ,

for (φ, χ) ∈ U × C1
h.

Thus, the mapping U 3 φ → a(φ̂) ∈ R, defined by a(φ̂) = 1
2r(φ) + D, for

φ ∈ U , is continuously differentiable. Hence, by setting Ω := U × C1
h and

choosing an open interval J ⊂ R the mapping g : J×Ω → R2 is continuously

differentiable. The partial derivative D(x,y)g(α, φx, φy) ∈ L(C1
h × C1

h|R2) of

g with respect to (φx, φy) in (α, φx, φy) ∈ J × Ω is given by

D(x,y)g(α, φx, φy)(χx, χy) =




χy(0)

1/2 · a′(φ̂x)Dr(φx)(χx)− αχy(0),




for (χx, χy) ∈ C1
h × C1

h. Obviously the mapping

J × Ω 3 (α, φx, φy) 7→ D(x,y)g(α, φx, φy) ∈ L(C1
h × C1

h|R2)

has a partial derivative

Dα(x,y)g(α, φx, φy) ∈ L(C1
h × C1

h|R2)

with respect to α in every α ∈ J and (φx, φy) ∈ Ω and the mapping Dα(x,y)g :

J × Ω → L(C1
h × C1

h|R2) is obviously continuous.

Clearly the right hand side of (2.2) has first and second partial derivatives

D1g(α, φx, φy) ∈ R2 and D2
1g(α, φx, φy) ∈ R2 with respect to the parameter

α in every (α, φx, φy) ∈ J × Ω.

The mappings D1g : J × Ω → R2 and D2
1g : J × Ω → R2 are obviously

continuous.

H2): It is also remarked in [11] that D(x,y)g
(
α, φx, φy)

) ∈ L(C1
h × C1

h|R2)

extends to a bounded linear mapping

D(x,y),extg
(
α, φx, φy)

)
: Ch × Ch → R2

for α ∈ J and (φx, φy) ∈ Ω:

Dr satisfying

Dr(φ)(χ) =
χ
(−r(φ)

)
+ χ(0)

1 + φ′
(−r(φ)

) ,
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for (φ, χ) ∈ U×C1
h, Dr(φ) ∈ L(C1

h|R) obviously extends to a linear bounded

mapping

Dextr(φ) : Ch 3 χ 7→ χ
(−r(φ)

)
+ χ(0)

1 + φ′
(−r(φ)

) ∈ R.

Hence, D(x,y)g(α, φx, φy) ∈ L(C1
h × C1

h|R2) extends to a bounded linear

mapping

D(x,y),extg(α, φx, φy) : Ch × Ch → R2.

H3) We claim that the mapping

D(x,y),ext,1g
∗ : J × Ω× Ch × Ch 3

(
α, φx, φy, χx, χy)

7→ D(x,y),extg
(
α, φx, φy)

)
(χx, χy) ∈ R2

is continuous:

Obviously the mapping

U × Ch 3 (φ, χ) 7→ Dr(φ)(χ) =
χ
(−r(φ)

)
+ χ(0)

1 + φ′
(−r(φ)

)

is continuous. Hence, by the continuity of U 3 φ 7→ a(φ̂) ∈ R and by the

fact that Ch 3 χ → χ(0) ∈ R is continuous the mapping

J × Ω× Ch × Ch 3
(
α, φx, φy, χx, χy) 7→




χy(0)

1/2 · a′(φ̂x)Dr(φx)(χx)− αχy(0)


 ∈ R2

is continuous.

H4) We set Ω∗ := Ω∩ (C2
h×C2

h). We have to prove the existence of a second

partial derivative D2
(x,y)g

∗(α, φx, φy) ∈ L2(C2
h × C2

h|R2) of g∗ = g|J×Ω∗ with

respect to (φx, φy) in every (α, φx, φy) ∈ J × Ω∗.

Furthermore, we have to show that the mapping

J × Ω∗ 3 (α, φx, φy) 7→ D2
(x,y)g

∗(α, φx, φy) ∈ L2(C2
h × C2

h|R2)

is continuous.

It is obvious that there exists a first partial derivative D(x,y)g
∗(α, φx, φy)
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of g∗ with respect to (φx, φy) in every (α, φx, φy) ∈ J × Ω∗ and that it is

given the same way as the first partial derivative D(x,y)g(α, φx, φy) of g with

respect to (φx, φy) in (α, φx, φy) ∈ J × Ω. Furthermore, g∗ has first and

second partial derivatives D1g
∗(α, φx, φy) ∈ R2 and D2

1g
∗(α, φx, φy) ∈ R2

with respect to the parameter α in every (α, φx, φy) ∈ J × Ω∗.

The mappings D1g
∗ : J × Ω∗ → R2 and D2

1g
∗ : J × Ω∗ → R2 are obviously

continuous.

Therefore, we have to concentrate on the existence of a second partial deriv-

ative D2
(x,y)g

∗(α, φx, φy) ∈ L2(C2
h × C2

h|R2) and the continuity of

D2
(x,y)g

∗ : J × Ω∗ → L2(C2
h × C2

h|R2).

Let Q∗ := U ∩ C2
h.

We first show that r∗ := r|Q∗ is 2 times continuously differentiable. Clearly

r∗ is continuously differentiable with its derivative being given by

Dr∗(φ)(χ) =
χ
(−r(φ)

)
+ χ(0)

1 + φ′
(−r(φ)

) ,

for φ ∈ Q∗ and χ ∈ C2
h

Hence, we have to prove the existence of a derivative D2r∗(φ) ∈ L2(C2
h|R)

of

(2.3) Dr∗ : Q∗ → L
(
C2

h

∣∣R).

in every φ ∈ Q∗ and, furthermore, we have to show the continuity of

Q∗ 3 φ 7→ D2r∗(φ) ∈ L2(C2
h|R).

In Lemma 1.3.1.0.1 we have seen that for any interval I ⊂ R the mapping

H2 : C2
T × I 3 (u, s) 7→ u(s) ∈ Rn

is 2 times continuously differentiable with D1H
2(u, s)(v) = v(s) and D2D1H

2(u, s)(v)(1) =

v′(s) for (u, s) ∈ C2
T × I and v ∈ C2

T . Analogously one can show that the

mapping

H : C2
h × [−h, 0] 3 (ψ, s) 7→ ψ(s) ∈ Rn
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is continuously differentiable with D1H(ψ, s)(χ) = χ(s) and D2D1H(ψ, s)(χ)(1) =

χ′(s) for (χ, s) ∈ C2
h × [−h, 0] and v ∈ C2

T .

Hence, the mapping

Ev : [−h, 0] → L
(
C2

h

∣∣R)

defined by Ev(s)(χ) := D1H(0, s)χ(−s) = χ(s) for s ∈ [−h, 0] and χ ∈ C2
h

is continuously differentiable with

Ev′(s)(χ) = −χ′(−s).

Therefore, an application of the product rule yields that the derivative of

(2.3) is given by

(2.4) D2r∗(φ)(χ, ψ) =
Z∗(φ)(χ, ψ)

N(φ)

for φ ∈ Q∗, χ ∈ C2
h and ψ ∈ C2

h, where

(2.5)
Z∗(φ)(χ, ψ) = −χ′

(−r∗(φ)
)
Dr∗(φ)(ψ) · (1 + φ′

(−r∗(φ)
))

−χ
(−r∗(φ)

) · [φ′′(−r∗(φ)
)
Dr∗(φ)(ψ) + ψ′

(−r∗(φ)
)]

and

N(φ) =
(
1 + φ′

(−r(φ)
))2

.

Again, by applying chain - and product rule, the mapping D(x,y)g
∗ : J ×

Ω∗ → L(C2
h × C2

h|R2) is continuously differentiable.

The derivative D2
(x,y)g

∗(α, φx, φy) of D(x,y)g
∗ with respect to (φx, φy) in

(α, φx, φy) ∈ J × Ω∗ is given by

(2.6) D2
(x,y)g

∗(α, φx, φy)(χx, χy)(ψx, ψy) =




0

M∗(φx)(χx)(ψx)


 ,

for (χx, χy) ∈ C2
h × C2

h and (ψx, ψy) ∈ C2
h × C2

h, where

M∗(φx)(χx)(ψx) := 1/2·a′(φ̂x)D2r∗(φx)(χx, ψx)+1/4·a′′(φ̂x)Dr∗(φx)(χx)Dr∗(φx)(ψx).
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H5) Let J2,1 denote the continuous embedding from C2
h to C1

h.

Then for every φ ∈ Q∗ the mapping

Z(φ) : C1
h × C1

h → R

defined by

Z(φ)(χ, ψ) = −χ′
(−r∗(φ)

)
Dr

(
J2,1(φ)

)
(ψ) · (1 + φ′

(−r∗(φ)
))

−χ
(−r∗(φ)

) · [φ′′(−r∗(φ)
)
Dr

(
J2,1(φ)

)
(ψ) + ψ′

(−r∗(φ)
)]

for (χ, ψ) ∈ C1
h × C1

h, is continuous.

Obviously, Z(φ)
(
J2,1(χ)

)(
J2,1(ψ)

)
= Z∗(φ)(χ)(ψ) for all φ ∈ Q∗ and (ψ, χ) ∈

C2
h × C2

h.

Hence, for every φ ∈ Q∗, D2r∗(φ) ∈ L2(C2
h|R) extends to a continuous

bilinear mapping

D2
extr

∗(φ) : C1
h × C1

h → R

which is given by

D2
extr

∗(φ)(χ, ψ) =
Z(φ)(χ)(ψ)

N(φ)

for φ ∈ Q∗, χ ∈ C1
h and ψ ∈ C1

h.

Next, for φ ∈ Q∗, we define the continuous bilinear mapping

M(φ) : C1
h × C1

h → R

by

M(φ)(χ)(ψ) := 1/2·a′(φ̂)D2
extr

∗(φ)(χ, ψ)+1/4·a′′(φ̂)Dr
(
J2,1(φ)

)
(χ)Dr

(
J2,1(φ)

)
(ψ),

for χ ∈ C1
h and ψ ∈ C1

h.

Clearly, M(φ)
(
J2,1(χ)

)(
J2,1(ψ)

)
= M∗(φ)(χ)(ψ) for all φ ∈ Q∗ and (ψ, χ) ∈

C2
h × C2

h.

Therefore, D2
(x,y)g

∗(α, φx, φy) ∈ L(C2
h × C2

h|R2) extends to a continuous

bilinear mapping

D2
(x,y),extg

∗(α, φx, φy) : (C1
h × C1

h)× (C1
h × C1

h) → R2,
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for (α, φx, φy) ∈ J × Ω∗, which is given by

D2
(x,y),extg

∗(α, φx, φy)(χx, χy)(ψx, ψy) =




0

M(φx)(χx)(ψx)


 ,

for (χx, χy) ∈ C1
h × C1

h and (ψx, ψy) ∈ C1
h × C1

h.

H6) All mappings

Q∗ × C1
h 3 (φ, χ) 7→ −χ′

(−r∗(φ)
) ∈ R,

Q∗ × C1
h 3 (φ, χ) 7→ −χ

(−r∗(φx)
) ∈ R,

Q∗ 3 φ 7→ φ′
(−r∗(φ)

) ∈ R,

Q∗ 3 φ 7→ φ′′
(−r∗(φ)

) ∈ R

and

Q∗ × C1
h 3 (φ, χ) 7→ Dr

(
J2,1(φ)

)
(χ) ∈ R

are continuous. Therefore, the mapping

Q∗ × C1
h × C1

h 3 (φ, χ, ψ) 7→ Z(φ)(χ, ψ) ∈ R

is continuous.

Observing the continuity of

Q∗ 3 φ 7→ N(φ) ∈ R

the mapping

Q∗ × C1
h × C1

h 3 (φ, χ, ψ) 7→ D2
extr

∗(φ)(χ)(ψ) ∈ R

is continuous and, consequently, the mapping

Q∗ × C1
h × C1

h 3 (χ, ψ) 7→ M(φ)(χ)(ψ) ∈ R

is continuous. Hence,

J × Ω∗ × (
C1

h

)4 3 (α, φx, φy, χx, χy, ψx, ψy) 7→

D2
(x,y),extg

∗(α, φx, φy)(χx, χy)(ψx, ψy) ∈ R2
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is continuous.

We know that

D2
extr

∗(φ)(χ, ψ) =
Z(φ)(χ)(ψ)

N(φ)

holds for all (φ, χ, ψ) ∈ Q∗ × C1
h × C1

h. On the other hand

Z(φ)(χ)(ψ) = −χ′
(−r∗(φ)

)
Dr

(
J2,1(φ)

)
(ψ) · (c + φ′

(−r∗(φ)
))

−χ
(−r∗(φ)

) · [φ′′(−r∗(φ)
)
Dr

(
J2,1(φ)

)
(ψ) + ψ′

(−r∗(φ)
)]

holds for (φ, χ, ψ) ∈ Q∗ × C1
h × C1

h.

Then,

Z∗∗ : Q∗ × C1
h → L

(
C2

h

∣∣R)
,

defined, by

Z∗∗(φ)(χ)(ψ) := −χ′
(−r∗(φ)

)
Dr∗(φ)(ψ) · (c + φ′

(−r∗(φ)
))

−χ
(−r∗(φ)

) · [φ′′(−r∗(φ)
)
Dr∗(φ)(ψ)−Ev′(ψ)

]

for (φ, χ) ∈ Q∗ × C1
h and ψ ∈ C2

h, is continuous.

Clearly, Z∗∗(φ)(χ)(ψ) = Z(φ)(χ)
(
J2,1(ψ)

)
for (φ, χ) ∈ Q∗×C1

h and ψ ∈ C2
h.

Observing the continuity of

Q∗ 3 φ 7→ N(φ) ∈ R

the mapping
D∗

ext,1r
∗ : Q∗ × C1

h 3 (φ, χ) 7→

Z∗∗(φ)(χ)
N(φ) ∈ L

(
C2

h

∣∣R)

is continuous.

Therefore, the mapping

M∗∗ : Q∗ × C1
h → L

(
C2

h

∣∣R)

defined by

M∗∗(φ)(χ) := 1/2 · a′(φ̂)D2
ext,1r

∗(φ)(χ) + 1/4 · a′′(φ̂)Dr
(
J2,1(φ)

)
(χ)Dr∗(φ),
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for (φ, χ) ∈ Q∗×C1
h, is continuous. The identity M∗∗(φ)(χ)(ψ) = M(φ)(χ)

(
J2,1(ψ)

)

holds for all (φ, χ) ∈ Q∗ × C1
h and ψ ∈ C2

h.

Hence, the mapping

D2
(x,y),ext,1g

∗ : J × Ω∗ × C1
h × C1

h → L
((

C2
h

)2
∣∣∣R2

)
,

defined by 


0

M∗∗(φx)(χx)(ψx)


 ,

for (α, φx, φy, χx, χy) ∈ J × Ω∗ × C1
h × C1

h and (ψx, ψy) ∈ C2
h × C2

h, is con-

tinuous.

It is clear that

D2
(x,y),ext,1g

∗(α, φx, φy)(χx, χy)(ψx, ψy) =

D2
(x,y),extg

∗(α, φx, φy)(χx, χy)
(
J2,1(ψx), J2,1(ψy)

)

for (α, φx, φy, χx, χy) ∈ J × Ω∗ × C1
h × C1

h and (ψx, ψy) ∈ C2
h × C2

h.

Lemma 2.0.0.2. If a satisfies a′(0) = −π2/8D2 and J ⊂ R is an interval

such that α0 := π/4D ∈ J , then the linearization

L(α) := D(x,y),extg(α, 0, 0)

of the right hand side of (2.2) in the equilibrium (φ∗x, φ∗y) = (0, 0) satisfies

all assumptions L1) to L3) for α ∈ J .

Proof. We have to find the solutions of the characteristic equation of the

robot - problem. The linearization of the right hand side of (2.2) in (0, 0) is

given by

L(α)(φx, φy) =




φy(0)

1/2 · a′(0)
(
φx(−2D) + φx(0)

)− αφy(0)




for α ∈ J and (φx, φy) ∈ C1
h × C1

h.

The characteristic function is given by

char(z, α) = z2 + αz − 1/2 · a′(0)
(
exp(−2Dz) + 1

)
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for α ∈ J and z ∈ C.

Plugging z = k · π/4D · i, a′(0) = −π2/8D2 and α0 = π/4D into the

characteristic functions yields

char(z, α) =
π2

16D2
(−k2 + ki− i + 1), k ∈ N.

The right hand side of the last expression is not equal to zero unless k = 1.

Hence, z0 = π/4D ·i is a purely imaginary root of the characteristic equation

char(z, α) = 0 given the parameter α0 = π/4D and a′(0) = −π2/8D2 and

there is no k ∈ N, k > 1, such that k · π/4D · i is another solution of the

characteristic equation:

The characteristic function char : C× J → C is continuously differentiable.

By deriving char with respect to z one gets

D1char(z, α) = 2z + α + 2D · 1/2 · a′(0) exp(−2Dz)

for z ∈ C and α ∈ J . Substituting α0, a′(0) and z0 as above yields

D1char(π/4D · i, π/4D) = π/4D + (π/2D + π2/8D)i 6= 0.

Therefore, the Implicit Function Theorem yields the existence of an interval

I ⊂ J and a parametrization I 3 α → z(α) ∈ C such that α0 ∈ I, z(α0) = z0

and z(α) is a simple root of the characteristic equation for all α ∈ I.

It remains to investigate whether the derivative z′ in α0 = π/4D has a non-

vanishing real part. Replacing z with z(α) for all α ∈ I in the characteristic

equation and differentiating it with respect to alpha one gets

D1char
(
z(α), α

) · z′(α) + D2char
(
z(α), α

)
=

z′(α) · (2z(α) + α + 2D · 1/2 · a′(0) exp
(−2Dz(α)

))
+ z(α) = 0.

Plugging in α0 = π/4D, a′(0) = −π2/8D2 and z0 = π/4D · i and solving

this equation for z′ yields

z′(π/4D) =
−π2/8D2 − π3/32D2 − π2/16D2 · i

|D1char(π/4D, π/4D · i)|2

whose real part does not vanish. Therefore, the robot problem satisfies all

assumptions L1) to L3).
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Theorem 2.0.1. Suppose that the results of the previous lemma are given.

Then the robot - problem (2.1) has a Hopf bifurcation from the equilibrium

(0, 0) at parameter α = π/4D.

Proof. We have seen that the right hand side of (2.2) satisfies all assumptions

H1) to H6). On the other hand by setting α0 = π/4D, a′(0) = −π2/8D2 and

z0 = π/4D · i the previous lemma shows that the linearization L(α) in the

equilibrium (0, 0) ∈ C1
h×C1

h satisfies all assumptions L1) to L3). Hence, the

Hopf Bifurcation Theorem (Theorem 1.4.2.1) can be applied which yields

an open interval Q ⊂ R such that 0 ∈ Q and a continuously differentiable

mapping

Q 3 b 7→ (
φx(b), φy(b), α(b), T (b)

) ∈ C1
h × C1

h × I × R

such that
(
φx(0), φy(0)

)
= (0, 0) and T (0) = 8D hold. Hence, for all b ∈ Q,

there exists a periodic solution
(
x∗(b), y∗(b)

)
: R→ R×R of the robot prob-

lem with parameter α(b) and period T (b). Furthermore,
(
x∗(b), y∗(b)

)
t=0

=(
φx(b), φy(b)

)
for all b ∈ Q and

(
x∗(0), y∗(0)

)
t=0

= (0, 0).
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Chapter 3

Appendix

3.1 Appendix I: Smoothness of the substitution

operator

Theorem 3.1.1. Let X, Y be Banach spaces, [a, b] ⊂ R an interval, U ⊂ X

an open subset and f : X × [a, b] → Y a mapping:

Let C([a, b], Y ) be the space of continuous functions φ : [a, b] → Y equipped

with the norm ‖φ‖C([a,b]|Y ) := sup
s∈[a,b]

‖φ(s)‖Y , for φ ∈ C([a, b]|Y ) and sup-

pose f is continuous. If we set F (x)(t) := f(x, t) for x ∈ X and t ∈ [a, b]

then F defines a mapping from X to C([a, b], Y ).

Let C1([a, b], Y ) be the space of continuously differentiable functions φ :

[a, b] → Y with the norm

‖φ‖C1([a,b],Y ) := max{‖φ‖C([a,b],Y ), ‖φ′‖C([a,b],Y )}

for φ ∈ C1([a, b], Y ) and suppose f is continuously differentiable:

If we set F̃ (x)(t) := f(x, t) for x ∈ X and t ∈ [a, b] then F̃ defines a map-

ping from X to C1([a, b], Y ) with
(
F̃ (x)

)′(t) := D2f(x, t)1 for x ∈ X and

t ∈ [a, b].

Let C2([a, b], Y ) be the space of continuously differentiable functions φ :

[a, b] → Y with the norm

‖φ‖C1([a,b],Y ) := max{‖φ‖C([a,b],Y ), ‖φ′‖C([a,b],Y ), ‖φ′′‖C([a,b],Y )}

for φ ∈ C2([a, b], Y ) and suppose f is 2 times continuously differentiable.

If we set F̂ (x)(t) := f(x, t) for x ∈ X and t ∈ [a, b] then F̂ defines a mapping
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from X to C1([a, b], Y ) with
(
F̂ (x)

)′(t) := D2f(x, t)1 and
(
F̂ (x)

)′′(t) :=

D2
2f(x, t)(1)(1), for x ∈ X and t ∈ [a, b].

Furthermore, the following results hold:

1. If f is continuous then F is continuous.

2. If f is continuously differentiable then F is continuously differentiable

3. If f is continuously differentiable then F̃ is continuous.

4. If f is 2 times continuously differentiable then F is 2 times continu-

ously differentiable.

5. If f is 2 times continuously differentiable then F̃ is continuously dif-

ferentiable.

6. If f is 2 times continuously differentiable then F̂ is continuous.

Proof. With no loss of generality let U := X.

For the proof of 1., 2. and 4. we apply Lemma 1.5 in [2], Appendix IV,

which states the following:

Let E and E′ be Banach spaces, I ⊂ R a compact interval. Let C(I|E)

and C(I|E′) be the spaces of continuous mappings φ : I → E and φ : I →
E′, equipped with the supremum -norm. Let g : E → E′ be a k times

continuously differentiable mapping.

Then g ◦φ, for φ ∈ C(I|E) defines a continuous mapping from I to E′. The

substitution operator G : C(I|E) → C(I|E′), defined by G(φ) := g ◦ φ, for

φ ∈ C(I|E), is k times continuously differentiable.

We set E′ := Y , E := X × R, I := [a, b] and g := f . The mapping

φ : X → C(I|E), defined by φ(x)(t) := (x, t), for x ∈ X and t ∈ I, is linear

and bounded.

Hence, Lemma 1.5 in [2], Appendix IV, yields that g ◦ φ(x) is an element of

C([a, b]|Y ) for x ∈ X and that the mapping F : X → C([a, b]|Y ), defined by

F (x)(t) :=
(
g ◦ φ(x)

)
(t), t ∈ [a, b],

for x ∈ X, is continuous, continuously differentiable, 2 times continuously

differentiable, if f is continuous, continuously differentiable, 2 times contin-
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uously differentiable, respectively, with
(
DF (x)(h)

)
(t) :=

(
D

(
g ◦ φ(x)(·))(h, ·)

)
(t) = D1f(x, t)(h), t ∈ [a, b],

and
(
D2F (x)(h)

)
(t) :=

(
D2

(
g◦φ(x)(·))(h1, ·)(h2, ·)

)
(t) = D2

1f(x, t)(h1)(h2), t ∈ [a, b],

for (x, h, h1, h2) ∈ X4.

5. First we claim that F̃ (x), x ∈ X is an element of C1([a, b]|Y ). Again,

we set E′ := Y , E := X × R, I := [a, b], g := f and φ : X → C(I|E), by

φ(x)(t) := (x, t), for x ∈ X and t ∈ I.

Then Lemma 1.5. in [2], Appendix IV, yields that g ◦ φ(x) is an element of

C([a, b]|Y ). Deriving F̃ (x) = g ◦ φ(x) with respect to t yields
(
F̃ (x)

)′(t) := Dg
(
φ(x)(t)

)((
φ(x)

)′(t)
)

= D2f(x, t)1, t ∈ [a, b].

Analogously to 1., 2. and 4. one may now apply Lemma 1.5. in [2], Appendix

IV, to get that

D
(
g ◦ φ(x)(·))

((
φ(x)

)′(·)
)

is an element of C([a, b]|Y ).

Hence F̃ (x) is an element of C1([a, b]|Y ) with
(
F̃ (x)

)′(t) := D2f(x, t)1 for

x ∈ X and t ∈ [a, b].

Again, analogously to 1., 2. and 4. we can show that

X 3 x 7→ D
(
g ◦ φ(x)(·))

((
φ(x)

)′(·)
)

= D2f(x, ·)1 ∈ C([a, b]|Y )

is continuously differentiable with

D
[
D

(
g ◦ φ(x)(·))

((
φ(x)

)′(·)
)]

(h) = D1D2f(x, ·)(h)1

for (x, h) ∈ X2.

Therefore, F̃ : X → C1([a, b]|Y ) is continuously differentiable with

DF̃ (x)(v)(t) = D1f(x, t)(v)

and (
DF̃ (x)(v)

)′(t) = D2D1f(x, t)(v)(1)

for v ∈ X and t ∈ [a, b].

The proof of 3. and 6. is similar to the proof of 5.
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3.2 Appendix II: Chain rule for mappings with re-

stricted differentiability conditions

Theorem 3.2.1. Let X, Y, Y ′, Z be Banach spaces, let Y be continuously

embedded in Y ′ and A0 ⊂ X and A2 ⊂ Y and A1 ⊂ Y ′ be open subsets such

that A2 = A1 ∩ Y .

Let the mapping K̃ : A1 ⊂ Y ′ → Z be continuously differentiable and let the

restriction K := K̃|A2 : A2 ⊂ Y → Z be 2 times continuously differentiable.

Let the mapping u : A0 ⊂ X → A2 ⊂ Y be continuously differentiable.

Let JY,Y ′ denote the continuous embedding from Y to Y ′ and let mapping

ũ := JY,Y ′ ◦ u be 2 times continuously differentiable.

Then the mapping K ◦ u : A0 → Z is 2 times continuously differentiable.

Proof. Clearly by applying the chain rule the first derivative of K ◦ u in

x ∈ A0 is given by DK
(
u(x)

)(
Du(x)

) ∈ L(X|Z) and is continuous with

respect to x.

Now we have to show that the mapping

A0 ⊂ X 3 x → DK
(
u(x)

)(
Du(x)

) ∈ L(X|Z)

is continuously differentiable.

We prove this in two steps:

First step:

We define A : L(Y |Z) × L(X|Y ) → L(X|Z) 7→ by A(T, S) := T ◦ S for

(T, S) ∈ L(Y |Z)×L(X|Y ) and B : (A0×A0) ⊂ (X×X) → L(Y |Z)×L(X|Y )

by
(
DK

(
u(x)

)
, Du(x′)

)
for (x, x′) ∈ A0 ×A0.

We show that the mapping

A ◦ B : (A0 ×A0) ⊂ (X ×X) → L(X|Z)

has a partial derivative with respect to x in every (x, x′) ∈ A0×A0 which is

given by D1(A ◦ B)(x, x′) = D2K
(
u(x)

)(
Du(x)

)(
Du(x′)

) ∈ L
(
X

∣∣L(X|Z)
)
.

Furthermore, we show that the mapping

D1(A ◦ B) : (A0 ×A0) ⊂ (X ×X) → L
(
X

∣∣L(X|Z)
)

is continuous.

On one hand K : A2 ⊂ Y → Z is 2 times continuously differentiable. Thus,
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the mapping A2 ⊂ Y 3 y 7→ DK(y) ∈ L(Y |Z) has a derivative with respect

to y in every y ∈ A2 which is given by D2K(y) ∈ L2(Y |Z) for y ∈ A2.

u : A0 ⊂ X → Y being continuously differentiable it is clear that the

mapping

A0 ⊂ X 3 x 7→ DK
(
u(x)

) ∈ L(Y |Z)

has a derivative with respect to x in every x ∈ A0 given by D2K
(
u(x)

)(
Du(x)

) ∈
L

(
X

∣∣L(Y |Z)
)
. On the other hand Du(x′) ∈ L(X|Y ) for all x′ ∈ A0.

Thus, an application of the chain rule yields that the mapping

A ◦ B : (A0 ×A0) ⊂ (X ×X) → L(X|Z)

has a partial derivative with respect to x in every (x, x′) ∈ A0 × A0 which

is given by

D1(A ◦ B)(x, x′) = D2K
(
u(x)

)(
Du(x)

)(
(Du(x′)

) ∈ L
(
X

∣∣L(X|Z)
)
.

for (x, x′) ∈ A0 ×A0. The continuity of

D1(A ◦ B) : (A0 ×A0) ⊂ (X ×X) → L
(
X

∣∣L(X|Z)
)

is a consequence of the continuity of

A0 ⊂ X 3 x′ 7→ Du(x′) ∈ L(X|Y )

and

A0 ⊂ X 3 x 7→ D2K
(
u(x)

) ∈ L2(Y |Z)

Second step:

Let A and B be defined like in the first step of the proof.

We show that the mapping

A ◦ B : (A0 ×A0) ⊂ (X ×X) 3 (x′, x) → L(X|Z)

has a partial derivative with respect to x in every (x′, x) ∈ A0 × A0 which

is given by D2(A ◦ B)(x′, x) = DK̃
(
u(x′)

)(
D2u(x)

) ∈ L2(X|Z).

Then we show that

D2(A ◦ B) : (A0 ×A0) ⊂ (X ×X) → L2(X|Z)
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is continuous.

In order to show this we replace DK with DK̃ and u with ũ and de-

fine B̃ : (A0 × A0) ⊂ (X × X) → L(Y ′|Z) × L(X|Y ′) by B̃(x′, x) :=(
DK̃

(
u(x′)

)
, Dũ(x)

)
and Ã : L(Y ′|Z)× L(X|Y ′) → L(X|Z) by Ã(T, S) :=

T ◦ S for (T, S) ∈ L(Y ′|Z)× L(X|Y ′).

Then the identity A ◦ B = Ã ◦ B̃ holds.

Now we show that

Ã ◦ B̃ : (A0 ×A0) ⊂ (X ×X) → L(X|Z)

has a partial derivative with respect to x in every (x, x′) ∈ A0×A0. We know

that ũ : A0 ⊂ X → Y ′ is 2 times continuously differentiable. Therefore, the

mapping

A0 ⊂ X 3 x 7→ Dũ(x) ∈ L(X|Y ′)

has a derivative in x ∈ A0 which is given by D2ũ(x) ∈ L2(X|Y ′).

On the other hand DK̃
(
ũ(x′)

) ∈ L(Y ′|Z) for every x′ ∈ A0.

Thus, by an application of the chain rule one gets that the mapping

Ã ◦ B̃ : (A0 ×A0) ⊂ (X ×X) → L(X|Z)

has a partial derivative with respect to x in every (x, x′) ∈ A0 × A0 which

is given by

D2(Ã ◦ B̃)(x′, x) = DK̃
(
ũ(x′)

)(
D2ũ(x)

) ∈ L2(X|Z)

for (x, x′) ∈ A0 ×A0. The continuity of

D(Ã ◦ B̃) : (A0 ×A0) ⊂ (X ×X) → L2(X|Z)

is a consequence of the continuity of

A0 ⊂ X 3 x′ 7→ DK̃
(
ũ(x′)

) ∈ L(Y ′|Z)

and

A0 ⊂ X 3 x 7→ D2ũ(x) ∈ L2(X|Y ′).

Both steps combined yield that the mapping

A0 ⊂ X 3 x → DK
(
u(x)

)(
Du(x)

) ∈ L(X|Z)

is continuously differentiable.
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3.3 Appendix III: A theorem about the existence

of second derivatives

In this section we want to state a theorem about existence of second deriv-

atives. For the proof of that theorem we will mainly apply a version of a

theorem of van Gils and Vanderbauwhede (to be found as Lemma 2.8 in

chapter 5 of [12]) which we present here:

Theorem 3.3.1. Suppose that Y0, Y , Y1, and Λ are Banach spaces and

that Y0 is continuously embedded in Y and Y is continuously embedded in

Y1 with embedding operators J0 : Y0 → Y and J : Y → Y1, respectively.

Assume that a mapping f : Y × Λ → Y satisfies the following properties:

1. Jf : Y ×Λ → Y1 has a partial derivative D1(Jf)(y, x) ∈ L(Y |Y1) with

respect to y in every (y, x) ∈ Y × Λ.

Furthermore,

D1(Jf) : Y × Λ → L(Y |Y1)

is continuous.

There exist mappings f1 : Y ×Λ → L(Y |Y ) and f1
1 : Y ×Λ → L(Y1|Y1)

such that the identity

D1(fJ)(y, x) = Jf1(y, x) = f1
1 (y, x) ◦ J, (y, x) ∈ Y × Λ,

holds.

2. The mapping f0 : Y0 × Λ → Y , defined by

f0(y, x) := f
(
J0(y), x

)
, (y, x) ∈ Y0 × Λ,

has a partial derivative D2f0(y, x) ∈ L(Λ|Y ) with respect to x in every

(y, x) ∈ Y0 × Λ. Furthermore, the mapping

D2f0 : Y0 × Λ → L(Λ|Y )

is continuous.

3. There exists a constant 0 ≤ q < 1 such that the inequalities

‖f(y, x)− f(y′, x)‖Y ≤ q‖y − y′‖Y ,
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‖f1(y, x)‖L(Y |Y ) ≤ q

and

‖f1
1 (y, x)‖L(Y1|Y1) ≤ q

hold for (y, y′) ∈ Y × Y and x ∈ Λ.

4. There exists a continuous mapping y∗0 : Λ → Y0 such that for any

x ∈ Λ, y∗(x) := (J0 ◦ y0)(x) is the unique solution of the fixed point

equation y = f(y, x).

Then the mapping y∗ : Λ → Y is Lipschitz continuous and y∗1 := J ◦y∗ : Λ →
Y1 is continuously differentiable with Dy∗1(x) = J

(
A∗(x)

)
, x ∈ Λ, where, for

each x ∈ Λ, A∗(x) ∈ L(Λ|Y ) is the unique solution of the equation

A = f1
(
y∗(x), x

)(
A

)
+ D2f0

(
y∗0(x), x

)

in L(Λ|Y ).

Theorem 3.3.2. Let Y 1, Y 2, X be Banach spaces such that Y 2 is continu-

ously embedded in Y 1 and let B1 ⊂ X, B2 ⊂ Y 1, B∗
2 ⊂ Y 2 be open subsets

such that B∗
2 = Y 2 ∩B2. Let the mapping K̃ : (B1 ×B2) ⊂ (X × Y 1) → Y 1

be continuously differentiable. Suppose that K̃(B1 × B∗
2) ⊂ Y 2 and let the

induced mapping K∗ : (B1 ×B∗
2) ⊂ (X × Y 2) → Y 2, defined by K∗(x, y) :=

K̃(x, y) for (x, y) ∈ B1 × B∗
2 , be continuously differentiable. Let JY 2,Y 1 de-

note the continuous embedding from Y 2 to Y 1 and let the mapping

K̂ := JY 2,Y 1 ◦K∗ be 2 times continuously differentiable.

Suppose that for both equations y = K∗(x, y) in Y 2 and y = K̃(x, y) in

Y 1 the following conditions are satisfied in a point (x0, y0) ∈ B1 × B∗
2 :

K̃(x0, y0) = y0 = K∗(x0, y0) and

‖D2K
∗(x0, y0)‖L(Y 2|Y 2) < 1 and ‖D2K(x0, y0)‖L(Y 1|Y 1) < 1 such that

IdY 2 −D2K
∗(x0, y0) : Y 2 → Y 2

and

IdY 1 −D2K̃(x0, y0) : Y 1 → Y 1

are isomorphisms.

Let O∗ ⊂ B1 and Õ ⊂ B1 be open subsets and u∗ and ũ be continuously
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differentiable mappings from O∗ to B∗
2 and from Õ to B2, respectively, with

u∗(x0) = y0 = ũ(x0) and solving K̃(x, ũ(x)) = ũ(x) for all x ∈ Õ and

K∗(x, u∗(x)) = u∗(x) for all x ∈ O∗ respectively.

Then there exists an open subset Ô ⊂ Õ such that the mapping û := ũ|Ô is

2 times continuously differentiable.

Proof. We want to apply the Theorem of van Gils and Vanderbauwede (The-

orem 3.3.1) to the fixed point equations for the first derivatives of ũ and u∗.

As the conditions of the Implicit Function Theorem are satisfied we get that

the following identities for the derivatives of u∗ and ũ,

Du∗(x) = D2K
∗(x, u∗(x)

)(
Du∗(x)

)
+ D1K

∗(x, u∗(x)
)

in L(X|Y 2) and

Dũ(x) = D2K̃
(
x, ũ(x)

)(
Dũ(x)

)
+ D1K̃

(
x, ũ(x)

)

in L(X|Y 1), hold. This leads to the fixed point equations

A∗ = D2K
∗(x, u∗(x)

)(
A∗

)
+ D1K

∗(x, u∗(x)
)

in L(X|Y 2) and

Ã = D2K̃
(
x, ũ(x)

)(
Ã

)
+ D1K̃

(
x, ũ(x)

)

in L(X|Y 1).

We will now check all four conditions that are needed in the Theorem of

van Gils and Vanderbauwhede. Following the notation of van Gils and

Vanderbauwhede we set Y0 := L(X|Y 2), Y := L(X|Y 1) and Y1 := Y . Let

J0 : Y0 → Y be the given continuous embedding from Y0 to Y . We may

suppose that the Theorem of van Gils and Vanderbauwhede is valid if Λ is an

open subset of a Banach space and set Λ := O∗∩Õ. Thus, ũ(x) = J0

(
u∗(x)

)

for all x ∈ Λ.

1. The mapping f : Y × Λ → Y defined by

f
(
Ã, x

)
= D2K̃

(
x, J0

(
u∗(x)

))(
Ã

)
+ D1K̃

(
x, J0

(
u∗(x)

))
,
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for (Ã, x) ∈ Y × Λ has a partial derivative with respect to Ã given by

D1f
(
Ã, x

)
= D2K̃

(
x, J0

(
u∗(x)

)) ∈ L(Y |Y )

in every
(
Ã, x

) ∈ Y × Λ.

Furthermore, the mapping

Y × Λ 3 (
Ã, x

) 7→ D1f
(
Ã, x

) ∈ L(Y |Y )

is continuous.

As in this case Y1 = Y , the following points are clearly satisfied:

• The mapping

J ◦ f : Y × Λ → Y1,

if J denotes the identity in Y = Y1, has a partial derivative

D1(J ◦ f)(Ã, x) ∈ L(Y |Y1) with respect to Ã in in every
(
Ã, x

) ∈
Y × Λ and the mapping

D1(J ◦ f) : Y × Λ → L(Y |Y1)

is continuous.

• By defining

f (1) : Y × Λ → L(Y |Y )

and

f
(1)
1 : Y × Λ → L(Y1|Y1)

by f (1)
(
Ã, x

)
= D1f

(
Ã, x

)
and f

(1)
1

(
Ã, x

)
= D1f

(
Ã, x

)
for (Ã, x) ∈

Y × Λ it follows that the identities

D1(J ◦ f)
(
Ã, x

)
= (J ◦ f (1))

(
Ã, x

)
=

(
f

(1)
1

(
Ã, x

) ◦ J
)

are satisfied for
(
Ã, x

) ∈ Y × Λ.

2. We claim that the mapping

f0 : Y0 × Λ → Y

defined by

f0

(
A∗, x) := f

(
J0(A∗), x

)
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for
(
A∗, x

) ∈ Y0 × Λ has a partial derivative D2f0

(
A∗, x

) ∈ L(Λ|Y )

with respect to x in every
(
A∗, x

) ∈ Y0 × Λ.

Furthermore, we claim that the mapping

Y0 × Λ 3 (
A∗, x

) 7→ D2f0

(
A∗, x

) ∈ L(Λ|Y )

is continuous.

Observing the identity

f0(A∗, x) = D2K̂
(
x, u∗(x)

)(
A∗

)
+ D1K̂

(
x, u∗(x)

)
,

for
(
A∗, x

) ∈ Y0×Λ, it is clear that this is an ultimate consequence of

the assumption on K̂ which is:

(B1 ×B∗
2) ⊂ (X × Y 2) 3 (x, y) → K̂(x, y) ∈ Y 1

is 2 times continuously differentiable.

Therefore and due to the fact that u∗ : Λ → B∗
2 ⊂ Y 2 is continuously

differentiable, both mappings

Y0 × Λ 3 (A∗, x) → D2K̂
(
x, u∗(x)

)(
A∗

) ∈ Y

and

Λ 3 x → D1K̂
(
x, u∗(x)

) ∈ Y

are continuously differentiable.

Therefore, the sum f0 of both mappings must be continuously differ-

entiable.

3. We claim that there exists a constant q < 1 such that both inequalities

‖f(
A, x

)− f
(
B, x

)‖Y ≤ q‖A−B‖Y ,

and

‖D1f
(
A, x

)‖L(Y |Y ) ≤ q

hold for
(
A,B, x

) ∈ Y × Y × Λ.

Due to the continuity of

Λ 3 x 7→ D2K̃
(
x, J0

(
u∗(x)

)) ∈ L(Y 1|Y 1),
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and by the fact that

‖D2K̃
(
x0, J0

(
u∗(x0)

))‖L(Y 1|Y 1) = ‖D2K̃(x0, y0)‖L(Y 1|Y 1) ≤ q′ < 1

by assumption, there must be a neighborhood O′ ⊂ B1 of x0 and a

constant q < 1 such that the inequality

‖D2K̃
(
x, J0

(
u∗(x)

))‖L(Y 1|Y 1) < q

holds for all x ∈ O′. One can easily show that D2K̃
(
x, J0

(
u∗(x)

))

defines a bounded linear mapping from L(X|Y 1) to L(X|Y 1) with

D2K̃
(
x, J0

(
u∗(x)

))
(A) := D2K̃

(
x, J0

(
u∗(x)

)) ◦A

for A ∈ L(X|Y 1) and

‖D2K̃
(
x, J0

(
u∗(x)

))‖L(Y 1|Y 1) = ‖D2K̃
(
x, J0

(
u∗(x)

))‖
L

(
L(X|Y 1)

∣∣∣L(X|Y 1)

).

Hence, the inquality

‖D2K̃
(
x, J0

(
u∗(x)

))‖
L

(
L(X|Y 1)

∣∣∣L(X|Y 1)

) < q

holds for all x ∈ O′. With no loss of generality we suppose that O′ = Λ.

Therefore, both inequalities

‖D1f
(
A, x

)‖L(Y |Y ) =

‖D2K̃
(
x, J0

(
u∗(x)

))‖
L

(
L(X|Y 1)

∣∣∣L(X|Y 1)

) ≤ q

and
‖f(

A, x
)− f

(
B, x

)‖Y =

‖D2K̃
(
x, J0

(
u∗(x)

))(
A−B

)‖Y

≤ q‖A−B‖Y = q‖A−B‖Y

hold for all (A,B, x) ∈ Y × Y × Λ as requested. As in this case the

identity D1f
(
A, x

)
= f (1)

(
A, x

)
= f

(1)
1

(
A, x

)
holds for (A, x) ∈ Y ×Λ

both inequalities

‖f (1)
(
A, x

)‖L(Y |Y ) ≤ q, ‖f (1)
1

(
A, x

)‖L(Y1|Y1) ≤ q,
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have to hold, too.

4. The last condition is satisfied by assumption:

There exists a continuously differentiable mapping u∗ : Λ → B∗
2 ⊂ Y 2

such that u∗(x) = K∗(x, u∗(x)
)

for all x ∈ Λ. Therefore, the derivative

of u∗ with respect to x satisfies

Du∗(x) = D2K
∗(x, u∗(x)

)(
Du∗(x)

)
+ D1K

∗(x, u∗(x)
)

in all x ∈ Λ. Hence, J0

(
Du∗(x)

) ∈ Y is the unique solution of

Ã = f
(
Ã, x

)

for all x ∈ Λ.

These four conditions being satisfied Theorem 3.3.1 yields that J0 ◦ Du∗ :

Λ → Y is continuously differentiable. By setting Ô := Λ we get that the

mapping û := J0 ◦ u∗|Ô = ũ|Ô is 2 times continuously differentiable.
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