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Chapter 1

Introduction

The nuclear matter equation of state (EOS) is a very important ingredient in the study
of properties of nuclei, heavy-ion collisions as well as astrophysical objects like neutron
stars and supernova. Recently, EOS studies for the asymmetric nuclear matter gained
particular importance both due to astrophysical applications (neutron stars) [See95] and
to the new radioactive beam facilities [KG] probing nuclei far from stability. A di�erent
regime of interest is the high density region, which will be soon studied by the Com-
pressed Baryonic Matter (CBM) experiments at the new FAIR facility at GSI [GSI] at
densities up to � 8�0 [FW06]. However, so far the experimental information is available
only for densities around normal nuclear density �0 [FW06] and for symmetric nuclear
matter, since the stable nuclei range is around Z=A= 0:5. Theoretical investigation, re-
liably predicting the EOS in the high � and high asymmetry regimes are necessary. The
modern approach to theoretically investigate the nuclear structure is based on relativistic
models of nuclear matter and �nite nuclei as strongly interacting systems of baryons and
mesons.

The prototype for such an approach is relativistic mean-�eld theory (RMF) [Wal74,
SW86] where nuclear forces are obtained from the virtual exchange of mesons. In order to
improve the results of this simple model, cubic and quartic self-interactions of the meson
�elds had to be introduced [BB77, Bod91]. In mean-�eld approximation the meson
self-interactions correspond e�ectively to higher order density dependent contributions.
Unfortunately, they lead to instabilities in the region above saturation density.

Therefore, one needs to use a more fundamental approach, i.e. to derive in-medium
interactions microscopically. Dirac-Brueckner theory (DB) [Erk74, Hol74, HS87, HM87]
has proven to be a successful method for this. By using realistic NN potentials, in-
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2 Chapter 1. Introduction

medium interactions are derived as a resummation of all (two-body) ladder diagrams.
DB calculation of the density dependence for the self-energies was originally performed
in [FLW95] for the case of three meson �elds (�, !, �) and extended to additionally
include into consideration the �-meson in [dJL98a, dJL98b]. A fully covariant and ther-
modynamically consistent �eld theory is obtained by treating the interaction vertices
on the level of the Lagrangian as Lorentz scalar functionals of the �eld operators. This
method is called Density-Dependent Relativistic Hadron �eld (DDRH) theory. Retaining
a Lagrangian formulation we then introduce density dependent meson-nucleon coupling
constants taken from DB self-energies. An important di�erence to the RMF treatment
is that the DDRH approach accounts for quantal uctuations of the baryon �elds even in
the ground state. These contributions signi�cantly improve the reproduction of binding
energies and radii of �nite nuclei. In mean-�eld approximation DDRH theory reduces to
a Hartree description with density dependent coupling constants similar (but not equal)
to the initial proposal of Brockmann and Toki [BT92]. In contrast to the [BT92], the
approach we advocate here (DDRH) is thermodynamically consistent as we will show in
Chapter 6.

After the success of the microscopic DDRH approach, Typel and Wolter [TW99]
developed the �rst phenomenological description of the density dependent meson-baryon
vertices. In phenomenological approaches, the density dependent vertices are described
by making an ansatz for the functional form with some parameters which are adjusted to
reproduce the measured properties of symmetric and asymmetric nuclear matter, binding
energies, charge radii and neutron radii of spherical nuclei. We choose to compare our
results of the microscopical calculations to the results of the phenomenological approach
utilizing the DD-ME1 parametrization from [NVFR02]. Since the latter is devised to
�t the properties of the symmetric nuclear matter around the normal nuclear matter
density, we make sure that our results agree with the phenomenological ones in this
region.

The use of microscopically calculated vertices allows us to safely extrapolate our
results to high densities. In contrast to previous applications of the DDRH approach with
DB self-energies, we add momentum correction terms to the vertices and, also, account
for the forces due to the exchange of �-meson. By modifying the DDRH approach in
this way, we achieve a more precise description of the binding energy and improve the
reliability of our predictions for the properties of very asymmetric nuclear matter.

The present thesis is organized as follows. In Chapter 2 we study the Nucleon-
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Nucleon (NN) interaction in DB approach. We start by considering the NN interaction
in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange poten-
tial model. Then we present the DB approach for nuclear matter by extending the BS
equation for the in-medium NN interaction. From the solution of the three-dimensional
in-medium BS equation, we derive the DB self-energies and total binding energy which
are the main results of the DB approach, which we later incorporate in the �eld theoret-
ical calculation of the nuclear equation of state.

In Chapter 3, we introduce the basic concepts of density functional theory in the
context of Quantum Hadrodynamics (QHD-I) [Wal74]. The discussion starts with the
proof of the existence theorem of Hohenberg and Kohn [HK64] for QHD-I. In Section. 3.2
we give a short review of QHD-I. This model is a simple example of a relativistic quantum
approach to the investigation of nuclear matter and serves as an introduction to the
following description of DDRH approach.

We reach the main point of this work in Chapter 4 where we introduce the DDRH
approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices
is expressed as functionals of the baryon �eld operators. Because of the complexities
of the operator-valued functionals we decide to use the mean-�eld approximation. The
details of the mean-�eld reduction is reviewed in Section. 4.2.

In Chapter 5, we contrast microscopic and phenomenological approaches to extract-
ing density dependent meson-baryon vertices. In Section 5.1 we present microscopic
density dependent meson-baryon vertices deduced from nuclear matter DB self-energies.
The momentum dependence of the DB self-energies and the meson-baryon vertices are
discussed in Section 5.2. We present the parametrization of the momentum corrected
meson-baryon vertices in Section 5.3. In Section 5.4, we introduce phenomenological
density dependent meson-baryon vertices and compare them to the microscopically cal-
culated ones.

Chapter 6 gives the results of our studies of the EOS of in�nite nuclear matter in
detail. Using formulas derived in Chapters 4 and 5 we calculate the following properties
of symmetric and asymmetric nuclear matter and pure neutron matter:

� energy density,

� pressure,

� binding energy,

� symmetry energy,
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� e�ective nucleon mass,

� compressibility and

� speed of sound in nuclear medium

as functions of the density and of the nuclear asymmetry parameter. The results com-
pared to those of phenomenological DD-ME1 approach.

Finally, we summarize our results, draw conclusions and give an outlook to possible
future work in Chapter 7.



Chapter 2

Ab initio Relativistic nuclear field

theory

The strong interaction between two nucleons can be described using two completely
di�erent approaches. One is usually called the microscopic approach and the other is
the phenomenological approach. In a phenomenological approach the input is a density-
dependent e�ective nucleon-nucleon interaction with some parameters which are adjusted
to reproduce various properties of nuclei and empirical saturation properties of nuclear
matter [Sky59, VB72]. In the phenomenological approach one can obtain the Equation
of state in a very simple way compared to the microscopic approach. However the
phenomenological approach is less fundamental than the microscopic approach in which
the input is the two body nucleon-nucleon (NN) interaction, described by the exchange of
mesons. The most simplest meson exchange model is the One-Boson-Exchange potentials
(OBEP), as e.g the Bonn potentials [MHE87, Mac89] which are usually based on the
exchange of the six non-strange mesons: � (scalar, iso-scalar), ! (vector, iso-scalar), �
(scalar, iso-vector), � (vector, iso-vector), � (pseudo-scalar, iso-vector), � (pseudoscalar,
iso-scalar). In the OBE model one further assumes that no meson-meson interaction is
present and each meson is exchanged in a di�erent interval of the time from the others.
One of the appropriate way to apply OBE models in nuclear matter calculations is the
ab initio Dirac-Brueckner (DB) approach in which the full NN interaction is constructed
from a particular summation of the OBE diagrams, so called the ladder summation.
In density dependent relativistic hadron �eld theory (DDRH), the in-medium interactions
are described by density dependent vertices which can be derived from DB calculations.
This allows that in DDRH approach, the calculations for in�nite nuclear matter, neutron

5



6 Chapter 2. Ab initio Relativistic nuclear field theory

N

N

N

N

F,T,*,D,B,0
'MN'MN

N

N

N

N

F,T,*,D,B,0
'MN'MN

F,T,*,D,B,0
'MN'MN

Figure 2.1: Diagrammatic structure of the Nucleon-Nucleon interaction via mesons

stars and ground state of the �nite nuclei [Len04, HKL01b, HKL01a] and hypernuclei
[KHL00, KL02] can be done by purely microscopic way i.e. without introducing any
additional parameters. Therefore it is worthwhile to discuss the DB approach. Since DB
approach has been discussed extensively in the literature [Erk74, Hol74, HS87, HM87]
we shall be very brief here and aim to show the derivation of the DB self-energies.

2.1 The Nucleon-Nucleon interaction

In this section we discuss the free-space NN interaction, because the DB approach derives
the in-medium interaction from free-space NN meson exchange potentials. Both the
free-space and nuclear matter are translationally invariant. Therefore one can work in
momentum space.

In momentum space the relativistic two-particle interaction is obtained by solving a
covariant four-dimensional Bethe-Salpeter (BS) equation:

hq0jT jqi= hq0jKjqi+ i
Z d4k

(2�)4 hq0jKjkiG0(k)G0(�k)hkjT jqi ; (2.1)

or schematically
T =K+ i

Z
KG0G0T ; (2.2)



2.1. The Nucleon-Nucleon interaction 7

Figure 2.2: Graphical representation of the T -matrix.

where T is the scattering matrix for two nucleons in free space (see Fig. 2.2) and q, k
and q0 are the incoming, intermediate and outgoing relative four-momenta, respectively.
For all four-momenta, our notation is k = (k0;k) . K is the full two-nucleon kernel and
it consists of in�nite set of irreducible two-particle diagrams.
The one-nucleon propagator is given by

G0(k) =
1

=k�M + i�
; (2.3)

where M denotes the nucleon mass and =k � �k�. Since this four-dimensional integral
Eq. (2.1) is very di�cult to solve, so called three dimensional reduction schemes have
been proposed, in which four-dimensional BS problem is reduced to a model in three
dimensions by �nally the time-like energy component and considering explicitly only the
space-like momentum components. The reduction schemes introduced by Thompson
[Tho70] and the Blankenbecler-Sugar [BS66] are the most widely used [Mac89, LME93].
Following Thompson, by �xing the time-like component of all momenta, we obtain the
three-dimensional reduction of the BS equation in center-of-mass (c.m.) frame,

hq0;�q0jT (s)jq;�qi = hq0;�q0jV (s)jq;�qi (2.4)

+
1
2

Z d3k
(2�)3 hq0;�q0jV (s)jk;�kig(k;s)hk;�kjT (s)jq;�qi ;

or schematically
T = V +V gT (2.5)
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where:

1. with q1 and q2 the individual four-momenta of particles 1 and 2, one can de�ne the
relative and the total four-momenta q = 1

2(q1� q2) and P = (q1 + q2), respectively.
Accordingly in c.m. frame P = (

p
s;0) , with the total energy

p
s= 2q0 .

2. The K is approximated by �rst order contributions so-called ladder approximation1,
hence, replaced by the OBE interaction kernel V(s) in Eq. (2.4). V (s) is de�ned
as a sum of one-particle-exchange amplitudes of the six non-strange bosons with
given masses (below 1 GeV=c2) and couplings. (Details on the mathematical and
numerical aspects of the OBEP with its computer code can be found in [LME93].)

3. The two-nucleon propagator g(k;s) is de�ned as

g(k;s) =�i
Z
dk0G0(k)G0(�k) : (2.6)

In the Thompson approximation, the negative energy contributions to G0(k) is neglected.
Therefore the form of g(k;s) in the c.m. frame is given by

g(k;s) = �+(k)�+(�k)
M2

E2
k

�
1
2
p
s�Ek+ i�

(2.7)

with
�+
i (k) =

 
0Ek� �k+M

2M

!
i
=
X
�i
ju(k;�i)ih�u(k;�i)j (2.8)

where �+
i is the on-shell positive energy projection operator for nucleon i and with u(k)

a positive energy Dirac spinor of momentum k, �u � uy0 (see App. A.1). �i denotes
either the helicity or the spin projection of the respective nucleon, and Ek its free energy
Ek =

p
k2 +M2 . With the above expressions and Eq. (2.4) we obtain

hq0jT jqi= hq0jV jqi+ 1
2

Z d3k
(2�)3 hq0jV jkiM

2

E2
k

1
Eq�Ek+ i�

hkjT jqi : (2.9)

1Here only the most simple 2 particle irreducible kernel is taken to account, namely the Born terms of
the perturbation series.
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2.2 Nucleon-Nucleon interaction in medium

A nucleon moving in the nuclear medium is a�ected by its interactions with the sur-
rounding nucleons. As a result the nucleon gets \dressed". The interaction between
two-dressed nucleons in-medium can be obtained analogous with two-bare nucleon in-
teractions in free-space, discussed in previous section. Therefore the BS equation for the
in-medium interaction of the nucleons can be written as

T � =K�+ i
Z
K�GGT � ; (2.10)

which is similar to Eq. (2.2) but with dressed nucleon propagator G . The dressed
nucleon interactions are denoted by asterisks.
The relation between the bare and dressed nucleon propagator is given by the Dyson
equation

G=G0 +G0�G ; (2.11)

where G0 denotes the free nucleon propagator while the inuence of the surrounding
nucleons is expressed by the nucleon self-energy �, i.e. the \dressing " of nucleon is
contained in � . In DB theory this self-energy � is determined by summing up the
interaction with all the nucleons inside the Fermi level in Hartree-Fock approximation

� =�i
Z
F

(Tr [GT �]�GT �) ; (2.12)

where the �rst term is the direct, or Hartree contribution and the second term is exchange
or Fock contribution within the Fermi sea F . The coupled set of equations (2.10-2.12)
represents a self-consistency problem and to solve this problem is a main goal of the DB
approach. The Eqs. (2.10-2.12) are represented diagrammatically in Fig. 2.3 .
After applying the Thompson three-dimensional reduction scheme, the Eq. (2.10) reduces
to

T � = V + i
Z
V QGGT � ; (2.13)

where V is the bare nucleon-nucleon interaction and iGG is the two-nucleon propagator
in-medium which describes the intermediate o�-shell nucleons. The Pauli operator Q
accounts for the inuence of the medium by the Pauli-principle and projects the inter-
mediate nucleon states out of the Fermi level. In other word, two nucleons below the
Fermi level can only scatter into states above the Fermi level because in nuclear matter
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Figure 2.3: In Dirac-Brueckner approach, the in-medium interactions are described by
the Bethe-Salpeter equations (Eq.(2.10), above) in which the in-medium single particle
propagators appear, de�ned by the Dyson-Equation (Eq.(2.11), middle) in terms of the
self-energies (Eq.(2.12), last line). The whole set of equations has to be solved simultane-
ously and self-consistently using medium-modi�ed spinors for the baryonic Fermi-Dirac
�elds [Len04].

all states up to Fermi level are occupied and are thus excluded by the Pauli-principle.
The bare-nucleon propagator G0(k) in Eq. (2.11) is given by

G0(k) = (=k+M)
(

1
k2�M2 + i�

+
i�
Ek
�(k0�Ek)�(kF �jkj)

)
; (2.14)

where kF is the Fermi momentum.
The formal solution of the Dyson equation (2.11) is

G(k) =
1

=k�M ��(k)
: (2.15)

Due to the translational and rotational invariance, parity conservation and the time
reversal invariance the self energy for in�nite nuclear matter can be expressed by scalar
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and vector components [IZ80, HM87]

�(k) = �s(k)�0�0(k)+ �k�v(k) : (2.16)

This structure suggests the following de�nitions for the e�ective mass and in-medium
momentum

m� = M +�s(k)

k�0 = k0 +�0(k) (2.17)

k� = k(1+�v(k)) ;

and one can rewrite Eq. (2.15) as G(k) = ( =k��m�)�1 . The vector part of the self-energy
�v is very small. Therefore Eq. (2.17) can be simpli�ed further as

m� 7! m� =
M +�s(k)

1+�v

�0� 7! �0� =
�0(k)
1+�v (2.18)

k�0 7! k�0 =
k0 +�0(k)

1+�v

by dividing out the �v term [HS87, HM87] . One thus obtains the solution of the Dirac
equation for the one-particle motion in nuclear matter i.e. for the \dressed nucleon" (see
Sec. 6.2)

u��(k) =

s
E�k +m�

2m�

0@ 1
�k

E�k+m�

1A�� : (2.19)

The self-energy is found to depend weakly on the momentum inside the Fermi surface.
Therefore in the practical calculation, one usually uses its �xed value at the Fermi mo-
mentum or uses an expansion up to order k2 [HKL01a, HKL01b].

Using the above expressions for the two-nucleon propagator in-medium which is sim-
ilar to Eq. (2.6) we obtain the integral form of the Thompson equation (2.13) in c.m.
frame:

hq0jT �jqi= hq0jV jqi+ 1
2

Z d3k
(2�)3 hq0jV jkim

�2
E�2k

Q(k;s�)
Eq�Ek+ i�

hkjT �jqi ; (2.20)
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where s�= 4E�2k and Q(k;s�) is (the angle-averaged) Pauli-projector [HM87]. Comparing
Eqs. (2.9) and (2.20), one can see the similarity between T and T �. The T � includes two
additional e�ects i.e. the self-energy and the Pauli exclusion principle. Therefore, it is
obvious that the in-medium interactions can be determined unambiguously by the Born
terms which are �xed by identifying them with the NN meson exchange potentials.
In order to calculate the self-energy one must transform the G to the nuclear matter rest
frame which requires projection techniques for the in-medium T-matrix as introduced
by Horowitz and Serot in [HS84]. Doing so and plugging in the following expression

T �(s�) =
5X

�=1
T�f�1 f

�
2 ; f�1;2 2

(
1;�;��� ;5�;

5=q
2m�

)
(2.21)

into Eq. (2.12) we obtain

�(kF ;k) =
5X

�=1

kFZ
0

d3k
(2�)3

1
2E�q

f�1
n
Tr

h
(=q+m�)f�2

i
T�dir� (=q+m�)f�2 T�exc

o
; (2.22)

where antisymmetrized T-matrix (or G-matrix) is separated into direct and exchange
contributions. The connection between these two terms can be expressed by the Fierz
transformation the antisymmetrized amplitude T�

T� = T�dir�
5X
k=1

FkiT�exc ; (2.23)

where Fki is the Fierz matrix [Fie37]. Expressing the exchange parts in terms of direct
parts can be used to simplify the Eq. (2.22) as for the direct parts. The self-consistent
solution of T � and � can be obtained by solving the Eqs. (2.21) and (2.22) iteratively (see
[HM87] for details). Therefore the main result of the DB calculation is a self-consistent
self-energy of the nucleon. Then one can calculate quantities like total binding energy
and single particle energies.



Chapter 3

Density functional approach to

quantum hadrodynamics

Density functional methods proved to be very successful for the discussion of the quan-
tum many-body problem [DG90], quantum chemistry and condensed matter physics.
For the nuclear case it has been demonstrated that these methods are useful for the
description of average nuclear ground-state properties in the non-relativistic regime
[BGH85, PnGB88, CPn+90]. The success of the models on the basis of a non-relativistic
formulation motivates the investigation of density functional methods in the context of
relativistic theories of nuclei [SDE92, LRE04], such as Quantum hadrodynamics (QHD).
This model provides a �eld dynamical description of hadrons where baryons interact by
the exchange of mesons.
The simplest relativistic model for nuclear matter was outlined by Walecka [Wal74], in
which the interaction between the two baryons is mediated by two mesons only, a scalar
��meson which is responsible for the attractive force, and a vector !�meson responsible
for the short range repulsion, necessary to reproduce saturation properties. This model
is usually referred to as QHD-I.
In this chapter we review the basic concepts of the Density Functional Theory (DFT) in
the context of QHD-I. The discussion starts with an extension of the existence theorem
of Hohenberg-Kohn [HK64] for the case of a many fermion system interacting by the
exchange of massive scalar (�) and vector (!) mesons.

13
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3.1 Hohenberg-Kohn theorem for Quantum hadrody-

namics

The Hohenberg-Kohn theorem [HK64] was �rst extended to relativistic systems by Ra-
jagopal and Callaway [RC73, Raj78] and by MacDonald and Vosko [MV79] for the case of
Quantum Electro Dynamic (QED). In contrast to the non-relativistic situation, in which
the basic quantity of the theory is the ground state density, the covariant relativistic
formulation, governed by an external four-potential, has to be based on the four-current
density.

The Hohenberg-Kohn theorem for QED then states that the ground-state energy of a
system of electrons interacting by the exchange of photons and with a classical external
four-potential is a unique functional of the four-current density, E = E[j�]. As a conse-
quence of the additional scalar meson interaction, the scalar density has to be included
in the context of QHD.

The Lagrangian density for the QHD-I model is given by Walecka [Wal74]

L̂QHD = �̂ (i�@�� (M �gs�̂)�gv�V̂�) ̂

+
1
2

(@��̂@��̂�m2
s�̂

2)� 1
4
F̂��F̂�� +

1
2
m2
vV̂�V̂

� : (3.1)

Here  ̂ denotes the baryon �eld operator, �̂ and V̂� the scalar and vector meson �eld
operators, the �eld tensor F̂�� is given by

F̂�� = @�V̂��@� V̂� : (3.2)

Furthermore, M is the nucleon mass and gs;gv and ms;mv are the scalar and vector
coupling constants and masses, respectively.
The vector meson couples minimally to the conserved four-current

ĵ� = �̂ � ̂ ; (3.3)

whereas the scalar meson couples to the scalar density

�̂s = �̂  ̂ : (3.4)
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For the proof of the Hohenberg-Kohn theorem, we extend the QHD Hamiltonian
derived from Eq. (3.1) by auxiliary, classical external potentials V �ext and �ext; to give

Ĥ = ĤQHD +
Z
d3xĵ�(x)V ext� (x)�

Z
d3x�̂s(x)�ext(x) : (3.5)

The potentials are assumed to be time independent and may be set equal to zero at
the end of the argument. As for all �eld theoretical problems the Hamiltonian in Eq.
(3.5) is not well-de�ned without further prescriptions concerning the elimination of ul-
traviolet divergencies and divergent vacuum expectation values. Only the inclusion of
the appropriate counter term contributions (CTC) in the Lagrangian and subtraction of
vacuum expectation values (VEV) (or alternatively use of normal ordering) renders the
corresponding groundstate energy �nite (see, e.g., [Chi77]). In the following proof we
therefore use the modi�ed Hamiltonian

ĤR = Ĥ+CTC�V EV : (3.6)

For a proof of the extension of the Hohenberg-Kohn theorem for QHD we shall work
in a suitably de�ned Schr�odinger picture in order and establish the connection to non-
relativistic theory.
We start with the stationary relativistic wave equation for the groundstate jgi,

ĤRjgi= Ejgi ; (3.7)

which de�nes a map of the set of potentials �ext and V �ext on the set of groundstates
jgi (assumed to be nondegenerate) which is surjective by construction. As all four-
potentials that di�er only by a gauge transformation of the time-like vector potential
V 0
ext , i.e. V

00
ext(x) = V 0

ext(x)+c (c= const), lead to the same groundstate the map should,
more precisely, associate a class of potentials (di�ering only by these gauge transforma-
tion) with a class of groundstates (di�ering only by global phases).
A second map of all possible groundstates on the groundstate densities �s and j� can be
established by

�s;R = hgj�̂sjgi+CTC ;

j�R = hgjĵ�jgi+CTC ; (3.8)
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where renormalization of the densities is implied (of course, the CTC for the renor-
malization of j� are not identical with those of Eq. (3.6)). This map is surjective by
construction. We will detail below that this map relates the class of all groundstates de-
riving from potentials which di�er by general time-independent gauge transformations
with the corresponding gauge invariant groundstate four-current.

The gist of the proof of the Hohenberg-Kohn theorem is the demonstration that both
maps are injective and therefore, as a consequence of a general theorem from the theory
of sets, bijective. The proof proceeds by reductio ad absurdum.

In order to demonstrate the injectivity of the �rst map, one assumes that either �0ext
is not equal to �ext or that V 0�ext and V �ext di�er by more than a gauge transformation of
the vector potential. If the groundstates of the eigenvalue problems with the primed and
unprimed potentials,

Ĥjgi= Ejgi ;
Ĥ 0jg0i= E0jg0i ; (3.9)

where identical, jg0i= ei�jgi (up to global phases ei�) one �nds upon subtraction of both
eigenvalue equationsZ

d3x
n
ĵ�[Vext;��V 0ext;�]� �̂s[�ext��0ext]

o jgi= (E�E0)jgi : (3.10)

Only for the case explicitly excluded, i.e., �0ext(x) = �ext(x) and at the same time
V 0ext;0(x) = Vext;0(x) + c, V 0ext;k(x) = Vext;k(x), would the left hand side of Eq. (3.10)
reduce to

� c
Z
d3xĵ0(x)jgi=�cQjgi= (E�E0)jgi ; (3.11)

making use of the fact that the Hamiltonian commutes with the charge operator. Thus
both potentials lead to the same groundstate with E

0
reecting the energy shift intro-

duced by this simple gauge transformation.
On the other hand one obtains for a general time-independent gauge transformation

V 0ext;�(x) = Vext;�(x)+@��(x;t) ;

�(x;t) = ct+�(x) (3.12)

the relation
�
Z
d3x

n
ĵi(x)@i�(x)+ cĵ0(x)

o jgi= (E�E0)jgi : (3.13)
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As jgi is not an eigenstate of ĵi(x) this equation leads to a contradiction, show that the
eigenstate jg0i of the general gauge transformed system is not identical to jgi.

One can also conclude, that jgi can not be an eigenstate of the operator on the left
hand side of Eq. (3.10) if the potentials di�er by more than a gauge transformation.
Consequently the assumption jgi= jg0i again leads to a contradiction. With the conven-
tion that potentials di�ering only by gauge transformations of the vector potential are
equivalent, one may state that the map between the classes of equivalent potentials and
corresponding groundstates jgi is injective.

The demonstration of injectivity of the second map also relies on reductio ad ab-
surdum. If one supposes that two groundstates jgi and jg0i which belong to external
potentials di�ering by more than a gauge transformation lead to the same densities �s;R
and j�R, then the Raleigh-Ritz principle states1

E = hgjĤRjgi< hg0jĤRjg0i
= hg0jĤ 0Rjg0i+ hg0jĤR� Ĥ 0Rjg0i
= E0+

Z
d3x

n
j�R(Vext;��V 0ext;�)��s;R(�ext��0ext)

o
: (3.14)

It should be noted, that the strict inequality, which is crucial for the following argument,
does not hold if jgi and jg0i are eigenstates of potentials which are related by a general
time-independent gauge transformation,as in Eq. (3.12). Although the proof of the
injectivity of the �rst map demonstrated that the two states are not identical, this
di�erence is not relevant if one considers physical observables i.e., expectation values.
Expectation values exhibit only the gauge transformation properties of the operator
under consideration, in our case the shift of the energy scale.

Interchanging the roles of primed and unprimed quantities one obtains the statement

E0 <E�
Z
d3x

n
j�R(Vext;��V 0ext;�)��s;R(�ext��0ext)

o
: (3.15)

Addition of the two inequalities leads to the obvious contradiction

E+E0 <E+E0 : (3.16)

1We assume that Raleigh-Ritz principle is valid for the renormalized Hamiltonian Eq. (3.6)
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Thus the second map is also injective.
Combining the two maps one may state: The class of groundstates which is deter-

mined by all potentials di�ering by a general time-independent gauge transformation
is uniquely related to the densities �s and j�. Any member of this class can thus be
considered to be a functional of the densities

jgi= jg[�s; j�]i (3.17)

(dropping the index R for brevity). Of course, the explicit functional form will depend
on the speci�c gauge chosen.

In nonrelativistic DFT the gauge dependence can be exploited by establishing a
unique map between the gauge dependent states and the gauge dependent paramagnetic
current [VR87, VR88]. In the relativistic theory, however, it should be preferable to
work with the total current, as physical observables characterized by expectation values
momentum

O[�s; j�] = hg[�s; j�]jÔjg[�s; j�]i ; (3.18)

which are unique functionals of the groundstate densities must not depend on the speci�c
gauge chosen.

In particular, insertion of the exact groundstate densities �s and j� into

hg[�s; j�]jĤRjg[�s; j�]i (3.19)

gives the exact groundstate energy E whereas the Raleigh-Ritz principle guarantees that
all other �0s , j0� lead to a higher energy,

hg[�0s; j0�]jĤRjg[�0s; j0�]i>E : (3.20)

Ignoring the mathematical subtleties of the v-representability problem [SG95] one may
use the unique groundstate energy functional

E[�s; j�]� hg[�s; j�]jĤRjg[�s; j�]i (3.21)

to obtain the groundstate densities by the variational equations

�
��s

E[�s; j�] = 0 ;
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�
�j�

E[�s; j�] = 0 ; (3.22)

to be solved under the condition of baryon number and current conservation which may
be introduced by appropriate Lagragnge-multiplers.

Finally, the functional

F [�s; j�]� E[�s; j�]�
Z
d3x

n
j�(x)V ext� (x)��s(x)�ext(x)

o
(3.23)

is universal, i.e. it does not depend on the external potentials at all. Note that F [�s; j�]
is gauge invariant. It is the external potential energy term

�
Z
d3xj�(x)V ext� (x) (3.24)

in Eq. (3.23) which produces exactly the required gauge transformation property of the
total energy.

This completes the proof of the Hohenberg-Kohn theorem for QHD as we now can
set the auxiliary external potentials equal to zero. The functional F [�s; j�] is the energy
functional of the QHD system without external potentials.

The proof of the existence of one-to-one mappings between groundstate observables
and groundstates densities does not give any hint for the construction of explicit density
functionals. However, the fact that the set of densities may be considered to be the basic
variables of the theory makes it worthwhile to pursue this approach to the many body
problem.

3.2 Quantum hadrodynamics (QHD)

The �eld equations for this model follow from the Euler-Lagrange equations using Eq.
(3.1) and can be written as

(@�@�+m2
s)�= gs �  ; (3.25)

@�F�� +m2
vV

� = gv � � ; (3.26)

[�(i@��gvV�)� (M �gs�)] = 0 : (3.27)

Equation (3.25) is a Klein-Gordon equation with a scalar source term. Equation (3.26)
is the Proca equation for the vector ! �eld and it looks like massive QED with the
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conserved baryon current
B� = � � ; @�B� = 0 : (3.28)

rather than the (conserved) electromagnetic current as source. Finally, Eq. (3.27) is the
Dirac equation with scalar and vector �elds entering in a minimal fashion.

The energy and momentum densities and currents associated with the �elds are sum-
marized in the form of the energy-momentum tensor T�� , which is de�ned as

T�� =�g��L+@�
@L

@(@�qi)
(3.29)

where the repeated index i stands for the sum over all the generalized coordinates (i.e.
the �elds). If L does not explicitly depend on space-time coordinates x�, these �eld
equations imply that the canonical energy-momentum tensor T�� is conserved, i.e.

@
@x�

T�� � @�T�� = 0 ; (3.30)

indicating that T�� corresponds to the Noether current connected to the space-time
translations. This implies that the four-momentum

P� = (H;P) = g��P�

de�ned by
P� =

Z
d3xT0� (3.31)

is a constant of the motion. Inserting Eq. (3.1) into Eq. (3.29) and making use of
the �eld equation Eq. (3.27) we get the following expression for the energy-momentum
tensor:

T�� =
1
2

�
�@��@��+m2

s�
2 +

1
2
F��F ���m2

vV�V
�
�
g��

+i � �@� +@��@��+@�V �F�� : (3.32)

For a uniform and isotropic system, the observed energy-momentum tensor must have
the form [Wei72]

hT��i= (E+p)u�u��pg�� ; (3.33)
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where p is the pressure, E is the energy density and u� is the four-velocity of the uid.
The four-velocity satis�es u2

� = 1 and, for a uid at rest, u� = (1;0). This allows us to
identify

P =
1
3
hTiii (3.34)

E = hT00i: (3.35)

Since Eqs. (3.25-3.27) are non-linear quantum �eld equations and they can not be
solved exactly. But this model can be solved analytically for nuclear matter in the mean-
�eld approximation (discussed in detail in [SW86]).
The feature of QHD-I is the fact that the nuclear saturation mechanism naturally arises
from the relativistic description and in particular, from the appearance of two strong
mean �elds (� and !). The di�erent Lorentz structure of these two strong mesonic �elds
leads to the correct minimum value (E=A = �15;7 MeV) for the binding energy per
nucleon, and, on the other hand, to a strong spin-orbit splitting [HS84, HS87, HM87].
However, at the saturation density (�0 =�15:74 fm�3), the predicted value of the e�ective
mass (m� = 0:55M) is too small and the predicted value of the nuclear incompressibility
(K ' 540) MeV is too high. These are the de�ciencies of the QHD-I.

QHD-I represented �rst attempt to consistently describe equilibrium and dynamical
properties of nuclear systems at the hadronic level and it has been extended in sev-
eral ways. Scalar meson self interactions of order �3 and �3 have been introduced by
Boguta and Bodmer [BB77, Bod91] where the strengths of these non-linear interactions
are considered as additional, adjustable parameters to be determined by the saturation
properties of the nuclear matter. Another extension of the original QHD was �rst con-
sidered by Serot [Ser79a, Ser79b], referred to as QHD-II where the Coulomb repulsion
between the protons taken into account as well as an additional isovector particle, the
�-meson, which accounts for the neutron excess in heavy nuclei.
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Chapter 4

Density Dependent Relativistic

Hadron Field theory (DDRH)

4.1 The DDRH Lagrangian

The starting point of relativistic models with baryonic and mesonic degrees of freedom
is a Lagrangian density L with Dirac spinors describing the baryons interacting via the
exchange of mesons and the photon which are Bose �elds. The Lagrangian density L
contains three terms:

L= LB +LM +Lint ; (4.1)

with

LB = 	(i�@��M)	 ; (4.2)

LM =
1
2

X
i=�;�;�;�

�
@��i@��i�m2

i�
2
i
��

1
2

X
k=!;�;

�1
2
F (k)
�� F (k)���m2

kA
(k)
� A(k)�

�
; (4.3)

and

Lint = 	�̂�(�̂)	���	�̂!(�̂)�	A(!)�+

	�̂�(�̂)�̃	Φ��	�̂�(�̂)��̃	A(�)��
	�̂�(�̂)5	��� �	�̂�(�̂)5��̃	@�Φ��
e	Q̂�	A()� : (4.4)

23
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Here LB and LM are the free baryonic and mesonic Lagrangians, respectively, and the
meson-baryon interactions are described by Lint that includes the vertex functionals
�̂�(�̂) (�= �;�;�;�;!;�) . In addition, here the bold-faced symbols indicate the vectors
in isospin space and vectors in ordinary three-dimensional space.
The �eld strength tensor F (k)

�� of either the vector mesons (k= !;�) or photon (k= ) is
given by

F (k)
�� = @�A

(k)
� �@�A(k)

� : (4.5)

The electric charge operator Q̂ is given by

Q̂=
1
2

(1+ �3) (4.6)

where �3 =�1 for protons and neutrons, respectively.
The di�erent types of mesons are distinguished by their quantum numbers, such

as spin, parity and isospin, which determine the Lorentz structure of these �elds. For
simplicity we use mesons with lowest quantum numbers to generate the e�ective �elds
in the nucleus and as few mesons as possible which are known from experiments in free
space. Based on such consideration we can use in the simplest model only mesons with
spin J = 0 and 1, i.e. scalar and vector mesons. For the nuclear structure calculations
DDRH is used in Relativistic Mean Field (RMF) approximation. Parity (P) conservation
of the mean �eld determines on the Hartree level the parity of the mesons, i.e. it excludes
pseudo-scalars and pseudo-vectors. In a �rst approximation we also consider only mesons
with isospin I = 0. In such a case the � meson with quantum numbers JP = 0+, I = 0
and the ! meson with quantum numbers JP = 1�, I = 0 are included in the calculation.
This is corresponds to the ��! model of Walecka as discussed in the Sec. 3.2, but with
density dependent vertices.
In realistic nuclei the Coulomb �eld has to be considered, i.e. one has to take into
account also the photon, and for medium-heavy and heavy nuclei the asymmetry energy
requires an additional meson carrying isospin. This means we have to add also the �
meson with quantum numbers JP = 1�, I = 1 and the �=a0(980) meson with quantum
numbers JP = 0+, I = 1. We include therefore for the nuclear matter calculations the
mean-�eld producing isoscalar mesons � and !, the isovector �=a0(980) and � mesons
and the photon .

The important di�erence to standard QHD models [Wal74, SW86, GRT90] is that
the meson-baryon vertices �̂�(�̂) are functionals of the baryon �eld operators 	. Lorentz
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Meson i mi [MeV ] J spin/parity I isospin Type
� 550 0+ 0 Scalar-IsoScalar
� 983 0+ 1 Scalar-IsoVector
! 783 1� 0 Vector-IsoScalar
� 770 1� 1 Vector-IsoVector

Table 4.1: Mesons

invariance requires that the vertices depend on Lorenz-scalar bilinear forms �̂(	;	) of
the baryon �eld operators, where in principle the standard set of the �ve Dirac invariants
f1;5;�;5�;���g are allowed.
One can also use other choices, since the consistency of the theory is preserved for any
Lorentz-invariant combination of baryon and meson �eld operators. However, there are
some arguments, why to use the description of medium e�ects by functionals of baryon
�eld operators only:

� This leaves the meson �eld unchanged and ascribes many body e�ects completely
to the baryon self energies. Therefore, only the baryon sector of the model is
a�ected. This choice is also consistent with the approach underlying (realistic) NN
interactions.

� The vertices are dynamical entities even in the mean �eld limit, because the
fermions are always treated as Dirac quantum �elds.

� In this case, the uncertainties of parameters are kept on a controllable level and
give more transparent relation to the QHD-type approaches.

The dynamics of the theory is obtained by deriving the �eld equations from the La-
grangian, Eq. (4.1), using the Euler-Lagrange equation of motion for a �eld,

@L
@�i
�@�

 
@L

@(@��i)

!
= 0 ; �i = 	;	;��;Φ�;A

(!)
� ;A(�)

� ;A()
� : (4.7)

For the mesons, we obtained the Klein-Gordon and Proca equations being formally of the
standard form but with a source term including the density dependent vertex functionals,

(@�@�+m2
�)�� = �̂�(�̂)		 ; (4.8)

(@�@�+m2
�)Φ� = �̂�(�̂)	�	 ; (4.9)
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(@�F (!)�� +m2
!A

�
!) = �̂!(�̂)	�	 ; (4.10)

(@�F (�)�� +m2
�A

�
�) = �̂�(�̂)	��	 ; (4.11)

@�F ()�� = e	Q̂�	 : (4.12)

Since the Lagrangian contains parts, in Eq. (4.4), which depend intrinsically on the �eld
operators, the Euler-Lagrange equations immediately lead to

�Lint
�	

=
@Lint
@	

+
@Lint
@�̂

��̂
�	

(4.13)

which includes the variation of the vertex functionals. From the �rst term on the right
hand side of this expression we get the normal scalar �̂s(0) and vector �̂�(0) self-energies
as:

�̂s(0) = �̂�(�̂)�� +�̂�(�̂)�̃Φ� ; (4.14)

�̂�(0) = �̂!(�̂)A(!)�+�̂�(�̂)�̃A(�)�+eQ̂A()� : (4.15)

Before calculating the second term on the right hand side of the Eq. (4.13) the speci�c
form of the �̂ has to be de�ned in order to obtain the additional self-energies. In general,
we may expand �̂ into a superposition of the above considered Dirac-invariants, i.e.

�̂(	;	) = As		+B(	�	)2 +Cs(	�̃	)2 +D(	��̃	)2 + : : : (4.16)

where the unknown parameters As; B; Cs;D have to be determined independently.
In the Eq. (4.16) the �rst two terms are relevant for the scalar and vector densities and
the last two terms are relevant for the isoscalar and isovector densities. Since all the
terms appear quadratically the Lorentz-invariant is manifest Due to the aim of this work
and for simplicity reasons determine only the scalar and vector densities. The reasons
are following:

� The isovector density vanishes in the case of symmetric nuclear matter.

� The parametrization of DB density dependent vertices does not depend on the
isovector density.
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We choose therefore Cs =D= 0. The remaining two physically reasonable forms of �̂ are
the scalar and vector density dependences, SDD and VDD, given in the [FLW95],

�̂SDD �		 ; �̂V DD �
q

(	�	)(	�	) =
q
j�j� : (4.17)

Here, j� is the baryon vector current and the variation of �̂ with respect to the 	 is

@�̂SDD
@	

= 	 ;
@�̂V DD
@	

=
�j�q
j�j�

	 = �û�	 : (4.18)

Eq. (4.13) leads to the additional so called scalar �̂s(r) and vector �̂�(r) rearrangement
self-energies [LF95] for the SDD and the VDD as:

�̂s(r) =
 
@�̂!(�̂)
@�̂

A(!)�	�	+
@�̂�(�̂)
@�̂

A(�)�	��̃	

�@�̂�(�̂)
@�̂

��		� @�̂�(�̂)
@�̂

Φ�	�̃	
!
; (4.19)

�̂�(r) =
 
@�̂!(�̂)
@�̂

A(!)�	�	+
@�̂�(�̂)
@�̂

A(�)�	��̃	

�@�̂�(�̂)
@�̂

��		� @�̂�(�̂)
@�̂

Φ�	�̃	
!
û� : (4.20)

The four-velocity û� is de�ned as (1� v2)�1=2(1;v) and is related to the baryon vector
current. In the rest frame of the nuclear matter v = 0, therefore u� = (1;0) and û�û� = 1.
The rearrangement self-energies account physically for the static polarization e�ects in
the nuclear medium, canceling certain classes of particle-hole diagrams [Neg82]. For
non-relativistic many-body theory Negele was the �rst to point to the importance of
the rearrangement self-energies in assuring that basic properties of the full theory are
restored in the reduced model problem [Neg82]. These self-energies also assure the ther-
modynamical consistency and covariance which would not be given using a formulation
based on densities only. The thermodynamical consistency means that:

� the thermodynamical and the mechanical pressure of the nuclear matter are an
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+ +G= ++ +G=

Figure 4.1: Diagrammatic representation of the total baryon self-energy, including the
HF tadpole diagram and propagator and vertex renormalization due the rearrangement.
The dashed lines indicate meson exchange, all vertices are to be calculated with the full
DB-interaction.

equal at the zero temperature

P =
1
3

3X
i=1
hT iii= �2 @

@�

 
�
�

!
(4.21)

� the Hugenholtz-van Hove theorem [HvH58]

�+P = �E(kF ) =
X
b=n;p

�bEb(kF ) ; (4.22)

is satis�ed. Which states that at equilibrium density, the average energy per par-
ticle equals the single particle energy at the Fermi surface.

A rigorous proof of the thermodynamical consistency of the DDRH theory can be found
in Chapter. 6 .

De�ning the total baryon self-energies from Eqs. (4.14-4.15) and Eqs. (4.19-4.20)

�̂s = �̂s(0) +�̂s(r); �̂� = �̂�(0) +�̂�(r) (4.23)

which are graphically represented in Fig. 4.1 , The baryon �eld equations given by Dirac
equations retain their standard form,h

�(i@�� �̂�)� (M � �̂s)
i
	 = 0 : (4.24)
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The dynamics of the Dirac equations are modi�ed however by the rearrangement self-
energies. From the Eqs. (4.23-4.24) we can easily conclude that the SDD description
adds a correction to the scalar self energy, i.e., it modi�es the nucleon e�ective mass

m� =M � �̂s =M � �̂s(0)� �̂s(r) ; (4.25)

while the VDD description adds a correction to the vector self-energy. This shows that
the dynamics of the �elds are directly a�ected by the structure of �̂. Obviously a clear
de�nition is needed in order to avoid ambiguities in the choice of the density operator �̂.
For that issue VDD is a more natural choice for �̂ , because the baryon vector density is
a conserved quantity, connected to the conserved baryon number. The scalar density is
a dynamical quantity to be determined self-consistently by the equations of motion. In
in�nite nuclear matter this is scan very clearly because the expectation value �s = h�		i
depends on the Fermi-momentum and, therefore, the density. Furthermore VDD gives
a more direct relation between the self-energies of the DDRH and DB microscopic self-
energies [HKL01b].
From a more parctical side, [FLW95] also show that compared to SDD, VDD leads to
a better description of the bulk properties and low energy single particle excitations
in spherical nuclei using DBHF interactions. Therefore in the following we assume the
vector density dependence of the meson-nucleon couplings.

4.2 Relativistic Mean Field approximation

In the RMF approximation the complexities of the operator-valued functionals and their
derivatives can be replaced by functions of ground state expectation values using Wick's
theorem [Wic50, PS95]. According to Wick's theorem we can de�ne

�̂= �+C(�̂) (4.26)

where � denotes the c-valued, fully contracted product of the �eld operators contained
in �̂ and C(�̂) = �̂�� the remaining higher correlations, which always contain at least
one normal ordered product of �eld operators. Taking the expectation value of �̂ with
respect to a many-body ground state j0i, only � will survive, since due to its normal
ordered parts h0jC(�̂)j0i= 0 and h�̂i= �. Hence the vertex functionals are converted into
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functions of the ground state density

h�̂�(�̂)i= �� (h�̂i) = ��(�) (4.27)

and accordingly *
@�̂�(�̂)
@�̂

+
=
@��(�)
@�

: (4.28)

By taking ground state expectation values on both side of Eqs. (4.8-4.12) we can change
the highly non-linear �eld equations into the tractable forms

(�r2 +m2
�)�� = ��(�)�s ; (4.29)

(�r2 +m2
!)A!0 = �!(�)� ; (4.30)

(�r2 +m2
�)�� = ��(�)�s3 ; (4.31)

(�r2 +m2
�)A

�
0 = ��(�)�3 ; (4.32)

�r2A0 =�e�p ; (4.33)

with the corresponding source terms are given by

�s = h�		i= �sn+�sp ; (4.34)

�= h�	0	i= �n+�p ; (4.35)

�s3 = h�	�3	i= �sn��sp ; (4.36)

�3 = h�	0�3	i= �n��p ; (4.37)

where �s and � are the scalar and the vector densities, �s3 and �3 are the isoscalar and
isovector densities, respectively.

The meson �elds are treated as a static classical �elds. These �elds describe in an
average way the interaction produced by the exchange of the corresponding mesons.
Time reversal symmetry is assumed, therefore only the zero component of the vector
�elds contributes.

The nucleons remain quantum �elds and moving with relativistic dynamics under
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the action of classical meson �elds. The Dirac equation ish
�(i@����

b (�))� (M ��s
b(�))

i
	b = 0 (4.38)

with the static self energies

�s(0)
b (�) = ��(�)�� + �b��(�)�� ; (4.39)

�0(0)
b (�) = �!(�)A(!)

0 + �b��(�)A(�)
0 +e

1� �b
2

A()
0 ; (4.40)

and the rearrangement self-energy

�0(r)(�) =
 
@�!(�)
@�

A(!)
0 �+

@��(�)
@�

A(�)
0 �3

�@��(�)
@�

���s� @��(�)
@�

���s3

!
: (4.41)

The contribution of the rearrangement self-energy to the baryon �eld equations show
that DDRH approach accounts for quantal uctuations of the baryon �elds even in the
ground state.

In the RMF approximation DDRH theory reduces to the Hartree description with
density dependent coupling constants similar to the initial proposal of Brockmann and
Toki [BT92].

However, in DDRH theory the functional form of the vertices is determined theoret-
ically from in-medium Dirac-Brueckner interactions, obtained from the realistic Bonn
[Mac89, BM90] and Groningen free-space NN interactions [HM87, Mal88]. In in�nite
nuclear matter, density dependence of the vertices is obtained by mapping the self-
consistent DBHF self-energies to the corresponding DDRH expressions.
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Chapter 5

Density-dependent Meson-Baryon

vertices

The density dependent meson-baryon vertices can be described by two di�erent ap-
proaches, which one may call microscopic and phenomenological, respectively. The suit-
able and successful microscopic method is relativistic Dirac-Brueckner (DB) approach
(see Chap. 2) where the density dependent meson-baryon vertices can be obtained from
the calculations of the nucleon self-energies in symmetric and asymmetric nuclear matter
[FLW95, dJL98a]. The phenomenological approach [TW99, NVFR02, LNVR05] deter-
mines the density dependence of the meson-baryon vertices empirically by making an
ansatz for the functional form with some parameters which can be obtained from a �t
to properties of nuclear matter and �nite nuclei. In this chapter, we discuss these two
approaches briey.

5.1 Microscopic Meson-Baryon vertices in Infinite nu-

clear matter

In Chapter. 4 by using RMF approximation in DDRH we have shown that the density
dependent vertex functionals are can be converted into functions of the ground state
baryon density �i(�) in Eqs. (4.27-4.28). In addition, we have mentioned that this
DDRH vertices �i(�) are deduced from microscopic Dirac-Brueckner (DB) calculations
of symmetric and asymmetric nuclear matter. Therefore in this section we would like to
discuss about that how the DB vertices �DBi (�) of the isoscalar (i= �;!) and isovector

33
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(i= �;�) mesons enter to the DDRH calculations.
One possible way to obtain such a relationship between �DBi (�) and �DDRHi (�) is to

equalize the full DB energies to the mean �eld DDRH interaction energies.
The total ground state interaction energy for a spin-saturated system of quasi-particles
at T = 0 is given by integrating the proton and neutron self-energies over the respective
Fermi spheres KF of occupied states [Len04] as

WDBHF
b (kF ) = trs

Z
KF

d3k
(2�)3 �DBHF

b (k;kF ) (5.1)

where s is a spin (s= 1=2) and the index b distinguishes between neutrons and protons
(b= p;n). Accordingly, the equality of the DB and DDRH total energies can be written

WDBHF
b (kF ) =WDDRH

b (kF ) = �b(kF )�DDRH
b (kF ) (5.2)

where WDDRH
b (kF ) is de�ned as in Eq. (5.1) but integrating the RMF self-energies

�DDRH
b (kF ). Clearly, this approach is only applicable for the mean-�eld producing me-

son �eld.
The �eld Eqs. (4.29-4.33) simplify further by magic of translational and rotational in-
variance if we apply for in�nite nuclear matter which is an isotropic and homogenous
system. Doing so and neglecting the electromagnetic �eld, the meson �eld equations for
in�nite nuclear matter can be written

m2
i�i = �i(�)�i : (5.3)

Plugging the mean-�eld self-energies �MF = �i(�)�i into the meson �eld Eqs. (5.3) we
�nd [HKL01b]

�2
i (�)
m2
i
�i = �DBHF ; (5.4)

with �i being the corresponding density to a meson �eld �i as de�ned in Eqs. (4.34-
4.37).
Results of the Dirac-Brueckner calculations are the binding energy and the DB self-
energies �DB and their expressions can be found in the literature, e.g. [HS87] for sym-
metric nuclear matter and [dJL98a, dJL98b] for asymmetric nuclear matter, respectively.
From these scalar �s(DB) and vector �0(DB) self-energies of protons and neutrons, one
can extract the intrinsic density dependence of isoscalar and isovector meson-baryon
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vertices as in [dJL98a] for the asymmetric nuclear matter

� ��
m�

�2
=

1
2

�s(DB)
n (kFp;kFn)+�s(DB)

p (kFp;kFn)
�sn+�sp

; (5.5)� �!
m!

�2
=

1
2

�0(DB)
n (kFp;kFn)+�0(DB)

p (kFp;kFn)
�n+�p

; (5.6)� ��
m�

�2
=

1
2

�s(DB)
n (kFp;kFn)��s(DB)

p (kFp;kFn)
�sn��sp ; (5.7) 

��
m�

!2

=
1
2

�0(DB)
n (kFp;kFn)��0(DB)

p (kFp;kFn)
�n��p : (5.8)

From above expressions one can see that in general the vertices could depend on the
proton and neutron scalar and vector densities independently. In practice though, this
is usually done by neglecting the isovector density �� �n��p dependence of the vertices
due to its too weak inuence and put the density dependence of the vertices only into
the isoscalar vector density � � �p + �n or, equivalently, the mean Fermi momentum
kF � �1=3.

5.2 Momentum dependence of the Self-energies

The ratios �i=mi play a crucial role to determine the properties of the equation of state
(EOS) and it has been observed in [HKL01b] that description of the original DBHF
nuclear matter EOS calculated by DDRH is considerably improved when accounting for
the momentum dependence of the DB self-energies which is neglected in the original DB
calculations. Expanding the full DB self-energies around the Fermi momentum into a
Taylor series in k2,

�DBHF (k;kF ) = �DBHF (kF ;kF )+(k2�k2
F )
@�DBHF (k;kF )

@k2 jk=kF +O(k4)

� �DBHF (kF )+(k2�k2
F )�0DBHF (kF ) (5.9)
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where we identify the �rst term with the Hartree self-energy and we �nd

�(kF )�DDRH(kF ) =
4

(2�)3

Z
jkj�kF

d3k�DBHF (k;kF )

= �(kF )
�
�DBHF (kF )��0DBHF (kF )

2
5
k5
F

�
= �(kF )�DBHF (kF )

"
1� 2

5
k2
F

�0DBHF (kF )
�DBHF (kF )

#
: (5.10)

In Eq. (5.10), the term in brackets is the correction which assures the correct reproduction
of the original DBHF equation of state in DDRH calculation. This correction term also
modi�es the vertices

�2
i (kF )�! ~�2

i (kF )� �2
i (kF )

"
1� 2

5
k2
F

�0DBHF (kF )
�DBHF (kF )

#
: (5.11)

Assuming the ratio �0DBHF (kF )=�DBHF (kF ) to depend weakly on kF and we introduce
the momentum corrected meson-nucleon vertices as

~�i(kF ) = �i(kF )
q

1+ �ik2
F ; (5.12)

where �i are constants determined by adjusting the DDRH binding energies to the DBHF
equation of state. The rearrangement terms are modi�ed as follows

@~�i(kF )
@�

=
q

1+ �ik2
F
@�i(kF )
@�

+
kF
3�

kF �iq
1+ �ik2

F

�i(kF ) (5.13)

On the other hand, one can make a more general ansatz that �i(kF ) may depend on
the Fermi momentum. In this case, the contributions from scalar mesons can be treated
accordingly, however due to the consistency of these quantities �s(0);m� and �s, it is not
possible to make a closed form for the exact momentum correction. In other words, the
scalar self-energy �s(0) is contained in the e�ective mass of the nucleon m�, therefore
any changes of the �s(0) would also a�ect the scalar density �s and it couples back to
the modi�ed self-energies (�s(0) �!m� �! �s �! �s(0)).
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Meson i mi [MeV ] ai bi ci di ei �i
� 550 13.1334 0.4258 0.6578 0.7914 0.7914 0.00804
! 783 15.1640 0.3474 0.5152 0.5989 0.5989 0.00103

�0 = 0:160 [fm�3]

Table 5.1: Parameters used in Eq. (5.14-5.15) for the calculation of the density dependent
vertices for isoscalar mesons (�;!) in DDRH-MC.

5.3 Parametrization of DDRH vertices

Here we present the parametrization of the asymmetric nuclear matter results [dJL98a,
dJL98b] derived from the Groningen nucleon-nucleon potential [HM87, Mal88] in DB
calculations. It is obvious that such a parametrization enormously simpli�es the very
time consuming DB and DDRH calculations and the parameterized density dependent
meson-nucleon vertices o�er the opportunity to study the properties of in�nite nuclear
matter that we aim to do. It has shown in [HKL01b] that the asymmetry dependence of
the vertices �i(kF ) de�ned from Eqs. (5.5-5.8), in the isoscalar channel was negligible;
in the isovector channel it was extremely weak. For this reason, it is assumed that
density dependent vertices �i(kF ) only depend on the total vector density �(kF ) and
parameterized as

�i(�) = ai

2641+ bi
�
�
�0

+di
�2

1+ ci
�
�
�0

+ei
�2

375 ; (5.14)

and this rational form de�nes the behavior at low and high densities very well and that
is a contrast to the polynomial form as introduced in [HK93].

In the isoscalar channel, the momentum corrected vertices de�ned as

~�i(�) = �i(�)

vuut1+ �i
 

3�2

2
�
!2=3

; (5.15)

and the parameters are shown in Table. 5.1. Although the momentum correction con-
stants �� = 0:00804 fm�2 and �! = 0:00103 fm�2 are very small and adjusted only at the
�= �0, it reproduces the binding energies at low and as well as at high densities.

In the isovector channel, the momentum corrected vertices parameterized as
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Meson j mj [MeV ] aj bj cj dj ej
� 983 19.1023 1.3653 2.3054 0.0693 0.5388
� 770 19.6270 1.7566 8.5541 0.7783 0.5746

�0 = 0:160 [fm�3]

Table 5.2: Parameters used in Eq. (5.16) for the calculation of the density dependent
vertices for isovector mesons (�;�) in DDRH-MC.

~�j(�) = aj

2641+ bj
�
�
�0

+dj
�2

1+ cj
�
�
�0

+ej
�2

375 ; (5.16)

with parameters presented in Table. 5.2. In case of isoscalar channel, one obtanis the
density dependent correction ��(kF ) by keeping �� �xed and adjusting the �� for each
given DB binding energy to neutron matter. Therefore the correction is incorporated
in the DB self-energies and the meson-nucleon vertex of the � meson is readjusted.
This means that in Table. 5.2, the parameters for the � meson are readjusted and the
parameters for � meson are without momentum correction, i.e. ~��(�) = ��(�). In Fig. 5.1
we displayed the momentum dependent meson-nucleon vertex functions ~�(�) for the
scalar � and � and the vector ! and � mesons are as a functions of baryon density �.
Here density region is relevant from nuclear structure to the neutron star studies. Note
that in all cases the value of the vertices are an average, asymmetry independent. One
can see in Fig. 5.1, vertices are continuously decreasing with increasing density except
for the isovector-scalar � meson case. In the isoscalar channel ! vertex is larger than �
vertex due to repulsive and attractive nucleon-nucleon potentials. The vertex of the �
meson is smaller with a stronger variation with density. But the vertex of the � meson is
very special and it is increasing in the region of �� �0 in contrast to other three mesons.
In addition � meson is a reason for the splitting of the neutron and proton e�ective
masses that will be discussed in more detail in Section. 6.2.7. In the next section we will
discuss about phenomenological version of the DDRH meson-nucleon vertices in where
the � meson is neglected.
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Figure 5.1: Density dependence of the meson-nucleon vertices for mesons: � (solid line);
� (dashed line); ! (dotted line ); � (dash-dotted line) in the DDRH-MC parametrization.

5.4 Phenomenological Meson-Baryon vertices

After the success of the microscopic DDRH approach Typel and Wolter [TW99] developed
the �rst phenomenological description of the density dependent meson-baryon vertices
for �nite nuclei. It was shown that this approach was able to describe quantitatively
properties of �nite nuclei and nuclear matter using the vector density dependent vertices
and the agreement with data were comparable to the non-linear models [LKP97].
Recently, a new empirical density dependent couplings introduced in [NVFR02] (DD-
ME1) and it was improved by Lalazissis et al., in [LNVR05] (DD-ME2) which have been
applied for the calculations of nuclear ground states and properties of excited states in
Hartree-Bogoliubov (HB) [NVFR02, NDVR04] and the relativistic random-phase approx-
imation (RRPA) [NVR02, PNVR04]. Furthermore it was also applied to the analysis of
recent data on superheavy nuclei. In all these phenomenological approaches, the density
dependent vertices are described by making an ansatz for the functional form with some
parameters which are adjusted to reproduce the properties of symmetric and asymmetric
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Meson i mi [MeV ] gi(�sat) ai bi ci di
� 549.5255 10.4434 1.3854 0.9781 1.5342 0.4661
! 783.0000 12.8939 1.3879 0.8525 1.3566 0.4957
� 763.0000 3.8053 0.5008

�sat = 0:152 [fm�3]

Table 5.3: Parameters used in Eqs. (5.17) and (5.19) for the calculation of the density
dependent vertices for the mesons (�;!;�) in DD-ME1 [NVFR02].

nuclear matter, binding energies, charge radii and neutron radii of spherical nuclei.
The functional form of the density dependent couplings of the � and the ! mesons are
de�ned as

�i(�) = gi(�sat)fi(y) i= �;! (5.17)

and the density-dependent e�ects are contained in

fi(y) = ai
"

1+ bi(y+di)2

1+ ci(y+di)2

#
(5.18)

which is a function of y = �=�sat, and �sat denotes the saturation density of symmetric
nuclear matter. In Eq. (5.4), the parameters (ai; bi; ci;di) are real and positive but not
independent. It is clear that fi(1) = 1. In order to reduce the number of independent
parameters, one can additionally demand f 00�(1) = f 00!(1) and f 00i (0) = 0. Therefore these
�ve restrictions reduced the number of independent parameters from eight to three.
However there are another three parameters g�(�sat), g!(�sat) and m� should be added
in the isoscalar channel.
For the � meson coupling the functional form of the density dependence de�ned

��(�) = g�(�sat)exp[�a�(y�1)] (5.19)

and with only one parameter a�. This exponential dependence was suggested by DB
calculation in [dJL98a] where it has been indicated that the � meson coupling has a very
strong density dependence and it becomes very small at high densities.
The functional form of fi(y) is the same in the parameterizations DD-ME1 [NVFR02],
DD-ME2 [LNVR05] and PKDD [LMGZ04] as introduced in [TW99]. In Table. 5.3, we
displayed the parameters used in Eqs. (5.17) which are introduced in DD-ME1 [NVFR02]
and values of the couplings are shown in Fig. 5.2. We chose only DD-ME1 parametriza-
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Figure 5.2: Density dependence of the couplings of the �-meson (solid line), !-meson
(dotted line) and �-meson (dash-dotted line) in the DD-ME1 parametrization.

tion which is used in our analysis presented in the Chapter. 6. In Fig. 5.2, in all cases
the value of the vertices continuously decreasing with increasing density which is similar
to DDRH-MC vertices. But one can see clearly that the di�erences between the ver-
tices de�ned from microscopic DDRH-MC (solid line) and phenomenological DD-ME1
(dashed line) approaches in Fig. 5.3.
The main di�erence is caused by the values of the parameters (ai; bi; ci;di;ei) in Ta-
bles. 5.1 and 5.3 for i= �;! in the functional form of the density dependence (Eqs. (5.15)
and (5.17)). For the both � (panel a) and ! (panel b) mesons the DDRH-MC vertices
are smaller than the DD-ME1 and the di�erence of the values at saturation density is
about �5 %. For the � (panel d) meson the DDRH-MC vertex is much larger than the
DD-ME1 and at the saturation density di�erence between these two approaches is about
�34 %. Also � meson vertex in the DD-ME1 decreases faster than the DDRH-MC vertex
with increasing baryon density. The reason for that behavior is at least partly that the �
meson is neglected in the DD-ME1. The � meson vertex in DDRH-MC parametrization
as shown in panel (c).
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Figure 5.3: Density dependence of the momentum corrected meson-nucleon vertices in
the DDRH-MC (solid line) parametrization compared to results of DD-ME1 (dashed
line) parametrization for the : �-meson (panel a), !-meson (panel b), �-meson (panel c)
and �-meson (panel d).
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Figure 5.4: The dash-dotted line shows the di�erence of the �-meson vertices calculated
in DDRH-MC and DD-ME1, and compared to the �-meson vertex presented by solid
line.

In fact, we displayed the di�erence of the �-meson vertices calculated in the DDRH-MC
and DD-ME1 (~�DDRH�MC

� ��DD�ME1
� ) by dash-dotted line in Fig. 5.4 and the shape of

this curve is very similar to the � meson vertex in DDRH-MC parametrization as shown
by solid line, but about 2.5-3.7 times smaller. Of course, this is not the only reason,
the di�erences also may be caused by the �t. Due to the behavior of the vertices we
expect to see the series of isospin e�ects in the properties of in�nite nuclear matter, in
particular, in the region of �� �0.
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Chapter 6

Results

In this chapter we are presenting the results of our calculation for the Equation of state of
in�nite nuclear matter. Our detailed investigation of the EOS of in�nite nuclear matter
is focused on the following features:

� the extremes of the low and high densities

� isospin e�ects in nuclear matter i.e. the role of the isovector scalar � meson

� comparison to the phenomenological approach DD-ME1.

6.1 Nuclear matter

Nuclear matter is essentially, an idealization of a nucleus with a surface shifted to the
in�nity thus being free of boundary problems, i.e. an in�nite uniform system with given
ratio of neutrons to protons (N=Z) in which neutrons and protons interact with the
nuclear forces in the absence of Coulomb interactions between the protons. From the
nuclear chart, Fig. 6.1 as we know that the unbalanced neutron and proton numbers
decrease the stability of a nucleus. Furthermore this gives an additional contribution
to the energy density which is known as the symmetry energy (Esym). This energy
is repulsive which leads to a di�erent occupation of the phase space for neutrons and
protons in asymmetric nuclear matter. Therefore the equation of state of nuclear matter
contains a symmetry energy term, i.e. the equation of state of nuclear matter depends
on the baryon density and the asymmetry parameter, respectively. The asymmetry

45
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Figure 6.1: The nuclear chart [Fah98] .

parameter, x can be conveniently de�ned as

x=
N �Z
N +Z

=
�n��p
�n+�p

(6.1)

where �n and �p, N and Z are the neutron and proton densities and numbers, re-
spectively. Using equations (4.35), (4.37) and proton fraction � = Z=N +Z, the above
equation can be rewritten as

x=
�3
�

= (1�2�) (6.2)

so that
�n =

�(1+x)
2

= � (1��)

and
�p =

�(1�x)
2

= � � : (6.3)

The asymmetry parameter, x can have values between 0 to 1, (0 � x� 1) while � have
values between 0.5 to 0, (0:5 � � � 0), corresponding to symmetric nuclear matter and
pure neutron matter, respectively. We will discuss in detail the properties of the neutron
matter, symmetric matter and asymmetric nuclear matter in the following section.
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6.2 Equation of state of Infinite nuclear matter

In the section 4.2 we described the �eld equations in RMF approximation. Using for the
in�nite nuclear matter the assumption that it is an isotropic and homogeneous system,
derivatives of the �elds vanish. Furthermore the electromagnetic interactions are ne-
glected. As a result in the Hartree limit, the solution of the Dirac Eq. (4.38) is analogous
with the solution of the free Dirac equation in the momentum-space

The modi�ed Dirac equation ish
�k

��
b �m�b

i
u�b(k;s) = 0 (6.4)

with solutions which are plane wave Dirac spinors obtained from the free Dirac spinors
(see App. A.1) by replacing M by m�

u�b(k;s) =

vuutE�b +m�b
2m�b

0@ 1
�k�b

E�b+m�b

1A�s ; (6.5)

where b= n;p and s=�1
2 for the neutron and the proton, respectively and �s denotes

a two-component Pauli-spinor.
The kinetic and canonical four-momenta k��b and k�b are related by

k��b = k�b � (�(0)�
b +�(r)�

b ) (6.6)

and an additional shift is obtained from the rearrangement self energies. The e�ective
mass m�b

m�b =M � (�(0)s
b +�(r)s

b ) (6.7)

is also modi�ed and di�ers for neutrons and protons due to the inclusion of the � meson
in the scalar self-energy. We will discuss more about proton-neutron mass splitting in
isospin asymmetric nuclear matter in Sec. 6.2.7.
The in-medium mass shell condition is k�2b �m�2b = 0 and the one particle energy is given
by

E�b = k�0b =
q

k�2b +m�2b : (6.8)

The meson �eld equations in Eqs. (4.29-4.32) also changed to the simple algebraic equa-
tions

m2
��� = ��(�)�s ; (6.9)
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m2
!A

!
0 = �!(�)� ; (6.10)

m2
��� = ��(�)�s3 ; (6.11)

m2
�A

�
0 = ��(�)�3 : (6.12)

Integrating over all states k � kFb inside the Fermi sphere and introducing the Fermi
energy as

EFb =
q
k�2Fb +m�2b ; (6.13)

the scalar and vector densities in in�nite nuclear matter are can be derived as following
way.
The vector density � which is related to the Fermi momentum kFb obtained as

�= h	0	i =
X
b=p;n

X
ss0

Z
jkj�kFb

d3k
(2�)3 �u�b(k;s0)u�b(k;s)

=
X
b=p;n

2
(2�)3

Z
jkj�kFb

d3k =
X
b=p;n

k3
Fb

3�2 : (6.14)

The equation 6.14 becomes

� for symmetric nuclear matter (i.e.�n = �p and �= 0)

�=
2k3

F
3�2 ; (6.15)

� for pure neutron matter (�p = 0 and �= 0:5)

�=
k3
Fn

3�2 ; (6.16)

respectively.
The corresponding scalar density �s determined by the self-consistency relation as

�s = h		i =
X
b=p;n

X
ss0

Z
jkj�kFb

d3k
(2�)3 �u�yb (k;s0)u�b(k;s)

=
X
b=p;n

2
(2�)3

Z
jkj�kFb

d3k
m�b
E�b

=
X
b=p;n

m�b
2�2

"
kFbEFb +m�2b ln

 
kFb +EFb

m�b

!#
; (6.17)
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and we �nd �s = �sp+�sn .
The solution of the nuclear matter problem can be obtained with the following steps:

� With the given Fermi momentum kFb or the baryon density �b, the nucleon e�ective
masses can be calculated from the scalar density in Eq. (6.17).

� The meson �elds can be calculated from Eqs. (6.9-6.12)

However the nucleon e�ective masses

m�b =M ���(�)��� �b��(�)�� (6.18)

and because the meson �elds ��;� = ��;�(m�p;m�n) depend on the e�ective masses them-
selves, we account a highly non-linear system of coupled equations which can be solved
only by a self-consistency procedures. This self consistency problem leads to a coupled
set of equations for the e�ective masses m�b that we can solve with respect to the �elds
�� and �� using their �eld equations (6.9) and (6.11).
The solution techniques are following:

� One chooses a starting value for m�, usually the free nucleon mass, which is inserted
into the equation for �s, Eq. (6.17).

� The value for �s is then used to calculate the new m�, Eq. (6.18) and this value is
reinserted into the equation for �s and this procedure is repeated until convergence
is received.

In the Fig. 6.2 we plot our results for the scalar densities of the proton and the neutron
versus the baryon density for the following three cases:

1. pure neutron matter where �sp = 0, (x= 1 and �= 0:00); so that �s becomes

�sn =
m�n
2�2

"
kFnEFn +m�2n ln

 
kFn +EFn

m�n

!#
: (6.19)

2. symmetric nuclear matter where �sn = �sp , (x= 0 and �= 0:50);

3. asymmetric nuclear matter where �sn > �sp :

� x= 0:8 and �= 0:10 ,

� x= 0:5 and �= 0:25 ,



50 Chapter 6. Results

0.0 0.2 0.4 0.6 0.8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

 

 
Sc

al
ar

 d
en

si
ty

  [
fm

-3
]

Density  [fm-3]

  =0.00
  =0.10
  =0.25
  =0.39
  =0.50

(a)  neutron ( s
n)

 

 

Sc
al

ar
 d

en
si

ty
  [

fm
-3
]

Density  [fm-3]

  =0.10
  =0.25
  =0.39
  =0.50

(b) proton ( s
p)

Figure 6.2: The scalar densities of the neutron (a) and the proton (b) are displayed as
a function of the baryon density for pure neutron matter (�= 0:00), symmetric nuclear
matter (�= 0:50) and asymmetric nuclear matter (�= 0:10;0:25;0:39).

� x= 0:22 and �= 0:39 (corresponding to the charge-to-mass relation of 208Pb).

In in�nite nuclear matter we always can write �s = �f(kF ;m�). At low density, kFb! 0,
the scalar density �s goes to the vector density, � as shown below

�s =
k3
Fb

3�2| {z }
�

 
1� 3k2

Fb
10m�2 +

9k4
Fb

56m�4 +O(k6
Fb)
!

: (6.20)

For all three cases the scalar densities of the proton and the neutron increase linearly
at low densities (below �0) and at higher densities its increase slowly but di�erence due
to the asymmetries gets more signi�cant. Moreover the scalar density �s is smaller than
the baryon density due to Lorentz contraction factor M�=E� in Eq. (6.17) as depicted
in Fig. 6.3.
In Fig. 6.3 also one can see clearly that the e�ect of the isovector channel (�(a0[983])
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Figure 6.3: Total scalar densities are calculated in the DD-ME1 (a) and the DDRH-
MC (b).

meson) in the asymmetric nuclear matter by comparing our result in DDRH-MC (b) to
the results of DD-ME1 (a) in where � is excluded. At low density (� < 2 fm�3) both
approaches lead to almost identical results but at higher densities there are di�erences.
These di�erences (DDRH-MC results are smaller than DD-ME1) caused by � meson
in the asymmetric nuclear matter case (� = 0:00;0:10;0:25;0:39), but in the case of
symmetric nuclear matter, DDRH-MC result is bigger than DD-ME1 as shown in Fig. 6.4.
The reason for this behavior is that the coupling of the � in DDRH-MC is smaller than

in DD-ME1 (see Fig. 5.3 a). From previous analysis also we expect the similar e�ects on
the nucleon e�ective masses that will be discussed in Section. 6.2.7
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Figure 6.4: The scalar densities of the pure neutron matter (� = 0:00) and symmetric
nuclear matter (�= 0:50) are calculated in the DDRH-MC and the DD-ME1.

6.2.1 Energy-Momentum-Tensor and Energy density

By de�nition, the Energy-Momentum-Tensor is given as

T�� =
X
i

@L
@(@��i)

@��i�g��L; �i = 	;	;��;A
(!)
� ;Φ�;A

(�)
� : (6.21)

With the help of Eq. (4.1) and inserting the Dirac equation (4.24) we obtain the Energy-
Momentum-Tensor for DDRH as

T�� = i	�@�	�g��	h��̂�(r)� �̂s(r)
i
	

+
X
i=�;�

 
@��i@��i� g

��

2

h
@��i@��i�m2

i�
2
i
i!

+
X
k=!;�

 
@�A(k)

� F (k)��� g��
2

�
�1

2
F (k)
�� F

(k)��+m2
kA

(k)
� A(k)�

�!
: (6.22)
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An important property of T�� is energy-momentum conservation, i.e. for a �eld that is
exchanging energy and momentum with a particle, the change rate of the particle energy
and momentum must exactly match the change rate of the �eld energy and momentum.
The energy-momentum conservation can be written as

@�T�� = 0: (6.23)

To check the energy-momentum conservation above let us start with the divergence of
the �rst term in Eq. (6.22)

@�(i	�@�	) = i	�
 �
@�@�	+ i	�

�!
@�@�	 : (6.24)

This form enables us to use the Dirac equations for the baryon �elds 	 and 	,�
�(i
�!
@�� �̂�(0)� �̂�(r))� (M � �̂s(0)� �̂s(r))

�
	 = 0 ; (6.25)

	
�
�(i
 �
@�+�̂�(0) +�̂�(r))+(M � �̂s(0)� �̂s(r)

�
= 0 ; (6.26)

so that Eq. (6.24) becomes

@�(i	�@�	) = 	
�
@�
h
�(�̂�(0) +�̂�(r))+(M � �̂s(0)� �̂s(r)

i�
	 : (6.27)

Note that the divergence on the right hand side acts only on the term in brackets.
The derivative of the second term in Eq. (6.22) consists of two parts

�@�g��	
h
��̂�(r)� �̂s(r)

i
	 = �	

�
@�
h
��̂�(r)� �̂s(r)

i�
	

�h(@�	�	)�̂�(r)� (@�		)�̂s(r)
i
: (6.28)

The sum of Eqs. (6.27) and (6.28) gives

@�(i	�@�	)�@�g��	
h
��̂�(r)� �̂s(r)

i
	 = 	�	(@��̂(0)�)�		(@��̂(0)s)

�(@�	�	)�̂�(r)� (@�		)�̂s(r) :

(6.29)
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In the case of VDD, one �nds the derivatives of the normal self energies from the �rst
two terms on the right hand side of Eq. (6.29) as

@��̂(0)� = @�
h
�̂!(�̂)A(!)�+�̂�(�̂)�̃A(�)�+eQ̂A()�

i
= �̂!(�̂)@�A(!)�+

@�̂!(�̂)
@�̂

A(!)�û�(@�	�	)

+�̂�(�̂)@� �̃A(�)�+
@�̂�(�̂)
@�̂

A(�)�û�(@�	��̃	) ; (6.30)

@��̂(0)s = @�
h
�̂�(�̂)�� +�̂�(�̂)�̃Φ�

i
= �̂�(�̂)@��� +

@�̂�(�̂)
@�̂

��(@�		)

+�̂�(�̂)@� �̃Φ� +
@�̂�(�̂)
@�̂

Φ�(@�	�̃	) : (6.31)

In Eq. (6.29), the terms involving the derivatives of the vertices are therefore canceled
and the last term with the rearrangement scalar self-energy �̂s(r) vanishes due to the
VDD. As a result the divergence of the �rst two terms of T�� becomes

@�
�
i	�@�	�g��	h��̂�(r)� �̂s(r)

i
	
�

= �̂!(�̂)	�	@�A(!)�+�̂�(�̂)	� �̃	@�A(�)�

��̂�(�̂)		@���� �̂�(�̂)	�̃	@�Φ� :

(6.32)

The derivative of the remaining part of T�� with the help of the meson �eld equations
Eqs. (4.8-4.11) one can easily show the following expressions:
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i=�;�
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(6.33)
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F (k)
�� F

(k)��+m2
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(k)
� A(k)�

�!
=��̂!(�̂)	�	@�A(!)�� �̂�(�̂)	� �̃	@�A(�)� : (6.34)

The sum of the above two expressions gives the cancelation to the right hand side of
Eq. (6.32). Therefore the energy momentum conservation is ful�lled without any doubts
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but only when the rearrangement self-energy is taken into account in the baryon �eld
equation.

In the case of application to the in�nite nuclear matter, Energy-Momentum-Tensor
of DDRH is simpli�ed to

T�� =
X
b=p;n

2
(2�)3

Z
jkj<kFb

d3k
E�b

�
k��b k��b +k��b

�
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b +��(r)

�
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�
+g��
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i=�;�

m2
i�

2
i � X

k=!;�
m2
kA

(k)
� A(k)�

35 ; (6.35)

and the energy density � is obtained as

�= hT 00i =
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=
X
b=n;p

1
4

[3EFb�b+m�b�sb]+
X
b=n;p

1
2

�
�b�

0(0)
b +�sb�

s(0)
b

�
: (6.37)

The above expression shows that in the VDD case where �(r)
s = 0, the rearrangement

self-energy does not contribute to the energy density. This is an important result for the
determination of the density dependent vertices from DB self-energies.
We plotted our results for the energy density as a function of baryon density in Figs. 6.5
and 6.6. In Fig. 6.5 we compared our results in DDRH-MC (solid line) to DD-ME1 model
(dashed line) for symmetric nuclear matter and neutron matter.
One can see that in both DDRH-MC and DD-ME1 approaches, the energy density in-
creases smoothly with increasing density. The di�erences due to asymmetries are very
small and it appears only at high densities for asymmetric nuclear matter as shown in
Fig. 6.6.
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Figure 6.5: The energy density as a function of baryon density for neutron matter (a)
and symmetric matter (b) in the DDRH-MC (solid) and DD-ME1 (dashed).
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Figure 6.6: The energy density as a function of baryon density for neutron matter and
symmetric matter (a) and for asymmetric nuclear matter (b) in the DDRH-MC approach.
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6.2.2 Pressure and Thermodynamical consistency

Considering the pressure P is another way of presenting the nuclear matter EOS. The
pressure is obtained from the energy-momentum tensor, Eq. (6.35), as

P =
1
3

3X
i=1
hT iii =

X
b=p;n

24 2
(2�)3
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� +m2
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2
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(6.38)
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:

(6.39)

Contrary to the case of the energy density �, the rearrangement self-energy contributes
here directly to the expression of the pressure. In the Chapter. 4 we mentioned that the
rearrangement self-energy assures the thermodynamical consistency yield the equality of
the thermodynamical and mechanical pressures, which is an important property of the
DDRH approach,

P = �2 @
@�
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1
3

3X
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hT iii : (6.40)

In order to check the thermodynamical consistency in the equation above we calculate
the thermodynamical pressure and compare it with the mechanical pressure expressed
by Eq. (6.38),
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The derivative of the integral in Eq. (6.41) can be split into the following two terms:

� a derivative with respect to the upper boundary of the integral i.e., to kF ,

� a derivative with respect to the implicit density dependence of the e�ective mass
m� which enters via �� and �� ,



58 Chapter 6. Results

and can be written as
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Using the meson �eld equations and the de�nition of the self-energy, the derivative of
the self-energy term in Eq. (6.41) can be expressed as:
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(6.43)

In the above equation, the �rst two terms can be identi�ed as the vector self-energy and
the two remaining terms can be identi�ed as the contribution of the vector mesons to the
rearrangement energy. One can describe now the derivative of the e�ective mass with
the meson �eld equations as
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Using the relation
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the sum of the Eq. (6.44) and the scalar energy in Eq. (6.41) is simpli�ed to

X
b=p;n

"
�sb
m�b
@�

+
1
2
@
@�

�
�sb�

s(0)
b

�#
=����s

@��
@�
����s3

@��
@�

; (6.46)

obtaining a similar expression to Eq. (6.42). The term on the right hand side of the
above equation corresponds exactly to the contribution of the scalar mesons to the rear-
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rangement energy. Combining the results from Eqs. (6.42), (6.43) and (6.46) we obtain
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an expression which is equivalent to the mechanical pressure in Eq. (6.38) obtained from
the energy-momentum tensor.

Using the Eqs. (6.39) and (6.37), we obtain at once the Hugenholtz-van Hove theorem,

�+P =
X
b=n;p

�
Eb(kF )�b+�b�

0(0)
b +�b�

0(r)
b

�
=

X
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�bEb(kF ) = �E(kF ) : (6.48)

This veri�es that for a system with zero pressure the Fermi energy is equal to the average
energy per particle E=N of the system,

E
N

=
�
�

= E(kF ) : (6.49)

The results of our calculation (DDRH-MC) for the pressure using Eq. (6.39) is shown
in Fig. 6.7 in the symmetric nuclear matter (panel a) and pure neutron matter (panel b)
compared to results of the phenomenological DD-ME1 approach. For symmetric nuclear
matter, both approaches agree very well at density below � 0:10 fm�3 while at higher
densities the di�erences increase. Most of this e�ect is a result of slightly di�erent
saturation densities, �DDRH�MC

0 � 0:18 fm�3 > �DD�ME1
0 � 0:153 fm�3 . Indeed a clear

inspection shows that the pressure curve to a good approximation are shifted in density
by about that amount.
For pure neutron matter di�erences of the two approaches appear for densities above
� 0:05 fm�3. However the curves exhibit same shapes for both symmetric nuclear matter
and pure neutron matter cases in two approaches. Moreover, the pressure in DDRH-MC
increases slower than in DD-ME1 beyond the saturation density.

Since symmetric nuclear matter is a bound saturating system, it has a negative pres-
sure (P < 0) below the saturation density as shown in Fig. 6.8a . For the densities below
� 0:120 fm�3, pressure decreases with increasing density, as a result, nuclear matter
becomes unstable and heterogeneous. But in the region of � � 0:120 fm�3, the pres-
sure started increasing with increasing density and it becomes \zero" at the saturation
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Figure 6.7: Pressure as a function of the baryon density at zero temperature for symmet-
ric matter (a) and neutron matter (b) in DDRH-MC (dashed line) and DD-ME1 (solid
line). Inserted panels show the behavior of the pressure at low density.

density, P (�sat) = 0. This means that at the saturation density symmetric nuclear mat-
ter can be in mechanical equilibrium without external pressure. Therefore the point
�= 0:120 fm�3 where the pressure has a minimum is a very important point which lim-
its the instability region of nuclear matter. We note this density and minimum pressure
by �p and P = Pmin, respectively. Also, it should be pointed out here that the insta-
bility region indicates a presence of a liquid-gas phase transition [BF99, ABMP04]. In
Fig. 6.8b we plotted our results in asymmetric nuclear matter for three di�erent asymme-
tries (�= 0:10;0:25;0:39). Obviously, asymmetric nuclear matter also can have the same
behavior as discussed above. However, the saturation densities of asymmetric nuclear
matter depends on the asymmetry parameter x, Eq. (6.2) (or proton fraction �) and the
saturation points shift to lower densities. As a result the region of negative pressure is
di�erent for the di�erent asymmetric nuclear matters. The precise values of the Pmin

and corresponding densities �P are presented in Table. 6.1. In addition instability of
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Figure 6.8: Pressure as a function of the baryon density at zero temperature for neu-
tron and symmetric matter (a) and asymmetric matter (b) with various asymmetries in
DDRH-MC.

nuclear matter decreases with increasing asymmetry parameters x (or decreasing proton
fractions �). This tells that the liquid-gas phase transition disappears for some critical
value of the asymmetry, for example, in our calculation x > 0:8. Therefore our model
predicts stable neutron matter as well as DD-ME1.
In Fig. 6.10 we show a pressure versus energy density plot for pure neutron, symmetric
and asymmetric nuclear matter in two di�erent scales in order to see behavior at low and
high densities. For all cases, as can be seen that the total energy density increases faster
than the pressure, then p=� < 1 and @p=@� < 1. It is very important to examine these
ratios. Because special relativity requires that the pressure must be less than the energy
density of nuclear matter. Therefore our model becomes neither ultrabaric (p > �) nor
superluminal @p=@� > 1 [BR68] and it will be discussed in detail in Section. 6.2.9.
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Figure 6.9: Same as Fig. 6.8b and compared to the results of DD-ME1.

xi �P [fm�3] Pmin [MeV=fm�3]
0.00 0.12051 -0.78487
0.22 0.12051 -0.73339
0.5 0.11046 -0.50007
0.8 0.08536 -0.1214

Table 6.1: Pmin and corresponding densities are calculated in DDRH-MC.
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Figure 6.10: Pressure versus the energy density for various asymmetries in DDRH-MC.
Note that panel (a) and panel (b) are same but in di�erent scale.

6.2.3 The Chemical potential of the Cold nuclear matter

Since we veri�ed the thermodynamical consistency of the DDRH theory, we have to
consider the chemical potential � which is an important quantity in thermodynamics.
The chemical potential � for a system with the �xed particle number N and with an
energy density � in a given volume V can be de�ned as

� =

0@�� X
b=n;p

�b(�b� NbV )

1A =) �b =
@�
@�

(6.50)
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Using Eqs. (6.36) and (6.42), the chemical potential for the asymmetric nuclear matter
is

�b = @�
@� =

@
@�

X
b=n;p

"
@
@�

2
(2�)3

Z
jkj<kFb

d3k
q

k2 +m�2b +
1
2

�
�b�

0(0)
b +�sb�

s(0)
b

�#
=
q
k2
Fb +m�2b +

�
�0(0)
b +�s(0)

b

�
= EFb +�(0)

b = E(kF ) ; (6.51)

which states that in the in�nite nuclear matter which is an isotropic and homogeneous
system, the chemical potential is equivalent to the Fermi energy at zero temperature.

Equation (6.48) can be rewritten as

�+P =
X
b=n;p

�b�b : (6.52)

6.2.4 Saturation curve

The energy per baryon E=N as a function of density is so called 'saturation curve', and it
is often referred to as the equation of state (EOS) of the nuclear matter. The point where
the saturation curve has a minimum is identi�ed as the "saturation point" i.e. it marks
the density (and corresponding energy) at which nuclear matter is able to self-sustain
without any external pressure (positive or negative). In fact at such a point the pressure
P = 0 as shown in Fig. 6.8 for symmetric and asymmetric nuclear matter. In our model
the EOS de�ned as

E(�;x) =
�(�;x)
�

(6.53)

here the energy density �(�;x) is given by Eq. (6.37). Before going to discuss the EOS
in detail, we have to de�ne the following quantities:

K = 9�2 @2

@�2

 
�
�

!
j�=�sat

; (6.54)

and
a4 =

1
2
�2

0
@2

@�2
3

�
�

(�;�3)j�3=0 : (6.55)

Here K is the compressibility and a4 is the bulk symmetry energy of nuclear matter,
are very important quantities to describe the saturation properties of nuclear matter.
(Detailed discussions for the density dependence of the K and the a4 are presented in
subsections. 6.2.5 and 6.2.8.)
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Figure 6.11: The equation of state of the symmetric (panel a) and neutron (panel b)
matter in DDRH-MC (dashed) and DD-ME1 (solid) for comparison.

In Fig. 6.11, we plotted our results for the calculations of the EOS of the symmetric nu-
clear matter (panel a) and pure neutron matter (panel b) where dashed lines correspond
to DDRH-MC and solid lines correspond to DD-ME1, respectively. For the symmetric
nuclear matter, two curves are almost identical for densities below saturation density, but
the saturation point of the DDRH-MC calculation is located at higher density with the
small binding energy. From Table. 6.2 one can see that the di�erence between DDRH-
MC and DD-ME1 binding energies is about �5 % which may caused by di�erences of
the � and ! meson vertices at the saturation density. (see Section. 5.4)
On the other hand, this is related to the roots of the density dependent vertices. In
fact that DD-ME1 gives the empirical saturation point due to the �tting procedure
and DDRH-MC also reproduces the DB saturation point. The saturation density in
our model is �sat = 0:18 fm�3 is somewhat higher than the accepted empirical value,
�sat = 0:16 fm�3. The binding energy of E(�sat) = �(�sat)=�sat = 15:60 MeV is in agree-
ment with the value deduced from nuclear data.
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�0[fm�3] �=� [MeV ] K [MeV ] a4 [MeV ] m�=M
DDRH-MC 0.180 -15.60 282.4 26.1 0.553
DD-ME1 0.152 -16.20 244.5 33.1 0.578

Table 6.2: Bulk properties of the symmetric nuclear matter calculated with the density-
dependent DDRH-MC and DD-ME1 vertices at saturation density.

The bulk properties of symmetric nuclear matter at saturation density, such as the den-
sity �0, the binding energy per nucleon �=�, the compressibility K, the e�ective mass
m�, and the symmetry energy a4 are summarized in Table. 6.2 for the two parameter
sets DDRH-MC and DD-ME1.
From Table. 6.2, one can see that the di�erences between DDRH-MC and DD-ME1 are
for the incompressibility about 38 MeV and for the symmetry energy 7 MeV at saturation
density, while they have 5 % di�erence for their e�ective masses. Moreover the DD-ME1
gives a steeper EOS than DDRH-MC and the di�erence between two approaches becomes
larger as the density increases. In the case of the pure neutron matter, the EOS has no
minimum and the di�erence between two approaches remains roughly constant with in-
creasing density. The reason is that the inclusion of the � meson whose contribution to
the EOS of the neutron rich nuclear matter gets more signi�cant that one can see from
the EOS of the asymmetric nuclear matter as we displayed in Figs. 6.12-6.14. Results
of the DDRH-MC calculation for EOS are shown in Figs. 6.12 where the solid square,
circle and triangle curves are for the proton fraction �=0.10, 0.25 and 0.39, respectively
(here, the big solid circle indicates the energy minimum). For increasing asymmetry, the
saturation density shifts to lower values and is depicted in Fig. 6.13. Consequently, the
properties of the asymmetric nuclear matter at saturation density are also changed that
one can see explicitly from Table. 6.3 in where the values of the quantities: �sat, �=� ,
K, a4 and m� are given. In the both approach, by comparing these values, all quantities
except e�ective baryon masses become smaller as the asymmetry parameter increases.
Because, the e�ective baryon mass decreases with increasing baryon density in contrast
to the symmetry energy and the compressibility, (see Subsections. 6.2.5, 6.2.7 and 6.2.8).
However the di�erence between the two approaches becomes much larger for neutron rich
nuclear matter. For example, the di�erence between the binding energies is about 4 %
for the asymmetry parameter x= 0:22 but for the asymmetry parameter x= 0:8 the dif-
ference is about 10 %. In the case of the incompressibility which is extremely sensitive
to changes in the saturation curve, the discrepancy between the compressibilities of the
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Figure 6.12: The equation of state of asymmetric nuclear matter with three di�erent
asymmetries (�= 0:10;0:25;0:39) in DDRH-MC.

DDRH-MC and the DD-ME1 is about ranges between 48 MeV and 88 MeV.
In Fig. 6.14, we show the EOS of asymmetric nuclear matter for three di�erent

asymmetries calculated in DDRH-MC (dashed line) and DD-ME1 (solid line) and one
sees that DD-ME1 gives larger energies than DDRH-MC above the saturation density.
In addition, at higher density, two saturation curves are getting closer as the proton
fraction decreases from � =0.39 to 0.00. This is due to the isovector scalar �-meson in
the DDRH-MC calculation. Because, in DDRH-MC approach the symmetry energy rises
almost linearly with density. In contrast, in the DD-ME1 the symmetry energy attens
with density (see Fig. 6.15). Otherwise two saturation curves would have a constant
changes caused by only �, because the meson-nucleon vertices are independent of the
asymmetry.
Since, in this section we discussed mainly the properties of the symmetric and asymmetric
nuclear matter only at the saturation point, the density dependence of these quantities
will be discussed in detail in the following sections.
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xi �sat [fm�3] �=� [MeV] K [MeV] a4 [MeV] m�p=M m�n=M
DDRH-MC 0.22 0.176 -14.384 272.47 25.7 0.578 0.547

0.5 0.158 -9.163 216.48 24.3 0.626 0.558
0.8 0.119 -0.057 77.59 20.9 0.713 0.628

DD-ME1 0.22 0.148 -14.683 224.02 32.8 0.580
0.5 0.122 -8.178 128.32 28.9 0.640 m�p =m�n
0.8 0.046 1.188 21.33 14.9 0.827 (� = 0)

Table 6.3: The properties of the asymmetric nuclear matter calculated in DDRH-MC
and DD-ME1.
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Figure 6.14: The equation of state of the asymmetric nuclear matter for three di�erent
asymmetries calculated in DDRH-MC (dashed line) and DD-ME1 (solid line).

6.2.5 Nuclear symmetry energy

Experimentally, the symmetry energy coe�cient Esym in nuclear matter at the satura-
tion density �0 can be extracted from a systematic study of the masses of atomic nuclei,
based on, e.g., the liquid droplet model or the macroscopic-microscopic model. This,
however, determines the symmetry energy only for a small asymmetry parameter and
for around normal density.
In Section. 6.2.4 as we have shown in Fig. 6.12 that in asymmetric nuclear matter the
saturation point shifts to lower densities and the di�erence of EOS becomes more no-
ticeable at high density. In addition, the study of the nuclei with a large neutron excess
which will be produced in future radioactive ion beam facilities, allows us to determine
the symmetry energy for a large asymmetry parameter. Therefore, the experimental and
theoretical study of the symmetry energy and its dependence on the density and the
asymmetry is a very important topic.
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The nuclear symmetry energy de�ned by

Esym(�) =
1
2
�2 @2

@�2
3

�
�

(�;�3) : (6.56)

Based on the assumption of charge symmetry of the nuclear interaction, energy per
particle E(�;x) = �(�;x)

� of the asymmetric nuclear matter can be written

E(�;x) = E(�;0)+S2(�)x2 +S4(�)x4 +S6(�)x6::: ; (6.57)

where x is the asymmetry parameter de�ned in (6.1). Calculations indicate that if the
higher order terms S4;S6; :::; are negligible, for all densities. Thus to a good approxima-
tion the energy per particle of asymmetric nuclear matter can be written as

E(�;x) = E(�;0)+S2(�)x2 = E(�;0)+Esym(�)x2 ; (6.58)

and the symmetry energy can be expressed in terms of the di�erence of the energy per
particle between symmetric and asymmetric nuclear matter with corresponding asym-
metry parameter:

Esym(�)� S2(�) =
E(�;x)�E(�;0)

x2 : (6.59)

In Fig. 6.15, we presented our results for the symmetry energy Esym calculated according
to its de�nition Eq. (6.56) compared to the results of DD-ME1 approach. In the DDRH-
MC approach, the symmetry energy (dash-dotted line) increases almost linearly with
density. The same behavior is found in the DBHF calculation [LKLB97]. In contrast,
the DD-ME1 approach shows a considerable attening at � > 0:3 fm�3. The region
� < 0:3 fm�3, DDRH-MC approach predicts slightly lower Esym than DD-ME1 approach
but above the density DDRH-MC approach predicts much larger Esym than the DD-
ME1 approach. Therefore in Tables. 6.2 and 6.3, the values of the Esym calculated
in DDRH-MC are smaller than the DD-ME1 values at saturation density. In the case
of the symmetric nuclear matter, the Esym at saturation density in the DDRH-MC is
Esym(�sat) = 26:1 MeV which is in agreement with the empirical value of 30� 4 MeV
[Hau88].
Although various di�erent forms of the density dependence of the symmetry energy
exist, in general, they can be divided into two di�erent forms which are the sti� and soft
dependence [SMK+03]. The sti� dependence of the symmetry energy leads to a large
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Figure 6.15: The symmetry energy Esym in Eq. (6.56) as a function of the baryon density
in DDRH-MC (dash-dotted) and the comparison with the DD-ME1 (solid).

neutron skin thickness and larger neutron radius compared to a soft density dependence
[HP01, HP02].
Very recently, based on the experimental measurements (heavy ion collision) in [SYB+04]
carried out at the Cyclotron Institute, Texas A&M University, Shetty et al., have found
that the density dependence of the symmetry energy in [SYS07] as

Esym(�)� 31:6 (�=�0) ; (6.60)

where = 0:6�1:05. This constrains the form of the density dependence of the symmetry
energy at higher densities, exclude an extremely sti� and soft dependences. Moreover it
is observed that the experimental data at low densities are consistent with the form of
symmetry energy, Esym � 31:6 (�=�0)0:69 which is in close agreement with the results of
variational many-body calculation.
Therefore we also compared our results to this newly determined Esym and is shown
in Fig. 6.16. The results of the calculation for Esym using Eq. (6.60) are plotted by
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Figure 6.16: The same as in Fig. 6.15 for the DDRH-MC and DD-ME1, but the other
lines correspond to the Esym in Eq. (6.60) for  = 0:5 (diamonds);  = 0:69 (dash-dot
dot);  = 0:96 (dotted);  = 1:05 (dashed).

the curves: diamonds ( = 0:5), dash-dot dot ( = 0:69), dotted ( = 0:96) and dashed
( = 1:05). One can see that our results (dash-dot) is in agreement with the curve for
 = 0:96 at high density but it has a signi�cant di�erence at lower density. The results
of the DD-ME1 calculation is very similar to curve of  = 0:5 which is not in the region
of  = 0:6�1:05, suggested in [SYS07]. Although Esym in the DD-ME1 calculation gives
a too soft dependence at higher density, is in good agreement with all results of [SYS07]
at low density.

6.2.6 Isospin dependence of Symmetry energy

Another investigation to be done is the calculation for S2. In Fig. 6.17 we show the
results for the S2(�) calculated using the four values x = 1;0:8;0:5;0:22 in Eq. (6.59)
with Esym(�) calculated from Eq. (6.56) in the approaches DDRH-MC and DD-ME1. In
the all panels (a, b, c, d), the dash-dotted and dotted curves correspond to DDRH-MC
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ME1.

results for Esym(�) and S2(�), respectively. The solid and dashed curves correspond to
DD-ME1 results for Esym(�) and S2(�), respectively. One can see that the two approaches
predict almost no di�erence between S2 and Esym for all values of � from 0 to 0.39 in
the region of � < 0:3 fm�3. But above the density, the di�erence between S2 and Esym is
noticeable (S2 �Esym except in the case of �= 0:39) for both DDRH-MC and DD-ME1
cases. In addition it increases with a large asymmetry parameter in the DDRH-MC
approach more than in the DD-ME1 calculation. The reason for that is an inclusion of
the �-meson in DDRH-MC approach. Therefore one may take into account the higher
order terms i.e. S4 in Eq. (6.57) for the calculation of the E(�;x) of the asymmetric
nuclear matter at high density. On the other hand, it is clear that S4 is very small and
the same is found in [LKLB97]. Because the di�erence in Fig. 6.17 is a term S4(�) x4, not
only S4(�). One of the nuclear structure properties connected to the symmetry energy
is the symmetry pressure Psym de�ned as

Psym = �2dEsym
d�

: (6.61)
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DDRH-MC DD-ME1 TW-99
�0[fm�3] 0.180 0.152 0.153
a4 [MeV] 26.1 33.1 32.5

Psym(�0)[MeV=fm3] 3.8 3.26 3.22
Ksym(�0)[MeV] -75.75 -128.5 -126.5

Table 6.4: The parameters a4, Psym(�0) and Ksym(�0) in Eqs. (6.62-6.64) calculated in
the DDRH-MC, DD-ME1 and TW-99 [TW99].

This is an additional pressure source due to the di�erent proton and neutron concentra-
tion and is also related to the neutron skin thickness of the neutron-rich nuclear matter.
The density dependence of Psym is depicted in Fig.6.18. Again, we see the sti� depen-
dence from DDRH-MC calculation (dashed) and the very soft dependence from DD-ME1
result (solid) at high density which is similar to the behavior found for Esym.
Another two parameters also connected to the symmetry energy, are the slope parameter
L and the curvature parameter Ksym and its explicit expressions are obtained from the
expansion of the symmetry energy around �0 in [LGB+02, LQMN+88, Li01] as

Esym = a4 +
L
3

 
���0
�0

!
+
Ksym

18

 
���0
�0

!2

(6.62)

with
L� 3�0

 
@Esym
@�

!
�=�0

=
3
�0
Psym(�0) (6.63)

and
Ksym � 9�2

0

 
@2Esym
@�2

!
�=�0

; (6.64)

the values are shown in Table. 6.4 and its density dependence are presented in Figs. 6.19
and 6.20. The empirical values of the parameters are [KBB+94, SH94]: a4 � 30�
34 MeV, 2 MeV=fm3 <Psym(�0)< 4 MeV=fm3, and �220 MeV <Ksym(�0)<�50 MeV.
As we see the results of the DD-ME1 and TW-99 are agree very well the empirical
values for all three parameters. Although our results of the Psym(�0) and Ksym(�0) are
in agreement with the empirical values, the value of a4 is not in the interval.
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Figure 6.19: The curvature parameter Ksym versus the baryon density in DDRH-MC
and DD-ME1.
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6.2.7 Effective nucleon masses

In order to describe the properties of the nucleons inside an interacting nuclear medium,
we investigate the e�ective mass of nucleons in symmetric and asymmetric nuclear mat-
ter.
The nucleon e�ective mass m� can be determined from the analysis of the experimental
data which is performed in the framework of the non-relativistic shell and optical mod-
els [BGH85, JHM87, JM89, Rei99]. The typical empirical value of the e�ective nucleon
mass in nuclear matter is m�emp=M � (0:7�0:85). However, the relation to the relativistic
Dirac-mass considered here is not well understood because of dispersion e�ects in m�emp.
Relativistically, the e�ective nucleon mass is de�ned through the scalar part of the nu-
cleon self-energy in the Dirac �eld equation.
In our model, the neutron and proton e�ective masses de�ned as

m�p =M ���(�)�����(�)�� (6.65)

m�n =M ���(�)�� +��(�)�� (6.66)

where M and m� are respectively the free-space and the e�ective nucleon mass (see the
solution techniques in Section. 6.2). Therefore, inclusion of the scalar isovector �-meson
leads to m�n 6=m�p in contrast to the DD-ME1 predicts equal masses m�n =m�p.
In Fig. 6.21 (panel a), the e�ective masses obtained in DDRH-MC calculation (dashed
curve) is compared with DD-ME1 result (solid curve) in symmetric nuclear matter.
The di�erence between two approaches which is quite small and almost constant is
caused by the slightly di�erent density dependence of the scalar-isoscalar �-meson vertex.
At saturation density, the DD-ME1 predicts m�=M = 0:578 and DDRH-MC predicts
m�=M = 0:553 which is smaller, though m�DDRH�MC >m�DD�ME1 for whole range of the
density. The reason for that is the saturation density in the DDRH-MC is shifted to
the higher density and m� becomes smaller for increasing density in both approaches.
Neither the DDRH-MC nor the DD-ME1 agree the empirical values of m� indicating the
dispersion contributions mentioned above.
In Fig. 6.21 (panel b) we depicted the e�ective masses in neutron matter. The dashed,
dash-dotted and dotted curves are the DDRH-MC results for m�p , m�n and the isoscalar
part of m� respectively. The solid curve is the result of the DD-ME1. Comparing the
results for symmetric nuclear matter and pure neutron matter, we see the following
features:
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Figure 6.21: (a) E�ective mass obtained in DDRH-MC calculation (dashed curve) is
compared with DD-ME1 (solid curve) depicted as a function of the baryon density in
symmetric nuclear matter. (b) E�ective masses in neutron matter. The dashed, dash-
dotted and dotted curves are the DDRH-MC results corresponding to proton, neutron
and isoscalar e�ective masses, respectively. The solid curve represents result of DD-ME1
in neutron matter.

1. Them� of the DD-ME1 for pure neutron matter is the almost same as for symmetric
nuclear matter case because the scalar-isovector interaction is missing. Slight di�er-
ences occur due to in pure neutron matter the selection between Fermi-momentum
and density is changed, �= �n = k3

Fn=3�
2 and �� � �f�(kFn=M).

2. In the case of DDRH-MC results, the m� split into m�p and m�n in neutron matter
according to Eqs. (6.65-6.66) and (4.34-4.36). In addition, m�p >m�n for the whole
range of the density because m�p is generated by the scalar density of the neutron
�sn (see Fig. 6.25), though �sp = 0.

3. The DDRH-MC predicts much larger isoscalar m� than the DD-ME1.
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Figure 6.22: Proton (a) and neutron (b) e�ective masses versus the baryon density for
asymmetric nuclear matter with di�erent asymmetries in DDRH-MC.

We de�ne the isoscalar (m�0) and isovector (m�1) part respectively, of the e�ective mass
as follow

m�0(�) =M ���(�)�� =
m�n(�)+m�p(�)

2
; (6.67)

m�1(�) =
m�p(�)�m�n(�)

2
: (6.68)

In Fig. 6.22 we displayed them�n (panel a) andm�p (panel b) in asymmetric nuclear matter
for proton fraction � =0.10 (solid), 0.25 (dash-dotted) and 0.39 (dashed). m�p becomes
larger for increasing asymmetry parameter in contrast to m�n gets smaller. Consequently,
the di�erence between m�p and m�n becomes larger as the asymmetry increases. Also, a
neutron e�ective mass is always smaller than the proton e�ective mass in neutron-rich
matter as we expect. The values of the m�p and m�n at the saturation density are listed
in Table. 6.3.
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Figure 6.23: The isoscalar (a) and the isovector (b) components of the e�ective masses in
nuclear matter for di�erent asymmetries as a functions of the baryon density in DDRH-
MC.

Fig. 6.23 shows the isoscalar (panel a) and the isovector (panel b) part of the e�ective
masses as functions of the densities for several values of the asymmetry parameters using
Eqs. (6.67-6.68). Although m�(1) increasing with density and asymmetry parameter, it
is very small compared to m�(0). Also, we compared our results for m�(0) to the e�ective
masses calculated in DD-ME1 approach, is depicted in Fig. 6.24 and m�(0) in DDRH-MC
(solid) is larger than m� in DD-ME1 (dash-dotted) for �=0.10 (panel a), 0.25 (panel b)
and 0.39 (panel c) due to the scalar �-meson.
We plotted the m�n (dashed) and m�p (solid) in neutron matter as a function of the neu-
tron scalar density in Fig. 6.25.
In Fig. 6.26 we show the neutron and proton scalar density dependence of the m�n
(panel a) and m�p (panel b) respectively for the proton fractions � from 0.10 to 0.50.
The behavior of the m�n and m�p are similar to its vector density dependence. It is noted
that m�n � �s depends almost linearly on the scalar density. The reason is that the � and
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Figure 6.24: The isoscalar e�ective masses calculated in DDRH-MC (solid) and DD-ME1
(dashed) for three di�erent asymmetries (�= 0:10;0:25;0:39).
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Figure 6.26: The scalar density dependence of the neutron (a) and the proton (b) e�ective
masses for various asymmetries.

� contribution both enter with the same sign into m�n. In m�p, however the two �elds
enter destructively and, thereby enhance considerably the non-linear pieces introduced
by the coupled transcendental equations, Eqs. (6.65-6.66)
Proton-neutron mass splitting was explored in both non-relativistic and relativistic ways.
However, based on their de�nition for the e�ective mass, i.e. in non-relativistic model,
the e�ective mass reects the momentum and energy dependence of the single particle
energy while the relativistic e�ective mass is given by the scalar part of the static nucleon
self-energy only. Its mentioned before we can not expect agreement. For example the
relativistic Dirac-Brueckner and RMF calculations [HKL01b, LGB+02] predict a proton-
neutron mass splitting of m�n <m�p which are consistent with our results. This stands in
contrast to non-relativistic Brueckner-Hartree-Fock calculation [ZBL99]. Moreover the
Skyrme-Lyon (SLya) force leads to m�n < m�p in contrast to the other type of Skyrme
forces [BCGT05].
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TW-99 DD-ME1 DDRH DDRH-MC
�sat [fm�3] 0.153 0.152 0.161 0.180
K [MeV ] 240.0 244.5 211.34 282.42

Table 6.5: The compressibility of the symmetric nuclear matter at saturation density
calculated with the phenomenological TW-99 and DD-ME1, and the microscopic DDRH
approaches.

6.2.8 Compressibility

The compressibility (or compression modulus) of the nuclear matter is an important
characteristic of the nuclear matter equation of state and it enters in the discussion
of a variety of phenomena such as supernovae explosions or heavy ion collisions. The
compressibility of the nuclear matter, K is the quantity of energy required to compress
the nuclear matter, usually de�ned as a slope of the pressure at saturation point:

K = 9
@P
@� j�=�sat

: (6.69)

Although K is a static quantity, it can not be extracted from static properties, i.e. masses
and charge distributions, alone [FPT97]. Moreover, the value of K can not be mea-
sured directly. However, it can be deduced from the experimental energies of isoscalar
monopole vibrations of the excited nuclei, so called giant monopole resonances (GMR)
where the nucleus performs density uctuations around its ground state. A recent analy-
sis of the giant monopole resonance in heavy nuclei [BBDG95] provides an experimental
estimate for the compressibility, K = 210�30 MeV.
Calculations of the excitation energies of isoscalar GMR in spherical nuclei in the RMF
framework [VLB+97, VNR03] and in the relativistic randomphase approximation (RPA)
[MGW+01, NVR02] suggest that the nuclear matter compressibility should be in the
range K � 250�270 MeV.
In order to calculate K in our model we applied

K = k2
F
@2

@k2
F

� E
kF

�
jkF=ksatF

= 9�2 @2

@�2

 
�
�

!
j�=�sat

; (6.70)

following the convention used in nuclear physics for the compressibility. Results are
presented in Figs. 6.27-6.29 and Tables. 6.5-6.7.
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Figure 6.27: Density dependence of the compressibility for the symmetric nuclear matter
(a) and pure neutron matter (b). The results of the DDRH-MC (solid) is shown in
comparison with the DD-ME1 (dash-dotted).

In Fig. 6.27 we have plotted the compressibility for the symmetric nuclear matter (a)
and pure neutron matter (b) as a function of baryon density and we compared DDRH-
MC results with the DD-ME1. In these two approaches, the compressibility curves
display a very similar dependence on density below the saturation point. However very
noticeable di�erences show up at higher densities. We �nd that, at the saturation point,
�sat = 0:180 fm�3 using DDRH-MC, K = 282:42 MeV for symmetric nuclear matter. Due
to the high saturation density, this value of K is larger than the value of K obtained using
DD-ME1 where K = 244:5 MeV at saturation density, �sat = 0:152 fm�3. On the other
hand, the di�erence may come from the di�erence of the nuclear matter EOS.
The values of K at the saturation density obtained for symmetric nuclear matter in the
di�erent approaches are shown in Table. 6.5.
In Figs. 6.29 and 6.30 we have shown the density dependence of the compressibility
for asymmetries ranging from pure neutron matter (�= 0:00) to the symmetric nuclear
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Figure 6.28: The compressibility at saturation density versus asymmetry parameter in
the DDRH-MC (dashed curve with squares) and DD-ME1 (solid curve with cirles).

matter (� = 0:50). In the both approaches, due to the di�erent saturation points, the
compressibilities are di�erent and with increasing asymmetry they decrease as shown in
Fig. 6.28 and in Table. 6.6. In DDRH-MC model, K of the symmetric nuclear matter
is larger than the neutron rich nuclear matter at low density region in contrast to the
behavior of the K at high density. It is interesting that for all asymmetries the curves
pass through a common point at � � 0:16 fm�3 marked in Fig. 6.29 by a circle. This
crossing point a hidden relationship to the empirical value of the K. We show the values
of K for various proton fractions at empirical nuclear saturation density �emp

sat = 0:16 fm�3

in Table. 6.7. In DD-ME1 model, the low density behaviour of the K is similar to the
DDRH-MC and it does not change at high densities. Although we do not see any crossing
point in this model, we showed the values of K at �emp

sat also in Table. 6.7.
As discussed in Sec. 6.2.2 that the instability regions occur in nuclear matter. In such
region, the incompressibility K should be negative (see Fig. 6.10) which characterizes
the spinodal region [BF99, LGB+02, ABMP04] of the EOS. However, obviously, results
of the calculation based on the nuclear physics de�nition for K can not describe the
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Figure 6.29: The compressibility (Eq. (6.70)) of the nuclear matter as a function of
the baryon density, calculated in the DDRH-MC for di�erent asymmetries. The circle
describes the area in which the value of K at nuclear saturation density is empirically
expected to occur.
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Figure 6.30: The compressibility (Eq. (6.70)) of the nuclear matter as a function of the
baryon density, calculated in the DD-ME1 for di�erent asymmetries.
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xi �sat[fm�3] K [MeV]
DDRH-MC 0 0.180 282.42

0.22 0.176 272.47
0.5 0.158 216.48
0.8 0.119 77.59

DD-ME1 0 0.152 245.29
0.22 0.147 223.94
0.5 0.122 128.28
0.8 0.045 21.32

Table 6.6: The compressibility at saturation density for various asymmetry parameters
(xi) calculated in DDRH-MC and DD-ME1.

�i 0.00 0.10 0.25 0.39 0.50
KDDRH�MC [MeV] 229.43 233.63 225.34 215.16 212.33
KDD�ME1 [MeV] 183.00 217.80 256.37 276.62 280.97

Table 6.7: The compressibility at empirical saturation density �emp
sat = 0:16fm�3 for vari-

ous proton fractions �i in DDRH-MC and DD-ME1.

spinodal region of EOS. Therefore our next test of the density dependence of the K is
done using the more general expression of Eq. (6.69). Plugging the pressure, Eq. (6.40)
into Eq. (6.69) we get

~K = 9�2 @2

@�2

 
�
�

!
+18�

@
@�

 
�
�

!
j�=�sat

: (6.71)

Here the �rst term is a same as Eq. (6.70). The second term vanishes at �= �sat, hence
~K(�sat) =K(�sat). In Figs. 6.31 and 6.32, one can see that ~K is much larger than K at
high density and at low density ~K < 0 except for neutron matter which as we expected
(see Sec. 6.2.2) in both DDRH-MC (panel a) and DD-ME1 (panel b) approaches. In
addition, for ~K, the both approaches give a same behavior i.e. there is no longer a
crossing point as we discussed above for K. By de�nition ~K and K predict the same
values at saturation density, presented in Figs. 6.33 and 6.34. Therefore the second term
of the Eq. (6.71) corresponding to the pressure, is responsible for low and high density
behavior of the nuclear matter compressibility and the explicit density dependence of
the compressibility is better described using Eq. (6.71) than Eq. (6.70).
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Figure 6.31: The compressibilities K (Eq. (6.70)) and ~K (Eq. (6.71)) calculated in the
DDRH-MC (panel a) and DD-ME1 (panel b) for di�erent asymmetries.
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Model �0 [fm�3] �= 0:32 �= 0:33 �= 0:39 �= 0:50
�0(�)

DDRH�MC 0.16 0.169 0.17 0.176 0.18
DD�ME1 0.16 0.138 0.146 0.147 0.152

Baron [BCK85] 0.16 0.144 0.146 0.154 0.16
Ksym

0 [MeV] �= 0:32 �= 0:33 �= 0:39 �= 0:50
K0(�)

DDRH�MC 282.42 209.21 217.12 255.08 282.42
DD�ME1 245.29 181.71 188.58 221.54 254.29

Baron 218.00 161.49 167.60 196.90 218.00
Baron 180.00 133.34 138.38 162.57 180.00

Table 6.8: The saturation densities (�0(�)) calculated in DDRH-MC and DD-ME1 are
compared to the results of Baron et al.,in [BCK85]. The compressibilities (K0(�)) are
calculated using Eq. (6.72) with the compressibilities of the symmetric nuclear matter
calculated in the DDRH-MC, DD-ME1 and [BCK85] approaches.

In [BCK85] the compressibility and saturation density are calculated using the expres-
sions:

K0(�) =Ksym
0 [1��(1�2�)2] (6.72)

�0(�) = 0:16[1�3(0:5��)2] (6.73)

in the range of the proton fraction �= 0:3 to �= 0:5. These expressions come from the
calculations for asymmetric nuclear matter in [KPLT85] and where Ksym

0 is compressibil-
ity of symmetric nuclear matter. We compared our results for the saturation density of
the asymmetric nuclear matter to the saturation densities calculated using Eq. (6.73) for
� from 0.32 to 0.50, are shown in Table. 6.8 (upper part). We see that our results for the
saturation density are much higher and consequently our results for the compressibility
are also much larger than results of Baron et al.
Also comparing Tables. 6.8 and 6.6, one can see that Eq. (6.72) produced smaller com-
pressibilities than results of the DDRH-MC, but in the case of DD-ME1 approach, the
compressibilities are quite similar. In [BCK85], it has been claimed that for typical su-
pernova collapse K should be 162 MeV for � = 0:32 which is much smaller than our
results: KDDRH�MC = 251:17 MeV and KDD�ME1 = 183:05 MeV. Therefore Eq. (6.72)
is may not be a good tool to calculate the compressibility of the asymmetric nuclear
matter, especially when the �-meson is included.
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Figure 6.33: The comparison of the ~K (solid) and K (dashed) at low density calculated
in the DDRH-MC for three di�erent asymmetries.
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Figure 6.34: The comparison of the ~K (solid) and K (dashed) at low density calculated
in the DD-ME1 for three di�erent asymmetries.
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6.2.9 Speed of sound

Since we are investigating the EOS of nuclear matter for densities ranging up to 5 times
�0, we have to consider the speed of sound, Vs in nuclear matter. To satisfy relativistic
causality which is one of the fundamental physical principles, we must require that the
speed of sound does not exceed the speed of light in nuclear matter. That could happen
when the baryon density becomes very large. Especially this anomalous behavior exists
in non- relativistic nuclear models e.g. the Skyrme models, showing that causality is
violated because the relativistic energy-momentum relations is not used. This causal
violation, which is commonly known as superluminosity, has been investigated in detail
by Osnes and Strottmann [OS86] and Su et al., [SYLK86, SYK87, SSK88] for the EOS of
nuclear matter derived from Skyrme type interactions. In relativistic models this problem
should not appear [TW99, LMB92, Gad05] but for density-dependent interactions we
have to investigate the case explicitly.
The speed of sound in a nuclear medium, in units of the velocity of the light, (c) is
de�ned [BR68] as

(Vs)2 =
dP
d�

=
dP=d�
d�=d�

; (6.74)

where P is the pressure and � is the total energy density of the nuclear matter.
To study the relativistic causality in the present model, in Fig. 6.35 we plotted the ratio
of the speed of sound to speed of light Vs=c for the symmetric nuclear matter (a) and
the pure neutron matter (b) as functions of the baryon density. The solid line represents
the results obtained in the DDRH-MC and dashed line represents the results of DD-ME1
model. While in both cases the speed of sound increases with density. The speed of sound
calculated from DDRH-MC approach is smaller than the speed of sound calculated in
DD-ME1 in symmetric nuclear matter. This is due to the fact that DDRH-MC yields a
softer EOS than DD-ME1. However, the di�erence between DDRH-MC and DD-ME1 is
negligible in the pure neutron matter.
The Fig. 6.36 presents the plots of the speed of sound in asymmetric nuclear matter with
four di�erent asymmetries (�= 0:00;0:10;0:25;0:39) as a function of baryon density for
DDRH-MC calculations. In asymmetric nuclear matter, the di�erences of the speed of
sound induced by asymmetries are very small because the total energy density has a very
weak dependence on asymmetry. (see Fig. 6.6)
Evidently, even at very high values of the baryon density the speed of sound does not
exceed the speed of the light.
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Figure 6.35: The density dependence of the Speed of sound (in units of c-speed of light)
in symmetric nuclear matter (a) and pure neutron matter (b) are shown by the solid
curves in the DDRH-MC and by the dashed curves in the DD-ME1 for comparison.

In the spinodal region of symmetric and asymmetric nuclear matter, the speed of sound
becomes imaginary for � < 0:12 fm�3 (see Sec. 6.2.2 and Fig. 6.32) in both DDRH-MC
and DD-ME1 approaches, indicating the onset of instabilities.
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Chapter 7

Summary and Outlook

We studied the EOS of nuclear matter in the framework of relativistic density dependent
hadron �eld theory (DDRH) and compared our results to the results of the phenomeno-
logical density dependent approach DD-ME1. Nuclear interactions were described by a
covariant density functional theory using baryons and mesons. In our approach medium
dependent modi�cations of the nuclear interactions were taken into account with density
dependent meson-baryon vertices with momentum corrections. We showed that Lorentz
invariance of the Lagrangian, the covariance of the �eld equations and thermodynamical
consistency require a formulation in terms of vertex functionals depending themselves
on the �eld operators. The relation of the DDRH vertex functionals to DB in-medium
interactions was discussed. Solutions of the �eld equations were found in relativistic
mean-�eld approximation.

We have calculated the following properties of symmetric and asymmetric nuclear
matter and pure neutron matter: energy density, pressure, binding energy, symmetry
energy, e�ective nucleon mass, compressibility and speed of sound in nuclear medium as
functions of the density and of the nuclear asymmetry parameter.

Since the EOS at �� �0 is very uncertain, it is important to impose model-independent
bounds in order to analyze our results. The basic requirements are [Bom99]:

1. It must reproduce the empirical saturation point for symmetric nuclear matter
�0 = 0:17�0:1 fm�3 , �(�0)=�0 =�16�1 MeV;

2. it must give a symmetry energy at the saturation point Esym(�0)� 30�2 MeV,

3. for symmetric nuclear matter the compressibility at saturation density must be
K � 220�30 MeV
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4. EOS should respect Lorentz invariance and causality.

In general our model as well as DD-ME1 model satisfy above requirements. We found
that in DD-ME1 model the bulk properties of symmetric nuclear matter is particularly
in very good agreement with the empirical information. In our model the saturation
density of symmetric nuclear matter is higher than in the DD-ME1. Therefore in our
model the bulk properties of symmetric nuclear matter are slightly di�erent than in DD-
ME1. We also calculated the properties of asymmetric nuclear at saturation density for
three di�erent asymmetry parameters x = 0:22;0:5;0:8 . We found that for increasing
asymmetry, the saturation density shifts to lower values. Consequently, the properties
of the asymmetric nuclear matter at saturation density are also changed. In the both
approach, all quantities except e�ective baryon masses become smaller as the asymmetry
parameter increases. Because, the e�ective baryon mass decreases with increasing baryon
density.

The results of the calculation for the properties of the asymmetric nuclear matter
show that at low density region these two models are in agreement. But in high density
region, the di�erence between them is more signi�cant and it increases with increasing
asymmetry parameter. The main part of this di�erence can be understood as coming
from the e�ects of the � meson inclusion.

From study of the � meson inuence on the EOS we found following :

� The proton-neutron e�ective mass splitting is directly given by the � coupling, and
asymmetry. We �nd that in n-rich nuclear matter, a neutron e�ective mass is always
smaller than the proton e�ective mass. The same is predicted from microscopic
relativistic Dirac-Brueckner calculations.

� This proton-neutron e�ective mass splitting causes a negative contribution to the
symmetry energy Esym, since it reduces the gap between n-p Fermi energies, due
to the di�erent Fermi momenta in asymmetric nuclear matter. In fact, in n-rich
matter, the neutron Fermi momentum increases while the neutron e�ective mass
decreases contrast to the proton.

We compared our result for the symmetry energy with the very recent experimental
results [SYS07]. We found that both approaches are in good agreement at low
density. However DD-ME1 calculation gives a too soft dependence at higher density
contrast to our model.
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� We have shown that the � contributions are not negligible for the slope parameter,
Psym the symmetry pressure, and absolutely essential for the curvature parameter
Ksym symmetry compressibility.

We found that the energy density of the nuclear matter is not very sensitive to asym-
metry parameter for whole range of the density. Therefore our results of the calculation
for the energy density are similar to the DD-ME1 results. In contrast the pressure of the
nuclear matter becomes di�erent at high density for di�erent asymmetry parameter due
to the inclusion of isovector scalar � meson. The region of negative pressure occurs below
the saturation density. This means that below the saturation density system becomes
unstable and that indicates a presence of a liquid-gas phase transition [BF99, ABMP04]
which disappears for some critical value of the asymmetry.

In instability region, the compressibility is negative which characterizes the spinodal
region of the EOS. The both models agree this low density behavior.

The di�erence between our model and DD-ME1 model start at baryon densities
roughly above 2�0 for asymmetric nuclear matter. This is the region where transitions
to di�erent forms of nuclear matter are expected, and so the result appears quite stim-
ulating.

Since in the low density region �eld sources are (scalar and vector densities) too small
to make a di�erences for di�erent asymmetry parameters. Therefore, the e�ects due to
the inclusion of the � are more signi�cant at high density and with large asymmetry
parameter. This is the main reason for that why at low density region the microscopic
DDRH and phenomenological DD-ME1 models are in agreement.

In [TW99] paper was claimed that there is no need to take into account the � meson.
But our results show that this is true for the low density regions, not for high density
regions and it is not negligible the inclusion of the � meson, especially for the study of
the neutron rich nuclear matter.

We expect that future experiments with radio-active beams will be able to test these
predictions.

In general, we think that the results of the DDRH approach are quite satisfactory
and that the momentum correction provides a consistent scheme to reproduce DBHF
calculations. (Improvements of the results could possibly be achieved by going beyond
the ladder approximation and including, e.g., three-body interactions and ring diagrams.)

In future investigations we also plan to apply the density dependent interactions
to neutron stars to gain additional insights in the properties of the isovector density
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dependence.
It is possible to apply the density dependent vertices with momentum correction

(parameterized) in relativistic transport models for heavy ion collisions. Then the high
density behavior of our model can be examined more carefully.
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Appendix A

A.1 The free Dirac equation

The Dirac equation for a particle of spin 1=2 in free-space is given by

[i�@��M ]	(x) = 0 (A.1)

with general plane wave solution [Cha90]

	(x) =
X
�

Z dk3

(2�)3=2

s
M
Ek

h
b(k;�)u(k;�)e�ik�x+dy(k;�)v(k;�)eik�x

i
; (A.2)

where u(k;�) and v(k;�) are spinors and � indices represent spin labels. In the momentum-
space Eq. (A.1) for positive and negative energy fermions can be written

[�k��M ]u(k;�) = 0 ;

[�k�+M ]v(k;�) = 0 : (A.3)

Conjugated spinors are de�ned as

�u= uy0

�v = vy0 (A.4)

with the covariant normalization

�u(k;�0)u(k;�) = ���0 =��v(k;�0)v(k;�)

uy(k;�0)u(k;�) =
Ek
M

= vy(k;�0)v(k;�) : (A.5)
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The explicit form of the solution is

u(k;�) =

s
Ek+M

2M

0@ 1
�k

Ek+M

1A�� ; (A.6)

with Ek =
p

k2 +M2 and the Pauli spinors

��=1=2 =

0@ 1
0

1A ; ��=�1=2 =

0@ 0
1

1A : (A.7)
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Deutsche Zusammenfassung

Die Zustandsgleichung von Kernmaterie (EOS) spielt eine wichtige Rolle bei der Unter-
suchung von Kerneigenschaften, Schwerionenkollisionen sowie astrophysikalischen Ob-
jekten wie Neutronensterne und Supernovae. In letzter Zeit schenkte man den Unter-
suchungen der Zustandsgleichung von asymmetrischer Kernmaterie besondere Beachtung
aufgrund astrophysikalischer Anwendungen (Neutronensterne) [See95] und neuen Exper-
imente, [KG] die Kerne fernab der Stabilit�at untersuchen. Ein anderer Schwerpunkt liegt
im Bereich hoher Dichten, welcher in K�urze durch verschiedene Experimente, Z.B. das
CBM in Darmstadt [GSI], untersucht werden soll.

Voraussetzungen und verschiedene theoretische Aspekte f�ur die Formulierung einer
Dichtfunktionaltheorie f�ur nuklearen Systeme werden betrachtet. Der Existenzbeweis
von Hohenberg-Kohn [HK64] wird auf Vielteilchensysteme mit starken Wechselwirkung
�ubertragen.

Wir zeigten, dass Lorentzinvarianz der Lagrangedichte, die Kovarianz der Feldgle-
ichungen und thermodynamische Konsistenz eine Formulierung in Form von Vertex-
funktionalen erfordert, welche selbst von den Feldoperatoren abh�angen. Dabei wurde
die Beziehung der Vertexfunktionale zu den Dirac-Br�uckner-in-medium Wechselwirkun-
gen und den zugeh�origen Selbstenergien benutzt. Die L�osungen der Feldgleichungen
wurden im Rahmen der relativistischen Mittel-Feld-N�aherung betrachtet.

Wir untersuchten die Zustandsgleichung der Kernmaterie im Rahmen der relativis-
tischen dichteabh�angigen Hadronenfeldtheorie (DDRH). Wir haben die folgenden Eigen-
schaften symmetrischer und asymmetrischer Kernmaterie sowie reiner Neutronenmaterie
berechnet:

� Energiedichte,

� Druck,

� Bindungsenergie,
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� Symmetrie-energie

� e�ektive Nukleonenmasse,

� Kompressibilit�at und

� Schallgeschwindigkeit im Medium

und als Funktionen der Dichte und des Asymmetrieparameters untersucht.
Wir vergleichen unsere Ergebnisse mit denen des ph�anomenologischen dichteabh�angigen

Modelle. Alle Modelle erf�ullen die Grundbedingungen einer realistischen Zustandsgle-
ichung.

Weiterhin vergleichen wir unsere Ergebnisse f�ur die Symmetrieenergie mit neuesten
experimentellen Daten [SYS07]. Beide Zug�ange liefern eine gute Ubereinstimmung bei
niedrigen Dichten. Bei hohen Dichten liefern weitgehend die ph�anomenologischen Mod-
elle jedoch eine \weichere" Abh�angigkeit als unser mikroskopisches Modell. Dieser Un-
terschied kam durch unsere Ber�ucksichtigung des �-Mesons erkl�art werden.

Wir ho�en, dass zuk�unftige Experimente kl�aren k�onnen welche Vorhersagen zutre�en.

118



Acknowledgments

Learning is a life long experience for everyone. I am extremely grateful for the op-
portunity of being a PhD candidate. The fact that my candidacy took place in Germany
has greatly enriched my life in ways I could not have foreseen. The completion of this
thesis would not have been possible without the support of many people. It is my honor
now to express my gratitude to you all.

First of all, I would like to express my deepest thanks to my supervisor Prof. Dr H. Lenske
for being an excellent supervisor. In fact he has been more than a supervisor to me. He
has been my mentor and a trusted counselor. He always had his door open for me and
always found ways to encourage me.

I also would like to thank Prof. Dr. U. Mosel for providing me with invaluable op-
portunities to work in his friendly and supportive research group. In particular, I am
grateful for the encouragement and support that were provided by all the diligent and
proli�c professors during my study.

Thank you to Dr. A. Larionov, PD. Dr. S. Leupold, Dr. G. Martens and Dr. N. Tsoneva
for being there for me whenever I had questions.

I am very grateful to Dr. A. Gagyi-Pal�y, who was so kind to spend many hours
reading the manuscript thoroughly and correcting the English spelling and grammar. I
greatly value the scienti�c discussions that she contributed to my work.

I thank Prof. Dr. G. Braunss, Prof. Dr. E. Salzborn and Prof. Dr. W. Scheid for
kindly agreeing to serve on my thesis committee.

I am very thankful for the �nancial support that I received from the Deutsche
Forschungs Gemeinschaft and the Bundesministerium f�ur Bildung und Forschung.
Thank you Prof. Dr. Dr. W. Cassing, Prof. Dr H. Lenske and Prof. Dr. U. Mosel for
making it all possible.

Thank you to Mrs. E.Jung for taking care of countless paperwork for me.
Special thanks go to my friends Dr. A. Gagyi-Pal�y, T. Leitner, Dr. O. Linnyk,

119



Dr. L. Alvarez-Ruso, O. Buss, S. Bender, M. Destefanis, Dr. Z. Gagyi-Pal�y, P. Konrad,
Dr. V. Shklyar, Dr. P. Watson who made my journey of learning more enjoyable and
fun. And a very special thanks goes to my dear friend Olena who is always there for me
as a good friend.

I thank to Sabrina and Alexandra for their help and support especially in the begin-
ning of my study in Germany.

Many thanks go to my middle and high school teacher Uranchimeg and childhood
friends Nandia, Naraa and Jeemaa. I am very blessed to have all of you in my life. I
could always count on you.

Apart from my colleagues and friends, I thank to my whole family for their uncondi-
tional love and support. Without their support, I would not have been where I am.

I especially would like to thank my mother and father for teaching me to always strive
for learning.

120


