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Chapter 1

Introduction

It is a remarkable fact, that in a material like Si:P, frequently encountered as
an academic example for a negatively doped semiconductor and widely employed
in the electronics industry, there are still discussions open about the low-energy
excitations from the ground state. Crystalline silicon, doped to various levels
with phosphorus by established techniques, presents a favorable object of funda-
mental research in the field of disordered solids. In particular, the influence of
electron-electron interactions on the hopping transport in doped semiconductors
at temperatures close to zero has attracted much attention since decades [1]-[5].
Beside the electronic correlation effects, critical behavior in the vicinity of the
metal-insulator transition (MIT) as T → 0 is another key issue in the physics of
disordered solids [6, 7]. Even in clearly defined systems like heavily doped semi-
conductors, where disorder stems from the statistical distribution of donor (or
acceptor) atoms with concentration n in the single-crystalline host, the behavior
of the complex electrical conductivity σ is hardly understood, when the critical
donor concentration nc of the zero-temperature MIT is approached. The di-
rect current conductivity σdc of doped semiconductors has been well documented
on the insulating side of the metal-insulator transition [8, 9]. The temperature-
dependent dc conductivity for n<nc has been observed to follow a variable-range
hopping behavior σdc(T )=σ0 exp[−(T0/T )m], where m is predicted to be 1/4 by
Mott [10, 11] for non-interacting electrons and 1/2 by Efros and Shklovskii [2, 12]
if one includes electron-electron interactions. The ac conductivity σ(ω) of the in-
sulating doped semiconductors, however, is still not fully understood, and we
have focused on this intriguing subject in the course of the present thesis.

At concentrations of phosphorus in silicon below the critical value of nc =3.5×
1018 cm−3 [8], the donor electron states are localized due to a disorder in the An-
derson sense [2, 6, 11, 13] (in contrast to the extended Bloch states typical of a
periodical atomic lattice). This leads to the insulating behavior, defined by the
vanishing dc conductivity, σdc(T → 0)=0, as zero temperature is approached.
For such a system, theoretical models yielded meaningful analytical formulae for
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6 CHAPTER 1. INTRODUCTION

the T → 0 frequency-dependent response σ(ω) of interacting electrons in the past
decades [1, 2, 3, 5]. Compared to the theoretical work done, the experimental
data on the ac conductivity of the insulating doped semiconductors still remain
scarce and the results, obtained by different groups and in different parameter
ranges, lack consistency. Especially the microwave range (with the frequency of
electromagnetic radiation from tens of megahertz till tens of gigahertz correspon-
ding to the photon energy from 0.1 µeV to 0.1 meV), best suited to study the
Coulomb interaction of the charge carriers, is hardly accessible in an experiment,
where the dynamic response σ(ω) at low temperature needs to be studied. Long
time, no better means than the resonator technique, a precise method restricted
to the fixed frequency of the resonator cavity in use, has been available to mea-
sure the frequency-dependent conductivity σ(ω) of doped semiconductors in the
gigahertz range. Each frequency point required a different cavity.

At the same time, the rapid development of communication as well as indus-
trial and medicine technologies demands an accurate characterization of com-
ponents at ever increasing frequencies, beyond the extensively explored radio
frequency range, which reaches up to 1 MHz. This becomes, in particular, rele-
vant for insulating and semiconducting materials [5, 14], employed in electronic
devices and in low-noise sensors, operating at low temperature. On a macro-
scopic scale and under steady-state conditions, the interaction of a material with
the electric field is determined by the electric conductivity σ1 and the dielectric
permittivity ε1, both combined in a complex quantity σ=σ1+iσ2 (alternatively,
ε= ε1+iε2) via the Eq. (2.16). The desired broadband characterization of those
parameters becomes quite challenging with rising frequency, because losses and
spatial variation of current and voltage then gain importance. To be concrete, we
briefly outline here the scope of the arising problems and our solutions to over-
come them, developed in the course of the work constituting the present thesis1.

The material characterization up to the megahertz range turns out to be
comparably simple: the voltage drop is measured when a current homogeneously
passes through the specimen; lock-in technique allows the determination of the
complex response. As soon as the gigahertz range is approached, the wavelength
becomes comparable to the leads and specimen dimensions (however, still being
four to six orders of magnitude too large to admit optical techniques, based on
the free field propagation); waveguides have to be utilized, as shown in Fig. 1.1,
and the reflection (or transmission) coefficient is measured [17]. In this spectral
range, a vector network analyzer (VNA) is a suited and powerful tool. It allows
a phase sensitive measurement of the reflection coefficient Γ, which is directly
related to the complex impedance Z of the sample (provided, the transmission

1Parts of this thesis are already published in our articles in the Journal of Applied Physics
[15] and in the Physica Status Solidi C [16].
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Figure 1.1: Electromagnetic field with the frequency f = 5 GHz is guided by a coaxial
waveguide to an insulating Si:P sample with dimensions 5 x 5 x2 mm3 (as in Fig. 5.2)
and with relative dielectric permittivity ε1 = 40. The sample is mechanically pressed
against the probe, as shown in detail in Fig. 3.1. The reflected signal is measured by
a vector network analyzer (VNA). The electric field distribution inside the sample is
shown at its oscillation maximum. While analytical expressions for the vector field
are discussed in Chapter 4, this picture is obtained by a computer simulation using a
commercial software CST.

line is properly calibrated).

While the standard circuit theory applies to radio frequencies, in the mi-
crowave range, the wavelength becomes as short as a few millimeters and, thus,
a careful treatment of the electromagnetic field distribution within the sample
is necessary to obtain the material parameters (conductivity and dielectric func-
tion) from the impedance Z, gained by the measurement. Whereas the evaluation
is straightforward for metallic and superconducting samples under investigation
[18]-[20], there is no direct solution in case of an insulating material. This se-
vere complication is due to a non-trivial electromagnetic field distribution inside
an insulating sample at the aperture of a coaxial waveguide, as demonstrated
in Fig. 1.1 for a semiconducting sample. Only some approximate solutions and
models have been developed in the past to treat the dielectric materials [21]-[31],
in most cases liquids or soft matter at ambient conditions.

Thus, up to now the powerful technique of measuring the broadband mi-
crowave reflection coefficient Γ with a VNA could be successfully applied to
determine the complex conductivity σ(ω) of solid samples only in the case of
metals or superconductors, while the complicated current distribution inside an
insulating semiconductor at low temperature prohibited the data evaluation for
that material class. In the course of our work on the present thesis, we revisited
the existing approaches to familiar as well as to complementary problems, and
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elaborated a complete and rigorous evaluation procedure for such a measurement
of an insulating semiconductor with an optimized theoretical and experimental
complexity [15]. We applied this developed method to study the complex ac
conductivity σ = σ1 + iσ2 of the doped semiconductor Si:P in the broadband
frequency range from 0.1 to 5 GHz, at temperatures of 1.1 K and above, in a
broad interval of dopant density n below the metal-insulator transition [16].

With those measurements we have addressed the following issues:

1. Influence of the Coulomb interaction on the hopping transport in the local-
ized donor electron system (i.e. in the insulating regime) at effectively zero
temperature. The correlation effects are encoded in a power law α of the
dynamic conductivity σ1(ω)∼ωα.

2. It is an additional advantage of a phase sensitive measurement, that the
dielectric function ε1(ω, n) is simultaneously obtained from the imaginary
part σ2(ω, n) of the complex conductivity σ(ω, n). The diverging behavior
of the donor electron contribution to the dielectric function of the system, as
the metal-insulator transition is approached, is a controversial topic in liter-
ature, as concerns the scaling exponent of the divergence. With a reflection
measurement technique, we are capable of approaching the metal-insulator
transition much closer than those predecessors, who measured in transmis-
sion with quasioptical techniques in the terahertz range [32]-[34]. While a
transmission measurement is suited deep in the insulating regime, it pro-
hibits approaching the MIT by too high losses. On the contrary, measuring
the reflection coefficient, we can go close to the critical donor concentration
nc.

3. Behavior of the conductivity and the dielectric function, as the temperature
is elevated from 1.1 K.

The contents of this thesis are organized as follows:

In Chapter 2, we summarize the information on the basic research issues out-
lined above, provided by the theory. We have tried to give in each Section of this
Chapter an appropriate reference to the relevant experimental results, those of
the other groups and of our own.

In Chapter 3, our experimental techniques are described. We start with a
general solid sample, terminating a coaxial waveguide, and give in Sec. 3.1 a brief
survey of the established evaluation methods for metallic and superconducting
materials. In Sec. 3.2, the problems are formulated, which arise in the case of
a sample with nonmetallic conductivity. In Sec. 3.3 we describe the broadband
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microwave spectrometer based on a pumped 4He-bath cryostat, which we con-
structionally and methodically extended from its original scope [20] to the new
material class, the insulating semiconductors, in order to perform the measure-
ments on Si:P reported here. In Sec. 3.4 we present a new broadband microwave
spectrometer, based on a pumped 3He-bath cryostat. In the course of the present
work, this new spectrometer was constructed and built up to the first thermal
tests with the new microwave measurement insert, which resulted in a signifi-
cantly lower base temperature of 450 mK, than that (1.1 K) achievable at the
4He-setup.

Our solution to the data evaluation problem for a broadband reflection coef-
ficient measurement of an insulating semiconductor is presented in Chapter 4. A
simple static model for the current distribution inside a semiconducting sample
is developed as a first try, which we later proved to be valid in the low-frequency
range up to 1 GHz; this is presented in Sec. 4.1. It is followed in Secs. 4.2 and 4.3
by a rigorous solution to the problem, where we made no severe simplifications
in a strictly determined parameter range.

Results of our measurements of the insulating Si:P samples are presented
and discussed in Chapter 5. In Chapter 6 we give an outlook for the further
development of the project of this thesis, in particular concerning the behavior
of the system across the metal-insulator transition.
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Chapter 2

Theoretical background

2.1 Zero-phonon hopping transport in Si:P

2.1.1 Structure of electronic states

To begin with, we briefly recall the electronic structure of the material under
investigation, Si:P. At low temperature most of the electronic properties of a
crystalline semiconductor are determined by impurities. (For a detailed treat-
ment of this topic, the standard textbook by Shklovskii and Efros [2] can be
consulted, the more general classical work by Mott and Davis [11], as well as an
up to date and comprehensive book edited by Baranovski [5].) An impurity can
be of either donor or acceptor type. A donor atom is able to donate an electron
to the conduction band of the host semiconductor, while an acceptor impurity
rather captures one electron from the valence band, leaving a mobile hole behind.
In many cases, the type of impurity is merely determined by the relative position
of the involved elements in the periodic table.

Placed in the tetrahedral lattice of the Group IV element silicon, a phosphorus
atom has an excess fifth electron, relatively weakly bound to the impurity center
by an attractive potential similar to that of a hydrogen atom. The situation is
schematically depicted in Fig. 2.1. Due to the screening of the core Coulomb
potential by the host semiconductor matrix, the wave function of a donor elec-
tron has a spatial extension 10 to 100 times the size of a hydrogen atom. One
speaks of a shallow impurity. While it is easily ionized at ambient conditions,
the conduction band is inaccessible for donor electrons in the temperature range
around 1 K, to which we restrict our considerations. For an isolated impurity,
the wave function for the donor electron can be determined in the effective-mass
approximation, where the energy spectrum close to the minima of the conduction
band in k-space is used to construct the solutions [2]. The resulting electronic
wave functions of isolated donors are Bloch functions at the bottom of the con-
duction band, modulated by large-scale hydrogen-like envelope functions.

11
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Figure 2.1: Left: a simplified schematic picture of the Si:P crystal, in reality diamond
structure. Right: a simplified energy state diagram at T = 0; in reality, the bottom of
the conduction band and the top of the valence band are bent following the long-range
potential of the charged impurity sites. The dashed line depicts the position of the
Fermi level, lying in the region of the impurity states in doped semiconductors.

Since P atoms are distributed at random in the host Si crystal, the assembly of
the donor electrons exhibits disorder, in contrast to a regular crystalline struc-
ture. As a consequence of disorder, at low concentrations of phosphorus in silicon
the donor electron functions are localized in Anderson sense [2, 6, 11, 13]. We
will return to that subject in more detail in Sec. 2.2.1. The electron probability
density of a localized state falls off as exp(−r/ξ) with the distance r from the
donor center. The localization radius ξ determines the characteristic dimensions
of the wave function and is of the order of at least 10 times the atomic distance
in the host crystal. (The Bohr radius of an isolated donor electron in Si:P is
known to lie between 20 Å and 30 Å, cf. [35]-[37], while the Si atoms in the host
Si crystal with diamond structure a just separated by 2.35 Å, corresponding to
the lattice constant of 5.43 Å.) At low concentrations of phosphorus in silicon,
isolated energy levels are found close to the bottom of the conduction band. Part
of them are empty, since there are always some impurities of the opposite type
present which accept the neighboring donor electrons, so that hopping transport
can take place between the occupied and the empty donor sites, cf. Sec. 2.1.2.
The ground state configuration of Si:P is schematically outlined in Fig. 2.1. All
impurities are assumed to be fixed in space, but electrons can pass from one site
to another, so that the electronic system attains thermodynamic equilibrium de-
termined at T =0 by the condition of minimum electrostatic energy [2],

Helectrostatic =
e2

ε1

[
1

2

don∑

j

don∑

j′ "=j

(1 − pj)(1 − pj′)

rjj′

−
don∑

j

acc∑

k

1 − pj

rjk
+

1

2

acc∑

k

acc∑

k′ "=k

1

rkk′

]

, (2.1)
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where ε1 is the real part of the full dielectric function ε of the Si:P crystal, cf.
the Eq. (2.16). pj is the occupation number for donor j: if the latter is ionized,
pj =0; for a neutral donor pj =1. Each acceptor captures an electron from a
donor and becomes negatively charged, since we assume the number of acceptors
Na to be much less than the number of donors Nd, Na/Nd % 1.

At the critical concentration nc =3.5×1018cm−3 of phosphorus in silicon [8],
the overlap of the localized electronic functions becomes so strong, that they
spread out over the entire solid in spite of disorder: transition to a metallic state
takes place. While theoretical predictions applicable to the metal-insulator tran-
sition in Si:P are subject of Sec. 2.2, the current Section mainly concerns the
dynamic transport and effects of electron-electron interactions in a strongly lo-
calized system, i.e. relatively far from the MIT. The corresponding experimental
results are discussed in Chapter 5.

The Hamiltonian of the system on the insulating side of the MIT can be
written as follows (magnetic effects excluded), cf. Ref. [4],

H =
∑

j

E ja
+
j a j +

∑

j "=j′

Ijj′a
+
j a j′

+
∑

j

Uja
+
j↑a j↑a

+
j↓a j↓ +

∑

j<j′

Ujj′a
+
j a ja

+
j′a j′. (2.2)

Here, a and a+ are the annihilation and creation operators, respectively, of the
local donor electron wave functions which are assumed to be appropriately or-
thogonalized. The first term describes the energies Ej at the single donor sites
j, differing from the energy of an isolated donor E0 by the influence of the sur-
rounding charged impurities, cf. Eq. (2.1). The second contribution comes from
quantum tunneling between j and j′, the third term stands for the repulsion
between the electrons on the same site (the arrows denote specific spin states),
and the last term represents the intersite Coulomb interactions. In the discus-
sion of the hopping transport in Sec. 2.1.2, a strongly localized electron system
is concerned at low excitation energies, so that the second term in the Eq. (2.2)
becomes negligible while the strong on-site repulsion implies energies outside our
range and the third term can be omitted either. On the other hand, close to the
metal-insulator transition in Sec. 2.2 the overlap term gains some crucial impor-
tance (Anderson transition) and so does the third term (Mott transition), while
the long-range Coulomb interaction term four may be neglected.

A useful characteristic of the electron states is the density of states g(E)
that can be applied to the description of both ordered solids and solids with
arbitrarily strong disorder [38]. The quantity g(E)dE denotes the number of
states in a unit volume, available for an electron with a given spin direction with
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Figure 2.2: In case of energetic degeneracy of two localized quantum states ϕ1 and
ϕ2, two linear combinations of opposite parity are formed. The energy difference of
the new states ψ1 and ψ2 is proportional to the magnitude of the overlap integral I(R)
between the initial wave functions, |E1 − E2|= 2I(R).

an energy between E and E+dE. g(E)f(E)dE is the number of occupied states
per unit volume, where f is the Fermi distribution function

f(E) =
1

1 + exp{(E − EF )/kBT}
. (2.3)

The Fermi energy EF separates the occupied states from the empty ones at zero
temperature. g(E) is defined as a continuous function with finite values also in
the energy intervals, where all states are localized. The density of states can be
determined experimentally, for instance by scanning tunnelling spectroscopy or
by photoemission. The shape of the density of states function in our concrete
case of the donor states in the crystalline Si:P sensitively depends on both, the
dopant density and the compensation by the acceptor atoms. Therefore we re-
turn to g(E), as it is expected from the theory, in more detail further below in
Secs. 2.1.2 and 2.2.1, where its knowledge is needed and the underlying experi-
mental situation is clearly set.

2.1.2 Dynamic conductivity

In systems, where the density of states at the Fermi level does not vanish, but
electronic states just below EF are localized, the static conductivity σdc vanishes
as T → 0 [5, 6, 11]. In other words, such an electronic system is an insulator.
Elastic electron tunnelling throughout the solid in an applied static electric field
cannot take place, because there will always be a finite energy difference from
site to site as long as the corresponding localized wave functions overlap in space.
The reason is the Pauli principle, and the mechanism, that prohibits energetic
degeneracy of two localized quantum mechanical states, is the formation of two
linear combinations of opposite parity and finite energy separation out of them, cf.
Fig. 2.2. Let ϕ1 and ϕ2 be the wave functions of the bound states of two isolated
atoms, with an equal energy in the absence of each other. The overlap integral is
defined as the matrix element of the full system’s Hamiltonian H between both
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states,

I =

∫
ϕ∗

1('x)Hϕ2('x)d3x . (2.4)

It is also called transfer integral in literature, since its square is proportional to
the transition probability between the states described by ϕ1 and ϕ2. As long as
I &=0, two superpositions are formed with split energies |E1 − E2|=2I(R),

ψ1 =
1√
2
(ϕ1 + ϕ2) , ψ2 =

1√
2
(ϕ1 − ϕ2) . (2.5)

In either state ψ1 and ψ2 the electron is equally shared by the sites, no matter
how big the spatial separation R between them, just because both initial states
have identical characteristics. The overlap integral itself decreases with distance
R exponentially the same way as the envelope of an isolated state ϕj does,

I(R) = I0 exp(−R/ξ) , (2.6)

where ξ is the localization length introduced above.

Since localized eigenstates have discrete energies, transition between them can
take place only by inelastic electron tunneling (hopping transport). In the case
of direct current, the necessary energy is provided by the interaction with the
vibrations of the atomic matrix (phonons), leading to an exponential dependence
of electronic transition probabilities to higher energetic levels on temperature
[35]. Expressions for thermally activated hopping conductivity in various tem-
perature ranges are treated in detail in the textbooks [2], [11] and [39]. The
temperature-dependent dc conductivity of doped crystalline semiconductors at
low temperature has also been extensively studied in experiments, being in ac-
cord with theoretical predictions. As for the photon-activated hopping transport,
the relevant energy range between the radio and the optical frequencies has been
technically inaccessible for a long time and experiments still remain scarce, cf. the
next Chapter. At the same time, intense interest from the side of the theorists has
existed since decades and concrete models yielded analytical and numerical re-
sults, without unambiguous experimental information available. That is why our
main issue in the present work is the dynamic conductivity σ1(ω) at effectively
zero temperature in Si:P on the insulating side of the metal-insulator transi-
tion. Throughout this thesis, the index 1 denotes the real part of the otherwise
complex-valued quantity,

σ1(ω) ∼ ωα , σ = σ1 + iσ2 . (2.7)

(The imaginary part σ2 of the complex conductivity is related to the dielectric
function ε1 of the material via the Eq. (2.16) further below.) Encoded in the
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Figure 2.3: Two alternative hopping transitions between occupied and unoccupied
states. The dashed line depicts the position of the Fermi level. The first transition
corresponds to the nearest-neighbor hopping, the second to the variable-range hopping
regime, cf. Ref. [39].

power law of the frequency-dependent conductivity at T =0, there is conclusive
information about the influence of electronic correlations on the hopping trans-
port [1, 3]. While at very low frequencies the possibility of several hops during
half a period of the ac field must be taken into account (multiple hopping regime,
cf. [38]), in the high frequency range, as is the case in our experiment, the so-
called pair approximation applies. The theory of resonant photon absorption by
pairs of states, one of which is occupied by an electron and the other one is empty,
yields distinct limiting results for the conductivity power law in cases, where one
of the relevant energy scales of the problem dominates over the others.

For the non-interacting system, where the photon energy prevails over the
electronic correlations, Mott was the first to deduce the well-known sub-quadratic
frequency dependence of the conductivity [11, 40],

σ1(ω) = ηe2g2
F ξ r4

ω!ω2 . (2.8)

Here, η is a numerical coefficient [1, 11] and gF is the state density at the Fermi
level. The frequency-dependent length rω is the most probable hopping distance,

rω = ξ ln(2I0/!ω) . (2.9)

It corresponds to the resonant case !ω=2I(rω)= 2I0 exp(−rω/ξ), where the en-
ergy separation of the hopping partners equals the photon energy, cf. Fig. 2.2
and Eq. (2.6). This means that at low frequencies the most effective pairs for the
hopping transport are not necessarily those placed on the neighboring sites, as
shown in Fig. 2.3. Charge transport of this kind is called variable-range hopping,
it was first introduced by Mott [10, 11, 41]. This term is also used in the case of
thermally activated hopping at low temperature, while our focus here is on the
photon-activated transport in the zero-phonon regime.

Taking into account the Coulomb repulsion U(rω) if both states in a pair
would be occupied by an electron, Shklovskii and Efros corrected the picture of
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Figure 2.4: Energy scheme of resonant absorption by a pair separated by rω, (a)
neglecting the Coulomb interaction (Mott’s result); (b) accounting for the Coulomb
interaction of a second electron in the hopping pair with the first one, after [1]. As a
result of this correlation, the energy of the second electron (E2 −E−

1 ) exceeds the final
energy E+

1 of the single electron in the pair by U(rω)= e2/ε1rω.

the energy levels before and after a photon is absorbed (Fig. 2.4) and derived
σ1(ω) to be a sublinear function of frequency, as long as the Coulomb interaction
term dominates over the photon energy [1],

σ1(ω) = ηe2g2
F ξ r4

ωω [!ω + U(rω)] , (2.10)

U(rω) =
e2

ε1rω
.

At higher frequencies, in the opposite limit, the sub-quadratic behavior known
from Mott (2.8) is recovered. Shklovskii and Efros explain their result as follows.
Disregarding the electron-electron interaction, Mott has assumed that the pair
has only one electron and, thus, can participate in the absorption only if E−

1 <EF

and E+
1 >EF , cf. Fig. 2.4 (a). Shklovskii and Efros argue, that the energy of the

second electron in a pair (E2 − E−
1 ) needs to lie above EF in order that there

is no second electron in that pair, cf. Fig. 2.4 (b). As a consequence, the final
energy E+

1 of a single electron dips below the Fermi level to a depth up to U(rω),
and the level E−

1 to (!ω+U(rω)). This last quantity gives the energy range, over
which E−

1 needs to be integrated in the calculation of the transition probability,
cf. [1], and, thus, enters as a factor into the final expression for the conductivity
(2.10).

In experiments by Helgren et al. [32, 33] and Hering et al. [34], performed
on Si:P beyond the microwave range with the quasioptical transmission measure-
ment technique applicable from 50 GHz to a few terahertz, a crossover from a
linear to a quadratic frequency dependence of the conductivity σ1 could be ob-
served. Being in qualitative agreement with the formula (2.10), those experimen-
tal data suggest a sharper kink in the crossover region between the interacting
and non-interacting regime than the smooth curve described by the analytical
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Figure 2.5: Coulomb gap ( in the density of the localized donor states at (a) intermedi-
ate degree of compensation Na/Nd = 0.5; (b) low degree of compensation Na/Nd = 0.1,
after [47].

formula by Shklovskii and Efros. To clarify the issue, Matulewski et al. [42] per-
formed computer simulations on strongly localized electronic system with long-
range Coulomb correlations, which do not suffer from approximations necessary
in the analytical description. The simulation results exhibit a crossover from a
linear to a quadratic dependence of the conductivity σ1(ω), which is stronger
than predicted by Efros and Shklovskii, but quite well reproduces the results of
the experiment performed by Helgren et al. [32, 33].

An unresolved issue we have addressed with our experiment, cf. Chapter 5, is
that of the conductivity power law in the interacting regime. While a slightly sub-
linear frequency dependence σ1(ω) ∼ ωα, α < 1 follows for interacting electrons
from the Eq. (2.10) (going over into a slightly subquadratic dependence at higher
frequencies), most of the few reported experiments in the zero-phonon regime
documented a slightly superlinear conductivity power law α > 1 [34, 43, 44].
This indicates the importance of the following effect, also analytically accounted
for by Shklovski and Efros [1]:

The formula (2.10) implies an assumption that the density of states gF is
energy-independent in the vicinity of the Fermi level. However, Pollak [45] and
Efros and Shklovskii [12] have predicted that the long-range electron-electron in-
teraction reduces the density of states at EF at low temperatures, forming the
so-called Coulomb gap (. If localized states participating in the hopping trans-
port fall inside this energy region, the frequency dependence of the conductivity
is further modified and is described by the Eq. (2.15) as proposed by Shklovskii
and Efros [1]. Using simple semi-quantitative arguments, Efros and Shklovskii
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[12] suggested a parabolic shape for the Coulomb gap, cf. Eq. (2.13) further be-
low. At low, but not vanishingly low degrees of compensation K = Na/Nd, there
is no small parameter for an analytical treatment of the problem and one has
to use computer simulations. Baranovski et al. [46] proposed the first successful
simulation method, where the total energy is directly minimized with respect to
one-electron transitions. This, in turn, made it possible to calculate the impurity
band of a real semiconductor in a wide range of degrees of compensation [47]. In
Fig. 2.5 the result of those calculations for g(E) is shown for K =0.1 and K =0.5.

The reason for the emergence of the Coulomb gap lies in the definition of
the states below EF as all filled in the ground state and the calculation of those
above EF under this condition, while in reality an empty site is left behind in a
hopping process. Writing down the photon energy, necessary for an electron to
hop from the donor level E−

1 below EF to the empty level (E2 − E−
1 ) above the

Fermi energy (cf. Fig. 2.4 (b)),

!ω = (E2 − E−
1 ) − E−

1 − e2/(ε1r)
!
> 0 , (2.11)

we have to subtract the electronic repulsion energy e2/ε1r. The latter is redun-
dant in the expression for !ω, because the energy (E2 −E−

1 ) had been calculated
under the assumption of the level E−

1 also being occupied after the absorption of
the photon, in other words under ground state assumption which is violated by
the hopping process.
From the requirement that the absorbed photon energy be positive we obtain the
inequality,

r
!
>

e2

ε1((E2 − E−
1 ) − E−

1 )
. (2.12)

It is this inequality, which gives rise to the Coulomb gap in the density of states
g(E). It follows from the Eq. (2.12) that states, which are close to the Fermi level
from different sides, must be located at a considerable distance apart from each
other. In particular, for states converging to EF, ((E2−E−

1 ) - E−
1 )→ 0, the spatial

separation r diverges and, thus, g(EF) vanishes. Carrying this reasoning forward,
Efros and Shklovskii [12] suggested the following formula for the Coulomb gap in
three dimensions (as we have it in our case of Si:P),

g(E) =
α3ε3

1(E − EF)2

e6
. (2.13)

Here, α3 is a numerical coefficient, evaluated in the computer experiments [46]
to be α3 =3/π. The width ∆ of the Coulomb gap in three dimensions directly
follows from setting the right-hand side of the Eq. (2.13) equal to the unperturbed
density of states g0,

( =
e3g1/2

0

ε3/2
1

. (2.14)
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Figure 2.6: Energy scheme of resonant absorption by a pair separated by rω in the
presence of the Coulomb gap. (a) the gap width ( is small compared to the Coulomb
interaction energy U(rω); (b) the Coulomb term U(rω) falls inside the gap.

While the density of the donor electron states vanishes at the Fermi level at
low temperatures, with rising temperature the Coulomb gap is expected to dis-
appear. This is known from theoretical studies both by analytical calculations
and by computer simulations [39, 48], verified by measurements of the integrated
density of states in Si:As which contain an indirect but clear-cut information on
g(E, T ).

The above arguments refer only to systems with localized electronic states,
and no Coulomb gap is formed in good metals [2]. However, as was shown by
Altshuler and Aronov [49], in disordered metals the density of states has a mini-
mum at the Fermi level. This minimum is associated with the electron-electron
interaction and its depth increases with the amount of disorder. If the system’s
disorder grows so large that electronic states become localized, cf. Sec. 2.2.1
further below, then g(E) vanishes at EF and the dip turns into the Coulomb
gap. A survey of experimental and theoretical work on the problem of Coulomb
interactions in a Mott-Anderson insulator (see Sec. 2.2.1 for the latter term) is
presented for instance in Ref. [4].

The Coulomb gap has been, for instance, measured in Si:B with varying
boron-doping around the metal-insulator transition, using electron tunnelling ex-
periments [50]. In all insulating samples at low temperature (T ≤ 1.2 K), the
quadratic dependence of g(E) on energy has been confirmed, and the full width
of the parabolic Coulomb gap 2( has been determined which has values around
1 meV.

As concerns the dynamic conductivity at low temperature, no effect on σ1(ω)
is expected, as long as U(rω) largely exceeds the gap width (, i.e. as long as
the states participating in the hopping transport lie outside the Coulomb gap,
cf. Fig. 2.6 (a). In contrast to that, for the conductivity of interacting electrons,
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where the Coulomb term U(rω) dominates over the photon energy but falls inside
the Coulomb gap as in Fig. 2.6 (b), the reduction of the density of states leads
to a stronger, slightly superlinear power law [1],

σ1(ω) ∼ ω/ ln(2I0/!ω) . (2.15)

2.1.3 Dielectric function

It is an additional advantage of a phase sensitive measurement to gain the di-
electric function (or dielectric permittivity) ε1 from the imaginary part of the
complex conductivity σ = σ1 + iσ2 [18, 51] 1,2,

ε = ε1 + iε2 = 1 + i
σ

ε0ω
. (2.16)

We denote by ε the full complex dielectric function of Si:P, relative to the per-
mittivity ε0 of vacuum, and use the SI units throughout this text. As the MIT is
approached upon doping n, the localization radius ξ diverges as a power law in
(nc −n) [2],

ξ ∼ |n − nc|−ν . (2.17)

As a consequence, the electronic contribution to the dielectric constant ε1(ω=0, n)
is also expected to diverge following a power law when the MIT is approached
[55],

ε1 − εSi ∼ |n − nc|−ζ , (2.18)

where εSi = 11.7 is the dielectric constant of the host material Si [56].

Mott and Davis [7] put forward microscopic arguments for the divergence
of the dielectric constant near the metal-insulator threshold. Dubrov et al. [57]
studied a classical percolation3 transition in a two-component system with metal-
lic and dielectric parts. Using the effective medium approximation, they obtained
the formula (2.18) with the exponent ζ =1, independent of space dimensionality.
Their qualitative interpretation of this phenomenon is as follows. Near the metal-
non-metal transition, approached from the non-metallic side, the metallic clusters
are separated by thin dielectric regions. Each pair of nearest clusters thus forms

1Gaussian (cgs) units are employed in the references [18] and [51] , while we hold to the SI
(mks) system throughout the whole text.

2We hold to the convention exp[i($k$x − ωt)] in the integrand of the Fourier transformed of
the electromagnetic field in accordance with Refs. [18], [51]-[53]. The opposite sign convention
is used in Refs. [17, 25, 54] and by the network analyzer. For detailed comparison of both sign
conventions see Appendix A.

3The term percolation is explained at the end of the Sec. 2.2.1.
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Figure 2.7: Dielectric function ε1(ω, n) in a system consisting of randomly distributed
metallic and dielectric regions, after Ref. [55]. n denotes the fraction of the metallic
regions, nc is the percolation threshold, corresponding to the metal-insulator transition.
εhost
1 is the dielectric constant of the purely dielectric system with n = 0. For ω= 0 the

dielectric constant ε1(0, n) diverges at nc, at a finite frequency ω> 0 the dielectric
function ε1(ω, n) is a continuous function of n in the transition point nc.

a capacitor whose effective surface tends to infinity, resulting in the diverging
effective capacity of the whole system. Efros and Shklovskii [55] showed that the
dielectric constant diverges near the percolation threshold and determined the
critical indices to be ζ 3 ≈ 1 in three dimensions and ζ 2 =1.3 in 2D, without the
restrictive use of the effective medium approximation.

For any small but non-zero value of frequency ω, the dielectric function is
expected to have a finite value at the transition point nc and ε1(ω, n) is expected
to be a continuous function of the driving parameter n, as Efros and Shklovskii
showed [55]. In Fig. 2.7 this is demonstrated at the example of a model sys-
tem consisting of randomly distributed metallic and dielectric regions, where n
denotes the fraction of the metallic regions. At the critical value nc the perco-
lation threshold in this system is reached, corresponding to the metal-insulator
transition. Although there is no divergence for the dielectric function ε1(ω, n)
at a finite frequency ω> 0, the Eq. (2.18) stays valid as long as the following
inequality holds [55],

ε1(ω, n) % ε1(ω, nc) . (2.19)

Thus, analysis of the high-frequency measurements of the dielectric function (like
those in Refs. [33, 34] measured in the terahertz range, as well as our results re-
ported in Chapter 5) allows interpretation via Eq. (2.18) as long as the donor
concentrations n in Si:P are not too close to the critical value nc in the sense of
the Eq. (2.19) and the Fig. 2.7. To study the divergence of the dielectric con-
stant ε1(ω=0, n) more precisely, the frequency range should be further lowered
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(cf. e.g. the standard textbook by Dressel and Grüner [18]).

Efros and Shklovskii [55] pointed out, that the scaling laws for the dielectric
function (2.18) and the conductivity on both sides of a metal-insulator transi-
tion, as well as universal (i.e. dependent only on space dimensions number) re-
lations connecting the corresponding critical exponents can be established more
generally, from the assumption of the regularity of the complex conductivity as
a function of the driving parameter n and from the Kramers-Kronig relations.
However, the numerical values for the relevant exponents are only known for the
two-component systems with a percolation threshold, or from the experiments,
cf. Chapter 5.

2.2 Metal-Insulator Transition in Si:P

As mentioned at the beginning of the Chapter, at low dopant densities n % nc

the donor electron states in Si:P are bound in the vicinity of each impurity cen-
ter, while at high doping n + nc the wave functions spread over the whole solid
without decay. Driving the system through the critical value nc brings about a
transition from an insulating to a metallic state4 [2, 6, 11, 13], [58]-[60]. In the
current Section, we take a closer look at what happens to the donor electron
functions while the system is tuned through the critical donor concentration.

Suppose first, impurities were not randomly distributed in the silicon crystal,
i.e. phosphorus atoms would form a regular crystal lattice (impurity sublattice)
with a much larger period R than the host lattice constant. In a perfect crystal
with a periodic potential, electronic wave functions are of the Bloch form,

ψ%k,m = u%k,m('x) exp(i'k'x) , (2.20)

where u%k,m('x) has the periodicity of the lattice, m is the band index and the

wave vector 'k is the crystal momentum of the electron. Introducing disorder into
the crystal structure is one of the ways to reduce the mean free path l of the
electrons. As was first emphasized by Ioffe und Regel [61], there is a lower limit
for the mean free path value l for a given crystal momentum k, since the inequal-
ity kl < 1 would be forbidden by the uncertainty principle, or l cannot become
less than the de Broglie wavelength. In other words, sufficient disorder results in

4At the absolute zero of temperature, the metal-insulator transition in such a system is
restricted to the one critical value nc of the driving parameter n. This is the case considered in
the current Section; it is appropriate in the scope of the current thesis, which is mainly concerned
with the insulating phase of Si:P at effectively zero temperature (see Chapter 5 further below).
At elevated temperature, the metal-insulator transition becomes gradual. Nevertheless, those
thermal effects only become relevant if the critical donor concentration nc is approached more
closely (see Chapter 6).
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characteristic solutions of the Schrödinger equation, which are substantially dif-
ferent from the Bloch functions (2.20) having characteristic quantum numbers 'k.
Those states are localized, or trapped in space, with the consequence that elastic
electron tunnelling throughout the solid, necessary for a non-vanishing T =0 dc
conductivity, is not possible for them, cf. Sec. 2.1.2 above. Anderson [13] was
the first to prove the absence of diffusion in certain random lattices and to give
a quantitative criterion for localization.

The electron energy spectrum of noncrystalline materials is known to retain
characteristic features of the band spectrum known from crystals: regions of high
electron density of states correspond to the bands in a crystalline solid [38]. As
Mott pointed out, the degree of disorder can be different for electron states with
different energies, so that extended and localized states may coexist in the same
system at different energies. Typically, the states in the middle of the band
remain extended, while those states near the band edges are localized due to
disorder. Following Mott [40], one may introduce the energy Ec that separates
extended from localized states and plays the role of a localization threshold, it is
called mobility edge. A metal-insulator transition in a disordered material occurs
as the Fermi energy EF crosses the mobility edge Ec passing from the extended
to the localized states, as shown in Fig. 2.9.

Since we study a three-dimensional system, we always implicitly mean 3D,
in all the models discussed. Anderson’s result is strictly applicable only to the
three-dimensional case. We briefly comment on the known deviations in case of
lower dimensions at the end of Sec. 2.2.1. The presence of the Coulomb gap (
in the density of localized donor states, described in Sec. 2.1.2, is omitted in the
current Section for the reason that ( closes as the metal-insulator transition is
approached from the insulating side, cf. Eqs. (2.14) and (2.18).

2.2.1 Anderson localization and Anderson transition

It is a common way to treat the problem of electronic localization in disordered
solids [2, 11, 13] starting with the tight-binding method [51, 62, 63] for an arti-
ficially periodic impurity sublattice. The hydrogen-like potentials of N isolated
donor centers are thought of as arranged at equal distances in space, while the
overlap I(R) between the ground state wave functions remains small. In such a
case, considering just the ground state with the energy value E0 at each site is
sufficient to construct the ground state band. Since the particular shape of the
attractive potentials is not crucial for the localization property, they can be ap-
proximated by potential wells, as shown in Fig. 2.8. Such an arrangement results
in an effective periodic single-electron potential for the Hamiltonian for each of
the N electrons. Solutions of the Schrödinger equation in the Bloch form (2.20)
are constructed as superpositions of the single-site wave functions. The energies
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Figure 2.8: Potential wells and the density of states g(E) for a crystalline lattice (a)
and for the Anderson lattice at a high degree of disorder, when all states are localized
(b).

to the N possible essentially different values of the 'k-vector partially split [51],

E%k = E0 + 2I(R)(cos kxR + cos kyR + cos kzR) . (2.21)

A narrow band of delocalized states with the width B = 12 I(R) forms in place of
the initially localized identical states with energy E0, as depicted in Fig. 2.8 (a).
As the impurity center separation R is reduced, the band width B exponentially
broadens proportionally to the overlap integral I(R), cf. Eq. (2.6).

So far we have left aside those states, available on each impurity site for the
second (missing) electron with the opposite spin orientation. They give rise to an
empty band, that forms around the energy value E0 +U0, where U0 is the on-site
Coulomb repulsion in case two electrons occupy an isolated donor center. (We
should note, that this on-site interaction energy is orders of magnitude larger than
the long-range Coulomb interaction U(rω) between two electrons on two different
donor sites separated by the hopping distance rω, discussed in Sec. 2.1.2.) As long
as those two bands do not overlap, the hypothetic regular crystalline system just
described stays as insulator. But as a consequence of further increased overlap
I(R) with growing donor concentration n, both bands at some point merge into
one, producing a half-filled band and, thus, metallic conduction. This limiting
case of the metal-insulator transition, that takes the on-site Coulomb repulsion
into account but leaves disorder apart, is known as the Mott transition, cf. for
instance Ref. [2]. It is usually studied with the help of the Hubbard model, in
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which electrons repel each other only if they are located at the same site, and the
sites are periodically arranged in space. In our work, we apply the complementary
model for the metal-insulator transition in a doped semiconductor, developed by
Anderson. Following Anderson, we assume the upper Hubbard band to be out of
reach on our energy scales, and concentrate on disorder, that can effectively be
tuned by the donor concentration n (i.e by the overlap I(R), see the Anderson
effective disorder parameter W/I further below). The real transition will have
features of both idealized models, cf. Ref. [4], and is sometimes termed the Mott-
Anderson transition in literature. In both models, the excitation energy for the
electron transport in the insulating phase continuously vanishes on approaching
the transition point, which establishes a continuous, or second order phase tran-
sition [64].

Now we turn to Anderson’s model for a disordered solid. There are two types
of disorder present in the assembly of the impurity states. First, the ”impurity
sublattice” lacks periodicity, for the donor atoms are distributed at random in
space. Second, the potentials experienced by the donor electrons at different
centers are not identical, as a consequence of the irregular arrangement of sur-
rounding donors and acceptors. To get along with the mathematical treatment
of such a sophisticated system, Anderson maintained the periodicity in the po-
sitions of the potential wells, but let their depths vary at random, as shown in
Fig. 2.8 (b). The energy distribution of the ground states E j at the single sites
j is assumed to be uniform in some interval W around the mean value E0 of an
isolated donor; i.e., the distribution function P (E j) is of the form

P (E j) =

{
1/W , |E j − E0| < W/2 ,

0 , |E j − E0| > W/2 .

The system’s Hamiltonian in the site representation,

HAnderson =
N∑

j=1

E ja
+
j a j +

N∑

j=1

I(a+
j a j+1 + a+

j a j−1) , (2.22)

consists of the electron energies on the single donor centers plus the energy over-
laps between the neighboring sites, denoted by I for brevity (it corresponds to
I(R) from above). Unfortunately, Anderson’s model does not admit of an exact
solution, in spite of the simplifications. Nevertheless, he managed do launch two
reliable mathematical tools to analyze such a problem, that yield at least an un-
doubtedly reliable qualitative understanding of the phenomenon of localization,
supported by results gained from computer experiments.

Anderson was the first to introduce a mathematical criterion, that allows to
distinguish a localized electronic state from an extended, this alone being al-
ready a non-trivial step. Anderson’s condition is the following. Suppose, at time
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Figure 2.9: Anderson localization and Anderson transition in 3D. (a): If disorder is
high, all electronic wave functions are all localized. (b): With decreasing disorder, the
critical value of the disorder parameter (W/I)c is first reached by those states with the
highest state density: a narrow band of extended states forms at the peak of g(E). (c)
Transition to a metallic state takes place as soon as the mobility edge Ec crosses the
Fermi level, at the critical dopant concentration nc in Si:P. In the middle of the band
the disorder parameter W/I is already far below its critical value (W/I)c.

t=0 the electron wave function coincides with the wave function of the single
donor center with the index j. Since this is not an eigenstate of the full system’s
Hamiltonian given by (2.22), the probability density of the electron will change
with time. The absolute value squared |Ψj(t)|2 of the wave function at large t
would be obtained by solving the Schrödinger equation. If states are not local-
ized, the initial wave packets spread out over the infinite system and one would
have lim

t→∞
|Ψj(t)|2 =0. If, however, the wave function is localized, no spreading

occurs, and the initial wave function only acquires ”tails” on neighboring sites
with exponentially small amplitudes. At all times the electron will remain lo-
calized in approximately the same region of space as it was initially, so that the
limit lim

t→∞
|Ψj(t)|2 will remain finite.

Further, there is a dimensionless parameter W/I in the Anderson model, that
represents disorder weighted by the overlap, or the effective disorder in a diffusion
problem. Anderson’s result for 3D, later confirmed by numerous investigations,
consists in the following: For sufficiently large values of W/I all states are local-
ized. There exists a critical value (W/I)c of the order of 10, at which delocalized
states begin to appear in the energy range with the highest state density, cf.
Fig. 2.9. At still smaller values of W/I the delocalized state region broadens, a
band of extended states forms.

In our particular case of a doped semiconductor, high effective disorder W/I
corresponds to low donor concentration n. With growing doping, the overlap
integral (2.4), (2.6) rises exponentially and diminishes the value of W/I, that
can thus be tuned through the critical value of (W/I)c. The degree of disor-
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Figure 2.10: Two potential wells with significantly different ground state energies
|ε1 − ε2|+ I(R) are brought together at the distance R. In either of the resulting
quantum states ψ1 and ψ2, the electron strongly prefers one of the sites and avoids the
other one.

der W/I is not the same for different energy regions, it is lowest for the highest
state density regions, so that (W/I)c is first reached at the maximum of g(E), as
shown in Fig. 2.9 (b). However, formation of a narrow band of extended states in
the middle of the impurity states region does not immediately result in metallic
conductivity, if the Fermi level EF stays in the localized region of g(E). This is
what we expect in our case of low degree of compensation by acceptor atoms, cf.
Figs. 2.1, 2.9. If we denote by Ec the energy that separates the localized elec-
tron states from the non-localized, then σdc at zero temperature becomes finite
only as the EF passes through this boundary, as in Fig. 2.9 (c). This type of
metal-insulator transition is called Anderson transition in literature [2, 11]. In
our system, Si:P, it takes place at the critical donor concentration nc. In the
theory of amorphous solids, Ec is known as the mobility edge. It separates the
localized states, always found in g(E) at the bottom of the conduction band,
from the extended states.

To obtain a better feeling for Anderson’s result, an auxiliary problem of just
two potential wells is already helpful, which allows a quantum-mechanical solution
(cf. for instance Ref. [35]). Here again, one starts with the regular case of two
identical wells separated by the distance R, with identical ground state wave
functions ϕj and energies ε1 = ε2, each in the absence of the other. The nature
of the solution described in Sec. 2.1.2 and depicted in Fig. 2.2 varies little, when
weak disorder |ε1 − ε2|% I(R) is introduced. The electron stays almost equally
shared by the sites. In the opposite limit, |ε1 − ε2|+ I(R), the picture is entirely
different, as shown in Fig. 2.10. As before, two linear combinations emerge from
the initial site functions,

ψ1 = Aϕ1 + Bϕ2 , ψ2 = Bϕ1 − Aϕ2 . (2.23)

However, in either state the energy Ej is close to εj and the wave function ψj is
close to ϕj. It holds,

A

B
,

|ε1 − ε2|
2I(R)

. (2.24)
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Figure 2.11: Form of the wave functions in the Anderson model.

The solutions for the wave functions of just two electrons in two potential
wells can now be graphically extended to the more complicated case of several
electrons coming from several sites, as depicted in Fig. 2.11.

There is a classical analogy to the change from localized to extended states
in what is known as percolation problem, as pointed out first by De Gennes et
al. [65] and taken on further by Ziman [66]. Suppose that we have a system
which consists of cells, within each of which the potential has a constant value
εj, and these potentials are random and independent. A particle of energy E
described by classical mechanics can go from one cell to a neighboring cell if it
has enough energy. Sites with energy εj >E are not available to it. If the energy
E is small, the few available cells will mostly be isolated from one another, but
a small part will be members of a cluster of two or more cells. One can calculate
the probability of any particular size and shape of clusters, formed by adjacent
available sites. As E is increased, the probability of the larger clusters increases,
and eventually there are clusters spreading through the whole system. This is a
site percolation problem, complementary to the bond percolation problem, see
for instance Ref. [2].

By now we have only considered the three-dimensional case, as in our system
of a Si:P crystal. The Anderson criterion for the localization of the electronic
states is known to be strictly applicable only to three-dimensional systems [2].
For systems with reduced dimensionality, this is different. Obviously, percolation
never occurs in one dimension until all sites are available. It is also known, that
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in a one-dimensional quantum system states are always localized in presence of
disorder, no matter how small it is [67]-[69]. This also proves to be true in the
two-dimensional case [2].

2.2.2 Quantum Phase Transitions

The T =0 metal-insulator transition, driven by disorder, falls into the category
of quantum phase transitions (QPTs), where changing some parameter in the
Hamiltonian takes the system between two distinct ground states [64]. In Si:P,
this driving parameter is the dopant density n. Interest in the theory of the
zero-temperature quantum phase transitions in condensed matter systems arose
as early as 1975 through the works of Young and Suzuki on quantum Ising mo-
dels [70, 71] and the more general theoretical work of Hertz [72]. The recent
proliferation of experimental research facilities has led to further famous ex-
amples of QPTs like the transitions between the quantized Hall plateaus, the
superconductor-insulator transition in Josephson-junction arrays and magnetic
transitions of cuprates or heavy-Fermion alloys.

In contrast to QPTs, phase transitions taking place at some finite critical
temperature Tc, are considered ”classical”, even in highly quantum-mechanical
systems like superfluid helium or superconductors [73]-[75]. The order parameter
of those systems is of a quantum-mechanical nature, but it coherently fluctu-
ates at ever increasing length and time scales as the classical phase transition
is approached. Thus, the quantum fluctuations take place at lower and lower
frequencies, as the transition point is approached. Modes, whose frequencies
fall below kBTc/!, become occupied by many quanta, with the consequence that
they behave classically. At the same time, this argument shows that QPTs, where
Tc = 0, can only be described in the framework of quantum statistical mechanics.
In those systems, critical fluctuations at all frequencies down to zero are quantum
fluctuations.



Chapter 3

Broadband microwave

spectroscopy on solids at low

temperature

For our measurements of the frequency-dependent electric conductivity σ1(ω)
and the dielectric permittivity ε1(ω) of Si:P, we employed the experimental ar-
rangement schematically depicted in Fig. 3.1, where material under investigation
is placed at the aperture of a coaxial probe. Using a vector network analyzer
8510, a phase sensitive measurement of the reflection coefficient is performed in
a broadband frequency range from 45 MHz to 20 GHz, from which the complex
impedance Z of the sample is obtained by established techniques of microwave
engineering, cf. Appendix B. The signal from the source of the VNA travels along
the coaxial waveguide to the sample, which electrically terminates the microwave
line. The reflected signal returns the same way back and is detected by the test
set of the VNA. In case of solid matter, some smart jig is needed to press the flat

Figure 3.1: Schematic picture of a broadband microwave spectrometer that employs a
vector network analyzer (VNA) and a coaxial waveguide (for concrete implementation
see Figs. 3.6 and 3.9). A solid sample terminates the otherwise open-ended coaxial line
(after Ref. [19]). The sensor can be inserted into a temperature-controlled environment
for low-temperature measurements, as shown in Fig. 3.5.

31
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sample surface against the sensor [19, 20]. A strong spring at the back side of the
sample holder, as in Fig. 3.1, and a resilient center conductor of a commercial
microwave adapter in combination with a conical metallic pin, provide a proper
mechanical connection between sample and probe. Metallic contact layer (gold
or aluminum) is usually evaporated on top of the solid specimen, matching the
inner and outer conductors of the coaxial probe in shape and size, as shown in
Figs. 3.2 and 4.1. This is needed to achieve a proper electrical contact between
the sample material and the probe; at the same time, the evaporated contacts
define the sample surface area, which is exposed to the signal. The sensor can be
inserted into a temperature-controlled environment (described in Secs. 3.3 and
3.4 of this Chapter) and, for a given probe size, there is a useable frequency range
as broad as two orders of magnitude.

The problem of extracting the interesting material parameters from the mea-
sured reflection coefficient data can be solved in two steps: first, one needs to
obtain the complex sample impedance Z from the measured reflection coefficient
Γm, and second, the complex conductivity σ(ω) has to be calculated from the
impedance. The second task is equivalent to extracting the complex dielectric
function ε(ω) from Z, cf. Eq. (2.16).

3.1 Complex conductivity of metallic samples

The evaluation of metallic samples has been developed and experimentally tested
in the recent years [19, 20].

The first task is to obtain the complex sample impedance Z from the reflection
coefficient Γm, measured by the test set of the network analyzer, like the HP
8510. The general error model for a reflection measurement [19, 76] results in the
following relation (see Appendix B.2 for more details),

Γm = ED +
ERΓ

1 − ESΓ
, (3.1)

between the measured complex reflection coefficient Γm and the actual reflection
coefficient Γ at the sample surface. (The latter is directly related to the sample
impedance Z by the well-known high-frequency engineering formula (3.2), see
Appendix B.1 for details.) The three independent complex values ER, ES, and
ED comprise the contribution of the microwave line. To determine those values,
measurements of three independent calibration samples with known actual reflec-
tion coefficients Γ as functions of frequency and temperature are required. We
use bulk aluminum samples as short, Teflon samples as open and thin metallic
NiCr films as load standards.
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For the short standard, the perfect value Zshort =0 is assumed in the whole fre-
quency and temperature range, that corresponds to Γshort = −1 via the Eq. (B.4),
or Eq. (3.2). For a NiCr calibration sample, Γload is calculated using the Eq. (B.4)
from its frequency-independent impedance ZNiCr = RNiCr

dc , which is measured be-
tween the outer and center conductors of the waveguide by the test set of the
VNA, simultaneously with the measurement of the corresponding reflection coef-
ficient spectrum, Γload

m . The value RNiCr
dc of a given NiCr film sample depends only

on the temperature T of the measurement, but it differs from sample to sample
due to the details of the NiCr film evaporation. For the two-point dc resistance
Rdc measured by the test set, there is an offset due to the contribution of the
long (almost 1 m) microwave line. It is eliminated by subtracting the measured
dc resistance Rshort

dc of the short standard, which is by far dominated by the con-
tribution of the coaxial line. Any open standard acts as a complex capacitor. For
metallic samples under investigation, the corresponding frequency dependence of
Γopen turns out to be of no significant effect on the calibrated spectra. The trivial
dc assumption Zopen = ∞, corresponding via Eq. (B.4) to Γopen = 1, is sufficient
in that case.

The sample impedance Z is directly related to the reflection coefficient Γ at
the sample surface via [17] (see Appendix B.1 for more details),

Z =
1 + Γ

1 − Γ
Z0 , (3.2)

where Z0 is the characteristic impedance of the microwave line with a common
value of 50 Ω (which is also inherent for all of our microwave components), cf.
the Eq. (B.3).

The way to extract the complex electric conductivity σ of a metallic sample
from its complex impedance Z is straightforward, if the thickness of the specimen
d either significantly exceeds the skin depth1 δ or vice versa:

• d % δ. (Fig. 3.2 a)) In the case of a thin film evaporated on an insulating
substrate, the electric field strength stays nearly constant throughout the
whole film thickness d. The relation between the conductivity σ and the
impedance Z depends only on the geometry of the contacts. For the ring
of inner radius a and outer radius b between the contacts, it reads,

Z =
1

σ

ln(b/a)

2πd
. (3.3)

1The skin depth δ characterizes the exponential decay of the electromagnetic field strength
in a metal, cf. e.g. Ref. [17].
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Figure 3.2: Current flow (dark magenta area) in a metallic sample (bright yellow) with
a contact mask (light grey) on top of it; in our case, 2a= 0.6 mm and 2b = 1.75 mm. The
relevant limiting cases (a) d % δ and (b) d + δ lead to a simple evaluation procedure
(δ < 1µm is the skin depth in a good metal, in the gigahertz frequency range).

• d + δ. (Fig. 3.2 b)) For typical microwave frequencies of a few gigahertz,
the amplitude of the electromagnetic wave in a thick metallic sample is
already significantly damped (below 1/e) at the depth of 1 µm by the skin
effect. Hence, the interaction with the incident wave takes place in a thin
layer at the sample surface. Boundary effects at the edges of the relatively
broad contact area (cf. Fig. 3.2) are negligible, and the concept of the surface
impedance ZS based on the assumption of plane wave propagation works
well [18]. The surface impedance is the field impedance evaluated at the
surface of the sample; in SI units it is given by

ZS =

(
µ0

ε0ε

)1/2

, (3.4)

with the vacuum permeability µ0. Throughout this text, ε is the complex
dielectric function of the material under investigation, relative to the free
space permittivity ε0. ZS can also be obtained as the two-dimensional coun-
terpart of the volume resistivity in three dimensions and is, thus, related
to the sample impedance Z by a factor that accounts for the geometry of
the sample surface. In the case of a ring with inner and outer radii a and b,
this relation between the surface impedance ZS and the sample impedance
Z is readily obtained by a geometrical integration, similar to the derivation
of the Eq. (3.3),

Z = ZS
ln(b/a)

2π
. (3.5)

Inserting the relation between the complex conductivity and the complex
dielectric function, described by Eq. (2.16), into the Eq. (3.4) yields the
formula to extract the conductivity from the sample impedance Z for a
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Figure 3.3: The electromagnetic field with the frequency f = 5 GHz is guided by
a coaxial waveguide, which is terminated by an insulating Si:P sample with dimen-
sions 5 x 5 x 2 mm3 (cf. Fig. 5.2), which is mechanically pressed against the probe (cf.
Fig. 3.1). The reflected signal is measured by a VNA. The electric field distribution
inside the sample is shown at its oscillation maximum, for the case of the relative di-
electric permittivity ε1 =40 of the sample. While analytical expressions for the vector
field are discussed in Chapter 4, this picture is obtained by a computer simulation using
the commercial software CST.

thick metallic sample [77],

σ =
ω

i

(
µ0

Z2
S

− ε0

)

=
ω

i

(
µ0(ln(b/a))2

(2πZ)2
− ε0

)
. (3.6)

3.2 Formulation of the problem for semiconduc-

ting materials

For materials with nonmetallic conductivity, none of the simple assumptions valid
for metallic samples hold and both steps of the evaluation procedure, outlined in
the previous Section, contain additional challenge [15]:

1. For the calibration of the microwave line, the open standard, which com-
prises a complex capacitor with a known dielectric constant, is as significant
as the short and the load standards, when insulating samples are measured.
The dc assumption Zopen = ∞, corresponding via Eq. (B.4) to Γopen = 1,
is not sufficient at higher frequencies. The correct frequency dependence of
the reflection coefficient Γopen is indispensable, as demonstrated in Fig. 4.4
and described in Section 4.3 of the next Chapter.

2. Extraction of the material parameters (conductivity and dielectric function)
from the calibrated impedance data Z is a difficult task, if material is
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Figure 3.4: Frequency-dependent conductivity of a thick insulating Si:P sample with
the donor concentration of 65 % relative to the critical value at the MIT, measured at
1.6 K. In the first case (red line), the evaluation of the impedance data was done by
the surface impedance concept using Eq. (3.6), which leads to a wrong (far too strong)
frequency dependence of the conductivity σ1. By using the correct field distribution
(Chapter 4), a significantly different frequency dependence (blue line) is obtained from
the same raw data.
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an insulator. Attempts to apply the straightforward evaluation concepts,
appropriate for metals and described in Sec. 3.1, fail here:

• The surface impedance concept yields a far too strong frequency de-
pendence of the conductivity, as demonstrated in Fig. 3.4, namely a
cubic power law, while approximately linear dependence is expected
from the theory, cf. Chapter 2.

• Treatment of very thin Si:B samples (0.2 mm thick) on the insulat-
ing side of the metal-insulator transition like thin metallic samples
yields not a quite unexpected frequency dependence [78], but values
of the conductivity lie about three orders of magnitude above those
obtained in similar compounds with resonator techniques [43, 44] and
at higher frequencies by established optical techniques [32]-[34]. This
experiment by Lee and Stutzmann [78] is to our knowledge the only re-
ported predecessor measurement of the complex conductivity of an in-
sulating semiconductor with a broadband technique in the microwave
range and it was performed at very low temperatures of 0.08 K only
achievable in a dilution refrigerator.

The electromagnetic wave penetrates deep into a nonmetallic sample, be-
cause – in contrast to a metal – the real part of the dielectric permittivity ε
is positive for an insulator. With the change from the negative to the pos-
itive sign of the dielectric constant ε in the wave equation for the electric
field E oscillating with the frequency ω (Helmholtz equation),

∇2E +
ω2

c2
εE = 0 , (3.7)

(where c = 1/
√

µ0ε0 is the speed of light in the vacuum), the spacial so-
lution for the electric field changes from the exponentially decaying to the
oscillating function, i.e. the electric field solution propagates in space inside
the insulating material. Field decay in such a sample is only caused by the
finite dimensions of the electric contacts, cf. Fig. 3.3, and only to some
minor degree by the weak absorption through the relatively small imagi-
nary part of the dielectric function ε. In case of a 2.4 mm coaxial probe,
the electric field strength falls below 1 % of its original value at the sam-
ple surface only after penetrating more than 2.5 mm, for frequencies up to
5 GHz and for relative dielectric constant ε1 up to 50 (this comprises all our
reported Si:P samples, cf. Fig. 5.7). In other words, the penetration depth
of the electric field is of the order of the contact area dimensions (compare
Fig. 3.3) and rapidly increases with rising frequency f and permittivity ε1

(the latter is due to the reduction of the wavelength via λ∼ 1/
√
ε1). Thus,

in contrast to the metals, the spatial field distribution which forms inside
an insulating semiconductor is significantly different from that of a plane
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Figure 3.5: Schematic representation of a low-temperature experiment, that employs
a vector network analyzer (VNA) and a coaxial waveguide for a reflection coefficient
measurement (after [19, 20]). To exchange the sample, the cryostat can be removed
from the microwave insert without disconnecting the microwave connections. This is
necessary for a proper low-temperature calibration of the spectrometer.

wave, cf. Fig. 3.3, and it strongly depends on frequency, cf. Figs. 4.6 - 4.8.
Its knowledge is essential to extract the complex conductivity σ (or the
complex permittivity ε) of such a sample from its complex impedance Z.
Integral equations, implying the accurate solution for the electromagnetic
field in the insulating sample, cannot be directly solved for ε. Hence, ap-
proximations are required or simplified models need to be developed, with
a limited range of validity for the frequency and the dielectric constant.

In the next Chapter, we present our solution to the problem of extracting the
material parameters of a semiconducting sample from the complex impedance
data, which is already published in our paper [15].

3.3 Spectrometer based on a 4He-bath cryostat

The measurements of the complex microwave conductivity σ(ω, n, T ) of Si:P for
the present thesis, which are reported in Chapter 5 further below, were performed
at temperatures down to 1.1 K in a pumped 4He-bath cryostat. The original spec-
trometer, we had at our disposal at the beginning of the work presented here,
had been built and optimized for broadband microwave measurements at super-
conducting and metallic specimens at temperature down to 1.7 K by M. Scheffler
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Figure 3.6: Sketch of the microwave measurement insert for the setup, based on a
4He-bath cryostat, after [19, 20].

[20], after the one developed by Booth et al. [19] in the group of S. Anlage in
Maryland, USA. In the course of the work constituting the current thesis, that
spectrometer has been further developed and accomplished, in order to extend
the scope of the measurable materials to the insulating and semiconducting solids
and to reduce the base temperature from 1.7 K to 1.1 K, while the possible limit
achievable with a pumped 4He-bath cryostat is about 1 K [79].

A schematic representation of a low-temperature setup for broadband mi-
crowave spectroscopy is shown in Fig. 3.5. The microwave insert for measure-
ments in a standard four-wall glass 4He-bath cryostat2 (which can be seen as
a part of a 3He-bath cryostat in Fig. 3.8) is shown in Fig. 3.6. It allows a si-
multaneous reflection coefficient measurement of two samples in two electrically
independent microwave channels, provided by the two-port vector network ana-
lyzer HP 8510. To avoid thermal instabilities, due to the pumping process, and
for an independent control of the thermal link between the microwave insert and
the 4He liquid and vapour in the bath, the measurement insert is protected by a
thin-walled stainless steel cylinder, filled with a contact 4He gas, whose pressure is
controlled separately from the bath pressure. To perform a low-temperature cal-
ibration of the spectrometer, three independent measurement cycles with three
calibration standards need to be performed, cf. Appendix B.2. To maintain

2Compact and comprehensive information on the low-temperature measurement techniques
can be found, for instance, in the book by F. Pobell [79].



40 CHAPTER 3. BROADBAND MICROWAVE SPECTROSCOPY

the microwave properties of the whole transmission line, such as standing waves
stemming from all the partially reflecting interfaces, no microwave connections
are disconnected to exchange the sample between two low-temperature measure-
ments. Instead, the cryostat is carefully removed from the probe with a pneumatic
arrangement, as soon as the set up is heated up to room temperature [20].

The temperature is controlled by the Lakeshore 340 Temperature Controller,
using a temperature sensor [80] and a heater, thermally connected to the sam-
ple. The uncertainty of the temperature measurement depends on the considered
temperature range. In the low-temperature interval below 5 K, which is particu-
larly relevant for the current thesis, the uncertainty is below the limit set equal
to 50 mK by the computer program, which controls the measurement procedure.
Due to the constructional spacial separation between the temperature sensor and
the sample, cf. Fig. 3.6, a small spatial temperature gradient (which cannot be
avoided in a continuous automatized procedure of recording the microwave spec-
tra, where the setup is gradually heated up with the heater) leads to slightly
different values of temperature at the sample and at the sensor position. The
temperature calibration is simply done by using any dilutely doped Si:P sam-
ple with a strong temperature-resistance dependence to assign the corresponding
values obtained during the slow cool down (where no significant temperature dif-
ference is expected due to a good thermal connection between sample and sensor)
and during the subsequent automatized heating up.

The following modifications have been performed to accomplish the original
spectrometer in the course of the work, constituting the current thesis. The first
two modifications were done to reduce the base temperature from 1.7 K to 1.1 K.
The third technical improvement was needed to expand the range of measurable
materials from metals and superconductors to semiconductors and insulators, like
Si:P at low doping.

1. The stable and reproducible base temperature of 1.7 K of the original spec-
trometer has been reduced to a stable and reproducible base temperature of
1.1 K by exchanging the standard copper coaxial cable [81] against the spe-
cially manufactured coaxial cable, whose outer conductor is stainless steel
and the inner conductor is silver plated BeCu alloy [82]. This combina-
tion has been selected, as the best trade-off between the desired minimum
thermal conductivity λthermal, needed to minimize the thermal link of the
probe to the room temperature environment, and the good metallic con-
ductivity σmetal (low resistivity ρdc), needed to minimize the high electric
losses in the almost 1 m long microwave cable. Since both quantities are
proportional in a metal, λthermal ∼σmetal, the standard copper coaxial cable
has nice electric characteristics, as can be seen in Tab. 3.1, but transports
more heat from the environment into the cryostat than the cooling power
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of pumped liquid 4He can compensate to achieve temperatures below 1.7 K.

Table 3.1: Comparison of thermal and electrical characteristics of the metals, available
as the material of commercial coaxial cables suited for high-frequency application up
to 50 GHz. Sources of information are the NIST (National Institute of Standards and
Technology) and book by O.V. Lounasmaa [83]. The transmission power ratio P/P0 for
signal propagation along the 1 m long cable and back, based on the typical attenuation
values from the Micro-Coax Catalog [84], are listed for the standard commercial coaxial
cables with the same material used for the inner and the outer conductor, respectively.

stainless steel BeCu Cu

property (SS 304) (Alloy 25) (pure commercial)

electrical resistivity
ρdc(300 K) 72 7.81 1.71
(µΩ cm)

thermal conductivity

λthermal(
W
Km) 0.15 ·T 0.45 ·T 150 ·T

at low T

relative power P/P0,
for bidirectional 0.04 0.16 0.22
transmission, (UT 85-SS) (UT 85-B-B) (UT 85C-TP-LL)

20 GHz, 1 m length

A critical comparison of the standard coaxial cables [81, 85, 86], with the
same kind of material used for the center and the outer conductor, respec-
tively, is shown in Tab. 3.1. Each of those cables exhibits too bad char-
acteristics for our goal, either for the electrical or for the thermal aspect.
Thus, we have selected and specially ordered a modified model [82]. Rea-
soning, that the center conductor area (proportional to (0.51 mm)2) only
amounts to 0.13 of the outer conductor area (proportional to (2.2 mm)2–
(1.68 mm)2), the contribution of the former to the thermal transport is
10 times less in comparison to the latter. At the same time, the center
conductor is by far the major contributor to the electrical attenuation, as
can readily be calculated as well. Thus, the most judicious combination
to minimize thermal link by preserving tolerable electric conduction, is the
least thermally conducting material (stainless steel) for the outer conductor
with the medium thermally and electrically conducting material (BeCu) for
the center conductor.
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Once the outer conductor of the coaxial cable was chosen to be made of
stainless steel instead of copper, it turned out to be quite a challenge to
solder microwave connectors to it. The biggest problem is that stainless
steel is not wetted by tin; the second (and minor) problem is that steel is
very hard to cut, especially if one does it by hand for precision reasons,
required by a microwave spectrometer construction. The standard method
to assembly and solder a microwave connector to a coaxial cable is provided
in detail, with all the necessary mechanical equipment, by the manufacturer
of the microwave components [87]; but it only applies to the standard tin-
plated copper coax [81]. In the case of stainless steel, we needed to meet all
the precision requirements even more strictly, since due to the much higher
electrical losses in comparison to the copper coax, the calibration of the
microwave line is much more sensitive to any deviation from the perfect
electric connection between the microwave components. To this end, we
have [88] developed an individual tailoring and soldering technique for the
stainless steel coaxial cable, which involves plating of the cable surface with
the special solder and flux [89]. The result can be seen at the very low base
temperature of 1.1 K, as well as at the quality of the Si:P spectra presented
in this work, all of which were obtained after completing the technical
modification of the setup, described here.

2. A new glass 4He-cryostat has been build, with better characteristics as the
old one at the original setup. The principal structure of the new cryostat
staying the same as shown in Fig. 3.8, the depth of the 4He-bath is increased
by 14 cm, and the insulation is improved compared to the old one. Without
increasing the length of the microwave insert, we make use of the additional
depth and the lower base temperature at the bottom of the new cryostat
by employing a cooling finger, made of copper and thermally connected to
the insert.

3. An additional mechanical fixing arrangement, made of aluminum, has been
constructed and built [90] to fix the microwave insert for the time the sample
is exchanged. After the cryostat and the contact gas cylinder are removed,
the microwave insert is hanging over 70 cm down free in space and can easily
be deflected by several angular degrees, if inadvertently pushed from the
side. The metallic samples, measured with the original spectrometer by our
predecessors, allowed an in situ calibration by using the superconducting
phase as a short standard, while the other two calibration standards had
a vanishingly small influence on the resulting spectra. In contrast to that,
all three calibration measurements exhibit a significant contribution to the
result of a measurement of an insulating material like Si:P. Thus, in the
current project, the requirement for the stability of the microwave line
between the independent low-temperature measurements became crucial.
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Figure 3.7: Test measurement of a thin metallic NiCr film, 25 nm thick, at 1.1 K.

Analyzing and testing the residual (i.e not completely eliminated by the
calibration) standing waves3 present in the final spectra, we found the origin
of the problem to be of mechanical nature and fixed it.

To ascertain the proper function of the spectrometer, various tests have been
performed close to the reported measurements. The most important ones are the
following:

• The most sensitive test to detect any electrical problems in the microwave
line (like lost calibration quality or disconnected contacts) is the measure-
ment of thin (25 nm thick) metallic NiCr films, whose real-valued impedance
of 6 to 8 Ω is frequency-independent in the microwave range. An example
of a NiCr film spectrum at 1.1 K is shown in Fig. 3.7. Since we also use
the NiCr films as a load calibration standard, as described in Sec. 3.1, this
test is performed on a regular basis within several days from each sample
measurement.

• In order to exclude any self-heating effect in the semiconducting insulating
Si:P samples, we tested the power dependence of the spectra at 1.1 K and at
4.2 K. Measuring with the source power of -10 dBm, which corresponds to
0.1 mW, we irradiate the sample with the microwave power equal to 20 µW,
following from the known electrical losses in the 1 m long coaxial cable. Self-
heating effects, if present, would depend on the microwave power. Varying
the source power by the factor of 2 below and above the value 0.1 mW

3Any pair of microwave connections in the coaxial waveguide acts as a bad Fabry-Perot
resonator due to inevitable partial reflection of the electromagnetic wave at each interface.
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Figure 3.8: Principal structure of the old 3He-bath cryostat [91], reactivated in this
work to set up a new broadband microwave spectrometer, as described in Sec. 3.4.
A stainless steel 3He-vessel is immersed into a four-wall glass 4He-cryostat. The con-
densation of the 3He-gas into the 3He-bath is achieved by pumping on the 4He-bath,
until the base temperature of approximately 1 K is reached at the 1 K stage. The new
microwave insert, constructed for this 3He-cryostat, is depicted in Fig. 3.9.
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(corresponding to -13 dBm and -7 dBm), we have detected no change in
the measured reflection coefficient spectra for all the Si:P samples reported.

3.4 Spectrometer based on a 3He-bath cryostat

Parallel to the work at the 4He-setup, described in the previous Section, a devel-
opment of a new microwave spectrometer has been started in the course of the
work presented here, on the basis of an old 3He-bath cryostat, which was built
in the works of M. Welte [91] and F. Maier [92] and is schematically depicted
in Fig. 3.8. Our ultimate goal with this apparatus is to set up a broadband mi-
crowave spectrometer, running in a similar way to the one based on the pumped
4He-cryostat, but with a significantly lower base temperature. It turned out to
be 450 mK with the equipment, I set up in the reported work, which is quite sat-
isfactory, considering the theoretical limit of 0.3 K for this kind of cryostat [83]
and the reported base temperature of 0.55 K by our predecessors at that partic-
ular cryostat [92]. The motivation came for several reasons. The fruitful results,
that could be achieved with the 4He-spectrometer in a broad scope of materials
from superconductors to insulating semiconductors, encouraged us to expand the
project to a second setup with the following additional features. First, studying
the low-energy phenomena like the electronic correlation effects or the critical
behavior close to the zero-temperature metal-insulator transition, it is desirable
to measure at temperatures as low as possible. The theoretical quantum limit
kBT % !ω can be strictly reached in the GHz range only at temperatures below
1 K, since 1 K corresponds to 20 GHz. Second, there is a constructional possi-
bility to apply a magnetic field at the 3He-setup, which allows to further expand
the parameter space of our broadband microwave spectroscopic technique (cf.
Chapter 6).

In contrast to the compact and mobile 4He-cryostat at the setup, described
in the previous Section, the 3He-cryostat as a whole cannot be moved away from
the measurement insert. In addition to the pumped glass 4He-bath, it contains
a pumped 3He-vessel (Fig. 3.8), which is made of stainless steel and is a part of
a spacious 3He-cycle with a separate pump system and two 3He-tanks. Still, a
possibility to exchange the sample between the low-temperature measurements
without disconnecting the microwave connections, as in Fig. 3.5, is crucial for the
extremely sensitive calibration procedure of a broadband spectrometer, as argued
in the previous Section. Additional electric losses in a much longer (1.5 m instead
of 1 m at the 4He-setup) microwave line, corresponding to the size 3He-cryostat,
make this requirement even more urgent. Thus, we constructed and built [88]
a mechanical equipment, which can move the microwave measurement insert to-
gether with the vector network analyzer out of the stationary 3He-cryostat and
back into it, without disconnecting the microwave line, i.e. the new setup is also
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Figure 3.9: Sketch of the microwave measurement insert, designed and built in the
course of the current thesis as a basis of a new broadband microwave spectrometer,
employing the 3He-bath cryostat shown in Fig. 3.8. To the left, the probe head is
shown again, enlarged by a factor of 2 and rotated around the insert’s axis by π/2.

consistent with the Fig. 3.5.

The microwave insert for the new 3He-setup was developed in the present work
with a huge support of the mechanical and low-temperature workshops foremen
G. Dietrich and J. Maurer [93, 94]. The principal structure and elements are
depicted in Fig. 3.9. To the left, the probe head is shown once again, enlarged
and rotated around the insert’s axis by π/2. In spite of an extreme scarceness of
the space, imposed by the dimensions of the existing 3He-vessel shown in Fig. 3.8,
we decided to use a thin-walled stainless steel cylinder filled with a 3He contact
gas, to protect the probe of thermal instabilities due to the varying level of the
liquid 3He and to have a pressure control independent from the 3He-bath. The
contact gas cylinder is shown in Fig. 3.9 only above the 1 K copper link plate.
The 1 K copper link plate is build of massive copper and is pressed against the
funnel-shaped 1 K stage of the 3He-vessel, shown in Fig. 3.8. This is the last and
the coldest thermal link of the 3He-vessel to the 4He-bath, below that funnel a
vacuum section thermally disconnects the 3He-bath from the 4He-bath. The lat-
ter is constantly held at its base temperature of approximately 1 K by pumping



3.4. SPECTROMETER BASED ON A 3HE-BATH CRYOSTAT 47

on the 4He-liquid, while the former is further cooled down by pumping on the
condensed 3He. Inside the 4He-bath, the 1 K stage is thermally connected to the
bottom of the 4He-cryostat by a copper coat (not shown in Fig. 3.8) to ensure it
is constantly at 1 K.

The thermal link of all the cables and wires of the measurement insert to the
1 K stage is essential for cooling the insert with 3He. Due to the linear depen-
dence of metals thermal conductivity λthermal on temperature, cf. Tab. 3.1, the
temperature inside a coaxial cable or a wire drops in a cryostat not linearly with
distance, but rather as a square root function of the distance x from the cold end.
As a result, without extra thermal sinking on the cables way down to the bottom
of the cryostat, its temperature at the level of the 1 K plate would be as high as
117 K (calculation performed for our concrete case of the stainless steel coaxial
cable [82] and the dimensions of our 3He-cryostat). The cooling power of the
3He-evaporation would be far too weak to cool down an insert with such a huge
thermal transport from the outside. Thus, careful thermal sinking of all the cables
and wires by connection to the 4He-bath is indispensable. As depicted in Fig. 3.9,
it is done in the new microwave insert by well-known techniques [95], using bulk
copper, coper rods, copper braid and copper stripes, as well as elastic stripes [96].

Not shown in Fig. 3.9 is the part of the contact gas cylinder, which is put
on the insert from below and screwed to the 1 K copper plate, using a low-
temperature elastic metallic sealing [97]. To facilitate the cooling of the sample
by the liquid 3He, the lower part of the contact gas cylinder (30 mm high), which
is immersed into the 3He-liquid when all of the 3He-gas is condensed, is made of
copper. The microwave components employed at low temperature are listed in
Refs. [82, 87], additional parts used at the room-temperature end of the coaxial
cable are listed in Refs. [81, 98].

For precise, accurate, low noise and low excitation temperature measurement
and control at temperatures down to 0.3 K, a new 370 AC Resistance Bridge
[99] was provided by the DFG (Deutsche Forschungsgemeinschaft). This device
allows up to 16 temperature sensors being scanned, while we necessarily need
at least three at that stage of our experiment. Two Cernox sensors, suited for
3He-temperatures down to 0.3 K [100], are symmetrically placed in good thermal
connection (by bulk copper) to the sample, as depicted in Fig. 3.9. One of those
sensors is commercially calibrated by LakeShore for temperatures down to 0.3 K
and is employed to calibrate the second sensor. The thermally identical posi-
tioning of two identical temperature sensors provides a perfect control of possible
instabilities or damages in the temperature measurement equipment. One further
sensor [80] is employed to control the temperature of the 4He-bath at the stage
of the 1 K copper heat sink plate.
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Having developed and built up the described mechanical movement mecha-
nism and the microwave measurement insert, with the support of the mechanical
and the low-temperature workshops [88, 93, 94], I brought the 3He-setup up to
the final thermal tests with the new insert. At that stage, my successor K. Stein-
berg assisted me with the final preparations like connecting the cables and wires,
as well as with the cooling tests, in order to take over the setup and ultimately
bring it to the broadband microwave measurements later on her own. The first
thermal tests with the new insert, provided with all the components necessary
for the future microwave spectroscopic measurement including a sample, resulted
in a stable and reproducible base temperature of 450 mK, which could be held
constant for over 10 minutes.



Chapter 4

Self-consistent evaluation

procedure, developed for

broadband complex conductivity

measurements of semiconducting

materials

In this Chapter, we present our solution to the problem of extracting the material
parameters - the electric conductivity σ1 and the dielectric permittivity ε1, both
combined in a complex quantity σ (alternatively, ε) via the Eq. (2.16), - from the
broadband microwave measurement of the complex impedance Z of an insulating
semiconductor. This analysis method has already been published in our article
in the Journal of Applied Physics [15]. The corresponding measurement tech-
nique, the comparatively simple data evaluation for metallic samples and severe
problems, which arise for semiconducting materials under test, were described in
the previous Chapter 3. Our experimental results for the doped semiconductor
Si:P will be discussed in the next Chapter 5; they are also already published in
our article in the Physica Status Solidi C [16].

We first suggest in Sec. 4.1 a simple static model for the electric current
distribution inside a semiconducting sample, which proves to yield a good ap-
proximation to the rigorous solution in the low-frequency range up to 1 GHz.
In Sec. 4.2, we make use of the results by Levine and Papas [53] and Misra [25]
to relate the complex impedance Z of a semiconducting sample to its complex
permittivity ε. In the subsequent Sec. 4.3, the rigorous electromagnetic field
distribution from Sec. 4.2 is used to determine the frequency dependence of the
reflection coefficient Γopen for the open standard, which is essential in the cali-
bration procedure of an insulating sample, as was pointed out in the Sec. 3.2 of
the previous Chapter.

49
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4.1 Our static model for the relation between

the complex impedance and the complex

conductivity

As a first approach to extract the complex conductivity σ of a low-loss semicon-
ducting sample from its impedance Z, we developed a simple static model for the
current distribution in a sample, based on the following assumptions [15]:

1. The response is local,
'j('r) = σ · 'E('r) , (4.1)

where 'j is the electric current density and 'E is the electric field vector. This
assumption implies that the electric field does not significantly vary at the
distances of the mean free path 0, which in the case of hopping transport
is the mean separation of the hopping partners.

2. The dependence of the electric field 'E(z, ρ) on the cylindrical coordinates
z and ρ, as in Fig. 4.1, can be separately accounted for. There is no de-
pendence on the angular coordinate ϕ due to the radial symmetry of the
problem.

3. Inside the coaxial line the principal TEM mode is excited; thus, only the
radial component of the electric field E(ρ) exists. The Gauss theorem yields
E(ρ) = const/ρ. With the voltage U between the mask contacts of radii a
and b (Fig. 4.1), it follows

E(ρ) =
U

ln(b/a)
·
1

ρ
. (4.2)

4. As far as the z dependence of the electric field strength is concerned, we
assume that the field is concentrated at the surface and gets weaker for
further depth because the path length for the corresponding current element
dI increases. To calculate the total current flowing through a sample, we
have chosen the cross section of the sample at the mid-distance between
the Al contacts (Fig. 4.2). The single current line is approximated by a
triangle shape with the apex at the mid-distance cross section. Hence, we
consider each infinitesimal current line at its lowest point designated by the
z coordinate and assume for the corresponding electric field E(ρ, z) to be
reciprocally proportional to the length of the current line in order to keep
the voltage U constant,

E(ρ, z) = E(ρ) ·
l(0)

l(z)
, (4.3)

where l(z) = l(0)
√

1 + [2z/l(0)]2.
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Figure 4.1: Sketch of an insulating semiconducting sample with the aluminum contact
layer (light grey) on top. 2a = 0.6 mm, 2b= 1.75 mm, corresponding to a 2.4 mm
microwave coaxial adapter, c= 5 mm, d= 2 mm.

Figure 4.2: Geometry of the current distribution in a semiconducting sample of thick-
ness d, with metallic contacts at distance l(0)=(b − a) (cf. Fig. 4.1), as assumed in the
static model.



52 CHAPTER 4. ANALYSIS, DEVELOPED FOR SEMICONDUCTORS

Now that E(ρ, z) is constructed, we can calculate the total current I flowing
through a semiconducting sample using Eqs. (4.1)-(4.3). The integral is taken
over the entire mid-distance cross section (see Fig. 4.2) with the infinitesimal
element dq = dz/

√
1 + [2z/l(0)]2,

dI(ρ, z) = j('r) · ρ dϕ dq = σ · E(ρ, z) · ρ dϕ dq

=
σ · U

ln(b/a)
·

dϕ dz

1 + [2z/l(0)]2
,

I =

∫ 2π

0

∫ d

0

dI(ρ, z) =
σ · l(0) πU

ln(b/a)
arctan

[
2d

l(0)

]
,

where l(0)= b− a (Fig. 4.2). Thus, we have obtained a relation between the
complex impedance Z = U/I at the sample surface and the complex conductivity
σ,

σ =
1

Z
·

ln(b/a)

π(b − a) arctan[2d/(b − a)]
. (4.4)

In the limiting case of a thin conducting film, there is a simple geometrical
relation between the conductivity and the impedance because the z dependence
of the electric field and the boundary effects can be neglected. This allows us to
check the above formula in the limit of d/l(0)→ 0, where we recover the Eq. (3.3).

The static model has been applied to analyze frequency-dependent impedance
measurements of Si:P at low temperatures. As demonstrated by the dash-dotted
lines in Figs. 4.3 and 4.4, the results of Eq. (4.4) agree very well with the rigorous
solution outlined in the following sections. Deviations can be noticed only above
1 GHz in the dielectric constant.

4.2 Rigorous treatment of the relation between

the complex impedance and the complex

permittivity of a semiconducting sample

4.2.1 General considerations

A large variety of methods has been developed in the past to extract the properties
of low-loss and lossy dielectrics from a reflection coefficient measurement in the
radio-frequency and microwave range. Simple ingenious models and analytical
solutions, which are valid in a limited parameter range, have been suggested;
time-consuming but arbitrarily precise numerical approaches have been treated
depending on the specific practical goals. A comprehensive list of references is
available in review articles such as Ref. [31].

In studies of soft and liquid materials, the coaxial probe was frequently mo-
deled as an equivalent circuit consisting of several fringe-field capacitors in the
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Figure 4.3: Frequency-dependent conductivity of Si:P samples with relative donor
concentrations n/nc = 0.56 and 0.9 (which correspond to the limiting doping values
reported in this thesis, cf. Tab. 5.1) at T = 1.1 K, measured with the spectrometer de-
scribed in Sec. 3.3. The solid colored line (red for n/nc = 0.56 and blue for n/nc =0.9)
represents in either case the conductivity obtained by our complete evaluation proce-
dure, presented in Secs. 4.2 and 4.3. For comparison, the dash-dotted lines are plotted
for either doping value, which stem from evaluating the complex impedance data using
the formula (4.4) of the static model. To test the influence of the open calibration stan-
dard, the dashed lines are plotted for either doping value, obtained from the calibration
based on the primitive assumption Γopen = 1 for the open calibration standard. One
can see that, concerning the conductivity, all the three lines for either concentration
n/nc (nc is the concentration value at the zero-temperature metal-insulator transition
nc = 3.5 × 1018 cm−3) are virtually identical, with only slight effects above 1 GHz.
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Figure 4.4: Typical permittivity spectra of Si:P samples with limiting doping values
of 0.56 and 0.9 relative to the donor concentration at the metal-insulator transition
nc = 3.5 × 1018 cm−3 (cf. Tab. 5.1), measured at T = 1.1 K with the spectrometer
described in Sec. 3.3. The solid lines (red for n/nc = 0.56 and blue for n/nc =0.9)
correspond to our complete evaluation procedure described in Secs. 4.2 and 4.3. For
comparison, the dash-dotted lines are plotted for either doping value, which stem from
evaluating the complex impedance data using the formula (4.4) of the static model.
To test the influence of the open calibration standard, the dashed lines are plotted for
either doping value, obtained from the calibration based on the primitive assumption
Γopen = 1 for the open calibration standard. Above 1 GHz, the spectra obtained by
the simple static model start to deviate from the rigorously evaluated data, this devi-
ation becoming stronger with growing frequency. Assuming the primitive (frequency-
independent) dc value for the open calibration standard homogeneously shifts the ε1
spectra to significantly lower values, with respect to the rigorous evaluation of the data.
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lumped-element approach [21, 26, 28, 29]. In Ref. [26], a comprehensive, detailed
and critical revision of this method can be found. The most striking point is the
strong dependence of the model capacitances on the permittivity of the material
that terminates the coaxial line; thus, the approach is limited to specimens with
dielectric properties close to those of the reference materials available.

Here, we consider a convenient analytical way to extract the complex con-
ductivity σ (or, equivalently by Eq. (2.16), the complex permittivity ε) from the
sample impedance Z based on the works of Levine and Papas [53] and Misra
[25]. The method is valid at least up to 5 GHz for the 2.4 mm probe and relative
dielectric constant values up to 50; an extension to higher frequencies is possible
with certain numerical procedures added. As an intermediate result, there is
an integral expression for the sample admittance Y =1/Z as a function of the
material dielectric function ε, which is well suited to determine the frequency
dependence of the open calibration standard in a closed manner (cf. Secs. 3.2
and 4.3). The theoretical expressions for the electromagnetic field on both sides
of the sensor aperture, found in the Ref. [53] for the case of the free space, are
rewritten for the case of a medium with an arbitrary complex permittivity ε in
the sample half-space. For the parameter range considered here [101], we regard
the variational principle applied by Levine and Papas as preferable to the precise
but time-consuming numerical method of point-matching proposed by Mosig et
al. [22] and Grant et al. [26].

4.2.2 Solution in the form of an integral equation

In the following, the coaxial waveguide with a center conductor of radius a and an
outer conductor of radius b is terminated by an infinite-plane conducting flange
at z =0 (Fig. 4.5). By choosing the dimensions a and b of the coaxial line to
be small enough, the assumption of a single propagating mode (the principal
TEM mode) in the coaxial region is justified in the covered frequency range.
This system is amenable to a detailed theoretical analysis [53] that yields the
electromagnetic field distribution in the half-space z > 0 and a relation between
the aperture admittance Y (current-to-voltage ratio at z =0) and the complex
wave vector 'k of the free space z > 0.

We may assume an insulating sample to fill the half-space z > 0 by choosing
its finite dimensions to be large enough for the electromagnetic field strength, so
that the sample boundaries are negligible (cf. Sec. 3.2 and Ref. [102]). The results
for the free space found in Ref. [53], then, transform into a relation between the
admittance Y =1/Z, measured at the sample surface z =0 in our experiment, and
the complex dielectric function ε of the sample. This relation (which is crucial for
our evaluation method and with whose derivation we a concerned in the current
Section) has the form of an integral equation with respect to the complex wave
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Figure 4.5: The plane z = 0 constitutes the interface between the coaxial waveguide
(z < 0) and the sample space (z > 0), shown in Fig. 4.1. It serves as a reference plane,
at which the reflection coefficient Γ, the impedance Z, and the admittance Y = 1/Z of
the sample are defined.

vector 'k, that contains the searched complex dielectric function ε 1,2,

Y

Y0
=

−ik2

πkc ln(b/a)

∫ b

a

∫ b

a

∫ π

0

cosϕ
exp(ikr)

r
dϕ dρ dρ ′, (4.5)

where

r = (ρ2 + ρ ′2 − 2ρρ ′ cosϕ)1/2 , (4.6)

k2 = ω2µ0ε0ε , (4.7)

and kc and εc are, respectively, the wave vector and the dielectric constant of the
insulation in the coaxial line with the characteristic admittance Y0 =1/Z0, given
by the Eq. (B.3).

For the sake of completeness of the present analysis, as well as due to the
different sign conventions used in the relevant sources (cf. Ref. [103]) and the
free-space case alone treated in the basic work by Levine and Papas [53], we
briefly outline the four steps leading to the central equation (4.5), following in
principle the Ref. [53].

1The dielectric function ε is defined relative to the vacuum permittivity ε0 throughout this
thesis.

2Throughout this thesis, a harmonic time dependence exp(−iωt) is assumed for the electro-
magnetic field, cf. Ref. [103].
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Due to the radial symmetry of the waveguide and of the principal TEM mode,
the only non-vanishing electromagnetic field components in the cylindrical coor-
dinates are Hϕ and Eρ. The magnetic field component Hϕ serves as a basic scalar
function, and Eρ is readily obtained using the Maxwell equations. Current and
voltage in any cross section of the coaxial guide are given, respectively, by the
line integrals of Hϕ around the center conductor and of Eρ between inner and
outer conductors.

First, the field component Hϕ(ρ, z) is constructed separately for the coaxial
region z < 0 and in the sample space z > 0, the latter as an integral expression in
terms of the aperture electric field Eρ(ρ, 0). Next, one demands the continuity
of those expressions for Hϕ(ρ, z) from both sides at the interface z =0 and, thus,
obtains an integral equation for the aperture field Eρ(ρ, 0). In the third step, the
integral equation is rewritten in order to introduce current I and voltage U into
it, and results in a variational expression for the aperture (or sample) admittance
Y = I/U . As the last step, the variational principle is applied, i.e. an approximate
solution for Eρ(ρ, 0) is inserted into the equation while the corresponding change
in Y is kept small.

In the coaxial region, a≤ ρ≤ b, z ≤ 0, the expression for H(−)
ϕ (ρ, z) is

H(−)
ϕ (ρ, z) =

A0

ρ
exp(ikcz) + Γ

A0

ρ
exp(−ikcz)

+
∞∑

n=1

AnRn(ρ) exp(γnz) , (4.8)

kc = ω
√

µ0ε0εc . (4.9)

The first two terms of Eq. (4.8) represent the incident and the reflected waves,
and Γ is the reflection coefficient at the sample surface. The infinite series de-
scribes the exponentially damped higher order modes (γn > 0, z≤ 0). The radial
functions Rn(ρ) describe the radial dependence of the higher order modes of
the magnetic field, the concrete expressions for them are available in Ref. [104].
Together with R0(ρ)= 1/ρ, the functions Rn(ρ) constitute a complete orthonor-
mal basis {Rn(ρ)} of the space of twice differentiable functions in the aperture
a< ρ<b, shown in Fig. 4.5. This property is being exploited once more in the
current Section, further below. The coefficients A0, An are readily obtained in
terms of the aperture electric field Eρ(ρ, 0) by using the orthonormality of the
radial functions {Rn(ρ)} (see Refs. [53] and [104] for details),

A0 =
ωε0εc

kc
·

∫ b

a Eρ(ρ, 0)dρ

(1 − Γ) ln(b/a)
, (4.10)

An =
iωε0εc

γn

∫ b

a

Eρ(ρ, 0)Rn(ρ)dρ . (4.11)
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Figure 4.6: Spatial distribution of the electric field amplitude at f = 5 GHz in a Si:P
sample with dimensions shown in Fig. 4.1 and dielectric permittivity ε1 = 40, which
terminates a 2.4 mm microwave coaxial line. Computer simulation.

Figure 4.7: Spatial distribution of the electric field amplitude at f = 10 GHz in a Si:P
sample with dimensions shown in Fig. 4.1 and dielectric permittivity ε1 = 40, which
terminats a 2.4 mm microwave coaxial line. Computer simulation.

Figure 4.8: Spatial distribution of the electric field amplitude at f = 20 GHz in a Si:P
sample with dimensions shown in Fig. 4.1 and dielectric permittivity ε1 = 40, which
terminates a 2.4 mm microwave coaxial line. Computer simulation.
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In the sample half-space, z ≥ 0, the integral expression for H(+)
ϕ (ρ, z) is derived

by the Green’s function method,

H(+)
ϕ (ρ, z) =

−iωε0ε

π

∫ b

a

∫ π

0

Eρ(ρ
′, 0) ρ′ cosϕ

exp(ikr(z))

r(z)
dϕ dρ ′ ,

r(z) = (ρ2 + ρ′2 − 2ρρ′ cosϕ+ z2)1/2 . (4.12)

By setting H(−)
ϕ (ρ, 0)=H(+)

ϕ (ρ, 0), the continuity of Hϕ(ρ, z) in the aperture is
assured, cf. Figs. 4.6 - 4.8. The quantities of physical interest - current, voltage
and, finally, admittance Y , - are introduced into the resulting integral equation.
This is done by multiplying it with ρEρ(ρ, 0), integrating from ρ= a to ρ= b, and
normalizing the whole expression,

Y

Y0
=

−ik2 ln(b/a)

kc [
∫ b

a Eρ(ρ, 0)dρ]2

[
∞∑

n=1

1

γn

[∫ b

a

Eρ(ρ, 0)Rn(ρ)ρ dρ

]2

+
1

π

∫ b

a

∫ b

a

∫ π

0

cosϕ ρEρ(ρ, 0)ρ′Eρ(ρ
′, 0)

exp(ikr)

r
dϕ dρ dρ′

]
. (4.13)

For the equation (4.13), the variational principle for Y is applicable, cf. Ref. [53],
because it is stationary with respect to the first variation of the aperture field
Eρ(ρ, 0). In other words, the errors in Y are of the order of the squares of the er-
rors in Eρ(ρ, 0). Thus, in our case, already the simplest approximation of Eρ(ρ, 0)
in Eq. (4.13) by the leading term R0(ρ)= 1/ρ in the expansion by the orthonor-
mal basis {Rn(ρ)} suffices. Upon the corresponding insertion, each integral of the
infinite series vanishes due to the orthogonality of the functions Rn with n> 0
and n=0. The remaining expression is the Eq. (4.5).

The validity of the variational approximation [Eq. (4.5)] has been proven in
Ref. [53] in the parameter ranges 0<ka≤ 2 and 1.57≤ b/a≤ 4 by comparison
with experimental results. To obtain low-temperature microwave data on Si:P
with widely varying phosphorus concentration n, we employ a coaxial probe of
dimensions 2b=1.75 mm and 2a=0.6 mm, cf. Fig. 4.1. The maximum frequency
range spans from 45 MHz to 40 GHz (limited by the source and test set of the
network analyzer HP 8510) and the relative dielectric permittivity ε1 reaches from
20 till 50, cf. Fig. 5.7. This corresponds to 0.001≤ ka≤ 1.76 and b/a=2.9 and
lies within the tested parameter range. The electric field distribution in a Si:P
sample with ε1 =40 and dimensions as stated above is depicted using a computer
simulation technology (CST) software at frequency values f =5 GHz, 10 GHz
and 20 GHz in Figs. 3.3, 4.6 - 4.8. Increase of the dielectric function affects the
field distribution in a similar way as raising the microwave frequency, due to the
wavelength dependence inside the sample via λ∼ 1/

√
ε1. Dependence of the field

distribution on ε1 is, thus, not extra shown here.
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Figure 4.9: Relative contribution of the radiation term in Eq. (4.15), determined from
the measured Si:P spectra at T = 1.1 K.

4.2.3 Solution of the inverse problem

The inverse problem of extracting ε from the measured impedance Z =1/Y by
using the Eq. (4.5) has been solved in the quasi-static approximation by Misra
[25] as follows3. For low frequencies, the exponential function in Eq. (4.5) can be
approximated by the first four terms of its series expansion,

Y ≈
−i2ωε0ε

[ln(b/a)]2

∫ b

a

∫ b

a

∫ π

0

[
cosϕ

r
+ ik cosϕ−

k2r

2
cosϕ

−i
k3r2

6
cosϕ

]
dϕ dρ dρ ′ . (4.14)

The second term of Eq. (4.14) vanishes upon integration, and the last one is
readily integrated; the integrals corresponding to the first and the third terms
need to be numerically evaluated,

Y ≈
−i2ωε0ε

[ln(b/a)]2

[
I1 −

k2I3

2

]
+

k3πωε0ε

12

[
b2 − a2

ln(b/a)

]2

, (4.15)

where

I1 =

∫ b

a

∫ b

a

∫ π

0

cosϕ

(ρ2 + ρ ′2 − 2ρρ ′ cosϕ)1/2
dϕ dρ dρ ′

3For the different choice of sign convention see Appendix A and Ref. [103].
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Table 4.1: Geometrical integrals for the coaxial probe dimensions 2a = 0.6 mm and
2b =1.75 mm, numerically determined using MATLAB.

I1 (mm) I3 (mm3) I4 (mm4) I5 (mm5)

0.9084 -0.2100 -(π/4)0.4001 -0.4047

and

I3 =

∫ b

a

∫ b

a

∫ π

0

cosϕ (ρ2 + ρ ′2 − 2ρρ ′ cosϕ)1/2dϕ dρ dρ ′ .

In our special case, the relative contribution of the last term in Eq. (4.15) to
Y is below 2% up to 5 GHz for all the reported Si:P samples (cf. Fig. 4.9 and
Tab. 5.1) and the formula, thus, reduces to a quadratic equation for ε,

1

Z
= Y =

−i2ωε0ε

[ln(b/a)]2

[
I1 −

ω2µ0I3ε0ε

2

]
. (4.16)

The values of the geometrical integrals, numerically determined using MATLAB
for the special case of the coaxial probe with the inner and outer conductor
diameters 2a=0.6 mm and 2b=1.75 mm are listed in Tab. 4.1. It should be
mentioned that the integrand of I1 diverges at ρ = ρ ′, ϕ = 0. That integral
was numerically evaluated as the limit of a series of integrals {I1, n} which lower
bounds ϕn converge to ϕ = 0.

4.3 Our expression for the frequency dependence

of the open calibration standard

The frequency dependence of the open calibration standard with a known di-
electric function ε can be obtained as follows [15]. The expression (4.5) of the
admittance Y as a function of ε correctly describes the open standard admit-
tance as long as the effect of the finite sample dimensions is negligible. By using
a Teflon block of the form shown in Fig. 4.1 (the same as for the Si:P samples)
and assuming its dielectric function to be ε=2.03(1 + i 0.0002) in the gigahertz
frequency range, as in Ref. [105], the maximum electric field strength at the depth
of 2 mm turns out to be far below 0.01 of its value at the sample surface for fre-
quencies up to 10 GHz, so that the secondary reflections at the back side of the
open standard can be neglected here.

To obtain a closed expression Y open(ω) from the integral equation (4.5), the
series expansion of the exponential function can be used as in the previous section.
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In contrast to the inverse problem discussed in Sec. 4.2, there is no need to spare
at the accuracy early truncating the series here. The relative contributions of the
terms, subsequent to the fifth term, are far below 10−4 up to 10 GHz. Thus, the
ultimate expression we use is,

Y open ≈
−i2ωε0ε

[ln(b/a)]2

[
I1 −

1

2
k2I3 −

i

6
k3I4 +

1

24
k4I5

]
, (4.17)

where

I4 = −
π

4
(b2 − a2)2 ,

I5 =

∫ b

a

∫ b

a

∫ π

0

cosϕ (ρ2 + ρ ′2 − 2ρρ ′ cosϕ)3/2dϕ dρ dρ ′.

and k is defined in Eq. (4.7). The values of the geometrical integrals for the
2.4 mm coaxial probe are listed in Table 4.1.

The frequency-dependent reflection coefficient Γopen of the open calibration
standard follows by using Eq. (3.2),

Γopen =
Zopen − Z0

Zopen + Z0
=

Y0 − Y open

Y0 + Y open
. (4.18)

The effect of the frequency dependence of Γopen on the conductivity σ1 and per-
mittivity ε1 spectra compared to the dc assumption Γopen =1 is demonstrated in
Figs. 4.3 and 4.4 on the example of two Si:P samples with donor concentrations
n/nc of 0.56 and 0.9 relative to the concentration value at the metal-insulator
transition, nc = 3.5 × 1018 cm−3. For samples with larger dielectric constant ε1

and higher losses σ1, as n/nc rises, the influence of this correction slightly de-
creases. This is also what one would expect when the electric properties of the
material under investigation approach the metallic characteristics.



Chapter 5

Experimental results for the

frequency-dependent hopping

transport in Si:P in the

zero-phonon regime and at

elevated temperature, with a

discussion

In this Chapter we describe our results for the dynamic transport in Si:P at
effectively zero temperature in the insulating regime, where the underlying elec-
tronic states provided by the donor impurities are assumed strongly localized,
as described in Sec. 2.1 of the Theory Chapter. Thermal effects, which set in
when the temperature is elevated from our base temperature of 1.1 K, are also
discussed here. With the experimental setup specified in Sec. 3.3 of Chapter 3,
measurements of the complex reflection coefficient have been performed on Si:P
samples with donor concentrations n from 56 % to 90 % of the critical con-
centration nc =3.5×1018 cm−3 of the zero-temperature metal-insulator transition
[8]. The determination of the critical dopant density nc in Si:P by Stupp et
al. [8] appears most reliable and has been accepted by the community active in
the field. (In older literature sources, a higher value of 3.72×1018 cm−3 can be
found.) The obtained spectra have been evaluated by the advanced data analysis
method, developed in Chapter 4 and also presented in our publication [15]. For
all the reported Si:P samples, summarized in Tab. 5.1, the zero-phonon regime
could be identified at our lowest measurement temperature of 1.1 K, see Sec. 5.2
further below. Thus, theoretical models for the variable-range hopping in a disor-
dered system at effectively zero temperature with electron-electron interactions,
cf. Sec. 2.1 of the Theory Chapter, are appropriate to interpret the electric
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Figure 5.1: Si:P samples were cut from a 147 mm long Czochralski-grown cylin-
drical single crystal [106], with a dopant density gradient along its growth axis.
Disc-shaped samples, 2 mm thick, of varying donor concentration n/nc from 0.56
to 0.9 were obtained, relative to the critical value of the metal-insulator transition
nc = 3.5×1018 cm−3. From those thin disc-shaped slices, the smaller dice-shaped sam-
ples shown in Fig. 5.2 were cut for the microwave spectrometer.

conductivity spectra, as also presented in our publications [15] and [16].

5.1 Si:P samples

Si:P samples for this study stem from a commercial Czochralski-grown cylindrical
crystal [106], 147 mm long with a diameter of 27 mm, nominally uncompensated,
with a mean phosphorus concentration gradient of ∂n(x)/∂x∼ 0.12×1018 cm−4

along its axis. Cutting out thin slices (2 mm thick) with faces perpendicular
to the crystal growth axis, as depicted in Fig. 5.1, we obtained relatively ho-
mogeneously doped Si:P samples of varying dopant density n from 1.97×1018 to
3.14×1018 cm−3. To get rid of the distorted surface layers [33, 107], the samples
were chemically and mechanically treated by well established procedures by G.
Untereiner [108].

The main characteristic of the Si:P samples, the dopant density n, is ex-
tremely difficult to obtain directly and was, as usual, determined by its relation
to the room-temperature direct current resistivity ρdc(300K), measured with a
commercial four-probe measurement system (FPP 5000 by Veeco Instruments)
in the master thesis by Anung [109] and in the diploma thesis by Hering [110],
with the relative error (n/n estimated to lie below 3 %. While contact resistance
is of no significant complication for the four-point resistance measurements, the
geometrical shape of the sample is crucial by the calculation of the resistivity
from the resistance. Correction formulae for samples of finite size with a thin
disc shape like in Fig. 5.1, provided in the documentation of the instrument FPP
5000, have been employed to that end.
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Figure 5.2: Sketch of a dice-shaped Si:P sample with the aluminum contact layer (light
grey), evaporated on top of it. 2a = 0.6 mm, 2b= 1.75 mm, corresponding to a 2.4 mm
microwave coaxial adapter; c = 5 mm, d= 2 mm. The commercial Si:P crystal, from
which those samples were cut, is depicted in Fig. 5.1.

Table 5.1: Donor concentration n and the value of the room-temperature dc resistivity
ρdc of the reported Si:P samples, after Refs. [109, 110]. The second column lists the
relative donor concentration with respect to the critical value nc = 3.5 × 1018 cm−3 of
the zero-temperature metal-insulator transition [8]. The listed results for the exponent
α of the conductivity power law σ1(ω) ∼ ωα and the full relative dielectric constant ε1,
obtained in the present work, are also displayed in Figs. 5.4 and 5.7. (The dielectric
constant ε1 is defined relative to the vacuum permittivity ε0.)

n n/nc ρdc(300 K) α ε1

(1018 cm−3) (Ω cm)

1.97 0.56 0.0162 1.13 23.5
2.29 0.65 0.0149 1.16 24.7
2.57 0.73 0.0139 1.10 29.5
2.91 0.83 0.0130 1.08 33.4
3.04 0.87 0.0127 1.05 42
3.14 0.90 0.0124 1.04 43.4

For the conversion from the resistivity ρdc(300K) to the donor density n, the
Thurber scale [111] was used, that is a least squares fit of an analytical ratio-
nal function to experimental data in a very broad doping range from 1013 to
1020 cm−3 at room temperature. The data used by Thurber et al. comprise
donor concentration values obtained by four different measurement techniques,
best suited in different overlapping doping ranges, as well as room-temperature
resistivity values obtained by careful four-probe measurements on the same Si:P



66 CHAPTER 5. RESULTS: FREQUENCY-DEPENDENT HOPPING

samples. In the interval from 1018 to 1019 cm−3, which is relevant for us, the
Thurber scale is based on chemical measurements of phosphorus density by the
neutron activation analysis on Si:P samples with donor concentrations from 1015

to 1020 cm−3 and by the photometric technique from 2×1017 to 5×1019 cm−3.
Chemical methods yield the phosphorus density solely, while electrical methods
give electrically active density that may be affected by unwished factors like in-
complete donor electron ionization or compensation through acceptors. For this
and further reasons, found in Ref. [111], the range suited for the Hall coefficient
measurement was restricted by Thurber et al. to the metallic samples with P
concentrations from 1019 cm−3 on, and the range for the capacitance-voltage (C-
V) measurements on junction diodes to dopant density up to 1018 cm−3. To
characterize highly doped Si:P samples, a resistivity ratio ρdc(4.2K)/ρdc(300K)
(determined from standard dc measurements) is more sensitive to dopant den-
sity changes due to high resistivity values at low temperatures. The spline fit
of the corresponding resistivity ratio values plotted against the donor concentra-
tion, pre-determined using the Thurber scale, serves as a more precise calibration
curve (see for more detail the works by Stupp [112] and by Hornung [113]). Low
temperature dc measurements on our highly doped Si:P [109] samples are consis-
tent with the Refs. [112, 113].

Si:P samples with dimensions 5×5×2 mm3 as in Fig. 5.2, suited for the mi-
crowave spectrometer, have been cut from the disc-shaped samples, which are
shown in Fig 5.1 and characterized as described above. For those dice-shaped
Si:P samples, no significant variation of the low-temperature microwave conduc-
tivity values was detected from sample to sample, as long as they stemmed from
the same disc. This fact confirms the assumption of sufficient homogeneity of the
dopant density inside the thin discs shown in Fig. 5.1, at least for our project
reported here with the parameter range listed in Tab. 5.1.

The problem of the additional contact area resistance (mainly due to the
growth of a thin oxide layer on the Si:P surface exposed to the air) is usually
overcome in the dc measurements by the employment of the four-point method.
In contrast to that, our frequency-dependent measurement of the complex sam-
ple impedance (or its reflection coefficient) has a two-point geometry shown in
Figs. 3.1 and 5.2, i.e. the contact resistance is connected in series with the sample
impedance. To avoid the disturbing increase of the measured impedance, careful
optimization of the sample preparation procedure was carried out [108]. It re-
sulted in the following steps, performed without any delay in-between, each time
the new contacts needed to be evaporated on the Si:P samples for the microwave
measurements described in Chapter 3,

• Removal of the old Al contacts.

• Surface polishing with the coarse-grained diamond paste (7 µm).
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• Fine polishing using a polishing cloth with 1 µm diamond dust.

• Processing with the dilute hydrofluoric acid.

• Evaporation of a 100 nm Al contact layer using a mask with the dimensions
as in Fig. 5.2.

5.2 Low-temperature ac measurements

Our frequency range from 100 MHz to 5 GHz for the reflection coefficient mea-
surements contains 300 frequency points: 200 equidistant points from 0.1 GHz
to 1 GHz and 100 points from 1 GHz to 5 GHz. The spectra were taken at the
base temperature 1.1 K of our 4He-pumped cryostat, as well as at elevated tem-
peratures using the Temperature Controller Lake Shore 340 heating the setup
up to room temperature in an automatized procedure. The experimental setup
is described in detail in Sec. 3.3 of Chapter 3. In order to ensure the correct
functionality of the spectrometer, test spectra of thin metallic NiCr films were
measured, with test results for the whole low-temperature measurement (shown
in Fig. 3.7) lying within two weeks from each Si:P sample measurement and
within a few days as concerns the room temperature tests. Since no frequency
dependence is expected for the conductivity of a normal metal below the opti-
cal range (Drude behavior, cf. e.g. Ref. [18]), metallic spectra yield a perfect
indicator for spurious frequency dependences due to any problems with the ap-
paratus or with the prepared calibration samples (cf. Sec. 3.1 and Ref. [108]).
All Si:P samples reported in this thesis prove to be in the zero-phonon regime
at T = 1.1 K, exhibiting a saturation of σ1(T ) and ε1(T ) in the whole measured
frequency range as T → 1.1 K. This is demonstrated in Fig. 5.5 at the example
of the conductivity σ1(T ) at fixed frequency values of 150 MHz and 1 GHz, mea-
sured for a Si:P sample with the relative donor concentration n/nc of 0.83.

For each dopant density n, four to ten independent measurements have been
performed. From the best spectra (lowest noise and smallest influence of standing
waves) mean values of the conductivity power law exponent α and of the dielectric
constant ε1 have been determined, shown in Figs. 5.4 and 5.7.

5.3 Frequency dependence of the conductivity

in the zero-phonon regime

In Fig. 5.3 the measured real part σ1 of the frequency-dependent conductivity of
Si:P samples with the relative donor concentrations n/nc of 0.65, 0.83 and 0.9 is
plotted on a log-log scale to identify the power law. The fits by the two-parameter
function σ1(ω) = const · ωα are shown by the dashed lines. In Fig. 5.4 the mean
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Figure 5.3: Typical spectra of the measured real part σ1 of the conductivity of Si:P
with relative donor concentrations n/nc of 0.65, 0.83 and 0.90 at 1.1 K. (nc = 3.5×1018

cm−3 corresponds to the zero-temperature metal-insulator transition.) The log-log scale
is chosen to identify the conductivity power law. The dashed lines are the fits by a
two-parameter power law function.

Figure 5.4: Conductivity power law exponent α, cf. Tab. 5.1, obtained from the
fit with the function σ1(ω) =const ·ωα, averaged over all the spectra taken on Si:P
samples of a given dopant density n at 1.1 K, cf. Fig. 5.3. The error bars represent the
corresponding standard error.
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values of the exponent α are plotted against the relative donor concentration
n/nc. The frequency dependence of the conductivity clearly follows a superlin-
ear power law in the whole reported doping range, while the exponent slightly
decreases with dopant density. From α> 1 we infer that the hopping transport
takes place deep inside the Coulomb gap, corresponding to the Eq. (2.15) known
from the theory.

The main source for the error bars in our case lies in the extensive calibration
procedure described in Chapter 3. Due to the necessity of a complete cool down
and heat up cycle for each of the three calibration standards, both contributions,
the self-made calibration sample preparation instead of using a commercial cal-
ibration kit as well as performing an identical low temperature experiment on
four different days, contain rather high statistical errors. The latter result in a
standard error, shown in Figs. 5.4 and 5.7 as a root mean square deviation from
the mean values of the most sensitive parameters of the complex conductivity
spectra (the power law exponent α of the frequency dependence characterizes the
real part σ1, while the dielectric constant ε1 comprises the imaginary part σ2, see
Sec. 5.5 further below).

A superlinear conductivity power law was previously also observed in Si:As
and Si:P by Castner and collaborators [43, 44], who were using resonator tech-
niques at several fixed frequency values within the range of the present work.
Our results are also in accord with the transmission measurements by Hering et
al. [34, 110] at higher frequencies (30 GHz to 3 THz), obtained by quasioptical
techniques on samples cut from the same Si:P crystal [106]. In contrast to that,
a sublinear frequency dependence in the zero-phonon regime has been reported
by Lee and Stutzmann [78] based on experiments on Si:B in the microwave range
and by Helgren et al. [32, 33] with quasioptical techniques in the terahertz range.
While Lee et al. [78] are to our knowledge the only predecessors who measured an
insulating semiconductor at low temperatures with a broadband microwave reflec-
tion measurement technique, their evaluation method is that suited for metallic
samples only and resulted in extremely high conductivity values, as mentioned in
Sec. 3.2 of Chapter 3. The complexity of the frequency-dependent measurements
employing the resonator techniques consists in the independence of the experi-
mental setup for different frequency points. Besides, the resulting spectra are
then based on just about a dozen of measurement points. Nevertheless, it is even
less points (between five and ten) in the transmission measurements reported by
Helgren et al. for the interacting system, while our frequency range contains
300 measurement points distributed over almost two decades in frequency, as
described at the beginning of Sec. 5.2. The results by Hering et al. [34, 110],
which support our interpretation, are also based on more than three times as
many frequency points in the regime of correlated electrons, than in a similar
experiment performed by Helgren et al. [32, 33].
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Figure 5.5: Temperature dependence of the conductivity σ1 at fixed frequency values
of 150 MHz and 1 GHz at the example of the relative dopant density n/nc = 0.83,
typical for all the investigated Si:P samples. The onset of the thermal effects depends
on the phosphorus concentration: the higher the doping, the lower the temperature at
which the temperature dependence sets in.

5.4 Temperature dependence of the

conductivity

Leaving the zero-phonon regime behind by raising temperature, we observed a
gradual increase of the conductivity σ1 for all investigated Si:P samples. First, the
temperature dependence is approximately linear in agreement with the predic-
tion by Austin and Mott [1, 114]. With further growing T , it gradually becomes
stronger until the charge carrier activation into the conduction band dominates
over the hopping transport, cf. Fig. 2.1. The onset of the thermal effects depends
on the phosphorus concentration: the higher the doping, the lower the tempera-
ture at which the temperature dependence sets in. But the way it happens is the
same for all the Si:P samples we have measured.

Taking the example of the relative donor concentration n/nc = 0.83, we have
plotted the conductivity values σ1 in Fig. 5.5 at fixed frequencies of 150 MHz
and 1 GHz. At the low end of our frequency range, represented by f =150 MHz,
the conductivity of that relatively highly doped Si:P sample stays temperature-
independent up to 2 K. For higher frequencies, the onset of the thermal effects
shifts to still higher temperatures. Above T = 10 K both curves corresponding
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Figure 5.6: Temperature dependence of the conductivity spectra typical for all the
investigated Si:P samples at the example of the highest reported relative donor con-
centration of n/nc = 0.9. The opposite extreme of our lowest relative dopant density,
n/nc = 0.56, yields an almost identical picture (not shown here), with the only dif-
ference that the spectra stay completely unchanged up to the temperature as high as
7 K.

to the very different frequencies merge into one, meaning that the thermal acti-
vation dominates over the photon energy for T > 10 K.

In Fig. 5.6 the frequency-dependent conductivity σ1 is plotted for different
temperatures for a Si:P sample with the highest relative donor concentration
n/nc =0.9 in this thesis. The conductivity power law exponent α gradually de-
creases with rising temperature, which is plausible, since the thermal energy scale
kBT grows with respect to the photon energy !ω and starts to dominate. Without
showing the very similar pictures obtained for lower dopant density in Si:P, we
point out the only significant difference, taking the example of the Si:P samples
with our lowest dopant density of 56 %: The spectra of the complex conductivity
in the latter case stay completely unchanged up to the temperature as high as 7 K.

The transition to a sublinear power law upon raising T is in accord with previ-
ous observations [44, 114, 115]. Moreover, Pollak et al. [115] document for precise
radio-frequency measurements of the complex capacitance on weakly doped Si:P
and similar compounds, that a slowly decreasing slope of σ1(ω) with growing
temperature is typical for all the conductivity spectra. To our knowledge, a the-
oretical description for a gradual decrease of the exponent α is lacking though. It
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Figure 5.7: Dependence of the full relative dielectric constant ε1 of Si:P in the zero-
phonon regime on the donor concentration n, cf. Tab. 5.1. The solid line is the fit with
the power law function, cf. Eq. (2.18), for the donor electron contribution (ε1 - εSi),
where εSi = 11.7 [56].

is probably extremely difficult to handle a theoretical model where both energy
scales, frequency !ω and temperature kBT , are varied. Thus, the models yield-
ing analytic formulae for the conductivity in a broad parameter range, describe
either the dynamic behavior in the zero-phonon regime σ1(ω) or the thermally
activated direct current conductivity σdc(T ).

5.5 Dielectric function

From our experiments on Si:P in the zero-phonon regime, we find that the real
part of the dielectric function1 ε1 is independent of frequency in the range of
50 MHz –10 GHz (cf. Figs. 4.4 and 5.8), taking the measurement uncertainty
into account. A fit with the scaling function (2.18) results in an exponent ζ =0.71,
as shown in Fig. 5.7.

In the framework of the effective medium approximation, ζ =1 is expected
from the theory [55]. As mentioned in the Sec. 2.1.3 of the Theory Chapter, the
non-zero frequency of our measurement ω/2π ≥ 45 MHz leads to a smoothing

1The dielectric function ε is defined relative to the vacuum permittivity ε0 throughout this
thesis.
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Figure 5.8: Dependence of the dielectric function spectra of Si:P at 1.1 K on the
relative donor concentration n/nc, with respect to the critical value nc = 3.5 × 1018

cm−3 of the zero-temperature metal-insulator transition. The samples with the high
doping above 90% lie beyond the scope of the present thesis and are only shown to
prove that the inequality (2.19) holds for all of the reported Si:P samples with relative
dopant density n/nc < 0.9.

of the dielectric divergence, present for ω=0 at the critical donor concentration
nc of the metal-insulator transition, to a continuos function ε1(ω, n) of the donor
concentration n, as shown in Fig. 2.7. For parameter values n/nc ≤ 0.9, relevant
in the present thesis, the inequality (2.19) holds in the whole frequency range
reported, as can be seen from the Fig. 5.8. In that figure, the spectra of the
dielectric function ε1(ω, n) for donor concentration values close to the metal-
insulator transition have been plotted together with those for the lower dopant
density n/nc < 0.9, which are reported in the present work, at 1.1 K. A smaller
exponent ζ , obtained from a fit of our data to the scaling equation (2.18), than
that predicted by the theory, is very likely caused by the considerable distance
from the transition point nc, which cannot be approached much closer at the high
frequency of our experiment due to the restriction imposed by the inequality
(2.19). Strictly seen, the scaling relation described by the Eq. (2.18) is only
predicted close to the metal-insulator transition point nc of the dopant density.

From the quasioptical experiments on Si:P in the terahertz range (i.e. at
higher frequency) and on more dilute samples than in our work, different results
are reported. Helgren et al. [33] observed a similar dependence of the values of
the dielectric constant on the donor concentration (though uniformly shifted to



74 CHAPTER 5. RESULTS: FREQUENCY-DEPENDENT HOPPING

ε

Figure 5.9: Temperature dependence of the dielectric function ε1 typical for all the
measured Si:P samples, at the example of the relative donor concentration n/nc = 0.83.

lower values by 8). Hering et al. [34] have observed values of ε1 as we have but
with a much stronger dependence of the dielectric constant on dopant density,
resulting in a much higher exponent ζ =1.68. It is obvious that this discrepancy
still calls for further experiments which are more accurate as far as this analysis is
concerned. In particular, the frequency range should be further lowered to study
the divergence of the dielectric constant ε1(ω=0, n) (cf. Fig. 2.7 and e.g. the
standard textbook by Dressel and Grüner [18]) and the metal-insulator transition
should be further approached.

Leaving the zero-phonon regime behind at elevated temperatures, we observe
the dielectric function spectra of Si:P to rise in the whole frequency range we
measured, as shown in Fig. 5.9 at the example of the relative dopant density
n/nc =0.83. This can be accounted for by the relaxation processes due to the
phonons, which gain weight with rising temperature. As soon as the slope of
the corresponding conductivity spectra σ1(ω) drops below 1, the spectra of the
dielectric function ε1(ω) exhibit a rapid ascent to the lower frequencies, tending
to diverge; this effect becoming stronger with further increase of T . In analogy
to the conductivity spectra, the onset of those thermal effects is shifted to higher
temperatures for lower dopant density, while the general way the spectra change
is similar for all the Si:P samples. The divergence of the dielectric function, as
frequency tends to zero, is also what is expected in the case of a sublinear con-
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ductivity power law α from the Kramers-Kronig relations2, cf. Ref. [116]. In the
case of α < 1, the Kramers-Kronig compatible form of the complex conductivity
(provided, the power law is observed over a wide frequency range) implies the
same power law for the real and imaginary parts:

σ = σ1 + iσ2 = A(iω)α = Aωα cos
(πα

2

)
+ iAωα sin

(πα
2

)
, (5.1)

as has already been pointed out earlier by Pollak et al. [115] or Helgren et al.
[33]. A sublinear frequency dependence of σ2 corresponds via Eq. (2.16) to a
diverging real part of the dielectric function ε1 as ω → 0.

2The Kramers-Kronig relations, cf. e.g. the standard textbook by Kittel [36], comprise an
integral relation between the real and the imaginary parts of any physical response function,
such as the complex dielectric susceptibility χ = ε− 1, responsible for dielectric polarization in
the formula for the electrical displacement D = ε0εE in the electric field E.
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Chapter 6

Conclusions and outlook

Aiming at the low-temperature studies of the complex broadband dynamic re-
sponse σ(ω) of the insulating doped semiconductors in the gigahertz range, we
have thoroughly analyzed the problem of extracting the electrical conductivity
σ1 and the dielectric permittivity ε1 from the complex reflection coefficient mea-
surement in the microwave range with a vector network analyzer. While simple
relations between the measured impedance Z and the searched material parame-
ters are readily available for metallic or superconducting samples, which admit a
straightforward data evaluation in those cases, up to now this powerful experi-
mental technique could not be adequately applied to semiconducting and insulat-
ing materials under test. Although the absolute value of the complex reflection
coefficient is nearly unity for an insulator with low electrical losses, |Γopen|≈ 1,
the electric field penetrates over an appreciable distance in such a sample and
builds a three-dimensional field distribution inside it, that is quite different from
that of a plane wave. A representative example of the electric vector field in-
side an insulating semiconducting sample (f =5 GHz, ε1 =40, ε2/ε1 < 0.001) is
demonstrated in Fig. 1.1.

As a first attempt to solve the problem, already our static model for the
current distribution in a semiconducting sample with a simplified vector field
configuration, shown in Fig. 4.2, has led to a reasonable data evaluation in the
low frequency range up to 1 GHz. As our main methodic result, we present a
rigorous analytical solution to the problem, in form of a closed procedure for
the calibration and evaluation of data, obtained from the reflection coefficient
measurement of an insulating semiconductor in the microwave range at low tem-
perature. Basically no restricting assumptions are needed in a broad interval
of the parameters, which determine the electromagnetic field distribution in the
sample: the microwave frequency ω=2πf and the complex dielectric constant
ε= ε1 + iε2 of the material. With our evaluation method, presented in our publi-
cation [15], we are now able to measure the complex ac conductivity σ=σ1 + iσ2

(or the complex dielectric function ε = ε1 + iε2) of doped semiconductors in

77
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the broadband frequency range from 0.1 to 5 GHz at temperature of 1.1 K and
above in a broad interval of dopant density n below the metal-insulator transition.

We applied the developed data analysis to study the dynamics of donor elec-
tron states in Si:P with a dopant density n from 56 % to 90 %, relative to the
critical value nc =3.5 × 1018 cm−3 of the T =0 metal-insulator transition, and
obtained the following results for the three main issues of interest, mentioned in
the Introduction. Those results are also already published in our papers [15, 16],

1. All of the reported Si:P samples prove to be in the zero-phonon regime
at our base temperature of 1.1 K. The conductivity σ1(ω, n, T ) of those
samples, measured at 1.1 K, exhibits a superlinear frequency dependence
in the frequency interval stated above under a careful consideration of the
experimental error bars. From this we infer, that in the corresponding
parameter range the Coulomb interaction U(rω) dominates over the photon
energy !ω and the hopping transport of the interacting electrons takes place
inside the Coulomb gap ( around the Fermi level.

2. The dielectric function ε1(ω, n, T ) of all the reported Si:P samples proves to
be a constant with respect to the microwave frequency f and temperature
T at 1.1 K as far as the measurement uncertainty of our technique reaches.
The corresponding value ε1(n) of the dielectric constant at 1.1 K is observed
to rapidly increase with growing doping, the donor electron contribution
(ε1 - εSi) follows a power law |n − nc|−ζ with the value of the exponent
ζ =0.71 obtained from our experiment. This is also what one expects,
since the donor electron contribution to the dielectric relaxation should rise
with the increasing dopant density.

3. The conductivity power law exponent α gradually decreases with rising tem-
perature T for all the reported Si:P samples, as soon as the zero-phonon
regime is left behind for a given dopant density n. The way the spectra
σ1(ω, n, T ) rise with growing T is the same for all the Si:P samples we mea-
sured, with the only difference that for lower doping n the thermal effects
set in at a higher temperature. While a sublinear frequency dependence of
the conductivity σ1 is also expected from the theory for a thermally assisted
ac hopping transport, a theoretical description of a gradual decrease of the
conductivity power law with rising T is lacking. Available theoretical pre-
dictions handle only distinct limiting cases, while we have covered a broad
range of the parameters (ω, n, T ) in our experiment. Qualitatively, the de-
scribed behavior of the conductivity spectra of Si:P appears plausible to us:
With growing temperature T the frequency dependence of the conductivity
σ1(ω, n, T ) becomes weaker due to the growing role of the thermal energy
kBT compared to the photon energy !ω.



79

Similar to the conductivity spectra σ1(ω, n, T ), the spectra of the dielectric
function ε1(ω, n, T ) rise with growing temperature T as soon as the zero-
phonon regime is left behind. The way the spectra change with respect to
T is, again, qualitatively identical for all the Si:P samples measured. The
frequency dependence of the dielectric function ε1 is in accord with that of
the real part σ1 of the conductivity as concerns the integral Kramers-Kronig
relations between the real and imaginary parts of the complex response
function σ=σ1 + iσ2.

Based on the methodical and experimental results of the work, constituting
the present thesis, the project of the broadband microwave spectroscopy on se-
miconducting materials at low temperature can be further developed in several
encouraging directions. Beside investigating different compounds like other neg-
atively and positively doped semiconductors (Si:B, Si:As) or spin glasses, we are
first of all concerned with a further expanding of our parameter range to higher
frequencies f , higher dopant densities n and lower temperatures T . Application
of a magnetic field B is also an issue, due to a constructional possibility in the
new spectrometer on the basis of a 3He cryostat, which was developed as a part of
the work of this thesis. The listed parameter expansion possibilities would allow
to investigate the following issues of the fundamental research on Si:P and other
doped semiconductors,

• Going to higher frequency would be interesting, in order to see the crossover
to the non-interacting regime in a doped semiconductor in the microwave
range. By now, the only sound information concerning this crossover was
obtained in the terahertz range by transmission measurements using qua-
sioptical techniques on relatively dilutely doped Si:P samples [32]-[34]. Mea-
surements up to 40 GHz are possible with the setup of our microwave spec-
trometer, provided that severe complications in the calibration and evalu-
ation procedure, which emerge at higher frequencies than reported here,
could be overcome. As concerns the calibration, standing waves in the mi-
crowave line become hardly reproducible at high frequency above 20 GHz.
The evaluation procedure itself can be extended beyond the limit of 5 GHz
with a considerable amount of numerical work, required to cope with the
higher terms of the series expansion in the crucial analytical equations and
with the disturbing resonances in the sample, caused by its finite size and
the rapid increase of the distance, the electromagnetic wave penetrates to,
with growing frequency.

• Increasing the relative donor concentration nr =n/nc above the value of
0.9, i.e. beyond the highest doping level reported in this thesis, we expect
to observe a gradual transition from the insulating to the metallic phase
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in Si:P at temperature of 1.1 K and lower. The central issue of interest
here is the special regime known as quantum critical, which lies between
the insulating and the metallic phases in the parameter space at a finite
temperature T > 0 (for reference consult [64, 74, 75]). Only at the absolute
zero of temperature, T =0, the metal-insulator transition is restricted to a
single value nc of the driving parameter n, at which quantum fluctuations
of a diverging size take the system between the two distinct ground states.
This point is known as the Quantum Critical Point. At elevated temper-
ature, in the regime lying above the Quantum Critical Point, the thermal
energy kBT suppresses the quantum fluctuations.

Measurement of the complex microwave ac conductivity of highly doped
Si:P samples across the metal-insulator transition would yield a completely
new information about the behavior of such a system in the intermedi-
ate, quantum critical, regime. As already mentioned above, the parameter
range (ω, n, T ) that we can cover with our method and technique had been
hardly available before. In particular, the shape of the boundary between
the insulating and the critical phases in the parameter space is an open
and intriguing issue. The only predecessor information concerning it stems
from the submillimeter measurements [33] with a transmission measurement
technique far away from the critical donor concentration nc.

• Measurements at lower temperature than 1.1 K are desirable to further
approach the T =0 metal-insulator transition. Analysis of the behavior of
the system in the quantum critical regime can only be done at sufficiently
low temperature, as long as the thermal effects can be described by the
quantum thermodynamics. To determine the critical exponents and the
boundary shape in the phase space of the system, the useable temperature
interval for this analysis should be as broad as possible, cf. Ref. [75]. The
only way to increase the suitable temperature interval in our experiment
is to go to lower temperature than the base temperature of 1.1 K of the
4He spectrometer. With the new microwave measurement insert, which
I constructed and built in this work for the new spectrometer based on
a 3He cryostat with the support of the workshops [93, 94], a stable base
temperature as low as 450 mK was measured and held for over 10 minutes in
the first thermal tests with a completely equipped microwave insert together
with a sample. My successors are completing the preparations and tests
of this setup for the ultimate microwave measurements similar to those
performed at the 4He setup. For the careful low temperature calibration of
a semiconducting sample measurement, the 3He microwave insert is going
to be moved out of the stationary 3He cryostat by a mechanical mechanism,
which I designed with the support of the mechanical workshop [88], without
disconnecting the microwave line between the probe head and the vector
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network analyzer.

• As is known from the theory, cf. for instance Ref. [2], in a magnetic field
B the wave functions of the donor electrons are squeezed in the transverse
direction. A sharp decrease in the overlap of the donor electron functions
and, as a consequence, an exponential increase of the resistivity (magnetore-
sistance) are expected. This effect can be used to tune the metal-insulator
transition, with the advantage of an in situ variation of the driving parame-
ter B, in contrast to the necessity of changing the samples in order to vary
the donor concentration n. Constructionally, application of a magnetic field
is supported by the new spectrometer, where the 3He cryostat is stationary
and there is sufficient space around it for the magnetic coils.
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Appendix A

Complementary sign conventions

for complex-valued electric

quantities

The complementary sign choice for the imaginary part of the Fourier transformed
of the real-valued electrical quantities leads to a different form of all the expres-
sions and equations that make use of the Fourier transformation. Although this
formal choice does not affect the physical results of the calculations, inadvertent
mixing of both sing conventions would severely distort the substantial content of
all the physical expressions that would follow. Unfortunately, within the scope
of problems discussed in this work, both conventions are almost equally shared
in the relevant literature. To avoid possible confusion, here we state our choice
and list the relevant formulae in both conventions, in comparison.

To define the sign convention, we consider the electric field 'E(x, t) that oscil-
lates with frequency ω. Without loss of generality, we restrict its propagation to
only one spatial dimension x and denote by E its arbitrary spatial component,

Physics: E(x, t) =
1√
2π

∫
Ẽph(k)e i(kx−ωt)dk , (A.1)

Engineering: E(x, t) =
1√
2π

∫
Ẽeng(k)e j(ωt−kx)dk . (A.2)

We hold to the first convention for the definition of the Fourier transformed
Ẽ, in accordance with references [18], [51]-[53], which is to our experience often
preferred in physics and mathematics sources. The opposite sign convention is
common in engineering literature and is used in Refs. [17, 25, 54] and by the
network analyzer.
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Figure A.1: Lumped-element circuit diagram of a driven electric oscillator with losses.

The basic expressions within the scope of our work, whose form depends on
the sign convention, are summarized in Tab. A.1. As one already can see at the
initial formulae (A.1) and (A.2), the change from the physicist to the engineering
convention is easily performed by exchanging in all the expressions and equations
the imaginary unity i by −j.

Table A.1: Comparison of the basic expressions affected by the sign convention.

expression physics (our convention) engineering

ideal capacitor ZC = i
ωC ZC = −j

ωC

ideal coil ZL = −iωL ZL = jωL

complex permittivity (SI units) ε = ε0 + iσω ε = ε0 − j σω

Both first expressions are obtained in the standard courses, see for instance
Ref. [117], from the equation that gives the ac voltage U applied to the circuit
of ideal lumped elements resistor R, capacitor with capacitance C and coil with
inductance L, depicted in Fig. A.1,

U = RI + L
dI

dt
+

Q

C
= RI + L

dI

dt
+

1

C

∫
Idt , (A.3)

where I is the ac current flowing in the circuit and Q is the charge accumulated
on the capacitor plates. Denoting by U0 and I0 the complex valued amplitudes
of voltage and current, respectively, one obtains the well-known expressions for
the complex impedance Z = U0/I0 in both sign conventions,

Physics: U = U0e
−iωt, I = I0e

−iωt ⇒ Z = R − iωL +
i

ωC
,

Engineering: U = U0e
jωt, I = I0e

jωt ⇒ Z = R + jωL −
j

ωC
.
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The sign of the imaginary part of the impedance Z directly corresponds to
that of the reflection coefficient Γ via the relation (3.2). It is

Z

Z0
=

1 + Γ

1 − Γ
=

1 − (ReΓ)2 − (ImΓ)2

(1 − ReΓ)2 + (ImΓ)2
+ i

2ImΓ

(1 − ReΓ)2 + (ImΓ)2
. (A.4)

The derivation of the expression for the complex dielectric function ε can be
found in Refs. [18] or [51].
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Appendix B

Standard basics of microwave

engineering necessary to evaluate

the reflection coefficient

measurements

In this Appendix we briefly recall the standard deduction of the formulae (3.1)
and (3.2) as it can be found for instance in Refs. [17, 76] and in Ref. [19]. The
latter gives a comprehensive description of a setup, which is parent to the spec-
trometer built in our group [20]. Throughout the present thesis, we denote the
scattering parameter S11 of the two-port vector network analyzer (VNA), which
stands for the reflection coefficient where radiation is generated and detected at
the same port (port 1), for brevity with Γ in accordance with Ref. [17].

Because of the high frequencies (and short wavelengths), standard circuit the-
ory with the lumped-element approach as a common tool cannot be used directly
to solve microwave network problems. Circuit analysis assumes that the physical
dimensions of a network are much smaller than the electrical wavelength, while
microwave transmission lines may be a considerable fraction of a wavelength, or
many wavelengths, in size. (In our case of a cryogenic waveguide with the length
of about 1 m and the sample dimensions of a few millimeters, the frequency
range of the microwave signal reaches from 45 MHz to 40 GHz, that corresponds
to wavelength range from roughly 10 mm to roughly 10 m in vacuum.) In mi-
crowave engineering, then, one must begin with Maxwell’s equations and their
solutions. Since, however, one is often only interested in terminal quantities such
as power, impedance, voltage and current, the complexity of the general field so-
lutions and equations in those cases decreases. One usually replaces the lumped
elements resistance R, capacitance C and inductance L by corresponding dis-
tributed parameters per unit length of the microwave line. Adding an additional
element shunt conductance G and applying the well-known Kirchhoff’s rules to a
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Figure B.1: Schematic diagram of a coaxial waveguide, terminated by a sample with
impedance Z, after Ref. [17]. The corresponding experimental arrangement for the
reflection coefficient measurement using a VNA is shown in Fig. 3.1.

representative section of such a transmission line, one obtains the so-called tele-
grapher equations. The other extreme of frequency can be identified as optical
engineering, in which the wavelength is much shorter than the dimensions of the
components and the Maxwell’s equations can be simplified to the geometrical
optics.

B.1 Relation between the reflection coefficient

and the complex impedance of the sample

Telegrapher equations are the wave equations for current I(z) and voltage U(z)
at an arbitrary position z along the microwave line [17]. In our case, a sample
with a complex impedance Z terminates a coaxial transmission line at z =0 as
depicted in Fig. B.1. The solution at z =0 only contains the amplitudes U+

0 , I+
0

and U−
0 , I−

0 of the waves propagating in the positive and negative z-direction,
respectively,

U(z = 0) = U+
0 + U−

0 , (B.1)

I(z = 0) = I+
0 − I−

0 =
U+

0

Z0
−

U−
0

Z0
, (B.2)

Z0 =
U+

0

I+
0

=
U−

0

I−
0

=

√
R − iwL

G − iwC
.

Equations (B.1) and (B.2) reveal that, while the voltages of the incident and
the reflected waves are added in order to obtain the total voltage at the load
impedance Z, the current value of the reflected wave I−

0 is subtracted from that
of the incident wave I+

0 . In other words, while the choice of the ground reference



B.1. IMPEDANCE VS. REFLECTION COEFFICIENT 89

Figure B.2: General error model, cf. Ref. [19]. The measured reflection coefficient
Γm, as it is detected by a VNA, is related to the actual reflection coefficient Γ at the
sample surface via three independent complex error coefficients ED, ER and ES , by
which the influence of the coaxial waveguide is completely accounted for.

for the voltage (usually the outer conductor) naturally does not change with the
direction of the wave propagation, the definition of the positive current direction
does depend on it, as an immediate consequence of the wave equations. In our
case of a coaxial waveguide with inner conductor of radius a, outer conductor of
radius b and a relative dielectric constant εc of the dielectric between them, the
characteristic impedance Z0 of the cable can be concretely written in terms of
those waveguide parameters [17],

Z0 =

√
µ0

ε0εc
·
ln(b/a)

2π
. (B.3)

Here, µ0 and ε0 stand for the vacuum permeability and permittivity, correspond-
ingly. To avoid any impedance mismatch, the characteristic impedance of the
coaxial cables employed in the radio frequency and high frequency engineering
is usually made equal to 50 Ω. This is also the case for all of our microwave
components.

Put together, equations (B.1) and (B.2) yield a basic formula of the microwave
engineering, that connects the reflection coefficient Γ at the surface of the sample
which is terminating a general transmission line, to the complex impedance Z of
the sample, cf. Eq. (3.2),

Z =
U+

0 + U−
0

U+
0 − U−

0

Z0 =⇒

Γ =
U−

0

U+
0

=
Z − Z0

Z + Z0
. (B.4)
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B.2 General error model for a reflection coeffi-

cient measurement

The expression for the reflection coefficient Γ of the sample given by Eq. (B.4) is
valid only if the measurement is performed directly at the sample surface z =0, cf.
Fig. B.1. In practice, the experimentally measured reflection coefficient Γm will
include effects of the intervening coaxial cable system and microwave connectors,
such as attenuation and multiple reflections on the way, as well as errors in the
detection apparatus. It turns out that those disturbing measurement effects as
a whole can be described by just three general complex-valued error coefficients
ER, ED and ES as depicted in Fig. B.2 (for more detail see Ref. [19]),

Γm = ED +
ERΓ

1 − ESΓ
. (B.5)

The error term ER is called the reflection tracking, and corrects principally for
the attenuation and phase delay introduced by the transmission line. The error
coefficient ED is the directivity, which arises from the imperfect nature of the
directional couplers and additional reflections inside the test set of the network
analyzer. These effects result in a small ”leakage” of the signal from the source
directly into the detector, by-passing the load Z altogether. The third error term
ES is referred to as the source match, which arises due to the re-reflection of a
portion of the signal at the measurement port as well as at the adapter-connector
and connector-cable interfaces of the sample holder, cf. Fig. 3.1, caused by the
inevitable slight impedance mismatches between microwave components. For a
long transmission line made of stainless steel as in our case, cf. Sections 3.3 and
3.4, ER serves for huge signal losses above 90 % for signal traveling between the
test set and the sample. In this case additional multiple reflections at the test
set are negligible, and ES may be considered as due to re-reflections close to the
sample only, cf. Fig. B.2. Taking into account that obvious consideration for ES,
we can easily deduce the formula (3.1) in our case of long and lossy microwave
transmission line as follows.

We denote by Uin the complex voltage measured by the test set for the initial
microwave signal, which enters the transmission line, and by Uout the voltage of
the returning signal, as detected by the test set. By definition, the measured
reflection coefficient is given by the quotient Γm =Uout /Uin, while the actual
reflection coefficient Γ applies to the signal arriving at the sample, cf. Fig. B.2.
We can write Uout in terms of Uin and Γ using the complex error coefficients as
follows,
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Uout = ΓmUin = (ED + ΓER + ΓESΓER + ... + (ΓES)nΓER + ...)Uin

=

(

ED + ΓER

∞∑

n=0

(ΓES)n

)

Uin =

(
ED +

ΓER

1 − ΓES

)
Uin (B.6)

The infinite sum is a converging geometrical series due to the fact, that the
absolute value of both, the reflection coefficient Γ and the attenuation error coeffi-
cient ER, is smaller than one. From (B.6), the formula (B.5) immediately follows.

Eq. (B.5) enables the calculation of the actual reflection coefficient of the
sample Γ from the measured reflection coefficient Γm, provided that the complex
error coefficients ER, ED and ES of the setup are known at each frequency point
of the measurement frequency range. To determine the error coefficients, three
independent calibration measurements at samples with known actual reflection
coefficients are required. As described in Chapter 3, the three suited calibration
standards are the short, the open and the load, characterized in detail in the
main text. Those calibration measurements lead to a system of three non-linear
algebraic equations for the unknowns ER, ED and ES,

Γj
m = ED +

ERΓj

1 − ESΓj
, j = s(short), o(open), l(load). (B.7)

while Γj
m and Γj are in general frequency-dependent complex coefficients. For

the sake of convenience of the calculations to follow, at this point we rename
the measured reflection coefficients Γj

m by Mj and the known actual reflection
coefficients Γj by Aj . The resulting equation system in its general form,

(Mj − ED)(1 − ESAj) = ERAj , j = s, o, l , (B.8)

is easily solved for ER, ED and ES, for instance, with the help of Maple software.
The general solution for the unknown error coefficients ER, ED and ES is,

Q := −MlAlAs + MlAlAo + MoAoAs − AoMsAs + AlMsAs − AlAoMo ,

the common denomenator ;

ES · Q = −AoMs + AlMs − MlAs + MoAs − AlMo + MlAo ,

ED · Q = MlAsAoMo − MlAsAoMs − MlAlMoAs

+MlAlAoMs − AlMsAoMo + AlMsMoAs ,



92 APPENDIX B. SELECTED BASICS OF MICROWAVE ENGINEERING

ER · Q2 = AlMsM
2
o A2

s − A2
l MsM

2
o As + M2

l AlA
2
oMs + AlM

2
s A2

oMo

−A2
l M

2
s AoMo + A2

l MsAoM
2
o + A2

l M
2
s MoAs − MlAlM

2
o A2

s

+MlA
2
l M

2
o As − MlAlA

2
oM

2
s + MlA

2
l AoM

2
s − M2

l A2
sAoMo

+M2
l AsA

2
oMo + MlAsA

2
oM

2
s + M2

l A2
sAoMs + MlA

2
sAoM

2
o

−M2
s A2

sMoAl − MsA
2
sM

2
o Ao − M2

l A2
oMoAl + M2

s A2
sMlAl

−M2
s A2

sMlAo + M2
s A2

sMoAo − M2
l A2

l MoAs + M2
l A2

l MoAo

+MlA
2
oM

2
o Al − MlAsA

2
oM

2
o − MsA

2
sM

2
l Al − MsM

2
o A2

oAl

−MsM
2
l A2

l Ao − MoA
2
oAsM

2
s + MsM

2
l A2

l As + MsM
2
o A2

oAs

−MlA
2
l AsM

2
s − MlA

2
l M

2
o Ao − M2

l AsA
2
oMs + M2

l AlMoA
2
s .

This general solution for ES, ED and ER takes on a significantly simpler form in
cases, when at least one of the coefficients Aj can be assigned a concrete numeric
value in advance, such as As =-1.
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Kurzfassung

Si:P begegnet einem oft als akademisches Beispiel für einen negativ dotierten
Halbleiter und ist als Material für die Elektronikindustrie unentbehrlich. Den-
noch gibt es für die Grundlagenforschung an Si:P und verwandten Systemen im-
mer noch offene Diskussionen über die niederenergetischen Anregungen aus dem
Grundzustand. Kristallines Silizium, unterschiedlich stark dotiert mit Phosphor
mit etablierten Methoden, ist ein beliebtes Objekt für die Forschung auf dem
Gebiet der ungeordneten Festkörper. Insbesondere hat der Einfluß der Elektro-
nenwechselwirkung auf die elektrische Hüpfleitfähigkeit in dotierten Halbleitern
bei tiefen Temperaturen nahe des absoluten Nullpunkts seit Jahrzehnten viel
Aufmerksamkeit auf sich gezogen [1]-[5]. Neben den Korrelationseffekten ist auch
das kritische Verhalten in der der Nähe des Metall-Isolator-Übergangs (MIT) bei
T → 0 ein wichtiges Thema in der Physik ungeordneter Festkörper [6, 7]. Sogar
in klar definierten Systemen wie den hoch dotierten Halbleitern, wo die Unord-
nung von der statistischen Verteilung der Donatoren (oder der Akzeptoren) mit
der Konzentration n in dem Wirtskristall stammt, ist das Verhalten der kom-
plexwertigen elektrischen Leitfähigkeit σ kaum verstanden, wenn man in die Nähe
der kritischen Dotierungskonzentration nc des Metall-Isolator-Übergangs kommt.
Die Gleichstromleitfähigkeit σdc von dotierten Halbleitern ist gut dokumentiert
auf der isolierenden Seite des MIT [8, 9]. Die temperaturabhängige Gleichstrom-
leitfähigkeit ist für n<nc beobachtet, den Gesetzabhängigkeiten für das Variable-
Range-Hopping σdc(T )=σ0 exp[−(T0/T )m] zu folgen, wo der Exponent m gleich
1/4 nach der Vorhersage durch Mott [10, 11] für nicht wechselwirkende Elek-
tronen und gleich 1/2 nach Efros und Shklovskii [2, 12] bei Berücksichtigung der
weitreichenden Coulomb-Wechselwirkung ist. Die frequenzabhängige Leitfähigkeit
σ(ω) der isolierenden dotierten Halbleiter ist allerdings noch nicht vollständig ver-
standen, und mit diesem faszinierenden Thema haben wir uns in dieser Arbeit1

befasst.

Bei Phosphorkonzentrationen in Silizium unter dem kritischen Wert von nc =3.5×
1018 cm−3 [8] sind die Elektronenzustände der Dotierungselektronen lokalisiert
im Sinne von Anderson durch die Unordnung [2, 6, 11, 13] (im Gegensatz zu

1Teile dieser Dissertation sind bereits veröffentlicht in unseren Publikationen in the Journal
of Applied Physics [15] und in the Physica Status Solidi C [16].
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den ausgedehnten Bloch-Zuständen, die typisch für ein periodisches Atomgit-
ter sind). Dies führt zu dem isolierenden Verhalten, definiert durch die ver-
schwindende Gleichstromleitfähigkeit σdc(T → 0)=0 bei der Annäherung an den
Temperaturnullpunkt. Für solch ein System haben die theoretischen Modelle
in den letzten Jahrzehnten zu bedeutsamen analytischen Formeln für die fre-
quenzabhängige Antwort σ(ω) bei T → 0 geführt [1, 2, 3, 5]. Verglichen mit
der durchgeführten theoretischen Arbeit, bleiben die experimentellen Daten zu
der dynamischen Leitfähigkeit der isolierenden dotierten Halbleiter allerdings
knapp und die Ergebnisse, die in verschiedenen Gruppen und in verschiede-
nen Parameterbereichen erhalten wurden, sind widersprüchlig. Besonders ist der
Mikrowellenbereich (mit der Frequenz der elektromagnetischen Strahlung von
100 Megahertz bis 100 Gigahertz entsprechend der Wellenlänge von 10 mm bis
10 m), bestens geeignet für die Untersuchungen der Coulomb-Wechselwirkung
der Ladungsträger, ist schwer zu erreichen in einem Experiment, wo die dy-
namische Antwortfunktion σ(ω) bei tiefen Temperaturen bestimmt werden soll.
Lange Zeit gab es keine besseren Mittel als die Resonatortechnik (eine präzise
Methode, allerdings beschränkt auf die bestimmte Resonanzfrequenz des verwen-
deten Resonators), um die frequenzabhängige Leitfähigkeit σ(ω) von dotierten
Halbleitern im Gigahertzbereich zu messen. Für jeden Messpunkt benötigte man
einen weiteren Resonator.

Abgesehen von der Grundlagenforschung, fordert auch die rasche Entwicklung
der industriellen, medizinischen und der Kommunikationstechnologien eine akku-
rate Charakterisierung der Komponenten bei immer höheren Frequenzen, über
den weitgehend erforschten Radiofrequenzbereich hinaus, der bis zu 1 MHz reicht.
Dies betrifft insbesondere die isolierenden und halbleitenden Werkstoffe [5, 14],
die in elektronischen Geräten und rauscharmen Sensoren verwendet werden, die
bei tiefen Temperaturen betrieben werden. Auf der makroskopischen Skala und
unter den Gleichgewichtsbedingungen ist die Wechselwirkung eines Materials mit
dem elektrischen Feld definiert durch die elektrische Leitfähigkeit σ1 und die
dielektrische Permittivität ε1, beide zusammengefasst in einer komplexwertigen
Gröse σ=σ1+iσ2 (alternativ ε= ε1+iε2) durch die Gl. (2.16). Die gewünschte
breitbandige Charakterisierung dieser Parameter wird zu einer Herausforderung
mit steigender Frequenz, weil dann die Verluste und die räumliche Variation von
Strom und Spannung an Bedeutung gewinnen.

Im Mikrowellenbereich ist die Wellenlänge vergleichbar mit den Abmessungen
der elektrischen Leitungen und der Proben; Wellenleiter müssen verwendet wer-
den, wie in der Abb. 1.1 gezeigt, und der Reflexionskoeffizient wird gemessen [17].
Das passende Messgerät in diesem Frequenzbereich ist der Vektornetzwerkanalysator
(VNA). Er erlaubt phasensensitive Messungen des Reflexionskoeffizienten Γ, der
durch eine direkte Beziehung (3.2) mit der complexen Impedanz Z der Probe
zusammenhängt (unter der Voraussetzung, dass die Mikrowellenleitung korrekt
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kalibriert ist). Während die Auswertung der interessanten Materialparameter,
d.h. der komplexwertigen Leitfähigkeit σ, aus den gemessenen Impedanzdaten
Z relativ einfach für Metalle und Supraleiter ist [18]-[20], ist im Fall isolieren-
der Proben keine direkte Lösung für dieses Problem möglich. Diese ernsthafte
Komplikation liegt an einer nicht trivialen Verteilung des elektromagnetischen
Vektorfeldes innerhalb einer isolierenden Probe, die einen Coaxialleiter elektrisch
abschließt. Dies is in der Abb. 1.1 für eine halbleitende Probe demonstriert.
Nur Näherungslösungen und Modelle wurden in der Vergangenheit zur Unter-
suchung von dielektrischen Substanzen entwickelt [21]-[31], in den meisten Fällen
für Flüssigkeiten und weiche Stoffe bei Raumtemperatur.

Als Ergebnis konnte die leistungsfähige Technik der Messung des komplexwer-
tigen Reflexionskoeffitienten im Gigahertzbereich mit einem Vektornetzwerkanalysator
bisher zur Bestimmung der komplexwertigen Leitfähigkeit σ(ω) der Festkörper
bei tiefen Temperaturen nur im Fall von Metallen und Supraleitern erfolgreich
angewendet werden, während die komplizierte Stromverteilung in einer isolieren-
den halbleitenden Probe die entsprechende Datenauswertung verhinderte. Im
Laufe der Arbeit an dieser Dissertation haben wir die bereits existierenden Be-
trachtungsweisen zu den verwandten sowie zu den komplementären Problemen
analysiert und eine abgeschlossene und rigorose Methode zur Auswertung solcher
Messungen an isolierenden Halbleitern ausgearbeitet, mit einem optimierten the-
oretischen und experimentellen Aufwand [15].

Dieses unser wichtigstes methodisches Ergebnis ist im Kapitel 4 dargestellt.
Ein einfaches statisches Modell für die Stromverteilung in einer halbleitenden
Probe, das wir als ersten Versuch entwickelt haben und das sich später als
korrekt bei niedrigen Frequenzen bis zu 1 GHz erwiesen hat, ist im Abschnitt 4.1
beschrieben. In den darauffolgenden Abschnitten 4.2 and 4.3 folgt die rigorose
Lösung des Problems, wobei wir keine großen Vereinfachungen in einem streng
definierten Parameterbereich machen.

Wir haben diese entwickelte Auswertungsmethode zum Studium der kom-
plexwertigen dynamischen Hüpfleitfähigkeit σ(ω) des dotierten Halbleiters Si:P
in einem breitbandigen Frequenzbereich von 0.1 bis 5 GHz bei Temperaturen von
1.1 K und höher mit Dotierungskonzentrationen n von 0.56 bis 0.9 relativ zu
der kritischen Konzentration nc =3.5× 1018 cm−3 des Metall-Isolator-Übergangs
angewandt [16]. Die entsprechenden experimentellen Ergebnisse sind im Kapi-
tel 5 besprochen.

Mit diesen Messungen haben wir folgende Ergebnisse zu einigen offenen fun-
damentalen Fragestellungen über Si:P erzielt [16]:

1. Für alle berichteten Si:P-Proben wurde bei unserer tiefsten Messtemperatur
von 1.1 K das phononenfreie (d.h. temperaturunabhängige) Regime identi-
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fiziert. Somit konnte der Einfluß der weitreichenden Coulomb-Wechselwirkung
U(rω) auf die dynamische Hüpfleitfähigkeit σ1(ω, n, T ) im System lokalisierter
Dotierungselektronen mit Anregung nur durch die Photonen untersucht
werden. Die Korrelationseffekte sind in dem Exponenten α der frequen-
zabhängigen Hüpfleitfähigkeit σ1(ω)∼ωα kodiert, siehe das Theoriekapitel.
Aus der supralinearen Frequenzabhängigkeit, die an allen berichteten Si:P-
Proben bei 1.1 K beobachtet wurde, schließen wir, dass der Ladungstrans-
port im genannten Parameterintervall durch wechselwirkende Elektronen
innerhalb der Coulomb-Lücke stattfindet.

2. Die dielektrische Funktion ε1(ω, n) aller berichteten Si:P-Proben ist als un-
abhängig von der Frequenz f der Mikrowellenstrahlung und von der Tem-
peratur T bei 1.1 K befunden worden, mit Berücksichtigung unserer Messge-
nauigkeit. Für die entsprechenden Werte ε1(n) der dielektrischen Konstan-
ten bei 1.1 K ist ein rascher Anstieg mit wachsender Dotierungskonzentra-
tion beobachtet worden. Der Beitrag durch die Dotierungselektronen (ε1 –
εSi) folgt einem Skalierungsgesetz |n − nc|−ζ mit dem Exponenten ζ =0.71
aus unserem Experimet. Dies entspricht auch der Erwartung, denn der
Beitrag der Dotierungselektronen zu der dielektrischen Relaxation sollte
mit steigender Dotierung wachsen.

3. Der Exponent α des Potenzgesetzes der dynamischen Leitfähigkeit fällt mit
steigender Temperatur T für alle berichteten Si:P-Proben ab, sobald das
phononenfreie Regime für die jeweiligen Dotierungskonzentration n ver-
lassen wird. Die Art, wie die Spektren σ1(ω, n, T ) mit steigender Temper-
atur ansteigen, ist die gleiche für alle gemessenen Si:P-Proben, mit dem
einzigen Unterschied, dass für niedrigere Dotierung n die thermischen Ef-
fekte bei einer höheren Temperatur einsetzen. Während die sublineare
Frequenzabhängigkeit der Hüpfleitfähigkeit σ1 in einem durch Phononen
unterstützten Regime auch von der Theorie vorhegesagt ist, ist eine theo-
retische Beschreibung für eine monotone Abnahme des Potenzgesetzes der
dynamischen Leitfähigkeit mit steigender Temperatur nach unserer Kennt-
nis nicht vorhanden. Vorhandene theoretische Vorhersagen beziehen sich
lediglich auf die einzelnen Grenzfälle der Parameter Temperatur T und
Frequenz f , während wir in unserem Experiment ein breites Parameterin-
tervall (ω, n, T ) abgedeckt haben. Qualitativ erscheint uns das beschriebene
Verhalten der Spektren σ1(ω, n, T ) von Si:P als plausibel: Mit steigender
Temperatur T wird die Frequenzabhängigkeit der Leitfähigkeit allmählich
schwächer wegen der wachsenden Rolle der thermischen Energie kBT im
Vergleich zu der Photonenergie !ω.

Ähnlich zu der Leitfähigkeit σ1(ω, n, T ), steigen die Spektren der dielek-
trischen Funktion ε1(ω, n, T ) mit wachsender Temperatur T an, sobald das
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phononenfreie Regime verlassen wird. Die Art, wie sich die Spektren mit der
Temperatur verändern, ist erneut qualitativ gleich für alle gemessenen Si:P-
Proben. Die Frequenzabhängigkeit der dielektrischen Funktion ε1 ist im
Einklang mit der des Realteils σ1 der Leitfähigkeit, was die Kramers-Kronig-
Retationen zwischen dem Real- und dem Imaginärteil der komplexwertigen
Antwortfunktion σ=σ1 + iσ2 betrifft.
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Ich erkläre: Ich habe die vorgelegte Dissertation selbständig und ohne uner-
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