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1 Introduction

1 Introduction

The classical empirical distribution function Fn of a sample of n independent and identically
distributed observations is the nonparametric maximum likelihood estimator of the underlying
distribution function F if this is completely unknown, see e.g. section 2.1 in Owen [25]. For
this and a considerable number of other reasons the empirical distribution function plays a
prominent role in statistical inference. For example, many classical goodness-of-fit statistics such
as the Kolmogorov-Smirnov statistic or the Cramér-von Mises statistic are based on it.

Suppose now that it is additionally known that the underlying distribution function is centered.
It may be considered as a drawback of the empirical distribution function Fn that it does not
take this auxiliary information into account, since

∫
R xFn(dx) 6= 0 in general. By using non-

parametric maximum likelihood estimation under constraints, a centered empirical distribution
function F̃n can be constructed, see Owen [22–25] and Qin and Lawless [27]. Zhang [31] has
established a functional central limit theorem for the empirical process

√
n(F̃n−F ) based on F̃n.

The asymptotic variance of this process is pointwise not greater than that of the classical em-
pirical process

√
n(Fn − F ), whose limit is a time-transformed Brownian bridge by the classical

functional central limit theorem of Donsker. A corresponding result holds for the covariance
matrices of the finite-dimensional distributions of the limit processes, see inequality (1.12) in
Genz and Häusler [12]. Furthermore, it follows from Example 2 in section 5.3 of Bickel et al. [5]
in combination with Zhang’s result that the estimator F̃n is asymptotically efficient for F in
the sense of the Hájek-Le Cam convolution theorem. For F belonging to a parametric family
{F (·, ϑ) : ϑ ∈ Θ} of centered distribution functions, a functional central limit theorem for the
empirical process with estimated parameter based on F̃n, i.e., for

√
n(F̃n(·) − F (·, ϑ̂n)) with a

suitable estimator ϑ̂n for ϑ, was derived in [12], see also Genz [11]. If ϑ is estimated appropri-
ately, e.g., by maximum likelihood, the asymptotic variance of this modified empirical process
is again seen to be pointwise less than or equal to the one of the classical empirical process
with estimated parameter

√
n(Fn(·)−F (·, ϑ̂n)), for which a functional central limit theorem was

proven in the fundamental work of Durbin [7]. In this case a corresponding result also holds
again for the covariance matrices of the finite-dimensional distributions of the limit processes,
see inequality (2.16) in [12]. Note that in [22–25], [27], [31] and [12] more general auxiliary in-
formation than

∫
R xF (dx) = 0 is considered, but we will restrict our attention to the case of

centered distributions.

While the model of independent and identically distributed centered data may not be of great
relevance in practice, in various other important statistical models like in many regression and
time series models the centeredness of the error variables is part of the model. Hence, in order
to estimate the error distribution function F in such models nonparametrically at sample size
n, instead of the standard empirical distribution function Fn,res of the residuals one can use a
centered version F̃n,res in the spirit above, which includes the model assumption explicitly. Some
investigations in this direction have already been made. For example, Genz [11] studied the
estimation of the error distribution by F̃n,res for autoregressive processes of order one in the case
that F = F (·, ϑ) for some ϑ ∈ Θ and derived a functional central limit theorem for

√
n(F̃n,res(·)−

F (·, ϑ̂n,res)), the residual empirical process with estimated parameter based on F̃n,res. He showed
that the distributional limit of this process is the same as that of the process

√
n(F̃n(·)−F (·, ϑ̂n))

based on independent and identically distributed observations with common distribution function
F = F (·, ϑ) for suitable estimators ϑ̂n,res and ϑ̂n of ϑ. Since the ordinary residual empirical
process with estimated parameter

√
n(Fn,res(·)−F (·, ϑ̂n,res)) converges weakly to the same limit

as the process
√
n(Fn(·)−F (·, ϑ̂n)) in the model of independent and identically distributed data

with distribution function F = F (·, ϑ) when suitable estimators for ϑ are used, see section 3 in
Genz [11] and the references therein, it follows again that if ϑ is estimated appropriately, the
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1 Introduction

asymptotic variance of the residual empirical process with estimated parameter based on F̃n,res
is pointwise not greater than the one of the process based on Fn,res, and the analogous result also
holds for the covariance matrices of the finite-dimensional distributions of the limit processes.
For estimating the error distribution in a nonparametric homoscedastic regression model, Kiwitt
et al. [17] consider inter alia the centered empirical distribution function F̃n,res of the residuals
and establish a functional central limit theorem for a corresponding stochastic process. They also
compare the resulting asymptotic mean squared error with the analogous term for the ordinary
empirical distribution function of the residuals and show for some examples of underlying error
distributions that the former is considerably smaller than the latter due to a reduction of bias,
see Example 4.1 in [17].

In models such as those above, for goodness-of-fit testing for F it is natural to consider the
classical goodness-of-fit statistics with Fn and Fn,res replaced by F̃n and F̃n,res, respectively, so
that each of the classical test statistics based on the ordinary (residual) empirical distribution
function has a counterpart based on the centered (residual) empirical distribution function. In
view of the above, it seems reasonable to presume that the goodness-of-fit tests based on F̃n
and F̃n,res exhibit a better performance than their classical counterparts. To the best of our
knowledge, up to now this has only been studied in a few cases. For independent and identically
distributed observations, Genz and Häusler [12] considered testing the composite null hypothesis
H0 : F ∈ {F0(·/σ) : σ ∈ (0,∞)} for certain centered distribution functions F0 and simulated the
power of the asymptotic bootstrap test based on the classical Kolmogorov-Smirnov statistic with
estimated parameter and of its counterpart using the centered empirical distribution function
against some fixed alternatives. Their results show that the tests based on F̃n lead to a higher
power even for small sample sizes in most of the examples. Analogous results are derived by
Genz [11] also for autoregressive processes of order one. In [15] the asymptotic power of the
asymptotic tests based on the classical Cramér-von Mises statistic and on its modified version
using F̃n for testing the simple null hypothesis H0 : F = F0 for certain centered distribution
functions F0 in the case of independent and identically distributed data is computed numerically
against a sequence of contiguous scale alternatives. It is found that in all of the investigated cases
the test based on F̃n has substantially better asymptotic power than the one based on Fn.

The object of this thesis is to provide further mathematical evidence that in the presence of
centered distributions the use of Cramér-von Mises statistics based on the centered (residual)
empirical distribution function instead of classical Cramér-von Mises statistics leads to improved
asymptotic test procedures for goodness-of-fit testing. We will investigate these tests not only in
the model of independent and identically distributed centered data, but also for certain stable
autoregressive processes of arbitrary order with independent and identically distributed centered
errors.

For comparing the performance of two sequences of tests for a given testing problem there are
various concepts of asymptotic relative efficiency discussed in the literature. The relative efficiency
of two sequences of tests is the ratio of the sample sizes needed with the two tests to obtain a given
power β at the significance level α. Then clearly the sequence of tests is preferable that needs less
observations to attain a power of β. As the relative efficiency will generally depend on the values of
α, β, and on the alternative under which the power is considered, it is hardly possible to determine
its value except in simple cases. For this reason several asymptotic procedures concerning the
relative efficiency have been proposed, see e.g. Nikitin [21] for a comprehensive account. Since the
quality of a sequence of tests can be assessed by its power at alternatives that are close to the null
hypothesis and at small significance levels, the limit of the relative efficiency when the alternative
approaches the null hypothesis and the level tends to zero is studied. In case of its existence,
this quantity is called the limiting (as α→ 0) Pitman asymptotic relative efficiency. Wieand [30]
established a condition under which it is possible to equate the limiting Pitman asymptotic
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relative efficiency to the limit of the approximate Bahadur asymptotic relative efficiency, which
is another concept for the comparison of two sequences of tests introduced by Bahadur [1]. As the
approximate Bahadur asymptotic relative efficiency is in general easy to compute, this provides
a means to determine the value of the limiting Pitman asymptotic relative efficiency. Using this
approach, we will compare the performance of the two competing Cramér-von Mises tests in
this thesis by examining their limiting Pitman asymptotic relative efficiency. In section 2 we will
describe the aforementioned concepts of asymptotic relative efficiency in more detail and adjust
Wieand’s results to our setting, which differs from the one considered in [30].

The explicit definition of the centered empirical distribution function F̃n based on a sample of
independent and identically distributed centered random variables is given in section 3 and some
results concerning its asymptotic stochastic behavior uniformly with respect to the underlying
distribution of the data are proven. These uniform results are then used in the next section to
verify Wieand’s condition for the Cramér-von Mises statistics based on F̃n.

In section 4 we consider observations that are independent and identically distributed according
to a centered distribution function F and determine the limiting Pitman asymptotic relative
efficiency of the asymptotic tests based on the classical Cramér-von Mises statistics and on their
counterparts using F̃n for testing the simple null hypothesis H0 : F = F0 against H1 : F ∈ G\{F0},
where G is an appropriate set of continuous centered distribution functions, and for testing the
composite null hypothesis H0 : F ∈ Fτ against H1 : F ∈ G \ Fτ , where Fτ is the scale family
generated by the exponential power distribution with fixed parameter τ ∈ (0,∞). The class
of exponential power distributions, whose explicit definition is given in subsection 4.2, includes
both the normal and the double exponential distribution as special cases. The scale parameter
of the scale family Fτ will be estimated by maximum likelihood. For both of the above testing
problems we will show in section 4 that the limiting Pitman asymptotic relative efficiency of
the classical Cramér-von Mises test with respect to the modified test based on F̃n is equal to
the ratio of the largest eigenvalues of those Hilbert-Schmidt integral operators whose kernels are
the (time-transformed) covariance functions of the limit processes under the null hypothesis of
the empirical processes the test statistics are based upon. By results from [15] we will deduce
that this ratio is strictly less than one in all of the cases considered, so that the sequence of
tests based on the modified Cramér-von Mises statistic is preferable to the standard one in both
testing problems.

A paper prior to our investigations which studies the limiting Pitman asymptotic relative effi-
ciency of Cramér-von-Mises-type tests based on suitably weighted classical empirical processes
with and without estimated parameter in the case of independent and identically distributed data
is Wells [29]. Using the results of Wieand, Wells determined the limiting Pitman asymptotic rel-
ative efficiency of the test statistics with estimated parameter relative to their counterparts with
fully specified distribution function under some regularity conditions in a model of parametric
alternatives. Similar to the results above, he showed that the efficiency equals the ratio of the
largest eigenvalues of certain Hilbert-Schmidt integral operators and is less than or equal to one,
whence he concluded that the test procedure based on the statistic with estimated parameter is
better than the one with a fully specified distribution function.

An important basic model in time series analysis is the autoregressive process. We will restrict our
attention to certain stable autoregressive processes with independent and identically distributed
centered errors in section 5 and section 6. More specifically, we will investigate strictly stationary
stable autoregressive processes as well as stable autoregressive processes with fixed distribution
of the starting values that does not vary with the error distribution. For these processes we will
then consider goodness-of-fit tests for the error distribution using the classical Cramér-von Mises
statistics based on the residual empirical distribution function Fn,res and the modified statistics
based on the centered residual empirical distribution function F̃n,res.
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In section 5 we will discuss the residual empirical distribution functions Fn,res and F̃n,res for the
aforementioned autoregressive processes in some detail and study in particular their asymptotic
stochastic behavior uniformly with respect to the underlying distribution of the errors. More-
over, we will investigate the uniform stochastic behavior of the least squares estimator for the
autoregressive parameter. These uniform results will then be used in section 6 to verify Wieand’s
condition for the Cramér-von Mises statistics based on Fn,res and F̃n,res.

The limiting Pitman asymptotic relative efficiency of the asymptotic tests based on the afore-
mentioned Cramér-von Mises statistics is studied in section 6 for testing the same simple and
composite null hypotheses as in section 4, with F denoting the distribution function of the error
variables of the autoregressive processes here. The set G of possible distribution functions is ad-
justed in this section to the model under consideration. The unknown autoregressive parameter
will be estimated by least squares. For testing the composite null hypothesis H0 : F ∈ Fτ we
will confine our investigations to strictly stationary stable autoregressive processes and stable
autoregressive processes that start in zero. The scale parameter of the parametric family Fτ will
be estimated by the residual-based version of the maximum likelihood estimator for the scale
parameter in the model of independent and identically distributed observations. Using Wieand’s
approach again, we will show that in both testing problems the limiting Pitman asymptotic
relative efficiency of the asymptotic tests based on the Cramér-von Mises statistics using Fn,res
and F̃n,res respectively is the same as the one of the respective tests based on Fn and F̃n in
the model of independent and identically distributed data determined in section 4. Hence, also
for the stable autoregressive processes under consideration the goodness-of-fit tests based on the
Cramér-von Mises statistics using F̃n,res lead to better test procedures than the tests based on
the classical statistics.

4
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2 Asymptotic relative efficiency of two sequences of tests

There are various concepts of asymptotic relative efficiency for comparing the performance of
two sequences of statistical tests for a given hypothesis testing problem. In this section, we
will describe the concepts of approximate Bahadur asymptotic relative efficiency and Pitman
asymptotic relative efficiency and extend a result of Wieand that specifies conditions under
which the limit (as the alternative approaches the hypothesis) of the former efficiency coincides
with the limit (as the level tends to zero) of the latter.

To begin with, let us introduce some notation. Throughout this thesis, the end of a proof is
signaled by the symbol and the end of a remark by �. Moreover, the minimum and maximum
of two real numbers x and y will be denoted by x ∧ y and x ∨ y, respectively.
Now let (G, d) be a metric space. For every nonempty set A ⊂ G, point γ ∈ G and ε > 0 we set,
as usual, d(γ,A) := inf{d(γ, γ̂ ) : γ̂ ∈ A} and Uε(A) := {γ ∈ G : d(γ,A) < ε}. If the set A is a
singleton, say A = {γ0}, we will write Uε(γ0) instead of Uε({γ0}).
Let (Ω,A) be a measurable space and let γ 7→ Pγ be an injective mapping from G into the set of
probability measures on A. Consider now the statistical model (Ω,A, {Pγ : γ ∈ G}). It is required
to test

H0 : γ ∈ G0 versus H1 : γ ∈ G \ G0, (2.1)

where G0 is a nonempty subset of G with

Uε(G0) ∩ (G \ G0) 6= ∅ ∀ ε > 0. (2.2)

The foregoing condition ensures that the set G0 is not isolated in G, but can be approximated
by elements in G \ G0. For each n ∈ N, let Tn be a real-valued test statistic on (Ω,A) for testing
(2.1) such that H0 is being rejected if and only if Tn > k(α) with k(α) ∈ R such that

Pγ
(
Tn > k(α)

)
−→
n

α ∀ γ ∈ G0

for every α ∈ (0, 1). Thus, the sequence of tests corresponding to (Tn)n∈N is asymptotically of
level α, and k(α) is the asymptotic critical value.

The following definition is due to Bahadur, cf. page 276 in Bahadur [1].

Definition 2.1
The sequence (Tn)n∈N is said to be a standard sequence if the following conditions are satis-
fied.

(BI) For each γ ∈ G0,
Pγ(Tn ≤ x) −→

n
G(x) ∀ x ∈ R,

where G is a continuous distribution function.

(BII) There is a constant a > 0 such that

lim
x→∞

log
(
1−G(x)

)
x2

= −a
2
.

(BIII) There is a function b : G \ G0 → (0,∞) with

Tn√
n
− b(γ) −→

n
0 in Pγ-probability ∀ γ ∈ G \ G0.
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2 Asymptotic relative efficiency of two sequences of tests

For a standard sequence (Tn)n∈N we set k(α) = G−1(1 − α) because of (BI), where G−1 is the
quantile function of G. Condition (BIII) implies that Tn → ∞ in probability under H1, so that
the sequence of tests corresponding to (Tn)n∈N is consistent.

In [1] Bahadur studies the behavior of 1−G(Tn), the approximate p-value or approximate level
attained by Tn, for any standard sequence (Tn)n∈N. He considers the random variable

Kn := −2 log
(
1−G(Tn)

)
(2.3)

and shows that for each γ ∈ G0

lim
n→∞

Pγ(Kn ≤ x) = Fχ2
2
(x) ∀ x ∈ R,

where Fχ2
2
is the distribution function of the chi-square distribution with two degrees of freedom.

Moreover, he notes that

Kn

n
−→
n

a b(γ)2 in Pγ-probability ∀ γ ∈ G \ G0.

The function c(γ) := a b(γ)2, γ ∈ G \ G0, is called the asymptotic or approximate slope of the
sequence (Tn)n∈N. For two standard sequences (T1n)n∈N and (T2n)n∈N with approximate slopes
c1(γ) and c2(γ) respectively Bahadur compares the approximate attained levels for fixed n ∈ N.
He argues that the test based on Tin is less successful than that based on Tjn if the approximate
level attained by Tin exceeds that of Tjn, which is equivalent to Kin < Kjn, where Kin and Kjn

are as in (2.3), i 6= j ∈ {1, 2}. Since

K1n

K2n
−→
n

c1(γ)

c2(γ)
in Pγ-probability ∀ γ ∈ G \ G0,

with Pγ-probability tending to one the test corresponding to T1n is less successful than that
corresponding to T2n if c1(γ)/c2(γ) < 1 and more successful if c1(γ)/c2(γ) > 1. The ratio
c1(γ)/c2(γ) is thus called the approximate Bahadur asymptotic relative efficiency (approximate
Bahadur ARE) of the sequence (T1n)n∈N relative to the sequence (T2n)n∈N.

A drawback of the concept of approximate Bahadur ARE is that the approximate slope of a
standard sequence is not a very trustworthy measure for the performance of the corresponding
test, as Bahadur himself notes at the end of section 4 in [1], see also section 6 and 7 in Bahadur [2].
Nevertheless, the approximate Bahadur ARE has its merits. For example, it is generally easy
to compute and under certain conditions its limit as the alternative approaches the hypothesis
equals the limit as α → 0 of the Pitman asymptotic relative efficiency, a different efficiency
concept which we will describe next.

The concept of Pitman asymptotic relative efficiency is based on the notion of relative efficiency
of two sequences of tests. For this, let (Tin)n∈N, i = 1, 2, be sequences of statistics for testing
the hypothesis testing problem (2.1). The index n here denotes the size of the random sample
the statistic Tin is based on. As before, we assume that the sequence of tests corresponding to
(Tin)n∈N is asymptotically of level α and that {Tin > ki(α)} is the rejection region of the test
based on Tin, where ki(α) is the asymptotic critical value, i = 1, 2. Furthermore, we assume that
the test sequences based on (T1n)n∈N and (T2n)n∈N are consistent. For fixed α, β ∈ (0, 1) and
γ ∈ G \ G0 we define

Ni(α, β, γ) := min
{
n ∈ N : Pγ

(
Tim > ki(α)

)
≥ β ∀ m ≥ n

}
, i = 1, 2. (2.4)

Note that the consistency of the respective test sequence ensures that Ni(α, β, γ) ∈ N for i = 1, 2.
The number Ni(α, β, γ) is the smallest sample size such that the power of the test based on

6



2 Asymptotic relative efficiency of two sequences of tests

(Tin)n∈N under the alternative γ and the asymptotic significance level α is not less than β for
all sample sizes larger or equal to it. Hence, for given α, β and γ, the sequence of tests based
on (Tin)n∈N is preferable to the one based on (Tjn)n∈N if Ni(α, β, γ) < Nj(α, β, γ), because it
needs less observations to attain a power of at least β at the alternative γ and the asymptotic
significance level α. We will call the ratio N2(α, β, γ)/N1(α, β, γ) the relative efficiency of the
sequence (T1n)n∈N with respect to the sequence (T2n)n∈N.

In general, the relative efficiency depends on all three arguments α, β and γ, and its explicit
computation is often very difficult. Since from a practical point of view small significance levels,
high powers and alternatives close to the hypothesis are especially relevant, several limiting
procedures have been proposed. One approach is to investigate the limit of the relative efficiency
as the alternative tends to H0. If

lim
γ∈G\G0,
d(γ,G0)→0

N2(α, β, γ)

N1(α, β, γ)

exists, we will call it the Pitman asymptotic relative efficiency (Pitman ARE) of the sequence
(T1n)n∈N with respect to the sequence (T2n)n∈N. The concept of Pitman ARE was introduced
by E. J. G. Pitman at the end of the 1940s in his unpublished lecture notes on nonparametric
statistical inference and has since then become one of the most popular types of asymptotic
relative efficiency.

In the literature, there are several variants of the notion of relative efficiency. For example, other
definitions of Ni(α, β, γ) are used. Sometimes Ni(α, β, γ) is defined to be the first sample size
such that the power of the test at the alternative γ and the significance level α is larger than
or equal to β, without requiring the power to remain at this level for sample sizes larger than
Ni(α, β, γ). If the power is an increasing function of the sample size, this definition of Ni(α, β, γ)
coincides of course with the one above. Note moreover that often the sequence of exact level
α tests corresponding to (Tin)n∈N is considered. In this case, the asymptotic critical value is
replaced by the exact critical value in the definition of Ni(α, β, γ). Since we are only interested in
comparing sequences of tests as described above that are asymptotically of level α, the definition
of Ni(α, β, γ) as given in (2.4) is the most suitable for our purposes, and we will henceforth
only consider the relative efficiency and Pitman asymptotic relative efficiency as defined above.
A comprehensive description of the aforementioned and other notions of asymptotic relative
efficiency and related results can be found in the book of Nikitin [21].

As the Pitman ARE may depend on the values of α and β, it is in general still difficult to
determine its value. Because of this, its limit as α → 0 is investigated. For G being an interval
and G0 = {γ0}, Wieand [30] gives conditions ensuring that the limit as α → 0 of an extended
version of Pitman asymptotic relative efficiency agrees with the limit of the approximate Bahadur
asymptotic relative efficiency as the alternative γ approaches G0. He shows that for this equality to
hold, it is sufficient to strengthen condition (BIII) locally. In what follows, we adjust Wieand’s
results to our definition of Pitman ARE and extend them to the general hypothesis testing
problem (2.1). Another extension of Wieand’s results was done by Kallenberg and Koning [16].

The following definition extends Wieand’s additional Condition III∗.

Definition 2.2
The sequence (Tn)n∈N is said to fulfill Wieand’s condition (WIII) if there exists a function
b : G \ G0 → (0,∞) so that there is an ε∗ > 0 such that for each ε > 0 and δ ∈ (0, 1

2) there is a
positive constant C(ε, δ) with

Pγ

(∣∣∣ Tn√
n
− b(γ)

∣∣∣ ≥ ε b(γ)
)
< δ

for all γ ∈ Uε∗(G0) \ G0 and for all n ∈ N with
√
n b(γ) > C(ε, δ).

7



2 Asymptotic relative efficiency of two sequences of tests

Note that condition (WIII) implies (BIII) locally, i.e., for all γ ∈ Uε∗(G0)\G0. Hence, the function
b in Wieand’s condition is locally unique, that is, if the sequence (Tn)n∈N satisfies (WIII) with
two functions b1 and b2, there is a % > 0 such that b1(γ) = b2(γ) for all γ ∈ U%(G0) \ G0.

We will now state and prove a version of the theorem on page 1005 in Wieand [30] that is adjusted
to our setting. For this, let us consider two sequences (T1n)n∈N and (T2n)n∈N of test statistics
again. For functions and symbols such as Gi, ai, bi, ci, the subscript i refers to the sequence
(Tin)n∈N, i = 1, 2.

Theorem 2.3
Let (Tin)n∈N, i = 1, 2, be two sequences such that
(i) (Tin)n∈N fulfills conditions (BI), (BII) and (WIII) for i = 1, 2,

(ii) G1 and G2 are strictly increasing on (z,∞) for some z ∈ R,

(iii) bi(γ)→ 0 as d(γ,G0)→ 0, γ ∈ G \ G0, for i = 1, 2,

(iv) there exists

lim
γ∈G\G0,
d(γ,G0)→0

c1(γ)

c2(γ)
=: B(G0) ∈ R.

Then for all β ∈ (0, 1)

B(G0) = lim
α→0

lim inf
γ∈G\G0,
d(γ,G0)→0

N2(α, β, γ)

N1(α, β, γ)
= lim

α→0
lim sup
γ∈G\G0,
d(γ,G0)→0

N2(α, β, γ)

N1(α, β, γ)
. (2.5)

The common value in (2.5) is called the limiting (as α → 0) Pitman ARE of the sequence
(T1n)n∈N with respect to the sequence (T2n)n∈N. Note that it is independent of β, since B(G0)
does not depend on it.

As from a practical point of view the performance of a test under small significance levels and
alternatives close to H0 is of special importance, the limiting (as α → 0) Pitman ARE is an
appropriate means for choosing between the two test sequences for the hypothesis testing problem
(2.1). If B(G0) > 1, then the sequence of tests based on (T1n)n∈N is preferable to the one based
on (T2n)n∈N, and the test sequence based on (T2n)n∈N is preferable if B(G0) < 1.

The following proof of Theorem 2.3 is mainly based on the proof on page 1006 in Wieand [30]
but also borrows some ideas from the proof of Theorem 1 in Kallenberg and Koning [16].

Proof. For any fixed β ∈ (0, 1) we can choose a δ ∈ (0, 1
2) with β ∈ [δ, 1− δ]. For every ε ∈ (0, 1)

by (BII) there is an x0 = x0(ε) > z such that

(1 + ε)
(
−ai

2

)
x2 ≤ log(1−Gi(x)) ≤ (1− ε)

(
−ai

2

)
x2

for all x ≥ x0 and i = 1, 2, where z is from (ii). Let α′ := mini=1,2(1 − Gi(x0)) (note that
α′ = α′(ε) ∈ (0, 1)). Then for α ∈ (0, α′] it is ki(α) = G−1

i (1−α) ≥ x0 for i = 1, 2, and therefore

(1 + ε)
(
−ai

2

)
ki(α)2 ≤ log(α) ≤ (1− ε)

(
−ai

2

)
ki(α)2,

which is equivalent to [
−2 log(α)

ai(1 + ε)

]1/2

≤ ki(α) ≤

[
−2 log(α)

ai(1− ε)

]1/2

. (2.6)

8



2 Asymptotic relative efficiency of two sequences of tests

Define α′′ := mini=1,2 exp(−aiCi(ε, δ)2), where Ci(ε, δ) is as in (WIII) (note that α′′ = α′′(ε, δ)).
For α ∈ (0, α′′) we have for i = 1, 2 and for all γ ∈ G \ G0 that for n ∈ N

n ≥ − log(α)

aibi(γ)2
=⇒

√
n bi(γ) ≥

(− log(α)

ai

)1/2
> Ci(ε, δ). (2.7)

We will now derive a lower bound for Ni(α, β, γ).

For ε ∈ (0, 1) set M(ε) := 2 · (1 − ε)/(1 + ε)4 − 1 and fix ε0 ∈ (0, 1) with M(ε0) > 0. Then
2(1 − ε)/(1 + ε)4 > 1 for every ε ∈ (0, ε0] because the function M(ε) is strictly decreasing in
ε ∈ (0, 1). Further set K := exp(−(a1∨a2)/M(ε0)). Note that by (iii) there is an η̃ > 0 such that
bi(γ) ≤ 1, i = 1, 2, for every γ ∈ G \ G0 with d(γ,G0) < η̃. For such γ it follows for α ∈ (0,K]
that

α ≤ exp
(
−aibi(γ)2

M(ε)

)
for i = 1, 2 and every 0 < ε ≤ ε0, so that

− log(α)

aibi(γ)2
M(ε) ≥ 1. (2.8)

Thus, there is an n ∈ N with

− log(α)

aibi(γ)2
≤ n < −2 log(α)(1− ε)

aibi(γ)2(1 + ε)4
, (2.9)

because the difference of the bounds is at least one, as was shown in (2.8). So for γ ∈ G \G0 with
d(γ,G0) < η̃, ε ∈ (0, ε0], α ∈ (0,min(K,α′, α′′)) and such n we have

√
n bi(γ)(1 + ε) <

[
−2 log(α)(1− ε)

ai(1 + ε)2

]1/2

≤ ki(α)
(1− ε

1 + ε

)1/2
< ki(α)

for i = 1, 2 using (2.6), and therefore

Pγ
(
Tin > ki(α)

)
≤ Pγ

(
Tin >

√
n bi(γ)(1 + ε)

)
.

Now set ε∗ := ε∗1 ∧ ε∗2 with ε∗i from (WIII) and take γ ∈ G \ G0 with d(γ,G0) < ε∗ ∧ η̃. Since
n ≥ (− log(α))/(aibi(γ)2) and γ and α are such that Wieand’s condition (WIII) holds, we have

β ≥ δ > Pγ

(∣∣∣ Tin√
n bi(γ)

− 1
∣∣∣ ≥ ε)

= Pγ

({ Tin√
n bi(γ)

≥ 1 + ε
}
∪
{ Tin√

n bi(γ)
≤ 1− ε

})
≥ Pγ

(
Tin ≥

√
n bi(γ)(1 + ε)

)
≥ Pγ

(
Tin > ki(α)

)
.

Thus, for i = 1, 2

Ni(α, β, γ) ≥ −2 log(α)(1− ε)
aibi(γ)2(1 + ε)4

(2.10)

for every γ ∈ G \ G0 with d(γ,G0) < ε∗ ∧ η̃, ε ∈ (0, ε0] and α ∈ (0,min(K,α′, α′′)).
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2 Asymptotic relative efficiency of two sequences of tests

Next, we want to find an upper bound for Ni(α, β, γ).

For this, let ε ∈ (0, ε0] and α ∈ (0,min(K,α′, α′′)) again. Note that by (iii) there is an η̂ > 0 with
bi(γ) <

√
εCi(ε, δ) for γ ∈ Uη̂ (G0) \ G0 and i = 1, 2 (note that η̂ = η̂(ε, δ)). For the following

investigations let γ ∈ G \ G0 with d(γ,G0) < min(ε∗, η̃, η̂).

Then for n ∈ N such that

n ≥ −2 log(α)(1 + ε)

aibi(γ)2(1− ε)3
>
− log(α)

aibi(γ)2

it follows with (2.6) that for i = 1, 2

√
n bi(γ)(1− ε) ≥

(−2 log(α)(1 + ε)

ai(1− ε)

)1/2
≥ ki(α)

√
1 + ε > ki(α).

Hence, by the monotonicity of the distribution of Tin under Pγ we have

Pγ
(
Tin > ki(α)

)
≥ Pγ

(
Tin >

√
n bi(γ)(1− ε)

)
.

As α < α′′ and n is such that the left side of (2.7) holds, it follows from Wieand’s condition
(WIII) that

β ≤ 1− δ < Pγ

(∣∣∣ Tin√
n bi(γ)

− 1
∣∣∣ < ε

)
= Pγ

(
1− ε < Tin√

n bi(γ)
< 1 + ε

)
≤ Pγ

(
Tin >

√
n bi(γ)(1− ε)

)
≤ Pγ

(
Tin > ki(α)

)
.

This implies

Ni(α, β, γ) ≤
⌈−2 log(α)(1 + ε)

aibi(γ)2(1− ε)3

⌉
(2.11)

for i = 1, 2, where dye := min{m ∈ Z : m ≥ y} for y ∈ R. Now note that for i = 1, 2√
Ni(α, β, γ) bi(γ) > Ci(ε, δ)

using (2.10), (2.9) and (2.7). But since bi(γ) <
√
εCi(ε, δ), this yields Ni(α, β, γ) ε > 1. Hence,

Ni(α, β, γ)(1− ε) = Ni(α, β, γ)−Ni(α, β, γ) ε < Ni(α, β, γ)− 1 <
−2 log(α)(1 + ε)

aibi(γ)2(1− ε)3
,

where the last inequality follows from (2.11). Thus,

Ni(α, β, γ) <
−2 log(α)(1 + ε)

aibi(γ)2(1− ε)4
(2.12)

for every ε ∈ (0, ε0], α ∈ (0,min(K,α′, α′′)), γ ∈ G \ G0 with d(γ,G0) < min(ε∗, η̃, η̂) and i = 1, 2.

A combination of (2.10) and (2.12) yields

c1(γ)

c2(γ)
·
(1− ε

1 + ε

)5
<

N2(α, β, γ)

N1(α, β, γ)
<

c1(γ)

c2(γ)
·
(1 + ε

1− ε

)5
(2.13)

for every ε ∈ (0, ε0], α ∈ (0,min(K,α′, α′′)) and γ ∈ G \ G0 with d(γ,G0) < min(ε∗, η̃, η̂), whence
it follows that

lim sup
γ∈G\G0,
d(γ,G0)→0

N2(α, β, γ)

N1(α, β, γ)
≤ B(G0) ·

(1 + ε

1− ε

)5

10



2 Asymptotic relative efficiency of two sequences of tests

for these values of ε and α. Now taking the limit superior as α→ 0 of both sides of this inequality
first and letting ε tend to zero afterward, we get

lim sup
α→0

lim sup
γ∈G\G0,
d(γ,G0)→0

N2(α, β, γ)

N1(α, β, γ)
≤ B(G0).

In the same way it follows from (2.13) that

lim inf
α→0

lim inf
γ∈G\G0,
d(γ,G0)→0

N2(α, β, γ)

N1(α, β, γ)
≥ B(G0).

Hence, it is

B(G0) ≤ lim inf
α→0

lim inf
γ∈G\G0,
d(γ,G0)→0

N2(α, β, γ)

N1(α, β, γ)
≤ lim sup

α→0
lim inf
γ∈G\G0,
d(γ,G0)→0

N2(α, β, γ)

N1(α, β, γ)

≤ lim sup
α→0

lim sup
γ∈G\G0,
d(γ,G0)→0

N2(α, β, γ)

N1(α, β, γ)
≤ B(G0),

and this implies

lim
α→0

lim inf
γ∈G\G0,
d(γ,G0)→0

N2(α, β, γ)

N1(α, β, γ)
= B(G0).

Analogously, we get

lim
α→0

lim sup
γ∈G\G0,
d(γ,G0)→0

N2(α, β, γ)

N1(α, β, γ)
= B(G0),

which completes the proof.

Oftentimes the verification of Wieand’s condition (WIII) is not straightforward, because in order
to establish it, it is necessary to study the behavior of the test statistics under H1, and the
knowledge of this behavior is often limited. The following proposition thus sometimes facilitates
the verification of (WIII). It extends the lemma on page 1007 in Wieand [30] to composite null
hypotheses in an arbitrary metric space.

Proposition 2.4
Let {(Vn,γ)n∈N : γ ∈ G} be a family of sequences of real-valued test statistics on (Ω,A). Suppose
that there is a % > 0 such that
(i) for every γ ∈ U%(G0) \ G0 there is a continuous distribution function Qγ with

sup
γ∈U%(G0)\G0

∣∣Pγ(Vn,γ ≤ x)−Qγ(x)
∣∣ −→

n
0 ∀ x ∈ R,

(ii) sup
γ∈U%(G0)\G0

|Q−1
γ (α)| <∞ for all α ∈ (0, 1), where Q−1

γ is the quantile function of Qγ.

Let g : U%(G0) \ G0 → (0, 1] be an arbitrary function. Then for every ε > 0 and δ ∈ (0, 1) there is
a constant C = C(ε, δ) such that for all γ ∈ U%(G0) \ G0 and all n ∈ N with n > C/g(γ)2

Pγ

(∣∣∣Vn,γ√
n

∣∣∣ ≤ ε · g(γ)
)
> 1− δ.

11



2 Asymptotic relative efficiency of two sequences of tests

Proof. Let ε > 0 and δ ∈ (0, 1). Choose M1 ∈ (0,∞) so that

1

ε
· sup
γ∈U%(G0)\G0

Q−1
γ

(
1− δ

4

)
< M1.

Then Qγ(εM1) ≥ 1 − δ
4 for every γ ∈ U%(G0) \ G0. Moreover, choose a constant C1 ≥ M2

1 such
that n > C1 implies

sup
γ∈U%(G0)\G0

∣∣Pγ(Vn,γ ≤ εM1)−Qγ(εM1)
∣∣ < δ

4
.

Now 0 < g ≤ 1 implies C1/g
2 ≥ C1 and thus it follows that for every γ ∈ U%(G0) \ G0 and n ∈ N

with n > C1/g(γ)2 we have

Pγ(Vn,γ ≤ εM1) > Qγ(εM1)− δ

4
≥ 1− δ

2
.

Because of M2
1 ≤ C1 < ng(γ)2 this implies

Pγ
(
Vn,γ ≤ ε

√
ng(γ)

)
> 1− δ

2

for every γ ∈ U%(G0) \ G0 and n ∈ N with n > C1/g(γ)2.

Next, choose M2 ∈ (0,∞) such that(
−1

ε

)
· inf
γ∈U%(G0)\G0

Q−1
γ

(δ
4

)
< M2.

Then Qγ(−εM2) ≤ δ
4 for every γ ∈ U%(G0) \ G0. Let C2 ≥M2

2 such that n > C2 implies

sup
γ∈U%(G0)\G0

∣∣Pγ(Vn,γ > −εM2)− (1−Qγ(−εM2))
∣∣

= sup
γ∈U%(G0)\G0

∣∣Pγ(Vn,γ ≤ −εM2)−Qγ(−εM2)
∣∣ < δ

4
.

For all n ∈ N with n > C2 and all γ ∈ U%(G0) \ G0 we then have

Pγ(Vn,γ ≥ −εM2) ≥ Pγ(Vn,γ > −εM2) > 1−Qγ(−εM2)− δ

4
≥ 1− δ

2
.

As above, C2/g
2 ≥ C2 because of 0 < g ≤ 1. Thus, for every γ ∈ U%(G0) \ G0 and all n ∈ N with

n > C2/g(γ)2 it is

Pγ
(
Vn,γ ≥ −ε

√
ng(γ)

)
> 1− δ

2

because M2
2 ≤ C2 < ng(γ)2.

Combining these results, with C := max(C1, C2) we have for every γ ∈ U%(G0)\G0 and all n ∈ N
such that n > C/g(γ)2

Pγ

(∣∣∣Vn,γ√
n

∣∣∣ ≤ ε · g(γ)
)

= Pγ
(
Vn,γ ≤

√
nεg(γ)

)
+ Pγ

(
Vn,γ ≥ −

√
nεg(γ)

)
− Pγ

({
Vn,γ ≤

√
nεg(γ)

}
∪
{
Vn,γ ≥ −

√
nεg(γ)

})
> 1− δ.

Obviously, Proposition 2.4 can be extended to a finite sum of test statistics.
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2 Asymptotic relative efficiency of two sequences of tests

Corollary 2.5
For fixed K ∈ N, let (V

(1)
n,γ )n∈N, . . . , (V

(K)
n,γ )n∈N be sequences of test statistics, each fulfilling the

assumptions of Proposition 2.4. Then there is a % > 0 such that for an arbitrary function
g : U%(G0) \ G0 → (0, 1] and for every ε > 0 and δ ∈ (0, 1) there is a constant C = C(ε, δ)
with

Pγ

(∣∣∣ K∑
j=1

V
(j)
n,γ√
n

∣∣∣ ≤ ε · g(γ)
)
> 1− δ

for all γ ∈ U%(G0) \ G0 and all n ∈ N with n > C/g(γ)2.

The next result states conditions under which it is possible to obtain convergence in distribution
uniformly in γ as required in assumption (i) of Proposition 2.4 if every element of the sequence
of test statistics can be decomposed in a main term and a remainder term that converges to zero
in probability.

Proposition 2.6
Let {(Vn,γ)n∈N : γ ∈ G} and {(Rn,γ)n∈N : γ ∈ G} be families of sequences of real-valued measurable
functions on (Ω,A). Suppose there is a % > 0 such that
(i) for every γ ∈ U%(G0) \ G0 there is a continuous distribution function Qγ with

sup
γ∈U%(G0)\G0

∣∣Pγ(Vn,γ ≤ x)−Qγ(x)
∣∣ −→

n
0 ∀ x ∈ R,

(ii) the family {Qγ : γ ∈ U%(G0) \ G0} is pointwise equicontinuous, i.e., for every x ∈ R and
ε > 0 there is a δ = δ(x, ε) > 0 with

sup
γ∈U%(G0)\G0

|Qγ(x)−Qγ(y)| ≤ ε for all y ∈ R with |x− y| ≤ δ,

(iii) sup
γ∈U%(G0)\G0

Pγ(|Rn,γ | > ε) −→
n

0 ∀ ε > 0.

Then

sup
γ∈U%(G0)\G0

∣∣Pγ(Vn,γ +Rn,γ ≤ x)−Qγ(x)
∣∣ −→

n
0 ∀ x ∈ R.

Proof. For simplicity of notation, set U%(G0) \ G0 =: M . For every constant c > 0, every x ∈ R
and γ ∈M we have

Pγ(Vn,γ +Rn,γ ≤ x)−Qγ(x)

≤ Pγ
(
Vn,γ +Rn,γ ≤ x, |Rn,γ | ≤ c

)
+ Pγ(|Rn,γ | > c)−Qγ(x)

≤ Pγ(Vn,γ ≤ x+ c)−Qγ(x+ c) +Qγ(x+ c) + Pγ(|Rn,γ | > c)−Qγ(x)

≤ sup
γ∈M
|Pγ(Vn,γ ≤ x+ c)−Qγ(x+ c)|+ sup

γ∈M
|Qγ(x+ c)−Qγ(x)|+ sup

γ∈M
Pγ(|Rn,γ | > c). (2.14)

Since
{Vn,γ ≤ x− c} ⊂ {Vn,γ +Rn,γ ≤ x} ∪ {|Rn,γ | > c}

for every x ∈ R, γ ∈M and c > 0, it also holds that

Pγ(Vn,γ +Rn,γ ≤ x) ≥ Pγ(Vn,γ ≤ x− c)− Pγ(|Rn,γ | > c),

13



2 Asymptotic relative efficiency of two sequences of tests

whence it follows that

Qγ(x)− Pγ(Vn,γ +Rn,γ ≤ x)

≤ Qγ(x) +Qγ(x− c)−Qγ(x− c)− Pγ(Vn,γ ≤ x− c) + Pγ(|Rn,γ | > c)

≤ sup
γ∈M
|Pγ(Vn,γ ≤ x− c)−Qγ(x− c)|+ sup

γ∈M
|Qγ(x)−Qγ(x− c)|+ sup

γ∈M
Pγ(|Rn,γ | > c). (2.15)

Now let x ∈ R and ε > 0 be arbitrary, but fixed. Because of (ii), there is a δ = δ(x, ε) > 0 such
that

sup
γ∈M
|Qγ(x)−Qγ(y)| ≤ ε

3

for all y ∈ R with |y−x| ≤ δ. Keep this δ fixed for the rest of the proof. It follows from (iii) that
there is an N = N(x, ε) ∈ N such that

sup
γ∈M

Pγ(|Rn,γ | > δ) ≤ ε

3
∀ n ≥ N(x, ε).

By (i) there are K ′ = K ′(x, ε), K ′′ = K ′′(x, ε) ∈ N with

sup
γ∈M
|Pγ(Vn,γ ≤ x+ δ)−Qγ(x+ δ)| ≤ ε

3
∀ n ≥ K ′

and
sup
γ∈M
|Pγ(Vn,γ ≤ x− δ)−Qγ(x− δ)| ≤ ε

3
∀ n ≥ K ′′.

Using (2.14) and (2.15) with c = δ, it thus follows that for all n ≥ max(N,K ′,K ′′) and all γ ∈M
we have

|Pγ(Vn,γ +Rn,γ ≤ x)−Qγ(x)| ≤ ε.

We conclude this section with the following remarks.

Remark 2.7: Due to the monotonicity of every Qγ the family {Qγ : γ ∈ U%(G0)\G0} is pointwise
equicontinuous if and only if for every x ∈ R and ε > 0 there is a δ = δ(ε, x) > 0 such that

sup
γ∈U%(G0)\G0

(
Qγ(x+ δ)−Qγ(x− δ)

)
≤ ε. �

Remark 2.8: Note that all results of this section still hold true when replacing the index set N
of the sequences of test statistics by the subset {n ∈ N : n ≥ n0} for fixed n0 ∈ N. While this
is trivial for most of the results, the proof of Theorem 2.3 requires a simple modification in this
case:
Because the function M(ε) = 2 · (1− ε)/(1 + ε)4−1 is continuous and strictly decreasing on [0, 1]
with M(0) = 1 and M(1) = −1, we can fix ε0 ∈ (0, 1) such that 0 < M(ε0) ≤ 1/n0. By (2.8) this
ensures that the lower bound in (2.9) is larger than or equal to n0. The rest of the proof remains
unchanged, except of the substitution of the index set N by {n ∈ N : n ≥ n0}, of course. �
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3 Preparatory results for independent and identically distributed centered random variables

3 Preparatory results for independent and identically distributed
centered random variables

In this section we will present the definition of the centered empirical distribution function F̃n
based on a sample of independent and identically distributed centered random variables. This
centered empirical distribution function is an estimator of the underlying distribution function
that takes the additional information about the mean into account. Moreover, we will investigate
the stochastic behavior of F̃n and its components uniformly with respect to the distribution of
the data. These uniform results will be used in the next section to verify Wieand’s condition
(WIII) for the Cramér-von Mises statistics based on F̃n.

3.1 The centered empirical distribution function

Let (Ω,A, P ) be a probability space and (Xi)i∈N a sequence of random variables on it such that
X1, X2, . . . are independent and identically distributed according to a distribution function F
with ∫

R
xF (dx) = 0 and 0 <

∫
R
x2F (dx) <∞. (3.1)

For every n ∈ N, n ≥ 2, set

Ωn := { min
1≤i≤n

Xi < 0 < max
1≤i≤n

Xi} ∈ A.

On Ωn by Lemma A.1 there is a unique tn = t(X1, . . . , Xn) ∈ R with( 1

n
− 1
) 1

max
1≤i≤n

Xi
< tn <

( 1

n
− 1
) 1

min
1≤i≤n

Xi
(3.2)

and
n∑
i=1

Xi

1 + tnXi
= 0. (3.3)

It follows from Lemma A.2 that for every n ≥ 2 the function

tn : Ωn 3 ω 7→ t(X1(ω), . . . , Xn(ω)) ∈ R

is Ωn ∩ A,B∗-measurable, where Ωn ∩ A is the trace σ-algebra of A on Ωn, and B∗ denotes the
Borel σ-Algebra on R. In order to extend tn to a measurable function on Ω, we have to define it
measurably on Ωn := Ω \ Ωn. But the set Ωn is asymptotically negligible in the following sense:
Under the moment conditions (3.1) it is

P (Ωn) = P
(

0 /∈ ( min
1≤i≤n

Xi, max
1≤i≤n

Xi)
)
−→
n→∞

0. (3.4)

To verify this, note that

P
(

0 /∈ ( min
1≤i≤n

Xi, max
1≤i≤n

Xi)
)
≤ P

(
Xi ≥ 0, i = 1, . . . , n

)
+ P

(
Xi ≤ 0, i = 1, . . . , n

)
= P (X1 ≥ 0)n + P (X1 ≤ 0)n −→

n→∞
0,

because under (3.1) neither X1 ≥ 0 almost everywhere (a.e.) nor X1 ≤ 0 a.e. is possible.

It follows from this that for asymptotic considerations such as the investigation of convergence in
probability and convergence in distribution, the definition of tn on Ωn is irrelevant, we can let tn
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be any Ωn ∩A,B∗-measurable function on Ωn. For this reason we will not specify the definition
of tn on Ωn, and we will assume henceforth that Ωn holds whenever investigating tn or functions
thereof. Then tn is well-defined through (3.2) and (3.3).

For every n ≥ 2 set

pni :=
1

n(1 + tnXi)
, 1 ≤ i ≤ n,

and

F̃n(x) :=

n∑
i=1

pni1{Xi≤x} =

n∑
i=1

1

n(1 + tnXi)
1{Xi≤x}, x ∈ R.

Then pni > 0, i = 1, . . . , n, as shown in the proof of Lemma A.1, and

n∑
i=1

pni =
n∑
i=1

1 + tnXi

n(1 + tnXi)
− tn
n

n∑
i=1

Xi

1 + tnXi
= 1

by (3.3). Hence, F̃n is a discrete distribution function that puts random mass pni on each data
point Xi. Moreover, ∫

R
xF̃n(dx) =

n∑
i=1

pniXi = 0

because of (3.3), so that F̃n is centered. Thus, if F is assumed to satisfy (3.1) but to be otherwise
unknown, F̃n can be used as an estimator for F that takes the additional information about the
mean into account. We will call F̃n the centered empirical distribution function of X1, . . . , Xn.

The function F̃n can also be derived by an empirical likelihood approach as developed by Owen
[22–24], see also Owen [25] for a comprehensive account. Using ideas from this concept for
the nonparametric estimation of distribution functions under auxiliary information, Qin and
Lawless [27] gave a closed-form expression of the nonparametric maximum likelihood estimator
(MLE) F̂n for the underlying but unknown F in the presence of some auxiliary information
about F , but in a more general setting than considered here. Zhang [31] studied some asymptotic
properties of this F̂n. The function F̃n as defined above is just the nonparametric MLE F̂n in the
special case that the additional information we have about F is

∫
R xF (dx) = 0.

Note that in contrast to F̃n, the classical empirical distribution function Fn of X1, . . . , Xn, i.e.,

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}, x ∈ R,

which is well known to be the nonparametric MLE for F in the absence of additional information,
does not incorporate the additional information that the true distribution is centered, since∫

R
xFn(dx) =

1

n

n∑
i=1

Xi 6= 0

in general.
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3 Preparatory results for independent and identically distributed centered random variables

3.2 Uniform asymptotic results

Consider now a nonempty set M of distribution functions F : R → [0, 1]. Let (Ω,A) be a mea-
surable space and F 7→ PF be an injective mapping from M into the set of probability measures
on A.

Definition 3.1
Let (an)n∈N be a sequence of positive real numbers, and for every F ∈ M let (Yn,F )n∈N be a
sequence of random variables on (Ω,A). We say that Yn,F = ouP (an) in M as n→∞ if and only
if Yn,F /an converges to zero in PF -probability uniformly in M , i.e., if and only if

sup
F∈M

PF

(∣∣∣Yn,F
an

∣∣∣ ≥ ε) −→
n→∞

0 ∀ ε > 0.

We say that Yn,F = OuP (an) in M as n → ∞ if and only if Yn,F /an is stochastically bounded
with respect to PF uniformly in M , i.e., if and only if

lim
K→∞

lim sup
n→∞

sup
F∈M

PF

(∣∣∣Yn,F
an

∣∣∣ ≥ K) = 0.

Of course this definition covers the special case that the sequence of variables (Yn,F )n∈N is the
same for every F ∈M , i.e., (Yn,F )n∈N ≡ (Yn)n∈N, say, for every F ∈M .

As in the usual case, the following rules apply, where the convergence of every term is understood
to be uniform in the same M as n→∞:

ouP (1) + ouP (1) = ouP (1), ouP (1) · ouP (1) = ouP (1), ouP (1) ·OuP (1) = ouP (1), OuP (1) ·OuP (1) = OuP (1).

For the rest of this subsection, letM now be a set of continuous distribution functions having zero
mean and finite variance. It follows from these assumptions that the variance of every F ∈M is
strictly positive. Moreover, we assume that the model (Ω,A, {PF : F ∈ M}) is such that there
is a sequence (Xi)i∈N of random variables on (Ω,A) such that under PF the Xi are independent
and identically distributed with common distribution function F .

Note that for a given set M such a model always exists, e.g., we can always use the infinite
product measure space (RN,

⊗
i∈N B∗,

⊗
i∈NQF ) =: (Ω,A, PF ), whereQF denotes the probability

measure on the Borel σ-algebra B∗ induced by F , and let Xi be the i-th coordinate projection.

Here and in the following, the subscript F in functionals such as the expectation EF and the
variance VarF signifies that the respective term is understood to be with respect to the measure
PF . Note that the above assumptions imply that EF (Xi) = EF (X1) = 0 and VarF (Xi) =
VarF (X1) = EF (X2

1 ) =: σ2
F ∈ (0,∞) for every i ∈ N and F ∈M .

We will now examine the asymptotic stochastic behavior of the centered empirical distribution
function F̃n of X1, . . . , Xn and of its components uniformly in F ∈ M . If M is a singleton, i.e.,
if the distribution of the Xi is fixed, this has already been studied for example by Owen [23],
Qin and Lawless [27], and Zhang [31] in a more general setting than considered here. Based
on these works, we will investigate in the following under which assumptions about M certain
results concerning the stochastic behavior of F̃n and its components hold uniformly in M if it
contains arbitrarily many elements. For these investigations we introduce the following collection
of conditions:

inf
F∈M

∫
R
x2F (dx) > 0, (3.5)

sup
F∈M

∫
R
x2F (dx) <∞, (3.6)
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3 Preparatory results for independent and identically distributed centered random variables

g(c) := sup
F∈M

∫
{x∈R : |x|>c}

x2F (dx)→ 0 for c→∞, (3.7)

inf
F∈M

∫
R
|x|F (dx) > 0, (3.8)

sup
F∈M

∫
R
|x|F (dx) <∞. (3.9)

Note that the following implications hold

(3.7) =⇒ (3.6) =⇒ (3.9) and (3.8) =⇒ (3.5).

Observe moreover that ifM is a singleton, i.e.,M = {F} with a centered continuous distribution
function F that has finite second moment, then M obviously satisfies conditions (3.7) and (3.8).

Lemma 3.2
Assume the set M is such that (3.7) holds. Then
(i) max

1≤i≤n
|Xi| = ouP (

√
n) in M as n→∞,

(ii)
n∑
i=1

Xi = OuP (
√
n) in M as n→∞,

(iii)
1

n

n∑
i=1

X2
i − σ2

F = ouP (1) in M as n→∞.

Proof. Keep in mind that (3.7) implies (3.6).

First, we show (i). For every F ∈M and ε > 0 it is

PF

( 1√
n

max
1≤i≤n

|Xi| > ε
)

= PF

( n⋃
i=1

{
|Xi| >

√
nε
})
≤ nPF

(
|X1| >

√
nε
)

= n

∫
{x∈R : |x|>

√
nε}

F (dx) ≤ 1

ε2

∫
{x∈R : |x|>

√
nε}

x2F (dx) ≤ 1

ε2
g(
√
nε),

and the right-hand side of the last inequality does not depend on F and converges to zero as n
tends to infinity because of (3.7).

Next, we prove (ii). By using Markov’s inequality we see that for every F ∈M and K > 0

PF

(∣∣∣ 1√
n

n∑
i=1

Xi

∣∣∣ > K
)
≤ 1

K2
EF

(∣∣∣ 1√
n

n∑
i=1

Xi

∣∣∣2) =
EF (X2

1 )

K2
≤ 1

K2
sup
F∈M

EF (X2
1 ),

and the supremum of the second moments is finite because of (3.6). Therefore

lim sup
n→∞

sup
F∈M

PF

(∣∣∣ 1√
n

n∑
i=1

Xi

∣∣∣ > K
)
≤ 1

K2
sup
F∈M

EF (X2
1 ) −→

K→∞
0.

The proof of (iii) is based on ideas from the proof of the Kolmogorov-Feller weak law of large
numbers for independent and identically distributed random variables without finite mean, see
for example section VII.7 in Feller [9]. Define new random variables Zi by truncating X2

i at an
arbitrary, but fixed, level b > 0, i.e.,

Zi := X2
i · 1{X2

i ≤ b}
∀ i ∈ N.
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3 Preparatory results for independent and identically distributed centered random variables

Then we have for all F ∈M and y > 0 that

PF

(∣∣∣ n∑
i=1

X2
i −

n∑
i=1

EF (Zi)
∣∣∣ > y

)
≤ PF

(∣∣∣ n∑
i=1

Zi −
n∑
i=1

EF (Zi)
∣∣∣ > y

)
+ PF

( n∑
i=1

X2
i 6=

n∑
i=1

Zi

)
≤ 1

y2
VarF

( n∑
i=1

Zi

)
+

n∑
i=1

PF (X2
i 6= Zi)

≤ n

y2
EF (Z2

1 ) + nPF (X2
1 6= Z1),

where the second-to-last inequality follows from Chebychev’s inequality and the fact that
{
∑n

i=1X
2
i 6=

∑n
i=1 Zi} ⊂

⋃n
i=1{X2

i 6= Zi}. In the last inequality the Bienaymé formula and
the fact that the variance is bounded by the second moment were used. But

PF (X2
1 6= Z1) = PF (X2

1 1{X2
1> b} 6= 0) = PF (X2

1 > b).

Since Z1 ≥ 0, we have

EF (Z2
1 ) = 2 ·

∫ ∞
0

xPF (Z1 > x)dx = 2 ·
∫ ∞

0
xPF

(
X2

1 1{X2
1≤ b} > x

)
dx

= 2 ·
∫ b

0
xPF

(
X2

1 1{X2
1≤ b} > x

)
dx

≤ 2 ·
∫ b

0
xPF

(
X2

1 > x
)
dx.

Now set b = n and y = nε for arbitrary, but fixed, ε > 0. Then using the above it is

PF

(∣∣∣ 1
n

n∑
i=1

X2
i −

1

n

n∑
i=1

EF (Zi)
∣∣∣ > ε

)
≤ 2

nε2
·
∫ n

0
xPF

(
X2

1 > x
)
dx+ nPF (X2

1 > n)

≤ 2

nε2
·
∫ n

0
x sup
F∈M

PF
(
X2

1 > x
)
dx+ n sup

F∈M
PF (X2

1 > n)

for every F ∈M . But

x · sup
F∈M

PF (X2
1 > x) = sup

F∈M

∫
{y∈R : y2>x}

xF (dy) ≤ sup
F∈M

∫
{y∈R : |y|>

√
x}
y2F (dy) = g(

√
x)

for every x > 0, and g(
√
x)→ 0 as x→∞ because of (3.7). This yields

n sup
F∈M

PF (X2
1 > n) ≤ g(

√
n) −→

n→∞
0 and

1

n

∫ n

0
x sup
F∈M

PF
(
X2

1 > x
)
dx −→

n→∞
0. (3.10)

To see the latter, define f(x) := x · supF∈M PF (X2
1 > x), x ≥ 0. Then f ≥ 0 and f(x)→ 0 as x

tends to infinity. Hence, for every ε̃ > 0 there is a K(ε̃) > 0 with f(x) ≤ ε̃ for all x ≥ K(ε̃). For
all n > K(ε̃) we now have

1

n

∫ n

0
f(x)dx =

1

n

(∫ K(ε̃)

0
f(x)dx+

∫ n

K(ε̃)
f(x)dx

)
≤ 1

n

(∫ K(ε̃)

0
f(x)dx+ ε̃

(
n−K(ε̃)

))
.

Since
∫K(ε̃)

0 f(x)dx <∞ and ε̃ is arbitrary, the second statement in (3.10) follows. Thus, we have

sup
F∈M

PF

(∣∣∣ 1
n

n∑
i=1

X2
i −

1

n

n∑
i=1

EF (Zi)
∣∣∣ > ε

)
−→
n→∞

0. (3.11)
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3 Preparatory results for independent and identically distributed centered random variables

Moreover, for every F ∈M it is∣∣∣ 1
n

n∑
i=1

EF (Zi)−
1

n

n∑
i=1

EF (X2
i )
∣∣∣ =

∣∣EF (Z1)− EF (X2
1 )
∣∣ = EF (X2

1 · 1{X2
1> n}),

and

EF (X2
1 · 1{X2

1> n}) =

∫
{x∈R : |x|>

√
n}
x2F (dx) ≤ sup

F∈M

∫
{x∈R : |x|>

√
n}
x2F (dx) = g(

√
n).

Hence, (3.7) implies that

sup
F∈M

∣∣∣ 1
n

n∑
i=1

EF (Zi)−
1

n

n∑
i=1

EF (X2
i )
∣∣∣ −→

n→∞
0,

and it obviously follows from this that∣∣∣ 1
n

n∑
i=1

EF (Zi)−
1

n

n∑
i=1

EF (X2
i )
∣∣∣ = ouP (1) in M as n→∞. (3.12)

A combination of (3.11) and (3.12) now yields the statement because of∣∣∣ 1
n

n∑
i=1

X2
i − σ2

F

∣∣∣ ≤ ∣∣∣ 1
n

n∑
i=1

X2
i −

1

n

n∑
i=1

EF (Zi)
∣∣∣+
∣∣∣ 1
n

n∑
i=1

EF (Zi)− σ2
F

∣∣∣.
Next, we want to examine the uniform asymptotic behavior of tn and functions thereof. Recall
that tn is defined through (3.2) and (3.3) only on the set Ωn, and its definition on the complement
Ωn does usually not matter for asymptotic considerations, since this set is an asymptotic PF -
nullset for every fixed F ∈M , cf. (3.4). If we want to study the asymptotic behavior of tn under
the measure PF uniformly in F ∈ M , however, we cannot neglect the set Ωn a priori, since
PF (Ωn) will not converge to zero uniformly in F ∈M in general.
There are several ways to overcome this problem. For one, we could of course explicitly define
tn on Ωn and then study its uniform asymptotic behavior on Ω. Here, a natural definition would
certainly be to set tn = 0 on Ωn, as F̃n would equal Fn in this case. The uniform behavior of tn
would then of course depend on the respective definition chosen on Ωn.
Alternatively, we can impose additional conditions on the set M that ensure that PF (Ωn) will
converge to zero uniformly in F . Then, as before, there is no need to specify tn on Ωn. Since
similar to the proof of (3.4) we have

PF (Ωn) = PF
(

min
1≤i≤n

Xi ≥ 0
)

+ PF
(

max
1≤i≤n

Xi ≤ 0
)

=
(
1− F (0)

)n
+ F (0)n,

the conditions
inf
F∈M

F (0) > 0 and sup
F∈M

F (0) < 1 (3.13)

imply that supF∈M PF (Ωn) → 0 as n → ∞. Hence, if M satisfies (3.13), then the set Ωn is
irrelevant for uniform asymptotic considerations. We will therefore in the following always work
under the assumption (3.13) and continue to assume that Ωn holds for every n ≥ 2 when studying
tn or functions thereof.

Lemma 3.3
If the set M is such that (3.5), (3.7) and (3.13) are satisfied, then
(i)

√
n tn = OuP (1) in M as n→∞,
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3 Preparatory results for independent and identically distributed centered random variables

(ii) max
1≤i≤n

1

1 + tnXi
= OuP (1) in M as n→∞,

(iii) tn =
1

σ2
F

1

n

n∑
i=1

Xi + ouP (1/
√
n) in M as n→∞.

Proof. First we show (i). For every n ≥ 2, K > 0 and F ∈M it is

PF (|
√
ntn| ≥ K) ≤ PF

(√
n|tn| ·

[ 2

σ2
F

1

n

n∑
i=1

X2
i −

K√
n

max
1≤i≤n

|Xi|
]
≥ K

)
+ PF

( 2

σ2
F

1

n

n∑
i=1

X2
i −

K√
n

max
1≤i≤n

|Xi| ≤ 1
)
. (3.14)

To handle the first term on the right-hand side of the above inequality, we see as in Owen [23],
page 101, that

|tn|
1 + |tn| max

1≤i≤n
|Xi|

· 1

n

n∑
i=1

X2
i ≤

∣∣∣ 1
n

n∑
i=1

Xi

∣∣∣, (3.15)

and the last term is OuP (1/
√
n) in M as n→∞ by Lemma 3.2 (ii). Now

PF

(√
n|tn| ·

[ 2

σ2
F

1

n

n∑
i=1

X2
i −

K√
n

max
1≤i≤n

|Xi|
]
≥ K

)
= PF

(√
n|tn| ·

2

σ2
F

1

n

n∑
i=1

X2
i ≥ K

(
1 + |tn| max

1≤i≤n
|Xi|

))
= PF

( √
n|tn|

1 + |tn| max
1≤i≤n

|Xi|
· 2

σ2
F

1

n

n∑
i=1

X2
i ≥ K

)

≤ PF
( √

n|tn|
1 + |tn| max

1≤i≤n
|Xi|

· 1

n

n∑
i=1

X2
i ≥

K

2
inf
F∈M

σ2
F

)
.

Using (3.5), (3.15) and Lemma 3.2 (ii), this yields

lim
K→∞

lim sup
n→∞

sup
F∈M

PF

(√
n|tn| ·

[ 2

σ2
F

1

n

n∑
i=1

X2
i −

K√
n

max
1≤i≤n

|Xi|
]
≥ K

)
= 0.

It remains to investigate the second term on the right-hand side of (3.14). For simplicity of
notation, set

Ln :=
2

σ2
F

1

n

n∑
i=1

X2
i and Mn :=

K√
n

max
1≤i≤n

|Xi|.

Then
PF
(
Ln −Mn ≤ 1

)
≤ PF

(
Ln −Mn ≤ 1, |Mn| <

1

2

)
+ PF

(
|Mn| ≥

1

2

)
,

and
sup
F∈M

PF

(
|Mn| ≥

1

2

)
= sup

F∈M
PF

( 1√
n

max
1≤i≤n

|Xi| ≥
1

2K

)
−→
n→∞

0

by Lemma 3.2 (i). Also,

PF

(
Ln −Mn ≤ 1, |Mn| <

1

2

)
≤ PF

(
Ln ≤

3

2

)
= PF

(
Ln − 2 ≤ −1

2

)
≤ PF

(
|Ln − 2| ≥ 1

2

)
,
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and

PF

(
|Ln − 2| ≥ 1

2

)
≤ sup

F∈M
PF

(∣∣∣ 2

σ2
F

1

n

n∑
i=1

X2
i − 2

∣∣∣ ≥ 1

2

)
≤ sup

F∈M
PF

(∣∣∣ 1
n

n∑
i=1

X2
i − σ2

F

∣∣∣ ≥ 1

4
inf
F∈M

σ2
F

)
−→
n→∞

0

because of (3.5) and Lemma 3.2 (iii). Hence, the proof of (i) is finished.

To see that (ii) holds, note that if |tn| max
1≤i≤n

|Xi| ≤ 1/2, then we have for every i ∈ {1, . . . , n}

1 + tnXi ≥ 1− |tn||Xi| ≥ 1− |tn| max
1≤i≤n

|Xi| ≥ 1− 1

2
=

1

2
,

whence it follows that
max

1≤i≤n

1

1 + tnXi
≤ 2.

Thus it is for every K ∈ (2,∞), n ≥ 2 and every F ∈M

PF

(
max

1≤i≤n

1

1 + tnXi
≥ K

)
≤ PF

(
|tn| max

1≤i≤n
|Xi| >

1

2

)
,

and the statement follows from (i) and Lemma 3.2 (i).

It remains to show (iii). Using the equality 1/(1 + y) = 1− y + y2/(1 + y) for y 6= −1, we have
by (3.3) for every n ≥ 2

0 =
1

n

n∑
i=1

Xi

1 + tnXi
=

1

n

n∑
i=1

Xi − tn
1

n

n∑
i=1

X2
i + t2n

1

n

n∑
i=1

X3
i

1 + tnXi

=
1

n

n∑
i=1

Xi − tn
1

n

n∑
i=1

(X2
i − σ2

F )− tnσ2
F + t2n

1

n

n∑
i=1

X3
i

1 + tnXi
,

which is equivalent to

tn =
1

σ2
F

1

n

n∑
i=1

Xi −
1

σ2
F

tn
1

n

n∑
i=1

(X2
i − σ2

F ) +
1

σ2
F

t2n
1

n

n∑
i=1

X3
i

1 + tnXi
.

Using (3.5), it is∣∣∣ 1

σ2
F

tn
1

n

n∑
i=1

(X2
i − σ2

F )
∣∣∣ ≤ 1

inf
F∈M

σ2
F

|tn|
∣∣∣ 1
n

n∑
i=1

(X2
i − σ2

F )
∣∣∣

= OuP (1/
√
n)ouP (1) = ouP (1/

√
n) in M as n→∞

by (i) and Lemma 3.2 (iii). Because of (3.6) we obviously have supF∈M σ2
F = OuP (1) in M as n→

∞. Therefore it follows with (3.5) and (3.6) that∣∣∣ 1

σ2
F

t2n
1

n

n∑
i=1

X3
i

1 + tnXi

∣∣∣ ≤ 1

inf
F∈M

σ2
F

|tn|2 max
1≤i≤n

|Xi| · max
1≤i≤n

1

1 + tnXi
· 1

n

n∑
i=1

X2
i

≤ 1

inf
F∈M

σ2
F

|tn|2 max
1≤i≤n

|Xi| · max
1≤i≤n

1

1 + tnXi
·
( 1

n

n∑
i=1

X2
i − σ2

F + sup
F∈M

σ2
F

)
= OuP (1/n)ouP (

√
n)OuP (1)OuP (1) = ouP (1/

√
n) in M as n→∞
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because of (i), (ii) and Lemma 3.2 (i), (iii). Hence, we have shown that

tn =
1

σ2
F

1

n

n∑
i=1

Xi + ouP (1/
√
n) in M as n→∞.

For every n ∈ N and F ∈M define

Un(x) :=
1

n

n∑
i=1

Xi1{Xi≤x}, UF (x) := EF
(
X11{X1≤x}

)
=

∫ x

−∞
yF (dy), x ∈ R.

Lemma 3.4
Let M be such that (3.6) and (3.8) hold. Then

sup
x∈R
|Un(x)− UF (x)| = ouP (1) in M as n→∞.

Proof. Recall that (3.6) implies (3.9). With f+ := f ∨ 0 being the positive and f− := −(f ∧ 0)
being the negative part of the function f , set

U+
n (x) :=

1

n

n∑
i=1

X+
i 1{Xi≤x}, U+

F (x) := EF
(
X+

1 1{X1≤x}
)

=

∫ x

−∞
y+F (dy),

for x ∈ R, n ∈ N and F ∈ M , and define U−n and U−F analogously. Then Un = U+
n − U−n and

UF = U+
F − U

−
F . Obviously, 0 ≤ U+

F , U
−
F ≤ EF (X+

1 ) with U+
n (x) = U+

F (x) = 0 for x ≤ 0 and
U−F (x) = EF (X−1 ) for x > 0. An application of Lebesgue’s dominated convergence theorem shows
that U+

F and U−F are continuous on R with

lim
x→−∞

U−F (x) = 0 and lim
x→∞

U+
F (x) = EF (X+

1 ).

Therefore we extend U+
F and U−F continuously to [−∞,∞] by defining U±F (−∞) := 0 and

U±F (∞) := EF (X+
1 ) = EF (X−1 ). Moreover, set

U±n (−∞) := 0, U±n (∞) :=
1

n

n∑
i=1

X±i .

The centeredness of F implies that EF (|X1|) = EF (X+
1 ) + EF (X−1 ) = 2 EF (X+

1 ). Now define

a :=
1

2
sup
F∈M

EF (|X1|) = sup
F∈M

EF (X+
1 ) and b :=

1

2
inf
F∈M

EF (|X1|) = inf
F∈M

EF (X+
1 ).

Then 0 < b ≤ a <∞ under the assumptions.

For every m ∈ N with m ≥ 2 and m ≥ a/b, 0 < a/m < 2a/m < . . . < (m − 1)a/m < a is an
equidistant partition of [0, a] with mesh a/m. Since we have for every F ∈ M that a/m ≤ b ≤
EF (X+

1 ) ≤ a, it is

kF := max{z ∈ Z : z ≤ m

a
EF (X+

1 )} = max{z ∈ Z : z
a

m
≤ EF (X+

1 )} ∈ {1, . . . ,m}.

Now fix an F ∈M . Then either kF = EF (X+
1 ) ·m/a or kF < EF (X+

1 ) ·m/a.
First, we consider the case kF · a/m = EF (X+

1 ).
Because of U+

F (−∞) = 0, U+
F (∞) = EF (X+

1 ) = kFa/m and the continuity of U+
F , for every

k = 1, . . . , kF − 1 there is a point xk ∈ R with U+
F (xk) = k · a/m by the intermediate value

theorem, and the monotonicity of U+
F implies that x1 < . . . < xkF−1.
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3 Preparatory results for independent and identically distributed centered random variables

Thus, −∞ =: x0 < x1 < . . . < xkF−1 < xkF := ∞ is a partition of [−∞,∞], so that for every
x ∈ R there is exactly one k ∈ {0, . . . , kF − 1} with x ∈ [xk, xk+1). Using the monotonicity of
U+
n and U+

F , this implies

U+
n (x)− U+

F (x) ≤ U+
n (xk+1)− U+

F (xk) = U+
n (xk+1)− k · a

m

= U+
n (xk+1)− U+

F (xk+1) +
a

m

≤ max
1≤k≤kF

|U+
n (xk)− U+

F (xk)|+
a

m

and

U+
F (x)− U+

n (x) ≤ U+
F (xk+1)− U+

n (xk) = U+
F (xk)− U+

n (xk) +
a

m

≤ max
0≤k≤kF−1

|U+
n (xk)− U+

F (xk)|+
a

m

≤ max
1≤k≤kF

|U+
n (xk)− U+

F (xk)|+
a

m
.

Together, this yields

sup
x∈R
|U+
n (x)− U+

F (x)| ≤ max
1≤k≤kF

|U+
n (xk)− U+

F (xk)|+
a

m
. (3.16)

Analogously, it is

sup
x∈R
|U−n (x)− U−F (x)| ≤ max

1≤k≤kF
|U−n (xk)− U−F (xk)|+

a

m
. (3.17)

Next, we investigate the case kFa/m < EF (X+
1 ). Just as in the first case, it follows from the

intermediate value theorem that for every k = 1, . . . , kF there is an xk ∈ R with U+
F (xk) =

k · a/m, and −∞ =: x0 < x1 < . . . < xkF < xkF+1 := ∞ partitions [−∞,∞]. Using the same
monotonicity arguments as before, we see that

sup
x∈R
|U±n (x)− U±F (x)| ≤ max

1≤k≤kF+1
|U±n (xk)− U±F (xk)|+

a

m
.

Let ε > 0. In both of the aforementioned cases we have for x ∈ (−∞,∞] that

PF
(
|U±n (x)− U±F (x)| > ε

)
≤ 1

nε2
EF (X2

1 ) (3.18)

by using Chebychev’s inequality, the Bienaymé formula and the fact that the variance is bounded
by the second moment. Now choosem so that ε > a/m. Then in case kFa/m = EF (X+

1 ) it follows
from (3.16) and (3.17) that

PF
(
sup
x∈R
|U±n (x)− U±F (x)| > ε

)
≤ PF

(
max

1≤k≤kF
|U±n (xk)− U±F (xk)| > ε− a

m

)
≤

kF∑
k=1

PF

(
|U±n (xk)− U±F (xk)| > ε− a

m

)
≤

(3.18)

kF
n · (ε− a/m)2

EF (X2
1 )

≤ m

n · (ε− a/m)2
· sup
F∈M

EF (X2
1 ),
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3 Preparatory results for independent and identically distributed centered random variables

where kF ≤ m was used in the last inequality. For kFa/m < EF (X+
1 ) it follows along the same

lines that
PF
(
sup
x∈R
|U±n (x)− U±F (x)| > ε

)
≤ m+ 1

n · (ε− a/m)2
· sup
F∈M

EF (X2
1 ).

Since supF∈M EF (X2
1 ) <∞, we have in both cases

sup
x∈R
|U±n (x)− U±F (x)| = ouP (1) in M as n→∞.

Using
sup
x∈R
|Un(x)− UF (x)| ≤ sup

x∈R
|U+
n (x)− U+

F (x)|+ sup
x∈R
|U−n (x)− U−F (x)|,

this concludes the proof of the lemma.

We are now ready to state and prove a uniform asymptotic expansion of F̃n − Fn. Before we do
this, let us set, as usual, ‖f‖∞ := supx∈R |f(x)| for any bounded function f .

Proposition 3.5
Assume the set M satisfies (3.7), (3.8) and (3.13). Then

F̃n(x)− Fn(x) = −UF (x)
1

σ2
F

1

n

n∑
i=1

Xi +Rn,F (x), x ∈ R,

with ‖Rn,F ‖∞ = ouP (1/
√
n) in M as n→∞.

Proof. By using again that 1/(1 + y) = 1 − y + y2/(1 + y) for y 6= −1, we see that for every
x ∈ R and n ≥ 2 the following expansion of F̃n is valid:

F̃n(x) = Fn(x)− tn ·
1

n

n∑
i=1

Xi · 1{Xi≤x} + t2n ·
1

n

n∑
i=1

X2
i

1 + tnXi
· 1{Xi≤x}.

This implies that

F̃n(x)− Fn(x) = −tn ·
1

n

n∑
i=1

Xi · 1{Xi≤x} + t2n ·
1

n

n∑
i=1

X2
i

1 + tnXi
· 1{Xi≤x}

= −tnUF (x)− tn
(
Un(x)− UF (x)

)
− UF (x)

1

σ2
F

1

n

n∑
i=1

Xi + UF (x)
1

σ2
F

1

n

n∑
i=1

Xi

+ t2n ·
1

n

n∑
i=1

X2
i

1 + tnXi
· 1{Xi≤x}

= −UF (x)
1

σ2
F

1

n

n∑
i=1

Xi +R1n,F (x) +R2n(x) +R3n,F (x)

for every F ∈M , where

R1n,F (x) := tn
(
UF (x)− Un(x)

)
, R2n(x) := t2n ·

1

n

n∑
i=1

X2
i

1 + tnXi
· 1{Xi≤x}

and

R3n,F (x) := UF (x)
( 1

σ2
F

1

n

n∑
i=1

Xi − tn
)
.
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3 Preparatory results for independent and identically distributed centered random variables

Now

sup
x∈R
|R1n,F (x)| = |tn| · sup

x∈R
|UF (x)− Un(x)|

= OuP (1/
√
n) · ouP (1) = ouP (1/

√
n) in M as n→∞

by Lemma 3.3 (i) and Lemma 3.4. Moreover,

sup
x∈R
|R2n(x)| ≤ |tn|2 · max

1≤i≤n

1

1 + tnXi
· 1

n

n∑
i=1

X2
i

= OuP (1/n) ·OuP (1) ·OuP (1) = OuP (1/n) = ouP (1/
√
n) in M as n→∞

by Lemma 3.3 (i), (ii) and Lemma 3.2 (iii). Next, note that it follows from the proof of Lemma 3.4
that UF is continuous on R. Observe moreover that UF is monotonically decreasing on (−∞, 0],
monotonically increasing on [0,∞), and non-positive on R. This and the centeredness of F imply
supx∈R |UF (x)| = |UF (0)| = | − EF (X−1 )| = EF (X−1 ) = EF (X+

1 ) = 1
2 EF (|X1|). Therefore

sup
x∈R
|R3n,F (x)| = sup

x∈R
|UF (x)| ·

∣∣∣ 1

σ2
F

1

n

n∑
i=1

Xi − tn
∣∣∣

≤ 1

2
sup
F∈M

EF (|X1|) · ouP (1/
√
n) = ouP (1/

√
n) in M as n→∞

because of Lemma 3.3 (iii).

The next result is a uniform central limit theorem and follows from Theorem 3 on page 441 of
Eicker [8].

Lemma 3.6
Let the set M be such that (3.5) and (3.7) hold. Then

sup
F∈M

sup
x∈R

∣∣∣PF( 1√
n

n∑
i=1

Xi

σF
≤ x

)
− Φ(x)

∣∣∣ −→
n→∞

0, (3.19)

with Φ denoting the distribution function of the standard normal distribution.

As a direct consequence of this, we get the following corollary.

Corollary 3.7
Under the assumptions of Lemma 3.6,

sup
F∈M

sup
x∈R

∣∣∣PF(∣∣∣ 1√
n

n∑
i=1

Xi

σF

∣∣∣ ≤ x)−H(x)
∣∣∣ −→
n→∞

0,

where H(x) := (2Φ(x) − 1)1[0,∞)(x), x ∈ R, is the distribution function of the standard half-
normal distribution.

Proof. For every x ≥ 0 and F ∈M it is∣∣∣PF(∣∣∣ 1√
n

n∑
i=1

Xi

σF

∣∣∣ ≤ x)−H(x)
∣∣∣

=
∣∣∣PF( 1√

n

n∑
i=1

Xi

σF
≤ x

)
− PF

( 1√
n

n∑
i=1

Xi

σF
< −x

)
− Φ(x) + Φ(−x)

∣∣∣
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3 Preparatory results for independent and identically distributed centered random variables

≤
∣∣∣PF( 1√

n

n∑
i=1

Xi

σF
≤ x

)
− Φ(x)

∣∣∣+
∣∣∣PF( 1√

n

n∑
i=1

Xi

σF
< −x

)
− Φ(−x)

∣∣∣.
Thus, (3.19) yields the statement.

Lemma 3.8
Assume the set M satisfies (3.7) and (3.8). Then

(i) sup
F∈M

sup
x∈R

∣∣∣PF(‖UF ‖∞
σF

∣∣∣ 1√
n

n∑
i=1

Xi

σF

∣∣∣ ≤ x)−QF (x)
∣∣∣ −→
n→∞

0,

where QF (x) := H
(
x · σF /‖UF ‖∞

)
= 1[0,∞)(x)

(
2Φ
(
x · σF
‖UF ‖∞

)
− 1
)
, x ∈ R,

(ii) the family {QF : F ∈M} is uniformly equicontinuous,

(iii) sup
F∈M

|Q−1
F (α)| <∞ for all α ∈ (0, 1).

Proof. (i) Since

sup
x∈R

∣∣∣PF(‖UF ‖∞
σF

∣∣∣ 1√
n

n∑
i=1

Xi

σF

∣∣∣ ≤ x)−H( x · σF
‖UF ‖∞

)∣∣∣= sup
x∈R

∣∣∣PF(∣∣∣ 1√
n

n∑
i=1

Xi

σF

∣∣∣ ≤ x)−H(x)
∣∣∣

for every F ∈M , the statement follows from Corollary 3.7.

(ii) To see that {QF : F ∈M} is uniformly equicontinuous, note that QF has Lebesgue density

Q′F (x) = 1[0,∞)(x) · 2 · ϕ
(
x · σF
‖UF ‖∞

)
· σF
‖UF ‖∞

, x ∈ R,

with ϕ(x) = 1/
√

2π · exp(−x2/2), so that

sup
x∈R

∣∣Q′F (x)
∣∣ ≤√ 2

π
·
(
supF∈M σ2

F

)1/2
1
2 infF∈M EF (|X1|)

=: K <∞

for every F ∈ M , using ‖UF ‖∞ = 1
2 EF (|X1|) and (3.6) and (3.8). Thus, we have for ε > 0 and

δ = ε/K
|QF (x)−QF (y)| ≤ K|x− y| < ε

for every x, y ∈ R with |x− y| < δ and every F ∈M.

(iii) For every F ∈M it is

Q−1
F (α) = Φ−1

(α+ 1

2

)
· ‖UF ‖∞

σF
= Φ−1

(α+ 1

2

)
· EF (|X1|)

2σF
, α ∈ (0, 1),

so that by (3.5) and (3.9) we have

sup
F∈M

∣∣Q−1
F (α)

∣∣ ≤ Φ−1
(α+ 1

2

)
· supF∈M EF (|X1|)

2
(
infF∈M σ2

F

)1/2 < ∞.
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4 The limiting Pitman ARE of the two tests for independent and
identically distributed centered observations

Let us now consider testing the fit of a sample of independent and identically distributed data
with zero mean. In the following we will examine testing both the simple null hypothesis that the
underlying distribution function is equal to some fully specified centered distribution function as
well as the composite null hypothesis that the true distribution function of the data belongs to a
certain scale family against appropriate nonparametric alternatives. For these testing problems
we will consider the respective classical Cramér-von Mises test as well as its modified counterpart
where the test statistic is based on the centered empirical distribution function F̃n instead of on
Fn. In order to compare the performance of the two competing tests for the respective testing
problem, we will determine in the following their limiting Pitman asymptotic relative efficiency
using the results of the previous sections. To begin with, we will introduce the set of distribution
functions that will be considered in the testing problems and equip it with a suitable metric.

For fixed q ∈ [2,∞), let Gq denote the set of all continuous distribution functions on the real line
with finite absolute q-th moment and zero mean, i.e.,

Gq =
{
F : F is a continuous distribution function with

∫
R
|x|qF (dx) <∞ and

∫
R
xF (dx) = 0

}
.

Note that 0 <
∫
R x

2F (dx) < ∞ for every F ∈ Gq. By setting F (−∞) := 0 and F (∞) := 1
for every distribution function F , it is obvious that Gq ⊂ C[−∞,∞], which is the space of all
continuous real-valued functions on the extended real line [−∞,∞]. In the following, we will
equip Gq with a metric dq and derive some results concerning the metric space (Gq, dq).
We will measure the distance between two elements F and G of Gq with the Kantorovich-
Wasserstein or minimal Lq metric

dq(F,G) := inf
{

E
(
|X − Y |q

)1/q
: (X,Y ) ∈ S(F,G)

}
∈ [0,∞), (4.1)

where S(F,G) is the collection of all pairs (X,Y ) of random variables X and Y defined on
the same probability space such that F and G are the distribution functions of X and Y ,
respectively. The function d2 is also known as Mallows metric. The following properties of dq
hold for 1 ≤ q < ∞ and can be found for example in the mathematical appendix of Bickel and
Freedman [4]: The function dq is a metric on the set of all distribution functions on R with finite
absolute q-th moment and admits the following representation in terms of quantile functions

dq(F,G) =
(∫ 1

0

∣∣F−1(u)−G−1(u)
∣∣qdu)1/q

.

Furthermore, the convergence of a sequence (Gn)n∈N to G with respect to dq is equivalent to
Gn

L→ G in addition to the convergence of
∫
|x|qGn(dx) to

∫
|x|qG(dx), where the symbol L→

denotes weak convergence.

Here and in the following, we will not distinguish between a metric on some set of distribution
functions and its restriction to subsets thereof.

It follows from the above that (Gq, dq) is a metric space for all q ∈ [2,∞).

Let us denote by dK the Kolmogorov or supremum metric on Gq, i.e.,

dK(F,G) := ‖F −G‖∞ = sup
x∈R
|F (x)−G(x)|

for F, G ∈ Gq. Then dK(Gn, G) → 0 is equivalent to the weak convergence Gn
L→ G, since all

G ∈ Gq are continuous.
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Lemma 4.1
(i) For every r ∈ [1, q] the function

(Gq, dq) 3 F 7→
∫
R
|x|rF (dx) ∈ (R, | · |)

is continuous.

(ii) The identity function
id : (Gq, dq) 3 F 7→ F ∈ (Gq, dK)

is continuous.

Proof.
(i) Let F1, F2 ∈ Gq. Using Lyapunov’s inequality, we see that dq(F1, F2) ≥ dr(F1, F2) for every
1 ≤ r ≤ q. Thus, dq(F ∗n , F )→ 0 as n→∞ implies dr(F ∗n , F )→ 0 as n→∞ for all (F ∗n)n∈N, F ∈
Gq. But since convergence of F ∗n to F with respect to dr implies

∫
|x|rF ∗n(dx) →

∫
|x|rF (dx) as

n→∞, this completes the proof.
(ii) Let (F ∗n)n∈N, F ∈ Gq with dq(F

∗
n , F ) → 0 as n → ∞. Then F ∗n

L→ F , and this implies
dK(id(F ∗n), id(F )) = dK(F ∗n , F )→ 0 as n→∞.

Now let (Ω,A) be a measurable space and {PF : F ∈ Gq} be a family of probability measures on
A such that on (Ω,A) there is a sequence X1, X2, . . . of random variables that are under each
PF , F ∈ Gq, independent and identically distributed according to the distribution function F .
Note that under these assumptions the mapping F 7→ PF is injective, as PF1 = PF2 implies that
F1(x) = PF1(X1 ≤ x) = PF2(X1 ≤ x) = F2(x) for every x ∈ R.

4.1 Simple null hypothesis

Assume now that we have observed a sample X1, . . . , Xn, n ≥ 2, with distribution function
F ∈ Gq, but that F is unknown to us. Then we consider testing the simple null hypothesis

H0 : F = F0 versus H1 : F ∈ Gq \ {F0} (4.2)

for some fixed F0 ∈ Gq. To test this hypothesis, we will use the classical Cramér-von Mises
statistic

W2
n = n ·

∫ ∞
−∞

(
Fn(x)− F0(x)

)2
F0(dx)

and its counterpart

V2
n = n ·

∫ ∞
−∞

(
F̃n(x)− F0(x)

)2
F0(dx)

based on the centered empirical distribution function F̃n. Both of these test statistics are mea-
surable mappings from Ω to [0,∞).

By Donsker’s theorem for the empirical process we have

√
n(Fn − F )

L−→
n

B◦(F ) in D[−∞,∞]

under the measure PF , where D[−∞,∞] denotes the space of càdlàg functions from [−∞,∞]

to R equipped with the Skorokhod metric s∞, B◦ is the Brownian bridge on [0, 1], and “ L−→
n
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4 The limiting Pitman ARE of the two tests for iid centered observations

in D[−∞,∞]” denotes convergence in distribution in D[−∞,∞]. Hence, it follows with the
continuous mapping theorem that under H0

Wn
L−→
n

(∫ 1

0
B◦(t)2dt

)1/2
=:W,

where Wn =
(
W2
n

)1/2. The distribution function of W2 was derived by Smirnov and others and
has been tabulated. Since the distribution function of W2 is continuous, so is that of W. Thus,
for every α ∈ (0, 1)

PF0

(
Wn > k(α)

)
−→
n→∞

PF0

(
W > k(α)

)
= α,

where k(α) denotes the (1−α)-quantile of the distribution ofW. Hence, the classical Cramér-von
Mises test defined by the decision rule

Reject H0 ⇐⇒ Wn > k(α)

has asymptotic level α for the testing problem (4.2).

Moreover, as σ2
F =

∫
R x

2F (dx) ∈ (0,∞) for every F ∈ Gq, we have by Theorem 3.3. of Zhang [31]
that √

n(F̃n − F )
L−→
n

W in D[−∞,∞] (4.3)

under PF , where W = (W (x))x∈[−∞,∞] is a centered Gaussian process with continuous sample
paths and covariance function

covF
(
W (x),W (y)

)
= F (x ∧ y)− F (x)F (y)− UF (x)UF (y)

σ2
F

, x, y ∈ R, (4.4)

with UF (x) =
∫ x
−∞ yF (dy) as in the previous section, see also Theorem B in Genz and Häusler [12]

and the remark thereafter. An application of the continuous mapping theorem to this functional
central limit theorem now yields that under H0

Vn
L−→
n

(∫ 1

0
W
(
F−1

0 (t)
)2
dt
)1/2

=: V, (4.5)

where Vn =
(
V2
n

)1/2. Since V is the L2 norm of the process W ◦F−1
0 , it follows directly from the

Karhunen-Loève expansion of W ◦ F−1
0 that V is equal in distribution to

( ∞∑
j=1

λ∗jN
2
j

)1/2
, (4.6)

where the Nj are independent and identically N (0, 1)-distributed random variables (with
N (µ, σ2) denoting the normal distribution with mean µ and variance σ2) and (λ∗j )j∈N is the
decreasing sequence of positive eigenvalues of the Hilbert-Schmidt integral operator having ker-
nel

k(s, t) = covF0

(
W
(
F−1

0 (s)
)
,W
(
F−1

0 (t)
))

= s ∧ t− s · t− 1

σ2
F0

∫ s

0
F−1

0 (u)du

∫ t

0
F−1

0 (u)du, s, t ∈ [0, 1], (4.7)

such that each positive eigenvalue is repeated in the sequence (λ∗j )j∈N as many times as its
multiplicity.
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4 The limiting Pitman ARE of the two tests for iid centered observations

It is obvious that the distribution function of the random variable in (4.6) is continuous, and its
distribution function is just the one of V. Using this, it follows that

PF0

(
Vn > c(α)

)
−→
n→∞

PF0

(
V > c(α)

)
= α

for every α ∈ (0, 1), where c(α) denotes the (1− α)-quantile of the distribution of V. Hence, the
modified Cramér-von Mises test given by the decision rule

Reject H0 ⇐⇒ Vn > c(α)

is also asymptotically of level α for testing H0 versus H1 in (4.2).

Note that since the kernel k depends on F0, so do the eigenvalues λ∗j and hence the distribution
of V. For some distribution functions F0, the quantiles of V2 were computed and tabulated in
section 6 of Hörmann [15].

Remark 4.2: Evidently, Gq \ {F0} 6= ∅, and for any F ∈ Gq \ {F0} and t ∈ (0, 1) it is Ft :=
tF + (1− t)F0 ∈ Gq \ {F0} again. Now let (tn)n∈N be a sequence in (0, 1) with tn → 0 as n→∞.
Then we have limn→∞ Ftn(x) = F0(x) ∀x ∈ R and additionally∫

R
|x|qFtn(dx) = tn

∫
R
|x|qF (dx) + (1− tn)

∫
R
|x|qF0(dx) −→

n→∞

∫
R
|x|qF0(dx),

whence it follows that dq(Ftn , F0)→ 0 as n→∞. Thus, for every ε > 0 there is an nε ∈ N with
dq(Ftn , F0) < ε for all n ≥ nε, and this implies that

Uε(F0) ∩ (Gq \ {F0}) 6= ∅ ∀ ε > 0.

Hence, condition (2.2) holds for the testing problem (4.2). �

As we are in the framework of section 2, we can use the results derived there to determine the
limiting (as α→ 0) Pitman ARE of the classical Cramér-von Mises test based on (Wn)n≥2 with
respect to the modified Cramér-von Mises test based on (Vn)n≥2. We will proceed by verifying
that both of the two sequences of test statistics are Bahadur standard sequences in the sense of
Definition 2.1.

It is well known and easy to see that (Wn)n≥2 is a standard sequence. Here, the constant a in
condition (BII) is equal to 1/λ1 with λ1 := 1/π2, and the function in (BIII) is

b : Gq \ {F0} 3 F 7−→
(∫ ∞
−∞

(
F (x)− F0(x)

)2
F0(dx)

)1/2
∈ (0, 1], (4.8)

cf. Table 1 in section 5 of Wieand [30]. The fact that (Wn)n≥2 satisfies condition (BIII) with b
as in (4.8) is an immediate consequence of the Glivenko-Cantelli theorem. To see this, note that
by Minkowski’s inequality we have for every F ∈ Gq \ {F0}

Wn√
n

=
(∫ ∞
−∞

(
Fn(x)− F0(x)

)2
F0(dx)

)1/2
≤
(∫ ∞
−∞

(
Fn(x)− F (x)

)2
F0(dx)

)1/2
+ b(F )

and

b(F ) =
(∫ ∞
−∞

(
F (x)− F0(x)

)2
F0(dx)

)1/2
≤
(∫ ∞
−∞

(
Fn(x)− F (x)

)2
F0(dx)

)1/2
+
Wn√
n
,

so that ∣∣∣Wn√
n
− b(F )

∣∣∣ ≤ (∫ ∞
−∞

(
Fn(x)− F (x)

)2
F0(dx)

)1/2
≤ ‖Fn − F‖∞, (4.9)
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4 The limiting Pitman ARE of the two tests for iid centered observations

and the statement follows from the Glivenko-Cantelli theorem. Hence, the approximate slope of
(Wn)n≥2 is b(F )2/λ1, F ∈ Gq \ {F0}.
Let us show now that (Vn)n≥2 is a standard sequence as well, i.e., that conditions (BI), (BII)
and (BIII) of Definition 2.1 also hold for (Vn)n≥2. This follows similarly to the verification of the
very conditions for (Wn)n≥2.

To check (BI) and (BII), we have to investigate the distribution of V. As was mentioned before,
the random variable V has a continuous distribution function, so that (BI) holds for (Vn)n≥2.
In order to see that this distribution function also satisfies condition (BII), we use the following
tail probability approximation, which follows from Remark 1 on page 1274 in Linde [19], see also
Theorem 2 in Beran [3] and Lemma 2.4 and the remark on page 121 in Gregory [13].

Lemma 4.3
Let (Ni)i∈N be a sequence of independent and identically N (0, 1)-distributed random variables
on a probability space (X,X , P ), and let (ai)i∈N be a monotonically decreasing sequence of non-
negative real constants with a1 > 0 and

∑
i∈N ai <∞. Then

lim
x→∞

logP
( ∞∑
i=1

aiN
2
i > x2

)
x2

= − 1

2a1
.

As the kernel k in (4.7) is continuous, Mercer’s theorem implies that
∑

j∈N λ
∗
j < ∞. Hence,

a direct application of the above lemma to the random variable in (4.6) shows that condition
(BII) is satisfied for (Vn)n≥2 with a = 1/λ∗1. It remains to verify condition (BIII). But using
Minkowski’s inequality again, it follows analogously to before that∣∣∣ Vn√

n
− b(F )

∣∣∣ ≤ (∫ ∞
−∞

(
F̃n(x)− F (x)

)2
F0(dx)

)1/2
≤ ‖F̃n − F‖∞ (4.10)

for every F ∈ Gq \ {F0}, where b is as in (4.8). Now by Theorem 3.1 in Zhang [31] we have

‖F̃n − F‖∞ −→
n→∞

0 in PF -probability,

so that
Vn√
n
− b(F ) −→

n→∞
0 in PF -probability

for every F ∈ Gq \ {F0}.
To sum up, we have shown the following proposition.

Proposition 4.4
The sequence (Vn)n≥2 is a standard sequence with approximate slope b(F )2/λ∗1, F ∈ Gq \ {F0}.
The approximate Bahadur ARE of (Wn)n≥2 relative to (Vn)n≥2 is thus λ∗1/λ1.

Note that the approximate Bahadur ARE of (Wn)n≥2 relative to (Vn)n≥2 is independent of the
alternative distribution F ∈ Gq \ {F0}, because the function b in condition (BIII) is the same for
both sequences of test statistics. Hence, the approximate Bahadur ARE of these two sequences
does only depend on F0, namely through the eigenvalue λ∗1. Moreover, it is λ∗1 < λ1, as is shown
in Example B.1 in the appendix. Consequently, the ratio λ∗1/λ1 is always less than one. For some
specific distribution functions F0 the values of λ∗1 and λ∗1/λ1 are given in Table 1 on page 35.

In order to equate the approximate Bahadur ARE of (Wn)n≥2 with respect to (Vn)n≥2 to the
limiting Pitman ARE with the aid of Theorem 2.3, we have to verify that the two sequences
(Wn)n≥2 and (Vn)n≥2 also meet Wieand’s condition (WIII). To show this for the latter sequence,
we require q ∈ (2,∞) from now on.
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4 The limiting Pitman ARE of the two tests for iid centered observations

Theorem 4.5
The sequence (Vn)n≥2 fulfills Wieand’s condition (WIII) with b as in (4.8).

Proof. Let F ∈ Gq \ {F0} and n ≥ 2. Using (4.10), we see that∣∣∣ Vn√
n
− b(F )

∣∣∣ ≤ ‖F̃n − F‖∞ ≤ ‖F̃n − Fn‖∞ + ‖Fn − F‖∞.

We will now examine both summands on the right-hand side of the above inequality separately.

We start by showing that the Kolmogorov-Smirnov statistic
√
n‖Fn−F‖∞ fulfills the assumptions

of Proposition 2.4. By the classical asymptotic theory of the Kolmogorov-Smirnov statistic,

PF (
√
n‖Fn − F‖∞ ≤ x) −→

n→∞
PF
(
‖B◦(F )‖∞ ≤ x

)
, x ∈ R,

and PF (
√
n‖Fn−F‖∞ ≤ · ) as well as PF (‖B◦(F )‖∞ ≤ · ) do not depend on F anymore, since F

is continuous. Moreover, the distribution function of ‖B◦(F )‖∞ is continuous. This shows that
condition (i) of Proposition 2.4 holds for every % > 0. But since Q(·) := PF (‖B◦(F )‖∞ ≤ · ) does
not depend on F , condition (ii) of the very proposition is trivially met for every % > 0.

Next, we investigate the term ‖F̃n − Fn‖∞.

Let K :=
∫
R |x|F0(dx)/2. Then K ∈ (0,∞) since F0 ∈ Gq, and Lemma 4.1 (i) implies that there

are δ1, δ2 > 0 such that∣∣∣∫
R
|x|F0(dx)−

∫
R
|x|F (dx)

∣∣∣ < K for all F ∈ Gq with dq(F, F0) < δ1 (4.11)

and ∣∣∣∫
R
|x|qF0(dx)−

∫
R
|x|qF (dx)

∣∣∣ < K for all F ∈ Gq with dq(F, F0) < δ2. (4.12)

Now set K ′ := min
(
F0(0), 1 − F0(0)

)
/2. Note that K ′ > 0 because neither F0(0) = 0 nor

F0(0) = 1 is possible since F0 ∈ Gq. By part (ii) of Lemma 4.1 there is a δ3 > 0 with

dK(F, F0) = sup
x∈R
|F (x)− F0(x)| < K ′ for all F ∈ Gq with dq(F, F0) < δ3. (4.13)

Define %̃ := min(δ1, δ2, δ3) and M := U%̃(F0) \ {F0}. Then the set M is such that (3.7), (3.8) and
(3.13) hold. To see that (3.7) is satisfied, we have to show that

g(c) := sup
F∈M

∫
{x∈R : |x|>c}

x2F (dx)→ 0 for c→∞.

But for every F ∈M and c ∈ (0,∞) it is∫
{|x|>c}

x2F (dx) =

∫{(
|x|
c

)q−2
> 1
} x2F (dx) ≤

∫{(
|x|
c

)q−2
> 1
} x2 ·

( |x|
c

)q−2
F (dx)

≤ c2−q
∫
R
|x|qF (dx) <

1

cq−2

(
K +

∫
R
|x|qF0(dx)

)
because of q > 2 and (4.12). This implies

0 ≤ g(c) ≤ 1

cq−2

(
K +

∫
R
|x|qF0(dx)

)
−→
c→∞

0.

Next, we verify (3.8). Because of (4.11) we have
∫
R |x|F (dx) > K for every F ∈M , and therefore

inf{
∫
R |x|F (dx) : F ∈M} ≥ K > 0.
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4 The limiting Pitman ARE of the two tests for iid centered observations

It remains to show (3.13). It follows from (4.13) and by definition of K ′ that

0 < F0(0)−K ′ < F (0) < F0(0) +K ′ < 1

for every F ∈M , and this yields (3.13).

Since M satisfies all assumptions of Proposition 3.5, we get

‖F̃n − Fn‖∞ ≤ ‖UF ‖∞
1

σ2
F

∣∣∣ 1
n

n∑
i=1

Xi

∣∣∣+ ‖Rn,F ‖∞

with
√
n‖Rn,F ‖∞ = ouP (1) in M as n → ∞. By parts (i) and (ii) of Lemma 3.8 we see that all

assumptions of Proposition 2.6 are met for

V n,F := ‖UF ‖∞
1

σ2
F

∣∣∣ 1√
n

n∑
i=1

Xi

∣∣∣ and Rn,F :=
√
n‖Rn,F ‖∞

with % = %̃, so that

sup
F∈M

∣∣PF (V n,F +Rn,F ≤ x)−QF (x)
∣∣ −→

n
0 ∀ x ∈ R, (4.14)

where QF is as in Lemma 3.8 (i) the distribution function of a half-normal distribution. Now
(4.14) and part (iii) of Lemma 3.8 imply that all assumptions of Proposition 2.4 hold for the
family of sequences {(V n,F +Rn,F )n≥2 : F ∈ Gq}.
Hence, by Corollary 2.5 there is a % > 0 such that for every ε > 0 and δ ∈ (0, 1) there is a positive
constant C(ε, δ) with

PF

(∣∣∣ Vn√
n
− b(F )

∣∣∣ ≥ ε b(F )
)

≤ PF

(
‖Fn − F‖∞ + ‖UF ‖∞

1

σ2
F

∣∣∣ 1
n

n∑
i=1

Xi

∣∣∣+ ‖Rn,F ‖∞ ≥ ε b(F )
)
< δ

for all F ∈ U%(F0) \ {F0} and for all n ≥ 2 with
√
n b(F ) > C(ε, δ), but this is just (WIII) for

(Vn)n≥2.

An analog of Theorem 4.5 holds for (Wn)n≥2 as well. Wieand [30] showed in Example 3 on page
1008 thatWn satisfies condition (WIII) for parametric alternatives. This is easily seen to be true
also in the case of nonparametric alternatives considered here, since it follows immediately from
inequality (4.9) and the fact that the Kolmogorov-Smirnov statistic

√
n‖Fn − F‖∞ satisfies the

assumptions of Proposition 2.4 for every % > 0, as was mentioned in the previous proof. Hence,
condition (WIII) also holds for (Wn)n≥2 with b as in (4.8).

Our aim is now to equate the limit (as the alternative F approaches F0) of the approximate
Bahadur ARE of (Wn)n≥2 relative to (Vn)n≥2 with the limiting (as α → 0) Pitman ARE of
these sequences using Theorem 2.3. To see that this theorem is applicable, we will check its
assumptions first:
By what we have already shown it follows that the sequences (Wn)n≥2 and (Vn)n≥2 satisfy
condition (i) of Theorem 2.3. Moreover, the random variables W and V, to which Wn and Vn
respectively converge to in distribution under H0, have distribution functions that are strictly
increasing on (0,∞), since the distribution functions of W2 and V2 are strictly increasing on
(0,∞), see e.g. Lemma 5.1 in Hörmann [15]. Thus, condition (ii) also holds. In addition, as
0 < b(F ) ≤ ‖F − F0‖∞ = dK(F, F0) for all F ∈ Gq \ {F0} and dK(F, F0)→ 0 as dq(F, F0)→ 0,
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4 The limiting Pitman ARE of the two tests for iid centered observations

F ∈ Gq\{F0}, by Lemma 4.1 (ii), assumption (iii) is met as well. It remains to verify condition (iv)
of Theorem 2.3. But as mentioned before, the approximate Bahadur ARE of (Wn)n≥2 relative
to (Vn)n≥2 is independent of the alternative F , and therefore its limit as the alternative F
approaches F0 trivially exists and is equal to λ∗1/λ1.

Now a direct application of Theorem 2.3 yields

Theorem 4.6
For T1n =Wn, T2n = Vn, n ≥ 2, and every β ∈ (0, 1) it is

lim
α→0

lim inf
F ∈Gq\{F0},
dq(F,F0)→0

N2(α, β, F )

N1(α, β, F )
= lim

α→0
lim sup

F ∈Gq\{F0},
dq(F,F0)→0

N2(α, β, F )

N1(α, β, F )
=
λ∗1
λ1
. (4.15)

Recall that λ∗1 < λ1, as is shown in Example B.1 in the appendix. Hence, the limiting Pitman ARE
in (4.15) is strictly less than one, so that the sequence of tests based on (Vn)n≥2 is preferable to
the one based on (Wn)n≥2. Furthermore, by Remark 5.4 in [15] it is λ∗1 ≥ 1/(2π)2, which implies
that λ∗1/λ1 ≥ 0.25.

We will now explicitly specify λ∗1/λ1 for some distribution functions F0. For this, keep in mind
that the distribution of W does not depend on F0, so that λ1, which is the largest eigenvalue of
the Hilbert-Schmidt integral operator with kernel k(s, t) = s ∧ t − st, is the same for every F0

and equals 1/π2. In contrast to this, the kernel in (4.7) depends on F0, hence the value of λ∗1
may vary for different null-distributions.

In subsection 6.1 of [15] the numerical computation of λ∗1 is described for F0 being the distribution
function of one of the following distributions:

• the standard normal distribution N (0, 1),

• the double exponential distribution (denoted by Dexp) having Lebesgue density f(x) =
0.5 exp(−|x|), x ∈ R,
• the logistic distribution (denoted by Logistic) having distribution function F (x) = 1/(1 +

exp(−x)), x ∈ R.

Observe that since all of these distributions have finite moments of all order and zero mean,
their distribution functions are elements of Gq regardless of the value of q. Using the R-function
eigenvalues() of appendix A.1 in [15], we determined λ∗1 for these distributions, the result of
which can be found in Table 1.

F0 λ1 λ∗1 λ∗1/λ1

N (0, 1) 1/π2 1/(2π)2 0.25

Dexp 1/π2 0.02983768 0.2944861

Logistic 1/π2 1/(2π)2 0.25

Table 1: Values of λ1 and λ∗1 for some distributions.
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4 The limiting Pitman ARE of the two tests for iid centered observations

4.2 Composite null hypothesis

Assume again that the observations X1, . . . , Xn, n ≥ 2, are independent and identically dis-
tributed with common distribution function F ∈ Gq, q ≥ 2 fixed, but that F is unknown to us.
Consider now the testing problem

H0 : F ∈ Fτ :=
{
Fτ

( ·
σ

)
: σ ∈ (0,∞)

}
versus H1 : F ∈ Gq \ Fτ , (4.16)

where Fτ is the distribution function of the generalized normal or exponential power distribution
having Lebesgue density

fτ (x) =
τ

2Γ
(
1/τ
) · exp

(
−|x|τ

)
, x ∈ R,

with fixed τ > 0 and

Γ(x) =

∫ ∞
0

yx−1e−ydy, x > 0,

being the Gamma function. For τ = 2, this yields the N (0, 1/2) distribution, and for τ = 1 the
Laplace or double exponential distribution. If τ < 2, the tails of the distribution with density
fτ are heavier than those of the normal distribution, whereas for τ > 2 the tails are lighter. In
Figure 1 the density fτ is depicted for different values of τ . Note that since Fτ is continuous,
centered, and has finite moments of all order for every τ > 0, it is indeed Fτ ⊂ Gq for every
q ≥ 2. For more details on the generalized normal distribution see e.g. Nadarajah [20].

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

x

fτ(x)

τ = 3
τ = 2
τ = 1
τ = 0.5

Figure 1: Density fτ for different values of τ .

Let us introduce some notation. For every σ ∈ (0,∞) and x ∈ R set

F (x, σ) := Fτ

(x
σ

)
and f(x, σ) :=

1

σ
fτ

(x
σ

)
.

Then f(·, σ) is the continuous Lebesgue density of F (·, σ). Because τ is kept fixed, we will not
mention the dependency of F (x, σ) and f(x, σ) on τ in this notation.
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4 The limiting Pitman ARE of the two tests for iid centered observations

For testing the composite null hypothesis H0 against H1, we will use the Cramér-von Mises
statistics

Ŵ 2
n = n

∫ ∞
−∞

(
Fn(x)− F (x, σ̂n)

)2
F (dx, σ̂n)

and

V̂ 2
n = n

∫ ∞
−∞

(
F̃n(x)− F (x, σ̂n)

)2
F (dx, σ̂n),

where (σ̂n)n≥2 is the sequence of maximum likelihood estimators (MLE) for the scale parameter
σ in Fτ , i.e.,

σ̂n = σ̂n(X1, . . . , Xn) = τ1/τ
( 1

n

n∑
i=1

|Xi|τ
)1/τ

(4.17)

for all n ≥ 2, as is easily seen. Note that {σ̂n = 0} is a PF -nullset because of the continuity of
F . Thus, we can and will always assume that σ̂n ∈ (0,∞). Note moreover that the MLE σ̂n is
scale equivariant, i.e., σ̂n(X1, . . . , Xn) = c · σ̂n(X1/c, . . . ,Xn/c) for every c ∈ (0,∞).

It is well known and easy to see that the scale equivariance of σ̂n implies that Ŵ 2
n is scale

invariant, i.e.,
Ŵ 2
n (X1, . . . , Xn) = Ŵ 2

n (X1/c, . . . , Xn/c) ∀ c ∈ (0,∞).

Now note that by the scale equivariance of σ̂n the statistic V̂ 2
n is scale invariant on the set

Ωn = {min1≤i≤nXi < 0 < max1≤i≤nXi}. In order to verify this, recall that for every n ≥ 2

F̃n(·) =

n∑
i=1

1

n(1 + tnXi)
1{Xi≤ · }

on Ωn with tn = tn(X1, . . . , Xn) being the unique solution of the equation
∑n

i=1Xi/(1+tXi) = 0
in the open interval (( 1

n
− 1
) 1

max
1≤i≤n

Xi
,
( 1

n
− 1
) 1

min
1≤i≤n

Xi

)
,

see (3.2) and (3.3). Then for arbitrary c > 0

n∑
i=1

1

n(1 + tnXi)
1{Xi≤x} =

n∑
i=1

1

n(1 + t̃nYi)
1{Yi≤x/c}, x ∈ R,

where t̃n := c tn and Yi := Xi/c, i = 1, . . . , n. But t̃n = c tn(X1, . . . , Xn) is just the unique
solution of

∑n
i=1 Yi/(1 + tYi) = 0 in the set(( 1

n
− 1
) 1

max
1≤i≤n

Yi
,
( 1

n
− 1
) 1

min
1≤i≤n

Yi

)
,

denoted by tn(Y1, . . . , Yn). Thus, c tn(X1, . . . , Xn) = tn(Y1, . . . , Yn), and in combination with the
scale equivariance of σ̂n this yields the statement. Let us assume henceforth that V̂ 2

n is defined
on Ωn in such a way that it is scale invariant on this set as well (for example, set V̂ 2

n = Ŵ 2
n on

Ωn). On Ω we then have

V̂ 2
n (X1, . . . , Xn) = V̂ 2

n (X1/c, . . . , Xn/c) ∀ c ∈ (0,∞).
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In the following, we will construct asymptotic level α tests for the testing problem (4.16) based on
the test statistics Ŵn =

(
Ŵ 2
n

)1/2 and V̂n =
(
V̂ 2
n

)1/2, n ≥ 2. Note that in order to determine the
asymptotic null distributions of these statistics, we can assume that F = Fτ under H0 because
of the aforementioned scale invariance.

To start with, we observe that the following regularity conditions hold:

The mapping (
(0,∞), | · |

)
3 σ 7→ F (·, σ) ∈

(
C[−∞,∞], ‖ · ‖∞

)
(4.18)

is differentiable at σ = 1, i.e., there is a function ∆ ∈ C[−∞,∞] with

‖F (·, 1 + h)− F (·, 1)−∆(·)h‖∞ = o(|h|) as h→ 0, (4.19)

namely ∆(x) = −xfτ (x), x ∈ R, ∆(−∞) = ∆(∞) = 0. Note that the differentiability of
σ 7→ F (·, σ) at σ = 1 implies its differentiability on (0,∞).

Moreover, the MLE σ̂n admits the expansion

σ̂n(X1, . . . , Xn)− 1 =
1

n

n∑
i=1

(
|Xi|τ −

1

τ

)
+Rn (4.20)

with
√
nRn converging to zero in PFτ -probability as n → ∞. Let L(x) = |x|τ − 1/τ , x ∈ R.

Then L is a measurable function with EFτ (L(X1)) = 0 because of
∫
R |x|

τFτ (dx) = 1/τ , and
EFτ (L(X1)2) = VarFτ (|X1|τ ) = EFτ (|X1|2τ ) − EFτ (|X1|τ )2 = 1/τ < ∞ since

∫
R |x|

2τFτ (dx) =
1/τ2 + 1/τ .

These regularity conditions now imply that
√
n
(
Fn(·)− F (·, σ̂n)

) L−→
n

Z in D[−∞,∞] (4.21)

under PFτ , where Z = (Z(x))x∈[−∞,∞] is a centered Gaussian process with continuous sample
paths and covariance function

covFτ
(
Z(x), Z(y)

)
= Fτ (x ∧ y)− Fτ (x)Fτ (y) + xfτ (x)

1

τ
yfτ (y)

+ xfτ (x) EFτ
(
L(X1)1{X1≤y}

)
+ yfτ (y) EFτ

(
L(X1)1{X1≤x}

)
(4.22)

for all x, y ∈ R, cf. Theorem 1 in Durbin [7], see also Theorem A in Genz and Häusler [12] and
the remark thereafter. Since for every x ∈ R it is

EFτ
(
L(X1)1{X1≤x}

)
=

∫ x

−∞
|y|τfτ (y)dy − 1

τ
Fτ (x) = −1

τ
xfτ (x),

where the last equality follows by integration by parts, the covariance function (4.22) reduces to

covFτ
(
Z(x), Z(y)

)
= Fτ (x ∧ y)− Fτ (x)Fτ (y)− xfτ (x)

1

τ
yfτ (y), x, y ∈ R. (4.23)

Additionally, since
∫
R xFτ (dx) = 0 and σ2

Fτ
=
∫
R x

2Fτ (dx) ∈ (0,∞), it follows from Theorem 1
in Genz and Häusler [12] that under PFτ

√
n
(
F̃n(·)− F (·, σ̂n)

) L−→
n

V in D[−∞,∞] (4.24)

with a centered Gaussian processs V = (V (x))x∈[−∞,∞] having continuous sample paths and co-
variance function

covFτ
(
V (x), V (y)

)
= Fτ (x ∧ y)− Fτ (x)Fτ (y)− xfτ (x)

1

τ
yfτ (y)− UFτ (x)UFτ (y)

σ2
Fτ

(4.25)
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for x, y ∈ R. Note that the additional two summands appearing in the covariance function of V
in the general situation of Theorem 1 in [12] do vanish here because EFτ

(
X1L(X1)

)
= 0.

Now observe that the density fτ is infinitely often differentiable for all x ∈ R∗ := R \ {0} with

f ′τ (x) = fτ (x)τ |x|τ−1 ·
(
− sgn(x)

)
,

where sgn = 1(0,∞) − 1(−∞,0) is the sign function. Thus,∫
R∗
|xf ′τ (x)|dx =

∫ ∞
−∞
|x|τfτ (x)τdx = τ

∫ ∞
−∞
|x|τFτ (dx) = 1, (4.26)

and by Lemma 2.5 in Hörmann [15] in combination with Example 2.6 from [15] and the continuous
mapping theorem this implies that

Ŵn
L−→
n

(∫ ∞
−∞

Z(x)2Fτ (dx)
)1/2

=: Ŵ (4.27)

and

V̂n
L−→
n

(∫ ∞
−∞

V (x)2Fτ (dx)
)1/2

=: V̂ (4.28)

under PFτ . The Karhunen-Loève expansion of the processes Z ◦ F−1
τ and V ◦ F−1

τ then yields

Ŵ ∼
( ∞∑
j=1

λ̃jN
2
j

)1/2
and V̂ ∼

( ∞∑
j=1

λ̃∗jN
2
j

)1/2
(4.29)

with (Nj)j∈N independent and identically N (0, 1)-distributed and (λ̃j)j∈N and (λ̃∗j )j∈N being
the decreasing sequences of positive eigenvalues of the Hilbert-Schmidt integral operators having
kernels k(s, t) = covFτ

(
Z(F−1

τ (s)), Z(F−1
τ (t))

)
and k∗(s, t) = covFτ

(
V (F−1

τ (s)), V (F−1
τ (t))

)
,

respectively, where each positive eigenvalue is repeated as many times as its multiplicity. The
symbol ∼ in (4.29) signifies equality in distribution.

It is obvious by (4.29) that the distribution functions of Ŵ and V̂ are continuous. Hence, for
every α ∈ (0, 1)

PFτ
(
Ŵn > k̃(α)

)
−→
n→∞

PFτ
(
Ŵ > k̃(α)

)
= α

and
PFτ

(
V̂n > c̃(α)

)
−→
n→∞

PFτ
(
V̂ > c̃(α)

)
= α,

where k̃(α) and c̃(α) denote the (1− α)-quantiles of the distributions of Ŵ and V̂, respectively.
For τ = 1 and τ = 2, the quantiles of the distributions of Ŵ 2 and V̂ 2 were computed and
tabulated in section 7 of Hörmann [15].

Because of the above, both the classical Cramér-von Mises test having decision rule

Reject H0 ⇐⇒ Ŵn > k̃(α) (4.30)

and the modified Cramér-von Mises test with decision rule

Reject H0 ⇐⇒ V̂n > c̃(α) (4.31)

are asymptotically of level α for testing (4.16).
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For the following considerations we assume that q ≥ max(2, τ). Then

mτ (F ) :=
(
τ

∫
R
|x|τF (dx)

)1/τ
∈ (0,∞)

for all F ∈ Gq. Note that mτ (Fτ ) = 1, since EFτ (|X1|τ ) = 1/τ . On Gq we can now define a
relation ∼R by

F ∼R G ⇐⇒ F (mτ (F ) · ) = G(mτ (G) · ).

Obviously ∼R is reflexive, symmetric and transitive, so that it is an equivalence relation. For
every F ∈ Gq its equivalence class under ∼R is just the scale family generated by F , i.e.,

[F ]R := {G ∈ Gq : G ∼R F} =
{
F
(
·/c
)

: c ∈ (0,∞)
}
.

Now the aforementioned scale invariance of the test statistics under consideration yields that the
mappings

F 7→ PF ◦ Ŵ−1
n and F 7→ PF ◦ V̂−1

n

from Gq into the set of probability measures on B∗ are compatible with ∼R, i.e.,

F ∼R G =⇒ PF ◦ Ŵ−1
n = PG ◦ Ŵ−1

n and PF ◦ V̂−1
n = PG ◦ V̂−1

n .

We have already made use of this fact when determining the asymptotic null distributions of
(Ŵn)n≥2 and (V̂n)n≥2. But note that this also implies that the power of the tests in (4.30) and
(4.31) is invariant with respect to the scale of the underlying data. Because of this, the quantities

N1(α, β, F ) := min
{
n ≥ 2: PF

(
Ŵm > k̃(α)

)
≥ β ∀ m ≥ n

}
and

N2(α, β, F ) := min
{
n ≥ 2: PF

(
V̂m > c̃(α)

)
≥ β ∀ m ≥ n

}
,

α, β ∈ (0, 1), F ∈ Gq \ Fτ , are compatible with ∼R as well, since Ni(α, β, F ) = Ni(α, β, F (·/c))
for all c > 0, i = 1, 2, by what has just been mentioned. Hence, for every fixed α, β ∈ (0, 1)

the relative efficiency N2(α, β, F )/N1(α, β, F ) of (Ŵn)n≥2 with respect to (V̂n)n≥2 is invariant
on the equivalence classes of ∼R, and therefore a reasonable investigation of the asymptotic
behavior of the relative efficiency when the alternative approaches the null hypothesis requires
the identification of distribution functions deriving from the same scale family. Because of this,
we will consider in the following the mappings

[F ]R 7→ PF ◦ Ŵ−1
n and [F ]R 7→ PF ◦ V̂−1

n

on the quotient set Gq/∼R:= {[F ]R : F ∈ Gq}. Note that these mappings are well-defined because
of the above.

We will now equip the quotient set Gq/∼R with a suitable metric.

For this, observe that the test statistics Ŵn and V̂n can be written as

Ŵn =
√
n
∥∥∥Fn( σ̂n

c
·
)
− Fτ

( ·
c

)∥∥∥
L2(Fτ (·/c))

and V̂n =
√
n
∥∥∥F̃n( σ̂n

c
·
)
− Fτ

( ·
c

)∥∥∥
L2(Fτ (·/c))

for every c ∈ (0,∞). Thus, for fixed c > 0 they compare the unknown underlying distribution
function F deriving from a scale family [F ]R to [Fτ ]R, the scale family under H0, by measuring
the distance of an estimator of F (mτ (F )/c · ) to Fτ (·/c) = Fτ (mτ (Fτ )/c · ) in the L2(Fτ (·/c))
metric.

In analogy to this, let us introduce the following metrics on Gq/∼R:
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Lemma 4.7
For every fixed c > 0, set

d̃q,c([F ]R, [G]R) := dq
(
F (mτ (F )/c · ), G(mτ (G)/c · )

)
for every [F ]R, [G]R ∈ Gq/∼R, where dq is the Kantorovich-Wasserstein metric defined in (4.1).
Then
(i) d̃q,c is well-defined and a metric on Gq/∼R,

(ii) for any two constants c1, c2 ∈ (0,∞) the metrics d̃q,c1 and d̃q,c2 are uniformly equivalent.

Proof.
(i) To see that d̃q,c is well-defined, note that for every Fi, Gi ∈ Gq, i = 1, 2, with F1 ∼R F2,
G1 ∼R G2 it is

F1(mτ (F1) · ) = F2(mτ (F2) · ) and G1(mτ (G1) · ) = G2(mτ (G2) · )

by definition of ∼R. Hence

dq
(
F1(mτ (F1)/c · ), G1(mτ (G1)/c · )

)
= dq

(
F2(mτ (F2)/c · ), G2(mτ (G2)/c · )

)
,

which yields the statement.

Moreover,

d̃q,c([F ]R, [G]R) = 0 ⇔ dq
(
F
(
mτ (F )/c ·

)
, G
(
mτ (G)/c ·

))
= 0

⇔ F
(
mτ (F )/c ·

)
= G

(
mτ (G)/c ·

)
⇔ F

(
mτ (F ) ·

)
= G

(
mτ (G) ·

)
⇔ F ∼R G ⇔ [F ]R = [G]R.

The fact that d̃q,c is symmetric and satisfies the triangle inequality follows directly from the
respective properties of dq.

(ii) By the scaling properties of dq it is

d̃q,c1([F ]R, [G]R) =
c1

c2
d̃q,c2([F ]R, [G]R)

for all [F ]R, [G]R ∈ Gq/∼R, whence the assertion follows.

By what has just been shown, any two of the metric spaces (Gq/∼R, d̃q,c), c > 0, are uniformly,
and therefore topologically, isomorphic. Since we are only interested in topological properties of
these metric spaces such as convergence of sequences in them and continuity of mappings on
them, we will not differentiate between these spaces and therefore always work on (Gq/∼R, d̃q,1).

Now observe that the set

G̃q :=
{
F
(
mτ (F ) ·

)
: F ∈ Gq

}
=
{
F ∈ Gq : τ

∫
R |x|

τF (dx) = 1
}

is a complete set of equivalence class representatives, i.e., it contains exactly one element from
each equivalence class of ∼R. Because of this, the well-defined mapping

h : Gq/∼R 3 [F ]R 7→ F
(
mτ (F ) ·

)
∈ G̃q

is obviously a bijection. Furthermore, it is

d̃q,1
(
[F ]R, [G]R

)
= dq

(
h([F ]R), h([G]R)

)
∀ [F ]R, [G]R ∈ Gq/∼R,
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so that (Gq/∼R, d̃q,1) and (G̃q, dq) are isometrically isomorphic. Hence, we will identify these two
metric spaces and assume from now on that the distribution function F of the data X1, . . . , Xn,
n ≥ 2, is in (G̃q, dq). The appropriate hypotheses for the investigation of the asymptotic behavior
of N2(α, β, F )/N1(α, β, F ) now are

H0 : F = Fτ versus H1 : F ∈ G̃q \ {Fτ}. (4.32)

Trivially, the tests in (4.30) and (4.31) are asymptotic level α tests for this testing problem as
well. Henceforth we will only consider the testing problem (4.32).

Remark 4.8: Note that the above testing problem is such that condition (2.2) is satisfied. To
verify this, observe that since the set of alternatives G̃q \ {Fτ} is obviously not empty, there is
an F ∈ G̃q \ {Fτ}. Now set Ft := tF + (1 − t)Fτ for every t ∈ (0, 1). It is easy to see that
Ft ∈ Gq \ {Fτ}. Moreover,∫

R
|x|τFt(dx) = t

∫
R
|x|τF (dx) + (1− t)

∫
R
|x|τFτ (dx) =

1

τ
(t+ 1− t) =

1

τ
,

so that Ft ∈ G̃q \ {Fτ} for every t ∈ (0, 1). As in Remark 4.2 we can show that dq(Ftn , Fτ ) → 0
as n→∞ for any sequence (tn)n∈N in (0, 1) converging to zero, whence it follows that

Uε(Fτ ) ∩
(
G̃q \ {Fτ}

)
6= ∅ ∀ ε > 0. �

We proceed by showing that (Ŵn)n≥2 and (V̂n)n≥2 are standard sequences, the notion of which
was introduced in Definition 2.1.

It follows from (4.27), (4.28) and (4.29) that both sequences of test statistics fulfill condition (BI).
Furthermore, as the kernels k and k∗ are continuous on [0, 1]× [0, 1], by Mercer’s theorem we get∑

j∈N λ̃j <∞ and
∑

j∈N λ̃
∗
j <∞. Hence, we can use Lemma 4.3 again to see that condition (BII)

holds for both sequences of test statistics as well, where a = 1/λ̃1 for (Ŵn)n≥2 and a = 1/λ̃∗1 for
(V̂n)n≥2.

It remains to verify (BIII). For every F ∈ G̃q \ {Fτ} let

b(F ) =
(∫ ∞
−∞

(
F (x)− Fτ (x)

)2
Fτ (dx)

)1/2

and

bn(F ) =
(∫ ∞
−∞

(
F (x)− F (x, σ̂n)

)2
F (dx, σ̂n)

)1/2
, n ≥ 2.

Then ∣∣∣Ŵn√
n
− b(F )

∣∣∣ ≤ ∣∣∣Ŵn√
n
− bn(F )

∣∣∣+
∣∣bn(F )− b(F )

∣∣. (4.33)

Let us first examine the first term on the right-hand side of (4.33). Using Minkowski’s inequality,
it is ∣∣∣Ŵn√

n
− bn(F )

∣∣∣ ≤ (∫ ∞
−∞

(
Fn(x)− F (x)

)2
F (dx, σ̂n)

)1/2
≤ ‖Fn − F‖∞. (4.34)

Now the Glivenko-Cantelli theorem ensures that ‖Fn − F‖∞ = oPF (1) as n→∞, where oPF (1)
signifies convergence to zero in PF -probability.

Analogously to the above we have∣∣∣ V̂n√
n
− b(F )

∣∣∣ ≤ ‖F̃n − F‖∞ +
∣∣bn(F )− b(F )

∣∣. (4.35)
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Again, Theorem 3.1 of Zhang [31] gives ‖F̃n − F‖∞ = oPF (1) as n→∞.

It remains to show that
∣∣bn(F ) − b(F )

∣∣ →
n

0 in PF -probability. To do this, we will use the next
lemma.

Lemma 4.9
For every fixed continuous distribution function F the function

TF : (0,∞) 3 σ 7→
(∫ ∞
−∞

(
F (x)− Fτ (x/σ)

)2
Fτ (dx/σ)

)1/2
∈ [0, 1]

is continuous.

Proof. We will show the continuity of T 2
F , whence the assertion follows. Fix some arbitrary

σ̄ ∈ (0,∞) and let (σn)n∈N be a sequence in (0,∞) that tends to σ̄ as n tends to infinity. Then

F (x, σn) = Fτ (x/σn) −→
n

Fτ (x/σ̄) = F (x, σ̄) ∀ x ∈ R

because of the continuity of Fτ . This shows that the sequence
(
F (·, σn)

)
n∈N converges weakly to

F (·, σ̄). Now∣∣TF (σn)2 − TF (σ̄)2
∣∣ =

∣∣∣∫ ∞
−∞

(
F (x)− F (x, σn)

)2
F (dx, σn)−

∫ ∞
−∞

(
F (x)− F (x, σ̄)

)2
F (dx, σ̄)

∣∣∣
=
∣∣∣∫ ∞
−∞

(
F (x)− F (x, σn)

)2 − (F (x)− F (x, σ̄)
)2
F (dx, σn)

+

∫ ∞
−∞

(
F (x)− F (x, σ̄)

)2
F (dx, σn)−

∫ ∞
−∞

(
F (x)− F (x, σ̄)

)2
F (dx, σ̄)

∣∣∣
≤
∣∣∣∫ ∞
−∞

(
F (x)− F (x, σn)

)2 − (F (x)− F (x, σ̄)
)2
F (dx, σn)

∣∣∣
+
∣∣∣∫ ∞
−∞

(
F (x)− F (x, σ̄)

)2
F (dx, σn)−

∫ ∞
−∞

(
F (x)− F (x, σ̄)

)2
F (dx, σ̄)

∣∣∣.
The second term converges to zero as n → ∞ because of the weak convergence of F (·, σn) to
F (·, σ̄), using that (F (·) − F (·, σ̄))2 is a continuous and bounded function on R. It remains to
investigate the first term on the right-hand side of the above inequality. It is∣∣∣∫ ∞

−∞

(
F (x)− F (x, σn)

)2 − (F (x)− F (x, σ̄)
)2
F (dx, σn)

∣∣∣
≤
∫ ∞
−∞

∣∣2F (x)
(
F (x, σ̄)− F (x, σn)

)
+
(
F (x, σn)− F (x, σ̄)

)(
F (x, σn) + F (x, σ̄)

)∣∣F (dx, σn)

≤ 4 · ‖F (·, σn)− F (·, σ̄)‖∞ = o(1) as n→∞,

which follows again from the weak convergence of F (·, σn) to F (·, σ̄) and the continuity of the
latter function.

Next, observe that by the strong law of large numbers it is for every F ∈ G̃q

σ̂n(X1, . . . , Xn) = τ1/τ
( 1

n

n∑
i=1

|Xi|τ
)1/τ

−→
n

τ1/τ
(∫

R
|x|τF (dx)

)1/τ
= mτ (F ) = 1

PF -almost everywhere. Together with the preceding lemma this implies that bn(F ) − b(F ) =

TF (σ̂n) − TF (1) = oPF (1) as n → ∞, which shows that both
(
Ŵn/

√
n
)
n≥2

and
(
V̂n/
√
n
)
n≥2

converge in PF -probability to b(F ) under H1, but this is just (BIII).

To sum up, we have shown the following proposition.
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Proposition 4.10
The sequences (Ŵn)n≥2 and (V̂n)n≥2 are standard sequences with approximate slopes b(F )2/λ̃1

and b(F )2/λ̃∗1 respectively. Thus, the approximate Bahadur ARE of (Ŵn)n≥2 relative to (V̂n)n≥2

is λ̃∗1/λ̃1.

It is shown in Example B.2 in the appendix that λ̃1 = 1/π2 for every τ ∈ (0,∞) and that
λ̃∗1 < λ̃1. Because of the latter, the approximate Bahadur ARE of (Ŵn)n≥2 relative to (V̂n)n≥2 is
strictly less than one. Moreover, it is independent of the alternative distribution F ∈ G̃q \ {Fτ}
but depends on the parameter τ of the null distribution Fτ through the eigenvalue λ̃∗1. For τ = 1
and τ = 2, the values of λ̃∗1 and λ̃∗1/λ̃1 are given in Table 2 on page 52.

Next, we want to verify that for both sequences (Ŵn)n≥2 and (V̂n)n≥2 Wieand’s condition (WIII)
holds. In order to do this, we have to strengthen the condition on the moments of the distribution
of the data and require from now on that q = 2τ if τ > 1, otherwise q shall be fix in (2,∞).

Theorem 4.11
The sequences (Ŵn)n≥2 and (V̂n)n≥2 fulfill Wieand’s condition (WIII) with

b : G̃q \ {Fτ} 3 F 7−→
(∫ ∞
−∞

(
F (x)− Fτ (x)

)2
Fτ (dx)

)1/2
∈ (0, 1].

To prove this theorem we need some additional results. For the following investigations, let us
introduce the condition

sup
F∈M

∫
R
|x|2τF (dx) <∞ (4.36)

for a set M of distribution functions. We will take a closer look now at the uniform asymptotic
behavior of the sequence (σ̂n)n≥2.

Lemma 4.12
Let ∅ 6= M ⊂ G̃q with (4.36). Then
(i) sup

F∈M
EF
(
|σ̂τn − 1|2

)
= O(1/n) as n→∞,

(ii) σ̂n − 1 = ouP (1) in M as n→∞.

Proof. (i) Recall that τ
∫
R |x|

τF (dx) = 1 for every F ∈ G̃q. Thus it is

EF
(
|σ̂τn − 1|2

)
= EF

(( 1

n

n∑
i=1

(
τ |Xi|τ − 1

))2)
=

1

n2

n∑
i=1

EF
((
τ |Xi|τ − 1

)2)
=

VarF
(
τ |X1|τ

)
n

=
τ2 EF

(
|X1|2τ

)
− 1

n
≤ τ2

n
sup
F∈M

∫
R
|x|2τF (dx) <∞

for every F ∈M , which yields the statement.

To verify (ii), it obviously suffices to show

sup
F∈M

PF
(
|σ̂n − 1| ≥ ε

)
−→
n→∞

0

for ε ∈ (0, 1). Now observe that there is a Kτ ∈ (0,∞) such that for every ε ∈ (0, 1) the following
inequalities hold

(1 + ε)τ ≥ 1 +Kτ ε and (1− ε)τ ≤ 1−Kτ ε. (4.37)
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Using this, we have for every ε ∈ (0, 1) and F ∈M

PF
(
|σ̂n − 1| ≥ ε

)
= 1− PF

(
1− ε < σ̂n < 1 + ε

)
= 1− PF

(
(1− ε)τ < σ̂τn < (1 + ε)τ

)
≤ 1− PF

(
1−Kτ ε < σ̂τn < 1 +Kτ ε

)
= 1− PF

(
|σ̂τn − 1| < Kτ ε

)
= PF

(
|σ̂τn − 1| ≥ Kτ ε

)
.

Hence, with Markov’s inequality and (i) it is

sup
F∈M

PF
(
|σ̂n − 1| ≥ ε

)
≤ sup

F∈M
PF
(
|σ̂τn − 1| ≥ Kτ ε

)
≤ 1

K2
τ ε

2
sup
F∈M

EF
(
|σ̂τn − 1|2

)
−→
n→∞

0.

Moreover, we get the following result concerning the sequence (σ̂n)n≥2.

Lemma 4.13
If the nonempty set M ⊂ G̃q \ {Fτ} satisfies (4.36), then for every ε > 0 and δ ∈ (0, 1) there is
a C(ε, δ) > 0 such that

PF
(
|σ̂n − 1| ≥ ε b(F )

)
< δ

for each F ∈M and for all n ∈ N, n ≥ 2, with
√
n > C(ε, δ)/b(F ).

Proof. Obviously, it is sufficient to show the statement for every ε ∈ (0, 1). Thus, let 0 < ε, δ < 1.
Since b(F ) ∈ (0, 1] for every F ∈M , it is ε b(F ) ∈ (0, 1), and using (4.37) we get

PF
(
|σ̂n − 1| ≥ ε b(F )

)
≤ PF

(
|σ̂τn − 1| ≥ Kτ ε b(F )

)
≤ K̃

nK2
τ ε

2b(F )2

for every F ∈M , employing the fact that by Lemma 4.12 (i) there is a K̃ ∈ (0,∞) such that

sup
F∈M

EF
(
|σ̂τn − 1|2

)
≤ 1

n
K̃

for every n ≥ 2. Now set C(ε, δ) :=
(
K̃/(K2

τ ε
2δ)
)1/2. Then for every F ∈M it is

PF
(
|σ̂n − 1| ≥ ε b(F )

)
< δ

for all n ∈ N, n ≥ 2, with
√
n > C(ε, δ)/b(F ).

Now note again that the density fτ is infinitely often differentiable for all x ∈ R∗ = R \ {0} with

f ′τ (x) = fτ (x)τ |x|τ−1 ·
(
− sgn(x)

)
and

f ′′τ (x) = fτ (x)τ |x|τ−1 ·
(
τ |x|τ−1 − (τ − 1)|x|−1

)
,

where sgn = 1(0,∞)− 1(−∞,0) is as before the sign function. Hence, for all (x, σ) ∈ R× (0,∞) the
first-order and the second-order partial derivative of f(·,·) with respect to σ exist and are given
by

∂f

∂σ
(x, σ) = − 1

σ2
fτ

(x
σ

)
+

1

σ2
τfτ

(x
σ

)∣∣∣x
σ

∣∣∣τ (4.38)

and

∂2f

∂σ2
(x, σ) =

1

σ3

(
2 · fτ

(x
σ

)
− fτ

(x
σ

)
·
∣∣∣x
σ

∣∣∣τ · [3τ + τ2
]

+ τ2fτ

(x
σ

)
·
∣∣∣x
σ

∣∣∣2τ). (4.39)

We will now use the foregoing results to prove the following proposition.
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4 The limiting Pitman ARE of the two tests for iid centered observations

Proposition 4.14
Let ∅ 6= M ⊂ G̃q \ {Fτ} be such that (4.36) holds. Then for each ε > 0 and δ ∈ (0, 1) there is a
C(ε, δ) > 0 with

PF
( ∣∣bn(F )− b(F )

∣∣ ≥ ε b(F )
)
< δ

for all F ∈M and for all n ∈ N, n ≥ 2, with
√
n > C(ε, δ)/b(F ).

Proof. Let ε > 0, δ ∈ (0, 1), n ≥ 2 and F ∈M . By an application of Minkowski’s inequality we
see that

bn(F ) ≤
(∫

R

(
F (x)− Fτ (x)

)2
F (dx, σ̂n)

)1/2
+
(∫

R

(
Fτ (x)− F (x, σ̂n)

)2
F (dx, σ̂n)

)1/2

=
(∫

R

(
F (x)− Fτ (x)

)2
Fτ (dx) +

∫
R

(
F (x)− Fτ (x)

)2 · (f(x, σ̂n)− fτ (x)
)
dx
)1/2

+
(∫

R

(
Fτ (x)− F (x, σ̂n)

)2
F (dx, σ̂n)

)1/2

≤
(
b(F )2 +

∫
R

(
F (x)− Fτ (x)

)2 · ∣∣f(x, σ̂n)− fτ (x)
∣∣dx)1/2

+
(∫

R

(
Fτ (x)− F (x, σ̂n)

)2
F (dx, σ̂n)

)1/2

≤ b(F ) +
(∫

R

(
F (x)− Fτ (x)

)2 · ∣∣f(x, σ̂n)− fτ (x)
∣∣dx)1/2

+
(∫

R

(
Fτ (x)− F (x, σ̂n)

)2
F (dx, σ̂n)

)1/2
,

where the last inequality is due to the fact that
√
a+ b ≤

√
a+
√
b for all a, b ≥ 0. Analogously,

it is

b(F ) ≤ bn(F ) +
(∫

R

(
F (x)− F (x, σ̂n)

)2 · ∣∣fτ (x)− f(x, σ̂n)
∣∣dx)1/2

+
(∫

R

(
F (x, σ̂n)− Fτ (x)

)2
Fτ (dx)

)1/2
.

Hence,∣∣bn(F )− b(F )
∣∣ ≤ (∫

R

(
F (x)− Fτ (x)

)2 · ∣∣f(x, σ̂n)− fτ (x)
∣∣dx)1/2

+
(∫

R

(
Fτ (x)− F (x, σ̂n)

)2
F (dx, σ̂n)

)1/2

+
(∫

R

(
F (x)− F (x, σ̂n)

)2 · ∣∣fτ (x)− f(x, σ̂n)
∣∣dx)1/2

+
(∫

R

(
F (x, σ̂n)− Fτ (x)

)2
Fτ (dx)

)1/2

=
(∫

R

(
F (x)− Fτ (x)

)2 · ∣∣f(x, σ̂n)− fτ (x)
∣∣dx)1/2

+
(∫

R

(
Fτ (x)− F (x, σ̂n)

)2(
f(x, σ̂n)− fτ (x) + fτ (x)

)
dx
)1/2

+
(∫

R

(
F (x)− Fτ (x) + Fτ (x)− F (x, σ̂n)

)2 · ∣∣fτ (x)− f(x, σ̂n)
∣∣dx)1/2

+
(∫

R

(
F (x, σ̂n)− Fτ (x)

)2
Fτ (dx)

)1/2
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≤ 2 ·
(∫

R

(
F (x, σ̂n)− Fτ (x)

)2
Fτ (dx)

)1/2

+ (
√

2 + 1)
(∫

R

(
F (x)− Fτ (x)

)2 · ∣∣fτ (x)− f(x, σ̂n)
∣∣dx)1/2

+ (
√

2 + 1)
(∫

R

(
Fτ (x)− F (x, σ̂n)

)2 · ∣∣fτ (x)− f(x, σ̂n)
∣∣dx)1/2

=: 2 I1/2n + (
√

2 + 1) II1/2n + (
√

2 + 1) III1/2n .

Using Taylor’s theorem, we get

IIn =

∫
R

(
F (x)− Fτ (x)

)2 · ∣∣fτ (x)− f(x, σ̂n)
∣∣dx

=

∫
R

(
F (x)− Fτ (x)

)2 · ∣∣∣∂f
∂σ

(x, 1) ·
(
σ̂n − 1

)
+

1

2
· ∂

2f

∂σ2
(x, ξn) ·

(
σ̂n − 1

)2∣∣∣dx
with ξn = ξn(x) between σ̂n and 1. Now

IIn ≤
∣∣σ̂n − 1

∣∣ · ∫
R

(
F (x)− Fτ (x)

)2 · ∣∣∣∂f
∂σ

(x, 1)
∣∣∣dx

+
1

2
·
(
σ̂n − 1

)2 · ∫
R

(
F (x)− Fτ (x)

)2 · ∣∣∣∂2f

∂σ2
(x, ξn)

∣∣∣dx
=: IIn,1 +

1

2
IIn,2. (4.40)

We will first investigate IIn,1. It is

IIn,1 =
∣∣σ̂n − 1

∣∣ · ∫
R

(
F (x)− Fτ (x)

)2 · ∣∣∣∂f
∂σ

(x, 1)
∣∣∣dx

=
∣∣σ̂n − 1

∣∣ · ∫
R

(
F (x)− Fτ (x)

)2 · ∣∣−fτ (x) + τfτ (x)|x|τ
∣∣dx by (4.38)

≤
∣∣σ̂n − 1

∣∣ · ∫
R

(
F (x)− Fτ (x)

)2
fτ (x)dx+

∣∣σ̂n − 1
∣∣ · ∫

R

(
F (x)− Fτ (x)

)2
τfτ (x)|x|τdx

=: II∗n,1 + II∗∗n,1.

Now II∗n,1 =
∣∣σ̂n − 1

∣∣ · b(F )2, so that

PF
(
II∗n,1 ≥ ε b(F )2

)
= PF

(∣∣σ̂n − 1
∣∣ · b(F )2 ≥ ε b(F )2

)
= PF

(∣∣σ̂n − 1
∣∣ ≥ ε).

By part (ii) of Lemma 4.12 it is σ̂n − 1 = ouP (1) in M as n→∞. Hence, there is an n1(ε, δ) ∈ N
such that

sup
F∈M

PF
(∣∣σ̂n − 1

∣∣ ≥ ε) < δ

for all n > n1(ε, δ). With C1(ε, δ) :=
√
n1(ε, δ) we therefore have

PF
(
II∗n,1 ≥ ε b(F )2

)
< δ

for every F ∈M and every n ∈ N with
√
n > C1(ε, δ)/b(F ) ≥

√
n1(ε, δ).

Next, we investigate II∗∗n,1. It is

II∗∗n,1 =
∣∣σ̂n − 1

∣∣ · ∫
R

(
F (x)− Fτ (x)

)2
fτ (x)τ |x|τdx

=
∣∣σ̂n − 1

∣∣ · ∫
R

(
F (x)− Fτ (x)

)2
fτ (x)1/2 · τ |x|τfτ (x)1/2dx
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≤
∣∣σ̂n − 1

∣∣ · (∫
R

(
F (x)− Fτ (x)

)4
fτ (x)dx

)1/2
·
(∫

R
τ2fτ (x)|x|2τdx

)1/2

≤
∣∣σ̂n − 1

∣∣ · b(F ) · cτ ,

where cτ := τ
(∫

R |x|
2τFτ (dx)

)1/2 ∈ (0,∞). Thus,

PF
(
II∗∗n,1 ≥ ε b(F )2

)
≤ PF

(
|σ̂n − 1| ≥ ε b(F )/cτ

)
,

and by Lemma 4.13 there is a C2(ε, δ) > 0 such that the right-hand side of this inequality is less
than δ for every F ∈M and n ∈ N, n ≥ 2, with

√
n > C2(ε, δ)/b(F ).

We now take a look at IIn,2 defined in (4.40). Recall that

IIn,2 =
(
σ̂n − 1

)2 · ∫
R

(
F (x)− Fτ (x)

)2 · ∣∣∣∂2f

∂σ2
(x, ξn)

∣∣∣dx
with ξn = ξn(x) lying between σ̂n and 1.

Fix some h ∈ (0, 1) for the rest of the proof. The absolute value of the second-order partial
derivative ∂2f/∂σ2 is bounded above on R× [1− h, 1 + h] by some integrable function H : R→
[0,∞), that is, ∣∣∣∂2f

∂σ2
(x, σ)

∣∣∣ ≤ H(x) ∀ (x, σ) ∈ R× [1− h, 1 + h], (4.41)

and the majorant H can be taken to be

H(x) =
1

(1− h)3

(
2 · fτ

( x

1 + h

)
+ fτ

( x

1 + h

)
·
∣∣∣ x

1− h

∣∣∣τ · [3τ + τ2
]

+ τ2fτ

( x

1 + h

)
·
∣∣∣ x

1− h

∣∣∣2τ)
for all x ∈ R, cf. (4.39). Obviously, 0 <

∫
RH(x)dx <∞.

Coming back to IIn,2, on the event {|σ̂n − 1| ≤ h} we have (x, ξn) ∈ R × [1 − h, 1 + h] for all
x ∈ R, and so it follows in this case directly from (4.41) that

IIn,2 ≤
(
σ̂n − 1

)2 · ∫
R
H(x)dx.

Thus, it is

PF
(
IIn,2 ≥ ε b(F )2

)
≤ PF

(
IIn,2 ≥ ε b(F )2, |σ̂n − 1| ≤ h

)
+ PF (|σ̂n − 1| > h)

≤ PF
(
|σ̂n − 1| ≥

(
ε /
∫
RH(x)dx

)1/2
b(F )

)
+ PF (|σ̂n − 1| > h).

Again by Lemma 4.13 there is a C3(ε, δ) > 0 such that for every F ∈M it is

PF
(
|σ̂n − 1| ≥ b(F )

(
ε /
∫
RH(x)dx

)1/2)
<
δ

2

for all n ∈ N, n ≥ 2, with
√
n > C3(ε, δ)/b(F ). Moreover, it follows from Lemma 4.12 (ii) that

there is an n2(δ) ∈ N with

sup
F∈M

PF (|σ̂n − 1| > h) <
δ

2
∀ n > n2(δ). (4.42)

For all F ∈M and n ∈ N such that
√
n > max

(
C3(ε, δ),

√
n2(δ)

)
/b(F ) we then have

PF
(
IIn,2 ≥ ε b(F )2

)
< δ.
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Next, we investigate

In =

∫
R

(
F (x, σ̂n)− Fτ (x)

)2
Fτ (dx).

Since Fτ is differentiable on R, the partial derivative of F (·,·) with respect to σ exists for all
(x, σ) ∈ R× (0,∞) with

∂F

∂σ
(x, σ) =

(
− x

σ2

)
fτ

(x
σ

)
.

By the mean value theorem for every x ∈ R there is a ξ̄n = ξ̄n(x) between σ̂n and 1 such that

F (x, σ̂n)− Fτ (x) = F (x, σ̂n)− F (x, 1) =
∂F

∂σ
(x, ξ̄n) ·

(
σ̂n − 1

)
. (4.43)

Now let h ∈ (0, 1) be as before. The partial derivative ∂F/∂σ is bounded on R × [1 − h, 1 + h]
with ∣∣∣∂F

∂σ
(x, σ)

∣∣∣ ≤ |x|
(1− h)2

· ‖fτ‖∞ for (x, σ) ∈ R× [1− h, 1 + h],

and ‖fτ‖∞ is in (0,∞). On {|σ̂n − 1| ≤ h} we have (x, ξ̄n) ∈ R× [1− h, 1 + h] for all x ∈ R, so
that in this case it follows from the above that

In =

∫
R

(∂F
∂σ

(x, ξ̄n)
)2
Fτ (dx) ·

(
σ̂n − 1

)2 ≤ ‖fτ‖2∞
(1− h)4

·
∫
R
x2Fτ (dx) ·

(
σ̂n − 1

)2
.

Thus, it is

PF
(
In ≥ ε b(F )2

)
≤ PF

(
In ≥ ε b(F )2, |σ̂n − 1| ≤ h

)
+ PF

(
|σ̂n − 1| > h

)
≤ PF

(
|σ̂n − 1| ≥ ε1/2 b(F )(1− h)2

‖fτ‖∞σFτ

)
+ PF

(
|σ̂n − 1| > h

)
.

Using Lemma 4.13 once more, we see that there is a C4(ε, δ) > 0 so that the first term on the
right-hand side of the last inequality is less than δ/2 for every F ∈ M and n ∈ N, n ≥ 2, with
n > C4(ε, δ)2/b(F )2. Hence, for every F ∈M we have

PF
(
In ≥ ε b(F )2

)
< δ

if n ∈ N is such that
√
n > max

(
C4(ε, δ),

√
n2(δ)

)
/b(F ), where n2(δ) is as in (4.42).

The last term to investigate is

IIIn =

∫
R

(
Fτ (x)− F (x, σ̂n)

)2 · ∣∣fτ (x)− f(x, σ̂n)
∣∣dx.

Again, the mean value theorem assures that for every x ∈ R there is a ξ̃n = ξ̃n(x) between σ̂n
and 1 such that

fτ (x)− f(x, σ̂n) = f(x, 1)− f(x, σ̂n) =
∂f

∂σ
(x, ξ̃n) ·

(
1− σ̂n

)
.

Now consider h ∈ (0, 1) again. The partial derivative ∂f/∂σ is bounded on R× [1−h, 1+h] with∣∣∣∂f
∂σ

(x, σ)
∣∣∣ ≤ 1

(1− h)2
fτ

( x

1 + h

)
+

1

(1− h)2
τfτ

( x

1 + h

)∣∣∣ x

1− h

∣∣∣τ
for (x, σ) ∈ R × [1 − h, 1 + h], cf. (4.38). Moreover, let ξ̄n be as in (4.43). Then |σ̂n − 1| ≤ h
implies (x, ξ̄n), (x, ξ̃n) ∈ R × [1 − h, 1 + h] for all x ∈ R, and on the event {|σ̂n − 1| ≤ h} the
following holds

IIIn =

∫
R

(∂F
∂σ

(x, ξ̄n)
)2
·
∣∣∣∂f
∂σ

(x, ξ̃n)
∣∣∣dx · ∣∣σ̂n − 1

∣∣3
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≤

(∫
R

x2

(1− h)6
fτ

( x

1 + h

)
dx+ τ

∫
R

1

(1− h)4
fτ

( x

1 + h

)∣∣∣ x

1− h

∣∣∣τ+2
dx

)
· ‖fτ‖2∞ ·

∣∣σ̂n − 1
∣∣3

=: I(h) · ‖fτ‖2∞ ·
∣∣σ̂n − 1

∣∣3,
where obviously both I(h) and ‖fτ‖∞ ∈ (0,∞). It follows that

PF
(
IIIn ≥ ε b(F )2

)
≤ PF

(
IIIn ≥ ε b(F )3

)
≤ PF

(
IIIn ≥ ε b(F )3, |σ̂n − 1| ≤ h

)
+ PF

(
|σ̂n − 1| > h

)
≤ PF

(
|σ̂n − 1| ≥ ε1/3b(F )

(I(h)‖fτ‖2∞)1/3

)
+ PF

(
|σ̂n − 1| > h

)
.

Again, Lemma 4.13 ensures the existence of a C5(ε, δ) > 0 such that

PF

(
|σ̂n − 1| ≥ ε1/3b(F )

(I(h)‖fτ‖2∞)1/3

)
<
δ

2

for all F ∈M and n ≥ 2 with
√
n > C5(ε, δ)/b(F ). Hence,

PF
(
IIIn ≥ ε b(F )2

)
< δ

for every F ∈M and n ∈ N with
√
n > max

(
C5(ε, δ),

√
n2(δ)

)
/b(F ), where n2(δ) is as in (4.42).

Combining all of the above yields the assertion.

We will now verify the statement of Theorem 4.11.

Proof of Theorem 4.11. Combining (4.33) and (4.34), we see that∣∣∣Ŵn√
n
− b(F )

∣∣∣ ≤ ‖Fn − F‖∞ +
∣∣bn(F )− b(F )

∣∣ (4.44)

for every F ∈ G̃q \ {Fτ}. Analogously we have∣∣∣ V̂n√
n
− b(F )

∣∣∣ ≤ ‖F̃n − F‖∞ +
∣∣bn(F )− b(F )

∣∣
≤ ‖F̃n − Fn‖∞ + ‖Fn − F‖∞ +

∣∣bn(F )− b(F )
∣∣

for every F ∈ G̃q \ {Fτ}, where the first inequality is just (4.35).

As was shown in the proof of Theorem 4.5, the Kolmogorov-Smirnov statistic
√
n‖Fn − F‖∞

fulfills the assumptions of Proposition 2.4 for every % > 0.

Analogously to the proof of Theorem 4.5, let K :=
∫
R |x|Fτ (dx)/2 ∈ (0,∞). It follows from

Lemma 4.1 (i) that there are δ1, δ2 > 0 such that∣∣∣∫
R
|x|qFτ (dx)−

∫
R
|x|qF (dx)

∣∣∣ < K for all F ∈ G̃q with dq(F, Fτ ) < δ1 (4.45)

and ∣∣∣∫
R
|x|Fτ (dx)−

∫
R
|x|F (dx)

∣∣∣ < K for all F ∈ G̃q with dq(F, Fτ ) < δ2. (4.46)

Recall that for τ > 1 we set q = 2τ (> 2), and for τ ≤ 1 we set q > 2 (≥ 2τ). Now since

0 <

∫
R
|x|qF (dx) <

∫
R
|x|qFτ (dx) +K <∞
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for all F ∈ Uδ1(Fτ ), see (4.45), we have for both of the above cases

0 < sup
F∈Uδ1 (Fτ )

∫
R
|x|2τF (dx) <∞. (4.47)

Define %1 := δ1 and M1 := U%1(Fτ ) \ {Fτ}. Then the set M1 fulfills the assumption of Proposi-
tion 4.14, as we have just shown. Moreover, the Kolmogorov-Smirnov statistic obviously fulfills
the assumptions of Proposition 2.4 for % = %1. As a result of this, it follows with inequality (4.44)
that for every ε > 0 and δ ∈ (0, 1) there is a C1(ε, δ) > 0 such that

PF

(∣∣∣Ŵn√
n
− b(F )

∣∣∣ ≥ εb(F )
)
≤ PF

(
‖Fn − F‖∞ +

∣∣bn(F )− b(F )
∣∣ ≥ εb(F )

)
< δ

for all F ∈ M1 and for all n ∈ N, n ≥ 2, with
√
n > C1(ε, δ)/b(F ). Thus, we have verified

Wieand’s condition (WIII) for the sequence (Ŵn)n≥2.

Now set K ′ := min
(
Fτ (0), 1− Fτ (0)

)
/2. Then K ′ > 0, and by Lemma 4.1 (ii) there is a δ3 > 0

such that

dK(F, Fτ ) = sup
x∈R
|F (x)− Fτ (x)| < K ′ for all F ∈ G̃q with dq(F, Fτ ) < δ3. (4.48)

Let %2 := min(δ1, δ2, δ3) and M2 := U%2(Fτ ) \ {Fτ}. Since M2 ⊂ Uδ1(Fτ ), (4.47) implies that
the assumption of Proposition 4.14 holds for M = M2. Additionally, the Kolmogorov-Smirnov
statistic fulfills the assumptions of Proposition 2.4 on M2, i.e., with % = %2. Moreover, observe
that the set M2 is such that (3.7), (3.8) and (3.13) hold. The verification of (3.7) for M2 follows
along the same lines as in the proof of Theorem 4.5, using q > 2 and (4.45). Condition (3.8) is
also easy to check since ∫

R
|x|F (dx) > K > 0

for every F ∈M2 because of (4.46), implying that inf{
∫
R |x|F (dx) : F ∈M2} ≥ K > 0. Further-

more, condition (3.13) is satisfied because

0 < Fτ (0)−K ′ < F (0) < Fτ (0) +K ′ < 1

for every F ∈M2 by (4.48).

Now we can handle the term ‖F̃n − Fn‖∞ just as in the proof of Theorem 4.5. Combining all of
the above, this shows that for every ε > 0 and δ ∈ (0, 1) there is a C2(ε, δ) > 0 such that

PF

(∣∣∣ V̂n√
n
− b(F )

∣∣∣ ≥ εb(F )
)
≤ PF

(
‖F̃n − Fn‖∞ + ‖Fn − F‖∞ +

∣∣bn(F )− b(F )
∣∣ ≥ εb(F )

)
< δ

for every F ∈ M2 and every n ≥ 2 such that
√
n > C2(ε, δ)/b(F ), which is just (WIII) for the

sequence (V̂n)n≥2.

We have now gathered all results that are necessary to show that the approximate Bahadur ARE
of (Ŵn)n≥2 with respect to (V̂n)n≥2 is equal to the limiting (as α→ 0) Pitman ARE. This follows
directly from Theorem 2.3 once we have verified that its assumptions hold. But as we have shown
above, the sequences (Ŵn)n≥2 and (V̂n)n≥2 fulfill conditions (BI), (BII) and (WIII). Moreover,
the distribution functions of Ŵ in (4.27) and V̂ in (4.28) are strictly increasing in their right
tails, cf. Lemma 5.1 in Hörmann [15]. This shows that conditions (i) and (ii) of Theorem 2.3
hold. Observe that assumption (iii) is also satisfied, because 0 < b(F ) ≤ ‖F −Fτ‖∞ = dK(F, Fτ )
for all F ∈ G̃q \ {Fτ}, and dK(F, Fτ ) → 0 as dq(F, Fτ ) → 0, F ∈ G̃q \ {Fτ}, by Lemma 4.1 (ii).
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The remaining condition (iv) of Theorem 2.3 is again trivially fulfilled, as the ratio of approximate
slopes does not depend on the alternative distribution anymore.

As a result of this, we get the following theorem.

Theorem 4.15
For every β ∈ (0, 1) it is

lim
α→0

lim inf
F ∈ G̃q\{Fτ},
dq(F,Fτ )→0

N2(α, β, F )

N1(α, β, F )
= lim

α→0
lim sup

F ∈ G̃q\{Fτ},
dq(F,Fτ )→0

N2(α, β, F )

N1(α, β, F )
=
λ̃∗1

λ̃1

. (4.49)

As already mentioned, the eigenvalue λ̃∗1 is strictly less than λ̃1, see Example B.2 in the appendix.
Thus, the limiting Pitman ARE of (Ŵn)n≥2 with respect to (V̂n)n≥2 in (4.49) is strictly less than
one, so that the test based on the latter sequence of test statistics is to be preferred.

For τ = 1 and τ = 2, we have computed the ratio λ̃∗1/λ̃1 explicitly:

It is shown in Example B.2 that λ̃1 = 1/π2 for every Fτ , τ > 0. The value of λ̃∗1, however, will
vary with Fτ . For τ = 1 and τ = 2, i.e., for the double exponential distribution and for the normal
distribution N (0, 1/2), the numerical computation of λ̃∗1 is described in subsection 7.2 of [15]. The
entries for λ̃∗1 in the following table were computed using the R-function eigenvalues.parmod()
of appendix A.2 in [15].

Fτ λ̃1 λ̃∗1 λ̃∗1/λ̃1

Dexp (τ = 1) 1/π2 0.029837676 0.2944861

N (0, 1/2) (τ = 2) 1/π2 0.01834741 0.1810817

Table 2: Values of λ̃1 and λ̃∗1 for τ = 1 and τ = 2.
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5 Preparatory results for stable autoregressive models

In this section we will consider certain stable autoregressive processes with independent and
identically distributed centered errors and discuss the classical empirical distribution function
Fn,res of the residuals and its centered version F̃n,res. Similar to section 3, we will study the
asymptotic behavior of these functions and their components uniformly with respect to the
distribution of the error variables. Moreover, the uniform behavior of the least squares estimator
of the autoregressive parameter is investigated. We will use these results in the following section
to verify Wieand’s condition (WIII) for the Cramér-von Mises statistics based on Fn,res and
F̃n,res.

Let us now state the setting of this section. As before, let M 6= ∅ be a set of continuous distri-
bution functions F that are centered and have finite second moments. Moreover, let (Ω,A) be
a measurable space and {PF : F ∈ M} be a family of probability measures on A such that for
some fixed p ∈ N there are random variables S0, S−1, . . . , S1−p and ei, i ∈ Z, on (Ω,A) with the
following properties:

• Under PF the (ei)i∈Z are independent and identically distributed with common distribution
function F for every F ∈M .

• The variables S0, S−1, . . . , S1−p are jointly distributed according to some fixed distribution
Q, say, under every PF , i.e.,

PF ◦ (S0, S−1, . . . , S1−p)
−1 = Q ∀ F ∈M,

where the left-hand side denotes the joint distribution of S0, S−1, . . . , S1−p under PF . Fur-
thermore, we assume that S0, S−1, . . . , S1−p have finite second moments.

• The variables S0, S−1, . . . , S1−p are independent of (ei)i∈N under every PF .

Note that by Kolmogorov’s consistency theorem such a model always exists. Moreover, under
the above assumptions the mapping F 7→ PF from M into the set of probability measures on A
is injective.

Now let ρ1, . . . , ρp be some real constants with ρp 6= 0 that satisfy

{z ∈ C : zp − ρ1z
p−1 − ρ2z

p−2 − . . .− ρp−1z − ρp = 0} ⊂ {z ∈ C : |z| < 1}, (5.1)

which is equivalent to the condition {z ∈ C : 1− ρ1z − . . .− ρpzp = 0} ⊂ {z ∈ C : |z| > 1}.
In this section we consider the following autoregressive models:

Model 1:
Let (Xi)i≥1−p be the autoregressive process of order p (AR(p) for short) on (Ω,A) defined by

Xi = ρ1Xi−1 + . . .+ ρpXi−p + ei, i ≥ 1, (5.2)

with ρ1, . . . , ρp ∈ R as above and starting values X0 := S0, . . . , X1−p := S1−p.

Model 2:
Let (Xi)i≥1−p be the stationary AR(p) process on (Ω,A), i.e., (Xi)i≥1−p satisfies the model
equation (5.2) and is strictly stationary under every PF . It is well known that the stability
condition (5.1) implies the existence of this stationary process, and that it is unique, cf. Remark
2 on page 86 in Brockwell and Davis [6]. The stationary process can be expressed as

Xi =
∞∑
j=0

ψjei−j ∀ i ≥ 1− p, (5.3)
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5 Preparatory results for stable autoregressive models

where the coefficients ψj ∈ R are uniquely determined, depend on ρ1, . . . , ρp alone, and satisfy

|ψj | < K · c−j , j ≥ 0, (5.4)

for some K > 0 and c > 1, cf. Theorem 3.1.1 in [6] and its proof. As follows from Proposition
3.1.1 in [6], the series in (5.3) converges in mean square as well as absolutely with probability
one under every PF , F ∈ M . The representation (5.3) is called the MA(∞)-representation of
(Xi)i≥1−p. Note that in contrast to the process of model 1, the distribution of the starting values
X0, . . . , X1−p of the stationary process under the measure PF does vary with F .

From now on, let (Xi)i≥1−p be either one of these AR(p) processes. Since we want to study both
of them simultaneously without having to differentiate between them, we will in general not
make use of the stationarity of the process in the second model and derive all results by using
the recursion formula (5.2) instead. Moreover, when explicitly referring to the process of model
i, we will simply write process i, i = 1, 2.

When studying functionals such as the expectation EF and the variance VarF , the subscript F
will denote as before that the respective term is understood to be with respect to the measure
PF . Hence, by the above assumptions it is EF (ei) = EF (e1) = 0 and VarF (ei) = VarF (e1) =
EF (e2

1) =: σ2
F ∈ (0,∞) for every i ∈ Z and F ∈M .

It is useful and common practice to express the process (Xi)i≥1−p in matrix notation. In order
to do this, we have to introduce some more notation. Set

Xi :=
(
Xi, Xi−1, . . . , Xi−p+1

)T ∈ Rp ∀ i ≥ 0,

ei :=
(
ei, 0, . . . , 0

)T ∈ Rp ∀ i ≥ 1,

where xT denotes the transpose of the vector or matrix x. Moreover, let

A :=



ρ1 ρ2 ρ3 . . . ρp−2 ρp−1 ρp
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 . . . 1 0 0
0 . . . 0 1 0


∈ Rp×p.

Then the recursion formula (5.2) can be rewritten as

Xi = AXi−1 + ei, i ≥ 1.

By induction this implies that

Xi = AiX0 +

i∑
j=1

Aj−1ei+1−j ∀ i ≥ 0. (5.5)

Note that since the characteristic polynomial of A is given by

det(A− zIp) = (−1)p(zp − ρ1z
p−1 − . . .− ρp−1z − ρp),

the set {z ∈ C : zp − ρ1z
p−1 − ρ2z

p−2 − . . .− ρp−1z − ρp = 0} is just the set of eigenvalues of A.
Thus, condition (5.1) states that the spectral radius of A is less than one, i.e.,

max{|z| : z is eigenvalue of A} < 1.
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Because of this, there exists a matrix norm ‖ · ‖A such that ‖A‖A < 1, see e.g. Theorem 4.20 in
Schott [28]. Since the transpose AT of A has the same spectral radius as A, there is also a matrix
norm ‖ · ‖AT with ‖AT ‖AT < 1. Moreover, for every real n× n-matrix B = (bjk)1≤j,k≤n we will
denote by ‖B‖Fr its Frobenius norm, i.e.,

‖B‖Fr =

√ ∑
1≤j,k≤n

b2jk .

The Frobenius norm is compatible with the Euclidean norm ‖·‖ in Rn, so that ‖Bx‖ ≤ ‖B‖Fr‖x‖
for all B ∈ Rn×n and all x ∈ Rn. Because of the equivalence of norms in finite-dimensional vector
spaces there are positive numbers cA and cAT such that

‖B‖Fr ≤ cA ‖B‖A and ‖B‖Fr ≤ cAT ‖B‖AT

for every B ∈ Rn×n.

For the following considerations we need a generalization of the notions of Definition 3.1 to
random vectors and random matrices.

Definition 5.1
Let d ∈ N. Let E be either Rd or Rd×d, and [[ · ]] be a norm on E. Let (an)n∈N be a sequence of
positive numbers, and for every F ∈M let (Yn,F )n∈N be a sequence of random elements on (Ω,A)
with values in E. We say that Yn,F = ouP (an) in M as n → ∞ if and only if [[Yn,F ]] = ouP (an)
in M as n → ∞. Analogously, we say that Yn,F = OuP (an) in M as n → ∞ if and only if
[[Yn,F ]] = OuP (an) in M as n→∞.

Note that since all norms in finite-dimensional vector spaces are equivalent, the notions defined
above do not depend on the actual choice of [[ · ]] and thus are well-defined.

Next, we will study the stochastic behavior of certain functions of the process (Xi)i≥1−p uniformly
in F ∈M . The following results are well known for stable autoregressive processes if M = {F},
i.e., if the distribution function F of the errors is fixed. We will investigate again under which
assumptions these results hold uniformly in F ∈ M if the set M contains arbitrarily many
elements. For this, let us consider once more the following conditions:

inf
F∈M

∫
R
x2F (dx) > 0, (3.5)

sup
F∈M

∫
R
x2F (dx) <∞, (3.6)

g(c) := sup
F∈M

∫
{x∈R : |x|>c}

x2F (dx)→ 0 for c→∞, (3.7)

inf
F∈M

∫
R
|x|F (dx) > 0, (3.8)

sup
F∈M

∫
R
|x|F (dx) <∞. (3.9)

Note again that (3.7) =⇒ (3.6) =⇒ (3.9) and (3.8) =⇒ (3.5).

Remark 5.2: If X0 is the vector of starting values of process 1, then EF (‖X0‖) =
∫
Rp ‖x‖Q(dx)

and EF (‖X0‖2) =
∫
Rp ‖x‖

2Q(dx) for every F ∈M , and both quantities are finite by assumption.
Hence,

sup
F∈M

EF (‖X0‖) <∞ and sup
F∈M

EF (‖X0‖2) <∞
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5 Preparatory results for stable autoregressive models

in this case. Using Markov’s inequality, this implies that X0 = OuP (1) in M as n → ∞ and
X0 = ouP (an) in M as n→∞ for every positive real sequence (an)n∈N with an →

n
∞.

If X0 is the vector of starting values of process 2, then

EF (‖X0‖) ≤ EF

( p∑
i=1

|X1−i|
)

= pEF (|X0|) = p lim
n→∞

EF

(∣∣∣ n∑
j=0

ψje−j

∣∣∣) ≤ pEF (|e1|)
∞∑
j=0

|ψj | <∞

and

EF (‖X0‖2) =

p∑
i=1

EF (X2
1−i) = pEF (X2

0 ) = p σ2
F

∞∑
j=0

ψ2
j <∞

using the stationarity of (Xi)i≥1−p, its MA(∞)-representation (5.3) and inequality (5.4). Hence,

(3.9) ⇒ sup
F∈M

EF (‖X0‖) <∞ and (3.6) ⇒ sup
F∈M

EF (‖X0‖2) <∞.

It follows immediately from this and Markov’s inequality that (3.9) implies X0 = OuP (1) in M
as n → ∞ and X0 = ouP (an) in M as n → ∞ for every positive real sequence (an)n∈N with
an →

n
∞. �

Lemma 5.3
If the set M is such that (3.7) holds, then max

1≤i≤n
‖Xi−1‖ = ouP (

√
n) in M as n→∞.

Proof. Because of ‖A‖A < 1 it is

K :=
∞∑
i=0

‖A‖iA =
1

1− ‖A‖A
∈ (0,∞).

By using (5.5) we see that for every i ∈ N

‖Xi−1‖ ≤ ‖Ai−1X0‖+

i−1∑
j=1

‖Aj−1ei−j‖ ≤ ‖Ai−1‖Fr ‖X0‖+

i−1∑
j=1

‖Aj−1‖Fr ‖ei−j‖

≤ cA‖Ai−1‖A ‖X0‖+

i−1∑
j=1

cA‖Aj−1‖A |ei−j |

≤ cA‖A‖i−1
A ‖X0‖+

i−1∑
j=1

cA‖A‖j−1
A |ei−j |,

where we used the sub-multiplicativity of ‖ · ‖A in the last inequality. Thus, it is for every n ∈ N

max
1≤i≤n

‖Xi−1‖ ≤ cA ‖X0‖+ cA max
1≤i≤n

|ei|K.

Now ‖X0‖ = ouP (
√
n) in M by Remark 5.2, and since M satisfies (3.7) we have by Lemma 3.2

(i) that max1≤i≤n |ei| = ouP (
√
n) in M as well, which yields the statement.

Lemma 5.4
Assume the set M is such that (3.9) holds. Then

(i) sup
F∈M

EF (‖Xi‖) = O(1) as i→∞,

(ii)
1

n

n∑
i=1
‖Xi−1‖ = OuP (1) in M as n→∞.
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Proof. (i) Recall that
∑∞

i=0 ‖A‖iA =: K <∞. Using (5.5), we have for every i ≥ 0 and F ∈M

EF
(
‖Xi‖

)
≤ EF

(
cA‖A‖iA‖X0‖+

i∑
j=1

cA‖A‖j−1
A |ei+1−j |

)
≤ cA EF (‖X0‖) + cAK EF (|e1|)

≤ cA sup
F∈M

EF (‖X0‖) + cAK sup
F∈M

∫
R
|x|F (dx) <∞

by the assumption and Remark 5.2, and the right-hand side does not depend on F anymore.

(ii) The statement follows with Markov’s inequality and part (i).

Lemma 5.5
If the set M is such that (3.6) holds, then

(i) sup
F∈M

EF
(
‖Xi‖2

)
= O(1) as i→∞,

(ii)
1

n

n∑
i=1
‖Xi−1‖2 = OuP (1) in M as n→∞,

(iii)
1√
n

n∑
i=1

Xi−1ei = OuP (1) in M as n→∞,

(iv)
1√
n

n∑
i=1

Xi−1 = OuP (1) in M as n→∞.

Proof. Set K :=
∑∞

i=0 ‖A‖iA <∞ again.

(i) We have to show that the sequence
(
EF (‖Xi‖2)

)
i≥0

is uniformly bounded in F ∈ M . To do
this, we will investigate for every F ∈M the sequence of L2 norms

‖Xi‖L2,F =
(
EF (‖Xi‖2)

)1/2
instead. Using (5.5) we have

‖Xi‖L2,F ≤ ‖AiX0‖L2,F +

i∑
j=1

‖Aj−1ei+1−j‖L2,F

for every i ≥ 0. But for all i ≥ 1 it is

EF
(
‖AiX0‖2

)
≤ ‖Ai‖2Fr EF

(
‖X0‖2

)
≤ c2

A ‖A‖2iA EF
(
‖X0‖2

)
≤ c2

A sup
F∈M

EF
(
‖X0‖2

)
since ‖A‖A < 1. Because the right-hand side of the above display is finite by Remark 5.2 and does
not depend on F anymore, this shows that the sequence

(
‖AiX0‖L2,F

)
i≥0

is uniformly bounded
in F .
Moreover, for every i ∈ N

i∑
j=1

‖Aj−1ei+1−j‖L2,F ≤
i∑

j=1

‖Aj−1‖Fr‖ei+1−j‖L2,F ≤ cA
i∑

j=1

‖A‖j−1
A EF (e2

1)1/2

≤ cAK
(

sup
F∈M

∫
R
x2F (dx)

)1/2
<∞,

and the statement follows.
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(ii) Using Markov’s inequality, the result follows from (i).

(iii) Let C ∈ (0,∞) and F ∈M . Then

PF

(∥∥∥ 1√
n

n∑
i=1

Xi−1ei

∥∥∥ ≥ C) ≤ 1

C2
EF

(∥∥∥ 1√
n

n∑
i=1

Xi−1ei

∥∥∥2)
,

and using the fact that under every PF , F ∈ M , the sequence of random vectors (Zi)i≥1,
Zi := Xi−1ei, is a square-integrable martingale difference sequence with respect to the filtration
Fi := σ(X1−p, . . . , X0, e1, . . . , ei), i ≥ 1, F0 := {∅,Ω}, it follows that

EF

(∥∥∥ 1√
n

n∑
i=1

Xi−1ei

∥∥∥2)
=

1

n

n∑
i=1

EF
(
‖Xi−1ei

∥∥2
) =

1

n

n∑
i=1

EF (‖Xi−1‖2) EF (e2
1)

≤ 1

n

n∑
i=1

sup
F∈M

EF (‖Xi−1‖2) · sup
F∈M

∫
R
x2F (dx).

Using (i), this yields

lim
C→∞

lim sup
n→∞

sup
F∈M

PF

(∥∥∥ 1√
n

n∑
i=1

Xi−1ei

∥∥∥ ≥ C) = 0.

(iv) For every n ∈ N it follows from (5.5) that∥∥∥ 1√
n

n∑
i=1

Xi−1

∥∥∥ =
1√
n

∥∥∥ n∑
i=1

(
Ai−1X0 +

i−1∑
j=1

Aj−1ei−j

)∥∥∥
≤ 1√

n

n∑
i=1

‖Ai−1X0‖+
1√
n

∥∥∥ n∑
i=1

i−1∑
j=1

Aj−1ei−j

∥∥∥. (5.6)

Now it is

1√
n

n∑
i=1

‖Ai−1X0‖ ≤
1√
n

n∑
i=1

cA‖Ai−1‖A‖X0‖ ≤
1√
n
cA

n∑
i=1

‖A‖i−1
A ‖X0‖ ≤

1√
n
cAK‖X0‖,

and since ‖X0‖ = OuP (1) in M as n → ∞, cf. Remark 5.2, the right-hand side (and thus the
left-hand side) of the above inequality is OuP (n−1/2). Moreover, the second term in (5.6) is OuP (1)
because for every n ∈ N, C ∈ (0,∞) and F ∈M it is

PF

( 1√
n

∥∥∥ n∑
i=1

i−1∑
j=1

Aj−1ei−j

∥∥∥ ≥ C) = PF

(∥∥∥n−1∑
r=1

(n−r−1∑
j=0

Aj
)
er

∥∥∥ ≥ √nC)

≤ 1

nC2

n−1∑
r=1

EF

(∥∥∥(n−r−1∑
j=0

Aj
)
er

∥∥∥2)
≤ 1

nC2

n−1∑
r=1

∥∥∥n−r−1∑
j=0

Aj
∥∥∥2

Fr
EF (e2

1)

≤ 1

nC2

n−1∑
r=1

(
cA

∥∥∥n−r−1∑
j=0

Aj
∥∥∥
A

)2
EF (e2

1) ≤
c2
AK

2

C2
· sup
F∈M

∫
R
x2F (dx).

Let us consider solely the stationary process (Xi)i≥1−p from model 2 on page 53 for the moment.
Since every F ∈ M is centered, it follows that EF (Xi) =

∑∞
j=0 ψj EF (e1) = 0 for all i ≥ 1 − p,

using the mean square convergence of the series in (5.3) and the continuity of the inner product.
Now set

Σ :=
1

σ2
F

EF
(
X0X

T
0

)
,

58



5 Preparatory results for stable autoregressive models

where EF
(
X0X

T
0

)
is the covariance matrix of X0 under PF . Using the stationarity of the process

and the recursion formula (5.5), we see that for every k ∈ N

σ2
F ·Σ = EF

(
X0X

T
0

)
= EF

(
XkX

T
k

)
= Ak EF

(
X0X

T
0

)
(AT )k +

k∑
j=1

Aj−1 · Ẽ · (AT )j−1 · σ2
F ,

where Ẽ is the p × p-matrix with a one in the upper left corner and zeros elsewhere. Since
‖Ak‖A ≤ ‖A‖kA → 0 as k → ∞ and ‖(AT )k‖AT ≤ ‖AT ‖kAT → 0 as k → ∞, both Ak and (AT )k

converge to the zero matrix as k →∞ in any norm on Rp×p. Hence,

Σ =
∞∑
j=1

Aj−1 · Ẽ · (AT )j−1, (5.7)

where the series in (5.7) converges to Σ in any norm on Rp×p. It is evident from this representation
that Σ is a function of ρ1, . . . , ρp alone and does not depend on F . Moreover, Σ is symmetric
and positive definite, see e.g. Proposition 5.1.1 and Example 3.3.4 in [6].

Now let (Xi)i≥1−p be either one of the AR(p) processes from model 1 or model 2 again. We are
now ready to formulate and prove the following lemma.

Lemma 5.6
If the set M satisfies (3.7), then

1

n

n∑
i=1

Xi−1X
T
i−1 − σ2

FΣ = ouP (1) in M as n→∞.

Proof. Using (5.5) it is for every n ∈ N

1

n

n∑
i=1

Xi−1X
T
i−1 =

1

n

n∑
i=1

Ai−1X0X
T
0 (AT )i−1 +

1

n

n∑
i=1

i−1∑
j=1

Ai−1X0e
T
i−j(A

T )j−1

+
1

n

n∑
i=1

i−1∑
j=1

Aj−1ei−jX
T
0 (AT )i−1 +

1

n

n∑
i=1

( i−1∑
j=1

Aj−1ei−j

)( i−1∑
j=1

Aj−1ei−j

)T
=: In + IIn + IIIn + IVn.

Set a := max{‖A‖A, ‖AT ‖AT } ∈ (0, 1). We will show first that In = ouP (1). For each F ∈ M we
have

EF
(
‖In‖Fr

)
≤ 1

n
EF

( n∑
i=1

‖Ai−1X0X
T
0 (AT )i−1‖Fr

)
≤ cAcAT

n

n∑
i=1

EF
(
‖A‖i−1

A ‖X0X
T
0 ‖Fr‖AT ‖i−1

AT

)
=
cAcAT

n
EF
(
‖X0X

T
0 ‖Fr

) n∑
i=1

‖A‖i−1
A ‖A

T ‖i−1
AT
≤ cAcAT

n
sup
F∈M

EF
(
‖X0‖2

) ∞∑
i=0

a2i <∞

using ‖X0X
T
0 ‖Fr = ‖X0‖2 and Remark 5.2. Thus, the statement follows with Markov’s inequality.

Next, we investigate IIn. Let F ∈ M . As ‖X0e
T
k ‖Fr = ‖X0‖ · |ek| for every k ∈ N, and X0 and

e1, . . . , en are independent under PF , it is

EF
(
‖IIn‖Fr

)
≤ 1

n
EF

( n∑
i=1

i−1∑
j=1

‖Ai−1‖Fr‖X0e
T
i−j‖Fr‖(AT )j−1‖Fr

)
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=
1

n

n∑
i=1

i−1∑
j=1

‖Ai−1‖Fr EF
(
‖X0‖

)
EF (|e1|)‖(AT )j−1‖Fr

≤ cAcAT

n
EF
(
‖X0‖

)
EF (|e1|)

n∑
i=1

i−1∑
j=1

‖A‖i−1
A ‖A

T ‖j−1
AT

≤ cAcAT

n
· sup
F∈M

EF
(
‖X0‖

)
· sup
F∈M

∫
R
|x|F (dx) ·

∞∑
i=0

‖A‖iA ·
∞∑
j=0

‖AT ‖j
AT

<∞

using Remark 5.2. Again by Markov’s inequality it follows that IIn = ouP (1) in M as n → ∞.
Since IIIn = IITn , this immediately implies that IIIn = ouP (1) as well.

It remains to show that IVn − σ2
FΣ = ouP (1). It is

IVn =
1

n

n∑
i=1

i−1∑
j=1

Aj−1ei−je
T
i−j(A

T )j−1 +
1

n

n∑
i=1

∑
1≤j<m≤i−1

Aj−1ei−je
T
i−m(AT )m−1

+
1

n

n∑
i=1

∑
1≤m<j≤i−1

Aj−1ei−je
T
i−m(AT )m−1

=: IV1,n + IV2,n + IV3,n.

By changing the order of summation we have

IV2,n =
1

n

n−1∑
s=2

s−1∑
t=1

n∑
k=s+1

Ak−s−1 · Ẽ · (AT )k−t−1eset =
1

n

n−1∑
s=2

s−1∑
t=1

Sn(s, t)eset,

say, where Ẽ is as before the matrix with a one in the upper left corner and zeros elsewhere.
Since the variables e1, . . . , en are independent and centered under every PF , it is

EF
(
‖IV2,n‖2Fr

)
=

1

n2
EF (e2

1)2
n−1∑
s=2

s−1∑
t=1

‖Sn(s, t)‖2Fr

for each F ∈M . Now for every 1 ≤ t < s ≤ n− 1 we have

‖Sn(s, t)‖Fr ≤
n∑

k=s+1

‖Ak−s−1 · Ẽ · (AT )k−t−1‖Fr ≤ cAcAT
n∑

k=s+1

‖A‖k−s−1
A · ‖Ẽ‖Fr · ‖AT ‖k−t−1

AT

≤ cAcAT
n∑

k=s+1

a2k−s−t−2 ≤ cAcAT as−t
1

1− a2
,

so that

n−1∑
s=2

s−1∑
t=1

‖Sn(s, t)‖2Fr ≤
(cAcAT

1− a2

)2
n−1∑
s=2

s−1∑
t=1

(a2)s−t ≤
(
cAcAT

)2
(1− a2)3

· n.

Hence,

EF
(
‖IV2,n‖2Fr

)
≤ 1

n2
EF (e2

1)2 ·
(
cAcAT

)2
(1− a2)3

· n ≤ 1

n

(
sup
F∈M

∫
R
x2F (dx)

)2
·
(
cAcAT

)2
(1− a2)3

.

This shows that IV2,n = ouP (1). As IV3,n = IVT2,n, it follows from this that IV3,n = ouP (1) as well.
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To complete the proof, it remains to show that IV1,n−σ2
FΣ = ouP (1) in M as n→∞. Using the

representation (5.7), i.e.,

Σ =

∞∑
j=1

Aj−1 · Ẽ · (AT )j−1,

we can write

IV1,n =
1

n

n∑
i=1

i−1∑
j=1

Aj−1 · Ẽ · (AT )j−1e2
i−j =

1

n

n−1∑
i=1

{
Σ−

∞∑
j=n−i

Aj · Ẽ · (AT )j
}
e2
i

= Σ
1

n

n−1∑
i=1

e2
i −

1

n

n−1∑
i=1

∞∑
j=n−i

Aj · Ẽ · (AT )je2
i

=: IV(i)
1,n − IV(ii)

1,n ,

and we have for every F ∈M

EF
(
‖IV(ii)

1,n‖Fr
)
≤ 1

n

n−1∑
i=1

∞∑
j=n−i

‖Aj · Ẽ · (AT )j‖Fr EF (e2
1)

≤ EF (e2
1)
cAcAT

n

n−1∑
i=1

∞∑
j=n−i

‖A‖jA · ‖Ẽ‖Fr · ‖AT ‖jAT

≤ sup
F∈M

∫
R
x2F (dx)

cAcAT

n

n−1∑
i=1

∞∑
j=n−i

a2j ≤ sup
F∈M

∫
R
x2F (dx)

cAcAT

n(1− a2)2
−→
n→∞

0,

so that IV(ii)
1,n = ouP (1). But for IV(i)

1,n we get

IV(i)
1,n − σ

2
FΣ = Σ

1

n

n∑
i=1

(
e2
i − σ2

F

)
−Σ

e2
n

n
.

Now recall that we have shown in Lemma 3.2 (iii) that

1

n

n∑
i=1

(
e2
i − σ2

F

)
= ouP (1) in M as n→∞.

Moreover, e2
n/n = ouP (1) inM as n→∞, as is easily seen by Markov’s inequality. This concludes

the proof of this lemma.

Let now ρ :=
(
ρ1, . . . , ρp

)T ∈ Rp be the autoregressive parameter in equation (5.2). Then we can
write (5.2) as

Xi = ρTXi−1 + ei, i ≥ 1.

Since ρ is assumed to be unknown, we have to estimate it by a sequence of estimators (ρ̂n)n∈N.
We will always assume that this sequence is such that

√
n
(
ρ̂n − ρ

)
= OuP (1) in M as n→∞. (5.8)

One of the most prominent estimators for ρ is the least squares estimator

ρ̂LSn = ρ̂LSn (X1−p, . . . , Xn) :=
( n∑
i=1

Xi−1X
T
i−1

)+
n∑
i=1

Xi−1Xi, n ∈ N,
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where B+ denotes the Moore-Penrose pseudoinverse of the matrix B. Recall that if B is nonsin-
gular, then B+ and B−1 coincide.

We will show next that the sequence of least squares estimators satisfies condition (5.8) under
certain assumptions.

Proposition 5.7
Let the set M be such that (3.7) and (3.5) hold. Then

√
n(ρ̂LSn − ρ) = OuP (1) in M as n→∞.

Proof. Set Λn := 1
n

∑n
i=1 Xi−1X

T
i−1. On the event

{
det(Λn) 6= 0

}
=: Dn we have

ρ̂LSn =
( n∑
i=1

Xi−1X
T
i−1

)−1
n∑
i=1

Xi−1

(
XT
i−1ρ+ ei

)
= ρ+

( n∑
i=1

Xi−1X
T
i−1

)−1
n∑
i=1

Xi−1ei,

so that

√
n
(
ρ̂LSn − ρ

)
=
( 1

n

n∑
i=1

Xi−1X
T
i−1

)−1 1√
n

n∑
i=1

Xi−1ei = Λ−1
n

1√
n

n∑
i=1

Xi−1ei. (5.9)

Let GL(p) denote the general linear group of degree p over R and

inv : GL(p) 3 B 7→ B−1 ∈ GL(p)

be the inverse operator on GL(p). Consider the matrix Σ from (5.7), which is positive definite
and thus nonsingular. Because of the continuity of inv in Σ there is a δ = δ(Σ) > 0 such that
for all B ∈ GL(p)

‖B −Σ‖Fr < δ ⇒ ‖inv(B)− inv(Σ)‖Fr < ‖inv
(
Σ
)
‖Fr. (5.10)

Set v := 2‖Σ−1‖Fr/ infF∈M σ2
F ∈ (0,∞). Now for every C ∈ (0,∞) and every F ∈M it is

PF
(
‖
√
n
(
ρ̂LSn − ρ

)
‖ ≥ C

)
≤ PF

({
‖
√
n
(
ρ̂LSn − ρ

)
‖ ≥ C

}
∩Dn

)
+ PF (Dn) =: I1,n + I2,n,

and with (5.9) we have

I1,n = PF
({
‖
√
n
(
ρ̂LSn − ρ

)
‖ ≥ C

}
∩Dn

)
≤ PF

({∥∥inv(Λn)
1√
n

n∑
i=1

Xi−1ei
∥∥ ≥ C} ∩Dn ∩

{
‖inv(Λn)‖Fr ≥ v

})
+ PF

(∥∥∥ 1√
n

n∑
i=1

Xi−1ei

∥∥∥ ≥ C

v

)
≤ PF

({
‖inv(Λn)‖Fr ≥ v

}
∩Dn

)
+ PF

(∥∥∥ 1√
n

n∑
i=1

Xi−1ei

∥∥∥ ≥ C

v

)
.

As was shown in Lemma 5.5 (iii),

1√
n

n∑
i=1

Xi−1ei = OuP (1) in M as n→∞.

Moreover, using (5.10) we see that

PF
({
‖inv(Λn)‖Fr ≥ v

}
∩Dn

)
= PF

({∥∥∥ 1

σ2
F

inv
( 1

σ2
F

Λn

)∥∥∥
Fr
≥ v
}
∩Dn

)
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≤ PF
({∥∥∥inv( 1

σ2
F

Λn

)∥∥∥
Fr
≥ v · inf

F∈M
σ2
F

}
∩Dn

)
≤ PF

({∥∥∥inv( 1

σ2
F

Λn

)
− inv

(
Σ
)∥∥∥

Fr
≥ ‖inv

(
Σ
)
‖Fr

}
∩Dn

)
≤ PF

(∥∥∥ 1

σ2
F

Λn −Σ
∥∥∥

Fr
≥ δ
)
.

Now by Lemma 5.6 and (3.5) we have∥∥∥ 1

σ2
F

Λn −Σ
∥∥∥

Fr
≤ 1

inf
F∈M

σ2
F

∥∥∥ 1

n

n∑
i=1

Xi−1X
T
i−1 − σ2

FΣ
∥∥∥

Fr
= ouP (1). (5.11)

Combining all this, it follows that

lim
C→∞

lim sup
n→∞

sup
F∈M

I1,n = 0.

It remains to investigate I2,n. Since Σ is nonsingular, it is det(Σ) 6= 0. The continuity of the
determinant function in Σ implies that there is an η = η(Σ) > 0 such that for all B ∈ Rp×p

‖B −Σ‖Fr < η ⇒ |det(B)− det(Σ)| < 1

2
|det(Σ)|.

So for every F ∈M we have

PF (Dn) = PF

(
det
( 1

σ2
F

Λn

)
= 0
)

= PF

({
det
( 1

σ2
F

Λn

)
= 0
}
∩
{∣∣det

( 1

σ2
F

Λn

)
− det(Σ)

∣∣ ≥ 1

2
|det(Σ)|

})
+ PF

({
det
( 1

σ2
F

Λn

)
= 0
}
∩
{∣∣det

( 1

σ2
F

Λn

)
− det(Σ)

∣∣ < 1

2
|det(Σ)|

})
≤ PF

(∥∥∥ 1

σ2
F

Λn −Σ
∥∥∥

Fr
≥ η

)
,

and by (5.11) this shows that

lim sup
n→∞

sup
F∈M

PF (Dn) = 0.

Let (ρ̂n)n∈N be any sequence of estimators for ρ now. Then the residuals ên1, . . . , ênn, n ∈ N,
with respect to this sequence of estimators are defined as

êni := Xi − ρ̂TnXi−1, 1 ≤ i ≤ n, n ∈ N.

We will from now on always work under the assumption that ρ̂n is such that (5.8) is satisfied.

Lemma 5.8
If the set M is such that (3.7) holds and the sequence of estimators (ρ̂n)n≥1 for ρ fulfills (5.8),
then

(i)
n∑
i=1

(
êni − ei

)
= OuP (1) in M as n→∞,

(ii) max
1≤i≤n

|êni − ei| = ouP (1) in M as n→∞,

(iii) max
1≤i≤n

|êni| = ouP (
√
n) in M as n→∞,
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(iv)
1

n

n∑
i=1

∣∣ê2
ni − e2

i

∣∣ = ouP (1) in M as n→∞,

(v)
1

n

n∑
i=1

ê2
ni − σ2

F = ouP (1) in M as n→∞.

Proof. (i) We have

n∑
i=1

(
êni − ei

)
= −

(
ρ̂Tn − ρT

) n∑
i=1

Xi−1 = −
√
n
(
ρ̂n − ρ

)T 1√
n

n∑
i=1

Xi−1 = OuP (1)OuP (1) = OuP (1)

because of (5.8) and Lemma 5.5 (iv).

(ii) Using the Cauchy-Schwarz inequality, (5.8) and Lemma 5.3, it is

max
1≤i≤n

|êni − ei| = max
1≤i≤n

∣∣(ρ̂n − ρ)TXi−1

∣∣ ≤ ‖ρ̂n − ρ‖ max
1≤i≤n

‖Xi−1‖ = OuP

( 1√
n

)
· ouP (

√
n) = ouP (1).

(iii) By the previous result and part (i) of Lemma 3.2 we have

max
1≤i≤n

|êni| ≤ max
1≤i≤n

|êni − ei|+ max
1≤i≤n

|ei| = ouP (1) + ouP (
√
n) = ouP (

√
n).

(iv) It is

1

n

n∑
i=1

∣∣ê2
ni − e2

i

∣∣ =
1

n

n∑
i=1

∣∣êni − ei∣∣ · ∣∣êni + ei
∣∣ ≤ max

1≤i≤n

∣∣êni − ei∣∣ · ( 1

n

n∑
i=1

|êni − ei
∣∣+

2

n

n∑
i=1

|ei|
)

≤ max
1≤i≤n

∣∣êni − ei∣∣ · (max
1≤i≤n

∣∣êni − ei∣∣+
2

n

n∑
i=1

|ei|
)
.

Now it obviously is
∑n

i=1 |ei| = OuP (n) since

PF

( 1

n

n∑
i=1

|ei| > C
)
≤ 1

nC

n∑
i=1

EF (|e1|) ≤
1

C
sup
F∈M

∫
R
|x|F (dx) <∞

for every C ∈ (0,∞) and F ∈M . Thus, the result follows with part (ii).

(v) Since ∣∣∣ 1
n

n∑
i=1

ê2
ni − σ2

F

∣∣∣ ≤ 1

n

n∑
i=1

∣∣ê2
ni − e2

i

∣∣+
∣∣∣ 1
n

n∑
i=1

e2
i − σ2

F

∣∣∣,
the result follows from (iv) and Lemma 3.2 (iii).

64



5 Preparatory results for stable autoregressive models

5.1 The empirical distribution function of the residuals

Let (ρ̂n)n∈N be a sequence of estimators for the autoregressive parameter ρ = (ρ1, . . . , ρp)
T , and

for every n ∈ N let

Fn(x) =
1

n

n∑
i=1

1{ei≤x}, x ∈ R,

be the empirical distribution function of the errors e1, . . . , en. In analogy to this, set

Fn,res(x) :=
1

n

n∑
i=1

1{êni≤x} =
1

n

n∑
i=1

1{ei≤x+(ρ̂n−ρ)TXi−1}, x ∈ R.

The function Fn,res is called the empirical distribution function of the residuals ên1, . . . , ênn.

In this subsection we will assume that

M ⊂
{
F : F is a distribution function that has uniformly continuous Lebesgue density f

and satisfies
∫
R
x2F (dx) <∞ and

∫
R
xF (dx) = 0

}
.

The uniformly continuous Lebesgue density f of F will also be denoted by F ′. For the following
investigations we will impose the following assumptions on the set M :

{F ′ : F ∈M} is uniformly equicontinuous, (5.12)

sup
F∈M

F ′(x) −→
|x|→∞

0, (5.13)

sup
F∈M

‖F ′‖∞ <∞. (5.14)

We are now interested in the asymptotic stochastic behavior of
√
n‖Fn − Fn,res‖∞ uniformly

with respect to the set of underlying probability measures {PF : F ∈ M}. An answer to this
gives the next theorem. Its proof is based on the one for the classical, non-uniform case with a
fixed underlying probability measure PF , F ∈ M , which is described in a more general setting
in section 7.2 of Koul [18].

Theorem 5.9
Suppose that the setM satisfies conditions (5.12), (5.13) and (5.14). Moreover, assume that
(i)

√
n(ρ̂n − ρ) = OuP (1) in M as n→∞,

(ii)
1

n

n∑
i=1

Xi−1 = ouP (1) in M as n→∞,

(iii) max
1≤i≤n

‖Xi−1‖ = ouP (
√
n) in M as n→∞,

(iv)
1

n

n∑
i=1
‖Xi−1‖ = OuP (1) in M as n→∞,

(v) sup
F∈M

EF

( n∑
i=1
‖Xi−1‖

)
= o(n3/2) as n→∞.

Then
√
n sup
x∈R
|Fn(x)− Fn,res(x)| = ouP (1) in M as n→∞.
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Note that condition (i) is just (5.8), and as (3.7) ⇒ (3.6) ⇒ (3.9), it follows with Lemma 5.3,
Lemma 5.4 and part (iv) of Lemma 5.5 that (3.7) implies conditions (ii)–(v).

The proof of Theorem 5.9 uses a more general result, which is formulated in the following theorem.
Hence, we will first prove the next result, and give the proof of the above theorem thereafter.
The proof of the theorem below is based again on the ideas of the proof in the non-uniform case,
as described in subsection 2.2.2 of Koul [18]. Moreover, it uses a typical chaining argument as
discussed for example in Pollard [26], pages 160–162.

Theorem 5.10
Let M be a nonempty set of distribution functions such that all F ∈ M possess a uniformly
continuous Lebesgue density F ′ = f and (5.12), (5.13) and (5.14) hold.
Moreover, let (Ω,A) be a measurable space and {PF : F ∈M} be a family of probability measures
on A. Let e1, e2, . . . be random variables and Y be a random element on (Ω,A) such that for each
F ∈M the variables (ei)i∈N are independent and identically distributed with common distribution
function F under PF and Y is independent of (ei)i∈N under PF . Set

F0 := σ(Y ), Fn := σ(Y, e1, . . . , en), n ≥ 1.

For all n ∈ N let δn1, . . . , δnn be random variables on (Ω,A) with
(i) δn1, . . . , δnn is predictable with respect to F0 ⊂ F1 ⊂ . . . ⊂ Fn,

(ii) sup
F∈M

EF
(

1
n

∑n
i=1 |δni|

)
= o(1) for n→∞,

(iii) 1√
n

∑n
i=1 |δni| = OuP (1) in M as n→∞,

(iv) max
1≤i≤n

|δni| = ouP (1) in M as n→∞.

Then

sup
x∈R

1√
n

∣∣∣ n∑
i=1

[
1{ei≤x+δni} − F (x+ δni)

]
−

n∑
i=1

[
1{ei≤x} − F (x)

]∣∣∣ = ouP (1) in M as n→∞.

Proof. Let G be a continuously differentiable, strictly increasing distribution function. For every
x, y ∈ R and every F ∈M set

dF (x, y) := |F (x)− F (y)|1/2, dG(x, y) := |G(x)−G(y)|1/2,

and
d̄F (x, y) := dF (x, y) + dG(x, y) = |F (x)− F (y)|1/2 + |G(x)−G(y)|1/2.

It is easy to see that d̄F is symmetric and fulfills the triangle inequality, so that d̄F is a pseudo-
metric. For every F ∈M define

ωF (δ) := sup
x,y∈R

d̄F (x,y)≤δ

|f(x)− f(y)|, δ > 0. (5.15)

Note that because of (5.14) the function ωF is uniformly bounded. Since

ωF (δ) ≤ sup
x,y∈R

dG(x,y)≤δ

|f(x)− f(y)| = sup
x,y∈R

|G(x)−G(y)|≤δ2

|f(x)− f(y)|

for every F ∈M , it follows from Proposition A.3 that

lim
δ↓0

sup
F∈M

ωF (δ) = 0. (5.16)
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We will now prove the statement of the theorem in several steps.

Step 1:

We will show first that for every ε > 0

sup
F∈M

sup
x∈R

PF

( 1√
n

∣∣∣ n∑
i=1

[
1{ei≤x+δni} − F (x+ δni)

]
−

n∑
i=1

[
1{ei≤x} − F (x)

]∣∣∣ ≥ ε) −→
n→∞

0. (5.17)

Proof of Step 1. First note that for every F ∈M , x ∈ R, n ∈ N and 1 ≤ i ≤ n

EF (1{ei≤x+δni}|Fi−1) = EF (1{ei≤x+δni}|Y = · , e1 = · , . . . , ei−1 = ·) ◦ (Y, e1, . . . , ei−1).

Moreover, by the factorization lemma there is a measurable function gni such that δni =
gni(Y, e1, . . . , ei−1). Using this and the independence of ei and Y, e1, . . . , ei−1 under PF , it is

EF (1{ei≤x+δni}|Y = y, e1 = x1, . . . , ei−1 = xi−1)

= EF (1{ei≤x+gni(Y,e1,...,ei−1)}|Y = y, e1 = x1, . . . , ei−1 = xi−1) = F (x+ gni(y, x1, . . . , xi−1)).

Thus,
EF (1{ei≤x+δni}|Fi−1) = F (x+ gni(Y, e1, . . . , ei−1)) = F (x+ δni). (5.18)

Because of (5.18) the random variables

ζi := 1{ei≤x+δni} − F (x+ δni)−
[
1{ei≤x} − F (x)

]
, 1 ≤ i ≤ n,

form a martingale difference sequence (MDS) with respect to F0 ⊂ F1 ⊂ . . . ⊂ Fn under PF .
Therefore we have for every ε > 0

PF

( 1√
n

∣∣∣ n∑
i=1

[
1{ei≤x+δni} − F (x+ δni)

]
−

n∑
i=1

[
1{ei≤x} − F (x)

]∣∣∣ ≥ ε)
= PF

(∣∣∣ n∑
i=1

ζi

∣∣∣ ≥ ε√n) ≤ 1

ε2n

n∑
i=1

EF (ζ2
i ). (5.19)

In order to handle the expectations EF (ζ2
i ), we will use the following result, which is proven here

in a more general form for later use.

Let x, y ∈ R, n ∈ N and 1 ≤ i ≤ n. Let δ̃ni be a random variable on (Ω,A) that is measurable
with respect to Fi−1. Then

EF
((

1{ei≤x+δni} − F (x+ δni)−
[
1{ei≤y+δ̃ni} − F (y + δ̃ni)

])2|Fi−1

)
≤ |F (x+ δni)− F (y + δ̃ni)|. (5.20)

To prove (5.20), set
ξ := 1{ei≤x+δni} − 1{ei≤y+δ̃ni}.

Then with (5.18), which holds of course for δ̃ni as well, we have

EF
((

1{ei≤x+δni} − F (x+ δni)−
[
1{ei≤y+δ̃ni} − F (y + δ̃ni)

])2|Fi−1

)
= EF

(
[ξ − EF (ξ|Fi−1)]2|Fi−1

)
= EF

(
ξ2|Fi−1

)
− EF

(
ξ|Fi−1

)2
≤ EF

(
ξ2|Fi−1

)
= EF

(
|1{ei≤x+δni} − 1{ei≤y+δ̃ni}| |Fi−1

)
= EF

(
1{(x+δni)∧(y+δ̃ni)<ei≤(x+δni)∨(y+δ̃ni)}|Fi−1

)
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= F
(
(x+ δni) ∨ (y + δ̃ni)

)
− F

(
(x+ δni) ∧ (y + δ̃ni)

)
= |F (x+ δni)− F (y + δ̃ni)|,

where the second-to-last equality is shown along the same lines as (5.18).

Now we come back to (5.19). Using (5.20) with y = x and δ̃ni = 0, we see that

1

ε2n

n∑
i=1

EF (ζ2
i ) ≤ 1

ε2n

n∑
i=1

EF
(
|F (x+ δni)− F (x)|

)
≤ 1

ε2n

n∑
i=1

‖f‖∞ EF
(
|δni|

)
≤ 1

ε2
sup
F∈M

‖f‖∞ sup
F∈M

EF

( 1

n

n∑
i=1

|δni|
)
.

Now (5.17) follows with (5.14) and (ii).

Step 2:

For every n ∈ N, x ∈ R and F ∈M set

Un,F (x) :=
1√
n

n∑
i=1

[
1{ei≤x+δni} − F (x+ δni)

]
and Vn,F (x) :=

1√
n

n∑
i=1

[
1{ei≤x} − F (x)

]
.

We will show now that the condition

lim
δ↓0

lim sup
n→∞

sup
F∈M

PF
(

sup
x,y∈R

d̄F (x,y)≤δ

|Un,F (x)− Un,F (y)| ≥ ε
)

= 0 ∀ε > 0 (5.21)

implies the statement of the theorem.

Proof of Step 2. Assume that (5.21) holds. Then by setting δni = 0 for every n ∈ N and 1 ≤ i ≤ n
it follows directly that

lim
δ↓0

lim sup
n→∞

sup
F∈M

PF
(

sup
x,y∈R

d̄F (x,y)≤δ

|Vn,F (x)− Vn,F (y)| ≥ ε
)

= 0 ∀ε > 0. (5.22)

Let k ∈ N and F ∈ M . Because of the continuity of F , for every j ∈ {1, . . . , k − 1} there is an
xj ∈ R such that F (xj) = j/k. Moreover we have −∞ < x1 < . . . < xk−1 < ∞ because of the
monotonicity of F . The same arguments ensure the existence of −∞ < y1 < . . . < yk−1 <∞ with
G(yj) = j/k, j = 1, . . . , k − 1. Let z1, . . . , zl be the common refinement of these two partitions,
i.e., {z1, . . . , zl} = {x1, . . . , xk−1} ∪ {y1, . . . , yk−1} and −∞ < z1 < . . . < zl < ∞. Obviously,
l ≤ 2(k − 1). Note that since |F (xj+1) − F (xj)| = 1/k and |G(yj+1) − G(yj)| = 1/k for every
j = 1, . . . , k − 2 by construction and z1, . . . , zl is a refinement of the two partitions, it follows
from the monotonicity of F and G that

|F (zj+1)− F (zj)| ≤ 1/k, |G(zj+1)−G(zj)| ≤ 1/k ∀j = 1, . . . , l − 1. (5.23)

We will show now that

for every x ∈ R there is a j(x) ∈ {1, . . . , l} such that d̄F (x, zj(x)) ≤
2√
k
. (5.24)

For the proof of (5.24), let x ∈ R. We investigate the following cases:
Case 1: −∞ < x ≤ z1. Since z1 = x1 ∧ y1, it follows by the monotonicity of F and G that

d̄F (x, z1) = |F (x)− F (z1)|1/2 + |G(x)−G(z1)|1/2 ≤ F (z1)1/2 +G(z1)1/2
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≤ F (x1)1/2 +G(y1)1/2 =
2√
k
.

Case 2: z1 < x ≤ zl. Then there is a j ∈ {1, . . . , l − 1} with zj < x ≤ zj+1. Using (5.23) we see
that

d̄F (x, zj+1) ≤ |F (zj)− F (zj+1)|1/2 + |G(zj)−G(zj+1)|1/2 ≤ 2√
k
.

Case 3: zl < x <∞. Then zl = xk−1 ∨ yk−1, and

d̄F (x, zl) ≤ |1− F (zl)|1/2 + |1−G(zl)|1/2 ≤ |1− F (xk−1)|1/2 + |1−G(yk−1)|1/2 =
2√
k
.

This shows (5.24).

Thus, for every F ∈M , x ∈ R and n, k ∈ N we have

An,F (x) :=
1√
n

∣∣∣ n∑
i=1

[
1{ei≤x+δni} − F (x+ δni)

]
−

n∑
i=1

[
1{ei≤x} − F (x)

]∣∣∣ =
∣∣Un,F (x)− Vn,F (x)

∣∣
≤
∣∣Un,F (x)− Un,F (zj(x))

∣∣+
∣∣Un,F (zj(x))− Vn,F (zj(x))

∣∣+
∣∣Vn,F (zj(x))− Vn,F (x)

∣∣
≤ sup

x,y∈R
d̄F (x,y)≤2/

√
k

∣∣Un,F (x)− Un,F (y)
∣∣+ max

1≤j≤l

∣∣Un,F (zj)− Vn,F (zj)
∣∣

+ sup
x,y∈R

d̄F (x,y)≤2/
√
k

∣∣Vn,F (x)− Vn,F (y)
∣∣,

where j(x) is as in (5.24). But for every k ∈ N it is

sup
F∈M

PF

(
max
1≤j≤l

∣∣Un,F (zj)− Vn,F (zj)
∣∣ ≥ ε) ≤ l∑

j=1

sup
F∈M

PF

(∣∣Un,F (zj)− Vn,F (zj)
∣∣ ≥ ε)

≤
k−1∑
j=1

sup
F∈M

PF

(∣∣Un,F (xj)− Vn,F (xj)
∣∣ ≥ ε)+

k−1∑
j=1

sup
F∈M

PF

(∣∣Un,F (yj)− Vn,F (yj)
∣∣ ≥ ε)

for every ε > 0, and every summand of these two sums converges to zero as n → ∞ because of
(5.17). Thus it is for every ε > 0 and k ∈ N

lim sup
n→∞

sup
F∈M

PF
(
sup
x∈R

An,F (x) ≥ ε
)
≤ lim sup

n→∞
sup
F∈M

PF

(
sup
x,y∈R

d̄F (x,y)≤2/
√
k

∣∣Un,F (x)− Un,F (y)
∣∣ ≥ ε

3

)

+ lim sup
n→∞

sup
F∈M

PF

(
sup
x,y∈R

d̄F (x,y)≤2/
√
k

∣∣Vn,F (x)− Vn,F (y)
∣∣ ≥ ε

3

)
,

and the desired result follows because the right-hand side of this inequality converges to zero as
k →∞ by (5.21) and (5.22).

Step 3: It remains to show (5.21), which is equivalent to

lim
δ↓0

lim sup
n→∞

sup
F∈M

PF
(

sup
x,y∈R

d̄F (x,y)≤δ

|Un,F (x)− Un,F (y)| ≥ 64ε
)

= 0 ∀ε > 0. (5.25)

Proof of Step 3. For arbitrary u ∈ (0, 1) set

j(u) := max{j ∈ N : j < 1/u2}.
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Then 0 < u2 ≤ ju2 < 1 for j = 1, . . . , j(u).
Let F ∈M be arbitrary, but fixed for the moment. Because of the continuity and monotonicity
of F there is a partition −∞ < x1(u) < . . . < xj(u)(u) < ∞ such that F (xj(u)) = ju2 for
j = 1, . . . , j(u).
Analogously, there is a partition −∞ < y1(u) < . . . < yj(u)(u) < ∞ such that G(yj(u)) = ju2

for j = 1, . . . , j(u). Let D(u) := {z1(u), . . . , zl(u)(u)} be the common refinement of these two
partitions, i.e.,

D(u) = {x1(u), . . . , xj(u)(u)} ∪ {y1(u), . . . , yj(u)(u)} (5.26)

and z1(u) < . . . < zl(u)(u). Note that l(u) ≤ 2j(u). By construction, |F (xj+1(u))− F (xj(u))| =
u2 = |G(yj+1(u))−G(yj(u))| for all j = 1, . . . , j(u)− 1. Since z1(u), . . . , zl(u)(u) is a refinement
of the two partitions, we have

|F (zj+1(u))− F (zj(u))| ≤ u2, |G(zj+1(u))−G(zj(u))| ≤ u2 ∀j = 1, . . . , l(u)− 1 (5.27)

by the monotonicity of F and G. Now consider the mapping Ju : R→ D(u) with

Ju(x) =


z1(u) if x ∈ (−∞, z1(u)],

zj(u) if x ∈ (zj−1(u), zj(u)] for a j ∈ {2, . . . , l(u)},
zl(u)(u) if x ∈ (zl(u)(u),∞).

Then we have
d̄F (x, Ju(x)) ≤ 2u ∀x ∈ R. (5.28)

The proof of (5.28) follows along the same lines as the proof of (5.24) and is therefore omitted
here.
Now let ε > 0 and δ ∈ (0, 1). Let n ∈ N with

n ≥
(2ε1/2

δ

)4
. (5.29)

Then
√
n ≥ 4ε/δ2 ≥ 4ε, and therefore 0 < ε/

√
n ≤ 1/4 < 1. Thus, Dn := D

(
(ε/
√
n
)1/2

) and
Jn := J(ε/

√
n)1/2 : R→ Dn are well-defined. We set

j(n) := j
(
(ε/
√
n)1/2

)
, xj(n) := xj

(
(ε/
√
n)1/2

)
and yj(n) := yj

(
(ε/
√
n)1/2

)
∀j = 1, . . . , j(n),

and l(n) and zj(n) are defined accordingly. Because of (5.28) it is

d̄F (x, Jn(x)) ≤ 2
( ε√

n

)1/2
=

2ε1/2

n1/4
∀x ∈ R. (5.30)

Moreover, we have for all x, y ∈ R

d̄F (x, y) ≤ δ ⇒ d̄F
(
Jn(x), Jn(y)

)
≤ 3δ. (5.31)

To see that this is true, recall that d̄F is a pseudometric, so that

d̄F (Jn(x), Jn(y)) ≤ d̄F (Jn(x), x) + d̄F (x, y) + d̄F (y, Jn(y)) ≤ 2
2ε1/2

n1/4
+ δ ≤ 3δ

by (5.30) and (5.29).
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Now for every x, y ∈ R with d̄F (x, y) ≤ δ it is

|Un,F (x)− Un,F (y)| ≤ |Un,F (x)− Un,F (Jn(x))|+ |Un,F (Jn(x))− Un,F (Jn(y))|

+ |Un,F (Jn(y))− Un,F (y)|

≤ 2 sup
x∈R
|Un,F (x)− Un,F (Jn(x))|+ max

x,y∈Dn
d̄F (x,y)≤3δ

|Un,F (x)− Un,F (y)|

because of (5.31). This implies that for every ε > 0 and δ ∈ (0, 1)

lim sup
n→∞

sup
F∈M

PF

(
sup
x,y∈R

d̄F (x,y)≤δ

|Un,F (x)− Un,F (y)| ≥ 64ε
)

≤ lim sup
n→∞

sup
F∈M

PF

(
sup
x∈R
|Un,F (x)− Un,F (Jn(x))| ≥ 16ε

)
+ lim sup

n→∞
sup
F∈M

PF

(
max
x,y∈Dn

d̄F (x,y)≤3δ

|Un,F (x)− Un,F (y)| ≥ 32ε
)
. (5.32)

We will show next that
Step 3a:

lim sup
n→∞

sup
F∈M

PF

(
sup
x∈R
|Un,F (x)− Un,F (Jn(x))| ≥ 16ε

)
= 0 ∀ε > 0, δ ∈ (0, 1).

Proof of Step 3a. It is

lim sup
n→∞

sup
F∈M

PF

(
sup
x∈R
|Un,F (x)− Un,F (Jn(x))| ≥ 16ε

)
≤ lim sup

n→∞
sup
F∈M

PF

(
sup

−∞<x≤z1(n)
|Un,F (x)− Un,F (Jn(x))| ≥ 16ε

)
(5.33)

+ lim sup
n→∞

sup
F∈M

PF

(
sup

z1(n)<x≤zl(n)(n)
|Un,F (x)− Un,F (Jn(x))| ≥ 16ε

)
(5.34)

+ lim sup
n→∞

sup
F∈M

PF

(
sup

zl(n)(n)<x<∞
|Un,F (x)− Un,F (Jn(x))| ≥ 16ε

)
. (5.35)

We will first investigate the term in (5.34).
As before, let F ∈M , ε > 0, δ ∈ (0, 1) and n ∈ N with (5.29). For x ∈ (z1(n), zl(n)(n)] there is a
unique l ∈ {2, . . . , l(n)} such that x ∈ (zl−1(n), zl(n)]. Thus, Jn(x) = zl(n) by definition. Hence,

Un,F (x)− Un,F (Jn(x)) = Un,F (x)− Un,F (zl(n))

=
1√
n

n∑
i=1

[
1{ei≤x+δni} − F (x+ δni)

]
− 1√

n

n∑
i=1

[
1{ei≤zl(n)+δni} − F (zl(n) + δni)

]
≥ 1√

n

n∑
i=1

[
1{ei≤zl−1(n)+δni} − F (zl−1(n) + δni)

]
− 1√

n

n∑
i=1

[
1{ei≤zl(n)+δni} − F (zl(n) + δni)

]
− 1√

n

n∑
i=1

[
F (zl(n) + δni)− F (zl−1(n) + δni)

]
= Un,F (zl−1(n))− Un,F (zl(n))− 1√

n

n∑
i=1

[
F (zl(n) + δni)− F (zl−1(n) + δni)

]
≥ −|Un,F (zl−1(n))− Un,F (zl(n))| − 1√

n

n∑
i=1

[
F (zl(n) + δni)− F (zl−1(n) + δni)

]
.
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Analogously we see that

Un,F (Jn(x))− Un,F (x) = Un,F (zl(n))− Un,F (x)

≤ |Un,F (zl(n))− Un,F (zl−1(n))|+ 1√
n

n∑
i=1

[
F (zl(n) + δni)− F (zl−1(n) + δni)

]
.

This implies that

|Un,F (Jn(x))− Un,F (x)|

≤ |Un,F (zl(n))− Un,F (zl−1(n))|+ 1√
n

n∑
i=1

[
F (zl(n) + δni)− F (zl−1(n) + δni)

]
≤ max

2≤l≤l(n)
|Un,F (zl(n))− Un,F (zl−1(n))|+ max

2≤l≤l(n)

1√
n

n∑
i=1

[
F (zl(n) + δni)− F (zl−1(n) + δni)

]
,

whence it follows that

lim sup
n→∞

sup
F∈M

PF

(
sup

z1(n)<x≤zl(n)(n)
|Un,F (x)− Un,F (Jn(x))| ≥ 16ε

)
≤ lim sup

n→∞
sup
F∈M

PF

(
max

2≤l≤l(n)
|Un,F (zl(n))− Un,F (zl−1(n))| ≥ 8ε

)
+ lim sup

n→∞
sup
F∈M

PF

(
max

2≤l≤l(n)

1√
n

n∑
i=1

[
F (zl(n) + δni)− F (zl−1(n) + δni)

]
≥ 8ε

)
. (5.36)

We will first investigate the second term on the right-hand side of the above inequality. It is

∆n,F := sup{|f(x)− f(y)| : x, y ∈ R, |x− y| ≤ max
1≤i≤n

|δni|} = ouP (1) in M as n→∞. (5.37)

To prove (5.37), note that because of (5.12), i.e., because of the uniform equicontinuity of the
family {f : F ∈M}, for every η > 0 there is a δ̃ > 0 such that for all x, y ∈ R

|x− y| ≤ δ̃ ⇒ |f(x)− f(y)| ≤ η ∀F ∈M,

so that max
1≤i≤n

|δni| ≤ δ̃ implies that ∆n,F ≤ η for all F ∈M . Hence

sup
F∈M

PF (∆n,F > η) ≤ sup
F∈M

PF ( max
1≤i≤n

|δni| > δ̃) −→
n→∞

0

by assumption (iv), and this shows (5.37).

For any l ∈ {2, . . . , l(n)} we now have

1√
n

n∑
i=1

[
F (zl(n) + δni)− F (zl−1(n) + δni)

]
≤ 1√

n

n∑
i=1

∣∣F (zl(n) + δni)− F (zl(n))−
[
F (zl−1(n) + δni)− F (zl−1(n))

]∣∣
+

1√
n

n∑
i=1

∣∣F (zl(n))− F (zl−1(n))
∣∣

≤ 1√
n

n∑
i=1

∣∣f(ξ1i)δni − f(ξ2i)δni
∣∣+ ε, (5.38)
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where ξ1i lies between zl(n) + δni and zl(n), and ξ2i lies between zl−1(n) + δni and zl−1(n).
Moreover, in the last inequality we used (5.27) with u = (ε/

√
n)1/2. But

1√
n

n∑
i=1

∣∣f(ξ1i)δni − f(ξ2i)δni
∣∣

≤ 1√
n

n∑
i=1

(∣∣f(ξ1i)− f(zl(n))|+ |f(zl(n))− f(zl−1(n))|+ |f(zl−1(n))− f(ξ2i)
∣∣)|δni|

≤ 1√
n

n∑
i=1

(
∆n,F + ωF

(
2(ε/
√
n)1/2

)
+ ∆n,F

)
|δni|, (5.39)

where ∆n,F is as in (5.37) and ωF was defined in (5.15). To see that |f(zl(n)) − f(zl−1(n))| ≤
ωF
(
2(ε/
√
n)1/2

)
is indeed true, note that d̄F (zl(n), zl−1(n)) ≤ 2(ε/

√
n)1/2 by (5.27) with u =

(ε/
√
n)1/2.

Combining (5.38) and (5.39), it follows that

max
2≤l≤l(n)

1√
n

n∑
i=1

[
F (zl(n) + δni)− F (zl−1(n) + δni)

]
≤
(

2∆n,F + ωF
(
2(ε/
√
n)1/2

)) 1√
n

n∑
i=1

|δni|+ ε = ouP (1) + ε (5.40)

by (5.16), (5.37) and assumption (iii). Hence

lim sup
n→∞

sup
F∈M

PF

(
max

2≤l≤l(n)

1√
n

n∑
i=1

[
F (zl(n) + δni)− F (zl−1(n) + δni)

]
≥ 8ε

)
≤ lim sup

n→∞
sup
F∈M

PF

(
ouP (1) ≥ 7ε

)
= 0,

so that the second term on the right-hand side of inequality (5.36) equals zero. We will next
investigate the first term on the right-hand side of this inequality.

For every l ∈ {2, . . . , l(n)} it is

Un,F (zl(n))− Un,F (zl−1(n))

=
1√
n

n∑
i=1

(
1{ei≤zl(n)+δni} − F (zl(n) + δni)−

[
1{ei≤zl−1(n)+δni} − F (zl−1(n) + δni)

])
=:

1√
n

n∑
i=1

ζi(l).

Using (5.18) we see that ζ1(l), . . . , ζn(l) is a MDS with respect to F0 ⊂ F1 ⊂ . . . ⊂ Fn under PF ,
and |ζi(l)| ≤ 1 for all i = 1, . . . , n. For every l = 2, . . . , l(n) it follows from (5.20) with x = zl(n),
y = zl−1(n) and δ̃ni = δni that

1√
n

n∑
i=1

EF (ζi(l)
2|Fi−1) ≤ 1√

n

n∑
i=1

|F (zl(n) + δni)− F (zl−1(n) + δni)|,

so that by (5.40)

max
2≤l≤l(n)

1√
n

n∑
i=1

EF (ζi(l)
2|Fi−1) ≤ ouP (1) + ε.
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Then for every n ∈ N with (5.29) it is

PF

(
max

2≤l≤l(n)
|Un,F (zl(n))− Un,F (zl−1(n))| ≥ 8ε

)
≤ PF

({
max

2≤l≤l(n)

1√
n

∣∣∣ n∑
i=1

ζi(l)
∣∣∣ ≥ 8ε

}
∩
{

max
2≤l≤l(n)

1√
n

n∑
i=1

EF (ζi(l)
2|Fi−1) ≤ 2ε

})
+ PF

(
max

2≤l≤l(n)

1√
n

n∑
i=1

EF (ζi(l)
2|Fi−1) > 2ε

)

≤
l(n)∑
l=2

PF

({∣∣∣ n∑
i=1

ζi(l)
∣∣∣ ≥ 8

√
nε
}
∩
{ n∑
i=1

EF (ζi(l)
2|Fi−1) ≤ 2

√
nε
})

+ PF
(
oup(1) + ε > 2ε

)
≤

l(n)∑
l=2

2 exp
(

8
√
nε− 8

√
nε log

(
1 +

8
√
nε

2
√
nε

))
+ PF

(
oup(1) > ε

)
≤ 2 · l(n) · exp

(
8
√
nε[1− log(5)]

)
+ PF

(
oup(1) > ε

)
≤ 4 ·

√
n

ε
· exp

(
8
√
nε[1− log(5)]

)
+ sup
F∈M

PF
(
oup(1) > ε

)
,

where the third-to-last inequality follows by inequality (A.3) of Lemma A.4, and in the last
inequality we used that l(n) ≤ 2j(n) ≤ 2

√
n/ε by construction. Now obviously both summands

on the right-hand side of the last inequality do not depend on F anymore and converge to zero
as n→∞. Thus, we have shown that

lim sup
n→∞

sup
F∈M

PF

(
max

2≤l≤l(n)
|Un,F (zl(n))− Un,F (zl−1(n))| ≥ 8ε

)
= 0,

and this concludes the proof of

lim sup
n→∞

sup
F∈M

PF

(
sup

z1(n)<x≤zl(n)(n)
|Un,F (x)− Un,F (Jn(x))| ≥ 16ε

)
= 0

from (5.34).

Next, we will investigate the term in (5.33).
Again, let F ∈ M , ε > 0, δ ∈ (0, 1) and n ∈ N with (5.29). Let x ∈ (−∞, z1(n)]. Then
Jn(x) = z1(n) by definition of Jn. Thus

Un,F (x)− Un,F (Jn(x)) = Un,F (x)− Un,F (z1(n))

=
1√
n

n∑
i=1

[
1{ei≤x+δni} − F (x+ δni)

]
− 1√

n

n∑
i=1

[
1{ei≤z1(n)+δni} − F (z1(n) + δni)

]
≤ 1√

n

n∑
i=1

1{ei≤z1(n)+δni} −
1√
n

n∑
i=1

[
1{ei≤z1(n)+δni} − F (z1(n) + δni)

]
=

1√
n

n∑
i=1

F (z1(n) + δni),

and similarly

Un,F (Jn(x))− Un,F (x) = Un,F (z1(n))− Un,F (x)

≤ 1√
n

n∑
i=1

[
1{ei≤z1(n)+δni} − F (z1(n) + δni)

]
+

1√
n

n∑
i=1

F (z1(n) + δni).
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This yields

sup
−∞<x≤z1(n)

|Un,F (x)− Un,F (Jn(x))|

≤ 1√
n

∣∣∣ n∑
i=1

[
1{ei≤z1(n)+δni} − F (z1(n) + δni)

]∣∣∣+
1√
n

n∑
i=1

F (z1(n) + δni). (5.41)

Now for all n ∈ N with (5.29) we have F (z1(n)) ≤ F (x1(n)) = ε/
√
n by definition, and

1√
n

n∑
i=1

F (z1(n) + δni) =
1√
n

n∑
i=1

f(ξi)δni +
1√
n

n∑
i=1

F (z1(n))

≤ 1√
n

n∑
i=1

|f(ξi)− f(z1(n))||δni|+ f(z1(n))
1√
n

n∑
i=1

|δni|+ ε, (5.42)

where ξi lies between z1(n) + δni and z1(n). It is |f(ξi)− f(z1(n))| ≤ ∆n,F because |ξi− z1(n)| ≤
|δni|. Also,

sup
F∈M

f(z1(n)) −→
n→∞

0. (5.43)

To see that (5.43) is true, note that

0 ≤ f(z1(n)) ≤ |f(z1(n))− f(z1(n) ∧ (−n))|+ f(z1(n) ∧ (−n)).

Because of z1(n) ∧ (−n) ≤ −n −→
n→∞

−∞ it follows from assumption (5.13) that

sup
F∈M

f(z1(n) ∧ (−n)) −→
n→∞

0.

Moreover, since −∞ < z1(n) ∧ (−n) ≤ z1(n) = x1(n) ∧ y1(n) we have

F (z1(n) ∧ (−n)) ≤ F (z1(n)) ≤ F (x1(n)) =
ε√
n

and
G(z1(n) ∧ (−n)) ≤ G(z1(n)) ≤ G(y1(n)) =

ε√
n
,

so that

d̄F (z1(n) ∧ (−n), z1(n)) = |F (z1(n) ∧ (−n))− F (z1(n))|1/2 + |G(z1(n) ∧ (−n))−G(z1(n))|1/2

≤ F (z1(n))1/2 +G(z1(n))1/2 ≤ 2
( ε√

n

)1/2
.

Therefore,

sup
F∈M

|f(z1(n))− f(z1(n) ∧ (−n))| ≤ sup
F∈M

ωF

(
2
( ε√

n

)1/2)
−→
n→∞

0

because of (5.16). This completes the proof of (5.43).

Combining all this, it follows from inequality (5.42) that

1√
n

n∑
i=1

F (z1(n) + δni) ≤
(
∆n,F + f(z1(n))

) 1√
n

n∑
i=1

|δni|+ ε = ouP (1) + ε (5.44)

by (5.37), (5.43) and assumption (iii).
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Now using (5.41) it follows that

lim sup
n→∞

sup
F∈M

PF

(
sup

−∞<x≤z1(n)
|Un,F (x)− Un,F (Jn(x))| ≥ 16ε

)
≤ lim sup

n→∞
sup
F∈M

PF

( 1√
n

∣∣∣ n∑
i=1

[
1{ei≤z1(n)+δni} − F (z1(n) + δni)

]∣∣∣ ≥ 8ε
)

+ lim sup
n→∞

sup
F∈M

PF

( 1√
n

n∑
i=1

F (z1(n) + δni) ≥ 8ε
)

= lim sup
n→∞

sup
F∈M

PF

( 1√
n

∣∣∣ n∑
i=1

[
1{ei≤z1(n)+δni} − F (z1(n) + δni)

]∣∣∣ ≥ 8ε
)
.

Set
ζi := 1{ei≤z1(n)+δni} − F (z1(n) + δni), i = 1, . . . , n.

Because of (5.18) it follows that ζ1, . . . , ζn is a MDS with respect to F0 ⊂ F1 ⊂ . . . ⊂ Fn under
PF , and obviously |ζi| ≤ 1 for all i = 1, . . . , n. Also by (5.18) it is

n∑
i=1

EF (ζ2
i |Fi−1) =

n∑
i=1

EF

([
1{ei≤z1(n)+δni} − EF (1{ei≤z1(n)+δni}|Fi−1)

]2∣∣∣Fi−1

)
≤

n∑
i=1

EF
(
1{ei≤z1(n)+δni}

∣∣Fi−1

)
=

n∑
i=1

F (z1(n) + δni)

≤ ouP (
√
n) +

√
nε,

the last inequality following from (5.44). Thus, for all n ∈ N with (5.29) this yields

PF

( 1√
n

∣∣∣ n∑
i=1

[
1{ei≤z1(n)+δni} − F (z1(n) + δni)

]∣∣∣ ≥ 8ε
)

= PF

( 1√
n

∣∣∣ n∑
i=1

ζi

∣∣∣ ≥ 8ε
)

≤ PF
({∣∣∣ n∑

i=1

ζi

∣∣∣ ≥ 8
√
nε
}
∩
{ n∑
i=1

EF (ζ2
i |Fi−1) ≤ 2

√
nε
})

+ PF

( n∑
i=1

EF (ζ2
i |Fi−1) > 2

√
nε
)

≤ 2 · exp
(

8
√
nε− 8

√
nε log

(
1 +

8
√
nε

2
√
nε

))
+ PF

(
ouP (
√
n) +

√
nε > 2

√
nε
)

≤ 2 · exp
(

8
√
nε
[
1− log(5)

])
+ sup
F∈M

PF
(
ouP (1) > ε

)
,

where the second-to-last inequality follows again by (A.3) of Lemma A.4. Now the right-hand
side of the last inequality does not depend on F anymore and converges to zero as n→∞. This
yields

lim sup
n→∞

sup
F∈M

PF

(
sup

−∞<x≤z1(n)
|Un,F (x)− Un,F (Jn(x))| ≥ 16ε

)
≤ lim sup

n→∞
sup
F∈M

PF

( 1√
n

∣∣∣ n∑
i=1

[
1{ei≤z1(n)+δni} − F (z1(n) + δni)

]∣∣∣ ≥ 8ε
)

= 0.

Thus, the term in (5.33) is zero.

76



5 Preparatory results for stable autoregressive models

To conclude the proof of Step 3a, it remains to show that the term in (5.35) equals zero. As
before, let F ∈ M , ε > 0, δ ∈ (0, 1) and n ∈ N with (5.29). For x ∈ (zl(n)(n),∞) we have
Jn(x) = zl(n)(n) by definition. It is

Un,F (x)− Un,F (Jn(x)) = Un,F (x)− Un,F (zl(n)(n))

=
1√
n

n∑
i=1

(
1{zl(n)(n)+δni<ei≤x+δni} −

[
F (x+ δni)− F (zl(n)(n) + δni)

])
≤ 1√

n

n∑
i=1

1{zl(n)(n)+δni<ei}

=
1√
n

n∑
i=1

(
1{zl(n)(n)+δni<ei} −

[
1− F (zl(n)(n) + δni)

])
+

1√
n

n∑
i=1

[
1− F (zl(n)(n) + δni)

]
and

Un,F (Jn(x))− Un,F (x) = Un,F (zl(n)(n))− Un,F (x)

=
1√
n

n∑
i=1

(
1{ei≤zl(n)(n)+δni} − 1{ei≤x+δni} + F (x+ δni)− F (zl(n)(n) + δni)

)
≤ 1√

n

n∑
i=1

[
1− F (zl(n)(n) + δni)

]
.

This yields

|Un,F (Jn(x))− Un,F (x)|

≤ 1√
n

∣∣∣ n∑
i=1

(
1{zl(n)(n)+δni<ei} −

[
1− F (zl(n)(n) + δni)

])∣∣∣+
1√
n

n∑
i=1

[
1− F (zl(n)(n) + δni)

]
,

so that

sup
zl(n)(n)<x<∞

|Un,F (Jn(x))− Un,F (x)|

≤ 1√
n

∣∣∣ n∑
i=1

(
1{ei≤zl(n)(n)+δni} − F (zl(n)(n) + δni)

)∣∣∣+
1√
n

n∑
i=1

[
1− F (zl(n)(n) + δni)

]
.

For all n ∈ N with (5.29) we have F (zl(n)(n)) ≥ F (xj(n)(n)) = j(n) · ε/
√
n and 1− j(n) · ε/

√
n ≤

ε/
√
n by definition of j(n), so that

1√
n

n∑
i=1

[
1− F (zl(n)(n) + δni)

]
=

1√
n

n∑
i=1

[
1− F (zl(n)(n))

]
+

1√
n

n∑
i=1

[
F (zl(n)(n))− F (zl(n)(n) + δni)

]
≤ ε+

1√
n

n∑
i=1

f(ξi)|δni| ≤ ε+
1√
n

n∑
i=1

|f(ξi)− f(zl(n)(n))||δni|+ f(zl(n)(n))
1√
n

n∑
i=1

|δni| (5.45)

with ξi lying between zl(n)(n) + δni and zl(n)(n). Now |ξi − zl(n)(n)| ≤ |δni| implies that |f(ξi)−
f(zl(n)(n))| ≤ ∆n,F . Moreover,

sup
F∈M

f(zl(n)(n)) −→
n→∞

0, (5.46)

which can be shown similarly to (5.43).
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Hence, by (5.45) we have

1√
n

n∑
i=1

[
1− F (zl(n)(n) + δni)

]
≤
(
∆n,F + f(zl(n)(n))

) 1√
n

n∑
i=1

|δni|+ ε = ouP (1) + ε (5.47)

using (5.37), (5.46) and assumption (iii). Combining all this yields

lim sup
n→∞

sup
F∈M

PF

(
sup

zl(n)(n)<x<∞
|Un,F (x)− Un,F (Jn(x))| ≥ 16ε

)
≤ lim sup

n→∞
sup
F∈M

PF

( 1√
n

∣∣∣ n∑
i=1

(
1{ei≤zl(n)(n)+δni} − F (zl(n)(n) + δni)

)∣∣∣ ≥ 8ε
)

+ lim sup
n→∞

sup
F∈M

PF

( 1√
n

n∑
i=1

[
1− F (zl(n)(n) + δni)

]
≥ 8ε

)
= lim sup

n→∞
sup
F∈M

PF

( 1√
n

∣∣∣ n∑
i=1

(
1{ei≤zl(n)(n)+δni} − F (zl(n)(n) + δni)

)∣∣∣ ≥ 8ε
)

because of (5.47). Define

ζ̄i := 1{ei≤zl(n)(n)+δni} − F (zl(n)(n) + δni), i = 1, . . . , n.

Using (5.18) we see that ζ̄1, . . . , ζ̄n is a MDS with respect to F0 ⊂ F1 ⊂ . . . ⊂ Fn under PF .
Moreover, all of the |ζ̄i| are less than or equal to one. Again by (5.18) it is

n∑
i=1

EF (ζ̄ 2
i |Fi−1) =

n∑
i=1

EF

([
1{ei≤zl(n)(n)+δni} − F (zl(n)(n) + δni)

] 2
∣∣∣Fi−1

)
=

n∑
i=1

EF

([
1{zl(n)(n)+δni<ei} −

(
1− F (zl(n)(n) + δni)

)] 2
∣∣∣Fi−1

)
=

n∑
i=1

EF

([
1{zl(n)(n)+δni<ei} − EF

(
1{zl(n)(n)+δni<ei}|Fi−1

)] 2
∣∣∣Fi−1

)
≤

n∑
i=1

EF

(
1{zl(n)(n)+δni<ei}

∣∣∣Fi−1

)
=

n∑
i=1

[
1− F (zl(n)(n) + δni)

]
≤ ouP (

√
n) +

√
nε,

and the last inequality follows from (5.47). Hence,

PF

( 1√
n

∣∣∣ n∑
i=1

(
1{ei≤zl(n)(n)+δni} − F (zl(n)(n) + δni)

)∣∣∣ ≥ 8ε
)

≤ PF
({ 1√

n

∣∣∣ n∑
i=1

ζ̄i

∣∣∣ ≥ 8ε
}
∩
{ 1√

n

n∑
i=1

EF (ζ̄ 2
i |Fi−1) ≤ 2ε

})
+ PF

( 1√
n

n∑
i=1

EF (ζ̄ 2
i |Fi−1) > 2ε

)
≤ PF

({∣∣∣ n∑
i=1

ζ̄i

∣∣∣ ≥ 8
√
nε
}
∩
{ n∑
i=1

EF (ζ̄ 2
i |Fi−1) ≤ 2

√
nε
})

+ PF
(
ouP (1) + ε > 2ε

)
≤ 2 exp

(
8
√
nε
[
1− log(5)

])
+ sup
F∈M

PF
(
ouP (1) > ε

)
,

where the last inequality follows again by (A.3) of Lemma A.4. Since both summands on the
right-hand side of the last inequality are independent of F and converge to zero with n→∞, it
follows that

lim sup
n→∞

sup
F∈M

PF

(
sup

zl(n)(n)<x<∞
|Un,F (x)− Un,F (Jn(x))| ≥ 16ε

)
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≤ lim sup
n→∞

sup
F∈M

PF

( 1√
n

∣∣∣ n∑
i=1

(
1{ei≤zl(n)(n)+δni} − F (zl(n)(n) + δni)

)∣∣∣ ≥ 8ε
)

= 0,

and this completes the proof of Step 3a.

It follows now from (5.32) that for every ε > 0 and δ ∈ (0, 1)

lim sup
n→∞

sup
F∈M

PF

(
sup
x,y∈R

d̄F (x,y)≤δ

|Un,F (x)− Un,F (y)| ≥ 64ε
)

≤ lim sup
n→∞

sup
F∈M

PF

(
max
x,y∈Dn

d̄F (x,y)≤3δ

|Un,F (x)− Un,F (y)| ≥ 32ε
)
. (5.48)

We will next prove the following statement:

If for every ε > 0 there is a δε ∈ (0, 1) such that

lim sup
n→∞

sup
F∈M

PF

(
max
x,y∈Dn

d̄F (x,y)≤3δε

|Un,F (x)− Un,F (y)| ≥ 32ε
)
≤ ε,

then (5.25) holds.

For the proof of this, let ε > 0. Note that the function h : (0,∞)→ [0, 1],

h(δ) := lim sup
n→∞

sup
F∈M

PF

(
sup
x,y∈R

d̄F (x,y)≤δ

|Un,F (x)− Un,F (y)| ≥ 64ε
)
,

is monotonically increasing. This ensures the existence of limδ↓0 h(δ) =: h(0) in [0, 1]. Because
of the monotonicity it is h(δ) ≥ h(0) for all δ ∈ (0,∞). Now let η ∈ (0, ε) be arbitrary. By the
assumptions there is a δη ∈ (0, 1) with

lim sup
n→∞

sup
F∈M

PF

(
max
x,y∈Dn

d̄F (x,y)≤3δη

|Un,F (x)− Un,F (y)| ≥ 32η
)
≤ η.

Using (5.48), this yields

η ≥ lim sup
n→∞

sup
F∈M

PF

(
sup
x,y∈R

d̄F (x,y)≤δη

|Un,F (x)− Un,F (y)| ≥ 64η
)

≥ lim sup
n→∞

sup
F∈M

PF

(
sup
x,y∈R

d̄F (x,y)≤δη

|Un,F (x)− Un,F (y)| ≥ 64ε
)

= h(δη) ≥ h(0).

Since η was chosen arbitrarily, this shows that h(0) = 0, and this is just (5.25).

To conclude the proof of Step 3, it therefore remains to show:

Step 3b: For every ε > 0 there is a δε ∈ (0, 1) such that

lim sup
n→∞

sup
F∈M

PF

(
max
x,y∈Dn

d̄F (x,y)≤3δε

|Un,F (x)− Un,F (y)| ≥ 32ε
)
≤ ε. (5.49)

Proof of Step 3b: Let ε > 0, δ ∈ (0, 1/3), F ∈M and n ∈ N with

n ≥
(4ε1/2

δ

)4
. (5.50)
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Set α := (ε/
√
n)1/2. Then 0 < α < 4(ε/

√
n)1/2 ≤ δ because of (5.50). Let

k = k(n) := min{j ∈ N : δ < 3jα}.

Note that k is well-defined and greater than or equal to two. Now set

δl := 3k−l · α, l = 0, . . . , k.

Then
0 < α = δk < δk−1 < . . . < δ1 = 3k−1α ≤ δ < δ0 = 3kα ≤ 3δ < 1, (5.51)

where we used that 3kα ≤ 3δ because 3k−1α ≤ δ by definition. Then for every l = 0, . . . , k the
set D(δl) is well-defined, where D(δl) is as in (5.26) the common refinement of the partitions
x1(δl), . . . , xj(δl)(δl) and y1(δl), . . . , yj(δl)(δl). Since δk = α = (ε/

√
n)1/2, we have

D(δk) = D(α) = D
(
(ε/
√
n)1/2

)
= Dn.

For every l = 1, 2, . . . , k let the mapping

Nl : D(δl) −→ D(δl−1)

be such that every z ∈ D(δl) is mapped onto an Nl(z) ∈ D(δl−1) so, that d̄F (z,Nl(z)) ≤ d̄F (z, x)
for all x ∈ D(δl−1). Note that such an element always exists because of the finiteness of D(δl−1),
but it need not be unique. For our purposes, however, it is irrelevant onto which of these elements
z is mapped. By construction,

d̄F (z,Nl(z)) ≤ d̄F (z, x) ∀ z ∈ D(δl), x ∈ D(δl−1),

and especially, since Jδl−1
(z) ∈ D(δl−1),

d̄F (z,Nl(z)) ≤ d̄F (z, Jδl−1
(z)) ∀ z ∈ D(δl) (5.52)

for all l = 1, . . . , k. Now for every z ∈ Dn = D(δk) set

sk(z) := z, sl−1(z) := Nl(sl(z)) for l = k, . . . , 1. (5.53)

Then by construction sl(z) ∈ D(δl) for all z ∈ Dn and all l = 0, . . . , k, and

d̄F (sl(z), sl−1(z)) = d̄F (sl(z), Nl(sl(z))) ≤ d̄F (sl(z), Jδl−1
(sl(z))) ≤ 2 · δl−1 (5.54)

for all l = k, . . . , 1 using (5.28). Moreover, for every x, y ∈ Dn with d̄F (x, y) ≤ 3δ it is

d̄F (s0(x), s0(y)) ≤ 21δ. (5.55)

To see that (5.55) is true, note that

d̄F (s0(x), s0(y)) ≤
k−1∑
l=0

d̄F (sl(x), sl+1(x)) + d̄F (sk(x), sk(y)) +

k−1∑
l=0

d̄F (sl(y), sl+1(y))

≤
k−1∑
l=0

2δl + d̄F (x, y) +

k−1∑
l=0

2δl ≤ 4

k−1∑
l=0

3k−lα+ 3δ

≤ 4 · 3kα
∞∑
l=0

3−l + 3δ ≤ 4 · 3δ
∞∑
l=0

3−l + 3δ = 21δ,

where we used (5.54) and again the fact that 3kα ≤ 3δ.
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Consequently, for every ε > 0, δ ∈ (0, 1/3), F ∈M and n ∈ N with (5.50) we have

max
x,y∈Dn

d̄F (x,y)≤3δ

|Un,F (x)− Un,F (y)|

≤ max
x,y∈Dn

d̄F (x,y)≤3δ

(
|Un,F (x)− Un,F (s0(x))|+ |Un,F (s0(x))− Un,F (s0(y))|+ |Un,F (s0(y))− Un,F (y)|

)
≤ 2 max

x∈Dn
|Un,F (x)− Un,F (s0(x))|+ max

x,y∈D(δ0)
d̄F (x,y)≤21δ

|Un,F (x)− Un,F (y)|,

and this yields

lim sup
n→∞

sup
F∈M

PF

(
max
x,y∈Dn

d̄F (x,y)≤3δ

|Un,F (x)− Un,F (y)| ≥ 32ε
)

≤ lim sup
n→∞

sup
F∈M

PF

(
max
x∈Dn

|Un,F (x)− Un,F (s0(x))| ≥ 8ε
)

(5.56)

+ lim sup
n→∞

sup
F∈M

PF

(
max

x,y∈D(δ0)
d̄F (x,y)≤21δ

|Un,F (x)− Un,F (y)| ≥ 16ε
)

(5.57)

for ε > 0, δ ∈ (0, 1/3).

We will first investigate the term in (5.57). Let F ∈M . For every x, y ∈ D(δ0) with d̄F (x, y) ≤ 21δ
set

ζi(x, y) := 1{ei≤x+δni} − F (x+ δni)−
(
1{ei≤y+δni} − F (y + δni)

)
.

Then |Un,F (x) − Un,F (y)| = 1√
n

∣∣∑n
i=1 ζi(x, y)

∣∣, and because of (5.18) the random variables
ζ1(x, y), . . . , ζn(x, y) form a MDS with respect to F0 ⊂ F1 ⊂ . . . ⊂ Fn under PF . Also,

|ζi(x, y)| =
∣∣1{(x∧y)+δni<ei≤(x∨y)+δni} −

(
F ((x ∨ y) + δni)− F ((x ∧ y) + δni)

)∣∣ ≤ 1 (5.58)

for all i = 1, . . . , n. By (5.20) it is
n∑
i=1

EF
(
ζi(x, y)2|Fi−1

)
≤

n∑
i=1

|F (x+ δni)− F (y + δni)|

≤ sup
x,y∈R

d̄F (x,y)≤21δ

n∑
i=1

|F (x+ δni)− F (y + δni)|.

Let x, y ∈ R with d̄F (x, y) ≤ 21δ. Then dF (x, y) = |F (x)− F (y)|1/2 ≤ 21δ as well, and
n∑
i=1

|F (x+ δni)− F (y + δni)|

≤
n∑
i=1

|F (x+ δni)− F (x)|+
n∑
i=1

|F (x)− F (y)|+
n∑
i=1

|F (y)− F (y + δni)|

≤ ‖f‖∞
n∑
i=1

|δni|+ n · dF (x, y)2 + ‖f‖∞
n∑
i=1

|δni|

≤
(

2 sup
F∈M

‖f‖∞
1

n

n∑
i=1

|δni|
)
· n+ n(21δ)2

= OuP (1/
√
n) + n · 441δ2

because of (5.14) and assumption (iii).
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It follows that

max
x,y∈D(δ0)
d̄F (x,y)≤21δ

n∑
i=1

EF
(
ζi(x, y)2|Fi−1

)
≤ sup

x,y∈R
d̄F (x,y)≤21δ

n∑
i=1

|F (x+ δni)− F (y + δni)|

≤ OuP (n−1/2) + n · 441δ2.

So for every ε > 0, δ ∈ (0, 1/3), F ∈M and n ∈ N with (5.50) it is

PF

(
max

x,y∈D(δ0)
d̄F (x,y)≤21δ

|Un,F (x)− Un,F (y)| ≥ 16ε
)

≤ PF
({

max
x,y∈D(δ0)
d̄F (x,y)≤21δ

1√
n

∣∣∣ n∑
i=1

ζi(x, y)
∣∣∣ ≥ 16ε

}
∩
{

max
x,y∈D(δ0)
d̄F (x,y)≤21δ

n∑
i=1

EF
(
ζi(x, y)2|Fi−1

)
≤ n · 442δ2

})

+ PF

(
max

x,y∈D(δ0)
d̄F (x,y)≤21δ

n∑
i=1

EF
(
ζi(x, y)2|Fi−1

)
> n · 442δ2

)

≤
∑

x,y∈D(δ0)
d̄F (x,y)≤21δ

PF

({∣∣∣ n∑
i=1

ζi(x, y)
∣∣∣ ≥ 16

√
nε
}
∩
{ n∑
i=1

EF
(
ζi(x, y)2|Fi−1

)
≤ n · 442δ2

})

+ PF
(
OuP (1/

√
n) + n · 441δ2 > n · 442δ2

)
≤

∑
x,y∈D(δ0)
d̄F (x,y)≤21δ

2 · exp
(
− (16

√
nε)2

2n · 442δ2
+

1

2

(16
√
nε)3

(n442δ2)2

)
+ PF

(
ouP (1) > δ2

)
=: I

by (A.4) of Lemma A.4. Now note that for every F ∈ M we have |D(δ0)|2 ≤ (2 · j(δ0))2 ≤
(2 · δ−2

0 )2 < 4 · δ−4 by definition of δ0, D(δ0) and j(δ0). Thus,

I ≤ |D(δ0)|2 · 2 · exp
(
− 64ε2

221δ2

)
· exp

( 512ε3

48841
√
nδ4

)
+ PF

(
ouP (1) > δ2

)
≤ 8 · 1

δ4
exp
(
− 64ε2

221δ2

)
· exp

( ε3√
nδ4

)
+ sup
F∈M

PF
(
ouP (1) > δ2

)
.

This yields

lim sup
n→∞

sup
F∈M

PF

(
max

x,y∈D(δ0)
d̄F (x,y)≤21δ

|Un,F (x)− Un,F (y)| ≥ 16ε
)
≤ 8 · 1

δ4
exp
(
− 64ε2

221δ2

)
(5.59)

for every ε > 0 and δ ∈ (0, 1/3).

Next, we will study the term in (5.56). For this, let ε > 0, δ ∈ (0, 1/3), F ∈ M and n ∈ N with
(5.50). For every x ∈ Dn it is

|Un,F (x)− Un,F (s0(x))| = |Un,F (sk(x))− Un,F (s0(x))| ≤
k∑
l=1

∣∣Un,F (sl(x))− Un,F (sl−1(x))
∣∣

=
k∑
l=1

∣∣Un,F (sl(x))− Un,F
(
Nl(sl(x))

)∣∣ ≤ k∑
l=1

max
x∈D(δl)

∣∣Un,F (x)− Un,F
(
Nl(x)

)∣∣,
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so that

max
x∈Dn

|Un,F (x)− Un,F (s0(x))| ≤
k∑
l=1

max
x∈D(δl)

∣∣Un,F (x)− Un,F
(
Nl(x)

)∣∣.
For every l = 1, . . . , k and x ∈ D(δl) set

ζ li(x) := 1{ei≤x+δni} − F (x+ δni)−
(
1{ei≤Nl(x)+δni} − F (Nl(x) + δni)

)
, i = 1, . . . , n.

Then
∣∣Un,F (x) − Un,F

(
Nl(x)

)∣∣ = 1√
n

∣∣∑n
i=1 ζ

l
i(x)

∣∣. As before, it follows from (5.18) that under
PF the random variables ζ l1(x), . . . , ζ ln(x) form a MDS with respect to F0 ⊂ F1 ⊂ . . . ⊂ Fn, and
we see as in (5.58) that |ζ li(x)| ≤ 1 for all i = 1, . . . , n. Moreover, by (5.20) it is

max
x∈D(δl)

n∑
i=1

EF
(
ζ li(x)2

∣∣Fi−1

)
≤ max

x∈D(δl)

n∑
i=1

|F (x+ δni)− F (Nl(x) + δni)|.

Since for each l = 1, . . . , k and x ∈ D(δl) we have

|F (x)− F (Nl(x))| = dF (x,Nl(x))2 ≤ d̄F (x,Nl(x))2 ≤ d̄F (x, Jδl−1
(x))2 ≤ (2 · δl−1)2

by (5.52) and (5.28), it follows that
n∑
i=1

|F (x+ δni)− F (Nl(x) + δni)|

≤
n∑
i=1

∣∣F (x+ δni)− F (x)−
(
F (Nl(x) + δni)− F (Nl(x))

)∣∣+ n
∣∣F (x)− F (Nl(x))

∣∣
≤

n∑
i=1

∣∣f(ξ1i)δni − f(ξ2i)δni
∣∣+ 4nδ2

l−1

≤
n∑
i=1

(
|f(ξ1i)− f(x)|+ |f(x)− f(Nl(x))|+ |f(Nl(x))− f(ξ2i)|

)∣∣δni∣∣+ 4nδ2
l−1

with ξ1i lying between x + δni and x, and ξ2i lying between Nl(x) + δni and Nl(x). Because of
|ξ1i − x| ≤ |δni| and |ξ2i −Nl(x)| ≤ |δni| it is

|f(ξ1i)− f(x)| ≤ ∆n,F and |f(Nl(x))− f(ξ2i)| ≤ ∆n,F .

Furthermore, we have

d̄F (x,Nl(x)) ≤ d̄F (x, Jδl−1
(x)) ≤ 2 · δl−1 ≤ 2 · 3 · δ = 6δ,

where in the last inequality we used (5.51). This implies

|f(x)− f(Nl(x))| ≤ sup
x,y∈R

d̄F (x,y)≤6δ

|f(x)− f(y)| = ωF (6δ).

Combining all this, we get for every l = 1, . . . , k

max
x∈D(δl)

n∑
i=1

EF
(
ζ li(x)2

∣∣Fi−1

)
≤ 2∆n,F

1√
n

n∑
i=1

|δni|
√
n+ ωF (6δ)

1√
n

n∑
i=1

|δni|
√
n+ 4nδ2

l−1.

By assumption (iii) for ε > 0 there is a cε ∈ (0,∞) such that

lim sup
n→∞

sup
F∈M

PF

( 1√
n

n∑
i=1

|δni| > cε

)
≤ ε

2
. (5.60)
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Additionally, by (5.16) there is a δ′ε > 0 with

sup
F∈M

ωF (6δ) ≤ ε

cε
∀ δ ∈ (0, δ′ε).

Now if 2∆n,F
1√
n

∑n
i=1 |δni| ≤ ε and

1√
n

∑n
i=1 |δni| ≤ cε, then for every l = 1, . . . , k

max
x∈D(δl)

n∑
i=1

EF
(
ζ li(x)2

∣∣Fi−1

)
≤ 2ε
√
n+ 4nδ2

l−1 = 2α2n+ 4nδ2
l−1 ≤ 2δ2

l−1n+ 4nδ2
l−1 = 6nδ2

l−1

for δ ∈ (0, δ′ε ∧ 1/3) by definition of α and δl. Thus, for all F ∈M it is

PF

(
max
x∈Dn

|Un,F (x)− Un,F (s0(x))| ≥ 8ε
)

≤ PF
({ k∑

l=1

max
x∈D(δl)

∣∣Un,F (x)− Un,F
(
Nl(x)

)∣∣ ≥ 8ε
}
∩
{

2∆n,F
1√
n

n∑
i=1

|δni| ≤ ε
}

∩
{ 1√

n

n∑
i=1

|δni| ≤ cε
})

+ PF

(
2∆n,F

1√
n

n∑
i=1

|δni| > ε
)

+ PF

( 1√
n

n∑
i=1

|δni| > cε

)
≤ PF

({ k∑
l=1

max
x∈D(δl)

∣∣Un,F (x)− Un,F
(
Nl(x)

)∣∣ ≥ 8ε
}
∩

k⋂
l=1

{
max
x∈D(δl)

n∑
i=1

EF
(
ζ li(x)2

∣∣Fi−1

)
≤ 6nδ2

l−1

})
+ PF

(
2∆n,F

1√
n

n∑
i=1

|δni| > ε
)

+ PF

( 1√
n

n∑
i=1

|δni| > cε

)
.

Now ∆n,F
1√
n

∑n
i=1 |δni| = ouP (1) because of (5.37) and assumption (iii). Using this and (5.60), it

follows that for every δ ∈ (0, δ′ε ∧ 1/3)

lim sup
n→∞

sup
F∈M

PF

(
max
x∈Dn

|Un,F (x)− Un,F (s0(x))| ≥ 8ε
)

≤ lim sup
n→∞

sup
F∈M

PF

({ k∑
l=1

max
x∈D(δl)

∣∣Un,F (x)− Un,F
(
Nl(x)

)∣∣ ≥ 8ε
}
∩

k⋂
l=1

{
max
x∈D(δl)

n∑
i=1

EF
(
ζ li(x)2

∣∣Fi−1

)
≤ 6nδ2

l−1

})
+
ε

2
. (5.61)

Now set
vl := 6 · δl−1 · | log(δl−1)|1/2 ∀ l = 1, . . . , k.

Then
k∑
l=1

vl = 6 ·
k∑
l=1

δ
1/2
l−1

(
δl−1| log(δl−1)|

)1/2 ≤ 6 ·
k∑
l=1

δ
1/2
l−1 = 6 ·

k−1∑
l=0

(3k−lα)1/2

= 6 · (3kα)1/2
k−1∑
l=0

(3−l)1/2 ≤ 6 · (3δ)1/2
∞∑
l=0

(
√

3)−l =
18
√
δ√

3− 1
.

Here we used that x| log(x)| ≤ 1 for x ∈ (0, 1], the definition of δl and the fact that 3kα ≤ 3δ.
Thus, there is a δ′′ε > 0 such that

k∑
l=1

vl ≤ 8ε ∀ δ ∈ (0, δ′′ε ∧ 1/3).
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This implies that for every δ ∈
(
0, δ′ε ∧ δ′′ε ∧ 1/3

)
, F ∈M and all n ∈ N with (5.50) we have

PF

({ k∑
l=1

max
x∈D(δl)

∣∣Un,F (x)− Un,F
(
Nl(x)

)∣∣ ≥ 8ε
}
∩

k⋂
l=1

{
max
x∈D(δl)

n∑
i=1

EF
(
ζ li(x)2

∣∣Fi−1

)
≤ 6nδ2

l−1

})
≤ PF

({ k∑
l=1

max
x∈D(δl)

∣∣Un,F (x)− Un,F
(
Nl(x)

)∣∣ ≥ k∑
l=1

vl

}
∩

k⋂
l=1

{
max
x∈D(δl)

n∑
i=1

EF
(
ζ li(x)2

∣∣Fi−1

)
≤ 6nδ2

l−1

})
≤

k∑
l=1

PF

({
max
x∈D(δl)

∣∣Un,F (x)− Un,F
(
Nl(x)

)∣∣ ≥ vl} ∩ { max
x∈D(δl)

n∑
i=1

EF
(
ζ li(x)2

∣∣Fi−1

)
≤ 6nδ2

l−1

})
≤

k∑
l=1

∑
x∈D(δl)

PF

({∣∣Un,F (x)− Un,F
(
Nl(x)

)∣∣ ≥ vl} ∩ { n∑
i=1

EF
(
ζ li(x)2

∣∣Fi−1

)
≤ 6nδ2

l−1

})
.

Now recall that
∣∣Un,F (x) − Un,F

(
Nl(x)

)∣∣ = 1√
n

∣∣∑n
i=1 ζ

l
i(x)

∣∣. By using (A.4) of Lemma A.4 we
get for every l = 1, . . . , k and x ∈ D(δl)

PF

({∣∣∣ n∑
i=1

ζ li(x)
∣∣∣ ≥ √nvl} ∩ { n∑

i=1

EF
(
ζ li(x)2

∣∣Fi−1

)
≤ 6nδ2

l−1

})
≤ 2 exp

(
− (
√
nvl)

2

2 · 6nδ2
l−1

+
1

2

(
√
nvl)

3

(6nδ2
l−1)2

)
= 2 · exp

(
−

v2
l

12δ2
l−1

)
· exp

( v3
l

72
√
nδ4

l−1

)
.

Observe that because of (5.51) it is for every l = 1, . . . , k

v3
l√

nδ4
l−1

=
63

√
n
· | log(δl−1)|3/2

δl−1
≤ 63

√
n
· | log(δk)|3/2

δk
=

63

√
n
· | log((ε/

√
n)1/2)|3/2

(ε/
√
n)1/2

=
63

√
ε
· 1

n1/4
·
(1

2

)3/2
| log(ε)− log(

√
n)|3/2 =: rn(ε) −→

n→∞
0.

Also, for every F ∈ M we have |D(δl)| ≤ 2j(δl) ≤ 2/δ2
l by definition of D(δl) and j(δl).

Combining all this shows that

PF

({ k∑
l=1

max
x∈D(δl)

∣∣Un,F (x)− Un,F
(
Nl(x)

)∣∣ ≥ 8ε
}
∩

k⋂
l=1

{
max
x∈D(δl)

n∑
i=1

EF
(
ζ li(x)2

∣∣Fi−1

)
≤ 6nδ2

l−1

})
≤ 4 · exp

(rn(ε)

72

) k∑
l=1

1

δ2
l

· exp
(
−

v2
l

12δ2
l−1

)
= 4 · exp

(rn(ε)

72

) k∑
l=1

1

δ2
l

· exp
(
−(6 · δl−1 · | log(δl−1)|1/2)2

12δ2
l−1

)
= 4 · exp

(rn(ε)

72

) k∑
l=1

1

δ2
l

· δ3
l−1

= 4 · exp
(rn(ε)

72

) k∑
l=1

(δl−1

δl

)2
· δl−1 = 4 · exp

(rn(ε)

72

) k∑
l=1

32 · δl−1

= 36 · exp
(rn(ε)

72

) k−1∑
l=0

3k−lα ≤ 36 · exp
(rn(ε)

72

)
3kα

∞∑
l=0

3−l

≤ 36 · exp
(rn(ε)

72

)
· 3δ · 3

2
= 162 · exp

(rn(ε)

72

)
· δ.
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Thus it is for every δ ∈
(
0, δ′ε ∧ δ′′ε ∧ 1/3

)
lim sup
n→∞

sup
F∈M

PF

({ k∑
l=1

max
x∈D(δl)

∣∣Un,F (x)− Un,F
(
Nl(x)

)∣∣ ≥ 8ε
}
∩

k⋂
l=1

{
max
x∈D(δl)

n∑
i=1

EF
(
ζ li(x)2

∣∣Fi−1

)
≤ 6nδ2

l−1

})
≤ 162δ,

and so

lim sup
n→∞

sup
F∈M

PF

(
max
x∈Dn

|Un,F (x)− Un,F (s0(x))| ≥ 8ε
)
≤ 162δ +

ε

2
(5.62)

because of (5.61).

Using the bounds in (5.62) and (5.59), it follows now from (5.56) and (5.57) that for every
δ ∈

(
0, δ′ε ∧ δ′′ε ∧ 1/3

)
lim sup
n→∞

sup
F∈M

PF

(
max
x,y∈Dn

d̄F (x,y)≤3δ

|Un,F (x)− Un,F (y)| ≥ 32ε
)
≤ 162δ +

ε

2
+ 8 · 1

δ4
exp
(
− 64ε2

221δ2

)
.

But since

162δ + 8 · 1

δ4
exp
(
− 64ε2

221δ2

)
−→
δ↓0

0,

there is obviously a δε ∈ (0, 1) such that

lim sup
n→∞

sup
F∈M

PF

(
max
x,y∈Dn

d̄F (x,y)≤3δε

|Un,F (x)− Un,F (y)| ≥ 32ε
)
≤ ε,

which is just the statement of Step 3b in (5.49). This concludes the proof of the theorem.

We are now able to formulate the proof of Theorem 5.9.

Proof of Theorem 5.9. Let F ∈M , n ∈ N and x ∈ R. Then

Fn,res(x)− Fn(x) =
1

n

n∑
i=1

[
1{ei≤x+ei−êni} − F (x+ ei − êni)−

(
1{ei≤x} − F (x)

)]
+

1

n

n∑
i=1

[
F (x+ ei − êni)− F (x)

]
,

and by the mean value theorem there is a ξi between x+ ei − êni and x such that

1

n

n∑
i=1

[
F (x+ ei − êni)− F (x)

]
=

1

n

n∑
i=1

f(ξi)(ei − êni)

=
1

n

n∑
i=1

(
f(ξi)− f(x)

)
(ei − êni) + f(x)

1

n

n∑
i=1

(ei − êni),

so that

√
n sup
x∈R
|Fn,res(x)− Fn(x)| ≤ sup

x∈R

1√
n

∣∣∣ n∑
i=1

[
1{ei≤x+ei−êni} − F (x+ ei − êni)−

(
1{ei≤x} − F (x)

)]∣∣∣
86



5 Preparatory results for stable autoregressive models

+ sup
x,y∈R

|x−y|≤ max
1≤i≤n

|ei−êni|

|f(x)− f(y)| · 1√
n

n∑
i=1

|ei − êni|

+ ‖f‖∞ ·
1√
n

∣∣∣ n∑
i=1

(ei − êni)
∣∣∣. (5.63)

Since
ei − êni = (ρ̂n − ρ)TXi−1 ∀ i = 1, . . . , n, n ∈ N,

using the Cauchy-Schwarz inequality we get

1√
n

∣∣∣ n∑
i=1

(ei − êni)
∣∣∣ =

1√
n

∣∣∣(ρ̂n − ρ)T
n∑
i=1

Xi−1

∣∣∣ ≤ ∥∥√n(ρ̂n − ρ)
∥∥ · ∥∥∥ 1

n

n∑
i=1

Xi−1

∥∥∥ = ouP (1)

by assumptions (i) and (ii). Hence, it follows with (5.14) that

‖f‖∞ ·
1√
n

∣∣∣ n∑
i=1

(ei − êni)
∣∣∣ ≤ sup

F∈M
‖f‖∞ ·

1√
n

∣∣∣ n∑
i=1

(ei − êni)
∣∣∣ = ouP (1).

Also,
max

1≤i≤n
|ei − êni| ≤ ‖ρ̂n − ρ‖ max

1≤i≤n
‖Xi−1‖ = OuP (1/

√
n)ouP (

√
n) = ouP (1) (5.64)

with (i) and (iii). This yields

sup
x,y∈R

|x−y|≤ max
1≤i≤n

|ei−êni|

|f(x)− f(y)| = ouP (1) in M as n→∞. (5.65)

To see that (5.65) is true, note that because of the uniform equicontinuity (5.12) of the family
{f : F ∈M} for every ε > 0 there is a δ > 0 such that for every x, y ∈ R with |x− y| ≤ δ

sup
F∈M

|f(x)− f(y)| ≤ ε.

So if max1≤i≤n |ei − êni| ≤ δ, then

sup
x,y∈R

|x−y|≤ max
1≤i≤n

|ei−êni|

|f(x)− f(y)| ≤ ε

for all F ∈M . Thus,

sup
F∈M

PF

(
sup
x,y∈R

|x−y|≤ max
1≤i≤n

|ei−êni|

|f(x)− f(y)| > ε
)
≤ sup

F∈M
PF

(
max

1≤i≤n
|ei − êni| > δ

)
−→
n→∞

0

because of (5.64). This shows (5.65).
Moreover, we have

1√
n

n∑
i=1

|ei − êni| ≤
√
n‖ρ̂n − ρ‖

1

n

n∑
i=1

‖Xi−1‖ = OuP (1)

because of assumptions (i) and (iv). This shows that the second summand on the right-hand side
of inequality (5.63) is a ouP (1) in M as n→∞ as well. Therefore it remains to show that

sup
x∈R

1√
n

∣∣∣ n∑
i=1

[
1{ei≤x+ei−êni} − F (x+ ei − êni)−

(
1{ei≤x} − F (x)

)]∣∣∣ = ouP (1) in M as n→∞.

(5.66)
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For the proof of (5.66), let F ∈M . For every x ∈ R, n ∈ N and t ∈ Rp set

Wn(x, t) :=
1√
n

n∑
i=1

[
1{ei≤x+(t−ρ)TXi−1} − F

(
x+ (t− ρ)TXi−1

)]
.

Then we can write

1√
n

n∑
i=1

[
1{ei≤x+ei−êni} − F (x+ ei − êni)−

(
1{ei≤x} − F (x)

)]
= Wn(x, ρ̂n)−Wn(x, ρ)

= Wn

(
x, ρ+

1√
n

[√
n(ρ̂n − ρ)

])
−Wn(x, ρ).

Now define
Vn(x, s) := Wn

(
x, ρ+

1√
n
s
)
−Wn(x, ρ), x ∈ R, s ∈ Rp.

Then (5.66) will follow from

sup
x∈R

s∈Rp,‖s‖≤C

|Vn(x, s)| = ouP (1) in M as n→∞ ∀ C ∈ (0,∞). (5.67)

For showing that (5.67) implies (5.66), let F ∈M and C ∈ (0,∞). Then if
√
n‖ρ̂n − ρ‖ ≤ C, we

have for all n ∈ N and x ∈ R∣∣∣Wn

(
x, ρ+

1√
n

[√
n(ρ̂n − ρ)

])
−Wn(x, ρ)

∣∣∣ =
∣∣Vn(x,√n(ρ̂n − ρ)

)∣∣ ≤ sup
x∈R

s∈Rp,‖s‖≤C

|Vn(x, s)|.

So for every ε > 0, n ∈ N and C ∈ (0,∞)

sup
F∈M

PF

(
sup
x∈R

∣∣∣Wn

(
x, ρ+

1√
n

[√
n(ρ̂n − ρ)

])
−Wn(x, ρ)

∣∣∣ ≥ ε)
≤ sup

F∈M
PF

(
sup
x∈R

s∈Rp,‖s‖≤C

|Vn(x, s)| ≥ ε
)

+ sup
F∈M

PF
(√
n‖ρ̂n − ρ‖ > C

)
,

and this yields

lim sup
n→∞

sup
F∈M

PF

(
sup
x∈R

∣∣∣Wn

(
x, ρ+

1√
n

[√
n(ρ̂n − ρ)

])
−Wn(x, ρ)

∣∣∣ ≥ ε)
≤ lim sup

n→∞
sup
F∈M

PF
(√
n‖ρ̂n − ρ‖ > C

)
−→
C→∞

0

by (5.67) and assumption (i).

Next, we will show that the two conditions

sup
x∈R
|Vn(x, s)| = ouP (1) in M as n→∞ ∀ s ∈ Rp (5.68)

and

lim
δ↓0

lim sup
n→∞

sup
F∈M

PF

(
sup
x∈R
s,t∈Rp
‖s‖,‖t‖≤C
‖s−t‖≤δ

|Vn(x, s)− Vn(x, t)| ≥ ε
)

= 0 ∀ ε > 0, C ∈ (0,∞) (5.69)

together imply (5.67), and thus (5.66).
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To simplify notation, we denote in the following by BC(0) the closed ball {s ∈ Rp : ‖s‖ ≤ C}.
For the proof of the above statement, assume that (5.68) and (5.69) hold. Let C ∈ (0,∞) and
δ > 0. Since BC(0) is compact, there are s1, . . . , sk ∈ BC(0), k ∈ N, such that for every s ∈ BC(0)
there is a j ∈ {1, . . . , k} with ‖s− sj‖ < δ.

Now let x ∈ R, s ∈ Rp with ‖s‖ ≤ C and j ∈ {1, . . . , k} such that ‖s− sj‖ < δ. Then for every
F ∈M and n ∈ N

|Vn(x, s)| ≤ |Vn(x, s)− Vn(x, sj)|+ |Vn(x, sj)|

≤ sup
x∈R

s,t∈BC(0)
‖s−t‖≤δ

|Vn(x, s)− Vn(x, t)|+ max
1≤j≤k

sup
x∈R
|Vn(x, sj)|,

whence it follows that for every ε, δ > 0, n ∈ N and F ∈M

PF
(

sup
x∈R

s∈BC(0)

|Vn(x, s)| ≥ ε
)

≤ PF
(

sup
x∈R

s,t∈BC(0)
‖s−t‖≤δ

|Vn(x, s)− Vn(x, t)| ≥ ε

2

)
+ PF

(
max

1≤j≤k
sup
x∈R
|Vn(x, sj)| ≥

ε

2

)

≤ PF
(

sup
x∈R

s,t∈BC(0)
‖s−t‖≤δ

|Vn(x, s)− Vn(x, t)| ≥ ε

2

)
+

k∑
j=1

PF

(
sup
x∈R
|Vn(x, sj)| ≥

ε

2

)
.

Using (5.68), this yields

lim sup
n→∞

sup
F∈M

PF
(

sup
x∈R

s∈BC(0)

|Vn(x, s)| ≥ ε
)
≤ lim sup

n→∞
sup
F∈M

PF

(
sup
x∈R

s,t∈BC(0)
‖s−t‖≤δ

|Vn(x, s)− Vn(x, t)| ≥ ε

2

)
,

and the term on the right-hand side of this inequality converges to zero as δ → 0 by (5.69). This
concludes the proof of (5.68), (5.69) ⇒ (5.67).

It remains to show that (5.68) and (5.69) hold.

First, we investigate condition (5.68). For every x ∈ R, s ∈ Rp, n ∈ N and F ∈M it is

Vn(x, s) = Wn

(
x, ρ+

1√
n
s
)
−Wn(x, ρ)

=
1√
n

n∑
i=1

[
1{ei≤x+sTXi−1/

√
n} − F

(
x+ sTXi−1/

√
n
)]
− 1√

n

n∑
i=1

[
1{ei≤x} − F (x)

]
=

1√
n

n∑
i=1

[
1{ei≤x+δni} − F

(
x+ δni

)
−
(
1{ei≤x} − F (x)

)]
with

δni :=
sTXi−1√

n
, 1 ≤ i ≤ n.

Set F0 := σ(X0), Fn := σ(X0, e1, . . . , en) for n ≥ 1. Then the random variables δn1, . . . , δnn are
predictable with respect to F0 ⊂ F1 ⊂ . . . ⊂ Fn. It also is

1√
n

n∑
i=1

|δni| =
1

n

n∑
i=1

|sTXi−1| ≤ ‖s‖
1

n

n∑
i=1

‖Xi−1‖ = OuP (1)
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by assumption (iv). Moreover,

max
1≤i≤n

|δni| ≤
1√
n
‖s‖ max

1≤i≤n
‖Xi−1‖ = ouP (1)

by (iii). Additionally we have

EF

( 1

n

n∑
i=1

|δni|
)

=
1

n3/2
EF

( n∑
i=1

|sTXi−1|
)
≤ ‖s‖ 1

n3/2
EF

( n∑
i=1

‖Xi−1‖
)
,

so that

sup
F∈M

EF

( 1

n

n∑
i=1

|δni|
)
≤ ‖s‖ 1

n3/2
sup
F∈M

EF

( n∑
i=1

‖Xi−1‖
)

= o(1) as n→∞

because of (v). Thus, all assumptions of Theorem 5.10 are satisfied, and it follows for every
s ∈ Rp that

sup
x∈R
|Vn(x, s)| = ouP (1) in M as n→∞,

which is just (5.68).

Next, we show (5.69). Let F ∈ M , n ∈ N, x ∈ R, C ∈ (0,∞), δ > 0 and s, t ∈ Rp with
‖s‖, ‖t‖ ≤ C and ‖s− t‖ ≤ δ. It is

Vn(x, s)− Vn(x, t) = Wn

(
x, ρ+

1√
n
s
)
−Wn

(
x, ρ+

1√
n
t
)

=
1√
n

n∑
i=1

[
1{ei≤x+sTXi−1/

√
n} − F

(
x+ sTXi−1/

√
n
)]

− 1√
n

n∑
i=1

[
1{ei≤x+tTXi−1/

√
n} − F

(
x+ tTXi−1/

√
n
)]
.

As shown before, there is a k ∈ N and s1, . . . , sk ∈ BC(0) such that for every s ∈ Rp with
‖s‖ ≤ C there is a j ∈ {1, . . . , k} with ‖s− sj‖ < δ.
Now let s be as above and j ∈ {1, . . . , k} such that ‖s− sj‖ < δ. Then it is for every x ∈ R and
i = 1, . . . , n

x+
sTXi−1√

n
= x+

sTj Xi−1√
n

+
(s− sj)TXi−1√

n
≤ x+

sTj Xi−1√
n

+
δ‖Xi−1‖√

n

and

x+
sTXi−1√

n
≥ x+

sTj Xi−1√
n
− δ‖Xi−1‖√

n
.

For t as above we have ‖s− t‖ ≤ δ, and so ‖t− sj‖ ≤ ‖t− s‖+ ‖s− sj‖ ≤ 2δ. This implies for
every x ∈ R and i = 1, . . . , n that

x+
tTXi−1√

n
≤ x+

sTj Xi−1√
n

+
2δ‖Xi−1‖√

n

and

x+
tTXi−1√

n
≥ x+

sTj Xi−1√
n
− 2δ‖Xi−1‖√

n
.

Set

δ+
ni(j) :=

sTj Xi−1√
n

+
2δ‖Xi−1‖√

n
and δ−ni(j) :=

sTj Xi−1√
n
− 2δ‖Xi−1‖√

n
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for i = 1, . . . , n and j = 1, . . . , k. Then obviously for every x ∈ R and i = 1, . . . , n it is

x+ δ−ni(j) ≤ x+
sTXi−1√

n
≤ x+ δ+

ni(j)

and

x+ δ−ni(j) ≤ x+
tTXi−1√

n
≤ x+ δ+

ni(j).

Therefore

Vn(x, s)− Vn(x, t)

≤ 1√
n

n∑
i=1

[
1{ei≤x+δ+ni(j)}

− F
(
x+ δ−ni(j)

)]
− 1√

n

n∑
i=1

[
1{ei≤x+δ−ni(j)}

− F
(
x+ δ+

ni(j)
)]

=
1√
n

n∑
i=1

[
1{ei≤x+δ+ni(j)}

− F
(
x+ δ+

ni(j)
)]
− 1√

n

n∑
i=1

[
1{ei≤x+δ−ni(j)}

− F
(
x+ δ−ni(j)

)]
+ 2

1√
n

n∑
i=1

[
F
(
x+ δ+

ni(j)
)
− F

(
x+ δ−ni(j)

)]
≤ max

1≤j≤k
R+
n (j) + max

1≤j≤k
R−n (j) + 2 max

1≤j≤k
sup
x∈R

1√
n

n∑
i=1

[
F
(
x+ δ+

ni(j)
)
− F

(
x+ δ−ni(j)

)]
,

where

R+
n (j) := sup

x∈R

1√
n

∣∣∣ n∑
i=1

[
1{ei≤x+δ+ni(j)}

− F
(
x+ δ+

ni(j)
)
−
(
1{ei≤x} − F (x)

)]∣∣∣
and

R−n (j) := sup
x∈R

1√
n

∣∣∣ n∑
i=1

[
1{ei≤x+δ−ni(j)}

− F
(
x+ δ−ni(j)

)
−
(
1{ei≤x} − F (x)

)]∣∣∣.
Analogously it follows that

Vn(x, t)− Vn(x, s)

≤ max
1≤j≤k

R+
n (j) + max

1≤j≤k
R−n (j) + 2 max

1≤j≤k
sup
x∈R

1√
n

n∑
i=1

[
F
(
x+ δ+

ni(j)
)
− F

(
x+ δ−ni(j)

)]
.

This yields

sup
x∈R

s,t∈BC(0)
‖s−t‖≤δ

|Vn(x, s)− Vn(x, t)|

≤ max
1≤j≤k

R+
n (j) + max

1≤j≤k
R−n (j) + 2 max

1≤j≤k
sup
x∈R

1√
n

n∑
i=1

[
F
(
x+ δ+

ni(j)
)
− F

(
x+ δ−ni(j)

)]
. (5.70)

As before, let F0 = σ(X0) and Fn = σ(X0, e1, . . . , en) for n ≥ 1. Then for every j = 1, . . . , k the
random variables δ±n1(j), . . . , δ±nn(j) are predictable with respect to F0 ⊂ F1 ⊂ . . . ⊂ Fn. Also,
we have for every j = 1, . . . , k

max
1≤i≤n

|δ±ni(j)| = max
1≤i≤n

∣∣∣sTj Xi−1√
n
± 2δ‖Xi−1‖√

n

∣∣∣ ≤ 1√
n

(
‖sj‖+ 2δ

)
max

1≤i≤n
‖Xi−1‖ = ouP (1)
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by assumption (iii) of this theorem. Moreover,

1√
n

n∑
i=1

|δ±ni(j)| ≤
(
‖sj‖+ 2δ

) 1

n

n∑
i=1

‖Xi−1‖ = OuP (1)

using (iv). Last, we see that

sup
F∈M

EF

( 1

n

n∑
i=1

|δ±ni(j)|
)
≤
(
‖sj‖+ 2δ

) 1

n3/2
sup
F∈M

EF

( n∑
i=1

‖Xi−1‖
)

= o(1) as n→∞

because of (v). Combining all this, we see that all assumptions of Theorem 5.10 are met, and it
follows from this that

R±n (j) = ouP (1) in M as n→∞
for all j = 1, . . . , k. But since k neither depends on F nor n, this implies

max
1≤j≤k

R±n (j) = ouP (1) in M as n→∞. (5.71)

Furthermore, for every j ∈ {1, . . . , k}, x ∈ R, n ∈ N, i ∈ {1, . . . , n} and F ∈M it is

0 ≤ F
(
x+ δ+

ni(j)
)
− F

(
x+ δ−ni(j)

)
≤ ‖f‖∞

(
δ+
ni(j)− δ

−
ni(j)

)
≤
(

sup
F∈M

‖f‖∞
)4δ‖Xi−1‖√

n
.

Hence,

2 max
1≤j≤k

sup
x∈R

1√
n

n∑
i=1

[
F
(
x+ δ+

ni(j)
)
− F

(
x+ δ−ni(j)

)]
≤ 8δ

(
sup
F∈M

‖f‖∞
) 1

n

n∑
i=1

‖Xi−1‖.

Now it follows from (5.70) that for every n ∈ N and δ > 0

sup
x∈R

s,t∈BC(0)
‖s−t‖≤δ

|Vn(x, s)− Vn(x, t)| ≤ Rn(δ) + 8δ
(

sup
F∈M

‖f‖∞
) 1

n

n∑
i=1

‖Xi−1‖

with Rn(δ) = ouP (1) in M as n→∞ by (5.71). So for every ε > 0, δ > 0, K ∈ (0,∞) 3 C, n ∈ N
and F ∈M it is

PF

(
sup
x∈R

s,t∈BC(0)
‖s−t‖≤δ

|Vn(x, s)− Vn(x, t)| ≥ ε
)

≤ PF
(
Rn(δ) ≥ ε

2

)
+ PF

({
8δ
(

sup
F∈M

‖f‖∞
) 1

n

n∑
i=1

‖Xi−1‖ ≥
ε

2

}
∩
{ 1

n

n∑
i=1

‖Xi−1‖ ≤ K
})

+ PF

( 1

n

n∑
i=1

‖Xi−1‖ > K
)

≤ PF
(
Rn(δ) ≥ ε

2

)
+ PF

(
δ ≥ ε

16K
( sup
F∈M

‖f‖∞)−1
)

+ PF

( 1

n

n∑
i=1

‖Xi−1‖ > K
)
,

where we used that supF∈M ‖f‖∞ <∞ by (5.14). This implies that for every ε > 0 and K > 0

lim
δ↓0

lim sup
n→∞

sup
F∈M

PF

(
sup
x∈R

s,t∈BC(0)
‖s−t‖≤δ

|Vn(x, s)− Vn(x, t)| ≥ ε
)

≤ lim sup
n→∞

sup
F∈M

PF

( 1

n

n∑
i=1

‖Xi−1‖ > K
)
,

and the last term converges to zero as K →∞ because of (iv). Thus, we have shown that (5.69)
holds, and this concludes the proof of Theorem 5.9.
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5.2 The centered empirical distribution function of the residuals

Let us consider the probability space (Ω,A, PF ) for some fixed F ∈ M for the moment. Let
(ρ̂n)n∈N be a sequence of estimators for the autoregressive parameter ρ = (ρ1, . . . , ρp)

T in (5.2)
such that

√
n(ρ̂n − ρ) = OPF (1), and as before let êni = Xi − ρ̂TnXi−1, 1 ≤ i ≤ n, n ∈ N, be

the residuals with respect to (ρ̂n)n∈N. Analogously to the case of independent and identically
distributed data described in subsection 3.1, it follows from Lemma A.1 that for every n ≥ 2
there is a unique t̂n = t(ên1, . . . , ênn) ∈ R such that( 1

n
− 1
) 1

max
1≤i≤n

êni
< t̂n <

( 1

n
− 1
) 1

min
1≤i≤n

êni
(5.72)

and
n∑
i=1

êni

1 + t̂nêni
= 0 (5.73)

on the event

Ωn,res := { min
1≤i≤n

êni < 0 < max
1≤i≤n

êni} ∈ A,

and by Lemma A.2 the mapping

t̂n : Ωn,res 3 ω 7→ t
(
ên1(ω), . . . , ênn(ω)

)
∈ R

is Ωn,res ∩ A,B∗-measurable.

Just like the set Ωn in subsection 3.1, the complement Ωn,res of Ωn,res is asymptotically negligible,
as the following lemma shows. Its proof is a reformulation of the proof of Satz 3.2 in Genz [10]
for the autoregressive processes of order p under investigation here, and is given in detail for the
reader’s convenience.

Lemma 5.11 (cf. Satz 3.2 in [10])
If F ∈M and

√
n(ρ̂n − ρ) = OPF (1), then

PF (Ωn,res) = PF

(
0 /∈ ( min

1≤i≤n
êni, max

1≤i≤n
êni)

)
−→
n→∞

0. (5.74)

Proof. Recall that F is continuous with
∫
R xF (dx) = 0 and

∫
R x

2F (dx) < ∞. Hence, we have
F (0) ∈ (0, 1), and by the continuity of F there are x1 ∈ (−∞, 0) and x2 ∈ (0,∞) such that
F (x1) > 0 and F (x2) < 1. Now

PF (Ωn,res) ≤ PF
( n⋂
i=1

{êni ≥ 0}
)

+ PF

( n⋂
i=1

{êni ≤ 0}
)
.

By using that êni = (ρ− ρ̂n)TXi−1 + ei for i = 1, . . . , n, it is

PF

( n⋂
i=1

{êni ≥ 0}
)
≤ PF

( n⋂
i=1

{ei ≥ x1}
)

+ PF

( n⋃
i=1

{
(ρ̂n − ρ)TXi−1 < x1

})
≤ PF (e1 ≥ x1)n + PF

( n⋃
i=1

{
‖ρ− ρ̂n‖‖Xi−1‖ > −x1

})
=
(
1− F (x1)

)n
+ PF

(
‖ρ− ρ̂n‖ max

1≤i≤n
‖Xi−1‖ > −x1

)
−→
n→∞

0
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since F (x1) > 0 and because of the assumption
√
n(ρ̂n − ρ) = OPF (1) and max1≤i≤n ‖Xi−1‖ =

oPF (
√
n), which follows directly from Lemma 5.3 by considering the singleton M = {F} there.

Analogously, we have

PF

( n⋂
i=1

{êni ≤ 0}
)
≤ F (x2)n + PF

(
‖ρ− ρ̂n‖ max

1≤i≤n
‖Xi−1‖ > x2

)
−→
n→∞

0

using F (x2) < 1.

Because of the above, the set Ωn,res is irrelevant for asymptotic considerations such as the inves-
tigation of convergence in distribution and convergence in probability under the fixed measure
PF , and we need not specify the definition of t̂n on Ωn,res for such investigations. Thus, when
working with t̂n we assume henceforth that Ωn,res holds.

For every n ≥ 2 define

p̂ni :=
1

n(1 + t̂nêni)
, 1 ≤ i ≤ n,

and

F̃n,res(x) :=

n∑
i=1

p̂ni1{êni≤x} =

n∑
i=1

1

n(1 + t̂nêni)
1{êni≤x}, x ∈ R.

As in subsection 3.1 it follows that F̃n,res is a discrete distribution function with∫
R
xF̃n,res(dx) = 0.

We will call F̃n,res the centered empirical distribution function of the residuals ên1, . . . , ênn.

Now let F vary inM again. In order to study the asymptotic stochastic behavior of t̂n and F̃n,res
uniformly with respect to the family of probability measures {PF : F ∈ M}, we can again not
neglect the set Ωn,res a priori, because PF (Ωn,res) will not converge to zero uniformly in F ∈M
in general. As in the case of independent and identically distributed data, we will overcome this
issue by making additional assumptions about the set M .

Let us introduce the following condition:

There are x1 ∈ (−∞, 0), x2 ∈ (0,∞), such that

inf
F∈M

F (x1) > 0 and sup
F∈M

F (x2) < 1. (5.75)

Assume now that the setM satisfies (3.7) and (5.75), and that the sequence (ρ̂n)n∈N is such that
(5.8) holds. Then with Lemma 5.3 it is

‖ρ̂n − ρ‖ max
1≤i≤n

‖Xi−1‖ = ouP (1) in M as n→∞.

Using this and (5.75), we see as in the proof of Lemma 5.11 that this implies

sup
F∈M

PF (Ωn,res) −→
n→∞

0.

Hence, under these assumptions about M and (ρ̂n)n∈N the set Ωn,res plays no role for uniform
asymptotic considerations as well. We will therefore from now on always assume that these
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conditions hold and continue to work on the event Ωn,res for every n ≥ 2 when studying t̂n,
F̃n,res or functions thereof.

Note that the conditions (3.7) and (5.8) were used before when studying the uniform asymptotic
behavior of Xi and the residuals. Thus, they are natural conditions for uniform asymptotic
considerations and are by no means only needed for the uniform convergence of PF (Ωn,res).

The following results concerning the stochastic behavior of t̂n and F̃n,res have been shown for fixed
F ∈ M and autoregressive processes of order one by Genz [11]. Here, we will investigate again
under which assumptions about M these results hold uniformly in F ∈M for the autoregressive
processes of order p ∈ N described at the beginning of this section.

The next lemma is an analog of Lemma 3.3.

Lemma 5.12
If the set M is such that (3.5), (3.7) and (5.75) hold and the sequence of estimators (ρ̂n)n≥1 for
ρ fulfills (5.8), then
(i)

√
n t̂n = OuP (1) in M as n→∞,

(ii) max
1≤i≤n

1

1 + t̂nêni
= OuP (1) in M as n→∞,

(iii) t̂n =
1

σ2
F

1

n

n∑
i=1

ei + ouP (1/
√
n) in M as n→∞.

Proof. The statements are proven analogously to those of Lemma 3.3, using the results of
Lemma 5.8. The proof is therefore omitted here.

Now recall that for every x ∈ R and distribution function F ∈M

UF (x) =

∫ x

−∞
yF (dy),

U+
F (x) =

∫ x

−∞
y+F (dy) = 1(0,∞)(x) ·

∫ x

0
yF (dy),

U−F (x) =

∫ x

−∞
y−F (dy) = 1(0,∞)(x) EF (e−1 ) + 1(−∞,0](x) ·

∫ x

−∞
(−y)F (dy)

and UF = U+
F − U

−
F . For the following investigations we assume that the set M is such that

the family {UF : F ∈M} is uniformly equicontinuous. (5.76)

Note that condition (5.76) is equivalent to the fact that both families {U+
F : F ∈ M} and

{U−F : F ∈M} are uniformly equicontinuous.

Lemma 5.13
Suppose the set M fulfills conditions (3.7), (3.8) and (5.76) and the sequence (ρ̂n)n∈N satisfies
(5.8). Then

sup
x∈R

∣∣∣ 1
n

n∑
i=1

ei1{êni≤x} − UF (x)
∣∣∣ = ouP (1) in M as n→∞.

Proof. Since the family {U+
F : F ∈M} is uniformly equicontinuous because of (5.76), for every

ε > 0 there is a δ > 0 such that

sup
x∈R
|U+
F (x+ δ)− U+

F (x)| ≤ ε ∀ F ∈M. (5.77)
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Now if ‖ρ̂n − ρ‖ · max
1≤i≤n

‖Xi−1‖ < δ, then

|êni − ei| = |(ρ̂n − ρ)TXi−1| ≤ ‖ρ̂n − ρ‖ · max
1≤i≤n

‖Xi−1‖ < δ

for every i = 1, . . . , n. Thus, using (5.77) we have for every x ∈ R and F ∈M

1

n

n∑
i=1

e+
i 1{êni≤x} − U

+
F (x) =

1

n

n∑
i=1

e+
i 1{ei≤x+ei−êni} − U

+
F (x)

≤ 1

n

n∑
i=1

e+
i 1{ei≤x+δ} − U+

F (x) = U+
n (x+ δ)− U+

F (x)

≤
∣∣U+

n (x+ δ)− U+
F (x+ δ)

∣∣+ ε

with U+
n (x) := 1

n

∑n
i=1 e

+
i 1{ei≤x}, x ∈ R, and analogously

U+
F (x)− 1

n

n∑
i=1

e+
i 1{êni≤x} = U+

F (x)− 1

n

n∑
i=1

e+
i 1{ei≤x+ei−êni}

≤ U+
F (x)− 1

n

n∑
i=1

e+
i 1{ei≤x−δ} = U+

F (x)− U+
n (x− δ)

≤
∣∣U+

n (x− δ)− U+
F (x− δ)

∣∣+ ε.

This yields

sup
x∈R

∣∣∣ 1
n

n∑
i=1

e+
i 1{êni≤x} − U

+
F (x)

∣∣∣ ≤ sup
x∈R

∣∣U+
n (x)− U+

F (x)
∣∣+ ε

for every F ∈M on the event {‖ρ̂n − ρ‖ · max
1≤i≤n

‖Xi−1‖ < δ}. Because of this it is

sup
F∈M

PF

(
sup
x∈R

∣∣∣ 1
n

n∑
i=1

e+
i 1{êni≤x} − U

+
F (x)

∣∣∣ ≥ 2ε
)

≤ sup
F∈M

PF

(
sup
x∈R

∣∣∣ 1
n

n∑
i=1

e+
i 1{êni≤x} − U

+
F (x)

∣∣∣ ≥ 2ε, ‖ρ̂n − ρ‖ max
1≤i≤n

‖Xi−1‖ < δ
)

+ sup
F∈M

PF
(
‖ρ̂n − ρ‖ · max

1≤i≤n
‖Xi−1‖ ≥ δ

)
≤ sup

F∈M
PF

(
sup
x∈R

∣∣U+
n (x)− U+

F (x)
∣∣ ≥ ε)+ o(1),

where the second term tends to zero as n tends to infinity because of Lemma 5.3 and (5.8). But
the first summand on the right-hand side of the above inequality also tends to zero for n→∞,
as was shown in the proof of Lemma 3.4. To sum up, we have shown that

sup
x∈R

∣∣∣ 1
n

n∑
i=1

e+
i 1{êni≤x} − U

+
F (x)

∣∣∣ = ouP (1) in M as n→∞.

Analogously we see that

sup
x∈R

∣∣∣ 1
n

n∑
i=1

e−i 1{êni≤x} − U
−
F (x)

∣∣∣ = ouP (1) in M as n→∞.
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But this yields the statement, because

sup
x∈R

∣∣∣ 1
n

n∑
i=1

ei1{êni≤x} − UF (x)
∣∣∣

≤ sup
x∈R

∣∣∣ 1
n

n∑
i=1

e+
i 1{êni≤x} − U

+
F (x)

∣∣∣+ sup
x∈R

∣∣∣ 1
n

n∑
i=1

e−i 1{êni≤x} − U
−
F (x)

∣∣∣.
For the rest of this subsection let us assume again that

M ⊂
{
F : F is a distribution function that has uniformly continuous Lebesgue density f

and satisfies
∫
R
x2F (dx) <∞ and

∫
R
xF (dx) = 0

}
.

As before, the uniformly continuous Lebesgue density f of F will also be denoted by F ′.

The next lemma gives sufficient conditions for (5.76) to hold.

Lemma 5.14
If the setM satisfies conditions (3.6) and (5.14), then (5.76) holds, i.e., the family {UF : F ∈M}
is uniformly equicontinuous.

Proof. For simplicity of notation, set K := supF∈M
∫
R x

2F (dx) and B := supF∈M ‖f‖∞. Then
K,B ∈ (0,∞) because of the assumptions. Now

|UF (x)| ≤ K

|x|
for every x ∈ R \ {0} and every F ∈M. (∗)

To see that this is true, let x > 0 first. Then

|UF (x)| =
∣∣∣∫

R
uF (du)−

∫ ∞
x

uF (du)
∣∣∣ =

∫ ∞
x

uF (du) ≤ 1

x

∫
R
u2F (du) ≤ K

x

for every F ∈M . Analogously, for x < 0 it is

|UF (x)| = −
∫ x

−∞
uF (du) ≤ −1

x

∫
R
u2F (du) ≤ −K

x

for every F ∈M . This shows (∗).
Now let ε > 0 be arbitrary, but fixed. Set Cε := 4K/ε and

δε := min
( ε

2BCε
, 2Cε

)
> 0.

Let x, y ∈ R with |x− y| < δε. We have to investigate the following cases:

Case 1: x, y ∈ [−Cε, Cε]. Then

|UF (x)− UF (y)| =
∣∣∣∫ y

x
uF (du)

∣∣∣ ≤ Cε · ‖f‖∞ · |y − x| ≤ Cε ·B · δε ≤ ε

2
< ε

for every F ∈M .

Case 2: x > Cε. Then either y ≤ Cε, or y > Cε, too.
If y ≤ Cε, then |y− x| < δε ≤ 2Cε implies that y > −Cε. Thus, using (∗) and Case 1 we see that

|UF (x)− UF (y)| ≤ |UF (x)|+ |UF (Cε)|+ |UF (Cε)− UF (y)| ≤ K

x
+
K

Cε
+
ε

2
<
ε

4
+
ε

4
+
ε

2
= ε
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for every F ∈M .
Now suppose y > Cε as well. Then for every F ∈M

|UF (x)− UF (y)| ≤ |UF (x)|+ |UF (y)| ≤ K

x
+
K

y
≤ ε

4
+
ε

4
< ε

using (∗).
Case 3: x < −Cε. This case follows analogously to Case 2.

To sum up, we have shown that

x, y ∈ R, |y − x| < δε =⇒ |UF (x)− UF (y)| < ε ∀ F ∈M,

which yields the statement.

We will now combine the previous results to show the following expansion of the difference
F̃n,res − Fn. Compare this to Proposition 3.5.

Proposition 5.15
Suppose the set M is such that conditions (3.7), (3.8) as well as (5.12), (5.13), (5.14) and (5.75)
hold. Also, let the sequence (ρ̂n)n∈N of estimators of ρ be such that (5.8) is satisfied. Then

F̃n,res(x)− Fn(x) = −UF (x)
1

σ2
F

1

n

n∑
i=1

ei +Rn,F (x), x ∈ R,

with ‖Rn,F ‖∞ = ouP (1/
√
n) in M as n→∞.

Proof. Employing once more that 1/(1 + y) = 1 − y + y2/(1 + y) for every y ∈ R \ {−1}, we
can expand the function F̃n,res for every x ∈ R and n ≥ 2 in the following way

F̃n,res(x) = Fn,res(x)− t̂n
1

n

n∑
i=1

êni1{êni≤x} + t̂ 2
n ·

1

n

n∑
i=1

ê2
ni

1 + t̂nêni
· 1{êni≤x}.

Using this, we have

F̃n,res(x)− Fn(x) = Fn,res(x)− Fn(x)− UF (x)
1

σ2
F

1

n

n∑
i=1

ei + UF (x)
1

σ2
F

1

n

n∑
i=1

ei

− t̂n
1

n

n∑
i=1

êni1{êni≤x} + t̂ 2
n ·

1

n

n∑
i=1

ê2
ni

1 + t̂nêni
· 1{êni≤x}

= Fn,res(x)− Fn(x)− UF (x)
1

σ2
F

1

n

n∑
i=1

ei + UF (x)
1

σ2
F

1

n

n∑
i=1

ei

− t̂n
1

n

n∑
i=1

ei1{êni≤x} + t̂n
1

n

n∑
i=1

(
ei − êni

)
1{êni≤x}

+ t̂ 2
n ·

1

n

n∑
i=1

ê2
ni

1 + t̂nêni
· 1{êni≤x}

= Fn,res(x)− Fn(x)− UF (x)
1

σ2
F

1

n

n∑
i=1

ei + UF (x)
1

σ2
F

1

n

n∑
i=1

ei

− t̂n
( 1

n

n∑
i=1

ei1{êni≤x} − UF (x)
)
− t̂nUF (x) + t̂n

1

n

n∑
i=1

(
ei − êni

)
1{êni≤x}
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+ t̂ 2
n ·

1

n

n∑
i=1

ê2
ni

1 + t̂nêni
· 1{êni≤x}

= −UF (x)
1

σ2
F

1

n

n∑
i=1

ei +R1n(x) +R2n,F (x) +R3n,F (x) +R4n(x) +R5n(x),

where

R1n(x) := Fn,res(x)− Fn(x), R2n,F (x) := UF (x)
( 1

σ2
F

1

n

n∑
i=1

ei − t̂n
)
,

R3n,F (x) := t̂n

(
UF (x)− 1

n

n∑
i=1

ei1{êni≤x}

)
, R4n(x) := t̂n

1

n

n∑
i=1

(
ei − êni

)
1{êni≤x},

R5n(x) := t̂ 2
n ·

1

n

n∑
i=1

ê2
ni

1 + t̂nêni
· 1{êni≤x}.

Since all assumptions of Theorem 5.9 are satisfied, it follows from this that

‖R1n‖∞ = sup
x∈R
|Fn,res(x)− Fn(x)| = ouP (1/

√
n).

Moreover, we have seen before that supx∈R |UF (x)| = |UF (0)| = EF (e+
1 ) = EF (e−1 ) = 1

2 EF (|e1|).
Thus, we have

‖R2n,F ‖∞ = sup
x∈R
|UF (x)| ·

∣∣∣ 1

σ2
F

1

n

n∑
i=1

ei − t̂n
∣∣∣

≤ 1

2
sup
F∈M

∫
R
|x|F (dx) · ouP (1/

√
n) = ouP (1/

√
n) in M as n→∞

using Lemma 5.12 (iii).

It also is

‖R3n,F ‖∞ = |t̂n| · sup
x∈R

∣∣∣UF (x)− 1

n

n∑
i=1

ei1{êni≤x}

∣∣∣,
and the desired result follows from Lemma 5.12 (i) and Lemma 5.13. Note here that Lemma 5.14
ensures that condition (5.76) of Lemma 5.13 indeed holds.

Next, we have

‖R4n‖∞ ≤ |t̂n|
1

n

n∑
i=1

|ei − êni| ≤ |t̂n| max
1≤i≤n

|ei − êni| = ouP (1/
√
n)

by Lemma 5.8 (ii) and Lemma 5.12 (i).

Last, it is

‖R5n‖∞ ≤ t̂ 2
n ·

1

n

n∑
i=1

ê2
ni

1 + t̂nêni

≤ t̂ 2
n · max

1≤i≤n

1

1 + t̂nêni
· 1

n

n∑
i=1

ê2
ni = OuP (1/n)OuP (1)OuP (1) = ouP (1/

√
n)

with Lemma 5.8 (v) and Lemma 5.12 (i), (ii).
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6 The limiting Pitman ARE of the two tests in stable autoregres-
sive models

We will now consider goodness-of-fit testing for the error distribution F in certain stable autore-
gressive models using the classical Cramér-von Mises statistics based on the standard empirical
distribution function of the residuals as well as their modified counterparts based on the cen-
tered empirical distribution function of the residuals. As in the case of independent and iden-
tically distributed centered data investigated in section 4, we will consider testing the simple
null hypothesis that F is equal to some centered continuous distribution function as well as the
composite null hypothesis that F belongs to the scale family Fτ against suitable nonparametric
alternatives, respectively. Similar to before, we will compare the performance of the asymptotic
test corresponding to the classical residual Cramér-von Mises statistic to that of the asymptotic
test corresponding to the modified statistic for each of these testing problems by determining
their limiting Pitman asymptotic relative efficiency.

First, we will describe the setting of this section. For every q ∈ [2,∞) set

Guq :=
{
F : F is a distribution function that has uniformly continuous Lebesgue density f

and satisfies
∫
R
|x|qF (dx) <∞ and

∫
R
xF (dx) = 0

}
.

Then Guq ⊂ Gq, where the latter set is defined in section 4. In this section we consider a measurable
space (Ω,A) and a family {PF : F ∈ Guq } of probability measures on A such that the following
requirements are satisfied:
On (Ω,A) there are random variables S0, . . . , S1−p, p ∈ N fixed, and ei, i ∈ Z, such that

• for each F ∈ Guq the variables (ei)i∈Z are independent and identically distributed with
distribution function F under PF ,

• the random vector S0 := (S0, . . . , S1−p)
T has the same fixed distribution Q, say, under

every PF , F ∈ Guq , and
∫
Rp ‖x‖

2Q(dx) <∞,

• under every PF , F ∈ Guq , the vector S0 is independent of (ei)i∈N.

As in section 5, we assume that (Xi)i≥1−p is either one of the AR(p) processes of model 1 or
model 2 on (Ω,A). Then (Xi)i≥1−p satisfies the model equation

Xi = ρ1Xi−1 + . . .+ ρpXi−p + ei, i ≥ 1, (6.1)

where ρ1, . . . , ρp are real constants with ρp 6= 0 and

{z ∈ C : zp − ρ1z
p−1 − ρ2z

p−2 − . . .− ρp−1z − ρp = 0} ⊂ {z ∈ C : |z| < 1}.

The autoregressive parameter ρ = (ρ1, . . . , ρp)
T ∈ Rp is assumed to be unknown and therefore

has to be estimated by a suitable sequence of estimators (ρ̂n)n∈N. Moreover, the error variables
ei, i ∈ N, are not observable, whereas the process (Xi)i≥1−p is assumed to be so.

6.1 Simple null hypothesis

Suppose now that the error variables e1, e2, . . . have common distribution function F ∈ Guq , q ≥ 2
fixed, but that F is unknown. For this reason we consider the testing problem

H0 : F = F0 versus H1 : F ∈ Guq \ {F0} (6.2)
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for a fixed F0 ∈ Guq . Since unfortunately the errors are not observable, we cannot compute a test
statistic for this testing problem based on a “sample” e1, . . . , en. However, we can observe data
X0, X1, . . . , Xn, n ≥ 2, and use this sample to study the residuals

êni = Xi − ρ̂TnXi−1, 1 ≤ i ≤ n,

where (ρ̂n)n≥2 is a suitable sequence of estimators for the unknown autoregressive parameter ρ.
In the following, we will only consider estimators ρ̂n with

√
n(ρ̂n− ρ) = OPF (1), which holds for

example for the least squares estimator ρ̂LSn .

For testing H0 versus H1, we consider the residual Cramér-von Mises statistic

W2
n,res = n ·

∫ ∞
−∞

(
Fn,res(x)− F0(x)

)2
F0(dx)

based on ên1, . . . , ênn and its modified version

V2
n,res = n ·

∫ ∞
−∞

(
F̃n,res(x)− F0(x)

)2
F0(dx),

which are both measurable mappings from Ω to [0,∞). The latter statistic is reasonable here
since the true error distribution function F is centered, and so is F̃n,res.

It follows from Koul’s results, see for example chapter 7 in Koul [18], that

‖
√
n(Fn,res − Fn)‖∞ −→

n→∞
0 in PF -probability (6.3)

for every fixed F ∈ Guq , where Fn is the empirical distribution function of the errors. This can
also be deduced directly from Theorem 5.9, which is in fact just the uniform version of (6.3),
by considering the singleton M = {F} there. Note that for every F ∈ Guq the set M = {F}
satisfies (5.12)–(5.14) and assumptions (ii)–(v) of Theorem 5.9, since (5.12)–(5.14) are trivially
fulfilled by the uniformly continuous Lebesgue density f of F , and the latter conditions follow
from assumption (3.7), which holds for M = {F} because F has finite second moment.

Thus, by Slutzky’s theorem we have

√
n
(
Fn,res − F

) L−→
n

B◦(F ) in D[−∞,∞] (6.4)

under the measure PF . Now a direct application of the continuous mapping theorem yields

Wn,res
L−→
n

(∫ 1

0
B◦(t)2dt

)1/2
=W (6.5)

under H0 for Wn,res =
(
W2
n,res

)1/2, so that a test of asymptotic level α ∈ (0, 1) based on Wn,res

for the testing problem (6.2) can be constructed analogously to the case of independent and
identically distributed data described in subsection 4.1, where the test statistic Wn was used.

Now let us investigate Vn,res =
(
V2
n,res

)1/2. If we consider the singleton M = {F} for some
F ∈ Guq , then all assumptions of Proposition 5.15 are satisfied and it follows that

F̃n,res(x)− F (x) =
1

n

n∑
i=1

Yi(x) +Rn,F (x), x ∈ R, (6.6)

with

Yi(x) := 1{ei≤x} − F (x)− UF (x)

σ2
F

ei, i ≥ 1,
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

and ‖Rn,F ‖∞ = oPF (1/
√
n). Hence, by Slutzky’s theorem the processes

√
n(F̃n,res − F ) and

1√
n

n∑
i=1

Yi

have the same limit distribution in D[−∞,∞] under the measure PF . Observe that the process(
n−1/2

∑n
i=1 Yi(x)

)
x∈R does only depend on the sequence (ei)i∈N of independent and identically

distributed random variables, and not on the autoregressive process (Xi)i≥1−p. The asymptotic
distribution of

(
n−1/2

∑n
i=1 Yi(x)

)
x∈R has been derived by Zhang [31] in a more general setting

than considered here, see the proof of Theorem 3.3 in [31], and Genz [11] has established the
above expansion of F̃n,res − F for arbitrary AR(1) processes, see Lemma 3.7 in [11]. It follows
now with Zhang’s result that under PF

√
n
(
F̃n,res − F

) L−→
n

W in D[−∞,∞], (6.7)

where W is just the Gaussian process appearing in (4.3). By applying the continuous mapping
theorem once more, this yields

Vn,res
L−→
n

(∫ 1

0
W
(
F−1

0 (t)
)2
dt
)1/2

= V (6.8)

under H0, where the random variable V is the same as the limit in (4.5), given that F0 is the
same in both cases, of course. Hence, a test of asymptotic level α ∈ (0, 1) for testing (6.2) with
the test statistic Vn,res can be constructed analogously to the case of independent and identically
distributed data described in subsection 4.1.

We proceed by showing that (Wn,res)n≥2 and (Vn,res)n≥2 are standard sequences.

Since the asymptotic distributions of the two sequences under the null hypothesis are the same as
in the case of independent and identically distributed data discussed in subsection 4.1, conditions
(BI) and (BII) of Definition 2.1 have already been verified there. We only need to show that (BIII)
holds for both sequences. To see this, let F ∈ Guq \ {F0}. Then by Minkowski’s inequality∣∣∣Wn,res√

n
− b(F )

∣∣∣ ≤ (∫ ∞
−∞

(
Fn,res(x)− F (x)

)2
F0(dx)

)1/2
≤ ‖Fn,res − F‖∞

and ∣∣∣Vn,res√
n
− b(F )

∣∣∣ ≤ (∫ ∞
−∞

(
F̃n,res(x)− F (x)

)2
F0(dx)

)1/2
≤ ‖F̃n,res − F‖∞

for every n ≥ 2, where

b : Guq \ {F0} 3 F 7→
(∫ ∞
−∞

(
F (x)− F0(x)

)2
F0(dx)

)1/2
∈ (0, 1].

But it follows from (6.4) that

‖Fn,res − F‖∞ −→
n→∞

0 in PF -probability,

and analogously

‖F̃n,res − F‖∞ −→
n→∞

0 in PF -probability

because of (6.7). Thus, (BIII) is satisfied.

Hence, the following result holds.
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Proposition 6.1
The sequences (Wn,res)n≥2 and (Vn,res)n≥2 are standard sequences with approximate slopes
b(F )2/λ1 and b(F )2/λ∗1, respectively, for every F ∈ Guq \ {F0}, where λ1 and λ∗1 are as in Propo-
sition 4.4. Hence, the approximate Bahadur ARE of (Wn,res)n≥2 relative to (Vn,res)n≥2 is λ∗1/λ1.

Note that the approximate Bahadur ARE of (Wn,res)n≥2 relative to (Vn,res)n≥2 is equal to the
one of (Wn)n≥2 relative to (Vn)n≥2 when testing the same null hypothesis, see Proposition 4.4.
In particular, it is λ∗1 < λ1, as noted there.

Our next aim is to show that (Wn,res)n≥2 and (Vn,res)n≥2 also satisfy Wieand’s condition (WIII),
so that we can use Theorem 2.3 to determine the limiting Pitman ARE of these two sequences.
For this we need to reduce the set of possible distribution functions F , since we have to require
the alternatives to be sufficiently smooth. Let us introduce some notation first.

For any 0 < γ ≤ 1 and function h : R→ R the γ-Hölder coefficient of h is defined as

[h]γ := sup
x,y∈R
x 6=y

|h(x)− h(y)|
|x− y|γ

∈ [0,∞].

The function h is said to be Hölder continuous with exponent γ (γ-Hölder continuous, for short)
if [h]γ < ∞. In particular, if [h]1 < ∞, then h is Lipschitz continuous. Obviously, every Hölder
continuous function is uniformly continuous. Note that if the function h is bounded and γ-Hölder
continuous for some γ ∈ (0, 1], then [h]κ <∞ for all 0 < κ < γ, since

[h]κ = sup
x,y∈R
x6=y

[
|h(x)− h(y)|1−κ/γ ·

( |h(x)− h(y)|
|x− y|γ

)κ/γ]
≤ 2 · ‖h‖1−κ/γ∞ · [h]κ/γγ <∞.

Hence, if f : R → R is a density with [f ]γ < ∞ for some γ ∈ (0, 1], then [f ]κ < ∞ for all
0 < κ < γ, as f is uniformly continuous because of [f ]γ < ∞ and therefore bounded. For
example, if the density f is differentiable everywhere and has a bounded first derivative, then it
follows by the mean value theorem that [f ]1 <∞, so that [f ]γ <∞ for all γ ∈ (0, 1] in this case.

Let w : R→ [0,∞) be a function with w(x)→∞ as |x| → ∞. We will call such a function w a
weight function, and we set

‖h‖w,∞ := ‖wh‖∞ = sup
x∈R
|w(x)h(x)| ∈ [0,∞]

for any function h : R→ R.

Now for every q ∈ (2,∞), γ ∈ (0, 1] and weight function w let

Gq,γ,w :=
{
F : F is a distribution function having a Lebesgue density f that satisfies

[f ]γ + ‖f‖w,∞ +

∫
R
|x|qf(x)dx <∞ and

∫
R
xf(x)dx = 0

}
. (6.9)

Note that such a Lebesgue density f of F ∈ Gq,γ,w is uniquely determined, as it is (uniformly)
continuous because of [f ]γ <∞. Henceforth we will always refer without further mention to this
uniquely determined uniformly continuous density when considering a density of a distribution
function in Gq,γ,w. Observe furthermore that by what was said above, it is Gq,γ,w ⊂ Gq,κ,w for
every κ ∈ (0, γ).

Throughout this subsection we will always assume that w is bounded away from zero, so that
‖1/w‖∞ <∞. Possible choices of such weight functions are w(x) = exp(a|x|s) for some a, s > 0
or w(x) = |x|s1[1,∞)(|x|) + 1[0,1)(|x|) for some s > 0, among others. Moreover, we suppose of
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

course that Gq,γ,w contains more than one element. For the weight functions just mentioned, this
is obviously the case for every value of γ ∈ (0, 1] and q > 2, as there are numerous examples
of centered distributions with finite absolute q-th moment that possess a Lebesgue density f
that is differentiable with bounded derivative (⇒ [f ]γ < ∞ for every γ ∈ (0, 1]) and satisfies
w(x)f(x)→ 0 as |x| → ∞, which implies ‖f‖w,∞ <∞ because of the continuity of wf .

We will now equip Gq,γ,w with a suitable metric. It is easy to see that the function dq,γ,w : Gq,γ,w×
Gq,γ,w → [0,∞),

dq,γ,w(F,G) := [f − g]γ + ‖f − g‖w,∞ +
∣∣∣∫

R
|x|qF (dx)−

∫
R
|x|qG(dx)

∣∣∣,
is a metric on Gq,γ,w, where f and g denote the densities of F and G, respectively. Observe here
that the fact that dq,γ,w(F,G) = 0 implies F = G follows for one because ‖f−g‖w,∞ = 0⇒ f = g
since w is strictly positive by assumption, but also because [f − g]γ = 0⇒ f = g. To verify this,
note that it follows from [f − g]γ = 0 that f = g+ c for some c ∈ R, but as f and g are densities,
this is only true for c = 0. Hence, (Gq,γ,w, dq,γ,w) is a metric space.

For the rest of this subsection, we will only consider distribution functions F ∈ Gq,γ,w for some
fixed q > 2, γ ∈ (0, 1] and weight function w, and we will measure the distance of two such
distribution functions with the metric dq,γ,w, unless stated otherwise. Since Gq,γ,w ⊂ Guq , all
previously derived results of course still hold for F ∈ Gq,γ,w.

Lemma 6.2
The identity function

id : (Gq,γ,w, dq,γ,w) 3 F 7→ F ∈ (Gq,γ,w, dq)

is continuous, where dq is the Kantorovich-Wasserstein metric defined in (4.1).

Proof. Let (F ∗n)n∈N, F ∈ Gq,γ,w with dq,γ,w(F ∗n , F )→ 0 as n→∞, and let f∗n and f denote the
densities of F ∗n and F , respectively. Then

‖f∗n − f‖∞ ≤ ‖1/w‖∞ · ‖f∗n − f‖w,∞ −→n→∞ 0,

using that 1/w is bounded. By Scheffé’s theorem it follows from this that F ∗n
L→ F . Moreover,

dq,γ,w(F ∗n , F ) → 0 implies
∫
|x|qF ∗n(dx) →

∫
|x|qF (dx) for n → ∞. But convergence in distri-

bution of F ∗n to F combined with convergence of the absolute q-th moments is equivalent to
dq(F

∗
n , F )→ 0 as n→∞.

As the composition of continuous functions is continuous again, the next result follows immedi-
ately from the foregoing lemma and Lemma 4.1.

Corollary 6.3
(i) For every r ∈ [1, q] the function

(Gq,γ,w, dq,γ,w) 3 F 7→
∫
R
|x|rF (dx) ∈ (R, | · |)

is continuous.

(ii) The identity function

id : (Gq,γ,w, dq,γ,w) 3 F 7→ F ∈ (Gq,γ,w, dK)

is continuous, where dK is the Kolmogorov metric.
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

Since we assume now that e1, e2, . . . are independent and identically distributed with distribution
function F ∈ Gq,γ,w, we have to adjust the testing problem (6.2) accordingly by letting all null
and non-null distribution functions be in Gq,γ,w, i.e., we consider henceforth the testing problem

H0 : F = F0 versus H1 : F ∈ Gq,γ,w \ {F0} (6.10)

for some F0 ∈ Gq,γ,w.

Remark 6.4: Note that for this testing problem condition (2.2) holds. To verify this, let F ∈
Gq,γ,w \{F0} and set Ft := tF +(1− t)F0 for every t ∈ (0, 1). It is easy to see that Ft ∈ Gq \{F0}.
Moreover, Ft has Lebesgue density ft := tf+(1−t)f0, where f and f0 are the respective densities
of F and F0. It is

[ft]γ ≤ t [f ]γ + (1− t) [f0]γ <∞

and

‖ft‖w,∞ = ‖wft‖∞ ≤ t ‖wf‖∞ + (1− t) ‖wf0‖∞ = t ‖f‖w,∞ + (1− t) ‖f0‖w,∞ <∞,

so that Ft ∈ Gq,γ,w \ {F0} for all t ∈ (0, 1). Now note that

dq,γ,w(Ft, F0) = [ft − f0]γ + ‖ft − f0‖w,∞ +
∣∣∣∫

R
|x|qFt(dx)−

∫
R
|x|qF0(dx)

∣∣∣
= t ·

(
[f − f0]γ + ‖f − f0‖w,∞ +

∣∣∣∫
R
|x|qF (dx)−

∫
R
|x|qF0(dx)

∣∣∣ )
= t · dq,γ,w(F, F0) −→

t→0
0,

whence it follows that for every ε > 0 there is a t(ε) ∈ (0, 1) with

Ft ∈ Uε(F0) ∩ (Gq,γ,w \ {F0}) ∀ 0 < t ≤ t(ε),

which shows the claim. �

For the following investigations, we have to specify the sequence of estimators for the unknown
autoregressive parameter ρ in (6.1). Henceforth, we will estimate ρ by the least squares estimator

ρ̂LSn =
( n∑
i=1

Xi−1X
T
i−1

)+
n∑
i=1

Xi−1Xi, n ≥ 2.

Recall that B+ is the Moore-Penrose pseudoinverse of the matrix B.

We are now able to verify Wieand’s condition for our two sequences of test statistics.

Theorem 6.5
The sequences (Wn,res)n≥2 and (Vn,res)n≥2 fulfill Wieand’s condition (WIII) with

b : Gq,γ,w \ {F0} 3 F 7→
(∫ ∞
−∞

(
F (x)− F0(x)

)2
F0(dx)

)1/2
∈ (0, 1].

Proof. We start by verifying the statement for (Wn,res)n≥2.

Set K := (
∫
R x

2F0(dx))/2 > 0. Then by part (i) of Corollary 6.3 there is a % > 0 such that∣∣∣∫
R
x2F (dx)−

∫
R
x2F0(dx)

∣∣∣ < K for all F ∈ Gq,γ,w with dq,γ,w(F, F0) < %. (6.11)
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Now define
M := U%(F0) \ {F0} =

{
F ∈ Gq,γ,w : dq,γ,w(F, F0) < %

}
\ {F0}. (6.12)

We will show next that this set satisfies conditions (3.5), (3.7) and (5.12)–(5.14).

By (6.11) it is
∫
R x

2F (dx) > K > 0 for every F ∈M , which implies (3.5).

To check condition (3.7), note that∣∣∣∫
R
|x|qF (dx)−

∫
R
|x|qF0(dx)

∣∣∣ < %

for every F ∈M according to the definition of dq,γ,w. Using this and the fact that q > 2, we see
as before that for every F ∈M and c ∈ (0,∞) it is∫

{|x|>c}
x2F (dx) ≤ c2−q

∫
R
|x|qF (dx) < c2−q(%+

∫
R
|x|qF0(dx)

)
<∞,

whence (3.7) is evident.

It follows moreover from the definition of dq,γ,w that [f −f0]γ < % and ‖f −f0‖w,∞ < % for every
F ∈M , where f and f0 are the densities of F and F0, respectively. Hence,

[f ]γ ≤ [f − f0]γ + [f0]γ < %+ [f0]γ <∞

for every F ∈ M , so that the set {[f ]γ : F ∈ M} of γ-Hölder coefficients is bounded. But this
just implies that the family {f : F ∈ M} is uniformly equicontinuous, so that condition (5.12)
holds.

Now keep in mind that the uniform continuity of f0 implies that it tends to zero as |x| → ∞,
whence ‖f0‖∞ <∞ follows.

For every F ∈M and x ∈ R it is

f(x) ≤ |f(x)− f0(x)|+ f0(x) ≤ 1

w(x)
· ‖f − f0‖w,∞ + f0(x) <

%

w(x)
+ f0(x),

so that
sup
F∈M

f(x) ≤ %

w(x)
+ f0(x) −→

|x|→∞
0,

which is just condition (5.13).

Furthermore, because of ‖f − f0‖∞ ≤ ‖1/w‖∞ · ‖f − f0‖w,∞ < % · ‖1/w‖∞ <∞ we have

‖f‖∞ ≤ ‖f − f0‖∞ + ‖f0‖∞ < % ‖1/w‖∞ + ‖f0‖∞ <∞

for every F ∈M . Hence, (5.14) also holds.

As we have already shown, it follows with Minkowski’s inequality that∣∣∣Wn,res√
n
− b(F )

∣∣∣ ≤ ‖Fn,res − F‖∞ ≤ ‖Fn,res − Fn‖∞ + ‖Fn − F‖∞

for every F ∈ Gq,γ,w \ {F0} and n ≥ 2.

Now the setM is such that by Proposition 5.7 the least squares estimator ρ̂LSn satisfies
√
n(ρ̂LSn −

ρ) = OuP (1) in M as n→∞. Moreover, as M satisfies (3.7), it follows that the assumptions (ii)–
(v) of Theorem 5.9 hold as well. Hence, all assumptions of this theorem are satisfied for M as in
(6.12), so that we have

√
n‖Fn − Fn,res‖∞ = ouP (1) in M as n→∞.
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It remains to investigate ‖Fn−F‖∞. As already mentioned, it is well known that the Kolmogorov-
Smirnov statistic satisfies

PF
(√
n‖Fn − F‖∞ ≤ x

)
−→
n→∞

PF
(
‖B◦(F )‖∞ ≤ x

)
, x ∈ R,

for every F ∈ Gq,γ,w. Moreover, by the continuity of F the distributions of
√
n‖Fn−F‖∞, n ≥ 2,

and ‖B◦(F )‖∞ under the measure PF do not depend on F anymore, and the distribution function
PF
(
‖B◦(F )‖∞ ≤ ·

)
=: Q(·) is continuous.

Thus, if we set

Vn,F :=
√
n‖Fn − F‖∞ and Rn,F :=

√
n‖Fn − Fn,res‖∞

for every F ∈ Gq,γ,w and n ≥ 2, the assumptions of Proposition 2.6 are satisfied with % as above.
This yields

sup
F∈M

∣∣PF (Vn,F +Rn,F ≤ x)−Q(x)
∣∣ −→

n
0 ∀ x ∈ R,

which means that assumption (i) of Proposition 2.4 holds for the family{(√
n‖Fn − F‖∞ +

√
n‖Fn − Fn,res‖∞

)
n≥2

: F ∈ Gq,γ,w
}
.

But by what was said above, condition (ii) of the same proposition is trivially met, so that it
follows from this that for every ε > 0 and δ ∈ (0, 1) there is a C(ε, δ) > 0 such that

PF

(∣∣∣Wn,res√
n
− b(F )

∣∣∣ ≥ ε b(F )
)
≤ PF

(
‖Fn − F‖∞ + ‖Fn − Fn,res‖∞ ≥ ε b(F )

)
< δ

for all F ∈M and all n ∈ N, n ≥ 2, with n > C(ε, δ)/b(F )2, which is (WIII) for (Wn,res)n≥2.

We will show next that (WIII) holds for (Vn,res)n≥2 as well.

Set K ′ := (
∫
R |x|F0(dx))/2 > 0. It follows again from Corollary 6.3 (i) that there is a %′1 > 0

such that∣∣∣∫
R
|x|F (dx)−

∫
R
|x|F0(dx)

∣∣∣ < K ′ for all F ∈ Gq,γ,w with dq,γ,w(F, F0) < %′1. (6.13)

Next, note that F0(0) ∈ (0, 1) because F0 is centered and has positive variance. Hence, by the
continuity of F0 there are x1 ∈ (−∞, 0) and x2 ∈ (0,∞) such that F0(x1) > 0 and F0(x2) < 1.
Now set K ′′ := min

(
F0(x1), 1− F0(x2)

)
/2. Part (ii) of Corollary 6.3 now states the existence of

a %′2 > 0 with

dK(F, F0) = ‖F − F0‖∞ < K ′′ for all F ∈ Gq,γ,w with dq,γ,w(F, F0) < %′2. (6.14)

Define %′ := min(%′1, %
′
2) and

M ′ := U%′(F0) \ {F0} =
{
F ∈ Gq,γ,w : dq,γ,w(F, F0) < %′

}
\ {F0}.

We proceed by verifying that this set fulfills conditions (3.7), (3.8), (5.12)–(5.14) and (5.75).

The verification of (3.7) and (5.12)–(5.14) for M ′ is analogous to that for the set M before,
simply replace % by %′ and M by M ′.

To see that (3.8) holds, note that (6.13) implies
∫
R |x|F (dx) > K ′ > 0 for all F ∈M ′.

It remains to check (5.75). Because of (6.14) we have |F (x)− F0(x)| < K ′′ for all x ∈ R and for
every F ∈M ′. This obviously implies

F (x1) > F0(x1)−K ′′ > 0 and F (x2) < F0(x2) +K ′′ < 1
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for every F ∈M ′, so that (5.75) holds as well.

Note that (3.8) implies (3.5), so that the least squares estimator ρ̂LSn fulfills
√
n(ρ̂LSn −ρ) = OuP (1)

in M ′ as n→∞ by Proposition 5.7.

Now using Minkowski’s inequality we get that∣∣∣Vn,res√
n
− b(F )

∣∣∣ ≤ ‖F̃n,res − F‖∞ ≤ ‖F̃n,res − Fn‖∞ + ‖Fn − F‖∞ (6.15)

for every n ≥ 2 and F ∈ Gq,γ,w \ {F0}. But as the set M ′ satisfies the assumptions of Proposi-
tion 5.15, it follows from this that

‖F̃n,res − Fn‖∞ ≤ ‖UF ‖∞
1

σ2
F

∣∣∣ 1
n

n∑
i=1

ei

∣∣∣+ ‖Rn,F ‖∞ (6.16)

with
√
n‖Rn,F ‖∞ = ouP (1) in M ′ as n → ∞. Because of this and Lemma 3.8 (i), (ii) it is clear

that the assumptions of Proposition 2.6 hold with % = %′ and

V n,F := ‖UF ‖∞
1

σ2
F

∣∣∣ 1√
n

n∑
i=1

ei

∣∣∣ and Rn,F :=
√
n‖Rn,F ‖∞,

so that

sup
F∈M ′

∣∣∣PF(‖UF ‖∞ 1

σ2
F

∣∣∣ 1√
n

n∑
i=1

ei

∣∣∣+
√
n‖Rn,F ‖∞ ≤ x

)
−QF (x)

∣∣∣ −→
n

0 ∀ x ∈ R

with QF as in Lemma 3.8 (i). Now it is evident by the above and by Lemma 3.8 (iii) that the
family {(

‖UF ‖∞
1

σ2
F

∣∣∣ 1√
n

n∑
i=1

ei

∣∣∣+
√
n‖Rn,F ‖∞

)
n≥2

: F ∈ Gq,γ,w
}

satisfies the assumptions of Proposition 2.4 with % = %′. Moreover, as was mentioned above, the
family {(

√
n‖Fn − F‖∞)n≥2 : F ∈ Gq,γ,w} fulfills the requirements of this proposition as well for

any value of % > 0.

Thus, by Corollary 2.5 there is a %̃ > 0 such that for every ε > 0 and δ ∈ (0, 1) there is a positive
constant C̃(ε, δ) with

PF

(∣∣∣Vn,res√
n
− b(F )

∣∣∣ ≥ ε b(F )
)
≤ PF

(
‖F̃n,res − F‖∞ ≥ ε b(F )

)
≤ PF

(
‖UF ‖∞

1

σ2
F

∣∣∣ 1
n

n∑
i=1

ei

∣∣∣+ ‖Rn,F ‖∞ + ‖Fn − F‖∞ ≥ ε b(F )
)
< δ

for all F ∈ U%̃(F0) \ {F0} and all n ∈ N, n ≥ 2, with n > C̃(ε, δ)/b(F )2. Note that we may take
%̃ = %′ here.

Finally we are ready to determine the limiting (as α → 0) Pitman ARE of (Wn,res)n≥2 with
respect to (Vn,res)n≥2.

Theorem 6.6
For T1n =Wn,res and T2n = Vn,res, n ≥ 2, it is

lim
α→0

lim inf
F ∈Gq,γ,w\{F0},
dq,γ,w(F,F0)→0

N2(α, β, F )

N1(α, β, F )
= lim

α→0
lim sup

F ∈Gq,γ,w\{F0},
dq,γ,w(F,F0)→0

N2(α, β, F )

N1(α, β, F )
=
λ∗1
λ1

< 1

for every value of β ∈ (0, 1).
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Proof. The statement follows from Theorem 2.3 once we have made sure that all of its as-
sumptions are satisfied here. But we have already shown that the sequences (Wn,res)n≥2 and
(Vn,res)n≥2 satisfy condition (i) of Theorem 2.3. Moreover, as was mentioned in subsection 4.1
the distribution functions of the random variablesW in (6.5) and V in (6.8) are strictly increasing
on (0,∞), so that condition (ii) also holds. To verify condition (iii) of Theorem 2.3, note that
0 < b(F ) ≤ ‖F − F0‖∞ = dK(F, F0) for every F ∈ Gq,γ,w \ {F0}, and

lim
F ∈Gq,γ,w\{F0},
dq,γ,w(F,F0)→0

dK(F, F0) = 0

by Corollary 6.3 (ii). The last assumption of Theorem 2.3 is again trivially satisfied here, since
the approximate Bahadur ARE of the two sequences does not depend on F ∈ Gq,γ,w \ {F0}, cf.
Proposition 6.1, and this concludes the proof.

As the limiting Pitman ARE of (Wn,res)n≥2 with respect to (Vn,res)n≥2 is strictly less than one,
the sequence of tests based on (Vn,res)n≥2 is preferable to the one based on (Wn,res)n≥2. Recall
that for certain distribution functions F0 the explicit value of the ratio λ∗1/λ1 is given in Table 1
on page 35.
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6.2 Composite null hypothesis

Fix q ≥ 2 again. In this subsection we assume that Q is the Dirac measure on 0 ∈ Rp, so that
S0 = (0, . . . , 0)T ∈ Rp PF -almost surely for every F ∈ Guq . Thus, (Xi)i≥1−p is either the AR(p)
process of model 1 with starting values X0 = . . . = X1−p = 0, or the stationary AR(p) process
of model 2.

Suppose again that the errors e1, e2, . . . are independent and identically distributed with common
distribution function F ∈ Guq , but that F is unknown to us. In this subsection we consider the
problem of testing the composite null hypothesis

H0 : F ∈ Fτ =
{
Fτ

( ·
σ

)
: σ ∈ (0,∞)

}
versus H1 : F ∈ Guq \ Fτ , (6.17)

where Fτ is as in subsection 4.2 the distribution function of the exponential power distribution,
and τ > 0 is kept fixed. Since Fτ is centered, has moments of all order, and its Lebesgue density
fτ is uniformly continuous, it obviously is an element of Guq . But if G ∈ Guq , then it is easily
checked that every scale variant G(·/c), c > 0, is contained in Guq as well. Consequently, Fτ is
indeed a subset of Guq .
Adopting the notation of subsection 4.2, we set

F (x, σ) := Fτ

(x
σ

)
and f(x, σ) :=

1

σ
fτ

(x
σ

)
for every σ ∈ (0,∞) and x ∈ R, suppressing again the dependency of F (x, σ) and f(x, σ) on τ ,
as this is held constant.

As before, we will use the residuals

êni = Xi − ρ̂TnXi−1, 1 ≤ i ≤ n,

based on observed data X0, X1, . . . , Xn, n ≥ 2, and some suitable sequence of estimators (ρ̂n)n≥2

for the unknown autoregressive parameter ρ in equation (6.1) to construct test statistics for the
above testing problem. Again, we will consider in the following only such estimators ρ̂n that
satisfy √

n
(
ρ̂n − ρ

)
= OPF (1) as n→∞. (6.18)

As already mentioned, the least squares estimator ρ̂LSn for example fulfills this assumption.

Analogously to the case of independent and identically distributed data discussed in subsec-
tion 4.2, we will estimate the scale parameter σ of the family Fτ by

σ̂n,res = σ̂n,res(ên1, . . . , ênn) := τ1/τ
( 1

n

n∑
i=1

|êni|τ
)1/τ

, n ≥ 2. (6.19)

Thus, the estimator σ̂n,res is the residual-based version of the maximum likelihood estimator σ̂n
for σ based on independent and identically distributed observations, cf. (4.17). Note that σ̂n,res =
0 is equivalent to êni = 0 for all i = 1, . . . , n. Thus, on the event An := {êni = 0 ∀ i = 1, . . . , n}
the estimator σ̂n,res is not contained in the parameter space (0,∞). But since An ⊂ Ωn,res with

Ωn,res = { min
1≤i≤n

êni < 0 < max
1≤i≤n

êni},

it follows from Lemma 5.11 that PF (An) ≤ PF (Ωn,res)→ 0 as n→∞. Hence, for all asymptotic
investigations under the fixed probability measure PF it suffices to work on An, and therefore
we will assume henceforth that An holds, which is equivalent to σ̂n,res ∈ (0,∞).
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For testing (6.17) we will use the residual Cramér-von Mises statistic with estimated parameter

Ŵ 2
n,res = n

∫ ∞
−∞

(
Fn,res(x)− F (x, σ̂n,res)

)2
F (dx, σ̂n,res)

and its counterpart

V̂ 2
n,res = n

∫ ∞
−∞

(
F̃n,res(x)− F (x, σ̂n,res)

)2
F (dx, σ̂n,res)

based on the centered empirical distribution function of the residuals.

Analogously to the verification of the scale invariance of the test statistics Ŵ 2
n and V̂ 2

n in the
case of independent and identically distributed data discussed in subsection 4.2 we can show that
both of the above test statistics are scale invariant with respect to the residuals, which means
that

Ŵ 2
n,res(ên1, . . . , ênn) = Ŵ 2

n,res

( ên1

c
, . . . ,

ênn
c

)
and

V̂ 2
n,res(ên1, . . . , ênn) = V̂ 2

n,res

( ên1

c
, . . . ,

ênn
c

)
for every c ∈ (0,∞) and n ≥ 2. For the latter equality to hold on Ω, we assume analogously to
the case of independent and identically distributed data that V̂ 2

n,res is defined on Ωn,res in such
a way that it is scale invariant with respect to the residuals on this event as well.

Suppose henceforth that the estimator ρ̂n is scale invariant, i.e.,

ρ̂n(X1−p, . . . , Xn) = ρ̂n

(X1−p
c

, . . . ,
Xn

c

)
∀ c ∈ (0,∞), n ≥ 2. (6.20)

Then the residuals are scale equivariant, since

1

c
êni(X1−p, . . . , Xn) =

Xi

c
− ρ̂n

(X1−p
c

, . . . ,
Xn

c

)T 1

c
Xi−1 = êni

(X1−p
c

, . . . ,
Xn

c

)
for every 1 ≤ i ≤ n, n ≥ 2, and c > 0. As a consequence of this, the test statistics Ŵ 2

n,res and
V̂ 2
n,res are scale invariant with respect to the underlying data X0, X1, . . . , Xn, n ≥ 2.

Now consider X̃i := Xi/c, i ≥ 1 − p, for some fixed c > 0. The process (X̃i)i≥1−p obviously
satisfies

X̃i = ρ1X̃i−1 + . . .+ ρpX̃i−p + ẽi, i ≥ 1,

with ẽi = ei/c and ρ1, . . . , ρp as in (6.1). Moreover, we have X̃1−p = . . . = X̃0 = 0 if (Xi)i≥1−p is
the AR(p) process with starting values X1−p = . . . = X0 = 0, so that in this case both (Xi)i≥1−p
and (X̃i)i≥1−p are AR(p) processes that start in zero, but the sequences of error variables differ
by the scale factor c. If (Xi)i≥1−p is the stationary AR(p) process instead, then by using its
MA(∞)-representation (5.3) we get that

X̃i =
∞∑
j=0

ψj ẽi−j ∀ i ≥ 1− p, (6.21)

where ẽi = ei/c for all i ∈ Z, and the convergence of the series is as before in mean square as
well as absolutely with probability one under every PF . It is evident by this representation that
(X̃i)i≥1−p is the stationary AR(p) process with respect to the sequence (ẽi)i∈Z of error variables.
Thus, in both of the models considered here the differences between the processes (Xi)i≥1−p and
(X̃i)i≥1−p solely result from changing the scale of the underlying sequence of error variables.
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Remark 6.7: Note that the least squares estimator ρ̂LSn is scale invariant, i.e., it fulfills (6.20).
To verify this, recall that

ρ̂LSn = ρ̂LSn (X1−p, . . . , Xn) =
( n∑
i=1

Xi−1X
T
i−1

)+
n∑
i=1

Xi−1Xi, n ≥ 2,

with B+ denoting the Moore-Penrose pseudoinverse of the matrix B. As the Moore-Penrose
pseudoinverse satisfies (cB)+ = c−1B+ for every c ∈ R \ {0}, it follows that

ρ̂LSn (X1−p, . . . , Xn) =
c2

c2

( n∑
i=1

Xi−1X
T
i−1

)+
n∑
i=1

Xi−1Xi =
( n∑
i=1

1

c
Xi−1

1

c
XT
i−1

)+
n∑
i=1

1

c
Xi−1

Xi

c

= ρ̂LSn

(X1−p
c

, . . . ,
Xn

c

)
for all c > 0. �

We will now construct asymptotic level α tests for the testing problem (6.17) based on the test
statistics Ŵn,res =

(
Ŵ 2
n,res

)1/2 and V̂n,res =
(
V̂ 2
n,res

)1/2. By what was mentioned on the previous
page, it suffices again to assume that F = Fτ under H0 in order to determine the asymptotic
null distributions of these statistics.

Let us start by showing that under the measure PFτ the scale estimator σ̂n,res admits the same
asymptotic linear expansion as σ̂n in the case of independent and identically distributed data,
see (4.20).

Proposition 6.8
Suppose that F = Fτ and the sequence (ρ̂n)n≥2 satisfies (6.18). Then

σ̂n,res(ên1, . . . , ênn)− 1 =
1

n

n∑
i=1

L(ei) + oPFτ (n−1/2),

where L(x) = |x|τ − 1/τ , x ∈ R.

Proof. For every n ∈ N, n ≥ 2, it is

σ̂n,res − 1 =
( τ
n

n∑
i=1

|êni|τ
)1/τ

− 11/τ = gτ

( τ
n

n∑
i=1

|êni|τ
)
− gτ (1)

with gτ (x) := x1/τ , x ∈ [0,∞). Since gτ is continuously differentiable on (0,∞) with g′τ (x) =
(1/τ)x1/τ−1, it follows from the mean value theorem that there is a ξn between τ

n

∑n
i=1 |êni|τ

and 1 such that

σ̂n,res − 1 = g′τ (ξn)
( τ
n

n∑
i=1

|êni|τ − 1
)

= g′τ (1)
( τ
n

n∑
i=1

|êni|τ − 1
)

+
(
g′τ (ξn)− g′τ (1)

)( τ
n

n∑
i=1

|êni|τ − 1
)

=: In + IIn.

Now

In =
1

τ

( τ
n

n∑
i=1

|êni|τ − 1
)

=
1

n

n∑
i=1

|êni|τ −
1

τ
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=
1

n

n∑
i=1

(
|ei|τ −

1

τ

)
+
( 1

n

n∑
i=1

|êni|τ −
1

n

n∑
i=1

|ei|τ
)
,

so we need to show that

1

n

n∑
i=1

|êni|τ −
1

n

n∑
i=1

|ei|τ = oPFτ (n−1/2) as n→∞. (6.22)

Assume now that (6.22) holds. Then (6.22) and the strong law of large numbers imply

τ

n

n∑
i=1

|êni|τ = τ
( 1

n

n∑
i=1

|êni|τ −
1

n

n∑
i=1

|ei|τ +
1

n

n∑
i=1

|ei|τ
)
−→
n→∞

τ EFτ (|e1|τ ) = 1

in PFτ -probability. Thus, (6.22) yields

IIn =
(
g′τ (ξn)− g′τ (1)

)( τ
n

n∑
i=1

|êni|τ −
τ

n

n∑
i=1

|ei|τ +
τ

n

n∑
i=1

|ei|τ − 1
)

= oPFτ (1)
(
oPFτ (n−1/2) +OPFτ (n−1/2)

)
= oPFτ (n−1/2),

where τ
n

∑n
i=1 |ei|τ − 1 = OPFτ (n−1/2) is easily seen to be true with Chebychev’s inequality.

Thus, it only remains to verify (6.22), which is equivalent to

An :=
1√
n

n∑
i=1

(
|êni|τ − |ei|τ

)
= oPFτ (1) as n→∞.

Since PFτ (ei 6= 0 for all i ∈ N) = 1, we will assume that |ei| > 0 for all i ∈ N. Now observe
that the function hτ (x) := xτ , x ∈ [0,∞), is infinitely often differentiable on (0,∞) and h′τ (x) =
τxτ−1. Thus, by the mean value theorem for every i ∈ {1, . . . , n} there is a ζi between |êni| and
|ei| in (0,∞) such that

An =
1√
n

n∑
i=1

h′τ (ζi)
(
|êni| − |ei|

)
=

1√
n

n∑
i=1

h′τ (|ei|)
(
|êni| − |ei|

)
+

1√
n

n∑
i=1

(
h′τ (ζi)− h′τ (|ei|)

)(
|êni| − |ei|

)
=: An,1 +An,2.

First, we will investigate An,1. It is

An,1 =
τ√
n

n∑
i=1

|ei|τ−1
(
|êni| − |ei|

)
.

Now for every δ > 0 and n ≥ 2 set Dn,δ := {max1≤i≤n |êni−ei| < δ}. Note that PFτ (Dn,δ) = o(1)
as n → ∞ for every δ > 0 by part (ii) of Lemma 5.8 (consider the singleton M = {Fτ} there).
On Dn,δ we have

An,1 =
τ√
n

n∑
i=1

|ei|τ−1
(
êni − ei

)
1{ei>δ} +

τ√
n

n∑
i=1

|ei|τ−1
(
|êni| − |ei|

)
1{−δ≤ei≤δ}

+
τ√
n

n∑
i=1

|ei|τ−1
(
ei − êni

)
1{ei<−δ}

113



6 The limiting Pitman ARE of the two tests in stable autoregressive models

=
τ√
n

n∑
i=1

|ei|τ−1
(
êni − ei

)(
1{ei>δ} − 1{ei<−δ}

)
+

τ√
n

n∑
i=1

|ei|τ−1
(
|êni| − |ei|

)
1{−δ≤ei≤δ}

=: R
(i)
n,δ +R

(ii)
n,δ .

It is

R
(i)
n,δ =

τ√
n

n∑
i=1

(
ρ− ρ̂n

)T
Xi−1|ei|τ−1

(
1{ei>δ} − 1{ei<−δ}

)
= τ

(
ρ− ρ̂n

)T 1√
n

n∑
i=1

Xi−1εi (6.23)

with εi := |ei|τ−1
(
1{ei>δ} − 1{ei<−δ}

)
, i ∈ N. Now note that under the measure PFτ we have

that Xi−1 and εi are independent and εi is square-integrable. To verify the latter, observe that
|εi| ≤ δτ−1 for τ ∈ (0, 1). If τ ≥ 1, then EFτ (ε2

i ) < ∞ since Fτ has moments of all order.
Furthermore, we have

EFτ (εi) = EFτ
(
|ei|τ−11{ei>δ}

)
− EFτ

(
| − ei|τ−11{−ei>δ}

)
= 0

by the symmetry of Fτ . It follows from this that under PFτ the sequence of random vectors
(Xi−1εi)i≥1 is a square-integrable martingale difference sequence with respect to the filtration
Fi := σ(X1−p, . . . , X0, e1, . . . , ei), i ≥ 1, F0 := {∅,Ω}. Hence, by Markov’s inequality we get for
every C ∈ (0,∞)

PFτ

(∥∥∥ 1√
n

n∑
i=1

Xi−1εi

∥∥∥ ≥ C) ≤ EFτ

(∥∥∥∑n
i=1 Xi−1εi

∥∥∥2)
nC2

=

∑n
i=1 EFτ

(
‖Xi−1εi‖2

)
nC2

=
EFτ (ε2

1)
∑n

i=1 EFτ
(
‖Xi−1‖2

)
nC2

≤ EFτ (ε2
1)K

C2

since
(
EFτ

(
‖Xi−1‖2

))
i≥1

is bounded by some constantK ∈ (0,∞), which follows from Lemma 5.5
(i) by considering M = {Fτ} there. Thus, we have shown that

1√
n

n∑
i=1

Xi−1εi = OPFτ (1).

It follows from this and (6.18) that

R
(i)
n,δ = OPFτ (n−1/2)OPFτ (1) = oPFτ (1). (6.24)

Combining all this, we have for every ε, δ > 0

PFτ
(
|An,1| ≥ ε

)
≤ PFτ

(
{|An,1| ≥ ε} ∩Dn,δ

)
+ PFτ

(
Dn,δ

)
= PFτ

(
{|R(i)

n,δ +R
(ii)
n,δ | ≥ ε} ∩Dn,δ

)
+ PFτ

(
Dn,δ

)
≤ PFτ

(
|R(i)

n,δ| ≥ ε/2
)

+ PFτ
(
|R(ii)

n,δ | ≥ ε/2
)

+ PFτ
(
Dn,δ

)
= PFτ

(
|R(ii)

n,δ | ≥ ε/2
)

+ o(1) (6.25)

as n→∞. But

|R(ii)
n,δ | ≤

τ√
n
‖ρ̂n − ρ‖

n∑
i=1

|ei|τ−1‖Xi−1‖1{−δ≤ei≤δ}, (6.26)
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so that for every ε, δ > 0 and 0 < c <∞ it is

PFτ
(
|R(ii)

n,δ | ≥ ε
)
≤ PFτ

(
{|R(ii)

n,δ | ≥ ε} ∩ {
√
n‖ρ̂n − ρ‖ ≤ c}

)
+ PFτ

(√
n‖ρ̂n − ρ‖ > c

)
≤ PFτ

( n∑
i=1

|ei|τ−1‖Xi−1‖1{−δ≤ei≤δ} ≥ nε/(τc)
)

+ PFτ
(√
n‖ρ̂n − ρ‖ > c

)
≤ τc

nε

n∑
i=1

EFτ
(
|e1|τ−11{−δ≤e1≤δ}

)
EFτ

(
‖Xi−1‖

)
+ PFτ

(√
n‖ρ̂n − ρ‖ > c

)
.

Now using Lemma 5.4 (i) with M = {Fτ}, there is a K̃ > 0 such that

EFτ
(
‖Xi−1‖

)
≤ K̃ ∀ i ∈ N.

Moreover, it is

EFτ
(
|e1|τ−11{−δ≤e1≤δ}

)
= 2

∫ δ

0
xτ−1fτ (x)dx ≤ 2‖fτ‖∞

∫ δ

0
xτ−1dx =

2

τ
‖fτ‖∞δτ .

Thus, we have

PFτ
(
|R(ii)

n,δ | ≥ ε
)
≤ 2c‖fτ‖∞K̃

ε
δτ + PFτ

(√
n‖ρ̂n − ρ‖ > c

)
. (6.27)

Combining (6.25) and (6.27) we get for every ε, δ > 0 and 0 < c <∞

lim sup
n→∞

PFτ
(
|An,1| ≥ ε

)
≤ 4c‖fτ‖∞K̃

ε
δτ + lim sup

n→∞
PFτ

(√
n‖ρ̂n − ρ‖ > c

)
.

By letting δ tend to zero first and then c tend to infinity, it follows with (6.18) that An,1 = oPFτ (1).

It remains to study

An,2 =
1√
n

n∑
i=1

(
h′τ (ζi)− h′τ (|ei|)

)(
|êni| − |ei|

)
.

First assume that τ ∈ [2,∞). It is h′′τ (x) = τ(τ − 1)xτ−2, x ∈ (0,∞), and by the mean value
theorem there is an ηi between ζi and |ei| such that

|An,2| ≤
τ(τ − 1)√

n

n∑
i=1

ητ−2
i

∣∣ζi − |ei|∣∣ · ∣∣|êni| − |ei|∣∣
≤ τ(τ − 1)√

n

n∑
i=1

max(|êni|, |ei|)τ−2
∣∣|êni| − |ei|∣∣2

≤ τ(τ − 1)√
n

(
max

1≤i≤n
|êni|+ max

1≤i≤n
|ei|
)τ−2

n∑
i=1

∣∣êni − ei∣∣2. (6.28)

Now note that for all τ ∈ (0,∞)

n∑
i=1

∣∣êni − ei∣∣2 ≤ ‖ρ̂n − ρ‖2 n∑
i=1

‖Xi−1‖2 = OPFτ (n−1)OPFτ (n) = OPFτ (1) (6.29)

by (6.18) and Lemma 5.5 (ii) (consider M = {Fτ} again). For τ = 2, this immediately implies
that An,2 = oPFτ (1). To handle the case τ > 2, we have to work some more.
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For every τ ∈ (0,∞) it is

max
1≤i≤n

|ei| = oPFτ (nδ) for every δ > 0. (6.30)

To see that this is true, note that for every ε, δ > 0 it is

PFτ
(

max
1≤i≤n

|ei| ≥ nδε
)
≤ nPFτ

(
|e1| ≥ nδε

)
= nPFτ

(
|e1|2/δ ≥ n2ε2/δ

)
≤ n

n2ε2/δ
EFτ

(
|e1|2/δ

)
−→
n→∞

0

using that Fτ has finite moments of all order. It follows from this that

max
1≤i≤n

|êni| ≤ max
1≤i≤n

|êni − ei|+ max
1≤i≤n

|ei| = oPFτ (1) + oPFτ (nδ) = oPFτ (nδ) (6.31)

for every δ > 0 using Lemma 5.8 (ii) with M = {Fτ}.
Coming back to (6.28) for τ > 2, we see that by (6.30) and (6.31) it is

|An,2| ≤
τ(τ − 1)√

n
oPFτ (nδ)OPFτ (1)

for every δ > 0. Hence, choosing δ ∈ (0, 1/2], this yields An,2 = oPFτ (1) for τ > 2 as well.

Now consider τ ∈ (1, 2). Then

|An,2| ≤
1√
n

n∑
i=1

∣∣h′τ (ζi)− h′τ (|ei|)
∣∣ · ∣∣|êni| − |ei|∣∣

≤ τ√
n

n∑
i=1

∣∣ζτ−1
i − |ei|τ−1

∣∣ · ∣∣êni − ei∣∣ ≤ τ√
n

n∑
i=1

∣∣ζi − |ei|∣∣τ−1 ·
∣∣êni − ei∣∣

≤ τ√
n

n∑
i=1

∣∣êni − ei∣∣τ−1 ·
∣∣êni − ei∣∣ ≤ (max

1≤i≤n
|êni − ei|

)τ−1 τ√
n

n∑
i=1

∣∣êni − ei∣∣ = oPFτ (1)

because of Lemma 5.8 (ii), τ > 1 and

n∑
i=1

∣∣êni − ei∣∣ ≤ ‖ρ̂n − ρ‖ n∑
i=1

‖Xi−1‖ = OPFτ (n−1/2)OPFτ (n) = OPFτ (n1/2),

where we used Lemma 5.4 (ii). Thus, An,2 = oPFτ (1) also for τ ∈ (1, 2). As An,2 = 0 for τ = 1,
we now have verified (6.22) for every τ ∈ [1,∞).

It remains to verify (6.22) for τ ∈ (0, 1), i.e., we have to show that

An =
1√
n

n∑
i=1

(
|êni|τ − |ei|τ

)
= oPFτ (1), τ ∈ (0, 1).

For every δ > 0 it is

An =
1√
n

n∑
i=1

(
|êni|τ − |ei|τ

)
1{|ei|≤δ} +

1√
n

n∑
i=1

(
hτ (|êni|)− hτ (|ei|)

)
1{|ei|>δ} =: Bn,δ + Un,δ.

Recall that Dn,δ = {max1≤i≤n |êni − ei| < δ}. On Dn,δ/2 we have

Un,δ =
1√
n

n∑
i=1

h′τ (ξi)
(
|êni| − |ei|

)
1{|ei|>δ} =

1√
n

n∑
i=1

h′τ (|ei|)
(
êni − ei

)(
1{ei>δ} − 1{ei<−δ}

)
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+
1√
n

n∑
i=1

(
h′τ (ξi)− h′τ (|ei|)

)(
|êni| − |ei|

)
1{|ei|>δ}

with ξi lying between |êni| and |ei|, i = 1, . . . , n. Another application of the mean value theorem
gives

Un,δ =
1√
n

n∑
i=1

h′τ (|ei|)
(
êni − ei

)(
1{ei>δ} − 1{ei<−δ}

)
+

1√
n

n∑
i=1

h′′τ (ζi)
(
ξi − |ei|

)(
|êni| − |ei|

)
1{|ei|>δ} =: Sn,δ + Tn,δ,

where ζi lies between ξi and |ei| and thus between |êni| and |ei|.

Now note that Sn,δ = R
(i)
n,δ with R(i)

n,δ from (6.23), and it has been shown in (6.24) that R(i)
n,δ =

oPFτ (1) for all τ ∈ (0,∞).

Moreover, on Dn,δ/2 we have

|Tn,δ| ≤
1√
n

n∑
i=1

|h′′τ (ζi)|
∣∣êni − ei∣∣21{|ei|>δ} ≤

τ |τ − 1|√
n

n∑
i=1

(δ
2

)τ−2∣∣êni − ei∣∣21{|ei|>δ}

≤
(δ

2

)τ−2 τ |τ − 1|√
n

n∑
i=1

∣∣êni − ei∣∣2 = oPFτ (1)

using (6.29).

We still have to investigate Bn,δ. A short computation shows that |yτ − xτ | ≤ xτ−1|y − x| for
every x, y ∈ (0,∞) and τ ∈ (0, 1). Note that for y = 0 this inequality is trivially fulfilled. By
applying this inequality we get

|Bn,δ| ≤
1√
n

n∑
i=1

|ei|τ−1
∣∣|êni| − |ei|∣∣1{|ei|≤δ} ≤ 1√

n

n∑
i=1

|ei|τ−1
∣∣êni − ei∣∣1{|ei|≤δ}

≤ ‖ρ̂n − ρ‖
1√
n

n∑
i=1

|ei|τ−1‖Xi−1‖1{|ei|≤δ},

and the right-hand side of the last inequality is equal to the upper bound in (6.26) up to the
factor τ .

Combining all this, we finally get for every ε, δ > 0 and c ∈ (0,∞)

PFτ
(
|An| ≥ ε

)
≤ PFτ

(
|Bn,δ| ≥ ε/2

)
+ PFτ

(
{|Un,δ| ≥ ε/2} ∩Dn,δ/2

)
+ PFτ (Dn,δ/2)

≤ PFτ
(
‖ρ̂n − ρ‖

1√
n

n∑
i=1

|ei|τ−1‖Xi−1‖1{|ei|≤δ} ≥ ε/2
)

+ o(1)

≤ 4c‖fτ‖∞K̃
τε

δτ + PFτ
(√
n‖ρ̂n − ρ‖ > c

)
+ o(1)

analogously to the derivation of (6.27). By taking the limit superior of both sides and afterward
letting first δ tend to zero and then c tend to infinity, the desired result follows.

Note that the previous proposition implies the consistency of σ̂n,res under H0, since

PFτ (·/σ)

(
|σ̂n,res − σ| ≥ ε

)
= PFτ

(
|σ̂n,res − 1| ≥ ε/σ

)
−→
n→∞

0

for every ε, σ > 0 using the scaling properties of σ̂n,res and of the residuals.
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Now consider F = Fτ again. For every x ∈ R and n ≥ 2 it is
√
n
(
Fn,res(x)− F (x, σ̂n,res)

)
=
√
n
(
Fn,res(x)− Fn(x)

)
+
√
n
(
Fn(x)− F (x, σ̂n,res)

)
,

and by using (6.3) it follows that ‖
√
n(Fn,res − Fn)‖∞ →

n
0 in PFτ -probability. Additionally, we

have √
n
(
Fn(·)− F (·, σ̂n,res)

) L−→
n

Z in D[−∞,∞]

under PFτ , where the process Z is as in (4.21). This is proven analogously to the functional
central limit theorem (4.21) by using the differentiability of the mapping in (4.18) and the linear
expansion of the estimator σ̂n,res, which has just been shown in Proposition 6.8. Hence, we get
by Slutzky’s theorem that

√
n
(
Fn,res(·)− F (·, σ̂n,res)

) L−→
n

Z in D[−∞,∞]

under PFτ , and Z is a centered Gaussian process with continuous sample paths and covariance
function given in (4.23).

Moreover, for every x ∈ R and n ≥ 2 it is
√
n
(
F̃n,res(x)− F (x, σ̂n,res)

)
=
√
n
(
F̃n,res(x)− Fτ (x)

)
−
√
n
(
F (x, σ̂n,res)− Fτ (x)

)
=

1√
n

n∑
i=1

Yi(x) +R1n(x)−
√
n
(
F (x, σ̂n,res)− Fτ (x)

)
(6.32)

using (6.6) with F = Fτ , where

Yi(x) = 1{ei≤x} − Fτ (x)− UFτ (x)

σ2
Fτ

ei, i ∈ N,

and ‖R1n‖∞ converges to zero in PFτ -probability. Furthermore, it follows from the differentiability
of the mapping in (4.18) and the linear expansion of σ̂n,res shown in Proposition 6.8 that

√
n
(
F (x, σ̂n,res)− Fτ (x)

)
=

1√
n

n∑
i=1

∆(x)L(ei) +R2n(x) (6.33)

with ∆ as in (4.19) and ‖R2n‖∞ converging to zero in PFτ -probability. Combining (6.32) and
(6.33), Slutzky’s theorem implies that the processes

√
n
(
F̃n,res(·)− F (·, σ̂n,res)

)
and

1√
n

n∑
i=1

(
Yi(·)−∆(·)L(ei)

)
(6.34)

have the same asymptotic distribution in D[−∞,∞] under PFτ . Now observe that the summand
Yi(·) −∆(·)L(ei) of the latter process is just the process in equation (2.17) in Genz [11] in the
special case that F (·, ϑ0) = Fτ , L(ei, ϑ0) = L(ei) and ∆(x, ϑ0) = ∆(x). Hence, it follows from
the proof of Satz 2.6 in [11] that under PFτ the process in (6.34) converges in distribution in
D[−∞,∞] to the process V from (4.24), which implies that

√
n
(
F̃n,res(·)− F (·, σ̂n,res)

) L−→
n

V in D[−∞,∞]

under PFτ , and V is the centered Gaussian process that already appeared in (4.24). For autore-
gressive processes of order one, the functional central limit theorem for the residual empirical
process with estimated parameter based on F̃n,res has been established in a general setting by
Genz [11], see Lemma 3.8 and Satz 3.9 in [11].
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Now recall that we have shown in (4.26) that
∫
R∗ |xf

′
τ (x)|dx < ∞. Hence, an application of

Lemma 2.5 from Hörmann [15] in combination with Example 2.6 from [15] and the continuous
mapping theorem yields

Ŵn,res
L−→
n

(∫ ∞
−∞

Z(x)2Fτ (dx)
)1/2

= Ŵ (6.35)

and

V̂n,res
L−→
n

(∫ ∞
−∞

V (x)2Fτ (dx)
)1/2

= V̂ (6.36)

under the measure PFτ . Note that the random variables Ŵ and V̂ already appeared as the limits
in (4.27) and (4.28). Hence, we can construct tests of asymptotic level α ∈ (0, 1) for the testing
problem (6.17) based on Ŵn,res and V̂n,res just as described in subsection 4.2 for the case of
independent and identically distributed observations, where we used Ŵn and V̂n instead.

For the following investigations, we require again that q ≥ max(2, τ).

Recall that in subsection 4.2 we have studied the equivalence relation

F ∼R G ⇐⇒ F (mτ (F ) · ) = G(mτ (G) · ) (6.37)

on Gq, where mτ (F ) = (τ
∫
R |x|

τF (dx))1/τ ∈ (0,∞) for every F ∈ Gq. Since Guq is a subset of Gq,
this relation is obviously an equivalence relation on Guq as well, and

[F ]R := {G ∈ Guq : G ∼R F} =
{
F
(
·/c
)

: c ∈ (0,∞)
}

is the equivalence class of F ∈ Guq under it. Now note that it follows from the considerations on
page 111 that the mappings

F 7→ PF ◦ Ŵ−1
n,res and F 7→ PF ◦ V̂−1

n,res

from Guq into the set of probability measures on B∗ are compatible with ∼R. As in subsection 4.2,
this implies in particular that the power of the tests based on (Ŵn,res)n≥2 and (V̂n,res)n≥2 is
invariant with respect to the scale of the underlying error variables, so that for every fixed α, β ∈
(0, 1) the relative efficiency N2(α, β, F )/N1(α, β, F ) of (Ŵn,res)n≥2 with respect to (V̂n,res)n≥2 is
invariant on the equivalence classes of ∼R. Hence, for investigating the asymptotic behavior of
the relative efficiency when the alternative approaches the null hypothesis we need to identify
distribution functions deriving from the same scale family again. For this reason we will study
the well-defined mappings

[F ]R 7→ PF ◦ Ŵ−1
n,res and [F ]R 7→ PF ◦ V̂−1

n,res

on the quotient set Guq /∼R:=
{

[F ]R : F ∈ Guq
}
. Similar to before, the set

G̃uq :=
{
F (mτ (F ) · ) : F ∈ Guq

}
=
{
F ∈ Guq : τ

∫
R |x|

τF (dx) = 1
}

is a complete set of equivalence class representatives of the relation ∼R on Guq . Thus, for the
investigation of the asymptotic behavior of N2(α, β, F )/N1(α, β, F ) we assume henceforth that
the distribution function F of the variables (ei)i∈N is an element of G̃uq , and consider in the
following the testing problem

H0 : F = Fτ versus H1 : F ∈ G̃uq \ {Fτ}. (6.38)

Note that the asymptotic level α tests for (6.17) based on Ŵn,res and V̂n,res obviously are asymp-
totic level α tests for this testing problem as well.
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We will show now that the sequences
(
Ŵn,res

)
n≥2

and
(
V̂n,res

)
n≥2

are standard sequences. Re-
call that we have to verify conditions (BI), (BII) and (BIII) for this. But as the first two of
these conditions only concern the distribution of Ŵ and V̂, we have already checked them in
subsection 4.2. Therefore it only remains to show that (BIII) holds for both sequences. For this,
consider the functions

b : G̃uq \ {Fτ} 3 F 7→
(∫ ∞
−∞

(
F (x)− Fτ (x)

)2
Fτ (dx)

)1/2
∈ (0, 1]

and

bn,res : G̃uq \ {Fτ} 3 F 7→
(∫ ∞
−∞

(
F (x)− F (x, σ̂n,res)

)2
F (dx, σ̂n,res)

)1/2
∈ (0, 1], n ≥ 2.

Now let F ∈ G̃uq \ {Fτ} and n ≥ 2. Then∣∣∣Ŵn,res√
n
− b(F )

∣∣∣ ≤ ∣∣∣Ŵn,res√
n
− bn,res(F )

∣∣∣+
∣∣bn,res(F )− b(F )

∣∣, (6.39)

and by Minkowski’s inequality we have∣∣∣Ŵn,res√
n
− bn,res(F )

∣∣∣ ≤ (∫ ∞
−∞

(
Fn,res(x)− F (x)

)2
F (dx, σ̂n,res)

)1/2
≤ ‖Fn,res − F‖∞, (6.40)

where ‖Fn,res − F‖∞ = oPF (1) because of (6.4). Analogously, we get∣∣∣ V̂n,res√
n
− b(F )

∣∣∣ ≤ ∣∣∣ V̂n,res√
n
− bn,res(F )

∣∣∣+
∣∣bn,res(F )− b(F )

∣∣
≤ ‖F̃n,res − F‖∞ +

∣∣bn,res(F )− b(F )
∣∣, (6.41)

and the functional central limit theorem (6.7) implies that ‖F̃n,res − F‖∞ = oPF (1). Hence, to
complete the verification of condition (BIII) for both sequences of test statistics, it remains to
show that ∣∣bn,res(F )− b(F )

∣∣ = oPF (1) as n→∞ (6.42)

for every F ∈ G̃uq \{Fτ}. But since bn,res(F )−b(F ) = TF (σ̂n,res)−TF (1) with TF as in Lemma 4.9,
it follows by this lemma that (6.42) results from σ̂n,res → 1 as n → ∞ in PF -probability for
every F ∈ G̃uq \ {Fτ}. In order to show this, we need some additional results.

The following lemma is a generalization of Lemma 5.4 (i) and Lemma 5.5 (i) to arbitrary powers.

Lemma 6.9
Let M be a nonempty set of continuous distribution functions that are centered and have finite
second moments, and let s ∈ (0,∞). If supF∈M

∫
R |x|

sF (dx) <∞, then

sup
F∈M

EF
(
‖Xi‖s

)
= O(1) as i→∞.

Proof. Consider first s ≥ 1. Let us investigate the sequence of Ls norms

‖Xi‖Ls,F = EF (‖Xi‖s)1/s, i ≥ 0.

The statement will follow if we show that the sequence
(
‖Xi‖Ls,F

)
i≥0

is uniformly bounded in
F ∈M . By the representation (5.5) of Xi we get

‖Xi‖Ls,F ≤ ‖AiX0‖Ls,F +

i∑
j=1

‖Aj−1ei+1−j‖Ls,F
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≤ cA‖A‖iA‖X0‖Ls,F +
i∑

j=1

cA‖A‖j−1
A ‖ei+1−j‖Ls,F

≤ cA sup
F∈M

‖X0‖Ls,F + cA

(
sup
F∈M

∫
R
|x|sF (dx)

)1/s
∞∑
j=0

‖A‖jA

for every i ≥ 0 and F ∈ M using ‖A‖A < 1. It only remains to show that supF∈M ‖X0‖Ls,F is
finite. Now recall that either X0 = . . . = X1−p = 0, in which case there is nothing left to show, or
X0 is the vector of starting values of the stationary AR(p) process. Let us investigate the latter
case. By the equivalence of norms in Rp there is a positive constant ks such that ‖x‖ ≤ ks‖x‖s
for all x ∈ Rp, where

‖ · ‖s : Rp 3 x 7→
( p∑
i=1

|xi|s
)1/s

∈ R.

Hence,
‖X0‖Ls,F = EF (‖X0‖s)1/s ≤ ks EF (‖X0‖ss)1/s = ks p

1/s EF (|X0|s)1/s,

using the strict stationarity of the process for the last equality. By the MA(∞)-representation
(5.3) we have

X0 =
∞∑
j=0

ψje−j , (6.43)

where the series converges with probability one under every PF , F ∈M . We will show next that
the series also converges to X0 in s-th mean under every PF . For this, set

Zn :=
n∑
j=0

ψje−j , n ≥ 0. (6.44)

Obviously, |Zn| ≤
∑n

j=0 |ψj ||e−j |. If s > 1, then by Hölder’s inequality it is

|Zn|s ≤
( n∑
j=0

|ψj ||e−j |
)s
≤
( n∑
j=0

|ψj |r
)s/r n∑

j=0

|e−j |s

with r = s/(s− 1). Hence, for s ≥ 1 we have EF (|Zn|s) <∞ for all n ≥ 0, since EF (|e1|s) <∞
by assumption. Furthermore,

sup
m≥n

EF
(
|Zm − Zn|s

)1/s ≤ sup
m>n

m∑
j=n+1

|ψj |EF
(
|e−j |s

)1/s
= EF

(
|e1|s

)1/s ∞∑
j=n+1

|ψj | −→
n→∞

0

since
∑∞

j=0 |ψj | < ∞ because of (5.4), and so by the Cauchy criterion the sequence (Zn)n≥0

converges in s-th mean with respect to PF towards a random variable Z with EF (|Z|s) < ∞.
Since limn→∞ Zn = X0 PF -almost surely as well, it follows that PF (X0 = Z) = 1. This yields

EF (|X0|s)1/s = lim
n→∞

EF (|Zn|s)1/s ≤ lim
n→∞

n∑
j=0

|ψj |EF
(
|e−j |s

)1/s
= EF

(
|e1|s

)1/s ∞∑
j=0

|ψj |

≤
(

sup
F∈M

∫
R
|x|sF (dx)

)1/s
∞∑
j=0

|ψj | <∞

for every F ∈M , which concludes the proof of the case s ≥ 1.
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Now let s ∈ (0, 1). Again with (5.5) and ‖A‖A < 1 it is

‖Xi‖ ≤ cA‖X0‖+
i∑

j=1

cA‖A‖j−1
A |ei+1−j | ∀ i ≥ 0,

and using that the function hs(x) = xs, x ∈ [0,∞), is subadditive, this yields

EF (‖Xi‖s) ≤ csA EF (‖X0‖s) + csA EF (|e1|s)
i∑

j=1

‖A‖s(j−1)
A

≤ csA sup
F∈M

EF (‖X0‖s) + csA sup
F∈M

∫
R
|x|sF (dx)

∞∑
j=0

‖A‖sjA

for every i ≥ 0 and F ∈M . Therefore it only remains to verify that supF∈M EF (‖X0‖s) is finite.
But if X0 = . . . = X1−p = 0, there is nothing left to show. Hence, let us examine the case that
X0 is the vector of starting values of the stationary AR(p) process. Then it is for every F ∈M

EF (‖X0‖s) = EF
(( p∑

j=1

X2
1−j
)s/2) ≤ EF

( p∑
j=1

|X1−j |s
)

= pEF (|X0|s),

using that 0 < s/2 < 1 and the strict stationarity of the process. By the MA(∞)-representation
(6.43) of X0 we get

EF (|X0|s) = EF (| lim
n→∞

Zn|s) = EF ( lim
n→∞

|Zn|s) ≤ EF
(

lim
n→∞

n∑
j=0

|ψj |s|e−j |s
)

= lim
n→∞

n∑
j=0

|ψj |s EF (|e1|s) ≤ sup
F∈M

∫
R
|x|sF (dx)

∞∑
j=0

|ψj |s <∞

with Zn as in (6.44), where we used the monotone convergence theorem and once more inequality
(5.4). Hence, the statement follows for s ∈ (0, 1) as well.

For the following investigations let us introduce the condition

sup
F∈M

∫
R
|x|τF (dx) <∞ (6.45)

for a set M of distribution functions. Obviously, (6.45) is just (3.9) if τ = 1 and (3.6) if τ = 2.

The next lemma provides a means to establish the convergence of σ̂n,res to 1 in PF -probability.
Its statement is formulated to hold uniformly in a set M ⊂ G̃uq , and hence more general than
needed here, because we will use the uniform result later on.

Lemma 6.10
Suppose the nonempty set M ⊂ G̃uq is such that (6.45) holds. Moreover, assume that the sequence
of estimators (ρ̂n)n≥2 for ρ fulfills (5.8). Then

1

n

n∑
i=1

|êni|τ −
1

n

n∑
i=1

|ei|τ = ouP (1) in M as n→∞.

Proof. First, note that by (5.8) it is ‖ρ̂n − ρ‖ = OuP (n−1/2) = ouP (1), whence it follows that

‖ρ̂n − ρ‖s = ouP (1) ∀ s ∈ (0,∞). (6.46)
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Consider now τ ∈ (0, 1]. Then
∣∣|x|τ − |y|τ ∣∣ ≤ |x− y|τ for all x, y ∈ R, so that

∣∣∣ 1
n

n∑
i=1

|êni|τ −
1

n

n∑
i=1

|ei|τ
∣∣∣ ≤ 1

n

n∑
i=1

∣∣|êni|τ − |ei|τ ∣∣ ≤ 1

n

n∑
i=1

∣∣êni − ei∣∣τ ≤ ‖ρ̂n − ρ‖τ 1

n

n∑
i=1

‖Xi−1‖τ .

It is easily seen with Lemma 6.9 and Markov’s inequality that 1
n

∑n
i=1 ‖Xi−1‖τ = OuP (1). In

combination with (6.46) this yields the statement.

Now let τ > 1. Note that the function hτ (x) = xτ , x ∈ [0,∞), is bτc-times continuously
differentiable on [0,∞), where bτc = max{n ∈ N : n ≤ τ}, and

h(k)
τ (x) = τ(τ − 1) · . . . · (τ − k + 1)xτ−k, 1 ≤ k ≤ bτc.

By Taylor’s theorem we get

hτ (y)− hτ (x)

=

bτc−1∑
k=1

h
(k)
τ (x)

k!
(y − x)k +

1

(bτc − 1)!

∫ 1

0
(1− u)bτc−1h(bτc)

τ

(
x+ (y − x)u

)
du (y − x)bτc

=

bτc∑
k=1

h
(k)
τ (x)

k!
(y − x)k

+
1

(bτc − 1)!

∫ 1

0
(1− u)bτc−1

(
h(bτc)
τ

(
x+ (y − x)u

)
− h(bτc)

τ (x)
)
du (y − x)bτc

for every x, y ∈ [0,∞). Hence,∣∣∣ 1
n

n∑
i=1

(
|êni|τ − |ei|τ

)∣∣∣ =
∣∣∣ 1
n

n∑
i=1

(
hτ (|êni|)− hτ (|ei|)

)∣∣∣
≤
∣∣∣ 1
n

n∑
i=1

bτc∑
k=1

h
(k)
τ (|ei|)
k!

(|êni| − |ei|)k
∣∣∣

+
∣∣∣ 1
n

n∑
i=1

1

(bτc − 1)!

∫ 1

0
(1− u)bτc−1

(
h(bτc)
τ

(
|ei|+ (|êni| − |ei|)u

)
− h(bτc)

τ (|ei|)
)
du

· (|êni| − |ei|)bτc
∣∣∣

=: In + IIn.

First, we investigate In. It is

In ≤
bτc∑
k=1

1

k!

1

n

n∑
i=1

h(k)
τ (|ei|) ·

∣∣|êni| − |ei|∣∣k ≤ bτc∑
k=1

1

k!

1

n

n∑
i=1

h(k)
τ (|ei|) ·

∣∣êni − ei∣∣k
≤
bτc∑
k=1

c(k)‖ρ̂n − ρ‖k
1

n

n∑
i=1

|ei|τ−k · ‖Xi−1‖k =:

bτc∑
k=1

Ank

with c(k) :=
(
τ(τ−1)·. . .·(τ−k+1)

)
/k! . Now condition (6.45) implies that supF∈M

∫
R |x|

rF (dx)
is finite for all r ∈ (0, τ) by Lyapunov’s inequality. Thus, it follows from Lemma 6.9 that for
every k = 1, . . . , bτc there is a K̃(k) ∈ (0,∞) with

sup
F∈M

EF (‖Xi−1‖k) ≤ K̃(k) ∀ i ∈ N.
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

Hence, for every F ∈M , C > 0 and 1 ≤ k ≤ bτc it is

PF

( 1

n

n∑
i=1

|ei|τ−k · ‖Xi−1‖k ≥ C
)
≤ 1

C
K̃(k) sup

F∈M

∫
R
|x|τ−kF (dx) <∞,

which implies that
1

n

n∑
i=1

|ei|τ−k · ‖Xi−1‖k = OuP (1).

It follows from this and (6.46) that Ank = ouP (1) for all k = 1, . . . , bτc, so that In = ouP (1).

It remains to study IIn. Observe that for integer-valued τ it is h(bτc)
τ (x) = τ ! , so that IIn = 0 in

this case. If τ is not integer-valued, then τ − bτc ∈ (0, 1), and using again
∣∣|x|τ−bτc − |y|τ−bτc∣∣ ≤

|y − x|τ−bτc for all x, y ∈ R, we get

IIn ≤
1

n

n∑
i=1

1

(bτc − 1)!

∫ 1

0
(1− u)bτc−1

∣∣∣h(bτc)
τ

(
|ei|+ (|êni| − |ei|)u

)
− h(bτc)

τ (|ei|)
∣∣∣du

·
∣∣êni − ei∣∣bτc

= c(bτc) · bτc · 1

n

n∑
i=1

∫ 1

0
(1− u)bτc−1

∣∣∣(|ei|+ (|êni| − |ei|)u
)τ−bτc − |ei|τ−bτc∣∣∣du ∣∣êni − ei∣∣bτc

≤ c(bτc) · bτc · 1

n

n∑
i=1

∫ 1

0
(1− u)bτc−1

∣∣(|êni| − |ei|)u∣∣τ−bτcdu ∣∣êni − ei∣∣bτc
≤ c(bτc) · bτc · 1

n

n∑
i=1

∣∣êni − ei∣∣τ
≤ c(bτc) · bτc · ‖ρ̂n − ρ‖τ

1

n

n∑
i=1

‖Xi−1‖τ = ouP (1)OuP (1) = ouP (1)

because of (6.46) and 1
n

∑n
i=1 ‖Xi−1‖τ = OuP (1), as is easily shown using Markov’s inequality

and the fact that supF∈M EF (‖Xi‖τ ) = O(1) as i→∞ by Lemma 6.9.

We are now able to conclude the verification of (BIII) for the two sequences (Ŵn,res)n≥2 and
(V̂n,res)n≥2. Note that by using the foregoing lemma with M = {F} and by the strong law of
large numbers it is∣∣∣ 1

n

n∑
i=1

|êni|τ − EF (|e1|τ )
∣∣∣ ≤ ∣∣∣ 1

n

n∑
i=1

|êni|τ −
1

n

n∑
i=1

|ei|τ
∣∣∣+
∣∣∣ 1
n

n∑
i=1

|ei|τ − EF (|e1|τ )
∣∣∣ = oPF (1)

for every F ∈ G̃uq . Thus,

σ̂n,res(ên1, . . . , ênn) =
(
τ

1

n

n∑
i=1

|êni|τ
)1/τ

−→
n

(
τ

∫
R
|x|τF (dx)

)1/τ
= mτ (F ) = 1

in PF -probability for every F ∈ G̃uq , which implies (6.42).

To recapitulate, we have shown the following:

Proposition 6.11
The sequences (Ŵn,res)n≥2 and (V̂n,res)n≥2 are standard sequences, and their approximate slopes
are b(F )2/λ̃1 and b(F )2/λ̃∗1, respectively, for every F ∈ G̃uq \ {Fτ}, where λ̃1 and λ̃∗1 are as in
Proposition 4.10. Hence, the approximate Bahadur ARE of (Ŵn,res)n≥2 relative to (V̂n,res)n≥2 is
λ̃∗1/λ̃1.
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

Observe again that the approximate Bahadur ARE of (Ŵn,res)n≥2 relative to (V̂n,res)n≥2 is
independent of the alternative distribution F ∈ G̃uq \ {Fτ}, as the function b is the same for
both sequences. Moreover, it is equal to the approximate Bahadur ARE of (Ŵn)n≥2 relative
to (V̂n)n≥2 when testing the same null hypothesis in the case of independent and identically
distributed data, cf. Proposition 4.10. As mentioned in subsection 4.2, it is λ̃∗1 < λ̃1 = 1/π2 for
every τ ∈ (0,∞), so that λ̃∗1/λ̃1 is always less than one. The values of λ̃∗1 and λ̃∗1/λ̃1 for τ = 1
and τ = 2 are given in Table 2 on page 52.

Our next goal is to show that the sequences (Ŵn,res)n≥2 and (V̂n,res)n≥2 also meet Wieand’s
condition (WIII). For this, we first need to examine the (uniform) asymptotic behavior of the
scale estimator σ̂n,res more closely, which we will do on the following pages.

Recall that in subsection 4.2 we used the condition

sup
F∈M

∫
R
|x|2τF (dx) <∞, (4.36)

where M is a set of distribution functions. It is evident that condition (4.36) implies (6.45) for
every 0 < τ <∞ (given the set M is the same in both cases, of course).

Lemma 6.12
Assume that the nonempty set M ⊂ G̃uq satisfies (4.36). Suppose further that the sequence of
estimators (ρ̂n)n≥2 for ρ fulfills (5.8). Then σ̂n,res − 1 = ouP (1) in M as n→∞.

Proof. Obviously, it is sufficient to show

sup
F∈M

PF
(
|σ̂n,res − 1| ≥ ε

)
−→
n→∞

0

for every ε ∈ (0, 1). But for every F ∈M and ε ∈ (0, 1) it is

PF
(
|σ̂n,res − 1| ≥ ε

)
≤ PF

(
|σ̂τn,res − 1| ≥ Kτ ε

)
using inequality (4.37), and ∣∣σ̂τn,res − 1

∣∣ ≤ ∣∣σ̂τn,res − σ̂τn∣∣+
∣∣σ̂τn − 1

∣∣.
Now note that the conditions of Lemma 6.10 are satisfied, so that

∣∣σ̂τn,res − σ̂τn∣∣ = τ
∣∣∣ 1
n

n∑
i=1

(
|êni|τ − |ei|τ

)∣∣∣ = ouP (1)

by this lemma. Moreover, with Markov’s inequality and Lemma 4.12 (i) it is easily seen that
|σ̂τn − 1| = ouP (1) as well, which concludes the proof.

Let us continue our investigation of σ̂n,res with the following lemma.

Lemma 6.13
Let ∅ 6= M ⊂ G̃uq \ {Fτ}. If τ ≥ 1, suppose that (6.45) holds, and if τ ∈ (0, 1), assume that (3.9)
and supF∈M

∫
R∗ |x|

τ−1F (dx) <∞ hold. Also assume that (ρ̂n)n≥2 satisfies (5.8). Then for every
ε > 0 and δ ∈ (0, 1) there is a C(ε, δ) > 0 such that

PF

(∣∣∣ 1
n

n∑
i=1

(
|êni|τ − |ei|τ

)∣∣∣ ≥ ε b(F )
)
< δ

for every F ∈M and for all n ∈ N, n ≥ 2, with
√
n > C(ε, δ)/b(F ).
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Proof. Let ε > 0, δ ∈ (0, 1) and F ∈ M . Since PF (ei 6= 0 for all i ∈ N) = 1 because of the
continuity of F , we will assume again that |ei| > 0 for all i ∈ N.

Observe that it follows from (5.8), i.e., from

lim
a→∞

lim sup
n→∞

sup
F∈M

PF
(√
n‖ρ̂n − ρ‖ ≥ a

)
= 0,

that there are a(δ) ∈ (0,∞) and n0(δ) ∈ N with

sup
F∈M

PF
(√
n‖ρ̂n − ρ‖ ≥ a(δ)

)
<
δ

2

for all n ≥ n0(δ).

Consider now τ ∈ (0, 1]. Then |yτ − xτ | ≤ xτ−1|y − x| for x > 0, y ≥ 0. By using this inequality
we get ∣∣∣ 1

n

n∑
i=1

(
|êni|τ − |ei|τ

)∣∣∣ ≤ 1

n

n∑
i=1

∣∣|êni|τ − |ei|τ ∣∣ ≤ 1

n

n∑
i=1

|ei|τ−1
∣∣|êni| − |ei|∣∣

≤ 1

n

n∑
i=1

∣∣ei|τ−1|êni − ei
∣∣ ≤ ‖ρ̂n − ρ‖ 1

n

n∑
i=1

‖Xi−1‖|ei|τ−1.

If τ = 1, then |e1|τ−1 = 1, so that EF (|e1|τ−1) = 1 for all F ∈M in this case, and for τ ∈ (0, 1) it
is supF∈M EF (|e1|τ−1) <∞ by assumption. Moreover, since (3.9) holds it follows from Lemma 5.4
(i) that there is a constant K̃ ∈ (0,∞) with

sup
F∈M

EF (‖Xi−1‖) ≤ K̃ ∀ i ∈ N.

Hence,

PF

(∣∣∣ 1
n

n∑
i=1

(
|êni|τ − |ei|τ

)∣∣∣ ≥ ε b(F )
)

≤ PF
(
a(δ)

1

n3/2

n∑
i=1

‖Xi−1‖|ei|τ−1 ≥ ε b(F )
)

+ PF
(√
n‖ρ̂n − ρ‖ ≥ a(δ)

)
≤ a(δ)

ε b(F )
EF (|e1|τ−1)

1

n3/2

n∑
i=1

EF (‖Xi−1‖) + sup
F∈M

PF
(√
n‖ρ̂n − ρ‖ ≥ a(δ)

)
≤ a(δ)

ε b(F )

K̃√
n

sup
F∈M

EF (|e1|τ−1) + sup
F∈M

PF
(√
n‖ρ̂n − ρ‖ ≥ a(δ)

)
<
δ

2
+
δ

2
= δ

for all F ∈M and n ∈ N such that

√
n >

1

b(F )
max

(2a(δ)K̃ supF∈M EF (|e1|τ−1)

ε δ
,
√
n0(δ)

)
.

It remains to investigate the case τ > 1. Recall that it has been shown in the proof of Lemma 6.10
that ∣∣∣ 1

n

n∑
i=1

(
|êni|τ − |ei|τ

)∣∣∣ ≤ In + IIn,
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

where

In ≤
bτc∑
k=1

c(k)‖ρ̂n − ρ‖k
1

n

n∑
i=1

|ei|τ−k · ‖Xi−1‖k =:

bτc∑
k=1

Ank

with c(k) =
(
τ(τ − 1) · . . . · (τ − k + 1)

)
/k! for 1 ≤ k ≤ bτc, and

IIn

= 0 if τ ∈ N,

≤ c(bτc) · bτc · ‖ρ̂n − ρ‖τ 1
n

∑n
i=1 ‖Xi−1‖τ if τ /∈ N.

Now by Lyapunov’s inequality condition (6.45) implies that supF∈M
∫
R |x|

rF (dx) < ∞ for all
r ∈ (0, τ). Hence, Lemma 6.9 ensures the existence of positive constants K̃(k), k = 1, . . . , bτc,
such that

sup
F∈M

EF (‖Xi−1‖k) ≤ K̃(k) ∀ i ∈ N.

Thus we have for every k = 1, . . . , bτc

PF
(
Ank ≥ ε b(F )

)
≤ PF

(c(k)a(δ)k

n1+k/2

n∑
i=1

|ei|τ−k · ‖Xi−1‖k ≥ ε b(F )
)

+ PF
(√
n‖ρ̂n − ρ‖ ≥ a(δ)

)
≤ c(k)a(δ)k

ε b(F )
EF (|e1|τ−k)

1

n1+k/2

n∑
i=1

EF (‖Xi−1‖k)

+ sup
F∈M

PF
(√
n‖ρ̂n − ρ‖ ≥ a(δ)

)
≤ c(k)a(δ)kK̃(k)

ε b(F )nk/2
sup
F∈M

∫
R
|x|τ−kF (dx) + sup

F∈M
PF
(√
n‖ρ̂n − ρ‖ ≥ a(δ)

)
<
δ

2
+
δ

2
= δ

for all F ∈M and n ∈ N such that

√
n >

1

b(F )
max

(2c(k)a(δ)kK̃(k) supF∈M
∫
R |x|

τ−kF (dx)

ε δ
,
√
n0(δ)

)
.

It follows from this that there is a positive constant C(ε, δ) so that

PF
(
In ≥ ε b(F )

)
< δ

for all F ∈M and all natural numbers n with
√
n > C(ε, δ)/b(F ).

Let us finally study IIn. As already mentioned, IIn = 0 if τ ∈ N, so there is nothing to prove in
this case. Hence, let τ /∈ N. By Lemma 6.9 there is a K̃(τ) ∈ (0,∞) with

sup
F∈M

EF (‖Xi−1‖τ ) ≤ K̃(τ) ∀ i ∈ N.

Thus

PF
(
IIn ≥ ε b(F )

)
≤ PF

(c(bτc)bτca(δ)τ

n1+τ/2

n∑
i=1

‖Xi−1‖τ ≥ ε b(F )
)

+ PF
(√
n‖ρ̂n − ρ‖ ≥ a(δ)

)
≤ c(bτc)bτca(δ)τ

ε b(F )nτ/2
1

n

n∑
i=1

EF (‖Xi−1‖τ ) + sup
F∈M

PF
(√
n‖ρ̂n − ρ‖ ≥ a(δ)

)
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≤ c(bτc)bτca(δ)τ K̃(τ)

ε b(F )nτ/2
+ sup
F∈M

PF
(√
n‖ρ̂n − ρ‖ ≥ a(δ)

)
<
δ

2
+
δ

2
= δ

for all F ∈M and n ∈ N such that

√
n >

1

b(F )
max

(2c(bτc)bτca(δ)τ K̃(τ)

ε δ
,
√
n0(δ)

)
.

The next result is an analog of Lemma 4.13 for σ̂n,res.

Lemma 6.14
Let ∅ 6= M ⊂ G̃uq \ {Fτ}. If τ ≥ 1/2, suppose that (4.36) holds, and if τ ∈ (0, 1/2) suppose that
condition (3.9) is satisfied. For τ ∈ (0, 1) assume further that supF∈M

∫
R∗ |x|

τ−1F (dx) < ∞.
Also, let the sequence of estimators (ρ̂n)n≥2 for ρ be such that (5.8) is satisfied. Then for every
ε > 0 and δ ∈ (0, 1) there is a C(ε, δ) > 0 such that

PF
(∣∣σ̂n,res − 1

∣∣ ≥ ε b(F )
)
< δ

for every F ∈M and for all n ∈ N, n ≥ 2, with
√
n > C(ε, δ)/b(F ).

Proof. First, note that we may as well assume that ε ∈ (0, 1). Then ε b(F ) ∈ (0, 1), as b(F ) ∈
(0, 1]. Thus, by inequality (4.37) we have

PF
(∣∣σ̂n,res − 1

∣∣ ≥ ε b(F )
)
≤ PF

(∣∣σ̂τn,res − 1
∣∣ ≥ Kτ ε b(F )

)
≤ PF

(∣∣∣ 1
n

n∑
i=1

(
|êni|τ − |ei|τ

)∣∣∣ ≥ Kτ ε b(F )

2τ

)
+ PF

(∣∣σ̂τn − 1
∣∣ ≥ Kτ ε b(F )

2

)
=: An,F +Bn,F .

Now let δ ∈ (0, 1). As for every value of τ the conditions of Lemma 6.13 are satisfied, it follows
from this very lemma that there is a C1(ε, δ) ∈ (0,∞) so that An,F < δ/2 for all F ∈ M and
n ≥ 2 with

√
n > C1(ε, δ)/b(F ). Moreover, we have

Bn,F ≤
4

K2
τ ε

2b(F )2
sup
F∈M

EF
(
|σ̂τn − 1|2

)
using Markov’s inequality, and since it follows from the assumptions that (4.36) holds as well for
every τ ∈ (0,∞), part (i) of Lemma 4.12 ensures the existence of a K̃ ∈ (0,∞) such that

sup
F∈M

EF
(
|σ̂τn − 1|2

)
≤ 1

n
K̃

for every n ≥ 2. Now set C2(ε, δ) :=
(
8K̃/(K2

τ ε
2δ)
)1/2. Then for every F ∈M it is

PF
(∣∣σ̂n,res − 1

∣∣ ≥ ε b(F )
)
< δ

for all n ∈ N, n ≥ 2, with
√
n > max

(
C1(ε, δ), C2(ε, δ)

)
/b(F ).

We have now gathered all results necessary to prove an analog of Proposition 4.14 for bn,res.

Proposition 6.15
Let ∅ 6= M ⊂ G̃uq \ {Fτ}. If the assumptions of Lemma 6.14 are satisfied, then for every ε > 0
and δ ∈ (0, 1) there is a C(ε, δ) > 0 such that

PF
( ∣∣bn,res(F )− b(F )

∣∣ ≥ ε b(F )
)
< δ

for all F ∈M and for all n ∈ N, n ≥ 2, with
√
n > C(ε, δ)/b(F ).
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Proof. First, note that under the above assumptions the set M also satisfies the requirements
of Lemma 6.12, whence it follows that supF∈M PF (σ̂n,res = 0) → 0 as n → ∞ because the set
{σ̂n,res = 0} is a subset of {|σ̂n,res − 1| ≥ ε} for every ε ∈ (0, 1). Hence, we can and will assume
that σ̂n,res > 0. Now using the results of Lemma 6.12 and Lemma 6.14, the above statement is
proven analogously to Proposition 4.14 by simply replacing σ̂n by σ̂n,res and bn by bn,res in the
proof.

Now recall that our aim is to show that the sequences (Ŵn,res)n≥2 and (V̂n,res)n≥2 satisfy Wie-
and’s condition (WIII). Before we can proceed with this, we have to adjust the set of possible error
distribution functions, because we need the alternative distributions to be sufficiently smooth
again.

Hence, let us consider again the set of distribution functions Gq,γ,w defined in (6.9). In this
subsection, we will always use weight functions w of the form w(x) = |x|s, x ∈ R, for some
s > 0. Unlike the weight functions considered in the previous subsection, this w is obviously not
bounded away from zero. To stress the dependency of ‖ · ‖w,∞ on s, we will denote it by ‖ · ‖s,∞,
i.e.,

‖h‖s,∞ = sup
x∈R
|x|s|h(x)| ∈ [0,∞]

for any function h : R → R, and for the same reason we will denote Gq,γ,w henceforth by Gq,γ,s,
so that

Gq,γ,s =
{
F : F is a distribution function having a Lebesgue density f that satisfies

[f ]γ + ‖f‖s,∞ +

∫
R
|x|qf(x)dx <∞ and

∫
R
xf(x)dx = 0

}
for every q ∈ (2,∞), γ ∈ (0, 1] and s ∈ (0,∞). Observe here that for every F ∈ Gq,γ,s its
density f is bounded, as it is uniformly continuous because of [f ]γ < ∞. Moreover, note that
if F ∈ Gq,γ,s, then the whole scale family {F (·/σ) : σ ∈ (0,∞)} generated by F is contained in
Gq,γ,s. To verify this, observe that every F (·/σ) is centered again with finite q-th moment, and
its density fσ := σ−1f(·/σ) satisfies [fσ]γ = σ−(γ+1)[f ]γ <∞ and ‖fσ‖s,∞ = σs−1‖f‖s,∞ <∞.

Next, we will equip Gq,γ,s with a suitable metric. On Gq,γ,s×Gq,γ,s we consider the function dq,γ,s
defined by

dq,γ,s(F,G) := [f − g]γ + ‖f − g‖s,∞ + ‖f − g‖∞ +
∣∣∣∫

R
|x|qF (dx)−

∫
R
|x|qG(dx)

∣∣∣,
where f and g are the densities of F and G. It is easy to see that dq,γ,s is a metric on Gq,γ,s, so
that (Gq,γ,s, dq,γ,s) is a metric space.

We will continue by listing some properties of the density fτ of Fτ , where τ is fixed in (0,∞).

First, note that ‖fτ‖s,∞ < ∞ for every s > 0, because the function R 3 x 7→ |x|sfτ (x) ∈ [0,∞)
is continuous and lim|x|→∞ |x|sfτ (x) = 0, hence it is bounded.

The next lemma sheds light on the Hölder continuity of fτ .

Lemma 6.16
If τ ≥ 1, then [fτ ]γ <∞ for every γ ∈ (0, 1]. If τ ∈ (0, 1), then [fτ ]γ <∞ if and only if γ ∈ (0, τ ].

Proof. Recall that for every τ > 0 the density fτ is differentiable for all x ∈ R∗ with

f ′τ (x) = fτ (x)τ |x|τ−1 ·
(
− sgn(x)

)
.
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For τ > 1, fτ is obviously differentiable in 0 as well with f ′τ (0) = 0. Now by the fundamental
theorem of calculus it is

fτ (y)− fτ (x) =

∫ y

x
f ′τ (u) du

for every −∞ < x < y <∞ and every τ ∈ (0,∞). Hence, for every x, y ∈ R we have

|fτ (y)− fτ (x)| ≤
∣∣∣∫ y

x
|f ′τ (u)| du

∣∣∣ =

∫ ∞
−∞
|f ′τ (u)| · 1[x∧y,x∨y](u) du. (6.47)

Consider now τ ≥ 1. Then (6.47) yields

|fτ (y)− fτ (x)| ≤ ‖f ′τ‖∞ · |y − x| ∀ x, y ∈ R.

Since f ′τ is bounded (for τ = 1, set f ′1(0) := 0 for example), this shows that [fτ ]1 <∞, i.e., fτ is
Lipschitz continuous for every τ ≥ 1. As already mentioned in subsection 6.1, this implies that
[fτ ]γ <∞ for every γ ∈ (0, 1) as well.

Next, we examine the case τ ∈ (0, 1). We will show first that [fτ ]τ < ∞, whence [fτ ]γ < ∞
for every γ ∈ (0, τ) follows. For this, observe that the function g1 : R 3 x 7→ |x|τ ∈ [0,∞) is
Hölder continuous with exponent τ , because ||x|τ − |y|τ | ≤ |x − y|τ for all x, y ∈ R. Moreover,
the function g2 : [0,∞) 3 x 7→ exp(−x) ∈ (0,∞) satisfies |g2(x) − g2(y)| ≤ |x − y| for every
x, y ∈ [0,∞) by the mean value theorem, using that |g′2| ≤ 1. Combining all this, we see that for
every x, y ∈ R the function g := g2 ◦ g1 satisfies

|g(x)− g(y)| ≤
∣∣g1(x)− g1(y)

∣∣ ≤ |x− y|τ .
Thus, we have verified that [g]τ <∞. But since fτ = C(τ)g for some positive norming constant
C(τ), the statement follows.
Now let γ ∈ (τ, 1]. Then fτ is not γ-Hölder continuous, for if it were, there would be a constant
K ∈ (0,∞) such that

|fτ (x)− fτ (y)|
|x− y|γ

≤ K ∀ x 6= y ∈ R. (6.48)

But for every x > 0 we have

|fτ (0)− fτ (x)|
|0− x|γ

=
C(τ)

(
1− e−xτ

)
xγ

,

and by l’Hospital’s rule we see that

lim
x↘0

1− e−xτ

xγ
= lim

x↘0

τxτ−1e−x
τ

γxγ−1
=
τ

γ
lim
x↘0

xτ−γe−x
τ

=∞

since τ − γ < 0, which contradicts (6.48).

Since Fτ is centered and has moments of all order, it follows that it is an element of the set Gq,γ,s
for every q > 2, s > 0 and γ ∈ (0, τ ∧ 1]. The foregoing lemma implies moreover that Fτ∗ ∈ Gq,γ,s
for all τ∗ ≥ γ.
For the rest of this subsection, we assume that q = 2τ if τ > 1 and q > 2 otherwise. Additionally,
we assume that s > 0 and γ ∈ (0, τ ∧ 1].

Suppose now that the random variables (ei)i∈N are independent and identically distributed ac-
cording to an unknown distribution function F ∈ Gq,γ,s and that we want to test

H0 : F ∈ Fτ =
{
Fτ (·/σ) : σ ∈ (0,∞)

}
versus H1 : F ∈ Gq,γ,s \ Fτ . (6.49)
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In comparison to the initial testing problem (6.17), the set of distribution functions considered
under H1 is reduced here to the subset Gq,γ,s \ Fτ of Guq \ Fτ .
As before, we will test the composite null hypothesis in (6.49) with the asymptotic level α tests
based on the Cramér-von Mises statistics Ŵn,res and V̂n,res. For the following investigations, we
have to specify the sequence of estimators for the autoregressive parameter ρ. Henceforth, we will
use the sequence of least squares estimators (ρ̂LSn )n≥2 to estimate ρ. Recall that this estimator
fulfills the assumptions (6.18) and (6.20), where the latter was shown in Remark 6.7.

Proceeding analogously to before, we note that since Gq,γ,s ⊂ Guq , the relation ∼R in (6.37) is
also an equivalence relation on Gq,γ,s, and for every F ∈ Gq,γ,s its equivalence class under this
relation is just the scale family generated by it, i.e.,

[F ]R := {G ∈ Gq,γ,s : G ∼R F} =
{
F
(
·/c
)

: c ∈ (0,∞)
}
.

Since the least squares estimator ρ̂LSn is scale invariant, it follows as before that the mappings

F 7→ PF ◦ Ŵ−1
n,res and F 7→ PF ◦ V̂−1

n,res

from Gq,γ,s into the set of probability measures on B∗ are compatible with ∼R, so that in order to
examine the asymptotic behavior of the relative efficiency N2(α, β, F )/N1(α, β, F ) of (Ŵn,res)n≥2

with respect to (V̂n,res)n≥2 when the alternative approaches the null hypothesis we have to
identify distribution functions deriving from the same scale family again. Because of this, we
consider the mappings

[F ]R 7→ PF ◦ Ŵ−1
n,res and [F ]R 7→ PF ◦ V̂−1

n,res

on the quotient set Gq,γ,s/∼R:= {[F ]R : F ∈ Gq,γ,s}. In analogy to the approach of subsection 4.2
we introduce on Gq,γ,s/∼R the following metrics.

Lemma 6.17
For every fixed c > 0, set

d̃q,γ,s,c([F ]R, [G]R) := dq,γ,s
(
F
(
mτ (F )/c ·

)
, G
(
mτ (G)/c ·

))
for every [F ]R, [G]R ∈ Gq,γ,s/∼R, where mτ (F ) = (τ

∫
R |x|

τF (dx))1/τ for every F ∈ Gq,γ,s.
Then
(i) d̃q,γ,s,c is well-defined and a metric on Gq,γ,s/∼R,

(ii) for any two constants c1, c2 ∈ (0,∞) the metrics d̃q,γ,s,c1 and d̃q,γ,s,c2 are uniformly equiv-
alent.

Proof.
(i) To verify that d̃q,γ,s,c is well-defined, observe that for every Fi, Gi ∈ Gq,γ,s, i = 1, 2, with
F1 ∼R F2, G1 ∼R G2 it is

F1(mτ (F1) · ) = F2(mτ (F2) · ) and G1(mτ (G1) · ) = G2(mτ (G2) · )

by definition of ∼R, cf. (6.37). Because of this,

dq,γ,s
(
F1(mτ (F1)/c · ), G1(mτ (G1)/c · )

)
= dq,γ,s

(
F2(mτ (F2)/c · ), G2(mτ (G2)/c · )

)
,

so that d̃q,γ,s,c([F1]R, [G1]R) = d̃q,γ,s,c([F2]R, [G2]R).

The metric properties of d̃q,γ,s,c follow directly from the respective properties of dq,γ,s and the
definition of ∼R.
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(ii) Let G, H ∈ Gq,γ,s, and denote by g̃ and h̃ the densities of G̃ := G(mτ (G) · ) and H̃ :=
H(mτ (H) · ), respectively. Then[ 1

c1
g̃
( ·
c1

)
− 1

c1
h̃
( ·
c1

)]
γ

=
1

c1+γ
1

[
g̃ − h̃

]
γ

=
(c2

c1

)1+γ[ 1

c2
g̃
( ·
c2

)
− 1

c2
h̃
( ·
c2

)]
γ
,

∥∥∥ 1

c1
g̃
( ·
c1

)
− 1

c1
h̃
( ·
c1

)∥∥∥
∞

=
1

c1
‖g̃ − h̃‖∞ =

c2

c1

∥∥∥ 1

c2
g̃
( ·
c2

)
− 1

c2
h̃
( ·
c2

)∥∥∥
∞

and ∥∥∥ 1

c1
g̃
( ·
c1

)
− 1

c1
h̃
( ·
c1

)∥∥∥
s,∞

= cs−1
1 ‖g̃ − h̃‖s,∞ =

(c1

c2

)s−1∥∥∥ 1

c2
g̃
( ·
c2

)
− 1

c2
h̃
( ·
c2

)∥∥∥
s,∞

.

Moreover, it is∣∣∣∫
R
|x|q 1

c1
g̃
( x
c1

)
dx−

∫
R
|x|q 1

c1
h̃
( x
c1

)
dx
∣∣∣ =

(c1

c2

)q∣∣∣∫
R
|x|q 1

c2
g̃
( x
c2

)
dx−

∫
R
|x|q 1

c2
h̃
( x
c2

)
dx
∣∣∣.

Now set k := c1/c2 and S := {k−(1+γ), k−1, ks−1, kq}. Using the above, it follows that

d̃q,γ,s,c1([G]R, [H]R) = dq,γ,s
(
G̃(·/c1), H̃(·/c1)

)
≤ maxS · dq,γ,s

(
G̃(·/c2), H̃(·/c2)

)
= maxS · d̃q,γ,s,c2([G]R, [H]R)

and

d̃q,γ,s,c1([G]R, [H]R) = dq,γ,s
(
G̃(·/c1), H̃(·/c1)

)
≥ minS · dq,γ,s

(
G̃(·/c2), H̃(·/c2)

)
= minS · d̃q,γ,s,c2([G]R, [H]R),

and since S does neither depend on [G]R nor [H]R, this concludes the proof.

The previous lemma shows that any two of the metric spaces (Gq,γ,s/∼R, d̃q,γ,s,c), c > 0, are
uniformly (hence, topologically) isomorphic, so that for our purposes it suffices again to identify
these spaces and to work on (Gq,γ,s/∼R, d̃q,γ,s,1). Now note that

G̃q,γ,s :=
{
F (mτ (F ) · ) : F ∈ Gq,γ,s

}
=
{
F ∈ Gq,γ,s : τ

∫
R |x|

τF (dx) = 1
}

is a complete set of equivalence class representatives of ∼R on Gq,γ,s, and the well-defined mapping

(Gq,γ,s/∼R, d̃q,γ,s,1) 3 [F ]R 7→ F (mτ (F ) · ) ∈ (G̃q,γ,s, dq,γ,s)

is easily seen to be an isometric isomorphism. Consequently, the two metric spaces (Gq,γ,s/∼R,
d̃q,γ,s,1) and (G̃q,γ,s, dq,γ,s) are isometrically isomorphic, and we will not differentiate between
them in the following.

For investigating the asymptotic behavior of N2(α, β, F )/N1(α, β, F ) we will therefore assume
from now on that the unknown distribution function F of the errors (ei)i∈N is an element of G̃q,γ,s,
and we will measure the distance of any two distribution functions in G̃q,γ,s with the metric dq,γ,s
if not stated otherwise. Because of this, we consider in the following the testing problem

H0 : F = Fτ versus H1 : F ∈ G̃q,γ,s \ {Fτ}. (6.50)

Recall that we have studied the testing problem (6.38) before, where the set of alternatives is
larger than in the problem above. But since G̃q,γ,s is a subset of G̃uq , all results previously derived
under H1 still hold true when restricting the alternatives to G̃q,γ,s \ {Fτ}.
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

Remark 6.18: The foregoing testing problem satisfies condition (2.2). To see this, note again
that it follows from Lemma 6.16 that Fτ∗ ∈ Gq,γ,s for every τ∗ ≥ γ. Hence, the set G̃q,γ,s contains
the distinct elements Fτ∗(mτ (Fτ∗) · ), τ∗ ≥ γ, so that the set of alternatives in (6.50) is evidently
not empty.
Now fix an F ∈ G̃q,γ,s \ {Fτ} and set Ft := tF + (1 − t)Fτ for every t ∈ (0, 1). Again, it is easy
to see that Ft ∈ Gq \ {Fτ} and that its Lebesgue density ft := tf + (1− t)fτ satisfies [ft]γ <∞
and ‖ft‖s,∞ <∞, with f denoting the density of F . Thus, Ft ∈ Gq,γ,s \ {Fτ}. Moreover, it is∫

R
|x|τFt(dx) = t ·

∫
R
|x|τF (dx) + (1− t) ·

∫
R
|x|τFτ (dx) =

1

τ
(t+ 1− t) =

1

τ
,

whence it follows that Ft ∈ G̃q,γ,s \ {Fτ} for all t ∈ (0, 1). Now since

dq,γ,s(Ft, Fτ ) = t · dq,γ,s(F, Fτ ) −→
t→0

0,

the claim follows. �

Let us briefly mention some properties of the metric space (G̃q,γ,s, dq,γ,s). The first result is an
analog of Lemma 6.2.

Lemma 6.19
The identity function

id : (G̃q,γ,s, dq,γ,s) 3 F 7→ F ∈ (G̃q,γ,s, dq)

is continuous, where dq is the Kantorovich-Wasserstein metric defined in (4.1).

Proof. The proof follows along the same lines as the one of Lemma 6.2, except that the conver-
gence ‖f∗n−f‖∞ → 0 as n→∞ is here a direct consequence of dq,γ,s(F ∗n , F )→ 0 as n→∞.

Thus, in combination with Lemma 4.1 the previous lemma yields the following:

Corollary 6.20
(i) For every r ∈ [1, q] the function

(G̃q,γ,s, dq,γ,s) 3 F 7→
∫
R
|x|rF (dx) ∈ (R, | · |)

is continuous.

(ii) The identity function

id : (G̃q,γ,s, dq,γ,s) 3 F 7→ F ∈ (G̃q,γ,s, dK)

is continuous, where dK is the Kolmogorov metric.

We are now able to show that the sequences (Ŵn,res)n≥2 and (V̂n,res)n≥2 fulfill condition (WIII).

Theorem 6.21
The sequences (Ŵn,res)n≥2 and (V̂n,res)n≥2 fulfill Wieand’s condition (WIII) with

b : G̃q,γ,s \ {Fτ} 3 F 7→
(∫ ∞
−∞

(
F (x)− Fτ (x)

)2
Fτ (dx)

)1/2
∈ (0, 1].
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Proof. We will first verify the statement for (Ŵn,res)n≥2.

Let K := (
∫
R x

2Fτ (dx))/2 > 0. It follows from Corollary 6.20 (i) that there is a % > 0 such that∣∣∣∫
R
x2F (dx)−

∫
R
x2Fτ (dx)

∣∣∣ < K for all F ∈ G̃q,γ,s with dq,γ,s(F, Fτ ) < %. (6.51)

Now consider the set

M := U%(Fτ ) \ {Fτ} =
{
F ∈ G̃q,γ,s : dq,γ,s(F, Fτ ) < %

}
\ {Fτ}.

We will show next that this set satisfies conditions (5.12)–(5.14), (3.5), (3.7) and (4.36).

As dq,γ,s(F, Fτ ) < % for every F ∈ M , it is [f − fτ ]γ < %, ‖f − fτ‖s,∞ < % and ‖f − fτ‖∞ < %,
with f denoting the density of F . Hence,

[f ]γ ≤ [f − fτ ]γ + [fτ ]γ < %+ [fτ ]γ <∞,

whence it follows that the set {[f ]γ : F ∈M} is bounded. Consequently, the family {f : F ∈M}
is uniformly equicontinuous, which proves (5.12). Moreover, for every x ∈ R∗ we have

f(x) ≤ |f(x)− fτ (x)|+ fτ (x) ≤ 1

|x|s
· ‖f − fτ‖s,∞ + fτ (x) <

%

|x|s
+ fτ (x),

which yields
sup
F∈M

f(x) ≤ %

|x|s
+ fτ (x) −→

|x|→∞
0,

so that condition (5.13) is also shown. In addition, we see that (5.14) holds because

‖f‖∞ ≤ ‖f − fτ‖∞ + ‖fτ‖∞ < %+ ‖fτ‖∞ <∞

for every F ∈M .

Since it follows from (6.51) that infF∈M
∫
R x

2F (dx) ≥ K > 0, the set M also satisfies (3.5).

Now note that we have ∣∣∣∫
R
|x|qF (dx)−

∫
R
|x|qFτ (dx)

∣∣∣ < % ∀ F ∈M,

so that
sup
F∈M

∫
R
|x|qF (dx) <∞. (6.52)

But as q = 2τ for τ > 1 and q > 2 for τ ∈ (0, 1], it is q > 2 in both cases. Hence,

sup
F∈M

∫
{|x|>c}

x2F (dx) ≤ c2−q sup
F∈M

∫
R
|x|qF (dx) <∞

for every c ∈ (0,∞), which yields (3.7).

Observe next that if τ > 1, then (6.52) is just condition (4.36), since q = 2τ in this case. If
0 < τ ≤ 1 (⇔ 0 < 2τ ≤ 2), then (3.7) implies (4.36), so that the latter condition holds in this
case as well.

Furthermore, note that condition (3.9) holds for any value of τ , as it follows from (3.7).

If τ ∈ (0, 1), then we also have for every F ∈M that∫
R∗
|x|τ−1F (dx) =

∫
{0<|x|≤1}

|x|τ−1f(x)dx+

∫
{|x|>1}

|x|τ−1f(x)dx
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≤ ‖f‖∞ 2

∫ 1

0
xτ−1dx+

∫
R
f(x)dx ≤ 2

τ
sup
F∈M

‖f‖∞ + 1, (6.53)

and the right-hand side of the last inequality is finite by (5.14). Hence, for every τ ∈ (0, 1) it is
supF∈M

∫
R∗ |x|

τ−1F (dx) <∞.

Since it has been shown above that M fulfills the assumptions of Proposition 5.7, it follows that
the least squares estimator satisfies

√
n(ρ̂LSn − ρ) = OuP (1) in M as n→∞.

Moreover, as M meets the requirements of Lemma 6.12, we have supF∈M PF (σ̂n,res = 0)→ 0 as
n→∞. Consequently, for every δ ∈ (0, 1) there is a C(δ) > 0 such that

PF
(
σ̂n,res = 0

)
< δ

for every F ∈M and for all n ∈ N, n ≥ 2, with
√
n > C(δ)/b(F ) ≥ C(δ), so that for the following

investigations with respect to the measures PF , F ∈M , we can assume again that σ̂n,res > 0.

Now recall that by (6.39) and (6.40) it is∣∣∣Ŵn,res√
n
− b(F )

∣∣∣ ≤ ‖Fn,res − F‖∞ +
∣∣bn,res(F )− b(F )

∣∣
for every F ∈ G̃q,γ,s \ {Fτ} and n ≥ 2. But

‖Fn,res − F‖∞ ≤ ‖Fn,res − Fn‖∞ + ‖Fn − F‖∞,

and it follows as in the proof of Theorem 6.5 that for every ε > 0 and δ ∈ (0, 1) there is a
C1(ε, δ) > 0 with

PF
(
‖Fn,res − Fn‖∞ + ‖Fn − F‖∞ ≥ ε b(F )

)
< δ

for every F ∈M and n ∈ N, n ≥ 2, with
√
n > C1(ε, δ)/b(F ).

Let us now take a look at
∣∣bn,res(F )− b(F )

∣∣. Note that we have verified above that M satisfies
the assumptions of Lemma 6.14. Thus, Proposition 6.15 states that for every ε > 0 and δ ∈ (0, 1)
there is a C2(ε, δ) > 0 such that

PF
( ∣∣bn,res(F )− b(F )

∣∣ ≥ ε b(F )
)
< δ

for all F ∈M and for all n ∈ N, n ≥ 2, with
√
n > C2(ε, δ)/b(F ).

Combining these results, this shows that (Ŵn,res)n≥2 satisfies Wieand’s condition (WIII).

It remains to investigate the sequence (V̂n,res)n≥2.

By part (i) of Corollary 6.20 there is a %′1 > 0 such that∣∣∣∫
R
|x|F (dx)−

∫
R
|x|Fτ (dx)

∣∣∣ < K ′ for all F ∈ G̃q,γ,s with dq,γ,s(F, Fτ ) < %′1 (6.54)

with K ′ := (
∫
R |x|Fτ (dx))/2 > 0. Moreover, it is 0 < Fτ < 1 because fτ is strictly positive.

Hence, there are real numbers x1 < 0 and x2 > 0 with Fτ (x1) > 0 and Fτ (x2) < 1. It follows
now from part (ii) of Corollary 6.20 that for K ′′ := min

(
Fτ (x1), 1 − Fτ (x2)

)
/2 > 0 there is a

%′2 > 0 such that

dK(F, Fτ ) = ‖F − Fτ‖∞ < K ′′ for all F ∈ G̃q,γ,s with dq,γ,s(F, Fτ ) < %′2. (6.55)

Let us examine the set

M ′ := U%′(Fτ ) \ {Fτ} =
{
F ∈ G̃q,γ,s : dq,γ,s(F, Fτ ) < %′

}
\ {Fτ}

with %′ := min(%′1, %
′
2).
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Note that we can show that M ′ satisfies conditions (5.12)–(5.14), (3.7) and (4.36) analogously
to the verification of the very conditions for the set M before by simply replacing M by M ′

and % by %′. Moreover, we see as in (6.53) that (5.14) implies supF∈M ′
∫
R∗ |x|

τ−1F (dx) <∞ for
τ ∈ (0, 1).

By (6.54) we also have
∫
R |x|F (dx) > K ′ for all F ∈M ′, which shows that (3.8) holds for M ′.

We will verify next that M ′ also satisfies (5.75). But this is easily seen to be true, because

F (x1) > Fτ (x1)−K ′′ > 0 and F (x2) < Fτ (x2) +K ′′ < 1

for every F ∈M ′ by (6.55).

To sum up, we have verified that M ′ fulfills conditions (3.7), (3.8), (4.36), (5.12)–(5.14) and
(5.75). Note that M ′ also satisfies condition (3.9), since it is implied by (3.7).

As condition (3.5) follows from (3.8), we get from Proposition 5.7 that
√
n(ρ̂LSn − ρ) = OuP (1) in

M ′ as n→∞.

We have shown above that the setM ′ satisfies the requirements of Lemma 6.12, whence it follows
that supF∈M ′ PF (σ̂n,res = 0) → 0 as n → ∞. Just like before, the following investigations with
respect to the measures PF , F ∈M ′, can therefore be carried out on the event {σ̂n,res > 0}.
Now as mentioned in (6.41), it is

∣∣∣ V̂n,res√
n
− b(F )

∣∣∣ ≤ ‖F̃n,res − F‖∞ +
∣∣bn,res(F )− b(F )

∣∣
for every F ∈ G̃q,γ,s \{Fτ} and n ≥ 2. As in the proof of Theorem 6.5 we can show that for every
ε > 0 and δ ∈ (0, 1) there is a C1(ε, δ)′ > 0 such that

PF
(
‖F̃n,res − F‖∞ ≥ ε b(F )

)
< δ

for every F ∈ M ′ and n ∈ N, n ≥ 2, with
√
n > C1(ε, δ)′/b(F ). Moreover, observe that we have

checked above that the set M ′ also fulfills the requirements of Lemma 6.14. Consequently, we
get from Proposition 6.15 that for every ε > 0 and δ ∈ (0, 1) there is a C2(ε, δ)′ > 0 with

PF
( ∣∣bn,res(F )− b(F )

∣∣ ≥ ε b(F )
)
< δ

for all F ∈M ′ and for all n ∈ N, n ≥ 2, with
√
n > C2(ε, δ)′/b(F ). A combination of these results

evidently implies that (WIII) holds for the sequence (V̂n,res)n≥2 as well, and this completes the
proof.

We have now collected all results that are needed to show that the approximate Bahadur ARE
of (Ŵn,res)n≥2 relative to (V̂n,res)n≥2 determined in Proposition 6.11 is equal to the limiting (as
α → 0) Pitman ARE of these sequences. This follows again from Theorem 2.3 once we have
checked that the two sequences of test statistics meet its requirements.
Hence, let us summarize what we have shown. We have verified that the sequences (Ŵn,res)n≥2

and (V̂n,res)n≥2 fulfill (BI), (BII) and (WIII), which means that they satisfy condition (i) of
Theorem 2.3. Moreover, we have noted before that the random variables Ŵ in (6.35) and V̂ in
(6.36) have distribution functions that are strictly increasing in their right tails, so that condition
(ii) of Theorem 2.3 also holds. Condition (iii) of this theorem is satisfied as well, as is easily seen
using 0 < b(F ) ≤ dK(F, Fτ ) for every F ∈ G̃q,γ,s \ {Fτ} and part (ii) of Corollary 6.20. As
condition (iv) of Theorem 2.3 is again trivially satisfied, we have thus verified the following
theorem.
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6 The limiting Pitman ARE of the two tests in stable autoregressive models

Theorem 6.22
Set T1n = Ŵn,res and T2n = V̂n,res, n ≥ 2. Then we have for every β ∈ (0, 1)

lim
α→0

lim inf
F ∈ G̃q,γ,s\{Fτ},
dq,γ,s(F,Fτ )→0

N2(α, β, F )

N1(α, β, F )
= lim

α→0
lim sup

F ∈ G̃q,γ,s\{Fτ},
dq,γ,s(F,Fτ )→0

N2(α, β, F )

N1(α, β, F )
=
λ̃∗1

λ̃1

< 1.

This shows that the limiting Pitman ARE of the sequence (Ŵn,res)n≥2 with respect to the
sequence (V̂n,res)n≥2 is also strictly less than one, so that the sequence of tests corresponding to
(V̂n,res)n≥2 is to be preferred to the one based on (Ŵn,res)n≥2. The explicit value of the above
limiting Pitman ARE for τ = 1 and τ = 2 can be found in Table 2 on page 52.
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Appendices

A Auxiliary Results

Lemma A.1
Let n ≥ 2 and x1, . . . , xn ∈ R with

min
1≤i≤n

xi < 0 < max
1≤i≤n

xi. (A.1)

Then there is exactly one t = t(x1, . . . , xn) ∈ R with( 1

n
− 1
) 1

max
1≤i≤n

xi
< t <

( 1

n
− 1
) 1

min
1≤i≤n

xi

and
n∑
i=1

xi
1 + txi

= 0.

Proof. Set x := min1≤i≤n xi, x := max1≤i≤n xi and

I :=
(
−1

x
,−1

x

)
.

First, note that
1 + txi > 0 ∀ i = 1, . . . , n, t ∈ I.

To verify this, let i ∈ {1, . . . , n} and t ∈ I. If t ≤ 0, then xi ≤ x implies 1 + txi ≥ 1 + tx, and the
right-hand side of the last inequality is positive since t > −1/x. Similarly, if t > 0, then xi ≥ x
implies that 1 + txi ≥ 1 + tx, and the right-hand side of the last inequality is positive because of
t < −1/x.

Thus, the function

f(t) :=

n∑
i=1

xi
1 + txi

, t ∈ I,

is well-defined. Obviously, f is continuously differentiable with

f ′(t) = −
n∑
i=1

x2
i

(1 + txi)2
, t ∈ I,

and f ′ < 0 on I because of (A.1), so that f is strictly decreasing. Now define

t−n :=
( 1

n
− 1
) 1

max
1≤i≤n

xi
and t+n :=

( 1

n
− 1
) 1

min
1≤i≤n

xi
.

Note that 0 ∈ (t−n , t
+
n ) ⊂ I. If we can show that f(t−n ) > 0 and f(t+n ) < 0, the statement follows

from the continuity and monotonicity of f . To do this, consider for t ∈ R∗ the function

gt(x) :=
x

1 + tx
, x ∈ R \ {−1/t}.

Then gt is differentiable on R \ {−1/t} with derivative

g′t(x) =
1

(1 + tx)2
> 0.
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Hence, gt is strictly increasing on (−∞,−1/t) and (−1/t,∞). By what was shown above, we
have 1 + t−n xi > 0 for all i = 1, . . . , n. Since t−n < 0, this implies that xi < −1/t−n for i = 1, . . . , n.
Thus,

f(t−n ) =
n∑
i=1

xi

1 + t−n xi
≥ x

1 + t−n x
+ (n− 1) · x

1 + t−n x
,

since at least one summand in the left sum is equal to x/(1 + t−n x) and

xi

1 + t−n xi
= gt−n (xi) ≥ gt−n (x) =

x

1 + t−n x
∀ i = 1, . . . , n

because of x ≤ xi < −1/t−n and the monotonicity of gt−n . Now since (1 − n)x > 0 and nx > 0,
we have

(1− n)x

nx+ (1− n)x
< 1 ⇒ 0 < 1 +

(n− 1)x

nx+ (1− n)x

⇒ 0 < nx+
nx(n− 1)x

nx+ (1− n)x
=

x

1 + t−n x
+ (n− 1) · x

1 + t−n x
,

so that f(t−n ) > 0.

Analogously, we have 1 + t+n xi > 0 for all i = 1, . . . , n, and it follows from this that xi > −1/t+n
because t+n is positive. Then

f(t+n ) =
n∑
i=1

xi

1 + t+n xi
≤ x

1 + t+n x
+ (n− 1) · x

1 + t+n x
,

because at least one summand in the left sum is equal to x/(1 + t+n x) and

xi

1 + t+n xi
= gt+n (xi) ≤ gt+n (x) =

x

1 + t+n x
∀ i = 1, . . . , n

since −1/t+n < xi ≤ x and gt+n is monotonically increasing on (−1/t+n ,∞). Using nx < 0 and
(1− n)x < 0, this yields

(1− n)x

nx+ (1− n)x
< 1 ⇒ 0 < 1 +

(n− 1)x

nx+ (1− n)x

⇒ 0 > nx+
nx(n− 1)x

nx+ (1− n)x
=

x

1 + t+n x
+ (n− 1) · x

1 + t+n x
,

whence f(t+n ) < 0 follows.

Let n ≥ 2. Consider the open set

Bn := {(x1, . . . , xn) ∈ Rn : min
1≤i≤n

xi < 0 < max
1≤i≤n

xi}.

For every (x1, . . . , xn) ∈ Bn let t(x1, . . . , xn) be as in the previous lemma.

Lemma A.2
The function

Bn 3 (x1, . . . , xn) 7→ t(x1, . . . , xn) ∈ R

is continuous.
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Proof. Let (x̃1, . . . , x̃n) be an arbitrary point in Bn, and let
(
(xm1 , . . . , x

m
n )
)
m∈N be a sequence

in Bn such that (xm1 , . . . , x
m
n )→ (x̃1, . . . , x̃n) as m→∞. We prove that

t(xm1 , . . . , x
m
n ) −→

m→∞
t(x̃1, . . . , x̃n)

by showing that every subsequence of
(
t(xm1 , . . . , x

m
n )
)
m∈N has a further subsequence that con-

verges to t(x̃1, . . . , x̃n).

Let
(
t(xmk1 , . . . , xmkn )

)
k∈N be a subsequence of

(
t(xm1 , . . . , x

m
n )
)
m∈N. Then

(
(xmk1 , . . . , xmkn )

)
k∈N

is obviously a subsequence of
(
(xm1 , . . . , x

m
n )
)
m∈N, and therefore

(xmk1 , . . . , xmkn ) −→
k→∞

(x̃1, . . . , x̃n).

We have shown in Lemma A.1 that t satisfies

t−n,mk :=
( 1

n
− 1
) 1

max
1≤i≤n

xmki
< t(xmk1 , . . . , xmkn ) <

( 1

n
− 1
) 1

min
1≤i≤n

xmki
=: t+n,mk (∗)

for every k ∈ N. Because of the continuity of min and max the bounds t−n,mk and t+n,mk converge
in R as k → ∞, and therefore are bounded themselves. This implies that

(
t(xmk1 , . . . , xmkn )

)
k∈N

is a bounded sequence, and therefore it has a convergent subsequence, i.e., there is a sequence(
(x
mkl
1 , . . . , x

mkl
n )

)
l∈N and a c ∈ R such that

t(x
mkl
1 , . . . , x

mkl
n ) −→

l→∞
c.

Because of (∗) it is

c ∈
[( 1

n
− 1
) 1

max
1≤i≤n

x̃i
,
( 1

n
− 1
) 1

min
1≤i≤n

x̃i

]
⊂
(
− 1

max
1≤i≤n

x̃i
,− 1

min
1≤i≤n

x̃i

)
.

Now
n∑
i=1

x
mkl
i

1 + t(x
mkl
1 , . . . , x

mkl
n )x

mkl
i

−→
l→∞

n∑
i=1

x̃i
1 + c x̃i

,

and by the definition of t(x
mkl
1 , . . . , x

mkl
n ) we know that the left-hand side equals zero for every

l ∈ N. Hence, the limit vanishes as well. But the proof of Lemma A.1 shows that the equation
n∑
i=1

x̃i
1 + t x̃i

= 0

has a unique solution in the interval
(
−1/max1≤i≤n x̃i,−1/min1≤i≤n x̃i

)
, namely t(x̃1, . . . , x̃n).

This shows that t(x̃1, . . . , x̃n) = c, and this concludes the proof.

Proposition A.3
Let M be a nonempty set of distribution functions F such that each F has uniformly continuous
Lebesgue density f and
(i) the family {f : F ∈M} is uniformly equicontinuous,

(ii) sup
F∈M

f(x) −→
|x|→∞

0.

Moreover, let G be a distribution function that is continuously differentiable and strictly increas-
ing. Then

lim
δ↓0

sup
F∈M

sup
x,y∈R

|G(x)−G(y)|≤δ

|f(x)− f(y)| = 0.
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Proof. Let ε > 0 be arbitrary, but fixed. Since

sup
F∈M

sup{|f(x)− f(y)| : x, y ∈ R, |G(x)−G(y)| ≤ δ}

is non-decreasing in δ, it suffices to show that there is a δε > 0 such that

sup
F∈M

sup{|f(x)− f(y)| : x, y ∈ R, |G(x)−G(y)| ≤ δε} ≤ ε. (A.2)

Because of (ii) there is an x0 > 0 with sup{f(x) : F ∈ M} ≤ ε/2 for all x ∈ R with |x| ≥ x0.
Moreover, there are x1, x2 ∈ R such that G(x) < 1/4 for all x ≤ x1 and G(x) > 3/4 for x ≥ x2.
Define

c−ε := (−x0) ∧ x1 and c+
ε := x0 ∨ x2.

Then G(c+
ε )−G(c−ε ) ≥ G(x2)−G(x1) > 1/2. Because of (i) there is a δ̃ε > 0 such that

|f(x)− f(y)| ≤ ε

for all x, y ∈ R with |x− y| ≤ δ̃ε and for all f = F ′ with F ∈M . Now set

I :=
[1

2
G(c−ε ),

1

2
+

1

2
G(c+

ε )
]
⊂ (0, 1) and K := max

z∈I
|G−1′(z)|,

where G−1′ is the continuous derivative of G−1, the inverse function of G. Note that K is well-
defined and in (0,∞) because as G is continuously differentiable and strictly increasing, so is
G−1.

We will show now that every

δε ∈
(

0,min
{1

2
G(c−ε ),

1

2

(
1−G(c+

ε )
)
, δ̃ε/K

})
⊂
(
0, 1/2

)
satisfies (A.2). Thus, fix such a δε and take x, y ∈ R with |G(x)−G(y)| ≤ δε. We investigate the
following cases:

Case A: x ≤ c−ε . Then either y ≤ c−ε as well, or y > c−ε .
In the first case

|f(x)− f(y)| ≤ f(x) + f(y) ≤ sup
F∈M

f(x) + sup
F∈M

f(y) ≤ 2 · ε
2

= ε

for every F ∈M .
In the latter case, i.e., if y > c−ε , y has to be less than or equal to c+

ε , since otherwise

1

2
< G(c+

ε )−G(c−ε ) < G(y)−G(x) ≤ δε <
1

2
.

This implies G(y) ∈
(
G(c−ε ), G(c+

ε )
]
⊂ I. Additionally,

G(x) ≥ G(y)− |G(x)−G(y)| ≥ G(c−ε )− δε ≥ G(c−ε )− 1

2
G(c−ε ) =

1

2
G(c−ε ),

and so it follows that G(x) ∈
[

1
2G(c−ε ), G(c−ε )

]
⊂ I. Hence, using the mean value theorem we

have
|y − x| =

∣∣G−1
(
G(y)

)
−G−1

(
G(x)

)∣∣ ≤ K · ∣∣G(y)−G(x)
∣∣ ≤ K · δε ≤ δ̃ε,

whence it follows that |f(x)− f(y)| ≤ ε for every F ∈M .
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Case B: c−ε < x < c+
ε . Then

G(y) ≥ G(x)− |G(x)−G(y)| ≥ G(c−ε )− δε ≥
1

2
G(c−ε )

and

G(y) ≤ G(c+
ε ) + δε ≤

1

2
+

1

2
G(c+

ε ),

so that G(y) ∈ I. Moreover, G(x) ∈
(
G(c−ε ), G(c+

ε )
)
⊂ I. Thus,

|y − x| ≤ K ·
∣∣G(y)−G(x)

∣∣ ≤ K · δε ≤ δ̃ε,
which implies |f(y)− f(x)| ≤ ε for every F ∈M .

Case C: x ≥ c+
ε . The proof of this case follows analogously to that of Case A. Therefore it is

omitted here.

The next result is an exponential inequality for bounded martingale difference sequences (MDS)
and follows from the martingale inequality in Lemma 1 of Häusler [14].

Lemma A.4
Let ζ1, . . . , ζn be a MDS with respect to the filtration F0 ⊂ F1 ⊂ . . . ⊂ Fn and |ζi| ≤ K <∞ for
all i = 1, . . . , n. Then for every ε, L > 0

P
({∣∣∣ n∑

i=1

ζi

∣∣∣ ≥ ε} ∩ { n∑
i=1

E(ζ2
i |Fi−1) ≤ L

})
≤ 2 exp

( ε
K
−
[ ε
K

+
L

K2

]
log
(

1 +
εK

L

))
(A.3)

≤ 2 exp
(
− ε

2

2L
+

1

2

ε3K

L2

)
. (A.4)
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B Eigenvalues of certain Hilbert-Schmidt integral operators

Consider the complex Hilbert space

L2(0, 1) :=
{
f : (0, 1)→ C

∣∣ |f |2 is integrable with respect to Lebesgue measure �
}

with inner product 〈f, g〉 :=
∫ 1

0 f(t)ḡ(t)dt, where the bar denotes the complex conjugate, and
induced norm ‖f‖L2

:=
√
〈f, f〉. As usual, we do not distinguish between two functions f, g ∈

L2(0, 1) that differ only on a set of zero Lebesgue measure. Let the function k : (0, 1)2 → C be
such that |k|2 is integrable with respect to two-dimensional Lebesgue measure. Then the mapping

Tk : L2(0, 1) 3 f 7→ Tkf ∈ L2(0, 1), (Tkf)(s) =

∫ 1

0
k(s, t)f(t)dt, s ∈ (0, 1)

is called the Hilbert-Schmidt integral operator with kernel function k.

Now assume that k : [0, 1]2 → R is the continuous covariance function of a non-trivial, real-valued,
square-integrable and centered stochastic process X = (X(t))t∈[0,1], i.e.,

k : [0, 1]2 3 (s, t) 7→ cov(X(s), X(t)) = E(X(s)X(t)) ∈ R. (B.1)

Then k is bounded, and therefore its restriction to (0, 1)2 is square-integrable with respect to two-
dimensional Lebesgue measure. Consequently, the restriction of k is a kernel function. Henceforth
we will not distinguish between k as in (B.1) and its restriction to (0, 1)2. In the following, we
will compare the largest eigenvalues of some Hilbert-Schmidt integral operators with certain
covariance kernel functions. It is well known that the operator Tk with k as in (B.1) has at most
a countable set of eigenvalues accumulating only at zero, and that all of its eigenvalues are in
[0, ‖Tk‖], where ‖Tk‖ is the operator norm of Tk.

Let k denote henceforth the covariance function of the Brownian bridge B◦, i.e., k(s, t) :=
s ∧ t − s · t, s, t ∈ [0, 1]. Then it is well known that Tk is positive definite and has simple
eigenvalues λj := 1/(jπ)2 with corresponding eigenfunctions gj(·) :=

√
2 sin(jπ·), j ∈ N.

Example B.1
Let F ∈ Gq for some fixed q ≥ 2, and set

ψ1(s) := σ−1
F UF (F−1(s)) = σ−1

F

∫ s

0
F−1(u)du, s ∈ [0, 1],

where σ2
F =

∫
R x

2F (dx) ∈ (0,∞). Then

ρ1(s, t) := k(s, t)− ψ1(s)ψ1(t), s, t ∈ [0, 1],

is the covariance function of the process W ◦ F−1, cf. (4.4). Let (λ∗j )j∈N denote the decreasing
sequence of positive eigenvalues of Tρ1 such that every eigenvalue is repeated in the sequence
according to its multiplicity. Then by Remark 5.4 in [15] it is 1/(2π)2 = λ2 ≤ λ∗1 ≤ λ1 = 1/π2,
and

λ∗1 < λ1 ⇐⇒ 0 6= 〈ψ1, g1〉, (B.2)

as follows from Theorem 5.2 in [15]. Now note that since F is continuous and centered, neither
F−1(u) ≥ 0 for all u ∈ (0, 1) nor F−1(u) ≤ 0 for all u ∈ (0, 1) is possible. As F−1 is moreover
strictly increasing, this implies that there is a u0 ∈ (0, 1) such that F−1 < 0 on (0, u0) and
F−1 > 0 on (u0, 1). Thus, the continuous function h(·) := UF (F−1(·)) is strictly decreasing on
(0, u0], strictly increasing on (u0, 1), and negative on (0, 1). Hence,

〈ψ1, g1〉 =

∫ 1

0
ψ1(u)g1(u)du =

√
2

σF

∫ 1

0
h(u) sin(πu)du 6= 0,

as the integrand is negative on (0, 1). By (B.2), this implies that λ∗1 < λ1 = 1/π2.
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Example B.2
Let Fτ and fτ be as before the distribution function and the Lebesgue density of the exponential
power distribution, τ ∈ (0,∞). Set

ψ2(s) := τ−1/2F−1
τ (s)fτ (F−1

τ (s)), s ∈ [0, 1].

Then ρ2(s, t) := k(s, t)−ψ2(s)ψ2(t) is the covariance function of the process Z ◦F−1
τ , cf. (4.23).

Let (λ̃j)j∈N denote the decreasing sequence of positive eigenvalues of the corresponding inte-
gral operator Tρ2 in which every positive eigenvalue appears as many times as its multiplicity.
Moreover, let ψ1, ρ1 and (λ∗j )j∈N be as in Example B.1 with F = Fτ . The function

ρ12(s, t) := k(s, t)− ψ1(s)ψ1(t)− ψ2(s)ψ2(t), s, t ∈ [0, 1],

is then the covariance function of the process V ◦ F−1
τ , cf. (4.25). By (λ̃∗j )j∈N we will denote the

decreasing sequence of positive eigenvalues of Tρ12 where again each positive eigenvalue appears
as often as its multiplicity.
Now note that both Tρ1 and Tρ2 are injective. For the former operator, this is shown in Proposition
6.1 of [15], and for the latter operator it follows similarly, see Proposition B.1 below. As the kernel
ρ12 can be written as ρ12(s, t) = ρ1(s, t)−ψ2(s)ψ2(t) = ρ2(s, t)−ψ1(s)ψ1(t), it thus follows from
Remark 5.4 in [15] that λ∗2 ≤ λ̃∗1 ≤ λ∗1 as well as λ̃2 ≤ λ̃∗1 ≤ λ̃1, so that λ̃∗1 ≤ min(λ∗1, λ̃1). Hence,

λ∗1 < λ̃1 =⇒ λ̃∗1 < λ̃1.

Let us examine λ̃1. It follows from the symmetry of fτ that 〈ψ2, g1〉 = 0, which implies that
λ̃1 = λ1 = 1/π2, see Theorem 5.2 in [15]. Now recall that we have shown in Example B.1 that
λ∗1 < λ1 = 1/π2, so that λ∗1 < λ̃1 indeed holds. Hence, it is

λ̃∗1 < λ̃1.

Proposition B.1
Let ρ2 be as in Example B.2. Then the Hilbert-Schmidt integral operator Tρ2 is injective.

Proof. Let g ∈ L2(0, 1) with Tρ2g = 0. Then

0 = (Tρ2g)(s) =

∫ 1

0
ρ2(s, t)g(t)dt =

∫ 1

0
(s ∧ t− s · t)g(t)dt− ψ2(s)

∫ 1

0
ψ2(t)g(t)dt (B.3)

=

∫ s

0
tg(t)dt+ s

∫ 1

s
g(t)dt− s

∫ 1

0
tg(t)dt− ψ2(s)

∫ 1

0
ψ2(t)g(t)dt (B.4)

for �-almost every s ∈ (0, 1). Since (0, 1) 3 t 7→ tg(t) ∈ C and g are integrable on (0, 1) with
respect to �, the fundamental theorem of calculus for Lebesgue integrals implies that the functions
(0, 1) 3 s 7→

∫ s
0 tg(t)dt and (0, 1) 3 s 7→

∫ 1
s g(t)dt are differentiable �-almost everywhere with

derivatives sg(s) and −g(s) respectively. Moreover, note that the function ψ2 is differentiable for
all s ∈ (0, 1) \ {1/2} with

ψ′2(s) =
1√
τ

(
1− τ

∣∣F−1
τ (s)

∣∣τ).
Hence, we get from (B.4) that

0 = sg(s) +

∫ 1

s
g(t)dt− sg(s)−

∫ 1

0
tg(t)dt− ψ′2(s)

∫ 1

0
ψ2(t)g(t)dt

=

∫ 1

s
g(t)dt−

∫ 1

0
tg(t)dt− ψ′2(s)

∫ 1

0
ψ2(t)g(t)dt (B.5)
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for �-almost every s ∈ (0, 1). Now if
∫ 1

0 ψ2(t)g(t)dt = 0, it follows from (B.3) that

0 =

∫ 1

0
(s ∧ t− s · t)g(t)dt �-a.e.

But since the integral operator with kernel k(s, t) = s∧ t− s · t is injective, g has to be zero a.e.
Hence, g 6= 0 a.e. implies

∫ 1
0 ψ2(t)g(t)dt 6= 0. Now suppose that g 6= 0 a.e. Then by (B.5) we have

ψ′2(s) =
(∫ 1

s
g(t)dt−

∫ 1

0
tg(t)dt

)
·
(∫ 1

0
ψ2(t)g(t)dt

)−1
,

so that

lim
s→0

ψ′2(s) =
(∫ 1

0
g(t)dt−

∫ 1

0
tg(t)dt

)
·
(∫ 1

0
ψ2(t)g(t)dt

)−1
> −∞,

which contradicts lims→0 ψ
′
2(s) = −∞. It follows from this that g = 0 �-a.e., which means that

Tρ2 is injective.
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