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Introduction

Risk is omnipresent in existing financial systems. There exist various categories of
financial risk addressing different aspects and perspectives. This thesis is devoted to
two specific types of risk: portfolio credit risk, which originates in the possibility that
borrowers are not able to repay their debts as previously agreed upon, and systemic
risk covering the risk of an entire financial system. Throughout this thesis we go
beyond the perspective of a single firm and study the interaction between multiple
entities.
The recent financial crisis shed light on modeling approaches concerning both

types of risk. First of all, it has revealed several problems of existing models for
credit derivatives and portfolio credit derivatives in particular. Consequently, valu-
ation and risk management of these instruments and especially the development of
accurate and still tractable models is an important field of research. In addition to
that, we have seen the consequences arising out of a loss of trust between market
participants and the questioning of their own models. On the one hand, they adapt
a more risk averse behavior, which results in counterparty contagion. For instance,
contagion could spread from lender to borrower. While this behavior may still be
rational, in the recent financial crisis panic led to much more drastic contagion ef-
fects and finally resulted in a collapse of financial markets. The topic of systemic
risk is closely related to these observations, and the events of this crisis illustrate
the importance of identification, measuring and controlling this specific type of risk.
Focusing on portfolio credit risk in the first part of this thesis, we consider a credit

portfolio with n counterparties. More precisely, we look at securities issued by these
firms. In this framework, important products are basket credit derivatives which
offer protection against the ith default in the underlying portfolio.
The existence of various counterparties leads to the question of how to deal with

the complex dependencies between these different entities. We adopt the so called
top down perspective, which means that we do not explicitly study the relationship
between the considered firms but focus on the portfolio as a whole. Consequently,
we are interested in the so called default counting process, which simply counts the
defaults in the underlying portfolio without telling us anything about the identity
of the defaulted name.
Starting with a structural definition of default in the sense of Black and Cox

(1976), we develop the first top down first-passage model for portfolio credit risk.
Structural variables in our model are the portfolio value process of the underlying
portfolio and different time independent default barriers. We model the portfolio
value process by a time changed geometric Brownian motion and suppose that a
default occurs if this process hits a specific barrier. Because we have to model sev-
eral defaults, our model consists of n possibly stochastic sequential default barriers.
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In order to obtain a tractable model, we additionally introduce an incomplete in-
formation framework which uses some of the ideas in Giesecke (2006). We study
different incomplete information models with different assumptions on the availabil-
ity of information concerning the portfolio value process and the default barriers.
As a consequence of this, we obtain reduced form formulas for prices of credit sen-
sitive securities and an algorithm to simulate the default times. Nonetheless, the
most important feature in our top town first-passage default model is the specific
time change which itself depends on the default times. This type of time change has
also been studied in Giesecke and Tomecek (2005). Due to the dependence on prior
defaults, the time change determines how sequential defaults depend on each other
and the resulting default counting process is self-affecting. Therefore, our model has
the flexibility to incorporate feedback of default events to future events. This allows
for the possibility that a default increases the likelihood of the next default. As a
result of this, we are able to model the contagion effects discussed above.
While in portfolio credit risk modeling we deal with a rather limited number of

counterparties, in the context of systemic risk the situation is quite different because
we consider an entire financial system with much more entities. The second part of
this thesis is devoted to systemic risk measurement. Here, we change the perspective
from a modeling point of view towards the view of a financial regulator or a central
bank. These entities are interested in measuring and managing the risk in order to
maintain the stability of the financial system.
In the context of single-firm risk measurement, Artzner et al. (1999) introduced

and Delbaen (2000, 2002) generalized an axiomatic approach. They studied so called
coherent risk measures which assign risk to random payments and satisfy four eco-
nomically desirable properties. Later, Föllmer and Schied (2002) and Frittelli and
Rosazza Gianin (2002) extended these approaches and introduced convex risk meas-
ures. Coherent risk measures, as well as convex risk measures, can be characterized
by their corresponding acceptance sets, and both risk measures admit a specific
dual representation which clarifies the relationship between a risk measure and the
largest expected loss with respect to a family of probability measures. A further
generalization includes dynamic aspects of risk measurement. For instance, taking
into account the availability of additional information leads to the theory of con-
ditional risk measures. Another possibility is to define risk measures on stochastic
processes which represent the evolution of firm specific financial values; see Artzner
et al. (2007), Cheridito et al. (2006) and others.
In line with these approaches for single-firm risk measurement, we generalize the

approach in Chen et al. (2013) who studied positively homogeneous systemic risk
measures on a finite probability space. Throughout the second part of this thesis we
work on a general probability space and consider a network of n firms. The main
objects of interest are convex systemic risk measures which are defined by dropping
the axiom of positive homogeneity in the approach of Chen et al. (2013). Our convex
systemic risk measures can be decomposed into a convex single-firm risk measure
and a so called aggregation function. The latter function determines how to pool
the losses of the individual firms contained in the underlying financial system and
provides, in contrast to the classical portfolio approach, more flexible possibilities to
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do so. Based on this fundamental decomposition result, we are able to characterize
our convex systemic risk measure in terms of acceptance sets. In addition, we
obtain a dual representation result, which is applied to another important subject
in the context of systemic risk measurement. We consider the question of what
fraction each firm contributes to the systemic risk of the whole financial system.
More precisely, based on our dual representation result, we study an appropriate
risk attribution method.
Beyond the scope of these static convex systemic risk measures, we develop in

Chapter 7 the first dynamic approach to systemic risk and study conditional and
dynamic convex systemic risk measures. In more detail, we study systemic risk
measures for multi-dimensional bounded discrete time stochastic processes and in-
corporate the availability of new information over time. We are able to extend our
decomposition and primal representation result directly to this setting and with some
of the techniques from Cheridito et al. (2006) we also obtain a dual representation
of conditional systemic risk measures.
Another important aspect in conjunction with dynamic risk measurement is the

question of how risk measures at different points in time depend on each other. In
literature, there exist several different suggestions for this issue of time-consistency.
We study the notion of so called strong time-consistency in line with the idea from
Riedel (2004) or Artzner et al. (2007) to use the Bellman principle in conjunction
with the axiomatic risk measurement approach. Because our dynamic systemic
risk measures can be decomposed into a dynamic single-firm risk measure and a
dynamic aggregation function, time-consistency is studied for each of these objects.
In particular, we discuss the relation between these properties and focus on the
question of what time-consistency means for the underlying aggregation function.





Part I.

Portfolio credit risk modeling: a
top down first-passage default

model
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Credit risk originates in the possibility that a person or an organization, the
borrowing entity, is not able to repay its debt as previously arranged in a contractual
agreement. To manage this risk, the question of how to model the risk of a single
security or even a whole portfolio of securities is essential.
Among the standard credit risk modeling approaches there are two types of mod-

els: structural and reduced form models.
The basis of all structural models, starting with the approaches of Merton (1974)

and Black and Cox (1976), is the definition of the default event. This default event is
defined by using the firm’s structural variables. We can, for example, define the time
of default as the first time the value of the firm’s assets falls below a specific barrier,
and this barrier may depend on the value of the firm’s debt. In this case, relevant
structural variables are the firm’s assets and the value of the firm’s debt. Models of
this kind are models in which a default is triggered by the first hitting of a specific
barrier. These are called first-passage models. Because of this explicit definition of
the default event, we know the reason for this default: The firm asset value is too
low and too close to the value of the firm’s debt. Another important feature of most
structural models is that all the information which is needed to specify the default
time of a specific firm is always publicly available for everyone, which in reality is
generally not the case. We discuss this aspect of structural models in more detail in
Subsection 2.1.3.
Reduced form models and intensity models do not establish a direct connection

between the default event and the firm’s structural variables. The first models of this
type were introduced by Jarrow and Turnbull (1992), Artzner and Delbaen (1995)
and Duffie and Singleton (1999). In reduced form models a default occurs if the so
called default indicator process jumps. But in contrast to structural models, this
process is exogenously given. This implies that we do not know the reason for the
default, we only know that a default has occurred. Nevertheless, an advantage of the
definition of the default time in reduced form models is that much less information
is required: We do not necessarily need to know the value of the firm’s assets and
debt to obtain its time of default. Indeed, “reduced form models were originally
constructed to be consistent with the information that is available to the market”
(Jarrow and Protter (2004), p. 5). As a consequence, an important advantage of re-
duced form models is that pricing formulas are often tractable, and hence applicable
in practice.
As discussed so far, structural and reduced form models distinguish between the

assumptions on the information that is available to the modeler. Jarrow and Protter
(2004) and Elizalde (2006) discuss this information based distinction of structural
and reduced form models in detail. Jarrow and Protter (2004) emphasize that a
structural model can be converted into a reduced form model if we transform the
set of available information. This means that we have to relax the assumption that
all information is publicly available. Therefore, a link between these two approaches
is given by so called incomplete information models. For a more detailed discussion
we refer again to Subsection 2.1.3. Since these models based on incomplete infor-
mation can be arranged between structural and reduced form models, they have the
potential to combine the advantages of both approaches. This means they have the
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advantage of an economically explainable default event as in structural models and
provide applicable pricing formulas as in reduced form models; see also Giesecke and
Goldberg (2004a,b).
In this part of the thesis we are interested in credit risk at the portfolio level.

Therefore, we consider a reference portfolio consisting of n names. Giesecke (2008)
points out that every model of portfolio credit risk has three main objects of in-
terest. These are the available information, the default times (and in conjunction
with these, the corresponding process counting the defaults in the portfolio) and
finally the loss distribution at a default event. For simplicity we concentrate on the
available information and the default times and consider a constant loss at a default
event. The available information is modeled by a filtration which is denoted by G
throughout this thesis. Moreover, we distinguish between two types of default times.
On the one hand, we consider the default time of a specific firm i ∈ {1, . . . , n}; on
the other hand, we study the time of the ith default in the underlying portfolio. In
the latter case, we do not necessarily know which firm belongs to the ith default.
With this terminology we are able to distinguish between top down and bottom

up approaches in credit risk. Brigo et al. (2010) propose a very intuitive distinction.
In bottom up models we try “to model dependence by specifying dependence across
single default times” (Brigo et al. (2010), p. 2). In the top down framework we
“could completely give up single-name default modelling and focus on the pool
loss and default-counting process” (Brigo et al. (2010), p. 8). By using a more
technical distinction, we can concentrate on the content of the filtration G; see also
Giesecke (2008) and Bielecki et al. (2010) who provide a detailed overview focused
on reduced form models. In top down and bottom up approaches the filtration
G contains enough information to identify the default events, but in bottom up
models an investor or a modeler is also informed about the identity of a defaulted
name. Hence, in comparison to top down models, the information filtration contains
additional information.
We can find reduced form approaches with a top down perspective as well as

reduced form approaches with a bottom up perspective. But to our knowledge, in
the context of structural models, there exist only bottom up models in the literature
so far. For an overview see the table below. Examples of these different approaches
are discussed in Section 2.2.

model type top down bottom up
structural × X

reduced form X X

We develop the first top down first-passage model for portfolio credit risk. More
precisely, we start with a structural definition of default and incorporate the idea
that only partial information about the structural variables is available to investors
in the market. Structural variables in our model are the portfolio value process of the
underlying portfolio that consists of n names (corresponding to the firm’s asset value
process in case of a single entity) and different time independent default barriers Ki

with K1 > K2 > . . . > Kn. The time of the ith default in the underlying portfolio
is denoted by Ti and defined as the first time the portfolio value process hits the ith
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default barrier Ki. Since our model is an incomplete information model, it does not
only have the advantage of an economically explainable default event, but it also
incorporates advantages of reduced form models. Indeed, we obtain explicit solutions
for the so called default trends of the different default times Ti for i ∈ {1, . . . , n}.
The specific form of these default trends allows us to determine tractable solutions
for prices of credit sensitive securities. In detail, we consider prices of contingent
claims that pay a specific amount at time T only if the ith default in the underlying
pool of names did not occur up to time T , i.e., if T < Ti; otherwise, the payout is
equal to zero. Moreover, we will see that our default times are totally inaccessible,
which is typical for reduced form models and a desired property. As Jarrow and
Protter (2004) point out, totally inaccessible default times imply that default is not
predictable, i.e., it occurs by surprise. Finally, based on the previous results for
default trends, we are able to determine the compensator of the default counting
process of the underlying portfolio, and we obtain an algorithm to simulate our
default times in a similar way to Giesecke and Goldberg (2004b). This algorithm is
typical for reduced form models.
To implement the idea of partially available information, we use the ideas from the

incomplete information approach of Giesecke (2006). This approach has also been
considered in the bottom up first-passage structural model in Giesecke and Goldberg
(2004b). Here, the authors model for each firm an individual firm value process and
suppose that these are correlated with each other in order to model the dependence
on common market factors. The default time is equal to the first time this process
falls below a firm specific stochastic barrier, and these barriers are supposed to be
dependent. This is justified by the observation that debt levels of different firms
depend on each other. Moreover, neither the asset values nor the default barriers
are available to investors. As a consequence of this modeling approach, the model
covers contagion effects such as jumps in prices of credit sensitive securities after a
default event.
There also exist top down reduced form models with a similar property. To be

more precisely, the conditional portfolio default rate, i.e., the portfolio intensity λ,
is sensitive to the occurrence of a default. Technically, this means that after each
event, the portfolio intensity possibly changes and not simply because there are
less potential defaulters in the portfolio; see Giesecke (2008). Examples of such
approaches are Giesecke and Tomecek (2005), Arnsdorf and Halperin (2009), Ding
et al. (2009) and Cont and Minca (2013) among many others. We refer to Giesecke
(2008) for a more detailed overview and more references.
In addition, we can find other models that focus on such contagion effects and

which are closely linked to the previously introduced incomplete information ap-
proaches; see, for instance, Jiao (2009), Chapter 2 in Kchia (2011) and El Karoui
et al. (2013). All previously mentioned approaches start with a default-free reference
filtration and consider enlargements of this filtration with respect to ordered or un-
ordered default times. The model in El Karoui et al. (2013) is based on the approach
in El Karoui et al. (2010) and mainly studies the case of ordered default times. A
key assumption in El Karoui et al. (2013) is the existence of conditional densities
for the default times. Thus, these kinds of models are referred to as conditional
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density approaches. As a result of the model definition in El Karoui et al. (2013),
“conditional densities given the global information depend explicitly on the past
defaults” (El Karoui et al. (2013), p. 8). In particular, the timing of these defaults
matters. Kchia (2011) analyzes credit contagion in the conditional density approach
with the focus on unordered default times. Jiao (2009), who also concentrates on
unordered default times, studies a model framework which allows to remove the den-
sity hypothesis. In our model we do not claim a corresponding assumption to the
density hypothesis in El Karoui et al. (2013), but due to our incomplete information
framework, we also work with successively enlarged filtrations. Moreover, we will
see that in our model the timing of past defaults is also relevant for future default
events.
Since we want to construct a top down first-passage default model, the question is

how to incorporate feedback of default events (see Giesecke (2008)) in such a model
framework. Our solution to this problem is the usage of time change techniques. A
time change can be seen as a map that transforms calendar time in financial time in
the sense that the financial time is strongly connected with the financial activities
that occurred up to calender time t. If, for example, the volatility in the market is
very high in a given period, then financial time will run faster than the corresponding
calender time. See, for instance, Albanese et al. (2003) or Carr and Wu (2004) for
this interpretation.
In general, we can distinguish between two types of time changes. A first possibil-

ity is to use nondecreasing Lévy processes; see Cont and Tankov (2004). These time
changes are also called Lévy subordinators and the first application in finance of
such time changes can be found in Clark (1973). Second, we can focus on absolutely
continuous time changes which are defined as integrals of stochastic processes.
Time change techniques are well known and often applied in equity modeling.

Geman et al. (2001) consider models for financial market price processes that are
given by purely discontinuous time changed Brownian motions. Important examples
of time changed Brownian motions with a specific Lévy subordinator are the well
known Variance Gamma process, see Madan and Seneta (1990) and Madan et al.
(1998), or the Normal Inverse Gaussian model of Barndorff-Nielsen (1998). There
are also many applications of absolutely continuous time changes in equity modeling;
see, for instance, the stochastic volatility models of Heston (1993) and Carr et al.
(2003).
Time changes are also increasingly popular in credit risk modeling. Albanese et al.

(2003) consider, for example, the so called credit quality process of a specific firm,
which takes values in [0, 1]. This credit quality process is given by a diffusion process
that is time changed by a gamma process. Therefore, the resulting process includes
jumps such that migration rates can be correctly fitted by the model.
Examples of time change models in multi-name credit risk are the bottom up

structural models in Overbeck and Schmidt (2005), Luciano and Schoutens (2006)
and Hurd (2009). Overbeck and Schmidt (2005) study the case of two underlying
names and assume that the ability-to-pay processes are given by correlated Brownian
motions which are transformed by deterministic time changes. In this approach the
time change differs for each firm. In contrast to this, Luciano and Schoutens (2006)
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use the same gamma time change for all names in the portfolio. Hurd (2009) models
the so called log-leverage ratio process as a time changed Brownian motion. Here,
each time change is the weighted sum of a firm specific time change and a common
time change shared by all names.
In the context of top down reduced form approaches, examples of models using

time change techniques are the models in Giesecke and Tomecek (2005) and Ding
et al. (2009). The first approach models the default counting process of the under-
lying portfolio as a time changed Poisson process and the second approach assumes
that this counting process is given by a time changed birth process. Both approaches
have a self-exiting default counting process in common, which means that prior de-
faults have an influence on the arrival of future default events. This is exactly the
property we want to incorporate in our model. But while in the model of Ding
et al. (2009) the self-affecting default counting process is a direct consequence of the
definition of the underlying birth process, Giesecke and Tomecek (2005) obtain this
result by the specific time change which depends at time t on all default times that
occurred up to this point in time.
We will use this property and define our portfolio value process as a time changed

geometric Brownian motion, and our time change is similar to the one introduced
in Giesecke and Tomecek (2005). In Chapter 3 we will see that the resulting default
counting process is also self-affecting such that the timing of past defaults is relevant
for future default events.
The outline of the first part of this thesis is the following. In Chapter 1 we

repeat important mathematical preliminaries. The aim of Chapter 2 is to give an
overview of the different perspectives in modeling (portfolio) credit risk. Therefore,
the differences between structural and reduced form models and bottom up and top
down models are discussed in detail. Chapter 3 contains the main results of this
part of the thesis. Here, we introduce and study our top down first-passage default
model. To be more precisely, we discuss two different models based on different
assumptions concerning the availability of information. At the end of this chapter
we analyze a specific time change and determine the implications to our model.



1. Mathematical preliminaries

In this chapter we introduce the terminology needed in the subsequent study. In
the first part of this thesis we focus on the jump process that counts the defaults
in a given portfolio. These processes are specific types of so called point processes.
We discuss in Section 1.1 important facts about point processes in general. Section
1.2 is dedicated to compensator processes and their computation. Throughout this
chapter let (Ω,F ,P) be the underlying probability space and let F = (Ft)t≥0 be a
filtration on this space.

1.1. Point processes
The following definitions and statements are based on Brémaud (1981).

Definition 1.1.1. A point process over [0,∞) is a sequence (ζm) of random vari-
ables with values in [0,∞] such that ζ0 = 0 and ζm < ∞ implies ζm < ζm+1. If we
define ζ∞ := limm→∞ ζm, then the associated process N defined by

Nt :=
{
m if t ∈ [ζm, ζm+1),m ∈ N0

+∞ if t ≥ ζ∞

is called counting process. The point process (ζm) is called nonexplosive if and only
if ζ∞ =∞ or equivalently Nt <∞ P-almost surely (a.s.) for all t ≥ 0. We say that
N is integrable if and only if E[Nt] <∞ for all t ≥ 0.

Remark 1.1.2. Since there exists a one-to-one correspondence between the se-
quence (ζm) and the corresponding process N , the process N is also called point
process.

The following definition introduces a specific point process.

Definition 1.1.3. Consider a point process N that is adapted to the filtration F
and let λ be a nonnegative, measurable process such that

1. λt is F0-measurable for all t ≥ 0,
2.
´ t

0 λsds <∞ P-a.s. for all t ≥ 0.

We call N an F-doubly stochastic Poisson process with (stochastic) intensity λ if
and only if

E[exp(iu(Nt −Ns))|Fs] = exp
(

(eiu − 1)
ˆ t

s
λvdv

)
(1.1)

for all 0 ≤ s ≤ t and all u ∈ R. If λ is deterministic, then N is called F-Poisson
process and if λ ≡ 1, then we say that N is a standard F-Poisson process. In case
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of F = FN = (FN
t )t≥0 with FN

t := σ(Ns : s ≤ t), we call N a Poisson process. If
F = FN and λ ≡ 1, then N is called standard Poisson process.

Remark 1.1.4. Brémaud (1981) points out that the first property and Equation
(1.1) in Definition 1.1.3 enable us to condition on F0 in (1.1) such that

E[exp(iu(Nt−Ns))|F0] = exp
(

(eiu − 1)
ˆ t

s
λvdv

)
= E[exp(iu(Nt−Ns))|Fs ∨F0].

Hence, Nt −Ns is P-independent of Fs given F0. Moreover, (1.1) implies the well
known property

P[Nt −Ns = k|Fs] = exp
(
−
ˆ t

s
λvdv

) (´ t
s λvdv

)k
k! for k ∈ N0 and 0 ≤ s ≤ t.

(1.2)
In case of a standard F-Poisson process N starting in 0, it follows from Equation
(1.2) that

P[Nt −Ns = k|Fs] = exp (−(t− s)) (t− s)k

k! for k ∈ N0 and 0 ≤ s ≤ t.

The previous equation implies that in this special case of a standard F-Poisson
process, the waiting times (ζm−ζm−1)m∈N are P-independent and additionally satisfy

P[ζm − ζm−1 > t] = exp(−t) for m ∈ N and t ≥ 0.

This means that the waiting times are exponentially distributed with parameter
λ = 1. Furthermore, it follows that P[ζm < ∞] = 1 for all m ∈ N0. We refer to
Section 10.2 in Meintrup and Schäffler (2005) for more details.

So far, we have defined the intensity of a specific point process, the so called Pois-
son process. The following definition clarifies the term for general point processes.

Definition 1.1.5. Consider an F-adapted point process N and a nonnegative, F-
progressive process λ that satisfies

´ t
0 λsds < ∞ P-a.s. for all t ≥ 0. If for all

nonnegative, F-predictable processes Y the equation

E
[ˆ ∞

0
YsdNs

]
= E

[ˆ ∞
0

Ysλsds

]
holds, then we say that N admits the (F-)intensity λ.

Theorem 1.1.6 (See Theorem T8, Chapter II in Brémaud (1981)). Suppose that
the point process N admits the F-intensity λ. Then N is nonexplosive and the
following statements hold:

1. M defined by Mt := Nt −
´ t

0 λsds is an F-local martingale.
2. If X is an F-predictable process with E[

´ t
0 |Xs|λsds] < ∞ for all t ≥ 0, then

the process Y defined by Yt :=
´ t

0 XsdMs is an F-martingale.
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3. If X is an F-predictable process with
´ t

0 |Xs|λsds <∞ P-a.s. for all t ≥ 0, then
the process Y defined by Yt :=

´ t
0 XsdMs is an F-local martingale.

The next result characterizes the intensity in terms of martingale properties.

Theorem 1.1.7 (See Theorem T9, Chapter II in Brémaud (1981)). Consider a
nonexplosive, F-adapted point process N and let λ be a nonnegative, F-progressive
process such that the process (Nt∧ζm −

´ t∧ζm
0 λsds)t≥0 is an F-martingale for all

m ∈ N. Then λ is the F-intensity of N .

According to Theorem T12, Chapter II in Brémaud (1981), F-predictable inten-
sities are unique, and Theorem T13, Chapter II in Brémaud (1981) states that for
every point process N with F-intensity λ, there always exists an F-intensity λ̄ that
is F-predictable.
The following results are special cases from the results in Chapter A.2 in Brémaud

(1981) and will be applied in Chapter 3.

Theorem 1.1.8 (See Theorem T23, Chapter A2 in Brémaud (1981)). Consider a
point process N with corresponding sequence (ζm). Then the following statements
hold:

1. ζm is an FN -stopping time for all m ∈ N0.
2. FN

t = σ(I{ζm≤s} : s ≤ t,m ∈ N).

Theorem 1.1.9 (See Theorem T26 and Theorem T28, Chapter A2 in Brémaud
(1981)). Consider an (R,B(R))-valued process Y such that there exists for all t ≥ 0
and all ω ∈ Ω an ε(t, ω) > 0 with

Yt+s(ω) = Yt(ω) on [t, t+ ε(t, ω)).

Then the natural filtration FY is right-continuous and for all FY -stopping times τ ,
we have

FYτ = σ(Ys∧τ : s ≥ 0).

Theorem 1.1.10 (See Theorem T30, Chapter A2 in Brémaud (1981)). Consider
a point process N with corresponding sequence (ζm). Then the following equations
are satisfied:

1. FN
ζm

= σ(ζi : 0 ≤ i ≤ m) for all m ∈ N.
2. FN

ζ∞
= FN

∞ = σ(ζi : i ∈ N0).

1.2. The compensator of a stochastic process
The following theorem is well known and enables us to define the so called compen-
sator of a stochastic process. In what follows, we assume that F satisfies the usual
conditions.
We call a càdlàg process (a process which is right-continuous with left limits)

C = (Ct)t≥0 an increasing process if the paths of C : t 7→ Ct(ω) are nondecreasing
for almost every (a.e.) ω ∈ Ω.
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Theorem 1.2.1 (Doob-Meyer decomposition; see, e.g., Theorem 11, Chapter III in
Protter (2005)). Consider a càdlàg F-supermartingale X with X0 = 0 such that the
family

{Xτ |τ is a finite stopping time}

is uniformly integrable. Then there exists a unique, increasing, F-predictable process
C with C0 = 0 such that the process M given by Mt = Xt + Ct is a uniformly
integrable F-martingale.

Definition 1.2.2. We call the process C the (P,F)-compensator of X. If there is
no confusion about the probability measure, we also use the term F-compensator or
simply compensator.

In the subsequent study we are interested in point processes N which have a finite
number of jumps, i.e., there exists n ∈ N such that ζm =∞ for m > n. Since N is
an increasing and bounded process, we know from the Doob-Meyer decomposition
theorem that N admits the unique compensator C such that N − C is an F-
martingale. If we additionally assume that there exists a nonnegative, F-progressive
process λ such that Ct =

´ t
0 λsds P-a.s., then it follows from Theorem 1.1.7 that λ

is the intensity of N . Thus, the compensator of N is strongly connected to the
intensity. Nevertheless, this does not imply the existence of such an intensity.
For the following remark and the corresponding proof see also Chapter II in Bré-

maud (1981).

Remark 1.2.3. Let us again consider a nonexplosive, F-adapted point process N
and a nonnegative, F-progressive process λ such that(

Nt∧ζm −
ˆ t∧ζm

0
λsds

)
t≥0

is an F-martingale for all m ∈ N. (1.3)

If we additionally assume that λ is right-continuous and bounded, then we obtain

λs = lim
t↓s

1
t− s

E [Nt −Ns| Fs] P− a.s.

This equation can be verified as follows: Fix 0 ≤ s ≤ t. The martingale property
in (1.3) yields E[Nt∧ζm −Ns∧ζm |Fs] = E[

´ t∧ζm
s∧ζm λudu|Fs] P-a.s. for all m ∈ N. For

m→∞ we obtain

E [Nt −Ns| Fs] = E
[ˆ t

s
λudu

∣∣∣∣∣Fs
]

P− a.s.

If λ is right-continuous and bounded, it follows from Lebesgue’s averaging theorem
and Lebesgue’s dominated convergence theorem that

lim
t↓s

1
t− s

E [Nt −Ns| Fs] = lim
t↓s

1
t− s

E
[ˆ t

s
λudu

∣∣∣∣∣Fs
]

= E [λs| Fs] = λs P− a.s.

Finally, the following lemma addresses important properties of the so called com-
pensated process N − C.
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Lemma 1.2.4 (See Lemma 3.1 in Pang et al. (2007)). Let N be a nonexplosive,
integrable, F-adapted point process with compensator C. If C is continuous, then
the F-martingale M := N −C is square-integrable and the corresponding quadratic
variation process satisfies [M ]=N .

Computing the compensator via the Jeulin-Yor theorem

Let us consider a nonnegative random variable τ . If τ is not an F-stopping time,
we can expand F and obtain an expanded filtration G = (Gt)t≥0 such that τ is a
G-stopping time. For the remaining part of this section we suppose that τ is not an
F-stopping time.
We are interested in computing the compensator of the process (I{τ≤t})t≥0. Note

that (I{τ≤t})t≥0 is a G-submartingale such that this process admits a G-compensator
according to the Doob-Meyer decomposition theorem. We call this compensator G-
compensator of τ .
First, we distinguish between three different filtration expansions.

Definition 1.2.5. The minimal filtration expansion G′ = (G′t)t≥0 is the smallest
expansion such that τ is a stopping time with respect to this filtration, i.e., it is
given by

G′t := Ft ∨ σ(τ ∧ t) = Ft ∨ σ({τ ≤ s} : s ≤ t).

The progressive filtration expansion is defined as the filtration Gτ = (Gτt )t≥0 such
that

Gτt := {A ∈ G∞|∃Ft ∈ Ft, A ∩ {τ > t} = Ft ∩ {τ > t}}

with G∞ := F∞ ∨ σ(τ). Finally, we say that a filtration expansion G = (Gt)t≥0 is of
the Guo-Zeng type if τ is a G-stopping time and

Gt ∩ {τ > t} = Ft ∩ {τ > t}.

For a detailed discussion of these filtration expansions we refer to Guo and Zeng
(2008), who focus on the last filtration expansion, and Okhrati (2013). Chapter VI
in Protter (2005) considers filtration expansions in general.
Note that the progressive filtration expansion is right-continuous; see also Chapter

VI in Protter (2005). By the definition of the progressive filtration expansion, we
have F∞ ∩ {τ ≤ t} ⊂ Gτt . This means that on the event {τ ≤ t}, the σ-algebra Gτt
contains the entire information included in F∞, i.e., it contains the whole information
that is encoded in the smaller filtration F up to time∞. Guo and Zeng (2008) point
out that this is not realistic from a modeling point of view. In contrast to the
progressive filtration expansion, the minimal filtration expansion does not satisfy
this critical property. Moreover, both the minimal filtration expansion and the
progressive filtration expansion are expansions of the Guo-Zeng type. We refer
again to Guo and Zeng (2008) for more details.
Now, we come back to our problem of computing the compensator of the process

(I{τ≤t})t≥0. If we define the F-conditional survival probability by

Zt := E[I{τ>t}|Ft],
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then Z is an F-supermartingale since for all s ≤ t, we have

Zs = E[1− I{τ≤s}|Fs] ≥ E[1− I{τ≤t}|Fs]
= E[E[1− I{τ≤t}|Ft]|Fs] = E[Zt|Fs] P− a.s.

The following definition is closely related to this F-supermartingale. This defini-
tion is based on Definition 5.1 in Giesecke (2006), and we will see below that the
introduced process will play an important role in computing the G-compensator of
τ .

Definition 1.2.6. Suppose that Zt > 0 P-a.s. for all t ≥ 0 and let Zt− := lims↑t Zs
and Z0− := 1. If C Z denotes the F-compensator of Z, then the process A defined
by

At :=
ˆ t

0

1
Zs−

dC Z
s (1.4)

is called default trend.

Jeulin and Yor (1978) proved in case of a progressive expansion G = Gτ that the
problem of computing the G-compensator of τ can be transformed to the problem
of computing the F-compensator of Z. This result was extended by Guo and Zeng
(2008) to the more general expansions of the Guo-Zeng type.

Theorem 1.2.7 (Extended Jeulin-Yor theorem; see Theorem 1.1 in Guo and Zeng
(2008)). Let the filtration F satisfy the usual conditions with F∞ ⊂ F and let G
be a filtration expansion of the Guo-Zeng type of F. Then the G-compensator of
(I{τ≤t})t≥0 is given by ˆ t∧τ

0

1
Zs−

dC Z
s .



2. Modeling (portfolio) credit risk

In this chapter we first take a closer look at the two main types of models among the
standard credit risk modeling approaches. We discuss the main ideas of structural
and reduced form models in Section 2.1. For this purpose it suffices to consider
the case of a single counterparty. In Section 2.2 we analyze the two main types for
modeling portfolio credit risk, i.e., bottom up and top down models.
Throughout this chapter let (Ω,G,G,P) be a filtered probability space and let

G = (Gt)t≥0 satisfy the usual conditions. From now on, we assume that the filtration
G models the flow of information over time which is available to an investor in the
market. Hence, we call this filtration information filtration or investor filtration.

2.1. Structural versus reduced form models

2.1.1. Important structural models

The basis of all structural models is the definition of the default event. In structural
models a firm defaults if its firm value is lower than a given trigger level. Since
all structural models have such a default barrier in common, they are also called
threshold models. In this subsection we shortly introduce two important structural
models: the Merton model, which can be considered as the first structural model,
and the Black-Cox model, the first first-passage model. The second model is of
special interest since our model in Chapter 3 is strongly connected to the ideas of
this approach.
In this subsection let the filtration G be generated by σ(Ws : s ≤ t) where W is a

standard Brownian motion with respect to the risk neutral probability measure P.
Merton (1974) used the setting of the standard Black-Scholes model with time

horizon T ′. To define the time of default of a given firm, the main structural variables
considered by Merton are the firm’s asset value and the value of the firm’s debt. In
Merton’s model a firm’s asset value V is described by a continuous-time geometric
Brownian motion, i.e.,

dVt = Vtrdt+ VtσdWt

where r is a constant risk-free rate of a money market account and σ > 0. The firm’s
capital structure is assumed to be given by equity and debt which is a zero coupon
bond with maturity T ≤ T ′ and face value K. The equity value at time T is given
by ST = max{VT −K, 0}, and the payoff of the bond is equal to BT = min{K,VT }.
In the Merton model a firm defaults at time T if the firm’s asset value is too low to
pay back the face value of the debt to the bondholders, i.e., if VT < K. Therefore,
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the probability of default as a function of T can be easily computed by

P[τ ≤ T ] = P[VT < K] = Φ
(
− log(V0/K)− (r − σ2/2)T

σ
√
T

)
.

Black and Cox (1976) extended the Merton model in the sense that a firm can also
default at points in time with t < T , i.e., a default can occur before the maturity
T of the bond. Default is defined as the first time the firm value falls below a
deterministic barrier. Originally, the barrier was thought of as the point at which
safety covenants of the bond are responsible for the default of the firm. Again, the
firm value is given by a geometric Brownian motion as in Merton (1974), and the
default barrier is modeled by

Kt = K̄ exp(−γ(T − t)),

for γ > 0 and a constant K̄ such that K̄ exp(−γ(T − t)) ≤ K exp(−r(T − t)) for all
t ∈ [0, T ]. Hence, the payoff to debt at time T is equal to BT = min{K,VT }I{τ>T}.
Since the default time is given by

τ = inf{t ∈ [0, T ]|Vt ≤ Kt} (inf ∅ := +∞),

we obtain in case of a constant default barrier (i.e., Kt = K for all t ∈ [0, T ]) that

P[τ ≤ T ] = P
[

inf
0≤s≤T

(log(V0/K) + (r − σ2/2)s+ σWs) ≤ 0
]
.

This probability is well known (see, for instance, Chapter 3 in Jeanblanc et al. (2009)
or Section 2.8 in Karatzas and Shreve (1988)) and given by

P[τ ≤ T ] = Φ
(
− log(V0/K)− (r − σ2/2)T

σ
√
T

)

+ e−2(r−σ2/2) log(V0/K)/σ2Φ
(
− log(V0/K) + (r − σ2/2)T

σ
√
T

)
.

Finally, note that this probability of default is equal to the Merton probability of
default plus an additional term. This additional term is justified by the fact that in
the Black-Cox model default can also occur prior to T . Obviously, this implies that
the probability P[τ ≤ T ] has to be higher than in Merton’s model.

2.1.2. Reduced form models
In contrast to structural models, reduced form models, which were pioneered by
Jarrow and Turnbull (1992), Artzner and Delbaen (1995) and Duffie and Singleton
(1999), do not explicitly consider the relationship between default and the firm’s
financial situation. Here, default is indicated by a jump process which is given
exogenously.
As discussed in Jeanblanc and Le Cam (2008), in the context of reduced form

models, we can distinguish between two types: intensity based and hazard process
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models. In this subsection we shortly introduce both approaches and highlight
important aspects. For more details we refer the reader, for instance, to Elliot et al.
(2000), Jeanblanc and Rutkowski (1999, 2000), Bielecki and Rutkowski (2004) and
Lando (2004).

The intensity based approach: An important feature of intensity based models,
in particular in comparison to hazard process approaches, is that solely the investor
filtration G is considered. In intensity based approaches the default time τ is a
positive random variable. Its conditional distribution can be described by using the
intensity process λ; see, for instance, Lando (2004). We can interpret the intensity
λ as a conditional default rate in the sense that

P[τ ≤ s+ ∆s|Gs] ≈ I{τ>s}λs∆s. (2.1)

More precisely, we assume that the G-stopping time τ denotes the time of a firm’s
default. The corresponding jump process is given by (I{τ≤t})t≥0. As a nondecreasing
indicator process, (I{τ≤t})t≥0 is a G-submartingale such that by the Doob-Meyer
decomposition theorem (see Theorem 1.2.1), there exists a compensator C(τ) such
that (I{τ≤t} − C

(τ)
t )t≥0 is a G-martingale. Since I{τ≤t∧τ} = I{τ≤t} for each t ≥ 0

and (I{τ≤t∧τ} − C
(τ)
t∧τ )t≥0 is still a G-martingale, it follows from the uniqueness of

the compensator that C(τ)
t = C

(τ)
t∧τ for all t ≥ 0.

In intensity based models it is assumed that C(τ) is absolutely continuous with
respect to the Lebesgue measure (P-a.s.), i.e., the compensator C(τ) is given by

C
(τ)
t =

ˆ t

0
λsds for all t ≥ 0

(P-a.s.) for a G-progressive, nonnegative stochastic process λ, which is called the
(G-)intensity of τ .
Since (I{τ≤t})t≥0 is a G-adapted, nonexplosive point process N with ζ1 = τ and

ζm = +∞ for m > 1, we know from Theorem 1.1.7 that λ is the G-intensity of
(I{τ≤t})t≥0 in the sense of Definition 1.1.5. If λ is additionally bounded and right-
continuous, then it follows from Remark 1.2.3 that

λs = lim
t↓s

1
t− s

E[I{τ≤t} − I{τ≤s}|Gs]. (2.2)

Since τ is a G-stopping time, we have {τ > s} ∈ Gs. It follows

I{τ>s}λs = lim
t↓s

1
t− s

E[(I{τ≤t} − I{τ≤s})I{τ>s}|Gs] = I{τ>s} lim
t↓s

1
t− s

E[I{τ≤t}|Gs]

= I{τ>s} lim
t↓s

1
t− s

P[τ ≤ t|Gs] = I{τ>s} lim
h↓0

1
h
P[τ ≤ s+ h|Gs].

Thus, Equation (2.2) is the exact version of Equation (2.1) and clarifies why the
intensity is said to express the conditional probability of a default in the next instant.
An important advantage of reduced form models is the availability of more tractable

pricing formulas for defaultable contingent claims. The following pricing formula was
originally proved in Duffie et al. (1996).
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Proposition 2.1.1 (See, e.g., Section 1.1 in Jeanblanc and Le Cam (2008)). Con-
sider a GT -measurable, integrable random variable X which describes a defaultable
promised payoff at time T . Then, in absence of a risk-free interest rate, the price of
X at time t < T is given by

PV (t, T ) = E[XI{T<τ}|Gt] = I{t<τ}(Yt − E[∆YτI{τ≤T}|Gt])

where the process Y is defined by

Yt := exp(C(τ)
t )E[X exp(−C(τ)

T )|Gt]

where ∆Yτ denotes the jump of Y at τ .

In an intensity based model with C(τ)
t =

´ t
0 λsds where Y is continuous at τ , the

price of the defaultable contingent claim X is given by

PV (t, T ) = I{t<τ}E
[
X exp

(
−
ˆ T

t
λsds

)∣∣∣∣∣Gt
]

in case of a zero interest rate and by

PV (t, T ) = I{t<τ}E
[
X exp

(
−
ˆ T

t
rs + λsds

)∣∣∣∣∣Gt
]

in case of an interest rate r which is not equal to zero. Because of the last equation,
a defaultable contingent claim can be priced as a risk-free security if the risk-free
rate r is replaced by the adjusted rate r + λ.

The hazard process approach: In contrast to intensity based models, the hazard
process approach, in general, relies on two filtrations. In addition to the investor
filtration G, a smaller filtration F = (Ft)t≥0 is considered. From now on, we as-
sume that the filtration F, as well as the filtration G, satisfies the usual conditions.
Moreover, the default time τ is supposed to be a nonnegative random variable on
(Ω,G,P) such that P[τ = 0] = 0 and P[τ > 0] > 0 for all t ≥ 0. The filtration
G = (Gt)t≥0 is given by

Gt :=
⋂
u>t

Fu ∨ σ(I{τ≤s} : s ≤ u).

Due to this definition, G is split into two filtrations. Obviously, the filtration gener-
ated by σ(I{τ≤s} : s ≤ t) contains the default information, and a common assumption
in applications is that the filtration F represents the default-free information which
is available in the market. Note that τ is not necessarily an F-stopping time, but τ
is a G-stopping time by construction.
In all hazard process approaches the process F defined by

Ft := P[τ ≤ t|Ft]

plays a prominent role. This process F is a bounded, nonnegative F-submartingale
with E[Ft] = P[τ ≤ t]. Thus, we can work with the càdlàg modification of F ; see,
for instance, Theorem 9, Chapter I in Protter (2005).
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Definition 2.1.2. Suppose that the process F satisfies Ft < 1 for all t ≥ 0. Then
the process Γ defined by Γt := − log(1− Ft) is called the F-hazard process of τ .

For the remaining part of this subsection it is assumed that the condition Ft < 1
is satisfied for all t ≥ 0 such that the F-hazard process always exists. In particular,
this means that τ is not an F-stopping time. The following lemma clarifies the
relationship between conditional expectations with respect to the filtrations F and
G.

Lemma 2.1.3 (See, e.g., Lemma 3.2 in Jeanblanc and Rutkowski (2000)). Consider
a G-measurable, integrable random variable X. Then we have for all t ≥ 0

E[I{t<τ}X|Gt] = I{t<τ}
E[I{t<τ}X|Ft]

1− Ft
= I{t<τ}e

ΓtE[I{t<τ}X|Ft].

The pricing rule in the context of hazard process based models reads as follows.

Proposition 2.1.4 (See, e.g., Proposition 3.1 in Elliot et al. (2000)). Consider an
FT -measurable, integrable random variable X which describes a defaultable promised
payoff at T . Then, in absence of a risk-free interest rate, the price of X at time t < T
is given by

PV (t, T ) = E[XI{T<τ}|Gt] = I{t<τ}E[X exp(Γt − ΓT )|Ft].

If we additionally assume that the F-hazard process is absolutely continuous, i.e.,
Γt =

´ t
0 γsds for all t ≥ 0 and an F-progressively measurable process γ, then this

process γ is called F-intensity of τ . Moreover, we obtain

PV (t, T ) = I{t<τ}E
[
X exp

(
−
ˆ T

t
γsds

)∣∣∣∣∣Ft
]
.

In order to study martingales with respect to the filtrations F and G, an important
requirement in hazard process approaches is the following hypothesis:

(H) Every square integrable F-martingale is a square integrable G-martingale.

It is well known (see, for instance, Lemma 6.4 in Jeanblanc and Rutkowski (1999))
that this hypothesis is equivalent to

P[τ ≤ s|F∞] = P[τ ≤ s|Ft] for all s ≤ t. (2.3)

Furthermore, the (H)-hypothesis implies that every F-Brownian motion is also a
Brownian motion with respect to the larger filtration G.
Let us now consider the following definition.

Definition 2.1.5. An F-martingale hazard process of a random time τ is defined
as an F-predictable, right-continuous, increasing process Λ with Λ0 = 0 such that the
process (I{τ≤t} − Λt∧τ )t≥0 is a G-martingale.
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According to the Doob-Meyer decomposition theorem, the G-compensator C(τ)

of (I{τ≤t})t≥0 is unique. Thus, the F-martingale hazard process is unique up to the
random time τ . More precisely, for two F-martingale hazard processes Λ and Λ′ we
have Λτ∧t = Λ′τ∧t for all t ≥ 0.
In order to compute this F-martingale hazard process, we first consider the case

in which the following hypothesis is satisfied:

(G) F admits a modification with increasing paths.

Proposition 2.1.6 (See, e.g., Proposition 6.1.1 in Bielecki and Rutkowski (2004)).
Suppose that F is an increasing and F-predictable process. Then the F-martingale
hazard process Λ of τ is given by

Λt =
ˆ

(0,t]

dFu
1− Fu−

=
ˆ

(0,t]

dP[τ ≤ u|Fu]
1− P[τ < u|Fu] . (2.4)

Note that the F-hazard process Γ is continuous if and only if the process F is
continuous. Therefore, we distinguish between two cases.

Proposition 2.1.7 (See, e.g., Proposition 6.2.1 in Bielecki and Rutkowski (2004)).
Suppose that (G) holds. Then the following statements are satisfied:

1. If the increasing process F is continuous, then we obtain the following equality:
Γt = Λt = − log(1 − Ft) for all t ≥ 0. In particular, the F-martingale hazard
process Λ is also continuous.

2. If the increasing process F is F-predictable and discontinuous, then

exp(−Γt) = exp(−Λct)
∏

0<u≤t
(1−∆Λu)

where Λc denotes the continuous component of Λ, i.e., Λct := Λt−
∑

0≤u≤t ∆Λu.

In general, (G) is not necessarily satisfied. Nevertheless, we can specify the F-
martingale hazard process by a formula which is similar to (2.4).
Let C F be the F-compensator of F , i.e., C F is the unique, F-predictable, increasing

process with C F
0 = 0 such that F − C F is an F-martingale.

Proposition 2.1.8 (See, e.g., Proposition 6.1.2 in Bielecki and Rutkowski (2004)).
Suppose that one of the following two conditions holds:

• (G) is not satisfied.
• (G) is satisfied and the increasing process F is not F-predictable.

Then the following statements hold:

1. The F-martingale hazard process Λ of τ is given by

Λt =
ˆ

(0,t]

dC F
u

1− Fu−
. (2.5)
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2. Suppose that C F
t = C F

t∧τ for all t ≥ 0. Then the F-martingale hazard process
Λ of τ is given by Λ = C F .

Note that if F satisfies the requirements from the extended Jeulin-Yor Theorem
(see Theorem 1.2.7), then we already know from this theorem that (I{τ≤t}−Λt∧τ )t≥0
with Λ given in (2.5) is a G-martingale.
Let us now consider the relationship between hypothesis (G) and (H). Since the

(H)-hypothesis is equivalent to (2.3), it is obvious that we can find a modification
of F which is increasing if hypothesis (H) is satisfied. Hence, the (H)-hypothesis is
stronger than the (G)-hypothesis.

Proposition 2.1.9 (See, e.g., Proposition 6.7 in Jeanblanc and Rutkowski (1999)).
Let the process F be continuous. Then the following statements are equivalent:

1. The process F is increasing.
2. If the process (Yt)t≥0 is an F-martingale, then the stopped process (Yt∧τ )t≥0 is

a G-martingale.

In particular, the previous result states that models in which (G) is satisfied and
F is continuous admit the property that stopped F-martingales are still martingales
with respect to the enlarged filtration G.
Finally, we will discuss the relationship to intensity based models. More precisely,

we are interested in the G-intensity process λ, i.e., the G-progressive, nonnegative
process such that the G-compensator C(τ) of (I{τ≤t)t≥0 satisfies C(τ)

t =
´ t

0 λsds for
all t ≥ 0. In the following, we will consider two specific cases.
First, let F be increasing and continuous. Then we know from Proposition 2.1.7

that
Λt = Γt = − log(1− Ft) for all t ≥ 0.

If additionally Γt =
´ t

0 γsds for all t ≥ 0, then the G-intensity of τ is, for instance,
given by λt := I{t<τ}γt.
In case of Proposition 2.1.8, we have

Λt =
ˆ

(0,t]

dC F
u

1− Fu−
for all t ≥ 0.

Now, let us suppose that the process C F is absolutely continuous with respect to
the Lebesgue measure, i.e., C F

t =
´ t

0 csds for all t ≥ 0 and an appropriate process c.
Then the G-intensity λ of τ can be specified by λt := ct/(1− Ft−)I{t<τ}.

2.1.3. The role of information
An important advantage of structural models is that they link the default event
with structural variables of the firm. Because of this dependence, the default time
is economically founded. Therefore, these models are also called “cause and effect
approach[es]” (Giesecke and Goldberg (2004a), p. 11). On the other hand, in tradi-
tional structural models it is assumed that the necessary structural variables, which
are, for instance, the firm’s asset value and the value of the firm’s debt, are available
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for everyone in the market. As Jarrow and Protter (2004) point out, this means that
the modeler’s information set corresponds with the information set of a firm’s man-
ager. This so called complete information approach has two well known problems:
First of all, it is unrealistic that an investor or a modeler has full information. For
example, in practice an investor faces always some uncertainty about the true asset
value of a firm. Moreover, Jarrow and Protter (2004) argue that the approach of
publicly available information very often leads to a predictable default time, which
means that there exists an announcing sequence of stopping times. An exception are
approaches in which the asset value is modeled by a process that has jumps; see, for
instance, Zhou (2001). In case of a continuous asset value process V , the sequence
(τm) defined by τm := inf{t > 0|Vt ≤ K + 1/m} is a possible announcing sequence
for the first-passage default time τ . As a consequence, the default is never a real
surprise because an investor is always aware of the “distance of the firm to default”
(Giesecke (2006), p. 2285). Moreover, it is well known that under some technical
requirements, predictable default times lead to short credit spreads which are equal
to zero; see, for instance, Proposition 3.2 in Giesecke (2006). But zero short spreads
mean that for short time horizons, investors in defaultable bonds do not ask for an
additional compensation in form of a higher yield compared to the risk-free yield.
This is intuitively very unrealistic and contradicts the outcome of empirical studies;
see, for example, Sarig and Warga (1989).
In contrast to structural models, reduced form models are based on the assumption

that much less information is available. Jarrow and Protter (2004) make clear that
the modeler’s information set coincides with the information set of the market.
Technically, this means that in reduced form models an exogenously given jump
process is used to model the default of a firm such that it is not necessary to model
the firm’s asset value. As a consequence, an investor does not know how close the
firm is to a default, and hence the default event occurs surprisingly, which is much
more realistic. Indeed, in most reduced form models the default time τ of a specific
firm is totally inaccessible, which means that

P[τ = θ <∞] = 0 for every predictable stopping time θ.

Another advantage of reduced form models is the existence of tractable pricing
formulas.
An information based distinction between structural and reduced form models

can, for example, be found in Jarrow and Protter (2004) and Elizalde (2006). The
authors of the former paper point out that “structural models can be transformed
into reduced form models as the information set changes and becomes less refined,
from that observable by the firm’s management to that which is observed by the mar-
ket” (Jarrow and Protter (2004), p. 2). Thus, a link between these two approaches
is given by so called incomplete information models. Incomplete information ap-
proaches are structural models which assume that only partial information about
the structural variables is available to the modeler. Since these models based on
incomplete information can be arranged between structural and reduced form mod-
els, they have the potential to combine the advantages of both approaches. That
is, the default event is economically explainable, and in addition, incomplete infor-
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mation models provide applicable pricing formulas; see also Giesecke and Goldberg
(2004a,b).
The model in Duffie and Lando (2001) can be seen as the first structural incom-

plete information model where the true asset value is not observable. The authors
assume that discrete asset information is available to bondholders only. In this case,
the default time is totally inaccessible as in most reduced form models. Moreover,
the authors are able to compute a default intensity for their model. Kusuoka (1999)
and Nakagawa (2001) have introduced early filtering models assuming that investors
cannot observe the asset value process directly. Nevertheless, they observe another
process continuously in time which is related to the asset value. Other incomplete
information approaches are Cetin et al. (2004), Giesecke (2006), Coculescu et al.
(2008), Frey and Schmidt (2009), Cetin (2012) and Frey and Lu (2012) to name a
few.
In our top down first-passage model we also work with such an incomplete infor-

mation framework. More precisely, we consider the setting of Giesecke (2006), who
introduces the “extreme” cases of incomplete information.
As stated by Jarrow and Protter (2004), incomplete information models have in

common that they focus on two filtrations F and G satisfying F ⊂ G. Here, the
larger filtration G represents again the investor filtration. In case of so called first-
passage default models, the filtration F is considered in more detail below. For the
following definition see also Definition 2.1 (and the subsequent remarks) in Giesecke
(2006).

Definition 2.1.10. Let G be the investor filtration and consider a firm with asset
value process V and random default barrier K. Let the G-stopping time τ be the
time of the firm’s default which is given by

τ = inf{t > 0|Vt ≤ K}. (2.6)

Moreover, let the subfiltration F ⊂ G describe the information available relative to
(2.6), i.e., F contains some kind of information about V and K. Then the pair (τ,F)
is called (first-passage) default model with model filtration F.

Varying the information in F results in different default models. As already men-
tioned, Giesecke (2006) discusses the “extreme” cases of incomplete information.
This means that the following scenarios are considered:

Complete information: The asset value V and the default barrier K are publicly
available. This means that F is generated by σ(Vs : s ≤ t)∨ σ(K). In this case, τ is
an F-stopping time. Consequently, G = F is a possible choice.

Incomplete information 1: The default barrier K is publicly available, but the
asset value V is not known. Hence, F is generated by σ(K).

Incomplete information 2: Neither the asset value nor the default barrier is pub-
licly available. This means that F is generated by the trivial σ-algebra.
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Incomplete information 3: The asset value V is publicly available, but the default
barrier is unknown. In this scenario F is generated by σ(Vs : s ≤ t).

2.2. Bottom up versus top down
To classify our model correctly in Chapter 3, the understanding of the differences
between top down and bottom up approaches in portfolio credit risk modeling is
essential. Good references for this topic are Giesecke (2008) and Bielecki et al.
(2010).
From now on, we focus on a portfolio consisting of n names. As already pointed

out in the introduction, we can distinguish between two types of default times.

Notation 2.2.1. The default time of name k is a random time denoted by τk for
k ∈ {1, . . . , n}. Moreover, we denote the time of the ith default in the portfolio by
Ti for i ∈ {1, . . . , n}. The ordered default times T1, . . . , Tn satisfy T1 ≤ . . . ≤ Tn.

With these random times we define the default indicator processes N (k) and N i

by
N

(k)
t := I{τk≤t}, N i

t := I{Ti≤t} for k, i ∈ {1, . . . , n}

and the default counting process N by

Nt :=
n∑
k=1

I{τk≤t} =
n∑
i=1

I{Ti≤t}.

The first process N (k) indicates the default of firm k, the second process N i indicates
the ith default in the portfolio andN counts the absolute number of defaulted names.
The intuitive idea from Brigo et al. (2010) to distinguish between bottom up and

top down approaches is the following: In bottom up models we consider every single
name in the portfolio, and by choosing a specific dependence structure between the
default times of each firm, the relationship between the different firms is defined. In
contrast to this, in top down models the focus changes. We are not interested in
single-name modeling any more, but we solely study the overall process that counts
the defaults in the underlying portfolio and, if necessary, the losses occurring at a
default event.
For a more technical distinction, we have to take a look at the investor filtration

G and the different types of default times introduced above. The difference between
bottom up and top down approaches is based on the content of the investor filtration
G that models the information which is available to an investor. In both approaches
the investor filtration contains enough information to identify a default event. But
in bottom up models the investor is also informed about the identity of the defaulted
name. In conclusion, the investor knows which firm has defaulted. Technically, this
means that in bottom up approaches the investor filtration G is finer than in the
top down framework. As a consequence, in bottom up models the default times
τk, k ∈ {1, . . . , n}, are stopping times with respect to G. In contrast to this, in
top down models the investor does not have information about the identity of a
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defaulted name. This implies that Ti, i ∈ {1, . . . , n}, are G-stopping times and τk,
k ∈ {1, . . . , n}, are only random times, i.e., random variables with values in [0,∞].
We can summarize this aspect by stating that the difference between bottom up and
top down models is information based.
There exist reduced form models in both approaches. Examples of top down re-

duced form approaches are Schönbucher (2005), Bennani (2005, 2006), Giesecke and
Tomecek (2005), Lopatin and Misirpashaev (2008), Sidenius et al. (2008), Arnsdorf
and Halperin (2009), Laurent et al. (2011), Giesecke et al. (2011) and Cont and
Minca (2013) to name a few. Typically, these models admit a portfolio intensity
which is sensitive to default events. This means that there is a possible change in
the structure of the portfolio intensity after a default. This can be justified by two
facts: On the one hand, there are less firms in the underlying portfolio due to the
default. In other words, the portfolio contains less potential defaulters. On the
other hand, a modified intensity could establish real feedback of default events; see
Giesecke (2008). Consequently, the model incorporates possible default contagion.
Bottom up reduced form models have been studied in Duffie and Gârleanu (2001),

Jarrow and Yu (2001), Frey and Backhaus (2008, 2010) and Eckner (2009) among
many others. In case of these models, there exists the possibility to incorporate
feedback of default events, too. We refer the reader to Giesecke (2008) and Bielecki
et al. (2010) for a more detailed classification of reduced form models.
Finally, we can also find bottom up structural approaches in the literature; see, for

instance, Giesecke and Goldberg (2004b), Overbeck and Schmidt (2005), Luciano
and Schoutens (2006) or Hurd (2009).
The approach of Giesecke and Goldberg (2004b) works with the incomplete infor-

mation model from Giesecke (2006), which also provides an important basis for our
model in Chapter 3. Moreover, this bottom up structural model incorporates possi-
ble feedback of default events to prices of credit sensitive contingent claims, i.e., it
covers financial contagion. The models proposed in Overbeck and Schmidt (2005),
Luciano and Schoutens (2006) and Hurd (2009) share the idea to use time change
techniques with our approach in the following chapter. Overbeck and Schmidt (2005)
consider a threshold model based on time changed Brownian motions and obtain an
analytic solution for the probability of joint default in case of two entities. In this
approach the time change differs for each firm. Luciano and Schoutens (2006) choose
another model based on the idea of Black and Cox (1976) where the same gamma
time change is used for all names in the portfolio. Finally, Hurd (2009) models the
so called log-leverage ratio process as a time changed Brownian motion where each
time change is the weighted sum of a firm specific time change and a common time
change which is shared by all names.
The aim of the following chapter is to find a top down first-passage model for

portfolio credit risk which incorporates possible feedback of default events on future
defaults. We will see that this is implemented by using a specific stochastic time
change which was originally introduced by Giesecke and Tomecek (2005).



3. A top down first-passage default
model

Chapter 3 is the main contribution of the first part of this thesis. Here, we construct
and study the new top down first-passage default model. After motivating and
discussing the idea of a time changed portfolio value process in Section 3.1, we
introduce our model in Section 3.2. This model relies on some ideas in Giesecke and
Tomecek (2005) and Giesecke (2006). We specify the different default events, the
incomplete information model and the time change in Subsections 3.2.1-3.2.4. In
Section 3.3 we derive conditional distributions of the corresponding arrival times.
These are an important building block for the following section, where we consider
default trends conditional on prior defaults. The specific form of these trends allows
us to determine tractable solutions for prices of default sensitive securities. In detail,
we derive prices of contingent claims that pay a specific amount at time T if the
ith default in the underlying pool of names did not occur up to this point in time,
i.e., if T < Ti; otherwise, the payout is equal to zero. At the end of Section 3.4 we
apply our results to the default trends and determine the compensator process of the
default counting process of the underlying portfolio. After discussing an additional
incomplete information model in detail in Section 3.5, we study in Section 3.6 more
specific examples of the time change. Finally, based on the results of Sections 3.4
and 3.5, we introduce an algorithm to simulate our default times which is similar
to the algorithm in the bottom up first-passage structural model in Giesecke and
Goldberg (2004b).

3.1. Motivation
Our aim is the construction of a top down first-passage default model. In this
section we consider the naive way to derive such a model and finally discuss why
this approach is not appropriate for our purposes.
Throughout this section fix a probability space (Ω,A,P) that supports a standard

Brownian motionW . We focus on a portfolio consisting of n defaultable firms. More
precisely, we consider securities issued by these firms. Suppose that the portfolio
value process V is given by the geometric Brownian motion

dVt = VtµV dt+ VtσV dWt

with constants µV ∈ R and σV > 0. Note that Vt = V0 exp{(µV − σ2
V /2)t+ σVWt}.

Without loss of generality, we assume that V0 = v0 > 0 is constant.
We define default times as first hitting times; see Black and Cox (1976). This

means that the time of the ith default in our portfolio is the first time the portfolio
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Figure 3.1.1.: Portfolio value process and default barriers (without time change)
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value process V hits the deterministic barrier Ki. Let V0 = K0 > K1 > . . . >
Kn > 0 and set κi := log(Ki−1/Ki) for i ∈ {1, . . . , n}. Eventually, we define the ith
default time by

Si := inf{t ≥ 0|Vt ≤ Ki} for any i ∈ {1, . . . , n}

and set S0 := 0. Figure 3.1.1 visualizes the first idea of the model. If we set
µ := µV − σ2

V /2 and σ := σV , then Si, i ∈ {1, . . . , n}, satisfy

Si = min{t ≥ 0| log(V0/K
i) + µt+ σWt = 0}

= min{t ≥ 0|(µ/σ)t+Wt = − log(V0/K
i)/σ}.

Note that for each i ∈ {1, . . . , n}, the random time Si is a stopping time with
respect to the standard Brownian filtration FW = (FWt )t≥0.

Remark 3.1.1. In general, Si satisfies P[Si =∞] > 0 for each i ∈ {1, . . . , n}: It is
well known (see, for instance, Section 3.2.3 in Jeanblanc et al. (2009)) that

P[Si <∞] = exp(−2µ log(V0/K
i)/σ2) if − µ log(V0/K

i)/σ2 < 0.

Since log(V0/K
i)/σ2 > 0, this means P[Si = ∞] = 1− P[Si < ∞] > 0 if µ > 0. On

the other hand, we have P[Si =∞] = 1− P[Si <∞] = 0 if µ ≤ 0.

We can now easily compute the distribution of the inter-arrival times Si − Si−1
for each i ∈ {1, . . . , n}. But note that the difference Si − Si−1 is only well defined
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on the event {Si−1 <∞}. Therefore, we introduce a new probability measure Pi−1

on (Ω,A) by
Pi−1[A] := P[A|Si−1 <∞] for A ∈ A.

Let us consider the corresponding probability space (Ωi−1,Ai−1,Pi−1) with Ωi−1 :=
{Si−1 <∞} and Ai−1 := A ∩ Ωi−1 := {A ∩ Ωi−1|A ∈ A}.

Remark 3.1.2. Fix i ∈ {1, . . . , n}.

1. For each A ∈ A, we have

Pi−1[A] = P[A|Ωi−1] = P[A ∩ Ωi−1|Ωi−1] = Pi−1[A ∩ Ωi−1].

Hence, if we want to compute the probability of A ∈ A under Pi−1, it suffices
to compute the probability of the corresponding element A ∩ Ωi−1 ∈ Ai−1.

2. Let E ⊂ A be a sub-σ-algebra with Ωi−1 ∈ E and consider X : Ωi−1 → R.
Then X is E ∩Ωi−1-measurable if and only if XIΩi−1 : Ω→ R is E-measurable.

The following lemma will be very helpful in the remaining part of this chapter.

Lemma 3.1.3. Fix i ∈ {1, . . . , n}.

1. We have Ei−1[IAIΩi−1 ] = Ei−1[IA] for all A ∈ A.
2. If E ⊂ A is a sub-σ-algebra with Ωi−1 ∈ E, then for all A ∈ A, it follows that

Ei−1[IA|E ] = Ei−1[IA|E ∩ Ωi−1]IΩi−1 Pi−1 − a.s. (3.1)

3. Let E ⊂ A be a sub-σ-algebra and X,Y ≥ 0 random variables on the probability
space (Ωi−1,Ai−1,Pi−1). Moreover, assume that Y is independent of E ∩Ωi−1

and let X be E ∩ Ωi−1-measurable. If F (t) := Pi−1[Y ≤ t] for all t ≥ 0, then

Pi−1[Y ≤ X|E ∩ Ωi−1] = F (X) Pi−1 − a.s.

Proof. The first assertion follows directly from Remark 3.1.2. Moreover, for each
E ∈ E and A ∈ A, we have

Ei−1[Ei−1[IA∩Ωi−1 |E ]IE ] = Ei−1[IA∩Ωi−1IE ] = Ei−1[IA∩Ωi−1IE∩Ωi−1 ]
= Ei−1[Ei−1[IA∩Ωi−1 |E ∩ Ωi−1]IE∩Ωi−1 ] = Ei−1[Ei−1[IA∩Ωi−1 |E ∩ Ωi−1]IΩi−1IE ].

Thus, Remark 3.1.2 yields Ei−1[IA∩Ωi−1 |E ] = Ei−1[IA∩Ωi−1 |E ∩ Ωi−1]IΩi−1 for each
A ∈ A. Equation (3.1) follows from

Ei−1[IA|E ] = Ei−1[IA∩Ωi−1 |E ] + Ei−1[IA∩{Si−1=∞}|E ]
= Ei−1[IA∩Ωi−1 |E ] = Ei−1[IA∩Ωi−1 |E ∩ Ωi−1]IΩi−1 = Ei−1[IA|E ∩ Ωi−1]IΩi−1 .

It remains to show the third assertion. To this end, we have to verify

Ei−1[Ei−1[I{Y≤X}|E ∩ Ωi−1]IA] = Ei−1[F (X)IA]
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for all A ∈ E ∩ Ωi−1. Let σΩi−1(X) be the smallest sub-σ-algebra of Ai−1 such that
X is measurable and define σΩi−1(A) := {Ωi−1, ∅, A,Ωi−1\A}. Then σΩi−1(X) ∨
σΩi−1(A) ⊂ E∩Ωi−1 for all A ∈ E∩Ωi−1 ⊂ A∩Ωi−1 = Ai−1. The Pi−1-independence
of Y and E ∩ Ωi−1 implies that Y is Pi−1-independent of σΩi−1(X) ∨ σΩi−1(A).
If we apply Lemma A.1.2 for the measurable function f : R2 → R defined by
f(x, y) := I{y≤x}, then

ˆ
ω1∈A

ˆ
ω2∈Ωi−1

I{Y (ω2)≤X(ω1)}dPi−1(ω1)dPi−1(ω2) =
ˆ
A
I{Y≤X}dPi−1. (3.2)

The right hand side of the previous equation is equal to
ˆ
A
I{Y≤X}dPi−1 = Ei−1[I{Y≤X}IA] = Ei−1[Ei−1[I{Y≤X}|E ∩ Ωi−1]IA].

Since F : R+ → [0, 1] is monotone, F is measurable. This means F (X)(ω1) =
F (X(ω1)) for Pi−1-a.e. ω1 ∈ Ωi−1. Hence, the left hand side of Equation (3.2) is
equal to
ˆ
ω1∈A

(ˆ
ω2∈Ωi−1

I{Y (ω2)≤X(ω1)}dPi−1(ω2)
)
dPi−1(ω1) =

ˆ
ω1∈A

F (X(ω1))dPi−1(ω1)

=
ˆ
ω1∈Ωi−1

F (X)(ω1)IA(ω1)dPi−1(ω1) = Ei−1[F (X)IA],

which yields the third assertion.

Remark 3.1.4. Note that the third part of the previous lemma is also true for the
probability space (Ω,A,P): Let E ⊂ A be a sub-σ-algebra and X,Y ≥ 0 random
variables on the probability space (Ω,A,P). Moreover, assume that Y is independent
of E and let X be E-measurable. If F (t) := P[Y ≤ t] for all t ≥ 0, then

P[Y ≤ X|E ] = F (X) P− a.s.

Proposition 3.1.5. For each i ∈ {1, . . . , n}, the Pi−1-distribution of Si − Si−1 is
given by

Pi−1 [Si − Si−1 ≤ t] = P
[
min
s≤t

(κi + σWs + µs) ≤ 0
]

for t ≥ 0. (3.3)

Proof. Fix i ∈ {1, . . . , n}. We can easily see that

(Si − Si−1)I{Si−1<∞} = inf{s ≥ 0|VSi−1+s = Ki}I{Si−1<∞}.

Since V satisfies Vt = V0 exp(µt + σWt) for all t ≥ 0, we obtain the following
equations on {Si−1 <∞}:

VSi−1+s = V0 exp(σWSi−1+s + µ(Si−1 + s))
= V0 exp(σWSi−1+s − σWSi−1 + σWSi−1 + µ(Si−1 + s))
= V0 exp(µSi−1 + σWSi−1) exp(σ(WSi−1+s −WSi−1) + µs).
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Ki−1 = V0 exp(µSi−1 + σWSi−1) on {Si−1 <∞} yields

(Si − Si−1)I{Si−1<∞}

= inf{s ≥ 0|Ki−1 exp(σ(WSi−1+s −WSi−1) + µs) = Ki}I{Si−1<∞}

= inf{s ≥ 0| log(Ki−1/Ki) + σ(WSi−1+s −WSi−1) + µs = 0}I{Si−1<∞}.

Hence, we obtain for all t ≥ 0

Pi−1 [Si − Si−1 ≤ t]

=
P[{inf{s ≥ 0|κi + σ(WSi−1+s −WSi−1) + µs = 0} ≤ t} ∩ {Si−1 <∞}]

P[Si−1 <∞]
= Pi−1[{inf{s ≥ 0|κi + σ(WSi−1+s −WSi−1) + µs = 0} ≤ t}]
= P[inf{s ≥ 0|κi + σWs + µs = 0} ≤ t].

To the last equality: Si−1 is an FW -stopping time and (Wt,FWt )t≥0 is a Brownian
motion. According to the strong Markov property (see Theorem A.1.1), the process
(WSi−1+s−WSi−1)s≥0 is a Brownian motion on the probability space (Ωi−1,Ai−1,Pi−1)
which is Pi−1-independent of FWSi−1

∩Ωi−1. Since Ωi−1 = {Si−1 <∞} ∈ FWSi−1
∩Ωi−1,

the last equality holds.
Finally, Equation (3.3) follows from

P[inf{s ≥ 0|κi + σWs + µs = 0} ≤ t] = P
[
min
s≤t

(κi + σWs + µs) ≤ 0
]
.

Notation 3.1.6. We denote

F∆S(t, x) := P
[
min
s≤t

(x+ σWs + µs) ≤ 0
]

for x > 0 and t ≥ 0.

The function F∆S(t, x) is well known for x > 0 and t ≥ 0; see, for instance,
Chapter 3 in Jeanblanc et al. (2009) or Section 2.8 in Karatzas and Shreve (1988)
(see also Appendix A.1). It is given by

F∆S(t, x) =

Φ
(
−x−µt
σ
√
t

)
+ e−2µx/σ2Φ

(
−x+µt
σ
√
t

)
for x > 0 and t > 0

0 for x > 0 and t = 0
.

Since κi is deterministic, we obtain the following corollary.

Corollary 3.1.7. The distribution in (3.3) is given by

Pi−1[Si − Si−1 ≤ t] = F∆S(t, κi) for t ≥ 0.

Moreover, the FWSi−1
-conditional Pi−1-distribution of Si satisfies

Pi−1[Si ≤ t|FWSi−1 ] = F∆S(t− Si−1, κ
i)I{Si−1<t} Pi−1 − a.s.

for each t ≥ 0 .
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Proof. Fix i ∈ {1, . . . , n} and t ≥ 0. The first equation is obvious. For the second
equation note that Si−1 is an FW -stopping time, which yields

Pi−1[Si ≤ t|FWSi−1 ] = Pi−1[Si ≤ t|FWSi−1 ]I{Si−1<t} + Pi−1[Si ≤ t|FWSi−1 ]I{Si−1≥t}

= Pi−1[Si ≤ t|FWSi−1 ]I{Si−1<t}

= Pi−1[(Si − Si−1)I{Si−1<∞} ≤ (t− Si−1)+|FWSi−1 ]I{Si−1<t}

= Pi−1[Si − Si−1 ≤ (t− Si−1)+|FWSi−1 ∩ Ωi−1]I{Si−1<t}. (3.4)

The last equality in (3.4) follows from the second statement of Lemma 3.1.3. More-
over, we know from the proof of Proposition 3.1.5 that

(Si − Si−1)I{Si−1<∞}

= inf{s ≥ 0| log(Ki−1/Ki) + σ(WSi−1+s −WSi−1) + µs = 0}I{Si−1<∞}

and that (WSi−1+s−WSi−1)s≥0 is a Brownian motion on (Ωi−1,Ai−1,Pi−1) which is
Pi−1-independent of FWSi−1

∩Ωi−1. This implies that Si−Si−1 is Pi−1-independent of
FWSi−1

∩Ωi−1 on (Ωi−1,Ai−1,Pi−1). Since (t−Si−1)+ is FWSi−1
-measurable, it follows

directly that (t − Si−1)+ considered as a mapping on Ωi−1 is also FWSi−1
∩ Ωi−1-

measurable. The third statement of Lemma 3.1.3 implies

Pi−1[Si − Si−1 ≤ (t− Si−1)+|FWSi−1 ∩ Ωi−1] = F∆S((t− Si−1)+, κi).

Together with Equation (3.4), we obtain

Pi−1[Si ≤ t|FWSi−1 ] = F∆S((t− Si−1)+, κi)I{Si−1<t} = F∆S(t− Si−1, κ
i)I{Si−1<t}.

The previous corollary shows that the Pi−1-distribution of the inter-arrival times
Si − Si−1 only depends on κi = log(Ki−1/Ki) and the parameters µ and σ of V .
Similarly, the FWSi−1

-conditional Pi−1-distribution of Si depends on κi, µ, σ and Si−1.
This means, apart from the dependence on the time which has passed since the last
default, prior default events do not influence the conditional default probability of
the remaining names in the portfolio. To be more specific, if, for instance, n = 10
and κ1 = κ2 and if we consider the conditional distribution functions of S1 and
S2, then only the time which has passed since the last default is relevant for the
conditional distribution (note that Si−1 = S0 = 0 if i = 1; hence, there is no prior
default), but it makes no difference whether there has been no default or one default
in the portfolio so far. This is obviously not a desirable property. Our intention
is to construct a top down first-passage default model that incorporates default
contagion, which means that a default of one name influences future defaults in the
underlying portfolio directly. In particular, the model should allow for a switch of
regimes after each default. To generate such contagion effects, the model above is
not suitable. It is obvious that we have to include more stochastic features to obtain
the desired property.
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A possible solution to this problem provides the approach of Giesecke and Tomecek
(2005) which considers a specific time change model. In the following sections we
adapt their reduced form approach to our first-passage model. Therefore, we suppose
that the portfolio value process is a time changed geometric Brownian motion and
analyze the corresponding first hitting times. As a result of this definition, our top
down first-passage model is flexible enough to incorporate default contagion.

3.2. Model definition
As already pointed out at the end of the previous section, the most important object
of our model is a time change which depends on prior defaults. The next definition
clarifies this term in our setting.

Definition 3.2.1. Fix a probability space (Ω,A,P). A right-continuous, strictly in-
creasing, [0,∞]-valued process G with G0 = 0 is called time change. The time change
is called continuous if G has P-a.s. continuous paths and absolutely continuous if
G has P-a.s. absolutely continuous paths, i.e., there exists an appropriate process g
such that for all t ≥ 0, we have

Gt =
ˆ t

0
gsds P− a.s.

Remark 3.2.2. Note that if a continuous time change G satisfies Gt <∞ P-a.s. for
all t ≥ 0 and limt→∞Gt =∞ P-a.s., then the inverse process G−1 defined by

G−1
t (ω) := inf{s ≥ 0|Gs(ω) > t} for t ≥ 0 and ω ∈ Ω

is again a continuous time change that satisfies G−1
t < ∞ P-a.s. for all t ≥ 0 and

limt→∞G
−1
t = ∞ P-a.s. Moreover, G−1 satisfies G−1

t = min{s ≥ 0|Gs = t} and
GG−1

t
= t P-a.s. for all t ≥ 0.

Since we want to construct a top down first-passage model where the default of one
firm can influence the default probability of the remaining firms in our portfolio, we
have to choose a specific time change G for our model. In the following subsection
we introduce our first-passage model with a general (absolutely continuous) time
change G. A more detailed specification of G follows in Subsections 3.2.2 and 3.2.4.

3.2.1. Default events
The construction of the following top down structural model is strongly connected
to the top down reduced form model of Giesecke and Tomecek (2005), which is one
of the main building blocks of our model.
Let (Ω,A,P) be a probability space that supports a standard Brownian motion

W and an absolutely continuous time change G that satisfies Gt < ∞ P-a.s. for
all t ≥ 0 and limt→∞Gt = ∞ P-a.s. Moreover, consider the underlying geometric
Brownian motion V given by

dVt = VtµV dt+ VtσV dWt
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Figure 3.2.1.: Portfolio value process and default barriers (with time change)
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with constants µV ∈ R and σV > 0. We assume that V0 = v0 > 0 is constant.
Let κ1, . . . , κn be independent random variables with values in (0,∞) that are inde-
pendent of σ(Wt : t ≥ 0).
Again, our starting point is a portfolio consisting of n defaultable firms. We

assume that the portfolio value process of this portfolio is given by the time changed
process VG. Moreover, the ith default barrier, i ∈ {1, . . . , n}, is defined by Ki :=
Ki−1 exp(−κi) with K0 := V0. Note that in this case, κi = log(Ki−1/Ki) and
K0 > K1 > . . . > Kn > 0. A default occurs if the portfolio value process hits one
of the barriers Ki, i ∈ {1, . . . , n}. More precisely, the ith default occurs if VGt ≤ Ki

for the first time such that

Ti := inf{t ≥ 0|VGt ≤ Ki} (T0 := 0)

describes the time of the ith default in the underlying portfolio, see Figure 3.2.1 for
an illustration. In addition, we define the first hitting time of barrier Ki by V by

Si := inf{t ≥ 0|Vt ≤ Ki} (S0 := 0).

Remark 3.2.3. Fix i ∈ {1, . . . , n}.

1. Si and Ti are random times, i.e., A-measurable random variables with values
in [0,∞], which can be represented in the following way:

Si = inf{t ≥ 0| log(Vt/Ki) ≤ 0}
= inf{t ≥ 0| log(V0/K

i) + (µV − σ2
V /2)t+ σVWt ≤ 0}
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and
Ti = inf{t ≥ 0| log(VGt/Ki) ≤ 0}

= inf{t ≥ 0| log(V0/K
i) + (µV − σ2

V /2)Gt + σVWGt ≤ 0}.
If we define the processXi byXi

t := log(V0/K
i)+µt+σWt with µ := µV −σ2

V /2
and σ := σV , then Si = inf{s ≥ 0|Xi

s ≤ 0} and Ti = inf{s ≥ 0|Xi
Gs
≤ 0}.

2. Following the same steps described at the beginning of Section 3.1, we obtain
that in general P[Si =∞] > 0.

3. If we define G∞ :=∞, then the properties of G imply Si = GTi and Ti = G−1
Si

P-a.s.
4. The previous item implies P[Si = ∞] = P[Ti = ∞]. As a consequence of this,

we obtain that in general P[Ti =∞] > 0.
So far, our default model has obviously a structural character. Nevertheless, in

the following subsections we focus on the default counting process

Nt :=
n∑
i=1

I{Ti≤t}

and the adjunct process N0
t :=

∑n
i=1 I{Si≤t}. Note that by definition, the default

counting process N is nonexplosive.
Remark 3.2.4. In Giesecke and Tomecek (2005) the authors define a reduced form
model directly: Their starting point is a standard (marked) Poisson process with
respect to a specific filtration HGT . This process is from now on denoted by NGT,0,
and the corresponding arrival times of this HGT -Poisson process are denoted by
(SGTi )i∈N0 . The default counting process NGT in the approach of Giesecke and
Tomecek (2005) is a time changed Poisson process. This means

NGT
t = NGT,0

GGTt
for t ≥ 0

where GGT denotes a specific time change. Moreover, the arrival times of NGT , i.e.,
the times TGTi in which this process jumps, satisfy SGTi = GGT

TGTi
P-a.s. Note that

in our model the hitting times Si and Ti, i ∈ {1, . . . , n}, depend on each other in a
similar way (see 3. in Remark 3.2.3).
Nevertheless, in our first-passage model the arrival time Ti or, in other words, the

point in time in which the process N jumps for the ith time, can be interpreted
as the first time the portfolio value process hits the ith barrier. In the reduced
form model of Giesecke and Tomecek (2005) there does not exist an explanation for
the occurrence of a jump of the default counting process NGT . Another important
difference between the arrival times SGTi , i ∈ N, and our first hitting times Si, i ∈
{1, . . . , n}, is that all SGTi are P-a.s. finite as arrival times of a standard HGT -Poisson
process (see Remark 1.1.4), while in our model we have in general P[Si = ∞] > 0
(see 2. in Remark 3.2.3).
Because of the specific construction of the time change GGT in the model of

Giesecke and Tomecek (2005), the resulting time changed process NGT is self-
affecting. Hence, the time change G in our model is constructed in a similar way to
the time change GGT .
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3.2.2. Time change

In this subsection we discuss the time change G in more detail. The main idea is
that the time change should have two important properties. On the one hand, G
should depend on the first hitting times Ti, i ∈ {1, . . . , n}, which results in a self-
affecting default counting process. On the other hand, G should be general enough
to depend on other stochastic factors. As a consequence, the model is able to take
into account additional dependencies on the random environment.
In order to implement this property of G, we assume that there exists a filtration

K := (Kt)t≥0 ⊂ A satisfying the usual conditions. Additionally, K∞ and σ(Wt : t ≥
0) are assumed to be independent. A possible choice for K is the filtration generated
by a Brownian motion B that is independent of W .
In the following, we introduce a general assumption that has to be satisfied by the

underlying time change G. As a consequence, if we specify a time change G (see, for
instance, Subsection 3.2.4), then we have to verify that G meets this requirement.

Assumption 3.2.5. The time change G is adapted to the filtration generated by the
σ-algebras

Kt ∨ σ(I{Ti≤s} : s ≤ t, i ≤ n).

Note that the previous assumption allows for the time change Gt to depend on
the arrivals that occurred before t and on the random environment described by K.
We will see later in more detail (see Section 3.6) that if the filtration K is trivial,
then the time change G solely depends on the arrival times and t. For instance, a
time change being deterministic between arrival times is an appropriate choice. On
the other hand, if K is not trivial, then the time change might depend on additional
stochastic variables.

3.2.3. Setting of the first incomplete information model (IIM1)

So far, we have developed a top down first-passage structural model where the
portfolio value process is given by a time changed geometric Brownian motion. In
this subsection we specify important features of the incomplete information model.
For each random time Ti, i ∈ {1, . . . , n}, we define a default model (Ti,Fi−1) in

the sense of Giesecke (2006) (see also Definition 2.1.10). In the following, we will
specify the investor filtration G and the model filtrations Fi−1, i ∈ {1, . . . , n}, such
that Fi−1 ⊂ G. For each i ∈ {1, . . . , n}, the model filtration Fi−1 is the key to define
our incomplete information model. If we apply Definition 2.1.10 to our context, then
we have to specify the information which is available with respect to

Ti = inf{t ≥ 0|VGt ≤ Ki} (3.5)

for each i ∈ {1, . . . , n}. Consequently, in order to define Fi−1, we have to specify
how much information is available with respect to V , G and Ki.
Note that the investor filtration G models the information which is available to an

investor and not only the information which is available with respect to (3.5). Since
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Fi−1 ⊂ G and since an investor indeed observes all defaults, the investor filtration
G = (Gt)t≥0 has to satisfy

F i−1
t ∨ σ(I{Tk≤s} : s ≤ t, k ≤ n) ⊂ Gt for all t ≥ 0 and i ∈ {1, . . . , n}.

Specification of the first incomplete information model: In our model the fol-
lowing information should be available on {t ≤ Ti−1}:

• K1, . . . ,Kn

• K up to time t
• Number of defaults up to time t
• Time of all defaults that occurred up to time t
• Gs for s ≤ t

On {t > Ti−1}, the following information should additionally be available:

• K up to time t

This means that an investor always knows the barriers which trigger a default in
the underlying portfolio. As long as t ≤ Ti−1, we also suppose complete information
about the random environment represented by K and the defaults that occurred
up to time t. As a consequence, the time change G is observable up to this point
in time. In case of t > Ti−1, the flow of new information is much smaller: There
is additional information available about the random environment described by K
only.
Since an investor never receives any information about the underlying process V ,

the portfolio value process VG is unobservable. Hence, the ith default is not observ-
able with the information available with respect to (3.5). Note that by Assumption
3.2.5, the time change Gt might depend on all defaults that occurred up to time t. In
this case, the fact that the ith default is not observable implies that the information
which is available with respect to (3.5) contains only partial information about the
time change after the (i− 1)st default.
The following definitions guarantee the requirements from above: Let κ1, . . . , κn >

0 be deterministic, which leads to deterministic default barriers K1, . . . ,Kn. Define
the model filtrations Fi−1 := (F i−1

t )t≥0, i ∈ {1, . . . , n}, by

F i−1
t :=

⋂
u>t

Ku ∨ σ(I{Tk≤s} : s ≤ u, k ≤ i− 1).

The investor filtration G, which models the information available to an investor and
not only the information available with respect to (3.5), is assumed to be given by

Gt :=
⋂
u>t

Ku ∨ σ(I{Tk≤s} : s ≤ u, k ≤ n).

Moreover, to specify the time change G in the next subsection, we need the filtrations
Gi−1 := (F i−1

Ti−1+t)t≥0 for i ∈ {1, . . . , n}.
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Remark 3.2.6. 1. Note that the σ-algebra K∞ is independent of σ(Ws : s ≥ 0)
by definition. Because K0,K1, . . . ,Kn and κ1, . . . , κn are deterministic, the σ-
algebra σ(κ1, . . . , κn) is trivial. Furthermore, Si is a stopping time with respect
to the right-continuous filtration A = (At)t≥0 ⊂ A generated by σ(Ws : s ≤
t)∨σ(κ1, . . . , κn)∨K∞, and W is still a Brownian motion with respect to this
filtration.

2. The default counting process N is G-adapted and Ti−1 is a stopping time
with respect to Fi−1 ⊂ Gi−1 for i ∈ {1, . . . , n}. Furthermore, Ti is not an
Fi−1-stopping time. Later, we will see that these default times are totally
inaccessible in G.

In order to analyze this incomplete information model, we have to consider the
filtration H := (Ht)t≥0 defined by

Ht := K∞ ∨ σ(I{Si≤s} : s ≤ t, i ≤ n).

By definition, each Si, i ∈ {1, . . . , n}, is an H-stopping time. Moreover, the filtration
(σ(I{Si≤s} : s ≤ t, i ≤ n))t≥0 is right-continuous; hence, so is H. Given Ht, we know
the number of jumps of N0 up to time t and at which points in time these jumps
have occurred, but we do not know the exact value of V .

3.2.4. Exact definition and properties of the time change
In the following definition we specify the time change G by using the filtrations
Gi−1, i ∈ {1, . . . , n}, from the previous subsection. An important aim in this sub-
section is to prove that this time change satisfies Assumption 3.2.5. This specific
form of the time change is not entirely new: Indeed, Giesecke and Tomecek (2005)
introduced time changes of this type and pointed out that such time changes are
especially tractable in view of simulating the arrival times (TGTi )i∈N0 . Remark 3.2.8
discusses the approach in Giesecke and Tomecek (2005), and Section 3.6 presents
the advantages of this choice for G.

Definition 3.2.7. For each i ∈ {1, . . . , n}, consider a Gi−1-adapted, absolutely
continuous time change Gi with Git < ∞ P-a.s. for all t ≥ 0 and limt→∞G

i
t = ∞

P-a.s. The (overall) time change G is defined by

Gt :=


∑i−1
k=1G

k
Tk−Tk−1

+Git−Ti−1
on {Ti−1 ≤ t < Ti} for i ∈ {1, . . . , n}∑n−1

k=1 G
k
Tk−Tk−1

+Gnt−Tn−1
on {Tn ≤ t}

.

Since each Gi is Gi−1-adapted, Git depends on the information in K up to time
Ti−1 + t and on T0, . . . , Ti−1. By this definition, G is absolutely continuous, strictly
increasing with G0 = 0 and satisfies Gt <∞ P-a.s. for all t ≥ 0 and limt→∞Gt =∞
P-a.s.
If i > 1, then for each j ∈ {1, . . . , i − 1}, Tj is given by Tj = inf{t ≥ 0|VGt ≤

Kj} = inf{t ≥ Tj−1|VGt = Kj} on {Tj−1 <∞}. Definition 3.2.7 and T0 = 0 imply

Tj = inf
{
t ≥ Tj−1

∣∣∣V∑j−1
k=1 G

k
Tk−Tk−1

+Gjt−Tj−1
= Kj

}
on {Tj−1 <∞}.
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Figure 3.2.2.: Example of time change G
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Hence, for each j ∈ {1, . . . , i− 1}, Tj depends on V , Kk and Gk for k ≤ j only.
Moreover, G is constructed such that after each default, a new term is added to

the time change. This property is illustrated in Figure 3.2.2, which shows a possible
path of G. In this example it is assumed that K is trivial, and the arrival times are
given by T0 = 0, T1 = 1.5, T2 = 3, T3 = 5 and T4 = 8. We observe that after each
default, the time change G changes its slope. In more detail, the time evolves faster
after each default. The change in the slope of G after the (i − 1)st arrival time is
determined by the specific form of the ith time change Gi. We will discuss this and
other examples of G in more detail in Section 3.6.
In the subsequent study we will see that this property of G, i.e., the possible

change in the evolution of financial time after each default, leads to a self-affecting
default counting process.

Remark 3.2.8. In Giesecke and Tomecek (2005) the authors also consider con-
tinuous time changes (GGT,i)i∈N that satisfy GGT,it < ∞ P-a.s. for all t ≥ 0 and
limt→∞G

GT,i
t = ∞ P-a.s. for all i ∈ N. Here, the overall time change GGT is de-

fined by countably many (SGTi )i∈N0 which are arrival times of a standard (marked)
HGT -Poisson process, and (GGT,i)i∈N is such that

TGTi − TGTi−1 = (GGT,i)−1
SGTi −SGTi−1

for i ∈ N (3.6)

and limi→∞ T
GT
i = ∞ P-a.s. More precisely, in Giesecke and Tomecek (2005) the

time change GGT is given by

GGTt =
i−1∑
k=1

GGT,k
TGT
k
−TGT

k−1
+GGT,i

t−TGTi−1
on {TGTi−1 ≤ t < TGTi } for i ∈ N.

Note that (GGT,i)−1
t < ∞ P-a.s. for all t ≥ 0 and i ∈ N. Moreover, since SGTi are

arrival times of a standard (marked) HGT -Poisson process, we know from Remark
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1.1.4 that P[SGTi = ∞] = 0 for all i ∈ N0. Therefore, Equation (3.6) implies
P[TGTi =∞] = 0 for all i ∈ N.

The next proposition shows that Equation (3.6) is also satisfied in our setting on
the event {Si−1 <∞}.

Proposition 3.2.9. For each i ∈ {1, . . . , n}, the time change Gi satisfies P-a.s.

Ti − Ti−1 = (Gi)−1
Si−Si−1

on {Si−1 <∞}

Proof. Fix i ∈ {1, . . . , n}. Since Si = GTi , we have {Si < ∞} = {Ti < ∞}.
Moreover, together with Ti = inf{t > Ti−1|VGt = Ki} on {Ti−1 <∞}, we obtain

Ti − Ti−1 = inf
{
t > Ti−1

∣∣∣V∑i−1
k=1 G

k
Tk−Tk−1

+Git−Ti−1
= Ki

}
− Ti−1

= inf{s > 0|VGTi−1+Gis = Ki}

on {Si−1 <∞}. Note that the equality VGTi−1
= VSi−1 holds on {Si−1 <∞}. This

implies that Ti−Ti−1 = (Gi)−1
inf{u>0|VSi−1+u=Ki} on {Si−1 <∞}. On the other hand,

we can easily compute that Si − Si−1 = inf{u > 0|VSi−1+u = Ki} on {Si−1 < ∞}.
Together, we see directly that Ti − Ti−1 = (Gi)−1

Si−Si−1
on {Si−1 <∞}.

Next, we will show that G defined in Definition 3.2.7 satisfies Assumption 3.2.5.
We deduce this property from the following lemmas. Note that in the model setting
of Giesecke and Tomecek (2005) the authors discuss analogous results in Remark A.4,
Lemma A.5 and Lemma A.6. Nevertheless, as stated in Remark 3.2.8, TGTi satisfy
P[TGTi = ∞] = 0 for all i ∈ N, and in our model we have in general P[Ti = ∞] > 0
for i ∈ {1, . . . , n} (see 4. in Remark 3.2.3). Therefore, we prove the relevant results
in our model setting.
First, consider the random variables R1

t , . . . , R
n
t defined by

Rit :=
{

min{Ti − Ti−1, (t− Ti−1)+}I{Ti−1<∞} for i ∈ {1, . . . , n− 1}
(t− Tn−1)+ for i = n

for t ≥ 0.

Lemma 3.2.10. For any i ∈ {1, . . . , n} and t ≥ 0, (t − Ti−1)+ is a finite Gi−1-
stopping time, and Rit is a finite Gi-stopping time.

Proof. Fix i ∈ {1, . . . , n} and t ≥ 0. The random times (t − Ti−1)+ = (t −
Ti−1)+I{Ti−1<∞} and Rit are finite by definition. Moreover, we know that (t −
Ti−1)+I{Ti−1<∞} ≥ 0 and Rit ≥ 0. Then we have for u ≥ 0

{(t− Ti−1)+ ≤ u} = {Ti−1 =∞} ∪ ({(t− Ti−1)+ ≤ u} ∩ {Ti−1 <∞})
= {Ti−1 =∞} ∪ ({t ≤ Ti−1 + u} ∩ {Ti−1 <∞}).
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Since Ti−1 is a stopping time with respect to Fi−1, we have {Ti−1 = ∞} ∈ F i−1
Ti−1

=
Gi−1

0 ⊂ Gi−1
u . Similarly, we get {Ti−1 < ∞}, {t ≤ Ti−1 + u} ∈ Gi−1

u such that
(t− Ti−1)+ is a Gi−1-stopping time. Now, consider i ∈ {1, . . . , n− 1}. Then

{Rit ≤ u} = {min{Ti − Ti−1, (t− Ti−1)+}I{Ti−1<∞} ≤ u}
= {Ti−1 =∞} ∪ ({min{Ti − Ti−1, (t− Ti−1)+} ≤ u} ∩ {Ti−1 <∞})
= {Ti−1 =∞} ∪ ([{Ti − Ti−1 ≤ u} ∪ {t− Ti−1 ≤ u}] ∩ {Ti−1 <∞})
= {Ti−1 =∞} ∪ ([{Ti ≤ Ti−1 + u} ∪ {t ≤ Ti−1 + u}] ∩ {Ti−1 <∞}).

(3.7)

Since Ti and Ti−1 are stopping times with respect to Fi, we have {Ti ≤ Ti−1 + u} ∈
F iTi−1+u ⊂ F iTi+u = Giu. Similarly, we obtain {Ti−1 = ∞}, {t ≤ Ti−1 + u}, {Ti−1 <

∞} ∈ Giu, which proves the second assertion in case of i ∈ {1, . . . , n − 1}. If i = n,
then Rnt = (t − Tn−1)+. Because of the first part of this proof, (t − Tn−1)+ is a
Gn−1-stopping time, which implies the Gn-stopping time property.

Lemma 3.2.11. For any i ∈ {1, . . . , n} and t ≥ 0, Gi(t−Ti−1)+ is F i−1
t -measurable.

Proof. Fix i ∈ {1, . . . , n} and t ≥ 0. According to the previous lemma, (t − Ti−1)+

is a finite Gi−1-stopping time. Moreover, Gi is continuous and Gi−1-adapted by
definition. This implies that Gi(t−Ti−1)+ is measurable with respect to Gi−1

(t−Ti−1)+ =
F i−1
Ti−1+(t−Ti−1)+ . Since Ti−1+(t−Ti−1)+ ≤ t∨Ti−1, it follows directly that Gi(t−Ti−1)+

is measurable with respect to F i−1
t∨Ti−1

. This yields

{Gi(t−Ti−1)+ ≤ u} ∈ F i−1
t∨Ti−1

for all u ≥ 0.

Due to F i−1
t∨Ti−1

= {A ∈ A|A ∩ {t ∨ Ti−1 ≤ u} ∈ F i−1
u for all u ≥ 0}, we obtain

{Gi(t−Ti−1)+ ≤ u} ∩ {t ∨ Ti−1 ≤ t} ∈ F i−1
t for all u ≥ 0.

Since {t ∨ Ti−1 ≤ t} = {Ti−1 ≤ t} ∈ F i−1
t , it follows

{Gi(t−Ti−1)+ ≤ u}

= ({Gi(t−Ti−1)+ ≤ u} ∩ {Ti−1 ≤ t}) ∪ ({Gi(t−Ti−1)+ ≤ u} ∩ {t < Ti−1})

= ({Gi(t−Ti−1)+ ≤ u} ∩ {Ti−1 ≤ t}) ∪ ({Gi0 ≤ u} ∩ {t < Ti−1})

= ({Gi(t−Ti−1)+ ≤ u} ∩ {Ti−1 ≤ t}) ∪ {t < Ti−1} ∈ F i−1
t .

Lemma 3.2.12. For all i ∈ {1, . . . , n} and t ≥ 0, Gi
Rit

is F it -measurable.

Proof. Fix i ∈ {1, . . . , n} and t ≥ 0. Equation (3.7) yields that Rit is a finite
(F iTi−1+u)u≥0-stopping time. Moreover, Gi is continuous and Gi−1(⊂ (F iTi−1+u)u≥0)-
adapted by definition. Hence, Gi

Rit
is F i

Ti−1+Rit
-measurable. Since Ti−1 + Rit ≤

Ti−1 + (t − Ti−1)+ ≤ t ∨ Ti−1, the remaining part of the proof is analogous to the
proof of Lemma 3.2.11 if we replace (t− Ti−1)+ by Rit and F i−1

t by F it .
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With the previous lemmas we can conclude as Giesecke and Tomecek (2005).

Proposition 3.2.13. The overall time change G satisfies Assumption 3.2.5, and
G−1
t is a G-stopping time for each t ≥ 0.

Proof. First of all, note that

GiRit
I{Ti−1<∞} =

{
Git−Ti−1

I{Ti−1≤t<Ti} +GiTi−Ti−1
I{Ti≤t} for i ∈ {1, . . . , n− 1}

Gnt−Tn−1
I{Tn−1≤t} for i = n

.

Moreover, the overall time change G satisfies Gt =
∑n
k=1G

k
Rkt

for each t ≥ 0 since

n−1∑
k=1

Gkmin{Tk−Tk−1,(t−Tk−1)+}I{Tk−1<∞}
+Gn(t−Tn−1)+

=
n−1∑
i=1

(
n−1∑
k=1

Gkmin{Tk−Tk−1,(t−Tk−1)+}I{Tk−1<∞}
+Gn(t−Tn−1)+

)
I{Ti−1≤t<Ti}

+
(
n−1∑
k=1

Gkmin{Tk−Tk−1,(t−Tk−1)+}I{Tk−1<∞}
+Gn(t−Tn−1)+

)
I{Tn−1≤t}

=
n−1∑
i=1

(
i−1∑
k=1

GkTk−Tk−1 +Git−Ti−1

)
I{Ti−1≤t<Ti}

+
(
n−1∑
k=1

GkTk−Tk−1 +Gnt−Tn−1

)
I{Tn−1≤t}.

Lemma 3.2.12 yields that Gk
Rkt

is Fkt (⊂ Gt)-measurable for each k ∈ {1, . . . , n} and
t ≥ 0. It follows immediately that G is G-adapted. Furthermore, it follows from
G−1
t = inf{s ≥ 0|Gs > t} = min{s ≥ 0|Gs = t} that

{G−1
t ≤ s} = {t ≤ Gs} ∈ Gs for all s ≥ 0.

This means that G−1
t is a G-stopping time for each t ≥ 0.

To prove the last proposition in this subsection, we need the following lemma
which is similar to Theorem T28, Chapter A2 in Brémaud (1981) (see Theorem
1.1.9).

Lemma 3.2.14. Let N be a nonexplosive point process and define the filtration
E∞,N := (E∞,Nt )t≥0 by

E∞,Nt := K∞ ∨ σ(Ns : s ≤ t).

Then for every E∞,N -stopping time θ, the following equality holds:

E∞,Nθ = K∞ ∨ σ(Nθ∧s : s ≥ 0).
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Proof. Since K∞ ⊂ E∞,Nt and Nθ∧t is E∞,Nθ∧t (⊂ E∞,Nθ )-measurable for each t ≥ 0,
the inclusion “⊃” is trivial. The proof of the inclusion “⊂” is analogous to the proof
of Theorem T28, Chapter A2 in Brémaud (1981) if one recalls that

E∞,Na = σ(Ns, IC : s ≤ a,C ∈ K∞) for every a ∈ R+

since K∞ = σ(IC : C ∈ K∞).

Remark 3.2.15. For N = N0, we obtain from Theorem 1.1.8 that E∞,Nt = Ht.
Thus, Lemma 3.2.14 yields Hθ = K∞ ∨σ(N0

θ∧s : s ≥ 0) for every H-stopping time θ.

Proposition 3.2.16. For each i ∈ {1, . . . , n}, T1, . . . , Ti are measurable with respect
to HSi. In particular, we have GTi ⊂ HSi.

Proof. Fix i ∈ {1, . . . , n}. We know from Remark 3.2.15 that HSi = K∞∨σ(N0
Si∧s :

s ≥ 0). Moreover, because FN0
t = σ(N0

s : s ≤ t), Theorem 1.1.9 yields FN0
Si

=
σ(N0

Si∧s : s ≥ 0), and from Theorem 1.1.10 we know that FN0
Si

= σ(Sj : j ≤ i).
Hence, we obtain

HSi = K∞ ∨ σ(Sj : j ≤ i).

Measurability of T1, . . . , Ti follows directly from the definition of G by

Gt =


∑i−1
k=1G

k
Tk−Tk−1

+Git−Ti−1
on {Ti−1 ≤ t < Ti} for i ∈ {1, . . . , n}∑n−1

k=1 G
k
Tk−Tk−1

+Gnt−Tn−1
on {Tn ≤ t}

and the fact that

Tj = G−1
Sj

= inf{t ≥ 0|Gt = Sj} for all j ≤ i :

First, consider T1 which is given by T1 = inf{t ≥ 0|Gt = S1} = inf{t ≥ 0|G1
t = S1}.

Then for each s ≥ 0, we have

{T1 ≤ s} = {inf{t ≥ 0|G1
t = S1} ≤ s} = {S1 ≤ G1

s}.

Since S1 is σ(Sj : j ≤ i) measurable and G1
s is K∞-measurable by definition, this

yields {T1 ≤ s} ∈ K∞ ∨ σ(Sj : j ≤ i) for each s ≥ 0. Thus, T1 is measurable with
respect to K∞ ∨ σ(Sj : j ≤ i).
If i > 1, then measurability of T2 follows from measurability of T1: Due to the

definition of G, we have GT1 = G1
T1
. Therefore, G1

T1
= S1. Moreover, we have

T2 = inf{t ≥ 0|Gt = S2} = inf{t ≥ T1|G1
T1 +G2

t−T1 = S2}
= inf{t ≥ T1|G1

T1 +G2
(t−T1)+ = S2} on {T1 <∞}.

Together, we obtain for all s ≥ 0

{T2 ≤ s} = {T1 ≤ s} ∩ {inf{t ≥ T1|G1
T1 +G2

(t−T1)+ = S2} ≤ s}

= {T1 ≤ s} ∩ {inf{t ≥ T1|S1 +G2
(t−T1)+ = S2} ≤ s}

= {T1 ≤ s} ∩ {S2 ≤ S1 +G2
(s−T1)+}.
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We have already proved that T1 is measurable with respect to K∞ ∨ σ(Sj : j ≤ i).
Furthermore, it is obvious that S1 and S2 are σ(Sj : j ≤ i)-measurable. By Lemma
3.2.11, G2

(s−T1)+ is F1
s -measurable. Since

F1
s =

⋂
u>s

Ku ∨ σ(I{T1≤v} : v ≤ u) ⊂ K∞ ∨ σ(T1) ⊂ K∞ ∨ σ(Sj : j ≤ i)

for all s ≥ 0, we finally obtain that {T2 ≤ s} ∈ K∞ ∨ σ(Sj : j ≤ i) for all s ≥ 0.
This means that T2 is measurable with respect to K∞ ∨ σ(Sj : j ≤ i).
By this procedure, we successively obtain that all Tk for k ≤ i are K∞ ∨ σ(Sj :

j ≤ i)-measurable. This yields the first assertion.
The inclusion GTi ⊂ HSi follows from Lemma 3.2.14: Note that Gt ⊂ E∞,Nt = K∞∨

σ(Ns : s ≤ t). According to Lemma 3.2.14, we have E∞,NTi
= K∞ ∨ σ(NTi∧s : s ≥ 0).

Since K∞ ∨ σ(NTi∧s : s ≥ 0) = K∞ ∨ σ(Tj : j ≤ i), it follows

E∞,NTi
= K∞ ∨ σ(Tj : j ≤ i).

Finally, the second assertion holds due to GTi ⊂ E
∞,N
Ti

and because T1, . . . , Ti are
measurable with respect to HSi .

3.3. Conditional distribution of the arrival times
In this section we determine conditional Pi−1-distributions of the inter-arrival times
Ti − Ti−1 and the arrival times Ti by using the results from Section 3.1.

Lemma 3.3.1. For each i ∈ {1, . . . , n}, the inter-arrival time Si − Si−1 is Pi−1-
independent of HSi−1 ∩ Ωi−1 on (Ωi−1,Ai−1,Pi−1).

Proof. Fix i ∈ {1, . . . , n} and consider A = (At)t≥0 defined in Subsection 3.2.3 as the
right-continuous filtration generated by σ(Ws : s ≤ t) ∨ σ(κ1, . . . , κn) ∨ K∞ (Note
that because κ1, . . . , κn are deterministic, the σ-algebra σ(κ1, . . . , κn) is trivial.).
Since Sj is an A-stopping time, Sj is ASj -measurable for each j ∈ {0, . . . , i − 1}.
This implies that S0, . . . , Si−1 are ASi−1-measurable, and hence HSi−1 = K∞∨σ(Sj :
j ≤ i− 1) ⊂ ASi−1 . Together with the Pi−1-independence of (WSi−1+s −WSi−1)s≥0
and ASi−1∩Ωi−1 on (Ωi−1,Ai−1,Pi−1), this yields that (WSi−1+s−WSi−1)s≥0 is Pi−1-
independent of HSi−1 ∩ Ωi−1 on (Ωi−1,Ai−1,Pi−1). From the proof of Proposition
3.1.5 we know that

(Si − Si−1)I{Si−1<∞} = inf{s ≥ 0|κi + σ · (WSi−1+s −WSi−1) + µs = 0}I{Si−1<∞}.

Since κi is deterministic for each i ∈ {1, . . . , n}, we finally obtain the assertion.

Before we arrive at the main result of this section, we have to consider the following
lemma which is related to Lemma A.11 in Giesecke and Tomecek (2005).

Lemma 3.3.2. For each i ∈ {1, . . . , n} and t ≥ 0, Si − Si−1 is Pi−1-independent of
F i−1
Ti−1+t ∩ Ωi−1 and Pi−1-independent of F i−1

t∨Ti−1
∩ Ωi−1 on (Ωi−1,Ai−1,Pi−1).
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Proof. Fix i ∈ {1, . . . , n} and t ≥ 0. We know from Lemma 3.3.1 that Si − Si−1 is
Pi−1-independent of HSi−1 ∩ Ωi−1 on (Ωi−1,Ai−1,Pi−1). Now, consider the count-
ing process Nt :=

∑i−1
k=1 I{Tk≤t}. Due to Lemma 3.2.14, we have E∞,NTi−1

= K∞ ∨
σ(NTi−1∧s : s ≥ 0). Moreover, Theorem 1.1.9 yields FN

Ti−1
= σ(NTi−1∧s : s ≥ 0),

and from Theorem 1.1.10 we know that FN
Ti−1

= σ(Tj : j ≤ i− 1). It follows

E∞,NTi−1
= K∞ ∨ σ(Tj : j ≤ i− 1).

According to Theorem 1.1.10, we have E∞,N∞ = K∞ ∨ σ(Tj : j ≤ i − 1). Therefore,
the inclusions E∞,NTi−1

⊂ E∞,NTi−1+t ⊂ E∞,N∞ and E∞,NTi−1
⊂ E∞,NTi−1∨t ⊂ E

∞,N
∞ imply

E∞,NTi−1+t = E∞,NTi−1∨t = K∞ ∨ σ(Tj : j ≤ i− 1).

Furthermore, by definition of Fi−1 and E∞,N , we have F i−1
s ⊂ E∞,Ns for all s ≥ 0.

As a consequence, we obtain

F i−1
Ti−1+t ⊂ E

∞,N
Ti−1+t = K∞ ∨ σ(Tj : j ≤ i− 1) and

F i−1
Ti−1∨t ⊂ E

∞,N
Ti−1∨t = K∞ ∨ σ(Tj : j ≤ i− 1).

Since Tj , j ≤ i− 1, are HSi−1-measurable by Proposition 3.2.16, this means

F i−1
Ti−1+t ⊂ HSi−1 and F i−1

Ti−1∨t ⊂ HSi−1 . (3.8)

Finally, the Pi−1-independence of Si − Si−1 and HSi−1 ∩ Ωi−1 on (Ωi−1,Ai−1,Pi−1)
and (3.8) yield the assertion.

The next theorem is the main result of this section. In particular, we derive the
F i−1
Ti−1

-conditional distribution function of the inter-arrival times Ti − Ti−1 and the
Fi−1-conditional distribution function of Ti under the probability measure Pi−1 for
each i ∈ {1, . . . , n}. Later on, we will use this result to compute intensities. Note
that Giesecke and Tomecek (2005) proved a similar statement for their inter-arrival
times.
We have already determined the Pi−1-distribution function of Si−Si−1 in Propo-

sition 3.1.5 and Corollary 3.1.7, namely

Pi−1[Si − Si−1 ≤ t] = F∆S(t, κi) = P
[
min
s≤t

(κi + σWs + µs) ≤ 0
]

for t ≥ 0

and

F∆S(t, κi) =

Φ
(
−κi−µt
σ
√
t

)
+ e−2µκi/σ2Φ

(
−κi+µt
σ
√
t

)
for t > 0

0 for t = 0
.

Theorem 3.3.3. For each i ∈ {1, . . . , n} and 0 ≤ s ≤ t, we have

Pi−1[(Ti − Ti−1)I{Ti−1<∞} ≤ t|F
i−1
Ti−1+s]

= Ei−1[F∆S(Git, κi)I{Ti−1<∞}|F
i−1
Ti−1+s] Pi−1 − a.s.,

and the Fi−1-conditional Pi−1-distribution function of Ti is given by

Pi−1[Ti ≤ t|F i−1
t ] = F∆S(Git−Ti−1 , κ

i)I{Ti−1<t} Pi−1 − a.s.
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Proof. Fix i ∈ {1, . . . , n} and t ≥ 0. First, note that Lemma 3.1.3 and Proposition
3.2.9 yield

Pi−1[(Ti − Ti−1)I{Ti−1<∞} ≤ t|F
i−1
Ti−1+t]

= Pi−1[Ti − Ti−1 ≤ t|F i−1
Ti−1+t ∩ Ωi−1]I{Ti−1<∞}

= Pi−1[Si − Si−1 ≤ Git|F i−1
Ti−1+t ∩ Ωi−1]I{Ti−1<∞}.

Since Gi is Gi−1-adapted, Git is F i−1
Ti−1+t-measurable. It follows that Git considered

as a random variable on (Ωi−1,Ai−1,Pi−1) is measurable with respect to F i−1
Ti−1+t ∩

Ωi−1. Due to Lemma 3.3.2, Si − Si−1 is Pi−1-independent of F i−1
Ti−1+t ∩ Ωi−1 on

(Ωi−1,Ai−1,Pi−1). Hence, we obtain from Lemma 3.1.3 (in a similar way to the
proof of Corollary 3.1.7)

Pi−1[(Ti − Ti−1)I{Ti−1<∞} ≤ t|F
i−1
Ti−1+t] = F∆S(Git, κi)I{Ti−1<∞}.

Since F i−1
Ti−1+s ⊂ F

i−1
Ti−1+t for s ≤ t, it follows that

Pi−1[(Ti − Ti−1)I{Ti−1<∞} ≤ t|F
i−1
Ti−1+s]

= Ei−1[Pi−1[(Ti − Ti−1)I{Ti−1<∞} ≤ t|F
i−1
Ti−1+t]|F

i−1
Ti−1+s]

= Ei−1[F∆S(Git, κi)I{Ti−1<∞}|F
i−1
Ti−1+s].

In order to prove the second assertion, note that since Ti−1 is an Fi−1-stopping time,
I{Ti−1<t} is F

i−1
t -measurable. Hence,

Pi−1[Ti ≤ t|F i−1
t ] = Pi−1[Ti ≤ t|F i−1

t ]I{Ti−1<t} + Pi−1[Ti ≤ t|F i−1
t ]I{Ti−1≥t}

= Pi−1[(Ti − Ti−1)I{Ti−1<∞} ≤ (t− Ti−1)+|F i−1
t ]I{Ti−1<t}.

Because Ti − Ti−1 = (Gi)−1
Si−Si−1

on {Si−1 < ∞} and {Si−1 < ∞} = {Ti−1 < ∞},
this means that

Pi−1[Ti ≤ t|F i−1
t ] = Pi−1[(Si − Si−1)I{Si−1<∞} ≤ G

i
(t−Ti−1)+ |F i−1

t ]I{Ti−1<t}.

With Lemma A.1.3 and the second part of Lemma 3.1.3, we obtain

Pi−1[Ti ≤ t|F i−1
t ] = Pi−1[(Si − Si−1)I{Si−1<∞} ≤ G

i
(t−Ti−1)+ |F i−1

t∨Ti−1
]I{Ti−1<t}

= Pi−1[Si − Si−1 ≤ Gi(t−Ti−1)+ |F i−1
t∨Ti−1

∩ Ωi−1]I{Ti−1<t}.

Furthermore, we know from Lemma 3.2.11 that Gi(t−Ti−1)+ is F i−1
t (⊂ F i−1

t∨Ti−1
)-

measurable, and Lemma 3.3.2 yields Pi−1-independence of Si − Si−1 and F i−1
t∨Ti−1

∩
Ωi−1 on the probability space (Ωi−1,Ai−1,Pi−1). As above, this implies by Lemma
3.1.3

Pi−1[Ti ≤ t|F i−1
t ] = F∆S(Gi(t−Ti−1)+ , κi)I{Ti−1<t} = F∆S(Git−Ti−1 , κ

i)I{Ti−1<t}.
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Especially in contrast to Corollary 3.1.7 that considers the case of a portfolio value
process which is given by a simple geometric Brownian motion, the previous result
clarifies the advantage of the time change approach.
In Section 3.1 we have defined the time of the ith default in our underlying portfo-

lio by the first time the geometric Brownian motion V hits the deterministic barrier
Ki. This point in time is denoted by Si. Moreover, we have stated after Corollary
3.1.7 that the FWSi−1

-conditional Pi−1-distribution of Si depends on κi, µ, σ and
Si−1. Hence, apart from the dependence on the time since the last default, there
is no influence of the previous defaults on the conditional default probability of the
remaining firms in the portfolio.
In order to overcome this property, we have introduced the time change G and

defined the time of the ith default as the first point in time Ti in which the time
changed geometric Brownian motion VG hits the deterministic barrier Ki. As a
consequence, Theorem 3.3.3 states that the Fi−1-conditional Pi−1-distribution of
the ith default time depends on κi, µ, σ (which are deterministic) and Ti−1 and
additionally on the ith time change Gi. This dependence on Gi is new and the key
property of our model.
In Subsection 3.2.4 we have pointed out that the ith time change Gi is responsible

for a possible change in the slope of the overall time change G. Now, Theorem
3.3.3 clarifies that by choosing an appropriate time change Gi, we can specify how
a default of one firm influences the conditional distribution of the next default.
Examples of such time changes Gi will be considered later on in Section 3.6.

3.4. Conditional survival probabilities, default trends and
intensities

This section is related to the work of Giesecke (2006) and focuses on the deter-
mination of the ith default trend for each default time Ti, i ∈ {1, . . . , n}. These
trends are used to derive tractable solutions for prices of credit sensitive securities
which depend on the ith default in the underlying pool of names and to construct
an algorithm to simulate default times.
We start with a short introduction to the terminology which is needed later on.

Thereafter, we apply the results of Giesecke (2006) to our model setting. This means
that we determine the ith default trend for each default time Ti, i ∈ {1, . . . , n}, and
prove that default intensities with respect to the different model filtrations Fi−1

exist. Moreover, we will see that our default times are totally inaccessible in G,
which is typically for reduced form models. Finally, in Subsection 3.4.3 we derive
the (P,G)-compensator C of the default counting process N by using the results
from the previous sections. Since N − C is a martingale, C encodes the upwards
tendency of the default counting process. Thus, N can be specified in terms of its
compensator.
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3.4.1. General definitions

In this subsection we introduce important terms which are discussed in the following
subsections in more detail. We also refer to Section 1.2, where the case of a single
firm is considered.

Notation 3.4.1. For each i ∈ {1, . . . , n}, the Fi−1-conditional survival probability
of Ti is denoted by Zi, i.e., Zit := E[1−N i

t |F i−1
t ].

Remark 3.4.2. We know from Section 1.2 that Zi is a (P,Fi−1)-supermartingale
for each i ∈ {1, . . . , n}. Moreover, since each default indicator process N i is a
nondecreasing process, N i is a (P,G)-submartingale.

Because of the previous remark, each N i admits a (P,G)-compensator Ci such
that N i − Ci are (P,G)-martingales. If G is for each Fi−1 a filtration expansion
of the Guo-Zeng type (see Definition 1.2.5), then we obtain these compensators by
using the extended Jeulin-Yor theorem (see Theorem 1.2.7).
Hereafter, we show that G is indeed a filtration expansion of Fi−1 of the Guo-Zeng

type for each i ∈ {1, . . . , n}. To this end, recall that 0 = T0 ≤ T1 ≤ . . . ≤ Tn ≤ ∞
and F0 ⊂ F1 ⊂ . . . ⊂ Fn := G.

Lemma 3.4.3. For every i ∈ {1, . . . , n} and every t ≥ 0, we have

F i−1
t ∩ {Ti > t} = F it ∩ {Ti > t}.

Proof. Fix i ∈ {1, . . . , n} and t ≥ 0 and letGTi be the progressive filtration expansion
of Fi−1, i.e.,

GTit = {A ∈ E∞|∃Ft ∈ F i−1
t , A ∩ {Ti > t} = Ft ∩ {Ti > t}}

with E∞ := F i−1
∞ ∨ σ(T i). We have

F it =
⋂
u>t

Ku ∨ σ(I{Tk≤s} : s ≤ u, k ≤ i)

=
⋂
u>t

F i−1
u ∨ σ(I{Ti≤s} : s ≤ u) =

⋂
u>t

(Gi−1)′u (3.9)

where (Gi−1)′ = ((Gi−1)′t)t≥0 denotes the minimal filtration expansion of Fi−1. Since
(Gi−1)′ is the smallest filtration expansion of Fi−1 such that Ti is a (Gi−1)′-stopping
time, we have (Gi−1)′ ⊂ GTi . Moreover, the progressive filtration expansion GTi is
right-continuous (see Chapter VI in Protter (2005)). Therefore, it follows from (3.9)
that F it ⊂ G

Ti
t . This implies

F it ∩ {T i > t} ⊂ GTit ∩ {T i > t} = F i−1
t ∩ {T i > t}.

The assertion follows by noting that the reverse implication F it ∩{T i > t} ⊃ F i−1
t ∩

{T i > t} is obvious.

The following lemma is a special case of Lemma 9, Chapter 1 in Kchia (2011).
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Lemma 3.4.4. For every j with 1 ≤ i ≤ j ≤ n and every t ≥ 0, we have

F jt ∩ {Ti > t} = F i−1
t ∩ {Ti > t}. (3.10)

Especially, we have

Gt ∩ {Ti > t} = F i−1
t ∩ {Ti > t} for all i ∈ {1, . . . , n}.

Proof. Note that the assertion holds for j = i due to Lemma 3.4.3. Moreover, Lemma
3.4.3 yields F jt ∩{Tj+1 > t} = F j+1

t ∩{Tj+1 > t} for each t ≥ 0 and j ∈ {i, . . . , n− 1},
which implies that F jt ∩{Tj+1 > t}∩{Ti > t} = F j+1

t ∩{Tj+1 > t}∩{Ti > t}. Since
the default times are increasing, we have {Ti > t} ⊂ {Tj+1 > t}. Hence, the last
equation is equivalent to F jt ∩ {Ti > t} = F j+1

t ∩ {Ti > t}. But this implies that
if (3.10) is true for j, then it is also satisfied for j + 1. Since the statement holds
for j = i, the proof of the first assertion is completed. The second statement is the
special case j = n.

According to the previous lemma, G is indeed a filtration expansion of Fi−1 that
is of the Guo-Zeng type for each i ∈ {1, . . . , n}. Hence, we can apply the extended
Jeulin-Yor theorem as described above.
To compute the (P,G)-compensator processes Ci of the indicator processes N i

for i ∈ {1, . . . , n}, we adopt definitions from Giesecke (2006) to our default models
(Ti,Fi−1). Giesecke (2006) considers the case of only one defaultable firm and uses
progressive filtration expansions. Nevertheless, we will see that we obtain similar
results in our multi-firm setting due to the extended Jeulin-Yor theorem.

Definition 3.4.5. Fix i ∈ {1, . . . , n} and let Zit− := lims↑t Z
i
s and Zi0− := 1. The

ith default trend A i is defined by

A i
t :=

ˆ t

0

1
Zis−

dC i
s (3.11)

where the process C i is the (P,Fi−1)-compensator of Zi. We say that (Ti,Fi−1) is
an intensity based default model if there exists an Fi−1-progressive and nonnegative
process λi such that A i

t =
´ t

0 λ
i
sds P-a.s. for all t ≥ 0. The process λi is called the

ith intensity process.

Remark 3.4.6. We will see later on that Zit > 0 P-a.s. for all t ≥ 0 (see Lemma
3.4.15). Thus, we do not divide by 0 in (3.11).

Definition 3.4.7. For i ∈ {1, . . . , n}, we say that the default model (Ti,Fi−1) is
strongly intensity based if there exists an Fi−1-progressive and nonnegative process
λi such that for each t ≥ 0, we have

Zit = exp
(
−
ˆ t

0
λisds

)
P− a.s.
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If (Ti,Fi−1) is an intensity based default model, then it follows from the extended
Jeulin-Yor theorem that Ci = (A i)Ti with (A i

t )Ti = A i
t∧Ti =

´ t∧Ti
0 λisds P-a.s. is the

(P,G)-compensator of N i. Because of that, we are interested in the detailed form of
A i and λi. But first, let us state a few remarks concerning the previous definitions.

Remark 3.4.8. 1. Although the previous definitions are based on the definitions
in Giesecke (2006), we have modified the required properties of the involved
intensity. If we would adopt the definition from Giesecke (2006) directly to
our approach, then the intensities would be bounded, nonnegative and Fi−1-
predictable. Boundedness is needed in Proposition 5.10 in Giesecke (2006)
which proves that intensities in the sense of Definition 3.4.7 are indeed short
credit spreads. Moreover, Giesecke (2006) uses a progressive filtration ex-
pansion to obtain this result. For a more general result with respect to the
filtration expansion which also requires relaxed predictability and boundedness
assumptions, we refer to Okhrati (2013).

2. Note that the ith default trend A i defined in Definition 3.4.5 corresponds with
the F-martingale hazard process Λ in Proposition 2.1.8. Indeed, the model and
the results in Giesecke (2006) and the model in this chapter are closely related
to the hazard process approach.

3. Let λ̄i and λ̃i be two Fi−1-predictable ith intensity processes. Then λ̄i and
λ̃i are also G-predictable since Fi−1 ⊂ G. Moreover, note that for every ith
intensity process λi and every t ≥ 0, we have

Cit = A i
t∧Ti =

ˆ t∧Ti

0
λisds =

ˆ t

0
λisI{s≤Ti}ds P− a.s.

Therefore, it follows from Theorem T12, Chapter II in Brémaud (1981) that
the G-predictable processes (λ̄itI{t≤Ti})t≥0 and (λ̃itI{t≤Ti})t≥0 satisfy

(λ̄itI{t≤Ti})(ω) = (λ̃itI{t≤Ti})(ω) P(dω)× dN i
t (ω)-a.e.

The next lemma, which was proved in Giesecke (2006), states that the “strongly
intensity based” property of (Ti,Fi−1) is really stronger than the “intensity based”
property.

Lemma 3.4.9 (See Proposition 5.8 in Giesecke (2006)). For every i ∈ {1, . . . , n},
the following statements are satisfied:

1. If a default model (Ti,Fi−1) is strongly intensity based, then it is intensity based
in the sense of Definition 3.4.5.

2. If a default model (Ti,Fi−1) is intensity based in the sense of Definition 3.4.5
and additionally satisfies C i = 1− Zi, then it is also strongly intensity based.

3.4.2. Default trends
In this subsection we determine the default trends (and hence the compensators
of the processes N i) in our default model with deterministic barriers and unknown
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portfolio value process. Moreover, at the end of this subsection we use these trends to
determine prices of contingent claims depending on the ith default in the underlying
pool of names.
In Theorem 3.3.3 we have already computed the Fi−1-conditional Pi−1-distribution

function of Ti for each i ∈ {1, . . . , n}. The next corollary follows from Theorem 3.3.3
and addresses the Fi−1-conditional survival probability of Ti.

Corollary 3.4.10. For each i ∈ {1, . . . , n} and each t ≥ 0, we have

P[Ti ≤ t|F i−1
t ] = Pi−1[Ti ≤ t|F i−1

t ]I{Ti−1<t} = F∆S(Git−Ti−1 , κ
i)I{Ti−1<t} P− a.s.

In particular, for each t ≥ 0, Zi satisfies

Zt = 1− F∆S(Git−Ti−1 , κ
i)I{Ti−1<t} P− a.s.

Proof. Fix i ∈ {1, . . . , n} and t ≥ 0 and note that

Pi−1[Ti ≤ t|F i−1
t ] = Pi−1[Ti ≤ t|F i−1

t ]I{Ti−1<t} Pi−1 − a.s.

It follows for B := {Ti ≤ t} and every F ∈ F i−1
t

Ei−1[E[IBI{Ti−1<t}|F
i−1
t ]IF ] =

E[E[IBI{Ti−1<t}|F
i−1
t ]IF I{Ti−1<∞}]

P[Ti−1 <∞]

=
E[IBI{Ti−1<t}IF I{Ti−1<∞}]

P[Ti−1 <∞]
= Ei−1[IBI{Ti−1<t}IF ]
= Ei−1[Ei−1[IBI{Ti−1<t}|F

i−1
t ]IF ].

By the definition of the conditional expectation, this means

E[IBI{Ti−1<t}|F
i−1
t ] = Ei−1[IBI{Ti−1<t}|F

i−1
t ] Pi−1 − a.s.

As a consequence, we have

P[Ti ≤ t|F i−1
t ]I{Ti−1<t} = Pi−1[Ti ≤ t|F i−1

t ]I{Ti−1<t}

= F∆S(Git−Ti−1 , κ
i)I{Ti−1<t} Pi−1 − a.s.,

where the last equality follows from Theorem 3.3.3. Finally, Lemma 3.4.11 yields
the desired result.

Lemma 3.4.11. Let X and Y be random variables on (Ω,A,Pi−1) for some i ∈
{1, . . . , n}. Then XI{Ti−1<∞} = Y I{Ti−1<∞} Pi−1-a.s. implies that XI{Ti−1<∞} =
Y I{Ti−1<∞} P-a.s.

Proof. Fix i ∈ {1, . . . , n} and note that Pi−1[A] = P[A ∩ {Ti−1 <∞}]/P[Ti−1 <∞]
for each A ∈ A. Because

{XI{Ti−1<∞} = Y I{Ti−1<∞}} = ({XI{Ti−1<∞} = Y I{Ti−1<∞}} ∩ {Ti−1 <∞})
∪ ({XI{Ti−1<∞} = Y I{Ti−1<∞}} ∩ {Ti−1 =∞})

= ({XI{Ti−1<∞} = Y I{Ti−1<∞}} ∩ {Ti−1 <∞})
∪ {Ti−1 =∞},
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we obtain

P[XI{Ti−1<∞} = Y I{Ti−1<∞}] = Pi−1[XI{Ti−1<∞} = Y I{Ti−1<∞}]P[Ti−1 <∞]
+ P[Ti−1 =∞]

= P[Ti−1 <∞] + P[Ti−1 =∞]
= 1.

Remark 3.4.12. Because of the definition of Ti, we have

P[Ti ≤ t|F i−1
t ] = P

[
min

0≤s≤t
VGs ≤ Ki

∣∣∣∣F i−1
t

]
P− a.s.

Hence, if we fix t ≥ 0 and consider P[Ti ≤ t|F i−1
t ] as a function in Ki, then we can

interpret this function as the Fi−1-conditional distribution function of the portfolio
minimum at time t given by Mt := min0≤s≤t VGs . Giesecke (2006) studies this
perspective in detail.

To derive the ith default trend A i, the process F i(x) defined for each x > 0 by

F it (x) := F∆S(Git−Ti−1 , x)I{Ti−1<t} (3.12)

plays an important role. In the following, we discuss this process in detail and verify
important properties which are essential to obtain the desired ith default trend.
Since the process F i(x) is strongly connected to the function F∆S(·, x), we start
with important properties of this function.

Lemma 3.4.13. For each x > 0, F∆S(·, x) is continuous and increasing and satis-
fies F∆S(t, x) < 1 for each t ≥ 0. Moreover, F∆S(·, x) is absolutely continuous with
derivative f∆S(·, x) which is given by

f∆S(t, x) = e−2µx/σ2 x

σ
t−3/2ϕ

(−x+ µt

σ
√
t

)
for t > 0. (3.13)

In particular, f∆S(·, x) satisfies limt↓0 f
∆S(t, x) = 0.

Proof. Fix x > 0. Continuity and monotonicity are obvious. Moreover, F∆S(0, x) =
0 and F∆S(t, x) ∈ [0, 1] for each t > 0. Therefore, F∆S(t, x) < 1 for t > 0 if and
only if

F∆S(t, x) = 1− Φ
(
x+ µt

σ
√
t

)
+ e−2µx/σ2Φ

(−x+ µt

σ
√
t

)
6= 1.

This means that we have to prove that Υ(a, b, c) := e2ab/c2Φ((a + b)/c) − Φ((−a +
b)/c) 6= 0 for a < 0, b ∈ R and c > 0. On the one hand, we have

e
2ab
c2 Φ

(
a+ b

c

)
= 1
c
√

2π

ˆ a

−∞
e

2ab
c2 e−

1
2( y+b

c )2
dy = 1

c
√

2π

ˆ a

−∞
e

2ab
c2
− y2

2c2
− by
c2
− b2

2c2 dy.
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On the other hand, we obtain

Φ
(−a+ b

c

)
= 1
c
√

2π

ˆ a

−∞
e−

1
2( y−2a+b

c )2
dy

= 1
c
√

2π

ˆ a

−∞
e−

y2

2c2
+ 2ay

c2
− by
c2
− 2a2

c2
+ 2ab
c2
− b2

2c2 dy.

If we define l (y) := exp
(
(2ab− by)/c2 − (y2 + b2)/(2c2)

)
, then we get

Υ(a, b, c) = 1
c
√

2π

ˆ a

−∞
l (y)

[
1− e

2ay−2a2

c2

]
dy.

Since a < 0, we have 2ay− 2a2 > 0 for all y ∈ (−∞, a). Together with l(y) > 0 this
yields Υ(a, b, c) 6= 0.
Moreover, from ∂

∂t [(−x± µt)/(σ
√
t)] = (x/2σ)t−3/2 ± (µ/2σ)t−1/2 it follows that

f∆S (t, x) = ∂

∂t

[
Φ
(−x− µt

σ
√
t

)
+ e−2µx/σ2Φ

(−x+ µt

σ
√
t

)]
=
(
x

2σ t
−3/2 − µ

2σ t
−1/2

)
ϕ

(−x− µt
σ
√
t

)
+ e−2µx/σ2

(
x

2σ t
−3/2 + µ

2σ t
−1/2

)
ϕ

(−x+ µt

σ
√
t

)
.

Since

ϕ

(−x− µt
σ
√
t

)
= 1√

2π
e
− 1

2

(
−x−µt
σ
√
t

)2

= 1√
2π
e−

2µx
σ2 −

x2
2σ2t

+xµ

σ2−
µ2t
2σ2

= 1√
2π
e−

2µx
σ2 e

− 1
2

(
−x+µt
σ
√
t

)2

= e−
2µx
σ2 ϕ

(−x+ µt

σ
√
t

)
,

this yields Equation (3.13).
Finally, we consider the limit t ↓ 0. First, note that for each t > 0, we have

t−3/2ϕ

(−x+ µt

σ
√
t

)
= 1√

2π
e−

3
2 log t− x2

2σ2t
+xµ

σ2−
µ2t
2σ2 .

Since µ2t/(2σ2)→ 0 and

3 log t+ x2

σ2t
= log t3 + log e

x2
σ2t = log

(
t3e

x2
σ2t
)
→∞,

we obtain limt↓0 f
∆S(t, x) = 0.

For the remaining part of this chapter we only consider time changes Gi, i ∈
{1, . . . , n}, that satisfy the following assumption.

Assumption 3.4.14. For each i ∈ {1, . . . , n} and all t ≥ 0, the time change Gi
satisfies

Git =
ˆ t

0
gisds P− a.s. (3.14)

for a Gi−1-adapted, right-continuous and positive density process gi.
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Lemma 3.4.15. For each i ∈ {1, . . . , n} and each x > 0, the process F i(x) satisfies
the following properties:

1. F it (x) < 1 P-a.s. for all t ≥ 0.
2. F i(x) is continuous and increasing.
3. F i(x) is absolutely continuous with a nonnegative and right-continuous density

process f i(x) which is for t ≥ 0 given by

f it (x) = git−Ti−1e
−2µx/σ2 x

σ
(Git−Ti−1)−3/2ϕ

−x+ µGit−Ti−1

σ
√
Git−Ti−1

 I{Ti−1<t} (3.15)

P-a.s.

Moreover, f i(x) is Fi−1-predictable if gi is Gi−1-predictable.

Proof. Fix i ∈ {1, . . . , n} and x > 0. Note that by Lemma 3.4.13, F∆S (·, x) is
increasing, continuous and satisfies F∆S(t, x) < 1 for all t ≥ 0 and limt↓0 F

∆S(t, x) =
0. Since Gi has monotone and continuous paths by definition, the first two properties
are obvious.
For ω ∈ {Ti−1 ≥ t}, we obviously have f it (ω) = 0. According to Lemma 3.4.13,

F∆S(·, x) is absolutely continuous with derivative

f∆S(s, x) = e−2µx/σ2 x

σ
s−3/2ϕ

(−x+ µs

σ
√
s

)
for s > 0.

For ω ∈ {Ti−1 < t}, we have [F it (x)](ω) = F∆S(Git−Ti−1(ω)(ω), x). Because of
Equation (3.14), we obtain by the chain rule that

[f it (x)](ω) = git−Ti−1(ω)(ω)e−2µx/σ2 x

σ
(Git−Ti−1(ω)(ω))−3/2ϕ

−x+ µGit−Ti−1(ω)(ω)

σ
√
Git−Ti−1(ω)(ω)

 .
Since gi is right-continuous by Assumption 3.4.14, it follows from limt↓0 f

∆S(t, x) = 0
(see Lemma 3.4.13) that f i(x) is also right-continuous. Thus, the third property is
satisfied. The last assertion follows directly from Lemma 3.4.16.

Lemma 3.4.16. Fix i ∈ {1, . . . , n} and let gi be Gi−1-predictable. Then the process

gi(·−Ti−1)+I{Ti−1<·} : (0,∞)× Ω→ R,

gi(·−Ti−1)+I{Ti−1<·}(t, ω) = gi(t−Ti−1(ω))+(ω)I{Ti−1(ω)<t} is Fi−1-predictable.

Proof. Fix i ∈ {1, . . . , n}. The predictable σ-algebra is generated by processes f
which are Gi−1-adapted and càglàd (left-continuous with right limits) on (0,∞).
Hence, it suffices to prove the assertion for such processes f .
Since (t−Ti−1)+ is a finite Gi−1-stopping time for every t > 0, f(t−Ti−1)+ is measur-

able with respect to Gi−1
(t−Ti−1)+ . From Ti−1 +(t−Ti−1)+ ≤ t∨Ti−1 it follows directly

that f(t−Ti−1)+ is measurable with respect to F i−1
t∨Ti−1

. Moreover, because I{Ti−1<t} is
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F i−1
t (⊂ F i−1

t∨Ti−1
)-measurable, we obtain that f(t−Ti−1)+I{Ti−1<t} is measurable with

respect to F i−1
t∨Ti−1

.
Now, it follows analogously to the proof of Lemma 3.2.11 that f(t−Ti−1)+I{Ti−1<t}

is F i−1
t -measurable. As (f(t−Ti−1)+I{Ti−1<t})t>0 is also càglàd on (0,∞), this implies

the assertion.

In the following, we determine the ith default trend and ith default intensity. For
the corresponding result in the single-firm setting of Giesecke (2006) we refer to
Proposition 6.4 in this paper.

Proposition 3.4.17. For each i ∈ {1, . . . , n}, the ith default time Ti is totally
inaccessible in G, and the ith default trend A i is continuous. For each t ≥ 0, we
have

A i
t = − log(1− F it (κi)) P− a.s. (3.16)

Moreover, the default model (Ti,Fi−1) is strongly intensity based, and A i admits a
right-continuous ith intensity process λi given by

λit = f it (κi)
1− F it (κi)

P− a.s. (3.17)

for t ≥ 0.

Proof. Fix i ∈ {1, . . . , n}. From Lemma 3.4.15 we know that F it (κi) < 1 for all
t ≥ 0. Consequently, we have Zit = 1 − F it (κi) ∈ (0, 1] for all t ≥ 0. Moreover,
F i(κi) is continuous and increasing by Lemma 3.4.15. Thus, Zi is continuous and
decreasing. Because Zi is Fi−1-adapted by definition, it follows from the continuity
property of Zi that Zi is Fi−1-predictable.
Since by the Doob-Meyer decomposition theorem (see Theorem 1.2.1) the com-

pensator C i is unique, Fi−1-predictability and monotonicity of Zi are sufficient for
C i = 1− Zi. In this case, we obtain

A i
t =
ˆ t

0

1
Zis
d(1− Zis) = −

ˆ t

0

1
Zis
dZis = − logZit ,

where the last equality follows by change of variables (see, for instance, Theorem
54, Chapter I in Protter (2005)). The previous equation yields (3.16). Furthermore,
continuity of Zi implies continuity of (A i)Ti , which is the (P,G)-compensator of N i

according to the extended Jeulin-Yor theorem. Therefore, Ti is a totally inaccessible
G-stopping time (see, for instance, Chapter V, Theorem T40 in Dellacherie (1972)).
Since F i(κi) satisfies the third property in Lemma 3.4.15, A i inherits absolute

continuity from F i(κi). Moreover, λi is the derivative of A i with respect to t P-a.s.
and is given by (3.17).
At last, note that we have an intensity based model with C i = 1 − Zi. Thus, it

follows from Lemma 3.4.9 that the model is also strongly intensity based.
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Remark 3.4.18. Note that

A i
t = − log(1− F it (κi))I{Ti−1<t} = − log(Zit)I{Ti−1<t} P− a.s.

since ZitI{Ti−1≥t} = P[Ti > t|F i−1
t ]I{Ti−1≥t} = I{Ti−1≥t} P-a.s. Hence,

− log(Zit) = − log(ZitI{Ti−1<t} + I{Ti−1≥t})
= − log(Zit)I{Ti−1<t} + 0 · I{Ti−1≥t} = − log(Zit)I{Ti−1<t} P− a.s.

Moreover, from (3.15) it follows directly that λit = f it (κi)/(1−F it (κi))I{Ti−1<t} P-a.s.

Explicit form of A i and λi: We know exactly how A i and λi in Proposition
3.4.17 look like. Because of (3.12) and (3.15), we obtain P-a.s.

A i
t = − log

Φ

κi + µGit−Ti−1

σ
√
Git−Ti−1

− e−2µκi/σ2Φ

−κi + µGit−Ti−1

σ
√
Git−Ti−1

 I{Ti−1<t}

(3.18)

and

λit =

git−Ti−1
e−2µκi/σ2 κi

σ (Git−Ti−1
)−3/2ϕ

−κi+µGit−Ti−1

σ
√
Git−Ti−1


Φ

κi+µGit−Ti−1

σ
√
Git−Ti−1

− e−2µκi/σ2Φ

−κi+µGit−Ti−1

σ
√
Git−Ti−1

 I{Ti−1<t}.

According to Proposition 3.4.17, the ith default trend A i satisfies A i
t = − log(1−

F it (κi)) P-a.s. for i ∈ {1, . . . , n}. The following proposition uses this result to de-
termine prices of default sensitive contingent claims. More precisely, we consider
securities paying out the bounded, GT -measurable amount X at time T if the ith
default in the underlying pool of names did not occur up to this point in time, i.e.,
if T < Ti. In case of T ≥ Ti, the payout is equal to zero.
In general, the price of this security at time t ≤ T is given by

PV (t, T ) = E
[
X exp

(
−
ˆ T

t
rsds

)
I{T<Ti}

∣∣∣∣∣Gt
]

if r denotes the deterministic risk-free interest rate and P is assumed to be the risk
neutral probability measure. The subsequent proposition and the corresponding
proof are closely related to Proposition 5 in Giesecke and Goldberg (2004b) and
Proposition 5.4 and Corollary 5.5 in Giesecke (2006).

Proposition 3.4.19. Consider a defaultable promised payoff X at time T and let
X be bounded and GT -measurable. Moreover, suppose that the risk free interest rate
r = (rs)s≥0 is deterministic and fix i ∈ {1, . . . , n}. If the process Y defined by
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Yt := E[X exp(A i
t −A i

T )|F it ] is P-a.s. continuous at Ti, then the price of X at time
t ≤ T is given by

PV (t, T ) = E
[
X exp

(
−
ˆ T

t
rsds+ A i

t −A i
T

)∣∣∣∣∣F it
]
I{t<Ti} P− a.s. (3.19)

On {t < Ti}, we have for every T ′ ≥ t

P[Ti ≤ T ′|Gt] = 1− E[exp(A i
t −A i

T ′)|F it ] P− a.s. (3.20)

Proof. It suffices to consider the case of a zero interest rate, i.e., r = 0. Define the
processes L by Lt := E[X exp(−A i

T )|F it ]. Since A i
t is F it -measurable, this means

Yt = E[X exp(A i
t −A i

T )|F it ] = exp(A i
t )E[X exp(−A i

T )|F it ] = exp(A i
t )Lt

for all t ≥ 0. Moreover, A i is continuous and of finite variation such that the
quadratic covariation of L and exp(A i) satisfies d[L, exp(A i)]t = 0. Integration by
parts leads to

dYt = exp(A i
t )dLt+Lt−d(exp(A i

t ))+d[L, exp(A i)]t = exp(A i
t )dLt+Lt−d(exp(A i

t )).

Moreover, by change of variables, we obtain

dYt = exp(A i
t )dLt + Yt−dA

i
t .

From Theorem 28, Chapter II in Protter (2005) we know that

[Y, 1−N i]t = Y0(1−N i
0) +

∑
0<s≤t

∆Ys∆(1−N i
s)

where ∆Yt := Yt − Yt−. By assumption, the process Y does not jump at Ti. There-
fore, we obtain d[Y, 1 − N i]t = 0 for all t ≤ T . If we define the process U by
Ut := Yt(1−N i

t ), then integration by parts yields

dUt = −Yt−dN i
t + (1−N i

t−)dYt + d[Y, 1−N i]t
= −Yt−dN i

t + (1−N i
t−)(exp(A i

t )dLt + Yt−dA
i
t )

= −Yt−dN i
t + (1−N i

t−) exp(A i
t )dLt + Yt−dA

i
t∧Ti

= (1−N i
t−) exp(A i

t )dLt − Yt−(dN i
t − dA i

t∧Ti).

In other words, we have

UT − Ut =
ˆ T

t
(1−N i

s−) exp(A i
s )dLs −

ˆ T

t
Ys−(dN i

s − dA i
s∧Ti) (3.21)

for all t ≤ T . Note that both integrators in Equation (3.21) are square-integrable
Fi-martingales: It is easily seen that L is a bounded Fi-martingale. Furthermore,
we know from Lemma 3.4.4 that Fi is a filtration expansion of the Guo-Zeng type
of Fi−1. Thus, according to the extended Jeulin-Yor theorem, (N i

t − A i
t∧Ti)t≥0 is

an Fi-martingale, and Lemma 1.2.4 states that (N i
t −A i

t∧Ti)t≥0 is square-integrable
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with quadratic variation [N i− (A i)Ti , N i− (A i)Ti ] = N i. Moreover, the integrands
in Equation (3.21) are bounded and Fi-predictable. Together, we obtain that U is
an Fi-martingale. Hence, it follows for all t ≤ T that

Yt(1−N i
t ) = Ut = E[UT |F it ] = E[YT (1−N i

T )|F it ]
= E[E[X|F iT ](1−N i

T )|F it ] = E[X(1−N i
T )|F it ],

i.e.,
YtI{t<Ti} = E[X exp(A i

t −A i
T )|F it ]I{t<Ti} = E[XI{T<Ti}|F

i
t ].

By Lemma 3.4.4, we have Gt ∩ {Ti > t} = F it ∩ {Ti > t} for all t ≥ 0, which implies
E[XI{T<Ti}|F it ] = E[XI{T<Ti}|Gt] on {t < Ti}. This yields the first assertion since

PV (t, T ) = E[XI{T<Ti}|Gt] = E[XI{T<Ti}|F
i
t ] = E[X exp(A i

t −A i
T )|F it ]I{t<Ti}.

If we use r = 0, X = 1 and T = T ′ in Equation (3.19), we arrive at

PV (t, T ′) = E[I{T ′<Ti}|F
i
t ]I{t<Ti} = E[exp(A i

t −A i
T ′)|F it ]I{t<Ti},

which implies Equation (3.20).

3.4.3. The compensator of the default counting process

So far, we have determined the default trends A i and the (P,G)-compensators Ci
of the indicator processes N i for i ∈ {1, . . . , n}. It remains to consider the default
counting process N given by

Nt =
n∑
i=1

I{Ti≤t} for t ≥ 0

and to compute the (P,G)-compensator C of this process. For a similar result, we
refer to Theorem 12, Chapter 1 in Kchia (2011). Moreover, note that our default
trends A i are absolutely continuous and admit the density λi for all i ∈ {1, . . . , n}.
The following theorem shows that the (P,G)-compensator of N is also an absolutely
continuous process.

Theorem 3.4.20. The (P,G)-compensator C of the default counting process N is
for each t ≥ 0 given by

Ct =
n∑
i=1

A i
Ti∧t P− a.s.

Moreover, N admits the right-continuous (P,G)-intensity λN given by

λNt =
n∑
i=1

λitI{Ti−1≤t<Ti} P− a.s.

for t ≥ 0.
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Proof. We know from Proposition 3.4.17 that the (P,G)-compensator of N i is given
by Cit = A i

t∧Ti =
´ Ti∧t

0 λisds and λi satisfies

λit = λitI{Ti−1<t} = f it (κi)
1− F it (κi)

(3.22)

with f i(x) given in (3.15) and F i(x) given in (3.12) for x > 0. As F i(x) is continuous
and f i(x) is right-continuous (see Lemma 3.4.15), it follows directly that λi has P-
a.s. right-continuous paths. Therefore, we obtain

n∑
i=1

A i
Ti∧t =

n∑
i=1

ˆ Ti∧t

0
λisds =

ˆ t

0

n∑
i=1

λitI{Ti−1≤t<Ti}ds =
ˆ t∧Tn

0

n∑
i=1

λitI{Ti−1≤t<Ti}ds.

The process (
∑n
i=1 λ

i
tI{Ti−1≤t<Ti})t≥0 is obviouslyG-adapted and nonnegative. More-

over, it inherits right-continuity from λi and (I{Ti−1≤t<Ti})t≥0, i ∈ {1, . . . , n}. In
particular, (

∑n
i=1 λ

i
tI{Ti−1≤t<Ti})t≥0 is G-progressive.

The process (
∑n
i=1 A i

Ti∧t)t≥0 is increasing, continuous and G-adapted, which im-
plies G-predictability. Furthermore, we have

Nt −
n∑
i=1

A i
Ti∧t =

n∑
i=1

N i
t −

n∑
i=1

A i
Ti∧t =

n∑
i=1

(N i
t − Cit).

Since N i−Ci is a (P,G)-martingale for every i ∈ {1, . . . , n}, so is the process (Nt−∑n
i=1 A i

Ti∧t)t≥0. Because the compensator is unique, this completes the proof.

Remark 3.4.21. As the compensator C is G-predictable by definition, we are able
to find a G-predictable intensity λ̄N ; see, for instance, Proposition 3.13, Chapter
I in Jacod and Shiryaev (2003). If all gi, i ∈ {1, . . . , n}, are additionally Gi−1-
predictable, then this G-predictable intensity is given by

λ̄Nt =
n∑
i=1

λitI{Ti−1<t≤Ti} P− a.s.

for t ≥ 0. This can be verified as follows: We know from Lemma 3.4.15 that
f i(κi) is Fi−1-predictable if gi is Gi−1-predictable. Since λit = f it (κi)/(1 − F it (κi))
P-a.s. for all t ≥ 0 and F i(κi) is continuous, this means that λi is Fi−1-predictable.
The inclusion Fi−1 ⊂ G implies that λi is G-predictable, and hence the process
(
∑n
i=1 λ

i
tI{Ti−1<t≤Ti})t≥0 satisfies the same property.

Remark 3.4.22. Giesecke and Tomecek (2005) prove for their time changed Poisson
process NGT (see Remark 3.2.4) that for each i ∈ N, (NGT

t∧TGTi
− GGT

t∧TGTi
)t≥0 is

a martingale with respect to their investor filtration GGT . Moreover, if TGTi → ∞
P-a.s., then NGT−GGT is a GGT -local martingale. In this case, GGT is the (P,GGT )-
compensator of NGT . We refer to Theorem 3.3 in Giesecke and Tomecek (2005) for
more details.
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3.5. Another incomplete information model
Note that in Subsection 3.2.3 the incomplete information model in the definition
of our top down first-passage model (IIM1) was constructed such that the default
barriers K1, . . . ,Kn (and hence κ1, . . . , κn) are deterministic and the portfolio value
process VG is not observable by the investor. But if we take into account Subsection
2.1.3, there exist two more extreme cases of incomplete information:

• Information model in which neither the portfolio value process nor the default
barriers are publicly available.

• Information model in which the portfolio value process is publicly available,
but the default barriers are unobservable.

Replacing the incomplete information model (IIM1 from Subsection 3.2.3) by an-
other incomplete information model results in a new top down first-passage ap-
proach.
In general, we could study both additional cases of incomplete information. Nev-

ertheless, assuming that the portfolio value process is observable, the corresponding
model in Giesecke (2006) relies on independence between the single default barrier
and the firm’s asset value process. But this is not an appropriate requirement in
our multi-firm setting because the portfolio value process VG, modeled as a time
changed Brownian motion, depends on the default barriers. This is a consequence
of the time change construction in Subsection 3.2.4. More precisely, G satisfies

Gt =


∑i−1
k=1G

k
Tk−Tk−1

+Git−Ti−1
on {Ti−1 ≤ t < Ti} for i ∈ {1, . . . , n}∑n−1

k=1 G
k
Tk−Tk−1

+Gnt−Tn−1
on {Tn ≤ t}

by definition, and hence the overall time change is closely connected to the arrival
times T1, . . . , Tn−1. Since our default times are defined as first hitting times, they
also depend on the default barriers K1, . . . ,Kn−1. Thus, the model setting in the
third incomplete information model in Giesecke (2006) is not suitable for our top
down first-passage approach.
In conclusion, we just focus on the incomplete information model in which neither

the portfolio value process nor the default barriers are available. After defining this
additional incomplete information model in detail, we discuss the results of Sections
3.3 and 3.4 in the context of this new model.

3.5.1. Setting of the second incomplete information model (IIM2)
In order to study the model with stochastic and unobservable default barriers and
unobservable portfolio value process VG, we have to specify the model filtration Fi−1

of the default model (Ti,Fi−1) and the investor filtration G which satisfies Fi−1 ⊂ G
for each i ∈ {1, . . . , n}. Recall that in case of the model filtration Fi−1, this means
that we have to specify how much information is available with respect to

Ti = inf{t ≥ 0|VGt ≤ Ki}, (3.23)

i.e., how much information is available with respect to V , G and Ki.
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Specification of the second incomplete information model: In IIM2 the following
information should be available on {t ≤ Ti−1}:

• K up to time t
• Number of defaults up to time t
• Time of all defaults that occurred up to time t
• Gs for s ≤ t

On {t > Ti−1}, the following information should additionally be available:

• K up to time t

By these assumptions, an investor cannot observe the barriers any more which trigger
the default in the underlying portfolio. Since an investor never has any information
about the underlying process V , the portfolio value process VG is unobservable as in
IIM1. The available information with respect to G and the defaults also coincides
with IIM1. Note that with the information which is available with respect to (3.23)
the ith default is not observable.
The requirements from above are satisfied if we define the model filtrations Fi−1

andGi−1 for i ∈ {1, . . . , n} exactly as in IIM1 and suppose that κi, i ∈ {1, . . . , n}, are
independent random variables with values in (0,∞). In addition to the independence
of σ(Wt : t ≥ 0), which has already been claimed at the beginning of Section 3.2,
we assume that κ1, . . . , κn, σ(Wt : t ≥ 0) and K∞ are independent. The distribution
function of each κi is based on the approach in Yi et al. (2011). We assume that it
is given by

ψi (x; ai, vi, σi) :=


ϕ(x;ai+vi,σi)−e−2aivi/σ

2
i ϕ(x;vi−ai,σi)

Φ
(
ai+vi
σi

)
−e−2aivi/σ2

i Φ
(
vi−ai
σi

) if x ≥ 0

0 if x < 0

with σi > 0 and ai > |vi|. Here, ϕ(x; µ̄, σ̄) denotes the probability density function of
the normal distribution N (µ̄, σ̄2). Figure 3.5.1 shows some examples of the density
ψi for different parameters. If we set Ψi (x) := P[κi ≤ x], then Ψi(x) = 0 if x < 0
and

Ψi (x) =
Φ
(
x−ai−vi

σi

)
− Φ

(
−ai−vi
σi

)
− e−2aivi/σ2

i

(
Φ
(
x+ai−vi

σi

)
− Φ

(
ai−vi
σi

))
Φ
(
ai+vi
σi

)
− e−2aivi/σ2

i Φ
(
vi−ai
σi

)
if x ≥ 0. Finally, recall that Ki = Ki−1 exp(−κi). Consequently, the default barriers
K1, . . . ,Kn are also random.

Remark 3.5.1. The random variable κi is P-independent of HSi−1 for all i ∈
{1, . . . , n}. If i = 1, this follows directly from the assumptions on κ1 and HS0 =
H0 = K∞. Therefore, let us consider i ∈ {2, . . . , n}. We know from the proof of
Proposition 3.2.16 that HSi−1 = K∞ ∨ σ(Sj : j ≤ i − 1). Because Sj is measur-
able with respect to σ(Wt : t ≥ 0) ∨ σ(κ1, . . . , κj) for j ∈ {1, . . . , i − 1}, we obtain
HSi−1 ⊂ σ(Wt : t ≥ 0) ∨ σ(κ1, . . . , κi−1) ∨ K∞. Again, the assumptions on κi imply
that κi and HSi−1 are P-independent.
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Figure 3.5.1.: Density functions ψi (x; ai, vi, σi) of κi
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3.5.2. Conditional distribution of the arrival times

IIM2 differs from IIM1 by stochastic κi for i ∈ {1, . . . , n}. Suppose that i ∈
{1, . . . , n} is fixed. We know from the proof of Proposition 3.1.5 that

(Si − Si−1) I{Si−1<∞} = inf{s ≥ 0|κi + σ(WSi−1+s −WSi−1) + µs = 0}I{Si−1<∞}.

Moreover, Proposition 3.1.5 and Corollary 3.1.7 yield

Pi−1[Si − Si−1 ≤ t|κi = x]
= Pi−1[inf{s ≥ 0|κi + σ(WSi−1+s −WSi−1) + µs = 0} ≤ t|κi = x]
= F∆S(t, x) for x > 0.

Since κi is P-independent of HSi−1 = K∞ ∨ σ(Sj : j ≤ i− 1) (see Remark 3.5.1), κi
and Si−1 are P-independent. Hence,

Pi−1[κi ≤ x] = P[κi ≤ x|Si−1 <∞] = P[κi ≤ x] = Ψi(x) for x ∈ R.
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Altogether, we obtain the Pi−1-distribution of the inter-arrival times Si − Si−1 by
integrating over possible values of κi, i.e., for each t ≥ 0, we have

Pi−1[Si − Si−1 ≤ t]
= Pi−1[inf{s ≥ 0|κi + σ(WSi−1+s −WSi−1) + µs = 0} ≤ t]
= Ei−1[Pi−1[inf{s ≥ 0|κi + σ(WSi−1+s −WSi−1) + µs = 0} ≤ t|κi]]

=
ˆ ∞

0
F∆S(t, x)dΨi(x). (3.24)

This integral was computed by Yi et al. (2011) (see Theorem A.1.5 and Proposition
A.1.7) such that we arrive at the following corollary.

Corollary 3.5.2. In IIM2 the distribution in (3.24) is given by

Pi−1 [Si − Si−1 ≤ t] =
ˆ ∞

0
F∆S(t, x)dΨi(x) = Υi(t)

Φ
(
ai+vi
σi

)
− e−2aivi/σ2

i Φ
(
vi−ai
σi

)
for t > 0 where Υi(t) := Ai(t) +Bi(t)− Ci(t)−Di(t) with

Ai(t) = Φ2

−ai + vi + µt√
σ2
i + σ2t

,−−ai − vi
σi

, ρi(t)

 ,
Bi(t) = Φ2

−ai + vi − 2µσ2
i /σ

2 − µt√
σ2
i + σ2t

,−−ai − vi + 2µσ2
i /σ

2

σi
, ρi(t)


· e−2µ(ai+vi)/σ2+2µ2σ2

i /σ
4
,

Ci(t) = Φ2

−vi − ai + µt√
σ2
i + σ2t

,−−vi + ai
σi

, ρi(t)

 e−2aivi/σ2
i ,

Di(t) = Φ2

−vi − ai − 2µσ2
i /σ

2 − µt√
σ2
i + σ2t

,−−vi + ai + 2µσ2
i /σ

2

σi
, ρi(t)


· e−2aivi/σ2

i−2µ(vi−ai)/σ2+2µ2σ2
i /σ

4

and ρi(t) = −σi√
σ2
i+σ2t

. Here, Φ2(x1, x2, ρ) denotes the 2-dimensional normal distribu-
tion function with standard normal marginal distributions and correlation coefficient
ρ. In the special case of µ/σ2 = vi/σ

2
i , we have

Pi−1 [Si − Si−1 ≤ t]

=
Φ
(
− ai+vi+µt√

σ2t+σ2
i

)
+ e−2aiµ/σ2Φ

(
− ai−vi−µt√

σ2T+σ2
i

)
− Φ

(
−ai+vi

σi

)
− e−2aiµ/σ2Φ

(
vi−ai
σi

)
Φ
(
ai+vi
σi

)
− e−2aivi/σ2

i Φ
(
vi−ai
σi

) .

We are interested in conditional Pi−1-distributions of Ti − Ti−1 and Ti for all
i ∈ {1, . . . , n}. Again, we compute these distributions by using the unconditional
Pi−1-distribution of the inter-arrival times Si − Si−1. But first, we have to prove a
corresponding result to Lemma 3.3.2 from IIM1.
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Lemma 3.5.3. For each i ∈ {1, . . . , n}, the inter-arrival time Si − Si−1 is Pi−1-
independent of HSi−1 ∩ Ωi−1 on (Ωi−1,Ai−1,Pi−1).

Proof. Fix i ∈ {1, . . . , n}. We have

(Si − Si−1) I{Si−1<∞} = inf{s ≥ 0|κi + σ · (WSi−1+s −WSi−1) + µs = 0}I{Si−1<∞}.
(3.25)

The assumptions on κ1, . . . , κn, σ(Wt : t ≥ 0) and K∞ imply that W is a Brown-
ian motion with respect to A where the right-continuous filtration A = (At)t≥0 is
generated by σ(Ws : s ≤ t) ∨ σ(κ1, . . . , κn) ∨ K∞. By the strong Markov property
(see Theorem A.1.1), we know that (WSi−1+s −WSi−1)s≥0 is Pi−1-independent of
ASi−1 ∩ Ωi−1 on the probability space (Ωi−1,Ai−1,Pi−1). Since σ(κi) ∨ HSi−1 =
σ(κi) ∨ K∞ ∨ σ(Sj : j ≤ i − 1) ⊂ ASi−1 , it follows that (WSi−1+s −WSi−1)s≥0 is
Pi−1-independent of (σ(κi) ∨HSi−1) ∩ Ωi−1.
Furthermore, the σ-algebras σ(κi)∩Ωi−1 and HSi−1 ∩Ωi−1 are Pi−1-independent

on (Ωi−1,Ai−1,Pi−1): From Remark 3.5.1 we know that κi is P-independent of
HSi−1 , i.e., P[C∩H] = P[C] ·P[H] for each C ∈ σ(κi) and each H ∈ HSi−1 . Consider
D ∈ σ(κi)∩Ωi−1 and E ∈ HSi−1∩Ωi−1. This means D = C∩Ωi−1 and E = H∩Ωi−1

for some C ∈ σ(κi) and H ∈ HSi−1 . Because Ωi−1 ∈ HSi−1 , we obtain E ∈ HSi−1 .
It follows

Pi−1[D ∩ E] = P[C ∩ E ∩ Ωi−1]
P[Ωi−1] = P[C] · P[E ∩ Ωi−1]

P[Ωi−1] = P[C] · Pi−1[E]. (3.26)

Moreover, note that

Pi−1[D] = Pi−1[C ∩ Ωi−1] = P[C ∩ Ωi−1]
P[Ωi−1] . (3.27)

Since κi is P-independent of HSi−1 and Ωi−1 ∈ HSi−1 , Equation (3.27) implies
Pi−1[D] = P[C]. Together with (3.26), this yields Pi−1[D ∩ E] = Pi−1[D] · Pi−1[E]
for all D ∈ σ(κi) ∩ Ωi−1 and all E ∈ HSi−1 ∩ Ωi−1.
To sum up, we obtain that the σ-algebra generated by κi and (WSi−1+s−WSi−1)s≥0

is Pi−1-independent of HSi−1∩Ωi−1 on (Ωi−1,Ai−1,Pi−1). Together with (3.25), this
implies the assertion.

Now, we obtain the desired result.

Lemma 3.5.4. For each i ∈ {1, . . . , n} and t ≥ 0, in IIM2 the inter-arrival time
Si−Si−1 is Pi−1-independent of F i−1

Ti−1+t∩Ωi−1 and Pi−1-independent of F i−1
t∨Ti−1

∩Ωi−1

on (Ωi−1,Ai−1,Pi−1).

Proof. This follows analogously to the proof of Lemma 3.3.2 from the Pi−1-inde-
pendence of Si − Si−1 and HSi−1 ∩ Ωi−1 on (Ωi−1,Ai−1,Pi−1).

Finally, we are able to prove the following result with regard to the conditional
Pi−1-distributions.
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Theorem 3.5.5. For each i ∈ {1, . . . , n} and t ≥ 0, denote F (2,i)(t) := Pi−1[Si −
Si−1 ≤ t] in IIM2 and consider 0 ≤ s ≤ t. Then we have

Pi−1[(Ti − Ti−1)I{Ti−1<∞} ≤ t|F
i−1
Ti−1+s]

= Ei−1[F (2,i)(Git)I{Ti−1<∞}|F
i−1
Ti−1+s] Pi−1 − a.s., (3.28)

and the Fi−1-conditional Pi−1-distribution function of Ti is given by

Pi−1[Ti ≤ t|F i−1
t ] = F (2,i)(Git−Ti−1)I{Ti−1<t} Pi−1 − a.s.

Proof. Fix i ∈ {1, . . . , n} and t ≥ 0. As in the proof of Theorem 3.3.3, we know that

Pi−1[(Ti − Ti−1)I{Ti−1<∞} ≤ t|F
i−1
Ti−1+t]

= Pi−1[Si − Si−1 ≤ Git|F i−1
Ti−1+t ∩ Ωi−1]I{Ti−1<∞}.

Since Git is F i−1
Ti−1+t-measurable and Si − Si−1 is Pi−1-independent of F i−1

Ti−1+t ∩Ωi−1

on (Ωi−1,Ai−1,Pi−1) (see Lemma 3.5.4), Lemma 3.1.3 yields

Pi−1[(Ti − Ti−1)I{Ti−1<∞} ≤ t|F
i−1
Ti−1+t] = F (2,i)(Git)I{Ti−1<∞}.

Equation (3.28) follows as in the proof of Theorem 3.3.3.
Moreover, we obtain analogously to proof of Theorem 3.3.3 that

Pi−1[Ti ≤ t|F i−1
t ] = Pi−1[Si − Si−1 ≤ Gi(t−Ti−1)+ |F i−1

t∨Ti−1
∩ Ωi−1]I{Ti−1<t}.

Since Gi(t−Ti−1)+ is F i−1
t (⊂ F i−1

t∨Ti−1
)-measurable (see Lemma 3.2.11) and Si − Si−1

and F i−1
t∨Ti−1

∩Ωi−1 are Pi−1-independent on the probability space (Ωi−1,Ai−1,Pi−1)
(see Lemma 3.5.4), Lemma 3.1.3 implies

Pi−1[Ti ≤ t|F i−1
t ] = F (2,i)(Gi(t−Ti−1)+)I{Ti−1<t} = F (2,i)(Git−Ti−1)I{Ti−1<t}.

3.5.3. Default trends
An important variable for computing the ith default trend and the ith default inten-
sity is Zi for i ∈ {1, . . . , n}, namely the Fi−1-conditional survival probability of Ti.
In IIM1 Zi is given in Corollary 3.4.10. Similarly, we obtain in IIM2 from Theorem
3.5.5 and Equation (3.24) that

Zit = 1− Pi−1[Ti ≤ t|F i−1
t ]

= 1− F (2,i)(Git−Ti−1)I{Ti−1<t}

= 1−
[ˆ ∞

0
F∆S(Git−Ti−1 , x)dΨi(x)

]
I{Ti−1<t}

= 1−
ˆ ∞

0
F it (x)dΨi(x) P− a.s. (3.29)
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where F i(x) is defined in (3.12). Moreover, the previous equation and Corollary
3.5.2 yield

Zit = 1−

 Υi(Git−Ti−1
)

Φ
(
ai+vi
σi

)
− e−2aivi/σ2

i Φ
(
vi−ai
σi

)
 I{Ti−1<t} P− a.s. (3.30)

where Υi(t) is given in Corollary 3.5.2.
The following proposition yields the ith default trend and the ith default intensity

in this model. See Proposition 6.5 in Giesecke (2006) for the corresponding result
in the single-firm setting.

Proposition 3.5.6. For each i ∈ {1, . . . , n}, in IIM2 the ith default time Ti is
totally inaccessible in G, and the ith default trend A i is continuous. For each t ≥ 0,
we have

A i
t = − log

(
1−
ˆ ∞

0
F it (x)dΨi(x)

)
P− a.s. (3.31)

Moreover, the default model (Ti,Fi−1) is strongly intensity based, and A i admits a
right-continuous ith intensity process λi given by

λit =
´∞

0 f it (x)dΨi (x)
1−
´∞

0 F it (x)dΨi (x)
P− a.s. (3.32)

for t ≥ 0.

Proof. Fix i ∈ {1, . . . , n}. From Lemma 3.4.15 we know that F it (x) < 1 for each
x > 0 and t ≥ 0. Hence, Zi given in (3.29) satisfies Zit ∈ (0, 1] for all t ≥ 0. Since
F i (x) is a continuous and increasing process for each x > 0, Zi is continuous and
decreasing. Thus, the compensator C i is given by C i = 1 − Zi. As in the proof
of Proposition 3.4.17, we obtain that A i satisfies Equation (3.31) and that Ti is a
totally inaccessible G-stopping time. Again, λi is the derivative of the ith default
trend A i with respect to t P-a.s. It follows that

λit = − 1
Zit

lim
ε↓0

1
ε

[
1−
ˆ ∞

0
F it+ε(x)dΨi(x)− 1 +

ˆ ∞
0

F it (x)dΨi(x)
]

= 1
Zit

lim
ε↓0

1
ε

ˆ ∞
0

(F it+ε (x)− F it (x))dΨi (x) P− a.s.

Since f it (x) ≥ 0 for all x > 0 and because it is easily seen that f it (·) is pointwise
bounded, i.e., for P-a.e. ω ∈ Ω, there exists b(t, ω) ∈ R such that |f it (·)(ω)| ≤ b(t, ω),
Equation (3.32) holds due to Lebesgue’s dominated convergence theorem.
Finally, it follows analogously to the proof of Proposition 3.4.17 that the default

model (Ti,Fi−1) is strongly intensity based.
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Explicit form of A i: The previous proposition and Equations (3.29) and (3.30)
yield P-a.s.

A i
t = − log

1−

 Υi(Git−Ti−1
)

Φ
(
ai+vi
σi

)
− e−2aivi/σ2

i Φ
(
vi−ai
σi

)
 I{Ti−1<t}


= − log

1−
Υi(Git−Ti−1

)

Φ
(
ai+vi
σi

)
− e−2aivi/σ2

i Φ
(
vi−ai
σi

)
 I{Ti−1<t} (3.33)

where Υi(t) is given in Corollary 3.5.2. Note that the second equality follows analo-
gously to Remark 3.4.18.

3.5.4. The compensator of the default counting process
It remains to consider the (P,G)-compensator of the default counting process N in
IIM2. Note that in IIM1, as well as in IIM2, the (P,G)-compensator of N i is given
by Ci with Cit = A i

t∧Ti Pi−1-a.s. Moreover, in both models the ith default trend
A i is of the form A i

t = − log(Yt)I{Ti−1<t} P-a.s. for a continuous process Y . Thus,
A i and λi in IIM2 have similar properties compared to IIM1. For instance, A i is
absolutely continuous and

λit =
´∞

0 f it (x)dΨi (x)
1−
´∞

0 F it (x)dΨi (x)
=

´∞
0 f it (x)dΨi (x)

1−
´∞

0 F it (x)dΨi (x)
I{Ti−1<t} P− a.s.

F i(x) defined in Equation (3.12) is continuous and f i(x) is given in Equation (3.15)
by

f it (x) = git−Ti−1e
−2µx/σ2 x

σ
(Git−Ti−1)−3/2ϕ

−x+ µGit−Ti−1

σ
√
Git−Ti−1

 I{Ti−1<t} P− a.s.

for x > 0. Since Gi has a right-continuous density process gi by Assumption 3.4.14,
we know from Lemma 3.4.15 that f i(x) is also right-continuous. Lebesgue’s domi-
nated convergence theorem yields that λi is right-continuous, too.
If gi is additionally Gi−1-predictable, then f i(x) is Fi−1-predictable for each x > 0

due to Lemma 3.4.15. Note that [f it (·)](ω) is for P-a.e. ω ∈ Ω continuous and define
f it (0) := limx↓0 f

i
t (x) = 0. Then for every y > 0, the Lebesgue-Stieltjes integral

satisfies∑
ym
k
,ym
k+1∈πm

[f it (zmk )](ω)(Ψi(ymk+1)−Ψi(ymk ))→
ˆ y

0
[f it (x)](ω)dΨi(x) (m→∞)

for P-a.e. ω ∈ Ω and all t > 0. Here, πm = {ym0 , ym1 , . . . , ymm} is a sequence of
finite partitions of [0, y], i.e., 0 = ym0 < ym1 < . . . < ymm = y, with limm→∞(ymk+1 −
ymk ) = 0 for all k ∈ {0, . . . ,m − 1} and zmk ∈ [ymk , ymk+1]. This implies that the map´ y

0 f
i(x)dΨi(x) : (0,∞)×Ω→ R is Fi−1-predictable. Finally, it follows directly that´∞

0 f i(x)dΨi(x) : (0,∞)× Ω→ R is also Fi−1-predictable.
Hence, the results from Subsection 3.4.3 are also satisfied in IIM2.
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3.6. Examples of time changes
In this section we study the overall time change G in more detail. More precisely,
we discuss explicit examples which are related to those in Giesecke and Tomecek
(2005). All time changes are supposed to be absolutely continuous such that we
have

Gt =
ˆ t

0
gsds P− a.s. and Git =

ˆ t

0
gisds P− a.s. (3.34)

for suitable processes g and gi, i ∈ {1, . . . , n}. By Assumption 3.4.14, the density
processes gi are Gi−1-adapted, right-continuous and positive.
In the following, we distinguish between two cases. In the first case, the filtration

K is trivial and the time change G is deterministic between arrival times. In the
second case, K is not trivial any more, which implies that G might depend on
additional stochastic variables between the arrival times Ti, i ∈ {0, . . . , n}.

3.6.1. Preliminary remarks
By the definition of the overall time change in Subsection 3.2.4, we have

Gt =
n−1∑
i=1

(
i−1∑
k=1

GkTk−Tk−1 +Git−Ti−1

)
I{Ti−1≤t<Ti}

+
(
n−1∑
k=1

GkTk−Tk−1 +Gnt−Tn−1

)
I{Tn−1≤t}. (3.35)

Since G and Gi, i ∈ {1, . . . , n}, satisfy (3.34), this implies

gt =
n−1∑
i=1

git−Ti−1I{Ti−1≤t<Ti} + gnt−Tn−1I{Tn−1≤t}. (3.36)

Because all gi are right-continuous and positive, so is g. Moreover, in a similar
way to the proof of Lemma 3.2.11 we can show that git−Ti−1

I{Ti−1≤t} is F
i−1
t (⊂ Gt)-

measurable for each i ∈ {1, . . . , n} and t ≥ 0, which implies that g is G-adapted.
In this section we specify the time changes Gi and their corresponding density

processes gi for i ∈ {1, . . . , n}. Since the time change Gi is only relevant on subsets
of {Ti−1 ≤ t} in Equation (3.35), we specify Gi on the set {Ti−1 <∞} and define

Git := GitI{Ti−1<∞} + tI{Ti−1=∞}. (3.37)

Note that Ti−1 is measurable with respect to Gi−1
t = F i−1

Ti−1+t for each t ≥ 0 such
that the sets {Ti−1 < ∞} and {Ti−1 = ∞} are elements in Gi−1

t for all t ≥ 0. A
consistent density process to Gi defined in (3.37) is given by

git = gitI{Ti−1<∞} + I{Ti−1=∞}. (3.38)

Now, let us consider the following properties of Gi, i ∈ {1, . . . , n}:

(i) GiI{Ti−1<∞} is Gi−1-adapted.
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(ii) GiI{Ti−1<∞} is absolutely continuous.
(iii) GitI{Ti−1<∞} <∞ P-a.s. for all t ≥ 0.
(iv) limt→∞G

i
t =∞ P-a.s. on {Ti−1 <∞}.

IfGi defined in (3.37) satisfies (i)-(iv), thenGi meets all requirements from Definition
3.2.7.

3.6.2. Time change that is deterministic between arrival times
In this subsection we focus on time changes that are deterministic between arrival
times. Thus, we assume that K = (Kt)t≥0 is trivial. This means that Kt = N for
each t ≥ 0 where N denotes the set of all P-null sets of A.
We adapt the idea of Giesecke and Tomecek (2005) and study time changes Gi,

i ∈ {1, . . . , n}, of the form

Git =
ˆ t

0
ν0
s+Ti−1ds+

i−1∑
k=1

ˆ t

0
νks+Ti−1−Tkds on {Ti−1 <∞} (3.39)

for specific processes νi for i ∈ {0, . . . , n− 1}. The next definition specifies these so
called impact processes.

Definition 3.6.1. For each i ∈ {0, . . . , n− 1}, the impact process νi is given by
ν0
t := g1

t and

νit :=
{
gi+1
t − git+Ti−Ti−1

on {Ti <∞}
0 on {Ti =∞}

for i ∈ {1, . . . , n− 1}.

Note that the density process of the overall time change G satisfies for i ∈
{1, . . . , n− 1}

gt = git−Ti−1 on {Ti−1 ≤ t < Ti},
gTi+t = gi+1

t on {Ti ≤ Ti + t < Ti+1} ∩ {Ti <∞}.

Hence, it follows for each i ∈ {1, . . . , n− 1}

∆gTi = gi+1
0 − giTi−Ti−1 = νi0 on {Ti <∞}.

This explains why the processes νi, i ∈ {1, . . . , n− 1}, are called impact processes:
The density process g jumps at time Ti by νi0 on {Ti < ∞}, and νit encodes the
impact of the ith default on g at time Ti + t. In case of i = 0, ν0 is equal to the
density process of the time change up to the first default. See also Giesecke and
Tomecek (2005) for this interpretation of the impact processes.
Because after the nth default there is no possible future default in our underly-

ing portfolio, it is not necessary to consider a jump of g at time Tn. Indeed, by
construction, g does not jump at Tn: In case of i = n, we have gt = gnt−Tn−1

on
{Tn−1 ≤ t < Tn} and gTn+t = gnTn+t−Tn−1

on {Tn < ∞}. This means ∆gTn =
gnTn−Tn−1

− gnTn−Tn−1
= 0 on {Tn <∞}.

Because of Definition 3.6.1, we obtain the following result.
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Proposition 3.6.2. For each i ∈ {0, . . . , n− 1}, the impact process νi satisfies the
following properties:

1. νiI{Ti<∞} is right-continuous and Gi-adapted.
2. νit > −

∑i−1
k=0 ν

k
t+Ti−Tk P-a.s. on {Ti <∞} for all t ≥ 0.

3.
´ t

0 ν
i
sds <∞ P-a.s. on {Ti <∞} for all t ≥ 0.

Proof. Fix t ≥ 0. The first and the last assertion are obvious for i = 0. Thus, let us
consider i ∈ {1, . . . , n − 1}. Right-continuity follows directly from the definition of
νi, and the third assertion holds because Git and Gi+1

t are finite for all t ≥ 0. Note
that (t+ Ti − Ti−1)I{Ti−1<∞} is an (F iTi−1+s)s≥0-stopping time because

{(t+ Ti − Ti−1)I{Ti−1<∞} ≤ s}
= {Ti−1 =∞} ∪ ({Ti−1 <∞} ∩ {t+ Ti ≤ Ti−1 + s}) ∈ F iTi−1+s for all s ≥ 0.

Since gi is right-continuous and adapted with respect to the filtration Gi−1 ⊂
(F iTi−1+t)t≥0, the random variable gi(t+Ti−Ti−1)I{Ti−1<∞}

I{(t+Ti−Ti−1)I{Ti−1<∞}<∞}
is

F iTi−1+(t+Ti−Ti−1)I{Ti−1<∞}
-measurable. Furthermore, it follows from

Ti−1 + (t+ Ti − Ti−1)I{Ti−1<∞} = Ti−1I{Ti−1=∞} + (Ti + t)I{Ti−1<∞} ≤ Ti + t

that gi(t+Ti−Ti−1)I{Ti−1<∞}
I{(t+Ti−Ti−1)I{Ti−1<∞}<∞}

is F iTi+t(= G
i
t)-measurable. The

inclusion
{Ti <∞} ⊂ {(t+ Ti − Ti−1)I{Ti−1<∞} <∞}

implies that

gi(t+Ti−Ti−1)I{Ti−1<∞}
I{(t+Ti−Ti−1)I{Ti−1<∞}<∞}

I{Ti<∞} = git+Ti−Ti−1I{Ti<∞}

is Git-measurable. Finally, we obtain that νitI{Ti<∞} = (gi+1
t − git+Ti−Ti−1

)I{Ti<∞} is
Git-measurable.
From now on, consider again i ∈ {0, . . . , n − 1}. In order to prove the inequality

in the second assertion, note that summing up over all νk for k ∈ {0, . . . , i} yields
on {Ti <∞}

ν0
t+Ti +

i∑
k=1

νkt+Ti−Tk = g1
t+Ti +

i∑
k=1

(gk+1
t+Ti−Tk − g

k
t+Ti−Tk+Tk−Tk−1) = gi+1

t . (3.40)

The second assertion holds because gi+1 is positive.

Remark 3.6.3. Equation (3.40) ensures that all Git =
´ t

0 g
i
sds, i ∈ {1, . . . , n}, satisfy

(3.39).

Finally, we are interested in how the density process g of the overall time change
G depends on the impact processes. If we sum up over all νk for k ∈ {0, . . . , i− 1},
we obtain on {Ti−1 ≤ t}

ν0
t +

i−1∑
k=1

νkt−Tk = g1
t +

i−1∑
k=1

(gk+1
t−Tk − g

k
t−Tk−1) = git−Ti−1 .
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Together with Equation (3.36), this yields

gt =
n−1∑
i=1

(
ν0
t +

i−1∑
k=1

νkt−Tk

)
I{Ti−1≤t<Ti} +

(
ν0
t +

n−1∑
k=1

νkt−Tk

)
I{Tn−1≤t}

= ν0
t +

n−1∑
k=1

νkt−TkI{Tk≤t}. (3.41)

In the remaining part of this subsection we determine the time change G and
the time changes Gi for i ∈ {1, . . . , n} by specifying impact processes νi for i ∈
{0, . . . , n − 1} that satisfy the properties from Proposition 3.6.2 and additionally
guarantee that limt→∞G

i+1
t =∞ P-a.s. on {Ti <∞}. Note that if νi, i ∈ {0, . . . , n−

1}, meet all these requirements, then Gi, i ∈ {1, . . . , n}, given in Equation (3.39)
satisfy (i)-(iv) defined in Subsection 3.6.1.
Giesecke and Tomecek (2005) state examples of positive and negative impact

processes; see Examples 3.11 and 3.12 in Giesecke and Tomecek (2005) and Examples
3.6.4 and 3.6.6 below. In the following, we take a closer look at their proposed impact
processes. Since we would like to model the situation in which one default in our
portfolio increases the likelihood of further defaults, the case of positive impact
processes is more relevant to us. Hence, we add another example of positive impact
processes and then discuss differences and similarities.

Example 3.6.4 (Positive impact process I). Define νit := αie
−βit on {Ti <∞} with

αi ≥ 0 and βi > 0 for i ∈ {1, . . . , n− 1} and set ν0
t := α0e

−β0t = α0 with β0 := 0
and α0 > 0 constant. Moreover, αi and βi may depend on T0, . . . , Ti.
Note that it is obvious that these νi, i ∈ {0, . . . , n− 1}, satisfy the conditions

from Proposition 3.6.2 and additionally guarantee that limt→∞G
i+1
t =∞ P-a.s. on

{Ti <∞}. Moreover, Gi, i ∈ {1, . . . , n}, is on {Ti−1 <∞} given by

Git =
ˆ t

0

i−1∑
k=0

νks+Ti−1−Tkds = α0t+
i−1∑
k=1

ˆ t

0
αke

−βk(s+Ti−1−Tk)ds

= α0t+
i−1∑
k=1

(
αk
βk
e−βk(Ti−1−Tk) − αk

βk
e−βk(t+Ti−1−Tk)

)
, (3.42)

and gi satisfies on {Ti−1 <∞}

git =
i−1∑
k=0

νkt+Ti−1−Tk =
i−1∑
k=0

αke
−βk(t+Ti−1−Tk). (3.43)

Finally, Equation (3.41) yields

gt = ν0
t +

n−1∑
k=1

νkt−TkI{Tk≤t} = α0 +
n−1∑
k=1

αke
−βk(t−Tk)I{Tk≤t} =

n−1∑
k=0

αke
−βk(t−Tk)I{Tk≤t}.

(3.44)
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Example 3.6.5 (Positive impact process II). Define νit := γi(t+ 1)−δi on {Ti <∞}
with γi ≥ 0 and δi > 1 for i ∈ {1, . . . , n− 1} and set ν0

t := γ0(t + 1)−δ0 = γ0 with
δ0 := 0 and γ0 > 0 constant. Again, γi and δi may depend on T0, . . . , Ti.
Again, the conditions from Proposition 3.6.2 are satisfied and limt→∞G

i+1
t = ∞

P-a.s. on {Ti <∞}. More precisely, Gi, i ∈ {1, . . . , n}, is on {Ti−1 <∞} given by

Git = γ0t+
i−1∑
k=1

ˆ t

0
γk (s+ Ti−1 − Tk + 1)−δk ds

= γ0t+
i−1∑
k=1

(
γk

−δk + 1(t+ Ti−1 − Tk + 1)−δk+1 − γk
−δk + 1(Ti−1 − Tk + 1)−δk+1

)
.

Furthermore, gi satisfies on {Ti−1 <∞}

git =
i−1∑
k=0

γk(t+ Ti−1 − Tk + 1)−δk , (3.45)

and g is given by

gt =
n−1∑
k=0

γk(t− Tk + 1)−δkI{Tk≤t}.

Example 3.6.6 (Negative impact process). Consider a constant impact process ν0

that satisfies ν0 > 0 and p1, . . . , pn−1 ∈ (0, 1). We obtain a negative impact process
by setting νit := −ν0(1− pi)

∏i−1
j=1 pj on {Ti <∞} for i ∈ {1, . . . , n− 1}. Moreover,

pi may depend on T0, . . . , Ti.
The impact processes νi, i ∈ {1, . . . , n− 1}, defined above obviously satisfy the

first and third condition from Proposition 3.6.2 and guarantee that limt→∞G
i+1
t =

∞ P-a.s. on {Ti < ∞}. The second condition from Proposition 3.6.2 is satisfied
since on {Ti <∞}, we have

−
i−1∑
k=0

νkt+Ti−Tk = −ν0 +
i−1∑
k=1

ν0(1− pk)
k−1∏
j=1

pj = −ν0
i−1∏
j=1

pj < νit .

Remark 3.6.7. Suppose that giI{Ti−1<∞} is given by (3.43) or by (3.45). Then
gi specified in Equation (3.38) is continuous and Gi−1-adapted, and hence Gi−1-
predictable. Moreover, gi is bounded.

Figure 3.6.1 shows a possible path of g and G for the exponential impact processes
from Example 3.6.4 and Figure 3.6.2 shows a realization of Example 3.6.5. In both
figures we have identical default times T0 = 0, T1 = 1.5, T2 = 3, T3 = 5 and T4 = 8,
and the parameters of the time change satisfy αi = γi and βi = δi for i ∈ {0, . . . , 4}.
We see that at the default time Ti, the path of the density process jumps by αi (γi).
As a consequence, the graph of the corresponding time change gets steeper after this
default, i.e., time evolves faster. After the jump by αi (γi), the density decreases
again. This is controlled by the choice of the parameter βi in case of Figure 3.6.1 and
by the parameter δi in case of Figure 3.6.2: The greater βi (δi), the faster decreases
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Figure 3.6.1.: Example I: density process g and time change G for a portfolio of size
n > 4
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The default times are T0 = 0, T1 = 1.5, T2 = 3, T3 = 5 and T4 = 8. The parameters
of the time change are given by α0 = 1, α1 = 6, α2 = 7, α3 = 5, α4 = 6, β0 = 0,
β1 = 7, β2 = 5, β3 = 3 and β4 = 1.5.

Figure 3.6.2.: Example II: density process g and time change G for a portfolio of size
n > 4
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The default times are T0 = 0, T1 = 1.5, T2 = 3, T3 = 5 and T4 = 8. The parameters
of the time change are given by γ0 = 1, γ1 = 6, γ2 = 7, γ3 = 5, γ4 = 6, δ0 = 0,
δ1 = 7, δ2 = 5, δ3 = 3 and δ4 = 1.5.
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the density process g after Ti. This shape of g is plausible for our model: Directly
after a default, which occurs by surprise, there is uncertainty in the market. This
uncertainty results in a financial time evolving faster than usual. After some time
to adapt to the new situation, the market becomes more stable, and hence financial
time evolves slower again.
If we compare the density processes of Figure 3.6.1 and Figure 3.6.2, then they

look very similar at the first glance. But if we look more closely, then we see that
in Figure 3.6.1 g decreases faster after the defaults. This is a natural consequence
of the exponential form of the impact processes. Moreover, this also implies that in
case of αi = γi and βi = δi and identical default times, the corresponding path of the
time change in Example 3.6.4 is always greater than or equal to the corresponding
path of the time change in Example 3.6.5. Indeed, this holds since e−βx ≤ (x+ 1)−β
for β ≥ 0 and each x ≥ 0, which implies

n−1∑
k=0

αke
−βk(t−Tk(ω))I{Tk(ω)≤t} ≤

n−1∑
k=0

αk(t− Tk(ω) + 1)−βkI{Tk(ω)≤t}.

In case of IIM1, Figure 3.6.3 shows the dependence of the conditional survival
probability P[T2 > t|F1

t ] for T1 = 1 on the parameters of the time change defined
in Example 3.6.4. Since we set T1 = 1, this conditional survival probability is equal
to 1 up to time T1 = 1. We see that the conditional survival probability decreases
faster over the course of time if α1 is higher. This comes up to our expectations
since the higher the jump of g at time T1, the faster the time change G evolves after
the first default event and the likelier is the next default. The dependence on β1
shows a reverse situation. The higher β1, the steeper is the decrease of g after the
first default in Figure 3.6.1. Therefore, the conditional survival probability increases
with β1.
In IIM2 the (conditional) survival probability additionally depends on the pa-

rameters of the barrier distribution. Figure 3.6.4 shows this dependence of P[T1 >
t|F0

t ] = P[T1 > t] in case of a piecewise deterministic time change with parameters
α0 = 1 and β0 = 0.

Simulating default times

We have constructed a top down first-passage model of default with features of
reduced form models. Hence, we can simulate our totally inaccessible default times
T1, . . . , Tn by an algorithm that is typical for reduced form models; see, for instance,
Section 5.3 and 7.7 in Schönbucher (2003) for the case of doubly stochastic Poisson
processes. A very similar algorithm was used in Giesecke and Goldberg (2004b)
to generate the totally inaccessible default times in their bottom up first-passage
model.
IIM1 and IIM2 have in common that there is no available information about the

portfolio value process. As a consequence, the ith default trends A i, i ∈ {1, . . . , n},
do not depend on this process, which leads to a tractable simulation process. The
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Figure 3.6.3.: Conditional survival probability P[T2 > t|F1
t ] for T1 = 1 in IIM1 with

time change that is deterministic between arrival times
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In both figures we have V0 = 100, µV = 0.01, σV = 0.1, K1 = 60, K2 = 40, α0 = 1
and β0 = 0. On the left hand side, we set β1 = 0.8; on the right hand side, we set
α1 = 1.

Figure 3.6.4.: Survival probability P[T1 > t|F0
t ] = P[T1 > t] in IIM2 with time

change that is deterministic between arrival times
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In all subfigures we have V0 = 100, µV = 0.01, σV = 0.1, α0 = 1 and β0 = 0.
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explicit form of A i is given by

A i
t = − log

Φ

κi + µGit−Ti−1

σ
√
Git−Ti−1

− e−2µκi/σ2Φ

−κi + µGit−Ti−1

σ
√
Git−Ti−1

 I{Ti−1<t}

(3.46)
P-a.s. in IIM1 (see Equation (3.18)) and by

A i
t = − log

1−
Υi(Git−Ti−1

)

Φ
(
ai+vi
σi

)
− e−2aivi/σ2

i Φ
(
vi−ai
σi

)
 I{Ti−1<t} (3.47)

P-a.s. in IIM2 (see Equation (3.33)) where Υi(t) is specified in Corollary 3.5.2.
Moreover, the time changes Gi are given in Equation (3.39) and satisfy in case of
Example 3.6.4 on {Ti−1 <∞}

Git =
ˆ t

0

i−1∑
k=0

νks+Ti−1−Tkds = α0t+
i−1∑
k=1

(
αk
βk
e−βk(Ti−1−Tk) − αk

βk
e−βk(t+Ti−1−Tk)

)
.

We generate each default time conditioned on the available information. In case
of IIM1 and IIM2, this means that we generate the ith default, i ∈ {1, . . . , n},
conditioned on the information that is available up to the (i− 1)st default because
K is assumed to be trivial. In detail, the algorithm for simulating default times
T˜1, . . . , T˜n reads as follows:

1. Initialize i = 1 and T˜0 = 0.
2. Simulate an independent standard uniform random variable U i.
3. Set T˜ i = inf{t > T˜ i−1|A˜i

t
≥ − logU i}.

4. If i = n, then stop, else set i = i+ 1.

A˜i
t
in step three is given as the ith default trend A i

t (see (3.46) or (3.47)) where Tj
is replaced by T˜ j for j ∈ {0, . . . , i− 1}.

3.6.3. Time change that is stochastic between arrival times
To construct a time change G that is stochastic between arrival times, we can apply
the two fold time change used by Giesecke and Tomecek (2005) to construct time
changed Hawkes processes. An important advantage of time changes of this specific
type is an easier simulation of the default times Ti, i ∈ {1, . . . , n}, compared to
models with a general time change.
As already mentioned at the beginning of this section, the time change might

depend on additional stochastic factors apart from T1, . . . , Tn−1 if K is not trivial
any more. We assume that K = (Kt)t≥0 is generated by a stochastic process Y .
A possible example of Y is a Brownian motion B. Note that K∞ has to be P-
independent of σ(Ws : s ≥ 0) by assumption, which implies for Y = B that W and
B are independent Brownian motions.
Giesecke and Tomecek (2005) propose a time change G that satisfies

Gt = MHt
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where M and H are both appropriately measurable, absolutely continuous time
changes. In the subsequent section we show that if M is constructed similarly to G
in Subsection 3.6.2 and if, given K0, H is an independent, absolutely continuous, K-
adapted time change, then (MHt)t≥0 satisfies Definition 3.2.7, and hence (MHt)t≥0
is adapted with respect to G.
From now on, let H be an absolutely continuous time change admitting the form

Ht =
ˆ t

0
hsds

for a K-adapted process h such that H satisfies Ht < ∞ P-a.s. for all t ≥ 0 and
limt→∞Ht =∞ P-a.s. In analogy to G in the previous subsection, let M be defined
by

Mt :=


∑i−1
k=1M

k
T̄k−T̄k−1

+M i
t−T̄i−1

on {T̄i−1 ≤ t < T̄i} for i ∈ {1, . . . , n}∑n−1
k=1 M

k
T̄k−T̄k−1

+Mn
t−T̄n−1

on {T̄n ≤ t}

where T̄i is given by T̄i := M−1
Si

for i ∈ {0, . . . , n} (M−1 is the inverse process of
M) and M1, . . . ,Mn are absolutely continuous time changes that satisfy M i

t < ∞
P-a.s. for all t ≥ 0 and limt→∞M

i
t =∞ P-a.s. for all i ∈ {1, . . . , n}. Additionally, we

assume that each M i, i ∈ {1, . . . , n}, is adapted to the filtration Ḡi−1 := (Ḡi−1
t )t≥0

where Ḡi−1
t := F̄ i−1

T̄i−1+t and F̄
i−1
t := K0 ∨ σ(I{T̄k≤s} : s ≤ t, k ≤ i− 1).

Now, let us consider the process G defined by Gt := MHt . Obviously, G is an
absolutely continuous time change with Gt <∞ P-a.s. for all t ≥ 0 and limt→∞Gt =
∞ P-a.s. Using this time change to define the portfolio value process VG leads to

Ti = G−1
Si

= H−1
M−1
Si

for i ∈ {0, . . . , n}

(H−1 is the inverse process of H). It follows

T̄i = M−1
Si

= HTi for i ∈ {0, . . . , n}.

In the following, we verify that G admits the representation from Definition 3.2.7.

Lemma 3.6.8. For each i ∈ {1, . . . , n}, the process Gi defined by

Git := (M i
Ht+Ti−1−HTi−1

)I{Ti−1<∞} + tI{Ti−1=∞} (3.48)

is a Gi−1-adapted, absolutely continuous time change with Git < ∞ P-a.s. for all
t ≥ 0 and limt→∞G

i
t =∞ P-a.s.

Proof. Fix i ∈ {1, . . . , n}. SinceM i and H are time changes, Gi is strictly increasing
and satisfies Gi0 = 0. Absolute continuity, finiteness and limt→∞G

i
t =∞ P-a.s. fol-

low directly from the corresponding properties of M i and H. To prove that Gi is
Gi−1-adapted, we have to show that {Git ≤ s} ∈ F i−1

Ti−1+t for all s ≥ 0 and t ≥ 0.
Hence, fix s ≥ 0 and t ≥ 0 and note that the properties of M i imply

{Git ≤ s} = ({Ht+Ti−1 −HTi−1 ≤ (M i)−1
s } ∩ {Ti−1 <∞})∪ ({t ≤ s} ∩ {Ti−1 =∞}).
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Thus, we have to prove that

{Ht+Ti−1I{Ti−1<∞} −HTi−1I{Ti−1<∞} ≤ (M i)−1
s } ∩ {Ti−1 <∞} ∈ F i−1

Ti−1+t. (3.49)

Since M i
u is F̄ i−1

∞ (= K0 ∨ σ(T̄j : j ≤ i− 1))-measurable for each u ≥ 0, we have

{(M i)−1
s ≤ u} = {s ≤M i

u} ∈ K0 ∨ σ(T̄j : j ≤ i− 1) for each u ≥ 0.

It follows that (M i)−1
s is K0∨σ(T̄j : j ≤ i−1)-measurable. Moreover, we know that

H is K(⊂ Fi−1)-adapted and that T0, . . . , Ti−1 and Ti−1 + t are Fi−1-stopping times.
This implies thatHTkI{Tk<∞} is F

i−1
Tk

-measurable for each k ∈ {0, . . . , i−1} and that
HTi−1+tI{Ti−1<∞} is measurable with respect to F i−1

Ti−1+t. Since T̄k = HTkI{Tk<∞} +
∞I{Tk=∞} for each k ∈ {0, . . . , i − 1}, this means that T̄0, . . . , T̄i−1 are measurable
with respect to F i−1

Ti−1+t. To sum up, we obtain:

1. (M i)−1
s is measurable with respect to K0∨σ(T̄j : j ≤ i−1) ⊂ F i−1

Ti−1
⊂ F i−1

Ti−1+t.

2. Ht+Ti−1I{Ti−1<∞} −HTi−1I{Ti−1<∞} is measurable with respect to F i−1
Ti−1+t.

But this implies (3.49). Therefore, Gi is Gi−1-adapted.

The following lemma specifies the overall time change which is obtained by using
the time changes Gi, i ∈ {1, . . . , n}, given by Equation (3.48).

Lemma 3.6.9. Suppose that Gi, i ∈ {1, . . . , n}, are given by Equation (3.48). Then
Gt = MHt satisfies

Gt =


∑i−1
k=1G

k
Tk−Tk−1

+Git−Ti−1
on {Ti−1 ≤ t < Ti} for i ∈ {1, . . . , n}∑n−1

k=1 G
k
Tk−Tk−1

+Gnt−Tn−1
on {Tn ≤ t}

=


∑i−1
k=1M

k
T̄k−T̄k−1

+M i
Ht−T̄i−1

on {T̄i−1 ≤ Ht < T̄i} for i ∈ {1, . . . , n}∑n−1
k=1 M

k
T̄k−T̄k−1

+Mn
Ht−T̄n−1

on {T̄n ≤ Ht}
.

In particular, (Gt)t≥0 = (MHt)t≥0 is adapted with respect to G.

Proof. For j ∈ {1, . . . , n} consider
∑j−1
k=1G

k
Tk−Tk−1

+ Gjt−Tj−1
on {Tj−1 ≤ t}. If we

plug in (3.48), then we obtain

j−1∑
k=1

GkTk−Tk−1 +Gjt−Tj−1
=

j−1∑
k=1

Mk
HTk−Tk−1+Tk−1−HTk−1

+M j
Ht−Tj−1+Tj−1−HTj−1

=
j−1∑
k=1

Mk
T̄k−T̄k−1

+M j

Ht−T̄j−1
.

The assertion holds since T̄i = HTi and since continuity and strict monotonicity of
H imply {T̄i−1 ≤ Ht < T̄i} = {Ti−1 ≤ t < Ti} for i ∈ {1, . . . , n} and {T̄n ≤ Ht} =
{Tn ≤ t}.
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Example 3.6.10. A possible example of h is a squared Brownian motion, i.e.,
h = σ̂B2 and

Ht = σ̂

ˆ t

0
B2
sds for σ̂ > 0.

Moreover, applying the results from Subsection 3.6.2 yields possible examples ofM i,
i ∈ {1, . . . , n}. For instance, suppose that M i on {T̄i−1 <∞} is given by

M i
t =
ˆ t

0

i−1∑
k=0

νk
s+T̄i−1−T̄kds = α0t+

i−1∑
k=1

ˆ t

0
αke

−βk(s+T̄i−1−T̄k)ds

= α0t+
i−1∑
k=1

(
αk
βk
e−βk(T̄i−1−T̄k) − αk

βk
e−βk(t+T̄i−1−T̄k)

)
with α0 > 0, β0 = 0, αk ≥ 0 and βk > 0 for k ∈ {1, . . . , n−1}. Note that the impact
processes νk, k ∈ {0, . . . , n− 1}, are defined as in Example 3.6.4. Furthermore,
the properties of H and M imply {Si < ∞} = {T̄i < ∞} = {Ti < ∞} for all
i ∈ {1, . . . , n}.
The density process of M is given by Equation (3.44) in Subsection 3.6.2. More

precisely, we have Mt =
´ t

0 ηsds with

ηt =
n−1∑
k=0

αke
−βk(t−T̄k)I{T̄k≤t}.

As a consequence, the overall time change G satisfies Gt = MHt =
´ Ht

0 ηsds, which
implies that Gt =

´ t
0 gsds with

gt = htηHt = ht

n−1∑
k=0

αke
−βk(Ht−T̄k)I{T̄k≤Ht}.

Figure 3.6.5 shows a possible path of the density process g and the time change G in
case of Example 3.6.10. Note that the parameters of the time change M correspond
with the parameters in Figure 3.6.1. Because of the additional randomness in the
density process g, the path of G evolves less smooth than in Figure 3.6.1. We can
still observe changes in the slope of the time change after T1 and T4, but obviously,
these are not only induced by the choice of the parameters αi. In case of the arrival
times T2 and T3, we see almost no immediate change in the slope of G any more.
Hence, the influence of the impact processes νi is apparently smaller than in case of
piecewise deterministic time changes.

Figure 3.6.6 shows in a similar way to Figure 3.6.3 the dependence of the con-
ditional survival probability P[T2 > t|F1

t ] for T1 = 1 on the parameters of G (in
particular, the parameters of M) in case of IIM1. But now, we consider the time
change introduced in Example 3.6.10 which is stochastic between arrival times. Fig-
ure 3.6.6 presents only one path of P[T2 > t|F1

t ] for T1 = 1. We see immediately
that the general shape is similar to the piecewise deterministic case, but the surface
is less smooth, which is obviously a consequence of the additional randomness in the
time change.
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Figure 3.6.5.: Example of density process g and time change G that is stochastic
between arrival times for a portfolio of size n > 4
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The default times are T0 = 0, T1 = 1.5, T2 = 3, T3 = 5 and T4 = 8. The parameters
of the time change are given by α0 = 1, α1 = 6, α2 = 7, α3 = 5, α4 = 6, β0 = 0,
β1 = 7, β2 = 5, β3 = 3, β4 = 1.5 and Ht = σ̂

´ t
0 B

2
sds with σ̂ = 1.

Simulating default times

Recall again that A i satisfies

A i
t = − log

Φ

κi + µGit−Ti−1

σ
√
Git−Ti−1

− e−2µκi/σ2Φ

−κi + µGit−Ti−1

σ
√
Git−Ti−1

 I{Ti−1<t}

P-a.s. in IIM1 (see Equation (3.18)) and

A i
t = − log

1−
Υi(Git−Ti−1

)

Φ
(
ai+vi
σi

)
− e−2aivi/σ2

i Φ
(
vi−ai
σi

)
 I{Ti−1<t}

P-a.s. in IIM2 (see Equation (3.33)). In Example 3.6.10 where h = σ̂B2 for an inde-
pendent Brownian motion B, the time change Gi given in Equation (3.48) satisfies
on {Ti−1 <∞}

Git = α0[Ht+Ti−1 −HTi−1 ] +
i−1∑
k=1

(
αk
βk
e−βk(T̄i−1−T̄k)

− αk
βk
e−βk([Ht+Ti−1−HTi−1 ]+T̄i−1−T̄k)

)

= α0

[
σ̂

ˆ t+Ti−1

Ti−1

B2
sds

]
+

i−1∑
k=1

(
αk
βk
e
−βkσ̂

´ Ti−1
Tk

B2
sds − αk

βk
e
−βkσ̂

´ t+Ti−1
Tk

B2
sds
)
.
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Figure 3.6.6.: Path of conditional survival probability P[T2 > t|F1
t ] for T1 = 1 in

IIM1 with time change that is deterministic between arrival times
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Corresponding path of time change H

In both surface plots we have V0 = 100, µV = 0.01, σV = 0.1, K1 = 60, K2 = 40,
α0 = 1 and β0 = 0. On the left hand side, we set β1 = 0.8; on the right hand side,
we set α1 = 1. The third subfigure shows the corresponding path of the time change
Ht = σ̂

´ t
0 B

2
sds with σ̂ = 1.

If the overall time change G is defined by these Gi, i ∈ {1, . . . , n}, then the density
process of the time change H is an additional stochastic variable that also has to be
simulated. In order to simulate the totally inaccessible default times in IIM1 and
IIM2, we can now apply the algorithm from Subsection 3.6.2 with an additional step
at the beginning:

1. Simulate a path of B.
2. Initialize i = 1 and T˜0 = 0.
3. Simulate an independent standard uniform random variable U i.
4. Set T˜ i = inf{t > T˜ i−1|A˜i

t
≥ − logU i}.

5. If i = n, then stop, else set i = i+ 1.

The above two fold time change is more tractable than a general time change that is
stochastic between arrival times. Giesecke and Tomecek (2005) point out that this
time change is very applicable if we want to make a comparison between different
parametrizations of the impact processes νi, i ∈ {0, . . . , n − 1}. This is illustrated
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in an example in which each parametrization corresponds to a specific assumption
of how the default counting process N depends on prior defaults:
Let us consider k different parametrizations of the impact processes. With the

algorithm described above we are able to simulate default times (T˜1
i )i∈{1,...,n}, ...,

(T˜ki )i∈{1,...,n} for only one simulation of the process H by repeating 2.-5. for each
parametrization. As a result, we can compare the different parametrizations by using
the same simulation of H for all parametrizations. In addition, different results for
(T˜1

i )i∈{1,...,n}, ... (T˜ki )i∈{1,...,n} can be attributed to different assumptions on νi,
i ∈ {0, . . . , n − 1}. In particular, different realizations of H do not complicate the
comparison, which leads to a much easier situation for the modeler.



Part II.

Systemic risk measures
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An important feature of our top down first-passage model is the self-affecting
property of the default counting process, which means that a default can increase
the likelihood of the next default. Thus, our model in Part I incorporates possible
feedback of events to prices of credit sensitive securities. The reasons for this phe-
nomenon are different forms of contagion. Direct contagion between counterparties
is the most obvious form since the default of a firm leads to direct financial losses
for its creditors and a loss of funding for its borrowers. But there are also several
types of indirect contagion. Consider, for example, two firms A and B and suppose
that firm A is a creditor of firm B. If now firm B defaults, then market participants
could fear possible negative effects of this default to firm A. As a consequence, a
market participant might not be willing to lend money to firm A any more. Hence,
the situation has deteriorated for firm A although direct contagion has only minor
or no impact. Related effects could occur to firms that are similar to the defaulted
firm because market participants could expect difficulties for such firms in the near
future. Another important form of indirect contagion shows the recent financial
crisis: If market participants lose trust in each other and start to question their own
models, then contagion can occur as a result of panic. For a more detailed discussion
concerning these and other forms of contagion we refer to Staum (2013).
Especially the last mentioned form of contagion clarifies the contribution of con-

tagion to systemic risk in a financial system. The recent financial crisis has revealed
multiple problems concerning identification, measuring and controlling this specific
form of risk. Thus, this research topic became more and more important. The
complex interactions between the different entities of a given system and the various
possible perspectives on this topic lead to various aspects that can be analyzed in
the context of systemic risk. Consequently, many research approaches exist that
study these different aspects:
One possibility is to consider the whole financial system as a network consisting of

nodes and edges. The nodes represent the different firms which are interconnected by
edges representing exposures between these firms. Authors who adopt this network
modeling point of view are especially interested in different types of contagion that –
in the worst case scenario – lead to the destabilization of the whole financial system;
see, for instance, Nier et al. (2007), Gai and Kapadia (2010), Amini et al. (2013),
Hurd and Gleeson (2011) and Cont et al. (2013). Another point of view, which is
closely connected to the network approaches, is taken in so called clearing models.
In these approaches some sort of clearing mechanism is modeled, and the most
important objects are so called clearing vectors. Examples of these kind of models
are Eisenberg and Noe (2001) and generalizations of this approach in Cifuentes et al.
(2005) and Rogers and Veraart (2013). An excellent overview of this far reaching
field of research is provided in Staum (2013).
In the second part of this thesis we study systemic risk from the perspective of

financial regulators or central banks. In contrast to Part I, here we do not study
portfolios from the perspective of a modeler or an investor. Instead, we study
whole financial systems from the viewpoint of financial regulators. Regulators are
interested in measuring and managing the risk in order to maintain the stability of
the financial system. Closely connected to this subject is the attribution of systemic
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risk to the different entities contained in the underlying system.
In case of single-firm risk modeling, risk measurement from the perspective of

a financial regulator is an important and far reaching field of research. Artzner
et al. (1999) introduced an axiomatic approach to this topic and defined so called
coherent risk measures as maps ρ which assign risk to random payments and satisfy
four economically desirable properties. These are monotonicity, a translation prop-
erty, subadditivity and positive homogeneity. Because of the monotonicity property,
higher payments lead to less risk. The translation property ensures that adding
a sure amount a to a random payment reduces the risk by a. Subadditivity and
positive homogeneity guarantee that the risk measure rewards diversification, which
means that diversification of capital to different investments results in a position
that is less risky. In case of a finite probability space, Artzner et al. (1999) derived a
so called dual representation by which a coherent risk measure can be characterized
as the largest expected loss with respect to a given family of probability measures.
Delbaen (2000, 2002) extended the approach and the results of Artzner et al. (1999)
to general probability spaces. A further generalization was obtained by Föllmer and
Schied (2002) and Frittelli and Rosazza Gianin (2002) by replacing the subadditivity
and positive homogeneity axioms by the weaker condition of convexity. Risk meas-
ures of this kind are called convex risk measures. Again, one of the key results is
a dual representation of convex risk measures. Based on these fundamental papers,
the research area of axiomatic single-firm risk measurement has developed very fast,
and there exists a large number of research approaches.
In connection to systemic risk, Chen et al. (2013) introduced an axiomatic ap-

proach and studied so called systemic risk measures which satisfy desirable proper-
ties. This axiomatic approach considers the topic of systemic risk from an entirely
new perspective. Therefore, systemic risk measures provide a new tool for measur-
ing and managing the risk contained in a financial system, in particular in view of
regulatory issues. Moreover, this approach is an extension of the traditional port-
folio approach in which the whole economy is considered as a portfolio managed by
the financial regulator. Several drawbacks of this traditional portfolio framework
are discussed in Chen et al. (2013): The most problematic issue is the possibility to
compensate the losses of one firm with the profits of another. Although this pro-
cedure may be reasonable for a real portfolio manager, a financial regulator might
disagree. Since, in general, different firms with different owners are pursuing quite
different interests, in most cases a regulator “is not able to directly cross-subsidize
different firms” (Chen et al. (2013), p. 1373). Furthermore, a regulator might prefer
a specific loss distribution between the different entities in a financial system. In
conclusion, offsetting gains and losses is not an appropriate concept. This prob-
lem of cross-subsidizing is avoided by introducing systemic risk measures that are
strongly connected to so called aggregation functions. These provide more flexible
possibilities to pool the losses of the individual firms.
Similar to single-firm risk measurement, the axiomatic approach to systemic risk

has the advantage of not depending on the choice of a specific risk measure. On the
contrary, every functional that satisfies the defining properties is covered by this ap-
proach. Therefore, the systemic risk measures introduced in Tarashev et al. (2010),
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Acharya et al. (2012) and Gauthier et al. (2012) can be regarded as special cases of
systemic risk measures in the sense of Chen et al. (2013). However, the approach
in Chen et al. (2013) admits several important drawbacks: Only the case of a finite
probability space is studied and all systemic risk measures have to be positively
homogeneous. Furthermore, they only consider static systemic risk measures which
means that no time-dynamic aspects are taken into account.
The range of possible loss distributions of the different entities in the financial sys-

tem is tremendously reduced by considering a finite probability space. For example,
the normal distribution is not covered by this modeling approach. This emphasizes
the importance of extending the approach in Chen et al. (2013) to a general prob-
ability space. Therefore, Chapter 5 is dedicated to systemic risk measures defined
on multi-dimensional Lp-spaces. This chapter is based on the paper “Systemic risk
measures on general probability spaces” which is joint work with E. Kromer and
L. Overbeck. By studying systemic risk measures in conjunction with a general
probability space, we have to work in a much more technical framework compared
to Chen et al. (2013). This is rewarded by the possibility of applying the concept of
systemic risk measures to more general loss distributions.
A second point of criticism concerns the fact that Chen et al. (2013) solely consider

systemic risk measures which are positively homogeneous. Although this property
may be desirable in some cases, positively homogeneous systemic risk measures are
not suitable for every risk measurement framework. To address this problem, we
introduce in Chapter 5 so called convex systemic risk measures which not necessarily
have to be positively homogeneous. Nevertheless, by dropping the axiom of positive
homogeneity, we have to introduce a new property. This is strongly connected to
the constancy property of standard single-firm risk measures, which was originally
studied in Frittelli and Rosazza Gianin (2002). Constancy on a set A ⊂ R means
that the risk measure assigns the risk −a to the fixed payment a ∈ A. In the context
of convex systemic risk measures, we introduce and discuss a generalized version of
this property. Nonetheless, the introduction of an appropriate constancy property
for systemic risk measures does not seem to restrict the scope of possible choices for
these risk measures.
Similar to the approach in Chen et al. (2013), our convex systemic risk measures

can be decomposed into a so called convex single-firm risk measure and a convex
aggregation function. Here, the single-firm risk measure is essentially identical with
standard single-firm risk measures and, as indicated above, the aggregation function
specifies how the losses of the different firms in the system are pooled. Based on
this fundamental characterization of convex systemic risk measures, we generalize
the representation results of Chen et al. (2013). In particular, we provide a primal
and a dual representation result for convex systemic risk measures.
The last aspect of systemic risk studied in Chapter 5 is the problem of risk attribu-

tion. We consider the question of what fraction each firm contributes to the systemic
risk of the whole financial system; see Staum and Liu (2012) and Drehmann and
Tarashev (2013). In conjunction with systemic risk measures, a possible solution to
this problem provides our approach in Chapter 5. We will see that if the supremum
in the dual representation of systemic risk measures is attained, then the different
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summands of this optimal value can be used to define a risk attribution method
that satisfies, for instance, the full allocation property. This property states that
by summing up the risk that is attributed to each firm, one obtains the systemic
risk contained in the entire financial system. Obviously, this is a desired property.
Moreover, in the context of the traditional portfolio framework, the full allocation
property is well known and, for instance, was studied in Denault (2001), Tasche
(2004), Kalkbrener (2005), Cheridito and Kromer (2011) and Kromer and Overbeck
(2014).
So far, we have always focused on so called static risk measures. This means

we consider a one period model and valuate, in case of standard single-firm risk
measures, the future value of a financial position or, in case of systemic risk measures,
a random vector where each component represents the loss of a specific firm in the
financial system. There exist many research studies extending the fundamental
results of Artzner et al. (1999) to a dynamic framework. In this context, the term
dynamic can be understood in several ways since there exist various dynamic aspects
of risk measurement.
A first extension of the static approach is the theory of conditional risk measures.

Here, the focus lies on informational aspects. Over time, additional information is
available, and conditional risk measures take into account this information. As a
consequence, a conditional risk measure is a map ρt where for each random payment
X, ρt(X) depends on the information that is available at time t. In this framework
one can specify a dynamic risk measure as a family (ρt) of conditional risk measures
such that each ρt(X) is measurable with respect to the σ-algebra Ft representing
the available information at time t. Examples of such studies are Bion-Nadal (2004),
Detlefsen and Scandolo (2005) and Föllmer and Penner (2006) among many others.
Another possibility to introduce dynamics is to study risk measures that are de-

fined on discrete-time or continuous-time stochastic processes. These processes rep-
resent, for instance, the market or accounting value of a firm’s equity or the market
value of selected financial securities; see Artzner et al. (2007) and Cheridito et al.
(2006). Examples of research that studies risk measures on discrete-time processes
are Riedel (2004), Artzner et al. (2007), Cheridito et al. (2006), Cheridito and Kup-
per (2011), Jobert and Rogers (2008) and Acciaio et al. (2012). Continuous-time
processes have been discussed in Cheridito et al. (2004, 2005). As, for instance,
Acciaio and Penner (2011) point out, an important advantage of these risk measures
on processes is the possibility to consider the “time value of money”. Moreover,
since bounded discrete-time processes can be identified with random variables on
a specific product space, there exists also a connection between risk measures on
such processes and risk measures on random variables. For more details we refer
to Artzner et al. (2007) and Acciaio et al. (2012). A nice overview of dynamic risk
measures in discrete time is given in Acciaio and Penner (2011).
Finally, one can combine risk measurement on processes with the theory of condi-

tional risk measures. In this way, one obtains dynamic risk measures on processes;
see, for instance, Cheridito et al. (2006), Cheridito and Kupper (2011), Jobert and
Rogers (2008), Acciaio and Penner (2011) and Acciaio et al. (2012).
Note that in the dynamic setting one always considers risk measures at different
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points in time. As a consequence, a natural question in the context of dynamic risk
measurement is how these risk measures at different points in time are connected.
Thus, one has to introduce an appropriate time-consistency concept. Looking at the
relevant literature, we find different suggestions for this issue of time-consistency.
The most widely used approach is the so called strong time-consistency, which is
connected to the dynamic programming principle; see, for instance, Artzner et al.
(2007). This time-consistency concept has been used in most approaches mentioned
so far and can be characterized in several ways, for example, by an additivity prop-
erty of the corresponding acceptance sets or by a supermartingale property of the
risk measures; see, for instance, Delbaen (2006), Cheridito et al. (2006), Penner
(2007) and Acciaio et al. (2012) and the references therein. Since this form of time-
consistency is a rather strong requirement, in particular in view of the existence
of consistent updates, other forms of weaker time-consistency properties were stud-
ied, among others, in Weber (2006), Artzner et al. (2007), Roorda and Schumacher
(2007), Penner (2007) and Roorda and Schumacher (2013).
Static risk measures introduced in Chapter 4 and studied in Chapter 5 in the

context of systemic risk do not allow for any dynamic features. Furthermore, note
that all the approaches to systemic risk in the previously mentioned papers are
essentially static. Thus, we develop in Chapter 7 the first dynamic approach to
systemic risk. The results of this chapter are summarized in the paper “Dynamic
systemic risk measures for bounded discrete-time processes” which is joint work
with E. Kromer and L. Overbeck. We extend the approach from Chapter 5 and
consider conditional convex and positively homogeneous systemic risk measures on
multi-dimensional discrete-time stochastic processes. Note that our systemic risk
measures from Chapter 5 evaluate losses for each node of the underlying network.
Consequently, in the conditional setting in Chapter 7 we assume that each firm in the
network admits a discrete-time stochastic process representing its losses over time.
Here, we use some of the techniques from Cheridito et al. (2006) who have studied
dynamic single-firm risk measures in a non systemic context. After generalizing
the main results from Chapter 5, in particular the decomposition and the dual
representation result, we follow the dynamic approaches for standard single-firm risk
measures and introduce dynamic systemic risk measures as families of conditional
systemic risk measures. Moreover, adjusted to our setting, we consider the concept
of strong time-consistency. Since our dynamic convex systemic risk measures can be
decomposed into a dynamic convex single-firm risk measure and a dynamic convex
aggregation function, we introduce a time-consistency property for both components
and study how these properties depend on each other.
Another possible way to extend the results from Chen et al. (2013) and Kromer

et al. (2014a) to a conditional setting, which was considered independently of the
approach in Chapter 7 and Kromer et al. (2014b), can be found in Hoffmann et al.
(2014). Here, the authors solely focus on the decomposition result in conjunction
with generalized conditional aggregation functions.
The second part of this thesis is organized as follows. First, we introduce static

single-firm risk measures in Chapter 4. We discuss important representation results
and the most important examples. Chapter 5 studies systemic risk measures on
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general probability spaces and extends the results from Chen et al. (2013) to convex,
not necessarily positively homogeneous, systemic risk measures. In Chapter 6 we
discuss some of the concepts in Cheridito et al. (2006) where risk measures on
discrete-time processes are covered. These ideas are used in Chapter 7 in which
we generalize our axiomatic approach to systemic risk regarding different dynamic
aspects. That is, we focus in Chapter 7 on conditional and dynamic convex systemic
risk measures.



4. Introduction to static risk measures

The aim of this chapter is to introduce static risk measures that take into account
the risk of a single firm or one financial position. Most definitions and theorems
of Sections 4.1-4.3 are based on Chapter 4 in Föllmer and Schied (2011), which
provides an excellent overview of the research topic on convex risk measures.
We start in Section 4.1 with the basic axioms and define convex and coherent

risk measures. Moreover, we discuss the connection between risk measures and
the corresponding set of acceptable positions. In Section 4.2 we repeat well known
results concerning the dual representations of static risk measures. Sections 4.3 and
4.4 consider risk measures on L∞- and Lp-spaces in more detail. Finally, in Section
4.5 we illustrate the previous results by presenting the most important examples of
convex and coherent risk measures.
From now on, a financial position X is considered as a map X : Ω → R, and

X(ω) represents the discounted net worth of the financial position X at scenario
ω ∈ Ω. Furthermore, we suppose that X is an element in the space X fp of all
financial positions which will be described in detail in the following sections. First,
unless explicitly stated otherwise, we assume that X fp is the linear space of bounded
functions on Ω.

4.1. Definitions and important properties

Consider the following properties of a function ρ : X fp → R:

(M) Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y ) for all X,Y ∈ X fp.
(T) Translation property: ρ(X + a) = ρ(X)− a for all X ∈ X fp and a ∈ R.
(C) Convexity: ρ(aX + (1− a)Y ) ≤ aρ(X) + (1− a)ρ(Y ) for all X,Y ∈ X fp and

a ∈ [0, 1].
(PH) Positive homogeneity: ρ(aX) = aρ(X) for all X ∈ X fp and a ∈ R+.

Definition 4.1.1. A risk measure is a function ρ : X fp → R that satisfies the
properties (M) and (T). A convex risk measure is a risk measure that additionally
satisfies the property (C), and a coherent risk measure is a convex risk measure that
additionally satisfies the property (PH).

Because of the monotonicity property, a position with a higher net worth is asso-
ciated with less risk. The translation property ensures that adding a fixed amount
of money a to a financial position X leads to a risk reduction by this amount a.
We can motivate this property by the idea that the risk of a position X represents
the amount which has to be added to X such that the new position X + ρ(X) is
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acceptable. For example, we could specify acceptable positions by including all po-
sitions X the risk of which does not hit a specific barrier. Note that the translation
property yields ρ(X + ρ(X)) = ρ(X) − ρ(X) = 0. A risk measure satisfying the
convexity property does not penalize diversification: The risk of the diversified posi-
tion aX + (1− a)Y is less than or equal to the weighted risk of the positions X and
Y . The last property, i.e., positive homogeneity, states that the risk of a financial
position increases linear with its size. Nevertheless, in many cases this property is
not satisfied. This was the reason for developing the theory of convex risk measures.
Finally, note that if ρ is positively homogeneous, then the following property holds:

(N) Normalization: ρ(0) = 0.

Remark 4.1.2. Artzner et al. (1999) were the first who introduced coherent risk
measures. They defined coherent risk measures by using the properties of mono-
tonicity, the translation property, positive homogeneity and the following property:

(SA) Subadditivity: ρ(X + Y ) = ρ(X) + ρ(Y ) for all X,Y ∈ X fp.

The definition of Artzner et al. (1999) is equivalent to our definition above since
under positive homogeneity, convexity and subadditivity are equivalent.

Let ‖·‖ be the supremum norm defined by ‖X‖ := supω∈Ω |X(ω)| for X ∈ X fp

and consider a risk measure ρ : X fp → R. Since X ≤ Y + ‖X − Y ‖ implies that
ρ(X) ≥ ρ(Y ) − ‖X − Y ‖ for all X,Y ∈ X fp, we obtain |ρ(X)− ρ(Y )| ≤ ‖X − Y ‖
for all X,Y ∈ X fp. This means that every risk measure ρ : X fp → R is (1-)Lipschitz
continuous with respect to the supremum norm ‖·‖
Now, we take a closer look at financial positions that are acceptable. At first, we

define a so called acceptance set which characterizes acceptable positions as positions
X satisfying ρ(X) ≤ 0. This means that the position X is acceptable if no capital
has to be added. Thereafter, we discuss the relationship between acceptance set and
the corresponding risk measure.

Definition 4.1.3. The acceptance set of a risk measure ρ is defined by

Aρ := {X ∈ X fp|ρ(X) ≤ 0}.

Proposition 4.1.4 (See Proposition 4.6 in Föllmer and Schied (2011)). Let ρ :
X fp → R be a risk measure and Aρ the corresponding acceptance set. Then the
following properties are satisfied:

1. Aρ 6= ∅ and

a) inf{r ∈ R|r ∈ Aρ} > −∞,
b) if X ∈ Aρ and Y ∈ X fp with Y ≥ X, then Y ∈ Aρ,
c) Aρ is ‖·‖-closed.

2. ρ admits the representation

ρ(X) = inf{r ∈ R|r +X ∈ Aρ} for all X ∈ X fp.
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3. ρ is a convex risk measure if and only if the set Aρ is convex, i.e., aX + (1−
a)X ′ ∈ Aρ for all X,X ′ ∈ Aρ and a ∈ [0, 1].

4. ρ is positively homogeneous if and only if the set Aρ is a cone, i.e., aX ∈ Aρ
for all X ∈ Aρ and a ∈ R+. In particular, ρ is a coherent risk measure if and
only if Aρ is a convex cone.

On the other hand, one can define for every set A ⊂ X fp of acceptable positions
a risk measure ρ by using the idea that ρ(X) represents the smallest amount which
has to be added to X such that the new position X + ρ(X) is acceptable.

Proposition 4.1.5 (See Proposition 4.7 in Föllmer and Schied (2011)). Consider
∅ 6= A ⊂ X fp that satisfies the properties 1.a) and 1.b) from Proposition 4.1.4. Then
the so called capital requirement ρA defined by

ρA(X) := inf{r ∈ R|r +X ∈ A} for X ∈ X fp

satisfies the following properties:

1. ρA : X fp → R is a risk measure.
2. If the set A is convex, then ρA is a convex risk measure.
3. If the set A is a cone, then ρA is positively homogeneous. Especially, if A is a

convex cone, then ρA is a coherent risk measure.
4. A is a subset of the acceptance set AρA, and we have A = AρA if and only if
A satisfies property 1.c) from Proposition 4.1.4.

4.2. Representations of risk measures
In this section we first consider representations of risk measures for X fp = {X|X :
Ω → R} where the state space Ω is supposed to be finite. We will see that this
case of a finite state space is also the starting point in Chapter 5, which studies
systemic risk measures on general probability spaces. A first general representation
of coherent risk measures can be found in Artzner et al. (1999). Recall that X(ω)
is the discounted value of the position X. Therefore, we set the total return r in
Artzner et al. (1999) equal to 1.

Theorem 4.2.1 (See Proposition 4.1 in Artzner et al. (1999)). Suppose that Ω is
finite. A risk measure ρ : X fp → R is coherent if and only if there exists a family Q
of probability measures on (Ω,P(Ω)) (P(Ω) denotes the set of all subsets of Ω) such
that

ρ(X) = sup
Q∈Q

EQ[−X] for all X ∈ X fp.

Föllmer and Schied (2002) proved the corresponding theorem for convex risk mea-
sures.

Theorem 4.2.2 (See Theorem 5 in Föllmer and Schied (2002)). Suppose that Ω
is finite and let M1(Ω,P(Ω)) be the set of all probability measures on (Ω,P(Ω)).



96 4. Introduction to static risk measures

A risk measure ρ : X fp → R is convex if and only if there exists a function α :
M1(Ω,P(Ω))→ (−∞,+∞] such that

ρ(X) = sup
Q∈M1(Ω,P(Ω))

{EQ[−X]− α(Q)} for all X ∈ X fp.

Remark 4.2.3. Note that the representation of coherent risk measures in Theo-
rem 4.2.1 is a special case of the representation of convex risk measures in Theo-
rem 4.2.2. If we consider for a coherent risk measure ρ the function α(Q) :=
supX∈X fp{EQ[−X] − ρ(X)} = supX∈Aρ EQ[−X] for Q ∈ M1(Ω,P(Ω)) (see, for in-
stance, Föllmer and Schied (2002)), then we can easily prove that α(Q) ∈ {0,+∞}
for all Q ∈ M1(Ω,P(Ω)). Hence, the representation in Theorem 4.2.1 with Q =
{Q ∈M1(Ω,P(Ω))|α(Q) = 0} follows from Theorem 4.2.2.

From now on, we consider a general measurable space (Ω,F) and suppose that
X fp is the space of all bounded measurable functions on (Ω,F). Moreover, let
M1,f :=M1,f (Ω,F) be the space of all finitely additive set functions Q : F → [0, 1]
with Q[Ω] = 1 and let M1 := M1(Ω,F) be the space of all probability measures
on (Ω,F). In order to facilitate the notation, we adapt the notation from Föllmer
and Schied (2011) and denote the integral of X ∈ X fp with respect to Q ∈M1,f by
EQ[X].
The representation in the following theorem is called robust representation.

Theorem 4.2.4 (See Theorem 4.16 in Föllmer and Schied (2011)). Let ρ : X fp → R
be a convex risk measure. Then ρ admits the representation

ρ(X) = max
Q∈M1,f

{EQ[−X]− αmin(Q)} for all X ∈ X fp (4.1)

where the function αmin is given by

αmin(Q) := sup
X∈Aρ

EQ[−X] = sup
X∈X fp

{EQ[−X]− ρ(X)} for Q ∈M1,f .

Moreover, this function is minimal in the sense that αmin(Q) ≤ α(Q) for all Q ∈
M1,f and all functions α :M1,f → R∪{+∞} that satisfy representation (4.1) with
α instead of αmin and infQ∈M1,f α(Q) ∈ R.

Remark 4.2.5. The functions α : M1,f → R ∪ {+∞} from the previous theorem
that satisfy representation (4.1) with α instead of αmin and infQ∈M1,f α(Q) ∈ R are
called penalty functions of the risk measure ρ.

The coherent case is a special case of the previous theorem. To prove this special
case, one has to show that the penalty function αmin takes only the values 0 and
+∞ (see Remark 4.2.3).

Corollary 4.2.6 (See Corollary 4.19 in Föllmer and Schied (2011)). Let ρ : X fp → R
be a coherent risk measure. Then ρ admits the representation

ρ(X) = max
Q∈Qmax

EQ[−X] for all X ∈ X fp (4.2)
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where the convex set Qmax is defined by

Qmax := {Q ∈M1,f |αmin(Q) = 0}.

Moreover, the largest set Q ⊂M1,f which satisfies representation (4.2) with Q in-
stead of Qmax is equal to Qmax.

Finally, the setM1,f in representation (4.1) can be reduced to the setM1 if the
risk measure satisfies an additional condition.

Theorem 4.2.7 (See Theorem 4.22 in Föllmer and Schied (2011)). Let ρ : X fp → R
be a convex risk measure. Then the following statements are equivalent:

1. ρ is continuous from below, i.e., Xm ↑ X pointwise implies ρ(Xm) ↓ ρ(X).
2. The minimal penalty function αmin of ρ is concentrated on the set M1, i.e.,

αmin(Q) < +∞ for Q ∈M1,f implies that Q is σ-additive.

In particular, if one of these properties is satisfied, then

ρ(X) = max
Q∈M1

{EQ[−X]− αmin(Q)} for all X ∈ X fp.

4.3. Risk measures on L∞

From now on, let (Ω,F ,P) be a general probability space and set X fp = L∞(Ω,F ,P).
This setting was considered first of all in Delbaen (2000, 2002), Föllmer and Schied
(2002) and Frittelli and Rosazza Gianin (2002). The results in this section are again
based on Föllmer and Schied (2011).
In case of X fp = L∞(Ω,F ,P), we focus on risk measures ρ : L∞(Ω,F ,P) → R

that satisfy
ρ(X) = ρ(Y ) if X = Y P− a.s. (4.3)

Let us write for short L∞ := L∞(Ω,F ,P) and Lp := Lp(Ω,F ,P) for 1 ≤ p < ∞.
These spaces are endowed with the usual norms ‖·‖∞ and ‖·‖p, respectively. These
are defined by ‖X‖∞ := inf{r ∈ R||X| ≤ r P-a.s.} for X ∈ L∞ and ‖X‖p :=
(
´
|X|pdP)1/p for X ∈ Lp.
Define M1,f (P) := M1,f (Ω,F ,P) as the set of finitely additive set functions

Q : F → [0, 1] with Q[Ω] = 1 which are absolutely continuous with respect to
P. Similarly, let M1(P) := M1(Ω,F ,P) be the set of all probability measures on
(Ω,F) which are absolutely continuous with respect to P.
First, we state an important property which follows from (4.3).

Lemma 4.3.1 (See Lemma 4.32 in Föllmer and Schied (2011)). Consider a convex
risk measure ρ that satisfies (4.3) and admits the representation

ρ(X) = sup
Q∈M1,f

{EQ[−X]− α(Q)} for all X ∈ L∞

for a penalty function α. Then we have α(Q) = +∞ for all Q ∈M1,f\M1,f (P).
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In what follows, we need several continuity properties. Since we discuss functions
υ : Lp → R ∪ {+∞} for 1 ≤ p < ∞ in the next section, the following definition
includes such functions.

Definition 4.3.2. Consider a function υ : Lp → R ∪ {+∞} for 1 ≤ p ≤ ∞.

1. υ is called lower semicontinuous (l.s.c.) at X0 (with respect to the norm topol-
ogy) if for all sequences (Xm) ⊂ Lp with ‖Xm −X0‖p → 0, it follows that

υ(X0) ≤ lim inf
m→∞

υ(Xm).

υ is called lower semicontinuous (with respect to the norm topology) if υ is
lower semicontinuous at all X ∈ Lp (with respect to the norm topology).

2. υ is called continuous from above if for every sequence (Xm) ⊂ Lp with Xm ↓
X P-a.s. for some X ∈ Lp, it follows that υ(Xm)→ υ(X).

3. υ is called continuous from below if for every sequence (Xm) ⊂ Lp with Xm ↑
X P-a.s. for some X ∈ Lp, it follows that υ(Xm)→ υ(X).

4. υ satisfies the Fatou-property if for every sequence (Xm) ⊂ Lp with
∣∣Xm

∣∣ ≤ Y
P-a.s. for some Y ∈ Lp and Xm → X P-a.s. for some X ∈ Lp, it follows that

υ(X) ≤ lim inf
m→∞

υ(Xm).

If we focus on the space L∞, then we obtain the following representation result.

Theorem 4.3.3 (See Theorem 4.33 in Föllmer and Schied (2011)). Let ρ : L∞ → R
be a convex risk measure. Then the following statements are equivalent:

1. There exists a penalty function α :M1(P)→ R ∪ {+∞} such that

ρ(X) = sup
Q∈M1(P)

{EQ[−X]− α(Q)} for all X ∈ L∞. (4.4)

2. ρ is continuous from above.
3. ρ satisfies the Fatou-property.
4. The acceptance set Aρ is weak* closed, i.e., it is closed with respect to the

topology σ(L∞, L1).

In particular, if one of these properties is satisfied, then ρ can be represented with
the minimal penalty function restricted onM1(P), i.e.,

αmin(Q) = sup
X∈Aρ

EQ[−X] = sup
X∈L∞

{EQ[−X]− ρ(X)} for Q ∈M1(P).

Föllmer and Penner (2006) provide in their introduction a well known interpre-
tation of representation (4.4): “[...] the risk of a position is evaluated as the worst
expected loss, suitably modified, under a whole class of probabilistic models. These
alternative models are described by probability measures Q [Q with our notation]
on the underlying set of scenarios. But they are taken seriously at a different de-
gree, and this is made precise by the non-negative penalty function α(Q) [α(Q)].”
(Föllmer and Penner (2006), p. 61)
It remains to consider the coherent case.
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Theorem 4.3.4 (See Corollary 4.37 in Föllmer and Schied (2011)). Let ρ : L∞ → R
be a coherent risk measure. Then there exists a set Q ⊂M1(P) such that ρ admits
the representation

ρ(X) = sup
Q∈Q

EQ[−X] for all X ∈ L∞ (4.5)

if and only if the equivalent properties from Theorem 4.3.3 are satisfied. In this case,
the set

Qmax := {Q ∈M1(P)|αmin(Q) = 0}

is the maximal subset of M1(P) which satisfies representation (4.5) with Qmax in-
stead of Q.

Note that it follows from Theorem 4.2.7 and Lemma 4.3.1 that the supremum in
(4.4) (and hence also in (4.5)) is attained if ρ is continuous from below.

4.4. Risk measures on Lp

Filipovic and Svindland (2007) point out that considering risk measures on L∞

reduces the scope of possible risk models dramatically. For example, normal dis-
tributed random variables are excluded by such approaches. Hence, the theory of
risk measures was extended to the theory of risk measures on Lp for 1 ≤ p < ∞;
see, for instance, Filipovic and Svindland (2007) and Kaina and Rüschendorf (2009)
and the references therein. In this section we introduce risk measures on Lp-spaces
and repeat important results from the previously mentioned papers.
In case of Lp-spaces, we modify the definition of risk measures in the sense that

risk measures now map from Lp to R∪{+∞}. Delbaen (2002) motivated this change
of definition by the existence of positions which are so risky that they will never be
acceptable regardless of how much capital is put aside. As a consequence, such
positions X satisfy ρ(X) = +∞.
For the remaining part of this section we understand equalities and inequalities

between random variables P-a.s. Now, let us consider the corresponding properties
to (M), (T), (C) and (PH) for functions ρ : Lp → R ∪ {+∞} and 1 ≤ p ≤ ∞:

(M’) Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y ) for all X,Y ∈ Lp.
(T’) Translation property: ρ(X + a) = ρ(X)− a for all X ∈ Lp and a ∈ R.
(C’) Convexity: ρ(aX + (1− a)Y ) ≤ aρ(X) + (1− a)ρ(Y ) for all X,Y ∈ Lp and

a ∈ [0, 1].
(PH’) Positive homogeneity: ρ(aX) = aρ(X) for all X ∈ Lp and a ∈ R+.

Definition 4.4.1. Let 1 ≤ p < ∞. A risk measure (on Lp) is a function ρ : Lp →
R ∪ {+∞} that satisfies the properties (M’) and (T’). A convex risk measure (on
Lp) is a risk measure (on Lp) that additionally satisfies the property (C’), and a
coherent risk measure (on Lp) is a convex risk measure (on Lp) that additionally
satisfies the property (PH’).
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The following lemma is well known and states that the previous definition can also
be used to define convex risk measures on L∞.

Lemma 4.4.2. For every proper function ρ : L∞ → R ∪ {+∞} that satisfies (M’),
(T’) and (C’), we have ρ(X) <∞ for all X ∈ L∞, i.e., ρ : L∞ → R.
In particular, this means that ρ is a convex risk measure in the sense of Definition

4.1.1.

Proof. For each X ∈ L∞, we have X ≤ ‖X‖∞ <∞. Moreover, because ρ is proper,
there exists some Y ∈ L∞ with ρ(Y ) < ∞ and ‖Y ‖∞ < ∞. Since 0 ≥ Y − ‖Y ‖∞,
the properties (M’) and (T’) imply ρ(0) ≤ ρ(Y − ‖Y ‖∞) = ρ(Y ) + ‖Y ‖∞ < ∞. If
we apply again (M’) and (T’), then we obtain ρ(X) ≤ ρ(−‖X‖∞) = ρ(0)+‖X‖∞ <
∞.

Again, we can study the relationship between risk measures ρ : Lp → R ∪ {+∞}
and their acceptance sets given by

Aρ := {X ∈ Lp|ρ(X) ≤ 0}.

The subsequent propositions follow from the remarks in Chapter 1 in Kaina and
Rüschendorf (2009).

Proposition 4.4.3. Let ρ : Lp → R ∪ {+∞} be a proper risk measure and Aρ the
corresponding acceptance set. Then the following properties are satisfied:

1. Aρ 6= ∅ and

a) inf{r ∈ R|r + Y ∈ Aρ} > −∞ for all Y ∈ Lp where inf ∅ := +∞,
b) if X ∈ Aρ and Y ∈ Lp with Y ≥ X, then Y ∈ Aρ.

2. ρ admits the representation

ρ(X) = inf{r ∈ R|r +X ∈ Aρ} for all X ∈ Lp

where inf ∅ := +∞.
3. ρ is a convex risk measure if and only if Aρ is convex.
4. ρ is positively homogeneous if and only if Aρ is a cone. In particular, ρ is a

coherent risk measure if and only if Aρ is a convex cone.

Proposition 4.4.4. Consider ∅ 6= A ⊂ Lp that satisfies the properties 1.a) and 1.b)
from Proposition 4.4.3. Then

ρA(X) := inf{r ∈ R|r +X ∈ A} for X ∈ Lp

satisfies the following properties:

1. ρA is a risk measure.
2. If A is convex, then ρA is a convex risk measure.
3. If A is a cone, then ρA is positively homogeneous. Especially, if A is a convex

cone, then ρA is a coherent risk measure.
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4. A is a subset of the acceptance set AρA.

Note that in case of X fp = L∞, it suffices to claim that inf{m ∈ R|m+Y ∈ Aρ} >
−∞ for Y = 0 only (see Proposition 4.1.5).
At the end of this section we repeat important representation results for risk

measures on Lp. For 1 ≤ p <∞, the dual space of Lp is given by Lq with 1/p+1/q =
1 (up to isomorphism). We define

Mq
1(P) :=

{
Q ∈M1(P)

∣∣∣∣dQdP ∈ Lq
}

for 1 ≤ p <∞.

By using the duality theorem for conjugate functions (see Theorem A.2.9), we obtain
a first representation result.

Theorem 4.4.5 (See Theorem 2.4 in Kaina and Rüschendorf (2009)). Fix 1 ≤ p <
∞ and let ρ : Lp → R ∪ {+∞} be a proper convex risk measure on Lp. Then the
following statements are equivalent:

1. ρ is l.s.c.
2. There exists a subset Q ⊂Mq

1(P) and a function α : Q → R∪{+∞} such that
infQ∈Q α(Q) ∈ R and

ρ(X) = sup
Q∈Q
{EQ[−X]− α(Q)} for all X ∈ Lp.

In particular, if one of these properties is satisfied, then ρ admits the representation

ρ(X) = sup
Q∈Mq

1(P)
{EQ[−X]− ρ∗(Q)} for all X ∈ Lp (4.6)

with ρ∗(Q) := supX∈Aρ EQ[−X] for Q ∈Mq
1(P).

Remark 4.4.6. If we replace the proper convex risk measure on Lp by a convex risk
measure on L∞ in the previous theorem, then the theorem still holds with Mq

1(P)
replaced by the space M1,f (P). Additionally, the supremum in (4.6) is attained.
This follows from Theorem 4.2.4 and Lemma 4.3.1. But since risk measures on
L∞ are automatically Lipschitz continuous, this representation does always exist.
Finally, note that the last representation result for convex risk measures on Lp,
p <∞, is based on probability measures, which is not the case for the corresponding
representation result for convex risk measures on L∞.

In case of coherent risk measures, Kaina and Rüschendorf (2009) prove a more
specific representation result.

Theorem 4.4.7 (See Theorem 2.9 in Kaina and Rüschendorf (2009)). Fix 1 ≤ p <
∞ and let ρ : Lp → R ∪ {+∞} be a proper coherent risk measure on Lp. Then the
following properties are equivalent:

1. ρ is l.s.c.
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2. There exists a subset Q ⊂Mq
1(P) such that

ρ(X) = max
Q∈Q

EQ[−X] for all X ∈ Lp.

3. ρ is finite and continuous with respect to the norm topology.

The previous result shows that the supremum in the dual representation is always
attained if ρ is a proper and l.s.c. coherent risk measure on Lp, p <∞.

4.5. Examples of convex and coherent risk measures
In this section we discuss important examples of convex and coherent risk meas-
ures. Again, we refer to Föllmer and Schied (2011) for more details and additional
examples.
A risk measure that is frequently used in practice is the Value at Risk.

Example 4.5.1 (Value at Risk). Let L0 := L0(Ω,F ,P) denote the space of all
random variables on (Ω,F ,P). The Value at Risk of a financial position X ∈ X fp =
L0 is defined by

VaRλ(X) := inf{r ∈ R|P[X + r < 0] ≤ λ} for λ ∈ (0, 1).

This means that the Value at Risk is the minimal amount one has to add to the
position X such that the probability of a loss of this new position is bounded by λ.
One can easily prove that the Value at Risk is monotone, satisfies the translation
property and is positively homogeneous. But it does not satisfy the convexity prop-
erty. For a counterexample see, for instance, Example 4.46 in Föllmer and Schied
(2011). As a consequence, the Value at Risk does not reward diversification, which
is not a desired property. Another disadvantage is that it does not provide any
information on the size of a loss.

Another risk measure which is based on the Value at Risk is the so called Average
Value at Risk.

Example 4.5.2 (Average Value at Risk). The Average Value at Risk of a position
X ∈ L1 is defined by

AVaRλ(X) := 1
λ

ˆ λ

0
VaRγ(X)dγ for λ ∈ (0, 1].

This risk measure, which is indeed a coherent risk measure, is also called Conditional
Value at Risk or Expected Shortfall. The corresponding dual representation is given
by

AVaRλ(X) = max
Q∈Qλ

EQ[−X] for X ∈ X fp

where Qλ is the set of all probability measures Q which are absolutely continuous
with respect to P and satisfy dQ/dP ≤ 1/λ P-a.s; see, for instance, Theorem 4.52 in
Föllmer and Schied (2011).
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An important example of a convex risk measure is the following.

Example 4.5.3 (Entropic risk measure). Assume that the preferences of an investor
are given by the function Uγ(X) := EP[1 − e−γX ] where X ∈ L∞ and γ > 0. If we
consider the set

Aγ := {X ∈ L∞|Uγ(X) ≥ Uγ(0)} = {X ∈ L∞|EP[e−γX ] ≤ 1},

then it is easily seen that Aγ is convex and satisfies the conditions from Proposition
4.1.5. Hence, the capital requirement ρAγ defined by this acceptance set is a convex
risk measure according to Proposition 4.1.5. This risk measures is called entropic
risk measure. Moreover,

ρAγ (X) = inf{r ∈ R|r +X ∈ Aγ} = inf{r ∈ R|EP[e−γX ] ≤ eγr} = 1
γ

logEP[e−γX ].

The dual representation of this convex risk measure is given by

ρAγ (X) = sup
Q∈M1(P)

{EQ[−X]− αmin(Q)} for X ∈ L∞

where the minimal penalty function αmin satisfies

αmin(Q) = 1
γ
H(Q|P) for Q ∈M1(P).

Here, H(Q|P) denotes the relative entropy of Q with respect to P defined by

H(Q|P) :=

EP
[
dQ
dP log dQ

dP

]
if Q� P

+∞ else
.

For more details we refer again to Föllmer and Schied (2011).

In our last example we consider a further generalization of the entropic risk meas-
ure.

Example 4.5.4 (Distortion entropic risk measure). Let g : [0, 1]→ [0, 1] be a non-
decreasing function with g(0) = 0 and g(1) = 1. Then g induces the so called
distorted probability Pg defined by Pg[A] := g ◦ P[A] for A ∈ F . By using this dis-
torted probability, we can define the so called distorted expectation Eg as a Choquet
integral (see, for instance, Example 4.14 in Föllmer and Schied (2011)):

Eg[X] :=
ˆ ∞

0
Pg(X > t)dt+

ˆ 0

−∞
(Pg(X > t)− 1)dt for X ∈ L∞.

Furthermore, this distorted expectation enables us to define the distortion entropic
risk measure, which is a generalization of the entropic risk measure introduced in
Example 4.5.3 and given by

ρg,γ(X) := 1
γ

logEg[e−γX ] for X ∈ L∞ and γ > 0.



5. Static systemic risk measures on
general probability spaces

This chapter is based on the paper “Systemic risk measures on general probability
spaces” which is joint work with E. Kromer and L. Overbeck. We study the extension
of the approach in Chen et al. (2013) to general probability spaces and convex, not
necessarily positively homogeneous, systemic risk measures. We will see that the
static risk measures introduced in the previous chapter are an important building
block for the construction of systemic risk measures.
The first section in this chapter is dedicated to the introduction of our main ob-

jects of interest: convex and positively homogeneous systemic risk measures. After
introducing our notation, we generalize several different axioms from the theory of
standard single-firm risk measurement. Section 5.2 provides a basic decomposition
result which is essential for the remaining part of this chapter. We will see that each
systemic risk measure can be decomposed into a single-firm risk measure and a so
called aggregation function. Thereafter, we illustrate in Section 5.3 the construction
of systemic risk measures by considering some examples. Since we generalize the
results of Chen et al. (2013), their examples can still be used in our setting. Nev-
ertheless, we study the larger class of convex systemic risk measures, and therefore
we can also add new examples. Section 5.4 is dedicated to different representation
results. We first define acceptance sets corresponding to a given convex systemic
risk measure and then provide a primal representation, which illustrates the connec-
tion between convex systemic risk measures and the corresponding acceptance sets.
Based on this first representation result, we finally prove the dual representation of
convex systemic risk measures. An important application of this dual representation
is considered in Section 5.5. We will see that if the supremum in the dual representa-
tion is attained, then the different summands of the corresponding optimal value can
be used to define a risk attribution method in a sensible way. Thus, our approach
in this chapter enables us to allocate the risk of the financial system to the different
firms contained in this system.

5.1. Model and notation

Throughout this chapter fix the underlying general probability space (Ω,F ,P). We
work in a one-period model and consider a finite set of n firms. From a network
modeling point of view this means that we consider a financial network which consists
of n nodes.
Let Lp := Lp(Ω,F ,P) for 1 ≤ p ≤ ∞. The random vector X̄ = (X̄1, . . . , X̄n) ∈

(Lp)n represents the losses of the different firms, i.e., X̄i is assumed to be the random
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loss of firm i ∈ {1, . . . , n}. It is important to note that in this chapter we valuate
losses X̄1, . . . , X̄n. In contrast to this, in Chapter 4 the random variableX represents
the net worth of a specific financial position. We will see later on that this change
of perspective affects the properties of the risk measures studied in this chapter.
From now on, we interpret equalities and inequalities between random vectors

X̄, Ȳ ∈ (Lp)m, m ∈ N, componentwise P-a.s. This means X̄, Ȳ ∈ (Lp)m satisfy
X̄ ≤ Ȳ if and only if X̄i ≤ Ȳi P-a.s. for all i ∈ {1, . . . ,m}.
In case of 1 ≤ p < ∞, we endow the space Lp with the usual Lp-norm given by
‖X‖p := (

´
|X|pdP)1/p = E[|X|p]1/p for X ∈ Lp. Similarly, if p =∞, then the space

L∞ is endowed with the norm ‖X‖∞ := inf{r ∈ R||X| ≤ r P-a.s.} for X ∈ L∞. Let
us now consider the dual space of Lp for 1 ≤ p ≤ ∞, i.e., the space of all continuous
and linear functionals on Lp. It is well known that in case of 1 ≤ p < ∞, the dual
space of Lp satisfies (Lp)∗ = Lq (up to isomorphism) where q ∈ (1,∞] is such that
1/p+ 1/q = 1, and the pairing 〈·, ·〉 : Lp × Lq → R between Lp and Lq is given by

〈X, ξ〉 := E[Xξ];

see, for instance, Theorem IV.8.1 and Theorem IV.8.5 in Dunford and Schwartz
(1957). If we set p = ∞, then the dual space of L∞ satisfies (L∞)∗ = ba (up to
isomorphism) where the Banach space ba := ba(Ω,F ,P) is the space of all bounded,
finitely additive functions µ on (Ω,F) with the property that P[A] = 0 implies
µ[A] = 0. In this case, the pairing 〈·, ·〉 : L∞ × ba→ R between L∞ and ba is given
by 〈

X,µ
〉

:=
ˆ

Ω
X(ω)dµ(ω);

see Theorem IV.8.16 in Dunford and Schwartz (1957). In order to simplify the
notation, we use〈

X, ξ
〉

= E[Xξ] for X ∈ Lp, ξ ∈ (Lp)∗ and all 1 ≤ p ≤ ∞

for the pairing between Lp and (Lp)∗.
Now, let us consider the multi-dimensional case. For m ∈ N, in particular in case

of m > 1, we equip the space (Lp)m for 1 ≤ p ≤ ∞ with the norm

∥∥X̄∥∥
p,m

:=
m∑
i=1

∥∥X̄i

∥∥
p

for X̄ = (X̄1, . . . , X̄m) ∈ (Lp)m.

The dual spaces satisfy ((Lp)m)∗ = (Lq)m (up to isomorphism) for 1 ≤ p < ∞
and ((L∞)m)∗ = (ba)m (up to isomorphism) for p = ∞, and the pairing

〈
·, ·
〉
m

:
(Lp)m × ((Lp)m)∗ → R between (Lp)m and ((Lp)m)∗ is given by

〈
X̄, ξ̄

〉
m

:=
m∑
i=1

〈
X̄i, ξ̄i

〉
=

m∑
i=1

E[X̄iξ̄i] for X̄ = (X̄1, . . . , X̄m) ∈ (Lp)m

and ξ̄ = (ξ̄1, . . . , ξ̄m) ∈ ((Lp)m)∗.

For all m ∈ N, we use the corresponding norm topology on ((Lp)m)∗ in case of
1 < p < ∞. If p = 1 or p = ∞, we consider the weak*-topologies σ((L∞)m, (L1)m)
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and σ((ba)m, (L∞)m), respectively. Both topologies are compatible with the corre-
sponding pairing above; see Appendix A.2 for more details. Note that with these
notations and definitions we have determined the paired spaces ((Lp)m, ((Lp)m)∗) in
the sense of Definition A.2.1.
Finally, in the multi-dimensional case, we will frequently use the notations 1m :=

(1, . . . , 1) and 0m := (0, . . . , 0) (m-times) for m ∈ N.
Now, let us come back to the main objects in this chapter. Recall that we focus

on a network consisting of n firms. Our aim is to define systemic risk measures as
mappings

ρ : (Lp)n → R ∪ {+∞}

which quantify the risk associated with an economy X̄ ∈ (Lp)n. Moreover, this
economy is specified by the losses X̄1, . . . , X̄n of the individual firms in the underly-
ing system. In what follows, we will see that systemic risk measures are connected
to convex and coherent risk measures which were discussed in Chapter 4. More
precisely, every systemic risk measure is a decomposition of a single-firm risk mea-
sure, which is essentially identical to a risk measure from Chapter 4, and a so called
aggregation function.
First of all, let us consider important properties of a function ρ0 : Lp → R∪{+∞}:

(R1) Monotonicity: If X ≥ Y , then ρ0(X) ≥ ρ0(Y ) for all X,Y ∈ Lp.
(R2) Convexity: ρ0(aX + (1 − a)Y ) ≤ aρ0(X) + (1 − a)ρ0(Y ) for all X,Y ∈ Lp

and a ∈ [0, 1].
(R3) Translation property: ρ0(X + a) = ρ0(X) + a for all X ∈ Lp and a ∈ R.
(R4) Positive homogeneity: ρ0(aX) = aρ0(X) for all X ∈ Lp and a ∈ R+.
(R5) Constancy on R ⊂ R: ρ0(a) = a for all a ∈ R.
(R6) Normalization: ρ0(1) = 1.

As we want to quantify the risk of a given economy that is represented by individ-
ual losses, the properties above slightly differ from the corresponding properties in
Chapter 4, where we have considered the worth of a financial position. Because of
these different viewpoints, the inequality in property (R1) is reversed compared to
the monotonicity property from Chapter 4. Similarly, in the translation property
(R3) we add a to ρ0(X) instead of subtracting a from ρ0(X). Nevertheless, the
motivation behind the properties (R1)-(R4) above is analogous to the motivation of
the corresponding properties in Chapter 4.
The constancy property (R5) was originally introduced and studied in Frittelli

and Rosazza Gianin (2002). Note that the translation property and ρ0(0) = 0
imply constancy on R. Moreover, the normalization property (R3) is equivalent to
constancy on {1}.

Definition 5.1.1. A convex single-firm risk measure is a function ρ0 : Lp → R ∪
{+∞} that satisfies the properties (R1) and (R2). A positively homogeneous single-
firm risk measure is a convex single-firm risk measure that additionally satisfies
the properties (R4) and (R6). A coherent single-firm risk measure is a positively
homogeneous single-firm risk measure that additionally satisfies the property (R3).
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This definition of convex single-firm risk measures (that satisfy monotonicity and
convexity) is neither equivalent to the definition of standard risk measures in Chapter
4 nor to the definition of standard convex risk measures in Chapter 4. Solely the
term coherent single-firm risk measure coincides with the term coherent risk measure
defined in Chapter 4 (up to the sign change and normalization). We will explain
this difference in detail below. Nevertheless, note that every standard convex risk
measure ρ̂ defined in Chapter 4 induces a convex single-firm risk measure ρ0 in the
sense of Definition 5.1.1 by ρ0(X) := ρ̂(−X) for X ∈ Lp.
Let us consider the following properties of a function ρ : (Lp)n → R ∪ {+∞}:

(S1) Monotonicity: If X̄ ≥ Ȳ , then ρ(X̄) ≥ ρ(Ȳ ) for all X̄, Ȳ ∈ (Lp)n.
(S2) Preference consistency: If ρ(X̄(ω)) ≥ ρ(Ȳ (ω)) for X̄, Ȳ ∈ (Lp)n and a.e. ω ∈

Ω, then ρ(X̄) ≥ ρ(Ȳ ).
(S3) fρ-constancy: Either Im ρ|Rn = R and there exists a surjective function

fρ : R → R such that ρ(a1n) = fρ(a) for all a ∈ R or Im ρ|Rn = R+ and
there exists a function fρ : R → R+ and b ∈ R+ such that fρ is surjective
and strictly increasing on [b,∞), fρ(a) = 0 for a ≤ b and ρ(a1n) = fρ(a) for
all a ∈ R.

(S4) Convexity:
(S4a) Outcome convexity: ρ(aX̄ + (1 − a)Ȳ ) ≤ aρ(X̄) + (1 − a)ρ(Ȳ ) for

all X̄, Ȳ ∈ (Lp)n and a ∈ [0, 1].
(S4b) Risk convexity: Suppose ρ(Z̄(ω)) = aρ(X̄(ω)) + (1− a)ρ(Ȳ (ω)) for

X̄, Ȳ, Z̄ ∈ (Lp)n, a given scalar a ∈ [0, 1] and for a.e. ω ∈ Ω. Then
ρ(Z̄) ≤ aρ(X̄) + (1− a) ρ(Ȳ ).

(S5) Positive homogeneity: ρ(aX̄) = aρ(X̄) for all X̄ ∈ (Lp)n and a ∈ R+.
(S6) Normalization: ρ(1n) = n.

We understand (S2) and (S4b) in the following way: If the property (S2) is satisfied,
then P[{ω ∈ Ω|ρ(x̄) ≥ ρ(ȳ), (x̄, ȳ) = (X̄(ω), Ȳ (ω))}] = 1 implies that ρ(X̄) ≥
ρ(Ȳ ). Similarly, if the property (S4b) is satisfied, then P[{ω ∈ Ω|ρ(z̄) = aρ(x̄) +
(1 − a)ρ(ȳ), (z̄, x̄, ȳ) = (Z̄(ω), X̄(ω), Ȳ (ω))}] = 1 implies that ρ(Z̄) ≤ aρ(X̄) +
(1− a) ρ(Ȳ ).
Note that ρ|Rn : Rn → R is a measurable function. As a consequence, ρ|Rn ◦ X̄ :

Ω→ R is also measurable.
For the remaining part of this chapter it is essential to know that the properties

(S1), (S3) and (S4a) guarantee the existence of the inverse function f−1
ρ of fρ.

Moreover, there exist two different cases: If Im ρ|Rn = R, then fρ and the inverse
function f−1

ρ are maps from R to R. On the other hand, if Im ρ|Rn = R+, then the
function fρ is surjective and strictly increasing on [b,∞) and the inverse function
f−1
ρ maps from R+ into [b,∞). Occasionally, we do not distinguish between these
two cases for simplicity.

Definition 5.1.2. A positively homogeneous systemic risk measure is a function
ρ : (Lp)n → R ∪ {+∞} that satisfies the properties (S1), (S2), (S4), (S5) and
(S6). If ρ satisfies the properties (S1)-(S4) and the function fρ from property (S3)
satisfies

∥∥fρ(Z)
∥∥
p < ∞ and

∥∥f−1
ρ (Z)

∥∥
p < ∞ for all Z ∈ Lp (

∥∥f−1
ρ (Z)

∥∥
p < ∞ for
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all Z ∈ Lp+ := {X ∈ Lp|X ≥ 0} if Im fρ = R+), we call ρ a convex systemic risk
measure.

Monotonicity (S1), outcome convexity (S4a) and positive homogeneity (S5) have
already been considered in case of single-firm risk measurement, and we can interpret
these properties in the same way. The normalization property (S6) is the systemic
counterpart to property (R6). Preference consistency (S2) and risk convexity (S4b)
were originally introduced, motivated and studied in Chen et al. (2013). To interpret
the preference consistency, consider two economies X̄ and Ȳ . If in a.e. scenario ω ∈ Ω
the systemic risk of an economy Ȳ (ω) ∈ Rn is less than or equal to the systemic risk
of another economy X̄(ω) ∈ Rn, then this relation should still be satisfied by the
systemic risk of the random economies X̄ ∈ (Lp)n and Ȳ ∈ (Lp)n. Similarly, the risk
convexity property is based on assumptions on realizations of economies X̄, Ȳ and
Z̄. If for a.e. ω ∈ Ω the systemic risk of Z̄(ω) is equal to the convex combination of
the systemic risk of X̄(ω) and Ȳ (ω), then the systemic risk of the random economy
Z̄ is bounded from above by the convex combination of the systemic risk of X̄ and Ȳ .
Note that the transition from constant economies X̄(ω), Ȳ (ω) and Z̄(ω), ω ∈ Ω, to
random economies X̄, Ȳ and Z̄ can be interpreted as introduction of “randomness”.
Due to property (S4b), this process of transition does not lead to an increase of the
systemic risk of Z̄ beyond the convex combination of the systemic risk of X̄ and Ȳ .
Chen et al. (2013) point out that in case of an economy that consists of a single

firm, i.e., n = 1, outcome convexity and constancy on R imply risk convexity directly.
Indeed, in this case, ρ(Z (ω)) = aρ(X(ω)) + (1− a) ρ(Y (ω)) for X,Y, Z ∈ Lp is
equivalent to Z(ω) = aX(ω) + (1 − a)Y (ω) for a.e. ω ∈ Ω, which means that
Z = aX + (1 − a)Y . Now, the inequality ρ(Z) ≤ aρ(X) + (1 − a)ρ(Y ) follows
directly from outcome convexity.
It remains to discuss the fρ-constancy property (S3). This property is new, and

we will see that it is essential in the decomposition result below. Note that the
fρ-constancy property tells us something about the behavior of ρ on constants: Let
us assume that each firm in the financial network has the same constant loss a ∈ R.
Then the systemic risk of this economy is equal to the value of a function fρ : R→ R
in a. Since for every function from R to R surjectivity, monotonicity and convexity
imply strict monotonicity, we know that fρ is strictly increasing and unbounded.
Let us consider a second economy in which each firm has the same constant loss
c ∈ R with c > a. Then strict monotonicity of fρ implies that the systemic risk of
the second economy is strictly greater than the systemic risk of the first economy,
i.e., ρ(c1n) > ρ(a1n). A direct consequence of the unboundedness of fρ is that the
systemic risk of a1n increases to infinity if the constant loss a increases to infinity.
Therefore, we solely study systemic risk measures without an upper bound.
Finally, let us consider the following properties of a function Λ : Rn → R:

(A1) Monotonicity: If x̄ ≥ ȳ, then Λ(x̄) ≥ Λ(ȳ) for all x̄, ȳ ∈ Rn.
(A2) Convexity: Λ(ax̄ + (1 − a)ȳ) ≤ aΛ(x̄) + (1 − a)Λ(ȳ) for all x̄, ȳ ∈ Rn and

a ∈ [0, 1].
(A3) fΛ-constancy: Either Im Λ = R and there exists a surjective function fΛ :

R → R such that Λ(a1n) = fΛ(a) for all a ∈ R or Im Λ = R+ and there
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exists a function fΛ : R → R+ and b ∈ R+ such that fΛ is surjective and
strictly increasing on [b,∞), fΛ(a) = 0 for a ≤ b and Λ(a1n) = fΛ(a) for all
a ∈ R.

(A4) Positive homogeneity: Λ(ax̄) = aΛ(x̄) for all x̄ ∈ Rn and a ∈ R+.
(A5) Normalization: Λ(1n) = n.

Definition 5.1.3. A positively homogeneous aggregation function is a function
Λ : Rn → R that satisfies the properties (A1), (A2), (A4) and (A5). If Λ satisfies
the properties (A1)-(A3) and the function fΛ from (A3) satisfies

∥∥fΛ(Z)
∥∥
p <∞ and∥∥f−1

Λ (Z)
∥∥
p <∞ for all Z ∈ Lp (

∥∥f−1
Λ (Z)

∥∥
p <∞ for all Z ∈ Lp+ if Im fΛ = R+), we

call Λ a convex aggregation function.

Remark 5.1.4. If p = ∞, the properties (A1)-(A3) imply that
∥∥fΛ(Z)

∥∥
p < ∞

and
∥∥f−1

Λ (Z)
∥∥
p < ∞ for all Z ∈ Lp (

∥∥f−1
Λ (Z)

∥∥
p < ∞ for all Z ∈ Lp+ if Im fΛ =

R+). Therefore, we do not have to claim these additional properties in the previous
definition in case of p =∞.

It is well known that every convex and finite valued function on Rn is continuous.
Thus, the convex aggregation function Λ is continuous and measurable. Note that
the fΛ-constancy property (A3) is similar to the fρ-constancy property (S3), and the
motivation for both properties is the same: The value of the aggregation function
of an economy in which every firm has the same constant loss a ∈ R is equal to
the value of fρ : R → R in a. We will see in the decomposition theorem below
(see Theorem 5.2.1) that the constancy properties (R5), (S3) and (A3) are highly
dependent on each other. Moreover, the constancy properties are key properties that
enable us to drop the positive homogeneity property and to consider convex systemic
risk measures that are not necessarily positively homogeneous. At this point, it is
important to note that standard convex risk measures ρ̂ defined in Chapter 4 satisfy
the translation property. In addition to this, many examples of standard convex
risk measures also satisfy ρ̂(0) = 0. Since these two properties imply ρ̂(a) = −a
for a ∈ R, these standard convex risk measures satisfy the corresponding constancy
property on R. Nonetheless, if we consider single-firm risk measures in conjunction
with systemic risk measures, then the translation property, which is satisfied by all
standard convex risk measures, is not required any more (see again Theorem 5.2.1).
This is precisely the reason for changing the definition of convex single-firm risk
measures in this chapter compared to the standard approach in Chapter 4.
The following lemma clarifies why we claim the fΛ-constancy property for convex

aggregation functions.

Lemma 5.1.5. Let Λ : Rn → R be a convex aggregation function with Im Λ = R
[Im Λ = R+]. Then Λ((Lp)n) = Lp [Λ((Lp)n) = Lp+].

Proof. Let us suppose that Im Λ = R. The proof of the other case is analogous. Fix
X̄ = (X̄1, . . . , X̄n) ∈ (Lp)n and define the random variable ZX̄ by

ZX̄(ω) := max{X̄1(ω), . . . , X̄n(ω)}IA(ω) + min{X̄1(ω), . . . , X̄n(ω)}IAc(ω)
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where A := {ω ∈ Ω|Λ(X̄(ω)) ≥ 0}. Then ZX̄ ∈ Lp because the maximum and the
minimum of Lp-integrable (bounded) random variables are Lp-integrable (bounded).
The monotonicity property of Λ implies 0 ≤ Λ(X̄(ω)) ≤ Λ(ZX̄(ω)1n) for all ω ∈ A
and 0 > Λ(X̄(ω)) ≥ Λ(ZX̄(ω)1n) for all ω ∈ Ac. It follows

|Λ(X̄(ω))| ≤ |Λ(ZX̄(ω)1n)| = |fΛ(ZX̄(ω))| for all ω ∈ Ω,

which yields E[|Λ(X̄)|p] ≤ E[|fΛ(ZX̄)|p] in case of p < ∞ and inf{r ∈ R||Λ(X̄)| ≤
r} ≤ inf{r ∈ R||fΛ(ZX̄)| ≤ r} in case of p = ∞. Since

∥∥fΛ(ZX̄)
∥∥
p < ∞ for all

Z ∈ Lp, we obtain ∥∥Λ(X̄)
∥∥
p ≤

∥∥fΛ(ZX̄)
∥∥
p <∞.

But this means that Λ(X̄) ∈ Lp. Thus, Λ((Lp)n) ⊂ Lp.
To prove the other inclusion, consider an arbitrary random variable X ∈ Lp. The

properties (A1)-(A3) imply the existence of the inverse function f−1
Λ . Therefore, we

can define the random variable YX by

YX(ω) := f−1
Λ (X(ω)) for ω ∈ Ω.

Since
∥∥f−1

Λ (Z)
∥∥
p < ∞ for all Z ∈ Lp, we obtain that YX ∈ Lp. The definition

of YX implies fΛ(YX) = X and the fΛ-constancy property of Λ yields Λ(YX1n) =
fΛ(YX) = X. This means that Lp ⊂ Λ((Lp)n). Together with the first part of this
proof, we have Λ((Lp)n) = Lp.

The previous lemma guarantees that for every X̄ ∈ Lp, the image Λ(X̄) is again
an element in the space Lp. On the other hand, the surjectivity of the real valued
function Λ is transferred to Λ considered as a mapping from (Lp)n to Lp.

Lemma 5.1.6. Let Λ : Rn → R be a positively homogeneous aggregation function.
Then Λ also satisfies the fΛ-constancy property (A3). The corresponding function
fΛ is given by

fΛ(a) =
{
an if a ≥ 0
a(−Λ(−1n)) if a < 0

(5.1)

in case of Im Λ = R and fΛ(a) = na+ in case of Im Λ = R+.

Proof. For every positively homogeneous aggregation function Λ, we have Λ(a1n) =
aΛ(1n) = an for all a ∈ R+. Therefore, R+ ⊂ Im Λ. If Λ(x̄) ≥ 0 for all x̄ ∈ Rn, then
monotonicity and positive homogeneity lead to 0 ≤ Λ(a1n) ≤ Λ(0n) = 0 for a < 0.
This means that fΛ(a) = na+.
If there exists x̄ ∈ Rn such that Λ(x̄) < 0, then there exists i ∈ {1, . . . , n}

with x̄i < 0. If we define y := mini∈{1,...,n} x̄i, then by monotonicity, we have
Λ(y1n) ≤ Λ(x̄) < 0, and positive homogeneity implies Λ(y1n) = (−y)Λ(−1n). Thus,
Λ(−1n) < 0 and Im Λ = R. It remains to prove that fΛ given by (5.1) is convex.
In other words, we have to show that −Λ(−1n) ≤ n. But this inequality follows
from convexity and positive homogeneity of Λ, which imply that 0 = Λ(0n) =
Λ(1n + (−1n)) ≤ Λ(1n) + Λ(−1n).
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Remark 5.1.7. Note that
∥∥fΛ(Z)

∥∥
p < ∞ and

∥∥f−1
Λ (Z)

∥∥
p < ∞ for all Z ∈ Lp

(
∥∥f−1

Λ (Z)
∥∥
p < ∞ for all Z ∈ Lp+ if Im fΛ = R+) are automatically satisfied if Λ is

a positively homogeneous aggregation function. As a consequence, every positively
homogeneous aggregation function is also a convex aggregation function. By repeat-
ing the same argument for systemic risk measures, we obtain that every positively
homogeneous systemic risk measure is also a convex systemic risk measure.

5.2. Structural decomposition
The aim of this section is to generalize the decomposition result in Chen et al. (2013)
for convex systemic risk measures defined on a general probability space. We will
see that each convex systemic risk measure is a composition of a convex single-firm
risk measure and a convex aggregation function. By the final remark in the previous
section, every positively homogeneous systemic risk measure is also a convex systemic
risk measure. Therefore, the positively homogeneous case considered in Chen et al.
(2013) can be regarded as a special case of our decomposition theorem for convex
systemic risk measures.
The proof of the decomposition theorem below is in several arguments similar

to the proof of Theorem 1 in Chen et al. (2013). Nevertheless, the extension from
positively homogeneous systemic risk measures to convex systemic risk measures
which are not necessarily positively homogeneous requires an application of Lemma
5.1.5, which is new in the context of convex systemic risk measurement. Since
this lemma strongly depends on the fΛ-constancy property of Λ, the constancy
properties (fρ-constancy, fΛ-constancy and constancy of ρ0) play a key role in our
decomposition result for convex systemic risk measures.

Theorem 5.2.1 (Convex structural decomposition). .

a) A function ρ : (Lp)n → R ∪ {+∞} with ρ(Rn) = R is a convex systemic risk
measure if and only if there exists a convex aggregation function Λ : Rn → R
with Λ(Rn) = R and a convex single-firm risk measure ρ0 : Lp → R ∪ {+∞}
that satisfies the constancy property on R such that ρ is the composition of ρ0
and Λ, i.e.,

ρ(X̄) = (ρ0 ◦ Λ)(X̄) for all X̄ ∈ (Lp)n.

b) A function ρ : (Lp)n → R ∪ {+∞} with ρ(Rn) = R+ is a convex systemic risk
measure if and only if there exists a convex aggregation function Λ : Rn → R
with Λ(Rn) = R+ and a convex single-firm risk measure ρ0 : Lp → R ∪ {+∞}
that satisfies the constancy property on R+ such that ρ is the composition of
ρ0 and Λ, i.e.,

ρ(X̄) = (ρ0 ◦ Λ)(X̄) for all X̄ ∈ (Lp)n.

Proof. In case of part a), set R = S = R, and in case of part b), set R = R+ and
S = [b,∞) for b ∈ R+. Let ρ be a convex systemic risk measure with fρ : R → R
such that fρ is surjective and strictly increasing on S. We define the function Λ by

Λ(x̄) := ρ(x̄) for x̄ ∈ Rn. (5.2)
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Then the convexity property (A2) follows from the corresponding property of ρ since

Λ(ax̄+ (1− a)ȳ) = ρ(ax̄+ (1− a)ȳ) ≤ aρ(x̄) + (1− a)ρ(ȳ) = aΛ(x̄) + (1− a)Λ(ȳ)

for all x̄, ȳ ∈ Rn and a ∈ [0, 1]. Similarly, monotonicity of ρ yields the monotonicity
property (A1) of Λ.
Because ρ satisfies fρ-constancy, the following equality is satisfied for all a ∈ R:

Λ(a1n) = ρ(a1n) = fρ (a) .

By setting fΛ := fρ, fΛ-constancy (A3) of Λ follows directly. Therefore, Λ(Rn) = R.
Furthermore, Lemma 5.1.5 gives Λ((Lp)n) = Lp in case of a) and Λ((Lp)n) = Lp+ in
case of b).
Now, let us define ρ̃0 : Λ((Lp)n)→ R ∪ {+∞} by

ρ̃0(X) := ρ(X̄) where X̄ ∈ (Lp)n satisfies Λ(X̄) = X. (5.3)

Moreover, define ρ0 : Lp → R ∪ {+∞} by

ρ0(X) :=
{
ρ̃0(X) if Λ((Lp)n) = Lp

ρ̃0(X+) if Λ((Lp)n) = Lp+
. (5.4)

Then ρ̃0 is well-defined: For two economies X̄, Ȳ ∈ (Lp)n with Λ(X̄) = Λ(Ȳ ), we
obtain

ρ(X̄(ω)) = Λ(X̄)(ω) ≥ Λ(Ȳ )(ω) = ρ(Ȳ (ω)) and
ρ(X̄(ω)) = Λ(X̄)(ω) ≤ Λ(Ȳ )(ω) = ρ(Ȳ (ω))

for a.e. ω ∈ Ω. Furthermore, preference consistency of ρ implies that ρ(X̄) = ρ(Ȳ ).
In the following, we will show that ρ̃0 defined by (5.3) is monotone, convex and

satisfies constancy on R. Then it follows immediately that ρ0 defined by (5.4)
satisfies the monotonicity property (R1), convexity (R2) and constancy on R (R5).
In order to prove the monotonicity property, consider X,Y ∈ Λ((Lp)n) with

Λ(X̄) = X, Λ(Ȳ ) = Y and X ≤ Y . Then

ρ(X̄(ω)) = Λ(X̄)(ω) ≤ Λ(Ȳ )(ω) = ρ(Ȳ (ω))

for a.e. ω ∈ Ω, and preference consistency of ρ yields ρ̃0(X) ≤ ρ̃0(Y ).
It remains to prove the convexity property and constancy on R. First, let X,Y ∈

Λ((Lp)n) and a ∈ [0, 1] and define Z := aX+(1−a)Y . Moreover, let X̄, Ȳ, Z̄ ∈ (Lp)n
be such that

ρ̃0(X) = ρ(X̄), ρ̃0(Y ) = ρ(Ȳ ), ρ̃0(Z) = ρ(Z̄)

where Λ(X̄) = X, Λ(Ȳ ) = Y and Λ(Z̄) = Z. Then we obtain

ρ(Z̄(ω)) = Λ(Z̄)(ω) = Z(ω) = aX(ω) + (1− a)Y (ω)
= aΛ(X̄)(ω) + (1− a)Λ(Ȳ )(ω) = aρ(X̄(ω)) + (1− a)ρ(Ȳ (ω))
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for a.e. ω ∈ Ω, and risk convexity of ρ implies

ρ̃0(Z) = ρ(Z̄) ≤ aρ(X̄) + (1− a)ρ(Ȳ ) = aρ̃0(X) + (1− a)ρ̃0(Y ).

This means that ρ̃0 satisfies the convexity property. Finally, note that for all a ∈ R,
there exists x̄ ∈ Rn with Λ(x̄) = a and ρ̃0(a) = ρ(x̄). Since a = Λ(x̄) = ρ(x̄), we
obtain ρ̃0(a) = a for all a ∈ R. Therefore, ρ̃0 satisfies the constancy property on R.
The equality ρ = ρ0 ◦ Λ follows immediately from the definition of ρ0 and Λ.
For the second part of the proof consider a convex aggregation function Λ with

fΛ : R → R that is surjective and strictly increasing on S and suppose that ρ0 is
a convex single-firm risk measure with ρ0(a) = a for all a ∈ R. Monotonicity (S1)
and outcome convexity (S4a) of ρ are satisfied due to the corresponding properties
of ρ0 and Λ. To prove preference consistency (S2), consider X̄, Ȳ ∈ (Lp)n with

(ρ0 ◦ Λ)(X̄(ω)) = ρ(X̄(ω)) ≥ ρ(Ȳ (ω)) = (ρ0 ◦ Λ)(Ȳ (ω))

for a.e. ω ∈ Ω. Because ρ0 satisfies constancy on R and Λ(Rn) = R, we obtain
Λ(X̄(ω)) ≥ Λ(Ȳ (ω)) for a.e. ω ∈ Ω. The monotonicity property of ρ0 leads to

ρ(X̄) = (ρ0 ◦ Λ)(X̄) ≥ (ρ0 ◦ Λ)(Ȳ ) = ρ(Ȳ ),

which means that property (S2) is satisfied.
Now, consider X̄, Ȳ, Z̄ ∈ (Lp)n and a ∈ [0, 1] and suppose that ρ(Z̄(ω)) =

aρ(X̄(ω)) + (1− a)ρ(Ȳ (ω)) for a.e. ω ∈ Ω. Since ρ = ρ0 ◦ Λ, this means

ρ0(Λ(Z̄(ω))) = aρ0(Λ(X̄(ω))) + (1− a)ρ0(Λ(Ȳ (ω))) (5.5)

for a.e. ω ∈ Ω. Note again that Λ(Rn) = R and ρ0 (c) = c for all c ∈ R. Therefore,
Equation (5.5) yields

Λ(Z̄(ω)) = aΛ(X̄(ω)) + (1− a)Λ(Ȳ (ω))

for a.e. ω ∈ Ω, i.e., Λ(Z̄) = aΛ(X̄) + (1 − a)Λ(Ȳ ). The convexity property of ρ0
implies

ρ(Z̄) = ρ0(Λ(Z̄)) ≤ aρ0(Λ(X̄)) + (1− a)ρ0(Λ(Ȳ )) = aρ(X̄) + (1− a)ρ(Ȳ ).

Hence, ρ satisfies the risk convexity property (S4b). It remains to show the fρ-
constancy property (S3). Since Λ satisfies the fΛ-constancy property and ρ0(c) = c
for all c ∈ R, we have

ρ(a1n) = ρ0(Λ(a1n)) = fΛ(a) for all a ∈ R.

But this means that fρ-constancy (S3) is satisfied with fρ := fΛ.

Remark 5.2.2. In the previous proof Lemma 5.1.5 ensures that ρ̃0 specified in
Equation (5.3) is a mapping defined on the entire space Lp or on the entire space Lp+,
respectively. In the positively homogeneous case studied in Chen et al. (2013), this
property is an immediate consequence of positive homogeneity and normalization.
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The following corollary addresses the positively homogeneous special case of The-
orem 5.2.1.

Corollary 5.2.3 (Positively homogeneous structural decomposition). .

a) A function ρ : (Lp)n → R∪{+∞} with ρ(Rn) = R is a positively homogeneous
systemic risk measure if and only if there exists a positively homogeneous ag-
gregation function Λ : Rn → R with Λ(Rn) = R and a coherent single-firm risk
measure ρ0 : Lp → R∪ {+∞} such that ρ is the composition of ρ0 and Λ, i.e.,

ρ(X̄) = (ρ0 ◦ Λ)(X̄) for all X̄ ∈ (Lp)n.

b) A function ρ : (Lp)n → R∪{+∞} with ρ(Rn) = R+ is a positively homogeneous
systemic risk measure if and only if there exists a positively homogeneous ag-
gregation function Λ : Rn → R with Λ(Rn) = R+ and a positively homogeneous
single-firm risk measure ρ0 : Lp → R ∪ {+∞} such that ρ is the composition
of ρ0 and Λ, i.e.,

ρ(X̄) = (ρ0 ◦ Λ)(X̄) for all X̄ ∈ (Lp)n.

Proof. Note that every positively homogeneous systemic risk measure ρ is also a con-
vex systemic risk measure, and every positively homogeneous aggregation function Λ
is a convex aggregation function. Similarly, every coherent [positively homogeneous]
single-firm risk measure ρ0 is also a convex systemic risk measure which satisfies
constancy on R [R+]. Therefore, we can apply the convex decomposition theorem
(see Theorem 5.2.1).
First, let us suppose that ρ is a positively homogeneous systemic risk measure.

Then it remains to prove that Λ defined by (5.2) and ρ̃0 defined by (5.3) are positively
homogeneous and normalized. Note that ρ0 defined by (5.4) inherits both properties
from ρ̃0. In case of part a), we additionally have to verify the translation property
(R3) for ρ0 = ρ̃0.
Positive homogeneity (A4) and normalization (A5) of Λ follow directly from the

corresponding property of ρ. Moreover, Λ(1n/n) = (1/n)Λ(1n) = 1 and ρ(1n/n) =
(1/n)ρ(1n) = 1 such that ρ̃0(1) = ρ(1n/n) = 1, which means that ρ̃0 is normalized.
Now, consider X ∈ Λ((Lp)n) and X̄ ∈ (Lp)n such that Λ(X̄) = X. Since Λ is
positively homogeneous, we have Λ(aX̄) = aΛ(X̄) = aX for all a ∈ R+. Hence, the
positive homogeneity property of ρ implies ρ̃0(aX) = ρ(aX̄) = aρ(X̄) = aρ̃0(X) for
all a ∈ R+.
To prove the translation property (R3) in case of part a), note that we know

from Theorem 5.2.1 that ρ0 (a) = a for all a ∈ R. Since ρ0 is convex and positively
homogenous, ρ0 is also subadditive (see Remark 4.1.2). It follows for X ∈ Lp and
all a ∈ R that

ρ0(X + a) ≤ ρ0(X) + ρ0(a) = ρ0(X) + a and
ρ0(X + a) = ρ0(X − (−a)) ≥ ρ0(X)− ρ0(−a) = ρ0(X) + a.

This means that ρ0 satisfies the translation property (R3).
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For the second part of the proof it remains to show the normalization property
(S6) and positive homogeneity (S5). Obviously, ρ is positively homogeneous since Λ
and ρ0 satisfy the corresponding property. Finally, ρ0 has the positive homogeneity
and the translation property in case of a), and ρ0 is positively homogeneous and
satisfies ρ0(1) = 1 in case of b). Therefore, we have ρ0(a) = a for all a ∈ R in both
cases. This property together with the normalization property of Λ yields that ρ is
normalized.

Remark 5.2.4. In the first part of the proof of the previous corollary we have
shown that every positively homogeneous single-firm risk measure ρ0 which satisfies
constancy on R also admits the translation property. Consequently, an alternative
formulation for part a) of Corollary 5.2.3 is the following:

a’) A function ρ : (Lp)n → R∪{+∞} with ρ(Rn) = R is a positively homogeneous
systemic risk measure if and only if there exists a positively homogeneous ag-
gregation function Λ : Rn → R with Λ(Rn) = R and a positively homogeneous
single-firm risk measure ρ0 : Lp → R ∪ {+∞} that satisfies the constancy
property on R such that ρ is the composition of ρ0 and Λ, i.e.,

ρ(X̄) = (ρ0 ◦ Λ)(X̄) for all X̄ ∈ (Lp)n.

5.3. Examples of systemic risk measures
In this section we provide examples of convex and positively homogeneous systemic
risk measures. Since the positively homogeneous systemic risk measures considered
in Chen et al. (2013) are special cases of our convex systemic risk measures, we can
carry over their examples to our setting. Nevertheless, our systemic risk measures
do not necessarily have to be positively homogeneous such that we can add com-
pletely new examples. We will see that all examples in the subsequent section are
based on the decomposition results above. This means that we construct convex
[positively homogeneous] systemic risk measures by defining the corresponding con-
vex [positively homogeneous] single-firm risk measure and the corresponding convex
[positively homogeneous] aggregation function.

Example 5.3.1. The first possibility to obtain a simple positively homogeneous
aggregation function is to sum up the losses/ profits of each firm i ∈ {1, . . . , n}. The
resulting aggregation function Λsum : Rn → R is given by

Λsum(x̄) :=
n∑
i=1

x̄i. (5.6)

Note that Λsum is a linear function. We can generalize this positively homogeneous
aggregation function by considering Λaff : Rn → R defined by

Λaff(x̄) := b̄tx̄+ c for b̄ ∈ Rn, b̄ > 0n and c ∈ R.

We know from Example 4.5.2 that the Average Value at Risk is given by

AVaRλ(X) = max
Q∈Qλ

EQ[X] for all X ∈ Lp and λ ∈ (0, 1] (5.7)
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where Qλ is the set of all probability measures Q which are absolutely continuous
with respect to P and satisfy dQ/dP ≤ 1/λ P-a.s. Note that we interpret X̄1, . . . , X̄n

as losses while in Example 4.5.2 the perspective is reversed. This explains why we
have EQ[X] instead of EQ[−X] in representation (5.7).
If we now consider the corresponding composition, then we obtain the positively

homogeneous systemic risk measure

ρSEM(X̄) := AVaRλ

(
n∑
i=1

X̄i

)
for X̄ ∈ (Lp)n and λ ∈ (0, 1].

This risk measure, also referred to as Systemic Expected Shortfall, has already been
discussed in Acharya et al. (2010). Nevertheless, Chen et al. (2013) point out that
a financial regulator, in general, does not want to compensate the losses of one firm
with the profits of another. In conclusion, the positively homogeneous systemic risk
measure ρSEM is not an appropriate choice to meet these specific demands.

In the next example we provide a positively homogeneous aggregation function
that covers the criticism above. Moreover, by considering this positively homoge-
neous aggregation function in conjunction with a convex systemic risk measure, we
obtain a first example of a convex systemic risk measure which is not positively
homogeneous.

Example 5.3.2. Let the positively homogeneous aggregation function Λloss : Rn →
R+ be defined by

Λloss(x̄) :=
n∑
i=1

x̄+
i . (5.8)

Since this aggregation function sets all profits equal to 0, it is not possible to cross-
subsidize the losses of one firm with the gains of another. The previous aggregation
function defined in (5.8) can be modified by introducing a lower bound which is
not necessarily equal to 0. In this case, we obtain the convex aggregation function
Λb,loss : Rn → R+ defined by

Λb,loss(x̄) :=
n∑
i=1

(x̄i − b)+ for b ∈ R+.

If this convex aggregation function is applied, then the losses above b are aggregated
only. Since Λb,loss is convex but not positively homogeneous and Im Λ = R+, these
aggregation functions are covered by the second part of Theorem 5.2.1.
In order to define a convex systemic risk measure, we can use the aggregation

function Λloss in conjunction with the distortion entropic risk measure defined in
Example 4.5.4. This convex single-firm risk measure is given by

ρg,γ0 (X) = 1
γ

logEg[eγX ] for X ∈ L∞ and γ > 0

where Eg denotes the distorted expectation for a nondecreasing function g : [0, 1]→
[0, 1] with g(0) = 0 and g(1) = 1. Together with the positively homogeneous ag-
gregation function defined in (5.8), we obtain the distortion entropic systemic risk
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measure

ρg,γ(X̄) := 1
γ

logEg
[
eγ
∑n

i=1 X̄
+
i

]
for X̄ ∈ (L∞)n and γ > 0. (5.9)

This systemic risk measure is convex but not positively homogeneous. This follows
from the fact that the underlying distortion entropic risk measure ρg,γ0 is not posi-
tively homogeneous. Finally, note that the fρg,γ -constancy property is satisfied with
fρg,γ (a) = fΛloss(a) = na+ for a ∈ R.

Another critical property, which has already been pointed out in Chen et al.
(2013), is that both positively homogeneous aggregation functions Λsum and Λloss
do not distinguish between large losses and small losses. As a consequence, one
large loss is as bad as several smaller losses summing up to the same amount. The
following two examples consider convex aggregation functions without this property.

Example 5.3.3. It seems to be reasonable that a financial regulator strongly prefers
several smaller losses against one large loss. Then the convex aggregation function
Λexp : Rn → R+ defined by

Λexp(x̄) :=
n∑
i=1

(eγx̄
+
i − 1) for γ > 0

is a possible choice. Here, the regulator penalizes losses exponentially, and hence the
convex aggregation function Λexp is not positively homogeneous. The corresponding
function fΛexp is given by fΛexp(a) = n(eγa+ − 1) for a ∈ R. Since Λexp(X̄) ∈ L∞ for
all X̄ ∈ (L∞)n, this convex aggregation function is suitable for convex systemic risk
measures defined on (L∞)n. As in the previous examples, this aggregation function
does not allow the compensation of losses of one firm with gains of another.

Example 5.3.4. Let us consider the piecewise linear convex aggregation function
Λplin : Rn → R+ defined by

Λplin(x̄) :=
n∑
i=1

λ(x̄i)

where λ : R→ R+ is given by

λ(x) :=


0 for x < 0
ax for 0 ≤ x < c

b(x− c) + ac for x ≥ c

with 0 < a < b and c > 0. Again, this convex aggregation function is not positively
homogeneous. Furthermore, by applying the aggregation function Λplin, we distin-
guish between losses being below or above the barrier c: If a loss increases above
c, then we pay greater attention to those losses. This is implemented by increasing
the slope of the convex aggregation function Λplin.
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The following example has already been discussed in Chen et al. (2013) and is
motivated by the clearing model of Eisenberg and Noe (2001).

Example 5.3.5. Let us consider a financial network consisting of n nodes. These
nodes represent the different firms that are interconnected by the matrix Π =
(Πij)i,j∈{1,...,n} denoting the interfirm liabilities. For every firm i ∈ {1, . . . , n}, Πij

is the proportion of its total liabilities that firm i has to pay to firm j. We suppose
that an external regulator is able to intervene in the system by injecting capital. As
usual, we interpret x̄ ∈ Rn as the realized loss, i.e., x̄i represents the loss of firm
i ∈ {1, . . . , n}. To cover these losses, each firm has two options: The first possibility
is to receive money (the amount b̄i) from the regulator; the other possibility is to
reduce payments to other firms (by ȳi). However, reducing the payments to other
firms leads to new losses of these firms. More precisely, firm j additionally loses the
amount Πij ȳi.
In this context, the following function measures the “net systemic cost of the

contagion” (Chen et al. (2013), p. 1380):

Λ̃CM(x̄) := min
(ȳ,b̄)∈Ax̄

{
n∑
i=1

ȳi + γb̄i

}
for x̄ ∈ Rn and γ > 1 (5.10)

where Ax̄ is defined by

Ax̄ := {(ȳ, b̄) ∈ Rn+ × Rn+|b̄i + ȳi ≥ x̄i +
n∑
j=1

Πjiȳj for all i ∈ {1, . . . , n}}.

Moreover, we can normalize Λ̃CM to

ΛCM(x̄) = Λ̃CM(x̄) · n
Λ̃CM(1n)

for x̄ ∈ Rn.

By varying the parameter γ in Equation (5.10), a regulator can balance between
losses arising from payment reductions between counterparties (

∑n
i=1 ȳi) and the

costs of supporting the system by injecting new capital (
∑n
i=1 b̄i).

The function ΛCM is a positively homogeneous aggregation function in the sense
of Definition 5.1.3. This can be verified as follows:
The normalization property (A5) is obvious. To show positive homogeneity (A4),

fix x̄ ∈ Rn and a > 0. Then

aΛ̃CM(x̄) = min
(z̄/a,c̄/a)∈Ax̄

{
n∑
i=1

z̄i + γc̄i

}
= Λ̃CM(ax̄)

and Λ̃CM(0·x̄) = Λ̃CM(0n) = 0 = 0·Λ̃CM(x̄). Hence, Λ̃CM is positively homogeneous,
which implies positive homogeneity of ΛCM.
Now, note that if x̄, v̄ ∈ Rn with x̄ ≥ v̄, then Ax̄ ⊂ Av̄ since every (ȳ, b̄) ∈ Ax̄

satisfies b̄i + ȳi −
∑n
j=1 Πjiȳj ≥ x̄i ≥ v̄i for all i ∈ {1, . . . , n}. It follows directly that

Λ̃CM(x̄) ≥ Λ̃CM(v̄), which means that ΛCM satisfies the monotonicity property (A1).
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Similarly, if (z̄, c̄) ∈ Aax̄ and (w̄, d̄) ∈ A(1−a)v̄ for x̄, v̄ ∈ Rn and a ∈ [0, 1], then the
following inequality holds for all i ∈ {1, . . . , n}:

(c̄i + d̄i) + (z̄i + w̄i) ≥ ax̄i + (1− a)v̄i +
n∑
j=1

Πji(z̄j + w̄j).

It follows that (z̄ + w̄, c̄+ d̄) ∈ Aax̄+(1−a)v̄, and thus we obtain for all x̄, ȳ ∈ Rn and
a ∈ [0, 1] that

Λ̃CM(ax̄+ (1− a)v̄) = min
(ȳ,b̄)∈Aax̄+(1−a)v̄

{
n∑
i=1

ȳi + γb̄i

}

≤ min
(z̄,c̄)∈Aax̄,(w̄,d̄)∈A(1−a)v̄

{
n∑
i=1

(z̄i + w̄i) + γ(c̄i + d̄i)
}

= min
(z̄,c̄)∈Aax̄

{
n∑
i=1

z̄i + γc̄i

}
+ min

(w̄,d̄)∈A(1−a)v̄

{
n∑
i=1

w̄i + γd̄i

}
= aΛ̃CM(x̄) + (1− a)Λ̃CM(v̄).

Therefore, ΛCM satisfies the convexity property (A2).

5.4. Representations of systemic risk measures
This section is dedicated to different representation results for convex and positively
homogeneous systemic risk measures. After defining the acceptance sets of a convex
systemic risk measure, we first provide a primal representation which clarifies the
connection between these acceptance sets and the convex systemic risk measure.
Then, based on this primal representation, we deduce a dual representation result.
From now on, we consider convex [positively homogeneous] systemic risk measures

ρ = ρ0 ◦ Λ with convex [positively homogeneous] single-firm risk measure ρ0 and
convex [positively homogeneous] aggregation function Λ. This means Im Λ = R or
Im Λ = R+ and ρ0 : Lp → R ∪ {+∞}. Because of the decomposition results (see
Theorem 5.2.1 and Corollary 5.2.3), ρ0 satisfies constancy on R in case of Im Λ = R
and constancy on R+ in case of Im Λ = R+.

Definition 5.4.1. The acceptance sets of the convex systemic risk measure ρ =
ρ0 ◦ Λ with convex single-firm risk measure ρ0 and convex aggregation function Λ
are given by

Aρ0 :=
{
(r,X) ∈ R×Lp

∣∣r ≥ ρ0 (X)
}

and AΛ :=
{
(Y, Z̄) ∈ Lp×(Lp)n

∣∣Y ≥ Λ(Z̄)
}
.

Before we study the connection between these acceptance sets and the correspond-
ing convex systemic risk measure in detail, let us define the following properties for
a subset of a linear vector space X × Y.

Definition 5.4.2. Let X and Y be two linear spaces. A set S ⊂ X ×Y satisfies the
monotonicity property if (x, y1) ∈ S, y2 ∈ Y and y1 ≥ y2 imply (x, y2) ∈ S. A set
S ⊂ X ×Y satisfies the epigraph property if (x1, y) ∈ S, x2 ∈ X and x2 ≥ x1 imply
(x2, y) ∈ S.
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Proposition 5.4.3. Suppose that ρ = ρ0 ◦Λ is a convex systemic risk measure with
convex single-firm risk measure ρ0 and convex aggregation function Λ. Let Aρ0 and
AΛ be the corresponding acceptance sets.

1. Aρ0 and AΛ satisfy the following properties:

a) Aρ0 and AΛ satisfy the monotonicity property.
b) Aρ0 and AΛ satisfy the epigraph property.
c) Aρ0 and AΛ are convex sets.
d) (a, a) ∈ Aρ0 with inf{r ∈ R|(r, a) ∈ Aρ0} = a for all a ∈ Im Λ and

(fΛ(a), a1n) ∈ AΛ with ess inf{Y ∈ Lp|(Y, a1n) ∈ AΛ} = fΛ(a) for all
a ∈ R.

If ρ = ρ0 ◦ Λ is a positively homogeneous systemic risk measure, then the
following properties are additionally satisfied:
e) Aρ0 and AΛ are cones.
f) (n, 1n) ∈ AΛ with ess inf{Y ∈ Lp|(Y, 1n) ∈ AΛ} = n.

2. ρ admits the so called primal representation

ρ(X̄) = inf
{
r ∈ R

∣∣(r, Y ) ∈ Aρ0 , (Y, X̄) ∈ AΛ
}

for all X̄ ∈ (Lp)n (5.11)

where we set inf ∅ := +∞.

Proof. The monotonicity properties, the epigraph properties, convexity and the
properties in 1.d) follow directly from the properties of ρ0 and Λ. Similarly, positive
homogeneity and normalization of ρ0 and Λ imply the additional properties in case
of positively homogeneous systemic risk measures. It remains to prove the primal
representation.
We know that ρ0 is for all X ∈ Lp representable by

ρ0 (X) = inf{r ∈ R|r ≥ ρ0 (X)} = inf{r ∈ R| (r,X) ∈ Aρ0}.

Analogously, we obtain for all Z̄ ∈ (Lp)n

Λ(Z̄) = ess inf
{
Y ∈ Lp

∣∣Y ≥ Λ(Z̄)
}

= ess inf
{
Y ∈ Lp

∣∣(Y, Z̄) ∈ AΛ
}
.

Together with the equality ρ = ρ0 ◦ Λ, the previous representations imply that for
all X̄ ∈ (Lp)n, we have

ρ(X̄) = inf
{
r ∈ R

∣∣r ≥ (ρ0 ◦ Λ)(X̄)
}

= inf
{
r ∈ R

∣∣(r,Λ(X̄)) ∈ Aρ0

}
= inf

{
r ∈ R

∣∣(r, ess inf
{
Y ∈ Lp

∣∣(Y, X̄) ∈ AΛ
}
) ∈ Aρ0

}
.

Finally, representation (5.11) follows from the monotonicity property of Aρ0 .

In the following proposition we start with subsets of R × Lp and R × Rn and
study in which cases these sets induce convex or positively homogeneous systemic
risk measures.
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Proposition 5.4.4. Assume that ∅ 6= B ⊂ R× Lp and ∅ 6= C ⊂ R× Rn and define

ρB0 (X) := inf{r ∈ R| (r,X) ∈ B} for X ∈ Lp,
ΛC(x̄) := inf{r ∈ R|(r, x̄) ∈ C} for x̄ ∈ Rn.

Suppose that inf{r ∈ R| (r,X) ∈ B} > −∞ for all X ∈ Lp and inf{r ∈ R
∣∣(r, x̄) ∈

C} > −∞ for all x̄ ∈ Rn. Moreover, let B be such that there exists r ∈ R with
(r, 0) ∈ B and let C be such that for all x̄ ∈ Rn, there exists r ∈ R with (r, x̄) ∈ C.
Then the following statements are satisfied:

1. If B and C satisfy the monotonicity property, then ρB0 and ΛC are monotone.
2. If B and C are convex, then ρB0 and ΛC are convex.
3. If B and C are cones, then ρB0 and ΛC are positively homogeneous.
4. If (1, 1) ∈ B with inf{r ∈ R|(r, 1) ∈ B} = 1 and (n, 1n) ∈ C with inf{r ∈

R|(r, 1n) ∈ C} = n, then ρB0 and ΛC are normalized.
5. If (a, a) ∈ B and inf{r ∈ R|(r, a) ∈ B} = a for all a ∈ R, then ρB0 (a) = a.
6. Define fC(a) := inf{r ∈ R

∣∣(r, a1n) ∈ C} for all a ∈ R and suppose that the
function fC : R→ R is surjective. Then ΛC satisfies fΛ-constancy with fΛC =
fC.

In particular, if B and C satisfy all of the properties from 1.-5., then ρB,C : (Lp)n →
R ∪ {+∞} defined by

ρB,C(X̄) := inf{r ∈ R|(r, Y ) ∈ B, (Y, X̄) ∈ AΛC} for X̄ ∈ (Lp)n (5.12)

(where AΛC is the acceptance set of ΛC) is a positively homogeneous systemic risk
measure with ρB,C = ρB0 ◦ ΛC. If B and C satisfy the properties from 1., 2., 5. and
6. and

∥∥fC(Z)
∥∥
p
< ∞ and

∥∥f−1
C (Z)

∥∥
p
< ∞ for all Z ∈ Lp, then ρB,C defined in

(5.12) is a convex systemic risk measure with ρB,C = ρB0 ◦ ΛC.
Furthermore, B is a subset of AρB0 , and C is a subset of AΛC .

Proof. First, let B satisfy the monotonicity property and consider X,Y ∈ Lp with
X ≥ Y . Then

{r ∈ R |(r,X) ∈ B} ⊂ {r ∈ R |(r, Y ) ∈ B} ,

which implies that ρB0 (X) ≥ ρB0 (Y ). If the set B is convex, then it follows for
X,Y ∈ Lp and a ∈ [0, 1] that

ρB0 (aX + (1− a)Y ) = inf {ax+ (1− a)y ∈ R |a (x,X) + (1− a) (y, Y ) ∈ B}
≤ inf {ax+ (1− a)y ∈ R |(x,X) , (y, Y ) ∈ B} = aρB0 (X) + (1− a)ρB0 (Y ) .

This means that ρB0 is convex. Now, suppose that B is a cone and let a > 0 and
X ∈ Lp. Then we have

ρB0 (aX) = inf {ar ∈ R |(ar, aX) ∈ B} ≤ inf {ar ∈ R |(r,X) ∈ B} = aρB0 (X) .

For the other inequality consider x < ρB0 (X) = inf {r ∈ R |(r,X) ∈ B}. Then
(r,X) /∈ B, and thus (ax, aX) /∈ B. It follows that ax < ρB0 (aX) and finally
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ρB0 (aX) = aρB0 (X). In conclusion, ρB0 satisfies ρB0 (aX) = aρB0 (X) for all X ∈ Lp and
a > 0. This implies ρB0 (0) = ρB0 (a · 0) = aρB0 (0) for all a > 0. Since ρB0 (0) < ∞ due
to the assumptions on B, this means that ρB0 (0) = 0. Altogether, ρB0 is positively
homogeneous.
By using the same arguments, we can show that ΛC inherits monotonicity, con-

vexity and positive homogeneity from the corresponding properties of C.
Note that part 4, part 5 and part 6 are trivial and that the assumptions on C

imply that ΛC(x̄) = inf
{
r ∈ R

∣∣(r, x̄) ∈ C
}
∈ R for every x̄ ∈ Rn. Now, suppose that

all of the properties from 1.-5. are satisfied. Then we can consider ΛC as a mapping
on (Lp)n that maps into Lp, and the composition of ρB0 and ΛC leads to

(ρB0 ◦ ΛC)(X̄) = inf{r ∈ R
∣∣(r,ΛC(X̄)) ∈ B}

= inf{r ∈ R
∣∣(r, ess inf

{
Y ∈ Lp

∣∣(Y, X̄) ∈ AΛC}) ∈ B
}

= inf{r ∈ R
∣∣(r, Y ) ∈ B, (Y, X̄) ∈ AΛC} (5.13)

for X̄ ∈ (Lp)n. Remark 5.2.4 implies that ρB,C is a positively homogeneous systemic
risk measure. Similarly, if the properties from 1., 2., 5. and 6. are satisfied and∥∥fC(Z)

∥∥
p
< ∞ and

∥∥f−1
C (Z)

∥∥
p
< ∞ for all Z ∈ Lp, then it follows from (5.13) and

Theorem 5.2.1 that ρB,C is a convex systemic risk measure.
It remains to show that B ⊂ AρB0 and C ⊂ AΛC . To this end, consider (x,X) ∈ B.

By definition of ρB0 , this implies ρB0 (X) ≤ x. Since AρB0 = {(r,X) ∈ R × Lp|r ≥
ρB0 (X)}, we can conclude that (x,X) ∈ AρB0 . The inclusion C ⊂ AΛC is verified
analogously.

The dual representation of convex systemic risk measures requires additional con-
tinuity properties of the convex single-firm risk measure ρ0 and the convex aggre-
gation function Λ. More precisely, ρ0 is supposed to be lower semicontinuous and
Λ, considered as a mapping on (Lp)n, is supposed to be continuous. Note that in
Chen et al. (2013) single-firm risk measures are convex functions from R|Ω| to R and
aggregation functions map from Rn×|Ω| into R where Ω is a finite probability space.
Since all finite, convex functions on Rm, m ∈ N, are continuous, Chen et al. (2013)
do not need to claim any additional properties in their dual representation result.
In the subsequent theorem we consider the dual representation result for convex

systemic risk measures. Thereafter, the positively homogeneous case can be deduced
as a special case. In what follows, we need the indicator function ιE : X → R∪{+∞}
defined by

ιE(x) :=
{

0 for x ∈ E
∞ else

where E ⊂ X is a subset of a linear vector space X .

Theorem 5.4.5. Suppose that ρ = ρ0 ◦ Λ is a convex systemic risk measure char-
acterized by a l.s.c. convex single-firm risk measure ρ0 and a convex aggregation
function Λ that is continuous on (Lp)n. Then ρ admits the representation

ρ(X̄) = sup
(ξ,ξ̄)∈(Lp)∗×((Lp)n)∗

{
n∑
i=1

E[X̄iξ̄i]− αn(ξ, ξ̄)
}

for all X̄ ∈ (Lp)n (5.14)
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where αn : (Lp)∗ × ((Lp)n)∗ → R ∪ {+∞} is given by

αn(ξ, ξ̄) := sup
(r,Y )∈Aρ0 ,(V,Z̄)∈AΛ

{
−r + E[(Y − V )ξ] +

n∑
i=1

E[Z̄iξ̄i]
}
. (5.15)

In addition, a feasible solution (ξ, ξ̄) ∈ (Lp)∗ × ((Lp)n)∗ to optimization problem
(5.14) satisfies

ξ ≥ 0, E[ξ] ≤ 1 and ξ̄ ≥ 0.

If additionally ρ(Rn) = R, then we obtain E[ξ] = 1.

Remark. Note that in case of p = ∞, E[ξ] ≤ 1 means
´

1dξ = ξ[Ω] ≤ 1. If ad-
ditionally ρ(Rn) = R, then we obtain ξ[Ω] = 1, which means that ξ : F → [0, 1]
is a finitely additive set function which is absolutely continuous with respect to P
and normalized to 1. In other words, ξ ∈ M1,f (P). In case of ρ(Rn) = R and
1 ≤ p < ∞, the first component of a feasible solution (ξ, ξ̄) to (5.14) represents a
density function.

Proof. Fix X̄ ∈ (Lp)n. Part 1: First of all, we will verify representation (5.14).
Since every convex systemic risk measure admits the primal representation from
Proposition 5.4.3, we have

ρ(X̄) = inf{r ∈ R
∣∣(r, Y ) ∈ Aρ0 , (Y, X̄) ∈ AΛ}

= inf
(r,Y )∈R×Lp

{r + ιAρ0 (r, Y ) + ιAΛ(Y, X̄)}.

By definition, the convex conjugate ι∗Aρ0 : R× (Lp)∗ → R of ιAρ0 satisfies

ι∗Aρ0
(−x, ξ) = sup

(r,Y )∈R×Lp
{−rx+ E[Y ξ]− ιAρ0 (r, Y )} = sup

(r,Y )∈Aρ0
{−rx+ E[Y ξ]}

for (x, ξ) ∈ R × (Lp)∗. Note that ιAρ0 is convex because Aρ0 is convex. Moreover,
since ρ0 is assumed to be l.s.c., we know that ιAρ0 is closed. It follows from the
duality theorem for conjugate functions (see Theorem A.2.9) that

ιAρ0 (r, Y ) = sup
(x,ξ)∈R×(Lp)∗

{
rx+ E[Y ξ]− ι∗Aρ0 (x, ξ)

}
= sup

(x,ξ)∈R×(Lp)∗

{
−rx+ E[Y ξ]− ι∗Aρ0 (−x, ξ)

}
for all (r, Y ) ∈ R× Lp. Similarly, the convex conjugate ι∗AΛ

: (Lp)∗ × ((Lp)n)∗ → R
of ιAΛ satisfies

ι∗AΛ
(−ψ, ξ̄) = sup

(V,Z̄)∈Lp×(Lp)n

{
−E[V ψ] +

n∑
i=1

E[Z̄iξ̄i]− ιAΛ(V, Z̄)
}

= sup
(V,Z̄)∈AΛ

{
−E[V ψ] +

n∑
i=1

E[Z̄iξ̄i]
}
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for (−ψ, ξ̄) ∈ (Lp)∗ × ((Lp)n)∗. Furthermore, the continuity property of Λ implies
closedness of AΛ, which means that the convex function ιAΛ is closed. Therefore,

ιAΛ(Y, X̄) = sup
(ψ,ξ̄)∈(Lp)∗×((Lp)n)∗

{
−E[Y ψ] +

n∑
i=1

E[X̄iξ̄i]− ι∗AΛ
(−ψ, ξ̄)

}

for (Y, X̄) ∈ Lp × (Lp)n. Together, we obtain that the systemic risk measure ρ
satisfies

ρ(X̄) = inf
(r,Y )∈R×Lp

{
r + ιAρ0 (r, Y ) + ιAΛ(Y, X̄)

}
= inf

(r,Y )∈R×Lp
sup

(x,ξ)∈R×(Lp)∗,
(ψ,ξ̄)∈(Lp)∗×((Lp)n)∗

{
r − rx+ E[Y ξ]− E[Y ψ] +

n∑
i=1

E[X̄iξ̄i]

− ι∗Aρ0 (−x, ξ)− ι∗AΛ
(−ψ, ξ̄)

}

= sup
(x,ξ)∈R×(Lp)∗,

(ψ,ξ̄)∈(Lp)∗×((Lp)n)∗

inf
(r,Y )∈R×Lp

{
r − rx+ E[Y ξ]− E[Y ψ] +

n∑
i=1

E[X̄iξ̄i]

− ι∗Aρ0 (−x, ξ)− ι∗AΛ
(−ψ, ξ̄)

}
(5.16)

= sup
(1,ξ)∈R×(Lp)∗,

(ξ,ξ̄)∈(Lp)∗×((Lp)n)∗

{
n∑
i=1

E[X̄iξ̄i]− ι∗Aρ0 (−1, ξ)− ι∗AΛ
(−ξ, ξ̄)

}
.

We are allowed to interchange infimum and supremum in (5.16) due to Lemma 5.4.6.
Representation (5.14) follows directly from

ι∗Aρ0
(−1, ξ) + ι∗AΛ

(−ξ, ξ̄) = sup
(r,Y )∈Aρ0 ,(V,Z̄)∈AΛ

{
−r + E[(Y − V )ξ] +

n∑
i=1

E[Z̄iξ̄i]
}

= αn(ξ, ξ̄).

Part 2: In this part of the proof we will verify the claimed properties of feasible
solutions to optimization problem (5.14). In case of p <∞, assume that there exists
A ∈ F with P[A] > 0 and ξ < 0 on A. We will show that this implies αn(ξ, ξ̄) =∞:
Consider an arbitrary element (r, Y ) ∈ Aρ0 and define Z(Y,m) ∈ Lp for m ∈ N by
Z(Y,m) := (−|Y | −m)IA + Y IAc . Since Y ≥ Z(Y,m), the monotonicity property of
Aρ0 yields (r, Z(Y,m)) ∈ Aρ0 for every m ∈ N. Moreover, we have

E[Z(Y,m)ξ] = E[(−|Y | −m)ξIA] + E[Y ξIAc ] = E[(−|Y | −m)ξ|A]P[A] + E[Y ξIAc ].

Because E[(−|Y | −m)ξ|A]P[A] > 0 and E[Y ξIAc ] ∈ R, letting m tend to ∞ leads to
limm→∞ E[Z(Y,m)ξ] = ∞, and therefore αn(ξ, ξ̄) = ∞. In conclusion, it suffices to
consider ξ ≥ 0 in optimization problem (5.14).
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Similarly, considering an element ξ̄ ∈ (Lp)n that satisfies ξ̄j < 0 on a set A ∈ F
with P[A] > 0 for j ∈ {1, . . . , n} leads to αn(ξ, ξ̄) =∞. This means that ξ̄ ≥ 0.
If p = ∞, assume that there exists A ∈ F with P[A] > 0 and ξ[A] < 0. Consider

again an arbitrary element (r, Y ) ∈ Aρ0 and define Z(Y,m) ∈ L∞ by Z(Y,m) :=
(−‖Y ‖∞ −m)IA − ‖Y ‖∞IAc(≤ Y ). The monotonicity property of Aρ0 implies that
(r, Z(Y,m)) ∈ Aρ0 for every m ∈ N. Furthermore, we have

´
Z(Y,m)dξ = (−‖Y ‖∞ −

m)ξ[A]−‖Y ‖∞ξ[Ac], and boundedness of ξ yields |ξ[Ac]| ≤M(ξ) for some M(ξ) ∈ R.
Therefore, we obtain limm→∞

´
Z(Y,m)dξ = ∞, which implies αn(ξ, ξ̄) = ∞. In

conclusion, we only have to consider ξ ≥ 0. ξ̄ ≥ 0 follows analogously.
From now on, let 1 ≤ p ≤ ∞. Assume that ξ ∈ (Lp)∗ is such that −1 + E[ξ] > 0.

From the constancy property of ρ0 we know that (λ, λ) ∈ Aρ0 for all λ > 0. Moreover,
we have limλ→∞(−λ + E[λξ]) = limλ→∞(λ(−1 + E[ξ])) = ∞, which implies that
αn(ξ, ξ̄) =∞. Therefore, it suffices to consider ξ ∈ (Lp)∗ with E[ξ] ≤ 1.
Finally, suppose that ρ(Rn) = R and let ξ ∈ (Lp)∗ be such that 1−E[ξ] > 0. The

constancy property of ρ0 implies that (−λ,−λ) ∈ Aρ0 for every λ > 0. Furthermore,
we have limλ→∞(λ− E[λξ]) = limλ→∞(λ(1− E[ξ])) = ∞. Together, it follows that
αn(ξ, ξ̄) =∞, and hence E[ξ] ≥ 1.

Lemma 5.4.6. Suppose that the requirements from Theorem 5.4.5 are satisfied.
Define X := R × Lp and U := R × Lp × Lp × (Lp)n and consider the paired spaces
(X ,X ∗) and (U ,U∗). If 1 < p < ∞, the spaces X ,X ∗,U and U∗ are endowed with
the corresponding norm topology. If p ∈ {1,∞}, then we endow X and U with the
corresponding norm topology and X ∗ and U∗ are endowed with the weak* topologies
σ(X ∗,X ) and σ(U∗,U), respectively. Let X̄ ∈ (Lp)n and K : X ×U∗ → R be defined
by

K((r, Y ) (x, ξ, ψ, ξ̄)) := r−rx+E[Y ξ]−E[Y ψ]+
n∑
i=1

E[X̄iξ̄i]−ι∗Aρ0 (−x, ξ)−ι∗AΛ
(−ψ, ξ̄).

Then we have

inf
(r,Y )∈X

sup
(x,ξ,ψ,ξ̄)∈U∗

K((r, Y ) , (x, ξ, ψ, ξ̄)) = sup
(x,ξ,ψ,ξ̄)∈U∗

inf
(r,Y )∈X

K((r, Y ) , (x, ξ, ψ, ξ̄)).

Proof. Fix X̄ ∈ (Lp)n. First, note that for every (r, Y ) ∈ X , K ((r, Y ) , ·) is up-
per semicontinuous (u.s.c.): This follows from continuity of the linear functional
(x, ξ, ψ, ξ̄) 7→ r − rx + E[Y ξ] − E[Y ψ] +

∑n
i=1 E[X̄iξ̄i] and closedness (lower semi-

continuity) of ι∗Aρ0 and ι∗AΛ
; see, for instance, Theorem 5 in Rockafellar (1974) (see

Theorem A.2.9). Moreover, K is concave in the second argument since (x, ξ, ψ, ξ̄) 7→
r − rx + E[Y ξ] − E[Y ψ] +

∑n
i=1 E[X̄iξ̄i] is linear and ι∗Aρ0 and ι∗AΛ

are convex; see
again Theorem 5 in Rockafellar (1974). By Theorem 6 in Rockafellar (1974) (see
Theorem A.2.12), K is the Lagrangian of the minimization problem “minimize f
over X ” where f is given by f(r, Y ) = F ((r, Y ), 0n+3) for F : X ×U → R defined by

F ((r, Y ), (s, V,X, Z̄))

:= sup
(x,ξ,ψ,ξ̄)∈U∗

{
K((r, Y ) , (x, ξ, ψ, ξ̄))− sx− E[V ξ]− E[Xψ]−

n∑
i=1

E[Z̄iξ̄i]
}
.
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Moreover, Theorem 6 in Rockafellar (1974) states that F ((r, Y ), ·) is closed and
convex. In addition, F satisfies for (r, Y ) ∈ X and (s, V,X, Z̄) ∈ U

F ((r, Y ), (s, V,X, Z̄))

= sup
(x,ξ,ψ,ξ̄)∈U∗

{
r − rx+ E[Y ξ]− E[Y ψ] +

n∑
i=1

E[X̄iξ̄i]− ι∗Aρ0 (−x, ξ)− ι∗AΛ
(−ψ, ξ̄)

− sx− E[V ξ]− E[Xψ]−
n∑
i=1

E[Z̄iξ̄i]
}

= r + sup
(x,ξ,ψ,ξ̄)∈U∗

{
−(r + s)x+ E[(Y − V )ξ]− E[(Y +X)ψ]

+
n∑
i=1

E[(X̄i − Z̄i)ξ̄i]− ι∗Aρ0 (−x, ξ)− ι∗AΛ
(−ψ, ξ̄)

}
= r + sup

(x,ξ)∈R×(Lp)∗
{−(r + s)x+ E[(Y − V )ξ]− ι∗Aρ0 (−x, ξ)}

+ sup
(ψ,ξ̄)∈(Lp)∗×((Lp)n)∗

{
−E[(Y +X)ψ] +

n∑
i=1

E[(X̄i − Z̄i)ξ̄i]− ι∗AΛ
(−ψ, ξ̄)

}
= r + ιAρ0 (r + s, Y − V ) + ιAΛ(Y +X, X̄ − Z̄).

Hence, F is convex in both arguments. Define the convex function ϕ by

ϕ(s, V,X, Z̄) := inf
(r,Y )∈X

F ((r, Y ), (s, V,X, Z̄))

= inf
(r,Y )∈X

{r + ιAρ0 (r + s, Y − V ) + ιAΛ(Y +X, X̄ − Z̄)}

for (s, V,X, Z̄) ∈ U . Since Aρ0 = {(r,X) ∈ R× Lp
∣∣r ≥ ρ0 (X)} and AΛ =

{
(Y, Z̄) ∈

Lp × (Lp)n
∣∣Y ≥ Λ(Z̄)

}
, we obtain for ϕ that

ϕ(s, V,X, Z̄) = inf
(r,Y )∈X

{r + ιAρ0 (r + s, Y − V ) + ιAΛ(Y +X, X̄ − Z̄)}

= inf
r∈R
{r + ιAρ0 (r + s,Λ(X̄ − Z̄)−X − V )}

= ρ0(Λ(X̄ − Z̄)−X − V )− s.

Note that ρ0(0) = 0 because ρ0 satisfies the constancy property. This implies that
ϕ(0, 0,Λ(X̄ − Z̄), Z̄) = 0, and therefore ϕ is proper. It follows that ϕ is closed
if ϕ is l.s.c. Hence, if we can show that ϕ is l.s.c., then it follows from Theorem
7 in Rockafellar (1974) (see Theorem A.2.13) that we are allowed to interchange
supremum and infimum. We will show that the function % : (V,X, Z̄) 7→ ρ0(Λ(X̄ −
Z̄) − X − V ) is l.s.c., which implies the desired lower semicontinuity property of
ϕ immediately. Consider a sequence (V(m), X(m), Z̄(m)) ⊂ Lp × Lp × (Lp)n with
(V(m), X(m), Z̄(m))→ (V,X, Z̄) in Lp × Lp × (Lp)n. Because X̄ − Z̄(m) → X̄ − Z̄ in
(Lp)n, the continuity property of Λ implies Λ(X̄ − Z̄(m)) → Λ(X̄ − Z̄) in Lp. As a
consequence, we have

Λ(X̄ − Z̄(m))−X(m) − V(m) → Λ(X̄ − Z̄)−X − V in Lp.
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Finally, lower semicontinuity of ρ0 yields

%(V,X, Z̄) = ρ0(Λ(X̄ − Z̄)−X − V )
≤ lim inf

m→∞
ρ0(Λ(X̄ − Z̄(m))−X(m) − V(m)) = lim inf

m→∞
%(V(m), X(m), Z̄(m)),

which means that % is l.s.c.

Remark 5.4.7. Theorem 5.4.5 holds for convex aggregation functions Λ satisfying
Lp-continuity. Alternatively, we could claim 1-Lipschitz continuity for Λ : Rn → R
because this property implies the required Lp-continuity.
This implication can be verified as follows: Suppose that the convex aggregation

function Λ : Rn → R is 1-Lipschitz continuous, i.e., |Λ(x̄) − Λ(ȳ)| ≤
∥∥x̄ − ȳ

∥∥ =∑n
i=1 |x̄i − ȳi| for all x̄, ȳ ∈ Rn, and consider a sequence (X̄(m)) ⊂ (Lp)n with

X̄(m) → X̄ in Lp. First, let us suppose that p < ∞. Since Λ is measurable, 1-
Lipschitz continuity and Hölder’s inequality yield

|Λ(X̄(m))− Λ(X̄)| ≤
n∑
i=1
|(X̄(m))i − X̄i| ≤ n(p−1)/p

(
n∑
i=1
|(X̄(m))i − X̄i|p

)1/p

.

As a consequence, we obtain∥∥Λ(X̄(m))− Λ(X̄)
∥∥p
p

= E[|Λ(X̄(m))− Λ(X̄)|p]

≤ np−1E
[
n∑
i=1
|(X̄(m))i − X̄i|p

]
= np−1

n∑
i=1

∥∥(X̄(m))i − X̄i

∥∥p
p
.

Now, let p =∞. Then |Λ(X̄(m))−Λ(X̄)| ≤
∑n
i=1 |(X̄(m))i−X̄i| and ‖Y ‖∞ = inf{r ∈

R||Y | ≤ r} for Y ∈ L∞ imply

∥∥Λ(X̄(m))− Λ(X̄)
∥∥
∞ ≤

n∑
i=1

∥∥(X̄(m))i − X̄i

∥∥
∞.

Thus,
∥∥X̄(m) − X̄

∥∥
p
→ 0 leads to

∥∥Λ(X̄(m))− Λ(X̄)
∥∥
p
→ 0 for all p ∈ [1,∞], which

means that Λ is Lp-continuous.

The following remark connects the previous theorem with the positively homoge-
neous special case.

Remark 5.4.8. Suppose that the function fΛ : R → R (see property (A3)) is
positively homogeneous. Note that this does not automatically imply positive homo-
geneity of the corresponding convex aggregation function Λ. Then every feasible
solution (ξ, ξ̄) ∈ (Lp)∗×((Lp)n)∗ to optimization problem (5.14) additionally satisfies

n∑
i=1

E[ξ̄i] ≤ fΛ(1)E[ξ]. (5.17)

The proof of this inequality is similar to the proof of E[ξ] ≤ 1: Suppose that (ξ, ξ̄) ∈
(Lp)∗ × ((Lp)n)∗ is such that −fΛ(1)E[ξ] +

∑n
i=1 E[ξ̄i] > 0. Since Λ(λ1n) = fΛ(λ) =
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λfΛ(1), we have (λfΛ(1), λ1n) ∈ AΛ for every λ > 0. Hence, limλ→∞(−E[λfΛ(1)ξ]+∑n
i=1 E[λξ̄i]) = limλ→∞(λ(−fΛ(1)E[ξ]+

∑n
i=1 E[ξ̄i])) =∞ implies that αn(ξ, ξ̄) =∞.

As a consequence, we only have to consider (ξ, ξ̄) ∈ (Lp)∗ × ((Lp)n)∗ with (5.17).
If we additionally assume that Λ is positively homogeneous, then it follows from

the normalization property that fΛ(1) = Λ(1n) = n. Therefore, in case of a positively
homogeneous aggregation function Λ, we obtain

n∑
i=1

E[ξ̄i] ≤ nE[ξ]

for every feasible solution to optimization problem (5.14).

In the following dual representation result for positively homogeneous systemic
risk measures the following sets play a key role:

A∗ρ0 := {(x, ψ) ∈ R× (Lp)∗|rx− E[Y ψ] ≥ 0 for all (r, Y ) ∈ Aρ0},

A∗Λ :=
{

(ξ, ξ̄) ∈ (Lp)∗ × ((Lp)n)∗
∣∣∣∣∣E[V ξ]−

n∑
i=1

E[Z̄iξ̄i] ≥ 0 for all (V, Z̄) ∈ AΛ

}
.

Theorem 5.4.9. Suppose that ρ = ρ0 ◦Λ is a positively homogeneous systemic risk
measure characterized by a l.s.c. positively homogeneous single-firm risk measure ρ0
and a positively homogeneous aggregation function Λ that is continuous on (Lp)n.
Then ρ admits the representation

ρ(X̄) = sup
(1,ξ)∈A∗ρ0 ,(ξ,ξ̄)∈A

∗
Λ

n∑
i=1

E[X̄iξ̄i] for all X̄ ∈ (Lp)n. (5.18)

In addition, a feasible solution (ξ, ξ̄) to this optimization problem satisfies

ξ ≥ 0, E[ξ] ≤ 1, ξ̄ ≥ 0 and
n∑
i=1

E[ξ̄i] ≤ nE[ξ].

If additionally ρ(Rn) = R, then we obtain E[ξ] = 1.

Proof. Since every positively homogeneous systemic risk measure ρ which is a com-
position of a positively homogeneous single-firm risk measure ρ0 and a positively
homogeneous aggregation function Λ is also a convex systemic risk measure which is
a composition of the convex single-firm risk measure ρ0 and the convex aggregation
function Λ, we can apply the convex dual representation result (see Theorem 5.4.5).
As a consequence, ρ admits the representation

ρ(X̄) = sup
(ξ,ξ̄)∈(Lp)∗×((Lp)n)∗

{
n∑
i=1

E[X̄iξ̄i]− αn(ξ, ξ̄)
}

for all X̄ ∈ (Lp)n

where αn : (Lp)∗ × ((Lp)n)∗ → R ∪ {+∞} is given by

αn(ξ, ξ̄) = sup
(r,Y )∈Aρ0 ,(V,Z̄)∈AΛ

{
−r + E[(Y − V )ξ] +

n∑
i=1

E[Z̄iξ̄i]
}
.
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According to Proposition 5.4.3, positive homogeneity of ρ0 and Λ implies that Aρ0

and AΛ are cones. Then we can easily verify that

αn(ξ, ξ̄) =
{

0 if (1, ξ) ∈ A∗ρ0 and (ξ, ξ̄) ∈ A∗Λ
∞ otherwise

. (5.19)

In case of (1, ξ) ∈ A∗ρ0 and (ξ, ξ̄) ∈ A∗Λ, we have −r+E[(Y −V )ξ]+
∑n
i=1 E[Z̄iξ̄i] ≤ 0

for all (r, Y ) ∈ Aρ0 and (V, Z̄) ∈ AΛ. Since ρ0(0) = 0 and Λ(0n) = 0, we obtain
αn(ξ, ξ̄) = 0. On the other hand, suppose that (1, ξ) /∈ A∗ρ0 . Then there exists
(r, Y ) ∈ Aρ0 such that −r + E[Y ξ] > 0. Moreover, we have λ (r, Y ) ∈ Aρ0 for λ ≥ 0
because Aρ0 is a cone. But this implies that αn(ξ, ξ̄) =∞. The same argumentation
applies if we suppose that (ξ, ξ̄) /∈ A∗Λ.
Since (5.19) leads to representation (5.18), it remains to prove the assertions for

feasible solutions to optimization problem (5.18). But these follow from Theorem
5.4.5 and Remark 5.4.8, which completes the proof.

Remark 5.4.10. According to Corollary 2.3 in Kaina and Rüschendorf (2009),
convex single-firm risk measures ρ0 on L∞ that satisfy monotonicity (R1), convexity
(R2), the translation property (R3) and ρ0(0) = 0 are finite and continuous on L∞.
Consequently, if we consider convex systemic risk measures ρ = Λ ◦ ρ0 on (L∞)n
in conjunction with single-firm risk measures ρ0 satisfying the translation property,
then we do not require any additional continuity property of ρ0 in Theorem 5.4.5
and Theorem 5.4.9.

We are interested in the relationship between the dual representation of ρ, in par-
ticular the ξ̄-component of a feasible solution (ξ, ξ̄) to (5.18), and the subdifferential
of ρ specified in the following definition.

Definition 5.4.11. Let m ∈ N and suppose that υ : (Lp)m → R is proper and
convex. The subdifferential of υ at X̄ ∈ dom υ is defined as the set

∂υ(X̄) :=
{
ξ̄ ∈ ((Lp)m)∗

∣∣∣∣∣
m∑
i=1

E[(Ȳi − X̄i)ξ̄i] ≤ υ(Ȳ )− υ(X̄) for all Ȳ ∈ (Lp)m
}

=
{
ξ̄ ∈ ((Lp)m)∗

∣∣∣∣∣
n∑
i=1

E[Z̄iξ̄i] + υ(X̄) ≤ υ(X̄ + Z̄) for all Z̄ ∈ (Lp)m
}
.

If ξ̄ ∈ ∂υ(X̄), then ξ̄ is called subgradient of υ at X̄ ∈ dom υ. The function υ is
called subdifferentiable at X̄ ∈ dom υ if ∂υ(X̄) 6= ∅.

Corollary 5.4.12. Let ρ be a positively homogeneous systemic risk measure charac-
terized by a l.s.c. positively homogeneous single-firm risk measure ρ0 and a positively
homogeneous aggregation function Λ that is continuous on (Lp)n. Fix an arbitrary
economy X̄ ∈ dom ρ. Then for every optimal solution (ξo, ξ̄o) to (5.18), ξ̄o is a
subgradient of ρ at X̄, i.e., ξ̄o ∈ ∂ρ(X̄).
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Proof. Fix X̄ ∈ dom ρ and let (ξo, ξ̄o) be an optimal solution to (5.18). The assertion
holds since we have for every Ȳ ∈ (Lp)n

n∑
i=1

E[(Ȳi − X̄i)ξ̄oi ] =
n∑
i=1

E[Ȳiξ̄oi ]−
n∑
i=1

E[X̄iξ̄
o
i ] =

n∑
i=1

E[Ȳiξ̄oi ]− ρ(X̄) ≤ ρ(Ȳ )− ρ(X̄).

5.5. Risk attribution

In this section we return to the problem of risk attribution, i.e., we are interested in
the question of what fraction each firm contributes to the systemic risk of the whole
financial system. We will see that the dual representation results from the previous
section provide a possible solution to this problem.
Before we discuss this specific risk attribution method in detail, let us formally

define the term systemic risk attribution in our setting. Similar definitions can
be found in the traditional portfolio framework; see, for instance, Denault (2001),
Tasche (2004), Kalkbrener (2005), Cheridito and Kromer (2011) and Kromer and
Overbeck (2014).

Definition 5.5.1. Let us consider a network of n firms and fix a convex systemic
risk measure ρ. A systemic risk attribution of X̄ ∈ dom ρ is a vector k(X̄) =
(k1(X̄), . . . , kn(X̄)) ∈ Rn where ki(X̄) represents the systemic risk attributed to firm
i ∈ {1, . . . , n}. The systemic risk attribution k(X̄) satisfies the full allocation prop-
erty (with respect to ρ) if

ρ(X̄) =
n∑
i=1

ki(X̄).

The full allocation property states that the risk which is attributed to the different
firms adds up to the systemic risk contained in the entire financial system. Because
we try to answer the question of what fraction is caused by which firm in the financial
system, this full allocation property is clearly a desirable property of systemic risk
attributions.
In the following, we propose a possible risk attribution method for both the posi-

tively homogeneous and the convex case.

Positively homogeneous case: Let ρ = ρ0◦Λ be a positively homogeneous systemic
risk measure with corresponding positively homogeneous single-firm risk measure ρ0
and positively homogeneous aggregation function Λ and fix an economy X̄ ∈ dom ρ.
Moreover, let us consider the case in which there exists an optimal solution (ξo, ξ̄o)
to dual problem (5.18), i.e.,

ρ(X̄) = sup
(1,ξ)∈A∗ρ0 ,(ξ,ξ̄)∈A

∗
Λ

n∑
i=1

E[X̄iξ̄i] =
n∑
i=1

E[X̄iξ̄
o
i ].
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Then, based on the idea in Chen et al. (2013), we can define a systemic risk attribu-
tion by

k(X̄) := k(X̄, ξ̄o) := (k1(X̄, ξ̄o), . . . , kn(X̄, ξ̄o))

where the risk attributed to firm i ∈ {1, . . . , n} is given by

ki(X̄, ξ̄o) := E[X̄iξ̄
o
i ]. (5.20)

Obviously, the systemic risk attribution defined above is unique if the corresponding
optimal solution to (5.18) is unique, and the definition of k(X̄, ξ̄o) leads to

ρ(X̄) =
n∑
i=1

ki(X̄, ξ̄o).

Thus, the full allocation property with respect to ρ is satisfied.

Convex case: Let ρ = ρ0◦Λ be a convex systemic risk measure with corresponding
convex single-firm risk measure ρ0 and convex aggregation function Λ and fix again
an economy X̄ ∈ dom ρ. Now, consider the case in which there exists an optimal
solution (ξo, ξ̄o) to dual problem (5.14), i.e.,

ρ(X̄) = sup
(ξ,ξ̄)∈(Lp)∗×((Lp)n)∗

{
n∑
i=1

E[X̄iξ̄i]− αn(ξ, ξ̄)
}

=
n∑
i=1

E[X̄iξ̄
o
i ]− αn(ξo, ξ̄o).

A similar risk attribution method to (5.20) that satisfies the full allocation property
can be defined by

k(X̄) := k(X̄, ξo, ξ̄o) := (k1(X̄, ξo, ξ̄o), . . . , kn(X̄, ξo, ξ̄o))

where the risk attributed to firm i ∈ {1, . . . , n} is given by

ki(X̄, ξo, ξ̄o) := E[X̄iξ̄
o
i ]− γiαn(ξo, ξ̄o). (5.21)

Here, γi ∈ R are chosen such that
∑n
i=1 γi = 1.

In the following, we generalize Theorem 4 in Chen et al. (2013) for positively
homogenous systemic risk measures on general probability spaces. This result is
closely related to the so called no-undercut property of a risk attribution method
which was, for instance, studied in Delbaen (2000) and Denault (2001).

Theorem 5.5.2. Let ρ = ρ0 ◦Λ be a positively homogeneous systemic risk measure
that admits representation (5.18) and fix X̄ ∈ dom ρ. For ā ∈ Rn+, let us define
ā ? X̄ := (ā1X̄1, . . . , ānX̄n) ∈ (Lp)n. If (ξo, ξ̄o) is an optimal solution to (5.18), then

n∑
i=1

āiki(X̄, ξ̄o) ≤ ρ(ā ? X̄).
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Proof. Fix X̄ ∈ dom ρ. If ρ(ā ? X̄) = +∞, the assertion is trivial. Hence, suppose
that ā ? X̄ ∈ dom ρ. The dual representation result for positively homogeneous
systemic risk measures yields

ρ(ā ? X̄) = sup
(1,ξ)∈A∗ρ0 ,(ξ,ξ̄)∈A

∗
Λ

n∑
i=1

āiE[X̄iξ̄i]. (5.22)

Let (ξo, ξ̄o) be an optimal solution to (5.18), i.e.,

ρ(X̄) = sup
(1,ξ)∈A∗ρ0 ,(ξ,ξ̄)∈A

∗
Λ

n∑
i=1

E[X̄iξ̄i] =
n∑
i=1

E[X̄iξ̄
o
i ],

and let k(X̄) = k(X̄, ξ̄o) be the corresponding systemic risk attribution. Then
(1, ξo) ∈ A∗ρ0 and (ξo, ξ̄o) ∈ A∗Λ, which implies that (ξo, ξ̄o) is a feasible solution to
optimization problem (5.22) for all ā ∈ Rn+. Thus, we obtain

ρ(ā ? X̄) ≥
n∑
i=1

āiE[X̄iξ̄
o
i ] =

n∑
i=1

āiki(X̄, ξ̄o).

The previous result can be interpreted as follows: Fix an arbitrary economy
X̄ ∈ dom ρ and define a new economy ā ? X̄ by scaling the original economy X̄
componentwise by the vector ā ∈ Rn+. Then the systemic risk of this new economy
ā ? X̄, i.e., ρ(ā ? X̄), is always bounded from below by the weighted sum of the
attributed risk components of the original economy X̄.
Finally, we deal with the question of differentiability of positively homogeneous

systemic risk measures and study the relation to systemic risk attribution. Again,
the dual representation proved in Theorem 5.4.9 plays a key role to answer this
question. A definition of the necessary notions of differentiability can be found in
Appendix A.2.3.
Let us now consider the set

Z# := {(ξ, ξ̄) ∈ (Lp)∗ × ((Lp)n)∗|(1, ξ) ∈ A∗ρ0 , (ξ, ξ̄) ∈ A
∗
Λ}

of all feasible solutions to optimization problem (5.18) and the set

Z#(X̄) :=
{

(ξ, ξ̄) ∈ Z#
∣∣∣∣∣ρ(X̄) =

n∑
i=1

E[X̄iξ̄i]
}

of all optimal solutions to (5.18) for a fixed economy X̄ ∈ (Lp)n.

Theorem 5.5.3. Let ρ = ρ0 ◦ Λ be a finite valued positively homogeneous systemic
risk measure that admits representation (5.18). Then ρ has a directional derivative
at X̄ ∈ (Lp)n in the direction Ȳ ∈ (Lp)n that is given by

d+ρ(X̄)(Ȳ ) = max
(ξ,ξ̄)∈Z#(X̄)

n∑
i=1

E[Ȳiξ̄i].
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Proof. Consider an arbitrary element (U, Z̄) ∈ Lp × (Lp)n. Since ρ is finite valued,
this is also true for the positively homogeneous single-firm risk measure ρ0. As a
consequence, there exists rU ∈ R such that ρ0(U) ≤ rU , and thus (rU , U) ∈ Aρ0 .
From (ξ, ξ̄) ∈ Z# it follows that (1, ξ) ∈ A∗ρ0 and (ξ, ξ̄) ∈ A∗Λ. Furthermore, (1, ξ) ∈
A∗ρ0 implies that E[Uξ] ≤ rU . Moreover, since Λ(Z̄) ∈ Lp, there exists YZ̄ ∈ Lp such
that Λ(Z̄) ≤ YZ̄ , and (ξ, ξ̄) ∈ A∗Λ yields

∑n
i=1 E[Z̄iξ̄i] ≤ E[YZ̄ξ]. Since ρ0 is finite,

we can find an element rZ̄ ∈ R such that ρ0(YZ̄) ≤ rZ̄ . As above, (1, ξ) ∈ A∗ρ0 again
implies E[YZ̄ξ] ≤ rZ̄ . Thus, there exists M(U,Z̄) > 0 with

E[Uξ] +
n∑
i=1

E[Z̄iξ̄i] ≤M(U,Z̄) for all (ξ, ξ̄) ∈ Z#.

It follows that for each (U, Z̄) ∈ Lp × (Lp)n, there exists M > 0 such that∣∣∣∣∣E[Uξ] +
n∑
i=1

E[Z̄iξ̄i]
∣∣∣∣∣ ≤M for all (ξ, ξ̄) ∈ Z#.

This means that Z# is pointwise bounded. Moreover, this property is equivalent to
norm boundedness of Z# due to the uniform boundedness principle (see Theorem
A.2.3). Since Z# is convex, weak*-closed and norm bounded, Alaoglu’s theorem
(see Theorem A.2.4) implies weak*-compactness of Z#. Now, consider the function
J : (Lp)n ×Z# → R defined by

J(Z̄, (ξ, ξ̄)) :=
n∑
i=1

E[Z̄iξ̄i] =
〈
Z̄, ξ̄

〉
n
.

If we fix X̄, Ȳ ∈ (Lp)n and endow (Lp)∗×((Lp)n)∗ with the weak* topology σ((Lp)∗×
((Lp)n)∗, Lp×(Lp)n), then the function J satisfies assumption D1 from Bernhard and
Rapaport (1995) (see Condition A.2.18): The first two properties are trivial since
Z# is weak*-compact and for all (ξ, ξ̄) ∈ Z#, the map (t, (ξ, ξ̄)) 7→ J(X̄ + tȲ, (ξ, ξ̄))
is continuous at (0, (ξ, ξ̄)). The third condition is satisfied with

d+
1 J(X̄ + tȲ, (ξ, ξ̄))(Ȳ ) = lim

u↓0

J(X̄ + (t+ u)Ȳ, (ξ, ξ̄))− J(X̄ + tȲ, (ξ, ξ̄))
u

= lim
u↓0

∑n
i=1 E[(X̄i + (t+ u)Ȳi)ξ̄i]−

∑n
i=1 E[(X̄i + tȲi)ξ̄i]

u

= lim
u↓0

∑n
i=1 E[uȲiξ̄i]

u

= J(Ȳ, (ξ, ξ̄)) (5.23)

for t ≥ 0 and (ξ, ξ̄) ∈ Z#. (5.23) implies that (t, (ξ, ξ̄)) 7→ d+
1 J(X̄ + tȲ, (ξ, ξ̄))(Ȳ )

is continuous at (0, (ξ, ξ̄)) for each (ξ, ξ̄) ∈ Z#, which yields the forth condition.
Finally, we obtain with Theorem D1 in Bernhard and Rapaport (1995) (see Theorem
A.2.19) that ρ given by ρ(Z̄) = sup(ξ,ξ̄)∈Z# J(Z̄, (ξ, ξ̄)) for Z̄ ∈ (Lp)n satisfies

d+ρ(X̄)(Ȳ ) = max
(ξ,ξ̄)∈Z#(X̄)

d+
1 J(X̄, (ξ, ξ̄))(Ȳ ).
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The assertion follows from

d+
1 J(X̄, (ξ, ξ̄))(Ȳ ) = lim

u↓0

J(X̄ + uȲ, (ξ, ξ̄))− J(X̄, (ξ, ξ̄))
u

=
n∑
i=1

E[Ȳiξ̄i].

Finally, we obtain the following corollary.

Corollary 5.5.4. Let ρ = ρ0 ◦Λ be a finite valued positively homogeneous systemic
risk measure that admits representation (5.18). If (5.18) has a unique solution
(ξo, ξ̄o) ∈ Z# at X̄ ∈ (Lp)n, then ρ is Gâteaux differentiable at X̄. Moreover, the
Gâteaux derivative of ρ at X̄ is given by

DGρ(X̄)(Ȳ ) =
n∑
i=1

E[Ȳiξ̄oi ] for all Ȳ ∈ (Lp)n.

Proof. If (5.18) has a unique solution (ξo, ξ̄o) ∈ Z# at X̄ ∈ (Lp)n, then we know
from Theorem 5.5.3 that

d+ρ(X̄)(Ȳ ) =
n∑
i=1

E[Ȳiξ̄oi ] for all Ȳ ∈ (Lp)n.

Hence, the mapping d+ρ(X̄) : (Lp)n → R is linear and continuous. As a consequence,
the assertion holds with DGρ(X̄) = d+ρ(X̄).

Remark 5.5.5. If we consider convex systemic risk measures on (L∞)n where ρ =
ρ0◦Λ and ρ0 satisfies (R1)-(R3), then finiteness of ρ follows from properness of ρ (see
Lemma 4.4.2). Thus, in this specific case it is sufficient to require proper positively
homogeneous systemic risk measures in Theorem 5.5.3 and Corollary 5.5.4.

Note that Corollary 5.5.4 provides a link between our systemic risk attribution
proposed in this section and the differentiability of the corresponding systemic risk
measure. By fixing X̄ ∈ (Lp)n and assuming that a finite, positively homogeneous
systemic risk measure ρ = ρ0 ◦ Λ admits representation (5.18) with the unique
optimal solution (ξo, ξ̄o) ∈ Z#, we obtain for each i ∈ {1, . . . , n} that

ki(X̄, ξ̄o) = E[X̄iξ̄
o
i ] = DGρ(X̄)(1(n,i) ? X̄)

where 1(n,i) ∈ Rn+ is defined by

(1(n,i))j :=
{

1 if j = i

0 otherwise
for j ∈ {1, . . . , n}.

That is, the ith component of the systemic risk attribution k(X̄, ξo) defined in Equa-
tion (5.20) is equal to the Gâteaux derivative of ρ at X̄ in the direction 1(n,i)?X̄. Let
us consider the function r : Rn+ → R defined by r(ā) := ρ(ā ? X̄). Then the Gâteaux
derivative of ρ at X̄ in the direction 1(n,i)?X̄ corresponds with the ith partial deriva-
tive of r at 1n, i.e., DGρ(X̄)(1(n,i) ? X̄) = ∂ir(1n). Therefore, as already pointed
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out in Chen et al. (2013), for positively homogeneous systemic risk measures which
satisfy the requirements from Corollary 5.5.4, the risk attribution method defined
in (5.20) corresponds to the well known Aumann-Shapley prices given by

kASi :=
ˆ 1

0
∂ir(t1n)dt = ∂ir(1n) for i ∈ {1, . . . , n}.

This risk attribution method is also called Euler allocation rule. For additional
information concerning this specific method we refer the reader, for instance, to
Denault (2001) and Tasche (2008).



6. From static to dynamic risk measures

Static risk measures introduced in Chapter 4 do not take into account any dy-
namic features like the availability of additional information over a specific period of
time. Another possibility is to consider not only random variables as input for risk
measures but discrete-time or continuous-time stochastic processes. These processes
represent, for instance, the market or accounting value of a firm’s equity or the mar-
ket value of selected financial securities; see Artzner et al. (2007) and Cheridito et al.
(2006).
We have already pointed out in the introduction to this part of the thesis that

there exist multiple approaches studying these different dynamic aspects of risk
measurement. For an overview we refer to Acciaio and Penner (2011).
In this chapter we discuss the approach introduced in Cheridito et al. (2006) and

Cheridito and Kupper (2011). This approach provides an excellent starting point for
a dynamic generalization of our systemic risk measures studied in Chapter 5. From
now on, the main objects of interest are conditional risk measures on discrete-time
stochastic processes. Thus, we combine risk measurement on processes with the
theory of conditional risk measures where the focus lies on informational aspects.
As a consequence of this, the corresponding risk measures depend at time t on the
available information at this point in time.
Focusing on risk measures which depend on different (discrete) points in time leads

to the new problem of time-consistency of these risk measures. Consequently, we
have to study how the different risk measures depend on each other. As a possible
solution, Cheridito et al. (2006) use the concept of strong time-consistency. In this
chapter we repeat this notion of time-consistency and highlight important results
from Cheridito et al. (2006).
The outline of this chapter is the following: In Section 6.1 we introduce the nota-

tion, important definitions and properties of conditional risk measures for bounded
discrete-time processes. Thereafter, Section 6.2 repeats dual representation results
for the convex and the coherent case. After introducing dynamic risk measures in
this context in Section 6.3, we consider the strong time-consistency property. Fi-
nally, in Section 6.4 we present some examples from Cheridito et al. (2006) and
Cheridito and Kupper (2011).

6.1. Notation, definitions and important properties

Throughout this chapter we fix the underlying filtered probability space (Ω,F ,F,P)
with F = (Ft)t∈N0 and F0 = {∅,Ω}. We denote the space of all extended random
variables by L0(R), i.e., L0(R) contains all measurable functions γ : (Ω,F ,P) →
(R,B(R)) where R = R ∪ {±∞}, and B(R) denotes the corresponding Borel-σ-
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algebra. We equip the space L1 := L1 (Ω,F ,P) with the usual L1-norm, i.e.,
∥∥ς∥∥1 :=´

|ς|dP for ς ∈ L1, and the space L∞ = L∞ (Ω,F ,P) is equipped with the norm∥∥γ∥∥∞ := inf{r ∈ R||γ| ≤ r P-a.s.} for γ ∈ L∞.
In this chapter we understand equalities and inequalities between random variables

and stochastic processes P-a.s. For processes X and Y this means that X ≤ Y if
and only if Xt ≤ Yt P-a.s. for all t ∈ N0. Let R0 be the space of F-adapted processes
and define

R∞ := {X ∈ R0|
∥∥X∥∥R∞ <∞} and A1 := {ξ ∈ R0|

∥∥ξ∥∥A1 <∞}

with

∥∥X∥∥R∞ := inf
{
r ∈ R

∣∣∣∣∣sup
t∈N0

∣∣Xt

∣∣ ≤ r} and

∥∥ξ∥∥A1 := E

∑
t∈N0

∣∣∆ξt∣∣
 where ξ−1 := 0, ∆ξt := ξt − ξt−1 for t ∈ N0.

If we consider the bilinear form 〈·, ·〉 : R∞ ×A1 → R defined by

〈
X, ξ

〉
:= E

∑
t∈N0

Xt∆ξt

 ,
then the topology σ(R∞,A1) denotes the weakest topology on R∞ such that for all
ξ ∈ A1, the functional X 7→

〈
X, ξ

〉
on R∞ is continuous and linear. Similarly, the

topology σ(A1,R∞) denotes the weakest topology on A1 such that for all X ∈ R∞,
the functional ξ 7→

〈
X, ξ

〉
on A1 is continuous and linear. For additional information

concerning these definitions we refer to Section 7.1 and Appendix A.2.
Let τ be a finite (F-)stopping time and θ be an (F-)stopping time such that

0 ≤ τ ≤ θ ≤ ∞. Then the projection pτ,θ : R0 → R0 is given by

pτ,θ(X)t := I{τ≤t}Xt∧θ for t ∈ N0.

Furthermore, we define

∥∥X∥∥
τ,θ

:= ess inf
{
γ ∈ L∞τ

∣∣∣∣∣sup
t∈N0

∣∣pτ,θ(Xt)
∣∣ ≤ γ} for X ∈ R∞

with L∞τ := L∞(Ω,Fτ ,P). At last, define R∞τ,θ ⊂ R∞ and A1
τ,θ ⊂ A1 by

R∞τ,θ := pτ,θR∞ and A1
τ,θ := pτ,θA1.

Cheridito et al. (2006) define risk measures on the spaceR∞τ,θ. Thus, the main objects
of interest are processes on the interval [τ, θ] ∩ N0 := {(t, ω) ∈ N0 × Ω|τ (ω) ≤ t ≤
θ(ω)}. It is important to note that in accordance with the static setting in Chapter
4, these processes are assumed to represent the evolution of different financial values.
This means that we focus on value processes in this chapter.
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For γ ∈ L∞τ and X ∈ R∞, the processes Y := γI[τ,θ) and Z := XI[τ,θ) are
understood in the following way:

Yt(ω) = γ(ω)I[τ,θ)(t, ω) and Zt(ω) = Xt(ω)I[τ,θ)(t, ω) for t ∈ N0, ω ∈ Ω.

Now, consider the following properties of a mapping ρ : R∞τ,θ → L∞τ :

(n) Normalization: ρ(0) = 0.
(m) Monotonicity: If X ≥ Y , then ρ(X) ≤ ρ(Y ) for all X,Y ∈ R∞τ,θ.
(t) Fτ -translation property: ρ(X + γI[τ,∞)) = ρ(X) − γ for all X ∈ R∞τ,θ and

γ ∈ L∞τ .
(c) Fτ -convexity: ρ(γX + (1− γ)Y ) ≤ γρ(X) + (1− γ)ρ(Y ) for all X,Y ∈ R∞τ,θ

and γ ∈ L∞τ with 0 ≤ γ ≤ 1.
(ph) Fτ -positive homogeneity: ρ(γX) = γρ(X) for all X ∈ R∞τ,θ and γ ∈

(L∞τ )+ := {γ ∈ L∞τ |γ ≥ 0}.

Definition 6.1.1. A conditional risk measure (onR∞τ,θ) is a mapping ρ : R∞τ,θ → L∞τ
that satisfies the properties (n), (m) and (t). A conditional convex risk measure (on
R∞τ,θ) is a conditional risk measure (on R∞τ,θ) that additionally satisfies the property
(c), and a conditional coherent risk measure (on R∞τ,θ) is a conditional convex risk
measure (on R∞τ,θ) that additionally satisfies the property (ph). For a conditional
risk measure ρ on R∞τ,θ and X ∈ R∞, we set ρ(X) := ρ(pτ,θ(X)).

We can interpret the properties above as in the static case. Nevertheless, in contrast
to the static approach, conditional risk measures take into account the information
available at the stopping time τ . For technical reasons, Definition 6.1.1, which is
based on Definition 3.1 in Cheridito et al. (2006), requires the normalization property
(n) for conditional risk measures on R∞τ,θ. Furthermore, note that the main objects
in Cheridito et al. (2006) are so called conditional monetary utility functions (on
R∞τ,θ) defined by φ := −ρ for conditional risk measures ρ on R∞τ,θ. Since we are
studying risk measures throughout this thesis, we adapt the results from Cheridito
et al. (2006) to our setting.
In the conditional setting in this chapter the translation property holds for random

variables γ ∈ L∞τ . Thus, we obtain a stronger notion of Lipschitz continuity.

Proposition 6.1.2 (See Proposition 3.3 in Cheridito et al. (2006)). Every mapping
ρ : R∞τ,θ → L∞τ with (m) and (t) satisfies the following properties:

(lc) Fτ -Lipschitz continuity: |ρ(X)− ρ(Y )| ≤
∥∥X − Y ∥∥

τ,θ
for all X,Y ∈ R∞τ,θ.

(lp) Local property: ρ(IAX + IAcY ) = IAρ(X) + IAcρ(Y ) for all X,Y ∈ R∞τ,θ
and A ∈ Fτ .

First of all, let us discuss the dependence between the set of acceptable positions
and the corresponding conditional risk measure ρ on R∞τ,θ.

Definition 6.1.3. The acceptance set of a conditional risk measure ρ on R∞τ,θ is
defined by

Bρ := {X ∈ R∞τ,θ|ρ(X) ≤ 0}.
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The following two propositions are based on Propositions 3.6, 3.9 and 3.10 in
Cheridito et al. (2006). For the corresponding results regarding static risk measures
see Proposition 4.1.4 and Proposition 4.1.5.

Proposition 6.1.4. Let ρ : R∞τ,θ → L∞τ be a conditional risk measure and Bρ the
corresponding acceptance set. Then the following properties are satisfied:

1. Bρ 6= ∅ and

a) 0 ∈ Bρ and ess inf{γ ∈ L∞τ |γI[τ,∞) ∈ Bρ} = 0,
b) if X ∈ Bρ and Y ∈ R∞τ,θ with Y ≥ X, then Y ∈ Bρ,

c) if (X(m)) ⊂ Bρ and X ∈ R∞τ,θ with
∥∥X(m) − X

∥∥
τ,θ
→ 0 P-a.s., then

X ∈ Bρ,
d) if A ∈ Fτ and X,Y ∈ Bρ, then IAX + IAcY ∈ Bρ.

2. ρ admits the representation

ρ(X) = ess inf{γ ∈ L∞τ |X + γI[τ,∞) ∈ Bρ} for all X ∈ R∞τ,θ.

3. ρ is a conditional convex risk measure on R∞τ,θ if and only if Bρ is Fτ -convex,
i.e., γX + (1− γ)Y for all X,Y ∈ Bρ and γ ∈ L∞τ with 0 ≤ γ ≤ 1.

4. ρ is positively homogeneous if and only if Bρ is an Fτ -cone, i.e., γX ∈ Bρ for
all X ∈ Bρ and γ ∈ (L∞τ )+. In particular, ρ is a conditional coherent risk
measure on R∞τ,θ if and only if Bρ is an Fτ -convex Fτ -cone.

Now, suppose that B ⊂ R∞τ,θ is a set of acceptable positions. If we define a
conditional risk measure ρ onR∞τ,θ by using the idea that ρ(X) is the smallest amount
that has to be added to the position X such that the new position is acceptable,
then we obtain the following proposition.

Proposition 6.1.5. Consider ∅ 6= B ⊂ R∞τ,θ that satisfies the properties 1.a) and
1.b) from Proposition 6.1.4. Then

ρB(X) := ess inf{γ ∈ L∞τ |X + γI[τ,∞) ∈ B} for X ∈ R∞τ,θ

satisfies the following properties:

1. ρB is a conditional risk measure on R∞τ,θ.
2. If B is Fτ -convex, then ρB is a conditional convex risk measure on R∞τ,θ.
3. If B is an Fτ -cone, then ρB is positively homogeneous. Especially, if B is an
Fτ -convex Fτ -cone, then ρB is a conditional coherent risk measure on R∞τ,θ.

4. B is a subset of the acceptance set BρB , and the smallest subset of R∞τ,θ that
contains B and satisfies the properties 1.c) and 1.d) from Proposition 6.1.4 is
equal to BρB .
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6.2. Representation of conditional risk measures
In the conditional setting studied in this chapter there exist several dual representa-
tion results for conditional risk measures on R∞τ,θ. In this section we present selected
representation results from Cheridito et al. (2006). But first, let us consider the
following definition.

Definition 6.2.1. For X ∈ R∞ and ξ ∈ A1, we define

〈X, ξ〉τ,θ := E

 ∑
t∈[τ,θ]∩N0

Xt∆ξt

∣∣∣∣∣∣Fτ
 .

The sets A1
+, (A1

τ,θ)+ and Dτ,θ are defined by

A1
+ :={ξ ∈ A1|∆ξt ≥ 0 for all t ∈ N0},

(A1
τ,θ)+ :=pτ,θA1

+,

Dτ,θ :={ξ ∈ (A1
τ,θ)+| 〈1, ξ〉τ,θ = 1}.

Remark 6.2.2. 1. For X ∈ R∞ and ξ ∈ A1
τ,θ , we have

〈X, ξ〉 = E

∑
t∈N0

Xt∆ξt

 = E

E
 ∑
t∈N0

Xt∆ξt

∣∣∣∣∣∣Fτ
 = E[〈X, ξ〉τ,θ].

2. Because of the Radon-Nikodym theorem, we can identify probability measures
Q which are absolutely continuous with respect to P by its densities dQ

dP where
dQ
dP ∈ {ς ∈ L1|ς ≥ 0,E[ς] = 1}. Hence, Cheridito et al. (2006) point out
that we can consider processes in Dτ,θ as conditional probability densities on
the product space N0 × Ω. We will see below that regarding the dual repre-
sentations, the set Dτ,θ replaces the set of absolutely continuous probability
measures from the static results.

To obtain a dual representation, Cheridito et al. (2006) introduce a continuity
property for mappings υ : R∞τ,θ → L∞τ .

Definition 6.2.3. A mapping υ : R∞τ,θ → L∞τ is called continuous for bounded
decreasing sequences if for X ∈ R∞τ,θ and every decreasing sequence (X(m)) ⊂ R∞τ,θ
with X(m)

t ↓ Xt P-a.s. for all t ∈ N0, it follows that limm→∞ υ(X(m)) = υ(X) P-a.s.

We also need generalized penalty functions which are appropriate for the setting
in this chapter.

Definition 6.2.4. Define the spaces L0
τ (R) and L0

τ (R+) by

L0
τ (R) := {γ ∈ L0(R)|γ is Fτ -measurable} and L0

τ (R+) := {γ ∈ L0
τ (R)|γ ≥ 0}.

Then a penalty function (on Dτ,θ) is a mapping ατ,θ : Dτ,θ → L0
τ (R+) that satisfies

ess inf
ξ∈Dτ,θ

ατ,θ(ξ) = 0.
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The following theorem is the adaption of the corresponding result in Cheridito
et al. (2006) to our setting.

Theorem 6.2.5 (See Theorem 3.16 in Cheridito et al. (2006)). Let ρ : R∞τ,θ → L∞τ
be a conditional convex risk measure. Then the following properties are equivalent:

1. ρ admits the representation

ρ (X) = ess sup
ξ∈Dτ,θ

{〈−X, ξ〉τ,θ − ατ,θ (ξ)} for X ∈ R∞τ,θ (6.1)

where ατ,θ is a penalty function on Dτ,θ.
2. The acceptance set Bρ is a σ(R∞,A1)-closed subset of R∞.
3. ρ is continuous for bounded decreasing sequences.

In particular, if one of these properties is satisfied, then ρ can be represented with
the minimal penalty function

ατ,θmin(ξ) := ess sup
X∈Bρ

〈−X, ξ〉τ,θ = ess sup
X∈R∞

τ,θ

{〈−X, ξ〉τ,θ − ρ(X)} for ξ ∈ Dτ,θ.

Moreover, this penalty function on Dτ,θ is minimal in the sense that ατ,θmin(ξ) ≤
ατ,θ(ξ) for all ξ ∈ Dτ,θ and all penalty functions ατ,θ on Dτ,θ that satisfy represen-
tation (6.1).

The coherent special case reads as follows.

Corollary 6.2.6 (See Theorem 3.18 in Cheridito et al. (2006)). Let ρ : R∞τ,θ → L∞τ
be a conditional coherent risk measure. Then there exists a set ∅ 6= Qτ,θ ⊂ Dτ,θ such
that ρ admits the representation

ρ (X) = ess sup
ξ∈Qτ,θ

〈−X, ξ〉τ,θ for all X ∈ R∞τ,θ (6.2)

if and only if the equivalent properties from Theorem 6.2.5 are satisfied. In this case,
the set

Q0
τ,θ := {ξ ∈ Dτ,θ|ατ,θmin(ξ) = 0}

is the smallest σ(A1,R∞)-closed, Fτ -convex subset of Dτ,θ that contains Qτ,θ and
satisfies representation (6.2) with Q0

τ,θ instead of Qτ,θ.

Let us compare the previous dual representation results for conditional convex and
coherent risk measures on R∞τ,θ with the dual representation results for convex and
coherent risk measures on L∞ from Section 4.3. The additional information which
is available at time τ is represented by the fact that we use conditional expectations
in (6.1) and (6.2) (recall that

〈
−X, ξ

〉τ,θ is defined as a conditional expectation)
instead of the usual expectations in (4.4) and (4.5), respectively. Moreover, the
penalty function on Dτ,θ is also random. If we interpret the elements in Dτ,θ as
conditional probability measures on the product space N0 × Ω (see Remark 6.2.2),
then we obtain the conditional convex risk measure ρ on R∞τ,θ by considering the
essential supremum over different probabilistic models.



142 6. From static to dynamic risk measures

6.3. Time-consistent dynamic risk measures
This section addresses another dynamic aspect in the axiomatic risk measurement
approach. We adopt the definition from Cheridito et al. (2006) and define dynamic
risk measures as families of conditional risk measures at different points in time. In
order to clarify the relationship between these different conditional risk measures,
we subsequently introduce and discuss an appropriate time-consistency concept. For
a detailed analysis we refer the reader to Cheridito et al. (2006) and Cheridito and
Kupper (2011).
Throughout this section let S ∈ N0 and T ∈ N0 ∪ {+∞} with S ≤ T .

Definition 6.3.1. For every t ∈ [S, T ] ∩ N0, let ρt,T : R∞t,T → L∞t be a conditional
risk measure on R∞t,T with acceptance set Bt,T . A dynamic risk measure is defined
as a family (ρt,T )t∈[S,T ]∩N0. The corresponding family of acceptance sets is given by
(Bt,T )t∈[S,T ]∩N0. Let τ and θ be stopping times with τ <∞ and S ≤ τ ≤ θ ≤ T and
define ρτ,θ : R∞τ,θ → L∞τ by

ρτ,θ(X) :=
∑

t∈[S,T ]∩N0

ρt,T (I{τ=t}X). (6.3)

The corresponding set Bτ,θ ⊂ R∞τ,θ is given by

Bτ,θ := {X ∈ R∞τ,θ|I{τ=t}X ∈ Bt,T for all t ∈ [S, T ] ∩ N0}.

A dynamic risk measure (ρt,T )t∈[S,T ]∩N0 is called convex [coherent] if all ρt,T , t ∈
[S, T ] ∩ N0, are conditional convex [coherent] risk measures on R∞t,T .

Cheridito et al. (2006) point out that ρτ,θ defined in (6.3) is a conditional risk
measure on R∞τ,θ with acceptance set Bτ,θ that inherits convexity and positive homo-
geneity from (ρt,T )t∈[S,T ]∩N0 . Similarly, ρτ,θ is continuous for bounded decreasing
sequences if all ρt,T , t ∈ [S, T ] ∩ N0, satisfy this property.

Definition 6.3.2. A dynamic risk measure (ρt,T )t∈[S,T ]∩N0 is called time-consistent
if the following property is satisfied for all finite stopping times τ, θ with S ≤ τ ≤
θ ≤ T :

(TC) If X,Y ∈ R∞τ,T with

XI[τ,θ) = Y I[τ,θ) and ρθ,T (X) ≤ ρθ,T (Y ),

then ρτ,T (X) ≤ ρτ,T (Y ).

Time-consistency is equivalent to the following property (TC’). For a proof see
Proposition 4.4 in Cheridito et al. (2006).

(TC’) For each t ∈ [S, T ] ∩ N0 and every finite stopping time θ that satisfies
t ≤ θ ≤ T , equation

ρt,T (X) = ρt,T (XI[t,θ) − ρθ,T (X)I[θ,∞))

holds for all X ∈ R∞t,T .
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The time-consistency property (TC) can be described as follows: Let us consider two
processes X and Y that are equal up to the stopping time θ, i.e., XI[τ,θ) = Y I[τ,θ),
and let the time-θ-risk of one process be greater than or equal to the time-θ-risk of
the other process, i.e., ρθ,T (X) ≤ ρθ,T (Y ). Then this relation is still satisfied for the
risk of these processes at the smaller stopping time τ .
In case of T ∈ N or in case of a dynamic risk measure (ρt,T )t∈[S,T ]∩N0 where all

conditional risk measures are continuous for bounded decreasing sequences, time-
consistency and the weaker property of so called one-step time-consistency are
equivalent. More precisely, the following result is satisfied.

Proposition 6.3.3 (See Proposition 4.5 in Cheridito et al. (2006)). Consider a
dynamic risk measure (ρt,T )t∈[S,T ]∩N0 that satisfies one-step time-consistency, i.e.,

ρt,T (X) = ρt,T (XI{t}−ρt+1,T (X)I[t+1,∞)) for all t ∈ [S, T −1]∩N0 and X ∈ R∞t,T .

Additionally, suppose that at least one of the following conditions holds:

1. T ∈ N.
2. All conditional risk measures ρt,T , t ∈ [S, T ] ∩N0, are continuous for bounded

decreasing sequences.

Then the dynamic risk measure (ρt,T )t∈[S,T ]∩N0 is time-consistent.

The connection between time-consistent dynamic risk measures and their ac-
ceptance sets is discussed in Theorem 4.6 in Cheridito et al. (2006).
Finally, we introduce the term relevant risk measures, which was originally studied

in Artzner et al. (1999). Following the idea that a position X with X ≤ 0 and X 6= 0
has positive risk, i.e., ρ(X) > 0, Cheridito et al. (2006) adapt the definition from
Artzner et al. (1999) to their setting of conditional risk measurement.
We will see that this property guarantees the existence of time-consistent dynamic

extensions of conditional risk measures on R∞S,T .

Definition 6.3.4. Consider a conditional risk measure ρ : R∞τ,θ → L∞τ . Then ρ is
called θ-relevant if

A ⊂ {ρ(−εIAI[t∧θ,∞)) > 0}

for all ε > 0, t ∈ N0 and A ∈ Ft∧θ. The set Drelτ,θ is defined by

Drelτ,θ :=

ξ ∈ Dτ,θ
∣∣∣∣∣∣P
 ∑
j≥t∧θ

∆ξj > 0

 = 1 for all t ∈ N0

 .
Remark 6.3.5. 1. Cheridito et al. (2006) point out that if θ is finite, then

θ-relevance of a conditional risk measure ρ on R∞τ,θ is equivalent to A ⊂
{ρ(−εIAI[θ,∞)) > 0} for all ε > 0 and A ∈ Fθ. Furthermore, supposing
that the previous property is satisfied, we have

Drelτ,θ = {ξ ∈ Dτ,θ|P[∆ξθ > 0] = 1}.
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2. There exist specific dual representations of θ-relevant conditional convex and
coherent risk measures on R∞τ,θ. In these representations the set Drelτ,θ replaces
the set Dτ,θ from representations of general conditional risk measures on R∞τ,θ.
For more details we refer to Section 3.3 in Cheridito et al. (2006).

We close this section by stating an important result for T -relevant risk measures.

Proposition 6.3.6 (See Corollary 4.8 in Cheridito et al. (2006)). Consider a T -
relevant conditional risk measure ρ on R∞S,T . Then we can find at most one time-
consistent dynamic risk measure (ρt,T )t∈[S,T ]∩N0 that satisfies ρS,T = ρ.

6.4. Examples of dynamic risk measures

In this section we present examples of dynamic convex and coherent risk measures.
To this end, we have to introduce two additional spaces and the pasting of probability
measures or the pasting of the corresponding densities, respectively.

Definition 6.4.1. For T ∈ N0 ∪ {+∞}, we define the sets

D̃T := {ς ∈ L1
T |ς ≥ 0,E[ς] = 1} and D̃relT := {ς ∈ L1

T |ς > 0,E[ς] = 1}

where L1
T := L1(Ω,FT ,P). If T = ∞, we use F∞ := σ(

⋃
t∈N0 Ft). Moreover, for

ς, ϑ ∈ D̃T , s ∈ [0, T ] ∩ N0 and A ∈ Fs, let us define the pasting ς ⊗sA ϑ by

ς ⊗sA ϑ :=

ς on Ac ∪ {E[ϑ|Fs] = 0}
E[ς|Fs] ϑ

E[ϑ|Fs] on A ∩ {E[ϑ|Fs] > 0}
.

A subset P of D̃T is called m1-stable if ς ⊗sA ϑ ∈ P for all ς, ϑ ∈ P, s ∈ [0, T ] ∩ N0
and A ∈ Fs.

Remark 6.4.2. Suppose that T ∈ N. Then we can identify ς ∈ D̃T with ξς ∈ A1
0,T

defined by

ξςt :=
{

0 for t ∈ [0, T − 1] ∩ N0

ς for t ∈ [T,∞) ∩ N0
.

Thus, we have D̃T ⊂ D0,T = {ξ ∈ (A1
0,T )+| 〈1, ξ〉0,T = 1} and D̃relT ⊂ Drel0,T = {ξ ∈

D0,T |P[ξT − ξT−1 > 0] = 1} in case of T ∈ N.

The following three examples are considered in detail in Section 5 in Cheridito
et al. (2006). In order to verify the assertions from the following examples, one
needs additional results from Sections 3 and 4 in Cheridito et al. (2006). Repeating
these results would go beyond the scope of this introductory chapter. Nevertheless,
the following examples give a good impression of the structure of time-consistent
dynamic convex and coherent risk measures.



6.4. Examples of dynamic risk measures 145

Example 6.4.3 (Dynamic coherent risk measures defined by worst stopping). Con-
sider T ∈ N0 ∪ {+∞} and a set Prel that satisfies ∅ 6= Prel ⊂ D̃relT and define for all
t ∈ [0, T ] ∩ N0

Ξt(γ) := ess sup
ς∈Prel

E[−ςγ|Ft]
E[ς|Ft]

for γ ∈ L∞T . (6.4)

If Prel is m1-stable and if we set

ρWS
t,T (X) := ess sup{Ξt(Xθ)|θ is a finite stopping time with t ≤ θ ≤ T}

for all t ∈ [0, T ]∩N0 and X ∈ R∞t,T , then (ρWS
t,T )t∈[0,T ]∩N0 is a time-consistent dynamic

coherent risk measure and every ρWS
t,T is T -relevant.

Example 6.4.4 (Dynamic coherent risk measures that depend on an average over
time). Define for T ∈ N0 ∪ {+∞}, ∅ 6= Prel ⊂ D̃relT and t ∈ [0, T ] ∩ N0

ρAvt,T (X) := Ξt

(∑
s∈[t,T ]∩N0 rsXs∑
s∈[t,T ]∩N0 rs

)
for X ∈ R∞t,T

where Ξt is defined by (6.4) and (rs)s∈[0,T ]∩N0 is a sequence of nonnegative real
numbers that satisfy∑

s∈[0,T ]∩N0

rs = 1 and
∑

s∈[t,T ]∩N0

rs > 0 for all t ∈ [0, T ] ∩ N0.

Then (ρAvt,T )t∈[0,T ]∩N0 defines a dynamic coherent risk measure and every ρAvt,T is T -
relevant. If additionally Prel is m1-stable, then (ρAvt,T )t∈[0,T ]∩N0 is time-consistent.

From now on, we focus on dynamic convex risk measures.

Example 6.4.5 (Dynamic robust entropic risk measure). Consider T ∈ N0, a set
Prel that satisfies ∅ 6= Prel ⊂ D̃relT and a > 0. For each t ∈ [0, T ] ∩ N0, we define
ρentrt,T by

ρentrt,T (X) := ess sup
ς∈Prel

{1
a

log E[ς exp(−aXT )|Ft]
E[ς|Ft]

}
for X ∈ R∞t,T .

Cheridito et al. (2006) prove that for every t ∈ [0, T ] ∩ N0, ρentrt,T is a T -relevant
conditional convex risk measure on R∞t,T . Moreover, each ρentrt,T is continuous for
bounded decreasing sequences, and if Prel is m1-stable, then (ρentrt,T )t∈[0,T ]∩N0 is time-
consistent.
In addition, for every t ∈ [0, T ] ∩ N0, the conditional convex risk measure ρentrt,T

satisfies ρentrt,T (X) = ρ̃entrt,T (XT ) for X ∈ R∞t,T where ρ̃entrt,T : L∞T → L∞t admits the
representation

ρ̃entrt,T (γ) = ess sup
ς∈Prel,ϑ∈D̃relT

{
E[−ϑγ|Ft]−

1
a
Ht(ϑ|ς)

}
for γ ∈ L∞T .

Here, Ht(ϑ|ς) denotes the conditional relative entropy defined by

Ht(ϑ|ς) := E
[
ϑ log ϑ

ς

∣∣∣∣Ft] for ς, ϑ ∈ D̃relT .
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The last example in this section shows how we can generate time-consistent dy-
namic convex risk measures by using so called generators. For proofs and additional
information we refer to Cheridito and Kupper (2011).

Example 6.4.6 (Generating time-consistent dynamic convex risk measures). Fix
T ∈ N and consider for t ∈ [0, T − 1] ∩ N0 mappings Ht : L∞t+1 → L∞t that satisfy
the following properties:

(H1) Ht(0) = 0.
(H2) If Xt+1 ≥ Yt+1, then Ht(Xt+1) ≤ Ht(Yt+1) for all Xt+1, Yt+1 ∈ L∞t+1.
(H3) Ht(Xt+1 + a) ≥ Ht(Xt+1)− a for all Xt+1 ∈ L∞t+1 and a ∈ (L∞t )+.

Then the family (Ht)t∈[0,T−1]∩N0 generates a time-consistent dynamic risk measure
(ρt,T )t∈[0,T ]∩N0 by

ρt,T (X) :=
{
−XT if t = T

−Xt +Ht(−ρt+1,T (X)−Xt) if t < T
for X ∈ R∞t,T .

Moreover, (ρt,T )t∈[0,T ]∩N0 is convex if each Ht satisfies

(H4) Ht(aXt+1+(1− a)Yt+1) ≤ aHt(Xt+1)+(1− a)Ht(Yt+1) for allXt+1, Yt+1 ∈
L∞t+1 and a ∈ L∞t with 0 ≤ a ≤ 1.

We call mappings Ht : L∞t+1 → L∞t that satisfy (H1)-(H3) generators of the time-
consistent dynamic risk measure (ρt,T )t∈[0,T ]∩N0 . A specific kind of these generators
are composed generators which are defined in the following way:
For t ∈ [0, T − 1]∩N0, consider a map Ft : L∞t+1 → L∞t that satisfies the following

properties:

(F1) Ft(0) = 0.
(F2) If Xt+1 ≥ Yt+1, then Ft(Xt+1) ≤ Ft(Yt+1) for all Xt+1, Yt+1 ∈ L∞t+1.
(F3) Ft(Xt+1 + a) = Ft(Xt+1)− a for all Xt+1 ∈ L∞t+1 and a ∈ L∞t .

Let ht : R→ R, t ∈ [0, T − 1] ∩ N0, be such that

(h1) ht(0) = 0,
(h2) ht is monotonically decreasing,
(h3) |ht(r1)− ht(r2)| ≤ |r1 − r2| for all r1, r2 ∈ R.

Then Ht := ht◦(−Ft) : L∞t+1 → L∞t satisfies the properties (H1)-(H3). In particular,
(ht, Ft)t∈[0,T−1]∩N0 induces a time-consistent dynamic risk measure. Moreover, if
additionally all Ft satisfy

(F4) Ft(aXt+1 + (1− a)Yt+1) ≤ aFt(Xt+1) + (1− a)Ft(Yt+1) for all Xt+1, Yt+1 ∈
L∞t+1 and a ∈ L∞t with 0 ≤ a ≤ 1

and all ht are convex, then Ht satisfies (H4), which means that we obtain a time-
consistent dynamic convex risk measure.



7. Conditional and dynamic systemic risk
measures

In this chapter we generalize the model from Chapter 5 by using the setting of
Cheridito et al. (2006) presented in Chapter 6 and study conditional and dynamic
systemic risk measures on multi-dimensional bounded discrete-time processes. We
refer the reader to the paper “Dynamic systemic risk measures for bounded discrete-
time processes” which is joint work with E. Kromer and L. Overbeck and provides
a summary of the results in this chapter.
After introducing general notations, we define in Section 7.1 conditional convex

and positively homogeneous systemic risk measures. In Section 7.2 we prove a
decomposition result for conditional convex systemic risk measures which is similar
to the corresponding result in the static case. In conclusion, we can represent every
conditional convex systemic risk measure as a composition of a conditional convex
single-firm risk measure and a convex aggregation function. This decomposition is
the basis for the subsequent study. In Section 7.3 we discuss different representation
results for conditional convex systemic risk measures. Section 7.3.1 provides the
primal representation result, which is proved analogously to the corresponding result
in Chapter 5. In the following subsection we apply techniques from Cheridito et al.
(2006) and introduce and study continuity properties of the underlying conditional
convex single-firm risk measure and the underlying convex aggregation function.
Based on these results, we finally prove a dual representation result for conditional
convex systemic risk measures in Subsection 7.3.3.
In Section 7.4 we go one step further and introduce dynamic systemic risk measures

as families of conditional systemic risk measures. Furthermore, we use the concept
of strong time-consistency and study time-consistent systemic risk measures. In
this context, we introduce in Subsection 7.4.1 a time-consistency property for our
convex aggregation function and examine how this property depends on the time-
consistency property of the corresponding systemic risk measure. In Subsection 7.4.2
we consider examples of time-consistent dynamic aggregation functions and finally
we discuss our results concerning time-consistent dynamic systemic risk measures.

7.1. Notation and definitions

In this chapter we fix a filtered probability space (Ω,F ,F,P) with F = (Ft)t∈N0

and F0 = {∅,Ω}. As in Chapter 5, we consider a finite set of n firms or, in other
words, n nodes in a financial network. The n-dimensional discrete-time process
X̄ = (X̄1, . . . , X̄n) represents the losses of these n firms over time. Here, X̄i is
supposed to be an element in the space R∞ defined in Chapter 6 and describes the
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loss process of firm i ∈ {1, . . . , n}.
From now on, let m ∈ N be arbitrary. In this chapter we need the following

generalizations of the spaces introduced in Chapter 6:
Let R0,m be the space of F-adapted m-dimensional processes X̄ = (X̄t)t∈N0 such

that for each i ∈ {1, . . . ,m}, X̄i = (X̄i
t)t∈N0 is an element in R0. Again, we under-

stand equalities and inequalities between random variables and (multi-dimensional)
stochastic processes P-a.s. This means m-dimensional processes X̄ = (X̄t)t∈N0 ∈
R0,m and Ȳ = (Ȳ t)t∈N0 ∈ R0,m satisfy X̄ ≤ Ȳ if and only if X̄i

t ≤ Ȳ i
t P-a.s. for all

t ∈ N0 and all i ∈ {1, . . . ,m}. Furthermore, define

R∞,m := {X̄ ∈ R0,m|
∥∥X̄∥∥R∞,m <∞} and A1,m := {ξ̄ ∈ R0,m|

∥∥ξ̄∥∥A1,m <∞}

with ∥∥X̄∥∥R∞,m := max
i∈{1,...,m}

∥∥X̄i
∥∥
R∞ and

∥∥ξ̄∥∥A1,m :=
m∑
i=1

∥∥ξ̄i∥∥A1

and note that R∞,1 and A1,1 are equal to R∞ and A1, respectively.
By definition of the space R∞,m, each X̄ ∈ R∞,m satisfies X̄i ∈ R∞ for all i ∈
{1, . . . ,m}. Thus, X̄t = (X̄1

t , . . . , X̄
m
t ) is an element in (L∞)m := (L∞(Ω,F ,P))m

for each t ∈ N0.
We define the bilinear form 〈·, ·〉m : R∞,m ×A1,m → R by

〈
X̄, ξ̄

〉
m

:=
m∑
i=1

〈
X̄i, ξ̄i

〉
=

m∑
i=1

E

∑
t∈N0

X̄i
t∆ξ̄it

 .
The following remark is based on statements in the proof of Lemma 3.17 in Cheridito
et al. (2006).

Remark 7.1.1 (Connection between processes in R∞ and random variables). .

1. Note that any stochastic process X = (Xt)t∈N0 ∈ R∞ is a map X : N0×Ω→ R
with X(t, ω) = Xt(ω). Let H be the σ-algebra on N0 × Ω generated by the
sets {t} ×B, t ∈ N0, B ∈ Ft and define the measure η on (N0 × Ω,H) by

η ({t} ×B) := 2−(t+1)P [B] for t ∈ N0 and B ∈ Ft.

Then R∞ = L∞H := L∞(N0 × Ω,H, η) since for every X ∈ R∞, we have

‖X‖L∞H = inf{r ∈ R||Xt(ω)| ≤ r for η-a.e. (t, ω) ∈ N0 × Ω}

= inf{r ∈ R||Xt(ω)| ≤ r for all t ∈ N0 and P-a.e. ω ∈ Ω}

= inf
{
r ∈ R

∣∣∣∣∣sup
t∈N0

|Xt(ω)| ≤ r for P-a.e. ω ∈ Ω
}

= ‖X‖R∞ .

Moreover, A1 can be identified with L1
H := L1(N0×Ω,H, η) by identifying each

Ξ ∈ L1
H with ξΞ ∈ A1 where ξΞ

−1 := 0 and ξΞ
t (ω) := 2−(t+1)Ξ(t, ω) + ξΞ

t−1(ω)
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for t ∈ N0 and ω ∈ Ω. In this case, we obtain∥∥Ξ∥∥
L1
H

=
ˆ

(t,ω)∈N0×Ω
|Ξ(t, ω)|dη(t, ω) =

∑
t∈N0

ˆ
ω∈Ω
|Ξ(t, ω)|2−(t+1)dP(ω)

=
∑
t∈N0

ˆ
ω∈Ω
|∆ξΞ

t (ω)2(t+1)|2−(t+1)dP(ω) = E

∑
t∈N0

|∆ξΞ
t |

 =
∥∥ξΞ∥∥

A1 .

Similarly, the pairing
〈
·, ·
〉
L∞H ,L

1
H

: L∞H × L1
H → R given by

〈
X,Ξ

〉
L∞H ,L

1
H

:=´
XΞdη satisfies

〈
X,Ξ

〉
L∞H ,L

1
H

=
ˆ
XΞdη = E

∑
t∈N0

Xt∆ξΞ
t

 =
〈
X, ξΞ〉.

2. By repeating the same arguments, R∞,m = (L∞H )m and A1,m can be identified
with (L1

H)m where (L∞H )m and (L1
H)m are equipped with the norms∥∥X̄∥∥(L∞H )m := max

i∈{1,...,m}

∥∥X̄i
∥∥
L∞H

and
∥∥Ξ̄∥∥(L1

H)m :=
m∑
i=1

∥∥Ξ̄i∥∥
L1
H

for X̄ ∈ (L∞H )m and Ξ̄ ∈ (L1
H)m. Furthermore, the pairing

〈
·, ·
〉

(L∞H )m,(L1
H)m :

(L∞H )m×(L1
H)m → R defined by

〈
X̄, Ξ̄

〉
(L∞H )m,(L1

H)m :=
∑m
i=1
´
X̄iΞ̄idη satisfies〈

X̄, Ξ̄
〉

(L∞H )m,(L1
H)m =

〈
X̄, ξ̄Ξ̄〉

m
for X̄ ∈ (L∞H )m, Ξ̄ ∈ (L1

H)m and ξ̄Ξ̄ ∈ A1,m

defined by (ξ̄Ξ̄)i−1 := 0 and (ξ̄Ξ̄)it(ω) := 2−(t+1)Ξ̄i(t, ω) + (ξ̄Ξ̄)it−1(ω) for t ∈ N0,
ω ∈ Ω and i ∈ {1, . . . , n}.

3. By these definitions, the norm on (L∞H )m satisfies∥∥X̄∥∥(L∞H )m = sup
‖Ξ̄‖(L1

H)m≤1

∣∣∣〈X̄, Ξ̄〉(L∞H )m,(L1
H)m

∣∣∣ for all X̄ ∈ (L∞H )m.

This can be verified as follows: It is easily seen that

sup
‖Ξ̄‖(L1

H)m≤1

∣∣∣〈X̄, Ξ̄〉(L∞H )m,(L1
H)m

∣∣∣ = sup∑m

i=1 ‖Ξ̄
i‖
L1
H
≤1

∣∣∣∣∣
m∑
i=1

〈
X̄i, Ξ̄i

〉
L∞H ,L

1
H

∣∣∣∣∣
≥ max

i∈{1,...,m}
sup

‖Ξ̄i‖
L1
H
≤1

∣∣∣〈X̄i, Ξ̄i
〉
L∞H ,L

1
H

∣∣∣ = max
i∈{1,...,m}

‖X̄i‖L∞H .

On the other hand, for every i ∈ {1, . . . ,m} and Ξ̄ ∈ (L1
H)m, we have∣∣∣〈X̄i, Ξ̄i

〉
L∞H ,L

1
H

∣∣∣/∥∥Ξ̄i∥∥
L1
H

=
∣∣∣〈X̄i, Ξ̄i/

∥∥Ξ̄i∥∥
L1
H

〉
L∞H ,L

1
H

∣∣∣ ≤ ∥∥X̄i
∥∥
L∞H

due to
∥∥X̄i

∥∥
L∞H

= sup‖Ξ̄i‖
L1
H
≤1
∣∣〈X̄i, Ξ̄i

〉
L∞H ,L

1
H

∣∣. But this leads to
sup∑m

i=1 ‖Ξ̄
i‖
L1
H
≤1

∣∣∣∣∣
m∑
i=1

〈
X̄i, Ξ̄i

〉
L∞H ,L

1
H

∣∣∣∣∣ ≤ sup∑m

i=1 ‖Ξ̄
i‖
L1
H
≤1

m∑
i=1

∥∥X̄i
∥∥
L∞H

∥∥Ξ̄i∥∥
L1
H

≤ max
i∈{1,...,m}

∥∥X̄i
∥∥
L∞H
.
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4. Note that (L1
H)m separates points of (L∞H )m and (L∞H )m separates points of

(L1
H)m under

〈
·, ·
〉

(L∞H )m,(L1
H)m , which means that

X̄ ∈ (L∞H )m and
〈
X̄, Ξ̄

〉
(L∞H )m,(L1

H)m = 0 for all Ξ̄ ∈ (L1
H)m ⇒ X̄ = 0,

Ξ̄ ∈ (L1
H)m and

〈
X̄, Ξ̄

〉
(L∞H )m,(L1

H)m = 0 for all X̄ ∈ (L∞H )m ⇒ Ξ̄ = 0.

Because of the previous remark, A1,m separates points of R∞,m and R∞,m sepa-
rates points of A1,m under

〈
·, ·
〉
m
. Hence, we can define σ(R∞,m,A1,m) as the

weakest topology on R∞,m such that for all ξ̄ ∈ A1,m, the functional X̄ 7→
〈
X̄, ξ̄

〉
m

onR∞,m is continuous and linear. Analogously, the topology σ(A1,m,R∞,m) denotes
the weakest topology on A1,m such that for all X̄ ∈ R∞,m, the functional ξ̄ 7→〈
X̄, ξ̄

〉
m

on A1,m is continuous and linear.
From now on, let τ be a finite (F-)stopping time and θ be an (F-)stopping time

such that 0 ≤ τ ≤ θ ≤ ∞. Then we define the projection pτ,θm : R0,m → R0,m by

pτ,θm (X̄)t := I{τ≤t}X̄t∧θ for t ∈ N0.

The spaces R∞,mτ,θ ⊂ R∞,m and A1,m
τ,θ ⊂ A1,m are defined by

R∞,mτ,θ := pτ,θm R∞,m and A1,m
τ,θ := pτ,θm A1,m,

and the set (R∞τ,θ)+ ⊂ R∞τ,θ is given by

(R∞τ,θ)+ := {X ∈ R∞τ,θ|X ≥ 0}.

In this chapter we want to define conditional convex and positively homogeneous
systemic risk measures on R∞,nτ,θ , i.e., we focus on stochastic processes X̄ ∈ R∞,nτ,θ ,
which describe the evolution of losses in the interval [τ, θ] ∩ N0. In analogy to the
static case discussed in Chapter 5, we change the perspective from value processes,
considered in the standard approach in Chapter 6, to loss processes.
Before we introduce the defining properties of conditional convex and positively

homogeneous systemic and single-firm risk measures, note that for γ̄ ∈ (L∞τ )m and
X̄ ∈ R∞,m, we understand Ȳ := γ̄I[τ,θ) and Z̄ := X̄I[τ,θ) in the following way:

Ȳ i
t (ω) = γ̄i(ω)I[τ,θ)(t, ω) and
Z̄it(ω) = X̄i

t(ω)I[τ,θ)(t, ω) for t ∈ N0, ω ∈ Ω, i ∈ {1, . . . , n}.

Let us consider the following properties of a mapping ρ0 : R∞τ,θ → L∞τ :

(r1) Monotonicity: If X ≥ Y , then ρ0(X) ≥ ρ0(Y ) for all X,Y ∈ R∞τ,θ.
(r2) Fτ -convexity: ρ0(γX+(1−γ)Y ) ≤ γρ0(X)+(1−γ)ρ0(Y ) for allX,Y ∈ R∞τ,θ

and γ ∈ L∞τ with 0 ≤ γ ≤ 1.
(r3) Fτ -translation property: ρ0(X + γI[τ,∞)) = ρ0(X) + γ for all X ∈ R∞τ,θ and

γ ∈ L∞τ .
(r4) Fτ -positive homogeneity: ρ0(γX) = γρ0(X) for all X ∈ R∞τ,θ and γ ∈

(L∞τ )+.
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(r5) Constancy on R ⊂ L∞τ : ρ0(γI[τ,∞)) = γ for all γ ∈ R.
(r6) Normalization: ρ0(I[τ,∞)) = 1.

Most of these properties, i.e., (r1)-(r4), have already been introduced in Chapter
6. The constancy property (r5) is known from Chapter 5, and a special case of
constancy on R ⊂ L∞τ is constancy on {1}, which corresponds with property (r6).

Definition 7.1.2. A conditional convex single-firm risk measure (on R∞τ,θ) is a
mapping ρ0 : R∞τ,θ → L∞τ that satisfies the properties (r1) and (r2). A conditional
positively homogeneous single-firm risk measure (on R∞τ,θ) is a conditional convex
single-firm risk measure (on R∞τ,θ) that additionally satisfies the properties (r4) and
(r6). A conditional coherent single-firm risk measure (on R∞τ,θ) is a conditional
positively homogeneous single-firm risk measure (on R∞τ,θ) that additionally satisfies
the property (r3). For X ∈ R∞, we set ρ0(X) := ρ0(pτ,θ(X)).

In general, we do not postulate ρ0(0) = 0 (this is the normalization property (n)
from Chapter 6) for conditional convex single-firm risk measures. Nevertheless, in
Section 7.2 we will see that conditional convex single-firm risk measures ρ0 that are a
part of the decomposition of a conditional convex systemic risk measure (see below)
indeed satisfy this additional property.
Moreover, if ρ0(0) = 0 holds, then constancy on L∞τ is equivalent to the translation

property for X = 0 since

ρ0(γI[τ,∞)) = ρ0(0 + γI[τ,∞)) = ρ0(0) + γ = γ for γ ∈ L∞τ .

Now, consider the following properties of a mapping ρ : R∞,nτ,θ → L∞τ :

(s1) Monotonicity: If X̄ ≥ Ȳ , then ρ(X̄) ≥ ρ(Ȳ ) for all X̄, Ȳ ∈ R∞,nτ,θ .
(s2) Preference consistency: If ρ(X̄t(ω)I[τ,∞)) ≥ ρ(Ȳt(ω)I[τ,∞)) for X̄, Ȳ ∈ R

∞,n
τ,θ ,

all t ∈ N0 and a.e. ω ∈ Ω, then ρ(X̄) ≥ ρ(Ȳ ).
(s3) fρ-constancy: Either Im ρ|RnI[τ,∞)

= R and there exists a surjective function
fρ : R → R with fρ(0) = 0 such that ρ(a1nI[τ,∞)) = fρ (a) for all a ∈ R or
Im ρ|RnI[τ,∞)

= R+ and there exists a function fρ : R→ R+ and b ∈ R+ such
that fρ is surjective and strictly increasing on [b,∞), fρ(a) = 0 for a ≤ b
and ρ(a1nI[τ,∞)) = fρ (a) for all a ∈ R.

(s4) Fτ -convexity:
(s4a) Fτ -outcome convexity: ρ(γX̄ + (1 − γ)Ȳ ) ≤ γρ(X̄) + (1 − γ)ρ(Ȳ )

for all X̄, Ȳ ∈ R∞,nτ,θ and γ ∈ L∞τ with 0 ≤ γ ≤ 1.
(s4b) Fτ -risk convexity: Suppose ρ(Z̄t (ω) I[τ,∞)) = γ(ω)ρ(X̄t(ω)I[τ,∞)) +

(1 − γ(ω))ρ(Ȳt(ω)I[τ,∞)) for X̄, Ȳ, Z̄ ∈ R∞,nτ,θ , γ ∈ L∞τ with 0 ≤
γ ≤ 1 and for all t ∈ N0 and a.e. ω ∈ Ω. Then ρ(Z̄) ≤ γρ(X̄) +
(1− γ) ρ(Ȳ ).

(s5) Fτ -positive homogeneity: ρ(γX̄) = γρ(X̄) for all X̄ ∈ R∞,nτ,θ and all γ ∈
(L∞τ )+.

(s6) Normalization: ρ(1nI[τ,∞)) = n.
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As in the static case, property (s2) means that if

P[{ω ∈ Ω|ρ(x̄tI[τ,∞)) ≥ ρ(ȳtI[τ,∞)), (x̄t, ȳt) = (X̄t(ω), Ȳt(ω)) for all t ∈ N0}] = 1,

then ρ(X̄) ≥ ρ(Ȳ ), and (s4b) means that

P
[
{ω ∈ Ω|ρ(z̄tI[τ,∞)) = γρ(x̄tI[τ,∞)) + (1− γ)ρ(ȳtI[τ,∞)),

(z̄t, x̄t, ȳt) = (Z̄t(ω), X̄t(ω), Ȳt(ω)) for all t ∈ N0}

]
= 1

implies ρ(Z̄) ≤ γρ(X̄) + (1− γ) ρ(Ȳ ). Furthermore, it is important to note that the
properties (s1), (s3) and (s4a) guarantee the existence of an inverse function f−1

ρ of
fρ.

Definition 7.1.3. A conditional positively homogeneous systemic risk measure (on
R∞,nτ,θ ) is a mapping ρ : R∞,nτ,θ → L∞τ that satisfies the properties (s1), (s2), (s4),
(s5), (s6) and Im ρ|RnI[τ,∞)

⊂ R. If ρ satisfies the properties (s1)-(s4), we call ρ
a conditional convex systemic risk measure (on R∞,nτ,θ ). For X̄ ∈ R∞,n, we set
ρ(X̄) := ρ(pτ,θn (X̄)).

Remark 7.1.4. Every conditional positively homogeneous systemic risk measure ρ
satisfies the fρ-constancy property (s3). The corresponding function fρ is given by

fρ(a) =
{
an if a ≥ 0
a(−ρ(−1nI[τ,∞))) if a < 0

(7.1)

in case of Im ρ|RnI[τ,∞)
= R and fρ(a) = na+ in case of Im ρ|RnI[τ,∞)

= R+. This
can be verified analogously to Lemma 5.1.6. As a consequence, every conditional
positively homogeneous systemic risk measure is also a convex systemic risk measure.

It remains to consider aggregation functions. In Chapter 5 we have introduced in
Definition 5.1.3 convex and positively homogeneous aggregation functions as func-
tions from Rn to R. In the conditional case, we can use these aggregation functions
as well. To be more precisely, because of Remark 7.1.1 and R∞,nτ,θ ⊂ R∞,n, we use
the aggregation functions from Chapter 5 for p =∞.
Finally, note that in contrast to the definition of property (S3) in Chapter 5,

we additionally assume fρ(0) = 0 in property (s3). The reason for this additional
requirement is the dependence of the convex systemic risk measure ρ and the corre-
sponding convex aggregation function Λ. This convex aggregation function has to
guarantee that Λ(R∞,nτ,θ ) = R∞τ,θ. In particular, Λ has to map every X̄ ∈ R∞,nτ,θ to a
process Λ(X̄) that is equal to 0 before time τ , i.e., Λ(X̄) = Λ(X̄)I[τ,∞). We will see
below that Λ satisfies this property if we assume that fΛ(0) = 0.

Remark 7.1.5. Since Λ : Rn → R is convex, Λ is continuous and measurable. If
we consider X̄ ∈ R∞,m as a function X̄ : (N0 × Ω,H) → (Rn,B(Rn)) and Λ as a
function Λ : (Rn,B(Rn))→ (R,B(R)), then Λ(X̄) := Λ ◦ X̄ is a measurable function

Λ(X̄) : (N0 × Ω,H)→ (R,B(R))

such that Λ(X̄t(ω)) = Λ(X̄)t(ω) for all t ∈ N0 and all ω ∈ Ω.
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In the remaining part of this section we will show that every convex aggregation
function Λ : Rn → R induces a mapping Λ : R∞,nτ,θ → R∞τ,θ.

Lemma 7.1.6. Let g : R → R be an increasing function. Then we have g(R∞) ⊂
R∞. If additionally g(0) = 0, then g(R∞τ,θ) ⊂ R∞τ,θ.

Proof. Note that g is measurable since each increasing function g : R → R is mea-
surable. For each X ∈ R∞, there exists rX ∈ R+ such that supt∈N0

∣∣Xt

∣∣ ≤ rX .
Monotonicity of g implies g(−rX) ≤ g(Xt) ≤ g(rX) for all t ∈ N0. This means∥∥g(X)

∥∥
R∞ < ∞ such that g(X) ∈ R∞. g(X) ∈ R∞τ,θ follows directly from g(0) =

0.

The following lemma can easily be deduced from Lemma 5.1.5. Moreover, note
that we need the additional assumption fΛ(0) = 0 to guarantee that Λ(R∞,nτ,θ ) =
R∞τ,θ.

Lemma 7.1.7. Let Λ : Rn → R be a convex aggregation function with fΛ(0) = 0
and Im Λ = R [Im Λ = R+]. Then Λ(R∞,nτ,θ ) = R∞τ,θ [Λ(R∞,nτ,θ ) = (R∞τ,θ)+].

Proof. First, let Im Λ = R. Because of Remark 7.1.1, we can consider every X̄ ∈
R∞,nτ,θ as an element in the space (L∞H )n. Lemma 5.1.5 yields Λ((L∞H )n) ⊂ L∞H or,
in other words, Λ(R∞,n) ⊂ R∞. Moreover, the additional assumption fΛ(0) = 0
implies that Λ(0n) = fΛ(0) = 0. As a consequence, we obtain Λ(R∞,nτ,θ ) ⊂ R∞τ,θ.
On the other hand, fix an arbitrary process X ∈ R∞τ,θ. Since fΛ is a bijective

function, the inverse function f−1
Λ exists and we can define a process Y X by

Y X
t (ω) := f−1

Λ (Xt(ω)) for t ∈ N0 and ω ∈ Ω. (7.2)

Because of Lemma 7.1.6, we know that f−1
Λ (Z) ∈ R∞τ,θ for all Z ∈ R∞τ,θ. It follows

Y X ∈ R∞τ,θ and fΛ(Y X) = X. By using the fΛ-constancy property of Λ, we obtain
for all X ∈ R∞τ,θ a process Y X1n ∈ R∞,nτ,θ such that

Λ(Y X1n) = fΛ(Y X) = X.

This yields R∞τ,θ ⊂ Λ(R∞,nτ,θ ). Summing up, we arrive at Λ(R∞,nτ,θ ) = R∞τ,θ.
If Im Λ = R+, we have f−1

Λ : R+ → [b,∞) and f−1
Λ (0) = b. Hence, the process

defined in (7.2) satisfies Y X ∈ R∞0,θ for X ∈ (R∞τ,θ)+. Nevertheless, the process
(Y X)′ defined by (Y X)′ := Y XI[τ,∞) satisfies (Y X)′ ∈ R∞τ,θ and fΛ((Y X)′) = X.

7.2. Structural decomposition
In this section we extend the structural decomposition results from Chapter 5 to our
conditional setting. Although the proof of the following theorem is similar to the
proof of the static decomposition, we provide the proof in order to obtain a deeper
understanding of the relationship and dependence between conditional systemic risk
measures, conditional single-firm risk measures and aggregation functions.
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Theorem 7.2.1 (Convex structural decomposition). .

a) A mapping ρ : R∞,nτ,θ → L∞τ with ρ(RnI[τ,∞)) = R is a conditional convex
systemic risk measure if and only if there exists a convex aggregation function
Λ : Rn → R with fΛ(0) = 0 and Λ(Rn) = R and a conditional convex single-
firm risk measure ρ0 : R∞τ,θ → L∞τ that satisfies the constancy property on R
such that ρ is the composition of ρ0 and Λ, i.e.,

ρ(X̄) = (ρ0 ◦ Λ)(X̄) for all X̄ ∈ R∞,nτ,θ .

b) A mapping ρ : R∞,nτ,θ → L∞τ with ρ(RnI[τ,∞)) = R+ is a conditional convex
systemic risk measure if and only if there exists a convex aggregation function
Λ : Rn → R with Λ(Rn) = R+ and a conditional convex single-firm risk
measure ρ0 : R∞τ,θ → L∞τ that satisfies the constancy property on R+ such that
ρ is the composition of ρ0 and Λ, i.e.,

ρ(X̄) = (ρ0 ◦ Λ)(X̄) for all X̄ ∈ R∞,nτ,θ .

Proof. In case of part a), set R = S = R, and in case of part b), set R = R+ and
S = [b,∞) for b ∈ R+. Let ρ be a conditional convex systemic risk measure with
fρ : R → R such that fρ is surjective and strictly increasing on S. We define the
function Λ by

Λ(x̄) := ρ(x̄I[τ,∞)) for x̄ ∈ Rn.

The monotonicity property (A1) and the convexity property (A2) follow directly
from the corresponding property of ρ. Because ρ satisfies the fρ-constancy property,
we have

Λ(a1n) = ρ(a1nI[τ,∞)) = fρ (a) for all a ∈ R.

If we set fΛ := fρ, then we obtain the fΛ-constancy property (A3). Because
fρ(0) = 0, we also obtain the required property of fΛ. Moreover, Lemma 7.1.7
gives Λ(R∞,nτ,θ ) = R∞τ,θ in case of a) and Λ(R∞,nτ,θ ) = (R∞τ,θ)+ in case of b).
Now, define ρ̃0 : Λ(R∞,nτ,θ )→ L∞τ by

ρ̃0 (X) := ρ(X̄) where X̄ ∈ R∞,nτ,θ satisfies Λ(X̄) = X. (7.3)

Furthermore, define ρ0 : R∞τ,θ → L∞τ by

ρ0(X) :=
{
ρ̃0(X) if Λ(R∞,nτ,θ ) = R∞τ,θ
ρ̃0(X+) if Λ(R∞,nτ,θ ) = (R∞τ,θ)+

(7.4)

where the stochastic process X+ ∈ (R∞τ,θ)+ is defined by X+
t (ω) := max{Xt(ω), 0}

for t ∈ N0 and ω ∈ Ω.
First, note that ρ̃0 is well-defined: Let X̄, Ȳ ∈ R∞,nτ,θ be such that Λ(X̄) = Λ(Ȳ ).

Then

ρ(X̄t(ω)I[τ,∞)) = Λ(X̄t(ω)) = Λ(X̄)t(ω) = Λ(Ȳ )t(ω) = Λ(Ȳt(ω)) = ρ(Ȳt(ω)I[τ,∞))
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for all t ∈ N0 and a.e. ω ∈ Ω, and preference consistency of ρ yields ρ(X̄) = ρ(Ȳ ).
In what follows, we will verify monotonicity, Fτ -convexity and constancy on R for

the mapping ρ̃0 defined by (7.3). Then it follows directly that ρ0 defined by (7.4)
satisfies the monotonicity property (r1), Fτ -convexity (r2) and constancy on R (r5).
To prove the monotonicity property for ρ̃0, let X,Y ∈ Λ(R∞,nτ,θ ) with Λ(X̄) = X,

Λ(Ȳ ) = Y and X ≤ Y . Then we have

ρ(X̄t(ω)I[τ,∞)) = Λ(X̄t(ω)) = Λ(X̄)t(ω) ≤ Λ(Ȳ )t(ω) = Λ(Ȳt(ω)) = ρ(Ȳt(ω)I[τ,∞))

for all t ∈ N0 and a.e. ω ∈ Ω. Furthermore, preference consistency of ρ implies
ρ̃0(X) ≤ ρ̃0(Y ).
It remains to show Fτ -convexity and constancy on R. First, consider X,Y ∈

Λ(R∞,nτ,θ ) and γ ∈ L∞τ with 0 ≤ γ ≤ 1 and set Z := γX + (1− γ)Y . Let X̄, Ȳ, Z̄ ∈
R∞,nτ,θ be such that

ρ̃0 (X) = ρ(X̄), ρ̃0 (Y ) = ρ(Ȳ ), ρ̃0 (Z) = ρ(Z̄)

where Λ(X̄) = X, Λ(Ȳ ) = Y and Λ(Z̄) = Z. Then we obtain

ρ(Z̄t(ω)I[τ,∞)) = Λ(Z̄)t(ω)
= Zt (ω)
= γ(ω)Xt (ω) + (1− γ(ω))Yt (ω)
= γ(ω)Λ(X̄)t(ω) + (1− γ(ω)) Λ(Ȳ )t(ω)
= γ(ω)ρ(X̄t(ω)I[τ,∞)) + (1− γ(ω)) ρ(Ȳt(ω)I[τ,∞))

for all t ∈ N0 and a.e. ω ∈ Ω. Now, Fτ -convexity follows from the Fτ -risk convexity
property of ρ since

ρ̃0 (Z) = ρ(Z̄) ≤ γρ(X̄) + (1− γ) ρ(Ȳ ) = γρ̃0 (X) + (1− γ) ρ̃0 (Y ) .

Finally, note that for all a ∈ R, there exists x̄ ∈ Rn with Λ(x̄) = a and ρ̃0(aI[τ,∞)) =
ρ(x̄I[τ,∞)). Since a = Λ(x̄) = ρ(x̄I[τ,∞)), we obtain ρ̃0(aI[τ,∞)) = a for all a ∈ R.
This means that ρ̃0 satisfies the constancy property on R. The equality ρ = ρ0 ◦ Λ
follows immediately from the definition of ρ0 and Λ.
For the second part of the proof let Λ be a convex aggregation function with

fΛ : R → R that is surjective and strictly increasing on S and satisfies fΛ(0) = 0.
Moreover, assume that ρ0 is a conditional convex single-firm risk measure with
ρ0(aI[τ,∞)) = a for all a ∈ R. Monotonicity (s1) and Fτ -outcome convexity (s4a) of
ρ follow from the corresponding properties of Λ and ρ0. In order to prove preference
consistency (s2), fix X̄, Ȳ ∈ R∞,nτ,θ with

(ρ0 ◦ Λ)(X̄t (ω) I[τ,∞)) = ρ(X̄t (ω) I[τ,∞)) ≥ ρ(Ȳt (ω) I[τ,∞)) = (ρ0 ◦ Λ)(Ȳt (ω) I[τ,∞))

for all t ∈ N0 and a.e. ω ∈ Ω. Note that Λ(Rn) = R (and thus Λ(RnI[τ,∞)) = RI[τ,∞))
and ρ0(aI[τ,∞)) = a for all a ∈ R. It follows that Λ(X̄t (ω)) ≥ Λ(Ȳt (ω)) for all t ∈ N0
and a.e. ω ∈ Ω. The monotonicity property of ρ0 yields

ρ(X̄) = (ρ0 ◦ Λ)(X̄) ≥ (ρ0 ◦ Λ)(Ȳ ) = ρ(Ȳ ),
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which means that property (s2) is satisfied.
Now, consider X̄, Ȳ, Z̄ ∈ R∞,nτ,θ and γ ∈ L∞τ with 0 ≤ γ ≤ 1 and assume that

ρ(Z̄t(ω)I[τ,∞)) = γ(ω)ρ(X̄t(ω)I[τ,∞)) + (1− γ(ω)) ρ(Ȳt(ω)I[τ,∞)) for all t ∈ N0 and
a.e. ω ∈ Ω. Since ρ = ρ0 ◦ Λ, this means

ρ0(Λ(Z̄t(ω)I[τ,∞))) = γ(ω)ρ0(Λ(X̄t(ω)I[τ,∞))) + (1− γ(ω))ρ0(Λ(Ȳt(ω)I[τ,∞))) (7.5)

for all t ∈ N0 and a.e. ω ∈ Ω. Together with Λ(RnI[τ,∞)) = RI[τ,∞) and ρ0(aI[τ,∞)) =
a for all a ∈ R, Equation (7.5) yields

Λ(Z̄t (ω)) = γ(ω)Λ(X̄t (ω)) + (1− γ(ω)) Λ(Ȳt (ω))

for all t ∈ N0 and a.e. ω ∈ Ω. The Fτ -convexity property of ρ0 implies

ρ(Z̄) = ρ0(Λ(Z̄)) ≤ γρ0(Λ(X̄)) + (1− γ) ρ0(Λ(Ȳ )) = γρ(X̄) + (1− γ) ρ(Ȳ ).

Hence, ρ satisfies Fτ -risk convexity (s4b). It remains to show the fρ-constancy
property (s3). The constancy properties of Λ and ρ0 and fΛ(0) = 0 imply

ρ(a1nI[τ,∞)) = ρ0(Λ(a1nI[τ,∞))) = ρ0(fΛ(a)I[τ,∞)) = fΛ(a) for all a ∈ R.

In conclusion, fρ-constancy is satisfied with fρ := fΛ.

The positively homogeneous case reads as follows. The proof is analogous to the
proof of Corollary 5.2.3.
Corollary 7.2.2 (Positively homogeneous structural decomposition). .

a) A mapping ρ : R∞,nτ,θ → L∞τ with ρ(RnI[τ,∞)) = R is a conditional positively
homogeneous systemic risk measure if and only if there exists a positively homo-
geneous aggregation function Λ : Rn → R with Λ(Rn) = R and a conditional
coherent single-firm risk measure ρ0 : R∞τ,θ → L∞τ such that ρ is the composi-
tion of ρ0 and Λ, i.e.,

ρ(X̄) = (ρ0 ◦ Λ)(X̄) for all X̄ ∈ R∞,nτ,θ .

b) A mapping ρ : R∞,nτ,θ → L∞τ with ρ(RnI[τ,∞)) = R+ is a conditional positively
homogeneous systemic risk measure if and only if there exists a positively homo-
geneous aggregation function Λ : Rn → R with Λ(Rn) = R+ and a conditional
positively homogeneous single-firm risk measure ρ0 : R∞τ,θ → L∞τ such that ρ is
the composition of ρ0 and Λ, i.e.,

ρ(X̄) = (ρ0 ◦ Λ)(X̄) for all X̄ ∈ R∞,nτ,θ .

Remark 7.2.3. In the same way to Remark 5.2.4, there exists an alternative for-
mulation for part a) of Corollary 7.2.2:
a’) A mapping ρ : R∞,nτ,θ → L∞τ with ρ(RnI[τ,∞)) = R is a conditional positively

homogeneous systemic risk measure if and only if there exists a positively
homogeneous aggregation function Λ : Rn → R with Λ(Rn) = R and a condi-
tional positively homogeneous single-firm risk measure ρ0 : R∞τ,θ → L∞τ that
satisfies the constancy property on R such that ρ is the composition of ρ0 and
Λ, i.e.,

ρ(X̄) = (ρ0 ◦ Λ)(X̄) for all X̄ ∈ R∞,nτ,θ .
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7.3. Representations of conditional systemic risk measures
In this section we focus on different representation results for conditional convex and
positively homogeneous systemic risk measures ρ. From now on, we solely consider
compositions ρ = ρ0 ◦ Λ in the sense of Theorem 7.2.1 and Corollary 7.2.2. This
means that the conditional convex [positively homogeneous] systemic risk measure
ρ is characterized by a convex [positively homogeneous] single-firm risk measure ρ0
and a convex [positively homogeneous] aggregation function Λ. Moreover, Im Λ = R
and fΛ(0) = 0 or Im Λ = R+, and ρ0 : R∞τ,θ → L∞τ satisfies constancy on R in case
of Im Λ = R and constancy on R+ in case of Im Λ = R+.

7.3.1. Primal representation
The aim of this subsection is to obtain a first representation of conditional convex
systemic risk measures in terms of their acceptance sets.

Definition 7.3.1. The acceptance sets of the conditional convex systemic risk meas-
ure ρ = ρ0 ◦ Λ with conditional convex single-firm risk measure ρ0 and convex ag-
gregation function Λ are given by

B̃ρ0 := {(γ,X) ∈ L∞τ ×R∞τ,θ|γ ≥ ρ0 (X)} and
BΛ := {(Y, X̄) ∈ R∞τ,θ ×R

∞,n
τ,θ |Y ≥ Λ(X̄)}.

Note that BΛ = {(Y, X̄) ∈ R∞τ,θ × R
∞,n
τ,θ |Yt ≥ Λ(X̄t) for all t ∈ N0}. In the

following proposition we use the properties from Definition 5.4.2 for subsets of L∞τ ×
R∞τ,θ and R∞τ,θ ×R

∞,n
τ,θ .

Proposition 7.3.2. Suppose that ρ = ρ0 ◦ Λ is a conditional convex systemic risk
measure with conditional convex single-firm risk measure ρ0 : R∞τ,θ → L∞τ and convex
aggregation function Λ : Rn → R. Let B̃ρ0 and BΛ be the corresponding acceptance
sets.

1. B̃ρ0 and BΛ satisfy the following properties:

a) B̃ρ0 and BΛ satisfy the monotonicity property.
b) B̃ρ0 and BΛ satisfy the epigraph property.
c) B̃ρ0 and BΛ are Fτ -convex sets.
d) (a, aI[τ,∞)) ∈ B̃ρ0 with ess inf{γ ∈ L∞τ |(γ, aI[τ,∞)) ∈ B̃ρ0} = a for all

a ∈ Im Λ and
(fΛ(a)I[τ,∞), a1nI[τ,∞)) ∈ BΛ with ess inf{γ ∈ L∞τ | (γI[τ,∞), a1nI[τ,∞)) ∈
BΛ} = fΛ(a) for all a ∈ R.

If ρ = ρ0 ◦ Λ is a conditional positively homogeneous systemic risk measure,
then the following properties are additionally satisfied:
e) B̃ρ0 and BΛ are Fτ -cones.
f) (nI[τ,∞), 1nI[τ,∞)) ∈ BΛ with ess inf{γ ∈ L∞τ |(γI[τ,∞), 1nI[τ,∞)) ∈ BΛ} =
n.
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2. ρ admits the so called primal representation

ρ(X̄) = ess inf{γ ∈ L∞τ |(γ, Y ) ∈ B̃ρ0 , (Y, X̄) ∈ BΛ} for all X̄ ∈ R∞,nτ,θ (7.6)

where we set ess inf ∅ := +∞.

Proof. All properties in 1.a)-1.f) for B̃ρ0 and BΛ are satisfied due to the properties
of ρ0 and Λ. Furthermore, we know that ρ0 is for all X ∈ R∞τ,θ representable by

ρ0 (X) = ess inf{γ ∈ L∞τ |γ ≥ ρ0 (X)} = ess inf{γ ∈ L∞τ |(γ,X) ∈ B̃ρ0}.

Since R∞ = L∞H , we can consider V ∈ R∞τ,θ as an element in the larger space L∞H .
It follows that

Λ(Z̄) = ess inf{V ∈ L∞H |V ≥ Λ(Z̄)} = ess inf{V ∈ L∞H |V ≥ Λ(Z̄), V ∈ R∞τ,θ}
= ess inf{V ∈ L∞H |(V, Z̄) ∈ BΛ}.

for all Z̄ ∈ R∞,nτ,θ . Because equality ρ = ρ0 ◦Λ is satisfied, the representations above
yield

ρ(X̄) = ess inf{γ ∈ L∞τ
∣∣γ ≥ (ρ0 ◦ Λ)(X̄)} = ess inf{γ ∈ L∞τ

∣∣(γ,Λ(X̄)) ∈ B̃ρ0}
= ess inf{γ ∈ L∞τ

∣∣(γ, ess inf{V ∈ L∞H |(V, X̄) ∈ BΛ}) ∈ B̃ρ0}

for all X̄ ∈ R∞,nτ,θ . Representation (7.6) follows from the monotonicity property of
B̃ρ0 .

7.3.2. Continuity and closedness
In this subsection we provide closedness results for the acceptance sets of the condi-
tional convex systemic risk measure ρ = ρ0 ◦Λ. These results will be applied in the
next subsection to obtain a dual representation of ρ.
But first, note that for any γ ∈ L∞τ , we can identify the element γI[τ,∞) ∈ R∞τ,θ.

If we define

Bρ0 := {(X,Z) ∈ R∞τ,θ ×R∞τ,θ|X = γI[τ,∞) for γ ∈ L∞τ , γ ≥ ρ0(Z)},

then we have a one-to-one relation between the sets B̃ρ0 and Bρ0 . From now on, we
focus on the set Bρ0 .
The following lemma is a generalization of Lemma A.65 in Föllmer and Schied

(2011) for multi-dimensional L∞-spaces.

Remark 7.3.3 (See, e.g., Section 5.14 in Aliprantis and Border (2006)). Let (X ,V)
be paired spaces and suppose that

〈
·, ·
〉
is the corresponding bilinear form. Consider

a net (xι) ⊂ X and x ∈ X . Then xι → x in σ(X ,V) if and only if〈
xι, v

〉
→
〈
x, v

〉
in R for all v ∈ V.

Similarly, if we suppose that (vι) ⊂ V is a net and v ∈ V, then vι → v in σ(V,X ) if
and only if 〈

x, vι
〉
→
〈
x, v

〉
in R for all x ∈ X .
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Lemma 7.3.4. Define the set Br∞,m := {X̄ ∈ (L∞H )m|
∥∥X̄∥∥(L∞H )m ≤ r} for r > 0.

1. For every r > 0, the set Br∞,m is closed in (L1
H)m, i.e., for every sequence

(Ȳ (k)) ⊂ Br∞,m that converges to Ȳ in (L1
H)m, we have Ȳ ∈ Br∞,m.

2. A convex subset C of (L∞H )m is σ((L∞H )m, (L1
H)m)-closed if the set Cr := C ∩

Br∞,m is closed in (L1
H)m for every r > 0.

Proof. Part 1: Fix r > 0 and let (Ȳ (k)) ⊂ Br∞,m with Ȳ (k) → Ȳ in (L1
H)m. This

means that
∥∥Ȳ (k) − Ȳ

∥∥
(L1
H)m =

∑m
i=1
∥∥(Ȳ (k))i − Ȳ i

∥∥
L1
H
→ 0. Hence, (Ȳ (k))i → Ȳ i

in L1
H for each i ∈ {1, . . . ,m}. Moreover, there exists a subsequence Ȳ (kl) such that

(Ȳ (kl))i → Ȳ i η-a.s. and in L1
H for each i ∈ {1, . . . ,m}. In addition, the inequality

|Ȳ i| ≤ |(Ȳ (kl))i|+ |(Ȳ (kl))i − Ȳ i| ≤
∥∥(Ȳ (kl))i

∥∥
L∞H

+ |(Ȳ (kl))i − Ȳ i| η − a.s.

implies

max
i∈{1,...,m}

|Ȳ i| ≤ max
i∈{1,...,m}

(∥∥(Ȳ (kl))i
∥∥
L∞H

+ |(Ȳ (kl))i − Ȳ i|
)

≤ max
i∈{1,...,m}

∥∥(Ȳ (kl))i
∥∥
L∞H

+ max
i∈{1,...,m}

|(Ȳ (kl))i − Ȳ i|

≤ r + max
i∈{1,...,m}

|(Ȳ (kl))i − Ȳ i| η − a.s.

Since the convergence (Ȳ (kl))i → Ȳ i holds η-a.s., it follows maxi∈{1,...,m} |Ȳ i| ≤ r

η-a.s. Therefore, we obtain |Ȳ i| ≤ r η-a.s. for all i ∈ {1, . . . ,m}, which implies∥∥Ȳ i
∥∥
L∞H
≤ r for all i ∈ {1, . . . ,m} because

∥∥Ȳ i
∥∥
L∞H

= inf{c ∈ R||Ȳ i| ≤ c η-a.s.}.
But this leads to maxi∈{1,...,m}

∥∥Ȳ i
∥∥
L∞H
≤ r, which shows that Ȳ ∈ Br∞,m.

Part 2: First, note that the natural injection

Υ : ((L∞H )m, σ((L∞H )m, (L1
H)m))→ ((L1

H)m, σ((L1
H)m, (L∞H )m))

is continuous: To this end, consider a net (X̄(ι)) ⊂ (L∞H )m with X̄(ι) → X̄ ∈ (L∞H )m
in the topological space ((L∞H )m, σ((L∞H )m, (L1

H)m)). Then

〈
X̄(ι), Ξ̄

〉
(L∞H )m,(L1

H)m →
〈
X̄, Ξ̄

〉
(L∞H )m,(L1

H)m for all Ξ̄ ∈ (L1
H)m.

Since
〈
Z̄, Ȳ

〉
(L∞H )m,(L1

H)m =
〈
Ȳ, Z̄

〉
(L∞H )m,(L1

H)m for all Ȳ, Z̄ ∈ (L∞H )m, this implies

〈
Z̄, X̄(ι)〉

(L∞H )m,(L1
H)m =

〈
X̄(ι), Z̄

〉
(L∞H )m,(L1

H)m

→
〈
X̄, Z̄

〉
(L∞H )m,(L1

H)m =
〈
Z̄, X̄

〉
(L∞H )m,(L1

H)m

for all Z̄ ∈ (L∞H )m. But this means that X̄(ι) → X̄ in ((L1
H)m, σ((L1

H)m, (L∞H )m)).
Hence, Υ is continuous.
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Now, suppose that Cr is closed in (L1
H)m for every r > 0 and let C be convex.

Since for X̄, Ȳ ∈ Cr and a ∈ [0, 1], we have

max
i∈{1,...,n}

∥∥aX̄i + (1− a)Ȳ i
∥∥
L∞H
≤ max

i∈{1,...,n}

(
a
∥∥X̄i

∥∥
L∞H

+ (1− a)
∥∥Ȳ i

∥∥
L∞H

)
,

≤ a max
i∈{1,...,n}

∥∥X̄i
∥∥
L∞H

+ (1− a) max
i∈{1,...,n}

∥∥Ȳ i
∥∥
L∞H
≤ r,

the set Cr is convex for every r > 0. It follows that each Cr is also σ((L1
H)m, (L∞H )m)-

closed; see, for instance, Theorem A.60 in Föllmer and Schied (2011). Continuity of
Υ implies that Cr is σ((L∞H )m, (L1

H)m)-closed in (L∞H )m. Finally, the Krein-Šmulian
theorem (see Theorem A.2.5) yields that C is σ((L∞H )m, (L1

H)m)-closed.

In the following definition, we introduce continuity properties for mappings defined
on R∞,mτ,θ and R∞τ,θ × R

∞,m
τ,θ . This definition is closely related to Definition 3.15 in

Cheridito et al. (2006) (see Definition 6.2.3).

Definition 7.3.5. We say that a sequence (X̄(k)) ⊂ R∞,mτ,θ is increasing (decreasing)
if each (X̄(k))i ⊂ R∞τ,θ, i ∈ {1, . . . ,m}, is increasing (decreasing) in k. Moreover,
for every s ∈ N0, X̄(k)

s ↑ X̄s P-a.s. for some X̄ ∈ R∞,mτ,θ means that (X̄(k)
s )i ↑ (X̄s)i

P-a.s. for all i ∈ {1, . . . ,m}.
We call a mapping υ : R∞,mτ,θ → L∞ continuous for bounded increasing sequences

if for X̄ ∈ R∞,mτ,θ and every increasing sequence (X̄(k)) ⊂ R∞,mτ,θ with X̄
(k)
t ↑ X̄t

P-a.s. for all t ∈ N0, we obtain limk→∞ υ(X̄(k)) = υ(X̄) P-a.s.
Similarly, a mapping Υ : R∞τ,θ × R

∞,m
τ,θ → L∞ is called continuous for bounded

decreasing sequences in the first argument and bounded increasing sequences in the
second argument if for (X, Ȳ ) ∈ R∞τ,θ × R

∞,m
τ,θ and every sequence (X(k), Ȳ (k)) ⊂

R∞τ,θ ×R
∞,m
τ,θ that satisfies X(k)

t ↓ Xt and Ȳ (k)
t ↑ Ȳt P-a.s. for all t ∈ N0, we obtain

limk→∞Υ(X(k), Ȳ (k)) = Υ(X, Ȳ ) P-a.s.

The subsequent lemma is one of the main results in this subsection and yields a
closedness result for the acceptance set Bρ0 . For the proof we borrow ideas from
the proof of Lemma 3.17 in Cheridito et al. (2006) and Section 4 in Cheridito et al.
(2004).

Lemma 7.3.6. Let ρ0 be a conditional convex single-firm risk measure. If ρ0 is
continuous for bounded increasing sequences, then the acceptance set Bρ0 is σ(R∞×
R∞,A1 ×A1)-closed.

Proof. Consider the map % : R∞τ,θ×R∞τ,θ → L∞τ defined by %(X,Y ) := ρ0(Y )−Xτ . If
ρ0 is continuous for bounded increasing sequences, then % is continuous for bounded
decreasing sequences in the first argument and bounded increasing sequences in the
second argument. Moreover, since for each γ ∈ L∞τ and Z ∈ R∞τ,θ, γ ≥ ρ0(Z) if and
only if 0 ≥ %(γI[τ,∞), Z), we obtain

Bρ0 = {(X,Z) ∈ R∞τ,θ ×R∞τ,θ|X = γI[τ,∞) for γ ∈ L∞τ and 0 ≥ %(γI[τ,∞), Z)}.
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Consider a net (Xι, Y ι) ⊂ Bρ0 and (X#, Y #) ∈ R∞ with (Xι, Y ι) → (X#, Y #)
in the topological space (R∞ × R∞, σ(R∞ × R∞,A1 × A1)). Then (X#, Y #) ∈
R∞τ,θ × R∞τ,θ and X# = γ#I[τ,∞) for some γ# ∈ L∞τ . Assume that 0 < %(X#, Y #)
on a set A ∈ Fτ with P [A] > 0. The function %̃ : R∞τ,θ ×R∞τ,θ → R defined by

%̃(X,Z) := E[%(XτI[τ,∞), Z)IA]

is obviously decreasing in the first and increasing in the second argument and convex.
Moreover, ρ̃ is continuous for bounded decreasing sequences in the first argument and
bounded increasing sequences in the second argument: Consider (X,Y ) ∈ R∞τ,θ×R∞τ,θ
and a sequence (X(k), Y (k)) ⊂ R∞τ,θ × R∞τ,θ that satisfies X(k)

t ↓ Xt and Y
(k)
t ↑ Yt

P-a.s. for all t ∈ N0. Then %(X(k)
τ I[τ,∞), Y

(k)) ↑ %(XτI[τ,∞), Y ) P-a.s. Hence, by the
monotone convergence theorem, we obtain %̃(X(k), Y (k)) ↑ %̃(X,Y ).
Now, note that R∞ = L∞H and identify A1 with L1

H. Define the convex set
D%̃ := {(X,Z) ∈ R∞τ,θ × R∞τ,θ|X = γI[τ,∞) for γ ∈ L∞τ and 0 ≥ %̃(γI[τ,∞), Z)}. We
will show that the set

Cr := D%̃ ∩ {(X,Z) ∈ L∞H × L∞H | ‖(X,Z)‖L∞H×L∞H ≤ r}

is closed in L1
H×L1

H for each r > 0. Then it follows from the second part of Lemma
7.3.4 that D%̃ is σ(L∞H × L∞H , L1

H × L1
H)-closed.

To this end, fix r > 0, consider Cr as a subset of L1
H×L1

H and let (γ(k)I[τ,∞), Z
(k)) ⊂

Cr be a sequence which converges to (γI[τ,∞), Z) in L1
H × L1

H.
By the first part of Lemma 7.3.4, we have

∥∥(γI[τ,∞), Z)
∥∥
L∞H×L

∞
H
≤ r. It re-

mains to show that 0 ≥ %̃(γI[τ,∞), Z). Since (γ(k)I[τ,∞), Z
(k)) ⊂ Cr converges to

(γI[τ,∞), Z) in L1
H × L1

H, there exists a subsequence (γ(kl)I[τ,∞), Z
(kl)) ⊂ L1

H × L1
H

such that (γ(kl)I{τ≤t}, Z
(kl)
t ) → (γI{τ≤t}, Zt) P-a.s. for all t ∈ N0. If we define

Y
(m)
t := inf l≥m(Z(kl)

t ∧ Zt) for all t ∈ N0, then (Y (m)) is increasing with Y (m)
t ↑ Zt

P-a.s. for all t ∈ N0 and Y (m)
t ≤ Z

(km)
t for all m ∈ N and t ∈ N0. Similarly, define

φ(m) := supl≥m(γ(kl) ∨ γ) such that (φ(m)) is decreasing with φ(m) ↓ γ P-a.s. and
φ(m) ≥ γ(km) for all m ∈ N.
The monotonicity property of %̃ yields %̃(γ(km)I[τ,∞), Z

(km)) ≥ %̃(φ(m)I[τ,∞), Y
(m)),

and together with the continuity property of %̃, we obtain

0 ≥ lim inf
m→∞

%̃(γ(km)I[τ,∞), Z
(km)) ≥ lim

m→∞
%̃(φ(m)I[τ,∞), Y

(m)) = %̃(γI[τ,∞), Z).

Thus, Cr is closed in L1
H × L1

H.
As (Xι, Y ι) ∈ Bρ0 , we know that Xι = γιI[τ,∞) and 0 ≥ %(γιI[τ,∞), Y

ι). This
implies %̃(γιI[τ,∞), Y

ι) = E[%(γιI[τ,∞), Y
ι)IA] ≤ 0, i.e., (Xι, Y ι) ∈ D%̃. Because D%̃ is

σ(L∞H × L∞H , L1
H × L1

H)-closed, this means that (X#, Y #) ∈ D%̃ and

0 ≥ %̃(X#, Y #) = E[%(γ#I[τ,∞), Y
#)IA] = E[%(γ#I[τ,∞), Y

#)|A]P[A].

Since P[A] > 0 and 0 < %(X#, Y #) on A, this is a contradiction. It follows
%(X#, Y #) ≤ 0, i.e., Bρ0 is σ(R∞ ×R∞,A1 ×A1)-closed.
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Before we prove the analogous result to Lemma 7.3.6 for the acceptance set BΛ,
note that every convex aggregation function Λ : Rn → R is automatically continuous.
This implies that Λ satisfies the following property: For X̄ ∈ R∞,mτ,θ and every
increasing sequence (X̄(k)) ⊂ R∞,mτ,θ with X̄(k)

t ↑ X̄t P-a.s. for all t ∈ N0, it follows
that Λ(X̄(k)

t ) ↑ Λ(X̄t) P-a.s. for all t ∈ N0.

Lemma 7.3.7. Let Λ be a convex aggregation function. Then the acceptance set BΛ
is σ(R∞,n+1,A1,n+1)-closed.

Proof. Define the mapping Υt : R∞τ,θ × R
∞,n
τ,θ → L∞t by Υt(X, Z̄) := Λ(Z̄t) − Xt

for all t ∈ N0. Since Λ is continuous, each Υt is continuous for bounded decreasing
sequences in the first argument and bounded increasing sequences in the second
argument. Moreover, since for each (X, Z̄) ∈ R∞τ,θ×R

∞,n
τ,θ , Xt ≥ Λ(Z̄t) for all t ∈ N0

if and only if 0 ≥ Υt(X, Z̄) for all t ∈ N0, we obtain

BΛ =
{
(X, Z̄) ∈ R∞τ,θ ×R

∞,n
τ,θ

∣∣0 ≥ Υt(X, Z̄) for all t ∈ N0
}
.

Consider a net (Y ι, X̄ι) ⊂ BΛ and (Y #, X̄#) ∈ R∞,n+1 with (Y ι, X̄ι)→ (Y #, X̄#) in
the topological space (R∞,n+1, σ(R∞,n+1,A1,n+1)). Then (Y #, X̄#) ∈ R∞τ,θ×R

∞,n
τ,θ .

Assume that there exists s ∈ N0 such that 0 < Υs(Y #, X̄#) on a set As ∈ Fs with
P[As] > 0. For all other (s 6=)t ∈ N0, we set At := ∅. For each t ∈ N0, the function
Υ̃t : R∞τ,θ ×R

∞,n
τ,θ → R defined by

Υ̃t(Y, X̄) := E[Υt(Y, X̄)IAt ]

is decreasing in the first and increasing in the second argument, convex and continu-
ous for bounded decreasing sequences in the first argument and bounded increasing
sequences in the second argument.
From now on, we use that R∞ = L∞H and identify A1 with L1

H. Define DΥ̃ :=
{(Y, X̄) ∈ R∞τ,θ ×R

∞,n
τ,θ

∣∣0 ≥ Υ̃t(Y, X̄) for all t ∈ N0} and consider the set

Cr := DΥ̃ ∩ {(Y, X̄) ∈ L∞H × (L∞H )n|
∥∥(Y, X̄)

∥∥
(L∞H )n+1 ≤ r}.

We will show that Cr is closed in (L1
H)n+1 for each r > 0. According to the second

part of Lemma 7.3.4, this implies that DΥ̃ is σ((L∞H )n+1, (L1
H)n+1)-closed.

Fix r > 0 and let (Z(k), Ū (k)) ⊂ Cr be a sequence which converges to (Z, Ū) in
(L1
H)n+1. By the first part of Lemma 7.3.4, we know that

∥∥(Z, Ū)
∥∥

(L∞H )n+1 ≤ r.
Hence, it remains to verify that 0 ≥ Υ̃t(Z, Ū) for all t ∈ N0. For t 6= s this is trivial.
In conclusion, we have to consider the case t = s.
Since (Z(k), Ū (k)) ⊂ Cr converges to (Z, Ū) in the space (L1

H)n+1, we can find a
subsequence (Z(kl), Ū (kl)) ⊂ (L1

H)n+1 such that (Z(kl)
u , Ū

(kl)
u )→ (Zu, Ūu) P-a.s. for all

u ∈ N0. Define (Ȳ (m))iu := inf l≥m((Ū (kl))iu ∧ Ū iu) for each i ∈ {1, . . . , n} and u ∈ N0.
Then Ȳ (m)

u ↑ Ūu P-a.s. for all u ∈ N0 and Ȳ (m)
u ≤ Ū

(km)
u for all m ∈ N and u ∈ N0.

Similarly, for V (m)
u := supl≥m(Z(kl)

u ∨Zu), u ∈ N0, we obtain V (m)
u ↓ Zu P-a.s. for all

u ∈ N0 and V (m)
u ≥ Z

(km)
u for all m ∈ N and u ∈ N0. The monotonicity property of
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Υ̃s implies Υ̃s(Z(km), Ū (km)) ≥ Υ̃s(V (m), Ȳ (m)), and the continuity property of Υ̃s

yields

0 ≥ lim inf
m→∞

Υ̃s(Z(km), Ū (km)) ≥ lim
m→∞

Υ̃s(V (m), Ȳ (m)) = Υ̃s(Z, Ū).

Altogether, we get the closedness of Cr in (L1
H)n+1.

Since (Y ι, X̄ι) ∈ BΛ, we know that 0 ≥ Υt(Y ι, X̄ι) for all t ∈ N0. This implies
Υ̃t(Y ι, X̄ι) = E[Υt(Y ι, X̄ι)IAt ] ≤ 0 for all t ∈ N0, i.e., (Y ι, X̄ι) ∈ DΥ̃. Because DΥ̃
is σ((L∞H )n+1, (L1

H)n+1)-closed, this means that (Y #, X̄#) ∈ DΥ̃ and

0 ≥ Υ̃t(Y #, X̄#) = E[Υt(Y #, X̄#)IAt ] = E[Υt(Y #, X̄#)|At]P[At] for all t ∈ N0.

But this is a contradiction to P[As] > 0 and 0 < Υs(Y #, X̄#) on As. It follows
Υt(Y #, X̄#) ≤ 0 for all t ∈ N0. In other words, BΛ is σ(R∞,n+1,A1,n+1)-closed.

The next lemma is another building block for the proof of the dual representation
result in the following subsection.

Lemma 7.3.8. Let ρ = ρ0◦Λ be a conditional convex systemic risk measure charac-
terized by a conditional convex single-firm risk measure ρ0 and a convex aggregation
function Λ. If ρ0 is continuous for bounded increasing sequences, then the convex
set

Cd,X̄ρ0◦Λ := {(V,X,Z, Z̄) ∈ R∞,n+3
τ,θ

∣∣V = φI[τ,∞) for some φ ∈ L∞τ and
E[ρ0(Λ(X̄ − Z̄)−X − Z)]− E[φ] ≤ d}

is σ(R∞,n+3,A1,n+3)-closed for each d ∈ R and each X̄ ∈ R∞,nτ,θ .

Proof. Fix d ∈ R and X̄ ∈ R∞,nτ,θ and consider the function % : R∞,n+3
τ,θ → R defined

by %(V,X,Z, Z̄) := E[ρ0(Λ(X̄ − Z̄)−X −Z)]−E[Vτ ]− d. Then % is decreasing due
to the monotonicity properties of ρ0 and Λ. Let (Ũ (k)) := (V (k), X(k), Z(k), Z̄(k)) ⊂
R∞,n+3
τ,θ be a decreasing sequence with Ũ

(k)
t ↓ Ũt P-a.s. for all t ∈ N0 and Ũ :=

(V,X,Z, Z̄) ∈ R∞,n+3
τ,θ . Then continuity and monotonicity of Λ imply Λ(X̄−Z̄(k))t ↑

Λ(X̄ − Z̄)t P-a.s. for all t ∈ N0. Furthermore, the continuity for bounded increasing
sequences and the monotonicity property of ρ0 yield ρ0(Λ(X̄− Z̄(k))−X(k)−Z(k)) ↑
ρ0(Λ(X̄ − Z̄) − X − Z) P-a.s. By the monotone convergence theorem, we obtain
%(V (k), X(k), Z(k), Z̄(k)) ↑ %(V,X,Z, Z̄).
Since for each (V,X,Z, Z̄) ∈ R∞,n+3

τ,θ , d ≥ E[ρ0(Λ(X̄− Z̄)−X−Z)]−E[Vτ ] if and
only if 0 ≥ %(V,X,Z, Z̄), we have

Cd,X̄ρ0◦Λ = {(V,X,Z, Z̄) ∈ R∞,n+3
τ,θ |V = φI[τ,∞) for some φ ∈ L∞τ and

0 ≥ %(φI[τ,∞), X, Z, Z̄)}.

We will show that the set

Cr := Cd,X̄ρ0◦Λ ∩ {(V,X,Z, Z̄) ∈ (L∞H )n+3|
∥∥(V,X,Z, Z̄)

∥∥
(L∞H )n+3 ≤ r}
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is closed in (L1
H)n+3 for each r > 0. Then Cd,X̄ρ0◦Λ is σ((L∞H )n+3, (L1

H)n+3)-closed due
to the second part of Lemma 7.3.4.
Now, fix r > 0 and let (Ũ (k)) := (φ(k)I[τ,∞), X

(k), Z(k), Z̄(k)) ⊂ Cr be a sequence
that satisfies (Ũ (k)) → Ũ in (L1

H)n+3 for Ũ = (φI[τ,∞), X, Z, Z̄) ∈ (L1
H)n+3. It

remains to prove that 0 ≥ %(Ũ).
Since (Ũ (k))i → Ũ i in L1

H for each i ∈ {1, . . . , n + 3}, there exists a subsequence
(Ũ (kl)) such that (Ũ (kl))i → Ũ i η-a.s. and in L1

H for each i ∈ {1, . . . , n + 3}. This
means that (Ũ (kl))it → Ũ it P-a.s. for all t ∈ N0. Define (Ỹ (m))it := supl≥m((Ũ (kl))it ∨
Ũ it ) for all t ∈ N0 and i ∈ {1, . . . , n + 3}. Then (Ỹ (m))i ⊂ R∞ is decreasing and
(Ỹ (m))it ↓ Ũ it P-a.s. for all t ∈ N0 and i ∈ {1, . . . , n + 3}. By the monotonicity
property of %, we have %(Ũ (km)

t ) ≥ %(Ỹ (m)), and the continuity property of % implies

0 ≥ lim inf
m→∞

%(Ũ (km)) ≥ lim
m→∞

%(Ỹ (m)) = %(Ũ).

Note that the pairing 〈·, ·〉m defined on R∞,m ×A1,m induces the pairing

〈·, ·〉m |R∞,m
τ,θ
×A1,m

τ,θ
: R∞,mτ,θ ×A

1,m
τ,θ → R

defined on R∞,mτ,θ ×A
1,m
τ,θ . In the following, we do not distinguish between these two

cases. The next lemma provides a basic property of the spaces R∞,mτ,θ and A1,m
τ,θ .

Lemma 7.3.9. R∞,mτ,θ and A1,m
τ,θ satisfy the following properties:

1. R∞,mτ,θ separates points of A1,m
τ,θ under 〈·, ·〉m: If ξ̄ ∈ A

1,m
τ,θ and

〈
X̄, ξ̄

〉
m

= 0 for
all X̄ ∈ R∞,mτ,θ , then ξ̄ = 0.

2. A1,m
τ,θ separates points of R∞,mτ,θ under 〈·, ·〉m: If X̄ ∈ R∞,mτ,θ and

〈
X̄, ξ̄

〉
m

= 0
for all ξ̄ ∈ A1,m

τ,θ , then X̄ = 0.

Proof. We know from Remark 7.1.1 that R∞,m separates points of A1,m and A1,m

separates points of R∞,m under 〈·, ·〉m. This means

ξ̄ ∈ A1,m and
〈
X̄, ξ̄

〉
m

= 0 for all X̄ ∈ R∞,m ⇒ ξ̄ = 0, (7.7)
X̄ ∈ R∞,m and

〈
X̄, ξ̄

〉
m

= 0 for all ξ̄ ∈ A1,m ⇒ X̄ = 0. (7.8)

Let us first consider ξ̄ ∈ A1,m
τ,θ and assume that

〈
X̄, ξ̄

〉
m

= 0 for all X̄ ∈ R∞,mτ,θ . Then
every Ȳ ∈ R∞,m satisfies

〈
Ȳ, ξ̄

〉
m

=
m∑
i=1

E

∑
t∈N0

Ȳ i
t ∆ξ̄it

 =
m∑
i=1

E

 ∑
t∈[τ,θ]∩N0

Ȳ i
t ∆ξ̄it

 =
〈
Z̄, ξ̄

〉
m

for Z̄ := Ȳ I[τ,θ] + ȲθI(θ,∞) ∈ R
∞,m
τ,θ . Hence, it follows

〈
Ȳ, ξ̄

〉
m

= 0 for all Ȳ ∈ R∞,m

and (7.7) yields ξ̄ = 0. Therefore, R∞,mτ,θ separates points of A1,m
τ,θ under 〈·, ·〉m.
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On the other hand, let X̄ ∈ R∞,mτ,θ and assume that
〈
X̄, ξ̄

〉
m

= 0 for all ξ̄ ∈ A1,m
τ,θ .

Now, consider an arbitrary ψ̄ ∈ A1,m. Since
〈
X̄, ψ̄

〉
m

=
∑m
i=1 E[

∑
t∈N0 X̄

i
t∆ψit]

and X̄ ∈ R∞,mτ,θ , we can find an element φ̄ ∈ A1,m
τ,θ such that

〈
X̄, ψ̄

〉
m

=
〈
X̄, φ̄

〉
m
:

Define φ̄ ∈ A1,m by φ̄it := 0 on {t < τ}, ∆φ̄it := ∆ψ̄it on {τ ≤ t < θ}, ∆φ̄iθ :=
E[
∑
t∈[θ,∞)∩N0 ∆ψ̄it|Fθ] and φ̄it := φ̄iθ on {t > θ} for i ∈ {1, . . . ,m}. Then φ̄ ∈ A1,m

τ,θ

because φ̄ = pτ,θm (φ̄) and

∥∥φ̄∥∥A1,m =
m∑
i=1

E

 ∑
t∈[τ,θ)∩N0

∣∣∆ψ̄it∣∣+
∣∣∣∣∣∣E
 ∑
t∈[θ,∞)∩N0

∆ψ̄it

∣∣∣∣∣∣Fθ
∣∣∣∣∣∣


≤
m∑
i=1

E

 ∑
t∈[τ,θ)∩N0

∣∣∆ψ̄it∣∣+ ∑
t∈[θ,∞)∩N0

|∆ψ̄it|

 ≤ ∥∥ψ̄∥∥A1,m <∞.

Moreover, we have

〈
X̄, ψ̄

〉
m

=
m∑
i=1

E
 ∑
t∈[τ,θ)∩N0

X̄i
t∆ψ̄it

+ E

X̄i
θ

∑
t∈[θ,∞)∩N0

∆ψ̄it


=

m∑
i=1

E
 ∑
t∈[τ,θ)∩N0

X̄i
t∆ψ̄it

+ E

X̄i
θE

 ∑
t∈[θ,∞)∩N0

∆ψ̄it

∣∣∣∣∣∣Fθ


=
m∑
i=1

E
 ∑
t∈[τ,θ)∩N0

X̄i
t∆φ̄it

+ E[X̄i
θ∆φ̄iθ]


=
〈
X̄, φ̄

〉
m
.

Hence, for any ψ̄ ∈ A1,m, there exists an element φ̄ ∈ A1,m
τ,θ such that

〈
X̄, ψ̄

〉
m

=〈
X̄, φ̄

〉
m
. This implies

〈
X̄, ψ̄

〉
m

= 0 for any ψ̄ ∈ A1,m. Thus, (7.8) yields X̄ = 0. In
other words, A1,m

τ,θ separates points of R∞,mτ,θ under 〈·, ·〉m.

Because of the previous Lemma, we can define the topology σ(R∞,mτ,θ ,A1,m
τ,θ ) on

R∞,mτ,θ and the topology σ(A1,m
τ,θ ,R

∞,m
τ,θ ) on A1,m

τ,θ (see Definition A.2.1). Both topol-
ogies are compatible with the pairing 〈·, ·〉m. Let us consider the so called subspace
topology Tmτ,θ on R∞,mτ,θ defined by

Tmτ,θ := {U ∩ R∞,mτ,θ |U ∈ σ(R∞,m,A1,m)}.

The next remark clarifies the relationship between σ(R∞,mτ,θ ,A1,m
τ,θ ) and Tmτ,θ.

Remark 7.3.10. It is well known that σ(R∞,m,A1,m) = σ(R∞,m,F ) where F =
{fξ̄ : R∞,m → R|fξ̄(·) =

〈
·, ξ̄
〉
m

for ξ̄ ∈ A1,m}. Here, the topology σ(R∞,m,F )
denotes the topology on R∞,m defined by the base which is given by all sets of the
form

{Ȳ ∈ R∞,m||fξ̄(i)(Ȳ )− fξ̄(i)(X̄)| < ε, i = 1, . . . , n}



166 7. Conditional and dynamic systemic risk measures

for n ∈ N, X̄ ∈ R∞,m and fξ̄(i) ∈ F ; see, for instance, Section V.3 in Dunford and
Schwartz (1957). Lemma 2.53 in Aliprantis and Border (2006) states that Tmτ,θ =
σ(R∞,mτ,θ ,F |R∞,m

τ,θ
) where F |R∞,m

τ,θ
:= {fξ̄|R∞,mτ,θ

: R∞,mτ,θ → R|fξ̄ ∈ F}. Moreover, in
the proof of the previous lemma we have verified that for each ξ̄ ∈ A1,m, we can find
an element φ̄ ∈ A1,m

τ,θ such that
〈
X̄, ξ̄

〉
m

=
〈
X̄, φ̄

〉
m

for all X̄ ∈ R∞,mτ,θ . This implies
F |R∞,m

τ,θ
= {gξ̄ : R∞,mτ,θ → R|gξ̄(·) =

〈
·, ξ̄
〉
m

for ξ̄ ∈ A1,m
τ,θ }. As a consequence, we

have
Tmτ,θ = σ(R∞,mτ,θ ,F |R∞,m

τ,θ
) = σ(R∞,mτ,θ ,A1,m

τ,θ ).

Finally, the previous results are combined to the following lemma.

Lemma 7.3.11. Let ρ0 be a conditional convex single-firm risk measure and Λ be
a convex aggregation function.

1. If ρ0 is continuous for bounded increasing sequences, then the acceptance set
Bρ0 is σ(R∞τ,θ ×R∞τ,θ,A1

τ,θ ×A1
τ,θ)-closed.

2. The acceptance set BΛ is σ(R∞,n+1
τ,θ ,A1,n+1

τ,θ )-closed.

3. If ρ0 is continuous for bounded increasing sequences, then the set Cd,X̄ρ0◦Λ is
σ(R∞,n+3

τ,θ ,A1,n+3
τ,θ )-closed for all d ∈ R and X̄ ∈ R∞τ,θ.

Proof. Note that the Tmτ,θ-closed subsets C of R∞,mτ,θ are the sets C = D ∩ R∞,mτ,θ

where D is some σ(R∞,m,A1,m)-closed subset of R∞,m; see, for instance, Section
2.1 in Aliprantis and Border (2006). Since Bρ0 = Bρ0 ∩ (R∞τ,θ×R∞τ,θ), it follows from
Lemma 7.3.6 that Bρ0 is T2

τ,θ-closed. Similarly, we obtain that BΛ is Tn+1
τ,θ -closed

and Cd,X̄ρ0◦Λ is Tn+3
τ,θ -closed for all d ∈ R and X̄ ∈ R∞τ,θ. Now, all assertions follow from

the previous remark.

7.3.3. Dual representation
In order to formulate a dual representation result for conditional convex systemic risk
measures, we have to generalize the definitions from Section 6.2 for m dimensions.
Hence, define for X̄ ∈ R∞,m and ξ̄ ∈ A1,m

〈
X̄, ξ̄

〉τ,θ
m

:=
m∑
i=1

〈
X̄i, ξ̄i

〉τ,θ =
m∑
i=1

E

 ∑
t∈[τ,θ]∩N0

X̄i
t∆ξ̄it

∣∣∣∣∣∣Fτ
 .

As in one-dimensional case, we obtain for X̄ ∈ R∞,m and ξ̄ ∈ A1,m
τ,θ

〈
X̄, ξ̄

〉
m

=
m∑
i=1

〈
X̄i, ξ̄i

〉
=

m∑
i=1

E[
〈
X̄i, ξ̄i

〉τ,θ] = E[
〈
X̄, ξ̄

〉τ,θ
m

].

Finally, consider the following natural extensions of the spaces A1
+ and (A1

τ,θ)+
for m dimensions

A1,m
+ := {ξ̄ ∈ A1,m|∆ξ̄it ≥ 0 for all t ∈ N0, i ∈ {1, . . . ,m}}, (7.9)

(A1,m
τ,θ )+ := pτ,θm A

1,m
+ (7.10)
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and define
Eτ,θ := {ξ ∈ (A1

τ,θ)+|
〈
1, ξ
〉τ,θ ≤ 1}.

To prove the dual representation result, we need the following technical lemma. For
a proof see, for instance, Detlefsen and Scandolo (2005).

Lemma 7.3.12. Consider a set Y ⊂ L0(R) and suppose that Y is directed upwards,
i.e., for all γ, γ′ ∈ Y, there exists γ′′ ∈ Y with γ′′ ≥ γ ∨ γ′. Then

E
[
ess sup
γ∈Y

γ

]
= sup

γ∈Y
E [γ]

if the expectations exist (finite or infinite).

Theorem 7.3.13. Suppose that ρ = ρ0 ◦ Λ is a conditional convex systemic risk
measure characterized by a conditional convex single-firm risk measure ρ0 and a
convex aggregation function Λ. If ρ0 is continuous for bounded increasing sequences,
then ρ admits the representation

ρ(X̄) = ess sup
(ξ,ξ̄)∈Eτ,θ×(A1,n

τ,θ
)+

{〈
X̄, ξ̄

〉τ,θ
n
− ατ,θn (ξ, ξ̄)

}
for all X̄ ∈ R∞,nτ,θ (7.11)

where ατ,θn : A1
τ,θ ×A

1,n
τ,θ → L0

τ (R+) is given by

ατ,θn (ξ, ξ̄) = ess sup
(γI[τ,∞),Y )∈Bρ0 ,(V,Z̄)∈BΛ

{
−γ +

〈
Y − V, ξ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n

}
. (7.12)

If ρ(RnI[τ,∞)) = R, then a feasible solution to optimization problem (7.11) addition-
ally satisfies ξ ∈ Dτ,θ.

Remark. Note that unlike in the static case, we do not need an additional continuity
requirement for Λ. In Chapter 5 we additionally claim Lp-continuity of Λ : (Lp)n →
Lp. The reason for this difference is that in case of conditional convex systemic
risk measures, we solely consider the space of bounded processes. In contrast to
this, convex systemic risk measures are defined on (Lp)n-spaces for all 1 ≤ p ≤ ∞
in the static framework. Moreover, in case of convex systemic risk measures on
(L∞)n, we study the paired space ((L∞)n, (ba)n) where (L∞)n is endowed with
the corresponding norm topology, and in this chapter we study the paired space
(R∞,n,A1,n) where R∞,n is endowed with the topology σ(R∞,n,A1,n).

Proof. Fix X̄ ∈ R∞,nτ,θ . Part 1: At first, we will verify the following equation:

E[ρ(X̄)] = sup
(ξ,ξ̄)∈A1

τ,θ×A
1,n
τ,θ

{
E
[〈
X̄, ξ̄

〉τ,θ
n
− ατ,θn (ξ, ξ̄)

]}

= E

 ess sup
(ξ,ξ̄)∈A1

τ,θ×A
1,n
τ,θ

{〈
X̄, ξ̄

〉τ,θ
n
− ατ,θn (ξ, ξ̄)

} . (7.13)
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By the primal representation of ρ in Proposition 7.3.2, we have

ρ(X̄) = ess inf{γ ∈ L∞τ
∣∣(γI[τ,∞), Y ) ∈ Bρ0 , (Y, X̄) ∈ BΛ}

= ess inf
(γ,Y )∈L∞τ ×R∞τ,θ

{γ + ιBρ0 (γI[τ,∞), Y ) + ιBΛ(Y, X̄)}.

Define the mapping sBρ0 : A1
τ,θ ×A1

τ,θ → L0
τ (R) for the convex set Bρ0 by

sBρ0 (ψ, ξ) := ess sup
(γI[τ,∞),Y )∈Bρ0

{〈
γI[τ,∞), ψ

〉τ,θ +
〈
Y, ξ

〉τ,θ}
.

Consider the set C := Cψ,ξ :=
{
−
〈
γI[τ,∞), ψ

〉τ,θ +
〈
Y, ξ

〉τ,θ∣∣(γI[τ,∞), Y ) ∈ Bρ0

}
and

let C := −
〈
γI[τ,∞), ψ

〉τ,θ +
〈
Y, ξ

〉τ,θ and C ′ := −
〈
γ′I[τ,∞), ψ

〉τ,θ +
〈
Y ′, ξ

〉τ,θ be such
that C,C ′ ∈ C. Moreover, define A := {C ≥ C ′} ∈ Fτ . Then we have

CIA + C ′IAc = −
〈
(γIA + γ′IAc)I[τ,∞), ψ

〉τ,θ +
〈
Y IA + Y ′IAc , ξ

〉τ,θ
and ((γIA + γ′IAc)I[τ,∞), Y IA + Y ′IAc) = IA(γI[τ,∞), Y ) + IAc(γ′I[τ,∞), Y

′) ∈ Bρ0

since Bρ0 is convex. This means that C is directed upwards and that we can apply
Lemma 7.3.12. Then we obtain a function s̃Bρ0 : A1

τ,θ×A1
τ,θ → R∪{+∞} by setting

s̃Bρ0 (ψ, ξ) := E[sBρ0 (ψ, ξ)], and s̃Bρ0 satisfies

s̃Bρ0 (−ψ, ξ) = sup
(γI[τ,∞),Y )∈Bρ0

E
[
−
〈
γI[τ,∞), ψ

〉τ,θ +
〈
Y, ξ

〉τ,θ]
= sup

(γI[τ,∞),Y )∈Bρ0

{
−
〈
γI[τ,∞), ψ

〉
+
〈
Y, ξ

〉}
for all (ψ, ξ) ∈ A1

τ,θ ×A1
τ,θ. Furthermore, the convex conjugate of ιBρ0 is given by

ι∗Bρ0
(−ψ, ξ) = sup

(X,Y )∈R∞τ,θ×R
∞
τ,θ

{
−
〈
X,ψ

〉
+
〈
Y, ξ

〉
− ιBρ0 (X,Y )

}
= sup

(γI[τ,∞),Y )∈Bρ0

{
−
〈
γI[τ,∞), ψ

〉
+
〈
Y, ξ

〉}
= s̃Bρ0 (−ψ, ξ)

for (ψ, ξ) ∈ A1
τ,θ ×A1

τ,θ. Since ρ0 is continuous for bounded increasing sequences, it
follows from Lemma 7.3.11 that the acceptance set Bρ0 is σ(R∞τ,θ×R∞τ,θ,A1

τ,θ×A1
τ,θ)-

closed. This implies σ(R∞τ,θ × R∞τ,θ,A1
τ,θ × A1

τ,θ)-closedness of the function ιBρ0 .
Furthermore, the duality theorem for conjugate functions (see Theorem A.2.9) leads
to

ιBρ0 (γI[τ,∞), Y ) = ι∗∗Bρ0
(γI[τ,∞), Y )

= sup
(ψ,ξ)∈A1

τ,θ×A
1
τ,θ

{〈
γI[τ,∞), ψ

〉
+
〈
Y, ξ

〉
− ι∗Bρ0 (ψ, ξ)

}
= sup

(ψ,ξ)∈A1
τ,θ×A

1
τ,θ

{
−
〈
γI[τ,∞), ψ

〉
+
〈
Y, ξ

〉
− s̃Bρ0 (−ψ, ξ)

}
(7.14)

for (γ, Y ) ∈ L∞τ ×R∞τ,θ.
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Similarly, we can define the mapping sBΛ : A1
τ,θ × A

1,n
τ,θ → L0

τ (R) for the convex
set BΛ by

sBΛ(φ, ξ̄) := ess sup
(Y,Z̄)∈BΛ

{〈
Y, φ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n

}

and show that the set Mφ,ξ̄ :=
{
−
〈
Y, φ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n
|(Y, Z̄) ∈ BΛ

}
is directed

upwards. Then the function s̃BΛ : A1
τ,θ ×A

1,n
τ,θ → R ∪ {+∞} defined by s̃BΛ(φ, ξ̄) :=

E[sBΛ(φ, ξ̄)] satisfies

s̃BΛ(−φ, ξ̄) = sup
(Y,Z̄)∈BΛ

E
[
−
〈
Y, φ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n

]
= sup

(Y,Z̄)∈BΛ

{
−
〈
Y, φ

〉
+
〈
Z̄, ξ̄

〉
n

}
and

ι∗BΛ
(−φ, ξ̄) = s̃BΛ(−φ, ξ̄)

for (φ, ξ̄) ∈ A1
τ,θ × A

1,n
τ,θ . According to Lemma 7.3.11, the acceptance set BΛ is

σ(R∞,n+1
τ,θ ,A1,n+1

τ,θ )-closed. It follows directly that the function ιBΛ is closed with
respect to the topology σ(R∞,n+1

τ,θ ,A1,n+1
τ,θ ), and by the duality theorem for conjugate

functions, we obtain

ιBΛ(Y, X̄) = ι∗∗BΛ
(Y, X̄)

= sup
(φ,ξ̄)∈A1

τ,θ×A
1,n
τ,θ

{〈
Y, φ

〉
+
〈
X̄, ξ̄

〉
n
− ι∗BΛ

(φ, ξ̄)
}

= sup
(φ,ξ̄)∈A1

τ,θ×A
1,n
τ,θ

{
−
〈
Y, φ

〉
+
〈
X̄, ξ̄

〉
n
− s̃BΛ(−φ, ξ̄)

}
(7.15)

for (Y, X̄) ∈ R∞τ,θ ×R
∞,n
τ,θ . With Lemma 7.3.15, Lemma 7.3.12 and Equations (7.14)

and (7.15) it follows that

E[ρ(X̄)] = E
[

ess inf
(γ,Y )∈L∞τ ×R∞τ,θ

{γ + ιBρ0 (γI[τ,∞), Y ) + ιBΛ(Y, X̄)
]

= inf
(γ,Y )∈L∞τ ×R∞τ,θ

E
[
γ + sup

(ψ,ξ)∈A1
τ,θ×A

1
τ,θ

{
−
〈
γI[τ,∞), ψ

〉
+
〈
Y, ξ

〉
− s̃Bρ0 (−ψ, ξ)

}

+ sup
(φ,ξ̄)∈A1

τ,θ×A
1,n
τ,θ

{
−
〈
Y, φ

〉
+
〈
X̄, ξ̄

〉
n
− s̃BΛ(−φ, ξ̄)

}]

= inf
(γ,Y )∈L∞τ ×R∞τ,θ

sup
(ψ,ξ)∈A1

τ,θ×A
1
τ,θ,

(φ,ξ̄)∈A1
τ,θ×A

1,n
τ,θ

{
E [γ]−

〈
γI[τ,∞), ψ

〉
+
〈
Y, ξ

〉
−
〈
Y, φ

〉

+
〈
X̄, ξ̄

〉
n
− s̃Bρ0 (−ψ, ξ)− s̃BΛ(−φ, ξ̄)

]}
. (7.16)
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Now, Lemma 7.3.14 yields

E[ρ(X̄)] = sup
(ψ,ξ)∈A1

τ,θ×A
1
τ,θ,

(φ,ξ̄)∈A1
τ,θ×A

1,n
τ,θ

inf
(γ,Y )∈L∞τ ×R∞τ,θ

{
E [γ]−

〈
γI[τ,∞), ψ

〉
+
〈
Y, ξ

〉
−
〈
Y, φ

〉

+
〈
X̄, ξ̄

〉
n
− s̃Bρ0 (−ψ, ξ)− s̃BΛ(−φ, ξ̄)

]}
= sup

(ψ,ξ)∈A1
τ,θ×A

1
τ,θ,

(φ,ξ̄)∈A1
τ,θ×A

1,n
τ,θ

inf
(γ,Y )∈L∞τ ×R∞τ,θ

{
E[γ(1−

〈
1, ψ

〉τ,θ)] +
〈
Y, ξ − φ

〉

+ E
[〈
X̄, ξ̄

〉τ,θ
n
− sBρ0 (−ψ, ξ)− sBΛ(−φ, ξ̄)

]}
= sup

(ψ,ξ)∈A1
τ,θ×A

1
τ,θ,〈1,ψ〉

τ,θ=1
(ξ,ξ̄)∈A1

τ,θ×A
1,n
τ,θ

{
E
[〈
X̄, ξ̄

〉τ,θ
n
− sBρ0 (−ψ, ξ)− sBΛ(−ξ, ξ̄)

]}
.

(7.17)

The last equation can be verified as follows: First, assume that A := {
〈
1, ψ

〉τ,θ
>

1} ∈ Fτ satisfies P[A] > 0. Then γ(m) defined by γ(m) := mIA satisfies γ(m) ∈
L∞τ for all m ∈ N and E[γ(m)(1 −

〈
1, ψ

〉τ,θ)] < 0. As a consequence, we have
limm→∞ E[γ(m)(1 −

〈
1, ψ

〉τ,θ)] = −∞. The same argumentation applies if A :=
{
〈
1, ψ

〉τ,θ
< 1}. Hence, it suffices to consider ψ ∈ A1

τ,θ with
〈
1, ψ

〉τ,θ = 1 in the
supremum.
Now, let us assume that there exists s ∈ N0 such that As := {∆ξs < ∆φs} ∈ Fs
satisfies P[A] > 0 and define Y (m) ∈ R∞τ,θ by Y (m)

t := mIAsI{t=s} for t ∈ N0 and
m ∈ N. Then

〈
Y (m), ξ − φ

〉
= E

∑
t∈N0

Y
(m)
t ∆(ξt − φt)

 = E[mIA∆(ξs − φs)] < 0,

which implies that limm→∞
〈
Y (m), ξ − φ

〉
= −∞. With the same argumentation for

A := {∆ξs > ∆φs} it follows that we only have to consider (ψ, ξ) ∈ A1
τ,θ×A1

τ,θ such
that ∆ξt = ∆φt for all t ∈ N0. Hence, ξt = φt for all t ∈ N0.
For ψ ∈ A1

τ,θ with
〈
1, ψ

〉τ,θ = 1 and (ξ, ξ̄) ∈ A1
τ,θ ×A

1,n
τ,θ , we obtain

sBρ0 (−ψ, ξ) + sBΛ(−ξ, ξ̄)

= ess sup
(γI[τ,∞),Y )∈Bρ0

{
−γ
〈
1, ψ

〉τ,θ +
〈
Y, ξ

〉τ,θ}+ ess sup
(V,Z̄)∈BΛ

{
−
〈
V, ξ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n

}
= ess sup

(γI[τ,∞),Y )∈Bρ0 ,(V,Z̄)∈BΛ

{
−γ +

〈
Y − V, ξ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n

}
= ατ,θn (ξ, ξ̄).
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Thus, (7.13) follows from Equation (7.17) and an application of Lemma 7.3.16 and
Lemma 7.3.12.
Part 2: Now, we will show that

E[ρ(X̄)] = sup
(ξ,ξ̄)∈Eτ,θ×(A1,n

τ,θ
)+

{
E
[〈
X̄, ξ̄

〉τ,θ
n
− ατ,θn (ξ, ξ̄)

]}

= E

 ess sup
(ξ,ξ̄)∈Eτ,θ×(A1,n

τ,θ
)+

{〈
X̄, ξ̄

〉τ,θ
n
− ατ,θn (ξ, ξ̄)

} .
First, note that for every (ξ, ξ̄) ∈ A1

τ,θ ×A1
τ,θ, we have

E[ατ,θn (ξ, ξ̄)] = E

 ess sup
(γI[τ,∞),Y )∈Bρ0 ,(V,Z̄)∈BΛ

{
−γ +

〈
Y − V, ξ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n

}
= sup

(γI[τ,∞),Y )∈Bρ0 ,(V,Z̄)∈BΛ

E[−γ +
〈
Y − V, ξ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n

]

= sup
(γI[τ,∞),Y )∈Bρ0 ,(V,Z̄)∈BΛ

{
−E[γ] +

〈
Y − V, ξ

〉
+
〈
Z̄, ξ̄

〉
n

}

because the set {−γ +
〈
Y − V, ξ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n
|(γI[τ,∞), Y ) ∈ Bρ0 , (V, Z̄) ∈ BΛ} is

directed upwards.
Assume that there exists s ∈ N0 such that ∆ξs < 0 on As ∈ Fs with P[As] > 0. We

will show that this implies E[ατ,θn (ξ, ξ̄)] = ∞: The constancy property of ρ0 yields
ρ0(0) = 0, and hence (0, 0) ∈ Bρ0 . Define Y (m) ∈ R∞τ,θ by Y (m)

t := −mIAsI{t=s} for
t ∈ N0 and m ∈ N. Then 0 ≥ Y (m), and (0, Y (m)) ∈ Bρ0 for every m ∈ N due to the
monotonicity property of Bρ0 . Moreover, we have

〈
Y (m), ξ

〉
= E

∑
t∈N0

Y
(m)
t ∆ξt

 = E [−mIAs∆ξs] > 0,

which implies limm→∞
〈
Y (m), ξ

〉
= ∞. Together, we obtain E[ατ,θn (ξ, ξ̄)] = ∞. In

conclusion, we only have to consider ξ ∈ (A1
τ,θ)+.

The same argumentation applies if we suppose that there exists s ∈ N0 and
j ∈ {1, . . . , n} such that ∆ξ̄js < 0 on As ∈ Fs with P[As] > 0. Then monotonicity of
the acceptance set BΛ implies E[ατ,θn (ξ, ξ̄)] =∞, such that we only have to consider
ξ̄ ∈ (A1,n

τ,θ )+.
Now, let ξ ∈ (A1

τ,θ)+ be such that −1 +
〈
1, ξ
〉τ,θ

> 0 on A ∈ Fτ with P[A] > 0.
Since (λI[τ,∞), λI[τ,∞)) ∈ Bρ0 for all λ ≥ 0 and since Bρ0 is Fτ -convex, we obtain
IA(λI[τ,∞), λI[τ,∞)) + IAc(0, 0) = IA(λI[τ,∞), λI[τ,∞)) ∈ Bρ0 . Moreover, we have for
all λ > 0

− E[λIA] +
〈
λIAI[τ,∞), ξ

〉
= −E[λIA] + E[

〈
λIAI[τ,∞), ξ

〉τ,θ]
= λE[(−1 +

〈
1, ξ
〉τ,θ)IA] > 0,
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and limλ→∞(−E[λIA] +
〈
λIAI[τ,∞), ξ

〉
) = ∞ implies again that E[ατ,θn (ξ, ξ̄)] = ∞.

Hence, ξ ∈ Eτ,θ.
Finally, assume that ρ(RnI[τ,∞)) = R. It remains to show that

〈
1, ξ
〉τ,θ ≥ 1. Con-

sider ξ ∈ Eτ,θ with 1−
〈
1, ξ
〉τ,θ

> 0 on A ∈ Fτ with P[A] > 0. Because ρ(RnI[τ,∞)) =
R, we know that ρ0(−λI[τ,∞)) = −λ for all λ ≥ 0. Thus, (−λI[τ,∞),−λI[τ,∞)) ∈ Bρ0

for all λ ≥ 0. Fτ -convexity of Bρ0 yields IA(−λI[τ,∞),−λI[τ,∞)) ∈ Bρ0 for all λ > 0.
Furthermore,

−E[(−λ)IA] +
〈
(−λ)IAI[τ,∞), ξ

〉
= λE[(1−

〈
1, ξ
〉τ,θ)IA] > 0

for all λ > 0 and limλ→∞(−E[(−λ)IA] +
〈
(−λ)IAI[τ,∞), ξ

〉
) = ∞. Therefore, we

obtain E[ατ,θn (ξ, ξ̄)] =∞. Altogether, we arrive at
〈
1, ξ
〉τ,θ = 1.

Part 3: It remains to prove that

ρ(X̄) = ess sup
(ξ,ξ̄)∈Eτ,θ×(A1,n

τ,θ
)+

{〈
X̄, ξ̄

〉τ,θ
n
− ατ,θn (ξ, ξ̄)

}
.

Let us begin with ” ≥ ”: For (ξ, ξ̄) ∈ Eτ,θ × (A1,n
τ,θ )+, we have

ατ,θn (ξ, ξ̄)

= ess sup
(γ,Y )∈L∞τ ×R∞τ,θ,

(V,Z̄)∈R∞τ,θ×R
∞,n
τ,θ

{
−γ +

〈
Y − V, ξ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n
− ιBρ0 (γI[τ,∞), Y )− ιBΛ(V, Z̄)

}

≥ ess sup
(γ,Y )∈L∞τ ×R∞τ,θ, Z̄∈R

∞,n
τ,θ

{
−γ +

〈
Y − Y, ξ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n
− ιBρ0 (γI[τ,∞), Y )

− ιBΛ(Y, Z̄)
}

= ess sup
(γ,Y )∈L∞τ ×R∞τ,θ, Z̄∈R

∞,n
τ,θ

{
−γ +

〈
Z̄, ξ̄

〉τ,θ
n
− ιBρ0 (γI[τ,∞), Y )− ιBΛ(Y, Z̄)

}
and

ess sup
Z̄∈R∞,n

τ,θ

{〈
Z̄, ξ̄

〉τ,θ
n
− ρ(Z̄)

}

= ess sup
Z̄∈R∞,n

τ,θ

{〈
Z̄, ξ̄

〉τ,θ
n

+ ess sup
(γ,Y )∈L∞τ ×R∞τ,θ

{−γ − ιBρ0 (γI[τ,∞), Y )− ιBΛ(Y, Z̄)}
}

= ess sup
(γ,Y )∈L∞τ ×R∞τ,θ, Z̄∈R

∞,n
τ,θ

{
−γ +

〈
Z̄, ξ̄

〉τ,θ
n
− ιBρ0 (γI[τ,∞), Y )− ιBΛ(Y, Z̄)

}
.

Together, we obtain ατ,θn (ξ, ξ̄) ≥ ess supZ̄∈R∞,n
τ,θ

{〈
Z̄, ξ̄

〉τ,θ
n
− ρ(Z̄)

}
. This inequality

implies ατ,θn (ξ, ξ̄) ≥
〈
Z̄, ξ̄

〉τ,θ
n
−ρ(Z̄), i.e., ρ(Z̄) ≥

〈
Z̄, ξ̄

〉τ,θ
n
−ατ,θn (ξ, ξ̄) for all Z̄ ∈ R∞τ,θ

and (ξ, ξ̄) ∈ Eτ,θ × (A1,n
τ,θ )+. Therefore, we have

ρ(X̄) ≥ ess sup
(ξ,ξ̄)∈Eτ,θ×(A1,n

τ,θ
)+

{〈
X̄, ξ̄

〉τ,θ
n
− ατ,θn (ξ, ξ̄)

}
. (7.18)
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Since the second part of this proof states that the expectations of both sides of
(7.18) are equal, we get equality in (7.18).

Lemma 7.3.14. Suppose that the requirements from Theorem 7.3.13 are satisfied.
Define X := R∞τ,θ × R∞τ,θ, X ′ := A1

τ,θ × A1
τ,θ, U := R∞τ,θ × R∞τ,θ × R∞τ,θ × R

∞,n
τ,θ and

U ′ := A1
τ,θ ×A1

τ,θ ×A1
τ,θ ×A

1,n
τ,θ and consider the paired spaces (X ,X ′), (U ,U ′). Let

X̄ ∈ R∞,nτ,θ and K : X × U ′ → R be defined by

K((X,Y ), (ψ, ξ, φ, ξ̄))

:=


[
E [γ]−

〈
γI[τ,∞), ψ

〉
+
〈
Y, ξ

〉
−
〈
Y, φ

〉
+
〈
X̄, ξ̄

〉
n

−s̃Bρ0 (−ψ, ξ)− s̃BΛ(−φ, ξ̄)
]

if X = γI[τ,∞) for γ ∈ L∞τ
∞ else

.

Then we have

inf
(γ,Y )∈L∞τ ×R∞τ,θ

sup
(ψ,ξ,φ,ξ̄)∈U ′

K((γI[τ,∞), Y ), (ψ, ξ, φ, ξ̄))

= sup
(ψ,ξ,φ,ξ̄)∈U ′

inf
(γ,Y )∈L∞τ ×R∞τ,θ

K((γI[τ,∞), Y ), (ψ, ξ, φ, ξ̄)).

Proof. The proof of this lemma is similar to the proof of Lemma 5.4.6. Fix X̄ ∈
R∞,nτ,θ and note that K is concave in the second argument since s̃Bρ0 = ι∗Bρ0

and
s̃BΛ = I∗BΛ

are convex; see, for instance, Theorem 5 in Rockafellar (1974) (see The-
orem A.2.9). Moreover, −K((X,Y ), ·) is σ(U ′,U)-closed for each (X,Y ) ∈ X : If
−K((X,Y ), ·) = −∞, this holds by definition. Otherwise, we have −K((X,Y ), ·) =
−K((γI[τ,∞), Y ), ·) > −∞ for some γ ∈ L∞τ . In this case, the function

(ψ, ξ, φ, ξ̄) 7→ E [γ]−
〈
γI[τ,∞), ψ

〉
+
〈
Y, ξ

〉
−
〈
Y, φ

〉
+
〈
X̄, ξ̄

〉
n

is σ(U ′,U)-continuous. Moreover, according to Theorem 5 in Rockafellar (1974),
the function s̃Bρ0 = ι∗Bρ0

is σ(A1
τ,θ × A1

τ,θ,R∞τ,θ × R∞τ,θ)-closed. The properness of
s̃Bρ0 (we have s̃Bρ0 (0, 0) = 0) implies that s̃Bρ0 is σ(A1

τ,θ × A1
τ,θ,R∞τ,θ × R∞τ,θ)-l.s.c.

Similarly, it follows that s̃BΛ = ι∗BΛ
is σ(A1

τ,θ ×A
1,n
τ,θ ,R∞τ,θ ×R

∞,n
τ,θ )-l.s.c. Altogether,

we obtain that −K((γI[τ,∞), Y ), ·) is σ(U ′,U)-l.s.c. Therefore, −K((γI[τ,∞), Y ), ·) is
σ(U ′,U)-closed.
By Theorem 6 in Rockafellar (1974) (see Theorem A.2.12), we know that K is the

Lagrangian of the minimization problem “minimize f over X ” where f is given by
f(W,Y ) = F ((W,Y ), 0n+3) for F : X × U → R defined by

F ((W,Y ), (V,X,Z, Z̄))
:= sup

(ψ,ξ,φ,ξ̄)∈U ′

{
K((W,Y ), (ψ, ξ, φ, ξ̄))−

〈
V, ψ

〉
−
〈
X, ξ

〉
−
〈
Z, φ

〉
−
〈
Z̄, ξ̄

〉
n

}

=



[
sup(ψ,ξ,φ,ξ̄)∈U ′

{
E [γ]−

〈
γI[τ,∞), ψ

〉
+
〈
Y, ξ

〉
−
〈
Y, φ

〉
+
〈
X̄, ξ̄

〉
n
− s̃Bρ0 (−ψ, ξ)− s̃BΛ(−φ, ξ̄)

−
〈
V, ψ

〉
−
〈
X, ξ

〉
−
〈
Z, φ

〉
−
〈
Z̄, ξ̄

〉
n

}]
if W = γI[τ,∞) for γ ∈ L∞τ

∞ else

.
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Moreover, Theorem 6 in Rockafellar (1974) states that F ((W,Y ), ·) is σ(U ,U ′)-
closed and convex. For (W,Y ) ∈ X with W = γI[τ,∞) for some γ ∈ L∞τ and
(V,X,Z, Z̄) ∈ U , the function F satisfies

F ((W,Y ), (V,X,Z, Z̄))
= E [γ] + sup

(ψ,ξ,φ,ξ̄)∈U ′
{−
〈
γI[τ,∞) + V, ψ

〉
+
〈
Y −X, ξ

〉
−
〈
Y + Z, φ

〉
+
〈
X̄ − Z̄, ξ̄

〉
n
− s̃Bρ0 (−ψ, ξ)− s̃BΛ(−φ, ξ̄)}

= E [γ] + sup
(ψ,ξ)∈A1

τ,θ
×A1

τ,θ

{−
〈
γI[τ,∞) + V, ψ

〉
+
〈
Y −X, ξ

〉
− s̃Bρ0 (−ψ, ξ)}

+ sup
(φ,ξ̄)∈A1

τ,θ
×A1,n

τ,θ

{−
〈
Y + Z, φ

〉
+
〈
X̄ − Z̄, ξ̄

〉τ,θ
n
− s̃BΛ(−φ, ξ̄)}

= E [γ] + ιBρ0 (γI[τ,∞) + V, Y −X) + ιBΛ(Y + Z, X̄ − Z̄).

Hence, F is convex in both arguments. Now, define the convex function ϕ by

ϕ(V,X,Z, Z̄)
:= inf

(W,Y )∈X
F ((W,Y ), (V,X,Z, Z̄))

= inf
(γ,Y )∈L∞τ ×R∞τ,θ

{E [γ] + ιBρ0 (γI[τ,∞) + V, Y −X) + ιBΛ(Y + Z, X̄ − Z̄)}

for (V,X,Z, Z̄) ∈ U . The definition of Bρ0 implies ϕ(V,X,Z, Z̄) =∞ if V 6= φI[τ,∞)
for all φ ∈ L∞τ . On the other hand, if V = φI[τ,∞) for φ ∈ L∞τ , then

ϕ(φI[τ,∞), X, Z, Z̄)
= inf

(γ,Y )∈L∞τ ×R∞τ,θ
{E[γ] + ιBρ0 ((γ + φ)I[τ,∞), Y −X) + ιBΛ(Y + Z, X̄ − Z̄)}

= inf
γ∈L∞τ

{E[γ] + ιBρ0 ((γ + φ)I[τ,∞),Λ(X̄ − Z̄)−X − Z)}

= E[ρ0(Λ(X̄ − Z̄)−X − Z)]− E[φ].

Therefore, ϕ satisfies

ϕ(V,X,Z, Z̄) =
{
E[ρ0(Λ(X̄ − Z̄)−X − Z)]− E[φ] if V = φI[τ,∞) for φ ∈ L∞τ
∞ else

.

(7.19)
Since ρ0 maps into L∞τ and φ ∈ L∞τ , this means that ϕ(φI[τ,∞), X, Z, Z̄) < ∞.
Hence, ϕ is proper. If we can show that ϕ is σ(U ,U ′)-l.s.c., then the assertion
follows from Theorem 7 in Rockafellar (1974) (see Theorem A.2.13). To prove that
ϕ is σ(U ,U ′)-l.s.c., we have to show that the set {(V,X,Z, Z̄) ∈ U|ϕ(V,X,Z, Z̄) ≤ d}
is σ(U ,U ′)-closed for all d ∈ R. Equation (7.19) yields for every d ∈ R

{(V,X,Z, Z̄) ∈ U|ϕ(V,X,Z, Z̄) ≤ d}
= {(V,X,Z, Z̄) ∈ U

∣∣V = φI[τ,∞) for some φ ∈ L∞τ and
E[ρ0(Λ(X̄ − Z̄)−X − Z)]− E[φ] ≤ d}

= Cd,X̄ρ0◦Λ
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where the set Cd,X̄ρ0◦Λ is defined in Lemma 7.3.8. σ(U ,U ′)-closedness of Cd,X̄ρ0◦Λ follows
immediately from Lemma 7.3.11.

Lemma 7.3.15. For each X̄ ∈ R∞,nτ,θ , the set

N :=
{
γ + ιBρ0 (γI[τ,∞), Y ) + ιBΛ(Y, X̄)

∣∣ (γ, Y ) ∈ L∞τ ×R∞τ,θ
}

is directed downwards.

Proof. Fix X̄ ∈ R∞,nτ,θ and let N,N ′ ∈ N with N := γ+ ιBρ0 (γI[τ,∞), Y ) + ιBΛ(Y, X̄)
and N ′ = γ′ + ιBρ0 (γ′I[τ,∞), Y

′) + ιBΛ(Y ′, X̄). In order to show that N is directed
downwards, we have to find an N ′′ = γ′′+ ιBρ0 (γ′′I[τ,∞), Y

′′) + ιBΛ(Y ′′, X̄) ∈ N such
that N ′′ ≤ N ∧ N ′. We distinguish between four different cases: If N = N ′ = ∞,
set Y ′′ = Λ(X̄) and γ′′ = ρ0(Y ′′). If N = ∞ and N ′ < ∞ [N ′ = ∞ and N < ∞],
then define N ′′ = N ′ [N ′′ = N ]. At last, consider the case in which N,N ′ < ∞:
Since N,N ′ <∞, we have (γI[τ,∞), Y ), (γ′I[τ,∞), Y

′) ∈ Bρ0 and (Y, X̄), (Y ′, X̄) ∈ BΛ.
Define the set A := {N ≥ N ′} ∈ Fτ . Then

IAιBρ0 (γ′I[τ,∞), Y
′) + IAcιBρ0 (γI[τ,∞), Y ) = 0

and ιBρ0 (IA(γ′I[τ,∞), Y
′)+ IAc(γI[τ,∞), Y )) = 0 since Bρ0 is Fτ -convex. Similarly, we

obtain
IAιBΛ(Y ′, X̄) + IAcιBΛ(Y, X̄) = 0

and ιBΛ(IA(Y ′, X̄) + IAc(Y, X̄)) = 0. This yields

N ′IA +NIAc

= (γ′ + ιBρ0 (γ′I[τ,∞), Y
′) + ιBΛ(Y ′, X̄))IA + (γ + ιBρ0 (γI[τ,∞), Y ) + ιBΛ(Y, X̄))IAc

= γ′IA + γIAc

= (γ′IA + γIAc) + ιBρ0 ((γ′IA + γIAc)I[τ,∞), Y
′IA + Y IAc) + ιBΛ(Y ′IA + Y IAc , X̄).

Because (γ′IA + γIAc , Y
′IA + Y IAc) ∈ L∞τ × R∞τ,θ, it follows that N is directed

downwards.

Lemma 7.3.16. For each X̄ ∈ R∞,nτ,θ , the set

M :=
{〈
X̄, ξ̄

〉τ,θ
n
− ατ,θn (ξ, ξ̄)

∣∣(ξ, ξ̄) ∈ A1
τ,θ ×A

1,n
τ,θ

}
is directed upwards.

Proof. Fix X̄ ∈ R∞,nτ,θ and let M :=
〈
X̄, ξ̄

〉τ,θ
n
− ατ,θn (ξ, ξ̄) and M ′ :=

〈
X̄, φ̄

〉τ,θ
n
−

ατ,θn (φ, φ̄) be such that M,M ′ ∈ M. Furthermore, define A := {M ≥M ′} ∈ Fτ .
Then M ′′ := MIA +M ′IAc ≥M ∨M ′ and

M ′′ =
〈
X̄, ξ̄IA + φ̄IAc

〉τ,θ
n

− ess sup
(γ,Y )∈Bρ0 ,(γ̂,Ŷ )∈Bρ0

{
−γIA − γ̂IAc +

〈
Y, ξIA

〉τ,θ +
〈
Ŷ, φIAc

〉τ,θ}
− ess sup

(V,Z̄)∈BΛ,(V̂, ˆ̄Z)∈BΛ

{
−
〈
V, ξIA

〉τ,θ − 〈V̂, φIAc〉τ,θ +
〈
Z̄, ξ̄IA

〉τ,θ
n

+
〈 ˆ̄Z, φ̄IAc

〉τ,θ
n

}
.
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Moreover, it is easily seen that〈
Y IA + Ŷ IAc , ξIA + φIAc

〉τ,θ =
〈
Y IA, ξIA

〉τ,θ +
〈
Ŷ IAc , φIAc

〉τ,θ and〈
Z̄IA + ˆ̄ZIAc , ξ̄IA + φ̄IAc

〉τ,θ
n

=
〈
Z̄IA, ξ̄IA

〉τ,θ
n

+
〈 ˆ̄ZIAc , φ̄IAc

〉τ,θ
n
.

It follows

M ′′ =
〈
X̄, ξ̄IA + φ̄IAc

〉τ,θ
n

− ess sup
(γ,Y )∈Bρ0 ,(γ̂,Ŷ )∈Bρ0

{
−γIA − γ̂IAc +

〈
Y IA + Ŷ IAc , ξIA + φIAc

〉τ,θ}
− ess sup

(V,Z̄)∈BΛ,(V̂, ˆ̄Z)∈BΛ

{
−
〈
V IA + V̂ IAc , ξIA + φIAc

〉τ,θ
+
〈
Z̄IA + ˆ̄ZIAc , ξ̄IA + φ̄IAc

〉τ,θ
n

}
≤
〈
X̄, ξ̄IA + φ̄IAc

〉τ,θ
n
− ess sup

(γ,Y )∈Bρ0

{
−γ +

〈
Y, ξIA + φIAc

〉τ,θ}
− ess sup

(V,Z̄)∈BΛ

{
−
〈
V, ξIA + φIAc

〉τ,θ +
〈
Z̄, ξ̄IA + φ̄IAc

〉τ,θ
n

}
.

Since (ξIA + φIAc , ξ̄IA + φ̄IAc) = IA(ξ, ξ̄) + IAc(φ, φ̄) ∈ A1
τ,θ × A

1,n
τ,θ , the set M is

directed upwards.

In the remaining part of this subsection we consider the positively homogeneous
special case of Theorem 7.3.13. In order to prove the corresponding result, we borrow
ideas from the proof of Corollary 11.6 in Föllmer and Schied (2011). Let us define

Z :=
{
(γI[τ,∞), Y, V, Z̄) ∈ R∞τ,θ×R∞τ,θ×R∞τ,θ×R

∞,n
τ,θ |(γI[τ,∞), Y ) ∈ Bρ0 , (V, Z̄) ∈ BΛ

}
and

Z# :=
{
(ξ, ξ̄) ∈ A1

τ,θ ×A
1,n
τ,θ | − γ +

〈
Y − V, ξ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n
≤ 0

for all (γI[τ,∞), Y, V, Z̄) ∈ Z
}
.

Theorem 7.3.17. Suppose that ρ = ρ0 ◦ Λ is a conditional positively homogeneous
systemic risk measure characterized by a conditional positively homogeneous single-
firm risk measure ρ0 and a positively homogeneous aggregation function Λ. If ρ0 is
continuous for bounded increasing sequences, then ρ admits the representation

ρ(X̄) = ess sup
(ξ,ξ̄)∈Z#

〈
X̄, ξ̄

〉τ,θ
n

for all X̄ ∈ R∞,nτ,θ . (7.20)

In addition, a feasible solution to optimization problem (7.20) satisfies

ξ ∈ Eτ,θ, ξ̄ ∈ (A1,n
τ,θ )+ and

〈
1n, ξ̄

〉τ,θ
n
≤ n

〈
1, ξ
〉τ,θ

.

If additionally ρ(RnI[τ,∞)) = R, then ξ ∈ Dτ,θ.
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Proof. Since every conditional positively homogeneous systemic risk measure char-
acterized by a conditional positively homogeneous single-firm risk measure ρ0 and a
positively homogeneous aggregation function Λ is also a conditional convex systemic
risk measure characterized by the conditional convex single-firm risk measure ρ0 and
the convex aggregation function Λ, we can apply Theorem 7.3.13. Hence, ρ satisfies

ρ(X̄) = ess sup
(ξ,ξ̄)∈E1

τ,θ×(A1,n
τ,θ

)+

{〈
X̄, ξ̄

〉τ,θ
n
− ατ,θn (ξ, ξ̄)

}
for all X̄ ∈ R∞,nτ,θ (7.21)

where ατ,θn : A1
τ,θ ×A

1,n
τ,θ → L0

τ (R+) is given by

ατ,θn (ξ, ξ̄) = ess sup
(γI[τ,∞),Y,V,Z̄)∈Z

{
−γ +

〈
Y − V, ξ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n

}
.

Moreover, Theorem 7.3.13 states that every feasible solution to (7.21) satisfies ξ ∈
Dτ,θ if ρ(RnI[τ,∞)) = R. Since ρ0 and Λ are (Fτ -)positively homogeneous, we know
that Bρ0 and BΛ are Fτ -cones. This implies that

{ατ,θn (ξ, ξ̄) = 0} ∪ {ατ,θn (ξ, ξ̄) =∞} = Ω for all (ξ, ξ̄) ∈ A1
τ,θ ×A

1,n
τ,θ .

To prove the previous equality, fix (ξ, ξ̄) ∈ A1
τ,θ×A

1,n
τ,θ and consider A := {ατ,θn (ξ, ξ̄) >

0} ∈ Fτ . For every (γI[τ,∞), Y, V, Z̄) ∈ Z, we have λIA(γI[τ,∞), Y ) ∈ Bρ0 and
λIA(V, Z̄) ∈ BΛ for all λ > 0. Hence, we obtain

ατ,θn (ξ, ξ̄) = ess sup
(γI[τ,∞),Y,V,Z̄)∈Z

{
−γ +

〈
Y − V, ξ

〉τ,θ +
〈
Z̄, ξ̄

〉τ,θ
n

}
≥ ess sup

(γI[τ,∞),Y,V,Z̄)∈Z

{
−λγIA +

〈
λY IA − λV IA, ξ

〉τ,θ +
〈
λZ̄IA, ξ̄

〉τ,θ
n

}
= λIAα

τ,θ
n (ξ, ξ̄). (7.22)

It follows that ατ,θn (ξ, ξ̄) =∞ on A since λIAατ,θn (ξ, ξ̄)→∞IA P-a.s.
Now, let us consider ατ,θn (ξ, ξ̄) for (ξ, ξ̄) ∈ Z#. By definition of Z#, we have
−γ+

〈
Y −V, ξ

〉τ,θ+
〈
Z̄, ξ̄

〉τ,θ
n
≤ 0 for all (γI[τ,∞), Y, V, Z̄) ∈ Z. Since (0, 0, 0, 0n) ∈ Z,

this implies ατ,θn (ξ, ξ̄) = 0 for all (ξ, ξ̄) ∈ Z#.
On the other hand, consider (ξ, ξ̄) /∈ Z#. Then there exists (γI[τ,∞), Y, V, Z̄) ∈ Z

and B ∈ Fτ with P[B] > 0 such that(
−γ+

〈
Y −V, ξ

〉τ,θ+〈Z̄, ξ̄〉τ,θ
n

)
IB = −γIB+

〈
Y IB−V IB, ξ

〉τ,θ+〈Z̄IB, ξ̄〉τ,θn > 0 on B.

Note that Equation (7.22) is also true with B instead of A. As a consequence,
ατ,θn (ξ, ξ̄) = ∞ on B. Hence, we only have to consider (ξ, ξ̄) ∈ Z# in Equation
(7.21).
It remains to verify the inequality

〈
1n, ξ̄

〉τ,θ
n
≤ n

〈
1, ξ
〉τ,θ for feasible solutions (ξ, ξ̄)

to (7.20). Since Bρ0 and BΛ satisfy (0, 0) ∈ Bρ0 and (fΛ(1)I[τ,∞), 1nI[τ,∞)) ∈ BΛ, we
know that (0, 0, fΛ(1)I[τ,∞), 1nI[τ,∞)) ∈ Z. Thus, it follows〈

−fΛ(1)I[τ,∞), ξ
〉τ,θ +

〈
1nI[τ,∞), ξ̄

〉τ,θ
n

=
〈
−fΛ(1), ξ

〉τ,θ +
〈
1n, ξ̄

〉τ,θ
n
≤ 0

for all (ξ, ξ̄) ∈ Z#. Normalization of Λ leads to the desired inequality.



178 7. Conditional and dynamic systemic risk measures

7.4. Dynamic systemic risk measures

In this section we define dynamic systemic risk measures as families of conditional
systemic risk measures at different points in time. This dynamization of conditional
systemic risk measures requires an appropriate time-consistency concept, which is
introduced and studied in Subsection 7.4.1.
For the remaining part of this section fix S ∈ N0 and T ∈ N0 such that S ≤ T

and set S := [S, T ] ∩ N0. Note that we analyze dynamic systemic risk measures on
a finite interval only. This is similar to the model setting in Cheridito and Kupper
(2011).

Definition 7.4.1. For each t ∈ S, let ρt,T : R∞,nt,T → L∞t be a conditional convex
[positively homogeneous] systemic risk measure with ρt,T = ρ0

t,T ◦ Λt,T for a condi-
tional convex [positively homogeneous] single-firm risk measure ρ0

t,T : R∞t,T → L∞t
that satisfies the Ft-translation property and a convex [positively homogeneous] ag-
gregation function Λt,T : Rn → R. Then we call the family (ρt,T )t∈S dynamic convex
[positively homogeneous] systemic risk measure. Moreover, we call the corresponding
family (ρ0

t,T )t∈S dynamic convex [coherent] single-firm risk measure, and the family
(Λt,T )t∈S is called dynamic convex [positively homogeneous] aggregation function.

Because of the previous definition, dynamic convex risk measures (ρt,T )t∈S can
be decomposed into a dynamic convex single-firm risk measure (ρ0

t,T )t∈S and a dy-
namic convex aggregation function (Λt,T )t∈S . For the remaining part of this thesis,
we solely consider dynamic convex single-firm risk measures (ρ0

t,T )t∈S and dynamic
convex aggregation functions (Λt,T )t∈S being part of a dynamic convex systemic risk
measure (ρt,T )t∈S in the sense of Theorem 7.2.1 and Corollary 7.2.2, i.e., we have
ρt,T = ρ0

t,T ◦ Λt,T for each t ∈ S.
Thus, for every dynamic convex aggregation function (Λt,T )t∈S , we have either

Im Λt,T = R and fΛt,T (0) = 0 or Im Λt,T = R+ for t ∈ S. Furthermore, for
every dynamic convex single-firm risk measure (ρ0

t,T )t∈S , each ρ0
t,T , t ∈ S, addi-

tionally satisfies the Ft-translation property. Because of Theorem 7.2.1, we know
that every ρ0

t,T satisfies constancy on {0}. As a consequence, it follows directly that
ρ0
t,T (aI[t,∞)) = ρ0

t,T (0)+a = a for all a ∈ R. In conclusion, for every dynamic convex
single-firm risk measure (ρ0

t,T )t∈S , each ρ0
t,T satisfies constancy on R.

If Im Λt,T = R+ for t ∈ S, then the corresponding function fΛt,T in the fΛt,T -
constancy property is a map from R to R+. According to the properties of Λt,T ,
there exists bt,T ∈ R+ such that fΛt,T |[bt,T ,∞) is a bijective, strictly increasing function
from [bt,T ,∞) to R+ with fΛt,T (a) = 0 for all a ≤ bt,T . Moreover, the inverse function
f−1

Λt,T maps from R+ to [bt,T ,∞) and is also strictly increasing.
We have already pointed out that in contrast to Sections 7.1-7.3, in this sec-

tion we solely study conditional convex single-firm risk measures ρ0
t,T satisfying the

Ft-translation property. Note that standard dynamic convex risk measures from
Chapter 6 (see Definition 6.1.1 and Definition 6.3.1) admit the corresponding Ft-
translation property by definition. Thus, the Ft-translation property is a feasible
assumption. Nonetheless, note that ρt,T = ρ0

t,T ◦ Λt,T does not inherit this property
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because the convex aggregation function Λt,T does not satisfy any sort of translation
property.
Since Λt,T (a1n) = fΛt,T (a) for all a ∈ R, we obtain for γ ∈ L∞t , u ∈ N0 and

a.e. ω ∈ Ω that

Λt,T (γ1nI[t,∞))(u, ω) = Λt,T ((γ1nI[t,∞))(u, ω)) =
{

Λt,T (γ(ω)1n) if t ≤ u
Λt,T (0n) if t > u

}
= fΛt,T ((γI[t,∞))(u, ω)) = fΛt,T (γI[t,∞))(u, ω).

From Λt,T (0n) = 0 = fΛt,T (0) it follows that Λt,T (γ1nI[t,∞)) = fΛt,T (γI[t,∞)) =
fΛt,T (γ)I[t,∞) for all γ ∈ L∞t . Because each ρ0

t,T satisfies the Ft-translation property
and ρ0

t,T (0) = 0, this implies

ρt,T (γ1nI[t,∞)) = ρ0
t,T (Λt,T (γ1nI[t,∞))) = ρ0

t,T (fΛt,T (γ)I[t,∞))
= ρ0

t,T (0) + fΛt,T (γ) = fΛt,T (γ)

for all γ ∈ L∞t . Note that in case of a dynamic convex systemic risk measure (ρt,T )t∈S
with ρt,T = ρ0

t,T ◦ Λt,T for all t ∈ S, we have fΛt,T = fρt,T . Therefore, the following
property is satisfied:

(s7) ρt,T (γ1nI[t,∞)) = fρt,T (γ) for all t ∈ S and γ ∈ L∞t .

7.4.1. Time-consistency

Our next aim is to introduce an appropriate time-consistency concept for dynamic
convex systemic risk measures which establishes a connection between the different
conditional convex systemic risk measures in time. At the beginning of this part of
the thesis we have already pointed out that the concept of strong time-consistency is
frequently used in the literature about dynamic single-firm risk measurement. In line
with these approaches, we introduce a version of this time-consistency property for
our dynamic convex systemic risk measures. Since our dynamic convex single-firm
risk measures additionally satisfy the Ft-translation property and ρ0

t,T (0) = 0, they
correspond with the dynamic convex risk measures considered in Cheridito et al.
(2006), Cheridito and Kupper (2011) and Section 6.3 in this thesis. More precisely,
because of the different perspectives concerning the processes X̄ ∈ R∞,nt,T , for every
dynamic convex risk measure (ρ̃t,T )t∈S in the sense of Definition 6.3.1, we can define
a dynamic convex single-firm risk measure (ρ0

t,T )t∈S by ρ0
t,T (X) := ρ̃t,T (−X) for

t ∈ S and X ∈ R∞t,T . Consequently, we can carry over the definition from Section
6.3 to dynamic convex single-firm risk measures and adapt this concept for dynamic
convex systemic risk measures and dynamic convex aggregation functions.
Because of Proposition 6.3.3 and T < +∞, we can use the following definition for

time-consistent dynamic convex single-firm risk measures.

Definition 7.4.2. A dynamic convex single-firm risk measure (ρ0
t,T )t∈S is called

time-consistent if the following property is satisfied:



180 7. Conditional and dynamic systemic risk measures

(r-TC) For every pair s, t ∈ S with s ≤ t and X,Y ∈ R∞s,T ,

XI[s,t) = Y I[s,t) and ρ0
t,T (X) ≤ ρ0

t,T (Y )

imply ρ0
s,T (X) ≤ ρ0

s,T (Y ).

Similarly, we define time-consistent dynamic convex aggregation functions.

Definition 7.4.3. A dynamic convex aggregation function (Λt,T )t∈S is called time-
consistent if the following two properties are satisfied:

(a-TC1) Either all Λt,T , t ∈ S, map into R or all Λt,T , t ∈ S, map into R+.
(a-TC2) For every pair s, t ∈ S with s ≤ t and X̄, Ȳ ∈ R∞,ns,T ,

X̄I[s,t) = Ȳ I[s,t) and Λt,T (X̄I[t,∞)) ≤ Λt,T (Ȳ I[t,∞))

imply Λs,T (X̄) ≤ Λs,T (Ȳ ).

In property (a-TC1) we distinguish between R-valued and R+-valued dynamic
convex aggregation functions (Λt,T )t∈S . We claim this property because a mixture
of both approaches does not seem to be consistent. A possible interpretation of
property (a-TC2) is the following: Consider two economies X̄, Ȳ ∈ R∞,ns,T which
are equal up to time t. If additionally the time-t-aggregation of economy X̄I[t,∞)
is less than or equal to the time-t-aggregation of the other economy Ȳ I[t,∞), then
this relation should still hold if we use the time-s-aggregation function and consider
the processes X̄ and Ȳ . At this point, note that X̄I[s,t) = Ȳ I[s,t) and Λs,T (0n) =
0 directly imply Λs,T (X̄)I[s,t) = Λs,T (X̄I[s,t)) = Λs,T (Ȳ I[s,t)) = Λs,T (Ȳ )I[s,t). In
addition, for every time-consistent dynamic convex aggregation function (Λt,T )t∈S
with Λt,T (X̄) = 0 for X̄ ∈ R∞,nt,T and some t ∈ S, we also have Λs,T (X̄) = 0 for all
s ∈ S with s ≤ t.
Further, because each Λt,T , t ∈ S, is measurable and satisfies Λt,T (0n) = 0,

property (a-TC2) is equivalent to the following property:

(a-TC2’) For every pair s, t ∈ S with s ≤ t and x̄, ȳ ∈ Rn,

Λt,T (x̄) ≤ Λt,T (ȳ)

implies Λs,T (x̄) ≤ Λs,T (ȳ).

It seems reasonable to define time-consistent dynamic convex risk measures by using
Definition 7.4.2 and Definition 7.4.3.

Definition 7.4.4. A dynamic convex systemic risk measure (ρt,T )t∈S is called time-
consistent if the corresponding dynamic convex single-firm risk measure (ρ0

t,T )t∈S
is time-consistent and if the corresponding dynamic convex aggregation function
(Λt,T )t∈S is time-consistent.

In the subsequent study we analyze the relationship between the properties (r-
TC), (a-TC1), (a-TC2) and the following properties of a dynamic convex systemic
risk measure (ρt,T )t∈S :
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(s-TC1) Either all ρt,T , t ∈ S, satisfy ρt,T (RnI[t,∞)) = R or all ρt,T , t ∈ S, satisfy
ρt,T (RnI[t,∞)) = R+.

(s-TC2) For every pair s, t ∈ S with s ≤ t and X̄, Ȳ ∈ R∞,ns,T ,

X̄I[s,t) = Ȳ I[s,t) and ρt,T (X̄u(ω)I[t,∞)) ≤ ρt,T (Ȳu(ω)I[t,∞)) (7.23)
for all u ≥ t and a.e. ω ∈ Ω

imply ρs,T (X̄u(ω)I[s,∞)) ≤ ρs,T (Ȳu(ω)I[s,∞)) for all u ∈ N0 and a.e. ω ∈ Ω.
(s-TC3) For every pair s, t ∈ S with s ≤ t and X̄, Ȳ ∈ R∞,ns,T ,

X̄I[s,t) = Ȳ I[s,t) and ρt,T (X̄) ≤ ρt,T (Ȳ )

imply ρs,T (X̄) ≤ ρs,T (Ȳ ).

If the dynamic convex systemic risk measure (ρt,T )t∈S satisfies (s-TC2), then (s-
TC2) and preference consistency of ρt,T and ρs,T imply the following sequence of
implications for X̄, Ȳ ∈ R∞,ns,T :

(7.23)⇒ ρs,T (X̄u(ω)I[s,∞)) ≤ ρs,T (Ȳu(ω)I[s,∞)) for all u ∈ N0 and a.e. ω ∈ Ω
⇒ ρs,T (X̄) ≤ ρs,T (Ȳ ).

We can interpret (s-TC3) similarly to (a-TC2): Consider two economies X̄, Ȳ ∈
R∞,ns,T that are equal up to time t, i.e., X̄I[s,t) = Ȳ I[s,t), and let the time-t-systemic
risk of one economy be lesser than or equal to the time-t-systemic risk of the other
economy, i.e., ρt,T (X̄) ≤ ρt,T (Ȳ ). Then the time-s-systemic risk should satisfy the
same relation.
We will see that time-consistent dynamic convex systemic risk measures (ρt,T )t∈S

satisfy property (s-TC2) (see Proposition 7.4.8). This property can be interpreted
as follows: Fix economies X̄, Ȳ ∈ R∞,ns,T that are equal up to time t. For fixed
(u, ω) ∈ ([t, T ] ∩ N0) × Ω, consider the n-dimensional processes X̄u(ω)I[t,∞) and
Ȳu(ω)I[t,∞). These are constant after time t and represent a possible realization of
X̄ (or Ȳ ) at time u ≥ t. Supposing that the time-t-systemic risk of one of these
processes is lesser than or equal to the risk of the other process for each u ≥ t
and a.e. ω ∈ Ω leads to the same relation regarding the time-s-systemic risk of
the processes X̄u(ω)I[s,∞) and Ȳu(ω)I[s,∞) for all u ∈ N0 and a.e. ω ∈ Ω. Note
that ρs,T (X̄u(ω)I[s,∞)) = ρs,T (Ȳu(ω)I[s,∞)) is obviously satisfied for u < t since
X̄I[s,t) = Ȳ I[s,t) and X̄, Ȳ ∈ R∞,ns,T .

Lemma 7.4.5. For every dynamic convex systemic risk measure, property (s-TC3)
implies property (s-TC2).

Proof. Let s, t ∈ S with s ≤ t and consider processes X̄, Ȳ ∈ R∞,ns,T that satisfy
(7.23). Obviously, we have

ρs,T (X̄u(ω)I[s,∞)) ≤ ρs,T (Ȳu(ω)I[s,∞)) for all u < t and a.e. ω ∈ Ω.
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Moreover, for u ≥ t and a.e. ω ∈ Ω, define the processes X̄(ω,u), Ȳ (ω,u) ∈ R∞,ns,T by
X̄(ω,u) := X̄u(ω)I[t,∞) and Ȳ (ω,u) := Ȳu(ω)I[t,∞). According to these definitions, we
have X̄(ω,u)I[s,t) = 0n = Ȳ (ω,u)I[s,t) and (7.23) means that

ρt,T (X̄(ω,u)) = ρt,T (X̄u(ω)I[t,∞)) ≤ ρt,T (Ȳu(ω)I[t,∞)) = ρt,T (Ȳ (ω,u)).

Since

ρs,T (Z̄(ω,u)) = ρs,T (Z̄u(ω)I[t,∞)) = ρ0
s,T (Λs,T (Z̄u(ω)I[t,∞))) = ρ0

s,T (Λs,T (Z̄u(ω))I[t,∞))

is satisfied for Z̄ = X̄ and Z̄ = Ȳ , property (s-TC3) yields ρ0
s,T (Λs,T (X̄u(ω))I[t,∞)) ≤

ρ0
s,T (Λs,T (Ȳu(ω))I[t,∞)). Furthermore, ρ0

s,T satisfies constancy on R, which implies
Λs,T (X̄u(ω)) ≤ Λs,T (Ȳu(ω)). The monotonicity property of ρ0

s,T yields

ρs,T (X̄u(ω)I[s,∞)) = ρ0
s,T (Λs,T (X̄u(ω))I[s,∞))

≤ ρ0
s,T (Λs,T (Ȳu(ω))I[s,∞)) = ρs,T (Ȳu(ω)I[s,∞)).

Summing up, we get ρs,T (X̄u(ω)I[s,∞)) ≤ ρs,T (Ȳu(ω)I[s,∞)) for all u ∈ N0 and
a.e. ω ∈ Ω. This means that property (s-TC2) is satisfied.

The following lemma analyzes property (s-TC3) and provides a condition which
implies equivalence between time-consistency of the dynamic convex single-firm risk
measure (ρ0

t,T )t∈S and property (s-TC3) of the corresponding dynamic convex sys-
temic risk measure (ρt,T )t∈S .

Lemma 7.4.6. Let (ρt,T )t∈S be a dynamic convex systemic risk measure with cor-
responding dynamic convex single-firm risk measure (ρ0

t,T )t∈S and dynamic convex
aggregation function (Λt,T )t∈S . Moreover, assume that the following property is sat-
isfied for all s, t ∈ S with s ≤ t and X̄, Ȳ ∈ R∞,ns,T :

ρ0
s,T (Λt,T (X̄)) ≤ ρ0

s,T (Λt,T (Ȳ )) ⇔ ρ0
s,T (Λs,T (X̄)) ≤ ρ0

s,T (Λs,T (Ȳ )) (7.24)

Then (ρ0
t,T )t∈S is time-consistent if and only if (ρt,T )t∈S satisfies (s-TC3).

Proof. “⇒” Let (ρ0
t,T )t∈S be time-consistent and consider s, t ∈ S with s ≤ t and

X̄, Ȳ ∈ R∞,ns,T with X̄I[s,t) = Ȳ I[s,t) and ρt,T (X̄) ≤ ρt,T (Ȳ ). Then ρ0
t,T (Λt,T (X̄)) ≤

ρ0
t,T (Λt,T (Ȳ )). Since Λt,T (X̄)I[s,t) = Λt,T (Ȳ )I[s,t), property (r-TC) implies that
ρ0
s,T (Λt,T (X̄)) ≤ ρ0

s,T (Λt,T (Ȳ )). Finally, (7.24) yields

ρs,T (X̄) = ρ0
s,T (Λs,T (X̄)) ≤ ρ0

s,T (Λs,T (Ȳ )) = ρs,T (Ȳ ).

”⇐” Let (s-TC3) be satisfied and consider s, t ∈ S with s ≤ t and X,Y ∈ R∞s,T
with XI[s,t) = Y I[s,t) and ρ0

t,T (X) ≤ ρ0
t,T (Y ). Then there exist X̄, Ȳ ∈ R∞,ns,T with

X̄I[s,t) = Ȳ I[s,t), Λt,T (X̄) = X and Λt,T (Ȳ ) = Y . Due to property (s-TC3), it follows
ρ0
s,T (Λs,T (X̄)) ≤ ρ0

s,T (Λs,T (Ȳ )), and (7.24) yields

ρ0
s,T (X) = ρ0

s,T (Λt,T (X̄)) ≤ ρ0
s,T (Λt,T (Ȳ )) = ρ0

s,T (Y ).
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Example 7.4.7. The equivalence in (7.24) is satisfied if (ρ0
t,T )t∈S is a dynamic

positively homogeneous single-firm risk measure and (Λt,T )t∈S is given by Λt,T = qtΛ
for t ∈ S, a convex aggregation function Λ and qt ∈ R+\{0}. In this case, we have

ρ0
s,T (Λt,T (X̄)) = qtρ

0
s,T (Λ(X̄)) for each s, t ∈ S and X̄ ∈ R∞,ns,T .

Therefore, for all s, t ∈ S and all X̄, Ȳ ∈ R∞s,T , the inequality ρ0
s,T (Λt,T (X̄)) ≤

ρ0
s,T (Λt,T (Ȳ )) is satisfied if and only if ρ0

s,T (Λ(X̄)) ≤ ρ0
s,T (Λ(Ȳ )), which implies the

equivalence in (7.24).

The next result provides a characterization of time-consistent dynamic convex
aggregation functions.

Proposition 7.4.8. Let (ρt,T )t∈S be a dynamic convex systemic risk measure with
corresponding dynamic convex single-firm risk measure (ρ0

t,T )t∈S and dynamic convex
aggregation function (Λt,T )t∈S . Moreover, let (ρ0

t,T )t∈S be time-consistent. Then
(ρt,T )t∈S is time-consistent if and only if (ρt,T )t∈S satisfies (s-TC1) and (s-TC2).

Proof. First, we will show that (s-TC1) is equivalent to (a-TC1): Since all ρ0
t,T satisfy

constancy on R, we have ρt,T (x̄I[t,∞)) = ρ0
t,T (Λt,T (x̄I[t,∞))) = ρ0

t,T (Λt,T (x̄)I[t,∞)) =
Λt,T (x̄) for all x̄ ∈ Rn and t ∈ S. This equality implies the desired equivalence.
Let (ρt,T )t∈S satisfy (s-TC2). Instead of proving property (a-TC2), we will show

the equivalent property (a-TC2’). For s, t ∈ S with s ≤ t, consider x̄, ȳ ∈ Rn with
Λt,T (x̄) ≤ Λt,T (ȳ) and define the process Z̄ ∈ R∞,ns,T by Z̄ := x̄I[s,t) + ȳI[t,∞). Then
Z̄I[s,t) = x̄I[s,t) and Λt,T (x̄) ≤ Λt,T (ȳ) = Λt,T (Z̄u(ω)) for all u ≥ t and a.e. ω ∈ Ω.
Monotonicity of ρ0

t,T implies

ρt,T (x̄I[t,∞)) = ρ0
t,T (Λt,T (x̄I[t,∞))) = ρ0

t,T (Λt,T (x̄)I[t,∞))
≤ ρ0

t,T (Λt,T (Z̄u(ω))I[t,∞)) = ρ0
t,T (Λt,T (Z̄u(ω)I[t,∞))) = ρt,T (Z̄u(ω)I[t,∞))

for all u ≥ t and a.e. ω ∈ Ω. Due to property (s-TC2), it follows

ρs,T (x̄I[s,∞)) ≤ ρs,T (Z̄u(ω)I[s,∞)) for all u ≥ t and a.e. ω ∈ Ω.

This means that

ρ0
s,T (Λs,T (x̄)I[s,∞)) = ρ0

s,T (Λs,T (x̄I[s,∞))) ≤ ρ0
s,T (Λs,T (Z̄u(ω)I[s,∞)))

= ρ0
s,T (Λs,T (ȳI[s,∞))) = ρ0

s,T (Λs,T (ȳ)I[s,∞))

for all u ≥ t and a.e. ω ∈ Ω. Since ρ0
s,T satisfies constancy on R, this implies

Λs,T (x̄) ≤ Λs,T (ȳ). Therefore, (ρt,T )t∈S is time-consistent.
On the other hand, assume that (ρt,T )t∈S is time-consistent. To show (s-TC2),

consider s, t ∈ S with s ≤ t and X̄, Ȳ ∈ R∞,ns,T with X̄I[s,t) = Ȳ I[s,t) and

ρ0
t,T (Λt,T (X̄u(ω))I[t,∞)) = ρt,T (X̄u(ω)I[t,∞))
≤ ρt,T (Ȳu(ω)I[t,∞)) = ρ0

t,T (Λt,T (Ȳu(ω))I[t,∞))
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for all u ≥ t and a.e. ω ∈ Ω. Then the constancy property of ρ0
t,T on R yields

Λt,T (X̄u(ω)) ≤ Λt,T (Ȳu(ω)) for all u ≥ t and a.e. ω ∈ Ω. Hence, Λt,T (X̄I[t,∞)) ≤
Λt,T (Ȳ I[t,∞)). Time-consistency of (Λt,T )t∈S implies Λs,T (X̄) ≤ Λs,T (Ȳ ), which
means that

Λs,T (X̄u(ω)) ≤ Λs,T (Ȳu(ω)) for all u ∈ N0 and a.e. ω ∈ Ω.

Finally, because ρ0
s,T is monotone, we arrive at

ρs,T (X̄u(ω)I[s,∞)) = ρ0
s,T (Λs,T (X̄u(ω))I[s,∞))

≤ ρ0
s,T (Λs,T (Ȳu(ω))I[s,∞)) = ρs,T (Ȳu(ω)I[s,∞))

for all u ∈ N0 and a.e. ω ∈ Ω.

Summing up the previous results, we obtain the following corollary.

Corollary 7.4.9. Let (ρt,T )t∈S be a dynamic convex systemic risk measure with
corresponding dynamic convex single-firm risk measure (ρ0

t,T )t∈S and dynamic convex
aggregation function (Λt,T )t∈S . Moreover, assume that (a-TC1) is satisfied. Then
(ρt,T )t∈S is a time-consistent dynamic convex systemic risk measure if (ρ0

t,T )t∈S is
time-consistent and (7.24) is satisfied.

Proof. If (ρ0
t,T )t∈S is time-consistent and (7.24) is satisfied, then we know from

Lemma 7.4.6 that (ρt,T )t∈S satisfies (s-TC3). Furthermore, Lemma 7.4.5 yields that
(s-TC2) holds. Finally, we obtain with Proposition 7.4.8 that (ρt,T )t∈S is time-
consistent.

Next, we consider equivalent properties to (s-TC3), (s-TC2) and (a-TC2). The
corresponding result in terms of standard dynamic risk measures was proved in
Proposition 4.4 in Cheridito et al. (2006). For completeness, we reformulate their
result and the corresponding proof for our dynamic convex single-firm risk measures.

Proposition 7.4.10. Let (ρ0
t,T )t∈S be a dynamic convex single-firm risk measure.

Then the following statements are equivalent:

1. (ρ0
t,T )t∈S is time-consistent.

2. For every pair s, t ∈ S with s ≤ t and X ∈ R∞s,T , we have

ρ0
s,T (X) = ρ0

s,T (XI[s,t) + ρ0
t,T (X)I[t,∞)).

Proof. 1. ⇒ 2. : Consider X ∈ R∞,ns,T and define Z := XI[s,t) + ρ0
t,T (X)I[t,∞). Then

the Ft-translation property of ρ0
t,T and ρ0

t,T (0) = 0 imply

ρ0
t,T (Z) = ρ0

t,T (pt,T (Z)) = ρ0
t,T (ρ0

t,T (X)I[t,∞)) = ρ0
t,T (X).

Since (r-TC) is satisfied, it follows ρ0
s,T (X) = ρs,T (Z).
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2. ⇒ 1. : Let X,Y ∈ R∞s,T with XI[s,t) = Y I[s,t) and ρ0
t,T (X) ≤ ρ0

t,T (Y ). By
monotonicity of ρ0

s,T , we obtain

ρ0
s,T (X) = ρ0

s,T (XI[s,t) + ρ0
t,T (X)I[t,∞)) ≤ ρ0

s,T (XI[s,t) + ρ0
t,T (Y )I[t,∞))

= ρ0
s,T (Y I[s,t) + ρ0

t,T (Y )I[t,∞)) = ρ0
s,T (Y ).

The corresponding result for dynamic convex systemic risk measures reads as
follows.

Proposition 7.4.11. Let (ρt,T )t∈S be a dynamic convex systemic risk measure.
Then the following statements are equivalent:

1. (ρt,T )t∈S satisfies (s-TC3).
2. For every pair s, t ∈ S with s ≤ t and X̄ ∈ R∞,ns,T , we have

ρs,T (X̄) = ρs,T (X̄I[s,t) + f−1
ρt,T

(ρt,T (X̄))1nI[t,∞)).

Proof. 1. ⇒ 2. : Let X̄ ∈ R∞,ns,T and define Z̄ := X̄I[s,t) + f−1
ρt,T

(ρt,T (X̄))1nI[t,∞).
Property (s7) yields

ρt,T (Z̄) = ρt,T (f−1
ρt,T

(ρt,T (X̄))1nI[t,∞)) = fρt,T (f−1
ρt,T

(ρt,T (X̄))) = ρt,T (X̄).

Since (s-TC3) is satisfied, we have ρs,T (X̄) = ρs,T (Z̄).
2. ⇒ 1. : Consider X̄, Ȳ ∈ R∞,ns,T with X̄I[s,t) = Ȳ I[s,t) and ρt,T (X̄) ≤ ρt,T (Ȳ ).

Monotonicity of f−1
ρt,T

and ρs,T yields

ρs,T (X̄) = ρs,T (X̄I[s,t) + f−1
ρt,T

(ρt,T (X̄))1nI[t,∞))

= ρs,T (Ȳ I[s,t) + f−1
ρt,T

(ρt,T (X̄))1nI[t,∞))

≤ ρs,T (Ȳ I[s,t) + f−1
ρt,T

(ρt,T (Ȳ ))1nI[t,∞))

= ρs,T (Ȳ ).

Analogously, we obtain the following proposition regarding property (s-TC2).

Proposition 7.4.12. Let (ρt,T )t∈S be a dynamic convex systemic risk measure.
Then the following statements are equivalent:

1. (ρt,T )t∈S satisfies (s-TC2).
2. For every pair s, t ∈ S with s ≤ t and X̄ ∈ R∞,ns,T , we have

ρs,T (X̄u(ω)I[s,∞)) = ρs,T (Z̄u(ω)I[s,∞)) for all u ∈ N0 and a.e. ω ∈ Ω

where Z̄u(ω) := X̄u(ω) for u < t and Z̄u(ω) := f−1
ρt,T

(ρt,T (X̄u(ω)I[t,∞)))1n for
u ≥ t.
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Proof. 1. ⇒ 2. : Let X̄ ∈ R∞,ns,T and define Z̄ as above. For u ≥ t and a.e. ω ∈ Ω,
property (s7) yields

ρt,T (Z̄u(ω)I[t,∞)) = ρt,T (f−1
ρt,T

(ρt,T (X̄u(ω)I[t,∞)))1nI[t,∞))

= fρt,T (f−1
ρt,T

(ρt,T (X̄u(ω)I[t,∞)))) = ρt,T (X̄u(ω)I[t,∞)).

Since (s-TC2) is satisfied, we have ρs,T (X̄u(ω)I[s,∞)) = ρs,T (Z̄u(ω)I[s,∞)) for all
u ∈ N0 and a.e. ω ∈ Ω.

2.⇒ 1. : Consider X̄, Ȳ ∈ R∞,ns,T such that X̄I[s,t) = Ȳ I[s,t) and ρt,T (X̄u(ω)I[t,∞)) ≤
ρt,T (Ȳu(ω)I[t,∞)) for all u ≥ t and a.e. ω ∈ Ω. Obviously, ρs,T (X̄u(ω)I[s,∞)) =
ρs,T (Ȳu(ω)I[s,∞)) for u < t and a.e. ω ∈ Ω. Moreover, for u ≥ t and a.e. ω ∈ Ω, we
get

ρs,T (X̄u(ω)I[s,∞)) = ρs,T (f−1
ρt,T

(ρt,T (X̄u(ω)I[t,∞)))1nI[s,∞))

≤ ρs,T (f−1
ρt,T

(ρt,T (Ȳu(ω)I[t,∞)))1nI[s,∞)) = ρs,T (Ȳu(ω)I[s,∞))

since ρs,T and f−1
ρt,T

are monotone.

The following remark addresses another important property of dynamic convex
aggregation functions (Λt,T )t∈S which is needed to derive an analogous result for
(Λt,T )t∈S .

Remark 7.4.13. Let (Λt,T )t∈S be a dynamic convex aggregation function and fix
t ∈ S. If Im Λt,T = R, we have

Λt,T (f−1
Λt,T (X) 1n) = fΛt,T (f−1

Λt,T (X)) = X for all X ∈ R∞.

If Im Λt,T = R+, then the corresponding inverse function f−1
Λt,T maps from R+ into

[bt,T ,∞) for bt,T ∈ R+ and

Λt,T (f−1
Λt,T (X+)1n) = fΛt,T (f−1

Λt,T (X+)) = X+ for all X ∈ R∞

where X+ is defined by X+
t (ω) := max{Xt(ω), 0} for t ∈ N0 and ω ∈ Ω.

Proposition 7.4.14. Let (Λt,T )t∈S be a dynamic convex aggregation function. Then
the following statements are equivalent:

1. (Λt,T )t∈S satisfies (a-TC2).
2. For every pair s, t ∈ S with s ≤ t and X̄ ∈ R∞,ns,T , we have

Λs,T (X̄) = Λs,T (X̄I[s,t) + f−1
Λt,T (Λt,T (X̄))1nI[t,∞)). (7.25)

3. For every pair s, t ∈ S with s ≤ t and x̄ ∈ Rn, we have

Λs,T (x̄) = Λs,T (f−1
Λt,T (Λt,T (x̄))1n). (7.26)
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Proof. 1. ⇒ 2. : Let X̄ ∈ R∞,ns,T and define Z̄ := X̄I[s,t) + f−1
Λt,T (Λt,T (X̄))1nI[t,∞).

Remark 7.4.13 yields

Λt,T (Z̄I[t,∞)) = Λt,T (f−1
Λt,T (Λt,T (X̄I[t,∞)))1n) = Λt,T (X̄I[t,∞)).

Since (a-TC2) is satisfied, it follows Λs,T (X̄) = Λs,T (Z̄).
2.⇒ 3. : Fix x̄ ∈ Rn and consider the corresponding process x̄I[t,∞) ∈ R

∞,n
s,T . For

all u ≥ t and a.e. ω ∈ Ω, Equation (7.25) and the measurability property of Λs,T ,
Λt,T and f−1

Λt,T imply

Λs,T (x̄) = Λs,T (x̄I[t,∞))(u, ω) = Λs,T (f−1
Λt,T (Λt,T (x̄I[t,∞)))1nI[t,∞))(u, ω)

= Λs,T (f−1
Λt,T (Λt,T (x̄I[t,∞)(u, ω)))1nI[t,∞)(u, ω)) = Λs,T (f−1

Λt,T (Λt,T (x̄))1n).

3. ⇒ 1. : We will show that (Λt,T )t∈S satisfies (a-TC2’) which is equivalent to (a-
TC2). Consider x̄, ȳ ∈ Rn with Λt,T (x̄) ≤ Λt,T (ȳ). Then monotonicity of Λs,T and
f−1

Λt,T and Equation (7.26) yield

Λs,T (x̄) = Λs,T (f−1
Λt,T (Λt,T (x̄))1n) ≤ Λs,T (f−1

Λt,T (Λt,T (ȳ))1n) = Λs,T (ȳ).

The following corollary sums up the previous results.

Corollary 7.4.15. Let (ρt,T )t∈S be a dynamic convex systemic risk measure with
corresponding dynamic convex single-firm risk measure (ρ0

t,T )t∈S and dynamic convex
aggregation function (Λt,T )t∈S that satisfies (a-TC1). Then the following statements
are equivalent:

1. (ρt,T )t∈S is time-consistent.
2. For every pair s, t ∈ S with s ≤ t, the following equalities hold for every

X ∈ R∞s,T and every X̄ ∈ R∞,ns,T :

ρ0
s,T (X) = ρ0

s,T (XI[s,t) + ρ0
t,T (X)I[t,∞)),

Λs,T (X̄) = Λs,T (X̄I[s,t) + f−1
Λt,T (Λt,T (X̄))1nI[t,∞)).

3. For every pair s, t ∈ S with s ≤ t, the following equalities hold for every
X ∈ R∞s,T and every X̄ ∈ R∞,ns,T :

ρ0
s,T (X) = ρ0

s,T (XI[s,t) + ρ0
t,T (X)I[t,∞)),

ρs,T (X̄u(ω)I[s,∞)) = ρs,T (Z̄u(ω)I[s,∞)) for all u ∈ N0 and a.e. ω ∈ Ω

where Z̄u(ω) := X̄u(ω) for u < t and Z̄u(ω) := f−1
ρt,T

(ρt,T (X̄u(ω)I[t,∞)))1n for
u ≥ t.

Proof. The equivalence 1. ⇔ 2. follows from the definition of time-consistent dy-
namic systemic risk measures, Proposition 7.4.10 and Proposition 7.4.14. The equiv-
alence 1.⇔ 3. is a consequence of Proposition 7.4.10, Proposition 7.4.12 and Propo-
sition 7.4.8.
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Summary 7.4.16. Let (ρt,T )t∈S be a dynamic convex systemic risk measure with
time-consistent dynamic convex single-firm risk measure (ρ0

t,T )t∈S and dynamic con-
vex aggregation function (Λt,T )t∈S . Moreover, let (7.24) be satisfied. Then Figure
7.4.1 sums up Lemma 7.4.5, Lemma 7.4.6 and Propositions 7.4.8, 7.4.11, 7.4.12 and
7.4.14.

Figure 7.4.1.: Summary: time-consistency properties

(r-TC) ⇔ (s-TC3) ⇔ ρs,T (X̄) = ρs,T (X̄I[s,t) + f−1
ρt,T

(ρt,T (X̄))1nI[t,∞))

⇓

(s-TC2) ⇔
ρs,T (X̄u(ω)I[s,∞)) = ρs,T (Z̄u(ω)I[s,∞)) for

Z̄u(ω) =
{
X̄u(ω) if u < t

f−1
ρt,T

(ρt,T (X̄u(ω)I[t,∞)))1n if u ≥ t

m

(a-TC2) ⇔ Λs,T (X̄) = Λs,T (X̄I[s,t) + f−1
Λt,T (Λt,T (X̄))1nI[t,∞))

According to Proposition 4.5 in Cheridito et al. (2006) (see Proposition 6.3.3),
standard dynamic risk measures that satisfy so called one-step time-consistency are
time-consistent if T ∈ N. The next proposition states the corresponding result for
dynamic convex aggregation functions (Λt,T )t∈S . For the proof we borrow the idea
from the proof of Proposition 4.5 in Cheridito et al. (2006).

Proposition 7.4.17. Let (Λt,T )t∈S be a dynamic convex aggregation function that
satisfies (a-TC1). Then the following properties are equivalent:

(a-tc) Λs,T (X̄) = Λs,T (X̄I{s} + f−1
Λs+1,T

(Λs+1,T (X̄))1nI[s+1,∞)) for all X̄ ∈ R∞,ns,T

and s ∈ [S, T − 1] ∩ N0.

(a-tc’) Λs,T (x̄) = Λs,T (f−1
Λs+1,T

(Λs+1,T (x̄))1n) for all x̄ ∈ Rn and s ∈ [S, T − 1]∩N0.

In addition, if one of these equivalent properties is satisfied, then the dynamic convex
aggregation function (Λt,T )t∈S is time-consistent.

Proof. The implication (a-tc)⇒ (a-tc’) follows as in the proof of Proposition 7.4.14.
In order to show the reverse implication, fix X̄ ∈ R∞,ns,T and s ∈ [S, T − 1] ∩ N0.
Obviously, we have

Λs,T (X̄)(s, ω) = Λs,T (X̄s(ω)) = Λs,T (X̄I{s} + f−1
Λs+1,T

(Λs+1,T (X̄))1nI[s+1,∞))(s, ω)

for a.e. ω ∈ Ω. Moreover, for u ∈ [s + 1,∞) ∩ N0 and a.e. ω ∈ Ω, it is easily seen
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that (a-tc’) and the measurability property of Λs,T , f−1
Λs+1,T

and Λs+1,T imply

Λs,T (X̄)(u, ω) = Λs,T (X̄u(ω)) = Λs,T (f−1
Λs+1,T

(Λs+1,T (X̄u(ω)))1n)

= Λs,T (X̄I{s} + f−1
Λs+1,T

(Λs+1,T (X̄))1nI[s+1,∞))(u, ω).

This means that property (a-tc) holds.
Now, suppose that (a-tc’) is satisfied and consider s, t ∈ S with s ≤ t, x̄ ∈ Rn and

ȳ := f−1
Λt,T (Λt,T (x̄))1n. Because of Proposition 7.4.14, it suffices to show that

Λs,T (x̄) = Λs,T (ȳ)(= Λs,T (f−1
Λt,T (Λt,T (x̄))1n)). (7.27)

We will prove this equality by backwards induction: If s = T , then this equality is
trivial because s = t = T . Therefore, consider s ≤ T−1 and for all t′ ∈ [s+1, T ]∩N0,
assume that

Λs+1,T (z̄) = Λs+1,T (f−1
Λt′,T

(Λt′,T (z̄))1n) for all z̄ ∈ Rn. (7.28)

Since s ≤ t, we know that either t = s or t ≥ s+ 1. Obviously, (7.27) is satisfied if
t = s. Thus, assume that t ≥ s+ 1. Then Equation (7.28) implies

Λs+1,T (x̄) = Λs+1,T (f−1
Λt,T (Λt,T (x̄))1n) = Λs+1,T (ȳ),

which yields together with (a-tc’)

Λs,T (x̄) = Λs,T (f−1
Λs+1,T

(Λs+1,T (x̄))1n) = Λs,T (f−1
Λs+1,T

(Λs+1,T (ȳ))1n) = Λs,T (ȳ).

This means that (Λt,T )t∈S is time-consistent.

7.4.2. Examples of time-consistent dynamic aggregation functions
According to Definition 7.4.4, we can construct time-consistent dynamic convex
systemic risk measures as a composition of time-consistent dynamic convex single-
firm risk measures and time-consistent dynamic convex aggregation functions.
Since every time-consistent standard convex risk measure (ρ̃t)t∈S defined in Sec-

tion 6.3 induces a time-consistent dynamic convex single-firm risk measure (ρ0
t,T )t∈S

by ρ0
t,T (X) := ρ̃t,T (−X) for t ∈ S and X ∈ R∞t,T , we have already discussed exam-

ples of time-consistent dynamic convex single-firm risk measures in Section 6.4. It
remains the question of how time-consistent dynamic convex aggregation functions
look like. A first step to answer this question is the following proposition, which
yields equivalent properties to time-consistency.

Proposition 7.4.18. Let (Λt,T )t∈S be a dynamic convex aggregation function that
satisfies (a-TC1).

1. If all Λt,T , t ∈ S, are R-valued, then (Λt,T )t∈S is time-consistent if and only
if f−1

Λt,T (Λt,T (x̄)) does not depend on t ∈ S for all x̄ ∈ Rn.
2. If all Λt,T , t ∈ S, are R+-valued, then (Λt,T )t∈S is time-consistent if and only

if the following properties are satisfied:
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a) bt,T ≤ bs,T for all s, t ∈ S with s ≤ t.
b) The following conditions hold for all s, t ∈ S with s ≤ t:

i. If Λt,T (x̄) > 0 and Λs,T (x̄) = 0 for x̄ ∈ Rn, then f−1
Λt,T (Λt,T (x̄)) ≤

f−1
Λs,T (Λs,T (x̄))(= bs,T ).

ii. If Λt,T (x̄) > 0 and Λs,T (x̄) > 0 for x̄ ∈ Rn, then f−1
Λt,T (Λt,T (x̄)) =

f−1
Λs,T (Λs,T (x̄)).

In particular, (Λt,T )t∈S is time-consistent if Λt,T = rtΛ for a convex aggregation
function Λ and rt ∈ R+\{0}.

Proof. Part 1: Let (Λt,T )t∈S be time-consistent and R-valued and fix x̄ ∈ Rn. Then
it follows from Proposition 7.4.14 that

Λs,T (x̄) = Λs,T (f−1
Λs,T (Λs,T (x̄))1n)

= Λs,T (f−1
Λt,T (Λt,T (x̄))1n) for all s, t ∈ S with s ≤ t. (7.29)

Moreover, the fΛs,T -constancy property implies

Λs,T (x̄) = fΛs,T (f−1
Λs,T (Λs,T (x̄))) = fΛs,T (f−1

Λt,T (Λt,T (x̄))) for all s, t ∈ S with s ≤ t.
(7.30)

Bijectivity of fΛs,T : R→ R leads to f−1
Λs,T (Λs,T (x̄)) = f−1

Λt,T (Λt,T (x̄)). This yields the
“only if” part of the assertion.
The “if” part follows from Proposition 7.4.14 since f−1

Λs,T (Λs,T (x̄)) = f−1
Λt,T (Λt,T (x̄))

for all s, t ∈ S implies immediately that (7.30) holds for all x̄ ∈ Rn.
Part 2: Now, assume that all Λt,T map into R+. Note that in this case, each

fΛt,T : R → R+ is such that fΛt,T |[bt,T ,∞) is a bijective, strictly increasing function
from [bt,T ,∞) to R+ and fΛt,T (a) = 0 for all a ≤ bt,T . Moreover, f−1

Λt,T : R+ →
[bt,T ,∞) is strictly increasing, too.
At first, let (Λt,T )t∈S be time-consistent, fix x̄ ∈ Rn and consider s, t ∈ S with

s ≤ t. Then either Λt,T (x̄) = 0 or Λt,T (x̄) > 0.
If Λt,T (x̄) = 0, then Λs,T (x̄) = 0 due to (a-TC2’). Moreover, Equation (7.30)

yields
0 = Λs,T (x̄) = fΛs,T (f−1

Λt,T (Λt,T (x̄))) = fΛs,T (f−1
Λt,T (0)).

f−1
Λt,T (0) = bt,T now implies that 0 = fΛs,T (bt,T ). Therefore, we obtain bt,T ≤ bs,T .
If Λt,T (x̄) > 0, then we distinguish between two cases: Either Λt,T (x̄) > 0 and

Λs,T (x̄) = 0 or Λt,T (x̄) > 0 and Λs,T (x̄) > 0. In both cases, we have f−1
Λt,T (Λt,T (x̄)) >

bt,T because f−1
Λt,T is a strictly increasing function.

If Λt,T (x̄) > 0 and Λs,T (x̄) = 0, the equality

0 = Λs,T (x̄) = fΛs,T (f−1
Λs,T (Λs,T (x̄))) = fΛs,T (f−1

Λt,T (Λt,T (x̄)))

implies f−1
Λt,T (Λt,T (x̄)) ≤ bs,T = f−1

Λs,T (Λs,T (x̄)).
Now, suppose that Λt,T (x̄) > 0 and Λs,T (x̄) > 0. Because fΛs,T is strictly increas-

ing on [bs,T ,∞) and fΛs,T (a) = 0 for all a ≤ bs,T , Equation (7.30) and Λs,T (x̄) > 0
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imply f−1
Λt,T (Λt,T (x̄)) > bs,T and f−1

Λs,T (Λs,T (x̄)) > bs,T . Further, bijectivity and
(7.30) lead to f−1

Λt,T (Λt,T (x̄)) = f−1
Λs,T (Λs,T (x̄)). This yields the “only if” part of the

assertion.
In order to prove the “if” part, it suffices again to show (7.30) for x̄ ∈ Rn. Then the

assertion follows from Proposition 7.4.14. To this end, consider s, t ∈ S with s ≤ t.
In case of Λt,T (x̄) > 0 and Λs,T (x̄) > 0, Equation (7.30) is obvious. If Λt,T (x̄) > 0 and
Λs,T (x̄) = 0, we have 0 = Λs,T (x̄) = fΛs,T (f−1

s,T (Λs,T (x̄))) ≥ fΛs,T (f−1
Λt,T (Λt,T (x̄))).

Hence, it follows that 0 = fΛs,T (f−1
Λt,T (Λt,T (x̄))). Finally, if Λt,T (x̄) = 0 and Λs,T (x̄) =

0, then bt,T ≤ bs,T implies that Λs,T (x̄) = 0 = fΛs,T (bt,T ) = fΛs,T (f−1
Λt,T (Λt,T (x̄))).

To the last assertion: Consider Λt,T = rtΛ for rt ∈ R+\{0}. At first, assume that
all Λt,T , t ∈ S, are R-valued. Then fΛt,T (a) = rtfΛ(a) and f−1

Λt,T (a) = f−1
Λ (a/rt) for

all t ∈ S and a ∈ R. This means

f−1
Λt,T (Λt,T (x̄)) = f−1

Λ (Λt,T (x̄)/rt) = f−1
Λ (rtΛ(x̄)/rt) = f−1

Λ (Λ(x̄)) for x̄ ∈ Rn.

Thus, f−1
Λt,T (Λt,T (x̄)) does not depend on t for each x̄ ∈ Rn. The first part of this

proposition implies that our dynamic convex aggregation function is time-consistent.
On the other hand, let all Λt,T , t ∈ S, be R+-valued. Then for each t ∈ S, we have

fΛt,T (a) = rtfΛ(a) for all a ∈ R and f−1
Λt,T (a) = f−1

Λ (a/rt) for all a ∈ R+. Moreover,
b = bt,T and f−1

Λt,T (Λt,T (x̄)) = f−1
Λ (Λ(x̄)) for x̄ ∈ Rn and all t ∈ S. Hence, the second

part of this proposition yields time-consistency of (Λt,T )t∈S .

The following lemma considers dynamic convex aggregation functions (Λt,T )t∈S
that admit a specific form.

Lemma 7.4.19. Let (Λt,T )t∈S be a dynamic convex aggregation function with

Λt,T (x̄) :=
n∑
i=1

gt,T ((x̄i − bt,T )+) for x̄ ∈ Rn (7.31)

where bt,T ∈ R+ and gt,T : R+ → R+ are convex and strictly increasing functions
with gt,T (0) = 0. Then (Λt,T )t∈S is time-consistent if and only if bt,T = b for all
t ∈ S and f−1

Λs,T (Λs,T (x̄)) = f−1
Λt,T (Λt,T (x̄)) for all x̄ ∈ R and s, t ∈ S.

Remark. Note that the convex aggregation function Λt,T defined in (7.31) satisfies
fΛt,T (a) = Λt,T (a1n) = ngt,T ((a− bt,T )+) for all a ∈ R and all t ∈ S. Therefore, the
values bt,T are indeed the b’s from the corresponding fΛt,T -constancy property.

Proof. If bt,T = b for all t ∈ S and f−1
Λs,T (Λs,T (x̄)) = f−1

Λt,T (Λt,T (x̄)) for all x̄ ∈ Rn

and s, t ∈ S, then (Λt,T )t∈S is time-consistent due to the second part of Proposition
7.4.18.
To prove the other direction, suppose that (Λt,T )t∈S is time-consistent and fix x̄ ∈

Rn and s, t ∈ S with s < t. The second part of Proposition 7.4.18 yields bt,T ≤ bs,T .
We will show that bt,T < bs,T leads to a contradiction. To this end, suppose that
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bt,T < bs,T . Equation (7.31) implies for all u ∈ S that fΛu,T (a) = ngu,T ((a− bu,T )+)
for a ∈ R and f−1

Λu,T (a) = g−1
u,T (a/n) + bu,T for a ∈ R+. It follows

f−1
Λu,T (Λu,T (x̄)) = g−1

u,T (Λu,T (x̄)/n) + bu,T

= g−1
u,T

(
n∑
i=1

gu,T ((x̄i − bu,T )+)/n
)

+ bu,T for all u ∈ S. (7.32)

For ȳ ∈ Rn defined by ȳ1 = bs,T + 1, ȳ2 = . . . = ȳn = bt,T , we get

Λs,T (ȳ) =
n∑
i=1

gs,T ((ȳi− bs,T )+) = gs,T (1) > 0 and Λt,T (ȳ) = gt,T (bs,T + 1− bt,T ) > 0.

Since (Λt,T )t∈S is time-consistent, the second part of Proposition 7.4.18 yields that
f−1

Λs,T (Λs,T (ȳ)) = f−1
Λt,T (Λt,T (ȳ)), i.e.,

g−1
s,T (gs,T (1)/n) + bs,T = g−1

t,T (gt,T (bs,T + 1− bt,T )/n) + bt,T .

Similarly, for z̄ ∈ Rn defined by z̄1 = bs,T + 1, z̄2 = bt,T + c, z̄3 = . . . = z̄n = bt,T for
c := (bs,T − bt,T )/2 > 0, we obtain

Λs,T (z̄) = gs,T (1) > 0 and Λt,T (z̄) = gt,T (bs,T + 1− bt,T ) + gt,T (c) > 0.

The second part of Proposition 7.4.18 gives f−1
Λs,T (Λs,T (z̄)) = f−1

Λt,T (Λt,T (z̄)), i.e.,

g−1
s,T (gs,T (1)/n) + bs,T = g−1

t,T ([gt,T (bs,T + 1− bt,T ) + gt,T (c)]/n) + bt,T .

Altogether, we obtain

g−1
t,T (gt,T (bs,T + 1− bt,T )/n) = g−1

t,T ([gt,T (bs,T + 1− bt,T ) + gt,T (c)]/n).

But this is a contradiction because g−1
t,T : R+ → R+ is a strictly increasing function

and gt,T (c) > 0.
It remains to prove that Λt,T (x̄) > 0 and Λs,T (x̄) = 0 imply f−1

Λt,T (Λt,T (x̄)) =
f−1

Λs,T (Λs,T (x̄)) = b. Since (Λt,T )t∈S is time-consistent, the second part of Proposition
7.4.18 tells us that f−1

Λt,T (Λt,T (x̄)) ≤ b. Suppose that f−1
Λt,T (Λt,T (x̄)) < b. Then it

follows with Equation (7.32) that

f−1
Λt,T (Λt,T (x̄)) = g−1

t,T

(
n∑
i=1

gt,T ((x̄i − b)+)/n
)

+ b < b,

which is a contradiction to g−1
t,T (

∑n
i=1 gt,T ((x̄i − b)+)/n) ≥ 0.

With the previous results and the convex aggregation functions introduced in
Section 5.3 we can easily construct time-consistent dynamic aggregation functions.
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Example 7.4.20. Consider Λsum defined by

Λsum(x̄) :=
n∑
i=1

x̄i for x̄ ∈ Rn.

Then (Λsum
t,T )t∈S defined by

Λsum
t,T (x̄) := rt

n∑
i=1

x̄i, for x̄ ∈ Rn and rt ∈ R+\{0}

is a time-consistent dynamic convex aggregation function. In the same way, we
can construct the time-consistent dynamic convex aggregation functions (Λloss

t,T )t∈S ,
(Λb,losst,T )t∈S , (Λexp

t,T )t∈S and (Λplin
t,T )t∈S by

Λloss
t,T (x̄) := rt

n∑
i=1

x̄+
i

Λb,losst,T (x̄) := rt

n∑
i=1

(x̄i − b)+ for b ∈ R+

Λexp
t,T (x̄) := rt

n∑
i=1

(eγx̄
+
i − 1) for γ > 0

Λplin
t,T (x̄) := rt

n∑
i=1

λ(x̄i)

where x̄ ∈ Rn, rt ∈ R+\{0} for each t ∈ S and

λ(x) =


0 for x < 0
ax for 0 ≤ x < c

b(x− c) + ac for x ≥ c

with 0 < a < b and c > 0.

By using the second part of Proposition 7.4.18, we obtain the following two ex-
amples.

Example 7.4.21. Define the convex aggregation function Λ[exp]
t,T for t ∈ S by

Λ[exp]
t,T (x̄) := ert

∑n

i=1 x̄
+
i − 1 for x̄ ∈ Rn and rt ∈ R+\{0}.

In this case, we have fΛ[exp]
t,T

(a) = ertna
+−1 for a ∈ R and f−1

Λ[exp]
t,T

(a) = log(a+1)/(rtn)

for a ∈ R+, which implies

f−1
Λ[exp]
t,T

(Λ[exp]
t,T (x̄)) =

log
(
ert
∑n

i=1 x̄
+
i − 1 + 1

)
rtn

=
∑n
i=1 x̄

+
i

n
for all x̄ ∈ Rn.

Since all conditions in the second part of Proposition 7.4.18 are satisfied, (Λ[exp]
t,T )t∈S

is a time-consistent dynamic convex aggregation function according to Proposition
7.4.18.
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Example 7.4.22. Fix k > 1 and define the convex aggregation function Λ[k]
t,T for

t ∈ S by

Λ[k]
t,T (x̄) :=

(
rt

n∑
i=1

x̄+
i

)k
for x̄ ∈ Rn and rt ∈ R+\{0}.

In this case, we have fΛ[k]
t,T

(a) = (rtna+)k for a ∈ R and f−1
Λ[k]
t,T

(a) = k

√
a/(rkt nk) =

k
√
a/rtn for a ∈ R+, which implies

f−1
Λ[k]
t,T

(Λ[k]
t,T (x̄)) =

k

√
(rt
∑n
i=1 x̄

+
i )k

rtn
=
∑n
i=1 x̄

+
i

n
for all x̄ ∈ Rn.

Again, all conditions in the second part of Proposition 7.4.18 are satisfied. Thus,
(Λ[k]

t,T )t∈S is a time-consistent dynamic convex aggregation function.

Let us recapitulate the results in this section. We have studied time-consistent
dynamic convex systemic risk measures (ρt,T )t∈S as a composition of time-consistent
dynamic convex single-firm risk measures (ρ0

t,T )t∈S and time-consistent dynamic
convex aggregation functions (Λt,T )t∈S . Here, each ρ0

t,T is a mapping from R∞t,T to
L∞t , and each Λt,T is a function from Rn to R. We can compose these mappings
since every Λt,T is measurable, and thus induces a mapping from R∞,nt,T to R∞t,T (see
Lemma 7.1.7). In this setting, we have studied how the time-consistency properties
of (ρt,T )t∈S , (ρ0

t,T )t∈S and (Λt,T )t∈S , which are based on the strong time-consistency
concept, depend on each other. A key result clarifying the relation between these
properties is the characterization of time-consistent dynamic convex systemic risk
measures in Proposition 7.4.8.
It is important to mention that convex aggregation functions – defined as convex,

increasing functions from Rn to R – have a rather simple structure. In a certain
sense, this definition limits the possibilities to construct dynamic convex aggregation
functions that additionally satisfy the time-consistency property from Definition
7.4.3.
Despite this strong notion of time-consistency and the simple setting of functions

from Rn to R, we have found several interesting examples of time-consistent dynamic
convex aggregation functions in Subsection 7.4.2. In particular, we refer to Lemma
7.4.19 and Examples 7.4.20-7.4.22. Moreover, an additional example is the trivial
time-consistent dynamic convex aggregation function. Here, we fix the (static) con-
vex aggregation function Λ at the beginning of the considered period of time and
then this specific aggregation function is used for every following point in time, i.e.,
Λt,T = Λ for all t ∈ S.
Finally, one could argue that it also makes sense to introduce time-consistent dy-

namic convex systemic risk measures by considering time-consistent dynamic convex
single-firm risk measures and fixing the convex aggregation function. This means
that we use the trivial time-consistent dynamic convex aggregation function in order
to specify time-consistent dynamic convex systemic risk measures, i.e., ρt,T = ρ0

t,T ◦Λ.
Consequently, all dynamics of the corresponding dynamic convex systemic risk meas-
ure (ρt,T )t∈S are determined by the underlying dynamic convex single-firm risk meas-
ure.
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A.1. Appendix to Part I
A.1.1. General results in probability theory
The following version of the strong Markov property, originally proved in Hunt
(1956), is needed in Chapter 3.

Theorem A.1.1 (See Theorem 3.5.1 in Petersen (1977)). Consider the filtered prob-
ability space (Ω,A,F,P) with filtration F = (Ft)t≥0 and suppose that this probabil-
ity space supports a standard Brownian motion W . Let θ be an optional time,
i.e., {θ < t} ∈ Ft for all t ≥ 0, and define the probability space (Ωθ,Aθ,Pθ) by
Ωθ := {θ <∞}, Aθ := {A ∩ Ωθ|A ∈ A} and Pθ[A] = P[A|Ωθ]. Then

1. The process (Wt+θ −Wθ)t≥0 is a standard Brownian motion on (Ωθ,Aθ,Pθ).
2. (Wt+θ−Wθ)t≥0 is independent of Fθ+∩Ωθ in the probability space (Ωθ,Aθ,Pθ).

(Fθ+ := {A ∈ A|A ∩ {θ < t} ∈ Ft for all t ≥ 0})

Lemma A.1.2 (See Lemma 3.5.2 in Petersen (1977)). Consider a probability space
(Ω,A,P) and suppose that X and Y are independent random variable and let A ⊂ Ω
be a measurable set. If Y is independent of σ(A) ∨ σ(X) and f : R2 → R is
measurable, then

ˆ
ω1∈A

ˆ
ω2∈Ω

f(X(ω1), Y (ω2))dP(ω1)dP(ω2) =
ˆ
A
f(X,Y )dP.

Lemma A.1.3. Consider a filtered probability space (Ω,F ,F,P) with F = (Ft)t≥0
and let θ and τ be F-stopping times. Then every integrable random variable X
satisfies

E[XI{θ>τ}|Fθ∨τ ] = E[X|Fθ∨τ ]I{θ>τ} = E[XI{θ>τ}|Fθ].

Proof. Consider A ∈ Fθ∨τ . Since {θ > τ} ∈ Fθ∨τ , we know that A∩{θ > τ} ∈ Fθ∨τ .
By definition of Fθ∨τ , this implies

A ∩ {θ > τ} ∩ {θ ≤ t} = A ∩ {θ > τ} ∩ {θ ∨ τ ≤ t} ∈ Ft for all t ≥ 0,

which means that A ∩ {θ > τ} ∈ Fθ. For each B ∈ B(R), we obtain

{ω ∈ Ω|(E[X|Fθ∨τ ]I{θ>τ})(ω) ∈ B}
= ({θ ≤ τ} ∩ {ω ∈ Ω|0 ∈ B}) ∪ ({θ > τ} ∩ {ω ∈ Ω|E[X|Fθ∨τ ](ω) ∈ B}) ∈ Fθ

since {θ ≤ τ} ∩ {ω ∈ Ω|0 ∈ B} ∈ Fθ and {ω ∈ Ω|E[X|Fθ∨τ ](ω) ∈ B} ∈ Fθ∨τ . This
means that E[X|Fθ∨τ ]I{θ>τ} is Fθ-measurable.
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Now, consider C ∈ Fθ ⊂ Fθ∨τ . Then

E[E[XI{θ>τ}|Fθ]IC ] = E[XI{θ>τ}IC ] = E[E[XI{θ>τ}|Fθ∨τ ]IC ].

Since {θ > τ} ∈ Fθ∨τ , it follows E[E[XI{θ>τ}|Fθ∨τ ]IC ] = E[E[X|Fθ∨τ ]I{θ>τ}IC ], and
thus E[XI{θ>τ}|Fθ] = E[X|Fθ∨τ ]I{θ>τ}.

A.1.2. Hitting times

In this subsection we repeat important results for first hitting times in two different
approaches. At the beginning, we focus on the standard approach considering a
Brownian motion with drift; see, for example, Chapter 3 in Jeanblanc et al. (2009)
or Section 2.8 in Karatzas and Shreve (1988).
For the remaining part of this subsection fix a probability space (Ω,A,P) that

supports a standard Brownian motion W and a random variable X0. The process
X is defined by

Xt := X0 + µt+ σWt for µ ∈ R and σ > 0.

We are interested in the first hitting time TX0 of level 0 for the process X, i.e.,

TX0 := inf{t ≥ 0|Xt = 0}.

Theorem A.1.4. In case of X0 = x > 0 constant, the probability that the first
hitting time TX0 is less than or equal to t > 0 is given by

P[TX0 ≤ t] = P
[
min
s≤t

Xs ≤ 0
]

= Φ
(−x− µt

σ
√
t

)
+ e−2µx/σ2Φ

(−x+ µt

σ
√
t

)
.

Yi et al. (2011) generalize this approach by assuming that X0 is given by a random
variable. They obtain the following result.

Theorem A.1.5 (See Proposition 3.1 in Yi et al. (2011)). Suppose that X0 and Wt

are independent for each t > 0 and let the density of X0 be given by

ψ (x; a0, v0, σ0) :=


ϕ(x;a0+v0,σ0)−e−2a0v0/σ

2
0ϕ(x;v0−a0,σ0)

Φ
(
a0+v0
σ0

)
−e−2a0v0/σ2

0 Φ
(
v0−a0
σ0

) if x ≥ 0

0 if x < 0

with σ0 > 0 and a0 > |v0| where ϕ(x, µ̄, σ̄) denotes the probability density function
of the normal distribution N (µ̄, σ̄2). Then the probability that the first hitting time
TX0 is lesser than or equal to t > 0 is given by

P[TX0 ≤ t] = P
[
min
s≤t

Xs ≤ 0
]

= A(t) +B(t)− C(t)−D(t)
Φ
(
a0+v0
σ0

)
− e−2a0v0/σ2

0Φ
(
v0−a0
σ0

)
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with

A(t) = Φ2

−a0 + v0 + µt√
σ2

0 + σ2t
,−−a0 − v0

σ0
, ρ(t)

 ,
B(t) = Φ2

−a0 + v0 − 2µσ2
0/σ

2 − µt√
σ2

0 + σ2t
,−−a0 − v0 + 2µσ2

0/σ
2

σ0
, ρ(t)


· e−2µ(a0+v0)/σ2+2µ2σ2

0/σ
4
,

C(t) = Φ2

−v0 − a0 + µt√
σ2

0 + σ2t
,−−v0 + a0

σ0
, ρ(t)

 e−2a0v0/σ2
0 ,

D(t) = Φ2

−v0 − a0 − 2µσ2
0/σ

2 − µt√
σ2

0 + σ2t
,−−v0 + a0 + 2µσ2

0/σ
2

σ0
, ρ(t)


· e−2a0v0/σ2

0−2µ(v0−a0)/σ2+2µ2σ2
0/σ

4

and ρ(t) = −σ0√
σ2

0+σ2t
where Φ2(x1, x2, ρ) denotes the 2-dimensional normal distribu-

tion function with standard normal marginal distributions and correlation coefficient
ρ.

Remark A.1.6. Note that the distribution function Ψ, i.e., Ψ (x) := P [X0 ≤ x] for
x ∈ R, is given by

Ψ (x) =
ˆ x

0

ϕ (y; a0 + v0, σ0)− e−2a0v0/σ2
0ϕ (y; v0 − a0, σ0)

Φ
(
a0+v0
σ0

)
− e−2a0v0/σ2

0Φ
(
v0−a0
σ0

) dy

=
Φ
(
x−a0−v0

σ0

)
− Φ

(
−a0−v0
σ0

)
− e−2a0v0/σ2

0
(
Φ
(
x+a0−v0

σ0

)
− Φ

(
a0−v0
σ0

))
Φ
(
a0+v0
σ0

)
− e−2a0v0/σ2

0Φ
(
v0−a0
σ0

)
for x ≥ 0 and Ψ(x) = 0 for x < 0.

Proposition A.1.7 (See Example 3.2 in Yi et al. (2011)). Let the assumptions from
Theorem A.1.5 be satisfied and suppose that µ/σ2 = v0/σ

2
0. Then for every t > 0,

we have

P[TX0 ≤ t] =
Φ
(
−a0+v0+µt√

σ2t+σ2
0

)
+ e−2a0µ/σ2Φ

(
− a0−v0−µt√

σ2T+σ2
0

)
Φ
(
a0+v0
σ0

)
− e−2a0v0/σ2

0Φ
(
v0−a0
σ0

)
−

Φ
(
−a0+v0

σ0

)
+ e−2a0µ/σ2Φ

(
v0−a0
σ0

)
Φ
(
a0+v0
σ0

)
− e−2a0v0/σ2

0Φ
(
v0−a0
σ0

) .
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A.2. Appendix to Part II
A.2.1. Functional analysis
The following definitions and results are taken from Dunford and Schwartz (1957),
Rockafellar (1974) and Aliprantis and Border (2006).

Definition A.2.1. Let X and V be two linear spaces. A pairing between X and V
is a real-valued bilinear form 〈·, ·〉. A subset A ⊂ V separates points of X under 〈·, ·〉
if 〈x, v〉 = 0 for all v ∈ A implies x = 0. Similarly, a subset B ⊂ X separates points
of V under 〈·, ·〉 if 〈x, v〉 = 0 for all x ∈ B implies v = 0.
We call a topology T on X compatible with the pairing if it is a locally convex

topology such that for all v ∈ V, the linear functions

〈·, v〉 : X → R, x 7→ 〈x, v〉 (A.33)

are continuous and every continuous linear function on X admits a representation
of this form for some v ∈ V. Compatible topologies on V are defined analogously.
We call X and V paired spaces, denoted by (X ,V), if a specific pairing has been

chosen, if X separates points of V and V separates points of X under this pairing
and if X and V are equipped with compatible topologies.
If a specific pairing has been chosen and if V separates points of X under this

pairing, then the V-topology on X , denoted by σ(X ,V), is the weakest (coarsest)
topology on X for which every linear function given in (A.33) is continuous.

The following theorem shows that the topology σ(X ,V) is compatible with the
pairing 〈·, ·〉.

Theorem A.2.2 (See, e.g., Section V.3 in Dunford and Schwartz (1957)). Consider
the paired spaces (X ,V) and let 〈·, ·〉 be the corresponding pairing. Then the following
properties hold:

1. (X , σ(X ,V)) is a locally convex space.
2. The linear functionals on X which are σ(X ,V)-continuous are precisely the

functionals given by (A.33).

Theorem A.2.3 (Uniform boundedness principle; see, e.g., Theorem 6.14 in Alipran-
tis and Border (2006)). Consider a Banach space X and a nonempty subset A ⊂
L(X ,R). Then A is norm bounded if and only if it is pointwise bounded, i.e., for
each x ∈ X , there exists Mx > 0 such that |f(x)| ≤Mx for each f ∈ A.

Theorem A.2.4 (Alaoglu’s theorem; see, e.g., Theorem 6.21 in Aliprantis and
Border (2006)). Consider a normed vector space X and let X ∗ be the dual space of
(X , ‖ · ‖). Then the closed unit ball of X ∗ is σ(X ∗,X )-compact. Thus, a subset of
X ∗ is σ(X ∗,X )-compact if and only if it is σ(X ∗,X )-closed and norm bounded.

Theorem A.2.5 (Krein-Šmulian; see, e.g., Theorem V.5.7 in Dunford and Schwartz
(1957)). Consider a Banach space X and let X ∗ be the dual space of (X , ‖ · ‖).
Moreover, suppose that A ⊂ X ∗ is a convex subset of X ∗. Then A is σ(X ∗,X )-
closed if and only if A ∩ {l ∈ X ∗|‖l‖X ∗ ≤ r} is σ(X ∗,X )-closed for all r > 0.
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A.2.2. Convex optimization

This subsection is based on the definitions and results in Rockafellar (1974). Let us
suppose that (X ,V) and (U ,Y) are paired spaces.

Definition A.2.6. Consider a function f : X → R. The effective domain of f
is defined by dom f := {x ∈ X |f(x) < ∞}. f is called proper if dom f 6= ∅ and
f(x) > −∞ for all x ∈ X . The convex hull of f , denoted by conv f , is defined as
the greatest convex function h that satisfies h ≤ f . The function f is called lower
semicontinuous (l.s.c.) if the set {x ∈ X |f(x) ≤ r} is closed for all r ∈ R. The
greatest l.s.c. function g with g ≤ f is called l.s.c. hull of f and is denoted by lsc f .
Finally, the closure of f , denoted by cl f , is defined by

cl f(x) :=
{

lsc f(x) for all x ∈ X if lsc f(x) > −∞ for all x ∈ X
−∞ for all x ∈ X if lsc f(x) = −∞ for some x ∈ X

,

and we say that f is closed if f = cl f .

Theorem A.2.7 (See Theorem 4 in Rockafellar (1974)). Consider a convex function
f : X → R. Then lsc f and cl f are convex, too. If lsc f(x) ∈ R for some x ∈ X ,
then it follows that lsc f and f are proper, and we have cl f = lsc f . If lsc f(x) ∈
{−∞,+∞} for all x ∈ X , then lsc f satisfies

lsc f(x) =
{
−∞ if x ∈ cl dom f

+∞ if x /∈ cl dom f
.

Moreover, in case of lsc f(x) ∈ {−∞,+∞} for all x ∈ X , we have cl f(x) = lsc f(x),
except in the case where x /∈ cl dom f 6= ∅ (then −∞ = cl f(x) 6= lsc f(x) = +∞).

Definition A.2.8. Consider a function f : X → R. The convex conjugate of f is
the function f∗ : V → R defined by

f∗(v) := sup
x∈X
{〈x, v〉 − f(x)}.

The convex biconjugate of f : X → R is defined as the convex conjugate of f∗. The
conjugate in the concave sense of a function g : X → R is the function g∗ : V → R
defined by

g∗(v) := inf
x∈X
{〈x, v〉 − g(x)}.

Theorem A.2.9 (Duality theorem for conjugate functions; see Theorem 5 in Rock-
afellar (1974)). Consider an arbitrary function f : X → R. Then the convex conju-
gate f∗ is a closed convex function on V, and we have f∗∗ = cl conv f . Moreover,
the mapping f 7→ f∗ (called Fenchel transform) induces a one-to-one correspondence
f 7→ h (with h = f∗ and f = h∗) between the closed convex functions on X and the
closed convex functions on V.

Consider a function f : X → R and the following optimization problem
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(P) Minimize f over X .

Moreover, suppose that

f(x) = F (x, 0) for F : X × U → R. (A.34)

Definition A.2.10. The Lagrangian function K on X × Y is defined by

K(x, y) := inf
u∈U

{
F (x, u) +

〈
u, y

〉}
,

i.e., K(x, ·) is the conjugate in the concave sense of −F (x, ·).

Remark A.2.11. Rockafellar (1974) points out that if the function −F (x, ·) is
closed and concave, i.e., F (x, ·) is closed and convex for x ∈ X , then it follows with
the duality theorem that −F (x, ·) is the conjugate in the concave sense of K(x, ·).
Hence,

F (x, u) = sup
y∈Y
{K(x, y)− 〈u, y〉} if F (x, ·) is closed and convex.

Theorem A.2.12 (See Theorem 6 in Rockafellar (1974)). Let K be the Lagrangian.
Then for each x ∈ X , the function K(x, ·) is closed and concave. If additionally
F (x, ·) is closed and convex, then

f (x) = sup
y∈Y

K(x, y). (A.35)

On the other hand, suppose that K is any R-valued function on X ×Y that satisfies
(A.35). If additionally K(x, ·) is closed and concave, then K is the Lagrangian with a
uniquely determined representation (A.34) where F (x, ·) is closed and convex. More
precisely, F : X × U → R is given by

F (x, u) = sup
y∈Y
{K(x, y)− 〈u, y〉} .

Finally, if we suppose that F (x, ·) is closed and convex, then K(·, y) is convex if and
only if F (·, ·) is convex.

Let us now define the dual problem to (P):

(D) Maximize g over Y where g(y) := infx∈X K(x, y) for y ∈ Y.

Define
ϕ(u) := inf

x∈X
F (x, u) for u ∈ U .

The following theorem shows the connection between g and ϕ.

Theorem A.2.13 (See Theorem 7 in Rockafellar (1974)). Consider the function g
defined in (D). Then g is closed and concave. Moreover, we have g = (−ϕ)∗ and
−g∗ = cl convϕ. Here, (·)∗ denotes the conjugates in the concave sense. It follows
that

sup
y∈Y

g(y) = (cl convϕ) (0) ,
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whereas
inf
x∈X

f(x) = ϕ(0).

In particular, if the function F (·, ·) is convex, then −g∗ = clϕ and

sup
y∈Y

g(y) = lim inf
u→0

ϕ(u),

unless 0 /∈ cl domϕ 6= ∅ and the function lscϕ satisfies lscϕ(u) ∈ {−∞,+∞} for
all u ∈ U . (In this case, we have lim infu→0 ϕ(u) = infx∈X f(x) = ϕ(0) = +∞ and
g(y) = −∞ for all y ∈ Y such that supy∈Y g(y) = −∞.)

The next remark emphasizes the importance of the previous theorems.

Remark A.2.14. Suppose that the function F (x, ·) is closed and convex for all
x ∈ X and let F (·, ·) be convex. Then it follows from Theorem A.2.13 in conjunction
with Theorem A.2.12 that

ϕ(0) = (cl convϕ) (0) = clϕ(0)

implies
inf
x∈X

sup
y∈Y

K(x, y) = inf
x∈X

f(x) = sup
y∈Y

g(y) = sup
y∈Y

inf
x∈X

K(x, y).

Thus, if ϕ(0) = clϕ(0), then we are allowed to exchange infimum and supremum.

A.2.3. Differential calculus
For the following notions of differentiability we refer the reader to Kurdila and
Zabarankin (2005) and Aliprantis and Border (2006).

Definition A.2.15. Let X be a normed vector space. Then we say that the mapping
υ : X → R is differentiable at x0 ∈ X in the direction x ∈ X if the limit

d+υ(x0)(x) := lim
u↓0

υ(x0 + ux)− υ(x0)
u

exists. In this case, d+υ(x0)(x) is called directional derivative of υ at x0 in the
direction x.

Definition A.2.16. Let X and Y be normed vector spaces. A mapping Υ : X → Y
is called Gâteaux differentiable at x0 ∈ X if the mapping DGΥ(x0) : X → Y satisfies
the following properties:

1. For all x ∈ X ,

DGΥ(x0)(x) := lim
u↓0

Υ(x0 + ux)−Υ(x0)
u

exists.
2. The mapping DGΥ(x0) is linear.
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3. The mapping DGΥ(x0) is bounded, i.e., for every x ∈ X , there exists M > 0
such that ‖DGΥ(x0)(x)‖Y ≤M‖x‖X .

If Υ is Gâteaux differentiable at x0 ∈ X , then the mapping DGΥ(x0) is called
Gâteaux derivative of Υ at x0.

Remark A.2.17. Note every linear mapping Υ : X → Y between normed vector
spaces is continuous if and only if it is bounded; see, for instance, Lemma II.3.4 in
Dunford and Schwartz (1957). We denote the set of all bounded linear operators from
X to Y by L(X ,Y). This space can be equipped with the operator norm topology.
This topology is defined by the so called operator norm given by

‖Υ‖ := sup
x∈X\{0}

‖Υ(x)‖Y
‖x‖X

for Υ ∈ L(X ,Y).

For the following condition let us consider a subset A of a Banach space X , a
subset B of a topological space Y and a function J : A× B → R.

Condition A.2.18 (See Hypotheses D1 in Bernhard and Rapaport (1995)). Let
a ∈ A and h ∈ A be fixed.

1. B is compact.
2. For all b ∈ B, the function (t, b) 7→ J(a+ th, b) is u.s.c. at (0, b).
3. For all b ∈ B and all t in a right neighborhood of 0, there exists a bounded

directional derivative

d+
1 J(a+ th, b)(h) := lim

u↓0

J(a+ (t+ u)h, b)− J(a+ th, b)
u

.

4. For all b ∈ B, the function (t, b) 7→ d+
1 J(a+ th, b)(h) is u.s.c. at (0, b).

Theorem A.2.19 (See Theorem D1 in Bernhard and Rapaport (1995)). Let A be a
subset of a Banach space X and B be a subset of a topological space Y and consider
the function J : A × B → R. If Condition A.2.18 is satisfied, then the function J̄
defined by

J̄(a′) := sup
b∈B

J(a′, b) for a′ ∈ A

has a directional derivative at a ∈ A in the direction h ∈ A, which is given by

d+J̄(a)(h) = max
b∈B#(a)

d+
1 J(a, b)(h)

where B#(a) := {b ∈ B|J(a, b) = J̄(a)}.
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