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Zusammenfassung

In dieser Arbeit werden zwei verschiedene Strategien zum Umgang mit dem Vorze-

ichenproblem im Kontext von Hybrid-Monte-Carlo Simulationen des hexagonalen

Graphengitters behandelt. Der erste Ansatz besteht darin, eine vorzeichenproblem-

freie Theorie zu simulieren, indem die Teilchen-Loch Symmetrie der Bandstruktur

von Graphen ausgenutzt wird. Im Speziellen verwenden ein spinabhängiges chemis-

ches Potential, das aus genannten Gründen im nicht wechselwirkenden Fall iden-

tisch mit einem tatsächlichen Ladungsträgerpotential ist. In diesem Teil der Arbeit

modellieren wir die Vielteilchenwechselwirkung durch ein langreichweitiges Coulomb

Potential welches Abschirmungseffekte der σ-Bandelektronen berücksichtigt und un-

tersuchen dessen Einfluss auf die Bandstruktur. Insbesondere konzentrieren wir uns

auf die Veränderung der Bandstruktur und das Verhalten des topologischen Lifshitz

Übergangs, welcher an der van Hove Singularität verortet ist. Hierbei konnten wir

Hinweise darauf finden, dass die Bandbreite durch Vielteilchenwechselwirkungen ver-

ringert wird, was mit experimentellen Beobachtungen aus der winkelaufgelösten Pho-

toemissionsspektroskopie übereinstimmt. Darüber hinaus weisen unsere Ergebnisse

darauf hin, dass der Lifshitz Übergang durch die Vielteilchenwechselwirkung ten-

denziell zu einem echten Quantenphasenübergang wird. Im zweiten Teil der Arbeit

behandeln wir einen Ansatz welcher direkt mit dem chemischen Potential arbeitet.

Hierbei wenden wir die Linear-Logarithmic-Relaxation Methode an, um eine verallge-

meinerte Zustandsdichte zu berechnen und nutzen diese für eine Rekonstruktion der

Teilchendichte. Wir vergleichen diesen Ansatz mit reinem Brute-Force-Reweithing

und zeigen, dass sich der relative Vorteil der Methode mit zunehmender Wechsel-

wirkungsstärke verbessert. Der Einfachheit halber verwenden in diesem Teil das

Hubbard Modell. Abschließend diskutieren wir beide Varianten und geben einen

Überblick über mögliche weitere Untersuchungen oder denkbare Verbesserungen der

Methoden.
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Abstract

In this work we report on two different strategies to deal with the fermion sign prob-

lem in context of Hybrid-Monte-Carlo simulations on the hexagonal graphene lattice.

The first approach is to simulate a theory, which have no sign problem, by taking

advantage of the particle-hole symmetry of the band structure of graphene and ap-

plying a spin dependent chemical potential which is in the non interacting case equal

to charge carrier density. There we take a realistic screened Coulomb potential into

account and investigate the influence of it on the band structure. In particular, we

focus on the deviation on the band structure and the behavior of topological Lifshitz

transition taking place at the van Hove singularity. Within this part we find evidence

that the bandwidth is reduced by many-body interactions, which is in-line with exper-

imental observations from angle resolved photoemission spectroscopy. Furthermore,

our results indicate that the Lifshitz transition tend to become a true quantum phase

transition in presence of interactions. In the second approach, we are dealing with

an charge carrier chemical potential directly. Here, we use the Linear-Logarithmic-

Relaxation method to compute a generalized density of states and use this as an in-

put for a reconstruction of the particle density. We compare this approach with pure

brute-force reweighting and show that the relative advantage of the method grows

with increasing interaction strength. For the sake of simplicity we use the Hubbard

model with only on-site interactions in this case. Finally, we discuss both variants

and give an overview of possible further investigations or thinkable improvements of

the methods.
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1. Introduction

The 2-dimensional allotrope of carbon, graphene, is a basic ingredient for carbon struc-

tures (Fig. 1.1) and has become more and more prominent since the publications of

Novoselov and Geim on their experimental results on the electronic properties of sin-

gle layer graphite in 2004. These studies opened an experimental approach to physics

of two dimensional solid states and thus to a new world of physics [6]. Although small

graphene flakes were already realized in experiments in the 1960s by Boehm et al. [7]

hardly anyone really paid attention to it because 2-dimensional crystals supposedly

should not exist due to several theoretical works of Landau [8], Peierls [9] and later

Mermin [10]. In recent decades on the one hand the theory was reconciled with experi-

ment by showing that a wrinkling in the third dimension suppresses thermal vibrations

by an increase in elastic energy which lead to an intrinsic stability of mono-layer struc-

tures. On the other hand, the award of the Nobel Prize to Novoselov and Geim in 2010

brought the topic of two dimensional materials and their unique properties further

into the public eye and the focus of further research efforts [11]. Meanwhile there are

numerous studies on properties, manufacturing processes and possible applications for

various 2d-structures for example graphene, silicene or hexagonal boron nitride. Thus

we can only give a short and brief overview here. Detailed reviews of experimental

work as well as fabrication strategies can be found in [12–14] and theory in [15, 16].

Focusing on graphene, it was found experimentally to be a conductor [17–19], which

can be explained by the screening effects of the lower σ-band electrons and the carrier

material. Nevertheless the predicted coupling for shifting graphene into an insu-

lating phase lies slightly above the value of suspended graphene, in other words a

small increase of electron interaction is needed to realize a gap opening [20–24]. It

should also be mentioned that due to phononic dispersion properties, graphene is a

very good thermal conductor, too [25–27]. The mechanical properties are also quite

unique, mentioning for example the very high modulus of elasticity [28]. Furthermore,

the Quantum Hall effect were realized at room temperature in graphene [29] as well

as superconductivity in Ca-doped graphene structures [30], to mention only a few

more interesting effects found. The possible applications range from semiconductor

components, water- and air-purification, energy storage systems, coatings for mechan-

ical purposes to biomedical applications, which is not meant to be a complete list [31].
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1. Introduction

Figure 1.1.: Overview of Carbon structures, where graphene is seen as the basis of
fullerenes (0d), nanotubes (1d) and graphite (3d). Taken from [32]

Besides the manifold fields of application, 2d-hexagonal structures also offer a wide

range of possible theoretical questions. This is mainly due to the band structure,

which was first derived by Wallace in 1946 [33]. In this study was shown that the

valence band touches the conductance band at two independent points K and K∗

in the first Brillouin zone. At these so-called Dirac points the valence band changes

linearly into the conduction band and by this quasi-particles on the graphene lattice

can be described by the relativistic Dirac equation around these K-points. Thus the

charge carriers on the hexagonal lattice act like Dirac fermions with an effective speed

of light defined by the Fermi velocity and experimentally determined as vF ≈ c/300

for the graphene lattice [15, 34]. This leads to the fact that the system is strongly

coupled, because the resulting fine structure constant which indicates the ratio of

interaction strength to kinetic energy becomes αeff = α c/vf ≈ 2.2. Furthermore,

the fact that the Dirac equation is used to describe the charge carriers in the so-

called Dirac cone offers the possibility to use graphene as a sample for QED in 2+1

dimensions [35]. In the context of this analogy several phenomena such as electronic

chirality, Berry phases, Quantum Hall effects and corresponding phases or the Klein

paradox [15, 16, 35–40] have been studied. Graphene was also studied away from the

Dirac cone where an extended van Hove singularity (eVHS) was found experimen-

tally [41] and d-wave superconducting phases [42–45], in context of the van Hove

scenario [46] have been proposed.
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For theoretical investigations apart from single-particle effects, non-pertubative meth-

ods are needed due to the strong effective coupling. Here, functional methods are a

common way to approach problems. Work with Dyson-Schwinger equations [24,47–51]

and functional renormalization group [45,52–54] should be mentioned here. Another

approach are Quantum Monte Carlo methods which are widely used for ab initio sim-

ulations of strongly correlated systems. So hexagonal systems have been studied via

the in solid state physics frequently used BSS-Monte-Carlo technique [55, 56] within

the standard and extended Hubbard model [22, 23, 57]. However, the Hybrid-Monte-

Carlo (HMC) method, which is more popular in high energy physics, became more

important in the graphene research in recent years [4,58–60]. This is mainly because

HMC’s update method offers the advantage of simulating more complex interaction

structures and scales better with increasing volume [60]. Today it is possible to sim-

ulate lattices up to 102x102 unit cells with 64 time-slices, using advanced solvers and

integrators [61]. Unfortunately Monte-Carlo techniques are restricted to systems with

vanishing chemical potential due to the fermion sign problem [62] which can be seen as

noise in which the signal is lost. Thus this problem excludes simulations in fermionic

systems away from half filling, unless the complex parts of the measure cancel exactly

due to anti-unitary symmetry as it would be the case with a spin-dependent poten-

tial. To circumvent this problem several methods was proposed in the past which

were only partially successful. A general and applicable procedure to solve the prob-

lem in polynomial time is not yet in sight. Furthermore, it is unclear whether such a

procedure exists at all since there is evidence that this problem is NP-hard [63]. A

more recent approach to deal with the problem is the Linear-Logarithmic-Relaxation

(LLR) method, proposed by Langfeld, Lucini and Rago in 2012 [64], which is based

on Wang-Landau methods [65] and provides the possibility to measure an observable

with exponential error suppression and brought promising results in different exem-

plary models [66–72].

In this work we use the Hybrid-Monte-Carlo framework to investigate the implica-

tions of a spin-dependent chemical potential with long-range interactions on the one

hand and combine the LLR framework with HMC and data evaluation via canonical

ensembles in order to benchmark the gain from this method in comparison to brute-

force reweighting on the other hand. Hereby we use for the sake of simplicity the

on-site Hubbard model at finite charge density which has also a sign problem. We

first give a theoretical introduction in chapter 2, where the theoretical basics, which

we need for the later simulations and results part, are presented. First the hexagonal

graphene lattice and the tight-binding formulation is presented and within this single-

particle theory we derive some approximations which will be used as a baseline for

comparison with HMC results later. Additionally, we give an introduction in topolog-

ical transitions on the hexagonal lattice and the used observable for spin-dependent
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1. Introduction

chemical potential. After that we show the details of our path integral formulation

used for HMC and briefly review the used potentials. Then we introduce the LLR

method and provide the evaluation procedure for obtaining the particle density. In

chapter 3 we briefly review the HMC method and discuss details of the application

on the hexagonal lattice. Then we discuss the fermion sign problem before we show

how the HMC is used for studying the spin-dependent system and how HMC is com-

bined with the LLR algorithm. After that, we first show in chapter 4 the results

from spin-dependent chemical potential with respect to parameters which come up

with the usage of HMC, like lattice discretization and also discuss the influence of

physical parameters. In the end we focus on the behavior of Lifshitz transition in an

interacting system and summarize the obtained results. Afterwards, we will present

the results for the LLR part of the work in chapter 5 and also discuss the influences of

the corresponding parameters. Finally, we will make a comparison with brute-force

reweighting and summarize the results of the chapter. The whole work is then fi-

nally concluded in chapter 6, where also an outlook of interesting questions further

investigations is given.
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2. Theory

In the following chapter we first present the particularities of a 2d-hexagonal system

and give a brief introduction in the used theoretical models. Here we begin with the

definition of the hexagonal lattice and the tight-binding formalism where we focus also

on the topological Lifshitz transition. This is followed by the introduction of the path

integral formulation used for applying the HMC algorithm. Within this section we

briefly review two different potentials used in this work. Finally we give an overview

of the LLR method and how we use it in our reconstructing scheme for the particle

density.

2.1. Hexagonal lattice

In order to generate a hexagonal lattice one needs two triangular sub-lattices A and

B which are shifted by a vector ~c

~a = a ·

(√
3

0

)
~b =

a

2
·

(√
3

3

)
~c =

(
0

a

)
(2.1)

with a = 1, 42 Å as lattice constant for graphene. All the lattice points are then

reachable by linear combination of

~RA = n1~a+ n2
~b ~RB = n1~a+ n2

~b+ ~c (2.2)

with n1 respectively n2 ∈ Z, see fig. 2.1.

The area of the unit cell for graphene lattice thus is Ac = 3
2

√
3a2. [15, 73] We use

Born-von-Karman boundary conditions for all finite lattices in this work.
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2. Theory

Figure 2.1.: Graphene lattice with marked unit cells (gray) and also sub-lattice A
(red) and B (green).

2.2. Single-particle description

The tight-binding description of the hexagonal lattice, first derived by Wallace already

in 1947 [33], shows the typical band structure which has produced much interest in

graphene over last decades. One finds, in the simple nearest-neighbor formulation for

example the linear dispersion around the K-Points which leads to massless electronic

excitations in the so-called Dirac cone area. When the contributions of the second and

third orders are also taken into account one gets a very good agreement with ab-initio

calculations like self consistent density functional methods [74]. In the following, the

results of these calculations are briefly presented and necessary approximations with

focus on HMC observables used in this work were outlined.

2.2.1. Electronic structure from Tight-Binding model

Carbon atoms arranged in a graphene sheet have three electrons in sp2-hybrid orbitals

which form a covalent σ-bond system. The remaining valence electron is located in

a 2pz-orbital perpendicular to the 2d sheet and builds a π-binding system above and

below the lattice [15]. Since hexagonal lattice is build out of two sub-lattices A and B

(see. 2.1), one finds two π-electrons per unit cell. In order to derive the single-particle
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2.2. Single-particle description

band structure we start with a Bloch Ansatz

ψ~k(~r) =
1√
N

∑
n

ei
~k ~Rn

(
c1 φA(~r − ~Rn) + c2 φB(~r − ~Rn)

)
(2.3)

where N denotes the number of lattice points. Assume both wave functions are

strongly localized so that

〈φA|φB〉 = 0 (2.4)

holds. By projecting stationary Schrödinger equation to each wave function we find

for sub-lattice A

〈φA|H|ψ~k〉 =
1

N

(
c1

∫
dr2φ∗A(~r)HφA(~r)

+c2

∫
dr2φ∗A(~r)H

∑
Rn ∈n.N.

ei
~k ~RnφB(~r − ~Rn)

) (2.5)

when only nearest-neighbor interactions are taken. By putting the corresponding

lattice vectors in the eq. 2.5 we find

〈φA|H|ψ~k〉 =
1

N

[
c1ε+ c2

(
eiaky

∫
dr2φ∗A(~r)HφB(~r − ~v1)

+ e−i(
√
3a
2
kx+a

2
ky)

∫
dr2φ∗A(~r)HφB(~r − ~v2)

+ei(
√
3a
2
kx−a2 ky)

∫
dr2φ∗A(~r)HφB(~r − ~v3)

)] (2.6)

with ε as self energy, which can be set to zero in the next step. This means that we

shift the zero energy value to half filling of the π-bands. The remaining integrals can

be approximated by a constant κ, the so-called hopping parameter, due to the equal

distance of nearest neighbors.∫
dr2φ∗A(~r)HφB(~r − ~vi) = κ i ∈ {1, 2, 3} (2.7)

Applying this procedure analogously to the sub-lattice B, one obtains the following

system of equations: −E κ
(
ei
~k~v1,B + ei

~k~v2,B + ei
~k~v3,B

)
κ
(
ei
~k~v1,A + ei

~k~v2,A + ei
~k~v3,A

)
−E

 ·(c1

c2

)
= 0 (2.8)

By taking the determinant of the matrix and some simple transformations we can

write down the tight-binding band structure in nearest-neighbor approximation as
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2. Theory

follows

E(~kx,~ky) = ±κ

√
3 + 4 cos (

√
3a

2
kx) cos (

3a

2
ky) + 2 cos (

√
3akx) (2.9)

with κ ≈ 2, 7 eV (see [15]).

K 
K'

M

Figure 2.2.: Left: Valence (blue) and conductance (orange) band in nearest-neighbor
tight-binding description with focus on the Dirac cones. Right: Schematic
presentation of the special points in the first Brillouin zone. (taken from
[2])

In Figure 2.2 one can see eq. 2.9 plotted over the first Brillouin zone. This illustrates

that the band structure in this approximation has a particle-hole symmetry and thus

by shifting the Fermi energy through a chemical potential µ to higher or lower values

one will generate the same Fermi surface, which is a line in 2d-systems. Through

summation of all the possible states per unit cell at one corresponding energy we find

the density of states (DOS) of the system which reflects also the symmetry of the

bands (see fig. 2.3). For the hexagonal lattice this was done first by Hobson and

Nierenberg in 1952. They showed that the density of states per unit cell ρ(E) can be

written as:

ρ(E) =
4 |E|
π2 κ2

1√
Z0

F

(
π

2
,

√
Z1

Z0

)
(2.10)

16



2.2. Single-particle description

with

Z0 =

(
1 +

∣∣∣∣Eκ
∣∣∣∣)2

−

[(
E
κ

)2 − 1
]2

4
and Z1 = 4

∣∣∣∣Eκ
∣∣∣∣ for |E| ≤ κ (2.11)

and

Z0 = 4

∣∣∣∣Eκ
∣∣∣∣ and Z1 =

(
1 +

∣∣∣∣Eκ
∣∣∣∣)2

−

[(
E
κ

)2 − 1
]2

4
for κ ≤ |E| ≤ 3κ

(2.12)

where F(π/2, x) means the complete elliptic integral of the first kind [75].

-3 -2 -1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

E in κ

D
(E
)

Figure 2.3.: Density of states of the nearest-neighbor tight-binding model of the
hexagonal lattice

2.2.2. Lifshitz transition and Thomas-Fermi Susceptibility

Transitions of topology in the Fermi surface are called Lifshitz transitions and were

first described by I.M. Lifshitz in the 1960s in the context of zero temperature behav-

ior of electrons in metals [76]. These electronic topological transitions always occur

when the Fermi energy crosses an extremum of the dispersion function E(~k). So it

can be shown that depending on the effective dimensionality d of the system, d + 1

different transition types that can be found. In two dimensions, depending on the

type of extremum, only void formation (minimum point), void disappearance (max-

imum point) or neck disruption (saddle point) transitions occur. Obviously, these

transitions have a close connection to van Hove singularities (VHS), since they are

accompanied by a singularity in the density of states (which is the definition of a

VHS) at the transition point. This connection is the also the reason why Lifshitz
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2. Theory

transitions has received more and more attention in the field of high temperature

superconductivity in cuprates [77–79], thin films [80,81] as well as 2-dimensional car-

bon structures [82, 83]. So the so-called ”van Hove scenario” reflects that in most

high-Tc superconducting cuprates a van Hove singularity can be found close to the

Fermi level. However, this topic is still subject of active research and a final answer to

high-Tc Superconductivity theory is still missing. For a detailed review of electronic

topological transitions see [84].

Figure 2.4.: Illustration of Lifshitz transition in nearest-neighbor tight-binding band
structure of graphene. Left: Fermi level below VHS, Middle: Fermi level
at VHS Right: Fermi level above VHS. (taken from [2])

As already indicated in the tight-binding band structure of graphene shown in sec.

2.2.1 a van Hove singularity is located at the M-point (see Fig. 2.4) and therefore also

a neck disrupting Lifshitz transition. The Fermi surface in the Dirac cone region is

parted in deformed triangles which are located around the K-points, when the Fermi

level reaches the VHS these triangles connect each other and build a system of lines

which split up again in the region above the VHS to one circle around the Γ-point.
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2.2. Single-particle description

More details about the transition can be obtained by expanding the energy dispersion

around the VHS. In appropriate coordinates E(~k) can be written as

E(~k)
∣∣∣
µ=κ

=
k2
x

2
−
k2
y

2
+ κ (2.13)

in the vicinity of the VHS and by putting in the definition of density of states

ρ(µ) = gσAc

∫
BZ

d2k

(2π)2
δ(E(~k)− |µ|) (2.14)

with gσ = 2 here for spin degeneracy, a logarithmic divergence

ρV HS(z) = − 3gσ
2π2κ

ln |z| (2.15)

with reduced Fermi energy parameter z = (|µ| − κ)/κ, at the VHS can be obtained

(cf. [84], [3]). This topological transition in the pure tight-binding model and the cor-

responding logarithmic divergence were also found experimentally by measuring the

resonance spectra of microwaves in superconducting microwave billiard in the form

that it can be used as an analog system of 2d-hexagonal lattice [85]. There it was

pointed out that the topological transition separates the relativistic Dirac cone area

from the non-relativistic Fermi liquid regime above the VHS. Within this study it

was also shown, that the Thomas-Fermi susceptibility χ(ε), which is the static limit

of no momentum transfer of the Lindhard screening function Π(ω, ~p, µ, T ) shows also

logarithmic divergences, since it is in the limit of T = 0 equal to the DOS.

In order to illustrate the connections between Lifshitz transition, DOS and the Thomas-

Fermi susceptibility in the hexagonal carbon system we start as mentioned above with

the particle-hole polarization function Π(ω, ~p, µ, T ) with excitation frequency ω, mo-

mentum ~p, chemical potential µ (with µ = 0 at half filling) and temperature T:

Π(ω, ~p;µ, T ) =− gσ
∫

BZ

d2k

(2π)2

∑
s,s′=±1

(
1 + ss′

Re
(
φ∗~k
φ~k+~p

)
|φ~k||φ~k+~p

|

)

×
f(s′ε~k+~p

− µ)− f(sε~k − µ)

s′ε~k+~p
− sε~k − ω − iε

where the terms s′ = s describes intraband particle-hole excitations, whereas s′ = −s
terms stands for interband excitations, φ~k =

∑
n e

i~k~δn denotes the structure factor

with nearest-neighbor vectors ~δn, n = 1, 2, 3, single-particle energies are ε~k = κ|φ~k|
and the Fermi-Dirac distribution f(x) = 1/(ex/T +1). We then get the Thomas-Fermi

susceptibility, normalized per unit cell of area Ac = 3
3
2a2/2, by taking the static limit

19



2. Theory

of no momentum transfer

χµ = Ac lim
~p→0

lim
~ω→0

Π(ω, ~p, µ, T ) (2.16)

and thus only taking intraband excitations into account. After short calculation (see

Appendix A) we finally find

χ(µ) =
gσAc
4T

∫
1.BZ

d2k

4π2

[
sech2

(
µ− ε~k

2T

)
+ sech2

(
µ+ ε~k

2T

)]
(2.17)

which is equal to the density of states per unit cell ρ(ε) in the T = 0 limit for a Fermi

energy ε = µ:

lim
T→0

χ(µ) = gσAc

∫
BZ

d2k

(2π)2
δ(ε~k − |µ|) ≡ ρ(µ) (2.18)

Figure 2.5.: Integrand of eq. 2.17 for µ below (right) \at(middle) \above(left) the van
Hove singularity for T = 1

2kB
(upper figures) and T = 1

4kB
(lower figures)

(taken from [2])

By focusing on the integrand of eq. 2.17 and by varying temperature in addition

to µ according to Fig. 2.4 we see that the topological transition takes also place

in the susceptibility but the sharp Fermi lines are smeared out. This broadening

reveals the possible excitation ranges induced by temperature effects. In Fig. 2.5 the

integrand is plotted for two different temperature values showing that the width of
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2.2. Single-particle description

the distribution around the T = 0 lines becomes smaller when the temperature is

lowered and finally turn into a delta distribution when T → 0 which makes the figure

equal to the lower row in Fig. 2.4. Thus the transition takes place at the VHS even

for finite temperatures and it is necessary to have a formulation for the susceptibility

at the saddle points. The relation should contain the typical logarithmic divergences

for a Lifshitz transition. We find

χmax =
3gσ

2π2κ

{
− ln

(
πT/κ

)
+ γE + 3 ln 2 +O(T )

}
(2.19)

where γE is the Euler-Mascheroni constant. This approximation was derived in de-

tail for the DOS in [85] and for Thomas-Fermi susceptibility in [2] by inserting unity

in the form of an integral over a Delta distribution in eq. 2.17 and then using the

explicit representation of the DOS from [75] and finally realize a Taylor expansion of

the arising terms (see Appendix A).

Besides the temperature scaling, it is of interest with a view to simulations, to under-

stand the interplay between volume and temperature dependence of the susceptibility.

For this we use again eq. 2.17 but the integral becomes a sum over the allowed mo-

mentum states which fulfill the Laue equation ei
~k ~R = 1. After short calculation we

end up with

χ(µ) =
gσ

4TNc

∑
n,m

[
sech2

(
εmn − µ

2T

)
+ sech2

(
εmn + µ

2T

)]
(2.20)

where Nc = NxNy denotes the number of unit cells of the finite hexagonal lattice

and εmn means eq. 2.9 evaluated at the points allowed by the Laue equation. Now

we carry out eq. 2.20 numerically for different lattice sizes and temperatures and on

the one hand verify the approximation in eq. 2.19 numerically and on the other hand

show that square lattices with even or odd number of unit cells in one direction behave

in fundamentally different manner. The even lattices decrease in the peak height with

increasing volume, since the M-point is located in the center of the Brillouin zone and

in finite systems the singularity contributes in every lattice size and with increasing

Nc only values which are nearly zero are added. In the odd case the inverse effect

takes place, meaning the singularity is only reached in the finite volume limit. Figure

2.7 shows this effect for different inverse temperatures β = 1/T . The horizontal lines

show the predictions from eq 2.19 and the data points were generated by the sum

formula (eq. 2.20). We find a good agreement between the two formulations in the

infinite volume limit. The deviations at low β come from the linear order contribution

in eq. 2.19.

Furthermore, eq. 2.20 allows us to study the finite temperature and volume behav-

ior of the Thomas-Fermi susceptibility not only at the van Hove point but also in

the whole possible range of chemical potential µ. These considerations serve as a
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benchmark for comparisons with the results from HMC simulations with finite in-

teraction strength. Since the tight-binding band structure is symmetric around half

filling µ = 0 we only consider the conductance band from here on. Figure 2.6 shows

the temperature dependence of χ(µ) for the whole band (red lines) which goes from

the Dirac points (µ = 0) up to the Γ-point (µ = 3κ) and the corresponding density

of states (blue line). Hereby, the lattice size was always chosen large enough to avoid

finite volume effects. As expected, the finite temperature smears out the typical shape

of the DOS but still contains the already mentioned general structure. The volume

dependence of χ(µ) for an inverse temperature β = 10.8κ−1 is shown in Figure 2.6

as well. On the one hand we can show there, that the susceptibility for small lattices

is dominated by volume effects and on the other hand we obtain a phase shift in the

leading wave structure between even and odd lattices.

β = 5.4 κ-1

β = 10.8 κ-1

β = 21.6 κ-1

β = 43.2 κ-1

DOS (β → ∞)

0 1 2 3
0
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1.5
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χ
(μ
)
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κ
-
1

Nc = 12
2
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2
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Nc = 24
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Figure 2.6.: Temperature (left) and Volume (right) behavior of χ(µ) for hexagonal
lattices in finite volume limit. The red lines show data generated with
eq. 2.20 in comparison with the density of states per unit cell in blue.

β = 5.4 κ-1

β = 21.6 κ-1

β = 86.4 κ-1

20 40 60 80 100

0.5

1

1.5

2.0

2.5

Nc
1/2

χ
P
ea
k
in

κ
-
1

Figure 2.7.: Finite-size scaling of χmax for different temperatures. The horizontal
lines are the predictions calculated with eq 2.19. The data points were
generated with eq. 2.20.
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2.3. Interacting system

In this section we present our formulation of the standard path integral represen-

tation which is needed for HMC simulations and highlight important details within

our formulation. After that we briefly review the Hubbard model which we use for

applying LLR algorithm on our HMC framework and discuss the more realistic par-

tially screened long-range potential which is used for the investigations around the

spin-dependent chemical potential.

2.3.1. Path integral formulation

We start with the tight-binding Hamiltonian extended by an interaction potential Vxy

and a chemical potential µ. More details about shape and kind of the used potentials

can be found in section 2.3.2.

H =Htb +Hcoul +Hms +Hµ

=− κ
∑
〈x,y〉,σ

(
ĉ†y,σ ĉx,σ + h.c.

)
+

1

2

∑
x,y

q̂xVxy q̂y

+ms

∑
x

ĉ†x,1ĉx,1 + ĉx,−1ĉ
†
x,−1 − µ

∑
x,σ

ĉ†x,σ ĉx,σ

(2.21)

with qx = c†x,1cx,1 − cx,−1c
†
x,−1 as the charge operator, κ is the hopping parameter,

〈x, y〉 that means we sum only over nearest-neighbor sites and σ = ±1 labels spin

along some quantization axis. The mass ms of the term Hms introduces an explicit

sub-lattice staggering, which is needed to cancel zero modes out of the fermion matrix

and by that make sure that no ergodicity problems in HMC simulations arise. Details

of Hms are discussed in chapter 3.1.2 and 4.1.1 in more detail.

We now construct the partition function of the grand canonical ensemble in path

integral representation in order to have a formulation which is usable for Hybrid-

Monte-Carlo simulations. For the hexagonal lattice this was first proposed by Brower

et al. [86] and in more detail outlined by Smith and von Smekal in [20]. The basics

of the method can be found in [87] as well as in [88]. The following derivation is

based on the mentioned publications and textbooks (for more detail see there) and

follow the common procedure of rewriting a partition function into a path integral

representation by introducing appropriate base and approximate the resulting matrix

element of the evolution operator by introducing finite time slices with a discretization

parameter δ, taking then only the normal ordered part of the operator and accepting

therefore an error of the order O(δ2). This error vanishes again by taking the limit

δ → 0. After that, an auxiliary bosonic field φ is introduced via Hubbard-Stratonovich

transformation and fermion determinant is derived via integrating out Gassmannlike

Gaussian integrals. By that only an integral over the bosonic field is left in the final
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representation.

We start by replacing creation and annihilation operators of electron-kind (a) to hole-

kind (b) for one spin component

c†x,1 → a†x cx,1 → ax

c†x,−1 → bx cx,−1 → b†x
(2.22)

and thus the charge operator becomes

qx = a†xax − b†xbx (2.23)

Through shifting the sign of the tight-binding term, which is possible due to anti-

commutator relations, we find

H =κ
∑

x,y∈n.N.
(a†xay + b†xby + h.c.) +

1

2

∑
x,y

qxVxyqy

+ms

∑
x

(a†xax + b†xbx)− µ
∑
x

(a†xax − b†xbx) .
(2.24)

Now we write the grand-canonical partition function, which is given by

Z = Tre−βH , (2.25)

as an integral over anti-commuting fermionic fields, represented through elements of

a Grassmann algebra. Therefore we introduce coherent fermion states as follows

|ξ〉 = e−
∑
α ξαa

†
α |0〉 resp. 〈ξ| = 〈0|e−

∑
α a
∗
αξα (2.26)

where α denotes the single-particle states of the system, ξα, ξ
∗
α are Grassmann vari-

ables and aα, a
†
α the creation and annihilation operators. These coherent states are

eigenstates of the annihilation operators. By writing a trace of a bosonic operator A

in the following form

TrA =

∫ [∏
α

dξ∗α dξα

]
e−

∑
α ξ
∗
αξα〈−ξ|A|ξ〉 (2.27)

we can write the partition function as

Z = Tr e−βH =

∫ [∏
x

dψ∗x dψx dη
∗
x dηx

]
e−

∑
x (ψ∗xψx+η∗xηx)〈−ψ,−η|e−βH |ψ, η〉 .(2.28)
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2.3. Interacting system

If eq. 2.28 would be normal ordered we could use

〈ξ|F (a†α, aα)|ξ′〉 = F (ξ∗α, ξ
′
α)e

∑
α ξ
∗
αξ
′
α (2.29)

and we would be done. Unfortunately, the interacting part of the Hamiltonian doesn’t

fulfill this criteria and thus we have to rewrite the Hamiltonian in an adequate way.

Therefore we split up the partition function in Nt slices

e−βH =

Nt∏
n

e−δH (2.30)

and inserting unity between every slice using the completeness relation

∫ [∏
α

dξ∗α dξα

]
e−

∑
α ξ
∗
αξα |ξ〉〈ξ| = 1 (2.31)

of the chosen base. By this, we find

Tr e−βH =

∫ Nt−1∏
t=0

[∏
x

dψ∗x,t dψx,t dη
∗
x,t dηx,t

]
e−

∑
x (ψ∗x,t+1ψx,t+η

∗
x,t+1ηx,t)

〈ψt+1, ηt+1|e−δH |ψt, ηt〉

(2.32)

with δ = β
Nt

as the discretization of the time axis. By this it is necessary to have

anti-periodic boundary conditions in time direction:

ψx,Nt = −ψx,0 ηx,Nt = −ηx,0 (2.33)

Now we take the first element of an expansion of e−δH and rewrite this part in a

normal ordered form. Through this an error arises which is of the order O(δ2), but

vanishes again by taking the continuum limit δ → 0. For the diagonal elements of

Hcoul, which is the only non trivial step, we find:

qxVxxqx = Vxx

(
a†xax + b†xbx − 2a†xaxb

†
xbx

)
(2.34)

25



2. Theory

Using eq. 2.29, we can write the partition function as

Tr e−βH =

∫ Nt−1∏
t=0

[∏
x

dψ∗x,t dψx,t dη
∗
x,t dηx,t

]
exp

{
−δ

[
1

2

∑
x,y

Qx,t+1,tVxyQy,t+1,t

−
∑
〈x,y〉

κ
(
ψ∗x,t+1ψy,t + ψ∗y,t+1ψx,t + η∗x,t+1ηy,t + η∗y,t+1ηx,t

)
+
∑
x

ms

(
ψ∗x,t+1ψx,t + η∗x,t+1ηx,t

)
+

1

2

∑
x

Vxx
(
ψ∗x,t+1ψx,t + η∗x,t+1ηx,t

)
−
∑
x

µ(ψ∗x,t+1ψx,t − η∗x,t+1ηx,t)

]

−
∑
x

[
ψ∗x,t+1 (ψx,t+1 − ψx,t) + η∗x,t+1 (ηx,t+1 − ηx,t)

]}
(2.35)

with Qx,t,t′ = ψ∗x,tψx,t′ − η∗x,tηx,t′ .
The next step is to introduce an external scalar field via Hubbard-Stratonovich trans-

formation as follows

exp

{
−δ

2

Nt−1∑
t=0

∑
x,y

Qx,t+1,tVxyQy,t+1,t

}
≈
∫
Dφ exp

{
−δ

2

Nt−1∑
t=0

∑
x,y

φx,tV
−1
xy φy,t

−iδ
Nt−1∑
t=0

∑
x

φx,tQx,t+1,t

}
(2.36)

with

Dφ =

Nt−1∏
t=0

∏
x

dφx,t (2.37)

and thus rewrite eq. 2.35 as:

Tr e−βH =

∫
DψDψ∗DηDη∗Dφ exp

{
−δ

Nt−1∑
t=0

[
1

2

∑
x,y

φx,tV
−1
xy φy,t +

∑
x

iφx,tQx,t+1,t

−
∑
〈x,y〉

κ
(
ψ∗x,t+1ψy,t + ψ∗y,t+1ψx,t + η∗x,t+1ηy,t + η∗y,t+1ηx,t

)
+
∑
x

ms

(
ψ∗x,t+1ψx,t + η∗x,t+1ηx,t

)
+

1

2

∑
x

Vxx
(
ψ∗x,t+1ψx,t + η∗x,t+1ηx,t

)
−
∑
x

µ(ψ∗x,t+1ψx,t − η∗x,t+1ηx,t)

]

−
∑
x

[
ψ∗x,t+1 (ψx,t+1 − ψx,t) + η∗x,t+1 (ηx,t+1 − ηx,t)

]}
(2.38)
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The fermion matrix can than be introduced as

M(x,t)(y,t′) =δx,y
(
δt,t′ − δt−1,t′

)
− κ β

Nt

∑
~n

δy,x+~nδt−1,t′ +ms
β

Nt
δx,yδt−1,t′

− µ β
Nt
δx,yδt−1,t′ +

Vxx
2

β

Nt
δx,yδt−1,t′ + iφx,t

β

Nt
δx,yδt−1,t′

(2.39)

respectively

M ′(x,t)(y,t′) =δx,y
(
δt,t′ − δt−1,t′

)
− κ β

Nt

∑
~n

δy,x+~nδt−1,t′ +ms
β

Nt
δx,yδt−1,t′

+ µ
β

Nt
δx,yδt−1,t′ +

Vxx
2

β

Nt
δx,yδt−1,t′ + iφx,t

β

Nt
δx,yδt−1,t′

(2.40)

and by this we can write the partition function in Gaussian integral form:

Z =

∫
DψDψ∗DηDη∗Dφ exp

{
−δ

2

Nt−1∑
t=0

∑
x,y

φx,tV
−1
xy φy,t

−
Nt−1∑
t,t′=0

∑
x,x′

[
ψ∗x,tM(x,t)(x′,t′)ψx′,t′ + η∗x,tM

′
(x,t)(x′,t′)ηx′,t′

]
(2.41)

These Gaussian integrals can then be integrated out so that we find

Z = Tr e−β(H−µN) =

∫
Dφ detM(φ) detM ′(φ) exp

{
−δ

2

Nt−1∑
t=0

∑
x,y

φx,tV
−1
xy φy,t

}
(2.42)

If we set µ = 0 we can write

Z =

∫
Dφ det

(
M(φ)M †(φ)

)
exp

{
−δ

2

Nt−1∑
t=0

∑
x,y

φx,tV
−1
xy φy,t

}
(2.43)

and therefore get the final representation of the partition function which can be used

for HMC simulations, without a sign problem due to a real and positive fermion

determinant. In actual application, there is the problem that rounding errors add

up, produced by products of φ in size of the number of lattice sites [89]. To ensure

numerical stability of the algorithm we make a convenient replacement of the field in

the fermion matrix. More precisely we introduce a compact field through

β

Nt
δxyδt−1,t′

(
Nt

β
− Vxx

2
− iφx,t

)
→ e−iδφδxyδt−1,t′ (2.44)

which was in detail shown in [86].
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2.3.2. Potentials

In this work we use two different potentials which were presented here. We briefly re-

view the Hubbard model first with focus on 2d-hexagonal lattice and then present the

long-range interaction and discuss differences between them. A more comprehensive

summary with regard to the hexagonal grid can be found in [4].

Hubbard model of the hexagonal lattice

The model named after John Hubbard was proposed by J. Hubbard [90], J. Kanamori

[91] and M.C. Gutzwiller [92] in 1963, independently from each other for different

issues related to correlated electrons in solids. It is the simplest and archetypical

quantum many-body model thinkable and the first theoretical model which was able

to describe an insulating as well as a metallic state in solid state physics. Thereby,

it advanced the field of strongly correlated systems [93] and is still subject of active

research. It extends the tight-binding model by introducing an energy amount U

for particles on the same lattice site which represents Coulomb repulsion. Thus the

Hamiltonian is

HHubbard = Htb +Hint = −κ
∑
〈x,y〉

c†y,σcx,σ + U
∑
x

c†x,↑cx,↑c
†
x,↓cx,↓ . (2.45)

Although the model is quite simple, it contains a wide range of physical phenomena,

such as magnetic ordering or superconductivity. Note that the model only defines

a system by three effective parameters if translational invariance and only nearest-

neighbor hopping is assumed. These are the ratio U/κ, the topology of the lattice and

the number of particles on the lattice. This is both the strength and the weakness of

the model. On the one hand it captures diverse phenomena and on the other hand

it only models the shortest interaction of electrons possible in the view of solid state

physics. For this reason it is only a good approximation in systems with no long-range

interactions. Thus it can be seen as a good test case for qualitative studies but to

obtain more details specific systems additional terms are needed.

Focusing on the 2d-hexagonal lattice it has been found that the second order semimetal-

insulator transition takes place at U/κ ≈ 3.8 by using Quantum Monte-Carlo meth-

ods [22,23] which was in accordance with previous studies which ruled out the possibil-

ity of a spin-liquid phase [94] and confirmed by calculations using the Dyson-Schwinger

framework [24]. It has also been found out within this and further studies [95–97]

that the transition is of the universality class of the chiral Heisenberg Gross-Neveu

model in 2+1 dimensions with Nf = 2. An extended model with a nearest-neighbor

interacting term V is supposed to favor a charge density wave phase. It was shown

that the SM-SDW transition meets with the SM-CDW line and form a triple point
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in the U-V phase diagram [24, 58, 98]. The question whether the extended Hubbard

model is an appropriate description of graphene and the corresponding transitions or

not is still under discussion [58]. In this work we use the Hubbard model as a test

case potential for applying the LLR algorithm in order to simulate at finite charge

density while keeping the system as simple as possible.

Long-range interactions in graphene

Besides the studies of the hexagonal Hubbard model, one can consider a realistic po-

tential that addresses the long-range interactions which plays a major role at least in

pristine graphene [99]. As mentioned above the influence of the long-range Coulomb

tail is still being discussed. Recently it was found evidence through HMC simu-

lations, that the long-range Coulomb tail indeed changes the universality class of

the hexagonal system from Nf = 2 chiral Heisenberg Gross-Neveu model in three

space-time dimensions which describes the graphene Hubbard model to an exponen-

tial ’Miransky’-scaling [58,59]. This scaling was primarily predicted by a study within

the Dyson-Schwinger framework [100]. Nevertheless, there are several renormalization

group studies which reaffirm Gross-Neveu scenario by the observations that Coulomb

tail interaction is marginally irrelevant [95,101,102].

In this work we use the realistic long-range interaction for simulations with spin-

dependent chemical potential in order to investigate the influence of it on the band

structure and specifically on the neck disrupting Lifshitz transition. The potential

is composed of values from cRPA calculations until 3th-nearest-neighbor interaction

from [99] extended by a partially screened Coulomb tail proposed in [99] and applied

in [20]. Hence the combined potential is

V (r) =

U00, U01, U02, U03 for r ≤ 2a

e2
(
m0 exp

[
−m1r

1−γ]+m2

)
for r > 2a

(2.46)

with

U0x =



9, 3 eV forx = 0

5, 5 eV forx = 1

4, 1 eV forx = 2

3, 6 eV forx = 3

. (2.47)

The parameters mi of the Coulomb tail were obtained by interpolating between the

first four values and an unscreened Coulomb potential and can be found in Tab. 2.1
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distance r γ m0 [eV] m1 [eV] m2 [eV]

2a < r ≤ 8a 0,632469 9,0380311 144,354 62,41496

8a < r ≤ 30a 0,862664 2,0561977 27,8362 15,29088

30a < r ≤ 120a 0,990975 1,0334789 0,0 -0,1345020

120a < r 1,0 1,0 0,0 0,0

Table 2.1.: Distance dependent parameter values of the partially shielded Coulomb
potential for the HMC simulation in units of the lattice spacing a [20].

Additionally, it should be mentioned that we absorb e2 = α = 1
137 in the matrix

V in our notation and introduce a parameter λ ∈ [0; 1] which rescales the potential

in a way such that we find the non-interacting theory for λ = 0 and suspended

graphene potential for λ = 1. Figure 2.8 shows the used potential in comparison with

an unscreened pure Coulomb potential.
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Figure 2.8.: Comparison of the standard Coulomb potential (red) with the partially
screened potential given by eq. 2.3.2. The first four points are exact
cRPA results of Ref. [99] (green), while remaining ones are obtained from
interpolation based on thin-film model from the same reference (blue)
(taken from [3])
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2.4. Linear Logarithmic Relaxation method

The Linear Logarithmic Relaxation method, first described in [64] is based on the

density of states approach introduced by Wang and Landau in 2001 [65] which basi-

cally uses independent random walks with a probability corresponding to the inverse

density of states in different bounded energy intervals in order to produce flat his-

tograms over the allowed range of energy for the purpose of sampling the density

of states. The advantage of this method is that one can efficiently sample areas

with a very low probability measure and at the same time avoid the problem of a

non-positive probability measure as it occurs with finite densities in HMC sampling.

However, this Wang-Landau method was designed for systems with discrete degrees

of freedom. The LLR method takes up the basic idea and thus extends this method

to theories with continuous degrees of freedom. Thus the limited energy interval is

reduced to one point of a ”generalized density of states” (gDOS) ρ(X) which depends

on some variable X. Then the logarithmic derivative a(X) = d
dX ln ρ(X) is estimated

by stochastic approximation via the Robins-Monro algorithm. So one can step by

step sample the whole area one is interested in with arbitrarily small step sizes and

then reconstruct the gDOS by numerical integration. Using bootstrapping methods,

the error can be kept constant over this whole range.

The method can be used to estimate the imaginary part of the Euclidean action

ρ(Sim) or some related variable, which was done already for a Z3 spin model at finite

charge density [67] and for QCD in the heavy-dense limit [70]. Furthermore, there are

studies in which the method has been used to calculate ρ(E) in gauge theories (SU(2),

U(1) see [64] and SU(3) see [69]) and was shown in q = 20 state Potts model [71] and

U(1) gauge theory [68] that is algorithm is effective in dealing with ergodicity issues

arising from first order phase transition in that systems. Additionally, the method

was applied in a two-color QCD system with heavy quarks at finite densities in order

to estimate the Polyakov-loop distribution [66]. Nevertheless, the method has not yet

been applied in systems with fully dynamical fermions.

In the following, the details of the method in combination with HMC framework

and the application on the hexagonal lattice with on-site Hubbard interaction will

be presented. Furthermore, we show how to extract the particle density out of the

generalized density of states. Details of the algorithm itself and the simulations can

be found in chapter 3.4.
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2.4.1. Generalized density of states

As already mentioned the generalized density of states ρ(s) is the key element of the

method and will be derived here. We start with the partition function (see eq. 2.42)

and on-site Hubbard interaction which leads to

Z(µ) =

∫
DφdetM(φ, µ) detM †(φ,−µ) exp

{
− δτ

2U

∑
x,t

φ2
x,t

}
(2.48)

Through making the replacement

φx,t → φx,t − iµ (2.49)

which basically means that we absorb the chemical potential in the Hubbard field, we

can shift the complex part of the action completely to the bosonic sector and get

Z(µ) =

∫
DφdetM(φ, 0) detM †(φ, 0) exp

{
− δτ

2U

∑
x,t

(φx,t − iµ)2

}
. (2.50)

By introducing the average Hubbard field as

Φ =
1

V

∑
x,t

φx,t with V = 2NcNt (2.51)

and some rearranging we find

Z(µ) =

∫
Dφ |detM(φ, 0)|2 exp

{
− δτ

2U

∑
x,t

(φx,t − Φ)2 − δτV

2U
(Φ− iµ)

}
. (2.52)

Now we can introduce the generalized density of states ρ(s) as

ρ(s) =

∫
Dφ |detM(φ, 0)|2 δ(Φ− s) exp

{
− δτ

2U

∑
x,t

(φx,t − s)2

}
(2.53)

and by that write the partition function as

Z(µ) =

∫
dsρ(s) exp

{
−δτV

2U
(s− iµ)2

}
. (2.54)

The goal for simulations in the LLR method is now to calculate derivatives of ln ρ(s)

for the desired number of points s with high precision. From this set of data we can

reconstruct the gDOS ρ(s) by numerical integration [103].
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2.4. Linear Logarithmic Relaxation method

2.4.2. Reconstructing the particle density

At this point we assume that we have determined the logarithmic derivation of the

generalized density with statistical error. In the following we describe how to recon-

struct the particle density out of this set of data from a(s), which is

a(s) =
d

ds
ln ρ(s) . (2.55)

Due to the fact that ρ(s) is in our case a periodic function with the period P = 2π
β

(cf. sec. 3.4) we only need to sample an interval {s ∈ R | 0 ≤ s < P} to get all the

information we need for further calculations. For the sake of simplicity we choose Ns

sampling points in the interval, which are equally distributed with a distance from

each other of 2π
βNs

. If one has this data set, there are several methods to reconstruct

the particle density (or other observables of interest), but they all try to approximate

the integral from equation 2.54. A promising strategy is to express the gDOS via

its Fourier transform and to rewrite the grand canonical partition function Z(T, V, µ)

in such a way that in the end it can be represented as a Laplace transform of the

canonical partition function Z(T, V,N). Thus, a fugacity expansion is carried out.

The canonical partition functions can then be identified as the Fourier coefficients of

the gDOS. Therefore, we start here with formulating the corresponding Fourier series

ρ(s) =
∑
n∈Z

ρke
i 2π
P
ks =

∑
n∈Z

ρke
iβks

(2.56)

and use them to rewrite the partition function eq. 2.54 as

Z(µ) =

∫
ds
∑
n∈Z

ρ̃ke
−ikβs exp

{
−δτV

2U
(s− iµ)2

}
. (2.57)

Thus we have only a finite sampling the coefficients are equal to the discrete Fourier

transform

ρ̃k =
1

Ns

Ns−1∑
n=0

ρsne
2πi kn

Ns (2.58)

and eq. 2.57 becomes

Z(µ) =

∫
ds

Ns−1∑
k=0

ρ̃ke
−ikβs exp

{
−δτV

2U
(s− iµ)2

}
. (2.59)
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With some rearranging we find the following shifted Gaussian function

Z(µ) =

∫
ds

Ns−1∑
k=0

ρ̃k exp

{
−δτV

2U

(
s2 − 2is(µ+ k

βU

δτV
) + µ2

)}
(2.60)

and can carry out the integral. This way we get

Z(µ) =

√
πU

βNc

Ns−1∑
k=0

ρ̃k exp

{
− Uβ

4Nc
k2 − βµk

}
. (2.61)

Note that this representation can be identified as the fugacity expansion and therefore

we can also identify

Z(T, V, k) = ρ̃k exp

{
− Uβ

4Nc
k2

}
(2.62)

as a pseudo-canonical ensemble with k = N modNs. Then we can obtain the chemical

potential µ from

µ(N modNs) = − d

dN

1

β
lnZ(T, V,N modNs)

≈ 1

β

[
ln ρ̃k − ln ρ̃k+1 +

Uβ

Nc
(2k + 1)

]
.

(2.63)

The particle density n(µ) can now be found through inversion of eq. 2.63.

2.4.3. Reconstructing via compressed sensing

In section 2.4.2 we have described the gDOS ρ(s) in the form of a Fourier series where

the number of coefficients is equal to the number of sampling points Ns. However,

one can first fit the function with other sets of orthogonal functions and by that

interpolate between two sampling points. Then additional points can be generated in

between and this new set of data can then be used instead as input to determine the

particle density n(µ). In doing so, one assumes that the sampling was chosen so dense

that no large jumps would be expected within the non-sampled area. This procedure

is called Compressed Sensing in context of the LLR literature [70,104]. The principal

hope is that a wisely chosen set of functions, which contains the true physics of the

theory will suppress noise in the numerical data for ln ρ(s) by interpolating between

the supporting points. However, the correct set of functions cannot be determined

without information about the physics of the system, and therefore they usually have

to be guessed. In section 5.3 one finds results of this procedure with fits through

Taylor series as well as with Chebyshev polynomials of the first kind for one set of

parameters exemplary to show the degree of improvement in our system.
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3. Simulation

In this chapter we present the algorithms used in this work. All simulations are based

on the Hybrid-Monte-Carlo framework which is presented first. Then we explain the

fermion sign problem and introduce the observable for spin-dependent chemical po-

tential and the method of data analysis. Afterwards, the LLR algorithm is explained

in detail, whereby we first formulate the truncated and reweighted expectation value

and then discuss the Robins-Monro algorithm and the corresponding data analysis.

3.1. The Hybrid Monte Carlo method

The basic idea of Monte Carlo simulations is to estimate a selected observable by

executing a large number of random experiments of a system. The observable marks

an area of the configuration space defined by the system. In high dimensional sys-

tems, however, this relevant area will become smaller and smaller, so it is necessary to

restrict the sampling of the random space by known properties of the system. This is

known as importance sampling. The sampling, which defines the Hybrid-Monte-Carlo

method (HMC) is a combination of molecular dynamics and Metropolis acceptance

step [105]. More precise, one performs updates by integrating out trajectories in

the phase space using the Hamilton equations and checking the result by an accep-

tance step weighted by the Boltzmann distribution. For more details about the basic

methodology used in this work see [20,86,106] or standard textbooks [88,107].

In this section we present the necessary details of the method applied on the hexag-

onal lattice. First, we briefly describe the HMC algorithm and after that we will go

into the details of the application on the hexagonal lattice such as thermalization and

ergodicity issues coming from numerical integration.

3.1.1. Algorithm

The following derivations are based on [20, 86, 106]. We start with the basic and

general idea of measuring an observable in Monte-Carlo methods by estimating

〈O〉 =

∫
DφO(φ)P (φ) (3.1)
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with P (φ) as a probability density and O(φ) is some function of the field variable

φ. The remaining function O(φ) represents the function of some observable. The

respective used observables are discussed separately in the corresponding chapters (see

3.3 and 3.4). In the case of 2+1 dimensional hexagonal lattice we identify φ with the

Hubbard-Coulomb field introduced in chapter 2.3.1 and the probability distribution

P (φ) =
1

Z
det
[
M †(φ)Mφ

]
e−S(φ) . (3.2)

Besides the general presentation of an estimator for the observable 〈O〉, we will now

go into more detail about the update mechanism that gives HMC its name. We want

to generate representative configurations to approximate a thermodynamic ensemble.

This is done by integration of Hamilton equations over a fictitious time axis τ to move

from one configuration to the next. In order to describe one update step, we have to

rewrite our formulation of the probability distribution P (φ). First, it is necessary to

write the fermion determinant again as a Gaussian integral over pseudo-fermions so

that we find

Tr e−βH =

∫
DφDχDχ∗ exp

{
−δ

2

Nt−1∑
t=0

∑
x,y

φx,tV
−1
xy φy,t

−
Nt−1∑
t=0

∑
x,y

χ∗x,t

(
MM †

)−1
χx′,t′

}
.

(3.3)

We can split the action accordingly into a φ and a χ part and get

P (φ, χ) =
1

Z
e−S(φ)−S′(χ) . (3.4)

Now it is possible to update the two parts of a separately, starting with S(χ). Note

that for updating S′(χ) the term A =
(
MM †

)
has to be inverted in every update

step. So performing fast matrix inversions are an essential ingredient for using the

HMC algorithm properly. Since the number of flops for a direct inversion of a square

matrix A scales with O(N3) (with N = rank(A)) and we deal with large matrices of

the rank(A) = 2NcNt it is necessary to use a faster algorithm for performing HMC

updates. An appropriate method for finding a solution of Ax = b for symmetric

and positive definite sparse matrices is the Conjugate-Gradient algorithm (CG). This

algorithm converges to the exact result within N steps, assuming exact arithmetic.

The idea of CG is to find the minimum of the quadratic form 1
2x

TAx− xT b which is

equivalent to solve the mentioned linear equation. Therefore, a succession of search

directions and improved minimizers is generated with respect to directions which were

already taken and converge towards the minimum. A detailed and precise introduction

in the algorithm can be found in [108] as well as in [109]. We use this algorithm to
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3.1. The Hybrid Monte Carlo method

solve M(φ)−1
iniχ = ρini where ρini is a random chosen Gaussian-distributed complex

field. The energy difference of the fermionic part is then calculated by obtaining

M(φ)endχ = ρend and taking ∆HF = (ρ†ρ)end − (ρ†ρ)ini. This last step can only be

taken after φ is updated,of course

For updating the Hubbard field φ a fictitious momentum field π with P (φ) ∝ e−
1
2
π2

is introduced. Then the Hamiltonian and corresponding equations are defined as

HB =S(φ) + S′(χ) +
π2

2
=
δ

2
φ−TV −1φ+

1

2
πTπ

with

[
dφ

dτ

]T
=
∂HB

∂π
and

[
dπ

dτ

]T
= −∂HB

∂φ

(3.5)

with a fictitious time τ . A new configuration of the field can then be found by inte-

grating this system of equations. The forces required for integration can be looked up

in [20]. For the numerical integration we use the leapfrog integrator. The advantage of

this method is that it provides time-reversal invariance, momentum conservation and

symplecticity. The numerical integration error ∆H is of order O(ε2) where ε denotes

the step-size. After an integration of n steps with step-size ε a new configuration is ob-

tained and can be used to obtain the total energy difference ∆H = ∆HF+∆HB+∆Hπ

for a final Metropolis Check [110], which accepts a new configuration with the proba-

bility min(1, e−∆H). This step is performed at the end of an update to compensate the

numerical errors and ensure that each configuration can be considered as an element

of a Markov chain and our resulting ensemble of configurations are distributed with

correct Boltzmann weights . In summary, an update step runs as follows (cf. [20]):

• Create momentum field π via Gaussian noise P (π) ∝ e−
1
2
π2

• Update pseudo-fermion fields by generating a Gaussian distributed complex field

P (χ) ∝ e−χ†−χ and obtain χ via CG

• Generate a molecular dynamics trajectory through integration of Hamilton’s

equations

• Calculate energy difference ∆H with new configuration of φ

• Perform a Metropolis check to correct step-size error. Accept a new configura-

tion with P = min (1, exp−∆H)

3.1.2. Details in the application of HMC

Besides the general introduction of the HMC for 2d-hexagonal lattice it is useful to

point out some important details of the application. Here we give an overview of

useful choice of simulation parameters regarding to a efficiently working algorithm

and discuss problems and a possible solution arising from numerical integration. For

the whole set of parameters used for simulations see Appendix D and E.
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Thermalization

To simulate a quantum system using HMC it must first be brought into thermody-

namic equilibrium. This process is called thermalization. The choice of the start

distribution and the combination of step-size and trajectory length has a great in-

fluence on the speed of the process and once an equilibrium is reached also on the

auto-correlation of the configurations. We therefore try to save computing time and

keep the thermalization process as short as possible and the update mechanism ef-

ficient by cleverly choosing the simulation parameters. In other words, we want to

ensure that the algorithm can reach an appropriate area of the configuration space

as quick as possible. Let us first look at the choice of the trajectory length and take

advantage of the fact that we have chosen a compact formulation of the Hubbard field

(cf. eq. 2.44). The factor e−iδφ which occurs in the fermion matrix has a significant

influence, due to forcing the possible values of the fermion determinant in a periodic

interval. We have found that a length of order 1
δ , which means that the values of φ

can evolve within the order of the interval length, is a good choice for fast thermal-

ization. Furthermore, it was found that an ordered start, meaning φi = const. leads

to a faster convergence than a start with random distributed values of φi. If this

choice is taken into account, the system reaches equilibrium within a few steps and

the auto-correlation is small. Additionally, it should be mentioned that we always

chose combinations of step-size and step-number that the Metropolis acceptance rate

was above 50%.

Domain Walls

A problem that arises when implementing the HMC algorithm is that so-called excep-

tional configurations can occur due to the structure of the fermion determinant [111].

These are configurations in which detMM † = 0 and hence have no contribution in

the probability weights but generate barriers in the fermion force since the inverse of

the fermion matrix contributes there. This phenomenon parts the whole configuration

space in sub-domains in which an integrator can get stuck and by this can generate er-

godicity problems since the whole space is not reachable any more [20,86]. A method

to avoid this ergodicity issue is to implement an additional sub-lattice staggered mass

term that makes the barrier height finite and by this enables the integrator to move

through different sub-domains. Physical results can then be obtained by successively

reducing the mass ms and extrapolating it to zero staggered mass. Another possible

options are to complexify the Hubbard field and by this circumvent the barriers [60]

or to use sophisticated integrators which are able to tunnel through the barrier [112].

Furthermore, it was recently shown that it is possible to formulate the fermion oper-

ator in a way that these ergodicity issues do not occur [113]. In this work we go the

way of adding the sub-lattice staggered mass term ms and discuss its impact on the
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results in the corresponding chapters.

3.2. The fermion sign problem

One major restriction of the Hybrid-Monte-Carlo method is that an interpretation as

probability density of P (φ) is only possible if the functional values of P (φ) are real

and positive definite over the whole space. The introduction of a chemical potential

violates this condition due to breaking particle-hole symmetry and is widely known

as the fermion sign problem [62]. Mathematically speaking, the problem is caused by

precision errors when numerically integrating a strongly oscillating function, whereby

positive and negative contributions can no longer cancel each other out exactly. This

way of looking at the problem is discussed in the LLR-part of this study. Looking at

the HMC formulation, the problem manifests itself by the fact that by introducing

the chemical potential the fermion matrices of particle and holes M(φ) and M †(φ)

can no longer be written as adjoint matrices (cf. chapter 2.3.1) because:

M(φ, µ)(x,t)(y,t′) =M(φ, 0)(x,t)(y,t′) − µ
β

Nt
δx,yδt−1,t′

M̃(φ, µ)(x,t)(y,t′) =M †(φ, 0)(x,t)(y,t′) + µ
β

Nt
δx,yδt−1,t′ = M †(φ,−µ)(x,t)(y,t′)

(3.6)

However, if the chemical potential is nevertheless introduced, the fermion determinant

is becoming a complex number. If one now insert unity in the resulting partition

function as follows

Z =

∫
Dφ detM(φ, µ) det M̃(φ, µ)

det M̃(φ,−µ)

det M̃(φ,−µ)
exp

{
−δ

2

Nt−1∑
t=0

∑
x,y

φx,tV
−1
xy φy,t

}

=

∫
Dφ |detM(φ, µ)|2 det M̃(φ, µ)

det M̃(φ,−µ)
exp

{
−δ

2

Nt−1∑
t=0

∑
x,y

φx,tV
−1
xy φy,t

}
(3.7)

one can treat the resulting ratio as an observable of a HMC simulation and thus

measure the expectation value of the ratio of the phase of the determinants in the

”phase-quenched” theory.

Z(µ)

Zpq(µ)
=

〈
det M̃(φ, µ)

det M̃(φ,−µ)

〉
pq

(3.8)

Thereby it is possible to measure the severity of the sign problem and find the area

in which simple reweighting of the partition function leads to physical results. In

Figure 3.1 one finds exemplary histograms of the phase for different values of µ for

long-range potential and on-site Hubbard potential respectively. There one can see

that this reweighting method fails at very low values of chemical potential for both
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kinds of potential. As a measure of severity, we have used the quality of agreement

with a constant fit. This is expressed via the adjusted-R-squared, which is zero for a

strictly non-linear relation between the data and the fitted curve and one for a perfect

linear dependence [3].

Since the sign-problem is a very crucial problem of numerical methods in physics sev-

eral methods have been proposed in the last decades to reduce the problem for special

cases. Among them are for example Lefshetz thimbles [114–116] or attempts to reach

higher µ via Taylor expansion [117]. Nevertheless, it is still unclear whether there is

a general solution in polynomial time to this problem [63]. As already mentioned, in

this thesis two methods are used to reduce or avoid the sign-problem. By introducing

a spin-dependent potential, the problem is circumvented in so far as a similar theory

is simulated (see chapter 3.3). In the case of graphene this ”phase-quenched” theory

is actually physical and is equivalent to simulating an in-plane magnetic field. With

the other method, known as LLR algorithm, we deal with a real charge chemical

potential and calculating the electron density as a function of µ from HMC results

directly (see chapter 2.4 and 3.4).
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3.2. The fermion sign problem

Figure 3.1.: Illustration of the fermion sign problem through showing the ratio from
eq. 3.8 measured in a 6x6x6 lattice at β = 5.4κ−1 with on-site Hubbard
potential (above) / long-range potential (below) at an interaction strength
of of U = 0.1κ / 10% of suspended graphene. The signal is lost at µ ≈ 0.2κ
/ µ ≈ 0.15κmeaning the data can be fitted by a uniform distribution what
indicates a hard sign problem.
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3.3. Application of HMC on spin-dependent chemical

potential

For studying spin-dependent chemical potential we focus on the particle-hole suscep-

tibility due to their relation to the density of states and the Lifshitz transition as

shown in the chapter 2.2.2 and also their good accessibility within HMC simulations.

The common number susceptibility (per unit cell) is given by

1

βNc

d2

dµ2
lnZ =

1

βNc

[
1

Z

d2

dµ2
Z − 1

Z2

(
d

dµ
Z

)2
]

(3.9)

and agrees with particle-hole susceptibility up to a factor of β. With the path-integral

representation of the grand-canonical partition function Z from eq. 2.42 we can write

χ(µ) and thus the derivatives of Z in terms of M(φ) since only the fermion matrix

part of Z contains the chemical potential µ. Hence we find

d

dµ
det
(
MM †

)
= 2 det

(
MM †

)
Re Tr

(
M−1dM

dµ

)
(3.10)

and

d2

dµ2
det
(
MM †

)
= 4 det

(
MM †

){[
Re Tr

(
M−1dM

dµ

)]2

−1

2
Re Tr

(
M−1dM

dµ
M−1dM

dµ

)}
.

(3.11)

With these derivatives we find for the full susceptibility

χ(µ) =
4

Ncβ

1

Z

∫
Dφdet

(
MM †

)
Re Tr

(
M−1dM

dµ

)
e−S(φ)

− 2

Ncβ

1

Z

∫
Dφdet

(
MM †

)
Re Tr

(
M−1dM

dµ
M−1dM

dµ

)
e−S(φ)

− 4

Ncβ

1

Z2

[∫
Dφdet

(
MM †

)
Re Tr

(
M−1dM

dµ

)
e−S(φ)

]2

.

(3.12)

For further analysis it makes sense to look at connected χcon and disconnected χdis

contributions of the susceptibility separately. By this, the full susceptibility can be

written as χ = χcon + χdis with

χcon = − 2

Ncβ

〈
Re Tr

(
M−1dM

dµ
M−1dM

dµ

)〉
(3.13)
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and

χdis = − 4

Ncβ

{〈[
Re Tr

(
M−1dM

dµ

)]2
〉
−
〈

Re Tr

(
M−1dM

dµ

)〉2
}

(3.14)

where we already have used eq. 3.1, meaning that brackets 〈〉 are understood as

averages over a representative set of field configurations. For the explicit measurement

of χ(µ) we use noisy estimators and approximate

Tr(M−1M̃) ≈ 1

N

N∑
n=1

ξ†nM
−1M̃ξn

Tr(M−1M̃)2 ≈ 1

N(N − 1)

N∑
n,m=1,
n 6=m

(ξ†nM
−1M̃ξn)(ξ†mM

−1M̃ξm)

(3.15)

where ξn are randomly chosen from a Gaussian distribution. For canceling auto-

correlation effects we use the binning method, which means that the set of data is

divided into N blocks and taking the mean value of each block and use them as

a new set of uncorrelated data. The ideal block size is defined by the integrated

auto-correlation time

τint =
σN (X)

σ1(X)
(3.16)

with σ(X)is the variance of the mean value X of each block. This value grows with

increasing N, once it saturates the ideal block size is reached and the set of data

can be treated as nearly uncorrelated data. The errors of the data are obtained via

Gaussian error propagation for correlated data.
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3.4. The LLR algorithm

The general idea of LLR was already discussed in sec. 2.4. Here we focus on the ex-

plicit implementation of LLR with respect to the generalized density of states derived

in sec. 2.4.1. We first discuss the periodicity of the gDOS and introduce the trun-

cated and reweighted expectation value, then focus on the Robins-Monro algorithm

and finally going into details from data analysis.

3.4.1. Periodicity of the gDOS

As already mentioned we want to obtain the logarithmic slope of the generalized

density of states ρ(s) through evaluating an = d
ds ln ρ(s)

∣∣
s

= sn at a sufficiently dense

set of supporting points with high precision. Then we can reconstruct the gDOS

by numerical integration and use it to obtain the particle density from its Fourier

transform. Before going into detail of the method it makes sense to focus on the

properties of ρ(s) first for selecting an adequate range for possible sn. By introducing

the compact Hubbard field (cf. eq. 2.44) we obtain products of complex exponential

functions in the fermion determinant. This makes ρ(s) periodic with a wavelength of

λρ(s) = β. Therefore, we only have to sample one period of ρ(s) in order to get all

information we need. In Appendix B we show explicitly how the period emerges in

an example with no tight-binding contribution. This period dominates ρ(s) for a case

with finite κ, too.

3.4.2. Truncated and reweighted expectation value and Robins-Monro

algorithm

We will now focus on the LLR method [64] and as starting point we define the

truncated and reweighted expectation value as

〈〈W (Φ)〉〉n(ã) =
1

ZLLR

∫
Dφθ[sn,δs](Φ) |detM(φ)|2W (Φ) e−βS(φ) e−ãΦ (3.17)

with ZLLR as normalization constant, Φ as average Hubbard field introduced in sec.

2.4.1, θ[sn,δs] as window function around sn of width δs and ã as an external param-

eter. If the chosen window is small enough we can approximate the logarithm of the

generalized density of states in the interval [sn − δs/2, sn + δs/2] with linear terms.

We can write

ln ρ(s) = ln ρ(sn) + an(s− sn) . (3.18)

and reconstruct ln ρ(s) via numerical integration (see sec. 3.4.3).

According to [64] the principal idea is to solve equation 3.17 through stochastic ap-

proximation in order to obtain values for the slope an. In 1951, H. Robbins and S.
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3.4. The LLR algorithm

Monro provided a procedure for finding roots in functions represented as an expecta-

tion value [118]. Using this method for eq. 3.17 means that an under-relaxed fixed

point iteration

ãj+1 = ãj + αj
1

δ2
s

〈〈W (Φ)〉〉n (ãj) (3.19)

with ∑
j

αj →∞ and
∑
j

αj <∞ (3.20)

converges to the right limit ã(∞) = an if we choose W (Φ) = Φ− sn in a way that

〈〈W (Φ)〉〉n(an) = 0 . (3.21)

In the picture of Wang-Landau methods this means that we find a flat histogram

by putting ã(∞) in eq. 3.17. Furthermore, a set of final values ãjcut,i from a series

truncated at jcut are normal distributed around the true slope as mean value. Thus

we obtain

〈an〉 =
1

Na

Na∑
i=1

ãjcut,i (3.22)

Once a dense set of an is obtained for one period of logarithmic gDOS we find

ln ρ(sn) = δs

(
m−1∑
n=1

〈an〉+
〈am〉

2

)
(3.23)

for s such that sm ≤ s < sm+1. The errors of the corresponding mean values depend

only on the width of the Gaussian distribution and remain in the same order of

magnitude over the entire range. [64,70]

3.4.3. Application of the LLR algorithm

In this section we want to provide deeper insights about how to apply LLR on the

HMC framework described in sec. 3.1. According to the previous section we want to

estimate W (Φ) on ensembles restricted to a specific interval. Therefore, we use HMC

for generating configurations to measure on and first have to choose an appropriate

window function. Intuitively one would choose a combination of Heaviside-theta

functions here, but this would not work with HMC due to the nature of the updating

mechanism which needs continuous functions. Thus we use a Gaussian distribution

θ[sn,δs](Φ) = exp
{
−(s− Φ)2/(δ2

s)
}

as window function. The resulting force in the

HMC update always pushes the system towards the mean s = sn of the distribution.
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3. Simulation

Hereby, the variance of the distribution is chosen in a way that the interval is small

enough to obtain the slope properly but high enough to avoid integrator instabilities

from high forces in the HMC update arising at very small δs (cf. 3.26). An optimal

value for δs can be estimated by successively decreasing δs for a given sn which

increases |an|. If an no longer changes noticeably a good choice for δs has been found

and can be transferred to other parameter values. Note that this works since we

deal with periodic functions and therefore the estimated slope asn numerically goes

to zero for very large windows. Putting all chosen functions together we find for the

observable

〈〈Φ− s〉〉(ãj) =
1

ZLLR

∫
Dφ detM(φ)M †(φ) (Φ− sn)

× exp

{
− δτ

2U

∑
x,t

(φx,t − s)2 − 1

δ2
s

(s− Φ)2 − ãjΦ

} (3.24)

with

ZLLR =

∫
Dφ detM(φ)M †(φ) exp

{
− δτ

2U

∑
x,t

(φx,t − s)2

− 1

δ2
s

(s− Φ)2 − ãjΦ
} (3.25)

and an additional force for HMC updates

FLLR =
2(sn − Φ)

δ2
s

− ãj . (3.26)

For the under relaxation parameter αj we set

αj =

1 for 0 ≤ j < jt
1

j−jt for j > jt
. (3.27)

which is the optimal choice for error suppression [70]. The parameter jt denotes

the number of thermalization steps of the LLR algorithm. Thermalisation means in

this context to evolve jt iteration steps without under relaxation in order to avoid

correlations with respect to the start value of ãj . Additionally, we have to thermalize

the HMC algorithm after each update of aj before measuring the observable. It

turned out that a constant value which minimizes the LLR-Force is a suitable choice
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3.4. The LLR algorithm

as initialization value of the Hubbard field for an efficiently working HMC algorithm.

As an illustration of the method we show in Figure 3.2 an example of a set of Robbin-

Monro iterations up to jcut = 105 with jt = 15 for a Nx = Ny = Nt = 6 lattice at

β = 2.7κ, ms = 0.185κ, U = κ for s = 1.33κ. The expectation value of the slope an

for this specific set of data is shown, too.

〈an〉 = 2.62(9)

0 20 40 60 80 100
-2

0

2

4

6

8

j

ã
j

Volume 6x6x6, β = 2.7 κ-1, ms = 0.185 κ, U = 1 κ, s = 1.33 κ

Figure 3.2.: Illustration of stochastic Robbins-Monro iteration. A set of 20 final values
ãjcut are generated via updating according to eq. (3.19). Under-relaxation
is switched on at jt = 15. The black line shows 〈an〉 according to eq. 3.22.

Summarized, for a given set of lattice parameters and fixed sn we perform the following

procedure:

1. Set ã0 = 0 and thermalize Hubbard field via HMC.

2. Measure 〈〈W (Φ)〉〉(aj)i on lattice configurations using HMC updates.

3. Calculate ãj+1 via eq. 3.19 with respect to eq. 3.27.

4. Use ãj+1 as new external parameter in eq. 3.24.

5. Thermalize the Hubbard field via HMC and repeat from 2 until j = jcut.

6. Repeat from 1 until sufficiently many jcut are generated.

7. Estimate 〈an〉 or ln ρ(sn) from set of jcuts, respectively.

The final step in the LLR-procedure is to treat the results from simulations in the

right way to obtain ρ(s) or in our case directly ρ̃k (see 2.4.2). The basic idea is to
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3. Simulation

use a simple form of numerical integration as described in eq. 3.23. Thereby, we only

obtain a small set of ajcut via simulations and improve the estimation of the mean

values and corresponding error bars through the bootstrapping method [108,119]. We

use bootstrapping to directly generate distributions of ρsn or ρ̃k, respectively. This

means that we input randomly chosen values ajcut , i from their corresponding data set

for every used n,m in eq. 3.23 instead of the averages as written there. By repeating

this procedure we generate a distribution of ln(ρsn) which we then use for calculating

their mean and corresponding error. The same procedure is used for obtaining the

Fourier coefficients in eq. 2.58.
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4. Results for spin-dependent chemical

potential

First we show results for parameters which only arise due to methodology of HMC

in order to get an understanding of these more artificial parameters. The influence

of the staggered mass ms which was introduced in our system to avoid ergodicity

problems and the finite discretization of the time axis δτ will be discussed and their

implications on physical results will be shown. Afterwards, we concentrate on the

influence of long-range interaction and temperature on the whole susceptibility. In

the end of this chapter we concentrate on the behavior of the Lifshitz transition for

a suspended graphene sheet. Finally the results of simulations with spin-dependent

chemical potential and screened long-range potential are summarized and discussed.

4.1. Behavior of the Thomas-Fermi susceptibility

In the following we show the results for simulations with respect to staggered mass ms,

Euclidean-time discretization δτ , inverse temperature β and long-range interaction,

which is, as already mentioned, rescaled by the parameter λ so that we simulate for

λ = 0.0 the pure tight-binding theory and for λ = 1.0 suspended graphene. We discuss

the implications of each parameter briefly, highlight important steps or assumptions

within the simulations and compare the results to pure tight-binding theory.

4.1.1. Influence of the staggered mass ms

In the non-interacting limit one can show easily that the staggered mass opens up

a gap between the bands in the size of their specific value (see. fig. 4.1). This

behavior is preserved in the interacting system by the reason that this effect arises

within the tight-binding formulation and isn’t much influenced by the interacting

potential. Focusing on the susceptibility χ(µ) one finds that small ms change the

shape significantly only in the Dirac cone area. Since, the main interest of this study

lies in the change of whole bands through long-range interaction and the influence on

the neck-disrupting Lifshitz transition at the VHS we can accept deviations in the

Dirac cone area. Fortunately, for fast and stable simulations we need only small ms

which does not affect the shape of χ(µ) at the VHS or at higher values of µ apart

from statistical fluctuations. In Figure 4.1 the influence on the susceptibility both
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4. Results for spin-dependent chemical potential

for non-interacting and long-range interactions is shown. In order to have a good

balance between accuracy and computational time all further results in this chapter

were obtained for ms = 0.185κ.
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Figure 4.1.: Susceptibility χ(µs) of a Nc = 122 hexagonal lattice at β = 5.4κ−1 for
pure tight-binding theory λ = 0.0 generated via eq. 2.20 [left ] and for
suspended graphene λ = 1.0 and δ = 2.7/6κ−1 generated via HMC.
Shown are three different values of staggered mass, each.

4.1.2. Influence of the Euclidean-time discretization δτ

Controlling the effects induced by finite Euclidean time-discretization δτ = β
Nt

, which

occurs through Suzzuki-Trotter decomposition, is essential for using HMC methods

in general. Since one obtains physical results only in the limit δτ → 0 and this is

computationally very expensive for low temperatures, large lattices or strong inter-

actions we have to get a general understanding of the principle influence of δτ . If we

find a well describable connection between χ(µ) and δτ this can be used to investigate

larger parameter ranges. So we carried out several simulations for high temperatures

and small lattices for the whole range of interaction strength λ and fortunately found

a general behavior which is shown and discussed in the following. Figure 4.2 shows

the influence of δτ on the full susceptibility χ(µ) for the non-interacting limit λ = 0.0,

which implies that the Hubbard field is equal to zero on all lattice sites. This means

that we can solve the system exactly without HMC updates.

The influence of discretization on χ(µ) in the non-interacting limit can be largely

described by a constant shift of the entire curve without changing its shape. The

continuum limit, meaning the point-wise δτ → 0 extrapolations, has a good agree-

ment with the analytical form of the susceptibility calculated with eq. 2.20. An

example for an continuum extrapolation the fit for µ = 0.0κ is shown in Figure 4.2,

too. The behavior of the finite lattice discretization, which can be mainly expressed

with a constant shift, continues with increasing interaction strength up to suspended
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4.1. Behavior of the Thomas-Fermi susceptibility

graphene λ = 1.0 except for statistical noise. Figure 4.3 shows HMC results for differ-

ent discretization values and their continuum extrapolation for a set of four interaction

strengths λ and shows the continuation of the behavior from the non-interacting case.

Because of the described behavior we have chosen a rough discretization for qualita-

tive investigations of further parameters like temperature and interaction strength in

order to reduce simulation time. A more detailed analysis, whit focus on connected

and disconnected part underlines this observation. In Figure 4.4 we compare λ = 0.4

with λ = 1.0 case for the full susceptibility and the connected and disconnected part,

separately. Thereby we find that the disconnected part χdis is barely not affected

by finite time discretization at all. Within our statistical error we obtain only noise

distorting the constant shift coming from the connected part when both parts are

added.
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Figure 4.2.: Susceptibility χ(µs) of a Nc = 122 hexagonal lattice at β = 5.4κ−1 for
pure tight-binding theory λ = 0.0. Shown are HMC results for differ-
ent discretizations (red), point-wise quadratic continuum extrapolation
(blue) and analytically calculated (λ = 0.0) via eq. 2.20 (gray). [left ]
/ Quadratic continuum extrapolation for a 12x12 hexagonal lattice at
β = 5.4κ−1 for pure tight-binding theory λ = 0.0 at µ = 0.0κ. [right ]
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Figure 4.3.: Susceptibility χ(µs) of a Nc = 122 hexagonal lattice at β = 5.4κ−1 for
different interaction strengths λ = 0.1 [top, left ], λ = 0.4 [top, right ],
λ = 0.8 [bottom, left ] and λ = 1.0 [bottom, right ]. Shown are HMC
results for different discretizations (red), point-wise quadratic continuum
extrapolation (blue) and analytically calculated (λ = 0.0) via eq. 2.20
(gray).
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Figure 4.4.: Full susceptibility χ(µs) [top] with corresponding connected χcon [middle]
and disconnected χdis [bottom] parts of a Nc = 122 hexagonal lattice at
β = 5.4κ−1 for interaction strength λ = 0.4 [left ] and λ = 1.0 [right ] in
comparison. Shown are HMC results for different discretizations (red),
the point-wise quadratic continuum extrapolation (blue) and analytically
calculated (λ = 0.0) via eq. 2.20 (gray).
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4.1.3. Influence of the inverse temperature β

Due to a fixed lattice we focus on the electron temperature here, meaning we have no

phonon interaction implemented. As already discussed in section 2.2.2 the suscepti-

bility in the non-interacting limit λ = 0.0 for β →∞ is equal to the density of states

(cf. Fig. 2.6) and the Lifshitz transition is indicated in χ(µ) through a logarithmic

divergence of the peak height at the van Hove singularity. Here we show the results

for the system with full long-range interaction λ = 1.0. All results were obtained for

a lattice discretization δ = 2.7/6κ−1 and staggered mass ms = 0.185κ. The rough

discretization leads to a negative shift of the whole curve, which was explained in

detail in section 4.1.2. Because of the context described in sec. 2.2.2 (cf. Fig. 2.6)

the lattice has been chosen big enough to avoid finite size effects.

Figure 4.5 shows the full susceptibility for different inverse temperatures β and the

corresponding connected and disconnected parts. The connected part behaves essen-

tially as in the non-interacting scenario, while in the disconnected part two peaks

are formed by lowering the temperature. The peak at the VHS is examined and

explained in section 4.2. The peak at the Γ-point was not studied in detail due to

limited computational resources but is discussed briefly in section 4.1.4 and 4.3.
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Figure 4.5.: Temperature dependence of χ(µ) for suspended graphene λ = 1.0
at a lattice discretization δ = 2.7/6κ−1 and staggered mass ms =
0.185κ. The corresponding lattice sizes are Nc ∈

{
122, 182, 242

}
for

β ∈
{

5.4κ−1, 8.1κ−1, 10.8κ−1
}

(top) and for the corresponding con-
nected (bottom, left) and disconnected parts (bottom, right)
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4.1.4. Influence of the long-range interaction strength

Here we present the general influence of inter-electron interactions on the particle-hole

susceptibility. Therefore, we have chosen a high temperature β = 5.4κ−1 and small

lattice Nc = 122, which is not influenced by finite size effects. We also have carried

out quadratic continuum extrapolations as described in 4.1.2 for each chosen value of

the rescaled interaction parameter λ. The used values for lattice discretization δ can

be taken from the Table D.3 in Appendix D. Figure 4.6 shows the full susceptibility

as well as connected and disconnected parts. We still have a systematic discretiza-

tion error which can be identified as the negative shift at high µ-values, due to the

expectation that at high enough µ the susceptibility should fall to zero. By assuming

this we find an additional systematic discretization error of around 0.08κ−1.
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Figure 4.6.: Dependence of rescaled interaction strength λ on the susceptibility χ(µ)
for a Nc = 122 hexagonal lattice at β = 5.4κ−1. Plotted are the quadratic
continuum extrapolations for each set of parameters. Dependence of
rescaled interaction strength λ on the connected top and disconnected bot-
tom part of χ(µ) for a Nc = 122 hexagonal lattice at β = 2κ−1. Plotted
are the quadratic continuum extrapolations for each set of parameterχcon
and χdis.

The disconnected part is exact zero in the non-interacting case because the expecta-

tion value of 〈Re Tr (...)2〉 factorizes. So this part of the susceptibility comes entirely

from many-body interactions. At high temperatures we find with increasing λ that

a peak at high chemical potential is generated. This peak at the Γ-point indicates

the end of the upper band which moves to lower values. This behavior is reflected
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4. Results for spin-dependent chemical potential

in a flattening of the dispersion relation around the Γ-point and in combination with

the decrease in connected part at lower µ values we find a general compression of

the whole conductance band, induced by electron interactions. However, we can not

untangle effects from doping and interactions here but the combined effect is quali-

tatively in line with experimental observations [120]. This general compression effect

from interactions also leads to a shift of the van Hove peak towards lower values,

which is in line with experimental observations [41]. Another implication of increas-

ing λ is the lowering of χ(µ) near µ = 0.0κ, which indicates, as expected, a gap

opening for unphysical high values of interaction strength. Additionally, going to

lower temperatures at fixed interaction strength, a peak in the disconnected part at

the VHS is formed as it was described in section 4.1.3. The implications of this peak

are highlighted in more detail in section 4.2.

4.2. Behavior at the van Hove singularity

As already mentioned in section 4.1.3, we find the formation of a peak in the discon-

nected part of the susceptibility at the VHS induced by electron interactions. We now

focus on this phenomenon for graphene lattices at λ = 1.0. Since simulations at high

β enlarge the required computing time drastically we generated the results only for

high temperatures directly. At low temperatures we used the systematic of the finite

volume effects at the VHS. According to the fact that odd lattices underestimate the

real value of χµ and even lattices overestimate it (cf. sec. 2.2.2) we can simulate

small lattices and can generate a series of mean values of χpeak from subsequent lat-

tices with them, which converges faster to the infinite volume value than a series of

lattices with equal parity (cf. Fig. 4.7). For this method it is necessary to determine

the position of the peak in the interacting system as accurately as possible. So we

have carried out a series of simulations for even and odd lattices in the area where

the peak is supposed to be, then added these values separately and made a quadratic

fit to estimate the position and the corresponding value of χpeak as accurately as pos-

sible. This procedure was then repeated until the value converged. In order to verify

this method we used both, the described method with Nc = 122 and 132 lattices and

simulations direct with converged large N for β = 10.8κ−1 and 12.15κ−1. Then we

used this method to obtain χpeak up to β = 16.2κ−1 with averages from lattice sizes

Nc ∈
{

102, 112, 122, 132
}

. In the near vicinity of a true thermodynamic phase tran-

sition this method should break down due to the normal finite-size scaling expected

there.
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Figure 4.7.: Peak values of χ over different volumes for a β = 10.8κ−1, ms = 0.185κ
and λ = 1.0 system, exemplary.

In Figure 4.8 the infinite volume behavior of the susceptibility and the corresponding

connected and disconnected part for different temperatures are shown. By fitting the

data with

χpeak(T ) = a ln
( κ
T

)
+ b+ c

T

κ
(4.1)

in the interval β ∈
[
2.7κ−1, 8.1κ−1

]
, we find that the logarithmic scaling which

indicates the Lifshitz transition dominates the system within the interval. More

explicitly, this can be shown by focusing on the connected part. Setting the fit

parameter a = 3
π2κ

and doing this fit with two parameters again

κχconpeak(T ) =
3

π2
ln
( κ
T

)
+ b+ c

T

κ
(4.2)

in the interval β ∈
[
2.7κ−1, 6.75κ−1

]
we find b = 0.519(3) and c = −0.472(8). This

reproduces the pure tight-binding behavior from eq. 2.19 up to the constant shift

coming from finite discretization δ = 2.7/6κ−1. Note that we find an agreement

within 13% of the constant in eq. 2.19 and for the three-parameter fit an agreement

within 1% with the constant 3
π2κ

. The 2-parameter fit of χcon is also shown in Fig.

4.8.

At lower temperatures β > 6.75κ−1 the influence of the electron interaction becomes

rapidly stronger and leads to a dominance of the disconnected part χdis, while the

connected part χcon becomes weaker and weaker. A description of the curves us-

ing logarithmic functions is no longer possible, here. Instead a power-law fit of the

disconnected part is possible. We find χdis is well described by

χdispeak(µ) = k

∣∣∣∣T − TcTc

∣∣∣∣−γ (4.3)
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4. Results for spin-dependent chemical potential

for β ≥ 6.75κ−1. The fit parameter values can be taken from Table 4.1.

βc [κ−1] Tc [κ] γ k [κ−1]

16(2) 0.060(5) 0.52(6) 0.32(1)

Table 4.1.: Fit parameter values, corresponding to eq. 4.3
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Figure 4.8.: Temperature dependence of χmax. Shown are the full susceptibility, the
connected and disconnected parts up to β = 12.15κ−1 from simulations
in the finite volume limit (lighter color) and from β = 10.8κ−1 to β =
16.2κ−1 obtained from average values of subsequent even and odd lattices
(darker color). The gray line shows a 2-parameter fit from eq. 4.2 and
the black line corresponds to the fit via eq. 4.3.

This fit indicates a thermodynamic phase transition driven by the disconnected sus-

ceptibility with a transition temperature of Tc = 0.060(5). The value of the scaling

exponent γ = 0.52(6) is in good agreement with a theoretical consideration that finds

γ = 0.5 for a single-particle band structure with a VHS, which is not point-like but

extended. One finds this by writing the expansion eq. 2.13 the single-particle energy

around a saddle point at ε~k = ε0 in a more general way

E(~k)
∣∣∣
µ=κ

= κ+ κ (c1 (kxa)α − c2 (kya)α) (4.4)

which gives for α = 2 and
√
c1c2 = 3

√
3/4 the tight-binding behavior and leads to the

expected logarithmic scaling in the density of states (cf. sec. 2.2.2). If we set α = 4

instead, the divergence of the peak turns into a square root divergence for T → 0,

meaning γ = 1
2 . So we can say in conclusion, that we found good evidence that the

interactions turn the Lifshitz behavior occurring in pure tight-binding theory into a

square root behavior with an extended VHS. This extended VHS was already found

within an angle-resolved photoemission spectroscopy (ARPES) experiment with Ca-
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doped graphene [41].

4.3. Summary

We have used a Hybrid-Monte-Carlo framework to study the hexagonal graphene lat-

tice with long-range Coulomb interactions at finite spin-density as a possible circum-

vention of the fermion sign problem. Therefore, the nearest-neighbor tight-binding

Hamiltonian was used, since it preserves the particle-hole symmetry and thereby en-

ables the equivalence of spin and charge carrier density in the non-interacting theory.

The many-body interactions were modeled by a partially screened Coulomb potential

which reflects the screening from lower σ-bands for short distances and pure Coulomb

interaction at long distances. As an observable the Thomas-Fermi susceptibility was

used, which reflects the properties of the density of states, like linearity around the

K-points and a logarithmic divergence which indicates a neck-disrupting Lifshitz tran-

sition at the M-Point. An analytical understanding of the non-interacting theory was

given for using this as baseline for comparison with HMC results. We pointed out

that the artificial parameters δτ and ms, which arise due to path-integral formula-

tion and Ergodicity issues of the HMC algorithm, can be controlled in a systematic

way. Focusing on the results for changing interaction strength and temperature, we

found qualitatively the same properties, like band-structure renormalization [120] or

an extended van Hove singularity [41], as found by experimental studies with doped

graphene. We showed that for the formation of the extended VHS the presence of

many-body interactions is necessary in the chosen system. In detail this was con-

firmed by the observation of a peak-building at the VHS in the disconnected part of

χ(µ), which is a purely interaction driven part, and showing that this peak formation

follows a square-root power-law for low temperatures. This also indicates that the

topological transitions turn into a true quantum phase transition below Tc with chem-

ical potential as control parameter. For high temperatures the logarithmic scaling of

the neck disrupting Lifshitz transition was found in the connected part and reflects

the single-particle behavior in this temperature range.

Additionally, a second peak formation could be observed at the Γ-point which indi-

cates an interaction driven change of the topological void formation Lifshitz transition

at the upper end of the conductance or the lower end of the valence band, respectively.

This second peak was not analyzed in detail due to limited computational resources

and can be object of further investigations. Looking at the results presented here,

however, we guess that the point-like structure of the single-particle dispersion relation

at the Γ-point may also change into a 2d-structure through many-body interactions

and the formation of other phase might be observed.
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5. Results for charge chemical potential

In this section we present the results for finite charge density in the on-site Hubbard

model. We used the LLR algorithm to obtain the logarithmic slope of the generalized

density of states as described in section 2.4 and then reconstruct the particle density

via canonical ensembles. We show the results of the LLR simulations and discuss

the implications of staggered mass ms, time discretization Nt, finite Volume Nc and

interaction strength U on the particle density n(µ) and compare the method to brute-

force simulations. Furthermore, we improve the results by compressed sensing in two

different ways for an exemplary set of parameters. But first, a general overview of

the relation between the LLR method and the evaluation of the data by means of

pseudo-canonical ensembles is given and important details are discussed.

5.1. General behavior

Here we discuss the general relationship between the gDOS generated by LLR and

the resulting particle density using an exemplary data set. For this purpose we choose

the results from Nc = 62, Nt = 6, β = 2.7κ−1, ms = 0.185κ at interaction strength

U = 1.0κ which are shown in Figure 5.1. Shown are the obtained slopes a(s), the

resulting gDOS ln ρ(s) and their Fourier transforms ln ρk as well as the corresponding

particle density n(µ). It can be seen very well there that despite the exponential error

suppression in the obtained slope a(s) we actually can use only a small part of the

Fourier coefficients to determine the particle density. Nevertheless, the density can

be obtained within acceptable error bars up to µ ≈ 0.75κ, whereas with brute force

methods the signal is lost at about µ ≈ 0.15κ for the same set of parameters. At

first glance, this looks like an improvement by a factor of about 5, but this factor is

reduced when the structure of the evaluation is examined more closely. Besides the

difference of the logarithmic Fourier coefficients in eq. 2.63 there is a linear finite size

term which can be obtained without any precision problems. Thus, the linear term

must be subtracted from the particle density in order to determine the true gain from

this method. Figure 5.2 shows the particle density for the chosen example with and

without the linear term. We find that subtracting the term reduces the improvement

factor by about half in the selected example. Since we only want to go into general

behavior here, a more detailed comparison with brute-force follows in section 5.4 .
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5. Results for charge chemical potential

Here we want to discuss how this improvement comes about and where its limits are.

For this purpose, the pure tight-binding formulation of the gDOS can be used to

examine individual steps within the method in more detail.
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Figure 5.1.: The logarithmic slope a(s) obtained via LLR (left, top), the corresponding
logarithmic gDOS ln ρ(s) (left, bottom), their discrete Fourier transform
ln ρk (right, top) and the particle density obtained via eq. 2.63 (right,
bottom) for a Nc = 62, Nt = 6 lattice at β = 2.7κ−1, ms = 0.185κ
and U = 1.0κ. The black lines shows the analytical tight-binding case
(U = 0.0κ).

One can derive the gDOS in pure tight-binding and find according to [121]

ln ρ(s) = 2
∑
n,m

ln

[
cosh2

(
ε̃mn
2T

)
− sin2

( s

2T

)]
(5.1)

Furthermore, the particle density normalized to the maximal number of electrons

which can be added or removed in one unit cell is

n(µ) =
1

Nc

∑
n,m

[
tanh2

(
ε̃mn − µ

2T

)
− tanh2

(
ε̃mn + µ

2T

)]
(5.2)

where we added the staggered mass to the energy ε̃ =
√
ε2 +m2

s as in previous sec-

tions, for a good comparison. We use eq. 5.1 to generate data sets for the chosen

lattice for U = 0.0κ with arbitrarily high precision in order to compare the method of

approximating the particle density via canonical ensembles with the analytic formu-
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5.1. General behavior

lation of n(µ) in eq. 5.2. Therefore, we perform the discrete Fourier transformation

without losing precision from the input data, using multi-precision libraries. Doing

so, we can show that it is possible in principle to obtain the whole valence band within

the method of obtaining the particle density via canonical ensembles. However, it is

necessary to determine the Fourier coefficients very precisely which require a high

precision of the input data, which is in shown in Figure 5.3. There we show how far

one can get in the µ-range depending on the selected precision for the chosen exam-

ple lattice at U = 0.0κ. Additionally, we show that the required number of digits

increases linearly with rising temperature. Note that even at a very high temperature

of β = 2.7κ−1 one needs a precision of141 digits to obtain the whole band. Neverthe-

less, with input data in double precision we already reach the van Hove singularity

within this example lattice. Unfortunately, the number of needed digits is also getting

worse with increasing volume since the method is based on the fugacity expansion.

So the key question is how precise we can estimate the slope a(s) with the LLR-

framework and how results are influenced by the parameters of the system. Since

the method of evaluation with canonical ensembles as well as HMC simulations break

down at low temperatures and large volumes, we concentrate in the following on

the area in which simulations are generally possible and feasible within reasonable

times. Therefore we have set the inverse temperature β = 2.7κ−1 and concentrate on

Nc ∈
{

62, 122
}

lattices.

full

reduced

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.4

-0.2

0.0

0.2

0.4

μ in κ

n
(μ
)

Figure 5.2.: Comparison of the full particle density and the one reduced by the linear
term (see. eq. 2.63) for the chosen exemplary data set (Nc = 62, Nt = 6,
ms = 0.185κ, U = 1.0κ). The black line shows the pure tight-binding
density.
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Figure 5.3.: Particle density n(µ) in tight-binding formulation U = 0.0κ, obtained
via canonical ensembles for different precisions of input data in compar-
ison to the density calculated via eq. 5.1 for β = 2.7κ−1 (left) and the
number of digits needed to obtain the whole valence band depending on
the temperature for the chosen exemplary data set ( Nc = 62, Nt = 6,
ms = 0.185κ).(right)

5.2. Influence of the system parameters

Here we give an overview of the influence of the staggered mass ms, time discretization

Nt, finite Volume Nc and the interaction strength U on both the generalized density

of states and the corresponding particle density. We show in all sections only the

particle densities without the linear term for the reason described in 5.1.

5.2.1. Staggered mass ms

Since the staggered mass produces a gap already, we have set the on-site potential

to a small value U = 0.1κ and carried out simulations for three different values of

ms on a Nc = 62, Nt = 6 lattice. In order to save computing time we also chose a

rough sampling of the slope a(sn) with n ∈ {1; 64}. Within this choice we find no

significant influence of the staggered mass on the particle density as shown in Figure

5.4. However, decreasing the staggered mass ms shifts the minimum of the ln ρ(s)

to lower values but since we have a logarithmic scale here this influence is strongly

suppressed in the gDOS. But this effect should become more relevant if ln ρ moves to

smaller values overall, i.e. gDOS is less concentrated around zero s. As one would

expect, such behavior can be achieved by reducing the temperature or increasing the

interaction strength (as discussed in 5.1). Since we have found no influence of the

staggered mass on the particle density for our chosen temperature, we use the highest

mass ms = 0.185κ for further simulations.
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Figure 5.4.: The logarithmic slopes a(s) obtained via LLR (left, top), the correspond-
ing logarithmic gDOS ln ρ(s) (left, bottom), their discrete Fourier trans-
form ln ρk (right, top) and the particle densities obtained via eq. 2.63
(right, bottom) for three different choices of staggered mass ms on a
Nc = 62, Nt = 6 lattice at β = 2.7κ−1 and U = 0.1κ. The black line in
the plot of the particle density n(µ) shows the pure tight-binding density.
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5. Results for charge chemical potential

5.2.2. Euclidean-time discretization δτ

For investigating the δτ -dependence we also carried out simulations for three differ-

ent values of Nt ∈ {6, 12, 18} in a fixed parameter set (Nc = 6,ms = 0.185κ, β =

2.7κ, U = 1.0κ) with 120 sampling points. Figure 5.5 shows the results for these simu-

lations and the corresponding ln ρ(s), ln ρk and n(µ). We find that the Euclidean-time

discretization has only minor influence that vanishes within the error bars for a(s).

Only in ln ρ(s) we find small differences in the middle of the period, which are in the

strongly suppressed area, as it is with the staggered mass. These differences can not

be resolved in the corresponding Fourier coefficients and thus in the particle density

n(µ). Additionally we find that the particle density for U = 1.0κ fully agrees with the

non-interacting theory within the resolvable area when the linear term is dropped.

So, we can here also use a more rough discretization for further studies and save

computational time, as we do with staggered mass.
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Figure 5.5.: The logarithmic slopes a(s) obtained via LLR (left, top), the correspond-
ing logarithmic gDOS ln ρ(s) (left, bottom), their discrete Fourier trans-
form ln ρk (right, top) and the particle densities obtained via eq. 2.63
(right, bottom) for three different choices of Nt on a Nc = 62 lattice at
β = 2.7κ−1,ms = 0.185κ and U = 1.0κ. The black line in the plot of the
particle density n(µ) shows the pure tight-binding density.

Furthermore, it should be mentioned that this weak dependance on the lattice dis-

cretization can be traced back to the structure of the fermion matrix, more specifi-

cally on the compact Hubbard field which was introduced in section 2.3.1. In testing
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5.2. Influence of the system parameters

cases without compact Hubbard field we already found a strong dependance of the

Euclidean-time Discretization up to Nt = 768 in Mean field calculations [122].

5.2.3. On-site potential and finite volume

Here we present results for five different on-site potential values for a Nc = 62, Nt = 6

lattice in Figure 5.6 and two different values for a Nc = 122, Nt = 12 lattice in Figure

5.7. As in previous sections we find the largest deviations in the middle of the period

on the level of the logarithmic slope. Additionally, we can describe a general trend

in the way that with increasing interaction strength the range of a(s) and therefore

also ln ρ(s) becomes smaller and smaller. This behavior makes simulations for strong

couplings more expensive, since one has to measure deviations from zero very precisely.

This effect comes in addition to HMC behavior which also gets more expensive with

increasing U. We have found that the logarithmic slope for U = 5.0κ can no longer

be distinguished from zero within the error bars for a simulation series with a total

of around 15000 GPU hours.
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Figure 5.6.: The logarithmic slopes a(s) obtained via LLR (left, top), the correspond-
ing logarithmic gDOS ln ρ(s) (left, bottom), their discrete Fourier trans-
form ln ρk (right, top) and the particle densities obtained via eq. 2.63
(right, bottom) for five different choices of One site potential U on a
Nc6

2, Nt = 6 lattice at β = 2.7κ−1 and ms = 0.185κ. The black line in
the plot of the particle density n(µ) shows the pure tight-binding density.

As we show in Figures 5.6 and 5.7 we find that the Fourier modes and the particle

density for U ≤ 1 agrees with the pure tight-binding theory within the error bars
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5. Results for charge chemical potential

up to the linear term, whereas for U = 2.0 a deviation is visible. Furthermore, we

find, as one would expect, that the sign problem sets in at much smaller µ for the

larger system. For the Nc = 62, Nt = 6 we can compute n(µ) up to µ ≈ 0.35κ for

U ≤ 1.0κ. In the larger lattice Nc = 122, Nt = 12 case we only reach µ ≈ 0.1κ for

the same potential. It should be mentioned, that the measured amplitudes of a(s)

are larger in the larger lattice for the same parameter set, which makes it easier to

find a signal for stronger couplings. It can be concluded that we can still find a signal

for larger lattices at higher potential values as long as we can perform HMC updates

with reasonable acceptance rates. However, an exact measurement of this effect was

not possible in this thesis due to the limited computing capacity.
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Figure 5.7.: The logarithmic slopes a(s) obtained via LLR (left, top), the corre-
sponding logarithmic gDOS ln ρ(s) (left, bottom), their discrete Fourier
transform ln ρk (right, top) and the particle densities obtained via eq.
2.63 (right, bottom) for five different choices of on-site potential U on a
Nc = 122, Nt = 12 lattice at β = 2.7κ−1 and ms = 0.185κ. The black
line in the plot of the particle density n(µ) shows the pure tight-binding
density.
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5.3. Results from compressed sensing

As mentioned in section 2.4.3 an attempt to improve the results from LLR algorithm

is to use fit functions for ln ρ(s) to generate further data points in between of two

supporting points sn. This method is called compressed sensing within the LLR

literature. In order to get an impression of the amount of improvement of this method

within our framework we have used compressed sensing for the data sets with varying

one site potential. First, we present the simple attempt in which we fit the generalized

density of states with a Fourier series to generate new and denser set of data and

transform these set afterwards to obtain the particle density. For this purpose, we

use the maximum number of fit parameters which are possible for each data set. The

second attempt is to use Chebyshev polynomials of the first kind instead, where we

add higher terms until the expansion converges to a final result and then use this fit

for the further evaluation. In Figure 5.8 the results of this methodology are presented

for the exemplary case (Nc = 62, Nt = 6, β = 2.7κ−1, ms = 0.185κ, U = 1.0κ)

and compared with the results without compressed sensing for both mentioned sets

of functions. In both cases, we generated data sets with factor 10 more data points as

in the data set obtained from simulations. Since the results change not significantly

for the other sets of parameters their plots can be found in the Appendix C. We

find a very small improvement of about two data points for each data set before the

results scatter in an uncontrolled way, whether we use Fourier or Chebychev fits. So

we can conclude that the more detailed structure of the generalized density can only

very roughly be reproduced in both cases and higher coefficients play a major role for

advancing the higher µ-area.
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Figure 5.8.: Comparison of obtaining the particle density for an exemplary data set
(Nc = 62, Nt = 6, β = 2.7κ−1, ms = 0.185κ, U = 1.0κ) direct with
the HMC data and via compressed sensing by Fourier series with Ns

coefficients [right ] and by Chebychev polynomials of the first kind with
Ns/4 coefficients [left ]. In both variants the number of sample points
were increased by factor 10 through compressed sensing.
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5.4. Comparison to Brute-Force method

Here we present an overall comparison of the regions in which we can obtain results

for the particle density via brute force reweighting with the results produced with the

LLR-framework and and subsequent evaluation by canonical ensembles. Figure 5.9

shows this comparison of the results as a function of on-site potential U for the two

chosen lattice sizes. In both cases, we plot the value where the signal is lost while

spending roughly the same computer time for each pair of data. We have found an

improvement over brute-force reweighting in all cases. However, the advantage of

our framework becomes much smaller with larger lattices. But a principal advantage

is that the improvement becomes better with increasing interaction strength. This

advantage only holds as long as we can sample the logarithmic slope, of course. As

already mentioned, the signal was lost at about U = 5.0κ
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Figure 5.9.: Comparison of effective µ-range of brute-fore reweighting and LLR for
Nx = Ny = Nt = 6 and 12 lattices at β = 2.7κ−1 and ms = 0.185κ. For
each value of U the phase distribution was measured according to eq. 3.8
until the signal was lost. A roughly equal amount of computer time was
spent for corresponding LLR calculations.
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5.5. Summary

For simulating with charge chemical potential directly, we used the Linear Logarith-

mic Relaxation method in combination with the Hybrid-Monte-Carlo algorithm as

update-mechanism to obtain a generalized density of states with very high precision

in order to use this data to reconstruct the particle density by differences of pseudo-

canonical ensembles. For the sake of simplicity we used the pure Hubbard model

instead of the partially screened Coulomb interaction used in chapter 4. Similar to

the spin-dependent part, we used the tight-binding theory as a baseline for comparison

with the interacting theory. Introductory, we provided a first understanding of ad-

vantages and disadvantages of the method by discussing an example case. We showed

that we can measure the periodic gDOS of the average Hubbard field very precise via

integrating the obtained logarithmic slope, which was estimated at a chosen set of

support points. However, our simple way of extracting the complex phase from the

fermion determinant in the partition function is for the price of a highly oscillating

contribution which we tried to handle by Fourier transformation. As shown in chapter

2 the partition function represented as Fourier coefficients of the gDOS can be seen

as the fugacity expansion and therefore we can estimate the chemical potential as

derivative of the identified pseudo-canonical ensembles with particle number modulo

total of sample points. The particle density was then obtained by inversion of the

differences of chemical potentials of these ensembles.

We showed that the Euclidean-time discretization and the staggered mass have no

major influence for our chosen set of parameters. Furthermore, we find that our

method reproduces the tight-binding case for small interaction strengths and reaches

up factor 4 farther in µ than brute-force reweighting. This factor becomes smaller for

larger lattice sizes and lower temperatures, but works in all considered cases better

than the brute-force method. For increasing interaction strength the gain from the

method gets better as long as the logarithmic slope is measurable. In order to improve

the results we applied two different kinds of compressed sensing, but achieved only

little enhancement of the available range by that.

In summary we can state that our approach works well for the chosen set of parame-

ters, but there is space for improvements. Especially our way of shifting the chemical

potential in the Hubbard field and by that generating a periodic gDOS with the av-

erage Hubbard field as an observable limits the improvements of the LLR method in

which typically non-compact, so-called ”extended” density of states should be consid-

ered. For further investigations there are two obvious ways which can lead to better

results. The first is to find a formulation of the partition function which contains

such an extended generalized density of states, the second is to improve the way of

reconstructing the particle density out of the highly oscillating integral representation.
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6. Conclusion and Outlook

In this work two possible options to deal with the fermion sign problem arising from

complex contributions to probability weights in Quantum Monte-Carlo simulations

were studied for the 2d-hexagonal graphene lattice with the Hybrid-Monte-Carlo

framework. The first strategy was to use the analogy between the charge and spin-

dependent chemical potential which arises from the particle-hole symmetry in the

nearest-neighbor representation of tight-binding theory, which is applicable due to

strong electron coupling in graphene. The major goal of this part was to study the

implications of a realistic long-range potential, which accounts for the screening from

lower σ-band electrons on the band structure. As an example for interesting physics

away from the Dirac cone we focused on the neck disrupting Lifshitz transition, which

is indicated by a logarithmic divergence in the density of states and corresponding

quantities and takes place at the van Hove singularity located at the M-points in

the band structure. Unlike other examples of analogue theories, the spin-dependent

chemical potential in our formulation plays a physical role on its own as it describes

an in-plane magnetic field which leads to a Zeeman splitting of the electron spins.

Within this investigation we used the Thomas-Fermi susceptibility as an observable

for HMC and outlined the connection between this measurable quantity and the den-

sity of states and derived necessary approximations for comparing pure tight-binding

theory with interacting system in an adequate way. We showed that our simulations

are in line with experimental results [41,120,123]. We have found a bandwidth renor-

malization through many-body interactions in a way that the whole band seems to get

squeezed so that the valence band ends already at around µ ≈ 2.25κ. Furthermore, we

found evidence that the neck-disrupting Lifshitz transition, indicated by a logarithmic

divergence of the van Hove peak, turns into a true quantum phase transition at an

inverse temperature βc = 16(2)κ. Additionally, we showed that the scaling exponent

γ = 0.52(6) indicates an extended van Hove singularity around the M-point. Besides

the peak building around the van Hove singularity we find another peak forming at

the upper end of the valence band. This second peak could be subject of further

investigations and since a second topological transition can be found at the Γ-point

one might find a similar case to the one at the van Hove singularity.

The second approach was to remove the chemical potential from the fermion matrix

by absorbing into Hubbard field and use the Linear-Logarithmic-Relaxation technique

to sample the logarithmic derivative of generalized density of states, which then was
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6. Conclusion and Outlook

used to obtain the particle density directly via differences of pseudo-canonical en-

sembles which can be written as the Fourier coefficients of the generalized density of

states. In order to keep the system simple we decided to use only an on-site Hubbard

interaction instead of partially screened long-range interaction here. As in the first

case we used the pure tight-binding formulation for comparison and showed that we

find an overall gain from this method of about 4 for Nc = 62, Nt = 6 in compari-

son with brute-force reweighting in the weakly interacting area. Unfortunately, this

gain becomes smaller when the spatial volume is increased or the temperature is low-

ered. Nevertheless, we found in all examples studied an improvement by the method

against pure brute-force reweighting and we could show that the improvement gets

better with increasing interaction strength. While the brute-force method becomes

worse and worse, we find the our method is becoming better as long as a signal is

measurable. We found for U = 5.0κ no measurable signal anymore in a simulation

with 15000 GPU hours. Since all the other results were done with a total amount

of 26000 GPU hours on GTX 980ti GPUs, we can conclude on the one hand that

without further developments this lost-signal limit will be hard to cross, but on the

other hand the amount of computational time spent on the other results leaves much

space for larger-scale projects. In our view, the precision of ln(ρ) could be increased

by at least an order of magnitude by using the most modern hardware and improved

linear algebra libraries. Furthermore, the whole method could be more effective by

using BSS Monte-Carlo which was found to be superior to the HMC in the pure

Hubbard model. Overall, our investigations should be seen as a proof of principle

study, which leaves also the space for further theoretical improvements for example

in the area of compressed sensing, where advanced techniques was already proposed,

for example in [72]. Another possible way for improvements could be a combination

of Lefshetz thimble, which was applied recently on Hubbard models [124] and the

LLR-framework. Such an hybrid attempt could be formulated in a way that the Lef-

shetz thimble decomposition is directly applied on eq. 2.54 in order to get rid of the

reconstruction scheme and by this obtain a more precise signal for the particle den-

sity n(µ). Finally, it should be mentioned, that the transferability to other theories is

rather limited, since the formulation used in this work is based on the possibility to

separate the chemical potential from the fermion matrix via absorbing it in the Hub-

bard field. By this reformulation, one has to determine only one but unfortunately

intensive generalized density of states via simulations and one can obtain results for

each chosen chemical potential, afterwards.
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A. Calculations within pure Tight-Binding

theory

Here the detailed calculations within the pure tight-binding theory are presented

according to [2].

Thomas-Fermi Susceptibility

Starting from the Lindhard function

χµ = lim
~p→0

lim
~ω→0

Π(ω, ~p, µ) (A.1)

with

Π(ω, ~p, µ) = −2

∫
1.BZ

d2k

4π2

∑
s,s′=±1

(
1 + ss′

~bk ·~bk+p +m2

ε~kε~k+~p

)

·
f

(
s′ε~k+~p−µ

T

)
− f

(
sε~k−µ
T

)
s′ε~k+~p

− sε~k − ω − iε

(A.2)

and taking the limits, only s = s′ terms are left, which can be interpreted as derivatives

of ε. With the Fermi function

f(x) =
1

1 + ex
(A.3)

we find

χ(µ) = −2Ac

∫
1.BZ

d2k

4π2

d

dε

 1

1 + exp
{
−ε~k−µ
T

} +
1

1 + exp
{
ε~k−µ
T

}


= −2Ac
T

∫
1.BZ

d2k

4π2

 exp
{
−ε~k−µ
T

}
(

1 + exp
{
−ε~k−µ
T

})2 −
exp

{
ε~k−µ
T

}
(

1 + exp
{
ε~k−µ
T

})2


(A.4)

with

sech(x) =
1

cosh(x)
=

2

ex + e−x
(A.5)
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A. Calculations within pure Tight-Binding theory

follows

χ(µ) =
Ac
2T

∫
1.BZ

d2k

4π2

[
sech2

(
µ− ε~k

2T

)
+ sech2

(
µ+ ε~k

2T

)]
. (A.6)

Behavior at the VHS

Starting from eq. A.6, we find via inserting unity as an integral over a delta distri-

bution

χ(µ) =
Ac
2T

∫
1.BZ

d2k

4π2

∫ 3κ

0
dε δ(ε− E~k)

[
sech2

(
µ− ε
2T

)
+ sech2

(
µ+ ε

2T

)]
(A.7)

By solving the integral in momentum space we find with

gcAc

∫
1.BZ

d2k

4π2
δ(ε− E~k) = ρ(ε) (A.8)

a relation between χ(µ) and the density of states ρ(ε) (see eq. 2.10)

χ(µ) =
1

4T

∫ 3κ

0
dε ρ(ε)

[
sech2

(
µ− ε
2T

)
+ sech2

(
µ+ ε

2T

)]
. (A.9)

By writing x = ε
κ and therefore dε = 1

κdx we find

χ(µ) =
1

π2T

∫ 3

0
dx

x√
Z0
F

(
π

2
,
Z1

Z0

)
[

sech2

(
κ
(µ
κ − x

)
2T

)
+ sech2

(
κ
(µ
κ + x

)
2T

)] (A.10)

By taking Taylor series of F
(
π
2 , a
)

and Z0 of zero order and a = Z1
Z0 up to third order

around a = 1 or rather x = 1 we find

F
(π

2
, a
)
≈ 2 ln 2− 1

2
ln (a− 1)

Z1

Z0
≈ 1− 1

4
(x− 1)3

Z0 ≈ 4

(A.11)

and sech2

(
κ(µκ+x)

2T

)
vanishes. So the susceptibility can be written as

χ(µ) =
1

2π2T

∫ 3

0
dx

(
2 ln 2− 1

2
ln (

1

4
(x− 1)3)

)
sech2

(
κ
(µ
κ − x

)
2T

)
. (A.12)

Now we set µ = κ and extend the integration limits to infinity, what is possible since
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sech(x) is highly localized. Thus we find

χmax =
3

2π2T

∫ ∞
−∞

dx

(
ln 2− 1

2
ln (x− 1)

)
sech2

( κ

2T
(x− 1)

)
(A.13)

and by carrying out the integration we finally find

χmax =
3

κπ2

(
3 ln 2 + γE + ln

κ

π
− lnT +O(T )

)
(A.14)

with γE as Euler-Mascheroni constant.
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B. Calculations within the LLR

formulation

Here we present the detailed calculations done within the LLR-framework.

Generalized density of states

Starting with

Z =

∫
Dφ detM(φ, µ) detM †(φ,−µ) exp

{
− δ

2U

∑
x,t

φ2
x,t

}
(B.1)

and by shifting φx,t → φx,t − iµ we find

Z =

∫
Dφ detM(φ) detM †(φ) exp

{
− δ

2U

∑
x,t

(φx,t − iµ)2

}
(B.2)

and thus

Z =

∫
Dφ detM(φ) detM †(φ) exp

{
− δ

2U

∑
x,t

φ2
x,t + i

µδ

U

∑
x,t

φx,t + i
V δ

2U
µ2

}
.

(B.3)

By completing the square

Z =

∫
Dφ detM(φ) detM †(φ) exp

{
− δ

2U

∑
x,t

φ2
x,t + i

µδ

U

∑
x,t

φx,t

+
δ

2UV

[∑
x,t

φx,t

]2

− δ

2UV

[∑
x,t

φx,t

]2

+ i
V δ

2U
µ2


we can write

Z =

∫
Dφ detM(φ) detM †(φ) exp

− δ

2U

∑
x,t

φ2
x,t −

1

V

[∑
x,t

φx,t

]2


− δ

2UV

[∑
x,t

φx,t

]2

+ i
µδ

U

∑
x,t

φx,t + i
V δ

2U
µ2

 .
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B. Calculations within the LLR formulation

Then we introduce the average Hubbard field

Φ =
1

V

∑
x,t

φx,t (B.4)

and get

Z =

∫
Dφ detM(φ) detM †(φ) exp

{
− δ

2U

(∑
x,t

φ2
x,t − V Φ2

)

−
(
δV

2U
Φ2 − iµδV

U
Φ− iV δ

2U
µ2

)}
,

again we complete the square

Z =

∫
Dφ detM(φ) detM †(φ) exp

{
− δ

2U

(∑
x,t

φ2
x,t − 2V Φ2 + V Φ2

)

−δV
2U

(Φ− iµ)2

}
and use eq. B.4 we find

Z =

∫
Dφ detM(φ) detM †(φ) exp

{
− δ

2U

(∑
x,t

φ2
x,t − 2Φ

∑
x,t

φx,t + Φ2
∑
x,t

1

)

−δV
2U

(Φ− iµ)2

}
,

and finally

Z =

∫
Dφ detM(φ) detM †(φ) exp

{
− δ

2U

∑
x,t

(φx,t − Φ)2 − δV

2U
(Φ− iµ)2

}
.

(B.5)

Now we can introduce the generalized density of states ρ(s) as

ρ(s) =

∫
Dφ |detM(φ, 0)|2 δ(Φ− s) exp

{
− δτ

2U

∑
x,t

(φx,t − s)2

}
(B.6)

and by that write the partition function as

Z(µ) =

∫
dsρ(s) exp

{
−δτV

2U
(s− iµ)2

}
. (B.7)
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Periodicity of ρ(s)

The periodicity of the gDOS is determined by the periodicity of the fermion deter-

minant. Here we explicitly calculate the fermion determinant for a system with no

tight-binding interactions. We start with writing the fermion operator as

M(φ)(x,t),(x′,t′) =δx,x′

[
δt,t′ exp

(
i
β

Nt
φx,t

)
− δt+1,t′

(
1 +

ms β

Nt

)]
− κ β

Nt

∑
~n

δx+~n,x′ δt+1,t′

(B.8)

respectively

M †(φ)(x,t),(x′,t′) =δx,x′

[
δt,t′ exp

(
−i β

Nt
φx,t

)
− δt−1,t′

(
1 +

ms β

Nt

)]
− κ β

Nt

∑
~n

δx+~n,x′ δt−1,t′

(B.9)

which are also a possible representations of M.The periodicity of |MM †| is then

determined by the main-diagonal of the matrix. We now set, δ = β
Nt

and δms = δ ms

and ignoring the tight-binding part (κ = 0). By this we get for every x = x′ the

following time-matrix

Nx =



ei δ φx,1 −1− δms 0 0 0 0

0 ei δ φx,2 −1− δms 0 0 0

0 0
. . .

. . . 0 0

0 0 0
. . .

. . . 0

0 0 0 0 ei δ φx,Nt−1 −1− δms
1 + δms 0 0 0 0 ei δ φx,Nt


(B.10)

and thus

detNN † =1 + (1 + δms)
2Nt + (1 + δms)

Nt
(
e−i δ

∑Nt
t=1 φx,t + ei δ

∑Nt
t=1 φx,t

)
=1 + (1 + δms)

2Nt + (1 + δms)
Nt
(
e−i βφ̄x + ei βφ̄x

) (B.11)

Assuming Nt � 1 and using

lim
x→∞

(
1 +

a

x

)x
= ea (B.12)

we get the following approximation:

detNN † ≈ 1 + e2βms + 2 eβms cosβφ̄ (B.13)
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B. Calculations within the LLR formulation

Setting ms → 0

detNN † ≈ 2 + 2 cosβφ̄ (B.14)

and Vsp = 2NxNy, the matrix M can be written as

M =



N1 0 0 0 0 0

0 N2 0 0 0 0

0 0
. . . 0 0 0

0 0 0
. . . 0 0

0 0 0 0
. . . 0

0 0 0 0 0 NVsp


(B.15)

by that the related determinant is

detMM † =

Vsp∏
x

detNN †(φ̄x) = 2Vsp
Vsp∏
x

(cosβ φ̄x + 1) (B.16)
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C. Additional plots from compressed

sensing

direct

c. s.
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Figure C.1.: Comparison of obtaining the particle density for the data set Nc = 62,
Nt = 6, β = 2.7κ−1, ms = 0.185κ, U = 0.1κ direct with the HMC data
and via compressed sensing by Fourier series with Ns coefficients [right ]
and by Chebychev polynomials of the first kind with Ns/4 coefficients
[left ]. In both variants the number of sample points were increased by
factor 10 through compressed sensing.
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Figure C.2.: Comparison of obtaining the particle density for the data set Nc = 62,
Nt = 6, β = 2.7κ−1, ms = 0.185κ, U = 0.2κ direct with the HMC data
and via compressed sensing by Fourier series with Ns coefficients [right ]
and by Chebychev polynomials of the first kind with Ns/4 coefficients
[left ]. In both variants the number of sample points were increased by
factor 10 through compressed sensing.
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C. Additional plots from compressed sensing
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Figure C.3.: Comparison of obtaining the particle density for the data set Nc = 62,
Nt = 6, β = 2.7κ−1, ms = 0.185κ, U = 0.3κ direct with the HMC data
and via compressed sensing by Fourier series with Ns coefficients [right ]
and by Chebychev polynomials of the first kind with Ns/4 coefficients
[left ]. In both variants the number of sample points were increased by
factor 10 through compressed sensing.
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Figure C.4.: Comparison of obtaining the particle density for the data set Nc = 62,
Nt = 6, β = 2.7κ−1, ms = 0.185κ, U = 2.0κ direct with the HMC data
and via compressed sensing by Fourier series with Ns coefficients [right ]
and by Chebychev polynomials of the first kind with Ns/4 coefficients
[left ]. In both variants the number of sample points were increased by
factor 10 through compressed sensing.
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D. Simulation parameters -

spin-dependent chemical potential

Here we list the sets of parameters which were used for simulations in context of

spin-dependent chemical potential. The number of termalization steps was ≤ 10 in

all simulations and we used 500 noisy estimator sources for measuring the observable.

Besides the physical parameters one can also find the important simulation parameters

in the respective tables. These parameters are the total number of updates, the

measure frequency (meaning that at every x step a measurement was done), the

number of Leapfrog steps and the size of one step. The parameters for simulations

dealing with different staggered mass is shown in Table D.1, for different temperatures

in Table D.2, for different lattice discretizations and interaction strengths in Table

D.3. The simulation parameters for investigations around the VHS are shown in Table

D.4 for infinite volume limits and the executed simulations for the summation method

in Table D.5.

β in κ−1 Nc, Nt ms in κ µ-range in κ no. up. m. freq. step n. stepsize

5.40 122, 12 0.185 0.0− 3.0 600 3 600 0.5

5.40 122, 12 0.111 0.0− 3.0 300 3 1000 0.3

5.40 122, 12 0.037 0.0− 3.0 300 3 1500 0.2

Table D.1.: Parameter overview of executed simulations for section 4.1.1.

β in κ−1 Nc, Nt ms in κ µ-range in κ no. up. m. freq. step n. stepsize

5.40 122, 12 0.185 0.0− 3.0 600 3 600 0.5

8.10 182, 18 0.185 0.0− 3.0 300 3 2500 0.12

10.80 242, 24 0.185 0.0− 3.0 500 2 6000 0.05

Table D.2.: Parameter overview of executed simulations for section 4.1.3.
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D. Simulation parameters - spin-dependent chemical potential

λ β in κ−1 Nc, Nt ms in κ µ-range in κ no. up. m. freq. step n. stepsize

0.1 5.40 122, 12 0.185 0.0− 3.0 300 3 300 1.0

0.1 5.40 122, 24 0.185 0.0− 3.0 300 3 600 0.5

0.1 5.40 122, 36 0.185 0.0− 3.0 300 3 600 0.5

0.1 5.40 122, 48 0.185 0.0− 3.0 300 3 600 0.5

0.1 5.40 122, 60 0.185 0.0− 3.0 300 3 600 0.5

0.1 5.40 122, 72 0.185 0.0− 3.0 300 3 600 0.5

0.4 5.40 122, 12 0.185 0.0− 3.0 300 3 300 1.0

0.4 5.40 122, 24 0.185 0.0− 3.0 300 3 1000 0.3

0.4 5.40 122, 36 0.185 0.0− 3.0 300 3 1000 0.3

0.4 5.40 122, 48 0.185 0.0− 3.0 300 3 1000 0.3

0.4 5.40 122, 60 0.185 0.0− 3.0 300 3 1000 0.3

0.4 5.40 122, 72 0.185 0.0− 3.0 300 3 1000 0.3

0.8 5.40 122, 12 0.185 0.0− 3.0 300 3 300 1.0

0.8 5.40 122, 24 0.185 0.0− 3.0 300 3 1000 0.3

0.8 5.40 122, 36 0.185 0.0− 3.0 300 3 1000 0.3

0.8 5.40 122, 48 0.185 0.0− 3.0 300 3 3000 0.1

0.8 5.40 122, 60 0.185 0.0− 3.0 300 3 3000 0.1

0.8 5.40 122, 72 0.185 0.0− 3.0 300 3 3000 0.1

0.8 5.40 122, 96 0.185 0.0− 3.0 300 3 6000 0.05

1.0 5.40 122, 12 0.185 0.0− 3.0 600 2 600 0.5

1.0 5.40 122, 24 0.185 0.0− 3.0 300 3 1000 0.3

1.0 5.40 122, 36 0.185 0.0− 3.0 300 3 1000 0.3

1.0 5.40 122, 48 0.185 0.0− 3.0 300 3 3000 0.1

1.0 5.40 122, 60 0.185 0.0− 3.0 300 3 3000 0.1

1.0 5.40 122, 72 0.185 0.0− 3.0 300 3 6000 0.05

1.0 5.40 122, 96 0.185 0.0− 3.0 300 3 10000 0.03

Table D.3.: Parameter overview of executed simulations for section 4.1.2 and 4.1.4.
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β in κ−1 Nc, Nt ms in κ µ-range in κ no. up. m. freq. step n. stepsize

2.70 122, 6 0.185 0.74− 1.15 400 2 1000 0.3

4.05 122, 9 0.185 0.74− 1.15 400 2 1000 0.3

5.40 122, 12 0.185 0.74− 1.15 1200 2 750 0.4

6.75 162, 15 0.185 0.74− 1.15 400 2 1500 0.2

8.10 182, 19 0.185 0.74− 1.15 400 2 3000 0.1

9.45 242, 21 0.185 0.74− 1.15 400 2 8000 0.0375

10.80 242, 24 0.185 0.74− 1.15 500 2 5000 0.06

12.15 302, 27 0.185 0.74− 1.15 400 2 15000 0.02

10.80 302, 30 0.185 0.74− 1.15 400 2 15000 0.02

Table D.4.: Parameter overview of executed simulations for section 4.2. Here the
volumes were chosen in a way that the Susceptibility has reached the
infinite volume limit.

β in κ−1 Nc, Nt ms in κ µ-range in κ no. up. m. freq. step n. stepsize

5.40 92, 24 0.185κ 0.74− 1.15 300 3 3000 0.1

5.40 102, 24 0.185κ 0.74− 1.15 300 3 3000 0.1

5.40 112, 24 0.185κ 0.74− 1.15 300 3 3000 0.1

5.40 122, 24 0.185κ 0.74− 1.15 300 3 3000 0.1

5.40 132, 24 0.185κ 0.74− 1.15 300 3 3000 0.1

5.40 142, 24 0.185κ 0.74− 1.15 300 3 3000 0.1

6.75 122, 27 0.185κ 0.74− 1.15 300 3 7500 0.04

6.75 132, 27 0.185κ 0.74− 1.15 300 3 7500 0.04

13.50 132, 30 0.185κ 0.74− 1.15 300 3 10000 0.03

13.50 142, 30 0.185κ 0.74− 1.15 300 3 10000 0.05

14.85 112, 33 0.185κ 0.77− 1.11 300 3 10000 0.03

14.85 122, 33 0.185κ 0.77− 1.11 300 3 10000 0.03

16.20 122, 36 0.185κ 0.74− 1.26 200 2 10000 0.03

16.20 132, 36 0.185κ 0.74− 1.26 200 2 10000 0.03

Table D.5.: Parameter overview of executed simulations for section 4.2. Here are all
sets of parameters of executed simulation shown. In the analysis only the
volumes in section 4.2 mentioned were used.
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E. Simulation parameters -

LLR-framework

Here we list the sets of parameters which were used for simulations in context of

LLR method. Besides the physical and relevant HMC parameters we additionally

list the necessary LLR-parameters in separate Tables. The relevant HMC parameters

are step number and step size. For LLR we show the number of supporting points

in one period Ns, the width of the window δs, the number of independent ajcutper

supporting point Na, the length of one aj-series jcut, the number of aj-thermalization

steps jterm, the number of HMC updates done after updating aj (re-term.), the

number of measurements contributing in the estimation of one aj and the measure

frequency of them. The parameters for simulations dealing with different staggered

mass is shown in Tables E.1 and E.2, for different lattice discretizations in Tables E.3

and E.4 and for different on-site potential and volume in Tables E.5 and E.6

β in κ−1 Nc, Nt ms in κ U in κ step n. stepsize

2.70 62, 6 0.185 0.1 20 0.3

2.70 62, 6 0.111 0.1 30 0.2

2.70 62, 6 0.037 0.1 60 0.1

Table E.1.: Overview of physical and HMC parameters for executed simulations for
section 5.2.1. The corresponding LLR parameters can be found in Table
E.2.

ms in κ Ns δs Na jcut jterm re-term. Ntev meas freq

0.185 63 0.1 10 90 30 20 10 10

0.111 63 0.1 10 90 30 20 10 10

0.037 63 0.1 10 90 30 20 10 10

Table E.2.: Overview of LLR parameters for executed simulations for section 5.2.1.
The corresponding physical and HMC parameters can be found in Table
E.1.
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E. Simulation parameters - LLR-framework

β in κ−1 Nc, Nt ms in κ U in κ step n. stepsize

2.70 62, 6 0.185 0.1 8 0.6

2.70 62, 12 0.185 0.1 10 0.5

2.70 62, 18 0.185 0.1 10 0.5

Table E.3.: Overview of physical and HMC parameters for executed simulations for
section 5.2.2. The corresponding LLR parameters can be found in Table
E.4.

.

ms in κ Ns δs Na jcut jterm re-term. Ntev meas freq

6 120 0.1046 15 80 10 20 7 4

12 120 0.1046 15 80 10 20 7 4

18 120 0.1046 15 80 10 20 7 4

Table E.4.: Overview of LLR parameters for executed simulations for section 5.2.2.
The corresponding physical and HMC parameters can be found in Table
E.3.

β in κ−1 Nc, Nt ms in κ U in κ step n. stepsize

2.70 62, 6 0.185 0.1 5 0.4

2.70 62, 6 0.185 0.2 5 0.4

2.70 62, 6 0.185 0.3 5 0.4

2.70 62, 6 0.185 1.0 5 0.4

2.70 62, 6 0.185 2.0 6 0.3

2.70 122, 12 0.185 1.0 5 0.4

2.70 122, 12 0.185 2.0 6 0.3

Table E.5.: Overview of physical and HMC parameters for executed simulations for
section 5.2.3. The corresponding LLR parameters can be found in Table
E.6.

92



Nc U in κ Ns δs Na jcut jterm re-term. Ntev meas freq

62 0.1 210 0.2 20 105 15 15 7 7

62 0.2 210 0.2 20 105 15 20 7 7

62 0.3 210 0.2 20 105 15 20 7 7

62 1.0 210 0.2 20 105 15 20 7 7

62 2.0 210 0.2 20 105 15 20 7 7

122 1.0 144 0.3 20 105 15 20 7 7

122 2.0 144 0.3 20 105 15 20 7 7

Table E.6.: Overview of LLR parameters for executed simulations for section 5.2.3.
The corresponding physical and HMC-parameters can be found in Table
E.5.
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F. Soft- and Hardware

The Hybrid-Monte-Carlo code was written in C++ and CUDA and the simulations

were done on a group intern GPU-Cluster equipped with nvidia chipsets according to

Table F.1. The plots and parts of data evaluation was done with Mathematica 10 -

12. Codes for data evaluation were written in Phyton and Bash.

Chipset GTX 680 GTX 780 GTX Titan GTX 980 ti RTX 2080

CUDA Cores 1536 2304 2688 2816 2944

Base Clock (MHz) 1006 863 837 1075 1710

Memory Speed Gb/s 6.0 6.0 6.0 7.9 14.0

Memory GB 2 3 6 6 8

Bandwidth GB/s 192 288 288 336 448

Table F.1.: Specifications of used GPUs [125].
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