
Description of the intrinsic spin Hall effect
via Korringa-Kohn-Rostoker density

functional theory

Beschreibung des intrinsischen Spin-Hall-Effektes durch
die Korringa-Kohn-Rostoker Dichtefunktionaltheorie

Dissertation

submitted for the degree of

Doctor rerum naturalium
Doktor der Naturwissenschaften

Justus-Liebig-Universitaet Giessen
Fachbereich 07 - Mathematik und Informatik, Physik, Geographie

submitted by:
M. Sc. Alexander Fabian

Supervisor and First Reviewer:
Prof. Dr. Christian Heiliger

Second Reviewer:
Prof. Dr. Peter J. Klar

November 2022





Contents

1. Preface 7
1.1. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Preface 9
2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Theory 13
3.1. Non-Equilibrium Steady State Features . . . . . . . . . . . . . . . . . . 13

3.1.1. Non-Equilibrium Electron Density . . . . . . . . . . . . . . . . . 15
3.1.2. Equilibrium Contours . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3. Combined Energy Contour . . . . . . . . . . . . . . . . . . . . . 17
3.1.4. Landauer-Büttiker Formula . . . . . . . . . . . . . . . . . . . . . 18
3.1.5. Transmission Function . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.6. Multiple Scattering – Virtual Terminals . . . . . . . . . . . . . . 20
3.1.7. Transport Moments . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Finite Differences Method (FDM) . . . . . . . . . . . . . . . . . . . . . . 22
3.3. Boltzmann transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1. Relation to moments . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4. Spin Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2. Contributions to the Spin Hall Effect . . . . . . . . . . . . . . . . 28
3.4.3. Experimental Detection and Theoretical Description . . . . . . . 29
3.4.4. Fermi Sea and Fermi Surface Term . . . . . . . . . . . . . . . . . 30
3.4.5. Spin Hall Effect in KKR . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.6. Spin accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4. Results 33
4.1. Publication Phys. Rev. B 104, 054402, (2021) . . . . . . . . . . . . . 33
4.2. Publication Phys. Rev. B 105, 165106, (2022) . . . . . . . . . . . . . 41

5. Conclusion and Outlook 51

Appendix 53

A. Basic Theory 55
A.1. Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1.1. Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . 55
A.1.2. Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . 56

A.2. Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.2.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
A.2.2. Dyson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2.3. Lippmann-Schwinger Equation . . . . . . . . . . . . . . . . . . . 60

3



Contents

A.2.4. T -operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.2.5. Spectral Representation of the Green’s Function . . . . . . . . . 60
A.2.6. Physical Observables . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.3. Korringa-Kohn-Rostoker Formalism . . . . . . . . . . . . . . . . . . . . . 62
A.3.1. Cell-Centered Coordinates and Atomic Sphere Approximation . . 62
A.3.2. Green’s Function of the Free System . . . . . . . . . . . . . . . . 62
A.3.3. Single Scatterering . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.3.4. Multiple Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.3.5. Further Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.3.6. Spin-Polarized and Non-Collinear KKR . . . . . . . . . . . . . . 67
A.3.7. Full-Relativistic KKR Formalism . . . . . . . . . . . . . . . . . . 68

B. Supplemental Information to Phys. Rev. B 104, 054402, (2021) 71

C. Magneto Capacitance 77

D. Self-Consistent Spin Hall Calculations 81
D.1. One-Shot Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
D.2. Self-Consistent Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 81

E. Kerker Preconditioner 89

Bibliography 91

List of Own Publications 99

Acknowledgements 101

Eidesstattliche Erklärung 103

4



古池や
蛙飛び込む
水の音

— 松尾芭蕉

Into an old pond / a frog leaps. / Sound of water — Matsuo Bashō
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1. Preface

1.1. Abstract

The first part of this thesis deals with the ab initio description of the spin Hall ef-
fect in the full-relativistic Korringa-Kohn-Rostoker (FR-KKR) density functional the-
ory (DFT). A new approach to calculate the magnetization accumulation within the full
quantum mechanical Keldysh formalism is compared to a semiclassical Boltzmann ap-
proach. Both methods rely on the same underlying FR-KKR framework. The compari-
son focuses on the odd-under-spatial-magnetization-reversal part of the surface magne-
tization accumulation that solely stems from the band structure properties at the Fermi
surface. The comparison shows that both methods yield the same trend for a series
of metals with a significant influence of spin-orbit coupling rendering the new Keldysh
method a valid and credible candidate for the description of the surface accumulation
driven by the spin Hall effect. Contrary to most theoretical approaches, which calculate
the bulk property of spin conductivity, the thin-film nature and surface influences are
considered here, making direct contact with experiments. When compared to a series
of values obtained experimentally, both methods reproduce the trend for the spin Hall
angle.
The second part of this thesis deals with interpreting the self-energy in the Büttiker
scattering formalism (virtual terminal approach) established in the KKR. The relation
between the self-energy Σ and the relaxation time τ used in semiclassical approaches
is studied. Understanding this relation plays an important role when comparing the
results of the Keldysh formalism with virtual terminal scattering to the Boltzmann
scattering description. In the constant relaxation time approximation (CRTA), the
thermopower is independent of the relaxation time in the Boltzmann approach. This
independence is valid for free electrons and Cu in the low scattering regime but fails
for Pd completely. This failure is attributed to the complexity of the Fermi surface
of Pd. Further, a sufficient resolution for the occurring scattering events is necessary
for the virtual terminal approach to work. Based on these findings, the scalability of
the approach is discussed as the introduction of scattering could make it possible to
consider spin relaxation effects for the spin Hall effect.
The results of this cumulative thesis are published in Phys. Rev. B 104, 054402,
(2021) and Phys. Rev. B 105, 165106, (2022).

1.2. Zusammenfassung

Der erste Teil dieser Thesis behandelt die Beschreibung des Spin-Hall-Effektes im Rah-
men der voll relativistischen Erweiterung der Korringa-Kohn-Rostoker Dichtefunktion-
altheorie. Ein neuer Ansatz um die Magnetisierungsakkumulation innerhalb des quan-
tenmechanischen Keldysh-Formalismus zu berechnen wird mit einem semiklassischen
Boltzmann-Ansatz verglichen. Beide Methoden basieren auf demselben zu Grunde
liegenden FR-KKR Framework. Der Vergleich konzentriert sich auf den Teil der Akku-
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1. Preface

mulation, der ungerade unter räumlicher Magnetisierungs-Inversion ist und alleine von
den Bandstruktureigenschaften an der Fermi-Oberfläche verursacht wird. Ein Vergleich
zeigt, dass beide Methoden einen ähnlichen Trend für eine Reihe von Metallen liefern, in
denen die Spin-Bahn-Kopplung eine Rolle spielt. Dies macht die neue Keldysh-Methode
zu einem glaubhaften Kandidaten zur Berechnung der Magnetisierungs-Akkumulation,
die durch den Spin-Hall-Effekt verursacht wird. In diesem Ansatz werden außerdem
im Gegensatz zu den meisten theoretischen Beschreibungen, die sich auf die Spin-
Leitfähigkeit als Volumen-Eigenschaft konzentrieren, der Dünnfilmcharakter und die
Oberflächeneinflüsse berücksichtigt. Dadurch ist es möglich, die Ergebnisse in direkter
Weise mit dem Experiment in Verbindung zu setzen. Beim Vergleich mit einer experi-
mentellen Reihe an Metallen zeigt sich, dass auch der Trend für den Spin-Hall-Winkel
richtig wiedergegeben wird.
Der zweite Teil dieser Thesis behandelt die Frage, wie man die Selbstenergie im Rah-
men des Büttiker-Streu-Verfahrens (Streuung mit virtuellen Terminals) verstehen muss,
welches bereits in die KKR integriert wurde. Dazu wird die Beziehung der Selbsten-
ergie Σ, die in diesem Verfahren genutzt wird, zur Streuzeit τ , die in der Boltzmann-
Theorie verwendet wird, untersucht. Innerhalb der constant relaxation time approxi-
mation (CRTA) der Boltzmann-Theorie is der Seebeck-Koeffizient unabhängig von der
Streuzeit. Für ein System von freien Elektronen und Kupfer (Cu) gilt dies auch für
die Streuung mit virtuellen Terminals im Grenzfall schwacher Streuung. Allerdings ist
dies nicht mehr der Fall für Palladium (Pd). Der Schluss liegt nahe, dass dies mit
der Komplexität der Fermi-Oberfläche zusammenhängt. Weiterhin wird untersucht,
welche Einschränkungen bei Benutzung der Methode mit virtuellen Terminals vorliegt.
So muss z.B. die Anzahl der Streuereignisse mittels einer ausreichenden Anzahl von
virtuellen Terminals aufgelöst werden. Auf diesen Erkenntnissen basierend wird zum
Abschluss noch die Skalierbarkeit dieses Ansatzes diskutiert, da die Berücksichtigung
von Streuung die Möglichkeit eröffnet, Spin-Relaxations-Effekte im Rahmen des Spin-
Hall-Effektes mitzuberücksichtigen.
Die Ergebnisse dieser kumulativen Thesis sind in Phys. Rev. B 104, 054402, (2021)
und Phys. Rev. B 105, 165106, (2022) veröffentlicht.
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2. Preface

2.1. Motivation

Today’s electronic devices are shrinking in size at a relatively fast pace. Moore’s law1

predicted the doubling of density on integrated circuits every year [1]. At the current
rate and the sizes achieved, quantum mechanical effects take more and more effect.
Nevertheless, not only the charge degree of freedom that is commonly used in conven-
tional electronics, but also the spin degree of freedom can be used. For example, in
spintronics, the magnetic random access memory (MRAM) [2] is a promising techno-
logical application that enables one to use non-volatile memory for computer systems.
More recent approaches that consider the quantum mechanical nature of the effects
have to be found to facilitate the development of new applications and understand the
fundamental principles. Such approaches, such as the already established Kubo formal-
ism [3–7], are the logical next step to the most often used semi-classical approaches [8–
12] as they can be used in scopes where the semi-classical approaches fail.

One aim of this work is the description of the spin Hall effect. When looked up in
literature, the term spin Hall effect can refer to different quantities characteristic of
the effect. For example, primarily theoretical works characterize the spin Hall effect by
the transversal spin conductivity. This quantity is often used in conjunction with the
longitudinal charge conductivity to obtain the value of the spin Hall angle from which
the efficiency of charge-to-spin conversion is derived. While the spin conductivity is also
derived from experiments, optical measurements, such as magneto-optical Kerr effect
(MOKE) measurements, measure the spin accumulation directly but often lack a direct
quantitative description. Additionally, the development of a method is feasible that
integrates the description of effects on an equal footing with the underlying framework.
The development will be done in this work using the non-equilibrium Green’s function
method, which integrates well with the full-relativistic framework of the Green’s function
based Korringa-Kohn-Rostoker (KKR) density functional theory (DFT). It is necessary
to expand the capabilities of the KKR code, especially to combine contributions to the
electronic density from the Fermi sea (equilibrium part) and the Fermi surface (non-
equilibrium part) in the integration path of the complex energy contour. A side effect
of this is that it becomes possible to calculate capacitor-like tunneling barriers. When
the equilibrium density is deducted from the non-equilibrium density, the excess charge
density and the applied bias voltage make it possible to obtain the capacitance of the
tunneling barrier. Such a capacitance calculation was done for lithium (Li) in Ref. [13].
In analogy to the magnetoresistance, the aim was to calculate the capacitance of a
ferromagnetic Fe tunneling barrier in a parallel and anti-parallel magnetic configuration
to extend upon this approach. Some results of this approach will be shown in the
appendix.

1Although discussions are going on about whether or not Moore’s law is slowing down or, on the
contrary, speeding up.
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2. Preface

We characterize the spin Hall effect by the appearing surface magnetization. In order
to classify the obtained results via the KKR approach, we compare them to values ob-
tained by a semi-classical Boltzmann approach. To facilitate this comparison, we limit
ourselves to odd-under-spatial-inversion magnetization contributions [12, 14, 15].

The results are published in Phys. Rev. B 104, 054402, (2021) [16].

The second part of this work is the application of the scattering approach implemented
in a previous work [17, 18]. The approach is based on the virtual terminal or Büt-
tiker probes method by Büttiker[19], which introduces scattering into the KKR non-
equilibrium Green’s function approach.
Here again, to assess the comparability to the semi-classical Boltzmann approach, we
separate contributions from scattering and the contact resistance, assess the identifica-
tion of the self-energy Σ to the scattering time τ and discuss the limits of the virtual
terminal approach.

The results are published in Phys. Rev. B 105, 165106, (2022) [20].

By introducing scattering via virtual terminals, it could become possible to calculate the
contributions of the spin Hall effect with effects of spin relaxation and get a measure for
the spin-diffusion lengths. However, as we have shown in the paper, care must be taken
when interpreting the results obtained with the virtual terminal method. One main
point here is that the self-energy Σ is not directly to be identified with the scattering
time τ for systems that possess a complex structure of the Fermi surface.
However, a promising feature of the approach is the scalability of the system, which
could be achieved by simply scaling the self-energies to match the desired system size.
With this, under certain conditions that meet the considerations described mainly in the
second half of the paper, it should be possible to describe more realistic experimental
structures.
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2.1. Motivation

Commonly used Symbols

Calligraphic symbols, like H, and carets - when a calligraphic version is not available -
like p̂, denote operators.
The operator G and the function G(r, r′, z) are both called Green’s function.
Underlined quantities represent matrices, like the matrix A.
Bold faced quantities represent vectors, like the momentum vector p. Normal type face
characters represent a scalar value, a component or the absolute value of the corre-
sponding vector and will be mentioned in the main text.
Quantities with a super script 0 or a circle on top, like

∣∣ψ0
〉
or

◦
G, generally mean they

are quantities of a reference system.

Generally speaking, the conventions and notations mentioned here are overwritten in
meaning when mentioned otherwise in the text.

Symbol Description

General physical quantities
H Hamiltonian
G Green’s function
V potential
r position vector
p momentum
v velocity
k wave vector
n electronic density
θ temperature
f(E,µ, θ) Fermi-Dirac distribution

Energies
E real energy
z complex energy
EF Fermi energy
µ chemical potential
EB band bottom energy
Σ self-energy
Γ broadening function

Transport quantities
T transmission function
a lattice parameter
σ conductivity
E electric field
S Seebeck coefficient or thermopower
ϕ bias voltage
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2. Preface

Times
t time
τ scattering time

Natural constants
e electron charge
m electron mass
M core mass
kB Boltzmann constant
µB Bohr magneton
c speed of light
h Planck constant
~ reduced Planck constant ~ = h

2π

Mathematical functions
j` spherical Bessel functions
h+
` spherical Hankel functions
δ(x− x′) Dirac distribution
δnn′ Kronecker symbol

12



3. Theory

Since this work is mainly concerned with non-equilibrium features, we start with the in-
troduction of the non-equilibrium Green’s function method. This is followed by the
theory of scattering via virtual terminals and an application of a finite differences
method (FDM). The chapter closes with the theory of the Boltzmann transport and
an overview of the spin Hall effect. The basic principles of density functional theory
(DFT) formulated in the Korringa-Kohn-Rostoker (KKR) formalism are given in the
appendices A.1, A.2, and A.3.

3.1. Non-Equilibrium Steady State Features

Within the Green’s function approach to KKR it is convenient to expand the formalism
to a steady state non-equilibrium mode via the introduction of the non-equilibrium
Green’s function method. For the non-equilibrium formalism, it is necessary to partition
the space in a particular manner. This partitioning of space is shown in Fig. 3.1. We
will refer to it as the transport geometry from now on. To describe electrons traveling
from left to right, it is convenient to have a source and a drain on the left and right
side of the system from which the electrons can enter the system from an equilibrium
state and leave and relax to equilibrium again. These are called left (L) and right (R)
lead. We introduce a center region (C) between the source and drain, where all the
interesting physics can occur. This partitioning approach has proven to work well [21,
22].

Figure 3.1.: Partitioning of space in the transport geometry. The isolated system is
coupled via VLC/RC (shown in blue). In KKR, not the solution for the
isolated system is known, but the solution for the coupled system is. To
obtain the solution for the isolated system, the system has to be decoupled
by a decoupling potential (shown in red). Figure after [22].
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3. Theory

The three regions of the decoupled system can now be described by a partitioned Hamil-
tonian HDC, where each region is isolated from one another [23]:

Hdc =

HL 0 0
0 HC 0
0 0 HR

 . (3.1)

The coupling of the regions is then realized by a suitable coupling potential [23]

Vc =

 0 VLC 0
VCL 0 VCR

0 VRC 0

 . (3.2)

The coupling potential is indicated in blue in Fig. 3.1. The resulting Hamiltonian
H = Hdc + Vc is used to find the Green’s function G = (EI − H)−1, where E is the
energy and I the identity operator, which meansGLL GLC GLR

GCL GCC GCR
GRL GRC GRR

 ·
EI −HL −VLC 0
−VCL EI −HC −VCR

0 −VRC EI −HR

 =

I 0 0
0 I 0
0 0 I

 . (3.3)

From this equation, we get three conditional equations, that define the center Green’s
function GCC as [17, 23]

GCL(EI −HL)− GCCVCL = 0 (3.4)
−GCLVLC + GCC(EI −HC)− GCRVRC = I (3.5)

−GCCVCR + GCR(EI −HR) = 0. (3.6)

The Green’s function in the center region GCC is then evaluated in terms of the (lead)
self-energies ΣL and ΣR as

GCC = (EI −HC − ΣL − ΣR). (3.7)

The infinite Hamiltonian has now been truncated to a finite one where the self-energies
describe the coupling of the center region to the leads [24]. The self-energies ΣL and
ΣR of the leads have to be determined via the surface Green’s functions G̃L and G̃R,
respectively, such that the total self-energy Σl caused by the leads reads

Σl = ΣL + ΣR = VCLG̃LVLC + VCRG̃RVRC . (3.8)

Here, the elements G̃L and G̃R of the Green’s function from the isolated Hamiltonian
have to be used, which are given by

Gdc = (EI −Hdc)
−1 =

G̃L 0 0

0 G̃C 0

0 0 G̃R

 . (3.9)

Actually, in the KKR, the coupled Green’s function is known by means of the decimation
technique [25, 26], sometimes referred to as Sancho-Rubio method [27, 28]. To decouple
the system, a decoupling potential is introduced [23]. This decoupling potential is shown
in red in Fig. 3.1. Under the assumption of a high decoupling potential VdcLC and VdcRC

14



3.1. Non-Equilibrium Steady State Features

and under the assumption of non-interacting leads [22], that is, if the leads are separated
and the self-energy can be written as a sum of the self-energy from the left and right
lead, the self-energies are given by [23]

ΣL/R = VdcL/RG̃dcV
dc
L/R. (3.10)

Because the reference potential is already highly repulsive, it can be used as a decoupling
potential (see also Appendix A.3.5). To obtain the necessary surface Green’s functions,
the decimation technique is employed on the reference potential. Note that a banded
matrix is needed for the decimation technique to work. This banded matrix structure
is enabled by the semi-infinite leads and the screening introduced in the screened KKR.
Further details of the representation in the KKR basis can be found in Refs. [17, 22,
23].

3.1.1. Non-Equilibrium Electron Density

To calculate the expression for the non-equilibrium density, we need the Green’s function
from the center region

GCC(z) = (zI −HC − Σl)
−1 (3.11)

G†CC(z) = (z∗I −HC − Σ†l )
−1. (3.12)

Subtracting the inverse Green’s functions from one another, we obtain a useful relation
in terms of the lead self-energies(

G†CC
)−1
− G−1

CC = −2i Im z I + Σl − Σ†l . (3.13)

The electron density is defined in Eq. A.58. Expansion and use of the above relation
grants us an expression for the non-equilibrium density operator [18]

n̂C =
i

2π
(GCC − G†CC) (3.14)

=
i

2π
GCC((G†CC)−1 − G−1

CC)G†CC (3.15)

=
1

2π
GCCΓG†CC +

1

π
Im zGCCG†CC , (3.16)

where the broadening function iΓ = Σ† − Σ is introduced. When integrating this
equation over the energy to obtain the local electron density, the left part introduces a
distribution function, which stems from the left and right leads as ΓL/R only exists on
the left and right side. This distribution function is a simple Fermi-Dirac distribution as
the leads are in equilibrium. The second term introduces a non-equilibrium distribution
function from the center region, which is not known a priori. Therefore, it becomes
difficult to use the complex energy contour for integration, and we have to restrict
ourselves to real energy values so that the second term vanishes. Integrating alongside
the real axis, however, is computationally very demanding, as the structure of the
Green’s function involves the usage of many energy and k-points. A solution to this
issue is to use a combined energy contour, where the equilibrium parts of the density are
calculated within the conventional equilibrium formalism and only the non-equilibrium
part is calculated alongside the real axis.
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3. Theory

3.1.2. Equilibrium Contours

To compute the space-resolved electron density, the Green’s function has to be inte-
grated over the energy. According to G = (zI − H)−1, the Green’s function has poles
at the eigenenergies of the Hamiltonian on the real axis. These poles make it necessary
to use a dense energy mesh around them. Instead of integrating over the sharp poles,
by introducing complex energies, a broadening of these poles of the Green’s function
in the complex plane can be achieved. Due to this broadening, fewer energy points
can be used. Formally, the integrand of the density is multiplied with a Fermi-Dirac
distribution at θ = 0 K since only states up to the Fermi-Energy have to be considered.
This distribution also introduces the so-called Matsubara poles, which for θ = 0 K
lie infinitely dense as we will see. It is, therefore, convenient to introduce a technical
temperature that only affects the electrons but not the cores, that is, no phonons are
created. The contributions below and above the Fermi energy should cancel out such
that this technical temperature has no additional effect.
The commonly used contour is of a regular shape, which is depicted in Fig. 3.2. The
path goes up in the complex plane and then from left to right up to the Fermi energy.
From there, it would normally go down again. Due to the Fermi-Dirac distribution
function

f(z, µ, θ) =
1

exp
(
z−µ
kBθ

)
+ 1

, (3.17)

where z is the complex energy, µ the chemical potential, and θ the temperature, starting
to vanish at real parts of the energy above the Fermi energy, instead of returning to the
real axis, it is possible to continue the contour in complex infinity, effectively closing it.
The Fermi distribution exhibits poles in the complex energy plane at [29]

z̃j = µ− iπ(2j − 1)kBθ. (3.18)

These residues have to be accounted for when using Cauchy’s residue theorem. Finally,
a corrected version of the density has to be calculated, which after incorporating the
Fermi-Dirac function reads [30]

n(r) = − 2

π
Im

ˆ zn

EB

G(r, r, z)dz +
π2

6
(kBθ)

2G′(zn) + 2πikBθ
∑
j

G(r, r, z̃j)

 , (3.19)

whereN is the number of Matsubara poles enclosed by the contour, G′(zn) the derivative
of the Green’s function with respect to energy at zn, and zN = µ − iπNkBθ is a
point between the N -th and (N + 1)-th Matsubara pole. Actually, the second part
of the equation containing the derivative G′(zn) is very small within the considered
applications and premises in Ref. [30] and, therefore, can be neglected. This contour is
used for self-consistent calculations for bulk materials..

Another way to calculate the density is via a semi-circular contour and a vanishing
technical temperature, which is depicted in Fig. 3.3. The contour starts from band
bottom EB and then describes a semi-circle in the upper half of the complex plane
before it returns to the real axis at the Fermi energy EF with the radius rE = EF−EB

2 .
Because of the vanishing temperature, no poles have to be accounted for. Another
advantage is that from there, it is possible to continue a second, different contour,

16



3.1. Non-Equilibrium Steady State Features

Figure 3.2.: Rectangular-shaped contour, which is "closed" in complex infinity. The
blue line shows the Fermi Dirac distribution for a temperature T > 0. The
dots in the contour indicate that the distribution function has vanished
enough to make no contributions anymore.

which will be actually done for the combination of the equilibrium and non-equilibrium
densities.

Instead of closing the contour right away to the real axis, the contour can be closed
similarly to the rectangular contour [13, 31]. This introduces the technical temperature
from before again. However, as we want to continue the semicircular contour at the
real axis to calculate the non-equilibrium parts, this broadening due to the technical
temperature introduces an overlapping [13] between the two contours, which results in
double counting of contributions. To avoid this effect, it is easier to close the semicircle
on the real axis and continue from there.

The semi-circular contour is used for self-consistent calculations in transport geometry
in this work since it is similar to the combined contour in its conversion behavior, which
will be described next.

3.1.3. Combined Energy Contour

The expression for the electronic density can be reformulated in terms of the broadening
functions or self-energies of the leads in the transport geometry. This yields the left
and right non-equilibrium densities nL/R = 1

2πGΓL/RG
†, respectively [17, 22, 24]. The

complete electron density of the valence states can be rewritten in terms of this left and
right electron density [13]: Let µL and µR be the respective chemical potentials of the
left and right lead, respectively. If µL = µR ≡ µ holds we get for n

n =

ˆ
(nL(E) + nR(E))f(E − µ) dE. (3.20)
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3. Theory

Figure 3.3.: Semicircular contour in the upper complex plane.

Now, for µL 6= µR and assuming µR < µL we get [13]

n =

ˆ
nL(E)f(E − µL) + nR(E)f(E − µR) dE (3.21)

=

ˆ
nL(E)(f(E − µR) + f(E − µL)− f(E − µR)) + nR(E)f(E − µR) dE (3.22)

=

ˆ
(nL(E) + nR(E))f(E − µR) + nL(E)(f(E − µL)− f(E − µR)) dE. (3.23)

This means we can split the integral into an equilibrium part and a non-equilibrium part.
The first part can be calculated within the equilibrium formalism and the semicircular
contour in the complex plane

nEQ = − 1

π
Imy
ˆ µ<

EB

G(r, r; z)dz (3.24)

and a non-equilibrium part in between the applied bias window

nNEQ =
1

2π

ˆ µ>

µ<

GΓιG
†dE, ι =

{
L for µ< = µR

R for µ< = µL
. (3.25)

Here the notation µ< = min(µR, µL) and µ> = max(µR, µL) is used, as this works
for biases applied in both directions. Due to this splitting, it is possible to use the
computationally efficient way in the complex plane and only apply the real-axis way to
the quite small bias window. The contour is shown in Fig. 3.4. From the band bottom
up to µ<, the conventional equilibrium mechanism is used. In the window of applied
bias, which is from [µ<, µ>], the non-equilibrium formalism is employed.

3.1.4. Landauer-Büttiker Formula

In the Landauer-Büttiker model, the idea is that the conductance is mainly determined
by transmission and reflection probabilities T and R = 1− T , respectively. The linear
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3.1. Non-Equilibrium Steady State Features

Figure 3.4.: Combined contour consisting of a semi-circular contour for the equilibrium
density (blue) and a straight line near the real axis for the non-equilibrium
part (red).

response method yields for the conductance G = e2

h T , so although the transmission can
be perfect, still the conductance is only a finite value. This is due to the fact that the
latter expression refers to the contact resistance. There are only certain modes in the
center region, which can contribute to the transport. Not all of the electrons from the
equilibrium leads can go into the center region due to this restriction [32].
Let us further define the following coordinate system. Let z be the direction of transport.
Then x and y will be the directions in the plane perpendicular to the transport direction.
The current entering from the left and going to the right side is determined via [32]

IL→R =
e

2π

ˆ ∞
0

TLR(kz)vL(kz)fL(kz) dkz (3.26)

with kz > 0 since right-going electrons from the left side are considered, vL(kz) the
velocity of an electron from the left side, and fL(kz) the distribution function. This
integral can be evaluated to an integration over energy, since the relation v(kz) = 1

~
∂E
∂kz

holds [32]:

IL→R =
e

h

ˆ ∞
EL

TLR(E)fL(E) dE, (3.27)

where EL/R are the conduction band bottom energies on the left and right side, respec-
tively. Similar, one finds [32]

IR→L =
e

h

ˆ ∞
ER

TRL(E)fR(E) dE. (3.28)

Taking time reversal symmetry into account, which means that TLR = TRL, this means
for the resulting current [32]

I = IL→R − IR→L =
e

h

ˆ ∞
−∞

T (E) (fL(E)− fR(E)) dE. (3.29)
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3. Theory

where fL and fR are the equilibrium distribution functions for the left and right side,
respectively.
If a voltage ϕ is applied, that is, let’s assume µL → µL + eϕ and µR → µR, then this
formula modifies to [32]

I(ϕ) =
e

h

ˆ ∞
−∞

T (E,ϕ)(fL(E − eϕ)− fR(E)) dE, (3.30)

For vanishing bias ϕ→ 0, the conductance is found as

lim
ϕ→0

I = lim
ϕ→0

e

h

ˆ ∞
−∞

T (E,ϕ)(fL(E − eϕ)− fR(E)) dE (3.31)

=
e

h
T (EF )eϕ = G∆ϕ (3.32)

⇒ G =
e2

h
T (EF ). (3.33)

3.1.5. Transmission Function

As we already have seen, the knowledge of the transmission function of the electrons is
vital. From the Green’s functions and the self energies, it is possible to calculate the
transmission function in k‖ = (kx, ky) space, that is, the in-plane Brillouin zone. Since
the translational invariance in transport geometry is broken, kz is no longer a good
quantum number. Hence the transmission function is resolved in k‖, that is kx and ky
resolved. The k‖ dependent transmission function can be calculated via

TLR(E,k‖) = Tr
[
ΓL(E,k‖)G(E,k‖)ΓR(E,k‖)G

†(E,k‖)
]
. (3.34)

To obtain the resulting integrated transmission function TLR(E), TLR(E,k‖) has to be
integrated over the in-plane Brillouin zone.
The transmission function obtained here only accounts for coherent scattering as it
occurs, for example, in a tunneling barrier. In the case of a bulk conductor, the coherent
part is equivalent to the quantum mechanical contact resistance. It can be seen as a
measure of how many channels in k‖ space are available for electrons coming from a free
electron gas in the leads. Whether such a channel is available will add to the resistance.
As the resistance is mainly determined from the type of contact, it is independent of
the length of the system1.

3.1.6. Multiple Scattering – Virtual Terminals

While the transmission function described before only accounts for the coherent parts,
it is also possible to include phase breaking or incoherent scattering via so-called vir-
tual terminals or Büttiker probes. The virtual terminals are placed throughout the
scattering region. At each virtual terminal electrons can enter and leave the system
changing their phase. In this way, phase-breaking scattering events can be realized.
The scattering potential at site α is normally described by a complex self-energy Σ̄α.
For phonon scattering only the negative imaginary part Σα = − Im Σ̄α is relevant. Each
virtual terminal is assigned with self-energy Σα = − Im Σ̄α. From this self energy, the

1Unless the system is small enough to allow for direct tunneling from left to right lead. However, this
case usually is not considered in the derivation of the NEGF formulae.
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3.1. Non-Equilibrium Steady State Features

broadening Γα = i
(

Σ̄αIα − Σ̄†αIα

)
= −2 Im Σ̄αIα) = 2ΣαIα can be calculated. The

matrix Iα is 1 only for one site index α and 0 elsewhere. Using the broadening function,
the k‖ resolved transmission

Tαβ(E,k‖) = Tr
[
ΓαG(E,k‖)ΓβG

†(E,k‖)
]

(3.35)

from terminal α to terminal β can be calculated. Integrating all contributions over the
2D Brillouin zone, one obtains Tαβ(E). Together with the direct transmission from left
(L) to right (R), the effective transmission is evaluated by [17, 33]

Teff(E) = TLR(E) +
∑
α∈S

TLα(E)TαR(E)

Sα(E)
+

β 6=α∑
α,β∈S

TLα(E)Tαβ(E)TβR(E)

Sα(E)Sβ(E)
+ . . . . (3.36)

This accounts for the multiple scattering routes that could, in principle, be taken. The
sum

Sα(E) = TLα(E) + TαR(E) +

β 6=α∑
β∈S

Tαβ(E) (3.37)

renormalizes the probability measure. On the one hand, TLR is determined by the lead
material via the broadenings ΓL/R. On the other hand, TLR(E) is determined by the
center Green’s function, which in turn is determined by the whole potential including
all additional complex self-energies Σ̄i on the atomic positions. Therefore, TLR(E) is
different from the pure ballistic transmission function when no scattering occurs. The
series is infinite, but since each element gets smaller, it eventually converges. It can
be shown in a strict mathematical way that the series possesses a limit similar to the
geometrical series2. The limit is achieved by [18]

Teff(E) = TLR(E) + TL(E)
(
1− T̄ (E)

)−1
T̄R(E), (3.38)

where for simplification the vector and matrix notations TL = {TLα}α∈S ,
T̄R = {TαR/Sα}Tα∈S and T̄ = {Tαβ/Sα}α,β∈S with Tαα = 0 are used, respectively.
By first summing up the k‖ dependent Tαβ(E), we allow energy-conserving k scat-
tering. Other conservation rules are possible by using different summations. Also, a
reconstruction of Teff(E,k‖) by projection on the left and right states is possible. Both
possibilities are not in the scope of this work. In order to distinguish contributions from
different effects and in order to facilitate the comparison to semi-classical methods like
the Boltzmann formalism, it is convenient to split the transmission function. The resis-
tance of the whole system Reff can be viewed as a series circuit of the contact resistance
Rc and the resistance due to scattering RS . Consequently, it can be written as the sum

Reff = Rc +RS . (3.39)

The resistance is anti-proportional to the transmission function, from which it follows
that:

1

Teff(E)
=

1

Tc(E)
+

1

TS(E)
. (3.40)

2For a proof, see Ref. [18]
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Here, Teff(E) is the effective transmission function, Tc(E) is the transmission function,
which results purely from the quantum mechanical contact of the leads to the scattering
region, and TS(E) is the contribution exclusively due to scattering. This separation of
contributions was not part of the preceding main work [17, 18], but proves to be useful
for comparisons of the virtual terminal approach with the Boltzmann formalism, as
the latter only possesses contributions due to scattering and no contributions from the
quantum mechanical contact resistance.

3.1.7. Transport Moments

Several electronic transport quantities can be derived from the transmission function.
To conveniently express them, the notation in terms of moments Ln, n ∈ N0 is useful.
The moments Ln are defined as [34]

Ln =
2

h

ˆ
(E − µ)n

(
−∂f(e, µ, θ)

∂E

)
T (E) dE. (3.41)

With these moments, we can define the electronic charge conductivity as [35]

σ = e2L0 (3.42)

the Seebeck coefficient3 S as [35]

S =
1

eθ

L1

L0
(3.43)

and the electronic heat conductivity κe as [35]

κe =
1

θ

(
L2 −

L2
1

L0

)
. (3.44)

Depending on which part of the transmission is used, the resulting moments due to that
part can be calculated. We will restrict ourselves in this work to the Seebeck coefficient
S due to scattering contributions TS(E) alone.

3.2. Finite Differences Method (FDM)

In the finite differences method (FDM) space is discretized onto a lattice [24].
The Hamiltonian in one dimension is

H =
p̂2

2m
+ V(x̂). (3.45)

On the lattice with discrete points x = ja, where j ∈ N, and a is the lattice parameter,
the operator H on a test function f works as [24]

[Hf ]x=ja =

[
− ~2

2m

d2f

dx2

]
x=ja

+ Vjfj (3.46)

3The Seebeck coefficient is often referred to as thermopower in literature. However, it is a propor-
tionality constant between the temperature difference and the resulting voltage, not a power unit
in the physical sense. Therefore, we will continue to call it Seebeck coefficient for the theory part.
We will call it thermopower in Phys. Rev. B 105, 165106, (2022).
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3.2. Finite Differences Method (FDM)

with fj → f(x = ja) and Vj → V (x = ja).
The first derivative is taken at a point, which lies between two points of the lattice since
this will prove useful for taking the second derivative [24]:[

df

dx

]
x=(j+ 1

2
)a

=
fj+1 − fj

a
. (3.47)

Consequently, the second derivative is then found to be evaluated at an actual lattice
point [24]: [

d2f

dx2

]
x=ja

=
1

a

([
df

dx

]
x=(j+ 1

2
)a

−
[

df

dx

]
x=(j− 1

2
)a

)
(3.48)

=
fj+1 − 2fj + fj−1

a2
. (3.49)

With this, the Hamiltonian on a discrete lattice is found as

H =


Vi + 2t i = j

−t i− j = ±1

0 else
, (3.50)

where t = ~2
2ma2

. H reads in matrix representation

H =



. . .
...

...
...

...
... . .

.

. . . V−2 + 2t −t 0 0 0 . . .

. . . −t V−1 + 2t −t 0 0 . . .

. . . 0 −t V0 + 2t −t 0 . . .

. . . 0 0 −t V1 + 2t −t . . .

. . . 0 0 0 −t V2 + 2t . . .

. .
. ...

...
...

...
...

. . .


. (3.51)

The Hamiltonian takes the form of a tight binding Hamiltonian [24]. Because of its
tridiagonal form, the infinite dimension of the matrix does not pose a problem. It can
be truncated the same way as it is done for the non-equilibrium formalism in terms of
self-energies. The self-energies for a thin wire with confining potential in y direction is
given by [24]

Σ(i, j) = −t
∑
m∈p

χm(pi)e
ikmaχm(pj), (3.52)

where χm are the transversal modes of the finite conductor, km is the wave vector of
that mode, and pi, i ∈ N is a point in the lead. From the discretized Hamiltonian we
can derive some useful relations in lattice representation. If the Hamiltonian H acts on
a plane wave ψk(x) = eikz in z direction, we obtain the energy dispersion

E = V0 +
~2k2

2m
(3.53)

on the discrete lattice as
E = V0 + 2t(1− cos(ka)). (3.54)
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Since we want to obtain an FDM model for three dimensions, we have to consider the
x and y direction separately. If there is no confining potential, we can use the lattice
Fourier transformation [36]

Ai(q) =
∑
j

eiq(xi−xj)Aij . (3.55)

Since the Hamiltonian in 1D has a tight binding form that only considers nearest neigh-
bors, we restrict ourselves to the nearest neighbors on the cubic lattice in the 3D case.
First, we Fourier transform the x direction:

Hi(kx, yizi, yjzj) =
∑
xj

eikx(xi−xj)H(xiyizi, xjyjzj) (3.56)

= (−te−ikxa − teikxa + 6t)δyiyjδzizj

− t
(
δyi,yjδzj ,zi±1 + δyj ,yi±1δzj ,zi

)
(3.57)

= (−2t cos kxa+ 6t)δyiyjδzizj

− t
(
δyi,yjδzj ,zi±1 + δyj ,yi±1δzj ,zi

)
. (3.58)

In the same way, the y-direction gets Fourier-transformed:

Hi(kx, ky, zi, zj) =
∑
yj

eiky(yi−yj)H(kx, yizi, yjzj) (3.59)

= (−2t cos kxa+−2t cos kya+ 6t)δzizj − tδzj ,zi±1 . (3.60)

The discretized and Fourier-transformed Hamiltonian then reads (the d here stands for
a fully discretized version)

Hd(kx, ky, zi, zj) =


2t+ 2t(1− cos(kxa)) + 2t(1− cos(kya)) zi = zj

−t zi, zj ∈ NN

0 else

. (3.61)

When we compare Eq. 3.53 and Eq. 3.54, we already see that the dispersion for the
discrete lattice can be re-translated to continuous space for the Fourier transformed di-
rections4, thus we can obtain a Hamiltonian with Fourier-transformed x and y-directions
in nearest neighbor approximation:

Hd → H =


2t+ ~2

2m(k2
x + k2

y) zi = zj

−t zi, zj ∈ NN

0 else

. (3.62)

To obtain the matrix representation of the Green’s function, the matrix M has to be
inverted:

G = M−1 = (E1−H − Σ)−1. (3.63)

4This is possible here, as we only considered nearest neighbors.

24



3.3. Boltzmann transport

with Σ = ΣLI1 + ΣRIn. Again, here the matrix In is 1 only for one site index n and 0
elsewhere. The final matrix to invert looks like

M =


Eeff − 2t− ΣL t 0 · · · 0

t Eeff − 2t t · · · 0
...

...
. . .

...
...

0 · · · t Eeff − 2t t
0 · · · 0 t Eeff − 2t− ΣR

 . (3.64)

Here, we introduced the effective energy Eeff(kx, ky) = E − ~2
2m(k2

x + k2
y). This means

that the remaining problem is reduced to an effective 1D problem. The definition of the
self energies for the effective 1D case of in-plane unconfined, free electrons with only
one mode is given by

ΣL = ΣR = −teika. (3.65)

With this, the contact transmission function can be calculated.
To introduce scattering, also the self-energy for the scattering ΣS has to be added to
the overall self-energy

Σ = ΣLI1 + ΣRIn + ΣS1. (3.66)

Consequently, the matrix M and the resulting Green’s function now contain the in-
formation about the scattering. From the resulting Green’s function G, the necessary
transmission functions TLα(E,k‖; Σ), TαR(E,k‖; Σ), and Tαβ(E,k‖; Σ) can be calcu-
lated at each k‖-point according to Eq. 3.35. The indices α and β then refer to the
lattice points where virtual terminals are placed. For energy conserving scattering, the
effective transmission Teff(E,k‖; Σ) is computed via Eq. 3.36 at each k‖-point and then
integrated over the Brillouin zone to obtain Teff(E; Σ). The scattering part TS(E; Σ) is
then calculated the same way from Eq. 3.40.
It might seem counterintuitive at first that the self-energy due to scattering is not scaled
according to the lattice parameter. We use a constant scattering potential barrier, so the
discretization is the same at each lattice point. Also, the Green’s function matrix scales
according to the lattice parameter, which is then finally considered in the transmission
formula since it is proportional to the scattering self-energy and the Green’s function.

3.3. Boltzmann transport

Despite its classical origin, the Boltzmann equation is widely used today and has proven
to yield sound results even for quantum mechanical systems. As a well established
method with a variety of computable transport quantities it provides a reliable way to
compare results of different approaches to it [8–12].
The Boltzmann transport equation reads [37]

df(k, r, t)

dt
=
∂f(k, r, t)

∂t
+
∂f(k, r, t)

∂r

dr

dt
+
∂f(k, r, t)

∂k

dk

dt
(3.67)

=
∑
k′

−Pkk′f(k, r, t)(1− f(k′, r, t)) + Pk′kf(k′, r, t)(1− f(k, r, t)).

Here, f(k, r, t) is the distribution function in the phase space, and Pkk′ the transition
probability rate from state k to k′. Very often, this is not the form that is solved, as
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it is a complicated integro-differential equation. Instead, a linearized version of it is
solved. The linearized version of this equation for a homogenous system reads [38–40]

k̇∇kf
0
n(k) =

∑
k′n′

(
gn′(k

′)Pnn
′

kk′ − gn(k)Pn
′n

k′k

)
(3.68)

where the ansatz
fn(k) = f0

n(k) + gn(k) (3.69)

was made. Here, f0
n(k) is the equilibrium distribution function, and gn(k) a small dif-

ference from the equilibrium distribution function to the resulting distribution function
fn(k). The distribution fn(k) here is now only dependent on k with an index n for each
band.
Note, that the microscopic reversibilty is not valid when spin-orbit interaction is present [38],
that is Pnn′kk′ 6= Pn

′n
k′k . The perturbation is caused by small fields and thus, only correc-

tions linear in the electric field are necessary. Hence, the non-equilibrium distribution
function is not far from equilibrium and can be written this way. A sufficient ansatz
for gn(k) can be justified by the following idea [10]: When the field is turned off, the
distribution must return to equilibrium after a characteristic time τ , which means that
gn(k) decays to 0

− ∂gn(k)

∂t
=
gn(k)

τ
. (3.70)

With this, we can make the ansatz linear in the applied electric field E [12]

gn(k) = e
∂f0(ε(k))

∂ε(k)
Λn(k) · E. (3.71)

Here, ε(k) is the band dispersion. The vector mean free path Λn(k) is determined via
the self-consistent equation [12, 38]

Λn(k) = τn(k)

vn(k) +
∑
k′,n′

Pnn
′

kk′Λn(k′)

 . (3.72)

Here, vn(k) is the group velocity of band n, and the characteristic time τn(k) can
be interpreted as the time between two scattering events, therefore it will be called
scattering time5. The second part,

∑
k′,n′ P

nn′
kk′Λn(k′), is the so-called scattering in-

term which describes the skew or Mott scattering within the spin Hall effect [38].
The scattering time τ is calculated via the transition rates [12, 38]

1

τ(k)n
=
∑
k′,n′

Pnn
′

k′k . (3.73)

With the knowledge of the vector mean free path Λn(k), the charge conductivity tensor
σ can be calculated as an integral over the Fermi surface [8, 38] in the form of an
response tensor for j = σE as

σ =
e2

~
1

(2π)3

∑
n

¨
ε(k)=EF

dSn
|vn(k)|

vn(k) ◦Λn(k), (3.74)

5Sometimes τ is also called relaxation time
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3.4. Spin Hall Effect

where dSn is an infinitesimal element of the Fermi surface. In analogy, many different
quantities, such as spin conductivity, spin accumulation, spin torque, and spin flux can
be calculated. The spin accumulation response reads [12]

χ =
eµB
~

1

(2π)3

∑
n

¨
ε(k)=EF

dSn
|vn(k)|

〈sn〉 (k) ◦Λn(k), (3.75)

where 〈sn〉 is the expectation value of the spin operator, and the spin conductivity
reads [38]

σs =
e2

~
1

(2π)3

∑
n

¨
ε(k)=EF

dSn
|vn(k)|

〈sz,n〉 (k)vn(k) ◦Λn(k), , (3.76)

where 〈sz,n〉 is the expectation value of the z component of the spin operator.

3.3.1. Relation to moments

From the generalized transport coefficients [37, 41]

Ln =
2e

V

∑
k

τkvk ◦ vk (ε(k)− µ)n
(
−∂f
∂ε

(k)

)
(3.77)

within the Boltzmann formalism, we see that σ = eL0 ∼ τk.
Restricting the discussion to only the diagonal elements, especially for the transport
direction z, and applying the constant scattering time relation τ(k) ≡ τ , it follows that
the Seebeck coefficient S = − 1

eθ
L1
L0

is independent of the scattering time τ .

3.4. Spin Hall Effect

3.4.1. Introduction

The spin Hall effect is one of several Hall-type effects of the Hall effect family [42–46].
As in other types of Hall effects, the spin Hall effect generates a transversal spin current
when a longitudinal charge current is applied [47–54]. This pure spin current divides
the two different spin species to either side of a thin film of a material and a spin
accumulation on the surface can be observed. The accumulation was first observed by
Kato et. al. [55] and Wunderlich et. al. [56] in semiconductor systems. The resulting spin
current to the surface can be injected into a device to make use of the pure spin current
generated by spin Hall effect [57, 58]. The inverse effect can be used to detect pure
spin currents in non-local measurement geometries [59–61]. Another application is the
use in magnetic switching junctions, where the accumulation can induce the switching
of a magnetic layer by spin-transfer torque [62, 63]. The application of spin torque,
which relies on the spin accumulation at the sample interface has attracted vast interest
recently [12, 14, 15, 64, 65].
While an applied magnetic field is necessary for the Hall effect to work, the spin Hall
effect arises from the intrinsic spin-orbit coupling of the material or spin-dependent
scattering caused by impurities or disorder. Most commonly, the contributions of the
spin Hall effect are divided into two contributions, the intrinsic [66–69] and the extrinsic
contribution [70–72].
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In semi-classical theory, the intrinsic spin Hall effect is described via the Berry curva-
ture [68, 73, 74] and the extrinsic spin Hall effect via a Boltzmann equation incorporating
the vertex corrections (scattering-in term) [38, 75, 76]. In a full quantum mechanical
approach, the Kubo or Kubo-Streda (Kubo-Bastin) formalism has been used to con-
sider the intrinsic mechanism [6, 7], while extrinsic mechanisms were considered via the
coherent potential approximation (CPA) [5].
However, most theoretical studies consider only the spin conductivity in a bulk sys-
tem [77–79], but ignore the influence of surfaces completely. Often DFT studies rely on
semi-classical approaches like the Boltzmann approach. Quantum mechanical studies
based on the non-equilibrium Green’s function formalism exist, but they mostly just use
model Hamiltonians like the Rashba model Hamiltonian [80–83]. Up to now, there are
no fully quantum mechanical approaches that treat the intrinsic effect in the framework
of density functional theory within the Keldysh Green’s function approach.

3.4.2. Contributions to the Spin Hall Effect

Intrinsic

The intrinsic contribution, that was described in Ref. [73] for the anomalous Hall effect
first, is caused by the spin-orbit coupling in the crystal, without contributions from
impurities, but only from the band structure, more precisely interband effects [66, 69,
73, 84], of the perfect crystal. The contribution is caused by an additional velocity
contribution, which is called the anomalous velocity. The full velocity reads

v(k) =
1

~
∂E(k)

∂k
+
e

~
E ×Ω(k), (3.78)

where the second part is the anomalous velocity and Ω(k) is the Berry curvature.
This velocity appears naturally in the full-quantum mechanical Kubo formalism as off-
site elements in the velocity tensor [85]. In the Boltzmann formalism, this velocity
contribution has to be reintroduced via the Berry curvature, which ultimately considers
inter-band contributions [84, 85] that were neglected during the derivation of formulas
in the Boltzmann approach [86]. The Berry curvature appears as a consequence of
not considering every band but a sub-set of bands only for the wave packet of the
electron [86]. In the picture of the Berry curvature, a magnetic monopole-like term in
k-space appears at so-called diabolic points where random band crossings occur [86].
This monopole can be seen as a pictorial description of the effects of spin-orbit coupling.
In the Keldysh method used in the full-relativistic KKR approach, only contributions
from the band structure arise. The information about the band structure and the
resulting electronic charge and magnetization densities is completely contained in the
Green’s function. The Berry curvature, therefore, is not to be considered explicitly as
the contributions arise naturally.

Extrinsic

The extrinsic contribution is caused by contributions from two mechanisms, the skew [71]
or Mott scattering [87, 88] and the side jump scattering [89].
The process of skew scattering is mediated by spin-dependent scattering. Based on the
direction of spin of the electron, it gets scattered to either direction transverse to its
direction of motion [69], which leads to an accumulation on the surface of the sample.
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3.4. Spin Hall Effect

∝ τ0 / ∝ n0
0 ∝ τ1 / ∝ n−1

0

no impurities intrinsic –
impurities side jump (extr./intr.) skew (extr.)

skew (intr.)

Table 3.1.: Distinction of contributions to the spin Hall effect after Refs. [69, 85].

The skew scattering contribution is included via vertex corrections in the Boltzmann
equation, which are included via the scattering-in term [38].
The side jump scattering at a magnetic impurity causes the center of an incoming wave
packet to be displaced transversely to the direction of motion [69].
This displacement is included in the Boltzmann Eq. 3.68 via a displacement term δrk′k
and adds another contribution to the velocity [85], such that it reads [39, 84]

v(k) =
1

~
∂E(k)

∂k
+
e

~
E ×Ω(k) +

∑
k′

Pk′kδrk′k. (3.79)

The Keldysh method within the full-relativistic KKR formalism employed in this work
does not account for any contributions arising from disorder or scattering at impurities.
Impurities would have to be considered explicitly, however, the implementational details
are not clear yet. To consider the effects of temperature, such as phonon scattering, the
virtual terminal method introduced in Sec. 3.1.6 can be used. To include the virtual
terminals in the full-relativistic Keldysh approach, new contributions to the electronic
density and the magnetic density arising from each virtual terminal must be accounted
for. Such contributions are of the form6 n ∝ GΓαG

† , where Γα is the broadening
function at virtual terminal α. The detailed form in the full-relativistic case remains to
be evaluated.

Distinction due to τ

Instead of dividing the contributions into intrinsic and extrinsic, the distinction can be
made by the dependence on the transport lifetime τ [69] and subsequently the impurity
concentration n0 [85]. The contribution due to skew scattering is proportional to τ1.
The intrinsic and the side jump contributions are proportional to τ0, that is, they are
independent of τ [69]. The side jump contribution can be split into two contributions.
The extrinsic one in which the non-spin-orbit coupled part of the wave packet scatters
at the spin-orbit-coupled disorder and the intrinsic part in which the spin-orbit coupled
part of the wave packet scatters at the scalar potential of the impurity without spin-orbit
coupling. However, both contributions depend on the crystal and the impurity [69].
Then there is also a part of the skew scattering, which is similar to the side jump
scattering and is proportional to n0

0, that is, a constant, therefore termed intrinsic skew
scattering contribution [85]. The different contributions are summarized in Tab. 3.1.

3.4.3. Experimental Detection and Theoretical Description

Experimentally, the spin Hall effect can be detected optically via the magneto-optical
Kerr effect (MOKE) or electronically via non-local measurements. The samples used

6Written here not in the mathematically strict exact form.

29



3. Theory

are not bulk-like materials but rather thin films in various Hall-like geometries and
bi-layer systems [12, 14, 15, 64, 65]. Additionally, in bi-layer systems it is difficult to
distinguish between the different origins of contributions [90, 91]. The NM-FM interface
of different magnetic materials can significantly influence the resulting magnetization at
the surface. The main important fact is the finite size of the sample and the interfaces.
Further, the effect is sometimes detected indirectly by the inverse spin Hall effect or by
fitting the magnetization profile obtained by MOKE via spin diffusion theory to extract
the desired quantities [55, 92, 93].
On the other hand, in most of the theoretical treatments, the spin Hall effect is de-
scribed in terms of the spin conductivity σs, which is calculated from bulk systems [77–
79]. Thus, effects of surfaces or interfaces are not included, which makes a comparison
between theory and experiment all the more difficult. There are works implementing ab
initio theory based on the semi-classical Boltzmann description for bilayer systems [12]
and works implementing the full-quantum mechanical approach to a model Hamilto-
nian [82, 83]. This work goes a step further by using the full-quantum mechanical
non-equilibrium Green’s function approach with the ab initio Korringa-Kohn-Rostoker
method.
An easy-to-overlook point is the comparison of values between different experiments.
Due to the different methods like injection of spins, different materials or thicknesses in
conjunction with the system under consideration, and different amounts of impurities
in the samples, the results for the spin Hall angle or spin Hall conductivity may differ
significantly. This can be seen in a compilation of Ref. [69].
This makes the comparison of especially intrinsic values achieved in this work difficult.
We, therefore, rely on the comparison with one experiment only and the trends between
the elements therein since the absolute values might differ strongly. The experimental
results chosen here are from [94].

3.4.4. Fermi Sea and Fermi Surface Term

When evaluating the Kubo-Bastin formula [15, 64] for example for the torkance tµν ,

tµν = − ~
4π

ˆ ∞
−∞

dE
df(E,µ, θ)

dE
Tr
〈
T̂µ(G+ −G−)ĵνG

− − T̂µG+ĵν(G+ −G−)
〉

(3.80)

+
~

4π

ˆ ∞
−∞

dEf(E)Tr

〈(
T̂µG

+ĵν
dG+

dE
− T̂µ

dG+

dE
ĵνG

+

)
(3.81)

−
(
T̂µG

−ĵν
dG−

dE
− T̂µ

dG−

dE
ĵνG

−
)〉

= tIµν + tIIµν , (3.82)

where µ, ν are indices of the full torkance tensor t, f(E,µ, θ) is the Fermi-Dirac dis-
tribution, G+/− is the retarded and advanced Green’s function, respectively, T̂µ is the
µ-th component of the torque operator, and ĵµ is the µ-th component of the electric
current density operator, it becomes apparent that there are two contributions. Here,
tIµν originates from the Fermi surface only and tIIµν originate from the occupied valence
states, that is the Fermi sea [15]. The torkance can also be split into an even and odd
under magnetization reversal part. In this case, the odd part of the torkance is caused
exclusively by the Fermi surface terms. The even part is caused by both, Fermi surface
and Fermi sea terms [15].
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3.4. Spin Hall Effect

Similarly, to this differentiation, in this work we focus on the odd under magnetization
reversal part of the spin accumulation, which is caused by the Fermi surface term. This
facilitates the comparison between the Keldysh and Boltzmann results done here.

In principle, the inclusion of Fermi sea terms should work by using the full Keldysh
contour, that is the full semicircular contour in equilibrium formalism as well as energy
points in the according bias window evaluated via the non-equilibrium formalism.

For fcc Pt, the contributions from the Fermi sea proved to be zero and only Fermi
surface contributions exist in the one-shot calculations. However, after doing a full self-
consistency for the complete Keldysh contour in transport geometry and consequently
shifting the potentials, naturally, contributions from the equilibrium contour part and
the non-equilibrium contour part will occur. This is further discussed in Appendix D

3.4.5. Spin Hall Effect in KKR

The spin Hall effect in the KKR described here is based on the steady-state Keldysh
formalism in the full-relativistic framework. We consider here contributions that are
caused by the band structure but not from effects of disorder or impurities. To evaluate
the applicability of the method we employ here, we calculate the Fermi surface driven
contribution and compare it to a semi-classical Boltzmann approach. In principle, a
fully self-consistent cycle is possible with the combined contour in Sec. 3.1.2 and the
full density after Eq. 3.84 is calculated. After self-consistency is achieved, the magnetic
moment or accumulation is calculated via Eq. 3.85.

One short note should be given here. While in the Boltzmann approach the origin of
contributions to the spin Hall effect can be traced to their physical origin as a result
of the physically graphic description, the fully quantum mechanical approaches like the
Kubo- or Keldysh formalism often "hide the physical origin of elementary microscopic
processes" [85].

3.4.6. Spin accumulation

To calculate the contributions to the i-th magnetization density componentmi(r), where
i = x, y, z, from the non-equilibrium part, the magnetization density has to be evaluated
within the full-relativistic formalism as (similar to Eq. 3.25 and Eq. A.108)

mNEQ
i (r) =

µB
2π

ˆ µ>

µ<

〈r|Tr
(
GΓιG

†βΞi

)
|r〉 dE, (3.83)

where µ< = min(µR, µL) and µ> = max(µR, µL), µL/R the left and right chemical
potential respectively, β is defined in Eq. A.100 and Ξi from Eq. A.97. To make a full
self-consistent cycle, the complete full-relativistic density has to be used:

n(r) =− µB
π

Imy
ˆ µ<

EB

〈r|Tr (G(z)14) |r〉 dz

+
µB
2π

ˆ µ>

µ<

〈r|Tr
(
G(E)ΓιG(E)†14

)
|r〉 dE. (3.84)
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With this, it is possible to calculate the contributions of the intrinsic spin Hall effect to
the accumulation self consistently as

mi(r) =− µB
π

Imy
ˆ µ<

EB

〈r|Tr
(
G(z)βΞi

)
|r〉 dz

+
µB
2π

ˆ µ>

µ<

〈r|Tr
(
G(E)ΓιG(E)†βΞi

)
|r〉 dE. (3.85)

Exemplary results are given in Appendix D for a thin slab of Pt.

The results shown in Phys. Rev. B 104, 054402, (2021) are calculated only at the
Fermi surface, for which Eq. 3.85 reduces to

mi(r) =
µB
2π
〈r| (G(EF )ΓιG(EF )†βΞi) |r〉 eϕ. (3.86)

From this, the accumulation can be calculated via Eq. A.109.
The calculations in Phys. Rev. B 104, 054402, (2021) are not done self-consistently
in the non-equilibrium formalism. The potential used here stems from equilibrium self-
consistent supercell calculations.
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4. Results

4.1. Publication Phys. Rev. B 104, 054402, (2021)

The spin Hall effect has gained a lot of interest because of its ability to convert charge to
spin current and vice versa. Especially, the spin accumulation has drawn the attention
to it since the spin-orbit torque is significantly influenced by the spin accumulation and
spin currents through normal metal ferromagnet interfaces [12, 14, 15, 64, 65]. The
challenging point here lies in the fact that many works calculate the spin conductivity
of a bulk material [77–79], but the experimental reality comprises surfaces and spin
accumulations. Therefore, the first goal was here to obtain a description of the spin
accumulation for a series of metals that is closer to the experimental reality in terms of
the thin film nature of actual samples. The second goal was to employ a full quantum
mechanical method in the framework of the KKR density functional theory to go a
step beyond the semi-classical Boltzmann theory [12] and model systems [82, 83]. To
assess the validity of the results, we compared the Keldysh values with the Boltzmann
values. For comparing the Keldysh and Boltzmann values, we took the odd under
spatial magnetization reversal component of the accumulation evaluated at the Fermi
surface. We found a remarkable agreement between the two methods as well as with
the experiment for the general trend within a series of metals. The two methods differ
in thicker thin-film structures especially for systems with complex Fermi surfaces. This
is discussed in the Supplemental Information in Appenidx B.
The work is a first step, which can be expanded upon in the future to include effects of
impurities, even under magnetization reversal contributions or effects of spin relaxation
within phase-breaking scattering.

The manuscript was written by me and edited by all co-authors. The calculation of the
Keldysh values for the spin accumulation and of the finite current density originating
from the contact resistance were carried out by me. The Boltzmann calculations for
the spin accumulation were carried out by Hugo Rossignol, Ming-Hung Wu, and Martin
Gradhand. To calculate all contributions from the Fermi sea and the Fermi surface, the
self-consistent cycle in the KKR code was expanded after Ref. [13] by me. However,
this expansion was not used in this publication to facilitate the comparison between
Boltzmann and Keldysh formalism. Results of the full self-consistent cycle are shown
in Appendix D for a Pt thin film exemplary.

The article is reprinted with permission from

Alexander Fabian, Michael Czerner, Christian Heiliger, Hugo Rossignol, Ming-Hung
Wu, and Martin Gradhand, Physical Review B 104, 054402, (2021),
DOI: https://doi.org/10.1103/PhysRevB.104.054402

Copyright (2021) by the American Physical Society.
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For the technologically relevant spin Hall effect, most theoretical approaches rely on the evaluation of the
spin-conductivity tensor. In contrast, for most experimental configurations the generation of spin accumulation
at interfaces and surfaces is the relevant quantity. Here, we directly calculate the accumulation of spins due
to the spin Hall effect at the surface of a thin metallic layer, making quantitative predictions for different
materials. Two distinct limits are considered, both relying on a fully relativistic Korringa-Kohn-Rostoker density
functional theory method. In the semiclassical approach, we use the Boltzmann transport formalism and compare
it directly with a fully quantum mechanical nonequilibrium Keldysh formalism. Restricting the calculations to
the spin-Hall-induced, odd-in-spatial-inversion, contribution in the limit of the relaxation time approximation,
we find good agreement between the two methods, where deviations can be attributed to the complexity of Fermi
surfaces. Finally, we compare our results with experimental values of the spin accumulation at surfaces as well
as the Hall angle and find good agreement for the trend across the considered elements.

DOI: 10.1103/PhysRevB.104.054402

I. INTRODUCTION

The spin Hall effect was first proposed in 1971 by
Dyakonov and Perel [1]. Only after Hirsch [2] re-established
the concept in 1999 was it experimentally observed directly in
semiconductors by Kato et al. [3] and Wunderlich et al. [4].
The spin Hall effect enables the generation of spin current in
nonmagnetic materials by passing an electric current through
a system opening the route to various applications in spintron-
ics [5–12]. Importantly, the inverse effect, generating a charge
current from a spin current, or in fact a spin accumulation,
gives a tool to detect spin currents electronically [13–15].

The origin of the effect is commonly divided into two con-
tributions, the intrinsic [16–19] and the extrinsic mechanism.
While the first derives from the intrinsic spin-orbit coupling of
the pure material, the latter is mediated via spin-orbit coupling
at an impurity site. For the extrinsic process, the skew or Mott
scattering dominates in the dilute limit [20,21], and the side
jump [22] scales similarly to the intrinsic mechanism with the
sample resistivity.

One can approach the spin Hall effect theoretically
typically via semiclassical or fully quantum mechanical
approaches. In the case of the semiclassical theory, the
intrinsic mechanism is recast in terms of the Berry cur-

*Alexander.Fabian@physik.uni-giessen.de

vature [18,23,24], and the extrinsic, almost exclusively the
skew scattering mechanism, is considered via a Boltzmann
equation incorporating the vertex corrections (scattering-in
term) [25–27]. On the other hand, the Kubo or Kubo-Streda
(Kubo-Bastin) formalism has been used to consider the intrin-
sic mechanism [28,29], or in combination with the coherent
potential approximation the extrinsic mechanisms were in-
cluded on an equal footing [30]. However, all approaches
have in common that they almost exclusively calculate the
spin Hall conductivity in a periodic crystal [31–33], giving
no direct access to the spin accumulation at surfaces or in-
terfaces. In contrast, most experimental configurations will
rely on the accumulation at interfaces and surfaces exploit-
ing spin diffusion equations in order to extract the spin Hall
conductivity [3,34,35]. However, the induced spin accumu-
lation has attracted renewed interest as the technologically
relevant spin-orbit torque often relies on spin accumulation
at, as well as spin currents through, normal metal ferromagnet
interfaces [36–40]. Experimentally, it is incredibly difficult to
distinguish the various contributions, rendering it a challenge
to optimize spin-orbit materials and the corresponding bilayer
systems [41,42].

In this paper, we directly calculate the spin accumulation
induced at the surfaces of metallic thin films when a charge
current is passed through the sample. We focus on the con-
tributions with the same symmetry as the spin Hall effect,
namely, the spin accumulation which is odd under spatial

2469-9950/2021/104(5)/054402(6) 054402-1 ©2021 American Physical Society
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FIG. 1. (a) Schematic drawing of the slab systems for the
Keldysh formalism. The atomic index counts the atoms along the
y direction. (b) Actual unit cell for fcc Pt. For the Keldysh formalism
the box indicates the supercell. For the Boltzmann formalism the
vacuum is extended into the semi-infinite half-spaces on both sides
of the slab (not shown).

inversion [36–38], showing equal and opposite spin accumu-
lations at the two surfaces of the thin metallic film. For that
reason, we deliberately omit the even-under-spatial-inversion
part of the accumulation. This will allow us to make contact
with experimental observations and theoretical predictions of
the spin Hall effect in more realistic geometries. The system
is shown in Fig. 1(a), where a charge current is driven in the z
direction, the spin is pointing along x, and the accumulation is
calculated in the y direction perpendicular to the plane of the
thin film. As the atomic configuration is preserving inversion
symmetry and we focus on the contributions from the clean
system, it is the Fermi-surface-driven and odd-under-spatial-
inversions contribution [36,37], which is linear in the applied
longitudinal current, for which we make quantitative predic-
tions in a series of metallic systems. On the one hand, we go
beyond the semiclassical approach [38] previously applied to
bilayer systems using a fully quantum mechanical Keldysh
formalism based on nonequilibrium Green’s functions. On the
other hand, we apply this formalism to real materials in a fully
ab initio density functional theory (DFT) framework going a
step further than earlier works on the spin accumulation in
nonequilibrium description which were restricted to a model
Hamiltonian [43,44]. To validate our method, we compare
it with a semiclassical approach relying on the Boltzmann
formalism.

After a brief introduction of both methods we will present
exemplary results and compare the induced spin accumulation
with experimental findings. Furthermore, we will analyze the
common trends across the elements with respect to the charge-
to-spin-current conversion efficiency.

II. THEORY

The electronic structure is calculated via a fully relativis-
tic Korringa-Kohn-Rostoker (KKR) density functional theory
method [45]. Both band structure methods, for the semiclas-
sical approach [46,47] and the Keldysh formalism [48–50],
have been introduced earlier. Here, we only highlight the

adjustments and relevant expressions used to express the
steady-state magnetization density.

A. Keldysh formalism

For the Keldysh formalism the system is divided into three
parts, the left (L), center (C), and right (R) regions. The left
and right parts work as semi-infinite leads in equilibrium
with the same Fermi levels EF. Their influence on the center
region is accounted for by the corresponding self-energies
�L/R. When applying a bias voltage, the levels of the chem-
ical potential change to η>/< = EF ± e�ϕ

2 accordingly. In the
range of [η<, η>] the fully relativistic electron density and
magnetization density are calculated as [45]

ρ(�r) = 1

2π

∫ η>

η<

〈�r|Tr[G(E )�(E )G†(E )]|�r〉 dE , (1)

m(i)(�r) = μB

2π

∫ η>

η<

〈�r|Tr[βςiG(E )�(E )G†(E )]|�r〉 dE , (2)

respectively. Here, G(E ) is the Green’s function of the center
area, and � = i[�(E ) − �†(E )] is the broadening function,
where �(E ) = �L(E ) + �R(E ),

β =
(

I2 0
0 −I2

)
, ςi =

(
σi 0
0 σi

)
,

I2 is the 2 × 2 unity matrix, and σi are the Pauli spin matrices
with i ∈ {x, y, z}. In the so-called one-shot calculations, only
the magnetization at the Fermi level is considered for vanish-
ing bias voltage, which is

mi(�r) = μB

2π
Tr[βςiG(EF)�(EF)G†(EF)]e�ϕ.

Finally, the magnetic moment due to spin accumulation ax(μ)
is evaluated by integrating mx(�r) over the volume Vμ of the
atomic sphere at atomic index μ:

ax(μ) =
∫

Vμ

mx(�r) dV. (3)

The current density is calculated via the Landauer-Büttiker
formula in the case of a vanishing bias voltage [51]

jz = e2

Ah̄
T (EF)�ϕ (4)

assuming that the transmission T (E ) = Tr[�LG�RG†] is
nearly constant in the range of �E = e�ϕ. Here, A is the area
of the supercell in the x and y directions.

B. Boltzmann formalism

Within the Boltzmann formalism the spin accumula-
tion is expressed as a Fermi surface integral [38]. For
two-dimensional (2D) systems the spin accumulation is
expressed as [52]

�a = χ
μ

· �E = −eμB

h̄

V

d (2π )2

∫
EF

dl

|�v�k|
(�s�k (μ) ◦ τ�k�v�k ) · �E , (5)

where V is the volume of the cell, d is the thickness of
the film, v�k is the group velocity at �k, �s�k is the expectation
value of the spin operator, and �E is the applied electric field.
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Because of degenerate states, the spin operator exhibits off-
diagonal elements. A gauge transformation is applied, such
that these off-diagonal elements vanish. The current density is
given by

�j = σ · �E = −e2

h̄

1

d (2π )2

∫
EF

dl

|�v�k|
(�v�k ◦ τ�k�v�k ) · �E . (6)

Importantly, both scale linearly with the relaxation time. In the
chosen geometry, �j = j�ez and �E = Ez�ez, and by using the re-
laxation time approximation τ�k = τ , the relevant expressions
can be simplified as

ax(μ) = χxzEz = e

h̄

μBV τEz

d (2π )2

∫
EF

dl

|�v�k|
sx,�k (μ)vz,�k (7)

and

jz = e2

h̄

τEz

d (2π )2

∫
EF

vz,�kvz,�k
|�v�k|

dl = e2

h̄

τEz

d (2π )2
〈v2

z 〉. (8)

This maneuver will allow us to remove the direct dependence
of the spin accumulation on the relaxation time τEz, replacing
it with the current density

ax(μ)

μB
= jz

e

V〈
v2

z

〉
∫

EF

dl

|�v�k|
sx,�k (μ)vz,�k . (9)

Thus the spin accumulation will scale linearly with the current
density, which, in turn, can be calculated within the Keldysh
formalism. This will allow for direct mapping between the two
methods.

C. Computational details

For the Keldysh formalism the starting point consists of
self-consistently calculated equilibrium potentials, which are
obtained in a supercell approach including atomic spheres and
vacuum spheres to form the thin film geometry. For the trans-
port calculations, the supercell is connected to semi-infinite
leads from the left and right sides along the transport direc-
tion (z direction). The corresponding cells are schematically
shown in Fig. 1. In the following, a one-step nonequilib-
rium Keldysh formalism at the Fermi energy is used to find
the steady-state densities from these potentials. The applied

voltage is chosen to be reasonably small at �ϕ = 10−4 Ry/e,
in order to agree with the approximation of vanishing applied
electric field in the linear response regime as assumed in the
Boltzmann approach.

For the Boltzmann formalism the construction is based
on a slab calculation with semi-infinite vacuum attached
perpendicular to the film. After obtaining the self-consistent
potentials, the Fermi surface parameters such as the
�k-resolved band velocities and spin expectation values are
calculated to find the spin accumulation according to Eq. (9).
Given the linear scaling of the spin accumulation with the
current density in the Boltzmann formalism, we insert the
current density found within the Keldysh approach to facilitate
direct comparison.

Within the Landauer-Büttiker approach the finite conduc-
tance stems from a contact resistance at the interfaces of
the leads. This contact resistance is also often referred to
as Sharvin resistance [53]. Naturally, it does not depend on
the length of the transport system; rather, it depends only
on the number of available transport channels. In contrast, for
the Boltzmann approach the contact resistance is ignored, and
the whole resistance originates from scattering in the volume.
In our comparison we adjust j such that it fits the Sharvin
resistance of the Landauer-Büttiker approach. As such, the
mechanism for the finite currents is different in both ap-
proaches; however, the resulting current density itself is the
same, driving the spin accumulation at the surfaces. We do not
account for any extrinsic mechanisms; rather, we only account
for contributions to accumulation arising from the electronic
structure of the clean crystal.

As we apply a bias in the z direction, the only relevant
element of the spin accumulation in the considered cubic
systems is ax(μ), and for convenience we are going to omit the
index x in the following. The axes of the coordinate systems
are aligned parallel to the 〈100〉 axes of the crystals.

III. RESULTS AND DISCUSSION

The resulting spin accumulation a(μ) as a function of the
atomic position index μ is shown in Fig. 2 for the fcc (Cu,
Pt) [Fig. 2(a)] and bcc (Ta, U) [Fig. 2(b)] systems comparing

FIG. 2. Magnetic moment per atom for representative (a) fcc systems and (b) bcc systems. Blue refers to Keldysh (K) calculated values,
and red refers to Boltzmann (B) calculated values. The thin film is highlighted in gray. Each line shows the same antisymmetric behavior. Note
that in (a) the Keldysh and Boltzmann values for Cu overlap.
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TABLE I. First extrema of the spin accumulation calculated by Boltzmann and Keldysh formalisms as well as the Keldysh current density
for the small systems. Comparison between a/ j and spin Hall angle θ

exp
SH [54]. Intrinsic spin Hall conductivities from calculations are shown

for reference.

a(μ = −1) (10−6 μB) j a/ j (10−17 μB A−1 m2) θ
exp
SH [54] σ theo

SH

Element Boltzmann Keldysh (1012 A/m2) Boltzmann Keldysh (%) [(h̄/e) �−1 cm−1]

Cu (fcc) 3.60 3.77 1.50 0.24 0.25 0.32
Ag (fcc) 2.65 2.41 1.16 0.23 0.21 0.68
Au (fcc) 17.62 16.33 1.33 1.32 1.23 8.4 400 [31]
Ta (bcc) −66.19 −80.99 1.17 −5.66 −6.92 −7.1 −142 [55]
Pd (fcc) 31.33 10.10 1.12 2.80 0.90 1400 [31]
Pt (fcc) 53.53 25.99 1.79 2.99 1.45 10.00 2000 [17]
U (bcc) −263.9 −300.9 1.93 −13.7 −15.6 −402 [56]

the Keldysh (K) and Boltzmann (B) formalisms, respectively.
The position index is chosen such that the central atom of the
film is labeled as 0. The general behavior is the same for all
considered elements as well as between the two methods. This
is largely enforced by symmetry since atoms μ = ±1 have
equal and opposite spin accumulation. For easier comparison
we summarize the maximum spin accumulation a(μ = −1)
for the various systems as well as the two methods in Table I.
As expected, the spin accumulation increases with increasing
atomic weight corresponding to enhanced spin-orbit coupling.
While this is true in general, it is not correct in the details. The
spin accumulation for Ag is smaller than that for Cu, and for
Ta we find a surprisingly large spin accumulation. Such details
would be difficult to predict from simplified models. Compar-
ing the Boltzmann formalism with the Keldysh formalism, the
agreement is perfect for the noble metals, with their simple
Fermi surfaces, but starts to deviate for the more complex
systems of Ta, Pd, Pt, and U. Nevertheless, the sign as well
as the overall magnitude is still in remarkable agreement.

We believe this correlation between Fermi surface com-
plexity (see Fig. S5 in the Supplemental Material [57]) and
the agreement between the two methods not to be a numer-
ical artifact. In the Keldysh formalism we only consider the
ballistic transport, where each band contributes equally to
the electronic transport. In contrast, the Boltzmann formalism
relies on electron scattering, and the weighting in any Fermi
surface integral will depend on the �k-dependent band velocity
in the transport direction. For more complex structures the
variations in the absolute value of the band velocity on the
Fermi surface are much more pronounced (Ta, U, Pd, Pt)
than for the simple metals Au, Ag, and Cu (see Fig. S5 in
the Supplemental Material [57]). For elements with simple
Fermi surfaces and subsequently the least-changing Fermi
velocity, the results obtained within the Boltzmann formalism
nevertheless match well.

So far we have considered rather thin layers with limited
access to the decay length of the spin accumulation within
the thin film. To investigate this point further, we consider
three larger systems, Cu, Pt, and U, with nine layers of atoms
(cf. Fig. 3 and also the Supplemental Material [57]). For
Cu the decay of the spin accumulation is remarkably strong,
happening within three layers, and is in excellent agreement
between the two methods. In contrast, the decay appears to be
much slower for Pt and even more so for U {see Fig. S3(c)

in the Supplemental Material [57]}, again consistent between
the two methods.

In order to validate our results, we compare them with
recent experiments where the spin accumulation of Pt thin
films was directly measured by the magneto-optic Kerr ef-
fect (MOKE) [34]. In that experiment a strong thickness
dependence was established with a value of a/ j = 5 ×
10−16 μB A−1 m2 for samples with a thickness t > 40 nm.
Extrapolating the experimental data Eq. (1) in Ref. [34] to
the film thickness of t = 0.39 nm considered here yields
a result of a/ j = 1.05 × 10−17 μB A−1 m2 in rather good
agreement with our result of a/ j = 1.45 × 10−17 μB A−1 m2.
While measurements of spin Hall angles and spin Hall con-
ductivities are widely available, to our knowledge, such direct
numerical measurements of the spin accumulation for other
systems are very sparse. It is therefore difficult to compare
the results from our methods directly with literature values.
It appears natural to compare them with spin Hall conductiv-
ities or spin Hall angles predicted theoretically or measured
experimentally. However, this holds multiple caveats. For ex-
ample, theoretically predicted intrinsic conductivities are bulk
calculations ignoring the fact that any spin accumulation will
depend on the actual surface geometry and film thickness.
While sign changes and overall magnitudes ought to be in
agreement, significant variations are possible in the details.
As summarized in Table I the signs are in agreement between

FIG. 3. Magnetization for a thin film of nine Cu atoms (high-
lighted in gray).
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the spin accumulations and the intrinsic spin Hall conduc-
tivities, but the high spin accumulation for Ta and U cannot
trivially be predicted from the conductivities. On the other
hand, experimental results for the spin Hall angles tend to
vary significantly over the various experimental techniques
and sample preparations, which will often involve differ-
ent nonmagnetic-ferromagnetic (NM-FM) interfaces [58] and
varying degrees of extrinsic mechanisms contributing to the
overall effect [59]. Consequently, any comparison should fo-
cus on one technique with similar sample preparation only.
Choosing a spin pumping experiment in which most of the
considered metals were investigated under similar conditions
[54], the trend for a/ j and θ

exp
SH in Table I is quite consistent for

systems with simpler Fermi surfaces (Cu, Ag, Au). Similarly,
Ta, Au, and Pt show increasing spin Hall angles in the same
order of magnitude, with a sign change occurring for Ta.
This sign change cannot be trivially predicted for multibanded
systems, since the spin-orbit coupling depends on the orbital
and on the Fermi level [55].

IV. CONCLUSION

We extended existing theoretical frameworks to capture the
spin-Hall-effect-induced spin accumulation in various metal-
lic thin films via a fully nonequilibrium Keldysh formalism.
We tested this new approach against a linearized Boltzmann
approach as well as experimental findings and found remark-
able agreement in all cases, reproducing all sign changes and
predicting the same trends. Where the two theoretical ap-
proaches differ most is the atom-resolved spin accumulation
in thicker films especially for systems with complex Fermi
surfaces, whereas for Cu we find an excellent agreement.
This methodology will enable us to make more direct con-

tact with experiments, where instead of the conductivities
derived from periodic crystals it is the spin accumulation at
interfaces and surfaces as well as the spin current through
interfaces which are the relevant driving mechanisms of, for
example, magnetization reversal in ferromagnets. In this first
and most important step we have established that the de-
veloped methodology reproduces the spin-Hall-induced spin
accumulation in the thin metallic films well across different
frameworks and in comparison to experiment. This will open
up broad opportunities to explore the effect in more complex
interfaces as well as under the influence of impurities, making
even more direct contact with experimental realities. Incor-
porating inversion asymmetry and contributions even under
spatial inversion symmetry [36,37] will give access to spin
galvanic effects [60] while investigating the additional influ-
ence of impurities and the additional Mott scattering [39].
In all these cases, the full nonequilibrium description adds
additional complexity with the possibility of finite bias across
the sample geometry.
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Electronic transport at very small length scales plays an essential role in today’s tech-
nical applications. Especially the shrinking sizes make a quantum mechanical approach
in describing the occurring effects mandatory. Often semi-classical approaches are used
that provide a nice physical interpretation of scattering processes. In this work, the main
aim was to understand the relationship between the scattering time τ that is often used
in semi-classical approaches to deliver a graphical and easy-to-interpret physical image
and the self-energy Σ that is often used in full quantum mechanical approaches as done
in the virtual terminal method. Expanding upon Ref. [17], we research the dependency
for the simple picture of a k independent scattering time τ with the self-energy Σ. On
the premise that for a constant scattering time, the Seebeck coefficient is not dependent
on the scattering time (in the Boltzmann picture), we compare whether this is the case
too for the self-energy. We find that this is indeed the case for systems with Fermi
surfaces of low complexity, that is, free electrons and Cu, but no longer for Pd with its
complex Fermi surface. Because the expected linear scaling of the transmission func-
tion at the Fermi level with the scattering time fails in the strong scattering regime, we
investigate the discretization effects of the scattering barrier within the more flexible
finite difference model for free electrons. We find that in the strong scattering regime,
the multiple scattering events between virtual terminals must be resolved with a suf-
ficient number of virtual terminals. For the lower scattering regimes, we find that the
number of virtual terminals can be condensed and represented by effective virtual termi-
nals. The placement of virtual terminals inside the conductor makes no difference when
enough multiple scattering events are considered. The findings suggest that it would
be possible to calculate thicker thin films by scaling up the scattering strength via ef-
fective virtual terminals. Introducing the scattering formalism into the full-relativistic
approach given in Phys. Rev. B 104, 054402, (2021), could facilitate the calculation
of finite spin-diffusion lengths and the consideration of effects at room temperature.
New contributions to the spin accumulation due to scattering could be accounted for.

The manuscript was written by me, edited, and commented on by all co-authors. I
implemented the FDM model of free electrons with virtual terminals in Python and ex-
panded it for parallel running on the high-performance computing cluster. I contributed
to the expansion of the one-dimensional model into three dimensions. Michael Czerner
helped here especially with the lattice Fourier transformation. The virtual terminal
approach has been already implemented into the KKR code during the Ph.D. work of
Carsten Mahr [17, 18]. I carried out all calculations.

The article is reprinted with permission from
Alexander Fabian, Martin Gradhand, Michael Czerner, and Christian Heiliger, Physical
Review B 105, 165106, (2022),
DOI: https://doi.org/10.1103/PhysRevB.105.165106

Copyright (2022) by the American Physical Society.
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Understanding electronic transport properties is important for designing devices for applications. Many studies
rely on the semiclassical Boltzmann approach within the relaxation time approximation. This method delivers
a graphic physical picture of the scattering process, but in some cases it lacks full quantum-mechanical effects.
Here, we use a non-equilibrium Green’s function Korringa-Kohn-Rostoker (KKR) method with phase-breaking
scattering via virtual Büttiker terminals as a fully quantum mechanical approach to transport phenomena. With
this, we assess the validity of the relation of the self-energy � to the scattering time τ , often used in literature
in the case of constant relaxation time approximation. We argue that the scattering time does not affect the
thermopower in the Boltzmann approach and thus should take no effect either on the thermopower calculated via
the Keldysh approach. We find a nearly linear relation for the transmission function TS (EF , �) of free electrons
and Cu with respect to 1

�
. However, we find that this is not the case for Pd. We attribute this to neighboring

states contributing due to the additional broadening via the self-energy �. These findings suggest that a simple
identification of scattering time and self-energy is not sufficient. Finally, we discuss the benefits and limits of the
application of the virtual terminal approach.

DOI: 10.1103/PhysRevB.105.165106

I. INTRODUCTION

In the past years, electronic devices have become signifi-
cantly smaller. Further shrinking the sizes leads to quantum
mechanical effects that dominate the transport properties
[1–4]. There are several approaches from classical to fully
quantum mechanical to characterize transport quantities. Scat-
tering can be accounted for in each of these approaches and
of course, the type of scattering has huge influences on the
transport properties. While there are full quantum mechanical
formalisms like the Kubo formalism [5–9] or the steady-state
Keldysh [10–12] formalism, often semiclassical approaches
are used to describe transport properties. The physical picture
in these semiclassical approaches, mainly the Boltzmann for-
malism [13–17], is quite intricate since it enables an intuitive
understanding in terms of scattering processes. One of the
principal quantities for understanding this scattering picture
is the scattering or relaxation time τ , which gives the mean
time between two scattering events.

Often, first-principle methods rely on the averaging over
many configurations of lattice distortions or impurities to
obtain semiclassical like features [18,19]. However, room
temperature like features can also be established by introduc-
ing a dephasing mechanism by means of Büttiker probes (or
virtual terminals) [20,21]. In our purely quantum-mechanical
Keldysh approach including dephasing virtual terminals, it

*Alexander.Fabian@physik.uni-giessen.de

is not the scattering time, which is the primary determining
quantity, but a broadening of the states given by the negative
imaginary part � of the complex self-energy �, which is often
directly related to the scattering time in angle-resolved pho-
toemission spectroscopy (ARPES) experiments [22,23]. In
such scenarios the scattering time is often identified with the
lifetime of the state, τscat = τlife = h̄

2�
[24]. For ARPES ex-

periments it was discussed that the single-particle lifetime can
be related to the self-energy in this way, but that this single-
particle lifetime differs from the lifetime of an excited photo-
electron population [25]. The discrepancies were supported by
experimental findings [26–28]. Hence, a simple identification
of scattering time and self-energy seems nontrivial. However,
even in a single-particle description, this simple relationship
between lifetime and self-energy might fail.

In this paper, we test the relation of the scattering time and
the scattering self-energy in a single-particle description but
for real materials. We give an example where such a direct
identification is questionable, even for simple, pure metals.
This is shown by comparing the theory of the Boltzmann ap-
proach with results from a Keldysh non-equilibrium Green’s
function approach [11,29] in the framework of a Korringa-
Kohn-Rostoker (KKR) [30] density functional theory (DFT),
in which we use virtual terminals (also known as Büttiker
probes) to describe incoherent elastic scattering [10]. We dis-
cuss the limit of applicability of virtual terminals by compar-
ing the results of the KKR implementation with a simple finite
differences method (FDM) for the case of free electrons [29].

2469-9950/2022/105(16)/165106(9) 165106-1 ©2022 American Physical Society
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II. THEORY

In order to evaluate transport properties, the following mo-
ments Ln are used [31]:

Ln = 2

h

∫
dE

∫
d�k‖ (E − μ)n

(
−∂ f (E , μ, θ )

∂E

)
T (E , �k‖),

(1)

where h is Planck’s constant, E is the energy, μ is the chemical
potential, θ the temperature, f (E , μ, θ ) is the Fermi-Dirac
distribution, and T (E , �k‖) the �k‖ = (kx, ky) dependent trans-
mission function. Normally, these moments are written as
tensors. Here, since we are looking at cubic systems only, we
restrict ourselves to the Ln = Ln,zz component of the full ten-
sor Ln. From these moments, the conductivity σ , thermopower
S, and heat conductivity of the electrons κe can be calculated
as [32]

σ = e2L0, (2)

S = 1

eθ

L1

L0
, (3)

and

κe = 1

θ

(
L2 − L2

1

L0

)
, (4)

where e is the electron charge.

A. Keldysh formalism

In the Keldysh formalism, the general transmission func-
tion T (E ) = Teff (E ; �) is an effective transmission function,
which results from contributions of different origins. The sys-
tem is divided into three parts, left, center, and right, where
the left and right sides serve as semi-infinite leads and the
center region serves as scattering region. Certain scattering
events can be realized in the Keldysh formalism by placing
virtual terminals, which are also known as Büttiker probes
[33], in the scattering region. The virtual terminals absorb
and reemit electrons with different phases, thus simulating a
phase-breaking scattering event [29,33]. Further details of the
implementation are documented in our previous paper [10].
The necessary transmission functions are calculated for every
possible terminal configuration via a coherent approach at
each in-plane �k‖ point as

TXY (E , �k‖) = Tr[�Y (E , �k‖)G(E , �k‖)�X (E , �k‖)G†(E , �k‖)],

(5)

where X,Y ∈ S ∧ {L, R} are virtual terminals or the con-
tacting left (L) and right (R) terminals. S is the set of all
virtual terminals in the scattering region. The matrix �α =
i(�̄α (E )Iα − �̄∗

α (E )Iα ) = −2Im�̄αIα = 2�αIα is the broad-
ening function due to self-energy �α at site α. The matrix Iα

is 1 only for one site index α and 0 elsewhere. For α ∈ S,
�α is the broadening due to scattering. However, �L and
�R describe the contact to the semi-infinite leads and are
solely given by the lead material. The partial transmissions
TXY (E , �k‖) are integrated over the in-plane Brillouin zone to
obtain TXY (E ). From this �k‖ integrated partial transmissions

between the terminals, the resulting effective transmission
function Teff through the whole system can be calculated as

Teff (E ) = TLR(E ) +
∑
α∈S

TLα (E )TαR(E )

Sα (E )

+
α �=β∑

α,β∈S

TLα (E )Tαβ (E )TβR(E )

Sα (E )Sβ (E )
+ . . . . (6)

Here, Sα = TLα (E ) + TαR(E ) + ∑β �=α

β∈S Tαβ (E ), α ∈ S is the
renormalization sum of the probability measure. Note that all
TXY (E ) also depend on all �α (α ∈ S), because the Green’s
function G(E , �k‖) depends on all �α (α ∈ S). Thus, TXY (E )
will change even when a �α with α �= X,Y will change. In
the following we assume that �α ≡ � ∀α ∈ S. Consequently,
we will write the effective transmission as a function of E and
�, that is Teff(E ; �).

One has to be careful since, in the Keldysh formalism, the
resistance arises not only from scattering but also from the
system’s contacts to the leads. This contact resistance Rc is
due to the contact of an ideal lead to a scattering region, where
only a limited number of transport modes per area exist and
contribute to the transport of an electron. The scattering part of
the resistance RS is due to scattering alone. While RS naturally
depends on the length of the system and on �, Rc does not. Rc

solely depends on the type of the contact. Since the two types
of resistances form a series circuit and since R ∝ T −1, the full
transmission can be split up as

1

Teff(E , �)
= 1

Tc(E )
+ 1

TS (E , �)
. (7)

Here, the contact transmission Tc(E ) is the transmission of
a system without virtual terminals, and TS (E ; �) is the con-
tribution due to scattering. Tc is a transmission function that
contributes either 0 or 1 at each �k point for each band and
thus is a measure for the number of transport modes. The
contribution due to scattering TS is a probability measure
to what extent an electron can traverse the scattering region
without being scattered. Thus it is not bounded between 0 and
1. TS , therefore, can rise to infinity, if no scattering occurs, that
is TS → ∞ if τ → ∞, as it takes infinitely long to scatter.
In the Keldysh formalism, the additional contact resistance
ensures that the effective transmission function does not rise
to infinity.

As depicted schematically in Fig. 1, the influence of the
contact resistance is the main contribution for small scattering
self-energies � (large 1/�). The contact resistance limits
the transmission function to a constant value. The scatter-
ing contribution is rising to infinity as one would expect for
decreasing scattering. Increasing the scattering self-energy
(reducing 1/�), TS (E ; �) and Teff(E ; �) start to overlap and
this leads to a decreasing contribution of the contact resistance
in the reciprocal addition of Eq. (7). Thus in the limit of a
very long scattering region or strong scattering, the behavior
is of only Ohmic nature and the contact resistance does not
contribute significantly. We use the term contact resistance
for the resistance, which is due to the contact of semi-infinite
leads that serve as an electronic reservoir in equilibrium to
a scattering region. Here, we consider no contact resistance
from surface roughness, etc., like it would be the case in
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FIG. 1. Schematic depiction of the contributing transmission
functions: contact transmission Tc(EF ) (dashed, black), contributions
due to scattering TS (EF , �) (blue), and resulting effective transmis-
sion Teff (EF , �) (red) via Eq. (7).

experiments. Unless stated otherwise, we consider only the
contribution due to scattering TS (E ; �) in the following as this
is the quantity making contact with the Boltzmann approach.

B. Boltzmann formalism

The Boltzmann transmission function contains contri-
butions due to scattering only and no contribution from
the contact resistance. The transmission function in the
Boltzmann approach corresponds to T (E , �k) = TS (E , �k; τ ) =
v2

z (�k)τ�kδ(E − ε(�k)), where vz is the group velocity in trans-
port direction, τ�k the �k dependent scattering time, δ(E − ε(�k))
is the Dirac delta distribution, and ε(�k) is the electronic energy
dispersion.

In the case of free electrons, mapping this transmission
function onto the �k‖ plane, which in accordance to Keldysh
is equivalent to integrating the kz components, one arrives at
TS (E , �k‖; τ ) = 2

√
2τ

h̄
√

m

√
E − (h̄2/(2m))(k2

x + k2
y ). Here, we con-

sider the isotropic relaxation time approximation, where τ is
independent of �k [34–38]. Thus, the moments Ln after Eq. (1)
are proportional to τ and therefore S is independent of τ .
That is ∂S

∂τ
= 0, as seen by Eq. (3). Therefore, scattering has

no effect on the thermopower in the Boltzmann approach.
Consequently, the thermopower can be used as a theoretical
test system of the relation between � and τ . Furthermore, if
there is a direct relation such as τ ∝ 1/�, the thermopower
should be independent of a �k‖-independent self-energy within
the Keldysh formalism. In other words, as long as the relation
� ∝ 1/τ holds, the transmission function TS (E ; �) within the
Keldysh approach should linearly depend on 1/�, because in
the Boltzmann approach the transmission function TS (E ; τ ) is
proportional to the relaxation time.

C. Finite differences method

To compare the results obtained with our KKR-Keldysh
formalism, we use a three-dimensional finite differences
method (FDM) for the system of free electrons. Thereby,
we can exclude possible numerical shortcomings in our
implementation and more importantly, we can check the

applicability of the virtual terminals in KKR, as we are limited
to one virtual terminal at each atom at maximum. In contrast,
in FDM the number of virtual terminals is unbound.

For one dimension, the finite differences method (FDM)
is described in Ref. [29]. We expand on this description to
describe free electrons in three dimensions in an, in principle,
exact manner. The Schrödinger equation for free electrons
can be separated for each spatial dimension. The Hamiltonian
is discretized in transport direction and Fourier transformed
in the in-plane direction. The Fourier transformation yields
corrections for the in-plane directions converting the three-
dimensional problem to an effective one dimensional problem
via an effective energy in z direction (transport direction), that
is Ez = E − h̄2

2m (k2
x + k2

y ). The Greens function is calculated
for the effective one-dimensional problem at the effective
energy for each in-plane �k‖ point in the circle described by
h̄2

2m (k2
x + k2

y ) � E and integrated over all �k points. The trans-
mission out of this range is zero. Further details calculating
the transmission can be found in Ref. [10].

III. COMPUTATIONAL DETAILS

For evaluation, we consider three different systems. The
first system are free electrons serving as a simple model
system. The transport parameters of the free electrons are
calculated with the DFT-KKR-Keldysh formalism and com-
pared to FDM-Keldysh formalism. As a second system we
consider Cu within KKR, because the Fermi surface is very
similar to that of free electrons. Finally, as a third system
we consider Pd with a rather complex Fermi surface also in
KKR.

The potential for the transport calculation in case of free
electrons (fe) is a constant potential set to 0. The potentials
for Cu and Pd are self-consistently calculated as bulk sys-
tems and then used in the transport geometry. Each system
is calculated as fcc lattice, where the transport direction is the
[001] direction. For the lattice constants we use afe = aCu =
6.8311736aB, aPd = 7.3524aB. Unless stated otherwise, each
system has an effective length of d = 25alat , which means that
50 virtual terminals are placed inside the scattering region.
Within the KKR method, the transport calculations are done
with 400 × 400 �k‖ points, max = 3, and an energy broad-
ening of 0.054 meV to ensure convergence of TS (E ; �) to
be better than 1%. In FDM we use 2000 lattice points and
400 × 400 �k‖ points for the free electrons to ensure a conver-
gence of TS (E ; �) better than 1%

IV. RESULTS AND DISCUSSION

A. KKR results

First in Fig. 2, we compare the thermopower of three
different systems with increasing complexity of the Fermi
surface, namely free electrons, copper (Cu), and palladium
(Pd). We assume a �k independent scattering time τ and thus
use a �k independent self-energy � for the Keldysh formal-
ism with virtual terminals. In this simple case of a constant
scattering time approximation, the thermopower generally
should show no dependence on τ following the direct lin-
ear scaling of the moments L0 and L1 with respect to τ
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FIG. 2. Thermopower S(θ ) as function of temperature θ for (a) free electrons, (b) Cu, and (c) Pd at different � calculated with KKR. Note
that in (a) and (b) the blue colored lines overlap.

when considering the Boltzmann theory. If the identification
τ ∝ 1/� is true, it should also give an independence of
the thermopower on � calculated within the KKR-Keldysh
formalism.

1. KKR Thermopower

For free electrons, the thermopower, as a function of
temperature θ at an arbitrarily chosen value of EF = E1 =
0.75 Ry, shows exactly this behavior, at least for � roughly
below 8 × 10−2 Ry [see Fig. 2(a)]. For higher values of �, it
starts to deviate (shown in red).

For Cu, shown in Fig. 2(b), the behavior of the ther-
mopower is qualitatively the same as for free electrons.
However, the deviation from the expected behavior is already
stronger at smaller self-energies � compared to free electrons.
For Pd, shown in Fig. 2(c), the thermopower shows a distinct
temperature dependence for each self-energy, which clearly
deviates from the expectation within the relaxation time ap-
proximation. This result suggests that a simple identification
of τ ∝ 1/� is not suitable. To get a better understanding we
compare the transmission function for these systems in terms
of the self-energy. After the comparison of the transmission
function, we also check the free electrons against the FDM
and discuss the limits of the model in Sec. IV C.

2. KKR Transmission function

In Fig. 3(a) we show the �k‖ integrated, energy-dependent
transmission function TS (E ; �) for different scattering self-
energies � at the Fermi energy for free electrons. At EF =
E1 = 0.75 Ry we find a good linear behavior, especially for
high values of 1/�, i.e., in the low-scattering regime. This
result suggests that for free electrons, the identification of
τ with the energy broadening self-energy � via τ = h̄

2�
is

correct at least for small � up to around 10−1 Ry. But even
for free electrons TS (E ; �) shows deviations from the linear
behavior for small values of 1/�, i.e., in the case of strong
scattering.

This deviation from the linear behavior for large � directly
relates to the deviation of the thermopower in Fig. 2(a). We
attribute the deviation in TS (E ; �) to an insufficient discretiza-

tion of the scattering events. This will be discussed further in
Sec. IV C by means of the FDM.

The same behavior of TS (EF ; �) can be observed for
Cu in Fig. 3(b). Here, compared to TS (EF ; �) of free elec-
trons, the deviation from the linear behavior starts at smaller
self-energies already. Again, this deviation is in accordance
with the deviation of the thermopower of Cu discussed
before.

When considering Pd in Fig. 3(c). with a more complicated
electronic structure and complex Fermi surface, the linear fit-
ting of TS (EF , �) in Fig. 3(c) becomes untenable suggesting,
that the relationship τ ∝ 1/� does not hold at all. Again, the
complete deviation from the linear behavior is in accordance
with the distinct behavior of the thermopower for each self-
energy.

So far, we have used the constant scattering time approxi-
mation to assess the validity of the identification of � = h̄

2τ
.

For free electrons and Cu, this identification holds true if �

is small enough, but it is clearly not valid in the case of Pd.
The fact that even for simple pure metals in combination with
the simple approximation of a constant scattering time [20] the
identification of the single-particle scattering time τ and self-
energy � fails, suggests that for systems with a more complex
topology of the Fermi surface and a �k-dependent scattering
time τ , the identification of � and τ becomes even more
difficult. The main ingredient to the KKR-Keldysh approach
is the retarded Green’s function defined in the upper half of the
complex plane in the limit of real energies. At the real energy
axis it possesses poles at the eigenenergies of the eigenstates
and each eigenstate is represented by a δ-distribution on the
real energy axis. Adding an imaginary part to the real energy
causes these states to broaden into a Lorentzian shape. If we
consider, as it is the case throughout this paper here, a purely
imaginary self-energy of the same value at each atomic site,
the real energy and the imaginary self-energy can be seen
as a new complex energy, which causes the broadening of
the states. This broadening of states, however, causes con-
tributions from neighboring states (neighbors with respect to
energy) to an existing state at one particular energy due to the
overlap. Also for the transmission at one particular energy, the
broadening can cause contributions from neighboring elec-
tronic states.
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FIG. 3. TS (EF , �) vs 1/� for (a) free electrons, (b) Cu, and (c) Pd in KKR with linear fits.

In the Boltzmann theory, the transport properties at one
particular energy are determined solely by the band structure
properties of the considered state, and no additional broaden-
ing of states is considered. This may cause inaccuracies when
translating one quantity into the other and vice versa. Conse-
quently, we attribute the deviations from the linear behavior
of Pd to effects caused by the energy broadening.

B. FDM results

In order to test the numerical implementation of the KKR
method, we compare it to the thermopower calculated via the
FDM method in Fig. 4. We see a similar trend for the deviation
of thermopower, namely a deviation of the thermopower for
high self-energies. We will explain this deviation for high self-
energies in Sec. IV C.

In the Boltzmann approach, considering free electrons,
the �k-integrated TS (E ; τ ) can be shown to be proportional
to τE3/2. The proportionality to E3/2 holds true to some
extent for the Keldysh version of TS (E ; �). For comparison,
TS (E ; �) for free electrons is shown in Fig. 5 calculated with
FDM and KKR. The transmission functions between the two
methods match quite well. In Fig. 6 the �k‖ integrated trans-
mission TS (EF ; �) is shown for the FDM method for different
scattering self-energies �. Comparing Fig. 6 with Fig. 3(a) we
find for both methods, KKR and FDM, a good linear behavior,

FIG. 4. Thermopower S(θ ) as a function of temperature θ for
free electrons calculated with FDM at different �.

especially for high values of 1/�, i.e., less scattering events.
The deviation from the linear behavior appears at smaller
self-energies for a lower energy of E0 = 0.01 Ry. While both
methods give results that deviate from linear behavior in the
strong scattering regime, the precise form is different [cf.
Figs. 2(a) and 3(a)]. We discuss this in Sec. IV C. The different
characteristic of the deviating thermopower in Figs. 2(a) and
4 are a direct consequence of different deviations of TS (E ; �)
in Figs. 3(a) and 6 in the strong scattering regime.

In the strong scattering regime, both methods overestimate
TS (E ; �) relative to the linear fit. We attribute this to low-
energy contributions at the edge of the broadened �k-dependent
transmission. Such a transmission is shown in Fig. 7. In
Fig. 7(a) the contact transmission is shown for the first Bril-
louin zone. The values of Tc(EF , �k‖) are restricted to 1 inside
the circle defined by the Fermi energy and 0 outside this circle.
The overlapping occurs due to back folding to the Brillouin
zone. In Fig. 7(b), the scattering part of the transmission
function TS(EF , �k‖) is shown. The smearing due to scattering
at the edges is visible. In Fig. 8, TS (E2; �) at E2 = 0.25 Ry is
shown for different integration radii in �k‖ space. TS (E2; �) is
normalized to the result for � = 10−4 Ry, as the overall area
changes for each curve.

FIG. 5. Scattering contribution to the transmission TS (E , �) for
different self-energies � for free electrons in KKR (blue) and FDM
(red).

165106-5



FABIAN, GRADHAND, CZERNER, AND HEILIGER PHYSICAL REVIEW B 105, 165106 (2022)

FIG. 6. TS (Ei, �), i = 1, 2, as function of 1/� for free electrons
in FDM with linear fits at E0 = 0.01 Ry and E1 = 0.75 Ry.

At the � point, the transmission function shows linear
behavior. Integrating only 10% of the radius determined by√

E , the behavior stays mostly linear. Integration up to 90%
or more shows the deviation from the linear behavior. We
attribute this deviation to edge parts of the transmission, where
the effective energy for transport in z direction becomes very
small such that the discretization of scattering events through
the virtual terminals is not sufficient. We elaborate more on
this topic in the next section.

C. Limits of the model

Since there are apparent deviations of TS (E ; �) [see
Figs. 3(a) and 6] from the linear behavior, we investigate this
problem in terms of the number and placement of virtual ter-
minals. For this we use the FDM model since it provides more
freedom to test the placement of virtual terminals compared
to the KKR method. In contrast to the continuous FDM or
Boltzmann theory, within the KKR framework, the highest
possible number of virtual terminals that can be placed in
the scattering region is the number of atoms in the cell as the
virtual terminals are placed at the atomic positions.

In the FDM model, the space in z direction is discretized.
The corresponding discretization parameter a = dz/(n − 1)

FIG. 8. Normalized transmission function TS (E2; �)/TS

(E2; 10−4 Ry) of free electrons calculated with FDM at
E2 = 0.25 Ry. TS (E2, �) shows linear behavior at the � point
(blue). Integrating up to 80%, 90%, and 100% (warm colors) of
the radius of the broadened transmission circle �k‖ space shows
overestimations from the expected linear behavior.

can be chosen arbitrarily small in principle and must be cho-
sen reasonably small to achieve convergence for the effective
transmission. On each of these n discretized lattice points, it
is possible to place a virtual terminal.

Figure 9 shows �TS/TS for E0 = 0.01 Ry and E1 =
0.75 Ry (blue, red), respectively, for different values of �.
Starting from 2000 lattice points, a virtual terminal is located
at every lattice point. To test the discretization of the scatter-
ing events, we reduce the number of virtual terminals. The
placement is uniform such that a virtual terminal is added
to every ith lattice point. To achieve the same total amount
of scattering, the self-energy �i of the ith individual virtual
terminal is scaled so that the sum

∑
i∈S �i stays constant. The

actual number of virtual terminals is shown on the x axis.
With this test, it is possible to show that for a certain

number of virtual terminals at a certain self-energy �, the
obtained result for TS (Ei; �) deviates significantly from the
value of TS (Ei; �) when it is discretized to the maximum
at 2000 lattice points. The deviation increases as the num-
ber of virtual terminals decreases, going beyond 1% for less

FIG. 7. �k‖-dependent transmission function of free electrons calculated with KKR. (a) Contact transmission function and (b) scattering
part of transmission TS(EF , �k‖, �) for � = 3 × 10−2 Ry.
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FIG. 9. Relative deviation of TS (Ei, �) vs number of virtual ter-
minals for free electrons. As the number of virtual terminals inside
the constant scattering region decreases, the distance between the vir-
tual terminals increases. The single �i has to be scaled accordingly,
to meet the condition

∑
i∈S �i = const.

than about 10 terminals for E = 0.01 Ry. We attribute this to
multiple-scattering effects with a very high number of scatter-
ing events that cannot be accounted for due to the lack of the
necessary number of virtual terminals. Thus, the discretization
to describe all scattering events is insufficient.

For larger � or smaller E this starts to happen for a higher
number of virtual terminals, i.e., a finer discretization, as the
number of scattering events, that should occur is antipro-
portional to the mean free path λ = vτ = √

2E/m h̄/(2�).
Transferring this result to the KKR method implies that at
very high self-energies, the discretization of the scattering
events is not sufficient anymore. Thus, interatomic positions
for virtual terminals would have to be utilized to overcome
this deficiency.

To test whether this effect is related to the actual distance
of virtual terminals, we randomly placed 20 virtual terminals
in the transport cell. Figure 10 shows �TS/TS for different ran-
dom distributions of virtual terminals. For larger self-energies,
some distributions show larger deviations. The results suggest
that virtual terminals can actually be placed randomly but
yield the same result within 1% deviation as long as the

FIG. 10. Relative deviation of TS (Ei, �) for free electrons vs 20
different distributions of a constant number of 20 virtual terminals,
which are placed randomly over the scattering region.

FIG. 11. TS (EF , �) vs 1/� for free electrons for different dis-
cretizations of the scattering potential barrier. The actually used
self-energy �′ has to be scaled to meet the “effective” self-energy
�.

self-energy is small enough for the scattering events to be
accounted for. This means that the effective strength of the
scattering region is not determined by the region covered
with virtual terminals but only by the overall strength of self-
energies

∑
i∈S �i. The distance between the virtual terminals

is not crucial since the transmission between two terminals
Tαβ is calculated coherently. With these restrictions in mind,
a description of a macroscopic experimental thin film should
be possible. The practical route is to calculate a microscopic,
downsized version of the thin film. In order to account for the
same scattering strength, the self-energies have to be scaled
according to the length of the scattering region. Here it is
crucial to introduce a sufficient number of virtual terminals
to account for all necessary multiple scattering events.

Finally, let us explain the observed deviation of TS (EF , �)
for large self-energies in the KKR approach. In Fig. 11,
TS (EF , �) for the KKR method, where a virtual terminal is
attributed to each atomic position is compared to the FDM
method with a changing number of virtual terminals. The
FDM method for 2000 virtual terminals is considered as the
exact converged result. Depending on the number of virtual
terminals, TS (EF ; �) over- or underestimates the correct result
in the strong scattering regime. Additionally, since the KKR
uses different approximations than the FDM, e.g., atomic
sphere potentials and expansion of functions in spherical har-
monics with  cutoffs, deviations are expected to occur, while
not necessarily with the same numerical value.

V. CONCLUSION

We calculated the thermopower S(θ ) and the transmission
function TS (E ; �) for free electrons, Cu, and Pd with scat-
tering events realized by virtual terminals. The thermopower
S(θ ) for the free electrons and Cu shows no dependence on
the self-energy �, if it is below a specific value of �. This
is directly related to the linear scaling of TS (E ; �) with 1/�

in that regime for the two systems. For free electrons, we
can explain the deviations from the linear behavior in terms
of insufficient discretization of scattering events. Further, we
show that the distance between virtual terminals plays no
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role, as long as enough scattering events are considered. For
Pd, however, we find a nonlinear behavior in TS (E ; �) even
for small self-energies � and a distinct behavior of the ther-
mopower S(θ ) for each self-energy �. This result suggests
that τ may not be easily identified with h̄/(2�) for more
complex Fermi surfaces. We conclude that even in the simple
constant relaxation time approximation with �k-independent
τ the identification of the scattering time with the lifetime
associated with �k-independent � is not true in general. For the
case of a �k-dependent τ or the energy-dependent self-energy
function �(E ) obtained from rigorous many-body treatment,
this identification would become even more problematic. We
have shown possible errors in the KKR approach when using
virtual terminals to describe scattering, namely using too large
self-energies, and low-energy contributions at the edge of the
Fermi surface. These errors however, are very small when
considering practical self-energies for Cu and Pd. For Cu,
values for � ranging from 7 × 10−4 − 3.7 × 10−3 Ry were
calculated [39] in good agreement with the referenced ex-
periment therein. For Pd, values ranging from 3.7 × 10−4 −
1.1 × 10−2 Ry were calculated depending on temperature and

surface state [40,41]. Considering the limits of the virtual
terminal approach, it should be possible to calculate macro-
scopic thin films, which opens up the way to describe real
experimental structures. As we have shown in an earlier paper
[42] that it is possible to calculate the spin accumulation in
clean systems within the Keldysh formalism, extending it to
scattering via virtual terminals could make it possible to also
calculate the spin diffusion length for such systems or to
consider additional contributions to the accumulation.
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5. Conclusion and Outlook

Finally, we will review the obtained results of this work and give a short outlook for
future work.

The first part described the spin Hall effect and how to obtain it within the framework
of KKR. The approach shows reasonable results when compared with a semi-classical
Boltzmann approach. This includes both the similar trend for different metallic systems
between the Keldysh and the Boltzmann method as well as the reproduction of the sign
changes in accumulation.
The approach considers the finite size of the sample and the surface or interface, re-
spectively, and opens the possibility of investigating more complex interfacial structures.
Further, the possibility of explicitly adding an external bias voltage brings this approach
nearer to the experimental reality. However, we only considered the magnetization parts
from the Fermi surface, which are odd under spatial inversion.
The second part deals with the identification of the self-energy Σ and the scattering
time τ . It was shown that this identification is not as simple as it seems. Instead,
the identification holds some caveats and can be made only for systems with simple
Fermi surfaces. Moreover, we found that the discretization of scattering events plays
an important role in achieving a converged result. If the discretization is too rough, the
necessary multiple scattering events get overlooked, resulting in a jumping behavior of
the transmission function. However, if there are enough virtual terminals to consider
all the events, the placement of the scatterer becomes arbitrary.

Especially, the implementation of the full self-consistent cycle has raised further possi-
bilities to expand upon. These include:

1. The magneto capacitance of a Fe-Vac-Fe tunnel barrier

2. An in-depth analysis of the self-consistent spin Hall effect

3. The k space implementation of the Kerker screening for potential mixing

These points have already been mentioned in the appendix and are described there.
Point 1) would describe a novel effect that stands in line with the magnetoresistance.
Point 2) closes the gap between the Kubo formalism and the Keldysh description used
here and further extends upon the Boltzmann theory. Point 3) should yield facilitation
for the convergence of large supercells, especially if they include a large number of
vacuum spheres, therefore, making it easier to achieve self-consistency for larger spin
Hall systems.
To extend this method for more realistic descriptions, the following points are possible.

Multi-terminal transport

Since the spin Hall effect generates a transversal spin current from a longitudinal charge
current, the extension of the KKR code to support multi-terminal transport is feasible.
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5. Conclusion and Outlook

A second decimation technique which is so-to-speak perpendicular to the normal one
would enable one to calculate a transverse current. Instead of adding the transmission
function of the two transport channels, the differencem↑T↑−m↓T↓ could yield a quantity
proportional to the spin current js.

Characteristic quantities

The spin conductivity or spin Hall angle could be calculated to obtain a more direct
comparison with other theories or experiments. As the longitudinal conductivity (ne-
glecting the effects of contact resistance) is actually infinite in ballistic transport, a
means to limit the conductivity to finite values has to be found. The virtual terminal
formalism, which introduces scattering, yields such a means. The theory of the virtual
terminal approach has to be reformulated to match the new multi-terminal setting. Ad-
ditionally, the contributions to the charge density due to the virtual terminals have to
be included. By doing this, one should achieve values for the longitudinal conductivity
and the transverse spin conductivity, which would yield the spin Hall angle. Further,
the scattering formalism should lay a foundation to describe spin relaxation processes
and therefore to obtain values for the spin relaxation length or spin relaxation time.

Extrinsic contributions

Extrinsic contributions were not considered up until now. The framework, as mentioned
earlier, has to be included either in a real space version of the KKR code with impurities
or very large supercells with an impurity have to be calculated to describe the effects
of impurities. The coherent potential approximation has to be used in conjunction
with the framework mentioned earlier to describe alloys. The implementation details,
however, are not yet clear, and they might bear some complicated intricacies. How-
ever, the complete framework, which consists of multi-terminal transport with virtual
terminal scattering and the inclusion of impurities together with the full steady-state
non-equilibrium Green’s function formalism, bears a great opportunity to bring theo-
retical description and real systems very close to each other, for an effect where there
is very much debate going on about the physical details up until today. With this
implementation, the first step in this direction could be done.
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A. Basic Theory

A.1. Density Functional Theory

The density functional theory is based on the Hohenberg-Kohn theorem [95] and has
gained immense popularity since its invention for describing molecules or condensed
matter systems. Especially in condensed matter physics, the problem is the large num-
ber of particles to describe. This number is of the order of 1023. The task is now to
separate the electronic problem from the problem of the cores and, in a second step, to
find a method to reduce the amount of quantities to be calculated. The first is done via
the Born-Oppenheimer approximation, while the latter involves the Hohenberg-Kohn
theorem.

A.1.1. Born-Oppenheimer Approximation

We start with the full Hamiltonian of a condensed matter system with only Coulomb
interactions. In atomic units (e2 = 2, ~ = 1, 2me = 1, a0 = ~2

me2
, 4πε0 = 1) it reads

[96]:

H = TK + Te + Vee + VKe + VKK (A.1)

= −
Ne∑
i=1

∂2

∂r2
i

−
Nk∑
i=1

1

Mi

∂2

∂R2
i

(A.2)

+

Ne∑
i,j=1
i<j

2

|ri − rj |
−

Ne∑
i=1

Nk∑
j=1

2Zj
|ri −Rj |

+

Nk∑
i,j=1
i<j

2ZiZj
|Ri −Rj |

. (A.3)

Here, Ne is the number of electrons, NK the number of cores, Zi the atomic number of
the i-th element, Ri denotes the position of the cores, and ri the positions of electrons.
The contributions are:

1. TK : kinetic energy of the cores

2. Te: kinetic energy of the electrons

3. Vee: electron-electron Coulomb interaction

4. VKe: core-electron Coulomb interaction

5. VKK : core-core Coulomb interaction.

Since the motion of the atomic cores tends to be much smaller, that is 1/MK < 10−4,
within the so-called Born-Oppenheimer approximation the contribution of their kinetic
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energy can be neglected in the lowest order. Excluding the kinetic energy of the cores,
it remains

H0 = −
Ne∑
i=1

∂2

∂r2
i

+

Ne∑
i,j=1
i<j

2

|ri − rj |
−

Ne∑
i=1

Nk∑
j=1

2Zj
|ri −Rj |

+

Nk∑
i,j=1
i<j

2ZiZj
|Ri −Rj |

(A.4)

in which the positions of the fixed cores can be treated as a parameter. The resulting
eigenvalue equation for the separated electronic problem

H0ϕα (r,R) = εα (R)ϕα (r,R) (A.5)

yields the electronic wave functions ϕα. Since they form a full orthonormal basis, the
solution of the full eigenvalue problem

Hψ (r,R) = Eψ (r,R) (A.6)

can be expanded by means of the electronic eigenfunctions ϕα (r,R):

ψ (r,R) =
∑
α

χα (R)ϕα (r,R) . (A.7)

Plugging Eq. A.7 into Eq. A.6, multiplying with ϕ∗α (r,R) and integrating over all
electronic positions [96], neglecting the electron and core interactions [18] this finally
yields the eigenvalue equation for the cores

(TK + εβ (R))χβ (R) = Eχβ (R) . (A.8)

The cores are moving in the effective potential εβ (R) created by the electrons. By means
of the Born Oppenheimer approximation, the electronic problem has been separated
from the problem of the cores1. For the fixed positions of the cores, now the electronic
problem remains to be solved.

A.1.2. Kohn-Sham Equations

The problem is still that a large number of electrons have to be described. Instead of
calculating the many-body wave function of the whole electronic system, the Hohenberg-
Kohn theorem [95] can be used to only calculate the density of the electrons instead.
The Hohenberg Kohn theorem states [96]

1. The ground state energy is a unique functional of the ground state density.

2. For the ground state density, the energy functional E{n(r)} becomes minimal.

Statement 1 can also be reformulated to "The one particle potential is a unique func-
tional of the ground state density" [95]. In other words, if the ground state is found, the
corresponding energy is the ground state energy. It is therefore necessary to minimize
the energy as a functional of the density. The energy functional can be split into con-

1The core-core interaction enters as a constant shift of the potential and is called Madelung constant.
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tributions of the kinetic energy T , the (external) potential2 V and the electron-electron
interaction energy U [96]

E{n(r)} = T{n(r)}+ V {n(r)}+ U{n(r)} (A.9)

= −
Ne∑
i=1

ˆ
ψ∗i (r)∇2ψi(r)dr +

ˆ
V (r)n(r) dr (A.10)

+

¨
n(r)n(r′)

|r− r′|
drdr′ + Exc{n(r)}. (A.11)

Here, the ansatz for T{n(r)} is made for an interaction-free electron gas under the
assumption that the many-body wave function is actually representable by a combina-
tion of single-particle wave functions. The validity of the representation of the kinetic
energy with single-particle wave functions for interacting electrons is not clear initially.
Any contributions caused by the non-applicability of this ansatz will be included in the
exchange-correlation part Exc{n(r)} [96]. The ansatz for U is justified by the classical
electron-electron interaction. Since this is the quantum mechanical Hartree contribu-
tion, only exchange-correlation contributions are included in Exc [96].
To find the minimal energy, the variation δE must vanish. This is done under the
condition that the wave function is normalized [96]. The resulting equations are the
so-called Kohn-Sham equations [96](

−∇2 + Veff(r)
)
ψi(r) = εiψi(r), (A.12)

where the effective potential is defined as [96]

Veff(r) = V (r) +

ˆ
2n(r′)

|r− r′|
dr′ +

δExc{n(r)}
δn(r)

. (A.13)

The Kohn-Sham wave function ψi and the Lagrange parameter εi have no real physi-
cal meaning, other than that they belong to an effective one-particle substitute system
which yields the same electronic density as the real system [96]. The biggest problem re-
mains the determination of the exchange-correlation potential Vxc = δExc{n(r)}

δn(r) . In prac-
tice, there are various approaches. The most common one is the local density approx-
imation (LDA) or the local spin-density approximation (LSDA) in the spin-dependent
case with different approaches of parameterization. In this work, the parameterization
of Vosko, Wilk, and Nusair [97] will be used. Other approaches are the generalized
gradient approximation [98] or the GW approach [99].
Within a self-consistent cycle, the electronic density is calculated from a starting guess
of the potential. For this density, the potential is re-calculated. If this potential hap-
pens to coincide with the former potential, that is, within a small error boundary, the
potential is found. If not, the new potential will be mixed with the old potential and
subsequently used as new input potential until the calculation eventually converges.
Normally, simple mixing is used, where the new potential for the next cycle is given by
Vnew = amixVold + (1− amix)Vcalculated. Vold is the input potential of the current cycle,
Vcalculated is the potential calculated in the current cycle, and amix ∈ [0, 1] is the mixing
parameter. There are, however, more elaborated mixing schemes, such as the Broyden
mixing schemes [100, 101] or the Anderson mixing scheme [102].

2The potential generated by the cores.
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Instead of calculating the wave functions and from there the density, it is possible to
calculate the density, as well as many other physical observables, from the Green’s
function.

A.2. Green’s Functions

As the Green’s function can be seen as a propagator or a correlation function, the
formulation of the KKR in terms of Green’s functions can be seen as a more suitable
approach in the basis of multiple scattering.
Especially the non-equilibrium Green’s function method is a strong feature of the KKR.
Therefore, we want to introduce the method of Green’s functions here shortly.

A.2.1. Definition

In quantum mechanics, the stationary Schrödinger equation

H |ψ〉 = E |ψ〉 (A.14)

is of particular interest. Here, H is the Hamiltonian, and E the eigenenergy. To solve
this differential equation, the Green’s function proves useful. A differential equation
with the differential operator D

D |y〉 = |f〉 (A.15)

can be solved for the solution |y〉 as

GD |y〉 = |y〉 = G |f〉 , (A.16)

by defining G = D−1. The Green’s function for solving the stationary Schrödinger
equation case is normally defined for the equation

(EI −H) |ψ〉 = 0 (A.17)

as
G(EI −H) = I, (A.18)

which can be written as
G = (EI −H)−1. (A.19)

In this form, the Green’s function has poles at the real eigenenergies, which are the
main quantity in band structure calculations. The Green’s function is often evaluated
at complex energies z = E + iη, because it reduces the computational effort dramati-
cally. This is explained in Sec. 3.1.2. The following definitions of Green’s functions are
common:

G±(z) = lim
η→0

(EI ± iηI −H)−1, (A.20)

where the + represents the retarded Green’s function, and the − represents the ad-
vanced Green’s function. When not explicitly stated, we will use the retarded Green’s
function [24]. The retarded Green’s function G+(x, x′; z) can be seen as an outward
(away from the source) traveling wave function at point x, which was excited by a
unit excitation at a point x′ [24]. The advanced Green’s function G−(x, x′; z) repre-
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sents waves traveling inward (to the source of excitation) at point x due to the unit
excitation at x′ [24].

A.2.2. Dyson Equation

The Dyson equation plays a central role in the Green’s function formalism since it
enables us to calculate any Green’s function of a system from a known one if the
difference in potential is known. Suppose we have a reference system with

H0 = p̂2 + V0(r), (A.21)

where p̂2 is the momentum operator and V0(r) the potential of the reference system,
and a system under consideration, that defers from the reference system only by the
potential V(r), that is

H = H0 + V(r). (A.22)

The solution of the reference system is given by the eigenvalue equation [103]

H0
∣∣ψ0
〉

= E0
∣∣ψ0
〉
. (A.23)

and the solution of the system under consideration by [103]

H |ψ〉 = E |ψ〉 . (A.24)

The solution of these equations can be formally written as operator relation [103]

◦
G(z) = (zI −H0)−1 and G(z) = (zI −H)−1. (A.25)

The Green’s functions3 have to satisfy [103, 104]

(z −H0)
◦
G(r, r′, z) = δ(r− r′) and (z −H)G(r, r′, z) = δ(r− r′). (A.26)

By making use of A.25 and A.22, we derive the Dyson equation [104]

1 = (z1−H)G (A.27)

= (z1−H0 − V )G (A.28)

= (
◦
G−1 − V )G |

◦
G→ (A.29)

◦
G = G−

◦
GV G (A.30)

⇔ G =
◦
G+

◦
GV G (A.31)

1 = (z1−H0)
◦
G (A.32)

= (z1−H + V )
◦
G (A.33)

= (G−1 + V )
◦
G | G→ (A.34)

⇔ G =
◦
G+GV

◦
G (A.35)

The resulting equation is called Dyson equation. Since it is independent on the basis
chosen, it reads in operator representation

G =
◦
G + GV

◦
G = G +

◦
GVG. (A.36)

The Dyson equation is an exact equation and not to be mistaken with perturbation
theory.

3In the following, we will not distinguish anymore between the operator representation of the Green’s
function and the Green’s function itself. Both, operator and function, will be called Green’s function
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A.2.3. Lippmann-Schwinger Equation

A similar equation for the evolution of wave functions can be derived and is called
the Lippmann-Schwinger equation [105]. The Lippmann-Schwinger equation relates a
known wave function

∣∣ψ0
〉
to an unknown wave function |ψ〉 in a similar way as the

Dyson equation does with the Green’s function:

|ψ〉 =
∣∣ψ0
〉

+ GV
∣∣ψ0
〉

=
∣∣ψ0
〉

+
◦
GV |ψ〉 . (A.37)

A.2.4. T -operator

The Dyson and Lippmann-Schwinger equations are often written in terms of the T -
operator. The formal solution of Eq. A.37 is given by [103]

|ψ〉 =
(
I −

◦
GV
)−1 ∣∣ψ0

〉
. (A.38)

Defining the T -operator as
T = V(I −

◦
GV)−1 (A.39)

the resulting identity is
V |ψ〉 = T

∣∣ψ0
〉
. (A.40)

The wave function |ψ〉 can be found by means of the T -operator. The defining equation
Eq. A.39 of the T -operator can be written as

T = V + T
◦
GV. (A.41)

Inserting this result in itself repeatedly yields a so-called Born series as

T = V + V
◦
GV + V

◦
GV

◦
GV + . . . . (A.42)

On the other hand, the Dyson equation G =
◦
G + GV

◦
G can also be expanded as a Born

series, which yields [103, 105]

G =
◦
G +

◦
GV

◦
G +

◦
GV

◦
GV

◦
G + . . . (A.43)

=
◦
G +

◦
G
(
V + V

◦
GV + . . .

) ◦
G (A.44)

=
◦
G +

◦
GT

◦
G. (A.45)

In other words, G can be determined by the Dyson equation via the T operator.
Comparing Eq. A.36 to Eq. A.45 the relation

VG = T
◦
G (A.46)

becomes apparent.

A.2.5. Spectral Representation of the Green’s Function

A useful way to represent the Green’s function is the representation in the eigenbasis
or spectral representation [18, 103]. From the defining equation

G(zI −H) = I (A.47)
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the Matrix elements 〈ϕ| G |ϕ′〉 can be evaluated. Introducing the eigenbasis |ϕ〉 of the
Hamiltonian H the equation can be written as [18]

〈ϕ| G(zI −H)
∣∣ϕ′〉 =

∑̂
〈ϕ| G

∣∣ϕ′′〉 〈ϕ′′∣∣ zI −H ∣∣ϕ′〉 dϕ′′ (A.48)

=
∑̂
〈ϕ| G

∣∣ϕ′′〉 (z − Eϕ′)
〈
ϕ′′
∣∣ϕ′〉dϕ′′ (A.49)

= 〈ϕ| G
∣∣ϕ′〉 (z − Eϕ′) = 〈ϕ| I

∣∣ϕ′〉 (A.50)
= δ(ϕ− ϕ′) (A.51)

from which the matrix element

〈ϕ| G
∣∣ϕ′〉 =

δ(ϕ− ϕ′)
z − Eϕ′

(A.52)

can be obtained [18]. Using I =
∑́ |ϕ〉 〈ϕ| on both sides of G the spectral representation

can be obtained

G =
∑̈
|ϕ〉 〈ϕ| G

∣∣ϕ′〉 〈ϕ′∣∣dϕdϕ′ =
∑̂ |ϕ〉 〈ϕ|

z − Eϕ
dϕ. (A.53)

A.2.6. Physical Observables

From the Green’s function the electron density defined as [18, 103]

n(r, E) = 2
∑
k

|ϕk(r)|2δ(E − Ek) (A.54)

can be calculated as it contains all the necessary information about the system un-
der consideration, especially the eigenstates and eigenenergies. Using the Dirac iden-
tity [103]

lim
η→0+

1

E ± iη − Ek
= ∓πiδ(E − Ek) + P

(
1

E − Ek

)
, (A.55)

where P(x) is the Cauchy principal value, we can relate the Green’s function via the
spectral representation

G(E) = lim
η→0+

ˆ
|ϕ〉 〈ϕ|

E + iη − Eϕ
dϕ (A.56)

= −πi
ˆ
|ϕ〉 〈ϕ| δ(E − Ek)dϕ+

ˆ
|ϕ〉 〈ϕ| P

(
1

E − Ek

)
dϕ (A.57)

to the density operator n̂(E) via

n̂(E) =

ˆ
|ϕ〉 〈ϕ| δ(E − Eϕ)dϕ =

i

2π
(G − G†) = − 1

π
ImG. (A.58)

With this, it is easy to calculate the spatial electron density as

n(r) =

ˆ ∞
−∞

f(E) 〈r| n̂(E) |r〉 dE = − 1

π

ˆ EF

−∞
ImG(r, r;E)dE (A.59)
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and the density of states

n(E) =

ˆ
V
〈r| n̂(E) |r〉 dV = − 1

π

ˆ
ImG(r, r, E) dV. (A.60)

The evaluation of Eq. A.59 is done along a path in the complex plane for numerical
reasons and is described in Sec. 3.1.2

A.3. Korringa-Kohn-Rostoker Formalism

A.3.1. Cell-Centered Coordinates and Atomic Sphere Approximation

In order to make use of the spherical nature of the atomic potential and to approximate
the potential in the crystal, the space is divided into spheres. Each of these spheres
originates at the center of an atom. There are two common possibilities to construct
the spheres: In the muffin tin method, the spheres are extended such that they touch
each other and the second method is the atomic sphere approximation (ASA), in which
the spheres are extended to a size that the volume of all spheres equals the volume
of the unit cell [84, 104]. This causes overlap of the spheres and therefore leads to
double counting contributions. However, due to the equality of volumes, it is sufficient
to evaluate the volume integral for the electronic density only for the atomic spheres
and no interstitial regions have to be considered [104].
The cell-centered coordinates transform as follows:

r→ r + Rn; r′ → r′ + Rn′ . (A.61)

The upper-case vectors Rn point to the origin of an ASA sphere and the lower-case
vectors r point to a location restricted to the inside of the ASA sphere.
It is also possible to divide the space into polyhedral cells. Each polyhedral cell is
divided into a sphere with a muffin tin radius and the "interstitial" part inside the
polyhedron. In both sections, the potential is now comprised of a spherical part and
a part that is described by higher order (`,m) expansions after spherical harmonics
Ylm(r̂). The polyhedra are truncated by a shape function Θ, which is 1 if a point lies
inside the polyhedron and 0 otherwise. This approach is called full potential approach
and is described in [105–107]. The potential is given by Eq. A.75.

A.3.2. Green’s Function of the Free System

The Green’s function of the free system in the KKR is expanded in spherical Bessel
functions [105]. Since they are eigenfunctions of the Hamiltonian, the spectral repre-
sentation from Eq. A.53 can be used to represent the Green’s function of the free system
[105]

◦
G(r, r′, z) =

ˆ ∞
0

dE
∑
L

√
E

π

jL(E, r)jL(E, r′)∗

z − E
. (A.62)

Here, (`,m) → L := `2 + ` + m + 1 is the combined index of the orbital momentum `
and the magnetic quantum number m, respectively. Further, the notation

fL(z, r) = f`(
√
zr)YL(r̂) (A.63)
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and
fL(z, r)× = f`(

√
zr)YL(r̂)∗ (A.64)

is used for the product of, for example, a spherical Bessel function j`(
√
zr) (or later the

spherical Hankel function h+
` (
√
zr)) with a spherical harmonic YL(r̂). The vecotr r̂ is

the unit vector of the position vector r. Integrating this equation yields the single-center
solution [105]

◦
g(r, r′, z) = −i

√
z
∑
L

j`(
√
zr<)h+

` (
√
zr>)YL(r̂)YL(r̂′)∗. (A.65)

Here, the smaller or greater norm of the vectors r and r′ are used, that is r< = min(r, r′)
and r> = max(r, r′). When the vectors r and r′ originate in two different cells (two-
center solution), cell-centered coordinates are used. Since

◦
G(r + Rn, r

′ + Rm, z) =
◦
G(r− r′,Rn−Rm; z) only depends on the differences between the position vectors and
the centering vectors, the following expansion holds true [105]

◦
G(r + Rn, r

′ + Rm, z) = −i
√
z
∑
L

h+
L (z,Rn −Rm)jL(z, r− r′)×. (A.66)

By using an expansion for

jL(z, r− r′)× = 4π
∑
L′,L′′

i`
′−`′′−`jL′(z, r)jL′′(z, r

′)×CL
′′

LL′ (A.67)

with the Gaunt coefficients

CL
′′

LL′ =

ˆ
dΩk YL(k̂)YL′(k̂)Y ∗L′′(k̂), (A.68)

where dΩk denotes the spherical angle element in k-space, and k̂ the direction of k, the
Green’s function can finally be rewritten as [105]

◦
G(z, r + Rn, r

′ + Rm) =− 4π
√
zi

∑
L,L′,L′′

h+
L (z,Rn −Rm)i`

′−`′′−` (A.69)

× jL′(z, r)jL′′(z, r
′)×CL

′′
LL′ . (A.70)

Finally, the complete form of the Green’s function can be written as the sum of the
single-center and the two-center expansion as [18, 105]

◦
G(z, r + Rn, r

′ + Rm) =(1− δnm)
∑
LL′

jL(z, r)
◦
GnmLL′jL′(z, r

′)× (A.71)

− i
√
zδnm

∑
L

jL(z, r<)h+
L (z, r>) (A.72)

with the so-called real-space structure constants
◦
GnmLL′(z) = −4π

√
zi
∑
L′′

i`−`
′−`′′h+

L′′(z,Rn −Rm)CL
′

LL′′ . (A.73)

We see here that the spherical Bessel functions enter as a regular solution to the radial
Schrödinger equation and the spherical Hankel functions as irregular solutions. The
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solution of the multiple scattering problem later will also consist of a regular and an
irregular solution in analogy to the Green’s function of free electrons.

A.3.3. Single Scatterering

First, we consider a single scattering potential cut at a specific radius, which is called the
ASA or muffin tin radius. The corresponding Hamiltonian reads (in atomic units) [103]

H = −∇2 + V (r), (A.74)

where V (r) is the single scattering potential defined as [103]

V (r) =

{
VMT(r) r < RASA

V0 r > RASA
. (A.75)

Usually, V0 can be chosen to be 0, but in practice, for matters of the multiple scattering
with different species of elements, V0 is chosen such that the overall discontinuities at
the muffin tin radius are minimized for all potentials. To solve the problem we use that
V (r) ≡ V (r) is a central potential. Thus we can separate the solution ψL(r) of the
eigenvalue problem

HψL(r) = EψL(r) (A.76)

into
ψL(r) = R`(r, E)YL(r̂). (A.77)

YL(r̂) are the real spherical harmonics. The final problem remains to find the radial
part R`(r, E) of the wave function. Therefore the radial Schrödinger equation has to be
solved [103]: (

− d2

dr2
− 2

r

d

dr
+
`(`+ 1)

r2
+ V (r)− E

)
R`(r, E) = 0. (A.78)

Where the potential is 0, that is, outside the muffin tin radius, the solution is a super-
position of regular and irregular solutions, which are the spherical Bessel and Neumann
functions, respectively. The remaining phase shifts for the outer solution are determined
by continuity conditions of the wave function at the boundary RASA [103].
Inside the muffin tin radius, from the Lippmann-Schwinger equation we get [103]

ψ(r) = 〈r|ψ〉 =
〈
r
∣∣ψ0
〉

+

ˆ
〈r|

◦
GV
∣∣r′〉 〈r′∣∣ψ〉 dr′ (A.79)

= ψ0(r) +

ˆ
◦
G(r, r′, z)V (r′)ψ(r′) dr′. (A.80)

Now, in the case of the single scattering potential, we can calculate the radial solution
of the radial Schrödinger equation by using the radial eigenfunctions of the free system,
the spherical Bessel functions. This yields [103, 108]

R`(r, z) = j`(
√
zr) +

ˆ
◦
G(r, r′, z)V (r′)R`(r

′, z) r′
2

dr′. (A.81)
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Together with the irregular solution H+
l (r, z), that is necessary, as it can be seen already

by the Green’s function for the free system, the single site Green’s function can be
obtained as [103, 108]

gn
(
r + Rn; r′ + Rn;E

)
=
√
E
∑
L

R`(r<, E)H+
` (r>, E)YL(r̂)Y ∗L (r̂′) (A.82)

using the regular and irregular solutions from the single scatterer problem.
Instead of using the Lippmann-Schwinger like Eq. A.81, in practice, the wave function
is solved numerically by means of a predictor-corrector algorithm with in- and out-
ward integration. Both the regular solution RL(r, z) and irregular solution H+

L (r, z) are
retrieved [105].

A.3.4. Multiple Scattering

In a crystal, the situation is more complicated as several atoms are placed on different
sites and contribute to the overall potential. We, therefore, consider here a superposition
of potentials centered in ASA spheres as [103]

V (r) =
∑
n

V (|r−Rn|) =
∑
n

Vn(r). (A.83)

From here, it is convenient to use the cell-centered coordinates as introduced before.
The corresponding Schrödinger equation for ASA sphere n now reads [103](

−∇2 + Vn(r)− E
)
G
(
r + Rn; r′ + Rn′ ;E

)
= −δnn′δ

(
r− r′

)
. (A.84)

This equation is homogenous if we look at two separate cells Rn 6= Rn′ . Then we can
expand the Green’s function in the basis of the radial solutions R` of the Schrödinger
equation. If, however, we look at scattering events inside the cell, we know the solution
already as it is the solution for the single scatterer as before. The full solution, therefore,
reads [103]

G
(
r + Rn; r′ + Rn′ ;E

)
=δnn′g

n
(
r + Rn; r′ + Rn;E

)
(A.85)

+
∑
L,L′

RL(r, E)Gnn
′

LL′(E)Rn
′
L′(r

′, E), (A.86)

where the first part is called the single scattering solution and the second part is called
the multiple scattering solution. The coefficients Gnn′LL′(E) are the structural Green’s
functions, which happen to contain all the information of the multiple scattering [103].

Algebraic Dyson Equation

Now that we have expressions for the Green’s functions, we can relate them to each
other via the Dyson equation (Eq. A.36). Inserting the two expressions for the Green’s
function and the Green’s function of the free system yields the Dyson equation for the
single scatterer [103]

g(r, r′, z) =
◦
g(r, r′, z) +

◦
g(r, r′, z)∆V g(r, r′, z) (A.87)
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and a Dyson-like equation for the structural Green’s function [103]

Gnn
′

LL′(z) =
◦
Gnn

′
LL′(z) +

∑
L′′

∑
n′′

◦
Gnn

′′
LL′′(z)∆t

n′′
`′′ (z)G

n′′n′
L′′L′(z), (A.88)

which is called algebraic Dyson equation.
Here the difference of two T -operators is introduced

∆tn` (E) = tn` (E)−
(
t0
)n
`

(E). (A.89)

The matrix elements t`(E) of the T -operators are defined as follows [103]:

t`(z) = 〈j`| T |j`〉 = 〈j`| V |R`〉 =

ˆ
drr2j`(

√
Er)V (r)R`(r, E). (A.90)

The algebraic Dyson equation is the equation at the core of the KKR formalism. A
formal solution of the algebraic Dyson equation is

G = (1−
◦
G∆t)−1

◦
G. (A.91)

This equation is, however, not exactly the equation that is solved, but there are several
further considerations to take into account like the translational invariance of the crystal
or the transport geometry for the non-equilibrium formalism.

A.3.5. Further Remarks

Translational Invariance of the Ideal Crystal

The systems under consideration normally are ideal crystals, that is, they possess a
translational invariance. This translational invariance can be made use of by [104, 109]

◦
G
µµ′

nn′
LL′(E) =

Ω

(2π)3

ˆ
ΩBZ

d3k exp
(
−ikRnn′

) ◦
Gµµ

′

LL′ (k, E) . (A.92)

Ω is the volume of the real space unit cell, and ΩBZ is the volume of the Brillouin zone.
Here, two additional indices µ and µ′ are introduced, which refer to the basis of the
unit cell. The indices n and n′ now refer to the unit cell [104].
The lattice Fourier transformation finally yields the formal solution for the structure
constants [104]

Gµµ
′

LL′(k, E) =
∑
µ′′L′′

[(
1−

◦
G(k, E)∆t

)−1
]µµ′′
LL′′

◦
Gµµ

′′

LL′′(k, E). (A.93)

It is computationally more efficient though – instead of solving Eq. A.93 directly – to
invert the so called KKR matrix [109–111]

Mµµ′

LL′(k, E) =
◦
Gnn

′
LL′(k, E)− δnn′δLL′

(
(∆t)−1 (E)

)µ
L

(A.94)

and calculate the k dependant structure constants from this matrix. Using a back-
transformation, the real-space structure constants can be obtained.
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Screened KKR

Usually, when the Green’s function for the reference system, that is, the free system,
is calculated, many atoms have to be included because of the long-range interactions
from the Coulomb potentials. For convergence of the calculations, many atomic spheres
inside a cluster must be considered until the decreasing contributions can be ignored.
Since the Dyson equation is in-principle exact, any reference system can be chosen.
The Dyson equation for the system under consideration can be solved via two steps:
from the free electrons to the reference and from the reference system to the final solu-
tion. When choosing a highly-repulsive reference system, the Green’s function of this
repulsive system decays exponentially in real space so that clusters with smaller radii
containing much less atoms can be used. This reduces the computational demand very
drastically.
Care must be taken of the states introduced by the reference system. If the reference
system is not chosen to be reasonably repulsive, states of that system can exist within
the energy contour used for the calculation of the density n(r). However, since the
reference potential is highly repulsive, the states of the reference system lie high enough
to not interfere with actual states of the physical system [109, 112].
Only with the screened KKR is it possible to achieve a tight-binding like banded ma-
trix structure of the KKR matrixMµµ′

LL′(k, E) in the transport geometry [104, 110]. The
banded matrix is necessary because of the employed solution strategy for the infinite
matrix in the transport geometry. This will be discussed later.

2D-translational invariant systems

In the transport geometry for the non-equilibrium formalism, the transport direction
will be solved in real space by the decimation technique since tunnel barriers break the
translational invariance in the transport direction. Instead of a full Fourier transforma-
tion, only the in-plane components of the plane perpendicular to the transport direction
will be Fourier transformed. Therefore, the in-plane wave vector k‖ is introduced.
Further description of this procedure can be found in [104, 105, 110].

A.3.6. Spin-Polarized and Non-Collinear KKR

To account for magnetic systems, the Kohn-Sham Hamiltonian can be extended by an
effective magnetic field term [108]

H =
(
−∇2 + Veff(r)

)
12 + µBΞBeff(r) (A.95)

with the effective magnetic field

Beff(r) = Bext(r) +
δExc
δm(r)

(A.96)

and

Ξ =

(
ξ 0
0 ξ

)
, ξ = (ξx, ξy, ξz), (A.97)
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where ξx, ξy, ξz are the conventional Pauli spin matrices. Instead of only the electronic
density n(r), now also the magnetization m(r) enters into the description. The theory
can now be reformulated in terms of the spin density matrix

n(r) =
1

2
(n(r)12 + Ξ ·m(r)) , (A.98)

which is a 2× 2 matrix in the spin space [113].
In the collinear case, this matrix becomes diagonal, and hence it just remains to solve
the problem for each spin direction seperately [108]. In the case of non-collinearity, the
spin density matrix is not diagonal anymore. Instead, the spin density matrix has to
be transformed into a local frame in which the spin density matrix is diagonal, then
solved and finally rotated back [108]. Details on the formalism for the collinear and the
non-collinear case can be found in Ref. [105, 108]

A.3.7. Full-Relativistic KKR Formalism

In order to describe the spin Hall effect, a correct inclusion of the spin-orbit coupling
plays a central role. The influences of spin-orbit coupling are best described in a full-
relativistic framework. Instead of the Kohn-Sham equations, now the Kohn-Sham-Dirac
equation is solved [105]. The corresponding Kohn-Sham-Dirac Hamiltonian reads [105]

H = cαp + βmc2 + Veff(r)14 + βΞ ·Beff(r). (A.99)

Here,

α =

(
0 ξ
ξ 0

)
, β =

(
12 0
0 −12

)
. (A.100)

The solutions

ψ(E, r) =
∑
κµ

(
gκµ(E, r)χκµ(r̂)
ifκµ(E, r)χ−κµ(r̂)

)
(A.101)

consist of a combination of bi-spinors gκµ(E, r) and fκµ(E, r), and the spin spherical
harmonics χκµ(r̂) [105]. Instead of the angular quantum numbers (`,m) → L, the
relativistic angular momentum quantum numbers (κ, µ)→ Q are used [105].
Inserting this ansatz and integrating the angular parts yields the following equation [105]

∑
Q′

(
W −mc2 − U+

QQ′(r) −i~c
[

d
dr + 1

r −
κ
r

]
−i~c

[
d
dr + 1

r + κ
r

]
W +mc2 − U−QQ′(r)

)(
gQ′(r)
ifQ′(r)

)
= 0 (A.102)

with
U±QQ′(r) = 〈±κ, µ|Veff(r)± ξ ·Beff(r)

∣∣±κ′, µ′〉 , (A.103)

and the relativistic dispersion relation W 2 = c2p2 + m2c4, where p is the momentum,
c the speed of light, and m the rest mass. This system of equations can be solved
numerically and the resulting regular and irregular solutions can be used to calculate
the final Green’s function in analogy to the non-relativistic case [105, 108]

G(r, r′; z) = δnm
∑
Q

RnQ(r<, z)H
n
Q(r>, z)

× +
∑
QQ′

RnQ(r, z)GnmQQ′(z)R
m
Q′(r

′, z)×. (A.104)
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Green’s Function of the Free System

The Green’s function for the free system can be written in analogy to the non-relativistic
case [105]

◦
G(E, r + Rn, r

′ + Rm) =(1− δnm)
∑
QQ′

jQ(E, r)
◦
GnmQQ′jQ′(E, r

′)×

− i
√
Eδnm

∑
Q

h+
Q(E, r<)jQ(E, r>)×. (A.105)

Here, the notation

fQ(E, r)× =

[
f`(pr/~)χκµ(r̂),

iSκpc

W +mc2
f¯̀(pr/~)χ−κµ(r̂)

]
, (A.106)

with Sκ = κ
|κ| , ¯̀ = ` − Sκ, and p =

√
W 2 −m2c4, is used as an abbreviation for the

product of the spherical Bessel or Hankel functions with the spin spherical harmonics
χκµ(r̂) in the big and small component.

Electronic and Magnetic Density

For the equilibrium case, the electronic density is finally given by [105]

n(r) = − 1

π
Im

ˆ EF

−∞
〈r|Tr(G(E)14)) |r〉 dE (A.107)

and the i-th component of the spin magnetic moment by [105]

mi(r) = −µB
π

Im

ˆ EF

−∞
〈r|Tr

(
G(E)βΞi

)
|r〉 dE. (A.108)

Integrating the magnetic density over the Volume Vµ of corresponding atomic sphere µ
yields the magnetic moment ai(µ) in this sphere as

ai(µ) =

ˆ
Vµ

mi(r) dV. (A.109)

Further, more intricate theoretical details can be found in Refs. [84, 105, 108].
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ORGANIZATION

The supplemental information is organized as follows: In section I we show the calculated accumulation for all small
systems considered in the main text. In section II we show the accumulation for larger systems of Cu, Pt, and U. We
make a short remark on the behavior of U. In section III we conclude the supplemental information by showing the
Fermi surfaces of the considered systems with colour coded group velocity.
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I. ACCUMULATIONS FOR SMALL SYSTEMS

The accumulation of all the small (3 atomic layers) systems is depicted in Fig. 1 for the fcc (Ag, Au, Cu, Pd, Pt) and
Fig. 2 for the bcc systems (Ta, U) for all elements considered in the main text. The blue lines are calculated via the
Boltzmann formalism, the red lines are calculated via the Keldysh formalism. The accumulation shows qualitatively
the same symmetry enforced anti-symmetric behaviour in both methods. The trend between the elements is quite
consistent for both methods. The sign change in the accumulation for U and Ta is consistent in both methods. For a
detailed discussion refer to the main text. For an overview of the trend refer to Table I of the main text.

Figure 1. Plot of the magnetic moment per atom for the fcc systems. (a) Keldysh, (b) Boltzmann. The thin film is highlighted
in grey. Each line shows the same antisymmetric behaviour. The agreement of (a) and (b) between Cu, Ag, and Au is better
than for Pd and Pt.

Figure 2. Plot of the magnetic moment per atom for the bcc systems. (a) Keldysh, (b) Boltzmann. The thin film is highlighted
in grey. Each line shows the same antisymmetric behaviour. The sign of the first extremum is changed compared to the systems
with fcc lattice. The agreement of the absolute values is not of the same order as for Cu, Ag, and Au.
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II. ACCUMULATIONS FOR LARGE SYSTEMS

The accumulations of the large systems (9 atomic layers) are depicted in Fig. 3. The behavior in (a) for Cu shows
the best agreement between the two methods. The decay length of the accumulation is rather short compared to
U and Pt. Pt in Fig. 3 (b) shows a good agreement in extremal values, which may be a coincidence here, since for
the small systems of Pt the extremal values differ by factor of roughly 2. The inner structure of the magnetization
accumulation, differs more than that of Cu. For U in (c) with a more complex Fermi surface, the extremal values
differ in sign. Additionally, U shows a more complex inner structure in the accumulation, which also differs between
the two methods. We attribute the sign change which appears in the Keldysh calculation to finite size effects, since
this deviation does not occur for a thinner system with 7 atomic U layers or a larger system of 11 atomic U layers.
This is depicted in Fig. 4 (a) and (c). For comparison, the system with 9 atomic U layers is depicted in Fig. 4 (b) as
well. The absolute extremal values match rather well, but especially for the 9 layer system and the 11 layer system the
inner structure does differ significantly. While the extremal value of accumulation of Cu tends to decrease compared
to the thin film with 3 layers, the extremal values for Pt increase in both methods. In the case of U, compared to
the very thin film, each system shows a smaller extremal value. However, this extremal value is increasing from the
7 layer system to the 11 layer system except only for the 9 layer Boltzmann calculation. Also, the position of the
extremal value slightly changes compared between Keldysh and Boltzmann. Again, we attribute this also to the strong
influence of finite size effects in very thin films. However, the trend between the three systems remains qualitatively
the same. For a detailed comparison of the smaller systems refer to the main text and Table I in the main text.

Figure 3. Magnetization for a thin film of 9 (a) Cu, (b) Pt and (c) U atoms (highlighted in grey). The agreement is very
good for Cu. U and Pt differ in absolute values. U also shows a more complex inner structure of the accumulation. While the
extremal values of accumulation decrease for Cu and U, for Pt they increase. We attribute this to the strong influence of finite
size effects.
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Figure 4. Magnetization for a thin film of (a) 7, (b) 9 and (c) 11 U atoms (highlighted in grey). While the sign change is
evident for the system with 9 layers, it vanishes for the smaller and the larger systems. The position of the extremal value in
(a) and (c) differs slightly between the two methods.
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III. FERMI SURFACES

In Fig. 5 the group velocity is colour encoded on the Fermi surface. Cu, Ag, and Au show simple Fermi surfaces
without too much variation of the group velocity. Ta, Pd, Pt, and U show a more complex structure with a more
elaborated variation of the group velocity on the surface. For the entire discussion of the influences on the accumulation
refer to the main text.

Figure 5. Fermi surfaces of the all the different systems (Cu, Ag, Au, Ta, Pd, Pt, U). The color code depicts the group velocity
on the Fermi surface.



C. Magneto Capacitance

The idea of the magneto capacitance is a magnetization orientation-dependent capaci-
tance like the magnetoresistance [114] or the magneto Seebeck effect [115]. The capacity
of a tunneling structure can be evaluated based on the findings in [13], that is, viewing
the tunneling barrier as a classical plate capacitor for which

C =
∆Q

∆U
(C.1)

holds. Here, ∆Q is the excess charge that is obtained by calculating the equilibrium
density and the non-equilibrium density in the whole energy interval, adding the core
electrons and the valence electrons in the energy interval [EB, µ>] as ∆Q = QNEQ−QEQ.
Qi are the charges in one half-space of the symmetric tunneling barrier with Qi =∑

j

´
Vj
ρ(r)dr and Vi the volume of atomic spheres, that is contained in one half-space.

The applied bias voltage is e∆U = µ> − µ<.
Expanding upon [13], introducing a magnetization, two cases are considered via the
non-collinear magnetism formalism already implemented in the KKR code: parallel
(p) and anti-parallel (ap) configuration. In the parallel configuration, the quantization
axis of the magnetization is oriented parallel in both half-spaces. In the anti-parallel
configuration, the quantization axis of the magnetization of the opposing half-space is
oriented 180° to the first half-space. This allows for the definition of the two capacitances

Cp|ap = e

∑
j

ˆ
Vj

(
ρ
↑↑|↑↓
NEQ(r)− ρ↑↑|↑↓EQ (r)

)
dr

µ> − µ<
(C.2)

and likewise the definition of the magneto capacitance ratio in analogy [115, 116]

NMC =
Cap − Cp

f(Cap, Cp)
(C.3)

with f(·, ·) := max(·, ·) or min(·, ·).
For a symmetric Li tunneling barrier consisting of 44 Li and 12 Vac spheres , reasonable
results for the capacitance could be obtained. In Fig. C.1, the integrated excess charge∑

j

´
Vj

(ρNEQ(r)− ρEQ(r)) dr is shown for different applied bias voltages. The results
are similar to [13], that is, the excess charge is mainly accumulating near the surface of
the lithium. There are oscillations in the charge which are similar to Friedel oscillations,
as expected from the interface structure. As expected, the additional potential barrier
of the vacuum causes the electrons to reflect at the boundary. Note that the shape of
the charge distribution is anti-symmetric, and a change in the sign of the bias voltage
corresponds to a change in the sign of excess charge.
Looking at the charge in the left or right half-space in Fig. C.1 as the charge of a plate
of a classical parallel plate capacitor, the obtained capacitance can be calculated via
Eq. C.1. The capacitance per unit cell area is shown in Fig. C.2. The value for a bias of
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Figure C.1.: Excess Charge of a Lithium-Vac tunneling barrier for different values of
applied bias voltage

eU = 10−6 Ry has been left out, as Eq. C.1 diverges for U → 0. Note that the relative
deviation of the capacitance is less than 1%. Therefore, the capacitance is practically
constant. This result might seem to be expected at first, but given the microscopic
nature of the Li tunneling barrier and the comparably crude simplification, the result
is quite remarkable.
For a symmetric Fe tunneling barrier (46 Fe, 4 Fe), however, the convergence was

very hard to achieve. When the calculation eventually converged with a relative error
for the potential below 10−8 , the charge distribution in the transport direction showed
strong oscillations that make the result at least questionable. Also, the excess charge
distribution in Fig. C.3 shows no mirror symmetry as the charge distribution of the Li
tunneling barrier in Fig. C.1. For the excess charge of a Fe vacuum tunneling barrier,
see Fig. C.3.
We tried to achieve better convergence behavior by using the full-potential approach,
where complete space-filling is achieved by introducing polyhedra. This introduces non-
spherical parts to the potential, which are described by the expansion coefficients for
the expansion after spherical harmonics. The higher L components, especially the pz
components, should facilitate the convergence of the potential with applied linear bias
voltage because of their extension in the z direction. It was found that the convergence
behavior was not enhanced, but rather convergence could not be achieved. Presumably,
this is due to the enhanced complexity of the method, which involves multiple higher L
components to converge in the already demanding NEQ scheme.
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Figure C.2.: Capacitance per area vs. voltage for the Li tunneling barrier. The rel-
ative change of the capacitance is less than 1%, making the capacitance
practically a constant as expected

Figure C.3.: Excess charge of a Fe Vac tunneling barrier. The excess charge shows
strong oscillations and a non-symmetric behavior. Moreover, the criterion
for convergence during self-consistency was hard to achieve.
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D. Self-Consistent Spin Hall
Calculations

The spin Hall calculations are done over the whole energy contour with an applied bias
voltage to consider magnetization contributions from the Fermi surface and the Fermi
sea. During the self-consistent cycle, the potential shifts and, therefore, magnetization
contributions from the Fermi sea arise.
Here we want to consider two cases:

1. One-shot calculation

2. Self-consistent calculation

a) without applied bias shift

b) with applied bias shift

If not mentioned otherwise, the energy window (bias window) for the Fermi surface part
(NEQ part) is µ> − µ< = e∆ϕ = 10−4 Ry. States originating from the left side, that
is, nL, have to be calculated. The term “bias shift” means the actual shifting of the
potential. On the left side, the potential gets shifted up by e∆ϕ/2, and likewise, on
the right, shifted down by −e∆ϕ/2. In between, the potential is modeled as a linear
potential drop.

D.1. One-Shot Calculation

The magnetization for a one-step calculation without applied bias voltage shift is shown
in Fig. D.1(a) for the EQ part and (b) for the NEQ part. We see that the resulting
magnetization stems exclusively from the NEQ part as the fermi sea contribution van-
ishes. In Fig. D.2 the corresponding one-shot calculation at the Fermi Energy is shown.
There is no difference visible between Fig. D.1(a) and Fig. D.2, again illustrating the
fact that for the Fermi surface distribution at small bias voltages, only the value of the
magnetization at the Fermi energy is relevant.

D.2. Self-Consistent Calculation

Next, we consider the complete self-consistent cycle, which is shown in Fig. D.3. The
magnetization is calculated from the full contour without a bias shift of the potential.
The resulting magnetization profile dramatically changes along with the z index, and
the anti-symmetry in the y direction completely breaks.
The first z layer (η = 1) shows a tendency of anti-symmetry, but also, here, the anti-
symmetry is not given ideally, as it was the case in the one-shot calculations. The
contributions from the Fermi sea and the Fermi surface are shown in Fig. D.4(a) and
(b), respectively. Splitting the contributions, we see that the Fermi sea contributes with
negative values, which exhibit no anti-symmetry at all but rather a symmetry around

81



D. Self-Consistent Spin Hall Calculations

(a) Fermi sea contribution

(b) Fermi surface contribution

Figure D.1.: Contributions of the magnetization of a Pt system (3Pt-3Vac) along the
complete contour in a one-shot calculation.
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D.2. Self-Consistent Calculation

Figure D.2.: Magnetization of a Pt system (3Pt-3Vac) at the Fermi energy in a one-shot
calculation. This result is obtained in analogy to Phys. Rev. B 104,
054402, (2021).

µ = 0. The Fermi surface contribution exhibits a tendency for anti-symmetry, which
is visible for the z layers η = 2 and η = 11. This tendency for symmetry and anti-
symmetry for both parts, respectively, is at least in good agreement with the behavior
of the torque in Ref. [15].
We continue with the self-consistent calculation with an applied bias shift. The result
from the complete contour is shown in Fig. D.5 and the contributions from the Fermi
sea and the Fermi surface in Fig. D.6(a) and (b), respectively. In this calculation, the
potential has been shifted by the according linearly interpolated bias shift and then
calculated self consistently. We see here a similar behavior to the calculation without
an explicitly applied bias voltage. The total magnetization shows both symmetric and
anti-symmetric behavior. The Fermi sea contribution is almost always negative with
the tendency to symmetric behavior. The Fermi surface contribution shows an anti-
symmetric-like behavior for η = 2 and η = 11.
In both versions of the calculations, the Fermi sea contribution dominates.
We now explicitly take the even-under-spatial-inversion magnetization contributions
into account by integrating over the full contour. The calculations are then done self-
consistently until the potential has sufficiently converged. During this self-consistent
cycle, the Fermi energy is pinned in the left and right leads, and the potential shifts rel-
ative to the pinned Fermi energies. Due to this potential shift during the self-consistent
cycle, it is not a priori clear if obtained contributions now only stem from the Fermi
sea or if they get mixed, resulting in a superposition of both contributions. From the
point of view of the KKR one-shot calculations, the distinction between Fermi sea and
surface term in analogy to Boltzmann and Kubo calculations makes sense, as the latter
also derive from a pre-converged potential. The fully self-consistent calculations in the
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Figure D.3.: Magnetization of a Pt system (3Pt-3Vac) along the complete contour after
a full self-consistent cycle without bias-shifted potentials.

KKR, however, make it at least questionable to attribute certain features to either sea
or surface contribution or distinguish between them.
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D.2. Self-Consistent Calculation

(a) Fermi sea contribution

(b) Fermi surface contribution

Figure D.4.: Contributions of the magnetization of a Pt system (3Pt-3Vac) along the
complete contour after a full self-consistent cycle without bias-shifted po-
tentials.
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Figure D.5.: Magnetization of a Pt system (3Pt-3Vac) along the complete contour after
a full self-consistent cycle with bias-shifted potentials.
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D.2. Self-Consistent Calculation

(a) Fermi sea contribution

(b) Fermi surface contribution

Figure D.6.: Contributions of the magnetization of a Pt system (3Pt-3Vac) along the
complete contour after a full self-consistent cycle with bias-shifted poten-
tials.

87





E. Kerker Preconditioner

The Kerker preconditioner is mainly based on the work of Kerker [117]. Spurious
charges originating from the starting potential can occur during the mixing process
of the potential since the starting potential is only an educated guess for the final
self-consistent potential [117]. These charges contribute to the potential in the next
step in the self-consistent cycle and can therefore cause instabilities in the convergence
process [117]. This is especially the case for large supercells. Kerker’s main idea is to
introduce a screening term in the Poisson equation [117, 118]

(
∇2 − λ2

)
VCoul(r) = −4πe2

(
ρ(r) +

λ2

4πe2
VCoul(r)

)
(E.1)

that leads to exponentially decaying long-range contributions. The factor λ can be seen
as a screening parameter.
Since in KKR the implementation of the Coulomb contributions to the potential is
implemented by an Ewald method, the far field contributions are treated via Fourier
transformation. During the evaluation of the necessary coefficients [105], an integral of
the form ˆ ∞

0
e−r

2x2e−λrj`(Gr)r
2+kdr (E.2)

arises. No obvious analytic solution could be found. However, evaluation might be pos-
sible with numerical methods. It remains the question of whether far-field contributions
have to be considered at all when they decay exponentially anyway. An edge case for
testing this ansatz is a vanishing screening parameter λ. To test the old and new imple-
mentations against each other, however, for vanishing λ, the far-field contributions have
to be considered explicitly in the Kerker approach. Unfortunately, this task remains
open.
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