Genetisches Institut Fachbereich 08 (Fachrichtung Biologie) Justus-Liebig-Universität Gießen

Identifizierung und Analyse von Protein-Interaktionspartnern des Isolationsfaktors CTCF

Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades vorgelegt von Imke Panzer Gießen, Oktober 2011

Dekan: Prof. Dr. Volkmar Wolters 1. Gutachter: Prof. Dr. Rainer Renkawitz 2. Gutachter: Prof. Dr. Tina E. Trenczek 1 2

3

Inhaltsverzeichnis Zusammenfassung......1 Einleitung......2 2.12.2 23 3.1 3.2 Verbrauchsmaterialien15 3.3 3.4 3.5 3.6 3.7 3.8 3.9

	3.10	Oligonukleotide	23
	3.11	Antibiotika	25
	3.12	Antikörper	25
	3.13	Bakterienstämme	27
	3.14	Eukaryotische Zelllinien	28
4	Met	hoden	29
	4.1	Allgemeines Arbeiten mit DNA	29
	4.1.	l Lagerung	29
	4.1.2	2. Phenol/Chloroform-Extraktion und Ethanolfällung	29
	4.1.	3 Konzentrationsbestimmung von DNA	29
	4.1.4	4 Präparation von Plasmid-DNA in kleinem Maßstab mittels alkalischer Lyse	29
	4.1.	5 Präparation von Plasmid-DNA in großem Maßstab	30
	4.2	Enzymatische Modifikationen von DNA	31
	4.2.	1. Restriktionsspaltung	31
	4.2.2	2 Dephosphorylierung	31
	4.2.	3 Ligation	31
	4.2.4	4 Auffüllen von 5'-Überhängen	32
	4.2.3	5 Sequenzierung von DNA	32
	4.2.0	5 In vitro DNA-Mutagenese	32
	4.3 Ge	lelektrophorese von DNA-Fragmenten	33
	4.3.	l Agarosegele	33
	4.3.2	2 DNA-Extraktion aus Agarosegelen	34
	4.3.	3 Native Polyacrylamidgele	34
	4.4	Arbeiten mit Bakterien	34
	4.4.	Vermehrung und Lagerung	34
	4.4.2	2 Transformation mit Plasmid-DNA	35
	4.5	Arbeiten mit eukaryotischen Zelllinien	35
	4.5.	Lagerung und Auftauen von eukaryotischen Zellen	35
	4.5.2	2 Kultivierung eukaryotischer Zellen	35
	4.5.	B Einfrieren eukaryotischer Zellen	36
	4.5.4	4 DNA-Transfer in eukaryotischen Zelllinien	37
	4.5.5	5 Ernte und Aufschluss der Zellen	38
	4.5.0	6 Aktivitätsbestimmung der Luciferase (Luc-assay)	38
	4.5.	7 Aktivitätsbestimmung der ß-Galaktosidase (Lac-assay)	38

	4.5.8	Herstellung stabil transfizierter Zellklone	. 39
	4.6 Arbe	eiten mit Proteinen	. 39
	4.6.1	Lagerung von Proteinen	. 39
	4.6.2	Konzentrationsbestimmung von Proteinen	. 39
	4.6.3	Herstellung von Ganzzellextrakt	. 40
	4.6.4	Herstellung von Kernextrakt	. 41
	4.6.5	Protein-Fällung mit Trichloressigsäure (TCA)	. 42
	4.6.6	Denaturierende SDS-Polyacrylamidgele.	. 42
	4.6.7	Elektroblot	. 44
	4.6.8	Immunodetektion	. 45
	4.6.9	Befreiung der Membran von Antikörpern (Strippen)	. 46
	4.6.10	In vitro-Transkription/Translation	. 46
	4.6.11	Expression rekombinanter Proteine	. 47
	4.6.12	Affinitätsaufreinigung GST-fusionierter Proteine	. 48
	4.7 Unte	ersuchung von Protein-Protein-Interaktionen	. 48
	4.7.1	GST-Pulldown	. 48
	4.7.2	Co-Immunpräzipitation	. 48
	4.8 Prot	ein-Komplex-Aufreinigung	. 49
	481	Ionenaustauschchromatographie	49
	482	Gelfiltrations-Chromatographie	50
	483	Affinitätsaufreinigung über FLAG-Agarose	51
	484	Massenspektrometrie	52
	49 Arbe	eiten mit Drosonhila melanogaster	53
	491	Stammhaltung und Zucht von Drosonhila melanogaster	53
	492	Zubereitung von Fliegennahrung	53
	493	Eluoreszenz-gekonnelte Antikörnerdetektion an Polytänchromosomen	54
5	Ergehnis		56
	5.1 Chai	rakterisierung einer funktionellen Enhancer-Blockade-Domäne des CTCF-	
	Proteins		56
	511	Die aminoterminalen CTCF-Aminosäuren 2-67 vermitteln Enhancer-	
	Blockade	-Aktivität	57
	512	Konservierte negative Ladungen innerhalb der CTCF-Domäne 2-67 sind in	die
	Vemittlu	ng der Enhancer-Blockade involviert	59
	5.2. Unte	ersuchung einer möglichen Beteiligung des Korepressors Sap30 an der CTCF	
	vermittelten	Enhancer-Blockade-Funktion	63
	521	Corepressor Sap30 interagiert mit CTCF in vitro	63
	5.2.2	Korepressor Sap30 interagiert mit der Enhancer-Blockade-Domäne von CTO	CF
	in vitro	63	
	53 Rein	nigung eines CTCF-assozijerten Komplexes aus SL2 Zellen. Etablierung eine	s
	Zellkultursy	ingening enner eit eit unseizherten richtigtener uns eizh zenenn zuernerung enne	65
	5.4 Chro	omatographische Charakterisierung eines dCTCF-assoziierten Komplexes	. 67
	5.4.1	dCTCF ist mit mindestens zwei hochmolekularen Komplexen assoziiert	. 67
	542	dCTCF ist <i>in vivo</i> mit dem Protein CP190 assozijert	71
	55 Aufi	reinigung eines dCTCF-assozijerten Komplexes mittels Immunpräzipitation	74
	551	HA-FLAG-dCTCF kann effektiv über FLAG M2-Agarose präzipitiert werd	en i
	0.0.1	74	V 11
	552	FLAG-HA-dCTCF bindet an α-HA-Agarose kann aber nicht eluiert werden	75
	553	dCTCF ist in vivo mit insulator body"-formierenden Proteinen assoziiert	75
	554	dCTCF ist <i>in vivo</i> mit Interhanden-spezifischen Proteinen assoziiert	76
	56 Ana	lyse der FLAG-dCTCF-präzipitierten Protein-Komplexe mittels	. , 0
	Massensnek	trometrie	80

	5.6.1	Die FLAG-Immunpräzipitation führt zu einer spezifischen	
	Protein	anreicherung, die eine Analyse mittels Massenspektrometrie ermöglicht	80
	5.6.2	dCTCF ist <i>in vivo</i> mit Proteinen komplexiert, die an einer Vielzahl	
	untersc	hiedlicher Zellfunktionen beteiligt sind	81
	5.6.3	Verifizierung der dCTCF-Proteinkomplexe	87
	5.6.4	An Drosohila Polytänchromosomen zeigt dCTCF eine partielle Kolokalisa	ation
	mit der	gypsy-Isolatorkomponente CP190, jedoch keine Kolokalisation mit Rm62	89
6	Diskus	sion	1
	6.1 Cł	narakterisierung einer funktionellen Enhancer-Blockade-Domäne des CTCF-	
	Proteins	-	95
	6.2 Co	prepressor Sap30 und CTCF Interaktion	96
	6.3 Cł	narakterisierung dCTCF-assoziierter Protein-Komplexe	97
	6.3.1	dCTCF-Dimerisierung	98
	6.3.2	Isolation und Formation von insulator bodies	98
	6.3.3	Chromatin und Chromatin-Modifikation	101
	6.3.4	Regulation von Transkription und Replikation	107
	6.3.5	Kernarchitektur und Zellorganisation	109
	6.4 Sc	hlussbetrachtung - Ausblick	112
7	Literat	tur	114
8	Anhan	g	128

1 Zusammenfassung

CTCF ist ein multivalenter Faktor, der in eine Reihe von Regulationsvorgängen involviert ist. Im Mittelpunkt der vorliegenden Arbeit standen Untersuchungen zu seiner Fähigkeit, Chromatin-Isolation zu vermitteln. Die Fähigkeit, die aktivierende Wirkung von Enhancern zu blockieren, stellt hinsichtlich der Chromatin-Isolation eine zentrale Aktivität des Faktors CTCF dar, und es konnte in der vorliegenden Arbeit eine funktionelle Enhancer-Blockade-Domäne im N-terminalen Teil des Proteins näher charakterisiert werden.

Um weitere Einblicke in Mechanismen und Regulationsmöglichkeiten der CTCFvermittelten Isolation zu erhalten und die Frage zu beantworten, wie ein einzelner Faktor maßgeblich in einer solchen Vielzahl biologischer Vorgänge involviert sein kann wie es für CTCF bekannt ist, galt besonderes Interesse der Identifikation von CTCF-Interaktionspartnern.

Im Rahmen dieser Arbeit wurde ein System etabliert, um CTCF-assoziierte Proteine und Proteinkomplexe aus Embryonalzellen von *Drosophila melanogaster* zu reinigen und massenspektrometrisch zu analysieren. Das System ermöglicht die Expression eines HA-FLAG-dCTCF-Fusionsproteins, das unter der Kontrolle eines CuSO₄induzierbaren Promotors steht. Mittels Ionenaustausch- und Gelfiltrations-Chromatographie konnte hier gezeigt werden, dass dCTCF mit mindestens zwei verschiedenen hochmolekularen Komplexen assoziiert im Zellkern vorliegt, was mit dem Wissen über die Multifunktionalität des Faktors übereinstimmt.

Die massenspektrometrische Analyse zeigte, dass CTCF mit einer Vielzahl von Proteinen und Proteinkomplexen interagiert, die in völlig unterschiedlichen biologischen Funktionen involviert sind und auf unterschiedliche Art und Weise zur CTCF-vermittelten Isolation beitragen können. So konnten neben weiteren bekannten Isolator-Proteinen Drosophilas auch Chromatin-modifizierende chromatin remodelling Faktoren sowie Transkriptions- und Translationsfaktoren, als CTCFassoziierte Proteine identifiziert werden. Interessanterweise wurde auch eine Interaktion mit dem Exosom aefunden. einem hochkonservierten Multiproteinkomplex, der 3'-5'- Exoribonukleaseaktivität besitzt und somit für den prä-mRNA und mRNA-Abbau verantwortlich ist und Untereinheiten des Schwesterchromatid-Kohäsion-Komplexes Cohesin.

Die Ergebnisse dieser Arbeit bestätigen die Existenz zahlreicher Protein-Protein-Interaktionen, wie sie auch im Model des "CTCF-Codes" postuliert werden. Dem liegt zugrunde, dass es eine Vielzahl divergierender CTCF-Zielsequenzen im Genom gibt, zu deren Bindung verschiedene CTCF-Zinkfinger eingesetzt werden. Die spezifische Zinkfinger-Kombination führt zu einer spezifischen exponierten Oberfläche des Proteins, was unterschiedliche Protein-Protein-Interaktionen zur Folge hat und den Schlüssel zur Multifunktionalität des Faktors darstellt. Durch zusätzliche Modifikationen könnte eine ausreichende Variations-Komplexität erreicht werden, um dynamische Chromatindomänen und epigenetische Zustände zu organisieren.

Die vorliegende Arbeit liefert Einblicke in ein solches hochkomplexes "CTCF-Interaktom", das maßgeblich in die Übersetzung regulatorischer Außensignale in nukleare Funktionen involviert sein könnte.

2 Einleitung

Die lineare DNA liegt im Zellkern höherer Eukaryoten als Chromatin stark kondensiert vor. Sie unterliegt verschiedenen hierarchischen Ebenen der Verpackung. In der 10 nm-Faser ist die DNA um basische Proteine (Histone) gewunden. Je acht der Histon-Proteine lagern sich zu einem Octamer zusammen. Dieses bildet mit der sie umwindenden DNA ein Nukleosom. Einzelne Nukleosomen sind durch einen 50 bp langen Bereich freier DNA (Linker-DNA) miteinander Perlenschnur-Faser wird verbunden. Diese durch weitere Faltung und Schleifenbildung zu Strukturen höherer Ordnung organisiert. Die Chromatinstruktur scheint eine maßgebliche Rolle dabei zu spielen, wie die DNA-Sequenz interpretiert wird (Misteli, 2007). Die Beziehung zwischen Struktur und Funktion der DNA ist im Bereich der 10 nm-Faser am besten verstanden. Die Zugänglichkeit des Chromatins für regulatorische Faktoren wird neben der DNA-Seguenz durch enzymatische Modifikationen der Histone kontrolliert. Bestimmte Histonmodifikationen sind mit einer höheren Kompaktierung der DNA und der Bildung von Heterochromatin assoziiert. Diese transkriptionell inaktive Organisationsform des Chromatins ist arm an Genen und stark kondensiert. Die Nukleosomen weisen in diesem Bereich im allgemeinen regelmäßige Abstände auf und sind hypoacetyliert (Übersichtsartikel in Dillon und Festenstein, 2002; Grewal und Elgin, 2002). Darüber hinaus liegen centromerische Heterochromatinbereiche genarme oder telomerische und Heterochromatinabschnitte oft in der Peripherie des Zellkerns (Belmont et al, 2001). Der Prozess der Chromatinkondensation führt sich dabei selbständig fort und kann sich somit in angrenzende Genloci ausbreiten und die Expression der dortigen Gene beeinflussen (Grewal und Moazed, 2003). Vom Heterochromatin unterschieden wird das genreiche Euchromatin. Dieses umfasst meist transkriptionell aktive Gene, ist in der Interphase dekondensiert, nukleasesensitiv und weist ungleichmäßige Abstände zwischen den Nukleosomen auf, die hyperacetyliert vorliegen. Die Lokalisation von Genen in den unterschiedlichen Chromatinumgebungen hat somit aktivierenden oder reprimierenden Einfluss auf die Expression der Gene.

Neben der Chromatinstruktur scheint auch die räumliche Anordnung der DNA im Zellkern Einfluss auf die Funktion des Genoms zu haben (Fraser und Bickmore, 2007; Lanctot et al., 2007). Jedes Chromosom ist in Bezug auf die anderen Chromosomen in einem bestimmten Gebiet des Zellkerns lokalisiert und unterliegt einem dynamischen Prozeß der Kondensierung und Dekondensierung, welche in der Regel mit transkriptioneller Aktivität einhergeht. Desweiteren zeichnet sich zunehmend ein komplexes Netzwerk von intra- und interchromosomalen Kontakten ab (Lomvardars et al., 2006).

Als Konsequenz dieser Beobachtungen muss die Regulation der Genexpression in dreidimensionalen Modellen betrachtet werden. Die Komplexität der genomischen Interaktionen legt die Existenz von chromatinorganisierenden Faktoren nahe, welche intra- und interchromosomale Kontakte vermitteln. Der führende Kandidat hierfür ist der CCCTC-Bindefaktor – CTCF.

2.1 Der multivalente Faktor CTCF

Der Faktor CTCF ist innerhalb verschiedener Spezies hoch konserviert (83-84 % auf Aminosäure (AS)-Ebene bei Vertebraten) (Burke et al., 2002; Lobanenkov et al., 1990). Ursprünglich beschrieben wurde das Protein CTCF als Repressor im Kontext zweier verschiedener Gene. Im regulatorischen Bereich des c-myc Gen des Huhns bindet es das "footprint V"-Element (FPV), eine reprimierende Region, die drei Wiederholungen des Sequenzmotivs CCCTC beinhaltet (Lobanenkov et al., 1990). Bei annähernd zeitgleicher Analyse des Hühner Lysozym-Gens wurde das Silencer-Element "Footprint 1" (F1) identifiziert, welches von einem Repressor-Protein, dem "Negativen Protein 1" (NeP1), gebunden wird (Baniahmad et al., 1990). Spätere Analysen ergaben, dass dieses Protein identisch mit CTCF ist (Burcin et al., 1997). Bekannt ist auch eine transkriptionsaktivierende Wirkung von CTCF: die Bindung an die APPß-site im Promotorbereich des Amyloid ß-Vorläufer-Proteins führt zu einer gesteigerten Expression des Proteins (Vostrov and Quitschke, 1997; Yang et al., 1999).

Die von CTCF im Silencer-Element F1 gebundene Sequenz enthält wie viele weitere später identifizierte CTCF-Bindestellen keine der namensgebenden Wiederholungen des im FPV-Element enthaltenen CCCTC-Motivs. Tatsächlich divergieren die Sequenzen der inzwischen zahlreich beschriebenen CTCF-Bindeelemente so stark, dass es lange Zeit nicht möglich war, eine Konsensussequenz zu ermitteln. Durch genomweite ChIP-on-chip-Experimente wurden 13804 Bindestellen identifiziert, die es möglich machten, einen Konsensus zu berechnen (Kim et al., 2007). Darüber hinaus zeigt sich eine starke Korrelation zwischen der Anzahl der Gene eines Chromosoms und der Gesamtheit von CTCF-Bindestellen. Kürzlich wurden mittels ChIP-Sequencing-Experimenten, in denen ChIP-Analysen mit high-throughputsequencing kombiniert werden, 39609 CTCF-Bindestellen in embryonalen Stammzellen der Maus identifiziert (Chen et al., 2008), sowie 19308 und 19572 Bindestellen in HeLa- und Jurkat-Zellen. Es ist nicht klar, ob die zelltvp-spezifischen Unterschiede funktionell signifikant sind, oder sich auf eine unterschiedliche Analyseund Auswertungs-Methodik zurückführen lassen.

Die Fähigkeit, stark divergierende DNA-Elemente spezifisch zu binden, liegt in der Beschaffenheit der DNA-Bindedomäne (DBD) des Proteins begründet. Die oben erwähnte hohe Konservierung der Aminosäuresequenz ist in diesem Bereich des Proteins besonders stark ausgeprägt. Ein Vergleich der CTCF-Homologe in Mensch und Huhn ergibt eine Übereinstimmung von 100% (Filippova et al., 1996). Die DNA-Bindedomäne setzt sich aus elf Zinkfinger-Motiven zusammen (Abb. 2.1), von denen die ersten zehn eine C2H2- und das elfte eine C2HC-Konfiguration aufweisen (Klenova et al., 1993). Deletionsstudien mit der DNA-Bindedomäne ergaben, dass für jedes CTCF-Bindeelement unterschiedliche Zinkfinger für die DNA-Bindung essentiell waren (Awad et al., 1999; Burcin et al., 1997; Filippova et al., 1996). Ein kombinatorischer Einsatz der elf Zinkfinger-Motive ermöglicht dem Protein also die Bindung verschiedener DNA-Sequenzen. Eine postranslationale Modifikation der Zinkfinger-Domäne durch SUMOylierung, welche in die Repressor-Aktivität des Proteins involviert ist, konnte gezeigt werden (MacPherson et al., 2009).

Neben der annähernd zentral gelegenen DNA-Bindedomäne weist das CTCF-Protein weitere funktionelle Domänen auf (Abb. 2.1). Der aminoterminale Teil des Proteins ist sowohl in die zelltypspezifische Repression involviert (Barreto, 1999), als auch an der Induktion einer DNA-Konformationsänderung beteiligt. So ergaben Analysen von

CTCF-Deletionsmutanten, dass der Aminoterminus zusammen mit der Zinkfinger-DNA-Bindedomäne die Fähigkeit zur DNA-Biegung, während die isolierte DNA-Bindedomäne hierzu nicht in der Lage war (Arnold et al., 1996). Ausserdem findet sich eine Poly(ADP)ribosylierungs-Stelle im aminoterminale Teil des Proteins. Diese Modifikation ist in die Regulation der CTCF-vermittelten Isolation (siehe1.2), sowie der Transkription von rRNA durch CTCF, beteiligt (Yu et al., 2004; Caiafa et al., 2009).

Der Carboxyterminale Teil des Proteins und die Zinkfinger-Domäne sind sowohl einzeln als auch zusammen für die Rekrutierung von Korepressoren und für die Repression der Transkription verantwortlich (Lutz et al., 2000). Desweiteren befinden sich im Carboxyterminus ein Kern-Lokalisationssignal (Klenova et al., 1993), eine potentielle AT-reiche-DNA-Bindedomäne ("AT-Hook"), die für die Stabilisierung der DNA-Bindung verantwortlich sein könnte, sowie Erkennungsstellen für die Casein-Kinase II und die zyklische-AMP-abhängige Proteinkinase (Klenova et al., 1993). Die Phosphorylierung ist in die Repressor-Funktion des Proteins involviert und spielt eine Rolle in der CTCF-vermittelten Wachstumshemmung (Klenova et al., 2001). Zudem lässt sich in den N-terminalen Aminosäuren 1-67 des Proteins Enhancer-Blockade-Aktivtät lokalisieren (Bardenhagen I., Diplomarbeit).

Abb. 2.1: Schematische Darstellung des Proteins CTCF. Angegeben sind die Positionen der ersten und letzten Aminosäure (aa), sowie Beginn und Ende der annähernd zentral gelegenen DNA-Bindedomäne. Diese enthält 11 Zinkfinger-Motive. Funktionelle Domänen sind durch Klammern markiert. AT-HOOK: AT-reiches DNA-Bindemotiv, P: Phosphorylierungsstellen für die Casein-Kinase II

In adulten Organismen ist CTCF ubiquitär exprimiert. Expression und nukleare Verteilungsmuster des Proteins variieren jedoch in zelltyp-spezifischer Art und Weise stark, was für eine wichtige Rolle von CTCF in der Aufrechterhaltung der

phänotypischen Diversität und von Genregulationsmustern in adulten Geweben spricht. Auch führt ein CTCF-knock-down in Oocyten der Maus zu einer deregulierten Transkription von mehrere hundert Genen (Wan et al., 2008) und zieht eine dramatische Deregulation des Zellzyklus während der T-Lymphocyten-Reifung nach sich (Heath et al., 2008). Dies zeigt, dass CTCF eine kritische, regulatorische Rolle in der Expression von Genen übernimmt. Allerdings unterscheidet sich CTCF in seiner genomweiten Verteilung erheblich von klassischen Transkriptionfaktoren. In den bereits erwähnten ChIP-Sequencing-Experimenten in embryonalen Stammzellen der Maus wurden über 3500 multiple transcription factor-binding loci (MTL) identifiziert. repräsentieren Genombereiche, die mit vier oder mehr klassischen Sie Transkriptionsfaktoren assoziiert sind. Anders als bei den 15 untersuchten Transkriptionsfaktoren stimmt nur ein Bruchteil der identifizierten CTCF-Bindestellen mit den MTLs überein. Auch binden die meisten untersuchten Faktoren in Bereichen spezifischer Genklassen, während die CTCF-Bindung nicht mit einem bestimmten Typ von Genen korreliert (Chen et al., 2008). Dies zeigt, dass CTCF eine besondere Rolle spielt, die sich von der Gruppe der klassischen Transkriptionsfaktoren unterscheidet.

2.2 CTCF als Isolator-Protein

Eine neue Funktion des CTCF-Proteins konnte durch seine Identifizierung als Isolatoren-bindender Faktor beschrieben werden (Bell et al., 1999). Isolatoren sind DNA-Sequenzen, die Grenzelemente zwischen aktivem und inaktivem Chromatin darstellen (Wolffe, 1994). Die lineare Anordnung der Gene und der sie kontrollierenden DNA-Elemente, wie Enhancer (aktivierende Elemente) oder Silencer (reprimierende Elemente) erfordert die Existenz solcher Grenzelemente. Diese regulatorischen DNA-Elemente wirken weitgehend unabhängig von ihrer Position oder Orientierung relativ zu einem Gen. Dies hat eine unspezifische Wirkung auf zwei Gene zur Folge, wenn das regulatorische DNA-Element zwischen diesen positioniert ist und kein Isolator die Wirkung des Enhancers/Silencers spezifisch auf eines der Gene beschränkt. Isolatoren ermöglichen also die Etablierung genomischer Domänen unterschiedlicher Aktivität. Die Analyse auf Fähigkeit einer gegebenen funktionelle Chromatin-Domäne DNA-Sequenz, eine qeqen eine andere abzuschirmen, bedient sich im experimentellen Ansatz zweier Eigenschaften einer Isolator-Sequenz: Isolatoren wirken als "Barrieren" und ermöglichen die Abschirmung eines von ihnen flankierten Transgens gegen Positionseffekte, also eine Änderung der Transgen-Expression in Abhängigkeit des Insertionsortes im Chromatin (PEV, position effect variegation, (Karpen, 1994)). Somit ist also eine gleichbleibende Expression des Transgens, unabhängig von benachbarten Regulationselementen oder übergeordneten Chromatin-Strukturen wie repremierendes Heterochromatin gewährleistet (Kellum and Schedl, 1991; Kellum and Schedl, 1992). Solche Barrier-Elemente *boundaries*) verhindern Ausbreituna (chromatin also die einer repremierenden Chromatinumgebung in benachbarte aktive Chromatindomänen (Bushey et al., 2008). Genomweite Bindeprofile von CTCF in unterschiedlichen Organismen zeigen eine signifikante Assoziation mit Barrier-Elementen, die die Grenzen zweier benachbarter Chromatindomänen unterschiedlicher Aktivität markieren (Barski et al., 2007; Bartkuhn et al., 2009; Cuddapah et al., 2009).

Die zweite Eigenschaft, auf die ein experimenteller Nachweis einer Isolator-Funktion beruhen kann, ist die Fähigkeit einer Isolator-Sequenz, bei Insertion zwischen Gen und korrespondierenden regulatorischen Elementen die Wirkung dieser Elemente auf das Zielgen zu unterbinden. Dies konnte sowohl für Enhancer-Elemente (Cai and Levine, 1995; Kellum and Schedl, 1992; Vazquez and Schedl, 1994), als auch für

Silencer-Elemente (van der Vlag et al., 2000) gezeigt werden. Durch Untersuchung einer Reihe von DNA-Elementen auf diese grundlegenden Fähigkeiten konnten diverse Isolator-Elemente identifiziert werden. Im Jahr 1999 gelang es mit Hilfe von Enhancer-Blockade-Experimenten erstmals, ein Isolatoren-bindendes und Isolationvermittelndes Protein zu identifizieren: den Faktor CTCF (Bell et al., 1999). Eine Vielzahl der in anderem Kontext bereits bekannten CTCF-Bindestellen stellten sich daraufhin als Isolatoren heraus. So zum Beispiel der FPV des Hühner c-myc-Promotors (Lobanenkov et al., 1990) und das F1-Element des Hühner-Lysozymgens (Baniahmad et al., 1990). Zusätzlich konnten aber auch neue CTCF-Bindestellen mit Isolator-Funktion gefunden werden, wie ein 42bp-Fragment aus dem HS4-Isolator des humanen ß-Globin-Gens (Chung et al., 1993; Hebbes et al., 1994). Hier bewirkt der Isolator eine streng getrennte Regulation des ß-globin-Gens von dem benachbarten, stromaufwärts liegenden Folatrezeptorgen (Prioleau et al., 1999). Stromabwärts des ß-globin-Locus gelang zudem die Identifizierung eines zweiten Isolators, welcher als Grenzelement zu einem benachbarten Geruchsrezeptor fungiert und auch durch CTCF gebunden wird (Saitoh et al., 2000). Der ß-Globin-Locus wird also von zwei Isolator-Elementen flankiert, vergleichbar mit der Situation am Hsp70 Hitzeschock-Locus von Drosophila melanogaster, welcher durch die Flankierung mit den Isolatoren Scs und Scs' als einheitlicher Locus abgeschirmt wird (Udvardy et al., 1985). Mittlerweile wurden weitere CTCF-Bindestellen im Bereich des des ß-globin-Locus identifiziert (Bulger et al., 2003; Splinter et al., 2006).

In *Drosophila melanogaster* existiert ein zu CTCF orthologer Faktor, dCTCF (Moon et al., 2005). Neben dCTCF sind vier weitere Isolatorproteinen in *Drosophila* bekannt: BEAF-32, Su(Hw), Zw5 und GAGA (Ohtsuki und Levine, 1998). Dies spiegelt die genomische Situation in *Drosophila melanogaster* wieder: im Vergleich zu Vertebraten, besitz *Drosophila* ein extrem kompaktes Genom. dCTCF besitzt wie sein Pendant in Vertebraten ebenfalls eine zentrale Domäne mit 11 Zinkfingern, die für die DNA-Bindung verantwortlich ist.

CTCF und dCTCF teilen nicht nur eine gleiche Domänenstruktur, sondern auch für dCTCF ist der Effekt der Enhancer-Blockade nach Bindung an den Isolator *Fab-8* im Bithorax-Komplex (BX-C: *bithorax complex*) nachgewiesen (Moon et al., 2005).

Genomweite Studien sprechen für eine globale Isolator-Rolle von CTCF (Xie et al., 2007). Der Mechanismus der Enhancer-Blockade ist jedoch bisher nicht abschließend geklärt und es werden mehrere Modelle diskutiert, welche die Isolatoraktivität zu erklären versuchen. Für jedes einzelne Modell gibt es Hinweise, die aber nicht ausreichen, um das Phänomen in seiner Gesamtheit zu verstehen. Auch die Wirkungsweise eines Enhancers, der die Wahrscheinlichkeit der transkriptionellen Aktivierung eines Gens erhöht, ist bisher nicht bekannt. Im Wesentlichen existieren zwei Erklärungsansätze zur Enhancer-Wirkung. Ein Modell involviert die Bildung einer *transcription factory*, einer transienten Struktur, die mittels Antikörper gegen aktive RNA-Polymerase II visualisiert werden kann, und die eine simultane Transkription einer Vielzahl proteincodierender Gene, ermöglicht (Faro-Trindade und Cook, 2006; Sutherland und Bickmore, 2009).

Ein weiteres Modell schlägt vor, der Enhancer könnte seine Wirkung durch die Bildung einer Chromatinschleife entfalten, welche zu einer Kontaktaufnahme zwischen Enhancer und Genpromotor führt (Carter et al. 2002; Ohlsson et al. 2001; Phillips und Corces 2009). Der Kontakt könnte durch Wandern des Enhancersignals entlang des DNA-Stranges selbst (*Tracking*) oder durch die Bildung direkter Enhancer-Promotor-Schleifen entstehen. Es ist bekannt, dass Isolatoren nur in einer spezifischen Orientierung, also richtungsabhängig, funktionieren. Dies spricht für einen "geradlinigen" Wirkmechanismus, wie ihn das *Tracking*-Modell beschreibt. Nach dem *inactive loop*-Modell (Kurukuti et al. 2006) und *knotted loop*-Modell (Qui et al. 2007) bildet der Isolator eine topologischen Grenze durch Formation einer dichten, trankriptionell inaktiven Chromatinschleife. Im *unproductive-loop*-Modell (Yoon et al. 2007) konkurriert der Isolator mit dem Enhancer in Bezug auf die Promotor-Interaktion.

Die genannten Modelle zur Enhancer-Blockade basieren auf Studien, die am Igf2/H19-Lokus der Maus durchgeführt wurden, an dessen Differentially methylated region 1 (DMR1) CTCF in Abhängigkeit des Methylierungsstatus bindet (Bell and Felsenfeld, 2000; Hark et al., 2000). Die Expression der Gene Igf2 und H19 erfolgt jeweils nur vom paternalen bzw. maternalen Allel, was als genomische Prägung (Imprinting) bezeichnet wird. Während der Gametogenese wird das paternale Allel im Unterschied zum maternalen in hohem Maße methyliert. Dies führt zu einer differenziellen Expression der Gene während der Embryogenese. An diesem Imprinting beteiligt ist die CTCF-vermittelte Enhancer-Blockade. Die Allel-spezifische Expression der H19- und laf2-Gene wird durch die imprinting control region (ICR), die -2 bis -4,4 kb relativ zum Transkriptionsstart des H19-Gens liegt, reguliert. Es wurde nachgewiesen, dass die ICR durch Bindung von CTCF als Isolator auf dem maternalen Allel wirkt. Die Bindung von CTCF verhindert die Aktivierung des maternalen Igf2-Promotors durch die stromabwärts vom H19-Gen positionierten Enhancer. Aufgrund der starken Methylierung des paternalen Chromosoms im Bereich der ICR kann CTCF nicht binden, und es wird folglich keine Enhancer-Blockade ausgeübt. Dies hat zur Folge, dass der paternale Igf2-Promotor zugänglich für den Enhancer und aktiv ist. Den Beweis, dass CTCF diese allel-spezifischen Effekte durch intrachromosomale Kontakte zwischen distalen regulatorischen Elementen vermittelt, liefern chromosome conformation capture (3C)-Experimente. Die 3C-Daten ergaben, dass die CTCF gebundene ICR auf dem maternalen Allel, dessen laf2-Promotor nicht aktiv ist, mit der stromaufwärts gelegenen DMR1 und einer stromabwärts gelegenen matrix attachment region (MAR), in Kontakt tritt (Kurukuti et al., 2006; Murell et al. 2004). Die CTCF-Bindung an die DMR1 und den proximalen lgf2-Promotor ist unterbunden, wenn die maternale ICR mutiert oder entfernt wurde (Li et al., 2008; Yoon et al., 2007). Dies spricht dafür, dass die CTCF-Bindung an die distalen regulatorischen Elemente durch ICR-vermittelte Schleifenbildung zustande kommt. Die CTCF-vermittelten Kontakte scheinen eine kompakte Schleife im Bereich des Igf2-Gens zu formieren, welche eine Interaktion zwischen den proximalen laf2-Promotoren und den stromabwärts gelegenen Enhancern verhindert.

Im Gegensatz dazu ist die DMR auf dem paternalen Allel, auf welchem das Igf2-Gen aktiv exprimiert wird, methyliert. Die CTCF-Bindung ist durch die Methylierung verhindert und die gesamte DNA-Region scheint freier zugänglich für den Enhancer-Kontakt zu sein (Kurukuti et al., 2006). Eine gewebsspezifische Enhancer-Promotor-Interaktion konnte ebenfalls gezeigt werden (Yoon et al., 2007).

Die Studien am Igf2/H19-Lokus gewähren auch Einblick in einen möglichen Mechanismus, durch den CTCF-vermittelte Schleifenbildung zur transkriptionellen Reprimierung des maternalen Igf2-Gens führt. So zeigt sich, dass der Kontakt zwischen der CTCF-gebundenen ICR und den Igf2-Promotoren zur Rekrutierung des Proteins Suz12 führt (Li et al., 2008). Suz12 ist ein Cofaktor des Polycomb Repressor Complex 2, dessen Rekrutierung die Trimethylierung des Lysin 27 am Histon 3 bewirkt (H3K27me3). Diese reprimierende Chromatinmodifikation wird, neben anderen spezifischen Chromatin Modifikationen, somit im Bereich des Igf2-

Gens auf dem maternalen Allel eingeführt. CTCF fungiert also als Organistor des Allel-spezifischen Chromatins im Bereich des Igf2/H19-Lokus.

Ein weiterer, in Bezug auf die Regulation intensiv untersuchter Gen-Locus der Maus ist der bereits erwähnte ß-Globin-Locus. Er liefert ein gutes Modell-System für die Rolle von CTCF-vermittelten Chromatinkontakten in der entwicklungsspezifischen Expression eines Gen-Clusters. Im Gegensatz zum maternalen Igf2/H19-Lokus sind die CTCF-vermittelten Kontakte in diesem Fall mit transkriptioneller Aktivierung assoziiert. Direkte CTCF-Bindung konnte an drei Stellen stromaufwärts und an einer Stelle stromabwärts des ß-Globin-Locus nachgewiesen werden (Bulger et al., 2003; Splinter et al., 2006). Während der gewebsspezifischen Aktivierung bestimmter Globin-Gene kommen die CTCF-gebundenen Sequenzen in räumliche Nähe, um ein active chromatin hub (ACH) zu bilden (Splinter et al., 2006). Hingegen findet keine Interaktion zwischen voneinander entfernt liegenden CTCF-Bindestellen des ß-Globin-Locus in Zellen statt, die keine Globin-Gene exprimieren (Tolhuis et al., 2002). Eine direkte CTCF-Bindung kann in diesen Zellen nur für eine Bindestelle im ß-Globin-Locus gezeigt werden. Eine entwicklungsspezifische CTCF-Bindung scheint hier zumindest teilweise die Formation adäguater Chromatinkontakte zu modulieren (Splinter et al., 2006). Im Gegensatz zum Igf2/H19-Lokus scheinen die exakten Schleifen, welche durch eine spezifische CTCF-Bindestelle geformt werden, im ß-Globin-Locus jedoch unwichtiger zu sein. So zeigt eine Störung des ACHs durch Mutation einer CTCF-Bindestelle keinen Effekt auf die Globin-Genexpression während der Differenzierung erythroider Zellen (Splinter et al., 2006). Eine Erklärung für dieses Ergebnis liefert die Identifizierung von über sechzig inter- und intrachromosomalen Kontakten mit einer CTCF-Bindestelle im-Globin-Locus (Simonis et al., 2006). Vor dem Hintergrund der großen Anzahl von CTCF-Bindestellen in dieser Region spricht dies für eine mögliche Redundanz in den bestehenden Chromatinkontakten, so dass diese durch Mutation eines einzelnen regulatorischen Elementes nicht zwingend aufgehoben werden. Dies steht im starken Gegensatz zu der Schleifenbildung im Igf2/H19-Lokus. In manchen Gen-Loci scheint CTCF unabhängig von der Transkription als eine rein strukturelle Komponente zu wirken, die Chromatinkontakte etabliert.

Dafür spricht auch die sehr interessante Entdeckung, dass ein Großteil der Bindestellen des Cohesin-Proteinkomplexes, welcher für das Zusammenhalten von Schwesterchromatiden zu Beginn der S- bis zur G2-Phase bekannt ist, jenen von CTCF identisch sind (Parelho et al., 2008; Rubio et al., 2008; Stedman et al., 2008; Wendt et al., 2008). Cohesin besteht aus vier Untereinheiten, die eine ringförmige Struktur bilden und so Schwesterchromatiden zusammenhalten und für eine geregelte Chromosomenverteilung während der Zellteilung sorgen (Ivanov and Nasmyth, 2007). Cohesin ist auch während der Interphase an DNA gebunden und die Vermutung einer zusätzlichen Funktion bei der Regulation der Genexpression liegt nahe. Tatsächlich zeigen Reporter-Assays eine verringerte Aktivität des Hühner β-Globin-Isolators bei einem verminderten Proteinlevel von Rad21, einer Cohesin-Untereinheit (Parelho et al., 2008; Wendt et al., 2008) und es wurde gezeigt, dass Cohesin-vermittelte Chromatin-Interaktionen die ß-Globin-Genexpression in Säugerzellen regulieren (Chien et al., 2011). Des Weiteren konnte gezeigt werden, dass Cohesin an der Regulation des endogenen H19/Igf2-Isolators beteiligt ist. Erst kürzlich konnte eine von der Zellteilung unabhängige Rolle für Cohesin in Vertebraten, während der T-Zell-Rezeptor-Rekombination und der Thymocyten-Differenzierung, bestätigt werden (Seitan et al., 2011). Hier ist Cohesin für die Interaktion zwischen weit voneinander entfernten Enhancer- und PromotorElementen mit verantwortlich. Zudem beeinflusst Cohesin zusammen mit CTCF die genomische Architektur des Igh-Locus, innerhalb dessen es an zahlreichen Stellen mit CTCF kolokalisiert (Degner et al., 2011). und kürzlich wurde die direkte Interaktion der Cohesin-Untereinheit SA2 mit dem C-Terminus von CTCF beschrieben, welche für die Cohesin-abhängige Isolator-Aktivität essentiell ist (Xiao et al., 2011). Eine Korrelation zwischen Cohesin-Bindung und Transkription konnte auch in *Drosophila* gezeigt werden (Misulovin et al., 2008; Schaaf et al., 2009). Spekuliert wird über ein Modell, bei dem Cohesin dabei hilft, Chromatinschleifen zu bilden und diese zu stabilisieren (siehe auch Diskussion).

Auch in die Bildung von Kontakten zwischen verschiedenen Chromosomen scheint CTCF involviert zu sein. Ein Beispiel für die Vermittlung interchromosomaler Kontakte ist die X-Chromosom-Inaktivierung. Zum Zeitpunkt der Inaktivierung eines der zwei Chromosomen, kommen beide Chromosomen innerhalb des Nucleus in engen Kontakt (Chow und Heard, 2009). Diese Paarung ist abhängig vom sogenannten X-Inaktivierungszentrum (XIC). Es konnte gezeigt werden, dass in dieser Region ein Barrier-Element existiert und von CTCF gebunden wird (Spencer et al., 2011). Zudem ist die Paarung der Chromosomen von aktiver Transkription und von CTCF abhängig (Xu et al., 2007).

2.3 Regulationsmechanismen der CTCF-vermittelten Isolation

Zwingende Voraussetzung für eine essentielle Rolle von CTCF in der Chromatinorganisation während der Entwicklung ist die Regulierbarkeit der CTCFvermittelten Chromatinkontakte.

Eine Möglichkeit der Regulation betrifft dabei die Besetzung der DNA durch CTCF. Diese kann durch Methylierung von CpG-Dinukleotiden verändert werden, wie beispielsweise innerhalb der beschrieben *H19/lgf2*-ICR. Auch hat kürzlich eine genomweite Studie gezeigt, dass die Positionierung von Nucleosomen auf der DNA eine globale Rolle in der Regulierung der zelltyp-spezifischen CTCF-Bindung spielt (Cuddapah et al., 2009).

Des Weiteren kann die funktionelle Wirkung von CTCF durch posttranslationale Modifikationen, wie die bereits erwähnte Phosphorylierung, verändert werden. So ist z.B. bekannt, dass die durch CTCF verursachte Repression des *c-myc*-Gens durch Phosphorylierung von vier Serinen im C-Terminus zur Aktivierung führt. Mutation dieser AS führt zu einer signifikanten Verstärkung der trankriptionellen Repression des Promotors, ohne iedoch die Kernlokalisierung oder DNA-Bindung von CTCF zu beeinflussen (El-Kady and Klenova, 2005; Klenova et al., 2001). Kürzlich wurde berichtet, dass CTCF an zwei konservierten Stellen im C- und N-terminalen Bereich sowohl in vivo als auch in vitro SUMOyliert wird (MacPherson et al., 2009). Diese Modifizierung ist ein weiteres Beispiel, wie die Funktion von CTCF posttranslational gesteuert werden kann. Die SUMOylierung ist funktionell wichtig für die Repression des c-myc-Promotors. Auch kann die Poly(ADP)ribosylierung (PARylierung) von CTCF ebenfalls dessen Funktion beeinflussen. Es konnte gezeigt werden, dass die PAR-Polymerase 1 (PARP-1) CTCF durch Übertragung mehrere Ribose-Einheiten in vivo modifiziert (Yu et al., 2004). Weitere Studien führten zum Nachweis, dass diese posttranslationale Modifizierung für den Vorgang der CTCF-vermittelten Enhancer-Blockade notwendig ist. Es wurde darüber hinaus gezeigt, dass die PARylierte Form von CTCF im Nukleolus von differenzierten oder apoptotischen Zellen anzutreffen ist und dort die nukleoläre Transkription inhibiert (Torrano et al., 2006). Die Hemmung von PARP-1 führt zu einer Aufhebung der CTCF-vermittelten Isolation am Igf2/H19-Lokus, ohne jedoch die CTCF-Bindung im Locus zu beeinflussen. Vor kurzem konnte eine PARylierungs-unabhängige Assoziation von CTCF und PARP-1 an der *H19*-ICR der Maus, gezeigt werden (Farrar et al., 2010). Die Autoren spekulieren, dass CTCF und PARP-1 funktionelle Komplexe an spezifischen DNA-Sequenzen bilden und die PARylierung, bzw. de-PARylierung von CTCF einen dynamischen Prozess darstellen, der auf Zellsignale reagiert.

Die posttranslationalen Modifikationen könnten die Interaktion von CTCF mit Bindepartnern beeinflussen. Dies stellt eine weitere, sehr effektive Möglichkeit der Regulation da und ist Gegenstand intensiver Forschung. So konnten bereits mehrere CTCF-Bindepartner identifiziert werden. Dazu zählen Transkriptionfaktoren (auch CTCF selbst), das Transkriptions-Enzym RNA-Polymerase II, Chromatinmodifizierende Faktoren wie Suz12, ein Cofaktor des Polycomb Repressor Complex 2, oder nukleäre Architektur-Proteine, wie Lamin oder Cohesin. Tabelle 1 liefert eine Zusammenfassung der bisher bekannten CTCF-Interaktionspartner.

Tabelle 1. CTCF-Bindepartner

Proteinpartner	Generelle Funktion des	Funktionelle Rolle der	Referenz
	Bindepartners	CTCF-Partner Interaktion	
Transkriptionsenzyme			
RNA-Polymerase II	Transkription	Cooperation in	Chernukhin et
	proteinkodierender Gene	Transkriptionsregulation und	al., 2007
	und regulatorischer RNAs	Isolation	
Transkriptionsregulatoren			
CIITA (class II transactivator)	Transkritions-Coaktivator, Regulator von MHC II- Gentranskription	CTCF, RFX und CIITA sind essentiell für die Transkrition der HLA-DRB1- und HLA- DQA1-Gene	Majumder et al., 2008
CTCF	Multifunktioneller Transkriptionsfaktor	Dimerisierung, welche zur Interaktion distaler DNA- Regionen führen könnte	Pant et al., 2004
Kaiso	Mitglied der POZ (<i>pox virus</i> <i>and zinc finger</i>)-Familie der Zinkfinger- Transkriptionsfaktoren	Regulation CTCF-vermittelter Isolation	Defossez et al., 2005
Oct4	POU-Transkriptionsfaktor	X-Chromosomen-Paarung und <i>–counting</i>	Donohoe et al., 2009
RFX(<i>regulatory factor X</i>)	Formation des MHCII- Enhancosoms, welches CIITA rekrutiert	CTCF, RFX und CIITA sind essentiell für die Transkrition der HLA-DRB1- und HLA- DQA1-Gene	Majumder et al., 2008

(nach Ohlsson, Lobanenkov und Klenova, 2010; verändert)

YB1 YY1	Multifunktioneller <i>Y-box</i> DNA/RNA-Bindefaktor Multifunktioneller ZF DNA- Bindefaktor	CTCF und YB1 kooperieren in der transkriptionellen Repression von <i>c-myc</i> ; CTCF interferiert mit der Aktivierung der Serotonin-Transporter Genexpression durch YB1 Kooperation in der Transaktivierung des <i>Tsix</i> - Gens	Klenova et al., 2004; Chernukhin et al., 2000 Donohoe et al., 2007
Chromatin			
CHD8	SNF-2-Chromodomänen- Helikase	CHD8 reguliert CTCF- Isolatorfunktion	Ishihara et al., 2006
Suz12	Polycomb group-Protein	Regulation der CTCF- Isolatorfunktion an der <i>H19-</i> ICR	Li et al., 2008
Sin3A	Histondeacetylasen (HDAC)-Corepressor	Trägt zur CTCF-vermittelten transriptionellen Repression bei, wahrscheinlich durch Rekrutierung von HDAC- Aktivität	Lutz et al., 2000
Taf1/Set	Komponenten des INHAT (<i>inhibitor of</i> <i>acetyltransferases</i>)- Komplexes	Nicht bekannt	Yusufzai et al., 2004
H2A/H2A.Z	Nukleosomen-Untereinheit, H2A-Histonvariante	Genomweite Kolokalisation	Barski et al., 2007; Yusufzai et al., 2004
Genomintegrität			
PARP-1	Nukleoläres multifunktionelles Enzym, involviert in DNA- Reparatur, Modulation von Chromatinstruktur, Regulation von	CTCF reguliert <i>crosstalk</i> zwischen Poly(ADP)ribosylierung und DNA-Methylierung	Caiafa et al., 2009; Yusufzai et al., 2004

	Genexpression		
Kernarchitektur			
Nucleophosmin/B23	Nucleoläres Chaperon	Reguliert CTCF-vermittelte	Yusufzai et al.,
		Isolatorfunktion	2004
Cohesin	Proteinkomplex, der	Genomweite Kolokalisation,	
	Schwesterchromatid-	Reguliert CTCF-vermittelte	Wendt et al.,
	Paarung vermittelt	Isolatorfunktion	2008; Parelho
			et al., 2008;
Lamin A/C	Komponenten der	Nicht bekannt	Stedman et
	Kernlamina		al., 2008
Topoisomerase II	DNA-Topologie Enzym	Nicht bekannt	Yusufzai et al.,
			2004
			Yusufzai et al.,
			2004

Die regulatorische Rolle, welche die Interaktion eines Proteinpartners mit CTCF spielen kann, zeigt sich am Beispiel des bereits diskutierten Cohesins. Der *immunoglobulin heavy-chain* (Igh)-Locus der Maus, nimmt während der Differenzierung der B-Zellen eine kompakte dreidimensionale Topologie ein, welche eine Rolle in der V(D)J-Rekombination spielt (Jhunjhunwala et al., 2008). Mehr als 50 CTCF-Bindestellen konnten kürzlich in dieser Region identifiziert werden (Degner et al., 2009). Interessanterweise ist die CTCF-Bindung an diesen Stellen konstitutiv und bleibt unverändert während der Differenzierung der B-Zellen, während Cohesin parallel zu eintretenden Änderungen der Locus-Topologie von den CTCF-Bindestellen rekrutiert wird. Dies geschieht in einer zelltyp-spezifischen Art und Weise.

Der vielseitige Faktor CTCF vereint insgesamt betrachtet durchaus Merkmale, um als Vermittler zwischen nukleärer Organisation und Genexpression zu fungieren. So wird in der aktuellen Literatur bereits von einem "CTCF-Code" gesprochen (Ohlsson, Lobanenkov und Klenova, 2010), wonach CTCF die verschiedenen funktionellen Informationen über die CTCF-Bindestellen (CTSs) "lesen" kann. Die unterschiedliche Nucleotid-Sequenz innerhalb und außerhalb der CTSs führt demnach durch die Bindung über eine spezifische Zinkfinger-Kombination zu einer jeweils spezifisch exponierten Oberfläche des Proteins, was unterschiedliche Protein-Protein-Interaktionen zur Folge hat. Durch zusätzliche Modifikationen könnte eine Variations-Komplexität ausreichende erreicht werden. um dynamische Chromatindomänen und epigenetische Zustände zu organisieren.

In der vorliegenden Arbeit sollte zunächst die Enhancer-Blockade-Domäne des Faktors CTCF näher charakterisiert werden. Desweiteren sollten die durch CTCF eingegangenen Protein-Protein-Interaktionen, analysiert werden, indem potentielle Interaktion-Kandidaten auf ihre Assoziation mit CTCF, *in vitro* und *in vivo*, getestet wurden. Da die zahlreichen Modifikatonen CTCFs wie beschrieben mit hoher Wahrscheinlichkeit zur Bildung vieler unterschiedlicher CTCF-Proteinkomplexe führt, war außerdem die Identifizierung neuer Interaktionspartner und CTCF-assoziierter Protein-Komplexe *in vivo* Ziel dieser Arbeit, um Einblicke in Mechanismen und Regulationsmöglichkeiten der CTCF-vermittelten Isolation zu erhalten.

3 Material

3.1 Geräte

Blotapparatur	Pharmacia	
Einfrierbehälter	Nalgene	
Elektrophoresekammern	BioRad; Mighty Small, Hoefer; Peqlab	
EntwicklermaschineM35 X-Omat Processor	Kodak	
Flüssigkeitschromatograph gekoppelt mit Mas System (Waters) gekoppelt an Q-TOF Ultima	senspektrometer CapLC- Massenspektrometer (Waaters)	
Geltrockner	Geldryer Model 583, BioRad	
LuminometerSIRIUS	Berthold Detection Systems	
Mikroliterpipetten	Gilson, Eppendorf	
Mikroskope	Zeiss	
Mono Q HR5/5 (1ml)-Säule	Invitrogen	
Quarzküvetten	Hellma	
Sonifier	B12, Branson	
Spektralphotometer	Ultraspec 3100, Amersham	
Superose 6 HR 10/30-Säule	Invitrogen	
Thermocycler Research	Rotorgene RG-3000, Corbett	
UV-Transilluminator	Bachofer (366nm), UVP (254nm)	
Zählkammer	Fuchs-Rosenthal	

3.2 Verbrauchsmaterialien

Braun
Braun
Millipore
Gilson, Greiner
Param
Brand
Hirschmann
Biozym
Greiner
Ratiolab
Gilson, Greiner, Sarstedt
Immobilon, Millipore
Brand
Eppendorf
Biomax Kodak
Braun
Sarstedt
Polaroid
Millipore, Sartorius
Whatman
Greiner
Greiner, TPP, Falcon

3.3 Chemikalien

Verwendet wurden ausschließlich Reagenzien höchsten Reinheitsgrades (p.a.).

Acrylamid	Roth
Agar	BD Biosciences
Agarose	IBI, Roth
3-Aminobenzamid	Sigma
Ammoniumchlorid	Merck
Ammoniumhydrogencarbonat	Merck
Ampicillin	Merck
APS	Serva
ATP	Boehringer Mannheim
Auftragspuffer	MBI Fermentas
Bactotrypton	Applichem
B-Mercaptoethanol	Merck
Bradford-Reagenz	Roth
Bromphenolblau	Merck
BSA	Roche
Caesiumchlorid	Roth
Calciumchlorid	Merck
Chloramphenico	Roth
Chloroform	Merck
Coomassie Brilliantblau R-250	Merck
DMEM	Gibbco [™]
DNA-Längenstandards	MBI Fermentas
dNTP's (dATP, dCTP, dTTP, dGTP)	MBI Fermentas
DTT	Sigma
EDTA-Natriumsalz	Roth
EGTA-Natriumsalz	Serva
Essigsäure Merck	
Ethanol Merck	
Ethidiumbromid Roth	
Formamid Fluka	
Fötales Kälberserum (FCS)	Gibco
Glucose	Merck
Glycerol	Merck

Glykogen	Boehringer
Harnstoff	Roth
Hefeextrakt	Difco
Hepes	Roth
IPTG	Applichem
Isopropanol	Merck
Kaliumacetat	Roth
Kaliumchlorid	Roth
Kalium-di-hydrogenphosphat-3-hydrat	Merck
Di-Kaliumhydrogenphosphat	Merck
Magnesiumchlorid	Serva
Lithiumchlorid	Sigma
D-Luciferin	PJK GmbH
Magermilchpulver	Fluka
MEM (EAGLE)	Gibbco [™]
MOPS	Sigma
N, N´-Methylenbisacrylamid	Merck, Roth
Natiumhydrogencarbonat	Merck
Natriumacetat	Roth
Natriumchlorid	Roth
Natriumhydrogenphosphat- Hydrat	Merck
Oligonucleotide	Eurogentec, Life Technologies, Roth
Penicillin/ Streptomycin- Lösung	Biochrom, Gibko
Phenol	Merck, Roth
PMSF	Sigma
Radiochemikalien	Amersham
Salzsäure	Merck
SDS (Natriumdodecylsulfat)	Serva
Streptomycinsulfat	Sigma
TEMED (Tetramethylethylendiamin)	BioRad
Tris	Merck
Triton X-100	Serva
Xylencyanol FF	Merck
3.4 Enzyme	
Alkalische Kälberdarm-Phosphatase	MBI
Klenow-Enzym	MBI Fermentas

Lysozym	Serva	
Restriktionsendonukleasen	MBI Fermentas, Amersham, NEB	
T4-DNA-Ligase	MBI	
T4-Polynukleotid-Kinase	MBI	
<i>3.5 Komplettausrüstung</i> GFX [™] PCR, DNA and Gel band		
purification-Kit	Amersham	
Gene Clean II DNA Purification Kit	Qbiogene	
QuikChange Site-Directed Mutagenesis Kit	Stratagene	
TNT in vitro Transkription/		
Translation-Kit	Promega	
PlusOne Silver Staining Kit	Amersham	

3.6 DNA-Längenstandards

λ DNA EcoRI/HindIII (MBI)	pUC19 DNA Mspl (MBI)	
Fragmentgrößen (bp)	Fragmentgrößen (bp)	
21227	501	
5148	489	
4973	404	
4268	331	
3530	242	
2027	190	
1904	147	
1584	111	
1375	110	
947	67	
831		
564		
125		

3.7 Protein-Molekulargewichtsmarker

Page Ruler[™] Prestained Protein Ladder (Fermentas) kDa 170 130 100 70 55 40 35 25 15

3.8 Vektoren

Die in dieser Arbeit verwendeten Plasmide enthalten als Selektionsmarker eine Resistenz gegen das Antibiotikum Ampicillin, welche durch das Enzym ß-Lactam-Amidohydrolase (ß-Lactamase) vermittelt wird. Des Weiteren enthalten alle Plasmide den für ihre Replikation notwendigen Replikationsursprung (ori), sowie eine Polylinker-Region (MCS) mit mehreren singulären Restriktions-Schnittstellen für die Klonierung von DNA.

3.9 Plasmide für die eukaryotische Expression

pABgal₉₄-linker (A. Baniahmad, 1995)

Dieser Vektor dient zur Protein-Expression in eukaryotischen Zellen. Er besitzt einen SV40-Replikationsursprung und kodiert für eine DNA-Bindedomäne (DBD) des GAL4 Proteins (Aminosäuren 1-94). In die MCS des Vektors können cDNAs passend zum Leseraster kloniert werden. Das Translationsprodukt stellt dann ein chimäres Protein dar, welches an die GAL4-DNA-Bindesequenz eines Reportergens binden kann (Abbildung 3.1). Im Rahmen dieser Arbeit wurden folgende pABgal₉₄-Konstrukte, welche alle ein Fusionsprotein aus der GAL4-DBD und den angegebenen *chicken*(ch)-CTCF Aminosäuren (aa) kodieren (Abb. 3.1), verwendet:

pABgal₉₄-CTCF-NT (G. Barreto,1999) Kodiertes Fusionsprotein : GAL4-DBD + chCTCF aa 2-267

pABgal94-CTCF-2-67 (G. Barreto, 1999) Kodiertes Fusionsprotein : GAL4-DBD + chCTCF aa 2-67

pABgal94-CTCF-2-67mut1 (I. Panzer, siehe Anhang) Kodiertes Fusionsprotein : GAL4-DBD + chCTCF aa 2-67mut1

pABgal94-CTCF-2-67mut2 (I. Panzer, siehe Anhang) Kodiertes Fusionsprotein : GAL4-DBD + chCTCF aa 2-67mut2 **pABgal94-CTCF-2-67mut3** (I. Panzer, siehe Anhang) Kodiertes Fusionsprotein : GAL4-DBD + chCTCF aa 2-67mut3

pABgal94-CTCF-2-67mut4 (I. Panzer, siehe Anhang) Kodiertes Fusionsprotein : GAL4-DBD + chCTCF aa 2-67mut4

pABgal94-CTCF-2-67mut5 (I. Panzer, siehe Anhang) Kodiertes Fusionsprotein : GAL4-DBD + chCTCF aa 2-67mut5

pABgal94-CTCF-2-67mut6 (I. Panzer, siehe Anhang) Kodiertes Fusionsprotein : GAL4-DBD + chCTCF aa 2-67mut6

pABgal94-CTCF-2-67mut7 (I. Panzer, siehe Anhang) Kodiertes Fusionsprotein : GAL4-DBD + chCTCF aa 2-67mut7

pABgal94-CTCF-fullmut (I. Panzer, siehe Anhang) Kodiertes Fusionsprotein : GAL4-DBD + chCTCFfull-length mut

pABgal94-CTCF-NT

267

pABgal94-CTCF-2-67

 $pABgal_{94}$ -CTCF-2-67mut1 mutierte aa: 2, 4, 7 Glutaminsäure \rightarrow Alanin

pABgal₉₄-CTCF-2-67mut2 mutierte aa: 11, 12, 14 Glutaminsäure→Alanin

 $pABgal_{94}$ -CTCF-2-67mut3 mutierte aa: 30, 34, 36 Glutaminsäure \rightarrow Alanin

pABgal₉₄-CTCF-2-67mut4 mutierte aa: 2, 4, 7 Glutaminsäure→Asparaginsäure

pABgal₉₄-CTCF-2-67mut5 mutierte aa: 11, 12, 14 Glutaminsäure→Asparaginsäure

pABgal₉₄-CTCF-2-67mut7 mutierte aa:2,4,7/11,12,14/30,34,36;

Glutaminsäure→Alanin

pABgal₉₄-CTCF-fullmut mutierte aa:2,4,7/11,12,14/30,34,36;

Glutaminsäure→Alanin

Abb. 3.1: In Transfektionsexperimenten eingesetzte pABgal-chickenCTCF-Konstrukte (schematische Übersicht). Dargestellt sind die in den transienten Transfektionen zur Eingrenzung einer CTCF-Enhancer-Blockierungs-Domäne eingesetzten CTCF-Deletionskonstrukte als GAL-Fusionsproteine. Die Zahlen bezeichnen die Aminosäuren am Beginn und am Ende der Deletionskonstrukte. Jeder rote Balken in den Mutationskonstrukten stellt einen Aminosäreaustausch dar . ch: chicken-CTCF, GAL: GAL4-DNA-Bindedomäne

HA-FLAG-dCTCF (I. Panzer, siehe Anhang)

Das Konstrukt ermöglicht die Expression von HA-FLAG-dCTCF.

Das Plasmid pRmHA-FLAG basiert auf dem Vector pRMHa-3 und trägt ein HA-FLAG- Oligo, welches die Expression eines mit HA-FLAG fusionierten Proteins in *Drosophila* SL2-Zellen ermöglicht. Es besitzt einen Metallothionin-Promotor, welcher durch Kupfersulfat induzierbar ist. Die Sequenz des dCTCF-Proteins (volle Länge) wurde als PCR-Produkt in die Smal-Schnittstelle des Vektors ligiert (siehe Anhang).

p-Puro (Clontech)

Der Vektor p-Puro ist ein Selektionsvektor und verleiht eukaryotischen Zellen Puromycin- Resistenz.

Plasmide für die bakterielle Expression

Die pGEX-4T1avi-Vektoren basieren auf dem pGEX-Vektor. Sie ermöglichen die Expression eines mit GST-fusionierten Proteins in einem prokaryotischem System. Alle Vektoren wurden durch Ligation eines PCR-Produktes in die EcoRI/Xhol-Schnittstelle von pGEX-4T1avi konstruiert.

pGEX-4T1avi (J. Leers)

Ermöglicht die Expression von GST.

pGEX-4T1avi-CTCF (J. Leers)

Ermöglicht die Expression von GST-CTCF.

pGEX-4T1avi-CTCF2-67 (J. Leers)

Ermöglicht die Expression von GST-CTCF2-67.

pGEX-4T1avi-CTCF2-67mut (I.Panzer, siehe Anhang)

Ermöglicht die Expression von GST-CTCF2-67mut.

<u>Reporterkonstrukte</u>

p3α**1xA** (F. Rüger, 2001)

 $p3\alpha1xA$ ist ein Derivat des Vektors pGL3-control (Promega). Neben einem SV40-Promotor und –Enhancer, einem Luciferase-Reportergen, einer MCS, sowie einem ColE1- und f1-Replikationsursprung, besitzt der Vektor innerhalb einer zusätzlich eingefügten MCS II ein 6x17merUAS (*upstream activating sequence*), die Bindesequenz für die DBD des GAL4-Proteins, welche sich stromaufwärts des Enhancers befindet. Das Konstrukt wurde als Reporterplasmid in den durchgeführten transienten Transfektionen verwendet.

$p3\alpha 1xA \Delta Enh$ (F. Rüger,2001)

 $p3\alpha1xA \Delta Enh$ entstand durch das Ausschneiden des SV40-Enhancers aus dem Konstrukt $p3\alpha1xA$. Der Vektor wurde als Kontroll-Reporterplasmid ebenfalls in den durchgeführten transienten Transfektionen eingesetzt.

<u>Sonstige</u>

pBluescriptSK(+/-) (Stratagene)

Dieser Vektor wurde sowohl zu Klonierungszwecken als auch als Träger-DNA in transienten Transfektionsstudien verwendet. Das Phagemid ist ein Derivat des Vektors pUC19 und enthält eine MCS, flankiert von den Promotoren der T7- und T3-DNA-Polymerase. Desweiteren besitzt der Vektor neben einer Ampicillin-Resistenz das LacZ-Gen, sowie KolE1- und f1(+/-)-Replikationsursprünge.

pCITE-SAP30 (L. Burke)

Der Vektor ermöglicht die *in vitro*-Translation von SAP30. Er enthält eine MCS, flankiert von den Promotoren der T7- und T3-DNA-Polymerase. Des Weiteren besitzt der Vektor, neben einer Ampicillin-Resistenz , pUC-und f1(+/-)-Replikationsursprünge.

3.10 Oligonukleotide

Primer zum Sequenzieren

Sequenzierung von Inserts in pABgal Gal94seq 5'CTA CTG ATT TTT CCT CGA 3` Sequenzierung von Inserts in pGEX4Tavi pGEX5p 5`CTG GTT CGG CGT GGA TCC CGG GA 3`

Sequenzierung von Inserts in pRmHA-FLAG 5` TAC CCT TAT GAT GTT CCT GA 3`

Primer in der Mutationsanalyse

Folgende Oligonucleotide wurden zur Generation von Mutanten des Konstrukts pABgal₉₄-CTCF-2-67 verwendet. In den Bereich der CTCF- kodierenden Seguenz wurden mit Hilfe des QuikChange Site-Directed Mutagenesis Kit (Stratagene) verschiedene "Sets" von Punktmutationen eingeführt (Abb. 3.1), welche bei der Expression des Konstrukts an drei Positionen zu einem Aminosäureaustausch innerhalb der CTCF-Sequenz führen (Glutaminsäure→Alanin, Glutaminsäure→Asparaginsäure). So wurden sechs verschiedene Oligonucleotide (Mut1a-Mut6a) verwendet, die an jeweils drei verschiedenen Positionen von der Wildtyp-chCTCF-DNA-Sequenz abweichen (fett gedruckt) und somit zu einem Austausch von jeweils drei Aminosäuren (Position im CTCF-Protein in Klammern angegeben) führen (siehe auch Abb. 3.1). Die Oligonucleotide Mut1b-Mut6b stellen die revers komplementären Gegenstränge da.

<u>Mut1a (aa 2, 4, 7)</u>

5' GCA GCA ATT CGC AGG TGC AGC AGT TGC AGC CAT TGT GG 3'

<u>Mut1b</u>

5' CCA CAA TGG CTG CAA CTG CTG CAC CTG CGA ATT GCT GC 3'

Mut2a (aa 11, 12, 14)

5' GCC ATT GTG GCG GCA TCC GCA ACT TTT ATA AAG G 3'

<u>Mut2b</u>

5' CCT TTA TAA AAG TTG CGG ATG CCG CCA CAA TGG C 3'

Mut3a (aa 30, 34, 36)

5' GAG ACG CCG CGC GGG AGG GCA GGC GGA CGC GGC ATG CCA TAT AGC **3'**

<u>Mut3b</u>

Mut4a (aa 2, 4, 7)

5' GCA GCA ATT CGA CGG TGA TGC AGT TGA CGC CAT TGT GG 3'

<u>Mut4b</u>

5' CCA CAA TGG CGT CAA CTG CAT CAC CGT CGA ATT GCT GC 3'

<u>Mut5a (aa 11, 12, 14)</u>

5' GCC ATT GTG GAC GAC TCC GAC ACT TTT ATA AAG G 3'

<u>Mut5b</u>

5' CCT TTA TAA AAG TGT CGG AGT CGT CCA CAA TGG C 3'

Mut6a (aa 30, 34, 36)

5' GAG ACG CCG CGA CGG AGG GCA GGA TGA CGA CGC ATG CCA TAT AGC 3'

<u>Mut6b</u>

5' GCT ATA TGG CAT GCG TCG TCA TCC TGC CCT CCG TCG CGG CGT CTC **3'**

3.11 Antibiotika

Ampicillin-Vorratslösung: 100 mg/ml Einsatz in Flüssigkultur und Agarplatten 100 µg/ml

Chloramphenicol-Vorratslösung: 34 mg/ml in Ethanol Einsatz zur DNA-Amplifikation 1:200

Penicillin/Streptomycin-Vorratslösung: 10 mg/ml in ddH2O Einsatz in Flüssigkultur 1:1000

Kanamycin-Vorratslösung: 50 mg/ml inddH20 Einsatz in Flüssigkultur 70 µg/ml

Tetrazyklin-Vorratslösung: 10 mg/ml in 70% Ethanol Einsatz in Flüssigkultur und Agarplatten 10µg/ml

Vorratslösung in Zellkultur: 0,5 µg/µl in ddH2O Einsatz: 0,5 µg/ml

3.12 Antikörper

Primärantikörper

α-dCTCF C-terminal, α-dCTCF N-terminal (M. Bartkuhn):

Beide gegen jeweil das C- oder N-teminale Ende von dCTCF gerichtete Kaninchen-Seren wurden im Western Blot (WB) in einer 1:6000-Verdünnung in PBS/0,1% Tween/3% Milch verwendet.

In Co-Immunpräzipitationen wurden 5 µl pro IP verwendet.

In der indirekten Immunfluoreszenz (IF) wurde der Antikörper 1:100 in PBS verdünnt.

α-GFP Antikörper (polyklonal –Maus) (Invitrogen):

Der Antikörper wurde in der Polytänchromosomen-Färbung 1:100 eingesetzt.

α-FLAG-M2 (Sigma):

Dieser monoklonale, gegen das FLAG-Epitop gerichtete Antikörper wurde im Western Blot in einer Verdünnung von 1:6000 in PBS/0,1%Tween eingesetzt.

Su(Hw) (M.Mohan):

Dieser polyklonale Antikörper aus Kaninchen wurde im Western Blot 1:1000 in PBS/0,1% Tween/1% Milch verdünnt.

In Co-Immunpräzipitationen wurden 5 µl pro IP verwendet. In der indirekten Immunfluoreszenz wurde der Antikörper 1:200 in PBS verdünnt.

CP190 (H. Saumweber):

Dieser polyklonale Antikörper aus Maus wurde im Western Blot 1:1000 in PBS/0,1% Tween/1% Milch verdünnt.

In Co-Immunpräzipitationen wurden 100 µl pro CoIP verwendet. In der indirekten Immunfluoreszenz wurde der Antikörper 1:200 in PBS verdünnt

Lip(Rm62) (J. Böke):

Diese polyklonale Antikörper aus Ratte wurde im Wester Blot 1:100 in PBS/0,1% Tween/5% Milch verdünnt.

In Co-Immunpräzipitationen wurden 100 µl pro CoIP verwendet. In der indirekten Immunfluoreszenz wurde der Antikörper 1:100 in PBS verdünnt.

Z4 (H. Saumweber):

Diese polyklonale Antikörper aus Maus wurde im Western Blot 1:1000 in PBS/0,1% Tween verdünntt.

In Co-Immunpräzipitationen wurden 100 µl pro CoIP verwendet. In der indirekten Immunfluoreszenz wurde der Antikörper 1:100 in PBS verdünnt.

Chris (H. Saumweber):

Dieser polyklonale Antikörper aus Kaninchen wurde im Western Blot 1:1000 in PBS/0,1% Tween verdünnt.

In Co-Immunpräzipitationen wurden 100 µl pro CoIP verwendet. In der indirekten Immunfluoreszenz wurde der Antikörper 1:100 in PBS verdünnt.

Parp (Santa Cruz):

Dieser polyklonale Antikörper aus Maus wurde im Western Blot 1:1000 in PBS/0,1% Tween/ 1% Milch verdünnt.

Kismet (Santa Cruz):

Dieser polyklonale Antikörper aus Kaninchen wurde im Western Blot 1:1000 in PBS/0,1% Tween/ 1% Milch verdünnt.

Spt6 (E. Andrulis):

Dieser polyklonale Antikörper aus Meerschweinchen wurde im Western Blot 1:1000 in PBS/0,1% Tween verdünnt.

In der indirekten Immunfluoreszenz wurde der Antikörper 1:200 in PBS verdünnt.

Bap111/dalao (G.E. Chalkley):

Dieser polyklonale Antikörper aus Meerschweinchen wurde im Western Blot 1:1000 in PBS/0,1% Tween verdünnt.

In der indirekten Immunfluoreszenz wurde der Antikörper 1:100 in PBS verdünnt.In Co-Immunpräzipitationen wurden 100 µl pro CoIP verwendet.

Mip40 (M. Botchan):

Dieser polyklonale Antikörper aus Kaninchen wurde im Western Blot 1:5000 in PBS/0,1% Tween/1% Milch verdünnt.

In der indirekten Immunfluoreszenz wurde der Antikörper 1:100 in PBS verdünnt. In Co-Immunpräzipitationen wurden 100 µl pro CoIP verwendet.

HP1 (M. Mohan):

Dieser polyklonale Antikörper aus Maus wurde im Western Blot 1:1000 in PBS/0,1% Tween/1% Milch verdünnt.

In der indirekten Immunfluoreszenz wurde der Antikörper 1:200 in PBS verdünnt. In Co-Immunpräzipitationen wurden 5 µl pro CoIP verwendet.

Nup (Abcam):

Dieser polyklonale Antikörper aus Maus wurde im Western Blot 1:5000 in PBS/0,1% Tween/0,5% Milch verdünnt.

In der indirekten Immunfluoreszenz wurde der Antikörper 1:200 in PBS verdünnt. In Co-Immunpräzipitationen wurden 5 µl pro CoIP verwendet.

Rrp6 (J.T. Lis):

Dieser polyklonale Antikörper aus Kaninchen wurde im Western Blot 1:5000 in

PBS/0,1% Tween/1% Milch verdünnt.

In der indirekten Immunfluoreszenz wurde der Antikörper 1:100 in PBS verdünnt. In Co-Immunpräzipitationen wurden 5 µl pro CoIP verwendet.

Csl4 (J.T. Lis):

Dieser polyklonale Antikörper aus Meerschweinchen wurde im Western Blot 1:1000 in PBS/0,1% Tween verdünnt.

In der indirekten Immunfluoreszenz wurde der Antikörper 1:100 in PBS verdünnt. In Co-Immunpräzipitationen wurden 5 µl pro CoIP verwendet.

Rrp4 (J.T. Lis):

Dieser polyklonale Antikörper aus Meerschweinchen wurde im Western Blot 1:5000 in PBS/0,1% Tween verdünnt.

In der indirekten Immunfluoreszenz wurde der Antikörper 1:100 in PBS verdünnt. In Co-Immunpräzipitationen wurden 5 µl pro CoIP verwendet.

Sekundärantikörper

α-Maus-HRP (Amersham/Invitrogen):

Meerettich-Peroxidase-gekoppelter Antikörper gegen mausspezifische Immunglobuline. Er wurde im Western Blot 1:20000 in PBS/0,1% Tween/0,5% Milch verdünnt.

α-Kaninchen-HRP (Amersham):

Meerettich-Peroxidase gekoppelter Antikörper gegen mausspezifische Immunglobuline. Er wurde im Western Blot 1:20000 in PBS/0,1% Tween/0,5% Milch verdünnt.

α-Meerschweinchen-HRP (Sigma):

Meerettich-Peroxidase gekoppelter Antikörper gegen meerschweinchenspezifische Immunglobuline. Er wurde im Western Blot 1:20000 in PBS/0,1% Tween/0,5% Milch verdünnt.

α -Meerschweinchen-FITC-IgG (Abcam):

Affinitätsgereinigter, FITC-gekoppelter Antikörper gegen Meerschweinchen-IgGs. Der Antikörper wurde in der indirekten Immunfluoreszenz 1:100 in PBS verdünnt.

α-Maus-Alexa Fluor 488-IgG (Invitrogen):

Affinitätsgereinigter, Alexa Fluor-gekoppelter Antikörper gegen Maus-IgGs. Der Antikörper wurde in der indirekten Immunfluoreszenz 1:100 in PBS verdünnt.

α-Kaninchen-Alexa Fluor 568-IgG (Invitrogen):

Affinitätsgereinigter, Alexa Fluor-gekoppelter Antikörper gegen Kaninchen-IgGs. Der Antikörper wurde in der indirekten Immunfluoreszenz 1:100 in PBS verdünnt.

3.13 Bakterienstämme

Es wurden ausschließlich Labor-Sicherheitsstämme des Prokaryots *Escherichia coli* K12 benutzt, die zur Konjugation nicht befähigt sind.

BL 21(DE 3) pLys s (Studier et al., 1990):

Dieser Stamm trägt den Genotyp F ompT gal[dmc][lon] hsdSB($r_B m_B$) mit DE3,

einem λ-Prophagen, der das IPTG-induzierbare T7-Polymerase-Gen trägt. Er besitzt weder Ion- noch ompT-Proteasen. Weiterhin enthält er ein Plasmid, welches Sequenzen trägt, die für das T7-Lysozym und die Chloramphenicol-Acetyltransferase codieren. Er wurde zur Expression von GST-Fusionsproteinen verwendet.

Escherichia coli XL1-Blue MRF` (Stratagene):

Der Stamm besitzt den Genotyp: ∆(mcrA)183 ∆(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F`proAB laclqZ∆M15Tn10 (Tetr)].

Er enthält keine der bekannten Restriktionssysteme [Δ (mcrA)183, Δ (mcrCB-hsdSMR-mrr)173], und besitzt keine Endonuklease (endA). Es fehlt auch die Fähigkeit zur Rekombination (recA). Eine Resistenz besteht gegen Tetracyclin.

3.14 Eukaryotische Zelllinien

COS-1 (ATCC-Nr. CRL-1650)

Hierbei handelt es sich um Affen-Nierenzellen. Die Zelllinie leitet sich von CV-1-Zellen ab. Sie enthält eine integrierte Kopie des SV40-Virusgenoms. Dieses codiert für das T-Antigen. Daher replizieren COS-1 Zellen sehr effektiv solche Plasmide, die einen SV40-Replikationsursprung besitzen. Sie weisen eine fibroblastenartige Morphologie auf und wachsen adhärent als Monolayer auf beschichteten Zellkulturschalen. Sie werden in DMEM mit 10% FCS bei 37°C in 5%iger CO₂-

Atmosphäre kultiviert.

NIH3T3 (ATCC Nr. CRL-1658)

Bei dieser Zelllinie handelt es sich um einen Subklon der 3T3 Swiss albino-Linie (nicht transformierte embryonale Mausfibroblasten), die beim Erreichen einer konfluenten Zelldichte durch Kontaktinhibition eine Prädipocyten-Adipocyten ähnliche Differenzierung erfährt. Die Zellen wachsen adherent als Monolayer auf beschichteten Zellkulturschalen. Sie werden in DMEM mit 10% FCS bei 37°C in 5%iger CO₂-Atmosphäre kultiviert.

Schneiderzelllinie SL2 (ATCC-Nr. CRL-1963)

Eshandelt sich um embryonale *Drosophila melanogaster*-Zellen. Die Zellen werden in Schneiderzell-Medium mit 10% FCS bei 23°C und ohne zusätzliche CO₂ Atmosphäre kultiviert.

SL2 K4 (Bardenhagen, Imke; 2005)

SL2-Zellen wurden im Rahmen dieser Arbeit stabil mit Flag-HA-dCTCF unter Kontrolle eines CuSO4 induzierbaren Promotor transfiziert. Kultivierung entsprechend SL2-Zellen.

4 Methoden

4.1 Allgemeines Arbeiten mit DNA

4.1.1 Lagerung

Die Lagerung von DNA erfolgte in TE-Puffer bei -20°C. Ungeschnittene Plasmid-DNA wurde in TE-Puffer oder als Ethanolpräzipitat bei -20°C gelagert.

TE-Puffer: 10mM TRIS·Cl, pH 7,5 1mM EDTA

4.1.2. Phenol/Chloroform-Extraktion und Ethanolfällung

Die Phenol/Chloroform-Extraktion dient der Beseitigung von Proteinen aus wässriger DNA-Lösung (Ausubel, 1989). Durch eine anschliessende Ethanolpräzipitation werden Salze entfernt.

Zur wässrigen DNA-Lösung wurden 0,5 Volumenteile Phenol zugegeben und auf einem Vortexer intensiv gemischt. Nach Zugabe der gleichen Menge an Chloroform/Isoamylalkohol (24 : 1) wurde erneut "gevortext", anschließend zentrifugiert (5 min, 8.000 x g, RT) und die obere wässrige Phase in ein neues Gefäß überführt. Optional konnten durch Zugabe von Chloroform/Isoamylalkohol (24 : 1) mögliche Phenolreste erneut ausgeschüttelt werden. Dazu wurde nach einer weiteren Zentrifugation (5 min, 8.000 x g, RT) die obere wässrige Phase in ein neues Gefäß überführt. Aus dieser wässrigen Phase wurde die DNA durch Zugabe von 1/10 Volumen 3M NaAc, pH 5,0 und 2 Volumenteilen Ethanol für 15 min bei -20°C gefällt und durch Zentrifugation (20 min, 15.000 x g, RT) sedimentiert. Das DNA-Pellet wurde mit 70% Ethanol gewaschen, 5 min bei 15.000 x g zentrifugiert und getrocknet. Die DNA wurde für 20 min auf dem Rüttler in TE-Puffer resuspendiert.

Chloroform/Isoamylalkohol: 24 VT Chloroform/1 VT Isoamylalkohol

4.1.3 Konzentrationsbestimmung von DNA

Die DNA-Konzentration einer wässrigen Lösung wurde spektralphotometrisch bei 260 nm in Quarzküvetten bestimmt. Bei doppelsträngiger DNA entspricht eine Extinktion von 1 der Konzentration von 45 µg/ml (Maniatis, 1982).

4.1.4 Präparation von Plasmid-DNA in kleinem Maßstab mittels alkalischer Lyse

Die Plasmidpräparation im kleinen Maßstab ("*Alkaline Lysis*") wurde nach der Methode von Birnboim und Doly (Birnboim, 1979) modifiziert durchgeführt. Einzelne Klone wurden von entsprechenden Agarplatten isoliert und in 3 ml Medium (mit entsprechendem Antibiotikum) mindestens für 12 h bei 37°C geschüttelt.

1,5 ml dieser Bakterienkultur wurde in Reaktionsgefäße überführt und 1 min bei 12000 x g zentrifugiert. Der Überstand wurde mit der Wasserstrahlpumpe abgesaugt, das Pellet in 100 µl Lösung I durch Vortexen für 10 sek resuspendiert und danach 5 min bei RT inkubiert. Es folgte die Zugabe von 200 µl Lösung II, erneutes Vortexen für 10 sek und Inkubation für 5 min auf Eis. Nach Zugabe von 150 µl Lösung III, Vortexen für 10 sek und Inkubation für 5 min auf Eis, wurde bei 12000 x g für 15 min zum Abtrennen der Zelldebris zentrifugiert. Der Überstand, der die Plasmid-DNA enthält, wurde vorsichtig abpipettiert, in ein frisches Reaktionsgefäß überführt, mit

200 μ l Phenol versetzt und gemischt. Es folgte die Zugabe von 200 μ l Chloroform/Isoamylalkohol, erneutes Mischen und eine Zentrifugation für 5 min bei 8000 x g. Die obere wässrige Phase wurde daraufhin in ein neues Reaktionsgefäß abpipettiert und die Lösung mit 2 VT absolutem Ethanol versetzt und gemischt. Das Ausfällen der Plasmid-DNA wurde durch Inkubation für 10 min bei RT und die darauffolgende Zentrifugation für 15 min bei 12000 x g erreicht. Das DNA-Pellet wurde mit 900 μ l 70% igem Ethanol gewaschen, erneut für 5 min zentrifugiert, an der Luft getrocknet und in 50 μ l TE/RNAse (20 μ g RNAse/ml TE) für 10 min auf dem Rüttler und 30 min im 37° C-Wasserbad gelöst.

Um qualitative und quantitative Aussagen über die Plasmide machen zu können, wurden 5 µl der gelösten DNA gelelektrophoretisch aufgetrennt.

- Lösung I: 50 mM Glucose 25 mM Tris-HCl pH: 8,0 10 mM EDTA sterilfiltrieren
- Lösung II: 0,2 N NaOH 1 % SDS frisch ansetzen
- Lösung III: 24,5 g Kaliumacetat 35 ml Eisessig mit Eisessig auf pH: 4,8 einstellen, auf 100 ml mit ddH₂O auffüllen sterilfiltrieren

4.1.5 Präparation von Plasmid-DNA in großem Maßstab

Um größere Mengen an DNA mit hohem Reinheitsgrad zu erhalten, wurde ebenfalls die Bakterienaufschlussmethode nach Birnboim und Doly (Birnboim, 1979) angewendet. Die Abtrennung von RNA und genomischer Bakterien-DNA erfolgte mittels zweimaliger Dichtezentrifugation über einen CsCl-Gradienten.

Zu 360 ml TB-Medium wurden 40 ml Phosphat-Puffer, zur Selektion geeignete Antibiotika und die Bakterien aus einer Vorkultur gegeben und für 6-8 h bei 37°C geschüttelt. Danach wurde die Bakteriensuspension mit 2 ml einer Chloramphenikol-Lösung (34 mg/ml, in Ethanol) versetzt und für weitere 10-16 h geschüttelt. Die Bakteriensuspension wurde für 15 min bei 4000 x g und 4°C zentrifugiert. Das Bakterien-Pellet wurde in 2 ml Lösung I angeteigt, mit 7 ml Lösung I resuspendiert und nach Zugabe von 1 ml Lösung I mit 40 mg/ml Lysozym für 5 min bei RT inkubiert. Nach Zugabe von 20 ml frisch bereiteter Lösung II wurde der Aufschluss sehr gut gemischt und für 5-10 min auf Eis inkubiert. Nach Zugabe von 15 ml Lösung III und erneuter Inkubation für 10 min auf Eis, erfolgte eine Zentrifugation (15 min, 10000 x g). Der Überstand wurde in Zentrifugenröhrchen (50 ml-Falcon) überführt, mit 0,6 VT Isopropanol (10 min, RT) gefällt und anschließend präzipitiert (20 min, 6000 x g, RT). Das getrocknete Pellet wurde in 3 ml TE-Puffer resuspendiert, mit 4,5 g CsCl versetzt und bei 37°C gelöst. Danach wurden 500 µl einer Ethidiumbromid-Stammlösung (10 mg/ml) zugegeben. Es folgte eine Zentrifugation für 5 min bei 6000 x g, bei der große Mengen an Proteinen abgetrennt wurden. Der Überstand wurde in ein Beckmann Quickseal[™]-Zentrifugenröhrchen (13 x 51 mm) überführt. Das Zentrifugenröhrchen wurde daraufhin mit einer 50 %igen (w/w) CsCI-Lösung oder ddH₂O so aufgefüllt, dass ein Gesamtgewicht zwischen 9,5 und 9,8 g erreicht wurde. Es erfolgte das Zuschweißen des Zentrifugenröhrchens und die Überführung in einen Vertikalrotor (VTi 90- oder VTi 65.2-Rotor). Der Gradient bildete sich durch Ultrazentrifugation in einer Beckmann XL-70 Ultrazentrifuge aus (16 h, 55000 rpm, 25°C). Im Anschluss an die Zentrifugation wurde mit einer Einwegspritze jeweils die untere der entstandenen Banden abgesaugt und in ein neues QuicksealTM-Zentrifugenröhrchen überführt. Wie vorher wurde mit 50 % (w/w) CsCI-Lösung oder ddH₂O aufgefüllt (Gesamtgewicht 9,5-9,8 g) und erneut zentrifugiert (5 h, 55000 rpm, 25°C). Wiederum erfolgte das Absaugen der unteren Bande und eine Überführung dieser in ein 15 ml-Falcon. Das gelöste Ethidiumbromid wurde mittels einer CsClgesättigten Isopropanol-Lösung so oft ausgeschüttelt, bis die Lösung farblos war. Sicherheitshalber wurde dieses Ausschütteln noch zweimal wiederholt. Die wässrige Phase wurde mit 2 VT ddH₂O verdünnt und in ein 50 ml Beckmann-Zentrifugenröhrchen überführt. Durch Zugabe von 0,6 VT Isopropanol wurde die DNA für 15 min bei RT gefällt und durch Zentrifugation (20 min, 12000 x g, RT) sedimentiert. Das DNA-Pellet wurde zweimal mit 70 % Ethanol gewaschen, an der Luft getrocknet und je nach Ausbeute in bis zu 500 µl TE-Puffer aufgenommen und bei 4°C über Nacht gelöst.

4.2 Enzymatische Modifikationen von DNA

4.2.1. Restriktionsspaltung

Doppelsträngige DNA kann durch eine Vielzahl spezifischer Restriktionsendonukleasen geschnitten werden (Roberts, 1991). Die Restriktionsendonukleasen werden aus Mikroorganismen isoliert und können die DNA an sequenzspezifischen Stellen schneiden (Kessler und Manta, 1990). Dabei werden überhängende ("sticky") oder stumpfe ("blunt") Enden erzeugt. Die Pufferbedingungen Inkubationstemperaturen den und für entsprechenden Restriktionsverdau richteten sich nach den Angaben der Hersteller, die Inkubationszeiten nach den eingesetzten DNA- und Enzymmengen. Im Allgemeinen wurden 2-3 Enzym-Einheiten pro µg Plasmid-DNA verwendet und 2-4 h inkubiert.

4.2.2 Dephosphorylierung

Das Einbringen eines DNA-Fragmentes in einen linearisierten Vektor, welcher zwei gleiche Enden aufweist, wird durch die Religationseigenschaft des Vektors erschwert. Durch die hydrolytische Abspaltung der 5'-terminalen Phosphatgruppen des Vektors mittels alkalischer Kälberdarm-Phosphatase (CIAP) kann dessen Religation verhindert werden. Die Dephosphorylierungsreaktion erfolgte mit einer Enzym-Einheit für 1 h bei 37°C im zugehörigen Reaktionspuffer. Nach beendeter Reaktion wurde die Phosphatase durch Phenol/Chloroform-Extraktion (4.1.2) oder Gelelektrophorese (4.3) von der DNA separiert.

4.2.3 Ligation

Für die Ligation von DNA-Fragmenten wurde T4-DNA-Ligase verwendet. Dieses Enzym katalysiert ATP-abhängig die Verbindung von 5'-Phosphatgruppen und 3'-Hydroxylgruppen zu Phosphodiesterbindungen. Vektor und Insert wurden dabei im Mengenverhältnis 1:4 bei stumpfen Enden und 1:2 bei kohäsiven Enden in Ligase-Puffer mit einer Enzym-Einheit Ligase pro µg Gesamt-DNA inkubiert. Im Falle kohäsiver Enden erfolgte die Ligation bei Raumtemperatur für 2 h, im Falle stumpfer Enden über Nacht.

4.2.4 Auffüllen von 5'-Überhängen

Um zwei DNA-Fragmente, deren Enden nicht kompatibel zueinander sind, miteinander zu ligieren, ist es notwendig, diese Enden durch eine Polymerase-Reaktion zu glatten Enden mit Desoxynucleotiden aufzufüllen. Das hierfür verwendete Enzym ist das Klenow-Enzym, die große Untereinheit der DNA-abhängigen DNA-Polymerase I aus *E. coli*. Dieses Enzym katalysiert die Addition von Desoxynucleotiden an die freie 3`-OH-Gruppe eines DNA-Moleküls, das einen 5`-Überhang besitzt und somit sowohl als Primer als auch als Matrize dient. Ferner besitzt das Klenow-Enzym eine 3`-5`-Exonuclease-Aktivität.

Bei dieser Reaktion wurden bis zu 1 μ g DNA in 1x Klenow-Puffer mit 1 μ l eines dNTP-Mixes (10 mM pro dNTP) und 2 Einheiten Klenow-Enzym in einem Volumen von 20 μ l für 50 min bei RT inkubiert.

4.2.5 Sequenzierung von DNA

Die Sequenzanalyse erfolgt bei der Firma Seqlab. Der Sequenzieransatz besteht aus 600 ng Plasmid-DNA und 20 pmol des entsprechenden Sequenzierprimers in einem Gesamtvolumen von 7 μ l.

4.2.6 In vitro DNA-Mutagenese

Die in den Mutationsanalysen eingesetzten Abwandlungen des Konstrukts pABgal₉₄-CTCF-2-67 wurden mit Hilfe des *QuikChange Site-Directed Mutagenesis* Kit (Stratagene) hergestellt. Dieses System ermöglicht das ortsspezifische Einführen von Mutationen in einen doppelsträngigen Vektor. Die Methode basiert auf der Polymerase-Kettenreaktion und benutzt die *Pfu Turbo* DNA-Polymerase. Dem Protokoll wurde entsprechend der Herstellerangaben gefolgt. Die Prozedur besteht im Wesentlichen aus drei Schritten.

1. PCR-Reaktion:

Die Polymerase-Kettenreaktion ist ein Verfahren, um sehr spezifisch gewünschte DNA-Fragmente in einer exponentiell verlaufenden Polymerisierungsreaktion zu amplifizieren. Dabei kommen drei wesentliche Komponenten zum Einsatz: eine hitzestabile DNA-abhängige DNA-Polymerase, ein Plasmid oder ein DNA-Fragment, das der Polymerase als Matrize dient und schließlich zwei Primer, die komplementär zu den flankierenden Regionen der zu amplifizierenden Sequenz sind, an die sie antiparallel hybridisieren und deren freies 3'-OH der Polymerase als Substrat für die Addition von freien Desoxynukleotiden dient.

Die Reaktionen der PCR verlaufen zyklisch, die Einzelreaktionen der PCR sind temperaturabhängig und verlaufen in drei Schritten: der Denaturierung bei 94°C, bei der sich die beiden Stränge der DNA trennen, folgt das Annealing bei 45-65°C zur Hybridisierung der Primer an die DNA-Einzelstränge. Die anschließende Elongation bei 72°C, dem Temperaturoptimum der Polymerase, schließt den Zyklus ab.

Dem Reaktionsansatz werden hier neben dem Template (zu modifizierendes Vektor-Konstrukt pABgal₉₄-CTCF-2-67) zwei synthetische Oligonucleotide zugefügt, welche die gewünschten Mutationen beinhalten.

Die Oligonucleotid-Primer, jeder komplementär zu einem der gegenüberliegenden Stränge des Vektors, werden während der PCR verlängert. Die Eigenschaft der *PfuTurbo*-Polymerase keine Strangverdrängung durchzuführen, führt zur Eingliederung der Oligonucleotid-Primer. So wird ein mutiertes Plasmid mit versetzten Einzelstrangbrüchen generiert.
Reaktionsansatz:	5 µl	10x Reaktionspuffer
	0,8µl (20ng)	Template-DNA
	0,1µl (125ng)	Oligonucleotid-Primer 1
	0,1µl (125ng)	Oligonucleotid-Primer 2
	1µI	dNTP-Mix
	42,96µl	ddH ₂ O
Anschließend zugeben:	1µl (2,5 U)	PfuTurbo-Polymerase

Die Sequenzierung wurde im Thermo-Cycler mit folgendem Programm durchgeführt:

Initiale	95°C	30 sek	1 Zyklus
Denaturierung			
Denaturierung	95°C	30 sek	16 Zyklen
Annealing	55°C	1 min	16 Zyklen
Extension	68°C	8 min	16 Zyklen
Abkühlen	4°C	Maximal 30 min	

2. *Dpnl*-Verdau:

Im Anschluss an die PCR wurde das Plasmidprodukt mit der Endonuclease *Dpnl* verdaut. *Dpnl* schneidet spezifisch methylierte und hemimethylierte DNA. Da die Template-DNA (pAGgal₉₄-CTCF-2-67) aus einem dam⁺ (dam-Methylase positiv) *E.coli*-Stamm isoliert wurde, ist sie methyliert und wird von der Endonuclease *Dpnl* verdaut, während die neu synthetisierte und die Mutationen enthaltende DNA erhalten bleibt.

Dem Reaktionsansatz wurde 1µl *DpnI* zugefügt. Anschließend wurde der Ansatz für 1 h bei 37°C inkubiert.

3. Transformation in "XL1-Blue Superkompetent Cells"

Nach dem *DpnI*-Verdau wurde 1 µl des Reaktionsansatzes zur Transformation (3.5.3) der hochkompetenten Zellen XL1-*Blue* verwendet, welche in der Lage sind, die Einzelstrangbrüche des mutierten Plasmids zu reparieren.

4.3 Gelelektrophorese von DNA-Fragmenten

4.3.1 Agarosegele

Agarosegele eignen sich als Matrix zur elektrophoretischen Auftrennung von DNA-Fragmenten mit über 100 bp Länge (Southern, 1979). Der Trennbereich dieser Gele kann durch Einstellung der Agarosekonzentration (0,6 - 2 % (w/v)) variiert werden.

Zur Herstellung analytischer Agarosegele wurde Agarose in 1xTBE-Puffer in einem Mikrowellenherd erhitzt. Nach Abkühlen auf ca. 50°C wurde die Gel-Lösung in eine Flachbettapparatur gegossen (Johnson, 1977). Nach Erkalten des Gels wurde die Elektrophoresekammer mit 1xTBE-Puffer beschickt. Die aufzutrennenden DNA-Lösungen wurden mit 1/10 Volumen an Ladepuffer versetzt und auf das Gel aufgetragen. Zum Längenvergleich wurde 0,5 μ g eines DNA-Längenstandards in

einer separaten Spur mit aufgetrennt. Die bei der Elektrophorese verwendete Spannung betrug 5-10 V/cm Gel-Länge. Nach der Gelelektrophorese wurde das Gel in einer Ethidiumbromid-Färbelösung (10 μ g/ml Ethidiumbromid in dH₂O) für 15 min inkubiert und nachfolgend 10 min in H₂O gewässert. Zur Dokumentation wurden die Gele unter UV-Licht fotografiert.

10xTBE-Puffer:	900mM 900mM 20 mM	TRIS Borsäure EDTA autoklaviert (optional)
Gel-Ladepuffer:	40% (w/v) 0,05% (w/v 0,05% (w/v	Ficoll (MBI)) Bromphenolblau) Xylencyanol

4.3.2 DNA-Extraktion aus Agarosegelen

Wenn ein bestimmtes DNA-Fragment nach der Auftrennung im Agarosegel zurückgewonnen werden sollte, wurde zur Vermeidung von Kontaminationen während des Färbevorgangs, Ethidiumbromid in einer Konzentration von 10µg/ml dem noch flüssigem Gel beigefügt. Nach Abschluss der Auftrennung wurde das Gel unter 360 nm-UV-Licht analysiert. Die Bande von Interesse wurde mit einem sterilen Skalpell ausgeschnitten und die darin enthaltene DNA mit Hilfe des *Geneclean II DNA Purification Kit* (Qbiogene) extrahiert. Zu 100 mg Gel wurden 450 µl NaI-Lösung und 50 µl TBE-*Modifier* gegeben und bei 45°C für fünf Minuten inkubiert. Anschließend wurden 10 µl Glasmilch zugefügt, der Ansatz gut gevortext und fünfzehn Minuten bei RT inkubiert. Durch anschließendes Zentrifugieren (10 sec, 13000 rpm) wurde die Glas-Matrix mit der daran gebundenen DNA pelletiert und der Überstand verworfen. Nach dreimaligem Waschen des Pellets durch Zugabe von je 1 ml Waschpuffer, wurde das Pellet getrocknet (5 min bei RT). Eluiert wurde in einem Volumen von 10- 30 µl TE-Puffer durch erneute Zentrifugation (1 min, 13000 rpm).

4.3.3 Native Polyacrylamidgele

Polyacrylamid-Gele eignen sich zur Auftrennung kleinerer DNA-Fragmente (<500 bp). Zur Herstellung nativer Polyacrylamid-Gele wurde eine bestimmte Menge einer Stammlösung Acrylamid/Bisacrylamid (30:0,8 (w/v)) mit 1/10 Volumen 10xTBE-Puffer und ddH₂O gemischt. Nach Zugabe von APS (1000 µl einer 10%igen Lösung /100ml Gel) und TEMED (70 µl/100 ml Gel) wurde die Lösung nach kurzem Umrühren zwischen zwei durch Abstandhalter voneinander getrennte und abgedichtete Glasplatten gegossen und ein Kamm eingebracht. Nach erfolgter Polymerisation wurde der Kamm vorsichtig entfernt, die entstandenen Taschen ausgespült und die Elektrophorese vertikal bei einer Stromstärke von 20 mA durchgeführt. Das Laden der mit Gel-Ladepuffer supplementierten DNA-Proben erfolgte nach 20 minütiger Präelektrophorese.

4.4 Arbeiten mit Bakterien

4.4.1 Vermehrung und Lagerung

Die Vermehrung der beschriebenen Bakterienstämme erfolgte bei 37°C entweder als Schüttelkultur in LB-Medium oder auf LB-Agarplatten, eventuell mit geeigneten Antibiotika supplementiert. Auf letzteren konnten die Bakterien bis zu 4 Wochen bei 4°C gelagert werden. Zur Lagerung über einen längeren Zeitraum wurde einer LB-Bakteriensuspension Glycerin bis zu einer 15 %igen Endkonzentration zugegeben. Die Suspension wurde als Glycerinstock bei -80°C gelagert (Ausubel, 1989).

LB-Medium:	10 g/I Bactotrypton 5 g/I Hefe-Extrakt 10 g/I NaCI autoklaviert	
Agarplatten: auto abge Antii Auft 4°C.	10 g/l Bactotrypton 5 g Hefe-Extrakt 5 g/l NaCl 15 g/l Agar laviert, auf ca. 50°C in einem Wasserbad kühlt, und nach Zugabe geeigneter iotika in Petri-Schalen gegossen. Die ewahrung der Platten erfolgte im Dunkeln	bei
Glyzerinstock:	10% Bakteriensuspension 15% Glycerin	

75% LB-Medium lagern bei -80°C.

4.4.2 Transformation mit Plasmid-DNA

200 µl kompetente Bakterien wurden mit 100-500 ng Plasmid-DNA gemischt und 30 min auf Eis inkubiert. Es folgte eine Hitzebehandlung für 90 sec bei 42°C. Danach wurde 0,5 ml vorgewärmtes LB-Medium zugegeben und die Bakteriensuspension 20-40 min bei 37°C inkubiert. 100 µl der Bakteriensuspension wurden anschließend auf einer Agar-Platte ausgestrichen und mindestens 8-12 h bei 37°C inkubiert. Die Agarplatte enthielt ein zur Selektion geeignetes Antibiotikum.

4.5 Arbeiten mit eukaryotischen Zelllinien

4.5.1 Lagerung und Auftauen von eukaryotischen Zellen

Ein Aliquot (5 x 10^{6} -1 x 10^{7} Zellen) in flüssigem Stickstoff gelagerter Zellen wurde bei RT aufgetaut, unmittelbar darauf in ein steriles Zentrifugenröhrchen überführt und mit 9 ml Medium verdünnt. Hierbei mußte beachtet werden, dass das Medium sehr langsam zugegeben werden mußte, um einen Schock der Zellen zu verhindern und das DMSO auszuwaschen. Nach Zentrifugation (5 min, 1000 x g, RT) wurde das Zell-Pellet in 10 ml frischem Medium resuspendiert und die Zellen in eine Kulturschale ausgesät.

4.5.2 Kultivierung eukaryotischer Zellen

Maus-NIH3T3-Zellen wurden in einem begasten Inkubationsschrank bei 37°C in einer wasserdampfgesättigten Atmosphäre mit 5%iger CO₂-Beimischung kultiviert.

Das Kulturmedium bestand aus den Grundkomponenten Fötales Kälberserum (FCS, 10%) und Pen/Strep-Lösung (1%) in *Dulbecko's Modified Eagle* Medium (DMEM, Gibco[™]).

Drosophila S2-Zellen wurden in Gewebekulturschalen oder Flaschen, in Drosophila Schneider-Medium (Gibco) mit 10% FCS und 1% Pen/Srep-Lösun, bei 25°C kultiviert.

Adhärente Zellen wurden im Monolayer kultiviert und je nach Wachstumsrate alle zwei bis drei Tage vor Erreichen der Konfluenz geteilt und erneut ausgesät.

Bei adhärenten Zellen wurde das Medium abgesaugt und die Zellen einmal mit PBS-Puffer gewaschen. Nach Absaugen des PBS-Puffers wurden die Zellen für 2 - 5 min in 1 - 2 ml Trypsin-Lösung inkubiert. Die proteolytische Reaktion des Trypsins bewirkte das Ablösen der Zellen von den Gewebekulturschalen. Die Reaktion wurde durch Zugabe von frischem Medium abgestoppt, die abgelösten Zellen vorsichtig resuspendiert und im Verhältnis von 1:3 bis 1:10 auf neue Kulturschalen ausgesät. S2-Zellen wurden nach Absaugen des PBS-Puffers in 2 ml frischem Medium durch heftiges Schütteln abgelöst und in weiteren 10 ml frischem Medium resuspendiert.

War die Bestimmung der Zellzahl nötig, wurde eine Zählkammer mit einem Aliquot einer gut durchmischten Zellsuspension beschickt und ein Zählquadrat ausgezählt. Der erhaltene Wert wurde durch die Anzahl der kleinen Quadrate innerhalb des Zählquadrates geteilt. Dieser Durchschnittswert wurde mit einem Rechenfaktor (Fuchs-Rosenthal-Zählkammer: Tiefe: 0,2 mm, 0,0625 mm², Rechenfaktor: 8 * 10⁴) multipliziert und ergab so die Zellzahl pro ml Zellsuspension.

PBS-Puffer:

10 mM Na₃PO₄·2H₂O, pH=7,4 1,7 mM KH₂PO₄ 137 mM NaCl 2,7 mM KCl autoklaviert

Trypsin/EDTA-Lösung:

6 mM Na₂HPO₄·2H₂O 1 mM KH₂PO₄ 137 mM NaCl 2,6 mM KCl 3 mM EDTA 0,125 % (w/v) Trypsin 0,6 mM CaCl₂ 0,4 mM MgSO₄ autoklaviert

4.5.3 Einfrieren eukaryotischer Zellen

Zum Einfrieren der Zellen wurde eine Zelldichte von 5 x 10^6 -1 x 10^7 Zellen/ml eingestellt. Die aktuelle Zelldichte adhärenter Zellen wurde mit Hilfe einer Zählkammer (Fuchs-Rosenthal, Tiefe: 0.2 mm, 0,0625 mm²) ermittelt. Die

Gewebekulturzellen wurden mit Trypsin-Lösung (s. o.) abgelöst und nach Zugabe von Medium resuspendiert. Die Zellen wurden zentrifugiert (5 min, 1000 x g, RT), in geringer Menge Medium aufgenommen und die Zelldichte bestimmt. Das Einstellen der Zelldichte erfolgte durch Zugabe einer errechneten Menge Mediums. In die Zellsuspension wurde langsam und unter Schwenken DMSO bis zum Erreichen einer Endkonzentration von 7,5 % (v/v) zugetropft und die Zellsuspension portionsweise (2 ml) in Gefrierampullen überführt. Die Ampullen wurden in einem Einfrierbehälter (Technomara) bei -80°C über Nacht abgekühlt und anschließend in flüssigem Stickstoff gelagert.

4.5.4 DNA-Transfer in eukaryotischen Zelllinien

CaPO₄-Methode.

In dieser Arbeit wurde vor allem die CaPO₄-Methode zur Transfektion von eukaryotischen Zellen verwendet.

Diese Transfermethode basiert auf der Kopräzipitation der zu transfizierenden DNA mit Calciumphosphat. Die sich bildenden Mischkristalle senken sich auf die adhärenten Zellen und werden in einem noch ungeklärten Prozess aufgenommen. Um am Ende des Experiments eine dicht, jedoch nicht vollständig konfluent bewachsene 8,5 cm (\varnothing) Gewebekulturschale zu erhalten, wurden 3x10⁵ Zellen pro Transferansatz am Tag vor dem eigentlichen Transfer ausgesät. Jeder Transferansatz enthielt eine Gesamt-DNA-Menge von 15 µg, von denen 4 µg Reporter-DNA und 1 µg den internen Kontrollvektor pCMV-LacZ ausmachten. Die Effektor-DNA wurde in variablen Mengen (1-5 µg) eingesetzt und der Transfermix dementsprechend mit *carrier*-DNA (engl.: Träger; Plasmid-DNA ohne Insert, hier pBluescript SK) auf 15 µg Gesamt-DNA aufgefüllt. Basierend auf den Arbeiten von Jordan (Jordan, 1996), wurde wie folgt weiter vorgegangen:

1. Zu dem hergestellten Transfermix wurden pro Ansatz 380 µl 250 mM CaCl₂ zugegeben, gevortext und kurz zentrifugiert (13000 rpm).

2. Im folgenden wurden die Transferansätze einzeln und nacheinander bearbeitet: pro Ansatz wurden 440 µl 2xHBS (pH 7,5) mittels eines automatischen Tropfenapplikators mit fixierter Schütteleinrichtung zugegeben. Die "Tropfzeit" wurde dabei so gewählt, dass alle Transferansätze innerhalb 30 min wie beschrieben behandelt werden konnten, so dass die zuerst behandelte Probe nach einer Inkubationszeit von genau 30 min auf die am Tag zuvor ausgesäten Zellen getropft werden konnte. Die durch das Eintropfen des 2x HBS-Puffers gebildeten Kristall-DNA-Komplexe setzen sich nach einiger Zeit auf den Zellen ab und werden teilweise von diesen aufgenommen.

3. 24 Stunden nach dem Auftropfen des Transferansatzes auf die Zellen, wurde das Medium mit den noch verbliebenen Kristall-DNA-Komplexen abgesaugt, 1x mit PBS gewaschen und frisches Medium wieder zugefügt. Weitere 24 Stunden später wurden die Zellen geerntet.

2xHBS-Puffer:280 mM NaCl50 mM HEPES1,5 mM Na2HPO4mit HCl auf pH 7,12 einstellen und sterilfiltrieren

4.5.5 Ernte und Aufschluss der Zellen

Ernte:

48 Stunden nach der Transfektion wurden die Zellen wie folgt geerntet:

1. Das Medium wurde abgesaugt und die Zellen mit ca. 8 ml PBS gewaschen. Die Zugabe von PBS erfolgte dabei vorsichtig an den Rand der Platte, da ein direktes Pipettieren der Lösung auf die Zellen das Ablösen und damit den Verlust der Zellen zur Folge hätte.

2. Nach dem möglichst vollständigen Absaugen des PBS nach dem Waschschritt wurde 1 ml Lysispuffer auf die Zellen gegeben und 5 min bei RT inkubiert.

3. Mit einem Zellschaber wurden die Zellen quantitativ von der Platte geschabt und in ein 1,5 ml Eppendorf-Gefäß überführt. Diese wurde sofort auf Eis gestellt.

25 mM Tris/HCL, pH 7,5	
8 mM MgCl ₂	
1 mM EDTA	
1 % Triton X 100	
15 % Glycerin	
pH-Wert auf 7,1-7,5 einstelle	en
	25 mM Tris/HCL, pH 7,5 8 mM MgCl ₂ 1 mM EDTA 1 % Triton X 100 15 % Glycerin pH-Wert auf 7,1-7,5 einstelle

Vor dem Gebrauch der Lösung wird dem gewünschten Volumen noch zugegeben:

1 mM DTT

Aufschluss der Zellen:

Die geernteten und auf Eis gestellten Zellen wurden durch ein dreimaliges Frieren/Tauen der Ansätze aufgebrochen: die Proben wurden in flüssigem Stickstoff kurz schockgefroren und anschließend in einem 37°C-Wasserbad aufgetaut. Nach dem dritten Auftauen wurde die Zelldebris sedimentiert (12.000 rpm, 10 min, 4°C), freigesetzte Proteine befanden sich somit im Überstand. Die Proben wurden weiterhin auf Eis aufbewahrt.

4.5.6 Aktivitätsbestimmung der Luciferase (Luc-assay)

Die Messung der Genaktivierung oder Reprimierung beim Einsatz der Luciferase (LUC) als Reportergen erfolgte über die Quantifizierung des gebildeten Enzyms Luciferase. Dazu wurde der Proteinextrakt aus den transfizierten Zellen mit einem Überschuss des Substrat Luciferin und ATP inkubiert und die Stärke der Umsatzreaktion anhand der Lichtemission bestimmt. Die angegebenen Meßwerte sind relative Einheiten und für jedes Luminometer spezifisch. Um die Ergebnisse der in dieser Arbeit durchgeführetn Transfektionsexperimente miteinander vergleichen zu können, wurde immer mit demselben Gerät gemessen.

Zur Messung der Proben wurden jeweils 50 µl Probe (Proteinextrakt) mit 200 µl Lysispuffer gemischt. Das Luminometer verfügt über einen Injektor, so dass jeweils 100 µl Luciferin/ATP-Lösung 4 Sekunden nach dem Einstellen der Probe in das Gerät, automatisch zugefügt wurden. Nach einer Inkubation von 5 sek wurde die Lichtemission über einen Zeitraum von 20 Sekunden gemessen und als Summe gezählt (Integration).

4.5.7 Aktivitätsbestimmung der ß-Galaktosidase (Lac-assay)

Zur Kontrolle der Transfektionseffiziens wurde das pCMV-lacZ Plasmid in jedem Transferansatz kotransfiziert. Es enthält das ß-Galaktosidase-Gen, welches für das Enzym ß-Galactosidase kodiert. Zur Quantifizierung des gebildeten Enzyms wurden

nach Aufschluss der Zellen 30 µl jeder Probe zu 750 µl Z-Puffer gegeben. Anschließend wurden 200 µl ONPG zugesetzt und die Proben bei 30°C im Dunkeln inkubiert. Nach 2 bis 3h trat eine Gelbfärbung der Proben ein, verursacht durch eine enzymatische Reaktion, in der die ß-Galaktosidase ihr Substrat ONPG zu ortho-Nitrophenol umsetzt. Die Bildung dieses Reaktionsprodukts läßt sich durch Messung der optischen Dichte der Probe bei 420 nm mit dem Spektralphotometer quantifizieren. Die gemessenen Werte sollten im Bereich von 0,1-1 liegen, da die Menge des gebildeten Farbstoffes in diesem Bereich proportional mit dem Messwert korreliert. Die für eine Probe gemessene Luciferase-Aktivität wird durch den korrespondierenden, im Lac-assay ermittelten Wert dividiert.

<u>Z-Puffer</u> :	0,06 M 0,04 M 0,01 M 0,001 M	Na ₂ HPO ₄ x 2H ₂ O NaH ₂ PO ₄ x H ₂ O KCI MgSO ₄ x 7H ₂ O	
<u>ONPG:</u>	pH-Wert a 0,1 M 4 g / I	auf 7,0 einstellen, steril filtrieren Natriumphosphat (pH 7,5) ONPG	

4.5.8 Herstellung stabil transfizierter Zellklone

SL2-Zellen wurden im Rahmen dieser Arbeit stabil mit Flag-HA-dCTCF, unter Kontrolle eines CuSO₄-induzierbaren Promotors, transfiziert. Hierzu wurde das Effectene-Transfektionssystem der Firma Stratagene verwendet. $2x10^6$ Zellen wurden pro 6 well-Schale ausgesät. Der Transfektions-Mix, bestehend aus 0,5 µg Resistenzvektor (Puromycinvektor) und 1,5 µg Effektor-DNA (pRmFLAG-HA-dCTCF-Konstrukt), wurde mit EC-Puffer auf ein Volumen von 100µl aufgefüllt. Anschließend wurden 16µl Enhancer und 50µl Effectene zugegeben.Die Mischung wurde mit 1ml Medium versetzt und auf die Zellen gegeben. Anschließend wurde noch 2ml Medium auf die Zellen gegeben. Das Medium wurde zur Selektion der Zellen mit 6 µg/ ml Puromycin versetzt. Mediumwechsel, splitten und Isolieren der Zellklone erfolgten entsprechend der Herstellerangaben.

Die erhaltene Einzelzellklone wurden für 24h mit 500 μ M CuSO₄ induziert, und mittels Westen-Blot auf Expression von FLAG-dCTCF getestet.

Puffer: siehe Herstellerangaben

4.6 Arbeiten mit Proteinen

4.6.1 Lagerung von Proteinen

Alle Arbeiten mit Proteinen wurden bei 4°C oder auf Eis ausgeführt. Es wurden nur sterile Geräte und Lösungen benutzt. Für die Lagerung bei -80°C wurde den Proteinen 1/10 VT Glycerin zugesetzt.

4.6.2 Konzentrationsbestimmung von Proteinen

Die Konzentrationsbestimmung von Proteinlösungen erfolgt spektralphotometrisch bei einer Wellenlänge von 595 nm. Sie basiert auf der Verschiebung des Absorptionsmaximums einer sauren Coomassie-Lösung von 495 nm zu 595 nm, wenn Protein zur Lösung hinzugefügt wird. Zur Konzentrationsbestimmung wurden 1-10 µl Proteinlösung mit 200 µl Roti-Quant versetzt und durch Zugabe von 0,25 M

Tris/HCl pH 7,8 auf ein Volumen von 1 ml gebracht. Die Proben wurden gegen einen proteinfreien Leerwert bei 595 nm gemessen.

Die Proteinkonzentration errechnet sich aufgrund einer Eichkurve gemäß der Formel:

 $c [\mu g/\mu I] = OD595 nm x 19,89 / eingesetztes Volumen$

4.6.3 Herstellung von Ganzzellextrakt

Ganzzellextrakt mit Hilfe von Lysis-Puffer:

Zum Ernten der Zellen wurde das Medium abgesaugt und die Zellen zweimal mit kaltem PBS-Puffer gewaschen. Nach dem Absaugen des PBS wurde 1 ml kalter Lysis-Puffer auf die Maxi-Schalen (Durchmesser 14,5 cm) gegeben und 20 min bei 4°C auf dem Taumler inkubiert. Anschließend wurden die Zellen mit einem Gummischaber geerntet und in ein Eppendorfgefäß transferiert. Eine anschließende 20-minütige Zentrifugation bei 14.000 rpm bei 4°C diente der Entfernung der unlöslichen Bestandteile. Nach der Überführung des Überstandes in ein neues Eppendorfgefäß wurde die Zentrifugation wiederholt.

Der aus dem Überstand resultierende Zellextrakt wurde anschließend mit Dilution-Puffer im Verhältnis 1:1 verdünnt, um die Detergenz-Konzentration zu minimieren. Der Zellextrakt konnte nun im Immunpräzipitation-Assay eingesetzt oder bei -20°C weggefroren werden.

Bei Zellen, die als Schwimmkultur kultiviert wurden, ergaben sich folgende Abwandlungen von dieser Vorgehensweise:

Die Zellen wurden im Medium resuspendiert und in ein Falcon-Gefäß überführt. Nach 5-minütiger Zentrifugation bei 3000 rpm wurde der Überstand über dem Zellpellet abgesaugt. Das Pellet wurde noch zweimal durch Resuspendieren in PBS-Puffer und anschließender Zentrifugation gewaschen. In einem Restvolumen von ca. 500 µl wurden die Zellen aufgenommen und in ein sauberes Eppendorf-Reaktionsgefäß überführt. Nach 5-minütiger Zentrifugation bei 3000 rpm wurde das restliche PBS entfernt und nach Zugabe von 1 ml Lysis-Puffer erfolgte eine rotierende Inkubation bei 4°C für 20 min. Ab diesem Schritt wurde entsprechend des oben beschriebenen Protokolls weiter verfahren.

Lysis-Puffer: 20 mM Tris-HCl pH 7,5 200 mM NaCl 0,5 % NP-40 + Protease-Inhibitoren (Roche)

Dilution-Puffer: 20 mM Tris-HCl pH 7,5

Ganzzellextrakt mit Hilfe von SDS-Auftragspuffer:

Diese Methode zur Herstellung von Ganzzellextrakt dient der anschließenden immunologischen Detektion von Proteinen im Western Blot. Die Zellen wurden nach zweimaligem Waschen mit eiskaltem PBS-Puffer (10 ml) von der Zellkulturschale mit einem Gummischaber in 1x SDS-Auftragspuffer geerntet. Alle Arbeitsschritte wurden bei 4°C durchgeführt.

Um die DNA zu scheren, wurde die erhaltene Suspension jeweils 30 sek mit Ultraschall sonifiziert. Die Sonifizierung wurde solange wiederholt, bis sich die Lösung problemlos auf- und abpipettieren ließ. Nach der Sonifizierung folgte eine Zentrifugation (10 Minuten bei 14000 rpm), um die Zellreste zu pelletieren. Der Überstand wurde in ein neues Eppendorfgefäß überführt und konnte anschließend im Western Blot eingesetzt werden.

4.6.4 Herstellung von Kernextrakt

Im Rahmen dieser Arbeit wurden Kernextrakte eines SL2-Zellklons hergestellt, welcher ein FLAG-HA-CTCF-Konstrukt stabil integriert trägt (siehe 4.5.6). Je 8×10^8 -Zellen wurden zur Induktion der FLAG-CTCF-Expression für 24h in 500 μ M CuSO₄ – versetztem Medium gehalten, oder zur Kontrolle in Medium ohne CuSO₄.

Zur Ernte wurden die Zellen in frischem Medium resuspendiert und in ein Falcon-Gefäß überführt. Nach 5-minütiger Zentrifugation bei 3000 rpm wurde der Überstand über dem Zellpellet abgesaugt. Das Pellet wurde noch zweimal durch Resuspendieren in PBS-Puffer und anschließender Zentrifugation gewaschen. Im Folgenden wurde ausschließlich bei 4°C gearbeitet. Das Zellpellet wurde einmal mit hypotonischem Puffer gewaschen und anschließend zum Schwellen für 10 min mit 20 hypotonischem Puffer inkubiert. Das Pellet ml wurde mit einem Glashomogenisator acht mal homogenisiert und die freigesetzten Kerne für 10 min bei 2000xg zentrifugiert. Das Kernpellet wurde mit dem 0,5-fachen Volumen Niedrigsalz-Puffer versetzt und sechs mal homogenisiert. Anschließend wurde das 0,5-fache Volumen Hochsalz-Puffer langsam zugegeben und die Kerne für 30 min rotierend im Puffer inkubiert. Unlösliches Material wurde durch Zentrifugation für 15 min bei 14000xg abgetrennt. Das unlösliche Pellet, welches noch große Mengen CTCF enthält, wurde in TGME-Puffer eneut homogenisiert und mit 100u/ml Micrococcal Nuclease für 30 min bei Raumtemperatur verdaut. Das verbleibene unlösiche Material wurde durch erneute Zentrifugation für 15 min bei 14000xg abgetrennt. Der lösliche Überstand wurde mit dem löslichen Überstand aus dem ersten Zentrifugationsschritt vereinigt und mit 200 Einheiten Benzonase für 60 min bei 10°C inkubiert. Abschließend wurde erneut für 15 min bei 14000xg abzentrifugiert. Der Überstand konnte für die Komplexaufreinigung eingesetzt werden.

Hypotonischer Puffer

10 mM Tris, pH 7,4 10 mM KCl 1,5 mM MgCl₂ 1 mM DTT Protease Inhibitoren

Niedrigsalz-Puffer

20 mM Tris, pH 7,4 20 mM KCl 25% Glycein 1,5 mM MgCl₂ 0,2 mM EDTA 1 mM DTT Protease-Inhibitoren

Hochsalz-Puffer

20 mM Tris, pH 7,4 1,2 M KCl 25% Glycein 1,5 mM MgCl₂ 0,2 mM EDTA 1 mM DTT Protease-Inhibitoren

TGME-Puffer

50 mM Tris, pH 7,9 25% Glycerin 5 mM MgCl₂ 0,1 mM EDTA 1 mM DTT Protease-Inhibitoren

4.6.5 Protein-Fällung mit Trichloressigsäure (TCA)

Der gesamte Vorgang wurde bei 4°C durchgeführt. 100 µg Protein-Probe wurde zu 300 µl Volumen mit Wasser verdünnt und 100 µl eiskalte 80 % TCA wurde zugegeben. Das Gemisch wurde kurz zentrifugiert und 20min auf Eis inkubiert. Anschließend wurde für 5 min bei 14000 rpm zentrifugiert. Der Überstand wurde vorsichtig abgenommen und 500 µl eiskaltes Aceton wurden auf das Pellet gegben. Anschließend erfolgte erneute Zentrigugation für 5 min bei 14000 rpm. Dieser Waschritt wurde zweimal wiederholt. Das Pellet wurde für 10-15min an der Luft getrocknet und in geeignetem Puffer aufgenommen.

4.6.6 Denaturierende SDS-Polyacrylamidgele

Um ein einzelnes Protein in einem Gemisch nachzuweisen, bedarf es einer Auftrennung der Proteine und ihrer anschließenden Visualisierung entweder durch direkte Anfärbung (z.B. Coomassie) oder mittels einer spezifischen Nachweisreaktion (Immunoblot).

In dem von Ulrich Lämmli 1970 erstmals beschriebenen System lassen sich Proteinmischungen unter denaturierenden Bedingungen nach ihrer Größe auftrennen (Laemmli, 1970). Bei diesem Verfahren dient das Detergenz Natriumdodecylsulfat (SDS) zum Entfalten der Proteinstrukturen. Dabei lagern sich pro aa durchschnittlich zwei Moleküle SDS an und geben allen Proteinen eine elipsoide Raumstruktur, was eine ausschließlich durch das Molekulargewicht abhängige Auftrennung ermöglicht. Eine stark reduzierende Chemikalie (β -Mercaptoethanol) bricht zusätzlich alle Disulfid-Bindungen auf. Auf diese Weise standardisierte Proteinmischungen können über die regulierbare Matrix eines Polyacrylamidgels der Größe nach aufgetrennt werden. Dabei nutzt man die doppelt negative Ladung von SDS aus, die alle Eigenladungseffekte der Proteine überdeckt und eine Auftrennung im elektrischen

Feld ermöglicht. Die Wanderungsgeschwindigkeit ist umgekehrt proportional zum Logarithmus ihres Molekulargewichtes und erfolgt in Richtung Anode.

Das verwendete Gelsystem steht senkrecht und besteht aus zwei Polyacrylamid-Bereichen, die sich im pH-Wert unterscheiden und nacheinander von den Proteinen durchlaufen werden. Dabei fokussiert das obenliegende Sammelgel die Proteinprobe in einem schmalen Band, bevor mit dem Wechsel zum Trenngel der pH-Anstieg eine Auftrennung bewirkt. Dabei kann die Porengröße des Trenngels mit unterschiedlicher Polyacrylamid-Konzentration variiert werden, so dass eine optimale Auftrennung in ieweils verschiedenen Molekulargewichts-Bereichen gewährleistet ist. Zur parallel Bestimmung der Molekulargewichte wurde ein standardisiertes Proteingemisch (Marker) aufgetragen. Alle Zubehörteile des Gelsystem Hoefer Mighty Small wurden mit entionisiertem Wasser und 70% (v/v) Ethanol gereinigt. Es wurde eine Acrylamid/Bisacrylamid-Stammlösung (30:0,8 (w/v)) benutzt, die 10 bis 15%-ig im Trenngel, und 6%-ig im Sammelgel eingesetzt wurde. Die gewünschten Gellösungen wurden für Trenn- und Sammelgel separat angesetzt.

Sammelgel	6%	Trenngel	10%	15%
0,5M Tris/HCI pH6,8	2,5 ml	1,5M Tris/HCI pH 8,8	3,8 ml	3,8 ml
PAA/BAA (30:0,8)	2 ml	PAA/BAA (30:0,8)	5 ml	7,5 ml
ddH ₂ O	5,5 ml	ddH ₂ O	6,2 ml	3,7 ml
SDS 10%	100 µl	SDS 10%	150 µl	150 µl
APS	50 µl	APS	50 µl	50 µl
TEMED	10 µl	TEMED	5 µl	5 µl

Zur Polymerisierung wurden zunächst das Trenngel und später das Sammelgel in die vorbereiteten Gießstände gefüllt. Nachdem die Gele auspolymerisiert waren, wurden sie in eine entsprechende Apparatur eingespannt und mit 1 x Lämmli-Puffer gefüllt.

Die Proteinproben wurden mit SDS-Auftragspuffer (5x konz.) versetzt und 5 min gekocht. Anschließend wurden die Proben für 5 min bei 13.000 rpm zentrifugiert und in die Probenauftragstaschen pipettiert. Die Elektrophorese wurde mit 20 mA pro Gel (Einlaufen der Proben in die Matrix) begonnen und dann bei 25-30 mA weitergeführt. Eine Visualisierung von Proteinbanden wurde durch Färbung der Gele in Coomassie-Lösung (60 min) ermöglicht. Die Nachweisgrenze dieser Methode lag im Bereich von 0,4 µg Protein pro Bande. Die Entfärbung (mehrere Stunden) des Hintergrundes durch Entfärbelösung erfolgte genauso wie die Färbung auf einem Schüttler bei RT. Nach vollständiger Entfärbung der Gele konnten diese auf einem Leuchttisch ausgewertet und durch Fotografie dokumentiert werden.

Entfärbelösung

Methanol	40% (v/v)
Eisessig	10% (v/v)

Coomassie-Färbelösung

Coomassie blue R250 0,2% (w/v) In Fixierer

10x SDS-Laufpuffer (Lämmli-Puffer) :

30,2 g/l Tris	30,2 g/l
144 g/l Glycin	144 g/l
10,0 g/I SDS	10,0 g/l

5x SDS-Auftragspuffer:

62,5 mM Tris-HCl pH 6,8 20% (v/v) 20% (v/v) Glycerin 5% (v/v) β-Mercaptoethanol 0,125%(w/v) Bromphenolblau

4.6.7 Elektroblot

Der Elektroblot erlaubt den Transfer von zuvor in der SDS-PAGE aufgetrennten Proteinen auf eine Trägermembran. Da diese Proteine mit SDS beladen sind, wandern sie im elektrischen Feld zur Anode und können so aus der Gelmatrix heraus auf eine Membran transferiert werden. In der vorliegenden Arbeit wurden Polyvinylidenfluorid (PVDF)-Membranen verwendet, die vor dem Blot-Vorgang durch Inkubation mit Methanol 10 sek aktiviert wurden.

In dieser Arbeit wurden zwei verschiedene Verfahren zum Protein-Transfer auf eine Membran angewandt:

Zum einen handelt es sich dabei um die so genannte "*semi-dry*"-Methode, wobei der Transfer in Anwesenheit von befeuchtetem Material erfolgt.

Zum anderen die so genannten "*wetblot*"-Methode, bei der der Proteintransfer in einem Puffer-gefüllten Tank erfolgt.

Semi-dry Methode:

Die PVDF-Membran und 15 Filterpapiere (Whatman-3MM-Papier) wurden auf die Größe des SDS-Gels zurechtgeschnitten.

Das Transfer-Sandwich wurde wie folgt zusammengesetzt (die angegebene Reihenfolge bezieht sich auf die Assemblierung von der Anode aus betrachtet):

Nach der Graphitelektrode mit Anode I-Puffer, 6 Filterpapiere durchtränkt mit Anode I-Puffer, 3 Filterpapiere durchtränkt mit Anode II-Puffer, die mit Methanol aktivierte PVDF, das Gel mit den aufgetrennten und SDS beladenen Proteinen, 6 Filterpapiere durchtränkt mit Kathoden-Puffer und abschließende Befeuchtung der Graphitelektrode mit Kathoden-Puffer.

Durch Rollen mit einer Glaspipette unter gleich bleibendem Druck wurden Luftblasen entfernt. Der Transfer erfolgte bei einer konstanten Spannung von 1 mA/cm² für 1 $\frac{3}{4}$ h.

Anode I – Puffer:

0,3M Tris-HCl, pH 7.4

Anode II-Puffer:

25mM Tris-HCl, pH 7.4

Kathode – Puffer:

25mM Tris-HCI, pH 9.4 40mM 6-Amino-n-Capronsäure

PBST:

1x PBS + 0,1% (v/v) Tween 20

<u>Wetblot</u>

Die PVDF-Membran und 4 Filterpapiere (Whatman-3MM-Papier) werden auf die Größe des SDS-Gels zurechtgeschnitten.

Das Transfer-Sandwich wird wie folgt unter Transferpuffer zusammengesetzt (die angegebene Reihenfolge bezieht sich auf die Assemblierung von der Anode aus betrachtet):

Zunächst eine Schwamm-Matte gefolgt von 2 Filterpapieren, der 10 sek in Methanol aktivierten Membran, dem Gel mit den aufgetrennten und SDS-beladenen Proteinen, 2 Filterpapiere und eine Schwamm-Matte. Das in einer Plastikvorrichtung entsprechend zusammengesetzte Sandwich wird in die wetblot-Apparatur (BioRad) eingespannt und in einen Tank eingebracht, der mit kaltem wetblot-Puffer gefüllt ist.

Zusätzlich werden ein Kühlakku und ein Rührfisch eingesetzt, da die Temperatur während des Blottens stark ansteigt und so die Apparatur vor Überhitzung geschützt werden kann. Der wet-blot wird bei 4°C und 100 V für 1 h auf dem Magnetrührer durchgeführt.

Transfer-Puffer 1 x

25 mM Tris 192 mM Glycerin 20% Methanol 20%

Nach Beendigung des Elektroblots werden die gefärbten Markerbanden (PageRuler Prestained Protein Ladder, Fermentas) mit einem Kugelschreiber auf der Membran nachgezogen und die Membran selbst über Nacht bei 4°C (alternativ 1 h RT) in PBST mit 5% Milchpulver (fettfrei) unter leichtem Schütteln inkubiert. Die Milchproteine dienten der Absättigung der freien Protein-Bindungskapazitäten der Membran.

4.6.8 Immunodetektion

Die auf die PVDF-Membran übertragenen Proteine können mit Hilfe von Antikörpern detektiert werden (Burnette, 1981; Towbin et al., 1979).

Die Immunodetektion ist eine sensitive Nachweismethode für Proteine. Diese Methode beruht auf der immunologischen Reaktion zwischen einem spezifischen Antikörper (Primärantikörper) mit seinem Antigen (Protein). Zur Visualisierung dieses Antikörper/Antigen-Komplexes dient ein gegen den Primärantikörper gerichteter, enzymgekoppelter Sekundärantikörper. Dadurch, dass an einen Primärantikörper mehrere Sekundärantikörper binden, wird eine Signalverstärkung erreicht, die zusammen mit der hohen Sensitivität der Enzymreaktion die Empfindlichkeit dieses Nachweissystems ausmacht. Bei den in der vorliegenden Arbeit durchgeführten Primärantikörper aus verschiedenen Organismen Experimenten wurden in Kombination Peroxidase-gekoppelten Sekundärantikörpern mit geeigneten eingesetzt.

Nach dem Elektroblot wurde die "proteinbeladene" PVDF-Membran zur Absättigung unspezifischer Bindestellen für ca. 12h bei 4°C (oder alternativ für 1 h bei RT) mit einer fettfreien Milchlösung (5% (w/v) Milchpulver in PBST) inkubiert. Die abgesättigte Membran wurde im Folgenden für 1 h mit dem in PBST verdünnten Primärantikörper inkubiert. Nach drei Waschschritten (3 x 5 min mit PBST) zum Entfernen von unspezifisch gebundenen Primärantikörpern wurde die Membran für einem entsprechend PBST eine weitere Stunde mit in verdünnten Sekundärantikörper inkubiert. Die Membran wurde erneut 5 fach gewaschen (s.o) und stand danach für die Nachweisreaktion mit dem ECL-Kit (Millipore) zur Verfügung. Hierzu wurde die Membran auf einem Stück Haushaltsfolie mit einem Gemisch aus gleichen Anteilen der ECL-Detektionslösung A und B benetzt und für eine Minute inkubiert. Nach Ablauf der Inkubationszeit wurde die Membran in Folie verpackt, in einer Filmkassette befestigt und gegen einen Röntgenfilm exponiert. Die Signalentstehung bei diesem Entwicklersystem beruht auf einer verstärkten Peroxidase-katalysierten Chemilumineszenz. In den meisten Fällen reichten Expositionen zwischen 5 sek und 5 min aus, um ausreichende Signalintensitäten zu erreichen.

PBST:

10 mM Na3PO4 2H2O pH7,4 1,7 mM KH₂PO₄ 137 mM NaCl 2,7 mM KCl 20 0,1% Tween autoklaviert

4.6.9 Befreiung der Membran von Antikörpern (Strippen)

Wenn dieselbe Membran mittels Immunoblot auf zwei unterschiedliche Proteine untersucht werden sollte, konnte nach der ersten durchgeführten Immundetektion die Membran wieder von den Antikörpern befreit werden und einer zweiten unterzogen werden. Hierfür wurde die Membran für mindestens 45 min bei 65°C in Strip-Puffer inkubiert. Anschließend wurde die Membran ausgiebig mit PBST gewaschen, um jegliches β -Mercaptoethanol zu entfernen, welches ansonsten bei der folgenden Antikörperreaktion diesen wieder zerstört hätte. Nach den Waschschritten wurde mit der Membran wie bei der ersten Detektion verfahren.

Abschließend konnte die Membran mit Coomassiefärbung auf die Anwesenheit und Menge von Proteinen untersucht werden; dies macht jedoch weitere Antikörperfärbungen unmöglich.

Strip-Puffer

25 mM Glycin/HCl, pH: 2,0 1% SDS

4.6.10 In vitro-Transkription/Translation

Für vitro-Transkription/Translationsreaktion die gekoppelte in wurde eine Komplettausrüstung der Firma Promega verwendet, wobei die Durchführung gemäß Herstellerangaben erfolate. Die Arbeiten wurden den ausschließlich mit Handschuhen, RNase-freien Reaktionsgefäßen und Pipettenspitzen sowie mit nukleasefreiem Wasser durchgeführt. Der Puffer und alle anderen Komponenten wurden auf Eis aufgetaut. Im Folgenden ist die Zusammensetzung eines 1x-Ansatzes aufgelistet, welcher bei Bedarf vervielfacht wurde. Die Ansätze wurden vorsichtig gemischt und für 90 min bei 30°C inkubiert.

Komponenten	Volumen in µl
TNT-Reticulocyten-Lysat	6,25 µl
TNT Reaktionspuffer	0,5 µl
Aminosäure-Mix (ohne Methionin)	0,25 µl
³⁵ S-Methionin (15 µCi/µI)	1 µl
DNA (1 μg/μl)	0,25 µl
TNT-Polymerase (T7, T3, SP6)	0,25 µl
Rnasin	0,5 µl
ddH ₂ O	3,5 µl
Endvolumen	12,5 µl

4.6.11 Expression rekombinanter Proteine

In dieser Arbeit wurde die Expression eukaryotischer Gene als GST-Fusion in E. coli durchgeführt. Nach der Transformation eines entsprechenden Plasmids wurde ein Einzelklon für 12 h bei 37°C in 5 ml TB mit 25 µl Glucose (20%) und geeignetem Antibiotikum vermehrt. Die Kultur wurde in 400 ml antibiotikumhaltigem TB-Medium mit 40 ml Phosphatpuffer und 20 ml Glucose (20%) überführt und bis zu einer OD (bei 600nm) von 0,7 bis 0,8 bei 37°C inkubiert. Nun erfolgte durch Zugabe von IPTG (0,5 mM Endkonzentration im Medium) die Induktion der Expression des rekombinanten Proteins. Der Ansatz wurde für weitere 5 h bei RT oder 12 h bei 18°C inkubiert. Alle weiteren Schritte wurden bei 4°C und mit vorgekühlten Lösungen durchgeführt. Nach Abschluss der Inkubation wurden die Bakterien pelletiert (10 min, 3200 rpm, 4°C) und in 30 ml STE-Puffer gut resuspendiert. Nach erneuter Zentrifugation wurde das Bakterienpellet nochmal in 30 ml STE-Puffer resuspendiert. Die Bakterienlyse wurde durch Aktivierung des endogenen Lysozymgens mittels Einfrieren des Pellets ÜN bei -20°C verstärkt. Danach wurden die Proben bei RT aufgetaut und die Proteine duch Zugabe von 300 µl 1 M MgCl₂, 15 µl 2 M MnCl₂, 300 µI DNAse I (1mg/ml), 300 µI RNase A (1 mg/ml) und 300 µI Lysozym (50 mg/ml) rotierend für 30-45 min freigesetzt. Die unlöslichen Bestandteile wurden durch Zentrifugation (30 min, 11.000 rpm, 4°C) entfernt und der Überstand bei -80°C in Aliquots aufbewahrt.

STE-Puffer

150 mM NaCL 10 mM Tris/HCl pH 8 1 mM EDTA

4.6.12 Affinitätsaufreinigung GST-fusionierter Proteine

Diese Methode zur Aufreinigung der rekombinanten GST-Fusionsproteine beruht auf der spezifischen Enzym/Substrat-Wechselwirkung von GST mit Glutathion. Durch Immobilisierung des Glutathions an einer Matrix aus Sepharose lassen sich GST-Fusionsproteine durch Zentrifugation von den restlichen Bestandteilen des Proteinextraktes trennen.

Bevor die Glutathion-Sepharose für Bindereaktionen eingesetzt wurde, fand ein Waschschritt mit 1x PBS statt, um u.a. das aus der Lagerung stammende Ethanol zu entfernen. Der aufzureinigende Extrakt wurde mit einer entsprechenden Menge der äquilibrierten Matrix für 2 h bei 4°C inkubiert. Bei Proteinextrakten, die aus einer 400 ml- Bakterienkultur stammten, wurden z.B. 300 µl der Sepharose eingesetzt. Anschließend wurde die Sepharose mittels Zentrifugationsschritten (5 min, 1000 rpm, 4°C) dreimal mit Waschpuffer gewaschen. Danach wurden die Ansätze in GST-Pulldown-Experimenten (siehe 4.7.1) eingesetzt.

Waschpuffer:

100 mM Tris/HCl pH 8 100 mMNaCl

4.7 Untersuchung von Protein-Protein-Interaktionen

4.7.1 GST-Pulldown

Dieses Verfahren eignet sich zur in vitro-Analyse von Interaktionen zwischen Proteinen und beruht auf einer Immobilisierung von Glutathion-S-Transferase-(GST-)-Fusionsproteinen an Glutathion-Sepharose (Kaelin et al., 1991). Immobilisierte GST-Fusionsproteine wurden in einem zweiten Schritt mit in vitro-translatiertem, 35Smarkiertem Protein inkubiert. Im Falle einer Bindung beider Proteine miteinander wurde das 35S-markierte Protein ebenfalls immobilisiert und konnte nach Copräzipitation anschließend autoradiographisch nachgewiesen werden. Die GST-Fusionsproteine wurden in E.coli exprimiert und über Glutathion-Sepharose aufgereinigt. Jeweils 30 µl äquilibrierte Beads wurden zweimal mit Waschpuffer, der mit 1,5 mg/ml BSA angesetzt wurde, um unspezifische Bindungen zu verhindern, gewaschen (5 min, 2000 rpm, 4°C). Nach der letzten Zentrifugation folgte die Bindereaktion. Dafür wurden 5 µl eines in vitro- Transkriptions/Translationsansatzes (siehe 4.6.9) pro Reaktion zusammen mit 170 µl Waschpuffer (1,5 mg/ml BSA) dazugegeben. Nach einer zweistündigen rotierenden Inkubation bei 4°C wurden die Ansätze dreimal für 15 min mit Waschpuffer (ohne BSA) gewaschen, bevor sie mit 1xSDS-Auftragspuffer versetzt wurden. Als Input wurden 5% des Überstandes der Kontrollbindereaktion mit GST vor den Waschschritten genommen. Gebundene GST-Fusionsproteine wurden anschließend durch Coomassie-Färbung, 35Smarkierte Proteine mittels Autoradiographie visualisiert.

4.7.2 Co-Immunpräzipitation

Die Immunpräzipitation dient der Isolierung/Aufreinigung eines einzelnen Proteins aus einem Proteingemisch (Zellextrakt).

Ein Antikörper, der spezifisch gegen das gewünschte Protein gerichtet ist, wird an eine unlösliche, inerte Trägersubstanz (Protein G-Agarose für Mausantikörper, Protein A-Agarose für Kaninchenantikörper) gekoppelt. Der konstante Teil des Antikörpers bindet adhäsiv an die entsprechenden Trägersubstanzen, die kovalent an die Sepharose gebunden vorliegen. Zunächst wurden die Agarose-Beads mit 1 ml

Wasch-Puffer äqulilibriert. Anschließend wurden 20 µl Beads mit Antikörper und 1 ml Wasch-Puffer versetzt und für 1,5 h inkubiert. Alle Inkubationsschritte erfolgten rotierend bei 4°C. Nach Zentrifugation (1000 rpm, 1-2min; 4°C) verbleibt die Protein G-Agarose mit dem gekoppelte Antikörper im Sediment. Die Protein G-Agarose Beads wurden 2x mit Wasch- Puffer gewaschen, anschließend wurden die Beads mit 1ml dem zuvor gewonnenen Zellextrakt (siehe 4.6.4) versetzt. Die Proben wurden rotierend bei 4°C für 2h inkubiert. Nach der Inkubationszeit wurden die Proben 4x mit Waschpuffer gewaschen und schließlich in 1x SDS-Ladepuffer aufgenommen. Die Proben wurden bei -20°C gelagert oder direkt in der SDS-Gelelektrophorese und dem daran anschließendem Western Blot verwendet.

Verwendete Mengen der in der IP eingesetzten Antikörper

Antikörper	Menge
CTCF C-Term	5 µl
CTCF N-Term	5 µl
Präimmunserum	5 µl
Flag M2	2 µg
Maus IgG	2 µg

4.8 Protein-Komplex-Aufreinigung

4.8.1 Ionenaustauschchromatographie

Die Ionenaustauschchromatographie separiert Moleküle bezüglich ihrer Nettoladung. Das zugrundeliegende Prinzip beruht auf der elektrostatischen Wechselwirkung der Ladungen auf der Oberfläche der Proteine einer Probe mit den entgegengesetzt geladenen Gruppen einer Säulenmatrix. In dieser Arbeit wurde eine Mono Q-Säule benutzt, welche ein starker Anion-Austauscher ist. Sie trägt also positiv geladene funktionelle Gruppen, an die negativ geladenen Partikel binden.

Der gesamte Vorgang wurde bei 4°C durchgeführt. Eine Mono Q HR5/5 (1 ml)-Säule wurde mit Buffer A äquilibriert, bevor der vorbereitete Proteinextrakt (4.6.4) auf die Säule geladen wurde. Anschließend wurde die Säule mit Buffer A gewaschen, um nicht spezifisch gebundene Proteine zu entfernen. Die spezifisch gebundenen Proteine wurden über einen Salzgradienten (100 mM KCI-1 M KCI in 20 ml) sukzessive eluiert. Je ein Aliquot der gesammelten Fraktionen wurde mittels SDS-PAGE und Western-Blot auf das Vorkommen von FLAG-CTCF untersucht.

Die Einstellung der FPLC-Anlage für einen Mono Q HR 5/5 –Lauf waren wie folgt:

Säule:	Mono Q HR 5/5
Probenvolumen:	10 ml (Superloop)
Puffer A:	Anion-Austauschlösung A (100 mM KCl)
Puffer B:	Anion-Austauschlösung B (1 M KCI)
Fließgeschwindigkeit:	0,5 ml/min
Gradient:	0-100% Puffer B in 20 ml
Detektor:	UV-M, 280 nm
Papierlaufgeschwindigkeit:	0,5 cm/min

Dieses Standardprogramm wurde wie folgt programmiert:

Volume (ml)	Function	Value
0	%B	0
0	ml/min	1.0
0	cm/min	0.5
0	valve position	1.1
5	port set	6.1
5	%B	0
25	%B	100
30	%B	100
30	port set	6.0

Anion-Austauschlösung A:

100mM KCl 20mM Tris/HCl, pH7,9 0,2mM EDTA 10mM 2-Mercaptoethanol 0,2mM PMSF 10% Glycerin filtriert und entgast, Lagerung bei 4°C

Anion-Austauschlösung B:

1M KCl 20mM Tris/HCl, pH7,9 0,2mM EDTA 10mM 2-Mercaptoethanol 0,2mM PMSF 10% Glycerin filtriert und entgast, Lagerung bei 4°C

4.8.2 Gelfiltrations-Chromatographie

Als zweiter chromatographischer Reinigungsschritt wurde eine Gelfiltrations-Säule verwendet. In der Gelfiltration werden Möleküle aufgrund ihrer Größe separiert. Die Säulenmatrix enthält Poren unterschiedlicher Größe. Große Proteine, welche die kleinen Poren nicht passieren können, eluieren zuerst. Je kleiner ein Protein ist, desto kleinere Poren kann es passieren und desto später eluiert es von der Säulenmatrix. Als "void volume" (V₀) bezeinet man das Elutionsvolumen der Moleküle, die zu groß sind, um auch die größten Poren der Matrix zu passieren. Diese großen Moleküle eluieren als erstes unfraktioniert von der Säule. Das Elutionsvolumen (V_e) eines gegebenen Proteins ist das Volumen, bei dem das Protein von der Säule eluiert. Es hängt also von der Größe des Proteins ab. Das Molekulargewicht unbekannter Proteine oder Proteinkomplexe läßt sich durch einen

Vergleich des Verhältnisses V_e/V₀ des Proteins mit dem Verhältnis V_e/V₀ eines Proteinstandards mit bekannten Molekulargewichten, bestimmen. Eine solche Standardkurve für die hier verwendete Gelfiltrations-Säule (Superose 6 HR 10/30) wurde im Rahmen dieser Arbeit mit einem Gemisch der Proteine Alkohol Dehydrogenase (150 kDa), Apoferritin (443 kDa) und Thyroglobulin (669 kDa) erstellt. V₀ wurde gemäß der Herstellerangaben mit Hilfe des Proteins Blue Dextran bestimmt.

Die Superose 6-Säule wurde mit Laufpuffer äquilibriert, bevor der vorbereitete Proteinextrakt auf die Säule geladen wurde. Anschließend wurde die Säule mit Laufpuffer gewaschen, wobei die Proteine der Größe nach getrennt eluieren. Die gesammelten Fraktionen wurden mittels WB analysiert.

Laufpuffer:

200 mM KCl
10 mM HEPES, pH 7,5
1,5 mM MgCl₂
10 μM ZnCl₂
10 %Glycerol
filtriert und entgast, Lagerung bei 4°C

4.8.3 Affinitätsaufreinigung über FLAG-Agarose

Die Affinitätsaufreinigung des FLAG-markierten dCTCF-Proteins erfolgte über anti-FLAG M2-Agarose (Sigma). Die Agarose wurde vorsichtig mit abgeschnittener Pipettenspitze resuspendiert und 50-100 µl der Suspension wurden in ein neues Eppendorfgefäß überführt. Alle folgenden Arbeitschritte wurden bei 4°C durchgeführt. Die Agarose wurde bei 6900 rpm für 30 sek zentrifugiert. Der Überstand wurde verworfen und die pelletierte Agarose wurde zweimal mit 0,5 ml TBS-Puffer gewaschen. 100-150 mg Protein aus der Kernextraktion wurden zu den Agarose-Beads gegeben. Das finale Volumen wurde auf 1 ml mit TBS-Puffer aufgefüllt. Die Probe wurde ÜN rotierend inkubiert und anschließend bei 6900 rpm für 30 sek zentrifugiert. Der Überstand wurde verworfen und die Agarose-Beads wurden für 60 min rotierend mit 1 ml Puffer A inkubiert. Anschließend wurden die Beads erneut durch Zentrifugation für 30 sek bei 6900 rpm pelletiert. Dieser Schritt wurde dreimal wiederholt. Anschließend erfolgte dieselbe Waschprozedur viermal mit Puffer B. Abschließend wurde die Agarose durch Zentrifugation bei 6900 rpm pelletiert und mit 1 ml Puffer B, versetzt mit 200 µg/ml FLAG-Peptid für drei Stunden rotierend inkubiert. Der Überstand nach Zentrifugation bei 6900 rpm für 30 sek, wurde in ein neues Eppendorfgefäß transferiert. Das Protein wurde mittels TCA gefällt (4.6.5). Alternativ wurden die Agarose-Beads nach viermaligem Waschen mit Puffer B pelletiert und direkt mit SDS-Ladepuffer versehen, für 5 min gekocht und der Überstand auf ein SDS-Gel geladen.

Die Präzipitation des FLAG-HA-dCTCF-Proteins über anti-HA-Agarose erfolgte nach demselben Protokoll. Eluiert wurde gebundenes Protein über HA-Peptid (Sigma) gemäß der Herstellerangaben.

TBS Puffer:

50 mM Tris/HCl, pH 7,4 150 mM NaCl

Puffer A:

400 mM NaCl 20 mM Hepes, pH 7,9 0,2 mM EDTA 0,3 % NP-40 20 % Glycerin Vor Gebrauch zugegeben: 0,4 mM PMSF und Protease-Inhibitoren

Puffer B:

500 mM NaCl 20 mM Tris/HCl, pH 7,4 0,1 %NP-40 5 % Glycerin Vor Gebrauch zugegeben: 0,4 mM PMSF und Protease-Inhibitoren

4.8.4 Massenspektrometrie

Die Massenspektrometrie wurde im Proteomics Center (Erasmus MC Rotterdam) in Kooperation mit Dr. Niels Galjart durchgeführt.

Die Massenspektrometrie ist ein Verfahren zum Messen des Masse-zu-Ladung-Verhältnisses m/q von Teilchen. Dazu wird die zu untersuchende Substanz in die Gasphase überführt, ionisiert und die ionisierten Teilchen durch ein elektrisches Feld beschleunigt. Dieser Teilchenstrahl wird im Analysator nach m/g-Verhältnis aufgetrennt. Ein Massenspektrometer (MS) besteht aus einer Ionenquelle, einem Analysator und einem Detektor. Als Ionenquelle wurde im Rahmen dieser Arbeit das MALDI (Matrix assisted Laser Desorption/Ionization)-Verfahren eingesetzt. Dabei wird die zu analysierende Substanz (Analyt) mit einem großen Überschuss an Matrix gemischt und kokristallisiert. Die Matrix adsorbiert Energie von einem gepulsten Laserstrahl. Dabei kommt es zum Herauslösen des intakten Analyten, an den ein von der Matrix bereitgestellter Ladungsträger, zB. ein Proton, gebunden ist. Es wurde ein Q-TOF (Quadrupol Time Of Flight)-Spektrometer (Waters) eingesetzt. In diesem Gerät sind zwei Arten von Analysatoren miteinander gekoppelt. In einem Quadrupol-Analysator werden Elektronen beschleunigt, stoßen mit Atomen des Probegases zusammen und ionisieren diese dabei. Die erzeugten Ionen werden durch ein beschleunigt und durchfliegen elektrisches Feld vier parallel liegende Stabelektroden, deren Schnittpunkte mit einer Ebene senkrecht zur Zylinderachse ein Quadrat bilden (Quadrupol). Im Wechselfeld zwischen den Stäben findet eine m/q-Selektionierung statt.

Im Flugzeit-Analysator (TOF) wird ausgenutzt, dass die Ionen beim Eintritt in den Analysator alle die gleiche Energie haben und leichte Ionen deshalb schneller sind als schwere.

Der eigentlichen Massenspektrometrie wurde eine Auftrennung des Proteingemisches durch Flüssigkeitschromatogrphie vorgeschaltet. Dabei wurde eine NanoLC (*Liquid Chromatography*) auf einem CapLC-System (Waters) durchgeführt.

Die Proteinprobe wurde in einem SDS-Gel aufgetrennt und die gesamte Spur mit einem automatischen Gel-Schneidegerät ausgeschnitten. Die Proben wurden mit Dithiotreithol reduziert, mit Iodoacetamid alkyliert und anschließend Trypsin-verdaut. Mit der so vorbereiteten Probe wurde anschließend die NanoLC-Q-TOF-Massenspektrometrie durchgeführt. Zur Auswertung der Rohdaten und Proteinidentifikation wurde die Mascot Distiller Software (Version 2.0, MatrixScience) genutzt. Der Mascot Such-Algorithmus (Version 2.0, MatrixScience) wurde für die Suche gegen die *Drosophil*a-Datenbank FlyBase (Abrufdatum: 03.07.2007) eingesetzt. Die Grenze für eine signifikante Identifikation wurde auf einen Wert (MOWSE-Score) von 60 festgelegt. Dies entspricht einem Signifikanzniveau von unter 5%.

4.9 Arbeiten mit Drosophila melanogaster

4.9.1 Stammhaltung und Zucht von Drosophila melanogaster

In dieser Arbeit wurden folgende Fliegenstämme verwendet:

white⁻⁻Wildtyp Oregon-Wildtyp SGS-Gal4-UAS-CTCF-eGFP - Fliegenlinie (zur Verfügung gestellt von M. Mohan)

Die Anzucht der Fliegen erfolgte in Kunststoffröhrchen verschiedener Größe mit 5-10 ml der entsprechenden Fliegennahrung. Die Röhrchen wurden mit einem Polyester-Milbenstopfen verschlossen. Zur Fütterung der Tiere wurde eine Prise gekörnte Trockenhefe auf den Agar gegeben. Die Haltung der Fliegenlinien erfolgte bei 18°C oder 25°C.

4.9.2 Zubereitung von Fliegennahrung

normaler Fliegenbrei (Medium für Stock-Haltung):

(Rezept für 4 I)

30 g Agar 285 g Maismehl 95 g Bäckerhefe 270 g Fructose 80 g Rübensirup 12 ml Propionsäure 10% p-Hydroxy-Benzonsäure-Methyl- Ester in 95 % Ethanol 42 ml Dest. Wasser auf 4 I auffüllen

Der Agar wurde in 3 I kochendes Wasser eingerührt und mindestens 20 min gekocht. In einem Gefäß wurden Maismehl, Hefe, Fructose und Rübensirup in 1I Wasser eingerührt. Dieses Gemisch wurde nach 20 min zu dem kochenden Agar gegeben und nochmals mindestens 30 min gekocht. Nachdem das Gemisch auf 60°C abgekühlt war, wurden Propionsäure und 10 % p-Hydroxy-Benzonsäure-Methyl-Ester in 95 % Ethanol zugesetzt.

Semi-defined Medium:

(Medium für dickere Larven für Polytänchromosomen-Färbungen) Dieses reichhaltige Medium wurde 1984 von Backhaus et al. beschrieben. Rezept für 1I

10 g Agar 80 g Bäckerhefe 20 g Hefeextrakt 20 g Pepton 30 g Sucrose 60 g Glucose MgSO₄x 6 H₂O 0,5 g CaCl_x 2 H₂O 0,5 g Propionsäure 6ml 10% p-Hydroxy-Benzonsäure-Methyl-Ester in 95% Ethanol 10ml Dest. Wasser auf 11 auffüllen

Alle Zutaten außer Propionsäure und 10% p-Hydroxy-Benzonsäure-Methyl-Ester wurden in 95% Ethanol zum Kochen gebracht. Die Mischung wurde auf 60°C abgekühlt und die beiden Substanzen wurden zugesetzt. Der Brei wurde auf ca. 50°C abgekühlt und auf die Flaschen verteilt.

Abfüllen der Fliegennahrung:

Große Flasche: ca. 40 ml Mittlere Flasche: ca. 19 ml Kleine Flasche: ca. 11 ml

4.9.3 Fluoreszenz-gekoppelte Antikörperdetektion an Polytänchromosomen

Bei dieser Methode werden Larven des 3. Stadiums präpariert, fixiert und nach dem Scheren der Zellen und Ausbreiten der Chromosomen angefärbt.

Die geeigneten Tiere, d.h. Larven des 3. Stadiums, wurden auf ein feuchtes Filterpapier in eine Petrischale gesetzt.

Auf einem Objektträger wurden die Speicheldrüsen der Larven in 60µl Präparierlösung präpariert, für die Formaldehydfixierung für 30 sek in 30 µl Fixierlösung überführt und kurz in 30 µl Quetschlösung gespült. Nach 3-4minütiger Inkubation in 12 µl Quetschlösung auf einem 18x18 cm-Deckglas wurden die Zellen der Speicheldrüsen geschert. Das Scheren geschah zwischen Deckglas und Objektträger, wobei das Deckglas über den Objektträger durch Klopfen mit dem Handballen gegen die lange Seite des Objektträgers 3-4 mal in beide Richtungen bewegt wurde.

Nach Überprüfen der Präparate unter dem Mikroskop wurden diese in flüssigen Stickstoff gehalten, bis dieser nicht mehr sprudelte. Das Deckglas wurde anschließend mit einem feststehenden Skalpell abgesprengt. Die Objektträger wurden nach der Markierung mit Hilfe eines Diamantschreibers für mindestens 10 min zum Dehydrieren in Ethanol gestellt. Danach wurden die Präparate 2x 10 min mit 1x Puffer A in einer Färbeküvette gewaschen und 2 h bei RT oder über Nacht bei 4°C mit dem gewünschten Antikörper in 30 µl Zellkulturmedium (DMEM) unter einem 22x22 cm-Deckglas in einer feuchten Kammer inkubiert.

Nach dieser Inkubationszeit wurden die Präparate erneut 2x 10 in in 1x Puffer A in der Färbeküvette gewaschen. Das Deckgläschen wurde nach den Inkubationsschritten in der feuchten Kammer jeweils in einem Becherglas mit 1x Puffer A abgespült. Anschließend wurden die Präparate 2 h bei RT mit 30 µl 1x Puffer A (+ 5% FCS), der mit dem entsprechenden Fluoreszenz-gekoppelten Sekundär-Antikörper versetzt wurde, unter einem Deckglas (22x22 cm) in einer feuchten Kammer inkubiert.

Die Präparate wurden 1x 10 min in 1x Puffer A gewaschen, anschließend 10 min mit Hoechst-DNA-Farbstoff (0,1 μ g/ml in 1xPuffer A) angefärbt und nach kurzem Waschen in 1x Puffer A in Fluoromount-G (Einbett-Medium) eingebettet und die Kanten des Deckglas mit durchsichtigem Nagellack versiegelt. Die Präparate wurden bei -20°C gelagert oder direkt unter dem Mikroskop betrachtet.

Puffer A (10x-Stock):

150 mM Tris-HCl, pH 7.4 600 mM KCl 150 mM NaCl 5 mM Spermidin 1,5 mM Spermin

Präparierlösung:

100 μl 10x Puffer A 100 μl 10% Triton X-100 800 μl ddH₂0

Fixierlösung:

100 μl 10x Puffer A 100 μl 10% Triton X-100 100 μl 37% Formaldehyd 700 μl ddH₂0

Quetschlösung:

500 μl Essigsäure 400 μl ddH₂O 100 μl 37% Formaldehyd

Glycerin-Propylgallat:

87 % Glycerin 50 ml 1g n-Propylgallat; unter leichtem Erwärmen lösen und danach lichtgeschützt aufbewahren

5 Ergebnisse

5.1 Charakterisierung einer funktionellen Enhancer-Blockade-Domäne des CTCF-Proteins

Isolatoren sind DNA-Sequenzen, die Grenzelemente zwischen aktivem und inaktivem Chromatin darstellen (Wolffe, 1994). Eine der grundlegenden Eigenschaften eines Isolators, die dies ermöglichen, ist die Fähigkeit einer Isolator-Sequenz, bei Insertion zwischen Gen und korrespondierenden regulatorischen Elementen die Wirkung dieser Elemente auf das Zielgen zu unterbinden (Cai and Levine, 1995; Kellum and Schedl, 1992; Vazquez and Schedl, 1994).

Der Transkriptionsfaktor CTCF, der als Isolatoren-bindendes Protein identifiziert werden konnte, ist essentiell für die Isolation vermittelnde Blockade eines Enhancer-Elementes auf das entsprechende Zielgen (Bell et al., 1999). Der Mechanismus dieser CTCF-vermittelten Enhancer-Blockade ist jedoch noch weitgehend ungeklärt.

Während für den Transkriptionsfaktor CTCF bereits Domänen beschrieben wurden. die im Zusammenhang mit seiner Fähigkeit zur DNA-Biegung, DNA-Bindung, Gen-Repression und Kofaktor-Interaktion stehen, war bisher keine Domäne mit der Fähigkeit zur Enhancer-Blockade publiziert. In Vorarbeiten konnte für die Aminosäuren 2-67 des N-terminalen Proteinabschnitts, Enhancer-Blockade-Aktivität gezeigt werden, während der gesamte aminoterminale Proteinabschnitt zur Repression der Indikatorgen-Expression führt (Bardenhagen I., Diplomarbeit). Die Verifizierung und Charakterisierung dieser Domäne sollte im Rahmen dieser Arbeit erfolgen. Experimentell wurden hierzu transiente Transfektionen mittels der CaPO₄-Methode durchgeführt. Ein Reporter- und ein Effektorplasmid wurden dabei mit einem zusätzlichen internen Kontrollplasmid in NIH3T3-Zellen kotransfiziert. Das Indikatorgen des Reporterplasmids wird neben seinem Promotor durch ein Enhancer-Element positiv reguliert. Zusätzlich befinden sich auf dem Reporterplasmid Bindestellen für die DNA-Bindedomäne des Transkriptionsfaktors GAL4, die UAS (upstream activating sequence). Das Effektorplasmid kodiert für chimäre Proteine, zusammengesetzt aus der DBD des GAL4-Transkriptionsfaktors (GAL-DBD) und verschiedenen Regionen des Transkriptionsfaktors CTCF aus dem Huhn (chicken). Die mittels GAL-Fusion an die DNA des Reporterplasmids gebunden CTCF-Deletion führt bei Enhancer-Blockade zur Verringerung der Reportergen-Aktivität. Um zu prüfen, ob eine verringerte Expression des Indikatorgens tatsächlich auf Enhancer-Blockade, und nicht etwa auf Repressionsereignisse am Promotor zurückzuführen ist. wurden die jeweiligen Effektorplasmide in parallelen Transfektionsansätzen mit einem Reporterplasmid kotransfiziert, welches keinen Enhancer besitzt. Ergibt die Verwendung dieses Reporters ebenfalls eine reduzierte Reportergen-Aktivität, so kann diese nicht aus einer Enhancer-Blockade-Aktivität des Effektors resultieren, sondern ist auf Repressionsereignisse am Promotor zurückzuführen.

5.1.1 Die aminoterminalen CTCF-Aminosäuren 2-67 vermitteln Enhancer-Blockade-Aktivität

Das beschriebene Reporter/Effektor-System wurde bereits zur Untersuchung von CTCF-vermittelten Enhancer-Blockade-Effekten verwendet. Dabei wurden Hinweise gefunden, dass die Hauptaktivität der durch CTCF vermittelten Enhancer-Blockade, im N-Terminus des Proteins liegen könnte (Rüger F., Diplomarbeit). Für ein chicken-CTCF-Deletionskonstrukt, welches die Aminosäuren 2-67 des N-terminalen Proteinabschnitts beinhaltet, konnte ebenfalls Enhancer-Blockade-Aktivität gezeigt werden, während der gesamte aminoterminale Proteinabschnitt zur Repression der Indikatorgen-Expression führt (Bardenhagen I., Diplomarbeit). Aufgrund dieser Beobachtungen, wurden die Plasmide pABgal94-CTCF-NT, welches für den gesamten N-Terminus des chicken-CTCF-Proteins kodiert (aa 2-267) und pABgal94-CTCF-2-67, eine Deletion, welche die chicken-CTCF-Aminosäuren 2-67 umfasst, erneut auf ihre Enhancer-Blockade-Aktivität hin untersucht, um den Befund zu verifizieren (Abb. 5.1). Beide Vektoren wurden jeweils mit dem Reporterplasmid p3a1xA, dessen Luciferase-Reportergen unter der Kontrolle eines SV40-Promotors und – Enhancers steht (Abb. 5.1 B), in NIH3T3-Zellen kotransfiziert. Für diese Zelllinie wurde die notwendige Aktivität des SV40-Enhancers nachgewiesen. Auch konnte gezeigt werden, dass die Kotransfektion der Effektorplasmide keinen Einfluss auf die Luciferasegen-Expression eines Reporters ohne GAL4-Bindesequenzen ausübt (Rüger F., Diplomarbeit). Somit war das Reporter/Effektor-System für die in dieser Arbeit durchgeführten Enhancer-Blockade-Experimente geeignet. Um eine mögliche Enhancer-Blockade von Repressionsereignissen unterscheiden zu können, wurden die Effektorplasmide in einem parallelen Ansatz mit dem Reporterkonstrukt $p3\alpha 1xA\Delta Enh$ kotransfiziert, welches sich von $p3\alpha 1xA$ durch das Fehlen des Enhancers, unterscheidet (Abb. 5.1 B). Die Verwendung von 1 µg Effektor-DNA führt bei Kotransfektion des Vektors pABgal₉₄-CTCF-NT mit dem Reporterplasmid p3a1xA, zu einer deutlich reduzierten Luciferase-Aktivität im Vergleich zum Kontroll-Vektor pABgal₉₄, der keine CTCF-Sequenzen enthält. Gleiches gilt für die Verwendung des Vektors pABgal₉₄-CTCF-2-67 (Abb. 5.1 A, rote Balken). Während die Expression des Luciferase-Gens, unter Verwendung des Konstrukts pABgal₉₄-CTCF-NT, ein Sechstel der Kontrollaktivität ausmacht, zeigt sich für das Konstrukt pABgal₉₄-CTCF-2-67 eine um den Faktor 2 verringerte Aktivität. Die Verwendung des Reporterkonstrukts $p3\alpha 1xA\Delta Enh$ führt zusammen mit pABgal₉₄-CTCF-NT ebenfalls zu einer deutlich verminderten Luciferase-Aktivität, wohingegen die Kotransfektion mit dem Vektor pABgal₉₄-CTCF-2-67 in einer erhöhten Luciferase-Aktivität resultiert (Abb. 5.1 A, graue Balken). Die Verminderung der Indikatorgen-Expression durch die CTCF-Aminosäuren 2-267 wird also zum Teil auch durch Repression des Promotors verursacht, wohingegen die Aminosäuren 2-67 als Deletionskonstrukt eine deutliche Blockade der Enhancer-Aktivität ausüben.

Es konnte in dem hier durchgeführten Experiment eine signifikante Enhancer-Blockade durch die aminoterminalen CTCF-Aminosäuren 2-67 gezeigt werden, womit die Enhancer-Blockade-Domäne 2-67 verifiziert ist.

Abb. 5.1: Die N-terminalen CTCF-Aminosäuren 2-67 vermitteln Enhancer-Blockade. A: Grafische Darstellung der Luciferase-Aktivität in % bezogen auf die Kontrolle pABgal₉₄ (=100 %). Je 4 µg der Reporterplasmide p 3α 1xA (rote Balken) bzw. p 3α 1xA Δ Enh (graue Balken) wurden mit 1 µg der Effktorplasmide pABgal₉₄-CTCF-NT und pABgal₉₄-CTCF-2-67 in NIH3T3-Zellen kotransfiziert. Die Transferansätze wurde in Triplikaten ausgeführt, jeder Balken repräsentiert den Mittelwert aus drei unabhängigen Messungen. Die Ergebnisse wurden mit Hilfe eines kotransfizierten Kontrollplasmids (β -Galaktosidase) normalisiert. B: Schematische Darstellung der in A verwendeten Reporterplasmide. Enh: Enhancer, Luc: Luciferasegen, P: Promotor, UAS: *upstream activating sequence*

5.1.2 Konservierte negative Ladungen innerhalb der CTCF-Domäne 2-67 sind in die Vemittlung der Enhancer-Blockade involviert

Die N-terminalen Aminosäuren 2-67 konnten in den vorangegangenen Experimenten als funktionelle Enhancer-Blockade-Domäne des DNA-bindenden Transkriptionsfaktors CTCF verifiziert werden. Diese Domäne sollte im folgenden Experiment näher charakterisiert werden, um möglicherweise Sequenzbereiche innerhalb der Domäne identifizieren zu können, die für die Vermittlung der Enhancer-Blockade essentiell sind.

Bei Betrachtung eines Sequenzvergleichs der N-terminalen CTCF-Aminosäuren 2-67 verschiedener Spezies, fällt an mehreren Positionen eine Konservierung von negativ geladenen Aminosäuren auf, die haupsächlich in drei, über den Sequenzbereich verteilten, Gruppen vorliegen (Abb.5.2).

X15-CTCF	1	MESEMAEAIVEDSETFMKRKETKTYQRRREGGIDEDNCVIVQS
XL1-CTCF	1	MEGEMAEDIVEDSETFMKRKETKTYQRRREGGVDEENCVIVQS
HUMAN-CTCF	1	MEGDAVEAIVEESETFIKGKERKTYQRRREGGQEEDACHLPQN
RAT-CTCF	1	MEGEAVEAIVEESETFIKGKERKTYQRRREGGQEEDACHLPQN
MOUSE-CTCF	1	MEGEAVEAIVEESETFIKGKERKTYQRRREGGQEEDASHLPQN
CHICK-CTCF	1	MEGEAVEAIVEESETFIKGKERKTYQRRREGGQEDEACHIAPN

Abb.5.2: Im Bereich der CTCF-Aminosäuren 2-67 verschiedener Spezies sind an mehreren Positionen negativ geladene Aminosäuren konserviert.

Sequenzvergleich der N-terminalen CTCF Aminosäuren: Dargestellt sind die Aminosäuresequenzen im Bereich der Aminosäuren 1-43 verschiedener Spezies. Konservierte negative Ladungen sind rot dargestellt. XL1: Xenopus laevis 1 (aus Phagenbank isolierter Klon Nr. 1), XL5: Xenopus laevis 5 (Klon Nr. 5), HUMAN: Mensch, RAT: Ratte, MOUSE: Maus, CHICK: Huhn

Negative Ladungen sind aufgrund von Anziehungskräften zu positiven Ladungen an zwischen Proteinen beteiligt. Die Interaktion Interaktionen mit weiteren Proteinfaktoren stellt sicherlich einen möglichen Schritt im Mechanismus der CTCFvermittelten Enhancer-Blockade dar. Aus diesem Grund sollten die innerhalb der CTCF-Domäne 1-67 konservierten, negativ geladenen Aminosäuren durch Mutationsanalysen auf ihre Relevanz für die Vermittlung der Enhancer-Blockade untersucht werden. Hierzu wurden im Rahmen dieser Arbeit in das Konstrukt pABgal94-CTCF-2-67 mit Hilfe des QuickChange Site-Directed Mutagenesis Kit (Stratagene) pro Konstrukt jeweils drei Punktmutationen eingeführt. Bei Expression des Konstrukts führt dies an drei Positionen zu einem Aminosäureaustausch der CTCF-Sequenz (Glutaminsäure→Alanin). Die Positionen innerhalb der ausgetauschten Aminosäuren wurden dabei so gewählt, dass in jedem Konstrukt jeweils eine der drei Gruppen von negativ geladenen Aminosäuren durch neutrale Aminosäuren (Alanin) weitgehend ersetzt wurde. Auf diese Weise entstanden die pABgal94-CTCF-2-67mut1, Effektorplasmide pABgal94-CTCF-2-67mut2 und pABgal94-CTCF-2-67mut3, die jeweils ein mutiertes CTCF-Deletionskonstrukt als GAL4-Fusionsprotein exprimieren (Abb.3.1) und auf ihre Enhancer-Blockade-Aktivität getestet wurden. Desweiteren wurden an denselben Positionen Mutationen eingeführt, die in jedem Konstrukt jeweils eine der drei Hauptgruppen von negativ geladenen Aminosäuren, durch jeweils andere negativ geladenen Aminosäuren (Asparaginsäuren) ersetzt wurden. Dadurch entstanden die Effektorplasmide pABgal94-CTCF-2-67mut5 pABgal94-CTCF-2-67mut4, und pABgal94-CTCF-2-67mut6 (Abb. 3.1). Sie wurden genutzt, um zu testen, ob die negativen Ladungen oder die Aminosären als solche eine Rolle in der Enhancer-Blockade spielen. In den dazu durchgeführten transienten Transfektionen wurden NIH3T3-Zellen, wie unter

5.1 beschrieben, mit dem Reporterplasmid p3α1xA (Abb.5.3 rote Balken) oder p3α1xAΔEnh (Abb.5.3 graue Balken) und jeweils 2,5µg von einem der Effektorplasmide pABgal94-CTCF-2-67 (Kontrolle für Enhancer-Blockade) oder pABgal94-CTCF-2-67mut1-6, kotransfiziert. Das Konstrukt pABgal94-CTCF-2-67 (CTCF 2-67-Wildtyp) führt bei Kotransfektion mit dem Reporter p3α1xA im Vergleich zum Kontrollvektor pABgal94 zu einer signifikanten Abnahme der Luciferase-Aktivität. Die gezeigte Abnahme der Luciferase-Aktivität ist nicht auf einen Repressionseffekt zurückzuführen, da unter Verwendung des Reporters ohne Enhancer keine Aktivitätsabnahme auftritt (Abb.5.3). Die Kotransfektion der Expressionsvektoren für die mutierten CTCF-Deletionskonstrukte CTCFmut1 (aa 2, 4, 7 mutiert), CTCFmut2 (aa 11, 12, 14 mutiert) und CTCFmut3 (aa 30, 34, 36 mutiert) führt im Vergleich zu CTCF-2-67 zu einer reduzierten Aktivitätsabnahme der Luciferase. Dieser Effekt fällt für CTCFmut2 und mut3 geringer aus als für CTCFmut1. Keines der drei CTCF-Mutationskonstrukte zeigt eine ebenso starke Enhancer-Blockade-Aktivität wie das CTCF-2-67-Wildtyp-Konstrukt.

Das Experiment zeigt, dass der Austausch der innerhalb der CTCF-Aminosäuresequenz 2-67 konservierten, negativ geladenen Aminosäuren an den verschiedenen Positionen der Mutanten 1-3 eine Abnahme der Enhancer-Blockade-Aktivität der Domäne zur Folge haben.

Die Transfektion der Effektorplasmide pABgal94-CTCF-2-67mut4, pABgal94-CTCF-2-67mut5 und pABgal94-CTCF-2-67mut6 ergeben keine wesentliche Änderung im Vergleich zu den Ergebnissen einer Transfektion der Konstrukte mut1-mut3.

Alle drei in diesem Experiment ausgetauschten Gruppen negativer Ladungen sind demnach in die Vermittlung der Enhancer-Blockade von CTCF2-67 involviert.

Um eine mögliche verstärkte Reduktion der Enhancer-Blockade-Aktivität durch Mutation der konservierten negativen Ladungen zu zeigen, wurden alle drei Gruppen innerhalb der Domäne 2-67 mutiert (Glutaminsäure—Alanin). Das entstandene Konstrukt (pABgal94-CTCF-2-67mut7, siehe Abb.3.1) wurde in NIH3T3-Zellen, wie unter 5.1 beschrieben, mit dem Reporterplasmid p3 α 1xA (Abb.5.4 rote Balken) oder p3 α 1xA Δ Enh (Abb.5.4 graue Balken), kotransfiziert. Das Konstrukt pABgal94-CTCF-2-67 (CTCF 2-67 Wildtyp) führt bei Kotransfektion mit dem Reporter p3 α 1xA im Vergleich zum Kontrollvektor pABgal94 zu einer signifikanten Abnahme der Luciferase-Aktivität. Die Transfektion der Mutante pABgal94-CTCF-2-67mut7 führt zu einer vollständigen Aufhebung der Enhancer-Blockade-Aktivität. Die Mutation aller drei konservierter Ladungsgruppen innerhalb eines Konstruktes führt somit zu einer deutlichen Verstärkung des Effektes, im Vergleich zu den Einzelmutante mut1-6.

Als abschließendes Experiment zur Analyse der konservierten Ladungsgruppen in der Enhancer-Blockade-Domäne 2-67 wurde die mutierte N-terminale Domäne (aa 2-67) in das CTCF-Protein voller Länge kloniert. Das entstandene Konstrukt (pABgal94-CTCF-fullmut, siehe Abb. 3.1) wurde in NIH3T3-Zellen, wie unter 5.1 beschrieben, mit dem Reporterplasmid p3 α 1xA (Abb.5.5 rote Balken) oder p3 α 1xA Δ Enh (Abb.5.5 graue Balken), kotransfiziert. Das Konstrukt pABgal94-CTCF-2-67 (CTCF 2-67-Wildtyp) führt bei Kotransfektion mit dem Reporter p3 α 1xA im Vergleich zum Kontrollvektor pABgal94 erneut zu einer signifikanten Abnahme der Luciferase-Aktivität. Die Transfektion des Konstrukts pABgal94-CTCF-full, welches das Wildtyp-Protein in voller Länge exprimiert,

führt ebenfalls zu einer deutlichen Abnahme der Luciferase-Aktivität (Abb. 5.5). Die Abnahme fällt jedoch im Vergleich zur Enhancer-Blockade Domäne 2-67 schwächer aus. Die Transfektion der Mutante pABgal94-CTCF-fullmut führt wiederrum zu einer Reduktion der Enhancer-Blockade-Aktivität. Diese wird jedoch nicht vollständig aufgehoben.

Zusammenfasend kann die Beteiligung konservierter saurer Aminosäuren an der CTCF-2-67-vermittelten Enhancer-Blockade in den durchgeführten Enhancer-Blockade-Experimenten gezeigt werden.

Abb. 5.3 Konserviert e negative Ladungen innerhalb der CTCF-Domäne-2-67 sind in die Vemittlung der Enhancer-Blockade involviert

A: Grafische Darstellung der Luciferase-Aktivität in % bezogen auf die Kontrolle pABgal₉₄ (=100 %). Je 4 μg der Reporterplasmide p3α1xA (rote Balken) bzw. p3α1xAΔEnh (graue Balken) wurden mit 2,5 μg der Effektorplasmide pABgal₉₄-CTCF-2-67 und pABgal₉₄-CTCF-mut1-mut6 in NIH3T3-Zellen kotransfiziert. Die Transferansätze wurden in Triplikaten ausgeführt, jeder Balken repräsentiert den Mittelwert aus drei unabhängigen Messungen. Die Ergebnisse wurden mit Hilfe eines kotransfizierten Kontrollplasmids (β-Galaktosidase) normalisiert. Enh: Enhancer

Abb. 5.4 Mutation der konservierten negativen Ladungen innerhalb der CTCF-Domäne-2-67 führen zu einer Aufhebung der Enhancer-Blockade-Aktivität.

A: Grafische Darstellung der Luciferase-Aktivität in % bezogen auf die Kontrolle pABgal₉₄ (=100 %). Je 4 μg der Reporterplasmide p3α1xA (rote Balken) bzw. p3α1xAΔEnh (graue Balken) wurden mit 2,5 μg der Effktorplasmide pABgal₉₄-CTCF-2-67 oder pABgal₉₄-CTCF-mut7 in NIH3T3-Zellen kotransfiziert. Die Transferansätze wurden in Triplikaten ausgeführt, jeder Balken repräsentiert den Mittelwert aus drei unabhängigen Messungen. Die Ergebnisse wurden mit Hilfe eines kotransfizierten Kontrollplasmids (ß-Galaktosidase) normalisiert. Enh: Enhancer

Abb. 5.5 Mutation der konservierten negativen Ladungen innerhalb des CTCF-Proteins voller Länge führen zu einer Reduktion der Enhancer-Blockade-Aktivität.

A: Grafische Darstellung der Luciferase-Aktivität in % bezogen auf die Kontrolle pABgal94 (=100 %). Je 4 μg der Reporterplasmide p3α1xA (rote Balken) bzw. p3α1xAΔEnh (graue Balken) wurden mit 2,5 μg der Effektorplasmide pABgal94-CTCF-2-67 oder pABgal94-CTCF-mut7 in NIH3T3-Zellen kotransfiziert. Die Transferansätze wurden in Triplikaten ausgeführt, jeder Balken repräsentiert den Mittelwert aus drei unabhängigen Messungen. Die Ergebnisse wurden mit Hilfe eines kotransfizierten Kontrollplasmids (ß-Galaktosidase) normalisiert. Enh: Enhancer

5.2 Untersuchung einer möglichen Beteiligung des Korepressors Sap30 an der CTCF-vermittelten Enhancer-Blockade-Funktion

5.2.1 Corepressor Sap30 interagiert mit CTCF in vitro

Es konnte gezeigt werden, dass CTCF mit dem Korepressors Sin3A interagiert und dadurch Histon-Deacetylase-Aktivität rekrutiert (Lutz et al., 2000). Das Protein Sap30 ist eine Untereinheit des Sin3A/HDAC-Korepressor-Komplex. Es sollte untersucht werden, ob die Rekrutierung von Histondeacetylase-Aktivität auch an der Vermittlung der Enhancer-Blockade beteiligt ist. Zunächst wurde getestet, ob CTCF mit Sap30 interagiert. Hierzu wurden GST-Pulldown-Experimente durchgeführt (Abb.5.6). In einem ersten Ansatz wurde GST-CTCF, das an Glutathion-Agarose-Beads immobilisiert wurde, mit ³⁵S-markiertem Sap30 inkubiert (Abb.5.6A). Dabei zeigt Sap30 im Vergleich zu GST alleine und der *in vitro*-translatierten Negativkontrolle Luciferase eine starke Bindung an CTCF. Die Interaktion zwischen CTCF und Sap30 kann in diesem Experiment verifiziert werden.

Abb. 5.6 A CTCF interagiert *in vitro* mit Sap30.

GST und GST-CTCF wurden zusammen mit in *vitro*-translatiertem, 35S-markiertem Sap30, bzw. Luciferase inkubiert. Die gebundenen Proteine wurden anschließend gelelektrophoretisch aufgetrennt. Eine Fluorographie visualisiert das Signal für Sap30 und Luciferase vor (5% Input) und nach der Inkubation.

5.2.2 Korepressor Sap30 interagiert mit der Enhancer-Blockade-Domäne von CTCF *in vitro*

Da eine Interaktion von CTCF mit dem Korepressor Sap30 gezeigt werden konnte, stellte sich die Frage, ob diese Interaktion eine Rolle in der CTCF-vermittelter Enhancer-Blockade spielt. Da eine Interaktion von Sap30 mit der Enhancer-Blockade-Domäne 2-67 allein einen Hinweis hierauf liefern würde, wurde ein GST-Pulldown-Experiment durchgeführt, in dem die mit GST-fusionierte Enhancer-Blockade-Domäne (GST-CTCF-2-67) an Glutathion-Agarose-Beads immobilisiert und mit ³⁵S-markiertem Sap30 inkubiert wurde (Abb.5.7 B). Es zeigt sich eine signifikante Interaktion von CTCF-2-67 mit Sap30, im Vergleich zu GST alleine und der *in vitro*-translatierten Negativkontrolle Luciferase. Der Korepressor Sap30 interagiert demnach direkt mit der Enhancer-Blockade-Domäne von CTCF.

Um zu testen ob diese Interaktion funktionell an der Enhancer-Blockade-Aktivität beteiligt ist, wurde im Rahmen dieser Arbeit die mutierte Enhancer-Blockade-Domäne, in der die konservierten negativen Ladungen jeweils durch Alanin ersetzt wurden (siehe 5.1.2), mit GST fusioniert. Der Verlust der Interaktion der mutierten Enhancer-Blockade-Domäne mit Sap30 wäre ein starker Hinweis auf die Beteiligung der CTCF/Sap30-Interaktion an der Enhancer-Blockade-Aktivität. Das Fusionsprotein

GST-CTCF-2-67mut wurde an Glutathion-Agarose-Beads immobilisiert und mit ³⁵Smarkiertem Sap30 inkubiert (Abb.5.6C). Es zeigt sich eine signifikante Interaktion von CTCF-2-67mut mit Sap30 im Vergleich zu GST alleine und der *in vitro*translatierten Negativkontrolle Luciferase. Der Corepressor Sap30 interagiert also auch mit der mutierten funktionslosen Enhancer-Blockade-Domäne von CTCF, was darauf hindeutet, dass diese Interaktion nicht an der Vermittlung der Enhancer-Blockade beteiligt ist.

Abb. 5.6 B,C: Die Enhancer-Blockade-Domäne von CTCF interagiert in vitro mit Sap30.

GST und GST-CTCF2-67 oder GST-CTCF2-67mut wurden zusammen mit in *vitro*-translatiertem, 35Smarkiertem Sap30, bzw.Luciferase inkubiert. Die gebundenen Proteine wurden anschließend gelelektrophoretisch aufgetrenn. Eine Fluorographie visualisiert das Signal für Sap30 und Luciferase vor (5% Input) und nach der Inkubation.

5.3 Reinigung eines CTCF-assoziierten Komplexes aus SL2 Zellen: Etablierung eines Zellkultursystems

Um die CTCF-vermittelten Wirkungen besser zu verstehen, ist es von grundlegender Bedeutung, Proteine oder Protein-Komplexe zu identifizieren, die in der Zelle mit CTCF assoziiert sind. Zur Aufreinigung eines solchen Komplexes sollte im Rahmen dieser Arbeit ein Zellkultur-System etabliert werden. Hierzu wurden Embryonalzellen von Drosophila melanogaster (Schneiderzelllinie SL2) verwendet. In Drosophila melanogaster existiert ein konserviertes CTCF-Ortholog (dCTCF), welches Enhancer-Blockade-Aktvität besitzt (Moon et al., 2005). Im Vergleich zu Vertebraten stellt Drosophila einen relativ einfachen Organismus dar und es ist wahrscheinlich, dass sich dieses auch in einem relativ einfachen CTCF/Kofaktor-Netzwerk widerspiegelt. Diese Situation sollte genutzt werden, um Proteinkomplexe und einzelne Interaktionspartner des multifunktionellen Faktors CTCF zu identifizieren. Es wurde ein dCTCF-Konstrukt kloniert, welches die Expression eines mit HA-FLAG fusionierten dCTCF-Proteins in Drosophila SL2-Zellen ermöglicht (Abb. 5.7). Drosophila SL2-Zellen wurden mit diesem Konstrukt transfiziert und es wurden Einzelzellklone isoliert, welche das Konstrukt stabil intergriert trugen. Die Expression des HA-FLAG-dCTCF Fusionsproteins steht unter der Kontrolle eines CuSO₄induzierbaren Promoters. Dies ermöglicht es, die stabil transfizierten Zellen ohne CTCF-Überexpression zu kultivieren und die Überexpression gezielt 24 Stunden vor Ernte der Zellen zu induzieren. Die isolierten Zellklone wurden bezüglich ihrer HA-FLAG-dCTCF-Expression charakterisiert. Dazu wurden die Zellen für 24 Stunden mit 500 µmol CuSO₄ inkubiert (+) oder nicht (-). Anschließend wurden sie geerntet und ein Kernextrakt wurde hergestellt. Die Extrakte wurden mittels dCTCF-Antikörper und FLAG-Antikörper im Western Blot untersucht (Abb. 5.8). Die Klone 4 und 6 zeigen im uninduzierten Zustand deutliche Expression von endogenem dCTCF. Nach Induktion ist eine zweite Bande im Western Blot detektierbar, welche der Expression des HA-FLAG-dCTCF Fusionsprotein entspricht. Da das Fusionsprotein größer ist als Wildtyp-dCTCF, läuft diese Bande im SDS-Gel über dem endogenem dCTCF-Signal. Für Klon 7 kann HA-FLAG-dCTCF-Expression auch ohne CuSO₄-Inkubation detektiert werden (Doppelbande im Western Blot). Das Fusionsprotein wird von diesem Klon also dauerhaft und nicht nur nach Induktion exprimiert. Dieser Klon ist damit nicht für die Komplexaufreinigung geeignet. Klon 4 und Klon 6 zeigen nur nach Induktion ein Signal für HA-FLAG-dCTCF-Überexpression (Doppelbande, Abb.5.8), wobei diese für Klon 4 im Vergleich zu Klon 6 stärker ausfällt. Die Expression des Fusionsproteins nach Induktion wurde für Klon 4 auch mittels α-FLAG-Antikörper im Western Blot untersucht (Abb.5.9). Nur nach Induktion ist ein Signal detektierbar, welches HA-FLAG-dCTCF entsprach. Dieser Klon expremierte das Fusionsprotein nur nach Induktion und wurde als Modellsystem für die weitere also Komplexaufreinigung verwendet.

Abb. 5.7: Schematische Darstellung des HA-FLAG-dCTCF-Konstrukts.

Die Expression des HA-FLAG-dCTCF-Fusionsprotein wird von einem Metallothionin-Promotor kontrolliert. Dieser ist CuSO₄-induzierbar. Der Vektor trägt ein Puromycin-Resistenzgen zur Selektion der transfizierten Zellen. MT:Metallothionin

Abb. 5.9: Überexpression von HA-FLAG-dCTCF in SL2-Klon 4.

Drosohila SL2-Zellen wurden stabil mit HA-FLAG-dCTCF transfiziert. In dem isolierten Einzelzellklon Nummer 4 (Klon 4) wurde HA-FLAG-dCTCF-Expression mit 500µmol CuSO₄ (+) oder nicht (-) induziert. Hergestellte Kernextrakte wurden mit dCTCF-Antikörper oder FLAG-Antikörper im Western Blot auf CTCF-Überexpression untersucht.

5.4 Chromatographische Charakterisierung eines dCTCFassoziierten Komplexes

Der im Rahmen dieser Arbeit etablierte stabile SL2-Klon 4 sollte zur Aufreinigung eines dCTCF-assozierten Proteinkomplex und damit auch zur Identifikation von dCTCF-Interaktionspartnern verwendet werden.

Hierzu mußte zunächst ein geeignetes Reinigungsschema entwickelt werden. Zunächst wurde die Möglichkeit eine chromatographische Reinigung getestet.

5.4.1 dCTCF ist mit mindestens zwei hochmolekularen Komplexen assoziiert

Als erster Reinigungsschritt wurde eine Ionenaustauschchromatographie durchgeführt. Die Ionenaustauschchromatographie separiert Moleküle bezüglich ihrer Nettoladung. Das zugrunde liegende Prinzip beruht auf der elektrostatischen Wechselwirkung der Ladungen auf der Oberfläche der Proteine mit den entgegengesetzt geladenen Gruppen einer Säulenmatrix. In dieser Arbeit wurde eine Mono Q-Säule benutzt, welche ein starker Anion-Austauscher ist. Sie trägt also positiv geladene funktionelle Gruppen, an die negativ geladenen Partikel binden.

Die Mono Q-Säule wurde äquilibriert, bevor der vorbereitete Proteinextrakt (siehe 4.6.4) auf die Säule geladen wurde. Anschließend wurde die Säule gewaschen, um nicht spezifisch gebundene Proteine zu entfernen. Die spezifisch gebundenen Proteine wurden über einen Salzgradienten (100mM KCI-1M KCI in 20 ml) sukzessive eluiert. Je ein Aliquot der gesammelten Fraktionen wurde mittels SDS-PAGE und Western Blot auf das Vorkommen von HA-FLAG-dCTCF untersucht.

Fraktionen 17-33 wurden mittels FLAG-Antikörper (Abb. 5.10 A) oder dCTCF-Antikörper (Abb. 5.10 B) im WB analysiert. HA-FLAG-dCTCF eluiert in einem relativ breiten Bereich in den Fraktionen 21-32, was einer Salzkonzentration von 450-600 mM NaCl entspricht. Auch der CTCF-Antikörper detektiert dCTCF in demselben Bereich, Fraktionen 21-33.

Um zu untersuchen, ob der gesamte Bereich, in dem dCTCF eluiert einem einzigen, oder unterschiedlichen Komplexen zuzuordnen ist, wurden je zwei Fraktionen vom Anfang der Elution (Fraktionen 22-23) und vom Ende der Elution (Fraktionen 31-32) mittels Gelfiltration analysiert. Hierzu wurden sie auf eine Superose 6-Säule geladen. In der Gelfiltration werden Moleküle aufgrund ihrer Größe separiert. Die Säulenmatrix enthält Poren unterschiedlicher Größe. Große Proteine, welche die kleinen Poren nicht passieren können, eluieren zuerst. Je kleiner ein Protein ist, desto kleinere Poren kann es passieren und desto später eluiert es von der Säulenmatrix. Als "void volume" (V₀) bezeichnet man das Elutionsvolumen der Moleküle, die zu groß, sind um auch die größten Poren der Matrix zu passieren. Diese großen Moleküle eluieren als erstes unfraktioniert von der Säule. Das Elutionsvolumen (V_e) eines gegebenen Proteins, ist das Volumen, bei dem das Protein von der Säule eluiert. Es hängt also von der Größe des Proteins ab. Das Molekulargewicht unbekannter Proteine oder Proteinkomplexe lässt sich durch einen Vergleich des Verhältnisses Ve/Vo des Proteins, mit dem Verhältniss V_e/V₀ eines Proteinstandards mit bekannten Molekulargewichten bestimmen. Eine solche Standardkurve für die hier verwendete Gelfiltrations-Säule (Superose 6 HR 10/30) wurde im Rahmen dieser Arbeit mit einem Gemisch der Proteine Alkohol-Dehydrogenase (150 kDa), Apoferritin (443 kDa) und Thyroglobulin (669 kDa), erstellt (Abb. 5.11). V₀ wurde gemäß der Herstellerangaben mit Hilfe des Proteins Blue Dextran bestimmt.

Die Superose 6-Säule wurde mit Laufpuffer äquilibriert, bevor die vorbereiteten Fraktionen aus der Anionenaustausch-Chromatographie auf die Säule geladen wurden. Anschließend wurde die Säule mit Laufpuffer gewaschen, wobei die Proteine der Größe nach getrennt eluieren. Die gesammelten Fraktionen wurden mittels WB analysiert (Abb. 5.12). Der Großteil Ha-FLAG-dCTCF aus den Mono Q-Fraktionen 22-23 eluiert in den Fraktionen 14-16 von der Superose 6-Säule. Dies entspricht einem Molekulargewicht von ungefähr 1,5 MDa. Das in den Fraktionen 31-32 enthaltene HA-FLAG-dCTCF eluiert in der Gelfiltration in den Fraktion 12-14. Dies entspricht einem Molekulargewicht von circa 2,5 MDa.

Mittels Ionenaustausch- und Gelfiltrations-Chromatographie kann hier gezeigt werden, dass dCTCF mit mindestens zwei verschiedenen hochmolekularen Komplexen assoziiert im Zellkern vorliegt. Eine Analyse der CTCF-assoziierten Komplexe mittels Massenspektrometrie war nicht möglich. Im silbergefärbten SDS-Gel, auf dem die CTCF-positiven Superose 6-Fraktionen aufgetrennt wurden, waren keine Banden identifizierbar.
Ergebnisse

B

	بر جنبہ Fractions 4 %						Fractions 4%											
	17 IT	18	19	20	21	22	23	24		25	26	27	28	29	30	31	32	33
170 <u>—</u> 130 —	-				-	-	=	-	170 — 130 —		-	-	-	-	-	-	-	-
									α-CTCF									

Abb. 5.10: dCTCF eluiert in einem Salz-Gradienten bei 450-600 mM NaCl.

HA-FLAG-dCTCF-Expression wurde in SL2-Klon 4 mit 500µmol CuSO₄ induziert. Hergestellte Kernextrakte wurden auf eine Mono Q-Säule geladen. Die spezifisch gebundenen Proteine wurden über einen Salzgradienten (100mM KCI-1M KCI in 20 ml) sukzessive eluiert. Je ein Aliquot (4%) der gesammelten Fraktionen (Fractions 4%) wurde mittels SDS-PAGE und Western-Blot auf das Vorkommen von HA-FLAG-dCTCF untersucht. A: Western Blot der Fraktionen 17-33 mittels α -FLAG-Antikörper. B: Western Blot der Fraktionen 17-33 mittels Größenfraktionierung analysiert wurden.

Volumen (ml)

Abb. 5.11: Kalibrierung der Superose 6-Säule mit einem Proteinstandard.

Das Molekulargewicht unbekannter Proteine oder Proteinkomplexe wurde durch einen Vergleich des Verhältnisses V_e/V_0 des Proteins mit dem Verhältnis V_e/V_0 eines Proteinstandards mit bekannten Molekulargewichten, bestimmt (siehe 4.8.2). Eine Standardkurve für die in dieser Arbeit verwendete Gelfiltrations-Säule (Superose 6 HR 10/30) wurde mit einem Gemisch der Proteine Alkohol-Dehydrogenase (150 kDa), Apoferritin (443 kDa) und Thyroglobulin (669 kDa) gemäß der Herstellerangaben erstellt. V₀ wurde gemäß der Herstellerangaben mit Hilfe des Proteins Blue Dextran bestimmt.

 $V_e\!\!:$ Elutionsvolumen, V_0 : void volume, log MW: Logarithmus des Molekulargewichts, $R^2\!:$ Determinationskoeffizient

Abb. 5.12: dCTCF ist mit mindestens zwei hochmolekularen Komplexen assoziiert.

HA-FLAG-dCTCF-Expression wurde in SL2-Klon 4 mit 500µmol CuSO4 induziert. Hergestellte Kernextrakte wurden auf eine Mono Q-Säule geladen. Die spezifisch gebundenen Proteine wurden über einen Salzgradienten (100mM KCI-1M KCI in 20 ml) sukzessive eluiert. Je ein Aliquot (4%) der gesammelten Fraktionen wurde mittels SDS-PAGE und Western Blot auf das Vorkommen von HA-FLAG-dCTCF untersucht. A: Western Blot der Fraktionen 17-33 mittels α -FLAG-Antikörper. Rote Rechtecke markieren die Fraktionen, welche mittels Größenfraktionierung analysiert wurden. B: Western Blot der Superose 6-Fraktionen 9-17.

5.4.2 dCTCF ist in vivo mit dem Protein CP190 assoziiert

Die chromatographische Reinigung konnte zwei getrennte hochmolekulare dCTCFassoziierte Komplexe auflösen. Mittels der durchgeführten Größenfraktionierung kann auch geprüft werden, ob bestimmte Proteine mit CTCF kofraktionieren. Um einen Hinweis darauf zu erhalten, ob die eluierten dCTCF-Komplexe tatsächlich funktionelle Isolatorkomplexe enthalten, wurde getestet, ob das Protein CP190 mit dCTCF coeluiert.

CP190 ist an der Funktion des gypsy-Isolators in Drosophila beteiligt. Der gypsy-Isolator wurde durch Studien entdeckt, die die mutagenen Effekte des gypsy-Retrotransposons analysierten. Der Isolator ist in der 5'-UTR (untranslated region) des gypsy-Retrotransposons lokalisiert. Wie bei vielen anderen Isolatoren bewahrt dieses DNA-Fragment Transgene vor der Positionseffekt-Variegation auch (Roseman et al. 1997). Für die Enhancer-Blockade wird das Protein Suppressor of Hairywing (Su(Hw) benötigt (Scott et al., 1999). Faktoren, die mit Su(Hw) interagieren und in die Isolatorfunktion von *gypsy* involviert sind, sind Mod(mdg4) und CP190 (Gerasimova et al., 1995; Gdula and Corces, 1997). Für Su(Hw) und Mod(mdg4) sind einige hundert endogene Bindestellen auf Polytänchromosomen von Fliegen im dritten Larvenstadium bekannt, die aber größtenteils nicht mit gypsy-Retrotransposons übereinstimmen (Parnell et al., 2003; Golovnin et al., 2003). In in der Interphase befindlichen Zellen konnte gezeigt werden, dass Su(Hw) und

Mod(mdg4) in punktuellen Bereichen an der nukleären Peripherie lokalisiert sind, die als *insulator bodies* bezeichnet werden (Gerasimova et al., 2000). Es wird diskutiert, dass in diesen *insulator bodies* mehrere Isolator-Sequenzen und verschiedene Proteine miteinander interagieren und es dabei zur Ausbildung von DNA-Schleifen kommt, durch die funktionell abgetrennte Chromatin-Domänen entstehen, die eine unabhängige Transkriptionsregulation erlauben (Byrd und Corces, 2003). Zusätzlich zu Su(Hw) und Mod(mdg4) ist CP190 neben Proteine des RNAi-Apparats an der Formierung der *insulator bodies* beteiligt. CP190 beeinflusst dabei die Funktion der *gypsy*-Isolatoren als Enhancer-Blockade-Element und der Ausbildung von *insulator bodies*, wie anhand von Mutanten der entsprechenden Gene gezeigt werden konnte (Lei und Corces, 2006; Pai et al., 2004).

Im Rahmen dieser Arbeit sollte geprüft werden, ob dCTCF mit CP190 interagiert. Dazu wurden die Extrakte, die durch die Fraktionierung gewonnen wurden daraufhin untersucht, ob CP190 mit dCTCF kofraktioniert. Hierzu wurde Kernextrakt aus induziertem Klon 4 über die Mono Q- und Superose 6-Säulen chromatographisch gereinigt. Gesammelte Superose 6-Fraktionen wurden mittels SDS-PAGE und Western Blot mit dCTCF- und CP190-Antikörper auf das Vorkommen von dCTCF und CP190 untersucht (Abb.5.13). Es zeigt sich, dass CP190 mit dCTCF in den Fraktionen 15 und 16 kofraktioniert. Dies liefert einen starken Hinweis darauf, dass beide Proteine in vivo assoziiert vorliegen. Um diesen Befund zu verifizieren, wurde eine Co-Immunpräzipitation durchgeführt (Abb. 5.14). Hierzu wurde der CP190-Antikörper, wie unter 4.7.2 beschrieben, an Agarose-Beads gekoppelt und mit Extrakt aus Wildtyp-SL2-Zellen inkubiert. Das Experiment ergab eine Präzipitation von endogenem dCTCF durch den CP190-Antikörper. Die dCTCF-Kopräzipitation aus dem Zellextrakt ist spezifisch, da in der IgG-Kontrolle kein Signal vorhanden ist. Die durchgeführten Experimente sprechen dafür, dass dCTCF und CP190 in vivo komplexiert vorliegen. Dieses Ergebniss konnte durch weitere Experimente bestätigt werden und wurde zwischenzeitlich publiziert (Mohan et al., 2007).

Abb. 5.13: dCTCF ist mit CP190 in vivo assoziiert.

Kernextrakt aus induziertem stabilen Zellklon 4 wurde chromatographisch gereinigt. Superose 6-Fraktionen wurden mittels Western Blot mit dCTCF-, bzw. CP190 Antikörper auf das Vorkommen von dCTCF und CP190, untersucht.

Abb. 5.14: dCTCF ist mit CP190 in vivo assoziiert.

Zellextrakte aus Wildtyp-SL2-Zellen wurden mit an Agerose-Beads-gekoppeltem CP190-Antikörper inkubiert. Die von den Beads eluierten Proteine wurden nach der Auftrennung in einem SDS-Gel im WB mit dCTCF Antikörper untersucht.

IP: Immunopräzipitation; in der entsprechend gekennzeichneten Zeile sind die Antikörper angegeben, die auf den Beads immobilisiert wurden.

Inp: 8% Input, Ctrl: Maus-Antikörper (2µg)

5.5 Aufreinigung eines dCTCF-assoziierten Komplexes mittels Immunpräzipitation

Da eine rein chromatographische Reinigung eines dCTCF-Komplexes zu keinen auswertbaren Proteinmengen führte, sollten CTCF-interagierende Proteine über eine Immunreaktion präzipitiert werden. Hierzu wurde erneut der SL2-Zellklon 4 verwendet, welcher ein FLAG-HA-markiertes dCTCF-Protein überexprimiert.

5.5.1 HA-FLAG-dCTCF kann effektiv über FLAG M2-Agarose präzipitiert werden

Zunächst wurde die Möglichkeit getestet, das FLAG-HA-markierte Protein über α-FLAG-Agarose zu präzipitieren. Hierzu wurde Kernextrakt aus induziertem und nichtinduziertem SL2-Klon 4, wie unter 4.8.3 beschrieben, mit α-FLAG M2-Agarose präzipitiert und eluiert. Anschließend erfolgte eine Analyse der Proben mittels Western Blot. Eine kurze Belichtung des Western Blots (Abb. 5.15 A) ist ausreichend, um das HA-FLAG-markierte dCTCF-Protein an den Beads nachzuweisen. Es erfolgt eine Anreicherung im Vergleich zum Input und im *Flow through* kann kein Signal detektiert werden. Außerdem kann das Fusionsprotein zu ca. 50 % spezifisch über FLAG-Peptid eluiert werden. Für die uninduzierte Probe, welche kein FLAG-markiertes dCTCF beinhaltet, kann kein Signal detektiert werden. Erst bei einer längeren Belichtung des Western Blots (Abb. 5.15 B) läßt sich endogenes dCTCF in der uninduzierten Probe (und auch im *Flow through* der induzierten Probe) visualisieren, welches nicht an die Beads bindet.

Es zeigt sich, dass HA-FLAG-dCTCF effektiv an α -FLAG-Agarose bindet und spezifisch eluiert werden kann.

Kernextrakte aus uninduzierten (-) und CuSO₄-induzierten (+) SL2-Klon 4-Zellen wurden mit α-FLAG-Agarose inkubiert. Gebundene Proteine wurden mittels FLAG-Peptid von den Beads eluiert. Die von den Beads eluierten Proteine wurden nach der Auftrennung in einem SDS-Gel im Western Blot mit dCTCF Antikörper getestet. A: kurze Belichtungszeit des Western Blots B: lang Belichtungszeit des Western Blots. I: 8% Input, FI: 8% Flow through, E: Eluat, B: Beads

5.5.2 FLAG-HA-dCTCF bindet an α -HA-Agarose, kann aber nicht eluiert werden

Als nächstes wurde die Möglichkeit getestet, das FLAG-HA-markierte Protein über α -HA-Agarose zu präzipitieren. Hierzu wurde Kernextrakt aus induziertem und nichtinduziertem SL2-Klon 4, wie unter 4.8.3 beschrieben, mit α -HA Agarose präzipitiert und eluiert. Anschließend erfolgte eine Analyse der Proben mittels Western Blot. Bei einer kurzen Belichtung des Western Blots (Abb. 5.16 A) lässt sich HA-FLAGmarkiertes dCTCF an den Beads nachweisen. Es erfolgt allerdings nur eine geringe Anreicherung im Vergleich zum Input. Im *Flow through* und im Eluat kann kein Signal detektiert werden. Für die uninduzierte Probe, welche kein HA-FLAG-markiertes dCTCF beinhaltet, ist kein Signal nachweisbar. Erst bei einer längeren Belichtung des Western Blots (Abb. 5.16 B) läßt sich endogenes dCTCF im *Flow through*, im Eluat und auch an den Beads in der uninduzierten Probe visualisieren.

Es zeigt sich, dass HA-FLAG-dCTCF zwar an α -HA-Agarose bindet, jedoch nicht von dieser eluiert werden kann. Zudem bindet auch endogenes dCTCF in geringem Maße unspezifisch an die Agarose-Beads.

Abb. 5.16: dCTCF bindet an α -HA-Agarose, kann aber nicht spezifisch eluiert

erden. Kernextrakte aus uninduziertem (-) und CuSO₄-induziertem (+) SL2-Klon 4-Zellen wurden mit α-HA-Agarose inkubiert. Gebundene Proteine wurden mittels HA-Peptid von den Beads eluiert. Die von den Beads eluierten Proteine wurden nach der Auftrennung in einem SDS-Gel im Western Blot mit dCTCF Antikörper nachgewiesen. A: kurze Belichtungszeit des Western Blots B: lang Belichtungszeit des Western Blots. I: 8% Input, FI: 8% Flow through, E: Eluat, B: Beads

5.5.3 dCTCF ist in vivo mit "insulator body"-formierenden Proteinen assoziiert

Eine Immunreinigung dCTCF-interagierender Proteine sollte aufgrund der vorangegangenen Ergebnisse über die FLAG-Markierung des HA-FLAG-dCTCF Fusionsproteins erfolgen. Die Reinigung über α -FLAG-Agarose bot die Möglichkeit einer spezifischen Elution des gebundenen Fusionsprotein von den Beads, was die Reinigungsspezifität stark erhöht.

Um zu testen, ob dieser Ansatz für eine spätere Anayse von Interaktionspartnern mittels Massenspektrometrie geeignet ist, sollte zunächst mittels FLAG-Immunopräzipitation die Assoziation von dCTCF mit potentiellen Interaktionskandidaten nachgewiesen werden.

Wie bereits beschrieben, sind die *gypsy*-Isolator Proteine Su(Hw) und CP190 sowie die Helikase Rm62, an der Formierung von *insulator bodies* beteiligt (Lei und Corces, 2006).

Da bereits eine Assoziation von dCTCF mit CP190 in vivo gezeigt werden konnte (siehe 5.4.2), stellte sich zum Einen die Frage, ob sich diese Assoziation auch mittels α-FLAG-Präzipitation nachweisen lässt, was darauf hindeuten würde, dass der Ansatz zur Isolierung interagierender Faktoren geeignet ist. Zum Anderen sollte untersucht werden, ob sich weitere Proteine wie Su(Hw) und Rm62, für die bislang keine direkte Interaktion mit dCTCF bekannt ist, auf diesem Wege als Interaktionspartner von dCTCF identifiziert werden können. Dies würde einen starken Hinweis auf eine Beteiligung von dCTCF an der Formierung von insulator bodies liefern. Um diese Frage zu beantworten, wurden FLAG-Immunpräzipitationen durchgeführt (Abb. 5.17). Hierzu wurde Kernextrakt aus induziertem und nichtinduziertem SL2-Klon 4, wie unter 4.8.3 beschrieben, mit α-FLAG Agarose präzipitiert und eluiert. Input und Eluate wurden im Western Blot jeweils mit FLAG-, CP190-, Rm62- und Su(Hw)-Antikörpern getestet (Abb. 5.17). Der Flag-Antikörper liefert wie erwartet sowohl für den Input als auch für die Eluate nur in den induzierten Proben ein deutliches Signal. Sowohl CP190 und Rm62 als auch Su(Hw) können klar im Input der induzierten und uninduzierten Proben nachgewiesen werden. In den Eluaten können alle drei Proteine nur in den induzierten Proben nachgewiesen werden. Sie wurden also über HA-FLAG-dCTCF von den FLAG-Beads kopräzipitiert. Diese Assoziation ist spezifisch, da die Proteine nicht in den Proben präzipitiert wurden, die kein HA-FLAG-dCTCF exprimieren. Desweiteren verifiziert wird dieser Befund dadurch, dass eine Ko-Immunpräzipitation von endogenem dCTCF durch den Faktor Rm62 gezeigt werden kann (Abb. 5.17). Hierzu wurde der Rm62-Antikörper, wie unter 4.7.2 beschrieben an Agarose-Beads gekoppelt und mit Extrakt aus Wildtyp-SL2-Zellen inkubiert. Die dCTCF-Kopräzipitation aus dem Zellextrakt ist spezifisch, da in der IgG-Kontrolle kein Signal detektiert wird.

Ein weiterer Interaktions-Kandidat für dCTCF ist der Transkriptions-Elongationsfaktor Spt6. In ChIP-chip-Analysen von 250 CTCF-Bindestellen konnte für einen Teil der Sequenzen, einschließlich der *H19/lgf2*-ICR, eine Assoziation mit Pol II und eine Interaktion von CTCF selbst mit der für die Elongation relevanten großen Untereinheit der Pol II gezeigt werden (Chernukhin et al., 2007). Die Frage, ob CTCF durch Assoziation mit entsprechenden Faktoren mit der Elongation der Gentranskription interferiert, sollte untersucht werden. Die Assoziation mit Spt6 wurde mittels der beschriebenen FLAG-Immunpräzipitationen analysiert (Abb. 5.17). Input und Eluate wurden im Western Blot mit Spt6 -Antikörper getestet (Abb. 5.17). Der Faktor kann klar im Input der induzierten und uninduzierten Proben nachgewiesen werden. In den Eluaten kann kein Spt6 detektiert werden. Der Elongationsfaktor Spt6 interagiert nach diesen Daten nicht mit dCTCF.

Die hier gezeigte Assoziation von CTCF mit den Hauptkomponenten der *insulator bodies* formierenden Faktoren liefert einen starken Hinweis darauf, dass auch dCTCF an der Formierung von Bereichen beteiligt ist, in denen Isolatoren und die bindenden Proteine kolokalisieren.

5.5.4 dCTCF ist in vivo mit Interbanden-spezifischen Proteinen assoziiert

Neben den *gypsy*-Isolator-assoziierten Faktoren sind die Interbanden-spezifischen Proteine Chriz (Chromo domain protein interacting with Z4) und Z4 interessante Interaktionskandidaten von dCTCF.

Polytänchromosomen zeichnen sich durch deutliche eine regelmäßige Querbänderung aus; das Bandenmuster ist hochspezifisch. Die DNA liegt in den Banden dichter kondensiert vor als in den benachbarten Bereichen, den Interbanden. Die Unterteilung der Polytänchromosomen in Banden und Interbanden spricht für eine strukturelle Chromatinorganisation, die eine Formierung von funktionellen Domänen der Gen-Expression widerspiegelt. Das Protein Z4 bindet spezifisch im Interbanden. Dem Protein wird eine Rolle Bereich der in der Chromatinkompaktierung zugesprochen. Chromosomen von Z4-Mutanten verlieren spezifische Bandenmuster und zeigen ein allgemein dekompaktiertes das Chromatin-Material (Eggert et al., 2004). Das Chromo-Domänen-Protein Chriz konnte als Interaktionspartner für Z4 identifiziert werden und zeigt ein Z4-identisches Bindemuster auf Polytänchromosomen. Beiden Proteinen wird eine maßgebliche Rolle in der übergeordneten Strukturgebung von Chromosomen zugesprochen.

Auch die Assoziation dieser zwei Faktoren mit dCTCF wurde mittels der unter 5.5.3 beschriebenen FLAG-Immunpräzipitationen untersucht (Abb. 5.17). Input und Eluate wurden im Western Blot mit α-Z4- und α-Chriz-Antikörper getestet (Abb. 5.17). Die Faktoren können klar im Input der induzierten und uninduzierten Proben nachgewiesen werden. In den Eluaten können beide Proteine nur in den induzierten Proben nachgewiesen werden. Sie werden also über HA-FLAG-dCTCF von den FLAG-Beads kopräzipitiert. dCTCF liegt demnach *in vivo* mit den Interbandenspezifischen Proteinen Chriz und Z4 assoziiert vor. Für das Protein Z4 kann darüberhinaus auch eine Assoziation mit endogenem dCTCF nachgewiesen werden (Abb. 5.18). Hierzu wurde der Z4-Antikörper wie unter 4.7.2 beschrieben, an Agarose-Beads gekoppelt und mit Extrakt aus Wildtyp-SL2-Zellen inkubiert. Die dCTCF-Kopräzipitation aus dem Wildtyp-SL2-Zellextrakt ist spezifisch, da in der IgG-Kontrolle kein Signal detektiert wird.

Abb. 5.17: FLAG-dCTCF kopräzipitiert mit Interbanden-spezifischen Faktoren und *insulator body*-assoziierten Proteinen.

Zellextrakte aus mit CuSO₄-induzierten (+), oder uninduzierten (-) Klon 4-SL2-Schneider-Zellen, wurden mit an Agarose-Beads-gekoppeltem FLAG-Antikörper inkubiert. Die von den Beads eluierten Proteine wurden nach der Auftrennung in einem SDS-Gel im Western Blot mit angegebenen Antikörper getestet. I: Input, E: Eluat

Abb. 5.18: Endogenes dCTCF ist mit Rm62 und Z4 in vivo assoziiert.

Zellextrakte aus Wildtyp-SL2-Schneider-Zellen wurden mit an Agarose Beads-gekoppeltem Rm62-Antikörper (A) oder Z4-Antikörper (B) inkubiert. Die von den Beads eluierten Proteine wurden nach der Auftrennung in einem SDS-Gel im Western Blot mit CTCF-Antikörper getestet.

IP: Immunopräzipitation; in der entsprechend gekennzeichneten Zeile sind die Antikörper angegeben, die auf den Beads immobilisiert wurden.

Inp: 8% Input, Ctrl: Ratte (A)-, Maus-Antikörper (B), als Negativkontrolle

5.6 Analyse der FLAG-dCTCF-präzipitierten Protein-Komplexe mittels Massenspektrometrie

5.6.1 Die FLAG-Immunpräzipitation führt zu einer spezifischen Proteinanreicherung, die eine Analyse mittels Massenspektrometrie ermöglicht

Nachdem über die Methode der FLAG-Immunopräzipitation die Interaktion von dCTCF mit potentiellen Interaktionskandidaten getestet worden war, sollten weitere Interaktionspartner oder assozierte Proteinkomplexe durch Massenspektrometrie identifiziert werden. Hierzu wurden FLAG-Immunpräzipitationen durchgeführt. Kernextrakt aus induziertem und nicht-induziertem SL2-Klon 4 wurde wie unter 4.8.3 beschrieben, mit α -FLAG-Agarose präzipitiert und eluiert. Das im Eluat enthaltene Protein wurde mittels TCA gefällt und zur Western Blot-Analyse und Silberfärbung auf ein SDS-Gel aufgetragen. Im Western Blot wurde mittels FLAG-Antikörper die Expression von HA-FLAG-dCTCF in der induzierten (+) und der uninduzierten (-) Probe untersucht (Abb. 5.19 A). Der FLAG-Antikörper liefert wie erwartet nur in der induzierten Probe ein deutliches Signal. Abb.5.19 B zeigt das silbergefärbte SDS-Gel, auf welches ein Aliquot derselben induzierten und uninduzierten Proben aufgetragen wurde. Die induzierte Probe liefert eine Reihe von Einzelbanden. Die Kopräzipitation der angefärbten Proteine ist spezifisch, da in der Kontrolle (uninduzierte Probe), bis auf wenige Hintergrundbanden, keine sichtbare Proteinfärbung nachzuweisen ist.

Abb. 5.19: Durch FLAG-Immunpräzipitation werden spezifisch Proteine kopräzipitiert. Drosophila SL2-Zellen wurden stabil mit HA-FLAG-dCTCF transfiziert. In dem isolierten Einzelzellklon Nummer 4 (Klon 4) wurde HA-FLAG-dCTCF-Expression mit 500µmol CuSO₄ induziert (+), bzw. nicht induziert (-). Kernextrakt aus induziertem und nicht induziertem SL2-Klon 4 wurde mit anti-FLAG-Agarose präzipitiert und eluiert. Das im Eluat enthaltene Protein wurde mittels TCA gefällt und zur Western Blot-Analyse und Silberfärbung auf ein SDS-Gel aufgetragen. A: Hergestellte Kernextrakte wurden mit α -FLAG-Antikörper im Western Blot auf FLAG-dCTCF-Überexpression untersucht. B: Silberfärbung der mittels SDS-Gel aufgetrennten Kernextrakte.

5.6.2 dCTCF ist *in vivo* mit Proteinen komplexiert, die an einer Vielzahl unterschiedlicher Zellfunktionen beteiligt sind

Ein Aliquot der uninduzierten und induzierten Proben (siehe 5.6.1) wurde für eine Proteinidentifikation mittels Massenspektrometrie eingesetzt. Im Proteomics Center (Erasmus MC Rotterdam) wurde eine NanoLC-Q-TOF-Massenspektrometrie (siehe 4.8.4) durchgeführt. Zur Auswertung der Rohdaten und Proteinidentifikation wurde die Mascot Distiller Software (Version 2.0, MatrixScience) genutzt. Der Mascot Such-Algorithmus beruht auf dem MOWSE (Molecular weight search)-Score (Pappin et al., 1993) und wurde für die Suche gegen die Drosophila Datenbank FlyBase 03.07.2007) eingesetzt. (Abrufdatum: Die Grenze für eine signifikante Proteinidentifikation wurde auf einen Wert (Score) von 60 festgelegt. Dies entspricht einem Signifikanzniveau von unter 5%, die Wahrscheinlichkeit für ein zufällig entstandenes Ereignis ist also kleiner als 5%.

Die Analyse führte zur Identifikation von insgesamt 258 Proteinen (Liste siehe Anhang), wovon 161 Proteine, mit einem *Score* von 60 oder höher, die Signifikanzkriterien erfüllen. Für Einzelne, in Hinblick auf Chromatin-Isolation besonders interessante Proteine mit einem Score <60, wurden die Peptid-Spektren im *Proteomics Center* manuell ausgewertet und als zulässig interpretiert oder verworfen. Als zusätliches Kontrollinstrument konnte die uninduzierte Probe genutzt

werden. Die in dieser Probe identifizierten Proteine (Liste siehe Anhang) wurden zur Korrektur der tatsächlichen Daten (induzierte Probe) verwendet. Wurde ein Protein auch in der Kontrolle identifiziert, wurden die Scores verglichen. Waren diese für die Negativkontrolle deutlich geringer als für die induzierte Probe, wurden sie in die Auswertung mit einbezogen. Proteine, für die ein vergleichbarer Score in induzierter Probe und Kontrolle ermittelt wurde, wurden verworfen. Tabelle 5.1 zeigt eine Zusammenfassung der identifizierten Proteine. Sie enthält Faktoren, die im Hinblick auf die dCTCF-vermittelte Chromatin-Isolation als interessante Interaktionspartner gelten. Die Proteine können verschiedenen Funktionsklassen zugeordnet werden (Abb. 5.20). Es zeigt sich, dass dCTCF viele Proteinen kopräzipitiert, die an verschiedenen, elementaren Zellfunktionen beteiligt sind. Den Hauptteil machen Chromatin-modifizierende Proteine Transkriptions-(10),(11)und Translationsfaktoren (10) sowie dem Exosom (10) zugehörige Faktoren aus (Abb. 5.20 und Tab. 5.1). Das Exosom stellt einen hochkonservierten Multiproteinkomplex dar (Mitchell et al., 1997), der 3'-5'- Exoribonukleaseaktivität besitzt und somit für den prä-mRNA und mRNA-Abbau verantwortlich ist (Allmang et al., 2000; Allmang et al., 1999; Mitchell et al., 1997). Alle zehn Untereinheiten des Komplexes wurden durch dCTCF kopräzipitiert (Tab. 5.1).

Als negativer Transkriptionsregulator wurde zum Beispiel Mip40 als CTCFidentifiziert. Der Faktor Teil eines E2F/RBFassoziiertes Protein ist Repressorkomplex, der in transkriptionell inaktiven Bereichen auf Polytänchromosomen lokalisiert ist und stabile Repression von E2F-Zielgenen vermittelt, die Geschlechts- und Differenzierungsspezifische Expressionsmuster zeigen (Korenjak et al., 2004).

Unter den Chromatin-modifizierenden Proteinen befinden sich neben dem Heterochromatin-Bindeprotein Su(var)205 und dem zu der Gruppe der Polycomb-Proteine zählendem Faktor Lolal, zahlreiche sogenannte chromatin remodeling Faktoren, so Caf1, Dalao, Mor, Snr1 und Iswi (Tab.5.1). Die ursprünglich in der Hefe identifizierten, hochkonservierten Protein der SWI/SNF-Familie nutzen die Energie der ATP-Hydrolyse, um Chromatin umzustrukturieren, zum Beispiel durch ihre Fähigkeit, Nukleosomen entlang der DNA neu zu positionieren (Nukleosomen-Remodeling; Kadonaga et al., 1997). Mittlerweile ist bekannt, dass Proteine der SWI/SNF-Familie sowohl in die Aktivierung der Transkription als auch in die Transkriptions-Repression involviert sind (Muchard und Yaniv, 1999).). Drei chromatin remodeling-Komplexe sind von der Hefe bis zum Menschen konserviert: der SWI/SNF-, ISWI- und Mi-2/CHD (NuRD)-Komplex (Eisen et al., 1995). Die katalytische Untereinheit des SWI/SNF-Komplexes de Hefe, ist die Swi2p/Snf2p ATP-ase. Das Drosophila Homolog zum Hefe SWI/SNF-Komplex ist der Brahma (BRM) chromatin remodeling Komplex, einer der trithorax group (trxG)-Komplexe Drosophilas. Die BRM-Komplexe können in die Unteklassen BAP-und PBAP-Typ unterteilt werden, abhängig von den zugehörigen Untereinheiten (Mohrmann et al., 2004). Das Protein OSA ist spezifisch für den BAP-Komplex, die Proteine Polybromo und Bap170 sind spezifische PBAP-Komponenten. Die Proteine BRM, MOR (Moira), Snr1, Dalao (Bap111), Bap60, Bap55 und Actin, werden von beiden Komplexen geteilt (Mohrmann et al., 2004). Für beide Komplex-Typen konnten funktionelle Unterschiede ausgemacht werden (Moshkin et al., 2007).

Die Proteine Dalao (Bap111), Mor (Moira) und Snr1 gehören zum *Drosophila* Brahma-Komplex. Der Faktor Iswi ist die ATPase der Klasse der ISWI *chromatin remodeling*-Komplexe und repräsentiert ihre katalytische Untereinheit (Kdonaga, 1998; Varga-Weisz und Becker 1998). Die bekanntesten Komplexe dieser Gruppe sind ACF (ATP-utilizing chromatinassembly and remodeling factor), NURF (nucleosome remodeling factor) und CHRAC (chromatin- accessibility complex).

Caf1 (p55, Nurf55) ist neben Iswi ebenfalls Bestandteil des NURF-Komplex, sowie des CAF1-Komplexes (chromatin assembly factor 1), ein Komplex, der in Kooperation mit Nap1 (nucleosome assembly factor 1), am Nukleosomen-Zusammenbau während der Replikation beteiligt ist.

Das identifizierte Protein WDS gehört zur Familie der WD-Proteine. Das Säuger-Homolog WDR5 ist eine essentielle Untereinheit der humanen MLL und SET1 (hCOMPASS) H3K4-Methyltransferase-Komplexe (Dou et al., 2006). Eine Interaktion des des Faktors WDR5 mit CTCF konnte auch in murinen ES-Zellen gezeigt werden Nobelen, Doktorarbeit). Der CTCF Interaktionspartner (v.d. CHD8 ist interessanterweise Bestandteil eines Komplexes welcher die Proteine Wdr5, MLL1 und MOF enthält und Histon-Actetyltransferase (HAT)-Aktivität besitzt (Dou et al., 2005). Mittlerweise ist beschrieben, dass Drosophila WDS eine Untereinheit des nonspecific lethal (NSL)-Komplex ist, der in Drosophila und Säugern mit der Histonacetyltransferase MOF assoziiert ist (Raja et al., 2010). Der Komplex scheint ein wichtiger Transkriptionsregulator in Drosophila zu sein, da er mit den Promotorregionen von über 4000 Genen assoziiert ist, von denen 70 % aktiv transkribiert werden (Raja et al., 2010).

Als weitere Gruppe wurden Isolatorproteine identifiziert (Tab.5.1, Abb.5.20). Neben CTCF selbst, die Faktoren BEAF-32, und Su(Hw). Sie alle binden genomische Enhancer-Blockade-Aktivität. Isolatorsequenzen und besitzen Auch das centrosomale Protein Cp190, welches mit dCTCF und Su(Hw) in der Enhancer-Blockade-Vermittlung des gypsy-Retrotransposons kooperiert, und für das im Rahmen dieser Arbeit bereits eine in vivo-Assoziation mit dCTCF gezeigt werden konnte (siehe 5.4.2), wird durch die massenspektrometrischen Analyse, als dCTCF-Cofaktor verifiziert. Desweiteren sind RNA-Helikasen. Protein-modifizierende Faktoren und in Replikation und DNA-Reparatur involvierte Proteine vertreten (Abb.5.20). Schließlich wurden auch Faktoren die am Aufbau der Kernporen und damit am Proteintransport in den Zellkern beteiligt sind, identifiziert sowie an der Zell-Organisation beteiligte Proteine. Hierzu gehören die Cohesin - und Condensin-Untereinheiten SA und Cap (Tab.5.1, Abb.5.20). Einige der in Tabelle 5.1 aufgeführten Proteine wurden auch in der Maus als CTCF-assozierte Faktoren (Tab.5.1, gelb unterlegt) mittels Streptavidin-Pulldown eines Biotin-gekoppelten CTCF-Konstrukt identifiziert (v.d. Nobelen, Doktorarbeit). So wurden die Maus-Homologe von den Chromatin-modifizierenden Faktoren Caf 1 (Maus: Rbbp7), WDS (Maus: Wdr5), Dalao (Maus: Smarce1/Baf57) und Mor (Maus: Smarcc2/Baf170) von Maus-CTCF kopräzipitiert. Auch das Maus-Homolog des Replikationsfaktors Rfc40 (Maus:Rfc2) und des Kernporenproteins Nup358 (Maus:Nup358/RanBP2), wurden in der Arbeit von v.d. Nobelen identifiziert. Desweiteren finden sich, beim Vergleich von v.d.Nobelens Daten mit den in dieser Arbeit ermittelten dCTCF-Kofaktoren. verwandte Proteine (Tab.5.1, grün unterlegt). So wurden von der Condensin-Untereinheit Cap die verwandten Condensin-Untereinheiten Smc2 und 5 als Maus-CTCF Cofaktoren gefunden. Ebenso das Kap-alpha3 verwandte Kernporenprotein Kpna2, den RfC3-verwandte Replikationsfaktor Rfc5 und die Pit - und Hlcverwandten RNA-Helikasen Ddx18 und Ddx58.

Auch die mit dem *Drosophila* Protein SA verwandten Cohesin-Untereinheit Stag1, 2 und 3, wurden bereits funktionell mit Maus-CTCF in Verbindung gebracht (Parelho et al., 2008; Wendt et al., 2008).

Insgesamt konnten in dieser Arbeit mittels Massenspektrometrie eine Vielzahl von dCTCF-kopräzipitierten Faktoren identifiziert werden, die nicht nur für bereits diskutierte Mechanismen der CTCF-vermittelten Chromatin-Isolierung sprechen, sondern darüberhinaus auch die Postulation neuer Mechanismen erlauben.

Tab. 5.1: dCTCF ist *in vivo* mit Proteinen komplexiert, die an einer Vielzahl unterschiedlicher elementarer Zellfunktionen beteiligt sind.

Zusammenfassung der mittels Massenspektrometrie identifizierten dCTCF-kopräzipitierten Proteine hinsichtlich einer möglichen Relevanz in der dCTCF-vermittelten Chromatin-Isolation. Gelb unterlegt: Faktoren, die auch in Maus als CTCF-Kofaktoren identifiziert wurden. Grün unterlegt: Faktoren, von denen verwandtes Protein in Maus als CTCF-Cofaktor identifiziert wurde

Funktion	Protein	Maus-Homolog	Bemerkung					
RNA-Helikase	pit-PA	Ddx18	Modulation von RNA-Struktur					
RNA-Helikase	HIC-PA	Ddx56	Modulation von RNA-Struktur					
RNA-Helikase	Dcr2-PA	Dhx58	Modulation von RNA-Struktur, RNA-Interferenz					
RNA-Helikase	Dcr1-PA	Dicer1	Modulation von RNA-Struktur, RNA-Interferen					
Chromatin-Isolation	BEAF-32-PB		Isolator-Bindung, Enhancer-Blockade-Aktivität					
Chromatin-Isolation	Cp190-PA		Isolator-Bindung, Enhancer-Blockade-Aktivität					
Chromatin-Isolation	CTCF-PA		Isolator-Bindung, Enhancer-Blockade-Aktivität					
Chromatin-Isolation	Su(Hw)		Isolator-Bindung, Enhancer-Blockade-Aktivität					
	, , ,							
Chromatin/Chromatin-								
modifizierende Enzyme	Z4-PA		Interbanden spezifisches Protein					
Chromatin/Chromatin-			Heterochromatin-Bindung, Aufrechterhaltung					
modifizierende Enzyme	Su(var)205-PA	HP1	heterochromatischer Chromatin-Domänen					
Chromatin/Chromatin-								
modifizierende Enzyme	Nurf-38-PA	Ppa1	Chromatin-Remodeling, NURF-Komplex					
Chromatin/Chromatin-	Caf1-		Chromatin-Assembly, NURF-Komplex,CAF-1-					
modifizierende Enzyme	PA/p55/Nurf55	Rbbp7	Komplex					
Chromatin/Chromatin-								
modifizierende Enzyme	wds-PA	Wdr5	SWI/SNF-ähnlich, WD repeat domain 5					
Chromatin/Chromatin-	dalao-		SWI/SNF-ähnlich, Brahma-Komplex,					
modifizierende Enzyme	PA/Bap111	Smarce1/Bat57	Chromatin-Remodeling, trxG-Protein					
Chromatin/Chromatin-		Omerce 2/Def170	SWI/SNF-ähnlich, Brahma-Komplex,					
	mor	Smarcc2/Barr70						
Chromatin/Chromatin-	Spr1	Smarch1	SWI/SNF-annlich, Brahma-Komplex,					
Chromotin (Chromotin		Siliarco i	Chiomaun-Remodeling					
modifizierende Enzyme	Iswi-PA	Smarca1	Chromatin-Remodeling ATPase					
Chromatin/Chromatin	13WI 17	onaroan	Chiomaan remodeling, / rr doc					
modifizierende Enzyme	lolal-PB		Chromatin-Remodeling, PcG-Protein					
Protein- modifizierende Enzyme	Ulp1-PA	Senp2	SUMO-spezifische Protease					
·····			Ecdyson-Oxidase-Aktivität Regulation der					
Protein-modifizierende Enzyme	Eo-PA	Chdh	Ecdysteroid-Signalkaskade					
			Replikationsfaktor, ATPase-Aktivität.					
Replikation/Reparatur	RfC3-PA	Rfc5	Interaktion mit PCNA					
			Replikationsfaktor, ATPase-Aktivität,					
Replikation/Reparatur	RfC40-PA	Rfc2	Interaktion mit PCNA					

Replikation/Reparatur	Top2-PA	Top2b	Topoisomerase, DNA-Entwindung während Replikation					
Exosom		Exosc1	3'-5'-Exoribonuklessesktivität PNA-Abbau					
Exosom		Exosc2	3'-5'-Evoribonuklesseskivität DNA Abbau					
Exosom		Exoso 2	3'-5'-Evoribonuklossosktivität DNA Abbau					
Exosom	CG-J1930-FA	Exoso 4	3'-5'-Evoribonuklessesktivität DNA-Abbau					
Exosom	SKID-PA	EXUSC4	2' 5' Everibenuklesseskiivität, RNA-Abbau					
Exosom	RIP40-PA	EXOSCO	3-5-Exonbonukleaseaklivität, RINA-Abbau					
Exosom		EXOSCO	2' 5' Evoribonuklesseskiivität, RINA-ADDau					
Exosom	Rrp42-PA	Exosc7	2' 5' Evoribonuklossocktivität DNA Abbau					
Exosom	DIS3-PA	Exosc8	2' E' Evoribonuklessesktivität DNA Abbay					
Exosom	Rrp45-PA	Exosc9	3-5-Exoribonukleaseaktivität, RNA-Abbau					
Exosom	Rrp6-PA	Exosc10						
		Kpna3/importin-	Kernporen-Komplex, Proteintransport in den					
Kernarchitektur, Kernpore	Kap-alpha3-PA	alpha3	Zellkern					
Kernarchitektur, Kernpore	Nup358-PA	Nup358/RanBP2	Kernporen-Komplex, Proteintransport in den Zellkern, SUMO E3 ligase					
Kernarchitektur , Kernpore	Nup44A-PB	SEH1L	Kernporen-Komplex, Proteintransport in den Zellkern					
	Ef1alpha48D-							
Translation	PA	Ef1alpha	Translations-Elongationsfaktor					
Translation	CG10306-PA	elF-3 p25	Translations-Initationsfaktor					
Translation	eIF-3p40-PB	elF-3p40/elF3h	Translations-Initationsfaktor					
Translation	elF-4a	elF-4a	Translations-Initationsfaktor					
Translation	elF-4E	elF-4E	Translations-Initationsfaktor					
Translation	elF-4G-PA	elF-4G	Translations-Initationsfaktor					
Translation	RpL23-PA	RpL23	Komponente der großen ribosomalen Untereinheit					
Translation	RpL40-PA	RpL40	Komponente der großen ribosomalen Untereinheit					
Translation	RpS14a	RpS14a	Komponente der kleinen ribosomalen Untereinheit					
Translation	RpS3A	RpS3A	Komponente der kleinen ribosomalen Untereinheit					
			NAD ⁺ -Bindedomäne, negative					
I ranskription (Regulation)	CtBP-PA	Ctbp2	I ranskriptionsregulation					
Transkription (Regulation)	mip40-PA	Lin37	Transkriptionsregulation					
Transkription (Regulation)	MED20-PA	MED20-PA	Mediatorkomplex					
Transkription (Regulation)	MED6-PA	MED6-PA	Mediatorkomplex					
Transkription (Regulation)	Smr-PA	Ncor1,2	Korepressor, negative Transkriptionsregulation					
Transkription (Regulation)	Sin3A-PA	Sin3a	Korepressor, negative Transkriptionsregulation					
Transkription (Regulation)	CG6525-PA	Spocd1	Transkriptionsfaktor, Zink-Ion-Bindung					
Transkription (Regulation)	ebi-PA		Notch-Signalkaskade, GTP-Bindung					
Transkription (Regulation)	Dref-PA		Transkriptionsregulation von Zellzyklus-und Zellproliferations-relevanten Genen (PCNA)					
Transkription (Regulation)	CG2129-PA		DNA-Bindung, negative Transkriptionsregulation, Zink-Ion-Bindung					
Transkription (Regulation)	CG3800-PA		DNA-Bindung, negative Transkriptionsregulation, Zink-Ion-Bindung					
Zellzyklus/Zell-Organisation	msps-PA	Ckap5	Mikrotubuli Stabilisierung/Destabilisierung					
Zellzyklus/Zell-Organisation	CG3339-PA	Dnahc17	Motorprotein, Formation mitotischer Spindelapparat					

Zellzyklus/Zell-Organisation	SA-PA	Stag 1,2,3	Cohesin-Untereinheit, Verbindung von Schwesterchromatiden und homologen Chromosomen				
Zellzyklus/Zell-Organisation	Cap-PA	Smc3	Condensin-Untereinheit, Chromosomenstabilität, Kondensation				

Abb. 5.20: Einordnung der dCTCF-interagierenden Proteine in funktionelle Gruppen:. Schematische Übersicht, der den dCTCF-copräzipitierten Proteinen zuzuordnenden Funktionsklassen. Grundlage des Diagrammes ist Tab.5.1. Diese beinhaltet eine Zusammenfassung der identifizierten Proteine, hinsichtlich einer möglichen Relevanz in der dCTCF-vermittelten Chromatin-Isolation.

Zahlenangaben: Anzahl der für die jeweilige Funktionsklasse identifizierten Faktoren.

5.6.3 Verifizierung der dCTCF-Proteinkomplexe

Um die massenspektrometrischen Daten zu verifizieren, sollte zunächst die Ko-Immunopräzipitation ausgewählter Faktoren mit HA-FLAG-dCTCF über die FLAG-Immunopräzipitation reproduziert werden. Von den in Tabelle 5.1 aufgeführten Faktoren wurden diejenigen weiteruntersucht, für die Antikörper zur Verfügung standen. Kernextrakt aus induziertem und nicht induziertem SL2-Klon 4 wurde, wie unter 4.8.3 beschrieben, mit α-FLAG-Agarose präzipitiert und eluiert. Input und Eluat wurden zur Western Blot-Analyse auf ein SDS-Gel aufgetragen und mit α-FLAG -, α-Bap111 -, α-Mip40 -, α-HP1-, α-Nup358-, α-Rrp6-, α-Rrp4- und α-Csl4 -Antikörper getestet (Abb. 5.21). Der Flag-Antikörper liefert wie erwartet sowohl für den Input als auch für die Eluate nur in den induzierten Proben ein deutliches Signal. Sowohl Bap111 und Mip40 als auch HP1, Nup358 und Rrp6 können im Input der induzierten und uninduzierten Proben nachgewiesen werden. In den Eluaten können alle fünf Proteine nur in den induzierten Proben nachgewiesen werden. Sie werden also über FLAG-dCTCF von den FLAG-Beads kopräzipitiert. Diese Assoziation ist spezifisch, da die Proteine nicht in den Proben präzipitiert werden, die kein FLAG-dCTCF exprimieren. Auch die Ko-Immunopräzipitation der Proteine CP190, Su(Hw) und Z4 mittels FLAG-IP konnte nachgewiesen werden (siehe 5.5.3, 5.5.4 und Abb.5.17). Eine Verifizierung der dCTCF-Assoziation mit den Exosom-Untereinheiten Csl4 und Rrp4 gelang in diesem Experiment nicht.

die Desweiteren sollten identifizierten dCTCF-Komplexpartner durch Ko-Immunpräzipitation mit endogenem dCTCF verifiziert werden. Hierzu wurden adCTCF, a-Bap111-, a-HP1-, a-Nup358 -, a-Rrp6-, a-Rrp4-, a-Su(Hw)- und a-Csl4-Antikörper, wie unter 4.7.2 beschrieben, an Agarose-Beads gekoppelt und mit aus Wildtyp-SL2-Zellen inkubiert. Eine Ko-Immunpräzipitation Extrakt von endogenem dCTCF kann durch die Faktoren Rrp6, Bap111 (Abb.5.22), CP190 und Z4 (Abb. 5.14 und 5.18) erreicht werden. Die dCTCF-Kopräzipitation aus dem Zellextrakt ist spezifisch, da in der IgG-Kontrolle kein Signal detektiert wird. Endogenes Mip40 kann über den dCTCF-Antikörper kopräzipitiert werden (Abb.5.22). Eine Ko-Immunpräzipitation von endogenem dCTCF durch die Faktoren HP1, Nup358, Csl4 und Rrp4 kann nicht gezeigt werden.

Abb. 5.21: FLAG-dCTCF kopräzipitiert mit ausgewählten Faktoren aus der massenspektrometrischen Analyse.

Zellextrakte aus mit CuSO₄-induzierten (+), oder uninduzierten (-) Klon 4-SL2-Schneider-Zellen, wurden mit an Agarose-Beads-gekoppeltem FLAG-Antikörper inkubiert. Die von den Beads eluierten Proteine wurden nach der Auftrennung in einem SDS-Gel im Western Blot mit angegebenen Antikörper getestet.

I: Input, E: Eluat

Abb. 5.22: Endogenes dCTCF ist mit Mip40, Rrp6 und Bap111 *in vivo* assoziiert. Zellextrakte aus Wildtyp-SL2-Schneider-Zellen wurden mit an Agarose-Beads-gekoppeltem CTCF-Antikörper (A), Rrp6-Antikörper (B) oder Bap111-Antikörper (C), inkubiert. Die von den Beads eluierten Proteine wurden nach der Auftrennung in einem SDS-Gel im Western Blot mit CTCF-Antikörper (B,C) bzw. Mip40-Antikörper (A) getestet.

IP: Immunopräzipitation; in der entsprechend gekennzeichneten Zeile sind die Antikörper angegeben, die auf den Beads immobilisiert wurden.

Inp: 8% Input, Ctrl: Kaninchen (A,B))-, Meerschweinchen-Antikörper (C), als Negativkontrolle

5.6.4 An Drosohila Polytänchromosomen zeigt dCTCF eine partielle Kolokalisation mit der *gypsy*-lsolatorkomponente CP190, jedoch keine Kolokalisation mit Rm62

Polytänchromosomen, auch Riesenchromosomen genannt, kommen in speziellen Zellen einiger Tierarten (zum Beispiel Dipteren) vor. Diese besitzen statt der üblichen zwei Chromatiden pro Chromosom eine Vielzahl von Chromatiden und werden daher auch als polytäne Chromosomen bezeichnet, die im Mikroskop deutlich sichtbar sind. Die Polytänisierung erfolgt durch mehrfache (in Speicheldrüsen von Drosophila meist 10fache) Replikation während der Interphase ohne darauf folgende Zellteilung, so dass ca. 1000 identische, ausgestreckte Chromatiden dicht beieinander liegen. Da das konstitutive Heterochromatin der Centromere nicht mitrepliziert wird, verschmilzt es zum so genannten Chromozenter. Der polytäne Charakter dieser Chromosomen bleibt auch während der Interphase erhalten. In Drosophila sind die homologen Chromosomen gepaart, was man beispielsweise daran erkennen kann, dass das männliche X-Chromosom nur etwa halb so dick ist wie die anderen Chromosomen, da ihm der homologe Partner fehlt. Polytänchromosomen besitzen eine regelmäßige Querbänderung, die ein hoch spezifisches Bandenmuster liefert, was eine Identifizierung der jeweiligen Chromosomen ermöglicht. Die Banden stellen stark kondensiertes Chromatin dar, welches Histon-DNA-Komplexe enthält, während die dazwischen liegenden Interbanden aktiv transkribierte Gene und demnach eine offene Chromatinstruktur beinhalten. In besonders stark transkribierten Bereichen kommt es zur Puff-Bildung. So werden die durch Aufspiralisierung entstehenden in der GIEMSA-Färbung heller erscheinenden Genorte genannt. Die Unterteilung der Polytänchromosomen in Banden und Interbanden spricht für eine strukturelle Chromatinorganisation, die eine Formierung von funktionellen Domänen der Gen-Expression widerspiegelt. Mit Hilfe von Immunfärbungen ist es möglich, DNAgebundene bzw. -assoziierte Proteine auf den gespreiteten und fixierten Polytänchromosomen zu detektieren. Diese lassen sich als bandenförmige Signale visualisieren. In der vorliegenden Arbeit wurden Polytänchromosomen aus Speicheldrüsen von Drosophila, wie unter 4.9.3 beschrieben. mittels Quetschpräparat mit anschließender Spreitung isoliert. Die im Rahmen dieser Arbeit identifizierten dCTCF Kofaktoren CP190, Su(Hw), Bap111, Rm62, Mip40, Nup358 und Rrp6 sollten hinsichtlich ihrer Lokalisation im Drosophila-Genom im Vergleich zu dCTCF untersucht werden. Die Kofärbung der Faktoren CP190 und dCTCF ergibt bei Betrachtung der Überlagerung des gesamten Chromosomensatzes zahlreiche gelbe Signale, die auf eine partielle Kolokalisierung beider Proteine schließen lassen. Allerdings liegt keine vollständige Kolokalisierung beider Proteine vor, was anhand der grünen und roten Signale in der Überlagerung deutlich wird (Abb.5.23). Dieses Ergebnis steht im Einklang mit bereits publizierten Daten (Mohan et al., 2007). Im Gegensatz dazu ergibt die Kofärbung der Faktoren Rm62 und dCTCF bei Betrachtung der Überlagerung des gesamten Chromosomensatzes keine gelben Signale. Die Faktoren zeigen ein exklusives Bindemuster (Abb.5.24).

Abb. 5.23: Die Isolator-Proteine dCTCF und CP190 zeigen eine partielle Kolokalisierung

A-C: gesamter Chromosomensatz, 40fache Vergrößerung D: Ausschnittsvergrösserung

Nach Präparation der Speicheldrüsen wurden die gespreiteten, fixierten Chromosomen mit Antikörpern gegen CP190 und dCTCF gefärbt. Der primäre CP190- Antikörper wurde mit einem Alexa Fluor 488-gekoppeltem Zweitantikörper (grün) detektiert, während der dCTCF-Antikörper mit einem Alexa Fluor 568-gekoppelten sekundären Antikörper (rot) erkannt wurde.

A: CP190, B: dCTCF, C: Überlagerung, D: Ausschnittsvergrösserung von C

Abb. 5.24: Die Proteine dCTCF und Rm62 zeigen keine Kolokalisierung. A-C, E-G: gesamter Chromosomensatz, 40fache Vergrößerung D: Ausschnittsvergrösserung

Nach Präparation der Speicheldrüsen wurden die gespreiteten, fixierten Chromosomen mit Antikörpern gegen Rm62 und dCTCF gefärbt. Der primäre Rm62- Antikörper wurde mit einem FITCgekoppeltem Zweitantikörper (grün) detektiert, während der dCTCF-Antikörper mit einem Alexa Fluor 568-gekoppelten sekundären Antikörper (rot) erkannt wurde.

A+E: Rm62; B+F: dCTCF; C+G: Überlagerung, D: Ausschnittsvergrösserung von C

Die Kofärbung der Proteine Bap111 und CTCF führt zu keinem Ergebnis, da sich kein Signal für Bap111 detektieren lässt (nicht gezeigt). Um die Funktionalität des Meerschweinchen-Zweitantikörpers in diesem Systen zu testen, wurde eine

Kontrollfärbung der Faktoren Spt6 (Meerschweinchen-Antikörper) und dCTCF durchgeführt. Für beide Proteine sind deutliche Signale detektierbar (Abb.5.25). Die Kofärbung ergibt bei Betrachtung der Überlagerung des gesamten Chromosomensatzes keine gelben Signale. Die Faktoren zeigen ein exklusives Bindemuster, was im Einklang mit fehlender Spt6-Kopräzipitation durch FLAG-dCTCF (Abb.5.18) steht. Der Meerschweinchen-Zweitantikörper demnach funktional, und der Bap111-Erstantikörper scheint für den Nachweis des Proteins auf Polytänchromosomen nicht geeignet zu sein.

Abb. 5.25: Die Proteine dCTCF und Spt6 zeigen keine Kolokalisation.

A-C: gesamter Chromosomensatz, 40fache Vergrößerung D: Ausschnittsvergrösserung

Nach Präparation der Speicheldrüsen wurden die gespreiteten, fixierten Chromosomen mit Antikörpern gegen Spt6 und dCTCF gefärbt. Der primäre Spt6- Antikörper wurde mit einem FITCgekoppeltem Zweitantikörper (grün) detektiert, während der dCTCF-Antikörper mit einem Alexa Fluor 568-gekoppelten sekundären Antikörper (rot) erkannt wurde.

A: dCTCF, B: Spt6, C: Überlagerung, D: Ausschnittsvergrösserung von C

Eine Kofärbung von dCTCF und der Exosom-Komponente Rrp6 war in diesem System nicht möglich, da für beide Faktoren nur Primärantikörper aus Kaninchen zur Verfügung standen. Daher sollte ein transgener Fliegenstamm genutzt werden, der das Gal4-UAS-System trägt. Diese System ermöglicht eine gezielte zeit- und gewebespezifische Expression von Genprodukten im *Drosophila*-System. Das Prinzip beruht darauf, dass der Hefe-Transkriptionsfaktor Gal4 die Expression von Zielgenen, die unter der Kontrolle des UAS-Promotor-Elementes stehen, transient aktiviert. In transgenen Fliegenstämmen liegen beide Konstrukte getrennt voneinander vor. Wird die Gal-4-Aktivatorlinie (Treiber) mit der UAS-Linie (Effektor) gekreuzt, so beinhaltet die Filialgeneration eine Kombination beider Elemente, was in der Expression der entsprechenden Zielgene resultiert.

In den nachfolgenden Experimenten wurde eine entsprechend gekreuzte Fliegenlinie (zur Verfügung gestellt von Man Mohan) SGSGal4-dCTCFeGFP (SGS: *salivary gland specific*) verwendet. Diese zeigte eine UAS-abhängige Überexpression des Fusionsproduktes dCTCF-eGFP (*enhanced* GFP) innerhalb der Speicheldrüsen-Zellen von *Drosophila*.

Dieses System sollte ermöglichen, dass dCTCF-Signale mit einem in Mäusen hergestellten Erstantikörper gegen GFP detektiert werden können. In der Kofärbung von Rrp6 und dCTCF-eGFP können für beide Proteine Signale detektiert werden, und auch die Überlagerung zeigt gelbe Signale (Abb. 5.26). Allerdings zeigt sich, dass sich die Chromosomen aus dem eGFP-Fliegensystem schlecht spreiten lassen. Daher ist eine schlechte Auflösung mit relativ diffusen Signalen gegeben. Aus den hergestellten Präparaten läßt sich keine Aussage über einen Kolokalisation von Rrp6 und dCTCF treffen. Auch für die Faktoren Su(Hw) und Mip40 standen nur Primärantikörper aus Kaninchen zur Verfügung, weshalb keine Kofärbung mit dCTCF durchgeführt werden konnte.

Auf Ebene der Polytänchromosomen ließ sich mit der hier angewendeten Methode eine Assoziation von dCTCF mit CP190 bestätigen, die Darstellung einer möglichen Kolokalisation mit den übrigen Interaktionspartnern war aus technischen Gründen nicht möglich.

Abb. 5.26: Kofärbung von Rrp6 und dCTCF-eGFP.

gesamter Chromosomensatz: 40fache Vergrößerung

Nach Präparation der Speicheldrüsen wurden die gespreiteten, fixierten Chromosomen mit Antikörpern gegen Rrp6 und eGFP gefärbt. Der primäre eGFP- Antikörper wurde mit einem FITCgekoppeltem Zweitantikörper (grün) detektiert, während der Rrp6-Antikörper mit einem Alexa Fluor 568-gekoppelten sekundären Antikörper (rot) erkannt wurde.

A: Rrp6, B: dCTCF-eGFP, C: Überlagerung

6 Diskussion

CTCF ist ein multivalenter Faktor, der in eine Reihe von Regulationsvorgängen involviert ist. Im Mittelpunkt der vorliegenden Arbeit standen Untersuchungen zu seiner Fähigkeit, Chromatin-Isolation zu vermitteln. Besonderes Interesse galt dabei der Identifizierung von CTCF-Interaktionspartnern, um Einblicke in Mechanismen und Regulationsmöglichkeiten dieses Vorganges zu erhalten.

6.1 Charakterisierung einer funktionellen Enhancer-Blockade-Domäne des CTCF-Proteins

Die Fähigkeit, die aktivierende Wirkung von Enhancern zu blockieren, stellt hinsichtlich der Chromatin-Isolation, eine zentrale Aktivität des Faktors CTCF dar. Während bereits zahlreiche funktionelle Domänen des Proteins charakterisiert wurden, gibt es bisher keine publizierten Studien zur Lokalisation der Enhancer-Blockade-Aktivität. Zunächst sollte daher eine funktionelle Enhancer-Blockade-Domäne des Proteins charakterisiert werden. Aus Vorarbeiten war bekannt, dass eine solche Aktivität in den N-terminalen Aminosäuren 2-67 zu finden ist (Bardenhagen, Diplomarbeit). Die Enhancer-Blockade-Aktivität des Deletionskonstrukts CTCF-2-67 konnte im Rahmen dieser Arbeit experimentell bestätigt werden. Das Deletionskonstrukt CTCF-2-67 vermittelte eine signifikante Reduzierung der Reportergen-Expression. Dieser Effekt war eindeutig auf Enhancer-Blockade und nicht auf Repressionseffekte zurückzuführen.. In Vorarbeiten konnte außerdem gezeigt werden, dass die N-terminalen Enhancer-Blockade vermittelnden Sequenzbereiche zwischen den chicken- und Xenopus laevis-CTCF-Homologen konserviert sind. Die Xenopus laevis CTCF-Aminosäuren 2-67 zeigen im Experiment einen ebenso starken Enhancer-Blockade-Effekt wie das chicken CTCF-2-67-Konstrukt (Bardenhagen, Diplomarbeit). Die Abweichungen von der chicken-CTCF-Aminosäureseguenz in den Xenopus laevis-CTCF-Orthologen wirken sich nicht auf die Enhancer-Blockade aus und scheinen demnach für die Enhancer-Blockade nicht essentiell zu sein. Die hohe Konservierung der Enhancer-Blockade-vermittelnden Sequenzen innerhalb der Vertebraten unterstreicht die Rolle des CTCF-Proteins in der Vermittlung der Isolation durch Enhancer-Blockade.

Eine nähere Analyse der verifizierten Domäne mittels Sequenzvergleichs der Nterminalen CTCF-Aminosäuren 2-67 verschiedener Spezies ergab eine hohe Konservierung von negativ geladenen Aminosäuren, die haupsächlich in drei, über den Sequenzbereich verteilten Gruppen vorliegen. Dies stellte einen interessanten Ansatzpunkt für Mutationsanalvsen dar. Allgemein vermitteln DNA-bindende Faktoren ihre Wirkung durch Interaktion mit weiteren Proteinen, die ihrerseits mit Proteinen (oder Multiprotein-Komplexen) wechselwirken und so die Expression eines Gens modulieren können. Der genaue Mechanismus der CTCF-vermittelten Enhancer-Blockade ist noch ungeklärt, jedoch stellt die Interaktion mit weiteren Proteinfaktoren mit hoher Wahrscheinlichkeit einen Schritt in der Vermittlung der Enhancer-Blockade dar. Die Mutationsanalysen ergaben, dass alle drei experimentell ausgetauschten Gruppen negativer Ladungen in die Vermittlung der Enhancer-Blockade-Aktivität von CTCF2-67 involviert sind. Die Mutation aller konservierten Ladungen führte sogar zu einer vollständigen Aufhebung der Enhancer-Blockade-Aktivität im Experiment. Auch das CTCF-Protein voller Länge, welches die solcherart mutierte Enhancer-Blockade-Domäne trug, führte zu einer deutlichen, wenn auch geringeren Abnahme der Enhancer-Blockade-Aktivität. Das Protein voller Länge scheint also auch aktivierende Aktivität zu besitzen, welche sich im hier verwendeten

experimentellen System auf den SV40-Promotor des Reportergens auswirkt und die Enhancer-Blockade vermittelte Aktivitätsabnahme teilweise verdeckt. Eine transkriptionsaktivierende Wirkung von CTCF ist zum Beispiel auch auf den Promotor des Amyloid-Vorläufer-Proteins bekannt (Vostrov und Quitschke, 1997).

Die hier durchgeführten Enhancer-Blockade-Experimte sind geeignet, um eine Domäne mit Enhancer-Blockade-Aktivität des Faktors CTCF einzugrenzen. Die Experimente basieren jedoch auf transgenen Konstrukten, in denen heterologe Enhancer- und Promotor- Sequenzen verwendet werden. Diese werden zudem außerhalb ihres nativen genomischen Kontext exprimiert. Es ist also nicht auszuschließen, dass weitere Bereiche des CTCF-Proteins für eine volle Enhancer-Blockade-Aktivität in vivo notwendig sind. Um Einblicke in Mechanismen und Regulationsmöglichkeiten des komplexen Vorgangs der Chromatin-Isolation zu erhalten, sind sicherlich darüber hinaus gehende Untersuchungen erforderlich. Von zentraler Bedeutung ist dabei die Identifikation von CTCF-assoziierten Proteinpartnern (siehe auch 6.3).

6.2 Corepressor Sap30 und CTCF Interaktion

Isolatoren werden ihrer Funktion nach in Enhancer-Blocker und Barrier-Elemente unterteilt. Enhancer-Blocker verhindern die Enhancer-Promotor-Kommunikation, wenn sie zwischen beiden Elementen positioniert sind. Barrier-Elemente wirken als "Barrieren" und ermöglichen die Abschirmung eines von ihnen flankierten Gens gegen Positionseffekte, also eine Änderung der Gen-Expression in Abhängigkeit des Insertionsortes im Chromatin (PEV, (Karpen ,1994). Somit ist eine gleichbleibende Expression des Gens unabhängig von benachbarten Regulationselementen oder reprimierendes Chromatin-Strukturen übergeordneten wie Heterochromatin gewährleistet (Kellum und Schedl, 1991). Barrier-Elemente vehindern also die Ausbreitung einer reprimierenden Chromatinumgebung in benachbarte, aktive Chromatindomänen (Bushey et al., 2008). Genomweite Bindeprofile von CTCF in unterschiedlichen Organismen zeigen eine signifikante Assoziation mit Barrierebenachbarter Elementen. die die Grenzen zweier Chromatindomänen unterschiedlicher Aktivität markieren (Barski et al., 2007; Bartkuhn et al., 2009. Cuddapah et al., 2009). Während inaktive Domänen dabei mit der Histonmodifikation H3K27me3 markiert sind, welche als Kennzeichen für Polycomb-reprimiertes Chromatin gilt, zeigen aktive Domänen Hyperacetylierung unter anderem des Histons H2A (H2AK5ac) (Cuddapah et al., 2009). In der Vergangenheit konnte gezeigt werden, dass CTCF mit dem Korepressor Sin3A interagiert, welcher eine Untereinheit des Sin3A/HDAC-Korepressor-Komplex ist. Die Interaktion konnte auch im Rahmen dieser Arbeit verifiziert werden. Der Korepressor Sin3A wurde als CTCF assozierter Faktor, in der Komplexaufreinigung aus Drosophila melanogaster identifiziert (Tab.5.1). Die Interaktion beider Proteine hat die Rekrutierung von Histone-Deacetylase-Aktivität zur Folge, was zu einer transkriptionellen Repression führt (Lutz et al., 2000). Eine weitere Unterheit des Sin3A/HDAC-Korepressor-Komplex ist der Faktor Sap30. Es ist bekannt, dass Sap30 mit dem Zinkfingerprotein YY1 interagiert, was über die Rekrutierung von Histon-Deacetylase-Aktivität zur Genrepression führt (Huang et al., 2003). YY1 selbst wurde als CTCF-Interaktionspartner identifiziert. Beide Faktoren kooperieren in der Transaktivierung des Tsix-Gens während des Prozesses der X-Chromosom-Inaktivierung (Donohoe et al., 2007). Es stellte sich die Frage, ob Sap30 einen neuen CTCF-Kofaktor darstellt. Dies könnte bedeuten, dass die Rekrutierung von Histondeacetylase-Aktivität über den CTCF/Sap30-Komplex auch an der Vermittlung der Enhancer-Blockade beteiligt ist.

Im Rahmen dieser Arbeit konnte Sap30 *in vitro* als neuer CTCF-Cofaktor identifiziert werden. Ob diese Interaktion auch im Hinblick auf die Enhancer-Blockade funktionell ist, konnte nicht eindeutig geklärt werden. Sap30 interagierte auch mit der mutierten, nicht funktionellen Enhancer-Blockade-Domäne von CTCF. Wie bereits diskutiert (siehe 6.1), ist das transiente Enhancer-Blockade-Testsystem jedoch limitiert und nicht mit einer *in vivo* Situation vergleichbar. Es ist durchaus vorstellbar, dass die Rekrutierung von Histon-Deacetylase-Aktivität über Faktoren wie Sap30 oder Sin3A an spezifischen Loci eine Rolle in der Vermittlung der Enhancer-Blockade spielt. Auch könnte die Komplexbildung zwischen CTCF und Sap30 als Brücke für die Assoziation mit weiteren Proteinen dienen. Eine Verbindung aller drei Faktoren - CTCF, YY1 und Sap30 - in funktioneller Hinsicht, ist ebenfalls vorstellbar und sollte experimentell untersucht werden.

6.3 Charakterisierung dCTCF-assoziierter Protein-Komplexe

Um die CTCF-vermittelten Wirkungen besser zu verstehen, ist es von grundlegender Bedeutung, Proteine oder Protein-Komplexe zu identifizieren, die in der Zelle mit CTCF assoziiert sind. Zur Aufreinigung eines solchen Komplexes wurde im Rahmen dieser Arbeit ein Zellkultur-System etabliert. Hierzu wurden Embryonalzellen von *Drosophila melanogaster* (Schneiderzelllinie SL2) verwendet. In *Drosophila melanogaster* existiert ein konserviertes CTCF-Ortholog (dCTCF), welches Enhancer-Blockade-Aktvität besitzt (Moon et al., 2005). Im Vergleich zu Vertebraten stellt *Drosophila* einen relativ einfachen Organismus dar und es ist wahrscheinlich, dass sich dieses auch in einem relativ einfachen CTCF/Kofaktor-Netzwerk widerspiegelt. Diese Situation sollte genutzt werden, um Proteinkomplexe und einzelne Interaktionspartner des multifunktionellen Faktors CTCF identifizieren zu können.

Das entwickelte Zellkultursystem ermöglichte die Expression eines HA-FLAGdCTCF-Fusionsproteins, welches unter der Kontrolle eines CuSO₄-induzierbaren Promotors stand. Dies bot den großen Vorteil, die stabil transfizierten Zellen ohne CTCF-Überexpression kultivieren zu können und die Überexpression gezielt 24 Stunden vor Ernte der Zellen zu induzieren. Nur nach Induktion war im Western Blot ein Signal des rekombinanten Proteins detektierbar. Mittels Ionenaustausch- und Gelfiltrations-Chromatographie konnte gezeigt werden, dass dCTCF mit mindestens zwei verschiedenen hochmolekularen Komplexen assoziiert im Zellkern vorliegt. Die Tatsache, dass es nicht einen distinkten dCTCF-Komplex zu geben scheint, stimmt mit dem Wissen über die Multifunktionalität des Faktors überein. Es ist nicht anzunehmen, dass eine solche Vielzahl ganz unterschiedlicher Funktionen durch ein und denselben Protein-Komplex vermittelt werden kann. Hierfür muss vielmehr ein hohes Maß an Flexibilität erreicht werden und tatsächlich besitzt CTCF Fähigkeiten und Merkmale, um diese Aufgaben erfüllen zu können.

Die Ergebnisse der massenspektrometrischen Analyse, bestätigen dies. Die Analyse führte zur Identifikation von 161 dCTCF-assoziierten Proteinen, die mit einem *Score* von 60 oder höher (siehe auch 5.6.2), die Signifikanzkriterien erfüllen. Die Assoziation dieser Faktoren mit dCTCF kann als spezifisch gewertet werden, da in dem hier durchgeführten Experiment die uninduzierte Probe als Kontrollinstrument genutzt werden konnte. Mit Hilfe der uninduzierten Probe wurden Proteine, welche unspezifisch an die FLAG-Agarose binden (siehe auch 5.6.2), identifiziert (Liste siehe Anhang) und zur Korrektur der tatsächlichen Daten (induzierte Probe) verwendet. Tabelle 5.1 zeigt eine Zusammenfassung der über HA-FLAG-dCTCF spezifisch

kopräzipitierten Faktoren, die hinsichtlich der CTCF-vermittelten Chromatin-Isolation Relevant sein könnten.

Es zeigt sich, dass CTCF mit einer Vielzahl von Proteinen und Proteinkomplexen interagiert, die in völlig unterschiedlichen biologischen Funktionen involviert sind und auf unterschiedliche Art und Weise zur CTCF-vermittelten Isolation beitragen können. Die Assoziation von dCTCF mit Vertretern der verschiedenen Funktionsklassen, zu denen die hier identifizierten Interaktionspartner zählen, wird im Folgenden diskutiert.

6.3.1 dCTCF-Dimerisierung

Die massenspektrometrische Analyse der FLAG-dCTCF kopräzipitierten Proteine identifizierte dCTCF selbst als Interaktionspartner. CTCF besitzt bekanntermaßen die Fähigkeit zu dimerisieren (Pant et al., 2004), sodass es nicht überraschend war, dCTCF selbst mit sehr hohem Signifikantsniveau in der massenspektrometrischen Analyse zu identifizieren. Die Dimerisierung könnte eine Möglichkeit bieten, Schleifenbildung zu vermitteln, und verschiedene Daten geben Hinweise darauf, dass Chromatinschleifen durch CTCF-vermittelte Isolatorinteraktionen entstehen. So konnten in HeLa-Zellen sowohl Homodimere als auch Multimere durch FLAGmarkiertes CTCF gebildet werden, und diese Interaktionen konnten in Yeast-Two-Hybrid-Experimenten verifiziert werden (Yusufzai et al., 2004). Diese Ergebnisse wurden dahingehend interpretiert, dass auch Vertebraten-CTCF in der Lage ist, eine Schleifenbildung des Chromatins zu induzieren, wie es auch für Drosophila gezeigt ist, wo es zu richtungsabhängigen Interaktionen zwischen Isolatoren und Schleifenbildung der dazwischenliegenden DNA kommt (Gerasimova et al., 2000; Kyrchanova et al., 2008). Auch konnte in Vertebraten nachgewiesen werden, dass CTCF-gebundene DNA-Sonden in vitro dimerisieren, wenn die Sonden unterschiedliche CTSs codieren (Pant et al., 2004). Unter Berücksichtigung des Wissens, dass der CTCF-C-Terminus in vitro mit der CTCF-Zinkfinger-Domäne interagiert, spricht dies dafür, dass an unterschiedliche CTSs bindende CTCF-Moleküle eine Konformation einnehmen, welche eine direkte oder indirekte beider Assoziation Moleküle erlaubt. Dies hat die Ausbilduna von Chromatinkontakten zur Folge. Kürzlich konnte direkt nachgewiesen werden, dass eine Kontaktaufnahme zweier CTCF-gebundener Isolatoren in vivo zu einer Schleifenbildung des Chromatins führt. Dabei führt die Insertion eines humanen Isolators in transgenen Mäusen zur Ausbildung einer neuen Chromatinschleife, welche die aktive Transkription unterbricht (Hou et al., 2008).

Die CTCF-Dimerisierung stellt also eine Möglichkeit dar, Enhancer-Blockade durch Schleifenbildung des Chromatins, zu induzieren. Eine solche Schleifenbildung und weitere, auch intrachromosmale Kontakte zwischen unterschiedliche Chromosomen, kann desweiteren durch die Bildung von Heterodimeren, also durch die Bindung weiterer CTCF-Interaktionspartner, vermittelt werden. So konnten im Rahmen dieser Arbeit zum Beispiel weitere Isolator-bindende Proteine, Kernporen-Komponenten und Cohesin-Untereinheiten als CTCF-assoziierte Faktoren identifiziert werden, die potentielle Kandidaten für diese Aufgabe darstellen.

6.3.2 Isolation und Formation von *insulator bodies*

Im kompakten *Drosophila*-Genom konnten bisher fünf Arten von Isolatoren identifiziert werden, die durch die Bindung spezifischer DNA-Bindeproteine charakterisiert sind. Dies sind Su(Hw) (Suppressor of Hairywing), dCTCF, BEAF (boundary element-associated factor), Zw5 (Zeste-white 5) und GAF (GAGA factor).

(Madea und Karch, 2007). dCTCF und Su(Hw) sind an der Funktion des gypsy-Isolators in Drosophila beteiligt. Der gypsy-Isolator wurde durch Studien entdeckt, die die mutagenen Effekte des gypsy-Retrotransposons analysierten. Der Isolator ist in der 5'-UTR (untranslated region) des gypsy-Retrotransposons lokalisiert. Wie bei vielen anderen Isolatoren bewahrt auch dieses DNA-Fragment Transgene vor der Positionseffekt-Variegation (Roseman et al.). Es konnte gezeigt werden, dass das gypsy-Retrotransposons die Enhancer-Blockade im yellow-Locus vermittelt. Für die Enhancer-Blockade in vivo wird das Protein Su(Hw) benötigt (Scott et al., 1999). Su(Hw) besitzt eine Domäne mit 12 Zinkfingern, die die direkte Bindung an eine 8 Nukleotid-lange Sequenz erlauben. Diese Sequenz liegt im gypsy-lsolator als 12fache Wiederholung vor (Kim et al., 1996). Darüber hinaus besitzt Su(Hw) drei konservierte Motive, die vermutlich in Protein-Protein-Interaktionen involviert sind und dadurch die Enhancer-Blockade unterstützen (Gdula and Corces, 1997; Ghosh et al., 2001; Kim et al., 1996). Ein Faktor, der mit Su(Hw) interagieren und in die Isolatorfunktion von gypsy involviert ist, ist Mod(mdg4) (Gerasimova et al., 1995; Gdula and Corces, 1997). Für Su(Hw) und Mod(mdg4) sind einige hundert endogene Bindestellen auf Polytänchromosomen von Fliegen im dritten Larvenstadium bekannt, die aber größtenteils nicht mit gypsy-Retrotransposons übereinstimmen (Parnell et al., 2003; Golovnin et al., 2003). In Interphase-Zellen konnte gezeigt werden, dass die Proteine in punktuellen Bereichen, die an der nukleären Peripherie lokalisiert sind, überlappen. Diese Loci werden als insulator bodies bezeichnet (Gerasimova und Corces. 1998: Gerasimova et al., 2007). In diesen insulator -bodies interagieren mehrere Isolator-Seguenzen und verschiedene Proteine miteinander. Es wurde gezeigt, dass es dabei zur Ausbildung von DNA-Schleifen kommt, an deren Basis sich je zwei Isolatoren befinden. Durch diese Schleifenbildung könnten funktionell abgetrennte Chromatin-Domänen entstehen, die eine unabhängige Transkriptionsregulation erlauben (Byrd und Corces, 2003). Neben Su(Hw) und Mod(mdg4), ist der Faktor CP190 (centrosomales Protein 190) an der Formation der insulator bodies, beteiligt. Ebenso wurde zwischenzeitlich gezeigt, dass CP190 auch für die Enhancer-Blockade-Aktivität der Su(Hw)- und dCTCF-Isolatoren essentiell ist (Pai et al., 2004; Gerasimova et al., 2007; Mohan et al., 2007).

Auch Proteine des RNAi-Apparats, so das Protein Rm62 (Lip), sind zudem an der Formierung der *insulator-bodies* beteiligt. Rm62 besitzt Helikase-Aktivität und ist in das Doppelstrang-RNA-vermittelte *gene silencing* und in die Heterochromatin-Formierung involviert. Es wurde gezeigt, dass Reduktion des Rm62-Levels zu einer Reorganisation des *gypsy*-Isolators im Zellkern führt (Lei und Corces, 2006).

Im Rahmen dieser Arbeit konnte gezeigt werden, dass dCTCF mit den insulator bodies-formierenden Faktoren CP190, Su(Hw) und Rm62 interagiert. In der chromatographischen Reinigung cofraktionierte CP190 mit dCTCF und die Interaktion aller drei Proteine mit FLAG-dCTCF konnte mittels Immunopräzipitation werden. Die massenspektrometrische Analyse der FLAG-dCTCF aezeiat copräzipitierten Proteine identifizierte CP190 und Su(Hw) ebenfalls als signifikanten dCTCF-Cofaktor. Das Protein CP190 ergab in dieser Analyse einen der höchsten Wahrscheinlichkeitswerte für eine Assoziation mit dCTCF. Durch Co-Immunopräzipizazion auf endogenem Level, konnte die Cp190- und Rm62-Interaktion mit dCTCF zudem ohne Überexpression des Faktors bestätigt werden. Kolokalisationsstudien an Polytänchromosomen zeigten eine partielle Kolokalisation von CP190 mit dCTCF, also eine Assoziation beider Faktoren im Interphasen-Chromatin, was eine starker Hinweis auf Funktionalität dieser Interaktion ist. Zwischenzeitlich wurde publiziert, dass dCTCF und CP190 interagieren und

überlappende DNA-Zielsequenzen binden (Mohan et al., 2007; Bartkuhn et al., 2009). In vielen Fällen ist CP190 sogar für die dCTCF-Bindung an die CTS erforderlich (Mohan et al., 2007). Auch ist die Bindung beider Faktoren für die Funktion des Fab-8 Isolators notwendig (Moon et al., 2005; Mohan et al., 2007).

Die hier erzielten Ergebnisse sprechen für eine Involvierung von dCTCF an der Bildung von *insulator bodies*. Erwähnt werden muss allerdings, dass die Existenz dieser Aggregate durchaus umstritten ist. So bindet ein mutiertes Mod(mdg4) in transgenen Fliegen zwar die korrekten Isolator-Sequenzen und führt zu normaler Su(Hw)-abhängigen Isolation, ist aber nicht mehr in den Su(Hw)-markierten *insulator bodies* nachweisbar. Die Studie spekuliert, dass es sich bei den Strukturen nicht um interagierende Isolatoren, sondern lediglich um Protein-Aggregate handelt. Interessant und wichtig wäre die Klärung der Frage, ob endogenes dCTCF mit den immungefärbten *insulator bodies* colokalisiert. Dies würde eine artifizielle Aggregatbildung der untersuchten Protein-Faktoren aufgrund von Überexpression ausschließen.

Unter den hier identifizierten dCTCF-Kofaktoren spielt das Protein CP190, gerade im Licht neuerer Ergebnisse, eine besonders interessante Rolle. Vor kurzem wurde die genomweite Bindung von CP190 und dCTCF untersucht (Bartkuhn et al., 2009). Es zeigte sich eine überlappende Bindung von CP190 sowohl mit dCTCF, als auch mit dem Isolatorproteinen Su(Hw) und GAF. Interessanterweise markiert CP190 darüberhinaus aktive Promotoren und die Bindung beider Faktoren, dCTCF und CP190, konnte an den Grenzen von H3K27trimethylierten Regionen detektiert werden (Bartkuhn et al., 2009). Diese repremierende Chromatinmodifikation wird als Konsequenz der DNA-Assoziation mit Polycomb group (PcG)-Proteinen angesehen und ist in ausgedehnten genomischen Domänen in Fliegen und Vertebraten zu finden (Schwartz et al., 2006; Regha et al., 2007). In Vertebraten werden diese Domänen von CTCF flankiert (Barski et al., 2007) und Studien in Drosophila zeigen, dass Isolatoren mit einer Ausbreitung der reprimierenden Chromatinmodifikation interferieren (Kahn et a., 2006). Die dCTCF-Bindestellen sind unabhängig von ihrem genomischen Kontex arm an Histon H3, sofern auch CP190 gebunden ist. dCTCF und CP190 markieren und kontrollieren die Nucleosomen-Besetzung der H3K27me3-Domänen und CP190 scheint der Faktor zu sein, der die Fähigkeit besitzt, die Chromatinstruktur im Bereich von Isolatoren und Promotoren, zu regulieren (Bartkuhn et al., 2009). Die CP190-Bindung an Isolatoren und aktive Promotoren zeigt, dass beide Elemente dieselben Merkmale teilen. Dies unterstützt das schon längere Zeit diskutierte Modell des Promotor Decoy als Wirkmechanismus der Enhancer-Blockade. Demnach wirken Isolatoren als Promotoren, die den Enhancer "ködern" (decoy) und durch Bindung derselben, mit der regulären Enhancer-Promotor-Interaktion interferieren (Geyer, 1997; Ohlsson et al., 2001). Tatsächlich wirken zum Beispiel die Promotoren der tRNA-Gene auch als Isolatoren (Noma et al., 2006). Interessant ist auch der Vorschlag, dass die Ähnlichkeit und damit verbundene Rekrutierung gleicher Proteinfaktoren von Isolatoren und Promotoren, eine Interaktion beider Elemente ermöglicht (Bartkuhn et al., 2009). Dafür spricht, dass CP190 in den bereits beschriebenen insulator bodies nachgewiesen werden kann (Pai et al., 2004), wo also CP190 gebundene Sequenzen in räumliche Nähe zueinander gebracht werden könnten. Isolator-Promotor-Interaktionen konnten zudem für die H19 ICR gezeigt werden (Yoon et al., 2007). Die Interaktion könnte dabei durch weitere Faktoren, wie zum Beispiel CTCF, vermittelt werden.

Die Ergebnisse dieser Arbeit identifizierten auch das Isolator-Protein BEAF als dCTCF-Interaktionspartner. Kürzlich wurde gezeigt, dass neben Su(Hw), GAF und dCTCF, auch der Faktor BEAF mit CP190 als Kofaktor assoziert ist (Bushey et al., 2010). Es ist also nicht auszuschließen, dass es sich hierbei um eine CP190vermittelte Interaktion handelt. Su(Hw)-, dCTCF- und BEAF-Isolatoren würden somit drei Unterklassen von CP190 assozierten Isolatoren repräsentieren, die in Bezug auf ihre Lokalisation und Gen-Expressions-Level unterschiedliche Verteilungsmuster zeigen (Bushey et al., 2010). Dies spricht für unterschiedliche Funktionen der drei Isolatoren-Klassen in der Chromatinorganisation. Zudem zeigt sich eine Zelltypspezifische Lokalisation aller drei Isolator-Proteine und des Kofaktors CP190 (Bushey et al., 2010), was für multiple Ebenen spricht, auf denen Isolatoren reguliert werden können. In Vertebraten ist CTCF der bisher einzig bekannte Isolator-Faktor. Auch für humanes CTCF konnte für einen Teil der CTCF-Bindestellen, eine Zelltypspezifische Verteilung gezeigt werden (Kim et al., 2007; Cuddapah et al., 2009). Eine Erklärung für die Diskrepanz in der Zahl der Isolatorproteine könnte sein, dass auch innerhalb der Vertebraten weitere Isolator-Unterklassen existieren, die von bisher unbekannten Isolator-Proteinen gebunden werden, oder dass durch die unterschiedlichen Bindestellen jeweils spezifische CTCF-Interaktionspartner definiert werden, die mit CTCF assozieren und binden können. Alternativ ist vorstellbar, dass innerhalb der Vertebraten, mit ihrem in Vergleich zu Drosophila weniger kompakten Genom, weniger Isolator-Unterklassen notwendig sind, um das Genom in zelltypspezifischer Art und Weise zu organisieren. Zudem könnte CTCF in der Entwicklung Teile von Funktionen der anderen Drosophila-Isolatorproteine übernommen haben. In der Gruppe der Drosophila-Isolatorproteine, zeigt das Verteilungsmuster von dCTCF, dass es eine Rolle in der globalen Genom-Organisation und in der Regulation individueller Gene spielen kann. Somit wäre CTCF der wahrscheinlichste Faktor der Drosophila-Isolatorproteine, um die Funktionen der übrigen Faktoren in Vertebraten zu übernehmen. Dort könnten andere Methoden genutzt werden, um unterschiedliche Isolator-Funktionen zu definieren – so zum Beispiel die Rekrutierung einer Vielzahl unterschiedlicher Kofaktoren, wie sie im Rahmen dieser Arbeit identifiziert wurden. In Drosophila könnte wiederum CP190 der Faktor sein, der so zusätzliche Variabilität in der Funktion von Isolatoren vermittelt. Das Beispiel der Untereinheiten des Schwesterchromatid-Kohäsions-Komplexes Cohesin, die im Rahmen dieser Arbeit als dCTCF-assozierte Faktoren identifiziert wurden, spricht ebenfalls für diese Hypothese. Für humanes CTCF wurde in neueren Studien eine Verbindung zwischen CTCF und Cohesin gezeigt. So koinzidiert die CTCF-Bindung mit der Bindung von Cohesin (Parelho et al., 2008; Rubio et al., 2008; Stedman et al., 2008; Wendt et al., 2008). In Drosophila konnte keine Übereinstimmung zwischen dCTCF und der Cohesin-Untereinheit Stromalin gefunden werden. Im Gegensatz dazu überlappen 80 % der Stromalin-Bindestellen mit CP190 (Bartkuhn et al., 2009). Die hier identifizierte Assoziation von dCTCF mit den Cohesin-Untereinheiten SA und könnte also eine indirekte Interaktion darstellen, welche Cap. mit hoher Wahrscheinlichkeit von CP190 vemittelt wird. Die Funktion der Cohesin-Rekrutierung in bestimmten Fällen könnte also in Vertebraten von CTCF übernommen worden sein.

6.3.3 Chromatin und Chromatin-Modifikation

Die Etablierung des Grundplans zum Körperbau höherer Eukaryonten hängt von den spezifischen Expressionsmustern homeotischer Gene ab (McGinnis und Krumlauf 1992). Im *Drosophila* Embryo sind die Expressionsgrenzen der homeotischen Gene durch transient expremierte Regulatoren definiert und werden durch die *trithorax*

group (trxG)- und Polycomb group (PcG)- Proteine aufrechterhalten (Paro 1995; Pirotta, 1998; Lyko und Paro, 1999). Die PcG-Proteine sind dabei für die Aufrechterhaltung des transkriptionell inaktivem, die trxG-Proteine für die Aufrechterhaltung des transkritionell aktiven Chromatinstatus verantwortlich. Die Funktion dieser Faktoren ist nicht auf die Regulation der homeotischen Gene begrenzt. Sie sind an der Kontrolle vieler Entwicklungsprozesse beteiligt (Jacobs et al., 1999; Vazguez et al., 1999) und kommen in Säugetieren, Insekten und Pflanzen vor, wo sie hunderte von Genen regulieren (Rajasekhar und Begemann, 2007; Sparman und van Lohuizen, 2006). Auf Chromatinebene agieren die PcG- und trxG-Proteine als Teil mulimerer Komplexe (Grimaud et al., 2006; Schuettengruber et al., 2007), um die Struktur des Chromatins zu verändern. Die hochgradige Verpackung der DNA als Chromatin, stellt eine Barriere für die Transkriptionsmaschinerie dar, die überwunden werden muss, wenn Gene aktiv transkribiert werden sollen. Hierzu ist neben Histonmodifikationen eine Änderung der Nucleosomen-Strucktur notwendig, die durch chromatin-remodeling Komplexe herbeigeführt wird. Die Komplexe nutzen die Energie der ATP-Hydrolyse, um Histone zu entfernen oder auszutauschen und somit Nukleosomen entlang der DNA neu zu positionieren (Nukleosomen-Remodeling; Kadonaga et al., 1997; Saha et al., 2006; Workman et al., 2006). Drei chromatin-remodeling Komplexe sind von der Hefe bis zum Menschen konserviert: der SWI/SNF-, ISWI- und Mi-2/CHD (NuRD)-Komplex (Eisen et al., 1995). Die katalytische Untereinheit des SWI/SNF-Komplexes der Hefe, ist die Swi2p/Snf2p ATP-ase. Das Drosophila Homolog zum Hefe SWI/SNF-Komplex ist der Brahma (BRM) chromatin remodeling Komplex, einer der trxG-Komplexe Drosophilas. Die BRM-Komplexe können in die Unterklassen BAP-und PBAP-Typ unterteilt werden, abhängig von den zugehörigen Untereinheiten (Mohrmann et al., 2004). Das Protein OSA ist spezifisch für den BAP-Komplex, die Proteine Polybromo und Bap170 sind spezifische PBAP-Komponenten. Die Proteine Brm, Mor (Moira), Snr1, Dalao (Bap111), Bap60, Bap55 und Actin, werden von beiden Komplexen geteilt (Mohrmann et al., 2004). Für beide Komplex-Typen konnten funktionelle Unterschiede ausgemacht werden (Moshkin et al., 2007).

Auch die SWI/SNF- oder Brahma- associated factors (BAF)-Komplexe, der Säuger bestehen aus sowohl konservierten, als auch einzigartigen Untereinheiten, was für eine funktionelle Differenzierung der Komplexe spricht (Armstrong und Emerson, 1998; Workman und Kingston, 1998).

Die Klasse der ISWI *chromatin remodeling*-Komplexe ist durch die Präsenz der ISWI ATP-ase als katalytische Untereinheit charakterisiert (Kdonaga, 1998; Varga-Weisz und Becker 1998). Die bekanntesten Komplexe dieser Gruppe sind ACF (ATP-utilizing chromatinassembly and remodeling factor), NURF (nucleosome remodeling factor) und CHRAC (chromatin- accessibility complex). Während die SWI/SNF-Proteine Histon-DNA-Kontakte unterbrechen und gesamte Nukleosomen zerlegen, führt der NURF-Komplex eher zu einer Verschiebung und Neupositionierung der Nukleosomen entlang der DNA (Hamichhe et al., 1999; Längst et al., 1999).

Die in dieser Arbeit durchgeführte massenspektrometrische Analyse identifizierte die ISWI-ATPase dieser Komplexe sowie die NURF-Komplex Untereinheiten Caf1 und Nurf-38, die Brahma-Komplex-Komponenten Mor, Snr1 und Bap111 und das PcG-Protein Lolal (Batman) als CTCF-assoziierte Faktoren. Durch Co-Immunopräzipitazion auf endogener Proteine, konnte die Bap111- dCTCF-Interaktion bestätigt werden. Die Maus-Homologe der Proteine Caf1 und Bap111, konnten ebenfalls als CTCF-Bindepartner identifiziert werden (van de Nobelen, Dissertation).

Studien am *H19/lgf2*-Locus zeigten bereits, dass CTCF für die Beschaffenheit des Chromatins in der Region verantwortlich ist. So führt eine aufgebobene CTCF-Bindung an die H19-ICR zu allel-spezifisch veränderten Acetylierungs- und Methylierungsmustern sowie zu verändertem Einbau von Histonvarianten (Han et al., 2008). Die Ergebnisse dieser Arbeit bestätigen nun, dass dCTCF *chromatin remodeling*-Aktivitäten verschiedener funktioneller Klassen rekrutiert. Die Assoziation der gemeinsamen Komponenten der BAP-und PBAP-Komplexe könnte dabei zur Rekrutierung beider Komplexe führen, was unterschiedliche funktionelle Konsequenzen haben könnte und in Bezug auf die Transkriptionskontrolle sogar zu antagonistischen Funktionen führen kann (Moshkin et al., 2007).

Die Interaktion mit den Komponenten des NURF-Komplexes könnte Einfluß auf die Positionierung der Nukleosomen haben. Diese spielt eine große Rolle in Bezug auf die Aktivität eines Gens, da die Nukleosomen für die Bindung von DNA-bindenden Faktoren richtig positioniert sein müssen. Verschiedene Faktoren haben dabei einen Einfluss auf die Position der Nukleosomen: die jeweilige DNA-Sequenz, die Bindung von Transkriptionsfaktoren und die anschließende Rekrutierung von remodeling-Aktivitäten (Segal und Widom, 2009). Ein Hinweis darauf, dass Nukleosomen nahe einer CTS ein spezifisches Positionierunsmuster zeigen, liefert die H19-ICR. Die CTSs in diesem Bereich liegen in linker-Regionen zwischen positionierten Nukleosomen (Kanduri et al., 2002). Neuere Analysen zur Nukleosomenbesetzung der DNA bestätigen nun die Assoziation von CTSs mit bis zu zwanzig präzise positionierten Nukleosomen (Fu et al., 2008). Es wird diskutiert, ob die CTCF-Bindung selbst zu einer entsprechenden Nukleosomen-Positionierung führt, da keine Sequenzkonservierung in den benachbarten Bereichen der CTSs identifiziert werden kann. Allerdings zeigt sich in großen Fraktionen des Genoms, die Nukleosomen-Positionierung ohne detektierbare konservierte Seguenzmotive kontrollieren, dass durchaus intrinsische Seguenzinformationen in diesen Bereichen enthalten sind. Für die H19-ICR wurde die Nukleosomen-Positionierung zudem der zugrunde liegenden Sequenz zugeschrieben, anstatt der CTCF-Bindung (Kanduri et al., 2002). Die signifikante genomweite Assoziation der CTSs mit präzise positionierten Nukleosomen spricht jedoch für eine aktive Rolle des CTCF-Proteins. Darüber hinaus ist bekannt, dass CTCF mit dem ATP-abhängigen chromatin remodeler CHD8 interagiert (Ishihara et al., 2006), welcher zu den SWI/SNF- chromatin remodeling-Komplexen gehört. Der CTCF-CHD8-Komplex ist dabei essentiell für die Enhancer-Blockade-Aktivität des H19-DMR-Isolators. Die hier gezeigte Rekrutierung weiterer chromatin remodeler, des NURF-Komplexes und des SWI/SNF-homologen Brahma-Komplexes, macht eine aktive Rolle des Faktors CTCF in der Neuorganisierung und Positionierung von Nukleosmen sehr wahrscheinlich. Im Einklang mit den in dieser Arbeit erzielten Ergebnissen steht eine Studie zur Funktion von chromatin-boundary-Elementen. Chromatin boundaries ermöglichen eine unabhängige Genregulation durch die Isolierung der Genen von Enhancer-Elementen oder organisiertem Chromatin. Genomweite Bindeprofile von CTCF in unterschiedlichen Organismen zeigen eine signifikante Assoziation mit Boundary-Elementen, die die Grenzen zweier Chromatindomänen unterschiedlicher Aktivität markieren (Barski et al., 2007; Bartkuhn et al., 2009; Cuddapah et al., 2009). Bis vor kurzem war unklar, ob die Enhancer-Blockade-Aktivität von boundary-Elementen von der umgebenden Chromatinstruktur höherer Ordnung beeinflusst wird. Nun konnte gezeigt werden, dass dies der Fall ist und die Rekrutierung von nucleosom remodeling-Aktivitäten in Drosophila zu einer Modulation von chromatin boundary-Aktivitäten führt (Li et al., 2010). Neben signifikanten Einflüssen auf die Nukleosomenbesetzung, führt ein Funktionsverlust des NURF-Komplexes dabei zu einer Modulation der EnhancerBlockade-Aktivität verschiedener Isolatoren des homeotischen Genkomplexes in Drosophila. So kommt es zu einer Aufhebung der Enhancer-Blockade-Aktivität des Fab7-Isolators, jedoch zu verstärkter Aktivität des Fab8-Isolators. Auch diese Ergebnisse zeigen, dass unterschiedliche Isolator-Klassen bestehen, die durch unterschiedliche Mechanismen wirken. So ist die Aktivität des Fab-7-Isolators abhängig von dem Protein GAF, welches während der transkriptionellen Aktivierung mit dem NURF-Komplex kooperiert. Dies spricht für die Hypothese, dass Transkriptions-Aktivierung und Enhancer-Blockade nach ähnlichen Mechanismen funktionieren (Schweinsberg et al., 2004; Xiao et al., 2001), wie zum Beispiel im unproductive-loop-Modell zur Enhancer-Blockade vorausgesetzt wird, nach dem der Isolator mit dem Enhancer in Bezug auf die Promotor-Interaktion konkurriert (Yoon et al., 2007). Der Fab8-Isolator hingegen gehört zur Klasse der dCTCF-abhängigen Isolatoren in Drosophila. Das der Funktionsvelust des NURF-Komplexes hier zu einer Aufhebung der Enhancer-Blockade-Aktivität führt, spricht dafür, dass CTCFabhängige Isolatoren von präzise positionierten Nukleosmen abhängig sind. Demnach könnte dCTCF seine Enhancer-Blockade Aktivität hier durch die Rekrutierung von reprimierenden chromatin remodeling-Enzymen vermitteln. Diese Hypothese wird durch die in dieser Arbeit erreichten Identifizierung des NURF-Komplexes und des SWI/SNF-homologen Brahma-Komplexes als dCTCF-Interaktionspartner, unterstützt.

Das chromatin-modifizierende Protein WDS, welches zur Familie der WD-Proteine gehört, wurde im Rahmen dieser Arbeit als weiterer CTCF-bindender Faktor identifiziert. Das Säuger-Homolog WDR5 ist eine essentielle Untereinheit der humanen MLL und SET1 (hCOMPASS) H3K4-Methyltransferase-Komplexe (Dou et al., 2006). Eine Interaktion des Faktors WDR5 mit CTCF konnte auch in murinen ES-Zellen gezeigt werden (van de Nobelen et al., Der CTCF 2008). Interaktionspartner CHD8 ist interessanterweise Bestandteil eines Komplexes welcher die Proteine Wdr5, MLL1 und MOF enthält und Histon-Actetyltransferase (HAT)-Aktivität besitzt (Dou et al., 2005). Mittlerweise ist beschrieben, dass Drosophila WDS eine Untereinheit des so genannten ATAC-Komplexes ist, welcher HAT-Aktivität besitzt und die Aktivität von chromatin-remodeling-Komplexen stimuliert (Guelman et al., 2009; Suganuma et al., 2008). Desweiteren stellt er eine Untereinheit des nonspecific lethal (NSL)-Komplex dar, der in Drosophila und Säugern mit der Histonacetyltransferase MOF assoziiert ist (Raja et al., 2010). Der Komplex scheint ein wichtiger Transkriptionsregulator in Drosophila zu sein, da er mit den Promotorregionen von über 4000 Genen assoziiert ist, von denen 70 % aktiv transkribiert werden (Raja et al., 2010). Durch die Assoziation von CTCF mit WDS, ergibt sich eine klare Verbindung zur WDS-vermittelten HAT-Aktivität und Transkriptionsaktivierung und somit zu aktiven Chromatindomänen, welche unter H3K4-Dimethylierung durch acetylierte Histone, und anderem aktiver Gentranskription gekennzeichnet sind. Auch für die beschriebenen Boundary-Elemente sind aktive Promotoren ein Charakteristikum. Es wird diskutiert, dass der Mechanismus der CTCF-vermittelten chromatin boundary-Aktivität eine physikalische Blockade, ausgelöst durch die CTCF-Bindung darstellen könnte, und zudem die Präsenz aktiver Promotoren und/oder die Assoziation von CTCF mit der RNA-Polymerase II (Chernukhin et al., 2007) und mit aktiven Promotoren (Bartkuhn et al., 2009) eine lokale aktive Chromatinregion etabliert, welche eine Ausbreitung heterochromatischer Chromatineigenschaften entgegen wirkt. Die hier gezeigte Assoziation von CTCF mit WDS, einem Transkriptionsaktivierendem, HAT-Aktivität vermittelndem Faktor, unterstützt dieses Modell.
Interessanterweise wird auch die gegenteilige Aktivität durch die Interaktion von CTCF mit dem Korepressor Sin3A vermittelt, welcher HDAC-Aktivität rekrutiert (Lutz et al, 2000). Die beschriebene Interaktion von CTCF und Sin3A konnte in der massenspektrometrischen Analyse im Rahmen dieser Arbeit bestätigt werden.

Auch der zur Gruppe der PcG-Proteine gehörende Faktor Lolal wurde in der massenspektrometrischen Analyse als CTCF-Interaktionspartner identifiziert, was im Gegensatz zu der Assoziation mit WDS aber wie im Falle des Faktors Sin3A, für eine Etablierung repressiver Chromatindomänen durch CTCF, spricht. Interessanterweise interagiert Lolal mit dem Isolatorprotein GAF (Mishra et al., 2003). GAF ist an den meisten Polycomb Response Elements (PREs) präsent, an welche die Proteine der PcG- und trxG-Gruppe binden und ist notwendig für deren Funktion und die Bindung des multimeren PcG-Proteinkomplexes (Busturia et al., 2001; Horard et al., 2001; Mishra et al., 2001). Paradoxerweise wurde GAF ursprünglich als Aktivator-Protein identifiziert, welches zur Gruppe der trxG-Proteine gehört (Soeller et al., 1993; Farkas et al., 1994). Es wird postuliert, dass GAF seine repressive Funktion an den PREs ausübt, indem es PcG-Komplexe über Lolal als Mediator-Protein, rekrutiert (Mishra et al., 2003). Möglicherweise wird Lolal an spezifischen genomischen Loci auch von dCTCF als Mediator-Protein genutzt. um reprimierende Chromatinmodifikationen, Beispiel PcG-Komplex-Rekrutierung, zum durch einzuführen. Eine Beteiligung von PcG-Proteinen an der CTCF-vermittelten Isolation ist bereits in einem weiteren Fall bekannt. So wurde gezeigt, dass der zur Schleifenbildung notwendige Kontakt der CTCF-gebundenen H19-ICR und den Igf2-Promotoren zur Rekrutierung des Proteins Suz12 führt, welches eine Untereinheit des PcG-Repressor-Komplexes 2 ist (Li et al., 2008). Dadurch wird H3K27me3 als reprimierende Chromatinmodifikation im Bereich des Igf2-Gens auf dem maternalen Allel eingeführt.

Auch die massenspektrometrische Identifikation des Proteins Su(var)205 (HP1) als CTCF-Interaktionspartner, spricht für eine Beteiligung von CTCF an der Etablierung und/oder Aufrechterhaltung eines inaktiven Chromatinstatus. Das chromosomale Protein HP1 bindet heterochromatische DNA-Bereiche und spielt eine Rolle in der Heterochromatin-Formierung und im epigenetischem gene silencing, beides ein Ergebnis eines komplexen Vorgangs, der den Austausch von Histon H2A mit der Variante H2Av, Histon-Deacetylierung, H3K9-Methylierung und Bindung von HP1, beinhaltet (Nakayama et al., 2001; Volpe et al., 2002; Schotta at al., 2003; Verdel et al., 2004; Swaminathan et al., 2005). HP1 kann über seine Chromodomäne an methyliertes H3K9 binden und rekrutiert selbst die HMT SUV39H1, die im benachbarten Nukleosom H3K9 methyliert, was wiederum zur Rekrutierung von HP1 führt (Banister et al., 2001). Dieser Prozess führt zu einer Ausbreitung des Heterochromatins, welche wiederum durch die Wirkung von Boundary-Elementen, an der CTCF wie beschrieben beteiligt ist, begrenzt werden kann. Die zunächst paradox erscheinende Situation, dass CTCF an der Etablierung und Aufrechterhaltung heterochromatischer Chromatin-Bereiche beteiligt ist, gleichzeitig aber auch zu einer Ausbreitung derselben entgegen zu wirken scheint, ist ein weiteres Beispiel dafür, dass die Bindung von CTCF, abhängig von der jeweiligen Zielseguenz, zu unterschiedlichen und sogar entgegengesetzten Wirkungen führen kann.

Als sehr interessant ist auch die im Rahmen dieser Arbeit etablierte Verbindung zwischen dCTCF und Z4 anzusehen. Das Protein Z4 wurde in der massenspektrometrischen Analyse als CTCF-assoziierter Faktor identifiziert. Diese Assoziation konnte mittels Co-Immunopräzipitation durch FLAG-markiertes CTCF sowie auch auf endogenem Level ohne CTCF-Überexpression bestätigt werden. Z4

euchromatischen bindet spezifisch im Bereich der Interbanden von Polytänchromosomen. Dem Protein wird eine Rolle in der Chromatinkompaktierung zugesprochen. Chromosomen von Z4-Mutanten verlieren das spezifische Bandenmuster und zeigen ein allgemein dekompaktiertes Chromatin (Eggert et al., 2004). Das Chromo-Domänen-Protein Chriz (Chromo domain protein interacting with Z4) konnte als Interaktionspartner für Z4 identifiziert werden und zeigt ein Z4identisches Bindemuster auf Polytänchromosomen (Eggert et al., 2004). Beiden Proteinen wird eine maßgebliche Rolle in der übergeordneten Strukturgebung von zugesprochen. Interessanterweise wurde Z4 Chromosomen als Teil des Multiproteinkomplex TRF2/DREF identifiziert (Hochheimer et al., 2002). Der Drosophila TATA-Box-binding protein (TBP) related factor 2 (TRF2) gehört zur TBP-ähnlichen Faktoren und interagiert der Familie der mit basalen Transkriptionsmaschinerie (Rabenstein et al., 1999). Der Faktor DREF (DNA replication-related element (DRE) binding factor) spielt eine wichtige Rolle in der Regulation des Zellzyklus und von zellproliferations-relevanten Genen, wie zum Beispiel des PCNA (proliferating cell nuclear antigen)-Gens (Hirose et al., 1993). Interessanterweise wurden im Rahmen dieser Arbeit weitere CTCF-Interaktionspartner gefunden, die in die Regulation von Replikation, Transkription und Translation involviert sind (siehe 6.3.4). Der Faktor DREF stellt ein Promotorselektives DNA-Bindeprotein dar. Es wird angenommen, dass die TRF2/DREF-Promotorspezifität Kooperation an spezifischen Genen für die Transkriptionsmaschinerie vermittelt (Hochheimer et al.. 2002). Auch drei Komponenten des NURF-Komplexes wurden als Untereinheiten des Multiprotein-Komplexes identifiziert (Hochheimer et al., 2002), darunter der Faktor Nurf-38, welcher im Rahmen dieser Arbeit als CTCF-assoziierter Faktor ermittelt wurde. Möglicherweise führt die CTCF-Bindung an spezifischen CTSs über Interaktion mit Faktoren wie Z4 oder Nurf-38 zu einer Rekrutierung des beschriebenen Komplexes, was folglich Auswirkungen auf den Chromatinstatus und die Regulation von betroffenen Genen haben würde. Des Weiteren ist eine Assoziation von Z4 und Chris mit der Histonacetyltransferase MOF beschrieben (Mendjan et al., 2006). Der bereits beschriebene Faktor MOF ist Teil des für die Dosiskompensation in Drosophila essentiellen Komplex DCC (dosage compensation complex), der aus mehreren MSL (male-specific lethal)-Proteinen und zwei nichtkodierenden RNAs besteht. Es wurde gezeigt, dass MOF zwei evolutionär konservierte MSL-Komplexe bildet. Im Kern-Komplex, der beiden gemeinsam ist, ist MOF interessanterweise mit verschiedenen Nucleoporinen und Komponenten des Exosom-Komplexes, die in dieser Arbeit ebenfalls als CTCF-Interaktionspartner identifiziert wurden (siehe 6.3.4 und 6.3.5), und mit den Proteinen Z4 und Chris assoziiert (Mendian et al., 2006). Die genaue Rolle der Faktoren in der Dosis-Kompensation konnte in der Studie nicht geklärt werden. Die Identifizierung von Z4 als CTCF-Interaktionspartner ist in diesem Zusammenhang sehr interessant, da CTCF wie bereits beschrieben, auch in einem weiteren Aspekt der Dosiskompensation involviert ist: die X-Chromosom-Inaktivierung der Vertebraten. Zum Zeitpunkt der Inaktivierung eines der zwei weiblichen X-Chromosmen, kommen beide Chromosomen im Bereich des Nucleus in engen Kontakt (Chow und Heard, 2009). Diese Paarung ist abhängig vom X-Inaktivierungszentrum (XIC). Es konnte gezeigt werden, dass in dieser Region ein Barrier-Element existiert und von CTCF gebunden wird (Spencer et al., 2011). Zudem ist die Paarung der Chromosomen von aktiver Transkription und von CTCF abhängig (Xu et al., 2007).

Es ist gezeigt, dass CTCF mit dem Transkriptionsregulator Oct4 interagiert, der über die Transkriptionsaktivierung zweier RNA-Transkripte verhindert, dass das entsprechende X-Chromosom inaktiviert wird (Donohoe et al., 2009). In diesem Fall rekrutiert CTCF also einen Transkriptionsaktivator, wenn auch dies im Endeffekt zu einer Inaktivierung des X-Chromosoms führt. Eine Beteiligung an der gesteigerten Gentranskription auf dem männlichen X-Chromosom *Drosophilas* durch Rekrutierung entsprechender Faktoren wäre also durchaus denkbar.

6.3.4 Regulation von Transkription und Replikation

Unter den bisher bekannten CTCF-Interaktionspartnern finden sich eine Reihe von Faktoren, die an der Regulation der Transkription beteiligt sind. Neben dem Transkriptionsenzym RNA-Polymerase II selbst (Chernukhin et al., 2007), interagiert CTCF zum Beispiel mit den Faktoren CIITA und RFX, was einen essentiellen Schritt in der Transkription der HLA-DRB1- und HLA-DQA1-Gene darstellt (Majumder et al., 2008). Die Faktoren Oct4 und YY1 kooperieren mit CTCF in der X-Chromosom-Inaktivierung (Donohoe et al., 2007; Donohoe et al., 2009) und der Faktor YB1 in der transkriptionellen Repression des *c-myc*-Gens (Chernukhin et al., 2000). Im Rahmen dieser Arbeit konnten weitere CTCF-assoziierte Transkriptionsregulatoren in der massenspektrometrischen Analyse identifiziert werden (siehe Tab 5.1), wie der Transkritionsregulator Mip40. Mip40 ist Teil E2F/RBFnegative des Repressorkomplex. der in transkriptionell inaktiven Bereichen auf Polytänchromosomen lokalisiert ist und stabile Repression von E2F-Zielgenen vermittelt, die geschlechts- und differenzierungsspezifische Expressionsmuster zeigen (Korenjak et al., 2004). Die Interaktion von Mip40 und CTCF konnte mittels Co-Immunoprazipitation durch FLAG-markiertes CTCF sowie auf endogenem Level ohne CTCF-Überexpression, bestätigt werden.

Ein weiterer Repressorkomplex wird von CTCF durch die Interaktion mit dem Korepressor Sin3A rekrutiert (siehe 6.2), ebenso ist der Korepressor Smr in der Liste der massenspektrometrisch ermittelten CTCF-Interaktionspartner vertreten. Smr selbst vermittelt Repression durch Interaktion mit Sin3A (Tsai et al., 1999).

Auch Faktoren die mit einer gesteigerten Transkription entsprechender Zielgene in Verbindung gebrach werden, konnten als CTCF-assoziierte Faktoren identifiziert werden. So der bereits beschriebene Faktor DREF (siehe 6.3.3), welcher als ein Promotor-selektives DNA-Bindeprotein Spezifität für die Transkriptionsmaschinerie zu vermitteln scheint (Hochheimer et al., 2002) und die Faktoren MED6 und MED20, die als Teil des Mediatorkomplex als Brücke zwischen Transkriptionsregulatoren und der RNA-Polymerase II fungieren (Kornberg ,2005). Neuere genomweite Studien bestätigen, dass dCTCF sowohl Aktivierung, als auch Repression von Genen vermitteln kann und bezeichnenderweise liegen 20% der humanen CTSs in Promotorbereichen von Genen (Kim et al., 2007). Die Vermittlung von Genaktivität oder Repression scheint zum einen neben der Isolator-Funktion eine weitere generelle Fähigkeit von CTCF darzustellen. Zum anderen wird wie bereits unter 6.3.2 beschrieben diskutiert, dass die Ähnlichkeit und damit verbundene Rekrutierung gleicher Proteinfaktoren von Isolatoren und Promotoren, eine Interaktion beider Elemente ermöglicht (Bartkuhn et al., 2009). Somit könnte die Fähigkeit zur Tanskriptionsregulation durch Interaktion mit entsprechenden Transkriptionsregulatoren Teil auch als des durch CTCF vermittelten Isolationsmechanismus betrachtet werden.

Als weiterer, sehr interessanter Aspekt soll hier die Assoziation von CTCF mit dem Exosom erwähnt werden. Das Exosom stellt einen hochkonservierten

Multiproteinkomplex dar (Mitchell et al., 1997), der 3´-5´- Exoribonukleaseaktivität besitzt und somit für den prä-mRNA und mRNA-Abbau verantwortlich ist (Allmang et al., 2000; Allmang et al., 1999; Mitchell et al., 1997). Er ist in die RNA-Prozessierung und Qualitätskontrolle involviert (Housely et al., 2006), so werden auch RNAs die Mutationen in ihrer codierenden Sequenz tragen, durch das Exosom abgebaut (Das et al., 2006). Der Komplex setzt sich aus einer Basis von neun Proteinen zusammen. Dieser Kern-Komplex interagiert in Eukaryoten mit dem RNase D-Homolog Rrp6, um RNA-Prozessierung und Qualitätskontrolle durchzuführen. Rrp6 wird dabei auch als Brücken-Faktor gesehen, der Interaktionen mit weiteren Proteinen vermittelt und zunehmend auch mit weiteren, Exosom-unabhängigen Funktionen in Zellzyklus und Mitose in Verbindung gebracht (Amy et al., 2009).

Die massenspektrometrische Analyse ergab, dass dCTCF alle zehn Untereinheiten des Komplexes kopräzipitiert (Tab. 5.1). Die Interaktion von Rrp6 und CTCF konnte mittels Co-Immunoprazipitation durch FLAG-markiertes CTCF sowie auf endogenem Level ohne CTCF-Überexpression, bestätigt werden. Für die Exosom-Untereinheiten Rrp4 und Csl4 gelang dies nicht. Dies steht im Einklang mit der gesonderten Rolle, die Rrp6 als Hilfs-und Brückenfaktor spielt. Es ist denkbar, dass CTCF das Exosom über eine stabile Interaktion mit Rrp6 rekrutiert, da Rrp6 in den Co-Immunpräzipitationen nachweisbar ist. Die anderen Exosom-Untereinheiten können möglicherweise aufgrund der Stabilität des Komplexes nur vermindert durch CTCF präzipitiert werden, so dass diese nicht in der Co-Immunpräzipitation, in der sensitiveren massenspektrometrischen Analyse jedoch nachgewiesen werden können. Interessanterweise gibt es Hinweise darauf, dass das Exosom an der heterochromatischen Genrepression (gene silencing) beteiligt ist. Die Ausbildung des Heterochromatins im Bereich der Centromeren der Hefe ist von Komponenten des RNAi (RNA interference)-Apparates abhängig. RNAi ist ein konservierter silencing Mechanismus, der von dsRNA (double stranded RNA) gesteuert wird (Bartel, 2004; Hannon, 2002). Der Vorgang des RNAi-abhängigen PTGS (posttranscriptional gene silencing) involviert die Generation kurzer RNA-Moleküle aus der dsRNA, durch das Enzym Dicer (Bernstein et al., 2001) und führt über eine komplexen Mechanismus zur Degradation der mRNA eines entsprechenden Zielgens (Liu et al., 2004; Song et al., 2004). Interessanterweise sind verschiedene am Vorgang der RNA-Interferenz beteiligte RNA-Helikasen in der hier durchgeführten massenspektrometrischen Analyse als CTCF-assoziierte Faktoren identifiziert worden (Tab. 5.1). So auch Dcr1, das Drosophila-Homolog des Dicer1-Enzyms der Maus. CTCF könnte also heterochromatische Genrepression über Rekrutierung der RNAi-Maschinerie bewirken. Darüberhinaus ist gezeigt, dass ein alternativer Mechanismus zum heterochromatischen gene silencing beiträgt, welcher die poly(A)-Polymerase des TRAMP-Komplexes involviert, der den Abbau abnormer RNA-Transkripte durch das Exosom ermöglicht (Bühler et al., 2007). Die CTCF-vermittelte Rekrutierung des Exosoms über Rrp6 könnte also über eine Regulierung des RNA-Abbaus zum heterochromatischen gene silencing beitragen. Die Aufrechterhaltung einer robusten Genrepression, wie sie für einen heterochromatischen Chromatinstatus üblich ist, wäre demnach eine Folge CTCF-vermittelter Exosom-Wirkung. Interessanterweise konnte auch gezeigt werden, dass das Exosom (und der Faktor Rrp6) zum Beispiel essentiell für die Xist-RNA-Prozessierung ist, die für die X-Chromosom Inaktivierung nötig ist (Ciaudo et al., 2006), was eine weitere Rolle von CTCF in der bereits unter 6.3.3. beschriebenen X-Chromosom Inaktivierung sein könnte.

Die im Rahmen dieser Arbeit ermittelte CTCF-Wirkung über das Exosom könnte ein (Teil-)Mechanismus sein, über den CTCF Isolation vermittelt.

6.3.5 Kernarchitektur und Zellorganisation

Der eukaryotische Nucleus weist eine dynamische Kompartimentierung auf. Die Position eines Gens relativ zur Kernperipherie, zu anderen Genen und zu verschiedenen Subkomportimenten innerhalb des Kerns kann eine transkriptionelle Aktivierung oder Reprimierung begünstigen (Fraser und Bickmore, 2007). Während die Kernperipherie in der Vergangenheit klassischerweise mit einer repremierenden Umgebung gleichgesetzt wurde, hat sich mittlerweile gezeigt, dass eine Assoziation von Genen mit den Kernporen (NPCs, *nuclear core complexes*) der peripheren Kernmembran die Transkriptionsrate der Gene regulieren und die Effizienz von mRNA-Prozessierung und -Export verstärken kann (Akthar und Gasser, 2007). NPCs sind Multiproteinkomplexe, die aus ungefähr 30 verschiedenen Nucleoporinen in multiplen Kopien zusammengesetzt sind (Brohawn et al., 2009; Tran und Wente, 2006).

Im Rahmen dieser Arbeit wurden die NPC-Komponenten Kap-alpha3, Nup358 und Nup44 in der massenspektrometrischen Analyse als CTCF-assoziierte Faktoren identifiziert. Alle sind in den Proteintransport durch die NPCs involviert. Während Kap-alpha3 zu den Transportproteinen zählt, die für den Transport großer Moleküle durch die Kernporen nötig sind, ist das Nucleoporin Nup44 Teil des Nup107-160 Subkomplexes, welcher im mRNA-Export involviert ist (Walther et al., 2003) und interessanterweise während der Mitose mit den Kinetochoren der Chromosomen assoziiert (Harel et al., 2003). Die massenspektrometrisch ermittelte Interaktion von Nup358 und CTCF konnte in dieser Arbeit mittels Co-Immunopräzipitation durch FLAG-markiertes CTCF bestätigt werden. Das Nucleoporin wird unter anderem mit dem Export von mRNA aus dem Zellkern in Verbindung gebracht und es wurde gezeigt, dass eine Depletion von Nup358 Zellproliferation und mRNA-Export inhibiert (Forler et al., 2004). Das Nup358/RanBP2-Homolog der Maus wurde ebenfalls als CTCF-Interaktionspartner identifiziert (van de Nobelen, Dissertation).

Der an die Genexpression gekoppelte nucleocytoplasmatische Transport findet ausschließlich durch die NPCs statt. Hierzu sind zusätzliche Transport-Proteine nötig, zu denen zum Beispiel Kap-alpha3 zählt. Die NPCs bieten dabei eine wichtige Möglichkeit der Genexpressionskontrolle, da der Transport hoch selektiv und regulierbar ist (Kaffman und O'Shea, 1999). Individuelle Nucleoporine scheinen spezifische Transportwege zu vermitteln. So konnte eine gewebsspezifische Expression von Nucleoporinen (Uv et al., 2000) und eine zellzyklus-abhängige Veränderung der Nucleoporinvorkommen gezeigt werden (Chakraborty et al., 2008). Es ist bekannt, dass eine Chromatin-NPC-Verbindung zur Genaktivierung führt, wozu bestimmte Adapterproteine nötig sind. Ein wichtiges Beispiel hierfür ist der Chromatingebundene Koaktivator-Komplex SAGA. In der Hefe wurde gezeigt, dass SAGA mit einem NPC-Protein (Luthra et al., 2007) und mit dem NPC-assoziierten Komplex TREX-2 interagiert (Rodriguez-Navarro et al., 2004). TREX-2 ist ein NPCgebundener Komplex, der eine Rolle in mRNA-Export und transkriptioneller Elongation spielt (Köhler und Hurt, 2007), sowie mit der Exosom-Komponente Rrp6 assoziiert ist (Strasser et al., 2002; Sommer at al., 2002; Zenklusen et al., 2002). Die SAGA-und TREX-Komplexe teilen eine gemeinsame Untereinheit, den Faktor Sus1, der eine integrative Funktion in Chromatin-NPC-Verbindung und transkriptionsgekoppeltem mRNA-Export spielt (Rodriguez-Navarro et al., 2004; Köhler etal., 2008; Pascual-Garcia et al., 2008). Möglicherweise fungiert CTCF in ähnlicher Weise als Brückenfaktor, der die Assoziation bestimmter Seguenzen mit den NPCs vermitteln kann. Die Interaktion mit der Exosomkomponente Rrp6 würde auch eine Verbindung zum TREX-Komplex ermöglichen. CTCF wäre somit in der Lage Chromatinbereiche gezielt zu Transkriptions- und Export-Plattformen zu bringen. Für ein solches Modell spricht die bereits erwähnte Dosiskompensation in *Drosophila*. Wie beschrieben, ist zum Beipiel der in dieser Arbeit identifizierte CTCF-Interaktionspartner Z4 Bestandteil des MSL-Komplexes, sowie auch bestimmte Nucleoporine. Die Hypertranskription des männlichen X-Chromosoms ist dabei abhängig von den NCP-Proteinen Nup153 und Tpr/Mtor (Mendjan et al., 2006). Möglicherweise vermittelt CTCF also seine bisher noch nicht vollständig geklärte Rolle in der Dosiskompensation zumindest teilweise über die Kontaktknüpfung zwischen den NPCs und dem Genom und der Expressionsmaschinerie.

Desweiteren besteht die Möglichkeit, dass die Assoziation CTCFs mit den Nucleoporinen der NCPs zur Ausbildung von Chromatinschleifen führt. Eine solche Schleifenbildung, deren Basis NPCs bilden, konnte in der Hefe gezeigt werden (Tan-Wong et al., 2009). Die NPCs könnten also als Ankerpunkte für Chromatinschleifen dienen, die eine Bildung unabhängier Chromatindomänen ermöglichen. Die Bildung solcher Chromatindomänen als Prinzip der CTCF.vermittelten Isolation wurde bereits diskutiert. Als Kontaktpunkt für die Schleifenbildung würden in diesem Fall anstelle von weiteren CTCF-Molekülen oder anderen DNA-gebundenen Faktoren die Nucleoporine der NPCs dienen. Auch weitere Kernhüllen-Komponenten könnten als Ankerpunkte dienen. So sind Hinweise darauf bekannt, dass CTCF Isolatoren durch Interaktion mit Nucleophosmin, in der Kernperipherie lokalisieren kann und dies essentiell für ihre Isolator-Funktion ist (Yusufzai et al., 2004). Auch wird schon seit längerem diskutiert, dass NPCs mit Boundary-Elementen interagieren (Ishii et al., 2002), an deren Wirkung CTCF wie bereits beschrieben beteiligt ist. Es ist bekannt, dass NPCs HAT-Aktivität rekrutieren, wie es auch im Rahmen diese Arbeit für CTCF gezeigt wurde. So interagiert zum Beispiel Nup93 mit der HAT CBP in Säugerzellen (Ryan et al., 2006). Auch der bereits erwähnte SAGA-Komplex besitzt HAT-Aktivität. Wie bereits beschrieben, wird als Mechanismus der CTCF-vermittelten chromatin boundary-Aktivität eine physikalische Blockade, ausgelöst durch die CTCF-Bindung, diskutiert, die auch durch die CTCF-NPC-Interaktion vorstellbar wäre. Zudem könnte dann durch die Präsenz aktiver Promotoren und/oder die Assoziation von CTCF mit der RNA-Polymerase II (Chernukhin et al., 2007) und mit aktiven Promotoren (Bartkuhn et al., 2009) sowie HAT-Aktivitäten, eine lokale aktive Chromationregion etabliert werden. welche eine Ausbreitung heterochromatischer Chromatineigenschaften entgegen wirkt. Gleichzeitig wäre durch die Lokalisation des Chromatins im Bereich der NPCs wie bereits beschrieben, die Nähe zu Transkriptions- und mRNA-Export-Plattformen, gegeben.

Andererseits sind HDAC-Aktivitäten, wie die HDAC3, in hohem Maße in der Kernperipherie von Säugerzellen lokalisiert (Somech et al., 2005) und auch für CTCF konnten im Rahmen dieser Arbeit HDAC-Aktivitäten und weitere Faktoren, die mit einer reprimierenden, heterochromatischen Chromatinumgebung im Einklang stehen, als Interaktionspartner gefunden werden. Tatsächlich ist eine Balance zwischen HAT und HDAC essentiell für die Aufrechterhaltung einer Boundary zwischen aktivem und repremierendem Chromatin (Kimura et al., 2002; Suka et 2002). al., Interessanterweise fungiert auch die beschriebene SAGA/TREX-Komponente Sus1 im Zusammenspiel mit dem Isolatorprotein Su(Hw) als Isolator in Drosophila (Kurshakova et al., 2007).

Die genauen Mechanismen für NPC-basierte Isolator-Funktion müssen noch geklärt werden und es scheint wiederum vielfache Möglichkeiten für die Etablierung von *chromatin boundaries* an den Poren zu geben. Jedoch ist CTCF aufgrund der bekannten Daten und der in diese Arbeit erzielten Ergebnisse als vermittelnder Faktor mit hoher Wahrscheinlichkeit anzunehmen.

Interessanterweise konnten in der massenspektrometrischen Analyse dieser Arbeit Komponenten eines weiteren Proteinkomplexes, der an der Organisation der Schwesterchromatiden beteiligt ist, als dCTCF-assozierte Faktoren identifiziert werden. Der Cohesin-Komplex ist für die Schwesterchromatid-Kohäsion, also der Verbindung zweier Schwesterchromatiden nach der Replikation bis hin zur Zellteilung, verantwortlich. Der Proteinkomplex bildet eine Ringstruktur um beide Chromatiden, um sie zusammenzuhalten. Studien in Drosophila und der Hefe weisen eine zusätliche Rolle von Untereinheiten des Cohesin-Komplexes in auf transkriptionellen Prozessen hin, indem sie die Genregulation durch Organisation übergeordneter Chromatinstrukturen zu vermitteln scheinen (Dorsett 2007). Erst kürzlich konnte eine von der Zellteilung unabhängige Rolle für Cohesin in Vertebraten, während der T-Zell-Rezeptor-Rekombination und der Thymocyten-Differenzierung, bestätigt werden (Seitan et al., 2011). Hier ist Cohesin für die Interaktion zwischen weit voneinander entfernten Enhancer- und Promotor-Elementen mit verantwortlich. In Drosophila konnte wie bereits beschrieben keine Übereinstimmung zwischen Bindestellen von dCTCF und der Cohesin-Untereinheit Stromalin gefunden werden. Im Gegensatz dazu überlappen 80 % der Stromalin-Bindestellen mit CP190 (Bartkuhn et al., 2009), so dass die hier identifizierte Assoziation von dCTCF mit den Cohesin-Untereinheiten SA und Cap, wie bereits diskutiert, auch eine indirekte, CP190-vermittelte Interaktion darstellen könnte. Die Funktion der Cohesin-Rekrutierung in bestimmten Fällen, könnte also in Vertebraten von CTCF übernommen worden sein.

Für humanes CTCF wurde mittlerweile eine Verbindung zwischen CTCF und Cohesin gezeigt, was die Ergebnisse dieser Arbeit bestätigt. So koinzidiert in humanen Zellen die CTCF-Bindung mit der Bindung von Cohesin (Parelho et al., 2008; Rubio et al., 2008; Stedman et al., 2008; Wendt et al., 2008). Darüberhinaus konnte eine Abhängigkeit der CTCF-vermittelten Enhancer-Blockade an der H19-ICR von Cohesin-Komponenten gezeigt werden (Wendt et al., 2008). Cohesin beeinflusst zusammen mit CTCF die Architektur des Igh-Locus (Degner et al., 2011) und kürzlich wurde die direkte Interaktion der Cohesin-Untereinheit SA2 mit dem C-Terminus von CTCF beschrieben, welche für die Cöhesin-abhängige Isolator-Aktivität essentiell ist (Xiao et al., 2011). Cohesin scheint also Enhancer-Blockade-Aktivität durch Rekrutierung zu Isolatoren über CTCF zu vermitteln. Die CTCF/Cohesin-Bindung könnte zu einer Schleifenbildung des Chromatins führen, indem Zielsequenzen auch mit abseits gelegen cis-regulatorischen Regionen über an CTCF gebundenes Cohesin verbunden werden. Tatsächlich konnte gezeigt werden, dass CTCFgebundenes Cohesin essentiell für die Aktivierung des IFNG-Gens ist und das sowohl Schleifenbildung des Chromatins in diesem Bereich, als auch Expression des Gens durch Cohesin verstärkt werden (Hadjur et al., 2009). Auch für die V(D)J-Rekombination der Immunglobulin-Loci sind Interaktion voneinander entfernter Sequenzen und Schleifenbildung des Chromatins erforderlich. Multiple Bindestellen für CTCF und RAD21, einer Cohesin-Untereinheit, wurden in diesen Gen-Loci identifiziert (Degner et al., 2009) und mittlerweile ist gezeigt, dass Cohesin zusammen mit CTCF die genomische Architektur des Igh-Locus beeinflusst (Degner et al., 2011). Die zahlreichen CTCF/Cohesin-Bindestellen scheinen die Basis einer multiloop-Rosetten-Struktur zu bilden, die zur Kompaktierung des Locus führt (Degner et al., 2011). Interessanterweise bleibt die CTCF-Bindung an diesen Zielsequenzen während der Differenzierung weitgehend unbeeinflusst. Die RAD21Rekrutierung an die CTSs ist dagegen abhängig von Zelllinie und Stadium der Differenzierung (Degner et al., 2009). Es scheint also nicht CTCF selbst die Wirkung von RAD21 zu definieren, vielmehr scheinen zum Beispiel Modifikation oder weitere Faktoren die Bindung von Rad21 an CTCF zu regulieren. Auch dieses Beispiel spricht für ein Wirkprinzip CTCFs, nachdem der Faktor unter spezifischen Bedingungen (Zielsequenz, umgebene Nukleotidsequenz, Modifikationen auf spezifische Siganle hin) spezifisch mit verschiedensten Proteinpartnern interagiert, was zu einer Vielzahl von Wirkungen führen kann.

6.4 Schlussbetrachtung - Ausblick

CTCF ist ein sehr vieseitiger Faktor, der wie beschrieben in einer Vielzahl nukleärer Prozesse involviert ist. Zur Beantwortung der Frage, wie ein einzelner Faktor maßgeblich in eine solchen Vielzahl biologischer Vorgänge involviert sein kann, wurde bereits das Model des "CTCF-Codes" postuliert (Ohlsson, Lobanenkov, Klenova, 2010). Dem liegt zugrunde, dass es eine Vielzahl divergierender CTSs im Genom gibt, zu dessen Bindung verschiedene CTCF-Zinkfinger eingesetzt werden. Die spezifische Zinkfinger-Kombination führt zu einer spezifischen exponierten Oberfläche des Proteins, was unterschiedliche Protein-Protein-Interaktionen zur Folge hat. Durch zusätzliche Modifikationen könnte so eine ausreichende Variations-Komplexität erreicht werden, um dynamische Chromatindomänen und epigenetische Zustände zu organisieren. Die Ergebnisse dieser Arbeit sprechen für ein solches Modell, in dem CTCF als Vermittler zwischen nukleärer Organisation und Genexpression fungiert, vor allem durch seine Fähigkeit, Chromatin-Isolation zu bewirken. So konnten in der durchgeführten Komplexaufreinigung eine Vielzahl CTCF-assozierter Proteine und Proteinkomplexe identifiziert werden, die in völlig unterschiedlichen biologischen Funktionen involviert sind und auf unterschiedliche Art und Weise zur dCTCF-vermittelten Isolation beitragen können. So wurden Faktoren, die zur Gruppe der chromatin remodeler oder der PcG-Proteine gehören identifiziert, wodurch die Rekrutierung sowohl repremierender als auch aktivierender Chromatinmodifikationen durch dCTCF ermöglicht wird, die wie diskutiert zur Enhancer-Blockade oder zur Aufrechterhaltung von Barrier-Aktivitäten führen könnten. Ebenso reprimierende Wirkung auf die Gentranskription kann die Rekrutierung des Exosoms haben, dessen Identifikation als CTCF-assozierter Komplex im Rahmen dieser Arbeit als sehr interessant anzusehen ist. Nicht zuletzt aufgrund seiner beschriebenen Beteiligung am heterochromatischen gene silencing. Durch den Nachweis einer Assoziation CTCFs mit CP190, Su(Hw) und Rm62(Lip) konnten weitere Hinweise auf die Bildung von insulator-bodies als Isolation vermittelnder Mechanismus und eine Beteiligung CTCFs an Formation dieser Strukturen gefunden werden. Eine Reihe von Daten sprechen dafür, dass eine der Hauptfunktionen CTCFs in der Organisation der Chromatin-Architektur durch die Etablierung intra-und interchromosomaler Kontakte besteht (Phillips und Corces, 2009). In Zukunft wird es wichtig sein die genauen molekularen Mechanismen, die zu einer Modulation der Chromatinstruktur und Schleifenbildung durch CTCF führen, aufzuklären. Die hier erfolgte Identifikation von CTCF-assoziierten Faktoren wie dem NURF-Komplex liefert wie diskutiert zum Beispiel Hinweise auf einen direkten Einfluss CTCFs auf präzise positionierten Nukleosomen, wie es auch in der Literatur diskutiert wird (Fu et al., 2008). Ebenso vermittelt die hier gefundene und mittlerweile in der Literatur bestätigte CTCF-Cohesin-Interaktion chromosomale Kontakte und Schleifenbildung des Chromatins (Hadjur et al., 2009; Seitan et al., 2011; Degner et al., 2011; Xiao et al., 2011). Wichtig wäre die Feststellung, ob CTCF-Cohesin-Kontakte generell essentiell für eine CTCF-vermittelte Schleifenbildung sind und wie

eine solche mechanistisch mit der Enhancer/Promotor-Interaktion interferiert. Denkbar wäre, dass sich die Interaktion stabilisierend auf transiente Interaktionen zwischen Chromatinsträngen (Wallace und Felsenfeld, 2007) in cis auswirkt und somit Faktoren, wie die hier identifizierten Mitglieder der Gruppe der chromatin remodeler oder der PcG-Proteine, eine Reprimierung der interagierenden Region ermöglicht. Auch eine Kontraktion der Chromatinstruktur ist gezeigt und könnte eine spielen (Hadjur et al., 2007). Zusätzlich könnten die als CTCF-Rolle NPC-Komponenten identifizierten Interaktionspartner als Ankerpunkte für Chromatinschleifen dienen, die eine Isolation bestimmter Chromatinbereiche durch Bildung unabhängier Chromatindomänen ermöglichen.

Wichtig wäre als nächster Schritt die Identifikation gemeinsamer Bindestellen von dCTCF und den identifizierten Interaktionspartnern *in vivo* durch ChIP-Experimente anausgewählten CTCF-Bindestellen. Um die Funktionalität der Interaktionen zu überprüfen, könnten *knock-down*-Experimente durchgeführt werden, in denen zum Beispiel der Einfluss einer Herabregulation eines Interaktionspartners auf die direkte Chromatinumgebung untersucht wird. Neben DNA- und Histonmodifikationen sollten durch 3C-Analysen auch Veränderungen chromosomaler Kontakte und deren Einfluss auf Enhancer-Blockade-Aktivität eines Isolators untersucht werden.

Die Ergebnisse dieser Arbeit zeigen, dass die extrem hohe Flexibilität des Faktors CTCF, neben den stark divergierenden CTSs, durch Interaktion mit einer hohen Zahl von sehr heterogenen Faktoren vermittelt wird. Die unterschiedlichen Funktionen resultieren dabei aus der Bindung verschiedener Proteinpartner in unterschiedlichen biologischen Kontexten. Selbst die Interaktion mit einem gegebenen Protein kann zu unterschiedlichen und teilweise sogar antagonistisch erscheinenden Funktionen führen, abhängig vom jeweiligen biologischen Kontext. Da auch die CTCF-Bindepartner teilweise direkt oder indirekt miteinander interagieren, was zu einer Feineinstellung der CTCF-Funktion beitragen könnte, eröffnet die vorliegende Arbeit Einblicke in ein komplexes "CTCF-Interaktom", welches maßgeblich in die Übersetzung regulatorischer Außensignale in nukleare Funktionen involviert sein könnte.

7 Literatur

Akhtar A, Gasser SM. The nuclear envelope and transcriptional control. Nat Rev Genet. 2007 Jul;8(7):507-17.

Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 1999 Oct 1;18(19):5399-410.

Allmang C, Mitchell P, Petfalski E, Tollervey D. Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res. 2000 Apr 15;28(8):1684-91.

Armstrong JA, Emerson BM. Transcription of chromatin: these are complex times. Curr Opin Genet Dev. 1998 Apr;8(2):165-72.

Arnold R, Burcin M, Kaiser B, Muller M, Renkawitz R.DNA bending by the silencer protein NeP1 is modulated by TR and RXR.Nucleic Acids Res. 1996 Jul 15;24(14):2640-7.

Awad TA, Bigler J, Ulmer JE, Hu YJ, Moore JM, Lutz M, Neiman PE, Collins SJ, Renkawitz R, Lobanenkov VV, Filippova GN. Negative transcriptional regulation mediated by thyroid hormone response element 144 requires binding of the multivalent factor CTCF to a novel target DNA sequence. J Biol Chem. 1999 Sep 17;274(38):27092-8.

Baniahmad A, Steiner C, Köhne AC, Renkawitz R. Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell. 1990 May 4;61(3):505-14.

Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 2001 Mar 1;410(6824):120-4.

Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 2004 May;5(5):396-400.

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K.High-resolution profiling of histone methylations in the human genome.Cell. 2007 May 18;129(4):823-37.

Bartkuhn M, Straub T, Herold M, Herrmann M, Rathke C, Saumweber H, Gilfillan GD, Becker PB, Renkawitz R.Active promoters and insulators are marked by the centrosomal protein 190.EMBO J. 2009 Apr 8;28(7):877-88.

Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the lgf2 gene. Nature. 2000 May 25;405(6785):482-5.

Bell AC, West AG, Felsenfeld G.The protein CTCF is required for the enhancer blocking activity of vertebrate insulators.Cell. 1999 Aug 6;98(3):387-96.

Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001 Jan 18;409(6818):363-6.

Brohawn SG, Partridge JR, Whittle JR, Schwartz TU. The nuclear pore complex has entered the atomic age. Structure. 2009 Sep 9;17(9):1156-68.

Bulger M, Schübeler D, Bender MA, Hamilton J, Farrell CM, Hardison RC, Groudine M. A complex chromatin landscape revealed by patterns of nuclease sensitivity and

histone modification within the mouse beta-globin locus. Mol Cell Biol. 2003 Aug;23(15):5234-44.

Burcin M, Arnold R, Lutz M, Kaiser B, Runge D, Lottspeich F, Filippova GN, Lobanenkov VV, Renkawitz R. Negative protein 1, which is required for function of the chicken lysozyme gene silencer in conjunction with hormone receptors, is identical to the multivalent zinc finger repressor CTCF. Mol Cell Biol. 1997 Mar;17(3):1281-8.

Burke LJ, Hollemann T, Pieler T, Renkawitz R. Molecular cloning and expression of the chromatin insulator protein CTCF in Xenopus laevis. Mech Dev. 2002 Apr;113(1):95-8.

Bushey AM, Dorman ER, Corces VG.Chromatin insulators: regulatory mechanisms and epigenetic inheritance.Mol Cell. 2008 Oct 10;32(1):1-9.

Busturia A, Lloyd A, Bejarano F, Zavortink M, Xin H, Sakonju S. The MCP silencer of the Drosophila Abd-B gene requires both Pleiohomeotic and GAGA factor for the maintenance of repression. Development. 2001 Jun;128(11):2163-73.

Bühler M, Haas W, Gygi SP, Moazed D. RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell. 2007 May 18;129(4):707-21.

Byrd K, Corces VG. Visualization of chromatin domains created by the gypsy insulator of Drosophila. J Cell Biol. 2003 Aug 18;162(4):565-74.

Cai H, Levine M. Modulation of enhancer-promoter interactions by insulators in the Drosophila embryo.Nature. 1995 Aug 10;376(6540):533-6.

Caiafa P, Zlatanova J.CCCTC-binding factor meets poly(ADP-ribose) polymerase-1.J Cell Physiol. 2009 May;219(2):265-70.

Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P. Long-range chromatin regulatory interactions in vivo. Nat Genet. 2002 Dec;32(4):623-6.

Chakraborty P, Wang Y, Wei JH, van Deursen J, Yu H, Malureanu L, Dasso M, Forbes DJ, Levy DE, Seemann J, Fontoura BM Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev Cell. 2008 Nov;15(5):657-67.

Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008 Jun 13;133(6):1106-17.

Chernukhin I, Shamsuddin S, Kang SY, Bergström R, Kwon YW, Yu W, Whitehead J, Mukhopadhyay R, Docquier F, Farrar D, Morrison I, Vigneron M, Wu SY, Chiang CM, Loukinov D, Lobanenkov V, Ohlsson R, Klenova E. CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide. Mol Cell Biol. 2007 Mar;27(5):1631-48.

Chernukhin IV, Shamsuddin S, Robinson AF, Carne AF, Paul A, El-Kady AI, Lobanenkov VV, Klenova EM. Physical and functional interaction between two pluripotent proteins, the Y-box DNA/RNA-binding factor, YB-1, and the multivalent zinc finger factor, CTCF. J Biol Chem. 2000 Sep 22;275(38):29915-21.

Chien R, Zeng W, Kawauchi S, Bender MA, Santos R, Gregson HC, Schmiesing JA, Newkirk DA, Kong X, Ball AR Jr, Calof AL, Lander AD, Groudine MT, Yokom.

Cohesin mediates chromatin interactions that regulate mammalian ß-globin expression. J Biol Chem. 2011 May 20;286(20):17870-8.

Chow J, Heard E. X inactivation and the complexities of silencing a sex chromosome. Curr Opin Cell Biol. 2009 Jun;21(3):359-66. Epub 2009 May 26. Review.

Chung JH, Whiteley M, Felsenfeld G. A 5' element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell. 1993 Aug 13;74(3):505-14.

Ciaudo C, Bourdet A, Cohen-Tannoudji M, Dietz HC, Rougeulle C, Avner P. Nuclear mRNA degradation pathway(s) are implicated in Xist regulation and X chromosome inactivation. PLoS Genet. 2006 Jun;2(6):e94.

Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K.Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains.Genome Res. 2009 Jan;19(1):24-32.

Das B, Das S, Sherman F. Mutant LYS2 mRNAs retained and degraded in the nucleus of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10871-6.

Defossez PA, Kelly KF, Filion GJ, Pérez-Torrado R, Magdinier F, Menoni H, Nordgaard CL, Daniel JM, Gilson E. The human enhancer blocker CTC-binding factor interacts with the transcription factor Kaiso. J Biol Chem. 2005 Dec 30;280(52):43017-23.

Degner SC, Verma-Gaur J, Wong TP, Bossen C, Iverson GM, Torkamani A, Vettermann C, Lin YC, Ju Z, Schulz D, Murre CS, Birshtein BK, Schork NJ, Schlissel MS, Riblet R, Murre C, Feeney AJ. CCCTC-binding factor (CTCF) and cohesin influence the genomic architecture of the Igh locus and antisense transcription in pro-B cells. Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9566-71

Degner SC, Wong TP, Jankevicius G, Feeney AJ. Cutting edge: developmental stage-specific recruitment of cohesin to CTCF sites throughout immunoglobulin loci during B lymphocyte development. J Immunol. 2009 Jan 1;182(1):44-8.

Dillon N, Festenstein R. Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet. 2002 May;18(5):252-8.

Donohoe ME, Silva SS, Pinter SF, Xu N, Lee JT. The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature. 2009 Jul 2;460(7251):128-32.

Donohoe ME, Zhang LF, Xu N, Shi Y, Lee JT. Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch. Mol Cell. 2007 Jan 12;25(1):43-56.

Dorsett D. Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Chromosoma. 2007 Feb;116(1):1-13. Epub 2006 Jul 4.

Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, Allis CD, Roeder RG. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol. 2006 Aug;13(8):713-9.

Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J, Allis CD, Chait BT, Hess JL, Roeder RG. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell. 2005 Jun 17;121(6):873-85.

Eggert H, Gortchakov A, Saumweber H. Identification of the Drosophila interbandspecific protein Z4 as a DNA-binding zinc-finger protein determining chromosomal structure. J Cell Sci. 2004 Aug 15;117(Pt 18):4253-64.

Eisen JA, Sweder KS, Hanawalt PC. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 1995 Jul 25;23(14):2715-23.

El-Kady A, Klenova E. Regulation of the transcription factor, CTCF, by phosphorylation with protein kinase CK2. FEBS Lett. 2005 Feb 28;579(6):1424-34.

Farkas G, Gausz J, Galloni M, Reuter G, Gyurkovics H, Karch F. The Trithorax-like gene encodes the Drosophila GAGA factor. Nature. 1994 Oct 27;371(6500):806-8.

Farrar D, Rai S, Chernukhin I, Jagodic M, Ito Y, Yammine S, Ohlsson R, Murrell A, Klenova E. Mutational analysis of the poly(ADP-ribosyl)ation sites of the transcription factor CTCF provides an insight into the mechanism of its regulation by poly(ADP-ribosyl)ation. Mol Cell Biol. 2010 Mar;30(5):1199-216.

Faro-Trindade I, Cook PR. Transcription factories: structures conserved during differentiation and evolution. Biochem Soc Trans. 2006 Dec;34(Pt 6):1133-7.

Filippova GN, Fagerlie S, Klenova EM, Myers C, Dehner Y, Goodwin G, Neiman PE, Collins SJ, Lobanenkov VV. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol. 1996 Jun;16(6):2802-13.

Fraser P, Bickmore W. Nuclear organization of the genome and the potential for gene regulation. Nature. 2007 May 24;447(7143):413-7.

Mol Cell Biol. 2004 Feb;24(3):1155-67.

Forler D, Rabut G, Ciccarelli FD, Herold A, Köcher T, Niggeweg R, Bork P, Ellenberg J, Izaurralde E. RanBP2/Nup358 provides a major binding site for NXF1-p15 dimers at the nuclear pore complex and functions in nuclear mRNA export. Mol Cell Biol. 2004 Feb;24(3):1155-67.

Fu Y, Sinha M, Peterson CL, Weng Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 2008 Jul 25;4(7):e1000138.

Gdula DA, Corces VG. Characterization of functional domains of the su(Hw) protein that mediate the silencing effect of mod(mdg4) mutations. Genetics. 1997 Jan;145(1):153-61.

Gerasimova TI, Byrd K, Corces VG. A chromatin insulator determines the nuclear localization of DNA. Mol Cell. 2000 Nov;6(5):1025-35.

Gerasimova TI, Gdula DA, Gerasimov DV, Simonova O, Corces VG. A Drosophila protein that imparts directionality on a chromatin insulator is an enhancer of position-effect variegation. Cell. 1995 Aug 25;82(4):587-97.

Geyer PK. The role of insulator elements in defining domains of gene expression. Curr Opin Genet Dev. 1997 Apr;7(2):242-8.

Golovnin A, Biryukova I, Romanova O, Silicheva M, Parshikov A, Savitskaya E, Pirrotta V, Georgiev P. An endogenous Su(Hw) insulator separates the yellow gene from the Achaete-scute gene complex in Drosophila. Development. 2003 Jul;130(14):3249-58.

Graham AC, Kiss DL, Andrulis ED. Core exosome-independent roles for Rrp6 in cell cycle progression. Mol Biol Cell. 2009 Apr;20(8):2242-53.

Grewal SI, Elgin SC. Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev. 2002 Apr;12(2):178-87.

Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression. Science. 2003 Aug 8;301(5634):798-802.

Grimaud C, Nègre N, Cavalli G. From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res. 2006;14(4):363-75.

Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, Fraser P, Fisher AG, Merkenschlager M Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature. 2009 Jul 16;460(7253):410-3.

Hamiche A, Sandaltzopoulos R, Gdula DA, Wu C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell. 1999 Jun 25;97(7):833-42.

Han L, Lee DH, Szabó PE. CTCF is the master organizer of domain-wide allelespecific chromatin at the H19/Igf2 imprinted region. Mol Cell Biol. 2008 Feb;28(3):1124-35.

Handoko L, Xu H, Li G, Ngan CY, Chew E, Schnapp M, Lee CW, Ye C, Ping JL, Mulawadi F, Wong E, Sheng J, Zhang Y, Poh T, Chan CS, Kunarso G, Shahab A, Bourque G, Cacheux-Rataboul V, Sung WK, Ruan Y, Wei CL. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat Genet. 2011 Jun 19;43(7):630-8.

Hannon GJ. RNA interference. Nature. 2002 Jul 11;418(6894):244-51

Harel A, Orjalo AV, Vincent T, Lachish-Zalait A, Vasu S, Shah S, Zimmerman E, Elbaum M, Forbes DJ.Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol Cell. 2003 Apr;11(4):853-64.

Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 2000 May 25;405(6785):486-9.

Heath H, Ribeiro de Almeida C, Sleutels F, Dingjan G, van de Nobelen S, Jonkers I, Ling KW, Gribnau J, Renkawitz R, Grosveld F, Hendriks RW, Galjart N CTCF regulates cell cycle progression of alphabeta T cells in the thymus.EMBO J. 2008 Nov 5;27(21):2839-50.

Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J. 1994 Apr 15;13(8):1823-30.

Hochheimer A, Zhou S, Zheng S, Holmes MC, Tjian R. TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila.Nature. 2002 Nov 28;420(6914):439-45.

Hou C, Zhao H, Tanimoto K, Dean A. CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20398-403.

Huang NE, Lin CH, Lin YS, Yu WC. Modulation of YY1 activity by SAP30. Biochem Biophys Res Commun. 2003 Jun 20;306(1):267-75.

Ishihara K, Oshimura M, Nakao M. CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol Cell. 2006 Sep 1;23(5):733-42.

Ivanov D, Nasmyth K. A physical assay for sister chromatid cohesion in vitro. Mol Cell. 2007 Jul 20;27(2):300-10.

Jacobs JJ, van Lohuizen M. Cellular memory of transcriptional states by Polycombgroup proteins. Semin Cell Dev Biol. 1999 Apr;10(2):227-35.

Jhunjhunwala S, van Zelm MC, Peak MM, Cutchin S, Riblet R, van Dongen JJ, Grosveld FG, Knoch TA, Murre C. The 3D structure of the immunoglobulin heavychain locus: implications for long-range genomic interactions. Cell. 2008 Apr 18;133(2):265-79.

Johnson PH, Grossman LI Electrophoresis of DNA in agarose gels. Optimizing separations of conformational isomers of double- and single-stranded DNAs. Biochemistry. 1977 Sep 20;16(19):4217-25.

Kaffman A, O'Shea EK.Regulation of nuclear localization: a key to a door. Annu Rev Cell Dev Biol. 1999;15:291-339.

Kahn TG, Schwartz YB, Dellino GI, Pirrotta V. Polycomb complexes and the propagation of the methylation mark at the Drosophila ubx gene. J Biol Chem. 2006 Sep 29;281(39):29064-75.

Kanduri M, Kanduri C, Mariano P, Vostrov AA, Quitschke W, Lobanenkov V, Ohlsson R. Multiple nucleosome positioning sites regulate the CTCF-mediated insulator function of the H19 imprinting control region. Mol Cell Biol. 2002 May;22(10):3339-44.

Karpen GH.Position-effect variegation and the new biology of heterochromatin.Curr Opin Genet Dev. 1994 Apr;4(2):281-9.

Kellum R, Schedl P. A position-effect assay for boundaries of higher order chromosomal domains.Cell. 1991 Mar 8;64(5):941-50.

Kellum R, Schedl P. A group of scs elements function as domain boundaries in an enhancer-blocking assay.Mol Cell Biol. 1992 May;12(5):2424-31.

Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell. 2007 Mar 23;128(6):1231-45.

Kimura A, Umehara T, Horikoshi M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet. 2002 Nov;32(3):370-7

Klenova EM, Chernukhin IV, El-Kady A, Lee RE, Pugacheva EM, Loukinov DI, Goodwin GH, Delgado D, Filippova GN, León J, Morse HC 3rd, Neiman PE, Lobanenkov VV.Functional phosphorylation sites in the C-terminal region of the multivalent multifunctional transcriptional factor CTCF. Mol Cell Biol. 2001 Mar;21(6):2221-34.

Klenova EM, Nicolas RH, Paterson HF, Carne AF, Heath CM, Goodwin GH, Neiman PE, Lobanenkov VV. CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms. Mol Cell Biol. 1993 Dec;13(12):7612-24.

Klenova E, Scott AC, Roberts J, Shamsuddin S, Lovejoy EA, Bergmann S, Bubb VJ, Royer HD, Quinn JP. YB-1 and CTCF differentially regulate the 5-HTT polymorphic

intron 2 enhancer which predisposes to a variety of neurological disorders. J Neurosci. 2004 Jun 30;24(26):5966-73.

Korenjak M, Taylor-Harding B, Binné UK, Satterlee JS, Stevaux O, Aasland R, White-Cooper H, Dyson N, Brehm A. Native E2F/RBF complexes contain Mybinteracting proteins and repress transcription of developmentally controlled E2F target genes. Cell. 2004 Oct 15;119(2):181-93.

Kornberg RD. Mediator and the mechanism of transcriptional activation. Trends Biochem Sci. 2005 May;30(5):235-9

Köhler A, Hurt E. Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol. 2007 Oct;8(10):761-73.

Köhler A, Schneider M, Cabal GG, Nehrbass U, Hurt E. Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nat Cell Biol. 2008 Jun;10(6):707-15.

Kurshakova M, Maksimenko O, Golovnin A, Pulina M, Georgieva S, Georgiev P, Krasnov A. Evolutionarily conserved E(y)2/Sus1 protein is essential for the barrier activity of Su(Hw)-dependent insulators in Drosophila. Mol Cell. 2007 Jul 20;27(2):332-8.

Kurukuti S, Tiwari VK, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10684-9.

Kyrchanova O, Chetverina D, Maksimenko O, Kullyev A, Georgiev P. Orientationdependent interaction between Drosophila insulators is a property of this class of regulatory elements. Nucleic Acids Res. 2008 Dec;36(22):7019-28.

Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet. 2007 Feb;8(2):104-15.

Längst G, Bonte EJ, Corona DF, Becker PB. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell. 1999 Jun 25;97(7):843-52.

Lei EP, Corces VG. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat Genet. 2006 Aug;38(8):936-41.

Li M, Belozerov VE, Cai HN. Modulation of chromatin boundary activities by nucleosome-remodeling activities in Drosophila melanogaster. Mol Cell Biol. 2010 Feb;30(4):1067-76.

Li T, Hu JF, Qiu X, Ling J, Chen H, Wang S, Hou A, Vu TH, Hoffman AR. CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop. Mol Cell Biol. 2008 Oct;28(20):6473-82.

Liu XD, Ma SM, Liu Y, Liu SZ, Sehon A. Short hairpin RNA and retroviral vectormediated silencing of p53 in mammalian cells. Biochem Biophys Res Commun. 2004 Nov 26;324(4):1173-8.

Lobanenkov VV, Nicolas RH, Adler VV, Paterson H, Klenova EM, Polotskaja AV, Goodwin GH. A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5'-flanking sequence of the chicken c-myc gene. Oncogene. 1990 Dec;5(12):1743-53.

Lomvardas S, Barnea G, Pisapia DJ, Mendelsohn M, Kirkland J, Axel R. Interchromosomal interactions and olfactory receptor choice. Cell. 2006 Jul 28;126(2):403-13.

Luthra R, Kerr SC, Harreman MT, Apponi LH, Fasken MB, Ramineni S, Chaurasia S, Valentini SR, Corbett AH. Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem. 2007 Feb 2;282(5):3042-9.

Lutz M, Burke LJ, Barreto G, Goeman F, Greb H, Arnold R, Schultheiss H, Brehm A, Kouzarides T, Lobanenkov V, Renkawitz R.Transcriptional repression by the insulator protein CTCF involves histone deacetylases.Nucleic Acids Res. 2000 Apr 15;28(8):1707-13.

Lyko F, Paro R. Chromosomal elements conferring epigenetic inheritance. Bioessays. 1999 Oct;21(10):824-32.

McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell. 1992 Jan 24;68(2):283-302.

MacPherson MJ, Beatty LG, Zhou W, Du M, Sadowski PD. The CTCF insulator protein is posttranslationally modified by SUMO. Mol Cell Biol. 2009 Feb;29(3):714-25.

Maeda RK, Karch F. Making connections: boundaries and insulators in Drosophila. Curr Opin Genet Dev. 2007 Oct;17(5):394-9. Epub 2007 Sep 27.

Majumder P, Gomez JA, Chadwick BP, Boss JM. The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions. J Exp Med. 2008 Apr 14;205(4):785-98. Epub 2008 Mar 17.

Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J, Wilm M, Stunnenberg HG, Saumweber H, Akhtar A. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell. 2006 Mar 17;21(6):811-23.

Mishra K, Chopra VS, Srinivasan A, Mishra RK. Trl-GAGA directly interacts with lola like and both are part of the repressive complex of Polycomb group of genes. Mech Dev. 2003 Jun;120(6):681-9.

Mishra RK, Mihaly J, Barges S, Spierer A, Karch F, Hagstrom K, Schweinsberg SE, Schedl P. The iab-7 polycomb response element maps to a nucleosome-free region of chromatin and requires both GAGA and pleiohomeotic for silencing activity. Mol Cell Biol. 2001 Feb;21(4):1311-8.

Misteli T. Beyond the sequence: cellular organization of genome function. Cell. 2007 Feb 23;128(4):787-800.

Misulovin Z, Schwartz YB, Li XY, Kahn TG, Gause M, MacArthur S, Fay JC, Eisen MB, Pirrotta V, Biggin MD, Dorsett D. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma. 2008 Feb;117(1):89-102.

Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell. 1997 Nov 14;91(4):457-66.

Mohan M, Bartkuhn M, Herold M, Philippen A, Heinl N, Bardenhagen I, Leers J, White RA, Renkawitz-Pohl R, Saumweber H, Renkawitz R. The Drosophila insulator

proteins CTCF and CP190 link enhancer blocking to body patterning. EMBO J. 2007 Oct 3;26(19):4203-14.

Mohrmann L, Langenberg K, Krijgsveld J, Kal AJ, Heck AJ, Verrijzer CP. Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes. Mol Cell Biol. 2004 Apr;24(8):3077-88.

Moon H, Filippova G, Loukinov D, Pugacheva E, Chen Q, Smith ST, Munhall A, Grewe B, Bartkuhn M, Arnold R, Burke LJ, Renkawitz-Pohl R, Ohlsson R, Zhou J, Renkawitz R, Lobanenkov V. CTCF is conserved from Drosophila to humans and confers enhancer blocking of the Fab-8 insulator. EMBO Rep. 2005 Feb;6(2):165-70.

Moshkin YM, Mohrmann L, van Ijcken WF, Verrijzer CP. Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. Mol Cell Biol. 2007 Jan;27(2):651-61.

Muchardt C, Yaniv M. ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job. J Mol Biol. 1999 Oct 22;293(2):187-98. Review.

Murrell A, Heeson S, Reik W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet. 2004 Aug;36(8):889-93.

Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001 Apr 6;292(5514):110-3.

Noma K, Cam HP, Maraia RJ, Grewal SI. A role for TFIIIC transcription factor complex in genome organization. Cell. 2006 Jun 2;125(5):859-72.

Ohlsson R, Lobanenkov V, Klenova E. Does CTCF mediate between nuclear organization and gene expression? Bioessays. 2010 Jan;32(1):37-50.

Ohlsson R, Renkawitz R, Lobanenkov V. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet. 2001 Sep;17(9):520-7.

Ohtsuki S, Levine M. GAGA mediates the enhancer blocking activity of the eve promoter in the Drosophila embryo. Genes Dev. 1998 Nov 1;12(21):3325-30.

Pai CY, Lei EP, Ghosh D, Corces VG. The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol Cell. 2004 Dec 3;16(5):737-48.

Pant V, Kurukuti S, Pugacheva E, Shamsuddin S, Mariano P, Renkawitz R, Klenova E, Lobanenkov V, Ohlsson R. Mutation of a single CTCF target site within the H19 imprinting control region leads to loss of Igf2 imprinting and complex patterns of de novo methylation upon maternal inheritance. Mol Cell Biol. 2004 Apr;24(8):3497-504.

Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon N, Aragon L, Fisher AG, Merkenschlager M. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell. 2008 Feb 8;132(3):422-33.

Parnell TJ, Viering MM, Skjesol A, Helou C, Kuhn EJ, Geyer PK. An endogenous suppressor of hairy-wing insulator separates regulatory domains in Drosophila. Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13436-41.

Paro R. Propagating memory of transcriptional states. Trends Genet. 1995 Aug;11(8):295-7.

Pascual-García P, Govind CK, Queralt E, Cuenca-Bono B, Llopis A, Chavez S, Hinnebusch AG, Rodríguez-Navarro S. Sus1 is recruited to coding regions and functions during transcription elongation in association with SAGA and TREX2. Genes Dev. 2008 Oct 15;22(20):2811-22.

Phillips JE, Corces VG. CTCF: master weaver of the genome. Cell. 2009 Jun 26;137(7):1194-211.

Pazin MJ, Kadonaga JT. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell. 1997 Mar 21;88(6):737-40

Qiu X, Vu TH, Lu Q, Ling JQ, Li T, Hou A, Wang SK, Chen HL, Hu JF, Hoffman AR. A complex deoxyribonucleic acid looping configuration associated with the silencing of the maternal Igf2 allele. Mol Endocrinol. 2008 Jun;22(6):1476-88.

Prioleau MN, Nony P, Simpson M, Felsenfeld G. An insulator element and condensed chromatin region separate the chicken beta-globin locus from an independently regulated erythroid-specific folate receptor gene. EMBO J. 1999 Jul 15;18(14):4035-48.

Rabenstein MD, Zhou S, Lis JT, Tjian R. TATA box-binding protein (TBP)-related factor 2 (TRF2), a third member of the TBP family. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4791-6.

Raja SJ, Charapitsa I, Conrad T, Vaquerizas JM, Gebhardt P, Holz H, Kadlec J, Fraterman S, Luscombe NM, Akhtar A. The nonspecific lethal complex is a transcriptional regulator in Drosophila. Mol Cell. 2010 Jun 25;38(6):827-41.

Rajasekhar VK, Begemann M. Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells. 2007 Oct;25(10):2498-510.

Regha K, Sloane MA, Huang R, Pauler FM, Warczok KE, Melikant B, Radolf M, Martens JH, Schotta G, Jenuwein T, Barlow DP Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome. Mol Cell. 2007 Aug 3;27(3):353-66.

Rodríguez-Navarro S, Fischer T, Luo MJ, Antúnez O, Brettschneider S, Lechner J, Pérez-Ortín JE, Reed R, Hurt E. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell. 2004 Jan 9;116(1):75-86.

Roseman RR, Pirrotta V, Geyer PK. The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects. EMBO J. 1993 Feb;12(2):435-42.

Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A. CTCF physically links cohesin to chromatin. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8309-14.

Ryan CM, Harries JC, Kindle KB, Collins HM, Heery DM. Functional interaction of CREB binding protein (CBP) with nuclear transport proteins and modulation by HDAC inhibitors. Cell Cycle. 2006 Sep;5(18):2146-52.

Saha A, Wittmeyer J, Cairns BR. Mechanisms for nucleosome movement by ATPdependent chromatin remodeling complexes. Results Probl Cell Differ. 2006;41:127-48 Saitoh N, Bell AC, Recillas-Targa F, West AG, Simpson M, Pikaart M, Felsenfeld G. Structural and functional conservation at the boundaries of the chicken beta-globin domain. EMBO J. 2000 May 15;19(10):2315-22.

Schaaf CA, Misulovin Z, Sahota G, Siddiqui AM, Schwartz YB, Kahn TG, Pirrotta V, Gause M, Dorsett D. Regulation of the Drosophila Enhancer of split and invected-engrailed gene complexes by sister chromatid cohesion proteins. PLoS One. 2009 Jul 9;4(7):e6202.

Schotta G, Ebert A, Reuter G. SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing. Genetica. 2003 Mar;117(2-3):149-58.

Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell. 2007 Feb 23;128(4):735-45.

Swaminathan J, Baxter EM, Corces VG. The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev. 2005 Jan 1;19(1):65-76

Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M, Pirrotta V. Genomewide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet. 2006 Jun;38(6):700-5.

Schweinsberg S, Hagstrom K, Gohl D, Schedl P, Kumar RP, Mishra R, Karch F.The enhancer-blocking activity of the Fab-7 boundary from the Drosophila bithorax complex requires GAGA-factor-binding sites. Genetics. 2004 Nov;168(3):1371-84.

Scott KC, Taubman AD, Geyer PK. Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength. Genetics. 1999 Oct;153(2):787-98.

Segal E, Widom J. What controls nucleosome positions? Trends Genet. 2009 Aug;25(8):335-43.

Seitan VC, Hao B, Tachibana-Konwalski K, Lavagnolli T, Mira-Bontenbal H, Brown KE, Teng G, Carroll T, Terry A, Horan K, Marks H, Adams DJ, Schatz DG, Aragon L, Fisher AG, Krangel MS, Nasmyth K, Merkenschlager M. A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature. 2011 Aug 10. doi: 10.1038/nature10312.

Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet. 2006 Nov;38(11):1348-54.

Soeller WC, Oh CE, Kornberg TB. Isolation of cDNAs encoding the Drosophila GAGA transcription factor. Mol Cell Biol. 1993 Dec;13(12):7961-70.

Somech R, Shaklai S, Geller O, Amariglio N, Simon AJ, Rechavi G, Gal-Yam EN. The nuclear-envelope protein and transcriptional repressor LAP2beta interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylation. J Cell Sci. 2005 Sep 1;118(Pt 17):4017-25.

Southern EM. Measurement of DNA length by gel electrophoresis. Anal Biochem. 1979 Dec;100(2):319-23.

Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006 Nov;6(11):846-56.

Spencer RJ, Del Rosario BC, Pinter SF, Lessing D, Sadreyev RI, Lee JT. A Boundary Element Between Tsix and Xist Binds the Chromatin Insulator Ctcf and Contributes to Initiation of X Chromosome Inactivation. Genetics. 2011 Aug 11.

Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F, Galjart N, de Laat W. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev. 2006 Sep 1;20(17):2349-54.

Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J. 2008 Feb 20;27(4):654-66.

Strässer K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, Rondón AG, Aguilera A, Struhl K, Reed R, Hurt E. TREX is a conserved complex coupling transcription with messenger RNA export. Nature. 2002 May 16;417(6886):304-8.

Suka N, Luo K, Grunstein M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet. 2002 Nov;32(3):378-83

Sutherland H, Bickmore WA. Transcription factories: gene expression in unions? Nat Rev Genet. 2009 Jul;10(7):457-66.

Tan-Wong SM, Wijayatilake HD, Proudfoot NJ. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev. 2009 Nov 15;23(22):2610-24.

Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell. 2002 Dec;10(6):1453-65.

Torrano V, Navascués J, Docquier F, Zhang R, Burke LJ, Chernukhin I, Farrar D, León J, Berciano MT, Renkawitz R, Klenova E, Lafarga M, Delgado MD. Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci. 2006 May 1;119(Pt 9):1746-59.

Tran EJ, Wente SR. Dynamic nuclear pore complexes: life on the edge. Cell. 2006 Jun 16;125(6):1041-53.

Tsai CC, Kao HY, Yao TP, McKeown M, Evans RM. SMRTER, a Drosophila nuclear receptor coregulator, reveals that EcR-mediated repression is critical for development. Mol Cell. 1999 Aug;4(2):175-86.

Udvardy A, Maine E, Schedl P. The 87A7 chromomere. Identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. J Mol Biol. 1985 Sep 20;185(2):341-58.

Uv AE, Roth P, Xylourgidis N, Wickberg A, Cantera R, Samakovlis C. members only encodes a Drosophila nucleoporin required for rel protein import and immune response activation. Genes Dev. 2000 Aug 1;14(15):1945-57.

van der Vlag J, den Blaauwen JL, Sewalt RG, van Driel R, Otte AP. Transcriptional repression mediated by polycomb group proteins and other chromatin-associated repressors is selectively blocked by insulators. J Biol Chem. 2000 Jan 7;275(1):697-704.

Vazquez J, Schedl P.Sequences required for enhancer blocking activity of scs are located within two nuclease-hypersensitive regions. EMBO J. 1994 Dec 15;13(24):5984-93.

Vázquez M, Moore L, Kennison JA. The trithorax group gene osa encodes an ARIDdomain protein that genetically interacts with the brahma chromatin-remodeling factor to regulate transcription. Development. 1999 Feb;126(4):733-42.

Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D. RNAimediated targeting of heterochromatin by the RITS complex. Science. 2004 Jan 30;303(5658):672-6.

Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002 Sep 13;297(5588):1833-7

Vostrov AA, Quitschke WW. The zinc finger protein CTCF binds to the APBbeta domain of the amyloid beta-protein precursor promoter. Evidence for a role in transcriptional activation. J Biol Chem. 1997 Dec 26;272(52):33353-9.

Wallace JA, Felsenfeld G. We gather together: insulators and genome organization. Curr Opin Genet Dev. 2007 Oct;17(5):400-7.

Walther TC, Alves A, Pickersgill H, Loïodice I, Hetzer M, Galy V, Hülsmann BB, Köcher T, Wilm M, Allen T, Mattaj IW, Doye V. The conserved Nup107-160 complex is critical for nuclear pore complex assembly. Cell. 2003 Apr 18;113(2):195-206.

Wan LB, Pan H, Hannenhalli S, Cheng Y, Ma J, Fedoriw A, Lobanenkov V, Latham KE, Schultz RM, Bartolomei MS.Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development.Development. 2008 Aug;135(16):2729-38.

Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature. 2008 Feb 14;451(7180):796-801.

Wolffe AP.Gene regulation. Insulating chromatin.Curr Biol. 1994 Jan 1;4(1):85-7.

Workman JL. Nucleosome displacement in transcription. Genes Dev. 2006 Aug 1;20(15):2009-17.

Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem. 1998;67:545-79.

Xiao H, Sandaltzopoulos R, Wang HM, Hamiche A, Ranallo R, Lee KM, Fu D, Wu C. Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol Cell. 2001 Sep;8(3):531-43.

Xiao T, Wallace J, Felsenfeld G. Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol Cell Biol. 2011 Jun;31(11):2174-83.

Xie X, Mikkelsen TS, Gnirke A, Lindblad-Toh K, Kellis M, Lander ES. Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7145-50.

Xu N, Donohoe ME, Silva SS, Lee JT. Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat Genet. 2007 Nov;39(11):1390-6.

Yang Y, Quitschke WW, Vostrov AA, Brewer GJ. CTCF is essential for up-regulating expression from the amyloid precursor protein promoter during differentiation of primary hippocampal neurons. J Neurochem. 1999 Dec;73(6):2286-98.

Yoon YS, Jeong S, Rong Q, Park KY, Chung JH, Pfeifer K. Analysis of the H19ICR insulator. Mol Cell Biol. 2007 May;27(9):3499-510.

Yu W, Ginjala V, Pant V, Chernukhin I, Whitehead J, Docquier F, Farrar D, Tavoosidana G, Mukhopadhyay R, Kanduri C, Oshimura M, Feinberg AP, Lobanenkov V, Klenova E, Ohlsson R.Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation.Nat Genet. 2004 Oct;36(10):1105-10.

Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell. 2004 Jan 30;13(2):291-8.

Zenklusen D, Vinciguerra P, Wyss JC, Stutz F. Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol Cell Biol. 2002 Dec;22(23):8241-53.

8 Anhang

8.1 Abkürzungsvezeichnis

%	Prozent
°C	Grad Celsius
μg	Mikrogramm
μΙ	Mikroliter
μm	Mikrometer
Α	Alanin
Abb.	Abbildung
ac	acetyliert
АК	Antikörper
APS	Ammoniumpersulfat
AS	Aminosäure
as	antisense
АТСС	American Type Culture Collection
ATP	Adenosin-5'-Triphosphat
BORIS	Brother of Regulator of
	Imprinted Sites
bp	Basenpaar
BSA	Bovines Serum-Albumin
bw	rückwärts (<i>backward</i>)
bzw.	beziehungsweise
C-	Carboxy-
CaCl2	Calciumchlorid
cDNA	complementary DNA
ChIP	, Chromatin-Immunopräzipition
CsCl	Cäsiumchlorid
CTCF	CCCTC binding factor
CTS	CTCF-Bindestelle (CTCF target
	site)
d	Tag(e)
d.h.	das heißt
DMPC	Dimethyldicarbonat
DMR	, differentially methylated region
DMSO	Dimethylsulfoxid
DNA	, Deoxyribonukleinsäure
dNTPs	, Deoxynucleotidtriphosphate
DSHB	Developmental Studies
	, Hvbridoma Bank
DTT	Dithiothreitol
E	Extinktion
EDTA	Ethylendiamintetraacetat
eGFP	enhanced GFP
ES (-Zellen)	Embryonale Stammzellen
et al.	et alii - und andere

Phenylalanin

FCS	Fetales Kälberserum
fw	vorwärts (<i>forward</i>)
g	Gramm
GAPDH	Glyceraldehyd-3-phosphat-Dehydrogenase
GFP	Grün-fluoreszierendes Protein
h	Stunde(n)
НАТ	Histon-Acetyltransferase
HDAC	Histon-Deacetylase
HEPES	2-(4-(2-Hydroxyethyl)- 1-piperazinyl)-
	ethansulfonsäure
HRP	Meerettich-Peroxidase (horseradish peroxidase)
i.d.R.	in der Regel
i.e.	<i>id est</i> (nämlich)
ICR	imprinting control region
IF	Immunfluoreszenz
lgG	Immunglobulin G
IP	Immunopräzipition
IPTG	Isopropyl-β-D-thiogalactopyranosid
К	Lysin
К2НРО4	di-Kaliumhydrogenphosphat
kb	Kilobasenpaar
KCI	Kaliumchlorid
KH2PO4	Kaliumdihydrogenphosphat
КОН	Kaliumhydroxid
1	Liter
LiCl	Lithiumchlorid
m	Meter
M	mol pro Liter
Mb	Megabasenpaar
me	methyliert
mg	Milligramm
MgCl2	Magnesiumchlorid
MgSO4	Magnesiumsulfat
MilliQ	entionisiertes Wasser
min	Minute(n)
ml	Milliliter
mM	Millimol pro Liter
mRNA	messenger RNA
N-	Amino-
Na2HPO4	di-Natriumhydrogenphosphat
Na3PO4	Trinatriumphosphat
NaCl	Natriumchlorid
NaOH	Natriumhydroxid
nm	Nanometer
Nr.	Nummer
	Optische Dichte
UNPG	o-witrophenyi-p-u-galactopyranosid
PBS	Phosphat-gepufferte Salzlösung (phosphate-buffered saline)

PCR	Polymerase-Kettenreaktion (polymerase chain
	reaction)
Pen	Penicillin
PFA	Paraformaldehyd
pmol	Picomol
PMSF	Phenylmethylsulfonylfluorid
PVDF	Polyvinylidenfluorid
R	Arginin
RNA	Ribonukleinsäure
RNAi	RNA-Interferenz
rpm	rounds per minute (Umdrehungen pro Minute)
RT	Reverse Transkriptase
RT	Raumtemperatur
S	Sekunde(n)
S	Serin
S	sense
S.	siehe
s.o.	siehe oben
SDS	Natriumdodekylsulfat (sodium dodecyl sulfate)
siRNA	small interfering RNA
Strep	Streptomycin
t	Zeit
Tab.	Tabelle
ТЕ	Tris-EDTA
ТСА	Trichloressigsäure
TEMED	N,N,N',N'-Tetramethylethylendiamin
Tris	Tris(hydroxymethyl)-aminomethan
TSS	Startort der Transkription (transcriptional start site)
U	Einheit (<i>unit</i>)
u.a.	unter anderem
ub	ubinquitinyliert
ÜN	über Nacht
UV	Ultraviolettes Licht
V	Volt
v.a.	vor allem
v/v	Volumenanteile (volume per volume)
vgl.	vergleiche
VT	Volumenteile
w/v	Masse pro Volumen (<i>weight per volume</i>)
w/w	Masseanteile (weight per weight)
z.B.	zum Beispiel
ZF	Zinkfinger
α	anti
λ	Wellenlänge

8.2 Klonierung von Plasmiden

Der Vektor pABgal₉₄-*linker* (A. Baniahmad, 1995) dient der Protein-Expression in eukaryotischen Zellen. Er besitzt einen SV40-Replikationsursprung und kodiert für eine DNA-Bindedomäne (DBD) des GAL4 Proteins (Aminosäuren 1-94). In die MCS des Vektors können cDNAs passend zum Leseraster kloniert werden. Das Translationsprodukt stellt dann ein chimäres Protein dar, welches an die GAL4-DNA-Bindesequenz eines Reportergens binden kann. Im Rahmen dieser Arbeit wurden verschiedene pABgal₉₄-Konstrukte, welche alle ein Fusionsprotein aus der GAL4-DBD und den angegebenen *chicken*(ch)-CTCF Aminosäuren (aa) kodieren, verwendet: In Smal-Site der MCS wurde die *chicken*(ch)-CTCF aa 2-67, bzw. das Protein voller Länge, kloniert (G. Baretto, 1999). Mit Hilfe des *QuikChange Site-Directed Mutagenesis* Kit (Stratagene) wurden die Konstrukte pABgal94-CTCF-2-67mut1-7 und pABgal94-CTCFfullmut (siehe 3.9) hergestellt (siehe 4.2.6).

Amp

133

Die pGEX-4T1avi-Vektoren basieren auf dem pGEX-Vektor. Sie ermöglichen die Expression eines mit GST-fusionierten Proteins in einem prokaryotischem System J. Leers). Der Vektor pGEX-4T1avi-CTCF2-67mut wurden durch Ligation des PCR-Produktes *chicken*(ch)-CTCF-2-67mut in die EcoRI/XhoI-Schnittstelle von pGEX-4T1avi konstruiert.

Das Konstrukt HA-FLAG-dCTCF ermöglicht die Expression von HA-FLAG-dCTCF. Das Plasmid basiert auf dem Vector pRMHa-3 und trägt ein HA-FLAG-Oligo, welches die Expression eines mit HA-FLAG fusionierten Proteins in *Drosophila* SL2-Zellen ermöglicht. Es besitzt einen Metallothionin-Promotor, welcher durch Kupfersulfat induzierbar ist. Die Sequenz des dCTCF-Proteins (volle Länge) wurde als PCR-Produkt Smal geschnitten und in die Smal-Schnittstelle des Vektors ligiert.

Tab. 8.1: HA-FLAG-dCTCF assoziierte Proteine.

Ein Aliquot der uninduzierten (endogenes dCTCF) und induzierten Proben (HA-FLAG-dCTCF-Expression, siehe 5.6.1) wurde für eine Proteinidentifikation mittels Massenspektrometrie eingesetzt. Im *Proteomics Center* (Erasmus MC Rotterdam) wurde eine NanoLC-Q-TOF-Massenspektrometrie (siehe 4.8.4) durchgeführt. Zur Auswertung der Rohdaten und Proteinidentifikation wurde die *Mascot Distiller Software* (Version 2.0, *MatrixScience*) genutzt. Der *Mascot* Such-Algorithmus beruht auf dem MOWSE (*Molecular weight search)-Score* (Pappin et al., 1993) und wurde für die Suche gegen die *Drosophila* Datenbank *FlyBase* (Abrufdatum: 03.07.2007) eingesetzt. Die Grenze für eine signifikante Proteinidentifikation wurde auf einen Wert (Score) von 60 festgelegt.

Da: Dalton, cover (%): *sequence coverage*; prozentualer Anteil der Proteinsequenz, der von identifizierten Peptiden abgedeckt wird, *unique peptide*:Anzahl unterschiedlicher (voneinander verschiedener) identifizierter Peptide (Unikate), die auf das Protein passen, *total peptide*: Anzahl der gesamten identifizierten Peptide, die auf das Protein passen

Score	acc./id	description	Da	cover (%)	uniq pept.	total pept.
1940	FBpp0073445	Hsc70-3-PB; parent=FBgn0001218,FBtr0073608; dbxref=FlyBase:FBpp0073445,FlyBase_Annotation_IDs:	72330	43,4	23	62
1940	FBpp0073446	Hsc70-3-PA; parent=FBgn0001218,FBtr0073609; dbxref=FlyBase:FBpp0073446,FlyBase_Annotation_IDs:	72330	43,4	23	62
1940	FBpp0073447	Hsc70-3-PD; parent=FBgn0001218,FBtr0073610; dbxref=FlyBase:FBpp0073447,FlyBase_Annotation_IDs:	72330	43,4	23	62
1940	FBpp0073448	Hsc70-3-PC; parent=FBgn0001218,FBtr0073611; dbxref=FlyBase:FBpp0073448,FlyBase_Annotation_IDs:	72330	43,4	23	62
1916	FBpp0082580	Cp190-PA; parent=FBgn0000283,FBtr0083126; dbxref=FlyBase:FBpp0082580,FlyBase_Annotation_IDs:CG	122232	35,8	24	39
1916	FBpp0082581	Cp190-PB; parent=FBgn0000283,FBtr0083127; dbxref=FlyBase:FBpp0082581,FlyBase_Annotation_IDs:CG	122232	35,8	24	39
1754	FBpp0085720	betaTub56D-PB; parent=FBgn0003887,FBtr0086536; dbxref=FlyBase:FBpp0085720,FlyBase_Annotation_I	50571	68,5	20	61
1747	FBpp0076588	CTCF-PA; parent=FBgn0035769,FBtr0076878; dbxref=FlyBase:FBpp0076588,FlyBase_Annotation_IDs:CG8	94602	31,8	25	181
1696	FBpp0082514	Hsc70-4-PE; parent=FBgn0001219,FBtr0083055; dbxref=FlyBase:FBpp0082514,FlyBase_Annotation_IDs:	71372	52,1	23	49
1696	FBpp0082515	Hsc70-4-PF; parent=FBgn0001219,FBtr0083056; dbxref=FlyBase:FBpp0082515,FlyBase_Annotation_IDs:	71372	52,1	23	49
1696	FBpp0082516	Hsc70-4-PA; parent=FBgn0001219,FBtr0083057; dbxref=FlyBase:FBpp0082516,FlyBase_Annotation_IDs:	71372	52,1	23	49
1696	FBpp0082517	Hsc70-4-PC; parent=FBgn0001219,FBtr0083058; dbxref=FlyBase:FBpp0082517,FlyBase_Annotation_IDs:	71372	52,1	23	49
1696	FBpp0082518	Hsc70-4-PD; parent=FBgn0001219,FBtr0083059; dbxref=FlyBase:FBpp0082518,FlyBase_Annotation_IDs:	71372	52,1	23	49
1696	FBpp0082519	Hsc70-4-PB; parent=FBgn0001219,FBtr0083060; dbxref=FlyBase:FBpp0082519,FlyBase_Annotation_IDs:	71372	52,1	23	49
1674	FBpp0077248	CG15415-PA; parent=FBgn0031549,FBtr0077559; dbxref=FlyBase:FBpp0077248,FlyBase_Annotation_IDs:	91984	34,3	21	103
1493	FBpp0082470	Rrp6-PA; parent=FBgn0038269,FBtr0083011; dbxref=FlyBase:FBpp0082470,FlyBase_Annotation_IDs:CG7	101236	39	23	46
1377	FBpp0087050	CG13151-PA; parent=FBgn0033750,FBtr0087939; dbxref=FlyBase:FBpp0087050,FlyBase_Annotation_IDs:	69218	38,6	18	92
1101	FBpp0083989	Dis3-PA; parent=FBgn0039183,FBtr0084605; dbxref=FlyBase:FBpp0083989,FlyBase_Annotation_IDs:CG6	112968	21,8	18	24
1066	FBpp0081062	alphaTub84D-PA; parent=FBgn0003885,FBtr0081538; dbxref=FlyBase:FBpp0081062,FlyBase_Annotation_	50486	46,4	14	28
1066	FBpp0081063	alphaTub84D-PB; parent=FBgn0003885,FBtr0081539; dbxref=FlyBase:FBpp0081063,FlyBase_Annotation_	50486	46,4	14	28
1066	FBpp0081153	alphaTub84B-PA; parent=FBgn0003884,FBtr0081639; dbxref=FlyBase:FBpp0081153,FlyBase_Annotation_	50561	46,4	14	28
1011	FBpp0075651	CG10984-PC; parent=FBgn0036305,FBtr0075919; dbxref=FlyBase:FBpp0075651,FlyBase_Annotation_IDs:	71650	34,1	11	20
1011	FBpp0075652	CG10984-PA; parent=FBgn0036305,FBtr0075920; dbxref=FlyBase:FBpp0075652,FlyBase_Annotation_IDs:	71650	34,1	11	20

909	FBpp0072020	Rrp4-PA; parent=FBgn0034879,FBtr0072111; dbxref=FlyBase:FBpp0072020,FlyBase_Annotation_IDs:CG3	33717	47,7	10	22
908	FBpp0071106	CG2129-PA; parent=FBgn0030008,FBtr0071155; dbxref=FlyBase:FBpp0071106,FlyBase_Annotation_IDs:C	54586	43,9	12	36
853	FBpp0086348	Rrp42-PA; parent=FBgn0034065,FBtr0087206; dbxref=FlyBase:FBpp0086348,FlyBase_Annotation_IDs:CG	32880	47,6	10	18
852	FBpp0080062	Ski6-PA; parent=FBgn0032487,FBtr0080483; dbxref=FlyBase:FBpp0080062,FlyBase_Annotation_IDs:CG1	27290	59,3	10	17
816	FBpp0077551	CG31938-PA; parent=FBgn0051938,FBtr0077883; dbxref=FlyBase:FBpp0077551,FlyBase_Annotation_IDs:	25295	56,5	11	24
760	FBpp0072250	Nurf-38-PA; parent=FBgn0016687,FBtr0072343; dbxref=GB_protein:AAF47227.1,FlyBase:FBpp0072250,F	38143	42,3	9	10
738	FBpp0072177	betaTub60D-PA; parent=FBgn0003888,FBtr0072270; dbxref=FlyBase:FBpp0072177,FlyBase_Annotation_I	51387	27,5	9	31
692	FBpp0077809	CG31974-PA; parent=FBgn0051974,FBtr0078150; dbxref=FlyBase:FBpp0077809,FlyBase_Annotation_IDs:	47874	23,8	9	11
660	FBpp0070787	Act5C-PA; parent=FBgn0000042,FBtr0070822; dbxref=FlyBase_Annotation_IDs:CG4027-PA,FlyBase:FBpp	42194	31,4	8	13
660	FBpp0070788	Act5C-PB; parent=FBgn0000042,FBtr0070823; dbxref=FlyBase_Annotation_IDs:CG4027-PB,FlyBase:FBpp	42194	31,4	8	13
660	FBpp0085365	Act42A-PA; parent=FBgn0000043,FBtr0086029; dbxref=GB_protein:AAF57294.1,FlyBase:FBpp0085365,Fl	42196	31,4	8	13
660	FBpp0100124	Act5C-PC; parent=FBgn0000042,FBtr0100662; dbxref=FlyBase_Annotation_IDs:CG4027-PC,FlyBase:FBpp	42194	31,4	8	13
660	FBpp0100125	Act5C-PD; parent=FBgn0000042,FBtr0100663; dbxref=FlyBase_Annotation_IDs:CG4027-PD,FlyBase:FBpp	42194	31,4	8	13
623	FBpp0072353	CG30428-PA; parent=FBgn0050428,FBtr0072451; dbxref=FlyBase:FBpp0072353,FlyBase_Annotation_IDs:	30229	36,9	8	13
552	FBpp0079609	RfC3-PA; parent=FBgn0032244,FBtr0080019; dbxref=FlyBase:FBpp0079609,FlyBase_Annotation_IDs:CG5	37840	28,6	8	9
545	FBpp0088211	CG31999-PA; parent=FBgn0051999,FBtr0089144; dbxref=FlyBase:FBpp0088211,FlyBase_Annotation_IDs:	107163	12,4	7	9
533	FBpp0080825	Top2-PA; parent=FBgn0003732,FBtr0081287; dbxref=GB_protein:AAF53802.2,FlyBase:FBpp0080825,FlyB	165034	9,4	9	10
526	FBpp0087142	Ef1alpha48D-PA; parent=FBgn0000556,FBtr0088035; dbxref=FlyBase:FBpp0087142,FlyBase_Annotation_	50561	21,6	7	16
526	FBpp0087143	Ef1alpha48D-PB; parent=FBgn0000556,FBtr0088036; dbxref=FlyBase:FBpp0087143,FlyBase_Annotation_	50561	21,6	7	16
511	FBpp0074129	Rrp45-PA; parent=FBgn0030789,FBtr0074355; dbxref=FlyBase:FBpp0074129,FlyBase_Annotation_IDs:CG	46730	23,8	7	7
499	FBpp0081725	Rrp46-PA; parent=FBgn0037815,FBtr0082248; dbxref=FlyBase:FBpp0081725,FlyBase_Annotation_IDs:CG	26178	39,5	6	20
489	FBpp0079771	porin-PA; parent=FBgn0004363,FBtr0080182; dbxref=FlyBase_Annotation_IDs:CG6647-PA,FlyBase:FBpp	30531	29,1	6	6
489	FBpp0079772	porin-PB; parent=FBgn0004363,FBtr0080183; dbxref=FlyBase_Annotation_IDs:CG6647-PB,FlyBase:FBpp	30531	29,1	6	6
489	FBpp0100039	porin-PC; parent=FBgn0004363,FBtr0100584; dbxref=FlyBase_Annotation_IDs:CG6647-PC,FlyBase:FBpp	30531	29,1	6	6
481	FBpp0073594	Jafrac1-PB; parent=FBgn0040309,FBtr0073763; dbxref=FlyBase:FBpp0073594,FlyBase_Annotation_IDs:	21952	43,3	7	10
481	FBpp0073595	Jafrac1-PA; parent=FBgn0040309,FBtr0073764; dbxref=FlyBase:FBpp0073595,FlyBase_Annotation_IDs:	21952	43,3	7	10
479	FBpp0081457	CG8436-PA; parent=FBgn0037670,FBtr0081977; dbxref=FlyBase:FBpp0081457,FlyBase_Annotation_IDs:C	27871	35,5	7	12
460	FBpp0073263	CG1637-PC; parent=FBgn0030245,FBtr0073407; dbxref=FlyBase:FBpp0073263,FlyBase_Annotation_IDs:C	52130	21,3	7	14
432	FBpp0079813	Csl4-PA; parent=FBgn0032346,FBtr0080226; dbxref=GB_protein:AAF53074.1,FlyBase:FBpp0079813,FlyB	23039	47,1	7	14
413	FBpp0087936	Nup44A-PB; parent=FBgn0033247,FBtr0088860; dbxref=FlyBase:FBpp0087936,FlyBase_Annotation_IDs:C	39946	26,8	6	6
413	FBpp0087937	Nup44A-PC; parent=FBgn0033247,FBtr0088861; dbxref=FlyBase:FBpp0087937,FlyBase_Annotation_IDs:C	39946	26,8	6	6
413	FBpp0087938	Nup44A-PA; parent=FBgn0033247,FBtr0088862; dbxref=FlyBase:FBpp0087938,FlyBase_Annotation_IDs:C	39946	26,8	6	6
411	FBpp0088242	RpS3A-PA; parent=FBgn0017545,FBtr0089175; dbxref=FlyBase:FBpp0088242,GB_protein:AAF59372.1,Fly	30549	23,9	6	9
411	FBpp0088243	RpS3A-PB; parent=FBgn0017545,FBtr0089176; dbxref=FlyBase:FBpp0088243,GB_protein:AAN06541.1,Fly	25091	29,4	6	9

402	FBpp0071382	flw-PB; parent=FBgn0000711,FBtr0071447; dbxref=FlyBase:FBpp0071382,FlyBase_Annotation_IDs:CG20	38514	18,8	6	11
400	FBpp0071381	flw-PA; parent=FBgn0000711,FBtr0071446; dbxref=FlyBase:FBpp0071381,FlyBase_Annotation_IDs:CG20	52077	13,4	6	11
394	FBpp0078450	CG11999-PA; parent=FBgn0037312,FBtr0078807; dbxref=FlyBase:FBpp0078450,FlyBase_Annotation_IDs:	23847	32,4	5	6
379	FBpp0071892	Fib-PA; parent=FBgn0003062,FBtr0071982; dbxref=FlyBase:FBpp0071892,FlyBase_Annotation_IDs:CG98	34673	27,3	7	11
379	FBpp0077914	CG3680-PA; parent=FBgn0037027,FBtr0078256; dbxref=FlyBase:FBpp0077914,FlyBase_Annotation_IDs:C	100503	10,8	6	6
356	FBpp0074687	Mtr3-PA; parent=FBgn0036916,FBtr0074918; dbxref=FlyBase_Annotation_IDs:CG8025-PA,FlyBase:FBpp0	37102	17,5	6	6
349	FBpp0073262	CG1637-PB; parent=FBgn0030245,FBtr0073406; dbxref=FlyBase:FBpp0073262,FlyBase_Annotation_IDs:C	52713	15,9	4	9
347	FBpp0078997	nop5-PA; parent=FBgn0026196,FBtr0079369; dbxref=FlyBase:FBpp0078997,FlyBase_Annotation_IDs:CG1	57477	14,1	4	4
345	FBpp0081584	Kap-alpha3-PA; parent=FBgn0027338,FBtr0082106; dbxref=FlyBase:FBpp0081584,FlyBase_Annotation_I	57354	16,5	6	10
345	FBpp0081585	Kap-alpha3-PB; parent=FBgn0027338,FBtr0082107; dbxref=FlyBase:FBpp0081585,FlyBase_Annotation_I	57354	16,5	6	10
345	FBpp0081586	Kap-alpha3-PC; parent=FBgn0027338,FBtr0082108; dbxref=FlyBase:FBpp0081586,FlyBase_Annotation_I	57354	16,5	6	10
337	FBpp0076546	Neos-PA; parent=FBgn0024542,FBtr0076835; dbxref=GB_protein:AAF50595.2,FlyBase:FBpp0076546,FlyB	41387	18,9	4	5
337	FBpp0073937	CG8928-PA; parent=FBgn0030711,FBtr0074132; dbxref=FlyBase:FBpp0073937,FlyBase_Annotation_IDs:C	18184	33,3	4	9
337	FBpp0071235	dalao-PA; parent=FBgn0030093,FBtr0071300; dbxref=FlyBase:FBpp0071235,FlyBase_Annotation_IDs:CG	78680	10	3	3
321	FBpp0071587	CG10306-PA; parent=FBgn0034654,FBtr0071670; dbxref=FlyBase:FBpp0071587,FlyBase_Annotation_IDs:	25820	22,5	4	4
317	FBpp0077858	CG5976-PA; parent=FBgn0036999,FBtr0078200; dbxref=FlyBase:FBpp0077858,FlyBase_Annotation_IDs:C	40482	15,9	5	6
315	FBpp0077857	CG5976-PB; parent=FBgn0036999,FBtr0078199; dbxref=FlyBase:FBpp0077857,FlyBase_Annotation_IDs:C	40983	15,8	5	6
306	FBpp0071050	RpS14a-PB; parent=FBgn0004403,FBtr0071094; dbxref=FlyBase:FBpp0071050,FlyBase_Annotation_IDs:C	16312	25,2	4	7
306	FBpp0071051	RpS14a-PA; parent=FBgn0004403,FBtr0071095; dbxref=FlyBase:FBpp0071051,FlyBase_Annotation_IDs:C	16312	25,2	4	7
306	FBpp0071052	RpS14b-PA; parent=FBgn0004404,FBtr0071096; dbxref=FlyBase:FBpp0071052,FlyBase_Annotation_IDs:C	16312	25,2	4	7
306	FBpp0082421	His4r-PA; parent=FBgn0013981,FBtr0082962; dbxref=FlyBase:FBpp0082421,FlyBase_Annotation_IDs:CG	11374	40,8	4	4
306	FBpp0082422	His4r-PB; parent=FBgn0013981,FBtr0082963; dbxref=FlyBase:FBpp0082422,FlyBase_Annotation_IDs:CG	11374	40,8	4	4
306	FBpp0082423	His4r-PC; parent=FBgn0013981,FBtr0082964; dbxref=FlyBase:FBpp0082423,FlyBase_Annotation_IDs:CG	11374	40,8	4	4
306	FBpp0085280	His4:CG31611-PA; parent=FBgn0051611,FBtr0085926; dbxref=FlyBase:FBpp0085280,GB_protein:AAN1112	11374	40,8	4	4
306	FBpp0091116	His4:CG33871-PA; parent=FBgn0053871,FBtr0091875; dbxref=FlyBase:FBpp0091116,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091118	His4:CG33873-PA; parent=FBgn0053873,FBtr0091877; dbxref=FlyBase:FBpp0091118,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091120	His4:CG33875-PA; parent=FBgn0053875,FBtr0091879; dbxref=FlyBase:FBpp0091120,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091128	His4:CG33883-PA; parent=FBgn0053883,FBtr0091887; dbxref=FlyBase:FBpp0091128,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091130	His4:CG33885-PA; parent=FBgn0053885,FBtr0091889; dbxref=FlyBase:FBpp0091130,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091132	His4:CG33887-PA; parent=FBgn0053887,FBtr0091891; dbxref=FlyBase:FBpp0091132,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091134	His4:CG33889-PA; parent=FBgn0053889,FBtr0091893; dbxref=FlyBase:FBpp0091134,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091136	His4:CG33891-PA; parent=FBgn0053891,FBtr0091895; dbxref=FlyBase:FBpp0091136,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091138	His4:CG33893-PA; parent=FBgn0053893,FBtr0091897; dbxref=FlyBase:FBpp0091138,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091140	His4:CG33895-PA; parent=FBgn0053895,FBtr0091899; dbxref=FlyBase:FBpp0091140,FlyBase_Annotation	11374	40,8	4	4

306	FBpp0091142	His4:CG33897-PA; parent=FBgn0053897,FBtr0091901; dbxref=FlyBase:FBpp0091142,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091144	His4:CG33899-PA; parent=FBgn0053899,FBtr0091903; dbxref=FlyBase:FBpp0091144,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091146	His4:CG33901-PA; parent=FBgn0053901,FBtr0091905; dbxref=FlyBase:FBpp0091146,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091148	His4:CG33903-PA; parent=FBgn0053903,FBtr0091907; dbxref=FlyBase:FBpp0091148,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091150	His4:CG33905-PA; parent=FBgn0053905,FBtr0091909; dbxref=FlyBase:FBpp0091150,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091152	His4:CG33907-PA; parent=FBgn0053907,FBtr0091911; dbxref=FlyBase:FBpp0091152,FlyBase_Annotation	11374	40,8	4	4
306	FBpp0091154	His4:CG33909-PA; parent=FBgn0053909,FBtr0091913; dbxref=FlyBase:FBpp0091154,FlyBase_Annotation	11374	40,8	4	4
303	FBpp0076182	Hsp27-PA; parent=FBgn0001226,FBtr0076454; dbxref=FlyBase:FBpp0076182,FlyBase_Annotation_IDs:CG	23659	25,8	4	4
301	FBpp0078806	eIF-4a-PA; parent=FBgn0001942,FBtr0079175; dbxref=FlyBase:FBpp0078806,FlyBase_Annotation_IDs:C	46249	12,4	4	4
301	FBpp0078807	eIF-4a-PC; parent=FBgn0001942,FBtr0079176; dbxref=FlyBase:FBpp0078807,FlyBase_Annotation_IDs:C	46249	12,4	4	4
301	FBpp0078808	eIF-4a-PB; parent=FBgn0001942,FBtr0079177; dbxref=FlyBase:FBpp0078808,FlyBase_Annotation_IDs:C	46249	12,4	4	4
301	FBpp0078809	eIF-4a-PD; parent=FBgn0001942,FBtr0079178; dbxref=FlyBase:FBpp0078809,FlyBase_Annotation_IDs:C	46249	12,4	4	4
296	FBpp0071903	CG3800-PA; parent=FBgn0034802,FBtr0071994; dbxref=FlyBase:FBpp0071903,FlyBase_Annotation_IDs:C	18629	22,4	2	4
288	FBpp0071808	RpL23-PA; parent=FBgn0010078,FBtr0071897; dbxref=GB_protein:AAF46914.1,FlyBase:FBpp0071808,Fly	15041	38,6	4	4
287	FBpp0077720	CG4164-PA; parent=FBgn0031256,FBtr0078060; dbxref=FlyBase:FBpp0077720,FlyBase_Annotation_IDs:C	40585	15	3	3
286	FBpp0084188	Nup358-PA; parent=FBgn0039302,FBtr0084813; dbxref=GB_protein:AAF56430.1,FlyBase:FBpp0084188,Fl	297969	2,4	4	4
276	FBpp0073120	RfC40-PA; parent=FBgn0015287,FBtr0073264; dbxref=GB_protein:AAF47843.1,FlyBase:FBpp0073120,Fly	37549	17,2	4	4
257	FBpp0077992	Z4-PA; parent=FBgn0037066,FBtr0078336; dbxref=FlyBase:FBpp0077992,FlyBase_Annotation_IDs:CG775	106270	6,4	3	3
256	FBpp0082077	GstD1-PA; parent=FBgn0001149,FBtr0082607; dbxref=FlyBase:FBpp0082077,FlyBase_Annotation_IDs:CG	24022	22,5	4	8
256	FBpp0099824	GstD1-PB; parent=FBgn0001149,FBtr0100410; dbxref=FlyBase_Annotation_IDs:CG10045-PB,FlyBase:FBp	24022	22,5	4	8
254	FBpp0078478	Gnf1-PA; parent=FBgn0004913,FBtr0078837; dbxref=FlyBase:FBpp0078478,FlyBase_Annotation_IDs:CG1	109004	4,7	3	3
254	FBpp0099511	Gnf1-PB; parent=FBgn0004913,FBtr0100159; dbxref=FlyBase_Annotation_IDs:CG1119-PB,FlyBase:FBpp0	111737	4,6	3	3
253	FBpp0077715	ebi-PA; parent=FBgn0023444,FBtr0078055; dbxref=FlyBase:FBpp0077715,FlyBase_Annotation_IDs:CG40	73141	7,4	3	3
249	FBpp0072097	tsr-PA; parent=FBgn0011726,FBtr0072188; dbxref=FlyBase:FBpp0072097,FlyBase_Annotation_IDs:CG42	17428	23,6	3	3
247	FBpp0076181	Hsp23-PA; parent=FBgn0001224,FBtr0076453; dbxref=FlyBase:FBpp0076181,FlyBase_Annotation_IDs:CG	20730	29	4	4
242	FBpp0086954	Iswi-PA; parent=FBgn0011604,FBtr0087841; dbxref=FlyBase:FBpp0086954,FlyBase_Annotation_IDs:CG8	119426	4	3	3
242	FBpp0086955	Iswi-PB; parent=FBgn0011604,FBtr0087842; dbxref=FlyBase:FBpp0086955,FlyBase_Annotation_IDs:CG8	119426	4	3	3
242	FBpp0086956	Iswi-PC; parent=FBgn0011604,FBtr0087843; dbxref=FlyBase:FBpp0086956,FlyBase_Annotation_IDs:CG8	119426	4	3	3
239	FBpp0086563	CG10139-PA; parent=FBgn0033951,FBtr0087433; dbxref=FlyBase:FBpp0086563,FlyBase_Annotation_IDs:	25782	15,2	3	4
238	FBpp0081464	CG9740-PA; parent=FBgn0037669,FBtr0081984; dbxref=FlyBase:FBpp0081464,FlyBase_Annotation_IDs:C	22210	19,5	5	6
236	FBpp0078510	CG1129-PB; parent=FBgn0037279,FBtr0078870; dbxref=FlyBase:FBpp0078510,FlyBase_Annotation_IDs:C	40935	18,2	5	5
236	FBpp0078511	CG1129-PA; parent=FBgn0037279,FBtr0078871; dbxref=FlyBase:FBpp0078511,FlyBase_Annotation_IDs:C	40935	18,2	5	5
235	FBpp0071754	qkr58E-1-PA; parent=FBgn0022986,FBtr0071843; dbxref=FlyBase:FBpp0071754,FlyBase_Annotation_IDs	45471	21,5	4	4
223	FBpp0078667	eIF-3p40-PA; parent=FBgn0022023,FBtr0079030; dbxref=GB_protein:AAF52210.2,FlyBase:FBpp0078667,	38725	15,7	4	4
223	FBpp0089133	eIF-3p40-PB; parent=FBgn0022023,FBtr0079031; dbxref=FlyBase:FBpp0089133,FlyBase_Annotation_IDs	38725	15,7	4	4
-----	-------------	--	-------	------	---	---
223	FBpp0070658	torp4a-PA; parent=FBgn0025615,FBtr0070690; dbxref=FlyBase:FBpp0070658,GB_protein:AAF45969.2,Fl	38545	17,4	4	4
206	FBpp0080998	Mpp6-PA; parent=FBgn0032921,FBtr0081469; dbxref=FlyBase:FBpp0080998,FlyBase_Annotation_IDs:CG9	18513	16,7	2	9
199	FBpp0084222	111310	4,5	3	3	
196	FBpp0085744	mip40-PA; parent=FBgn0034430,FBtr0086560; dbxref=FlyBase:FBpp0085744,FlyBase_Annotation_IDs:CG	30197	15,4	2	2
195	FBpp0076216	eIF-4E-PC; parent=FBgn0015218,FBtr0076488; dbxref=FlyBase:FBpp0076216,FlyBase_Annotation_IDs:C	27924	25	3	4
192	FBpp0076215	eIF-4E-PB; parent=FBgn0015218,FBtr0076487; dbxref=FlyBase:FBpp0076215,FlyBase_Annotation_IDs:C	29320	23,9	3	4
192	FBpp0076217	eIF-4E-PD; parent=FBgn0015218,FBtr0076489; dbxref=FlyBase:FBpp0076217,FlyBase_Annotation_IDs:C	29320	23,9	3	4
192	FBpp0076218	eIF-4E-PA; parent=FBgn0015218,FBtr0076490; dbxref=FlyBase:FBpp0076218,FlyBase_Annotation_IDs:C	29320	23,9	3	4
192	FBpp0076219	29320	23,9	3	4	
192	FBpp0076220	eIF-4E-PE; parent=FBgn0015218,FBtr0076492; dbxref=FlyBase:FBpp0076220,FlyBase_Annotation_IDs:C	29320	23,9	3	4
192	FBpp0076221	eIF-4E-PF; parent=FBgn0015218,FBtr0076493; dbxref=FlyBase:FBpp0076221,FlyBase_Annotation_IDs:C	29320	23,9	3	4
185	FBpp0086694	Hsc70-5-PA; parent=FBgn0001220,FBtr0087568; dbxref=FlyBase:FBpp0086694,FlyBase_Annotation_IDs:	74248	3,8	2	2
180	FBpp0086701	RpS23-PA; parent=FBgn0033912,FBtr0087575; dbxref=FlyBase:FBpp0086701,FlyBase_Annotation_IDs:CG	16064	13,3	3	3
174	FBpp0083801	sec13-PA; parent=FBgn0024509,FBtr0084409; dbxref=FlyBase:FBpp0083801,FlyBase_Annotation_IDs:CG	39845	7,6	2	2
166	FBpp0078532	CG9769-PA; parent=FBgn0037270,FBtr0078892; dbxref=FlyBase:FBpp0078532,FlyBase_Annotation_IDs:C	31370	13,6	3	3
164	FBpp0087084	128up-PA; parent=FBgn0010339,FBtr0087976; dbxref=FlyBase_Annotation_IDs:CG8340-PA,FlyBase:FBpp	41448	6,8	2	2
155	FBpp0084464	BM-40-SPARC-PA; parent=FBgn0026562,FBtr0085094; dbxref=FlyBase:FBpp0084464,FlyBase_Annotation_	36186	13,2	3	3
155	FBpp0085281	His2B:CG17949-PA; parent=FBgn0061209,FBtr0085927; dbxref=FlyBase:FBpp0085281,GB_protein:AAN111	13688	19,5	2	3
155	FBpp0091113	His2B:CG33868-PA; parent=FBgn0053868,FBtr0091872; dbxref=FlyBase:FBpp0091113,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091115	His2B:CG33870-PA; parent=FBgn0053870,FBtr0091874; dbxref=FlyBase:FBpp0091115,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091117	His2B:CG33872-PA; parent=FBgn0053872,FBtr0091876; dbxref=FlyBase:FBpp0091117,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091119	His2B:CG33874-PA; parent=FBgn0053874,FBtr0091878; dbxref=FlyBase:FBpp0091119,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091121	His2B:CG33876-PA; parent=FBgn0053876,FBtr0091880; dbxref=FlyBase:FBpp0091121,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091123	His2B:CG33878-PA; parent=FBgn0053878,FBtr0091882; dbxref=FlyBase:FBpp0091123,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091125	His2B:CG33880-PA; parent=FBgn0053880,FBtr0091884; dbxref=FlyBase:FBpp0091125,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091127	His2B:CG33882-PA; parent=FBgn0053882,FBtr0091886; dbxref=FlyBase:FBpp0091127,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091129	His2B:CG33884-PA; parent=FBgn0053884,FBtr0091888; dbxref=FlyBase:FBpp0091129,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091131	His2B:CG33886-PA; parent=FBgn0053886,FBtr0091890; dbxref=FlyBase:FBpp0091131,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091133	His2B:CG33888-PA; parent=FBgn0053888,FBtr0091892; dbxref=FlyBase:FBpp0091133,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091135	His2B:CG33890-PA; parent=FBgn0053890,FBtr0091894; dbxref=FlyBase:FBpp0091135,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091137	His2B:CG33892-PA; parent=FBgn0053892,FBtr0091896; dbxref=FlyBase:FBpp0091137,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091139	His2B:CG33894-PA; parent=FBgn0053894,FBtr0091898; dbxref=FlyBase:FBpp0091139,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091141	His2B:CG33896-PA; parent=FBgn0053896,FBtr0091900; dbxref=FlyBase:FBpp0091141,FlyBase_Annotatio	13688	19,5	2	3

155	FBpp0091143	His2B:CG33898-PA; parent=FBgn0053898,FBtr0091902; dbxref=FlyBase:FBpp0091143,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091145	His2B:CG33900-PA; parent=FBgn0053900,FBtr0091904; dbxref=FlyBase:FBpp0091145,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091147	His2B:CG33902-PA; parent=FBgn0053902,FBtr0091906; dbxref=FlyBase:FBpp0091147,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091149	His2B:CG33904-PA; parent=FBgn0053904,FBtr0091908; dbxref=FlyBase:FBpp0091149,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091151	13688	19,5	2	3	
155	FBpp0091153	His2B:CG33908-PA; parent=FBgn0053908,FBtr0091912; dbxref=FlyBase:FBpp0091153,FlyBase_Annotatio	13688	19,5	2	3
155	FBpp0091155	13688	19,5	2	3	
153	FBpp0077159	RpL40-PA; parent=FBgn0003941,FBtr0077470; dbxref=FlyBase:FBpp0077159,FlyBase_Annotation_IDs:CG	15005	19,5	2	3
152	FBpp0071609	CG10440-PA; parent=FBgn0034636,FBtr0071692; dbxref=FlyBase:FBpp0071609,FlyBase_Annotation_IDs:	37005	11,2	2	2
151	FBpp0085851	25440	12,7	3	3	
150	FBpp0079606	RpS27A-PA; parent=FBgn0003942,FBtr0080016; dbxref=FlyBase:FBpp0079606,FlyBase_Annotation_IDs:C	18157	16	2	3
149	FBpp0076990	l(1)G0004-PA; parent=FBgn0027334,FBtr0077298; dbxref=FlyBase:FBpp0076990,FlyBase_Annotation_ID	26774	11,2	2	2
148	FBpp0070892	CG11700-PA; parent=FBgn0029856,FBtr0070931; dbxref=FlyBase:FBpp0070892,FlyBase_Annotation_IDs:	34314	8,3	2	3
148	FBpp0078977	131231	2,4	2	2	
146	FBpp0085955	lolal-PB; parent=FBgn0022238,FBtr0086776; dbxref=FlyBase:FBpp0085955,FlyBase_Annotation_IDs:CG	14650	18,1	2	2
146	FBpp0085956	lolal-PA; parent=FBgn0022238,FBtr0086777; dbxref=FlyBase:FBpp0085956,FlyBase_Annotation_IDs:CG	14650	18,1	2	2
146	FBpp0085957	lolal-PC; parent=FBgn0022238,FBtr0086778; dbxref=FlyBase:FBpp0085957,FlyBase_Annotation_IDs:CG	14650	18,1	2	2
146	FBpp0085958	lolal-PD; parent=FBgn0022238,FBtr0086779; dbxref=FlyBase:FBpp0085958,FlyBase_Annotation_IDs:CG	14650	18,1	2	2
146	FBpp0079812	RfC38-PA; parent=FBgn0028700,FBtr0080225; dbxref=GB_protein:AAF53076.2,FlyBase:FBpp0079812,Fly	41131	11,2	3	4
145	FBpp0078791	CG14005-PA; parent=FBgn0031739,FBtr0079160; dbxref=FlyBase:FBpp0078791,FlyBase_Annotation_IDs:	36541	17	3	3
144	FBpp0071766	RpS16-PA; parent=FBgn0034743,FBtr0071855; dbxref=FlyBase:FBpp0071766,FlyBase_Annotation_IDs:CG	16878	20,3	3	4
143	FBpp0076552	lark-PA; parent=FBgn0011640,FBtr0076841; dbxref=FlyBase_Annotation_IDs:CG8597-PA,FlyBase:FBpp0	40286	8,8	3	3
143	FBpp0076553	lark-PB; parent=FBgn0011640,FBtr0076842; dbxref=FlyBase:FBpp0076553,FlyBase_Annotation_IDs:CG8	40286	8,8	3	3
143	FBpp0076554	lark-PC; parent=FBgn0011640,FBtr0076843; dbxref=FlyBase_Annotation_IDs:CG8597-PC,FlyBase:FBpp0	40286	8,8	3	3
143	FBpp0076555	lark-PD; parent=FBgn0011640,FBtr0076844; dbxref=FlyBase_Annotation_IDs:CG8597-PD,FlyBase:FBpp0	40286	8,8	3	3
143	FBpp0076556	lark-PE; parent=FBgn0011640,FBtr0076845; dbxref=FlyBase_Annotation_IDs:CG8597-PE,FlyBase:FBpp0	40286	8,8	3	3
139	FBpp0070894	CG32744-PA; parent=FBgn0052744,FBtr0070933; dbxref=FlyBase:FBpp0070894,FlyBase_Annotation_IDs:	59993	4,7	2	3
136	FBpp0073034	Ubi-p63E-PA; parent=FBgn0003943,FBtr0073177; dbxref=FlyBase:FBpp0073034,FlyBase_Annotation_IDs	85746	3,3	2	3
136	FBpp0073035	Ubi-p63E-PB; parent=FBgn0003943,FBtr0073178; dbxref=FlyBase:FBpp0073035,FlyBase_Annotation_IDs	85746	3,3	2	3
136	FBpp0089269	Ubi-p63E-PC; parent=FBgn0003943,FBtr0073179; dbxref=FlyBase_Annotation_IDs:CG11624-PC,FlyBase:	85746	3,3	2	3
133	FBpp0079328	RpS13-PA; parent=FBgn0010265,FBtr0079724; dbxref=FlyBase:FBpp0079328,GB_protein:AAF52649.1,Fly	17168	17,9	2	3
133	FBpp0099990	RpS13-PB; parent=FBgn0010265,FBtr0100541; dbxref=FlyBase_Annotation_IDs:CG13389-PB,FlyBase:FBp	17168	17,9	2	3
130	FBpp0078331	Snr1-PA; parent=FBgn0011715,FBtr0078682; dbxref=FlyBase:FBpp0078331,FlyBase_Annotation_IDs:CG1	42227	8,6	2	2
129	FBpp0076917	HIc-PA; parent=FBgn0001565,FBtr0077221; dbxref=FlyBase:FBpp0076917,FlyBase_Annotation_IDs:CG16	63357	2,7	1	1

125	FBpp0086468	Vha36-PA; parent=FBgn0022097,FBtr0087335; dbxref=FlyBase:FBpp0086468,FlyBase_Annotation_IDs:CG	27610	6,5	1	1
123	FBpp0086717	Cp1-PB; parent=FBgn0013770,FBtr0087591; dbxref=GB_protein:AAM68566.1,FlyBase:FBpp0086717,FlyBa	38346	6,2	2	2
123	FBpp0086718	Cp1-PA; parent=FBgn0013770,FBtr0087592; dbxref=GB_protein:AAF58311.1,FlyBase:FBpp0086718,FlyBa	38346	6,2	2	2
123	FBpp0086719	Cp1-PC; parent=FBgn0013770,FBtr0087593; dbxref=GB_protein:AAM68565.1,FlyBase:FBpp0086719,FlyBa	41974	5,7	2	2
122	FBpp0083371	13593	22,5	2	3	
117	FBpp0071221	HP1b-PA; parent=FBgn0030082,FBtr0071284; dbxref=FlyBase:FBpp0071221,FlyBase_Annotation_IDs:CG7	26073	11,7	2	2
110	FBpp0078689	36365	10,7	2	2	
109	FBpp0079443	14045	11,8	1	1	
107	FBpp0075958	15974	7,8	1	1	
107	FBpp0078335	321611	1,6	4	10	
107	FBpp0078336	322584	1,6	4	10	
106	FBpp0086370	48891	9,2	3	3	
106	FBpp0086371	46400	9,6	3	3	
103	FBpp0086507	Arf51F-PD; parent=FBgn0013750,FBtr0087375; dbxref=FlyBase:FBpp0086507,FlyBase_Annotation_IDs:C	20107	20,6	2	2
103	FBpp0086508	Arf51F-PB; parent=FBgn0013750,FBtr0087376; dbxref=FlyBase:FBpp0086508,FlyBase_Annotation_IDs:C	20107	20,6	2	2
103	FBpp0086509	Arf51F-PC; parent=FBgn0013750,FBtr0087377; dbxref=FlyBase:FBpp0086509,FlyBase_Annotation_IDs:C	20107	20,6	2	2
103	FBpp0086510	20107	20,6	2	2	
103	FBpp0086511	Arf51F-PE; parent=FBgn0013750,FBtr0087379; dbxref=FlyBase:FBpp0086511,FlyBase_Annotation_IDs:C	20107	20,6	2	2
102	FBpp0071975	apt-PB; parent=FBgn0015903,FBtr0072066; dbxref=FlyBase:FBpp0071975,FlyBase_Annotation_IDs:CG53	55344	4,7	2	2
102	FBpp0071976	apt-PD; parent=FBgn0015903,FBtr0072067; dbxref=FlyBase:FBpp0071976,FlyBase_Annotation_IDs:CG53	54798	4,8	2	2
102	FBpp0071977	apt-PE; parent=FBgn0015903,FBtr0072068; dbxref=FlyBase:FBpp0071977,FlyBase_Annotation_IDs:CG53	53201	4,9	2	2
102	FBpp0071978	apt-PC; parent=FBgn0015903,FBtr0072069; dbxref=FlyBase:FBpp0071978,FlyBase_Annotation_IDs:CG53	54798	4,8	2	2
102	FBpp0071979	apt-PA; parent=FBgn0015903,FBtr0072070; dbxref=FlyBase:FBpp0071979,FlyBase_Annotation_IDs:CG53	54798	4,8	2	2
101	FBpp0085841	CG30122-PB; parent=FBgn0050122,FBtr0086660; dbxref=GB_protein:AAF57660.2,FlyBase:FBpp0085841,F	140809	2,5	2	2
99	FBpp0080102	RpL24-PA; parent=FBgn0032518,FBtr0080524; dbxref=FlyBase:FBpp0080102,FlyBase_Annotation_IDs:CG	17623	8,4	1	1
98	FBpp0071600	Rae1-PA; parent=FBgn0034646,FBtr0071683; dbxref=FlyBase:FBpp0071600,FlyBase_Annotation_IDs:CG9	39220	4,3	1	1
96	FBpp0078974	Hrb27C-PA; parent=FBgn0004838,FBtr0079346; dbxref=FlyBase:FBpp0078974,FlyBase_Annotation_IDs:C	44970	4,8	1	1
96	FBpp0078975	Hrb27C-PC; parent=FBgn0004838,FBtr0079347; dbxref=FlyBase:FBpp0078975,FlyBase_Annotation_IDs:C	44970	4,8	1	1
96	FBpp0078976	Hrb27C-PB; parent=FBgn0004838,FBtr0079348; dbxref=FlyBase:FBpp0078976,FlyBase_Annotation_IDs:C	44970	4,8	1	1
96	FBpp0088733	bt-PD; parent=FBgn0005666,FBtr0089792; dbxref=FlyBase:FBpp0088733,FlyBase_Annotation_IDs:CG320	1006113	0,6	5	7
96	FBpp0088734	bt-PC; parent=FBgn0005666,FBtr0089793; dbxref=FlyBase:FBpp0088734,FlyBase_Annotation_IDs:CG320	974121	0,6	5	7
95	FBpp0088732	bt-PE; parent=FBgn0005666,FBtr0089791; dbxref=FlyBase:FBpp0088732,FlyBase_Annotation_IDs:CG320	974313	0,6	5	7
95	FBpp0088735	bt-PA; parent=FBgn0005666,FBtr0089794; dbxref=FlyBase:FBpp0088735,FlyBase_Annotation_IDs:CG320	1007620	0,6	5	7
94	FBpp0088303	eIF-4G-PA; parent=FBgn0023213,FBtr0089243; dbxref=FlyBase:FBpp0088303,FlyBase_Annotation_IDs:C	150280	2,8	2	2

92	FBpp0072406	miple2-PA; parent=FBgn0029002,FBtr0072506; dbxref=FlyBase:FBpp0072406,FlyBase_Annotation_IDs:C	30899	7,2	1	1		
92	FBpp0086572	BEAF-32-PB; parent=FBgn0015602,FBtr0087442; dbxref=FlyBase:FBpp0086572,FlyBase_Annotation_IDs:	31985	10,3	2	2		
92	FBpp0082877	sds22-PA; parent=FBgn0028992,FBtr0083436; dbxref=FlyBase:FBpp0082877,FlyBase_Annotation_IDs:CG	37881	4,3	1	1		
92	FBpp0086096	CG4866-PA; parent=FBgn0034232,FBtr0086940; dbxref=FlyBase:FBpp0086096,FlyBase_Annotation_IDs:C	21347	11	2	2		
90	FBpp0079520	CG4747-PA; parent=FBgn0043456,FBtr0079930; dbxref=FlyBase:FBpp0079520,FlyBase_Annotation_IDs:C	65781	2,2	1	1		
90	FBpp0081401	3pp0081401 CG8351-PA; parent=FBgn0037632,FBtr0081918; dbxref=FlyBase:FBpp0081401,FlyBase_Annotation_IDs:C						
86	FBpp0085317	62354	3,7	1	1			
86	FBpp0099821	63030	3,7	1	1			
86	FBpp0074462	173124	2,4	3	5			
86	FBpp0070118	18813	10,5	1	1			
86	FBpp0070119	18813	10,5	1	1			
86	FBpp0070120	18813	10,5	1	1			
86	FBpp0070121	18813	10,5	1	1			
86	FBpp0070122	18813	10,5	1	1			
86	FBpp0070123	18813	10,5	1	1			
86	FBpp0070124	18813	10,5	1	1			
86	FBpp0099971	18813	10,5	1	1			
86	FBpp0070027		23019	9,5	2	2		
85	FBpp0078770	CG7239-PA; parent=FBgn0031740,FBtr0079139; dbxref=FlyBase:FBpp0078770,FlyBase_Annotation_IDs:C	52177	3,1	1	1		
84	FBpp0071846	RpS24-PA; parent=FBgn0034751,FBtr0071935; dbxref=FlyBase:FBpp0071846,FlyBase_Annotation_IDs:CG	15095	9,2	1	1		
83	FBpp0088256	Arf102F-PA; parent=FBgn0013749,FBtr0089192; dbxref=FlyBase:FBpp0088256,GB_protein:AAF59383.1,F	20718	6,1	1	1		
83	FBpp0087166	CG13185-PA; parent=FBgn0033661,FBtr0088060; dbxref=FlyBase:FBpp0087166,FlyBase_Annotation_IDs:	609327	1	4	4		
83	FBpp0084761	Ef1gamma-PB; parent=FBgn0029176,FBtr0085392; dbxref=FlyBase:FBpp0084761,FlyBase_Annotation_IDs	49222	3	1	1		
83	FBpp0084762	Ef1gamma-PA; parent=FBgn0029176,FBtr0085393; dbxref=FlyBase:FBpp0084762,FlyBase_Annotation_IDs	49222	3	1	1		
81	FBpp0078222	Arf79F-PA; parent=FBgn0010348,FBtr0078571; dbxref=FlyBase:FBpp0078222,FlyBase_Annotation_IDs:C	20732	6	1	1		
81	FBpp0078223	Arf79F-PD; parent=FBgn0010348,FBtr0078572; dbxref=FlyBase:FBpp0078223,FlyBase_Annotation_IDs:C	20732	6	1	1		
81	FBpp0078224	Arf79F-PB; parent=FBgn0010348,FBtr0078573; dbxref=FlyBase:FBpp0078224,FlyBase_Annotation_IDs:C	20732	6	1	1		
81	FBpp0078225	Arf79F-PE; parent=FBgn0010348,FBtr0078574; dbxref=FlyBase:FBpp0078225,FlyBase_Annotation_IDs:C	20732	6	1	1		
81	FBpp0078226	Arf79F-PC; parent=FBgn0010348,FBtr0078575; dbxref=FlyBase:FBpp0078226,FlyBase_Annotation_IDs:C	20732	6	1	1		
81	FBpp0073519	CG4004-PA; parent=FBgn0030418,FBtr0073686; dbxref=FlyBase:FBpp0073519,FlyBase_Annotation_IDs:C	38102	3,1	1	1		
81	FBpp0073520	CG4004-PB; parent=FBgn0030418,FBtr0073687; dbxref=FlyBase:FBpp0073520,FlyBase_Annotation_IDs:C	40281	2,9	1	1		
80	FBpp0082511	Caf1-PA; parent=FBgn0015610,FBtr0083052; dbxref=FlyBase:FBpp0082511,FlyBase_Annotation_IDs:CG4	48947	6,5	2	3		
78	FBpp0082678	msps-PA; parent=FBgn0027948,FBtr0083224; dbxref=FlyBase:FBpp0082678,FlyBase_Annotation_IDs:CG5	227856	1,7	3	4		
78	FBpp0079251	Su(var)205-PA; parent=FBgn0003607,FBtr0079635; dbxref=FlyBase:FBpp0079251,FlyBase_Annotation_I	23228	7,8	1	1		

78	FBpp0079252	Su(var)205-PB; parent=FBgn0003607,FBtr0079636; dbxref=FlyBase:FBpp0079252,FlyBase_Annotation_I	23228	7,8	1	1
77	FBpp0072745	HBS1-PA; parent=FBgn0042712,FBtr0072866; dbxref=GB_protein:AAF47584.2,GB_protein:AAF47584.1,FI	74745	4,5	3	6
76	FBpp0078728	cl-PA; parent=FBgn0000318,FBtr0079095; dbxref=FlyBase:FBpp0078728,FlyBase_Annotation_IDs:CG110	14879	24,6	2	2
75	FBpp0075450	CG9311-PA; parent=FBgn0036448,FBtr0075700; dbxref=FlyBase:FBpp0075450,FlyBase_Annotation_IDs:C	201344	3,1	3	4
72	FBpp0085915	pAbp-PC; parent=FBgn0003031,FBtr0086736; dbxref=GB_protein:AAF57746.1,FlyBase:FBpp0085915,FlyB	70110	3,2	1	1
72	FBpp0085916	pAbp-PE; parent=FBgn0003031,FBtr0086737; dbxref=FlyBase:FBpp0085916,FlyBase_Annotation_IDs:CG5	70110	3,2	1	1
72	FBpp0085917	pAbp-PA; parent=FBgn0003031,FBtr0086738; dbxref=FlyBase:FBpp0085917,FlyBase_Annotation_IDs:CG5	70110	3,2	1	1
72	FBpp0085918	pAbp-PF; parent=FBgn0003031,FBtr0086739; dbxref=FlyBase:FBpp0085918,FlyBase_Annotation_IDs:CG5	70110	3,2	1	1
72	FBpp0085919	pAbp-PB; parent=FBgn0003031,FBtr0086740; dbxref=FlyBase:FBpp0085919,FlyBase_Annotation_IDs:CG5	70110	3,2	1	1
72	FBpp0085920	70110	3,2	1	1	
72	FBpp0085921	pAbp-PG; parent=FBgn0003031,FBtr0086742; dbxref=FlyBase:FBpp0085921,FlyBase_Annotation_IDs:CG5	70110	3,2	1	1
72	FBpp0085922	pAbp-PH; parent=FBgn0003031,FBtr0086743; dbxref=FlyBase:FBpp0085922,FlyBase_Annotation_IDs:CG5	70110	3,2	1	1
72	FBpp0087113	18265	11,6	1	1	
72	FBpp0087114	RpS11-PB; parent=FBgn0033699,FBtr0088006; dbxref=FlyBase:FBpp0087114,FlyBase_Annotation_IDs:CG	18262	11,7	1	1
72	FBpp0087115	RpS11-PC; parent=FBgn0033699,FBtr0088007; dbxref=FlyBase:FBpp0087115,FlyBase_Annotation_IDs:CG	18265	11,6	1	1
71	FBpp0082917	CG31251-PA; parent=FBgn0051251,FBtr0083484; dbxref=GB_protein:AAN13748.1,GB_protein:AAN13748.2	35154	3,9	1	1
70	FBpp0075077	Dab-PA; parent=FBgn0000414,FBtr0075318; dbxref=FlyBase:FBpp0075077,FlyBase_Annotation_IDs:CG96	243267	1,1	3	3
70	FBpp0087852	lig-PA; parent=FBgn0020279,FBtr0088774; dbxref=GB_protein:AAM68848.1,FlyBase:FBpp0087852,FlyBa	135935	1,6	1	2
70	FBpp0087853	lig-PB; parent=FBgn0020279,FBtr0088775; dbxref=GB_protein:AAF59144.2,FlyBase:FBpp0087853,FlyBa	134652	1,7	1	2
70	FBpp0087854	lig-PC; parent=FBgn0020279,FBtr0088776; dbxref=GB_protein:AAS64895.1,FlyBase:FBpp0087854,FlyBa	135935	1,6	1	2
70	FBpp0100030	lig-PD; parent=FBgn0020279,FBtr0100575; dbxref=FlyBase_Annotation_IDs:CG8715-PD,FlyBase:FBpp01	139807	1,6	1	2
69	FBpp0082692	mor-PA; parent=FBgn0002783,FBtr0083238; dbxref=FlyBase:FBpp0082692,FlyBase_Annotation_IDs:CG18	131736	2,2	2	12
69	FBpp0073834	Pp1-13C-PA; parent=FBgn0003132,FBtr0074017; dbxref=FlyBase:FBpp0073834,FlyBase_Annotation_IDs:	35277	3,3	1	1
69	FBpp0082067	Pp1-87B-PA; parent=FBgn0004103,FBtr0082595; dbxref=FlyBase:FBpp0082067,FlyBase_Annotation_IDs:	35260	3,3	1	1
68	FBpp0083625	Nop56-PA; parent=FBgn0038964,FBtr0084230; dbxref=GB_protein:AAF55992.2,FlyBase:FBpp0083625,Fly	55031	6,7	2	2
68	FBpp0084911	CG7896-PA; parent=FBgn0039728,FBtr0085545; dbxref=FlyBase:FBpp0084911,FlyBase_Annotation_IDs:C	154749	2,2	3	3
67	FBpp0086708	CG8233-PA; parent=FBgn0033897,FBtr0087582; dbxref=FlyBase:FBpp0086708,FlyBase_Annotation_IDs:C	108502	3,4	2	3
67	FBpp0086710	CG8233-PC; parent=FBgn0033897,FBtr0087584; dbxref=GB_protein:AAM70986.1,FlyBase:FBpp0086710,Fl	101191	3,6	2	3
66	FBpp0076529	SP2523-PD; parent=FBgn0083993,FBtr0076818; dbxref=FlyBase_Annotation_IDs:CG18768-PA,FlyBase:FB	209949	2,3	3	5
66	FBpp0076530	SP2523-PC; parent=FBgn0083993,FBtr0076819; dbxref=FlyBase_Annotation_IDs:CG18768-PB,FlyBase:FB	188013	2,6	3	5
66	FBpp0071049	l(1)G0155-PA; parent=FBgn0026664,FBtr0071093; dbxref=FlyBase:FBpp0071049,FlyBase_Annotation_ID	22576	8,5	1	1
66	FBpp0089363	bl-PC; parent=FBgn0015907,FBtr0086221; dbxref=FlyBase:FBpp0089363,FlyBase_Annotation_IDs:CG134	51105	12,4	3	3
66	FBpp0089365	bl-PA; parent=FBgn0015907,FBtr0086220; dbxref=FlyBase:FBpp0089365,FlyBase_Annotation_IDs:CG134	50320	12,5	3	3
65	FBpp0086709	CG8233-PB; parent=FBgn0033897,FBtr0087583; dbxref=FlyBase:FBpp0086709,FlyBase_Annotation_IDs:C	114582	3,2	2	3

65	FBpp0074756	rept-PA; parent=FBgn0040075,FBtr0074988; dbxref=GB_protein:AAF49182.1,FlyBase:FBpp0074756,FlyB	53907	3,5	1	1
65	FBpp0083604	sar1-PA; parent=FBgn0038947,FBtr0084206; dbxref=FlyBase:FBpp0083604,FlyBase_Annotation_IDs:CG7	21911	6,7	1	1
65	FBpp0083605	sar1-PB; parent=FBgn0038947,FBtr0084207; dbxref=FlyBase:FBpp0083605,FlyBase_Annotation_IDs:CG7	17591	8,4	1	1
65	FBpp0083606	sar1-PD; parent=FBgn0038947,FBtr0084208; dbxref=FlyBase:FBpp0083606,FlyBase_Annotation_IDs:CG7	21911	6,7	1	1
65	FBpp0083607	sar1-PC; parent=FBgn0038947,FBtr0084209; dbxref=FlyBase:FBpp0083607,FlyBase_Annotation_IDs:CG7	21911	6,7	1	1
65	FBpp0089284	sar1-PE; parent=FBgn0038947,FBtr0084210; dbxref=FlyBase:FBpp0089284,FlyBase_Annotation_IDs:CG7	21911	6,7	1	1
65	FBpp0086315	47829	5	2	9	
65	FBpp0086316	47829	5	2	9	
64	FBpp0076960	31794	6,2	1	1	
63	FBpp0086769	31961	3,7	1	1	
63	FBpp0086770	31961	3,7	1	1	
63	FBpp0084162	21480	8,2	1	1	
63	FBpp0084163	27508	6,6	1	1	
62	FBpp0076006	CG32066-PC; parent=FBgn0052066,FBtr0076277; dbxref=FlyBase:FBpp0076006,FlyBase_Annotation_IDs:	36831	3,4	1	1
62	FBpp0076007	CG32066-PB; parent=FBgn0052066,FBtr0076278; dbxref=FlyBase:FBpp0076007,FlyBase_Annotation_IDs:	36831	3,4	1	1
62	FBpp0082041	GstD2-PA; parent=FBgn0010038,FBtr0082569; dbxref=FlyBase:FBpp0082041,FlyBase_Annotation_IDs:CG	24576	9,8	1	1
62	FBpp0082044	GstD5-PA; parent=FBgn0010041,FBtr0082572; dbxref=GB_protein:AAF54790.2,GB_protein:AAF54790.3,F	24755	9,7	1	1
61	FBpp0079485	Dref-PA; parent=FBgn0015664,FBtr0079889; dbxref=FlyBase_Annotation_IDs:CG5838-PA,FlyBase:FBpp0	81075	6,8	2	45
61	FBpp0079000	CG13773-PA; parent=FBgn0042092,FBtr0079372; dbxref=FlyBase:FBpp0079000,FlyBase_Annotation_IDs:	28645	6,3	1	1
61	FBpp0070143	RpL22-PA; parent=FBgn0015288,FBtr0070148; dbxref=FlyBase:FBpp0070143,FlyBase_Annotation_IDs:CG	30649	4	1	1
61	FBpp0082927	Prx5037-PA; parent=FBgn0038519,FBtr0083503; dbxref=FlyBase:FBpp0082927,FlyBase_Annotation_IDs:	26534	4,7	1	1
60	FBpp0083986	CG6364-PA; parent=FBgn0039179,FBtr0084602; dbxref=FlyBase:FBpp0083986,FlyBase_Annotation_IDs:C	29309	13,5	2	3
60	FBpp0074228	beta-Spec-PA; parent=FBgn0003471,FBtr0074454; dbxref=FlyBase:FBpp0074228,FlyBase_Annotation_ID	266316	2,2	3	3
60	FBpp0070422	wds-PA; parent=FBgn0040066,FBtr0070438; dbxref=FlyBase:FBpp0070422,FlyBase_Annotation_IDs:CG17	39530	4,4	1	1
60	FBpp0082081	MBD-R2-PB; parent=FBgn0038016,FBtr0082611; dbxref=GB_protein:AAF54781.1,GB_protein:AAF54781.2,	131265	1,9	2	2
60	FBpp0082082	MBD-R2-PA; parent=FBgn0038016,FBtr0082612; dbxref=FlyBase:FBpp0082082,FlyBase_Annotation_IDs:C	120748	2	2	2
59	FBpp0072743	dre4-PA; parent=FBgn0002183,FBtr0072864; dbxref=FlyBase_Annotation_IDs:CG1828-PA,FlyBase:FBpp0	128328	4,2	3	3
59	FBpp0080639	RpS26-PA; parent=FBgn0004413,FBtr0081089; dbxref=FlyBase:FBpp0080639,FlyBase_Annotation_IDs:CG	13543	10,5	1	1
59	FBpp0080640	RpS26-PB; parent=FBgn0004413,FBtr0081090; dbxref=FlyBase:FBpp0080640,FlyBase_Annotation_IDs:CG	13543	10,5	1	1
59	FBpp0080641	RpS26-PC; parent=FBgn0004413,FBtr0081091; dbxref=FlyBase:FBpp0080641,FlyBase_Annotation_IDs:CG	13543	10,5	1	1
59	FBpp0082167	CtBP-PA; parent=FBgn0020496,FBtr0082699; dbxref=FlyBase_Annotation_IDs:CG7583-PA,FlyBase:FBpp0	42738	4,9	1	1
59	FBpp0082168	CtBP-PC; parent=FBgn0020496,FBtr0082700; dbxref=FlyBase_Annotation_IDs:CG7583-PC,FlyBase:FBpp0	42738	4,9	1	1
59	FBpp0082169	CtBP-PB; parent=FBgn0020496,FBtr0082701; dbxref=FlyBase_Annotation_IDs:CG7583-PB,FlyBase:FBpp0	42738	4,9	1	1
59	FBpp0082170	CtBP-PD; parent=FBgn0020496,FBtr0082702; dbxref=FlyBase Annotation IDs:CG7583-PD,FlyBase:FBpp0	42738	4,9	1	1

59	FBpp0099514	CtBP-PE; parent=FBgn0020496,FBtr0100161; dbxref=FlyBase_Annotation_IDs:CG7583-PE,FlyBase:FBpp0	51218	4	1	1
59	FBpp0072728	sls-PC; parent=FBgn0003432,FBtr0072849; dbxref=FlyBase:FBpp0072728,FlyBase_Annotation_IDs:CG19	2063854	0,3	3	3
58	FBpp0081820	Tctp-PA; parent=FBgn0037874,FBtr0082344; dbxref=FlyBase:FBpp0081820,FlyBase_Annotation_IDs:CG4	19796	19,2	2	2
58	FBpp0084541	CG3339-PA; parent=FBgn0039510,FBtr0085171; dbxref=FlyBase:FBpp0084541,FlyBase_Annotation_IDs:C	525755	1	3	5
58	FBpp0110152	CG3339-PB; parent=FBgn0039510,FBtr0110855; dbxref=FlyBase:FBpp0110152,FlyBase_Annotation_IDs:C	541886	0,9	3	5
58	FBpp0072077	CG3173-PA; parent=FBgn0034964,FBtr0072168; dbxref=FlyBase:FBpp0072077,FlyBase_Annotation_IDs:C	237286	0,9	2	5
57	FBpp0082404	107709	1,4	1	1	
57	FBpp0082405	107709	1,4	1	1	
56	FBpp0071616	51073	6,3	2	7	
56	FBpp0071617	60113	5,4	2	7	
55	FBpp0074237	29467	4	1	1	
55	FBpp0084754	113754	2,5	2	3	
55	FBpp0072019	29989	6,4	2	2	
55	FBpp0076819	mad2-PA; parent=FBgn0035640,FBtr0077113; dbxref=FlyBase:FBpp0076819,FlyBase_Annotation_IDs:CG1	23618	5,3	1	1
55	FBpp0083802	RpS3-PA; parent=FBgn0002622,FBtr0084410; dbxref=FlyBase:FBpp0083802,FlyBase_Annotation_IDs:CG6	27682	8,5	2	2
55	FBpp0088208	NfI-PB; parent=FBgn0042696,FBtr0089141; dbxref=FlyBase:FBpp0088208,FlyBase_Annotation_IDs:CG23	85967	6,8	2	2
55	FBpp0081687	526777	0,7	3	4	
55	FBpp0081688	MICAL-PC; parent=FBgn0053208,FBtr0082210; dbxref=FlyBase:FBpp0081688,FlyBase_Annotation_IDs:CG	526777	0,7	3	4
55	FBpp0081689	MICAL-PH; parent=FBgn0053208,FBtr0082211; dbxref=FlyBase:FBpp0081689,FlyBase_Annotation_IDs:CG	526777	0,7	3	4
55	FBpp0081690	MICAL-PG; parent=FBgn0053208,FBtr0082212; dbxref=FlyBase:FBpp0081690,FlyBase_Annotation_IDs:CG	526777	0,7	3	4
55	FBpp0081691	MICAL-PD; parent=FBgn0053208,FBtr0082213; dbxref=FlyBase:FBpp0081691,FlyBase_Annotation_IDs:CG	526777	0,7	3	4
54	FBpp0073561	REG-PA; parent=FBgn0029133,FBtr0073730; dbxref=FlyBase:FBpp0073561,FlyBase_Annotation_IDs:CG15	28275	4,1	2	2
54	FBpp0076200	Uch-L3-PA; parent=FBgn0011327,FBtr0076472; dbxref=FlyBase:FBpp0076200,FlyBase_Annotation_IDs:C	37934	4,6	1	1
53	FBpp0072464	klar-PA; parent=FBgn0001316,FBtr0072565; dbxref=GB_protein:AAF47389.1,FlyBase:FBpp0072464,FlyB	246945	0,9	2	2
53	FBpp0110115	klar-PB; parent=FBgn0001316,FBtr0110818; dbxref=FlyBase:FBpp0110115,FlyBase_Annotation_IDs:CG1	223014	1	2	2
53	FBpp0075087	nudC-PA; parent=FBgn0021768,FBtr0075328; dbxref=FlyBase:FBpp0075087,FlyBase_Annotation_IDs:CG9	37996	5,1	1	1
52	FBpp0085697	cora-PA; parent=FBgn0010434,FBtr0086509; dbxref=FlyBase:FBpp0085697,FlyBase_Annotation_IDs:CG1	184455	1,4	2	5
52	FBpp0070612	GlcAT-I-PA; parent=FBgn0066114,FBtr0070644; dbxref=FlyBase:FBpp0070612,FlyBase_Annotation_IDs:	35163	12,1	2	3
52	FBpp0072338	Eps-15-PC; parent=FBgn0035060,FBtr0072433; dbxref=FlyBase:FBpp0072338,FlyBase_Annotation_IDs:C	119761	2,1	1	1
52	FBpp0072339	Eps-15-PB; parent=FBgn0035060,FBtr0072434; dbxref=FlyBase:FBpp0072339,FlyBase_Annotation_IDs:C	132258	1,9	1	1
52	FBpp0072340	Eps-15-PA; parent=FBgn0035060,FBtr0072435; dbxref=FlyBase:FBpp0072340,FlyBase_Annotation_IDs:C	134507	1,8	1	1
51	FBpp0085717	RpL11-PA; parent=FBgn0013325,FBtr0086533; dbxref=FlyBase:FBpp0085717,FlyBase_Annotation_IDs:CG	21270	4,9	1	1
50	FBpp0070562	CG2875-PB; parent=FBgn0029672,FBtr0070587; dbxref=FlyBase:FBpp0070562,FlyBase_Annotation_IDs:C	56932	6,2	2	4
50	FBpp0070353	CG14814-PB; parent=FBgn0023515,FBtr0070369; dbxref=FlyBase:FBpp0070353,FlyBase_Annotation_IDs:	117740	2,6	2	3

50	FBpp0070354	CG14814-PA; parent=FBgn0023515,FBtr0070370; dbxref=GB_protein:AAN09061.2,GB_protein:AAN09061.1	115176	2,6	2	3
50	FBpp0076652	CG8549-PA; parent=FBgn0035714,FBtr0076943; dbxref=FlyBase:FBpp0076652,FlyBase_Annotation_IDs:C	28846	9,5	2	2
50	FBpp0085855	GstE6-PA; parent=FBgn0063494,FBtr0086674; dbxref=FlyBase:FBpp0085855,FlyBase_Annotation_IDs:CG	24999	4,5	1	1
50	FBpp0070791	CG12236-PB; parent=FBgn0029822,FBtr0070826; dbxref=FlyBase:FBpp0070791,FlyBase_Annotation_IDs:	57245	2	1	2
49	FBpp0074076	CG9947-PA; parent=FBgn0030752,FBtr0074301; dbxref=FlyBase:FBpp0074076,FlyBase_Annotation_IDs:C	40134	7,6	2	4
49	FBpp0086051	CG6459-PA; parent=FBgn0034259,FBtr0086892; dbxref=FlyBase:FBpp0086051,FlyBase_Annotation_IDs:C	29243	3,8	1	2
48	FBpp0086122	167167	2	2	7	
48	FBpp0073792	Eo-PA; parent=FBgn0030597,FBtr0073975; dbxref=FlyBase:FBpp0073792,FlyBase_Annotation_IDs:CG950	73084	2,4	2	3
48	FBpp0083717	258363	1	2	2	
47	FBpp0070561	57060	6,2	2	4	
47	FBpp0070790	CG12236-PA; parent=FBgn0029822,FBtr0070825; dbxref=FlyBase:FBpp0070790,FlyBase_Annotation_IDs:	61163	1,8	1	2
47	FBpp0083572	pit-PB; parent=FBgn0025140,FBtr0084174; dbxref=FlyBase:FBpp0083572,FlyBase_Annotation_IDs:CG63	77165	2,2	1	1
47	FBpp0083573	77165	2,2	1	1	
47	FBpp0079148	36016	6,8	1	2	
46	FBpp0079166	MED20-PA; parent=FBgn0013531,FBtr0079544; dbxref=FlyBase:FBpp0079166,FlyBase_Annotation_IDs:CG	28015	4,4	1	1
46	FBpp0074716	CG9392-PA; parent=FBgn0036895,FBtr0074948; dbxref=FlyBase:FBpp0074716,FlyBase_Annotation_IDs:C	132960	1,8	2	4
46	FBpp0074657	74577	4	2	2	
46	FBpp0074658	Paps-PE; parent=FBgn0020389,FBtr0074889; dbxref=FlyBase:FBpp0074658,FlyBase_Annotation_IDs:CG8	71632	4,1	2	2
46	FBpp0110399	Paps-PF; parent=FBgn0020389,FBtr0111108; dbxref=FlyBase:FBpp0110399,FlyBase_Annotation_IDs:CG8	71632	4,1	2	2
46	FBpp0071829	jbug-PB; parent=FBgn0028371,FBtr0071918; dbxref=FlyBase:FBpp0071829,FlyBase_Annotation_IDs:CG3	177624	1,2	2	3
46	FBpp0086012	CG11423-PA; parent=FBgn0034251,FBtr0086834; dbxref=GB_protein:AAF57825.2,FlyBase:FBpp0086012,F	77844	5,4	2	9
46	FBpp0074011	nonA-PA; parent=FBgn0004227,FBtr0074232; dbxref=FlyBase_Annotation_IDs:CG4211-PA,FlyBase:FBpp0	77158	2,7	1	1
46	FBpp0074012	nonA-PB; parent=FBgn0004227,FBtr0074233; dbxref=FlyBase_Annotation_IDs:CG4211-PB,FlyBase:FBpp0	82279	2,6	1	1
46	FBpp0100043	nonA-PC; parent=FBgn0004227,FBtr0100586; dbxref=FlyBase_Annotation_IDs:CG4211-PC,FlyBase:FBpp0	77256	2,7	1	1
46	FBpp0086061	Dcr-2-PA; parent=FBgn0034246,FBtr0086904; dbxref=FlyBase:FBpp0086061,FlyBase_Annotation_IDs:CG	199463	1,3	2	18
46	FBpp0073872	CG9281-PB; parent=FBgn0030672,FBtr0074056; dbxref=FlyBase:FBpp0073872,FlyBase_Annotation_IDs:C	70085	3,3	2	3
46	FBpp0073873	CG9281-PC; parent=FBgn0030672,FBtr0074057; dbxref=FlyBase:FBpp0073873,FlyBase_Annotation_IDs:C	70085	3,3	2	3
45	FBpp0072929	PHGPx-PB; parent=FBgn0035438,FBtr0073065; dbxref=FlyBase:FBpp0072929,FlyBase_Annotation_IDs:CG	18836	7,1	1	1
45	FBpp0072930	PHGPx-PC; parent=FBgn0035438,FBtr0073066; dbxref=FlyBase:FBpp0072930,FlyBase_Annotation_IDs:CG	22024	6,1	1	1
45	FBpp0072931	PHGPx-PA; parent=FBgn0035438,FBtr0073067; dbxref=FlyBase:FBpp0072931,FlyBase_Annotation_IDs:CG	18836	7,1	1	1
45	FBpp0072932	PHGPx-PD; parent=FBgn0035438,FBtr0073068; dbxref=FlyBase:FBpp0072932,FlyBase_Annotation_IDs:CG	26620	5	1	1
45	FBpp0074432	CG18259-PA; parent=FBgn0030956,FBtr0074661; dbxref=FlyBase:FBpp0074432,FlyBase_Annotation_IDs:	53107	6,5	2	2
45	FBpp0076926	CG1801-PA; parent=FBgn0031171,FBtr0077231; dbxref=FlyBase:FBpp0076926,FlyBase_Annotation_IDs:C	189479	1,6	2	6
45	FBpp0083693	CG6954-PA; parent=FBgn0039000,FBtr0084300; dbxref=FlyBase:FBpp0083693,FlyBase_Annotation_IDs:C	181921	2,1	2	2

45	FBpp0070596	lva-PC; parent=FBgn0029688,FBtr0070626; dbxref=FlyBase:FBpp0070596,FlyBase_Annotation_IDs:CG64	316451	0,9	2	2
44	FBpp0074654	Paps-PB; parent=FBgn0020389,FBtr0074885; dbxref=FlyBase:FBpp0074654,FlyBase_Annotation_IDs:CG8	71443	4,1	2	2
44	FBpp0074655	Paps-PC; parent=FBgn0020389,FBtr0074886; dbxref=FlyBase:FBpp0074655,FlyBase_Annotation_IDs:CG8	71443	4,1	2	2
44	FBpp0074656	Paps-PA; parent=FBgn0020389,FBtr0074887; dbxref=FlyBase:FBpp0074656,FlyBase_Annotation_IDs:CG8	71443	4,1	2	2
44	FBpp0076486	pbI-PA; parent=FBgn0003041,FBtr0076771; dbxref=FlyBase:FBpp0076486,FlyBase_Annotation_IDs:CG81	97534	3,8	2	2
44	FBpp0076487	pbl-PB; parent=FBgn0003041,FBtr0076772; dbxref=FlyBase:FBpp0076487,FlyBase_Annotation_IDs:CG81	147406	2,4	2	2
44	FBpp0076488	pbI-PC; parent=FBgn0003041,FBtr0076773; dbxref=FlyBase:FBpp0076488,FlyBase_Annotation_IDs:CG81	89652	4,1	2	2
44	FBpp0076489	pbl-PD; parent=FBgn0003041,FBtr0076774; dbxref=FlyBase:FBpp0076489,FlyBase_Annotation_IDs:CG81	139523	2,6	2	2
44	FBpp0079130	CG13794-PA; parent=FBgn0031936,FBtr0079507; dbxref=FlyBase:FBpp0079130,FlyBase_Annotation_IDs:	60517	7,5	2	2
44	FBpp0083269	CG4572-PA; parent=FBgn0038738,FBtr0083860; dbxref=FlyBase:FBpp0083269,FlyBase_Annotation_IDs:C	54579	2,3	1	1
44	FBpp0083270	CG4572-PB; parent=FBgn0038738,FBtr0083861; dbxref=FlyBase:FBpp0083270,FlyBase_Annotation_IDs:C	54579	2,3	1	1
44	FBpp0083271	CG4572-PC; parent=FBgn0038738,FBtr0083862; dbxref=FlyBase:FBpp0083271,FlyBase_Annotation_IDs:C	54579	2,3	1	1
44	FBpp0086103	RpL18A-PA; parent=FBgn0010409,FBtr0086947; dbxref=FlyBase:FBpp0086103,FlyBase_Annotation_IDs:C	21073	7,9	1	1
44	FBpp0074676	CG14183-PA; parent=FBgn0036931,FBtr0074907; dbxref=GB_protein:AAF49077.1,GB_protein:AAF49077.2	102777	2,9	2	3
43	FBpp0072080	CG13563-PA; parent=FBgn0034966,FBtr0072171; dbxref=FlyBase:FBpp0072080,FlyBase_Annotation_IDs:	66103	5	2	2
43	FBpp0071868	Dox-A3-PA; parent=FBgn0000487,FBtr0071957; dbxref=FlyBase:FBpp0071868,FlyBase_Annotation_IDs:C	79720	3,8	2	2
43	FBpp0073259	CG1582-PA; parent=FBgn0030246,FBtr0073403; dbxref=FlyBase:FBpp0073259,FlyBase_Annotation_IDs:C	147597	2,3	2	2
43	FBpp0081549	CG16789-PA; parent=FBgn0037712,FBtr0082071; dbxref=FlyBase:FBpp0081549,FlyBase_Annotation_IDs:	91717	2,5	2	4
43	FBpp0080820	CG10188-PB; parent=FBgn0032796,FBtr0081282; dbxref=FlyBase:FBpp0080820,FlyBase_Annotation_IDs:	146192	2,3	2	2
43	FBpp0080821	CG10188-PA; parent=FBgn0032796,FBtr0081283; dbxref=FlyBase:FBpp0080821,FlyBase_Annotation_IDs:	146192	2,3	2	2
43	FBpp0077803	kis-PA; parent=FBgn0001309,FBtr0078144; dbxref=FlyBase:FBpp0077803,FlyBase_Annotation_IDs:CG36	575278	0,6	2	3
43	FBpp0075495	Hml-PA; parent=FBgn0029167,FBtr0075753; dbxref=GB_protein:AAF49795.2,FlyBase:FBpp0075495,FlyBa	443352	0,7	2	2
43	FBpp0081343	CG9601-PA; parent=FBgn0037578,FBtr0081854; dbxref=FlyBase:FBpp0081343,FlyBase_Annotation_IDs:C	59214	6,3	2	9
43	FBpp0110162	PIP5K59B-PC; parent=FBgn0034789,FBtr0110862; dbxref=FlyBase:FBpp0110162,FlyBase_Annotation_IDs	105040	2,1	2	2
43	FBpp0088385	lola-PU; parent=FBgn0005630,FBtr0089351; dbxref=FlyBase_Annotation_IDs:CG12052-PU,FlyBase:FBpp	62335	10,6	2	2
43	FBpp0088393	lola-PT; parent=FBgn0005630,FBtr0089359; dbxref=FlyBase_Annotation_IDs:CG12052-PT,FlyBase:FBpp	62335	10,6	2	2
42	FBpp0088108	CG12836-PA; parent=FBgn0033140,FBtr0089037; dbxref=FlyBase:FBpp0088108,FlyBase_Annotation_IDs:	30685	4,5	1	10
42	FBpp0078212	Mes2-PB; parent=FBgn0037207,FBtr0078561; dbxref=FlyBase:FBpp0078212,FlyBase_Annotation_IDs:CG1	48214	3,7	1	1
42	FBpp0078213	Mes2-PA; parent=FBgn0037207,FBtr0078562; dbxref=FlyBase:FBpp0078213,FlyBase_Annotation_IDs:CG1	19841	9,4	1	1
42	FBpp0083909	sba-PA; parent=FBgn0016754,FBtr0084523; dbxref=FlyBase:FBpp0083909,FlyBase_Annotation_IDs:CG13	126096	2,8	2	2
42	FBpp0075100	CG9674-PA; parent=FBgn0036663,FBtr0075341; dbxref=FlyBase:FBpp0075100,FlyBase_Annotation_IDs:C	234038	0,7	1	5
42	FBpp0075103	CG9674-PD; parent=FBgn0036663,FBtr0075344; dbxref=FlyBase:FBpp0075103,FlyBase_Annotation_IDs:C	234038	0,7	1	5
41	FBpp0071828	jbug-PD; parent=FBgn0028371,FBtr0071917; dbxref=FlyBase:FBpp0071828,FlyBase_Annotation_IDs:CG3	322174	0,7	2	3
41	FBpp0085925	CG10915-PA; parent=FBgn0034308,FBtr0086746; dbxref=FlyBase:FBpp0085925,FlyBase_Annotation_IDs:	65553	4,9	2	2

41	FBpp0074394	Wnt5-PA; parent=FBgn0010194,FBtr0074623; dbxref=FlyBase:FBpp0074394,FlyBase_Annotation_IDs:CG6	113985	3,2	2	3
41	FBpp0086374	lbk-PA; parent=FBgn0034083,FBtr0087235; dbxref=GB_protein:AAF58053.1,FlyBase:FBpp0086374,FlyBa	131502	2,5	2	2
40	FBpp0073539	Smr-PA; parent=FBgn0024308,FBtr0073706; dbxref=FlyBase:FBpp0073539,FlyBase_Annotation_IDs:CG40	379239	0,6	2	2
40	FBpp0073540	Smr-PB; parent=FBgn0024308,FBtr0073707; dbxref=FlyBase:FBpp0073540,FlyBase_Annotation_IDs:CG40	379239	0,6	2	2
40	FBpp0073541	Smr-PC; parent=FBgn0024308,FBtr0073708; dbxref=FlyBase:FBpp0073541,FlyBase_Annotation_IDs:CG40	379239	0,6	2	2
40	FBpp0083240	CG4936-PA; parent=FBgn0038768,FBtr0083831; dbxref=FlyBase:FBpp0083240,FlyBase_Annotation_IDs:C	59686	2,9	1	1
40	FBpp0072934	kst-PA; parent=FBgn0004167,FBtr0073070; dbxref=FlyBase:FBpp0072934,FlyBase_Annotation_IDs:CG12	472720	0,4	2	10
40	FBpp0089203	kst-PB; parent=FBgn0004167,FBtr0073071; dbxref=FlyBase:FBpp0089203,GB_protein:AAS64958.1,FlyBa	475126	0,4	2	10
40	FBpp0089204	kst-PC; parent=FBgn0004167,FBtr0073072; dbxref=FlyBase:FBpp0089204,GB_protein:AAS64957.1,FlyBa	484758	0,4	2	10
40	FBpp0082219	45886	3	1	1	
40	FBpp0082220	45886	3	1	1	
40	FBpp0082221	45886	3	1	1	
40	FBpp0082222	CG8863-PD; parent=FBgn0038145,FBtr0082754; dbxref=FlyBase:FBpp0082222,FlyBase_Annotation_IDs:C	45886	3	1	1
40	FBpp0082223	CG8863-PE; parent=FBgn0038145,FBtr0082755; dbxref=FlyBase:FBpp0082223,FlyBase_Annotation_IDs:C	45886	3	1	1
40	FBpp0085461	Eb1-PB; parent=FBgn0027066,FBtr0086127; dbxref=FlyBase:FBpp0085461,FlyBase_Annotation_IDs:CG32	32840	7,2	1	1
40	FBpp0085462	Eb1-PC; parent=FBgn0027066,FBtr0086128; dbxref=FlyBase:FBpp0085462,FlyBase_Annotation_IDs:CG32	43912	5,3	1	1
40	FBpp0085463	Eb1-PD; parent=FBgn0027066,FBtr0086129; dbxref=FlyBase:FBpp0085463,FlyBase_Annotation_IDs:CG32	32840	7,2	1	1
40	FBpp0085464	Eb1-PA; parent=FBgn0027066,FBtr0086130; dbxref=FlyBase:FBpp0085464,FlyBase_Annotation_IDs:CG32	32840	7,2	1	1
40	FBpp0085228	RhoGAP100F-PA; parent=FBgn0039883,FBtr0085869; dbxref=FlyBase:FBpp0085228,FlyBase_Annotation_I	196072	2,3	2	3
40	FBpp0077693	CG15824-PA; parent=FBgn0031292,FBtr0078029; dbxref=FlyBase:FBpp0077693,FlyBase_Annotation_IDs:	229436	0,9	2	2
39	FBpp0077041	CG14619-PC; parent=FBgn0031187,FBtr0077349; dbxref=FlyBase:FBpp0077041,FlyBase_Annotation_IDs:	102440	1,5	2	2
39	FBpp0085859	Dp1-PC; parent=FBgn0027835,FBtr0086678; dbxref=FlyBase:FBpp0085859,FlyBase_Annotation_IDs:CG51	144929	1,2	1	1
39	FBpp0085860	Dp1-PD; parent=FBgn0027835,FBtr0086679; dbxref=FlyBase:FBpp0085860,FlyBase_Annotation_IDs:CG51	144929	1,2	1	1
39	FBpp0085861	Dp1-PF; parent=FBgn0027835,FBtr0086680; dbxref=FlyBase:FBpp0085861,FlyBase_Annotation_IDs:CG51	144929	1,2	1	1
39	FBpp0085862	Dp1-PE; parent=FBgn0027835,FBtr0086681; dbxref=FlyBase:FBpp0085862,FlyBase_Annotation_IDs:CG51	144929	1,2	1	1
39	FBpp0089201	Dp1-PA; parent=FBgn0027835,FBtr0086682; dbxref=FlyBase:FBpp0089201,FlyBase_Annotation_IDs:CG51	144929	1,2	1	1
39	FBpp0089202	Dp1-PB; parent=FBgn0027835,FBtr0086683; dbxref=FlyBase:FBpp0089202,FlyBase_Annotation_IDs:CG51	144929	1,2	1	1
38	FBpp0077839	kin17-PA; parent=FBgn0024887,FBtr0078181; dbxref=FlyBase:FBpp0077839,FlyBase_Annotation_IDs:CG	45555	5,6	2	2
38	FBpp0071144	CG1440-PA; parent=FBgn0030038,FBtr0071197; dbxref=FlyBase:FBpp0071144,FlyBase_Annotation_IDs:C	55806	5,5	1	13
38	FBpp0070940	RpL17-PB; parent=FBgn0029897,FBtr0070980; dbxref=FlyBase:FBpp0070940,FlyBase_Annotation_IDs:CG	21922	5,4	1	1
38	FBpp0070941	RpL17-PC; parent=FBgn0029897,FBtr0070981; dbxref=FlyBase:FBpp0070941,FlyBase_Annotation_IDs:CG	21922	5,4	1	1
38	FBpp0070942	RpL17-PD; parent=FBgn0029897,FBtr0070982; dbxref=FlyBase:FBpp0070942,FlyBase_Annotation_IDs:CG	21922	5,4	1	1
38	FBpp0070943	RpL17-PA; parent=FBgn0029897,FBtr0070983; dbxref=FlyBase:FBpp0070943,FlyBase_Annotation_IDs:CG	21922	5,4	1	1
38	FBpp0077520	CG10874-PA; parent=FBgn0031395,FBtr0077848; dbxref=FlyBase:FBpp0077520,FlyBase_Annotation_IDs:	35133	4,4	1	8

FBpp0077521	CG10874-PB; parent=FBgn0031395,FBtr0077849; dbxref=FlyBase:FBpp0077521,FlyBase_Annotation_IDs:	13504	11,3	1	8
FBpp0078879	Gef26-PA; parent=FBgn0021873,FBtr0079249; dbxref=FlyBase:FBpp0078879,FlyBase_Annotation_IDs:CG	173041	1	1	8
FBpp0085546	DMAP1-PA; parent=FBgn0034537,FBtr0086232; dbxref=FlyBase:FBpp0085546,FlyBase_Annotation_IDs:CG	50445	4,4	1	1
FBpp0085066	CG31012-PC; parent=FBgn0027598,FBtr0085704; dbxref=FlyBase:FBpp0085066,FlyBase_Annotation_IDs:	92595	3,2	1	1
FBpp0085067	CG31012-PD; parent=FBgn0027598,FBtr0085705; dbxref=FlyBase:FBpp0085067,FlyBase_Annotation_IDs:	67175	4,4	1	1
FBpp0085068	56151	5,2	1	1	
FBpp0085069	CG31012-PA; parent=FBgn0027598,FBtr0085707; dbxref=FlyBase:FBpp0085069,FlyBase_Annotation_IDs:	57268	5,1	1	1
FBpp0074549	l(1)G0156-PA; parent=FBgn0027291,FBtr0074780; dbxref=FlyBase:FBpp0074549,FlyBase_Annotation_ID	38902	6,5	1	1
FBpp0074550	l(1)G0156-PB; parent=FBgn0027291,FBtr0074781; dbxref=FlyBase:FBpp0074550,FlyBase_Annotation_ID	41160	6,1	1	1
FBpp0081087	CG2656-PA; parent=FBgn0037478,FBtr0081568; dbxref=FlyBase:FBpp0081087,FlyBase_Annotation_IDs:C	32183	6	1	7
FBpp0078930	Liprin-alpha-PA; parent=FBgn0046704,FBtr0079300; dbxref=FlyBase:FBpp0078930,FlyBase_Annotation	135100	2,7	2	2
FBpp0078931	Liprin-alpha-PB; parent=FBgn0046704,FBtr0079301; dbxref=FlyBase:FBpp0078931,FlyBase_Annotation	135100	2,7	2	2
FBpp0079644	CG5367-PA; parent=FBgn0032228,FBtr0080055; dbxref=FlyBase:FBpp0079644,FlyBase_Annotation_IDs:C	38368	3	1	3
FBpp0087001	Sin3A-PA; parent=FBgn0022764,FBtr0087888; dbxref=GB_protein:AAF58488.2,FlyBase:FBpp0087001,Fly	190825	1,4	2	4
FBpp0082058	CG6525-PA; parent=FBgn0082831,FBtr0082586; dbxref=FlyBase:FBpp0082058,FlyBase_Annotation_IDs:C	222832	0,8	1	1
FBpp0074065	Cap-PA; parent=FBgn0015615,FBtr0074290; dbxref=FlyBase:FBpp0074065,GB_protein:AAF48625.2,FlyBa	140520	1,8	2	2
FBpp0074066	Cap-PB; parent=FBgn0015615,FBtr0074291; dbxref=FlyBase:FBpp0074066,GB_protein:AAN09411.1,FlyBa	123715	2,1	2	2
FBpp0081639	MED6-PB; parent=FBgn0024330,FBtr0082161; dbxref=FlyBase:FBpp0081639,FlyBase_Annotation_IDs:CG9	28470	4,4	1	1
FBpp0081640	MED6-PA; parent=FBgn0024330,FBtr0082162; dbxref=FlyBase:FBpp0081640,FlyBase_Annotation_IDs:CG9	28470	4,4	1	1
FBpp0070193	CG14626-PA; parent=FBgn0040360,FBtr0070200; dbxref=FlyBase:FBpp0070193,FlyBase_Annotation_IDs:	38471	3,2	1	2
FBpp0077491	CG7289-PA; parent=FBgn0031379,FBtr0077815; dbxref=FlyBase:FBpp0077491,FlyBase_Annotation_IDs:C	73072	2	1	3
	FBpp0077521 FBpp0078879 FBpp0085546 FBpp0085066 FBpp0085067 FBpp0085068 FBpp0085069 FBpp0074549 FBpp0074550 FBpp0074550 FBpp0074550 FBpp00745930 FBpp0078930 FBpp0078931 FBpp0078931 FBpp0078931 FBpp0078011 FBpp0074065 FBpp0074065 FBpp0074066 FBpp0081639 FBpp0081640 FBpp0077491	FBpp0077521 CG10874-PB; parent=FBgn0031395,FBtr0077849; dbxref=FlyBase:FBpp0078679 Gef26-PA; parent=FBgn0021873,FBtr0079249; dbxref=FlyBase:FBpp0078879,FlyBase_Annotation_IDs:CG FBpp0078576 DMAP1-PA; parent=FBgn0034537,FBtr0086232; dbxref=FlyBase:FBpp0085546,FlyBase_Annotation_IDs:CG FBpp0085066 CG31012-PC; parent=FBgn0027598,FBtr0085704; dbxref=FlyBase:FBpp0085067,FlyBase_Annotation_IDs: FBpp0085067 CG31012-PD; parent=FBgn0027598,FBtr0085705; dbxref=FlyBase:FBpp0085067,FlyBase_Annotation_IDs: FBpp0085068 CG31012-PD; parent=FBgn0027598,FBtr0085706; dbxref=FlyBase:FBpp0085068,FlyBase_Annotation_IDs: FBpp0085069 CG31012-PB; parent=FBgn0027598,FBtr0085707; dbxref=FlyBase:FBpp0085068,FlyBase_Annotation_IDs: FBpp0074549 I(1)G0156-PA; parent=FBgn0027591,FBtr008707; dbxref=FlyBase:FBpp0074549,FlyBase_Annotation_ID FBpp0081087 CG2656-PA; parent=FBgn0027291,FBtr0074780; dbxref=FlyBase:FBpp0074549,FlyBase_Annotation_ID FBpp0078500 I(1)G0156-PB; parent=FBgn0027291,FBtr0074781; dbxref=FlyBase:FBpp0074549,FlyBase_Annotation_ID FBpp0078930 Liprin-alpha-PA; parent=FBgn0032228,FBtr008505; dbxref=FlyBase:FBpp0078930,FlyBase_Annotation_IDs:C FBpp0078931 Liprin-alpha-PB; parent=FBgn0022764,FBtr0087086; dbxref=FlyBase:FBpp0078931,FlyBase_Annotation_IDs:C FBpp0078044 CG5367-PA; parent=FBgn0022764,FBtr008788; dbxref=FlyBase:FBpp0078044,FlyBase_Annotation_IDs:C FBpp00786	FBpp0077521 CG10874-PB; parent=FBgn0031395,FBtr0077849; dbxref=FlyBase:FBpp0078579,FlyBase_Annotation_IDs: 13504 FBpp0078879 Gef26-PA; parent=FBgn0021873,FBtr0079249; dbxref=FlyBase:FBpp008576,FlyBase_Annotation_IDs:CG 173041 FBpp0085546 DMAP1-PA; parent=FBgn0021873,FBtr0086232; dbxref=FlyBase:FBpp0085066,FlyBase_Annotation_IDs: 50445 FBpp0085066 CG31012-PC; parent=FBgn0027598,FBtr0085704; dbxref=FlyBase:FBpp0085067,FlyBase_Annotation_IDs: 67175 FBpp0085068 CG31012-PD; parent=FBgn0027598,FBtr0085705; dbxref=FlyBase:FBpp0085068,FlyBase_Annotation_IDs: 67175 FBpp0085069 CG31012-PB; parent=FBgn0027598,FBtr0085707; dbxref=FlyBase:FBpp0085069,FlyBase_Annotation_IDs: 57268 FBpp0074549 I(1)G0156-PA; parent=FBgn0027291,FBtr0074780; dbxref=FlyBase:FBpp0081087,FlyBase_Annotation_IDs: 57268 FBpp0074550 I(1)G0156-PB; parent=FBgn0027291,FBtr0074781; dbxref=FlyBase:FBpp0074550,FlyBase_Annotation_ID 41160 FBpp0078930 Liprin-alpha-PA; parent=FBgn0046704,FBtr0079300; dbxref=FlyBase:FBpp0078930,FlyBase_Annotation_IDs: 32183 FBp0078931 Liprin-alpha-PA; parent=FBgn0046704,FBtr0079301; dbxref=FlyBase:FBpp0078931,FlyBase_Annotation_IDs: 32832 FBpp0078931 Liprin-alpha-PA; parent=FBgn0032228,FBtr008055; dbxref=FlyBase:FBpp0078931,FlyBase_Annotation_IDs: 32832 <	FBpp0077521 CG10874-PB; parent=FBgn0031395,FBtr0077849; dbxref=FlyBase:FBpp0077521,FlyBase_Annotation_IDs: 13504 11,3 FBpp0078879 Gef26-PA; parent=FBgn0021873,FBtr0079249; dbxref=FlyBase:FBpp0085546,FlyBase_Annotation_IDs:CG 173041 1 FBpp0085546 DMAP1-PA; parent=FBgn0021873,FBtr0086232; dbxref=FlyBase:FBpp0085546,FlyBase_Annotation_IDs: 50445 4,4 FBpp0085066 CG31012-PC; parent=FBgn0027598,FBtr0085705; dbxref=FlyBase:FBpp0085066,FlyBase_Annotation_IDs: 67175 4,4 FBpp0085068 CG31012-PB; parent=FBgn0027598,FBtr0085706; dbxref=FlyBase:FBpp0085068,FlyBase_Annotation_IDs: 67175 4,4 FBpp0085069 CG31012-PB; parent=FBgn0027598,FBtr0085707; dbxref=FlyBase:FBpp0085069,FlyBase_Annotation_IDs: 57268 5,1 FBpp0085069 CG31012-PB; parent=FBgn0027598,FBtr0085707; dbxref=FlyBase:FBpp007450,FlyBase_Annotation_IDs: 57268 5,1 FBpp0074549 I(1)G0156-PA; parent=FBgn0027291,FBtr0074780; dbxref=FlyBase:FBpp007450,FlyBase_Annotation_ID 41160 6,1 FBpp0078300 Liprin-alpha-PA; parent=FBgn0027291,FBtr007300; dbxref=FlyBase:FBpp0074050,FlyBase_Annotation_IDs:C 32183 6 FBpp0078930 Liprin-alpha-PA; parent=FBgn002764,FBtr007300; dbxref=FlyBase:FBpp0078931,FlyBase_Annotation_IDs:C 32183 6	FBpp0077521 CG10874-PB; parent=FBgn0031395,FBtr0077849; dbxref=FlyBase:FBpp007821,FlyBase_Annotation_IDs: 13504 11,3 1 FBpp0078879 Gef26-PA; parent=FBgn0021873,FBtr0085232; dbxref=FlyBase:FBpp0085646,FlyBase_Annotation_IDs:CG 173041 1 FBpp008566 CG31012-PC; parent=FBgn0027598,FBtr0085704; dbxref=FlyBase:FBpp0085066,FlyBase_Annotation_IDs: 92595 3,2 1 FBpp0085067 CG31012-PD; parent=FBgn0027598,FBtr0085706; dbxref=FlyBase:FBpp0085067,FlyBase_Annotation_IDs: 67175 4,4 1 FBpp0085068 CG31012-PA; parent=FBgn0027598,FBtr0085706; dbxref=FlyBase:FBpp0085068,FlyBase_Annotation_IDs: 57268 5,1 1 FBpp0085069 CG31012-PA; parent=FBgn0027591,FBtr0087707; dbxref=FlyBase:FBpp0085069,FlyBase_Annotation_ID 38902 6,5 1 FBpp0085069 CG31012-PA; parent=FBgn0027291,FBtr0074780; dbxref=FlyBase:FBpp0074549,FlyBase_Annotation_ID 38902 6,5 1 FBpp0078500 L(r)G0156-PA; parent=FBgn0027291,FBtr0074781; dbxref=FlyBase:FBpp0078930,FlyBase_Annotation_IDs: 32183 6 1 FBpp0078930 Liprin-alpha-PA; parent=FBgn002764,FBtr0079300; dbxref=FlyBase:FBpp0078931,FlyBase_Annotation_IDs: 32183 6 1 FBpp0078944 CG5367-PA;

Tab. 8.2: Gegenüberstellung: HA-FLAG-dCTCF assoziierte Proteine gegen Kontrolle (uninduzierte Probe)

Ein Aliquot der uninduzierten (endogenes dCTCF, Kontrolle) und induzierten Proben (HA-FLAG-dCTCF-Expression, siehe 5.6.1) wurde für eine Proteinidentifikation mittels Massenspektrometrie eingesetzt. Im *Proteomics Center* (Erasmus MC Rotterdam) wurde eine NanoLC-Q-TOF-Massenspektrometrie (siehe 4.8.4) durchgeführt. Zur Auswertung der Rohdaten und Proteinidentifikation wurde die *Mascot Distiller Software* (Version 2.0, *MatrixScience*) genutzt. Der *Mascot* Such-Algorithmus beruht auf dem MOWSE (*Molecular weight search*)-*Score* (Pappin et al., 1993) und wurde für die Suche gegen die *Drosophila* Datenbank *FlyBase* (Abrufdatum: 03.07.2007) eingesetzt. Die Grenze für eine signifikante Proteinidentifikation wurde auf einen Wert (Score) von 60 festgelegt.

Pellet +: induzierte probe; HA-FLAG-dCTCF Expression, Pellet -: uninduzierte Probe; Kontrolle

		Pellet +				Pellet -
Score	acc./id	description	hit	Score	acc./id	description
1940	FBpp0073445	Hsc70-3-PB; parent=FBgn0001218,FBtr0073608; dbxref=FlyBase:FBpp0073445,FlyBase_Annotation_IDs:	1	1371	FBpp007344 5	Hsc70-3-PB; parent=FBgn0001218,FBtr0073608; dbxref=FlyBase:FBpp0073445,FlyBase_Annotation_IDs:
1940	FBpp0073446	Hsc70-3-PA; parent=FBgn0001218,FBtr0073609; dbxref=FlyBase:FBpp0073446,FlyBase_Annotation_IDs:	1	1371	FBpp007344 6	Hsc70-3-PA; parent=FBgn0001218,FBtr0073609; dbxref=FlyBase:FBpp0073446,FlyBase_Annotation_IDs:
1940	FBpp0073447	Hsc70-3-PD; parent=FBgn0001218,FBtr0073610; dbxref=FlyBase:FBpp0073447,FlyBase_Annotation_IDs:	1	1371	FBpp007344 7	Hsc70-3-PD; parent=FBgn0001218,FBtr0073610; dbxref=FlyBase:FBpp0073447,FlyBase_Annotation_IDs:
1940	FBpp0073448	Hsc70-3-PC; parent=FBgn0001218,FBtr0073611; dbxref=FlyBase:FBpp0073448,FlyBase_Annotation_IDs:	1	1371	FBpp007344 8	Hsc70-3-PC; parent=FBgn0001218,FBtr0073611; dbxref=FlyBase:FBpp0073448,FlyBase_Annotation_IDs:
1916	FBpp0082580	Cp190-PA; parent=FBgn0000283,FBtr0083126; dbxref=FlyBase:FBpp0082580,FlyBase_Annotation_IDs:CG				
1916	FBpp0082581	Cp190-PB; parent=FBgn0000283,FBtr0083127; dbxref=FlyBase:FBpp0082581,FlyBase_Annotation_IDs:CG				
1754	FBpp0085720	betaTub56D-PB; parent=FBgn0003887,FBtr0086536; dbxref=FlyBase:FBpp0085720,FlyBase_Annotation_I				
1747	FBpp0076588	CTCF-PA; parent=FBgn0035769,FBtr0076878; dbxref=FlyBase:FBpp0076588,FlyBase_Annotation_IDs:CG8				

1696	FBpp0082514	Hsc70-4-PE; parent=FBgn0001219,FBtr0083055; dbxref=FlyBase:FBpp0082514,FlyBase_Annotation_IDs:	7	201	FBpp008251 4	Hsc70-4-PE; parent=FBgn0001219,FBtr0083055; dbxref=FlyBase:FBpp0082514,FlyBase_Annotation_IDs:
1696	FBpp0082515	Hsc70-4-PF; parent=FBgn0001219,FBtr0083056; dbxref=FlyBase:FBpp0082515,FlyBase_Annotation_IDs:	7	201	FBpp008251 5	Hsc70-4-PF; parent=FBgn0001219,FBtr0083056; dbxref=FlyBase:FBpp0082515,FlyBase_Annotation_IDs:
1696	FBpp0082516	Hsc70-4-PA; parent=FBgn0001219,FBtr0083057; dbxref=FlyBase:FBpp0082516,FlyBase_Annotation_IDs:	7	201	FBpp008251 6	Hsc70-4-PA; parent=FBgn0001219,FBtr0083057; dbxref=FlyBase:FBpp0082516,FlyBase_Annotation_IDs:
1696	FBpp0082517	Hsc70-4-PC; parent=FBgn0001219,FBtr0083058; dbxref=FlyBase:FBpp0082517,FlyBase_Annotation_IDs:	7	201	FBpp008251 7	Hsc70-4-PC; parent=FBgn0001219,FBtr0083058; dbxref=FlyBase:FBpp0082517,FlyBase_Annotation_IDs:
1696	FBpp0082518	Hsc70-4-PD; parent=FBgn0001219,FBtr0083059; dbxref=FlyBase:FBpp0082518,FlyBase_Annotation_IDs:	7	201	FBpp008251 8	Hsc70-4-PD; parent=FBgn0001219,FBtr0083059; dbxref=FlyBase:FBpp0082518,FlyBase_Annotation_IDs:
1696	FBpp0082519	Hsc70-4-PB; parent=FBgn0001219,FBtr0083060; dbxref=FlyBase:FBpp0082519,FlyBase_Annotation_IDs:	7	201	FBpp008251 9	Hsc70-4-PB; parent=FBgn0001219,FBtr0083060; dbxref=FlyBase:FBpp0082519,FlyBase_Annotation_IDs:
1674	FBpp0077248	CG15415-PA; parent=FBgn0031549,FBtr0077559; dbxref=FlyBase:FBpp0077248,FlyBase_Annotation_IDs:	2	900	FBpp007724 8	CG15415-PA; parent=FBgn0031549,FBtr0077559; dbxref=FlyBase:FBpp0077248,FlyBase_Annotation_IDs:
1493	FBpp0082470	Rrp6-PA; parent=FBgn0038269,FBtr0083011; dbxref=FlyBase:FBpp0082470,FlyBase_Annotation_IDs:CG7				
1377	FBpp0087050	CG13151-PA; parent=FBgn0033750,FBtr0087939; dbxref=FlyBase:FBpp0087050,FlyBase_Annotation_IDs:				
1101	FBpp0083989	Dis3-PA; parent=FBgn0039183,FBtr0084605; dbxref=FlyBase:FBpp0083989,FlyBase_Annotation_IDs:CG6				
1066	FBpp0081062	alphaTub84D-PA; parent=FBgn0003885,FBtr0081538; dbxref=FlyBase:FBpp0081062,FlyBase_Annotation_				
1066	FBpp0081063	alphaTub84D-PB; parent=FBgn0003885,FBtr0081539; dbxref=FlyBase:FBpp0081063,FlyBase_Annotation_				
1066	FBpp0081153	alphaTub84B-PA; parent=FBgn0003884,FBtr0081639; dbxref=FlyBase:FBpp0081153,FlyBase_Annotation_				
1011	FBpp0075651	CG10984-PC; parent=FBgn0036305,FBtr0075919; dbxref=FlyBase:FBpp0075651,FlyBase_Annotation_IDs:	5	289	FBpp007565 1	CG10984-PC; parent=FBgn0036305,FBtr0075919; dbxref=FlyBase:FBpp0075651,FlyBase_Annotation_IDs:
1011	FBpp0075652	CG10984-PA; parent=FBgn0036305,FBtr0075920; dbxref=FlyBase:FBpp0075652,FlyBase_Annotation_IDs:	5	289	FBpp007565 2	CG10984-PA; parent=FBgn0036305,FBtr0075920; dbxref=FlyBase:FBpp0075652,FlyBase_Annotation_IDs:

909	FBpp0072020	Rrp4-PA; parent=FBgn0034879,FBtr0072111; dbxref=FlyBase:FBpp0072020,FlyBase_Annotation_IDs:CG3	13	101	FBpp007202 0	Rrp4-PA; parent=FBgn0034879,FBtr0072111; dbxref=FlyBase:FBpp0072020,FlyBase_Annotation_IDs:CG3
908	FBpp0071106	CG2129-PA; parent=FBgn0030008,FBtr0071155; dbxref=FlyBase:FBpp0071106,FlyBase_Annotation_IDs:C				
853	FBpp0086348	Rrp42-PA; parent=FBgn0034065,FBtr0087206; dbxref=FlyBase:FBpp0086348,FlyBase_Annotation_IDs:CG	8	183	FBpp008634 8	Rrp42-PA; parent=FBgn0034065,FBtr0087206; dbxref=FlyBase:FBpp0086348,FlyBase_Annotation_IDs:CG
852	FBpp0080062	Ski6-PA; parent=FBgn0032487,FBtr0080483; dbxref=FlyBase:FBpp0080062,FlyBase_Annotation_IDs:CG1	12	115	FBpp008006 2	Ski6-PA; parent=FBgn0032487,FBtr0080483; dbxref=FlyBase:FBpp0080062,FlyBase_Annotation_IDs:CG1
816	FBpp0077551	CG31938-PA; parent=FBgn0051938,FBtr0077883; dbxref=FlyBase:FBpp0077551,FlyBase_Annotation_IDs:	15	82	FBpp007755 1	CG31938-PA; parent=FBgn0051938,FBtr0077883; dbxref=FlyBase:FBpp0077551,FlyBase_Annotation_IDs:
760	FBpp0072250	Nurf-38-PA; parent=FBgn0016687,FBtr0072343; dbxref=GB_protein:AAF47227.1,FlyBase:FBpp0072250,F				
738	FBpp0072177	betaTub60D-PA; parent=FBgn0003888,FBtr0072270; dbxref=FlyBase:FBpp0072177,FlyBase_Annotation_I				
692	FBpp0077809	CG31974-PA; parent=FBgn0051974,FBtr0078150; dbxref=FlyBase:FBpp0077809,FlyBase_Annotation_IDs:	6	232	FBpp007780 9	CG31974-PA; parent=FBgn0051974,FBtr0078150; dbxref=FlyBase:FBpp0077809,FlyBase_Annotation_IDs:
660	FBpp0070787	Act5C-PA; parent=FBgn0000042,FBtr0070822; dbxref=FlyBase_Annotation_IDs:CG4027-PA,FlyBase:FBpp	3	383	FBpp007078 7	Act5C-PA; parent=FBgn0000042,FBtr0070822; dbxref=FlyBase_Annotation_IDs:CG4027-PA,FlyBase:FBpp
660	FBpp0070788	Act5C-PB; parent=FBgn0000042,FBtr0070823; dbxref=FlyBase_Annotation_IDs:CG4027-PB,FlyBase:FBpp	3	383	FBpp007078 8	Act5C-PB; parent=FBgn0000042,FBtr0070823; dbxref=FlyBase_Annotation_IDs:CG4027-PB,FlyBase:FBpp
660	FBpp0085365	Act42A-PA; parent=FBgn0000043,FBtr0086029; dbxref=GB_protein:AAF57294.1,FlyBase:FBpp0085365,Fl	3	383	FBpp008536 5	Act42A-PA; parent=FBgn0000043,FBtr0086029; dbxref=GB_protein:AAF57294.1,FlyBase:FBpp0085365,Fl
660	FBpp0100124	Act5C-PC; parent=FBgn0000042,FBtr0100662; dbxref=FlyBase_Annotation_IDs:CG4027-PC,FlyBase:FBpp	3	383	FBpp010012 4	Act5C-PC; parent=FBgn0000042,FBtr0100662; dbxref=FlyBase_Annotation_IDs:CG4027-PC,FlyBase:FBpp
660	FBpp0100125	Act5C-PD; parent=FBgn0000042,FBtr0100663; dbxref=FlyBase_Annotation_IDs:CG4027-PD,FlyBase:FBpp	3	383	FBpp010012 5	Act5C-PD; parent=FBgn0000042,FBtr0100663; dbxref=FlyBase_Annotation_IDs:CG4027-PD,FlyBase:FBpp

623	FBpp0072353	CG30428-PA; parent=FBgn0050428,FBtr0072451; dbxref=FlyBase:FBpp0072353,FlyBase_Annotation_IDs:	14	89	FBpp007235 3	CG30428-PA; parent=FBgn0050428,FBtr0072451; dbxref=FlyBase:FBpp0072353,FlyBase_Annotation_IDs:
552	FBpp0079609	RfC3-PA; parent=FBgn0032244,FBtr0080019; dbxref=FlyBase:FBpp0079609,FlyBase_Annotation_IDs:CG5				
545	FBpp0088211	CG31999-PA; parent=FBgn0051999,FBtr0089144; dbxref=FlyBase:FBpp0088211,FlyBase_Annotation_IDs:	11	126	FBpp008821 1	CG31999-PA; parent=FBgn0051999,FBtr0089144; dbxref=FlyBase:FBpp0088211,FlyBase_Annotation_IDs:
533	FBpp0080825	Top2-PA; parent=FBgn0003732,FBtr0081287; dbxref=GB_protein:AAF53802.2,FlyBase:FBpp0080825,FlyB				
526	FBpp0087142	Ef1alpha48D-PA; parent=FBgn0000556,FBtr0088035; dbxref=FlyBase:FBpp0087142,FlyBase_Annotation_	10	148	FBpp008714 2	Ef1alpha48D-PA; parent=FBgn0000556,FBtr0088035; dbxref=FlyBase:FBpp0087142,FlyBase_Annotation_
526	FBpp0087143	Ef1alpha48D-PB; parent=FBgn0000556,FBtr0088036; dbxref=FlyBase:FBpp0087143,FlyBase_Annotation_	10	148	FBpp008714 3	Ef1alpha48D-PB; parent=FBgn0000556,FBtr0088036; dbxref=FlyBase:FBpp0087143,FlyBase_Annotation_
511	FBpp0074129	Rrp45-PA; parent=FBgn0030789,FBtr0074355; dbxref=FlyBase:FBpp0074129,FlyBase_Annotation_IDs:CG				
499	FBpp0081725	Rrp46-PA; parent=FBgn0037815,FBtr0082248; dbxref=FlyBase:FBpp0081725,FlyBase_Annotation_IDs:CG	9	163	FBpp008172 5	Rrp46-PA; parent=FBgn0037815,FBtr0082248; dbxref=FlyBase:FBpp0081725,FlyBase_Annotation_IDs:CG
489	FBpp0079771	porin-PA; parent=FBgn0004363,FBtr0080182; dbxref=FlyBase_Annotation_IDs:CG6647-PA,FlyBase:FBpp				
489	FBpp0079772	porin-PB; parent=FBgn0004363,FBtr0080183; dbxref=FlyBase_Annotation_IDs:CG6647-PB,FlyBase:FBpp				
489	FBpp0100039	porin-PC; parent=FBgn0004363,FBtr0100584; dbxref=FlyBase_Annotation_IDs:CG6647-PC,FlyBase:FBpp				
481	FBpp0073594	Jafrac1-PB; parent=FBgn0040309,FBtr0073763; dbxref=FlyBase:FBpp0073594,FlyBase_Annotation_IDs:				
481	FBpp0073595	Jafrac1-PA; parent=FBgn0040309,FBtr0073764; dbxref=FlyBase:FBpp0073595,FlyBase_Annotation_IDs:				

479	FBpp0081457	CG8436-PA; parent=FBgn0037670,FBtr0081977; dbxref=FlyBase:FBpp0081457,FlyBase_Annotation_IDs:C		
460	FBpp0073263	CG1637-PC; parent=FBgn0030245,FBtr0073407; dbxref=FlyBase:FBpp0073263,FlyBase_Annotation_IDs:C		
432	FBpp0079813	Csl4-PA; parent=FBgn0032346,FBtr0080226; dbxref=GB_protein:AAF53074.1,FlyBase:FBpp0079813,FlyB		
413	FBpp0087936	Nup44A-PB; parent=FBgn0033247,FBtr0088860; dbxref=FlyBase:FBpp0087936,FlyBase_Annotation_IDs:C		
413	FBpp0087937	Nup44A-PC; parent=FBgn0033247,FBtr0088861; dbxref=FlyBase:FBpp0087937,FlyBase_Annotation_IDs:C		
413	FBpp0087938	Nup44A-PA; parent=FBgn0033247,FBtr0088862; dbxref=FlyBase:FBpp0087938,FlyBase_Annotation_IDs:C		
411	FBpp0088242	RpS3A-PA; parent=FBgn0017545,FBtr0089175; dbxref=FlyBase:FBpp0088242,GB_protein:AAF59372.1,Fly		
411	FBpp0088243	RpS3A-PB; parent=FBgn0017545,FBtr0089176; dbxref=FlyBase:FBpp0088243,GB_protein:AAN06541.1,Fly		
402	FBpp0071382	flw-PB; parent=FBgn0000711,FBtr0071447; dbxref=FlyBase:FBpp0071382,FlyBase_Annotation_IDs:CG20		
400	FBpp0071381	flw-PA; parent=FBgn0000711,FBtr0071446; dbxref=FlyBase:FBpp0071381,FlyBase_Annotation_IDs:CG20		
394	FBpp0078450	CG11999-PA; parent=FBgn0037312,FBtr0078807; dbxref=FlyBase:FBpp0078450,FlyBase_Annotation_IDs:		
379	FBpp0071892	Fib-PA; parent=FBgn0003062,FBtr0071982; dbxref=FlyBase:FBpp0071892,FlyBase_Annotation_IDs:CG98		

379	FBpp0077914	CG3680-PA; parent=FBgn0037027,FBtr0078256; dbxref=FlyBase:FBpp0077914,FlyBase_Annotation_IDs:C		
356	FBpp0074687	Mtr3-PA; parent=FBgn0036916,FBtr0074918; dbxref=FlyBase_Annotation_IDs:CG8025-PA,FlyBase:FBpp0		
349	FBpp0073262	CG1637-PB; parent=FBgn0030245,FBtr0073406; dbxref=FlyBase:FBpp0073262,FlyBase_Annotation_IDs:C		
347	FBpp0078997	nop5-PA; parent=FBgn0026196,FBtr0079369; dbxref=FlyBase:FBpp0078997,FlyBase_Annotation_IDs:CG1		
345	FBpp0081584	Kap-alpha3-PA; parent=FBgn0027338,FBtr0082106; dbxref=FlyBase:FBpp0081584,FlyBase_Annotation_I		
345	FBpp0081585	Kap-alpha3-PB; parent=FBgn0027338,FBtr0082107; dbxref=FlyBase:FBpp0081585,FlyBase_Annotation_I		
345	FBpp0081586	Kap-alpha3-PC; parent=FBgn0027338,FBtr0082108; dbxref=FlyBase:FBpp0081586,FlyBase_Annotation_I		
337	FBpp0076546	Neos-PA; parent=FBgn0024542,FBtr0076835; dbxref=GB_protein:AAF50595.2,FlyBase:FBpp0076546,FlyB		
337	FBpp0073937	CG8928-PA; parent=FBgn0030711,FBtr0074132; dbxref=FlyBase:FBpp0073937,FlyBase_Annotation_IDs:C		
337	FBpp0071235	dalao-PA; parent=FBgn0030093,FBtr0071300; dbxref=FlyBase:FBpp0071235,FlyBase_Annotation_IDs:CG		
321	FBpp0071587	CG10306-PA; parent=FBgn0034654,FBtr0071670; dbxref=FlyBase:FBpp0071587,FlyBase_Annotation_IDs:		
317	FBpp0077858	CG5976-PA; parent=FBgn0036999,FBtr0078200; dbxref=FlyBase:FBpp0077858,FlyBase_Annotation_IDs:C		
315	FBpp0077857	CG5976-PB; parent=FBgn0036999,FBtr0078199; dbxref=FlyBase:FBpp0077857,FlyBase_Annotation_IDs:C		

306	FBpp0071050	RpS14a-PB; parent=FBgn0004403,FBtr0071094; dbxref=FlyBase:FBpp0071050,FlyBase_Annotation_IDs:C		
306	FBpp0071051	RpS14a-PA; parent=FBgn0004403,FBtr0071095; dbxref=FlyBase:FBpp0071051,FlyBase_Annotation_IDs:C		
306	FBpp0071052	RpS14b-PA; parent=FBgn0004404,FBtr0071096; dbxref=FlyBase:FBpp0071052,FlyBase_Annotation_IDs:C		
306	FBpp0082421	His4r-PA; parent=FBgn0013981,FBtr0082962; dbxref=FlyBase:FBpp0082421,FlyBase_Annotation_IDs:CG		
133	FBpp0099990	RpS13-PB; parent=FBgn0010265,FBtr0100541; dbxref=FlyBase_Annotation_IDs:CG13389-PB,FlyBase:FBp		
130	FBpp0078331	Snr1-PA; parent=FBgn0011715,FBtr0078682; dbxref=FlyBase:FBpp0078331,FlyBase_Annotation_IDs:CG1		
129	FBpp0076917	Hlc-PA; parent=FBgn0001565,FBtr0077221; dbxref=FlyBase:FBpp0076917,FlyBase_Annotation_IDs:CG16		
125	FBpp0086468	Vha36-PA; parent=FBgn0022097,FBtr0087335; dbxref=FlyBase:FBpp0086468,FlyBase_Annotation_IDs:CG		
123	FBpp0086717	Cp1-PB; parent=FBgn0013770,FBtr0087591; dbxref=GB_protein:AAM68566.1,FlyBase:FBpp0086717,FlyBa		
123	FBpp0086718	Cp1-PA; parent=FBgn0013770,FBtr0087592; dbxref=GB_protein:AAF58311.1,FlyBase:FBpp0086718,FlyBa		
123	FBpp0086719	Cp1-PC; parent=FBgn0013770,FBtr0087593; dbxref=GB_protein:AAM68565.1,FlyBase:FBpp0086719,FlyBa		

63	FBpp0086770	CG6543-PB; parent=FBgn0033879,FBtr0087644; dbxref=FlyBase:FBpp0086770,FlyBase_Annotation_IDs:C		
63	FBpp0084162	veli-PA; parent=FBgn0039269,FBtr0084787; dbxref=FlyBase:FBpp0084162,FlyBase_Annotation_IDs:CG7		
63	FBpp0084163	veli-PB; parent=FBgn0039269,FBtr0084788; dbxref=FlyBase:FBpp0084163,FlyBase_Annotation_IDs:CG7		
62	FBpp0076006	CG32066-PC; parent=FBgn0052066,FBtr0076277; dbxref=FlyBase:FBpp0076006,FlyBase_Annotation_IDs:		
62	FBpp0076007	CG32066-PB; parent=FBgn0052066,FBtr0076278; dbxref=FlyBase:FBpp0076007,FlyBase_Annotation_IDs:		
62	FBpp0082041	GstD2-PA; parent=FBgn0010038,FBtr0082569; dbxref=FlyBase:FBpp0082041,FlyBase_Annotation_IDs:CG		
62	FBpp0082044	GstD5-PA; parent=FBgn0010041,FBtr0082572; dbxref=GB_protein:AAF54790.2,GB_protein:AAF54790.3,F		
41	FBpp0085925	CG10915-PA; parent=FBgn0034308,FBtr0086746; dbxref=FlyBase:FBpp0085925,FlyBase_Annotation_IDs:		
41	FBpp0074394	Wnt5-PA; parent=FBgn0010194,FBtr0074623; dbxref=FlyBase:FBpp0074394,FlyBase_Annotation_IDs:CG6		
41	FBpp0086374	lbk-PA; parent=FBgn0034083,FBtr0087235; dbxref=GB_protein:AAF58053.1,FlyBase:FBpp0086374,FlyBa		
40	FBpp0073539	Smr-PA; parent=FBgn0024308,FBtr0073706; dbxref=FlyBase:FBpp0073539,FlyBase_Annotation_IDs:CG40		
40	FBpp0073540	Smr-PB; parent=FBgn0024308,FBtr0073707; dbxref=FlyBase:FBpp0073540,FlyBase_Annotation_IDs:CG40		

40	FBpp0073541	Smr-PC; parent=FBgn0024308,FBtr0073708; dbxref=FlyBase:FBpp0073541,FlyBase_Annotation_IDs:CG40		
40	FBpp0083240	CG4936-PA; parent=FBgn0038768,FBtr0083831; dbxref=FlyBase:FBpp0083240,FlyBase_Annotation_IDs:C		
306	FBpp0082422	His4r-PB; parent=FBgn0013981,FBtr0082963; dbxref=FlyBase:FBpp0082422,FlyBase_Annotation_IDs:CG		
306	FBpp0082423	His4r-PC; parent=FBgn0013981,FBtr0082964; dbxref=FlyBase:FBpp0082423,FlyBase_Annotation_IDs:CG		
306	FBpp0085280	His4:CG31611-PA; parent=FBgn0051611,FBtr0085926; dbxref=FlyBase:FBpp0085280,GB_protein:AAN1112		
306	FBpp0091116	His4:CG33871-PA; parent=FBgn0053871,FBtr0091875; dbxref=FlyBase:FBpp0091116,FlyBase_Annotation		
306	FBpp0091118	His4:CG33873-PA; parent=FBgn0053873,FBtr0091877; dbxref=FlyBase:FBpp0091118,FlyBase_Annotation		
306	FBpp0091120	His4:CG33875-PA; parent=FBgn0053875,FBtr0091879; dbxref=FlyBase:FBpp0091120,FlyBase_Annotation		
306	FBpp0091128	His4:CG33883-PA; parent=FBgn0053883,FBtr0091887; dbxref=FlyBase:FBpp0091128,FlyBase_Annotation		
306	FBpp0091130	His4:CG33885-PA; parent=FBgn0053885,FBtr0091889; dbxref=FlyBase:FBpp0091130,FlyBase_Annotation		
306	FBpp0091132	His4:CG33887-PA; parent=FBgn0053887,FBtr0091891; dbxref=FlyBase:FBpp0091132,FlyBase_Annotation		
306	FBpp0091134	His4:CG33889-PA; parent=FBgn0053889,FBtr0091893; dbxref=FlyBase:FBpp0091134,FlyBase_Annotation		
306	FBpp0091136	His4:CG33891-PA; parent=FBgn0053891,FBtr0091895; dbxref=FlyBase:FBpp0091136,FlyBase_Annotation		
306	FBpp0091138	His4:CG33893-PA; parent=FBgn0053893,FBtr0091897; dbxref=FlyBase:FBpp0091138,FlyBase_Annotation		
306	FBpp0091140	His4:CG33895-PA; parent=FBgn0053895,FBtr0091899; dbxref=FlyBase:FBpp0091140,FlyBase_Annotation		

306	FBpp0091142	His4:CG33897-PA; parent=FBgn0053897,FBtr0091901; dbxref=FlyBase:FBpp0091142,FlyBase_Annotation		
306	FBpp0091144	His4:CG33899-PA; parent=FBgn0053899,FBtr0091903; dbxref=FlyBase:FBpp0091144,FlyBase_Annotation		
306	FBpp0091146	His4:CG33901-PA; parent=FBgn0053901,FBtr0091905; dbxref=FlyBase:FBpp0091146,FlyBase_Annotation		
306	FBpp0091148	His4:CG33903-PA; parent=FBgn0053903,FBtr0091907; dbxref=FlyBase:FBpp0091148,FlyBase_Annotation		
306	FBpp0091150	His4:CG33905-PA; parent=FBgn0053905,FBtr0091909; dbxref=FlyBase:FBpp0091150,FlyBase_Annotation		
306	FBpp0091152	His4:CG33907-PA; parent=FBgn0053907,FBtr0091911; dbxref=FlyBase:FBpp0091152,FlyBase_Annotation		
306	FBpp0091154	His4:CG33909-PA; parent=FBgn0053909,FBtr0091913; dbxref=FlyBase:FBpp0091154,FlyBase_Annotation		
303	FBpp0076182	Hsp27-PA; parent=FBgn0001226,FBtr0076454; dbxref=FlyBase:FBpp0076182,FlyBase_Annotation_IDs:CG		
301	FBpp0078806	eIF-4a-PA; parent=FBgn0001942,FBtr0079175; dbxref=FlyBase:FBpp0078806,FlyBase_Annotation_IDs:C		
301	FBpp0078807	eIF-4a-PC; parent=FBgn0001942,FBtr0079176; dbxref=FlyBase:FBpp0078807,FlyBase_Annotation_IDs:C		
301	FBpp0078808	eIF-4a-PB; parent=FBgn0001942,FBtr0079177; dbxref=FlyBase:FBpp0078808,FlyBase_Annotation_IDs:C		
301	FBpp0078809	eIF-4a-PD; parent=FBgn0001942,FBtr0079178; dbxref=FlyBase:FBpp0078809,FlyBase_Annotation_IDs:C		
296	FBpp0071903	CG3800-PA; parent=FBgn0034802,FBtr0071994; dbxref=FlyBase:FBpp0071903,FlyBase_Annotation_IDs:C		

288	FBpp0071808	RpL23-PA; parent=FBgn0010078,FBtr0071897; dbxref=GB_protein:AAF46914.1,FlyBase:FBpp0071808,Fly				
287	FBpp0077720	CG4164-PA; parent=FBgn0031256,FBtr0078060; dbxref=FlyBase:FBpp0077720,FlyBase_Annotation_IDs:C	34	44	FBpp007772 0	CG4164-PA; parent=FBgn0031256,FBtr0078060; dbxref=FlyBase:FBpp0077720,FlyBase_Annotation_IDs:C
286	FBpp0084188	Nup358-PA; parent=FBgn0039302,FBtr0084813; dbxref=GB_protein:AAF56430.1,FlyBase:FBpp0084188,Fl				
276	FBpp0073120	RfC40-PA; parent=FBgn0015287,FBtr0073264; dbxref=GB_protein:AAF47843.1,FlyBase:FBpp0073120,Fly				
257	FBpp0077992	Z4-PA; parent=FBgn0037066,FBtr0078336; dbxref=FlyBase:FBpp0077992,FlyBase_Annotation_IDs:CG775				
256	FBpp0082077	GstD1-PA; parent=FBgn0001149,FBtr0082607; dbxref=FlyBase:FBpp0082077,FlyBase_Annotation_IDs:CG				
256	FBpp0099824	GstD1-PB; parent=FBgn0001149,FBtr0100410; dbxref=FlyBase_Annotation_IDs:CG10045-PB,FlyBase:FBp				
254	FBpp0078478	Gnf1-PA; parent=FBgn0004913,FBtr0078837; dbxref=FlyBase:FBpp0078478,FlyBase_Annotation_IDs:CG1				
254	FBpp0099511	Gnf1-PB; parent=FBgn0004913,FBtr0100159; dbxref=FlyBase_Annotation_IDs:CG1119-PB,FlyBase:FBpp0				
253	FBpp0077715	ebi-PA; parent=FBgn0023444,FBtr0078055; dbxref=FlyBase:FBpp0077715,FlyBase_Annotation_IDs:CG40				
249	FBpp0072097	tsr-PA; parent=FBgn0011726,FBtr0072188; dbxref=FlyBase:FBpp0072097,FlyBase_Annotation_IDs:CG42				

247	FBpp0076181	Hsp23-PA; parent=FBgn0001224,FBtr0076453; dbxref=FlyBase:FBpp0076181,FlyBase_Annotation_IDs:CG		
242	FBpp0086954	Iswi-PA; parent=FBgn0011604,FBtr0087841; dbxref=FlyBase:FBpp0086954,FlyBase_Annotation_IDs:CG8		
242	FBpp0086955	Iswi-PB; parent=FBgn0011604,FBtr0087842; dbxref=FlyBase:FBpp0086955,FlyBase_Annotation_IDs:CG8		
242	FBpp0086956	Iswi-PC; parent=FBgn0011604,FBtr0087843; dbxref=FlyBase:FBpp0086956,FlyBase_Annotation_IDs:CG8		
239	FBpp0086563	CG10139-PA; parent=FBgn0033951,FBtr0087433; dbxref=FlyBase:FBpp0086563,FlyBase_Annotation_IDs:		
238	FBpp0081464	CG9740-PA; parent=FBgn0037669,FBtr0081984; dbxref=FlyBase:FBpp0081464,FlyBase_Annotation_IDs:C		
236	FBpp0078510	CG1129-PB; parent=FBgn0037279,FBtr0078870; dbxref=FlyBase:FBpp0078510,FlyBase_Annotation_IDs:C		
236	FBpp0078511	CG1129-PA; parent=FBgn0037279,FBtr0078871; dbxref=FlyBase:FBpp0078511,FlyBase_Annotation_IDs:C		
235	FBpp0071754	qkr58E-1-PA; parent=FBgn0022986,FBtr0071843; dbxref=FlyBase:FBpp0071754,FlyBase_Annotation_IDs		
223	FBpp0078667	eIF-3p40-PA; parent=FBgn0022023,FBtr0079030; dbxref=GB_protein:AAF52210.2,FlyBase:FBpp0078667,		
223	FBpp0089133	eIF-3p40-PB; parent=FBgn0022023,FBtr0079031; dbxref=FlyBase:FBpp0089133,FlyBase_Annotation_IDs		
223	FBpp0070658	torp4a-PA; parent=FBgn0025615,FBtr0070690; dbxref=FlyBase:FBpp0070658,GB_protein:AAF45969.2,Fl		
206	FBpp0080998	Mpp6-PA; parent=FBgn0032921,FBtr0081469; dbxref=FlyBase:FBpp0080998,FlyBase_Annotation_IDs:CG9		

199	FBpp0084222	CG10669-PA; parent=FBgn0039329,FBtr0084848; dbxref=FlyBase:FBpp0084222,FlyBase_Annotation_IDs:		
196	FBpp0085744	mip40-PA; parent=FBgn0034430,FBtr0086560; dbxref=FlyBase:FBpp0085744,FlyBase_Annotation_IDs:CG		
195	FBpp0076216	eIF-4E-PC; parent=FBgn0015218,FBtr0076488; dbxref=FlyBase:FBpp0076216,FlyBase_Annotation_IDs:C		
192	FBpp0076215	eIF-4E-PB; parent=FBgn0015218,FBtr0076487; dbxref=FlyBase:FBpp0076215,FlyBase_Annotation_IDs:C		
192	FBpp0076217	eIF-4E-PD; parent=FBgn0015218,FBtr0076489; dbxref=FlyBase:FBpp0076217,FlyBase_Annotation_IDs:C		
192	FBpp0076218	eIF-4E-PA; parent=FBgn0015218,FBtr0076490; dbxref=FlyBase:FBpp0076218,FlyBase_Annotation_IDs:C		
192	FBpp0076219	eIF-4E-PG; parent=FBgn0015218,FBtr0076491; dbxref=FlyBase:FBpp0076219,FlyBase_Annotation_IDs:C		
192	FBpp0076220	eIF-4E-PE; parent=FBgn0015218,FBtr0076492; dbxref=FlyBase:FBpp0076220,FlyBase_Annotation_IDs:C		
192	FBpp0076221	eIF-4E-PF; parent=FBgn0015218,FBtr0076493; dbxref=FlyBase:FBpp0076221,FlyBase_Annotation_IDs:C		
185	FBpp0086694	Hsc70-5-PA; parent=FBgn0001220,FBtr0087568; dbxref=FlyBase:FBpp0086694,FlyBase_Annotation_IDs:		
180	FBpp0086701	RpS23-PA; parent=FBgn0033912,FBtr0087575; dbxref=FlyBase:FBpp0086701,FlyBase_Annotation_IDs:CG		
174	FBpp0083801	sec13-PA; parent=FBgn0024509,FBtr0084409; dbxref=FlyBase:FBpp0083801,FlyBase_Annotation_IDs:CG		

166	FBpp0078532	CG9769-PA; parent=FBgn0037270,FBtr0078892; dbxref=FlyBase:FBpp0078532,FlyBase_Annotation_IDs:C		
164	FBpp0087084	128up-PA; parent=FBgn0010339,FBtr0087976; dbxref=FlyBase_Annotation_IDs:CG8340-PA,FlyBase:FBpp		
155	FBpp0084464	BM-40-SPARC-PA; parent=FBgn0026562,FBtr0085094; dbxref=FlyBase:FBpp0084464,FlyBase_Annotation_		
155	FBpp0085281	His2B:CG17949-PA; parent=FBgn0061209,FBtr0085927; dbxref=FlyBase:FBpp0085281,GB_protein:AAN111		
155	FBpp0091113	His2B:CG33868-PA; parent=FBgn0053868,FBtr0091872; dbxref=FlyBase:FBpp0091113,FlyBase_Annotatio		
155	FBpp0091115	His2B:CG33870-PA; parent=FBgn0053870,FBtr0091874; dbxref=FlyBase:FBpp0091115,FlyBase_Annotatio		
155	FBpp0091117	His2B:CG33872-PA; parent=FBgn0053872,FBtr0091876; dbxref=FlyBase:FBpp0091117,FlyBase_Annotatio		
155	FBpp0091119	His2B:CG33874-PA; parent=FBgn0053874,FBtr0091878; dbxref=FlyBase:FBpp0091119,FlyBase_Annotatio		
155	FBpp0091121	His2B:CG33876-PA; parent=FBgn0053876,FBtr0091880; dbxref=FlyBase:FBpp0091121,FlyBase_Annotatio		
155	FBpp0091123	His2B:CG33878-PA; parent=FBgn0053878,FBtr0091882; dbxref=FlyBase:FBpp0091123,FlyBase_Annotatio		
155	FBpp0091125	His2B:CG33880-PA; parent=FBgn0053880,FBtr0091884; dbxref=FlyBase:FBpp0091125,FlyBase_Annotatio		
155	FBpp0091127	His2B:CG33882-PA; parent=FBgn0053882,FBtr0091886; dbxref=FlyBase:FBpp0091127,FlyBase_Annotatio		
155	FBpp0091129	His2B:CG33884-PA; parent=FBgn0053884,FBtr0091888; dbxref=FlyBase:FBpp0091129,FlyBase_Annotatio		
155	FBpp0091131	His2B:CG33886-PA; parent=FBgn0053886,FBtr0091890; dbxref=FlyBase:FBpp0091131,FlyBase_Annotatio		
155	FBpp0091133	His2B:CG33888-PA; parent=FBgn0053888,FBtr0091892; dbxref=FlyBase:FBpp0091133,FlyBase_Annotatio		
155	FBpp0091135	His2B:CG33890-PA; parent=FBgn0053890,FBtr0091894; dbxref=FlyBase:FBpp0091135,FlyBase_Annotatio		

155	FBpp0091137	His2B:CG33892-PA; parent=FBgn0053892,FBtr0091896; dbxref=FlyBase:FBpp0091137,FlyBase_Annotatio		
155	FBpp0091139	His2B:CG33894-PA; parent=FBgn0053894,FBtr0091898; dbxref=FlyBase:FBpp0091139,FlyBase_Annotatio		
155	FBpp0091141	His2B:CG33896-PA; parent=FBgn0053896,FBtr0091900; dbxref=FlyBase:FBpp0091141,FlyBase_Annotatio		
155	FBpp0091143	His2B:CG33898-PA; parent=FBgn0053898,FBtr0091902; dbxref=FlyBase:FBpp0091143,FlyBase_Annotatio		
155	FBpp0091145	His2B:CG33900-PA; parent=FBgn0053900,FBtr0091904; dbxref=FlyBase:FBpp0091145,FlyBase_Annotatio		
155	FBpp0091147	His2B:CG33902-PA; parent=FBgn0053902,FBtr0091906; dbxref=FlyBase:FBpp0091147,FlyBase_Annotatio		
155	FBpp0091149	His2B:CG33904-PA; parent=FBgn0053904,FBtr0091908; dbxref=FlyBase:FBpp0091149,FlyBase_Annotatio		
155	FBpp0091151	His2B:CG33906-PA; parent=FBgn0053906,FBtr0091910; dbxref=FlyBase:FBpp0091151,FlyBase_Annotatio		
155	FBpp0091153	His2B:CG33908-PA; parent=FBgn0053908,FBtr0091912; dbxref=FlyBase:FBpp0091153,FlyBase_Annotatio		
155	FBpp0091155	His2B:CG33910-PA; parent=FBgn0053910,FBtr0091914; dbxref=FlyBase:FBpp0091155,FlyBase_Annotatio		
153	FBpp0077159	RpL40-PA; parent=FBgn0003941,FBtr0077470; dbxref=FlyBase:FBpp0077159,FlyBase_Annotation_IDs:CG		
152	FBpp0071609	CG10440-PA; parent=FBgn0034636,FBtr0071692; dbxref=FlyBase:FBpp0071609,FlyBase_Annotation_IDs:		
151	FBpp0085851	GstE2-PA; parent=FBgn0063498,FBtr0086670; dbxref=FlyBase:FBpp0085851,FlyBase_Annotation_IDs:CG		
150	FBpp0079606	RpS27A-PA; parent=FBgn0003942,FBtr0080016; dbxref=FlyBase:FBpp0079606,FlyBase_Annotation_IDs:C		
149	FBpp0076990	I(1)G0004-PA; parent=FBgn0027334,FBtr0077298; dbxref=FlyBase:FBpp0076990,FlyBase_Annotation_ID		

148	FBpp0070892	CG11700-PA; parent=FBgn0029856,FBtr0070931; dbxref=FlyBase:FBpp0070892,FlyBase_Annotation_IDs:		
148	FBpp0078977	SA-PA; parent=FBgn0020616,FBtr0079349; dbxref=GB_protein:AAF52463.1,FlyBase:FBpp0078977,FlyBas		
146	FBpp0085955	lolal-PB; parent=FBgn0022238,FBtr0086776; dbxref=FlyBase:FBpp0085955,FlyBase_Annotation_IDs:CG		
146	FBpp0085956	lolal-PA; parent=FBgn0022238,FBtr0086777; dbxref=FlyBase:FBpp0085956,FlyBase_Annotation_IDs:CG		
146	FBpp0085957	lolal-PC; parent=FBgn0022238,FBtr0086778; dbxref=FlyBase:FBpp0085957,FlyBase_Annotation_IDs:CG		
146	FBpp0085958	lolal-PD; parent=FBgn0022238,FBtr0086779; dbxref=FlyBase:FBpp0085958,FlyBase_Annotation_IDs:CG		
146	FBpp0079812	RfC38-PA; parent=FBgn0028700,FBtr0080225; dbxref=GB_protein:AAF53076.2,FlyBase:FBpp0079812,Fly		
145	FBpp0078791	CG14005-PA; parent=FBgn0031739,FBtr0079160; dbxref=FlyBase:FBpp0078791,FlyBase_Annotation_IDs:		
144	FBpp0071766	RpS16-PA; parent=FBgn0034743,FBtr0071855; dbxref=FlyBase:FBpp0071766,FlyBase_Annotation_IDs:CG		
143	FBpp0076552	lark-PA; parent=FBgn0011640,FBtr0076841; dbxref=FlyBase_Annotation_IDs:CG8597-PA,FlyBase:FBpp0		
143	FBpp0076553	lark-PB; parent=FBgn0011640,FBtr0076842; dbxref=FlyBase:FBpp0076553,FlyBase_Annotation_IDs:CG8		
143	FBpp0076554	lark-PC; parent=FBgn0011640,FBtr0076843; dbxref=FlyBase_Annotation_IDs:CG8597-PC,FlyBase:FBpp0		

143	FBpp0076555	lark-PD; parent=FBgn0011640,FBtr0076844; dbxref=FlyBase_Annotation_IDs:CG8597-PD,FlyBase:FBpp0		
143	FBpp0076556	lark-PE; parent=FBgn0011640,FBtr0076845; dbxref=FlyBase_Annotation_IDs:CG8597-PE,FlyBase:FBpp0		
139	FBpp0070894	CG32744-PA; parent=FBgn0052744,FBtr0070933; dbxref=FlyBase:FBpp0070894,FlyBase_Annotation_IDs:		
136	FBpp0073034	Ubi-p63E-PA; parent=FBgn0003943,FBtr0073177; dbxref=FlyBase:FBpp0073034,FlyBase_Annotation_IDs		
136	FBpp0073035	Ubi-p63E-PB; parent=FBgn0003943,FBtr0073178; dbxref=FlyBase:FBpp0073035,FlyBase_Annotation_IDs		
136	FBpp0089269	Ubi-p63E-PC; parent=FBgn0003943,FBtr0073179; dbxref=FlyBase_Annotation_IDs:CG11624-PC,FlyBase:		
133	FBpp0079328	RpS13-PA; parent=FBgn0010265,FBtr0079724; dbxref=FlyBase:FBpp0079328,GB_protein:AAF52649.1,Fly		
122	FBpp0083371	RpS20-PA; parent=FBgn0019936,FBtr0083964; dbxref=FlyBase:FBpp0083371,FlyBase_Annotation_IDs:CG		
117	FBpp0071221	HP1b-PA; parent=FBgn0030082,FBtr0071284; dbxref=FlyBase:FBpp0071221,FlyBase_Annotation_IDs:CG7		
110	FBpp0078689	Trip1-PA; parent=FBgn0015834,FBtr0079053; dbxref=GB_protein:AAF52183.1,FlyBase:FBpp0078689,Fly		
109	FBpp0079443	hoip-PA; parent=FBgn0015393,FBtr0079846; dbxref=FlyBase:FBpp0079443,FlyBase_Annotation_IDs:CG3		
107	FBpp0075958	Sod-PA; parent=FBgn0003462,FBtr0076229; dbxref=FlyBase:FBpp0075958,FlyBase_Annotation_IDs:CG11		
107	FBpp0078335	Itp-r83A-PA; parent=FBgn0010051,FBtr0078686; dbxref=FlyBase:FBpp0078335,FlyBase_Annotation_IDs		

107	FBpp0078336	Itp-r83A-PB; parent=FBgn0010051,FBtr0078687; dbxref=FlyBase:FBpp0078336,FlyBase_Annotation_IDs		
106	FBpp0086370	Got1-PB; parent=FBgn0001124,FBtr0087231; dbxref=GB_protein:AAM70954.1,FlyBase:FBpp0086370,FlyB		
106	FBpp0086371	Got1-PA; parent=FBgn0001124,FBtr0087232; dbxref=GB_protein:AAF58059.1,FlyBase:FBpp0086371,FlyB		
103	FBpp0086507	Arf51F-PD; parent=FBgn0013750,FBtr0087375; dbxref=FlyBase:FBpp0086507,FlyBase_Annotation_IDs:C		
103	FBpp0086508	Arf51F-PB; parent=FBgn0013750,FBtr0087376; dbxref=FlyBase:FBpp0086508,FlyBase_Annotation_IDs:C		
103	FBpp0086509	Arf51F-PC; parent=FBgn0013750,FBtr0087377; dbxref=FlyBase:FBpp0086509,FlyBase_Annotation_IDs:C		
103	FBpp0086510	Arf51F-PA; parent=FBgn0013750,FBtr0087378; dbxref=FlyBase:FBpp0086510,FlyBase_Annotation_IDs:C		
103	FBpp0086511	Arf51F-PE; parent=FBgn0013750,FBtr0087379; dbxref=FlyBase:FBpp0086511,FlyBase_Annotation_IDs:C		
102	FBpp0071975	apt-PB; parent=FBgn0015903,FBtr0072066; dbxref=FlyBase:FBpp0071975,FlyBase_Annotation_IDs:CG53		
102	FBpp0071976	apt-PD; parent=FBgn0015903,FBtr0072067; dbxref=FlyBase:FBpp0071976,FlyBase_Annotation_IDs:CG53		
102	FBpp0071977	apt-PE; parent=FBgn0015903,FBtr0072068; dbxref=FlyBase:FBpp0071977,FlyBase_Annotation_IDs:CG53		
102	FBpp0071978	apt-PC; parent=FBgn0015903,FBtr0072069; dbxref=FlyBase:FBpp0071978,FlyBase_Annotation_IDs:CG53		

102	FBpp0071979	apt-PA; parent=FBgn0015903,FBtr0072070; dbxref=FlyBase:FBpp0071979,FlyBase_Annotation_IDs:CG53		
101	FBpp0085841	CG30122-PB; parent=FBgn0050122,FBtr0086660; dbxref=GB_protein:AAF57660.2,FlyBase:FBpp0085841,F		
99	FBpp0080102	RpL24-PA; parent=FBgn0032518,FBtr0080524; dbxref=FlyBase:FBpp0080102,FlyBase_Annotation_IDs:CG		
98	FBpp0071600	Rae1-PA; parent=FBgn0034646,FBtr0071683; dbxref=FlyBase:FBpp0071600,FlyBase_Annotation_IDs:CG9		
96	FBpp0078974	Hrb27C-PA; parent=FBgn0004838,FBtr0079346; dbxref=FlyBase:FBpp0078974,FlyBase_Annotation_IDs:C		
96	FBpp0078975	Hrb27C-PC; parent=FBgn0004838,FBtr0079347; dbxref=FlyBase:FBpp0078975,FlyBase_Annotation_IDs:C		
96	FBpp0078976	Hrb27C-PB; parent=FBgn0004838,FBtr0079348; dbxref=FlyBase:FBpp0078976,FlyBase_Annotation_IDs:C		
96	FBpp0088733	bt-PD; parent=FBgn0005666,FBtr0089792; dbxref=FlyBase:FBpp0088733,FlyBase_Annotation_IDs:CG320		
96	FBpp0088734	bt-PC; parent=FBgn0005666,FBtr0089793; dbxref=FlyBase:FBpp0088734,FlyBase_Annotation_IDs:CG320		
95	FBpp0088732	bt-PE; parent=FBgn0005666,FBtr0089791; dbxref=FlyBase:FBpp0088732,FlyBase_Annotation_IDs:CG320		
95	FBpp0088735	bt-PA; parent=FBgn0005666,FBtr0089794; dbxref=FlyBase:FBpp0088735,FlyBase_Annotation_IDs:CG320		
94	FBpp0088303	eIF-4G-PA; parent=FBgn0023213,FBtr0089243; dbxref=FlyBase:FBpp0088303,FlyBase_Annotation_IDs:C		

92	FBpp0072406	miple2-PA; parent=FBgn0029002,FBtr0072506; dbxref=FlyBase:FBpp0072406,FlyBase_Annotation_IDs:C		
92	FBpp0086572	BEAF-32-PB; parent=FBgn0015602,FBtr0087442; dbxref=FlyBase:FBpp0086572,FlyBase_Annotation_IDs:		
92	FBpp0082877	sds22-PA; parent=FBgn0028992,FBtr0083436; dbxref=FlyBase:FBpp0082877,FlyBase_Annotation_IDs:CG		
92	FBpp0086096	CG4866-PA; parent=FBgn0034232,FBtr0086940; dbxref=FlyBase:FBpp0086096,FlyBase_Annotation_IDs:C		
90	FBpp0079520	CG4747-PA; parent=FBgn0043456,FBtr0079930; dbxref=FlyBase:FBpp0079520,FlyBase_Annotation_IDs:C		
90	FBpp0081401	CG8351-PA; parent=FBgn0037632,FBtr0081918; dbxref=FlyBase:FBpp0081401,FlyBase_Annotation_IDs:C		
86	FBpp0085317	CG1832-PA; parent=FBgn0032979,FBtr0085964; dbxref=GB_protein:AAF57252.1,FlyBase:FBpp0085317,Fl		
86	FBpp0099821	CG1832-PB; parent=FBgn0032979,FBtr0100407; dbxref=FlyBase_Annotation_IDs:CG1832-PB,FlyBase:FBp		
86	FBpp0074462	Ulp1-PA; parent=FBgn0027603,FBtr0074693; dbxref=FlyBase:FBpp0074462,FlyBase_Annotation_IDs:CG1		
86	FBpp0070118	skpA-PA; parent=FBgn0025637,FBtr0070123; dbxref=FlyBase_Annotation_IDs:CG16983-PA,FlyBase:FBpp		
86	FBpp0070119	skpA-PD; parent=FBgn0025637,FBtr0070124; dbxref=FlyBase_Annotation_IDs:CG16983-PD,GB_protein:A		
86	FBpp0070120	skpA-PG; parent=FBgn0025637,FBtr0070125; dbxref=FlyBase_Annotation_IDs:CG16983-PG,FlyBase:FBpp		

86	FBpp0070121	skpA-PB; parent=FBgn0025637,FBtr0070126; dbxref=FlyBase_Annotation_IDs:CG16983-PB,GB_protein:A		
86	FBpp0070122	skpA-PC; parent=FBgn0025637,FBtr0070127; dbxref=FlyBase_Annotation_IDs:CG16983-PC,GB_protein:A		
86	FBpp0070123	skpA-PF; parent=FBgn0025637,FBtr0070128; dbxref=FlyBase_Annotation_IDs:CG16983-PF,FlyBase:FBpp		
86	FBpp0070124	skpA-PE; parent=FBgn0025637,FBtr0070129; dbxref=FlyBase_Annotation_IDs:CG16983-PE,GB_protein:A		
86	FBpp0099971	skpA-PH; parent=FBgn0025637,FBtr0100530; dbxref=FlyBase_Annotation_IDs:CG16983-PH,FlyBase:FBpp		
86	FBpp0070027			
85	FBpp0078770	CG7239-PA; parent=FBgn0031740,FBtr0079139; dbxref=FlyBase:FBpp0078770,FlyBase_Annotation_IDs:C		
84	FBpp0071846	RpS24-PA; parent=FBgn0034751,FBtr0071935; dbxref=FlyBase:FBpp0071846,FlyBase_Annotation_IDs:CG		
83	FBpp0088256	Arf102F-PA; parent=FBgn0013749,FBtr0089192; dbxref=FlyBase:FBpp0088256,GB_protein:AAF59383.1,F		
83	FBpp0087166	CG13185-PA; parent=FBgn0033661,FBtr0088060; dbxref=FlyBase:FBpp0087166,FlyBase_Annotation_IDs:		
83	FBpp0084761	Ef1gamma-PB; parent=FBgn0029176,FBtr0085392; dbxref=FlyBase:FBpp0084761,FlyBase_Annotation_IDs		
83	FBpp0084762	Ef1gamma-PA; parent=FBgn0029176,FBtr0085393; dbxref=FlyBase:FBpp0084762,FlyBase_Annotation_IDs		
81	FBpp0078222	Arf79F-PA; parent=FBgn0010348,FBtr0078571; dbxref=FlyBase:FBpp0078222,FlyBase_Annotation_IDs:C		

Anhan	Anhang							
81	FBpp0078223	Arf79F-PD; parent=FBgn0010348,FBtr0078572; dbxref=FlyBase:FBpp0078223,FlyBase_Annotation_IDs:C						
81	FBpp0078224	Arf79F-PB; parent=FBgn0010348,FBtr0078573; dbxref=FlyBase:FBpp0078224,FlyBase_Annotation_IDs:C						
81	FBpp0078225	Arf79F-PE; parent=FBgn0010348,FBtr0078574; dbxref=FlyBase:FBpp0078225,FlyBase_Annotation_IDs:C						
		Arf70E DC: parent-EBap0010348 EBtr0078575						

81	FBpp0078224	dbxref=FlyBase:FBpp0078224,FlyBase_Annotation_IDs:C		
81	FBpp0078225	Arf79F-PE; parent=FBgn0010348,FBtr0078574; dbxref=FlyBase:FBpp0078225,FlyBase_Annotation_IDs:C		
81	FBpp0078226	Arf79F-PC; parent=FBgn0010348,FBtr0078575; dbxref=FlyBase:FBpp0078226,FlyBase_Annotation_IDs:C		
81	FBpp0073519	CG4004-PA; parent=FBgn0030418,FBtr0073686; dbxref=FlyBase:FBpp0073519,FlyBase_Annotation_IDs:C		
81	FBpp0073520	CG4004-PB; parent=FBgn0030418,FBtr0073687; dbxref=FlyBase:FBpp0073520,FlyBase_Annotation_IDs:C		
80	FBpp0082511	Caf1-PA; parent=FBgn0015610,FBtr0083052; dbxref=FlyBase:FBpp0082511,FlyBase_Annotation_IDs:CG4		
78	FBpp0082678	msps-PA; parent=FBgn0027948,FBtr0083224; dbxref=FlyBase:FBpp0082678,FlyBase_Annotation_IDs:CG5		
78	FBpp0079251	Su(var)205-PA; parent=FBgn0003607,FBtr0079635; dbxref=FlyBase:FBpp0079251,FlyBase_Annotation_I		
78	FBpp0079252	Su(var)205-PB; parent=FBgn0003607,FBtr0079636; dbxref=FlyBase:FBpp0079252,FlyBase_Annotation_I		
77	FBpp0072745	HBS1-PA; parent=FBgn0042712,FBtr0072866; dbxref=GB_protein:AAF47584.2,GB_protein:AAF47584.1,Fl		
76	FBpp0078728	cl-PA; parent=FBgn0000318,FBtr0079095; dbxref=FlyBase:FBpp0078728,FlyBase_Annotation_IDs:CG110		

75	FBpp0075450	CG9311-PA; parent=FBgn0036448,FBtr0075700; dbxref=FlyBase:FBpp0075450,FlyBase_Annotation_IDs:C		
72	FBpp0085915	pAbp-PC; parent=FBgn0003031,FBtr0086736; dbxref=GB_protein:AAF57746.1,FlyBase:FBpp0085915,FlyB		
72	FBpp0085916	pAbp-PE; parent=FBgn0003031,FBtr0086737; dbxref=FlyBase:FBpp0085916,FlyBase_Annotation_IDs:CG5		
72	FBpp0085917	pAbp-PA; parent=FBgn0003031,FBtr0086738; dbxref=FlyBase:FBpp0085917,FlyBase_Annotation_IDs:CG5		
72	FBpp0085918	pAbp-PF; parent=FBgn0003031,FBtr0086739; dbxref=FlyBase:FBpp0085918,FlyBase_Annotation_IDs:CG5		
72	FBpp0085919	pAbp-PB; parent=FBgn0003031,FBtr0086740; dbxref=FlyBase:FBpp0085919,FlyBase_Annotation_IDs:CG5		
72	FBpp0085920	pAbp-PD; parent=FBgn0003031,FBtr0086741; dbxref=FlyBase:FBpp0085920,FlyBase_Annotation_IDs:CG5		
72	FBpp0085921	pAbp-PG; parent=FBgn0003031,FBtr0086742; dbxref=FlyBase:FBpp0085921,FlyBase_Annotation_IDs:CG5		
72	FBpp0085922	pAbp-PH; parent=FBgn0003031,FBtr0086743; dbxref=FlyBase:FBpp0085922,FlyBase_Annotation_IDs:CG5		
72	FBpp0087113	RpS11-PA; parent=FBgn0033699,FBtr0088005; dbxref=FlyBase:FBpp0087113,FlyBase_Annotation_IDs:CG		
72	FBpp0087114	RpS11-PB; parent=FBgn0033699,FBtr0088006; dbxref=FlyBase:FBpp0087114,FlyBase_Annotation_IDs:CG		

72	FBpp0087115	RpS11-PC; parent=FBgn0033699,FBtr0088007; dbxref=FlyBase:FBpp0087115,FlyBase_Annotation_IDs:CG		
71	FBpp0082917	CG31251-PA; parent=FBgn0051251,FBtr0083484; dbxref=GB_protein:AAN13748.1,GB_protein:AAN13748.2		
70	FBpp0075077	Dab-PA; parent=FBgn0000414,FBtr0075318; dbxref=FlyBase:FBpp0075077,FlyBase_Annotation_IDs:CG96		
70	FBpp0087852	lig-PA; parent=FBgn0020279,FBtr0088774; dbxref=GB_protein:AAM68848.1,FlyBase:FBpp0087852,FlyBa		
70	FBpp0087853	lig-PB; parent=FBgn0020279,FBtr0088775; dbxref=GB_protein:AAF59144.2,FlyBase:FBpp0087853,FlyBa		
70	FBpp0087854	lig-PC; parent=FBgn0020279,FBtr0088776; dbxref=GB_protein:AAS64895.1,FlyBase:FBpp0087854,FlyBa		
70	FBpp0100030	lig-PD; parent=FBgn0020279,FBtr0100575; dbxref=FlyBase_Annotation_IDs:CG8715-PD,FlyBase:FBpp01		
69	FBpp0082692	mor-PA; parent=FBgn0002783,FBtr0083238; dbxref=FlyBase:FBpp0082692,FlyBase_Annotation_IDs:CG18		
69	FBpp0073834	Pp1-13C-PA; parent=FBgn0003132,FBtr0074017; dbxref=FlyBase:FBpp0073834,FlyBase_Annotation_IDs:		
69	FBpp0082067	Pp1-87B-PA; parent=FBgn0004103,FBtr0082595; dbxref=FlyBase:FBpp0082067,FlyBase_Annotation_IDs:		
68	FBpp0083625	Nop56-PA; parent=FBgn0038964,FBtr0084230; dbxref=GB_protein:AAF55992.2,FlyBase:FBpp0083625,Fly		
68	FBpp0084911	CG7896-PA; parent=FBgn0039728,FBtr0085545; dbxref=FlyBase:FBpp0084911,FlyBase_Annotation_IDs:C		

-								
	67	FBpp0086708	CG8233-PA; parent=FBgn0033897,FBtr0087582; dbxref=FlyBase:FBpp0086708,FlyBase_Annotation_IDs:C					
	67	FBpp0086710	CG8233-PC; parent=FBgn0033897,FBtr0087584; dbxref=GB_protein:AAM70986.1,FlyBase:FBpp0086710,Fl					
	66	FBpp0076529	SP2523-PD; parent=FBgn0083993,FBtr0076818; dbxref=FlyBase_Annotation_IDs:CG18768-PA,FlyBase:FB					
	66	FBpp0076530	SP2523-PC; parent=FBgn0083993,FBtr0076819; dbxref=FlyBase_Annotation_IDs:CG18768-PB,FlyBase:FB					
	66	FBpp0071049	I(1)G0155-PA; parent=FBgn0026664,FBtr0071093; dbxref=FlyBase:FBpp0071049,FlyBase_Annotation_ID					
	66	FBpp0089363	bl-PC; parent=FBgn0015907,FBtr0086221; dbxref=FlyBase:FBpp0089363,FlyBase_Annotation_IDs:CG134	22	52	FBpp008936 3	bl-PC; parent=FBgn0015907,FBtr0086221; dbxref=FlyBase:FBpp0089363,FlyBase_Annotation_IDs:CG134	
	66	FBpp0089365	bl-PA; parent=FBgn0015907,FBtr0086220; dbxref=FlyBase:FBpp0089365,FlyBase_Annotation_IDs:CG134	22	52	FBpp008936 5	bl-PA; parent=FBgn0015907,FBtr0086220; dbxref=FlyBase:FBpp0089365,FlyBase_Annotation_IDs:CG134	

CG8233-PB; parent=FBgn0033897,FBtr0087583; dbxref=FlyBase:FBpp0086709,FlyBase_Annotation_IDs:C

rept-PA; parent=FBgn0040075,FBtr0074988; dbxref=GB_protein:AAF49182.1,FlyBase:FBpp0074756,FlyB

sar1-PA; parent=FBgn0038947,FBtr0084206; dbxref=FlyBase:FBpp0083604,FlyBase_Annotation_IDs:CG7

dbxref=FlyBase:FBpp0083605,FlyBase_Annotation_IDs:CG7

sar1-PD; parent=FBgn0038947,FBtr0084208; dbxref=FlyBase:FBpp0083606,FlyBase_Annotation_IDs:CG7

sar1-PB; parent=FBgn0038947,FBtr0084207;

65

65

65

65

65

FBpp0086709

FBpp0074756

FBpp0083604

FBpp0083605

FBpp0083606
65	FBpp0083607	sar1-PC; parent=FBgn0038947,FBtr0084209; dbxref=FlyBase:FBpp0083607,FlyBase_Annotation_IDs:CG7			
65	FBpp0089284	sar1-PE; parent=FBgn0038947,FBtr0084210; dbxref=FlyBase:FBpp0089284,FlyBase_Annotation_IDs:CG7			
65	FBpp0086315	CG7997-PB; parent=FBgn0034117,FBtr0087171; dbxref=FlyBase:FBpp0086315,FlyBase_Annotation_IDs:C			
65	FBpp0086316	CG7997-PA; parent=FBgn0034117,FBtr0087172; dbxref=FlyBase:FBpp0086316,FlyBase_Annotation_IDs:C			
64	FBpp0076960	CG1532-PA; parent=FBgn0031143,FBtr0077268; dbxref=FlyBase:FBpp0076960,FlyBase_Annotation_IDs:C			
63	FBpp0086769	CG6543-PA; parent=FBgn0033879,FBtr0087643; dbxref=FlyBase:FBpp0086769,FlyBase_Annotation_IDs:C			
61	FBpp0079485	Dref-PA; parent=FBgn0015664,FBtr0079889; dbxref=FlyBase_Annotation_IDs:CG5838-PA,FlyBase:FBpp0			
61	FBpp0079000	CG13773-PA; parent=FBgn0042092,FBtr0079372; dbxref=FlyBase:FBpp0079000,FlyBase_Annotation_IDs:			
61	FBpp0070143	RpL22-PA; parent=FBgn0015288,FBtr0070148; dbxref=FlyBase:FBpp0070143,FlyBase_Annotation_IDs:CG			

Prx5037-PA; parent=FBgn0038519,FBtr0083503; dbxref=FlyBase:FBpp0082927,FlyBase_Annotation_IDs:

CG6364-PA; parent=FBgn0039179,FBtr0084602; dbxref=FlyBase:FBpp0083986,FlyBase_Annotation_IDs:C

beta-Spec-PA; parent=FBgn0003471,FBtr0074454; dbxref=FlyBase:FBpp0074228,FlyBase_Annotation_ID

FBpp0082927

FBpp0083986

FBpp0074228

61

60

60

60	FBpp0070422	wds-PA; parent=FBgn0040066,FBtr0070438; dbxref=FlyBase:FBpp0070422,FlyBase_Annotation_IDs:CG17				
60	FBpp0082081	MBD-R2-PB; parent=FBgn0038016,FBtr0082611; dbxref=GB_protein:AAF54781.1,GB_protein:AAF54781.2,				
60	FBpp0082082	MBD-R2-PA; parent=FBgn0038016,FBtr0082612; dbxref=FlyBase:FBpp0082082,FlyBase_Annotation_IDs:C				
59	FBpp0072743	dre4-PA; parent=FBgn0002183,FBtr0072864; dbxref=FlyBase_Annotation_IDs:CG1828-PA,FlyBase:FBpp0	30	46	FBpp007274 3	dre4-PA; parent=FBgn0002183,FBtr0072864; dbxref=FlyBase_Annotation_IDs:CG1828-PA,FlyBase:FBpp0
59	FBpp0080639	RpS26-PA; parent=FBgn0004413,FBtr0081089; dbxref=FlyBase:FBpp0080639,FlyBase_Annotation_IDs:CG				
59	FBpp0080640	RpS26-PB; parent=FBgn0004413,FBtr0081090; dbxref=FlyBase:FBpp0080640,FlyBase_Annotation_IDs:CG				
59	FBpp0080641	RpS26-PC; parent=FBgn0004413,FBtr0081091; dbxref=FlyBase:FBpp0080641,FlyBase_Annotation_IDs:CG				
59	FBpp0082167	CtBP-PA; parent=FBgn0020496,FBtr0082699; dbxref=FlyBase_Annotation_IDs:CG7583-PA,FlyBase:FBpp0				
59	FBpp0082168	CtBP-PC; parent=FBgn0020496,FBtr0082700; dbxref=FlyBase_Annotation_IDs:CG7583-PC,FlyBase:FBpp0				
59	FBpp0082169	CtBP-PB; parent=FBgn0020496,FBtr0082701; dbxref=FlyBase_Annotation_IDs:CG7583-PB,FlyBase:FBpp0				
59	FBpp0082170	CtBP-PD; parent=FBgn0020496,FBtr0082702; dbxref=FlyBase_Annotation_IDs:CG7583-PD,FlyBase:FBpp0				
59	FBpp0099514	CtBP-PE; parent=FBgn0020496,FBtr0100161; dbxref=FlyBase_Annotation_IDs:CG7583-PE,FlyBase:FBpp0				

59	FBpp0072728	sls-PC; parent=FBgn0003432,FBtr0072849; dbxref=FlyBase:FBpp0072728,FlyBase_Annotation_IDs:CG19		
58	FBpp0081820	Tctp-PA; parent=FBgn0037874,FBtr0082344; dbxref=FlyBase:FBpp0081820,FlyBase_Annotation_IDs:CG4		
58	FBpp0084541	CG3339-PA; parent=FBgn0039510,FBtr0085171; dbxref=FlyBase:FBpp0084541,FlyBase_Annotation_IDs:C		
58	FBpp0110152	CG3339-PB; parent=FBgn0039510,FBtr0110855; dbxref=FlyBase:FBpp0110152,FlyBase_Annotation_IDs:C		
58	FBpp0072077	CG3173-PA; parent=FBgn0034964,FBtr0072168; dbxref=FlyBase:FBpp0072077,FlyBase_Annotation_IDs:C		
57	FBpp0082404	su(Hw)-PB; parent=FBgn0003567,FBtr0082945; dbxref=FlyBase:FBpp0082404,FlyBase_Annotation_IDs:C		
57	FBpp0082405	su(Hw)-PA; parent=FBgn0003567,FBtr0082946; dbxref=FlyBase:FBpp0082405,FlyBase_Annotation_IDs:C		
56	FBpp0071616	CG10494-PB; parent=FBgn0034634,FBtr0071699; dbxref=FlyBase:FBpp0071616,FlyBase_Annotation_IDs:		
56	FBpp0071617	CG10494-PA; parent=FBgn0034634,FBtr0071700; dbxref=FlyBase:FBpp0071617,FlyBase_Annotation_IDs:		
55	FBpp0074237	e(y)1-PA; parent=FBgn0000617,FBtr0074463; dbxref=GB_protein:AAF48767.2,GB_protein:AAF48767.3,F		
55	FBpp0084754	Rpn2-PA; parent=FBgn0028692,FBtr0085385; dbxref=FlyBase:FBpp0084754,FlyBase_Annotation_IDs:CG1		
55	FBpp0072019	CG30182-PA; parent=FBgn0050182,FBtr0072110; dbxref=FlyBase:FBpp0072019,FlyBase_Annotation_IDs:		

55	FBpp0076819	mad2-PA; parent=FBgn0035640,FBtr0077113; dbxref=FlyBase:FBpp0076819,FlyBase_Annotation_IDs:CG1				
55	FBpp0083802	RpS3-PA; parent=FBgn0002622,FBtr0084410; dbxref=FlyBase:FBpp0083802,FlyBase_Annotation_IDs:CG6				
55	FBpp0088208	NfI-PB; parent=FBgn0042696,FBtr0089141; dbxref=FlyBase:FBpp0088208,FlyBase_Annotation_IDs:CG23				
55	FBpp0081687	MICAL-PF; parent=FBgn0053208,FBtr0082209; dbxref=FlyBase:FBpp0081687,FlyBase_Annotation_IDs:CG	57	36	FBpp008168 7	MICAL-PF; parent=FBgn0053208,FBtr0082209; dbxref=FlyBase:FBpp0081687,FlyBase_Annotation_IDs:CG
55	FBpp0081688	MICAL-PC; parent=FBgn0053208,FBtr0082210; dbxref=FlyBase:FBpp0081688,FlyBase_Annotation_IDs:CG	57	36	FBpp008168 8	MICAL-PC; parent=FBgn0053208,FBtr0082210; dbxref=FlyBase:FBpp0081688,FlyBase_Annotation_IDs:CG
55	FBpp0081689	MICAL-PH; parent=FBgn0053208,FBtr0082211; dbxref=FlyBase:FBpp0081689,FlyBase_Annotation_IDs:CG	57	36	FBpp008168 9	MICAL-PH; parent=FBgn0053208,FBtr0082211; dbxref=FlyBase:FBpp0081689,FlyBase_Annotation_IDs:CG
55	FBpp0081690	MICAL-PG; parent=FBgn0053208,FBtr0082212; dbxref=FlyBase:FBpp0081690,FlyBase_Annotation_IDs:CG	57	36	FBpp008169 0	MICAL-PG; parent=FBgn0053208,FBtr0082212; dbxref=FlyBase:FBpp0081690,FlyBase_Annotation_IDs:CG
55	FBpp0081691	MICAL-PD; parent=FBgn0053208,FBtr0082213; dbxref=FlyBase:FBpp0081691,FlyBase_Annotation_IDs:CG	57	36	FBpp008169 1	MICAL-PD; parent=FBgn0053208,FBtr0082213; dbxref=FlyBase:FBpp0081691,FlyBase_Annotation_IDs:CG
54	FBpp0073561	REG-PA; parent=FBgn0029133,FBtr0073730; dbxref=FlyBase:FBpp0073561,FlyBase_Annotation_IDs:CG15				
54	FBpp0076200	Uch-L3-PA; parent=FBgn0011327,FBtr0076472; dbxref=FlyBase:FBpp0076200,FlyBase_Annotation_IDs:C				

klar-PA; parent=FBgn0001316,FBtr0072565; dbxref=GB_protein:AAF47389.1,FlyBase:FBpp0072464,FlyB

53

FBpp0072464

53	FBpp0110115	klar-PB; parent=FBgn0001316,FBtr0110818; dbxref=FlyBase:FBpp0110115,FlyBase_Annotation_IDs:CG1		
53	FBpp0075087	nudC-PA; parent=FBgn0021768,FBtr0075328; dbxref=FlyBase:FBpp0075087,FlyBase_Annotation_IDs:CG9		
52	FBpp0085697	cora-PA; parent=FBgn0010434,FBtr0086509; dbxref=FlyBase:FBpp0085697,FlyBase_Annotation_IDs:CG1		
52	FBpp0070612	GlcAT-I-PA; parent=FBgn0066114,FBtr0070644; dbxref=FlyBase:FBpp0070612,FlyBase_Annotation_IDs:		
52	FBpp0072338	Eps-15-PC; parent=FBgn0035060,FBtr0072433; dbxref=FlyBase:FBpp0072338,FlyBase_Annotation_IDs:C		
52	FBpp0072339	Eps-15-PB; parent=FBgn0035060,FBtr0072434; dbxref=FlyBase:FBpp0072339,FlyBase_Annotation_IDs:C		
52	FBpp0072340	Eps-15-PA; parent=FBgn0035060,FBtr0072435; dbxref=FlyBase:FBpp0072340,FlyBase_Annotation_IDs:C		
51	FBpp0085717	RpL11-PA; parent=FBgn0013325,FBtr0086533; dbxref=FlyBase:FBpp0085717,FlyBase_Annotation_IDs:CG		
50	FBpp0070562	CG2875-PB; parent=FBgn0029672,FBtr0070587; dbxref=FlyBase:FBpp0070562,FlyBase_Annotation_IDs:C		
50	FBpp0070353	CG14814-PB; parent=FBgn0023515,FBtr0070369; dbxref=FlyBase:FBpp0070353,FlyBase_Annotation_IDs:		
50	FBpp0070354	CG14814-PA; parent=FBgn0023515,FBtr0070370; dbxref=GB_protein:AAN09061.2,GB_protein:AAN09061.1		
50	FBpp0076652	CG8549-PA; parent=FBgn0035714,FBtr0076943; dbxref=FlyBase:FBpp0076652,FlyBase_Annotation_IDs:C		

50	FBpp0085855	GstE6-PA; parent=FBgn0063494,FBtr0086674; dbxref=FlyBase:FBpp0085855,FlyBase_Annotation_IDs:CG		
50	FBpp0070791	CG12236-PB; parent=FBgn0029822,FBtr0070826; dbxref=FlyBase:FBpp0070791,FlyBase_Annotation_IDs:		
49	FBpp0074076	CG9947-PA; parent=FBgn0030752,FBtr0074301; dbxref=FlyBase:FBpp0074076,FlyBase_Annotation_IDs:C		
49	FBpp0086051	CG6459-PA; parent=FBgn0034259,FBtr0086892; dbxref=FlyBase:FBpp0086051,FlyBase_Annotation_IDs:C		
48	FBpp0086122	Ark-PB; parent=FBgn0024252,FBtr0086968; dbxref=FlyBase:FBpp0086122,FlyBase_Annotation_IDs:CG68		
48	FBpp0073792	Eo-PA; parent=FBgn0030597,FBtr0073975; dbxref=FlyBase:FBpp0073792,FlyBase_Annotation_IDs:CG950		
48	FBpp0083717	Dcr-1-PA; parent=FBgn0039016,FBtr0084324; dbxref=FlyBase:FBpp0083717,FlyBase_Annotation_IDs:CG		
47	FBpp0070561	CG2875-PA; parent=FBgn0029672,FBtr0070586; dbxref=FlyBase:FBpp0070561,FlyBase_Annotation_IDs:C		
47	FBpp0070790	CG12236-PA; parent=FBgn0029822,FBtr0070825; dbxref=FlyBase:FBpp0070790,FlyBase_Annotation_IDs:		
47	FBpp0083572	pit-PB; parent=FBgn0025140,FBtr0084174; dbxref=FlyBase:FBpp0083572,FlyBase_Annotation_IDs:CG63		
47	FBpp0083573	pit-PA; parent=FBgn0025140,FBtr0084175; dbxref=FlyBase:FBpp0083573,FlyBase_Annotation_IDs:CG63		
47	FBpp0079148	mts-PA; parent=FBgn0004177,FBtr0079525; dbxref=FlyBase:FBpp0079148,FlyBase_Annotation_IDs:CG71		

Annang								
46	FBpp0079166	MED20-PA; parent=FBgn0013531,FBtr0079544; dbxref=FlyBase:FBpp0079166,FlyBase_Annotation_IDs:CG						
46	FBpp0074716	CG9392-PA; parent=FBgn0036895,FBtr0074948; dbxref=FlyBase:FBpp0074716,FlyBase_Annotation_IDs:C						

46	FBpp0074716	CG9392-PA; parent=FBgn0036895,FBtr0074948; dbxref=FlyBase:FBpp0074716,FlyBase_Annotation_IDs:C				
46	FBpp0074657	Paps-PD; parent=FBgn0020389,FBtr0074888; dbxref=FlyBase:FBpp0074657,FlyBase_Annotation_IDs:CG8				
46	FBpp0074658	Paps-PE; parent=FBgn0020389,FBtr0074889; dbxref=FlyBase:FBpp0074658,FlyBase_Annotation_IDs:CG8				
46	FBpp0110399	Paps-PF; parent=FBgn0020389,FBtr0111108; dbxref=FlyBase:FBpp0110399,FlyBase_Annotation_IDs:CG8				
46	FBpp0071829	jbug-PB; parent=FBgn0028371,FBtr0071918; dbxref=FlyBase:FBpp0071829,FlyBase_Annotation_IDs:CG3				
46	FBpp0086012	CG11423-PA; parent=FBgn0034251,FBtr0086834; dbxref=GB_protein:AAF57825.2,FlyBase:FBpp0086012,F				
46	FBpp0074011	nonA-PA; parent=FBgn0004227,FBtr0074232; dbxref=FlyBase_Annotation_IDs:CG4211-PA,FlyBase:FBpp0				
46	FBpp0074012	nonA-PB; parent=FBgn0004227,FBtr0074233; dbxref=FlyBase_Annotation_IDs:CG4211-PB,FlyBase:FBpp0				
46	FBpp0100043	nonA-PC; parent=FBgn0004227,FBtr0100586; dbxref=FlyBase_Annotation_IDs:CG4211-PC,FlyBase:FBpp0				
46	FBpp0086061	Dcr-2-PA; parent=FBgn0034246,FBtr0086904; dbxref=FlyBase:FBpp0086061,FlyBase_Annotation_IDs:CG	24	49	FBpp008606 1	Dcr-2-PA; parent=FBgn0034246,FBtr0086904; dbxref=FlyBase:FBpp0086061,FlyBase_Annotation_IDs:CG
46	FBpp0073872	CG9281-PB; parent=FBgn0030672,FBtr0074056; dbxref=FlyBase:FBpp0073872,FlyBase_Annotation_IDs:C	20	52	FBpp007387 2	CG9281-PB; parent=FBgn0030672,FBtr0074056; dbxref=FlyBase:FBpp0073872,FlyBase_Annotation_IDs:C

46	FBpp0073873	CG9281-PC; parent=FBgn0030672,FBtr0074057; dbxref=FlyBase:FBpp0073873,FlyBase_Annotation_IDs:C	20	52	FBpp007387 3	CG9281-PC; parent=FBgn0030672,FBtr0074057; dbxref=FlyBase:FBpp0073873,FlyBase_Annotation_IDs:C
45	FBpp0072929	PHGPx-PB; parent=FBgn0035438,FBtr0073065; dbxref=FlyBase:FBpp0072929,FlyBase_Annotation_IDs:CG				
45	FBpp0072930	PHGPx-PC; parent=FBgn0035438,FBtr0073066; dbxref=FlyBase:FBpp0072930,FlyBase_Annotation_IDs:CG				
45	FBpp0072931	PHGPx-PA; parent=FBgn0035438,FBtr0073067; dbxref=FlyBase:FBpp0072931,FlyBase_Annotation_IDs:CG				
45	FBpp0072932	PHGPx-PD; parent=FBgn0035438,FBtr0073068; dbxref=FlyBase:FBpp0072932,FlyBase_Annotation_IDs:CG				
45	FBpp0074432	CG18259-PA; parent=FBgn0030956,FBtr0074661; dbxref=FlyBase:FBpp0074432,FlyBase_Annotation_IDs:				
45	FBpp0076926	CG1801-PA; parent=FBgn0031171,FBtr0077231; dbxref=FlyBase:FBpp0076926,FlyBase_Annotation_IDs:C	29	46	FBpp007692 6	CG1801-PA; parent=FBgn0031171,FBtr0077231; dbxref=FlyBase:FBpp0076926,FlyBase_Annotation_IDs:C
45	FBpp0083693	CG6954-PA; parent=FBgn0039000,FBtr0084300; dbxref=FlyBase:FBpp0083693,FlyBase_Annotation_IDs:C				
45	FBpp0070596	Iva-PC; parent=FBgn0029688,FBtr0070626; dbxref=FlyBase:FBpp0070596,FlyBase_Annotation_IDs:CG64				
44	FBpp0074654	Paps-PB; parent=FBgn0020389,FBtr0074885; dbxref=FlyBase:FBpp0074654,FlyBase_Annotation_IDs:CG8				
44	FBpp0074655	Paps-PC; parent=FBgn0020389,FBtr0074886; dbxref=FlyBase:FBpp0074655,FlyBase_Annotation_IDs:CG8				
44	FBpp0074656	Paps-PA; parent=FBgn0020389,FBtr0074887; dbxref=FlyBase:FBpp0074656,FlyBase_Annotation_IDs:CG8				

-

44	FBpp0076486	pbl-PA; parent=FBgn0003041,FBtr0076771; dbxref=FlyBase:FBpp0076486,FlyBase_Annotation_IDs:CG81		
44	FBpp0076487	pbl-PB; parent=FBgn0003041,FBtr0076772; dbxref=FlyBase:FBpp0076487,FlyBase_Annotation_IDs:CG81		
44	FBpp0076488	pbl-PC; parent=FBgn0003041,FBtr0076773; dbxref=FlyBase:FBpp0076488,FlyBase_Annotation_IDs:CG81		
44	FBpp0076489	pbl-PD; parent=FBgn0003041,FBtr0076774; dbxref=FlyBase:FBpp0076489,FlyBase_Annotation_IDs:CG81		
44	FBpp0079130	CG13794-PA; parent=FBgn0031936,FBtr0079507; dbxref=FlyBase:FBpp0079130,FlyBase_Annotation_IDs:		
44	FBpp0083269	CG4572-PA; parent=FBgn0038738,FBtr0083860; dbxref=FlyBase:FBpp0083269,FlyBase_Annotation_IDs:C		
44	FBpp0083270	CG4572-PB; parent=FBgn0038738,FBtr0083861; dbxref=FlyBase:FBpp0083270,FlyBase_Annotation_IDs:C		
44	FBpp0083271	CG4572-PC; parent=FBgn0038738,FBtr0083862; dbxref=FlyBase:FBpp0083271,FlyBase_Annotation_IDs:C		
44	FBpp0086103	RpL18A-PA; parent=FBgn0010409,FBtr0086947; dbxref=FlyBase:FBpp0086103,FlyBase_Annotation_IDs:C		
44	FBpp0074676	CG14183-PA; parent=FBgn0036931,FBtr0074907; dbxref=GB_protein:AAF49077.1,GB_protein:AAF49077.2		
43	FBpp0072080	CG13563-PA; parent=FBgn0034966,FBtr0072171; dbxref=FlyBase:FBpp0072080,FlyBase_Annotation_IDs:		
43	FBpp0071868	Dox-A3-PA; parent=FBgn0000487,FBtr0071957; dbxref=FlyBase:FBpp0071868,FlyBase_Annotation_IDs:C		

43	FBpp0073259	CG1582-PA; parent=FBgn0030246,FBtr0073403; dbxref=FlyBase:FBpp0073259,FlyBase_Annotation_IDs:C		
43	FBpp0081549	CG16789-PA; parent=FBgn0037712,FBtr0082071; dbxref=FlyBase:FBpp0081549,FlyBase_Annotation_IDs:		
43	FBpp0080820	CG10188-PB; parent=FBgn0032796,FBtr0081282; dbxref=FlyBase:FBpp0080820,FlyBase_Annotation_IDs:		
43	FBpp0080821	CG10188-PA; parent=FBgn0032796,FBtr0081283; dbxref=FlyBase:FBpp0080821,FlyBase_Annotation_IDs:		
43	FBpp0077803	kis-PA; parent=FBgn0001309,FBtr0078144; dbxref=FlyBase:FBpp0077803,FlyBase_Annotation_IDs:CG36		
43	FBpp0075495	Hml-PA; parent=FBgn0029167,FBtr0075753; dbxref=GB_protein:AAF49795.2,FlyBase:FBpp0075495,FlyBa		
43	FBpp0081343	CG9601-PA; parent=FBgn0037578,FBtr0081854; dbxref=FlyBase:FBpp0081343,FlyBase_Annotation_IDs:C		
43	FBpp0110162	PIP5K59B-PC; parent=FBgn0034789,FBtr0110862; dbxref=FlyBase:FBpp0110162,FlyBase_Annotation_IDs		
43	FBpp0088385	lola-PU; parent=FBgn0005630,FBtr0089351; dbxref=FlyBase_Annotation_IDs:CG12052-PU,FlyBase:FBpp		
43	FBpp0088393	lola-PT; parent=FBgn0005630,FBtr0089359; dbxref=FlyBase_Annotation_IDs:CG12052-PT,FlyBase:FBpp		
42	FBpp0088108	CG12836-PA; parent=FBgn0033140,FBtr0089037; dbxref=FlyBase:FBpp0088108,FlyBase_Annotation_IDs:		
42	FBpp0078212	Mes2-PB; parent=FBgn0037207,FBtr0078561; dbxref=FlyBase:FBpp0078212,FlyBase_Annotation_IDs:CG1		
42	FBpp0078213	Mes2-PA; parent=FBgn0037207,FBtr0078562; dbxref=FlyBase:FBpp0078213,FlyBase_Annotation_IDs:CG1		

42	FBpp0083909	sba-PA; parent=FBgn0016754,FBtr0084523; dbxref=FlyBase:FBpp0083909,FlyBase_Annotation_IDs:CG13		
42	FBpp0075100	CG9674-PA; parent=FBgn0036663,FBtr0075341; dbxref=FlyBase:FBpp0075100,FlyBase_Annotation_IDs:C		
42	FBpp0075103	CG9674-PD; parent=FBgn0036663,FBtr0075344; dbxref=FlyBase:FBpp0075103,FlyBase_Annotation_IDs:C		
41	FBpp0071828	jbug-PD; parent=FBgn0028371,FBtr0071917; dbxref=FlyBase:FBpp0071828,FlyBase_Annotation_IDs:CG3		
40	FBpp0072934	kst-PA; parent=FBgn0004167,FBtr0073070; dbxref=FlyBase:FBpp0072934,FlyBase_Annotation_IDs:CG12		
40	FBpp0089203	kst-PB; parent=FBgn0004167,FBtr0073071; dbxref=FlyBase:FBpp0089203,GB_protein:AAS64958.1,FlyBa		
40	FBpp0089204	kst-PC; parent=FBgn0004167,FBtr0073072; dbxref=FlyBase:FBpp0089204,GB_protein:AAS64957.1,FlyBa		
40	FBpp0082219	CG8863-PA; parent=FBgn0038145,FBtr0082751; dbxref=FlyBase:FBpp0082219,FlyBase_Annotation_IDs:C		
40	FBpp0082220	CG8863-PB; parent=FBgn0038145,FBtr0082752; dbxref=FlyBase:FBpp0082220,FlyBase_Annotation_IDs:C		
40	FBpp0082221	CG8863-PC; parent=FBgn0038145,FBtr0082753; dbxref=FlyBase:FBpp0082221,FlyBase_Annotation_IDs:C		
40	FBpp0082222	CG8863-PD; parent=FBgn0038145,FBtr0082754; dbxref=FlyBase:FBpp0082222,FlyBase_Annotation_IDs:C		

187

40	FBpp0082223	CG8863-PE; parent=FBgn0038145,FBtr0082755; dbxref=FlyBase:FBpp0082223,FlyBase_Annotation_IDs:C		
40	FBpp0085461	Eb1-PB; parent=FBgn0027066,FBtr0086127; dbxref=FlyBase:FBpp0085461,FlyBase_Annotation_IDs:CG32		
40	FBpp0085462	Eb1-PC; parent=FBgn0027066,FBtr0086128; dbxref=FlyBase:FBpp0085462,FlyBase_Annotation_IDs:CG32		
40	FBpp0085463	Eb1-PD; parent=FBgn0027066,FBtr0086129; dbxref=FlyBase:FBpp0085463,FlyBase_Annotation_IDs:CG32		
40	FBpp0085464	Eb1-PA; parent=FBgn0027066,FBtr0086130; dbxref=FlyBase:FBpp0085464,FlyBase_Annotation_IDs:CG32		
40	FBpp0085228	RhoGAP100F-PA; parent=FBgn0039883,FBtr0085869; dbxref=FlyBase:FBpp0085228,FlyBase_Annotation_I		
40	FBpp0077693	CG15824-PA; parent=FBgn0031292,FBtr0078029; dbxref=FlyBase:FBpp0077693,FlyBase_Annotation_IDs:		
39	FBpp0077041	CG14619-PC; parent=FBgn0031187,FBtr0077349; dbxref=FlyBase:FBpp0077041,FlyBase_Annotation_IDs:		
39	FBpp0085859	Dp1-PC; parent=FBgn0027835,FBtr0086678; dbxref=FlyBase:FBpp0085859,FlyBase_Annotation_IDs:CG51		
39	FBpp0085860	Dp1-PD; parent=FBgn0027835,FBtr0086679; dbxref=FlyBase:FBpp0085860,FlyBase_Annotation_IDs:CG51		
39	FBpp0085861	Dp1-PF; parent=FBgn0027835,FBtr0086680; dbxref=FlyBase:FBpp0085861,FlyBase_Annotation_IDs:CG51		
39	FBpp0085862	Dp1-PE; parent=FBgn0027835,FBtr0086681; dbxref=FlyBase:FBpp0085862,FlyBase_Annotation_IDs:CG51		

39	FBpp0089201	Dp1-PA; parent=FBgn0027835,FBtr0086682; dbxref=FlyBase:FBpp0089201,FlyBase_Annotation_IDs:CG51				
39	FBpp0089202	Dp1-PB; parent=FBgn0027835,FBtr0086683; dbxref=FlyBase:FBpp0089202,FlyBase_Annotation_IDs:CG51				
38	FBpp0077839	kin17-PA; parent=FBgn0024887,FBtr0078181; dbxref=FlyBase:FBpp0077839,FlyBase_Annotation_IDs:CG				
38	FBpp0071144	CG1440-PA; parent=FBgn0030038,FBtr0071197; dbxref=FlyBase:FBpp0071144,FlyBase_Annotation_IDs:C	54	37	FBpp007114 4	CG1440-PA; parent=FBgn0030038,FBtr0071197; dbxref=FlyBase:FBpp0071144,FlyBase_Annotation_IDs:C
38	FBpp0070940	RpL17-PB; parent=FBgn0029897,FBtr0070980; dbxref=FlyBase:FBpp0070940,FlyBase_Annotation_IDs:CG				
38	FBpp0070941	RpL17-PC; parent=FBgn0029897,FBtr0070981; dbxref=FlyBase:FBpp0070941,FlyBase_Annotation_IDs:CG				
38	FBpp0070942	RpL17-PD; parent=FBgn0029897,FBtr0070982; dbxref=FlyBase:FBpp0070942,FlyBase_Annotation_IDs:CG				
38	FBpp0070943	RpL17-PA; parent=FBgn0029897,FBtr0070983; dbxref=FlyBase:FBpp0070943,FlyBase_Annotation_IDs:CG				
38	FBpp0077520	CG10874-PA; parent=FBgn0031395,FBtr0077848; dbxref=FlyBase:FBpp0077520,FlyBase_Annotation_IDs:				
38	FBpp0077521	CG10874-PB; parent=FBgn0031395,FBtr0077849; dbxref=FlyBase:FBpp0077521,FlyBase_Annotation_IDs:				
38	FBpp0078879	Gef26-PA; parent=FBgn0021873,FBtr0079249; dbxref=FlyBase:FBpp0078879,FlyBase_Annotation_IDs:CG	16	58	FBpp007887 9	Gef26-PA; parent=FBgn0021873,FBtr0079249; dbxref=FlyBase:FBpp0078879,FlyBase_Annotation_IDs:CG
37	FBpp0085546	DMAP1-PA; parent=FBgn0034537,FBtr0086232; dbxref=FlyBase:FBpp0085546,FlyBase_Annotation_IDs:CG				

37	FBpp0085066	CG31012-PC; parent=FBgn0027598,FBtr0085704; dbxref=FlyBase:FBpp0085066,FlyBase_Annotation_IDs:				
37	FBpp0085067	CG31012-PD; parent=FBgn0027598,FBtr0085705; dbxref=FlyBase:FBpp0085067,FlyBase_Annotation_IDs:				
37	FBpp0085068	CG31012-PB; parent=FBgn0027598,FBtr0085706; dbxref=FlyBase:FBpp0085068,FlyBase_Annotation_IDs:				
37	FBpp0085069	CG31012-PA; parent=FBgn0027598,FBtr0085707; dbxref=FlyBase:FBpp0085069,FlyBase_Annotation_IDs:				
37	FBpp0074549	l(1)G0156-PA; parent=FBgn0027291,FBtr0074780; dbxref=FlyBase:FBpp0074549,FlyBase_Annotation_ID				
37	FBpp0074550	l(1)G0156-PB; parent=FBgn0027291,FBtr0074781; dbxref=FlyBase:FBpp0074550,FlyBase_Annotation_ID				
36	FBpp0081087	CG2656-PA; parent=FBgn0037478,FBtr0081568; dbxref=FlyBase:FBpp0081087,FlyBase_Annotation_IDs:C				
36	FBpp0078930	Liprin-alpha-PA; parent=FBgn0046704,FBtr0079300; dbxref=FlyBase:FBpp0078930,FlyBase_Annotation				
36	FBpp0078931	Liprin-alpha-PB; parent=FBgn0046704,FBtr0079301; dbxref=FlyBase:FBpp0078931,FlyBase_Annotation				
36	FBpp0079644	CG5367-PA; parent=FBgn0032228,FBtr0080055; dbxref=FlyBase:FBpp0079644,FlyBase_Annotation_IDs:C				
36	FBpp0087001	Sin3A-PA; parent=FBgn0022764,FBtr0087888; dbxref=GB_protein:AAF58488.2,FlyBase:FBpp0087001,Fly				
36	FBpp0082058	CG6525-PA; parent=FBgn0082831,FBtr0082586; dbxref=FlyBase:FBpp0082058,FlyBase_Annotation_IDs:C				
36	FBpp0074065	Cap-PA; parent=FBgn0015615,FBtr0074290; dbxref=FlyBase:FBpp0074065,GB_protein:AAF48625.2,FlyBa	28	47	FBpp007406 5	Cap-PA; parent=FBgn0015615,FBtr0074290; dbxref=FlyBase:FBpp0074065,GB_protein:AAF48625.2,FlyBa
36	FBpp0074066	Cap-PB; parent=FBgn0015615,FBtr0074291; dbxref=FlyBase:FBpp0074066,GB_protein:AAN09411.1,FlyBa	28	47	FBpp007406 6	Cap-PB; parent=FBgn0015615,FBtr0074291; dbxref=FlyBase:FBpp0074066,GB_protein:AAN09411.1,FlyBa

35	FBpp0081639	MED6-PB; parent=FBgn0024330,FBtr0082161; dbxref=FlyBase:FBpp0081639,FlyBase_Annotation_IDs:CG9		
35	FBpp0081640	MED6-PA; parent=FBgn0024330,FBtr0082162; dbxref=FlyBase:FBpp0081640,FlyBase_Annotation_IDs:CG9		
35	FBpp0070193	CG14626-PA; parent=FBgn0040360,FBtr0070200; dbxref=FlyBase:FBpp0070193,FlyBase_Annotation_IDs:		
35	FBpp0077491	CG7289-PA; parent=FBgn0031379,FBtr0077815; dbxref=FlyBase:FBpp0077491,FlyBase_Annotation_IDs:C		

Danke

Danken möchte ich:

Allen, die während meiner "aktiven Zeit" am Institut für mich da waren: Mein Doktorvater Herr Prof. Renkawitz, Les, Jörg, Marek (habe unser schönes zweier Büro nach dem Verlassen des Instituts echt vermisst), Tine, CP, Ölle, Martin, Katha, Martin (der Schulze) und Helmut, Leni, Doris und Herr Henze. Zu jeder dieser Person könnte ich Romane schreiben, aber manchmal ist weniger besser als mehr.

Für die Zeit nach der Genetik:

Vor allem CP: nicht nur weil ich privat nicht auf Dich verzichten möchte und kann (auch wenn die Distanz alles schwieriger macht) – im Hinblick auf diese Arbeit warst Du neben Hanno die Einzige, die mir wirklich (auch tatkräftig) weitergeholfen hat – Ich danke Dir.

Jörg – Danke für das Lesen 🙂

Frank, Si-Fu und Chef – für den Weg, der das Ziel ist (eine Freude vertreibt hundert Sorgen:)

Meinen Eltern, meinem Bruderherz, Hermann und Brigitte – ohne die Familie im Rücken wäre es schwer.

Alles zu seiner Zeit

Zwischen meiner "aktiven" Zeit in der Genetik und der Abgabe dieser Arbeit liegt eine lange Zeit, die für mich einen neuen Lebensabschnitt eingeläutet hat: Hanno und ich haben geheiratet und Tilda unser Wolkenkind ist geboren – das wichtigste und Beste was mir bisher in meinem Leben passiert ist. Ich Danke Euch von ganzem Herzen das alles so ist wie es ist und freue mich auf alles was noch auf uns zukommt – die wirklich wichtigen Dinge eben…

Wer Gutes tun will sollte stets im engsten Kreis beginnen. Ist seine Familie nicht einmal mit ihm zufrieden, wie sollte er da bei fremden Gutes wirken.

Eidesstattliche Erklärung

Ich versichere an Eides statt, dass ich die vorliegende Arbeit eigenständig ausgeführt und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Alle Stellen, die im Wortlaut oder dem Sinn entsprechend aus anderen Arbeiten übernommen wurden, sind mit Quellenangabe als Zitat kenntlich gemacht.

Diese Arbeit wurde in dieser oder veränderter Form noch keiner anderen Prüfungsbehörde vorgelegt.

Gießen 25. Oktober 2011

Imke Panzer