
 

 

 

 

Fachbereich 08 - Biologie und Chemie  

Institut für Anorganische und Analytische Chemie 

der Justus-Liebig-Universität Giessen  

Label-free electrical biosensing based 

on electrochemically functionalized 

carbon nanostructures 

DISSERTATION 

to apply for the degree of „Doctor rerum naturalium“  

(Dr. rer. nat.) 

submitted by  

Tetiana Kurkina 

born March 01, 1984 

in Brovary, Kyiv obl. (Ukraine) 

  

 

Gießen, February 2012  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

REFEREES: 1. PROF. DR. BERNHARD SPENGLER 
1 

 2. PROF. DR. JÜRGEN JANEK 
2 

 3. PROF. DR. KLAUS KERN 
3,4 

 

THE FOLLOWING WORK WAS CARRIED OUT BETWEEN DECEMBER 2008 AND DECEMBER 2011 

AT THE MAX PLANCK INSTITUTE FOR SOLID STATE RESEARCH, STUTTGART, GERMANY. 

 

1 Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Gießen 
2 Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen 
3 Max-Planck-Institut für Festkörperforschung, Stuttgart 
4 Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne, 

Switzerland 

 



 

 

 

Abstract 
 

 

The development of new analytical approaches in the diagnostics of the 

diseases with higher throughput, smaller sample and set-up sizes, lower cost and 

easier disposal is one of the major needs of modern medicine. Miniaturization and 

simplification of biomedical assays are required for point of care diagnostics and lab-

on-a-chip systems. In this thesis the concept of electrical biosensors based on single 

wall carbon nanotubes (SWCNTs) and graphene is presented. The detection of 

saccharides and DNA was realized using field effect transistor (FET) - based sensors 

where carbon nanostructures play the role of a transducing component. 

The theoretical part of the thesis explains the concept of biosensing and 

the role of nanomaterials in the development of the next generation of bioassays. 

Furthermore, the structure and properties of SWCNTs and graphene and their 

advantages for electrical biosensing are described. 

The experimental section starts with a detailed description of the carbon 

nanotube (CNT) biosensor fabrication process. This includes carbon nanotube 

solution preparation, assembly of CNTs into devices, passivation of metal electrodes 

and modification of the CNT surface with receptors.  The advantages of using 

impedance spectroscopy measurements at different liquid gate voltages for electrical 

detection of biomolecules are pointed out here. 

The next chapter is dedicated to affinity-based glucose sensing. Using 

boronic acid functionalized carbon nanotubes the detection of glucose was 

demonstrated. The sensing mechanism was investigated in detail. The sensor signal 

was shown to be different depending on the way the CNTs were modified – 

covalently or non-covalently. 

The biosensing setup was then utilized for the detection of DNA. It was 

possible to achieve very low limit of detection for oligonucleotides using CNTs non-

covalently modified with a complementary DNA sequence. The sensor was shown to 

be highly selective as well.  

 Finally, the possibility of using 2D-carbon nanomaterial, namely 

graphene, for electrical biosensing is outlined. The approaches towards large scale 

preparation of graphene devices were investigated during this work. The wafer-scale 
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fabrication of reduced graphene oxide devices was realized using a novel chemical 

route. 

The final part of the thesis summarizes the results obtained while 

conducting this work. The designed biosensing platforms based on carbon 

nanostructures show a great promise for application in chemical analysis and 

medical diagnostics. Therefore the developed biosensor is planned to be adapted for 

the detection of analytes from biological liquids.  

 

Keywords: biosensor, label-free detection, carbon nanotubes, graphene, 

electrical detection 
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Zusammenfassung 
 

 

Die Entwicklung neuer analytischer Ansätze mit höherem Durchsatz, 

geringeren Probenmengen und kleineren Geräten, niedrigeren Kosten und 

einfacherer Entsorgung ist eine der wichtigsten Bedürfnisse der modernen Medizin 

für die Diagnostik von  Erkrankungen. Die Miniaturisierung und die Vereinfachung 

biomedizinischer Tests sind für die „Point of Care“ Diagnostik und für „Lab-on-a-

Chip“ Systeme erforderlich. In dieser Arbeit wird das Konzept elektrischer 

Biosensoren basierend auf einwandigen Kohlenstoff-Nanoröhrchen (SWCNTs) und 

Graphen präsentiert. Der Nachweis von Zuckern und DNS wurde in Form von 

Feldeffekt-Transistor (FET) - Sensoren realisiert, wobei die elektronischen 

Eigenschaften von Kohlenstoff Nanostrukturen durch an deren Oberfläche 

stattfindenden chemische Reaktionen beeinflusst werden. 

Der theoretische Teil der Arbeit erläutert das Konzept der Biosensorik, 

insbesondere die Rolle von Nanomaterialien in der Entwicklung der nächsten 

Generation von biologischen Assays. Des Weiteren sind die Struktur und die 

Eigenschaften von SWCNTs und Graphen und deren Vorteile für die elektrische 

Bioanalytik beschrieben. 

Der experimentelle Teil beginnt mit einer ausführlichen Beschreibung der 

Herstellung von SWCNT-Biosensoren. Dazu gehören die Dispergierung von 

Kohlenstoff-Nanoröhrchen (CNT) in Lösung, die Integration von CNTs in 

elektronische Bauteile, die Passivierung von Metallelektroden und die Modifizierung 

der CNT Oberfläche mit Rezeptoren. Außerdem enthält diese Kapitel eine Erklärung 

der Detektionsmethode und  weist auf die Vorteile des gewählten Ansatzes für die 

elektrische Detektion von Biomolekülen hin. 

Das nächste Kapitel befasst sich mit der Affinität-basierten Detektion von 

Zucker. Mittels Boronsäure-Rezeptoren wurde Glucose nachgewiesen. Der 

Detektionsmechanismus wurde im Detail untersucht. Es konnte gezeigt werden, dass 

sich je nach Modifizierungart (kovalente oder nicht-kovalente Bindung von 

Rezeptore) das Sensorsignal unterschiedlich verhält. 

Derselbe Biosensorik Aufbau wurde dann für den Nachweis von DNS 

verwendet. Es war möglich, eine sehr niedrige Nachweisgrenze für Oligonukleotide 

mit Hilfe von CNTs zu erreichen, die nicht-kovalent mit einer komplementären DNS-

Sequenz modifiziert waren. Zusätzlich war der Sensor selektiv für die Zielsubstanz. 
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 Des Weiteren wurde der Einsatz von 2D-Kohlenstoff-Nanomaterial, 

nämlich Graphen, für die elektrische Biosensorik erforscht. In diesem Kapitel werden 

Ansätze zur großtechnischen Herstellung von Graphen Bauteilen beschrieben. Die 

„Wafer-Scale“-Fertigung von reduzierten Graphenoxid Bauteilen unter Verwendung 

einer neuartigen chemischen Methode wurde realisiert. 

Der letzte Teil fasst die Ergebnisse dieser Arbeit zusammen. Die 

entworfenen Biosensorik Konzepte basierend auf Kohlenstoff-Nanostrukturen sind 

vielversprechend für die Anwendung in der chemischen Analytik und der 

medizinischen Diagnostik. Daher ist es geplant, den entwickelten Biosensor für den 

Nachweis von Analyten aus biologischen Flüssigkeiten anzupassen. 

 

Schlagwörter: Biosensor, Marker-freie Erkennung, Kohlenstoff-

Nanoröhrchen, Graphen, elektrische Detektion 
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List of used acronyms 
 

1D -  one dimensional 
2D - two dimensional 

ABA - aminobenzoic acid 
AFM - atomic force microscopy 

APBA - aminophenylboronic acid 
BA - boronic acid 
CE - counter electrode 

CNT - carbon nanotube 
CVD - chemical vapor deposition 
DEP - dielectrophoresis 

DMF - dimethylformamide 
DWCNT - double wall carbon nanotube 

ECM - electrochemical modification 
EDC - ethylenediaminechloride 
FET - field-effect transistor 

GO - graphene oxide 
GOx - glucose oxidase 

ISFET - ion-selective field-effect transistor 
LoC - lab on a chip 

µTAS - micro total analytical system  
MWCNT - multi wall carbon nanotube 

ncDNA - non-complementary DNA 
NHS - N-hydroxysuccinimide 

PDMS - polydimethylsiloxane 
PoC - point of care 
pTy 
RB 

- 
- 

polytyramine 
Rhodamin B 

RE - reference electrode 
RGO - reduced graphene oxide 

RT-PCR - real-time polymerase chain reaction 
SDBS - sodium dodecyl benzene sulfonate 

SDS - sodium dodecyl sulfate 
SWCNT - single wall carbon nanotube 

WE - working electrode 
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Theoretical background 
 

 

1. Biosensors in medical diagnostics 

 

 

1.1. Introduction.  Early and correct diagnosis plays a very 

important role in modern medicine. Medical diagnostics evolved far beyond the 

evaluation of external symptoms. Doctors rely on the results of bio-/chemical tests 

some of which were unknown thirty years ago. For decades researchers have been 

working on the discovery of biomarkers – molecular indicators of different biological 

states of the organism. As a result, the number of biomarkers for various diseases at 

the different stages of pathology increased dramatically. Because of this in many 

cases the disease can be counteracted before the appearance of the symptoms [1]. 

This has a huge impact on the economic and the social life. Increasing number of 

biomarkers as well as the demand for fast and reliable medical tests are driving the 

development of new analytical approaches that can be used in clinical biochemistry. 

Medical diagnostics is enriched by advances in biochemistry, molecular biology, 

physiology, chemistry and physics (optics, mechanics, electronics) [2]. Integrated 

knowledge from different scientific fields is required to satisfy the need of modern 

society for low-cost, fast, and reliable methods for the detection of different 

biomarkers, the number of which is constantly growing [3]. The concept of Point of 

care (PoC) diagnostics adds miniaturization, simplification and disposability to the 

above mentioned desirable characteristics of new analytical techniques in medicine 

[4, 5]. One of the approaches that would fit perfectly for this purpose is biosensing 

[6]. Arrays of biosensors with different specificities can become a part of Micro Total 

Analytical Systems (µTAS) or lab-on-a-chip devices. In such systems biosensor arrays 

are integrated on a specialized platform that includes processing for biological 

liquids. µTAS can fulfill the dream of cheap and fast medical tests and increase the 

scope for PoC examinations [7]. Biosensors are already widely used, for example, for 

self-monitoring of glucose or as pregnancy tests. However there is still a need for the 

development of cheap and ultrasensitive biosensing platform with the possibility of 

multiplex detection [8].  
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1.2. Operating principle and types of biosensors. A 

biosensor is an analytical device which uses a biological or a biologically derived 

recognition system associated with a physico-chemical transducer to estimate the 

presence and/or concentration of the target substance by translating biological 

reactions into a quantifiable and a processible physical signal [9]. The first biosensor 

was introduced by Clark in 1956 and exemplified by Clark and Lyons in 1962 [10]. It 

was an amperometric oxygen electrode for detecting glucose that utilized Glucose 

oxidase (GOx) as the recognition element. The term “biosensor” appeared after 

shortening the term “bioselective sensor” proposed by Rechnitz in 1977 for arginine-

selective electrode that used living organisms as recognition elements [9, 11]. 

The two most important characteristics of biosensor are its sensitivity and 

selectivity towards a target molecule (analyte). Selectivity depends only on properties 

of receptor element of the biosensor since that is where the analyte interacts with 

biosensor. Sensitivity is determined by both the biological compound and the 

transducer. For high sensitivity it is important to have an excellent recognition of the 

analyte by the receptor element as well as a very efficient transduction of the signal 

to the output system. Biosensors can be classified in different ways, e.g. by the type 

of recognition elements, by the type of transducer or by application [9].  

The biorecognition element determines both selectivity and sensitivity of the 

device. The part of biosensor that contains bioreceptors is often called a biosensitive 

layer. The choice and amount of bioreceptors depend on the nature of the analyte, 

the sample matrix, interfering substances and conditions of sensor utilization. Affinity 

biosensors use ligand-receptor interactions. Antibodies, nucleic acids, aptamers, cell 

receptors can be utilized as biorecognition elements of such sensors. Catalytic 

biosensors use the ability of biological system to react in the presence of the specific 

molecules by catalyzing the corresponding reactions. In this case enzymes, abzymes, 

microorganisms, plant or animal cells or tissue slices can be used as the 

biorecognition element. Biomimetic receptor-based biosensors use synthetic binding 

and/or catalytic systems [9, 12].  

The transducer converts a biological effect into, for instance, an electrical 

signal with high sensitivity and minimum disturbance. To achieve this, 

biorecognition events in a sensor should take place on the surface of transducer or in 

a very high proximity to it. Depending on the type of transducer the following kinds 

of biosensors are under development: optical (luminescence, fluorescence, 

absorption, Raman, Surface Plasmon Resonance), electrical and electrochemical 

(amperometric, potentiometric, impedance-based etc.), mass-sensitive (surface 

acoustic wave, microbalance, etc) and thermal. Biosensors and biosensor test formats, 

respectively, can be classified into labeled and label-free types depending on whether 
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the analyte is labeled or not. Common labels include enzymes, radionuclides, 

nanoparticles, and fluorescent or electrochemiluminescent probes. Biosensors can be 

also classified depending on the way they are used. For instance, those used in 

medical diagnostics can be noninvasive, contacting, indwelling (minimally invasive) 

or implantable [9, 14].  

It is important to mention some specific problems one has to overcome in 

order to use biosensors in medical diagnostics. For example, implantable biosensors 

interact with patients’ body tissues to the greatest extent. The interface of such 

sensors becomes extremely important since the organism usually tries to eliminate 

any foreign material from the body. Thus, the environment around the sensor might 

change completely and the measurement result may not be relevant at all. Biological 

systems can also affect the performance of the sensor by degrading its structure or 

damaging the biosensitive-layer due to the presence of corrosive ions and enzymes. 

This can, of course, lead to mis-calibration and failure of the measurements. It is 

especially important to overcome these problems in case of in vivo sensors. Once the 

device is implanted, the access to it is very limited. So this kind of sensors should be 

highly stable and maintain their calibration for long time. In this thesis biosensors for 

in vitro diagnostics are developed. High stability and reproducibility are also 

required for in vitro biosensors. But they can be fabricated in such a way that they are 

disposable or partially reusable. Biosensors are used not only in medical diagnostics 

but also in environmental monitoring, research laboratories, process industries, food 

and drug monitoring, bio-defense applications, etc [14, 15].  

 

1.3. Nanomaterials for the detection of 

biomolecules. As it was mentioned before (paragraph 1.2), the sensitivity of the 

biosensors depends a lot on the characteristics of transducer (shape, type of the 

material, size). High surface-to-volume ratio of the transducing element can increase 

the efficiency of the signal transfer. Thus, nanomaterials are ideal candidates to be 

used as components of transducers. The first and foremost feature that 

nanostructures offer is their size (a few Angstroms to 100 nm), which is in the range 

of the size of various biomolecules such as nucleic acids, small proteins and viruses. 

The small size brings a tremendous increase in the surface-to-volume ratio that is 

essential for maximizing sensitivity. A major advantage of using nanostructures in a 

label-free sensing is that the amount of receptors immobilized on the detector surface 

can be as low as a single molecule [16 - 19]. As a result the amount of analyte 

required to generate a measurable signal could be just a few providing for very low 
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limits of detection (LOD). The lower the LOD the earlier a biomarker characteristic of 

a disease state can be identified [20].  

Secondly nanostructures exhibit specialized physical and chemical 

properties that are generally not available in the bulk. For example, the binding of 

analytes to receptors immobilized on carbon nanotubes brings in significant changes 

in the resistance of the CNT that is used as a sensor signal [21]. Such a phenomenon 

does not occur in bulk metals. Furthermore, surface plasmons in thin metal films 

(2D) and nanoparticles (0D) [22] are characteristic properties at the nanoscale that are 

otherwise not available in bulk microscale materials. These unusual properties arise 

due to confinement in one to three dimensions. Another related aspect is the 

improvement in robustness of a certain physical property, for example, fluorescence 

of quantum dots due to their 0D nanostructure [23, 24]. While nanostructures exhibit 

favorable properties in a standalone manner, they also help augment transduction 

characteristics of bulk materials. A typical example is the improvement in 

electrochemical detection achievable by nanostructuring of the electrode surface [25-

29] due to increase in surface area [30].  

A key aspect for the success of nanostructures is the tunable fabrication of 

the materials or the ability to tailor the chemical and physical properties. For 

example, the emission wavelength of quantum dots can be tuned by just varying 

their size [23, 24]. Through various chemical and bio functionalization protocols, the 

surface of the nanostructures can be easily optimized for the detection of desired 

analytes. Other advantages of using nanostructures include the ability to miniaturize 

the diagnostic tool, increase the speed of detection and reduce reagent and sample 

consumption [17, 19]. Biochips or arrays of biosensors on one substrate can be built 

using nanobiosensors. Using such devices, measurements of different analytes in the 

same drop of liquid can be performed simultaneously. Delivery and control of 

liquids in µTAS can be achieved using a microfluidic platform. It gives a possibility 

to decrease the volumes of reagent solutions, avoid evaporation, shorten reaction 

time and perform parallel operations [31 - 33].  

 

 

1.4. Electrical/electrochemical sensing. Currently most 

of the diagnostic assays are based on optical measurements. Utilization of 

nanomaterials (e.g. quantum dots and nanoparticles) can significantly improve limits 

of detection of such techniques. However, complicated readout instrumentation, long 

duration for sample preprocessing and the need for the labeling make optical 

methods expensive, time-consuming and non-portable. In contrast, electrical 
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detection methods rely on much simpler instrumentation that ensures lower cost and 

power consumption. Electrical methods are ideally suitable for implementation of 

label-free detection approaches, which give a number of the advantages for the 

biomedical assays, such as elimination of the need for modification of the molecule of 

interest, avoidance of the influence of the label on the binding properties, possibility 

of real-time monitoring of binding interactions, etc. Using nanomaterials and modern 

microfabrication techniques gives the possibility of miniaturization and multiplex 

sensing. These make electrical methods more promising for applications in the point-

of-care [30, 34, 35].  

Electrochemical methods of detection are based on electrochemical 

processes that take place on the electrode surface. There are different modes of 

electrochemical detection. Voltametric and amperometric assays are based on the 

measurement of current at the working electrode resulting from the application of a 

voltage at the electrode-solution interface. In case of voltammetry the current is 

measured as a function of changing potential that can be applied in different ways 

(linear, cyclic, anodic stripping voltammetry). Amperometric measurements are 

performed by maintaining a constant potential at the working electrode with respect 

to a reference electrode and measuring the generated current.  In potentiometric 

detection the potential between measuring and reference electrodes gives an idea 

about the concentration of certain ions in the solution. Current flowing through the 

electrode is equal to or near zero [36, 37]. 

Another class of electrical methods used for the detection of analytes is 

based on the utilization of transistors. In contrast to electrochemical detection no 

oxidation or reduction process is required. Therefore, even without the use of an 

electroactive mediator the range of possible analyte molecules can be broadened. 

Field-effect transistors (FET) are the most common among such biosensors. An FET 

contains source and drain electrodes, a semiconducting channel and a gate electrode 

[38, 39]. Electrical transport through the semiconductor channel is modulated by an 

applied gate voltage (VG).  The gate regulates the electrical field generated 

perpendicular to the surface of the channel. This field influences the amount of the 

mobile and trapped carriers in the channel and therefore the electrical conductance of 

the semiconductor. This electrical field can be generated, for example, in a solid state 

dielectric, like silicon oxide (back gate - Figure 1.1a), in a polymer, like polyethylene 

oxide (polymer electrolyte gate) or in a liquid (liquid gate – Figure 1.1b).   
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Figure 1.1.  Schematic of a back-gated (a) and a liquid gated FET (b). 

 

Liquid (electrochemical) gated configuration is more promising for 

medical diagnostics since it enables analyte detection directly in biological liquids. In 

this case the whole device is immersed into liquid and the reference electrode is used 

to apply gate voltage (Figure 1.1b). The basis for the electrochemically gated device is 

the measurement of the conductance of the system as a function of the charge-carrier 

concentration, controlled by the electrochemical potential. The gating effect is 

achieved through the formation of an electrical double layer (EDL) on the surface of 

the semiconductor. A change of the potential of the gate electrode leads to a change 

of the electrostatic potential drop over the EDL. Charges that form the EDL influence 

the interfacial potential and thereby the source-drain current [40]. The adsorption of 

additional charges due to biorecognition reactions on the surface of semiconductor 

will lead to changes in transport characteristics of the device. These changes can be 

detected by measuring source-drain current [41]. 

The method of detecting the changes in the transport characteristics of the 

FET is another important aspect in electrical biosensors. It is known, that impedance 

measurements compared to DC offer better signal to noise ratio as well as the 

possibility to change one more input parameter – frequency. Impedance (Z) – is the 

equivalent of resistance for an AC circuit [42, 43]. It describes not only the voltage to 

current ratio but also the phase difference between these two parameters. The Ohm’s 

law for AC circuits is given by: 

          

The magnitude of impedance is the resistance |Z| – is a drop of voltage 

amplitude V for a given current I. The phase factor     describes the delay of the 
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voltage with respect to the current by a phase of φ (Figure 1.2.),   √  . The phase 

shift is attributed to the capacitive or inductive effects that may occur in the system. 

At frequencies below 1 MHz impedance measurements give an idea about the 

resistive and capacitive behavior of the device. When the phase is 0o the device acts 

as a resistor (Z = R). When phase is 90o device acts as a capacitor:     
 

   
 , where 

ω – is angular frequency. 

 

Figure 1.2. Representation of the phase of impedance [44] 

 

Measurement of impedance at different AC frequencies is called 

impedance spectroscopy. When impedance measurements are taken in a FET device 

configuration it is possible to obtain complete electrical characteristics of the system – 

both the resistive and capacitive effects at different gate voltages. This kind of 

measurements can be crucial for understanding the mechanism of sensing and for 

identifying the best set of parameters of the measurements for obtaining the highest 

sensitivity and selectivity.  

 

  



 

 

 

 

2. Carbon nanostructures for biosensing  

 

 

2.1. Introduction. The electronic configuration of carbon in ground 

state is 1s22s22p2. Carbon atoms can exist in three states corresponding to sp3-, sp2-, 

and sp- hybridization of their valence orbitals. Based on the type of hybridization 

different allotropic forms of carbon can be distinguished [45]. Among them graphitic 

and diamond forms deserve particular attention. Graphite has a layered structure. 

Each layer of graphite is a hexagonal lattice of sp2 hybridized carbon. Graphite shows 

metallic behavior in plane and poor electrical conductivity along perpendicular axis. 

Diamond is a wide-band gap semiconductor. It has tetrahedral sp3 bonding and 

shows nearly isotropic properties. Graphite is the stiffest material in nature and 

diamond is the hardest one. In the field of nanotechnology carbon is very important 

due to existence of 0D (fullerenes, nanodiamonds), 1D (carbon nanotubes) and 2D 

(graphene) nanomaterials which have unique physical and chemical properties and 

are very promising in a number of applications. Carbon-derived nanomaterials can 

be used at wide range of temperatures [46]. This thesis concentrates mostly on Single 

Wall Carbon Nanotubes (SWCNTs) and graphene. The atomic structure of both 

materials is essentially graphitic.  

 

2.2. Carbon nanotubes. Carbon nanotubes were discovered by 

Ijima in 1991 [47]. Each SWCNT (single walled carbon nanotube) can be viewed as a 

cylinder that has a single sheet of graphite (graphene) as its wall. The way the 

graphene sheet is rolled up into a tube defines the electrical and optical properties of 

SWCNT. To describe the geometry of SWCNT one can use lattice vectors a1 and a2 

and indices n, m (Figure 2.1 a). The lattice vector Ch is defined as Ch=na1 + ma2=(n,m).  

0 ≤ |m| ≤ n. The length of the chiral vector Ch is directly related to the diameter of 

the nanotube. The chiral angle θ between Ch and zigzag direction of the lattice (n,0) is 

related to indices n,m [48].  
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Figure 2.1. Physical structure of CNTs. Chiral vector Ch is defined by unit 
vectors a1 and a2 and the angle θ.  Yellow and green lines represent armchair and zigzag 
configurations respectively. b) (7,2) – chiral SWCNT, c) (7,7) - armchair configuration d) 
(9,0) - zigzag configuration. The CNT structures were simulated using CNTbands2.7 

 

 

CNTs with n=m (θ = 30o) are called armchair nanotubes due to the 

characteristic shape of their cross-section (Figure 2.1). CNTs with m=0 (θ=0) are 

called zigzag nanotubes. The remaining configurations of CNTs (n≠m, 0 < θ <30o) are 

called chiral. If n=m or n-m=3i (i - integer) the CNT is metallic. If n–m=3i±1 then the 

CNT is a semiconductor. 

It is also possible to obtain double-wall and multi-wall CNTs. In this case, 

the CNTs of different chiralities can form two or more walls of the nanotube (Figure 

2.2). The variety of this kind of nanotubes is enormous due to the large amount of 

possible combinations of the nanotubes. 
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Figure 2.2. The structure of double walled carbon nanotube (DWCNT) and 
multi-walled carbon nanotube (MWCNT) [49]   

 

Carbon nanotubes can be produced using chemical vapor deposition, laser 

ablation and arc discharge [50]. The resulting product contains a mixture of CNTs, 

catalyst particles and amorphous carbon. Moreover the nanotubes in the mixture are 

not identical. They have different lengths and chiralities and thus different 

properties. It is still challenging to obtain long CNTs of a specific structure. This is 

the reason why the large-scale manufacturing of identical CNT devices has been 

difficult. Nevertheless, the unique properties of CNTs as a 1D nanomaterial make 

them advantageous even though it is not yet possible to separate efficiently enough 

different types of nanotubes. For example, this thesis stipulates the idea of using 

SWCNTs as a channel in FET. As it was previously discussed (paragraph 1.4), an FET 

requires a semiconducting material to be used as a channel. However, it is possible to 

achieve gating of electrochemically modified metallic nanotubes [51]. In the current 

work the devices that contained a mixture of metallic and semiconducting nanotubes 

showed sufficient gate-dependence to be used as FET-based sensors.   

Chemically, SWCNTs are not very reactive due to their highly graphitized 

nature. Oxidation was first shown at high temperatures (above 750oC) in the gas 

phase resulting in the formation of three functional groups: carboxylic (-COOH), 

carbonyl (-CO) and hydroxyl (-COH) with the ratio 4 to 2 to 1 respectively [52]. 

Oxidation significantly increases the reactivity of nanotubes and also modifies their 

wetting properties. Young’s module of carbon nanotubes is 2 terapascal [53]. 

Mechanically, SWCNTs are very flexible and elastic [54, 55].  
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Figure 2.3. Overview of different CNT-based biosensing strategies. a) CNT is 
used as a label b) CNT is used as a support for loading tags, c) electrochemical CNT 
sensor, d) CNT-FET sensor [30]. 

 

The chemical and physical properties of CNTs make them well suited 

material for sensing applications. Numerous results have been reported on the 

utilization of CNTs in pressure, flow, thermal, gas, optical, mass, stress, strain, 

chemical and biological sensors [56]. With CNT-based biosensors both labeled and 

label-free detection schemes have been demonstrated. Carbon nanotubes have 

favorable optical properties such as a characteristic Raman signal and can be used as 

labels (Figure 2.3 a) [57]. Moreover, they act as a support to carry a payload of labels 

(Figure 2.3 b) [58]. They can also be used as supports functioning as label-free 

electrical detectors in heterogeneous assays [59, 60]. In electrochemical sensors 

excellent transport properties of CNTs and the possibility to increase the sensitive 

surface of the electrode are utilized. In this case nanotube forests on platinum 

electrodes have been used for immobilization of enzymes that catalyze certain 

electrochemical reactions. The changes of electrical current due to the electrochemical 

reaction are efficiently transferred through the nanotubes to the metal surface and 

can be easily detected using voltammetry or amperometry (Figure 2.3 c) [61]. In 

CNT-FET based sensors individual nanotubes or their networks can be used as a 

channel providing high-sensitivity for this kind of measurements (Figure 2.3 d). FETs 

based on networks of nanotubes offer better reproducibility and manufacturability 

but they show lower sensitivity compared to FETs based on single CNT [60].  The 

first FET chemical sensors utilizing CNTs were demonstrated for the detection of 

gases [62, 63]. Later CNT-FET platforms were applied for the detection of chemical 

species in liquids [64, 65]. Using both catalytic and affinity based CNT-FETs the 

sensing of biological molecules, such as metabolites, proteins and nucleic acid, was 
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demonstrated [40, 66, 67]. The reported sensors have good sensitivity however in 

most of the cases their fabrication cannot be upscaled. Reproducibility and reliability 

of reported CNT based sensors have been their major drawbacks. In this thesis a 

scalable route to fabricate CNT-based sensors is presented. The fabrication is 

performed in a way to ensure robustness, high sensitivity and selectivity of the 

devices. Using glucose as an analyte for affinity-based saccharides sensing the 

mechanism of sensing using designed platform has been investigated. Following this, 

high sensitivity of the developed biosensor was demonstrated for the detection of 

nucleic acids.   

 

 

2.3. Graphene. Graphene – is a single layer of graphite (Figure 2.4). 

Due to its atomically thin structure it can be considered as an ideal 2D-material. In 

recent years graphene has attracted massive attention of the researchers in science 

and industry due to its very interesting physical properties. Ambipolar field effect 

along with ballistic conduction of charge carriers [68] makes it extremely attractive 

for electronics applications. Graphene has been used for the development of various 

nanodevices, such as field-effect transistors, capacitors, mass, optical and electrical 

sensors, etc [69-72].  For the field of sensing graphene is very attractive due to its very 

high surface to volume ratio. Estimated specific surface area of single layer graphene 

is 2630 m2/g (SWCNTs or graphene on substrate – 1315 m2/g) [73].   

 

Figure 2.4. The structure of graphene. 

 

For optical bioassays graphene oxide is very attractive due to its optical 

properties, solubility in water and the presence of functional groups for binding 

biomolecules. Fluorescence resonance energy transfer (FRET) induces quenching of 
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the fluorescence of fluorophore by graphene oxide. Graphene oxide shows very good 

quenching ability to a variety of organic dyes and quantum dots.  FRET – based 

assays utilizing graphene oxide have been demonstrated for the detection of DNA 

and proteins both in the solution and on the surface. [74, 75, 76]  

Application of graphene in electrical biosensors has been demonstrated as 

well. Graphene and its derivatives or composites have been used for the modification 

of electrodes in electrochemical sensors.  Electrochemical detection of glucose, 

dopamine, proteins, etc has been demonstrated using graphene-modified electrodes 

[77-81]. Some results were reported on the utilization of graphene-FET for sensing. 

As in the case of CNTs, first graphene-FET sensors have been demonstrated for the 

detection of gases [82, 83] and determination of pH [84]. Later graphene-FETs for the 

detection of cells and proteins were demonstrated [85-87]. Graphene-FET sensors are 

expected to take an advantage of better reproducibility compared to CNT-FETs that 

suffer from inhomogeneity of the carbon nanotubes [88].  However, the absence of 

the reliable technique for the large-scale fabrication of identical graphene devices is 

an important factor that is currently limiting the development of this field.  

 

2.4. Functionalization of carbon nanostructures. Most of 

the possible applications of carbon nanomaterials (like sensors, microelectronics, 

optoelectronics, molecular filters and other) require the modification their surface in 

order to improve stability, biocompatibility, electrical or optical properties, solubility 

or selectivity of the nanostructures [89, 90]. The process of surface modification in 

order to obtain certain functionality is called chemical functionalization. In the case 

of biosensing applications, functionalization of CNTs and graphene is important for 

rendering them selective to specific analyte molecules. This is usually achieved by 

attaching the receptor molecules to their surface. The receptors can be attached either 

covalently or non-covalently. Functionalization of carbon nanostructures can play 

another important role in biosensors. Specifically, surface modification is often used 

in order to reduce non-specific binding of the various biomolecules to the surface of 

the transducing component [91]. In this work, for example, polyaminobenzoic acid 

non-covalently attached to CNTs was used for subsequent immobilization of the 

receptor DNA as well as for the protection of the CNT surface against non-specific 

binding of the oligonucleotides.   

Due to the high importance of CNT and graphene functionalization for 

biosensing applications, possible modification routes deserve special attention here. 

From the chemical point of view the surface of CNTs and graphene is essentially the 

same. Therefore, similar strategies can be used for their modifications. However, the 
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chemical reactions of pristine graphene are much less explored [92, 93]. It is known, 

that the degree of functionalization of different carbon nanomaterials and their 

different areas varies significantly. For example, the edges and defect sites of CNTs 

and graphene are generally more reactive [90, 93, 94]. Nanotubes with smaller 

diameter are chemically more reactive due to their increased curvature [95]. In the 

graphene lattice the most reactive sites are the geometrically strained regions [96].  

2.4.1. Non-covalent functionalization. Highly hydrophobic surfaces of 

graphene and CNTs adsorb molecules with aromatic residues by π-π stacking. 

Therefore, some receptor molecules, like nucleic acids or hydrophobic proteins, can 

be easily attached to carbon nanostructures [96 - 98]. The same molecular interactions 

occur when pyrene-like molecules or other aromatic compounds are used as anchors 

for the receptor attachment (Figure 2.5) [93, 99].  Often amphiphilic molecules are 

used to prepare and stabilize the aqueous dispersions of CNTs or graphene [100, 

101]. As an example, in this work the CNTs were dispersed in Triton X-100 solution. 

Electrochemical polymerization can be also utilized for the non-covalent wrapping of 

the nanostructure surface by the polymer of interest. This strategy was used in this 

work and therefore will be discussed in detail later.  

 

Figure  2.5. Non-covalent functionalization of carbon nanostructures with 
pyrene-derivatives via π-π stacking. 1-pyrenebutanoic acid succinimidyl ester (PBASE) 
attached to a) graphene and b) CNT [93, 99].  

 

2.4.2 Covalent functionalization. A wide range of reactions, including 

thermally activated, photochemical and electrochemical, can be used for covalent 

modification of carbon nanostructures. One of the examples of thermally activated 

reactions is the oxidation of CNTs or graphene. It results in the formation of the 

reactive carboxyl, epoxide or hydroxyl groups [52, 102]. With the help of various 

chemical reactions these oxygen-containing groups can act as sites for the subsequent 

attachment of the receptor. For example, molecule of interest can be coupled to 
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carboxyl groups via esterification or amidation reactions [93, 102, 103]. Different 

reactions of the oxygen-containing groups in oxidized graphene are shown in Figure 

2.6. 

 

Figure 2.6. Various covalent functionalization schemes for graphene oxide. I: 
Reduction of GO II: Covalent surface functionalization of reduced graphene via 
diazonium reaction. III: Functionalization of GO by the reaction between GO and sodium 
azide. IV: Reduction azide–GO with LiAlH4 resulting in the amino-functionalized GO. V: 
Functionalization of azide–GO through click chemistry. VI: Modification of GO with long 
alkyl chains by the acylation reaction between the carboxyl acid groups of GO and 
alkylamine. VII: Esterification of GO by DCC chemistry or the acylation reaction between 
the carboxyl acid groups of GO and ROH alkylamine.VIII: Nucleophilic ring-opening 
reaction between the epoxy groups of GO and the amine groups of an amine-terminated 
organic molecules (RNH2). IX: The treatment of GO with organic isocyanates leading to 
the derivatization of both the edge carboxyl and surface hydroxyl functional groups via 
formation of amides or carbamate esters (RNCO) [93].  

 

Various thermally activated addition reactions for graphene and the sidewalls 

of CNTs are available. Figure 2.7 collects different routes for the covalent 

modification of carbon surface using addition reactions [102]. 
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Figure 2.7. Addition reactions for the functionalization of the carbon nanotube 

sidewall [102]. 

 

As in the case of oxidized carbon nanostructures the products of the addition 

reactions are often used for subsequent attachment of the receptor molecule. For 

instance, fluorine in fluorinated CNTs can be replaced by nucleophilic substitution 

using alcohols, amines, Grignard reagents or alkyl lithium compounds [102].  

Photochemical activation was also implemented for modification of CNTs and 

graphene. For instance, CNTs have been osmylated using osmium tetroxide (OsO4) 

under UV light irradiation [104]. Similarly, under intense UV-irradiation graphene 

can react with benzoyl peroxide [105]. 

Electrochemical functionalization provides the attachment of biomolecules on to 

carbon surfaces in a very versatile manner in a covalent or non-covalent fashion [106, 

107]. For performing electrochemical reactions an electrochemical cell is used. A 

typical electrochemical cell consists of a working electrode (WE), a reference 

electrode (RE) and a counter electrode (CE). The working electrode provides the 

surface for electrochemical reactions. When a positive overpotential is applied, 

oxidation of an electrochemically active component in the solution can be achieved. 

Negative overpotential may induce reduction processes. RE is used to set the 

reference potential and CE is important for monitoring the electrical current 

generated in the cell during the electrochemical process. Both covalent and non-

covalent modification can be realized, for instance, by using receptor molecules 
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containing aminophenyl groups (Figure 2.8) [108]. If CNT is used as a working 

electrode, application of positive voltages leads to polymerization of the molecule on 

the CNT surface forming a uniform functional layer. In order to functionalize 

nanotubes covalently aminophenyl moieties should be first converted into its 

diazonium salt which is very reactive. Electrochemical reduction causes the 

formation of aryl radical which can be coupled to the nanotube wall.  

 

Figure 2.8. Schemes for (a) oxidative ECM with 4-aminobenzyl-R and (b) 
reductive ECM with an aryl diazonium salt. In the former case, the modified SWNT is 
covered by a polymeric layer of aminobenzyl groups without the formation of a chemical 
bond, whereas in the latter case, polyphenyl groups covalently attached to the nanotube 
are formed [108]. 

 

Electrochemical modification (ECM) is a very fast and efficient method for 

the modification of carbon nanostructures. It can be easily upscaled and automated. 

ECM ensures the coupling of the receptor selectively on the surface of transducing 

component. This is essential for achieving low limit of detection. Due to these 

reasons ECM was chosen as a strategy for the functionalization of CNTs in this work.  

  



 

 

 

Experimental section 
 

 

3. Fabrication of CNT-based sensors 

 

3.1. Introduction. CNTs are shown to be promising for various 

fields of use. A lot of possible applications including electrical sensing require 

integration of CNTs into an electronic circuit. However, the fabrication of CNT 

devices at the industrial level is still challenging [49, 109]. One of the most common 

ways to integrate CNTs into a circuit is the writing of the metal contacts on randomly 

deposited CNTs using e-beam lithography. However, this method is time-consuming 

and requires manual operation for fabricating individual devices. CNTs can be 

grown directly from catalyst particles deposited on the pre-patterned electrodes 

[110]. This approach requires high temperatures and positioning of the catalysts at 

the exact point. Another drawback of this method is the non-uniform growth of the 

CNTs from each catalyst. Therefore up-scaling of mentioned technique seems very 

difficult.  

It is also very important to define the exact location of the final device on 

the substrate from the beginning of fabrication process. This makes it possible to 

assemble other parts of the sensor in a modular way. We used the dielectrophoresis 

(DEP) technique to position the nanotubes at the desired location, for example, in 

between platinum electrodes patterned on a substrate. This method offers 

considerable advantages: it is fast, does not require expensive and bulky equipment 

and can be automated and upscaled [111, 112]. To perform dielectrophoretic trapping 

it is necessary to solubilize CNTs. After the DEP trapping and visualization, the 

electrodes are passivated with an insulating layer and subsequently the nanotubes 

are modified with receptors specific to certain analytes. The details of fabrication are 

outlined in this chapter. 

 

3.2. Preparation of CNT dispersions.  Hydrophobic and strong 

van der Waals interactions between the carbon nanotubes make it difficult to 
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suspend them in water or other polar solutions. Some organic solvents (N,N-

dimethylformamide (DMF), dichloroethane), surfactants (sodium dodecyl sulfate 

(SDS), sodium dodecyl benzene sulfonate (SDBS), etc) and polymers (nafion, DNA) 

were shown to be efficient for nanotube solubilization [113-115]. 

Purification is another important aspect during the preparation of CNT 

dispersion. SWCNTs powder contains a number of impurities (amorphous carbon, 

catalysts, nanoparticles, etc) that might affect the quality of devices [116]. Gas phase 

oxidation is often used to improve the homogeneity of CNTs [117]. To purify the 

CNT solution standard purification techniques, like centrifugation, filtering, etc can 

be used [116, 118]. Density gradient ultracentrifugation and gel-chromatography are 

shown to be efficient techniques to separate SWCNTs with different chiralities from 

their dispersions in surfactant.  The solutions prepared using these approaches are 

enriched with the nanotubes of only a certain physical structure. However the length 

of the nanotubes in the resulting suspensions is less than 1 μm [119-122]. Therefore 

these solutions are not very suitable starting material for the fabrication of devices 

based on individual nanotubes.  

We used 0.1% Triton X-100 aqueous solution for dispersing of the 

SWCNTs. A small amount of CNT powder (HipCO oxidized) was added to 

surfactant solution and dispersed with the help of ultrasonic agitation (Tip sonicator 

HD-3100) for 40 sec with 1 sec impulse and 2 sec rest intervals. Ultrasonic cavitation 

helps to overcome the bonding forces between the nanotubes, and separate them. 

After that the SWCNTs dispersion was centrifuged (Rotanta 460 RS, Hettich) at 4637 

g (4600 rpm) for 30 min, and the supernatant was filtered using filter paper [123]. 

Hexane extraction was used for further purification of the solution. This approach 

allows the removal of hydrophobic impurities and undispersed CNTs from the 

solution. Well-dispersed nanotubes due to the surfactant covering their surface 

remain in aqueous phase. For the extraction equal volume of hexane was added to 

CNT solution, mixed well and centrifuged for 5 min at 4600 pm. Upper hexane 

fraction containing impurities is carefully separated from the clear CNT solution. The 

CNT suspension prepared in this manner is not stable for long time, therefore some 

processing steps, like short sonication and centrifugation, of older solution (more 

than 1 week) are required before usage.  

 

3.3. Visualization of CNT devices. Visualization of the 

carbon nanotube devices is important for the optimisation of fabrication steps and 

sensing conditions. Atomic force microscopy (AFM) is the most commonly used 

technique for visualization of CNT devices. It gives an idea about the geometry of the 
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electrodes and nanostructures, diameter and number of the trapped nanotubes or 

bundles and the cleanliness of the surface. For the same purpose electron microscopy 

can also be used. However imaging of SiO2 surface with scanning electron 

microscope (SEM) requires its coating with a conducting layer to prevent 

accumulation of electrostatic charge during electron irradiation. Therefore the 

devices cannot be used after imaging.  The resolution of optical microscope does not 

allow the imaging of single CNTs or small bundles.  

We designed a new method for the CNT visualization using fluorescent 

dyes. CNTs have the ability to quench fluorescence of fluorescent dyes [124,125]. By 

covering the sample with a thin layer of Rhodamin B (RB) it was possible to image 

the CNTs on the SiO2 surface using a confocal microscope (TCS SP2, Leica). It is 

apparent that the thin nanotube bundle (Figure 3.1.) can be clearly visualized due to 

the efficient quenching of the dye fluorescence by complex formation with the 

nanotubes [105]. Since confocal microscope imaging is much faster than AFM, this 

approach can be used for a quick characterization of the sample. However it is not 

possible to obtain information about the CNT diameter as it can be done using AFM. 

Therefore all the devices used for this work were characterized using AFM - (Digital 

Instruments Dimension IV, Veeco).  

 

 

Figure 3.1.  Visualization of the same SWCNT device with AFM and confocal 
microscopy: AFM (a) and confocal fluorescence (b) images of the same sample showing a 
tube trapped across electrodes. The confocal image was recorded after leaving the sample 
in a solution of RB in ethanol. RB complexes to the nanotubes and hence the fluorescence 
is quenched along the tubes. This helps in the clear visualization of the tubes on a 
substrate [123]. 
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3.4. Dielectrophoretic manipulation of CNTs. 

Dielectrophoresis enables the positioning of CNTs at the desired location. It can also 

be used for parallel assembly of 1D-nanostructures for fabrication of an array of 

devices over a large wafer. By varying parameters of trapping it is possible to control 

the density of nanotubes on the substrate surface. To understand what the variable 

dielectrophoresis parameters are, it is important to know the nature of 

dielectrophoretic force and factors that influence it.  

3.4.1. The theory of DEP. Dielectrophoresis is an electrokinetic motion 

of dielectrically polarized materials in non-uniform electric fields [126]. The 

polarized object can move toward or away from the high field region depending on 

the complex dielectric permittivity of the object with respect to its surrounding 

medium. The CNT assembly process is conceptually illustrated in Figure 3.2. When 

nanotube in the solution is located within the AC electric field, it polarizes. The 

dielectric constant of the nanotube is larger than dielectric constant of the solvent. 

This gives an origin to a positive DEP force. The CNT at kHz to MHz frequencies 

gets attracted to the place where field is the strongest – to the tip of the electrode. The 

CNT assembly process depends on the relative balance of the dielectrophoretic, 

hydrodynamic and electrostatic double-layer interactions between the nanotube and 

surface [127].  

 

Figure 3.2. Schematic of the dielectrophoretic manipulation of 1D-
nanostructures.  

 

The dielectrophoretic force on a carbon nanotube assuming it to be a 

cylindrical particle can be described by the following equation:  

     
 

 
                  

Where εm – relative permittivity of medium, r,l – radius and length of the 

nanotube respectively, E – the local electric field,     C   – real part the dipolar 
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Clausius-Mossotti factor. For an elongated object with the long axis aligned with the 

field fCM is given by: 

    [
  
    

 

  
 

] 

where   
  and   

  are the complex permittivity of the CNT and surrounding 

medium, respectively [128]. The complex permittivity is defined as ε*=ε-j(σ∕ω), 

where ε is the permittivity, σ is the conductivity, and ω is the angular frequency of 

the applied electric field,   √  . 

In agreement with the abovementioned equations for a certain type of 

particle in a given medium one can tune the dielectrophoretic force by varying the 

amplitude and the frequency of the applied electric field. The amount of nanotubes 

trapped at the electrodes will depend also on the quality and the concentration of 

solution, the design of the electrodes and the deposition time.  

3.4.2. CNT trapping results. In our case, the aim was to trap carbon 

nanotubes between platinum electrodes on silicon/silicon oxide samples. Pt 

electrodes were written using standard photolithography on 4mm x 4 mm or 6 mm x 

30 mm Si/SiO2 substrates. Dielectrophoretic trapping was performed by applying a 

field between the electrode and backplate of the substrate while a drop of the carbon 

nanotube solution was placed on the surface around the electrode (Figure 3.3). After 

a required time (typically 15 sec) the substrate was washed with acetone and 

isopropanol and blow-dried.  Subsequently the substrate was annealed at 250oC for 2 

hours. After that the devices can be visualized and characterized electrically.     

 

Figure 3.3. Schematic of the dielectrophoretic trapping setup. The trap 
waveform is applied between one of the electrodes and the backplate. 
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Figure 3.4. Different electrode geometries used in this study. Optimal 
parameters for CNT trapping: a) 25Mhz, 10V,  b) 10 MHz, 3V,  c) 25 MHz, 10V, d) and e) 10 
Mhz, 10 V. Schematic of the substrate chosen as the most suitable for sensing trials (f). 
The AFM images of the electrode gaps with trapped CNTs are shown on (d) and (e).  

 

Different shapes and sizes of electrode gaps were tested for trapping the 

CNTs and subsequent biosensing trials (Figure 3.4). Geometry of the electrodes as 

well as properties of the substrate strongly influence the dielectrophoretic trapping 

of CNTs. Therefore the parameters had to be optimized in every case. Among 

various electrode and sample designs the most suitable was chosen during the initial 

sensing trials. Most of the sensing results described in this thesis were obtained on 

the 6 mm x 30 mm Si/SiO2 samples with two pairs of platinum electrodes. The 

geometry of the gaps for this kind of samples is shown in Figure 3.4 (d, e). In contrast 

to samples of smaller sizes (4mm x 4 mm), liquid manipulation is much easier on the 

chosen larger size samples since it makes it possible to integrate microfluidic channel 

or reservoir for analyte solutions on top of the substrate.  The DEP parameters used 

for chosen samples were the following: 10 MHz, 10V, 15 sec. 

 

3.4.3. Scalability of DEP. The possibility to scale-up dielectrophoretic 

trapping of CNTs was subsequently investigated. For this purpose parallel 

connection of the electrodes and common backplate were used for applying the AC 

voltage. In this manner the dielectrophoretic force was generated simultaneously at 
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all connected electrodes and the nanotubes were trapped concomitantly at several 

positions (Figure 3.5).  

 

Figure 3.5. One of the possible ways to upscale the DEP trapping of CNTs. a) 
Schematic of the trapping procedure. b) AFM images of four devices on the chip after a 
single trapping step. 

 

Another way to scale up the trapping is by using a different configuration 

of the electrodes. In this case the DEP force can be applied between the connected 

microelectrodes on the substrate and a (quasi)-reference electrode (for instance 

platinum wire). The advantage of this approach is that metalized backplate as well as 

connecting additional electrodes on the surface are not required. Therefore it is 

possible to fabricate CNT devices not only on Si/SiO2 samples, but also on glass and 

flexible polymer substrates. 

3.4.4. Monitoring the trapping of CNTs during DEP. For 

optimizing the parameters of DEP it is reasonable to monitor the trapping by 

measuring the impedance between the electrodes. It helps to control the resistance of 

the device and thereby the density of nanotubes during the trapping itself. This 
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configuration allows disconnecting the trapping field as soon as a trapping event 

occurs. The value of the impedance directly provides us with a measure of the 

density of nanotubes.  

The impedance monitoring technique is implemented by superimposing 

two AC waveforms: a trap waveform (10 V at 25 MHz) between one Pt electrode and 

the backplane of the substrate and a probe waveform (10 mV at a lower frequency 2623 

Hz) between the two Pt electrodes to monitor the trapping event (Figure 3.6 a). The 

trap waveform is supplied by a function generator (Agilent 33250A) and the 

impedance is recorded at the frequency of the probe waveform using an Agilent 

E4980A LCR Meter.  

 

Figure 3.6. Monitoring the dielectrophoretic trapping of the nanotubes. a)  
Schematic of the experimental set-up used to monitor the dielectrophoretic trapping of 
nanotubes. The trap waveform is applied between the drain (D) electrode and the 
backplate, while the impedance is monitored across the drain and the source (S) electrode 
using the probe waveform. b) In situ impedance monitoring during DEP trapping: the 
magnitude and phase of the gap impedance are plotted as a function of time. A CNT 
suspension is first introduced (arrow) and ~10s afterwards clear steps can be seen 
indicating trapping events. (Inset: an AFM picture showing the trapped nanotubes across 
the gap). c) the magnitude and d) the phase of the impedance spectrum of the electrode 
gap in air before and after deposition, as well as after annealing. 

 

Figure 3.6b shows a typical deposition sequence. Initially, the substrate is 

in air and the system is purely capacitive with the impedance higher than 10  Ω and 

a phase of -90°. A drop of CNTs is placed above the electrode gap. This leads to a 

decrease in impedance to a few MOhm and a phase of -40°, due to the conductivity 
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of the solution. After several seconds, trapping events are registered, which appear 

as discrete steps both in the magnitude and phase signals. At this instance, the 

impedance is just a few hundreds of kOhm and the phase close to zero suggesting 

that CNTs are trapped (see inset AFM image). The sample is then washed with 

acetone during which the trap waveform is still active. The washing procedure 

introduces some changes in the impedance. Finally the sample is removed and 

washed thoroughly with isopropanol.  

A frequency of 2623 Hz of the probe waveform was chosen so that the 

change in the signal between the empty situation and the trapped condition is 

maximized with a good detection sensitivity and fast response time. The contact 

resistances of the devices could be reduced by around an order of magnitude by a 

subsequent rapid thermal annealing step at 650°C (45s) or a longer heating period 

(2h) at 250°C in argon (Figures 3.6c and 3.6d). Online impedance monitoring can be 

used either to actively control the amount of nanotubes trapped at a specific location 

or as a way to calibrate the deposition time needed for a given nanotube suspension. 

 

 

3.5. Passivation of electrodes. The chosen device architecture 

is designed in such a way that it can be used in a liquid environment – for sensing 

different analytes in serum or other biological liquids. These fluids contain a 

significant amount of electrolytes that cause a background electrical current between 

electrodes through the liquid. This ionic current is strong enough to affect sensing 

results. Besides, electrodes can provide large surface for electrochemical reactions. 

This can reduce reaction rate on the CNT surface during electrochemical 

functionalization and increase the limit of detection. Some components of analyte 

solution may also sediment non-specifically on the metal electrodes during the 

sensing trials and cause changes in electrical response of the device. All these factors 

make it important to ensure that CNT is the only conductive element that is exposed 

to solution. To achieve this passivation of electrodes is required. The passivation 

process should ensure robust and stable electrical isolation of electrodes on the areas 

of substrates coming in contact with the liquid. It should have a minimal effect on the 

electrical properties of CNTs. Furthermore, surface contamination during this 

process has to be avoided. 

In this work we have used a second lithography step to deposit 100 nm 

titanium covered with 200 nm silicon oxide to passivate Pt microelectrodes near the 

gap. For this purpose the substrate was spin-coated with a photoresist (ma-P 1215, 

micro-resist technology GmbH) and baked for 2 min at 90oC to obtain a 1.5 μm thick 
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layer. Absorption maximum of ma-P1215 is close to 365 nm and 415 nm. Exposure of 

this resist to UV light causes chemical changes that increase the solubility of the 

exposed areas. Illumination of this photoresist with visible light of up to 580 nm can 

induce chemical changes. Using a confocal microscope (TCS SP2, Leica) the desired 

areas were first localized with a high level of precision using low power illumination 

by a 633 nm laser (imaging laser). Then the required areas were exposed using a high 

power 476 nm write-laser [129]. Writing was performed by using a piezoelectric 

stage with precise computer control for positioning and moving the sample. 

Alternatively, a well aligned mask for exposing desired areas was also experimented. 

In this case a mask-aligner is used for the precise positioning of the mask and 

exposure of the required areas. 

 

Figure 3.7. Passivation of Pt electrodes on Si/SiO2 surface. a) schematic of 
passivation, b) and c) AFM image of CNT device before and after passivation respectively. 

 

Using a developer solution ma-D 331, the resist on exposed areas was 

dissolved. After the washing with water and drying in nitrogen flow, 

http://www.fkf.mpg.de/kern/facilities/leicaScanHead.htm
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100nmTi/200nmSiO2 was evaporated on the substrate. Such a combination of 

metallic (Ti) and insulating (SiO2) layers gave the best results for keeping 

conductivity of CNTs intact. Without the use of Ti a significant number of devices 

lost their conductivity, which can be explained by the mechanical brakeage of CNTs 

upon direct deposition of the silicon oxide layer. For removing evaporated layers 

from the unexposed areas a lift-off in 1-methyl-2-pyrrolidone (55◦C for 3 h) was 

performed. After this, samples were washed with acetone and isopropanol and blow-

dried. After the lift-off a thermal annealing of the samples (2 hours at 250oC or 45 sec 

at 600oC in argon) was also carried out. 

 

3.6. Chemical functionalization of CNTs.  The discussed 

above fabrication steps were aimed to obtain devices with high sensitivity. Another 

important aspect for biosensors is selectivity. A biosensor should be sensitive mainly 

to the molecule of interest.  Other components of analyte solution should not cause 

any significant sensor signal changes. As it was mentioned before (paragraph 1.2), 

selectivity of the biosensor is provided by the biorecognition component of the 

sensor which should be in high vicinity to transducing element. In our case, receptor 

molecules should be immobilized onto the carbon nanotube.  

Ideally the functionalization strategy should ensure that the receptor is 

immobilized on the surface of CNT and not on the surrounding silicon oxide. This is 

important for the efficient recognition and transduction processes and proper 

interpretation of the signal changes. For example, using a spotting technique for 

receptor immobilization can lead to significant amount of biorecognition events 

happening on the surrounding silicon oxide surface but not on the CNT surface itself. 

In this case, the limit of detection may be high. Electrochemical modification leads to 

the attachment of the receptor to CNT surface only providing the basis for highly 

efficient biosensor functioning. It is also possible to perform electrochemical reactions 

inside the microfluidic channel when the biosensing system is fully assembled. This 

strategy was used, for example, for the preparation of glucose-sensors. 

As it was explained in paragraph 2.4 using electrochemistry it is possible to 

modify CNT covalently and non-covalently. Covalent ECM has advantages due to 

good homogeneity and stability of ligand distribution attainable on the nanotube 

surface, coupled with a high signal to noise ratio. Non-covalent functionalization 

does not affect the underlying electronic structure of the carbon nanotubes. Two 

ways of electrochemical modification - covalent and non-covalent - affect the 

electronic properties of CNTs differently. It was demonstrated using modification of 

CNTs with boronic acid (BA) as an example. Boronic acid was used as a receptor for 



3. Fabrication of CNT-based sensors 

- 40 - 

 

glucose sensing. 3-aminophenylboronic acid (APBA) was used as a precursor for the 

modification.  The functionalization is carried out according to Figure 3.8 [130].  

In order to covalently attach the phenylboronic acid receptor to the 

nanotube, a highly reactive diazonium radical is created. It binds to the nanotube via 

reductive coupling. For this purpose, 5 mg of APBA was dissolved in 5 ml of 20mM 

H2SO4. After this the beaker was put into an ice bath. 5 ml of 8mM HNO2 were added 

slowly with continuous stirring to the reactive mixture. Shortly after the components 

are mixed the solution starts to become yellow indicating the formation of diazonium 

radicals [130]. 

 

Figure 3.8. Scheme showing the functionalization strategy to obtain the BA-
CNT-sensors. For covalent attachment (top route), the phenyl boronic acid precursor is 

converted into a reactive diazonium radical through diazotization at 4C. This cold 
solution is flushed through the microchannel and the electrochemical functionalization of 
the nanotube carried out under reductive conditions (-0.55 V vs. Ag/AgCl). For the non-
covalent attachment (bottom route), the precursor is directly electropolymerized to obtain 
a polymer wrapping on the nanotube surface under oxidative conditions at room 
temperature [130]. 

 

The microchannel made of polydimethylsiloxane (PDMS) placed on the 

chip is filled with a fresh diazonium solution and the voltage applied at the Ag/AgCl 

reference electrode is swept between -0.1 V and +0.55 V. Correspondingly, the 

voltage on the nanotube varies between +0.1V and -0.55V.  The impedance of 

nanotube device is monitored during the ECM. Figure 3.9 shows the changes in 

magnitude and phase of impedance during the modification. During the five cycles 

of voltage sweep the magnitude of impedance increases and the phase of impedance 

decreases. The resistance value normally increased by a factor ranging from 1.5 to 2. 
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Excessive covalent modification of CNT can lead to a complete loss of conductivity 

due to damage of the nanotube structure [130].  

 

Figure 3.9. Gate dependence of the devices during (a) covalent and (b) non-
covalent electrochemical functionalization of CNTs with APBA.  Arrows indicate the 
increase of resistance (black) and decrease of phase (blue) values during reductive 
coupling of boronic acid. 

 

The diameter of the nanotubes also increases after the ECM. This was 

observed in AFM images of the device before and after covalent functionalization. 

The changes of CNT properties were also monitored using Raman spectroscopy. The 

D-band of CNTs (which corresponds to Raman intensity peak at 1300 cm-1 frequency) 

is associated with defects in the carbon nanotube structure. It is clear that during the 

covalent attachment of the diazonium radical to the nanotube some of the native sp2 

bonds of the CNT wall are destroyed to form a new bond. This can be observed as an 

increase of D-peak in Raman spectra as it is seen from Figure 3.10 d.  

Non-covalent attachment of the receptor was achieved via direct 

electropolymerization of the APBA under oxidative conditions, by sweeping the 

voltage at the nanotube from -0.1 V to +0.7 V versus Ag/AgCl in the ethanol solution 

of 5mM APBA containing 100mM LiClO4. In this case the resistance increased only 

slightly during the sweep (Figure 3.9 b). After functionalization, 10 mM H2SO4 and 

water were flushed through the microchannel. The non-covalent coupling results in a 

height increase of 3-5 nm as inferred from AFM measurements [130].  
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Figure 3.10. Electrochemical functionalization of CNTs. AFM images of the 
device before (a) and after (b) covalent modification of CNTs with APBA and 
corresponding height profiles (c) show increase of the nanotube diameter. Raman spectra 
before and after modification  (d) showing a clear increase in the D-band intensity 
signifying the formation of covalent bonds with the BA moieties. 

 

 

  3.7. Sensing strategy. Impedance measurements at different gate 

voltages were taken for the detection of biomolecules. The impedance (Z, a complex 

quantity with magnitude and phase) was measured using an impedance analyzer 

(Agilent 33250A LCR Meter) in a frequency range of 20 Hz to 2 MHz. Using an AC 

signal to record the sensor characteristics improves the signal-to-noise ratio and 

reproducibility compared to a DC measurement while enabling acquisition of both 

the magnitude and phase spectra of the sensor. This frequency response is measured 

at varying gate voltages to characterize the field-effect behavior. The gate voltages 

are maintained in the range of -0.4 V to 0.4 V (at the Ag/AgCl reference) [130].  
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The resulting dataset can be visualized in the form of a magnitude map as 

shown in Figure 3.11. The X-axis corresponds to the liquid gate voltage, while the Y-

axis indicates frequency. Every point in the image corresponds to the magnitude of 

impedance at a certain frequency and gate voltage. It is possible to derive both 

frequency- and gate-dependence from such kind of measurement. Therefore 2D Z-

maps contain the complete electrical characteristics of the sensor and can be used to 

probe their transduction mechanism in detail.  

 

Figure 3.11. Detection strategy: a) ZMagnitude-2D-map, b) schematic of a 
liquid gated CNT-FET, c) frequency dependence of magnitude of impedance at fixed gate 
voltage 0V, d) gate-dependence of magnitude of impedance at fixed frequency 100 Hz. 

 

Most of the devices obtained in described way show a semi-metallic 

transport behavior with a gate modulation of less than an order of magnitude, 

signifying the predominant presence of metallic tubes. Due to the low density of 

states around the Fermi level, metallic nanotubes show a slight gate modulation [131] 

and are hence suited for field-effect based detection [107]. Unlike other FET-based 

sensors, which require semiconducting materials, our AC measurement strategy 

coupled with the use of a stable reference electrode enables the use of metallic tubes 
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as detectors. Another advantage of using metallic nanotubes lies in their low 

resistance in the kΩ range, which facilitates improved sensor signals in comparison 

to their semiconducting counterparts [130]. 

 

  



 

 

 

4. Sensing of saccharides 

 

4.1. Introduction. Carbohydrates are important biomarkers for 

different diseases. The most common example of them is glucose as a marker for 

diabetes [132]. Glucose sensors mostly rely on the use of an enzyme such as glucose 

oxidase (GOx) or glucose dehydrogenase to generate redox mediator species, which 

are thereafter detected electrochemically [133]. These sensors require the coupling of 

the enzyme in close proximity to the transducing electrode to obtain high sensitivity. 

CNTs have also been employed as electrode material in electrochemical sensors for 

glucose [61, 134]. While providing good selectivity to glucose, such sensors rely on 

the rate of reaction between the enzyme and glucose and hence are inherently 

sensitive to factors influencing enzyme activity. In addition, the limited stability of 

the immobilized enzyme may restrict the shelf life of such sensor systems and their 

application for in vivo glucose monitoring [135].  Apart from electrochemical 

transduction, field-effect based detection has also been presented using a CNT-GOx 

sensor [40]. However, the sensing mechanism and concentration dependence were 

not discussed there [130]. 

During the last decade there is a tremendous amount of research directed 

towards the realization of non-enzymatic glucose sensors [136]. One major approach 

involves the direct oxidation of glucose at nanostructured electrodes [137-139]. The 

nanostructuring allows the detection of glucose at a lower overpotential [140]. 

However, such electrodes are very sensitive to adsorbed interferents such as the 

amount of chloride and suffer from surface fouling over longer times [130, 141, 142].  

An alternative enzymeless approach for glucose detection involves the use 

of fully synthetic receptors such as boronic acid (BA) containing compounds. BA 

binds reversibly with cis-1,2- and cis-1,3-diols to form five- and six-membered cyclic 

esters respectively [143, 144].  Based on this, fluorescence sensors, [145, 146], 

potentiometric / amperometric sensors [147, 148] and recently a field-effect based 

sensor [149] have been demonstrated. The chemical structure of the boronic acid 

receptor can be optimized to obtain highly selective and sensitive affinity-based 

glucose sensors [145]. In addition to glucose, free carbohydrates as well as their 

conjugates such as liposaccharides and glycoproteins are also important in the 

diagnosis of pathological states such as cancer [150]. While enzyme-based sensors are 

not directly amenable for the detection of bound saccharides, an affinity-based sensor 
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can potentially be deployed for the detection of both free and bound forms of these 

molecules [130, 151, 152].  

In contrast to enzymatic sensors, the detection principle here is based on 

complexation, which is a reversible, equilibrium-based reaction without the 

consumption of the analyte. So the present sensor does not rely on enzymes or 

electrochemical redox mediators to function but rather on a combination of affinity 

sensing and the field effect transistor (FET) effect. Glucose detection with BA-CNT 

device was chosen to be a model for investigation of the sensing mechanism in 

presented biosensor configuration [130]. 

 

4.2. Device fabrication. The details of device fabrication were 

described in previous chapter. As it was mentioned there, the control of the kind of 

chemical coupling (covalent or non-covalent) between the boronic acid receptor and 

the nanotube was achieved using electrochemical modificaton. The first attempts to 

detect glucose using boronic acid functionalized CNTs were performed in an open 

system without the application of liquid gate voltage, by measuring the impedance 

spectra of the device before and after its exposure to analyte solution (Figure 4.1a). 

This configuration was discarded due to significant amount of aggregates on the 

surface of the sensor as observed using an AFM (Figures 4.1b and 4.1c). These 

adsorbates affect the quality of sensing and as an outcome no reproducible and 

reliable results were achieved. In later investigations the contamination of the SiO2 

surface could be eliminated when the measurement was performed using 

continuously applied liquid gate voltage. The sample dimensions and design were 

therefore changed in order to allow better manipulation of liquids and easier 

integration of the gate electrode.  

 

Figure 4.1.  Sensing in the open system without applying liquid gate voltage: 
photo of the integrated chip with the drop of analyte solution (a), AFM image of the 
device before (b) and after (c) sensing trials. 
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Liquid handling was improved by using a microfluidic channel connected 

to a flow-control system. For the microfluidic fabrication polydimethylsiloxane 

(PDMS) was used to prepare 2 mm thick plates with a 30 µm channel. The degassed 

mixture of PDMS and curing agent (PDMS: Sylgard 184, 10:1 ratio) was poured on a 

SU-8 mold and baked at 65oC for 1 h. The sample was then placed on the chip-carrier, 

wire-bonded and covered with the PDMS and glass plates, so that the nanotube 

devices were integrated into the microchannel (Figures 4.2b and 4.2c). The flow of the 

solutions was regulated using a computerized pressure-based flow control system 

(MFCS-4C, Fluigent). An Ag/AgCl reference electrode placed in contact with the 

liquid in the microfluidic circuit allows us to set the potential precisely on the surface 

of the nanotube. This electrode serves two purposes namely as a reference electrode 

for electrochemical functionalization and as a gate electrode for measuring the FET 

characteristics.  The Ag/AgCl reference that acts as a gate electrode is placed in the 

waste reservoir that is connected to the outlet [130]. 

 

Figure 4.2. (a) An AFM image of the electrode region of a BA-CNT sensor after 
the sensing trials The SiO2 passivation layer can be seen extending above both electrodes. 
(b) A schematic representation of the microfluidic set up with the location of the nanotube 
device. The channel is carved out in the PDMS layer and the nanotube device is directly 
below the channel on the substrate. (c) a photograph of the final assembled device [130].  
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4.3. Sensing results. The sensing trials were performed using the 

measurement strategy described in the previous chapter on more than 10 devices 

using varying concentrations of glucose solutions in 10 mM phosphate buffer (pH 

8.4).  First the sensing response of the covalently coupled BA-CNT devices will be 

discussed. 

 

Figure 4.3. Affinity sensing of saccharides: binding of diol to boronic acid-
functionalized carbon nanotube at a pH of 8.4. The formation of the ester leads to an 
increase in the relative negative charge at the surface of the nanotube which can be 
detected electrically. The reaction is reversible at low pH. In an acid solution at a pH of 
around 4, the attached saccharide can be released going back to the initial state [130]. 

 

4.3.1. Sensitivity to glucose. The general idea behind the functioning 

of the sensor is shown in Figure 4.3. The binding of glucose to the attached BA 

receptors leads to a change in the net charge distribution on the nanotube surface, 

which can be sensed through changes in the impedance of the nanotube. The Z-maps 

of a typical sensor in buffer and in glucose are shown in Figures 4.4a and 4.4b 

respectively. The magnitude plots show subtle differences in the low frequency 

region. These variations are further apparent in the cross-section profiles collected in 

Figures 4.5a and 4.5b. These section profiles are extracted from the 2D Z-maps by 

plotting either the frequency response at a fixed gate voltage or the gate dependence 

at specific frequencies. From the magnitude spectrum in Figure 4.5a it is apparent 

that at low frequencies, the device acts as a resistor, while capacitive effects become 

dominant as the frequency increases. The resistance of the device shows nominally a 

5% increase upon binding of glucose, as is apparent in Figure 4.5a. The increase in 

resistance can be attributed to stronger scattering centers due to the increase in net 

charge when glucose binds to the receptor sites on the nanotube (Figure 4.3). This 

mechanism is consistent with the occurrence of analyte dependent carrier scattering 

[41]. Further support for the scattering based sensor response is obtained from the 
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gate voltage dependence in Figure 4.5 (b), where it is apparent that the higher 

resistance persists over almost the entire gate voltage range.  

 

 

Figure 4.4. 2D-impedance (Z-) maps showing the impedance as a function of 
frequency and liquid gate voltage. Magnitude [Ohms] maps of the impedance of 
covalently functionalized BA-CNT devices are shown in buffer (a) and in 10 mM glucose 
(b). Subtle changes in the impedance response can be clearly seen upon exposure of the 
sensor to glucose as indicated by the twin-headed black arrows [130].  

 

To measure the concentration response of covalently modified BA-CNT, 

the devices were exposed to successive aliquots of a 5 mM glucose solution. A 1 µL 

aliquot of the analyte solution was flushed over the sensor at a precise speed, 

followed by 9 µL of buffer solution at which point the flow was stopped and the 

impedance measured. This cycle was repeated several times. The Z-maps for the 

various injections are collected in Figure 4.6a. 
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Figure 4.5. Reversibility of the binding of glucose in covalent-BA-CNT-
sensors. Glucose binds to phenyl boronic acid at a pH > 5.8. Hence the washing step to 
dissociate glucose from BA involves the flushing of an acid solution (pH = 4). (a) 
Frequency response and (b) gate dependence of the sensor at low frequencies in buffer, in 
glucose and after the acid wash. The impedance response of the sensor recovers after this 
washing step. The magnitude of impedance at low frequencies increases by around 5% in 
the presence of 10 mM glucose [130]. 

 

It is apparent that with every injection the response to glucose becomes 

stronger. This is further clear from the line profiles in Figure 4.6b, which show the 

relative increase in the magnitude of impedance for various injections. The 

calibration plot shown in Figure 4.6c displays a clear trend of the sensor signal as a 

function of glucose exposure. It can be seen that with every exposure, the sensor 

signal increases, however it tends to saturate for larger injections. This behavior is 

expected due to the finite number of BA moieties that can complex with the incoming 

glucose molecules. It is noteworthy that by using this multiple injection procedure 

one can adjust the volume flushed through the channel to operate the sensor in a 

desired concentration range [130].  
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Figure 4.6. Concentration dependence of the covalent-BA-CNT-sensors.  a) Z-
maps in the absence of glucose (0) and after 1, 4 and 6 injections of 5 mM glucose.  Scale: 
20 kOhm – 40 kOhm. Every injection comprises of a 1 µL aliquot of 5 mM glucose 
followed by a 9 µL aliquot of buffer solution, at which point the impedance response is 
acquired. b) The plot shows the relative change in the magnitude of impedance glucose 
injections. c) Calibration curve plotting the relative % change as a function of glucose 
exposure showing clear concentration dependence. The actual amount of glucose can be 
read from the top Y-axis [130]. 

 

Control experiments were performed with CNTs that were not 

functionalized. Figure 4.7 shows the gate- and frequency dependences of such 

devices initially and after exposure to glucose. No significant changes were observed 

in this case [130]. 
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 Figure 4.7. Control experiment with unmodified CNT devices. A non-
functionalized CNT shows negligible changes in its response when exposed to glucose as 
can be seen from the (a) gate voltage scans and (b) frequency responses [130]. 

 

4.3.2. Response to other monosaccharides and interferents. As 

it was mentioned before (paragraph 4.1), boronic acid is not a specific receptor for 

glucose. It can bind other saccharides as well. The detection of fructose binding was 

demonstrated using the presented BA-CNT sensor. As it is seen from Figure 4.8, the 

response of the sensor to fructose was similar to the glucose case. Furthermore, the 

response was reversible as is apparent in the recovery of the signal after the acid 

wash.  

Electrochemical glucose sensors suffer from the interference of other 

substances that may be present in body fluids. Among such interfering molecules is 

acetaminophen [133]. The sensor response on the presence of acetaminophen was 

evaluated here (Figure 4.8).  It is apparent that acetaminophen did not cause signal 

change of BA-CNT sensor for glucose. This is expected since the BA moieties exhibit 

a high degree of selectivity to saccharides [130].   
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Figure 4.8. Selectivity of the covalent BA-CNT-sensors. The BA-CNT sensors 
presented here are not sensitive to interferents that are common for enzymatic sensors. 
Here the case of acetaminophen is presented. The BA-CNT sensor shows negligible 
response when exposed to a solution of acetaminophen (even at a high concentration of 
10mM) as can be seen from the (a) gate voltage scans and (b) frequency response [130]. 

 

4.3.3. Sensing mechanism. In order to elucidate the sensing 

mechanism it is important to understand the physico-chemical phenomena 

responsible for the impedance changes brought by exposure to glucose. For this 

purpose, the reversible binding of boronic acid to glucose on the surface of CNTs 

must be presented first. A schematic of this equilibrium can be seen in Figure 4.9. In 

the absence of glucose, the neutral (1) and negatively charged (2) forms of the 

attached phenyl boronic acid exist in equilibrium with a certain pKa (pKa1 ≈ 8.8) 

[153]. cis-1,2- and cis-1,3-diols complex with boronic acid at pH > 5.8 to form cyclic 

esters. The complexed forms (3 and 4) have a pKa (pKa2 ≈ 6.8) that is lower than that 

of the free BA [153, 155]. Thus all the four species are in equilibrium leading to a net 

charge on the complexed or non-complexed BA species depending on the pH (Figure 

4.9). In order for the sensor to detect the binding of glucose, there should be some 

difference in the net charge before and after binding [130].  
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Figure 4.9. Charge distribution on the surface of BA-functionalized CNTs 
calculated using the Henderson-Hasselbach relationship. The black curve corresponds to 
the case without glucose, while the red curve represents the situation with glucose. (pKa1 
~ 8.8, pKa2 ~ 6.8). The cyan-colored vertical line corresponds to the working pH of 8.4. 
Refer to text for further details [130]. 

 

Based on this, the optimal working pH would be the one that has a value 

between pKa1 and pKa2. Due to this reason, the working pH was chosen to be 8.4. At 

this pH (marked by the vertical line), the relative charge on the complexed species is 

maximized with respect to the charge on the unbound species. In other words, at this 

pH, 1 and 3 are expected to be the dominant species before and after complexation 

respectively. As a result, the net charge on the surface of the CNT is relatively higher 

in the presence of glucose in comparison to the situation without glucose. It is 

noteworthy mentioning here that the exact values of pKa1 and pKa2 of the BA-CNT 

assembly might be slightly different from the known values. However, this would 

only shift the black and red curves slightly reducing the difference in the net charge 

by a small amount. Based on this picture, it can be concluded that the increased 

charge on the covalently attached BA centers in the presence of glucose leads to a 

stronger scattering of charge carriers resulting in a higher resistance [130].  
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While the consistent increase in resistance for a broad gate voltage range 

and its clear concentration dependence strongly support the scattering mechanism 

related to changes of charge carrier mobility, two other mechanisms also deserve 

attention as has been postulated for semiconducting CNTs [41, 155]. The first one 

concerns an alternative effect of the analyte dependent change in charge on the 

nanotube surface namely a threshold voltage shift, analogous to the working 

principle of an ion-selective field-effect transistor (ISFET) [156]. In a second scenario, 

the docking of analytes on the nanotube surface could lead to an increased screening 

of the gate potential by an increase in the thickness or a change in dielectric constant 

of the receptor coating. This would alter the effective gate capacitance, which would 

result in a change in the slope of transconductance characteristics, signifying a 

modulation of the gate coupling coefficient [41, 130]. 

Non-covalent attachment of the receptor does not alter the electronic 

structure of the CNT. Therefore this kind of functionalization is preferred for 

evaluation of these two mechanisms of sensing – threshold shift and change of 

capacitive coupling. As it was described previously (paragraph 3.6), through 

electropolymerization phenyl boronic acid moieties were attached in a non-covalent 

manner to obtain coatings of 3 nm thickness. Figures 4.9a and 4.9b show the 

ZMagnitude-2D-maps for the non-covalently functionalized BA-CNT device in 

buffer and in a 10 mM glucose solution. It is apparent that the behavior in glucose is 

quite different from that of the covalent-BA-CNT case, with the device having a 

higher resistance at negative gate voltage and a lower resistance at positive gate 

voltage and thus a markedly different slope of the gate-dependence of the 

conductance (Figure 4.9c). The reduction in slope signifies a less efficient coupling of 

the liquid gate. This can be explained by change in the polymer layer - increased 

dielectric shielding arising from bound glucose moieties on the BA layer.  

Furthermore, at working pH of 8.4, the bound glucose moieties on the 

thick BA layer must have an average net charge higher than in the free BA condition, 

as discussed in Figure 4.9. That is indeed the case as can be inferred from the curve 

shown in Figure 4.10d (obtained after the correction for slope change), where clear 

thresholds shift can be extracted. For the sample in Figure 4.10, we calculated this 

shift to be around 24 mV. Similar values (in the range of 10 – 30 mV) have been 

obtained on other devices [130]. 
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Figure 4.10.  Sensor response for non-covalent-BA-CNT devices showing the 
gate dependence of the magnitude of impedance at low frequencies. ZMagnitude -2D-
maps before (a) and after (b) glucose exposure. c) coupling efficiency (characterized by the 
slope of transconductance) of the sensor before and after exposure to a 10 mM glucose 
solution. d) threshold voltage calculation after correction of the coupling efficiency (c and 
d  are derived from ZMagnitude-2D-maps). In (c), it can be seen that in the presence of 
glucose the coupling (slope) is lower, while in (d) the binding of glucose to BA moieties 
shifts the threshold voltage [130].  

 

It could be argued that the sensor responses for the covalent case could 

also be explained using these two mechanisms similar to the non-covalent scenario. 

However, there are a number of arguments, which speak against this possibility. 

First, the moieties that are covalently attached are very and hence the screening effect 

if present is expected to be very minimal. Furthermore, since we have more than one 

tube across the electrodes, it is unlikely that the sparsely distributed charge centers 

can bring in a significant threshold voltage shift in the gate characteristics. Finally, 

the gate dependence of resistance in the presence of glucose shows an increase in 
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resistance for all gate voltages in a number of covalent-BA-CNT samples, strongly 

supporting the previous arguments [130].  

 

4.4. Conclusions. In conclusion, using a novel type of non-

enzymatic glucose sensor based on carbon nanotube devices site-selectively 

positioned in microfluidic channels the mechanisms of sensing where investigated.  

By a control of the nature of coupling between the receptor and the nanotube, it was 

possible to elaborate on the various transduction mechanisms with the help of the 

impedance detection technique. The sensitivity can be further increased by the use of 

appropriate receptors that provide a higher binding constant for glucose. The 

presented sensors are compact and show promise for applications such as in vivo 

glucose monitoring.  

  



 

 

 

5. Label-free detection of few copies 

of DNA  

 

 

5.1. Introduction. The detection of specific nucleic acid sequences 

plays a vital role in environmental, food and clinical monitoring and in forensic 

screening. Deoxyribonucleic Acid (DNA) hybridization is the basis for the detection 

of various infections and genetic disorders [157, 158]. On the other hand, the 

detection of messenger RNA (mRNA) is important for applications such as in the 

estimation of the gene expression level [159]. The introduction of real-time 

polymerase chain reaction (RT-PCR) [160] and microarrays [161] have revolutionized 

the way in which nucleic acid assays are implemented, enabling the highly sensitive 

detection of various biomarkers. In all these methods, the target DNA is amplified, 

which is a prerequisite for obtaining high sensitivity [162]. Furthermore, microarray-

based detection requires a labeling step, which affects the time, efficiency and the 

total costs involved in the complete detection protocol. The ability to detect few 

copies of unlabeled DNA without the need for a bulky optical reading instrument 

will pave way for the facile entry of nanoanalytical devices for point-of-care 

diagnostics [163]. Sensors based on hybridization of nucleic acids constitute the basis 

for today’s molecular diagnostics [164]. Such sensors find application in the detection 

of various diseases, depending on the presence or absence of specific nucleotide 

sequences. Current methods are able to identify few copies by amplifying the sample 

using PCR to obtain a detectable amount of DNA [165]. For applications involving 

comparison of gene expression levels, microarrays are used [166]. This requires the 

labeling of the target sequences to enable their subsequent detection using a 

fluorescence microscope [167].  

Label-free electrical detection of DNA has been demonstrated in a variety 

of configurations [168]. The majority of them are based either on field-effect detection 

[18, 60] or on electrochemical detection [169]. 1D-nanostructures were used for 

improving the limit of detection of DNA assays.  For example, electrochemical GaN 

nanowire-based DNA detection was performed by monitoring electrochemical peak 

of guanidine oxidation. In this case the authors could reach sub-pM level of DNA 

detection [170]. Gold nanowires functionalized with PNA were used for 

electrochemical detection of mRNA with the help of catalytic reporting. This sensor 
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showed sensitivity up to 100 fM RNA [171]. The best detection limit reported until 

now based on silicon nanowires is 10 fM [172, 173]. However, silicon nanowires 

suffer from extremely high resistances (in the gigaohm range), which sets a limitation 

on the achievable sensitivity [156]. Almost all of the silicon nanowire sensors are 

based on resistive detection without the use of a reference electrode. While this is 

useful in the demonstration of prototype sensors, the use of a reference electrode is 

unavoidable when one requires stability and reproducibility of the sensors [18, 174, 

175]. Therefore using a CNT as sensitive element and a reference electrode to set a 

stable potential can bring significant improvement in the field of DNA electrical 

sensors. Some results on CNT-based electrical DNA detection were already 

demonstrated by other groups. However a significant improvement of the limit of 

detection was not achieved there. In comparison to state-of-the-art field-effect 

sensors based on carbon nanotube networks [66], the sensor presented here shows up 

to 5 orders of magnitude improvement in the detection limit.  

 

5.2. Sensing setup. For DNA sensing the sample with CNT device 

prepared as described previously (Chapter 3) was attached to chip-carrier and wire-

bonded.  

 

Figure 5.1. Overview of the assembled carbon nanotube DNA sensor. (a) Photo 
showing the chip-carrier (printed circuit board) with the wire-bonded sensor chip covered 
with a PDMS layer. The sensor chip contains Pt electrode gaps (b), where the nanotubes 
are trapped. The PDMS layer comprises two reservoirs connected by a microchannel and 
is shown filled with the buffer solution. An Ag/AgCl reference electrode placed in one of 
the reservoirs is also visible. (b) AFM image of the nanotubes dielectrophoretically 
trapped between Pt electrodes and subsequent passivation with SiO2 (c) Schematic of the 
sensor chip showing the layout of the Pt electrode lines and the electrode gap [167]. 
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The well, shaped as 150 μm wide channel connecting two reservoirs, was 

cut in the PDMS plate. This PDMS plate was placed on the sample in a way that the 

channel was exactly above the gap between the electrodes and unpassivated parts of 

the electrodes were covered with PDMS (Figure 5.1a).   The hole in PDMS plate was 

used as a microwell for liquid during functionalization and sensing. Ag/AgCl 

reference electrode was inserted into liquid [167]. 

 

5.3. Functionalization of CNTs with probe DNA. The 

functionalization protocol to attach the probe sequence is shown in Figure 5.2. First, 

4-aminobenzoic acid (ABA) is electropolymerized on to the nanotube surface. For 

this purpose, the mixture of 10mM 4-aminobenzoic acid and 10mM LiClO4 in ethanol 

was added to the microwell and the voltage at the nanotubes was swept from -0.1 to 

+0.7V against Ag/AgCl reference electrode. After 5 sweeps, the chip was carefully 

washed with ethanol and water. This results in the non-covalent [106] wrapping of 

the nanotubes with poly-ABA containing free –COOH groups. In a second step 

amino-functionalized probe DNA is covalently coupled to the -COOH groups by 

carbodiimide coupling [176]. For this purpose, the well was filled for 15 min with a 

mixture of ethylenediaminechloride (EDC) and N-hydroxysuccinimide (NHS) 0.5 

mM (1:1 ratio) in 10mM phosphate buffer pH 6 for activation of the carboxyl groups. 

After that most of the solution was taken out from the well (avoiding the drying of 

the coupling mixture on the substrate). Then the well was filled with 3’-NH2-DNA 

(MWG) in the 10mM phosphate buffer pH 7.4 for 30 min. 20mM ethanolamine in 

10mM phosphate buffer pH 7.4 was used to block remaining activated carboxyl 

groups. The well was subsequently washed with 10mM phosphate buffer pH 7.4 

[167].  
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Figure 5.2. The controlled functionalization of the carbon nanotube surface 
with probe DNA [167].   

 

The height increase upon electropolymerization was estimated to be 

around 2-3 nm as obtained from AFM images. As it was explained before (paragraph 

4.6), electrochemical functionalization is site-specific, i.e. only the nanotubes 

addressed by the electrochemical modification are preferentially decorated with 

probe DNA. This also ensures that there is no DNA in the vicinity of the nanotube on 

the chip surface. This is in contrary to situations such as spotting, where the DNA 

can be immobilized anywhere on the spotting area [66, 177], which could lead to a 

high level of background noise commonly observed in microarray detection [161, 

166]. Furthermore, the negatively charged carboxylic groups are expected to 

minimize direct non-specific binding of DNA on the nanotube surface via 

hydrophobic interactions [178].  
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Figure 5.3. Evidence for the coupling of probe DNA: schematic of the 
experiment (a), AFM images taken before (b) and after (c) the coupling protocol [167]. 

 

To prove the applicability of functionalization scheme it was important to 

show the presence of probe DNA on the surface of the CNT after the coupling. This 

task was complicated by the ability of nanotubes to weaken the fluorescence of the 

attached molecules [125, 179]. Therefore, the use of fluorescently labeled 

oligonucleotides for their detection on the CNT surface was discarded. Instead, for 

this purpose nanoparticles decorated with complementary DNA were used. In 

details, the samples with modified CNTs were incubated with splint strand DNA for 

40 min in 10mM phosphate buffer (pH 7.0) containing 0.3M NaCl. Following this, the 

samples were left in a solution of 60 nm nanoparticles decorated with the 

complementary DNA sequence. AFM images (Figure 5.3) taken before  (b) and after 

(c) the coupling protocol show the presence of attached nanoparticles confirming that 

the probe DNA was indeed attached to the surface of the CNTs. CNT devices 

without poly-ABA and with poly-ABA but without probe DNA sequence were used 

as control. In these cases no nanoparticles were coupled to nanotube surface after the 

same procedure.  
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5.4. Sensing trials. The sensing trials were performed at varying 

concentrations of target DNA in 10 mM potassium phosphate buffer containing 0.1M 

NaCl. Before the sensing trials, several measurements were taken to ensure stable 

electrical properties of device in buffer solution and also to limit the amount of 

possible non-specifically absorbed probe DNA. Impedance measurements were 

taken twice in target DNA solution, in buffer after washing non-specifically adsorbed 

DNA and in buffer after DNA melting. For melting of hybridized DNA the 

microwell was filled with hot   water (80oC) several times and washed with buffer 

afterwards. 

The DNA sequences used in this study: probe DNA: 5-

ggcctcacgtcacactctccgcgc-3, target DNA: 5-gcgcggagagtgtgacgtgaggcc-3, 3-basepair-

mismatched DNA: 5-gcgagcagagggtgacgtgaggcc-3. 

To prove the suitability of sensing protocol, in other words, to show that 

the target oligonucleotide is indeed binding to the probe DNA during sensing a 

target sequence with biotin functionality on 3´-end was used. The functionalization 

and sensing were carried out in the same way as it was described above. After 

exposure to biotin labeled target DNA, washing of non-specifically adsorbed DNA 

with buffer and impedance measurements, the sample was incubated in a solution of 

10 nm diameter streptavidin-gold nanoparticles (Sigma).  

The AFM and SEM images show the nanoparticles absorbed to the surface 

of the CNT after this procedure. This proves that biotin-labeled DNA is present on 

the surface of the CNT. In control experiments with nanotubes that were not 

functionalized or were functionalized only with polyABA no nanoparticles were 

adsorbed to the CNTs, however few nanoparticles were still present on the Si/SiO2 

surface which can be explained as occurring due to non-specific binding. As in the 

experiment described in paragraph 5.3 the use of fluorescently labeled biomolecules 

was also avoided here, due to the ability of CNTs to quench fluorescence [125, 179]. 
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Figure 5.4. Evidence for DNA hybridization during the sensing trial: a) 
schematic of the experiment,  b) AFM image before, c) AFM image after and d) SEM image 
after the sensing trial. It is apparent that the nanoparticles decorate the nanotube surface 
confirming that hybridization indeed takes place during the sensing trial. When the 
nanotubes were not functionalized with probe DNA, no particles were observed after 
incubation with streptavidin-gold [167].  

 

 

5.5. Sensing results. First the sensor response of the fabricated 

devices to 100fM of target DNA in buffer will be discussed (Figure 5.5). To perform 

these measurements the Z-magnitude and Z-phase maps are first recorded in the 

buffer without any target DNA. The resistance of the device was around 100-500 

kOhm, which is dominant at low frequencies. In this range, the device impedance 

exhibits a low gate modulation. At high frequencies capacitive components arising 

both from the electrical double layer and the substrate dominate (Figure 5.5a). Upon 

introduction of complementary target DNA in the microwell, the devices show a 

clearly different response (Figure 5.5b). It is apparent that the Z-magnitude response 

shifts to the left along the gate voltage scale. The Z-phase response shows differences 
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in a frequency range of 1 to 10 kHz. After melting of the hybridized strand and 

subsequent washing, the initial response is recovered, as shown in Figure 5.5c. In 

order to confirm that the signal is indeed due to the specific hybridization of the 

complementary target strand, the sensor response (Figure 5.5d) was measured upon 

introduction of a 100fm 3-bp-mismatched complementary sequence. The Z-maps 

remain almost unaffected in this situation showing the threshold voltage shift of less 

than 20 mV [167].  

 

Figure 5.5. Specificity of CNT-DNA-sensors. The plots show magnitude Z-
maps (left column) and phase Z-maps (right column) in different solutions. The data was 
acquired in (a) buffer without target DNA (b) with complementary target DNA (c) after 
melting and washing and (d) with non-complementary DNA. It is clearly discernible in 
(b) that for the complementary target DNA the sensor response shifts to the left. This 
change is minimal in the presence of non-complementary DNA (d). e, f - sensor response 
(e - magnitude and f -  phase) at a fixed frequency (as extracted from the section profiles 
from the data in figure 5.5 a,b,c,d). The data shows the gate dependence at a frequency of 
1kHz. It is apparent that the gate response is reversible after melting and washing. Vlg is 
liquid gate voltage at the Ag/AgCl reference electrode [167].  
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In order to understand the sensor response it is worthwhile looking at the 

section profiles along the horizontal dotted lines in the Z-maps of Figure 5.5. Figures 

5.5e and 5.5f depict these section profiles, which show the gate dependence of the 

impedance at a frequency of 1 kHz, where the reversibility of the sensor response 

and the specificity towards the complementary target is clearly discernible. In the 

presence of the complementary target DNA the magnitude (Figure 5.5e) as well as 

the phase responses (Figure 5.5f) are shifted to the negative gate voltages. This 

threshold shift of around 150 mV can be attributed to the accumulation of negative 

charges on the nanotube surface upon hybridization. The sign of the threshold shift 

is consistent with data reported on DNA sensors based on nanotube networks [66].  

Upon melting and subsequent washing of the sensor surface, the negative 

charges of the complementary strand are removed and the gate response returns to 

its initial scenario. The gate response for the 3-bp-mismatched DNA shows only a 

comparatively negligible shift (less than 20 mV) to the left signifying a much lower 

degree of hybridization as is normally expected for mismatched DNA sequences 

[161]. 

 

Figure 5.6. Control experiment with non-functionalized CNTs: magnitude Z-
maps (a) and phase Z-maps (b) in different solutions. No change in transport 
characteristics was observed after exposure to 100 fM DNA solution. Curves showing the 
magnitude (c) and phase (d) of impedance during different stages of the sensing trial. In 
this case, the nanotubes were not functionalized with the probe DNA. It is apparent that 
the transport characteristics do not show any difference with or without the 
complementary target DNA [167]. 
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Nanotubes that were not functionalized with ABA with or without 

subsequent coupling of probe DNA did not show any significant response towards 

complementary sequence even at the highest concentration used here (Figure 5.6) 

[167].  

 

Figure 5.7. Attomolar detection limit of CNT-DNA-sensors. (a) Magnitude Z-
map and (b) Phase Z-map for various concentrations of complementary target DNA. After 
every exposure of the sensor to target DNA, the hybrids were melted in order to obtain the 
initial state as shown in Figure 5.5 (a-c). It is apparent that even at a concentration of 
100aM (corresponding to around 1800 molecules in our 30 µL droplet), the sensor response 
can be unambiguously discerned, signifying the ultrahigh sensitivity of CNT impedance 
biosensors [167]. 

 

5.6. Sensitivity and detection limit. The use of high 

frequency detection ensures a very low noise of the electrical measurements. The 

Ag/AgCl reference electrode provides for excellent stability. This enables the 

repetitive use of the same sensor for a series of different DNA concentrations with 

minimal drifts. Figure 5.7 collects the concentration dependence of the sensor 

response for one of the devices, displaying the magnitude Z-maps (Figure 5.7a) and 

phase Z-maps (Figure 5.7b) for the various concentrations of complementary target 

DNA. Section profiles as extracted from the maps in Figure 5.7a are collected in 

Figure 5.8a. It is apparent that the gate response shifts to increasing negative gate 

voltages with increasing concentration of target DNA [167].  
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Figure 5.8. Sensitivity of CNT-DNA-sensors: (a) Gate dependence of the 
magnitude of impedance at a frequency of 1 kHz in buffer (black line) and for varying 
concentrations of complementary target DNA in buffer (extracted from Figure 5.7a). The 
threshold voltage shifts to more negative voltages with increasing concentrations of DNA. 
(b) Calibration curve showing the threshold shift as a function of complementary (cDNA) 
and non-complementary (ncDNA) concentrations showing a linear response over a broad 
concentration range [167].  

 

Figure 5.8b presents the calibration curve where the shift in threshold 

voltage is plotted as a function of target DNA concentration. It is apparent that the 

sensor response is linear over a broad concentration range and a concentration as low 

as 100 aM can be unambiguously detected. The threshold voltage shift caused by 

non-specific binding of non-complementary DNA (Figure 5.8b – blue line) is 

significantly lower for all tested concentrations. This corresponds to around 1800 

molecules of target DNA in our 30 µL sample droplet in the microwell. This is the 

lowest detectable concentration that has been reported using any label-free or 

mediator-free direct detection technique [167].  
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5.7. Detection in complex media. In order to evaluate the 

use of presented nanobiosensors in a realistic application scenario, we have validated 

our analytical strategy towards the specificity of DNA differentiation at ultralow 

concentrations. For this purpose, we have taken a heterogeneous mixture of three 

different DNA sequences (ncDNA – noncomplementary to the probe sequence) each 

at a concentration of 3 fM. To this we add 200 aM of complementary DNA (cDNA) 

giving a total DNA concentration of 9.2 fM. The amount of cDNA we are aiming to 

detect corresponds to just around 2% of the total DNA present in the solution 

mixture. As a control we use the ncDNA mixture without the cDNA at the same total 

DNA concentration. Figure 5.9 collects the Z-maps measured in various analyte 

solutions [167]. 

   

Figure 5.9.  Attomolar target differentiation in a heterogeneous DNA mixture. 
Magnitude Z-maps (a) in buffer (b) in buffer with a heterogeneous mixture of three 
different non-complementary sequences (ncDNA) each at 3 fM giving a total DNA 
concentration of 9 fM (denoted as 1) and (c) in solution 1 with added 200 aM of 
complementary target DNA (denoted as 2). (d) Sensor signal (threshold shift) for solutions 
1 and 2. In 2, the complementary target amounts to just 2% of total DNA. The CNT-DNA-
sensor is capable of differentiating this small amount from the high 9 fM non-
complementary background, signifying a high selectivity coupled to an ultralow detection 
limit [167]. 
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It is apparent that the sensor response shifts clearly towards negative gate 

voltages, similar to Figure 5.5. A significant shift is only seen if the buffer contained 

the complementary target (Figure 5.9c). This is further clear from the threshold 

voltage shift collected in Figure 5.9d for the heterogeneous sample with and without 

the complementary DNA. It is apparent that 200 aM of target DNA comprising just 

2% of the heterogeneous sample is able to bring in a significant threshold shift of 

around 65mV. On the other hand, the 9fM ncDNA control solution without the 

cDNA shows only a shift of around 12 mV, which is below the 20 mV occurring due 

to non-specific interactions (as mentioned earlier – paragraph 5.5) [167].  

 

5.8. Conclusions. The power of presented nanosensor is apparent 

from the above described measurements and soars hopes of extending the technique 

to directly detect low quantities of DNA from realistic biological samples such as 

blood (after preprocessing), thereby showing promise for use in a clinical setting 

without amplification or labeling steps. As mentioned earlier, the ability to detect 

few copies of the DNA is made possible primarily by ensuring that the high surface-

to-volume ratio is guaranteed through appropriate passivation of the electrodes, 

leaving exclusively the nanotube surface as the active element. Furthermore, the low 

resistance, the stability gained by using the impedance measurement and the site-

specific electrochemical functionalization route have been crucial in achieving this 

ultra-low detection limit.  

 

  



 

 

 

6. Towards graphene-based electrical 

sensors 

 

 

6.1. Introduction. In spite of the constant efforts from the 

researchers, the integration of graphene into devices still remains challenging. 

Mechanical exfoliation of graphene from graphite crystal followed by e-beam 

lithography is the commonly used technique for the preparation of contacted 

graphene flakes [68, 180]. This approach is widely used in the research laboratories, 

but has a number of limitations, for example, critical manual operation steps which 

cannot be automated. Therefore this approach is unsuitable for device production at 

the industrial level. Moreover the chips produced in this manner may have differing 

geometry and position of contacts and flakes. This can complicate manufacturing and 

operation of the devices at later stages. Researchers are trying to overcome these 

limitations by using chemical vapor deposition (CVD) grown graphene as a starting 

material for device fabrication [181-183].  

Solution-based approaches for the preparation of carbon-based devices 

offer the possibility for large-scale processing without using bulky equipment or 

operation at very high-temperatures. Graphene suspension can be obtained from 

graphite through intercalation using organic solvents, surfactants, etc [184]. Another 

solution-based approach is to produce an aqueous solution of oxidized form of 

graphene (Graphene oxide - GO) which is hydrophilic due to the presence of polar 

groups, such as carboxyl, hydroxyl and epoxygroups [104, 185]. Graphene oxide is 

insulating but it can be made conductive after a reduction process [103, 187]. The 

resulting material is called reduced graphene oxide (RGO). To fabricate RGO devices 

using this kind of suspension drop casting of the solution on the substrate with 

subsequent contacting of the flakes of interest can be used. However this approach 

does not improve the scalability of the fabrication. Therefore pre-patterning of the 

surface and dielectrophoresis have been used to position the flakes at the desired 

locations [186 - 190]. 
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6.2. DEP trapping of graphene.  Several approaches for 

solution based graphene devices fabrication were investigated here. Prior to the 

fabrication of graphene devices using dielectrophoresis a solution of graphene or 

graphene oxide must be prepared. Solutions containing graphene flakes were 

obtained by 10 min sonication of graphite powder in dimethylformamide (DMF) and 

Triton X-100. Large particles of graphite were removed using centrifugation (3000 

rpm, 5 min). AFM imaging revealed the extreme inhomogeneity of resulting 

suspensions. Dropcasting of the solution on a substrate and AFM measurements 

showed the presence of large enough single or few-layer graphene flakes (Figure 

6.1a). However, during the dielectrophoretic trapping (500kHz, 1V, 10 sec) which 

was performed to position graphene from these solutions at the electrodes, along 

with the single or few-layer graphene flakes, large graphite particles were trapped 

(Figure 6.1 b). Further attempts to purify the solution led to a decrease of the 

graphene flakes size, which complicated bridging of the gap between the electrodes 

(Figure 6.1 c). Therefore other methods were considered as alternative solution-based 

approaches for the fabrication of graphene-devices. 

 

Figure 6.1. Liquid phase exfoliation of graphene from graphite. a - AFM 

images of few-layer graphene flake obtained by exfoliation of graphite in DMF,  b – 

graphene flakes dielectrophoretically trapped together with large graphite particles, c – 

individual graphene flakes trapped at electrodes using DEP.  

    

 

6.3. DEP trapping of graphene oxide.  As it was discussed 

above, an alternative route was to prepare graphene oxide solution, followed by DEP 

trapping and reduction. GO solution was prepared using Hummers method [191]. 1g 

of graphite powder (200µm grain size) was added under constant stirring to the flask 

with 23 ml of 98% sulfuric acid. 0.5 g of NaNO3 was added and the speed of stirring 

was increased. After that 3 g of KMnO4 was added carefully. The above mentioned 

procedures were performed in the ice bath with the temperature control of the 
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solution. The temperature of the mixture was kept below 20oC. Upon removing the 

iced water bath, the temperature was increased to 35oC in 30 minutes, leaving a grey 

paste. 46 ml of deionized water was then added and the temperature was increased 

to 98oC where it was maintained for 15 minutes. Then 70 ml of water was poured 

into the mixture. 3% H2O2 was added slowly until the solution turned bright yellow. 

The suspension was vacuum filtered resulting in a yellow brown filtrate which was 

washed several times with water. The exfoliation was performed by overnight 

shaking. The obtained graphite oxide suspension in water was centrifuged at 3000 

rpm for 3 minutes to remove large particles. 

 

Figure 6.2. Preparation of graphene oxide solution 

 

Before DEP the GO solution was diluted 1:10 with water and sonicated for 

5 seconds. DEP trapping was performed by applying 500 kHz, 10 V AC-voltage for 

15 second. Afterwards the device was washed with water and isopropanol and blow-

dried in nitrogen flow. Then GO was thermally reduced in the furnace at 350oC for 1 

hour in an inert atmosphere (argon). The devices prepared in this manner showed 

resistances in the range of 200kOhm to 2 MOhm. Due to incomplete reduction the 

resistance of the obtained devices is higher than in the case of pristine graphene but 

the fabrication is rather simple and scalable. Another advantage of the GO-based 

approach for fabrication of devices for biosensing is that the remaining oxygen 

containing functionalities can be used for chemical functionalization of RGO.  
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The RGO devices can be further improved for the use in liquids by 

passivating the metal electrodes as it was done for CNT devices [130, 167]. An 

example of device prepared in this manner is shown in Figure 6.3 

 

Figure 6.3. An RGO device with passivated contacts for biosensing 
applications. 

 

The devices were assembled on a chip-carrier for impedance 

measurements in a liquid gated configuration. The reservoir for liquid was made 

using PDMS plate as it was described previously (paragraph 5.2).  Impedance 

measurements were performed for the range of the gate voltages from -0.4 to 0.4 V. 

Figure 6.4. shows the typical 2D-ZMagnitude–map of RGO device (a) and its gate 

dependence at 1000 Hz (b) [130, 167]. 
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Figure 6.4. Liquid gating of RGO device. a) 2D-map of the magnitude of 

impedance, b) gate dependence of the device at a fixed frequency of 1000 Hz. 

 

 

6.4. Chemical anchoring of graphene oxide for 

preparation of the devices.  DEP of GO often results in the trapping of 

several flakes. The devices prepared in this manner therefore are not as reproducible 

as they are required to be. Moreover, the flakes often have numerous wrinkles and 

folds. Therefore, an alternative chemical route for positioning GO flakes at the 

desired location was proposed. It utilizes the presence of the various reactive 

functional groups in graphene oxide [103]. These functional groups can be used as 

hooks for anchoring the graphene flakes on the electrode surface previously 

functionalized with appropriate reactive groups. Selective modification of the 

electrodes can be achieved using electrochemical reactions. In this case, relevant 

functional groups for coupling the functionalities on graphene oxide will be 

selectively present on the surface of the electrodes [192]. 
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Figure 6.5. Scheme of the chemical anchoring protocol. (a) electrochemical 
functionalization of Pt electrodes with tyramine leading to (b) a coating of polytyramine 
on the electrode surface; (c) incubation of the chip in a GO solution results in the coupling 
of GO flakes to the polytyramine layer; (d) annealing in argon at 350oC leads to the 
removal of the polytyramine layer and the reduction of most of the oxygen containing 
groups. WE – working electrode, CE – counter electrode, RE – reference electrode [192]. 

 

The platinum electrodes were modified by oxidative polymerization of 

tyramine with the formation of a thin film of polytyramine (pTy) which has a high 

density of free aminogroups (Figure 6.5 a,b) [193]. Previously the immobilization of 

biomolecules on microelectrodes with the help of electropolymerized tyramine was 
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successfully demonstrated [194, 195]. Amine-containing polymers have been shown 

to be effective for cross-linking of graphene oxide sheets via amino-epoxy coupling 

[196]. The polymerization of tyramine was carried out by applying 0.8V for 15 sec at 

the platinum electrodes pre-written on the silicon substrates which where immersed 

into 10mM tyramine solution in 10mM H2SO4 using CompactStat potentiostat (Ivium 

technologies). Platinum wires were used as counter and pseudo-reference electrodes. 

After electrochemical deposition of polytyramine the substrate was washed with 

ethanol and water and dried in nitrogen flow. For the coupling of pTy with graphene 

oxide we immersed the substrate in a suspension of graphene oxide and left it for 1h 

in a shaker. During the incubation of the sample in GO solution pTy reacts with 

graphene oxide and acts as an anchor on the electrode surface (Figure 6.5c).  

Afterwards, the substrate was taken out of the GO solution, immediately washed 

with water and isopropanol and dried in nitrogen flow. After that the sample was 

thermally annealed in inert atmosphere (argon) at 350oC for 1 hour (Figure 6.5d). 

After cooling down to the room temperature the sample was washed with 

isopropanol and dried [192].  

 

Figure 6.6. Surface characterization by AFM. Inset - AFM image of a typical 
sample obtained at the end of the chemical anchoring protocol. The electrode gap and the 
immobilized graphene oxide flake are visible here. Main plot - Height profiles (along the 
red line in the AFM image) taken at a GO-free region on the electrode – as extracted from 
AFM images recorded at various stages of the anchoring procedure. It is apparent that the 
pTy film after electrodeposition is 5 to 8 nm thick (red curve). Annealing leads to the 
reduction in electrode height (blue curve) to the initial value signifying the removal of the 
pTy film [192]. 
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The AFM images of the electrodes on the substrate were taken before and 

after pTy formation as well as after incubation in GO solution and after annealing. 

Figure 6.6 (inset) shows the AFM image of the device prepared using our approach. 

The coupling of graphene oxide to the modified electrodes was clearly observed 

while there was no graphene oxide on the electrodes that were not electrochemically 

treated. As it is seen from height profiles (Figure 6.6) the layer of polytyramine that 

was formed on the surface of the electrodes during electrochemical functionalization 

had a thickness of around 5-8 nm. After the thermal annealing step, the height of the 

electrodes decreased to the initial value which indicated the removal of the polymer 

layer from the surface of the electrodes not covered with GO.  Similar height profile 

analysis of the electrode regions with graphene oxide on top suggested a decrease of 

the polymer layer thickness below the graphene oxide sheet [192].   

During thermal annealing in argon the reduction of graphene oxide also 

takes place and the device becomes conducting [197]. This was observed by 

impedance spectroscopy measurements (Figure 6.7a). The resistance improvement 

confirmed the removal of a majority of oxygen functionalities from the GO surface 

[192]. 

 

Figure 6.7. Electronic properties of the anchored GO devices. (a) Impedance 
spectrum of a typical anchored GO device before and after the thermal annealing step 
(350˚C, Argon, 1h), AC amplitude 100 mV. (b) Tapping mode AFM height image of the 
same device. (c) and (d) Surface potential maps of the same device before (c) and after (d) 
the thermal annealing step. The tip was grounded while a fixed bias (0.5 V for (c) and 0.25 
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V for (d) was applied across the gap. It can be inferred that the annealing step improves 
the resistance and the electronic properties of the anchored flakes [192]. 

 In order to gather further support for the improvement in transport upon 

annealing, the devices were investigated using Kelvin Probe Force Microscopy [198, 

199]. The resulting surface potential maps are depicted in Figures 6.7c and 6.7d. In 

the former case, there is no conducting pathway measurable in the device before 

annealing, consistent with its insulating behavior. By contrast, after annealing the 

current carrying flake can be clearly identified in Figure 6.7d, analogous to recent 

results on individually contacted RGO flakes [200]. This leads us to conclude that the 

annealing procedure serves as a single processing step that results in a graphene-like 

backbone of the GO flakes, while simultaneously removing the polytyramine layer at 

the contacts [192].  

 

6.5. Up-scaling the fabrication of RGO devices. The 

advantage of the offered approach for device fabrication is the possibility to scale-up 

the process. Towards this goal, we utilized a specialized layout as shown in Figure 

6.8a. The substrates comprised of 6 mm x 30 mm Si/SiO2 chips allowing for long 

leads. The long leads enable us to perform electronic transport measurements in 

liquids as is discussed later. Each chip comprises of 6 electrode gaps. All the 12 

electrodes are initially wire-bonded in the outer region of the substrate to form a 

parallel connection of 12 electrodes. In this manner all the electrodes can be 

decorated electrochemically with polytyramine in a single step. A drop of tyramine 

solution was placed in the region of the gaps. Pt wires used as counter and reference 

electrodes were inserted into this drop. The voltage applied to one of the pads of 

connected electrodes led to an electrochemical reaction on all of them at the same 

time. Placing such a sample into the GO solution led to the coupling of graphene 

oxide to all of the electrodes on the surface. The contacts of the devices were 

passivated using an appropriate mask and a mask aligner MA-6 (SüssMicrotech). 

The resulting passivated devices are shown in Figure 6.8b. Liquid gate dependence 

was measured in water using Ag/AgCl reference electrode to apply the gate voltage 

and PDMS plate with the hole to form a well. The contacts to the electrodes were 

located outside PDMS well. The devices showed resistances in a range of 100kOhm – 

1 MOhm which is comparable to the reduced graphene oxide devices obtained by 

dielectrophoretic trapping of GO followed by reduction. Liquid gate dependence of a 

typical device is shown in Figure 6.8c [192]. 
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Figure 6.8. Scaling up chemical anchoring. (a) Device layout showing 6 
electrode gaps. Initially, the 12 electrodes are linked externally through wire bonding. For 
liquid gating measurements, a liquid channel connected by two circular wells is created 
with the help of a polydimethylsiloxane (PDMS) layer. The inset shows a close-up of the 
electrode gap and the relative extent of the liquid channel. An Ag/AgCl reference 
electrode inserted in the channel serves as the gate electrode. (b) AFM images of the 6 gap 
positions (from one chip) at the end of the chemical anchoring protocol. In addition to the 
steps shown in Figure 6.5, the electrodes are passivated with SiO2 using a separate photo 
mask. (c) Liquid gate dependence of resistance of one of the RGO devices, showing the 
typical ambipolar behavior [192]. 

 

From the foregoing discussions it is apparent that the chemical anchoring 

protocol serves as a versatile route to obtain RGO field-effect devices with a high 

throughput. The real advantage of such a technique in an industrial scenario requires 

the demonstration of such a protocol at the wafer scale. Furthermore, the feasibility 

of this protocol for other substrates, such as glass or polymers, is also an important 

factor. To evaluate this, we have fabricated electrodes on 4” glass wafers using 

photolithography as shown in Figure 6.9a. The wafer is segmented into chips, each of 

which is laid out as shown in Figure 6.8a. The layout is designed in such a way that 

the electrodes of the chips in the region marked with the red dashed line (Figure 
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6.9a) are all connected to each other through the large common pads. After carrying 

out the chemical anchoring protocol, the wafer is diced whereby these electrode 

connections are lost resulting in standalone chips with 6 individual gaps each. For 

the wafer in Figure 6.9a, 77 working devices (out of 90 electrode gaps) were obtained 

signifying a yield of 86%. A histogram of the resistances from these 77 devices is 

presented in Figure 6.9 b, with resistances in the range of 200 kOhm to 3 MOhm 

[192].  

 

Figure 6.9. Wafer scale RGO devices with high yield. (a) A photograph of a 4” 
glass wafer with photolithographically patterned electrodes. The electrodes in the red 
dashed region are connected to each other through the large pads in the upper left and 
lower bottom. These large pads are used to deposit a polytyramine layer on all the 
electrodes in a single step. There are 15 chips in red dashed region, each chip containing 
six electrode gaps with an electrode layout as shown in Figure 6.8a. (b) Histogram of 
resistances of 77 out of the 90 electrode gaps at the end of the chemical anchoring protocol. 
13 devices showed very high resistances [192]. 

 

These results underline the scalability of this approach demonstrating a 

capability to obtain RGO devices at a high yield. The devices prepared on wafers 

showed higher resistances on the average in comparison to those observed on 

individual samples. This could be improved by optimizing the conditions of 

electropolymerization and thermal reduction for the substrate of interest.  

It is worth mentioning here that this approach was also successfully 

implemented on substrates with differing electrode geometries, as well as on flexible 

kapton foils (Figure 6.10).   
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Figure 6.10. AFM image (phase mode) of graphene oxide coupled to 
electrochemically modified electrodes on flexible kapton substrate [192]. 

 

The method was also tested using commercially available graphene oxide 

(Graphene Supermarket, USA). It noteworthy to say that the bridging of the gap 

between electrodes is limited by the relative sizes of the gap and graphene oxide 

flakes. It is understood that if flakes are smaller than the gap, coupling will still take 

place but the gap will not be bridged. Therefore, the yield of the preparation using 

commercially available graphene oxide was worse. However, by using the samples 

with smaller gap sizes it is still possible to improve the yield of fabrication in case 

when flakes are small (Figure 6.11) [192]. 

 

Figure 6.11. Commercially available graphene oxide (Graphene supermarket, 
USA) coupled to the electrodes [192]. 

 

6.6. Conclusions. In conclusion, several routes for the fabrication of 

graphene-based devices were investigated. Two main approaches were utilized for 

scalable fabrication - DEP trapping and chemical coupling of GO to the electrodes 

surface. These approaches allow preparing arrays of RGO devices in a short time 

without the use of serial techniques such as electron beam lithography. A field-effect 

was observed on these devices when operating in liquids using an electrochemical 
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gate. This is important for the electrical biosensing applications. The ability to realize 

wafer-scale RGO devices on arbitrary substrates is an important step towards their 

widespread use in a number of fields [192].  

 

 

  



 

 

 

Summary and outlook 
 

 

 

7.1. CNT based electrical sensors.  In this thesis the electrical 

biosensing platforms based on electrochemically functionalized carbon nanotubes 

are presented. The important aspect of this work was the optimization of the sensor 

fabrication procedure.  The device fabrication steps were optimized to ensure high 

throughput of this process. Thus, Si/SiO2 samples with photolitographically written 

Pt electrodes were used as substrates for the fabrication of nanosensors. The scalable 

assembly of CNTs into devices was achieved by dielectrophoretic trapping of the 

nanotubes from their dispersion. This ensures low-cost, reproducibility and 

possibility of automation of the CNT sensor fabrication. Sensitivity and robustness of 

the sensors was improved considerably with the help of passivation of the metal 

contacts with insulating layer. Electrochemical functionalization strategy, used in this 

work, provided site-specific modification of the nanotubes. Site-specificity of 

functionalization is one of the crucial requirements for achieving high sensitivity of 

the sensor. It also makes it possible to fabricate on the same chip several nanosensors 

designed to detect different analytes. Multiplex detection of several analytes can be 

realized in this manner. This will pave way for lab-on-a-chip systems that can be 

tailored for specific applications in point-of-care diagnostics. 

In this work biosensing is based on the measurement of the impedance of the 

modified CNTs at different liquid-gate voltages. Impedance measurements in field-

effect configuration of the device ensure low signal to noise. Glucose detection with 

boronic acid functionalized CNT devices helped to reveal mechanisms of sensing 

using the presented biosensing configuration. Finally, very high sensitivity and 

selectivity of the designed nanosensors were achieved in the case of DNA detection.  

Nevertheless, demonstrated sensing platform leaves a lot of room for further 

development and improvement.  

For example, in the case of DNA sensing, the experiments were conducted 

with synthetic oligonucleotides. It will be important to demonstrate this high 

sensitivity with real nucleic acid sequences obtained from biological samples. 

Possible analytes for such tests can be microRNA (miRNA) molecules. MicroRNAs 

are small (18 to 25 nucleotides) regulatory genes [201]. They can inhibit the 
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expression of target protein-coding gene. The suppression of the protein expression 

occurs due to the complementarity of the miRNA to a part of one or more messenger 

RNAs [202]. This inhibits translation of the protein. It was discovered that miRNAs 

circulate in blood serum. The concentration of some of the circulating miRNA 

changes depending on the pathological states of the organism, like sepsis, 

autoimmune diseases, cardiac diseases and cancer [203-207].  Taking into account the 

stability of miRNA they can serve as potential biomarkers of various diseases [204, 

208, 209]. The low concentration of miRNAs in serum requires highly sensitive and 

selective methods for their quantification. The biosensing platform described in this 

thesis may potentially be applied for this purpose. 

 

 

Figure 7.1. Sensing of let-7a-miRNA in buffer (a) and serum (b). 

 

Towards this goal the first miRNA sensing trials were conducted. We used let-

7a-miRNA as an analyte and a DNA sequence complementary to it as a receptor. The 

fabrication of the sensor, functionalization of CNTs and electrical detection were 

performed in the same way as in the case of the DNA sensor. The results obtained 

during the sensing of let-7a-miRNA in buffer were similar to that of DNA detection 

(Figure 7.1 a). The gate characteristic shifts to the left after the CNT-device was 

exposed to a 100 fM let-7a solution.  

However, the detection of miRNA in serum was not straightforward. miRNA 

added to serum diluted with working buffer (1:10) did not cause significant changes 

in the gate dependence of the sensor (Figure 7.1 b). This can be explained by the 

presence of the proteins and metabolites in serum which may affect the access of the 

target RNA to the carbon nanotube. The AFM images of the device taken after 

sensing trials in serum showed the contamination of SiO2 and CNT surface (Figure 

7.2). It is clear that the sensing protocol should be optimized for the direct 

measurement of analytes from the serum. One possibility to improve this is to 
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perform a pretreatment of the serum samples, like liquid-liquid or solid-phase 

extraction, protein precipitation, etc [210].  

 

Figure 7.2. AFM images of the device before (a) and after (b) sensing trials in 
serum. 

 

7.2. Graphene devices for biosensing. Although CNT-

sensors show good sensitivity, their reproducibility suffers from the inhomogeneity 

of the starting material. Therefore, graphene was considered as an alternative 

nanomaterial to be used as transducing element of the nanosensors. Several 

approaches for large-scale fabrication of the graphene or reduced graphene oxide 

were tested here. The graphene oxide solution was used for the wafer scale 

fabrication of RGO devices using a novel chemical approach.  This fabrication 

protocol is suitable for building FET-based sensors. With such sensors it is possible to 

utilize the same detection strategy as it was used here for CNT-FET-sensors (Figure 

7.3).  

 

Figure 7.3. Schematic of RGO-FET- immunosensor. 
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Preliminary results on the detection of amyloid-beta peptide were obtained 

with the RGO-devices. Amyloid beta peptide is an important marker for the 

diagnostics of Alzheimer disease [211]. In order to detect amyloid-beta, RGO was 

modified with a specific monoclonal antibody. Z-Maps were obtained for gate 

voltages from -0.4 V to 0.4 V on the devices before and after their exposure to the 

solution of target peptide.  

 

Figure 7.4. Sensing of beta-amyloid peptide using RGO immunosensor.  Z-
Maps of the magnitude of impedance before (a) and after (b) exposure to 50pM beta-
amyloid solution (scale - 2kOhm to 2.5 MOhm). c) gate characteristics of the device at 100 
Hz. 
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A clear shift of the gate-dependence curves was observed after the amyloid 

beta solution was introduced (Figure 7.4). This shift can be explained by the 

accumulation of amyloid beta on the RGO surface. Amyloid-beta peptide (pI 5.5) 

carries a negative charge at a working pH of 7.4. This can cause a shift in the gate 

dependence. The response was not completely reversible. After 90 minutes of wash 

with high ionic strength buffer, the gate-dependence of the device comes back but 

not exactly to the same level. This can be explained by a strong antigen-antibody 

interaction. Future steps in this work will include the optimization of the sensing 

protocol and the required control experiments. 

Demonstrated carbon nanostructure-based sensing platforms show promise 

for their application due to high sensitivity and low cost. It can be also optimized for 

performing fundamental single-molecule and kinetic studies, which may benefit 

from the high sensitivity of the measurements. Both CNT and graphene devices can 

be used for the detection of low amounts of many other analytes relevant for the 

medical diagnostics, food and environmental monitoring.  
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