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Abstract 

This thesis is about complex hydro-biogeochemical models and their practical applications. Several 

modelling practices and their associated uncertainty are investigated in this joined project of the 

working groups of Prof. Dr. Lutz Breuer, Justus Liebig University Giessen, and Prof. Dr. Klaus 

Butterbach-Bahl at Karlsruhe Institute of Technology. The aim of the project is to develop strategies 

for reducing the climate footprint of agricultural production and to quantify uncertainties of model-

based strategies for low emission pathways, while at the same time increasing the credibility in model 

predictions by evaluating not only trace gas emissions, but also plant growth and hydrological fluxes. 

A motivation that is next to me driven by an increasing demand of the scientific community, 

governmental and non-governmental organizations. 

During the three-year’s project, I setup different methods to access parameter sensitivity, parameter 

and structure uncertainty of environmental models. The methods were combined in a statistical 

parameter optimization tool for python (SPOTPY) to perform various model diagnostics in a 

straightforward way. Both working groups and others use the tool now in joined as well as individual 

studies.  

The SPOTPY package enabled us to gain a deeper understanding of the underlying processes and 

limitations of the investigated complex hydro-biogeochemical models. A key result of my study is 

that the tested models still lack on robustness to generate outputs for multiple ecosystem services. A 

change of awareness of site and data managers is required as sensors and small-scale variability of 

site properties can cause low performance in terms of model predicting capability. 

Under this impression, I equipped a study area with greenhouse gas emissions and other important 

water, carbon and nitrogen fluxes measurements on arable land, grassland and forest. I used these 

measurements in a model-data fusion approach as a final contribution to my dissertation. This study 

allowed me to derive missing model processes that would potentially increase model simulation 

performances, if implemented into the biogeochemical model. My findings provide a strong 

motivation to enhance our understanding of the hydro-biogeochemical system and guide future work. 

 

 

 

  



II 
 

Table of contents 

Extended Summary 1 

New tool for model parameter optimization 6 

Uncertainty analysis LandscapeDNDC-CMF 10 

Model-data fusion with LandscapeDNDC 14 

Conclusion and outlook 19 

Data availability 21 

I. SPOTing Model Parameters Using a Ready-Made Python Package 22 

Introduction 22 

Methods 25 

Case studies 30 

Discussion 39 

Conclusion 41 

II. Rejecting hydro-biogeochemical model structures by multi-criteria evaluation 42 

Introduction 42 

Methods 45 

Results 51 

Discussion 57 

Conclusions 61 

III. Constraining of biogeochemical models with multi-site N2O and CO2 emission simulations by model-

data fusion 62 

Introduction 62 

Material and methods 64 

Modelling approach 66 

Results and discussion 69 

Conclusion 81 

References 83 

Acknowledgements 99 

Declaration 100 

 

 

 



 Extended Summary  - 1 -
   

Extended Summary 

Water, carbon (C) and nitrogen (N) are key elements in all ecosystems and turnover processes within 

them. They are related to a variety of environmental problems, including droughts and floods (for 

water), eutrophication, drinking water quality, fish toxicity, soil N2O and NO emissions (for nitrogen) 

or C sequestration, CO2 and CH4 emissions (for carbon). Given this, an in-depth knowledge of the 

interaction of water, C and N on the landscape scale is required to improve land use and management 

while at the same time mitigating environmental impact. Cultivated landscapes are affected by a 

multitude of such managements, e.g. fertilization, grazing or deforestation. Consequently, not only 

the carbon/nitrogen pools and the microbial communities change. The underlying processes like 

denitrification, nitrification and respiration react immediately on changes in available nutrients.  

Consequently, high variability of greenhouse gas (GHG) emissions across space and time are reported 

(McClain et al., 2003). This variability across the spatio-temporal scales cannot be addressed by field 

measurement only as the spatial scale is too limited (Butterbach-Bahl et al., 2013).  

To overcome the current measurement limitations to quantify processes underlying the biosphere-

atmosphere GHG interaction, biogeochemical models have been developed, which translate our 

current understanding into numerical equations. These models allow upscaling in space and time 

domains to estimate GHG emissions, where no measurements exists. The individual modeling of 

hydrological and biogeochemical fluxes on the landscape is well represented in the literature. A 

variety of different model approaches spanning from empirical-conceptual to process-oriented 

methods are available: Reaching from low complexity but fast model runtime with the model 

CENTURY (Parton et al., 1988), which is driven by lumped parameters for C, N, P and S fluxes to 

high temporal resolution with the updated version DAYCENT (Parton et al., 1998). Medium 

complexity is given with models like CERES-EGC (Gabrielle et al., 2006) a process-based 

biogeochemical extension of the CERES crop model. The most complex process-based coupled 

hydrological and biogeochemical model are RHESSys (Tague and Band, 2004) and LandscapeDNDC 

(Haas et al., 2013), both covering different spatial and temporal resolutions.  

Biogeochemical model application studies have been published for site, regional, continental or 

global scales where the model runs separately at one or a large number of grid cells (Dai et al., 2012; 

Li et al., 2004; Rosenzweig et al., 2014; Werner et al., 2007). These studies aim to upscale site scale 

applications to get inventories of GHG emissions – however, they remain one-dimensional, 

neglecting potentially important horizontal fluxes of water and nutrients. Therefore, Haas et al. (2013) 

developed a framework to facilitate regional applications of biogeochemical models to overcome this 
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limitation. In contrast to other models, all cells are synchronized in time. This is not only important 

for upscaling, but also highly significant for model-independent communication when it comes to 

coupling. However, complex process-based and/or coupled models are, like all environmental 

models, prone to uncertainty with regard to their parameterization, structure and input data. There is 

an intensive discussion about different sorts of model uncertainties and how to address them (Beven, 

2015). Given the large number of parameters particularly in the LandscapeDNDC model, my thesis 

focuses on methods and results related to the parameterization and setup of the coupled 

LandscapeDNDC-CMF model: 

Parameter uncertainty – the point of origin 

Various methods are available to access parameter uncertainty. They all follow some general steps, 

which I also used in this project: In a first step, a selection of sensitive model input parameters has to 

be defined. This can be done by expert knowledge or through a sensitivity analysis. The more 

sensitive a model parameter for predicting a given target value is, the more it gets constrained through 

a parameter uncertainty analysis. Naturally, the efficiency of simulations decreases with the number 

of parameters. In a next step, the user has to define a priori distribution of every parameter in the 

analysis. The prior distribution comprises the knowledge a user has about the parameter. If no prior 

knowledge is given, a uniform distribution can be assumed, bounded by the physically possible 

settings of each parameter. The parameter are then altered through random (e.g. Monte Carlo) or 

stratified (i.e. depending on the model results, e.g. DREAM (Vrugt et al., 2009)) sampling, where the 

model is executed for each parameter realisation. The performance of a parameter set driving the 

model to predict observations is then evaluated by a “goodness-of-fit” value, represented by an 

objective function (depending on the research topic often also termed as likelihood, cost or signature 

function). The choice of the function depends on the situation and is often subjective, if no accurate 

information about the probability distribution of the measurement errors is available (Beven and 

Binley, 1992). The choice of only one function to access the parameter uncertainty is in most cases 

inaccurate (Vrugt et al., 2003) and has a strong influence on the results (He et al., 2010). Popular 

objective functions are, e.g. the Nash and Sutcliffe model efficiency (Freer et al., 1996), the inverse 

error variance with a shaping factor (Beven and Binley, 1992), scaled maximum absolute residuals 

(Keesman and van Straten, 1990) as well as the index of agreement (Wilmott, 1981), model bias and 

coefficient of determination. Thresholds (also known as limits of acceptability) of selected objective 

functions are then used to group model realizations into behavioural and non-behavioural. The former 

describes an acceptable model application, allowing some degree of error in simulating a target value 

(defined in an a priori threshold criteria). The latter describes parameter sets which return 
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unacceptable model outputs and can be deleted (Beven, 2006). The associated parameter sets to the 

behavioural model runs are defined as posterior parameter distribution, which can be interpreted with 

its range as the parameter uncertainty of a given model. A further distinction is made between 

constrained and unconstrained parameters (Christiaens and Feyen, 2002). The more sensitive a model 

parameter for predicting a given model output is, the more it gets constrained in the remaining 

posterior parameter sets. 

One suitable method to screen the hyper-dimensional parameter space for the underlying uncertainty 

is the GLUE (Generalized Likelihood Uncertainty Estimation) method. GLUE is a widespread 

Bayesian technique and follows the above-defined general steps to investigate the parameter 

uncertainty (Beven and Binley, 1992). Since the establishment of GLUE for hydrological model 

applications in the 1990ies, a large number of studies used the method to gain a better understanding 

of the model performance and their input parameters. Nowadays, these applications are not restricted 

to hydrological modelling, but cover many fields of ecology. For example, Wang et al. (2005) utilized 

the GLUE method for evaluation of the EPIC plant growth model with the mean squared error as an 

objective function. Mo and Beven (2004) applied the method with the index of agreement as an 

objective function for calibration of a soil-vegetation-atmosphere-transfer model. During the past 10 

years, first studies addressed the underlying parameter uncertainty of very complex biogeochemical 

models, i.e. a subgroup of environmental models, with Bayesian techniques (Del Grosso et al., 2010; 

van Oijen et al., 2011). Since then, a limited number of biogeochemical model studies extended the 

application to uncertainty analysis of GHG exchange processes and fluxes. They differ with respect 

to techniques used to access uncertainty, implemented process descriptions, output targets. Wang and 

Chen (2012) summarized the few existing uncertainty analysis in the biogeochemical community. 

However, under the viewpoint of model improvement, parameter uncertainty analysis is not the 

answer to everything, as it does not give information about model structural deficiencies. 

Going beyond parameter uncertainty – uncertain model structures 

Recently, two similar calls were made in the hydrological community by Clark et al. (2011) and in 

the biogeochemical community by Wang and Chen (2012). Both recommend uncertainty analysis for 

multiple sites and the use of multiple criteria. They further suggest a development of a model library 

containing various model structures to facilitate comprehensive model comparison and uncertainty 

studies. So far, such variable model structures are only available for a very limited number of 

modelling frameworks.  
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In the biogeochemical community LandscapeDNDC (DeNitrification-DeComposition) is one such 

framework with a variable model structure (Haas et al., 2013): 

LandscapeDNDC is a modelling framework for the simulation of water, C and N cycling and 

associated GHG emissions in terrestrial (forest, arable, grassland) ecosystems. 

LandscapeDNDC consists of interchangeable modules representing soil biogeochemistry 

(e.g., scDNDC (Zhang et al., 2015) or MeTrx (Kraus et al., 2015)) or soil hydrology (e.g., 

wcDNDC) as well as various modules for vegetation and microclimate processes. A setup of 

LandscapeDNDC is done by writing different xml files, which contain information about 

meteorology, soil and management. A large number (n > 130) of input parameters are needed 

for each of the different modules. In this thesis, I used LandscapeDNDC to simulate GHG 

emissions and the C and N cycle and reduced the number of parameters through a sensitivity 

analysis to n = 30. 

For the hydrological community Kraft et al. (2011) developed the Catchment Modelling Framework 

(CMF) with the possibility to build a hydrological model with pre-build process implementations: 

CMF is a computer program to setup individual hydrological models, following the finite 

volume approach. A programming library facilitates the design of water transport models 

between soil layers in up to three-dimensions. A network of storages defines models in CMF 

and boundary conditions connected equations calculate the flux between them. It allows the 

development of detailed mechanistic models as well as lumped large-scale linear storage-

based models, ranging from simple linear water flux connections (e.g. Kinematic wave) to 

complex nonlinear partial differential functions (e.g. Richards equation). A model build with 

CMF functions as a network of storages and boundary conditions connected by flux-

calculating sub-models. It works as an extension to Python and is connectable with other 

models, as realized for example by Haas et al. (2013) and Houska et al. (2014). 

Both frameworks have proven their general potential to reproduce observed data in various 

publications (e.g. Houska et al., 2014; Molina-Herrera et al., 2016; Windhorst et al., 2014; Zhang et 

al., 2015). However, to achieve a reliable simulation of GHG emissions, an accurate representation 

of the soil moisture is a key requirement (Butterbach-Bahl et al., 2013). Nevertheless, in 

biogeochemical models, soil hydrological processes are often simulated based on simple bucket 

approaches, i.e. water moves vertically down a profile once a certain threshold has been reached, as 

e.g. in the LandscapeDNDC hydrological module wcDNDC. The nonlinear Richards’ equation brings 
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the advantage of a complex physical based approach. The equation describes vertical unsaturated 

flow, capillary rise and interaction with groundwater level. Such water fluxes are particularly 

important in lowland, groundwater impacted ecosystems such as meadow and wetlands or more 

generally, the riparian zone. Therefore, a coupling of both frameworks was performed, to improve 

model performance: 

LandscapeDNDC-CMF is a coupled approach to enhance process based modelling and 

enabling the application of three-dimensional setups. Model coupling was either achieved 

using a MPI-based PALM coupler (Wlotzka et al. 2014) or by CMF model integration into 

LandscapeDNDC (Klatt et al., 2017). The latter approach was used in my dissertation. During 

simulation, biogeochemical and hydrological models receive continuous climatic inputs. The 

modelling focus is on water fluxes either from a cell to its neighbours, to outlets or within the 

cell's soil layers. These water fluxes are modelled based on the Richards equation. CMF 

provides access to these flux values at every time step allowing the estimation the amount of 

transported solutes. The model was tested with a virtual hillslope (Haas et al., 2013), with a 

virtual landscape (Wlotzka et al., 2014) and with consideration of vegetated buffer strips in 

a virtual landscape (Klatt et al., 2017).  

In my dissertation, I aim to quantify the underlying model structure uncertainty of the presented 

hydro-biogeochemical frameworks. In particular, I am interested in the benefits of a physically based 

process description over a conceptual approach in simulating soil water dynamics within a 

biogeochemical model. I follow the philosophy that complex models should be identifiable (low 

parameter uncertainty) and accurate (good agreement with observation data). Further, a model should 

be able to simulate various observation data concurrently and close to reality, especially when dealing 

with highly non-linear process interactions like in hydro-biogeochemical systems. To asses only such 

model runs, I perform a multi-criteria evaluation of different model structures and quantify their 

underlying uncertainties. In order to achieve meaningful results, I require comprehensive observation 

data, complex process based models and powerful tools to analyse the results. During the three-year 

project, I worked on these points and came up with a meaningful uncertainty analysis of the hydro-

biogeochemical frameworks. In a first study, I tested different uncertainty estimation techniques and 

objective functions (chapter I), to access parameter uncertainty (chapter II) and model structure 

uncertainty (chapter III) by using multiple objective functions for multiple model outputs of the 

different frameworks. 
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New tool for model parameter optimization 

A wide variety of different methods is available to access model parameter settings. In order to make 

the test of methods in a straightforward way possible, I developed SPOTPY as an open source Python 

library. As first part of my thesis, I enable with this tool the use of computational optimization 

techniques for calibration, uncertainty and sensitivity analysis techniques on almost every 

(environmental-) model with high-performance computer cluster support (see chapter I): 

Houska, T., Kraft, P., Chamorro-Chavez, A. and Breuer, L.: SPOTting Model Parameters Using a Ready-

Made Python Package, PLoS ONE, 10(12), e0145180, doi:10.1371/journal.pone.0145180, 2015. 

General functionality 

The package comprises thirteen widely used algorithms for uncertainty analysis, optimization and 

sensitivity analysis (Table 1) and thirteen different objective functions. SPOTPY supports to test and 

use different setups of parameter estimation methods and makes the application on high performance 

computing clusters possible. All algorithms realized in the SPOTPY package can work with build-in 

parameter distributions and objective functions, which allows their use for multi-objective calibration 

approaches. A progress bar enables to monitor the sampling. The use of highly optimized python code 

makes the time needed for the parameter sampling, the model starting and the results saving short. 

Two different databases solutions are currently available: ram storage for fast sampling and csv tables, 

the secure solution for long duration samplings. After sampling, the best run is returned together with 

its underlying parameter setting. A build-in analyser is designed to plot parameter traces, parameter 

interaction (including the Gaussian-kde function), regression analysis between simulation and 

evaluation data, posterior parameter distribution and convergence diagnostics (including Gelman-

Rubin and Geweke statistics). To setup a model with SPOTPY, the tool comes along with a wide 

range of pre-build coding examples and tutorials.  

Selection of objective function 

In a first case study, I used outputs of the biogeochemical model LandscapeDNDC and compared 

them with measured CO2 emissions data of a long-term grassland study site. The emissions were 

measured with the dark closed chamber method (Kammann et al., 2001). I chose different objective 

functions from the SPOTPY package to quantify the goodness-of-fit and run a Latin Hypercube based 

calibration with n =50,000 model runs. Depending on the objective function best model runs were 

selected and compared. With this, the tool allowed a fast application of a case study, which can be 

used to gain background knowledge, e.g. that model performance can be flawed when simulations 

are analysed with an inappropriate objective function. For example, the objective function BIAS is 

suited to reduce the mean error, but it does not guarantee that the model fits the temporal dynamic of 
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the evaluation data. The coefficient of determination, also known as r², is suited to find parameter sets 

driving the underlying model to fit the timing of the system, but this objective function does not guard 

against a systematic over or underestimation of the evaluation data. Legates and McCabe (1999) 

pointed out that the coefficient of determination is improper for model quantification because it is 

oversensitive to high flow but insensitive to additive and proportional differences between model 

simulations and observations. They recommended RMSE as the model evaluation tools. We could 

show that the root mean squared error (RMSE) and the agreement index (AI) are well suited to find 

model realizations fitting the absolute values of the observed data. A more general classification of 

different objective functions into two types was done by Guinot et al. (2011): distance-based objective 

function (e.g. RMSE) and weak form-based objective function (e.g. BIAS and r²). They concluded 

that although the distance-based objective functions have the advantage to search an identifiable 

model-parameter set, they might have problems caused by local extremes in the response surface and 

lead to mis-calibration, i.e. being trapped around local optima. By contrast, the weak form-based 

objective functions are more monotone than the distance-based objective functions. Depending on 

the objective of the model approach, it can be beneficial to combine several objective functions to 

find reliable posterior simulations. While this is not a surprising or new result, the advantage of 

SPOTPY is, that it facilitates an easy comparison of objective functions in a pre- and post-processing 

mode.   

Table 1. Available algorithms implemented in SPOTPY. Given are the acronyms, the number of citations of 

the corresponding publication (based on Google Scholar search results in May 2017), the full name and the 

authors of the corresponding publication. 

Model diagnostic Non-Bayesian Calibration Bayesian Calibration 

FAST - 210 citations 

Fourier Amplitude Sensitivity 

Test 

McRae et al. (1982)  

SCE-UA – 2,694 citations 

Shuffled Complex Evolution 

Uncertainty Analysis 

Duan et al. (1992) 

DREAM - 277 citations 

Differential Evolution 

Adaptive Metropolis 

Vrugt et al. (2009) 

GLUE - 2,785 citations 

Generalized Likelihood 

Uncertainty Estimation 

Beven and Binley (1992) 

FSCABC - 231 citations 

Fitness Scaled Chaotic 

Artificial Bee Colony 

Zhang et al. (2011) 

DE-MCz - 90 citations 

Differential Evolution 

Markov Chain 

terBraak and Vrugt (2008)  
ABC – 2,676 citations 

Artificial Bee Colony 

Karaboga and Basturk (2007) 

MCMC - 29,082 citations 

Markov Chain Monte Carlo 

Metropolis et al. (1953)  
MLE - 10,766 citations 

Maximum-Likelihood Estimation 

e.g. Johansen (1990) 

LHS - 4,938 citations 

Latin Hypercube Sampling 

McKay (1979)  
SA - 32,763 citations 

Simulated Annealing 

Kirkpatrick and Vecchi (1983) 

ROPE - 67 citations 

Robust Parameter Estimation 

Bardossy and Singh (2008) 

  MC -2,528 citations 

Monte Carlo 

e.g. Fishman (1996) 
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Selection of parameter estimation methods 

Wagener and Gupta (2005) reviewed different uncertainty estimation methods. They conclude that 

these methods differ in the underlying philosophy, assumptions and sampling strategies. They found 

remarkably poor understanding of the effect of these differences, and woefully little guidance on 

which approach should be used under what circumstances to analyse models and their simulations.  

In order to increase the understanding of differences, I tested the effect of different parameter 

estimation methods (Table 1) and give a general guidance, which algorithm is suitable for which 

application (Houska et al., 2015). The case studies included three different numerical optimization 

problems and one hydrological model application. Results showed that every algorithm had its 

strengths in particular parameter search problems. Inspired by the results, I developed a decision-tree 

to help possible users to choose one of the implemented algorithms (Figure 1). One of the used 

algorithms (Differential Evolution Adaptive Metropolis; DREAM) was included during a cooperation 

visit of mine to the University of California, Irvine, together with Prof. Dr. Jasper Vrugt (Figure 2).  

 

Figure 1. Decision-tree as a guidance for the choice of an algorithm in SPOTPY for a specific optimization 

problem. 
 

Comparison to other packages 

A surprisingly small range of software applications is available giving users’ access to tests different 

parameter estimation methods. One of them is PEST, a GUI program for Model-Independent 

Parameter Estimation and Uncertainty Analysis. Others are OpenBugs and Jags (for performing 

Bayesian inference Using Gibbs Sampling), PyMC (Comprehensive Python package to analyse 

models with Marcov Chain Monte Carlo (MCMC) techniques), STAN (implementing MCMC 

techniques like NUTS, HMC and L-BFGS), emcee (Affine Invariant MCMC Ensemble sampler) and 

BIP (Bayesian inference with a DREAM sampler). All of them have their pros and cons which are 

outlined in chapter III. None of the packages can offer a very wide range of different algorithms. To 

perform a benchmark of multiple algorithms against each other, as I have done in this project, a 

comprehensive and error prone combination of these packages would be required.  
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Figure 2. Example output of SPOTPY using the DREAM algorithm. Parameter traces can be plotted for every 

Metropolis chain (different colored dots for four parameters x1-x4, upper left panels), together with their 

probability distribution (bar plots, upper right panels) and remaining posterior model runs (dark grey uncertainty 

band around observations, bottom panel). Observation discharge data is given as red dots. 
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Uncertainty analysis LandscapeDNDC-CMF 

In a second contribution to my dissertation, I tested SPOTPY within a complex modelling approach. 

For this, I selected the biogeochemical model framework LandscapeDNDC and the hydrological 

model framework CMF, as described in chapter II: 

Houska, T., Kraft, P., Liebermann, R., Klatt, S., Kraus, D., Haas, E., Santabárbara, I., Kiese, R., 

Butterbach-Bahl, K., Müller, C. and Breuer, L.: Rejecting hydro-biogeochemical model structures by 

multi-criteria evaluation, Environ. Model. Softw., 93, 1–12, doi:10.1016/j.envsoft.2017.03.005, 2017. 

My study builds on a 2011 paper in Environmental Modelling and Software by Kraft and colleagues 

(Kraft et al. 2011) that presented CMF to build hydrological models. CMF was included into the 

LandscapeDNDC model by Haas et al. (2013) with the goal to improve hydrological process 

description in biogeochemical modelling. Coupling of both frameworks, required structural changes 

in the code of LandscapeDNDC and the establishment of an effective communication structure 

between both models for exchanging state conditions (e.g. soil moisture, nutrient loading, soil solute 

concentration, thermal conditions). The general challenges of code adaptation, modernization and 

coupling were mainly addressed within associated DFG funded projects (BU 1173/12-1/; 

HE 4760/4-1). Model coupling was either achieved using a MPI-based PALM coupler (Wlotzka et 

al., 2014) or by CMF model integration into LandscapeDNDC (Klatt et al., 2017). The latter approach 

was used in my project to test the benefits of this coupled model with real world data: 

Figure 3. Differences in the soil setup of the hydrological modules wcDNDC and CMF inside the 

LandscapeDNDC framework. Parameter boundaries are given for each module for the highest and the lowest 

soil layer. Parameter settings in between are derived by a depth function based on linear regression. Fk = field 

capacity, wp = wilting point, ksat = saturated conductivity. 
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The model uncertainty was analysed with long-term (8 years) data on management, soil GHG 

emissions and water filled pore space at a meadow wet grassland site in Linden (Germany). The study 

site consists of six plots, of which three are treated with elevated with CO2 (E1-3) and three remain 

under ambient conditions (A1-3). In this second already published study of my thesis, I only used the 

ambient plots. The study site has a mean annual precipitation amount of 616 mm and an average 

annual temperature 9.5°C. The vegetation is characterized as grassland defined by the main species 

Arrhenatheretum elatioris and the soil is a fluvic gleysol (Kammann et al., 2008).  

For model validation, we used measured GHG emissions of each plot, which are determined on a 

weekly basis with dark closed static chambers (0.3 m height, 0.184 m³ volume). Chambers were 

sealed for 60-90 min to a soil collar and sampled in four 20-30 min time intervals (Kammann et al., 

2008). Samples were analysed within 24 h for CO2 and N2O content with a gas chromatograph 

(HP6890) and GHG fluxes are calculated according to Kammann et al. (2008) from the linear increase 

of GHG concentrations within the chambers. Corresponding to the dark chamber measurement 

method, where a lightproof chamber is placed over the plants on the soil (see Kammann et al. (2008) 

for details), the measured soil CO2 emissions were compared to the sum of simulated heterotrophic 

and autotrophic maintenance respiration of the plants. They reflect the respiration of the soil. 

Simulated autotrophic growth respiration was excluded, assuming that photosynthesis stops with 

chamber closure. This provides a way to model the measured plant-physiology darkness. Volumetric 

soil moisture of each plot is measured on working days with TDR sensors in 0-10 cm depth 

(Kammann et al., 2008). The vegetation is harvested in June and September each year 4 cm above 

the soil surface and fertilized in April with 40 kg N ha-1 a-1 consisting of granular mineral calcium-

ammonium nitrate (Kammann et al., 2008). 

In order to perform a model structure uncertainty analysis, I choose four different model structures: 

two different biogeochemical modules of LandscapeDNDC (i.e. the widely used scDNDC and the 

newly developed MeTrx (Kraus et al., 2015)) and two hydrological modules (i.e. the simple wcDNDC 

and a complex soil moisture routines realized by CMF, compare Figure 3). They were used to 

reproduce long-term measured observation data of soil moisture, soil respiration, N2O flux and 

biomass yield. I applied a sensitivity analysis (Fourier amplitude sensitivity test, FAST) in a first step, 

to reduce the parameters of the biogeochemical model from 130 to 30 (Houska et al., 2017b). In a 

second step, I tested with the remaining parameters in a new developed rejectionist framework. With 

rejection, I mean the selection of only those model structures that meet predefined objective functions 

thresholds to gain the posterior distribution. A Latin Hypercube sampling with the GLUE method 

was performed with resulting model runs evaluated by 84 different evaluation criteria. For the 
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selection of the posterior model runs, I make use of RMSE and the BIAS. I applied those objective 

functions for different outputs, measurement sites and observation years. To accept model runs as 

behavioral, I set strict limits based on the measured data and a literature review. 

The results show that only 0.01% of all model runs (n = 400,000) passed the complete rejectionist 

framework (Figure 4). Here, I provide evidence that each model combination had its strength for 

particular criteria and that hardly any combination fulfilled the complete set of the 84 criteria. 

Regarding to the model intercomparison MeTrx/CMF was better in simulating soil moisture, 

MeTrx/wcDNDC was better in simulating CO2 emissions and scDNDC/wcDNDC was better in 

simulating N2O emissions. These results will guide the module selection for future model 

applications. 

I compared my findings with other biogeochemical studies and my findings reveal that modelling 

efficiency dramatically drops from 40 to 70% (for frequently published single evaluation criteria) 

down to 0.01% when multiple evaluation criteria are used. My study indicates that models can be 

right for the wrong reasons, i.e., matching GHG emissions while at the same time failing to simulate 

other criteria such as soil moisture or plant biomass dynamics. These results indicates that care has to 

be taken to avoid that models matching GHG emissions at the same time fail to accurately meet other 

criteria such as a realistic representation of the water filled pore space or the growth of biomass. 

Unfortunately, no matter how good environmental models are setup and run with measured forcing 

data (e.g. soil information, fertilizer application and climate data), model parameter and structural 

uncertainties are likely to be misleading. I recommend that complex, process-based hydro-

biogeochemical models need to be thoroughly tested and checked against multiple-criteria using 

appropriate objective functions. 

Despite the questionable efficiency of the model structures to represent all observed data sets at the 

same time, the observation data itself are highly variable. The data measured on three plots at the 

grassland study site in Linden are supposed to have the same land use and soil type within a distance 

of less than 100 m on even topography. However, the daily measured water filled pores space 

(37.2±9.0, 46.2±11.6, 40.1±11.2 vol.%) and the weekly measured CO2 emissions (25.0±75.4, 

26.1±78.3, 23.8±67.8 kg C ha-1 day-1) data show significant differences between the plots. Assuming 

homogenous soil for the three plots the only other possible impact influencing the measurements is 

the groundwater table. We cannot quantify the difference in the groundwater table yet, nor do we 

know the dynamic of possible N supply through upwelling groundwater. However, it might explain 

at least a part of the remaining model errors, as the groundwater reaches heights of 0.1 m below 

surface throughout the year and is in its flow path influenced by agriculture. Based on the model 
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results, detailed measurements of groundwater table depths (subdaily) and groundwater quality (total 

nitrogen and nitrate concentration) have been started to investigate the dynamic and estimate potential 

nitrogen input through upwelling groundwater.  

Nevertheless, I face several question about data uncertainty and data quality: Are the available data 

sets sufficient for model evaluation? How do we deal with data uncertainty in larger scales? How can 

we improve the measurements? Are weekly GHG measurements sufficient to capture all relevant 

processes? Future modelling studies can help to address these questions, by having a closer look on 

the process validation instead of just fitting models on observed data. Concluding, with this study I 

provide a new developed method to perform biogeochemical model structures uncertainty analysis. I 

was able to show that process based hydrological modelling can improve biogeochemical model 

predictions. Moreover, my study raises awareness that modelling efficiency dramatically drops with 

multiple objectives. 

 

Figure 4. Difference in selection of 84 objective function thresholds based on RMSE and BIAS for different 

sites, target model output values and analysis in time vs. common studies with 1-2 thresholds. 
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Model-data fusion with LandscapeDNDC 

In the final contribution to my thesis I evaluated the biogeochemical model LandscapeDNDC with 

my own measurements of the experimental catchment of the Vollnkirchner Bach catchment in the 

municipal Hüttenberg (50°29′56′′ N, 8°33′2′′ E) in Germany (see chapter III).  

Houska, T., Kraus, D., Kiese, R. and Breuer, L.: Constraining a complex biogeochemical model for 

multi-site greenhouse gas emission simulations by model-data fusion, Biogeosciences Discuss, 2017, 

1–28, doi:10.5194/bg-2017-96, 2017. 

Starting in 2008, the catchment is equipped with sensors, with the goal to establish an interdisciplinary 

landscape-based teaching facility at the Justus Liebig University Giessen. Since than a number of 

measurements have been performed with point data of pH, C/N, bulk density, saturated conductivity 

and porosity and continuous time series of meteorological data (precipitation, relative humidity, air 

temperature, radiation and wind speed), groundwater table, discharge and in-stream nitrate 

concentration (Aubert and Breuer, 2016; Lauer et al., 2013; Orlowski et al., 2014). The land use in 

this catchment is mainly dominated by arable land (35%) and forests (37%). Grassland sites 

(meadows and wetlands, 11%) are distributed along the streams. Settlements and streets cover the 

rest of the catchment. 

For biogeochemical model initialization, calibration and validation, a number of field measurements 

are required. Typical data include soil moisture (Figure 5) and GHG emissions (Figure 6) as well as 

site-specific farm management data on arable land (type of crop, ploughing times and depth, 

fertilization times and amount) and grassland (grazing and cutting times). I initiated these type of 

measurements at the beginning of my three years project in November 2013. Together with student 

assistance, I measured soil GHG emissions (N2O, CO2 and CH4) with non-steady state opaque 

chambers each covering an area of 0.12 m² soil. In total 40 chambers are setup on three arable, two 

grassland and three forest transects, each consisting of five measurement points on every 

measurement day (Figure 6).  

Weekly sampling is performed with five replicated chambers per transect, following the cost efficient 

gas-sample-pooling-technique, developed by the Karlsruhe Institute for Technology (Arias-Navarro 

et al., 2013). According to this approach, at five time intervals of 10 minutes (t0-t4) 10 mL headspace 

sample are collected subsequently from any of the five replicated chambers and are pooled into one 

gas tight glass vial. Samples are automatically analysed via gas chromatography (SRI Instruments 

equipped with an auto-sampler). The soil moisture data is measured under arable land, grassland and 

forests land use in 15 min intervals (Figure 5).  
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Figure 5. Measurement devices in the Vollnkirchener Bach catchment. GHG measurements are performed 

with dark closed chambers (upper panel) with corresponding soil moisture measurements (5TE FDR-sensors, 

Decagon) under forest (0.05, 0.15, 0.25 and 0.35 m depth), grassland (0.1 and 0.25, 0.4 and 0.55 m depth) and 

arable (0.2, 0.4, 0.6 and 0.8m depth) land use. 

 

In this study, my particular interest is to constrain the C and N balance with comprehensive input data 

for the hydrology, biogeochemical and plant physiology modules of LandscapeDNDC. Based on the 

previous model structure uncertainty analysis (chapter III), I selected a combination that showed fair 

results and appropriate model runtime. Accordingly, the modules MeTrx and wcDNDC, were 

selected. Based on a GLUE analysis, I accepted only model runs (out of n = 100,000 derived with 

Latin Hypercube sampling), which are within the best 5% of all simulated RMSEs in terms of the 

respective variable water filled pore space (WFPS) in different depths on arable land, grassland and 

forest, as well as yield on arable land. In order to achieve realistic GHG simulations from the 

biogeochemical module MeTrx of LandscapeDNDC, I took the posterior parameter boundaries of the 
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soil moisture and vegetation calibration and ran GLUE (n = 100,000) again. This time, I considered 

the best 5% of all RMSEs in terms of respective N2O and CO2 emissions for each land use (A1-3, G1 

and W1-3). Again, only the 5% best parameter sets were accepted per land use. Current model and 

measurement results for the different criteria used in this study are outlined in the following: 

Soil moisture: First model runs show that the simulations are in a reasonable agreement with 

observation data. Simulated soil moisture, given as WFPS in different soil depths, follows the 

dynamic and magnitude of the field measurements. Only the short-term dynamic is not captured well. 

We know from previous work, that including the parameters alpha and n of the Van Genuchten 

retention curve (Mualem, 1976; Van Genuchten, 1980) during model calibration can improve the 

results to a certain extend (Houska et al., 2014). The simulation of the forest WFPS, however, has 

some problems in the magnitude of soil rewetting processes. The remaining errors which most likely 

result from uncertain rainfall data on all land uses (e.g. beginning of July 2014, where all observations 

indicate a rising soil moisture and simulations do not react) cannot be fitted with parameterization of 

soil hydraulic processes only. Such errors remain after calibration. Including rainfall data spatial 

uncertainty might help to improve results at these points.  

CO2 emissions: The dark ecosystem respiration simulation data shows highest emissions across all 

three land use types in the summer months. Measurements vary between 0 to 200 on arable land, 0 to 

69 on grassland and 0 to 19 kg C ha-1 day-1 in forest land use. Overall, a good fit can be reported. 

Remaining errors are due to failing soil respiration process after harvest in LandscapeDNDC and 

remaining uncertainty, which might be related to the curbed dynamic of the soil moisture simulations. 

Beside an improved soil moisture simulation process, a misinterpretation of the spatial precipitation 

input signal can also have potential relevance for improving simulations. Remaining parameter 

uncertainty is in the range of measured uncertainty, with 10, 8 and 4 kg C ha-1 day-1 for the different 

land uses, respectively. 

N2O emissions: Measurements vary between 0 to 0.18 on arable land, -0.002 to 0.014 on grassland 

and -0.002 to 0.013 kg N ha-1 day-1 on forest land use. The dynamic of the measured N2O emissions 

was reproduced reasonable well by the model on the arable study site. The grassland study site seems 

to be influenced by N input through groundwater, which was not included in the current 

LandscapeDNDC model setup. The model also failed to reproduce the measured temporal pattern. A 

mean annual N gap of 41 kg N ha-1 was simulated on this land use. The emission pattern on the forest 

site differs from the model predictions. Main reason for the mismatch are negative emissions, which 

cannot be predicted by the model due to a missing model process of microbial N2O uptake (Figure 7).  
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Figure 6. Digital elevation and land use map of the Vollnkirchener Bach catchment-model. The map further 

shows available sampling sites and measurement data. Continuous high-resolution data measurements for 

nitrate in stream are available at the outlet and can be used as validation data. 

Furthermore, posterior model runs allowed quantifying magnitude and uncertainty of not measured 

fluxes of the C and N cycle. In general, the investigated forest site is acting as the largest sink for C 

and N of all studied land uses, with annual sequestration rates of 2.4 t C ha-1 and 3.3 kg N ha-1. The 

extensive grazed grassland is also acting as a sink for C with 1.4 t C ha-1 per year, while the N cycle 

of the grassland model cannot be closed with the given settings. Shrinking N soil pools indicate a 

missing input, which we assume from shallow groundwater with additional N supply of around 

40 kg N ha-1 a-1. While the C cycle on the arable land system is closed with low uncertainties, the N 

cycle is driven by large uncertainties and it remains unclear, if the underlying N pools shrink. 

Under the viewpoint of climate smart landscapes, measured data suggests the benefit of forests in a 

landscape, having the least GHG emissions. Riparian zones can act as sinks of N, but only during the 

vegetation period and times when roots have access to groundwater. Arable land use produces high 

amounts of N2O, but not throughout the year, rather in spring after fertilizer application or during 

freeze-thaw cycles.  

In an overall picture, the model-data fusion approach allowed us to derive missing model processes 

that would potentially increase model simulation performances if implemented in the respective 

modules of Landscape DNDC: N2O uptake processes through microbes; missing NO3
- (and 

potentially dissolved organic nitrogen) uptake through shallow groundwater; missing lateral 

interaction at hillslopes due to 1-dimensional model setup. 
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While the first point could also be an measurement artefact, is the second point now included in 

LandscapeDNDC (Liebermann et al., under review). The third point can only be achieved with a 

spatial application of the LandscapeDNDC-CMF model, i.e. three-dimensional modelling. Such a 

setup is currently developed, by overlaying soil type, land use and digital elevation maps to create an 

input map with 352 polygons for the Vollnkirchener Bach catchment (Figure 6). As a meaningful 

validation of an up-scaled model requires more data, we aim to utilize discharge and nitrate 

concentration measurements of the outlet of the Vollnkirchener Bach catchment. Further, data on 

yields and management from farmers working in the catchment will complement the data set. Stream 

discharge and nitrate concentrations are measured in 15 min resolution with an RBC flume and a UV-

Hyperspectral Photometer (ProPS, TriOS, Rastede, Germany), respectively. First results show the 

general capability of the model to reproduce the catchment discharge and instream nitrate loads. 

However, the dynamic of the nitrate concentration is not yet accurate in line with observations. We 

see an overestimation of instream nitrate concentrations during the vegetation period, which is likely 

due to missing N transformation in the riparian zone. This can be potentially improved, if critical 

zones are simulated in the coupled mode, i.e. using the more complex Richards equation of CMF. 

Less critical areas, where capillary rise and groundwater interaction with the plants are not relevant, 

do not necessarily improve in the coupled mode (Klatt et al., 2017) and could be simulated using the 

more simple bucket type hydrological approach, resulting in less computational time.  

 

Figure 7. Measured N2O emissions, precipitation and water filled pore space (WFPS) in the Vollnkirchener 

Bach catchment with the amount of fertilizer application (red arrows) and harvest dates (black arrows). 

Variation of the different transects on the land uses A= arable, G = grassland, W = forest, is given as error bars. 
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Conclusion and outlook 

Within my thesis I developed and tested methodologies for assessing the overall model uncertainty 

of the one-dimensional (only vertical fluxes) biogeochemistry model LandscapeDNDC and of the 

version, which is coupled to the hydrological model (LandscapeDNDC-CMF). A toolbox to access 

uncertainty of models was developed and is applied in an increasing number of projects. The 

uncertainty evaluations of LandscapeDNDC show, that the model can reasonable well, in terms of 

magnitude and temporal dynamics, represent observed GHG fluxes, biomass production and 

leaching. However, care needs to be taken even if the framework reproduces measurements well, as 

it has very limited performance in fitting multiple outputs such as biomass yields, soil GHG fluxes 

and soil moisture at the same time. My results indicate that the models used in this work still lack on 

robustness to generate outputs for multiple ecosystem services and I am anticipating that this is the 

same for many other, complex modeling systems that capture a larger number of environmental 

processes, fluxes and states. Future work is required to reduce uncertainties and increase model 

prediction capacity. This requires on the one hand a reduction of model parameters. On the other 

hand, a change of awareness of site supervisors as data gathering and small-scale changeability of 

site properties were causing part of the low performance in terms of predicting capability of the 

Landscape-CMF framework.  

Ultimately, the question remains how future model applications can be improved. Based on the results 

of our model-data fusion approach we were able to show, that the highest uncertainty in the model is 

due to nitrate leaching and biomass amounts, which could not be sufficiently constrained with 

measured GHG emissions only. We further need a catchment based hydro-biogeochemical setup, 

which is covering the relevant spatial scale. As this will result in decreased model runtime 

performance, we will need to work on advanced model diagnostics techniques to speed up multi-

dimensional parameter search. Under the viewpoint of future work, I see the following key research 

areas: 

Improved measurements: Common one-dimensional model setups do not cover key processes of 

lateral water and N transport (Houska et al., 2017a). Therefore, I recommend to extend the current 

measurements approaches with the following steps to advance their use for model calibration. 

Additional data appropriate for model testing would be NO3
- in soil solution to estimate NO3

- 

leaching. Glass suction cups are suited to collect soil water in different depths. I plan an installation 

in 0.3, 0.5, 1.0, 1.5 and 2.0 m at the arable land study site (A1 and A3) with sampling on a monthly 

basis. Another sink of C and N is the biomass. A fast and cheap method would be to estimate the 

biomass dynamics with weekly nondestructive measurements of Photosynthetically Active Radiation 
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on grass and arable land with absorption sensor (e.g. Delta-T SunScan). Photosynthetically Active 

Radiation can be used to estimate LAI (Sone et al., 2009). Linear regression can then be applied to 

convert LAI values to above ground biomass (monthly destructive measurements). The method has 

been tested e.g. by Goswami et al. (2015) and reported to work well for forests and crops, but has 

shown limitations in extensive grasslands (Metzger et al., 2017). Samples from aboveground biomass 

will be measured for C and N content and its ratio for grain, straw and leaves, which are needed for 

model setup and validation. 

Improved model diagnostics: This project showed that multi-objective calibration can be more 

appropriate than single-objective relationships. However, it does not guard against epistemic errors 

due to incomplete and/or inexact process knowledge. Explicit knowledge of the various uncertainty 

sources will provide strategic guidance for investments in data collection and/or model improvement. 

Thus, I think that communicating the uncertainty of model predictions is a key component of risk-

based design and management of landscapes. It enables decision-makers to assess the likelihood that 

their investments will produce the desired outcome (e.g., reduced nitrate loads and decreased GHG 

emissions). For the hydrological community, Kavetski et al. (2006a) have developed a way to deal 

with one further source of uncertainty: the input data. They found the measurement of precipitation 

within a catchment to be uncertain, as the trajectory of storm cells through a catchment may be 

different for each storm and may not have its center at the rain gauge where the traditionally rainfall 

inputs are being measured. This method can significantly improve the rainfall-runoff simulations 

(Kavetski et al., 2006b). Recently, McInerney et al. (2017) tested eight common residual error 

schemes, i.e. WLS, log-schemes and Box-Cox, to quantify predictive uncertainty of different 

hydrological models. They found the choice of residual error model as a significantly impact on 

predictive performance. I am not aware of any study quantifying predictive uncertainty of hydro-

biogeochemical flux simulations so far. I included both ways to quantify input and predictive 

uncertainty into our modelling scheme during a cooperation visit to Prof. Dmitri Kavetski, University 

of Adelaide, Australia in autumn 2016, paid by a DFG grants (BR2238-27). I plan to quantify these 

uncertainties in my calibrated model outputs in order to guide further model development and field 

measurements.  

Reduced nitrogen pollution at landscape scale: Chemical fertilizer application or the recycling of 

municipal waste on farmland are punctual events that affect soil dynamics and have long-term 

consequences, which can be predicted by models. However, can models guide to the best ecological 

and economic management practices? Maximizing yield while minimizing environmental nitrogen 

losses is in the center of environmental pollution research. The arable study site in the Vollnkirchener 
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Bach catchment is managed by a cooperative farmer and shows comparatively high annual N2O 

emissions of 4.5 kg N ha-1. I plan to explore scenario studies on the effectiveness of different 

agricultural practices for their potential to reduce environmental N losses. I will focus on soil N2O 

emissions and nitrate leaching, while maintaining yields. Scenarios will be first developed and tested 

using the coupled model LandscapeDNDC-CMF. A subsequent real world optimization approach 

will be followed in a prognostic way to predict optimal timings and fertilization options (rates and 

splitting) upon accurate weather forecasts. Potential effects on GHG emissions and nitrate leaching 

will be monitored. 

Overall, I am confident that these improvements will help to make the LandscapeDNDC-CMF model 

network finally ready to be used in scenario analysis, e.g. to reduce nitrogen pollution through 

mitigated management on the landscape scale. The tools and approaches generated in this joined 

project became essential for model evaluation in both working groups involved in this study (Prof. 

Breuer, JLU Gießen, and Prof. Butterbach-Bahl, KIT, Garmisch-Partenkirchen) and beyond. What 

has been achieved in terms of assessing the uncertainty of uncoupled and coupled biogeochemical 

and hydrological models was path breaking and has not been done before. The model development is 

clearly profiting from the uncertainty assessment as it is used for guiding future work, e.g. a model-

data fusion approach comprising the main land uses arable, grassland and forest in a developed 

landscape (Houska et al., 2017a). Findings presented in this dissertation can now guide the analysis 

of environmental models. It further allows to investigate long-term measured data of GHG emissions 

and application of robust hydro-biogeochemical modelling approaches. 

 

Data availability 

All measured data is available upon request from the institutes own database 

http://fb09-pasig.umwelt.uni-giessen.de:8081 

The hydrological model build with the Catchment Modelling Framework (CMF) is free available 

http://fb09-pasig.umwelt.uni-giessen.de/cmf 

The biogeochemical model framework (LandscapeDNDC) is available upon request 

http://svn.imk-ifu.kit.edu 

The new developed statistical parameter optimization tool (SPOTPY) is free available from the 

official Python package repository  

https://pypi.python.org/pypi/spotpy 



- 22 -  SPOTing Model Parameters Using a Ready-Made Python Package  

I. SPOTing Model Parameters Using a Ready-Made Python Package 

This chapter is published in the journal “PLoS ONE” written by: 

Houska, T.1, Kraft, P.1, Chamorro-Chavez, A.1 and Breuer, L.1,2: SPOTting Model Parameters Using a Ready-

Made Python Package, PLoS ONE, 10(12), e0145180, doi:10.1371/journal.pone.0145180, 2015. 

1 Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University, Giessen, Germany 
2 Centre for International Development and Environmental Research (ZEU), Justus Liebig University, Giessen, Germany 

 

Abstract. The choice for specific parameter estimation methods is often more dependent on its 

availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), 

an open source python package containing a comprehensive set of methods typically used to calibrate, 

analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains 

eight widely used algorithms, 11 objective functions, and can sample from eight parameter 

distributions. SPOTPY has a model-independent structure and can be run in parallel from the 

workstation to large computation clusters using the Message Passing Interface (MPI). We tested 

SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley 

functions, a one-dimensional physically based soil moisture routine, where we searched for 

parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with 

different objective functions. The case studies reveal that the implemented SPOTPY methods can be 

used for any model with just a minimal amount of code for maximal power of parameter optimization. 

They further show the benefit of having one package at hand that includes number of well performing 

parameter search methods, since not every case study can be solved sufficiently with every algorithm 

or every objective function. 

Introduction 

Ecological models are often very complex and contain many parameters that need to be optimized 

prior to model application. Reliable parameter estimation is highly dependent on various criteria, 

including the selected algorithm, the objective function and the definition of the prior parameter 

distribution. Difficulties involved in calibrating for example hydrological models have been partly 

attributed to the lack of robust optimization tools (Duan et al., 1994). Numerous parameterization 

methods have been developed in the past (e.g. (Bárdossy and Singh, 2008; ter Braak and Vrugt, 2008; 

Kirkpatrick et al., 1983; McKay et al., 1979; Metropolis et al., 1953)), often published without access 

to the source code. They are widely accepted to determine the values of non-measureable parameters 

for a model (Schuëller and Pradlwarter, 2007). Many of the methods have been established as part of 

the parameterization problem in hydrological modeling as early as in the 1990s (Efstratiadis and 

Koutsoyiannis, 2010; Matott et al., 2009). The application of these methods has now become more 
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widespread in other ecological disciplines and therefore, the methods proposed here, are in fact 

applicable to a large variety of models in ecology and beyond. 

The main goal of parameter optimization is to find one or more sets of parameters, which enables a 

model to simulate an output with a quasi-optimal objective function. There have been extensive 

discussions about the best way of model parameterization and calibration (Beven and Freer, 2001), 

including dispute about whether there is one optimal parameter set or whether there are several 

parameter sets of equal behavior (equifinality, (Beven, 2006)). The same is true for the discussion of 

the best likelihood function to be used (Smith et al., 2010), how it is determined (Smith et al., 2015) 

and the parameter distribution from which parameters should be sampled (Haan et al., 1998). 

Furthermore, improper application of calibration methods can result in misleading parameter 

estimations (Kavetski et al., 2006). However, nearly no guidance exists which parameter estimation 

method should be used under specific optimization problems (Wagener and Gupta, 2005). We want 

to contribute to these open questions by providing a package that allows investigation of various 

aspects in model calibration, parameterization and uncertainty analyses. The goal is to help users in 

testing and finding an efficient technique for their specific parameter search problem. 

Numerous ad hoc solutions for the combination of a single calibration/uncertainty method and a single 

model exist. If one is interested in testing different methods, every solution has to be searched, 

understood and adopted. This is why in recent years packages where published, providing multiple 

methods for multiple models. Important ones are: Parameter ESTimation and uncertainty analysis 

(PEST) (Doherty and Johnston, 2003), the Monte Carlo Analysis Toolbox (MCAT), a parameter 

estimation toolbox (Yang et al., 2008) for the Soil Water Assessment Tool (SWAT), OpenBUGS 

(Bayesian inference Using Gibbs Sampling) (Lunn et al., 2000), STAN (Hoffman and Gelman, 2011) 

and PYMC (Patil et al., 2010). However, most of these packages only allow usage of two or three 

multiple stochastic probabilistic methods. Packages like STAN and PYMC concentrate on Markov 

Chain Monte Carlo (MCMC) methods. PEST bridges the gap to evolutionary computation methods, 

a second group of probabilistic global optimization methods (Weise, 2009), like e.g. Shuffled 

Complex Evolution (SCE-UA) (Duan et al., 1994), but has no possibility to use e.g. the Generalized 

Likelihood Uncertainty Estimation method (GLUE) (Beven and Binley, 1992; Beven and Freer, 

2001), which is widely used to address the equifinality problem. MCAT helps to use the GLUE 

methodology for models. None of these packages covers the wide range of available parameter search 

methods. Further, no common criteria exist that place the development of such packages in a formal 

framework. We therefore define five criteria, inspired by the criteria for modern hydrological models 

(Buytaert et al., 2008), which we think are important:  
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1) Broadness: The available parameter estimation methods should cover a broad range of method 

families, ranging from path-oriented optimizations to global parameter behavioral uncertainty 

assessments. This is even more important as no single parameter estimation technique is perfect (Jung 

et al., 2006; Sorooshian et al., 1993) and just very small guidance exists, which parameter estimation 

approach should be used under specific circumstances (Wagener and Gupta, 2005). 

2) Modularity: Parameter estimation packages consist of several modules: the parameter search 

algorithm, the objective function, a module to save the results of the model runs to disk and the used 

model. By using a strict modular approach, any given search algorithm can easily be combined with 

any objective function, giving the user the maximum freedom to adopt a method to a given scientific 

question. 

3) Independency: A model independent package facilitates widespread applications. While a method 

that is bound to a given model can be used to explore parameter uncertainty, structural model 

uncertainty remains unquestioned. A model independent method allows the comparison of different 

model structures using the same parameter space exploration technique and hence the comparison of 

model structural errors. 

4) Scalability: This requirement is an extension of the portability claim (Buytaert et al., 2008). While 

we agree, that published codes should run both on Windows PC for method testing, as well as on 

Linux based high performance computing (HPC) systems, scalability goes beyond the portability 

claim. Scalability means on the one hand, a simple parallelization of the parameter search, where the 

algorithm allows parallel computation. A package should allow using the parallel power of HPC 

systems without the need for extensive knowledge of parallel systems. On the other hand, scalability 

means the possibility to optimize the computational performance of the model. The runtime of models 

that are fast to evaluate, like e.g. HBV (Bergström et al., 1995) is often dominated by the time needed 

to load the parameters and input data from disk, and not by the CPU time. Tweaking the model to 

accept input data through memory can speed up the model evaluation by a magnitude. A scalable 

package should therefore allow such optimizations and not rely on input file manipulation as an 

interface between the parameter estimation method and the model alone, as it is the case for most 

model independent estimation packages. 

5) Accessibility: Since a broad, modular package for parameter-estimation carries already a 

generalized infrastructure for parameter estimation, publishing the package as a free software enables 

method developers to extend it, without the need to reinvent for example likelihood definitions or 

parallelization structures. As such, new methods using the existing infrastructure can easily use all 
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existing methods without further development. However, making the source code available for the 

public is not sufficient for accessibility. The source must also be modular in its structure and well 

documented, to simplify the adoption of the underlying infrastructure. 

We have developed the parameter-spotting package SPOTPY in agreement with these five criteria. 

We have implemented and tested a wide range of commonly used algorithms into SPOTPY, to allow 

a user-friendly access to these powerful techniques, and to give an overview, which algorithms and 

which objective functions can be useful under specific parameter search problems. 

 

Methods 

Concept of SPOTPY 

SPOTPY is broad as it comes along with different global optimization approaches. We included the 

Monte Carlo (MC), Latin Hyper Cube Sampler (LHS) (McKay et al., 1979) and Robust Parameter 

Estimation (ROPE) (Bárdossy and Singh, 2008) methods that belong to the first group of stochastic 

probabilistic methods. They are all-around algorithms, applicable for uncertainty and calibration 

analysis. MC and LHS can furthermore be utilized within the GLUE methodology. Simulated 

Annealing (SA) is a heuristic subgroup of the stochastic probabilistic methods. We included a 

version by Kirckpatrick et al. (Kirkpatrick et al., 1983). The Maximum Likelihood Estimation 

method (MLE) belongs to the subgroup of hill climbing algorithms and is suited for monotonic 

response surfaces. Markov Chain Monte Carlo (MCMC) methods, a subgroup of the probabilistic 

methods, support the ability to jump away from local minima. We implemented the standard 

Metropolis MCMC sampler (Metropolis et al., 1953). To cover the second group of probabilistic 

methods (evolutionary algorithms) we included the evolution strategy of SCE-UA. It is suited to 

calibrate models with high parameter space. Furthermore, the Differential Evolution Markov Chain 

(DE-MCZ) was included to provide a Bayesian solution suited for optimization problems in high 

parameter space. 

SPOTPY is modular since prior parameter distributions, model inputs, evaluation data and objective 

functions can be selected and combined by the user. The user-defined combination of the inputs can 

be run with the parameter search algorithms and results are saved either on the working storage or 

in a csv file. The database structure enables the analyses of the results in SPOTPY with pre-build 

plotting functions and statistical analyses like Gelman-Rubin diagnostic (Gelman and Rubin, 1992) 
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or the Geweke test (Geweke, 1992). The database can also be used for any other external statistical 

software or computer language. 

SPOTPY is independent as the model is wrapped in a “black box”. One parameter set is defined as 

input; the model results are defined as output. Both deterministic and stochastic models can be 

analyzed. 

SPOTPY scalability is realized by using the Python programming language, since it has an 

increasing support from the scientific community and is a recommended programming language for 

scientific research (Perkel, 2015). Pure Python code can run on every operating system without any 

complicated building mechanism. Parallel computing on HPC systems is supported by using a 

Message Passing Interface (MPI) code. Five of the eight implemented algorithms are suitable to for 

parallel computing (MC, LHS, SCE-UA, DE-MCZ, ROPE). The MPI code depends on the open 

source python package mpi4py (Dalcín et al., 2008). A sequential run does not have any 

dependencies to non-standard python libraries. SPOTPY is accessible as open-source on the Python 

package index PyPI and comes along with tutorials to allow a user-friendly start without the need of 

a graphical user interface and the benefit that everyone can use the most recent version of the code 

(Moeck et al., 2015). The code follows object-orientated style, where it supports modularity and is 

conform to the Open Source Definition (Anon, 2015). 

Structure of SPOTPY 

The design of SPOTPY brings different parameter estimation approaches within one set-up to allow 

users testing a variety of different combinations and methods. Figure I.1 shows the main processes of 

this package, consisting of six consecutive steps when applying SPOTPY. 

The different steps included are the following: 

Step 1) Parameter distribution: Let  nppp ,..., 21  be the initial input set of parameters of a 

(ecological-) model M. The  n

iip
1  random variables are selected from a joint probability prior 

distribution. This can be any user-defined distribution. We have pre-built the distributions Uniform, 

(log-) Normal, Chi-square, Exponential, Gamma, Gamma, Wald and Weilbull with NumPy 

(Oliphant, 2006). Each parameter pi is marked with a user defined name, step size and optimal guess 

(initial parameter set), which are used as prior information by the algorithms and the database. The 

parameter name is used by the database, while the step size is an information needed for MCMC, 

MLE and SA to jump to the next point of the prior distribution. The optimal guess is the start point 

for all algorithms. The better this value is chosen, the faster convergence can be achieved. 
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Figure I.1. Flow diagram of the main processes captured with SPOTPY. Multiple cycle black arrows indicate 

the possibility of parallelization of the iterating algorithms. The black box returning the simulation and 

evaluation data can be filled with any model. 

Step 2) Simulation and Evaluation: The output of M given a parameter set i  is defined as simulation 

S. The observed data X is characterized as evaluation. The simulation function is designed to call a 

model, returning a list of simulated values. The observation data is loaded in the evaluation function. 

One can also analyze a model with SPOTPY, which is only returning an objective function. Both 

functions and the following objective function offer the user flexibility to analyze almost every model 

with SPOTPY. 

Step 3) Objective function: The objective function (also known as cost-function or goodness-of-fit-

measure) quantifies how well the simulated data fits the evaluation data. Various objective functions 

are available (e.g. (Nash and Sutcliffe, 1970; Willmott, 1981)) and have been proposed to account 

different sorts of errors in the simulation (Legates and McCabe, 1999; Li et al., 2010).  A guidance, 

which objective function to take under specific circumstances, is given by (Moriasi et al., 2007). 

Hence, SPOTPY comes along with a wide set of objective functions, from which the user can select 

one or more for a specific issue (Bias; Nash-Sutcliff efficiency; logarithmized Nash-Sutcliff 

efficiency; Correlation Coefficient; Coefficient of Determination; Covariance; Decomposed, Relative 

and Root Mean Squared Error; Mean Absolute Error; Agreement Index). The user has the option to 

combine different objective functions as only one function can be inaccurate (Vrugt et al., 2003). A 

detailed description of the objective functions implemented in SPOTPY can be found for example 

in (Wallach, 2006). 
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Step 4) Parameter estimation methods: The algorithms included in SPOTPY cover widely used 

parameter estimation methods from different approaches in recent publications. They can be 

connected with setup files containing the above-mentioned information about parameter distribution, 

simulation- and evaluation data as well as the objective functions. The simplest automatic parameter 

estimation method included is the MC method. It is used to sample random parameter values from a 

prior distribution. The structural LHS algorithm subdivides the distribution of each parameter into m 

equally probable non-overlapping intervals and creates a matrix by sampling from all created 

intervals. The algorithm has shown good projection properties (Hossain et al., 2006; Murphy et al., 

2006; Over et al., 2015; Windhorst et al., 2014). MC and LHS can form the basis for the GLUE 

method (Beven and Binley, 1992; Beven and Freer, 2001), to get information about the posterior 

distribution of input parameters. GLUE has been widely applied in hydrology, but also in many other 

ecological disciplines, such as biogeochemistry or crop growth modeling (Houska et al., 2014; Ortiz 

et al., 2011; Shafii et al., 2015). If one is just interested in a fast calibration of a simple model (with 

nearly monotonically response function), the MLE is an efficient choice. To test whether the MLE 

algorithm is applicable for calibrating the desired model, it is recommend to test the model with MC 

first (Kitanidis and Lane, 1985). MLE maximizes the likelihood during the sampling, by adapting the 

parameter only in directions with an increasing likelihood. The famous Metropolis MCMC method 

can also deal with non-monotonically response functions. Nevertheless, it works similar as MLE. 

After each sampling, the likelihood is compared with last one. If the likelihood is better, the sampler 

jumps to the new sampled point. If not, it samples from the old position. Depending on a Metropolis 

decision, the sampler can also accept worse likelihoods (in order to avoid trapping at local optima). 

The MCMC algorithm can find a (quasi-) global optimum, but with a still remaining risk to stuck in 

local minima. The risk can be reduced by starting several chains/complexes that evolve individually 

in the parameter space. This technique is used in the global optimization strategy SCE-UA (Duan et 

al., 1994). Each complex evolves independently to optimize the parameter. The population is 

periodically shuffled and new complexes are created with information from the previous complex. 

SCE-UA has found to be very robust in finding the global optimum of hydrological models and is 

one the most widely used algorithm in hydrological applications today (Over et al., 2015). Another 

robust method is SA. Thyer et al. (Thyer et al., 1999) reported SA to be not as robust as the SCE-UA 

algorithm, but SA can be very efficient, when it is adopted to a optimization problem. After each step, 

a better objective function results in a new position. A worse objective function can be accepted with 

a Boltzman decision. If the new point is not accepted, the sampler jumps to a new parameter value. 

A variable controls a decreasing possibility to accept worse objective functions with increasing 

iterations. Thus, the risk to jump away from a global optimum is reduced. One of the most recent 
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algorithms we present here is the DE-MCZ. It requires a minimal number of three chains that learn 

from each other during the sampling. It has the same Metropolis decision as the MCMC algorithm 

and has found to be quite efficient compared with other MCMC techniques (Smith and Marshall, 

2008). Like SCE-UA and SA, DE-MCZ does not require any prior distribution information. Another 

non-Bayesian approach is to determine parameter uncertainty estimations with the concept of data 

depth. This has the benefit, that the resulting parameter sets have proven to be more likely giving 

good results when space or time period of the model changes, e.g. for validation (Krauße and 

Cullmann, 2012). This approach is realized in the ROPE algorithm. 

Step 5) Database: The database can store results from every parameter estimation method. Either in 

the working storage, which is fast, or in a csv file, which is comfortable. Saved information for every 

iteration are the objective function (-s), every parameter setting, optional the simulation results and 

the chain number (for algorithms with multiple threads like SCE-UA and DE-MCZ). The database 

can be analysed in any statistical software, programming language or the SPOTPY extension 

Analyser. 

Step 6) Analyser: The Analyser module is an optional, but very powerful extension, which can read 

the SPOTPY database. Prebuild plots are provided for objective function and parameter traces, 

parameter interactions and best model runs. Posterior parameter sets can be selected and basic 

statistical analysis of the samples can be performed with Gelman-Rubin diagnostic (Gelman and 

Rubin, 1992) or the Geweke test (Geweke, 1992). 

To install SPOTPY, one just has to type pip install spotpy into the OS console. After that, SPOTPY 

can be used from any Python console:  

import spotpy                                    #Import the package 

from spotpy_setup_rosenbrock import spotpy_setup #Import an example setup 

sampler = spotpy.algorithms.sceua(model_setup()) #Initialize an algorithm 

sampler.sample(10000)                            #Run the model n times 

results = sampler.getdata()                      #Load the results 

from spotpy import analyser                      #Import opt. extension 

spotpy.analyser.plot_parametertrace(results)     #Plot the results 

  

Set up of algorithms 

The setting of the algorithms for the following case studies are depicted in Table I.1. Two things are 

changed during the case studies: 1) The number of repetitions. 2) For efficiency reasons the set-up of 

the algorithms was slightly changed when, sampling from the Ackley function in the third case study: 

SA with Tini=30, Ntemp=30, SCE-UA with ngs=2 and DE-MCZ with nChains=dim. 
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All settings of the algorithms should be adjusted, when dealing with other optimization problems.  

Table I.1. Settings of the algorithms used in the case studies. 

 

For further detailed description of the SPOTPY package and the presented case studies see the 

download page (https://pypi.python.org/pypi/spotpy/ and the online documentation 

http://www.uni-giessen.de/cms/faculties/f09/institutes/ilr/hydro/download/spotpy).  

Case studies 

We show five different case studies to depict the capability of the different algorithms integrated in 

SPOTPY under different parameter optimization problems. Three of these case studies cover classical 

numerical optimization problems with a known posterior target distribution, one a hydrological model 

simulating real-world measured soil moisture values and one a biogeochemistry model where we 

tested the influence of different objective functions. 

Rosenbrock function 

The Rosenbrock function (Rosenbrock, 1960) is often used to test and compare the performance of 

optimization methods (Goodman and Weare, 2010; Matott et al., 2013; Santos et al., 2000; Wang et 

al., 2014). It can be described as a flat parabolic valley (Figure I.2) and is defined by 

 222 )(100)1(),( xyxyxfRosen  ,                                                                                      (1) 

where we set the parameter space of the control variables to  10,10x  and  10,10y .  

Algorithm 
Setting 

Source 
Description Abbreviation Value 

MC Normal random sampling    

LHS Normal sampling along the HyperCube matrix   [3] 

MLE Percentage of repetitions dedicated as initial samples burn-in 10%  

MCMC Percentage of repetitions dedicated as initial samples burn-in 10% [4] 

SCE-UA Number of parameters dim  [1] 

 Number of complexes ngs 2(dim)  

 Maximum number of evolution loops before convergence kstop 50  

 The percentage change allowed in kstop loops before convergence pcento 10-5  

 Convergence criterion peps 10-4  

SA Starting temperature Tini 10 [6] 

 Number of trials per temperature Ntemp 10  

 Temperature reduction alpha 0.99  

DE-MCZ Number of different chains to employ nChains 2(dim) [2] 

 Number of pairs of chains to base movements DEpairs 2  

 Interval to save status thin 1  

 Factor to jitter the chains eps 0.04  

 Convergence criterion  0.9  

 Automatic adaption  True  

ROPE Number of optimization cycles subsets 5 [5] 

 Acceptance ratio percentage 0.05  

https://pypi.python.org/pypi/spotpy/
http://www.unigiessen.de/cms/faculties/f09/institutes/ilr/hydro/download/spotpy
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The global minimum is located at )1,1(),( optopt yx . At this point the function value is 

0),( yxfRosen . Due to its shape, it is an easy playground for optimization algorithms to find the 

flat valley, but it is hard to find the deepest point.  

 

Figure I.2. Three-dimensional surface plot of the Rosenbrock function. Colors from red (bad) to violet 

(optimal) represent the corresponding objective function (RMSE) for a parameter setting of x and y. 

 

Trace plots were created after sampling n=5,000 times from parameter space of the Rosenbrock 

function. Figure I.3 depicts the behavior of the algorithms. MC and LHS sample from the complete 

parameter distribution over the whole time. These algorithms find a few parameter distributions 

around the global optimum, which are masked by the overall large spread of selected parameter sets. 

All other algorithms show improved performances with increasing iterations. After 500 runs of burn-

in, the MLE algorithm is very fast in finding the region around the global optimum. The MCMC 

works similar to the MLE, but with the possibility to jump away from the optimum. The algorithm 

finds the global optimum after 800 iterations and remains with a relative high uncertainty of x=4 and 

y=4. SA is fast in finding the valley and returns samples with a smaller uncertainty than MCMC. 

SCE-UA and DE-MCZ sample in the first iterations over the whole range and converge at the global 

optimum after 800 and 1,000 iterations, respectively. SCE-UA stops after finding the exact global 

optimum. DE-MCZ continues to produce parameter combinations close to the optimum with 

 5.0,5.0x  and  1,5.0y . ROPE converges systematic closer to the optimum. The y variable 

range is reduced rather quickly to only positive values. For the x variable range the convergence 

works overall better. Overall, it turns out that MLE, MCMC, SCE-UA and DE-MCZ are the most 

suited algorithms in finding the global optimum of the Rosenbrock function.  



- 32 -  SPOTing Model Parameters Using a Ready-Made Python Package  

 

Figure I.3. Trace plot of the two dimensional Rosenbrock function. The trace is shown as a blue line and the 

global optimum of the function as a broken red line. The x-axes show the number of iterations, while the y-axes 

show the value of the parameters x and y from -10 to 10. 

Griewank function 

The two dimensional Griewank function (Griewank, 1981) is defined as 
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where we selected the parameter space for  50,50x  and  50,50y . One of the characteristics 

of the function is that it has many regularly distributed local minima (Figure I.4), which makes it 

challenging to find the global optimum located at )0,0(),( optopt yx . The demanding function has 

been used for algorithm performance testing by others (Alfi, 2011; Harp and Vesselinov, 2012; Storn 

and Price, 1997). The surface of this function allows the investigation the algorithm performance 

under equifinality.  

 

Figure I.4. Three-dimensional surface plot of the Griewank function. Colors from red (bad) to violet (optimal) 

represent the corresponding objective function (RMSE) for a parameter setting of x and y. 
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The different algorithms were applied to the Griewank function (n=5,000 iterations). The parameter 

interactions are shown as combined dotty plots (Figure I.5). We added a surface plot of the Griewank 

function to show the locations of the various local minima. We conducted the GLUE methodology to 

MC and LHS by selecting the 10% best runs. One can see samples for MC and LHS on almost every 

local minima and the global optimum. The random walk of the MLE jumps between three local 

minima after the burn in, without finding the global optimum. The MCMC algorithm reaches several 

local minima in intermediate steps and found the global minimum. Nevertheless, the samples 

orientate not on the local minima and form clouds around the optimum.  

 

Figure I.5. Surface plot of the Griewank function. Background colours showed from orange (bad response) to 

yellow (optimal response). Black dots show the sampled 5,000 parameter combinations. The x-axis shows the 

range of parameter x and the y-axis of parameter y. 

 

The SCE-UA samples parameter combinations from the whole range and reduces the range more and 

more to the global optimum. It stops the search after 4,000 iterations; nevertheless, the remaining 

parameter uncertainty is still high. SA did not find the optimal value and samples only negative values 

for the parameter y. DE-MCZ found many local minima and the global optimum, which is 

representing the hilly response surface very good. ROPE reduced the investigated parameter range 

gradually centered to the optimal point. 

 

Ackley function 

The Ackley function is defined as 
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Figure I.6. Three-dimensional surface plot of the Ackley function. Colors from red (bad) to violet (optimal) 

represent the corresponding objective function (RMSE) for a parameter setting of x and y. 

 

 

Figure I.7. Objective function traces of the Ackley function. Setup with 2, 3, 5, 10, 20, 30 and 50 domains from 

the vector x of the Ackley function. All algorithms sampled 15,000 parameter combinations. The shown 

objective function on the y-axis is the root mean squared error (RMSE). The x-axis shows the number of 

iterations. 
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where ),..,( di xxx   and the domain is defined as  768.32,768.32ix  (Ackley, 1987). The 

function has many regularly distributed local minima in the outer region, and a large funnel as the 

global optimum in the center located at 0)0,...,0( Ackleyf  (Figure I.6). The function is widely used 

for algorithm testing (Potter and Jong, 1994; Stacey et al., 2003; Zhu and Kwong, 2010). We used 

setups with 2, 3, 5, 10, 20, 30 and 50 domains to investigate the algorithms behavior when dealing 

with an increasing number of parameters, while finding a very small global optimum. 

We used n=15,000 iterations for every setup testing the algorithm’s performance (Figure I.7). All 

algorithms perform worse with increasing dimensions. MC and LHS struggle even with two domains 

to find the exact optimum. With five domains, MLE, MCMC, SA and ROPE get close to the global 

optimum but do not find the exact position. With 10 domains DE-MCZ does not reach the exact global 

optimum during the 15,000 iterations, but got close with a remaining RMSE of 2-5. With 20 and 30 

domains MLE, MCMC and DE-MCZ still give reasonable results, and can gather information during 

the iterations to get close to the optimum. Only SCE-UA is able to find the global optimum of the 

Ackley function with 50 domains during the given number of iterations. 

 

Catchment Modelling Framework 

We used the Catchment Modelling Framework (CMF) developed by (Kraft et al., 2011) to investigate 

the performance of the algorithms when dealing with a real measured world optimization problem. 

CMF is a toolbox to build water transport models from a set of pre-built process descriptions. The 

toolbox has been used before to model different catchments in one and two dimensions (Haas et al., 

2013; Houska et al., 2014; Kraft et al., 2012; Windhorst et al., 2014) and enables the test of hypotheses 

in hydrology (Clark et al., 2015). In the application presented here, CMF is set up to simulate soil 

moisture in a one-dimensional soil column. Evapotranspiration is predicted by the Shuttleworth-

Wallace method and soil water fluxes are modeled with the Richards equation. We searched for 

parameter sets to describe the shape of the water retention curve according to van Genuchten-Mualem 

(Van Genuchten, 1980) with four parameters: alpha, porosity, n and ksat. The prior parameter 

distributions are based on results from (Houska et al., 2014), where soil moisture was simulated with 

CMF for an agricultural site in Muencheberg. We used data from a Free Air Carbon dioxide 

Enrichment (FACE) grassland study site A1 in Linden, Germany (Jäger et al., 2003). The soil is 

classified as a Fluvic Gleysol. Meteorological data was used for the weather simulation and 

groundwater table data for the groundwater influence on this site. For the model evaluation, we 

utilized daily measured soil moisture data from the topsoil layer (0-0.1 m). The simulation time was 
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from 01/06/1998 to 01/01/1999 as burn-in and simulation results until 01/01/2000 were used for 

evaluation. 

 

Figure I.8. Best CMF runs for simulating soil moisture. Found with 10,000 iterations of the different algorithms 

realized with SPOTPY. The resulting different curves are very similar and overlap most of the time. 

 

We started 10,000 iterations with a MPI structure. Twenty parallel threads on a HPC were used, 

resulting in a nearly linear speed up. The minimal RMSE was used to evaluate model performance. 

The best model runs of CMF found with the different algorithms are shown in Figure I.8. All 

algorithms performed almost equally well. The ROPE, SCE-UA and MLE found the best parameter 

sets for predicting soil moisture with an RMSE as low as 3.2096. All other algorithms performed only 

slightly worse with RMSE between 3.2098 and 3.2153. Overall, the model simulations follow the 

main trend of the observations, especially during the first seven months when soil moisture decreased 

from 45 to 20%. The following flashy soil moisture curve is indicating that the model has deficiencies 

in simulating rapid changes in soil moisture of the uppermost soil layer, at least with the given forcing 

precipitation data and available information on soil parameters. This is a problem, which cannot be 

solved with parameter calibration and needs further investigation, e.g. by improving the model 

structure, adding more prior information into the process based model, or by testing other models. 

Figure I.9 shows the parameter distribution of the best performing parameter sets as well as the prior 

and posterior distribution (derived by selecting the best 50% of the sampling). The calibration 

algorithms MLE and SCE-UA resulted in a small posterior distribution. MCMC and DE-MCZ 

reduced the parameter uncertainty of the posterior distribution by over 90% for parameter n and by 

20% for parameter ksat. The other algorithms failed in reducing the parameter ranges. The optimal 
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parameter setting for ksat was found on a wide range from 0.8 (MLE) to 1.9 (MC) m day-1 and not in 

the center of the posterior distributions. Optimal settings for the parameter porosity were found in the 

upper range of the prior distribution, with small posterior distributions. The optimal parameter 

settings found for alpha, porosity and n are close to the center of the posterior distribution. 

 

Figure I.9. Prior distribution (blue line) of input parameters of CMF. Posterior distribution (green line) as the 

best 10% of the samples, plotted only for the Bayesian approaches. The optimal parameter setting is marked 

with a vertical red line. 

 

We do not know the true optimal parameter set of our hydrological model, or whether it exists at all. 

The optimal parameter sets we found differ from each other, indicating a high equifinality of the 

model. The optimal parameter settings for porosity were found in a small range from 0.6 to 0.63 for 

all algorithms. This values are in line with measured porosity of 0.60 to 0.65 (Kammann et al., 2008). 

The tested algorithms resulted all in similar best fits, with an RMSE=3.2 Vol. % soil moisture. A 

direct comparison to other models is not possible, as this is the first study modelling soil moisture on 

the Linden FACE site. Nevertheless, results are not as good as others, e.g. (Scott et al., 2000) who 

used SCE-UA and found after 6,000 HYDRUS simulations remaining errors of RMSE=0.03 Vol. % 

soil moisture on a different site. However, we attribute our relatively high remaining error to model 

deficiencies in capturing all natural effects, which might be a changing ksat in the upper most soil 

layer after heavy rainfall on this site (Kammann et al., 2001). 
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LandscapeDNDC 

We used LandscapeDNDC (LDNDC) developed by Haas et al. (2013) to investigate the influence of 

the chosen objective function on the best selected model run. LDNDC is a biogeochemistry model to 

simulate greenhouse gas emissions and nutrient turn over processes. We used the model to simulate 

CO2 emissions from the soil of the Linden FACE site. The emissions were measured with the closed 

chamber method (Kammann et al., 2008). We setup the model with a warm-up period of one year 

and simulated the time from 01/01/1999 to 13/06/2006. Thirty parameters were sampled in a LHS 

with 50,000 runs. We selected four different widely used objective functions from SPOTPY to 

quantify the fit of the resulting simulations to the observations (Figure I.10).  

 

Figure I.10. Comparison of measured and observed CO2 emission simulated with LDNDC (top panels). Best 

model runs were derived with four different objective functions using a Latin Hypercube sampling approach 

(n=50,000 model urns). The objective function BIAS is shown in red, r² in green, RMSE in light blue and AI 

in dark blue. Observed values are shown as black dots. Middle panels depict classified residual error counts of 

simulated CO2 emissions for each model. The dashed black lines in the correlation plots of observed versus 

simulated CO2 emissions (bottom panels) show the theoretical optimal fit. 

 

The selected objective functions were the BIAS (ranging from -∞ to +∞, with 0 indicating an unbiased 

simulation), r² (ranging from 0 total disagreement, to 1 perfect regression), RMSE (ranging from -∞ 

total disagreement to 0 perfect fit) and the Wilmott Agreement Index (AI, ranging from 0 total 

disagreement to 1 perfect fit). The best BIAS found has a value of 0.03, which is close to its optimum 

of zero. However, soil emissions are overestimated in winter with 20 kg C ha-1 and underestimated in 

the summer months with 20 kg C ha-1. Looking at the distribution of the residuals, over- and 

underestimations are nearly Gaussian, resulting in a mean error near zero over the whole simulation 

period. The simulation with the best r² has a relative high value of 0.75, but the simulations 
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substantially underestimate the emissions from the soil during the whole model run. Nevertheless, the 

simulations follow the seasonal trend well, reflecting a reasonable timing of the model (Figure I.10). 

To improve the fit of absolute emissions with the model, RMSE and AI are good options in SPOTPY. 

The distribution of the residual errors RMSE are narrower than the ones for AI, which indicates that 

the observations are better represented by the RMSE optimized model. In contrast, AI optimized 

simulations are superior in matching the absolute peaks of observed emissions. 

 

Discussion 

All algorithms work well in SPOTPY, which was shown by the different case studies. Our intention 

was not to accept or reject algorithms but rather show their functionality within SPOTPY. Our results 

show reasonable effects, which have been reported in other algorithm comparison papers. The 

Rosenbrock case study showed us well performing algorithms when searching for a single optimal 

parameter set, like MLE and SCE-UA. Vrugt et al. (Vrugt et al., 2003) tested SCEM-UA (similar to 

SCE-UA) and MCMC on the Rosenbrock function, and reported that the first algorithm was faster in 

convergence. We found SA struggling in finding the optimum of the Rosenbrock, an observation also 

reported by Wang et al. (Wang et al., 2014). When dealing with many local minima like it is true for 

the Griewank function, we got good results, when we conducted MC and LHS with the GLUE 

concept. They represent best the surface of the function. SCE-UA needed 4,000 iterations to stop the 

parameter search on the function, Jung et al. (Jung et al., 2006) found the optimum during 40,000 

iterations. This difference in efficiency is most likely due to the setting of the algorithm. With an 

increasing amount of parameters on the Ackley function, we have seen good results for MLE, MCMC 

and DE-MCZ and very good results for SCE-UA. Karaboga et al. (Karaboga and Basturk, 2007) tested 

the swarm intelligence algorithm ABC on the Ackley function with 30 domains. They found after the 

optimum after 1,000 iterations, which is even better than the best performing algorithm of SPOTPY 

(SCE-UA). This algorithm could be a nice extension for the SPOTPY package. Behrangi et al. 

(Behrangi et al., 2008) used SCE-UA in a similar set up and found the optimum of a 30 dimensional 

Ackley function after around 4,000 iterations, exactly as we found it. Genetic algorithms give poor 

results on the Ackley function with 30 domains (Karaboga and Basturk, 2007). 

Madsen et al. (Madsen et al., 2002) calibrated a hydrological model with SCE-UA and SA, showing 

that the first one worked better – similar to our case studies. Huang et al. (Huang and Liang, 2006) 

recommend MCMC to deal with many parameters. Our findings on the Ackley function show that 

evolution algorithms are even better suited for higher dimensional search problems. Ter Braak and 

Vrugt (ter Braak and Vrugt, 2008) showed that the evolution algorithm DE-MCZ can be 5-26 times 

more efficient than MCMC. Gong (Gong, 2006) come to the same conclusion when testing the 
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evolution algorithm SCEM-UA against the stochastic algorithm MLE. Good results were reported 

when using MC on a hydrological model with small parameter space (Huang and Liang, 2006). We 

found that the rather simple MC and LHS often performed worse when searching the exact global 

optimum, but give reliable results under equifinality, like it is the case for our hydrological model 

build with CMF. We recommend using these simple search algorithms with the GLUE concept. 

The LDNDC case study revealed that conclusions based on the model performance can be flawed 

when it is analysed with a not well-suited objective function. For example, the BIAS can reduce the 

overall model error, but it does not guarantee that the model fits the temporal variations of the 

observed data. The r² is suited to find good parameter sets to predict timing of the system, but this 

objective function does not take the absolute values into account. RMSE and AI are well suited to 

find model realizations fitting the absolute values of the observed data. Depending on the aim of the 

model approach, it can be beneficial to combine several objective functions to find reliable posterior 

simulations (Houska et al., 2014). While this is not a surprising or new result, the advantage of 

SPOTPY is, that it facilitates an easy comparison of currently eleven objective functions in a pre- and 

post-processing mode.   

Table I.2. Capabilities of the different algorithms implemented in SPOTPY. Checked fields indicate positive 

answers, fields with brackets are partly positive. a Only true during warm-up/burn-in. b Only true up to the 

number of used chains/complexes. They are separated on different CPU cores.  

 

In general, the findings reveal that not every algorithm is suited for every parameter search problem. 

Even more, every algorithm has its advantages and disadvantages. Therefore, the overview in 

Table I.2 showing the main capabilities of the algorithms might help the end-user to select a suited 

and efficient algorithm, without the need to understand and test every possible optimization 

technique. The approximate Bayesian compute techniques MC and LHS are very well suited to 

calibrate the model on multiple outputs with different objective functions. Nevertheless, they are very 

inefficient in high parameter space, like shown in the Ackley case study. Contrasting, the Metropolis 

MCMC method can be very efficient. However, it has the disadvantage that it is not possible to be 
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used in parallel computing systems. DE-MCZ is suited to be used in parallel, but gets inefficient when 

too many chains need to converge. ROPE is fully parallelizable but the generation of the parameter 

space after each subset needs a long computation time. All implemented non-Bayesian techniques 

(MLE, SCE-UA and SA) search only for one optimal parameter set, which makes them in general 

more efficient than the Bayesian approaches, but the outcome is very dependent on the used objective 

function and the parameter space, which is why they have to be chosen carefully. Furthermore, SCE-

UA and SA need a pre-testing of the algorithm settings. They should not be used, without an adaption 

to a specific parameter search problems. MLE can be used straightforward, but the user has a higher 

risk to get stuck in a local optima. Unfortunately, there is no perfect algorithm and no perfect objective 

function. It depends. In this regard, SPOTPY was developed to help users to find their specific optimal 

solution. 

 

Conclusion 

As a final aspect, we want to check, if our five defined criteria are met by SPOTPY. We conclude 

that SPOTPY is a broad package, combining several optimization approaches. We hope that it is 

helpful to users, as no other parameter estimation package provides such a wide range of implemented 

techniques and is so easy to use. Optimization experts can still accessed and adopted the complexity 

of the algorithms. Modularity is given as the entire package is coded in Python. The independency of 

SPOTPY makes it applicable to every model; in contrast to other packages, e.g. the presented toolbox 

of the SWAT (Yang et al., 2008). The scalability claim of SPOTPY is valid. The straightforward MPI 

support results in a nearly linear time boost when analyzing time-consuming model runs and is as 

easy as tipping: parallel=’mpi’. Finally, the open-source accessibility of SPOTPY makes it available 

for everyone to every field of science, where parameter optimization is useful. We will maintain the 

code at least for the next two years and expand the functionality systematically. For instance, the most 

recent version comes along with a sensitivity analysis algorithm (FAST) and more possibilities to 

structure the simulation data in the database. Finally yet importantly, we welcome new contributors 

to share their results or to provide new ideas for features. 
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II. Rejecting hydro-biogeochemical model structures by multi-criteria 
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Abstract. This work presents a novel way for assessing and comparing different hydro-

biogeochemical model structures and their performances. We used the LandscapeDNDC modelling 

framework to set up four models of different complexity, considering two soil-biogeochemical and 

two hydrological modules. The performance of each model combination was assessed using long-

term (8 years) data and applying different thresholds, considering multiple criteria and objective 

functions. Our results show that each model combination had its strength for particular criteria. 

However, only 0.01% of all model runs passed the complete rejectionist framework. In contrast, our 

comparatively applied assessments of single thresholds, as frequently used in other studies, lead to a 

much higher acceptance rate of 40 to 70%. Therefore, our study indicates that models can be right for 

the wrong reasons, i.e., matching GHG emissions while at the same time failing to simulate other 

criteria such as soil moisture or plant biomass dynamics. 

Introduction 

The main anthropogenic source of N2O is linked to emissions from agricultural soils and vast 

application of organic and synthetic nitrogen fertilizers (Reay et al., 2012). The underlying processes 

of soil carbon (C) and nitrogen (N) cycling and emission are affected by a multitude of non-linear 

factors, e.g. fertilization, tillage, climate, nutrient use efficiency as well as microbial metabolism 

(Stehfest and Bouwman, 2006). Consequently, greenhouse gas (GHG) emissions are highly variable 

in space and time. This variability across spatio-temporal scales cannot be addressed by field 

measurement as the spatial scale is too limited (Butterbach-Bahl et al., 2013). To overcome these 

limitations process based models, which summarize and translate our current understanding of 

processes underlying the biosphere-atmosphere GHG exchange into numerical equations, have been 

developed. These models allow upscaling in space and time domains and they can also be applied in 

the framework of scenario studies and used for decision support (Wang and Chen, 2012). 

Nevertheless, the algorithms used in such models are simplifications and still associated with 
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uncertainty since magnitude and parameterisation of many biogeochemical processes are uncertain, 

too (Butterbach-Bahl et al., 2013; Kraus et al., 2015).  

Studies about biogeochemical model uncertainty analysis of GHG exchange processes and fluxes are 

still limited and differ with respect to implemented process descriptions, output targets and 

uncertainty sources. Lehuger et al. (2009) presented the first uncertainty analysis for a process-based 

biogeochemical model (CERES-EGC, a biogeochemical extension of the CERES crop model). The 

model output of N2O fluxes were generated on 7 different sites with a Metropolis-Hasting algorithm, 

involving 15 model parameters. They found posterior model outputs with an uncertainty ranging from 

13 up to 1422% for annual N2O flux predictions. A review by Wang and Chen (2012) summarizes 

the few existing parametrization and uncertainty studies for soil biogeochemical models and 

recommend uncertainty analysis for multiple sites and the use of multiple criteria. They further 

suggest a development of a model library containing various model structures to facilitate 

comprehensive model comparison and uncertainty studies. Such a variable model structure approach 

was realized by Haas et al. (2013) with LandscapeDNDC (DeNitrification-DeComposition), a 

framework for simulation of water, C and N cycling and associate GHG emissions in terrestrial 

(forest, arable, grassland) ecosystems. LandscapeDNDC consists of interchangeable modules 

representing  soil biogeochemistry e.g., scDNDC (Zhang et al., 2015) or the MeTrx module (Kraus et 

al., 2015), hydrology e.g., water cycle wcDNDC or CMF (Catchment Modelling Framework; Kraft 

et al., 2011), vegetation and microclimate processes. C and N turnover and related soil GHG 

emissions are, beside the main microbiological processes, depending on soil moisture conditions 

(Breuer et al., 2002; Butterbach-Bahl and Dannenmann, 2011). Consequently, to achieve  reliable 

simulation of GHG emissions, an accurate representation of the soil moisture is a key requirement 

(Butterbach-Bahl et al., 2013; Frolking et al., 1998; Kröbel et al., 2010). Nevertheless, in 

biogeochemical models soil hydrological processes are often simulated based on simple bucket 

approaches, i.e. water moves vertically down a profile once a certain threshold has been reached, as 

e.g. in the LandscapeDNDC hydrological module wcDNDC. The nonlinear partial differential 

Richards’ equation brings the advantage of a physical based approach. The equation describes vertical 

unsaturated flow, capillary rise and interaction with groundwater level. The implementation has been 

undertaken by Haas et al. (2013) and Wlotzka et al. (2014). They tested the coupled model system 

for C and N cycling on virtual hillslope studies including lateral nutrient transport. For sound 

validation of models, simulations must be tested with various observed data representing C, N and 

water cycling. However, most studies investigating biogeochemical processes and associated GHG 

emission simulated by the DNDC model family concentrate only on the validation of a subset of 

model results. Studies have been published with outputs such as N2O emissions, yields or soil 



- 44 -  Rejecting hydro-biogeochemical model structures by multi-criteria evaluation  

temperature and moisture profiles (see literature survey of Giltrap et al. 2010) with the risk that 

simulated GHG emissions are right for the wrong reasons. To overcome this problem model testing 

should be done by taking as many different observations into account as possible. They further should 

be accompanied by an uncertainty analysis (Pappenberger and Beven, 2006). There is an intensive 

discussion about different sorts of model uncertainties and how to address them (Beven, 2015). One 

of the most widely used concepts for assessing model uncertainties is the Generalized Likelihood 

Uncertainty Estimation (GLUE) (Beven and Binley, 1992; Beven and Freer, 2001). GLUE has its 

origin in hydrological research but has been utilized in other scientific fields such as biogeochemistry 

or plant growth studies (Houska et al., 2014; Nylinder et al., 2011; Senapati et al., 2016; Wang and 

Chen, 2012). 

In this study, we are interested in the benefits of a physically based process description over a 

conceptual approach in simulating soil water dynamics within a biogeochemical model. We follow 

the philosophy that complex models should be identifiable (low parameter uncertainty) and accurate 

(good agreement with observation data). Further, a model should be able to simulate various 

observation data concurrently and close to reality, especially when dealing with highly non-linear 

process interactions like in hydro-biogeochemical systems. To asses only such model runs, we 

perform a multi-criteria evaluation of different model structures and quantify their underlying 

uncertainties. This study combines the following points: 

(1) We utilized a comprehensive, high quality, long-term data-set from a grassland study site in 

Linden, Germany (Jäger et al., 2003), which was established in 1998. Data of trace gas emission 

(N2O, CO2, cumulative CO2 and N2O), plant growth (biomass, cumulative biomass), and soil 

hydrology (soil moisture) was taken to evaluate the models. 

(2) We established four model structures, by combining two varieties of the LandscapeDNDC 

biogeochemical modules with two soil moisture routines, resulting in the four model set-ups 

scDNDC/wcDNDC, scDNDC/CMF, MeTrx/wcDNDC and MeTrx/CMF. 

(3) We reduced the parameter space of modules involved in GHG emission processes (e.g. 

decomposition, ammonification, nitrification and denitrification) through a stepwise sensitivity 

analysis. 

(4) We run a multi-criteria GLUE for each model combination to find behavioural parameter sets and 

select appropriate model structures based on this assessment. Formally, we use a posteriori model 

rejection framework by selecting only those model structures that meet predefined objective functions 

(Vaché et al., 2004). The method is designed to detect and locate potential model and measurement 

errors. Our accepted model runs pinpoint such errors and help to analyse the data. 
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Methods 

Model description 

LandscapeDNDC is a simulation framework for terrestrial ecosystem models (Grote et al., 2009; Haas 

et al., 2013) with a modular structure allowing the easy and efficient combination and coupling of 

different modules describing different processes in ecosystem compartments, i.e. mathematical 

descriptions of microclimate, water cycle, plant physiology and soil biogeochemical processes. The 

modules are an abstract representation of the ecosystem. LandscapeDNDC defines six ecosystem 

compartment: canopy air chemistry, canopy and soil microclimate, vegetation physiology, vegetation 

structure (only for forest applications), water cycle and soil biogeochemistry. Every of this ecosystem 

compartments is represented by different modules, see Table II.1 and Figure II.1 for details. In this 

study, we test different combinations of two soil biogeochemistry modules (scDNDC and MeTrx) and 

two water cycle modules (wcDNDC) and CMF in order to quantify model structure related 

uncertainty and to test validity of model structures. The different module combinations result in four 

model set-ups of the LandscapeDNDC framework, which are in the following referred to as 

scDNDC/wcDNDC, scDNDC/CMF, MeTrx/wcDNDC and MeTrx/CMF. For the plant physiology 

and microclimate, for all model set-ups we selected grasslandDNDC (Molina-Herrera et al., 2016) 

and canopyecm (Grote et al., 2009), respectively. All input settings for site and vegetation 

characteristics as well as climatic drivers are the same for any of the four tested models. 

 
Figure II.1. Overview about the different inputs (upper boxes), modules (middle panel) and outputs (lower 

boxes) used in LandscapeDNDC for this study. For a complete input and output list of LandscapeDNDC see  

Haas et al. (2013). Temp. = temperature, precip. = precipitation, rH = relative humidity, rad. = solar radiation, 

FC = field capacity, bulk dens. = bulk density, WP = wilting point, evapotransp. = evapotranspiration, emis. = 

emission. 
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scDNDC 

The scDNDC module originated from descriptions of the agricultural DNDC (Li et al., 1992) and 

ForestDNDC model (Li et al., 2000) and is suited for biogeochemical simulations of grassland, arable 

and forest soils (Haas et al., 2013). It addresses biogeochemical turnover of major soil C and N 

compounds. Turnover of soil organic matter and plant debris is largely controlled by C/N ratios and 

climatic factors, i.e. temperature and soil moisture. The focus of scDNDC is on the simulation of 

CO2, N2O and NO emissions (Butterbach-Bahl et al., 2009; Kim et al., 2015) as well as NO3
-leaching 

(Dirnböck et al., 2016; Kiese et al., 2011). Production and consumption of C and N substrates are 

calculated based on microbial processes and metabolisms, e.g. mineralization, nitrification and 

denitrification, following the approaches of Blagodatsky and Richter (1998) and Leffelaar and 

Wessel (1988). 

MeTrx 

MeTrx is a newly developed soil biogeochemical module for LandscapeDNDC (Kraus et al., 2015). 

In addition to C/N ratio and climatic factors, as in the case of scDNDC, decomposition of plant debris 

depends on its lignin and cellulose content following the concept of Bruijn and Butterbach-Bahl 

(2009) as well as the anaerobicity of the soil. Moreover, MeTrx uses a simplified formulation of 

denitrification with a  reduced number of parameters (Bruijn et al., 2011). MeTrx has been 

successfully applied for the estimation of CO2, CH4 and N2O emissions from tropical agricultural 

lowland and upland rice based cropping systems (Kraus et al., 2015, 2016). 

wcDNDC 

The water cycle module (wcDNDC) in LandscapeDNDC simulates evapotranspiration and soil water 

percolation depending on climatic input information, i.e., rainfall and temperature. Potential 

evapotranspiration is simulated using a modified Thornthwaite approach (Thornthwaite et al., 1957), 

while actual transpiration is calculated based on gross primary production and plant type specific 

water use efficiency. Soil water percolation is estimated based on a simple tipping bucket approach, 

mainly depending on physical soil characteristics, i.e. wilting point, field capacity and saturated 

hydraulic conductivity. A detailed description of the soil hydrology module is given by Kiese et al. 

(2011). 

CMF 

The Catchment Modelling Framework (CMF), developed by Kraft et al. (2011), is designed as a 

toolbox to build hydrological models (Houska et al., 2014). CMF was coupled with LandscapeDNDC 

(Haas et al., 2013) to simulate the water cycle in a more process-based manner. Potential 

evapotranspiration is calculated with the Penman-Monteith equation. Soil water percolation is 
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estimated with the Richards equation, matrix infiltration and the van Genuchten retention curve. Snow 

and ice accumulation as well as melting are simulated. Additionally solute transport of DOC and NO3 

are performed. This study uses CMF as a module within LandscapeDNDC. Settings of CMF can be 

adapted by setting the parameters for the water retention curve and hydraulic conductivity following 

the approaches van Genuchten (1980) and Mualem (1976), i.e. alpha, n and saturated hydraulic 

conductivity. Porosity is determined based on soil organic carbon and bulk density. 

Model testing 

In order to test the four different model set-ups and quantify model structure related uncertainty, we 

first applied a sensitivity analysis followed by a Generalized Likelihood Uncertainty Estimation 

(GLUE) method. For a meaningful evaluation of the performance by the different model set-ups, we 

use a field data set with comprehensive information on temporal dynamics of soil moisture and GHG 

exchange. 

Field data and model set-up 

For model testing, we used data from a well-studied extensively managed grassland site located at 

Linden, nearby Giessen, Germany. It is running since May 1998 consisting of three plots A1, A2, and 

A3, which were used in this modelling study. Mean annual precipitation and average temperature are 

616 mm and 9.5°C, respectively. The vegetation and soil are characterized as Arrhenatheretum 

elatioris and fluvic gleysol (Kammann et al., 2008). GHG emissions of each plot are measured weekly 

with opaque static chambers (0.3 m height, 0.184 m³ volume), sealed for 60-90 min  to a soil collar 

and sampled in four 20-30  min time intervals (Kammann et al., 2008). Samples were analysed within 

24 h for CO2 and N2O content with a gas chromatograph (HP6890) and GHG fluxes are determined, 

according to Kammann et al. (2008). Corresponding to the dark chamber measurement method, where 

a lightproof chamber is placed over the plants on the soil (see Kammann et al. (2008) for details), the 

measured soil CO2 emissions were compared to the sum of simulated heterotrophic and autotrophic 

maintenance respiration of the plants. They reflect the respiration of the soil. Simulated autotrophic 

growth respiration was excluded assuming photosynthesis stops with chamber closure. This provides 

a way to model the measured plant-physiology darkness. Volumetric soil moisture of each plot is 

measured on working days with TDR sensors in 0-10 cm depth (Kammann et al., 2008). The 

vegetation is harvested in June and September each year 4 cm above the soil surface and fertilized in 

April with granular mineral calcium-ammonium nitrate (Kammann et al., 2008). We included all 

available site information (Table II.1) and calibrated only those model inputs where information was 

not available or very uncertain. Some soil properties change throughout the soil and measured values 
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increase (bulk density), decrease (clay content) or vary (pH) in depth. Soil organic carbon (SOC at 

topsoil) was implemented during model application by assuming an exponential decreasing to the 

lowest soil layers (in 0.55 m depth). All other soil properties (wilting point, field capacity, saturated 

hydraulic conductivity, van_Genuchten_alpha and van_Genuchtuen_n) were implemented by setting 

for the highest and lowest layer as parameters for GLUE and assuming a linear regression between 

the layers (Table A.1). 

Table II.1. Input settings of the LandscapeDNDC model for the Linden grassland study site. In case spans are 

given, they reflect observed ranges for measurements FACE plots A1, A2 and A3, used throughout the set-up 

of the soil profile. Further detailed information on specific soil parameter values as used for the uncertainty 

assessment are given in Table A.1. 

Input 

category 

Input Value Unit Source 

Climate  Daily temperature  9.5 avg. °C Field observations 

/Atmosphere Daily precipitation  616.2 mm a-1 Field observations 

 Annual N deposition 14.4 kg N ha-1 Field observations 

 Atmospheric background CO2 402 ppm Jäger et al. (2003) 

Soil Bulk density 1.01-1.52 g cm-3 Jäger et al. (2003) 

 pH 5.4-6.0 - Jäger et al. (2003) 

 C/N at surface 10 - Kammann et al. (2008) 

 Clay content 19-26 % Field observations 

Vegetation Vegetation type Perennial grass - Field observations 

 C/N ratio above ground biomass 25.7 - Field observations 

Management Fertilizer type NH4NO3 - Kammann et al, (2008) 

 Annual fertilizer amount 40 kg N ha-1 Kammann et al. (2008) 

Model structure and parameter uncertainty 

The model structure and parameter uncertainty of the four model set-ups was determined in two 

consecutive steps. In a first step, we identified the most sensitive model parameters affecting outputs 

of the biogeochemical, plant physiological and water cycle modules. These parameters were used in 

the following step for analysis of parametric uncertainty. 

1) Sensitivity analysis of model outputs is widely used to determine the influence of a model 

parameter on a given output. We applied a variance based sensitivity approach, the Fourier amplitude 

sensitivity test (FAST) (Pianosi et al., 2016; Saltelli et al., 1999) to rank the more than 100 parameters 

of both soil biogeochemical modules, scDNDC and MeTrx, according to their influence on the model 

outputs. Finally, we selected the 30 most sensitive parameters in order to come up with a reasonable 

number of parameters for the uncertainty analysis. For each biogeochemical module, the FAST 

algorithm repeated 100,000 iterations with different parameter combinations. The number of input 

parameters and their boundaries for the water cycle modules and physiology module were selected 

by expert knowledge. This resulted in 45 parameters for each model set-up (30 parameters of the soil 

biogeochemical module selected through the sensitivity analysis, plus four parameters of the water 

cycle module and eleven plant growth parameters of the physiology module). 
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2) Uncertainty analyses are designed to quantify the uncertainty of model predictions. The 

Generalized Likelihood Uncertainty Estimation method (GLUE, developed by Beven and Binley, 

1992) is widely used to derive model uncertainty, by randomly sampling parameter combinations and 

accepting only ones fulfilling prior defined objective function criteria. Accepted model runs are 

defined as behavioural and similar good, also referred to being equifinal. We conducted a Latin 

hypercube sampling (LHS) with 100,000 repetitions for each of the four model set-ups, with each 45 

parameters. See Table A.1 for the parameter names and their uniform priors. Detailed information 

about the meaning of these parameters can be found in the online documentation (LandscapeDNDC, 

2015).  

We used two objective functions to assess the model performances. For each model run, we quantified 

the Root Mean Squared Error (RMSE) and the mean bias (BIAS, also known as mBIAS). The RMSE 

is calculated according to Eq. (1): 

𝐹1(𝜃) = 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖

𝑛
𝑖=1 − 𝑂𝑖)²,       (1) 

where 𝐹(𝜃) is the objective function value for each model run given a parameter set 𝜃, n is the total 

number of measurements, Oi is the observed value for the i-th measurement and Pi is the 

corresponding predicted value of the model. The RMSE can vary from 0 (perfect fit), towards large 

values (deep disagreement). This objective function has the benefit that it has the same dimension as 

the simulation values, which is helpful for quantification of the remaining uncertainties of the 

posterior simulations. The RMSE is further suitable for evaluating the modelled land term data 

agreement (Chang et al., 2013). See Table II.2 for the thresholds of the RMSE we set for behavioural 

model runs. These thresholds are oriented on the means of our observed data and other previous 

reported findings in grassland modelling studies (Chang et al., 2013; Lehuger et al., 2009). The 

threshold for soil moisture simulations is based on the mean standard deviation of the observed data. 

We calculated the BIAS as a second objective function. The BIAS is well suited to detect inter-annual 

differences and to assess whether structural changes of the model equations are necessary (Wallach, 

2006). Yearly cumulative simulations were compared with yearly cumulative observations for every 

of the eight simulation year. The BIAS is calculated according to Eq. (2): 

𝐹2(𝜃) = 𝐵𝐼𝐴𝑆 =
1

𝑛
∑ (𝑃𝑖

𝑛
𝑖=1 − 𝑂𝑖),       (2) 

The BIAS can vary from 0 (unbiased estimator) to large positive or negative values (large deviation). 

We evaluated this objective function as a threshold for the cumulative GHG emissions as well as the 

cumulative biomass simulations for every year (Table II.2). Cumulative values of simulated GHG 
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emissions and biomass are commonly evaluated with overall monthly or yearly measured values 

(Kiese and Butterbach-Bahl, 2002; Zhang et al., 2015). 

Using two different objective functions we assure on the one hand that the daily variation of GHG 

emissions and soil moisture (e.g. driven by management and/ or rainfall events) are reproducible by 

the model. The RMSE allows evaluating the ability of the model in reproducing daily variations; on 

the other hand, the BIAS permits to quantify systematic model error that can cumulate.  

When we selected our thresholds, we tried to achieve a trade-off. Firstly, we oriented on previous 

reported findings, to achieve comparatively good results. Secondly, we found the mean of our 

observed data useful to account for site-specific characteristics. The finally selected thresholds are 

always in between these two boundaries: 

N2O emission: Our RMSE threshold of 0.0035 kg N-N2O ha-1 d-1 is slightly lower than mean posterior 

RMSEs of seven study-sites in northern France (0.0055 kg N-N2O ha-1 d-1), derived with MCMC 

(Lehuger et al., 2009). Our threshold is slightly higher than mean measured fluxes with 

0.0027 kg N-N2O ha-1 d-1, allowing model errors of >100%. We see this threshold as very permissive, 

due to still missing robust modelling concepts to simulate N2O emission data. 

CO2 emission: Our RMSE threshold of 15 is slightly higher than mean RMSEs found in a modelling 

study for grasslands across Europe (8 kg C ha-1 day-1 published by Chang et al. (2013)). Our threshold 

is lower than the mean measured fluxes of 25 kg C ha-1 day-1. 

Biomass: Our RMSE threshold of 3,000 kg DM ha-1 is higher than other findings on an extensive 

grassland (1,800 kg DM ha-1), derived with the plant growth model PROGRASS  (Lehuger et al., 

2009), but lower than our mean observed yields of 3,500 kg DM ha-1. 

Soil moisture: Reported calibrated RMSEs for WFPS can be found in a wide range, e.g. from 

1.02% (Thorburn et al., 2010) to 24% (Ludwig et al., 2011), depending amongst other things on the 

variance of the measured soil moisture data. We decided to use the mean standard deviation (9.5%) 

across our plots A1-A3 as a comparatively demanding threshold.  

The thresholds of BIAS are based on observed inter-annual variabilities. However, the selection of 

the thresholds remains subjective and other thresholds as well as other objective functions are 

thinkable, which would affect the results. We tried to reduce the methodological subjectivity by 

selecting strict thresholds and a high number of model repetitions, as recommended by Li et al. 

(2010). We have tested the acceptance criteria a priori to assure that they are achievable for the model. 

Overall, our approach results in 84 individual thresholds (4 whole-time outputs x 3 plots (A1, A2 and 

A3) with RMSE + 3 cumulative outputs x 8 years x 3 plots (A1, A2 and A3) with BIAS), see 

Table II.2. For the sensitivity analysis and the LHS based GLUE methodology we used the open 

source Statistical Parameter Optimization Tool in Python (SPOTPY) (Houska et al., 2015) on a High 
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Performance Computing system. We assessed all model structures matching a single criterion, but 

also looked for model structures that were able to meet objective function thresholds for all criteria 

(84-multi-threshold-filter). The percentage of remaining model runs is not necessarily better or worse. 

It does not give information about accuracy, only (indirectly) about parameter uncertainty. However, 

a model structure is likely to fail these constraints only if it is demonstrating a fundamentally different 

behaviour to reality, which is why a high number of remaining runs is good. This is obviously the 

opposite to a more common case where the thresholds are very demanding, such that many runs will 

remain only if there is an identifiability problem, which is bad. We are not aware of any study were 

this distinction has been noted before. To our knowledge, we are also the first conducting a multi-

model, multi-criteria and multi-objective uncertainty assessment for a set of complex hydro-

biochemical models. 

Table II.2. Thresholds for a simulation with a distinct parameter set to be accepted as a behavioural model run. 

Results 

Model efficiencies 

After the sensitivity analysis, we run GLUE for the 4 model combination with 45 parameters, and 

selected the behavioural model runs fulfilling our objective function thresholds (Table II.2). 

Figure II.2 compares the remaining number of behavioural simulation runs for all four models. The 

percentage of accepted behavioural simulation runs indicates the effectiveness of each model 

configuration to find a parameter set that complies with the seven single criteria and the 84-multi-

threshold filter. 

Soil moisture: Only 4.4% of all 400,000 model runs were accepted, indicating a strong threshold for 

the soil moisture predictions. Model set-ups with MeTrx and CMF were more efficient compared to 

those with scDNDC and wcDNDC in simulating soil moisture. 60.0% out of the accepted model runs 

are from MeTrx/CMF and 23.1% from scDNDC/CMF, indicating both a superior performance of 

CMF based model structures and possible correlation or insensitivity of the selected CMF parameters. 

The wcDNDC module contributes only a small percentage of the remaining posterior model runs in 

fitting the single threshold criteria (13.1% byMeTrx/wcDNDC and 3.7% by scDNDC/wcDNDC). 

Criteria Objective function threshold Unit Evaluated for 

Soil moisture RMSE  <  9.5 vol.% 3 Plots 

CO2 emissions RMSE  <  15 kg C ha-1 day-1 3 Plots 

N2O emissions RMSE  <  0.0035 kg N ha-1 day-1 3 Plots 

Biomass  RMSE  <  3,000 kg DM ha-1 3 Plots 

Cum. CO2 emissions BIAS  < ± 350 kg C ha-1 a-1 8 Years, 3 Plots 

Cum. N2O emissions BIAS  < ± 0.4 kg N ha-1 a-1 8 Years, 3 Plots 

Cum. Biomass BIAS  < ±  3,000 kg DM ha-1 a-1 8 Years, 3 Plots 

     Total 84 thresholds 
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Soil CO2 emissions: 36.8% of all model runs were accepted to reproduce the soil respiration data, 

with a share of 85.0% of these simulations having MeTrx as a soil biogeochemical module and 41.8% 

with CMF as the water cycle module. For the cumulative soil respiration, only 7.4% of all model runs 

were accepted. Here, MeTrx model set-ups contribute to even 95.6% of model runs and CMF-based 

models to 45.3%. While we found a clear preference for the MeTrx soil chemistry module, wcDNDC 

was only slightly more represented than CMF. 

Soil N2O emissions: 68.6% of all model runs were accepted, indicating both a relatively week 

threshold and the suitability of DNDC to simulate N2O fluxes, something the model was initially 

developed for. Out of these, the scDNDC module is most efficient in simulating N2O emissions and 

contributes 68.6% of all accepted simulations. There was no clear preference on the soil moisture 

routine, for which CMF contributed 52.0% and wcDNDC 48.0%, respectively. The pattern of 

contributing modules for cumulative N2O emissions was similar, though less model runs were 

accepted (59.4%) and scDNDC/wcDNDC outperformed the other module combinations with almost 

contributing 39.7% of all runs. 

Biomass: More than half of the model runs were accepted, with equal contributions for both wcDNDC 

set-ups and the combination of MeTrx/CMF. Similar to CO2 emission, scDNDC/CMF contributes the 

lowest ratio of 0.6%. The threshold for cumulative biomass harvest was met by 7.8% of all 

behavioural model runs, from which 94.8% where MeTrx based models, with MeTrx/wcDNDC 

slightly outperforming MeTrx/CMF. We found no acceptable model set-up for the scDNDC/CMF 

model. 

Multi-threshold criterion: Fulfilling all 84 thresholds was only achieved by 0.01% of the model runs; 

12 MeTrx/wcDNDC, 11 MeTrx/CMF and 8 scDNDC/wcDNDC model configurations. Only these 

model set-ups and parameterizations are well identified. They performed equally well and are further 

defined as behavioural. The scDNDC/CMF model configuration was not able to fulfil the multi 

threshold criterions. The accepted model set-ups were defined as the posterior model runs, and were 

investigated in more detail in the following sections. 

 

Figure II.2. Ratio of different model set-ups that fulfil single criterion threshold. The number of accepted model 

runs is given by n and is illustrated by the size of the pie chart (number of total model runs: 400,000). Only 

those model runs are depicted that fulfil the objective function thresholds given in Table II.2. 
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Model performance – analysis across plots 

 

Figure II.3. Distribution of the objective functions of the posterior model runs selected by the 84-multi-

threshold-filter for each of the three retaining model structures. Black dotted line is the optimal value for the 

BIAS. Boxes indicate the 25 and 75 percentile, whiskers the 5 and 95 percentiles, the median is the bold line in 

the boxes and outliers are shown as pluses. A1, A2 and A3 are the three different plots of the investigated 

grassland site. emis. = emission, cum. = cumulated. 

For the analysis of the model performance, we used the objective functions of the posterior model 

runs as indicators. Figure II.3 shows the distribution of the posterior objective functions for the 31 

accepted simulations for each of the three plots. 

The observed soil moisture data can be simulated by the models with a rather high RMSE of 6 to 

9.5 vol.%. Compared with the other model structures, the MeTrx/CMF shows the best performance 

in terms of soil moisture, especially for plots A1 and A3, where some of the RMSEs are about 1 to 

2% lower than for the other model set-ups. The RMSEs of the soil respiration vary between 8 to 

13 kg C ha-1 day-1, with MeTrx/wcDNDC performing slightly better compared to the other model 

combinations. However, the spread of simulations for this model structure shows a larger output 

uncertainty reflected by the wider box plots. The posterior objective functions of the cumulative CO2 

emissions are normally distributed and all models performed similar on all plots. The N2O emissions 
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of plots A1 and A3 can be simulated with an RMSE of around 0.0025 kg N ha-1 day-1, which 

represents 92% of the overall mean N2O emissions. Simulations for A2 are slightly worse with 

medians of 0.0030 kg N ha-1 day-1 (111% deviation). scDNDC/wcDNDC reproduced the N2O 

emissions on A2 slightly better than the configurations using the MeTrx biogeochemistry. The 

cumulative N2O emissions were in tendency underestimated by all models by 0 - 700%, indicated by 

a negative BIAS. The model scDNDC/wcDNDC was again slightly better in simulating A2 and A1 

than the other models. The negative bias, especially on site A2 indicates a substantial difference in 

the measured data between the plots A1-3. Figure A1 indicates that single high measurements for 

N2O can already have a large influence on the annual emissions. Measurements errors can easily 

effect the model results at this point. The RMSE for biomass harvest simulations vary from 700 to 

2,000 kg DM ha-1 (average observed yield 3,493 kg DM ha-1). We found the highest variation for 

MeTrx/wcDNDC model, while the scDNDC/wcDNDC model resulted in the lowest RMSEs. 

Nevertheless, the scDNDC/wcDNDC model underestimated the cumulative biomass harvest 

depicting relative larger underestimations (median of -500 to -1,000 kg DM ha-1). Here the MeTrx 

models performed better, especially on plot A2. 

Model performance – analysis in time 

In order to investigate the performances of the model structures in time, we compared simulations for 

the three remaining model structures with the observations of the three plots (A1-3). Presented results 

(n=31) are derived with behavioural parameter sets, which passed the 84-multi-threshold filter. 

Figure II.4 illustrates the simulated daily patterns of soil moisture, trace gas emissions, and biomass 

production over the simulation period of eight years. Corresponding patterns of annual cumulative 

trace gas emissions and biomass production are given in Fig. A1. 

Soil moisture: The MeTrx/CMF model reproduced the daily measured data best, particularly during 

dry conditions (soil moisture < 30 vol.%). This is most obvious during dry spells for example in the 

summer of 2000 and 2001. Overall, the Richard’s equation based model MeTrx/CMF shows stronger 

variability in the soil moisture than the tipping bucket approach of wcDNDC. This uncertainty bounds 

of the model MeTrx/CMF overlap on 57.3% of the simulation days with the measurement uncertainty, 

while for the wcDNDC this is only the case for 46% of the simulation days. The standard deviation 

of the measurements was generally higher (9.5%) than for the simulations (ranging from 3.2% for 

scDNDC/wcDNDC to 5.1% for MeTrx/CMF). 

Soil CO2 emissions: The seasonal pattern of daily CO2 emissions are predicted by all models with an 

average span of the lower and upper simulated bounds of 15 kg C ha-1 day-1. The bounds in early 

winter (November until January) have a smaller span of 10 kg C ha-1 day-1 and is highest (up to 
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20 kg C ha-1 day-1) in May to September Overall, the variation resulting from the simulations is 

slightly higher than the variation of the emission measurements at the plots A1-A3. There was no 

model that sufficiently reproduced peak emissions, e.g., after the fertilization event on 18th April 2000 

or in summer 2002. We believe that we face measurement errors in this case and the process model 

will never be able to reproduce them. The approach helps to pinpoint such possible measurement 

errors and helps to analyse the data. The better performance of the MeTrx/CMF model for soil 

moisture simulations, particularly during dry periods, did not result in improved predictions of soil 

respiration compared with the other two models. Average yearly measured soil respiration was around 

7.8 t C ha-1 a-1 (note that Fig. A.1 is showing only cumulative values for measured days, which results 

in lower values). 

Soil N2O emissions: The daily N2O emission dynamic was reproduced with a mean uncertainty band 

of 0.003 kg N ha-1 day-1 by the three model structures, differing from close to zero in winter months 

up to 0.086 kg N ha-1 day-1 on single events. scDNDC/wcDNDC reproduced the high emissions in the 

first simulation year of 1999 better than the other models, but generally overestimated the emissions 

after 2002. This period was much better matched by MeTrx/wcDNDC and MeTrx/CMF. During low 

soil moisture conditions, e.g. summer 2004, the MeTrx/CMF simulated the N2O emissions better than 

the two other models. Obvious for all models is the substantial underestimation of pulse emissions 

particularly at day 13th November 2000 when all models failed to predict an increase of N2O 

emissions. Average yearly measured N2O emissions were around 0.9 kg N ha-1 day-1. 

Biomass: The seasonal biomass production was simulated with an uncertainty of 

± 2,000 kg DM ha-1 (57% of the mean observation data) for the different model structures. The 

observations showed a higher yield at the first cutting in May than at the second cutting in September. 

The models failed to follow this temporal pattern and showed in most of the simulations a lower yield 

in May than in September. In addition, the uncertainty of simulations at the second cutting event were 

two- to threefold higher than at the first cutting event. The resulting uncertainties (RMSE) between 

single harvest events varied between highest RMSE of 7,000 kg DM ha-1 for MeTrx/wcDNDC and 

1,000 kg DM ha-1 for MeTrx/CMF. However, simulation deviations in yearly means were lower than 

3,000 kg DM ha-1. The simulated yearly cumulative biomass production decreased for all models over 

the 8 years simulation period. While in the first two years for the first cutting event uncertainty bounds 

of simulations are in the same range than observation uncertainties, there is a clear tendency to under 

predictions in the following years. However, summing up the harvested biomass of both cuts, the 

MeTrx based models seem to perform better than the scDNDC based model. 
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Figure II.4. Upper and lower bounds (coloured bands) of the posterior distribution model runs selected by the 

84-multi-threshold-filter for each of the three retaining model structures. Grey lines of daily soil moisture and 

trace gas emissions as well of bars for biomass indicate mean observations ± standard deviation calculated from 

the single plots A1-3. Black triangles indicate fertilizer events, green semi-circles hay cutting. 
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Discussion 

According to our selected single objective function thresholds, all four different model structures 

resulted in a sufficient number of behavioural model runs, some of them even exceeding 200,000 out 

of 400,000 randomly sampled parameter sets. In contrast to the single criterion, only 0.01% of all 

model setups passed the 84-multi-threshold filter. This strong reduction of the acceptance rate 

indicates that most of our model structures and parameterization that were selected based on the single 

criterion evaluation might be right for the wrong reason. Unfortunately, no matter how good models 

are initialized and run with measured input information (e.g. soil texture, field management or 

meteorological information), parameter and model structural uncertainties are likely to misdirect non-

calibrated model results. 

Here we provide evidence that complex, process-based hydro-biogeochemical models need to be 

thoroughly tested and checked against multiple-criteria using appropriate objective functions. For 

example, soil moisture is an important driver for many microbial C- and N-turnover processes and 

associated GHG emissions (Butterbach-Bahl and Dannenmann, 2011). Studies where daily observed 

and simulated soil moisture data are compared remain scarce and if presented, results are often not 

very satisfactory. A soil moisture simulation study with the tipping bucket approach of DNDC 

resulted in RMSE not better than 34.6% WFPS on a cropland in northern China (Cui et al., 2014) and 

another study using DNDC resulted in an RMSE of over 15% WFPS in the upper 10 cm of an soil 

under arable land use (Gao et al., 2014). Other studies like Lehuger et al. (2009) used a Markov Chain 

Monte Carlo algorithm to calibrate the CERES-EGC model on WFPS and N2O across different sites. 

They found much lower RMSEs varying between 3 to 6% WFPS, by using a physical sub-module 

based on the generalized Darcy’s law. In our study, the CMF representation of soil water transport by 

the Richards’ equation was superior compared to the simple tipping bucket approach, however still 

far from a perfect prediction. It is well known that effective saturation calculated by Van Genuchten 

(1980) is subject to high uncertainty (estimation of parameters alpha and n by effective saturation 

data is difficult). However, any water transport model, including wcDNDC, needs to be characterized 

by some parameters describing water retention, e.g. soil moisture at wilting point and field capacity. 

In such simplified tipping bucket models, the parameter uncertainty is augmented with a higher 

structural uncertainty of the model. However, compared to other estimated parameters, optima of 

alpha, n and saturated conductivity were well identified (Figure A.10). 

Likely reasons are in field heterogeneity of soil parameters that are used to either initialize or 

parameterize the DNDC modules or pedotransfer functions of CMF. Particularly pedotransfer 

functions can be extremely sensitive to input parameter variability (Bormann et al., 2007). Further, 
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soil moisture was taken as one mean value (out of 4 measurement points) within each plot, 

contributing to validation data uncertainty that we did not account for in this study. McMillan et al. 

(2012) showed this impact for a hydrological model, where they assessed the uncertainty of the stage-

discharge relation on the error of the derived and simulated discharge. Simply comparing the number 

of soil moisture observations that are covered by the upper and lower bounds simulations gives a 

glimpse on this aspect: while the behavioural model runs of MeTrx/CMF captured 29.4% of the mean 

soil moisture, this value increased to 57.3% when the span of soil moisture observations was taken 

into account. 

Emissions of N2O are frequently simulated with biogeochemical models such as DAYCENT, 

ORCHIDEE, ECOSYS and are one of the primary targets of DNDC model applications (Gilhespy et 

al., 2014). Bouwman et al. (2010) state that many studies do not report day-to-day validation of N2O 

emissions because of the poor performance of most models or the lack of available data. The 

deviations found in our study are in the range of best agreements between simulated and measured 

values reported from other studies in the literature. For DAYCENT applied on cropland RMSEs of 

0.0024 kg N ha-1 day-1 (Rafique et al., 2013) and 0.108 kg N ha-1 day-1 (Necpálová et al., 2015) were 

reported for N2O emissions. The uncertainty of our yearly simulated N2O emissions is ±60% of the 

yearly measured emissions, which is within the measured uncertainty of ±124%. Lehuger et al. (2009) 

reported uncertainties of different sites with values ranging from -4 to 8% and uncertainties up to -

68% to 154% derived with CERES-EGC. The reason for this high variation of the model performance 

in simulating N2O emission are multiple sources, often explained by the “hole in the pipe” concept 

(Firestone and Davidson, 1989). N2O emissions result from nitrification at medium WFPS in and 

denitrification at high WFPS. Although, models can account different N2O production pathways, the 

validation is not possible due to still missing measurements of N2O source partitioning. Consequently, 

here, we concentrate only on emissions during times of the year, which differ in their potential for 

N2O emissions. High N2O emissions are typically found after fertilization events (Liu and Greaver, 

2009). The simulation of such events results in high remaining uncertainty, as we have shown for the 

scDNDC based models. Another hot moment of N2O emissions are freeze-thaw events, which can 

significantly contribute to the yearly N2O budget (Holst et al., 2008; Wolf et al., 2010), which is also 

true during strong winters (e.g. 2000/ 2001 and 2001/ 2002 Figure II.3) at our Linden grassland sites 

(Müller et al., 2002). Since impacts of freeze-thaw events on nutrient availability and soil microbes 

(de Bruijn et al., 2009) are currently not implemented in the applied biogeochemical models, elevated 

N2O emissions during such events cannot be reproduced by any simulation. Consequently, if such 

events are important for the annual N2O budget the model performance decreases. 
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A study with the model ORCHIDEE reports RMSEs of 5 to 20 kg C ha-1 day-1 for soil respiration on 

different grassland sites (Chang et al., 2013), which is a wider range than we found for our grassland 

sites. As a site aspect, we could show that the Richards equation based model did not only improved 

the soil moisture simulation, it reduced also the soil respiration uncertainty, during very wet and dry 

conditions. This effect can be explained by a strong positive correlation of soil moisture and CO2 

emissions from soils (Gong et al., 2014). Especially during dry conditions in the early summer months 

with lower above ground biomass, yield the MeTrx/CMF model more accurate predictions of soil 

moisture also better predicts the CO2 emissions, than the wcDNDC based model. Besides the soil 

moisture, CO2 fluxes are depending on soil temperature, and re-wetting event. Especially the latter 

one is not yet accurate implemented in the model and might explain simulation days differing up to 

100% from the measurements. Despite model failure one has to keep in mind that measurement of 

soil respiration are challenging and the fluxes, from in our case only three replicates can be associated 

with uncertainty.  

We could fit the cumulative biomass over the year, but had difficulties in representing the seasonal 

trend of the grassland biomass with a BIAS of up to 85% difference. Other studies reported RMSEs 

of 1,300 to 1,800 kg DM ha-1 for grass mixture simulated with PROGRASS  (Lazzarotto et al., 2009), 

depicting an overall better model performance than in our study. However, this model was particularly 

set-up for physiology based grassland biomass simulations, while the plant growth submodule used 

in our study follows more empirical based descriptions. In contrast to soil moisture content and GHG 

emission measurements, which are characterised by comparatively high uncertainties, biomass 

measurements are straightforward and robust. Thus, more effort should be put in the refinement and 

further development of the grassland plant growth module e.g. by splitting into plan functional types 

of grass, herbs and forbs instead of a homogeneous stand mixture (green leave approach) that is 

currently simulated. Moreover, nitrogen could be a limiting nutrient. Upwelling water or capillary 

rising water could deliver NO3
- from lateral moving N containing groundwater into the grassland 

rooting zone and thereby promoting plant growth. This process, which can be of importance at the 

simulated site, is currently not implemented into the models. First field observations support this 

potentially important N source, with groundwater concentrations found in the range of 3 to 5 mg N l-1. 

We summarized the detected model errors in Table II.3. 

 

 

  



- 60 -  Rejecting hydro-biogeochemical model structures by multi-criteria evaluation  

Table II.3. Summary table of remaining model weaknesses identified in this study. 

The strategy to address multiple observations is complex and presented herein simplified. One could 

claim that a low number of remaining model runs would be beneficial; indicating a better support 

through well-defined parameters, while a high number would indicate correlated parameters. 

However, our results indicate, that efficient model structures have also the best performing objective 

functions (compare Figure II.2 and II.3). The results could be further refined e.g. by performing a 

ranking of the behavioural model runs (Beven, 2006), by using more sophisticated optimization 

methods like DREAM (Vrugt et al., 2003), or by applying more theoretically based methods like the 

Iterative Closed Question Modelling (ICQM), introduced by Guillaume et al. (2015). Finding the 

underlying source of model malfunctioning is difficult, especially when using non-linear models and 

errors that might interact non-linear (Beven, 2007). However, we would like to raise awareness that 

there exists a surprisingly small intersection of equally well model performance on different model 

outputs, which leaves room for further analysis and model improvement. 

Despite the questionable efficiency of the model structures to represent all observed data sets at the 

same time, the observation data itself are highly variable. This data has been measured on three plots 

with the same land use and soil type within a distance of less than 100 m on even topography. The 

daily soil moisture (37.2±9.0, 46.2±11.6, 40.1±11.2 vol.%) and weekly soil respiration (25.0±75.4, 

26.1±78.3, 23.8±67.8 kg C ha-1 day-1) data show significant differences between the plots. Possible 

influence of groundwater on the plots A1-3, which we cannot quantify yet, might explain part of the 

differences. Nevertheless, we face several question about data uncertainty and data quality. Are the 

available data sets sufficient for model evaluation? How do we deal with data uncertainty in larger 

scales? How can we improve the measurements? Are weekly trace gas measurements sufficient to 

capture all relevant processes? Future modelling studies can help to address these questions, by 

having a closer look on the process validation instead of just fitting models on observed data. 

Module Detected module error Proposed improvement 

General Missing freeze-thaw cycle Include process e.g. based on Wolf et al. 

(2010). 

 Failed to reproduce increased soil respiration 

after rewetting 

Check process description in biogeochemical 

modules. 

 Failed to reproduce hot moments Include nitrate as input from groundwater. 

 Failed to reproduce inter-annual biomass 

dynamic  

Differentiate between types of grass, herbs 

and forbs instead of a homogeneous stand 

mixture. 

MeTrx Parameter poorly identified Reduce number of parameters and parameter 

range. 

scDNDC Fails with better soil moisture representation. Check for structural errors and the coupling 

with CMF.  

CMF High remaining parameter uncertainty through 

Van-Genuchten retention curve 

Test other retention curves and set stricter 

objective function thresholds. 

wcDNDC Failed to capture soil moisture dynamic Set stricter objective function thresholds. 
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Conclusions 

We conclude that process based models can only be as accurate as the current understanding of the 

system allows. While there are several ways to test models and their uncertainty, we showed one 

straightforward way to deal with some sources of uncertainties by using a GLUE based rejectionist 

framework. The replacement of the conceptual tipping bucket with the nonlinear Richards equation 

enables to reproduce temporal dynamics of soil moisture better. Furthermore, this approach reduces 

the simulation uncertainty of soil respiration. This point is linked to a better representation of reality, 

at the cost of a higher computational demand. The comprehensive data set of the grassland study site 

in Linden gave us the opportunity to validate different model configurations of LandscapeDNDC 

more intrinsically. While the representation of the N2O emissions is in range with other studies, we 

saw the model struggling in reproducing the temporal pattern of the biomass data. We could show 

that multiple objective functions constrain the number of behavioural model runs much more than 

single objective functions can do. This point results in a dramatic drop of efficiency from acceptance 

rates up to 70% down to 0.01%. Our results stress that model outputs are not reliable, if they are not 

been tested against observation data. We need comprehensive field data for future hydro-

biogeochemical modelling studies and a better understanding of the uncertainty in measurements. 

Upscaling simulations while ignoring these diverse uncertainties can easily misdirect our conclusions. 

We therefore believe that the communication of the modelling and measurement uncertainty should 

be part of good scientific practice in modelling studies (Pappenberger and Beven, 2006) as is also 

requested by the IPCC for the UNFCCC GHG reporting. 
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Abstract. This study presents the results of a combined measurement and modelling strategy to 

analyse N2O and CO2 emissions from adjacent arable land, forest and grassland sites in Germany. 

The measured emissions reveal seasonal patterns and management effects, including fertilizer 

application, tillage, harvest and grazing. The measured annual N2O fluxes are 4.5, 0.4 and 

0.1 kg N ha-1 a-1, and the CO2 fluxes are 20.0, 12.2 and 3.0 t C ha-1 a-1 for the arable land, grassland 

and forest sites, respectively. An innovative model-data fusion concept based on a multi-criteria 

evaluation (soil moisture at different depths, yield, CO2 and N2O emissions) is used to rigorously test 

the LandscapeDNDC biogeochemical model. The model is run in a Latin Hypercube based 

uncertainty analysis framework to constrain model parameter uncertainty and derive behavioural 

model runs. The results indicate that the model is generally capable of predicting trace gas emissions, 

as evaluated with RMSE as the objective function. The model shows a reasonable performance in 

simulating the ecosystem C and N balances. The model-data fusion concept helps to detect remaining 

model errors, such as missing (e.g., freeze-thaw cycling) or incomplete model processes (e.g., 

respiration rates after harvest). This concept further elucidates the identification of missing model 

input sources (e.g., the uptake of N through shallow groundwater on grassland during the vegetation 

period) and uncertainty in the measured validation data (e.g., forest N2O emissions in winter months). 

Guidance is provided to improve the model structure and field measurements to further advance 

landscape-scale model predictions. 

Introduction 

Carbon dioxide (CO2) and nitrous oxide (N2O) are two prominent greenhouse gases (GHG) 

contributing to global warming, the latter having a global warming potential (GWP) 300 times higher 

than that of CO2 considering a 100-year time horizon (Myhre et al., 2013). Terrestrial ecosystems 

play an important role in the global atmospheric budgets of both GHGs (Cole et al., 1997). The global 

CO2 emissions from soils are five times higher than anthropogenic (mainly fossil fuel) CO2 emissions 
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(Raich and Schlesinger, 1992; updated with recent fossil fuel data by Boden, et al., 2010), while 

agricultural land use released over 60% of the global anthropogenic N2O emissions in 2005 (IPCC, 

2007). In addition to the radiative forcing of both GHGs, N2O is currently the main driver of 

stratospheric ozone depletion (Ravishankara et al., 2009), causing increased ultraviolet radiation, 

which could result in skin cancer and other health problems (Graedel and Crutzen, 1989). While CO2 

is exchanged with the soil (heterotrophic respiration) and vegetation (photosynthesis and autotrophic 

respiration), N2O fluxes refer mainly to the nitrification and denitrification processes occurring only 

in the soil (Butterbach-Bahl et al., 2013).  

Emissions of both GHGs are highly variable in space and time and depend on a multitude of different 

interacting environmental factors, e.g., land use/management, nitrogen/carbon inputs, meteorological 

conditions and physical and chemical soil properties (Davidson, 1992; Smith et al., 2003). They are 

largely regulated by plant physiological (Rochette et al., 1999) and microbial processes (Burton et 

al., 2008). Field measurements of GHG emissions and environmental drivers have paved the way for 

a basic understanding of observed emissions patterns. Nevertheless, the large number and complexity 

of the processes involved in the production and consumption of CO2 and N2O are still challenges in 

the reliable quantification of related GHG emissions (Butterbach-Bahl et al., 2013). Various 

biogeochemical models have been developed in recent years. These models are used for temporal as 

well as spatial up-scaling of GHG emissions, hypothesis testing of our understanding of processes, 

and, for scenario analyses and the evaluation of efficient mitigation options (Kim et al., 2015; Molina-

Herrera et al., 2016). These include, e.g., BASFOR (Oijen et al., 2005), CERES-EGC (Gabrielle et 

al., 2006), COUP (Jansson, 2012), DAYCENT (Parton et al., 1998) and DNDC and its descendant 

LandscapeDNDC (Haas et al., 2013). However, models are still simplifications of the real world and 

are prone to multiple sources of uncertainty, i.e., defective model structure and/or parameterization 

and the current model state (Vrugt, 2016). During model application, poor-quality model forcing data 

results in further uncertainties about the predicted model outcome (Kavetski et al., 2006). However, 

there is still no method available to properly address these sources of uncertainty at the same time 

(Vrugt, 2016). One promising way to reduce the magnitude of uncertainties in model output is to use 

model-data fusion techniques, i.e., matching model prediction with multiple observations by varying 

model parameters or states using statistical uncertainty estimation (Keenan et al., 2011). There are 

several statistical uncertainty estimation methods available, e.g., formal Bayesian approaches such as 

DREAM (Vrugt, 2016) and informal Bayesian approaches such as GLUE (Beven and Binley, 1992). 

However, these approaches are mostly used to fit models to single types of observations (Giltrap et 

al., 2010). Innovative multiple observation data evaluations with model-data fusion are becoming 

common in ecosystem carbon modelling (Wang et al., 2009) and are more and more important in the 
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nitrogen modelling community (Wang and Chen, 2012). The knowledge gained can and should be 

used to guide further model improvements (Vrugt, 2016). 

This work focuses on establishing model-data fusion in the biogeochemical community – i.e., 

showing the capability of this technique to improve process understanding through the application of 

process-based models. We present weekly measurements of CO2 and N2O emissions from a 

developed landscape with different land uses, i.e., arable land, grassland and forest ecosystems, 

covering a two-year period of observations. In addition to field measurements, we set up the 

biogeochemical LandscapeDNDC model for each of the three land uses. During model-data fusion 

with GLUE, we rigorously accept only model runs that return concurrent, acceptable outputs for N2O, 

CO2, and soil moisture at different depths and yields. Posterior model runs are not only evaluated as 

to whether they fulfil appropriate objective functions but also regarding realistic simulations of GHG 

emissions for separate seasons, annual sums as well as before and after land management. The model 

is finally used to estimate the magnitude and uncertainty of C and N fluxes, such as N2 emissions or 

autotrophic and heterotrophic CO2 emissions, which are not yet experimentally quantifiable in situ. 

The remaining model and data errors are traced back to their potential sources to improve ongoing 

measurements and future model applications. 

Material and methods 

Study area 

The study area is located in the catchment of a low mountainous creek (Vollnkirchener Bach) in the 

municipality of Hüttenberg, Hesse, Germany (50°29′56″ N, 8°33′2″ E). One kilometre north of the 

village of Vollnkirchen, next to the creek, we established eight transects (oriented mostly vertically 

to slope) along a valley cross-section covering different types of land uses (Figure III.1) for GHG 

emission measurements. See Table III.1 for detailed information on soils characteristics. Three 

transects (A1-A3) are located on arable land to the west of the creek and were cultivated with the 

same field management and crop rotations (Table III.1). Three transects are located in a light beech 

(Fagus sylvatica) forest (W1-W3) with young and old trees on a steep hillside (slope: 10%) east of 

the creek. A shallow 0.05 m litter layer characterizes the forest soils. Furthermore, there are two 

transects (G1, G2) located in the riparian zone at a 4 m distance to each side to the Vollnkirchener 

Bach. One of the two transects is managed and grazed grassland (G1), mainly covered with brown 

knapweed (Centaurea jacea), meadow foxtail (Alopecurus pratensis), red clover (Trifolium pratense) 

and ribwort plantain (Plantago lanceolata). The second transect (G2) represents a wetland and is 

mainly covered by meadowsweet (Filipendula ulmaria), common nettle (Urtica dioica), hoary 

ragwort (Senecio erucifolius) and field bindweed (Convolvulus arvensis). The groundwater table is 
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close to the surface on both grassland sites. The mean annual wet depositions of nitrate and 

ammonium were measured from 2013–2015 with 1.66 kg N ha-1 and 3.45 kg N ha-1, respectively. In 

the catchment, the mean annual precipitation is 588 mm, and the mean annual temperature is 10.5 °C 

for the hydrological year 1st Nov. 2013 - 31st Oct. 2014 (Seifert et al., 2016). The soil moisture is 

measured at A3 [0.2, 0.4 and 0.6 m], at G2 [0.1 and 0.25 m] and at W1 [0.15 and 0.25 m] and has 

been recorded at an hourly resolution since 2013. The weekly trace gas measurements began in 

November 2013 and range so far until December 2015. GHG exchange fluxes were measured 

manually with non-steady state opaque chambers, each covering a basal area of 0.12 m2. Chambers 

were placed on frames (both polypropylene), which were inserted approx. 8 cm into the soil in order 

to facilitate gas-tight sampling as well as to avoid soil structural damage and lateral trace gas leakage. 

Each chamber is equipped with an extraction septum, a counterbalance valve (in-box pressure 

balance) and a small fan/ventilator for homogenous mixing of the headspace air. During a 40-minute 

closure period, five air samples are taken from the chamber headspace at regular time intervals t0-t4 

of ten minutes (0, 10, 20, 30 and 40 min.). Samples are analysed by gas chromatography (GC 8610C, 

SRI Instruments, Torrance, US) with an ECD for N2O and a methanizer and FID for CO2. Sampling 

was performed on a weekly basis, with five replicated chambers per transect sampled by the gas 

sample pooling technique (Arias-Navarro et al., 2013). According to this approach, at any time 

interval (t0-t4), 10 ml headspace samples are collected subsequently from any of the five replicated 

chambers and are pooled into one gas-tight glass vial (SRI Instruments). The trace gas fluxes are 

calculated from the rate of change in the headspace gas concentration over time by linear regression 

and were corrected for the chamber temperature, atmospheric pressure and chamber volume 

according to Barton et al. (2008). All measurements with a regression quality of r2 < 0.7 for CO2 

(using at least four individual samples) were rejected. 

 

Figure III.1. Map of the study area. Red squares represent GHG chamber positions at the different transects. 

Dark grey contour lines represent 5 m differences in elevation, light grey areas are outside of the catchment 

area. 
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Soil emissions of CO2 and N2O can be subject to significant diurnal patterns, with peak values 

observed in the early afternoon (Savage et al., 2014), impeding the up-scaling of hourly measured 

emissions (usually obtained at midday) to daily values. We performed multiple linear regression 

(ordinary least squares regression including air temperature, relative humidity and water filled pores 

space) to account for the difference between, e.g., daytime (Wohlfahrt et al., 2005a) and night-time 

respiration (Wohlfahrt et al., 2005b). In our dataset, only CO2 emissions showed significant 

correlations with the mentioned environmental drivers on arable land (r2 = 0.53), grassland (r2 = 0.59) 

and forest (r2 = 0.51). Following Subke et al. (2003), we derived an hourly integration formula in 

order to obtain daily representative mean values of CO2 emissions from our field measurements 

conducted mostly between 9 am and 5 pm. N2O emissions are up-scaled to daily mean values with 

the common approach, i.e., by multiplying hourly emissions by 24. Annual CO2 and N2O emissions 

are calculated by linear interpolation between the measurements. All the underlying data is available 

upon request from a database (http://fb09-pasig.umwelt.uni-giessen.de:8081/). 

Modelling approach 

Model set up 

We tested the biogeochemical model framework LandscapeDNDC (Haas et al., 2013) with the 

observed data from our study area. Individual models were set up for arable land, grassland and forest 

ecosystems. The models describe different processes in ecosystem compartments, i.e., mathematical 

descriptions of microclimate, water cycle, plant physiology and soil biogeochemical processes. We 

applied the biogeochemical model MeTrx (Kraus et al., 2015) and the water cycle model 

watercycleDNDC (Kiese et al., 2011) for all land uses. The biogeochemical model MeTrx simulates 

the turnover of soil organic matter and plant debris depending on their chemical structures (e.g., lignin 

and cellulose content, C/N ratio), soil properties (e.g., pH value) and meteorological drivers. 

Following the ‘anaerobic balloon’ concept of Li et al. (2000), major metabolites (e.g., NO3) are 

distinguished between aerobic and anaerobic counterparts in order to simulate the share of 

nitrification and denitrification and the related production of GHG emissions. Simulated model 

outputs are, among others, emissions of CO2 and N2O. The watercycleDNDC model simulates soil 

water dynamics, i.e., potential evapotranspiration based on Thornthwaite and Mather (1957), 

transpiration depending on gross primary productivity, the water use efficiency of the modelled plant 

types and soil water flow based on a cascading bucket model approach (Kiese et al., 2011). The latter 

determines the advective transport of nutrients into deeper soil layers. model driving data, i.e., 

meteorological data and land use-specific soil and vegetation characteristics. To simulate plant 

growth on the three different land use types, we selected the individual physiology modules 
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arableDNDC, grasslandDNDC (Kim et al., 2015; Molina-Herrera et al., 2016) and PSIM (Grote et 

al., 2009). 

Table III.1. Input settings of the LandscapeDNDC model for the three different land uses in the Vollnkirchener 

study region, based on measurements and farmers management documentation. In case spans are given, they 

reflect observed ranges for measurements used throughout the set up of the soil profile, given from the top layer 

setting to the bottom layer. The soil depth was estimated for model set up. F = fertilizer application, M = manure 

application. 

Input Arable (A1-3) Grassland (G1) Forest (W1-3) Unit 

Vegetation type Sep 10 - Jul 11 Winter Barley 

Aug 11 - Aug 12 Rape 

Oct 12 - Aug 13 Winter Wheat 

Oct 13 - Aug 14 Triticale 

Sep 14 - Aug 15 Triticale 

Oct 15 - Jul 16 Rape 
 

Perennial grass Light beech forest - 

Management 2 Mar12 166.5 kg N ha-1 F 

2 Apr 12 49.9 kg N ha-1 F 

8 Nov 12 56.2 kg N ha-1 F 

11 Mar 13 54.0 kg N ha-1 F 

23 Apr 13 53.8 kg N ha-1 F 

3 May 13 29.3 kg N ha-1 M 

3 May 13 538.0 kg C ha-1 M 

12 Nov 13 29.0 kg N ha-1 M 

12 Nov 13 533.0 kg C ha-1 M 

11 Mar 14 54.0 kg N ha-1 F 

1 Apr 14 53.8 kg N ha-1 F 

8 May 14 40.5 kg N ha-1 F 

22 Sep 14 149.0 kg C ha-1 M 

22 Sep 14 8.1 kg N ha-1 M 

8 Nov 14 1032 kg C ha-1 M 

8 Nov 14 56.2 kg N ha-1 M 

11 Mar 15 1564 kg C ha-1 M 

11 Mar 15 85.1 kg N ha-1 M 

10 Apr 15 59.4 kg N ha-1 F 

30 Aug 15 59.4 kg N ha-1 F 

12 Nov 15 29.0 kg N ha-1 M 

12 Nov 15 532.0 kg C ha-1 M 
 

01 Feb 13 Grazing 

01 May13 Harvest 

01 Sep 13 Grazing 

02 Mar 14 Grazing 

01 May 14 Harvest 

01 Sep 14 Grazing 

20 Jan 15 Grazing 

29 Jun 15 Harvest 

26 Sep 15 Grazing 
 

 - 

Soil texture Sandy clay loam Sandy clay loam Sandy clay loam - 

Soil type Stagnic Luvisol Gleysol Cambisol  

Bulk density 1.55–1.60 1.20–1.44 1.36–1.49 g cm-3 

Organic carbon  1.57–0.91 2.55–0.71 3.61–1.73 % 

Total soil nitrogen 0.16–0.09 0.29–0.08 0.21–0.11 % 

Clay content 23–26 24–25 24–26 % 

pH 6.45 4.42 3.5–5.5 - 

Soil depth 2.00 0.50 0.55 m 
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All models refer to a one-dimensional soil column, i.e., assuming homogeneous conditions in lateral 

directions, and were run with a daily time step resolution. Tab. 1 provides an overview of the major  

Arable soils are stagnic luvisols with a thick loess layer, modelled down to 2.0 m with 80 layers, 

while the actual soil depth is unknown. Gleysols in the meadow grassland site were modelled down 

to 0.5 m (set up with 40 layers), corresponding to the mean annual groundwater table depth. The thin 

and stony soil at the forest site is a cambisol and modelled down to bedrock (0.55 m, set up with 45 

layers) with a litter height of 0.05 m. The bulk density increases with depth for every land use, while 

soil organic carbon and nitrogen decrease with depth. We run simulations for all land uses at a daily 

time resolution for 6 years, starting on 1st January 2010, using the data from Table III.1 as 

initialization and using a model spin-up time of two years. 

Model-data fusion  

For the multi-objective Bayesian model calibration, we used a two-tiered Generalized Likelihood 

Uncertainty Estimation (GLUE) approach (Beven and Binley, 1992). The model was iterated in both 

tiers 100,000 times by changing the parameter sets using Latin hypercube sampling with the Python 

software SPOTPY (Houska et al., 2015). The parameters for the physiology and the water-cycle 

modules were treated as land use-specific, while the parameters of the biogeochemical model were 

calibrated using the data from all land uses (Table A1). We presuppose no prior knowledge besides 

the given parameter ranges, i.e., we assume a uniform (non-informative) prior probability distribution 

for all parameters. We statistically judged the performance of every parameter set to reproduce 

measurements with a root mean squared error (RMSE). Similar to Bloom and Williams (2015), we 

do not explicitly consider measurement uncertainty during the model data fusion. As shown in 

Houska et al. (2017), one-tier GLUE based multi-objective model calibration can result in very low 

acceptance rates, down to 0.01%. We therefore considered a two-tier GLUE approach in order to 

increase the identifiability and accuracy of the accepted model runs: 

Tier I: In the first step, we constrained the parameter space of the hydrology and plant physiology 

modules of LandscapeDNDC by investigating the respective parameters of both models (Table A1). 

We accepted only model runs that were within the best 5% of all simulated RMSEs in terms of the 

respective variable (WFPS at different depths [arable land at 0.2, 0.4 and 0.6 m, grassland at 0.1 and 

0.25 m and forest at 0.15 and 0.25 m], as well as yield on arable land). Parameter sets were accepted 

if they belonged to the 5% best model runs for each land use. That is, we took the best 5% of the 

RMSEs for each respective output variable and took only the intersecting parameter set, which are all 

from the selected variables for one land use. The results of tier I are summarized in supplementary 

Fig. A1-A4 and are not further discussed in this study, as they belong to the initialization of the model.  
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Tier II: To achieve realistic GHG simulations from the MeTrx biogeochemical module of 

LandscapeDNDC, we took the posterior parameter boundaries of tier I and ran GLUE with all 

parameters of Table A1 again. This time, we considered the best 5% of all RMSEs in terms of the 

respective N2O and CO2 emissions for each land use (A1-3, G1 and W1-3). Again, only the 5% best 

intersecting parameter sets were accepted per land use. These results are shown in the following 

chapters. There was no major effect of the biogeochemical model parameters on the WFPS 

simulation. 

Posterior model runs of tier II were further investigated in three different ways:  

(1) Seasonal comparisons of measured and modelled emissions for spring (21st March - 20th June), 

summer (21st June - 20th September), autumn (21st September - 20th December), and winter (21st 

December - 20th March). 

(2) Management comparison of measured and modelled emissions, i.e., investigation of model 

performance within two weeks before and two weeks after management events to check model 

performance in generating hot moments, e.g., after fertilizer application. 

(3) Model performance in simulating magnitude and uncertainty of C and N fluxes not measured in 

situ, such as N2 or autotrophic and heterotrophic components of CO2 emissions. 

Results and discussion 

Measured N2O fluxes 

To determine the representativeness of each transect for a given land use, the respective differences 

in measured N2O emissions were compared (Table III.2). The temporal dynamics of N2O emissions 

are presented (Figure III.2), distinguishing between different seasons (Figure III.3) and before/after 

management events (Figure III.4). 

Arable land N2O fluxes: Emissions on arable land vary between 0 and 0.3 kg N2O-N ha-1 day-1. There 

were no significant differences over time between the three weekly measured transects on arable land 

(Table III.2). The highest emissions occur mostly after management events. Mineral fertilizer 

application in particular stimulates N2O emissions, causing hot moments from, for example, March 

to May 2014. The input of N through manure application has a minor influence on the magnitude of 

N2O emissions. The mean annual measured N2O emissions from arable land are comparably high 

with 4.5 kg N2O-N ha-1 a-1 (Jungkunst et al., 2006), equalling a GWP of 575 kg CO2-C equiv. ha-1 a-1. 

With a yearly fertilizer application of 248.2 kg N a-1 a mean annual emission factor (EF) of 1.4% 

(varying between 1.2% for A2 and 1.8% for A3) can be calculated, where 1 kg N ha-1 a-1 is attributed 

to the background emissions of unfertilized soil (IPCC, 1997). This EF is inside the IPCC-assumed 

range of 1.25 ±1% and close to the average EF (1.56%) of several (n=56) agricultural sites in 
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Germany (Jungkunst et al., 2006). A robust finding throughout the literature is that reduced nitrogen 

input would lead to lower emissions and therefore more climate-friendly agriculture (Bouwman et 

al., 2002). 

Grassland N2O fluxes: N2O emissions significantly vary between the grazed site G1 and the wetland 

site G2, which can be attributed to differences in management, hydrological, soil and vegetation 

characteristics. Most likely, the nitrate supply through groundwater and uptake by the rooting system 

of the plants is important (Liebermann et al., 2017). Even though the groundwater table (0.2 - 0.4 m 

belowground) is rather shallow in the winter/spring, the uptake rates in summer/autumn (groundwater 

table 0.3 - 1.0 m belowground) are supposedly larger due to the vegetation period. Here, capillary 

rise may play a relevant role (Orlowski et al., 2016). G1 is characterized by a mix of Centaurea jacea, 

Alopecurus pratensis, Plantago lanceolata and Trifolium pratense, is grazed by sheep twice a year 

and is cut once a year. Emissions from the grazed grassland vary between -0.0019 and 

0.014 kg N ha-1 day-1. High emissions were measured after grazing, e.g., in March 2014 when sheep 

dung was stimulating N2O emissions. Negative values depict N2O uptake and are frequently found 

under prevailing wet conditions in spring, a finding that was also reported by Glatzel and Stahr (2001). 

The grassland annual N2O emissions are much lower than those observed for the arable system 

(A1-3). However, with 0.29 kg N2O-N ha-1 a-1 are they in accordance with a study site 12 km 

northeast of our site, where annual emissions range from 0.18 to 0.79 kg N2O-N ha-1 a-1 on an 

unfertilized grassland with shallow groundwater table (Kammann et al., 1998). Their study also 

reports a similar seasonal pattern to our measurements, with emissions close to zero in the dry and 

colder autumn months. The measured annual emissions are below the assumed background level of 

N2O-N emissions of 1 kg N2O-N ha-1 a-1 from agricultural soils (IPCC, 1997). The annual N2O 

emissions are equal to a GWP of 37 kg CO2-C equiv. ha-1 a-1. The EF through grazing is 3.8%, which 

is in accordance with typical emissions factors from extensive grazed grasslands, ranging globally 

from 0.2 - 9.9% (Oenema et al., 1997). 

Wetland N2O fluxes: The non-managed transect G2 is dominated by species such as Urtica dioica, 

Filipendula ulmaria and Senecio erucifolius. Typically, a deeper rooting system is found compared 

to that in the grazed grassland transect G1, and accordingly, additional nitrate uptake from the 

groundwater is more prevalent. The mean measured emissions are higher on the non-managed G2 

than on the grazed G1 throughout the year, especially during summer and autumn (Figure III.3). The 

annual emissions are accordingly nearly two times higher at 0.52 kg N2O-N ha-1 a-1, which is equal 

to a GWP of 66 kg CO2-C equiv. ha-1 a-1.  

Forest N2O fluxes: Significant differences were found for the forest transects W2 and W3, which can 

be explained by natural variations along the steep hillslope: On the hillside (W2) the soil is potentially 
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washed out through lateral transport, leading to decreased nutrient availability, compared to the drier 

top (W1, +200% N2O emissions) and the wetter hillfoot (W3, +330% N2O emissions). The N2O 

emissions from the forest transects are mostly low, ranging between -0.003 and 0.004 kg N ha-1 day-1. 

Higher emissions were measured only for several weeks in January 2014, with the highest values 

observed at W1. We attribute this to freeze-thaw effects, typically found when year-around 

measurements are considered (Papen and Butterbach‐Bahl, 1999). Negative fluxes were measured, 

for example in March and May 2014. The underlying process of N2O uptake has been reported before 

(e.g., Flechard et al., 2005; Neftel et al., 2007) and is assumed to be a microbial process, in which 

denitrifiers use N2O as an electron acceptor for respiration under wet/anaerobic conditions (Bremner, 

1997). Negative emissions occur during times with high WFPS (Fig. A3), which is in accordance 

with Bremner (1997). However, our measured negative emissions are low compared to the variance 

between transects (W1-3), i.e., they could also originate from measurement errors. Our annual 

measured emissions in forests are 0.08 kg N2O-N ha-1 a-1 (GWP of 10 kg CO2-C equiv. ha-1 a-1 CO2 

emissions), which is much lower than that at adjacent grassland and arable sites. Moreover, this value 

is almost two orders of magnitude lower than the N2O emissions (5.1 kg N2O-N ha-1 a-1) measured 

from a beech forest in Högelwald, Germany (Papen and Butterbach‐Bahl, 1999). A likely reason is 

the substantially higher annual deposition rate of 25 kg N ha-1 a-1, an N input five times higher than 

that in our system. However, our measurements of N deposition only include wet deposition. 

Additional dry depositions are often assumed to add another 30-60% to total atmospheric N 

deposition (Flechard et al., 2011).  

Table III.2. Mean measured annual fluxes (Nov 2013 - Dec 2015) on the different land use transects of the Vollnkirchener 

Bach study area. Differences between the investigated transects and land uses for measured and modelled N2O emissions 

in kg N-N2O ha-1 a-1. * = significant difference (p < 0.05, Kruskal-Wallis test). Arable (A1-3), Grassland (G1), Wetland 

(G2), Forest (W1-3), RMSE in kg N-N2O ha-1 day-1. 

 
A1 A2 A3 G1 G2 W1 W2 Measured 

Mean 

measured 

Mean 

simulated Posterior RMSE 

A1        4.08 

4.49 7.33 

0.0326 - 0.0353 

A2        3.87 0.0238 - 0.0278 

A3        5.53 0.0285 - 0.0329 

G1 * * *     0.29 0.29 0.69 0.0029 - 0.0038 

G2 * * * *    0.52 0.52 - not simulated 

W1 * * *  *   0.09 

0.08 0.33 

0.0022 - 0.0025 

W2 * * * * *   0.03 0.0014 - 0.0021 

W3 * * *  *  * 0.13 0.0018 - 0.0021 

Measured CO2 fluxes 

Emissions measured using our closed chamber on arable land and grassland include those from soil 

and vegetation, as entire plants are covered by the chamber. Therefore, we interpret these emissions 

as total ecosystem respiration (TER). In contrast, chambers in the forest were placed on the forest 

floor without any vegetation inside; thus, these measurements include soil (heterotrophic) and root 
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(autotrophic) respiration, i.e., below ground respiration only. To determine the representativeness of 

each transect for a given land use, the respective differences in measured CO2 emissions were 

compared to each other (Table III.3). The measured CO2 emissions are given over time (Figure III.5), 

separated into different seasons (Figure III.6) and before/after management-events occur 

(Figure  III.7).  

Arable TER: Measured values from our arable transects range between 0 to 175.2, 199.6 and 

143.1 kg C-CO2 ha-1 day-1 for A1, A2 and A3 respectively and are not significantly different between 

the transects (compare Table III.3). Emissions occur mainly during the growing season, starting in 

March and ending in November. For a comparable study site in southern Finland, reported daily TER 

values under barley were between 23.6 to 235.6 kg C-CO2 ha-1 day-1 during May and September 

(Lohila et al., 2003), which is in the same range as our observations. The annual sum of our TER 

emissions is 19.96 ± 2.36 t C-CO2
 ha-1 a-1. This is slightly lower than yearly TER measured on a 

winter wheat study site in Belgium with 23.18 t C-CO2 ha-1 a-1 (Suleau et al., 2011). Demyan et al. 

(2016) reported lower values, with an average total of 11.43 t C-CO2 ha-1 a-1, derived from 

observations spanning six growing seasons in southwestern Germany. However, all studies are 

possibly prone to overestimations of the emissions from September to November, as daily emissions 

are generated with a multiple linear regression model, and in our case, are based on our hourly 

measurements of air temperature and soil moisture. Such methods do not fully account for 

management effects, such as harvests (Subke et al., 2003). 

Grassland TER: Emissions from grassland vary from 5.0 to 68.3 t C-CO2
 ha-1 a-1, with no significant 

difference between the two transects G1 and G2. Emissions are close to zero in the winter months 

(December to February) and highest during the growing season. A distinct negative correlation 

between the measured TER with WFPS was found during wet conditions from end of June to July in 

2014. In this time, emissions decrease to 41.0 kg C-CO2 ha-1 day-1. The total yearly emissions are 

11.79 t C-CO2 ha-1 a-1, which agrees well with the mean yearly emissions reported for 19 different 

grassland sites across Europe, with mean annual emissions of 12.83 t C-CO2 ha-1 a-1 (Gilmanov et al., 

2007). However, due to the many different grassland sites considered in their study, Gilmanov et al. 

report a much wider range of observed annual TER values, from 4.9 to 16.4 t C-CO2 ha-1 a-1. They 

also found that management is a main influencer of TER, where intensively managed grasslands 

produce higher emissions than extensively managed grasslands. With regard to grazing, we found 

only a minor direct impact on the measured flux rates (Figure III.7). 

Wetland TER: Emissions from the study site G2 vary from 0 to 92 kg C-CO2 ha-1 day-1 and are higher 

than those from G1, especially in the growing season. This is due to the higher above ground biomass 

of the different species present and represents a common pattern in unmanaged grasslands (Soussana 
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et al., 2007). Emissions typically end with the cessation of pasture growth during temperatures under 

5°C (Parsons, 1988). The annual emissions are 12.54 t C-CO2 ha-1 a-1, driven by the growing season.  

Forest below ground respiration: The mean measured belowground respiration spans between 

minimum values of 2.1 to 4.5 and maximum values of 9.3 to 19.9 kg C-CO2 ha-1 day-1 between the 

different transects (W1-3). While we found higher emissions in the summer months, seasonal 

differences have a lower magnitude of TER on arable and grassland. This was expected, as we do not 

measure above ground biomass respiration on our forest study site. Overall, rewetting has the 

strongest influence on changes in belowground respiration in our forest study sites. The highest 

emissions occurred in July 2014 after several rewetting events of the uppermost soil layer (Fig. A1). 

Xiang et al. (2008) reported that multiple rewetting leads to respiration rates of up to eight-times 

higher. The total yearly soil emissions are 2.98 ± 0.89 t C-CO2 ha-1 a-1, which is at the lower end of 

other European forest ecosystems, e.g., 6.6 ± 2.9 t C-CO2 ha-1 a-1, as reported by Janssens et al., 

(2001). The uphill transect W1 has the highest emission rates throughout the year and shows 

significant differences when compared to W2 and W3. This transect is less shaded by trees, resulting 

in a 1.3°C higher annual mean soil temperature compared to W2 and W3, likely causing higher 

CO2-emissions (Table III.3). 

Table III.3. Mean measured annual fluxes (Nov 2013 - Dec 2015) from the different land use transects of the 

Vollnkirchener Bach study area. Differences between the investigated transects and land uses for measured and modelled 

CO2 emissions in t C-CO2 ha-1 a-1. * = significant difference (p < 0.05, Kruskal-Wallis test). Arable (A1-3), Grassland (G1), 

Wetland (G2), Forest (W1-3), RMSE in kg C-CO2 ha-1 day-1. 

 A1 A2 A3 G1 G2 W1 W2 Measured 

Mean 

measured 

Mean 

simulated Posterior RMSE 

A1        20.10 

19.96 20.53 

30.73 - 36.38 

A2        22.25 35.66 - 42.26 

A3        17.54 22.90 -  28.46 

G1        11.79 11.79 13.24 7.01 -  9.08 

G2        12.54 12.54 - not simulated 

W1 * * * * *   4.00 

2.98 3.28 

3.53 - 3.89 

W2 * * * * * *  2.38 3.37 -  4.07 

W3 * * * * * *  2.56 3.15 -  3.96 

 

Modeled N fluxes 

After selecting the posterior model runs as described in the model-data fusion chapter, we found the 

model to be generally capable of reproducing the measured data and consequently investigated the 

modelled C and N cycles in more detail. The modelled N2O emissions are shown for the different 

land uses over time (Figure III.2), separated into different seasons (Figure III.3) and before/after 

management-events occur (Figure III.4). The complete modelled N cycle is given in Table III.4. 

Arable land N cycle: The arable land simulations consider an annual N input of 198 kg N ha-1 a-1. 

This input is balanced by 108.6 ± 50.1 kg N ha-1 a-1 gaseous (primarily N2), 30.0 ± 29.9 kg N ha-1 a-1 

nitrate leaching and 99.7 ± 7.8 kg N ha-1 a-1 harvest losses (Table III.4), meaning that the modelled 
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outputs are higher than the given inputs. This gap in the annual N cycle is fed by soil storage in the 

model, indicating N depletion over time. Even though N losses through NO3
- and particularly N2O 

emissions (7.3 ± 2.3 kg N ha-1 a-1) are only a minor proportion of the total N balance, both rates are 

high regarding their environmental impacts as a GHG contributing to global warming and as a water 

pollutant regarding eutrophication and drinking water supply, respectively. However, the uncertainty 

related to our estimated NO3
- leaching rate is overall the largest source of uncertainty in our N balance. 

These estimates cannot be sufficiently constrained with the given observation data, but they are in 

accordance with other reported N leaching rates on arable land in Germany (Siemens and 

Kaupenjohann, 2002). 

The simulated N2O emissions contribute 3.1% to the total simulated N losses. The underlying model 

runs follow the trend of the observation data. Hot moments can be observed after fertilizer 

applications, and they are predicted by the model in time but sometimes not in magnitude (e.g., March 

to May 2014). During these events, soil moisture is often not modelled accurately: The model predicts 

rewetting processes that have not been measured at the same magnitude (Fig. A1), which might 

explain the overestimated fluxes. One possible reason may also be uncertain rainfall model input data. 

Kavetski et al. (2006) found the measurements of precipitation within a catchment to be uncertain, as 

the trajectory of storm cells through a catchment may be different for each storm and may not have 

their centres at the rain gauge, where rainfall inputs are traditionally measured. Our rainfall data are 

measured 4 km northeast of the trace gas study area and is likely affected by such uncertainties.  

The total simulated and measured emissions on the arable site are highest in the spring (Figure III.3). 

While the transects A1 and A2 vary, with 95% of the values between 0 and 0.05 kg N2O-N ha-1 day-1, 

A3 shows more variation, up to 0.15 kg N2O-N ha-1 day-1. As A3 is located at the hill toe, we attribute 

this effect to the lateral transport of nitrate from uphill. However, our one-dimensional model setup 

does not cover lateral water and nutrient transport; accordingly, the model is not able to predict the 

higher emissions at A3 in the spring. While such a process is part of complex integrated hydro-

biogeochemical catchment models (Haas et al. 2013; Klatt et al., 2017; Wlotzka et al., 2013), it has 

not yet been confirmed experimentally. The distributions of the measured emissions in the summer, 

autumn and winter seasons are well in accordance with the modelled emissions. Furthermore, the 

modelled emissions are also in agreement with emissions measured before and after manure 

applications (Figure III.4). This result agrees with a study by Molina-Herrera et al., (2016) who found 

LandscapeDNDC to be capable of simulating agricultural N2O emissions. However, in our case, the 

model overestimates peak emissions before fertilizer applications, which leads to higher mean annual 

modelled emissions (7.33 kg N2O-N ha-1 a-1). This is 2.8 kg N2O-N ha-1 a-1 higher than our observed 

emissions and is even outside the large model uncertainty of 2.3 kg N2O-N ha-1 a-1. Hence, future 
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research should specifically investigate the reason for this overestimation of peaks, either by revising 

the model structure or by identifying other sources of model uncertainty.  

Grassland N cycle: Grassland simulations consider an annual N input of 12.7 kg, with 7.6 kg coming 

from modelled biomass that is transferred into dung and urine applied by grazing sheep. The 

simulated N loss is substantially larger than the N input, with 22.3 ± 13.3 kg N ha-1 a-1 gaseous losses 

(primarily N2), 1.5 ± 3.19 kg N ha-1 a-1 occurring as nitrate leaching and 29.8 ± 9.4 kg N ha-1 a-1 as 

biomass removal through grazing sheep and harvest (hay making). Comparing inputs and outputs, we 

simulated a mean nitrogen gap of 40.9 ± 25.9 kg N ha-1 a-1. The model suggests decreasing soil 

organic N stocks. So far, we have only initial measurements of soil organic N content. However, we 

assume that the source of additional N in the form of nitrate in shallow groundwater is a potential 

dominating process that is not included in the current LandscapeDNDC version we used. Liebermann 

et al. (2017) used a revised LandscapeDNDC setup for hypothesis testing to identify potential 

additional N sources in groundwater-dominated grasslands and showed that groundwater N uptake is 

a likely contributor. 

Taking a closer look at the modelled N2O emissions, one can see that the model did not reproduce 

high or negative (N2O uptake) emissions. Currently, LandscapeDNDC does not consider any N2O 

uptake, and accordingly, negative fluxes cannot be simulated by the model. The peaky dynamics of 

the simulated N2O emissions, especially from August 2014 to January 2015, are not confirmed by the 

measurements, indicating possible measurement errors during this period of time. In a grazed system 

with, in our case, approximately 70 sheep per hectare, the animal urine patches create emissions hot 

spots. With only five chambers, it is possible that the measurements could miss these hot spots. 

Additionally, the LandscapeDNDC model will assume that the manure is uniformly spread over the 

field, producing emissions that are likely to be higher than those from non-urine patches, but lower 

than those from urine patches. One has also to consider the temporal mismatch of our weekly N2O 

measurements and the hourly simulations, making a full match of the observations with the 

simulations difficult. So far, there is no clear effect of grazing on the N2O emissions on the grassland 

site in both the measurements and modelled results (Figure III.4). The mean modelled annual 

emissions overestimate the observations by 0.4 kg N2O-N ha-1 a-1, and even the simulated uncertainty 

bounds of 0.27 kg N2O-N ha-1 a-1 do not capture the measured dynamics.  

Forest N cycle: The N input is given for the forest model only considering atmospheric deposition 

with an annual amount of 5.1 kg N ha-1 a-1. Gaseous losses amount to 1.8 ± 2.0 kg N ha-1 a-1. 

Leaching contributes to 2.0% of the N output. The rest (3.3 ± 2.0 kg N ha-1 a-1) is allocated into 

biomass and soil. By taking a closer look at the N2O emissions (Figure III.2), we see that the model 

fails to reproduce the observed emission dynamics. 
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Figure III.2. Measured and modelled N2O emissions from different land use. Measurements are given as grey 

error bars showing the variance between the replicated transects and the mean value as a black dot. Posterior 

model uncertainty is given in light colour for the 5 and 95 percentiles and dark colour for the 25 and 75 

percentiles. Vertical lines indicate management events. In the uppermost panel, blue coloured vertical bars 

indicate fertilizer application, while brown colours indicate manure application. 

 

Figure III.3. Observed and modelled N2O emissions for spring (21st Mar. - 20th Jun.), summer (21st Jun. - 20th Sep.), 

autumn (21st Sep. - 20th Dec.), and winter (21st Dec. - 20th Mar.). 
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Figure III.4. Management effects on N2O emissions. Measured and modelled emissions within a time window 

of 2 weeks before and 2 weeks after a management. 

 
Table III.4. Simulated nitrogen fluxes given by posterior model runs and their uncertainty on different land 

use in [kg N ha-1 a-1]. N manure on grassland includes urine and dung input by sheep. Biomass output on 

grasslands combines harvest export and biomass leaving the system through sheep. Arable land model 

assumes 20% return of stubble to field. 

 Modeled N flux Arable land Grassland Forest 

N deposition 
5.11  5.11  5.11  

N manure 
57.55  7.57  0  

N fertilizer 
135.37  0  0  

Total input 198.03  12.68  5.11  

NO emis. 
0.57 ±0.16 0.46 ±0.21 0.45 ±0.33 

N2 emis. 
62.55 ±26.83 18.69 ±10.91 1 ±1.5 

N2O emis. 
7.33 ±2.3 0.69 ±0.27 0.33 ±0.15 

NH3 emis. 
38.15 ±20.8 2.45 ±1.89 <0.01 ±<0.01 

Total gaseous output 108.6 ±50.09 22.29 ±13.28 1.78 ±1.98 

DON leaching 0.01 ±<0.01 0.01 ±<0.01 0.01 ±<0.01 

NO3 leaching 30.01 ±29.9 1.46 ±3.19 0.03 ±0.04 

Total leaching output 30.02 ±29.9 1.47 ±3.19 0.04 ±0.04 

N grain export 
63.92 ±5.17 0  0  

N straw export 
35.75 ±2.67 29.77 ±9.44 0  

Total biomass output  99.67 ±7.84 29.77 ±9.44 0  

Balance 
-40.26 ±87.83 -40.85 ±25.91 3.29 ±2.02 

The observed N2O emissions have high error bars, and not all transects are driven by frost-thaw cycles 

or N2O uptake at the same time (Table III.2). Parameterizing and simulating the forest transects 

independently from each other would improve the simulations. One limiting factor is that both N2O 

uptake and frost-thaw cycles are not included in the current version of LandscapeDNDC. We 

therefore recommend the inclusion of frost-thaw cycles (e.g., based on De Bruijn et al., 2009) in the 

model, as this process can have a major influence on N2O inventories, e.g., up to 73% of the total 

annual N2O loss at a forest site in Högelwald, Germany (Papen and Butterbach‐Bahl, 1999). The 

mean modelled annual emissions (0.33 ± 0.15 kg N ha-1 a-1) overestimate the observed emissions on 

all transects.  
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Modeled C fluxes 

The modelled CO2 emissions are shown for the different land uses over time (Figure III.5), separated 

into different seasons (Figure III.6) and before/after management events (Figure III.7). The complete 

modelled C cycle is given in Table III.5.  

Arable land C cycle: The LandscapeDNDC simulations for the arable system predict a mean annual 

gross carbon uptake of 25.7 ± 1.3 t C-CO2 ha-1 a-1. 20.5 ± 1.8 t C-CO2 ha-1 a-1 leaves the system 

through respiration, to which maintenance respiration contributes the largest proportion (65%). This 

is in accordance with annual measured losses (Table III.3). The harvest output is with 

4.7 ± 0.4 t C ha-1 a-1 and is in good agreement with the observed yields (Figure A4). However, the 

temporal dynamics of the modelled TER on the arable land study site underestimate the emissions in 

the summer season (Figure III.6), and the mean modelled fluxes are substantially lower than those 

measured before and after the harvest (Figure III.7).  Tillage and harvest events occur in the summer 

season. While the observed emissions drop after harvest by 25%, the modelled emissions drop by 

50%. The reason for this is either an underestimation of the emissions through LandscapeDNDC 

(after harvest events until tillage occurs) or uncertainties in the measured CO2 emissions upscaling 

method (discussed in chapter 2.1). As microbial processes can oxidize more soil carbon after harvests 

(resulting in higher heterotrophic respiration), we assume that the discrepancy stems from the model 

simulations. There are studies, e.g., Buyanovsky et al. (1986), which report the highest soil respiration 

rates after harvests. The modelled and measured soil CO2 emissions agree well after tillage. However, 

unless there is a gap of two weeks or more between harvest and tillage, the "pre-tillage" results will 

include some post-harvest effects, and the "post-harvest" results will also include some post-tillage 

effects. Our intention to present the data grouped by these events are the discrepancies between 

modeled and observed CO2 dynamics. There is a sharp drop of modeled CO2 emissions after harvest 

due to the prompt absence of autotrophic respiration. In reality, there will likely be some ongoing 

metabolic respiration of plant tissue remaining in the field, which is not represented by the 'assumed' 

dead plant material in the model. After incorporation of harvest residues (at tilling) modeled CO2 

emissions increase again sharply. The sharp increase is due to the incorporation and hence availability 

of fresh litter (stubble) and a temporary stimulation of decomposition by the model due to the 

disruption/aeration of the soil structure. Both, overestimation of fresh litter and/or stimulation of 

decomposition by the model may contribute to the discrepancies between observed and modelled CO2 

emissions. 
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Figure III.5. Modelled CO2 emissions and management. Measurements are given as grey error bars showing 

the variance between the replicated transects and the mean value as a black dot. Posterior model uncertainty is 

given in light colour for the 5 and 95 percentiles and dark colour for the 25 and 75 percentiles. Vertical lines 

indicate management events. Brown coloured bars in the uppermost panel indicate manure application. 

 

Figure III.6. Observed and modeled CO2 emissions for spring (21.03 20.06.), summer (21.06. 20.09.), autumn 

(21.09. 20.12.), and winter (21.12. 20.03.). 
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Figure III.7. Management effects on CO2 emissions. Measured and modeled emissions where selected in a 

time window of 2 weeks before and 2 weeks after a management. 

 

Table III.5. Simulated carbon fluxes given by posterior model runs and their uncertainty on different land use 

in [t C ha-1 a-1]. C manure on grassland includes input by sheep’s dung. Arable land model assumes 20% return 

of stubble to field. 

Modeled C flux Arable land Grassland Forest 

CO2 uptake 
24.65 ±1.32 16.8 ±1.72 8.94 ±0.56 

C manure 
1.06  0.07  0  

Total input 25.71 ±1.32 16.87 ±1.72 8.94 ±0.56 

Growth respiration 
2.53 ±0.2 0.81 ±0.27 1.44 ±0.05 

Heterotrophic respiration 
4.69 ±0.53 2.27 ±0.9 2.04 ±0.1 

Maintenance respiration 
13.31 ±1.06 10.16 ±1.13 3.11 ±0.39 

Total gaseous output 20.53 ±1.79 13.24 ±2.3 6.59 ±0.54 

DOC leaching <0.01 ±<0.01 <0.01 ±<0.01 <0.01 ±<0.01 

 Total leaching output <0.01  <0.01  <0.01  

C bud export 
1.97 ±0.17 0  0  

C straw export 
2.75 ±0.21 2.28 ±0.72 0  

Total biomass output  4.72 ±0.38 2.28 ±0.72 0 
 

Balance 
0.46 ±3.49 1.35 ±4.74 2.35 ±1.1 

Grassland C cycle: The LandscapeDNDC simulations for the grassland system (G1) predict a mean 

annual gross carbon uptake of 16.9 ± 1.7 t C-CO2 ha-1 a-1 and an annual loss of 

13.2 ± 2.3 t C-CO2 ha-1 a-1 through respiration. The rest is related to grazing  

(0.2 ±< 0.01 t C-CO2 ha-1 a-1), harvesting (2.1 ± 0.7 t C-CO2 ha-1 a-1) and allocation in the soil 

(1.4 ± 4.7 t C-CO2 ha-1 a-1). The model cannot determine whether the system is net gaining or losing 

carbon. The annual mean and temporal dynamics of the modelled emissions are well in accordance 

with the measured emissions. The effect of grazing has a minor influence on the total ecosystem 

respiration (Figure III.7), resulting in a wider range of both measured and modelled emissions. 

Grazing, i.e., the reduction of root biomass, results in two contrary processes: a reduction in 

maintenance respiration and an increase in autotrophic respiration (Raich and Tufekciogul, 2000). 

Forest C cycle: The forest model predicts an annual C input of 8.9 ± 0.6 t C-CO2 ha-1 a-1, which is 

quite low compared to the estimations for old-growth beech forests in Europe, with reported rates 
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from 14.4 to 18.3 t C-CO2 ha-1 a-1 (Molina-Herrera et al., 2015). However, C uptake rates vary in 

magnitude, with values ranging from 3 to 34 t C-CO2 ha-1 a-1 for different forests in different growing 

stages (Waring et al., 1998). As our study site is a mixture of young and old beech trees, we assume 

that it has 40 - 50% less biomass compared to an old beech forest. Of the modelled C input, 

6.6 ± 0.5 t C-CO2 ha-1 a-1 leaves the system as gaseous CO2. The rest is accumulated in the biomass 

and soil. The annual mean and dynamics of the modelled emissions are in accordance with the 

measured emissions. We expected to see rising emissions with litter fall in autumn (Raich and 

Tufekciogul, 2000), but cannot report this effect, either with measurements or with model results 

(Figure III.6). 

 

Conclusion 

We presented a two-year measurement campaign of trace gas emissions from adjacent land uses i.e., 

arable land, grassland and forest ecosystems, with concurrent model development and rigorous testing 

through a model-data fusion.  

We found high emissions of N2O and CO2 on our arable land sites, low emissions on grassland sites 

and the lowest emissions on the forest sites. These observations enable us to investigate the underlying 

effects of plant growth, temperature and WFPS, land use effects, seasonal patterns and management 

effects. Respiration amounts rise in less shaded (warmer) areas of the forest, while N2O emissions 

increase towards the foothills of the forest and arable land sites due to nitrogen accumulation. Highly 

variable N2O emissions in forests resulted in large uncertainties in the model verification data, which 

translated into large uncertainties in the model results for forests. 

Table III.6. Overall posterior model performance of LandscapeDNDC on different land uses in reproducing 

GHG emission data. Subjectively classified into (1) good, (2) medium and (3) poor model performance in 

simulating reliable annual sums, seasonal patterns and magnitudes of management events (e.g., fertilizer 

application). NA = not applicable, i.e., no forest management during modelled period from 2010-2016. 

Modelled performance 
on each land use 

N2O emissions  CO2 emissions 

annual seasonal management annual seasonal management 

Arable land (A1-3) 2 1 1 1 2 3 
Grassland (G1) 1 2 1 1 1 1 
Forest (W1-W3) 2 2 NA 1 2 NA 

 

Detailed measured data on soil and management allowed us to fit the biogeochemical model 

LandscapeDNDC to the measured soil moisture, yield and GHG emissions of CO2 and N2O. A 

subjective conclusion about the overall model performance is shown in Table III.6: The model 

reproduced the measured data reasonably well in time, separated into seasons and management 

events. The model performance was best in predicting management effects on N2O emissions and 

annual CO2 emissions for all land uses. With regard to land use, the simulations for grassland sites 
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work best, followed by those for arable land. The simulations for N2O emissions on arable land 

outperform those for CO2, and vice versa for grassland. Low emissions on forest sites were generally 

difficult to depict using our modelling approach.  

The model-data fusion approach allowed us to identify model structural deficiencies that would likely 

increase model performances if addressed in Landscape DNDC: missing N2O uptake processes; 

missing NO3
- (and potentially dissolved organic nitrogen) uptake through shallow groundwater; 

missing lateral interaction on hillslopes due to the 1D model setup. 

Furthermore, posterior model runs allowed for the quantification of the magnitude and uncertainty of 

unmeasured C and N cycle fluxes. The investigated forest site generally acts as the largest sink for C 

and N, with annual sequestration rates of 2.4 ± 1.1 t C ha-1 and 3.3 ± 2.0 kg N ha-1. Whether the 

extensive grazed grassland is also acting as a sink for C with 1.4 ± 4.7 t C ha-1 per year remains 

uncertain, while the N cycle of the grassland model cannot be closed with the given settings. 

Shrinking N soil pools indicate a missing input, which we assume to be shallow groundwater with an 

additional N supply of approximately 40.9 ± 25.9 kg N ha-1 a-1. 

Current land use in this catchment is dominated by forests (37%) and arable land (35%), whereas 

grassland sites (11%) are mainly distributed along the stream. From the viewpoint of climate-smart 

landscapes, the measured data suggest the benefit of forests in a landscape, as they have the fewest 

GHG emissions. Riparian zones can act as sinks of N but only during the vegetation period and during 

times when roots have access to groundwater. Arable land use produces high amounts of N2O, not 

throughout the year, but rather, in spring after fertilizer application.  

Potential interactions of land use patterns cannot be quantified with the current one-dimensional 

model approach. However, the dataset could be used in future studies to quantify the nitrate uptake 

of riparian zones in more detail, e.g., by coupling LandscapeDNDC to a hydrological model, as done 

by Klatt et al. (2017). Such a model setup would also allow for upscaling in space, e.g., for the 

generation of GHG inventories or an analysis of more detailed management scenarios in time. 
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