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Abstract

Cancer is a complex and dynamic disease manifesting in ~100 distinct cancer
types that arise in multiple cell types and organs due to different but related mech-
anisms. Research from the last decade has revealed vast heterogeneity within and
between cancer types, hampering effective treatment and calling for more person-
alized treatment strategies. This thesis develops methodology for detection and
molecular characterization of cancer subtypes by focusing on the analysis of ex-
periments generating large datasets. The first objective was to provide algorithms
for rapid detection and quantification of microRNAs and analysis and visualiza-
tion of DNA methylation. The second objective was to investigate the cellular and
molecular origin of embryonal rhabdomyosarcoma (ERMS), a rare and aggressive
childhood cancer.

Two new computational methods were implemented and evaluated by compari-
son to previously published findings. DNA copy number alterations and gene expres-
sion estimates were obtained from a novel model system for ERMS and integrated
with molecular data from cancer patients. Cell tracing experiments unambiguously
demonstrated that ERMS is derived from tissue-resident muscle stem cells, at least
in the model system used. In-depth data analysis revealed a diverse molecular basis
of ERMS, confirming cancer heterogeneity. Surprisingly, activation of zygotic Dux
factors identified a novel cancer subtype that is not limited to ERMS, but occurs
in a broad range of different human cancer.

Based on the results, it can be concluded that computational methods and in-
tegrative data analysis are useful to delineate the origin of cancer subtypes and
provide a valuable starting point for selection of relevant therapeutic targets. How-
ever, future research is needed to establish more holistic analysis approaches and
transfer findings into existing clinical routines.
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1 Introduction

1.1 Rationale

Cancer is one of the leading causes of death around the world, being responsible for
nearly 10 million deaths in 2018 (Bray et al., 2018). Cancer is a complex disease that
can arise in multiple tissues, originating in numerous cell types and by different albeit
related mechanisms. Currently, ~100 distinct cancer types are known to emerge from
interactions of hundreds to thousands of macromolecules. Recent decades of research
have generated detailed insights into variations of cancer initiation, progression, severity
and treatment resistance. However, a clear vision and path for the cure of cancer is still
missing (Koutsogiannouli, Papavassiliou, & Papanikolaou, 2013; Nurse, 1997).

Efficiency of tumour treatment depends on and is affected by cellular and molecular
tumour profiles. However, individual tumours from different patients exhibit different
molecular profiles and properties like cellular morphology, gene expression, metabolism,
proliferation or metastatic potential. Such intratumoural heterogeneity is caused by
cancer subtypes and hampers effective design of treatment strategies. It is one of the
biggest challenges for successful cancer treatment. A promising approach to overcome
intratumoural heterogeneity aims to identify individual patients with similar cancer
subtypes and to tailor specific treatments for those patients (Senft, Leiserson, Ruppin,
& Ronai, 2017; Vincent, 2017). Termed precision medicine, it requires integration of
patient data from multiple sources (e.g. genomics, epigenomics, clinical data, lifestyle
and environment) to identify therapeutic targets that are essential for subtype-specific
tumour initiation and progression. To fulfil those requirements and to support clinical
decision making, appropriate computational methods for managing, integrating and
analysing large and complex data sets are needed (Singer et al., 2017).

The initial sequencing of the human genome (International Human Genome Se-
quencing Consortium, 2001) has marked the beginning of cancer genomics and initiated
a new era of modern biomedical research. Disruptive advances in DNA sequencing
technology revolutionised not only cancer research, but also the way how genome-wide
questions can be addressed (MacConaill, 2013). With the advent of next generation se-
quencing (NGS) technology, it became possible to profile cancer genomes (Pugh et al.,
2012; Stephens et al., 2009), which significantly enhanced the ability to study neoplastic
transformation based on changes in the genome sequence. Notwithstanding, enourmous
amounts of data generated by NGS introduced new challenges in computational data
analysis (Mardis, 2011; Wu, Rice, & Wang, 2012). Transformation of this data to gain
a holistic understanding of the complex and dynamic systems of cancer is challenging
(Grizzi et al., 2006; Sigston & Williams, 2017).
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1. Introduction

This thesis provides methodological development and application of software within
the scope of computational cancer biology, focusing on the analysis of data from NGS
experiments to support the characterization of the molecular basis of cancer subtypes
and the investigation of mechanisms underlying cancer formation. The objectives are:
to provide an algorithm for rapid detection and quantification of small, regulatory RNA;
to develop a software pipeline for analysis and visualization of CpG-site methylation in
a case-controlled setting; to investigate the cellular and molecular origin of a childhood
cancer, embryonal rhabdomyosarcoma, by an integrative analysis of data generated
from NGS experiments and to delineate potential cancer subtypes and the mechanisms
of tumour formation.

1.2 Background
The origin of cancer and its development has been a subject of debate, covered by
several theories. In the early nineteenth century, a professor of anatomy and pathology
at the Royal Anatomical Museum in Berlin, Johannes Müller, recognised for the first
time the cellular structure of cancer. Using microscopic pathology, he observed how
morbid growth resembles the tissue from which the cancerous growth springs. Since
then, modern oncology seeks the origin of cancer in a transformation of a healthy cell
into a disease state characterized by uncoordinated and excessive cell growth.

The upcoming sections highlight several theories that provide explanation for dif-
ferent cancer-causing mechanisms with implications for cancer classification, diagnosis,
therapy and research. Additionally, a brief introduction into integrated molecular data
analysis is provided.

1.2.1 Genomic alterations transform cells into cancer cells

While normal cells retain their ability to control the production and release of growth-
promoting signals and thereby provide tissue architecture and homeostasis of cell num-
ber, cancer cells are characterised by chronic proliferation and constant re-entry into the
growth-and-division cycle (Hanahan & Weinberg, 2011). The somatic mutation theory
postulates that molecular events such as genomic mutations precede cell transforma-
tion (Fig. 1a), black lightning and red cells) allowing cells to overcome cell control
mechanisms. By such, transformed cancer cells are able to e.g. escape the control of
growth suppressors, bypass mechanism of induced cell death, delay or avoid entry into
cell senescence, induce angiogenesis and/or alter cell-to-cell contacts to activate inva-
sion of surrounding tissue (Hanahan & Weinberg, 2011). At the core of this theory,
mutations in so-called master genes, i.e. genes that have the potential to cause cancer
(oncogenes) or genes that protect the cell from cancer progression (tumour suppressor
genes), determine the onset of cancer.

The search for transformation-causing genome alterations accelerated through recent
advances in NGS technologies which led to an impressive accumulation of data from
large-scale genome sequencing projects like the Cancer Genome Project or The Cancer
Genome Atlas. Collectively, both projects list 81 million simple somatic mutations across
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1.2. Background

Somatic cells Environment Lifestyle TreatmentNatural selection process

a b

Figure 1: Heterogeneity in the process of cancer formation. (a) Molecular events
(straight arrows, exemplified for one cell) increase genome context heterogeneity (col-
ors) and confer differences in fitness between somatic cells. Oncogenic transformation
(black lightning) enables positive natural selection and the evolution of cancer. (b)
Cell population heterogeneity is additionally increased by external factors acting on the
individuals genome context.

cancer genomes from nearly 25,000 individuals in the International Cancer Genome
Consortium Data Portal Release 28. However, the search did not reveal a single pattern
of genetic alterations that is universal to most cancers. Instead, a tremendous genetic
heterogeneity in underlying mechanisms of cancer formation emerged, despite common
features of cancer cells.

The observed genetic heterogeneity among cancer and even within similar cancer
types suggests that most individual tumours exhibit altered genome contexts (genes,
regulatory elements and genomic topology), with different genomic mutations. The
Genome Theory is an extension of the somatic mutation theory and seeks to explain
cancer heterogeneity by additionally including cell population heterogeneity and the
process of natural selection (Heng et al. (2010), Fig. 1). Cancer formation is seen as
an evolutionary process initiated through internal (e.g. somatic mutations) or external
(e.g. environment, lifestlye, treatment) stress that results in genome context instability.
Additional genetic or epigenetic mutations may occur in individual somatic cells with
instable genomic contexts, increase the cell population heterogeneity and confer differ-
ences in fitness between somatic cells. Importantly, as genetic or epigenetic mutations
are heritable and can be passed to a cells progeny, all requirements for natural selec-
tion are met and evolution of somatic cells within individual patients towards cancer is
enabled.

The occurence of genome-level alterations in an instable genome context is a stochas-
tic process and therefore the probability of successful progression towards cancer is high-
est through alterations significantly impacting the phenotype of a cell. However, the
stochastic nature complicates the prediction of which pathway will become dominant
prior to tumour formation and renders the characterization of individual cancer path-
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1. Introduction

ways less meaningful. Ultimately, it impedes the establishment of a general model of
cancer origin and obscures understanding of how cancer can be managed in classical
clinical treatment.

1.2.2 Disrupted context: Cancer as a tissue-based disease

Organs and higher-level structures are comprised of tissue with functional (parenchyma)
and structural (stroma) parts. Information exchange between cells of a tissue via cell-to-
cell contacts, cytokine signaling and the extracellular matrix, a macromolecular scaffold
to support surrounding cells, enables maintenance of cell differentiation and tissue struc-
ture. Tissue-level interactions are important for embryonic development, regeneration
and morphogenesis, e.g. to provide necessary mechanical forces for proper tissue for-
mation (Hernández-Hernández, Rueda, Caballero, Alvarez-Buylla, & Benítez, 2014).
Therefore, disruption of tissue organisation is thought to be carcinogenic through en-
tailed disruption of tissue-level interactions.

The physiomitotic theory sees carcinogenesis as a problem of tissue organisation and
relates the acquisition of mitotic activities to development of cancer by non-regulated
cell turnover among normal tissue (Hirata & Hirata, 2002; Paduch, 2015). Two types
of mitosis maintain tissue histology and continuity: duplicating mitosis regenerates a
basal pool of undifferentiated cells in a space-restricted duplication area by creating two
identical daughter cells. Those cells are constantly consumed in surrounding areas by
maturating mitosis, which creates two daughter cells that are more mature than the
parent cell and contribute to tissue diversity and functionality via cell differentiation
(Fig. 2a). Disrupted tissue organisation and regulation may evoke duplicating mitosis
at ectopic sites among normal tissue, thereby creating aberrant and undefined tissue
identity. This might lead to non-regulated cell turnover and maturation into cancerous
tissue (Fig. 2b).

Similarly, the tissue organisation field theory argues that interactions among differ-
ent tissue components cannot be explained on a cellular level and that carcinogenesis
cannot be reduced to cellular events (Paduch, 2015). Cancer initiation is preceded by a
carcinogenic event and chronically disrupts reciprocal interactions between stroma and
parenchyma of a tissue, but cannot be observed in individual, isolated cells.

A well-known example and important feature of interactions of stroma with sur-
rounding cells is the maintenance of polarized epithelial sheets, a basic tissue type that
lines outer surfaces of organs and surfaces of inner cavities. Cell polarity is established
by interaction with the basement membrane and cell-to-cell contacts, like adherens junc-
tions, gap junctions, tight junctions and desmosomes (Fig. 2c). Alterations of epithelial
sheets, e.g. through wounding and subsequent activation of stromal fibroblasts, can
lead to epithelial cell movement and proliferation. Similarly, sustained inflammation
and continuous exposition to factors produced by invading immune cells and enzymes
degrading the extracellular matrix (ECM, e.g. matrix metalloproteinases) stimulate pro-
liferative and apoptotic mechanisms, which can lead to selection of apoptosis-resistant,
premalignant cells and enhance formation of carcinoma (Fig. 2c, Bissell & Radisky
(2001)). Loss or downregulation of E-cadherin, an important component of adherens
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Differentiating cell(s)

Non-regulated, duplicating cell

Figure 2: Cancer as a tissue-based disease. (a) Two types of mitosis maintain normal
tissue histology and continuity under the physiomitotic theory: Duplicating mitosis
(circular arrow) in a space-restricted duplication area (light blue shading) regenerates
a basal pool of undifferentiated cells (blue), which are consumed by maturating mitosis
(straight arrows) and contribute to more differentiated cells (green) to establish diverse
and functional tissue (green shading). Duplicating mitosis at ectopic sites (red shading)
among normal tissue might create cancerous tissue (red cells) and lead to non-regulated
cell turnover (circular and straight arrows). (b) Schematic depiction of basic epithelial
sheets. Epithelial cells are polarized by interaction with the basement membrane and
underlying stroma. (c) Alteration of epithelial sheets through activation of stromal
fibroblasts (jagged cells), degraded ECM (brown) or invading immune cells (blue) can
stimulate epithelial cell movement and proliferation.

junctions, leads to a premalignant cell type that is prone to invasion and metastasis
by passing through an epithelial-to-mesenchymal transition (Christofori & Semb, 1999).
Accordingly, restoration of E-cadherin expression in such cells can suppress cellular
transformation.

Experiments have shown that restoration of the cellular micro-environment can also
lead to healthy phenotypes, e.g. normal differentiation is observed when teracarcinoma
cells are injected into blastocysts, even after long passaging (Illmensee & Mintz, 1976).
Similarly, experiments from 3D culturing with reconstituted basement membranes or
co-culturing of malignant cells with normal stroma reverted their carcinogenic proper-
ties (Weaver et al., 1997). In summary, these experiments suggest that normal stroma
provides contextual cues that promotes normal tissue identity and restricts prolifera-
tion of existing pre-malignant cells. In contrast, non-functional stroma releases this
suppression and permits neoplastic transformation (Bissell & Radisky, 2001). These
findings lead to the hypothesis that carcinogenesis might be reversed when neoplastic
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1. Introduction

tissue comes into contact with functional tissue or components thereof.

1.2.3 The stem cell as a cancer cell of origin

Similar to maintenance of tissue identity, the development of normal tissue requires
complex crosstalk between cells, their local environment and the whole organ. Migra-
tion and proper localization of precursor cells is a prerequisite for formation of mature
descendants that can carry out their tissue-specific function. The specific pattern of a
cells tissue-forming division(s) has been termed its lineage (Chisholm, 2001). Further-
more, dissection of such cell lineages revealed a hierarchical organisation and helped
to identify interactions and molecular signalling pathways that are important in tissue
development and diseases. However, unidirectional division alongside the cell lineage
would quickly lead to exhaustion of a cells tissue-generative potential and therefor calls
for a mechanism such as duplicating mitosis as proposed by the physiomitotic theory:
Stem cells are tissue-specific multipotent precursor cells residing at the apex of a lin-
eage, and are capable of both (i), generation of common progenitor cells with increasing
lineage commitment and (ii) self-renewal to regenerate and sustain the pool of stem
cells. The inherent proliferative capacity and the ability to give rise to different, mature
cell types renders stem cells particularly fascinating for the study of tissue development,
regeneration and in the search for the cellular origin of cancer.

An important distinction has to be made between the origin of cancer cells (i.e. the
normal cell that acquires the first cancer-promoting alteration (Creton et al., 2012)) and
cancer stem cells, i.e. a cellular subset within a tumour that exclusively sustains malig-
nant growth (Visvader, 2011). Intertumoural heterogeneity, i.e. the variability among
discrete tumour types arising from the same tissue, has put forward two hypothesis
how cancer stem cells are formed: (i) All tumours originate from common progenitor
cells that accumulate different genetic or epigenetic mutations through their extended
longevity and therefore result in different tumour types or (ii) different cells along the
lineage hierarchy that still possess or can re-instigate proliferative capacity or prevent
terminal differentiation (e.g. more restricted progenitor cells) constitute different can-
cer cell types including cancer stem cells upon oncogenic transformation (Perez-Losada
& Balmain (2003), Visvader (2011) and Fig. 3a). Cells with self-renewal capacity are
of paramount importance for tumour growth as they ensure long-term clonal growth.
However, not all cancer cells possess self-renewal capacity and not all cells from which
cancer origins are bona fide stem cells. So, how do cancer cells acquire their stemness,
if not from normal tissue stem cells?

The lineage-dependency hypothesis suggests that many tumours might be depen-
dent on (or addicted to) lineage-survival programmes that also operate during normal
lineage development (Garraway & Sellers, 2006). In this view, cancer cells can aquire
their stemness from lineage precursor cells, but rely on persistence and deregulation
of lineage-specific proliferation and differentiation pathways (Fig. 3b). The lineage-
dependency hypothesis inextricably associates lineage descendance and differentiation
state of progenitor cells to cancer biology and complements oncogene addiction, in which
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Stem cell
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Lineage differentiation
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adapted from Visvader (2011), Garraway and Sellers (2006)
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Figure 3: Cell lineages in tumour initiation and heterogeneity. (a) Cells along a lineage
hierarchy that still possess proliferative capacity or can prevent terminal differentiation
constitute cancer subtypes upon oncogenic transformation (black lightning). (b) Lineage
survival and normal development are often dependent on lineage-associated transcrip-
tion factors. Genetic alterations might be conditioned by lineage and subsequent tumour
initiation crucially depends on persistence or deregulation of survival mechanisms pro-
grammed into precursor cell development: A mechanism termed lineage dependency.

tumour-specific gain-of-function events elicit a dependency on growth signalling that is
absent in normal lineage development.

Activation of the same oncogenic pathway in tumours originating from different cell
lineages may also profoundly influence tumour phenotype and degree of malignancy. For
example, primary human melanocytes transformed with a set of genes form melanomas
that frequently metastasize, while human fibroblasts or epithelial cells transformed with
the identical set of genes rarely do (Gupta et al., 2005). Ultimately, therapeutic ap-
proaches might exploit lineage dependency for context-specific treatment, for example
when synthetic lethality exists between two genetic factors (Kaelin, 2005).

A straightforward approach to evaluate the oncogenic capacity of different lineage
stem and progenitor cell populations relies on reproducible separation of functionally
defined subpopulations using e.g. cell sorting techniques. Relevant oncogenic lesions
are introduced together into different precursor cell populations ex vivo with a fluores-
cent reporter, followed by orthotopical transplatation into immunocompromised mice.
Emergence of pre-neoplastic or neoplastic tissue from transduced subpopulations serves
as readout for evaluation of oncogenic potential for each subpopulation. Complimentary,
and with sufficient knowledge about cell-specific promoters, in vivo conditional target-
ing of cell populations is also conceivable. This approach makes use of genetic mouse
models to conditionally activate either an oncogene or inactivate a tumour suppressor
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1. Introduction

gene in different lineage subpopulations, e.g. by Cre-mediated deletion. Depending on
the activated cell-specific promoter, different cancer subtypes might arise and reveal the
cellular origin of the specific cancer subtype from within the cell lineage (Hayashi &
McMahon, 2002; Visvader, 2011). However, established lineages and knowledge of cell
specific promoters are missing for many tissues and organs and therefore hamper the
approach described above.

1.2.4 Skeletal muscle regeneration as a model for stem cell tumours?

The ability of movement is an evolutionary advantage of all animals, and is powered
by muscles. Vertebrate locomotion receives its power from striated, skeletal muscle,
one of the three major muscle types in the body, that is composed of multiple bundled
muscle fibres (fascicles). Each fibre is a multinucleated muscle cell formed by fusion of
differentiated mononuclear muscle cells (myoblasts) and exhibits force and movement
by coordinated activity of myosin II motor proteins within an actin filament scaffold.
Skeletal muscle retains a remarkable ability to regenerate and adapt to changes in re-
quirements, mediated by and dependent on muscle stem cells that reside in a niche
between the muscle sarcolemma and the basal lamina of individual muscle fibres. Adult
muscle stem cells are bona fide stem cells, being capable of both, self-renewal and myo-
genic differentiation, which ultimately leads to differentiated muscle cells (Almada &
Wagers, 2016; Günther et al., 2013).

Muscle stem cells that are characterised by expression of Paired box protein 7 (Pax7),
a transcriptional regulator, are mainly quiescent under homeostatic conditions. Upon
muscle trauma, otherwise quiescent muscle stem cells become activated through ex-
posure to extrinsic stimuli and switch to a highly proliferative state. Activation and
proliferation of muscle stem cells depends on expression of two transcriptional regu-
lators, myogenic factor 5 (Myf5) and myogenic determintation protein (Myod1), and
precedes commitment to differentiation (Braun & Gautel, 2011). Downregulation of
Pax7 and expression of myogenin (Myog) in a subset of activated muscle stem cells in-
duces differentiation and ultimately leads to cell-cycle exit and formation of myoblasts
that fuse with other myoblasts or existing muscle fibres to repair the muscle (Almada
& Wagers, 2016; Braun & Gautel, 2011). Activated stem cells may also inhibit Myod1
expression and re-instating quiescence, thereby replenishing the pool of muscle stem
cells for future rounds of muscle repair (Fig. 4).

Duchenne muscular dystrophy (DMD) is a genetic disorder leading to muscle weak-
ness and decrease in the muscle mass (muscle wasting, atrophy). Dystrophin, the gene
product causing DMD in affected individuals, is part of a larger complex that stabilizes
the membrane of striated muscle cells. Dystrophic fibres are prone to get damaged
by mechanical stress and die after repeated muscle contraction. Such fibres are often
replaced by fibrotic, adipose or connective tissue that is not able to transmit sufficient
muscular force (Almada & Wagers, 2016). Muscle degeneration elicits repair by ex-
pansion and differentiation of stem cells, but regenerated muscle fibres will also lack
a functional dystrophin such that chronic cycles of degeneration and regeneration are
passed through. Until now, the role of muscle stem cells in DMD remains elusive, with
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Quiescent
satellite cell
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Figure 4: Stem-cell dependent regeneration of skeletal muscle fibres. In uninjured
muscle (wt), quiescent muscle stem cells (left) reside between the muscle sarcolemma
and the basal lamina of individual muscle fibres. Pro-myogenic stimuli from muscle
trauma or under genetic disorders like DMD (mdx, right) activate muscle stem cells
and lead to proliferation (middle). Differentiating myoblasts (right) arise through cell-
cycle exit of a subset of activated muscle stem cells and constitute a basis for formation
of novel fibres or repair of existing fibres.

only some evidence for a specialized role of dystrophin during stem cell division, but
an important role of dystrophin for the pathological environment in disease progression
(Almada & Wagers, 2016).

A genetic and experimental model of DMD is the mdx mouse, whose muscles retain
a lifelong capacity to regenerate fibres and exhibits loss of muscle fibres and exten-
sive fibrosis (Boldrin, Zammit, & Morgan (2015), Fig. 4). Recently, it was shown
that germline inactivation of the tumour suppressor p53 in chronically regenerating
mdx mice develop rhabdomyosarcoma (RMS) (Camboni, Hammond, Martin, & Martin,
2012; Chamberlain, Metzger, Reyes, Townsend, & Faulkner, 2007), a rare and aggressive
childhood cancer and the most common soft-tissue sarcoma in children and adolescents.
Histologically, RMS resembles developing skeletal muscle and is marked by expression
of actin and myosin as well as myogenic factors (Drummond et al., 2018; El Demellawy,
McGowan-Jordan, de Nanassy, Chernetsova, & Nasr, 2017). RMS is subdivided into
four subgroups, with alveolar RMS (ARMS) and embryonal RMS (ERMS) being two
major subgroups accounting for nearly all childhood cases of RMS, while spindle cell
RMS and pleomorphic RMS occurring mostly in adolescents. A broad molecular basis
has been identified in RMS, with interference of myogenic differentiation and emergence
of chromosomal aberrations being main drivers of cancer progression. For example,
aberrant expression of Notch2, Yap1, members of the Wnt gene family and Tgf-1 sig-
nalling have been implicated in disruption of myogenic differentiation (Chen et al., 2014;
Judson et al., 2012; Schaaf et al., 2005; Wang et al., 2010). On the other hand, ex-
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1. Introduction

pression of Egr1, Met and signalling by the Fgf family seem to maintain proliferation of
RMS cells (Sarver, Li, & Subramanian, 2010; Taulli et al., 2006; Wachtel et al., 2014).
Genomic amplifications and translocations, as well as loss of heterozygosity from spe-
cific whole chromosomes have been reported for ERMS and ARMS subtypes. Prominent
examples include interference of Pax3 and Pax7 expression levels in ERMS, promoting
migration and invasiveness (Bridge et al., 2002; Chiappalupi, Riuzzi, Fulle, Donato, &
Sorci, 2014), and Pax3-Foxo1 or Pax7-Foxo1 gene fusions in ARMS, leading to commit-
ment of mesenchymal stem cells to the myogenic lineage by transactivation of Myod1 or
Myog (Ren et al., 2008). In addition to genetic mechanisms, epigenetic and small RNA-
mediated mechanisms have also been described to deregulate myogenic differentiation
enabling escape of RMS cells from suppressive mechanisms (see also chapters 1.2.5 and
1.2.6).

RMS is marked by large heterogeneity that not only manifests in distinct subtypes,
but also by different underlying genetic and epigenetic mechanisms. However, the cellu-
lar origin of RMS has remained elusive, despite large efforts to characterize the molecular
basis of many RMS specimen in recent years. As introduced in chapter 1.2.3, high tu-
mour heterogeneity can emerge from a cellular origin with stem cell-like properties.
Subsequently, the cellular origin of RMS was claimed to reside in tissue-resident stem
cells, e.g. muscle stem cells or mesenchymal stem cells (Hettmer & Wagers, 2010). As
such and for RMS subtypes showing features of myogenic differentiation, the mdx mouse
model with its constant regeneration of skeletal muscle could be used as a model for
stem cell-dependent carcinogenesis and serve the discovery of the cellular origin of RMS.

1.2.5 Small RNA mediated carcinogenesis

Micro RNAs (miRNAs) are small, non-coding RNAs of ~22 nucleotides and serve numer-
ous roles in negative gene regulation. In animals, most miRNAs exhibit their regulatory
role through imperfect binding of a sequence in the 3’ untranslated region (3’-UTR) of
messenger RNA from target genes. Complementary binding can either repress transla-
tion of target gene(s) or mediate mRNA degradation, through a mechanism similar to
RNA interference in plants (Jones-Rhoades, Bartel, & Bartel, 2006).

MiRNA biogenesis begins with the transcription of either independent miRNA genes
or intronic regions from protein-coding genes into large precursor molecules (pri-miRNAs).
Imperfect base-paring of folding pri-miRNAs results in hairpin structures that are fur-
ther cleaved by an RNase III type endonuclease (Drosha, RN3) together with a double-
stranded RNA binding domain (dsRBD) protein (Han, 2004) into ~70 nucleotide hair-
pins called pre-miRNAs, leaving a short characteristic single-stranded overhang at the 3’-
end of pre-miRNAs. Exportin 5 recognizes such an overhang and arranges the transport
of pre-miRNAs to the cytoplasm (Yi, 2003), where a second complex consisting of Dicer,
a RNase III type enzyme, and TRBP, a dsRBD protein, cleave the pre-miRNA twice
into a miRNA duplex (Chendrimada et al., 2005). One strand (the mature miRNA)
preferentially enters the miRNA-induced silencing complex (miRISC), while the other is
degraded, although the complementary miRNA is also competent for miRNA-mediated
silencing (Schwarz et al., 2003). Imperfect double-strand pairing of pre-miRNAs as well
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as imperfect digestion by Drosha and Dicer result in miRNAs with varying 3’- (silent
modification, isomiR) or 5’-ends, that might affect complementary binding, representing
a challenge for computational miRNA quantification following RNASeq.

Forward genetic experiments have revealed great importance of the miRNA machin-
ery, exemplified by muscle-specific knockout of Dicer leading to complete embryonic
development but perinatal death (Bernstein et al., 2003). Other experiments identi-
fied numerous individual miRNAs with roles in processes, like timing of development
(Abrahante et al., 2003), differentiation (Chen, 2004) and growth control (Brennecke,
Hipfner, Stark, Russell, & Cohen, 2003). Since phenotypic consequence remains elusive
for the vast majority of miRNA, also computational approaches can and have been used
to elucidate miRNA function (Liu & Wang, 2019; Ulitsky, Laurent, & Shamir, 2010).

Progression of cancer growth can also be altered by expression of certain miRNAs.
The dedifferentiated phenotype of ERMS, for example, can result from downregula-
tion of muscle-specific miRNAs (myomiRs, i.e. miR-1, miR-206 and miR-133a/b), that
promote myogenic differentiation under normal conditions. Transfection of miR-206,
a skeletal muscle-specific miRNA, induces cell differentiation in C2C12 myoblast cells
(Kim, Lee, Sivaprasad, Malhotra, & Dutta, 2006). Additionally, expression of miR-1
and miR-206 are highly induced during muscle stem cell differentiation (Chen et al.,
2010) and transfection of miR-206 into a RMS cell line notably decreased tumour cell
migration and proliferation even more than switching to a differentiation medium (Taulli
et al., 2009). Contrarily to those findings Boettger, Wüst, Nolte, & Braun (2014) report
on miR-206/miR-133b dispensability for muscle stem cell differentiation, highlighting
complex modulatory effects and overlapping functions of myomiRs. Non-myomiRs can
as well promote myogenic differentiation, e.g. miR-26a mediates downregulation of cell-
cycle progression by targeting Ezh2. Vice versa, downregulation of miR-26a in RMS
results in upregulation of Ezh2 and therefore prevents myogenic differentiation (Ciara-
pica et al., 2009). Amplification of 13q31 in 25% of ARMS cases results in enhanced
expression of the miR-17-92 cluster (oncomiR-1 ), a bona fide oncogene (Jin et al., 2013;
Reichek et al., 2011; Sandhu et al., 2013), potentially targeting tumour suppressors like
PTEN. Deregulation of another oncogene in RMS, miR-183, is reported to promote
tumour cell migration, by targeting the transcription factor Egr1, a direct regulator up-
stream of other tumour suppressor genes (Mohamad, Kazim, Adhikari, & Davie, 2018;
Sarver et al., 2010).

1.2.6 Epigenetic mechanisms in cancer initiation and progression

Development of normal tissue, as discussed in chapter 1.2.4, requires distinct cell types
to arise during lineage-specification. Although equipped with identical genomic infor-
mation, different cell types exhibit different gene expression programs and are able to
pass such information on to their progeny (Margueron & Reinberg, 2010). How are
such expression patterns specified and maintained? It is now accepted that not only
information encoded as DNA in a cells genome, but also epigenetic information (i.e.
the stable and heritable non-genetic counterpart to DNA) provides an important layer
of regulation and plays pivotal roles in cell lineage specification and cell identity main-
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tenance (Margueron & Reinberg, 2010). In eukaryotes, DNA is organized in a massive
macromolecular complex called chromatin. Chromatin is formed by wrapping 147 base
pairs of DNA around a histone octamer (nucleosomes), then compacting those further
into topologically associated domains (TADs) separated by insulator proteins to allow
independent and specific regulation. The activity of a genomic locus is controlled by
its chromatin organisation. Accessible chromatin structures expose DNA elements, like
proximal gene promoter sequences or distal enhancer sequences, to regulatory tran-
scription factors and the transcriptional machinery to drive gene expression. Compact
and inaccessible chromatin structures prevent such activity and render a locus inactive
(Flavahan, Gaskell, & Bernstein, 2017).

Dynamic changes needed during tissue development call for mechanisms able to al-
ter chromatin organisation in response to changed conditions (John & Rougeulle, 2018).
Chromatin remodelling resulting in transcriptional repression is, for example, enforced
by the Polycomb protein family, which can post-transcriptionally modify specific his-
tone residues (e.g. trimethylation of histone H3, lysine 27 (H3K27me3)). Repressive
chromatin states can be propagated through cell division by retention of catalytic en-
zymes on replicating DNA (Simon & Kingston, 2013) and functional interaction with
DNA methylation and other regulatory proteins (Flavahan et al., 2017). Conversely,
regulatory activity by e.g. binding of transcription factors and chromatin modifiers,
seems to block repressive chromatin compaction (Zaret & Mango, 2016). Further, ac-
tive loci that are marked by trimethylation of histone H3, lysine 4 (H3K4me3), in turn
inhibit recruitment of DNA methyltransferases for de novo DNA methylation (Ooi et
al., 2007), which is another potent epigenetic mechanism for stabilization of transcrip-
tional repression (Jones, 2012). Methylated DNA functions as a silencing mark and is
involved in processes like X-chromosome inactivation (Venolia & Gartler, 1983), repres-
sion of transposable and repetitive DNA elements (Yoder, Walsh, & Bestor, 1997) and
might influence genome function when present at regulatory elements, like enhancers or
chromatin insulators (Bell & Felsenfeld, 2000).

A compelling conceptualization of epigenetic regulation during cell lineage develop-
ment has been postulated by developmental biologist Conrad H. Waddington, outlined
in his assay entitled The strategy of genes more than 60 years ago (reprinted in Wadding-
ton (2014)). In his hypothesis, differentiating cells proceed downhill along branching
valleys in an energetic landscape (Fig. 5a). The valleys correspond to discrete cellu-
lar states and their topological layout is defined by underlying gene regulatory networks
(GRN) that actively shape and maintain cellular identity (Zaret & Mango, 2016). Walls
between valleys restrict cell lineage capacity, by preventing cells to randomly “switch
states” (i.e. hopping over to another valley), and epigenetic mechanisms effectively
modulate the height of walls. Compacted and repressing chromatin, for example, pre-
vents spurious activation of non-lineage gene regulatory factors, restricting changes in
gene activity and increasing the height of energy walls between cell states, which blocks
changes in cell state and cell type identity (Flavahan et al., 2017).

Initiation and progression of cancer can result from various mechanisms disrupting
normal epigenetic regulation. Overly restrictive chromatin (i.e. high energy walls be-
tween valleys of Waddingtons landscape, Fig. 5b) can be achieved by gain-of-function
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Figure 5: The epigenetic landscape in lineage development and cancer initiation. (a)
Depiction of normal lineage development in the conceptualized epigenetic landscape
from C. Waddington. Stem cells (blue) reside at the apex of a lineage and exhibit
high lineage capacity. Progenitor cells proceed downhill along branching valleys into
differentiated cell types. Oncogenetic events (black lightning) in lineage progeny with
high lineage capacity can create cancer stem cells by switching cell states and might
lead to development of cancer (red arrow). (b) Restrictive chromatin might arrest
progenitor cells in their proliferative state, prevent their terminal differentiation and
lead to cancer initiation. (c) Deteriorated and permissive chromatin confers enhanced
cellular plasticity and might lead to spurious gene activation or cellular reprogramming
and predisposes for cancer initation.

mutations of Ezh2, the catalytic subunit of Polycomb repressive complex 2 (Prc2). A
hyperactive methyltransferase activity of Ezh2 leads to expansive, genome-wide H3K27
methylation (Sneeringer et al., 2010) and the loss of active chromatin marks. Overly
restrictive chromatin arrests developing B-cells in a proliferative state and prevents
terminal differentiation, leading to B-cell lymphoma (Béguelin et al., 2013). Epigenetic
restriction can also arise from aberrations in DNA methylation: The CpG island methy-
lator phenotype (CIMP) results from DNA hypermethylation and is characterized by
silencing of tumour suppressor genes and DNA mismatch repair genes (Hitchins et al.,
2007). Deterioration of overall chromatin topology (the layout of Waddingtons land-
scape, Fig. 5c) can be achieved by disruption of CTCF binding (Flavahan et al., 2016), a
methylation-sensitive DNA binding protein that accomplishes partitioning of chromoso-
mal loops into functional units by insulating TADs. Regulatory TAD boundaries protect
against gene activation from overly promiscuous enhancers from neighboring TADs and
loss thereof can lead to the activation of oncogenes (Hnisz et al., 2016). Upregulation of
members of the Histone Lysine Demethylase (Kdm) protein family has been implicated
in formation of overly permissive chromatin (i.e. low energy walls between valleys).
Enhanced epigenetic plasticity allows for rapid cell reprogramming or adaptation and
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drives diverse cancer types (Black et al., 2015; Liau et al., 2017; Roesch et al., 2013).
Finally, loss of imprinting through DNA hypomethylation may permit reactivation of
oncogenes, e.g. the insulin growth factor signalling pathway in some sarcomas (Rikhof,
de Jong, Suurmeijer, Meijer, & van der Graaf, 2009). In such cases, both, the maternal
and paternal copy of the Igf2 gene are transcribed, leading to elevated mRNA levels and
predispose for cancer through autocrine signalling.

1.2.7 Cancer subtype detection using integrated molecular analysis

Identification and assignment of a tumour’s molecular subtype an important step to-
wards precision medicine and a prerequisite for tailoring therapy for individual patients
(Senft et al., 2017; Vincent, 2017). Traditional clinical practice from the last decades
is largely based on identification and assignment of tumour subtype on histopathology,
cytology and expression or mutational status of known tumour markers. The clinical
outcome is often determined by the individual expertise of clinicians and the classifi-
cation scheme used (Ellis, 2006). With the advent of NGS technology and the estab-
lishment of novel clinical routines for sample processing and data analysis, molecular
characterization of tumours became feasible (Noushmehr et al., 2010; Prat & Perou,
2011), promising to fulfil two goals of precision medicine: First, the discovery of molec-
ular biomarkers that are predictive of disease outcome or effective drug treatment and
second, a better mechanistic understanding of the molecular basis of tumour initiation
and progression (Senft et al., 2017).

Increasing scale of NGS-based assays has so far been very useful in dissection of
tumour heterogeneity. Although genome-wide screening of mutational status (Kuijjer,
Paulson, Salzman, Ding, & Quackenbush, 2018), miRNA expression (Blenkiron et al.,
2007), DNA methylation (Zhang et al., 2018) and RNA expression have led to the
characterization of many cancer subtypes, the characterization of cancer using isolated
assays suffers from certain limitations. For example, genomic profiling alone detects the
presence or absence of genetic drivers, but fails to predict the activity of correspond-
ing proteins and pathways. Simultaneous characterization using two or more assays
might overcome such limitations and enhance clinical decision making towards targeted
therapy, but requires effective integration strategies.

Data integration combines data from different sources, thereby enhancing accessibil-
ity and possibly enriching results from queries. Data are typically integrated across two
axes: vertically, i.e. between different data types (e.g. genomic data, expression data
or clinical data) and/or horizontally, i.e. within the same datatype, data from different
providers or batches. The Cancer Genome Atlas Research Network provides a large col-
lection of tumour samples that have been characterized using different assays (Hoadley
et al., 2018) from numerous data generation centers. An early approach for vertical data
integration used results from separate clustering of data types and performs clustering
of cluster assignments (CoCA, Hoadley et al. (2014)). However, such an approach
does not benefit from synergistic effects of combining evidence levels. It was succeeded
by methods using simultaneous interrogation of subtype clustering from different data
types, like iCluster (Shen, Olshen, & Ladanyi, 2009), which jointly models cancer sub-
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types as latent variables from different data types, or tumorMap (Newton et al., 2017),
which uses similarity of molecular tumour profiles to embed samples into a standardized
similarity space. A natural approach to encode sample similarity is graph-based: Wang
et al. (2014) constructed sample similarity networks for each data type individually and
subsequently fused those networks into a common similarity space, thereby performing
joint vertical and horizontal data integration. In their setup, cancer subtypes emerge
as connected components in the graph and edges between samples provide information
about the data type from which the evidence comes from. Interpretability is also a
feature of Multi-Omics Factor Analysis (MOFA, Argelaguet et al. (2018)), a versatile
statistical framework that infers a low-dimensional representation and captures major
sources of variation across data types. Latent factors underlying the representation can
be linked to most relevant features revealing shared variation between different omics
layers. Recent technological advancement in the field of deep neural networks led to
the development of methods for cancer subtype classification (Gao et al., 2019; Tabibu,
Vinod, & Jawahar, 2019), using molecular or histological features for classifier training.
However and in contrast to other applications, classification by neural networks is a
supervised task and can only be used to classify new samples, but does not detect novel
subtypes once more data are available.

1.3 Lack of knowledge and objectives
The question of how and why cancer develops already has led to numerous studies to
characterise molecular tumour profiles and the cellular origin of different cancer types.
Methods from molecular biology and assays based on high-density micro arrays or NGS
are often used in conjunction to draw conclusions and validate results. A plethora of
computational methods have been implemented for analysis of data from those assays
and form the basis for approaches integrating across different data types. The upcoming
sections will line out major knowledge gaps in computational approaches to handle
data from such assays and in the search of cancer origin and cancer subtype detection,
exemplified using ERMS. Further, objectives of this thesis were developed from identified
knowledge gaps.

1.3.1 Knowledge gaps

In an extensive genomic analysis of tumours from 9 ERMS patients, Chen et al. (2013)
set out to define biological signatures to predict patient outcome and assign targeted
therapy for a high-risk subtype. They identified a subtype with defects in oxidative
metabolism, but otherwise report a multiplicity of mutations in known cancer consen-
sus pathways such as in Ras family genes, SHH/Wnt signalling or cell-cycle checkpoints.
Analysis of therapy-resistant tumour subclones highlighted complex genetic changes and
clonal evolution. The observations from Chen et. al., can answer two questions: (i)
Which genomic mutations occur in ERMS and (ii) are mutations reoccurring? The
ERMS subtype accumulated both, single nucleotide polymorphisms and larger copy
number variations. Genomic alterations were not reoccurring among cancer samples
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and indicate a large tumour heterogeneity - a result that complicates further subtype
detection and follows observations from large genome sequencing projects. Extending
the somatic mutation theory (see chapter 1.2.1), the genome theory explains cancer het-
erogeneity by introducing karyotype heterogeneity. Further, the genome theory assumes
that initial genome context instability ignites a series of genome alterations from which
the fittest (in terms of cell proliferation and expansion) is selected by an evolutionary
process. Open question thus are

• (i) Which mechanisms induce genomic instability in ERMS?

• (ii) How do accumulated genome alterations confer to cellular fitness?

• (iii) Which hallmarks do accumulated genome alterations operate?

• (iv) Do accumulated genome alterations further specify ERMS subtypes?

Following the stem cell theory of cancer (see chapter 1.2.3), the cancer cell of origin of
ERMS could possibly be either the muscle stem cell itself, or any of its potent progenitor
cells, e.g. activated stem cells or pro-myogenic precursor cells. Elevated expression of
Pax7, which occurs exclusively in fusion-negative RMS, led Tiffin, Williams, Shipley,
& Pritchard-Jones (2003) to propose the origin of RMS within the myogenic lineage.
Transformation of precursor cell populations from the myogenic lineage with either
expression of oncogenic Kras (Blum et al., 2013; Hettmer et al., 2011), or lineage-
specific deletion of tumour suppressor genes (Rubin et al., 2011), led to tumours that
phenotypically resembled their presumable myogenic origin. However, it was not possible
to discriminate the cellular origin of Kras-expressing tumours by transcriptional analysis
(Hettmer et al., 2011). The studies presented above lack direct experimental evidence,
leaving the possibility that other cell types in the muscle compartment might act as
tumour initiator by e.g. cell migration mechanisms. Therefore, the cellular origin of
RMS ultimately remained to be disclosed.

MiRNAs play a role in cancer initiation, progression and maintenance (see chapter
1.2.5) and discovery of the entire regulatory repertoire of these small molecules is crucial
for understanding their function in a given biological system (Gomes et al., 2013). With
the application of next generation sequencing in miRNA research (Tam, de Borja, Tsao,
& McPherson, 2014), the numbers of identified miRNAs increased rapidly, as well as
computational approaches to predict or detect them (Gomes et al., 2013). However,
until recently, isomiR variation due to imperfect digestion of pre-miRs by Drosha and
Dicer was dismissed as sequencing artefacts and led to underestimation of the miRNome
complexity (Neilsen, Goodall, & Bracken, 2012), which constitute a challenge for proper
computational detection and quantification of miRNAs. Further, miRNA detection
often relies on the presence of a preferably complete genomic reference to align miRNA
reads to a genomic locus or reference database, or extensive homology searches to exploit
evolutionary conservation of a nearby species. Thus, two open questions in analyses of
data from miRNA-seq are: (i) How can isomiR variation be detected and properly
quantified and (ii) does a reference-free approach to miRNA detection exist and is it as
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sensitive as the conventional approach described above? Can it additionally be used to
incorporate knowledge from other organisms?

To functionally characterise miRNAs, the delineation of miRNA target genes, i.e.
those genes that could be silence by complimentary miRNA binding, is required and of-
ten accomplished using in silico target prediction tools (reviewed in Oulas et al. (2015)).
Although prior knowledge from databases harbouring validated miRNA target inter-
actions (MTIs) exists, target prediction and integration of other experimental data,
e.g. from expression studies, remains challenging (Bayer, Kuenne, Preussner, & Looso,
2016).

Epigenetic regulation plays an important role in cell lineage development and disrup-
tion of such regulation might serve tumour initiation as well as tumour maintenance (see
chapter 1.2.6). However, mechanistic insight into how epigenetic lesions take effect (also
in cooperation with or followed by ordinary genetic stimuli) is missing. Open questions
with diagnostic and therapeutic implications include whether or not an initiating ge-
netic hit (e.g. gain or loss of function) becomes secondary, once a downstream epigenetic
lesion has occurred and altered the cellular state towards permanent tumourigenicity.
Advances in microarray and next generation sequencing technology enable assaying dif-
ferent mechanisms of epigenetic regulation at high resolution and in large numbers of
samples (Lister & Ecker, 2009; The ENCODE Project Consortium et al., 2007) but re-
quire specialised computational analysis (reviewed in Bock & Lengauer (2008)). Finally,
DNA methylation as an important mechanism of epigenetic regulation is included, due
to it’s important contribution to cancer development and diagnosis (Kulis & Esteller,
2010; Seki et al., 2015; Sun et al., 2019). Profiling DNA methylation using microarray
technology (Bibikova et al., 2011) allows researchers to assay large number of samples
across the whole genome. Computational analysis of data from such technologies aims
to identify differentially methylated regions between two or more groups and search
for functional enrichment in those regions (Bock, 2012; Laird, 2010). However, such
approaches are complicated by the spatial interdependencies of individual CpG sites.
Open questions include how data from single CpG sites can be aggregated into regions
in order to capture higher-order methylation patterns across broader genomic regions.
It is unclear whether such data can be analysed without the need of prior knowledge,
e.g. the definition of genomic regions, location of CpG islands, promoters or other gene
regulatory regions. Annotation of differentially methylated regions to nearby genes or
known genomic features for further downstream interpretation of results is not straight-
forward and requires flexible and fast software solutions (Kondili et al., 2017).

1.3.2 Objectives

Based on the previously described shortcomings of currently available methods for anal-
ysis of data obtained from high-density arrays or NGS experiments, two of the three
main objectives of this thesis focus on methodological improvements in miRNA quan-
tification and the analysis of DNA methylation pattern in arbitrary genomic regions.
Another objective aims at the disclosure of cellular and molecular origins of ERMS,
using -omics datasets, applied bioinformatics and advanced methods from cell biology.
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Ultimately, methodological advancements will help to interpret and understand array-
based data or data from NGS experiments in Rhabdomyosarcoma and potentially lead
to the disclosure of molecular pathways acting during tumour initiation and progression.

Reference-free and fine-grained analysis of data from miRNA-sequencing

The large number of miRNAs detected from previous NGS experiments across many
species and experimental conditions represents a great data resource to guide detec-
tion and quantification of newly-created datasets. Sensitive homology searches against
existing miRNA sequences might be a promising starting point for genome reference-
free miRNA detection. A graph-based data structure with known miRNA sequences as
nodes, and edges representing sequencing read(s) matching known miRNA sequences,
might enable further fine-grained analyses: We postulate that closely connected compo-
nents of the graph represent miRNA families across different isomiRs and species, and
this allowing improved quantification on either family or isomiR levels by modulation
of sensitivity of the homology search. Further, the sum of edge weights might be fed
into differential expression analysis, readliy enabling downstream analysis.

Analysis of DNA methylation patterns in arbitrary genomic regions

Although a plethora of methods exist for data normalization and single-site CpG methy-
lation analysis, a robust method that takes the spatial interdependencies of CpG sites
into account and allows for unbiased genome-wide analysis is critically missing. Com-
bination of differences of CpG site methylation estimated via one-sided two-sample
Wilcoxon rank tests with a recently published method for grouping and correction of
spatially correlated p-values (Pedersen, Schwartz, Yang, & Kechris, 2012) might rep-
resent a novel and powerful statistical approach to detect differentially methylated re-
gions. Importantly, this approach would eliminate the need for a priori knowledge of
regulatory regions and allow for evaluation of arbitrary genomic regions. Integration
of numerous existing normalization techniques and automated downstream gene set en-
richment methods might additionally enhance usability and open the method for a wide
variety of applications.

The cellular and molecular origin of embryonic rhabdomyosarcoma

Existing studies delineating the cellular and molecular origin of Rhabdomyosarcoma did
not provide direct evidence for involvement of the myogenic lineage in tumour forma-
tion, but rather based their (valuable) findings on correlation with myogenic proper-
ties. The Cre/lox site-specific recombination system has been developed to create time-
and tissue-specific mutations, e.g. to study effects of inducible gene knockouts (Feil,
Valtcheva, & Feil, 2009). We reasoned that employment of an inducible recombination
system allowing permanent fluorescence labelling of muscle stem cell as well as their
progeny might provide direct evidence of muscle stem cell tumourigenicity. Further, it
would enable subsequent transcriptomic, genomic and epigenomic analysis of purified
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tumour-propagating cells, as well as cancer subtype detection and investigation of clonal
evolution in secondary recipients.

1.4 Thesis contributions

This thesis comprises three peer-reviewed publications, which are presented in chrono-
logical order.

Publication 1

Carsten Kuenne, Jens Preussner, Mario Herzog, Thomas Braun and Mario Looso.
MIRPIPE: quantification of microRNAs in niche model organisms. Bioin-
formatics, Vol. 30 (2014)

The publication introduces MIRPIPE, an algorithm for rapid miRNA detection and
quantification from NGS data. The algorithm takes raw data from total RNA sequencing
as input and initially performs quality control by filtering out reads with low quality
base calls. Reads that are too long or too short and do not match the length assumption
of mature miRNAs (18 - 28nt) are eliminated, and sequencing adapter contamination
from the 3’-end is eradicated. MIRPIPE optionally removes unique, or low abundant
reads frequently denoting remaining sequencing errors or miRNA variations below the
detection limit and clusters reads sharing the same 5’-end to properly handle miRNAs
originating from the same gene but imperfectly digested by Drosha/Dicer (isoMiRs).
MIRPIPE builds a graph from homology searches against a reference database with
reference miRNAs as nodes and edges when read(s) support two reference miRNAs
equally well. This unique approach permits inclusion of reads that otherwise cannot be
matched uniquely and detects miRNA families as connected components in the graph.
Quantification results, i.e. counts per miRNA family and miRNA cluster (isoMiRs) can
readily be used for downstream differential expression analysis.

Publication 2

Jens Preussner, Julia Bayer, Carsten Kuenne and Mario Looso. ADMIRE: analysis
and visualization of differential methylation in genomic regions using the
Infinium HumanMethylation450 Assay. Epigenetics and Chromatin, Vol. 8 (2015)

The publication introduces ADMIRE, a pipeline for differential methylation analysis
within genomic regions. The algorithm takes raw data from Infinium HumanMethyla-
tion450 BeadChips and initially filters single CpG probes based on low signal-to-noise
ratios in a variable proportion of analysed samples. ADMIRE offers several techniques
to perform between-sample normalization, e.g. by regressing out variability observed
between control probes, before calculating two one-sided two-sample rank tests per CpG
probe and between any two sample groups. Intentionally, two p-values are obtained per
CpG probe, indicating lower or higher methylation in either group. ADMIRE allows
subsequent combination of spatially correlated p-values into arbitrary genomic regions
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using weighted Z-scores. It controls the familywise error rate as well to accomplish mul-
tiple testing correction. Differential methylation results are used to perform gene set
enrichment analysis, when genomic regions can be meaningfully related to genes, thereby
facilitating target selection in clinical settings. Further, most significantly altered re-
gions are readily visualised and exported for use in genome browsers or in spreadsheet
viewers.

Publication 3

Jens Preussner, Jiasheng Zhong, Krishnamoorthy Sreenivasan, Stefan Günther, Thomas
Engleitner, Carsten Künne, Markus Glatzel, Roland Rad, Mario Looso, Thomas Braun
and Johnny Kim. A molecular subtype of cancer originating from adult stem
cells during regeneration is driven by Dux transcription factors. Cell Stem
Cell, Vol. 23 (2018)

The publication investigates the cellular and molecular origin of rhabdomyosar-
coma leveraging lineage tracing, genomic and transcriptomic analysis. Using the mdx
mouse model, we show that genetic inactivation of the Tp53 tumour suppressor in Pax7-
expressing muscle stem cells located in continuously regenerating skeletal muscles will
give rise to fusion-negative RMS. The approach allowed tracing of the cellular origin of
tumours back to transformed muscle stem cells. Genomic analysis of purified tumour-
propagating cells reveals large genomic instability and identifies diverse genomic lesions,
among them known oncogenes and cancer-promoting pathways. An amplicon was iden-
tified that contained a member of the Dux family of transcription factors, pointing
to a novel candidate oncogene in RMS. Expression analysis of several published RMS
studies and extended analysis of data from the Cancer Genome Atlas suggests that
Dux-expressing tumours represent a distinct subtype of fusion-negative RMS and a
novel pan-cancer subtype. Analysis of data from forced expression of Duxbl in muscle
stem cells revealed that Duxbl can elicit epithelialization/colonization via a MET-like
program to initiate tumour formation. Lastly, we investigate therapeutic intervention
of Duxbl tumours via short hairpin mediated knockdown.

1.5 Results and discussion

This thesis provides methodological development in three areas of cancer bioinformatics,
targeting detection and quantification of miRNAs, analysis of CpG-site methylation
affecting epigenetic mechanism and characterization of the cellular and molecular basis
of Rhabdomyosarcoma including detection of cancer subtypes.

1.5.1 Sensitive computational quantification of miRNA sequences
from NGS sequencing

MiRNA sequences from MIRPIPE were validated with two complimentary approaches
based on genomic mapping and found to be as sensitive as existing methods, recovering
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84% and 96% of reference miRNAs respectively. Quantification results of MIRPIPE ef-
fectively recapitulated quantification of two gold-standard datasets with Spearman rank
correlation values of 0.68 and 0.69, respectively. Specificity of MIRPIPE was higher
compared to the approach based on genomic mapping, based on MIRPIPEs strategy
to filter out lowly abundant reads prior to graph-based analysis. Characterization of
detected miRNA sequences by delineation of putative miRNA target genes was pur-
sued in a follow-up project termed LimiTT (Bayer et al., 2016) with contributions from
the author of this thesis. Briefly, LimiTT integrates several databases of experimen-
tally validated miRNA-target interactions (MTIs) and additionally allows utilisation of
data from RNA expression experiments to weight important MTIs via built-in MTI set
enrichment analysis.

The employment of a graph-based data structure for results from homology searches
against a database of known miRNAs is a novel and unique approach allowing handling
of miRNA sequences miRNA family and isoMiR levels, a feature that was previously
missing. The approach is similar to current methods of transcript-level quantification
in analysis of RNA-sequencing data termed pseudoalignment (Bray, Pimentel, Melsted,
& Pachter, 2016; Patro, Duggal, Love, Irizarry, & Kingsford, 2017). Pseudoalignment
does not require mapping to a genomic reference, but performs probabilistic assignment
of sequencing reads to known transcripts, producing a list of compatible transcripts per
sequencing read using matching of k-mer contents. Aggregation of so-called transcript-
compatibility counts results in gene-level quantification, similar to MIRPIPEs summa-
tion of isoMiR counts to produce miRNA family level counts. Since miRNA reference
databases might grow in the near future, adoption of pseudoalignment for miRNA quan-
tification seems to be a good replacement for time-consuming homology searches and
promises to speed-up runtime by several orders of magnitude.

MIRPIPE has also been used for detection and quantification of microRNAs in
skeletal muscle development, differentiation and regeneration (Boettger et al., 2014),
circadian regulation of gene expression (Dagenais-Bellefeuille, Beauchemin, & Morse,
2017), transmission of LNA antimiRs in newborn mouse pubs (Hönig et al., 2018) and
in novel, plant-derived exosome-like ultrastructures (Xiao et al., 2018).

1.5.2 Computational analysis of DNA methylation in arbitrary
genomic regions

Most of the existing methods for analysis of CpG methylation data only feature detection
of differential methylation at individual CpG sites. Thus, such approaces are limited to
pre-defined genomic regions, such as CpG islands or gene regulatory promotors. In con-
trast, the unique statistical approach implemented in ADMIRE permits combination of
methylation data from CpG sites with arbitrary genomic regions, while considering their
spatial correlation. The approach has been shown to gain sensitivity when dealing with
small sample numbers or when DNA methylation is changed globally, e.g. as discussed
for the CpG island methylator phenotype (see chapter 1.2.6). Two datasets were used
to assess sensitivity and significance of results obtained from ADMIRE: Investigation of
DNA methylation changes in a study of permanent atrial fibrillation (AF) showed high
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sensitivity of ADMIRE, which identified 20 regions differentially methylated, although
only 11 samples were used as input. Its direct competitor, RnBeads, reported one region
with higher methylation in AF, which was not reported by ADMIRE. Furthermore, AD-
MIRE detected 14 additional regions up to 10 kB and subsequent gene set enrichment
analysis confirmed results of previously conducted GWAS studies. A second dataset
was used to analyse ADMIRE’s performance in large sample cohorts. 689 samples from
a study analysing DNA methylation as an intermediary of genetic risk in rheumatic
arthritis (RA) were analysed. In addition ADMIRE detected differential methylation in
the T-cell activation and T-cell receptor signalling pathway to RA, thereby confirming
implication of the MHC region from the original study and proving its scalability and
applicability in large clinical studies.

ADMIRE has additionally been used to detect epigenetic inactivation of Laminin
A/C in a subset of neuroblastomas (Rauschert et al., 2017) and to identify relevant
differentially methylated regions in pulmonary arterial hypertension (Hautefort et al.,
2017).

1.5.3 Lineage-tracing reveals cellular origin of ERMS and enables
in-depth analysis of cancer stem cells

Mice expressing the Cre recombinase (Pax7CreERT2) in muscle stem cells were crossed
to a strain carrying two lox-p sites in the Trp53 gene and the Rosa26::lsl Tomato allele,
thereby enabling muscle stem cell specific inactivation of the tumour suppressor p53
(SCp53) and permanent fluorescent lineage tracing of p53-deficient muscle stem cells
by Tomato expression upon treatment with Tamoxifen (TAM). Mdx mice harbouring
the inducible system exhibited tumour formation at sites of musculature extremities or
the trunk after TAM administration. Lineage-traced tumours were histopathologically
classified as embryonic Rhabdomyosarcoma and were stained positive for myogenic fac-
tors, clearly indicating their origin from the muscular lineage. TAM-treated wildtype
or mdx mice never developed tumours and TAM-treated SCp53 mice only developed
tumours upon consecutive bouts of Cardiotoxin-induced injury of the Tibalis anterior
muscle, demonstrating that muscle stem cell-specific loss of p53 in a regenerative envi-
ronment is sufficient to generate RMS. Lineage-tracing enabled separation and purifica-
tion of RMS cells into non-lineage-traced and lineage-traced tumour propagating cells
(TPCs) using fluorescence-activated cell sorting (FACS). Importantly, transplantation
of lineage-traced p53 deficient muscle stem cells into immunocompromised mdx-nude
mice generated tumours already two weeks after injection. These data confirmed the
hypothesis put forward by the stem cell theory introduced earlier (see chapter 1.2.3)
and disclosed the cellular origin of embryonal RMS in the p53-/-/mdx model.

1.5.4 Computational analysis of copy number variation reveals
molecular origin of ERMS

Whole-exome DNA sequencing of purified TPCs and matched normal samples was fol-
lowed by subsequent genome analysis to identify tumour-associated mutations. In 20
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out of 21 specimen, discrete and dramatic copy number amplifications were identified
as the prevailing mutations. Positional mapping revealed defined chromosomal regions
harbouring known mutational targets in ERMS, including Yap1 (Tremblay et al., 2014),
C-met (Taulli et al., 2006), Jun (Durbin et al., 2009), and Cdk4/Gli1/Os9 (Liu et al.,
2014). Interestingly, TPCs did not accumulate somatic single-nucleotide variations, in-
dicating that EMRS does not follow the classic mechanism proposed by the somatic
mutation theory (see chapter 1.2.1) but are predominantly characterised by copy num-
ber changes.

It is widely accepted that overexpression of oncogenes or loss of tumour suppres-
sor genes is a crucial molecular event resulting in tumour initiation, but it is unclear
whether maintenance of tumourigenicity depends on the transforming molecular event
as well. The phenomenon of oncogene addiction (i.e. the physiological dependence
of cancer cells on oncogenes, (Weinstein (2002))) has been described for several can-
cer types and offers opportunities for therapeutic intervention by targeting oncogene
expression with specific drugs. In fact, knockdown of Yap1 in Yap1-expressing TPCs
using short hairpin RNA (shRNA) resulted in cell death, indicating the dependence of
TPCs on distinct regulatory networks facilitated by Yap1 expression. However, such
intervention requires personalized therapeutic approaches often not yet implemented in
clinical settings. Additionally, the cancer phenotype might not be reversed by blocking
expression of an oncogene, if oncogene-mediated genome instability induced subsequent
mutations enable cells to escape oncogene dependence.

1.5.5 Integrative analysis of zygotic Dux factors defines a new cancer
subtype

Several mice displayed amplification of a poorly described locus without any known
oncogene on chromosome 14qA3. Analysis of genomic synteny (i.e. the physical co-
localization of genetic loci) between different species revealed that Duxbl is located in
synteny with human DuxB, a member of the Dux family of homeobox-containing tran-
scription factors. Interestingly, DuxB and its paralog, DuxA, were recently shown to be
expressed exclusively at the totipotent 8-cell stage in early zygotes (Madissoon et al.,
2016). Furthermore, the founding member of the Dux transcription factor family, Dux4,
and its murine homolog Dux, are responsible for driving cleavage-stage gene expression
known as zygotic gene activation (ZGA) in totipotent embryonic stem cells (Hendrick-
son et al., 2017; Leidenroth & Hewitt, 2010; Whiddon, Langford, Wong, Zhong, &
Tapscott, 2017). Those findings led to the speculation that Dux transcription factors
might act at a putative interface of stem cell potency and tumour formation. So far,
a more detailed analysis was difficult until recent technological advancements allowed
experimental assessment of very little input material, as in the case of early zygotes.

To test whether Dux-driven activation of zygotic genes plays a role in human ERMS,
an integrative analysis was designed to translate findings from whole-exome sequencing
in mouse to transcriptome sequencing in human cancer patients. Intriguingly, 54 tu-
mours (~10%), which expressed Dux4, DuxA or DuxB, showed a cleavage-stage-specific
expression signature in a previously published discovery cohorts of human ERMS pa-
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tients (Chen et al., 2013; Davicioni et al., 2009; Williamson et al., 2010). To test whether
increased expression of Dux genes is restricted to ERMS or is associated with other ma-
lignancies, expression data from ~10,000 cancer patients from The Cancer Genome Atlas
(Hoadley et al., 2014) was used for further molecular analysis. Interestingly, 349 pa-
tients displayed distinct expression of Dux family members either in combination or
alone. The onset of cancer and the type of cancer was highly variable in these patients,
suggesting that Dux transcription factors define a molecular subtype of a broad range
of human cancers, including ERMS.

1.5.6 Gene expression analysis reveals epigenetic plasticity conferred
by tumourigenic Duxbl

The selection of suitable targets for individual tumour therapeutics critically depends
on molecular insight into mechanisms of tumour initiation and progression. To gain
understanding on the action of Dux transcription factors, Duxbl was overexpressed in
wild-type muscle stem cells in vitro, which resulted in the emergence of immortalised
and morphologically rounded clones prone to spontaneously form epithelial-like spheri-
cal aggregates. Subcutaneous transplantation of clones formed neoplasia at the site of
engraftment and clearly demonstrate that overexpression of Duxbl can transform muscle
stem cells and elicit excessive growth in vivo. Interestingly, transformed cells contributed
to myofiber formation when injected directly into the strong pro-differentiation environ-
ment of the tibialis anterior muscle, further supporting the suppressive role of functional
tissue in cancer progression (Bissell & Radisky (2001), chapter 1.2.2). Expression anal-
ysis of isolated clones revealed upregulation of the histone lysine demethylase Kdm4d
but no expression of myogenic determinants like Myf5, MyoD and MyoG, suggesting
a lineage independent mechanism of cell transformation. Instead, dramatic induction
of genes involved in epithelial cell proliferation and coding for integrins, collagens, cad-
herins and proto-cadherins was observed, along with expression of pluripotency factors
Sox2 and Klf4. These genes are instrumental to facilitate mesenchymal-to-epithelial
transition during reprogramming of somatic cells to induce pluripotent stem cells (Li
et al., 2010). Taken together, the overexpression of Duxbl confers cellular plastic-
ity through Kdm4-mediated permissive chromatin (Labbé, Holowatyj, & Yang, 2013),
which allows induction of a MET-like transition that initiates growth of tumourigenic
colonies. Most likely, the establishment of truly metastatic niches for tumour outgrowth
requires a secondary oncogenic event but might not depend on sustained expression
of Duxbl. In such a scenario, therapeutic supression of tumourigenicity conferred by
DuxB/Duxbl via an epigenetic hit-and-run (Saunderson et al., 2017) event would be
unable to take advantage of classical oncogene addiction, but would require novel ther-
apeutic ideas.

1.6 Conclusion
The discovery of dynamics and complexity of cancer-causing mechanisms, including dys-
regulated expression of regulatory factors (miRNAs, transcription factors), structural
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genomic and epigenomic alterations or disruption of normal tissue context, has ben-
efited largely from technological and computational advancements in the last decade.
Nowadays, cancer research faces unique challenges to manage, analyse and integrate
complex and numerous datasets to identify relevant therapeutic targets and support
precise treatment of cancer patients. On one hand, work presented in thesis seeks to
provide missing methodological development within the field of computational analy-
sis of cancer -omics data. On the other hand, work presented here investigates the
molecular and cellular origin of a childhood cancer, embryonal rhabdomyosarcoma, and
integrates data from genomics and transcriptomics with previously published findings
to detect a novel cancer subtype.

Two algorithms have been contributed to enable characterisation and quantification
of the entire regulatory repertoire of miRNAs from NGS experiments, and to facilitate
analysis of DNA methylation. Importantly, the unique statistical approach applied dur-
ing DNA methylation analysis overcomes previous limitations and enables differential
analysis within arbitrary genomic regions in a case-control setting. Both algorithms are
designed to work with all types of input from RNA sequencing or high-density DNA
methylation arrays, respectively, and might be beneficial for future studies investigating
the molecular origin of different types of cancer. By employment of genetic labelling and
direct oncogenic transformation of muscle stem cells, work in this thesis unambiguously
demonstrated that the cellular origin of ERMS lies within muscle stem cells. Further,
analysis of data from genomics and transcriptomics in mouse was integrated with gene
expression studies from ~10,000 human cancer patients to disclose the molecular origin
of ERMS and discover a novel cancer subtype across a broad range of human cancer
driven by oncogenic activation of zygotic Dux factors. To better understand how zy-
gotic Dux factors confer tumour initiation, the thesis additionally provides evidence
for Duxbl-conferred epigenetic plasticity and cellular transformation. Although an ad-
ditional oncogenic hit is likely required for tumour metastasis, insights into tumour
initiation is a useful starting point for selection of relevant therapeutic targets.

Taken together, findings and conclusions from this thesis allow future research in
the areas of molecular biology, computational biology and precision medicine. For ex-
ample, researching the role of Dux transcription factors for zygotic gene activation and
cancer initiation has only started, leaving the definition of their gene regulatory network
and their role in epigenetic restructuring for further investigation. Effective precision
medicine for cancer treatment currently lacks suitable (computational) methods for data
integration, which include different mechanisms of cancer initiation and the dynamics
of cancer progression. Future research is needed to properly evaluate and select tailored
treatment strategies based on identified cancer subtype properties, drug susceptibility,
presence of neo-antigens, synthetic dosage lethality or unique tumour microenviron-
ments. Technological advancement has just begun to enable integrative studies that
are able to produce results for functional testing. So far, holistic analyses are not yet
feasible in clinical routines, but might become available in a few years. Towards this
end, the current thesis has contributed a certain share.
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ABSTRACT

Summary: MicroRNAs (miRNAs) represent an important class of small

non-coding RNAs regulating gene expression in eukaryotes. Present

algorithms typically rely on genomic data to identify miRNAs and

require extensive installation procedures. Niche model organisms

lacking genomic sequences cannot be analyzed by such tools. Here

we introduce the MIRPIPE application enabling rapid and simple

browser-based miRNA homology detection and quantification.

MIRPIPE features automatic trimming of raw RNA-Seq reads originat-

ing from various sequencing instruments, processing of isomiRs and

quantification of detected miRNAs versus public- or user-uploaded

reference databases.

Availability and implementation: The Web service is freely available

at http://bioinformatics.mpi-bn.mpg.de. MIRPIPE was implemented in

Perl and integrated into Galaxy. An offline version for local execution is

also available from our Web site.

Contact: Mario.Looso@mpi-bn.mpg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on February 24, 2014; revised on July 1, 2014; accepted on

July 3, 2014

1 INTRODUCTION

MicroRNAs (miRNAs) are �22 nucleotides long and belong to

the class of snRNAs. miRNAs serve numerous roles in

downregulation (transcript degradation and sequestering, trans-

lational suppression) of gene expression. In general, miRNAs

are assumed to regulate multiple targets although effects on

most targets are relatively mild (Ameres and Zamore, 2013).

Isoforms of miRNAs resulting from imperfect digestion by

Drosha and Dicer or RNA editing by specialized enzymes rep-

resent a challenge during the determination of correct read

counts following RNASeq. miRNA variants might be ‘silent’
(30 modification= isomiR) or target different mRNAs when

changes occur in the 50 regions responsible for complementary

binding. Sequence differences between taxa hamper quantifica-

tion, especially if no genomic or miRNA data for the studied

organism are available as in the case of niche model organisms.

Sequencing errors can further complicate the identification

of miRNAs. These effects should ideally be addressed on

multiple levels, including (i) isomiR handling, (ii) enforcement

of a minimum read copy number, (iii) clustering of similar

miRNAs, (iv) removal of relatively low abundance reads and

(v) optional fallback to the miRNA family level. A set of appli-

cations in the field attempts to cover these features, but a

Web-based tool able to unify all functionalities that can be

applied to any organism is critically missing (An et al., 2013;

Giurato et al., 2013; Wen et al., 2012).

2 WORKFLOW AND FEATURES

MIRPIPE uses open-source binary tools including the FASTX-

Toolkit (Pearson et al., 1997), Cutadapt (Martin, 2011) and

BLASTN (Boratyn et al., 2013) for data processing. The pipeline

was integrated into a Galaxy-based Web platform (Goecks et al.,

2010) but is also available for download and local execution.

A detailed explanation of the algorithm can be found in

Supplementary File S1.
The workflow starts with the upload of a compressed FASTQ/

FASTA read file using the Web interface or the MIRPIPE FTP

server. MIRPIPE can fully process raw reads originating from

Illumina, 454, IonTorrent or Sanger sequencing instruments

including adapter trimming. A reference FASTA database bear-

ing mature target miRNAs can either be selected from current

miRBase release (Griffiths-Jones et al., 2006) or can be uploaded

by the user.
The raw reads are processed to optionally remove an adapter

sequence and trim for a minimum quality (default Q20). Only

reads of the desired size range are selected to limit the pool to

mature miRNAs. Duplicate reads are collapsed to decrease the

number of necessary homology searches, and only those

sequences represented by a minimum count are kept for further

analyses. This measure is intended to remove unique reads,

which frequently denote sequencing errors or miRNA variations

that are expressed near to the detection limit, preventing reliable

quantification.

Read counts from isomiRs of the same miRNA are combined.

These isomiR read sequences may only differ by the 30 end and

are thus putatively encoded by the same gene. Only one nucleo-

tide may differ between two sequences to be counted as isoforms

of the same miRNA, and only the longest sequence is used

in the next step to further reduce the amount of homology

searches.
The remaining read sequences are used for a sequence similar-

ity search versus the chosen reference database of miRNAs.
Mature reference miRNAs and their precursors are optionally

collated by name on the family level to remove redundancy
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introduced by organism prefixes and precursor suffixes (e.g. bta-
miR-200a, oan-miR-200a-3p4miR-200a).
For each read, the detected reference miRNA families are

scored based on the minimum number of mismatches. If a

read matched equally well versus multiple miRNA families, the
respective families are joined by single linkage clustering. This
permits the inclusion of reads that cannot be matched uniquely,

as well as the exact measurement of the fraction of ambiguously
matching reads and thereby the reliability of the match. By
default, only those read sequences that are at least 5% as abun-

dant as the most abundant sequence per miRNA family cluster
are denoted to reduce the impact of sequencing errors and in-
crease robustness.

Counts per miRNA family and cluster are presented for down-
load. Currently, MIRPIPE can complete a job within 0.5–2h,
depending on the file size and the selected reference database.
MIRPIPE quantification results can be directly used for differ-

ential expression analysis using other tools on our Web site
(Supplementary File S1).

3 BENCHMARK

To demonstrate congruent results for MIRPIPE, we compared

the results with an miRNA analysis based on a genomic mapping

of Illumina HiSeq reads (Lawless et al., 2013). We identified
96% of the published miRNAs (Supplementary File S2).

Furthermore, we compared our tool with a similar approach

without the need for a genome sequence by analyzing a public
dataset (Zhang et al., 2013) with the CLCGenomics Workbench.

In this case, 84% of the miRNAs were identical (Supplementary

File S2).
Finally, we checked the predictive efficiency of our tool for

niche models based on a human RNA-Seq dataset (Lappalainen

et al., 2013). Here, we performed MIRPIPE versus a reference

database bearing (i) the complete miRBase, (ii) miRBase exclud-
ing human miRNAs and (iii) miRBase excluding miRNAs of all

primates. The absence of closely related reference sequences

resulted in only a marginal loss of sensitivity for MIRPIPE,

indicating its aptitude for the analysis of niche model organisms
(Fig. 1, Supplementary File S2).
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METHODOLOGY

ADMIRE: analysis and visualization 
of differential methylation in genomic regions 
using the Infinium HumanMethylation450 Assay
Jens Preussner, Julia Bayer, Carsten Kuenne and Mario Looso*

Abstract 

Background: DNA methylation at cytosine nucleotides constitutes epigenetic gene regulation impacting cellular 
development and a wide range of diseases. Cytosine bases of the DNA are converted to 5-methylcytosine by the 
methyltransferase enzyme, acting as a reversible regulator of gene expression. Due to its outstanding importance in 
the epigenetic field, a number of lab techniques were developed to interrogate DNA methylation on a global range. 
Besides whole-genome bisulfite sequencing, the Infinium HumanMethylation450 Assay represents a versatile and 
cost-effective tool to investigate genome-wide changes of methylation patterns.

Results: Analysis of DNA Methylation In genomic REgions (ADMIRE) is an open source, semi-automatic analysis pipe-
line and visualization tool for Infinium HumanMethylation450 Assays with a special focus on ease of use. It features 
flexible experimental settings, quality control, automatic filtering, normalization, multiple testing, and differential 
analyses on arbitrary genomic regions. Publication-ready graphics, genome browser tracks, and table outputs include 
summary data and statistics, permitting instant comparison of methylation profiles between sample groups and the 
exploration of methylation patterns along the whole genome. ADMIREs statistical approach permits simultaneous 
large-scale analyses of hundreds of assays with little impact on algorithm runtimes.

Conclusions: The web-based version of ADMIRE provides a simple interface to researchers with limited program-
ming skills, whereas the offline version is suitable for integration into custom pipelines. ADMIRE may be used via our 
freely available web service at https://bioinformatics.mpi-bn.mpg.de without any limitations concerning the size of a 
project. An offline version for local execution is available from our website or GitHub (https://github.molgen.mpg.de/
loosolab/admire).

© 2015 Preussner et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Several epigenetic mechanisms control gene expression 
in cells [1]. One of these conserved mechanisms is DNA 
methylation, a process where cytosine bases of DNA 
are converted to 5-methylcytosine by the DNA meth-
yltransferase (DNMT) enzymes. DNA methylation by 
these enzymes is a reversible regulator of gene expres-
sion. Methylated cytosine recruits proteins which are 
involved in gene repression and inhibit the binding of 
transcription factors. The pattern of DNA methylation in 
the genome undergoes changes during development and 

plays a role in a range of diseases, utilizing processes of 
de novo methylation and demethylation. In case of devel-
opment and differentiation, differentiated cells display 
a stable, cell-type-specific methylation pattern, perma-
nently switching off the expression of genes that are not 
essential for the respective cell type.

A number of lab techniques were developed to inter-
rogate DNA methylation including whole-genome 
bisulfite sequencing (WGBS) and Infinium Human-
Methylation450 Assays [2]. Although WGBS provides a 
comprehensive genome-wide coverage (around 28 mil-
lion CpGs in humans), it is associated with relatively 
high costs for re-sequencing the whole genome. A simi-
lar method known as reduced representation bisulfite 
sequencing (RRBS) is intended to overcome this problem 
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by sequencing just DNA fragments enclosing at least 
one CpG site. While Infinium HumanMethylation450 
Assays reveal a less comprehensive picture compared to 
sequencing-based methods (approximately 0.5 million 
CpGs are addressed), economical factors render them 
highly attractive for epigenome-wide association studies 
(EWAS) involving up to thousands of individual samples 
[3] and represent an effective tool to identify biomarkers 
of disease states and progression [4].

Although Infinium HumanMethylation450 Assays are 
widely used, just very recently a cohort of noncommer-
cial analysis pipelines was introduced. However, most 
of these tools are designed as command line tools. This 
is frequently accompanied with complex usage require-
ments which pose a significant challenge to research-
ers with limited programming skills. Furthermore, the 
genome-wide visualization of methylation sites, the 
visualization of significantly differentially methylated 
sites and downstream analyses have not been addressed 
optimally, yet. Here we introduce ADMIRE, an easy to 
use web-based tool intended to simplify usage inside a 
comprehensive application accessible by web interface as 
well as programmatically. ADMIRE generates publica-
tion-ready graphical overviews of differentially methyl-
ated loci and genome-wide overview tracks (Additional 
file 1) including advanced statistical methods to increase 
sensitivity. An included gene set enrichment analysis 
provides an overview on the entities that might link the 
significant sites.

Results
Comparison to existing software
Very recently, a cohort of noncommercial analysis pipe-
lines was introduced and a current selection of widely 
used packages is reviewed in [5]. While the total num-
ber of tools intended to perform at least individual steps 
of HumanMethylation450 assay analysis is estimated to 
be around 20, only a minority is accessible via a graphi-
cal user interface and often limited to specific operat-
ing systems. A detailed comparison of tool features 
is listed in Additional file  2. An easy to use web-based 
application is only provided by RnBeads [6], although 
this might be the best way for biologists with limited 
programming skills to access an analysis pipeline. In 
contrast to RnBeads (restricted to 24 arrays), the web-
based version of ADMIRE does not restrict the number 
of input arrays and was tested with a sample set of 689 
arrays from a GEO dataset described below. Addition-
ally, since calculation of per-probe test statistics is the 
main computational task (see algorithm description 
below), the runtime of ADMIRE is virtually independ-
ent of the number of input arrays. While most of the 
available tools provide functions for probe filtering and 

normalization, only a small number include functional-
ity to create scalable visualizations or to detect differen-
tially methylated positions and regions simultaneously. 
Furthermore, regions of interest are often pre-calculated 
and only a small number of tools allow statistics on indi-
vidual regions of interest that can be provided by the 
user. Finally, none of the available tools provides a down-
stream analysis that is able to discover the linkage of dif-
ferentially methylated genes. In order to generate a tool 
that combines all these critical features, we developed 
ADMIRE, a web-based tool for users without any com-
putational background.

ADMIREs calculation of test statistics
ADMIRE features five different normalization methods 
(see [7]) but can also work on raw methylation values. 
The pipeline performs two one-sided two-sample rank 
tests (Mann–Whitney U tests) based on the sample_
group information provided. In contrast to the t test, the 
Mann–Whitney U test does not require normally distrib-
uted data. The one-sided two-sample tests are performed 
per Illumina probe on the array and between pairs of 
sample groups. Intentionally, two p values are obtained 
for each probe, indicating a higher probe methylation in a 
distinct group and allowing the subsequent combination 
of multiple single p values from within a genomic region 
of interest (tiles, promotors and the like) as suggested in 
[8]. The spatially correlated p values are combined with 
genomic regions by mapping probe specific p values onto 
pre-calculated or user-defined genomic regions, indi-
cating no change or a higher methylation in either sam-
ple group. To create a p value for an entire region, the 
Stouffer–Liptak correction implemented in [9] is used. 
A 1-step Sidak correction for multiple testing is applied 
to obtain q-values (see [9]). In order to filter significantly 
differentially methylated regions, a user-defined q-value 
threshold is used.

The web‑based analysis platform
The ADMIRE analysis platform is implemented as a web-
based application (Fig. 1) and enables users with limited 
bioinformatics background to apply sophisticated meth-
ylation analysis. The web-based platform allows user 
accounts with the possibility to keep raw files and ana-
lyzed data in a workspace of unlimited size. The default 
output of a scanner system compatible to Illumina 
HumanMethylation450 Assay consists of a SampleSheet.
csv file and a file directory named after the assays Sen-
trix-ID containing two compressed *.idat-files per sam-
ple. These raw files are supported by ADMIRE. Besides 
the original SampleSheet.csv, ADMIRE is also able to 
process a tab-separated sample definition file (see user 
manual, Additional file 3).



Page 3 of 10Preussner et al. Epigenetics & Chromatin  (2015) 8:51 

The settings file defines the groups that should be 
used for statistical testing. An all-vs-all comparison is 
performed with no limitation on the number of sample 
groups. Next, a wide range of analysis parameters can be 
adjusted, such as normalization method (SWAN, Func-
tional, Quantile, Noob or Illumina), quality control filter-
ing based on detection p values, failed sample threshold, 
Q-value cutoff for multiple testing as well as genomic 
regions for testing. A set of pre-calculated genomic 
regions are provided such as genome-wide tilings, anno-
tations based on Gencode [10], as well as CpG islands and 
Fantom5 enhancers [11]. Furthermore, custom regions of 
interest can be uploaded to combine probes. To gener-
ate high-resolution graphics of differentially methylated 
regions, a numeric parameter is available to choose the 

number of graphics that will be generated from the most 
significantly altered regions. If the user is interested in a 
downstream analysis of differentially regulated regions, 
a gene set enrichment analysis can be performed on a 
selection of pre-defined gene sets [12] including chro-
mosomal locations, pathways, diseases, and GO-terms. 
In addition to pre-defined sets, custom gene sets can be 
provided.

Workflow
Once the analysis is started, ADMIRE evaluates the sam-
ple definition file and prints out an error message in case 
files are missing or cannot be read. The raw files are pre-
processed and filtered by the functions from the R pack-
age minfi [7], according to the parameters set. Aggregated 

Fig. 1 Graphical user interface for the ADMIRE pipeline. On the left side a set of helpful tools for file preparation and upload is listed. The center pane 
shows the ADMIRE parameters. Most parameters can be selected from drop down menus. Input and output files are listed in the right pane
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data is used to generate a quality control report in PDF 
format and normalized beta and m values are provided 
as tabular data (Fig.  2, step 1). In accordance to the 
groups defined earlier, all-vs-all pairwise comparisons of 
per-probe methylation are performed automatically. To 
call the significant differences in terms of methylation, 
ADMIRE performs statistical tests as described in the 
section above (Fig. 2, step 2).

Next, spatially correlated p values are combined with 
respect to the genomic regions defined by the user [9]. 
The generated result list includes all genomic regions, 
sorted by significance of methylation changes between 
the groups specified and the min/max/median change of 
methylation rate is calculated for further filtering (Fig. 2 
step 3). For the most significant differentially methylated 
regions, a high-resolution image is generated (see Addi-
tional file 1). Finally, all results are transformed into BED 
format data tracks to allow visualization of differentially 
methylated regions in commonly used genome viewers 
such as IGV [13] or UCSC [14] (Fig. 2, step 4). Addition-
ally, the output includes comma-separated tables that 
can be used to filter for specific genes, genomic loca-
tions, coverage, min/max/median change, p values, and/
or q values. Details on the output files can be found in 
the methods section and in Additional file 3. Given that 
regions with a direct link to genes (indicated by a gene_
name property) were chosen as regions of interest, a 
gene set enrichment analysis can be performed [12]. The 
enrichment analysis calculates an enrichment score (ES) 
for each gene set, depending on the ranks and differences 
in methylation of genes that are members of the gene set. 
In combination with graphs for enrichment score calcu-
lations, it can be inferred whether higher methylation in 
controls or cases contributed most to the enrichment of 
the gene set. Additionally, a heat map graphically repre-
sents a leading edge analysis that allows the detection of 
gene sets with a high overlap of core genes that mainly 
affect the ES (Fig. 2, step 5). All results listed above are 
generated in the workspace and can be downloaded as 
individual files or as a compressed archive from the web-
based platform.

Performance evaluation and comparison to the existing 
gold standard
To demonstrate the ease of use, the robustness and appli-
cability of ADMIRE, we downloaded 689 HumanMeth-
ylation450 Assay samples from a study analyzing DNA 
methylation as an intermediary of genetic risk in rheu-
matoid arthritis (GEO GSE42861) [15]. ADMIRE was 
invoked from the web interface using a custom sample-
definition file (see “Methods”) with default parameters. 
We selected all 2-kB promoter regions and chose posi-
tional gene sets as input for the enrichment analysis. 

Since the runtime of ADMIRE is virtually independent 
of input size, the results were obtained after 24 h with a 
maximum memory usage of 65 GB RAM. As the analy-
sis in [15] was performed on single methylation sites and 
we did not intent to replicate the analysis, validation was 
done via an unbiased gene set enrichment analysis using 
positional gene sets as input. We identified the constant 
(TRAC) and variable (TRAV/TRAJ) segments of the 
T-cell receptor alpha chain on chr14q11 locus as higher 
methylated in arthritis patients. Additionally, four known 
members of the T-cell receptor signaling pathway, CD28, 
CD3G, CD3D as well as PDCD1, were found to be higher 
methylated in patients (Fig. 3).

In order to compare ADMIRE to RnBeads, the current 
gold standard for HumanMethylation450 Assay analysis, 
we used an additional dataset of smaller size since the 
RnBeads [16] web interface is restricted to 24 samples. 
Our test dataset contains 11 samples from a study analyz-
ing permanent atrial fibrillation (GEO GSE62727). This 
dataset was analyzed by RnBeads using default param-
eters (5-kB pre-calculated tiling regions) as well as the 
ADMIRE pipeline. To match the output from RnBeads 
and enable a direct comparison, we selected all 5-kB tiling 
regions as input for ADMIRE (see “Methods”). Our tool 
found twenty 5-kB regions corresponding to protein cod-
ing genes to be higher methylated in fibrillating atria (see 
Additional file 4) with a median methylation change of up 
to 12 %. Next, we carried out a second run with ADMIRE 
using 10-kB tiling regions as input to test for repro-
ducibility of statistically significantly changed regions. 
Besides nine genes present in both result files, another 
14 genes were identified from 10-kB regions only, with 
a median methylation change up to 45 % (see Additional 
file  5). RnBeads identified only one region to be higher 
methylated in fibrillating atria. This genomic location 
was not reported by ADMIRE. Some representative sig-
nificant regions found by ADMIRE and the single region 
found by RnBeads are shown in Fig.  4a–f. We chose an 
indirect way to evaluate specificity and significance of 
regions reported by ADMIRE but not by RnBeads. To 
evaluate the latter, we visualized the homogeneity of the 
methylation change over all 5-kB tiling regions detected 
by ADMIRE in Fig. 4g. The boxplots represent all single 
methylation sites, combined in accordance to the tiling 
region. Their level and spread present a global overview 
in order to investigate the magnitude of the methyla-
tion changes. The user can interpret this information to 
select an appropriate threshold. To evaluate the specific-
ity of our findings, we performed a functional analysis. 
This showed an enrichment of transcriptional regulation, 
driven by transcription factors such as HOX A, TBX5, 
and PITX2 (Additional file 6). This is remarkable, as ini-
tial GWAS studies identified a major risk region where 



Page 5 of 10Preussner et al. Epigenetics & Chromatin  (2015) 8:51 

chr17

KRTAP4-8 KRTAP4-9

KRTAP4-8-promoter KRTAP4-16P-promoter

cg16250800 cg15015397

I.

II.

III.

IV.

V.

VI.

co
nt
ro
ls

ca
se

s

1  Import, filter and normalize data

2  Perform one-sided two-sample tests

3  Combine spatially correlated p-values with genomic regions

4  Filter significant differential methylated regions and visualize

*540.0*420.0 0.993

Region 1,
significant

higher methylation
in controls

Region 2
significant

higher methylation
in cases

0.986

5  Perform a gene set enrichment analysis

MSigDB
genesets

ranked list of
differentially 
methylated genes

GSEA

E
S

Rank

Enrichment Plot

Fig. 2 Workflow is illustrated on the left side as five steps. Step 2 Controls and cases are illustrated as replicates with methylated (black) and 
unmethylated (white) CpG sites. Single sites are compared between controls and cases (dashed lines). Step 3 Site-specific p values are combined into 
genomic regions and a representative q value is calculated for each region (light gray: higher methylation in control; dark gray: higher methylation 
in cases). Step 4 IGV screenshot of array visualization; tracks represent: (I.) single CpG site q values for two conditions with a color code, (II.) positions 
of known genes, (III.), selected regions of interest, (IV.) significant regions found by the pipeline, (V.) all probes represented on the array, and (VI.) bar 
plot track denoting absolute methylation change (up/down). Step 5 An optional gene set enrichment analysis (GSEA) can be performed using pre-
defined or custom gene sets and ranked lists of differentially methylated genes
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the presence of a variant increased the risk of AF up to 
65 %. Located proximally to the variant, PITX2 is a tran-
scription factor import for cardiogenesis, especially for 
left–right signaling and L/R atrial identity. Knockout of 
PITX2 lead to a shortened atrial action potential in hap-
loinsufficient mice and increased the susceptibility to AF 
[17]. Expression analysis identified the Sinoatrial node 
(SAN) specific genes Shox2, Tbx3, and Hcn4 as upregu-
lated in PITX2 null-mutant embryos [18]. A recent study 
additionally identified two microRNAs miR-17-92 and 
miR-106b-25 as direct targets of PITX2 that can repress 
Shox2 and Tbx3 upon transcription [19] and promote the 
expression of Cx43, a connexin protein forming gap junc-
tions that allow the interchange of charged ions between 
adjacent cells [20]. Another GWAS study linked TBX5 to 
AF [21]. The homeobox transcription factor may play a 
role in heart development and specification of limb iden-
tity [22]. Interestingly, TBX5 was identified as interac-
tor of Tbx3, a regulator of the SAN gene program [23]. 
Hoxa3 is another important gene in heart chamber mor-
phogenesis, since Hoxa3-expressing progenitor cells in 

the second heart field give rise to the atria and parts of 
the outflow tract [24].

Summarizing these findings, we conclude that using 
genome-wide tiling regions as well as the positional gene 
sets in the implemented gene set enrichment provide a 
powerful and yet unbiased downstream analysis option 
to the user. As shown by the comparison to RnBeads, we 
assume ADMIRE to have a higher sensitivity to detect 
small changes in methylation rate, as the user can decide 
upon appropriate thresholds for absolute difference in 
methylation. Both datasets used for performance evalua-
tion are available as shared data libraries on the ADMIRE 
web server (see Additional file 3 for loading shared data 
libraries).

Discussion
Integration and differential analysis of DNA methyla-
tion represents a major topic in clinical bioinformat-
ics, most often addressed by whole-genome bisulfite 
sequencing or Infinium HumanMethylation450 Assays. 
Given the nature of methylation assay data, most of 
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the beta values from all methylation sites of 2-kb upstream regulatory regions across all 689 replicates. Black dots represent boxplot outliers
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Fig. 4 IGV screenshots showing methylation across several genomic locations and boxplots for all significant sites. a–f Tracks shown are as follows: I. 
Methylation sites present on the HumanMethylation450 K Chip, II. Color-coded methylation values from control samples, III. Color-coded methyla-
tion values from AF samples, IV. Differentially methylated 10-kbp tiling regions called by ADMIRE, V. Differentially methylated 5-kbp tiling regions 
called by ADMIRE. The color bar encodes the m value, with blue indicating low methylation values and red indicating high methylation values. The 
absolute scale is created indvidually for each bar. Track IV and V are only used if the search with the corresponding input (5- or 10-kB tiling size) 
resulted in a significant region. a A 5-kbp region from chr17 called to be differentially methylated by RnBeads with an adjusted p value of 0.00008. 
b–f Top 5 differentially methylated regions from Admire with q values between 0.0004 and 0.003. g Boxplots for 20 significantly changed protein 
coding genes (higher in AF sample) identified by ADMIRE. Each box illustrates the distribution of absolute differences of the methylation values in 
the respective significantly changed region (see also Additional file 4). The cutoff at median methylation value of 5 % is shown as red dashed line
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the analysis tools developed in the past are primarily 
focused on command line-based programming librar-
ies, such as the R-based ChAMP [25] or minfi [7] pack-
ages, limiting the use of these tools to users with at least 
some programming skills. A second group of tools are 
intended to provide a comprehensive graphical inter-
face to the user, including MethLAB [26], COHCAP 
[27], EpiDiff [28], and the Genome Studio (Illumina, 
proprietary license). Within this group, only two tools 
are available (RnBeads and ADMIRE) that are capa-
ble to provide their service not only on the command 
line but also as a web-based graphical user interface. 
While all of these programs are arguably valuable con-
tributions to facilitate the analysis of Illumina Human-
Methylation450 Assays, many may be too demanding 
to wet lab researchers and clinicians with limited com-
putational skills. To face these needs, a web frontend 
might impose the least number of restrictions to the 
user. The intuitive, interactive, and relatively simple 
interface of ADMIRE facilitates the upload, analysis, 
and visualization of a complex technology. The input is 
limited to the raw files, a sample sheet describing the 
groups of interest and the selection of a few parame-
ters. Common experimental setups in molecular stud-
ies that define more than two groups are addressed by 
automated all-vs-all comparisons. Genomic regions 
and gene sets are available as precomputed files, but 
the possibility to upload custom files offers a vari-
ety of downstream analysis options. Unfortunately, 
public web services frequently perform very limited 
in terms of throughput, since the workload has to be 
managed by the website provider. In case of Human-
Methylation450Assays, the web-based analysis from 
RnBeads is limited to 24 arrays. In contrast, the algo-
rithm of ADMIRE is designed to transfer the compu-
tational effort to the number of probes that are tested 
and is influenced only in a minor grade by the number 
of arrays under investigation. This focus permits the 
provision of the web service not only for small projects 
with a limited number of arrays, but also for large pro-
jects encompassing hundreds of input samples (per-
formance evaluation with 689 input samples). Results 
from the original publication [15] handling these 
arrays, identify the MHC region as a major genetic risk 
loci in rheumatic arthritis. MHC peptides are bound 
by T-cell receptors together with their co-receptors 
CD28 and CD3. ADMIRE highly supports this result, 
by linking differential methylation in the T-cell recep-
tor signaling pathway as an alternative mechanism to 
rheumatic arthritis. Furthermore, the differential meth-
ylation of PDCD1 (PD-1), a co-inhibitor of the T-cell 
receptor signaling pathway involved in T-cell activation 

[29] could represent another mechanism by disturbing 
the control of autoimmunity.

Conclusion
ADMIRE offers an intuitive interface to analyze DNA 
methylation patterns based on Infinium HumanMethyla-
tion450 Assays. Whereas most existing analysis tools are 
designed to be used on the command line, ADMIRE pro-
vides an easy to use web-based service as well as a version 
for local execution. A wide range of experimental and sta-
tistical settings can be adjusted, including normalization 
methods and detection of differentially methylated posi-
tions and regions. Whereas these regions are often pre-
calculated in other tools, ADMIRE can calculate statistics 
on individual regions of interest provided by the user. As 
an optional step towards downstream analysis, ADMIRE 
additionally implements a gene set enrichment procedure. 
ADMIRE is freely accessible without a limit on experi-
mental size at https://bioinformatics.mpi-bn.mpg.de.

Methods
Implementation
ADMIRE was implemented in Bash, R, and Python while 
making use of the open-source Bioconductor package 
minfi [7] and the comb-p [9] tool for data processing. 
Additionally, a variant of GSEA [12] is fully implemented 
in ADMIRE for gene set enrichment analysis. The pipe-
line was integrated into a Galaxy-based [30] platform 
similar to MIRPIPE [31] to provide online access but is 
also available for download and local execution. Input 
data can either be used immediately from Infinium 
HumanMethylation450 Assay compatible scanner sys-
tems (SampleSheet.csv and *.idat-files) or the sample file 
can be prepared as a tab-separated text file. A detailed 
explanation of all input and output files is available in 
Additional file 3.

Generation of genetic regions and gene sets
Gene information from the GENCODE V19 [10] anno-
tation was used to extract genomic regions for all exons 
(GTF feature type exon) and all 2-kB promoter regions 
downstream of the TSS. CpG islands were extracted from 
the Bioconductor annotation package IlluminaHuman-
Methylation450kanno.ilmn12.hg19. Enhancer informa-
tion was downloaded from the Fantom5 project web site 
[11]. Bedtools makewindows function was used to gener-
ate genome-wide tiling regions of different sizes ranging 
from 50 bp up to 100 kB. All genomic regions were saved 
as bed files, keeping the gene_name property, if appli-
cable. Gene sets for gene set enrichment analysis were 
downloaded from MSigDB [12] and are contained in the 
distribution of ADMIRE.
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Benchmark and analysis of publicly available datasets
All raw *.idat-files were downloaded from the respective 
GEO project site (GSE42861 and GSE62727). Tabular 
sample definition files were generated (see user manual). 
Admire was invoked using default parameters and the 
following genomic regions and gene sets: 2-kB promoter 
regions and positional gene sets for the rheumatic arthri-
tis (RA) data and 5- and 10-kB genomic tiling regions for 
the atrial fibrillation (AF) data. Results from the RA data 
were limited to contain only protein coding genes and 
TR_C/TR_J genes with a Q-value below 0.01 and an abso-
lute median difference in methylation between normal 
and patient samples of 5 % (Additional file 7). Remaining 
genes with higher methylation in patients were subjected 
to a GO analysis with two unranked lists of genes using 
GORILLA [32] (Additional file  8) and methylation val-
ues for significantly altered genes that map to the T-cell 
receptor signaling pathway were plotted in Fig. 3. Results 
from the AF data (Additional file 4) were annotated with 
their nearest gene using bedtools closest function and 
were limited to contain only protein coding genes with 
a median absolute difference of 5  %. Gene names were 
subjected to a GO analysis as described above. To ana-
lyze the sensitivity of ADMIRE, per-probe absolute dif-
ferences were extracted using bedtools map function and 
plotted per chromosomal location in Fig. 4g.
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SUMMARY

The identity of tumor-initiating cells in many cancer
types is unknown. Tumors often express genes asso-
ciated with embryonic development, although the
contributions of zygotic programs to tumor initiation
and formation are poorly understood. Here, we show
that regeneration-induced loss of quiescence in p53-
deficient muscle stem cells (MuSCs) results in rhab-
domyosarcoma formation with 100% penetrance.
Genomic analyses of purified tumor cells revealed
spontaneous and discrete oncogenic amplifications
in MuSCs that drive tumorigenesis, including, but
not limited to, the amplification of the cleavage-stage
Dux transcription factor (TF) Duxbl. We further found
that Dux factors drive an early embryonic gene signa-
ture that defines a molecular subtype across a broad
range of human cancers. Duxbl initiates tumorigen-
esis by enforcing amesenchymal-to-epithelial transi-
tion, and targeted inactivation of Duxbl specifically in
Duxbl-expressing tumor cells abolishes their expan-
sion. These findings reveal how regeneration and
genomic instability can interact to activate zygotic
genes that drive tumor initiation and growth.

INTRODUCTION

The cell of origin for many cancer types remains unknown,
although the hypothesis has been put forward that cancerous
stem cells (CSCs) typically arise out of healthy stem cells. In sup-
port of this hypothesis, prevalent types of cancer most often
occur in tissues containing cells with increased proliferative po-
tential inferred by tissue resident stem cells (SCs), which nor-
mally enable regeneration of the respective tissue (Morrison

and Spradling, 2008; Tomasetti and Vogelstein, 2015). An excel-
lent example and experimentally tractable model to study stem-
cell-dependent regeneration is that of skeletal muscle, which is
mediated by and dependent on rare Pax7-expressing muscle
SCs that reside between the basal lamina and plasma mem-
brane of mature skeletal muscle fibers (Almada and Wagers,
2016; G€unther et al., 2013). Under resting conditions, muscle
SCs are predominantly quiescent but become activated upon
regenerative cues, such as an inflicting injury or during chronic
regeneration of certain diseases. For example, muscle SCs
from mdx mice that mimic certain features of Duchenne
muscular dystrophy undergo continuous activation due to
persistent muscle fiber degeneration and the consequent
requirement for de novo fiber formation under steady-state con-
ditions (Boldrin et al., 2015).
Recently, it was shown that germline inactivation of the tumor

suppressor p53 in chronically regenerating mdx mice develop
rhabdomyosarcoma (RMS) (Camboni et al., 2012; Chamberlain
et al., 2007), a rare and aggressive childhood cancer and the
most common soft-tissue sarcoma in children and adolescents
(El Demellawy et al., 2017). The cancer cell of origin of RMS
has yet remained unclear, in particular under these settings,
although forced expression of common potent oncogenic
drivers in muscle SCs, including, but not limited to, kras or
yap1, can result in RMS formation (Blum et al., 2013; Chen
et al., 2013; Hettmer et al., 2011; Shern et al., 2014; Tremblay
et al., 2014). Other reports have indicated RMS to originate in
mesenchymal cells (Wang et al., 2014), and it was recently
demonstrated that RMS can arise through malignant myogenic
trans-differentiation of endothelial progenitors via activation of
the hedgehog pathway (Drummond et al., 2018). Indeed, RMS
tumors are generally thought of as skeletal muscle tumors
because they display features of myogenic differentiation re-
flected by the expression of myogenic determinants, such as
MyoD, MyoG, and Desmin, all of which are sequentially
expressed in activated muscle SCs during the progression of
adult muscle regeneration and in muscle progenitors during
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embryonic muscle development (Almada and Wagers, 2016;
Braun and Gautel, 2011). Incidentally, the notion has been raised
that re-expression of genes normally expressed in tissue-spe-
cific progenitors during embryonic development might be
responsible for the stem-cell-like phenotypes of various poorly
differentiated human tumors, including RMS, germ cell tumors,
breast cancer tumors, glioblastoma, and bladder cell carcinoma
(Ben-Porath et al., 2008). However, in which cell types, how, and
by what means embryonic gene expression programs would be
elicited to induce tumor formation and whether or not any of
these associated genes are causally transformative has re-
mained largely unknown.
Genomic sequencing of tumors from patients suffering from

RMSandmanyother types of cancer hasunveiled oncogenicmu-
tations and copy number (CN) gains of certain genes associated
with tumor formation (Chen et al., 2013; Editorial, 2015 [in Nature
Medicine]; Shern et al., 2014). However, for most patients, both
the specific cellular and genetic etiologies of tumor formation
remain unknown, illustrating that mechanisms of tumorigenesis
remain to be identified and by more refined methods. The con-
stant proliferative and regenerative pressure on the muscle SC
compartment in continuously regenerating mdx mice led us to
reason that muscle SCs could be a cellular origin of RMS tumors.
Here, we devised an inducible strategy (1) to clarify the cellular
origin of RMS tumors, (2) to delineate the causal role of stem-
cell-dependent regeneration in cancer progression, and (3) that
would enable identification of causative mechanisms, leading to
tumorigenic transformation of healthy stem cells in vivo.

RESULTS

Lineage Tracing Identifies Muscle SCs as a Cellular
Origin of Embryonic RMS
To investigate the cell-autonomous role of muscle SCs in RMS
formation, we generated mice that enable muscle-SC-specific
deletion of p53 in both wild-type and constitutively regenerating
mdx mice by intraperitoneal administration of tamoxifen (TAM),
designated hereafter as SCp53 and SCp53/MDX, respectively. We
additionally introduced a Rosa26::lsl Tomato allele enabling per-
manent fluorescent lineage tracing of SCs after TAM treatment
(Figure 1A). Strikingly, 20 weeks after TAM treatment, all
SCp53/MDX mice developed tumors in, or immediate proximity
to, the musculature of extremities or the trunk and were all histo-
pathologically classified as embryonic RMS immunopositive for
Desmin, MyoD, and MyoG (Figures 1A–1C and S1A). Remark-
ably, some mice developed several tumors; however, TAM-
treated wild-type, mdx, or SCp53 mice never developed tumors
up to an age of more than 52 weeks (Figure 1B). Consecutive
bouts of cardiotoxin (CTX)-induced injury to the tibialis anterior
(TA) muscle of SCp53 mice uniformly resulted in RMS formation
at the site of injury, whereas control animals never developed tu-
mors (Figure S1B). These data show that muscle-SC-specific
loss of p53 in a regenerative environment is sufficient to generate
RMS, or conversely, that a regenerative environment enables
RMS formation upon muscle-SC-specific loss of p53. Moreover,
these data support the notion that maintenance of SC quies-
cence provides a cellular mechanism to suppress tumorigenesis
and are consistent with previous reports demonstrating that
muscle injury is required to elicit RMS formation upon forced

overexpression of oncogenic drivers, such as yap1 (Tremblay
et al., 2014). All of the tumors were lineage traced by activation
of the Rosa26-Tomato locus, clearly indicating muscle SCs as
the cellular origin of the RMS tumors in these animals (Figure 1C).
Consistently, strong Tomato fluorescence of the skeletal muscle,
but not the liver, revealed prominent and specific contribution of
muscle SCs toward de novo myofiber formation, as expected in
chronically regenerating mdx muscles and over the period
before tumor onset (Figure 1C). We next obtained single cell iso-
lates from surgically excised skeletal muscles and tumors and
subjected them to fluorescence-activated cell sorting (FACS),
enabling separation and purification of muscle SCs and both
lineage-traced and non-lineage-traced tumor-propagating cells
(TPCs), respectively (Figures 1D, S1C, and S1D). PCR-based
genotyping, immunofluorescent staining, and qRT-PCR of iso-
lated tissues and FACS-purified SCs and TPCs confirmed that
recombination of the p53 locus was highly efficient and specific
to muscle SCs and disclosed that purified Tomato-positive cells
were strictly deficient for p53 and purified Tomato negative cells
only contained non-recombined p53 DNA (Figures 1E and S1C–
S1F). In addition, immunofluorescent staining and qRT-PCR of
the freshly isolated SCs revealed that chronic regeneration elicits
expression of p53 in a subset of SCs, albeit at low levels (Figures
S1E–S1G). Notably, regenerated skeletal muscles still contained
DNAwith intact p53 alleles, most likely reflecting the presence of
myofibers derived frommuscle SCs before and after the onset of
p53 deletion and/or other muscle-resident cells. Likewise, DNA
isolated from bulk tumors contained DNA with both intact and
recombined p53 alleles (Figure 1E), in agreement with the obser-
vation that the tumors consisted of lineage-traced and non-line-
age-traced TPCs (Figures 1C and 1D). These data demonstrate
(1) the specific contribution of Pax7-expressing muscle SCs to-
ward RMS formation and (2) the complex cellular composition of
the developing tumors containing cells that are and are not
derived from Pax7-expressing SCs. Essentially, FACS-sepa-
rated TPCs were either strictly p53+/+Tomneg or p53!/!Tompos

(Figures 1D and 1E) that did or did not express myf5, myod, or
myog, respectively, further confirming efficient labeling of
p53!/! muscle SCs (Figure 1F). In contrast to p53!/!Tompos

cells, p53+/+Tomneg cells were highly enriched for cdkn1a
mRNA transcripts (also known as p21), a primary target of
p53 (Figure 1F), emphasizing that the loss of p53 functions in
RMS formation specifically in muscle-SC-derived cells express-
ing myogenic markers. Importantly, only transplantation of
p53!/!Tompos, but not p53+/+Tomneg, cells into immunocompro-
mised mdx-nude mice generated tumors at the site of injection
already two weeks after transplantation (Figures 1G and 1H).
Taken together, these data demonstrate that lineage tracing en-
ables prospective purification of genuine tumor-propagating
cells clearly originating from muscle SCs that are responsible
for tumor formation.

Genomic Analyses of Purified TPCs
To gain insight on the molecular mechanism leading to transfor-
mation of SCs, we next analyzed proliferation and differentiation
of wild-type, mdx, p53, and p53/mdx muscle SCs in vitro.
Inactivation of p53 and/or dystrophin in muscle SCs did not
impair terminal myogenic differentiation upon serum withdrawal
(Figure 2A). However, under growth conditions, p53-deficient
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muscle SCs displayed significantly enhanced proliferation and
concomitant formation of DNA double-strand breaks (DSBs) re-
flected by a dramatic increase of EdU-incorporating, yH2AX,

ATM, and 53bp1-positive SCs (Figures 2B–2E). These data
demonstrate that loss of p53 does not impair differentiation
but permits accumulation of mutations in actively proliferating
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Figure 1. Loss of p53 in Muscle SCs Induces ERMS Tumors in mdx Mice
(A) Genetic components of the model system. p53 is deleted in muscle SCs expressing ZsGreen and simultaneously lineage traced in vivo via recombination of a

Rosa26lsl::CAGTomato allele upon tamoxifen injection. Fluorescence enables FACS-based purification of muscle SCs and separation of lineage-traced and non-

lineage-traced TPCs.

(B) Kaplan-Meier tumor-free survival curves are shown for indicated genotypes. Dashed line indicates timing of tamoxifen administration.

(C) Representative immunofluorescent images of isolated tissues (bottom panel) and cross-sectioned tumor (top panel). Note that not all cells within the tumor are

lineage traced.

(D) FACS plots of purified SCs and TPCs.

(E) Genotyping of the p53 gene locus in indicated tissues, purified muscle SCs, and TPCs.

(F) mRNA expression analysis of p53, cdkn1a, and myogenic factors in purified TPCs and corresponding bulk tumors. Error bars indicate SD of the mean (t test:

*p < 0.05; **p < 0.01; ***p < 0.001; n = 4).

(G) Macroscopic image of Tomato expression in tumors after injection of purified TPCTOMpos in mdx-nude mice. Scale bar: 5 mm.

(H) Kaplan-Meier tumor-free survival curves for mdx-nude mice injected with either TPCsTOMpos or TPCsTOMneg.
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SCs, of which some might be responsible for tumorigenic
transformation.
To identify mutations promoting tumor formation, we per-

formed whole-exome sequencing on paired tumor-normal sam-
ples. Strikingly, CN analysis revealed discrete and dramatic
genomic CN amplifications in almost every specimen (21 out of
22) when paired purified TPCTOMpos-normal samples were
used (Figures 3B–3G, S2A–S2S, S3A, and S3B). In contrast,
we did not always detect CN variations when genomic DNA
from bulk tumors was analyzed, demonstrating that non-tumor-
igenic stromal cells interfere with the analysis of genomic
sequencing data (Figure 3A). Positional mapping of CN amplifi-
cations within each and across samples revealed genomic
amplification of defined chromosomal regions harboring known
mutational targets in ERMS, including yap1 (Tremblay et al.,
2014; 8/22; 36%), c-met (Fleischmann et al., 2003; Taulli et al.,
2006; 5/22; 23%), jun (Durbin et al., 2009; 1/22; 4.5%), and
cdk4/gli1/os9 (Liu et al., 2014; 1/22; 4.5%). We also identified
mutational targets that had not been associated with embryonic
RMS (ERMS) so far but with other types of cancer, including rras
(Flex et al., 2014), kdm4d (Soini et al., 2015), bap1 (Robertson
et al., 2017), mcm4 (Polotskaia et al., 2015; Shima et al., 2007),
and eloc (Sato et al., 2013; Figures 3F, 3G, S2A–S2S, S3A, and
S3B). Several mice displayed amplification on chromosome
14qA3 (5/22; 23%), harboring a poorly described triplicated
genomic locus in the mouse genome encoding for the genes
plac9, tmem254, cphx, and duxbl (Figures 3D, 3F, and 3G).
Notably, genomic analysis of two highly aggressive allografts,
which harbored yap1/c-met and yap1/kdm4d amplifications,
respectively, did not reveal significant accumulation of de novo
mutations or CNAs two weeks after the tumor cell transplant
(Figure 3F). In addition, a linkage between the amplified genes
within and across samples was not detected, suggesting that,
for each individual animal, a single discrete amplification was
likely sufficient for SC transformation. Interestingly, we also
noticed a dramatic reduction of mtDNA in many of the TPCs,
suggesting those to be glycolytic and had likely undergone a
Warburg effect (Figures 3B, 3D, 3E, and S2A–S2S). In contrast
to oncogenic amplifications, somatic single-nucleotide varia-
tions (SNVs) were astonishingly low (Figures S4A and S4B),
concordant with recent observations that soft-tissue sarcomas
are predominantly characterized by copy number changes,

with low mutational loads of only a few genes, including p53,
atrx, and rb1 (The Cancer Genome Atlas Research Network,
2017; Chen et al., 2013; El Demellawy et al., 2017; Shern et al.,
2014). Tables supporting CN and SNV analyses are provided in
Tables S1 and S2.

Dux TFs Define a Molecular Subtype of Cancer
The subset of tumors containing amplification of 14qA3 was of
particular interest, because this genomic region does not contain
any known oncogene. We noticed that 14qA3 harbors the duxbl
gene, which belongs to the Dux family of homeobox-containing
transcription factors with human Dux4 as the founding member
(Leidenroth and Hewitt, 2010). Recently it was shown that
Dux4, or the murine homolog Dux, is responsible for driving
cleavage-stage gene expression signatures known as zygotic
gene activation (ZGA) in totipotent embryonic stem cells
(ESCs) (De Iaco et al., 2017; Hendrickson et al., 2017; Whiddon
et al., 2017). The human genome encodes two additional paral-
ogs of Dux4, named DuxA and DuxB, which are expressed
exclusively at the totipotent 8-cell stage in early zygotes (Madis-
soon et al., 2016). These observations led us to speculate that
Dux transcription factors might act at a putative interface of
stem cell potency and tumor formation.
To test this hypothesis, we analyzed previously published dis-

covery cohorts of human ERMS patients (Chen et al., 2013;
Davicioni et al., 2009; Williamson et al., 2010) for expression of
Dux4, DuxA and DuxB, and/or ZGA. We assumed that a putative
role of Dux genes in causing human ERMS might have been
missed in the past due to poor annotation and in particular of
the Dux family and ZGA-associated genes. In this context, it is
noteworthy to mention that the human duxA and duxB genes
were only recently identified and annotated, with human duxB
being in genomic synteny with mouse duxbl and human dux4
is in synteny with murine dux (Leidenroth et al., 2012; Leidenroth
and Hewitt, 2010). Intriguingly, and consistent with the proposed
role of Dux factors in driving cleavage-stage-specific gene
expression signatures (Hendrickson et al., 2017), we identified
54 RMS tumors ("10%) that were strikingly positive for ZGA
and/or Dux factor expression (Figures 4A and S5A–S5D; Table
S3). Reanalysis of raw sequencing data of mRNA transcripts
available from the dataset of Chen et al. (2013) disclosed four
ZGA-positive patients of which two (X03D and X20A) expressed
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dramatically high levels of Dux4, DuxA, and DuxB (Figures 4A
and S5A). These data indicate that Dux transcription-factor-
driven zygotic gene activation defines a molecular signature of
a new ERMS subtype. We next sought to investigate whether
increased expression of Dux genes is restricted to ERMS or
also associated with other malignancies. To this end, we re-
screened <10,000 cancer patients of The Cancer Genome
Atlas–Pan-Cancer (TCGA-PANCAN) dataset (Hoadley et al.,
2014) for Dux4, DuxA, and DuxB exon expression. Intriguingly,
we identified 349 patients that displayed distinct expression of
Dux4, DuxA, and DuxB either in combination or alone. Cancer
onset and type in these patients was highly variable, comprising
of 32 different types of somatic cancer according to ICD-1O
(International Classification of Diseases for Oncology) (Figure 4B;
Table S3). These data show that Dux transcription factors driving
early zygotic gene signatures define a molecular subtype of a
broad range of human cancers.

We noticed that two tumors from the sequenced RMS cohort
(X013D and X45D) displayed ZGA to a lower degree than X03D

and X20A, which corresponded to clearly detectable but lower
levels of Dux4, DuxA, or DuxB (Figures S5A and S5B). Similar
expression patterns were visible in the larger cohort of patients
from the PANCAN dataset, supporting the idea that Dux factors
act upstream of ZGA to initiate tumorigenesis but that sustained
Dux-mediatedZGAmaynotbe required formaintenanceofestab-
lished tumors. Notably, tumors showing themost striking expres-
sionofDux4,DuxA,DuxB,andZGAwerepredominantly classified
as testicular germcell carcinomas (TGCs),more than half ofwhich
developed in subjects younger than 20 years old, thus indicating a
particular vulnerability of Dux-ZGA–associated tumorigenesis in
germ cell tissues (Figure 4C; Tables S3 and S4). Conspicuously,
the most prevalent cancer types across the 349 patients (testis,
breast, kidney, stomach, and lung) are thought to be of epithelial
origin, and virtually all of theZGA-positive tumorsdisplayedprom-
inent levels of Dux4, DuxA, and/or DuxB, but not vice versa (Fig-
ures 4B–4D, S6A, and S6B). Particularly apparentwas that almost
all of the breast cancer patients expressed dramatic levels of
DuxB-Duxbl, but only few were additionally positive for ZGA,
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Figure 3. Identification of Distinct Copy Number Amplifications in RMS Tumors
(A, B, D, and E) Scatterplots depicting log-scaled RPKM values of genomic DNA in purified tumor cells (y axis) (B, D, and E) or in non-purified bulk tumor (A) versus

liver control (x axis). Note that the same genes are highlighted in red in (A), (B), and (C). Green circles represent mitochondria-encoded genes. Red circles

represent amplified genes. Magenta circle represents p53.

(C) Amplified genes highlighted in red in (A) and (B) displayed in physical genomic order.

(F) Heatmap summarizing amplified genes in the 22 analyzed tumors. Curved arrows indicate allografts of donor TPCs and TPCs after transplantation into

recipient.

(G) Cumulative CIRCOS plot of amplified genes from all analyzed tumors. Note that genomic regions are displayed in physical order.
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DuxA, and/or Dux4, suggesting Dux4 to act genetically upstream
of DuxB (Figure 4D). Consistent with this hypothesis, acute
overexpression of Dux4 elicited a profound and significant upre-
gulation of ZGA-associated genes, as previously reported, and
additionallyDuxAandDuxB inhumanembryonic kidneycells (Fig-
ure S7A; Table S5; Hendrickson et al., 2017). Taken together,
these data raise the idea that (1) Dux factors initiate tumorigenesis
via activation of ZGA and/or (2) that Dux factor expression, and in
particular DuxB-Duxbl, might facilitate tumorigenesis by an addi-
tional ZGA-independent mechanism.

Duxbl Initiates Tumor Formation via Eliciting a
Mesenchymal-to-Epithelial-Transition-like Program
To gain a mechanistic understanding on the action of DuxB-
Duxbl, we overexpressed Duxbl in wild-type muscle SCs via
lentiviral transduction (Figure 5A). In wild-type control muscle
SCs (designated hereafter as SCWT), serial passaging resulted
in exhaustion of proliferation concomitant with progressive for-
mation of flattened myoblasts that robustly fused to form
terminally differentiated myotubes (Figures 5B–5D). In striking
contrast, overexpression of Duxbl resulted in the emergence of

Figure 4. Dux Transcription Factors Define a Molecular Subtype of Cancer
(A) Integration analysis of Dux-dependent zygotic gene expression (x axis) and cleavage-stage-specific gene expression (y axis) in tumor from ERMS

patient X20A.

(B) Unsupervised cluster analysis of tumors from the full TCGA-PANCANdataset revealing four subgroups driven bymRNA expression of Dux factors and/or Dux-

dependent zygotic gene activation. Percentages indicate prevalence of color-coded tumor type across 349 Dux-factor-ZGA–positive tumors. Clinical metadata

of tumors stratified by age, gender, and cluster are provided in Tables S3 and S4.

(C and D) Unsupervised cluster analysis of breast cancer (C) and testicular germ cell carcinoma (D) positive for expression of Dux factors and/or Dux-dependent

zygotic gene activation.
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immortalized and morphologically rounded clones prone to
spontaneously form cadherin-positive, epithelial-like spherical
aggregates that were devoid of myogenic differentiation and
could be passaged indefinitely in vitro (designated hereafter as

SCDuxbl; Figures 5B–5F). Importantly, subcutaneous transplanta-
tion of SCDuxbl resulted in tumor formation at the site of engraft-
ment, clearly demonstrating that overexpression of Duxbl is
sufficient for neoplastic transformation in vivo (Figure 5G). In
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Figure 5. Overexpression of Duxbl Confers Plasticity and Promotes Tumor Formation
(A) Schematic of lentiviral-mediated transduction of V5-tagged Duxbl into wild-type (WT) muscle SCs.

(B) Cumulative population doublings over three weeks of culture. Error bars indicate SD of the mean.
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(D) Representative images of SCsWT and SCsDuxbl after 3 weeks in culture. Scale bars: 50 mm.

(E and F) Pseudo-colored immunofluorescent staining of SCDuxbl colonies as indicated. Scale bars: 100 mm in top panels and 20 mm in lower panels of (E), and

20 mm in top panels and 50 mm in lower panels of (F).

(G and H) Macroscopic image of mCherry expression after injection of SCDuxbl carrying an additional mCherry reporter (G) subcutaneously or (H) in TA muscle.

Scale bar: 100 mM in (G) and 1 mm in (H).
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contrast, SCWT did not give rise to any detectable neoplasias
3 months after subcutaneous transplantation as previously re-
ported (data not shown; Irintchev et al., 1998). Interestingly,
SCDuxbl contributed to myofiber formation when injected directly
into the strong pro-differentiation environment of TAmuscle (Fig-
ure 5H). Collectively, these data provided an additional important
mechanistic insight: it appeared that forced expression of Duxbl
renders SCs to obtain increased plasticity and that the ability of
SCDuxbl to form tumors requires sustained reduction of pro-dif-
ferentiation cues in vivo.
To gain a deeper molecular insight on how Duxbl might confer

such plasticity, we performed RNA sequencing (RNA-seq) and
compared gene expression profiles of isolated SCDuxbl clones
to various stages of myogenic differentiation of SCWT. Linear
principal-component analysis (PCA) revealed that separation of
conditions (PC1; explaining 33.9% of variance) was primarily
driven by differential expression of genes related to stem cell
maintenance and differentiation (e.g., quiescent SCWT ex-
pressed Pax7, but not MyoG, in comparison to differentiated
SCWT and vice versa; Figures 6A–6C). Notably, SCDuxbl did not
express any myogenic determinants, including Myf5, Myod, or
MyoG, further demonstrating that forced expression of Duxbl
profoundly impairs muscle SC differentiation. Intriguingly, sepa-
ration of conditions across the second dimension (PC2; explain-
ing 26.4% of variance) was enforced by dramatic expression of
genes driving epithelialization (Figures 6A–6C). Indeed, pairwise
differential expression analysis of SCDuxbl with all stages of mus-
cle SC differentiation (false discovery rate [FDR] < 0.01) followed
by gene set enrichment analysis (GSEA) revealed a dramatic in-
duction of genes involved in focal adhesion and proliferation of
epithelial cells (Figures 6D–6F and S7B–S7D; Table S6). Consis-
tently, SCDuxbl revealed a dramatic upregulation or induction of
numerous genes encoding for integrins, collagens, and most
prominently cadherins and proto-cadherins (Figures 6C and
S6B–S6D). Most intriguingly, SCDuxbl expressed high levels of
the neural and pluripotency factor sox2, which was expectedly
absent in all stages of SCWT. Interestingly, and similar to neural
stem cells, undifferentiated quiescent SCWT expressed high
levels of the pluripotency factor klf4 (Kim et al., 2009), the expres-
sion of which was downregulated during differentiation of SCWT

but sustained in SCDuxbl (Figures 6A and 6C). Notably, both sox2
and klf4 are instrumental to facilitate an essential mesenchymal-
to-epithelial transition (MET) event during reprogramming of so-
matic cells to induced pluripotent stem cells (iPSCs) (Li et al.,
2010). In aggregate, these data indicate that forced expression
of Duxbl most likely initiates tumorigenic transformation and
colonization via a mechanism similar to MET (Figure 6G).

Targeting Oncogenic Duxbl
Finally, we sought out to test whether inactivation of DuxB-Duxbl
could serve as a potential target in the primary tumor cells puri-
fied from the SCp53/MDX mice. To this end, we carried out short
hairpin RNA (shRNA)-mediated knockdown in early passaged
TPCs purified from primary tumors harboring either Duxbl
(TPCDuxbl) or Yap1 (TPCYap1) CN amplifications. Notably, expres-
sion of Duxbl mRNA was solely found in TPCDuxbl, but not in
TPCYap1. Likewise, expression of yap1 was restricted to TPCYap1

(Figure 7A). Strikingly, shRNA-mediated knockdown of Duxbl in
TPCDuxbl, but not in TPCYap1, and vice versa, resulted in cell

death, demonstrating that Duxbl expression is required specif-
ically for maintenance of TPCDuxbl in vitro (Figures 7B and 7C;
related videos on Mendeley Data at https://doi.org/10.17632/
7g2pbbrn4m.1). Collectively, these data demonstrate that
DuxB-Duxbl can be targeted in tumor cells but disease-causing
mutations in each individual tumor need to be identified before
specific therapeutic intervention.

DISCUSSION

Genetic factors and certain environmental factors, such as expo-
sure to viruses, radiation, or other carcinogens, are known to in-
crease the risk of cancers, but for most cases, the cellular origin
and cause of cancer remains unknown. Variation of cancer risk
across tissues might be explained by the number of divisions
of tissue-resident stem cells (Tomasetti and Vogelstein, 2015),
which differs depending on developmental stages. In support
of this claim, loss of p53 in muscle SCs only resulted in ERMS
formation in mice undergoing continuous skeletal muscle regen-
eration and with astonishingly low variation of latency.
Interestingly, p53 single-knockout mice rarely develop rhab-

domyosarcomas (Donehower et al., 1992), and although chron-
ically regenerating mdx mice display elevated levels of DNA
damage under steady-state conditions, their predisposition to
spontaneously develop rhabdomyosarcomas predominantly oc-
curs after more than one year of age (Camboni et al., 2012;
Chamberlain et al., 2007). Previous observations revealing that
compound p53/mdx germline knockouts almost only develop
rhabdomyosarcomas raised several intriguing questions. Why
and how does chronic muscle regeneration in p53 germline
knockouts lead to predominant formation of RMS tumors and
what is in fact the cellular origin of RMS tumors? Our data clearly
show that sustained activation and division of muscle SCs
promotes tumorigenesis in genomically instable SCs and addi-
tionally indicates maintenance of SC quiescence as a cellular
mechanism to suppress tumorigenesis. Importantly, lineage
tracing enabled us (1) to determine the cancer cell of origin, (2)
to prospectively purify ‘‘genuine’’ tumor propagating cells, and
(3) to identify discrete oncogenic amplifications associated
with tumor formation via genomic sequencing. Separation of
tumorigenic from stromal cells, which constitute a large part of
solid tumors, was especially important in this respect, because
the inherent complex cellular composition of tumors and non-
tumorigenic cell therein interfered with analysis of genomic
sequencing data obtained from bulk samples.
The Cancer Genome Atlas Research Network continues to

report genome-wide signatures of pathologically defined tumor
types, but past studies have used next generation sequencing
(NGS) algorithms to detect mutations of well-annotated genomic
loci, exempting recently discovered genes (Roychowdhury and
Chinnaiyan, 2016). Accordingly, a more recent study revealed
that oncogenic BAP1 alterations in uveal melanoma are missed
by NGS mutation detection algorithms used in the past and
can only be detected by more recently developed sequence-as-
sembly-based methods (Robertson et al., 2017). Moreover, pre-
cise annotation of the human genome still remains incomplete
(Chen et al., 2013; Steward et al., 2017). Therefore, tumor ana-
lyses need to be constantly repeated using updated annotated
genomes and refined methods, including tumor cell purification
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or single-cell sequencing to identify new tumorigenic mutations.
Here, we were able to unmask sample complexity through
genomic profiling of purified TPCs, which enabled identification
of distinct oncogenic amplifications in almost every analyzed
animal.
Most importantly, we identified a novel oncogenic CNA of

Duxbl, the murine paralog of human DuxB. Our data clearly indi-
cate that redeployment of Dux transcription factors that define
gene expression signatures of totipotent cleavage-stage ESCs
(De Iaco et al., 2017; Hendrickson et al., 2017; Whiddon et al.,
2017) confer stem cell expression profiles facilitating tumorigen-
esis in a broad range of human cancers and particularly in those
of germ cell and epithelial origin. It did not miss our attention that
three tumors harbored distinct copy number gains of the epige-
netic regulators smchd1 and kdm4d (Figure 3G), direct upstream
and downstream effectors of Dux4, respectively, which indicates
the Dux-ZGA axis to play amore prominent role in tumorigenesis
than previously appreciated. Interestingly, derepression of
silenced Dux4 in post-mitotic skeletal muscle fibers activates
genes normally expressed in embryonic development and
causes facioscapulohumeral muscular dystrophy (FSHD) (Lem-
mers et al., 2010). Ectopic expression of Dux4 in somatic cells
causes cell death by yet unclarified mechanisms but seems to
require a C-terminal domain specific to Dux4 that is not con-
tained in DuxB-Duxbl (Bosnakovski et al., 2008a, 2017; Hewitt,
2015; Rickard et al., 2015). This indicates that different members
of the Dux family appear to own different properties and/or exert
different functions when expressed alone or with other Dux
genes. In our mouse model, we observed oncogenic amplifica-
tion of Duxbl, but not Dux, the human homolog of Dux4, and
expression of Dux4 in human samples was almost always
accompanied by co-expression of DuxB, which supports this
conclusion. It is additionally tempting to speculate that higher
resistance to cell death (e.g., by mutation of p53) might further
render stem cells especially vulnerable to tumorigenic transfor-
mation by Dux factors.
The finding that Duxbl confers cellular plasticity and induces

an MET-like process is particularly fascinating. The cancer
stem cell (CSC) theory puts forward that most tumor cells lack tu-
mor-initiating ability and that only a rare subpopulation of ‘‘stem-

like’’ cells can lead to metastatic disease. Indeed, similar to
pluripotent ESCs and iPSCs, CSCs show a plasticity that allows
them to transition between epithelial- and mesenchymal-like
states (Polyak and Weinberg, 2009). In accordance to the
‘‘seed and soil’’ hypothesis, we propose that forced expression
of DuxB-Duxbl results in the initiation of a cancer stem cell that
is a seed seeking the most fertile soil (a niche with constant
low differentiation pressure) for it to grow in (Peinado et al.,
2017). In such a scenario, it is reasonable that a chronic regener-
ation environment can generate focal niches that foster Duxbl-
triggeredMET, enabling initiation of plastic tumorigenic colonies,
but a secondary event for the establishment of truly meta-
static niches is likely required to enable tumor cell outgrowth
(Figure 6G).
Finally, our results also revealed that inactivation of Duxbl in

TPCDuxbl, but not in TPCYap1, abolished tumor cell propagation
and vice versa, indicating the dependence of individual tumors
on distinct regulatory networks. The development of specific
Dux inhibitorsmight allow personalized therapeutic interventions
for patients suffering from Dux-factor-linked cancers, which can
nowadays be easily diagnosed by sequencing approaches.
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(B and C) Growth curves of purified TPCs transduced with different shRNA lentiviruses targeting either yap1 or duxbl in TPCYap1 (B) and TPCDuxbl (C).

See also related videos deposited at Mendeley Data at https://doi.org/10.17632/7g2pbbrn4m.1.
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Hendrickson, P.G., Doráis, J.A., Grow, E.J., Whiddon, J.L., Lim, J.W., Wike,

C.L., Weaver, B.D., Pflueger, C., Emery, B.R., Wilcox, A.L., et al. (2017).

Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage

genes and MERVL/HERVL retrotransposons. Nat. Genet. 49, 925–934.

Hettmer, S., Liu, J., Miller, C.M., Lindsay, M.C., Sparks, C.A., Guertin, D.A.,

Bronson, R.T., Langenau, D.M., and Wagers, A.J. (2011). Sarcomas induced

in discrete subsets of prospectively isolated skeletal muscle cells. Proc.

Natl. Acad. Sci. USA 108, 20002–20007.

Hewitt, J.E. (2015). Loss of epigenetic silencing of the DUX4 transcription fac-

tor gene in facioscapulohumeral muscular dystrophy. Hum. Mol. Genet. 24

(R1), R17–R23.

Hoadley, K.A., Yau, C., Wolf, D.M., Cherniack, A.D., Tamborero, D., Ng, S.,

Leiserson, M.D.M., Niu, B., McLellan, M.D., Uzunangelov, V., et al.; Cancer

Genome Atlas Research Network (2014). Multiplatform analysis of 12 cancer

types reveals molecular classification within and across tissues of origin.

Cell 158, 929–944.

Irintchev, A., Rosenblatt, J.D., Cullen, M.J., Zweyer, M., andWernig, A. (1998).

Ectopic skeletal muscles derived from myoblasts implanted under the skin.

J. Cell Sci. 111, 3287–3297.

804 Cell Stem Cell 23, 794–805, December 6, 2018



Jonkers, J., Meuwissen, R., van der Gulden, H., Peterse, H., van der Valk, M.,

and Berns, A. (2001). Synergistic tumor suppressor activity of BRCA2 and p53

in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425.

Kim, J., and Braun, T. (2014). Skeletal muscle stem cells for muscle regenera-

tion. Methods Mol. Biol. 1213, 245–253.

Kim, J.B., Sebastiano, V., Wu, G., Araúzo-Bravo, M.J., Sasse, P., Gentile, L.,
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-MyoD1 rabbit polyclonal antibody Abcam Cat# ab64159,RRID:AB_2266875

Anti-MyoD1 mouse monoclonal antibody LSBio Cat# LS-C9179-500, RRID:AB_835256

Anti-Myogenin rabbit polyclonal antibody Sigma Aldrich Cat# HPA038093,RRID:AB_10674546

Anti-Myogenin mouse monoclonal antibody BD Bioscience Cat# 556358, RRID:AB_396383

Anti-MF20 mouse monoclonal antibody DSHB Cat# MF 20, RRID:AB_2147781

Anti-Desmin rabbit polyclonal antibody Sigma Aldrich Cat# D8281, RRID:AB_476910

Anti-yH2AX rabbit polyclonal antibody Cell Signaling Tech. Cat# 2595, RRID:AB_10694556

Anti-ATM rabbit polyclonal antibody Cell Signaling Tech. Cat# 2851S, RRID:AB_330318

Anti-53bp1 rabbit polyclonal antibody Abcam Cat# ab36823, RRID:AB_722497

Anti-P/E Cadherin mouse monoclonal antibody BD Cat# 610182, RRID:AB_397581

Anti-V5 rabbit polyclonal antibody Abcam Cat# ab9116, RRID:AB_307024

Anti-V5 mouse monoclonal antibody Invitrogen Cat# 37-7500, RRID:AB_2533339

Anti-p53 rabbit polyclonal antibody Leica Cat# NCL-p53-CM5p, RRID:AB_563933

Bacterial and Virus Strains

pMD2.G plasmid Didier Trono Lab Addgene # 12259

psPAX2 plasmid Didier Trono Lab Addgene # 12260

duxblV5 plasmid Vectorbuilder N/A

Yap1 shrna#1: GCAGACAGATTCCTTTGTTAA Sigma Aldrich N/A

Yap1 shrna#2: CCACCAAGCTAGATAAAGAAA Sigma Aldrich N/A

Yap1 shrna#3: CGGTTGAAACAACAGGAATTA Sigma Aldrich N/A

Yap1 shrna#4: GCGGTTGAAACAACAGGAATT Sigma Aldrich N/A

Yap1 shrna#5: CTGGTCAAAGATACTTCTTAA Sigma Aldrich N/A

duxbl shrna#1: GCAGGATAAACCTAGAGTTAA Sigma Aldrich N/A

duxbl shrna#2: GCTGAATGGATGCCTGACAAA Sigma Aldrich N/A

duxbl shrna#3: GCTTCAGTTATACTGCCTCTT Sigma Aldrich N/A

duxbl shrna#4: CCGCGCTTAGAAGATTGTACT Sigma Aldrich N/A

Scrambled shrna: CCTAAGGTTAAGTCGCCCT

CGCTCGAGCGAGGGCGACTTAACCTTAGG

Sigma Aldrich N/A

Stbl3 Chemically Competent E. coli Invitrogen Cat# C737303

Chemicals, Peptides, and Recombinant Proteins

Tamoxifen Sigma Aldrich Cat# T5648

Dispase BD Cat# 354235

Collagenase, Type 2 Worthington Biochemicals Cat# CLS-2

Percoll Sigma Aldrich Cat# P1644

Matrigel Matrix BD Cat# 356234

Trizol reagent Invitrogen Cat# 15596026

Critical Commercial Assays

Click-iT EdU Kit Invitrogen Cat# C10337

SuperScript II Reverse Transcriptase Kit Invitrogen Cat# 18091050

DNeasy Blood & Tissue Kit QIAGEN Cat# 69504

SureSelect Mouse All Exon Kit Agilent Cat# G7550

Deposited Data

Exome-Seq data This paper ENA: PRJEB23461

RNA-Seq data QSC, ASC, DSC W€ust et al. (2018) GEO: GSM2888361

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and reasonable requests for reagents may be directed to and will be fulfilled by the Lead Contact, Johnny Kim
(johnny.kim@mpi-bn.mpg.de)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All mice used in this study were bred on a C57BL/6 background, drug and test naive, healthy prior to the studies, not used in previous
procedures and maintained in a barrier facility. Except for mdx-nude mice used for transplantation studies all mice were immune
competent. Female and male animals to equal proportions were analyzed in this study. None of the determined parameters in
this study correlated with animal sex. Genotypes of all animals and as indicated in this studywere determined using verified protocols
with DNA isolated from tail snip tissue biopsies collected upon weaning. All mice were mice were separated by sex and maintained
with 4-5 mice per cage in low-noise, filtered ventilated cage racks. The p53loxP/loxP mouse strain was obtained from The Jackson
Laboratory (6.129P2-Trp53tm1Brn/J) and described previously(Jonkers et al., 2001). B6.Cg-Gt(ROSA)26Sor tm14CAG-tdTomato)
Hze/J (Rosa26Tomato), C57BL/10ScSn-Dmdmdx/J (mdx) mouse strain were obtained from The Jackson Laboratory (Bar Harbor,
ME). The mdx-nude strain was a kind gift from Jennifer Morgan and was described previously (Gross and Morgan, 1999). The gen-
eration of Pax7CE and Pax7::ZsGreen mice has been described previously (Bosnakovski et al., 2008b; Lepper et al., 2009). Primers
used for genotyping are listed in the Supplemental Information. Tamoxifen (Sigma) was administered to two-month old mice intra-
peritoneally at 2mg per 40 g body weight per injection. Cardiotoxin (0.06 mg/ml, Sigma) was injected into tibialis anterior muscles in a
volume of 50 ml. FACS purified TPCs (1x105) were injected intramuscularly into anesthesized mdx-nude mice as described in (Gross
and Morgan, 1999). All animal experiments were done in accordance with the Guide for the Care and Use of Laboratory Animals

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

RNA-Seq data Duxbl overexpression This paper ENA: PRJEB23461

RNA-Seq data Chen et al. (2013) Chen et al. (2013) ENA: EGAD00001000878

Videos of tumor cells subjected to shrna mediated

inactivation of amplified oncogenes

This paper https://doi.org/10.17632/7g2pbbrn4m.1

Experimental Models: Cell Lines

HEK293FT ATCC Cat# PTA5077

Experimental Models: Organisms/Strains

p53loxP/loxP mice Jackson Laboratory Stock No: 008462

Rosa26Tomato mice Jackson Laboratory Stock No: 007914

mdx mice Jackson Laboratory Stock No: 001801

mdx-nude mice Dr. Jennifer Morgan N/A

Pax7::ZsGreen mice Dr. Michael Kyba N/A

Pax7CE mice Dr. Chenming Fan N/A

Software and Algorithms

R language (v3.4.1) NA http://www.r-project.org

GraphPad Prism 7 GraphPad Software N/A

STAR(v2.5.2b) N/A https://bioconda.github.io/

Picard (v1.119) N/A https://bioconda.github.io/

FreeC (version 10.5) N/A https://bioconda.github.io/

Heatmaps and Circos (v0.69-3) N/A http://circos.ca/

Arraystar v.14 N/A N/A

Gencode (version vM11) N/A https://www.gencodegenes.org/

DBsnp (version 142) N/A https://www.ncbi.nlm.nih.gov/projects/SNP/

VEP (version 90.6) N/A https://bioconda.github.io/

RSEM (v1.2.30) N/A https://bioconda.github.io/

GATK (v3.2.2) N/A https://software.broadinstitute.org/gatk

Oligonucleotides

Oligonucleotides used for genotyping and mRNA

expression analysis are provided in Table S7

N/A N/A
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published by the USNational Institutes of Health (NIH Publication No. 85-23, revised 1996) and according to the regulations issued by
the Committee for Animal Rights Protection of the State of Hessen (Regierungspraesidium Darmstadt).

Cell culture
Satellite cell and tumor cell purification were performed according to established methods (Kim and Braun, 2014). Briefly limb and
trunkmuscles or surgically excised tumors wereminced, digestedwith 100CUDispase (BD) and 0.2% type II collagenase (Worthing-
ton Biochemicals), and consecutively filtered through 100 mm, 70 mm, and 40 mm cell strainers (BD). Cells were applied to a discon-
tinuous Percoll gradient consisting of 70% Percoll overlayed with 30% v/v Percoll. Mononuclear cells were collected at the 70/30
interphase and subjected to FACS (BD FACSAriaIII) using GFP fluorescence (for Pax7::ZsGreen) and/or RFP fluorescence for lineage
traced Rosa26TOM cells. FACS purified SCs and TPCs were cultured on Matrigel-coated mClear plates (BD Biosciences, Greiner) in
DMEMmediumwith 20%FCS and bFGF (5ng/ml). EdU incorporation assay was performed by adding EdUwith a final concentration
of 10 mM 3 hours before fixation and then analyzed using the Click-iT EdU kit (Invitrogen) according to the manufacturer’s protocol.
Antibodies for immunohistochemical staining are listed in the Key Resources Table. Time lapse imaging and analysis was performed
using an Incucyte Live-Cell Imaging System and software (Essen Instruments). In population doubling assays SCs were seeded at
equal density (102/well), images were taken every hour and growth rates were calculated as a percentage of cell confluence per im-
age and over time. Every two days SCs were trypsinized, undifferentiated SCs recollected, replated at equal densities and contin-
uously reanalyzed as above.

METHOD DETAILS

mRNA expression analysis
Total RNA was isolated using RNeasy Micro Kit (QIAGEN) or Trizol reagent (Invitrogen) according to the manufacturers’ protocols.
Purified RNA was subjected to reverse transcriptase reaction in the presence of 25 ng/ml random primers and 2.5 mM dA/C/G/
TTP with 10 U/ml SuperScript II Reverse Transcriptase (Invitrogen). Results were normalized to gapdh or m36b4 expression. Primers
used for RT-qPCR are listed in the Key Resources Table.

Immunofluorescence and immunohistochemistry
Cells and tissue sections were fixed in 4% paraformaldehyde and blocked in PBS containing 5% BSA (Millipore) and 0.1%. Triton
X-100 for 1 hour at room temperature, incubated with primary antibodies overnight at 4#C. Samples were thenwashed and incubated
with secondary antibodies for at room temperature, washed, coverslipped and imaged on confocal (Leica), MetaXpress (Molecular
Devices), or Axioimager (Zeiss) microscopes.

The list of antibodies used in this study is shown in Key Resources Table. Representative images for were combined into a single
panel by adjusting the scale (Figures 1C, 4E, and 4F).

Knockdown by shRNA transduction
Production of lentivirus encoding shrnas was performed by Ca3(PO4)2 transfection of HEK293T cells with helper plasmids pMD2.G
and psPAX2. Isolated satellite cells or tumor cells were seeded into tissue culture plates freshly coated with Matrigel (Greiner).
24 hours later, cells were transduced with lentiviral supernatants supplemented with 8mg/ml polybrene for 12 hours. After media ex-
change, cells were further incubated in growthmedia and imaged using am Incucyte live-imager (EssenBioscience) over time or fixed
in 4% PFA and whole well images were acquired and analyzed using an ImageXpress Micro automated high-throughput fluores-
cence microscope and MetaXpress software (Molecular Devices).

Exome sequencing, bioinformatics
Total genomic DNA from purified cells and isolated tissues was purified with DNeasy Blood & Tissue Kit (QIAGEN) and quantified by
Qubit and NanoDrop measurement. Volume of samples with low concentrations (< 25ng/ml) was reduced by SpeedVac. 50ng of
genomic DNAwas used as input for SureSelect QXT library (Agilent) preparation using the standard protocol. Successful pre-hybrid-
ization library preparation was followed by Qubit and Labchip GX touch measurement for quantity and insert size. 200-1.500ng of
library was used for hybridization with SureSelect Mouse All Exon Kit (Agilent) to enrich for Exome-containing library elements.
Sequencing was performed on the NextSeq500 instrument (Illumina) using v2 chemistry, resulting in average of 30M reads per library
with 2x300bp paired end setup. Raw reads were mapped against the mouse genome (mm10) using STAR (v2.5.2b), and alignments
were deduplicated using Picard (v1.119), effectively removing PCR artifacts that lead tomultiple copies of the same original fragment.
Deduplicated input alignments of matched normal and tumor samples were used for analysis of copy number variations using FreeC
(version 10.5) with capture regions from the SureSelect Mouse All Exon Kit (Agilent) as target windows. We obtained copy number
ratios for targeted exons, as well as the median ratio per segmented amplification (spanning multiple target exons) from the FreeC
output, which were calculated and normalized to log2 copy number values (log2CN). A segment was selected for further investigation
after fulfillment of the following criteria: median log2CNwas above 3, the segment contained exons fromat least 5 consecutive genes,
and the total spanning exonic length was greater than 5kB. Maximum log2CN values for a gene within a selected segment were used
during visualization with Heatmaps and Circos (v0.69-3). Additionally, deduplicated input alignments were quantified using Arraystar
v.14 and Qseq. Weighted RPKM-CN values wherein control and tumor samples from always the same specimen was used to
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compare normalize read counts subsequently visualized using Perseus v1.6.0.7. Genes with read counts below the detection
threshold were excluded from downstream analyses to eliminate low coverage exons. Analysis of single nucleotide polymorphisms
(SNPs) closely followed the GATK best practices. Briefly, deduplicated input alignments were realigned to all exonic sequences from
Gencode (version vM11) taking known variants from DBsnp into account. After base recalibration, SNP calling was performed within
exons, allowing a padding of 100bp into flanking introns. Variant calls were annotated to known SNPs from DBsnp (version 142) and
functional relevance of variant calls was predicted using VEP (version 90.6) using the Gencode annotation (version vM11) as source.

Analysis of public data
Rawdata fromChen et al. (2013) was downloaded andmapped to the human genome (hg38) and transcriptome using STAR (v2.5.2b)
with transcript annotations from Gencode (version 26). Gene expression was quantified as FPKMs using RSEM (v1.2.30). For down-
stream analysis and visualization, log2 FPKM values were centered to the mean and scaled to union standard deviation to obtain
relative expression estimates across the cohort. For analysis of the TCGA data, metadata (including ICD10 diagnosis terms) from
11574 TCGA datasets across all primary sites with available raw counts were downloaded from the GDC Data Portal. In addition,
slices from TCGA raw alignment data (dbgap project 11430, Validation of genomic mutations in human that result in tumor formation
in mouse cancers) querying the genomic locations of DuxB (chr16:75690000-75710000) and Dux4 (chr4:190173774-190185911)
were re-counted with HTSeq-Count and a custom annotation for DuxB and Dux4. Raw counts from TCGA sequencing data including
DuxB and Dux4 were merged and normalized using the estimateSizeFactorsForMatrix method from DESeq2. Similar to data from
Chen et al. (2013), complete expression data was centered to the mean and scaled to uniform standard variation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Animal studies were performed without blinding and no animals were excluded from the analysis. For animal studies, a power test
was used to estimate the sample size needed to observe a minimum of 2-fold difference in mean between groups with 0.8 power. All
assays were repeated at least three times. Sample size for in vitro studies was chosen based on observed effect sizes and standard
errors. Two-tailed unpaired t tests were performed using the GraphPad Prism 5.0a (GraphPad Software) program to determine sta-
tistical significance between groups. Error bars indicate SEM; p values of *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 were
considered to be statistically significant.

DATA AND SOFTWARE AVAILABILITY

All datasets generated and/or analyzed during the current study are presented in this published article or the accompanying Source
Data or Supplemental Information files or are available from the corresponding authors upon reasonable request.
The accession numbers for the genomic datasets reported in this paper are ENA: PRJEB23461, ENA: EGAD00001000878, and

GEO: GSM2888361.
Videos are deposited at https://doi.org/10.17632/7g2pbbrn4m.1
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Supplemental Table S4. ICD-10 classification of DUX/ZGA positive cancer patients. (Related 
to Figure 3) 
  



Supplemental Table S7. Oligonucleotides used in this study (Related to STAR Methods) 
 
Genotyping Oligonucleotides 
Oligonucleotide sequence Purpose Source 
ACTAGGCTCCACTCTGTCCTTC Pax7 CreERT2 Forward Lepper et al., Nature 2009 
GCAGATGTAGGGACATTCCAGTG Pax7 CreERT2 Reverse Lepper et al., Nature 2009 
CTGCATGTACCACGAGTCCA ZsGreen Forward this paper 
GTCAGCTGCCACTTCTGGTT ZsGreen Reverse this paper 
AAAGTCGCTCTGAGTTGTTAT Rosa26 RosaFA Jackson Laboratories 
GGAGCGGGAGAAATGGATATG Rosa26 RosaRF Jackson Laboratories 
CATCAAGGAAACCCTGGACTACTG Rosa26 Rosa-SpliAC Jackson Laboratories 
GCGCGAAACTCATCAAATATGCGTG
TTAGTGT mdx Forward Zhang et al., Nature Comm. 2015 
GATACGCTGCTTTAATGCCTTTAGTC
ACTCAGATAGTTGAAGCCATTTTG mdx WT Reverse Zhang et al., Nature Comm. 2015 
CGGCCTGTCACTCAGATAGTTGAAG
CCATTTTA mdx MT Reverse Zhang et al., Nature Comm. 2015 
CTGTTCCTGTACGGCATGG Tomato Forward Jackson Laboratories 
GGCATTAAAGCAGCGTATCC Tomato Reverse Jackson Laboratories 
CACAAAAACAGGTTAAACCCAG p53loxp/p53Δ Jonkers et al., Nature Genetics 2001 
AGCACATAGGAGGCAGAGAC p53loxp/p53Δ Jonkers et al., Nature Genetics 2001 
GAAGACAGAAAAGGGGAGGG p53loxp/p53Δ Jonkers et al., Nature Genetics 2001 
RT-qPCR Oligonucleotides 
Oligonucleotide sequence Purpose Source 
CTCTCCCCCGCAAAAGAAAAA trp53 Forward Zhang et al., Nature Comm. 2015 
CGGAACATCTCGAAGCGTTTA trp53 Reverse Zhang et al., Nature Comm. 2015 
TGCTGTGCAATTAAAGGCTGT trp53 Forward Zhang et al., Nature Comm. 2015 
CGTGTTCTCCGAGATACTTGGT trp53 Reverse Zhang et al., Nature Comm. 2015 
CGGTGTCAGAGTCTAGGGGA cdkn1a (p21) Forward Zhang et al., Nature Comm. 2015 
ATTGGAGTCAGGCGCAGATC cdkn1a (p21) Reverse Zhang et al., Nature Comm. 2015 
CCACCTCCAACTGCTCTGAC myf5 Forward Zhang et al., Nature Comm. 2015 
GCTTCAGGGCTTCTTTTCCT myf5 Reverse Zhang et al., Nature Comm. 2015 
GAATGGCTACGACACCGCCTACTAC myoD Forward Zhang et al., Nature Comm. 2015 
CCTACGGTGGTGCGCCCTCTGC myoD Reverse Zhang et al., Nature Comm. 2015 
TTGCTCAGCTCCCTCAACCA myogenin Forward Zhang et al., Nature Comm. 2015 
TGGGCTGGGTGTTAGTCTTA myogenin Reverse Zhang et al., Nature Comm. 2015 
AGATTCGGGATATGCTGTTGGC m36b4 Forward Zhang et al., Nature Comm. 2015 
TCGGGTCCTAGACCAGTGTTC m36b4 Reverse Zhang et al., Nature Comm. 2015 
GTGAAGGTCGGTGTGAACG gapdh Forward Judson et al., JCS 2012 
ATTTGATGTTAGTGGGGTCTCG gapdh Reverse Judson et al., JCS 2012 
ACCCTCGTTTTGCCATGAAC yap1 Forward Sakabe et al.,PNAS 2017 
TGTGCTGGGATTGATATTCCGTA yap1 Reverse Sakabe et al.,PNAS 2017 
GCATCTCTGAGTCTCAAATTATGACT
TG duxbl Forward this paper 
GCGTTCTGCTCCTTCTAGCTTCT duxbl Reverse this paper 
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Figure S1, related to Figure 1. A regenerative environment is necessary to induce RMS 

formation upon muscle SC-specific loss of p53. 

A) Representative immunohistochemical staining of cross-sectioned tumor with indicated 

antibodies. B) Kaplan-Meier tumor-free survival curves are shown for indicated genotypes. 

Solid black line indicates timing of tamoxifen administration. Dashed grey lines indicate 

timing of CTX induced muscle injury. C-D) FACS plots depicting efficient separation of muscle 

SCs (C) and TPCs (D) via fluorescence isolated from SCp53/MDX mice. Note that in (C) virtually 

all SCs are lineage-traced through activation of the Tomato reporter upon Tamoxifen 

treatment. E-F) Immunohistochemical staining of freshly FACS sorted SCs from indicated 

genotypes.  Note that all Pax7Zsgreen SCs are lineage traced but only a subset expresses p53 in 

SCMDX mice (E) but not in SCp53/MDX mice (F). G)  RT-qPCR analysis of p53 in freshly sorted SCs 

from SCWT, SCMDX and SCp53/MDX mice. Expression levels were normalized to m36b4 mRNA. 

Error bars indicate standard deviation of the mean (t-test: P***<0.001, n=3, ND = not 

determinable). 

  



 

Figure S2, related to Figure 2.  Identification of distinct copy number amplifications in 

purified tumor cells. 

(A-S) Scatter plots depicting log-scaled RPKM values of genomic DNA in purified tumor cells 

(y-axis) vs liver control (x-axis). Green circles represent mitochondria encoded genes. Red 

circles represent amplified genes. Magenta circle represents p53. All CN values for each 

individual tumor are provided in Supplementary Table 1.  



 

Figure S3, related to Figure 2. Positional analysis of copy number amplifications. 

(A) Distribution of log2 scaled copy number values for amplified regions. (B) Positional heat 

map of amplified genes in all analyzed tumors. Note that genomic regions are displayed in 

physical order. 

  



Figure S4, related to Figure 2. Mutational analysis. 

(A) Mutational load of purified TPCs. SNVs with high functional impact are highlighted in red. 

(B) Summary of SNVs in the discovery cohort. All detected SNVs for each individual tumor 

are provided in Supplementary Table 2.  

  



 

 

 

 



Figure S5, related to Figure 4. Dux transcription factors define a molecular subtype of 

ERMS. 

(A) mRNA signatures of Dux dependent zygotic gene activation and common oncogenic 

drivers across 42 ERMS tumors from Chen et al., (Cancer Cell, 2013) (B) Pathological 

characterization of Dux factor and/or ZGA positive ERMS tumors and degree of ZGA. (C) 

mRNA signatures of Dux-dependent zygotic gene activation and common oncogenic drivers 

across 124 human RMS tumor samples from Davicioni et al. (J Clin Oncol., 2010). (D) mRNA 

signatures of Dux-dependent zygotic gene activation and common oncogenic drivers across 

101 human tumor samples from Williamson et al. (J Clin Oncol., 2010). 

  



 

Figure S6, related to Figure 4. Dux transcription factors define a molecular subtype of a 

broad range of human cancers. 

(A-B) Unsupervised cluster analysis of kidney (A) and stomach (B) cancers positive for Dux 

gene expression and/or zygotic gene activation from PANCAN-TCGA. All available clinical 

data for all tumor data sets are provided in Supplementary Tables 3 and 4. 

 

 

  



 

 



Figure S7, related to Figure 5 and Figure 6. Overexpression of Duxbl in muscle SCs elicits 
epithelialization. 

(A) Heatmap showing induction of ZGA upon overexpression of Dux4 at indicated time-

points after transfection. Note that forced expression of Dux4 induces DuxA and DuxB 

expression, indicating Dux4 to act genetically upstream of DuxA and DuxB. (B-D) Heatmaps 

showing differential expression of genes involved in hallmarks of EMT/MET (B), positive 

regulation of epithelial cell proliferation (C), and focal adhesion (D). 
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