Untersuchungen zum Vorkommen von Mutationen in den Nichtstrukturproteingenen 3c und 7b des felinen Coronavirus bei spontanen FIP-Fällen

Christina Maria Borschensky

INAUGURAL-DISSERTATION

zur Erlangung des Grades eines Dr. med. vet. beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen

Das Werk ist in allen seinen Teilen urheberrechtlich geschützt.

Jede Verwertung ist ohne schriftliche Zustimmung des Autors oder des Verlages unzulässig. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung in und Verarbeitung durch elektronische Systeme.

1. Auflage 2013

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Author or the Publishers.

1st Edition 2013

© 2013 by VVB LAUFERSWEILER VERLAG, Giessen Printed in Germany

STAUFENBERGRING 15, D-35396 GIESSEN Tel: 0641-5599888 Fax: 0641-5599890 email: redaktion@doktorverlag.de

www.doktorverlag.de

Aus dem Institut für Veterinär-Pathologie der Justus-Liebig-Universität Gießen

Betreuer: Prof. Dr. M. Reinacher

Untersuchungen zum Vorkommen von Mutationen in den Nichtstrukturproteingenen 3c und 7b des felinen Coronavirus bei spontanen FIP-Fällen

INAUGURAL-DISSERTATION zur Erlangung des Grades eines Dr. med. vet. beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen

eingereicht von

Christina Maria Borschensky

Tierärztin aus Offenburg

Gießen 2013

Mit Genehmigung des Fachbereichs Veterinärmedizin der Justus-Liebig-Universität Gießen

Dekan: Prof. Dr. Dr. h.c. M. Kramer

Gutachter: Prof. Dr. M. Reinacher

Prof. Dr. R. Neiger

Tag der Disputation: 15.05.2013

Meinen Eltern

und

in memoriam

meinem Großvater Hermann Wiesler

Ich erkläre:

Ich habe die vorgelegte Dissertation selbständig und ohne unerlaubte fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht. Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der "Satzung der Justus-Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis" niedergelegt sind, eingehalten.

1 Einleitung

2 Literaturübersicht 3
2.1 Feline infektiöse Peritonitis
2.1.1 Geschichte und Epizootiologie
2.1.2 Ätiologie
2.1.2.1 Coronaviren
2.1.2.1.1 Morphologie
2.1.2.1.2 Genom7
2.1.2.1.3 Replikationszyklus8
2.1.2.1.4 Coronaviren und Mutationen
2.1.2.1.5 Einteilung der Coronaviren10
2.1.2.1.6 Feline Coronaviren12
2.1.3 Klinisches Bild und Diagnose15
2.1.4 Pathogenese17
2.1.5 Prophylaxe und Therapie
2.2 Nichtstrukturproteingene
2.2.1 Nichtstrukturproteingene bei felinen Coronaviren
2.3 FCoV-Stämme – Unterschiede und Gemeinsamkeiten

3 Material und Methoden

2	0
4	,

1

3.1 Untersuchungsmaterial	29
3.2 Präparation der Gewebe für die histopathologische und immunhistologische	
Untersuchung	30
3.2.1 Histopathologische Diagnose	30
3.2.2 Immunhistologische Diagnose	31
3.3 Präparation der Gewebe für die molekularbiologische Aufarbeitung	33
3.4 Isolierung von RNA aus Gewebe	33
3.4.1 Isolierung von Gesamt-RNA aus unfixiertem Gewebe mittels Qiagen	
RNeasy [®] Mini Kit und Qiagen QIAshredder [®] Tubes	33

3.4.2 Isolierung von Gesamt-RNA aus unfixiertem Gewebe mittels Qiagen	
RNeasy [®] Mini Kit und Next Advance Bullet Blender [®] Blue 50	
(Homogenisator)	36
3.4.3 Isolierung von Virus-RNA aus Kotproben mittels Qiagen QIAamp [®] Viral	
RNA Mini Kit	37
3.5 Photometrische Konzentrationsbestimmung der isolierten RNA	39
3.6 Reverse Transkription	39
3.7 Amplifikation des Genomabschnitts ORF 3c	42
3.7.1 Semi-nested PCR	45
3.8 Amplifikation einer Sequenz aus dem GAPDH-Gen der Katze zur Kontrolle	
der RNA-Isolierung sowie der reversen Transkription	47
3.9 Amplifikation des Genomabschnitts ORF 7b	48
3.10 Ergebniskontrolle mittels Agarosegelelektrophorese	50
3.11 DNA-Sequenzierung und Auswertung der Ergebnisse	51
3.12 Statistische Analyse	53
4 Ergebnisse	54
	~ 4
4.1 Untersuchung der "Referenzsequenzen"	54
4.1 Untersuchung der "Referenzsequenzen"	54 59
 4.1 Untersuchung der "Referenzsequenzen" 4.2 Überprüfung der Primer 4.2.1 Kombination verschiedener Primer 	54 59 64
 4.1 Untersuchung der "Referenzsequenzen"	54 59 64 65
 4.1 Untersuchung der "Referenzsequenzen" 4.2 Überprüfung der Primer 4.2.1 Kombination verschiedener Primer 4.3 Untersuchung der Katzengewebe auf feline Coronaviren 4.3.1 Photometrische Konzentrationsbestimmung der Gesamt-RNA 	54 65 65
 4.1 Untersuchung der "Referenzsequenzen" 4.2 Überprüfung der Primer 4.2.1 Kombination verschiedener Primer 4.3 Untersuchung der Katzengewebe auf feline Coronaviren 4.3.1 Photometrische Konzentrationsbestimmung der Gesamt-RNA 4.3.2 Polymerase-Kettenreaktion 	54 64 65 65 66
 4.1 Untersuchung der "Referenzsequenzen" 4.2 Überprüfung der Primer. 4.2.1 Kombination verschiedener Primer	54 64 65 65 66 66
 4.1 Untersuchung der "Referenzsequenzen" 4.2 Überprüfung der Primer. 4.2.1 Kombination verschiedener Primer	54 63 65 65 66 66
 4.1 Untersuchung der "Referenzsequenzen" 4.2 Überprüfung der Primer. 4.2.1 Kombination verschiedener Primer 4.3 Untersuchung der Katzengewebe auf feline Coronaviren 4.3.1 Photometrische Konzentrationsbestimmung der Gesamt-RNA 4.3.2 Polymerase-Kettenreaktion 4.3.2.1 Glycerinaldehyd-3-phosphat-Dehydrogenase-Gen 4.3.2.2 Nichtstrukturproteingen ORF 3c 4.3.2.2.1 Erste PCR 	54 65 65 65 66 66 67 67
 4.1 Untersuchung der "Referenzsequenzen"	54 65 65 66 66 67 67 71
 4.1 Untersuchung der "Referenzsequenzen" 4.2 Überprüfung der Primer. 4.2.1 Kombination verschiedener Primer	54 65 65 66 66 67 67 71 74
 4.1 Untersuchung der "Referenzsequenzen" 4.2 Überprüfung der Primer. 4.2.1 Kombination verschiedener Primer	54 65 65 66 66 67 67 71 74 78
 4.1 Untersuchung der "Referenzsequenzen" 4.2 Überprüfung der Primer. 4.2.1 Kombination verschiedener Primer 4.3 Untersuchung der Katzengewebe auf feline Coronaviren 4.3.1 Photometrische Konzentrationsbestimmung der Gesamt-RNA 4.3.2 Polymerase-Kettenreaktion 4.3.2.1 Glycerinaldehyd-3-phosphat-Dehydrogenase-Gen 4.3.2.2 Nichtstrukturproteingen ORF 3c 4.3.2.2.1 Erste PCR 4.3.2.2.2 Semi-nested PCR (zweite und dritte PCR) 4.3.2.3 Nichtstrukturproteingen ORF 7b 4.4 Kotproben 4.5 Zusammenhang zwischen immunhistologischem Signal, Nachweis von 	54 65 65 66 66 67 71 74 78
 4.1 Untersuchung der "Referenzsequenzen"	54 65 65 66 66 67 71 74 78 79
 4.1 Untersuchung der "Referenzsequenzen" 4.2 Überprüfung der Primer. 4.2.1 Kombination verschiedener Primer 4.3 Untersuchung der Katzengewebe auf feline Coronaviren 4.3 Untersuchung der Katzengewebe auf feline Coronaviren 4.3.1 Photometrische Konzentrationsbestimmung der Gesamt-RNA 4.3.2 Polymerase-Kettenreaktion 4.3.2 Polymerase-Kettenreaktion 4.3.2.1 Glycerinaldehyd-3-phosphat-Dehydrogenase-Gen 4.3.2.2 Nichtstrukturproteingen ORF 3c 4.3.2.2.1 Erste PCR 4.3.2.2.2 Semi-nested PCR (zweite und dritte PCR) 4.3.2.3 Nichtstrukturproteingen ORF 7b 4.4 Kotproben 4.5 Zusammenhang zwischen immunhistologischem Signal, Nachweis von ORF 3c/7b und FIP-Form 4.6 Häufigkeit des Nachweises von ORF 3c/7b in verschiedenen Geweben 	54 65 65 66 66 67 71 74 78 78 79 80
 4.1 Untersuchung der "Referenzsequenzen"	54 65 65 66 66 67 71 74 78 78 79 80 80

4.7.1.1 Mutationsanalyse
4.7.2 Sequenzierungsergebnisse von ORF 7b91
4.8 Aminosäuresequenzen95
4.8.1 Aminosäuresequenzen von ORF 3c95
4.8.1.1 Häufigkeit des Auftretens von Stopcodons bei FECV und FIPV98
4.8.2 Aminosäuresequenzen von ORF 7b100
4.9 Geschlechterverteilung der Katzen mit Deletionen und/oder Stopcodons
in ORF 3c102
4.10 Mutationen und pathologisch-anatomische Veränderungen102
5 Diskussion 103
5.1 Untersuchung von FCoV der NCBI-GenBank [®]
5.2 Qualität der isolierten RNA104
5.3 Effizienz verschiedener RNA-Isolierungsmethoden105
5.4 Problematik bei der Primerwahl
5.5 Aussagekraft der Agarosegelelektrophorese106
5.6 Auswertung und Aussagekraft der Sequenzierungsergebnisse
5.7 Nachweisbarkeit von ORF 3c107
5.7.1 Sequenzierungsergebnisse von ORF 3c108
5.7.1.1 Mutationen110
5.8 Nachweisbarkeit von ORF 7b112
5.8.1 Sequenzierungsergebnisse von ORF 7b112
5.8.1.1 Mutationen112
5.9 Analyse der Aminosäuresequenzen113
5.9.1 Aminosäuresequenzen von ORF 3c114
5.9.2 Aminosäuresequenzen von ORF 7b115
5.10 Vergleich der Nachweisbarkeit von ORF 3c und ORF 7b115
5.11 Assoziation von Geschlecht, pathologisch-anatomischem
Erscheinungsbild und immunhistologischem Signal mit dem
Nichtstrukturproteingen 3c118
5.12 Nichtstrukturproteingene und immunologische Vorgänge119
5.13 Bedeutung der Ergebnisse für die Diagnostik und die Vorstellungen
von der Pathogenese der FIP120

6 Zusammenfassung	122
7 Summary	124
8 Literaturverzeichnis	126
9 Anhang	137
9.1 Tabellen	137
9.2 Genetischer Code	164
9.3 Bezugsquellen für Chemikalien, Kits und Antikörper	166
9.4 Bezugsquellen für Geräte und Gebrauchsmaterialien	
9.5 Lösungen und Puffer	170
10 Abkürzungsverzeichnis	173
11 Danksagung	176

1 Einleitung

Bei der felinen infektiösen Peritonitis (FIP) handelt es sich um eine weit verbreitete, meist tödlich verlaufende Infektionskrankheit der Katze. Eine erfolgversprechende Impfung oder Therapie der Erkrankung gibt es bislang nicht. Erreger ist das feline Coronavirus (FCoV), das in Form zweier verschieden virulenter Biotypen vorkommen soll, dem felinen enteralen Coronavirus (FECV) und dem felinen infektiösen Peritonitisvirus (FIPV). Man nimmt an, dass das FIPV durch Mutation(en) aus dem FECV entsteht (Poland et al., 1996; Vennema et al., 1998; Vennema et al., 1999). Im Gegensatz zum schwerwiegenden Verlauf der FIPV-Infektion äußert sich eine Infektion mit dem FECV in der Regel nur subklinisch, obwohl sich die beiden Biotypen antigenetisch nicht unterscheiden. Die Pathogenese der Erkrankung ist nur ansatzweise geklärt und weist zurzeit noch viele Rätsel auf.

Das Genom der felinen Coronaviren enthält zwei Abschnitte, die für Nichtstrukturproteine unbekannter Funktion codieren und die in die Gene 3a, b und c sowie 7a und b eingeteilt werden. Sie liegen zwischen den Strukturproteingenen des Virus. In diesen Genombereichen, mit signifikanter Häufung im 3c-Gen, wurden in unterschiedlichen Studien Deletionen bei FIPV gefunden, die bei nahe verwandten FECV nicht nachweisbar waren (Chang et al., 2010; Vennema et al., 1998).

Über die Bedeutung dieser Deletionen in den Nichtstrukturproteingenen gibt es bislang nur Spekulationen, die zum Teil auch widersprüchlich sind (Brown et al., 2009; Chang et al., 2010; Kennedy et al., 2001a; Kennedy et al., 2006; Kiss et al., 2000; Lin et al., 2009a; Vennema et al., 1998). Dennoch wurde postuliert, dass Unterschiede im 3c-Gen mit der Virulenzsteigerung der FIPV in Verbindung stehen könnten. Außerdem sollen Deletionen im 7b-Gen zu einer abgeschwächten Virulenz des Virus führen (Herrewegh et al., 1995a; Vennema et al., 1998). Es wurde allerdings in vielen Fällen mit felinen Coronavirusstämmen gearbeitet, die im Labor mehrfach in Zellkulturen passagiert wurden und somit möglicherweise Mutationen aufweisen, die bei Feldstämmen nicht vorkommen.

In der vorliegenden Arbeit wurde Coronavirus-RNA direkt aus dem Katzensektionsgut des Institutes für Veterinär-Pathologie der Justus-Liebig-Universität Gießen isoliert und der Genombereich der Nichtstrukturproteingene 3c und 7b mittels Polymerase-Kettenreaktion und anschließender Sequenzierung detailliert untersucht. Dies ermöglichte einen Einblick, inwieweit Mutationen bei spontanen FIPV-Infektionen in vivo tatsächlich auftraten. Da die erkrankten Katzen vollständig seziert wurden, konnten zudem die auftretenden pathologischanatomischen Veränderungen mit dem Vorhandensein entsprechender Mutationen im Virusgenom in Beziehung gesetzt werden. Von besonderem Interesse war außerdem, ob in unterschiedlichen Geweben innerhalb einer FIP-Katze verschiedene Deletionsmutanten feststellbar waren. Bisherige Untersuchungen beschränkten sich auf die Virus-RNA-Isolierung aus einem oder nur wenigen unterschiedlichen Geweben pro Katze, wobei hauptsächlich Kot und Aszites als Ausgangsmaterial dienten. Hier wurde ein großes Spektrum an Geweben (Bauchwand, Netz, Leber, Darm, Zwerchfell, Mesenteriallymphknoten, Milz, Pankreas, Niere, Lunge, Gehirn und in einzelnen Fällen auch Kot) von jeweils einer FIP-Katze in die Untersuchung mit einbezogen. Dadurch konnten auch rein granulomatöse FIP-Formen (s.u.) ohne Aszites berücksichtigt werden.

Diese Erweiterung bisheriger Studien sollte einen Beitrag liefern zum Erkenntnisfortschritt in der Pathogenese der FIP, da eine Aussage über das Verhalten der felinen Coronaviren innerhalb einer erkrankten Katze ermöglicht wird.

2 Literaturübersicht

2.1 Feline infektiöse Peritonitis

2.1.1 Geschichte und Epizootiologie

Die feline infektiöse Peritonitis ist eine bei Katzen und anderen Feliden vorkommende systemische Infektionskrankheit. Nach Ausbruch der Erkrankung verläuft sie in der Regel tödlich. Die Bezeichnung "FIP" stammt aus dem Jahr 1966, als bei insgesamt 16 natürlich infizierten und zur Sektion vorliegenden Katzen die Krankheit zum ersten Mal beschrieben wurde (Wolfe und Griesemer, 1966). Berichte über ein ähnliches Krankheitsbild liegen jedoch bereits aus früheren Jahren vor (Feldmann und Jortner, 1964; Holzworth, 1963).

Als Erreger wurde 1968 ein Virus gefunden (Ward et al., 1968; Zook et al., 1968), bei dem Ward (Ward, 1970) zwei Jahre später elektronenmikroskopisch Ähnlichkeiten mit dem humanen Coronavirus 224-E und dem Maus-Hepatitis-Virus feststellte. Im Jahr 1976 konnte die Coronavirusätiologie bestätigt werden (Osterhaus et al., 1976; Pedersen et al., 1976a).

In einer Untersuchung von Reinacher und Theilen (1987) konnte bei rund 16 % der Sektionskatzen (176/1095) eine FIP diagnostiziert werden. Damit ist die Erkrankung die häufigste letale Infektionskrankheit der Katze.

Neben domestizierten Hauskatzen sind auch Löwen, Tiger, Pumas, Jaguare, Leoparden, Geparde, Luchse und wilde Kleinkatzenarten für die Infektion empfänglich (Juan-Sallés et al., 1998; Kennedy et al., 2001b; Kennedy et al., 2003; Paul-Murphy et al., 1994; Roelke et al., 1993; Watt et al., 1993).

Die FIP kommt weltweit in Katzenpopulationen vor und tritt meist in den Wintermonaten und im Frühjahr auf (Rohrbach et al., 2001).

Betroffen sind vorwiegend jüngere Katzen im Alter von 6 Monaten bis 5 Jahren, wobei Erkrankungen innerhalb der ersten 24 Lebensmonate besonders häufig auftreten (Rohrbach et al., 2001). Insbesondere in Katzenzuchten, Tierheimen und anderen größeren Katzenhaltungen stellt die Erkrankung ein Problem dar, da viele Tiere auf verhältnismäßig engem Raum zusammenleben und die Virusübertragung und -persistenz im Bestand leicht möglich sind. So wurden in verschiedenen Studien bei 80 % bis 90 % der Katzen aus Mehrkatzenhaushalten Antikörper gegen das Virus nachgewiesen; bei einzeln gehaltenen Katzen fand sich eine Seroprävalenz von 10 % bis 50 % (Pedersen, 1976b; Sparkes et al., 1992a; Sparkes et al., 1992b). Jedoch bricht meist nur bei circa 5 % der Tiere aus Beständen mit endemischer FCoV-Infektion die tödlich verlaufende Erkrankung aus (Addie et al., 1995), unter besonderen Umständen kann ein Krankheitsausbruch aber auf circa 50 % steigen (Leukert, 2002). Die FIP-Morbiditäts- und -Mortalitätsrate sind damit eher als niedrig einzustufen; die Letalität liegt allerdings bei annähernd 100 % (Pedersen et al., 1981a).

Es wurde über ein gehäuftes Auftreten von FIP-Fällen bei bestimmten Katzenrassen wie zum Beispiel Bengal, Birma, Ragdoll und Abessinier berichtet und eine genetische Komponente als Ursache in Betracht gezogen (Pesteanu-Somogyi et al., 2006). Diese Beobachtung lässt sich möglicherweise auch dadurch erklären, dass Rassekatzen meist aus größeren Katzenpopulationen stammen und damit einem generell höheren Infektionsdruck ausgesetzt sind als einzeln gehaltene Tiere. Darüber hinaus wird bei Rassekatzen oft eine umfangreichere Diagnostik durchgeführt (Robison et al., 1971). Außerdem waren in einer Untersuchung vermehrt männliche, nicht kastrierte Tiere betroffen, während weibliche, kastrierte Katzen unterrepräsentiert zu sein schienen (Rohrbach et al., 2001). Eine Assoziation zwischen Geschlecht und der Wahrscheinlichkeit eines FIP-Ausbruchs bleibt jedoch fraglich, da in einer anderen Studie keine Geschlechtsdisposition vorlag (Foley et al., 1997).

Foley et al. (1997) nahmen als Hauptrisikofaktoren für den Ausbruch der Erkrankung die leicht mögliche fäko-orale Virusübertragung bei eng zusammenlebenden Katzen größerer Bestände, chronische Virusausscheider sowie die Häufung von genetisch anfälligeren Blutlinien an.

Feline Coronaviren werden von infizierten Tieren insbesondere mit den Fäzes ausgeschieden. Eine Ausscheidung über den Oropharynx sowie mit Urin und Augensekreten ist möglich, epizootiologisch wohl aber von untergeordneter Bedeutung (Addie und Jarrett, 2001; Hardy und Hurvitz, 1971; Hök, 1989; Hoskins, 1991; Stoddart et al., 1988a).

Nach experimenteller Infektion konnten Stoddart et al. (1988b) ab 2 bis 7 Tagen post infectionem Coronavirus sowohl in den Fäzes als auch im Speichel nachweisen. Dafür wurden kultivierte feline embryonale Lungenzellen mit Kot- und Speichelmaterial inokuliert. Nach maximal 15 Tagen schien die Ausscheidung zu sistieren. Allerdings war das der Zeitpunkt, an dem klinische Symptome auftraten, woraufhin die Katzen nur wenige Tage später euthanasiert wurden. Mittels Real-time PCR wurden deutlich längere Ausscheidungszeiten experimentell infizierter Katzen festgestellt. Bis zu 18 Monate post infectionem konnten relativ hohe Virusmengen im Kot nachgewiesen werden. Danach waren die betroffenen Katzen entweder in der Lage, das Virus zu eliminieren, oder aber sie entwickelten sich zu persistierenden oder intermittierenden Ausscheidern (Pedersen et al., 2008).

Natürlich infizierte Katzen scheiden das Virus oft über mehrere Monate aus, bei Ausbruch der FIP ist sogar eine Ausscheidung bis zum Tod möglich (Foley et al., 1997; Harpold et al., 1999; Herrewegh et al., 1997). Chang et al. (2010) hingegen postulierten, dass Katzen mit FIP häufig die primäre Darminfektion mit Coronaviren eliminierten und deshalb ein Virusnachweis im Kot in vielen Fällen nicht mehr möglich sei. Da eine Infektion mit FCoV keine Aussage darüber zulässt, ob oder wann es zum Auftreten einer FIP kommt, ist relativ wenig über die Inkubationszeit bei spontanen Fällen bekannt. Unter experimentellen Bedingungen ermittelte durchschnittliche Überlebenszeiten nach oronasaler Infektion schwankten grob zwischen 16 und 54 Tagen, wobei erste Symptome häufig bereits innerhalb einer Woche post infectionem auftraten (De Groot-Mijnes et al., 2005; Evermann et al., 1981). Natürliche FIP-Ausbrüche treten in größeren Katzenpopulationen meist enzootisch auf. Man geht davon aus, dass bestimmte Virusstämme Wochen, Monate oder sogar Jahre klinisch inapparent in einzelnen Katzen persistieren können, bis sporadisch Tiere erkranken (Pedersen, 2009). Seuchenhafte Verläufe mit plötzlichem Auftreten von Erkrankungen bei einer größeren Katzenzahl sind beschrieben, aber eher als Seltenheit anzusehen (Leukert, 2002; Potkay et al., 1974).

2.1.2 Ätiologie

Die FIP wird ausgelöst durch das FIP-Virus (FIPV), bei dem es sich um ein felines Coronavirus (FCoV) handelt. Die Subfamilie Coronavirinae bildet gemeinsam mit der Subfamilie Torovirinae die Familie Coronaviridae, welche wiederum mit den Arteriviridae und den Roniviridae zur Ordnung Nidovirales zusammengefasst wird (Lai et al., 2007).

2.1.2.1 Coronaviren

2.1.2.1.1 Morphologie

Coronaviren sind behüllte, kugelförmige bis pleomorphe RNA-Viren mit einem Durchmesser von circa 100 bis 160 nm. Benannt sind die Viren nach ihrem morphologischen Aussehen, das an eine Krone (lat. "corona") erinnert (Spaan et al., 2005). Im Innern des Virions befindet sich die genomische RNA, die mit dem Nucleocapsid-Protein (N-Protein) assoziiert ist und mit diesem das virale Nukleokapsid bildet. Es ist helikal-symmetrisch aufgebaut und wird von der Virushülle umgeben. Letzere besteht aus einer Lipidmembran mit eingelagerten Proteinen.

Die Virusoberfläche überragend finden sich kranzartig angeordnete Peplomere, die Spike-Proteine (S-Proteine). Sie verleihen den Coronaviren ihr charakteristisches Aussehen. Bei einzelnen Coronavirusvertretern der antigenetischen Gruppe 2 sowie dem Truthahn-Coronavirus (antigenetische Gruppe 3) gibt es zusätzlich kleinere stachelförmige Proteine in der Virushülle, die mit einer Hämagglutinin-Esterase-Funktion ausgestattet sind. Alle Coronaviren verfügen über das Membrane-Protein (M-Protein), welches die gesamte Lipidmembran durchzieht und Verbindung zum innen gelegenen Nukleokapsid hat. Desweiteren enthält das Virion ein kleineres Hüllprotein, das Envelope-Protein (E-Protein) (Lai et al., 2007).

Die Strukturproteine dienen primär dem strukturellen Aufbau des Viruspartikels. Darüber hinaus fungiert das S-Protein als Andockstelle an Rezeptoren auf der Wirtszelle, wodurch die Fusion zwischen Virushülle und Zellmembran induziert werden kann (De Groot et al., 1989; Lai et al., 2007).

Abbildung 1 zeigt schematisch den Aufbau eines Coronavirus ohne Hämagglutinin-Esterase.

Abb. 1 Coronavirus-Aufbau

S = spike protein; M = membrane protein; E = envelope protein; N = nucleocapsid protein

2.1.2.1.2 Genom

Das Genom der FCoV besteht aus einer einzelsträngigen RNA. Diese ist linear, nicht segmentiert und weist eine positive Polarität auf. Dadurch ist sie infektiös und kann direkt als mRNA fungieren. Mit rund 30 Kilobasen (kb) Länge besitzen Coronaviren von allen RNA-Viren das größte Genom (Lai und Cavanagh, 1997; Masters, 2006). Die Gene für die Strukturproteine sind in 5'-3'-Orientierung wie folgt nacheinander angeordnet: Spike (S)-Gen, Envelope (E)-Gen, Membrane (M)-Gen, Nucleocapsid (N)-Gen (De Haan et al., 2002). Vor dem S-Gen liegen die beiden "open reading frames" (ORF) 1a und 1b, die zwei Drittel der gesamten Genomlänge in Anspruch nehmen. Dieser Bereich codiert für insgesamt 16 enzymatisch aktive Nichtstrukturproteine, die zunächst als Polyprotein synthetisiert werden und die RNA-Replikation und –Transkription bewerkstelligen (Lai et al., 2007).

Zusätzlich gibt es zwei Bereiche, die Nichtstrukturproteingene mit einer unterschiedlichen Anzahl an ORF enthalten. Benannt nach der Position und der Reihenfolge ihres Auftretens auf dem Genom ist das einmal Gen 3, welches zwischen dem S- und dem E-Gen liegt und je nach Coronavirus aus bis zu 3 ORF (ORF 3a, 3b und 3c) besteht. Zum anderen befindet sich am 3'-Ende nach dem N-Gen das Nichtstrukturproteingen 7 mit bis zu 2 ORF (ORF 7a und 7b) (Lai et al., 2007). Das Genprodukt von ORF 3a wurde zumindest beim severe acute respiratory syndrome (SARS-) Coronavirus jedoch als virales Strukturprotein identifiziert (Ito et al., 2005).

Die Gene werden flankiert von einer Methylkappe ("cap") am 5'-Ende, gefolgt von einer 65 bis 98 Basen langen "leader sequence" (LS) und einer 200-400 Basen langen "untranslated region" (UTR) sowie am 3'-Ende von einer weiteren UTR. Das 3'-Ende ist polyadenyliert. Die UTR sind bei der RNA-Replikation und der Transkription von Bedeutung. Zwischen den einzelnen Genen liegen kurze Abschnitte, die als intergenetische oder transkriptionsassoziierte Sequenzen bezeichnet werden, da sie in die Herstellung von mRNA involviert sind (Lai et al., 2007). Eine schematische Übersicht über das Coronavirusgenom ist in Abbildung 2 dargestellt. Grau unterlegt sind dabei die Gene für die Strukturproteine; bunt hervorgehoben sind die Nichtstrukturproteingene ORF 3c und ORF 7b.

Abb. 2 Schematische Darstellung des Coronavirusgenoms (am Beispiel des FCoV)

2.1.2.1.3 Replikationszyklus

Nach dem Andocken der S-Proteine an spezifische Rezeptor-Glykoproteine der Wirtszelle kommt es zur Fusion zwischen Virushülle und Plasmamembran oder der Membran von Endosomen. Von der ins Zytoplasma der Wirtszelle freigesetzten Virus-RNA werden direkt ORF1a und 1b am Ribosom abgelesen und in die Proteine des Replikations-Transkriptions-Komplex übersetzt. Dieser nutzt die genomische Plusstrang-RNA als Matrize zur Synthese von Negativstrang-RNA. Von dieser wiederum wird erneut genomische RNA hergestellt. Außerdem entstehen bei der Replikation der Coronaviren mehrere subgenomische mRNAs (Lai et al., 2007). Die Bildung eines sogenannten "nested set" mehrerer subgenomischer mRNAs ist ein Transkriptionsmechanismus, der den Vertretern der Ordnung Nidovirales (lat. "nidus" = Nest) eigen ist. Prinzipiell entstehen dabei mRNAs, die jeweils nur die Information eines Struktur- beziehungsweise Nichtstrukturproteingens tragen. Zum Teil liegen auch überlappende Abschnitte mehrerer Gene vor; die Translation findet jedoch in der Regel pro mRNA nur von einem Gen statt. Die mRNAs sind damit funktionell monozistronisch. Sie besitzen eine identische LS am 5'-Ende, gefolgt von der Sequenz des zu translatierenden Gens (Lai und Cavanagh, 1997). Der genaue Mechanismus der Synthese subgenomischer mRNAs wurde lange Zeit kontrovers diskutiert. Man ist sich heutzutage darüber einig, dass die subgenomischen mRNAs durch diskontinuierliche Transkription gebildet werden. Hierzu existieren zwei mögliche Modelle:

1. Diskontinuierliche Transkription während der Positivstrang-Synthese ("leader-primed transcription"): Nach diesem Modell soll die Synthese der positiv-RNA diskontinuierlich ablaufen. Von der Negativstrang-RNA wird nur die LS am 3'-Ende abgelesen, diese dissoziiert dann vom Matrizenstrang, um quasi als Primer an die intergenetischen Sequenzen vor den einzelnen Genen zu binden und die Transkription jeweils eines Gens zu veranlassen.

2. Diskontinuierliche Transkription während der Negativstrang-Synthese: Bei diesem Modell soll bereits die Umschreibung der genomischen RNA in den komplementären Negativstrang diskontinuierlich ablaufen. Die Polymerase liest jeweils nur bis zur nächsten intergenetischen Sequenz den Strang genomischer RNA ab, bildet somit subgenomische Negativstrang-RNAs, die dann wiederum in Plusstrang-Orientierung umgeschrieben werden.

Es ist zwar nicht eindeutig geklärt, ob die Positiv- oder die Negativstrang-Synthese diskontinuierlich abläuft, favorisiert wird allerdings das zweite Modell (Sawicki und Sawicki, 2005).

Nach der Synthese der Strukturproteine vereinigt sich zunächst das N-Protein mit neu gebildeter genomischer RNA zum Nukleokapsid, um schließlich von den die Virushülle bildenden Strukturproteinen umschlossen zu werden. Letztere werden im endoplasmatischen Retikulum unterschiedlich prozessiert und modifiziert, bis schließlich die zusammengesetzten Viruspartikel über Golgi-Vesikel mittels Exozytose aus der Zelle ausgeschleust werden (Lai et al., 2007).

2.1.2.1.4 Coronaviren und Mutationen

Coronaviren weisen generell eine hohe Mutationsrate auf, was hauptsächlich in der Fehlerrate der RNA-Polymerase begründet liegt. Bislang ging man davon aus, dass RNA- im Gegensatz zu den meisten DNA-Polymerasen keinerlei Korrekturlesefunktionen ("proof-reading") besäßen (Holland et al., 1982). Neueste Studien belegen jedoch, dass solche Mechanismen auch bei der RNA-Polymerase von Coronaviren existieren (Denison et al., 2011). Allerdings ist davon auszugehen, dass diese Korrekturmechanismen nicht so effektiv arbeiten wie die der DNA-Polymerasen.

Die oben beschriebene diskontinuierliche Synthese neuer Virus-RNA, verbunden mit dem häufigen Anheften und Wiederablösen der RNA-Polymerase am und vom Matrizenstrang fördert zudem die Entstehung neuer Virus-Rekombinanten (Brian et al., 1997).

Mutationen spielen eine wichtige Rolle in der Virusevolution. Auf diese Weise kann es zu einem geänderten Organtropismus oder gar zu einer Speziesüberschreitung des Virus kommen (Compton et al., 1993). Im Falle von Coronaviren ist eine ganze Reihe an Beispielen bekannt. So traten seit den 1980er Jahren Fälle einer neuen Atemwegserkrankung bei Schweinen auf. Als Erreger wurde porzines respiratorisches Coronavirus (PRCV) gefunden (Pensaert et al., 1986). Die im Zuge der Infektion gebildeten Antikörper sind auch für das transmissible Gastroenteritis-Virus (TGEV) neutralisierend. Man schloss daraus, dass das PRCV durch Mutation aus dem TGEV entstanden sei und dabei den Tropismus für den Gastrointestinaltrakt vollständig verloren habe (Pensaert et al., 1986). Als weiteres wichtiges Beispiel für die hohe Mutationsbereitschaft der Coronaviren und dem damit verbundenen Hervorgehen neuer Coronavirus-Typen kann das severe acute respiratory syndrome (SARS-) Virus angeführt werden. Nach den weltweit bedeutsamen SARS-Ausbrüchen im Winter 2002/2003 konnte schließlich ein neues Coronavirus als Erreger identifiziert werden (Drosten et al., 2003; Ksiazek et al., 2003).

2.1.2.1.5 Einteilung der Coronaviren

Coronaviren wurden traditionell in drei verschiedene antigenetische Gruppen eingeteilt (González et al., 2003). Feline Coronaviren gehören nach dieser serologischen Einteilung der Gruppe 1 an. Weitere Vertreter der Gruppe 1 sind das canine Coronavirus, das humane Coronavirus 229E, das transmissible Gastroenteritisvirus, das porzine respiratorische Coronavirus und das Kaninchen-Coronavirus. Das "International Committee on Taxonomy of Viruses" hat unlängst eine neue Klassifizierung der Coronaviren in die Genera Alpha-, Beta-, Gamma- und Deltacoronavirus vorgenommen, die die alte Einteilung ersetzen soll. Eine Übersicht über die neue Einteilung und die Einordnung feliner Coronaviren ist in Abbildung 3 dargestellt.

Coronaviridae

Coronavirinae

Alphacoronavirus

Alphacoronavirus 1 Feline Coronaviren Human coronavirus 229E Human coronavirus NL63 Miniopterus bat coronavirus 1 Miniopterus bat coronavirus HKU8 Porcine epidemic diarrhea virus Rhinolophus bat coronavirus HKU2 Scotophilus bat coronavirus 512 unclassified alphacoronavirus

Betacoronavirus

Betacoronavirus 1 Coronavirus group 2b Coronavirus group 2c Human coronavirus HKU1 Murine coronavirus HKU1 Pipistrellus bat coronavirus HKU5 Rousettus bat coronavirus HKU9 Severe acute respiratory syndrome-related coronavirus Tylonycteris bat coronavirus HKU4 unclassified Betacoronavirus

Deltacoronavirus

Bulbul coronavirus HKU11 unclassified Deltacoronavirus

Gammacoronavirus

Avian coronavirus Beluga Whale coronavirus SW1

unclassified coronaviruses

Abb. 3 Taxonomie der Coronaviren, *nach:* National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=11118&lvl=3&keep=1&srch mode=1&unlock [Stand: 14.11.2012])

2.1.2.1.6 Feline Coronaviren

Das Genom feliner Coronaviren enthält neben den für die Replikation und Transkription erforderlichen Gene und den Genen für die Strukturproteine 5 ORF, die für Nichtstrukturproteine codieren (siehe Abbildung 2). Eine Hämagglutinin-Esterase ist nicht vorhanden.

Hinsichtlich ihrer Virulenz unterscheidet man bei felinen Coronaviren zwei Bio- oder Pathotypen: das feline infektiöse Peritonitis-Virus (FIPV) und das feline enterale Coronavirus (FECV). Die aktuelle Vorstellung ist, dass das FIPV durch Mutation(en) aus dem FECV hervorgeht, wodurch es zu einem Virulenzgewinn kommt. Da keine morphologische oder serologische Unterscheidung der beiden Biotypen möglich ist, handelt es sich bei FIPV und FECV um ein und dieselbe Spezies (Poland et al., 1996; Vennema et al., 1998; Vennema et al., 1999).

In ihrem biologischen Verhalten unterscheiden sich FIPV und FECV jedoch maßgeblich. Während letztere meist klinisch inapparente Infektionen oder lediglich milde Diarrhoen verursachen, führen FIPV zum Ausbruch der tödlichen Erkrankung.

Die Tatsache, dass in Katzenpopulationen mit enzootischer FCoV-Infektion in der Regel nur Einzeltiere erkranken und Kontakttiere nicht zwangsläufig eine FIP entwickeln, spricht dafür, dass das FIPV erst in der Katze entsteht, die an FIP erkrankt (Evermann et al., 1991; Herrewegh et al., 1995a; Poland et al., 1996). Eine Übertragung des bereits mutierten Virus auf andere Katzen scheint daher selten vorzukommen. Leukert (2002) erhielt jedoch in einer Feldstudie zur Wirksamkeit eines Impfstoffes gegen FIP Hinweise auf eine direkte Virusübertragung. 40 SPF-Katzen wurden mit 10 FCoV-positiven Tierheimkatzen in einer Gruppe gehalten, woraufhin 45 % der SPF-Katzen mehr oder weniger gleichzeitig FIP entwickelten. Das zufällige, parallele Auftreten individueller Mutationen schien bei diesem hohen Prozentsatz an Erkrankungsfällen eher unwahrscheinlich zu sein.

Die Lokalisation im FCoV-Genom, die mutiert und das FECV zum FIPV macht, ist bislang nicht bekannt. Es gibt Studien, in denen Deletionen im 3c-Gen im Verdacht stehen, eine Steigerung der Virulenz zu bewirken (Balint et al., 2012; Chang et al., 2010; Vennema et al., 1998). Gleichzeitig wurde postuliert, dass das Zusammenwirken von Mutationen im 3c- und 7b-Gen eine Schlüsselrolle in der Unterscheidung von FIPV und FECV spielen könnte (Vennema et al., 1998). Weiterhin gibt es eine Reihe von Untersuchungen, die den Versuch unternahmen, FIP-Ausbrüche mit Mutationen in den Nichtstrukturproteingenen 7a und 7b zu

korrelieren (Brown et al., 2009; Kennedy et al., 2001a; Kennedy et al., 2006; Kiss et al., 2000; Lin et al., 2009a).

Die Fähigkeit des FCoV, sich effektiv in Makrophagen zu vermehren und damit systemisch im Körper ausbreiten zu können, steht mit Mutationen im S-Protein und möglicherweise auch mit Mutationen in ORF 3abc in Verbindung (Balint et al., 2012; Rottier et al., 2005). Allerdings ist auch bei klinisch gesunden Katzen eine systemische Ausbreitung von FCoV über das Blut möglich (Gunn-Moore et al., 1998a; Herrewegh et al., 1995b; Herrewegh et al., 1997; Kipar et al., 1999). Eine Unterscheidung zwischen FIPV und FECV auf der Basis des S-Gens beziehungsweise -Proteins alleine lässt daher keine Aussage über den Biotyp zu.

Neben der Unterteilung in Biotypen erfolgt bei FCoV außerdem noch eine Einteilung auf der Basis ihrer Verwandtschaft zum caninen Coronavirus (CCoV). Danach werden die beiden Serotypen I und II unterschieden, wobei nur der Serotyp II im Virusneutralisationstest mit CCoV kreuzreagiert (Pedersen et al., 1984a; Shiba et al., 2007). Unterschiede zwischen den beiden Serotypen finden sich insbesondere im S-Protein (Fiscus und Teramoto 1987a). Dieses stimmt bei Typ II-Stämmen deutlich besser mit dem caniner Coronaviren überein als mit dem S-Protein feliner Coronaviren vom Typ I. Die enge antigenetische Verwandtschaft zwischen Typ II-FCoV und CCoV wird durch die Rekombination eines Typ I-Stammes mit einem CCoV erklärt (Herrewegh et al., 1998; Motokawa et al., 1996). Anders als bei den Biotypen sagt die Zugehörigkeit zu einer der beiden serologischen Gruppen nichts über die Virulenz aus. Von beiden Serotypen existieren sowohl hochvirulente FIPV-Stämme als auch vergleichsweise harmlose FECV (Pedersen et al., 1984b). Der Grad der Verwandtschaft zum Coronavirus des Hundes liefert somit auch keinen Hinweis auf das Krankheitspotential der FCoV.

Serotyp II-Stämme lassen sich verhältnismäßig leicht in vitro kultivieren und wurden daher für Laboruntersuchungen bevorzugt eingesetzt. Bei Feldinfektionen dominiert allerdings der Serotyp I, der nur schwer in der Zellkultur anzüchtbar ist (Benetka et al., 2004; Hohdatsu et al., 1992; Kummrow et al., 2005; Lin et al., 2009b).

Dieses unterschiedliche Anzuchtverhalten hängt mit den von Coronaviren als Andockstelle genutzten Rezeptorproteinen auf der Wirtszelloberfläche zusammen. Für Coronaviren, die nach alter Einteilung zur antigenetischen Gruppe 1 gehören, wurde die membranständige Aminopeptidase N (APN) als Rezeptor identifiziert (Delmas et al., 1992; Yeager et al., 1992). Bei FCoV konnten allerdings ausschließlich Serotyp II-Stämme in Zelllinien mit feliner APN eine Infektion hervorrufen (Dye et al., 2007; Hohdatsu et al., 1998; Tekes et al., 2010). Die Interaktion von Typ I-Stämmen mit der Wirtszelle scheint über ein anderes Oberflächenprotein abzulaufen. Regan et al. (2010) wiesen felines C-Typ-Lektin als Corezeptor für das Eindringen auch von FCoV Typ I-Stämmen in Wirtszellen nach.

Unabhängig von den Bio- und Serotypen treten bei FCoV im Lauf der Virusvermehrung immer wieder Mutationen auf, was, wie bereits beschrieben, an der hohen Fehlerrate der RNA-Polymerase und der diskontinuierlichen Transkription liegt. So lassen sich bei FCoV häufig komplexe Viruspopulationen oder Quasispezies nachweisen (Battilani et al., 2003; Gunn-Moore et al., 1999).

Beim Vergleich von Isolaten aus verschiedenen Katzen fiel auf, dass insbesondere geographisch getrennt lebende Tiere sehr unterschiedliche Stämme beherbergten. FCoV aus verschiedenen Katzen einer gemeinsamen Gruppe hingegen waren phylogenetisch näher verwandt (Vennema et al., 1998). Allerdings konnten sogar bei ein und derselben Katze in verschiedenen Organen beziehungsweise zu unterschiedlichen Untersuchungszeitpunkten differente Stämme festgestellt werden (Battilani et al., 2003; Gunn-Moore et al., 1999; Kiss et al., 2000). Dabei war die höchste Variabilität sowohl im S- als auch im N-Gen zu verzeichnen.

Noch relativ aktuell ist die Beschreibung eines FIP-ähnlichen Krankheitsbildes beim Frettchen (Martínez et al., 2006; Martínez et al., 2008). Da im Rahmen dieser Untersuchung Coronavirusantigen der immunhistologisch serologischen Gruppe 1 in den histopathologischen Läsionen nachgewiesen werden konnte, wurde als mögliche Ursache felines Coronavirus diskutiert. Damit wurde die Familienspezifität des Virus für Angehörige der Felidae erstmals in Frage gestellt. Nach neueren Forschungsergebnissen geht man allerdings davon aus, dass es sich bei dem Frettchen-Virus um eine virulentere Form des erst 2006 von Wise et al. identifizierten "ferret enteric coronavirus" handelt. Letzteres wurde ähnlich wie FECV im Zusammenhang mit milden Enteritiden gesehen. Die virulentere Form wird als "ferret systemic coronavirus" bezeichnet und ist möglicherweise analog dem FIPV durch Mutationen aus dem enteralen Coronavirus hervorgegangen (Murray et al., 2010; Wise et al., 2010). Diese These wird von einer Studie mit weiteren betroffenen Frettchen unterstützt, bei denen eine sehr hohe Verwandtschaft des isolierten Virus mit dem "ferret enteric coronavirus" gefunden wurde (Garner et al., 2008).

2.1.3 Klinisches Bild und Diagnose

Klinisch äußert sich die FIP in zwei Krankheitsbildern: der sogenannten feuchten oder effusiven Form und der trockenen oder granulomatösen Form. Bei der feuchten (exsudativen) FIP kommt es zur Ansammlung eines proteinreichen, aber zellarmen Exsudates in der Bauchund/oder Brusthöhle. Klassischerweise tritt chronisches, fluktuierendes, antibiotikaresistentes Fieber (39 °C – 41 °C) über 2 bis 5 Wochen auf. Zudem leiden die Tiere häufig unter Anorexie, Gewichtsverlust, Depression und einer Auftreibung des Abdomens aufgrund eines Aszites. In vielen Fällen zeigen betroffene Katzen eine Anämie und/oder einen Ikterus (Robison et al., 1971).

Auch bei der trockenen (parenchymatösen) Form der FIP treten unspezifische Krankheitsanzeichen wie fluktuierendes Fieber, Lethargie und Gewichtsverlust über einen Zeitraum von bis zu 12 Wochen oder sogar länger auf. ZNS-Störungen und Augenveränderungen sind, vor allem bei eher protrahierten Verläufen, möglich (Doherty, 1971; Foley et al., 1998; Singh et al., 2005). Sie können die einzigen klinischen Symptome sein, die auffallen. Ergüsse in den Körperhöhlen kommen nicht vor oder sind so geringgradig, dass sie in der klinischen Untersuchung nicht festgestellt werden können. Insgesamt ist die trockene Form der Erkrankung langsamer verlaufend als die feuchte FIP (Montali und Strandberg, 1972; Robison et al., 1971; Wolfe und Griesemer, 1966).

Neben den hauptsächlich gefundenen Veränderungen in den Körperhöhlen, den Bauch- und Brusthöhlenorganen, im ZNS und den Augen wurde auch über Läsionen in der Haut berichtet (Cannon et al., 2005; Declercq et al., 2008).

In der Sektion stellt sich bei der feuchten Form der Erguss typischerweise klar, fadenziehend und gelblich dar. Meistens finden sich Fibrinausfällungen, die sowohl frei im Erguss als Flocken vorliegen als auch sämtliche Bauch- und/oder Brusthöhlenorgane membranartig überziehen können. Häufig fallen bereits makroskopisch sichtbare Granulome auf diversen parenchymatösen Organen und der Serosa auf (Hayashi et al., 1980; Montali und Strandberg, 1972; Wolfe und Griesemer, 1971). Diese sind klassischerweise gefäßbezogen, wodurch eine differentialdiagnostische Abgrenzung zu einem tumorösen Geschehen, beispielsweise einem Lymphom, bereits in der pathologisch-anatomischen Untersuchung relativ sicher erfolgen kann.

Granulome sind das Hauptmerkmal der trockenen FIP. Da sich der Krankheitsverlauf in der Regel über längere Zeit hinzieht als bei der feuchten Form, können die Granulome bis über einen Zentimeter im Durchmesser groß werden. Neben den serösen Häuten sind vor allem Nieren, Mesenteriallymphknoten, Lunge, Leber, Augen und die Meningen betroffen (Hayashi et al., 1980; Montali und Strandberg, 1972). Insbesondere bei protrahierteren Verläufen zeigt sich häufig eine ausgeprägte granulomatös-nekrotisierende Entzündungsreaktion in den Meningen und dem Plexus chorioideus (Bradshaw et al., 2004). Granulome auf Gehirn und Rückenmark sind jedoch meistens verhältnismäßig klein und können daher nur schwer makroskopisch erkannt werden.

Zusammenfassend lässt sich jedoch festhalten, dass die pathologisch-anatomischen Veränderungen bei der FIP recht charakteristisch sind und die Diagnose in der Regel am Sektionstisch gestellt werden kann. Sicheren Aufschluss über das Vorliegen einer FIP geben dann die histopathologische und immunhistologische Untersuchung (Kipar et al., 1998; Tammer et al., 1995). Histopathologisch finden sich granulomatös-nekrotisierende Vaskulitiden, fibrinös-granulomatöse Serositiden und herdförmige granulomatöse Entzündungen in verschiedenen Organen. Kipar et al. (1998) teilten in einer Untersuchung an 23 FIP-Katzen die histopathologischen Läsionen in 5 verschiedene Kategorien ein:

1.) Diffuse Läsionen auf serösen Häuten

2.) Granulomatös-nekrotisierende Vaskulitiden

- 3.) Granulome mit zentralen Nekroseherden
- 4.) Granulome ohne deutliche Nekrose

5.) Herdförmige und perivaskuläre lymphoplasmazelluläre Infiltrate

Die granulomatösen Entzündungen sind gleichermaßen bei trockenen und feuchten FIP-Fällen nachweisbar. Daher sind die Bezeichnungen "feucht" und "trocken" als klinische Begriffe zu verstehen, die nur eine qualitative Aussage über das Vorliegen oder Nichtvorliegen eines Ergusses zulassen.

Mittels Immunhistologie kann dann spezifisch Coronavirusantigen in den histopathologischen Läsionen detektiert werden. Dieses findet sich typischerweise zellgebunden in Makrophagen in Granulomen (Tammer et al., 1995).

Im Gegensatz zur postmortalen Diagnostik ist es intra vitam sehr viel schwieriger, eine FIP festzustellen. Lediglich bei der effusiven Form kann infolge der Untersuchung des Ergussaspirates in Verbindung mit Anamnese und klinischer Symptomatik ein Verdacht geäußert werden (Rohrer et al., 1993).

Bei rein trockenen Formen sind Granulome in den Augen die einzigen FIP-typischen Entzündungsreaktionen, die beim lebenden Tier ohne invasive Maßnahmen gesehen werden können. Eine Biopsie von Granulommaterial aus potentiellen FIP-Läsionen für eine histopathologische und anschließende immunhistologische Untersuchung gilt allerdings als bisher beste Methode der intravitalen Diagnostik (Sharif et al., 2010).

Der Nachweis zirkulierender FCoV-spezifischer Immunkomplexe mittels kompetitivem ELISA kann zudem hilfreich in der Diagnosefindung sein, falls gleichzeitig klinische Symptome aufreten (Schroo, 1994). Es kann aber in seltenen Fällen vorkommen, dass FIP-Katzen seronegativ getestet werden. Das kann darin begründet liegen, dass ein Großteil der Antikörper in den FIP-Läsionen abgelagert ist und freie, nicht in Immunkomplexen gebundene Antikörper, die allein mit den üblichen serologischen Tests nachgewiesen werden, nicht in größeren Mengen im Blut vorkommen (Schroo, 1994). Der reine Antikörpernachweis ist oftmals wenig aussagekräftig, da auch klinisch gesunde Katzen mit einer FCoV-Infektion ebenso hohe Antikörper-Titer aufweisen können wie an FIP erkrankte Tiere (Paltrinieri et al., 1998a).

Im Blutbild zeigen betroffene Katzen häufig eine Anämie, eine Neutrophilie mit Linksverschiebung sowie eine Lymphopenie. Charakteristisch ist außerdem ein zugunsten des Globulins verschobenes Albumin-Globulin-Verhältnis, wobei insbesondere die Gammaglobulinfraktion meist deutlich erhöht ist. Häufig liegen auch erniedrigte Albuminwerte vor. Erhöhte Leberwerte in Form einer Hyperbilirubinämie und einer Erhöhung der Aspartat-Aminotransferase können ebenfalls hinweisend auf das Vorliegen einer FIP sein (Hartmann et al., 2003; Paltrinieri et al., 1998a; Paltrinieri et al., 2001; Sparkes et al., 1991; Weiss und Scott, 1981a).

Rohrer et al. (1993) haben einen Algorithmus zur Diagnose der FIP entwickelt, mit dessen Hilfe unter Einbeziehung von Anamnese, klinischer Symptomatik, Blutbildveränderungen und FCoV-Serologie in Kombination eine Diagnosefindung am lebenden Tier ermöglicht werden kann. Allerdings liefern die Ergebnisse nur im positiven Fall Hinweise auf das Vorliegen einer FIP. Ein sicherer FIP-Ausschluss intra vitam ist derzeit nicht möglich.

2.1.4 Pathogenese

Nach oropharyngealer Aufnahme der FCoV sind diese zunächst in den Tonsillen nachweisbar, bevor sie die Schleimhautepithelzellen des Darmes befallen (Stoddart et al., 1988a). Hier kann, insbesondere im Dickdarm, eine lange Viruspersistenz erfolgen (Herrewegh et al., 1997; Kipar et al., 2010). Weitere Zielzellen, die für die Pathogenese der FIP Bedeutung haben, sind Monozyten und Makrophagen. Früher ging man davon aus, dass nur das FIPV in der Lage sei, die Schleimhautbarriere zu überwinden und Makrophagen

infizieren zu können (Pedersen et al., 1981b). Im Gegensatz dazu wurde das Vorkommen von FECV ausschließlich in den Darmepithelzellen vermutet. Heute weiß man aber, dass sich auch in klinisch gesunden Katzen FCoV-Genom im Blut nachweisen lässt (Gunn-Moore et al., 1998a; Herrewegh et al., 1995b; Herrewegh et al., 1997; Kipar et al., 1999). Damit darf eine Infektion von Monozyten/Makrophagen nicht als der entscheidende Schritt in der Pathogenese der FIP angesehen werden. Man geht allerdings davon aus, dass ein quantitativer Unterschied in der Infektion von Monozyten/Makrophagen vorliegt und die FIPV sich im Gegensatz zu den FECV effektiver in peripheren Makrophagen vermehren können (Dewerchin et al., 2005; Stoddart und Scott, 1989). Stoddart und Scott (1989) konnten in Zellkulturstudien zeigen, dass sowohl FIPV-Stämme als auch FECV Peritonealmakrophagen infizieren können. Allerdings gelang es den FIPV, eine deutlich größere Zahl an Makrophagen zu befallen, einen höheren Virustiter im Zellkulturüberstand zu erzeugen und sich besser in der Makrophagenpopulation auszubreiten als FECV. Damals war noch recht wenig über die molekularen Mechanismen bekannt, die die Aufnahme der FCoV in die Makrophagen steuerten. Im Jahr 2005 konnten Rottier et al. die unterschiedliche Effizienz des Makrophagenbefalls von FIPV und FECV anhand der Stämme FIPV 79-1146 und FECV 79-1683 bestätigen. Zudem wurden rekombinante FIP-Viren erzeugt, bei denen einzelne Gene jeweils durch diejenigen des FECV 79-1683 ersetzt wurden. Während sich das Virus nach Austausch der E-, M- und N-Gene sowie der Nichtstrukturproteingene 3abc und 7ab gleichermaßen wie der FIPV-Wildtyp in den Makrophagen vermehren konnte, war die Replikationsfähigkeit der Virusvariante mit dem rekombinanten S-Gen deutlich vermindert und mit der von FECV 79-1683 vergleichbar. Davon lässt sich ableiten, dass das S-Gen für die Infektiosität des Virus eine große Rolle zu spielen scheint. Ob das jedoch zwangsläufig mit der Virulenz des betreffenden Stammes im Zusammenhang steht, bleibt fraglich. In einer Untersuchung zur Persistenz feliner Coronaviren in gesunden Trägerkatzen konnten die Viren außer im Colon auch in Gewebsmakrophagen verschiedener Organe lokalisiert werden (Kipar et al., 2010).

Balint et al. (2012) verglichen die Replikationsfähigkeit des Typ II FIPV-Stammes DF-2 mit mutiertem ORF3abc mit der eines rekombinanten DF-2-Stammes mit intaktem ORF3abc in einer Blutmonozytenlinie. Sie stellten fest, dass die Replikation des Stammes mit mutiertem ORF3abc deutlich besser gelang als mit intaktem Genabschnitt. Daraus wurde geschlossen, dass Deletionen in ORF 3abc bei Typ II FIP-Viren zu einem effektiveren Makrophagenbefall führen könnten. Als zelluläre Rezeptoren, die in die Aufnahme zumindest von Typ II-Stämmen feliner Coronaviren involviert sind, wurde die feline Aminopeptidase N (fAPN) identifiziert (Tekes et al., 2010; Tresnan et al., 1996). Die Nutzung von fAPN zum Eindringen in Makrophagen scheint jedoch bei FECV und FIPV gleich effektiv zu sein (Rottier et al., 2005). Darüber hinaus wurde festgestellt, dass das effektivere Eindringen in Makrophagen durch FIPV nicht über den rezeptorerkennenden N-Terminus des S-Proteins erfolgt, sondern über dessen Cterminale Region.

Die Internalisierung des FIPV in Monozyten/Makrophagen erfolgt über Endozytose (Van Hamme et al., 2007). Der dabei verwendete Endozytoseweg ist dynaminabhängig und nicht an Clathrin oder Caveolae gebunden (Van Hamme et al., 2008).

Eine besondere Eigenschaft der FCoV-Infektion besteht im sogenannten "antibody-dependent enhancement" (ADE). Dabei kommt es zu einer antikörperabhängigen, verstärkten Aufnahme von FCoV in ihre Zielzellen, die Makrophagen. Vermittelt wird dies über Fc-Rezeptoren in der Makrophagenmembran, an welche die Fc-Fragmente der antigenbeladenen Antikörper binden. Gekoppelt an Antikörper kann das Virus wesentlich effektiver von Makrophagen aufgenommen werden. Diesen Effekt stellte man fest, als nach experimenteller Infektion mit einem FIPV bei bereits seropositven Tieren ein beschleunigter und dramatischerer Krankheitsverlauf zu beobachten war (Weiss und Scott, 1981a). Interessanterweise funktioniert das ADE nur, wenn seropositive Katzen mit dem Serotyp infiziert werden, gegen den sie bereits Antikörper gebildet haben (Takano et al., 2008). Allerdings wurde das Phänomen der antikörperabhängigen Verstärkung bislang nur bei experimentellen Infektionen oder in vitro gesehen. Inwiefern das Auftreten von ADE bei natürlichen FIPV-Infektionen eine Rolle spielt, ist derzeit nicht bekannt. Ganz im Gegenteil stellt sich sogar die Frage, ob bei natürlichen FIP-Fällen seropositive Katzen möglicherweise eine bessere Immunität gegen FIP aufweisen als Katzen, die zuvor noch nie Kontakt mit dem Erreger hatten (Addie et al., 1995).

FCoV besitzen neben dem ADE noch weitere Mechanismen, um die Immunantwort des Wirtes möglichst geschickt zu umgehen. Da in virusinfizierten Zellen normalerweise eine Präsentation von Virusantigen an MHC-Molekülen erfolgt, können solche Zellen mit Hilfe des Immunsystems bekämpft werden. FIPV-infizierte Makrophagen exprimieren im Gegensatz zu FECV-infizierten Makrophagen jedoch kaum Virusantigen an der Zelloberfläche (Cornelissen et al., 2007; Dewerchin et al., 2006). Dadurch kann das Immunsystem befallene Zellen nur schwer erkennen und eliminieren.

Eine belastbare Immunität gegen FIP aufzubauen, scheint aufgrund vieler komplexer Wechselwirkungen des Immunsystems ausgesprochen schwierig zu sein (Paltrinieri et al., 1998a). Falls ein Immunschutz gegen FIP besteht, scheint dieser zellulär vermittelt zu sein (August, 1984; Pedersen und Black, 1983). Nach den bisherigen Erkenntnissen führt eine humorale Immunantwort zur Beschleunigung des Krankheitsverlaufes, was auch im Einklang mit dem ADE steht (Pedersen und Boyle, 1980; Weiss und Scott, 1981b). Man nimmt an, dass das Überwiegen von humoraler Immunantwort, verbunden mit einem schnelleren Verlauf bis zum Krankheitsausbruch, sich in der feuchten FIP-Form äußert (Pedersen, 2009). Dagegen führt eine dominierende zelluläre Immunantwort zu protrahierteren Verläufen mit einem rein granulomatösen Erscheinungsbild der Erkrankung. Entwickelt sich die zelluläre Immunantwort sehr früh im Infektionsgeschehen, bei gleichzeitig schwach ausgeprägter humoraler Immunität, kann die Virusreplikation möglicherweise gestoppt und ein Krankheitsausbruch verhindert werden (Pedersen, 2009).

Für die bei der FIP gefundenen histopathologischen Läsionen wurde lange Zeit eine Typ III-Hypersensitivitäsreaktion als Ursache angenommen (Jacobse-Geels et al., 1980; Jacobse-Geels et al., 1982; Paltrinieri et al., 1998a; Pedersen und Boyle, 1980; Weiss und Scott, 1981a). Hinweise hierfür ergaben das Vorliegen von abgelagerten IgG-Antikörpern in Gefäßen sowie der zellfreie Nachweis von Fibrinogen und der Komplementkomponente C3. Die in FIP-Katzen vorhandenen zirkulierenden FCoV-spezifischen Immunkomplexe führten außerdem zu der Annahme, dass es sich bei den Vaskulitiden um einen immunkomplexvermittelten Ursprung handle (Schroo, 1994). In Gefäßwänden abgelagerte Antigen-Antikörper-Komplexe sollen darüber hinaus für die erhöhte Permeabilität des Endothels und damit die Entstehung der Ergüsse bei der feuchten FIP verantwortlich sein (August, 1984; Jacobse-Geels et al., 1980; Jacobse-Geels et al., 1982).

Die granulomatös-nekrotisierenden Entzündungen bei der FIP passen jedoch morphologisch nicht zum Bild einer klassischen Immunkomplexvaskulitis (Kipar, 2002). Während sich letztere durch zirkuläre Läsionen um kleine Arterien, fibrinoide Gefäßwandnekrosen und infiltrierende neutrophile Granulozyten auszeichnet (Abbas et al., 2007), beschränkt sich die Vaskulitis bei der FIP auf kleine und mittelgroße Venen und wird von Makrophagen dominiert (Kipar, 2002).

In einer Studie von Paltrinieri et al. (1998b) konnten mittels Immunhistologie in den FIP-Granulomen größere Mengen an CD4-positiven T-Lymphozyten nachgewiesen werden.

20

Deshalb wurde postuliert, dass eine Typ IV-Hypersensitivitätsreaktion an der Entstehung der granulomatösen Entzündung bei der FIP beteiligt sein könnte.

Wahrscheinlich führt eine Fehlregulation der Zytokinausschüttung zu einer übermäßigen Aktivierung von Monozyten/Makrophagen sowie zu ihrer Anheftung am Endothel und ihrer Auswanderung ins Gewebe (Kipar et al., 2006). Eine gleichzeitige Auf- und Abregulation unterschiedlich wirkender Zytokine resultiert schließlich in einem Circulus vitiosus der entzündlichen Prozesse, was in den klassischen FIP-Läsionen (Vaskulitiden, Ergüsse, Granulome) zum Ausdruck kommt (Dean et al., 2003; Goitsuka et al., 1990; Gunn-Moore et al., 1998b; Kipar, 2002; Kipar et al., 2006; Kiss et al., 2004).

2.1.5 Prophylaxe und Therapie

Die Tatsache, dass ein hoher Serum-Antikörpertiter nicht vor der Erkrankung schützt, stellt eine Herausforderung dar, einen wirksamen Impfstoff gegen FIP zu entwickeln. Erste Impfversuche unternahmen Pedersen und Black (1983), indem sie Katzenwelpen eine avirulente FIPV-Variante oronasal verabreichten. Eine anschließende Infektion mit einem virulenten Stamm ließ die Tiere sogar schneller erkranken als eine ebenfalls infizierte, zuvor seronegative Kontrollgruppe. Auch der Versuch, canines Coronavirus oder rekombinante Vaccinia-Viren als Impfviren zu verwenden, brachte keinen durchschlagenden Erfolg (Hebben et al., 2004; Stoddart et al., 1988c; Vennema et al., 1990).

Auf dem Markt ist seit Anfang der 1990er Jahre eine Lebendvakzine mit dem temperatursensitiven FIPV-DF 2 (Primucell[®], Pfizer, Berlin). Nur bei 31 °C, also unterhalb der Körpertemperatur, ist eine effektive Replikation des Impfstammes möglich (Christianson et al., 1989). Diese Temperaturbedingungen herrschen im oberen Respirationstrakt vor; deshalb erfolgt die Verabreichung intranasal (Gerber et al., 1990). Infolgedessen kommt es zur Ausbildung einer IgA-gestützen, lokalen Immunität auf der Schleimhaut. Der Hintergrund hierfür ist, den Erreger an der Eintrittspforte abzufangen und die Entstehung einer humoralen Immunantwort möglichst zu verhindern (Gerber et al., 1990). In Untersuchungen zur Wirksamkeit der Impfung wurden jedoch sehr unterschiedliche Ergebnisse erzielt. Während Gerber et al. (1990) bei 85 % (17/ 20) einer geimpften Katzengruppe einen wirksamen Impfschutz nachweisen konnten, lagen die Resultate anderer Studien deutlich darunter (Fehr et al., 1997; Leukert, 2002). Ein sicherer Schutz vor der Erkrankung besteht nach der Impfung deshalb nicht.

Daher stellen ein gutes Hygiene- und Haltungsmanagement in größeren Katzenpopulationen die wichtigsten Prophylaxemaßnahmen dar (Addie und Jarrett, 1995; Addie et al., 2004). Auf dem zweiten internationalen FIP-Symposium im Jahr 2002 wurden Empfehlungen zur Prävention der Erkrankung herausgegeben (Addie et al., 2004). Die Strategie, in Katzenzuchten das Programm des Frühabsetzens und der Isolierung von tragenden Muttertieren und Katzenwelpen anzuwenden, scheint in vielen Fällen eine Infektion der Nachzucht zu verhindern (Addie und Jarrett, 1995). Dazu müssen die Muttertiere 2-3 Wochen vor der Geburt isoliert werden, um nicht immer wieder aufs Neue mit FCoV aus der Umgebung in Kontakt zu kommen. Im ersten Lebensmonat besitzen Welpen in der Regel maternale Antikörper, die vor einer Infektion mit FCoV schützen (Addie und Jarrett, 1992). Aus diesem Grund ist es wichtig, die Welpen bereits im Alter von 4-6 Wochen von der Mutter zu trennen. Bis zum Erreichen der vollständigen Aktivität des Immunsystems im Alter von circa 16 Wochen muss eine separierte Haltung der Welpen in einer FCoV-freien Umgebung erfolgen. Die Herausgeber der FIP-Präventions-Empfehlungen stellen jedoch fest, dass ein erfolgreiches Frühabsetzen und Isolieren praktisch nur mit sehr viel Aufwand durchführbar ist. Es müssen strikte Hygienemaßnahmen in Form von räumlicher Trennung, separaten Futterbehältern und Schutzkleidung für unterschiedliche Katzengruppen eingehalten werden. Eine Übertragung der Viren mit Gegenständen wie Schuhen, Kleidung oder Fressnäpfen ist leicht möglich (Pedersen et al., 1981b). Hinzu kommt, dass nach erfolgreichem Frühabsetzer-Programm die Welpen zwar seronegativ für FCoV sind, sie deshalb aber nicht vor einer anschließend auftretenden Infektion mit FCoV geschützt sind.

Im Zusammenhang mit FIP-Ausbrüchen in Katzenzuchten, Tierheimen oder anderen größeren Katzenhaltungen stehen sehr oft Überbelegung, das Vorliegen anderer Infektionskrankheiten sowie die Häufung von jungen Katzen (Pedersen, 2009). Derartige Stressfaktoren können zu einer Beeinträchtigung des Immunsystems führen, was wiederum zur Folge hat, dass bei bestehender FCoV-Infektion sich die Viren besonders schnell vermehren können. Damit erhöht sich die Wahrscheinlichkeit, dass im Zuge der Virusreplikation FIP-auslösende, virulente Mutanten entstehen (Poland et al., 1996). Es sollte daher darauf geachtet werden, den generellen Infektionsdruck in größeren Katzenbeständen möglichst niedrig zu halten und Überbelegung zu vermeiden (Addie et al., 2004).

Solange nicht alle Aspekte der FIP-Pathogenese geklärt sind, wird es nur schwer möglich sein, eine sichere Krankheitsprophylaxe zu erreichen.

Ähnlich sieht es mit der Therapie aus. Wie bei den meisten Virusinfektionen, ist bei FIP keine kausale, sondern lediglich eine symptomatische Behandlung durchführbar. So gibt es bislang

kein Mittel, das zur Heilung der FIP führt. Der Einsatz von Prednisolon und anderen immunsuppressiven Medikamenten wie zum Beispiel Cyclophosphamid wurde versucht, brachte jedoch keine überzeugenden Ergebnisse (Colgrove und Parker, 1971; Hartmann und Ritz, 2008). Auf der anderen Seite sind Interferongaben an Katzen mit FIP in der Praxis durchaus noch üblich, ihre Wirksamkeit ist jedoch eher fraglich (Ishida et al., 2004; Ritz et al., 2007).

2.2 Nichtstrukturproteingene

Das virale Genom ist recht überschaubar aufgebaut: Es enthält alle Bestandteile, die für die Zusammensetzung des Viruspartikels notwendig sind. Diese Abschnitte werden als Strukturproteingene bezeichnet. Darüber hinaus besitzen viele Viren Gene, die keine strukturgebende Funktion haben. Man nennt sie deshalb Nichtstrukturproteingene. Dazu zählen zum einen viruseigene Polymerasegene, die mit Hilfe der Translationsmaschinerie der Wirtszelle in die entsprechenden Proteine übersetzt werden und für die Replikation zuständig sind. Polymerasegene finden sich bei all den Viren, die zur Replikation nicht die Enzyme der Wirtszelle nutzen. Zum anderen gibt es weitere Nichtstrukturproteingene, deren Produkte häufig eine regulatorische Funktion auf die Virusvermehrung oder die Transkription bestimmter anderer Gene ausüben (http://www.reference.md/files/D017/mD017361.html: *Viral nonstructural proteins* [Stand: 20.11.11]).

2.2.1 Nichtstrukturproteingene bei felinen Coronaviren

Bei FECV und FIPV ist die Reihenfolge der Gene auf dem Einzelstrang-RNA-Genom identisch. Neben den Genen für die Polymerase und weitere Proteine des Replikations-Transkriptions-Komplex besitzen beide Biotypen zwischen dem S- und dem E-Gen das Nichtstrukturproteingen 3, das aus drei offenen Leserahmen oder ORF besteht: ORF 3a, ORF 3b und ORF 3c. Am 3'-Ende des Genoms, im Anschluss an das N-Gen, befindet sich das Nichtstrukturproteingen 7, das die beiden ORF 7a und 7b beinhaltet (De Groot et al., 1988; Lai und Cavanagh, 1997). Als ORF wird derjenige Bereich auf dem Genom bezeichnet, der zwischen einem Start- und einem Stopcodon liegt und somit potentiell für die Aminosäuresequenz eines Peptids beziehungsweise Proteins codiert. Bei den Produkten des 7a- und 7b-Gens handelt es sich um kleine, hydrophobe, sekretorische Glykoproteine, deren Funktion noch nicht entschlüsselt ist (De Groot et al., 1988; Vennema et al., 1992b).

Potentielle Genprodukte von ORF 3a, 3b und 3c kennt man bislang nicht. Ob diese Bereiche überhaupt in ein Protein übersetzt werden, ist deshalb nicht bekannt.

Den Nichtstrukturproteingenen wurde zunehmend Beachtung geschenkt, nachdem in diesen Bereichen Sequenzunterschiede zwischen FECV und FIPV aufgefallen waren. Dies stellten erstmals Vennema et al. (1992b) fest, als sie das 3'-Genomende von FIPV 79-1146 und FECV 79-1683 miteinander verglichen. Dabei zeigte sich bei FECV 79-1683 in ORF 7b eine 238 Nukleotide umfassende Deletion im Vergleich zum FIPV. Drei Jahre später wurden die ORF 7a/7b-Sequenzen mehrerer unterschiedlicher FCoV-Stämme untersucht, um den Grad der Homologie in diesem Genomabschnitt zu bestimmen (Herrewegh et al., 1995a). Der Bereich stellte sich relativ gut konserviert dar und war auch zwischen Vertretern verschiedener Serotypen weitgehend identisch. Darüber hinaus fiel auf, dass bei allen untersuchten, nicht zellkulturadaptierten FCoV ORF 7b intakt war. Es fanden sich lediglich bei FECV 79-1683 die bereits beschriebene Deletion von 238 Nukleotiden sowie zwei Deletionen von je 95 Nukleotiden bei dem FIPV-Stamm UCD 2. Diese beiden Stämme wurden mehrfach in der Zellkultur passagiert und sowohl das FECV als auch das FIPV erwiesen sich in experimentellen Studien als avirulent (Fiscus und Teramoto, 1987b; Pedersen und Floyd, 1985). Deshalb wurde von Herrewegh et al. (1995a) postuliert, dass die Virusattenuierung möglicherweise mit den gefundenen Deletionen in ORF 7b im Zusammenhang stehe. Allerdings scheint das nur für das Wachstum in vitro zu gelten, da das ebenfalls avirulente, direkt aus dem Kot isolierte FECV UCD ein intaktes 7b-Gen aufwies (Herrewegh et al., 1995a). Aus diesem Grund wurde angenommen, dass ORF 7b oder dessen Genprodukt für die natürliche Infektion des Virus von Nutzen, jedoch entbehrlich für das Wachstum in der Zellkultur sei (Haijema et al., 2003; Herrewegh et al., 1995a).

Ein alle Strukturproteingene sowie ORF 3abc und 7ab umfassender Abschnitt des 3'-Genomendes wurde von Vennema et al. (1998) untersucht. Dafür wurden FECV/FIPV-Paare aus jeweils gleichen Haltungen mit denen von geographisch getrennt lebenden Katzen verglichen. Coronaviren unterschiedlicher Herkunft wiesen eine deutlich geringere Verwandtschaft zueinander auf als solche aus ein und derselben Katzengruppe. Außerdem fielen Mutationen in ORF 3c und, zu einem geringeren Prozentsatz, in ORF 7b auf, die nur bei FIPV, nicht aber bei FECV auftraten. Ergänzend wurden die 3c- und 7b-Gene von weiteren FIPV-Laborstämmen analysiert. Auch dort fanden sich Abweichungen in 3c. Problematisch ist allerdings, dass nicht alle FIPV mutierte Nichtstrukturproteingene aufwiesen. Außerdem waren die Mutationen ohne erkennbares Muster verteilt. Dennoch wurde postuliert, dass diese Mutationen möglicherweise mit dem Auftreten des virulenten

24

FIPV-Biotyps korreliert seien. Diese Ergebnisse wurden mit der von Herrewegh et al. (1995a) beobachteten Korrelation zwischen Deletionen im 7b-Gen und einer Abschwächung der Virulenz in Beziehung gesetzt. Unter der Annahme, dass ein intaktes 7b-Gen mit der Virulenz des Virus in Verbindung steht, muss bei den gering- bis avirulenten FECV mit intaktem ORF 7b die Ausprägung der Virulenz in irgendeiner Form verhindert werden. Mit Ausnahme des Zellkulturstammes FECV 79-1683 lag bei den untersuchten FECV ORF 3c intakt vor, während bei fast allen untersuchten FIPV-Stämmen Deletionen im 3c-Gen festgestellt werden konnten. Aus diesem Grund wurde ein Zusammenspiel zwischen diesen beiden Nichtstrukturproteingenen vermutet (Vennema et al., 1998). Es wurde argumentiert, dass es durch Defekte im 3c-Gen zum Wegfall einer möglichen regulatorischen Wirkung auf 7b und damit zum Virulenzgewinn des Virus kommen könnte (Vennema et al., 1998). Ausgehend von diesen Überlegungen konzentrierten sich in den Folgejahren verschiedene Arbeitsgruppen auf die Sequenzanalyse der Nichtstrukturproteingene. Der Vergleich von Virus aus FIP-Läsionen mit Isolaten aus dem Darm bestätigte die bereits festgestellte Häufung von ORF 3c-Mutationen bei FIPV im Gegensatz zu FECV (Chang et al., 2010; Pedersen et al., 2009). Auch wenn die gefundenen Mutationen keine einheitlichen Positionen aufwiesen, wäre ein jeweils davon abgeleitetes Protein in den meisten Fällen nicht funktionsfähig. Chang et al. (2010) konnten jedoch bei 28,6 % (8/28) der Katzen mit FIP Virus mit intaktem 3c-Gen isolieren. Bei den restlichen 71,4 % (20/28) der Tiere mit mutierten Virusvarianten in FIP-Läsionen fand sich interessanterweise im Darm, falls detektierbar, FCoV mit intaktem ORF 3c. Diese Beobachtung unterstützte die Vorstellung, dass durch Mutation(en) virulente Mutanten entstehen, die den Darm verlassen und FIP auslösen können. Eine Beteiligung des 3c-Gens an diesem Prozess wurde für wahrscheinlich gehalten, obwohl bei einzelnen Katzen FIPV mit nicht mutiertem 3c-Gen auftraten. Pedersen et al. (2009) stellten jedoch auch in vielen anderen Struktur- und Nichtstrukturproteingenen eine hohe Mutationsrate fest.

Tekes et al. (2012) untersuchten Virus-RNA aus FIP-Katzen, die zuvor mit dem hochvirulenten Typ II-Stamm FIPV 79-1146 experimentell infiziert worden waren. Interessanterweise stellten sie fest, dass es im Zuge der Virusvermehrung zur Wiederherstellung einer intakten ORF 3c-Sequenz kam und das im zur Infektion eingesetzten Stamm vorkommende Stopcodon in ORF 3c nicht mehr vorhanden war.

In einer Untersuchung von FCoV aus gesunden Trägerkatzen und an FIP erkrankten Tieren fanden sich zwischen diesen beiden Gruppen Unterschiede im 7b- und im M-Gen (Brown et al., 2009). Es wurde deshalb die Coexistenz einer krankmachenden FIPV-Variante und einer

avirulenten FECV-Variante in der Katzenpopulation angenommen und die Mutationshypothese als Ganzes in Frage gestellt.

Die Bedeutung von ORF 7a/7b für die Virulenz des FCoV wurde in einigen weiteren Studien eher kontrovers diskutiert. Lin et al. (2009a) fanden sowohl bei an FIP erkrankten Katzen als auch bei klinisch gesunden FCoV-Trägern Viren mit mutiertem 7b-Gen. Es scheint durch Mutationen in diesem Bereich somit nicht zwangsläufig zu der bislang vermuteten Abschwächung der Virulenz des Virus zu kommen.

Auch im 7a-Gen wurden Deletionen festgestellt (Kennedy et al., 2001a; Kennedy et al., 2006). Allerdings waren diese ebenfalls sowohl in Virusisolaten aus erkrankten als auch gesunden Katzen nachweisbar.

Haijema et al. (2004) stellten rekombinante FIPV her mit dem Ziel, einen wirksamen Impfstamm zu entwickeln. Dabei wurden zum einen Stämme mit einem defekten ORF 3abc-Abschnitt (del3abc), solche mit einem defekten ORF7ab-Abschnitt (del7ab) sowie Stämme mit Defekten in beiden Nichtstrukturproteingengruppen (del3abc/7ab) erzeugt. Keiner der defekten Stämme führte nach experimenteller Infektion zum Ausbruch der FIP. Bei den Katzen, denen entweder del3abc oder del7ab verabreicht wurde, bestand nach anschließender Infektion mit dem homologen Wildtyp-FIPV bei 90 % (9/10) ein Schutz vor FIP. Bei einer zuvor seronegativen Kontrollgruppe kam es dagegen nach Infektion mit dem gleichen Wildtyp-FIPV in 80 % (4/5) der Fälle zum Ausbruch der tödlichen FIP. Alle Katzen, die zuvor del3abc/7ab erhielten, entwickelten nach Infektion mit dem Wildtyp-FIPV ebenfalls FIP. Aus diesen Ergebnissen wurde geschlossen, dass eine Beteiligung von ORF 3abc beziehungsweise ORF 7ab an der Virulenz des Virus wahrscheinlich sei. Die Varianten del3abc und del7ab seien zwar avirulent, sorgten aber für die Bildung neutralisierender Antikörper, um vor einer erneuten Infektion mit einem homologen, virulenteren Stamm zu schützen. Die Wirkungslosigkeit für das Aufbauen einer Immunität durch del3abc/7ab wurde durch eine zu geringe Bildung neutralisierender Antikörper erklärt. Der hier verwendete FIPV-Stamm 79-1146 ist jedoch ein Typ II-Stamm, und nicht, wie bei den meisten Feldinfektionen vorkommend, ein Typ I-Stamm (Benetka et al., 2003; Hohdatsu et al., 1992; Kummrow et al., 2005; Lin et al., 2009b). Außerdem bestand auch in einer mit del7ab immunisierten Katze kein Immunschutz vor FIP. Wie erfolgversprechend dieser Impfansatz daher in der Praxis ist, lässt sich zum aktuellen Zeitpunkt nicht sagen.
2.3 FCoV-Stämme – Unterschiede und Gemeinsamkeiten

Mittlerweile sind die Sequenzdaten mehrerer Dutzend Stämme feliner Coronaviren über GenBank[®] des National Center for Biotechnology Information (NCBI) frei zugänglich. Bei FECV und FIPV werden zwar genetisch verankerte Unterschiede vermutet, eindeutige Genomlokalisationen hierfür sind jedoch bislang nicht bekannt (Brown et al., 2009; Chang et al., 2010; Kennedy et al., 2001a; Kennedy et al., 2006; Kiss et al., 2000; Lin et al., 2009a; Vennema et al., 1998). So beruht die Bezeichnung von FECV und FIPV in der Regel darauf, dass die Stämme entweder aus nachweislich an FIP erkrankten Katzen (FIPV) oder aus dem Kot klinisch gesunder Tiere (FECV) isoliert wurden. Pedersen et al. (2009) setzten die Intaktheit des 3c-Gens für die Benennung eines FCoV als FECV voraus. Analog dazu wurden FIPV nur dann als solche betitelt, wenn sie ein defektes 3c-Gen aufwiesen. In einer späteren Studie stellten sie allerdings bei 40 % untersuchter FIP-Katzen (13/32) intakte 3c-Gene fest (Pedersen et al., 2012). Als Prototypen für die Erforschung der Eigenschaften der FCoV gelten die beiden Laborstämme FIPV 79-1146 und FECV 79-1683. Ihre Einteilung in FIPV und FECV basiert auf den Fähigkeiten, nach experimenteller Infektion bei Katzen FIP auszulösen (FIPV 79-1146) oder nur eine milde Enteritis hervorzurufen (FECV 79-1683) (Pedersen et al., 1984b). Bei diesen beiden FCoV handelt es sich um Typ II-Stämme. Im Feld dominieren allerdings Infektionen mit dem Typ I (Benetka et al., 2003; Hohdatsu et al., 1992; Kummrow et al., 2005; Lin et al., 2009b).

Auch heute noch steht man vor dem Problem, dass die Anzucht in der Zellkultur fast ausschließlich bei Typ II-Stämmen gelingt (Dye et al., 2007). Einer der wenigen in der Zellkultur etablierten Typ I-Stämme ist FIPV Black (Black, 1980). Ob dieser Stamm jedoch repräsentativ für Isolate aus natürlich infizierten Tieren ist, erscheint eher fraglich. FIPV Black weist größere Bereiche mit Deletionen, möglicherweise zellkulturpassagebedingt, auf (Tekes et al., 2008; Vennema et al., 1998). Besonders schwierig ist die Anzucht von FECV. So gelang es bisher nicht, ein FECV vom Typ I aus einer natürlich infizierten Katze in vitro zu kultivieren.

Mit Hilfe sogenannter reverser genetischer Systeme kann durch gezielte Rekombination einzelner Gene deren Funktion näher untersucht werden. Bei FCoV entwickelten Hajema et al. (2003) ein solches System ausgehend von dem Typ II-Stamm FIPV 79-1146. Tekes et al. (2008) gelang es, ein reverses genetisches System des Typ I-Stammes Black zu etablieren. Mit der Analyse der gesamten Genomsequenz von FIPV 79-1146, einschließlich der Abschnitte mit den Genen für die Nichtstrukturproteine, stand ein Vergleichsstandard für andere Isolate zur Verfügung (Dye et al., 2005). Da bei zellkulturadaptierten Stämmen häufig Mutationen auftreten, die beim Wildtyp nicht vorhanden sind (Herrewegh et al., 1995a), ist ihr Einsatz als "Standard" nur bedingt möglich. Falls die Mutationshypothese stimmt und FIPV durch Mutationen aus FECV entstehen, sind Sequenzdaten von natürlich vorkommenden FECV zur Bestimmung der ursprünglichen Verhältnisse besonders interessant.

3 Material und Methoden

3.1 Untersuchungsmaterial

Als Untersuchungsmaterial dienten an FIP erkrankte Katzen aus dem Sektionsgut des Institutes für Veterinär-Pathologie der Justus-Liebig-Universität Gießen, die in den Jahren 2008 bis 2010 im Rahmen der Routinediagnostik seziert wurden. In die Untersuchung wurden insgesamt 282 Gewebeproben von 28 Katzen einbezogen. Limitierend für die Auswahl der Tiere war der Frischezustand. So wurden bevorzugt Katzen verwendet, die zum Zeitpunkt der Sektion maximal einen Tag tot und möglichst vorher nicht tiefgefroren waren. Eine Übersicht über Herkunft, Rasse, Alter und Geschlecht der Katzen gibt Tabelle 11 im Anhang.

Pro Katze wurde ein Standardsatz aus verschiedenen Organen, die klassischerweise FIP-Läsionen aufweisen, zur Beprobung herangezogen (Tabelle 1). Bei 2 der Katzen erfolgte die Probenentnahme nur von Leber und Niere, bei einer weiteren von Leber, Niere und Pleura. Von den restlichen 25 Tieren wurden Bauchwand, Netz, Leber, Darm, Zwerchfell, Mesenteriallymphknoten, Milz, Pankreas, Niere, Lunge und Gehirn untersucht.

Zur sicheren diagnostischen Abklärung einer FIP wurden neben der Beurteilung des recht typischen Sektionsbildes eine histopathologische und bis auf eine Ausnahme (siehe Tabelle 13) eine immunhistologische Untersuchung durchgeführt.

Zusätzlich wurden von 5 Katzen, die in der Sektion keine FIP aufwiesen, Kotproben aus dem Rektum gesammelt. Auch hier wurden bevorzugt Katzen verwendet, die sich noch in einem möglichst frischen Erhaltungszustand befanden. Weitere Einschlusskriterien waren das Alter (≤ 5 Jahre) sowie die Herkunft der Katzen (bevorzugt Tierheim oder Mehrkatzenhaushalte). Bereits isolierte feline Coronavirus-RNA wurde vom Institut für Virologie der Justus-Liebig-Universität Gießen zur Etablierung der Methode freundlicherweise zur Verfügung gestellt.

Standardorgansatz			
1. Bauchwand (25x)	7. Milz (25x)		
2. Netz (25x)	8. Pankreas (25x)		
3. Leber (28x)	9. Niere (28x)		
4. Darm (25x)	10. Lunge (25x)		
5. Zwerchfell (25x)	11. Gehirn (25x)		
6. Mesenteriallymphknoten (25x)	12. Pleura (1x)		

Tabelle 1 Für die RNA-Isolierung verwendete Gewebe, die klassischerweise FIP-Läsionen aufweisen¹

¹in Klammern: Anzahl der Katzen, bei denen entsprechende Gewebe untersucht wurden

3.2 Präparation der Gewebe für die histopathologische und immunhistologische Untersuchung

Die Gewebe wurden zwischen 24 und 72 Stunden in 10 %igem Formalin fixiert, anschließend in Gewebekapseln eingelegt und in einem Einbettungsautomaten (Autotechnikon, Tissue-Tek[®] VIPTM 5Jr., Sakura, Staufen) routinemäßig bearbeitet. Von den hierbei hergestellten paraffineingebetteten Proben wurden histologische Schnitte angefertigt, auf StarFrost[®]- (Engelbrecht, Edermünde) beziehungsweise SuperFrost[®]Plus-Objektträger (Langenbrinck, Emmendingen) aufgezogen und mit Hämatoxylin-Eosin (HE) gefärbt sowie für die Immunhistologie verwendet.

3.2.1 Histopathologische Diagnose

Nur Katzen, bei denen auch histopathologisch die FIP in Betracht gezogen werden konnte, wurden in die Untersuchung miteinbezogen. Hierzu diente das Vorliegen einer pyogranulomatösen bis nekrotisierenden Entzündung unter Einbeziehung von kleinen Venen als ausschlaggebendes Kriterium (Abbildung 4).

3.2.2 Immunhistologische Diagnose

Zum Nachweis von FCoV-Antigen in den histologisch festgestellten Läsionen wurde eine immunhistologische Untersuchung durchgeführt. Hierfür diente als Primärantikörper der in der Routinediagnostik eingesetzte Antikörper FCV 3-70 (Custom Monoclonals Int., Sacramento, CA, USA). Die Paraffinschnitte wurden auf SuperFrost[®]Plus-Objektträger aufgezogen, bei Raumtemperatur luftgetrocknet und in Xylol-Ersatz (Roti-Histol[®]) entparaffiniert sowie in der absteigenden Alkoholreihe rehydriert. Die Hemmung der endogenen Peroxidase erfolgte für 30 min bei Raumtemperatur in reinem Methanol mit 0,5 % H₂O₂. Nach zweimaligem Waschen in TBS erfolgte eine 25-minütige Vorbehandlung in Zitratpuffer bei 95 °C. Nach erneutem Waschen in TBS wurden die Objektträger auf CoverplatesTM aufgebracht (Shandon Racks, Thermo Scientific, Dreieich) und anschließend für 10 min mit 10 % igem Rattenserum in TBS bei Raumtemperatur inkubiert. Nach Auftragen des Primärantikörpers FCV 3-70 (1:80 in TBS) erfolgte eine 12- bis 18-stündige Inkubation bei 4 °C. Im Wechsel mit je dreimaligem Waschen in TBS folgte die Inkubation mit dem Sekundärantikörper Ratte anti-Maus IgG (1:100) (Dianova, Hamburg) sowie mit dem Maus-PAP-Komplex (1:500) (Dianova, Hamburg) für je 30 min bei Raumtemperatur. Unter ständigem Rühren wurden die Schnitte für 10 min mit 0,05 % 3,3'-Diaminobenzidintetrahydrochlorid (DAB) in 0,1M Imidazolpuffer (pH 7,1) mit 0,01 % H₂O₂ bei Raumtemperatur inkubiert. Nach erneutem dreimaligem Waschen in TBS und einmaligem Waschen in Aqua dest. erfolgte eine 5-minütige Behandlung mit Kardasewitsch (siehe 9.5 Lösungen und Puffer) zur Entfernung von Formalinpigment. Die mit Aqua dest. gespülten Schnitte wurden mit Papanicolaous Hämatoxylin (1:10 in Aqua dest.) circa 30 sec gegengefärbt und 5 min in Leitungswasser gebläut. In der aufsteigenden Alkoholreihe wurden die Schnitte entwässert und für 10 min in Xylol-Ersatz (Roti-Histol[®]) geklärt. Zuletzt erfolgte das Eindecken der Schnitte mit Folie im Eindeckautomaten (Tissue-Tek[®], Sakura, Staufen). Dunkelbraune Farbniederschläge im Zytoplasma von Makrophagen wurden als positive Reaktion gewertet (Abbildung 5).

Als immunhistologische Positivkontrolle diente Gewebematerial von Katzen, bei denen anhand der Klinik, der Sektion und der histopathologischen Läsionen mit intraläsionalem Nachweis von Coronavirusantigen FIP diagnostiziert wurde. Als Negativkontrolle wurden Folgeschnitte mit einem nicht reagierenden Antikörper inkubiert (T1, gegen ein Oberflächenantigen von Hühner-Lymphozyten gerichtet).

Granulom in der Nierenrinde mit zentraler Nekrose. HE, 4x Obj.

Abb. 4 Histopathologische Diagnose

Granulomatös-nekrotisierende Phlebitis im Netz; positives immunhistologisches Signal in Makrophagen. Peroxidaseanti-Peroxidase, Gegenfärbung mit Papanicolaous Hämatoxylin, 10x Obj.

Abb. 5 Immunhistologische Diagnose

3.3 Präparation der Gewebe für die molekularbiologische Aufarbeitung

Unmittelbar nach der Sektion der Katzen wurden von Bauchwand, Netz, Leber, Darm, Zwerchfell, Mesenteriallymphknoten, Milz, Pankreas, Niere, Lunge und Gehirn im unfixierten Zustand jeweils mehrere Gewebewürfel in einer Größe von circa 5 x 5 x 5 mm angefertigt. Die Proben stammten dabei insbesondere aus Arealen mit makroskopisch sichtbaren Granulomen, sofern diese in den entsprechenden Geweben vorhanden waren. Bei einem dieser Tiere sowie 5 weiteren Katzen ohne FIP wurden im Anschluss an die Sektion Kotproben gesammelt.

Die Proben der Organe sowie die Kotproben wurden sofort in flüssigem Stickstoff bei minus 196 °C schockgefroren und jeweils in kleine Plastikbeutel (Enders GmbH & Co. KG, Reiskirchen) verpackt. Die anschließende Lagerung bis zur weiteren Verarbeitung erfolgte bei minus 80 °C.

3.4 Isolierung von RNA aus Gewebe

Um das Virusgenom untersuchen zu können, musste zunächst die RNA aus den Proben gewonnen werden. Dazu diente das RNA-Extraktionskit RNeasy[®] Mini Kit (Qiagen, Hilden). Das Prinzip des Kits beruht auf der Lyse der Zellen in Gegenwart eines denaturierenden, guanidin-thiocyanathaltigen Puffers, der gleichzeitig RNA-abbauende Enzyme (RNasen) hemmt. Die optimale Bindung der RNA an eine Silikagel-Membran vermittelt die Zugabe von Ethanol. Über mehrere Waschschritte werden Kontaminanten wie DNA und Proteine entfernt. Die Gesamt-RNA ab einer Länge von 200 Basen wird schließlich in sterilem, RNase-freiem Wasser eluiert.

3.4.1 Isolierung von Gesamt-RNA aus unfixiertem Gewebe mittels Qiagen RNeasy[®] Mini Kit und Qiagen QIAshredder[®] Tubes

Die Prozedur der RNA-Isolierung erfolgte unter einer sterilen Arbeitsbank. Als erstes wurden alle Arbeitsoberflächen mit dem Nukleasen-abbauenden Spray RNase AWAYTM (MbP, San Diego, CA, USA) behandelt.

Um eine potentielle Kontamination mit genomischer DNA möglichst sicher auszuschließen, erfolgte zudem eine Behandlung der Proben mit RNase-free DNase I (Qiagen, Hilden). Diese wurde gemäß den Angaben des RNeasy[®] Mini Kit als zusätzlicher optionaler Schritt im Protokoll integriert.

Zur optimalen Homogenisierung des Gewebes wurden die QIAshredder[®] Tubes (Qiagen, Hilden) eingesetzt. Der Hintergrund hierfür ist, dass für eine erfolgreiche Extraktion von RNA aus Gewebe die Viskosität des Lysats herabgesetzt werden muss. Hochmolekulare Zellbestandteile und Zelldebris werden durch eine spezielle Biopolymer-Membran unter Zentrifugieren fein zerkleinert.

Herstellung der Gebrauchslösungen einzelner Reagenzien vor der ersten RNA-Isolierung:

- A. Zu je 1 ml des im Kit enthaltenen RLT-Lysis-Puffers werden 20 μl 2M Dithiothreitol (DTT) (alternativ: 10 μl β-Mercaptoethanol) gegeben.
- B. Das im Kit enthaltene RPE-Puffer-Konzentrat (11 ml) wird mit 44 ml 96 %-100 % Ethanol verdünnt.
- C. Die als Lyophilisat vorliegende RNase-freie DNase I wird entsprechend der Herstellerangaben mit 550 µl sterilem, RNase-freiem Wasser gelöst und die Stocklösung anschließend in 1,5 ml-Reaktionsgefäßen aliquotiert. Die nicht direkt eingesetzten Mengen werden eingefroren und bei minus 20 °C gelagert.

Ablauf der RNA-Isolierung:

- 30 mg der gefrorenen Gewebestückchen werden in einen sterilisierten Mörser (Roth, Karlsruhe) gegeben. Unter Zugabe von flüssigem Stickstoff wird mit einem sterilisierten Pistill (Roth, Karlsruhe) ein feines Puder hergestellt.
- Mit Hilfe eines sterilen Metallspatels wird das gefrorene Puder in ein 1,5 ml-Reaktionsgefäß überführt, das zuvor mit 600 µl des unter 3.4.1 A. genannten RLT-DTT-Puffer-Gemisches befüllt worden ist.
- Die Homogenisierung des lysierten Gewebes erfolgt mittels der QIAshredder[®] Tubes. Dazu werden die 600 μl Probenlysat in ein QIAshredder[®] Tube pipettiert und für 2 min bei mindestens 10.000 x g zentrifugiert.

- Der Überstand des zentrifugierten Lysats wird in ein neues 1,5 ml-Reaktionsgefäß überführt und mit demselben Volumen (circa 600 µl) 70 %igen Ethanols versetzt und durch Pipettieren gemischt.
- 5. 700 μ l der mit Ethanol versetzten Probe werden in das im Kit enthaltene Säulchen (Qiagen Spin Column[®]) pipettiert und für 15 sec bei mindestens 8.000 x *g* zentrifugiert. Der im Sammelröhrchen aufgefangene Durchfluss wird anschließend verworfen.
- 6. Um die ursprünglich eingesetzten 30 mg Gewebe vollständig zu nutzen, werden die restlichen 500 μl Probe ebenfalls in das Säulchen gegeben und wiederum für 15 sec bei mindestens 8.000 x g zentrifugiert und der Durchfluss anschließend verworfen. Das Säulchen wird danach in ein neues Sammelröhrchen hineingesteckt.
- 7. Als erster Waschschritt werden 350 μ l des RW1-Puffers in das Säulchen gegeben, 15 sec bei mindestens 8.000 x *g* zentrifugiert und der Durchfluss anschließend verworfen.
- 8. 10 µl der DNase I-Stocklösung (Qiagen, Hilden) werden mit 70 µl des im Kit enthaltenen RDD-Puffers gemischt, kurz zentrifugiert und das Gemisch anschließend direkt auf die Säulchenmembran pipettiert und für 15 min bei Raumtemperatur inkubiert.
- 9. In einem weiteren Waschschritt werden 350 μ l des RW1-Puffers in das Säulchen gegeben, 15 sec bei mindestens 8.000 x *g* zentrifugiert und der Durchfluss anschließend verworfen.
- 10. 500 μ l des RPE-Puffers werden in das Säulchen pipettiert, 15 sec bei mindestens 8.000 x *g* zentrifugiert und der Durchfluss anschließend verworfen.
- 11. Erneut gibt man 500 μ l RPE-Puffer in das Säulchen und zentrifugiert für 2 min bei mindestens 8.000 x g.

- 12. Das Säulchen wird in ein neues 1,5 ml-Reaktionsgefäß überführt, 40 μl RNase-freies Wasser werden direkt auf die Säulchenmembran pipettiert und anschließend für 1 min bei mindestens 8.000 x g zentrifugiert. Dabei wird die RNA aus der Membran herausgespült und liegt in dem RNase-freien Wasser gelöst vor.
- 13. Aus dem Eluat werden 3 μl in ein separates 1,5 ml-Reaktionsgefäß zur photometrischen Messung des RNA-Gehaltes überführt und die restliche isolierte RNA direkt bei minus 80 °C eingefroren.

3.4.2 Isolierung von Gesamt-RNA aus unfixiertem Gewebe mittels Qiagen RNeasy[®] Mini Kit und Next Advance Bullet Blender[®] Blue 50 (Homogenisator)

Bei 8 von 28 Katzen wurde die Vorbereitung der Gewebe für die RNA-Isolierung mit Hilfe eines vollautomatischen Homogenisators (Bullet Blender[®] Blue 50, Next Advance, Averill Park, NY, USA) durchgeführt. Das manuelle Zerkleinern der Proben mit Mörser und Pistill sowie die anschließende Homogenisierung in den QIAshredder[®] Tubes entfielen dabei.

Ablauf:

- Pro Einzelprobe wird ein 1,5 ml-Reaktionsgefäß mit 90 mg Zerkleinerungskügelchen (Beads, Next Advance, Averill Park, NY, USA; Durchmesser 0,5 mm) mit einem sterilen und RNase-freien Metallspatel befüllt.
- In das mit Kügelchen beladene 1,5 ml-Reaktionsgefäß werden 600 µl des wie in
 3.4.1 A. hergestellten RLT-DTT-Puffer-Gemisches pipettiert.
- 3. 30-50 mg gefrorenes Gewebe werden dazugegeben und die Probe wird anschließend in den Homogenisator gestellt und für eine Zeit von 4 min bei Geschwindigkeit "8" bearbeitet. Anschließend wird die Probe für 1 min zum Abkühlen auf Eis gestellt. Falls noch keine vollständige Zerkleinerung des Gewebestückes erfolgt ist, wird es erneut für 4 min bei Geschwindigkeit "8" im Homogenisator bearbeitet.

- 4. Die Probe wird nach dem Homogenisieren kurz auf Eis gestellt und nach Zerfall des Schaumes die Probenflüssigkeit von den Kügelchen abpipettiert und in einem neuen 1,5 ml-Reaktionsgefäß mit 600 µl 70 % Ethanol versetzt und durch Pipettieren vermengt.
- 5. Die folgenden Schritte entsprechen den Punkten 5. bis 13. unter 3.4.1.

3.4.3 Isolierung von Virus-RNA aus Kotproben mittels Qiagen QIAamp[®] Viral RNA Mini Kit

Die Kotproben der 5 Katzen ohne FIP wurden auf eine Infektion mit dem felinen Coronavirus untersucht. Das Ziel war es, FECV zu sequenzieren, mit dem gemäß Literaturangaben bis zu rund 80 % nicht an FIP erkrankter Katzen infiziert sind (Pedersen, 1976b; Sparkes et al., 1992a). Diese Sequenz sollte zum Vergleich mit den FCoV-Sequenzen aus den FIP-Katzen eingesetzt werden. Zum Nachweis von FCoV-RNA im Kot der an FIP erkrankten Katzen wurde die Methode ebenfalls an einem Tier mit FIP durchgeführt. Zum Test der Methode wurden Kotsuspensionen von Katzen, die nachweislich FECV ausschieden, eingesetzt. Diese wurden vom Institut für Virologie der Justus-Liebig-Universität Gießen zur Verfügung gestellt. Von den gesammelten Kotproben der Sektionskatzen musste zunächst eine Kotsuspension und schließlich ein Filtrat hergestellt werden:

- A. 1 ml Kot wird in 5 ml 0,89 % iger NaCl-Lösung suspendiert.
- B. Die Suspension wird für 20 min bei 4000 x g zentrifugiert.
- C. Der Überstand wird anschließend durch einen 0,22 µm-Spritzenfilter filtriert.
- D. 140 µl des Filtrats werden als Ausgangsmenge für das QIAamp[®] Viral RNA Isolation Protokoll verwendet.

Das QIAamp[®] Viral RNA Mini Kit beinhaltet Säulchen, die mit einer Silikagel-Membran ausgestattet sind. Diese dient zur optimalen Bindung der Virus-RNA, welche nach zwei Wasch- und Zentrifugierschritten von Kontaminanten gereinigt vorliegt. Damit auch geringe Mengen an Virus-RNA bestmöglich an der Membran gebunden werden können, wird eine Träger-RNA zugesetzt. Die Inaktivierung von RNasen vermittelt die Zugabe von AVL, einem denaturierenden Puffer.

Vorbereitung einzelner Reagenzien für den fertigen Gebrauch:

- I. Vor dem ersten Einsatz des QIAamp[®] Viral RNA Mini Kit müssen gemäß der Herstellerangaben 310 µl des im Kit enthaltenen AVE-Puffers zu der ebenfalls enthaltenen lyophilisierten Träger-RNA gegeben werden. Dieses Gemisch wird in Aliquots zu je 30 µl bei minus 20 °C eingefroren.
- II. Vor jedem Isoliervorgang werden pro Einzelprobe 5,6 µl des AVE-Träger-RNA-Gemisches mit 560 µl AVL-Puffer vermengt.

Ablauf:

- 560 µl des AVL-Träger-RNA-AVE-Gemisches aus 3.4.3. II. werden in ein 1,5 ml-Reaktionsgefäß überführt, mit 140 µl des Filtrats aus 3.4.3. D. vermengt und für 15 sec in einem Vortexer durchmischt.
- 2. Anschließend erfolgt eine Inkubation bei Raumtemperatur für 10 min.
- 3. Um mögliche Probenflüssigkeit von der Innenseite des Deckels zu entfernen, wird das 1,5 ml-Reaktionsgefäß für 3 sec bei 8.000 x *g* zentrifugiert.
- 560 μl Ethanol (96 % 100 %) werden hinzugefügt und das Gemisch für 15 sec in einem Vortexer durchmischt. Anschließend wird die Probe für 3 sec bei 8.000 x g zentrifugiert.
- 630 μl der Lösung aus Schritt 4. werden in das im Kit enthaltene Säulchen mit Sammelröhrchen pipettiert. Es folgt eine 1-minütige Zentrifugation bei mindestens
 6.000 x g. Das Filtrat wird anschließend verworfen und das Säulchen in ein neues Sammelröhrchen hineingesteckt.
- 6. Der Schritt 5. wird einmal wiederholt.
- Es werden 500 µl des im Kit enthaltenen AW1-Puffers zugegeben und für 1 min bei mindestens 6.000 x g zentrifugiert. Das Filtrat wird anschließend verworfen und das Säulchen in ein neues Sammelröhrchen überführt.

- 8. Danach gibt man 500 µl des im Kit enthaltenen AW2-Puffers zu. Es folgt eine 3minütige Zentrifugation bei 20.000 x g. Um alle Reste von AW2 sicher zu entfernen, kann optional das Säulchen erneut in ein sauberes Sammelröhrchen gesteckt und für 1 min bei 20.000 x g zentrifugiert werden.
- 9. Anschließend wird das Säulchen in ein 1,5 ml-Reaktionsgefäß überführt und 60 μ l AVE-Puffer werden hinzugefügt. Nach einer 1-minütigen Inkubation bei Raumtemperatur erfolgt eine Zentrifugation bei 6.000 x *g* für 1 min.
- 10. Das Eluat mit der Virus-RNA wird bei minus 80 °C eingefroren oder für die reverse Transkriptionsreaktion direkt weiterverarbeitet.

3.5 Photometrische Konzentrationsbestimmung der isolierten RNA

Die Ausbeute der isolierten RNA wurde mittels photometrischer Messung bestimmt. Nach vorausgegangener Nullkontrollmessung mit reinem TAE-Puffer wurden dazu jeweils 3 μ l der in RNase-freiem Wasser gelösten isolierten RNA mit jeweils 997 μ l TAE-Puffer in einer Glasküvette vermengt. Die Bestimmung der Konzentration erfolgte durch Messung der Extinktion der Nukleinsäuren bei einer Wellenlänge von 260 nm. Die Extinktion von 1 entspricht bei einer Küvettendicke von 1 cm annähernd einer Konzentration von 50 μ g DNA beziehungsweise 40 μ g RNA pro 1 ml Volumen.

Zur Ermittlung des Reinheitsgrades der isolierten Nukleinsäuren erfolgte gleichzeitig automatisch eine Bestimmung des Verhältnisses aus der Extinktion bei 260 nm zu der bei 280 nm.

3.6 Reverse Transkription

Für die Untersuchung des Virusgenoms war eine Amplifikation der Nukleinsäuren erforderlich. Diese erfolgte durch die Polymerase-Kettenreaktion (PCR). Da es sich bei Coronaviren um RNA-Viren handelt und für die PCR als Ausgangsmaterial DNA vorliegen muss, wurde die Virus-RNA in einer reversen Transkriptionsreaktion zunächst in eine komplementäre DNA (cDNA) umgeschrieben. Dazu dienten folgende zwei Kits der Firma Qiagen: RT Omniscript[®] für RNA-Ausgangsmengen ≥ 100 ng/µl und RT Sensiscript[®] für RNA-Ausgangsmengen < 100 ng/µl. Zusätzlich zu den Kit-Bestandteilen wurden für die

Herstellung des Mastermix ein RNase-Inhibitor (Invitrogen, Karlsruhe) sowie als Primer Random Hexamers (Promega, Mannheim) verwendet.

Bei der jeweils im Kit enthaltenen Reversen Transkriptase handelt es sich um ein in E. coli exprimiertes, rekombinantes, heterodimeres Enzym. Ihr Vorteil ist das Vorhandensein von drei enzymatischen Aktivitäten: einer RNA-abhängigen DNA-Polymerase, einer hybridabhängigen Ribonuklease (RNase H) sowie einer DNA-abhängigen DNA-Polymerase. Diese drei Enzymaktivitäten sind notwendig, um aus einem RNA-Einzelstrang einen DNA-Doppelstrang herzustellen (Abbildung 6)

Abb. 6 Synthese von doppelsträngiger DNA aus RNA (aus: Omniscript® Reverse Transcription Handbook)

Komponente	Konzentration	Hersteller	Eingesetztes
			Volumen ¹
"10x Puffer RT"	10-fach konzentriert	Qiagen	2 µl
dNTP-Mix	5 mM pro dNTP	Qiagen	2 µl
Random Primer	10 µM	Promega	2 µl
RNase-Inhibitor	10 Units/µl	Invitrogen	1 µl
Sensiscript bzw.	4 Units/µl	Qiagen	1 µl
Omniscript Reverse			
Transkriptase			
RNase-freies Wasser	-	Qiagen	Variabel ⁴
Proben-RNA	50^2 bzw. 1000^3 ng/	-	Variabel ⁵
	20 µl		

Pro Ansatz setzte sich der Mastermix aus folgenden Komponenten zusammen (Tabelle 2): Tabelle 2

¹Pro Einzelprobe

²Bei Verwendung von Sensiscript[®] Reverse Transkriptase

³Bei Verwendung von Omniscript[®] Reverse Transkriptase

 $^{4+5}$ Summe aus Wasser und Proben-RNA = 12 µl

Die eingesetzten Mengen an RNase-freiem Wasser sowie Proben-RNA ergaben sich aus der photometrisch bestimmten RNA-Konzentration. Bei Konzentrationen $\geq 100 \text{ ng/µl}$ wurde Omniscript[®] Reverse Transkriptase verwendet und die RNA-Menge im Mastermix auf 1 µg eingestellt. Bei Konzentrationen < 100 ng/µl kam Sensiscript[®] Reverse Transkriptase zum Einsatz und die RNA-Menge im Mastermix wurde auf 50 ng eingestellt. Ergaben sich hierbei Werte < 1 µl, so wurde dennoch stets 1 µl Proben-RNA als Mindestvolumen eingesetzt. In der Negativkontrolle wurde anstelle der Proben-RNA zu den einzelnen Komponenten des Mastermix jeweils 12 µl RNase-freies Wasser pippetiert.

3.7 Amplifikation des Genomabschnitts ORF 3c

Zur spezifischen Amplifikation des Nichtstrukturproteingens ORF 3c diente die Polymerase-Kettenreaktion. Die Bestandteile des Mastermix sind in Tabelle 3 dargestellt. Pro Ansatz wurden 25 μ l Mastermix mit 5 μ l Proben-DNA vermengt.

Komponente	Konzentration	Hersteller	Eingesetztes
			Volumen
Steriles Wasser	-	Roth	20,5 µl
Puffer (MgCl ₂ -haltig)	10fach konzentriert	NatuTec	3,1 µl
Forward Primer	10 µM	MWG-Biotech	0,6 µl
Reverse Primer	10 µM	MWG-Biotech	0,6 µl
dNTP-Mix	10 mM pro dNTP	Fermentas	0,6 µl
Polymerase	5 U/µl	NatuTec	0,2 μl

Tabelle 3 Zusammensetzung des PCR-Mastermix

¹ Pro Einzelprobe

Für den Fall, dass 3 Primer in einem Ansatz vorhanden waren (s. u.), wurde die Menge an sterilem Wasser um 0,6 μ l reduziert und dafür 0,6 μ l zusätzlicher Primer hinzugefügt. Als Proben-DNA wurden jeweils 5 μ l der wie unter 3.6 hergestellten cDNA verwendet. Für die Negativkontrolle kam anstelle der cDNA 5 μ l steriles Wasser zum Einsatz.

Für die Auswahl der Primer wurden in GenBank[®] des National Center for Biotechnology Information (NCBI) veröffentlichte Sequenzen feliner Coronavirusstämme herangezogen. Mittels ClustalW (EMBL-EBI, Cambridge, Großbritannien), einem Programm zum mutiplen Abgleich von Sequenzen, wurden Positionen außerhalb von ORF 3c gesucht, die zwischen den unterschiedlichen Stämmen möglichst identische Basenabfolgen aufwiesen (s.u.).

Außerdem wurde bei der Primerauswahl darauf geachtet, möglichst folgende allgemeine Kriterien einzuhalten (Rychlik, 1995):

- Länge zwischen 16 und 24 Basen
- Ähnliche Schmelztemperatur in einem Primersystem
 (zugrundeliegende Formel: T_m = 2 x (A+T) + 4 x (G+C))
- Möglichst identischer GC- und AT-Gehalt
- Homooligomere sowie Dinukleotidwiederholungen vermeiden

- Keine Haarnadelstrukturen von mehr als vier Basen
- Keine Anlagerung von mehr als vier nebeneinander liegenden Basen zwischen den beiden Primern
- Keine Anlagerung der beiden Primer an den 3'-Enden

Als Hilfestellung für die Wahl von Primern mit möglichst optimalen Bedingungen diente das webbasierte Programm GeneFisher der Universität Bielefeld.

Beim Vergleich verschiedener feliner Coronavirussequenzen fiel auf, dass insbesondere vor dem Beginn des 3c-Gens Abweichungen zwischen Serotyp I- und Serotyp II-Stämmen vorlagen. Es war deshalb nicht möglich, eine beide Serotypen abdeckende Oligonukleotidsequenz in diesem Bereich zu finden. Aus diesem Grund wurden zwei Forward Primer entwickelt, einer angepasst an Typ I-, der andere an Typ II-Stämme. Ein Ausschnitt aus dem Sequenzvergleich der verschiedenen Stämme zeigt Abbildung 7. Dabei sind vor den Sequenzen die GenBank[®]-Zugangsnummern (acc. no.) angegeben (NC_007025, DQ010921, AY994055, DQ848678, EU186072). Unterstrichen, fett- und kursivgedruckt dargestellt sind die Sequenzen der beiden Forward Primer FIP1.1F (abgeleitet von dem Typ I-Stamm Black: acc. no. EU186072) und FIP2.1F (abgeleitet von dem Typ II-Stamm FIPV-79-1146: acc. no. NC_007025) sowie des Reverse Primers FIP2.1R (s.u.).

NC_007025 DQ010921 AY994055 DQ848678 EU186072	TATTACTGTTTACAAGTTTAAAGCCAAATTTTGGTATAAACTACCTTTTGAAACTAGACT TATTACTGTTTACAAGTTTAAAGCCAAATTTTGGTATAAACTACCTTTTGAAACTAGACT TATTACTGTTTACAAGTTTAAAGCCAAATTTTGGTATAAACTACCTTTTGAAACTAGACT TATCACAGTTTACGATTTCTGTGCTAAAAATTGGTATAAGTTACCTTTTGCAGTCAGATT TATCACAGTTTACGATTTTTGTGCTAAAAATTGGTATAAATTT <u>ACCTTTTGCAGTCAGATT</u> ****.**.****************************	- FIP1.1F
NC_007025 DQ010921 AY994055 DQ848678 EU186072	TTGTATCATT AAACACACAAGACCCAAAGC ATTAAGTGTTACAAAACAAGTAAAGAGAGA - TTGTATCATTAAACACACAAGACCCAAAGCATTAAGTGTTACAAAACAAGTAAAGAGAGA TTGTATCATTAAACACACACAAGACCCAAAGCATTAAGTGTTACAAAACAAGTAAAGAGAGA ACGTATCGTAAATAACACAAAACCTAGAACAGCACGTACTAGAAGAAGGGTTGTTATAGA <u>GC</u> GTATCATAAATAATACAAAAACCTAAAACAGCAAGTACTATAAAACG *****.*.*.*.*.****.***.***.**.**.**.	- FIP2.1F
NC_007025 DQ010921 AY994055 DQ848678 EU186072	TTATAGAAAAATTGCCATTCTAAATTCCATGCGAAA ATG ATTGGTGGACTTTTTCTTAAC TTATAGAAAAATTGCCATTCTAAATTCCATGCGAAAATGATTGGTGGACTTTTTCTTAAC TTATAGAAAAATTGCCATTCTAAATTCCATGCGAAAATGATTGGTGGACTTTTTCTTAAC CTATAGAAGAATCGCCATTCTTAACGCAATGCGAAAATGATAGGCGGACTGTTTCTTAAG TAGAAGAAGGGTTGTTAAC *****.**	- Startcodon ORF 3c
NC_007025 DQ010921 AY994055 DQ848678 EU186072	ACTCTTAGTTTTGTAATTGTTAGTAACCATGTTATTGTTAATAACACAGCAAATGTGCAT ACTCTTAGTTTTGTAATTGTTAGTAACCATGTTATTGTTAATAACACAGCAAATGTGCAT ACTCTTAGTTTTGTAATTGTTAGTAACCATGTTATTGTTAATAACACAGCAAATGTGCAT ACTCTAAGTTTTATCGTTACTAATTAACATGTGATTGTTAATAACACA ACTCTTAAGTTTTATGTCACTAATCAACATGTGATTGTTAATAACACA ACTCTTAAGTTTTATGTCACTAATCAACATGTGATTGTTAATAACACA	

NC_007025 DQ010921 AY994055 DQ848678 EU186072	ACTACACAACATGAAAATGTTATAGTACAACAGCATTAGGTTGTTAGTGCTAGAACACAA ACTACACAACATGAAAATGTTATAGTACAACAGCATTAGGTTGTTAGTGCTAGAACACAA ACTACACAACATGAAAATGTTATAGTACAACAGCATTAGGTTGTTAGTGCTAGAACACAAA CCACATGGCAATTCTATAGTACAACAACAACATGTTGTTAGTGCTAGTATTAAA CCACATGTCGATTCTATAGTACAACAACAACATGTTGTTAATGCTAGTATTAAA *.*************************	
NC_007025 DQ010921 AY994055 DQ848678 EU186072	AATTATTACCCAGAGTTCAGCATCGCTGTACTCTTTGTCATTTTTGGCTTTGTACCGT AATTATTACCCAGAGTTCAGCATCGCTGTACTCTTTGTCATTTTTGGCTTTGTACCGT AATTATTACCCAGAGTTCAGCATCGCTGTACTCTTTGTATCATTTTTGGCTTTGTACCGT AGTTCTCATTTAGAGTTCAGCATCGCTGTTCTCTTTGTCTTATTTTTAGCTTTGTACCGT AGTTTTCATTTAGAGTTCAGCACCGCTGTTCTCTTTGTTTTATTTTTAGCTTTGTACCGT *.**.*	
NC_007025 DQ010921 AY994055 DQ848678 EU186072	AGTACAAACTTTAAGACGTGTGTCGGCATCTTAATGTTTAAGATTGTATCAATGACACTT AGTACAAACTTTAAGACGTGTGTCGGCATCTTAATGTTTAAGATTGTATCAATGACACTT AGTACAAACTTTAAGACGTGTGTCGGCATCTTAATGTTTAAGATTGTATCAATGACACTT AGTACAAACTTTAAAGTGTGTGTCGGGTGTCTTAATGTTTAAGATAGTATCAATGACACTC AGTACAAACTTTAAAGTATGTGTCGGCGTCTTAATGTTTAAGATAGTATCAATGACACTC *********************************	
NC_007025 DQ010921 AY994055 DQ848678 EU186072	GTAGGGCCTATGCTTATAGCATA <u>TGGTTACTACATTGATGGCATTG</u> TTACAATAACTGTC GTAGGGCCTATGCTTATAGCATATGGTTACTACATTGATGGCATTGTTACAATAACTGTC GTAGGGCCTATGCTTATAGCATATGGTTACTACATTGATGGCATTGTTACAATAACTGTC GTAGGACCTATGCTTATAGCATTTGGTTACTACACAGATGGCATTGTGACAATAACTGTC ATAGGACCTATGCTTATAGCATTT <u>GGTTACTATATAGATGGAATTG</u> TGACAACAACCGTC .****.*******************************	- FIPn_T2F - FIPn_T1F
NC_007025 DQ010921 AY994055 DQ848678 EU186072	TTAGCTTTAAGATTTCTCTACTTAGCATACTTTTGGTATGTTAATAGTAGGTCCGAATTT TTAGCTTTAAGATTTCTCTACTTAGCATACTTTTGGTATGTTAATAGTAGGTCCGAATTT TTAGCTTTAAGATTTTTCTACTTAGCATACTTTTGGTATGTTAATAGTAGGTCCGAATTT CTAGCTTTAAGATTCATTTACTTAGCATACTTTTGGTATGTTAATAGTAGGTTTGAATTC TTAGCTTTAAGATTCGTTTACTTAGCATACTTTTGGTATGTTAATAGTAAGTTTGAATTC .***********************************	
NC_007025 DQ010921 AY994055 DQ848678 EU186072	ATTTTATACAATACAACGACACTCATGT TTGTACATGGCAGAGCTGC ACCGTTTATGAGA ATTTTATACAATACAACGACACTCATGTTTGTACATGGCAGAGCTGCACCGTTTATGAGA ATTTTATACAATACA	- FIPn_T2R - FIPn_T1R
NC_007025 DQ010921 AY994055 DQ848678 EU186072	AGTTCTCACAGCTCTATTTATGTCACATTGTATGGTGGCATAAATTATATGTTTGTGAAT AGTTCTCACAGCTCTATTTATGTCACATTGTATGGTGGCATAAATTATATGTTTGTGAAT AGTTCTCACAGCTCTATTTATGTCACATTGTATGGTGGCATAAATTATATGTTTGTGAAT AGTTCTCACGGTTCTATTTATGTCACATTATATGGCGGCATAAATAGTTCTCACGGCCCTATTTATGTCACATTATATGGAGGCATAAATTACATGTTCGTGAAT *********	
NC_007025 DQ010921 AY994055 DQ848678 EU186072	GACCTCACGTTGCATTTTGTAGACCCTATGCTTGTAAGAATAGCAATACGTGGCTTAGCT GACCTCACGTTGCATTTTGTAGACCCCTATGCTTGTAAGAATAGCAATACGTGGCTTAGCT GACCTCACGTTGCATTTTGTAGACCCCTATGCTTGTAAGAATAGCAATACGTGGCCTAGCT TATGTTGCATTTTGTAGACCCCTATGCTTGTAGGCATAGCTATACGTGGCCTAGTT GATCTTACGTTGCATTTTGTAGACCCCTATGCTTGTAGGCATAGCTATACGTGGCCTAGTC *.***********************************	
NC_007025 DQ010921 AY994055 DQ848678 EU186072	CATGCTGATCTAACTGTTTTTAGAGCAGTTGAACTTCTCAATGGTGATTTTATATATGTA CATGCTGATCTAACTGTTTTTAGAGCAGTTGAACTTCTCAATGGTGATTTTATATATGTA CATGCTGATCTAACTGTTTTTAGAGCAGTTGAACTTCTCAATGGTGATTTTATATATGTA CGTGCTGACCTAACAGTTGTTAGAGCAGTTGAACTTCTCAATGGTGATTTTATTTA	
NC_007025 DQ010921 AY994055 DQ848678 EU186072	TTTTCACAGGAGCCCGTAGCCGGTGTTTACAATGCAGCCTCTTCTCAGGCGGTTCTAAAC TTTTCACAGGAGCCCGTAGCCGGTGTTTACAATGCAGCCTCTTCTCAGGCGGTTCTAAAC TTTTCACAGGAGCCCGTAGCCGGTGTTTACAATGCAGCCTCTTCTCAGGCGGTTCTAAAC CTTTCACAGGAGGCCGTCGTAGGAGTTTACAATGCAGCCTTTTCTCATGCGGTTATAAAC TTTTCACAGGAGGCCGTCGTAGGAGTTTACAATGCAGCCTTTTCTCAGGCGGTTATAAAC	

NC_007025	GAAATTGACTTAAAAGAAGAAGAAGAAGAAGACCATAACTATGACGTTCCC TAG GGCATTTAC -	Stopcodon
DQ010921	GAAATTGACTTAAAAGAAGAAGAAGAAGACCATAACTATGACGTTCCCTAGGGCATTTAC	ORF 3c
AY994055	GAAATTGACTTAAAAGAAGAAGAAGAAGAAGACCATAACTATGACGTTCCCTAGGGCATTTAC	
DQ848678	GAAATTGATTTAAAAGAAGAAGAATCGCATGTCTATGGTGTTTCCTAGGGCATTTAC	
EU186072	GAAATTGATTTGAAAGAAGAAGAAGAGCGTGTCTATGATGTTTCCTAGGGCATTTAC	
	*******.**.****************************	
NC_007025	TATCATAGATGACCATGGCATGGTTGTTAGCGTCTT $\underline{CTTCTGGCTCCTGTTGATAA}$ TTAT –	FIP2.1R
DQ010921	TATCATAGATGACCATGGCATGGTTGTTAGCGTCTTCTTCTGGCTCCTGTTGATAATTAT	
AY994055	TATCATAGATGACCATGGCATGGTTGTTAGCGTCTTCTTCTGGCTCCTGTTGATAATTAT	
DQ848678	CATCATAGACGACCATGGTATGGTTGTTAGCGCCTTCTTTTGGCTCCTGTTGATAATTAC	
EU186072	CATCATAGATGACCATGGCATGGTTGTGAGCGTCTTCTTCTGGCTCCTGTTGATAATTAT	
	·****** ·******* ·***** ·**** ·**** ·**** ·******	

Abb. 7 Multipler Sequenzvergleich mit ClustalW

Nach dem 3c-Gen zeigte sich die Sequenz zwischen den unterschiedlichen Stämmen und Serotypen deutlich besser konserviert, so dass ein einzelner, für beide Serotypen passender Reverse Primer (FIP2.1R) gewählt werden konnte (Abbildung 7).

Die Primer wurden von der Firma MWG-Biotech, Ebersberg, hergestellt. Das Funktionieren der Primer bei optimalen Bedingungen wurde mit Hilfe bereits isolierter feliner Coronavirus-RNA (FCoV 1 und 2) aus dem Institut für Virologie der Justus-Liebig-Universität Gießen getestet (siehe 4.2).

3.7.1 Semi-nested PCR

Es stellte sich heraus, dass bei dem größten Teil der Proben nach einmaliger PCR mit den Primern FIP1.1F beziehungsweise FIP2.1F und FIP2.1R nicht ausreichend DNA für weitere Untersuchungen amplifiziert werden konnte. Aus diesem Grund wurde das PCR-Produkt aus der ersten PCR erneut amplifiziert. Hierfür wurden die beiden Forward und der Reverse Primer aus der ersten PCR mit jeweils einem weiteren, innerhalb des Gens liegenden Primer kombiniert (semi-nested PCR). Das Resultat waren zwei überlappende Sequenzen, wobei eine die erste, die andere die zweite Hälfte von ORF 3c abdeckte (Abbildung 8).

Abb. 8 Schematische Darstellung der semi-nested PCR von ORF 3c

Das Ziel dieser Methode war eine stärkere Amplifikation der Sequenz, wenn nur sehr wenig Ausgangsmaterial vorlag. Die genauen Positionen der nested Primer sind in Abbildung 7 dargestellt. Da wiederum geringfügige Sequenzunterschiede zwischen bekannten Typ I- und Typ II-Stämmen zu verzeichnen waren, wurden für beide Richtungen je zwei verschiedene nested Primer hergestellt (FIPn_T1F bzw. FIPn_T2F und FIPn_T1R bzw. FIPn_T2R). Eine Zusammenstellung aller verwendeten Primer zeigt Tabelle 5.

Um den störenden Einfluss von Mastermixbestandteilen aus der ersten PCR möglichst gering zu halten, wurden die PCR-Produkte vor der Durchführung der semi-nested PCR in zwei Schritten mit sterilem Wasser verdünnt und 1 μ l der hergestellten 1:100-Verdünnung als Template eingesetzt. Für die Negativkontrolle wurde stattdessen 1 μ l steriles Wasser eingesetzt. Pro Ansatz wurde 1 μ l Probe mit 29 μ l Mastermix vermengt. Das Pipettierschema für den Mastermix ist in Tabelle 4 dargestellt.

Komponente	Konzentration	Hersteller	Eingesetztes
			Volumen ¹
Steriles Wasser	-	Roth	24,6 µl
Puffer (MgCl ₂ -haltig)	10fach konzentriert	NatuTec	3,1 µl
Forward Primer	10 µM	MWG-Biotech	0,6 µl
Reverse Primer	10 µM	MWG-Biotech	0,6 µl
dNTP-Mix	10 mM pro dNTP	Fermentas	0,6 µl
Polymerase	5 U/µl	NatuTec	0,2 µl

Tabelle 4 Zusammensetzung des Mastermix

¹ Pro Einzelprobe

Analog der ersten PCR wurde im Falle von 3 oder 4 Primern die Wassermenge um 0,6 μ l beziehungsweise 1,2 μ l reduziert und stattdessen dieselbe Menge an zusätzlichem Primer eingesetzt.

Primername	Primersequenz	T _m	Position	FCoV-Stamm	Produkt
FIP1.1F	accttttgcagtcagattgc	55,3 °C	25065	FIPV Black	840 bp
FIP2.1F	aaacacacaagacccaaagc	55,3 °C	24917	FIPV 79-1146	884 bp
FIP2.1R	ttatcaacaggagccagaag	55,3 °C	25800/	FIPV 79-1146/	884 bp/
			25904	FIPV Black	840 bp
FIPn_T1F	tggttactatatagatggaattg	53,5 °C	25395	FIPV Black	510 bp
FIPn_T2F	tggttactacattgatggcattg	57,1 °C	25288	FIPV 79-1146	513 bp
FIPn_T1R	gcagctctgtcatgtacaaa	55,3 °C	25538	FIPV Black	474 bp
FIPn_T2R	gcagctctgccatgtacaaa	57,3 °C	25431	FIPV 79-1146	515 bp

Tabelle 5 Zur Amplifikation von ORF 3c verwendete Primer

 $T_m = Schmelztemperatur$

3.8 Amplifikation einer Sequenz aus dem GAPDH-Gen der Katze zur Kontrolle der RNA-Isolierung sowie der reversen Transkription

Zur Überprüfung der Extraktion von RNA aus dem homogenisierten Zellmaterial und der anschließenden Umschreibung in cDNA wurde neben der coronaviruspezifischen PCR eine Amplifikation von Sequenzen aus dem GAPDH-Gen der Katze durchgeführt. GAPDH (Glycerinaldehyd-3-phosphat-Dehydrogenase) ist ein Enzym der Glykolyse, welches in fast allen Geweben in größerer Menge vorkommt, da es für die Aufrechterhaltung der Zellfunktion essentiell ist. Es wird kontinuierlich gebildet, so dass ausreichende Mengen an GAPDH-mRNA im Zytoplasma vorliegen. Das GAPDH-Gen zählt daher zu den sogenannten "housekeeping genes". Die Primer wurden mit Hilfe der bei GenBank[®] veröffentlichten Sequenz des felinen GAPDH-Gens (acc. no.: DQ403061) herausgesucht. Dabei wurden zwei Primerpaare festgelegt: Eines mit einem Produkt von 500 Basenpaaren, das andere mit einem Produkt von 840 Basenpaaren Länge.

Primername	Primersequenz	T _m	Position	Produkt
			(DQ 403061)	
GAPDH_cat.86F	gcaaattccacggcacagtcaag	62,4 °C	86	500 bp
GAPDH_cat.586R	agetteccatteagetetgggat	62,4 °C	586	500 bp
GAPDH_cat.155F	gcaaattccacggcacagtcaag	62,4 °C	155	840 bp
GAPDH_cat.995R	ttggaggccatgtgggccat	61,4 °C	995	840 bp

Tabelle 6 Zur Amplifikation von GAPDH verwendete Primer

 $T_m = Schmelztemperatur$

3.9 Amplifikation des Genomabschnitts ORF 7b

Aufgrund der bestehenden Hypothese, dass auch das Nichtstrukturproteingen 7b an der Virulenz des FIPV beteiligt sein soll und mit ORF 3c in Wechselwirkung stehen könnte (Vennema et al., 1998), wurde mittels PCR zusätzlich eine Amplifikation dieses Genomabschnitts durchgeführt. Die gewählten Primer (FIP7bF und FIP7bR) binden an gut konservierte Positionen, an denen zwischen Typ I- und Typ II-Stämmen keine Basenunterschiede vorliegen. Eine Übersicht über das 7b-Gen und die beiden Primer gibt Abbildung 9.

NC_007025 DQ010921 AY994055 EU186072 DQ848678	CAGTCAGTAATGTTTTAGGTGTGCCTGACAGTAGTCTGCGTGTAAATTGTTTGCAGCTTT CAGTCAGTAATGTTTTAGGTGTGCCTGACAGTAGTCTGCGTGTAAATTGTTTGCAGCTTT CAGTCAGTAATGTTTTAGGTGTGCCTGACAGTAGTCTGCGTGTAAATTGTTTGCAGCTTT CAGTCAGTAATGTTTTA GGTGTGCCTGACAGTAGTCTGCGTGTAAATTGTTTGCAACTTT CAGTCAGTAATGTTCTAGGTGTGCCTGACAGTAGTCTGCGTGTAAATTGTTTGCAACTTT ********************************	- FIP7bF
NC_007025	TGAAACCAGACTGCCTTGATTTTAATATCTTACATAAAGTTTTAGCAGAAACCAGGTTAC	
DQ010921	TGAAACCAGACTGCCTTGATTTTAATATCTTACATAAAGTTTTAGCAGAAACCAGGTTAC	
AY994055	TGAAACCAGACTGCCTTGATTTTAATATCTTACATAAAGTTTTAGCAGAAACCAGGTTAC	
EU186072	TGAAACCAGACTGTCTTGATTTTAACATCCTACATAAAGTTTTAGCAGAAATCAGATTAC	
DQ848678	**************************************	
NC_007025	TAGTAGTAGTACTGCGAGTGATCTTTCTAGTTCTTCTAGGGTTTTTCCTGCTATACATTGT	
DQ010921	TAGTAGTAGTACTGCGAGTGATCTTTCTAGTTCTTCTAGGGTTTTCCTGCTATACATTGT	
AY994055	TAGTAGTAGTACTGCGAGTGATCTTTCTAGTTCTTCTAGGGTTTTCCTGCTATACATTGT	
EU186072		
DQ848678		
	· · · · · · · · · · · · · · · · · · ·	
NC 007025	ТСССТССАТТАТТТААСАТСАТСАТСТАТСТАТСТСТСТСТСТСТСТАТСТТТТТСССТААТ	- Startcodon
DO010921	ͲϤϤϤͲϤϫͷϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫϫ	ORF 7b
AY994055	TGGGTGCATTATTTTAACATCATGATTGTTGTTGTAATCCTTGTGTGTG	
EU186072	TAGGTGCATTATTTTAACATCATGATTGTTGTACTCCTTGTGTGTG	
DQ848678	TAGGTGCATTATTTTAACATCATGATTGTTGTACTCCTTGTGTGTATTTTCTTGGCTAAT	
	* *************************************	
NC_007025	GGAATTAAAGCTACTGCTGTGCAAAATGACCTTCATGAACATCCCGTTCTTACCTGGGAT	
DQ010921	GGAATTAAAGCTACTGCTGTGCAAAATGACCTTCATGAACATCCCGTTCTTACCTGGGAT	
AY994055	GGAATTAAAGCTACTGCTGTGCAAAATGACCTTCATGAACATCCCGTTCTTACCTGGGAT	
EU186072	GGAATTAAAGCTACCACTGTGCAACCTGACACCCATGAACATCCAGTCCTCACCTGGGAC	
DQ848678	GGAATTAAAGCTACCATTGTGCAACATGACCTTCATGAACATCCAGTCCTAACTTGGGAA	
NC_007025	TTATTACAGCATTTCATAGGACATACCCTCTACATTACAACACACTAGGTCTTAGCACTA	
DQ010921	TTATTACAGCATTTCATAGGACATACCCTCTACATTACAACACACTAGGTCTTAGCACTA	
AY994055	TTATTACAGCATTTCATAGGACATACCCTCTACATTACAACACCAGGTCTTAGCACTA	
EU186072	TTGTTGTAACATTTCATAGGACACACTCTTTACATTACA	
DQ848678	CTTCTTCAACATTTCATAGGACACACTCTTTACATTACA	
NC_007025	CCGCTTGGATCTCGTGTTGAGTGTGAGGGTATCGAAGGTTTCAATTGCACATGGCCTGGC	
DQ010921	CCGCTTGGATCTCGTGTTGAGTGTGAGGGTATCGAAGGTTTCAATTGCACATGGCCTGGC	
AY994055	CCGCTTGGATCTCGTGTTGAGTGTGAGGGTATCGAAGGTTTCAATTGCACATGGCCTGGC	
EU186072	CCGCTTGGATCTCGTGTTGAGTGTGAGAGTATCGAGGGTTTTAACTGCACATGGCCTGGC	
DQ848678	CCGCTTIGATCTCGTGTIGAGTGTGAGAGCGTIGAAGGTTTTAAGTGCACATGGCCTGGC ******************************	
NC_007025	TTTCAAGATCCTGCACATGATCATATTGATTTCTACTTTGATCTTTCTAATCCTTTCTAT	
DQ010921	TTTCAAGATCCTGCACATGATCATATTGATTTCTACTTTGATCTTTCTAATCCTTTCTAT	
AY994055	TTTCAAGATCCTGCACATGATCATATTGATTTCTACTTTGATCTTTCTAATCCTTTCTAT	
EU186072	TTTCAAAATCCTGCACATGATCATATTGATTTTGATTTTCGATCTTTCCAACCCTTTCTAT	
DQ848678	TTTCAAAATCCTGCACACGATCATATTGATTTCTATTTTGATCTTTCTAATTCTTATTCTAT ******.*****************************	

NC_007025 DQ010921 AY994055 EU186072 DQ848678	TCATTTGTAGATAATTTTTATATTGTAAGTGAGGGAAATCAAAGAATCAATC	
NC_007025 DQ010921	GTTGGTGCTGTGCCAAAACAAAAGAGATTAAATGTTGGTTG	
AY994055	GTTGGTGCTGTGCCAAAACAAAAGAGATTAAATGTTGGTTG	
EU186072	GTTGGTGCTGTGCCAAAACAAAAGAGATTAAATGTTGGTTG	
DQ848678	GITGGIGCIGIGCCAAAACAAAAGAGATTAAATGITGGIIGCCATACATCATIIGCAGTC ************************************	
NC_007025	GATCTTCCCTTTGGGATTCAGATATACCATGACAGGGATTTTCAACACCCTGTTGATGGC	
DQ010921	GATCTTCCCTTTGGGATTCAGATATACCATGACAGGGATTTTCAACACCCTGTTGATGGC	
AY994055	GATCTTCCATTTGGGATTCAGATATACCATGACAGGGATTTTCAACACCCTGTTGATGGC	
EU186072	GACCTTCCATTTGGCACTCAGATATACCATGACAGGGATTTTTCAACACCCTGCTAGTGGT	
DQ848678	GACCTTCCATTTGGAACTCAGATATACCATGATAGTGATTTTCTAAACCCTGTTATTGGT **.*****.*************************	
NC_007025	AGACATCTAGATTGTACTCACAGAGTGTACTTTGTGAAGTACTGTCCACATAACCTGCAT	
DQ010921	AGACATCTAGATTGTACTCACAGAGTGTACTTTGTGAAGTACTGTCCACATAACCTGCAT	
AY994055	AGACATCTAGATTGTACTCACAGAGTGTACTTTGTGAAGTACTGTCCACATAACCTGCAT	
EU186072		
DQ848678	AGGCATCTAGAGIGIGCICACAAAACCTATTIGIGAAGIATIGICCACATAACCTGCAT **.********.***.*********************	
NC_007025	GGTTATTGCTTTAATGAGAGGCTGAAAGTTTATGACTTGAAGCAATTCAGAAGCAAGAAG	
DQ010921		
A1994055		
DO848678	CCTTATIGCTITATIGACACCATCA A A CTTTATCA CTTCA ACCTCACACCACAACCAAC	
2010070	***************************************	
220 005005		
NC_007025	GTCTTCGACAAAATCAACCAACATCATAAAACTGAGTTA JI'AA GGCAACCCGATGTCTAAA	- Stopcodon
DQ010921		ORF 7D
A1994055		
DO848678	GTCTICGACAAACICAACCAACAICGIAAAACIGAG IAAGGCAACCCGAIGIIIAAA	
DQ010070	****	
NC_007025	ACTTGTCTTTCCGAGGAATTACGGGTCATCGCGCTGCCTACTCTTGTACAGAATGGT AAG	- FIP7bR
DQ010921	ACTTGTCTTTCCGAGGAATTACGGGTCATCGCGCTGCCTACTCTTGTACAGAATGGTAAG	
AY994055	ACTGGTCTTTCCGAGGAATTACGGGTCATCGCGCTGCCTACTCTTGTACAGAATGGTAAG	
EU186072		
DQ848678	*** ** ***** *************************	
NC_007025	CACGTGTAATAGGAGGTACAAGCA	
DQ010921	CACGTGTAATAGGAGGTACAAGCAACCCTATTGCATATTAGGAAGTTTAGATTTGATTTG	
AY994055	CACGTGTAATAGGAGGTACAAGCAACCCTATTGCATATTAGGAAGTTTAGATTTGATTTG	
EU186072	CACGTGTAATAGGAGGTACAAGCA	
DQ848678	CACGTGTAATAGGAGGTACAAGCAACCCTATTGCATATTAGGAAGTTTAGATTTGATTTG *************	

Abb. 9 Multipler Sequenzvergleich mit ClustalW

Die Eigenschaften der beiden Primer sind in Tabelle 7 zusammengefasst:

Primername	Primersequenz	T _m	Position	FCoV-Stamm	Produkt
FIP7bF	ggtgtgcctgacagtagtctgcg	66,0 °C	28153	FIPV Black	904 bp
FIP7bR	tgcttgtacctcctattacacgtgctt	63,4 °C	29056	FIPV Black	904 bp

Tabelle 7 Zur Amplifikation von ORF 7b verwendete Primer

 $T_m =$ Schmelztemperatur

Als Proben-DNA wurden jeweils 3 μ l der wie unter 3.6 hergestellten cDNA eingesetzt. In der Negativkontrolle kamen stattdessen 3 μ l steriles Wasser zum Einsatz. Das Pipettierschema für den Mastermix entspricht dem in Tabelle 3 dargestellten. Da zur Amplifikation von ORF 7b anstelle 5 nur 3 μ l Proben-DNA zum Einsatz kamen, wurden als Abweichung zu Tabelle 3 nicht 20,5 μ l, sondern 22,5 μ l steriles Wasser pipettiert.

3.10 Ergebniskontrolle mittels Agarosegelelektrophorese

Die Visualisierung der PCR-Produkte und damit der Erfolg der Amplifikation wurde mittels Horizontalgelelektrophorese festgestellt. Hierfür wurden 2 %ige Agarosegele unter Zugabe von Ethidiumbromid (Roth, Karlsruhe) oder alternativ Midori Green (Nippon Genetics Europe, Düren) hergestellt. Je nach Größe des herzustellenden Gels wurden 0,6 g bis 5,0 g SeaKem® LE Agarose (Biozym, Hess. Oldendorf) in einem Glaszylinder abgewogen und mit dem der Konzentration und der Gelgröße entsprechenden Volumen 0,5x TBE-Puffer vermengt. Eine Übersicht über die eingesetzten Mengen findet sich in Tabelle 8. Das Agarose-Puffer-Gemisch wurde auf einem heizbaren Magnetrührer bei 200 °C und circa 400 U/min erhitzt und die Agarose in dem Puffer vollständig gelöst. Nach Abkühlen auf circa 60 °C wurde Ethidiumbromid beziehungsweise Midori Green (eingesetzte Volumina siehe Tabelle 8) dazu pipettiert. Diese beiden Stoffe interagieren mit Nukleinsäuren, ändern dadurch ihr Absorptionsspektrum und fluoreszieren dann im ultravioletten Licht. Im Gegensatz zu Ethidiumbromid wird Midori Green als nicht genotoxisch eingestuft und lässt damit ein ungefährlicheres Arbeiten im Labor zu. Das flüssige Gel wurde in eine an beiden Enden verschlossene und mit einem Kamm zur Herstellung der Geltaschen versehene Gelbrücke gegossen. Nach dem Erkalten und Festwerden des Gels wurde der Kamm gezogen, die Gelbrücke in einer Gelkammer positioniert und vollständig mit gekühltem 0,5x TBE-Puffer (= Laufpuffer) überschichtet. Jeweils 10 µl des PCR-Produkts wurden mit je 2 µl Loading Dye Orange 6x (Fermentas, St. Leon-Rot) vermengt und die Geltaschen damit beladen. Bei dem Loading Dye handelt es sich um den sogenannten Ladepuffer, der zum einen dazu dient, den in Wasser gelösten PCR-Produkten eine höhere Dichte zu verleihen und so das Absinken der Proben in die Geltaschen zu ermöglichen. Zum anderen enthält der Ladepuffer Farbstoffe, die die Laufgeschwindigkeit des Gels anzeigen. Im Falle des hier eingesetzten Ladepuffers sind die Farbstoffe Orange G sowie Xylene cyanol FF enthalten. Während erster Farbstoff mit kurzen DNA-Fragmenten im Gel mitwandert, läuft Xylene cyanol FF sehr viel langsamer mit Fragmenten in einer Größenordnung von \geq 1000 bp Länge.

Zusätzlich zu den mit Ladepuffer versehenen Proben wurden in die erste Geltasche und bei einer großen Probenanzahl auch in die letzte 5 µl eines Längenstandards (O'GeneRulerTM 50 bp DNA ladder beziehungsweise pUC Mix Marker 8, Fermentas, St. Leon-Rot) zum Vergleich mit den entstehenden Banden pipettiert. Die Elektrophoreseläufe erfolgten bei einer Spannung von 4,5 Volt/cm und einer maximalen Stromstärke von 70 mA für eine Zeit von 2 bis 3 Stunden (Powersupply PPS 200-1D, MWG-Biotech, Ebersberg). Die DNA wurde mit Hilfe eines UV-Transilluminators (Bachofer, Reutlingen) bei 254 nm sichtbar gemacht. Das Gel wurde mit einem Computer-Geldokumentationssystem (Kodak Digital Science 1D) fotografiert und die Bilddateien gespeichert.

Agarose (g)	Puffermenge 0,5x TBE (ml)	Ethidiumbromid/Midori Green (1:10) (µl)	Kammer- größe
0,6	30	3,3 / 1,0	(cm ⁻) 56
1,6	80	6,6 / 2,6	168
5,0	250	20,0 / 8,4	500

 Tabelle 8
 Zusammensetzung eines 2
 %igen Agarosegels

3.11 DNA-Sequenzierung und Auswertung der Ergebnisse

Die DNA-Sequenzierung wurde durch die Firma GATC Biotech in Konstanz durchgeführt. Die für die Sequenzierung vorgesehenen PCR-Produkte wurden aufgereinigt durch Inkubation im Multi Cycler PTC 200 (Biozym, Hess. Oldendorf) mit Exonuclease I (Fermentas, St. Leon-Rot) und Shrimp Alkaline Phosphatase (Fermentas, St. Leon-Rot). Die Exonuclease spaltet einzelsträngige DNA und entfernt so für die Sequenzierung störende Primer im Probengemisch. Einzeln vorliegende Desoxyribonukleotide werden durch die Alkaline Phosphatase abgebaut. Das Temperatur-Zeit-Protokoll für die Aufreinigung ist in Tabelle 9 dargestellt. Als Primer wurden für die Sequenzierung der ORF 3c–Fragmente FIP1.1F für die erste Hälfte und FIP2.1R für die zweite Hälfte des Gens verwendet. Um die mit dem Reverse Primer FIP2.1R erhaltenen Sequenzen in gleicher Orientierung wie diejenigen mit FIP1.1F zu bekommen, mussten die Sequenzen revers und komplementär umgeschrieben werden. Das wurde mit Hilfe des webbasierten Programms Reverse Complement[®] (www.bioinformatics.org) umgesetzt. Für die Sequenzierung von ORF 7b fungierte der Forward Primer FIP7bF. Die zum überwiegenden Teil nur in eine Richtung durchgeführte Sequenzierung wurde dadurch gerechtfertigt, dass von einer Katze feline Coronavirus-RNA aus je 11 verschiedenen Geweben untersucht wurde. Gab es innerhalb dieser 11 Gewebe keine Sequenzunterschiede, wurde die erhaltene Basenabfolge dadurch als verifiziert angesehen. Stellten sich zwischen den Sequenzen aus verschiedenen Organen Unterschiede heraus, wurde eine erneute semi-nested PCR durchgeführt und die Sequenzierung wiederholt.

Die Computerauswertung der Sequenzen erfolgte mit den im Internet frei zugänglichen Programmen BLAST[®] (NCBI, Bethesda, USA), ClustalW (EMBL-EBI, Cambridge, Großbritannien), ExPASy Translate Tool (Swiss Institute of Bioinformatics, Schweiz) sowie der frei erhältlichen Software Bioedit (Ibis Biosciences, Carlsbad, USA).

Bei den mit ClustalW durchgeführten Sequenzvergleichen sind identische Basen jeweils mit einem Sternchen gekennzeichnet. Treten Unterschiede in der Sequenz auf, befindet sich anstelle des Sternchens eine Lücke mit einem Punkt.

Reagenz	Hersteller	Einzusetzende Menge pro 20 µl PCR-Produkt	Temperatur, Zeit
Exonuclease I	Fermentas	1,4 µl	1. 15 min bei 37 °C inkubieren
Shrimp Alkaline Phosphatase	Fermentas	2,8 µl	2. 15 min auf 85 °C erhitzen

Tabelle 9 Protokoll für die Aufreinigung von PCR-Produkten vor der Sequenzierung

3.12 Statistische Analyse

Bei der Auswertung der Aminosäuresequenzen wurde die Häufigkeit des Auftretens von Stopcodons innerhalb von 3c bei FIPV und FECV verglichen. Als statistische Grundlage wurde hierfür der exakte Test nach Fisher mittels einer Vierfelder-Tafel durchgeführt. Die Berechnung erfolgte mit Hilfe des webbasierten Programms "Fisher's exact test" (http://www.langsrud.com/fisher.htm [Stand: 20.11.11]). Als Signifikanzniveau wurde 0,05 gewählt.

4 Ergebnisse

4.1 Untersuchung der "Referenzsequenzen"

Zur Verifizierung der Herkunft der isolierten RNA aus felinen Coronaviren wurden die erhaltenen Sequenzen mit denen veröffentlichter FCoV-Stämme verglichen. Außerdem waren die Vergleichssequenzen Anhaltspunkt für das Auffinden von Mutationen. Um zunächst mögliche Unterschiede im 3c-Gen zwischen Serotyp I- und -II-Stämmen sowie zwischen enteralen Corona- und FIP-Viren festzustellen, wurde jeweils ein Vertreter jeder Gruppe als Referenz ausgewählt und mit den anderen beiden verglichen. Soweit nicht anders erwähnt, waren das FIPV79-1146 als Vertreter eines Typ II-FIPV (acc. no.: NC_007025), FIPV Black als Vertreter eines Typ I-FIPV (acc. no.: EU186072) und FECV-6 als Vertreter eines enteralen Coronavirus vom Typ I (nicht veröffentlichte Sequenz, erhalten vom Institut für Virologie, Justus-Liebig-Universität Gießen). Abbildung 10 zeigt den Vergleich zwischen den beiden FIP-Viren (Typ I und Typ II), zwischen dem Typ I-FIPV und dem FECV sowie zwischen dem Typ II-FIPV und dem FECV. Unterstrichen und fettgedruckt sind dabei das Start- (ATG) sowie das Stopcodon (TAG) für ORF 3c.

Als Grundlage für die Benennung der Positionen diente FECV-6, bei dem ORF 3c eine Länge von 714 Basen aufweist. Die ersten drei Positionen entsprechen dabei dem Startcodon ATG. Abschließend ist der Sequenzvergleich aller drei Vertreter dargestellt.

Bei ORF 7b dienten die beiden FIPV 79-1146 (Typ II) und Black (Typ I) als Vergleichsstämme. Im ersteren Fall wies das Gen eine Länge von 621 Basen, beim Black-Stamm infolge einer Deletion nur 618 Basen auf (siehe auch Abbildung 9, Kapitel 3.9). Serotypabhängige Sequenzunterschiede konnten nicht gefunden werden.

EU186072 NC_007025	ACCTTTTGCAGTCAGATTGCGTATCATAAATAATACAAAAACCTAAAACAGCAAGTACTAT ACCTTTTGAAACTAGACTTTGTATCATTAAACACACAAGACCCAAAGCATTAAGTGTTAC ***********************************
EU186072 NC_007025	AAAACGTAGAAGAAGGGTTGAAAAAAAAAAAAAAA
EU186072 NC_007025	TTAACACTCTAAGTTTTATAGTCACTAATCAACATGTGATTGTTAAT GGTGGACTTTTTCTTAACACTCTTAGTTTGTTAGTTAGTT
EU186072 NC_007025	AACACACCACATGTCGATTCTATAGTACAACAACAACATGTT AACACAGCAAATGTGCATACTACACAACAACATGAAAATGTTATAGTACAACAGCATTAGGTT ****** ****************************
EU186072 NC_007025	GTTAATGCTAGTATTAAAAGTTTTCATTTAGAGTTCAGCACCGCTGTTCTCTTTGTTTTA GTTAGTGCTAGAACACAAAATTATTACCCAGAGTTCAGCATCGCTGTACTCTTTGTCA ****.*****.****.**.**.************
EU186072 NC_007025	TTTTTAGCTTTGTACCGTAGTACAAACTTTAAAGTATGTGTCGGCGTCTTAATGTTTAAG TTTTTGGCTTTGTACCGTAGTACAAACTTTAAGACGTGTGTCGGCATCTTAATGTTTAAG *****.******************************
EU186072 NC_007025	ATAGTTTCAATGACACTTATAGGACCTATGCTTATAGCATTTGGTTACTATATAGATGGA ATTGTATCAATGACACTTGTAGGGCCTATGCTTATAGCATATGGTTACTACATTGATGGC **.**.******************************
EU186072 NC_007025	ATTGTGACAACAACCGTCTTAGCTTTAAGATTCGTTTACTTAGCATACTTTTGGTATGTT ATTGTTACAATAACTGTCTTAGCTTTAAGATTTCTCTACTTAGCATACTTTTGGTATGTT *****.****.***
EU186072 NC_007025	AATAGTAAATTTGAATTCATCTTATACAATACAACGACACTAATGTTTGTACATGACAGA AATAGTAGGTCCGAATTTATTTTAT
EU186072 NC_007025	GCTGCACCGTTTATGAGAAGTTCTCACGGCCCTATTTATGTCACATTATATGGAGGCATA GCTGCACCGTTTATGAGAAGTTCTCACAGCTCTATTTATGTCACATTGTATGGTGGCATA ***********************************
EU186072 NC_007025	AATTACATGTTCGTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTTGTAGGCATA AATTATATGTTTGTGAATGACCTCACGTTGCATTTTGTAGACCCTATGCTTGTAAGAATA *****.*****
EU186072 NC_007025	GCTATACGTGGCCTAGTCCGTGCTGACCTAACAGTTGTTAGAGCAGTTGAACTTCTCAAT GCAATACGTGGCTTAGCTCATGCTGATCTAACTGTTTTTAGAGCAGTTGAACTTCTCAAT **.*********
EU186072 NC_007025	GGTGTTTTTATTTTATATATTTTCACAGGAGGCCGTCGTAGGAGTTTACAATGCAGCCTTT GGTGATTTTATATATGTATTTTCACAGGAGCCCGTAGCCGGTGTTTACAATGCAGCCTCT ****.******.***.******************
EU186072 NC_007025	TCTCAGGCGGTTATAAACGAAATTGATTTGAAAGAAGAAGAAGAAGAGCGTGTCTATGAT TCTCAGGCGGTTCTAAACGAAATTGACTTAAAAGAAGAAGAAGAAGAAGAACAACTATGAC ************************************
EU186072 NC_007025	GTTTCC TAG GTTCCC TAG *** _ ****

Abb. 10a Sequenzvergleich von FIPV Typ I (EU186072) und FIPV Typ II (NC_007025)^1 $\,$

EU186072 FECV-6	ACCTTTTGCAGTCAGATTGCGTATCATAAATAATAATACAAAACCTAAAAACAGCAAGTACTAT ACCTTTTGCAGCCAGACTACGTATCATAAATAATACAAAACCTAAAAACAGCAAGTACTAT *********************************
EU186072 FECV-6	AAAACGTAGAAGAAGGGTTG AAAACGTAGAAAAAGAGTTGTTCCGGATTACAGAAGAATTGCCATTCTCAACGCATCGGA ******************
EU186072 FECV-6	TTAACACTCTAAGTTTTATAGTCACTAATCAACATGTG AAA ATG ATTGGCGGACTGTTTCTTAACACTCTAAGTTTTATAGTTACTAACATGTG **********************************
EU186072 FECV-6	ATTGTTAATAACACCACCATGTCGATTCTATAGTACAACAACAACATGTTGTTAATGCT ATTGTTAATAACACGCCACATGTCAATGCTATAGTACAACAACATCATGTTGTTAGTGCT ***************
EU186072 FECV-6	AGTATTAAAAGTTTTCATTTAGAGTTCAGCACCGCTGTTCTCTTTGTTTTATTTTAGCT AATATTAAAAGTACCCATTTAGAGTTCAGCATCGCTGTTCTCTTTGTTTTATTTTTAGCT *.**********
EU186072 FECV-6	TTGTACCGTAGTACAAACTTTAAAGTATGTGTCGGCGTCTTAATGTTTAAGATAGTTTCA TTGTACCGTAGTACAAACTTTAAAGTGTGTGTGTCGGTGTCTTAATGTTTAAGATAGTATCA *******
EU186072 FECV-6	ATGACACTTATAGGACCTATGCTTATAGCATTTGGTTACTATATAGATGGAATTGTGACA ATGACACTTATAGGACCTATGCTTATAGCGTTTGGTTACTACATAGATGGCATTGTGACA ***********************************
EU186072 FECV-6	ACAACCGTCTTAGCTTTAAGATTCGTTTACTTAGCATACTTTTGGTATGTTAATAGTAAA ATAACTGTCTTAGCTTTAAGATTCGTTTACTTGGCATACTTTTGGTATGTTAACAGTAGA *.***.******************************
EU186072 FECV-6	TTTGAATTCATCTTATACAATACAACGACACTAATGTTTGTACATGACAGAGCTGCACCG TTTGAATTCATCTTATACAATACA
EU186072 FECV-6	TTTATGAGAAGTTCTCACGGCCCTATTTATGTCACATTATATGGAGGCATAAATTACATG TTTATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATATGGAGGCATAAATTATATG ***************************
EU186072 FECV-6	TTCGTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTTGTAGGCATAGCTATACGT TTCGTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTTGTAGGCATAGCTATACGT ************************************
EU186072 FECV-6	GGCCTAGTCCGTGCTGACCTAACAGTTGTTAGAGCAGTTGAACTTCTCAATGGTGTTTTT GGCCTAGTTCGTGCTGACCTAACAGTTGTTAGAGCAGTTGAACTTCTCAATGGTGATTTT ********
EU186072 FECV-6	ATTTATATATTTTCACAGGAGGCCGTCGTAGGAGTTTACAATGCAGCCTTTTCTCAGGCG ATATATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAATGCAGCCTTTTCTCAGGCG **.********************************
EU186072 FECV-6	GTTATAAACGAAATTGATTTGAAAGAAGAAGAAGAAGAGCGTGTCTATGATGTTTCC TAG GTTATAAACGAAATTGATTTAAAAGAAGAAGAAGAACGTGTCTATGATGTTTCC TAG *******************

Abb. 10b Sequenzvergleich von FIPV Typ I (EU186072) und FECV Typ I (FECV-6)^1 $\,$

NC_007025 FECV-6	ATGATTGGTGGACTTTTTCTTAACACTCTTAGTTTTGTAATTGTTAGTAACCATGTTATT ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTATAGTTACTAATCAACATGTGATT ******** ******** *******
NC_007025 FECV-6	GTTAATAACACAGCAAATGTGCATACTACACAACATGAAAATGTTATAGTACAACAGCAT GTTAATAACACGCCACATGTCAATGCTATAGTACAACAACAT ***************
NC_007025 FECV-6	TAGGTTGTTAGTGCTAGAACACAAAATTATTACCCAGAGTTCAGCATCGCTGTACTCTTT CATGTTGTTAGTGCTAATATTAAAAGTACCCATTTAGAGTTCAGCATCGCTGTTCTCTTT .*.*****************
NC_007025 FECV-6	GTCATTTTTGGCTTTGTACCGTAGTACAAACTTTAAGACGTGTGTCGGCATCTTAATG GTTTTATTTTTAGCTTTGTACCGTAGTACAAACTTTAAAGTGTGTGT
NC_007025 FECV-6	TTTAAGATTGTATCAATGACACTTGTAGGGCCTATGCTTATAGCATATGGTTACTACATT TTTAAGATAGTATCAATGACACTTATAGGACCTATGCTTATAGCGTTTGGTTACTACATA ********.**
NC_007025 FECV-6	GATGGCATTGTTACAATAACTGTCTTAGCTTTAAGATTTCTCTACTTAGCATACTTTTGG GATGGCATTGTGACAATAACTGTCTTAGCTTTAAGATTCGTTTACTTGGCATACTTTTGG **********
NC_007025 FECV-6	TATGTTAATAGTAGGTCCGAATTTATTTTATACAATACA
NC_007025 FECV-6	GGCAGAGCTGCACCGTTTATGAGAAGTTCTCACAGCTCTATTTATGTCACATTGTATGGT GACAGAGCTGCACCGTTTATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATATGGA * * ********************************
NC_007025 FECV-6	GGCATAAATTATATGTTTGTGAATGACCTCACGTTGCATTTTGTAGACCCTATGCTTGTA GGCATAAATTATATGTTCGTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTTGTA ********
NC_007025 FECV-6	AGAATAGCAATACGTGGCTTAGCTCATGCTGATCTAACTGTTTTTAGAGCAGTTGAACTT GGCATAGCTATACGTGGCCTAGTTCGTGCTGACCTAACAGTTGTTAGAGCAGTTGAACTT .*.*****.**
NC_007025 FECV-6	CTCAATGGTGATTTTATATATGTATTTTCACAGGAGCCCGTAGCCGGTGTTTACAATGCA CTCAATGGTGATTTTATATATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAATGCA ************************
NC_007025 FECV-6	GCCTCTTCTCAGGCGGTTCTAAACGAAATTGACTTAAAAGAAGAAGAAGAAGAAGACCATAAC GCCTTTTCTCAGGCGGTTATAAACGAAATTGATTTAAAAGAAGAAGAAGAAACGTGTC ****.***************
NC_007025 FECV-6	TATGACGTTCCC TAG TATGATGTTTCC TAG *****.***.

Abb. 10c Sequenzvergleich von FIPV Typ II (NC_007025) und FECV Typ I (FECV-6)^1 $\,$

EU186072	ACCTTTTGCAGTCAGATTGCGTATCATAATAATAATAACAAAACCTAAAACAGCAAGTACTAT	60 60
NC_007025	ACCTITITGAAACCAGACTACGTATCATAAATAATAATAAAACCTAAAAACAGCAAAGTACTAT ACCTITITGAAACTAGACTITGTATCATTAAACACACAAGACCCAAAGCATTAAGTGTTAC ***********************************	60 60
ETT196070		00
FECV-6	AAAACGIAGAAGAAGGGIIGAGGAAGAAGAATTGCCATTCTCAACGCATCGGA	120
NC_007025	AAAACAAGTAAAGAGAGAGATTATAGAAAAATTGCCATTCTAAATTCCATGCG	111
EU186072	TTAACACTCTAAGTTTTATAGTCACTAATCAACATGTG	118
FECV-6	AAA ATG ATTGGCGGACTGTTTCTTAACACTCTAAGTTTTATAGTTACTAATCAACATGTG	180
NC_007025	AAA ATG ATTGGTGGACTTFTTCTTAACACTCTTAGTTTTGTAATTGTTAGTAACCATGTT **********************************	171
EU186072	ATTGTTAATAACACACCACATGTCGATTCTATAGTACAACAA	160
FECV-6	ATTGTTAATAACACGCCACATGTCAATGCTATAGTACAACAA	222
NC_007025	ATTGTTAATAACACAGCAAATGTGCATACTACACAACATGAAAATGTTATAGTACAACAG ********************************	231
EU186072	CAACATGTTGTTAATGCTAGTATTAAAAGTTTTCATTTAGAGTTCAGCACCGCTGTTCTC	220
FECV-6	CATCATGTTGTTAGTGCTAATATTAAAAGTACCCATTTAGAGTTCAGCATCGCTGTTCTC	282
NC_007025	CATTAGGTTGTTAGGGCTAGAACACAAAATTATTACCCAGAGTTCAGCATCGCTGTACTC ***.******************************	291
EU186072	TTTGTTTTATTTTTAGCTTTGTACCGTAGTACAAACTTTAAAGTATGTGTCGGCGTCTTA	280
FECV-6		342
NC_007025	**** *.******.************************	349
EU186072	ATGTTTAAGATAGTTTCAATGACACTTATAGGACCTATGCTTATAGCATTTGGTTACTAT	340
FECV-6	ATGTTTAAGATAGTATCAATGACACTTATAGGACCTATGCTTATAGCGTTTGGTTACTAC	402
NC_007025	ATGTTTAAGATTGTATCAATGACACTTGTAGGGCCTATGCTTATAGCATATGGTTACTAC ********************************	409
EU186072	ATAGATGGAATTGTGACAACAACCGTCTTAGCTTTAAGATTCGTTTACTTAGCATACTTT	400
FECV-6	ATAGATGGCATTGTGACAATAACTGTCTTAGCTTTAAGATTCGTTTACTTGGCATACTTT	462
NC_007025	**.****.******************************	409
EU186072	TGGTATGTTAATAGTAAATTTGAATTCATCTTATACAATACAACGACACTAATGTTTGTA	460
FECV-6	TGGTATGTTAACAGTAGATTTGAATTCATCTTATACAATACAACGACACTAATGTTTGTA	522
NC_007025	TGGTATGTTAATAGTAGGTCCGAATTTATTTATACAATACAACGACACTCATGTTTGTA ******************************	529
EU186072	CATGACAGAGCTGCACCGTTTATGAGAAGTTCTCACGGCCCTATTTATGTCACATTATAT	520
FECV-6	CATGACAGAGCTGCACCGTTTATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATAT	582
NC_007025	**** *********************************	209
EU186072	GGAGGCATAAATTACATGTTCGTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTT	580
FECV-6	GGAGGCATAAATTATATGTTCGTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTT	642
NC_007025	GGIGGCAIAAAIIAIAIGIIIGIGAAIGACCICACGIIGCAIIIIGIAGACCCIAIGCII ** *********************************	649
EU186072	GTAGGCATAGCTATACGTGGCCTAGTCCGTGCTGACCTAACAGTTGTTAGAGCAGTTGAA	640
FECV-6	GTAGGCATAGCTATACGTGGCCTAGTTCGTGCTGACCTAACAGTTGTTAGAGCAGTTGAA	702
NC_007025	GTAAGAATAGCAATACGTGGCTTAGCTCATGCTGATCTAACTGTTTTTAGAGCAGTTGAA ***.*	709
EU186072	CTTCTCAATGGTGTTTTTATTTATATATTTTCACAGGAGGCCGTCGTAGGAGTTTACAAT	700
FECV-6	CTTCTCAATGGTGATTTTATATATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAAT	762
NC_007025	CTTCTCAATGGTGATTTTATATATGTATTTTCACAGGAGCCCGTAGCCGGTGTTTACAAT *******************************	769
EU186072	GCAGCCTTTTCTCAGGCGGTTATAAACGAAATTGATTTGAAAGAAGAAGAAGAAGAAGA	757
FECV-6	GCAGCCTTTTCTCAGGCGGTTATAAACGAAATTGATTTAAAAGAAGAAGAAGAAGAA	819
NC_007025	GCAGCCTCTTTCTCAGGCGGTTCTAAACGAAATTGACTTAAAAGAAGAAGAAGAAGAAGACCAT ******* *****************************	829
EU186072	GTCTATGATGTTTCC TAG 775	
FECV-6	GTCTATGATGTTTCCTAG 837	
INC_007025	AACIAIGACGIICCC <u>TAG</u> 04/ ***** *** ****	

Abb. 10d Sequenzvergleich von FIPV Typ I (EU186072), FIPV Typ II (NC_007025) und FECV Typ I (FECV-6)¹

¹Identische Basen sind mit "*", Unterschiede mit "." gekennzeichnet.

Es fiel auf, dass zwischen den verschiedenen Coronavirusstämmen an mehreren Lokalisationen Unterschiede in der Sequenz von ORF 3c auftraten. Besonders deutlich war dies beim Vergleich von Vertretern unterschiedlicher Serotypen (Abbildungen 10a und c). Bei beiden Typ I-Stämmen bestand eine größere Sequenzhomologie, auch wenn es sich bei den beiden Viren einmal um ein enterales Coronavirus, zum anderen um ein FIP-Virus handelte (Abbildung 10b). Außerdem zeigte sich bei FIPV Black, wie bereits beschrieben, zwischen den Nichtstrukturproteingenen 3b und 3c eine Deletion von 62 Nukleotiden (Tekes et al., 2008; Vennema et al., 1998).

Weiterhin war bemerkenswert, dass das FIPV 79-1146 nach Position 72 eine 18 Basen lange Sequenz (GCAAATGTGCATACTACA) aufwies, die beim Typ I-Stamm nicht vorhanden war. Ähnliches fand sich nach Position 693, wo ebenfalls ausschließlich bei dem Typ II-Stamm drei zusätzliche Basen (GAC) zu verzeichnen waren. Auf der anderen Seite fehlten bei FIPV 79-1146 nach Position 181 zwei aufeinanderfolgende Thymidin-Basen, die bei beiden Typ I-Stämmen vorkamen. Die Gesamtlänge von ORF 3c betrug für FIPV Black 695 Basen, für FIPV 79-1146 733 Basen und für FECV-6 wie oben bereits erwähnt 714 Basen.

4.2 Überprüfung der Primer

Die Primer FIP1.1F, FIP2.1F und FIP2.1R zur Amplifikation von ORF 3c wurden bei unterschiedlichen Temperatur-Zeit-Bedingungen im Multi Cycler PTC 200 (Biozym, Hess. Oldendorf) getestet. Dabei wurden in der PCR beide Forward Primer in einem Ansatz zu gleichen Teilen eingesetzt. Als Test-DNA diente cDNA, die mittels reverser Transkription aus der felinen Coronavirus-RNA FCoV 1 und 2 (Institut für Virologie, Justus-Liebig-Universität Gießen) hergestellt wurde. Dabei erwies sich folgendes Schema als optimal:

- 1. Einmaliges Erhitzen der Proben auf 95 °C für 2 min
- 2. Denaturierungstemperatur von 94 °C für 30 sec
- 3. Temperatur zur Primerhybridisierung von 50 °C für 30 sec
- 4. Elongationstemperatur von 72 °C für 1 min
- 5. Endverlängerung bei einer Temperatur von 72 °C für 10 min
- 6. Dauerhaftes Kühlen der Proben bei 4 °C

Nach dem ersten Schritt wurden die Punkte 2. bis 4. in 35 Zyklen wiederholt. Die Amplifikate wurden wie unter 3.10 beschrieben elektrophoretisch untersucht. Es traten Banden bei circa 900 bp Länge bei beiden eingesetzten Proben auf. Wie gewünscht, blieb die Spur mit der Negativkontrolle ohne Bande. Das Gelbild ist in Abbildung 11 dargestellt.

Abb. 11 PCR mit Test-DNA

Zur Verifizierung der Primerspezifität wurden die nicht auf das Gel aufgebrachten 20 µl der beiden PCR-Produkte entsprechend dem Protokoll in Tabelle 9 (Kapitel 3.11) aufgereinigt und anschließend zur Sequenzierung (GATC Biotech, Konstanz) geschickt. Als Primer wurde der Reverse Primer FIP2.1R verwendet. Die Ergebnisse (revers und komplementär) im FASTA-Format zeigt Abbildung 12.

a) FCoV 1

b) FCoV 2

Abb. 12 Sequenzierungsergebnisse der Test-PCR

Die Sequenzen wurden mit den Referenzstämmen FIPV 79-1146 (acc. no.: NC_007025) und Black (acc. no.: EU186072) sowie dem felinen enteralen Coronavirus FECV-6 (Institut für Virologie, Justus-Liebig-Universität Gießen) verglichen (Abbildung 13):

EU186072 FECV-6 FCoV 1 NC_007025	TTAACACTCTAAGTTTTATAGTCACTAATCAACATGTG AAA ATG ATTGGCGGACTGTTTCTTAACACTCTAAGTTTTATAGTTACTAATCAACATGTG ATG ATTGGTGGACTTTTTCTTAACACTCTTAGTTTTGTAATTGTTAGTAACCATGTT AAA ATG ATTGGTGGACTTTTTCTTAACACTCTTAGTTTTGTAATTGTTAGTAACCATGTT **********************************
EU186072 FECV-6 FCoV 1 NC_007025	ATTGTTAATAACACACACCACATGTCGATTCTATAGTACAACAA ATTGTTAATAACACGGCCACATGTCAATGCTATAGTACAACAA ATTGTTAATAACACACGGCAAATGTGCATACTACACAACATGAAAATGTTATAGTACAACAG ATTGTTAATAACACAGGCAAATGTGCATACTACACAACAATGAAAATGTTATAGTACAACAG ********************************
EU186072 FECV-6 FCoV 1 NC_007025	CAACATGTTGTTAATGCTAGTATTAAAAGTTTTCATTTAGAGTTCAGCACCGCTGTTCTC CATCATGTTGTTAGTGCTAATATTAAAAGTACCCATTTAGAGTTCAGCATCGCTGTTCTC CATTAGGTTGTTAGTGCTAGAACACAAAATTATTACCCAGAGTTCAGCATCGCTGTACTC CATTAGGTTGTTAGTGCTAGAACACAAAATTATTACCCAGAGTTCAGCATCGCTGTACTC ** * . *
EU186072 FECV-6 FCoV 1 NC_007025	TTTGTTTTATTTTTAGCTTTGTACCGTAGTACAAACTTTAAAGTATGTGTCGGCGTCTTA TTTGTTTTATTTTTAGCTTTGTACCGTAGTACAAACTTTAAAGTGTGTGT
EU186072 FECV-6 FCoV 1 NC_007025	ATGTTTAAGATAGTTTCAATGACACTTATAGGACCTATGCTTATAGCATTTGGTTACTAT ATGTTTAAGATAGTATCAATGACACTTATAGGACCTATGCTTATAGCGTTTGGTTACTAC ATGTTTAAGATTGTATCAATGACACTTGTAGGGCCTATGCTTATAGCATATGGTTACTAC ATGTTTAAGATTGTATCAATGACACTTGTAGGGCCTATGCTTATAGCATATGGTTACTAC ********************************
EU186072 FECV-6 FCoV 1 NC_007025	ATAGATGGAATTGTGACAACAACCGTCTTAGCTTTAAGATTCGTTTACTTAGCATACTTT ATAGATGGCATTGTGACAATAACTGTCTTAGCTTTAAGATTCGTTTACTTGGCATACTTT ATTGATGGCATTGTTACAATAACTGTCTTAGCTTTAAGATTTTCTACTTAGCATACTTT ATTGATGGCATTGTTACAATAACTGTCTTAGCTTTAAGATTTCTCTACTTAGCATACTTT **.*****.*****
EU186072 FECV-6 FCoV 1 NC_007025	TGGTATGTTAATAGTAAATTTGAATTCATCTTATACAATACAACGACACTAATGTTTGTA TGGTATGTTAACAGTAGATTTGAATTCATCTTATACAATACAACGACACTAATGTTTGTA TGGTATGTTAATAGTAGGTCCGAATTTATTTTAT

EU186072	CATGACAGAGCTGCACCGTTTATGAGAAGTTCTCACGGCCCTATTTATGTCACATTATAT
FECV-6	CATGACAGAGCTGCACCGTTTATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATAT
FCoV 1	CATGGCAGAGCTGCACCGTTTATGAGAAGTTCTCACAGCTCTATTTATGTCACATTGTAT
NC 007025	CATGGCAGAGCTGCACCGTTTATGAGAAGTTCTCACAGCTCTATTTATGTCACATTGTAT
_	****.**********************************
EU186072	GGAGGCATAAATTACATGTTCGTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTT
FECV-6	GGAGGCATAAATTATATGTTCGTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTT
FCoV 1	GGTGGCATAAATTATATGTTTGTGAATGACCTCACGTTGCATTTTGTAGACCCTATGCTT
NC 007025	GGTGGCATAAATTATATGTTTGTGAATGACCTCACGTTGCATTTTGTAGACCCTATGCTT
	** *********** ***** ******************
EU186072	GTAGGCATAGCTATACGTGGCCTAGTCCGTGCTGACCTAACAGTTGTTAGAGCAGTTGAA
FECV-6	GTAGGCATAGCTATACGTGGCCTAGTTCGTGCTGACCTAACAGTTGTTAGAGCAGTTGAA
FCoV 1	GTAAGAATAGCAATACGTGGCTTAGCTCATGCTGATCTAACTGTTTTTAGAGCAGTTGAA
NC_007025	GTAAGAATAGCAATACGTGGCTTAGCTCATGCTGATCTAACTGTTTTTAGAGCAGTTGAA
	*** * ***** ***************************
EU186072	CTTCTCAATGGTGTTTTTATATATATATTTTCACAGGAGGCCGTCGTAGGAGTTTACAAT
FECV-6	CTTCTCAATGGTGATTTTATATATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAAT
FCoV 1	CTTCTCAATGGTGATTTTATATATGTATTTTCACAGGAGCCCGTAGCCGGTGTTTACAAT
NC_007025	CTTCTCAATGGTGATTTTATATATGTATTTTCACAGGAGCCCGTAGCCGGTGTTTACAAT

EU186072	GCAGCCTTTTCTCAGGCGGTTATAAACGAAATTGATTTGAAAGAAGAAGAAGAAGAAGA
FECV-6	GCAGCCTTTTCTCAGGCGGTTATAAACGAAATTGATTTAAAAGAAGAAGAAGAAGAA
FCoV 1	GCAGCCTCTTCTCAGGCGGTTCTAAACGAAATTGACTTAAAAGAAGAAGAAGAAGAAGACCAT
NC_007025	GCAGCCTCTTCTCAGGCGGTTCTAAACGAAATTGACTTAAAAGAAGAAGAAGAAGAAGACCAT
	****** ********************************
EU186072	GTCTATGATGTTTCC TAG
FECV-6	GTCTATGATGTTTCC TAG
FCoV 1	AACTATGACGTTCCC TAG
NC_007025	AACTATGACGTTCCC TAG
	· · * * * * * · * * · * * * * *

Abb. 13a Vergleich von FCoV 1 mit den Referenzsequenzen¹

EU186072 FECV-6 FCoV 2 NC_007025	TTAACACTCTAAGTTTTATAGTCACTAATCAACATGTG AAAATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTATAGTTACTAATCAACATGTG ATGATTGGTGGACTTTTTCTTAACACTCTTAGTTTTGTAATTGTTAGTAACCATGTT AAAATGATTGGTGGACTTTTTCTTAACACTCTTAGTTTTGTAATTGTTAGTAACCATGTT **********************************
EU186072 FECV-6 FCoV 2 NC_007025	ATTGTTAATAACACACCACATGTCGATTCTATAGTACAACAA ATTGTTAATAACACGCCACATGTCAATGCTATAGTACAACAA ATTGTTAATAACACGGCAAATGTGCATACTACACAACATGAGAATGTTATAGTACAACAG ATTGTTAATAACACAGCAAATGTGCATACTACACAACATGAAAATGTTATAGTACAACAG ********************************
EU186072 FECV-6 FCoV 2 NC_007025	CAACATGTTGTTAATGCTAGTATTAAAAGTTTTCATTTAGAGTTCAGCACCGCTGTTCTC CATCATGTTGTTAGTGCTAATATTAAAAGTACCCATTTAGAGTTCAGCATCGCTGTTCTC CATTAGGTTGTTAGTGCTAGAACACAAAATTATTACCCAGAGTTCAGCATCGCTGTACTC CATTAGGTTGTTAGTGCTAGAACACAAAATTATTACCCAGAGTTCAGCATCGCTGTACTC ** * . * * * * * * * . *
EU186072 FECV-6 FCOV 2 NC_007025	TTTGTTTTATTTTTAGCTTTGTACCGTAGTACAAACTTTAAAGTATGTGTCGGCGTCTTA TTTGTTTTATTTTTAGCTTTGTACCGTAGTACAAACTTTAAAGTGTGTGT
EU186072 FECV-6 FCOV 2 NC_007025	ATGTTTAAGATAGTTTCAATGACACTTATAGGACCTATGCTTATAGCATTTGGTTACTAT ATGTTTAAGATAGTATCAATGACACTTATAGGACCTATGCTTATAGCGTTTGGTTACTAC ATGTTTAAGATTGTATCAATGACACTTGTAGGGCCTATGCTTATAGCATATGGTTACTAC ATGTTTAAGATTGTATCAATGACACTTGTAGGGCCTATGCTTATAGCATATGGTTACTAC ********************************
EU186072 FECV-6 FCoV 2 NC_007025	ATAGATGGAATTGTGACAACAACCGTCTTAGCTTTAAGATTCGTTTACTTAGCATACTTT ATAGATGGCATTGTGACAATAACTGTCTTAGCTTTAAGATTCGTTTACTTGGCATACTTT ATTGATGGCATTGTTACAATAACTGTCTTAGCTTTAAGATTTTTCTACTTAGCATACTTT ATTGATGGCATTGTTACAATAACTGTCTTAGCTTTAAGATTTCTCTACTTAGCATACTTT **.*****.*****.****.****.**********
---	---
EU186072 FECV-6 FCoV 2 NC_007025	TGGTATGTTAATAGTAAATTTGAATTCATCTTATACAATACAACGACGACACTAATGTTTGTA TGGTATGTTAACAGTAGATTTGAATTCATCTTATACAATACAACGACACTAATGTTTGTA TGGTATGTTAATAGTAGGTCCGAATTTATTTTAT
EU186072 FECV-6 FCoV 2 NC_007025	CATGACAGAGCTGCACCGTTTATGAGAAGTTCTCACGGCCCTATTTATGTCACATTATAT CATGACAGAGCTGCACCGTTTATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATAT CATGGCAGAGCTGCACCGTTTATGAGAAGTTCTCACAGCTCTATTTATGTCACATTGTAT CATGGCAGAGCTGCACCGTTTATGAGAAGTTCTCACAGCTCTATTTATGTCACATTGTAT ****.
EU186072 FECV-6 FCoV 2 NC_007025	GGAGGCATAAATTACATGTTCGTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTT GGAGGCATAAATTATATGTTCGTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTT GGTGGCATAAATTATATGTTTGTGAATGACCTCACGTTGCATTTTGTAGACCCTATGCTT GGTGGCATAAATTATATGTTTGTGAATGACCTCACGTTGCATTTTGTAGACCCTATGCTT **.***********
EU186072 FECV-6 FCoV 2 NC_007025	GTAGGCATAGCTATACGTGGCCTAGTCCGTGCTGACCTAACAGTTGTTAGAGCAGTTGAA GTAGGCATAGCTATACGTGGCCTAGTTCGTGCTGACCTAACAGTTGTTAGAGCAGTTGAA GTAAGAATAGCAATACGTGGCTTAGCTCATGCTGATCTAACTGTTTTTAGAGCAGTTGAA GTAAGAATAGCAATACGTGGCTTAGCTCATGCTGATCTAACTGTTTTTAGAGCAGTTGAA ***.*.
EU186072 FECV-6 FCoV 2 NC_007025	CTTCTCAATGGTGTTTTTATTTATATATTTTCACAGGAGGCCGTCGTAGGAGTTTACAAT CTTCTCAATGGTGATTTTATATATATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAAT CTTCTCAATGGTGATTTTATATATGTATTTTCACAGGAGCCCGTAGCCGGTGTTTACAAT CTTCTCAATGGTGATTTTATATATGTATTTTCACAGGAGCCCGTAGCCGGTGTTTACAAT **************************
EU186072 FECV-6 FCoV 2 NC_007025	GCAGCCTTTTCTCAGGCGGTTATAAACGAAATTGATTTGAAAGAAGAAGAAGAAGAAGAA GCAGCCTTTTCTCAGGCGGTTATAAACGAAATTGATTTAAAAGAAGAAGAAGAAGAA GCAGCCTCTTCTCAGGCGGTTCTAAACGAAATTGACTTAAAAGAAGAAGAAGAAGAAGACCAT GCAGCCTCTTCTCAGGCGGTTCTAAACGAAATTGACTTAAAAGAAGAAGAAGAAGAAGACCAT *******
EU186072 FECV-6 FCoV 2 NC_007025	GTCTATGATGTTTCC TAG GTCTATGATGTTTCC TAG AACTATGACGTTCCC TAG AACTATGACGTTCCC TAG ******.***

Abb. 13b Vergleich von FCoV 2 mit den Referenzsequenzen¹

¹Identische Basen sind mit "*", Unterschiede mit "." gekennzeichnet.

Der Sequenzvergleich zeigt, dass mit den gewählten Primern spezifisch der Genomabschnitt ORF 3c amplifiziert wurde. Die Basenabfolge der beiden Testviren FCoV 1 und FCoV 2 stimmte fast vollständig mit der Sequenz des Typ II-Stammes FIPV 79-1146 (NC_007025) überein. Die darüber hinaus in der Untersuchung verwendeten Primer für die semi-nested PCR sowie zum Nachweis von ORF 7b und GAPDH wurden direkt bei den isolierten Katzengeweben eingesetzt.

4.2.1 Kombination verschiedener Primer

Der gleichzeitige Einsatz der beiden Forward Primer FIP1.1F und FIP2.1F funktionierte bei den Testviren FCoV 1 und FCoV 2 (Abbildung 11). Deshalb wurden auch bei den zu untersuchenden Katzengeweben die Primer FIP1.1F, FIP2.1F und FIP2.1R in einem Reaktionsansatz verwendet. Bei der Kombination der Primer für die semi-nested PCR stellte sich heraus, dass der Primer FIP2.1F mit den Reverse Primern FIPn_T1R beziehungsweise FIPn_T2R nicht zu den erwarteten Banden führte. Es traten entweder mehrere schwache Banden unterschiedlicher Größe auf oder es waren überhaupt keine Banden zu sehen (Abbildung 14, Spur 11-18). Da in diesem Fall davon auszugehen ist, dass die Primer miteinander reagierten und die PCR nicht ordnungsgemäß ablaufen konnte, wurde in der semi-nested PCR als Forward Primer ausschließlich FIP1.1F eingesetzt (Abbildung 14, Spur 3-10). Das war möglich, da FIP1.1F mit geringerer Affinität auch an Typ II-Stämme band, was lediglich zu schwächeren Banden führte (Abbildung 15). Eine Kombination der beiden Forward Primer FIPn_T1F und FIPn_T2F mit FIP2.1R führte zu den gewünschten Banden, weshalb ein Dreieransatz dieser Primer möglich war.

¹Als Test-DNA wurde in den 4 PCR-Ansätzen jeweils cDNA der Katze S-646/08 eingesetzt.

Abb. 14 Test unterschiedlicher Primerkombinationen in der semi-nested PCR

Abb. 15 Nachweis von ORF 3c in der ersten PCR mit unterschiedlichen Primerkombinationen

4.3 Untersuchung der Katzengewebe auf feline Coronaviren

Die zur Isolierung der RNA verwendeten Katzen waren allesamt spontan an feliner infektiöser Peritonitis erkrankt und stammten aus unterschiedlichen Haltungsformen (Tabelle 11, Kapitel 9.1). Keine der Katzen kam aus einer experimentellen Haltung oder aus einem Infektionsversuch. Deshalb existieren zur Dauer und zum klinischen Verlauf der Erkrankung in vielen Fällen nur sehr ungenaue Angaben. Auch der Todeszeitpunkt und die Lagerungsbedingungen der Tierkörper bis zur Sektion waren vorberichtlich nicht immer eindeutig nachvollziehbar.

4.3.1 Photometrische Konzentrationsbestimmung der Gesamt-RNA

Die photometrische Messung der Proben nach dem Prozess der RNA-Isolierung lieferte einen Anhaltspunkt über die Gesamt-RNA-Ausbeute. Außerdem war der Wert ausschlaggebend für die einzusetzende Menge an gelöster RNA in der anschließend durchgeführten reversen Transkription. Eine Übersicht über die erhaltenen RNA-Konzentrationen unter Berücksichtigung der unterschiedlichen Lagerungszeiten bis zur Sektion sowie der verschiedenen Gewebehomogenisierungsmethoden gibt Tabelle 12 im Anhang.

4.3.2 Polymerase-Kettenreaktion

Nach Überprüfung der Primerspezifität und Austesten der optimalen Reaktionsbedingungen kam das PCR-System zur Untersuchung der hergestellten cDNA-Proben aus den gesammelten Katzengeweben zum Einsatz.

4.3.2.1 Glycerinaldehyd-3-phosphat-Dehydrogenase-Gen

Von jeder Katze wurden aus den elf verwendeten Organen mindestens drei willkürlich ausgewählt und mit der entsprechenden cDNA eine Amplifikation eines Abschnitts aus dem GAPDH-Gen durchgeführt. Dafür wurde anfangs das Primerpaar GAPDH_cat.86F und GAPDH_cat.586R eingesetzt, dessen Produkt eine genau 500 bp lange Sequenz darstellt. Da jedoch die Amplifikate der ersten PCR zum Nachweis von ORF 3c sowie von ORF 7b in einer Größenordnung zwischen 800 und 900 bp lagen, kam bei 18 der 28 Katzen das Primerpaar GAPDH_cat.155F und GAPDH_cat.995R zum Einsatz. Dieses amplifiziert eine 840 bp lange Sequenz aus dem GAPDH-Gen der Katze und liegt damit in derselben Größenordnung wie die 3c- und 7b-Fragmente. Sichtbare Banden in der entsprechenden Größe gaben den Hinweis, dass grundsätzlich sowohl die RNA-Isolierung als auch die reverse Transkription funktioniert haben und RNA in einer Länge von mindestens 500 beziehungsweise 840 Basen im Gewebe vorhanden war. Abbildung 16 zeigt exemplarisch den GAPDH-Nachweis in den Gewebeproben von zwei Tieren.

Abb. 16a Nachweis von GAPDH in allen elf Geweben der Katze S-646/08 (Primerpaar GAPDH_cat.86F und GAPDH_cat.586R)

Abb. 16b Nachweis von GAPDH in Netz, Zwerchfell und Pankreas der Katze S-1129/09 (Primerpaar GAPDH_cat.155F und GAPDH_cat.995R)

4.3.2.2 Nichtstrukturproteingen ORF 3c

Der Vergleich der Referenzsequenzen zeigte, dass innerhalb des Nichtstrukturproteingens ORF 3c eine gewisse Variabilität in der Basenabfolge existiert (siehe Kapitel 4.1). Der Vergleich der beiden FIP-Viren 79-1146 und Black mit dem felinen enteralen Coronavirus FECV-6 ergab kein erkennbares Muster, welches eine sichere Unterscheidung der beiden Biotypen in diesem Genombereich zuließe.

Die aus den Geweben spontan an FIP erkrankter Katzen isolierten FIP-Viren sollten Aufschluss darüber geben, wie die Verhältnisse bei natürlichen Infektionen einer breiteren Katzenpopulation aussehen.

4.3.2.2.1 Erste PCR

Beim Einsatz der Primer FIP1.1F, FIP2.1F und FIP2.1R war ein annähernd 900 bp langes Amplifikat zu erwarten. Bei 10 von 28 Katzen zeigten sich in der Gelelektrophorese lediglich schwache Banden bei einzelnen Organen. Nur bei einer Katze (S-743/08) führte die erste PCR zu ausreichenden Mengen an Amplifikat für den erfolgreichen Nachweis von ORF 3c. Bei den restlichen 17 Katzen traten auf dem Agarosegel keine Banden auf. Im Folgenden sind für die genannten drei Möglichkeiten Beispiele aus den untersuchten Fällen aufgeführt. Eine vollständige Zusammenstellung der Ergebnisse zum Nachweis von ORF 3c aller Katzen findet sich im Anhang in Tabelle 12. Das angewandte Temperatur-Zeit-Protokoll entspricht dem unter 4.2 aufgeführten. Allerdings wurde die Zyklenzahl von 35 auf 40 erhöht, um die Amplifikationsrate zu steigern.

Abb. 17a Nachweis von ORF 3c in der ersten PCR, Katze S-743/08

Auftreten von Banden bei	In der PCR eingesetzte	
circa 900 bp	Positivkontrolle	
Bauchwand	cDNA von FCoV 1 (Institut	
Netz	für Virologie, Justus-Liebig-	
Leber	Universität Gießen)	
Darm		
Zwerchfell		
Darmlymphknoten		
Milz (schwach)		
Pankreas		
Niere (keine Bande)		
Lunge (schwach)		
Gehirn (keine Bande)		
Positivkontrolle		

Abb. 17b Vereinzelte schwache Banden in der ersten PCR, Katze S-219/09

Auftreten von Banden bei	In der PCR eingesetzte	GAPDH-Kontrolle
circa 900 bp	Positivkontrolle	
Bauchwand (keine Bande)	cDNA von FIPV UCD 1	GAPDH-Nachweis in Netz
Netz	(Institut für Virologie, Justus-	(Spur 17), Zwerchfell (Spur
Leber (keine Bande)	Liebig-Universität Gießen)	18) und Leber (Spur 19)
Darm (schwach)		
Zwerchfell (keine Bande)		Eingesetzte Primer:
Darmlymphknoten (<i>schwach</i>)		GAPDH_cat.155F und
Milz (schwach)		GAPDH_cat.995R
Pankreas (keine Bande)		
Niere (keine Bande)		
Lunge (schwach)		
Gehirn (keine Bande)		
Positivkontrolle (schwach)		

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Spur 1 = Größenmarker (pUC Mix Marker 8, Fermentas)
1118 692 500 331 190 147	Spur 2 = leer Spur 3 = Bauchwand Spur 4 = Netz Spur 5 = Leber Spur 6 = Darm Spur 7 = Zwerchfell Spur 8 = Darmlymphknoten Spur 9 = Milz Spur 10 = Pankreas Spur 11 = Niere Spur 12 = Lunge Spur 13 = Gehirn Spur 14 = Negativkontrolle Spur 15 = Positivkontrolle
Farbstoff: Ethidiumbromid	Spur 16 = Negativkontrolle GAPDH Spur 17-19 = GAPDH-Nachweis in Netz, Darmlymphknoten und Gehirn

Abb. 17c Kein Nachweis von ORF 3c in der ersten PCR, Katze S-13/10

Auftreten von Banden bei	In der PCR eingesetzte	GAPDH-Kontrolle	
circa 900 bp	Positivkontrolle		
Mit Ausnahme der	cDNA von FIPV UCD 1	GAPDH-Nachweis in Netz	
Positivkontrolle zeigte sich in	(Institut für Virologie, Justus-	(Spur 17), Darmlymphknoten	
keinem der untersuchten	Liebig-Universität Gießen)	(Spur 18) und Gehirn (Spur 19)	
Gewebe eine Bande			
		Eingesetzte Primer:	
		GAPDH_cat.155F und	
		GAPDH_cat.995R	

4.3.2.2.2 Semi-nested PCR (zweite und dritte PCR)

Bei der semi-nested PCR wurden zwei überlappende Fragmente amplifiziert, die jeweils eine Länge von circa 500 bp aufwiesen. Die erhaltenen Resultate wurden mit ORF 3c -A- und ORF 3c -E- bezeichnet. Dabei steht "A" für den Anfangs-, "E" für den Endteil des Nichtstrukturproteingens ORF 3c. Die Primerkombinationen, welche die beiden Abschnitte amplifizierten, waren FIP1.1F und FIPn_T1R für ORF 3c -A- sowie FIPn_T1F, FIPn_T2F und FIP2.1R im Dreieransatz für ORF 3c -E-. Der Reverse Primer FIPn_T2R für ORF 3c - A- wurde nicht mehr eingesetzt, da er sich von FIPn_T1R nur in einer Base unterscheidet und am 3'-Ende vollständig mit diesem identisch ist. Beide Reverse Primer besitzen daher annähernd gleiche Bindungsaffinität sowohl für Typ I- als auch für Typ II-Stämme (siehe auch Abb.14 Spur 3-10).

Im Gegensatz zur ersten PCR zeigten sich nach der semi-nested PCR in der Regel deutliche Banden – auch in Geweben, bei denen nach einmaliger PCR keine Amplifikation sichtbar war. Bei 7/28 Katzen waren allerdings auch nach der semi-nested PCR in keinem Gewebe Banden zu sehen. Im Folgenden sind exemplarisch Beispiele der semi-nested PCR-Ergebnisse dargestellt. Die Ergebnisse der restlichen Katzen finden sich im Anhang unter Tabelle 12.

Amplifikate aus einzelnen Geweben wiesen neben der Hauptbande bei 500 bp eine oder mehrere schwache Nebenbanden auf. Da in der anschließenden Sequenzierung solcher PCR-Produkte nur die Sequenz der Hauptbanden erfasst werden konnte, wurden die Nebenbanden nicht gesondert berücksichtigt.

Abb. 18a Nachweis von ORF 3c -A- und -E- bei der Katze S-1349/10

Auftreten von Banden bei circa 500 bp				In	der	semi-nested	PCR
ORF 3c -A-			ORF 3c -E-	eing	eingesetzte Positivkontrolle		olle
(Spur 3-15)		(Spur 17-29)					
Deutlicher	Nachweis	in	Deutlicher Nachweis in	1:10	00	verdünntes	PCR-
allen elf Geweben		allen elf Geweben	Produkt von S-1448/10-2		2		

Abb. 18b Nachweis von ORF 3c -A- und -E- bei der Katze S-1129/09

Erläuterungen:

Auftreten von Ban	In der semi-nested PCR	
ORF 3c -A-	ORF 3c -E-	eingesetzte Positivkontrolle
(Spur 2-14)	(Spur 16-28)	
Bauchwand	Bauchwand (schwach)	1:100 verdünntes PCR-
Netz	Netz	Produkt von FIPV UCD1
Leber	Leber	(Institut fin Minslerie Instan
Darm (keine Bande)	Darm (keine Bande)	(Institut fur virologie, Justus-
Zwerchfell	Zwerchfell	Liebig-Universität Gießen)
Darmlymphknoten	Darmlymphknoten	
Milz	Milz	
Pankreas (keine Bande)	Pankreas (keine Bande)	
Niere	Niere	
Lunge	Lunge	
Gehirn (keine Bande)	Gehirn (keine Bande)	

Ergebnisse

Abb. 18c Nachweis von ORF 3c -A- und -E- bei der Katze S-1387/08

Auftreten von Ban	In der semi-nested PCR	
ORF 3c -A-	ORF 3c -E-	eingesetzte Positivkontrolle
(Spur 3-15)	(Spur 16-28)	
Mit Ausnahme der	Mit Ausnahme der	1:100 verdünntes PCR-
Positivkontrolle zeigte sich	Positivkontrolle zeigte sich	Produkt von FIPV UCD1
in keinem untersuchten	in keinem untersuchten	(Institut für Virologie, Justus-
Gewebe eine Bande	Gewebe eine Bande	Liebig-Universität Gießen)

4.3.2.3 Nichtstrukturproteingen ORF 7b

Auch in der Sequenz von ORF 7b konnte eine gewisse Variabilität zwischen verschiedenen FCoV innerhalb des Gens festgestellt werden (siehe Abbildung 9, Kapitel 3.9). Im Vergleich zu ORF 3c fand sich jedoch eine höhere Übereinstimmungsrate. Als Ausgangsmaterial für die PCR wurde die wie unter 3.6 hergestellte cDNA verwendet.

Die zur Amplifikation von ORF 7b verwendeten Primer FIP7bF und FIP7bR wurden unter folgenden Reaktionsbedingungen eingesetzt:

- 1. Einmaliges Erhitzen der Proben auf 95 °C für 2 min
- 2. Denaturierungstemperatur von 94 °C für 30 sec
- 3. Temperatur zur Primerhybridisierung von 55 °C für 30 sec
- 4. Elongationstemperatur von 72 °C für 1 min
- 5. Endverlängerung bei einer Temperatur von 72 °C für 10 min
- 6. Dauerhaftes Kühlen der Proben bei 4 °C

Die Punkte 2. bis 4. wurden in 35 Zyklen wiederholt.

Die Länge der amplifizierten Sequenz lag in einer Größenordnung von 900 bp. Im Gegensatz zur ersten PCR zum Nachweis von ORF 3c zeigten sich hier in den Geweben meist deutliche Banden auf dem Agarosegel. Darüber hinaus konnte bei 6/7 Katzen, bei denen auch nach der semi-nested PCR zum Nachweis von ORF 3c keine Banden auftraten, ORF 7b erfolgreich amplifiziert werden. Bei 2/28 Katzen (S-181/09 und S-13/10) war kein Nachweis von ORF 7b mit den beiden Primern FIP7bF und FIP7bR möglich. Abbildung 19 zeigt Beispiele der erhaltenen Resultate. Eine Zusammenstellung der Ergebnisse aller Katzen enthält Tabelle 12 im Anhang.

Abb. 19a Nachweis von ORF 7b, Katzen S-1129/09 und S-1190/09

Auftreten von Banden bei	Auftreten von Banden bei	In der PCR eingesetzte	
circa 900 bp - S-1129/09 -	circa 900 bp - S-1190/09 -	Positivkontrolle	
Bauchwand (schwach)	Bauchwand	1:100 verdünntes PCR-	
Netz (schwach)	Netz	Produkt von S-186/10-47	
Leber	Leber		
Darm (schwach)	Darm		
Zwerchfell	Zwerchfell		
Darmlymphknoten	Darmlymphknoten		
Milz	Milz		
Pankreas (keine Bande)	Pankreas		
Niere	Niere (sehr schwach)		
Lunge	Lunge (sehr schwach)		
Gehirn (schwach)	Gehirn (keine Bande)		
Positivkontrolle	Positivkontrolle		
Amplifikatio	n von ORF 3c		
1. PCR: vereinzelte	1. PCR: keine Banden		
schwache Banden			
2. PCR: deutliche Banden	2. PCR: deutliche Banden		

Abb. 19b Nachweis von ORF 7b, Katzen S-1300/09 und S-13/10

Auftreten von Banden bei	Auftreten von Banden bei	In der PCR eingesetzte		
circa 900 bp - S-1300/09 -	circa 900 bp - S-13/10 - Positivkontrolle			
Bauchwand	In keinem der untersuchten	1:100 verdünntes PCR-		
Netz	Gewebe zeigte sich eine	Produkt von S-186/10-47		
Leber	Bande			
Darm				
Zwerchfell				
Darmlymphknoten				
Milz				
Pankreas				
Niere (schwach)				
Lunge				
Gehirn (keine Bande)				
Positivkontrolle	Positivkontrolle			
Amplifikatio	n von ORF 3c			
1. PCR: vereinzelte	1. PCR: keine Banden			
schwache Banden				
2. PCR: deutliche Banden	2. PCR: in einzelnen			
	Geweben deutliche			
	Banden			

Ergebnisse

Abb. 19c Nachweis von ORF 7b, Katzen S-744/08 und S-872/08

Auftreten von Banden bei	Auftreten von Banden bei	In der PCR eingesetzte	
circa 900 bp - S-744/08 -	circa 900 bp - S-872/08 -	Positivkontrolle	
Bauchwand (keine Bande)	Bauchwand	1:100 verdünntes PCR-	
Netz	Netz	Produkt von S-186/10-47	
Leber	Leber		
Darm	Darm		
Zwerchfell	Zwerchfell		
Darmlymphknoten	Darmlymphknoten		
Milz	Milz		
Pankreas	Pankreas		
Niere (sehr schwach)	Niere (schwach)		
Lunge (sehr schwach)	Lunge		
Gehirn (schwach)	Gehirn (sehr schwach)		
Positivkontrolle	Positivkontrolle		
Amplifikatio	n von ORF 3c		
1. PCR: keine Banden	1. PCR: keine Banden		
2. PCR: keine Banden	2. PCR: keine Banden		

4.4 Kotproben

Die aus dem Kot der insgesamt 6 Katzen isolierte RNA wurde entsprechend der RNA aus den Gewebeproben in cDNA umgeschrieben und anschließend eine Amplifikation von ORF 3c und ORF 7b durchgeführt. Coronavirusspezifische Sequenzen konnten jedoch nur im Kot der Katze mit FIP (S-1349/10) mit Sicherheit festgestellt werden. Ein Nachweis des 7b-Gens war in keiner der 6 Katzen möglich. Die Abbildung 20 zeigt das Ergebnis der semi-nested PCR zur Amplifikation von ORF 3c. Dabei sind die einzelnen Katzen mit Kot 1 bis Kot 6 durchnummeriert. Der Vergleich der Sequenzierungsergebnisse aus Geweben und Kot der Katze S-1349/10 ist unter 4.7.1d dargestellt.

Abb. 20 Semi-nested PCR zum Nachweis von ORF 3c im Kot von 6 Katzen

Erläuterungen:

In Spur 3 bis 16 ist ORF 3c -A- aufgetragen, in Spur 18 bis 31 ORF 3c -E-.

Von jeder Kotprobe wurde ein doppelter PCR-Ansatz hergestellt, wobei jeweils unterschiedliche Mengen an RNA in der reversen Transkription eingesetzt wurden. Als erstes aufgetragen ist jeweils das Ergebnis der aus der geringeren RNA-Menge durchgeführten RT-PCR. Nur in einer Probe (Kot 4) im Ansatz mit der höheren RNA-Menge fand sich sowohl bei ORF 3c -A- als auch bei ORF 3c -E- je eine deutliche Bande bei etwa 500 bp. Bei den anderen Proben waren entweder keine Banden zu sehen oder es erschienen mehrere Banden mit kürzeren Fragmenten in einer Spur (ORF 3c -A- bei mit Kot 6 benannter Katze).

ORF 3c -E- war bei diesem Tier allerdings nicht nachweisbar. Eine vollständige ORF 3c-Sequenz konnte daher nicht erhalten werden. Das Screening der Kotproben hatte aber den Hintergrund, Coronavirussequenzen aus dem Darm nicht an FIP erkrankter Katzen zu isolieren, um das komplette 3c-Gen zu untersuchen. Da die Amplifikate aus Kot 6 dafür nicht geeignet waren, erfolgten keine weiteren Untersuchungen mit dieser Probe.

Als Positivkontrolle fungierte die 1:100fache Verdünnung des PCR-Produkts S-1448/10-1.

4.5 Zusammenhang zwischen immunhistologischem Signal, Nachweis von ORF 3c/7b und FIP-Form

Die untersuchten Katzen zeigten in unterschiedlichen Geweben immunhistologisch detektierbares Coronavirusantigen (Tabelle 13). Die immunhistologische Untersuchung erfolgte pro FIP-Katze nur bei Geweben, in denen histopathologisch FIP-typische Alterationen Daher wurden nicht dieselben Gewebe auftraten. wie in der molekularbiologischen Untersuchung ausgewählt. 66 der insgesamt 72 immunhistologisch positiven Gewebe wurden auch molekularbiologisch untersucht. In 45/66 Geweben konnte mittels PCR ORF 3c beziehungsweise in 62/66 Geweben ORF 7b nachgewiesen werden. (siehe Tabelle 13). Umgekehrt war ORF 3c in 31 Geweben sowie ORF 7b in 38 Geweben, die alle histologisch und immunhistologisch negativ waren, mittels PCR nachweisbar.

Ein Zusammenhang zwischen der Ausbeute in Immunhistologie und PCR mit der FIP-Form (exsudativ oder rein granulomatös) konnte nicht gefunden werden. Der Nachweis von FCoV-Gensequenzen beziehungsweise –Antigen war bei feuchten und trockenen FIP-Formen gleichermaßen möglich (Tabelle 13).

4.6 Häufigkeit des Nachweises von ORF 3c/7b in verschiedenen Organen

Mittels PCR konnte ORF 3c bei 171/282 Geweben und ORF 7b bei 194/282 Geweben nachgewiesen werden (Tabelle 12). Dabei waren die relativen Häufigkeiten in den verschiedenen Geweben folgendermaßen verteilt:

Gewebe/untersuchte Anzahl	ORF 3c	ORF 7b
Bauchwand/25	0,48	0,36
Netz/25	0,80	0,84
Leber/28	0,54	0,75
Darm/25	0,56	0,80
Zwerchfell/25	0,56	0,68
Darmlymphknoten/25	0,68	0,92
Milz/25	0,68	0,68
Pankreas/25	0,60	0,60
Niere/28	0,57	0,75
Lunge/25	0,68	0,68
Gehirn/25	0,56	0,52
Pleura/1	0	0

Tabelle 10 Anteil ORF 3c/7b positiver Proben

4.7 Sequenzierungsergebnisse

Die Durchführung der Sequenzierung erfolgte im DNA Analyzer 3730xl (Applied Biosystems, Carlsbad, CA, USA) durch die Firma GATC Biotech in Konstanz. Als Sequenzierprimer wurde grundsätzlich für ORF 3c -A- FIP1.1F, für ORF 3c -E- FIP2.1R und für ORF 7b FIP7bF eingesetzt. Die Ergebnisse der Sequenzierung wurden sowohl als Elektropherogramm in Form einer ab1-Datei als auch im FASTA-Format geliefert.

4.7.1 Sequenzierungsergebnisse von ORF 3c

Die Sequenzierungsergebnisse wurden zunächst auf zwei Aspekte hin untersucht: 1. Wie unterschiedlich waren die Sequenzen aus verschiedenen Geweben innerhalb einer Katze? Und: 2. Konnten Deletionen in der Sequenz von ORF 3c festgestellt werden?

Um die erste der beiden Fragestellungen zu beantworten, wurden die Sequenzdaten aus den verschiedenen Geweben einer Katze mit Hilfe des webbasierten Programms ClustalW

(EMBL-EBI, Cambridge, Großbritannien) miteinander verglichen. Mit Ausnahme der Katze mit der Tagebuchnummer S-743/08 lagen die Sequenzen von ORF 3c in zwei überlappenden Abschnitten vor (Notwendigkeit der semi-nested PCR). Deshalb wurden zunächst die entsprechenden Anfangs- und Endabschnitte mit Hilfe der über das Programm Bioedit (Ibis Biosciences, Carlsbad, CA, USA) zugänglichen Funktion "CAP contig assembly program" (Xiaoqiu Huang, Iowa State University, Ames, Iowa, USA) zu einer fortlaufenden Sequenz zusammengesetzt.

Da der ORF 3c-Endabschnitt mit dem Reverse Primer sequenziert wurde, mussten diese Ergebnisse zuvor in die gleiche Orientierung wie die des Anfangsabschnitts umgewandelt werden.

Traten Sequenzunterschiede zwischen verschiedenen Geweben innerhalb einer Katze auf, so wurde nach erneuter semi-nested PCR die Sequenzierung wiederholt. Die abweichenden Positionen aus der ersten Sequenzierung wurden mit den neu erhaltenen Ergebnissen verglichen. Dabei konnten die Basenunterschiede entweder bestätigt werden oder aber die Ausreißer aus der ersten Sequenzierung wiesen nun dieselben Sequenzen wie diejenigen der restlichen Isolate auf.

Nach Berücksichtigung der Wiederholungssequenzierung ergaben sich beim Vergleich der Sequenzen einer Katze folgende Möglichkeiten:

- a) Die Sequenzen aus allen erhaltenen Geweben waren vollständig identisch.
- b) Die Sequenzen waren zum überwiegenden Teil identisch:
 ≤ 10 Positionen wiesen Unterschiede auf.
- c) Es lagen größere Abweichungen zwischen den Sequenzen aus verschiedenen Geweben vor beziehungsweise Sequenzen aus einzelnen Geweben erwiesen sich als Ausreißer:
 - > 10 Positionen zeigten Unterschiede in der Basenabfolge.

Ausgenommen von dieser Einteilung sind die Katzen mit den Tagebuchnummern S-1010/09 und S-367/10, bei denen jeweils aus nur einem Organ auswertbare Sequenzdaten erhalten werden konnten. Desweiteren gelang von den Katzen mit den Tagebuchnummern S-646/08 und S-1221/08 auch nach mehrfach wiederholter PCR und Sequenzierung nicht der Nachweis des gesamten Gens.

Ausgewählte Sequenzvergleiche der verschiedenen Möglichkeiten sind in Abbildung 21 dargestellt.

81

S-1300/09

S-1300/09-1 S-1300/09-2 S-1300/09-4 S-1300/09-5 S-1300/09-6 S-1300/09-7 S-1300/09-10 S-1300/09-8	ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTGTAGTTGCTAATCACCATGTGATT ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTGTAGTTGCTAATCACCATGTGATT ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTGTAGTTGCTAATCACCATGTGATT ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTGTAGTTGCTAATCACCATGTGATT ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTGTAGTTGCTAATCACCATGTGATT ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTGTAGTTGCTAATCACCATGTGATT ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTGTAGTTGCTAATCACCATGTGATT ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTGTAGTTGCTAATCACCATGTGATT ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTGTAGTTGCTAATCACCATGTGATT ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTGTAGTTGCTAATCACCATGTGATT ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTGTAGTTGCTAATCACCATGTGATT ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTGTAGTTGCTAATCACCATGTGATT	60 60 60 60 60 60 60
S-1300/09-1 S-1300/09-2 S-1300/09-4 S-1300/09-5 S-1300/09-6 S-1300/09-7 S-1300/09-10 S-1300/09-8	GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT GTTAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT CATAATAATACACCACATGTCAATTCTATAGTACAACAACAACATCATGTTGTTAGTGCTAGT	120 120 120 120 120 120 120 120
S-1300/09-1 S-1300/09-2 S-1300/09-4 S-1300/09-5 S-1300/09-6 S-1300/09-7 S-1300/09-10 S-1300/09-8	ATTAAAAGTTTTCATTTAGAGTTCAGCATTGCTGTTCTCTTTGTATTATTTTTAGCTTTG ATTAAAAGTTTTCATTTAGAGTTCAGCATTGCTGTTCTCTTTGTATTATTTTTAGCTTTG ATTAAAAGTTTTCATTTAGAGTTCAGCATTGCTGTTCTCTTTGTATTATTTTTAGCTTTG ATTAAAAGTTTTCATTTAGAGTTCAGCATTGCTGTTCTCTTTGTATTATTTTTAGCTTTG ATTAAAAGTTTTCATTTAGAGTTCAGCATTGCTGTTCTCTTTGTATTATTTTTAGCTTTG ATTAAAAGTTTTCATTTAGAGTTCAGCATTGCTGTTCTCTTTGTATTATTTTTAGCTTTG ATTAAAAGTTTTCATTTAGAGTTCAGCATTGCTGTTCTCTTTGTATTATTTTTAGCTTTG ATTAAAAGTTTTCATTTAGAGTTCAGCATTGCTGTTCTCTTTGTATTATTTTTAGCTTTG ATTAAAAGTTTTCATTTAGAGTTCAGCATTGCTGTTCTCTTTGTATTATTTTTAGCTTTG ATTAAAAGTTTTCATTTAGAGTTCAGCATTGCTGTTCTCTTTGTATTATTTTTAGCTTTG ATTAAAAGTTTTCATTTAGAGTTCAGCATTGCTGTTCTCTTTGTATTATTTTTAGCTTTG ATTAAAAGTTTCCATTTAGAGTTCAGCATTGCTGTTCTCTTTGTATTATTTTTAGCTTTG	180 180 180 180 180 180 180 180
S-1300/09-1 S-1300/09-2 S-1300/09-4 S-1300/09-5 S-1300/09-6 S-1300/09-7 S-1300/09-10 S-1300/09-8	TACCGTAGTACAAACTTCTAAGTATGTGTCGGTGTCTTAATGTTTAAGATAGTATCAATG TACCGTAGTACAAACTTCTAAGTATGTGTCGGTGTCTTAATGTTTAAGATAGTATCAATG TACCGTAGTACAAACTTCTAAGTATGTGTCGGTGTCTTAATGTTTAAGATAGTATCAATG TACCGTAGTACAAACTTCTAAGTATGTGTCGGTGTCTTAATGTTTAAGATAGTATCAATG TACCGTAGTACAAACTTCTAAGTATGTGTCGGTGTCTTAATGTTTAAGATAGTATCAATG TACCGTAGTACAAACTTCTAAGTATGTGTCGGTGTCTTAATGTTTAAGATAGTATCAATG TACCGTAGTACAAACTTCTAAGTATGTGTCGGTGTCTTAATGTTTAAGATAGTATCAATG TACCGTAGTACAAACTTCTAAGTATGTGTCGGTGTCTTAATGTTTAAGATAGTATCAATG TACCGTAGTACAAACTTCTAAGTATGTGTCGGTGTCTTAATGTTTAAGATAGTATCAATG TACCGTAGTACAAACTTCTAAGTATGTGTCGGTGTCTTAATGTTTAAGATAGTATCAATG	240 240 240 240 240 240 240 240 240
S-1300/09-1 S-1300/09-2 S-1300/09-4 S-1300/09-5 S-1300/09-6 S-1300/09-7 S-1300/09-10 S-1300/09-8	ACACTTATAGGACCTATGCTTATAGCATTTGGCTACTATGTAGATGGAATTGTGACAACA ACACTTATAGGACCTATGCTTATAGCATTTGGCTACTATGTGAGAGGAATTGTGACAACA ACACTTATAGGACCTATGCTTATAGCATTTGGCTACTATGTGAGAGATTGTGACAACA ACACTTATAGGACCTATGCTTATAGCATTTGGCTACTATGTAGATGGAATTGTGACAACA ACACTTATAGGACCTATGCTTATAGCATTTGGCTACTATGTAGATGGAATTGTGACAACA ACACTTATAGGACCTATGCTTATAGCATTTGGCTACTATGTAGATGGAATTGTGACAACA ACACTTATAGGACCTATGCTTATAGCATTTGGCTACTATGTAGATGGAATTGTGACAACA ACACTTATAGGACCTATGCTTATAGCATTTGGCTACTATGTAGATGGAATTGTGACAACA ACACTTATAGGACCTATGCTTATAGCATTTGGCTACTATGTAGATGGAATTGTGACAACA ACACTTATAGGACCTATGCTTATAGCATTTGGCTACTATGTAGATGGAATTGTGACAACA ACACTTATAGGACCTATGCTTATAGCATTTGGCTACTATGTAGATGGAATTGTGACAACA	300 300 300 300 300 300 300 300
S-1300/09-1 S-1300/09-2 S-1300/09-4 S-1300/09-5 S-1300/09-6 S-1300/09-7 S-1300/09-10 S-1300/09-8	$\label{eq:construction} ACTGTCTTAGCTTTAAGATTCTCTTACTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTGTCTTAGCTTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTGTCTTAGCTTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTGTCTTAGCTTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTGTCTTAGCTTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTGTCTTAGCTTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTGTCTTAGCTTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTGTCTTAGCTTTAGCATATTTTTGGTATGTTAATAGTAGATTTTACTGTCTTAGCTTTAGCATATTTTTGGTATGTTAATAGTAGATTTTTTTGTTTAGCTTTAGCTTTAGCATATTTTTTGGTATGTTAATAGTAGATTTTTTTT$	360 360 360 360 360 360 360 360
S-1300/09-1 S-1300/09-2 S-1300/09-4 S-1300/09-5 S-1300/09-6 S-1300/09-7 S-1300/09-10 S-1300/09-8	GAATTCATTTATACAATACAACGACACTAATGTTTGTACATGACAGAGCTGCACCGTTT GAATTCATTTATACAATACA	420 420 420 420 420 420 420 420 420

S-1300/09-1	ATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATATGGAGGCATAAATTATATGTTC	480
S-1300/09-2	ATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATATGGAGGCATAAATTATATGTTC	480
S-1300/09-4	ATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATATGGAGGCATAAATTATATGTTC	480
S-1300/09-5	ATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATATGGAGGCATAAATTATATGTTC	480
S-1300/09-6	ATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATATGGAGGCATAAATTATATGTTC	480
S-1300/09-7	ATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATATGGAGGCATAAATTATATGTTC	480
S-1300/09-10	ATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATATGGAGGCATAAATTATATGTTC	480
S-1300/09-8	ATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATATGGAGGCATAAATTATATGTTC	480

S-1300/09-1	GTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTTGTATGCATAGCTATACGTGGC	540
S-1300/09-2	GTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTTGTATGCATAGCTATACGTGGC	540
S-1300/09-4	GTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTTGTATGCATAGCTATACGTGGC	540
S-1300/09-5	GTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTTGTATGCATAGCTATACGTGGC	540
S-1300/09-6	GTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTTGTATGCATAGCTATACGTGGC	540
S-1300/09-7	GTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTTGTATGCATAGCTATACGTGGC	540
S-1300/09-10	GTGAATGATCTTACGTTGCATTTTGTAGACCCTATGCTTGTATGCATAGCTATACGTGCGC	540
S-1300/09-8	GTGAATGATCTTACCTTGCATTTCCTAGACCCTTATCCTATGCATAGCTATACCTGCA	540
5 1900,09 0	***************************************	510
S-1300/09-1	CTAGTTCATGCTGACCTAACAGTTGTTAGAGCAGTTGAACTTCTCAATGGTGATTTTATT	600
S-1300/09-2	CTAGTTCATGCTGACCTAACAGTTGTTAGAGCAGTTGAACTTCTCAATGGTGATTTTATT	600
S-1300/09-4	CTAGTTCATGCTGACCTAACAGTTGTTAGAGCAGTTGAACTTCTCAATGGTGATTTTATT	600
S-1300/09-5	CTAGTTCATGCTGACCTAACAGTTGTTAGAGCAGTTGAACTTCTCAATGGTGATTTTATT	600
S-1300/09-6	CTAGTTCATGCTGACCTAACAGTTGTTAGAGCAGTTGAACTTCTCAATGGTGATTTTATT	600
S-1300/09-7	CTAGTTCATGCTGACCTAACAGTTGTTAGAGCAGTTGAACTTCTCAATGGTGATTTTATT	600
S-1300/09-10	CTAGTTCATGCTGACCTAACAGTTGTTAGAGCAGTTGAACTTCTCAATGGTGATTTTATT	600
S-1300/09-8	ҀͲѦҀ҄ͲͲҀѦͲҀ҄ҀͲҀ҄ѦҀ҄ҀͲѧѦҀѦҀ҄ͲͲҀ҄ͲͲѦҀѦҀҀҼҀҘҏҀҼҏҀҼҏѦҵҀҀѰҀѦҏҭҀҾҬ	600
5 1500,05 0	*****	000
S-1300/09-1	TATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAATGCAGCCTTTTCTCAGGCGGTT	660
S-1300/09-2	TATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAATGCAGCCTTTTCTCAGGCGGTT	660
S-1300/09-4	TATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAATGCAGCCTTTTCTCAGGCGGTT	660
S-1300/09-5	TATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAATGCAGCCTTTTCTCAGGCGGTT	660
S-1300/09-6	TATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAATGCAGCCTTTTCTCAGGCGGTT	660
S-1300/09-7	TATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAATGCAGCCTTTTCTCAGGCGGTT	660
S-1300/09-10	TATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAATGCAGCCTTTTCTCAGGCGGTT	660
S-1300/09-8	TATATATTTTCACAGGAGGCCGTAGTAGGAGTTTACAATGCAGCCTTTTCTCAGGCGGTT	660

S-1300/09-1	ATAAACGAAATTGATTTAAAAGAAGAGGAAGAACGTGTCTATGATGTTTCCTAG 714	
S-1300/09-2	ATAAACGAAATTGATTTAAAAGAAGAGGAAGAACGTGTCTATGATGTTTCCTAG 714	
S-1300/09-4	ATAAACGAAATTGATTTAAAAGAAGAGGAAGAACGTGTCTATGATGTTTCCTAG 714	
S-1300/09-5	ATAAACGAAATTGATTTAAAAGAAGAGGAAGAACGTGTCTATGATGTTTCCTAG 714	
S-1300/09-6	ATAAACGAAATTGATTTAAAAGAAGAGGAAGAACGTGTCTATGATGTTTCCTAG 714	
S-1300/09-7	ATAAACGAAATTGATTTAAAAGAAGAGGAAGAACGTGTCTATGATGTTTCCTAG 714	
S-1300/09-10	ATAAACGAAATTGATTTAAAAGAAGAGGAAGAACGTGTCTATGATGTTTCCTAG 714	
S-1300/09-8	ATAAACGAAATTGATTTAAAAGAAGAGGAAGAACGTGTCTATGATGTTTCCTAG 714	
	* * * * * * * * * * * * * * * * * * * *	

Abb. 21a Identische Sequenz von ORF 3c in allen Geweben¹

S-222/09

S-222/09-1	CTTATGTTGGCTATACGT 540	S-222/09-1	TGCTGATCT 600
S-222/09-2	CTTATGTTGGCTATACGT 540	S-222/09-2	TGCTGATCT 600
S-222/09-3	CTTATGTTGGCTATACGT 540	S-222/09-3	TGCTGATCT 600
S-222/09-6	CTTATGTTGGCTATACGT 540	S-222/09-6	TGCTGATCT 600
S-222/09-8	CTTATGTTGGCTATACGT 540	S-222/09-8	TGCTGATCT 600
S-222/09-9	CTTATGTTGGCTACACGT 540	S-222/09-9	TGCTGATCT 600
S-222/09-5	CTTACGTTGGCTACACGT 540	S-222/09-5	TGCTGATCT 600
S-222/09-11	CTTACGTTGGCTACACGT 540	S-222/09-11	TGCTGATCT 600
S-222/09-4	CTTACGTTGGCTACACGT 540	S-222/09-4	TGCTTATCT 600
S-222/09-7	CTTACGTTGGCTACACGT 540	S-222/09-7	TGCTTATCT 600
S-222/09-10	CTTACGTTGGCTACACGT 540	S-222/09-10	TGCTTATCT 600
	****** ***********		******
S-222/09-1	AGGCGTTTA 660		
S-222/09-2	AGGCGTTTA 660		
S-222/09-3	AGGCGTTTA 660		
S-222/09-6	AGGCGTTTA 660		
S-222/09-8	AGGCGTTTA 660		

S-222/09-8	AGGCG'I''I''I'A	660
S-222/09-9	AGGCGTTTA	660
S-222/09-5	AGGCGTTTA	660
S-222/09-11	AGGCGTTTA	660
S-222/09-4	AGGCATTTA	660
S-222/09-7	AGGCATTTA	660
S-222/09-10	AGGCATTTA	660
	******.***	

Abb. 21b Sequenz von ORF 3c zum überwiegenden Teil identisch, Auftreten von ≤ 10 Basenunterschieden¹

S-518/10

S-518/10-5 S-518/10-10 S-518/10-9 S-518/10-4	GACTATTTCATCAACATG 60 GACTATTTCATCAACATG 60 GACTATTTCATCAACATG 60 GACTGTTTCATCATCATG 60 *******
S-518/10-5 S-518/10-10 S-518/10-9 S-518/10-4	ATGTCAATGCTATGTGCTAGC 120 ATGTCAATGCTATGTGCTAGC 120 ATGTCAATGCTATGTGCTAGC 120 ATGTTAATTCTATGTGCAAAT 120 *******.***.***
S-518/10-5 S-518/10-10 S-518/10-9 S-518/10-4	GTTTCCATCTAGA 180 GTTTCCATCTAGA 180 GTTTCCATCTAGA 180 GTTTTCATTTAGA 180 *******.***.
S-518/10-5 S-518/10-10 S-518/10-9 S-518/10-4	TATATGACCTATGCTCATAGACTACATAG 300 TATATGACCTATGCTCATAGACTACATAG 300 TATATGACCTATGCTCATAGACTACATAG 300 TATAGGACCCATGCTTATAGACTATATAG 300 *******
S-518/10-5 S-518/10-10 S-518/10-9 S-518/10-4	ATTTGTCTACTACTTCTGGT 360 ATTTGTCTACTACTTCTGGT 360 ATTTGTCTACTACTTCTGGT 360 ATTTATTTACTACTTTTGGT 360 *******.*.*.*********
S-518/10-5 S-518/10-10 S-518/10-9 S-518/10-4	ATGGAGGCATAAATTATATGTTC 480 ATGGAGGCATAAATTATATGTTC 480 ATGGAGGCATAAATTATATGTTC 480 ATGGCGGCATAAATTACATGTTC 480 *******.
S-518/10-5 S-518/10-10 S-518/10-9 S-518/10-4	ATGAGCTTATATACGTGGC 540 ATGAGCTTATATATGTGGC 540 ATGAGCTTATATACGTGGC 540 ATGATCTTATATACGTGGC 540 *******
S-518/10-5 S-518/10-10 S-518/10-9 S-518/10-4	CTGACCTAACAGTTGTTA 600 CTGACCTAACAGTTGTTA 600 CTGACCTAACAGTTGTTA 600 CTGATCTAACAGTCGTTA 600
S-518/10-5 S-518/10-10 S-518/10-9 S-518/10-4	CCGTAGTAG 660 CCGTAGTAG 660 CCGTAGTAG 660 CCGTCGTAG 660
S-518/10-5 S-518/10-10 S-518/10-9 S-518/10-4	TTGACCTAAAAGAAGAGCGTGTTTATG 714 TTGACCTAAAAGAAGAGCGTGTTTATG 714 TTGACCTAAAAGAAGAGCGTGTTTATG 714 TTGATTTGAAAGAAGAACATGTCTATG 714

Abb. 21c Größere Unterschiede (> 10 Basen) zwischen Sequenzen aus verschiedenen Geweben¹

Bei der Katze S-518/10 fiel auf, dass die Basenunterschiede mit Ausnahme der Position 535 ausschließlich auf die Isolate aus dem Darm (S-518/10-4) beschränkt waren. Die Sequenzen aus Zwerchfell (S-518/10-5), Niere (S-518/10-9) und Lunge (S-518/10-10) waren nahezu identisch.

S-1349/10	ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTATAGTTATTAATCAACATGTGATT	60
S-1349/10_Kot	ATGATTGGCGGACTGTTTCTTAACACTCTAAGTTTTATAGTTATTAATCAACATGTGATT *******************************	60
S-1349/10	GTTAACAACACACCACATGTTAATTCCATAGTACAACAACAACACGTTGTTAGTGCTAGT	120
S-1349/10_KOC	GTTAACAACACACACATGTTAATTCCATAGTACAACAACAACATCACGTTGTTAGTGCTAGT	120
S-1349/10	ATTAAAAGTTCTCATTTAGAGTTCAGCATTGCTGTGCTCTTTGTTTTATTTCTAGCTTTG	180
S-1349/10_KOC		180
S-1349/10	TACCGTAGTACAAACTTCAAAGTGTGTGTGTGTGTCTTAATGTTTAAGATAGTATCAATG	240
S-1349/10_Kot		240
S-1349/10	ACACTTGTAGGACCTATGCTTATAGCATTTGGTTACTATGTAGATGGCATTGTGATAACA	300
S-1349/10_KOC	ACACTTGTAGGACCTATGCTTATAGCATTTGGTTACTATGTAGATGGCATGTGCACAACA *******************************	300
S-1349/10	ACTGTCTTAGCTTTAAGATTTATTTACTTAGCATACTTTTGGTATGTTAATAGTAGATTT	360
S-1349/10_KOU	ACIGICIIAGCIIIAAGAIIIAIIIACIIAGCAIACIIIIGGIAIGIIAAIAGIAGAIII ***************	300
S-1349/10	GAATTCATTCTCTACAATACAACGACACTAATGTTTGTACATGACAGAGCTGCACCGTTT	420
S-1349/10_KOU	GAATTCATTCTCTACAATACAACGACACTAATGTTTGTACATGACAGAGCTGCACCGTTT *********************************	420
S-1349/10	ATGAGAAGTTCTCACGGCTCTATTTATGTCACATTATATGGAGGCATAAATTACATGTTC	480
S-1349/10_KOU	AIGAGAAGIICICACGCICIAIIIAIGICACAIIAIAIGGAGGCAIAAAIIACAIGIIC **********************************	480
S-1349/10	GTGAATGATCTTATGTTGCATTTTGTAGACCCTATGCTTGTAGGCATAGCTATACGTGGC	540
S-1349/10_Kot	GTGAATGATCTTTACGTTGCATTTTGTAGACCCTATGCTTGTAGGCATAGCTATACGTGGC *********************************	540
S-1349/10		600
S-1349/10_KOU	***************************************	600
S-1349/10	TATATTTTCACAGGAGGCCGTCGTAGGAGTTTACAATGCAGCCTTTTCTCAGGCGGTT	658
5-1349/10_KOT	1A1A1A1111 CACAGGAGGCCG1CG1AGGAG111ACAA1GCAGCCTTTTCTCAGGCGGTT ***** *****************************	000
S-1349/10	ATAAACGAAATTGATTTAAAAGAAGAAGAAGAAGAGCGCGCCTATGATGTTTCCTAG 712	
5-1349/10_KOC	AIAAANNNNNNNNNNNNNNNAAGAAGAAGAAGAAGAGCGCGICIAIGANNNNNNNNN /14 *****	

Abb. 21d Sequenzvergleich der Isolate aus den Geweben und dem Kot der Katze S-1349/10¹

¹ Identische Basen sind mit "*", Unterschiede mit "." gekennzeichnet.

Auch die wiederholte PCR und Sequenzierung sowohl in Vorwärts- als auch Rückwärtsrichtung ergaben für die Positionen 666-678 sowie 704-714 im Kot kein auswertbares Ergebnis ("N"). Es fiel auf, dass die in den Geweben der Katze S-1349/10 vorhandene Deletion von 2 Nukleotiden im Kot nicht vorkam. Bis auf 2 weitere Einzelbasenunterschiede an den Positionen 494 und 698 waren die Sequenzen jedoch identisch. Die Sequenz aus dem Darm (S-1349/10-4) stimmte mit den Sequenzen der übrigen Gewebeisolate überein, nicht aber mit der Sequenz aus dem Kot.

Beim Vergleich der Sequenzen aus unterschiedlichen Katzen traten deutlich größere Basenabweichungen auf als innerhalb einer Katze. Um das zu demonstrieren, wurde von jeder Katze eine Sequenz erstellt, die an den einzelnen Positionen jeweils die Basen aufwies, die innerhalb einer Katze am häufigsten vertreten waren (Consensussequenz). In Abbildung 22 sind die Consensussequenzen der einzelnen Katzen und ihre Verwandtschaft zueinander schematisch in einem Phylogramm dargestellt.

Abb. 22 Phylogenetischer Stammbaum¹

¹ erstellt mit ClustalW, visualisiert mit TreeView

Je weiter die Aufzweigungen des Baumdiagramms voneinander entfernt liegen, desto unterschiedlicher sind die Sequenzen zwischen den verschiedenen Katzen. Die Strichlänge gibt Auskunft über die relative Anzahl an Sequenzunterschieden zwischen benachbarten Stämmen.

4.7.1.1 Mutationsanalyse

Die Frage, ob die isolierten Coronaviren Deletionen im Nichtstrukturproteingen 3c aufwiesen, sollte ein Vergleich der erhaltenen Sequenzen mit den Referenzstämmen, und hier insbesondere mit dem enteralen Coronavirus FECV-6, ergeben. Bei 11 von 19 Katzen mit vollständig auswertbaren Sequenzdaten zu ORF 3c konnten Deletionen von 1 bis zu 56 Basen im Vergleich zum FECV gefunden werden. Sie lagen nicht an einheitlichen Lokalisationen vor. Eine schematische Darstellung der Positionen und Größe der Deletionen zeigt Abbildung 23. Eine Übersicht über die Sequenzen aller Katzen beinhaltet Tabelle 14 im Anhang.

Beim Sequenzvergleich mit den Referenzstämmen fiel auf, dass die ersten 100 Basen der erhaltenen Sequenzen so viele Unterschiede zum Typ II-Stamm FIPV 79-1146 aufwiesen, dass keine übereinstimmende Basenordnung zum Vergleich möglich war. Die zum 3'-Ende folgenden Basen stimmten durchschnittlich zu 88 % mit FIPV-79-1146 überein. Mit dem Typ I-Stamm FIPV Black konnte dagegen eine durchschnittlich rund 95 %ige Übereinstimmung festgestellt werden.

S-219/09

S-284/09

Del. 2Nt Del. 18 Nt

Pos. 263+264 Pos. 361-378

S-448/09

S-1010/09

S-1129/09-9 (Niere)

S-186/10

Del. 3 Nt

S-367/10 Del. 5 Nt Pos. 291-295

S-1349/10

S-1448/10-2 (Netz), -6 (Darmlymphknoten)

S-1448/10-9 (Niere), -10 (Lunge), -11 (ZNS)

Abb. 23 Deletionen in den Sequenzen der isolierten FCoV

4.7.2 Sequenzierungsergebnisse von ORF 7b

Beim 7b-Gen fand sich zwar eine deutlich höhere Übereinstimmungsrate zwischen den Sequenzen aus verschiedenen Organen als bei ORF 3c, allerdings traten auch hier immer wieder Einzelbasenunterschiede zwischen Isolaten aus verschiedenen Geweben auf (Tabelle 15). Die Länge des Gens wies mit Ausnahme der Isolate aus der Katze S-1221/08 konstant 621 Basen auf. Im letzteren Fall war ORF 7b nur 615 Basen lang, bedingt durch zwei Deletionen an den Positionen 27-29 sowie 303-305 (Abb. 24).

S-1221/08

Abb. 24 Deletionen in der Sequenz von ORF 7b

Der Vergleich des 7b-Gens der aus den Katzen stammenden Isolaten mit den Referenzstämmen ergab eine durchschnittlich 91 %ige Übereinstimmung sowohl mit FIPV Black als auch FIPV 79-1146.

Abbildung 25 zeigt ausgewählte Sequenzvergleiche des 7b-Gens.

S-1190/09

S-1190/09-6_7b	${\tt ATGATTGCTGTACTCCTTGTGTGTTTTTCTCTTTGGCTAATGGAATTAAAGCTACCACTGCG}$	60
S-1190/09-7_7b	${\tt ATGATTGCTGTACTCCTTGTGTGTTTTCTCTTTGGCTAATGGAATTAAAGCTACCACTGCG}$	60
S-1190/09-4_7b	${\tt ATGATTGCTGTACTCCTTGTGTGTTTTCTCTTTGGCTAATGGAATTAAAGCTACCACTGCG}$	60
S-1190/09-3_7b	${\tt ATGATTGCTGTACTCCTTGTGTGTTTTCTCTTTGGCTAATGGAATTAAAGCTACCACTGCG}$	60
S-1190/09-1_7b	${\tt ATGATTGCTGTACTCCTTGTGTGTTTTCTCTTTGGCTAATGGAATTAAAGCTACCACTGCG}$	60
S-1190/09-8_7b	${\tt ATGATTGCTGTACTCCTTGTGTGTTTTCTCTTTGGCTAATGGAATTAAAGCTACCACTGCG}$	60
S-1190/09-5_7b	${\tt ATGATTGCTGTACTCCTTGTGTGTTTTCTCTTTGGCTAATGGAATTAAAGCTACCACTGCG}$	60
S-1190/09-2_7b	${\tt ATGATTGCTGTACTCCTTGTGTGTTTTCTCTTTGGCTAATGGAATTAAAGCTACCACTGCG}$	60
	* * * * * * * * * * * * * * * * * * * *	
S-1190/09-6_7b	${\tt CAAAACGACCTTCACGAACACCCAGTCCTAACTTGGGAATGGTTGCAACATTTCATAGGA$	120
S-1190/09-7_7b	${\tt CAAAACGACCTTCACGAACACCCAGTCCTAACTTGGGAATGGTTGCAACATTTCATAGGA$	120
S-1190/09-4_7b	${\tt CAAAACGACCTTCACGAACACCCAGTCCTAACTTGGGAATGGTTGCAACATTTCATAGGA$	120
S-1190/09-3_7b	${\tt CAAAACGACCTTCACGAACACCCAGTCCTAACTTGGGAATGGTTGCAACATTTCATAGGA$	120
S-1190/09-1_7b	${\tt CAAAACGACCTTCACGAACACCCAGTCCTAACTTGGGAATGGTTGCAACATTTCATAGGA$	120
S-1190/09-8_7b	${\tt CAAAACGACCTTCACGAACACCCAGTCCTAACTTGGGAATGGTTGCAACATTTCATAGGA$	120
S-1190/09-5_7b	${\tt CAAAACGACCTTCACGAACACCCAGTCCTAACTTGGGAATGGTTGCAACATTTCATAGGA$	120
S-1190/09-2_7b	${\tt CAAAACGACCTTCACGAACACCCAGTCCTAACTTGGGAATGGTTGCAACATTTCATAGGA$	120
	* * * * * * * * * * * * * * * * * * * *	

S-1190/09-6_7b	CACACTCTTTACATTACTACACACCAGGTCTTAGCACTACCGCTTGGATCTCGTGTTGAG	180
S-1190/09-7_7b	CACACTCTTTACATTACTACACCACGGTCTTAGCACTACCGCTTGGATCTCGTGTTGAG	180
S-1190/09-4 7b	CACACTCTTTACATTACTACACCACGGTCTTAGCACTACCGCTTGGATCTCGTGTTGAG	180
s-1190/09-3 7b	CACACTCTTTACATTACTACACACCAGGTCTTAGCACTACCGCTTGGATCTCGTGTTGAG	180
$s_{-1100/00-1}$ 7b		100
S-1190/09-1_7D		100
S-1190/09-8_7D	CACACICITIACATIACIACACCACCAGGICITAGCACIACGCITIGGATCICGIGITGAG	180
S-1190/09-5_7b	CACACTCTTTACATTACTACACCACCAGGTCTTAGCACTACCGCTTGGATCTCGTGTTGAG	180
S-1190/09-2_7b	CACACTCTTTACATTACTACACCACCAGGTCTTAGCACTACCGCTTGGATCTCGTGTTGAG	180

		040
S-1190/09-6_7D	I GIGAGGIAI I GAAGGII I I IAAI I GCACGIGGCCI GGII I I CAAAAI CCI GCACAI GAI	240
S-1190/09-7_76	TGTGAGAGTATTGAAGGTTTTTAATTGCACGTGGCCTGGTTTTTCAAAATCCTGCACATGAT	240
S-1190/09-4_7b	TGTGAGAGTATTGAAGGTTTTAATTGCACGTGGCCTGGTTTTCAAAATCCTGCACATGAT	240
S-1190/09-3_7b	TGTGAGAGTATTGAAGGTTTTAATTGCACGTGGCCTGGTTTTCAAAATCCTGCACATGAT	240
S-1190/09-1_7b	TGTGAGAGTATTGAAGGTTTTAATTGCACGTGGCCTGGTTTTCAAAATCCTGCACATGAT	240
S-1190/09-8_7b	TGTGAGAGTATTGAAGGTTTTAATTGCACGTGGCCTGGTTTTCAAAATCCTGCACATGAT	240
S-1190/09-5 7b	TGTGAGAGTATTGAAGGTTTTAATTGCACGTGGCCTGGTTTTCAAAATCCTGCACATGAT	240
S = 1190/09 = 2.7b	TGTGAGAGTATTGAAGGTTTTAATTGCACGTGGCCTGGTTTTCAAAATCCTGCACATGAT	240
5 1170,07 1_72	*****	210
S-1190/09-6_7b	CACATTGATTTTTATTTTGACCTTTCCAACTCTTTCTATTCCTTTGTAGATAATTTCTAT	300
S-1190/09-7_7b	CACATTGATTTTTATTTTGACCTTTCCAACTCTTTCTATTCCTTTGTAGATAATTTCTAT	300
S-1190/09-4_7b	CACATTGATTTTTATTTTGACCTTTCCAACTCTTTCTATTCCTTTGTAGATAATTTCTAT	300
S-1190/09-3 7b	CACATTGATTTTTTTTTTTTTTTCCAACTCTTTCTATTCCTTTGTAGATAATTTCTAT	300
s-1190/09-1 7b	CACATTGATTTTTATTTTGACCTTTCCAACTCTTTCTATTCCTTTGTAGATAATTTCTAT	300
S = 1190/09 = 8.7b	ᡥ᠋᠘ᢕ᠋᠋ᠴ᠋ᡎ᠋ᡎᡎᡎᡎᡎ᠋ᠴ᠋ᠴ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ᠘ᡁ	300
S = 1190/09 = 5		200
S-1190/09-5_7D		200
S-1190/09-2_7D	CACATTGATTTTTTTTTGACCTTTTCCAACTCTTTTCTATTCCTTTGTAGATAATTTCTAT	300
S-1190/09-6_7b	GTTGTAGGTGAGGGAAATCAAAGAGTTAATCTTAGATTAGTTGGTGCTGTGCCAAAACAA	360
S-1190/09-7_7b	GTTGTAGGTGAGGGAAATCAAAGAGTTAATCTTAGATTAGTTGGTGCTGTGCCAAAACAA	360
S-1190/09-4_7b	GTTGTAGGTGAGGGAAATCAAAGAGTTAATCTTAGATTAGTTGGTGCTGTGCCAAAACAA	360
s-1190/09-3 7b	GTTGTAGGTGAGGGAAATCAAAGAGTTAATCTTAGATTAGTTGGTGCTGTGCCAAAACAA	360
S = 1190/09 = 1.7b	<u> <u> </u> </u>	360
S = 1190/09 = 8.7b		360
S = 1190/09 = 5		260
g 1100/09-5_7b		300
5-1190/09-2_70	GIIGIAGGIGAGGAAAICAAAGAGIIAAICIIAGAIIAGIIGGIGCIGIGCCAAAACAA	300
S-1190/09-6_7b	AAGAGATTAAATGTTGGTTGTCATACATCATTTGCTGTTGACCTTCCATTTGGAACTCAG	420
S-1190/09-7_7b	AAGAGATTAAATGTTGGTTGTCATACATCATTTGCTGTTGACCTTCCATTTGGAACTCAG	420
S-1190/09-4 7b	AAGAGATTAAATGTTGGTTGTCATACATCATTTGCTGTTGACCTTCCATTTGGAACTCAG	420
s-1190/09-3 7b	AAGAGATTAAATGTTGGTTGTCATACATCATTTGCTGTTGACCTTCCATTTGGAACTCAG	420
S = 1190/09 = 1.7b	ΔΔĊΔĊŦͲΔΔΔͲĊŦͲĊĊŢĊΔͲΔĊΔͲĊΔͲͲĊĊŢĊŢŢĊΔĊĊŢŦĊΔĊĊŢŢĊĊΔŢŢĊĊĊ	420
$s_{-1190/09-8}$ 7b		420
S = 1100/00 = 0 - 7b		420
S-1190/09-5_7D		420
S-1190/09-2_7D	AAGAGATTAAATGTTGGTTGTCATACATCATTTGCTGTTGACCTTCCATTTGGAACTCAG	420
S-1190/09-6_7b	TTATACCATGACAGAGATTTTCAACACCCTGTTAATGGTAGACATTTAGATTGTACTCAC	480
s-1190/09-7 ⁻ 7b	TTATACCATGACAGAGATTTTCAACACCCTGTTAATGGTAGACATTTAGATTGTACTCAC	480
S = 1190/09 = 4.7b	ͲͲϪͲϪϹϹϪͲϤϪϹϪϹϪϹϪͲͲͲͲϹϪϪϹϪϹϹϹͲϢͲͲϪϪͲϢϢͲϪϢϪϹϪͲͲͲϪϢϪͲͲϢͲϪϹϪϹ	480
$S_{-1190/00-3}$ 7h	ͲͲϪͲϪϹͶϨͶϨϤϪϹϪϹϪϨͲͲͲͲϹͶϪϤϽϹϤϹϤͲϹͲͲͶͶͲϤϹͲͶϤϪϤϪͲͲͲͶϪͲͲϹͲϤϪϤ	100
S-1190/09-3_7D		400
S-1190/09-1_76	TTATACCATGACAGAGATTTTCAACACCCTGTTAATGGTAGACATTTAGATTGTACTCAC	480
S-1190/09-8_7b	TTATACCATGACAGAGATTTTCAACACCCTGTTAATGGTAGACATTTAGATTGTACTCAC	480
S-1190/09-5_7b	TTATACCATGACAGAGATTTTCAACACCCTGTTAATGGTAGACATTTAGATTGTACTCAC	480
S-1190/09-2_7b	${\tt TTATACCATGACAGAGATTTTCAACACCCTGTTAATGGTAGACATTTAGATTGTACTCAC$	480

S-1190/09-6 7b	Ϫ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	540
S = 1100/00 = 0 = 75		510
5-1190/09-/_/D		540
S-1190/09-4_7b	AGAGTGTACTTTGTGAAGTACTGTCCACACACCTGCATGGTTATTGCTTTAATGAGAAG	540
S-1190/09-3_7b	AGAGTGTACTTTGTGAAGTACTGTCCACACAACCTGCATGGTTATTGCTTTAATGAGAAG	540
S-1190/09-1_7b	AGAGTGTACTTTGTGAAGTACTGTCCACACAACCTGCATGGTTATTGCTTTAATGAGAAG	540
S-1190/09-8_7b	AGAGTGTACTTTGTGAAGTACTGTCCACACAACCTGCATGGTTATTGCTTTAATGAGAAG	540
S-1190/09-5_7b	AGAGTGTACTTTGTGAAGTACTGTCCACACAACCTGCATGGTTATTGCTTTAATGAGAAG	540
S-1190/09-2_7b	AGAGTGTACTTTGTGAAGTACTGTCCACACAACCTGCATGGTTATTGCTTTAATGAGAAG	540

S-1190/09-6_7b	CTTAAGGTTTATGACCTGAAGCAACTCAGAAGCAAGAAGGTCTTCGAAAAACTTAACCAA	600
S-1190/09-7_7b	CTTAAGGTTTATGACCTGAAGCAACTCAGAAGCAAGAAGGTCTTCGAAAAACTTAACCAA	600
S-1190/09-4_7b	CTTAAGGTTTATGACCTGAAGCAACTCAGAAGCAAGAAGGTCTTCGAAAAACTTAACCAA	600
S-1190/09-3_7b	CTTAAGGTTTATGACCTGAAGCAACTCAGAAGCAAGAAGGTCTTCGAAAAACTTAACCAA	600
S-1190/09-1_7b	CTTAAGGTTTATGACCTGAAGCAACTCAGAAGCAAGAAGGTCTTCGAAAAACTTAACCAA	600
S-1190/09-8_7b	CTTAAGGTTTATGACCTGAAGCAACTCAGAAGCAAGAAGGTCTTCGAAAAACTTAACCAA	600
S-1190/09-5_7b	CTTAAGGTTTATGACCTGAAGCAACTCAGAAGCAAGAAGGTCTTCGAAAAACTTAACCAA	600
S-1190/09-2_7b	CTTAAGGTTTATGACCTGAAGCAACTCAGAAGCAAGAAGGTCTTCGAAAAACTTAACCAA	600

S-1190/09-6_7b	CATCATAAAATTGAGTTATAA 621	
S-1190/09-7_7b	CATCATAAAATTGAGTTATAA 621	
S-1190/09-4_7b	CATCATAAAATTGAGTTATAA 621	
S-1190/09-3_7b	CATCATAAAATTGAGTTATAA 621	
S-1190/09-1_7b	CATCATAAAATTGAGTTATAA 621	
S-1190/09-8_7b	CATCATAAAATTGAGTTATAA 621	
S-1190/09-5_7b	CATCATAAAATTGAGTTATAA 621	
S-1190/09-2_7b	CATCATAAAATTGAGTTATAA 621	
	* * * * * * * * * * * * * * * * * * * *	

Abb. 25a Identische Sequenz von ORF 7b in allen Geweben¹

S-1094/09

S-1094/09-2_7b	CTTGGATCT	180
S-1094/09-3_7b	CTTGGATCT	180
S-1094/09-8_7b	CTTGGATCT	180
S-1094/09-10_7b	CTTGGATCT	180
S-1094/09-7_7b	CTTGGATCT	180
S-1094/09-6_7b	CTTGGATCT	180
S-1094/09-5_7b	CTTGGATCT	180
S-1094/09-9_7b	CTTGAATCT	180
S-1094/09-4_7b	CTTGGATCT	180

Abb. 25b Sequenz von ORF 7b überwiegend identisch, Auftreten von 1 Basenunterschied¹

S-1378/08

S-1378/08-2_7b S-1378/08-6_7b S-1378/08-4_7b	GAATCAAAG 60 GAATCAAAG 60 GAATTAAAG 60 *******.	
S-1378/08-2_7b S-1378/08-6_7b S-1378/08-4_7b	CAACATGCTCCTTCCTAACTTGGGAGTTATTGCAACGTTTTGTGGGA CAACATGCTCCTTCCTAACTTGGGAGTTATTGCAACGTTTTGTGGGA CGATATGATCCTTCCTTACCTGGGAATTGTTGCAACATTTCATAGGA *.*.***.***************************	120 120 120
S-1378/08-2_7b S-1378/08-6_7b S-1378/08-4_7b	CACACTCGATCACGTGTTGAA 180 CACACTCGATCACGTGTTGAA 180 CATACTCGATCTCGTGTCGAA 180 **.*****************	
S-1378/08-2_7b S-1378/08-6_7b S-1378/08-4_7b	GTATTAGAGG 240 GTATTAGAGG 240 GTATAGGAGG 240 *************	
S-1378/08-2_7b S-1378/08-6_7b S-1378/08-4_7b	TTGATTTTTTTTCTAATCTAGATACTTT 300 TTGATTTTTTTTCTAATCTAGATACTTT 300 TTGACTTTTTTTCCAATCTAGACACTTT 300 *******.****************************	
S-1378/08-2_7b S-1378/08-6_7b S-1378/08-4_7b	ATTTTAGGGAATTAACCTTAGGTTAG 360 ATTTTAGGGAATTAACCTTAGGTTAG 360 ATTCTAGGGAATCAATCTTAGATTAG 360 ****	

S-1378/08-2_7b S-1378/08-6_7b S-1378/08-4_7b	TTGTTATACCTGTCGACCTTCCTTTTGGGACTCAG TTGTTATACCTGTCGACCTTCCTTTTGGGACTCAG TTGTCATACCTGTTGACCTTCCATTTGGGACCCAG ******	420 420 420
S-1378/08-2_7b S-1378/08-6_7b S-1378/08-4_7b	ACCACGACAGGGATTTTCAACACCC 480 ACCACGACAGGGATTTTCAACACCC 480 ACCATGACAGAGATTTTCAATACCC 480 *******.*****	
S-1378/08-2_7b S-1378/08-6_7b S-1378/08-4_7b	CTTTGATGAGAAG 540 CTTTGATGAGAAG 540 CTTTAATGAGAAG 540 *******	
S-1378/08-2_7b S-1378/08-6_7b S-1378/08-4_7b	ACCACCATTATAAAA 610 ACCACCATTATAAAA 610 ACCAACATCATAAAA 610 *******.***.	

Abb. 25c Größere Unterschiede (> 10 Basen) zwischen Sequenzen aus verschiedenen Geweben¹

¹ Identische Basen sind mit "*", Unterschiede mit "." gekennzeichnet.

Die Isolate aus dem Darm (S-1378/08-4) unterschieden sich an 32/621 Positionen von denen aus dem Netz (S-1378/08-2) und dem Mesenteriallymphknoten (S-1378/08-6). Die zusätzliche Sequenzierung mit dem Reverse Primer FIP7bR konnte die von den anderen beiden Geweben abweichenden Basen in den Darmisolaten bestätigen.

Wie auch bei ORF 3c ergab der Vergleich von Sequenzen aus unterschiedlichen Tieren eine deutlich höhere Variabilität als innerhalb ein und derselben Katze.

4.8 Aminosäuresequenzen

Mit Hilfe des webbasierten Programms ExPASy Translate Tool (Swiss Institute of Bioinformatics, Schweiz) wurden die Nukleinsäuresequenzen in die entsprechenden Aminosäuresequenzen übersetzt. Nur so konnte eine Aussage darüber getroffen werden, ob sich etwaige Mutationen auf die Synthese eines potentiellen Genprodukts von ORF 3c beziehungsweise ORF 7b auswirkten.

4.8.1 Aminosäuresequenzen von ORF 3c

Bei einer Genlänge von 714 Basen ist eine Sequenz von 238 Aminosäuren zu erwarten, wie es auch bei dem felinen enteralen Coronavirus FECV-6 der Fall ist. Von den untersuchten FIP-Katzen fand sich bei insgesamt 10/19 ebenfalls diese Aminosäuresequenzlänge. Es gab jedoch bei einzelnen dieser Katzen auch Gewebe, deren Sequenzen kürzer waren (siehe Tabelle 14). Die Isolate aus den übrigen Tieren wiesen Sequenzen von 219-237 Aminosäuren auf. Allerdings zeigten sich bei 14/19 Katzen in den verschiedenen Isolaten innerhalb der Sequenz auftretende Stopcodons, die zum Kettenabbruch bei der Proteinsynthese führen. Durchgehende Sequenzen ohne Stopcodons fanden sich bei den Katzen S-743/08, S-1004/08 mit Ausnahme des Isolates aus dem Zwerchfell, S-1378/08, S-222/09, S-1190/09 und S-186/10. Bei der Katze S-518/10 war nur die Darmsequenz frei von Stopcodons innerhalb des Gens. Abbildung 26 stellt Beispiele der erhaltenen Aminosäuresequenzdaten zusammen. Eine Übersicht über die Aminosäuresequenzen aller Katzen ist in Tabelle 14 im Anhang dargestellt.

S-1190/09

S-1190/09-6as	MIGGLFLNTLSFIVTNQHVIVNNTPHFNSIAQQHHVVSASIKSFHLEFSIAVLFVLFLAL	60
S-1190/09-7as	MIGGLFLNTLSFIVTNQHVIVNNTPHFNSIAQQHHVVSASIKSFHLEFSIAVLFVLFLAL	60
S-1190/09-5as	$\tt MIGGLFLNTLSFIVTNQHVIVNNTPHFNSIAQQHHVVSASIKSFHLEFSIAVLFVLFLAL$	60
S-1190/09-3as	$\tt MIGGLFLNTLSFIVTNQHVIVNNTPHFNSIAQQHHVVSASIKSFHLEFSIAVLFVLFLAL$	60
S-1190/09-2as	MIGGLFLNTLSFIVTNQHVIVNNTPHFNSIAQQHHVVSASIKSFHLEFSIAVLFVLFLAL	60
S-1190/09-1as	MIGGLFLNTLSFIVTNQHVIVNNTPHFNSIAQQHHVVSASIKSFHLEFSIAVLFVLFLAL	60
S-1190/09-4as	$\tt MIGGLFLNTLSFIVTNQHVIVNNTPHFNSIAQQHHVVSASIKSFHLEFSIAVLFVLFLAL$	60
S-1190/09-8as	$\tt MIGGLFLNTLSFIVTNQHVIVNNTPHFNSIAQQHHVVSASIKSFHLEFSIAVLFVLFLAL$	60

S-1190/09-6as	YRSTNFKVCVGVLMFKIVSMTLIGPMLVAFGYYIDGIVTTTVLALRFVYLAYFWYVNSRF	120
S-1190/09-7as	YRSTNFKVCVGVLMFKIVSMTLIGPMLVAFGYYIDGIVTTTVLALRFVYLAYFWYVNSRF	120
S-1190/09-5as	YRSTNFKVCVGVLMFKIVSMTLIGPMLVAFGYYIDGIVTTTVLALRFVYLAYFWYVNSRF	120
S-1190/09-3as	YRSTNFKVCVGVLMFKIVSMTLIGPMLVAFGYYIDGIVTTTVLALRFVYLAYFWYVNSRF	120
S-1190/09-2as	YRSTNFKVCVGVLMFKIVSMTLIGPMLVAFGYYIDGIVTTTVLALRFVYLAYFWYVNSRF	120
S-1190/09-1as	YRSTNFKVCVGVLMFKIVSMTLIGPMLVAFGYYIDGIVTTTVLALRFVYLAYFWYVNSRF	120
S-1190/09-4as	YRSTNFKVCVGVLMFKIVSMTLIGPMLVAFGYYIDGIVTTTVLALRFVYLAYFWYVNSRF	120
S-1190/09-8as	YRSTNFKVCVGVLMFKIVSMTLIGPMLVAFGYYIDGIVTTTVLALRFVYLAYFWYVNSRF	120
	* * * * * * * * * * * * * * * * * * * *	

S-1190/09-6as	EFILYNTTTLMFVHDRVAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIR	G 180
S-1190/09-7as	EFILYNTTTLMFVHDRVAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIR	G 180
S-1190/09-5as	EFILYNTTTLMFVHDRVAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIR	G 180
S-1190/09-3as	EFILYNTTTLMFVHDRVAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIR	G 180
S-1190/09-2as	EFILYNTTTLMFVHDRVAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIR	G 180
S-1190/09-1as	EFILYNTPTLMFVHDRVAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIR	G 180
S-1190/09-4as	EFILYNTPTLMFVHDRVAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIR	G 180
S-1190/09-8as	EFILYNTPTLMFVHDRVAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIR	G 180
	*******	*
S-1190/09-6as	LVRADLTVVRAVELLNGDFIYIFSQEAVVGVYDAAFSQAVINEIDLKEEEERVYDVS-	238
S-1190/09-7as	LVRADLTVVRAVELLNGDFIYIFSQEAVVGVYDAAFSQAVINEIDLKEEEERVYDVS-	238
S-1190/09-5as	LVRADLTVVRAVELLNGDFIYIFSQEAVVGVYDAAFSQAVINEIDLKEEEERVYDVS-	238
S-1190/09-3as	LVRADLTVVRAVELLNGDFIYIFSQEAVVGVYDAAFSQAVINEIDLKEEEERVYDVS-	238
S-1190/09-2as	LVRADLTVVRAVELLNGDFIYIFSQEAVVGVYDAAFSQAVINEIDLKEEEERVYDVS-	238
S-1190/09-1as	LVRADLTVVRAVELLNGDFIYIFSQEAVVGVYDAAFSQAVINEIDLKEEEERVYDVS-	238
S-1190/09-4as	LVRADLTVVRAVELLNGDFIYIFSQEAVVGVYDAAFSQAVINEIDLKEEEERVYDVS-	238
S-1190/09-8as	LVRADLTVVRAVELLNGDFIYIFSQEAVVGVYDAAFSQAVINEIDLKEEEERVYDVS-	238

Abb. 26a Sequenz von 238 Aminosäuren, durchlaufende Sequenz ohne Stopcodon^{1, 2}

S-1074/08

S-1074/08-10as	MIGGLFLNTLSFIVTN-HVVVNNTPHLQTVVQQHHVVSANIKSFHLEFSI	49
S-1074/08-11as	MIGGLFLNTLSFIVTN-HVVVNNTPHLQTVVQQHHVVSANIKSFHLEFSI	49
S-1074/08-6as	MIGGLFLNTLSFIVTN-HVVVNNTPHLQTVVQQHHVVSANIKSFHLEFSI	49
S-1074/08-2as	MIGGLFLNTLSFIVTN-HVVVNNTPHLQTVVQQHHVVSANIKSFHLEFSI	49
S-1074/08-3as	MIGGLFLNTLSFIVTN-HVVVNNTPHLQTVVQQHHVVSANIKSFHLEFSI	49
S-1074/08-7as	MIGGLFLNTLSFIVTN-HVVVNNTPHLQTVVQQHHVVSANIKSFHLEFSI	49
S-1074/08-8as	MIGGLFLNTLSFIVTN-HVVVNNTPHLQTVVQQHHVVSANIKSFHLEFSI	49

S-1074/08-10as	AVLFVLFLALYRSTNFKVCVGVLMFKIVSMTLIGPMLIAFDYYIDGIVTT	99
S-1074/08-11as	AVLFVLFLALYRSTNFKVCVGVLMFKIVSMTLIGPMLIAFDYYIDGIVTT	99
S-1074/08-6as	AVLFVLFLALYRSTNFKVCVGVLMFKIVSMTLIGPMLIAFDYYIDGIVTT	99
S-1074/08-2as	AVLFVLFLALYRSTNFKVCVGVLMFKIVSMTLIGPMLIAFDYYIDGIVTT	99
S-1074/08-3as	AVLFVLFLALYRSTNFKVCVGVLMFKIVSMTLIGPMLIAFDYYIDGIVTT	99
S-1074/08-7as	AVLFVLFLALYRSTNFKVCVGVLMFKIVSMTLIGPMLIAFDYYIDGIVTT	99
S-1074/08-8as	AVLFVLFLALYRSTNFKVCVGVLMFKIVSMTLIGPMLIAFDYYIDGIVTT	99

S-1074/08-10as	TVLALRFLYLAYFWYVNSRFEFILYNTTTLMFVHDRAAPFMRSSHGSIYV	149
S-1074/08-11as	TVLALRFLYLAYFWYVNSRFEFILYNTTTLMFVHDRAAPFMRSSHGSIYV	149
S-1074/08-6as	TVLALRFLYLAYFWYVNSRFEFILYNTTTLMFVHDRAAPFMRSSHGSIYV	149
S-1074/08-2as	TVLALRFLYLAYFWYVNSRFEFILYNTTTLMFVHDRAAPFMRSSHGSIYV	149
S-1074/08-3as	TVLALRFLYLAYFWYVNSRFEFILYNTTTLMFVHDRAAPFMRSSHGSIYV	149
S-1074/08-7as	TVLALRFLYLAYFWYVNSRFEFILYNTTTLMFVHDRAAPFMRSSHGSIYV	149
S-1074/08-8as	TVLALRFLYLAYFWYVNSRFEFILYNTTTLMFVHDRAAPFMRSSHGSIYV	149

S-1074/08-10as	TLYGGINYMFVNDLTLHFVDPMLVGIAIRGLVRADLTVVRAVELLNGDFI	199
S-1074/08-11as	TLYGGINYMFVNDLTLHFVDPMLVGIAIRGLVRADLTVVRAVELLNGDFI	199
S-1074/08-6as	TLYGGINYMFVNDLTLHFVDPMLVGIAIRGLVRADLTVVRAVELLNGDFI	199
S-1074/08-2as	TLYGGINYMFVNDLTLHFVDPMLVGIAIRGLVRADLTVVRAVELLNGDFI	199
S-1074/08-3as	TLYGGINYMFVNDLTLHFVDPMLVGIAIRGLVRADLTVVGAVELLNGDFI	199
S-1074/08-7as	TLYGGINYMFVNDLTLHFVDPMLVGIAIRGLVRADLTVVGAVELLNGDFI	199
S-1074/08-8as	TLYGGINYMFVNDLTLHFVDPMLVGIAIRGLVRADLTVVGAVELLNGDFI	199

S-1074/08-10as	YIFSQEAVVGVYNAAFSQAVINEIDLKEEEERVYDVS- 238	
S-1074/08-11as	YIFSQEAVVGVYNAAFSQAVINEIDLKEEEERVYDVS- 238	
S-1074/08-6as	YIFSQEAVVGVYNAAFSQAVINEIDLKEEEERVYDVS- 238	
S-1074/08-2as	YIFSQEAVVGVYNAAFSQAVINEIDLKEEEERVYDVS- 238	
S-1074/08-3as	YIFSQEAVVGVYNAAFSQAVINEIDLKEEEERVYDVS- 238	
S-1074/08-7as	YIFSQEAVVGVYNAAFSQAVINEIDLKEEEERVYDVS- 238	
S-1074/08-8as	YIFSQEAVVGVYNAAFSQAVINEIDLKEEEERVYDVS- 238	
	* * * * * * * * * * * * * * * * * * * *	

Abb. 26b Sequenz von 238 Aminosäuren, mit dazwischen liegendem Stopcodon^{1, 2}

S-186/10

S-186/10-2as	MIGGLFLNTLSFIVTNHHVIVNNTPHVNSIVQQHHVVSASIKSFHLEFSIAVLFVLFLAL	60
S-186/10-3as	MIGGLFLNTLSFIVTNHHVIVNNTPHVNSIVQQHHVVSASIKSFHLEFSIAVLFVLFLAL	60
S-186/10-4as	MIGGLFLNTLSFIVTNHHVIVNNTPHVNSIVQQHHVVSASIKSFHLEFSIAVLFVLFLAL	60
S-186/10-5as	MIGGLFLNTLSFIVTNHHVIVNNTPHVNSIVQQHHVVSASIKSFHLEFSIAVLFVLFLAL	60
S-186/10-7as	MIGGLFLNTLSFIVTNHHVIVNNTPHVNSIVQQHHVVSASIKSFHLEFSIAVLFVLFLAL	60
S-186/10-6as	MIGGLFLNTLSFIVTNHHVIVNNTPHVNSIVQQHHVVSASIKSFHLEFSIAVLFVLFLAL	60

0 106/10 0==		1 2 0
S-186/10-2as	YRSINFKVCVSVLMFKIVSMILIGPMLIAFGYYIDGIVIIIVLALRFIYLAYFWYVNSRF	120
S-186/10-3as	YRSINFKVCVSVLMFKIVSMILIGPMLIAFGYYIDGIVIIIVLALRFIYLAYFWYVNSRF	120
S-186/10-4as	YRSTNFKVCVSVLMFKIVSMTLIGPMLIAFGYYIDGIVTTTVLALRFIYLAYFWYVNSRF	120
S-186/10-5as	YRSTNFKVCVSVLMFK1VSMTL1GPML1AFGYY1DG1VTTTVLALRF1YLAYFWYVNSRF	120
S-186/10-7as	YRSTNFKVCVSVLMFKIVSMTLIGPMLIAFGYYIDGIVTTTVLALRFIYLAYFWYVNSRF	120
S-186/10-6as	YRSTNFKVCVSVLMFKIVSMTLIGPMLIAFGYYIDGIVTTTVLALRFIYLAYFWYVNSRF	120

S-186/10-2as	EFILYNTTTLMFVHDRAAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIRG	180
S-186/10-3as	EFILYNTTTLMFVHDRAAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIRG	180
S-186/10-4as	EFILYNTTTLMFVHDRAAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIRG	180
S-186/10-5as	EFILYNTTTLMFVHDRAAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIRG	180
S-186/10-7as	EFILYNTTTLMFVHDRAAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIRG	180
S-186/10-6as	EFILYNTTTLMFVHDRAAPFMRSSHGSIYVTLYGGINYMFVNDLTLHFVDPMLVGIAIRG	180

- 105/10 0		_
S-186/10-2as	LVRADLTVVRAVELLNGDFIYIFSQEAVGVYNAAFSQAVINEIDLKEEEERVYDVS- 23	7
S-186/10-3as	LVRADLTVVRAVELLNGDFIYIFSQEAVGVYNAAFSQAVINEIDLKEEEERVYDVS- 23	7
S-186/10-4as	LVRADLTVVRAVELLNGDFIYIFSQEAVGVYNAAFSQAVINEIDLKEEEERVYDVS- 23	7
S-186/10-5as	LVRADLTVVRAVELLNGDFIYIFSQEAVGVYNAAFSQAVINEIDLKEEEERVYDVS- 23	7
S-186/10-7as	LVRADLTVVRAVELLNGDFIYIFSQEAVGVYNAAFSQAVINEIDLKEEEERVYDVS- 23	7
S-186/10-6as	LVRADLTVVRAVELLNGDFIYIFSQEAVGVYNAAFSQAVINEIDLKEEEERVYDVS- 23	7
	* * * * * * * * * * * * * * * * * * * *	

Abb. 26c Sequenz von 237 Aminosäuren, durchlaufende Sequenz ohne Stopcodon^{1, 2}

S-284/09

S-284/09-2as	${\tt MIGGLFLNTLSFIVTNQHVVVNNTPHAVSTFQQHHVVNANIKSFHLEFSIAVLFVLFLAL}$	60
S-284/09-3as	${\tt MIGGLFLNTLSFIVTNQHVVVNNTPHAVSTFQQHHVVNANIKSFHLEFSIAVLFVLFLAL}$	60
S-284/09-6as	${\tt MIGGLFLNTLSFIVTNQHVVVNNTPHAVSTFQQHHVVNANIKSFHLEFSIAVLFVLFLAL}$	60
S-284/09-8as	${\tt MIGGLFLNTLSFIVTNQHVVVNNTPHAVSTFQQHHVVNANIKSFHLEFSIAVLFVLFLAL}$	60
S-284/09-9as	${\tt MIGGLFLNTLSFIVTNQHVVVNNTPHAVSTFQQHHVVNANIKSFHLEFSIAVLFVLFLAL}$	60
S-284/09-10as	$\tt MIGGLFLNTLSFIVTNQHVVVNNTPHAVSTFQQHHVVNANIKSFHLEFSIAVLFVLFLAL$	60
S-284/09-11as	$\tt MIGGLFLNTLSFIVTNQHVVVNNTPHAVSTFQQHHVVNANIKSFHLEFSIAVLFVLFLAL$	60

S-284/09-2as	YRITNFKMCVGVLMFKIVSMTLIGPMLSIWLLHRWHCDNNCLSFKIRLLSILLVC-Q-IY	118
S-284/09-3as	YRITNFKMCVGVLMFKIVSMTLIGPMLSIWLLHRWHCDNNCLSFKIRLLSILLVC-Q-IY	118
S-284/09-6as	YRITNFKMCVGVLMFKIVSMTLIGPMLSIWLLHRWHCDNNCLSFKIRLLSILLVC-Q-IY	118
S-284/09-8as	YRITNFKMCVGVLMFKIVSMTLIGPMLSIWLLHRWHCDNNCLSFKIRLLSILLVC-Q-IY	118
S-284/09-9as	YRITNFKMCVGVLMFKIVSMTLIGPMLSIWLLHRWHCDNNCLSFKIRLLSILLVC-Q-IY	118
S-284/09-10as	YRITNFKMCVGVLMFKIVSMTLIGPMLSIWLLHRWHCDNNCLSFKIRLLSILLVC-Q-IY	118
S-284/09-11as	YRITNFKMFVGVLMFKIVSMTLIGPMLSIWLLHRWHCDNNCLSFKIRLLSILLVC-Q-IY	118
	****** ********************************	
S-284/09-2as	NDTNVCT-QSCTVYEKFSRLYLCHIIWRHKLYVRE-SYVAFCRPYACRHSYTWPSSC-SN	175
S-284/09-3as	NDTNVCT-QSCTVYEKFSRLYLCHIIWRHKLYVRE-SYVAFCRPYACRHSYTWPSSC-SN	175
S-284/09-6as	NDTNVCT-QSCTVYEKFSRLYLCHIIWRHKLYVRE-SYVAFCRPYACRHSYTWPSSC-SN	175
S-284/09-8as	NDTNVCT-QSCTVYEKFSRLYLCHIIWRHKLYVRE-SYVAFCRPYACRHSYTWPSSC-SN	175
S-284/09-9as	NDTNVCT-QSCTVYEKFSRLYLCHIIWRHKLYVRE-SYVAFCRPYACRHSYTWPSSC-SN	175
S-284/09-10as	NDTNVCT-QSCTVYEKFSRLYLCHIIWRHKLYVRE-SYVAFCRPYACRHSYTWPSSC-SN	175
S-284/09-11as	NDTNVCT-QSCTVYEKFSRLYLCHIIWRHKLYVRE-SYVAFCRPYACRHSYTWPSSC-SN	175

S-284/09-2as	SC-SS-TSQW-FYLYIFTGGRRRSLQCSLFSCGYKRN-FERRRRTCL-CFL 231	
S-284/09-3as	SC-SS-TSQW-FYLYIFTGGRRRSLQCSLFSCGYKRN-FERRRTCL-CFL 231	
S-284/09-6as	SC-SS-TSQW-FYLYIFTGGRRRSLQCSLFSCGYKRN-FERRRRTCL-CFL 231	
S-284/09-8as	SC-SS-TSQW-FYLYIFTGGRRRSLQCSLFSCGYKRN-FERRRRTCL-CFL 231	
S-284/09-9as	SC-SS-TSQW-FYLYIFTGGRRRSLQCSLFSCGYKRN-FERRRRTCL-CFL 231	
S-284/09-10as	SC-SS-TSQW-FYLYIFTGGRRRSLQCSLFSCGYKRN-FERRRRTCL-CFL 231	
S-284/09-11as	SC-SS-TSQW-FYLYIFTGGRRRSLQCSLFSCGYKRN-FERRRRTCL-CFL 231	
	* * * * * * * * * * * * * * * * * * * *	

Abb. 26d Sequenz von 231 Aminosäuren, mit dazwischen liegenden Stopcodons^{1, 2}

¹ Jeder Großbuchstabe in den Sequenzvergleichen steht dabei für eine Aminosäure (Einbuchstabencode, siehe Abbildung 29, Kapitel 9.2).

²Stopcodons sind mit "-", Sequenzabweichungen mit "." gekennzeichnet.

4.8.1.1 Häufigkeit des Auftretens von Stopcodons bei FECV und FIPV

Die ORF 3c-Sequenzen von 35 FECV (Tabelle 16 im Anhang) wurden auf das Vorhandensein von Stopcodons in der Basensequenz überprüft und mit der gefundenen Häufigkeit von Stopcodons in den isolierten FIPV-Stämmen in Beziehung gesetzt. Während bei 14 der insgesamt 19 Katzen mit vollständig vorliegenden Sequenzdaten Stopcodons innerhalb von 3c gefunden werden konnten, zeigte keiner der untersuchten FECV-Stämme frühzeitige Stopcodons.

	Stopcodon +	Stopcodon -	Gesamt
FIPV	14	5	19
FECV	0	35	35
Gesamt	14	40	54

Abb. 27 Vierfelder-Tafel zur Auswertung des Auftretens von Stopcodons in 3c bei FIPV und FECV

Der exakte Test nach Fisher ergab eine hoch signifikante Häufung von Stopcodons in der Sequenz von 3c bei FIPV im Vergleich zu FECV (p < 0,0001).

In der nachfolgenden Grafik ist zur Übersicht eine Zusammenstellung des Auftretens von Stopcodons und Deletionen der 19 FIP-Katzen dargestellt (Abbildung 28).
		3c-		
	Deletion +	Deletion -	Stopcodon +	Stopcodon -
FIP-Katze				
S-743/08	Х			Х
S-1004/08		X	x (Zw)	x (außer Zw)
S-1074/08		X	Х	
S-1378/08		X		X
S-219/09	X		Х	
S-222/09		X		X
S-284/09	X		Х	
S-448/09	X		Х	
S-1010/09	X		Х	
S-1094/09	X		Х	
S-1129/09	x (Ni)	x (außer Ni)	Х	
S-1190/09		X		Х
S-1300/09		Х	Х	
S-13/10		Х	Х	
S-186/10	X			Х
S-367/10	X		Х	
S-518/10	x (außer Da)) x (Da)	x (außer	Da) x (Da)
S-1349/10	X		Х	
S-1448/10	x (außer Bw) x (Bw)	Х	

Abb. 28: Auftreten von Deletionen und/oder Stopcodons

4.8.2 Aminosäuresequenzen von ORF 7b

Das 621 Basen lange 7b-Gen codiert für ein Protein bestehend aus 207 Aminosäuren. Diese Sequenzlänge fand sich bei 25/26 7b-positiven Katzen. Bei den Isolaten der Katze S-1221/08 war die Sequenz nur 205 Aminosäuren lang. Innerhalb des Gens liegende Stopcodons traten allerdings in keinem Isolat der 26 verschiedenen Katzen auf.

Abbildung 29 stellt ausgewählte Beispiele der Aminosäuresequenzen zusammen. Eine Übersicht über die Aminosäuresequenzen aller Katzen beinhaltet Tabelle 15 im Anhang.

S-1190/09

S-1190/09-1as	MIAVLLVCFLLANGIKATTAQNDLHEHPVLTWEWLQHFIGHTLYITTHQVLALPLGSRVE	60
S-1190/09-2as	MIAVLLVCFLLANGIKATTAQNDLHEHPVLTWEWLQHFIGHTLYITTHQVLALPLGSRVE	60
S-1190/09-3as	MIAVLLVCFLLANGIKATTAQNDLHEHPVLTWEWLQHFIGHTLYITTHQVLALPLGSRVE	60
S-1190/09-4as	MIAVLLVCFLLANGIKATTAQNDLHEHPVLTWEWLQHFIGHTLYITTHQVLALPLGSRVE	60
S-1190/09-5as	MIAVLLVCFLLANGIKATTAQNDLHEHPVLTWEWLQHFIGHTLYITTHQVLALPLGSRVE	60
S-1190/09-6as	MIAVLLVCFLLANGIKATTAQNDLHEHPVLTWEWLQHFIGHTLYITTHQVLALPLGSRVE	60
S-1190/09-8as	MIAVLLVCFLLANGIKATTAQNDLHEHPVLTWEWLQHFIGHTLYITTHQVLALPLGSRVE	60
S-1190/09-7as	MIAVLLVCFLLANGIKATTAQNDLHEHPVLTWEWLQHFIGHTLYITTHQVLALPLGSRVE	60

S-1190/09-1as	CESIEGFNCTWPGFQNPAHDHIDFYFDLSNSFYSFVDNFYVVGEGNQRVNLRLVGAVPKQ	120
S-1190/09-2as	CESIEGFNCTWPGFQNPAHDHIDFYFDLSNSFYSFVDNFYVVGEGNQRVNLRLVGAVPKQ	120
S-1190/09-3as	CESIEGFNCTWPGFQNPAHDHIDFYFDLSNSFYSFVDNFYVVGEGNQRVNLRLVGAVPKQ	120
S-1190/09-4as	CESIEGFNCTWPGFQNPAHDHIDFYFDLSNSFYSFVDNFYVVGEGNQRVNLRLVGAVPKQ	120
S-1190/09-5as	CESIEGFNCTWPGFQNPAHDHIDFYFDLSNSFYSFVDNFYVVGEGNQRVNLRLVGAVPKQ	120
S-1190/09-6as	CESIEGFNCTWPGFQNPAHDHIDFYFDLSNSFYSFVDNFYVVGEGNQRVNLRLVGAVPKQ	120
S-1190/09-8as	CESIEGFNCTWPGFQNPAHDHIDFYFDLSNSFYSFVDNFYVVGEGNQRVNLRLVGAVPKQ	120
S-1190/09-7as	CESIEGFNCTWPGFQNPAHDHIDFYFDLSNSFYSFVDNFYVVGEGNQRVNLRLVGAVPKQ	120

S-1190/09-1as	KRI.NVGCHTSFAVDI.PFCTOI.YHDRDFOHPVNGRHI.DCTHRVYFVKYCPHNI.HGYCFNFK	180
S-1190/09-2as	KRINVGCHTSFAVDI.PFGTOLYHDRDFOHPVNGRHLDCTHRVYFVKYCPHNLHGYCFNEK	180
S-1190/09-3as	KRLNVGCHTSFAVDLPFGTOLYHDRDFOHPVNGRHLDCTHRVYFVKYCPHNLHGYCFNEK	180
S-1190/09-4as	KRINVGCHTSFAVDI.PFGTOLYHDRDFOHPVNGRHLDCTHRVYFVKYCPHNI.HGYCFNEK	180
S-1190/09-5as	KRLNVGCHTSFAVDLPFGTOLYHDRDFOHPVNGRHLDCTHRVYFVKYCPHNLHGYCFNEK	180
S-1190/09-6as	KRLNVGCHTSFAVDLPFGTOLYHDRDFOHPVNGRHLDCTHRVYFVKYCPHNLHGYCFNEK	180
S-1190/09-8as	KRLNVGCHTSFAVDLPFGTOLYHDRDFOHPVNGRHLDCTHRVYFVKYCPHNLHGYCFNEK	180
S-1190/09-7as	KRLNVGCHTSFAVDLPFGTOLYHDRDFOHPVNGRHLDCTHRVYFVKYCPHNLHGYCFNEK	180

S-1190/09-1as	LKVYDLKQLRSKKVFEKLNQHHKIEL- 207	
S-1190/09-2as	LKVYDLKQLRSKKVFEKLNQHHKIEL- 207	
S-1190/09-3as	LKVYDLKQLRSKKVFEKLNQHHKIEL- 207	
S-1190/09-4as	LKVYDLKQLRSKKVFEKLNQHHKIEL- 207	
S-1190/09-5as	LKVYDLKQLRSKKVFEKLNQHHKIEL- 207	
S-1190/09-6as	LKVYDLKQLRSKKVFEKLNQHHKIEL- 207	
S-1190/09-8as	LKVYDLKQLRSKKVFEKLNQHHKIEL- 207	
S-1190/09-7as	LKVYDLKQLRSKKVFEKLNQHHKIEL- 207	
	* * * * * * * * * * * * * * * * * * * *	

Abb. 29a Sequenz von 207 Aminosäuren, identische Sequenz ohne Stopcodon^{1, 2}

S-1378/08

S-1378/08-2as	${\tt MIVVLLVCVFLang} ikattv{\tt QhaphehpvltwellQRFvGhtlyittn{\tt QvlalplgSRve}$	60
S-1378/08-6as	${\tt MIVVLLVCVFLANGIKATTVQHAPHEHPVLTWELLQRFVGHTLYITTNQVLALPLGSRVE}$	60
S-1378/08-4as	${\tt MIVVLLVCVFLANGIKATTVRYDPHEHPVLTWELLQHFIGHTLYITTNQVLALPLGSRVE}$	60

S-1378/08-2as	CESIRGFNCTWPGFQNPAHDHVDFYFDLSNPFYSFVDTFYILGEGNQRINLRLVGAVPKQ	120
S-1378/08-6as	${\tt CESIRGFNCTWPGFQNPAHDHVDFYFDLSNPFYSFVDTFYILGEGNQRINLRLVGAVPKQ}$	120
S-1378/08-4as	${\tt CESIGGFNCTWPGFQNPAHDHVDFYFDLSNPFYSFVDTFYILGEGNQRINLRLVGAVPKQ}$	120
	**** **********************************	
S-1378/08-2as	KRLNVGCYTSFAVDLPFGTQIYHDRDFQHPVSGRHLECTHRVYFVKYCPHNLHGYCFDEK	180
S-1378/08-6as	${\tt KRLNVGCYTSFAVDLPFGTQIYHDRDFQHPVSGRHLECTHRVYFVKYCPHNLHGYCFDEK}$	180
S-1378/08-4as	KRLNVGCHTSFAVDLPFGTQIYHDRDFQYPVSGRHLECTHRVYFVKYCPHNLHGYCFNEK	180

S-1378/08-2as	LKVYNLTQLRSKKVFDRINHHYKTEL- 207	
S-1378/08-6as	LKVYNLTQLRSKKVFDRINHHYKTEL- 207	
S-1378/08-4as	LKVYNLTQLRSKKVFDRINQHHKTEL- 207	

Abb. 29b Sequenz von 207 Aminosäuren, Sequenzabweichungen zwischen Geweben, ohne Stopcodon^{1, 2}

S-1221/08

S-1221/08-2as	MIVVLLVCILANGIKATDVQYNPHEHPVLTWELLQHFVGRTLYITTHQVLALPLGSRVEC	60
S-1221/08-3as	MIVVLLVCILANGIKATDVQYNPHEHPVLTWELLQHFVGRTLYITTHQVLALPLGSRVEC	60
S-1221/08-6as	MIVVLLVCILANGIKATDVQYNPHEHPVLTWELLQHFVGRTLYITTHQVLALPLGSRVEC	60
S-1221/08-4as	MIVVLLVCILANGIKATDVQYNPHEHPVLTWELLQHFVGRTLYITTHQVLALPLGSRVEC	60

S-1221/08-2as	E.SVEGENCTWPGEONPAHDHVDEHEDL,SNDEYSEVDTEYLGEGSORINI,RI,VGAVPKOKR	120
S-1221/08-3as	ESVEGENCTWPGFONPAHDHVDFHFDLSNPFYSFVDTFYLGEGSORINLRLVGAVPKOKR	120
S-1221/08-6as	ESVEGENCTWPGFONPAHDHVDFHFDLSNPFYSFVDTFYLGEGSORINLRLVGAVPKOKR	120
S-1221/08-4as	ESVEGFNCTWPGFONPAHDHVDFHFDLSNPFYSFVDTFYLGEGSORINLRLVGAVPKOKR	120
,	***************************************	
S-1221/08-2as	LNVGCHTSFAVDLPFGTQIYHDKDFQYPVNGRHLECTHRVYFVKYCPYNMHGYCFNEKLK	180
S-1221/08-3as	LNVGCHTSFAVDLPFGTQIYHDKDFQYPVNGRHLECTHRVYFVKYCPYNMHGYCFNEKLK	180
S-1221/08-6as	LNVGCHTSFAVDLPFGTQIYHDKDFQYPVNGRHLECTHRVYFVKYCPYNMHGYCFNEKLK	180
S-1221/08-4as	LNVGCHTSFAVDLPFGTQIYHDKDFQYPVNGRHLECTHRVYFVKYCPYNMHGYCFNEKLK	180

S-1221/08-2ag	VVDLKOLPSKKVEDKLNOHVKTEL- 205	
S 1221/00 205	VYDIKOLOSKATISKINOUVATEL 205	
g_1221/00-5a5	VIDINGINGRAFININGHINING 205	
g_1221/08-4ad	VADI KUI DGKKMEDKI NURAKAEI - 502	
5-1221/00-4a5	**************************************	

Abb. 29c Sequenz von 205 Aminosäuren, identische Sequenz ohne Stopcodon^{1, 2}

¹ Jeder Großbuchstabe in den Sequenzvergleichen steht dabei für eine Aminosäure (Einbuchstabencode, siehe Abbildung 29, Kapitel 9.2).

²Stopcodons sind mit "-", Sequenzabweichungen mit "." gekennzeichnet.

4.9 Geschlechterverteilung der Katzen mit Deletionen und/oder Stopcodons in ORF 3c

Die nachfolgende Abbildung gibt eine Übersicht über das Geschlecht der Katzen mit nachgewiesenen Deletionen beziehungsweise Stopcodons:

Abb. 30 Geschlechterverteilung der FIP-Katzen mit Deletionen/Stopcodons

4.10 Mutationen und pathologisch-anatomische Veränderungen

Es wurde versucht, die bei der Sektion gefundenen FIP-typischen Veränderungen der untersuchten Katzen mit den Mutationen im 3c-Gen in Beziehung zu setzen. Von den 19 Katzen mit vollständig auswertbaren Sequenzdaten zeigten 13 in der Sektion eine exsudative Entzündung, 6 eine rein granulomatöse (siehe Tabelle 13). Deletionen traten bei 8/13 Katzen mit primär feuchter FIP und bei 3/6 Tieren mit trockener Form auf. Stopcodons konnten in 9/13 Fällen mit feuchter beziehungsweise in 5/6 Fällen mit trockener FIP festgestellt werden.

Anhaltspunkte dafür, dass bestimmte Organe bevorzugt mutierte 3c-Gensequenzen aufwiesen, ergaben sich nicht. Falls ORF 3c nicht intakt vorlag, so betraf das in der Regel alle Gewebe einer Katze. Es ließen sich jedoch Ausnahmen hiervon feststellen: Bei der Katze S-518/10 fand sich nur in den nicht enteralen Sequenzen ein Stopcodon innerhalb der Basensequenzen, während die Aminosäuresequenz aus dem Darm intakt vorlag. Bei der Katze S-1004/08 zeigte nur das Isolat aus dem Zwerchfell ein Stopcodon innerhalb der Sequenz von 3c, das die Sequenzen der übrigen Gewebe nicht aufwiesen. Die Katze S-1129/09 war bis auf die Sequenz aus der Niere frei von Deletionen. Bei S-1448/10 hingegen waren die Sequenzen aller Gewebe mit Ausnahme der Bauchwand von Deletionen betroffen (Tabelle 14).

5 Diskussion

Die feline infektiöse Peritonitis stellt auch heute noch die Tierärzteschaft vor das große Problem, dass bei gestellter Diagnose keine zur Heilung führende Therapie zur Verfügung steht. Außerdem existiert keine Impfung, die effektiv vor der Erkrankung schützt. Die größte Schwierigkeit bei der Bekämpfung der FIP besteht sicherlich darin, dass immer noch recht wenig über ihre Pathogenese bekannt ist. Ob die krankmachende Wirkung hauptsächlich vom Virus selbst, vom Immunsystem der Katze oder von beidem ausgeht, weiß man bisher nicht. Die aktuelle Vorstellung des Auftretens zweier Biotypen (FECV und FIPV) stellte primär das Virus in den Fokus der Betrachtung. Obwohl schon eine Reihe an Untersuchungen des Virusgenoms vorgenommen wurden, konnte bislang kein Gen identifiziert werden, das eine eindeutige Unterscheidung von FECV und FIPV zuließe. Dennoch findet sich in der Literatur weitverbreitet die Behauptung, dass die Nichtstrukturproteingene 3c und 7b an dieser Unterscheidung beteiligt seien (Chang et al., 2010; Herrewegh et al., 1995a; Pedersen et al., 2009; Vennema et al., 1998).

Das Ziel dieser Arbeit war die Untersuchung dieser Gene bei natürlich an FIP erkrankten Katzen verschiedener Herkunft. Besonderes Augenmerk wurde dabei auf das Verhalten des Virus in verschiedenen Geweben innerhalb einer Katze gelegt.

5.1 Untersuchung von FCoV der NCBI-GenBank®

GenBank® ist eine Datenbank, in der sämtliche veröffentlichte DNA-Sequenzen gesammelt vorliegen. Nach Eingabe des Suchbegriffes "feline coronavirus" erhält man mittlerweile mehr als tausend Sequenzdaten. Teilweise handelt es sich dabei um vollständig sequenzierte FCoV-Genome, häufig sind es jedoch nur Ausschnitte aus einzelnen Genen. Der Vergleich verschiedener FCoV-Stämme ergab eine hohe Variabilität in der Basenabfolge insbesondere im Bereich des 3c-Gens. Das 7b-Gen wies zwischen unterschiedlichen Stämmen eine höhere Übereinstimmungsrate auf. Die Beobachtung, dass sich die Sequenz eines FCoV-Stammes nie hundertprozentig mit der eines anderen deckte, spiegelt die für Coronaviren allgemein bekannt hohe Mutationsrate wider (Lai et al., 2007). Allerdings wird schon bei der Untersuchung nur dieser beiden Nichtstrukturproteingene deutlich, dass die Häufigkeit des Auftretens von Mutationen nicht in allen Genomabschnitten gleich zu sein scheint. Während bei ORF 7b nur einzelne Basenaustausche zwischen verschiedenen Stämmen auffielen, waren bei ORF 3c zum Teil Abschnitte längeren Deletionen, mit die eine es

Leserahmenverschiebung nach sich zogen. Betrachtet man daher die Länge der beiden Gene, so stellt man bei ORF 3c häufig Unterschiede fest, während ORF 7b bei den in GenBank[®] veröffentlichten Sequenzen mit wenigen Ausnahmen konstant 621 Basen aufwies. Deshalb wurde diese Basenanzahl als Vergleichsstandard in der vorliegenden Arbeit verwendet. Bei den Ausnahmen handelte es sich um das Typ I-Virus Black (acc. no.: EU186072), dessen 7b-Gen eine Deletion eines Basentripletts zeigte und deshalb nur 618 Basen lang war, sowie um die Zellkulturstämme FECV 79-1683 (Deletion von 238 Basen) und FIPV UCD 2 (2 Deletionen von je 95 Basen) (Herrewegh et al., 1995a; Vennema et al., 1992b).

ORF 3c hatte bei allen als FECV beschriebenen Stämmen eine Länge von 714 Basen. Der Hypothese nach sollen bei FIPV Deletionen in diesem Gen auftreten (Vennema et al., 1998), weshalb hier kürzere Genlängen zu erwarten wären. Dies ist der Fall bei FIPV Black (acc. no.: EU186072) sowie dem aus dem Jejunum einer FIP-Katze isolierten Stamm FCoV C1Je (acc. no.: DQ848578), die Genlängen von 695 beziehungsweise 694 Basen aufwiesen. Interessanterweise traten bei den FIPV-Isolaten FIPV 79-1146 (acc. no.: NC_007025) sowie einem weiteren FIPV-Stamm (acc. no.: AY994055) Genlängen von 733 beziehungsweise 735 Basen auf. ORF 3c kann somit bei FIPV auch Insertionen beherbergen. Bei letzteren beiden FIPV-Stämmen handelt es sich um zellkulturadaptierte Typ II-Viren, die möglicherweise Mutationen aufweisen, die bei natürlich vorkommenden FIPV nicht zu finden sind. Diese häufig uneinheitlichen Sequenzdaten für ORF 3c führten zu der Problematik, dass nur schwer ein Vergleichsstandard für die im Rahmen dieser Arbeit untersuchten Isolate aus FIP-Katzen gewählt werden konnte. Da eine ORF 3c-Genlänge von 714 Basen einen sinnvollen Leserahmen ergibt, diese Basenanzahl auch bei den beschriebenen FECV vorlag und in verschiedenen Studien als Länge des intakten 3c-Gens angenommen wurde (Chang et al., 2010; Pedersen et al., 2009), wurde auch in dieser Arbeit eine Genlänge von 714 Basen für ORF 3c als Standard eingesetzt.

5.2 Qualität der isolierten RNA

Organisches Material ist post mortem auto- und heterolytischen Zersetzungsprozessen in unterschiedlichem Maß ausgesetzt. Je nach Enzymgehalt der Organe, Beteiligung von Bakterien und Unterschieden in der Umgebungstemperatur treten diese Prozesse verschieden schnell auf (Reichert und Issinger, 1985). So kommt es auch zu einem progressiven Abbau von RNA im Gewebe (Jackson und Rintoul, 1992). Bei dem in dieser Arbeit verwendeten Probenmaterial handelt es sich um Gewebe toter FIP-Katzen, welche unterschiedlich lange und bei verschiedenen Temperaturen bis zur Beprobung gelagert wurden. Deshalb konnte keine Aussage darüber getroffen werden, wie weit der postmortal einsetzende Nukleinsäurenabbau fortgeschritten war und ob die enthaltene Virus-RNA auf der zu untersuchenden Länge noch intakt vorlag.

5.3 Effizienz verschiedener RNA-Isolierungsmethoden

Für die Extraktion der im Gewebe enthaltenen Virus-RNA diente bei allen Proben (außer den Kotproben) das RNeasy[®] Mini Kit (Qiagen, Hilden). Der Schritt der Gewebezerkleinerung vor der eigentlichen RNA-Isolierung wurde jedoch auf zwei verschiedene Arten durchgeführt. Bei 20/28 Katzen erfolgte die Zerkleinerung manuell mit Mörser und Pistill, während bei den restlichen 8/28 Katzen eine automatische Zerkleinerungsmaschine (Bullet Blender[®]) zum Einsatz kam. Der wesentliche Unterschied zwischen beiden Methoden bestand im deutlich höheren Probendurchsatz pro Zeiteinheit bei Verwendung des Bullet Blender[®], da eine viel größere Anzahl an Gewebeproben gleichzeitig bearbeitet werden konnte als mit Mörser und Pistill. Im arithmetischen Mittel lag die photometrisch bestimmte Gesamt-RNA-Ausbeute bei Verwendung des Bullet Blender[®] bei 568,03 ng/µl, bei manueller Zerkleinerung mit Mörser und Pistill bei 213,22 ng/µl (einzelne Werte siehe Tabelle 12). Für die nachfolgend durchgeführte PCR und Sequenzierung machte sich bei sauberem Arbeiten mit Mörser und Pistill dieser quantitative Unterschied jedoch nicht bemerkbar. Beide Methoden können daher gleichwertige Ergebnisse in PCR und Sequenzierung liefern.

5.4 Problematik bei der Primerwahl

Die oben beschriebene Variabilität in der Sequenz der Nichtstrukturproteingene, insbesondere bei ORF 3c, erschwerte die Auswahl von Primern für die PCR. Der Vergleich verschiedener Stämme ergab allerdings nicht nur eine individuelle Sequenzvariabilität, sondern bei ORF 3c zeigten sich bei Serotyp I- und II-Stämmen je serotypspezifische Gemeinsamkeiten. Daraus konnte geschlossen werden, dass eine Unterscheidung von Typ I- und Typ II-Stämmen nicht nur in unmittelbarer Nähe des S-Gens möglich ist (Fiscus und Teramoto, 1987a), sondern sich zumindest auch bis zum 3c-Gen auszudehnen scheint. Diese Feststellung machte es notwendig, sowohl an Typ I- als auch an Typ II-Stämme angepasste Primer herzustellen, zumal nichts über die Serotypzugehörigkeit der isolierten Coronavirus-RNA aus den Katzenproben bekannt war. Als Vorlage für Typ I-spezifische Primer fungierte die Sequenz von FIPV Black (acc. no.: EU186072), während Typ II-spezifische Primer analog früherer

Studien von FIPV 79-1146 (acc. no.: NC_007025) abgeleitet wurden (Vennema et al., 1998). Bei dem Typ I-Stamm Black war kein offener Leserahmen des 3c-Gens vorhanden, da das Startcodon innerhalb der beschriebenen Deletion von 62 Nukleotiden lokalisiert wäre. Dennoch wurde der Black-Stamm als Typ I-Referenz verwendet, da mit diesem Stamm die vollständige Sequenz eines Typ I-FIPV zur Verfügung stand. Aufgrund der Schwierigkeit, Typ I-Stämme in der Zellkultur anzuzüchten, existieren weitaus mehr Sequenzdaten zu Typ II-Stämmen. Es war außerdem ohnehin erforderlich, die Primer ungefähr 50–100 Basen vor den eigentlichen Beginn des Gens zu legen, da die Sequenzierung dieser den Primern anschließenden Positionen keine auswertbaren Ergebnisse lieferte.

Da das 7b-Gen keine serotypabhängigen Sequenzunterschiede aufwies und insgesamt eine höhere Sequenzhomologie zwischen verschiedenen Stämmen herrschte, war hier keine Unterscheidung in Typ I- und II-Primer notwendig.

Aufgrund der nur geringen Nachweisbarkeit des 3c-Gens nach einmaliger PCR erfolgte mit den PCR-Produkten eine wiederholte Amplifikation (nested PCR). Es gestaltete sich erneut schwierig, innerhalb des Gens Abschnitte mit höchstmöglicher Übereinstimmung zwischen verschiedenen Stämmen zu finden. Aus diesem Grund wurden die Forward und Reverse Primer der ersten PCR beibehalten und nur mit je einem weiteren, innerhalb des Gens liegenden Primer kombiniert (semi-nested PCR). Mit dieser Methode wurde die Sensitivität der PCR erhöht und eine um ein Vielfaches gesteigerte Amplifikationsrate erzielt. Ein fehlender Nachweis von ORF 3c nach der semi-nested PCR wurde daher mit dem Nichtvorhandensein von ausreichend großen 3c-Sequenzen im Gewebe gleichgesetzt.

5.5 Aussagekraft der Agarosegelelektrophorese

In der Gelelektrophorese werden Nukleinsäuren entsprechend ihres unterschiedlich schnellen Wanderungsverhaltens der Größe nach aufgetrennt. Da die Agarose jedoch ein relativ großporiges Maschenwerk bildet, ist mit dieser Methode nur annäherungsweise die Länge der Nukleinsäurefragmente bestimmbar. In dieser Arbeit fungierte die Agarosegelelektrophorese primär als qualitative Methode, ob überhaupt DNA in der entsprechenden Größenordnung amplifiziert werden konnte. Die genaue Bestimmung der Länge dieser Fragmente erfolgte erst in der darauffolgenden Sequenzierung.

5.6 Auswertung und Aussagekraft der Sequenzierungsergebnisse

Bei dem im Rahmen dieser Arbeit sequenzierten Material handelte es sich durchweg um aufgereinigte PCR-Produkte. Eine Klonierung der PCR-Produkte vor der Sequenzierung wurde nicht vorgenommen. Der Hintergrund hierfür war, das Gemisch aus Sequenzen eines Gewebes in der Sequenzierung auf seine Reinheit überprüfen zu können. Die Quasispezies-Hypothese beschreibt ein gleichzeitiges Auftreten vieler verschiedener FCoV als sogenannte "Mutationswolken" (Battilani et al., 2003; Gunn-Moore et al., 1999; Herrewegh et al., 1997; Kiss et al., 2000). So musste damit gerechnet werden, dass die isolierten Sequenzen auch innerhalb eines Organs nicht einheitlich waren. Mit der Klonierung hätten nur einzelne dieser Varianten detektiert werden können, da immer nur ein DNA-Fragment als Insert in ein Plasmid eingebaut wird. Bei der Auswahl der Plasmide zur Sequenzierung ist es dem Zufall überlassen, ob die dominierend vorkommende Sequenz darin enthalten ist oder nicht. Bei der Sequenzierung von PCR-Produkten sind dagegen alle Varianten im Probenmaterial vorhanden. Wird allerdings ein Gemisch aus Isolaten mit größeren Basenunterschieden sequenziert, so sind "unsaubere" beziehungsweise nicht auswertbare Ergebnisse zu erwarten. Die Sequenzierung der PCR-Produkte erbrachte jedoch in den meisten Fällen insgesamt recht einheitliche Resultate. Innerhalb eines Organs schien deshalb offenbar doch nur eine dominierende Variante vorzukommen, zumindest fielen Abweichungen bei der Sequenzierung nicht ins Gewicht.

Bei 25/28 Katzen wurde grundsätzlich der in Tabelle 1 gelistete Standardsatz aus 11 Organen untersucht. Das war unabhängig davon, ob in jedem dieser Gewebe auch makroskopisch und/oder histologisch FIP-typische Veränderungen vorlagen. Interessanterweise konnten zum Teil auch in Geweben ohne Läsionen 3c- und/oder 7b-Sequenzen nachgewiesen werden. Das spricht dafür, dass in diesen Fällen im Zuge der systemischen Ausbreitung des Erregers die isolierten Sequenzen möglicherweise aus dem Blut stammten.

5.7 Nachweisbarkeit von ORF 3c

Zum Nachweis von 3c-Gensequenzen war bei den Geweben fast aller Katzen eine seminested PCR notwendig. Die einzige Ausnahme stellte die Katze S-743/08 dar, aus deren Probenmaterial bereits nach einmaliger PCR ausreichend Amplifikat für die Sequenzierung zur Verfügung stand. Hier ist zu bemerken, dass diese Katze unmittelbar nach der Euthanasie beprobt wurde. Das Untersuchungsmaterial war deshalb frischer als bei allen anderen Katzen. Bei 7 der insgesamt 28 Katzen (25 %) war auch nach wiederholter PCR in keinem der Organe ORF 3c nachweisbar. Hierbei handelte es sich nicht nur um Katzen, die bei der Beprobung schon länger tot waren, sondern auch um Tiere, die innerhalb von 24 h nach dem Tod seziert wurden (siehe Tabelle 12). Der Frischezustand des Tierkörpers kann daher nicht allein ausschlaggebend für den Nachweiserfolg von 3c sein. Ob die Virusisolierung direkt aus Granulommaterial erfolgte oder aus Gewebestückchen, die makroskopisch keine Granulome aufwiesen, machte sich für den Nachweiserfolg nicht unterschiedlich bemerkbar (siehe Tabellen 12 und 13).

Für den fehlenden Nachweis kommen grundsätzlich drei Erklärungsmöglichkeiten in Frage. Erstens könnten so geringe Mengen an FCoV vorgelegen haben, dass sie auch mittels seminested PCR nicht detektierbar waren. Da die nested PCR jedoch zu einer sehr hohen Amplifikation von Ausgangs-DNA führt, ist diese Möglichkeit eher unwahrscheinlich. Ein weiterer plausibler Grund für den fehlenden Nachweis von ORF 3c könnte auf zu große Unterschiede in der Sequenz der Primerbindungsstellen zurückzuführen sein. Drittens muss auch in Betracht gezogen werden, dass die Virus-RNA durch fortgeschrittene Zersetzungsprozesse im Untersuchungsmaterial nur noch bruchstückhaft vorgelegen haben könnte und deshalb ein Binden beider Primer nicht mehr möglich war.

Der Vergleich der Häufigkeiten des erfolgreichen Nachweises von ORF 3c aus verschiedenen Geweben ergab, dass der Nachweis aus dem Netz häufiger gelang als aus anderen Geweben (20/25 Katzen (80 %), siehe Tabelle 10). Ob die Katzen eine fibrinös-exsudative Peritonitis, Granulome im Netz oder keines von beidem aufwiesen, spielte dafür keine Rolle. Das Virus schien also im Netz zu persistieren, auch wenn dort keine pathologisch-anatomischen und histologischen Veränderungen auffielen.

5.7.1 Sequenzierungsergebnisse von ORF 3c

Von 21 der 28 Katzen, bei denen in der PCR eine Amplifikation von ORF 3c möglich war, wurden die PCR-Produkte sequenziert. Nur bei 5 dieser 21 Katzen (S-1004/08, S-219/09, S-222/09, S-1300/09 und S-1349/10) gelang der 3c-Nachweis in allen untersuchten Organen. Die restlichen 16 Tiere wiesen in unterschiedlicher Menge und Verteilung immer wieder Gewebe auf, die auf dem Agarosegel 3c-negativ waren (siehe Tabelle 12). Ursächlich kommen hierfür dieselben Möglichkeiten in Betracht, die bereits unter 5.6 im Falle eines fehlenden Nachweises in allen Geweben einer Katze diskutiert wurden. Bei 2/21 Katzen (S-

646/08 und S-1221/08) konnten auch nach wiederholter Sequenzierung Teile der Sequenz nicht bestimmt werden. Möglicherweise lagen in diesen Fällen im PCR-Produkt so viele unterschiedliche Varianten vor (Quasispezies), dass die Sequenzierung kein spezifisches Resultat liefern konnte. Auf der anderen Seite kann auch über eine zu geringe Menge an DNA für die Sequenzierung nachgedacht werden.

Daraus ergibt sich eine Anzahl von 19 Katzen, aus denen vollständig auswertbare Sequenzdaten zu ORF 3c erhalten werden konnten.

Beim Vergleich der Sequenzen aus verschiedenen Organen einer Katze zeigte sich eine hohe Übereinstimmung der Basenabfolge. So konnte davon ausgegangen werden, dass nicht nur innerhalb eines Gewebes, sondern auch innerhalb einer erkrankten Katze in der Regel nur ein vorherrschender Virusstamm vorlag. Das steht im Widerspruch zu Untersuchungen von Battilani et al. (2003), Kiss et al. (2000) und Gunn-Moore et al. (1999), die alle eine hohe Variabilität zwischen Stämmen aus verschiedenen Geweben feststellten. Allerdings wurden in diesen Studien in einem Fall nur das S- und das N-Gen (Gunn-Moore et al., 1999), in den anderen beiden Fällen je das N- und das 7b-Gen untersucht (Battilani et al., 2003, Kiss et al., 2000). Aussagen zum 3c-Gen existieren deshalb nicht. Allerdings stellten sowohl Battilani et al. (2003) als auch Kiss et al. (2000) fest, dass die Variabilität im N-Gen sehr viel höher war als bei 7b. Gunn-Moore et al. (1999) hingegen beschrieben eine wesentlich höhere Variabilität im S-Gen im Vergleich zum N-Gen. Diese Beobachtungen unterstützen die bereits aufgestellte Vermutung einer unterschiedlichen Mutationsneigung einzelner Gene bei FCoV.

Es gab allerdings auch Positionen innerhalb einzelner Sequenzen, an denen zwei verschiedene Basen im Wechsel auftraten (S-1004/08, S-1074/08, S-219/09, S-222/09, S-1129/09 und S-1190/09) (siehe Tabelle 14). In diesen Fällen wurde angenommen, dass beide Varianten mehr oder weniger gleich häufig im Untersuchungsmaterial vorhanden waren.

Der Vergleich aller 3c-Sequenzen aus den untersuchten Katzenproben mit den Referenzstämmen FIPV 79-1146, FIPV Black und FECV-6 ergab eine höhere Übereinstimmung mit den Typ I-Stämmen Black und FECV-6 als mit dem Typ II-Stamm 79-1146. Das spricht dafür, dass es sich bei den aus den Katzen isolierten FCoV durchweg um Typ I-Stämme handelte und dass eine Unterscheidung von Serotyp I- und II-Stämmen im 3c-Gen auch bei Feldviren möglich ist. Unterschiede zwischen Typ I- und II-Stämmen scheinen insbesondere die dem 5'-Ende des Genoms zugewandten 100 Basen des 3c-Gens zu betreffen.

In diesem Abschnitt waren die Unterschiede zwischen den Sequenzen aus den untersuchten Katzen und dem Referenzstamm FIPV 79-1146 so groß, dass mittels Blast[®] (NCBI) keine übereinstimmende Basenanordnung möglich war.

5.7.1.1 Mutationen

Beim Vergleich der Sequenzen aus unterschiedlichen Organen einer Katze fiel eine hohe Übereinstimmung auf. Dennoch war nur bei 8 Katzen (S-743/08, S-1378/08, S-448/09, S-1094/09, S-1300/09, S-13/10, S-186/10 und S-1349/10) die Basenabfolge zwischen den verschiedenen Geweben vollständig identisch. Häufig traten an einzelnen Positionen Basenunterschiede auf, die entweder nur eines der 11 Gewebe betrafen, sich jedoch zum Teil auch durch Isolate mehrerer Gewebe zogen. Nach wiederholter PCR und Sequenzierung konnte beobachtet werden, dass solche Stellen uneinheitlich blieben oder aber in allen Geweben eine übereinstimmende Sequenz annahmen. War letzteres der Fall, wurde davon ausgegangen, dass es sich bei der Erstsequenzierung am ehesten um einen Sequenzierfehler handelte. Blieben die beobachteten Abweichungen in den Sequenzen bestehen, konnte angenommen werden, dass an diesen Positionen Unterschiede zwischen den Isolaten verschiedener Gewebe vorlagen.

Während die Sequenzen innerhalb einer Katze nur einzelne Basenaustausche aufwiesen oder sogar identisch waren, zeigten sich die Sequenzen aus Organen unterschiedlicher Katzen im Vergleich deutlich variabler. Bereits Vennema et al. (1998) beschrieben Ähnlichkeiten in der Sequenz untersuchter FCoV-Stämme bei Katzen einer Gruppe, während Isolate von Katzen aus geographisch getrennten Gebieten sehr viel unterschiedlicher waren. Das wiederum spiegelt die hohe Mutationsrate der Coronaviren wider, da davon auszugehen ist, dass bei jeder Replikation neue Varianten entstehen. Die Resultate der vorliegenden Arbeit deuten darauf hin, dass sich von diesen entstehenden Varianten pro FIP-Katze nur ein Typ oder wenige Stämme systemisch manifestieren.

Auch hinsichtlich der Länge von ORF 3c gab es zwischen den Sequenzen der untersuchten Katzen größere Unterschiede. Bei 11/19 Katzen mit auswertbaren Sequenzdaten fanden sich Deletionen innerhalb des Gens von 1 bis zu 56 Nukleotiden. Diese Deletionen lagen jedoch nicht an einheitlichen Positionen, sondern waren scheinbar zufällig über das gesamte Gen verteilt. Falls bestimmte Deletionen auftraten, so waren sie meist in allen Geweben einer Katze vorhanden. Ausnahmen hierfür sind die Katzen mit den Tagebuchnummern S-518/10

und S-1349/10, die beide in ihren Organsequenzen Deletionen aufwiesen, die die Isolate aus dem Darm beziehungsweise Kot nicht gezeigt haben. Bei der Katze mit der Tagebuchnummer S-1129/09 fanden sich in der Sequenz aus der Niere Deletionen, die bei den restlichen Geweben nicht vorlagen. Die Katze S-1448/10 zeigte in ihren Organsequenzen unterschiedlich verteilte Deletionen, wobei die Sequenz aus der Bauchwand frei von Deletionen war. 8/19 Katzen hingegen wiesen in allen untersuchten Geweben keine Deletionen in ORF 3c auf, sondern zeigten Genlängen von je 714 Basen (Übersicht in Tabelle 14). Das Vorkommen von Deletionen in ORF 3c darf deshalb nicht als zwingende Voraussetzung für die Definition eines FIPV angenommen werden.

Es existiert in der Literatur die weitverbreitete Hypothese, dass durch Mutationen im Darm virulentere Stämme entstehen, die sich systemisch ausbreiten und anschließend FIP auslösen (Pedersen et al., 1981b; Vennema et al., 1998). Dazu würde die bei den Katzen S-518/10 und S-1349/10 gefundene Feststellung passen, dass im Darm intakte Coronaviren vorliegen, während davon mutierte Varianten im Organismus zirkulieren. Auch ist in diesen Fällen die von Pedersen postulierte Behauptung erfüllt, dass ORF 3c bei FECV im Darm 714 Basen aufweisen und bei FIPV durch Deletionen verkürzt vorliegen soll (Pedersen et al., 2009). Bei den Sequenzen aus dem Darm der übrigen Katzen konnte dies allerdings nicht bestätigt werden. Entweder die Sequenzen unterschieden sich nicht von denen der anderen Organe oder aus dem Darm konnten keine auswertbaren Sequenzen erhalten werden. Was hier jedoch berücksichtigt werden muss, ist, dass die Proben aus dem Darm nicht nur aus Darminhalt bestanden, sondern stets auch Darmwand mit asserviert wurde. So können die isolierten Stämme auch aus der Darmwand stammen, die bei 9/21 3c-positiven Katzen auch FIPtypische Granulome aufwies. Außerdem kann darüber nachgedacht werden, ob bei an FIP erkrankten Katzen ursprünglich im Darm vorliegende avirulente FECV durch FIPV überlagert wurden und die Stämme deshalb identisch mit denen anderer Organe waren. Diese Überlegung haben auch schon Chang et al. (2010) angestellt, als sie Coronavirussequenzen aus dem Darm mit denen aus Organen von FIP-Katzen verglichen.

5.8 Nachweisbarkeit von ORF 7b

Anders als beim 3c-Nachweis war zur erfolgreichen Amplifikation des 7b-Gens eine einmalige PCR ausreichend. Nur bei 2/28 Katzen (S-181/09 und S-13/10) war ORF 7b nicht nachweisbar. Auch hierfür kommen die bereits für 3c diskutierten Möglichkeiten in Betracht. Die Tatsache, dass aus der Katze mit der Tagebuchnummer S-181/09 weder 3c noch 7b amplifiziert werden konnte, spricht am ehesten dafür, dass die untersuchten Gewebe keine (intakte) FCoV-RNA enthielten. Bei der Katze S-13/10 hingegen waren in Netz, Darm, Zwerchfell und Milz 3c-Sequenzen nachweisbar, jedoch in keinem Gewebe ORF 7b. Ursache hierfür könnten möglicherweise zu große Variabilitäten in den Primerbindungsstellen oder eine am 3'-Ende des Genoms bereits degradierte RNA gewesen sein.

Bei den untersuchten Katzen wurde in 84 % der Proben aus dem Netz und in 92 % der Proben aus dem Darmlymphknoten ORF 7b festgestellt (siehe Tabelle 10). Damit war der Nachweis aus diesen beiden Geweben häufiger möglich als aus den anderen Organen.

5.8.1 Sequenzierungsergebnisse von ORF 7b

In insgesamt 26/28 Katzen war in den untersuchten Geweben ORF 7b nachweisbar. Jedoch gelang auch hier nur bei einer kleinen Anzahl der Katzen der Nachweis des Gens aus allen untersuchten Geweben (S-872/08, S-222/09 und S-1094/09). Bei 23/26 Tieren war die Amplifikation von ORF 7b nur bei einem Teil der jeweils 11 Gewebeproben möglich (siehe Tabelle 12).

Beim Vergleich der Sequenzen in den verschiedenen Organen und Granulomen einer Katze fiel eine sehr hohe Übereinstimmung in der Basenabfolge auf. Dadurch wurde die schon bei 3c aufgestellte Vermutung, dass innerhalb einer Katze nur ein vorherrschender Virusstamm vorlag, weiter untermauert.

Im Vergleich mit den Referenzstämmen zeigten die erhaltenen Sequenzen eine 91 %ige Übereinstimmung mit dem Typ I-Stamm Black sowie eine ebenfalls 91 %ige Übereinstimmung mit dem Typ II-Stamm 79-1146. Anders als bei 3c war daher in 7b keine Unterscheidung in Typ I- und Typ II-Stämme möglich.

5.8.1.1 Mutationen

Auch wenn die Sequenzierung der 7b-Proben eine sehr hohe Übereinstimmung zwischen den Sequenzen in verschiedenen Organen einer Katze zeigte, traten analog zum 3c-Gen sehr vereinzelt auch Basenunterschiede auf. Besonders deutlich war dies beim Vergleich der aus dem Darm erhaltenen Sequenz der Katze S-1378/08 mit den anderen Geweben. Während die Sequenzen aus Netz und Darmlymphknoten vollständig identisch waren, wich die Darmsequenz an 32 Positionen davon ab. Dies passte zu der auch bei 3c festgestellten Beobachtung, dass sich bei einzelnen Katzen die Sequenzen aus dem Darm am meisten von allen anderen Sequenzen unterschieden. Ansonsten sprechen aber die Ergebnisse dafür, dass innerhalb einer Katze nur ein vorherrschender FCoV-Stamm auftrat.

Beim Vergleich von Sequenzen unterschiedlicher Katzen fielen dagegen wesentlich größere Abweichungen in der Basenabfolge auf. In der Länge des Gens gab es zwischen verschiedenen Geweben einer Katze keine Unterschiede. Nur bei einem Tier konnten Deletionen innerhalb des Gens nachgewiesen werden. Die aus der Katze S-1221/08 isolierten Stämme zeigten im 7b-Gen zwei Deletionen von je drei Nukleotiden. Von den auswertbaren Sequenzen der übrigen Katzen war ORF 7b konstant 621 Basen lang.

5.9 Analyse der Aminosäuresequenzen

Ein Glykoprotein mit unbekannter Funktion wurde von Vennema et al. (1992a) als Produkt von ORF 7b identifiziert. Ein potentielles Protein von ORF 3c kennt man im Gegensatz dazu bislang nicht. Es kann deshalb in Erwägung gezogen werden, dass das 3c-Gen möglicherweise überhaupt nicht in ein Protein translatiert wird. Sollte 3c tatsächlich in die Abschwächung der Virulenz von 7b involviert sein (Vennema et al., 1998), so könnte diese Regulation ebenso auf rein genomischer Ebene stattfinden. Diese Überlegungen sind jedoch rein spekulativ und bedürfen noch weiterer Untersuchungen.

Grundsätzlich ist allerdings nicht auszuschließen, dass die phänotypischen Auswirkungen bestimmter Gene erst durch ihre entsprechenden Proteine bedingt werden. Aus diesem Grund wurden alle erhaltenen Nukleinsäuresequenzen in die entsprechenden Aminosäuresequenzen übersetzt. Wegen der Gültigkeit des genetischen Codes, nach welchem immer drei Nukleinbasen in Serie für eine Aminosäure codieren, können sich Deletionen, Insertionen oder Einzelbasenaustausche in unterschiedlichem Maß auswirken. Für eine Aminosäure gibt fast immer mehrere Möglichkeiten der Basenanordnung, dass manche es SO Einzelbasenaustausche in der DNA keine Auswirkung auf die entsprechende Aminosäuresequenz haben. Meistens kommt es aber durch Abweichungen in der Nukleinsäuresequenz zu einer geänderten Aminosäurefolge, dem Auftreten von frühzeitigen Stopcodons und bei Deletionen oder Insertionen tritt häufig eine Leserahmenverschiebung auf. All das führt zu einer abweichenden Sekundär-, Tertiär- und Quartärstruktur des Proteins, was sich maßgeblich auf dessen Funktion auswirken kann.

Für die Auswahl des Aminosäureleserahmens der untersuchten Proben wurde für 3c und 7b jeweils das Startcodon "ATG" als Ausgangstriplett verwendet.

5.9.1 Aminosäuresequenzen von ORF 3c

Die Auswertung der Aminosäuresequenzen von 3c ergab, dass einzelne Positionen mit variierender Nukleinsäurefolge sich nicht auf die Aminosäuren auswirkten. Der überwiegende Teil der Basenunterschiede, insbesondere beim Vorliegen von Deletionen, schlug sich jedoch auch in der Aminosäuresequenz nieder. So wiesen einzelne FCoV-Isolate der untersuchten Katzen andere Aminosäuren im mutmaßlichen 3c-Protein auf als Isolate der restlichen Gewebe. Abweichungen in der Aminosäuresequenz hatten bei 14 der 19 Katzen mit auswertbaren 3c-Sequenzen zur Folge, dass innerhalb der Sequenz liegende Stopcodons auftraten. Damit konnte in diesen Fällen möglicherweise kein funktionsfähiges Protein synthetisiert werden. Analog der Basenaustausche beziehungsweise Deletionen in den Nukleinsäuresequenzen zogen sich die Kettenabbrüche auch durch die Aminosäuresequenzen aller Gewebe einer Katze. Ausnahmen hiervon stellen die Katzen S-1004/08 und S-518/10 dar. Im ersteren Fall trat nur in dem FCoV-Isolat aus dem Zwerchfell ein Stopcodons waren. Bei der Katze S-518/10 war es genau umgekehrt: Die Organsequenzen wiesen Stopcodons auf, nicht aber die Basensequenz aus dem Darm.

Bei 35 zum Vergleich herangezogenen FECV konnte in keinem Fall das Auftreten eines frühzeitigen Stopcodons in der 3c-Sequenz festgestellt werden. Das Vorkommen von Stopcodons ist bei FIPV deshalb signifikant häufiger anzutreffen als bei den enteralen Vertretern feliner Coronaviren. Allerdings zeigten sich bei 5/19 FIP-Katzen (S-743/08, S-1378/08, S-222/09, S-1190/09 und S-186/10) keine Stopcodons innerhalb der 3c-Sequenzen. Von 3 dieser 5 Katzen waren die Nukleinsäuresequenzen 714 Basen lang, was für die Intaktheit des 3c-Gens spricht. Bei den anderen 2/5 Katzen wiesen die 3c-Sequenzen Deletionen von 2 (S-743/08) beziehungsweise 3 (S-186/10) Basen auf, was auch zur Verkürzung der jeweiligen Aminosäuresequenz führte. Dennoch kam es durch diese Deletionen nicht zum Auftreten frühzeitiger Stopcodons.

Zusammenfassend lässt sich demnach festhalten, dass das Auftreten von Stopcodons nicht zwangsläufig an das Vorkommen von Deletionen gekoppelt zu sein scheint.

5.9.2 Aminosäuresequenzen von ORF 7b

Bis auf die Isolate einer Katze (S-1221/08) ergab sich bei allen untersuchten Proben eine identische Länge von 207 Aminosäuren. Alle Sequenzen wiesen durchgehend einen kompletten Leserahmen auf, flankiert von je einem Start- und einem Stopcodon. Stopcodons innerhalb des Gens traten nicht auf. Es kann deshalb angenommen werden, dass bei den untersuchten FIPV intakte Proteine synthetisiert werden konnten. Die insbesondere bei der Katze S-1378/08 festgestellten Einzelbasenunterschiede in der Nukleinsäurefolge im Netz und Mesenteriallymphknoten im Vergleich zum Darm führten auch zu Abweichungen in der Aminosäuresequenz. Vorausgesetzt, das 7b-Protein wurde synthetisiert, könnten diese geänderten Aminosäuren möglicherweise eine Auswirkung auf die Faltung des Proteins und damit seine Funktion ausgeübt haben. Im Rahmen dieser Arbeit kann jedoch keine Aussage über die Funktionalität potentiell gebildeter Proteine getroffen werden.

5.10 Vergleich der Nachweisbarkeit von ORF 3c und ORF 7b

Zusammenfassend lässt sich festhalten, dass ORF 7b häufiger als ORF 3c nachgewiesen werden konnte. Trotz höherer Amplifikationsrate bei 3c durch die hier angewandte nested PCR war die Amplifikation des 7b-Gens schon nach einmaliger PCR erfolgreicher.

Grundsätzlich können zwei Mechanismen dazu beigetragen haben:

1. Die Menge an ORF 3c-RNA im Ausgangsmaterial war geringer als die von ORF 7b.

2. Es lagen identische RNA-Mengen von beiden Genen vor. Die Amplifikation des 7b-Gens konnte jedoch erfolgreicher bewerkstelligt werden als die des 3c-Gens.

Als Ursache für den letzten der beiden Punkte kann am wahrscheinlichsten eine hohe Variabilität in den Primerbindungsstellen für 3c in Frage kommen. Dadurch könnte die Fähigkeit der Primer, an die isolierten Stämme zu binden, im Vergleich zum 7b-Gen deutlich erniedrigt gewesen sein. Dennoch waren die nach der semi-nested PCR erhaltenen Resultate 3c-spezifisch und zeigten sich auf dem Agarosegel mit deutlichen Banden. Größere Deletionen an den Primerpositionen können somit ausgeschlossen werden.

Die beobachtete unterschiedliche Nachweisbarkeit der beiden Nichtstrukturproteingene führte daher zu der Annahme, dass möglicherweise tatsächlich geringere RNA-Ausgangsmengen von ORF 3c im Gewebe vorhanden waren als von ORF 7b. In diesem Kontext wird der Aspekt interessant, dass bei der Virusreplikation der Coronaviren mehrere subgenomische mRNAs gebildet werden (Lai und Cavanagh, 1997; Masters, 2006). Bei den in dieser Arbeit untersuchten Isolaten war nicht bekannt, ob es sich um genomische RNA handelte oder um

mRNA. Es ist jedoch davon auszugehen, dass beide Varianten, möglicherweise zu unterschiedlichen Teilen, in den Geweben vorlagen. Ein unterschiedlicher Gehalt an ORF 3cund ORF 7b-RNA ist erklärbar durch mengenmäßige Abweichungen in den subgenomischen mRNAs, da genomische RNA alle Virusgene zu gleichen Teilen beinhaltet.

Die Bedeutung einer verminderten oder vollständig ausbleibenden Synthese von 3c-mRNA könnte darin begründet liegen, dass dieses Gen nicht in ein entsprechendes Protein translatiert wird. Falls diese Annahme zutrifft, müsste eine dem 3c-Gen zugeordnete Funktion auf rein genomischer Ebene stattfinden.

Alternativ käme in Frage, dass das 3c-Protein zwar gebildet werden kann, seine Synthese beziehungsweise die Herstellung der mRNA jedoch einem Regulationsmechanismus unterliegt. Wie dieser allerdings gesteuert sein könnte, kann aktuell nicht beantwortet werden. Beim Vergleich der Mutationshäufigkeit im 3c- und 7b-Gen erwies sich ersteres als deutlich variabler. Insbesondere das Vorkommen von Deletionen war im 3c-Gen der untersuchten FIPV weit verbreitet, während das 7b-Gen verschiedener Gewebe und Katzen bis auf eine Ausnahme (S-1221/08) eine identische Länge aufwies. Die mehrfach aufgestellte Hypothese des gehäuften Auftretens von Deletionen in ORF 3c bei FIPV kann deshalb auch in dieser Untersuchung bestätigt werden. Die Bedeutung dieser Feststellung wurde auch durch den Vergleich mit den 35 FECV-Sequenzen aus GenBank[®], die alle keine Deletionen zeigten, herausgestellt. Dennoch fanden sich bei einzelnen FIP-Katzen Isolate ohne Deletionen sowie mit vollständigen, nicht von Stopcodons unterbrochenen Aminosäuresequenzen. Mutationen im 3c-Gen können nach den Ergebnissen der vorliegenden Arbeit deshalb nicht als alleinige Voraussetzung für die höhere Virulenz der FIPV gegenüber den FECV beziehungsweise das Auftreten einer FIP verantwortlich gemacht werden.

Ob das 7b-Gen an der Virulenz beteiligt ist, konnte im Rahmen dieser Arbeit nicht beurteilt werden. Die durchgehenden Aminosäuresequenzen sprechen zumindest für die Bildung intakter Proteine. Vennema et al. (1998) stellten die Hypothese auf, dass die vom 7b-Gen ausgehende Virulenz durch regulatorische Wirkung des intakten 3c-Gens bei FECV möglicherweise unterdrückt werden könnte. Die bei FIPV wegfallende regulatorische Wirkung wurde auf das Auftreten von Mutationen im 3c-Gen zurückgeführt. Dieses Modell könnte auch erklären, weshalb bei den in dieser Arbeit untersuchten FIP-Katzen höhere Mengen an 7b-RNA im Gewebe vorlagen. Durch wegfallende Regulation des 3c-Gens bei FIPV könnte es zur unlimitierten Transkription von 7b gekommen sein. In Anlehnung an diesen Mechanismus sollten bei FECV geringere Mengen an 7b-RNA zu erwarten sein. In dem durchgeführten Screening der Kotsuspensionen von 5 nicht an FIP erkrankten Katzen

116

war nach der PCR kein 7b-Nachweis möglich, was die Hypothese stützen würde. Allerdings konnte in diesen 5 Katzen auch 3c nicht nachgewiesen werden, so dass sich die Frage stellt, ob überhaupt FCoV-RNA im Untersuchungsmaterial vorhanden war.

Bei den Katzen mit den Tagebuchnummern S-1378/08, S-222/09 und S-1190/09 wiesen die Sequenzen des 3c- als auch des 7b-Gens die vollständige Länge von 714 (3c) beziehungsweise 621 (7b) Basen auf und die entsprechenden Aminosäuresequenzen zeigten keine frühzeitigen Stopcodons. Beide Gene scheinen demnach intakt vorgelegen zu haben. Diese Beispiele widersprechen allerdings der oben genannten Hypothese, da hier FIPV vorlagen, die sowohl mit einem offensichtlich intakten 3c- als auch 7b-Gen ausgestattet waren. Die Untersuchung der Nichtstrukturproteingene ergab bei den Katzen S-1378/08, S-518/10 und S-1349/10, dass die nicht-enteralen Isolate sehr ähnlich oder identisch waren, während die Darmsequenzen Abweichungen davon aufwiesen. Interpretieren lässt sich das zum einen durch die bestehende Vorstellung, dass im Darm enterale Coronaviren vorliegen, die erst nach Durchlaufen bestimmter Mutationen den Darm verlassen und zum Ausbruch der FIP führen (Pedersen et al., 1981b; Vennema et al., 1998). Da jedoch auch bei klinisch gesunden Katzen hohe FCoV-Titer im Blut nachweisbar sein können (Gunn-Moore et al., 1998a; Herrewegh et al., 1995b; Herrewegh et al., 1997; Kipar et al., 1999), kann der Übertritt von FCoV in das Blut nicht zwangsläufig mit der Virulenz des betreffenden Stammes gekoppelt sein. Außerdem gab es in der vorliegenden Arbeit auch FIP-Katzen, deren FCoV-Sequenzen im Vergleich zu den Isolaten anderer Gewebe Abweichungen im Zwerchfell (S-1004/08), der Bauchwand (S-1448/10) und der Niere (S-1129/09) aufwiesen.

Obwohl bei 3c insgesamt eine hohe Variabilität festgestellt werden konnte, war innerhalb eines Organs oder sogar der gesamten Katze in den meisten Fällen nur ein dominierender Stamm feststellbar. Dies trifft gleichermaßen auf das Nichtstrukturproteingen 7b zu. Diese Beobachtungen sprechen gegen das systemische Auftreten multipler Quasispezies innerhalb einer infizierten Katze.

Die prozentuale Nachweisbarkeit beider Nichtstrukturproteingene ergab eine Häufung im Netz und bei ORF 7b zusätzlich im Darmlymphknoten. Die Beprobung dieser beiden Gewebe zur Diagnosesicherung kann daher als am erfolgversprechendsten angesehen werden. Eine histopathologische oder auch PCR-gestützte Untersuchung von Netz oder Darmlymphknoten ist auch bei Katzen in vivo möglich. Insbesondere das Netz ist nach einer Laparotomie oder Endoskopie leicht zugänglich und eine kleine Probe kann chirurgisch problemlos entnommen werden.

5.11 Assoziation von Geschlecht, pathologisch-anatomischem Erscheinungsbild und immunhistologischem Signal mit dem Nichtstrukturproteingen 3c

Die Geschlechterverteilung der 11 Katzen mit Deletionen sowie der 14 Katzen mit Stopcodons ist in Abbildung 30 dargestellt. Für einen statistischen Vergleich sind diese Tierzahlen zwar zu gering, es kann aber ausgesagt werden, dass sich keine deutlichen Tendenzen eines gesteigerten Auftretens von Mutationen in 3c bei einem bestimmten Geschlecht gezeigt haben. Es fiel auf, dass die Mehrheit der untersuchten FIP-Katzen nicht kastriert war. Auch Rohrbach et al. (2001) beschrieben eine Häufung von FIP bei sexuell intakten, männlichen Tieren und ein vermindertes Auftreten bei weiblich-kastrierten. Diese Beobachtungen können jedoch möglicherweise auf das junge Alter der erkrankten Katzen zurückzuführen sein, bei denen die Kastration zu einem späteren Zeitpunkt eventuell noch durchgeführt worden wäre.

Bei der Sektion der Katzen wurden rein granulomatöse FIP-Formen von den exsudativen unterschieden (siehe Tabelle 13). Pathogenetisch gesehen geht man davon aus, dass die feuchte FIP bei jüngeren Tieren mit schnellerem klinischem Verlauf auftritt und die trockene Form sich nach einem mehr chronischen Prozess und bei älteren Tieren entwickelt (Pedersen, 2009). Einen Zusammenhang mit Mutationen im 3c-Gen scheint es jedoch nicht zu geben, da diese unabhängig von der festgestellten FIP-Form beobachtet wurden (siehe 4.10). Sicherlich könnte ein anderer, hier nicht untersuchter Genomabschnitt für die unterschiedlichen Ausprägungsformen der Erkrankung in Frage kommen. Wahrscheinlicher ist es jedoch, dass für das Entzündungsmuster bei der FIP verschiedene immunologische Vorgänge der einzelnen Katze verantwortlich sind.

Je protrahierter der FIP-Verlauf ist, desto geringere Replikationsraten des Virus sind zu erwarten. Diese Überlegung könnte zur Folge haben, dass der Virusnachweis bei rein granulomatösen Formen schwieriger möglich ist als bei exsudativen. Sowohl immunhistologisch als auch molekularbiologisch ließ sich jedoch im Durchschnitt der untersuchten Proben kein Unterschied des FCoV-Nachweises in Abhängigkeit von der FIP-Form feststellen (Tabelle 13). Trotzdem kann eine verschieden hohe Replikationsrate nicht ausgeschlossen werden. Allerdings spielt sie für die Nachweisbarkeit durch die verwendeten Methoden offensichtlich keine Rolle. Darüber hinaus stand ein immunhistologisch positives Signal in bestimmten Organen nicht mit dem Auftreten oder Ausbleiben von Mutationen in ORF 3c im Zusammenhang. Hinweise für eine durch Mutationen im 3c-Gen hervorgerufene, immunhistologisch erfassbare, abweichende Virusreplikation ergaben sich deshalb nicht. Es zeigte sich, dass immunhistologisch positive Gewebe in der Mehrheit der Fälle auch in der PCR zum erfolgreichen 3c- beziehungsweise 7b-Nachweis führten (Tabelle 13). Umgekehrt gab es einen höheren Anteil an untersuchten Organen, die zwar histologisch und immunhistologisch unauffällig waren, in denen in der PCR aber FCoV nachweisbar war. Dies spiegelt die hohe Nachweisempfindlichkeit der PCR wider.

5.12 Nichtstrukturproteingene und immunologische Vorgänge

Um die vielen Fragezeichen in der Pathogenese der FIP zu lösen, kann - wie in der vorliegenden Arbeit - die Ursache beim Virus selbst gesucht werden. Diese Annahme unterschiedlichem erscheint logisch, da zwei zirkulierende FCoV-Typen mit Pathogenitätspotential bekannt sind. Eines davon kann aus an FIP erkrankten Katzen isoliert werden (FIPV), das andere findet sich weit verbreitet bei klinisch gesunden Katzen (FECV). Die Untersuchung verschiedener Genomabschnitte erbrachte jedoch bislang keine sichere Abgrenzung zwischen FECV und FIPV. Die Häufung von Deletionen in ORF 3c bei FIPV konnte zwar auch bei den hier untersuchten Feldinfektionen bestätigt werden, als alleiniges Unterscheidungskriterium zwischen FIPV und FECV reicht diese Beobachtung jedoch nicht aus. Ein vermutetes Zusammenspiel der Nichtstrukturproteingene 3c und 7b war, zumindest nach den durchgeführten Untersuchungen, nicht offensichtlich. Für zukünftige Studien ist es sicherlich interessant, weitere Gene zu analysieren und auch in Beziehung zueinander zu setzen. Insbesondere die Anwendung von reversen genetischen Systemen kann große Fortschritte für den Einblick in die Funktion und Bedeutung einzelner Gene bringen (Tekes et al., 2008; Tekes et al., 2010).

Auf der anderen Seite sollte die Rolle des Immunsystems bei der Entwicklung einer FIP nicht außer Acht gelassen werden. Es gibt zahlreiche Untersuchungen, die eine erhöhte Expression verschiedener Entzündungsmediatoren bei FIP-Katzen im Gegensatz zu nicht infizierten Kontrollkatzen feststellten (Herrmann, 2010; Kipar, 2002; Liebner-Keller, 2010). Die dadurch bedingte Stimulation von Entzündungszellen kann die FIP-typischen Läsionen herbeiführen. Das Einsetzen einer ausgeprägten humoralen Immunantwort wurde im Zusammenhang mit einem fulminanteren Krankheitsverlauf vermutet, während eine starke zelluläre Immunreaktion möglicherweise eine protektive Wirkung entfalten kann (Pedersen, 2009; Rottier, 1999). Welche der beiden Immunantworten in Gang gesetzt wird, hängt sicherlich nicht nur vom Erreger ab, sondern ist auch von Katze zu Katze verschieden. So könnte ein gesteigertes Erkrankungsrisiko seine Ursache im individuellen Immunstatus der Katze haben. Möglicherweise besteht jedoch ein Zusammenhang zwischen der Ausschüttung bestimmter Entzündungsmediatoren beziehungsweise dem Einsetzen verschiedener Immunantworten und der Genetik des Virusstammes. Um einen Einfluss des Virus auf das Immunsystem der Katze zu überprüfen, sind breit angelegte Tierversuchsstudien notwendig. Durch gezielte Deletion einzelner Gene und anschließende experimentelle Infektion könnten nähere Erkenntnisse über die Funktion dieser Gene erhalten werden.

5.13 Bedeutung der Ergebnisse für die Diagnostik und die Vorstellungen von der Pathogenese der FIP

Wie in verschiedenen vorangegangenen Studien konnte auch in dieser Arbeit kein definitiver Unterschied zwischen FECV und FIPV auf genomischer Ebene gefunden werden. Auffallend waren sicherlich die gehäuften Deletionen und die noch häufiger vorkommenden Stopcodons in ORF 3c bei FIPV. Keine der Sequenzen der zusätzlich zur Untersuchung herangezogenen enteralen Coronaviren wies Deletionen oder Stopcodons in diesem Gen auf. Der Einsatz einer PCR-gestützten Untersuchung des 3c-Gens mit anschließender Sequenzierung zur Unterscheidung eines FCoV in FIPV und FECV kann daher für die Diagnose hinweisend sein. Allerdings hat diese Methode nicht uneingeschränkt Gültigkeit als Diagnostikum, da offensichtlich auch FIPV existieren, die keine Deletionen im 3c-Gen haben. Darüber hinaus ist die Isolierung von Virus aus erkrankten Katzen, mit sukzessiver RT-PCR und Sequenzierung, für die Routinediagnostik zu aufwändig und daher nicht praktikabel. Zur Diagnose der FIP von im Zuge einer Probelaparotomie entnommenen Granulomen ist nach wie vor die histopathologische und immunhistologische Aufarbeitung die Untersuchung der Wahl. Falls in Zukunft an einer bestimmten Lokalisation im FCoV-Genom eine eindeutige Unterscheidung zwischen FIPV und FECV gefunden werden sollte, wäre eine PCR-gestützte Untersuchung und Sequenzierung dennoch zu rechtfertigen, da erstmals anhand des Virus eine Aussage über dessen Krankheitspotential getroffen werden könnte. In der vorliegenden Arbeit war in verschiedenen Geweben ohne makroskopisch und histologisch sichtbare FIPtypische Läsionen FCoV-Genom nachweisbar. Das spricht sehr dafür, dass der Virusgenomnachweis in diesen Fällen aus dem Blut erfolgte. Sollte irgendwann eine Unterscheidung der beiden Biotypen auf genomischer Ebene möglich sein, wäre die Untersuchung von Sequenzen aus dem Blut von erkrankten Katzen als minimal invasive Methode ein Durchbruch für die Diagnosestellung intra vitam.

Solange die Interaktion des Virus mit dem Immunsystem der Katze nicht eindeutig geklärt ist, bleibt die Basis der intravitalen FIP-Erkennung die Anwendung der Ausschlussdiagnostik und Verknüpfung vieler symptomatischer Charakteristika (vgl. Rohrer et al., 1993).

Trotz der nach wie vor fraglichen Bedeutung von Mutationen im 3c-Gen konnte diese Arbeit einen Beitrag zur Pathogenese der FIP liefern, da das Verhalten der Coronaviren in verschiedenen Geweben jeweils einer Katze detailliert untersucht wurde. In natürlich infizierten FIP-Katzen scheint in der überwiegenden Zahl der Fälle ein dominierender FCoV-Stamm im Organismus zu zirkulieren. Diese Aussage besitzt nur für die hier untersuchten Nichtstrukturproteingene 3c und 7b Gültigkeit. Theoretisch könnten sich andere, nicht untersuchte Genomabschnitte deutlich variabler darstellen. Allerdings muss gerade beim 3c-Gen davon ausgegangen werden, dass dieses besonders zu Mutationen neigt, da beim Vergleich verschiedener Stämme (s.o.) zum Teil sehr große Unterschiede in der Sequenz festgestellt werden konnten. Innerhalb einer Katze waren jedoch nur vereinzelt solche Sequenzabweichungen nachweisbar. Die systemische Ausbreitung und Manifestation einer bestimmten Variante in verschiedenen Organen scheint deshalb für das Virus von Vorteil zu sein. Interessant ist allerdings, dass es in jeder Katze eine andere Variante ist, die sich gegenüber anderen durchsetzt. Ein übereinstimmendes Muster zwischen 3c- und/oder 7b-Sequenzen verschiedener FIP-Katzen konnte nicht gefunden werden. Eine systematische Unterscheidung von FECV und FIPV im 3c- beziehungsweise 7b-Gen ist aus diesem Grund nicht möglich.

Was der wesentliche Schritt von einer FCoV-Infektion zum Auftreten von FIP ist, bleibt weiterhin fraglich. Möglicherweise ist die Erklärung eines FIP-Ausbruchs doch in dem komplexen Zusammenwirken derzeit nicht eindeutig definierbarer FCoV-Stämme mit dem felinen Immunsystem zu suchen.

6 Zusammenfassung

- Ziel der Arbeit war es, mittels RT-PCR und anschließender Sequenzierung zu überprüfen, welche Rolle Deletionen oder andere Mutationen im Nichtstrukturproteingen 3c des FCoV bei an FIP erkrankten Katzen spielen. Darüber hinaus wurde auch eine Amplifikation des Nichtstrukturproteingens 7b durchgeführt.
- 2. In der Literaturübersicht wird zunächst ein Überblick über die bisherigen Vorstellungen zur Pathogenese der FIP beschrieben. Dabei steht das Genom der felinen Coronaviren im Mittelpunkt der Betrachtung. Auf bisherige Vorstellungen zur Bedeutung des Vorkommens von Deletionen in den Nichtstrukturproteingenen wird in besonderem Maß eingegangen.
- 3. Die RNA-Isolierung mit anschließender RT-PCR erfolgte aus 282 Gewebeproben von insgesamt 28 Katzen, bei denen in der Sektion sowie histopathologisch und immunhistologisch FIP diagnostiziert wurde. Mithilfe veröffentlichter FCoV-Stämme wurden Primer für die entsprechenden Positionen hergestellt und die optimalen PCR-Bedingungen anhand bereits isolierter FCoV-RNA aus dem Institut für Virologie, Justus-Liebig-Universität Gießen, ermittelt.
- 4. Es stellte sich heraus, dass die Amplifikation des Nichtstrukturproteingens 7b wesentlich effektiver gelang als die von 3c. Für die Amplifikation von ORF 3c musste deshalb ein nested PCR-Verfahren eingesetzt werden. Insgesamt war der Nachweis beider Nichtstrukturproteingene aus dem großen Netz (Omentum maius) und dem Mesenteriallymphknoten häufiger möglich als aus anderen Organen.
- 5. Die Sequenzanalyse ergab, dass innerhalb einer Katze der Großteil der Isolate verschiedener Gewebe identisch war. Sowohl bei ORF 3c als auch ORF 7b fanden sich bei einzelnen Katzen die größten Abweichungen von den restlichen Geweben in den Darmisolaten. Deletionen innerhalb von ORF 3c konnten bei 11/19 Katzen mit vollständig vorliegenden Sequenzdaten gefunden werden. Darüber hinaus traten in 14/19 Fällen Stopcodons in der Basensequenz von 3c auf. Von den insgesamt 26 Katzen mit Sequenzdaten zu ORF 7b fanden sich nur in einem Fall Deletionen

innerhalb des Gens. Allerdings zeigten sich hier durchgehende Aminosäurekodierungen ohne Stopcodons.

- 6. In dieser Arbeit konnte das gehäufte Auftreten von Deletionen im Nichtstrukturproteingen 3c bei FIPV bestätigt werden. Außerdem traten bei FIPV im Gegensatz zu den als FECV deklarierten Sequenzen häufig Stopcodons innerhalb der Basensequenz auf. Jedoch wiesen nicht alle untersuchten FIP-Katzen Deletionen im Nichtstrukturproteingen 3c auf und bei 3 dieser Tiere lagen auch durchgehende und vollständige Aminosäurekodierungen vor. Deshalb können Mutationen des 3c-Gens nicht zwangsläufig mit der Virulenz des FCoV gekoppelt werden.
- 7. Das Auftreten von Mutationen in ORF 3c war unabhängig vom untersuchten Gewebe. Außerdem konnte kein Zusammenhang zwischen dem Vorkommen von Mutationen/Stopcodons und dem Geschlecht der Katzen, den pathologischanatomischen Befunden sowie dem immunhistologischen Signal festgestellt werden. Der FCoV-Nachweis gelang auch aus Geweben ohne pathologisch-anatomische und histopathologische Veränderungen, was die Vermutung nahelegt, Virus aus dem Blut der entsprechenden Organe isoliert zu haben.
- 8. Die erfolgreichere Amplifikation von ORF 7b im Vergleich zu ORF 3c kann auf unterschiedliche Mengen an subgenomischer mRNA in infizierten Zellen zurückzuführen sein. Eine Bedeutung und ein beteiligter Regulationsmechanismus hierfür sind bislang nicht bekannt.

7 Summary

- The aim of this study was to investigate the role of potential deletions or other mutations in nonstructural protein gene 3c of FCoV in FIP-affected cats by using RT-PCR and sequencing. Furthermore, an amplification of the nonstructural protein gene 7b was performed.
- 2. First, an overview on actual knowledge about the pathogenesis of FIP is described with a focus on feline coronavirus genome. In particular, the significance of deletions in FCoV nonstructural protein genes is discussed.
- 3. RNA isolation and RT-PCR were carried out using 282 tissue specimens of 28 cats diagnosed with FIP at necropsy as well as in histopathology and immunohistochemistry. Primers were designed according to published sequences of FCoV strains. PCR protocols were tested using purified FCoV RNA provided by the Department of Virology, University of Giessen.
- 4. Amplification of the nonstructural protein gene 7b was more effective than that of 3c. For the latter, nested PCR was needed for successful amplification of ORF 3c. Comparing to the other investigated tissues, the two nonstructural protein genes could be detected more frequently in the omentum and the mesenteric lymph node, respectively.
- 5. Within one cat, sequences isolated from different organs were very similar or most often identical. Most discrepancies were found between the intestinal and the other isolates of both studied nonstructural protein genes. Deletions in 3c genes were obvious in 11/19 cats with complete sequence data. In 14/19 cases stop codons in the sequence of ORF 3c occurred. Sequencing of ORF 7b revealed deletions in only one cat. None of the 7b sequences showed internal stop codons.
- 6. As described in prior studies, a high rate of deletions in nonstructural protein gene 3c in FIPV could be observed. Additionally, internal stop codons were even more frequent in FIPV whereas the investigated FECV all had intact 3c sequences. But not all of the FIP cats' 3c genes had deletions or were affected by truncated amino acid

sequences. Thus, 3c gene or protein integrity is not necessarily correlated with low virulence.

- 7. Mutations in ORF 3c occurred in strains isolated from different organ systems, independent from the affected tissue. In addition, there was no association between mutations/stop codons and the cats' gender, type of gross lesions or the occurrence of an immunohistochemical signal. Detection of FCoV was possible in tissues without any gross or histopathological alterations. So it is hypothesized that in these cases virus was isolated from the blood.
- 8. Possibly, the more effective amplification of ORF 7b compared to ORF 3c might be due to unequal amounts of subgenomic mRNA in infected cells. The meaning and the involved regulatory mechanism of this phenomenon are unknown.
- 9. An outbreak of FIP in FCoV-infected cats is not necessarily associated with deletions or other mutations in the nonstructural protein genes 3c and 7b.

8 Literaturverzeichnis

- Abbas, A.K., Lichtman, A.H., Pillai, S., 2007. The immune system in defense and disease Diseases caused by immune responses: hypersensitivity and autoimmunity. *In*: Cellular and Molecular Immunology. 6thEd. Saunders, Philadelphia, 419-441.
- Addie, D.D., Jarrett, O., 1992. A study of naturally occurring feline coronavirus infections in kittens. Vet. Rec. 130, 133-137.
- Addie, D.D., Jarrett, O., 1995. Control of feline coronavirus in breeding catteries by serotesting, isolation, and early weaning. Feline Pract. 23, 92-95.
- Addie, D.D., Toth, S., Murray, G.D., Jarrett, O., 1995. Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus. Am. J. Vet. Res. 56, 429-434.
- Addie, D.D., Jarrett, O., 2001. Use of a reverse-transcriptase polymerase chain reaction for monitoring the shedding of feline coronavirus by healthy cats. Vet. Rec. 148, 649-653.
- Addie, D.D., Paltrinieri, S., Pedersen, N.C., 2004. Recommendations from workshops of the second international feline coronavirus/feline infectious peritonitis virus symposium. J. Feline Med. Surg. 6, 125-130.
- August, J.R., 1984. Feline infectious peritonitis. An immune-mediated coronaviral vasculitis. Vet. Clin. North Am. Small Anim. Pract. 14, 971-984.
- Balint, A., Farsang, A., Zadori, Z., Hornyak, A., Dencso, L., Almazan, F., Enjuanes, L., Belak, S., 2012. Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies on the role of ORF3abc in viral cell tropism. J. Virol. 86, 6258-6267.
- Battilani, M., Coradin, T., Scagliarini, A., Ciulli, S., Ostanello, F., Prosperi, S., Morganti, L., 2003. Quasispecies composition and phylogenetic analysis of feline coronaviruses (FCoVs) in naturally infected cats. FEMS Immunol. Med. Microbiol. 39, 141-147.
- Benetka, V., Kübber-Heiss, A., Kolodziejek, J., Nowotny, N., Hofmann-Parisot, M., Möstl, K., 2004. Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis. Vet. Microbiol. 99, 31-42.
- Black, J.W., 1980. Recovery and in vitro cultivation of a coronavirus from laboratory-induced cases of feline infectious peritonitis (FIP). Vet. Med. Small. Anim. Clin. 75, 811-814.
- Bradshaw, J.M., Pearson, G.R., Gruffydd-Jones, T.J., 2004. A retrospective study of 286 cases of neurological disorders of the cat. J. Comp. Path. 131, 112-120.
- Brian, D.A., Spaan, J.M., 1997. Recombination and coronavirus defective interfering RNAs. Semin. Vriol. 8, 101-111.
- Brown, M.A., Troyer, J.L., Pecon-Slattery, J., Roelke, M.E., O'Brien, S.J., 2009. Genetics and pathogenesis of feline infectious peritonitis virus. Emerg. Infect. Dis. 15, 1445-1452.
- Cannon, M.J., Silkstone, M.A., Kipar, A.M., 2005. Cutaneous lesions associated with coronavirusinduced vasculitis in a cat with feline infectious peritonitis and concurrent feline immunodeficiency virus infection. J. Feline Med. Surg. 7, 233-236.

- Chang, H.W., de Groot, R.J., Egberink, H.F., Rottier, P.J., 2010. Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene. J. Gen. Virol. 91, 415-420.
- Christianson, K.K., Ingersoll J.D., Landon, R.M., Pfeiffer, N.E., Gerber, J.D., 1989. Characterization of a temperature sensitive feline infectious peritonitis coronavirus. Arch. Virol. 109, 185-196.
- Colgrove, D.J., Parker, A.J., 1971. Feline infectious peritonitis. J. Small Anim. Pract. 12, 225-232.
- Compton, S.R., Barthold, S.W., Smith, A.L., 1993. The cellular and molecular pathogenesis of coronaviruses. Lab. Anim. Sci. 43, 15-28.
- Cornelissen, E., Dewerchin, H.L., van Hamme, E., Nauwynck, H.J., 2007. Absence of surface expression of feline infectious peritonitis virus (FIPV) antigens on infected cells isolated from cats with FIP. Vet. Microbiol. 121, 131-137.
- Dean, G.A., Olivry, T., Stanton, C., Pedersen, N.C., 2003. In vivo cytokine response to experimental feline infectious peritonitis virus infection. Vet. Microbiol. 97, 1-12.
- De Groot, R.J., Andeweg, A.C., Horzinek, M.C., Spaan, W.J.M., 1988. Sequence analysis of the 3'end of the feline coronavirus FIPV 79-1146 genome: comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology 167, 370-376.
- De Groot, R.J., van Leen, R.W., Dalderup, M.J., Vennema, H., Horzinek, M.C., Spaan, W.J., 1989. Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology 171, 493-502.
- De Groot-Mijnes, J.D.F., van Dun, J.M., van der Most, R.G., de Groot, R.J., 2005. Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease. J. Virol. 79, 1036-1044.
- De Haan, C.A.M., Volders, H., Koetzner, C.A., Masters, P.S., Rottier, P.J.M., 2002. Coronaviruses maintain viability despite dramatic rearrangements of the strictly conserved genome organization. J.Virol. 76, 12491-12502.
- Declercq, J., de Bosschere, H., Schwarzkopf, I., Declercq, L., 2008. Papular cutaneous lesions in a cat associated with feline infectious peritonitis. Vet. Dermatol. 19, 255-258.
- Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L.K., Sjöström, H., Norén, O., Laude, H., 1992. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357, 417-420.
- Denison, M.R., Graham, R.L., Donaldson, E.F., Eckerle, L.D., Baric, R.S., 2011. An RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 8, 270-279.
- Dewerchin, H.L., Cornelissen, E., Nauwynck, H.J., 2005. Replication of feline coronaviruses in peripheral blood monocytes. Arch. Virol. 150, 2483-2500.
- Dewerchin, H.L., Cornelissen, E., Nauwynck, H.J., 2006. Feline infectious peritonitis virus-infected monocytes internalize viral membrane-bound proteins upon antibody addition. J. Gen. Virol. 87, 1685-1690.
- Doherty, M.J., 1971. Ocular manifestations of feline infectious peritonitis. J. Am. Vet. Med. Assoc. 159, 417-424.
- Drosten, C., Günther, S., Preiser, W., van der Werf, S., Brodt, H.-R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R.A.M., Berger, A., Burguière, A.-M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J.-C., Müller, S., Rickerts, V.,

Stürmer, M., Vieth, S., Klenk, H.-D., Osterhaus, A.D.M.E., Schmitz, H., Doerr, H.W., 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967-1976.

- Dye, C., Siddell, S.G., 2005. Genomic RNA sequence of feline coronavirus strain FIPV WSU-79/1146. J. Gen. Virol. 86, 2249-2253.
- Dye, C., Temperton, N., Siddell, S.G., 2007. Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines. J. Gen. Virol. 88, 1753-1760.
- Evermann, J.F., Baumgartener, L., Ott, R.L., Davis, E.V., McKeirnan, A.J., 1981. Characterization of a feline infectious peritonitis virus isolate. Vet. Pathol. 18, 256-265.
- Evermann, J.F., McKeirnan, A.J., Ott, R.L., 1991. Perspectives on the epizootiology of feline enteric coronavirus and the pathogenesis of feline infectious peritonitis. Vet. Microbiol. 28, 243-255.
- Fehr, D., Holznagel, E., Bolla, S., Hauser, B., Herrewegh, A.A.P.M., Horzinek, M.C., Lutz, H., 1997. Placebo-controlled evaluation of a modified life virus vaccine against feline infectious peritonitis: safety and efficacy under field conditions. Vaccine 15, 1101-1109.
- Feldmann, B.M., Jortner, B.S., 1964. Clinico-pathologic conference. J. Am. Vet. Med. Assoc. 144, 1409-1420.
- Fiscus, S.A., Teramoto, Y.A., 1987a. Antigenic comparison of feline coronavirus isolates: evidence for markedly different peplomer glycoproteins. J. Virol. 61, 2607-2613.
- Fiscus, S.A., Teramoto, Y.A., 1987b. Functional differences in the peplomer glycoproteins of feline coronavirus isolates. J. Virol. 61, 2655-2657.
- Foley, J.E., Poland, A., Carlson, J., Pedersen, N.C., 1997. Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus. J. Am. Vet. Med. Assoc. 210, 1313-1318.
- Foley, J.E., Lapointe, J.-M., Koblik, P., Poland, A., Pedersen, N.C., 1998. Diagnostic features of clinical neurologic feline infectious peritonitis. J. Vet. Intern. Med. 12, 414-423.
- Garner, M.M., Ramsell, K., Morera, N., Juan-Sallés, C., Jiménez, J., Ardiaca, M., Montesinos, A., Teifke, J.P., Löhr, C.V., Evermann, J.F., Baszler, T.V., Nordhausen, R.W., Wise, A.G., Maes, R.K., Kiupel, M., 2008. Clinicopathologic features of a systemic coronavirus-associated disease resembling feline infectious peritonitis in the domestic ferret (*Mustela putorius*). Vet. Pathol. 45, 236-246.
- Gerber, J.D., Ingersoll, J.D., Gast, A.M., Christianson, K.K., Selzer, N.L., Landon, R.M., Pfeiffer, N.E., Sharpee, R.L., Beckenhauer, W.H., 1990. Protection against feline infectious peritonitis by intranasal inoculation of a temperature-sensitive FIPV vaccine. Vaccine 8, 536-542.
- Goitsuka, R., Ohashi, T., Ono, K., Yasukawa, K., Koishibara, Y., Fukui, H., Ohsugi, Y., Hasegawa, A., 1990. IL-6 activity in feline infectious peritonitis. J. Immunol. 144, 2599-2603.
- González, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E., Enjuanes, L., 2003. A comparative sequence analysis to revise the current taxonomy of the family *Coronaviridae*. Arch. Virol. 148, 2207-2235.
- Gunn-Moore, D.A., Gruffydd-Jones, T.J., Harbour, D.A., 1998a. Detection of feline coronaviruses by culture and reverse transcriptase-polymerase chain reaction of blood samples from healthy cats and cats with clinical feline infectious peritonitis. Vet. Microbiol. 62, 193-205.

- Gunn-Moore, D.A., Caney, S.M.A., Gruffydd-Jones, T.J., Helps, C.R., Harbour, D.A., 1998b. Antibody and cytokine responses in kittens during the development of feline infectious peritonitis (FIP). Vet. Immunol. Immunopathol. 65, 221-242.
- Gunn-Moore, D.A., Gunn-Moore, F.J., Gruffyd-Jones, T.J., Harbour, D.A., 1999. Detection of FCoV quasispecies using denaturing gradient gel electrophoresis. Vet. Microbiol. 69, 127-130.
- Haijema, B.J., Volders, H., Rottier, P.J.M., 2003. Switching species tropism: an effective way to manipulate the feline coronavirus genome. J. Virol. 77, 4528-4538.
- Haijema, B.J., Volders, H., Rottier, P.J.M., 2004. Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. J. Virol. 78, 3863-3871.
- Hardy, W.D. Jr., Hurvitz, A., 1971. Feline infectious peritonitis: experimental studies. J. Am. Vet. Med. Assoc. 158, 994-1002.
- Harpold, L.M., Legendre, A.M., Kennedy, M.A., Plummer, P.J., Millsaps, K., Rohrbach, B., 1999. Fecal shedding of feline coronavirus in adult cats and kittens in an Abyssinian cattery. J. Am. Vet. Med. Assoc., 215, 948-951.
- Hartmann, K., Binder, C., Hirschberger, J., Cole, D., Reinacher, M., 2003. Comparison of different tests to diagnose feline infectious peritonitis. J. Vet. Intern. Med. 17, 781-790.
- Hartmann, K., Ritz, S., 2008. Treatment of cats with feline infectious peritonitis. Vet. Immunol. Immunopathol. 123, 172-175.
- Hayashi, T., Utsumi, F., Takahashi, R., Fujiwara, K., 1980. Pathology of non-effusive type feline infectious peritonitis and experimental transmission. Jpn. J. Vet. Sci. 42, 197-210.
- Hebben, M., Duquesne, V., Cronier, J., Rossi, B., Aubert, A., 2004. Modified vaccinia virus Ankara as a vaccine against feline coronavirus: immunogenicity and efficacy. J. Feline Med. Surg. 6, 111-118.
- Herrewegh, A.A.P.M., Vennema, H., Horzinek, M.C., Rottier, P.J.M., de Groot, R.J., 1995a. The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF 7a/7b transcription unit of different biotypes. Virology 212, 622-631.
- Herrewegh, A.A.P.M., de Groot, R.J., Cepica, A., Egberink, H.F., Horzinek, M.C., Rottier, P.J.M., 1995b. Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR. J. Clin. Microbiol. 33, 684-689.
- Herrewegh, A.A., M\u00e4hler, M., Hedrich, H.J., Haagmans, B.L., Egberink, H.F., Horzinek, M.C., Rottier, P.J., de Groot, R.J., 1997. Persistence and evolution of feline coronaviruses in a closed cat-breeding colony. Virology 234, 349-363.
- Herrewegh, A.A.P.M., Smeenk, I., Horzinek, M.C., Rottier, P.J.M., de Groot, R.J., 1998. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J. Virol. 72, 4508-4514.
- Herrmann, A., 2010. Nachweis von Tumor-Nekrose-Faktor (TNF) in der Leber bei Feliner Infektiöser Peritonitis. Vet. Med. Diss. Gießen.
- Hök, K., 1989. Demonstration of feline infectious peritonitis virus in conjunctival epithelial cells from cats. A simple and reliable method for clinical veterinary virology screening. APMIS 97, 820-824.

- Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., 1992. The prevalence of types I and II feline coronavirus infections in cats. J. Vet. Med. Sci. 54, 557-562.
- Hohdastu, T., Izumiya, Y., Yokoyama, Y., Kida, K., Koyama, H., 1998. Differences in virus receptor for type I and type II feline infectious peritonitis virus. Arch. Virol. 143, 839-850.
- Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., VandePol, S., 1982. Rapid evolution of RNA genomes. Science 215, 1577-1585.
- Holzworth, J., 1963. Some important disorders of cats. Cornell Vet. 53, 157-160.
- Hoskins, J.D., 1991. Coronavirus infection in cats. Vet. Clin. North Am. Small Anim. Pract. 23, 1-16.
- Ishida, T., Shibanai, A., Tanaka, S., Uchida, K., Mochizuki, M., 2004. Use of recombinant feline interferon and glucocorticoid in the treatment of feline infectious peritonitis. J. Feline Med. Surg. 6, 107-109.
- Ito, N., Mossel, E.C., Narayanan, K., Popov, V.L., Huang, C., Inoue, T., Peters, C.J., Makino, S., 2005. Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein. J. Vriol. 79, 3182-3186.
- Jackson, A.C., Rintoul, N.E., 1992. Effects of post-mortem autolysis on the detection of rabies virus genomic RNA and mRNA in mouse brain by using *in situ* hybridization. Mol. Cell. Probes 6, 231-235.
- Jacobse-Geels, H.E.L., Daha, M.R., Horzinek, M.C., 1980. Isolation and characterization of feline C3 and evidence for the immune complex pathogenesis of feline infectious peritonitis. J. Immunol. 125, 1606-1610.
- Jacobse-Geels, H.E.L., Daha, M.R., Horzinek, M.C., 1982. Antibody, immune complexes, and complement activity fluctuations in kittens with experimentally induced feline infectious peritonitis. Am J. Vet. Res. 43, 666-670.
- Juan-Sallés, C., Domingo, M., Herráez, P., Fernández, A., Segalés, J., Fernández, J., 1998. Feline infectious peritonitis in servals (*Felis serval*). Vet. Rec. 143, 535-536.
- Kennedy, M., Boedeker, N., Gibbs, P., Kania, S., 2001a. Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. Vet. Microbiol. 81, 227-234.
- Kennedy, M., Citino, S., Dolorico, T., McNabb, A.H., Moffat, A.S., Kania, S., 2001b. Detection of feline coronavirus infection in captive cheetahs (*Acinonyx jubatus*) by polymerase chain reaction. J. Zoo Wildlife Med. 32, 25-30.
- Kennedy, M., Kania, S., Stylianides, E., Bertschinger, H., Keet, D., van Vuuren, M., 2003. Detection of feline coronavirus infection in southern African nondomestic felids. J. Wildlife Dis. 39, 529-535.
- Kennedy, M., Moore, E., Wilkes, R.P., Citino, S.B., Kania, S.A., 2006. Analysis of genetic mutations in the 7a7b open reading frame of coronavirus of cheetahs (*Acinonyx jubatus*). Am. J. Vet. Res. 67, 627-632.
- Kipar, A., Bellmann, S., Kremendahl, J., Köhler, K., Reinacher, M., 1998. Cellular composition, coronavirus antigen expression and production of specific antibodies in lesions in feline infectious peritonitis. Vet. Immunol. Immunopathol. 65, 243-257.
- Kipar, A., Bellmann, S., Gunn-Moore, D.A., Leukert, W., Köhler, K., Menger, S., Reinacher, M., 1999. Histopathological alterations of lymphatic tissues in cats without feline infectious peritonitis after long-term exposure to FIP virus. Vet. Microbiol. 69, 131-137.

- Kipar, A., 2002. Zur Pathogenese der Felinen Infektiösen Peritonitis. Habil. Vet. Med. Gießen.
- Kipar, A., Meli, M.L., Failing, K., Euler, T., Gomez-Keller, M.A., Schwartz, D., Lutz, H., Reinacher, M., 2006. Natural feline coronavirus infection: differences in cytokine patterns in association with the outcome of infection. Vet. Immunol. Immunopathol. 112, 141-155.
- Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., 2010. Sites of feline coronavirus persistence in healthy cats. J. Gen. Virol. 91, 1698-1707.
- Kiss, I., Kecskeméti, S., Tanyi, J., Klingeborn, B., Belák, S., 2000. Preliminary studies on feline coronavirus distribution in naturally and experimentally infected cats. Res. Vet. Sci. 68, 237-242.
- Kiss, I., Poland, A.M., Pedersen, N.C., 2004. Disease outcome and cytokine responses in cats immunized with an avirulent feline infectious peritonitis virus (FIPV)-UCD1 and challenge-exposed with virulent FIPV-UCD8. J. Feline Med. Surg. 6, 89-97.
- Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J.A., Lim, W., Rollin, P.E., Dowell, S.F., Ling, A.-E., Humphrey, C.D., Shieh, W.-J., Guarner, J., Paddock, C.D., Rota, P., Fields, B., de Risi, J., Yang, J.-Y., Cox, N., Hughes, J.M., LeDuc, J.W., Bellini, W.J., Anderson, L.J., 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953-1966.
- Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., 2005. Feline coronavirus serotypes 1 and 2: seroprevalence and association with disease in Switzerland. Clin. Diagn. Lab. Immunol. 12, 1209-1215.
- Lai, M.M.C., Cavanagh, D., 1997. The molecular biology of coronaviruses. Adv. Virus Res. 48, 1-100.
- Lai, M.M.C., Perlman, S., Anderson, L.J., 2007. Coronaviridae. *In*: Fields Virology, D.M.Knipe and P.M. Howley (ed.). Lippincott Williams & Wilkins, Philadelphia, New York, Vol. I, 1305-1333.
- Leukert, W., 2002. Untersuchung der Wirksamkeit eines Impfstoffes gegen die Feline Infektiöse Peritonitis unter Tierheimbedingungen. Vet. Med. Diss. Gießen.
- Liebner-Keller, 2010. Interleukin-1ß in der Leber von Katzen mit Feliner Infektiöser Peritonitis (FIP). Vet. Med. Diss. Gießen.
- Lin, C.-N., Su, B.-L., Huang, H.-P., Lee, J.-J., Hsieh, M.-W., Chueh, L.-L., 2009a. Field strain feline coronaviruses with small deletions in ORF7b associated with both enteric infection and feline infectious peritonitis. J. Feline Med. Surg. 11, 413-419.
- Lin, C.-N., Su, B.-L., Wang, C.-H., Hsieh, M.-W., Chueh, T.-J., Chueh, L.-L., 2009b. Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: A 5-year study in Taiwan. Vet. Microbiol. 136, 233-239.
- Martínez, J., Ramis, A.J., Perpinán, D., Reinacher, M., 2006. Detection of feline infectious peritonitis virus-like antigen in ferrets. Vet. Rec. 158, 523.
- Martínez, J., Reinacher, M., Perpinán, D., Ramis, A., 2008. Identification of group I coronavirus antigen in multisystemic granulomatous lesions in ferrets (*Mustela putorius furo*). J. Comp. Pathol. 138, 54-58.
- Masters, P.S., 2006. The molecular biology of coronaviruses. Adv. Virus Res. 66, 193-292.
- Montali, R.J., Strandberg, J.D., 1972. Extraperitoneal lesions in feline infectious peritonitis. Vet. Pathol. 9, 109-121.

- Motokawa, K., Hohdatsu, T., Hashimoto, H., Koyama, H., 1996. Comparison of the amino acid sequence and phylogenetic analysis of the peplomer, integral membrane and nucleocapsid proteins of feline, canine and porcine coronaviruses. Microbiol. Immunol. 40, 425-433.
- Murray, J., Kiupel, M., Maes, R.K., 2010. Ferret coronavirus-associated diseases. Vet. Clin. North Am. Exot. Anim. Pract. 13, 543-560.
- Osterhaus, A.D.M.E., Horzinek, M.C., Ellens, D.J., 1976. Untersuchungen zur Ätiologie der Felinen Infektiösen Peritonitis. Berl. Münch. Tierärztl. Wschr. 89, 135-137.
- Paltrinieri, S., Cammarata Parodi, M., Cammarata, G., Comazzi, S., 1998a. Some aspects of humoral and cellular immunity in naturally occurring feline infectious peritonitis. Vet. Immunol. Immunopathol. 65, 205-220.
- Paltrinieri, S., Cammarata Parodi, M., Cammarata, G., Mambretti, M., 1998b. Type IV hypersensitivity in the pathogenesis of FIPV-induced lesions. J. Vet. Med. 45, 151-159.
- Paltrinieri, S., Grieco, V., Comazzi, S., Cammarata Parodi, M., 2001. Laboratory profiles in cats with different pathological and immunohistochemical findings due to feline infectious peritonitis (FIP). J. Feline Med. Surg. 3, 149-159.
- Paul-Murphy, J., Work, T., Hunter, D., McFie, E., Fjelline, D., 1994. Serologic survey and serum biochemical reference ranges of the free-ranging mountain lion (*Felis concolor*) in California. J. Wildlife Dis. 30, 205-215.
- Pedersen, N.C., 1976a. Morphologic and physical characteristics of feline infectious peritonitis virus and its growth in autochthonous peritoneal cell cultures. Am. J. Vet. Res. 37, 567-572.
- Pedersen, N.C., 1976b. Serologic studies of naturally occurring feline infectious peritonitis. Am. J. Vet. Res. 37, 1449-1453.
- Pedersen, N.C., Boyle, J.F., 1980. Immunologic phenomena in the effusive form of feline infectious peritonitis. Am. J. Vet. Res. 41, 868-876.
- Pedersen, N.C., Boyle, J.F., Floyd, K., 1981a. Infection studies in kittens, using feline infectious peritonitis virus propagated in cell culture. Am. J. Vet. Res. 42, 363-367.
- Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A., Barker, J., 1981b. An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am. J. Vet. Res. 42, 368-377.
- Pedersen, N.C., Black, J.W., 1983. Attempted immunization of cats against feline infectious peritonitis, using avirulent live virus or sublethal amounts of virulent virus. Am. J. Vet. Res. 44, 229-234.
- Pedersen, N.C., Black, J.W., Boyle, J.F., Evermann, J.F., McKeirnan, A.J., Ott, R.L., 1984a. Pathogenic differences between various feline coronavirus isolates. Adv. Exp. Med. Biol. 173, 365-380.
- Pedersen, N.C., Evermann, J.F., McKeirnan, A.J., Ott, R.L., 1984b. Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683. Am. J. Vet. Res. 45, 2580-2585.
- Pedersen, N.C., Floyd, K., 1985. Experimental studies with three new strains of feline infectious peritonitis virus: FIPV-UCD2, FIPV-UCD3, and FIPV-UCD4. Compend. Contin. Educ. Pract. Vet. 7, 1001-1011.
- Pedersen, N.C., Allen, C.E., Lyons, L.A., 2008. Pathogenesis of feline enteric coronavirus infection. J. Feline Med. Surg. 10, 529-541.

- Pedersen, N.C., Liu, H., Dodd, K.A., Pesavento, P.A., 2009. Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis. Viruses 1, 166-184.
- Pedersen, N.C., 2009. A review of feline infectious peritonitis virus infection: 1963-2008. J Feline Med. Surg. 11, 225-258.
- Pedersen, N.C., Liu, H., Scarlett, J., Leutenegger, C.M., Golovko, L., Kennedy, H., Kamal, F.M., 2012. Feline infectious peritonitis: Role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats. Virus Res. 165, 17-28.
- Pensaert, M., Callebaut, P., Vergote, J., 1986. Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet. Q. 8, 257-261.
- Pesteanu-Somogyi, L.D., Radzai, C., Pressler, B.M., 2006. Prevalence of feline infectious peritonitis in specific cat breeds. J. Feline Med. Surg. 8, 1-5.
- Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., 1996. Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J. Clin. Microbiol. 34, 3180-3184.
- Potkay, S., Bacher, J.D., Pitts, T.W., 1974. Feline infectious peritonitis in a closed breeding colony. Lab. Anim. Sci. 24, 279-289.
- Regan, A.D., Ousterout, D.G., Whittaker G.R., 2010. Feline lectin activity is critical for the cellular entry of feline infectious peritonitis virus. J.Virol. 84, 7917-7921.
- Reichert, G.H., Issinger, O.G., 1985. In vitro study of the biological activity of RNAs after incubation of hog liver, heart and brain tissue at room temperature. Biochimie 67, 657-661.
- Reinacher, M., Theilen, G., 1987. Frequency and significance of feline leukemia virus infection in necropsied cats. Am. J. Vet. Res. 48, 939-945.
- Ritz, S., Egberink, H., Hartmann, K., 2007. Effect of feline interferon-omega on the survival time and quality of life of cats with feline infectious peritonitis. J. Vet. Intern. Med. 21, 1193-1197.
- Robison, R.L., Holzworth, J., Gilmore, C.E., 1971. Naturally occurring feline infectious peritonitis: signs and clinical diagnosis. J. Am. Vet. Med. Assoc. 158, 981-986.
- Roelke, M.E., Forrester, D.J., Jacobson, E.R., Kollias, G.V., Scott, F.W., Barr, M.C., Evermann, J.F., Pirtle, E.C., 1993. Seroprevalence of infectious disease agents in free-ranging Florida Panthers (Felis concolor coryi). J. Wildlife Dis. 29, 36-49.
- Rohrbach, B.W., Legendre, A.M., Baldwin, C.A., Lein, D.H., Reed, W.M., Wilson, R.B., 2001. Epidemiology of feline infectious peritonitis among cats examined at veterinary medical teaching hospitals. J. Am. Vet. Med. Assoc. 218, 1111-1115.
- Rohrer, C., Suter, P.F., Lutz, H., 1993. Die Diagnostik der felinen infektiösen Peritonitis (FIP): Retrospektive und prospektive Untersuchungen. Kleintierpraxis 38, 379-389.
- Rottier, P.J.M., 1999. The molecular dynamics of feline coronaviruses. Vet. Microbiol. 69, 117-125.
- Rottier, P.J.M., Nakamura, K., Schellen, P., Volders, H., Haijema, B.J., 2005. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. J. Virol. 79, 14122-14130.
- Rychlik, W., 1995. Selection of primers for polymerase chain reaction. Mol. Biotechnol. 3, 129-134.

- Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., Erlich, H.A., 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491.
- Sawicki, S.G., Sawicki, D.L., 2005. Coronavirus transcription: a perspective. Curr. Top. Microbiol. Immunol. 287, 31-55.
- Schroo, S., 1994. Kompetitiver ELISA zum Nachweis von löslichen Immunkomplexen in Serum und Exsudaten FIP-verdächtiger Katzen. Vet. Med. Diss. Gießen.
- Sharif, S., Arshad, S.S., Hair-Bejo, M., Omar, A.R., Zeenathul, N.A., Alazawy, A., 2010. Diagnostic methods for feline coronavirus: a review. Vet. Med. Int. 2010, 1-7.
- Shiba, N., Maeda, K., Kato, H., Mochizuki, M., Iwata, H., 2007. Differentiation of feline coronavirus type I and II infections by virus neutralization test. Vet. Microbiol. 124, 348-352.
- Singh, M., Foster, D.J., Child, G., Lamb, W.A., 2005. Inflammatory cerebrospinal fluid analysis in cats: clinical diagnosis and outcome. J. Feline Med. Surg. 7, 77-93.
- Spaan, W.J.M., Brian, D., Cavanagh, D., de Groot, R.J., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Masters, P., Rottier, P., Taguchi, F., Talbot, P., 2005. *Coronaviridae*. In Fauquet, Mayo, Maniloff, Desselberger, Ball. Virus taxonomy. Eighth report of the international committee on taxonomy of viruses. London. Elsevier Academic Press., 947-963.
- Sparkes, A.H., Gruffydd-Jones, T.J., Harbour, D.A., 1991. Feline infectious peritonitis: a review of clinico-pathological changes in 65 cases, and a critical assessment of their diagnostic value. Vet. Rec. 129, 209-212.
- Sparkes, A.H., Gruffydd-Jones, T.J., Howard, P.E., Harbour, D.A., 1992a. Coronavirus serology in healthy pedigree cats. Vet. Rec. 131, 35-36.
- Sparkes, A.H., Gruffydd-Jones, T.J., Harbour, D.A., 1992b. Feline coronavirus antibodies in UK cats. Vet. Rec. 131, 223-224.
- Stoddart, M.E., Gaskell, R.M., Harbour, D.A., Pearson, G.R., 1988a. The sites of early viral replication in feline infectious peritonitis. Vet. Microbiol. 18, 259-271.
- Stoddart, M.E., Gaskell, R.M., Harbour, D.A., Gaskell, C.J., 1988b. Virus shedding and immune responses in cats inoculated with cell culture-adapted feline infectious peritonitis. Vet. Microbiol. 16, 145-158.
- Stoddart, C.A., Barlough, J.E., Baldwin, C.A., Scott, F.W., 1988c. Attempted immunisation of cats against feline infectious peritonitis using canine coronavirus. Res. Vet. Sci. 45, 383-388.
- Stoddart, C.A., Scott, F.W., 1989. Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence. J. Virol. 63, 436-440.
- Takano, T., Kawakami, C., Yamada, S., Satoh, R., Hohdatsu, T., 2008. Antibody-dependent enhancement occurs upon re-infection with the identical serotype virus in feline infectious peritonitis virus infection. J. Vet. Med. Sci. 70, 1315-1321.
- Tammer, R., Evensen, O., Lutz, H., Reinacher, M., 1995. Immunohistological demonstration of feline infectious peritonitis virus antigen in paraffin-embedded tissues using feline ascites or murine monoclonal antibodies. Vet. Immunol. Immunopathol. 49, 177-182.
- Tekes, G., Hofmann-Lehmann, R., Stallkamp, I., Thiel, V., Thiel, H.-J., 2008. Genome organization and reverse genetic analysis of a type I feline coronavirus. J. Virol. 82, 1851-1859.
- Tekes, G., Hofmann-Lehmann, R., Bank-Wolf, B., Maier, R., Thiel, H.-J., Thiel, V., 2010. Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage. J. Virol. 84, 1326-1333.
- Tekes, G., Spies, D., Bank-Wolf, B., Thiel, V., Thiel, H.J., 2012. A reverse genetic approach to study feline infectious peritonitis. J. Virol. 86, 6994-6998.
- Tresnan, D.B., Levis, R., Holmes, K.V., 1996. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol. 70, 8669-8674.
- Van Hamme, E., Dewerchin, H.L., Cornelissen, E., Nauwynck, H.J., 2007. Attachment and internalization of feline infectious peritonitis virus in feline blood monocytes and Crandell feline kidney cells. J. Gen. Virol. 88, 2527-2532.
- Van Hamme, E., Dewerchin, H.L., Cornelissen, E., Verhasselt, B., Nauwynck, J., 2008. Clathrin- and caveolae-independent entry of feline infectious peritonitis virus in monocytes depends on dynamin. J. Gen. Virol. 89, 2147-2156.
- Vennema, H., de Groot, R.J., Harbour, D.A., Dalderup, M., Gruffydd-Jones, T., Horzinek, M.C., Spaan, W.J.M., 1990. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J. Virol. 64, 1407-1409.
- Vennema, H., Heijnen, L., Rottier, P.J.M., Horzinek, M.C., Spaan, W.J.M., 1992a. A novel glycoprotein of feline infectious peritonitis coronavirus contains a KDEL-like endoplasmic reticulum retention signal. J. Virol. 66, 4951-4956.
- Vennema, H., Rossen, J.W.A., Wesseling, J., Horzinek, M.C., Rottier, P.J.M., 1992b. Genomic organization and expression of the 3'end of the canine and feline enteric coronaviruses. Virology 191, 134-140.
- Vennema, H., Poland, A., Foley, J., Pedersen, N.C., 1998. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243, 150-157.
- Vennema, H., 1999. Genetic drift and genetic shift during feline coronavirus evolution. Vet. Microbiol. 69, 139-141.
- Ward, J.M., Munn, R.J., Gribble, D.H., Dungworth, D.L., 1968. An observation of feline infectious peritonitis. Vet. Rec. 83, 416-417.
- Ward, J.M., 1970. Morphogenesis of a virus in cats with experimental feline infectious peritonitis. Virology 41, 191-194.
- Watt, N.J., MacIntyre, N.J., McOrist, S., 1993. An extended outbreak of infectious peritonitis in a closed colony of European wildcats (*Felis silvestris*). J. Comp. Pathol. 108, 73-79.
- Weiss, R.C., Scott, F.W., 1981a. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp. Immunol. Microbiol. Infect. Dis. 4, 175-189.
- Weiss, R.C., Scott, F.W., 1981b. Pathogenesis of feline infectious peritonitis: pathologic changes and immunofluorescence. Am. J. Vet. Res. 42, 2036-2048.
- Wise, A.G., Kiupel, M., Maes, R.K., 2006. Molecular characterization of a novel coronavirus associated with epizootic catarrhal enteritis (ECE) in ferrets. Virology 349, 164-174.
- Wise, A.G., Kiupel, M., Garner, M.M., Clark, A.K., Maes, R.K., 2010. Comparative sequence analysis of the distal one-third of the genomes of a systemic and an enteric ferret coronavirus. Virus Res. 149, 42-50.

Wolfe, L.G., Griesemer, R.A., 1966. Feline infectious peritonitis. Path. Vet. 3, 255-270.

- Wolfe, L.G., Griesemer, R.A., 1971. Feline infectious peritonitis: review of gross and histopathological lesions. J. Am. Vet. Med. Assoc. 158, 987-993.
- Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357, 420-422.
- Zook, B.C., King, N.W., Robison, R.L., McCombs, H.L., 1968. Ultrastructural evidence for the viral etiology of feline infectious peritonitis. Path. Vet. 5, 91-95.

9 Anhang

9.1 Tabellen

Tabelle 11 Untersuchte Katzen, Tagebuchnummer, Herkunft, Rasse, Alter, Geschlecht

Tagebuch- nummer	Herkunft	Rasse	Alter	Geschlecht
S-83/08	Einkatzenhaushalt	Norwegische Waldkatze	5 Monate	m
S-196/08	Tierheim	unbekannt	> 1 Jahr	W
S-646/08	unbekannt	unbekannt	> 1 Jahr	mk
S-743/08	Mehrkatzenhaushalt	Perser	6 Monate	wk
S-744/08	unbekannt	Europäisch Kurhaar	< 1 Jahr	m
S-872/08	unbekannt	unbekannt	< 6 Monate	W
S-1004/08	unbekannt	Maine Coon	8 Monate	w
S-1074/08	Einkatzenhaushalt	Bengal	5 Monate	W
S-1221/08	Mehrkatzenhaushalt	Perser	4 Monate	m
S-1378/08	unbekannt	unbekannt	< 1 Jahr	W
S-1387/08	Einkatzenhaushalt	Europäisch Kurzhaar	6 Monate	W
S-181/09	Einkatzenhaushalt	Europäisch Kurzhaar	4 Jahre	mk
S-219/09	Mehrkatzenhaushalt	Britisch Kurzhaar	6 Monate	m
S-222/09	Einkatzenhaushalt	Maine Coon	9 Monate	m
S-284/09	Mehrkatzenhaushalt	Britisch Kurzhaar	4 Monate	m

Tagebuch- nummer	Herkunft	Rasse	Alter	Geschlecht
S-448/09	Mehrkatzenhaushalt	Maine Coon	9 Monate	W
S-619/09	unbekannt	Europäisch Kurzhaar	> 1 Jahr	mk
S-1010/09	Mehrkatzenhaushalt	Maine Coon	unbekannt	w
S-1094/09	Einkatzenhaushalt	Britisch Langhaar	6 Monate	m
S-1129/09	Einkatzenhaushalt	Europäisch Kurzhaar	11 Jahre	mk
S-1190/09	Tierheim	unbekannt	3 Monate	mk
S-1300/09	Tierheim	Europäisch Kurzhaar	5 Monate	m
S-13/10	unbekannt	unbekannt	9 Monate	wk
S-186/10	Tierheim	Europäisch Kurzhaar	4 Monate	mk
S-367/10	Einkatzenhaushalt	Kartäuser	5 Monate	W
S-518/10	Mehrkatzenhaushalt	Maine Coon	5 Monate	m
S-1349/10	Mehrkatzenhaushalt	Bengal	5 Monate	m
S-1448/10	Einkatzenhaushalt	Siam Mix	4 Monate	m

Tagebuch-	Gewebe	RNA in	ORF 3c Nach-	ORF 7b Nach-	Sektions-	Homogenisierungs-
nummer		ng/µl	weis	weis	zeitpunkt	methode
S-83/08	Leber	253,87	-	+	?	Mörser und Pistill
S-83/08	Niere	95,73	-	+	?	Mörser und Pistill
S-83/08	Pleura	24,00	-	-	?	Mörser und Pistill
S-196/08	Leber	500,53	-	-	>48 h	Mörser und Pistill
S-196/08	Niere	78,93	-	+	>48 h	Mörser und Pistill
S-646/08	Bauchwand	7,20	$+^{2}$	+	\leq 24 h	Mörser und Pistill
S-646/08	Netz	335,20	+	+	\leq 24 h	Mörser und Pistill
S-646/08	Leber	445,30	$+^{2}$	+	\leq 24 h	Mörser und Pistill
S-646/08	Darm	48,00	(+ ²)	+	\leq 24 h	Mörser und Pistill
S-646/08	Zwerchfell	7,20	$+^{2}$	+	\leq 24 h	Mörser und Pistill
S-646/08	Darm-	325,60	$+^{2}$	+	\leq 24 h	Mörser und Pistill
	lymphknoten					
S-646/08	Milz	174,90	$+^{2}$	+	\leq 24 h	Mörser und Pistill
S-646/08	Pankreas	454,90	$+^{2}$	+	\leq 24 h	Mörser und Pistill
S-646/08	Niere	31,20	(+)	(+)	\leq 24 h	Mörser und Pistill
S-646/08	Lunge	78,90	+	+	\leq 24 h	Mörser und Pistill
S-646/08	Gehirn	24,00	(+)	_	\leq 24 h	Mörser und Pistill
S-743/08	Bauchwand	75,40	+	+	< 12 h	Mörser und Pistill
S-743/08	Netz	508,64	+	(+)	< 12 h	Mörser und Pistill
S-743/08	Leber	158,08	+	+	< 12 h	Mörser und Pistill
S-743/08	Darm	113,20	+	(+)	< 12 h	Mörser und Pistill
S-743/08	Zwerchfell	57,40	+	(+)	< 12 h	Mörser und Pistill
S-743/08	Darm-	215,50	+	+	< 12 h	Mörser und Pistill
	lymphknoten					
S-743/08	Milz	294,40	+	+	< 12 h	Mörser und Pistill

Tabelle 12Untersuchte Katzen, Gewebe, RNA-Konzentration, Nachweis von ORF 3c/ORF 7b,

Sektionszeitpunkt, Gewebehomogenisierungsmethode

Tagebuch-	Gewebe	RNA in	ORF 3c	ORF 7b	Sektions-	Homogenisierungs-
nummer		ng/µl	Nach-	Nach-	zeitpunkt ¹	methode
			weis	weis		
S-743/08	Pankreas	852,53	+	+	< 12 h	Mörser und Pistill
S-743/08	Niere	88,53	-	(+)	< 12 h	Mörser und Pistill
S-743/08	Lunge	263,47	(+)	+	< 12 h	Mörser und Pistill
S-743/08	Gehirn	48,00	-	-	< 12 h	Mörser und Pistill
S-744/08	Bauchwand	31,20	-	-	>48 h	Mörser und Pistill
S-744/08	Netz	134,30	-	+	>48 h	Mörser und Pistill
S-744/08	Leber	591,47	-	+	>48 h	Mörser und Pistill
S-744/08	Darm	119,73	-	+	>48 h	Mörser und Pistill
S-744/08	Zwerchfell	7,20	-	+	>48 h	Mörser und Pistill
S-744/08	Darm-	191,47	-	+	>48 h	Mörser und Pistill
	lymphknoten					
S-744/08	Milz	191,47	-	+	>48 h	Mörser und Pistill
S-744/08	Pankreas	3818,00	-	+	>48 h	Mörser und Pistill
S-744/08	Niere	24,00	-	(+)	>48 h	Mörser und Pistill
S-744/08	Lunge	54,93	-	-	>48 h	Mörser und Pistill
S-744/08	Gehirn	24,00	-	(+)	>48 h	Mörser und Pistill
S-872/08	Bauchwand	7,20	-	+	\leq 24h	Mörser und Pistill
S-872/08	Netz	55,20	-	+	\leq 24h	Mörser und Pistill
S-872/08	Leber	438,13	-	+	\leq 24h	Mörser und Pistill
S-872/08	Darm	16,80	-	+	\leq 24h	Mörser und Pistill
S-872/08	Zwerchfell	38,51	-	+	\leq 24h	Mörser und Pistill
S-872/08	Darm-	333,96	-	+	\leq 24h	Mörser und Pistill
	lymphknoten					
S-872/08	Milz	71,73	-	+	\leq 24h	Mörser und Pistill
S-872/08	Pankreas	1005,87	-	+	\leq 24h	Mörser und Pistill
S-872/08	Niere	38,40	-	(+)	\leq 24h	Mörser und Pistill
S-872/08	Lunge	55,20	-	+	\leq 24h	Mörser und Pistill
S-872/08	Gehirn	31,20	-	(+)	\leq 24h	Mörser und Pistill

Tagebuch-	Gewebe	RNA in	ORF 3c	ORF 7b	Sektions-	Homogenisierungs-
nummer		ng/µl	Nach-	Nach-	zeitpunkt ¹	methode
S-1004/08	Bauchwand	16.80	(+)	weis	> 48h	Mörser und Pistill
0-1004/00		10,00		-	× 40h	Niciser und Fischi
S-1004/08	Netz	95,75	+	+	> 48n	Morser und Pistili
S-1004/08	Leber	7,20	+	+	>48h	Mörser und Pistill
S-1004/08	Darm	31,20	+	-	>48h	Mörser und Pistill
S-1004/08	Zwerchfell	7,20	+	-	>48h	Mörser und Pistill
S-1004/08	Darm-	428,53	+	+	>48h	Mörser und Pistill
	lymphknoten					
S-1004/08	Milz	383,20	+	-	>48h	Mörser und Pistill
S-1004/08	Pankreas	1000,00	+	-	>48h	Mörser und Pistill
S-1004/08	Niere	48,00	+	-	>48h	Mörser und Pistill
S-1004/08	Lunge	71,70	+	-	>48h	Mörser und Pistill
S-1004/08	Gehirn	95,70	+	$+^{2}$	>48h	Mörser und Pistill
S-1074/08	Bauchwand	26,40	-	-	\leq 24h	Mörser und Pistill
S-1074/08	Netz	16,80	+	(+)	\leq 24h	Mörser und Pistill
S-1074/08	Leber	167,73	+	+	\leq 24h	Mörser und Pistill
S-1074/08	Darm	102,93	-	+	\leq 24h	Mörser und Pistill
S-1074/08	Zwerchfell	7,20	(+)	-	\leq 24h	Mörser und Pistill
S-1074/08	Darm-	342,40	+	$+^{2}$	\leq 24h	Mörser und Pistill
	lymphknoten					
S-1074/08	Milz	150,93	+	$+^{2}$	\leq 24h	Mörser und Pistill
S-1074/08	Pankreas	629,87	+	+	\leq 24h	Mörser und Pistill
S-1074/08	Niere	71,73	-	+	\leq 24h	Mörser und Pistill
S-1074/08	Lunge	31,20	+	+	\leq 24h	Mörser und Pistill
S-1074/08	Gehirn	54,93	+	+	\leq 24h	Mörser und Pistill
S-1221/08	Bauchwand	28,80	-	-	\leq 48 h	Mörser und Pistill
S-1221/08	Netz	24,00	(+)	+	\leq 48 h	Mörser und Pistill
S-1221/08	Leber	48,00	-	+	\leq 48 h	Mörser und Pistill
S-1221/08	Darm	86,13	(+)	+	\leq 48 h	Mörser und Pistill
S-1221/08	Zwerchfell	7,20	-	+	\leq 48 h	Mörser und Pistill

Tagebuch-	Gewebe	RNA in	ORF 3c	ORF 7b	Sektions-	Homogenisierungs-
nummer		ng/µl	Nach-	Nach-	zeitpunkt ¹	methode
S-1221/08	Darm-	78.93	weis		< 18 h	Mörser und Pistill
5-1221/00	lamentalin oton	10,75	_	I	<u></u>	worser und i istin
	Tympnknoten					
S-1221/08	Milz	112,53	-	+	\leq 48 h	Mörser und Pistill
S-1221/08	Pankreas	629,87	-	+	\leq 48 h	Mörser und Pistill
S-1221/08	Niere	48,00	-	(+)	\leq 48 h	Mörser und Pistill
S-1221/08	Lunge	45,33	-	(+)	\leq 48 h	Mörser und Pistill
S-1221/08	Gehirn	21,6	-	-	\leq 48 h	Mörser und Pistill
S-1378/08	Bauchwand	24,00	(+)	-	\leq 24h	Mörser und Pistill
S-1378/08	Netz	205,86	+	+	\leq 24h	Mörser und Pistill
S-1378/08	Leber	359,20	-	(+)	\leq 24h	Mörser und Pistill
S-1378/08	Darm	189,06	+	+	\leq 24h	Mörser und Pistill
S-1378/08	Zwerchfell	24,00	-	(+)	\leq 24h	Mörser und Pistill
S-1378/08	Darm-	167,73	+	+	\leq 24h	Mörser und Pistill
	lymphknoten					
S-1378/08	Milz	213,00	(+)	+	\leq 24h	Mörser und Pistill
S-1378/08	Pankreas	1784,00	-	-	\leq 24h	Mörser und Pistill
S-1378/08	Niere	4,80	(+)	(+)	\leq 24h	Mörser und Pistill
S-1378/08	Lunge	55,20	(+)	+	\leq 24h	Mörser und Pistill
S-1378/08	Gehirn	62,13	-	+	\leq 24h	Mörser und Pistill
S-1387/08	Bauchwand	21,60	-	-	\leq 24h	Mörser und Pistill
S-1387/08	Netz	629,86	-	-	\leq 24h	Mörser und Pistill
S-1387/08	Leber	335,20	-	-	\leq 24h	Mörser und Pistill
S-1387/08	Darm	205,86	-	(+ ²)	\leq 24h	Mörser und Pistill
S-1387/08	Zwerchfell	7,20	-		\leq 24h	Mörser und Pistill
S-1387/08	Darm-	95,73	-	(+)	\leq 24h	Mörser und Pistill
	lymphknoten					
S-1387/08	Milz	498,13	-	-	\leq 24h	Mörser und Pistill
S-1387/08	Pankreas	2712,00	-	-	\leq 24h	Mörser und Pistill

Tagebuch-	Gewebe	RNA in	ORF 3c	ORF 7b	Sektions-	Homogenisierungs-
nummer		ng/µl	Nach-	Nach-	zeitpunkt ¹	methode
		1.50.10	weis	weis		
S-1387/08	Niere	158,13	-	+	\leq 24h	Mörser und Pistill
S-1387/08	Lunge	174,67	-	-	\leq 24h	Mörser und Pistill
S-1387/08	Gehirn	24,00	-	(+)	\leq 24h	Mörser und Pistill
S-181/09	Leber	246,67	-	-	\leq 24h	Mörser und Pistill
S-181/09	Niere	54,93	-	-	\leq 24h	Mörser und Pistill
S-219/09	Bauchwand	7,20	+	+	\leq 24h	Mörser und Pistill
S-219/09	Netz	95,73	+	+	\leq 24h	Mörser und Pistill
S-219/09	Leber	445,33	+	+	\leq 24h	Mörser und Pistill
S-219/09	Darm	54,93	+	+	\leq 24h	Mörser und Pistill
S-219/09	Zwerchfell	7,20	+	(+)	\leq 24h	Mörser und Pistill
S-219/09	Darm-	63,47	+	+	\leq 24h	Mörser und Pistill
	lymphknoten					
S-219/09	Milz	99,33	+	+	\leq 24h	Mörser und Pistill
S-219/09	Pankreas	680,00	+	+	\leq 24h	Mörser und Pistill
S-219/09	Niere	122,13	+	+	\leq 24h	Mörser und Pistill
S-219/09	Lunge	15,60	+	+	\leq 24h	Mörser und Pistill
S-219/09	Gehirn	114,93	+	-	\leq 24h	Mörser und Pistill
S-222/09	Bauchwand	38,40	+	+	\leq 48h	Mörser und Pistill
S-222/09	Netz	126,93	+	+	\leq 48h	Mörser und Pistill
S-222/09	Leber	48,00	+	+	\leq 48h	Mörser und Pistill
S-222/09	Darm	102,93	+	+	\leq 48h	Mörser und Pistill
S-222/09	Zwerchfell	14,40	+	+	\leq 48h	Mörser und Pistill
S-222/09	Darm-	110,13	+	+	\leq 48h	Mörser und Pistill
	lymphknoten					
S-222/09	Milz	273,10	+	+	\leq 48h	Mörser und Pistill
S-222/09	Pankreas	1053,60	+	+	\leq 48h	Mörser und Pistill
S-222/09	Niere	78,93	+	+	\leq 48h	Mörser und Pistill
S-222/09	Lunge	45,60	+	+	\leq 48h	Mörser und Pistill

Fortsetzung '	Tabelle 12
---------------	------------

Tagebuch-	Gewebe	RNA in	ORF 3c	ORF 7b	Sektions-	Homogenisierungs-
nummer		ng/µl	Nach-	Nach-	zeitpunkt ¹	methode
G 222/00	<u>C 1:</u>	(0.20	weis	weis	< 401	M:: 1D: (11
S-222/09	Gehirn	69,30	+	(+)	$\leq 48h$	Morser und Pistill
S-284/09	Bauchwand	2,40	-	-	\leq 48h	Mörser und Pistill
S-284/09	Netz	294,40	+	+	\leq 48h	Mörser und Pistill
S-284/09	Leber	38,40	+	+	\leq 48h	Mörser und Pistill
S-284/09	Darm	78,93	-	-	\leq 48h	Mörser und Pistill
S-284/09	Zwerchfell	24,00	-	-	\leq 48h	Mörser und Pistill
S-284/09	Darm-	62,13	+	+	\leq 48h	Mörser und Pistill
	lymphknoten					
S-284/09	Milz	110,13	-	-	\leq 48h	Mörser und Pistill
S-284/09	Pankreas	941,10	+	+	\leq 48h	Mörser und Pistill
S-284/09	Niere	16,80	+	+	\leq 48h	Mörser und Pistill
S-284/09	Lunge	64,80	+	+	\leq 48h	Mörser und Pistill
S-284/09	Gehirn	31,20	+	+	\leq 48h	Mörser und Pistill
S-448/09	Bauchwand	24,00	-	-	\leq 24 h	Mörser und Pistill
S-448/09	Netz	48,00	+	-	\leq 24 h	Mörser und Pistill
S-448/09	Leber	126,93	+	+	\leq 24 h	Mörser und Pistill
S-448/09	Darm	150,93	+	+	\leq 24 h	Mörser und Pistill
S-448/09	Zwerchfell	24,00	-	-	\leq 24 h	Mörser und Pistill
S-448/09	Darm-	304,27	+	+	\leq 24 h	Mörser und Pistill
	lymphknoten					
S-448/09	Milz	119,73	+	+	\leq 24 h	Mörser und Pistill
S-448/09	Pankreas	160,53	+	(+)	\leq 24 h	Mörser und Pistill
S-448/09	Niere	62,13	+	(+)	\leq 24 h	Mörser und Pistill
S-448/09	Lunge	126,93	+	+	\leq 24 h	Mörser und Pistill
S-448/09	Gehirn	134,13	(+)	+	\leq 24 h	Mörser und Pistill
S-619/09	Bauchwand	62,13	-	-	\leq 24 h	Bullet Blender
S-619/09	Netz	128,13	-	+	\leq 24 h	Bullet Blender
S-619/09	Leber	665,60	-	(+)	≤24 h	Bullet Blender

Tagebuch-	Gewebe	RNA in	ORF 3c	ORF 7b	Sektions-	Homogenisierungs-
nummer		ng/µl	Nach-	Nach-	zeitpunkt ¹	methode
			weis	weis		
S-619/09	Darm	550,67	-	+	\leq 24 h	Bullet Blender
S-619/09	Zwerchfell	63,47	-	(+)	\leq 24 h	Bullet Blender
S-619/09	Darm-	263,47	-	+	\leq 24 h	Bullet Blender
	lymphknoten					
S-619/09	Milz	729,20	-	-	\leq 24 h	Bullet Blender
S-619/09	Pankreas	2431,87	-	-	\leq 24 h	Bullet Blender
S-619/09	Niere	51,47	-	-	\leq 24 h	Bullet Blender
S-619/09	Lunge	90,93	-	-	\leq 24 h	Bullet Blender
S-619/09	Gehirn	7,20	-	-	\leq 24 h	Bullet Blender
S-1010/09	Bauchwand	7,20	-	-	\leq 24 h	Mörser und Pistill
S-1010/09	Netz	136,53	(+)	+	\leq 24 h	Mörser und Pistill
S-1010/09	Leber	270,67	+	(+)	\leq 24 h	Mörser und Pistill
S-1010/09	Darm	14,40	-	(+)	\leq 24 h	Mörser und Pistill
S-1010/09	Zwerchfell	7,20	-	-	\leq 24 h	Mörser und Pistill
S-1010/09	Darm-	126,93	(+ ²)	+	\leq 24 h	Mörser und Pistill
	lymphknoten					
S-1010/09	Milz	184,27	(+ ²)	+	\leq 24 h	Mörser und Pistill
S-1010/09	Pankreas	605,87	+	$+^{2}$	\leq 24 h	Mörser und Pistill
S-1010/09	Niere	134,13	$+^{2}$	$+^{2}$	\leq 24 h	Mörser und Pistill
S-1010/09	Lunge	24,00	(+ ²)	$+^{2}$	\leq 24 h	Mörser und Pistill
S-1010/09	Gehirn	95,73	$+^{2}$	$+^{2}$	\leq 24 h	Mörser und Pistill
S-1094/09	Bauchwand	14,40	-	+	< 24 h	Mörser und Pistill
S-1094/09	Netz	110,13	+	+	< 24 h	Mörser und Pistill
S-1094/09	Leber	119,73	-	+	< 24 h	Mörser und Pistill
S-1094/09	Darm	191,47	-	+	< 24 h	Mörser und Pistill
S-1094/09	Zwerchfell	110,13	-	+	< 24 h	Mörser und Pistill
S-1094/09	Darm-	222,67	-	+	< 24 h	Mörser und Pistill
	lymphknoten					

Fortsetzung	Tabelle 12
-------------	------------

Tagebuch-	Gewebe	RNA in	ORF 3c	ORF 7b	Sektions-	Homogenisierungs-
nummer		ng/µl	Nach-	Nach-	zeitpunkt ¹	methode
			weis	weis		
S-1094/09	Milz	150,93	-	+	< 24 h	Mörser und Pistill
S-1094/09	Pankreas	735,20	-	+	< 24 h	Mörser und Pistill
S-1094/09	Niere	158,13	-	+	< 24 h	Mörser und Pistill
S-1094/09	Lunge	126,93	+	+	< 24 h	Mörser und Pistill
S-1094/09	Gehirn	102,93	-	(+)	< 24 h	Mörser und Pistill
S-1129/09	Bauchwand	7,20	(+)	(+)	\leq 24 h	Mörser und Pistill
S-1129/09	Netz	88,53	+	(+)	\leq 24 h	Mörser und Pistill
S-1129/09	Leber	71,73	+	+	\leq 24 h	Mörser und Pistill
S-1129/09	Darm	93,33	-	(+)	\leq 24 h	Mörser und Pistill
S-1129/09	Zwerchfell	24,00	+	+	\leq 24 h	Mörser und Pistill
S-1129/09	Darm-	239,46	+	+	\leq 24 h	Mörser und Pistill
	lymphknoten					
S-1129/09	Milz	550,67	+	+	\leq 24 h	Mörser und Pistill
S-1129/09	Pankreas	1707,46	-	-	\leq 24 h	Mörser und Pistill
S-1129/09	Niere	407,20	+	+	\leq 24 h	Mörser und Pistill
S-1129/09	Lunge	71,73	+	+	\leq 24 h	Mörser und Pistill
S-1129/09	Gehirn	48,00	-	-	\leq 24 h	Mörser und Pistill
S-1190/09	Bauchwand	24,00	+	+	>48 h	Mörser und Pistill
S-1190/09	Netz	24,00	+	+	>48 h	Mörser und Pistill
S-1190/09	Leber	296,80	+	+	>48 h	Mörser und Pistill
S-1190/09	Darm	133,33	+	+	>48 h	Mörser und Pistill
S-1190/09	Zwerchfell	93,33	+	+	>48 h	Mörser und Pistill
S-1190/09	Darm-	167,73	+	+	>48 h	Mörser und Pistill
	lymphknoten					
S-1190/09	Milz	346,67	+	+	>48 h	Mörser und Pistill
S-1190/09	Pankreas	163,43	+	+	>48 h	Mörser und Pistill
S-1190/09	Niere	63,47	(+)	-	>48 h	Mörser und Pistill
S-1190/09	Lunge	358,00	-	-	>48 h	Mörser und Pistill

Tagebuch-	Gewebe	RNA in	ORF 3c	ORF 7b	Sektions-	Homogenisierungs-
nummer		ng/µl	Nach-	Nach-	zeitpunkt ¹	methode
0.1100/00	0.1	110.12	weis	weis	. 40.1	M:: 1D: (11
S-1190/09	Gehirn	110,13	-	-	>48 h	Morser und Pistill
S-1300/09	Bauchwand	24,00	+	+	$\leq 24h$	Bullet Blender
S-1300/09	Netz	263,47	+	+	\leq 24h	Bullet Blender
S-1300/09	Leber	3941,33	(+)	+	\leq 24h	Bullet Blender
S-1300/09	Darm	15,60	+	+	\leq 24h	Bullet Blender
S-1300/09	Zwerchfell	7,20	+	+	\leq 24h	Bullet Blender
S-1300/09	Darm-	2178,67	+	+	\leq 24h	Bullet Blender
	lymphknoten					
S-1300/09	Milz	1204,53	+	+	\leq 24h	Bullet Blender
S-1300/09	Pankreas	1688,27	+	+	\leq 24h	Bullet Blender
S-1300/09	Niere	677,60	(+)	(+)	\leq 24h	Bullet Blender
S-1300/09	Lunge	374,80	+	+	\leq 24h	Bullet Blender
S-1300/09	Gehirn	78,93	(+)	-	\leq 24h	Bullet Blender
S-13/10	Bauchwand	12,60	-	-	\leq 48 h	Bullet Blender
S-13/10	Netz	186,67	+	-	\leq 48 h	Bullet Blender
S-13/10	Leber	792,53	-	-	\leq 48 h	Bullet Blender
S-13/10	Darm	689,60	+	-	\leq 48 h	Bullet Blender
S-13/10	Zwerchfell	67,07	+	-	\leq 48 h	Bullet Blender
S-13/10	Darm-	246,67	-	-	\leq 48 h	Bullet Blender
	lymphknoten					
S-13/10	Milz	420,53	(+)	-	\leq 48 h	Bullet Blender
S-13/10	Pankreas	2168,40	-	-	\leq 48 h	Bullet Blender
S-13/10	Niere	553,07	-	-	\leq 48 h	Bullet Blender
S-13/10	Lunge	190,27	-	-	\leq 48 h	Bullet Blender
S-13/10	Gehirn	24,00	-	-	\leq 48 h	Bullet Blender
S-186/10	Bauchwand	7,20	+	-	< 24 h	Bullet Blender
S-186/10	Netz	119,73	+	+	< 24 h	Bullet Blender
S-186/10	Leber	116,49	+	+	< 24 h	Bullet Blender

Tagebuch-	Gewebe	RNA in	ORF 3c	ORF 7b	Sektions-	Homogenisierungs-
nummer		ng/µl	Nach-	Nach-	zeitpunkt ¹	methode
9.10.6/10	D	(50 (0	weis	weis	2.4.1	D 11 D1 1
S-186/10	Darm	653,60	+	+	<24 h	Bullet Blender
S-186/10	Zwerchfell	159,33	+	+	< 24 h	Bullet Blender
S-186/10	Darm-	454,93	+	+	< 24 h	Bullet Blender
	lymphknoten					
S-186/10	Milz	1399,60	(+)	+	< 24 h	Bullet Blender
S-186/10	Pankreas	3309,33	(+)	-	< 24 h	Bullet Blender
S-186/10	Niere	454,93	+	-	< 24 h	Bullet Blender
S-186/10	Lunge	7,20	-	-	< 24 h	Bullet Blender
S-186/10	Gehirn	948,27	(+)	-	< 24 h	Bullet Blender
S-367/10	Bauchwand	16,80	-	-	\leq 48 h	Bullet Blender
S-367/10	Netz	126,93	+	+	\leq 48 h	Bullet Blender
S-367/10	Leber	445,33	(+ ²)	-	\leq 48 h	Bullet Blender
S-367/10	Darm	10,80	-	(+)	\leq 48 h	Bullet Blender
S-367/10	Zwerchfell	27,60	(+ ²)	(+)	\leq 48 h	Bullet Blender
S-367/10	Darm-	277,87	$+^{2}$	-	\leq 48 h	Bullet Blender
	lymphknoten					
S-367/10	Milz	979,47	(+ ²)	-	\leq 48 h	Bullet Blender
S-367/10	Pankreas	3312,00	+	(+)	\leq 48 h	Bullet Blender
S-367/10	Niere	275,47	(+ ²)	+	\leq 48 h	Bullet Blender
S-367/10	Lunge	7,20	(+ ²)	-	\leq 48 h	Bullet Blender
S-367/10	Gehirn	282,67	(+ ²)	-	\leq 48 h	Bullet Blender
S-518/10	Bauchwand	0,10	-	-	\leq 24 h	Bullet Blender
S-518/10	Netz	143,73	-	-	\leq 24 h	Bullet Blender
S-518/10	Leber	836,93	-	-	\leq 24 h	Bullet Blender
S-518/10	Darm	581,87	+	-	\leq 24 h	Bullet Blender
S-518/10	Zwerchfell	111,33	+	+	\leq 24 h	Bullet Blender
S-518/10	Darm-	470,53	-	(+)	\leq 24 h	Bullet Blender
	lymphknoten					

Fortsetzung	Tabelle 12
-------------	------------

Tagebuch-	Gewebe	RNA in	ORF 3c	ORF 7b	Sektions-	Homogenisierungs-
nummer		ng/µl	Nach-	Nach-	zeitpunkt ¹	methode
S-518/10	Milz	178,40	-	-	\leq 24 h	Bullet Blender
S-518/10	Pankreas	2898,67	-	-	\leq 24 h	Bullet Blender
S-518/10	Niere	318,40	+	+	\leq 24 h	Bullet Blender
S-518/10	Lunge	688,40	+	+	\leq 24 h	Bullet Blender
S-518/10	Gehirn	796,13	(+)	+	\leq 24 h	Bullet Blender
S-1349/10	Bauchwand	7,20	+	-	\leq 48 h	Bullet Blender
S-1349/10	Netz	0,10	+	+	\leq 48 h	Bullet Blender
S-1349/10	Leber	609,97	+	+	\leq 48 h	Bullet Blender
S-1349/10	Darm	125,73	+	+	\leq 48 h	Bullet Blender
S-1349/10	Zwerchfell	0,10	+	+	\leq 48 h	Bullet Blender
S-1349/10	Darm-	117,33	+	+	\leq 48 h	Bullet Blender
	lymphknoten					
S-1349/10	Milz	651,20	+	+	\leq 48 h	Bullet Blender
S-1349/10	Pankreas	1011,60	+	-	\leq 48 h	Bullet Blender
S-1349/10	Niere	237,07	+	-	\leq 48 h	Bullet Blender
S-1349/10	Lunge	197,47	+	+	\leq 48 h	Bullet Blender
S-1349/10	Gehirn	22,80	+	-	\leq 48 h	Bullet Blender
S-1448/10	Bauchwand	252,40	+	-	\leq 48 h	Bullet Blender
S-1448/10	Netz	114,13	+	+	\leq 48 h	Bullet Blender
S-1448/10	Leber	62,67	-	-	\leq 48 h	Bullet Blender
S-1448/10	Darm	23,60	-	-	\leq 48 h	Bullet Blender
S-1448/10	Zwerchfell	21,07	-	-	\leq 48 h	Bullet Blender
S-1448/10	Darm-	23,47	+	+	\leq 48 h	Bullet Blender
	lymphknoten					
S-1448/10	Milz	1191,47	$+^{2}$	-	\leq 48 h	Bullet Blender
S-1448/10	Pankreas	4712,00	(+ ²)	-	\leq 48 h	Bullet Blender
S-1448/10	Niere	84,40	+	+	\leq 48 h	Bullet Blender
S-1448/10	Lunge	358,80	+	+	\leq 48 h	Bullet Blender
S-1448/10	Gehirn	99,20	+	+	\leq 48 h	Bullet Blender

¹Zeit in Stunden post mortem

²Auftreten von mehreren Banden in einer Spur

(+) Schwache Banden

Tagebuch-	IHC-Signal	ORF 3c	ORF 7b	Pathologisch-anatomische
nummer		Nachweis	Nachweis	Veränderungen
S-83/08	Le: +	Le: -	Le: +	- Fibrinös-exsudative
	Ni: +	Ni: -	Ni: +	Pleuritis
	Lu: +	Lu: n.u.	Lu: n.u.	- Granulome: Lu, Le, Mi, Ni,
	Ge: +	Ge: n.u.	Ge: n.u.	Sternal-Ln, Meningen
S-196/08	Ni: +	Ni: -	Ni: +	- Keine Ergüsse
	Ge: +	Ge: n.u.	Ge: n.u.	- Granulome: Ni, Meningen
S-646/08	Da: +	Da: +	Da: +	- Fibrinös-exsudative
	Zw: +	Zw: +	Zw: +	Peritonitis mit Perihepatitis
	Le: +	Le: +	Le: +	und Perisplenitis
				- Granulome: Da-Serosa, Ne,
				Bw
S-743/08	Ne: +	Ne: +	Ne: +	- Ikterus, Anämie
	Da: +	Da: +	Da: +	- Fibrinös-exsudative
				Peritonitis und Pleuritis
				Granulome: Ne, Zw, Bw,
				Ni, Pa, Da-Ln, Serosa von
				Le und Mi
S-744/08	Da: +	Da: -	Da: +	- Anämie
				- Fibrinös-exsudative
				Peritonitis
				- Granulome: Ne, Gekröse,
				Da, Le, Mi

Tabelle 13	Untersuchte Katzen, IHC ¹ -Signal, ORF 3c/7b-Nachweis in Geweben ² ,
	pathologisch-anatomische Veränderungen

Fortsetzung Tabelle 13

Tagebuch-	IHC-Signal	ORF 3c	ORF 7b	Pathologisch-anatomische
nummer		Nachweis	Nachweis	Veränderungen
S-872/08	KM: +	KM: n.u.	KM: n.u.	- Fibrinös-exsudative
	Le: +	Le: -	Le: +	Peritonitis mit Perihepatitis
	Mi: +	Mi: -	Mi: +	und Perisplenitis
S-1004/08	Ni: +	Ni: +	Ni: -	- Keine Ergüsse
	RM: +	Ge: +	Ge: +	- Granulome: Ni, Le, Ge,
				Auge, Zw
S-1074/08	Ni: +	Ni: -	Ni: +	- Keine Ergüsse
	Le: +	Le: +	Le: +	- Granulome: Ni, Ne, Pa, Lu,
	Mi: +	Mi: +	Mi: +	Ge, Auge
	Lu: +	Lu: +	Lu: +	
	Auge: +	Auge: n.u.	Auge: n.u.	
	Ge: +	Ge: +	Ge: +	
	Da-Ln: +	Da-Ln: +	Da-Ln: +	
S-1221/08	Mi: +	Mi: -	Mi: +	- Fibrinös-exsudative
				Peritonitis mit Perihepatitis
				und Perisplenitis
				- Granulome: Da-Ln, Da, Ge
S-1378/08	Da: +	Da: +	Da: +	- Keine Ergüsse
	Ni: +	Ni: +	Ni: +	- Granulome: Ni, Gekröse,
	Ge: +	Ge: -	Ge: -	Auge, Ge
S-1387/08	Ni: +	Ni: -	Ni: +	- Keine Ergüsse
	Ge: +	Ge: -	Ge: +	- Granulome: Ni

Tagebuch-	IHC-Signal	ORF 3c	ORF 7b	Pathologisch-anatomische
nummer		Nachweis	Nachweis	Veränderungen
S-181/09	keine IHC			- Keine Ergüsse
	durchgeführt	-	-	- Anämie, Exsikkose, Ikterus
				- Granulome: Ni
S-219/09	KM: +	KM: n.u.	KM: n.u.	- Ikterus
	Da-Ln: +	Da-Ln: +	Da-Ln: +	- Fibrinös-exsudative
	Le: +	Le: +	Le: +	Peritonitis
	Ni: +	Ni: +	Ni: +	- Granulome: Bw, Ne, Da, Ni,
				Le, Lu, Da-Ln
S-222/09	Ne: +	Ne: +	Ne: +	- Fibrinös-exsudative
	Le: +	Le: +	Le: +	Peritonitis
	Zw: +	Zw: +	Zw: +	
S-284/09	Ni: +	Ni: +	Ni: +	- Anämie, Ikterus
	Le: +	Le: +	Le: +	- Fibrinös-exsudative
	Mi: +	Mi: -	Mi: -	Peritonitis
	Lu: +	Lu: +	Lu: +	- Granulome: Le, Mi, Ni, Lu,
				Pleura, Da-Serosa
S-448/09	Da-Ln: +	Da-Ln: +	Da-Ln: +	- Keine Ergüsse
	Ni: +	Ni: +	Ni: +	- Ikterus
	Lu: +	Lu: +	Lu: +	- Granulome: Ni, Da-Ln, Zw,
	Le: +	Le: +	Le: +	Le, Lu, Ge, Pleura
S-619/09	Da: +	Da: -	Da: +	- Fibrinös-exsudative
	Ne: +	Ne: -	Ne: +	Peritonitis und Pleuritis
	Zw: +	Zw: -	Zw: +	- Granulome: Le, Mi, Da,
				Bw, Ni, Ne, Zw, Lu, Pleura

Tagebuch-	IHC-Signal	ORF 3c	ORF 7b	Pathologisch-anatomische
nummer		Nachweis	Nachweis	Veränderungen
S-1010/09	Ge: +	Ge: -	Ge: +	- Keine Ergüsse
	Ni: +	Ni: +	Ni: +	- Granulome: Le, Ni, Da-Ln,
	Da-Ln: +	Da-Ln: +	Da-Ln: +	Ge
S-1094/09	Da-Ln: +	Da-Ln: -	Da-Ln: +	- Anämie, Ikterus
	Mi: +	Mi: -	Mi: +	- Fibrinös-exsudative
	Ne: +	Ne: +	Ne: +	Peritonitis
	Ni: +	Ni: -	Ni: +	- Granulome: Bw, Ne, Zw,
	Zw: +	Zw: -	Zw: +	Le, Pa, Da-Ln, Ni, Lu
S-1129/09	Zw: +	Zw: +	Zw: +	- Fibrinös-exsudative
	Lu: +	Lu: +	Lu: +	Pleuritis
	Le: +	Le: +	Le: +	- Granulome: Pleura, Lu, Le,
				Mi, Pa
S-1190/09	Ne: +	Ne: +	Ne: +	- Fibrinös-exsudative
	Zw: +	Zw: +	Zw: +	Peritonitis mit Perihepatitis
				und Perisplenitis
				- Granulome: Da-Serosa
S-1300/09	Le: +	Le: +	Le: +	- Anämie
	Ne: +	Ne: +	Ne: +	- Fibrinös-exsudative
				Peritonitis
				- Granulome: Bw, Da-Serosa,
				Mi
S-13/10	Le: +	Le: -	Le: -	- Fibrinös-exsudative
				Peritonitis
				- Granulome: Da-Ln, Pa, Bw,
				Da, Mi

Fortsetzung Tabelle 13

Tagebuch-	IHC-Signal	ORF 3c	ORF 7b	Pathologisch-anatomische
nummer		Nachweis	Nachweis	Veränderungen
S-186/10	Da: +	Da: +	Da: +	- Anämie
				- Fibrinös-exsudative
				Peritonitis
				- Granulome: Da-Serosa, Da-
				Ln, Mi, Pa
S-367/10	Ni: +	Ni: +	Ni: +	- Anämie
				- Fibrinös-exsudative
				Peritonitis und Pleuritis
				- Granulome: Ne, Ni, Ge, Le,
				Auge
S-518/10	Ni: +	Ni: +	Ni: +	- Anämie
	Zw: +	Zw: +	Zw: +	- Fibrinös-exsudative
	Lu: +	Lu: +	Lu: +	Pleuritis
				- Granulome: Ni, Da-Ln, Ge,
				Lu, Pleura
S-1349/10	Le: +	Le: +	Le: +	- Keine Ergüsse
	Da-Ln: +	Da-Ln: +	Da-Ln: +	- Anämie, Ikterus
				- Granulome: Ne, Gekröse,
				Mi, Le, Da-Serosa, Zw,
				Pleura
S-1448/10	Ni: +	Ni: +	Ni: +	- Anämie
				- Fibrinös-exsudative
				Pleuritis
				- Granulome: Ni, Gekröse,
				Sternal-Ln, Auge

¹ IHC = Immunhistologie

²Gewebe: Bw = Bauchwand; Da = Darm; Da-Ln = Darmlymphknoten; Ge = Gehirn; Le = Leber; Lu = Lunge; Mi = Milz; Ne = Netz; Ni = Niere; Pa = Pankreas; Zw = Zwerchfell

Tagebuch-	Länge	Basenunterschiede	Abweichende	Aminosäure	Stopcodons		
nummer	von	(Positionen:Gewebe ²)	Aminosäure ³	bei restlichen	innerhalb		
	ORF 3c			Geweben	ORF 3c ⁴		
	(Basen)						
S-646/08		Keine vollständige Sequenz erhalten					
S-743/08	712	-	-	-	-		
S-1004/08	714	29: Ge	Pro	Leu			
		49: Zw	STOP	Gln			
		74: Da-Ln	Leu	Pro	-		
		103: Da-Ln, Ge	His	Tyr	Zw: +		
		464: Zw, Pa	Val	Gly			
		470: Pa	Asn; Ile	Asn			
		685: Ge	Gln	Glu			
S-1074/08	714	568: Mi, Lu	Arg; Gly	Arg; Gly	+		
S-1221/08	Keine vollständige Sequenz erhalten						
S-1378/08	714	-	-	-	-		
S-219/09	712	283: Lu	Asn	Asp			
		317: Le, Mi, Pa, Lu	Lys; Arg	Arg	+		
		322: Lu	Thr	Ala			
		409: Bw	Ser	Ala			
S-222/09	714	494: Zw, Ge	Met; Thr	Met; Thr			
		533: Ge	Ile; Thr	Ile; Thr			
		553: Da, Mi, Lu	Tyr	Asp	-		
		631: Da, Mi, Lu	Ile; Val	Val			
S-284/09	694	206: Ge	Phe	Cys	+		
S-448/09	658	-	-	-	+		
S-1010/09	712	-	-	-	+		

Tabelle 14	Untersuchte Katzen, Genlänge 3c, Basenunterschiede ¹ , abweichende Aminosäuren, Auftreten von
	Stopcodons innerhalb des Gens

Tagebuch-	Länge	Basenunterschiede	Abweichende	Aminosäure	Stopcodons
nummer	von	(Positionen:Gewebe)	Aminosäure	bei restlichen	innerhalb
	ORF 3c			Geweben	ORF 3c
	(Basen)				
S-1094/09	713	-	-	-	+
S-1129/09	714;	188: Da-Ln	Asn	Ser	
	683: Ni	283: Zw, Da-Ln, Mi	Asp; Asn	Asp	
		283: Ni	Asn	Asp	
		367-368: Ni	Deletion	-	
		446: Da-Ln, Ni	Cys	Tyr	+
		475-503: Ni	Deletion	-	
		619: Zw, Lu	Ser	Ala	
		628: Bw	Cys	Gly	
		702: Bw	STOP; Tyr	Tyr	
S-1190/09	714	382: Bw, Le, Da, Pa	Pro; Thr	Thr	-
S-1300/09	714	-	-	-	+
S-13/10	714	-	-	-	+
S-186/10	711	-	-	-	-
S-367/10	709	-	-	-	+
S-518/10	714	51: Da	His	Gln	
		119: Da	Asn	Ser	
		120: Da	Asn	Ser	
		250: Da	Gly	STOP	
		322: Da	Ile	Val	+
		324: Da	Ile	Val	Da: -
		489: Da	Asp	Glu	
		535: Lu	Cys	Arg	
		695: Da	His	Arg	
S-1349/10	712	-	-	-	+

Tagebuch-	Länge	Basenunterschiede	Abweichende	Aminosäure	Stopcodons
nummer	von ORF	(Positionen:Gewebe)	Aminosäure	bei restlichen	innerhalb
	3c			Geweben	ORF 3c
	(Basen)				
S-1448/10	714: Bw;	129-154: Ne, Da-Ln,	Deletion	-	
	688: Ne,	Ni, Lu, Ge			
	Ln;				+
	687: Ni,	709: Ni, Lu, Ge	Deletion	-	
	Lu, Ge				

¹ Es sind nur Basenunterschiede aufgeführt, die eine Änderung der Aminosäuresequenz nach sich ziehen

² Gewebe: Bw = Bauchwand; Da = Darm; Da-Ln = Darmlymphknoten; Ge = Gehirn; Le = Leber; Lu = Lunge;

Mi = Milz; Ne = Netz; Ni = Niere; Pa = Pankreas; Zw = Zwerchfell

³ Aminosäuren: angegeben im Dreibuchstabencode (siehe Abbildung 29/Tabelle 17)

⁴ + = Auftreten eines oder mehrerer Stopcodons; - = durchgehende Sequenz

Tagebuch-	Länge	Basenunterschiede	Abweichende	Aminosäure	Stopcodons
nummer	von	(Positionen:Gewebe ²)	Aminosäure ³	bei restlichen	innerhalb
	ORF 7b			Geweben	ORF 7b
	(Basen)				
S-83/08	621	-	-	-	-
S-196/08	621	-	-	-	-
S-646/08	621	252: Da	Leu	Phe	-
S-743/08	621	225: Lu	His	Gln	-
		318: Lu	-	-	-
S-744/08	621	-	-	-	-
S-872/08	621	-	-	-	-
S-1004/08	621	-	-	-	-
S-1074/08	621	510: Da	-	-	-
		584: Da	Phe	Tyr	-
		592: Da	Leu	Ile	-
S-1221/08	615	-	-	-	-
S-1378/08	621	62: Da	Arg	Gln	-
		64: Da	Tyr	His	-
		68: Da	Asp	Ala	-
		110: Da	His	Arg	-
		115: Da	Ile	Val	-
		193: Da	Gly	Arg	-
		382: Da	His	Tyr	-
		445: Da	Tyr	His	-
		532: Da	Asn	Asp	-
		600: Da	Gln	His	-
		604: Da	His	Tyr	-
S-1387/08	621	-	-	-	-
S-219/09	621	-	-	-	-

 Tabelle 15
 Untersuchte Katzen, Genlänge 7b, Basenunterschiede¹, Anzahl unterschiedlicher Aminosäuren,

 Auftreten von Stopcodons innerhalb 7b

Fortsetzung T	Tabelle 15
---------------	------------

Tagebuch-	Länge	Basenunterschiede	Abweichende	Aminosäure	Stopcodons
nummer	von	(Positionen:Gewebe)	Aminosäure	bei restlichen	innerhalb
	ORF 7b			Geweben	ORF 7b
	(Basen)				
S-222/09	621	-	-	-	-
S-284/09	621	139: Ge	Ser	Thr	-
		271: Ge	Ser	Pro	-
		359: Ge	Lys	Asn	-
		381: Da-Ln	-	-	-
S-448/09	621	360: Da-Ln	His	Gln	-
S-619/09	621	269: Da-Ln	Asn; Asp	Asp	-
S-1010/09	621	131: Ni	Phe	Tyr	-
		423: Lu	-	-	-
S-1094/09	621	167: Ni	Glu	Gly	-
S-1129/09	621	551: Da-Ln, Mi	Phe	Tyr	-
		560: Le, Da-Ln,	Thr	Met	-
		Mi			
S-1190/09	621	-	-	-	-
S-1300/09	621	-	-	-	-
S-186/10	621	271: Mi	Ser	Pro	-
S-367/10	621	13: Ne	Phe	Leu	-
		434: Ne	Lys	Arg	-
		479: Ne	His	Arg	-
		508: Ne	His	Tyr	-
S-518/10	621	-	-	-	-
S-1349/10	621	-	-	-	-
S-1448/10	621	-	-	-	-

¹ Es sind nur Basenunterschiede aufgeführt, die eine Änderung der Aminosäuresequenz nach sich ziehen

²Gewebe: Bw = Bauchwand; Da = Darm; Da-Ln = Darmlymphknoten; Ge = Gehirn; Le = Leber; Lu = Lunge;

Mi = Milz; Ne = Netz; Ni = Niere; Pa = Pankreas; Zw = Zwerchfell

³ Aminosäuren: angegeben im Dreibuchstabencode (siehe Abbildung 29/Tabelle 17)

Bezeichnung	Länge von	Stopcodon	Bemerkung
	ORF 3c	innerhalb	
	[Basen]	ORF 3c	
FECV-6	714	-	aus: Institut für Virologie, JLU Gießen
FECV-53	714	-	aus: Institut für Virologie, JLU Gießen
FECV-UCD 3a	714	-	aus: NCBI GenBank [®] ;
			acc. no.: FJ943761
FECV-UCD 3b	714	-	aus: NCBI GenBank [®] ;
			acc. no.: FJ943762
FECV-UCD 4	714	-	aus: NCBI GenBank [®] ;
			acc. no.: FJ943763
FECV-UCD 5	714	-	aus: NCBI GenBank [®] ;
			acc. no.: FJ917522
FECV-UCD 6	714	-	aus: NCBI GenBank [®] ;
			acc. no.: FJ943771
FCoV-RM	714	-	aus: NCBI GenBank [®] ;
			acc. no.: FJ938051
DSKUU113F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053613
DSKUU1F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053614
DSKUU2F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053615
DSKUU9F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053616
DSKUU25F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053617
DSKUU33F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053618

 Tabelle 16
 Angaben zu FECV, die zu Vergleichszwecken herangezogen wurden

Bezeichnung	Länge von	Stopcodon	Bemerkung
	ORF 3c	innerhalb	
	[Basen]	ORF 3c	
DSKUU54F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053619
DSKUU55F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053620
DSKUU101F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053621
DSKUU102F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053622
DSKUU103F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053623
DSKUU104F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053624
DSKUU123F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053625
DSKUU152F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053626
DSKUU160F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053627
DSKUU165F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053628
DSKUU166F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053629
DSKUU167F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053630
DSKUU168F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053631

Bezeichnung	Länge von	Stopcodon	Bemerkung
	ORF 3c	innerhalb	
	[Basen]	ORF 3c	
DSKUU169F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053632
DSKUU174F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053633
DSKUU176F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053634
DSKUU179F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053635
DSKUU185F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053636
DSKUU193F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053637
DSKUU194F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053638
DSKUU197F	714	-	aus: NCBI GenBank [®] ;
			acc. no.: GU053639

9.2 Genetischer Code

Die mit Hilfe des Programms ExPASY Translate Tool (Swiss Institute of Bioinformatics, Schweiz) erhaltenen Aminosäuresequenzen leiten sich vom genetischen Code ab, nach dem ein oder mehrere Basentripletts jeweils für eine Aminosäure codieren.

Abb. 31 "Codesonne" zur Herleitung von Aminosäuresequenzen anhand der Basentripletts

aus: Wikipedia, genetischer Code

Je 3 Nukleinsäurebasen¹ codieren für eine Aminosäure

- 1 G = Guanin
- A = Adenin
- U = Uracil (RNA) bzw. Thymin (DNA)
- C = Cytosin

Aminosäure	Dreibuchstabencode	Einbuchstabencode
Alanin	Ala	А
Arginin	Arg	R
Asparagin	Asn	N
Asparaginsäure	Asp	D
Cystein	Cys	С
Glutamin	Gln	Q
Glutaminsäure	Glu	Е
Glyin	Gly	G
Histidin	His	Н
Ilsoleucin	Ile	Ι
Leucin	Leu	L
Lysin	Lys	K
Methionin	Met	М
Phenylalanin	Phe	F
Prolin	Pro	Р
Serin	Ser	S
Threonin	Thr	Т
Tryptophan	Trp	W
Tyrosin	Tyr	Y
Valin	Val	V

Tabelle 17 Abkürzungscodes für die 20 kanonischen Aminosäuren

9.3 Bezugsquellen für Chemikalien, Kits und Antikörper

Biozym, Hess. Oldendorf

SeaKem® LE Agarose, Art.-Nr.: 840.00

Carl Roth GmbH & Co., Karlsruhe

Borsäure > 99,8 %, p. a., Art.-Nr.: 6943.3 DEPC \geq 97 %, Art.-Nr.: K028.1 EDTA-Dinatriumsalz-Dihydrat \geq 99 %, Art.-Nr.: X986.2 Ethanol, Rotipuran[®], p. a., Art.-Nr.: 9065.4 Ethidiumbromidlösung 1 % (10mg/ml), Art.-Nr.: 2218 Isopropanol , 2-Propanol, Rotipuran[®], p. a., Art.-Nr.: 6752.2 Methanol, Rotipuran[®], p. a., Art.-Nr.: 4627.2 Natriumacetat (MW 136,08), Art.-Nr.: 6779.1 TRIS Pufferan[®], \geq 99,9 %, p.a., Art.-Nr.: 4855.3 Wasser, Nuklease-frei, steril-filtriert und autoklaviert, DEPC-behandelt, Art.-Nr.: T143 Xylol-Ersatz, Roti-Histol[®], Art.-Nr.: 6640.3

Custom Monoclonals Int., Sacracmento, CA, USA

Maus anti-FIPV clone FCV 3-70

Dianova GmbH, Hamburg

Ratte anti-Maus IgG (H&L), Art.-Nr.: 415005100 PAP von der Maus, Art.-Nr.: 223005025

Fermentas, St. Leon-Rot

dNTP Mix 10mM, Art.-Nr.: R0192 Exonuclease I, Art.-Nr.: EN0581 Längenstandard O'Gene RulerTM 50 bp DNA ladder, Art.-Nr.: SM1133 Längenstandard pUC Mix Marker 8, Art.-Nr.: SM0301 Loading Dye Organge 6x, Art.-Nr.: R0631 Shrimp Alkaline Phosphatase, Art.-Nr.: EF 0511 Invitrogen, Karlsruhe RNaseOUTTM Recombinant Ribonuclease Inhibitor, Art.-Nr.: 10777019

MbP, San Diego, CA, USA RNase AWAYTM, Art.-Nr.: 7005

NatuTec, Frankfurt am Main

Taq DNA Polymerase (5 u/µl), Art.-Nr.: TP-1000-A1 Puffer (MgCl₂-haltig), Art.-Nr.: TP-1000-A1

Nippon Genetics Europe, Düren

Midori Green (1 ml), Art.-Nr.: MG02

Promega, Mannheim Random Hexamers, Art.-Nr.: C1181

Qiagen, Hilden

Omniscript[®] RT Kit, Art.-Nr.: 205111 QIAamp[®] Viral RNA Mini Kit, Art.-Nr.: 52904 QIAshredder[®] Tubes, Art.-Nr.: 79654 RNase-Free DNase Set, Art.-Nr.: 79254 RNeasy[®] Mini Kit, Art.-Nr.: 74104 Sensiscript[®] RT Kit, Art.-Nr.: 205211

9.4 Bezugsquellen für Geräte und Gebrauchsmaterialien

Bachofer, Reutlingen

UV-Transilluminator 254 nm

Biozym Diagnostic GmbH, Hess. Oldendorf

Multicycler PTC 200 PCR Soft Tubes, 0,2 ml, Flachdeckel, Art.-Nr.: 710920 SafeSeal-Tips (gestopfte Pipettenspitzen) bis 1000 µl: Art.-Nr.: 781002 SafeSeal-Tips (gestopfte Pipettenspitzen) bis 200 µl: Art.-Nr.: 780202 SafeSeal-Tips (gestopfte Pipettenspitzen) bis 100 µl: Art.-Nr.: 780102 SafeSeal-Tips (gestopfte Pipettenspitzen) bis 20 µl: Art.-Nr.: 780022 SafeSeal-Tips (gestopfte Pipettenspitzen) bis 10 µl: Art.-Nr.: 780017

Carl Roth GmbH & Co., Karlsruhe

Pistill, Höhe 125 mm, Art.-Nr.: 3831.1 Reibschalen, Innendurchmesser 90 mm, Art.-Nr.: 1568.1 Rotilabo[®]-Spritzenfilter, steril, 0,22 μm, Art.-Nr.: KH54.1

Eastman Kodak Inc., Rochester, NY, USA

Kodak Gel-Dokumentationssystem Version 1.0

Enders GmbH & Co. KG, Reiskirchen

Gefrierbeutel, Seitennahtbeutel, Art.-Nr.: 056003

Engelbrecht, Edermünde

StarFrost[®] Objektträger, Art.-Nr.: 11101

Eppendorf GmbH, Hamburg

Eppendorfzentrifuge 5415C

H+P Labortechnik GmbH, Oberschleißheim

Varioklav[®] Dampfsterilisator Typ 500 EV

Heidolph Instruments GmbH & Co. KG, Schwabach

Magnetrührer MR 2002 Vortexer Reax 2000

Heraeus, Hanau

Zentrifuge Labofuge 400R

Langenbrinck, Emmendingen

SuperFrost[®] Plus-Objektträger, Art.-Nr.: 030060

MAGV GmbH, Rabenau

Waage Ohaus

Melag, Berlin Heißluftsterilisator

Mettler Toledo, Gießen Analysewaage Mettler B6

MWG Biotech, Ebersberg

Spannungsquelle für Elektrophorese Powersupply PPS 200-1D

Next Advance, Averill Park, NY, USA Beads, Edelstahl, Durchmesser 0,5 mm, Art.-Nr.: SSB05 Homogenisator Bullet Blender[®] Blue 50

Sakura Finetek Germany GmbH, Staufen

Tissue-Tek[®] VIPTM 5 Jr. Tissue-Tek[®] Film[®]

Sarstedt, Nümbrecht

Reaktionsgefäß SafeSeal Gefäß 1,5 ml, Art.-Nr.: 72.706 Röhre 15 ml, 120 x 17 mm, Art.-Nr.: 62.554.512

Thermo Scientific, Dreieich

CoverplatesTM, Art.-Nr.: 72110013 Elektrophoresekammern Owl separation systems

9.5 Lösungen und Puffer

5x TBE-Puffer (pH 8,3)

54,0 g Tris(hydroxymethyl)-aminomethan (MW 121,14)
27,5 g Borsäure (MW 61,83)
4,15 g EDTA-Na₂ (MW 372,24)
ad 1000 ml Aqua dest., autoklavieren

40x TAE-Puffer (pH 7,2)

193,6 g Tris(hydroxymethyl)-aminomethan (MW 121,14) 108,8 g Na-Acetat (MW 82,03) 15,2 g EDTA-Na₂ (MW 372,24) ad 1000 ml Aqua dest., autoklavieren

2 %ige Agarosegele

0,5x TBE (5x TBE 1:10 mit Aqua dest. verdünnt) mit Agarose auf dem Magnetrührer bis zur vollständigen Auflösung erhitzen. Nach kurzem Aufkochen das flüssige Agarose-Puffer-Gemisch auf circa 60 °C abkühlen lassen und Ethidiumbromidlösung mit einer Ausgangskonzentration von 0,1 % beziehungsweise 1:10 verdünnte Midori-Green-Lösung hinzufügen. Gel blasenfrei in Gelkammer gießen. Nach Festwerden des Gels Kamm entfernen.

Eingesetzte Mengen an 0,5x TBE, Agarose und Ethidiumbromid/Midori-Green abhängig von der Kammergröße (siehe Tabelle 8).
TRIS-buffered saline (TBS, pH 7,6)

Stammlösung (10x): 60,57 g Tris(hydroxymethyl)-aminomethan (MW 121,14) 610 ml Aqua dest. 390 ml 1 N HCl pH-Wert mit 1 N HCl auf pH 7,6 einstellen Gebrauchslösung:

100 ml Stammlösung900 ml 0,8 % NaCl in Aqua dest.pH-Wert mit 1 N NaOH/HCl auf pH 7,6 einstellen

Zitratpuffer (10 mM, pH 6,0)

Stammlösung A: 0,1 M Zitronensäure 21,01 g Zitronensäure x H_2O ad 1000 ml Aqua dest.

Stammlösung B: 0,1 M Natriumzitrat 29,41 g Trinatriumzitrat x H₂O ad 1000 ml Aqua dest.

Gebrauchslösung: 9 ml Stammlösung A und 41 ml Stammlösung B mit 450 ml Aqua dest. auf 500 ml auffüllen und mischen pH-Wert mit 1 N HCl auf pH 6,0 einstellen

Imidazol/HCl-Puffer 0,1 M (pH 7,1)

6,81 g Imidazolad 1000 ml Aqua dest.500 ml 0,1 M HCl zugeben und pH-Wert auf pH 7,1 einstellenHaltbarkeit der Lösung: circa 1 Woche

3,3'-Diaminobenzidin-tetrahydrochlorid-Dihydrat-Lösung (DAB)

100 mg DAB in 200 ml 0,1 M Imidazol/HCl-Puffer (pH 7,1) lösen und auf dem Magnetrührer mischen. Filtrieren und unmittelbar vor dem Gebrauch 70 μ l 30 % H₂O₂ zugeben.

Kardasewitsch

200 ml 25 %ige Ammoniaklösung 800 ml 70 %iges Ethanol

Papanicolaous Gebrauchslösung

Papanicolaous Hämatoxylin 1b und Aqua dest. im Verhältnis 1:10 mischen und filtrieren.

10 Abkürzungsverzeichnis

A	Adenin
Abb.	Abbildung
acc. no.	accession number
ADE	antibody-dependent enhancement
APN	Aminopeptidase N
Blast	basic local alignment search tool
bp	Basenpaare
Bw	Bauchwand
С	Cytosin
CCoV	canines Coronavirus
CD	cluster of differentiation
cDNA	complementary desoxyribonucleic acid
Da	Darm
Da-Ln	Darmlymphknoten
DAB	Diaminobenzidin-tetrahydrochlorid
Del.	Deletion
DEPC	Diethylpyrocarbonat
dest.	destillata
DNA	desoxyribonucleic acid
ddNTP	Didesoxyribonukleosidtriphosphat
dNTP	Desoxyribonukleosidtriphosphat
DTT	Dithiothreitol
EDTA	Ethylendiamintetraessigsäure
ELISA	enzym-linked immunosorbent assay
fAPN	feline Aminopeptidase N
Fc	fragment crystallizable
FCoV	felines Coronavirus
FECV	felines enterales Coronavirus
FIP	feline infektiöse Peritonitis
FIPV	felines infektiöses Peritonitisvirus

хg	gravitational acceleration
G	Guanin
GAPDH	Glycerinaldehyd-3-phosphat-Dehydrogenase
Ge	Gehirn
h	Stunde(n)
HE	Hämatoxylin-Eosin
Ig	Immunglobulin
kb	Kilobasen
KM	Knochenmark
Le	Leber
LS	leader sequence
Lu	Lunge
m	männlich
М	Molar
mA	Milliampere
mg	Milligramm
MHC	major histocompatibility complex
Mi	Milz
min	Minuten
mk	männlich-kastriert
mM	Millimolar
mRNA	messenger ribonucleic acid
μΜ	Mikromolar
NCBI	National Center for Biotechnology Information
Ne	Netz
Ni	Niere
Nt	Nukleotide
n.u.	nicht untersucht
Obj.	Objektiv
ORF	open reading frame
р	probability
Pa	Pankreas
PAP	Peroxidase-anti-Peroxidase
PCR	Polymerase-Kettenreaktion

Pos.	Position
PRCV	porcine respiratory coronavirus
RNA	ribonucleic acid
RT	reverse Transkription
SARS	severe acute respiratory syndrome
sec	Sekunden
SPF	specific pathogen free
Т	Thymin
TAE	Tris-Acetat-EDTA
TBE	Tris-Borat-EDTA
TBS	Tris-buffered saline
TGEV	transmissible gastroenteritis virus
T _m	Schmelztemperatur
U	Uracil
U/min	Umdrehungen pro Minute
UTR	untranslated region
UV	ultraviolett
W	weiblich
wk	weiblich-kastriert
ZNS	Zentrales Nervensystem
Zw	Zwerchfell

Mein herzlicher Dank gilt

insbesondere meinem Doktorvater, Herrn Prof. Dr. Manfred Reinacher, der mir das Dissertationsthema zur Verfügung stellte und mich durch seine stete Diskussionsbereitschaft bei der Anfertigung der Arbeit unterstützt hat.

Dr. Werner Hecht und Silke Engel für die unbezahlbaren Ratschläge und Einführungshilfen in die theoretische und praktische Welt der Molekularbiologie. Danke, Werner! Danke, Silke!

Herrn Prof. Dr. Eberhard Burkhardt für sein stetes Interesse an meiner Arbeit, für seine immer aufmunternden Worte und seine Begeisterung für das Fach Pathologie, die auf mich übergegangen ist.

allen Mitarbeitern des Institutes für Veterinär-Pathologie, die ich während meiner Doktorandenzeit kennen und schätzen gelernt habe.

Herrn Prof. Dr. Heinz-Jürgen Thiel und dem Institut für Virologie für Starthilfen und die Bereitstellung von Coronavirus-RNA.

der H. Wilhelm Schaumann Stiftung für die finanzielle Unterstützung in Form eines 15monatigen Stipendiums.

Sabrina, die mit mir so viele FIP-Katzen auseinandergenommen und eingetütet hat.

Corinna, Gisa, Kristine, Laura, Silke und Svenja, die mich auf meinem Weg in der Patho begleitet haben und zu besten Freunden geworden sind.

Christoph für das selbst gebastelte Programm "Sternchen-DNA", für so viele Computerhilfen und für das perfekt entworfene Coronavirus.

Corinna und den Laboklinern, die mich so herzlich in Bad Kiss aufgenommen haben.

meiner Familie, die immer für mich da ist und mich stets in all meinem Tun unterstützt hat.

VVB LAUFERSWEILER VERLAG STAUFENBERGRING 15 D-35396 GIESSEN

Tel: 0641-5599888 Fax: -5599890 redaktion@doktorverlag.de www.doktorverlag.de

