SNP-Screening in Kandidatengenen auf Chromosom 2 und 12 für die Resistenz gegen Actinobacillus pleuropneumoniae beim Schwein

INAUGURAL-DISSERTATION zur Erlangung des Grades eines **Dr. med. vet.** beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen

ERVERLAG

VBLA

Das Werk ist in allen seinen Teilen urheberrechtlich geschützt.

Die rechtliche Verantwortung für den gesamten Inhalt dieses Buches liegt ausschließlich bei dem Autor dieses Werkes.

Jede Verwertung ist ohne schriftliche Zustimmung des Autors oder des Verlages unzulässig. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung in und Verarbeitung durch elektronische Systeme.

1. Auflage 2014

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Author or the Publishers.

1st Edition 2014

© 2014 by VVB LAUFERSWEILER VERLAG, Giessen Printed in Germany

STAUFENBERGRING 15, D-35396 GIESSEN Tel: 0641-5599888 Fax: 0641-5599890 email: redaktion@doktorverlag.de

www.doktorverlag.de

Aus dem Klinikum Veterinärmedizin Klinik für Wiederkäuer und Schweine (Innere Medizin und Chirurgie) der Justus-Liebig-Universität Gießen

Betreuer: Prof. Dr. Dr. habil. Gerald Reiner

SNP-Screening in Kandidatengenen auf Chromosom 2 und 12

für die Resistenz gegen Actinobacillus pleuropneumoniae

beim Schwein

INAUGURAL-DISSERTATION

zur Erlangung des Grades eines Dr. med. vet. beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen

eingereicht von

Caroline Klein

Tierärztin aus Bonn-Duisdorf

Gießen 2014

Mit Genehmigung des Fachbereichs Veterinärmedizin der Justus-Liebig-Universität Gießen

Dekan: Herr Prof. Dr. Dr. h. c. Martin Kramer

Gutachter: Herr Prof. Dr. Dr. habil. Gerald Reiner

Herr Prof. Dr. Rolf Bauerfeind

Tag der Disputation: 11. Juli 2014

Meiner Familie

Inhaltsverzeichnis

Abkürzungsverzeichnis	IV
Tabellenverzeichnis	VII
Abbildungsverzeichnis	VIII
1. Einleitung	1
2. Literaturübersicht	2
2.1. Actinobacillus pleuropneumoniae	2
2.1.1. Ätiologie	2
2.1.2. Epidemiologie	2
2.1.3. Virulenzfaktoren und Pathogenese	3
2.1.4. Klinik	3
2.1.5. Pathomorphologie	4
2.1.6. Therapie und Prophylaxe	5
2.2. Genetische Krankheitsresistenz	7
2.2.1. Krankheitsresistenz beim Nutztier	8
2.2.2. Krankheitsresistenz beim Schwein	8
2.2.3. Nutzen der genetischen Krankheitsresistenz in der Tierzucht	11
2.3. Forschungsstand zur Krankheitssresistenz gegen A. pleuropneumoniae	13
2.4. QTL-Analyse	17
2.4.1. Prinzip der QTL-Analyse	17
2.4.2. Voraussetzung für die QTL-Analyse	17
2.4.3. Auswahl geeigneter Marker	
2.4.4. Ziel der QTL-Analyse	19
2.5. Auswirkungen von single nucleotide polymorphisms	
2.6. Auswahl der Kandidatengene	
2.6.1. CD14	
2.6.2. NR3C1	25
2.6.3. RPL38	27
2.6.4. Grb2	27
2.6.5. Interleukin 4	
2.6.6. Interleukin 5	
2.6.7. Interleukin 9	
2.6.8. STAT3	
2.6.9. LMNB1	
3. Fragestellung	
4. Material und Methoden	

4	.1. Projektablauf	. 34
4	.2. Versuchstiere	. 35
4	.3. Material	. 36
	4.3.1. Geräte und Labormaterial	. 36
	4.3.2. Chemikalien und Enzyme	. 36
	4.3.3. Lösungen und Puffer	. 37
	4.3.4. Datenbanken und Computerprogramme	. 38
4	.4. Methoden	. 39
	4.4.1. Datenbankrecherche	. 39
	4.4.2. Primerdesign	. 40
	4.4.3. Konzentrationsbestimmung Primer	. 46
	4.4.4. DNA-Extraktion	. 46
	4.4.5. Whole Genome Amplification (WGA)	. 47
	4.4.6. Polymerasekettenreaktion (PCR)	. 48
	4.4.7. Agarosegelelektrophorese	. 49
	4.4.8. Vorbereitung der PCR-Produkte für die Sequenzierung	. 49
	4.4.9. Sequenzierung von Amplifikaten der F ₀ -Tiere	. 50
	4.4.10. Identifizierung von SNPs und Auswahl der SNPs für die Pyrosequenzierung	. 50
	4.4.11. Primerdesign für die Pyrosequenzierung	. 50
	4.4.12. Polymerasekettenreaktion für die Pyrosequenzierung	. 52
	4.4.13. Pyrosequenzierung	. 53
	4.4.14. Statistische Auswertung	. 54
	4.4.15. Kartierung der Kandidatengene	. 54
	4.4.16. QTL-Analyse	. 54
5. E	rgebnisse	. 55
5	1. Gensequenzen	. 55
5	.2. SNPs in den sequenzierten Bereichen	. 58
	5.2.1. CD14	. 58
	5.2.2. NR3C1	. 58
	5.2.3. RPL38	. 60
	5.2.4. Grb2	. 60
	5.2.5. IL-4	. 61
	5.2.6. IL-5	. 61
	5.2.7. IL-9	. 62
	5.2.8. STAT3	. 64
	5.2.9. LMNB1	. 66
5	.3. Pyrosequenzierung	. 69

5.3.1. Auswahl der SNPs für die Pyrosequenzierung	69
5.3.2. Genotyp-Verteilung in der F2-Generation	73
5.4 Assoziation zwischen Phänotyp und SNP in der F ₂ -Generation	74
5.5. Kartierung der Kandidatengene für die QTL-Analyse	
5.6. QTL-Analyse und Statistik	85
6. Diskussion	110
7. Zusammenfassung	117
8. Summary	119
9. Literaturverzeichnis	
10. Anhang	134

Abkürzungsverzeichnis

AP	Alkalische Phosphatase
AP-1	activator protein-1
APP	Actinobacillus pleuropneumoniae
APS	Adenosin-5'-phosphosulfat
AST	Aspartat-Aminotransferase
ATP	Adenosintriphosphat
bp	Basenpaar
bzw.	beziehungsweise
ca.	circa
CD	cluster of differentiation
СК	Creatin-Kinase
cM	Centimorgan
CNF	ciliary neurotropic factor
d.h.	das heißt
DNA	Desoxyribonukleinsäure (Deoxyribonucleic acid)
dpi	days post infectionem
E. coli	Escherichia coli
EGF	epidermal growth factor
eQTL	expressed Quantitative Trait Locus
ESRRA	Estrogen-related receptor alpha
ETF1	eukaryotic translation termination factor 1
Exo	Exonuclease
Fa.	Firma
FUT	Fucosyltransferase
Grb2	Growth factor receptor-bound protein 2
gZW	genomisch unterstützter Zuchtwert
HSPA9	heat shock 70kDA protein 9
Ig	Immunglobulin
IL	Interleukin
INF-γ	Gamma-Interferon
IRF7	Interferon regulatory factor 7
JAK	Janus Kinase
KS	Klinischer Score

LBP	lipopolysaccharidbindenes Protein
LIF	leukemia inhibitory factor
LMNA	Lamin A
LMNB	Lamin B
LOD	Logarithm of the Odds
LOH	Low or High
LPS	Lipopolysaccharide
LR	likelihood ratio
MAI	Marker-gestützte Introgression (marker assisted introgression)
MAS	Marker-gestützte Selektion (marker assisted selection)
MHC	Haupthistokompatibilitätskomplex (Major Histocompatibility Complex)
MHS	Maligne Hyperthermie Sensibilität
min	Minute
miRNA	microRNA
ml	Milliliter
mRNA	messengerRNA
MYD88	Myeloid differentiation primary response gene 88
NF-κB	nuclear factor- κB
NR3C1	Nuclear receptor subfamily 3, group C, member 1
NRAMP1	natural resistance-associated macrophage protein one
OMP	Outer Membrane Protein
PCR	Polymerasekettenreaktion (Polymerase Chain Reaction)
PCV2	Porcines Circovirus 2
pers.	persönlich
PMN	Polymorphkernige Leukozyten (polymorphonuclear leukocytes)
PRRSV	Porcine Reproduktive and Respiratorische Syndrome- Virus
QTL	Quantitative Trait Locus
QTN	Quantitative Trait Nucleotide
RHS	Respiratory Health Score
RI	Reisolierungsscore
RPL38	ribosomal protein L38
rRNA	ribosomale RNA
RUNX1	runt-related transcription factor 1
RYN	Ryanodin

S	Sekunde
Se	Sektionsscore
SH	Src homology
SNP	Single nucleotide polymorphism
Ssg.	sogenannt
Sos	son of sevenless
SP-D	Surfactant Associated Protein D
SSC	Chromosom (Sus scrofa chromosome)
ssp.	species
STAT	signal transducer and activator of transcription
TCF3	Transcription factor 3
TEAD1	transcriptional enhancer factor 1
TF	Transferrin
TFRC	transferrin receptor
TNF-α	Tumornekrosefaktor alpha
Th-Zellen	T-Helfer-Zellen
TLR	Toll-like Rezeptor (toll-like receptor)
u.a.	unter anderem
UTR	untranslated region
WGA	Whole Genome Amplification
z.B.	zum Beispiel
μl	Mikroliter

Tabellenverzeichnis

Tabelle 1: aus Vorarbeiten ermittelte Kandidatengene	. 23
Tabelle 2: Lokalisation der recherchierten SNPs	. 39
Tabelle 3: Lokalisation der Primer	. 40
Tabelle 4: optimierte Primer und Annealingtemperatur	. 43
Tabelle 5: Zusammensetzung 20 µl PCR-Ansatz	. 48
Tabelle 6: Zusammensetzung 20 µl PCR-Ansatz bei GC-reicher Sequenz	. 48
Tabelle 7: PCR-Programm	. 49
Tabelle 8: Zusammensetzung der Agarosegele	. 49
Tabelle 9: Lokalisation der Primer für die Pyrosequenzierung	. 51
Tabelle 10: optimierte Bedingungen der Primer für die PCR	. 52
Tabelle 11: Lokalisation der SNPs im NR3C1-Gen	. 59
Tabelle 12: Lokalisation der gefundenen NR3C1-SNPs in den Datenbanken	. 59
Tabelle 13: Lokalisation des SNP im RPL38-Gen	. 60
Tabelle 14: Lokalisation des gefundenen RPL38-SNPs in den Datenbanken	. 60
Tabelle 15: Lokalisation der SNPs im IL-5-Gen	. 61
Tabelle 16: Lokalisation der gefundenen IL5-SNPs in den Datenbanken	. 62
Tabelle 17: Lokalisation der SNPs im IL-9-Gen	. 63
Tabelle 18: Lokalisation der gefundenen IL9-SNPs in den Datenbanken	. 64
Tabelle 19: Lokalisation der SNPs im STAT3-Gen	. 65
Tabelle 20: Lokalisation der gefundenen STAT3-SNPs in den Datenbanken	. 66
Tabelle 21: Lokalisation der SNPs im LMNB1-Gen	. 67
Tabelle 22: Lokalisation der gefundenen LMNB1-SNPs in den Datenbanken	. 68
Tabelle 23: Auswahl der SNPs f ür die Pyrosequenzierung	. 69
Tabelle 24: Genotypen der F ₁ -Generation, SNP STAT3 c33743G>A	. 70
Tabelle 25: Genotypen der F ₁ -Generation, SNPs in der 5'-UTR des LMNB1-Gens	. 71
Tabelle 26: Genotypen der F ₁ -Generation, SNPs in der 3'-UTR des LMNB1-Gens	. 72
Tabelle 27: Genotypen der F ₁ -Generation, SNPs in den Introns des LMNB1-Gens	. 73
Tabelle 28: Genotyp-Verteilung in der F ₂ -Generation	. 73
Tabelle 29: Assoziation der Genotypen, SNP rs81509148	. 74
Tabelle 30: Assoziation der Genotypen, SNP NR3C1 c.1483G>A	. 76
Tabelle 31: Assoziation der Genotypen, SNP IL5 c.144+47C>A	. 77
Tabelle 32: Assoziation der Genotypen, SNP IL9 c.269C>G	. 78
Tabelle 33: Assoziation der Genotypen, SNP IL9 c.286G>A	. 79
Tabelle 34: Assoziation der Genotypen, SNP STAT3 c33743G>A	. 81
Tabelle 35: Assoziation der Genotypen, SNP RPL38 c. 1-83C>T	. 82
Tabelle 36: Kartierung der Kandidatengene	. 84
Tabelle 37: QTL auf SSC2	. 86
Tabelle 38: QTL auf SSC12	. 92
Tabelle 39: LOD-Werte der SNPs	100

Abbildungsverzeichnis

Abbildung 1: Übersicht Projektplanung (Quelle: eigene Darstellung)	34
Abbildung 2: Lokalisation der untersuchten Gene auf den Chromosomen 2 und 12	55
Abbildung 3: Sequenzierte Abschnitte in den untersuchten Genen	56
Abbildung 4: Lokalisation der SNPs im NR3C1-Gen	59
Abbildung 5: Lokalisation des SNP im RPL38-Gen	60
Abbildung 6: Lokalisation der SNPs im IL-5-Gen	61
Abbildung 7: Lokalisation der SNPs im IL-9-Gen	63
Abbildung 8: Lokalisation der SNPs im STAT3-Gen	65
Abbildung 9: Lokalisation der SNPs im LMNB1-Gen	67
Abbildung 10: QTL auf Chromosom 2 unter Berücksichtigung der Mikrosatelliten sowie	des
SNP NR3C1 c.1483G>A als zusätzlicher Marker und als fixer Effekt.	95
Abbildung 11: QTL auf Chromosom 2 unter Berücksichtigung der Mikrosatelliten sowie	des
SNP NR3C1 c.1483G>A als zusätzlicher Marker und als fixer Effekt.	95
Abbildung 12: QTL auf Chromosom 2 unter Berücksichtigung der Mikrosatelliten sowie	des
SNP NR3C1 c.1483G>A als zusätzlicher Marker und als fixer Effekt.	96
Abbildung 13: QTL auf Chromosom 2 unter Berücksichtigung der Mikrosatelliten sowie	des
SNP NR3C1 c.1483G>A als zusätzlicher Marker und als fixer Effekt.	96
Abbildung 14: Verteilung der LOD-Scores (in Prozent) auf Chromosom 2 unter	
Berücksichtigung der SNPs als Zusatzmarker und als Effekt	97
Abbildung 15: Verteilung der LOD-Scores (in Prozent) auf Chromosom 12 unter	
Berücksichtigung der SNPs als Zusatzmarker und als Effekt	98
Abbildung 16: LOD-Werte auf Chromosom 2, SNP1 (IL-5 c.144+47C>A) schwarz mark	ciert
-	104
Abbildung 17: LOD-Werte auf Chromosom 2, SNP2 (IL-9 c.269C>G) schwarz markiert	105
Abbildung 18: LOD-Werte auf Chromosom 2, SNP3 (IL-9 c.286G>A) schwarz markiert	106
Abbildung 19: LOD-Werte auf Chromosom 2, SNP4 (NR3C1 c.1483G>A) schwarz mar	kiert
	107
Abbildung 20: LOD-Werte auf Chromosom 2, SNP 5 (rs81509148) schwarz markiert	108
Abbildung 21: LOD-Werte auf Chromosom 12, SNP 2 (STAT3 c33743G>A) schwarz	
markiert	109

1. Einleitung

Die Pleuropneumonie, verursacht durch Actinobacillus pleuropneumoniae, stellt eine weltweit bedeutsame und schwerwiegende Erkrankung des Respirationstraktes beim Schwein dar. Die Erkrankung geht mit hohen wirtschaftlichen Einbußen sowie mit erheblichen Schmerzen, Leiden und Schäden bei den betroffenen Schweinen einher. Aktuelle Prophylaxemaßnahmen, auch die Impfung, führen nicht zum gewünschten nachhaltigen Erfolg. Das gleiche gilt für die Therapie mit antimikrobiellen Wirkstoffen (Gottschalk und Taylor 2006; Zimmermann und Plonait 2004), die nicht mit den Anforderungen an die Produktion gesunder Lebensmittel und den Verbraucherschutz einhergeht (Van Oirschot 1994). Neue. vielbeachtete Untersuchungsergebnisse weisen auf erhebliche Resistenzunterschiede von Schweinen gegenüber der Pleuropneumonie hin (Hoeltig et al. 2009; Gregersen et al. 2010; Sørensen et al. 2011; Reiner et al 2014). Durch die Identifikation der zugrundeliegenden Genvarianten könnte das Wissen um die Abwehr- und Pathogenesemechanismen - auch im Hinblick auf andere Krankheitserreger - entscheidend verbessert werden. Darüber hinaus stünden Selektionsmerkmale zur Verfügung zur züchterischen Steigerung der Krankheitsresistenz in den Schweinepopulationen (Reiner 2009): Ein entscheidender Ansatz zur Verbesserung der ökonomischen Situation der Landwirtschaft und des Tierwohls der Schweine.

2. Literaturübersicht

2.1. Actinobacillus pleuropneumoniae

Die Pleuropneumonie des Schweines, verursacht durch *Actinobacillus pleuropneumoniae*, stellt eine weltweit bedeutsame und schwerwiegende Erkrankung des Respirationstraktes dar (Gottschalk und Taylor 2006). Meist tritt die Erkrankung als Sekundärinfektion nach Vorschädigung durch virale oder andere bakterielle Erreger, z. B. das Porcine Reproduktive und Respiratorische Syndrom-Virus (PRRSV), auf (Zimmermann und Plonait 2004). Aufgrund hoher wirtschaftlicher Verluste ist die Bekämpfung einer Krankheitsausbreitung notwendig.

2.1.1. Ätiologie

Actinobacillus pleuropneumoniae, früher als *Haemophilus pleuropneumoniae* bezeichnet, ist ein gramnegatives kokkoides Stäbchen der Familie *Pasteurellaceae* (Selbitz 2007). Die beiden Biovare werden in 15 Serotypen aufgeteilt, basierend auf den Kapselpolysacchariden und den Lipopolysacchariden in der Zellwand. Die unterschiedliche Virulenz zwischen den Serotypen begründet sich im Gehalt der Polysaccharide und der verschiedenen Kombinationsmöglichkeiten an Apx-Toxin (Bosse et al. 2002; Chiers et al. 2010).

2.1.2. Epidemiologie

Die Verbreitung erfolgt durch Zukauf stumm infizierter Tiere, die den Erreger latent in den Tonsillen und im Respirationstrakt beherbergen (Moller et al. 1993; Sidibe et al. 1993; Jacobsen und Nielsen 1995), sowie über unbelebte Vektoren (Zimmermann und Plonait 2004). Innerhalb des Betriebes verbreitet sich der Erreger über den aerogenen Weg (Torremorell et al. 1997; Jobert et al. 2000) und direkten Tier-zu-Tier-Kontakt (Gottschalk und Taylor 2006).

Grundsätzlich kann es bei allen Altersstufen zum Ausbruch der Erkrankung kommen. Diese manifestiert sich hauptsächlich in Mastbetrieben. Es sind vor allem Tiere zwischen der zwölften bis 16. Lebenswoche gefährdet (Cruijsen et al. 1995). Saugferkel sind durch kolostrale Antikörper geschützt (Zimmermann und Plonait 2004). Nach einer Infektion bildet sich innerhalb von 10 bis 14 Tagen eine solide Immunität aus. Die Antikörper persistieren für

einige Monate (Haesebrouck et al. 1997). Zu beachten ist allerdings, dass betroffene Tiere häufig latente Ausscheider bleiben.

2.1.3. Virulenzfaktoren und Pathogenese

Nach aerogener Aufnahme siedelt sich A. pleuropneumoniae in den Tonsillen an oder besiedelt den tiefen Respirationstrakt. Dort heftet sich das Bakterium an das untere Respirationsepithel an. Selten findet eine Besiedlung der Nase statt. Die Adhäsion an die Epithelzellen ist ein komplexer Mechanismus und wird vermutlich durch Fimbrien und Lipopolysaccharide (LPS) ermöglicht. Im unteren Respirationstrakt ist der Bestand an essentiellen Nährstoffen für das Wachstum von Bakterien begrenzt. Der Erreger ist in der Lage durch Transferrin bindene Proteine dem Wirt Eisen, das gebunden an Transferrin vorliegt, zu entziehen. Die LPS und "Outer Membrane Proteins" binden Hämoglobin. Die wichtigsten Virulenzfaktoren des Erreger stellen die RTX-Toxine - Apx Toxin I, Apx II und Sie III dar. haben hämolytische und zytotoxische Wirkung Apx _ gegen Alveolarepithelzellen, neutrophile Granulozyten und Lungenmakrophagen. In geringer Dosis wird die Chemotaxis und Phagocytoseleistung der Makrophagen geschwächt. Ein weiteres Toxin (Apx IV) ist nötig für die volle Virulenz. Diese Toxine sind Hauptverursacher der Lungenläsionen. Die LPS unterstützen die Toxizität und führen zur Freisetzung proinflammatorischer Cytokine. Die Aktivierung der Gerinnungskaskade durch die Apx-Toxine und LPS resultiert in der Bildung von Mikrothromben, lokaler Ischämie und Nekrose - Charakteristika der akuten Pleuropneumonie. Durch die Kapselpolysaccharide und die Lipopolysaccharide besteht ein Schutz vor dem Abbau durch das Komplementsystem. Sezernierte Proteasen bauen Hämoglobin und Immunglobuline ab, letztgenannte zur Schwächung des Immunsystems des Wirtes. Des Weiteren fördern die Ureaseaktivität des Erregers und die Formation eines Biofilmes die Resistenz gegen das Immunsystem (Bosse et al. 2002; Chiers et al. 2010).

2.1.4. Klinik

Die auftretenden Symptome sind von verschiedenen Faktoren abhängig: der Virulenz des Serovars, dem Alter und Immunstatus des Tieres, der Beteiligung anderer Erreger (PRRS, *Mycoplasma hyopneumoniae*, PCV2), dem Infektionsdruck und den Haltungsbedingungen (Cruijsen et al. 1995; Bosse et al. 2002; Chiers et al. 2010).

Die Inkubationszeit beträgt bei virulenten Stämmen minimal zwei bis fünf Tage. An Verläufen lassen sich zwischen perakutem, akutem, chronischem oder subklinischem Verlauf unterscheiden. Im perakuten Verlauf können die Tiere aufgrund der Cytokinwirkung plötzlich unter der Symptomatik des septischen Schocks verenden, ohne dass A. pleuropneumoniaetypische Läsionen ausgebildet sein müssen. Die Tiere sterben innerhalb von 12 bis 24 Stunden nach Auftreten erster Symptome. Akut erkrankte Tiere zeigen Fieber bis 41 °C, Dyspnoe, Husten, giemende Atemgeräusche, Zyanose der Haut, hundesitzartige Stellung und Maulatmung. Oft tritt zusätzlich ein blutiger Nasenausfluss auf. Ohne Behandlung tritt entweder der Tod innerhalb von Tagen nach dem Auftreten erster Symptome ein oder die Erkrankung geht in einen chronischen Verlauf über. Bei chronisch kranken Tieren lässt sich meist nur eine geringe Symptomatik feststellen. Die Tiere zeigen Dyspnoe nach Bewegung, Husten und eine geringgradig erhöhte Körpertemperatur. Es treten vermehrt Kümmerer im Bestand auf und eine Wachstumsreduktion der Tiere liegt vor. Der chronische Verlauf kann zu erheblichen Leistungseinbußen im Bestand führen (Straw et al. 1989). Subklinisch infizierte Tiere beherbergen den Erreger auf den Tonsillen und im Respirationstrakt (Zimmermann und Plonait 2004; Gottschalk und Taylor 2006). Die Problematik besteht neben Leistungseinbußen darin, dass diese Tiere als Vektoren zur Einschleppung in einen A. pleuropneumoniae-freien Betrieb dienen.

2.1.5. Pathomorphologie

In der Sektion ist im akuten Fall eine hämorrhagisch-nekrotisierende Pneumonie zu erkennen. Dabei treten schwarzrote Pneumonieherde und eine fibrinöse Pleuritis auf. Es sind vor allem die Zwerchfelllappen betroffen (Didier et al. 1984; Bertram 1985; Weiss und Rudolph 2007). In der Brusthöhle befindet sich häufig eine Ansammlung einer serös-blutigen Flüssigkeit. Bei der chronischen Form entstehen derbe knotige Veränderungen der Lunge, die von einer Kapsel umgeben sind. Im Anschnitt wird eine Nekrose im Zentrum sichtbar. Es sind vor allem die Lungenspitzenlappen betroffen. Außerdem liegt eine adhäsive Pleuritis vor (Liggett et al. 1987; Gottschalk und Taylor 2006).

Mikroskopisch sind in frühen Stadien der Infektion polymorphkernige Leukozyten (PMN, polymorphonuclear leukocytes) vorherrschend. Später dominiert die Infiltration mit Makrophagen. Das Bakterium befindet sich in alveolärer und interlobulärer Flüssigkeit, in der Lymphe sowie phagozytiert in Makrophagen und PMNs (Bosse et al. 2002).

In seltenen Fällen treten Arthritiden, eine Endocarditis valvularis oder eine Septikämie bei Saugferkeln auf (Weiss und Rudolph 2007).

Mortensen et al. (2011) zeigten, dass nach experimenteller Infektion von Schweinen mit *A. pleuropneumoniae* die Expression verschiedener Gene in der Lunge hoch- bzw. runterreguliert wird: vor allem Gene, die Cytokine, Akute-Phase-Proteine und Faktoren zur Regulation der Apoptose und des Komplementsystems kodieren. Dabei wurde der Großteil der unterschiedlich exprimierten Gene in nekrotischen Bereichen der Lunge detektiert (Mortensen et al. 2011). Laut Murtaugh et al. (1996) steigen vor allem die Gehalte der proinflammatorisch wirkenden Interleukin 1 (IL-1) und 6 (IL-6) in der akuten Phase der Infektion an. Interleukin 4 (IL-4) hingegen steigt im Verlauf der Infektion an und unterdrückt die Wirkung der inflammatorischen Cytokine in Alveolarmakrophagen (Murtaugh et al. 1996). Die Leber scheint nach Skovgaard et al. (2010) eine bedeutsame Stellung hinsichtlich der Auslösung einer Immunantwort nach Infektion mit *A. pleuropneumoniae* einzunehmen: Im Lebergewebe wurden unterschiedlich exprimierte Gene detektiert, darunter Gene, die Akute-Phase-Proteine und proinflammatorische Cytokine kodieren (Skovgaard et al. 2010).

2.1.6. Therapie und Prophylaxe

Wichtig ist die schnellstmögliche Behandlung nach Auftreten erster Symptome im Bestand, da diese nur in der Anfangsphase der Erkrankung effektiv ist. Es stehen verschiedene Antibiotikagruppen zur Verfügung. Akut erkrankte Tiere sollten parenteral mit Penizillinderivaten behandelt werden. Außerdem wird eine Medikation über das Trinkwasser oder Futter angeraten. Hierzu sind Tetrazykline, Tylosin, Amoxicillin oder Sulfonamide geeignet (Zimmermann und Plonait 2004). Die besten Ergebnisse werden meist bei einer Kombination der beiden Verabreichungsformen erzielt.

Bei stark *A. pleuropneumoniae*-exponierten Absetzferkeln empfiehlt Kanzenbach (2009) eine Einstallungsmetaphylaxe mit Tulathromycin als Einmalinjektion.

Zur Impfprophylaxe stehen kommerzielle Impfstoffe zur Verfügung; eine serotypspezifische Vakzine und ein Subunit-Impfstoff, der als Antigene ein OMP und drei Apx-Toxine enthält. Weitere Antigene wurden experimentell validiert, allerdings sind diese Impfstoffe noch nicht praxisreif. Eine Impfung empfiehlt sich bei Zukauf von *A. pleuropneumoniae*-freien Sauen in infizierte Betriebe (Gottschalk und Taylor 2006).

Als weitere Prophylaxemaßnahme empfiehlt sich die Quarantäne zugekaufter Tiere. Es sollten keine Würfe gemischt und die einzelnen Gruppen voneinander getrennt gehalten werden, um eine Verbreitung innerhalb des Bestandes zu vermeiden. Wie auch bei anderen Infektionserregern ist das Rein-Raus-Verfahren der kontinuierlichen Belegung vorzuziehen. Haltungsbedingungen müssen optimiert werden. Sektionen oder serologische Überprüfungen in regelmäßigen Abständen sind empfehlenswert, um über den Durchseuchungsgrad informiert zu sein bzw. um eine Neuinfektion des Bestandes frühzeitig zu erkennen (Zimmermann und Plonait 2004; Gottschalk und Taylor 2006).

Diese Therapie- und Prophylaxemaßnahmen besitzen allerdings Schwachstellen:

Durch den medikamentellen Einsatz kann zwar die klinische Symptomatik im Bestand reduziert werden, eine völlige Elimination des Erregers wird damit allerdings nicht erzielt. Die subklinisch infizierten Tiere stellen einen wichtigen Faktor zur Aufrechterhaltung der Infektion im Betrieb dar. Außerdem besteht grundsätzlich die Neigung zur Ausbildung von Antibiotikaresistenzen (White et al. 2002). Erste erhebliche Resistenzen von *A. pleuropneumoniae* wurden bereits entdeckt (Gutierrez Martin et al. 2006; Vanni et al. 2012).

Die Impfung wiederum bietet zwar in vielen Fällen einen Schutz vor schwerer Symptomatik (Rosendal et al. 1981; Gottschalk und Taylor 2006), eine Infektion der Tiere kann aber nicht verhindert werden. Die Tiere scheiden somit den Erreger aus und verbreiten ihn weiter im Betrieb.

Demnach spielt der Ansatzpunkt, resistente Zuchtlinien zu identifizieren, ihren genetischen Vorteil darzustellen und dies für die Bekämpfung des Erregers auszunutzen, eine wichtige Rolle. Eine Kombination dieser verschiedenen Bekämpfungsstrategien sollte dazu führen, dass in Zukunft Infektionserreger auf natürliche Weise eingedämmt und wirtschaftliche Verluste deutlich reduziert werden können.

2.2. Genetische Krankheitsresistenz

Unter genetischer Krankheitsresistenz versteht man das Potential eines Tieres, einer Population oder einer Rasse nach Kontakt mit einem spezifischen infektiösen Agens keine oder nur verminderte Folgen der entsprechenden Infektionskrankheit zu entwickeln. Hierbei ist zwischen einer absoluten und einer relativen Resistenz zu unterscheiden (Bisset und Morris 1996).

Erste Hinweise zu Resistenzunterschieden zwischen verschiedenen Tierrassen und Zuchtlinien, die auf genetische Unterschiede zurückzuführen sind, bestehen schon seit Mitte des 20. Jahrhunderts (z. B. Hutt 1958).

Durch den rasanten Forschungsfortschritt in der Molekulargenetik liegt heute das Augenmerk auf der Identifikation molekularer Mechanismen auf Genomebene. Dabei stehen vor allem Mechanismen im Fokus, die Komponenten des Immunsystems darstellen oder dieses beeinflussen. Beispielsweise sind aber auch Rezeptoren, die dem Erreger die Inversion im Wirtsorganismus ermöglichen, interessant; z. B. die Fab/ac-Rezeptoren in Bezug auf die Krankheitsresistenz gegen *Escherichia coli (E. coli)* beim Schwein (Teneberg et al. 1990; Edfors-Lilja et al. 1995; Jorgensen et al. 2003). Mit diesem Wissen können dann zum einen gezielt neue Methoden in der Therapie und Prophylaxe – beispielsweise neue Impfstoffe – entwickelt werden und zum anderen gezielt Zuchtlinien mit entsprechend optimaler Genetik gezüchtet werden. In klassischen Zuchtprogrammen werden Zuchtwertschätzungen auf bestimmte Krankheitsfaktoren in Form von Nachkommenprüfungen durchgeführt. Da sich aber die phänotypischen Merkmale meist nicht exakt erfassen lassen (Kräusslich und Brem 1997), stellen die Marker-gestützte Selektion (MAS, marker assisted selection), die "gene assisted selection" und die genomische Selektion (genomic selection) vielversprechende, die klassische Selektion ergänzende Methoden dar.

Hinweise liegen bereits für über 50 Krankheiten vor, wobei sowohl Einzelgene als auch polygene Merkmale eine Rolle spielen (Bishop et al. 2010). Aus der Humanmedizin ist die epigenetische Vererbung bekannt. Hierbei kommt es zur Weitergabe von Eigenschaften, die nicht in der DNA-Sequenz kodiert sind. Dies geschieht z. B. durch DNA-Methylierung oder Modifikation der Histone (Ibeagha-Awemu et al. 2008b).

Die Integration der genetischen Krankheitsresistenz in Bekämpfungsmaßnahmen gegen Infektionserreger wird in Zukunft noch mehr an Bedeutung gewinnen. Der Verbraucher fordert sichere Lebensmittel, die geringe Rückstände an Medikamenten enthalten und frei von Erregern sind. Für den Produzenten steht im Vordergrund seine ökonomischen Verluste in Form von Tierverlusten, Leistungsminderung und Therapiekosten so gering wie möglich zu halten. Daneben führt dieser Ansatz zu einer Verbesserung des Tierwohls. Nicht zu verachten ist die Tatsache, dass es sich bei vielen Nutztierkrankheiten um Zooanthroponosen handeln, die damit auch ein gesundheitliches Risiko für die Menschheit darstellen (Ibeagha-Awemu et al. 2008b). Berücksichtig werden müssen allerdings auch mögliche Nachteile: Beispielsweise kann eine negative Kopplung des erwünschten Genes mit einem anderen Gen vorliegen (z. B. die negative Kopplung des FUT-Gens mit dem RYR1-Gen [Vogeli et al. 1996]).

2.2.1. Krankheitsresistenz beim Nutztier

Praktische Bedeutung besitzt die natürliche Krankheitsresistenz gegen Trypanosomen beim Rind in tropischen Gebieten (Murray 1991). Bestimmte Schafrassen zeigen eine natürliche Resistenz gegen Magen-Darm-Nematoden (Sayers et al. 2005) – ein essentieller Faktor für die produktive Schafproduktion in Australien und Neuseeland (Stear 2010). Eine kommerzielle Nutzung der Krankheitsresistenz wurde beim Geflügel etabliert. Es entstanden Selektionsprogramme gegen die aviäre Leukose und die Mareksche Krankheit (Cole 1968). In Skandinavien wird die Mastitisresistenz bereits in Selektionsprogrammen berücksichtigt (Rupp 2010).

2.2.2. Krankheitsresistenz beim Schwein

Erste Hinweise zu genetischen Krankheitsresistenzen gegen Infektionserreger beim Schwein lagen bereits in den 40er Jahren des 20. Jahrhunderts vor: Cameron et al. (1940; 1941; 1942) vermuteten die Resistenz gegen *Brucella suis*. Später wurden Resistenzunterschiede hinsichtlich der Dysenterie, Rotlauf und *Rhinitis atrophicans* beschrieben (Hutt 1958). Es folgten Studien zur Resistenz gegen das Enzephalomyelitis-Virus (Mengeling und Cutlip 1976) und verschiedenen Parasiten, beispielsweise *Ascaris suum* (Wakelin 1978). Diese Autoren beschrieben zwar die Existenz natürlicher Resistenzen gegen Infektionserreger beim Schwein, die Ursache dafür im Genom der Tiere blieb allerdings unentdeckt.

Rothschild et al. (1984) gelang es einen Zusammenhang zwischen dem Immunsystem und der Resistenz bzw. Empfindlichkeit gegen *Bordatella bronchiseptica* zu ermitteln. Aufgrund verschiedener Haplotypen des Haupthistokompatibilitätskomplexes (Major Histocompatibility Complex, MHC) trat eine unterschiedlich starke Immunantwort nach Vakzinierung auf

(Rothschild et al. 1984). Tiere mit einem bestimmten Haplotyp zeigten eine stärkere Immunantwort und sind weniger empfänglich gegen den Erreger. Tiere der Rasse Duroc (Vincent et al. 2006) und der Rasse Wiesenauer Miniaturschwein (Reiner et al. 2010a) waren in durchgeführten Experimenten resistent gegen PRRSV. Auch hier spielt der MHC-Komplex eine wichtige Rolle. Die Krankheitsresistenz gegenüber *Trichinella spiralis* (Lunney und Murrell 1988) wird ebenfalls mit dem MHC-Komplex assoziiert (Madden et al. 1993). Des Weiteren wurde eine natürliche Resistenz gegenüber der Afrikanischen Schweinepest beschrieben: Warzen- und Pinselohrschweine dienen aufgrund einer geringeren Virusreplikation in Milz und Tonsillen als resistentes Reservoir. Begründet ist dies wahrscheinlich in der apoptosevermittelten Cytokinausschüttung aus infizierten Makrophagen (Martins et al. 1993; Oura et al. 1998).

Das Pseudorabiesvirus, Auslöser der Aujeszkyschen Krankheit, ist der erste Infektionserreger für den beim Schwein ein Quantitative Trait Locus (QTL) bestimmt werden konnte (Reiner et al. 2002b). Es konnten QTL mit Assoziation zur Körpertemperatur und zu neurologischen Symptomen ermittelt werden. Alle Tiere der Rasse Hampshire zeigten neurologische Symptome, wohingegen alle Tiere der Rasse Meishan resistent erschienen. Die Autoren vermuten die Kopplung zu Kandidatengenen, die eine wichtige Rolle in der Immunabwehr des Wirtes spielen (Reiner et al. 2002b). Beim Schwein wurden außerdem QTL zur Resistenz gegen Sarcocystis mischeriana identifiziert (Reiner et al. 2007): Die QTL zeigten u.a. Assoziation zu der Anzahl an Bradyzoiten im Skelettmuskel und dem IgG₂-Level im Plasma. Tiere der Rasse Pietrain wiesen einen wesentlich höheren Gehalt an Bradyzoiten auf als Tiere der Rasse Meishan (Reiner et al. 2002a). Der markanteste QTL lag in einer Chromosomenregion, die ein Gencluster für die schwere Kette der Immunglobuline ("immunglobulin heavy chain gene cluster") enthält. Die Autoren hielten einen weiteren QTL auf Chromosom 7 mit hohem F-Wert für bedeutsam. In dieser Region lagen Gene des MHC und des Tumornekrosefaktors (TNF) (Reiner et al. 2007). Außerdem unterschieden sich die Rassen Pietrain und Meishan hinsichtlich verschiedener klinisch-chemischer Merkmale nach einer Infektion mit Sarcocystis miescheriana, u.a. der Enzyme Aspartat-Aminotransferase (AST) und Creatin-Kinase (CK) (Reiner et al. 2002a). Es wurden QTL mit Assoziation zu diesen Enzymen beschrieben (Reiner et al. 2007). In der Dissertation von Clemens (2010) wird ein Zusammenhang zu dem GOT1-Gen vermutet. Broke et al. (2011) identifizierten einen SNP (single nucleotide polymorphism) im IRF7-Gen, dessen Varianten mit hämatologischen und immunologischen Merkmalen assoziiert waren. Die Autoren vermuten,

dass das G-Allel zu einer besseren Abwehr des Wirtes während einer Infektion mit *Sarcocystis* führt (Broke et al. 2011).

Hinsichtlich einer Infektion mit *Salmonella* ssp. wurde ein Zusammenhang zwischen dem NRAMP1-Gen und einer gesteigerten Krankheitsresistenz beschrieben (Blackwell 1996; Tuggle et al. 1997; Sun et al. 1998).

Escherichia coli (E. coli) - Verursacher der Coliruhr und der Colienterotoxämie - ist der erste Erreger beim Schwein für den eine enge Assoziation zwischen einem SNP und der Krankheitsresistenz bestätigt werden konnte. Hinweise zu empfänglichen und resistenten Phänotypen gab es bereits in den 70er Jahren des 20. Jahrhunderts (Sellwood et al. 1975). Als wichtige Virulenzfaktoren besitzt E. coli verschiedene Typen an Fimbrien, die die Adhäsion an Glykoproteinrezeptoren in der Darmmucosa des Wirtes ermöglichen. Phänotyp E kann keine F4-Fimbrien binden, sodass der Wirt nicht empfänglich für den Erreger ist (Teneberg et al. 1990). Der Genlocus für die Fab/ac-Rezeptoren wurde auf Chromosom 13 kartiert (Edfors-Lilja et al. 1995). In einer Feinkartierung wurde das Mucin4-Gen (MUC4) identifiziert mit enger Assoziation von Polymorphismen zu der Resistenz (Jorgensen et al. 2003; Peng et al. 2007; Jacobsen et al. 2010). E. coli-Stämme mit F18-Fimbrien verursachen bei Absatzferkeln Diarrhoe und die Colienterotoxämie. Der Genlocus des F18-Rezeptors wurde auf Chromosom 6 kartiert (Vogeli et al. 1996) im Bereich der alpha-Fucosyltransferasegene (FUT 1 und FUT 2) (Meijerink et al. 1997). Dieser Genort ist negativ gekoppelt mit dem RYR1-Gen (Vogeli et al. 1996). Daher sind MHS-resistente Schweine häufig empfänglich für F18-E. coli. In einigen Ländern, u. a. der Schweiz, wird dieses Wissen bereits in Zuchtprogrammen in Form von Marker-gestützter Selektion verwendet (Vogeli et al. 1997; Kreuzer et al. 2013). Diese Tests sind allerdings patentrechtlich geschützt und damit nicht frei verfügbar.

Zum heutigen Zeitpunkt sind beim Schwein bereits zu vielen Infektionserregern Krankheitsresistenzen bekannt oder werden vermutet. Meist sind die Ursachen auf genetischer Ebene noch nicht ausreichend bekannt und benötigen weitere Forschungsarbeiten um das gewonnene Wissen in die Schweineproduktion einfließen zu lassen. Die Resistenz gegen *E. coli* ist ein Paradebeispiel für den Einsatz in der heutigen Schweinezucht. Hier gelang die schrittweise Identifikation zugrunde liegender Gene sowie die Integration in die Züchtung.

2.2.3. Nutzen der genetischen Krankheitsresistenz in der Tierzucht

Mit Hilfe der heutigen Verfahren zur Genomanalyse werden Genvarianten zwischen Tieren einer Spezies ermittelt, die verantwortlich für die Krankheitsresistenz sein könnten. Man unterscheidet verschiedene Arten an Mutationen, u.a. "Single Nucleotide Polymorphisms" (SNPs), Deletionen/Insertionen von einzelnen Nukleotiden oder ganzen Genen oder Genduplikationen (Ibeagha-Awemu et al. 2008b). Besteht eine enge Kopplung zwischen Polymorphismen und den phänotypischen Merkmalen der Krankheitsresistenz, können diese in der Marker-gestützten Selektion (MAS) eingesetzt werden. Der Einsatz bietet sich zum Beispiel bei Phänotypen an, die sich erst in späteren Lebensabschnitten zeigen (Dekkers 2004). Je weniger Gene für die Merkmalsausprägung verantwortlich sind, desto eher ist der Einsatz in der Praxis umsetzbar (Berge 2008). Der Vorteil liegt außerdem in der Verkürzung des Generationsintervalls (Geldermann und Bartenschlager 2005). Eine der ersten eingesetzten Gene zur MAS beim Schwein waren das RYR1-Gen (Fujii et al. 1991), das Östrogenrezeptor-Gen (Rothschild et al. 1996) und das F18-Gen (Vogeli et al. 1997). Zu beachten ist, dass es sich bei der MAS um einzelne kausale Genorte handelt und meist sogenannte Quantitative Trait Loci (QTL) mit kleinem Effekt unberücksichtigt bleiben. Selektionsentscheidung können häufig nur innerhalb von Familien durchgeführt werden (Thaller 2009). Denn zu beachten ist, dass es sich bei der MAS lediglich um eine Kopplung des Markers mit der kausalen Mutation handelt und dass aufgrund von Rekombination eine Verschiebung der Kopplungsphase zwischen verschiedenen Familien auftreten kann.

Die Marker-gestützte Introgression ("marker assisted introgression", MAI) ist bei Nutztieren aufgrund relativ langer Generationsintervalle, niedriger Reproduktionsraten und höherer Kosten im Vergleich zur Pflanzenzucht nur für Gene mit erheblichem Effekt auf das gewünschte Merkmal umsetzbar (Dekkers 2004). Bei polygenetischen Merkmalen – wie es häufig in der Tierzucht der Fall ist – ist der Anteil eines einzelnen QTL an der Gesamtvarianz meist nicht ausreichend, um den ökonomischen Aufwand bei Verwendung des Markers in einer MAI zu rechtfertigen (Bouchez et al. 2002).

Durch den Fortschritt in der DNA-Chip-Technologie wurde die genomische Selektion möglich. Es handelt sich hierbei um eine Variante der Marker-gestützten Selektion, bei der Marker über das gesamte Genom verteilt sind (Goddard und Hayes 2007). Häufig werden SNPs als Marker verwendet. Die Methode beruht darauf, durch statistisch-mathematische Methoden den Effekt jedes SNP auf das gewünschte Merkmal an einer Referenzpopulation mit sicher geprüften Zuchtwerten zu erfassen. Die Summe aller Effekte ergibt den geschätzten genomischen Zuchtwert (Thaller 2009). Die Genauigkeit der Zuchtwertschätzung ist laut de Roos et al. (2007) vergleichbar mit der "gene assisted selection" (die Selektion beruht auf den tatsächlich verantwortlichen Genvarianten [Geldermann und Bartenschlager 2005]) und höher als bei der konventionellen Zuchtwertschätzung. Die aktuellen Forschungsarbeiten beziehen sich vor allem auf die Spezies Rind, bei der bereits ein 54K-Chip und ein 777K-Chip (BovineSNP50 BeadChip und BovineHD Genotyping BeadChip der Fa. Illumina) zur Verfügung stehen. Im August 2010 wurden erstmals offizielle genomische Zuchtwerte für deutsche Milchrindbullen der Rasse Holstein-Friesian durch die nationale Zuchtwertschätzstelle beim VIT, Verden, veröffentlicht. Der direkte genomische Zuchtwert wird mit dem klassisch geschätzten Zuchtwerte zu dem offiziellen genomisch unterstützten Zuchtwert (gZW) kombiniert (Vereinigte Informationssysteme Tierhaltung w.V. [VIT]; Landesamt für Umwelt). Seit April 2013 sind außerdem Zuchtwerte auf Basis von Low-Density-Typisierungen vorhanden (VIT). Auch in der Schweinezucht liegen vielversprechende Ansätze vor: Die Firma Illumina entwickelte einen 64K-Chip (PorcineSNP60 v2 BeadChip, Fa. Illumina), der als Grundlage zur Etablierung von genomischen Zuchtwerten dient. Der Zuchtfortschritt durch die genomische Selektion wird vor allem in der Reduzierung der Wartezeit und Anpaarungen gesehen. Im Vergleich zum Rind sind bis zur Verwendung in praxi noch einige Schwierigkeiten zu klären, u.a. kleine Referenzpopulationen, aktuell noch hohe Genotypisierungskosten und ungenaue statistischmathematische Methoden zur Erfassung der SNP-Effekte (Buske und Gengler 2009; Bayerische Landesanstalt für Landwirtschaft).

Die enorme Entwicklung der genomischen Selektion verdeutlicht das Potential langfristig auch die genetische Krankheitsresistenz von bestimmten Schweinerassen und Schweinelinien durch diese Methode in die Tierzucht einfließen zu lassen.

2.3. Forschungsstand zur Krankheitssresistenz gegen A. pleuropneumoniae

Die beiden Forschungs-Konsortien IRAS (Entwicklung von genetischen Markern zur Infektabwehr und Resistenz im Atemtrakt des Schweines) und RePoRi (Entwicklung genetischer Marker für die Resistenz gegen Infektionen des Respirationstraktes beim Schwein), die im Rahmen des FUGATO (Funktionelle GenomAnalyse am Tierischen Organismus)-Programmes gegründet wurden, führten zu ersten, vielversprechenden Ergebnissen. Ziel der Konsortien war es, phänotypische und genetische Marker für die Empfindlichkeit und Resistenz des Schweins gegen A. *pleuropneumoniae* zu entwickeln. Als Grundlage diente ein Infektionsmodell mit den Schweinerassen Deutsche Landrasse, Deutsches Edelschwein, Pietrain und Hampshire (Rehm et al. 2008).

Im ersten Teilprojekt wurde ein neues Bewertungsschema, der sogenannte "Respiratory Health Score" (RHS), entwickelt (Hoeltig et al. 2009). Dieses sollte als Grundlage für die exakte Phänotypisierung der Versuchstiere für die assoziierten Teilprojekte dienen. Der RHS basiert auf klinischen, röntgenologischen und sonographischen Befunden und ermöglicht die Aussage über den Lungenstatus ohne die pathomorphologische Beurteilung im Rahmen einer Sektion. Zu diesem Zweck wurden Versuchsgruppen, bestehend aus den verschiedenen Schweinerassen, mit Serotyp 7 von *A. pleuropneumoniae* (Stamm AP 76) infiziert.

Es konnte gezeigt werden, dass der Schweregrad der Infektion mit *A. pleuropneumoniae* vom angeborenen Immunsystem bestimmt wird. Außerdem wurden Rasseunterschiede im Krankheitsverlauf deutlich: Tiere der Rasse Hampshire zeigten nur milde Symptomatik, während bei Würfen der Deutschen Landrasse und der Rasse Pietrain schwere Symptomatik auftrat. Todesfälle waren nur in den Würfen der Deutschen Landrasse zu verzeichnen (Hoeltig et al. 2009). Diese Ergebnisse bestätigen frühere Studien, in denen allerdings Einflüsse durch Umweltfaktoren nicht ausgeschlossen werden konnten (Straw et al. 1983): Die Todesrate war signifikant niedriger bei Tieren der Rasse Hampshire im Vergleich zu jener bei Tieren der Rasse Yorkshire. Zu beachten ist allerdings, dass keine experimentelle Aufzucht der Versuchstiere und kein Infektionsversuch stattfanden. Außerdem verstarben die Tiere nicht ausschließlich an einer Pneumonie.

Im zweiten Teilprojekt wurden Blutproben und bronchoalveoläre Lavageflüssigkeit proteinchemisch analysiert. Hierzu diente ein Aerosolinfektionsmodell mit *A. pleuropneumoniae* Serotyp 7, durchgeführt an Versuchstieren der Rasse Pietrain, Hampshire, Large White und Deutsche Landrasse. Verschiedene Proteine, die den Verlauf der Erkrankung zu beeinflussen schienen, wurden als potentielle Biomarker etabliert: Glykoproteine (Kahlisch et al. 2009) und Immunmarker (Benga et al. 2009). Tiere der Rasse Hampshire zeigten einen höheren Fetuin A-Spiegel sowie einen niedrigeren Spiegel an Haptoglobin und Surfactant Associated Protein D (SP-D) im Vergleich zu Tieren der Deutschen Landrasse und Pietrain (Kahlisch et al. 2009). Benga et al. (2009) maßen ebenfalls einen Anstieg des Haptoglobins bei den Tieren der Deutschen Landrasse und Pietrain neben einem unwesentlichen Anstieg bei der Rasse Hampshire. Letztgenannte Rasse zeigte zugleich einen geringeren IFN- γ -Gehalt im Plasma im Vergleich zu den anderen Rassen (Benga et al. 2009).

Ungeklärt blieb, welche Ursachen auf genomischer Ebene für die unterschiedlich hohe Proteinbildung bei den verschiedenen Rassen verantwortlich waren.

Die Arbeitsgruppe um Danilowicz (2010) sequenzierte das porcine Transferrin-Gen und führte eine Assoziationsstudie an 116 infizierten Versuchstieren durch. Bei Tieren der Deutschen Landrasse konnte ein Zusammenhang zwischen drei Polymorphismen (c.1345+1348C>T, c.1345+1366C>T und c.1899+29T>C) und dem RHS ermittelt werden (Danilowicz et al. 2010).

Im Nachfolgekonsortium RePoRi wurden für das Aerosolinfektionsmodell 170 F₂-Tiere erstellt. Hierzu wurde ein Eber der Rasse Hampshire mit zwei Sauen der Deutschen Landrasse gekreuzt. Das Prinzip beruht auf der Verpaarung zweier (hinsichtlich dem Schweregrad der Infektion) möglichst stark divergierender Rassen.

An der Klinik für Schweine der JLU Gießen wurde eine QTL-Analyse (Quantitative Trait Locus, s.u.) unter Verwendung von 170 Mikrosatelliten durchgeführt. Als Probenmaterial dienten DNA-Extrakte. Es konnten acht QTL mit Assoziation zu klinischen, pathologischen und mikrobiologischen Merkmalen kartiert werden, die sich auf den Chromosomen 2, 6, 12, 13, 16, 17 und 18 befanden und jeweils 6-22 % der gesamten F₂-Varianz erklärten. Der QTL auf SSC 2 befindet sich nahe dem Marker Swr345 und der QTL auf SSC 12 nahe dem Marker S0143. Regressionsanalysen zeigten, dass ein signifikanter Zusammenhang beider Marker mit dem RHS, dem "Klinischen Score" und dem Auftreten von Todesfällen bestand. Alle Tiere, die in der Studie verstarben, waren homozygot auf dem Marker Swr345 oder S0143 und trugen zusätzlich zumindest ein ungünstiges Allel auf dem korrespondierenden Marker (Reiner et al. 2014).

Neben dieser positionellen Analyse führte die Forschungsgruppe an dem Probematerial funktionelle Analysen durch. Eine Expressionsanalyse ergab 171 differentiell exprimierte Gene (Reiner et al., unveröffentlicht). Die differentielle Expression kann auf einer Variante im Gen selbst (cis) oder auf einer Variante in einem anderen, funktionell vorgeschalteten Gen (trans) beruhen (Doss et al. 2005).

Im Folgenden wurde eine eQTL-Analyse ("expressed QTL") durchgeführt. Diese ermöglicht die Bestätigung eines Kandidatengenes auf funktioneller und positioneller Ebene und erhöht dessen Kandidatengenstatus (Drake et al. 2006). Es wurden 193 eQTL identifiziert, von denen 18 als cis-eQTL kartiert werden konnten. In 175 Fällen beruhte die differentielle Expression auf einer Variante in einem vorgeschalteten Gen (trans). Der prominenteste eQTL lag auf Chromosom 13 in der Nähe des Genlocus für Transferrin. Zehn trans-eQTL und ein cis-eQTL lagen in der Nähe des Markers Swr345 (Reiner et al., unveröffentlicht).

Eine Netzwerkanalyse identifizierte fünf Gene, die nahe dem Marker Swr345 auf SSC 2 lagen: LMNB1, CD14, NR3C1, HSPA9 und ETF1. Zwei weitere Gene befanden sich nahe dem Marker S0143 auf SSC 12: Grb2 und RPL38. Es wurden 32 miRNAs sowie verschiedene Transkriptionsfaktoren gefunden, u.a. die STAT-Gen-Familie (Reiner et al., unveröffentlicht).

Die aus dem RePoRi-Konsortium hervorgegangenen QTL auf den Chromosomen 2, 12, 13 und 18 bestätigten eine Studie zur chronischen Pleuropneumonie (Gregersen et al. 2010). Dabei zeigte sich eine interessante Übereinstimmung zwischen beiden Studien, obwohl jeweils unterschiedliche Versuchstiere verwendet wurden. Gregersen et al. (2010) kartierten zusätzlich QTL auf den Chromosomen 8 und 14. Der QTL auf SSC 2 wurde in einem Chromosomenabschnitt kartiert, der bereits in einer QTL-Analyse zum Pseudorabiesvirus beschrieben wurde (Reiner et al. 2002b).

In einer Assoziationsstudie an Schlachtschweinen mit ventrocranialer Pleuritis (Sørensen et al. 2011) wurden QTL auf den Chromosomen 2, 4, 11, 12 und 13 identifiziert. Der QTL auf SSC 2 lag in dem Chromosomenabschnitt im Bereich des IL-9-Gens, der bereits von Gregersen et al. (2010) beschrieben wurde. Somit stellt das IL-9-Gen ein mögliches Kandidatengen für die beschriebenen Resistenzunterschiede dar (Sørensen et al. 2011). Die Untersuchungsergebnisse sind dennoch zweifelhaft, da ventrocraniale Pleuritiden beim Schwein nicht ausschließlich von *A. pleuropneumoniae*, sondern auch von anderen Erregern, u.a. *Mycoplasma hyopneumoniae*, verursacht werden.

Skovgaard et al. (2010) führten eine Expressionsanalyse nach Infektion mit *A. pleuropneumoniae* vom Serotyp 5b durch. 51 Gene wurden unterschiedlich exprimiert, darunter einige Akute-Phase-Proteine, proinflammatorische Cytokine und Proteine, die Pathogene erkennen (Skovgaard et al. 2010).

2.4. QTL-Analyse

Unter einem QTL (Quantitative Trait Locus) versteht man einen Genlocus, dessen Varianten zu unterschiedlichen Messwerten eines oder mehrerer multifaktoriell bedingter, quantitativer Merkmale beiträgt (Geldermann 1975). Der ermittelte QTL gibt demnach einen Hinweis darauf, in welchem Bereich des Genoms die genetische Ursache für die phänotypische Varianz liegen könnte.

2.4.1. Prinzip der QTL-Analyse

Das Prinzip der QTL-Analyse beruht auf der Kopplungsanalyse zwischen DNA-Markern und quantitativ verteilten Merkmalen (Olsen et al. 2004). Dabei sind die Marker in regelmäßigen Abständen auf den Chromosomen verteilt (Geldermann und Bartenschlager 2005). Zur Abdeckung des Schweinegenoms reichen Markerabstände von ca. 25 cM (Darvasi et al. 1993) ("Centimorgan"; benannt nach T. H. Morgan: genetische Distanz zwischen zwei Loci, die in 1 % der untersuchten Fallbeispiele aus der Nachkommenschaft rekombinieren [Hirsch-Kauffmann und Schweiger 2006]). Schrittweise wird eine Relation zwischen der durch den Marker erklärten Merkmalsvarianz und der Restvarianz ermittelt. Ein Maß für die Enge der Kopplung wird durch den F-Wert (F-Ratio) oder den LOD-Score (Logarithm of the <u>Od</u>ds) ausgedrückt (Geldermann und Bartenschlager 2005). Der LOD-Score stellt den Quotienten aus der Wahrscheinlichkeit, dass der beobachtete Effekt von einem mit dem Marker gekoppelten QTL herrührt und der Wahrscheinlichkeit, dass für den Marker keine Kopplung vorliegt, dar (Morton 1955). In der Regel wird der QTL graphisch als Kurve dargestellt, wobei die Markerpositionen gegen die F-Werte bzw. LOD-Scores aufgetragen sind. Der Peak zeigt die wahrscheinlichste Position des QTL an.

2.4.2. Voraussetzung für die QTL-Analyse

Für die Durchführung einer QTL-Analyse müssen prinzipiell vier Voraussetzungen erfüllt sein (Falconer und Mackay 1996; Haley 1997; Geldermann und Bartenschlager 2005):

1. Informative Tiergruppen:

Häufig werden F_2 -Familien aus genetisch und phänotypisch stark divergierenden Ausgangsrassen verwendet. F_2 -Familien sind besonders informativ, da durch

Crossing-Over während der Meiose eine Rekombination von väterlichen und mütterlichen Chromatiden stattgefunden hat. Somit weisen die Versuchstiere eine Vielzahl an segregierenden Allelen auf und zeigen eine große Merkmalsvariabilität.

2. Standardisierte Aufzucht und Infektion:

Es müssen Umwelteffekte weitestgehend minimiert bzw. ausgeschaltet werden.

3. Geeignete Laborverfahren, Genkarten und Genmarker:

In Genkarten werden die relativen Abstände von Genloci zueinander angegeben. Man unterscheidet dabei zwischen genetischen und physikalischen Karten. Nur bei einer dichten und exakten Kartierung der Gen- und Markerloci, kann eine QTL-Analyse durchgeführt werden.

4. Geeignete statistische Verfahren:

In Experimenten werden in der Regel weniger QTL ermittelt als tatsächlich das Merkmal beeinflussen. Daher wird ein mathematisch-statistisches Verfahren benötigt, dass die Assoziation der Marker zu dem Merkmal möglichst realitätsnah wiedergibt. Ein geeignetes Verfahren ist das "Composite Interval Mapping".

2.4.3. Auswahl geeigneter Marker

DNA-Marker sind DNA-Sequenzen mit bekannter Position auf den Chromosomen. Grundsätzlich unterscheidet man zwischen funktionellen (Typ I) und anonymen (Typ II) Markern (Geldermann und Bartenschlager 2005). Die meisten Marker sind bislang in ihrer Funktion unbekannt (Berge 2008). Zu den Typ-II-Markern werden die sog. Mikrosatelliten (auch "short tandem repeats" oder "simple sequence repeats" genannt) eingeordnet. Es handelt sich um kurze, repetitive Sequenzen von zwei bis sechs Basenpaaren in bis zu 25 Wiederholungen (Butler 2005). Polymorphismen kommen aufgrund einer unterschiedlichen Anzahl von Wiederholungen zustande (Schmalzing et al. 1997). Als Marker können auch sog. "single Nucleotide Polymorphisms" (SNPs) verwendet werden. Dies sind DNA-Varianten an einer einzelnen Nukleotidposition. Dabei unterscheidet sich das Basenpaar von dem Basenpaar an entsprechender Position in einem homologen Chromosom (Geldermann und Bartenschlager 2005). SNPs haben den Vorteil, dass sie in größerer Anzahl im Genom auftreten und eine geringere Mutationsrate aufweisen als Mikrosatelliten (Landegren et al. 1998). In älteren Studien kamen aus Ermangelung einer genügend hohen SNP-Dichte häufig Mikrosatelliten als Marker für QTL-Analysen zum Einsatz. Heute werden in erster Linie SNPs eingesetzt (Chip-Technologie oder Next-Generation Sequenzierung).

2.4.4. Ziel der QTL-Analyse

Ziel der QTL-Analyse ist die Detektion der für die Variation wichtiger Merkmale verantwortlichen Genregionen sowie die sich hieraus ergebende Ableitung von Kandidatengenen für die Feinkartierung. Letztendlich sollen solche Untersuchungen zu Genmarkern führen, die verlässlich zur Selektion der günstigen Merkmalsträger mittels MAS (Marker-gestützten Selektion) oder genomischer Selektion eingesetzt werden können, um die Zuchtpopulation entsprechend weiterentwickeln zu können (Georges 2007).

Beim Schwein wurden bereits mehr als 8000 QTL für mehr als 600 Merkmale kartiert (Pig QTL Database). Die meisten zum heutigen Zeitpunkt bekannten QTL beim Schwein beziehen sich auf Bemuskelung, Schlachtkörpermerkmale, Fleischqualität und Fruchtbarkeitsparameter (Karlskov-Mortensen et al. 2006; Hu et al. 2005). Der erste QTL mit Bezug zur Krankheitsresistenz beim Schwein wurde anhand eines Infektionsmodells mit dem Pseudorabiesvirus postuliert (Reiner et al. 2002b).

2.5. Auswirkungen von single nucleotide polymorphisms

"single nucleotide polymorphisms" (SNPs) können sowohl in den nicht-kodierenden als auch in den kodierenden Regionen eines Genes auftreten. Abgesehen von der Vielzahl an SNPs, die keinerlei Auswirkungen qualitativer oder quantitativer Art auf ihr Gen erwarten lassen, können sich Polymorphismen entweder auf die Genexpression oder auf das Proteinprodukt auswirken.

Der kodierende Bereich eines Genes beinhaltet alle Genregionen, die transkribiert und in ein Protein translatiert werden. Mutationen an der 1. oder 2. Position des Codontripletts bewirken meist einen Aminosäureaustausch (...missense mutation"). Dies kann zu einer Proteinfunktionsstörung bis hin zum Abbruch der Translation führen. Befindet sich der Basenaustausch an der 3. Position, tritt kein Aminosäureaustausch auf ("silent mutation"). Entsteht durch den Basenaustausch ein Stopp-Codon, wird die Translation frühzeitig beendet. Es entsteht ein verkürztes Protein mit meist geringerer Aktivität oder das Transkript zerfällt. Eine Mutation im Stopp-Codon kann dessen Funktion aufheben und eine verlängerte Translation auslösen. Es entsteht ein längeres, mutiertes Protein (Ibeagha-Awemu et al. 2008b).

Der nicht-kodierende Bereich eines Genes umfasst den Promotor, den 5' und 3' untranslatierten Bereich ("untranslated regions", UTR), die Introns und die intergenischen Regionen.

Die 5'- und 3'-UTR beherbergen Elemente der transkriptionellen Regulation der Genexpression. Die 5'-UTR ist der Abschnitt des Transkripts vor dem Start-Codon. Mutationen in dieser Region können die Regulation der Proteinsynthese beeinträchtigen und die Effizienz der Translationseinleitung senken. Der Abschnitt des Transkripts hinter dem Stopp-Codon ist die 3'-UTR. Es können Mutationen auftreten, die sich auf das Polyadenylierungssignal auswirken. Dieses ist essentiell für die Termination der Transkription und eine effiziente Polyadenylierung der mRNA. Treten Mutationen auf, die sekundäre Strukturen der 3'-UTR verändern, kann es zu einer veränderten Interaktion mit Proteinen kommen (Chatterjee und Pal 2009). Mutationen, die das Stopp-Codon aufheben, können C-reiche Elemente der 3'-UTR beeinträchtigen, sodass die mRNA destabilisiert wird und frühzeitig zerfällt (Conne et al. 2000). Mutationen können außerdem die Bindungsstelle von microRNAs (miRNAs) stören, sodass die miRNA-gesteuerte Regulation der

Genexpression entfällt. Diese Regulation kann auch durch eine Mutation in der miRNA selbst beeinflusst werden (Soifer et al. 2007).

Der Promotor ist eine dem Gen vorgeschaltete Region. Promotormutationen stören den normalen Prozess der Genaktivierung und Transkriptionsinitiation und bewirken einen Anbzw. Abfall der Menge an mRNA sowie des entsprechenden Proteins. Treten Mutationen im "core promotor" oder im "proximal promotor" auf, wird die Proteinmenge beeinflusst. "Enhancer" und "Silencer" sind fördernde bzw. hemmende Promotor-Elemente der Transkription. Deren Effekt kann durch Mutationen aufgehoben oder sogar verstärkt werden. Mutation in den Bindungsstellen für "trans-acting protein factors" verändern oder blockieren die Interaktion zwischen diesen Faktoren und dem Promotor. Zu beachten ist allerdings, dass Promotormutationen häufig nur geringe, schwer feststellbare Effekte auslösen (de Vooght et al. 2009).

Introns sind die Bereiche der DNA, die die Exons voneinander trennen und die aus der prä-mRNA herausgeschnitten werden. Mutationen im Intron haben zwar keinen direkten Einfluss auf die Proteinsequenz, sie können aber den Spleißvorgang beeinflussen. Beispielsweise werden "splicing sites" nicht mehr vom Spliceosom erkannt. Es erfolgt keine Genexpression bzw. es wird eine mutierte mRNA gebildet, in der Exons fehlen oder Introns erhalten bleiben. Werden durch eine Mutation alternative "splicing sites" aktiviert bzw. inaktiviert, werden allenfalls Isoformen exprimiert. Diese sind in dem Gewebetyp oder in dem Entwicklungsstand der Zelle ungünstig. Außerdem können Mutationen auch im Spleißosom auftreten und so den Spleißvorgang stören (Faustino und Cooper 2003).

2.6. Auswahl der Kandidatengene

Kandidatengene sind Gene, die möglicherweise mit dem Auftreten von phänotypischen Varianten assoziiert sind (Brade 2003). Dabei geht es insbesondere um funktionelle Genvarianten innerhalb dieser Kandidatengene. Die Gesamtheit der Genvarianten einer Teilpopulation bestimmen und mit der Variabilität phänotypischer Merkmale assoziieren zu wollen ist derzeit noch zu aufwendig und teuer. Daher werden auf der Suche nach funktionellen SNPs Kandidatengene vorgeschaltet, deren Auswahl zu einer drastischen Reduktion der zu untersuchenden Basenpaare führt, wenngleich mit einer hohen Wahrscheinlichkeit, nicht fündig zu werden.

Ein Kandidatengen kann durch verschiedene Vorgehensweisen ermittelt werden (Reiner 2008):

- Ein Gen kann aufgrund seiner bekannten (Patho-) Physiologie geeignet sein (z. B. als Komponente der Immunabwehr) oder aufgrund eines bekannten Zusammenhangs mit dem Merkmal bei einer anderen Spezies: *homolog- physiologisches Kandidatengen*
- Es kann über eine QTL-Analyse ermittelt werden. Dabei liegt das Gen im Bereich des mit dem Merkmal assoziierten QTL: *positionelles Kandidatengen*
- Gene kommen aufgrund ihrer differenten Expression in Betracht: *funktionelles Kandidatengen*

Folgende Gene wurden im RePoRi-Konsortium durch die Kombination verschiedener Analysemethoden ermittelt und damit in den Status eines Kandidatengens für die Resistenz/Empfindlichkeit gegen *A. pleuropneumoniae* erhoben (Tabelle 1).
Gen	SSC	Gen	SSC
Estrogen-related receptor alpha (ESRRA)	2	growth factor receptor-bound protein 2 (Grb2)	12
nuclear receptor subfamily 1, group H, member 3 (NR1H3)	2	ribosomal protein L38 (RPL38)	12
transcriptional enhancer factor 1 (TEAD1)	2	signal transducer and activator of transcription 3 (STAT3)	12
Transcription factor 3 (TCF3)	2	signal transducer and activator of transcription 5B (STAT5B)	12
Lamin B1 (LMNB1)	2	signal transducer and activator of transcription 5A (STAT5A)	12
Interleukin 3 (IL-3)	2		
Interleukin 5 (IL-5)	2	Myeloid differentiation primary response gene 88 (MYD88)	13
Interleukin 4 (IL-4)	2	Toll-like receptor 9 (TLR9)	13
Interleukin 9 (IL-9)	2	Transferrin (TF)	13
eukaryotic translation termination factor 1 (ETF1)	2	Interleukin 12A (IL-12A)	13
heat shock 70kDa protein 9 (HSPA9)	2	Fetuin-A (AHSG)	13
cluster of differentation 14 (CD14)	2	transferrin receptor (TFRC)	13
nuclear receptor subfamily 3, group C, member 1 (NR3C1)	2	runt-related transcription factor 1 (RUNX1)	13

SSC: Sus scrofa Chromosom

Alle ausgewählten Kandidatengene befinden sich auf den Chromosomen 2 oder 12 des Schweinegenoms. Die bereits erläuterten Assoziationen der beiden auf den Chromosomen 2 und 12 gelegenen Marker Swr345 und S0143 mit dem Auftreten von Todesfällen und dem Grad des klinischen Bildes führten zur Auswahl von Markern für die vorliegende Studie auf SSC 2 und SSC 12.

2.6.1. CD14

CD14 (Cluster of differentiation 14) ist ein Glykoprotein (Simmons et al. 1989), das den pattern recognition receptors (PRRs) zugeordnet wird (Murphy et al. 2009). PRRs sind in der Lage endogene und exogene Antigene zu erkennen (Kaiser 2010). CD14 wird hauptsächlich von Monozyten und Gewebsmakrophagen, in geringen Mengen auch von neutrophilen Granulozyten, exprimiert (Wright et al. 1990). Es existiert als membrangebundene (mCD14) und als lösliche Form (sCD14) (Frey et al. 1992).

CD14 spielt eine wichtige Rolle im angeborenen Immunsystem, indem es eine Vielzahl von Liganden erkennt (Stelter 2000). Es dient als Rezeptor für den Komplex aus Lipopolysaccharid und lipopolysacharidbindendem Protein (LBP) und leitet die intrazelluläre Signalübertragung ein (Murphy et al. 2009). LPS ist ein Bestandteil der Zellmembran gramnegativer Bakterien (Rietschel et al. 1994). Zur Erkennung dieses Endotoxins ist ein Zusammenspiel zwischen LBP, CD14 und Toll-like Rezeptor 4 (TLR4) notwendig. Das LPS wird durch das zirkulierende LBP katalysiert. Erst dann kann eine Bindung an CD14 erfolgen, das wiederum mit TLR4 interagiert. Dadurch werden zwei mögliche Signalwege (MyD88abhängig und MyD88-unabhängig) aktiviert bei denen über verschiedene Adaptermoleküle proinflammatorische Cytokine und Interferon γ (INF- γ) ausgeschüttet werden (Murphy et al. 2009; Stelter 2000). Beim Schwein wurde das CD14-Gen in einer Netzwerkanalyse identifiziert (Reiner et al, unveröffentlicht).

Das porcine CD14-Gen ist auf Chromosom 2 im Bereich 148.291.451-148.293.622 bp lokalisiert. Das Transkript besteht aus 1572 Basen und setzt sich aus zwei kodierenden Exons zusammen. Das Protein umfasst 373 Aminosäuren. Durch alternatives Spleißen entsteht ein zweites Transkript, das sich aus einem nicht-kodierenden Exon, aus 1973 Basen, zusammensetzt (http://www.ensembl.).

Eine Expression des porcinen CD14-Gens findet im Thymus, der Milz, der Leber und der weißen Substanz des Gehirns (Qiu et al. 2007), in Lymphknoten, Herz- und glatter Muskulatur, Uterus und Niere (Sanz et al. 2007), Darm und in der Lunge (Liu et al. 2008) statt. Nach Uddin et al. (2012) steigt die porcine CD14-Expression in peripheren mononukleären Blutzellen nach Stimulation mit LPS an. Die Höhe hängt von der Dosis an LPS ab (Uddin et al. 2012). Die Hochregulation von CD14 konnten Sanz et al. (2007) nach Stimulation von Alveolarmakrophagen nachweisen (Sanz et al. 2007). Skovgaard et al. (2010) konnten keine Regulation der CD14-Expression nach zwar Infektion mit A. pleuropneumoniae aufzeigen, allerdings wurde eine erhöhte Expression des LBP festgestellt.

Es stellt sich die Frage welchen Einfluss CD14 auf die Abwehr des Schweines gegen *A. pleuropneumoniae* besitzt. *A. pleuropneumoniae* als gramnegatives Bakterium hat in seiner Zellmembran Lipopolysaccharide verankert (Gottschalk und Taylor 2006), die von CD14 erkannt werden. Ondrackova et al. (2010) zeigten, dass die Anzahl an Monozyten und Lungenmakrophagen, die CD14-Moleküle auf ihrer Oberfläche exprimierten, nach einer Infektion mit *A. pleuropneumoniae* anstieg. Reiner et al. (unveröffentlicht) ermittelten bei Schweinen mit unterschiedlichen Erkrankungsgrad nach *A. pleuropneumoniae*-Infektion eine unterschiedlich starke Expression des CD14-Gens.

Im bovinen CD14-Gen konnte ein enger Zusammenhang zwischen Polymorphismen und Merkmalsausprägung nachgewiesen werden: Die Mutation mit Aminosäureaustausch zeigte sich mit einem höheren Anteil an neutrophilen Granulozyten, die vermehrt CD14 auf ihrer Oberfläche exprimierten (Ibeagha Awemu et al. 2008a).

Erste Ansätze zur Identifizierung von SNPs beim Schwein zeigten Unterschiede in den Promotoren chinesischer und europäischer Rassen. Allerdings konnte kein Zusammenhang zwischen Polymorphismus und untersuchten Immunmerkmalen festgestellt werden (Liu et al. 2008).

In der Humanmedizin liegen zahlreiche Studien vor, die auf einen Zusammenhang zwischen Polymorphismen im CD14-Gen und dem Risiko für Krankheiten hinweisen. Im Fokus der Forschung steht die mögliche Assoziation eines Polymorphismus im Promotor des Gens mit atopischem Asthma (Zhao und Bracken 2011).

2.6.2. NR3C1

NR3C1 (Nuclear receptor subfamily 3, group C, member 1), auch bekannt als Glukokortikoidrezeptor, stellt einen Transkriptionsfaktor dar (Kumar und Thompson 2005). Der Rezeptor wird in zahlreichen Zellen des Körpers exprimiert und beeinflusst eine Vielzahl an physiologischen Prozessen, wie die Entwicklung, das Wachstum und die Immunantwort (Kalinyak et al. 1987). Nach Bindung seiner Liganden – Cortisol und andere Glukokortikoide – wandert der aktivierte Rezeptor in den Nukleus und bindet an die Response-Elemente in der Promotorregion von antiinflammatorischen Genen. Dies führt zur Acetylierung der Histonen, Verstärkung der RNA-Polymerase II und damit zur Expression des entsprechenden Genes. Die Hauptaufgabe des Glukokortikoidrezeptors besteht gleichzeitig in der Repression proinflammatorischer Gene, z.B. durch die Verhinderung der Translokation anderer Transkriptionsfaktoren, wie NF-κB (nuclear factor-κB) und AP-1 (activator protein-1). Des Weiteren agiert der Rezeptor mit zahlreichen Proteinen, die als Coaktivatoren oder als Corepressoren fungieren. Dadurch ist eine spezifische Kontrolle einzelner Genen möglich (Hayashi et al. 2004; Kumar und Thompson 2005; Lu et al. 2006). Das porcine NR3C1-Gen befindet sich auf Chromosom 2 im Bereich 151.054.873-151.158.579 bp. Es liegen zwei Transkriptvarianten vor. Transkriptvariante 1, 2698 Basen lang, besteht aus sieben Exons und kodiert ein aus 379 Aminosäuren bestehendes Protein. Transkriptvariante 2 besteht aus 9 Exons und ist 3269 Basen lang. Acht Exons kodieren ein aus 782 Aminosäuren bestehendes Protein (http://www.ensembl.).

In der Humanmedizin ist ein Zusammenhang zwischen Polymorphismen des NR3C1-Genes und dem Auftreten verschiedener Erkrankungen bekannt, u.a. Diabetes mellitus (Trementino et al. 2011), Depressionen (Kumsta et al. 2009) und bronchiales Asthma (Panek et al. 2012). Hierbei konnte ein SNP identifiziert werden, dessen Allel A ein höheres Risiko für einen schweren Verlauf von unkontrolliertem Asthma bewirkt. Bei betroffenen Patienten sank die Ansprechbarkeit auf antiinflammatorische Medikamente (Panek et al. 2012).

Laut Muráni et al. (2010) ist ein Polymorphismus in der 3'-UTR des porcinen NR3C1-Gens mit der Stressreaktion und mit Aggressionen beim Schwein assoziiert: Allel A bewirkt einen niedrigeren Cortisol- und Adrenalinspiegel. Dies führt zu einer reduzierten Aktivität der Hypothalamus-Hypophyse-Nebennierenrinden-Achse und damit zu einer gesteigerten Aggression des Tieres (Murani et al. 2010).

Fraglich ist die mögliche Interaktion zwischen dem Glukokortikoidrezeptor und den Virulenzfaktoren von *A. pleuropneumoniae*: Laut Dejager et al. (2010) induziert LPS eine Entzündungsreaktion, die durch die Aktivierung von Transkriptionsfaktoren wie NF-κB und AP-1 vermittelt wird. Dies kann zum septischen Schock führen. Der aktivierte Glukokortikoidrezeptor verhindert die Translokation dieser Transkriptionsfaktoren. Die SPRET/EI-Maus, ein durch Inzucht entstandener Mäusestamm, ist besonders resistent gegen durch LPS ausgelöste Letaleffekte. Dies ist in einer gesteigerten Transkription des Glukokortikoidrezeptors und damit in einer höheren Aktivität begründet. Der Rezeptor ist essentiell für die Unterdrückung proinflammatorischer Cytokine nach LPS-Stimulation. Möglicherweise ist die Überexpression durch Polymorphismen im NR3C1-Gen ausgelöst. Bei der Maus wurden insgesamt 78 Sequenzvarianten des NR3C1-Genes beschrieben. Allerdings konnten diese nicht in Verbindung mit der gesteigerten Transkriptionsaktivität gebracht werden. Die ermittelten SNPs beeinflussen jedoch die Regulation der Hypothalamus-Hypophysen-Nebennierenrinden-Achse (Dejager et al. 2010).

Aufgrund dieser essentiellen Aufgabe gegen LPS wurde das NR3C1-Gen als Kandidatengen ausgewählt. Unterstützt wird dies durch die Tatsache, dass das Gen in einer Netzwerkanalyse

26

nach experimenteller Infektion mit *A. pleuropneumoniae* identifiziert wurde (Reiner et al., unveröffentlicht).

2.6.3. RPL38

Das 60S ribosomale Protein L38 stellt eine Komponente von Ribosomen dar (Ota et al. 2004). Ribosomen sind strukturell aus einer 60S- und einer 40S-Untereinheit zusammengesetzt, die jeweils zu 2/3 aus ribosomaler Ribonukleinsäure (rRNA) und zu 1/3 aus ribosomalen Proteinen bestehen. An den Ribosomen findet die Tranlation der mRNA in Aminosäuresequenz und damit die Proteinbildung statt (Liebich 2000).

Das 60S ribosomale Protein 38 wird vom RPL38-Gen kodiert. Dieses befindet sich auf Chromosom 12 im Bereich 6.911.815-6.916.721 bp. Vier Exons als Bestandteil eines 451 Basen langen Transkripts kodieren ein Protein, das aus 70 Aminosäuren besteht (http://www.ensembl.org).

Es wurden bereits Polymorphismen im porcinen RPL38-Gen identifiziert (Wiedmann et al. 2008). Allerdings konnte weder in der Veterinär- noch in der Humanmedizin bis zum heutigen Zeitpunkt eine Assoziation zwischen einer Mutation im RPL38-Gen und dem Auftreten einer Erkrankung beim Säugetier nachgewiesen werden.

Das Gen wurde in der Nähe des Mikrosatellitenmarkers S0143 identifiziert. Ein Zusammenhang zwischen dieser Chromosomenregion und den Todesraten nach *A. pleuropneumoniae*-Infektion wird vermutet. Außerdem wurde das Gen nach experimenteller *A. pleuropneumoniae*-Infektion mittels Netzwerkanalyse identifiziert (Reiner et al., unveröffentlicht).

2.6.4. Grb2

Grb2 (Growth factor receptor-bound protein 2) ist ein Adapterprotein und gehört zu der Grb2-Familie (Jang et al. 2009). Adapterproteine sind Moleküle ohne enzymatische Aktivität, deren Aufgabe darin besteht andere Proteine in einem Signalkomplex miteinander zu verknüpfen (Murphy et al. 2009). Grb2 besteht aus einer SH2-Domäne (Src homology 2 domain) und zwei SH3-Domänen. Mit der SH2-Domäne bindet das Protein einen Phosphattyrosinrest an den Rezeptor der Zelle und bindet anschließend mit einer SH3-Domäne prolinreiche Sequenzen des Sos (son of sevenless). Sos wiederum ist ein Schlüsselmolekül zur Aktivierung von Ras und der MAP-Kinase-Kaskade, die in der Aktivierung von Transkriptionsfaktoren und der Expression von neuen Genen endet (Jang et al. 2009; Murphy et al. 2009).

Grb2 wird ubiquitär exprimiert und interagiert häufig mit "growth factor receptors". Das Protein spielt eine wichtige Rolle in der Antigenerkennung und Signalweiterleitung in den Immunzellen: Grb2 ist in die negative und positive Selektion von T-Zellen im Thymus involviert. Das Protein ist an der T-Zell-Aktivierung beteiligt durch Bindung an den TCR (T-cell receptor). Außerdem ist Grb2 nötig zur Costimulation von T-Zellen durch CD28. Das Protein wird auch in B-Zellen exprimiert und hat hier einen Einfluss auf die Entwicklung, Aktivierung und Differenzierung. Bei Abwesenheit von Grb2 ist die Gesamtzahl von zirkulierenden B-Zellen im Organismus reduziert. Außerdem beeinflusst Grb2 negativ die BCR-(B-cell receptor) induzierte Freisetzung von Calcium in B-Zellen (Jang et al. 2009).

Das Grb2-Gen liegt auf Chromosom 12 im Bereich 5.860.268-5.928.962 bp. Die mRNA umfasst eine Länge von 1350 Basen und beinhaltet sechs Exons. Fünf Exons kodieren ein aus 217 Aminosäuren bestehendes Protein (http://www.ensembl.).

In der Humanmedizin ist ein Zusammenhang zwischen Polymorphismen und dem Auftreten von Morbus Crohn (D'Addabbo et al. 2011; Lee et al. 2011) und der Schizophrenie bekannt (Sun et al. 2011).

In der Veterinärmedizin wurde bis zum heutigen Zeitpunkt noch keine entsprechende Studie veröffentlicht. Das Gen, das nahe dem Mikrosatellitenmarker S0143 liegt, wurde in einer Versuchspopulation nach *A. pleuropneumoniae*-Infektion mit einer Netzwerkanalyse identifiziert (Reiner et al., unveröffentlicht).

2.6.5. Interleukin 4

Interleukin 4 gehört zu der Gruppe der Cytokine und wird von Th₂-Zellen freigesetzt. Das Protein ist in eine Vielzahl immunregulatorischer Signalwege eingeschaltet. Es steigert das Wachstum der T-Zellen und der Mastzellen, aktiviert und fördert das B-Zell-Wachstum, stimuliert deren IgG₁- und IgE-Produktion und induziert die Expression der MHC-Klasse II (Murphy et al. 2009). IL-4 unterdrückt in Alveolarmakrophagen die Produktion von proinflammatorischen Cytokinen (Murtaugh et al. 1996), die mit dem Auftreten der Pleuropneumonie assoziiert sind (Baarsch et al. 1995). Das porcine IL-4-Gen befindet sich auf Chromosom 2 im Bereich 140.455.331- 140.462.879 bp. Das Transkript hat eine Länge von 490 Basenpaaren und besteht aus vier kodierenden Exons. Es kodiert ein Protein, das sich aus 133 Aminosäuren zusammensetzt (http://www.ensembl.org).

In der Humanmedizin wird ein Einfluss des IL-4-Gens auf verschiedene Erkrankungen vermutet (zur Übersicht siehe Hollegaard und Bidwell 2006). Bedeutende Hinweise zeigen sich insbesondere hinsichtlich Asthma: Es wurde ein Zusammenhang zwischen Polymorphismen im Promotor sowie der 5'-UTR des IL-4-Gens und der Empfänglichkeit für Asthma sowie einem erhöhten IgE-Spiegel im Serum nachgewiesen (Wang et al. 2009; Kabesch et al. 2003; Yang et al. 2011). Es wird vermutet, dass ein bestimmter Genotyp die Überexpression des IL-4-Gens auslöst (Li et al. 2008). Die Assoziation des SNP rs2243250 konnte allerdings nicht für jede Volksgruppe bestätigt werden (Lopez et al. 2007; Li et al. 2009). Der SNP rs2243250 scheint außerdem mit dem Auftreten der Tuberkulose beim Menschen assoziiert zu sein (Amirzargar et al. 2006; Vidyarani et al. 2006).

2.6.6. Interleukin 5

Interleukin 5 wird von Mastzellen, eosinophilen Granulozyten und vorwiegend Th₂-Zellen produziert (Cousins et al. 1994). Es mobilisiert und aktiviert eosinophile Granulozyten und fördert die IgA-Synthese in den B-Zellen (Murphy et al. 2009).

Das Protein wird durch das porcine IL-5-Gen kodiert. Dieses ist auf Chromosom 2 im Bereich 140.301.708-140.303.645 bp, nahe des IL-4-Gens, lokalisiert. Das 787 Basen lange Transkript besteht aus vier kodierenden Exons und kodiert ein aus 134 Aminosäuren bestehendes Protein (http://www.ensembl.org).

IL-5 spielt (aufgrund der ausgelösten proinflammatorischen Immunantwort) ebenfalls eine wichtige Rolle bei der Entstehung von Asthma: Verschiedene Autoren berichten von einem Zusammenhang zwischen Polymorphismen im Promotor des IL-5-Gens und dem Risiko für atopisches Asthma (Kabesch et al. 2007; Freidin et al. 2002) bzw. der Lungenfunktion erkrankter Patienten (Hong et al. 2005). Inoue et al. (2011) bringen den Promotor-SNP rs2069812 in Zusammenhang mit der Graves' Disease (Morbus Basedow). Laut Namkung et

al. (2007) ist ein Polymorphismus im Promotor des IL-5-Gens mit dem allergischen Typ der atopischen Dermatitis des Menschen assoziiert. Es konnte allerdings keine Beeinflussung des IL-5-Spiegels im Serum festgestellt werden (Namkung et al. 2007).

Im Hinblick auf ein Zusammenspiel zwischen IL-5 und der Bekämpfung von Infektionskrankheiten liegen zum heutigen Zeitpunkt nur Studien zu parasitären Erkrankungen vor (Cooper et al. 2000; Jackson et al. 2004; Quinnell et al. 2004). Ellis et al. (2007) konnten einen SNP in der 3'-UTR des IL-5-Gens ermitteln, der möglicherweise die Immunantwort erkrankter Menschen mit einer symptomatischen *Schistosoma japonicum*-Infektion moduliert.

2.6.7. Interleukin 9

Interleukin 9 ist ein Typ 2-Cytokin und wird von verschiedenen Zellen, u.a. Th₂-Zellen, produziert (McNamara und Smyth 2005). IL-9 spielt eine wichtige Rolle in der Immunantwort nach Parasiteninfektionen und Allergien: Es fördert die Proliferation und Differenzierung von Mastzellen (Hultner et al. 1990) und potenziert die Produktion von IgE peripherer B-Lymphoyzten (Dugas et al. 1993; Demoulin und Renauld 1998). Außerdem wirkt das Interleukin immunmodulatorisch nach Infektion mit gramnegativen Bakterien und Endotoxinfreisetzung. Grohmann et al. (2000) zeigten, dass es zu einer Reduzierung proinflammatorischer wie TNF-α Cytokine und zur gleichzeitigen Steigerung antiinflammatorischer Cytokine wie IL-10 kommt. Dadurch kann ein septischer Schock verhindert werden (Grohmann et al. 2000).

Das IL-9-Gen befindet sich auf Chromosom 2 im Bereich 143.648.289-143.651.957 bp und umfasst ein 559 Basen langes Transkript mit fünf Exons. Das Protein ist aus 141 Aminosäuren zusammensetzt (http://www.ensembl.org).

In der Humanmedizin gibt es bereits Hinweise auf einen Zusammenhang zwischen Polymorphismen im IL-9-Gen und dem Auftreten verschiedener Erkrankungen. Early et al. (2009) untersuchten einen SNP im Promotorbereich des IL-9-Gens, der in Zusammenhang mit dem humanen Asthma gebracht wird. Es konnte gezeigt werden, dass nach einem Basenaustausch die Promotoraktivität sank und eine reduzierte IL-9-Produktion bewirkte. Somit vermuten die Autoren, dass Individuen mit dem entsprechenden Genotyp weniger auf eine Allergenprovokation ansprechen (Early et al. 2009).

Laut Schuurhof et al. (2010) erkranken Träger eines bestimmten Haplotypen, basierend auf einem SNP im Promotor und einem SNP im Exon 5 des IL-9-Genes, häufiger nach Infektion mit dem humanen Respiratorischen Syncytial Virus. Es wurden allerdings keine Unterschiede in der IL-9-Expression festgestellt (Schuurhof et al. 2010). Der SNP im kodierenden Bereich wurde bereits von Aschard et al. (2009) hinsichtlich des humanen Asthmas beschrieben. In einer Studie zur *Chlamydia trachomatis*-Infektion wurde gezeigt, dass Menschen mit

einem heterozygoten Genotyp an dieser DNA-Position geschützter waren als Menschen mit dem homozygoten Genotyp (Atik et al. 2008).

2.6.8. STAT3

STAT3 gehört neben sechs weiteren Mitgliedern zu der Familie der STATs (signal transducer and activator of transcription) (Levy und Darnell 2002). Es ist ein Transkriptionsfaktor, der durch IL-5, IL-6, IL-10, IL-11, EGF (epidermal growth factor), LIF (leukemia inhibitory factor), Oncostatin M und CNF (ciliary neurotropic factor) aktiviert wird. Diese Liganden binden an den entsprechenden Rezeptor, sodass eine JAK (Janus Kinase) vermittelte Tyrosin-Phosphorylierung stattfindet (Lutticken et al. 1994). Der aktivierte Transkriptionsfaktor wandert in den Zellkern und beeinflusst die Genexpression. Somit ist STAT3 neben anderen Zellaufgaben an der antiinflammatorischen Immunantwort, vermittelt durch IL-10, beteiligt (Williams et al. 2004). Zur Regulation der STAT3-Aktivierung findet u.a. eine Phosphorylierung des Serin 727 statt, z. B. als Antwort auf eine LPS-Bindung (Lim und Cao 1999).

Das porcine STAT3-Gen befindet sich auf Chromosom 12 an Position 20.711.742-20.775.571 bp. Das Transkript besteht aus 2476 Basen, umfasst 24 Exons und kodiert ein aus 770 Aminosäuren bestehendes Protein (http://www.ensembl.org).

In der Humanmedizin wurden bereits Zusammenhänge zwischen Polymorphismen im STAT3-Gen und dem Auftreten verschiedener Erkrankungen nachgewiesen. Litonjua et al. (2005) identifizierten drei SNPs, die sich möglicherweise bei adulten Asthmapatienten negativ auf die Lungenfunktion auswirkten. Die Autoren vermuten einen Einfluss auf das chronische Entzündungsgeschehen. Präzise Mechanismen des Gens wurden allerdings noch nicht beschrieben (Litonjua et al. 2005). Eine Assoziation des Gens wurde ebenfalls bei an atopischen Asthma erkrankten Kindern festgestellt (Hussein et al. 2011). Mutationen im STAT3-Gen werden außerdem als Ursache für das Hyper-IgE-Syndrom diskutiert, wobei hierzu kontroverse Studien vorliegen (Holland et al. 2007; Minegishi et al. 2007; Wjst et al. 2009).

Ein SNP im STAT3-Gen ist mit dem Auftreten der Autoimmunerkrankungen Multiple Sklerose (Jakkula et al. 2010) und Morbus Crohn (Barrett et al. 2008) assoziiert.

2.6.9. LMNB1

Die Lamine sind Intermediärfilamente vom Typ V und stellen eine Komponente des Zellkerns eukaryotischer Zellen dar, indem sie die sog. Lamina unterhalb der inneren Kernhülle binden (Dorner et al. 2007). Sie werden in zwei Gruppen eingeteilt: A-Typ- und B-Typ-Lamine (Goldman et al. 1986; Worman und Courvalin 2000). Die Lamine binden membrangebundene Proteine und ermöglichen damit die mechanische Stabilität der Kernhülle (Dorner et al. 2007). Neben dieser Stützfunktion beeinflussen die Lamine die Genexpression, indem sie mit der RNA-Polymerase II und verschiedenen Transkriptionsfaktoren wie AP-1 interagieren (Dorner et al. 2007). Außerdem sind sie in Prozesse des Zellzyklus und der Zelldifferenzierung involviert. Beispielsweise sinkt bei der LMNA-Knockout-Maus die Konzentration an Retinoblastom-Protein, einem wichtigen Tumorsuppressor (Johnson et al. 2004).

Im Wirbeltiergenom kodieren drei Gene die verschiedenen Isoformen: Das Gen Lamin A (LMNA) kodiert Typ A, Lamin B 1 (LMNB1) Typ B1 und Lamin B2 (LMNB2) Typ B2 und B3 (Krohne und Benavente 1986). Das in der vorliegenden Arbeit untersuchte LMNB1 liegt im porcinen Genom auf Chromosom 2 im Bereich 135.104.404-135.158.940 bp. Das 2521 Basen lange Transkript umfasst elf Exons und kodiert ein aus 586 Aminosäuren bestehendes Protein (http://www.ensembl.org).

Zum heutigen Standpunkt ist zum Einfluss von LMNB1 bzw. der Lamine auf das Auftreten von Krankheiten wenig bekannt. Es konnte gezeigt werden, dass eine Duplikation im LMNB1-Gen zu einer Überexpression an Lamin B1 führt und die humane Leukodystrophie auslöst (Padiath et al. 2006). Reiner et al. (unveröffentlicht) identifizierten das LMNB1-Gen mittels Netzwerkanalyse nach Infektion von Schweinen mit *A. pleuropneumoniae*.

3. Fragestellung

Wie bereits in der Literaturübersicht dargestellt, wurden durch das Konsortium RePoRi vielversprechende QTL ermittelt, die mit der Resistenz/Empfindlichkeit gegen *A. pleuropneumoniae* beim Schwein assoziiert sind. Diese "Hotspots" schließen allerdings eine große Anzahl an Kandidatengenen ein.

Das Ziel der vorliegenden Arbeit war die Definition und Untersuchung ausgewählter Kandidatengene auf der Suche nach Hinweisen auf die, den QTL zugrundeliegenden, funktionellen SNPs (QTN, quantitative trait nucleotides).

Hierzu sollte zunächst ein SNP-Screening in den Kandidatengenen durchgeführt werden. Anschließend sollte betrachtet werden, inwieweit die etablierten SNPs aus den Kandidatengenen die Power, Signifikanz, Position und das Konfidenzintervall der QTL beeinflussen. Hypothetisch sollte durch diese Vorgehensweise der Ausschluss nicht involvierter Kandidatengene sowie die Bestätigung potentiell involvierter Kandidatengene erreicht werden.

Aufgrund des interessanten Zusammenhanges der beiden Marker Swr345 und S0143 auf den Chromosomen 2 und 12 mit dem Grad des klinischen Bildes und dem Auftreten von Todesfällen nach *A. pleuropneumoniae*-Infektion in Vorversuchen wurden Kandidatengene auf diesen beiden Chromosomen ausgewählt.

4. Material und Methoden

4.1. Projektablauf

Die vorliegende Arbeit schloss sich an Vorarbeiten an, die in der Klinik für Schweine der JLU Gießen durchgeführt worden waren. Diese umfassten positionelle und funktionelle Analysen zur Identifikation möglicher Kandidatengene. In der vorliegenden Arbeit wurden neun Kandidatengene ausgewählt. Aus diesen wurden Genabschnitte selektiert, die amplifiziert und sequenziert wurden. Als Probematerial diente extrahierte DNA der drei Founder-Tiere (siehe 4.2.). Anschließend wurden in den vorliegenden Sequenzen SNPs identifiziert und aus diesen Polymorphismen zu weiteren Untersuchungen ausgewählt. Die entsprechenden Genabschnitte wurden mittels Pyrosequenzierung sequenziert. Hierzu wurden die zur Verfügung stehenden F_2 -Tiere verwendet (siehe 4.2.). Danach wurde eine QTL-Analyse unter Berücksichtigung der SNPs als zusätzlicher Marker und als fixer Effekt durchgeführt (siehe Abbildung 1).

Abbildung 1: Übersicht Projektplanung (Quelle: eigene Darstellung)

34

4.2. Versuchstiere

Durch Kreuzung eines Ebers der Rasse Hampshire mit zwei Sauen der Deutschen Landrasse entstand eine intermediäre F_1 -Generation. Zwei F_1 -Eber (F_1 -104 und F_1 -105) und neun F_1 -Sauen erzeugten eine 170 Tiere umfassende F_2 -Familie. Geburt, Aufzucht der F_2 -Tiere und Infektionsversuch fanden in der Klinik für kleine Wiederkäuer und Schweine, Stiftung Tierärztliche Hochschule Hannover statt.

Alle Tiere wurden negativ gegen Actinobacillus pleuropneumoniae, Mycoplasma hyopneumoniae und PRRSV durch einen Antikörper-ELISA und gegen Influenza A durch einen Hämagglutinationstest getestet. Alle Tiere waren vor Versuchsbeginn klinisch gesund. Die Versuchstiere wurden im Alter von sieben Wochen mit Serotyp 7 von Actinobacillus pleuropneumoniae (Stamm AP 76) in Form eines Aerosols infiziert. Infektion und klinische Untersuchung wurden bereits in der Arbeit von Hoeltig (2009) etabliert. Der klinische Zustand der Versuchstiere wurde vom Infektionstag bis Tag 7 post infectionem erfasst (für Details, siehe Hoeltig 2009). Am Tag 7 post infectionem erfolgte die Euthanasie und anschließende Sektion. Zur DNA-Isolierung wurden Proben aus der Leber und der Milz sowie EDTA-Blut entnommen. Lungengewebe wurde auf Columbia-Agar angezüchtet. Das Probenmaterial wurde anschließend der Klinik für Schweine der JLU Gießen übersandt.

17 Phänotyp-Scores wurden bereits in der Arbeit von Hoeltig (2009) etabliert. Der "Klinische Score" wurde zum einen für jeden einzelnen Tag ("Klinischer Score x dpi") und zum anderen für mehrere folgende Tage ("KS_{ges} x") ermittelt (für Details siehe Hoeltig, 2009). Die Bewertung der 170 F₂-Tiere hinsichtlich dieser 17 Phänotypen wurde in der Klinik für kleine Wiederkäuer und Schweine, Stiftung Tierärztliche Hochschule Hannover durchgeführt. Die ermittelten Daten wurden anschließend der Klinik für Schweine der JLU Gießen für die QTL-Analyse zur Verfügung gestellt.

<u>4.3. Material</u>

4.3.1. Geräte und Labormaterial

•	Pipetten:	Biohit GmbH, Rosbach v. d. Höhe
		Roth, Karlsruhe
•	Kugelmühle:	MM300, Fa. Retsch, Haan
•	Thermomixer:	MKR 13, Fa. HLC Biotech, Bovenden
		(DITABIS AG, Pforzheim)
•	Zentrifuge:	Biofuge fresco, Heraeus, Osterode
		Micro Centrifuge SD 220, Roth, Karlsruhe
•	Vortexer:	Vortex Genie 2, Scientific Industries, Bohemia,
		NY, USA
•	Photometer:	Ultrospec 1100pro, Amersham Biosciences,
		Freiburg
		NanoDrop 2000c Spectrometer, Fa. Peqlab
		Biotechnologie GmbH, Erlangen
•	Thermocycler:	T-Gradient, Whatman Biometra, Göttingen
•	Mikrowelle:	Typ HF1210, Fa. Siemens AG, München
•	Elektrophoresekammer:	Horizon 58, Fa. Biometra, Göttingen
•	Bildanalysesystem mit Kamera:	BioDocAnalyze, Fa. Biometra, Göttingen
		Canon G2 Power Shot, Cannon Inc. Tokio
•	PCR-Platten:	PP 96well, Fa. Fisher Scentific, Schwerte
•	PSQ-Platten:	Super Plate Semi-Skirted PCR, Fa. Fisher
		Scentific, Schwerte
•	Schüttler:	Variomag® Monoshake, Fa. Fisher Scentific,
		Schwerte
•	Prep-Tool:	PyroMark™ Vakuum Prep Tool, Fa. Qiagen,
		Hilden
•	Pyrosequencer:	Pyromark Q96 ID, Fa. Qiagen, Hilden

4.3.2. Chemikalien und Enzyme

•	2xMM:	HotStarTaq® DNA Polymerase,

		Multiplex PCR Buffer,
		dNTP Mix
		(QIAGEN® Multiplex PCR Kit, Hilden)
•	RNAse freies H ₂ 0:	QIAGEN® Multiplex PCR Kit
•	Primer:	Fa. Biomers.net GmbH, Ulm
		Fa. Biolegio, Nijmegen, NL
•	SeaKem® LE Agarose-Pulver:	Fa. Lonza, Rockland, ME USA
•	Midori Green Advance:	Fa. Biozym Scientific GmbH,
		Hessisch Oldendorf
•	Streptavidin Sepharose:	Fa. Fisher Scientific, Schwerte
•	NaOH:	Fa. Carl Roth GmbH & Co, Karlsruhe
•	Ethanol:	Fa. Carl Roth GmbH & Co, Karlsruhe
•	PyroMark Gold Q96 Reagents:	Fa. Qiagen, Hilden
•	FastAP Thermosensitive	
	Alkaline Phosphatase (AP):	Fa. Fisher Scientific, Schwerte
•	Exonuclease I (ExoI):	Fa. Fisher Scientific, Schwerte

4.3.3. Lösungen und Puffer

•	RL-Puffer (Lysis-Puffer):	Instant Virus RNA Kit, Fa. Analytik Jena AG
•	Bindung Solution RBS:	Instant Virus RNA Kit, Fa. Analytik Jena AG
•	Washing Solution HS:	Instant Virus RNA Kit, Fa. Analytik Jena AG
•	Washing Solution LS:	Instant Virus RNA Kit, Fa. Analytik Jena AG
•	Q-Solution:	QIAGEN® Multiplex PCR Kit, Hilden

• 50xTAE-Puffer:

• 1xTE-Puffer:

10 mM Tris 1 mM EDTA

2 M Tris 1 M Essigsäure 50 mM EDTA

•	1x Annealing Buffer (AB), pH 7.6:	20 mM Tris-Acetate
		2 mM Mg-Acetate
		(Fa. Qiagen, Hilden)
•	Binding Buffer, pH 7.6:	10 mM Tris-HCl
		2 M NaCl
		1 mM EDTA
		0,1 % Tween 20
		(Fa. Qiagen, Hilden)
•	Washing Buffer, pH 7.6:	10 mM Tris-Acetate
		(Fa. Qiagen, Hilden)
•	Denaturierung Buffer:	9 µl Reconstituted Buffer DLB
		32 µl Nuclease-free water
		(Fa. Qiagen, Hilden)
•	Neutralization Buffer:	12 µl Stop solution
		68 µl Nuclease-free water
		(Fa. Qiagen, Hilden)

4.3.4. Datenbanken und Computerprogramme

- National Center for Biotechnology Information (NCBI): www.ncbi.nlm.nih.gov
- Ensembl Genome Browser: http://www.ensembl.org/index.html
- Oligo Primerdesign (Fa. Eurofins MWG operon, Ebersberg)
- ApE A plasmid editor (Wayne Davis, University of Utah, USA)
- PSQ Assay Design Software (Fa. Qiagen, Hilden)
- PyroMarkTM ID Software (Fa. Quiagen, Hilden)
- Windows QTL Cartographer V2.5_011 (North Carolina State University, USA)
- IBM SPSS Statistics (Fa. IBM Deutschland GmbH, Ehningen)

4.4. Methoden

4.4.1. Datenbankrecherche

Zunächst wurde in der SNP-Datenbank des NCBI (National Center for Biotechnology Information) nach bekannten Polymorphismen in den ausgewählten Genen recherchiert. Der Fokus lag hier auf SNPs in Exons, die einen Aminosäureaustausch verursachen. Dann wurde in der Nukleotid-Datenbank des NCBI nach genomischen Sequenzen gesucht, die die SNPs enthielten. Diese dienten als Grundlage für das Entwickeln der Primer.

Für das Gen RPL38 war zu dem Zeitpunkt der Recherche keine genomische Sequenz in der NCBI-Datenbank vorhanden, lediglich die Sequenz eines mRNA-Transkripts. Die genomische Sequenz für RPL38 wurde daher aus dem Ensembl Genome Browser extrahiert. Unter der Navigation "Variation Table" waren für das RPL38-Gen bekannte SNPs angegeben.

Die aus der Literatur bekannten SNPs, die in der vorliegenden Arbeit bei den F_0 -Tieren überprüft wurden, sind in Tabelle 2 aufgelistet.

Für Gene, bei denen keine SNPs in Exons mit Aminosäureaustausch bekannt waren, wurden Primer hergestellt, die möglichst den kodierenden Bereich, die 5'-UTR, die 3'-UTR und Teile des Promotors abdeckten. Gleiches galt für Gene, bei denen die aus der Literatur bekannten Polymorphismen nicht in der Versuchspopulation auftraten.

		Datenbankeintrag				
Gen	Acc. No.	von	bis	SNP	SNP-Position	Genbereich
CD14	NW_003609718	587092	585442	rs81218902	481	cds
RPL38	esembl.org/Sus_scrofa	1	6107	rs81212116	835	cds
				rs81212119	4304	cds
NR3C1	NW_003299622	151259	47960	rs81219175	86408	cds
	CU928713	46000	47000	rs81509148	375	3'-UTR

Tabelle 2: Lokalisation der recherchierten SNPs

Acc. No.: Accession number; cds: coding sequence

4.4.2. Primerdesign

Die Primer zur Amplifikation der Gensequenzen und zur Sequenzierung der F_0 -Tiere wurden mit dem Computerprogramm OLIGO erstellt.

Die Primer wurden in die Introns bzw. an den Anfang und das Ende der Exons positioniert, um möglichst die komplette kodierende Sequenz zu erfassen. Hinsichtlich des Promotors wurde in der Regel der Reverse-Primer in das erste Intron und der Forward-Primer in den Promotor gelegt. Die Primerpositionen wurden so gewählt, dass möglichst um die 1000 Basenpaare lange PCR-Produkte entstanden. Allerdings war darauf zu achten, dass in der zu amplifizierenden Sequenz keine Repeats enthalten waren.

Die Primerlänge betrug 20 bis 26 Basenpaare. Die Annealingtemperatur von Forward- und Reverse-Primer wurde so gewählt, dass sie eine maximale Differenz von 2 °C aufwies. Auch auf die Abwesenheit von sog. Loops, Dimerbildung oder Selbstkomplementaritäten wurde geachtet.

Der Primername richtet sich nach dem Kürzel des Kandidatengens, das amplifiziert wurde. Die Positionen aller verwendeten Primer sind in Tabelle 3, die optimierten Bedingungen der Primer für die Polymerasekettenreaktion in Tabelle 4 angegeben.

Gen	Acc. No.	Eintrag in	Datenbank	Primername	Primerpos.
		von	bis		
CD14	NW_003609718	587092	585442	CD14F	159
				CD14R	928
	AY753180	1	4987	CD14_4aF	572
				CD14_4aR	1023
				CD14_4bF	1179
				CD14_4bR	2006
				CD14_4cF	1736
				CD14_4cR	2523
	ensembl.org/Sus_scrofa	1	3612	CD14_4dF	2493
				CD14_4dR	3249
RPL38	ensembl.org/Sus_scrofa	1	Ende	RPL38_3aF	151
				RPL38_3aR	402
				RPL38_3bF	326
				RPL38_3bR	909
				RPL38_3cF	4113
				RPL38_3cR	4398

Tabelle 3: Lokalisation der Primer

Gen	Acc. No.	Eintrag in	Datenbank	Primername	Primerpos.
		von	bis		
RPL38	ensembl.org/Sus_scrofa	1	6107	RPL38_3dF	5155
				RPL38_3dR	5769
NR3C1	NW_003299622	151259	47960	NR3C1F	85664
				NR3C1R	86643
	CU928713	46000	47000	NR3C1UTRF	200
				NR3C1UTRR	592
Grb2	NW_003611478	121000	51869	Grb2_2aF	7897
				Grb2_2aR	8305
		120290	51869	Grb2_2bF	57398
				Grb2_2bR	57767
				Grb2_1cF	63677
				Grb2_1cR	64316
				Grb2_1dF	67075
				Grb2_1dR	67646
				Grb2_1eF	67938
				Grb2_1eR	68343
		121000	51869	Grb2_2fF	44
				Grb2_2fR	868
	NW_003611478	120290	51400	Grb2_2gF	67975
				Grb2_2gR	68675
IL-9	NC_010444	143652500	143648500	IL9_1aF	216
				IL9_IaR	1183
				IL9_IbF	2509
	NUL 002/00707	244000	252000	IL9_IbR	3439
1L-4	NW_003609707	244000	253000	IL4_IaF	554
				IL4_IaR	1558
				$IL4_10F$	6490 6860
				IL4_IOR	0009 9241
				$IL4_1cF$	0241 2021
11.5	NC 010444	1/0202800	140302000	$IL_{4}ICK$	32
11-5	INC_010444	140303800	140302000	$IL_{J}Iar$	52 733
				$\frac{1L5_1aR}{115_1bF}$	824
				$IL5_1bR$	1768
	NW 003609707 1	94000	91658	$IL5_{2cF}$	1/00
		74000	71050	$IL5_2cR$	682
STAT3	NW 003611500	152000	87000	STAT3 1aF	34020
		102000	0,000	STAT3 1aR	34662
				STAT3 1bF	35800
				STAT3 1bR	36376
				STAT3 1cF	36761
				STAT3_1cR	37637

von bis result STAT3 NW_003611500 152000 87000 STAT3_1dF 44691 STAT3_1dR 45675 STAT3_1dR 45667 STAT3_1eR 46664 STAT3_1fF 46604 STAT3_1fF 46604 STAT3_1fR 47519 STAT3_2gF 48192 STAT3_2gR 48402 STAT3_1hF 52221 STAT3_1hF 5262 STAT3_1iF 56446 STAT3_1iF 56446 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_1kF 58412 STAT3_1kF 58412 STAT3_2jR 59903 STAT3_2lR 59903 STAT3_2mF 63423 STAT3_2nF 63423 STAT3_1nF 64338 STAT3_2nF 63423 STAT3_2nF 63423	Gen	Acc. No.	Eintrag in	Datenbank	Primername	Primerpos.
STAT3 NW_003611500 152000 87000 STAT3_1dF 44691 STAT3_1eF 45675 STAT3_1eF 45667 STAT3_1eF 45664 STAT3_1fF 46604 STAT3_1fF 46604 STAT3_2gF 48192 STAT3_2gF 48192 STAT3_2gF 48192 STAT3_1hF 52221 STAT3_1hF 52962 STAT3_1hF 52962 STAT3_1iF 56446 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_2iF 59561 STAT3_2iF 59561 STAT3_2mF 62758 STAT3_2mF 62758 STAT3_1nF 64338 STAT3_2mF 63423 STAT3_2nF 63423 STAT3_2mF 63423 STAT3_2nF 64338 STAT3_2nF 64338 STAT3_2nF 64338 STAT3_2nF 6138			von	bis		1
STAT3_1dR 45675 STAT3_1eF 45667 STAT3_1eR 46664 STAT3_1fF 46604 STAT3_2gF 48192 STAT3_2gR 48402 STAT3_1hF 5221 STAT3_1hF 52962 STAT3_1iF 56446 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_2jF 57095 STAT3_1kF 58412 STAT3_1kF 58412 STAT3_1kF 58412 STAT3_1kF 5903 STAT3_2lF 59561 STAT3_2nF 62758 STAT3_2nF 62758 STAT3_2nF 6423 STAT3_2nF 64423 STAT3_2nF 64423 STAT3_2nF 64423 STAT3_2nF 64338 STAT3_2nF 64423 STAT3_2nF 64338 STAT3_2nF 64880 STAT3_2nF 61258	STAT3	NW_003611500	152000	87000	STAT3_1dF	44691
STAT3_1eF 45667 STAT3_1eR 46664 STAT3_1fF 46604 STAT3_1fR 47519 STAT3_2gF 48192 STAT3_2gR 48402 STAT3_1hF 52221 STAT3_1hF 52962 STAT3_1hF 56446 STAT3_1iF 56446 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_1kF 58412 STAT3_1kF 58412 STAT3_2lR 59903 STAT3_2nF 62758 STAT3_1nF 64338 STAT3_1nF 64338 STAT3_1nF 64338 STAT3_2nF 115					STAT3_1dR	45675
STAT3_1eR 46664 STAT3_1fF 46604 STAT3_1fR 47519 STAT3_2gF 48192 STAT3_2gR 48402 STAT3_1hF 52221 STAT3_1hF 52962 STAT3_1iF 56446 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_2jF 57695 STAT3_1kF 58412 STAT3_1kF 58412 STAT3_2lF 59561 STAT3_2nF 62758 STAT3_2nF 62758 STAT3_1nF 64338 STAT3_1nF 64338 STAT3_1nF 64338 STAT3_2nF 115					STAT3_1eF	45667
STAT3_1fF 46604 STAT3_1fR 47519 STAT3_2gF 48192 STAT3_2gR 48402 STAT3_1hF 52221 STAT3_1hF 52221 STAT3_1hF 52962 STAT3_1iF 56446 STAT3_1iF 56446 STAT3_2jF 57085 STAT3_2jF 57085 STAT3_1kF 58412 STAT3_1kF 58412 STAT3_1kF 58412 STAT3_2jF 57695 STAT3_2lF 59561 STAT3_2lR 59903 STAT3_2mF 62758 STAT3_1nF 64338 STAT3_1nF 64338 STAT3_2oF 115					STAT3_1eR	46664
STAT3_1fR 47519 STAT3_2gF 48192 STAT3_2gR 48402 STAT3_1hF 52221 STAT3_1hF 52221 STAT3_1hF 52962 STAT3_1iF 56446 STAT3_2jF 57085 STAT3_2jR 57695 STAT3_1kF 58412 STAT3_1kF 58412 STAT3_1kF 58412 STAT3_1kF 59171 STAT3_2lF 59561 STAT3_2lR 59903 STAT3_2mF 62758 STAT3_1nF 64338 STAT3_1nF 64430 STAT3_20F 115					STAT3_1fF	46604
STAT3_2gF 48192 STAT3_2gR 48402 STAT3_1hF 52221 STAT3_1hR 52962 STAT3_1iF 56446 STAT3_1iR 57316 STAT3_2jF 57085 STAT3_2jR 57695 STAT3_1kF 58412 STAT3_1kF 58412 STAT3_1kF 59171 STAT3_2liF 59561 STAT3_2liF 59903 STAT3_2mF 62758 STAT3_1nF 64338 STAT3_1nF 64338 STAT3_2oF 115					STAT3_1fR	47519
STAT3_2gR 48402 STAT3_1hF 52221 STAT3_1hR 52962 STAT3_1iF 56446 STAT3_1iR 57316 STAT3_2jF 57085 STAT3_2jR 57695 STAT3_1kF 58412 STAT3_1kF 58412 STAT3_1kF 59171 STAT3_2lR 59903 STAT3_2lR 59903 STAT3_2mF 62758 STAT3_1nF 64338 STAT3_1nF 64338 STAT3_2oF 115					STAT3_2gF	48192
STAT3_1hF 52221 STAT3_1hR 52962 STAT3_1iF 56446 STAT3_1iR 57316 STAT3_2jF 57085 STAT3_2jR 57695 STAT3_1kF 58412 STAT3_1kR 59171 STAT3_2lF 59561 STAT3_2lR 59903 STAT3_2mF 62758 STAT3_1nF 64338 STAT3_1nF 64338 STAT3_2nF 62423 STAT3_1nF 64880 STAT3_2nF 115					STAT3_2gR	48402
STAT3_1hR 52962 STAT3_1iF 56446 STAT3_1iR 57316 STAT3_2jF 57085 STAT3_2jR 57695 STAT3_1kF 58412 STAT3_1kF 58412 STAT3_1kR 59171 STAT3_2lF 59561 STAT3_2lR 59903 STAT3_2mF 62758 STAT3_1nF 64323 STAT3_1nF 64380 STAT3_20F 115					STAT3_1hF	52221
STAT3_1iF 56446 STAT3_1iR 57316 STAT3_2jF 57085 STAT3_2jR 57695 STAT3_1kF 58412 STAT3_1kR 59171 STAT3_2lF 59561 STAT3_2lR 59903 STAT3_2mF 62758 STAT3_1nF 64338 STAT3_1nF 64380 STAT3_2nF 115					STAT3_1hR	52962
STAT3_1iR 57316 STAT3_2jF 57085 STAT3_2jR 57695 STAT3_1kF 58412 STAT3_1kR 59171 STAT3_21F 59561 STAT3_21R 59903 STAT3_2mF 62758 STAT3_1nF 64338 STAT3_1nR 64880 STAT3_20F 115					STAT3_1iF	56446
STAT3_2jF 57085 STAT3_2jR 57695 STAT3_1kF 58412 STAT3_1kR 59171 STAT3_2lF 59561 STAT3_2lR 59903 STAT3_2mF 62758 STAT3_1nF 64338 STAT3_1nR 64880 STAT3_2oF 115					STAT3_1iR	57316
STAT3_2jR 57695 STAT3_1kF 58412 STAT3_1kR 59171 STAT3_2lF 59561 STAT3_2lR 59903 STAT3_2mF 62758 STAT3_1nF 64338 STAT3_1nR 64880 STAT3_2oF 115					STAT3_2jF	57085
STAT3_1kF 58412 STAT3_1kR 59171 STAT3_2lF 59561 STAT3_2lR 59903 STAT3_2mF 62758 STAT3_2mR 63423 STAT3_1nF 64338 STAT3_2oF 115					STAT3_2jR	57695
STAT3_1kR 59171 STAT3_2lF 59561 STAT3_2lR 59903 STAT3_2mF 62758 STAT3_2mR 63423 STAT3_1nF 64338 STAT3_1nR 64880 STAT3_2oF 115					STAT3_1kF	58412
STAT3_2IF 59561 STAT3_2IR 59903 STAT3_2mF 62758 STAT3_2mR 63423 STAT3_1nF 64338 STAT3_1nR 64880 STAT3_2oF 115					STAT3_1kR	59171
STAT3_2lR 59903 STAT3_2mF 62758 STAT3_2mR 63423 STAT3_1nF 64338 STAT3_1nR 64880 STAT3_2oF 115					STAT3_2IF	59561
STAT3_2mF 62758 STAT3_2mR 63423 STAT3_1nF 64338 STAT3_1nR 64880 STAT3_2oF 115					STAT3_2IR	59903
STAT3_2mR 63423 STAT3_1nF 64338 STAT3_1nR 64880 STAT3_2oF 115					STAT3_2mF	62758
STAT3_1nF 64338 STAT3_1nR 64880 STAT3_2oF 115					STAT3_2mR	63423
STAT3_1nR 64880 STAT3_2oF 115					STAT3_1nF	64338
STAT3_20F 115					STAT3_1nR	64880
					STAT3_2oF	115
STAT3_20R 933					STAT3_20R	933
LMNB1 NC_010444 135103000 135105000 LMNB1_2aF 964	LMNB1	NC_010444	135103000	135105000	LMNB1_2aF	964
LMNB1_2aR 1809					LMNB1_2aR	1809
135103900 135158940 LMNB1_16F 25217			135103900	135158940	LMNB1_1bF	25217
LMNB1_15R 26302					LMNB1_IbR	26302
LMNB1_1cF 29424					LMNB1_1cF	29424
LMNB1_ICR 30171					LMNB1_ICR	30171
LMNB1_2dF 31249					LMNB1_2dF	31249
LMINB1_20R 31525					LMNB1_20R	31525
LMINB1_1EF 3/295					LMNB1_IeF	3/295
LMINB1_IER 380/6					LMINB1_IER	38076
LMINB1_2IF 38927					LMINB1_2IF	38927
LIVINB1_2IK 39319					LIVIINBI_2IK	39319
LIVINB1_1gF 40825					LIVIINDI_1gF	40823
LIVINDI_IGK 41020					LIVIINDI_IGK	41020
$\begin{array}{c c} LIVINDI_2 IIF & 44037 \\ I MNDI_2 DD & 44002 \\ \end{array}$					LIVINDI_ $2\Pi\Gamma$	44037
LIVINDI_21IK 44692					$\frac{1}{1} \frac{1}{1} \frac{1}$	51571
LIVIINDI_1IF 31374 I MNR1 1;D 52465					I MNR1 17D	57/65

Gen	Acc. No.	Eintrag in	Datenbank	Primername	Primerpos.
		von	bis		
	NC_010444	135103900	135158940	LMNB1_1jF	54149
				LMNB1_1jR	54839
	NC_010444	135103000	135105000	LMNB1_2kF	154
				LMNB1_2kR	1036
	NC_010444	135103900	135159940	LMNB1_2lF	276
				LMNB1_2lR	880

Acc. No.: Accession number; Primerpos.: Primerposition; F: Forward-Primer;

R: Reverse-Primer

Tabelle 4: optimierte Primer und Annealingtemperatur

		Größe des	
Primername	Sequenz $(5' \rightarrow 3')$	(hn)	АТ
CD14F	TTCAAAGAGTAGGGAACAGAGTG	790	65
CD14R	CGCCACTTTCAGTACCTTGAG		
CD14 4aF	AACTCCCTGGGTTTGAGTCTCGAG	474	65.2
CD14_4aR	GTGCACACACTCACCATGGTCGA		,
CD14_4bF	CCTGCCAAATAGACGACGAAGAC	851	67,9
CD14_4bR	CAGCTTGTTGCAGCTGAGATCAAG		
CD14_4cF	GGGCTGACTGCAGCTCTCTGTC	809	66,1
CD14_4cR	CATCTTGCATCCGTTCCCATCC		
CD14_4dF	AGCTCGTGGTGTCATTCACTC	778	60
CD14_4dR	GCTGGATCTTTAACCCACTGAG		
RPL38_3aF	GCCAGGAGACACAGGGGCAGAGG	272	66,1
RPL38_3aR	CCGAATCCCCAGATACGGCCC		
RPL38_3bF	GGTTAACTGCCCGGAAGCGGAAG	605	67,9
RPL38_3bR	CGACTGGCAGCCACACGAGGAC		
RPL38_3cF	CCGTCAGCAGCTCCATGATGTG	307	62,5
RPL38_3cR	GGATCAGCATGGTGACACCTGC		
RPL38_3dF	CCTGGTGGGCTTCATTCCTGAGC	638	62,5
RPL38_3dR	CACTTCTGTGCCGGAGGACACCTA		
NR3C1F	TGCTGAGCCACGACAGGAAG	1001	63
NR3C1R	GGGATGATGAAGAGCAAGAACG		
NR3C1UTRF	GAACAGTCCCTTTTAGAGAGCATTC	413	58
NR3C1UTRR	AATGACCACCCTCCTCATTCC		
Grb2_2aF	TCCTGCCTGGAAGGGAGGGAG	436	66,6
Grb2_2aR	GAAGGAGCACAGCTTCTTTGTGTGTTAT		
Grb2_2bF	AAGTATCAGAATTGACATATGCTG	390	56,6
Grb2_2bR	CAGATTAGAAGTACGGCATCC		

		Amplifikat	
Primername	Sequenz	(bp)	AT
Grb2_1cF	CGATGGTGTCTTCTGAGTCACTC	661	62,1
Grb2_1cR	GTATGTGGAGAGCATTGCAGAG		
Grb2_1dF	AGAACATGAGTTCTCCCAGGATG	592	62,1
Grb2_1dR	GACAGCGAACACAGGACTGAG		
Grb2_1eF	TCTGGAAGAACTGGTGGAGAG	426	62,1
Grb2_1eR	CTCACAGGCTGCTGTTAGAGG		
Grb2_2fF	CACTTGGTTCAATCGATGAGCGAACG	845	67,9
Grb2_2fR	GGAGGAAGCAGCACGCGAGCA		
Grb2_2gF	GGTTATTTCAGGTCATGTGGCAAG	721	62
Grb2_2gR	GACATGGAAGCGGCTGTTCTT		
IL9_1aF	CACTGTCACGATGAGAATCTCTG	990	58,8
IL9_1aR	GATCCTAGCCACATCTCTGACCT		
IL9_1bF	AAGTTCGAGGAAGTGTCACTGTG	952	60,6
IL9_1bR	CTATGTGCTCTTGATGGCAGAA		
IL4_1aF	CGTACTTGGAAGAAGCCAGGCTG	1027	62,1
IL4_1aR	CTTGTGGATGGTTCTCCTCACCA		
IL4_1bF	TGACTATCAGATCCAGAGTTGAG	401	58,5
IL4_1bR	GAATAACACAGAGCCTCAAGAG		
IL4_1cF	AGGAGTGTACATGGTATGCAATG	713	56,9
IL4_1cR	CACAGAGCCATGTAGTATGCTAG		
IL5_1aF	GGCATTCTCTATCTGATTGTTAG	722	55,4
IL5_1aR	GAGAAGTGACAACATCGAAGG		
IL5_1bF	CCTCCAGTCAGCTCTGATTATTG	966	57
IL5_1bR	GTTGGCCTTCACTCTTGTTGAA		
IL5_2cF	CCAGACCCTAGTGAACACAACTTG	686	56,7
IL5_2cR	CAGCTCCAAGACCTAGCAAACTC		
STAT3_1aF	AGTAGATCATGGGTTCTAGAACTTG	663	60,2
STAT3_1aR	CACAGTGGCTGTTCGTGTAAG		
STAT3_1bF	CTTGATGGTGATGTCTCTGTGTG	599	60,2
STAT3_1bR	GTACAAGATAGGAGTTCCCAACG		
STAT3_1cF	CTCTGTTGCTTCATGTAGTAGATAG	897	58,8
STAT3_1cR	CTCAGGATCTGAGCTGTGTCT		
STAT3_1dF	TTGTTGTCTTAGCTCAACATGTG	1007	60,2
STAT3_1dR	CTACGTCTGAACACAGAGTCAAG		
STAT3_1eF	TCGATTGTCTTGACTCTGTGTTC	1019	60,2
STAT3_1eR	CAATAGAACAAGGAAGTTCCCA		
STAT3_1fF	TATACCTGTGCTATCCTCTTC	936	58,8
STAT3_1fR	CTGTTCTAACACTTGCATATG		
STAT3_2gF	TTTTCTTTGCTCTGAAGCATT	234	53,6
STAT3_2gR	GAAGATCTCTGAATGAAGATAAGG		

		Amplifikat	
Primername	Sequenz	(bp)	AT
STAT3_1hF	GGAAGATGGGAGTGGATGTTG	765	63,1
STAT3_1hR	GTGTGACTTCTGATGTGTCAGGTT		
STAT3_1iF	CTTCTGGATGGTGTCGTGGTGAC	895	63,1
STAT3_1iR	CATCTGACAGATGTTGGAGATGACC		
STAT3_2jF	GGAGTCCGTGGACCATGAGTGTC	634	68,8
STAT3_2jR	CACTCCTAAAGGACCAGCTCCAGG		
STAT3_1kF	GGACAGATGTGTATGAGTGTGTTC	780	61,6
STAT3_1kR	GTGCCTGACACTAGCAGCAGT		
STAT3_21F	CATAGTTTTCTTGGAGCTCACCTAG	363	60,7
STAT3_2lR	GACCAGGTTCTTCAGGCATTG		
STAT3_2mF	GGCAGGTGAGCTTCCTCCGAGG	686	64,8
STAT3_2mR	CCTGCTCCCAATCCAGGTGCC		
STAT3_1nF	TCTGAGCTCCTCTTGAGCACAAG	565	61,6
STAT3_1nR	GAGGCACTTGTCTGACAACAACA		
STAT3_2oF	AACCCAATTCAGCCGTTGAGGTC	840	67,9
STAT3_20R	CATCTCAGCCCTTCTGGCACCC		
LMNB1_2aF	CGCCGCGGTCCGCGCCACCTC	866	73,2
LMNB1_2aR	CCTCCCGCCCGAGCTGCGCCC		
LMNB1_1bF	CTCTACGCAGGGAGGAGAAG	1111	58,8
LMNB1_1bR	CAGCAGTCTGAATTCTTATATGCAAC		
LMNB1_1cF	CCAGGACAGACACAAGGAGGCTG	772	60,6
LMNB1_1cR	GACTTGACATGAATGATCAGCCAGA		
LMNB1_2dF	GCCTTGAGAGGAGTCGTACTTC	297	59,5
LMNB1_2dR	GTGACTTCAGGCAGAGCAAAG		
LMNB1_1eF	GTTAGAGATTGCACAACGTCCTC	804	58,8
LMNB1_1eR	GAACATCTTCTGTTGCTGTGACA		
LMNB1_2fF	TTTCAAGGTGGGAAGGACATG	415	64,7
LMNB1_2fR	GAGGGAACCTCTTATTCCAAGAA		
LMNB1_1gF	CCACGTCTCTGACCTGTGCCAC	825	59,8
LMNB1_1gR	CACTCTCCAGATGACTGTGCTGCT		
LMNB1_2hF	GGATGCTATTACTGACACATG	277	57,5
LMNB1_2hR	CTGTTACTTCACATTTCAATCT		
LMNB1_1iF	AACCCTTATGTAGAATTGCTG	912	55,9
LMNB1_1iR	CAAGTAGTTCTCGACTCTGGA		
LMNB1_1jF	CTGGTGAACTTGTCGTATCTCTG	713	58
LMNB1_1jR	GAATCCTTCATCCAGAGTGCTTA		
LMNB1_2kF	ACAAGTTTAGATCTTGATGCATCAG	905	64,8
LMNB1_2kR	CAGCACTTTGTTTCCTCTCAAAC		-
LMNB1_2lF	ACTGTTTGGAAAAGGTCCCTC	625	56,1
LMNB1_2lR	GTGTGGCCCTAAAACAAACAA		

Die Primersequenzen sind in $5' \rightarrow 3'$ Richtung angegeben.

AT: Annealing-Temperatur; F: Forward-Primer; R: Reverse-Primer; bp: Basenpaare

4.4.3. Konzentrationsbestimmung Primer

Die Primer wurden von der Firma Biomers GmbH (Ulm) synthetisiert und als Lyophilisate zugestellt. Die Primer der Firma Biolegio (Nijmegen, NL) wurden bereits in 1xTE geliefert. Für die photometrische Konzentrationsbestimmung wurden 5 μ l Primer mit 395 μ l 1xTE verdünnt. Die Extinktionsmessung erfolgte am Photometer Ultrospec 1100pro, Amersham Biosciences (Freiburg). Der gemessene Wert bei einer Wellenlänge von 260 nm wurde um den Wert bei einer Wellenlänge von 320 nm korrigiert. Die Konzentration ergab sich aus dem Lambert/Beer'schen Gesetz:

$$c = \frac{E}{e \times d} \times VF$$

- c: Konzentration der absorbierenden Substanz in der Flüssigkeit
- E: Extinktion bei 260 nm
- e: Extinktionskoeffizient
- VF: Verdünnungsfaktor
- d: Schichtdicke der Küvette

Da der Extinktionskoeffizient von Oligonukleotiden von deren Basenzusammensetzung abhängig ist, wurde er für jeden Primer gesondert nach folgender Formel berechnet:

 $e = (15200 \times \#A) + (7050 \times \#C) + (12010 \times \#G) + (8400 \times \#T)$

Mit #A= Anzahl A-Nukleotide, #C= Anzahl C-Nukleotide, #G= Anzahl G-Nukleotide und #T= Anzahl T-Nukleotide des Oligonukleotids

4.4.4. DNA-Extraktion

Die DNA wurde mit dem Instant Virus RNA Kit der Firma Analytik Jena AG (Jena) aus Leber- und Milzproben sowie aus EDTA-Blutproben extrahiert.

46

Von den Gewebeproben wurden ca. 50 mg und von den Blutproben 150 μ l mit 450 μ l RL-Puffer gemischt. Den Gewebeproben wurde eine Stahlkugel (5 mm) zugefügt und das Gewebe in einer Kugelmühle (MM300, Fa. Retsch) bei 25 HZ für 2 min zerkleinert. Anschließend wurden die Proben bei 22 °C für 30 min inkubiert. Um noch vorhandene Gewebestückchen abzutrennen, wurde die Probe im Anschluss bei 16000 x g für 3 min zentrifugiert. Der Überstand wurde in ein neues Reaktionsgefäß überführt und mit dem gleichem Volumen an 450 μ l Bindung Solution RBS gemischt und auf eine Säule mit Silicagelmembran pipettiert. Nach einer Zentrifugation bei 12000 x g für 1 min wurde 500 μ l Washing Solution HS auf die Säule pipettiert. Danach wurde die Probe wieder bei 12000 x g für 1 min zentrifugiert und das Gleiche mit 500 μ l Washing Solution LS wiederholt. Es folgte eine Zentrifugation bei 16000 x g für 3 min. Die Säule wurde auf ein 1,5 ml Eppendorf-Gefäß umgesetzt und 60 μ l RNAse freies Wasser dazupipettiert. Nach einer Wartezeit von 3 min wurde die Probe bei 6000 x g für 1 min zentrifugiert.

Die Konzentrationsmessung erfolgte am NanoDrop 2000c Spectrometer, Fa. Peqlab Biotechnologie GmbH (Erlangen). Es wurde eine Gebrauchslösung mit einer Konzentration von 50 ng/µl hergestellt und die Stammlösung im Gefrierschrank bei -20 °C gelagert.

4.4.5. Whole Genome Amplification (WGA)

Da keine ausreichenden Gewebeproben des F_0 -Ebers vorlagen, wurde die DNA des Ebers mit dem REPLI-g Mini Kit® der Firma Qiagen (Hilden) amplifiziert. Hierbei wurde auf bereits in den Vorversuchen extrahierte DNA zurückgegriffen.

2,5 µl DNA (20 ng) wurden mit 2,5 µl Denaturierungspuffer gemischt und bei Raumtemperatur für 3 min inkubiert. Danach wurden 5 µl Neutralisationspuffer dazugegeben und gemischt. Anschließend wurden 40 µl Master Mix zu 10 µl denaturierter DNA pipettiert. Diese Mischung wurde bei 30 °C für 10-16 Stunden und anschließend bei 65 °C für 3 min (zur Zerstörung der DNA-Polymerase) inkubiert.

Die Qualität der amplifizierten DNA wurde in einer Standard-PCR unverdünnt und in einer Verdünnung von 1:10 und 1:100 getestet. Die WGA-Proben wurden im Gefrierschrank bei -20 °C gelagert.

4.4.6. Polymerasekettenreaktion (PCR)

Die PCR wurde mit dem QIAGEN® Multiplex PCR Kit durchgeführt.

Jeder 20 µl PCR-Ansatz setzte sich aus 10 µl 2x Multiplex PCR Mastermix, 2 µl 4 µM Primermix, 7 µl Wasser und 1 µl genomischer DNA (mit einer Konzentration von 50 ng/µl) zusammen (Tabelle 5). Sollten GC-reiche DNA-Abschnitte amplifiziert werden, wurde ein Teil des Wassers je nach GC-Gehalt durch 2-5 µl Q-Solution ersetzt (Tabelle 6).

Zunächst wurde für jedes Primerpaar die Annealingtemperatur mit Hilfe des Temperaturgradientencyclers optimiert. Das verwendete PCR-Programm ist in Tabelle 7 angegeben. Die Beurteilung der PCR-Amplifikate erfolgte mittels Agarosegelelektrophorese. Ziel war es, unspezifische Amplifikate zu vermeiden und eine hohe Ausbeute an PCR-Produkt zu erreichen.

Im nächsten Schritt wurde eine PCR mit dem genetischen Material der F_0 -Tiere durchgeführt. Bei ausreichender DNA-Menge wurde das PCR-Produkt für die Sequenzierung durch die Firma LGC Genomics GmbH, Berlin vorbereitet.

Reagenz	Volumen (µl)
2x Multiplex PCR Mastermix	10
RNAse freies Wasser	7
Primermix (4 µM)	2
DNA (50 ng/µl)	1

Tabelle 5: Zusammensetzung 20 µl PCR-Ansatz

Tabelle 6: Zusammensetzung 20 µl PCR-Ansatz bei GC-reicher Sequenz

Reagenz	Volumen (µl)
2x Multiplex PCR Mastermix	10
Q-Solution	5
RNAse freies Wasser	2
Primermix (4 µM)	2
DNA (50 ng/µl)	1

				Anzahl
Arbeitsschritt	Temperatur (°C)	Zeit	Vorgang	Zyklen
1	95	15 min	Aktivierung der DNA-Polymerase	1
2	95	30 s	Denaturierung	35
3	variabel	1 min 30 s	Annealing	35
4	72	2 min	Extension	35
5	72	10 min	Final Extension	1
6	4	∞		

Tabelle 7: PCR-Programm

4.4.7. Agarosegelelektrophorese

Es wurden jeweils 2 µl PCR-Produkt auf einem 1,5 % Midori Green Advance Agarosegel (Tabelle 8) aufgetragen. Die Elektrophorese wurde mit TAE-Puffer bei einer Spannung von 120 V für 20 min durchgeführt. Anschließend wurden die Gele digital aufgenommen und die Gel-Bilder archiviert.

Tabelle 8: Zusammensetzung der Agarosegele

Substanz	Menge
SeaKem® LE Agarose-Pulver	3 g
Elektrophorese-Puffer 1xTAE	200 ml
Midori Green Advance	10 µl

4.4.8. Vorbereitung der PCR-Produkte für die Sequenzierung

Es wurden 2 μ l AP und 1 μ l ExoI zu 18 μ l PCR-Produkt pipettiert. Der Ansatz wurde bei 37 °C für 30 min inkubiert. Dabei baute die hydrolytisch wirkende Exonuklease I die überschüssigen Primer ab und die Alkalische Phosphatase dephosphorylierte die Nukleotide. Danach wurden die Enzyme durch Erhitzen auf 80 °C für 15 min inaktiviert.

4.4.9. Sequenzierung von Amplifikaten der F₀-Tiere

Die Sequenzierung von Amplifikaten der F₀-Tiere wurde von der Fa. LGC Genomics GmbH, Berlin durchgeführt.

Zum Versand wurden 4 μ l 5 μ M Sequenzierungsprimer zu 10 μ l des mit Exonuklease I und Alkalischer Phosphatase behandelten PCR-Produkts pipettiert.

4.4.10. Identifizierung von SNPs und Auswahl der SNPs für die Pyrosequenzierung

Mit Hilfe des Programmes ApE wurden die Sequenzen der F_0 -Tiere miteinander verglichen. Basen, die zwischen den Sauen und dem Eber nicht übereinstimmten, wurden als SNPs interpretiert, wobei zwischen homozygoten und heterozygoten SNPs zu unterscheiden ist.

Aus jedem Gen, für das Polymorphismen nachgewiesen werden konnte, wurde mindestens ein SNP für die Pyrosequenzierung an F_2 -Tieren ausgewählt. Dabei wurde die Lokalisation sowie die Informativität (homozygoter oder heterozygoter SNP) berücksichtigt. Bei einem homozygoten SNP können beide Allele aller F_2 -Tiere auf die zugehörige Rasse (in der F_0 -Generation) zurückgeführt werden. Bei einem heterozygoten SNP sind nur die F_2 -Tiere informativ, die von heterozygoten F_1 -Tieren abstammen. Daher reduziert sich bei Verwendung von heterozygoten SNPs die Anzahl der Versuchstiere für die QTL-Analyse. Homozygote SNPs wurden mit drei Punkten, heterozygote SNPs mit einem Punkt gewichtet. Die Lokalisation des SNP wurde in folgender Reihenfolge bevorzugt: Exon und Mutation führt zum Aminosäuren-Austausch – 5'- bzw. 3'-UTR – Promotor – Exon und Mutation führt nicht zum Aminosäuren-Austausch (stille Mutation) – Intron.

4.4.11. Primerdesign für die Pyrosequenzierung

Die Primer für die Pyrosequenzierung wurden mit der Computersoftware PSQ Assay Design Software 1.0.6 der Firma Qiagen, Hilden entworfen.

Die Software errechnet die optimalen Primer zur Amplifikation des DNA-Abschnittes, in dem der SNP enthalten ist, und gibt zusätzlich einen Sequenzierungsprimer an. Dieser heftet in der Pyrosequenzierung vor dem SNP an. Entweder der Forward- oder der Reverse-Primer sind am 5'-Ende biotinyliert. Dadurch ist die Immobilisierung des Sequenzierungsstranges an Streptavidin-Sepharosekügelchen möglich.

Der Primername richtet sich nach dem Kürzel des Kandidatengens, das amplifiziert wurde. Die Primerpositionen aller verwendeten Primer für die Pyrosequenzierung sind in Tabelle 9, die optimalen Bedingungen für die Polymerasekettenreaktion sind in Tabelle 10 angegeben.

Gen	Acc. No.	Eintrag in	Datenbank	Primername	Primerpos
		von	bis		
NR3C1	NW_003299622	151259	47960	NR3C1_2aF	86450
				NR3C1_2aR	86577
				NR3C1_2aS	86559
	CU928713	46000	47000	NR3C1UTR_2F	186
				NR3C1UTR_2R	431
				NR3C1UTR_2S	352
IL-9	NC_010444	143652500	143648500	IL9_SNP1F	2473
				IL9_SNP1R	2906
				IL9_SNP1S	2784
	NC_010444	143652500	143648500	IL9_SNP2F	2662
				IL9_SNP2R	2905
				IL9_SNP2S	2800
STAT3	NW_003611500	152000	87400	STAT3_SNP1F	504
				STAT3_SNP1R	572
				STAT3_SNP1S	533
IL-5	NC_010444	140303800	140302000	IL5_SNP1F	297
				IL5_SNP1R	351
				IL5_SNP1S	323
RPL38	esembl.org/Sus_scrofa	1	Ende	RPL38_SNP1F	402
				RPL38_SNP1R	624
				RPL38_SNP1S	562

 Tabelle 9: Lokalisation der Primer f
 ür die Pyrosequenzierung

Acc. No.: Accession number; Primerpos: Primerposition; F: Forward-Primer;

R: Reverse-Primer; S: Sequenzierungsprimer

Primername	Sequenz	Amplifikat	AT
NR3C1_2aF	TCATTGAACCCGAGGTGTTG ¹	150	60
NR3C1_2aR	TCTTTGGCACCTTACCTGGTATT		
NR3C1_2aS	CTTTGCCCATTTCACT		
NR3C1UTR_2F	AACCCTTACAAAAGGAACAGTCCC	268	55
NR3C1UTR_2R	GAGGCTTTAGAAGTTGGGCAATA ¹		
NR3C1UTR_2S	GAAAGAGAGGAATTAGTGTA		
IL9_SNP1F	AGGAGGGCCTATCGAAGATGAG	182	55
IL9_SNP1R	CAGATGGAGTTGGCGTTGA ¹		
IL9_SNP1S	GAACTCTCCCTGATTTTC		
IL9_SNP2F	TTAACTCCGAGCTGTCCTCTGA	263	55
IL9_SNP2R	CAGATGGAGTTGGCGTTGAC ¹		
IL9_SNP2S	TCAGCAAGGTGAAGAAA		
STAT3_SNP1F	TGGGGCTTCGGAGATACA	88	54
STAT3_SNP1R	GCACTCCGCTCATGCATTAT ¹		
STAT3_SNP1S	AGGGCCTCTGTGTGG		
IL5_SNP1F	GGGGTAATTTTCTTTTTGATTCC	78	50
IL5_SNP1R	GATCTTTAAAAAAGTAGCCACAGC ¹		
IL5_SNP1S	GCTTTTTTAAATATATAGGT		
RPL38_SNP1F	GGGGGAATCCGTGGTAAT ¹	220	54
RPL38_SNP1R	TACTCACCATGGCGACGA		
RPL38_SNP1S	ACGCGGACTCGTGGG		

Tabelle 1	0:	optimierte	Bedingungen	der	Primer	für	die	PCR
	••	°P ···············						

Die Primersequenzen sind in 5' \rightarrow 3' Richtung angegeben.

AT: Annealing-Temperatur; F: Forward-Primer; R: Reverse-Primer;

S: Sequenzierungsprimer; ¹: biotinylierter DNA- Strang

4.4.12. Polymerasekettenreaktion für die Pyrosequenzierung

Für die Pyrosequenzierung wurde DNA von Schweinen der F_1 - und F_2 -Generation amplifiziert. Hierzu wurde ebenfalls für jede Probe ein 20 µl PCR-Ansatz angefertigt. Die Zusammensetzung des Reaktionsansatzes sowie das weitere Vorgehen entsprach der PCR-Analyse von F_0 -Tiere (siehe 4.4.6.).

Im Falle von heterozygoten SNPs wurden nur F_2 -Tiere verwendet, deren Allele eindeutig den F_0 -Tieren zugeordnet werden konnten.

4.4.13. Pyrosequenzierung

Die Genotypisierung der F₁- und F₂-Tiere erfolgte mittels Pyrosequenzierung.

Durch die Pyrosequenzierung ist eine vergleichende DNA-Sequenzierung mehrerer Individuen möglich. Diese Methode beruht auf dem Nachweis freigesetzter Pyrophosphatmoleküle während der DNA-Synthese.

Der Sequenzierungsprimer dient als Startpunkt, an den die DNA-Polymerase eingespritzte Nukleotide in einer bestimmten Reihenfolge anknüpft. Durch den erfolgreichen Einbau eines Nukleotids wird Pyrophosphat freigesetzt. Dieses wird durch die ATP-Sulfurylase in Gegenwart von Adenosin-5'-phosphosulfat (APS) in Adenosintriphosphat (ATP) umgewandelt. Das ATP dient als Energielieferant für die Oxidierung von Luciferin zu Oxyluciferin durch die Luciferase. Dabei wird ein Lichtsignal freigesetzt, dessen Stärke proportional zum verbrauchten ATP und damit zu der Anzahl der eingebauten Nukleotide ist. Eine CCD-Kamera wandelt die Lichtsignale in elektrische Signale um und überträgt diese an den Rechner. Dieser Vorgang wird für jedes eingespritzte Nukleotid wiederholt, wobei bei einem nicht passenden Nukleotid das Lichtsignal ausbleibt und die Software keinen Peak anzeigt.

Zur Vorbereitung der Pyrosequenzierung wurden jeweils 40 µl PCR-Produkt in eine 96well PCR-Platte vorgelegt, 40 µl Streptavidin-Beads in Binding-Buffer dazupipettiert und die Platte bei Raumtemperatur für 5 min geschüttelt. Durch diesen Vorgang wurden die biotinylierten PCR-Amplifikate an die Streptavidin-Beads gebunden. In Anschluss wurden mehrere Waschschritte mit 70 % Ethanol, 0,2 M Natronlauge und Waschpuffer mittels eines Prep-Tools durchgeführt. Während dieser Prozedur wurde der nicht-biotinylierte DNA-Strang von dem immobilisierten Strang getrennt. Danach wurden die Beads in eine 96well PSQ-Platte überführt. In dieser waren 40 µl Sequenzierungsprimer in Annealing-Buffer vorgelegt. Die Platte wurde auf 80 °C für 2 min erhitzt und anschließend auf Raumtemperatur abgekühlt. Dadurch fand ein spezifisches Annealing des Sequenzierungsprimers statt. Die Platte wurde in den Pyrosequenzer eingesetzt und die Kartusche mit Enzym-Mix, Substrat und Nukleotiden befüllt.

Vor dem Start der Pyrosequenzierung wurde die Dispensierreihenfolge in der Pyromark™ ID Software festgelegt. Mit dieser wurden anschließend die Genotypen ausgewertet.

4.4.14. Statistische Auswertung

Die statistische Auswertung erfolgte mit der Software IBM SPSS Statistics der Firma IBM Deutschland GmbH, Ehningen.

Mittelwerte, Standardabweichungen, Standardfehler, Varianzen, Minima und Maxima wurden mit dem Befehl "Descriptives" errechnet. Mittels Varianzanalyse (ANOVA, analysis of variance) wurden die Signifikanzen berechnet und diese mittels Kruskal-Wallis-Test überprüft. Signifikanzen ab $p \le 0,05$ wurden als signifikant gewertet.

Zur graphischen Darstellung der Ergebnisse diente Microsoft Office Exel 2010.

4.4.15. Kartierung der Kandidatengene

Die Kartierung der Kandidatengene erfolgte anhand der angegebenen Lokalisationen in der Datenbank von Ensembl Genome Browser in Relation zu den Mikrosatelliten.

4.4.16. QTL-Analyse

Die QTL-Analyse wurde mit der Software Windows QTL Cartographer V2.5_011 der North Carolina State University, Raleigh, USA (Wang et al., 2006) durchgeführt.

Dabei wurden drei unterschiedliche Ansätze gewählt. Beim ersten Ansatz wurden nur die Mikrosatelliten-Genotypen in die Analyse miteinbezogen, beim zweiten Ansatz die Mikrosatelliten-Genotypen zusammen mit den SNP-Genotypen und in der dritten Variante wurden die SNP-Genotypen als fixer Effekt berücksichtigt. Die Phänotyp-Scores basierten auf der Phänotypisierung, die in der Klinik für Kleine Wiederkäuer und Schweine, Stiftung Tierärztliche Hochschule Hannover durchgeführt worden ist. Als Analysemethode wurde "Composite Interval Mapping" ausgewählt und als LR (Likelihood Ratio)-Schwellenwert wurde der Wert 5 festgelegt.

5. Ergebnisse

5.1. Gensequenzen

Abbildung 2: Lokalisation der untersuchten Gene auf den Chromosomen 2 und 12

In Abbildung 2 sind die Genloci der untersuchten Gene dargestellt. Abbildung 3 zeigt die sequenzierten Abschnitte jedes Gens. Hinsichtlich des Genes NR3C1 wurde das Exon Nr.5 und ein Abschnitt der 3'-UTR sequenziert. Bezüglich der Gene CD14, RPL38, Grb2, IL-4, IL-5, IL-9, STAT3 und LMNB1 wurde möglichst das gesamte Transkript und Abschnitte des Promotors sequenziert. Die genomischen Sequenzen, die durch die Firma LGC Genomics (Berlin) ermittelt wurden, sind im Anhang angegeben.

Insgesamt wurden 159 PCR-Produkte ausgewertet. 156 Sequenzen konnten für das anschließende Alignment verwendet werden.

Im IL-9-Gen konnten der Promotor und das Exon 1 des Ebers nicht sequenziert werden. Im Grb2-Gen brach die Sequenzierung in der 5'-UTR des Ebers ab. Die Sequenz des Promotors im LMNB1-Gen liegt für den Eber nicht vor. In diesem Gen fehlt ein Abschnitt der 3'-UTR bei den beiden Sauen. Für die genannten Abschnitte konnte kein Alignment zwischen den Rassen durchgeführt werden.

Abbildung 3: Sequenzierte Abschnitte in den untersuchten Genen

Die kodierenden Abschnitte sind als graue Kästchen, die 5'- und 3'-UTR als weiße Kästchen dargestellt. Der Promotor ist jeweils als graue Linie, die Introns als schwarze Linie dargestellt. Die Abschnitte, die sequenziert wurden, sind rot unterstrichen.

Fortsetzung Abbildung 3: Sequenzierte Abschnitte in den untersuchten Genen

Die kodierenden Abschnitte sind als graue Kästchen, die 5'- und 3'-UTR als weiße Kästchen dargestellt. Der Promotor ist jeweils als graue Linie, die Introns als schwarze Linie dargestellt. Die Abschnitte, die sequenziert wurden, sind rot unterstrichen.

5.2. SNPs in den sequenzierten Bereichen

In den sequenzierten Genabschnitten wurden 40 SNPs ermittelt. Die entsprechenden Alignments sind im Anhang angegeben.

5.2.1. CD14

Der aus der Literatur bekannte SNP **rs81218902** war in der untersuchten Tierpopulation monomorph. Alle untersuchten Schweine, einschließlich der Founder-Tiere, wiesen lediglich die Base Cytosin auf. Auch in den sequenzierten Abschnitten konnte kein SNP nachgewiesen werden.

5.2.2. NR3C1

Der aus der Literatur bekannte SNP **rs81219175** konnte bei den F_0 -Tieren nicht bestätigt werden. Beide Ausgangsgruppen wiesen allein die Base Cytosin auf.

Der SNP **rs81509148** trat in der Versuchspopulation als heterozygote Variante auf. Bei den beiden Sauen der Deutschen Landrasse lag homozygot die Base Arginin vor, der Hampshire-Eber war mischerbig (Arginin und Guanin). Der SNP ist in der 3'-UTR lokalisiert.

Im sequenzierten Exon (Nr. 5) konnte ein heterozygoter SNP nachgewiesen werden (**NR3C1_SNP4**). Bei den beiden Sauen lag an Position 1483 (der "coding sequence") homozygot Guanin vor. Der Eber war mit Guanin und Adenin mischerbig. Bei diesem Polymorphismus handelt es sich um einen Basenaustausch an der 2. Position des Tripletts. Der Austausch von Guanin durch Adenin erfolgt die Translation in Glutamin statt Arginin.

Fünf weitere, heterozygote SNPs lagen im Intron (Nr. 4). SNP NR3C1_SNP1 führte zum Austausch zwischen Cytosin und Guanin. Der Eber war mischerbig, beiden Sauen zeigten sich homozygot für Cytosin. Bezüglich SNP NR3C1_SNP2 waren beide Sauen homozygot für Guanin. Der Eber war mischerbig für Guanin und Thymin. Der SNP NR3C1_SNP3 führte zum Austausch zwischen Thymin und Cytosin. Beide Sauen zeigten sich homozygot für Thymin, der Eber war mischerbig. Bezüglich SNP NR3C1_SNP5 wiesen beide Sauen Cytosin auf. Der Eber war heterozygot für Cytosin und Guanin. Der SNP NR3C1_SNP6 führte zu einem Austausch zwischen Guanin und Adenin. Der Polymorphismus trat bei beiden Sauen als homozygote Variante mit Guanin auf. Der Eber war mischerbig.
In Abbildung 4 sowie Tabelle 11 und Tabelle 12 ist die Lokalisation des jeweiligen SNP angegeben.

Abbildung 4: Lokalisation der SNPs im NR3C1-Gen

Die kodierenden Abschnitte sind als graue Kästchen, die 5'- und 3'-UTR als weiße Kästchen dargestellt. Der Promotor ist jeweils als graue Linie, die Introns als schwarze Linie dargestellt.

Tabelle 11: Lokalisation der SNPs im NR3C1-Gen

Gen	SNP	offizielle Nomenklatur	Lokalisation	Gen	iotyp	AS- Austausch	
NR3C1	NR3C1_SNP1	c.1483-453G>C	Intron	GC	CC		
	NR3C1_SNP2	c.1483-395T>G	Intron	TG	GG		
	NR3C1_SNP3	c.1321-338C>T	Intron	СТ	TT		
	NR3C1_SNP4	c.1483G>A	cds	GA	GG	C <u>A</u> G: Gln	C <u>G</u> G: Arg
	NR3C1_SNP5	c.1483-518C>G	Intron	CG	CC		
	NR3C1_SNP6	c.1483-231G>A	Intron	GA	GG		
	rs81509148	c.*2122A>G	3'UTR	AG	AA		

AS: Aminosäuren

Tabelle 12: Lokalisation der gefundenen NR3C1-SNPs in den Datenbanken

					SNP-
Gen	Acc. No.	von	bis	SNP	Position
NR3C1	NW_003299622	151259	47960	NR3C1_SNP1	85853
				NR3C1_SNP2	85911
				NR3C1_SNP3	85968
				NR3C1_SNP4	86556
				NR3C1_SNP5	85788
				NR3C1_SNP6	86075
	CU928713	46000	47000	rs81509148	375

Acc. No.: Accession number

5.2.3. RPL38

Der aus der Literatur bekannte SNP rs81212116 konnte bei den F_0 -Tieren nicht bestätigt werden. Bei beiden Rassen lag an der DNA-Position die Base Adenin vor. Auch an der Position des SNP rs81212119 zeigte sich bei den F_0 -Tieren nur eine Variante (Thymin).

Es wurde ein heterozygoter SNP im Intron (Nr. 1) identifiziert (**SNP RPL38_3b_SNP1**). Der Polymorphismus führte zum Austausch von Cytosin gegen Thymin. Der Eber der Rasse Hampshire zeigte sich homozygot für Cytosin, beide Sauen der Deutschen Landrasse waren mischerbig (Cytosin und Thymin).

Die Lokalisation des SNP ist in Abbildung 5 sowie in Tabelle 13 und Tabelle 14 angegeben.

Abbildung 5: Lokalisation des SNP im RPL38-Gen

Die kodierenden Abschnitte sind als graue Kästchen, die 5'- und 3'-UTR als weiße Kästchen dargestellt. Der Promotor ist jeweils als graue Linie, die Introns als schwarze Linie dargestellt.

Tabelle 13: Lokalisation des SNP im RPL38-Gen

Gen	SNP	offizielle Nomenklatur	Lokalisation	Genotyp	
RPL38	RPL38_3b_SNP1	c.1-83C>T	Intron	CC CT	

Tabelle 14: Lokalisation des gefundenen RPL38-SNPs in den Datenbanken

					SNP-
Gen	Acc. No.	von	bis	SNP	Position
RPL38	esembl.org/Sus_scrofa		1 6107	RPL38_3b_SNP1	559
				•	

Acc. No.: Accession number

5.2.4. Grb2

In den sequenzierten Genabschnitten konnte kein SNP nachgewiesen werden.

5.2.5. IL-4

In den sequenzierten Genabschnitten konnte kein SNP nachgewiesen werden.

5.2.6. IL-5

Es konnten zwei homozygote SNPs in den Introns 1 und 2 nachgewiesen werden. SNP **IL5_1a_SNP1** führte zu einem Austausch von Cytosin gegen Adenin. Der Eber der Rasse Hampshire zeigte sich homozygot für Cytosin, beide Sauen der Deutschen Landrasse waren homozygot für Adenin. Bezüglich SNP IL5_1a_SNP2 zeigte sich der Eber homozygot für Adenin. Bei beiden Sauen war Adenin gegen Cytosin ausgetauscht.

Die Lokalisation beider SNPs ist in Abbildung 6 sowie in Tabelle 15 und Tabelle 16 angegeben.

Abbildung 6: Lokalisation der SNPs im IL-5-Gen

Die kodierenden Abschnitte sind als graue Kästchen, die 5'- und 3'-UTR als weiße Kästchen dargestellt. Der Promotor ist jeweils als graue Linie, die Introns als schwarze Linie dargestellt.

Tabelle 15: Lokalisation der SNPs im IL-5-Gen

Gen	SNP	offizielle Nomenklatur	Lokalisation	sation Genotyp	
IL5	IL5_1a_SNP1	c.144+47C>A	Intron	CC	AA
	IL5_1a_SNP2	c.177+57A>C	Intron	AA	CC

					SNP-
Gen	Acc. No.	von	bis	SNP	Position
IL5	NC_010444	140302000	140303800	IL5_1a_SNP1	346
				IL5_1a_SNP2	592

Tabelle 16: Lokalisation der gefundenen IL5-SNPs in den Datenbanken

Acc. No.: Accession number

5.2.7. IL-9

Im IL-9-Gen wurden zehn SNPs nachgewiesen, von denen zwei Polymorphismen in der "coding sequence" lokalisiert sind: SNP **IL9_1b_SNP1** führte an Position 269 zum Austausch von Cytosin gegen Guanin. Der Eber der Rasse Hampshire zeigte sich homozygot für Cytosin, beide Sauen der Deutschen Landrasse homozygot für Guanin. Der Basenaustausch fand an der 2. Position des Tripletts statt und führte zu einer Translation in Serin statt Threonin. Bezüglich SNP **IL9_1b_SNP2** wies der Eber an der Position 286 die homozygote Variante für Guanin auf. Beide Sauen waren homozygot für Adenin. Es handelt sich um einen Basenaustausch an der 1. Position des Tripletts, der zur Translation in Isoleucin statt Valin führte.

Weitere SNPs sind in den Introns 2 und 4 lokalisiert. SNP **IL9_1a_SNP1** (im Intron Nr. 2) ist ein homozygoter Polymorphismus. Der Eber wies Guanin auf. Bei beiden Sauen lag Adenin an dieser DNA-Position vor. An Position des SNP **IL9_1b_SNP3** (im Intron Nr. 4) trat ein Austausch von Thymin gegen Guanin auf. Der Eber zeigte die homozygote Variante für Thymin. Bei beiden Sauen wurde Guanin in den DNA-Strang eingebaut. Bezüglich SNP **IL9_1b_SNP4** zeigte der Eber die homozygote Variante mit Cytosin. Beide Sauen zeigten sich homozygot für Thymin. Dieser SNP ist in der ncbi-Datenbank bereits als SNP rs81307429 registriert. SNP **IL9_1b_SNP5** ist ebenfalls ein homozygoter Polymorphismus. Der Eber wies Guanin auf, bei beiden Sauen trat Adenin an der entsprechenden DNA-Position auf. SNP **IL9_1b_SNP6** führte zum Austausch von Guanin gegen Thymin. Der Eber zeigte sich homozygot für Guanin, beide Sauen waren homozygot für Thymin. An der Position des SNP **IL9_1b_SNP7** trat beim Eber die homozygote Variante für Cytosin auf. Bei beiden Sauen wurde an der entsprechenden DNA-Position Adenin eingebaut. Der homozygote SNP **IL9_1b_SNP8** trat beim Eber als Cytosin auf. Bei beiden Sauen lag an der entsprechenden DNA-Position Thymin vor. Gleiches gilt für SNP IL9_1b_SNP9.

Die Lokalisation des jeweiligen SNP ist in Abbildung 7 sowie in Tabelle 17 und Tabelle 18 angegeben.

Abbildung 7: Lokalisation der SNPs im IL-9-Gen

Die kodierenden Abschnitte sind als graue Kästchen, die 5'- und 3'-UTR als weiße Kästchen dargestellt. Der Promotor ist jeweils als graue Linie, die Introns als schwarze Linie dargestellt.

Tabelle 17: Lokalisation	ı der SNPs im IL-9-Gen
--------------------------	------------------------

Gen	SNP	offizielle Nomenklatur	Lokalisation	Genotyp		AS- Austausch	
IL9	IL9_1a_SNP1	c.150+30G>A	Intron	GG	AA		
	IL9_1b_SNP1	c.269C>G	cds	CC	GG	A <u>C</u> C: Thr	A <u>G</u> C: Ser
	IL9_1b_SNP2	c.286G>A	cds	GG	AA	<u>G</u> TT: Val	<u>A</u> TT: Ile
	IL9_1b_SNP3	c.315+183T>G	Intron	TT	GG		
	IL9_1b_SNP4	c.315+320C>T	Intron	CC	TT		
	IL9_1b_SNP5	c.315+339G>A	Intron	GG	AA		
	IL9_1b_SNP6	c.315+355G>T	Intron	GG	TT		
	IL9_1b_SNP7	c.315+419C>A	Intron	CC	AA		
	IL9_1b_SNP8	c.315+467C>T	Intron	CC	TT		
	IL9_1b_SNP9	c.315+540C>T	Intron	CC	TT		

AS: Aminosäuren

					SNP-
Gen	Acc. No.	von	bis	SNP	Position
IL9	NC_010444.3	143652500	143648500	IL9_1a_SNP1	878
				IL9_1b_SNP1	2803
				IL9_1b_SNP2	2820
				IL9_1b_SNP3	3032
				IL9_1b_SNP4	3179
				IL9_1b_SNP5	3188
				IL9_1b_SNP6	3204
				IL9_1b_SNP7	3268
				IL9_1b_SNP8	3316
				IL9_1b_SNP9	3389

Tabelle 18:	Lokalisation	der	gefundenen	ILS)-SNPs	in	den	Datenbanken
-------------	--------------	-----	------------	-----	---------------	----	-----	-------------

Acc. No.: Accession number

5.2.8. STAT3

Im STAT3-Gen wurden elf SNPs nachgewiesen.

Ein Polymorphismus befindet sich im Promotor (**STAT3_20_SNP1**). Der Eber der Rasse Hampshire zeigte sich homozygot für Guanin, Sau 173 homozygot für Adenin. Sau 366 war dagegen mischerbig (Guanin und Adenin).

Zwei heterozygote Polymorphismen sind in der "coding sequence" lokalisiert. SNP **STAT3_2l_SNP1** führte zum Austausch von Guanin gegen Adenin. Der Eber zeigte sich homozygot für Guanin, beide Sauen dagegen waren mischerbig. Bezüglich SNP **STAT3_2l_SNP3** wies der Eber Thymin auf. Beide Sauen waren mit Thymin und Cytosin mischerbig. In beiden Fällen fand der Basenaustausch an der 3. Position des Tripletts statt. Daher wurde kein verändertes Protein gebildet (stille Mutation).

In den Introns des Genes wurden acht Polymorphismen nachgewiesen: SNP **STAT3_1e_SNP1** (in Intron Nr. 8) ist ein heterozygoter Polymorphismus. Der Eber zeigte sich homozygot für Adenin, beide Sauen waren mit Adenin und Guanin mischerbig. SNP **STAT3_1e_SNP2** führte zum Austausch von Guanin gegen Adenin. Der Eber zeigte sich homozygot für Guanin. Beide Sauen waren mit Guanin und Adenin mischerbig. Bezüglich SNP **STAT3_1e_SNP3** zeigte sich der Eber homozygot für Adenin. Beide Sauen waren mit Adenin und Cytosin mischerbig. SNP **STAT3_1f_SNP1** (in Intron Nr. 9) führt zum Austausch von Thymin gegen Cytosin. Der Eber wies Thymin auf, beide Sauen waren mischerbig. Gleiches gilt für SNP **STAT3_1f_SNP3**. SNP **STAT3_1f_SNP2** zeigte sich in der Tierpopulation als heterozygote Variante. Der Eber war homozygot für Guanin, beide

Sauen waren mit Guanin und Cytosin mischerbig. **STAT3_2l_SNP2** (im Intron Nr. 20) ist ebenfalls ein heterozygoter Polymorphismus. Der Eber zeigte sich homozygot für Adenin, beide Sauen waren mit Adenin und Guanin mischerbig. SNP **STAT3_2o_SNP2** (im Intron Nr. 1) führte zum Austausch des beim Eber auftretenden Guanins gegen Cytosin bei beiden Sauen.

Die Lokalisation des jeweiligen SNP ist in Abbildung 8 sowie in Tabelle 19 und Tabelle 20 angegeben.

Abbildung 8: Lokalisation der SNPs im STAT3-Gen

Die kodierenden Abschnitte sind als graue Kästchen, die 5'- und 3'-UTR als weiße Kästchen dargestellt. Der Promotor ist jeweils als graue Linie, die Introns als schwarze Linie dargestellt.

Tabelle 19: Lokalisation der SNPs im STAT3-Gen

		offizielle			
Gen	SNP	Nomenklatur	Lokalisation		Genotyp
STAT3	STAT3_1e_SNP1	c.797+45A>G	Intron	AA	AG
	STAT3_1e_SNP2	c.797+59G>A	Intron	GG	GA
	STAT3_1e_SNP3	c.797+158A>C	Intron	AA	AC
	STAT3_1f_SNP1	c.956+34T>C	Intron	TT	TC
	STAT3_1f_SNP2	c.956+35G>C	Intron	GG	GC
	STAT3_1f_SNP3	c.956+114T>C	Intron	TT	TC
	STAT3_21_SNP1	c.2041G>A	cds	GG	GA
	STAT3_21_SNP2	c.1890-4A>G	Intron	AA	AG
	STAT3_21_SNP3	c.1999T>C	cds	TT	TC
	STAT3_2o_SNP1	c33743G>A	Promotor	GG	AA bzw. GA
	STAT3_20_SNP2	c.1-33389G>C	Intron	GG	CC

					SNP-
Gen	Acc. No.	von	bis	SNP	Position
STAT3	NW_003611500	152000	87400	STAT3_1e_SNP1	46243
				STAT3_1e_SNP2	46257
				STAT3_1e_SNP3	46356
				STAT3_1f_SNP1	46882
				STAT3_1f_SNP2	46883
				STAT3_1f_SNP3	46962
				STAT3_21_SNP1	59763
				STAT3_21_SNP2	59608
				STAT3_21_SNP3	59721
				STAT3_20_SNP1	549
				STAT3 20 SNP2	903

Tabelle 20: Lokalisation der gefundenen STAT3-SNPs in den Datenbanken

Acc. No.: Accession number

5.2.9. LMNB1

Im LMNB1-Gen wurden neun heterozygote Polymorphismen nachgewiesen. Davon liegen fünf Polymorphismen im Transkript: SNP LMNB1_2a_SNP1 ist in der 5'-UTR lokalisiert. Der Eber der Rasse Hampshire zeigte sich homozygot für Adenin, beide Sauen der Deutschen Landrasse waren mit Adenin und Guanin mischerbig. SNP LMNB1_2a_SNP2 (in der 5'UTR) führte zum Austausch zwischen Guanin und Adenin. Beim Eber lag homozygot Guanin vor. Beide Sauen waren mischerbig. Gleiches gilt für SNP LMNB1_2a_SNP3.

In der 3'-UTR wurden zwei heterozygote Polymorphismen nachgewiesen: SNP LMNB1_1j_SNP1 führte zu einem Austausch zwischen Guanin und Adenin. Der Eber war mischerbig, beide Sauen zeigten sich homozygot für Guanin. Bezüglich SNP LMNB1_1j_SNP2 trat beim Eber homozygot Guanin auf. Beide Sauen waren mit Guanin und Adenin mischerbig.

In den Introns des Genes liegen vier heterozygote Polymorphismen: SNP LMNB1_1c_SNP1 und LMNB1_2d_SNP1 traten beim Eber als Guanin auf. Beide Sauen waren mit Guanin und Adenin mischerbig. SNP LMNB1_1g_SNP2 führte zum Austausch zwischen Guanin und Cytosin. Der Eber war mischerbig, beide Sauen zeigten sich homozygot für Guanin. Bezüglich SNP LMNB1_1g_SNP3 lag bei beiden Sauen homozygot Guanin vor. Der Eber war mit Guanin und Thymin mischerbig.

Die Lokalisation des jeweiligen SNP ist in Abbildung 9 sowie in Tabelle 21 und Tabelle 22 angegeben.

Abbildung 9: Lokalisation der SNPs im LMNB1-Gen

Die kodierenden Abschnitte sind als schattierte Kästchen, die 5'- und 3'-UTR als weiße Kästchen dargestellt. Der Promotor ist jeweils als blaue Linie, die Introns als schwarze Linie dargestellt.

		offizielle			
Gen	SNP	Nomenklatur	Lokalisation		Genotyp
LMNB1	LMNB1_2a_SNP1	c50A>G	5'UTR	AA	AG
	LMNB1_2a_SNP2	c87G>A	5'UTR	GG	GA
	LMNB1_2a_SNP3	c256G>A	5'UTR	GG	GA
	LMNB1_1c_SNP1	c.813+66G>A	Intron	GG	GA
	LMNB1_2d_SNP1	c.939+22C>T	Intron	GG	GA
	LMNB1_1g_SNP2	c.1491+102G>C	Intron	GC	GG
	LMNB1_1g_SNP3	c.1491+239G>T	Intron	GT	GG
	LMNB1_1j_SNP1	c.*187G>A	3'UTR	GA	GG
	LMNB1_1j_SNP2	c.*284G>A	3'UTR	GG	GA

Tabelle 21: Lokalisation der SNPs im LMNB1-Gen

					SNP-
Gen	Acc. No.	von	bis	SNP	Position
LMNB1	NC_010444	135103000	135105000	LMNB1_2a_SNP1	1355
				LMNB1_2a_SNP2	1318
				LMNB1_2a_SNP3	1149
		135103900	135158940	LMNB1_1c_SNP1	29779
				LMNB1_2d_SNP1	31477
				LMNB1_1g_SNP2	41315
				LMNB1_1g_SNP3	41452
				LMNB1_1j_SNP1	54468
				LMNB1_1j_SNP2	54565

Tabelle 22: Lokalisation der gefundene	n LMNB1-SNPs in den Datenbanken
--	---------------------------------

5.3. Pyrosequenzierung

5.3.1. Auswahl der SNPs für die Pyrosequenzierung

Die ausgewählten SNPs sind in Tabelle 23 grau unterlegt.

Tabelle 23: Auswahl der SNPs für die Pyrosequenzierung

Gen	SNP	offizielle	Lokalisation	Informativität
		Nomenklatur		
RPL38	RPL38_3b_SNP1	c.1-83C>T	*	0
NR3C1	NR3C1_SNP1	c.1483-453G>C	*	0
	NR3C1_SNP2	c.1483-395T>G	*	0
	NR3C1_SNP3	c.1321-338C>T	*	0
	NR3C1_SNP4	c.1483G>A	****	0
	NR3C1_SNP5	c.1483-518C>G	*	0
	NR3C1_SNP6	c.1483-231G>A	*	0
	rs81509148	c.*2122A>G	****	0
IL-9	IL9_1a_SNP1	c.150+30G>A	*	000
	IL9_1b_SNP1	c.269C>G	****	000
	IL9_1b_SNP2	c.286G>A	****	000
	IL9_1b_SNP3	c.315+183T>G	*	000
	IL9_1b_SNP4	c.315+320C>T	*	000
	IL9_1b_SNP5	c.315+339G>A	*	000
	IL9_1b_SNP6	c.315+355G>T	*	000
	IL9_1b_SNP7	c.315+419C>A	*	000
	IL9_1b_SNP8	c.315+467C>T	*	000
	IL9_1b_SNP9	c.315+540C>T	*	000
IL-5	IL5_1a_SNP1	c.144+47C>A	*	000
	IL5_1a_SNP2	c.177+57A>C	*	000
STAT3	STAT3_1e_SNP1	c.797+45A>G	*	0
	STAT3_1e_SNP2	c.797+59G>A	*	0
	STAT3_1e_SNP3	c.797+158A>C	*	0
	STAT3_1f_SNP1	c.956+34T>C	*	0
	STAT3_1f_SNP2	c.956+35G>C	*	0
	STAT3_1f_SNP3	c.956+114T>C	*	0
	STAT3_21_SNP1	c.2041G>A	**	0
	STAT3_21_SNP2	c.1890-4A>G	*	0
	STAT3_21_SNP3	c.1999T>C	**	0
	STAT3_2o_SNP1	c33743G>A	***	00
	STAT3_20_SNP2	c.1-33389G>C	*	000
LMNB1	LMNB1_2a_SNP1	c50A>G	****	0
	LMNB1_2a_SNP2	c87G>A	****	0
	LMNB1_2a_SNP3	c256G>A	****	0

Gen	SNP	offizielle	Lokalisation	Informativität
		Nomenklatur		
	LMNB1_1c_SNP1	c.813+66G>A	*	0
	LMNB1_2d_SNP1	c.939+22C>T	*	0
	LMNB1_1g_SNP2	c.1491+102G>C	*	0
	LMNB1_1g_SNP3	c.1491+239G>T	*	0
	LMNB1_1j_SNP1	c.*187G>A	****	0
	LMNB1_1j_SNP2	c.*284G>A	****	0

bp: Basenpaar

Aus dem NR3C1-Gen wurden SNP **NR3C1 c.1483G>A** und SNP **rs81509148** (an Position c.*2122) ausgewählt. Bei beiden SNPs wurden in der anschließenden QTL-Analyse 57 F₂-Tiere berücksichtigt. Bezüglich SNP **RPL38 c.1-83C>T** waren 66 F₂-Tiere verfügbar. Aus dem IL-9-Gen wurden die Polymorphismen **IL-9 c.269C>G** und **IL-9 c.286G>A**, aus dem IL5-Gen **IL-5 c.144+47C>A** ausgewählt. Bei allen SNPs wurden alle 170 F₂-Tiere in der QTL-Analyse berücksichtigt. Bezüglich SNP **STAT3 c.-33743G>A** konnten für die QTL-Analyse nur F₂-Tiere verwendet werden, die von heterozygoten F₁-Tieren abstammen. Die Sequenzierung der F₁-Tiere ergab, dass die F₂-Tiere ausgeschlossen werden mussten, die von Tier F₁-121 abstammen (Tabelle 24). Somit standen 147 F₂-Tiere zur Verfügung.

Tiernummer	Base 1	Base 2	Geschlecht
Eber	G	G	m
Sau366	А	А	W
Sau173	Α	G	W
F1 104	А	G	m
F1 105	А	G	m
F1 107	А	G	W
F1 108	А	G	W
F1 109	А	G	W
F1 111	А	G	W
F1 112	А	G	W
F1 115	А	G	W
F1 116	А	G	W
F1 117	А	G	W
F1 121	G	G	W

Tabelle 24: Genotypen der F₁-Generation, SNP STAT3 c.-33743G>A

m: männlich, w: weiblich

Im LMNB1-Gen waren alle nachgewiesenen Polymorphismen heterozygot. Um möglichst viele F_2 -Tiere in die QTL-Analyse einfließen zu lassen, wurden die Genotypen der F_1 -Tiere miteinander verglichen (Tabelle 25 und Tabelle 26). Da im Fall von SNP LMNB1 c.-50A>G, LMNB1 c.-87G>A, LMNB1 c.-256G>A und LMNB1 c.*284G>A beide männlichen Tiere (F_1 -104 und F_1 -105) homozygot waren, standen keine F_2 -Tiere für die Pyrosequenzierung zur Verfügung. Bei SNP LMNB1 c.*187G>A hätten F_2 -Tiere verwendet werden können, die aus der Verpaarung des Ebers F1-105 mit den Sauen F1-111 und F1-112 entstanden waren (Tabelle 26). Da die Versuchspopulation aus neun Tieren bestanden hätte, wurde wegen der geringen Aussagekraft auf die Verwendung dieser Genvariante verzichtet.

Tiernummer	LMNB1 c50A>G		LMNB1 c87G>A		LMNB1 c256G>A		Geschlecht
	Base 1	Base 2	Base 1	Base 2	Base 1	Base 2	
Eber	А	А	С	С	С	С	m
Sau366	А	G	С	Т	С	Т	w
Sau173	А	G	С	Т	С	Т	W
F1 104	Α	Α	С	С	С	С	m
F1 105	Α	Α	С	С	С	С	m
F1 107	А	G	С	Т	С	Т	W
F1 108	А	А	С	С	С	С	w
F1 109	А	G	С	Т	С	Т	w
F1 111	А	G	С	Т	С	Т	w
F1 112	А	G	С	Т	С	Т	w
F1 115	А	G	С	Т	С	Т	w
F1 116	А	G	С	Т	С	Т	w
F1 117	А	А	С	С	С	С	W
F1 121	А	G	С	Т	С	Т	W

Tabelle 25: Genotypen der F₁-Generation, SNPs in der 5'-UTR des LMNB1-Gens

m: männlich; w: weiblich

Tiernummer	LMNB1 c.*187G>A		LMNB1 c	*284G>A	Geschlecht
	Base 1	Base 2	Base 1	Base 2	
Eber	G	А	G	G	m
Sau366	G	G	G	А	W
Sau173	G	G	G	А	W
F1 104	G	G	G	G	m
F1 105	G	Α	G	G	m
F1 107	G	G	G	А	W
F1 108	G	G	G	G	W
F1 109	G	G	G	А	W
F1 111	G	А	G	А	W
F1 112	G	А	G	А	W
F1 115	G	G	G	А	W
F1 116	G	G	G	А	W
F1 117	G	G	G	G	W
F1 121	G	G	G	А	W

Tabelle 26: Genotypen der F₁-Generation, SNPs in der 3'-UTR des LMNB1-Gens

m: männlich; w: weiblich

Alternativ wurden die Genotypen der F_1 -Tiere aufgrund der vier SNPs in den Introns verglichen (Tabelle 27). Im Fall von SNP **LMNB1 c.813+66G>A** und **LMNB1 c.939+22C>T** waren beide männlichen F_1 -Tiere homozygot, sodass keine F_2 -Tiere für die QTL-Analyse zur Verfügung standen. Bei SNP **LMNB1 c.1491+102G>C** und **LMNB1 c.1491+239G>T** hätte die F_2 -Versuchsgruppe aus nur neun Tieren bestanden. Daher wurde auch bei diesen beiden SNPs auf die Pyrosequenzierung verzichtet.

	LMNB1		LMNB	1	LMNB1		LMNB1		G
Tiernummer	c.813+6	6G>A	c.939+2	2C>T	c.1491+1	02G>C	c.1491+2	239G>T	
	Base 1	Base 2	Base 1	Base 2	Base 1	Base 2	Base 1	Base 2	
Eber	G	G	С	С	G	С	G	Т	m
Sau366	G	А	С	Т	G	G	G	G	W
Sau173	G	А	С	Т	G	G	G	G	W
F1 104	G	G	С	С	G	G	G	G	m
F1 105	G	G	С	С	G	С	G	Т	m
F1 107	G	G	С	Т	G	G	G	G	W
F1 108	G	G	С	С	G	G	G	G	W
F1 109	G	А							W
F1 111	G	А	С	Т	G	С	G	Т	W
F1 112	G	А	С	Т	G	С	G	Т	W
F1 115	G	А	С	Т	G	G	G	G	W
F1 116	G	А	С	Т	G	G	G	G	W
F1 117	G	G	С	С	G	G	G	G	W
F1 121	G	А	С	Т	G	G	G	G	W

Tabelle 27: Genotypen der F₁-Generation, SNPs in den Introns des LMNB1-Gens

G: Geschlecht; m: männlich; w: weiblich

5.3.2. Genotyp-Verteilung in der F₂-Generation

Die ermittelten Genotypen der F_0 -, F_1 - und F_2 -Tiere für jeden verwendeten SNP sind im Anhang angegeben.

Tabelle 28 stellt die relative Verteilung der Genotypen in der F₂-Generation dar.

SNP	Genotyp-	Verteilung (i	n Prozent)	Anzahl der Tiere
RPL38 c.1-83C>T	GG	GA	AA	
	28,79	45,45	25,76	66
NR3C1 c.1483G>A	CC	СТ	TT	
	35,3	64,7	0	57
rs81509148	TT	TC	CC	
	34,1	59,4	6,5	57
IL-9 c.269C>G	GG	GA	AA	
	17,6	54,1	28,3	170
IL-9 c.286G>A	AA	AG	GG	
	18,8	53,5	27,7	170
IL-5 c.144+47C>A	CC	CA	AA	
	27,1	52,9	20	170
STAT3 c.33743G>A	AA	AG	GG	
	32	44,9	23,1	147

5.4 Assoziation zwischen Phänotyp und SNP in der F2-Generation

Tabelle 29 zeigt eine deutliche Differenzierung zwischen den Genotypen des SNP rs81509148 (an Position c.*2122 im NR3C1-Gen) und den Phänotypen der F₂-Generation. Mit Ausnahme des Phänotyps "Sonographiescore 0 days post infectionem" lagen die Mittelwerte des homozygoten Genotyps "G/G" deutlich über denen des heterozygoten Genotyps "A/G" und des homozygoten Genotyps "G/G". Der Genotyp "A/A" trat bei den Sauen der Deutschen Landrasse, der heterozygote Genotyp bei dem Eber der Rasse Hampshire auf. Zu beachten ist, dass eine hohe Standardabweichung vorlag und nicht alle Phänotypen signifikant ($p \le 0,05$) beeinflusst wurden.

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	95%-Konfidenzintervall		р
					Untergrenze	Obergrenze	
Infektionstod	AA	58	0,02	0,017	-0,02	0,05	0,083
	AG	100	0,05	0,022	0,01	0,09	
	GG	12	0,17	0,112	-0,08	0,41	
Sektions-Score (Se)	AA	57	6,5125	0,94924	4,6109	8,414	0,013
	AG	100	10,4518	1,03607	8,396	12,5076	
	GG	12	13,9358	3,99522	5,1424	22,7293	
Reisolierungs-Score (RI)	AA	57	8,32	0,995	6,32	10,31	0,389
	AG	100	9,76	0,757	8,26	11,26	
	GG	12	11,08	2,909	4,68	17,49	
Se+RI	AA	57	14,8282	1,76836	11,2858	18,3707	0,055
	AG	100	20,2118	1,67583	16,8866	23,537	
	GG	12	25,0192	6,83098	9,9843	40,0541	
Sonographie-Score 0dpi	AA	57	0,12	0,056	0,01	0,24	0,618
	AG	100	0,13	0,046	0,04	0,22	
	GG	12	0	0	0	0	
Sonographie-Score 7 dpi	AA	57	21,61	4,897	11,8	31,42	0,309
	AG	100	29,02	5,042	19,02	39,02	
	GG	12	44,17	21,375	-2,88	91,21	
Klinischer Score 7 dpi	AA	57	0,56309	0,096051	0,37067	0,7555	0,016
	AG	100	2,79486	0,759681	1,28749	4,30223	
	GG	12	6,21392	3,648593	-1,81658	14,24442	
Röntgen-Score 7 dpi	AA	57	5,3	1,029	3,24	7,36	0,03
	AG	99	9,35	1,286	6,8	11,91	
	GG	12	13,92	5,279	2,3	25,54	
RHS	AA	57	4,13861	0,866669	2,40247	5,87476	0,086
	AG	100	7,49844	1,52241	4,47765	10,51923	
	GG	12	13,27913	7,012217	-2,15466	28,71291	

Tabelle 29: Assoziation der Genotypen, SNP rs81509148

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	95%-Konfide	enzintervall	р
					Untergrenze	Obergrenze	
KSges 1 dpi	AA	57	0,19825	0,042759	0,11259	0,2839	0,016
	AG	100	0,57797	0,100424	0,37871	0,77723	
	GG	12	0,73892	0,346127	-0,0229	1,50074	
KSges 2 dpi	AA	57	0,32453	0,076069	0,17214	0,47691	0,017
	AG	100	0,98331	0,195827	0,59475	1,37187	
	GG	12	1,66392	0,88927	-0,29335	3,62119	
KSges 3 dpi	AA	57	0,39761	0,081295	0,23476	0,56047	0,017
	AG	100	1,33664	0,299165	0,74303	1,93025	
	GG	12	2,55558	1,441608	-0,61738	5,72854	
KSges 4 dpi	AA	57	0,44789	0,085183	0,27725	0,61854	0,017
	AG	100	1,72131	0,410517	0,90675	2,53587	
	GG	12	3,43333	1,997621	-0,9634	7,83007	
KSges 5 dpi	AA	57	0,4894	0,088276	0,31257	0,66624	0,017
	AG	100	2,1222	0,531307	1,06797	3,17643	
	GG	12	4,33892	2,55017	-1,27397	9,9518	
KSges 6 dpi	AA	57	0,52625	0,093217	0,33951	0,71298	0,016
	AG	100	2,46253	0,644471	1,18376	3,7413	
	GG	12	5,28058	3,098623	-1,53944	12,10061	
KSges 7 dpi	AA	57	0,56309	0,096051	0,37067	0,7555	0,016
	AG	100	2,79486	0,759681	1,28749	4,30223	
	GG	12	6,21392	3,648593	-1,81658	14,24442	
LOH	AA	58	0,483	0,0491	0,384	0,581	0,792
	AG	100	0,52	0,0362	0,448	0,592	
	GG	12	0,542	0,13	0,256	0,828	

 $p \le 0,05$ (signifikant), $p \le 0,01$ (sehr signifikant), $p \le 0,001$ (hoch signifikant); p: Signifikanz; n: Anzahl der Schweine; dpi: days post infectionem; RHS: Respiratory Health Score; KS: Klinischer Score; ges: gesamt; LOH: Low or High

Messgröße Infektionstod: überlebt = 0, verendet = 1; Messgröße LOH: die Quartile mit den niedrigsten RHS-Werten = 0, die Quartile mit den höchsten RHS-Werten = 1

Der Kruskal-Wallis-Test ergab, dass die Verteilung von Klinischem Score, Röntgenscore 7 dpi, KS_{ges} 1 dpi, KS_{ges} 2 dpi, KS_{ges} 3 dpi, KS_{ges} 4 dpi, KS_{ges} 5 dpi, KS_{ges} 6 dpi und KS_{ges} 7 dpi über den Kategorien von SNP rs81509148 nicht gleich waren und somit die Mittelwertunterschiede zwischen den Genotypen signifikant (p \leq 0,05) waren.

Die Tabellen 30-35 zeigen die Assoziation der Genotypen aller weiteren untersuchten SNPs.

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	ler 95%-Konfidenzintervall		р
					Untergrenze	Obergrenze	
Infektionstod	GG	60	0,02	0,017	-0,02	0,05	0,169
	GA	110	0,06	0,023	0,02	0,11	
Sektions-Score (Se)	GG	59	6,3453	0,92503	4,4936	8,1969	0,003
	GA	110	10,9932	1,02858	8,9546	13,0318	
Reisolierungs-Score (RI)	GG	59	8,2	0,965	6,27	10,14	0,153
	GA	110	9,99	0,75	8,5	11,48	
Se+RI	GG	59	14,5486	1,72129	11,1031	17,9942	0,015
	GA	110	20,9841	1,67842	17,6575	24,3107	
Sonographie-Score 0 dpi	GG	59	0,12	0,055	0,01	0,23	0,995
	GA	110	0,12	0,042	0,03	0,2	
Sonographie-Score 7 dpi	GG	59	21,03	4,748	11,53	30,54	0,198
	GA	110	31,12	5,109	20,99	41,24	
Klinischer Score 7 dpi	GG	59	0,55417	0,093103	0,3678	0,74054	0,016
	GA	110	3,21321	0,795062	1,63742	4,789	
Röntgen-Score 7 dpi	GG	59	5,25	0,999	3,25	7,25	0,015
	GA	109	9,95	1,298	7,38	12,53	
RHS	GG	59	4,03343	0,840586	2,35081	5,71605	0,061
	GA	110	8,24656	1,573612	5,12772	11,36541	
KSges 1 dpi	GG	59	0,19322	0,041465	0,11022	0,27622	0,003
	GA	110	0,60513	0,098073	0,41075	0,7995	
KSges 2 dpi	GG	59	0,31522	0,073767	0,16756	0,46288	0,008
	GA	110	1,07453	0,201523	0,67512	1,47394	
KSges 3 dpi	GG	59	0,38753	0,078833	0,22972	0,54533	0,011
	GA	110	1,4921	0,312712	0,87232	2,11188	
KSges 4 dpi	GG	59	0,4378	0,082584	0,27249	0,60311	0,012
	GA	110	1,93665	0,430321	1,08376	2,78953	
KSges 5 dpi	GG	59	0,47959	0,085569	0,30831	0,65088	0,013
	GA	110	2,39897	0,555225	1,29854	3,49941	
KSges 6 dpi	GG	59	0,51688	0,090342	0,33604	0,69772	0,014
	GA	110	2,81018	0,67429	1,47376	4,1466	
KSges 7 dpi	GG	59	0,55417	0,093103	0,3678	0,74054	0,016
	GA	110	3,21321	0,795062	1,63742	4,789	
LOH	GG	60	0,475	0,0482	0,379	0,571	0,381
	GA	110	0,527	0,0353	0,457	0,597	

Tabelle 30: Assoziation der Genotypen, SNP NR3C1 c.1483G>A

 $p \le 0.05$ (signifikant), $p \le 0.01$ (sehr signifikant), $p \le 0.001$ (hoch signifikant); p: Signifikanz;

n: Anzahl der Schweine; dpi: days post infectionem; RHS: Respiratory Health Score; KS: Klinischer Score; ges: gesamt; LOH: Low or High

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	95%-Konfidenzintervall		р
					Untergrenze	Obergrenze	
Infektionstod	CC	46	0	0	0	0	0,21
	CA	90	0,07	0,026	0,01	0,12	
	AA	34	0,06	0,041	-0,02	0,14	
Sektions-Score (Se)	CC	46	9,2165	1,50766	6,1799	12,2531	0,76
	CA	90	9,8247	1,04628	7,7457	11,9036	
	CC	33	8,3467	1,66144	4,9624	11,7309	
Reisolierungs-Score (RI)	CC	46	9,26	1,141	6,96	11,56	0,837
	CA	90	9,66	0,8	8,07	11,25	
	CC	33	8,73	1,447	5,78	11,68	
Sonographie-Score 0 dpi	CC	46	0,15	0,076	0	0,31	0,65
	CA	90	0,12	0,047	0,03	0,22	
	CC	33	0,06	0,042	-0,03	0,15	
Sonographie-Score 7 dpi	CC	46	21,24	5,377	10,41	32,07	0,581
	CA	90	29,79	5,639	18,58	40,99	
	AA	33	30,48	8,534	13,1	47,87	
Klinischer Score 7 dpi	CC	46	1,29998	0,533625	0,2252	2,37475	0,322
	CA	90	3,02168	0,889351	1,25456	4,7888	
	CC	33	1,64845	0,896431	-0,17751	3,47442	
Röntgen-Score 7 dpi	CC	46	7,76	1,512	4,72	10,81	0,834
	CA	89	8,83	1,38	6,09	11,57	
	AA	33	7,64	2,042	3,48	11,8	
RHS	CC	46	4,77793	1,351774	2,05532	7,50054	0,483
	CA	90	7,8426	1,730344	4,40445	11,28076	
	AA	33	6,65076	2,118231	2,33607	10,96546	
KSges 1 dpi	CC	46	0,34633	0,074186	0,19691	0,49574	0,148
	CA	90	0,58297	0,115918	0,35264	0,81329	
	AA	33	0,28988	0,074044	0,13906	0,4407	
KSges 2 dpi	CC	46	0,52678	0,110359	0,30451	0,74906	0,121
	CA	90	1,07146	0,240393	0,5938	1,54911	
	AA	33	0,48888	0,157958	0,16713	0,81063	
KSges 3 dpi	CC	46	0,62967	0,134167	0,35945	0,8999	0,162
	CA	90	1,47811	0,367234	0,74843	2,2078	
	AA	33	0,75758	0,301836	0,14276	1,3724	
KSges 4 dpi	CC	46	0,81083	0,223836	0,36	1,26166	0,233
	CA	90	1,86737	0,495997	0,88183	2,8529	
	AA	33	1,01515	0,451335	0,09581	1,93449	
KSges 5 dpi	CC	46	0,9775	0,324196	0,32454	1,63046	0,256
	CA	90	2,29466	0,632455	1,03798	3,55133	
	AA	33	1,2333	0,598534	0,01413	2,45248	
KSges 6 dpi	CC	46	1,14635	0,427412	0,2855	2,0072	0,293
	CA	90	2,66094	0,760296	1,15025	4,17164	, -
	AA	33	1,43633	0,747286	-0,08584	2,95851	

Tabelle 31: Assoziation der Genotypen, SNP IL5 c.144+47C>A

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	95%-Konfide	enzintervall	р
					Untergrenze	Obergrenze	
KSges 7 dpi	CC	46	1,29998	0,533625	0,2252	2,37475	0,322
	CA	90	3,02168	0,889351	1,25456	4,7888	
	AA	33	1,64845	0,896431	-0,17751	3,47442	
LOH	CC	46	0,511	0,0549	0,4	0,621	0,788
	CA	90	0,522	0,0386	0,445	0,599	
	AA	34	0,471	0,0666	0,335	0,606	

 $p \le 0.05$ (signifikant), $p \le 0.01$ (sehr signifikant), $p \le 0.001$ (hoch signifikant); p: Signifikanz;

n: Anzahl der Schweine; dpi: days post infectionem; RHS: Respiratory Health Score; KS: Klinischer Score; ges: gesamt; LOH: Low or High

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	95%-Konfiden	zintervall	р
					Untergrenze	Obergrenze	
Infektionstod	GG	30	0	0	0	0	0,339
	GC	92	0,07	0,026	0,01	0,12	
	CC	48	0,04	0,029	-0,02	0,1	
Sektions-Score (Se)	GG	30	7,2423	1,50869	4,1567	10,3279	0,43
	GC	91	9,8987	1,04564	7,8213	11,976	
	CC	48	9,6994	1,53873	6,6038	12,7949	
Reisolierungs-Score							
(RI)	GG	30	8,8	1,398	5,94	11,66	0,845
	GC	91	9,31	0,791	7,74	10,88	
	CC	48	9,83	1,194	7,43	12,24	
Sonographie-Score		_					
0 dpi	GG	30	0,03	0,033	-0,03	0,1	0,17
	GC	91	0,18	0,055	0,07	0,29	
	CC	48	0,06	0,046	-0,03	0,16	
Sonographie-Score	00	20	22.1	C 105	0.45	24.75	0 702
/ dpi	GG	30	22,1	6,185	9,45	34,75	0,793
	GC	91	28,77	5,381	18,08	39,46	
	CC	48	28,81	7,369	13,99	43,64	
Klinischer Score 7 dpi	GG	30	0,57887	0,113303	0,34714	0,8106	0,324
	GC	91	2,65915	0,798886	1,07203	4,24628	
	CC	48	2,64167	1,06024	0,50874	4,77459	
Röntgen-Score 7 dpi	GG	30	5,9	1,473	2,89	8,91	0,465
	GC	90	8,61	1,312	6	11,22	
	CC	48	9,23	1,908	5,39	13,07	
RHS	GG	30	4,23463	1,096943	1,99114	6,47813	0,55
	GC	91	7,3274	1,5918	4,16501	10,48979	
	CC	48	7,31796	2,183456	2,92541	11,7105	

Tabelle 32: Assoziation der Genotypen, SNP IL9 c.269C>G

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	95%-Konfide	enzintervall	р
					Untergrenze	Obergrenze	
KS _{ges} 1 dpi	GG	30	0,20557	0,054794	0,0935	0,31763	0,193
	GC	91	0,53771	0,107507	0,32413	0,7513	
	CC	48	0,47635	0,111301	0,25244	0,70026	
KSges 2 dpi	GG	30	0,28557	0,068257	0,14596	0,42517	0,193
	GC	91	0,9582	0,214047	0,53296	1,38344	
	CC	48	0,85485	0,247379	0,35719	1,35252	
KSges 3 dpi	GG	30	0,36333	0,07248	0,2151	0,51157	0,24
	GC	91	1,32779	0,326844	0,67846	1,97712	
	CC	48	1,15138	0,388214	0,37039	1,93236	
KSges 4 dpi	GG	30	0,43553	0,08726	0,25707	0,614	0,28
	GC	91	1,67248	0,442666	0,79305	2,55192	
	CC	48	1,53331	0,550189	0,42648	2,64015	
KSges 5 dpi	GG	30	0,4944	0,096072	0,29791	0,69089	0,297
	GC	91	2,04049	0,567313	0,91343	3,16756	
	CC	48	1,90971	0,717895	0,46549	3,35393	
KSges 6 dpi	GG	30	0,5333	0,105873	0,31677	0,74983	0,31
	GC	91	2,35037	0,682406	0,99466	3,70609	
	CC	48	2,2861	0,88778	0,50012	4,07209	
KSges 7 dpi	GG	30	0,57887	0,113303	0,34714	0,8106	0,324
	GC	91	2,65915	0,798886	1,07203	4,24628	
	CC	48	2,64167	1,06024	0,50874	4,77459	
LOH	GG	30	0,5	0,0678	0,361	0,639	0,769
	GC	92	0,495	0,0398	0,416	0,574	
	CC	48	0,542	0,0512	0,439	0,645	

 $p \le 0,05$ (signifikant), $p \le 0,01$ (sehr signifikant), $p \le 0,001$ (hoch signifikant); p: Signifikanz; n: Anzahl der Schweine; dpi: days post infectionem; RHS: Respiratory Health Score; KS: Klinischer Score; ges: gesamt; LOH: Low or High

Tabelle 33: Assoziation der	Genotypen, SNP	IL9 c.286G>A
-----------------------------	----------------	--------------

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	95%-Konfide	enzintervall	р
					Untergrenze	Obergrenze	
Infektionstod	AA	32	0	0	0	0	0,317
	AG	91	0,07	0,026	0,01	0,12	
	GG	47	0,04	0,03	-0,02	0,1	
Sektions-Score (Se)	AA	32	7,3156	1,42022	4,4191	10,2122	0,41
	AG	90	10,0339	1,05955	7,9286	12,1392	
	GG	47	9,4994	1,56187	6,3555	12,6432	

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	95%-Konfide	enzintervall	р
					Untergrenze	Obergrenze	
Reisolierungs-Score (RI)	AA	32	8,75	1,358	5,98	11,52	0,878
	AG	90	9,46	0,805	7,86	11,06	
	GG	47	9,62	1,183	7,24	12	
Sonographie-Score 0 dpi	AA	32	0,03	0,031	-0,03	0,09	0,156
	AG	90	0,18	0,056	0,07	0,29	
	GG	47	0,06	0,047	-0,03	0,16	
Songraphie-Score 7 dpi	AA	32	21,13	5,837	9,22	33,03	0,698
	AG	90	29,56	5,441	18,74	40,37	
	GG	47	28,26	7,493	13,17	43,34	
Klinischer Score 7 dpi	AA	32	0,59059	0,111848	0,36248	0,81871	0,3
	AG	90	2,70278	0,806997	1,09929	4,30626	
	GG	47	2,6383	1,083476	0,45737	4,81922	
Röntgen-Score 7 dpi	AA	32	5,78	1,393	2,94	8,62	0,419
	AG	89	8,82	1,331	6,17	11,47	
	GG	47	9,04	1,93	5,16	12,93	
RHS	AA	32	4,0833	1,0353	1,97179	6,19481	0,48
	AG	90	7,5	1,60792	4,3051	10,6949	
	GG	47	7,22188	2,227669	2,73782	11,70595	
KSges 1 dpi	AA	32	0,21875	0,055381	0,1058	0,3317	0,171
	AG	90	0,55554	0,1092	0,33857	0,77252	
	GG	47	0,44606	0,110651	0,22333	0,66879	
KSges 2 dpi	AA	32	0,30313	0,069873	0,16062	0,44563	0,177
	AG	90	0,98181	0,216293	0,55204	1,41158	
	GG	47	0,82411	0,251943	0,31697	1,33124	
KSges 3 dpi	AA	32	0,37916	0,074126	0,22798	0,53034	0,219
	AG	90	1,35551	0,330106	0,6996	2,01142	
	GG	47	1,12481	0,396436	0,32682	1,92279	
KSges 4 dpi	AA	32	0,44684	0,086637	0,27015	0,62354	0,255
	AG	90	1,70514	0,447085	0,8168	2,59349	
	GG	47	1,51274	0,562195	0,38111	2,64438	
KSges 5 dpi	AA	32	0,50516	0,095112	0,31117	0,69914	0,272
	AG	90	2,07724	0,573005	0,9387	3,21579	
	GG	47	1,89502	0,733647	0,41827	3,37178	
KSges 6 dpi	AA	32	0,54475	0,104542	0,33154	0,75796	0,286
	AG	90	2,39168	0,689273	1,02211	3,76125	
	GG	47	2,27517	0,907329	0,44881	4,10153	
KSges 7 dpi	AA	32	0,59059	0,111848	0,36248	0,81871	0,3
	AG	90	2,70278	0,806997	1,09929	4,30626	
	GG	47	2,6383	1,083476	0,45737	4,81922	
LOH	AA	32	0,5	0,0674	0,363	0,637	0,883
	AG	91	0,5	0,0398	0,421	0,579	
	GG	47	0,532	0,0514	0,429	0,635	

 $p \le 0.05$ (signifikant), $p \le 0.01$ (sehr signifikant), $p \le 0.001$ (hoch signifikant); p: Signifikanz;

n: Anzahl der Schweine; dpi: days post infection; RHS: Respiratory Health Score; KS: Klinischer Score; ges: gesamt; LOH: Low or High

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	er 95%-Konfidenzintervall		р
					Untergrenze	Obergrenze	
Infektionstod	AA	18	0,11	0,076	-0,05	0,27	0,468
	AG	29	0,17	0,071	0,03	0,32	
	GG	19	0,05	0,053	-0,06	0,16	
Sektions-Score (Se)	AA	18	8,545	2,41685	3,4459	13,6441	0,52
	AG	28	12,4357	2,11449	8,0971	16,7743	
	GG	19	11,3163	2,82089	5,3898	17,2428	
Reisolierungs-Score (RI)	AA	18	8,06	1,792	4,27	11,84	0,397
	AG	28	11,39	1,619	8,07	14,72	
	GG	19	9,37	1,951	5,27	13,47	
Sonographie-Score 0 dpi	AA	18	0,11	0,076	-0,05	0,27	0,486
	AG	28	0,32	0,137	0,04	0,6	
	GG	19	0,21	0,123	-0,05	0,47	
Sonographie-Score 7 dpi	AA	18	38,61	15,051	6,86	70,37	0,428
	AG	28	51,07	13,281	23,82	78,32	
	GG	19	26,74	11,117	3,38	50,09	
Klinischer Score 7 dpi	AA	18	5,12172	2,591415	-0,34569	10,58913	0,489
	AG	28	5,82864	2,146065	1,42528	10,232	
	GG	19	2,24216	1,722141	-1,37593	5,86024	
Röntgen-Score 7 dpi	AA	18	10,83	3,974	2,45	19,22	0,555
	AG	28	14,04	3,185	7,5	20,57	
	GG	18	8,94	3,157	2,28	15,6	
RHS	AA	18	11,31302	4,90599	0,96228	21,66375	0,452
	AG	28	14,06299	4,162033	5,52321	22,60278	
	GG	19	6,59153	3,399883	-0,55136	13,73442	
KSges 1 dpi	AA	18	0,99633	0,365307	0,2256	1,76706	0,159
	AG	28	1,00004	0,242417	0,50264	1,49744	
	GG	19	0,34216	0,167794	-0,01036	0,69468	
KSges 2 dpi	AA	18	1,80928	0,715763	0,29915	3,31941	0,287
	AG	28	1,86436	0,522219	0,79285	2,93586	
	GG	19	0,70532	0,422544	-0,18242	1,59305	
KSges 3 dpi	AA	18	2,48706	1,083412	0,20126	4,77286	0,378
	AG	28	2,66675	0,835463	0,95252	4,38098	
	GG	19	1,03163	0,680133	-0,39728	2,46054	
KSges 4 dpi	AA	18	3,14078	1,450075	0,08139	6,20017	0,417
	AG	28	3,51796	1,157764	1,14243	5,8935	
	GG	19	1 35795	0 939014	-0 61485	3 33074	

Tabelle 34: Assoziation der Genotypen, SNP STAT3 c. -33743G>A

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	95%-Konfide	nzintervall	p
					Untergrenze	Obergrenze	
KS _{ges} 5 dpi	AA	18	3,98839	1,872031	0,03875	7,93803	0,435
	AG	28	4,32271	1,483503	1,27882	7,36661	
	GG	19	1,65268	1,199848	-0,8681	4,17347	
KS _{ges} 6 dpi	AA	18	4,56061	2,226819	-0,13757	-0,13757 9,25879	
	AG	28	5,08461	1,813466	1,36368	8,80553	
	GG	19	1,95795	1,460463	-1,11037	5,02627	
KSges 7 dpi	AA	18	5,12172	2,591415	-0,34569	10,58913	0,489
	AG	28	5,82864	2,146065	1,42528	10,232	
	GG	19	2,24216	1,722141	-1,37593	5,86024	
LOH	AA	18	0,417	0,1011	0,203	0,63	0,378
	AG	29	0,569	0,069	0,428	0,71	
	GG	19	0,447	0,0928	0,252	0,642	

 $p \le 0.05$ (signifikant), $p \le 0.01$ (sehr signifikant), $p \le 0.001$ (hoch signifikant); p: Signifikanz;

n: Anzahl der Schweine; dpi: days post infectionem; RHS: Respiratory Health Score; KS: Klinischer Score; ges: gesamt; LOH: Low or High

Tabelle 35:	Assoziation	der	Genotypen.	SNP	RPL38	c. 1	-83C>	T
rabene 55.	110002101011	uci	Genotypen,		MI 1150	U . I	-050/	

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	95%-Konfide	enzintervall	р
					Untergrenze	Obergrenze	
Infektionstod	CC	19	0,11	0,072	-0,05	0,26	0,548
	СТ	30	0,17	0,069	0,03	0,31	
	TT	17	0,06	0,059	-0,07	0,18	
Sektions-Score (Se)	CC	19	11,3789	2,9925	5,0919	17,666	0,84
	CT	29	11,6183	2,01561	7,4895	15,7471	
	TT	17	9,6406	2,4632	4,4188	14,8623	
Reisolierungs-Score (RI)	CC	19	9,63	2,121	5,18	14,09	0,2
	СТ	29	11,66	1,479	8,63	14,69	
	TT	17	7,12	1,778	3,35	10,89	
Sonographie-Score 0 dpi	CC	19	0,37	0,175	0	0,74	0,28
	СТ	29	0,24	0,107	0,02	0,46	
	TT	17	0,06	0,059	-0,07	0,18	
Sonographie-Score 7 dpi	CC	19	33,37	14,508	2,89	63,85	0,536
	СТ	29	50,28	12,695	24,27	76,28	
	TT	17	31,82	12,697	4,91	58,74	
Klinischer Score 7 dpi	CC	19	3,92284	2,367902	-1,05194	8,89762	0,531
	СТ	29	6,11355	2,17621	1,65579	10,57132	
	TT	17	2,71571	1,720561	-0,93172	6,36313	

Phänotypen	Genotypen	n	Mittelwert	Standardfehler	95%-Konfide	enzintervall	р
					Untergrenze	Obergrenze	
Röntgen-Score 7 dpi	CC	19	10,28	3,792	2,28	18,28	0,55
	CT	29	14,07	3,206	7,5	20,64	
	TT	17	9,18	3,21	2,37	15,98	
RHS	CC	19	9,29744	4,605043	-0,37739	18,97228	0,525
	СТ	29	14,20174	4,094068	5,81542	22,58806	
	TT	17	7,89031	3,672345	0,10529	15,67533	
KS _{ges} 1 dpi	CC	19	0,46495	0,224613	-0,00695	0,93684	0,088
	СТ	29	1,18628	0,289177	0,59392	1,77863	
	TT	17	0,54118	0,170783	0,17913	0,90322	
KSges 2 dpi	CC	19	1,086	0,578	-0,12833	2,30033	0,212
	СТ	29	2,14721	0,586583	0,94565	3,34877	
	TT	17	0,89806	0,310513	0,2398	1,55632	
KSges 3 dpi	CC	19	1,67547	0,93356	-0,28586	3,63681	0,353
	СТ	29	2,94721	0,898203	1,10732	4,78709	
	TT	17	1,27847	0,573847	0,06197	2,49497	
KSges 4 dpi	CC	19	2,26495	1,289584	-0,44437	4,97426	0,432
	СТ	29	3,76676	1,210989	1,28616	6,24736	
	TT	17	1,68047	0,859591	-0,14178	3,50272	
KSges 5 dpi	CC	19	2,81758	1,648872	-0,64657	6,28173	0,446
	CT	29	4,68597	1,548034	1,51496	7,85697	
	TT	17	2,04712	1,143039	-0,37602	4,47025	
KSges 6 dpi	CC	19	3,37547	2,00801	-0,8432	7,59415	0,496
	СТ	29	5,40666	1,859322	1,59801	9,2153	
	TT	17	2,39612	1,430036	-0,63542	5,42766	
KSges 7dpi	CC	19	3,92284	2,367902	-1,05194	8,89762	0,531
	СТ	29	6,11355	2,17621	1,65579	10,57132	
	TT	17	2,71571	1,720561	-0,93172	6,36313	
LOH	CC	19	0,421	0,0957	0,22	0,622	0,239
	CT	30	0,583	0,0682	0,444	0,723	
	TT	17	0,412	0,0981	0,204	0,62	

 $p \le 0.05$ (signifikant), $p \le 0.01$ (sehr signifikant), $p \le 0.001$ (hoch signifikant); p: Signifikanz;

n: Anzahl der Schweine; dpi: days post infectione; RHS: Respiratory Health Score; KS: Klinischer Score; ges: gesamt; LOH: Low or High

5.5. Kartierung der Kandidatengene für die QTL-Analyse

Tabelle 36 zeigt die Position der Kandidatengene und die Position der benachbarten, verwendeten Marker. Die Werte beziehen sich auf Vorarbeiten von Reiner et al. (unveröffentlicht).

Tabelle 36: Kartierung der Kandidatengene

Bezeichnung	Funktion	Chromosom	Position (cM)
Swr2157	Marker	2	89,2
LMNB1	Kandidatengen	2	93
Sw1879	Marker	2	102,1
IL-5	Kandidatengen	2	104,1
IL-4	Kandidatengen	2	104,5
IL-9	Kandidatengen	2	111,4
Swr345	Marker	2	114,4
CD14	Kandidatengen	2	118,7
NR3C1	Kandidatengen	2	122,6
Swr308	Marker	2	128,2
S0036	Marker	2	132,1
S0143	Marker	12	6,6
Grb2	Kandidatengen	12	9,9
RPL38	Kandidatengen	12	13
S0229	Marker	12	19,3
STAT3	Kandidatengen	12	36,4
Sw2559	Marker	12	64,7

cM: centi Morgan

5.6. QTL-Analyse und Statistik

In Tabelle 37 und Tabelle 38 sind alle kartierten QTL nach Phänotyp unter Berücksichtigung der Mikrosatelliten ohne Marker, unter Berücksichtigung der SNPs als zusätzliche Marker und unter Berücksichtigung der SNPs als fixer Effekt aufgeführt.

Auf Chromosom 2 wurde der Phänotyp "Sonographiescore 7 dpi" unter Berücksichtigung des jeweiligen SNPs über die Signifikanzschwelle von LOD \geq 2,5 gehoben. Hinsichtlich der Phänotypen "Infektionsstod", "Klinischer Score 7 dpi", "Röntgenscore 7 dpi", "KS_{ges} 2 dpi", "KS_{ges} 5 dpi", "KS_{ges} 6 dpi" und "KS_{ges} 7 dpi" stieg der Peak des QTL unter Berücksichtigung beider SNPs im NR3C1-Gen als zusätzliche Marker an. Hinsichtlich des Phänotyps "RHS" stieg der Peak unter Berücksichtigung des SNP im IL-5-Gen und beider SNPs im NR3C1-Gen als zusätzliche Marker an. Hinsichtlich des Phänotyps "KS_{ges} 4 dpi" stieg der Peak des QTL durch die beiden SNPs im IL-9-Gen und durch die beiden SNPs im NR3C1-Gen als zusätzliche Marker an. Für die Phänotypen "Sektionsscore", "Se+RI" und "Sonographiescore 0 dpi" wurde ein zweiter QTL bei Position 66 cM ermittelt, der in Vorversuchen unentdeckt blieb. Das Maximum dieses QTL stieg allerdings durch die zusätzlichen Marker nicht an.

Auf Chromosom 12 lagen sowohl unter Berücksichtigung der Mikrosatelliten ohne SNPs als auch unter Berücksichtigung der SNPs als zusätzliche Marker bei allen Phänotypen die LOD-Werte unter dem Signifikanzniveau von 2,5.

Bei den Phänotypen "Klinischer Score 7 dpi", "RHS" und " KS_{ges} 1-7 dpi" konnte der jeweilige LOD-Wert unter Berücksichtigung des SNP im IL-5-Gen nicht berechnet werden. Auf Chromosom 12 konnten die LOD-Werte für den Phänotyp "Sonographiescore 0 dpi" nicht berechnet werden.

113 116,2 113 116,3 111 119,7 113 116,3 107 108,9 113 116,3 107 108,1 113 116,3 113 116,5 113 116,2 113 116,4

65 70,8 113,2 118 65 70,7 111,8 119,1 65 70,9 108,3 119,1 65 70,9 108,3 119,1 65 70,9 108,3 119,1 65 70,9

118

Tabelle 37: QTL auf SS	SC2							
SNP	Marker	Position	LOD	a	d	\mathbf{R}^2	CL ₉₅	
Infektionstod								
SSC2 ohne SNP	9	114	3,7158	0,109	-0,0358	0,131	113	11
IL5 als Marker	10	114	3,6978	0,1067	-0,0447	0,1428	113	11
IL5 als Effekt	8	112	6,7838	0,1923	-0,1419	0,9495	111	11
IL9_SNP1 als Marker	10	114	3,5584	0,1056	-0,0342	0,1246	113	11
IL9_SNP1 als Effekt	8	107	25,0752	0,4998	-0,5028	0,7327	107	10
IL9_SNP2 als Marker	10	114	3,5584	0,1056	-0,0342	0,1246	113	11
IL9_SNP2 als Effekt	8	107	22,2656	0,4948	-0,4963	0,7001	107	10
NR3C1 als Marker	9	114	4,0302	0,1123	-0,0418	0,1486	113	11
NR3C1 als Effekt	9	114	2,9775	0,0955	-0,0376	0,1012	113	11
NR3C1_UTR als Marker	9	114	4,03	0,1123	-0,0418	0,1486	113	11
NR3C1_UTR als Effekt	9	114	2,9538	0,0962	-0,0361	0,0994	113	11
Sektions-Score (Se)							-	
SSC2 ohne SNP	5	66	3,0541	4,2754	-1,4639	0,1064	65	7
	9	115	1,7514	4,0452	-0,3383	0,0565	113,2]
IL5 als Marker	5	66	2,8551	4,1153	-1,5553	0,1028	65	7
	10	115	1,9639	4,191	-0,171	0,0587	111,8	11
IL5 als Effekt	5	66	2,7899	4,0599	-1,5791	0,1008	65	7
	9	116	1,9843	4,6054	-1,2113	0,0878	108,3	11
IL9_SNP1 als Marker	5	66	2,8863	4,1396	-1,5215	0,1032	65	7
	10	115	1,9728	4,1735	-0,1668	0,0586	108,3	11
IL9_SNP1 als Effekt	5	66	2,9432	4,2774	-1,4523	0,1034	65	7
	9	116	1,4819	4,2741	-1,762	0,0752	108,3	11
IL9_SNP2 als Marker	5	66	3,0729	4,2986	-1,3984	0,1058	65	7
	10	115	1,7819	4,0149	-0,2454	0,0549	113,3	1
IL9_SNP2 als Effekt	5	66	2,8371	4,1433	-1,4896	0,1006	65	7
	9	116	1,5684	4,3512	-1,8752	0,0776	108,7	11
NR3C1 als Marker	5	66	2,9156	4,142	-1,5306	0,1034	65	7
	9	116	2,1332	4,7924	-0,5804	0,0835	113,5	1

IL9_SNP2 als Effekt	5	66	2,8371	4,1433	-1,4896	0,1006	65	70,9
	9	116	1,5684	4,3512	-1,8752	0,0776	108,7	119,2
NR3C1 als Marker	5	66	2,9156	4,142	-1,5306	0,1034	65	70,7
	9	116	2,1332	4,7924	-0,5804	0,0835	113,5	119
NR3C1 als Effekt	5	66	3,2591	4,3524	-1,4682	0,1088	65	70,5
	9	114	1				0	132
NR3C1_UTR als Marker	5	66	2,9457	4,1643	-1,4974	0,1034	65	70,9
	9	115	2,0653	4,3505	-0,3701	0,0673	113,5	119
NR3C1_UTR als Effekt	5	66	3,1539	4,3136	-1,4181	0,106	65	70,8
	9	114	1,1				0	132
Reisolierungs-Score (RI)								
SSC2 ohne SNP	9	114	1,1				0	132
IL5 als Marker	10	114	1,6538	2,3461	-1,6586	0,0708	111,1	117,5
IL5 als Effekt	9	114	1,9863	2,2482	-2,4271	0,0822	102	117,4

SNP	Marker	Position	LOD	a	d	\mathbf{R}^2	CL ₉₅	
IL9_SNP1 als Marker	10	114	1,3374	1,6385	-1,6425	0,0501	111,6	117,6
IL9_SNP1 als Effekt	9	114	1,5043	2,0389	-2,2341	0,059	108,2	117,3
IL9_SNP2 als Marker	10	114	2,0031	2,5731	-1,7897	0,0837	113	117,2
IL9_SNP2 als Effekt	9	114	1,65	2,0168	-2,4557	0,0622	108	117,5
NR3C1 als Marker	9	114	1,05				0	132
NR3C1 als Effekt	9	114	1,4241	1,8372	-2,0517	0,059	109,3	117,6
NR3C1_UTR als Marker	9	114	1,7385	2,4039	-1,7512	0,0746	111,6	117,3
NR3C1_UTR als Effekt	9	114	1,5372	2,0574	-1,9926	0,064	110	117,7
<u>Se+RI</u>	_			-				
SSC2 ohne SNP	5	66	2,5569	6,4282	-2,9289	0,0963	66	70,9
	9	114	1,7958	5,8372	-1,946	0,0633	113	117,9
IL5 als Marker	5	66	2,3979	6,189	-3,0338	0,0923	66	70,9
	10	115	2,1118	7,1277	-2,2826	0,0914	113,2	118,1
IL5 als Effekt	5	66	2,4681	6,3196	-2,8579	0,0923	65	71,2
	9	115	1,9842	6,538	-3,9908	0,0962	108,1	117,9
IL9_SNP1 als Marker	5	66	1,8133	4,9365	-3,417	0,0738	64,8	70,7
	10	114	1,3078	4,0933	-1,4637	0,0416	111,4	118,9
IL9_SNP1 als Effekt	5	66	2,5498	6,5315	-2,9218	0,096	66	70,9
	9	115	1,6373	6,1628	-4,2053	0,0779	109	117,9
IL9_SNP2 als Marker	5	66	2,5921	6,489	-2,8249	0,0963	66	71
	10	114	1,9374	5,9698	-1,9119	0,0663	113	117,7
IL9_2 als Effekt	5	66	2,5023	6,3978	-2,9168	0,0941	66	71
	9	115	1,7187	6,1199	-4,5538	0,0796	109,2	117,9
NR3C1 als Marker	5	66	2,4501	6,2305	-3,0303	0,0937	66	70,9
	9	115	2,0594	7,0818	-2,508	0,0936	113,4	118,3
NR3C1 als Effekt	5	66	2,4674	6,6402	-2,9199	0,0943	65	70,9
	9	114	1,3071	4,7266	-2,3522	0,0473	111,3	118,3
NR3C1_UTR als Marker	5	66	1,8754	4,9858	-3,4496	0,0752	65,6	70,6
	9	114	1				0	132
NR3C1_UTR als Effekt	5	66	2,3146	6,4551	-2,8293	0,089	65	71,1
	9	114	1,4517	5,2525	-2,012	0,0504	111,5	118,3
Sonographie-Score 0 dpi	T	Γ	Γ	Γ	Γ	Γ	Γ	
SSC2 ohne SNP	5	66	1,8181	-0,065	0,1795	0,0644	64,7	73,3
IL5 als Marker	5	66	1,8172	-0,0649	0,1794	0,0644	64,7	73,3
IL5 als Effekt	5	66	1,8624	-0,0724	0,1784	0,0699	64,7	73,4
IL9_SNP1 als Marker	5	66	1,8276	-0,0659	0,1791	0,0655	64,7	73,3
IL9_SNP1 als Effekt	5	66	2,4416	-0,0723	0,2087	0,0807	64,8	71,3
IL9_SNP2 als Marker	5	66	1,688	-0,0632	0,1728	0,0608	64,6	73,2
IL9_SNP2 als Effekt	5	66	2,1475	-0,0701	0,192	0,0738	64,7	71,8

SNP	Marker	Position	LOD	а	d	\mathbf{R}^2	CL ₉₅	
NR3C1 als Marker	5	66	1,8207	-0,0646	0,1798	0,0643	64,7	73,3
NR3C1 als Effekt	5	66	1,8295	-0,0647	0,1817	0,0648	64,7	73,1
NR3C1_UTR als Marker	5	66	1,81	-0,0654	0,1798	0,064	64,7	73,3
NR3C1_UTR als Effekt	5	66	1,8913	-0,0647	0,185	0,0656	64,7	72,9
Sonographie-Score 7 dpi								
SSC2 ohne SNP	9	114	1,8181	-0,065	0,1795	0,0644	113	116,4
IL5 als Marker	10	114	4,0873	24,137	- 14,0052	0,1672	113	116,5
IL5 als Effekt	8	105	14,9813	84,7836	94,9849	0,6023	103,9	107,2
IL9_SNP1 als Marker	10	114	3,8644	22,8764	-14,661	0,1624	113	116,6
IL9_SNP1 als Effekt	9	114	4,1604	22,4134	20,8081	0,1595	110,3	116,7
IL9_SNP2 als Marker	10	114	4,0551	23,6887	-13,889	0,1645	113	116,5
IL9_SNP2 als Effekt	9	114	4,3096	20,752	23,6486	0,1584	111,8	116,8
NR3C1 als Marker	9	114	4,2343	24,3948	- 15,4337	0,1786	113	116,7
NR3C1 als Effekt	9	114	1,9898	13,1956	12,3692	0,0729	109,8	116,3
NR3C1_UTR als Marker	9	114	4,2443	24,4687	- 14,2441 -	0,1722	113	116,5
NR3C1_UTR als Effekt	9	114	3,9545	23,8065	13,5332	0,1492	113	116,6
Klinischer Score 7 dpi								
SSC2 ohne SNP	8	113	3,5631	2,8928	-1,8758	0,1436	109,6	115,7
IL5 als Marker	10	114	3,3287	2,5855	-1,8317	0,1252	111,2	115,9
IL5 als Effekt			n.b.					
IL9_SNP1 als Marker	10	114	3,396	2,5167	-1,81	0,1247	112,3	115,8
IL9_SNP1 als Effekt	8	107	14,8463	16,0307	16,5319	0,6293	105,4	107,1
IL9_SNP2 als Marker	10	114	3,2962	2,5717	-1,8056	0,1235	112,8	115,9
IL9_SNP2 als Effekt	9	114	4,8532	3,2897	-3,174	0,1751	108	117,1
NR3C1 als Marker	8	113	3,8469	3,31	-1,6597	0,1521	109,6	115,3
NR3C1 als Effekt	9	114	2,5287	2,1744	-1,5234	0,0809	110	116
NR3C1_UTR als Marker	9	114	5,1167	3,9084	-1,8687	0,1971	113	116,3
NR3C1_UTR als Effekt	9	114	4,2151	3,4244	-1,7338	0,1413	113	116,3
Röntgen-Score 7 dpi	1	1						
SSC2 ohne SNP	9	115	4,9085	7,4293	-4,3083	0,2725	113,5	117,3
IL5 als Marker	10	115	4,8662	7,476	-3,9559	0,2568	113,6	117,2
IL5 als Effekt	8	105	11,2056	21,12	-23,393	0,5704	103,8	107,1

SNP	Marker	Position	LOD	а	d	R^2	CL ₉₅	
IL9_SNP1 als Marker	10	115	4,7929	7,3529	-3,9719	0,2522	113,7	117,3
IL9_SNP1 als Effekt	9	115	4,6841	7,1789	-5,9164	0,2427	110	117,4
IL9_SNP2 als Marker	10	115	4,7277	7,2125	-4,2423	0,2619	113,6	117,3
IL9_SNP2 als Effekt	9	116	4,9658	7,6473	-7,1927	0,2887	112,1	117,4
NR3C1 als Marker	9	115	5,0003	7,4551	-4,4374	0,2814	113,6	117,5
NR3C1 als Effekt	9	115	3,9681	6,547	-3,8633	0,1941	113,5	117,2
NR3C1_UTR als Marker	9	115	5,0447	7,5007	-4,456	0,2863	113,7	117,3
NR3C1_UTR als Effekt	9	115	4,2282	7,0138	-3,6743	0,2016	113,5	117,3
RHS								
SSC2 ohne SNP	9	114	3,056	4,7444	-4,2249	0,1178	110,4	115,9
IL5 als Marker	10	114	4,7293	7,455	-4,3557	0,195	113	116,5
IL5 als Effekt			n.b.					
IL9_SNP1 als Marker	10	114	2,9831	4,6847	-4,1159	0,1145	112,8	116
IL9_SNP1 als Effekt	9	114	4,6955	6,8899	-6,1091	0,1757	108,9	116,8
IL9_SNP2 als Marker	10	114	2,9831	4,6847	-4,1159	0,1145	112,9	116
IL9_SNP2 als Effekt	9	114	4,878	6,5595	-6,681	0,1763	110,5	117
NR3C1 als Marker	9	114	5,0733	7,657	-4,5572	0,2085	113	116,6
NR3C1 als Effekt	9	114	2,5251	4,3182	-3,6533	0,0877	110,1	116,2
NR3C1_UTR als Marker	9	114	4,9058	7,4471	-4,48	0,2004	113	116,5
NR3C1_UTR als Effekt	9	114	4,4023	7,166	-3,9706	0,1583	113	116,5
<u>KS_{ges} 1dpi</u>								
SSC2 ohne SNP	9	114	1,7411	0,2465	-0,0786	0,0578	108,4	116,6
IL5 als Marker	10	114	1,7935	0,2491	-0,079	0,0595	109,6	116,6
IL5 als Effekt			n.b.					
IL9_SNP1 als Marker	10	114	2,3443	0,3479	-0,0769	0,0789	112,9	116,5
IL9_SNP1 als Effekt	8	106	11,5846	1,9027	-1,9646	0,6108	105	106,1
IL9_SNP2 als Marker	10	114	2,3443	0,3479	-0,0769	0,0789	113	116,5
IL9_SNP2 als Effekt	9	114	2,2982	0,2988	-0,2362	0,0854	105	116,7
NR3C1 als Marker	8	113	1,7188	0,2928	-0,0686	0,0599	107,8	116,5
NR3C1 als Effekt	9	114	1,4844	0,272	-0,0596	0,0432	109,1	116,6
NR3C1_UTR als Marker	9	114	1,7415	0,2462	-0,0789	0,0578	108,8	116,6
NR3C1_UTR als Effekt	9	114	1,633	0,2877	-0,0621	0,0477	108,5	116,7
KS _{ges} 2dpi								
SSC2 ohne SNP	9	114	3,477	0,8228	-0,3921	0,137	113	116,3
IL5 als Marker	10	114	2,5263	0,5557	-0,3797	0,0934	110,8	116,1
IL5 als Effekt			n.b.					
IL9_SNP1 als Marker	10	114	3,2102	0,7902	-0,3423	0,1216	113	116,5
IL9_SNP1 als Effekt	9	114	3,6765	0,7391	-0,7007	0,1392	106,6	116,8
IL9_SNP2 als Marker	10	114	3,2102	0,7902	-0,3423	0,1216	113	116,5
IL9_SNP2 als Effekt	9	114	3,4414	0,6794	-0,7124	0,1275	106,2	116,6

SNP	Marker	Position	LOD	a	d	R ²	CL ₉₅	
NR3C1 als Marker	9	114	3,6052	0,8344	-0,392	0,141	112,9	116,5
NR3C1 als Effekt	9	114	2,7435	0,6982	-0,3485	0,0939	113	116,5
NR3C1_UTR als Marker	9	114	3,605	0,8344	-0,392	0,141	113	116,4
NR3C1_UTR als Effekt	9	114	2,7116	0,7021	-0,3365	0,092	112,7	116,5
KS _{ges} 3 dpi								
SSC2 ohne SNP	9	114	4,1876	1,4233	-0,6248	0,1606	113	116,3
IL5 als Marker	10	114	2,6432	0,9146	-0,6188	0,0996	111	116
IL5 als Effekt			n.b.					
IL9_SNP1 als Marker	10	114	4,0219	1,3822	-0,6042	0,1536	113	116,4
IL9_SNP1 als Effekt	8	107	14,1694	6,2378	-6,46	0,6214	106,9	107,6
IL9_SNP2 als Marker	10	114	4,0219	1,3822	-0,6042	0,1536	113	116,4
IL9_SNP2 als Effekt	9	114	4,4225	1,2611	-1,1699	0,161	106,7	117
NR3C1 als Marker	8	113	3,063	1,18	-0,547	0,1202	109,5	115,7
NR3C1 als Effekt	9	114	3,3478	1,2202	-0,5437	0,1101	113	116,3
NR3C1_UTR als Marker	9	114	2,8447	0,927	-0,6196	0,1048	110,2	116
NR3C1_UTR als Effekt	9	114	3,4217	1,2575	-0,5343	0,1124	113	116,3
<u>KS_{ges} 4 dpi</u>								
SSC2 ohne SNP	9	114	2,9508	1,3373	-0,9131	0,1114	110,1	115,9
IL5 als Marker	10	114	2,8595	1,3015	-0,9104	0,108	111,1	116
IL5 als Effekt			n.b.					
IL9_SNP1 als Marker	10	114	4,3877	1,9805	-0,8908	0,168	113	116,4
IL9_SNP1 als Effekt	8	107	15,0581	8,6464	-9,0293	0,6311	106,9	107,6
IL9_SNP2 als Marker	10	114	4,3877	1,9805	-0,8908	0,168	113	116,4
IL9_SNP2 als Effekt	9	114	4,5961	1,7516	-1,6897	0,1686	106,7	117
NR3C1 als Marker	8	113	3,355	1,6943	-0,8108	0,1323	109,5	115,5
NR3C1 als Effekt	9	114	2,1251	1,0912	-0,7455	0,0684	109,8	116,1
NR3C1_UTR als Marker	9	114	4,7109	2,0603	-0,9182	0,1798	113	116,3
NR3C1_UTR als Effekt	9	114	3,7838	1,799	-0,7843	0,1225	113	116,3
<u>KS_{ges} 5 dpi</u>	1	r			r	1	[
SSC2 ohne SNP	9	114	3,1151	1,7736	-1,2046	0,1172	110,2	115,9
IL5 als Marker	10	114	3,0166	1,7252	-1,2019	0,1135	111,2	115,9
IL5 als Effekt			n.b.					
IL9_SNP1 als Marker	10	114	3,1221	1,7091	-1,1706	0,1144	112,2	115,8
IL9_SNP1 als Effekt	8	107	13,8687	11,0587	-11,4532	0,6196	106,9	107,1
IL9_SNP2 als Marker	10	114	3,0519	1,7557	-1,1668	0,114	112,8	115,9
IL9_SNP2 als Effekt	9	114	4,1288	2,17	-2,0257	0,152	106,2	116,4
NR3C1 als Marker	8	113	3,5372	2,2452	-1,0627	0,1386	109,6	115,4
NR3C1 als Effekt	9	114	2,245	1,4467	-0,9778	0,0716	109,9	116
NR3C1_UTR als Marker	9	114	4,7752	2,6707	-1,2708	0,1871	113	116,3
NR3C1_UTR als Effekt	9	114	3,938	2,3613	-1,0291	0,1265	113	116,2

SNP	Marker	Position	LOD	а	d	\mathbb{R}^2	CL ₉₅	
KS _{ges} 6 dpi								
SSC2 ohne SNP	9	114	3,2625	2,1797	-1,5398	0,123	110,2	115,9
IL5 als Marker	10	114	3,1664	2,1228	-1,536	0,1194	111,2	115,9
IL5 als Effekt			n.b.					
IL9_SNP1 als Marker	10	114	3,2796	2,1047	-1,4987	0,1205	112,3	115,8
IL9_SNP1 als Effekt	8	107	14,6013	13,5741	-14,0028	0,627	106,9	107,1
IL9_SNP2 als Marker	10	114	3,1961	2,1571	-1,4945	0,1198	112,8	115,9
IL9_SNP2 als Effekt	9	114	4,7731	2,7692	-2,6735	0,1724	108	117,1
NR3C1 als Marker	8	113	3,6897	2,7549	-1,374	0,1459	109,6	115,4
NR3C1 als Effekt	9	114	2,414	1,8057	-1,2636	0,0775	110	116
NR3C1_UTR als Marker	9	114	4,9989	3,2882	-1,5484	0,1922	113	116,3
NR3C1_UTR als Effekt	9	114	4,0944	2,8705	-1,447	0,1376	113	116,3
<u>KS_{ges} 7 dpi</u>								
SSC2 ohne SNP	8	113	3,5631	2,8928	-1,8758	0,1436	109,6	115,7
IL5 als Marker	10	114	3,3287	2,5855	-1,8317	0,1252	111,2	115,9
IL5 als Effekt			n.b.					
IL9_SNP1 als Marker	10	114	3,396	2,5167	-1,81	0,1247	112,3	115,8
IL9_SNP1 als Effekt	8	107	14,8463	16,0307	-16,5319	0,6293	105,4	107,1
IL9_SNP2 als Marker	10	114	3,2962	2,5717	-1,8056	0,1235	112,8	115,9
IL9_SNP2 als Effekt	9	114	4,8532	3,2897	-3,174	0,1751	108	117,1
NR3C1 als Marker	8	113	3,8469	3,31	-1,6597	0,1521	109,6	115,3
NR3C1 als Effekt	9	114	2,5287	2,1744	-1,5234	0,0809	110	116
NR3C1_UTR als Marker	9	114	5,1167	3,9084	-1,8687	0,1971	113	116,3
NR3C1_UTR als Effekt	9	114	4,2151	3,4244	-1,7338	0,1413	113	116,3
LOH								
SSC2 ohne SNP	1	4	2,1108	-0,095	-0,2043	0,001	0	19,1
IL5 als Marker	1	3	2,1169	-0,0893	-0,2068	0,0004	0	18,9
IL5 als Effekt	1	3	1,926	-0,0804	-0,1979	0,0001	0	17,6
IL9_SNP1 als Marker	1	4	2,1268	-0,1003	-0,1972	0,0018	0	21
IL9_SNP1 als Effekt	1	4	2,1995	-0,0968	-0,209	0,0011	0	20,1
IL9_2 als Marker	1	4	2,1599	-0,101	-0,1977	0,002	0	21,1
IL9_SNP2 als Effekt	1	4	2,1142	-0,0937	-0,2069	0,0009	0	20,7
NR3C1 als Marker	1	4	2,1712	-0,1011	-0,1985	0,0021	0	21,4
NR3C1 als Effekt	1	4	1,8516	-0,0886	-0,1897	0,001	0	20,5
NR3C1_UTR als Marker	1	4	2,1108	-0,095	-0,2043	0,001	0	19,1
NR3C1_UTR als Effekt	1	4	1,8586	-0,103	-0,1663	0,005	0	21,1

Marker: Satelliten-Marker [cM]; a: Additiveffekte; d: Dominanzeffekte; R² :

Bestimmtheitsmaß; CL₉₅: Konfidenzintervall 95 %; SSC: *Sus scrofa chromosome*; dpi: days post infectionem; RHS: Respiratory Health Score; KS: Klinischer Score; ges: gesamt; LOH: Low or High; IL5: IL-5 c. 144+47C>A; IL9_SNP1: IL-9 c.269C>G; IL9_SNP2: IL-9 c.286G>A; NR3C1: NR3C1 c.1483G>A; NR3C1_UTR: rs81509148; n.b.: nicht berechenbar

Tabelle 38: QTL auf SSC12

SNP	Marker	Position	LOD	a	d	R^2	CL95	
Infektionstod								
SSC12 ohne SNP	1	4	1,7645	-0,0656	-0,053	0,0151	0	8,8
STAT3 als Marker	1	0	1,8521	-0,058	-0,0295	0,02	0	7,4
STAT3 als Effekt	1	0	2,0892	-0,0618	-0,0317	0,0213	0	8,1
RPL38 als Marker	1	2	1,8712	-0,0625	-0,0533	0,0131	0	5
RPL38 als Effekt	1	7	0,94				0	113
Sektions-Score (Se)								
SSC12 ohne SNP	1	1	1,2572	-2,2163	-1,6194	0,0112	0	7
STAT3 als Marker	1	1	1,2572	-2,2163	-1,6194	0,0112	0	7
STAT3 als Effekt	1	0	1,7	-2,6601	-1,1745	0,0197	0	6
RPL38 als Marker	1	0	1,255	-2,0751	-1,3923	0,0101	0	4
RPL38 als Effekt	1	0	0,95				0	132
Reisolierungs-Score (R	<u>I)</u>					1		
SSC12 ohne SNP	1	1	0,8				0	132
STAT3 als Marker	1	1	0,8				0	132
STAT3 als Effekt	1	0	1,1184	-2,2902	0,8491	0,0461	0	8
RPL38 als Marker	1	1	0,86				0	132
RPL38 als Effekt	1	1	0,8				0	132
<u>Se+RI</u>						1		
SSC12 ohne SNP	1	1	1				0	132
STAT3 als Marker	1	1	1				0	132
STAT3 als Effekt	1	1	1,52				0	132
RPL38 als Marker	2	1	1,03				0	132
RPL38 als Effekt	1	0	0,82				0	132
Sonographie-Score 0 du	<u> 21</u>							
SSC12 ohne SNP			n.b.					
STAT3 als Marker			n.b.					
STAT3 als Effekt			n.b.					
RPL38 als Marker			n.b.					
RPL38 als Effekt			n.b.					
Sonographie-Score 7 da	<u> </u>							
SSC12 ohne SNP	1	0	1,8747	-14,1637	-5,2452	0,0272	0	6,9
STAT3 als Marker	1	0	2,0445	-14,8284	-5,7197	0,028	0	6,2
STAT3 als Effekt	1	0	2,6216	-18,1753	-3,2811	0,0486	0	5,3
RPL38 als Marker	1	0	1,8626	-14,1481	-5,2494	0,0269	0	4,3
RPL38 als Effekt	1	2	0,78				0	132
Klinischer Score 7 dpi								
SSC12 ohne SNP	1	1	1,4535	-1,719	-0,9893	0,0155	0	8
STAT3 als Marker	1	0	1,7847	-1,991	-0,5823	0,0277	0	5,7
STAT3 als Effekt	1	0	2,0522	-2,1836	-0,5671	0,0329	0	5,9
RPL38 als Marker	1	1	1,4506	-1,765	-1,0471	0,0156	0	5
RPL38 als Effekt	1	4	0,47				0	132

SNP	Marker	Position	LOD	а	d	\mathbf{R}^2	CL ₉₅	
Röntgen-Score 7 dpi								
SSC12 ohne SNP	1	0	1,4892	-2,0331	-2,936	0,0024	0	6,6
STAT3 als Marker	1	0	1,6634	-2,3001	-2,8674	0,0039	0	5,5
STAT3 als Effekt	1	0	2,0541	-2,9879	-2,55	0,0105	0	5
RPL38 als Marker	1	0	1,5717	-2,0023	-3,1166	0,0018	0	3,9
RPL38 als Effekt	1	1	0,67				0	132
RHS	_							
SSC12 ohne SNP	1	0	1,8527	-3,9626	-1,7181	0,0236	0	7,5
STAT3 als Marker	1	0	2,1879	-4,3727	-1,6911	0,0294	0	5,7
STAT3 als Effekt	1	0	2,7037	-5,2456	-1,0006	0,0485	0	5
RPL38 als Marker	1	0	1,8354	-3,95	-1,7176	0,0233	0	4,6
RPL38 als Effekt	1	3	0,69				0	132
<u>KS_{ges} 1 dpi</u>								
SSC12 ohne SNP	1	0	1,6952	-0,2197	-0,1125	0,0192	0	6,9
STAT3 als Marker	1	0	1,8919	-0,2447	-0,0893	0,027	0	5,3
STAT3 als Effekt	1	0	2,1871	-0,263	-0,0962	0,0299	0	5,4
RPL38 als Marker	1	0	1,648	-0,2143	-0,1161	0,0176	0	4,3
RPL38 als Effekt	1	1	0,68				1	132
<u>KS_{ges} 2 dpi</u>								
SSC12 ohne SNP	1	0	2,0726	-0,4775	-0,3027	0,0184	0	7,2
STAT3 als Marker	1	0	2,4091	-0,5526	-0,239	0,0298	0	5
STAT3 als Effekt	1	0	2,7804	-0,6059	-0,2374	0,0356	0	5
RPL38 als Marker	1	0	2,21	-0,4769	-0,3417	0,0167	0	4,3
RPL38 als Effekt	1	3	0,62				0	132
<u>KS_{ges} 3 dpi</u>								
SSC12 ohne SNP	1	0	1,7961	-0,6944	-0,4407	0,0159	0	7,9
STAT3 als Marker	1	0	2,114	-0,8139	-0,3356	0,027	0	5,5
STAT3 als Effekt	1	0	2,437	-0,8922	-0,3342	0,0321	0	5,6
RPL38 als Marker	1	0	1,9242	-0,6885	-0,5107	0,0139	0	4,7
RPL38 als Effekt			0,54				1	132
<u>KS_{ges} 4 dpi</u>	T							
SSC12 ohne SNP	1	1	1,7575	-0,9973	-0,6321	0,0167	0	8,2
STAT3 als Marker	1	0	2,0955	-1,1364	-0,415	0,0288	0	5,5
STAT3 als Effekt	1	0	2,4007	-1,2397	-0,4154	0,0338	0	5,8
RPL38 als Marker	1	0	1,873	-0,9534	-0,6669	0,0146	0	4,9
RPL38 als Effekt	1	3	0,54				1	132
<u>KS_{ges} 5 dpi</u>	T							
SSC12 ohne SNP	1	1	1,6498	-1,2271	-0,8326	0,0144	0	8,3
STAT3 als Marker	1	0	1,9902	-1,4149	-0,5468	0,0263	0	5,5
STAT3 als Effekt	1	0	2,2827	-1,5513	-0,5399	0,0313	0	5,7
RPL38 als Marker	1	0	1,7634	-1,1675	-0,881	0,0124	0	5
RPL38 als Effekt	1	3	0,55				1	132

SNP	Marker	Position	LOD	a	d	\mathbf{R}^2	CL ₉₅	
KS _{ges} 6 dpi								
SSC12 ohne SNP	1	1	1,5156	-1,4673	-0,8975	0,0151	0	8
STAT3 als Marker	1	0	1,8505	-1,6998	-0,5459	0,0273	0	5,7
STAT3 als Effekt	1	0	2,1286	-1,8652	-0,5341	0,0326	0	5,8
RPL38 als Marker	1	1	1,6211	-1,5055	-1,0807	0,0136	0	5
RPL38 als Effekt	1	4	0,52				1	132
<u>KS_{ges} 7 dpi</u>								
SSC12 ohne SNP	1	1	1,4535	-1,719	-0,9893	0,0155	0	8
STAT3 als Marker	1	0	1,7847	-1,991	-0,5823	0,0277	0	5,7
STAT3 als Effekt	1	0	2,0522	-2,1836	-0,5671	0,0329	0	5,9
RPL38 als Marker	1	1	1,4506	-1,765	-1,0471	0,0156	0	5
RPL38 als Effekt	1	4	0,47				1	132
LOH								
SSC12 ohne SNP	2	27	1,5375	0,0524	0,3267	0	10,2	28
STAT3 als Marker	2	20	1,8919	0,0473	0,2712	0,0036	11,7	27,8
STAT3 als Effekt	2	25	1,3489	0,0392	0,3137	0,0063	9,6	26
RPL38 als Marker	2	28	0,35				0	132
RPL38 als Effekt	2	27	0,84				0	132

Marker: Satelliten-Marker [cM]; a: Additiveffekte; d: Dominanzeffekte;

R²: Bestimmtheitsmaß; CL₉₅: Konfidenzintervall 95 %; SSC: *Sus scrofa chromosome*; dpi: days post infectionem; RHS: Respiratory Health Score; KS: Klinischer Score; ges: gesamt; LOH: Low or High; STAT3: STAT3 c.-33743G>A; RPL38: RPL38 c.1-83C>T; n.b.: nicht berechenbar

Abbildung 10 bis Abbildung 13 zeigen die QTL-Kurven der Phänotypen "RHS", "Klinischer Score 7 dpi", "Infektionstod" und "Röntgenscore 7 dpi" unter Berücksichtigung des SNP NR3C1 c.1483G>A als zusätzlicher Marker und als fixer Effekt.

Abbildung 10: QTL auf Chromosom 2 unter Berücksichtigung der Mikrosatelliten sowie des SNP NR3C1 c.1483G>A als zusätzlicher Marker und als fixer Effekt.

Die Werte beziehen sich auf den Phänotypen "RHS".

Abbildung 11: QTL auf Chromosom 2 unter Berücksichtigung der Mikrosatelliten sowie des SNP NR3C1 c.1483G>A als zusätzlicher Marker und als fixer Effekt.

Die Werte beziehen sich auf den Phänotyp "Klinischer Score 7 dpi".

Abbildung 12: QTL auf Chromosom 2 unter Berücksichtigung der Mikrosatelliten sowie des SNP NR3C1 c.1483G>A als zusätzlicher Marker und als fixer Effekt.

Die Werte beziehen sich auf den Phänotyp "Infektionstod".

Abbildung 13: QTL auf Chromosom 2 unter Berücksichtigung der Mikrosatelliten sowie des SNP NR3C1 c.1483G>A als zusätzlicher Marker und als fixer Effekt.

Die Werte beziehen sich auf den Phänotyp "Röntgenscore 7 dpi".

Abbildung 14 und Abbildung 15 zeigen die Verteilung der ermittelten LOD-Werte nach Einbezug der drei Versuchsansätze: a) Berücksichtigung der Mikrosatelliten-Genotypen ohne SNPs, b) Berücksichtigung der SNP-Genotypen als zusätzliche Marker und c) Berücksichtigung der SNP-Genotypen als fixe Effekte. Der prozentuale Anteil des LOD-Wertes bezieht sich auf den jeweiligen LOD-Wert als Grundwert ohne Berücksichtigung des jeweiligen SNP.

Abbildung 14: Verteilung der LOD-Scores (in Prozent) auf Chromosom 2 unter Berücksichtigung der SNPs als Zusatzmarker und als Effekt

0: Einbezug der Mikrosatelliten-Genotypen; Effekt: Einbezug der SNP-Genotypen als fixe Effekte; Zusatz: Einbezug der SNP-Genotypen als zusätzliche Marker

Abbildung 15: Verteilung der LOD-Scores (in Prozent) auf Chromosom 12 unter Berücksichtigung der SNPs als Zusatzmarker und als Effekt

0: Einbezug der Mikrosatelliten-Genotypen; Effekt: Einbezug der SNP-Genotypen als fixe Effekte; Zusatz: Einbezug der SNP-Genotypen als zusätzliche Marker

In Tabelle 39 sind die LOD-Werte der SNPs aufgelistet, aufsteigend sortiert nach LOD_{Effekt} (in Prozent). Der prozentuale Anteil bezieht sich auf den jeweiligen LOD-Wert als Grundwert ohne Berücksichtigung des jeweiligen SNP.

Auf Chromosom 2 lag das Gen NR3C1 überrepräsentativ im unteren Quartil vor: 66,67 % der prozentualen LOD_{Effekt}-Werte im unteren Quartil bezogen sich auf den SNP NR3C1 c.1483G>A, 27,78 % auf den SNP rs81509148 (an Position c.*2122 im NR3C1-Gen). Unter der 5 %-Grenze lag der SNP NR3C1 c.1483G>A viermal und der SNP rs81509148 einmal als Ausreißer vor. Das Minimum wurde beim Phänotyp "Sektionsscore" durch den SNP NR3C1 c.1483G>A festgelegt. Der LOD-Wert sank hier um 42,90 % auf einen absoluten Wert von 1, wobei der LOD-Wert ohne Berücksichtigung des SNP als fixer Effekt bereits unter der Signifikanzschwelle von 2,5 lag. Wurde SNP NR3C1 c.1483G>A bei den oben genannten Phänotypen als Zusatzmarker eingesetzt, lagen zehn der zwölf LOD_{Marker}-Werte über der Signifikanzschwelle von 2,5 und das Maximum des QTL war außer beim Phänotyp "KS_{ges} 3dpi" höher als der Ausgangswert. Der höchste Anstieg lag hierbei beim Phänotyp "Se+RI" vor: Der Wert stieg um 66 % auf einen absoluten Wert von 5,07. Auf Chromosom 12 sank bzw. stieg der prozentuale LOD_{Effekt} -Wert abhängig vom eingesetzten SNP. 94,44 % der LOD_{Effekt} -Werte unter Berücksichtigung des SNP RPL38 c.1-83C>T lagen unterhalb des Medians. Der LOD-Wert wurde hierbei um bis 70 % reduziert (Phänotyp "KS_{ges} 2 dpi"). Dementsprechend lagen 94,44 % der LOD_{Effekt} -Werte unter Berücksichtuging des SNP STAT3 c.33743G>A oberhalb des Medians. Zu beachten ist, dass außer beim Phänotyp "Sonographiescore 0 dpi" die LOD-Werte ohne Berücksichtigung der SNPs bereits unter der Signifikanzgrenze von 2,5 lagen.

Hinsichtlich der LOD-Werte aus den Tabellen 37 und 38, die nicht berechnet werden konnten, konnte dementsprechend kein prozentualer LOD_{Effekt}-Wert angegeben werden.

					LOD-	LOD-	Anstieg
SSC	cM	SNP	Phänotyp	LOD-Effekt (in %)	Effekt	Marker	LOD
2	114	4	2	57,10	1	2,1332	0,3818
2	114	5	2	62,81	1,1	2,0653	0,3139
2	114	4	7	70,97	2,5287	3,8469	0,2838
2	114	4	17	70,97	2,5287	3,8469	0,2838
2	114	4	14	72,02	2,1251	3,355	0,4042
2	114	4	15	72,07	2,245	3,5372	0,4221
2	114	4	4	72,79	1,3071	2,0594	0,2636
2	114	4	16	73,99	2,414	3,6897	0,4272
2	114	5	12	77,99	2,7116	3,605	0,128
2	114	4	12	78,90	2,7435	3,6052	0,1282
2	114	5	1	79,49	2,9538	4,03	0,3142
2	114	4	13	79,95	3,3478	3,063	-1,1246
2	114	4	1	80,13	2,9775	4,0302	0,3144
2	114	5	4	80,84	1,4517	1	-0,7958
2	114	4	8	80,84	3,9681	5,0003	0,0918
2	114	5	13	81,71	3,4217	2,8447	-1,3429
2	114	4	10	82,63	2,5251	5,0733	2,0173
2	114	2	2	84,61	1,4819	1,9728	0,2214
2	114	4	11	85,26	1,4844	1,7188	-0,0223
2	114	5	8	86,14	4,2282	5,0447	0,1362
2	114	4	18	87,72	1,8516	2,1712	0,0604
2	114	5	18	88,05	1,8586	2,1108	0
2	114	3	2	89,55	1,5684	1,7819	0,0305
2	66	5	4	90,52	2,3146	1,8754	-0,6815
2	114	2	4	91,17	1,6373	1,3078	-0,488
2	114	1	18	91,25	1,926	2,1169	0,0061
2	66	1	2	91,35	2,7899	2,8551	-0,199
2	66	3	2	92,89	2,8371	3,0729	0,0188
2	114	5	11	93,79	1,633	1,7415	0,0004
2	114	2	8	95,43	4,6841	4,7929	-0,1156
2	114	3	4	95,71	1,7187	1,9374	0,1416
2	66	2	2	96,37	2,9432	2,8863	-0,1678
2	66	4	4	96,50	2,4674	2,4501	-0,1068
2	66	1	4	96,53	2,4681	2,3979	-0,159
2	66	3	4	97,86	2,5023	2,5921	0,0352
2	114	3	12	98,98	3,4414	3,2102	-0,2668
2	66	2	4	99,72	2,5498	1,8133	-0,7436
2	114	3	18	100,16	2,1142	2,1599	0,0491
2	66	4	5	100,63	1,8295	1,8207	0,0026
2	114	3	8	101,17	4,9658	4,7277	-0,1808
2	66	1	5	102,44	1,8624	1,8172	-0,0009
2	66	5	2	103,27	3,1539	2,9457	-0,1084

Tabelle 39: LOD-Werte der SNPs

Fortsetzung

SSC	сM	SNP	Phänotyp	LOD-Effekt (in %)	LOD- Effekt	LOD- Marker	Anstieg LOD
2	66	5	5	104,03	1,8913	1,81	-0,0081
2	114	2	18	104,20	2,1995	2,1268	0,016
2	114	3	13	105,61	4,4225	4,0219	-0,1657
2	114	2	12	105,74	3,6765	3,2102	-0,2668
2	66	4	2	106,71	3,2591	2,9156	-0,1385
2	114	4	6	109,44	1,9898	4,2343	2,4162
2	114	1	4	110,49	1,9842	2,1118	0,316
2	114	1	2	113,30	1,9843	1,9639	0,2125
2	66	3	5	118,12	2,1475	1,688	-0,1301
2	114	5	7	118,30	4,2151	5,1167	1,5536
2	114	5	17	118,30	4,2151	5,1167	1,5536
2	114	5	16	125,50	4,0944	4,9989	1,7364
2	114	5	15	126,42	3,938	4,7752	1,6601
2	114	5	14	128,23	3,7838	4,7109	1,7601
2	114	4	3	129,46	1,4241	1,05	-0,05
2	114	3	11	132,00	2,2982	2,3443	0,6032
2	114	3	15	132,54	4,1288	3,0519	-0,0632
2	66	2	5	134,29	2,4416	1,8276	0,0095
2	114	3	7	136,21	4,8532	3,2962	-0,2669
2	114	3	17	136,21	4,8532	3,2962	-0,2669
2	114	2	3	136,75	1,5043	1,3374	0,2374
2	114	5	3	139,75	1,5372	1,7385	0,6385
2	114	5	10	144,05	4,4023	4,9058	1,8498
2	114	3	16	146,30	4,7731	3,1961	-0,0664
2	114	3	3	150,00	1,65	2,0031	0,9031
2	114	2	10	153,65	4,6955	2,9831	-0,0729
2	114	3	14	155,76	4,5961	4,3877	1,4369
2	114	3	10	159,62	4,878	2,9831	-0,0729
2	114	1	3	180,57	1,9863	1,6538	0,5538
2	114	1	1	182,57	6,7838	3,6978	-0,018
2	114	5	6	217,51	3,9545	4,2443	2,4262
2	114	1	8	228,29	11,2056	4,8662	-0,0423
2	114	2	6	228,83	4,1604	3,8644	2,0463
2	114	3	6	237,04	4,3096	4,0551	2,237
2	114	2	13	338,37	14,1694	4,0219	-0,1657
2	114	2	7	416,67	14,8463	3,396	-0,1671
2	114	2	17	416,67	14,8463	3,396	-0,1671
2	114	2	15	445,21	13,8687	3,1221	0,007
2	114	2	16	447,55	14,6013	3,2796	0,0171
2	114	2	14	510,31	15,0581	4,3877	1,4369
2	114	3	1	599,21	22,2656	3,5584	-0,1574
2	114	2	11	665,36	11,5846	2,3443	0,6032

Fortsetzung

SSC	cM	SNP	Phänotyp	LOD-Effekt (in %)	LOD- Effekt	LOD- Marker	Anstieg LOD
2	114	2	1	674,83	25,0752	3,5584	-0,1574
2	114	1	6	824,01	14,9813	4,0873	2,2692
2	114	1	10	n.b.	n.b.	4,7293	1,6733
2	114	1	12	n.b.	n.b.	2,5263	-0,9507
2	114	1	7	n.b.	n.b.	3,3287	-0,2344
2	114	1	17	n.b.	n.b.	3,3287	-0,2344
2	114	1	13	n.b.	n.b.	2,6432	-1,5444
2	114	1	16	n.b.	n.b.	3,1664	-0,0961
2	114	1	15	n.b.	n.b.	3,0166	-0,0985
2	114	1	11	n.b.	n.b.	1,7935	0,0524
2	114	1	14	n.b.	n.b.	2,8595	-0,0913
12	0	2	12	29,91	0,62	2,21	0,1374
12	0	2	13	30,07	0,54	1,9242	0,1281
12	0	2	14	30,73	0,54	1,873	0,1155
12	0	2	7	32,34	0,47	1,4506	-0,0029
12	0	2	17	32,34	0,47	1,4506	-0,0029
12	0	2	15	33,34	0,55	1,7634	0,1136
12	0	2	16	34,31	0,52	1,6211	0,1055
12	0	2	10	37,24	0,69	1,8354	-0,0173
12	0	2	11	40,11	0,68	1,648	-0,0472
12	0	2	6	41,61	0,78	1,8626	-0,0121
12	0	2	8	44,99	0,67	1,5717	0,0825
12	0	2	1	53,27	0,94	1,8712	0,1067
12	0	2	18	54,63	0,84	0,35	-1,1875
12	0	2	2	75,56	0,95	1,255	-0,0022
12	0	2	4	82,00	0,82	1,03	0,03
12	0	1	18	87,73	1,3489	1,8919	0,3544
12	0	2	5	n.b.	n.b.	n.b.	n.b.
12	0	1	5	n.b.	n.b.	n.b.	n.b.
12	0	2	3	100,00	0,8	0,86	0,06
12	0	1	1	118,40	2,0892	1,8521	0,0876
12	0	1	11	129,02	2,1871	1,8919	0,1967
12	0	1	12	134,15	2,7804	2,4091	0,3365
12	0	1	2	135,22	1,7	1,2572	0
12	0	1	13	135,68	2,437	2,114	0,3179
12	0	1	14	136,60	2,4007	2,0955	0,338
12	0	1	8	137,93	2,0541	1,6634	0,1742
12	0	1	15	138,36	2,2827	1,9902	0,3404
12	0	1	3	139,80	1,1184	0,8	0
12	0	1	6	139,84	2,6216	2,0445	0,1698
12	0	1	16	140,45	2,1286	1,8505	0,3349
12	0	1	7	141,19	2,0522	1,7847	0,3312

					LOD-	LOD-	Anstieg
SSC	cM	SNP	Phänotyp	LOD-Effekt (in %)	Effekt	Marker	LOD
12	0	1	17	141,19	2,0522	1,7847	0,3312
12	0	1	10	145,93	2,7037	2,1879	0,3352
12	0	1	4	152,00	1,52	1	0

Fortsetzung

SSC: Sus scrofa chromosome; n.b.: nicht berechenbar; LOD Anstieg: absoluter Anstieg des

LOD-Wertes unter Berücksichtigung des SNP als Marker

Legende

SSC2:

1: IL-5 c. 144+47C>A; 2: IL-9 c.269C>G; 3: IL-9 c.286G>A; 4: NR3C1 c.1483G>A;

5: rs81509148

SSC12:

1: STAT3 c.-33743G>A; 2: RPL38 c.1-83C>T

Phänotypen:

1: Infektionstod; 2: Sektions-Score; 3: Reisolierungs-Score; 4: Sektions-Score+Reisolierungs-Score; 5: Sonographie-Score 0 dpi; 6: Sonographie-Score 7 dpi; 7: Klinischer Score 7 dpi; 8: Röntgen-Score 7 dpi; 10: Respiratory Health Score; 11: KS_{ges} 1 dpi; 12: KS_{ges} 2 dpi; 13: KS_{ges} 3 dpi; 14: KS_{ges} 4 dpi; 15: KS_{ges} 5 dpi; 16: KS_{ges} 6 dpi; 17: KS_{ges} 7 dpi; 18: LOH

Abbildung 16 bis Abbildung 21 zeigen die LOD-Werte des jeweiligen SNP beim entsprechenden Phänotyp. Dabei zeigt die x-Achse den jeweiligen LOD-Wert in Prozent bei Berücksichtigung des SNP als fixer Effekt an und die y-Achse den entsprechenden, absoluten, LOD-Wert bei Berücksichtigung des SNP als Marker. Pro Diagramm wird ein SNP farblich hervorgehoben.

Abbildung 16: LOD-Werte auf Chromosom 2, SNP1 (IL-5 c.144+47C>A) schwarz markiert

Ergebnisse

Abbildung 17: LOD-Werte auf Chromosom 2, SNP2 (IL-9 c.269C>G) schwarz markiert

Abbildung 18: LOD-Werte auf Chromosom 2, SNP3 (IL-9 c.286G>A) schwarz markiert

Abbildung 19: LOD-Werte auf Chromosom 2, SNP4 (NR3C1 c.1483G>A) schwarz markiert

Abbildung 20: LOD-Werte auf Chromosom 2, SNP 5 (rs81509148) schwarz markiert

Abbildung 21: LOD-Werte auf Chromosom 12, SNP 2 (STAT3 c.-33743G>A) schwarz markiert

6. Diskussion

Die genetische Krankheitsresistenz stellt einen vielversprechenden Ansatz zur nachhaltigen Bekämpfung von Infektionskrankheiten bei Tieren allgemein und beim Schwein dar. Im Fokus der aktuellen Forschung steht dabei die Identifikation der molekularen Pathogeneseund Abwehrmechanismen, die sich mit Resistenz/Empfindlichkeit von Populationen assoziiert zeigen.

Eine Reihe von Ergebnissen weist auf erhebliche Resistenzunterschiede bezüglich der Pleuropneumonie beim Schwein hin. So konnten QTL mit Assoziation zu phänotypischen Merkmalen einer A. pleuropneumoniae-Infektion ermittelt werden (Gregersen et al. 2010; Sørensen et al. 2011; Reiner et al. 2014). Daneben identifizierten funktionelle Analysen mögliche Kandidatengene (Skovgaard et al. 2010; Reiner et al., unveröffentlicht). Mit vorliegender Arbeit sollten Marker in ausgewählten Kandidatengenen bestimmt und deren Effekte auf das Verhalten der QTL untersucht werden. Das Ziel war die Ein- bzw. Ausgrenzung von Kandidatengenen für weiterführende Feinkartierungsarbeiten. Aufgrund der hohen Zahl potentieller Kandidatengene wurde zunächst ein Ansatz gewählt, bei dem nur wenige informative SNPs für mehrere Kandidatengene Aufschluss über unterschiedliche Assoziationsgrade der einzelnen Gene mit dem QTL geben sollten. Zur Abgrenzung des Arbeitspensums wurde dafür auf die vollständige Darstellung aller SNPs im Bereich dieser Kandidatengene verzichtet. Dabei sollte auch die grundsätzliche Eignung dieser Vorgehensweise in F2-Familien auf dem Weg zur Feinkartierung überprüft werden. Einbezogen wurden zwei QTL-Regionen auf den Chromosomen 2 und 12, die in Vorversuchen synergistische Wirkung hinsichtlich des realisierten klinischen Scores und dem Auftreten von Todesfällen zeigten (Reiner et al. 2014).

Neun Kandidatengene wurden ausgewählt. Von diesen Kandidatengenen wurden die Exons und Abschnitte der Promotorregion amplifiziert und vergleichend sequenziert, um geeignete SNPs zu entdecken. Laut Ron und Weller (2007) ist die Häufigkeit an Polymorphismen in den Introns zwar höher, doch sinkt die Chance auf funktionelle SNPs zu stoßen.

Durch vergleichende Sequenzierung der F_0 -Tiere wurden insgesamt 40 SNPs identifiziert. Davon waren zwei Polymorphismen aus der Literatur bereits bekannt: rs81509148 (im NR3C1-Gen an Position c.*2122) und rs81307429 (im IL-9-Gen an Position c.315+320) (http://www.ncbi.nlm.nih.gov/snp). Grundsätzlich ist es möglich, dass es sich bei den SNPs nicht um Mutationen, sondern um Fehler der Polymerasekettenreaktion handelt. Die Fehlerrate der Taq Polymerase (QIAGEN® Multiplex PCR Kit), die bei der PCR verwendet wurde, liegt bei 3 Fehlern/ 10^4 Basen. Die Fehlerrate der phi29-Polymerase (QIAGEN® REPLI-g Mini Kit®), die bei der Whole Genome Amplification verwendet wurde, liegt bei 1 Fehler/ 10^6 - 10^7 Basen (Qiagen Technical Support, Hilden, pers. Mitteilung). Daher ist die Fehlerquote bei den vorliegenden Sequenzen als gering einzustufen. Um Fehler sicher ausschließen zu können, wurde auch die F₁-Generation sequenziert.

Die gefundenen Polymorphismen lagen innerhalb der Foundertiere als homozygote und heterozygote Genotypen vor. Für die weitere Bearbeitung wurden bevorzugt homozygote SNPs verwendet, da in diesem Fall alle F₂-Tiere informativ waren. Bei Verwendung von heterozygoten SNPs reduzierte sich die nutzbare Tierzahl teilweise erheblich. Eine größere effektive Versuchstierpopulation hätte die Wahrscheinlichkeit QTL mit geringen Effekten auf das Zielmerkmal zu detektieren, gesteigert (Long und Langley 1999; Falconer und Mackay 1996) und das Konfidenzintervall der QTL reduzieren können (Meuwissen et al. 2001). Allerdings konnte für die vorliegende Studie lediglich auf Proben und Phänotypen einer bereits abgeschlossenen QTL-Studie zurückgegriffen werden. Gerade für Studien mit extrem aufwendigen Infektionsversuchen lassen sich hohe Tierzahlen aus Tierschutz- und Kostengründen kaum realisieren.

Tiere aus Populationen der Rassen Hampshire und der Deutschen Landrasse wurden als Founder verwendet, da sich bei diesen Populationen in den Vorversuchen deutliche Rasseunterschiede hinsichtlich der Empfindlichkeit gegenüber einer *A. pleuropneumoniae*-Infektion gezeigt hatten. Tiere aus der verwendeten Hampshire-Population zeigten nur milde Symptomatik, während in den Würfen der Population der Deutschen Landrasse Todesfälle auftraten. Beide Rassen entstammten Basiszuchtlinien eines führenden deutschen Zuchtunternehmens. Im Gegensatz zur Deutschen Landrasse weist die Rasse Hampshire weder eine chinesisch-asiatische noch eine Large White-Basis auf (Hoeltig 2009). Hieraus sollte sich eine ausgeprägte genetische Varianz zwischen den Versuchstieren ergeben.

Die Genotypisierung der ausgewählten SNPs im Familienmaterial wurde mittels Pyrosequenzierung durchgeführt. Hierzu wurde mindestens ein SNP pro Kandidatengen ausgewählt. Laut Ahmadian et al. (2006) stellt die Pyrosequenzierung eine geeignete Methode bei großen Tierzahlen dar. Zur Abschätzung der SNP-Effekte wurde die QTL-Analyse dreimal wiederholt: a) ohne und b) mit Zusatz des SNP als Marker und c) unter Verwendung des SNP als fixen Effekt. Durch die Hinzunahme eines SNP als zusätzlichen Marker zwischen zwei Mikrosatelliten-Marker wurde die Genauigkeit der Segregationsinformation für diesen Bereich erhöht, weil berechnete Segregationswahrscheinlichkeiten durch exakte Segregationsergebnisse ersetzt werden konnten. Hieraus leitet sich die Erwartung ab, dass der in diesem Bereich kartierte QTL mit SNP zuverlässiger geschätzt würde, egal, ob der SNP mit dem Zielmerkmal assoziiert wäre oder nicht. Durch Einbeziehung verschiedener SNPs in diesem Bereich, die verschiedenen Genen entstammten und damit zwangsläufig nicht alle als QTN in Frage kommen konnten, sollte untersucht werden, inwieweit durch diese Vorgehensweise überhaupt eine unterschiedliche Beeinflussung des QTL durch verschiedene SNPs erreicht würde.

Die Markerintervalle lagen unter Verwendung der Mikrosatellitenmarker in der untersuchten Region auf Chromosom 2 bei ungefähr 13 cM und auf Chromosom 12 bei ungefähr 13 cM und 45 cM. Durch Berücksichtigung der SNPs als zusätzliche Marker wurden die Abstände auf durchschnittlich 4,3 cM (zwischen 0,4 cM und 9,1 cM) auf SSC2 und 7,45 cM (zwischen 3,1 cM und 6,3 cM) auf SSC12 reduziert. Laut Dekkers und Hospital (2002) sind für die Marker-gestützte Selektion (MAS) Marker bzw. Markerhaplotypen notwendig, die innerhalb von Familien im Abstand von 5 cM und populationsweit im Abstand von 1-2 cM zum QTL liegen, damit ein Kopplungsungleichgewicht angezeigt wird. Bei einer Populationsgröße von 100 Tieren und einem Markerabstand von 1 cM liegt die Genauigkeit des molekularen Scores bei 85 % zu dem totalen Zuchtwert (Dekkers und Hospital 2002). Die Markergenauigkeit sinkt mit steigendem Abstand der Marker.

Außerdem ist zu beachten, dass zwischen zwei Ansätzen zur Kartierung — Linkage-Kartierung und Linkage-Disequilibrium-Kartierung — zu unterscheiden ist. Laut Meuwissen und Goddard (2000) ist die Linkage-Disequilibrium-Kartierung die geeignetste Methode zur Feinkartierung von QTL; denn bei dieser Methode ist eine präzisere Kartierung möglich als mit der Kopplungsanalyse, bei der auch durch Erhöhung der Markerdichte das Konfidenzintervall nur bis zu einem bestimmten Grenzwert gesenkt werden kann (Darvasi et al. 1993). Bei der Linkage-Kartierung umfasst das Konfidenzintervall meist 10-30 cM (Darvasi et al. 1993; Lund et al. 2003), bei der Linkage-Disequilibrium-Kartierung dagegen ist eine Eingrenzung des QTL auf 1-3 cM möglich (Meuwissen und Goddard 2000). In der vorliegenden Arbeit konnte bei verschiedenen Phänotypen mittels Kopplungsanalyse das Konfidenzintervall auf Werte unter 10 cM gesenkt werden, wobei eine Eingrenzung auf 3 cM und weniger in der Regel nicht erreicht wurde.

Die Signifikanzschwelle wurde in der Berechnung als "Likelihood Ratio (LR) gleich 5" festgelegt. Alternativ hätte der Schwellenwert durch Permutationstests ermittelt werden können, allerdings wären dann QTL mit geringem Effekt von der Software nicht erfasst worden (Ruckert und Bennewitz 2010). Die Software "WinQTL" empfiehlt einen LR-Wert von 11,5 (entspricht einem LOD-Wert von 2,5; LOD=LR/(2·ln[10])) zur manuellen Festlegung des Signifikanzniveaus. Daher wurde dieses Signifikanzniveau bei der Bewertung der Ergebnisse berücksichtigt.

Auffällig ist, dass unter Berücksichtigung des SNP IL-5 c.144+47C>A als fixer Effekt neun LOD-Werte nicht berechnet werden konnten. Dies ist vermutlich in einer Datenimbalance zu begründen und die LOD-Werte wurden in der weiteren Auswertung nicht berücksichtigt.

Um den Informationszuwachs am QTL durch den Einsatz der SNPs entsprechend interpretieren zu können, stellten wir zwei Grundhypothesen auf: I. Werden die SNP-Genotypen als zusätzliche Marker eingesetzt und der Peak des QTL steigt an, liegt ein informativer SNP vor. Das Konfidenzintervall ist kleiner und der QTL ist präziser. Der entsprechende SNP könnte, muss allerdings nicht zwingend, als QTN aufgefasst werden. Der präzisierte QTL ist in erster Linie auf die Markergenauigkeit zurückzuführen. Ist die Mutation nicht funktionell, aber mit dem QTN gekoppelt, könnte der SNP als anonymer Marker verwendet werden, nachdem er seine Eignung innerhalb einer segregierenden Population unter Beweis gestellt hätte.

II. Werden die SNP-Genotypen als fixe Effekte berücksichtigt und das Maximum des QTL sinkt deutlich ab, besteht eine Assoziation zwischen der Mutation und dem phänotypischen Merkmal. Steigt das Maximum des QTL hingegen an, so sind die Effekte des QTL und des SNP als getrennt auf das Merkmal wirkende Effekte zu interpretieren.

Betrachtet man die LOD-Werte auf Chromosom 2, steht der SNP NR3C1 c.1483G>A im Fokus: Als Marker eingesetzt bewirkte der SNP einen Anstieg des QTL-Peaks, wohingegen der Peak sank, wenn der SNP als fixer Effekt berücksichtigt wurde. Dies spricht für einen Zusammenhang zwischen dem betreffenden Gen (oder der Region) und der Resistenz gegen *A. pleuropneumoniae*. Der Peak des QTL sank bis auf einen LOD-Wert von 1 (beim Phänotyp "Sektionsscore") unter Berücksichtigung des SNP NR3C1 c.1483G>A als fixer Effekt und stieg maximal auf einen LOD-Wert von 5,07 (beim Phänotyp "RHS") unter Berücksichtigung des SNP als zusätzlicher Marker. Dies lässt vermuten, dass dieser SNP wahrscheinlich nicht als QTN in Frage kommt oder dass zumindest weitere Gene die phänotypischen Merkmale mit beeinflussen. Grundsätzlich ist davon auszugehen, dass der SNP einen höheren LOD-Wert verursachen würde bzw. eine größere Diskrepanz der LOD-Werte des SNP zu den LOD-Werten der anderen SNPs bestehen würde, wenn es sich bei dem SNP um das QTN handeln würde. Allerdings sind in der vorliegenden Studie die SNPs miteinander gekoppelt (s. u.), sodass alle SNPs eine Assoziation zu den Merkmalen zeigen. Die statistische Power reicht nicht aus, um einem einzelnen SNP den Vorzug als QTN-Kandidat einzuräumen. Widerlegen lässt sich die Hypothese, dass es sich bei dem SNP NR3C1 c.1483G>A um den QTN handelt, allerdings auch nicht. Damit wird klar, dass, entgegen der Ausführungen von Reiner et al. (2010b) die Verwendung einer F₂-Familie nicht geeignet ist, um verschiedene benachbarte SNPs im Bereich eines QTL als QTN zu identifizieren. Bei der Erzeugung von F_2 -Familien finden nicht genügend informative Meiosen statt, sodass die SNPs sich nicht in ausreichendem Maße unabhängig voneinander verhalten. Die Verwendung der in dieser Arbeit entwickelten Marker in einer kommerziellen Population könnte die Assoziation des jeweiligen SNP deutlicher darstellen, da in einer kommerziellen Population erheblich mehr Meiosen zur Verfügung stehen und die Kopplungsgruppen damit deutlich kleiner sind.

Außerdem besteht die Möglichkeit, dass, auch wenn es sich bei dem SNP NR3C1 c.1483G>A um das QTN handeln sollte, weitere Marker mit Einfluss auf die Merkmalsausprägung in der Chromosomenregion oder anderen Regionen vorhanden sein können (Ron und Weller 2007), sodass der SNP NR3C1 c.1483G>A nur einen Teil der Merkmalsvarianz verursacht. Dafür spricht, dass der SNP NR3C1 c.1483G>A 5,99 % bis 28,14 % der phänotypischen Varianz erklärt. Bereits in Vorversuchen lagen Hinweise auf eine Interaktion zwischen Genen auf Chromosom 2 und 12 vor. Alle Tiere, die in der Studie verstarben, waren homozygot auf dem Marker Swr345 oder S0143 und trugen zusätzlich zumindest ein ungünstiges Allel auf dem korrespondierenden Marker (Reiner et al. 2014). Beide in dieser Arbeit untersuchten SNPs (SNP RPL38 c.1-83C>T und STAT3 c.33743G>A) steigerten bei keinem Phänotyp den LOD-Wert des QTL, sodass es sich bei beiden SNPs höchstwahrscheinlich nicht um das QTN handelt und andere Gene auf Chromosom 12 die Merkmalsausprägung beeinflussen. Die niedrigen LOD-Werte im Vergleich zu jenen in den Vorversuchen lassen sich auf die reduzierte Zahl an Versuchstieren zurückführen, deren Daten aufgrund fehlender Informativität der SNPs nicht in die QTL-Berechnung einfließen konnten.

Die Assoziationsstudie der F₂-Generation ließ einen Einfluss der Genotypen des SNP rs81509148 (im NR3C1-Gen an Position c.*2122) auf die phänotypischen Merkmale erkennen. Beide Sauen der empfindlichen Deutschen Landrasse-Population wiesen den Genotyp "A/A" auf. Der Eber der resistenten Hampshire-Population besaß den heterozygoten Genotyp "A/G". Es ließ sich die Hypothese aufstellen, dass Tiere mit dem Genotyp "A/A" deutlichere Krankheitsanzeichen zeigen und empfindlicher gegen *A. pleuropneumoniae* sind,

als Tiere mit dem Genotyp "G/G" oder einem heterozygoten Genotyp. Entgegen dieser Erwartung war allerdings innerhalb der F_2 -Tiere der Genotyp "G/G" mit den ungünstigsten Phänotypen assoziiert. Daher ist der SNP rs81509148 möglicherweise mit der kausalen Mutation gekoppelt, stellt aber nicht das QTN dar. Die Werte zeigten eine hohe Streuung und die Signifikanzschwelle wurde nicht bei allen Phänotypen erreicht.

Fazit aus den vorliegenden Ergebnissen:

In der vorliegenden Arbeit wurden neun Gene auf den Chromosomen 2 und 12 hinsichtlich Polymorphismen und deren Assoziation mit phänotypischen Merkmalen der Krankheitsresistenz gegen *A. pleuropneumoniae* untersucht. Folgendes Resümee lässt sich festhalten:

1. Die in den Vorversuchen kartierten QTL konnten bestätigt werden.

2. Das NR3C1-Gen kann als potentielles Kandidatengen bestätigt werden, zumal dieses Gen auch als homolog-physiologisches Kandidatengen charakterisiert wurde.

Der Transkriptionsfaktor NR3C1 stellt als Repressor proinflammatorischer Gene einen wichtigen Faktor für die Immunantwort dar. Laut Dejager et al. (2010) sind Mäuse mit einer gesteigerten Transkription des Glukokortikoidrezeptors resistent gegen durch LPS ausgelöste Letaleffekte. Als Ursache wird ein Polymorphismus im NR3C1-Gen vermutet (Dejager et al. 2010). LPS ist auch ein essentieller Virulenzfaktor von A. pleuropneumoniae. Er ist hauptverantwortlich für die Entstehung von Todesfällen und neben den Apx-Toxinen für das Ausmaß des klinischen Bildes (Bosse et al. 2002; Chiers et al. 2010). Folglich ließe sich die Hypothese aufstellen, dass Tiere der untersuchten Hampshire-Population aufgrund eines bestimmten Genotyps effizienter proinflammatorische Cytokine unterdrücken können und dadurch die Klinik reduziert und Todesfälle verhindert werden. Denn die Todesfälle basieren nicht allein auf einer direkten Erregerwirkung. Die Imbalance des Immunsystems in Form einer massiven Freisetzung inflammatorischer Mediatoren, wie Cytokinen, kann zum Schock mit Multiorganversagen führen (Mortensen et al. 2011). In der Humanmedizin wurden bereits Assoziationen zwischen Polymorphismen im NR3C1-Gen und einer Krankheitsanfälligkeit beschrieben, wobei nicht-infektiöse Erkrankungen wie z. B. bronchiales Asthma im Fokus stehen (Panek et al. 2012) (siehe Kapitel 2.6.2.).

3. Der SNP NR3C1 c.1483G>A wurde untersucht, ließ sich allerdings nicht mit Sicherheit als QTN identifizieren.

4. Der gewählte Ansatz zur Feinkartierung von QTL funktioniert nicht, weil die verfügbaren Meiosen innerhalb der F₂-Familie keine absicherbare Differenzierung der gekoppelten SNP-Effekte zulassen. Als Alternative zu F₂-Familien sollten Schweine einer segregierenden Population mittels "genotyping by sequencing" (Spindel et al. 2013) charakterisiert werden. Aufgrund der kleinen Kopplungsgruppen sollte eine solche Studie mit einer vergleichbaren Zahl an Versuchstieren unter den gleichen Bedingungen einer akkuraten Phänotypisierung eine höhere Chance auf Erfolg mit sich bringen.

5. Vermutlich wird die genetische Krankheitsresistenz gegen *A. pleuropneumoniae* durch eine komplexe Interaktion verschiedener Gene, die sich in verschiedenen Chromosomenregionen bzw. auf verschiedenen Chromosomen befinden, verursacht. Es sollte die Aufdeckung aller verantwortlichen QTL angestrebt werden, um den komplexen Sachverhalt der Krankheitsresistenz gegen *A. pleuropneumoniae* und andere Erreger zu entschlüsseln.

7. Zusammenfassung

Die Pleuropneumonie, verursacht durch *Actinobacillus pleuropneumoniae*, stellt eine weltweit bedeutsame und schwerwiegende Erkrankung des Respirationstraktes beim Schwein dar. Aktuelle Therapie- und Prophylaxemaßnahmen führen nicht zum gewünschten nachhaltigen Erfolg und alternative Bekämpfungsstrategien sind erforderlich.

Neue Untersuchungen weisen auf erhebliche Resistenzunterschiede von Schweinen gegen *A. pleuropneumoniae* hin: Tiere einer Hampshire-Population zeigten sich weniger empfänglich als Tiere von Populationen der Rassen Pietrain und der Deutschen Landrasse. In Vorversuchen wurden acht Quantitative Trait Loci (QTL) mit Assoziation zu klinischen, pathologischen und mikrobiologischen Merkmalen der Pleuropneumonie kartiert. Eine eQTL-Analyse ergab vielversprechende Kandidatengene. Dabei stellten sich zwei "Hotspots" auf Chromosom 2 nahe dem Marker Swr345 und auf Chromosom 12 nahe dem Marker S0143 heraus.

Das Ziel der vorliegenden Arbeit war die Ein- bzw. Ausgrenzung von Kandidatengenen für weitere Feinkartierungsarbeiten. Hierzu wurde zunächst ein SNP-Screening in neun Kandidatengenen durchgeführt. Anschließend wurden die Assoziationsgrade von sieben informativen SNPs mit dem QTL untersucht. Dabei wurden die SNP-Genotypen nacheinander als zusätzliche Marker und als fixe Effekte berücksichtigt.

Im Fokus der Ergebnisse stand der SNP NR3C1 c.1483G>A: Bei 14 von 17 Phänotypen sank der LOD-Score des QTL unter Berücksichtigung des SNP als fixen Effekt und bei zehn von 17 Phänotypen stieg der LOD-Score unter Berücksichtigung des SNPs als zusätzlichen Marker an. Dies spricht für einen Zusammenhang zwischen SNP und Merkmal. Allerdings zeigen die benachbarten SNPs ähnlich hohe Assoziationen, sodass der SNP NR3C1 c.1483G>A nicht sicher von den anderen SNPs als QTN-Kandidat abgegrenzt werden kann. Aufgrund der engen Kopplung der einzelnen Marker miteinander innerhalb von F₂-Familien, reicht die durchgeführte Methode zur Feinkartierung nicht aus. Die Assoziationsstudie ließ einen Einfluss der Genotypen des SNP rs81509148 (im NR3C1-Gen an Position c.*2122) auf die phänotypischen Merkmale erkennen. Der SNP rs81509148 ist möglicherweise mit der kausalen Mutation gekoppelt, stellt allerdings nicht das QTN dar. In der vorliegenden Arbeit konnte das NR3C1-Gen als potentielles Kandidatengen bestätigt werden. Der Transkriptionsfaktor NR3C1 wirkt vor allem als Repressor proinflammatorischer Gene.

Im nächsten Schritt sollten die SNPs in einer kommerziellen Population mit segregierenden Resistenzunterschieden bezüglich *A. pleuropneumoniae* untersucht und parallel weitere SNPs mittels "genotyping by sequencing" Verfahren einbezogen werden.

8. Summary

Pleuropneumonia caused by *Actinobacillus pleuropneumoniae* is an important and severe disease of the porcine respiratory tract worldwide. Known therapy plans and prophylaxis do not lead to sustainable success and alternative disease-control strategies are needed. Recent researches provide significant differences in resistance to *A. pleuropneumoniae* among pigs: The Hampshire pigs of the investigated population appeared to be least susceptible in comparison to Pietrain pigs and German Landrace pigs. Eight Quantitative Trait Loci (QTL) for clinical, pathological and microbiological traits were mapped in pretests. An eQTL-analysis identified promising candidate genes. There were two hotspots on chromosome 2 near marker Swr345 and on chromosome 12 near marker S0143.

The aim of the present study was to exclude and to choose candidate genes for fine mapping. It should provide an indication of Quantitative Trait Nucleotides (QTN). A first approach was a SNP-screening in nine candidate genes. Then QTL-analysis tested the effect of seven informative polymorphisms on the QTL. SNP-genotypes were included one after another as additional markers and as fixed effects.

As a result SNP NR3C1 c.1483G>A was an interesting mutation: 14 of 17 LOD scores decreased including this SNP as a fixed effect and ten of 17 LOD scores increased including this SNP as a marker. These facts supported an association between SNP and trait. However the nearby SNPs show similar associations. Therefore SNP NR3C1 c.1483G>A can certainly not be defined as QTN-candidate. There is a close link between the single markers within a F_2 -family. The chosen method cannot be used for fine mapping. The association study hypothesizes an association between genotypes of SNP rs81509148 (position c.*2122 in gene NR3C1) and phenotypically traits. SNP rs81509148 is probably linked with the causative mutation but it is not the QTN. The present study confirms gene NR3C1 as a potential candidate gene. NR3C1 is a transcription factor which represses proinflammatory genes.

The next approach should be to analyze these SNPs in a commercial population with segregated differences in resistance to *A. pleuropneumoniae*. In addition methods of "genotyping by sequencing" should include more SNPs.

9. Literaturverzeichnis

Ahmadian, A.; Ehn, M.; Hober, S. (2006): Pyrosequencing: history, biochemistry and future. In: *Clin Chim Acta* 363 (1-2), S. 83–94.

Amirzargar, A. A.; Rezaei, N.; Jabbari, H.; Danesh, A.-A.; Khosravi, F.; Hajabdolbaghi, M. et al. (2006): Cytokine single nucleotide polymorphisms in Iranian patients with pulmonary tuberculosis. In: *Eur Cytokine Netw* 17 (2), S. 84–89.

Aschard, H.; Bouzigon, E.; Corda, E.; Ulgen, A.; Dizier, M-H; Gormand, F. et al. (2009): Sex-specific effect of IL9 polymorphisms on lung function and polysensitization. In: *Genes Immun* 10 (6), S. 559–565.

Atik, B.; Skwor, T. A.; Kandel, R. P. Sharma, B.; Adhikari, H. K.; Steiner, L. et al. (2008): Identification of novel single nucleotide polymorphisms in inflammatory genes as risk factors associated with trachomatous trichiasis. In: *PLoS One* 3 (10), S. e3600.

Baarsch, M. J.; Scamurra, R. W.; Burger, K.; Foss, D. L.; Maheswaran, S. K.; Murtaugh, M. P. (1995): Inflammatory cytokine expression in swine experimentally infected with *Actinobacillus pleuropneumoniae*. In: *Infect Immun* 63 (9), S. 3587–3594.

Barrett, J. C.; Hansoul, S.; Nicolae, D. L.; Cho, J. H.; Duerr, R. H.; Rioux, J. D. et al. (2008): Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. In: *Nat Genet* 40 (8), S. 955–962.

Bayerische Landesanstalt für Landwirtschaft (Hrsg.): Genomische Selektion beim Schwein. Online verfügbar unter http://www.lfl.bayern.de/itz/schwein/023973/index.php, zuletzt geprüft am 15.08.2013.

Benga, L.; Hoeltig, D.; Rehm, T.; Rothkoetter, H. J.; Pabst, R.; Valentin Weigand, P.; FUGATO consortium, IRAS (2009): Expression levels of immune markers in *Actinobacillus pleuropneumoniae* infected pigs and their relation to breed and clinical symptoms. In: *BMC Veterinary Research [Electronic Resource]* 5, S. 13.

Berge, T. (2008): Genomweite Kartierung von QTL mit Assoziation zur Resistenz/Empfindlichkeit gegen *Sarcocystis miescheriana* beim Schwein. Diss. Vet. Med., Giessen.

Bertram, T. A. (1985): Quantitative morphology of peracute pulmonary lesions in swine induced by *Haemophilus pleuropneumoniae*. In: *Vet Pathol* 22 (6), S. 598–609.

Bishop, S. C.; Axford, R. F. E.; Nicholas, F. W.; Owen, J. B. (2010): Introduction. In: S. C. Bishop, C. Stephen, F. W. Nicholas und R. F. E. Axford (Ed.): Breeding for disease resistance in farm animals. 3. Aufl., Wallingford: CABI., S. 3-14

Bisset, S. A.; Morris, C. A. (1996): Feasibility and implications of breeding sheep for resilience to nematode challenge. [Review] [38 refs]. In: *International Journal for Parasitology* 26 (8-9), S. 857–868.

Blackwell, J. M. (1996): Structure and function of the natural-resistance-associated macrophage protein (Nramp1), a candidate protein for infectious and autoimmune disease susceptibility. In: *Mol Med Today* 2 (5), S. 205–211.

Bosse, J. T.; Janson, H.; Sheehan, B. J.; Beddek, A. J.; Rycroft, A. N.; Kroll, J. S.; Langford, P. R. (2002): *Actinobacillus pleuropneumoniae*: pathobiology and pathogenesis of infection. In: *Microbes Infect* 4 (2), S. 225–235.

Bouchez, A.; Hospital, F.; Causse, M.; Gallais, A.; Charcosset, A. (2002): Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. In: *Genetics* 162 (4), S. 1945–1959.

Brade, W. (2003): Neuere Erkenntnisse zur Domestikation und Genetik der Rinder. (58), S. 241–251.

Broke, A.; Matika, O.; Wilson, A. D.; Anderson, J.; Morin, A-C; Finlayson, H. A. et al. (2011): An intronic polymorphism in the porcine IRF7 gene is associated with better health and immunity of the host during *Sarcocystis* infection, and affects interferon signalling. In: *Anim Genet* 42 (4), S. 386–394.

Buske B.; Gengler, N. (2009): Genomische Selektion: ein Meilenstein auch in der Schweinezucht? In: *Schweinezucht aktuell* (35), S. 28–29.

Butler, John M. (2005): Constructing STR multiplex assays. In: *Methods Mol Biol* 297, S. 53–66.

Cameron, H. S.; Gregory P. W.; Hughes E. H. (1941): Studies on Genetic Resistance in Swine to *Brucella* Infection. II. A Bacteriological Examination of Resistant Stock. In: *The Cornell Vet.* (31), S. 21–24.

Cameron, H. S.; Gregory, P. W.; Hughes, E. H. (1940): Studies on Genetic Resistance in Swine to *Brucella* Infection. Preliminary Report. In: *The Cornell Vet.* (30), S. 218–222.

Cameron, H. S.; Hughes, E. H.; Gregory, P. W. (1942): Genetic resistance to brucellosis in swine. In: *J. Anim. Sci.* (1), S. 106–110.

Chatterjee, S.; Pal, J. K. (2009): Role of 5'- and 3'-untranslated regions of mRNAs in human diseases. In: *Biol Cell* 101 (5), S. 251–262.

Chiers, K.; Waele, T. de; Pasmans, F.; Ducatelle, R.; Haesebrouck, F. (2010): Virulence factors of *Actinobacillus pleuropneumoniae* involved in colonization, persistence and induction of lesions in its porcine host. In: *Vet Res* 41 (5), S. 65.

Clemens, N. M. (2010): Untersuchungen zur GOT1 als Kandidatengen für die Variabilität der Untersuchungen zur GOT1 als Kandidatengen für die Variabilität der Serum-Aspartat-Aminotransferase-Spiegel beim Schwein. Vet. Med. Diss., Giessen.

Cole, R. K. (1968): Studies on genetic resistance to Marek's disease. In: *Avian Dis* 12 (1), S. 9–28.

Conne, B.; Stutz, A.; Vassalli, J. D. (2000): The 3' untranslated region of messenger RNA: A molecular 'hotspot' for pathology? In: *Nat Med* 6 (6), S. 637–641.

Cooper, P. J.; Chico, M. E.; Sandoval, C.; Espinel, I.; Guevara, A.; Kennedy, M. W. et al. (2000): Human infection with *Ascaris lumbricoides* is associated with a polarized cytokine response. In: *J Infect Dis* 182 (4), S. 1207–1213.

Cousins, D. J.; Staynov, D. Z.; Lee, T. H. (1994): Regulation of interleukin-5 and granulocyte-macrophage colony-stimulating factor expression. In: *Am J Respir Crit Care Med* 150 (5 Pt 2), S. S50-3.

Cruijsen, T.; van Leengoed, L. A.; Kamp, E. M.; Bartelse, A.; Korevaar, A.; Verheijden, J. H. (1995): Susceptibility to *Actinobacillus pleuropneumoniae* infection in pigs from an endemically infected herd is related to the presence of toxin-neutralizing antibodies. In: *Vet Microbiol* 47 (3-4), S. 219–228.

D'Addabbo, A.; Palmieri, O.; Maglietta, R.; Latiano, A.; Mukherjee, S.; Annese, V.; Ancona, N. (2011): Discovering genetic variants in Crohn's disease by exploring genomic regions enriched of weak association signals. In: *Dig Liver Dis* 43 (8), S. 623–631.

Danilowicz, E.; Martinez Arias, R.; Dolf, G.; Singh, M.; Probst, I.; Tummler, B. et al. (2010): Characterization of the porcine transferrin gene (TF) and its association with disease severity following an experimental *Actinobacillus pleuropneumoniae* infection. In: *Animal Genetics* 41 (4), S. 424–427.

Darvasi, A.; Weinreb, A.; Minke, V.; Weller, J. I.; Soller, M. (1993): Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. In: *Genetics* 134 (3), S. 943–951.

Dejager, L.; Pinheiro, I.; Puimege, L.; Fan, Y.-D.; Gremeaux, L.; Vankelecom, H.; Libert, C. (2010): Increased glucocorticoid receptor expression and activity mediate the LPS resistance of SPRET/EI mice. In: *J Biol Chem* 285 (40), S. 31073–31086.

Dekkers, J. C. M. (2004): Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. In: *J Anim Sci* 82, S. E313-328.

Dekkers, Jack C. M.; Hospital, Frederic (2002): The use of molecular genetics in the improvement of agricultural populations. In: *Nat Rev Genet* 3 (1), S. 22–32.

Demoulin, J. B.; Renauld, J. C. (1998): Interleukin 9 and its receptor: an overview of structure and function. In: *Int Rev Immunol* 16 (3-4), S. 345–364.

Didier, P. J.; Perino, L.; Urbance, J. (1984): Porcine *Haemophilus pleuropneumonia*: microbiologic and pathologic findings. In: *J Am Vet Med Assoc* 184 (6), S. 716–719.

Dorner, D.; Gotzmann, J.; Foisner, R. (2007): Nucleoplasmic lamins and their interaction partners, LAP2alpha, Rb, and BAF, in transcriptional regulation. In: *FEBS J* 274 (6), S. 1362–1373.

Doss, S.; Schadt, E. E.; Drake, T. A.; Lusis, A. J. (2005): Cis-acting expression quantitative trait loci in mice. In: *Genome Research* 15 (5), S. 681–691.

Drake, T. A.; Schadt, E. E.; Lusis, A. J. (2006): Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice. In: *Mamm Genome* 17 (6), S. 466–479.

Dugas, B.; Renauld, J. C.; Pene, J.; Bonnefoy, J. Y.; Peti-Frere, C.; Braquet, P. et al. (1993): Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. In: *Eur J Immunol* 23 (7), S. 1687–1692.

Early, S. B.; Huyett, P.; Brown-Steinke, K.; Borish, L.; Steinke, J. W. (2009): Functional analysis of -351 interleukin-9 promoter polymorphism reveals an activator controlled by NF-kappaB. In: *Genes Immun* 10 (4), S. 341–349.

Edfors-Lilja, I.; Gustafsson, U.; Duval-Iflah, Y.; Ellergren, H.; Johansson, M.; Juneja, R. K. et al. (1995): The porcine intestinal receptor for *Escherichia coli* K88ab, K88ac: regional localization on chromosome 13 and influence of IgG response to the K88 antigen. In: *Anim Genet* 26 (4), S. 237–242.

Ellis, M. K.; Zhao, Z. Z.; Chen, H.-G.; Montgomery, G. W.; Li, Y.-S.; McManus, D. P. (2007): Analysis of the 5q31 33 locus shows an association between single nucleotide polymorphism variants in the IL-5 gene and symptomatic infection with the human blood fluke, *Schistosoma japonicum*. In: *J Immunol* 179 (12), S. 8366–8371.

Ensembl Genome Browser, Sus scrofa: http://www.ensembl.org/Sus_scrofa/Info/Index

Falconer, D. S.; Mackay, T. F. C. (1996): Introduction to quantitative genetics. 4. Aufl., Essex, England: Longman.

Faustino, N. A.; Cooper, T. A. (2003): Pre-mRNA splicing and human disease. In: *Genes Dev* 17 (4), S. 419–437.

Freidin, M. B.; Puzyrev, V. P.; Ogorodova, L. M.; Kobiakova, O. S.; Kulmanakova, I. M. (2002): Polymorphism of interleukins and interleukin receptor genes: population distribution and association with atopic bronchial asthma. In: *Genetika* 38 (12), S. 1710–1718.

Frey, E. A.; Miller, D. S.; Jahr, T. G.; Sundan, A.; Bazil, V.; Espevik, T. et al. (1992): Soluble CD14 participates in the response of cells to lipopolysaccharide. In: *J Exp Med* 176 (6), S. 1665–1671.

Fujii, J.; Otsu, K.; Zorzato, F.; Leon, S. de; Khanna, V. K.; Weiler, J. E. et al. (1991): Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. In: *Science* 253 (5018), S. 448–451.

Geldermann, H. (1975): Investigations on inheritance of quantitative characters in animals by gene markers I. Methods. In: *Theoret. Appl. Genetics* 46 (7), S. 319–330.

Geldermann, H.; Bartenschlager, H. (2005): Tier-Biotechnologie. 115 Tabellen. 1. Aufl., Stuttgart (Hohenheim): Ulmer.

Georges, M. (2007): Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals. In: *Annu Rev Genomics Hum Genet* 8, S. 131–162.

Goddard, M. E.; Hayes, B. J. (2007): Genomic selection. In: *J Anim Breed Genet* 124 (6), S. 323–330.

Goldman, A. E.; Maul, G.; Steinert, P. M.; Yang, H. Y.; Goldman, R. D. (1986): Keratin-like proteins that coisolate with intermediate filaments of BHK-21 cells are nuclear lamins. In: *Proc Natl Acad Sci U S A* 83 (11), S. 3839–3843.

Gottschalk, M.; Taylor, D. J. (2006): *Actinobacillus pleuropneumoniae*. In: Straw, B. E.; Zimmerman, J J.; D'Allaire, S.; Taylor, D. J. (Ed.): Diseases of swine. 9. Aufl. Ames, Iowa: Blackwell Publishing, S. 563–572.

Gregersen, V. R.; Sorensen, K. K.; Christensen, O. F.; Busch, M. E.; Vingborg, R. K.; Velander, I. H. et al. (2010): Identification of QTL for dorso-caudal chronic pleuritis in 12 crossbred porcine families. In: *Animal Genetics* 41 (5), S. 509–514.

Grohmann, U.; van Snick, J.; Campanile, F.; Silla, S.; Giampietri, A.; Vacca, C. et al. (2000): IL-9 protects mice from Gram-negative bacterial shock: suppression of TNF-alpha, IL-12, and IFN-gamma, and induction of IL-10. In: *J Immunol* 164 (8), S. 4197–4203.

Gutierrez Martin, C. B.; Blanco, N. G., del; Blanco, M.; Navas, J.; Rodriguez Ferri, E. F. (2006): Changes in antimicrobial susceptibility of *Actinobacillus pleuropneumoniae* isolated from pigs in Spain during the last decade. In: *Veterinary Microbiology* 115 (1-3), S. 218–222.

Haesebrouck, F.; Chiers, K.; van Overbeke, I.; Ducatelle, R. (1997): *Actinobacillus pleuropneumoniae* infections in pigs: the role of virulence factors in pathogenesis and protection. In: *Vet Microbiol* 58 (2-4), S. 239–249.

Haley, C. S.; Andersson L. (1997): Linkage mapping of quantitative trait loci in plants and animals. In: Dear, P. H. (Ed.): Genome Mapping: a practical approach. Oxford University Press, USA, S. 49–71.

Hayashi, R.; Wada, H.; Ito, K.; Adcock, I. M. (2004): Effects of glucocorticoids on gene transcription. In: *Eur J Pharmacol* 500 (1-3), S. 51–62.

Hirsch-Kauffmann, M.; Schweiger, M. (2006): Biologie für Mediziner und Naturwissenschaftler. 74 Tabellen. 6. Aufl., Stuttgart, New York: Thieme.

Hoeltig, D. (2009): Vergleichende klinische Untersuchungen an Ferkeln der Rassen Deutsche Landrasse, Hampshire, Piétrain und Deutsches Edelschwein hinsichtlich unterschiedlicher Erkrankungsgrade nach einer Aerosolinfektion mit *Actinobacillus pleuropneumoniae*. Vet. Med. Diss., Hannover.

Hoeltig, D.; Hennig Pauka, I.; Thies, K.; Rehm, T.; Beyerbach, M.; Strutzberg Minder, K. et al. (2009): A novel Respiratory Health Score (RHS) supports a role of acute lung damage and pig breed in the course of an *Actinobacillus pleuropneumoniae* infection. In: *BMC Veterinary Research [Electronic Resource]* 5, S. 14.

Holland, S. M.; DeLeo, F. R.; Elloumi, H. Z.; Hsu, A. P.; Uzel, G.; Brodsky, N. et al. (2007): STAT3 mutations in the hyper-IgE syndrome. In: *N Engl J Med* 357 (16), S. 1608–1619.

Hollegaard, M. V.; Bidwell, J. L. (2006): Cytokine gene polymorphism in human disease: online databases, Supplement 3. In: *Genes Immun* 7 (4), S. 269–276.

Hong, S.-J.; Lee, S.-Y.; Kim, H.-B.; Kim, J.-H.; Kim, B.-S.; Choi, S.-O. et al. (2005): IL-5 and thromboxane A2 receptor gene polymorphisms are associated with decreased pulmonary function in Korean children with atopic asthma. In: *J Allergy Clin Immunol* 115 (4), S. 758–763.

Hu, Z.-L.; Dracheva, S.; Jang, W.; Maglott, D.; Bastiaansen, J.; Rothschild, M. F.; Reecy, J. M. (2005): A QTL resource and comparison tool for pigs: PigQTLDB. In: *Mamm Genome* 16 (10), S. 792–800.

Hultner, L.; Druez, C.; Moeller, J.; Uyttenhove, C.; Schmitt, E.; Rude, E. et al. (1990): Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). In: *Eur J Immunol* 20 (6), S. 1413–1416.

Hussein, Y. M.; Shalaby, S. M.; Mohamed, R. H.; Hassan, T. H. (2011): Association between genes encoding components of the IL-10/IL-0 receptor pathway and asthma in children. In: *Ann Allergy Asthma Immunol* 106 (6), S. 474–480.

Hutt, F. B. (1958): Genetic resistance to disease in domestic animals: Comstock Pub. Associates.

Ibeagha Awemu, E. M.; Lee, J. W.; Ibeagha, A. E.; Zhao, X. (2008a): Bovine CD14 gene characterization and relationship between polymorphisms and surface expression on monocytes and polymorphonuclear neutrophils. In: *BMC Genetics* 9, S. 50.

Ibeagha-Awemu, E. M.; Kgwatalala, P.; Ibeagha, A. E.; Zhao, X. (2008b): A critical analysis of disease-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. In: *Mamm Genome* 19 (4), S. 226–245.

Illumina. Online verfügbar unter

http://www.illumina.com/applications/agriculture/livestock.ilmn, zuletzt geprüft am 14.08.2013.

Inoue, N.; Watanabe, M.; Morita, M.; Tatusmi, K.; Hidaka, Y.; Akamizu, T.; Iwatani, Y. (2011): Association of functional polymorphisms in promoter regions of IL5, IL6 and IL13 genes with development and prognosis of autoimmune thyroid diseases. In: *Clin Exp Immunol* 163 (3), S. 318–323.

Jackson, J. A.; Turner, J. D.; Rentoul, L.; Faulkner, H.; Behnke, J. M.; Hoyle, M. et al. (2004): T helper cell type 2 responsiveness predicts future susceptibility to gastrointestinal nematodes in humans. In: *J Infect Dis* 190 (10), S. 1804–1811.

Jacobsen, M. J.; Nielsen, J. P. (1995): Development and evaluation of a selective and indicative medium for isolation of *Actinobacillus pleuropneumoniae* from tonsils. In: *Vet Microbiol* 47 (1-2), S. 191–197.

Jacobsen, M.; Kracht, S. S.; Esteso, G.; Cirera, S.; Edfors, I.; Archibald, A. L. et al. (2010): Refined candidate region specified by haplotype sharing for *Escherichia coli* F4ab/F4ac susceptibility alleles in pigs. In: *Anim Genet* 41 (1), S. 21–25.

Jakkula, E.; Leppa, V.; Sulonen, A.-M.; Varilo, T.; Kallio, S.; Kemppinen, A. et al. (2010): Genome-wide association study in a high-risk isolate for multiple sclerosis reveals associated variants in STAT3 gene. In: *Am J Hum Genet* 86 (2), S. 285–291.

Jang, I. K.; Zhang, J.; Gu, H. (2009): Grb2, a simple adapter with complex roles in lymphocyte development, function, and signaling. In: *Immunol Rev* 232 (1), S. 150–159.

Jobert, J. L.; Savoye, C.; Cariolet, R.; Kobisch, M.; Madec, F. (2000): Experimental aerosol transmission of *Actinobacillus pleuropneumoniae* to pigs. In: *Can J Vet Res* 64 (1), S. 21–26.

Johnson, B. R.; Nitta, R. T.; Frock, R. L.; Mounkes, L.; Barbie, D. A.; Stewart, C. L. et al. (2004): A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation. In: *Proc Natl Acad Sci USA* 101 (26), S. 9677–9682.

Jorgensen, C. B.; Cirera, S.; Anderson, S. I.; Archibald, A. L.; Raudsepp, T.; Chowdhary, B. et al. (2003): Linkage and comparative mapping of the locus controlling susceptibility towards *E. COLI* F4ab/ac diarrhoea in pigs. In: *Cytogenet Genome Res* 102 (1-4), S. 157–162.

Kabesch, M.; Depner, M.; Dahmen, I.; Weiland, S. K.; Vogelberg, C.; Niggemann, B. et al. (2007): Polymorphisms in eosinophil pathway genes, asthma and atopy. In: *Allergy* 62 (4), S. 423–428.

Kabesch, M.; Tzotcheva, I.; Carr, D.; Hofler, C.; Weiland, S. K.; Fritzsch, C. et al. (2003): A complete screening of the IL4 gene: novel polymorphisms and their association with asthma and IgE in childhood. In: *J Allergy Clin Immunol* 112 (5), S. 893–898.

Kahlisch, D.; Buettner, F. F.; Naim, H. Y.; Gerlach, G. F.; FUGATO consortium, IRAS (2009): Glycoprotein analysis of porcine bronchoalveolar lavage fluid reveals potential biomarkers corresponding to resistance to *Actinobacillus pleuropneumoniae* infection. In: *Veterinary Research* 40 (6), S. 60.

Kaiser, P. (2010): The Immune System. In: Bishop, S. C.; Stephen, C.; Nicholas, F. W.; Axford, R. F. E. (Ed.): Breeding for disease resistance in farm animals. 3. Aufl., Wallingford: CABI, S. 15–37.

Kalinyak, J. E.; Dorin, R. I.; Hoffman, A. R.; Perlman, A. J. (1987): Tissue-specific regulation of glucocorticoid receptor mRNA by dexamethasone. In: *J Biol Chem* 262 (22), S. 10441–10444.

Kanzenbach, S. (2009): Wirksamkeit und Wirtschaftlichkeit einer Einstallungsmetaphylaxe in *Actinobacillus pleuropneumoniae*-Problembeständen mit Tulathromycin per Einmalinjektion. Diss. Vet. Med., Berlin.

Karlskov-Mortensen, P.; Bruun, C. S.; Braunschweig, M. H.; Sawera, M.; Markljung, E.; Enfalt, A. C. et al. (2006): Genome-wide identification of quantitative trait loci in a cross between Hampshire and Landrace I: carcass traits. In: *Anim Genet* 37 (2), S. 156–162.

Kräusslich, H.; Brem, G. (1997): Tierzucht und allgemeine Landwirtschaftslehre für Tiermediziner. Stuttgart: F. Enke.

Kreuzer, S.; Reissmann, M.; Brockmann, G. A. (2013): New fast and cost-effective gene test to get the ETEC F18 receptor status in pigs. In: *Vet Microbiol* 163 (3-4), S. 392–394.

Krohne, G.; Benavente, R. (1986): The nuclear lamins. A multigene family of proteins in evolution and differentiation. In: *Exp Cell Res* 162 (1), S. 1–10.

Kumar, R.; Thompson, E. B. (2005): Gene regulation by the glucocorticoid receptor: structure:function relationship. In: *J Steroid Biochem Mol Biol* 94 (5), S. 383–394.

Kumsta, R.; Moser, D.; Streit, F.; Koper, J. W.; Meyer, J.; Wüst, S. (2009): Characterization of a glucocorticoid receptor gene (GR, NR3C1) promoter polymorphism reveals functionality and extends a haplotype with putative clinical relevance. In: *Am. J. Med. Genet.* 150 (4), S. 476–482.

Landegren, U.; Nilsson, M.; Kwok, P. Y. (1998): Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. In: *Genome Res* 8 (8), S. 769–776.

Landesamt für Umwelt, Landwirtschaft und Geologie Freistaat Sachsen (Hrsg.). Online verfügbar unter http://www.landwirtschaft.sachsen.de/landwirtschaft/16826.htm, zuletzt geprüft am 14.08.2013.

Lee, I.; Blom, U. M.; Wang, P. I.; Shim, J. E.; Marcotte, E. M. (2011): Prioritizing candidate disease genes by network-based boosting of genome-wide association data. In: *Genome Res* 21 (7), S. 1109–1121.

Levy, D. E.; Darnell, J. E. Jr. (2002): Stats: transcriptional control and biological impact. In: *Nat Rev Mol Cell Biol* 3 (9), S. 651–662.

Li, H.; Xiaoyan, D.; Quanhua, L.; Jie, L.; Yixiao, B. (2009): Single-nucleotide polymorphisms in genes predisposing to asthma in children of Chinese Han nationality. In: *J Investig Allergol Clin Immunol* 19 (5), S. 391–395.

Li, Y.; Guo, B.; Zhang, L.; Han, J.; Wu, B.; Xiong, H. (2008): Association between C-589T polymorphisms of interleukin-4 gene promoter and asthma: a meta-analysis. In: *Respir Med* 102 (7), S. 984–992.

Liebich, H.-G (2000): Funktionelle Zytologie. In: Winfried Ahne (Hrsg.): Zoologie. Lehrbuch für Studierende der Veterinärmedizin und Agrarwissenschaften; mit 25 Tabellen; Glossar mit 551 Stichwörtern. 1. Aufl., Stuttgart [u.a.]: Schattauer, S. 1–20.

Liggett, A. D.; Harrison, L. R.; Farrell, R. L. (1987): Sequential study of lesion development in experimental *haemophilus* pleuropneumonia. In: *Res Vet Sci* 42 (2), S. 204–212.

Lim, C. P.; Cao, X. (1999): Serine phosphorylation and negative regulation of Stat3 by JNK. In: *J Biol Chem* 274 (43), S. 31055–31061.

Litonjua, A. A.; Tantisira, K. G.; Lake, S.; Lazarus, R.; Richter, B. G.; Gabriel, S. et al. (2005): Polymorphisms in signal transducer and activator of transcription 3 and lung function in asthma. In: *Respir Res* 6, S. 52.

Liu, H.Z; Li, X.Y; Liu, B.; Yu, M.; Ma, Y.H; Chu, M.X; Li, K. (2008): Tissue Distribution, SNP Detection and Association Study with Immune Traits of Porcine LBP and CD14 Genes. In: *Asian-Aust. J. Anim. Sci.* (Vol. 21, No. 8: 1080 - 1087).

Long, A. D.; Langley, C. H. (1999): The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. In: *Genome Res* 9 (8), S. 720–731.

Lopez, K. I. M.; Martinez, S. E. F.; Moguel, M. C. M.; Romero, L. T.; Figueroa, C. S.; Pacheco, G. V. et al. (2007): Genetic diversity of the IL-4, IL-4 receptor and IL-13 loci in mestizos in the general population and in patients with asthma from three subpopulations in Mexico. In: *Int J Immunogenet* 34 (1), S. 27–33.

Lu, N. Z.; Wardell, S. E.; Burnstein, K. L.; Defranco, D.; Fuller, P.J.; Giguere, V.t et al. (2006): International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. In: *Pharmacol Rev* 58 (4), S. 782–797.

Lund, M. S.; Sorensen, P.; Guldbrandtsen, B.; Sorensen, D. A. (2003): Multitrait fine mapping of quantitative trait loci using combined linkage disequilibria and linkage analysis. In: *Genetics* 163 (1), S. 405–410.

Lunney, J. K.; Murrell, K. D. (1988): Immunogenetic analysis of *Trichinella spiralis* infections in swine. In: *Vet Parasitol* 29 (2-3), S. 179–193.

Lutticken, C.; Wegenka, U. M.; Yuan, J.; Buschmann, J.; Schindler, C.; Ziemiecki, A. et al. (1994): Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. In: *Science* 263 (5143), S. 89–92.

Madden, K. B.; Moeller, R. F., JR; Douglass, L. W.; Goldman, T.; Lunney, J. K. (1993): *Trichinella spiralis*: genetic basis and kinetics of the anti-encysted muscle larval response in miniature swine. In: *Exp Parasitol* 77 (1), S. 23–35.

Martins, C. L.; Lawman, M. J.; Scholl, T.; Mebus, C. A.; Lunney, J. K. (1993): African swine fever virus specific porcine cytotoxic T cell activity. In: *Arch Virol* 129 (1-4), S. 211–225.

McNamara, P. S.; Smyth, R. L. (2005): Interleukin-9 as a possible therapeutic target in both asthma and chronic obstructive airways disease. In: *Drug News Perspect* 18 (10), S. 615–621.

Meijerink, E.; Fries, R.; Vogeli, P.; Masabanda, J.; Wigger, G.; Stricker, C. et al. (1997): Two alpha(1,2) fucosyltransferase genes on porcine chromosome 6q11 are closely linked to the blood group inhibitor (S) and *Escherichia coli* F18 receptor (ECF18R) loci. In: *Mamm Genome* 8 (10), S. 736–741.

Mengeling, W. L.; Cutlip, R. C. (1976): Pathogenicity of field isolants of hemagglutinating encephalomyelitis virus for neonatal pigs. In: *J Am Vet Med Assoc* 168 (3), S. 236–239.

Meuwissen, T. H.; Goddard, M. E. (2000): Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. In: *Genetics* 155 (1), S. 421–430.

Meuwissen, T. H.; Hayes, B. J.; Goddard, M. E. (2001): Prediction of total genetic value using genome-wide dense marker maps. In: *Genetics* 157 (4), S. 1819–1829.

Minegishi, Y.; Saito, M.; Tsuchiya, S.; Tsuge, I.; Takada, H.; Hara, T. et al. (2007): Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. In: *Nature* 448 (7157), S. 1058–1062.

Moller, K.; Andersen, L. V.; Christensen, G.; Kilian, M. (1993): Optimalization of the detection of NAD dependent *Pasteurellaceae* from the respiratory tract of slaughterhouse pigs. In: *Vet Microbiol* 36 (3-4), S. 261–271.

Mortensen, S.; Skovgaard, K.; Hedegaard, J.; Bendixen, C.; Heegaard, P. M. H. (2011): Transcriptional profiling at different sites in lungs of pigs during acute bacterial respiratory infection. In: *Innate Immun* 17 (1), S. 41–53.

Morton, N. E. (1955): Sequential tests for the detection of linkage. In: *Am J Hum Genet* 7 (3), S. 277–318.

Murani, E.; Ponsuksili, S.; D'Eath, R. B.; Turner, S. P.; Kurt, E.; Evans, G. et al. (2010): Association of HPA axis-related genetic variation with stress reactivity and aggressive behaviour in pigs. In: *BMC Genet* 11, S. 74.

Murphy, K.; Travers, P.; Walport, M. (2009): Janeway Immunologie. 7. Aufl. Heidelberg: Spektrum, Akad. Verl.

Murray, M.; Stear, M. J.; Trail, J. C. M.; D'Leteren, G. D. M.; Agyemang, K.; Dwinger, R. H. (1991): Trypanosomiasis in cattle. Prospects for control. In: Bishop, S. C.; Nicholas, F.W.; Owen, J. B.; Axford, R.F.E. (Ed.): Breeding for Disease Resistance in Farm Animals. 3. Aufl., Wallingford: CABI, S. 203–223.

Murtaugh, M. P.; Baarsch, M. J.; Zhou, Y.; Scamurra, R. W.; Lin, G. (1996): Inflammatory cytokines in animal health and disease. In: *Vet Immunol Immunopathol* 54 (1-4), S. 45–55.

Namkung, J-H; Lee, J-E; Kim, E.; Cho, H-J; Kim, S.; Shin, E-S et al. (2007): IL-5 and IL-5 receptor alpha polymorphisms are associated with atopic dermatitis in Koreans. In: *Allergy* 62 (8), S. 934–942.

National Center for Biotechnology Information (ncbi). Online verfügbar unter www.ncbi.nlm.nih.gov, zuletzt geprüft am Juli 2012.

Olsen, H. G.; Lien, S.; Svendsen, M.; Nilsen, H.; Roseth, A.; Aasland Opsal, M.; Meuwissen, T. H. E. (2004): Fine mapping of milk production QTL on BTA6 by combined linkage and linkage disequilibrium analysis. In: *J Dairy Sci* 87 (3), S. 690–698.

Ondrackova, P.; Nechvatalova, K.; Kucerova, Z.; Leva, L.; Dominguez, J.; Faldyna, M. (2010): Porcine mononuclear phagocyte subpopulations in the lung, blood and bone marrow: dynamics during inflammation induced by *Actinobacillus pleuropneumoniae*. In: *Vet Res* 41 (5), S. 64.

Ota, T.; Suzuki, Y.; Nishikawa, T.; Otsuki, T.; Sugiyama, T.; Irie, R. et al. (2004): Complete sequencing and characterization of 21,243 full-length human cDNAs. In: *Nat Genet* 36 (1), S. 40–45.

Oura, C. A.; Powell, P. P.; Anderson, E.; Parkhouse, R. M. (1998): The pathogenesis of African swine fever in the resistant bushpig. In: *J Gen Virol* 79 (Pt 6), S. 1439–1443.

Padiath, Q. S.; Saigoh, K.; Schiffmann, R.; Asahara, H.; Yamada, T.; Koeppen, A. et al. (2006): Lamin B1 duplications cause autosomal dominant leukodystrophy. In: *Nat Genet* 38 (10), S. 1114–1123.

Panek, M.; Pietras, T.; Antczak, A.; Gorski, P.; Kuna, P.; Szemraj, J. (2012): The role of functional single nucleotide polymorphisms of the human glucocorticoid receptor gene NR3C1 in Polish patients with bronchial asthma. In: *Mol Biol Rep* 39 (4), S. 4749–4757.

Peng, Q-L; Ren, J.; Yan, X-M; Huang, X.; Tang, H.; Wang, Y-Z et al. (2007): The g.243AG mutation in intron 17 of MUC4 is significantly associated with susceptibility/resistance to ETEC F4ab/ac infection in pigs. In: *Anim Genet* 38 (4), S. 397–400.

Pig QTL Database. Online verfügbar unter http://www.animalgenome.org/cgibin/QTLdb/SS/index, zuletzt geprüft am 01.07.2013.

Qiu, X. T.; Li, Y. H.; Li, H.; Yu, Y.; Zhang, Q. (2007): Molecular cloning, mapping, and tissue expression of the porcine cluster of differentiation 14 (CD14) gene. In: *Biochemical Genetics* 45 (5-6), S. 459–468.

Quinnell, R. J.; Pritchard, D. I.; Raiko, A.; Brown, A. P.; Shaw, M.-A. (2004): Immune responses in human necatoriasis: association between interleukin-5 responses and resistance to reinfection. In: *J Infect Dis* 190 (3), S. 430–438.

Rehm, T.; Benga, L.; Danilowicz, E.; Drungowski, M.; Hoeltig, D.; Kahlisch, D. et al. (2008): Functional genome analysis investigating resistance to respiratory tract disease in a porcine *Actinobacillus pleuropneumoniae* infection model. In: *Dtsch Tierarztl Wochenschr* 115 (7), S. 260–264.

Reiner, G.; Bertsch, N.; Hoeltig, D.; Selke, M.; Willems, H.; Gerlach, G. F. et al. (2014): Identification of QTL affecting resistance/susceptibility to acute *Actinobacillus pleuropneumoniae* infection in swine. In: *Mamm Genome* Apr; 25 (3-4), S. 180-91

Reiner, G.; Clemens, N.; Lohner, E.; Willems, H. (2010b): SNPs in the porcine GOT1 gene improve a QTL for serum aspartate aminotransferase activity on SSC14. In: *Anim. Genet.* 41 (3), S. 319-329

Reiner, G.; Eckert, J.; Peischl, T.; Bochert, S.; Jakel, T.; Mackenstedt, U. et al. (2002a): Variation in clinical and parasitological traits in Pietrain and Meishan pigs infected with *Sarcocystis miescheriana*. In: *Vet Parasitol* 106 (2), S. 99–113.

Reiner, G.; Kliemt, D.; Willems, H.; Berge, T.; Fischer, R.; Kohler, F. et al. (2007): Mapping of quantitative trait loci affecting resistance/susceptibility to *Sarcocystis miescheriana* in swine. In: *Genomics* 89 (5), S. 638–646.

Reiner, G.; Melchinger, E.; Kramarova, M.; Pfaff, E.; Buttner, M.; Saalmuller, A.; Geldermann, H. (2002b): Detection of quantitative trait loci for resistance/susceptibility to pseudorabies virus in swine. In: *Journal of General Virology* 83 (Pt 1), S. 167–172.

Reiner, G.; Willems, H.; Pesch, S.; Ohlinger, V.F (2010a): Variation in resistance to the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Pietrain and Miniature pigs. In: *Journal of Animal Breeding and Genetics* 127 (2), S. 100–106.

Reiner, G. (2008): Genetics and disease resistance. In: *Dtsch Tierarztl Wochenschr* 115 (7), S. 252–259.

Reiner, G. (2009): Investigations on genetic disease resistance in swine–A contribution to the reduction of pain, suffering and damage in farm animals. In: *Applied Animal Behaviour Science 118* (2009), S. 217-221

Rietschel, E. T.; Kirikae, T.; Schade, F. U.; Mamat, U.; Schmidt, G.; Loppnow, H. et al. (1994): Bacterial endotoxin: molecular relationships of structure to activity and function. In: *FASEB J* 8 (2), S. 217–225.

Ron, M.; Weller, J. I. (2007): From QTL to QTN identification in livestock--winning by points rather than knock-out: a review. In: *Anim Genet* 38 (5), S. 429–439.

Roos, A. P. W., de; Schrooten, C.; Mullaart, E.; Calus, M. P. L.; Veerkamp, R. F. (2007): Breeding value estimation for fat percentage using dense markers on *Bos taurus* autosome 14. In: *J Dairy Sci* 90 (10), S. 4821–4829.

Rosendal, S.; Carpenter, D. S.; Mitchell, W. R.; Wilson, M. R. (1981): Vaccination against pleuropneumonia of pigs caused by *Haemophilus pleuropneumoniae*. In: *Can Vet J* 22 (2), S. 34–35.

Rothschild, M. F.; Chen, H. L.; Christian, L. L.; Lie, W. R.; Venier, L.; Cooper, M. et al. (1984): Breed and swine lymphocyte antigen haplotype differences in agglutination titers following vaccination with *B. bronchiseptica*. In: *J Anim Sci* 59 (3), S. 643–649.

Rothschild, M.; Jacobson, C.; Vaske, D.; Tuggle, C.; Wang, L.; Short, T. et al. (1996): The estrogen receptor locus is associated with a major gene influencing litter size in pigs. In: *Proc Natl Acad Sci U S A* 93 (1), S. 201–205.

Ruckert, C.; Bennewitz, J. (2010): Joint QTL analysis of three connected F2-crosses in pigs. In: *Genet Sel Evol* 42, S. 40.

Rupp, R.; Foucras G. (2010): Genetics of Mastitis in Dairy Ruminants. In: Bishop, S. C.; Stephen, C.; Nicholas, F. W.; Axford, R. F. E. (Ed.): Breeding for disease resistance in farm animals. 3. Aufl., Wallingford: CABI, S. 183–212.

Sanz, G.; Perez, E.; Jimenez Marin, A.; Mompart, F.; Morera, L.; Barbancho, M. et al. (2007): Molecular cloning, chromosomal location, and expression analysis of porcine CD14. In: *Developmental & Comparative Immunology* 31 (7), S. 738–747.

Sayers, G.; Good, B.; Hanrahan, J. P.; Ryan, M.; Angles, J. M.; Sweeney, T. (2005): Major histocompatibility complex DRB1 gene: its role in nematode resistance in Suffolk and Texel sheep breeds. In: *Parasitology* 131 (Pt 3), S. 403–409.

Schmalzing, D.; Koutny, L.; Adourian, A.; Belgrader, P.; Matsudaira, P.; Ehrlich, D. (1997): DNA typing in thirty seconds with a microfabricated device. In: *Proc Natl Acad Sci USA* 94 (19), S. 10273–10278.

Schuurhof, A.; Bont, L.; Siezen, C. L. E.; Hodemaekers, H.; Houwelingen, H. C., van; Kimman, T. G. et al. (2010): Interleukin-9 polymorphism in infants with respiratory syncytial virus infection: an opposite effect in boys and girls. In: *Pediatr Pulmonol* 45 (6), S. 608–613.

Selbitz, H.-J. (2007): Bakterielle Krankheiten der Tiere. In: Rolle, M.; Mayr, A. (Hrsg.): Medizinische Mikrobiologie, Infektions- und Seuchenlehre. 8. Aufl., Stuttgart: Enke, S. 462–465.

Sellwood, R.; Gibbons, R. A.; Jones, G. W.; Rutter, J. M. (1975): Adhesion of enteropathogenic *Escherichia coli* to pig intestinal brush borders: the existence of two pig phenotypes. In: *J Med Microbiol* 8 (3), S. 405–411.

Sidibe, M.; Messier, S.; Lariviere, S.; Gottschalk, M.; Mittal, K. R. (1993): Detection of *Actinobacillus pleuropneumoniae* in the porcine upper respiratory tract as a complement to serological tests. In: *Can J Vet Res* 57 (3), S. 204–208.

Simmons, D. L.; Tan, S.; Tenen, D. G.; Nicholson-Weller, A.; Seed, B. (1989): Monocyte antigen CD14 is a phospholipid anchored membrane protein. In: *Blood* 73 (1), S. 284–289.

Skovgaard, K.; Mortensen, S.; Boye, M.; Hedegaard, J.; Heegaard, P. M. H. (2010): Hepatic gene expression changes in pigs experimentally infected with the lung pathogen *Actinobacillus pleuropneumoniae* as analysed with an innate immunity focused microarray. In: *Innate Immun* 16 (6), S. 343–353.

Soifer, H. S.; Rossi, J. J.; Saetrom, P. (2007): MicroRNAs in disease and potential therapeutic applications. In: *Mol Ther* 15 (12), S. 2070–2079.

Sørensen, K. K.; Gregersen, V. R; Christensen, O. F.; Velander, I. H.; Bendixen, C. (2011): Genomic regions associated with ventrocranial chronic pleuritis in pig. In: *J. Anim. Breed.* Genet. 128, S. 314-318

Spindel, J.; Wright, M.; Chen, C.; Cobb, J.; Gage, J.; Harrington, S.; Lorieux, M.; Ahmadi, N.; McCouch, S. (2013): Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. In: *Theor Appl Genet.* 126 (11), S. 2699-2716

Stear, M. J. (2010): Breeding for Resistance to Nematode Infections. In: Bishop, S. C.; Stephen, C.; Nicholas, F. W.; Axford, R. F. E. (Ed.): Breeding for disease resistance in farm animals. 3. Aufl., Wallingford: CABI, S. 279–294.
Stelter, F. (2000): Structure/ Function Relationships of CD14. In: Robert S. Jack (Ed.): CD14 in the inflammatory response. Basel, New York: Karger (Chemical immunology, 74), S. 25–41.

Straw, B. E.; Neubauer, G. D.; Leman, A. D. (1983): Factors affecting mortality in finishing pigs. In: *J Am Vet Med Assoc* 183 (4), S. 452–455.

Straw, B. E.; Tuovinen, V. K.; Bigras-Poulin, M. (1989): Estimation of the cost of pneumonia in swine herds. In: *J Am Vet Med Assoc* 195 (12), S. 1702–1706.

Sun, H. S.; Wang, L.; Rothschild, M. F.; Tuggle, C. K. (1998): Mapping of the natural resistance-associated macrophage protein 1 (NRAMP1) gene to pig chromosome 15. In: *Anim Genet* 29 (2), S. 138–140.

Sun, J.; Wan, C.; Jia, P.; Fanous, A. H.; Kendler, K. S.; Riley, B. P.; Zhao, Z. (2011): Application of systems biology approach identifies and validates GRB2 as a risk gene for schizophrenia in the Irish Case Control Study of Schizophrenia (ICCSS) sample. In: *Schizophr Res* 125 (2-3), S. 201–208.

Teneberg, S.; Willemsen, P.; Graaf, F. K., de; Karlsson, K. A. (1990): Receptor-active glycolipids of epithelial cells of the small intestine of young and adult pigs in relation to susceptibility to infection with *Escherichia coli* K99. In: *FEBS Lett* 263 (1), S. 10–14.

Thaller, G. (2009): Genomische Selektion - Stand der Wissenschaft. In: Züchtungskunde 81 (1), S. 14–22.

Torremorell, M.; Pijoan, C.; Janni, K.; Walker, R.; Joo, H. S. (1997): Airborne transmission of *Actinobacillus pleuropneumoniae* and porcine reproductive and respiratory syndrome virus in nursery pigs. In: *Am J Vet Res* 58 (8), S. 828–832.

Trementino, L.; Appolloni, G.; Concettoni, C.; Cardinaletti, M.; Boscaro, M.; Arnaldi, G. (2011): Association of glucocorticoid receptor polymorphism A3669G with decreased risk of developing diabetes in patients with Cushing's syndrome. In: *European Journal of Endocrinology* 166 (1), S. 35–42.

Tuggle, C. K.; Schmitz, C. B.; Gingerich-Feil, D. (1997): Rapid communication: cloning of a pig full-length natural resistance associated macrophage protein (NRAMP1) cDNA. In: *J Anim Sci* 75 (1), S. 277.

Uddin, M. J.; Nuro-Gyina, P. K.; Islam, M. A.; Tesfaye, D.; Tholen, E.; Looft, C. et al. (2012): Expression dynamics of Toll-like receptors mRNA and cytokines in porcine peripheral blood mononuclear cells stimulated by bacterial lipopolysaccharide. In: *Vet Immunol Immunopathol* 147 (3-4), S. 211–222.

Vanni, M.; Merenda, M.; Barigazzi, G.; Garbarino, C.; Luppi, A.; Tognetti, R.; Intorre, L. (2012): Antimicrobial resistance of *Actinobacillus pleuropneumoniae* isolated from swine. In: *Vet Microbiol* 156 (1-2), S. 172–177.

Van Oirschot, J. T. (1994): Vaccination in food animal populations. In: *Vaccine* 12, S. 415-418

Vidyarani, M.; Selvaraj, P.; Prabhu Anand, S.; Jawahar, M. S.; Adhilakshmi, A. R.; Narayanan, P. R. (2006): Interferon gamma (IFNgamma) & interleukin-4 (IL-4) gene variants & cytokine levels in pulmonary tuberculosis. In: *Indian J Med Res* 124 (4), S. 403–410.

Vincent, A. L.; Thacker, B. J.; Halbur, P. G.; Rothschild, M. F.; Thacker, E. L. (2006): An investigation of susceptibility to porcine reproductive and respiratory syndrome virus between two genetically diverse commercial lines of pigs. In: *J Anim Sci* 84 (1), S. 49–57.

Vereinigte Informationssysteme Tierhaltung w.V. (VIT) (Hrsg.). Online verfügbar unter http://www.vit.de/index.php?id=zuchtwertschaetzung, zuletzt geprüft am 15.08.2013.

Vogeli, P.; Bertschinger, H. U.; Stamm, M.; Stricker, C.; Hagger, C.; Fries, R. et al. (1996): Genes specifying receptors for F18 fimbriated *Escherichia coli*, causing oedema disease and postweaning diarrhoea in pigs, map to chromosome 6. In: *Anim Genet* 27 (5), S. 321–328.

Vogeli, P.; Meijerink, E.; Fries, R.; Neuenschwander, S.; Vorlander, N.; Stranzinger, G.; Bertschinger, H. U. (1997): A molecular test for the detection of *E. coli* F18 receptors: a breakthrough in the struggle against edema disease and post-weaning diarrhea in swine. In: *Schweiz Arch Tierheilkd* 139 (11), S. 479–484.

Vooght, K. M. K., de; Wijk, R., van; Solinge, W.W., van (2009): Management of gene promoter mutations in molecular diagnostics. In: *Clin Chem* 55 (4), S. 698–708.

Wakelin, D. (1978): Genetic control of susceptibility and resistance to parasitic infection. In: *Adv Parasitol* 16, S. 219–308.

Wang, S.; Basten C. J.; Zeng, Z. B. (2006): Windows QTL Cartographer 2.5., Departement of Statistics, North Carolina State University, Raleigh, USA

Wang, X.-H.; Zhao, W.; Liu, S.-G.; Feng, X.-P. (2009): Correlation of IL-4 and IL-13 gene polymorphisms with asthma and total serum IgE levels. In: *Zhonghua Jie He Hu Xi Za Zhi* 32 (3), S. 161–164.

Weiss, E.; Rudolph, R. (2007): Atmungsorgane. In: Dahme, E.; Hafner-Marx, A.; Eugen Weiss, E. (Hrsg.): Grundriss der speziellen pathologischen Anatomie der Haustiere. 5 Tabellen. 6. Aufl., Stuttgart: Enke.

White, D. G.; Zhao, S.; Simjee, S.; Wagner, D. D.; McDermott, P. F. (2002): Antimicrobial resistance of foodborne pathogens. [Review] [50 refs]. In: *Microbes & Infection* 4 (4), S. 405–412.

Wiedmann, R. T.; Smith, T. P. L.; Nonneman, D. J. (2008): SNP discovery in swine by reduced representation and high throughput pyrosequencing. In: *BMC Genet* 9 (1), S. 81.

Williams, L.; Bradley, L.; Smith, A.; Foxwell, B. (2004): Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. In: *J Immunol* 172 (1), S. 567–576.

Wjst, M.; Lichtner, P.; Meitinger, T.; Grimbacher, B. (2009): STAT3 single-nucleotide polymorphisms and STAT3 mutations associated with hyper-IgE syndrome are not responsible for increased serum IgE serum levels in asthma families. In: *Eur J Hum Genet* 17 (3), S. 352–356.

Worman, H. J.; Courvalin, J. C. (2000): The inner nuclear membrane. In: *J Membr Biol* 177 (1), S. 1–11.

Wright, S. D.; Ramos, R. A.; Tobias, P. S.; Ulevitch, R. J.; Mathison, J. C. (1990): CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. In: *Science* 249 (4975), S. 1431–1433.

Yang, X.-X.; Li, F.-X.; Wu, Y.-S.; Wu, D.; Tan, J.-Y.; Li, M. (2011): Association of TGFbeta1, IL-4 and IL-13 gene polymerphisms with asthma in a Chinese population. In: *Asian Pac J Allergy Immunol* 29 (3), S. 273–277.

Zhao, L.; Bracken, M. B. (2011): Association of CD14 -260 (-159) CT and asthma: a systematic review and meta-analysis. In: *BMC Med Genet* 12, S. 93.

Zimmermann, W.; Plonait, H. (2004): Erkrankungen des Atmungsapparates. In: Waldmann, K. H.; Wendt, M. (Hrsg.): Lehrbuch der Schweinekrankheiten. 63 Tabellen. 4. Aufl., Stuttgart: Parey, S. 111–150.

10. Anhang

Sequenzen der PCR-Produkte

Im Folgenden sind die genomischen Sequenzen angegeben, die durch die Fa. LGC Genomics (Berlin) ermittelt wurden. Der kodierende Bereich des Gens ist unterstrichen. Die 5'- und 3'-UTR des jeweiligen Gens sind grau unterlegt.

<u>CD14</u>

Sequenz CD14

159				++	casagagtag	agaacagagt
100				LL	caaagagtag	gguucugugc
181	gacacccccc	ggattacaca	aacccccaaa	gtctgccaaa	gagtgaggac	agatagcgtt
241	tgtggagcct	ggaagccagg	gagtgccgcg	gttaaaggag	ccacagccct	ttcgagagcc
301	ggcgggagac	gcagaggctt	tgaggacctt	atcgacc <mark>atg</mark>	gtgagtgtgt	gcacgagggc
361	tgctcgagga	acctcaggac	ccgcaggagc	gagcggcgct	aacctcccct	ctctttccag
421	gtgcgcttgc	cctgcccgtt	gctgctgctg	ctgcccctgc	tgcgtgtgtc	tgcggccacc
481	ccggagccct	gccaaataga	cgacgaagac	gtccgctgcg	tctgcaactt	cacgcatccg
541	cagccggact	ggtccagcgc	cctgcagtgc	gtggctgccg	tcgaggtgga	gatccgcggc
601	ggcggccgga	gcctggaaga	gttcctttta	aagagcgcca	gcgccaaccc	gaagcagtac
661	gcggacatgc	tcaaggcgct	gcgcttgcgg	cgactcacgg	tgggcgctgc	gcgggttcct
721	gctcagattc	tggccctggt	cctgcatgcg	ctcgggttct	cccgcctcaa	ggaactgacg
781	ctcgaggacc	tggaggtaac	cggccaggta	ccgccgccgc	ttcaggaaac	gccgggacct
841	gcgctcacca	ccctcagact	ccgtaatgtg	tcgtgggcca	ccggaggtgc	ctggctcggc
901	gaactgcagc	agtggctcca	gccaagcctc	aaggtactga	aagtggcg	

Sequenz CD14_4a

572			aagttaagg	aaactccctg	ggtttgagtc	tcgaggatac
601	cggcagggga	ccaagagccc	tggcctgagg	cactcgggat	cttcctttcc	ccatcccgga
661	caagcccggg	ggcgcatgag	tcatcagggc	acactgccta	gtgccaagga	ttctagaggc
721	cttgcaagat	ccttccggtt	agggccccac	tcctgctgcg	tcaggcaggc	aacatccctc
781	attgcaaaat	ttcgcagaag	tgtagcgaac	gtgggtggtt	gggaggaaga	gaggtgggag
841	gtggcagagt	tcaaagagta	gggaacagag	tgacaccccc	cggattacac	aaacccccaa
901	agtctgccaa	agagtgagga	cagatagcgt	ttgtggagcc	tggaagccag	ggagtgccgc
961	ggttaaagga	gccacagccc	tttcgagagc	cggcgggaga	cgcagaggct	ttgaggacct
1021	tatcgacc at	g gtgagtgtg	tgcac			

Sequenz CD14_4b

1179				cc	tgccaaatag	acgacgaaga
1201	cgtccgctgc	gtctgcaact	tcacgcatcc	gcagccggac	tggtccagcg	ccctgcagtg
1261	cgtggctgcc	gtcgaggtgg	agatccgcgg	cggcggccgg	agcctggaag	agttcctttt
1321	aaagagcgcc	agcgccaacc	cgaagcagta	cgcggacatg	ctcaaggcgc	tgcgcttgcg
1381	gcgactcacg	gtgggcgctg	cgcgggttcc	tgctcagatt	ctggccctgg	tcctgcatgc
1441	gctcgggttc	tcccgcctca	aggaactgac	gctcgaggac	ctggaggtaa	ccggccaggt
1501	accgccgccg	cttcaggaaa	cgccgggacc	tgcgctcacc	accctcagac	tccgtaatgt
1561	gtcgtgggcc	accggaggtg	cctggctcgg	cgaactgcag	cagtggctcc	agccaagcct
1621	caaggtactg	aaagtggcgc	aagcaagctc	gcttgccttt	ccgtgcgccc	agcttcgcgc
1681	cttcccggct	ctcaccaccc	tggacctatc	tgacaatccc	gggctgggcg	agcgcgggct
1741	gactgcagct	ctctgtccgc	gcaagttccc	ggccctcgag	gatctggcgc	tgcgcaacgc
1801	ggggatggag	acacccagcg	gcgtgtgcgc	ggcgctggcg	ggggcgggcg	tgcaacccca
1861	ccgcctggac	ctcagtcaca	actcgctgcg	cgccaccgcc	gcgggcgccc	gggagtgtgt
1921	ctggcctgcc	gccctgagct	ctctcaattt	gtcattcgct	gagctggagc	aagtgcctaa
1981	aggactgccg	cccaagctca	ccgtgcttga	tctcagctgc	aacaagctg	

Sequenz CD14_4c

1736						gggct
1741	gactgcagct	ctctgtccgc	gcaagttccc	ggccctcgag	gatctggcgc	tgcgcaacgc
1801	ggggatggag	acacccagcg	gcgtgtgcgc	ggcgctggcg	ggggcgggcg	tgcaacccca
1861	ccgcctggac	ctcagtcaca	actcgctgcg	cgccaccgcc	gcgggcgccc	gggagtgtgt
1921	ctggcctgcc	gccctgagct	ctctcaattt	gtcattcgct	gagctggagc	aagtgcctaa
1981	aggactgccg	cccaagctca	ccgtgcttga	tctcagctgc	aacaagctga	acagagcgcc
2041	gcggccagag	gagctgcccg	ccgtggatga	cctgaccctg	gaagggaatc	cctatatgga
2101	tcctgaagcc	ctccagcacc	aggaagaccc	gatggcctct	ggcgtggtcc	caccctgtgc
2161	gcgttccgcc	ttgaccatgg	gggtgtcggg	aaccctggcg	ctgcttcagg	gagcccgggg
2221	cttcgcctaa	ggcccaagga	aggggaatta	ctggctcaga	ctgccgtggc	tccgggggag
2281	cctcctcagg	acaactcaac	caaccacccc	tctgccccac	cttcattaaa	atcttgaaca
2341	acagctcgtg	gtgtcattca	ctcaatagat	gttactgggc	cttgctggat	ggggatccat
2401	tctatttaag	ctttcttcat	tcgaactccc	taaaatccaa	atatctgccc	taccttggaa
2461	gagaactgca	gggggagtgc	acaggagggg	cagggaaatg	gtggcctgtc	tagggagttt
2521	ggggatggga	acggatgcaa	gatg			

Sequenz CD14_4d

2493				agctcgtg	gtgtcattca	ctcaatagat
2521	gttactgggc	cttgctggat	ggggatccat	tctatttaag	ctttcttcat	tcgaactccc
2581	taaaatccaa	atatctgccc	taccttggaa	gagaactgca	gggggagtgc	acaggagggg
2641	cagggaaatg	gtggcctgtc	tagggagttt	ggggatggga	acggatgcaa	gatgctgtca
2700	ttaacaatct	gtcccaggga	gttcccgtcg	tggcgcagtg	gttaacgaat	ccgactagga
2761	acaatgaggt	tgcgggttcg	gtccctgccc	ttgctcagtg	ggttaacgat	ccggcgttgc
2821	cgtgagctgt	ggtgtagatt	gcagacgcgg	ctcggatccc	gcgttactgt	ggctctggcg
2881	taggccggtg	gctacagctc	cgattcagcc	cctagcctgg	gaacctccata	a tgcctcggg
2941	agcggcccaa	gaaatagcag	caacaacaac	aacaaaaaga	caaaagaaaaa	a aagaaaaaa
3001	aaaaaaaaaa	aaaaaaaaa				

Die Sequenzierung erfolgte bis zu dem Repeat ab Position 2994.

<u>RPL38</u>

Sequenz RPL38_3a

151				gccaggagac	acaggggcag	aggagggagg
181	aggggaggag	gaaggcagcg	cattgcattc	gtggagctgc	gctattaatc	taagccagaa
241	gggggcagag	atgcagcgac	gggaagggca	aacgactatt	gttgaccctt	tgcagacacc
301	gtacccagct	tcctcggggg	aaaa			

Es konnte nur die Sequenz bis zu dem Repeat ab Position 324 beurteilt werden.

Sequenz RPL38_3b

326			ggtta	actgcccgga	agcggaagtc	ccttcctttt
361	ccgttctgct	tgctttttgc	aggttgcggt	tagtatttct	cgggccgtat	ctggggattc
421	ggggggaatc	cgtggtaatc	cacggccaag	tagcacctgg	gaatcctggg	cctggatcaa
481	gggtgcgggg	gagaaggatg	gagtgcggtg	gggccggcat	ttcgggcatg	cggggaggga
541	aagcggggct	ccccacgagt	ccgcgtacgc	cgctaacgcc	aatgcccgtt	ttccccgcag
601	gttccagcct	cgctctccgc	gcctcgtcgc	c <mark>atg</mark> gtgagt	acaacccgtt	tctgggggat
661	tctccggggg	gccgggggtc	gcgggtcggg	agcgagagca	ggcctctgcg	agaggctccg
721	gaggcctgag	agagggtggc	agacttgacc	agcccgggaa	gtgtgtttct	gcaggtgatt
781	tccttttctt	tgccttgcag	cctcgcaaaa	ttgaggaaat	caaggacttt	ctgctgacgg
841	ccagacgaaa	ggacgccaaa	t gtaagtgat	cgtcctgagg	gtcgagataa	gcgagtttgc
901	gccgagccgt	cctcgtgtgg	ctgccagtcg			

Sequenz RPL38_3c

4113				ccgtcagc	agctccatg	atgtgtgcccc
4141	cttttggaga	agcataaagc	aggctgtgcc	atgccttttc	tgtgataca	acttttaatca
4201	ctacctctga	tctctggtag	ctgtcaagat	caagaaaaat	aaggataat	gtgaagttcaa
4261	agttcgatgc	agcagatacc	tgtacacctt	ggtcatcaca	gacaaagaga	aggcagagaa
4261 4321	agttcgatgc gctgaagcag	agcagatacc tccctgcccc	tgtacacctt caggtgagtc	ggtcatcaca cgaaacaggg	gacaaagaga aaaggacggg	aggcagagaa agcgatgaca

Sequenz RPL38_3d

5155						cctggt
5161	gggcttcatt	cctgagcttt	gtgagccttc	agcttaaata	cagagtccaa	caagcagtag
5221	taactaggac	aaaatgcatc	tccggatggc	tcactttgtg	cctttatcct	ctag <mark>gtctgg</mark>
5281	ccgtgaagga	gctgaagtga	accacgcatg	ctgattggaa	ctgtattaaa	attttaaaa
5341	ttctcaagct	gtcctttgtc	tttgcgaatg	gggaagaaaa	tggtatctgg	gagtggcttc
5401	tggtggaaac	gggatggggc	cctggttgcc	tcaaaatcct	gggctgtgat	cccagtagac
5461	aaataaagcc	atctctctct	ttttttt			

Die Sequenzierung ist nur bis zu dem Repeat ab Position 5481 auswertbar.

<u>NR3C1</u>

Sequenz NR3C1

85664					tgctgag	ccacgacagg
85681	aagacctcca	caaagatttt	ttaagtccca	tatagtatct	atggtatcaa	cgtaaaaagt
85741	gggtttttct	gctgtttgaa	tctatgctat	ttttagcatg	tgctctgctc	tgtcatcata
85801	tcatcatact	gttttgataa	ggggactttg	tgcaaggata	taaacagtat	cagtctcttc
85861	attgtatgta	tccacaattc	agattaacct	aagctgcagt	ggctagtctc	ttatcacaaa
85921	cttagattca	ttctttcaat	tgatagtaaa	agtaatttaa	gaaaaatctg	actttggcgt
85981	gaaatgagat	agaagtagaa	gaatctatga	aagtgatttg	tttgtatttt	gacatatgtg
86041	gtaagacaat	tttatataag	tacagctatg	atgaggaggt	aattggctta	tttgtagagg
86101	aaattaagaa	atgaatgggt	tcctcttgat	ctgctttcag	gaggaaagca	atgtgttttc
86161	tctccttcca	tgtcactatc	ataattgcta	aattaaagag	ttgtcgtctt	ttaaacaaaa
86221	tagtttgaga	aattttgaat	aaactgtgcc	acccagactt	tcccattaca	attcatttgt
86281	gtatttttt	ttaatatacc	cacag ctcga	aaaacaaaga	aaaagataaa	aggaattcag
86341	caggccacta	caggagtctc	acaagaaact	tctgaaaatt	ctgctaataa	aacaatagtt
86401	cctgcaacgc	taccacagct	cacccccacc	ctggtgtcac	tgctggaagt	cattgaaccc
86461	gaggtgttgt	atgcaggata	tgacagctcg	attccagatt	ccacctggcg	gatcatgacc
86521	gcactcaaca	tgttaggcgg	gcggcaggtg	attgcggcag	tgaaatgggc	aaaggcaata
86581	<u>ccag</u> gtaagg	tgccaaagat	gccacccagc	tcaggtacga	atcccagact	ttttaaaaaa
86641	ggcgttcttg	ctcttcatca	tccc			

Sequenz NR3C1_UTR

200		g	aacagtccct	tttagagagc	attcaaaaag	caaatgatta
241	catttttta	ttaaataatt	tcctcaaaat	actgaaaaat	aacaacattc	aaaaagcatt
301	caaagaaaac	aaaaacatgt	tcttgtttta	attggaaatg	gactcttgga	ggaaagagag
361	gaattagtgt	attattggca	acctatgaga	ttctgcacta	tttacatatt	gctggtacct
421	ctatgcatat	tattgcccaa	cttctaaagc	ctctatttt	attaaactgt	ggagaggctg
481	tatgtggtga	tgcctgttag	tgtgcaagca	ccacctttct	gtcccttgtt	cacagacttg
541	agcgtgaggg	gaggtttagg	aaactaaacc	cacgtggaca	gactcactgt	tggaatgagg
601	agggtggtca	tt				

Grb2

Sequenz Grb2_2a

7897				tcct	gcctggaagg	gagggaggag
7921	ggcccgccgg	ggggcgtggg	ggctgggacg	gcaggccgct	ggcagggcgg	ggctgccttc
7981	gatcggccac	ttctctcagg	cattgctctt	ctgattcagg	gtggcattgt	gtgtcccgga
8041	gagcaggagc	gagtccccga	agagcggcga	ggctgagccc	agagccctgg	gtatctcctt
8101	cggcagggaa	gactgccttc	cccctgcttc	aggctgctga	gccctgagcc	ccgctcaga <mark>a</mark>
8161	tggaagccat	cgccaagtat	gacttcaaag	ccaccgcaga	cgacgagctg	agcttcaaaa
8221	ggggggacat	cctcaaggta	aggggtgatg	cccagcaaac	gcccagacag	cctctcctct
8281	gctgacctgc	ctgcttttgc	cctgataaca	cacaaagaag	ctgtgctcct	tc

Sequenz Grb2_2a

57398				aag	tatcagaatt	gacatatgct
57421	ggttgtttga	aattctgaga	agtcttgcat	ccatgtaact	gataatattc	caaacaatac
57481	cttttacaaa	caagcctaaa	aggcagcata	attgtctttg	tggccatcca	tttaagaatg
57541	aagaggaaat	aatcggtttt	tttccccctt	gtcttaattt	ttttcag gtt	ttgaatgaag
57601	aatgtgatca	gaactggtac	aaagcagagc	tcaatgggaa	agatggcttc	atccccaaga
57601 57661	<u>aatgtgatca</u> actacataga	gaactggtac aatgaaacca	aaagcagagc cacccgtaag	tcaatgggaa ttgggctctg	agatggcttc ctgaccctcc	atccccaaga ggggtcagac
57601 57661 57721	aatgtgatca actacataga gcgcctgctt	gaactggtac aatgaaacca gcttcaagtg	aaagcagagc cacccgtaag ttttttaaaa	ttgggctctg ttgggatcat	agatggcttc ctgaccctcc tgggatggat	atccccaaga ggggtcagac gccgtacttc

Sequenz Grb2_1c

63677		cgat	ggtgtcttct	gagtcactct	ggagagtggg	gaagcgagaa
63721	ggctttgaag	ggatctggtc	cctctctcaa	ggcgtggtcg	ggacgggcgg	gactggcagg
63781	ggagaggggc	ccctcctttg	gcgaggagtt	ctcggttcct	cacatttcgg	aggctggata
63841	tcccgtttct	ttgtggggaa	gcagatgttg	actggtttgc	cttccttcct	tag gtggttt
63901	tttggcaaaa	tccccagagc	caaggcagaa	gaaatgctta	gcaaacagcg	gcacgatggg
63961	gcctttctca	tccgtgagag	cgagagcgct	cctggggatt	tctccctctc	tgtcaa gtaa
64021	gtacttcctg	ctctggtcgc	ctggaagcct	gtctccagct	gatggcagtt	gtgaagccag
64021 64081	gtacttcctg aggccaggcg	ctctggtcgc tctgactaca	ctggaagcct tgcaccaaag	gtctccagct gtggcacact	gatggcagtt ggttaaggtt	gtgaagccag tagctttggc
64021 64081 64141	gtacttcctg aggccaggcg agtattttac	ctctggtcgc tctgactaca acatcagaaa	ctggaagcct tgcaccaaag agcttacatt	gtctccagct gtggcacact aaaatcctca	gatggcagtt ggttaaggtt tttctggttc	gtgaagccag tagctttggc ctctaaagaa
64021 64081 64141 64201	gtacttcctg aggccaggcg agtattttac tctagcagct	ctctggtcgc tctgactaca acatcagaaa ccagcaatac	ctggaagcct tgcaccaaag agcttacatt tgggtttagg	gtctccagct gtggcacact aaaatcctca actcccaaga	gatggcagtt ggttaaggtt tttctggttc gggaagtctt	gtgaagccag tagctttggc ctctaaagaa cagtggctga
64021 64081 64141 64201 64261	gtacttcctg aggccaggcg agtatttac tctagcagct gcagcggcag	ctctggtcgc tctgactaca acatcagaaa ccagcaatac cacttgagag	ctggaagcct tgcaccaaag agcttacatt tgggtttagg agcgcacact	gtctccagct gtggcacact aaaatcctca actcccaaga tccctcttt	gatggcagtt ggttaaggtt tttctggttc gggaagtctt ccccagtccc	gtgaagccag tagctttggc ctctaaagaa cagtggctga caccactctg

Sequenz Grb2_1d

67075						agaaca
67081	tgagttctcc	caggatggct	ccttgctcgg	caggtggccc	ctggcagcca	ggacagagcc
67141	ctgggacctg	ttctcactgt	gtcctctgcc	ctccccagg <u>t</u>	ttggcaatga	tgtgcagcac
67201	ttcaaggtgc	tccgggacgg	cgctggcaag	tacttcctct	gggtggtgaa	gttcaattct
67261	ttgaatgagc	tggtagatta	tcacagatct	acatccgtct	ccagaaacca	gcagatattc
67321	ctccgggaca	tagaacaggt	gccacaggtg	agcttcgtaa	gggagagatg	ggggtccctt
67381	ttatcagtga	agggtggcgc	ctcaggccag	caggtgttct	ttcagagggt	ttacctctgg
67441	gccttttttg	ctccttatcc	aaaatgttat	ccttaattcg	tgttaaagat	ttgaagtttg
67501	aaacaaaaaa					

Die Sequenzierung konnte nur bis zu dem Repeat ab Position 67444 beurteilt werden.

Sequenz Grb2_1e

68161	ttatccacgt	catggataac	tcggacccca	actggtggaa	gggggcttgc	cacgggcaga
68101	aggccctctt	tgactttgac	ccccaggagg	atggtgagct	gggcttccgt	cggggagact
68041	ccgccgtcgg	gaatgcaatg	tgttttctcc	ctgcctctct	gcag caaccg	acatacgtcc
67981	ttcaggtcat	gtggcaaggc	tggcacgcct	cgggttcccg	tcaccagcgc	gaggggctgg
67938		tct	ggaagaactg	gtggagaggg	gaggcggaag	gaggggttat

```
68221ccggcatgtt tccgcgcaat tacgtcaccc ctgtgaaccg gaacgtctaagagtcaagag68281aagattattt aaagaaaatg aagaattta aacacgtgca aaagaattaaacccatgagc68341tgcctctaac agcagcctgt gag
```

Die Sequenz des Ebers konnte (aufgrund von überlagerten Sequenzen) erst ab Position 68102 ausgewertet werden.

Sequenz Grb2_2f

401aaaagtcctt tctttcggag421gtgagttgta attgacccgc tctggcaccg aaagggttac ggcgacccag gggtggagcc481ctgtcggtgc cacctgctgc ggggcggcc ggcgcctgg cttggcct541acctgcggg ggccgggcg gggcggggc cttgcgctc601agtctcgcgg gggcgggc gggcgggcc gcacagggaa611agggcggaa gcgagggg ctggcggg cgggaatag721gactgtggg gtgacggcg gacggggc gacggggc gacggggc781gcggccgct841gtgagtgtg gctggcgg acggcgcg acggcgtg tcgcgtgc841gtgagtgtg gctggcgg acggcgg acggcgtg tcgcgtgc

Die Sequenz der Sauen konnte ab Position 401 ausgewertet werden. Der Promotor des Ebers konnte ebenfalls ab Position 401 ausgewertet werden, allerdings konnte keine Aussage über den Abschnitt von Position 633 bis 888 getroffen werden.

Sequenz Grb2_2g

67975						ggttat
67981	ttcaggtcat	gtggcaaggc	tggcacgcct	cgggttcccg	tcaccagcgc	gaggggctgg
68041	ccgccgtcgg	gaatgcaatg	tgttttctcc	ctgcctctct	gcag caaccg	acatacgtcc
68101	aggccctctt	tgactttgac	ccccaggagg	atggtgagct	gggcttccgt	cggggagact
68161	ttatccacgt	catggataac	tcggacccca	actggtggaa	ggggggcttgc	cacgggcaga
68221	ccggcatgtt	tccgcgcaat	tacgtcaccc	ctgtgaaccg	gaacgtctaa	gagtcaagag
68281	aagattattt	aaagaaaatg	aagaatttta	aacacgtgca	aaagaattaa	acccatgagc
68341	tgcctctaac	agcagcctgt	gagggagctc	ggaacccctg	gctgggtcac	ctggtgaccc
68401	tctcacttcg	gttggaactc	gggggggtgg	gcgggggcgt	tggatataat	gccaaaactt
68461	acctataaat	taagaagagt	ttttattaca	aattttcacc	gctgctcctc	ctcctccttt
68521	gtccttttt	catccttttt	ctcttctgtc	catcagtgca	tgacgttcaa	tgccgcatat
68581	agtcctagct	gttgccaata	ataaaagaaa	agaaaccacg	tgggctgata	ttttctctat
68641	gcaaaatgtc	tgttttagct	qqaacaacaq	aaaqaaqaac	agccgcttcc	atgtc

IL-9

Sequenz IL9_1a

711ggggggccag721caggaaaggc tgctgttgaa aacttaggtgaaatataaga ggaggaaaaacacaccactc781atcgagcgtt cttgtctcttcctgactttagaacacccacctgcaaaatgcagctgca841gccccaatgtgagtaaattatcttttaagaactttccgaattccacatc901ttgcatctttactccgaaatttctcttttcaggtgaccgattgtttatg961ccttccggtggtaattctaattaaaaagtgttactgaacattgtaagtcaaaat1021aaacttttctagttgctatttcaactaagaaagtgttacttaaggaggacccttgtgcc1081tcactgggtaagaacctgacattgttctgtgaggatgtgggtttgatccctggcctcg1141atcagtgggttaaggatccggcattgccacaagtcaaggcaagtgtgctaaagtggctag

Der Promotor und das Exon 1 des Ebers konnten nicht sequenziert werden.

Sequenz IL9_1b

gtgtcactgt agggacctgt gaaagctttc tcgttgttat tgagcaacac ttgaagccct	gggaaaatgg ctgaaagtaa tctttgtgat ttatcaggac cacagcgaag	tctccccttg tgcaagatta tttaactccg gactgcacca ccagaactct	agacactgaa ggttacgctg agctgtcctc ccgcgtgctt ccctgatttt	gatcatttcc gttaaattaa tgaatgtcca ccaggagggc cagcaaggtg	tagactggca aatagtctcc ttttcccaaa ctatcgaaga
agggacctgt gaaagctttc tcgttgttat tgagcaacac ttgaagccct	ctgaaagtaa tctttgtgat ttatcag gac cacagcgaag	tgcaagatta tttaactccg gactgcacca ccagaactct	ggttacgctg agctgtcctc ccgcgtgctt ccctgatttt	gttaaattaa tgaatgtcca ccaggagggc cagcaaggtg	aatagtetee tttteecaaa ctategaaga
gaaagctttc tcgttgttat tgagcaacac ttgaagccct	tctttgtgat ttatcaggac cacagcgaag	tttaactccg gactgcacca ccagaactct	agctgtcctc ccgcgtgctt ccctgatttt	tgaatgtcca ccaggagggc cagcaaggtg	ttttcccaaa ctatcgaaga
tcgttgttat tgagcaacac ttgaagccct	ttatcaggac cacagcgaag	gactgcacca ccagaactct	ccgcgtgctt ccctgatttt	ccaggagggc cagcaaggtg	ctatcgaaga
tgagcaacac ttgaagccct	cacagcgaag	ccagaactct	ccctgatttt	cagcaaggtg	aanaaaanaa
ttgaagccct	caacaacaac				aagaaaacaa
	cauguacaac	aagtgtgga g	tgagtgtgtt	tttattatct	gtgatgtgtt
ctggttagta	atttgtgggt	gaatgtcaac	gccaactcca	tctgaatgag	aaagggggat
gaagctggaa	ctggtagttc	aaggttgatt	agggacatct	aagaaattta	atcagaacaa
cagaattaag	gtgagatatg	acccccaaaa	ctcattgttc	cccctttgtt	gttgcttttt
ttttaatctc	ccccctctgt	tggcttttac	ctctctccac	ctcttgaata	atgaaagaat
caagcctgat	tataataaga	agctaaaatc	tatagcccac	acaattctta	attatcctag
agattcaatt	atcctcagag	atgtgctgag	tagatactgt	ggcctgtatg	ttacaggttt
tctttccatt	ggccaaagag	gtgtttaaag	gaagacacac	ccaagtccag	gtggaagcct
gtcatttgcc	ccaaatgcct	atcagcgtgt	tctcttcctg	agcatctacc	acagctgctg
gaggaaaggg	gagggggcga	actttggttg	ttacctacat	gagggcccct	cctcactcag
ctgttgaact	acaggggttt	ctgccatcaa	gagcacatag		
	ctggttagta gaagctggaa cagaattaag ttttaatctc caagcctgat agattcaatt tctttccatt gtcatttgcc gaggaaaggg ctgttgaact	ttgaagccctcaagaacaacctggttagtaatttgtgggtgaagctggaactggtagttccagaattaaggtgagatatgttttaatctcccccctctgtcaagcctgattataataagaagattcaattatcctcagagtctttccattggccaaagaggtcatttgccccaaatgcctgaggaaaggggagggggcgactgttgaactacaggggttt	ttgaagccctcaagaacaacaagtgtggactggttagtaatttgtgggtgaatgtcaacgaagctggaactggtagttcaaggttgattcagaattaaggtgagatatgacccccaaaattttaatctcccccctctgttggcttttaccaagcctgattataataagaagctaaaatcagattcaattatcctcagagatgtgctgagtctttccattggccaaagaggtgtttaaaggtcatttgccccaatgcctatcagcgtgtgaggaaaggggagggggcgaactttggttgctgttgaactacagggtttctgccatcaa	ttgaagccctcaagaacaacaagtgtggatgagtgtgttctggttagtaatttgtgggtgaatgtcaacgccaactccagaagctggaactggtagttcaaggttgattagggacatctcagaattaaggtgagatatgacccccaaaactcattgttcttttaatctcccccctctgttggcttttacctcatcccacagattcaattatcctcagagagtgctgagtatagcccacagattcaattatcctcagagatgtgctgagtagatactgttctttccattggccaaagaggtgtttaaaggaagacacacgtcatttgccccaaatgcctatcagcgtgttctcttcctggaggaaaggggaggggggcgaactttggttgttacctacatctgttgaactacaggggtttctgccatcaagagcacatag	tygagedictecdcggagegdggcdcggagegdggcdcggagegdgggggggggggggggggggggggggggggg

<u>IL-4</u>

Sequenz IL4_1a

701	aaaaaaaaat	++ ~ ~ + + + ~ ~	toataatata	0+++a0a0aa	~~~~++++~~~	atattatat
/ O T	aaaaaaayyu	LLCALLLLCC	Laciggicig	allicacagg	aacallllac	ClallClyL
841	gaggcatttt	ttctcctgga	agagaagcgc	tgattggccc	tgaatgactg	acaacctggt
901	gtaatgaaaa	tttccaatgt	aaacttattt	tccctcggtt	tcagcaattt	taaatctata
961	tatagagata	tctttgtcag	aattgcattg	ttagctcctc	ccagtaaact	aattgtctca
1021	catcgtcagt	gcaaatagag	ctctattc <mark>at</mark>	gggtctcacc	tcccaactga	tcccaaccct
1081	ggtctgctta	ctggcatgta	ccagcaactt	cgtccacgga	cacaagtgcg	acatcacctt
1141	acaagagatc	atcaaaacct	tgaacattct	cacagcgaga	aag gtgagta	agctatctgg
1201	caccatctct	ccagatgctc	tgatgatgcc	tgtgcacttc	ttagactgtg	ctaagaacct
1261	aacagcctct	agagttggta	gttggtggct	ggtgacagga	tggggagcag	tggggagcct
1321	gtcatcccag	ggcctttctc	ccgctgaggg	gctgtaggag	gttttctcag	caggagagag
1381	tcagagctgc	cctgcagggg	ttagtctgtg	cagttggagg	taacgctctc	tcttgctctc
1441	tcgttcctgc	ctgggccaag	aactcgtgca	tggagctgcc	cgtgacggac	gtctttgctg
1501	ccccagag _{gt}	aagagctggc	ccaggtctgc	tttggtcggt	gggggggcgtg	tggggtgtgg
1561	tgaggagaac	catccacaaq				

Der Promotor konnte (aufgrund eines Repeats) erst ab Position 781 sequenziert werden.

Sequenz IL4_1b

6481	t	gactatcaga	tccagagttg	agcaaactcc	ttttctccac	ccatccttcc
6541	ggaaagcaga	agtcagaagg	aaaaatctct	cgccaacgtt	caaagtcaag	caagcacacg
6601	gtaattggtg	gctcttttct	ag aacacgac	ggagaaggaa	accttctgcc	gggcctcgac
6661	tgtgcttcgg	cacatctaca	gacaccacac	gtgcatgaag	agcctcctga	gcggacttga
					<u> </u>	<u> </u>
6721	caggaacctg	agcagcatgg	caaacatggt	aagctgcccg	gtgcccacag	cttggcttct
6721 6781	caggaacctg aacagacagc	agcagcatgg ggccttactt	caaacatggt ctaaatattc	aagctgcccg ctccttagga	gtgcccacag atagaggcgc	cttggcttct cctgggttaa
6721 6781 6841	caggaacctg aacagacagc tcaagccatt	agcagcatgg ggccttactt cattcgttcg	caaacatggt ctaaatattc acgaatatct	aagctgcccg ctccttagga cttgaggctc	gtgcccacag atagaggcgc tgtgttattc	cttggcttct cctgggttaa

Sequenz IL4_1c

8241			aggagtgtac	atggtatgca	atgaaaacag	gcaaaaccct
8281	attggcctgg	agctggactg	gaggccctgg	tttgatcact	gttcgggtgg	caaatgccag
8341	tgtaggcttg	acccagggag	aaaggcatga	gcaagattca	aatacttagc	taactaatga
8401	aatgtttctt	ttqtaq acct	attctataca	tgaagccaag	aagagcactt	tgaaagactt
	J					
8461	cttggaaagg	ctaaagacga	ttatgaagga	gaaatactca	aagtgttga a	gctgactatt
8461 8521	cttggaaagg tttaatttat	ctaaagacga gatttttata	ttatgaagga cacttatttt	gaaatactca aaaaatattt	aagtgttga atatatttat	gctgactatt aactcataaa

8641 ttgctaactt tttaatgaga cactcaaact gggagtgaaa aaccaaaaga ccgcttccct 8701 cttgaggagg tccctctcc atcagggata taagagagga aatgactaaa gcatacgagg 8761 ctacacaaga tgtaaatgat aattaagaga gcttgcagac tgggtccata agtcccatgg 8821 actatgaaat aattttgaac tgaaaaggtg tcaactggag gcttagaaca ttcttctccc 8881 cttggcacaa gggttgttaa tattgactcc atggtggggg gggaatcatt ctagcatact 8941 acatggctct gtg

<u>IL-5</u>

Sequenz IL5_1a

32				ggcattctc	tatctgattg	ttagaaatta
61	ttcatttcct	caaagagaga	gaataaattg	gttggggatg	cagtcttgta	ctatgcactt
121	tctttgccaa	ggcaaaggtt	gaacatttca	gaacc atgag	aatgcttctg	catttgagtt
181	tgctaggtct	tggagctgcc	tacgttagtg	ccattgctgt	agaaaatacc	atgaatagac
241	tggtggcaga	gaccttgaca	ctgctctcca	ttcatcgaac	tctgctgata	ggcgatggggg
301	taattttctt	tttgattcct	acgctttttt	aaatatatag	gtaatcattt	gctgtggcta
361	ctttttaaa	gatctgttat	taatcatgca	attatgagtg	atagcaatat	ataactgata
421	accatattag	tagcaagcat	tttactaaaa	gtgatgtgtg	ctagagtact	ttataaatga
481	atgtatttcc	tttccttttc	ag aacttgat	gatttcaact	cctgtacata	<u>caaatgtaag</u>
541	tcaaatcatg	atttgataag	tgtctgcaca	aataagtaaa	tttcatattt	taagctataa
601	aacattagtt	atcactggaa	ttatttaatt	ttgtccattt	tgcttttatg	tgtgtggatg
661	caaacgtatg	tacttagaaa	tattaggaat	gattttatga	caaacagaat	ccattaaaaa
721	agtggatcag	gcccttcgat	gttgtcactt			

Sequenz IL5_1b

824					cctccag	tcagctctga
841	ttattgtttt	cctcactttc	atgtctttct	gaaagtatta	gcaagttagg	gttatgtttt
901	tagaatcacg	gtcaggagtc	attaaaatat	acgatgagtg	ccctaaatca	agagtcattt
961	ccacatattt	aaattcttat	gactaaataa	tggaactgta	tacatttgca	gtatgtctgg
1021	tcatattaaa	atgtaaaata	tatgatttca	tttgtctaca	tagaataaaa	ttaccaactg
1081	gaactacaaa	aggaaactga	tgtgaagtca	gtacatttgc	atcacatttc	ctaatcattt
1141	tagttttggt	tagagagtta	atttatatca	tttataaaac	tcctcaggaa	ttatgtaaac
1201	ttcatctact	tttggaaagt	atgtcttagt	gtgaagtggt	ttgccacttg	gaaaaggaac
1261	aagtaaaaaa	ttctttggag	aaggggaact	tgtgtaaaca	ccactaaaca	ctaccattgt
1321	ggaccaaatt	tttatacctt	gttttgatta	tttatcgttt	taaaatttcc	ctcatctag <u>c</u>
1381	accaactatg	cattgaagaa	gtctttcagg	gaatagacac	gttgaagaat	caaactgcac
1441	gaggggatgc	cgtggaaaaa	ctattccaaa	acttgtcttt	aataaaagaa	tatatagacc
1501	gccaaaaagt	aagttgaaaa	catttagtgg	aaacttaagt	atatttgtct	ggctgtgcct
1561	atgtttacag	gaactgacaa	cttcccacaa	tacttatttg	ttcttttcat	ag aaaaattg
1621	tggaggggaa	agatggagag	taacgcaatt	cctggactac	ttgcaagttt	ttcttggtgt
1681	gataaatacc	gagtggacaa	tggaaagtta	a gaccaaact	gtcttaccga	agcaaaagat
17/1	++++aaaaaa	gaaaagatg	+++++a++a	aagaagaata	220000220	

1741 ttttgaggag gaaaaggatg tttttacttc aacaagagtg aaggccaac

Sequenz IL5_2c

19		cctaatcc	agaccctagt	gaacacaact	tgaccctgct	aaattttgat
61	ggtctctgct	ctagccacca	ccttcagtca	ccagtatttg	cagtcccttt	taagacagat
121	caacctagat	agcactgtgt	tagcatttac	ttgatctgaa	aaaagcttcc	caatatttat
181	gtattttaac	ataaaattct	atttagcagt	ttacattatg	gtttgtttta	caacgtccag
241	taagagaaaa	tggcatcctc	tgccatctaa	tggctgcgcg	tctgccttaa	aa
	[gap 100 bp] Expand	d Ns			
393				atatatca	acctaaggat	tttcttttgt
421	aatagaaatg	ttttaaaggg	gaaaaaaaca	gggatttta	ttattaaaag	acaaaagtaa
481	aattatgttt	taagatacaa	ggcattggaa	acattgtttc	acgatatacc	attattaggc
541	attctctatc	tgattgttag	aaattattca	tttcctcaaa	gagagagaat	aaattggttg
601	gggatgcagt	cttgtactat	gcactttctt	tgccaaggca	aaggttgaac	atttcagaac
661	catgagaatg	cttctgcatt	tgagtttgct	aggtcttgga	gctg	

STAT3

Sequenz STAT3_1a

34020						a
34021	gtagatcatg	ggttctagaa	cttggcgtca	tgcccacatt	gtcatcctgg	tttagaagga
34081	agaagctgca	gagtggttcc	agaggtagag	atgtgaatgc	acgtgtatat	gttattctaa
34141	actgggagaa	acatgcaaga	tcttttccaa	agcgtctttt	atccctaatc	ccagacccga
34201	tgcctgtgtc	gaatagattg	tttaactttt	ggaggcttgg	agtgaccatg	tgaacctttg
34261	ctttacagtt	gtgacccctg	attccagcag	a <mark>atggcccaa</mark>	tggaatcagc	tacagcagct
34321	ggacacacgg	tacctggage	agetteatea	getgtacage	gacagettee	cgatggaggt
	<u></u>	<u>caccoggage</u>	ajeeeeu	jeejeacaje	jacajeree	
34381	ccggcagttt	ctggcccctt	ggattgagag	tcaagattgg	taaattcttc	tgaagaaact
34381 34441	ccggcagttt ccccaaattg	ttaggttttt	ggattgagag ggttttggct	tcaagattg atgctcgtgg	taaattcttc catgtggaag	tgaagaaact ttcctaggcc
34381 34441 34501	ccggcagttt ccccaaattg aggaatccaa	ctggcccctt ttaggttttt cccataccgc	ggattgagag ggttttggct agcagagacc	tcaagattg atgctcgtgg tgaggcacag	taaattcttc catgtggaag cagtgacaac	tgaagaaact ttcctaggcc gccagatcct
34381 34441 34501 34561	ccggcagttt ccccaaattg aggaatccaa taacccactg	ctggcccctt ttaggttttt cccataccgc caccacaggg	ggattgagag ggttttggct agcagagacc ggcctcctgt	tcaagattg atgctcgtgg tgaggcacag taggttttag	taaattcttc catgtggaag cagtgacaac tttgattcaa	tgaagaaact ttcctaggcc gccagatcct gagacacagt
34381 34441 34501 34561 34621	ccggcagttt ccccaaattg aggaatccaa taacccactg cttctctaac	ctggccctt ttaggttttt cccataccgc caccacaggg ttaactcttt	ggattgagag ggttttggct agcagagacc ggcctcctgt gctaactatt	tcaagattg atgctcgtgg tgaggcacag taggttttag tcatcaaaaa	taaattette catgtggaag cagtgacaac tttgatteaa gettacaega	tgaagaaact ttcctaggcc gccagatcct gagacacagt acagccactg
34381 34441 34501 34561 34621 34681	ccccaaattg aggaatccaa taacccactg cttctctaac tg	ctggccctt ttaggttttt cccataccgc caccacaggg ttaactcttt	ggattgagag ggttttggct agcagagacc ggcctcctgt gctaactatt	tcaagattg atgctcgtgg tgaggcacag taggttttag tcatcaaaaa	taaattette catgtggaag cagtgacaac tttgatteaa gettacaega	tgaagaaact ttcctaggcc gccagatcct gagacacagt acagccactg

Sequenz STAT3_1b

35800				C	ttgatggtga	tgtctctgtg
35821	tgtgtccatg	gatgtgcata	tgtgtaggtt	tcacaaccat	tccttatcct	tcttcctttt
35881	cctag ggcat	atgcagccag	caaagaatcc	cacgccactt	tggtgtttca	taatctcttg
35941	ggtgaaattg	accagcagta	tagccgcttc	ctgcaggagt	ccaatgttct	ctatcagcac
36001	aacctgcgaa	gaatcaagca	gttccttcag	gtgcgacgag	aaactgaacc	cacagaggcg
36061	ggttttagct	ttccttcccg	aaaatatttc	ccttctcatt	tggctaaatt	ataagaacct
36121	atctagtgtt	ttatttattt	attggttttt	tgtctttta	gggccacacc	cacagcctat
36181	ggaggttccc	aagtgggggc	caattggagc	tacagctgct	ggcctacgcc	acagccaccg
36241	caacgcggga	tccaggccgc	atctgtgacc	tacgccacag	ctcatggcag	tgctggatcc
36301	ttaacccact	gagcaaggcc	agggatcgaa	cctgcgtcct	catggatgct	agtcagtttt
36361	gcttctgctg	agccacgttg	ggaactccta	tcttgtac		

Sequenz STAT3_1c

36851		tacggccgct	tttcattctc	tgtctctcct	ccttacag ag	cagatatctt
36901	gagaagccaa	tggagattgc	ccgaattgtg	gcccggtgcc	tgtgggaaga	gtcccgcctc
36961	ctccagactg	cagccactgc	agcccaggtg	aggccccgag	aagagacaaa	gtgcacaatg
37021	aaaatgtgct	tccttcgcgt	gtgcgaagat	gcgcttgctc	tccgagggtc	cttaggatgt
37081	gcactgacct	ccaagggtgg	aaatgtgtgt	ggggggtttt	tccttctgga	caatgaaaat
37141	aacatttctc	ccctgcatat	gtaatgcagt	ctccttctaa	aaaatcttta	aaacattgca
37201	gaaaagtaca	aggaggaaag	gctttttaaa	aggatctgaa	atgtcactct	ctccctctct
37261	tcattgtctc	ttcccagaaa	accaaaatta	atagtgtgga	atatatccat	ttataccttt
37321	ctcctggctc	ctatagactg	tggaaaacac	acacacacac	acactgtatg	caaatgtgtt
37381	ttacttctct	gtatcttgct	tttttcattt	aatactgtat	catgtaaatc	cttccaagtc
37441	aggtattatg	aagctaactc	acttgccttt	atttgctgag	taatattctg	tggtatacat
37501	tttctgtaat	tggagttccc	gtcgtggctc	agtggttaac	taatccgact	aggaaccatg
37561	aggttgcaga	ttctatccct	gcccttgctc	agtggattaa	ggatccggcg	ttgtcgtgag
37621	ctgtggtgta	ggtctcagac	acagctcaga	tcctgag		

Sequenz STAT3_1d

44691						ttgttgtctt
44701	agctcaacat	gtggcctcct	agtataatac	gtaaagtagg	tttataggat	gacctagagg
44761	gaaagagcca	aggacacagg	taaaactgtg	agcgctttct	tggcgcggca	ctgaccgcac
44821	ctggcgggca	ctggccacct	tgtaactgcc	cttcccatca	caatggcagc	ggcagctcag
44881	gccaaggagg	aggggtcgtg	gggtgggatg	gagaccagac	agggagattt	tgctccccat
44941	gtttcctgca	ttcacatgtg	cattggctcc	ctttttggc	ag caaggggg	ccaggccaac
45001	caccccacag	ccgctgtggt	gacagagaag	cagcagatgc	tggagcagca	ccttcaggat
45061	gttcgcaagc	gtgtccaggt	aaagtgagtc	ttgggcggga	agccttttct	tggggaaatt

45121	gcccatgggt	cctgcgtgta	tcttgtgtga	agttttggct	ttattttaat	ccttcccaga
45181	aactttcttt	tccctctccc	tagggaaacg	tgcttttaac	ctccgtgttt	gtgtgtttat
45241	ttgcaatag <u>g</u>	atctggaaca	gaaaatgaaa	gtggtggaga	atctccagga	tgactttgat
45301	ttcaactaca	aaaccctcaa	gagtcaagga	<u>gg</u> caagtgtc	tattagagac	gttagaatct
45361	cctgtagcgg	agttcccatt	gtggctcagt	ggtaaagaac	ccgactagta	cccatgagga
45421	tgagggtttg	atccctggcc	tcgctcagtg	ggttaaggat	ccggcgttgc	catgagctgg
45481	tgtagttcgc	agatgcggct	cggatcccaa	gttgctgtgg	ctgctgtata	ggccggcagc
45541	tgcagctcca	atttgacccc	tagcctggga	acttccacgt	gatgcaggtg	tggccctaaa
45601	aagattaaaa	aaaaaaaaaa	aaaatctcct	gtagaaagtg	actttgtgtt	actggagtct
45661	cagaactcga	ttgtcttgac	tctgtgttca	gacgtag		

Sequenz STAT3_1e

45667	tcga	ttgtcttgac	tctgtgttca	gacgtagggg	aggggatgct	caggggctgc
45721	tctcattatt	aaggatgagc	gtattccctc	agctcaagga	gtgtctccct	tctcctcag <u>a</u>
45781	tatgcaagac	ctgaatggaa	acaaccagtc	agtgaccagg	cagaagatgc	agcagctgga
45841	gcagatgctc	actgcgctgg	accagatgcg	<u>gcga</u> gtaaga	gcgctggacc	ccttccttgc
45901	gggtctcgct	cgcctgcggg	atttgggcat	cttggagaag	aacttgtttg	tttttggatg
45961	agttccttct	ctggaattga	ctaaagcctg	tggttagaaa	cagtgcgagg	caatgttttc
46021	tgactttgct	tttggtttcc	aaccag agca	tcgtgagtga	gttggcgggg	cttttgtcag
46081	ctatggagta	tgtgcagaaa	actctcacgg	atgaagagct	ggctgactgg	aagaggcggc
46141	agcagattgc	gtgcattgga	ggccctccca	acatctgcct	ggatcggcta	gaaaactggt
46201	aaaacagaaa	agagatgttc	tttctttcta	gaaagctgtg	ctgaattatg	gtcagcactg
46261	caagcccaaa	gaatggcgtc	tgtgtttcag	aggtggaggt	cttaacatac	tcaaatttag
46321	tccaagggta	ggagttccct	ggtggtttcg	tggttcggac	tcggcacttt	cacccctgtg
46381	gcccaggctg	gatccctggt	ctagggactg	agatcccaca	tcaagccatg	gccaaaaaaa
46441	ttagcctaag	agttaaagct	tttactttat	ttggacttat	tttattattc	aactaaccta
46501	aactgaactg	tgcatttaga	aacagttgat	tttctgctat	gcttattttc	tcacaataaa
46561	aaaaatgccc	ctttcttctg	ttcggggacc	gcatggaggt	gtttatacct	gtgctatcct
46621	cttccccttc	tccagctccc	ctgtgtacac	ccactccggt	aactgggaac	ttccttgttc
46681	tattg					

Sequenz STAT3_1f

46661					aactgggaac	ttccttgttc
46681	tattggcag <u>g</u>	ataacctcat	tagcagaatc	tcaacttcag	acccgccaac	aaattaagaa
46741	actagaggag	ctgcagcaga	aagtgagcta	caaaggggac	cccattgtac	agcaccggcc
46801	catgctggag	gagagaatcg	tggagctgtt	cagaaacttg	atgaaaag gt	atcctagagc
46861	cctcgtccct	ttcccgcatc	acctctcccc	tccacagaat	gtcctccaac	aggaggttgg
46921	ctgacttcag	aggaacagga	cagggacagg	acacacgagg	cccactggct	agtgtgtgac
46981	ctgctgccct	tctcttcccc	ttccagtgcc	ttcgtggtgg	agcgacagcc	ctgcatgcct
47041	atgcaccctg	accggccatt	agtcatcaag	accggtgtcc	agtttacaac	gaaagtcagg
47101	tgggccccag	caccgccact	tctggcagat	gctgtatgga	gggatgcttt	tgcagcgaga
47161	gcagcgttgg	tggccagggt	tgtcctttgg	aggcctcccg	gttactgtga	tggggaaagt
47221	gtgattatgg	aatgtgttgg	cctaatatca	gcttgctctt	tggttctcct	ggcaaaagct
47281	aaagaatggt	cgtctccttg	aggttacctg	ggcgcatccc	tatgattcag	gctcactctg
47341						
	ttctgaagat	ttcaagccga	aagtcaggcc	ataacgtctc	ggctgtccta	caaaaggggc
47401	ttctgaagat aaaatgtgtt	ttcaagccga attttctggt	aagtcaggcc tttggagcct	ataacgtctc acccttccct	ggctgtccta gcagataata	caaaaggggc agggaaagag
47401 47461	ttctgaagat aaaatgtgtt cccagtagag	ttcaagccga attttctggt ataatagaag	aagtcaggcc tttggagcct ctgagaggcc	ataacgtctc acccttccct gcaggacagg	ggctgtccta gcagataata tgggtggagc	caaaaggggc agggaaagag gtttcttcca
47401 47461 47521	ttctgaagat aaaatgtgtt cccagtagag tatgcaagtg	ttcaagccga attttctggt ataatagaag ttagaacag	aagtcaggcc tttggagcct ctgagaggcc	ataacgtctc acccttccct gcaggacagg	ggctgtccta gcagataata tgggtggagc	caaaaggggc agggaaagag gtttcttcca

Sequenz STAT3_2gF

48241	attgctggtc	aaattccctg	agctaaacta	tcagcttaaa	attaaagtgt	gcattgacaa
48301	gtaagtacct	ccttcttatc	ttagctcttt	ttttttttt	ttttttcaa	acaaggaaca
48361	gaaaaatgag	aacttggaca	gacatcatgt	gaacttagag	gccttatctt	cattcagaga
48421	tcttc					

Sequenz STAT3_1h

52221			ggaagatggg	agtggatgtt	gggtaggcac	ccaactgggt
52261	ccgctccttc	agcatagata	gggcgttcga	tttcatgtgt	aaaatgtaat	tgaatcattg
52321	acagaaagcc	ccaggagaag	ggcagttttc	ccatcagagc	gaattatagg	tgttcgaagc
52381	agacttttgg	aagaacaagc	cagggcctgc	tttattaaca	cctgtttgtg	tccttgacag
52441	agactccggg	gacgtcgcgg	ctctcagagg	gtacgttcag	cctggaggct	tccttctgtt
52501	ctcttgactc	taactttcgt	cttcgggcca	gccactcggt	ccctgacacg	gtgggtactt
52561	ttctcctgtg	atttag atcc	cggaaattta	acatcctggg	caccaacacg	aaagtgatga
52621	atatggaaga	gtccaacaac	ggcagcctct	ccgcagagtt	caaacacctg	gtactcgggg
52621 52681	atatggaaga gagcccggac	gtccaacaac ccccttctc	ggcagcctct ctggggcctc	ccgcagagtt tggcggaggg	caaacacctg tggggttggg	gtactcgggg gggagcctcc
52621 52681 52741	atatggaaga gagcccggac cgtgacagcc	gtccaacaac cccccttctc ctgtcctttg	ggcagcctct ctggggcctc ctttccttac	ccgcagagtt tggcggaggg ag <mark>accctgag</mark>	caaacacctg tggggttggg agagcagaga	gtactcgggg gggagcctcc tgtgggaacg
52621 52681 52741 52801	atatggaaga gagcccggac cgtgacagcc ggggccgagc	gtccaacaac cccccttctc ctgtcctttg caattgcgac	ggcagcctct ctggggcctc ctttccttac gtaagttggg	ccgcagagtt tggcggaggg ag <mark>accctgag</mark> taggggatga	caaacacctg tggggttggg agagcagaga aagcccacct	gtactcgggg gggagcctcc tgtgggaacg gtaggaacct
52621 52681 52741 52801 52861	atatggaaga gagcccggac cgtgacagcc ggggccgagc tgtcttggag	gtccaacaac cccccttctc ctgtcctttg caattgcgac gctgagcgaa	ggcagcctct ctggggcctc ctttccttac gtaagttggg caagagccct	ccgcagagtt tggcggaggg ag <u>acctgag</u> taggggatga cttactgccc	caaacacctg tggggttggg agagcagaga aagcccacct aggagtagag	gtactcgggg gggagcctcc tgtgggaacg gtaggaacct acacctatgt
52621 52681 52741 52801 52861 52921	atatggaaga gagcccggac cgtgacagcc ggggccgagc tgtcttggag gctgtttcag	gtccaacaac cccccttctc ctgtcctttg caattgcgac gctgagcgaa ctgcagttgt	ggcagcctct cttggggcctc ctttccttac gtaagttggg caagagccct tcagaaaagt	ccgcagagtt tggcggaggg ag accctgag taggggatga cttactgccc caccctgggc	caaacacctg tggggttggg agagcagaga aagcccacct aggagtagag caacctgaca	gtactcgggg gggagcctcc tgtgggaacg gtaggaacct acacctatgt catcagaagt

Sequenz STAT3_1i

56446					cttct	ggatggtgtc
56461	gtggtgacgg	tcggttccga	atgccaccct	ctctaaggaa	gtgtcctggt	tatggcag gc
56521	ctccctcatt	gtgaccgagg	agctgcacct	gatcaccttt	gagaccgagg	tgtatcatca
56581	aggcctcaag	attgacctgg	ag gtgagttc	tgcagcagaa	ctgggtgggg	ctgggtgcag
56641	gggtgatgga	ggtgaccaga	cttctagttg	gggttttctc	tccagcaggt	gcaatgatga
56701	ctcttggcta	aacaccatgt	ttattgcttt	tgcttgtttt	tctccaacaa	aatcctcagt
56761	gtctcctctg	ggagtaaaat	cttgctggag	tgcttagaag	atccctgttt	actcagcctt
56821	cagcaaacct	ggtataaaaa	ctcatactta	gaaattgatt	acagtggact	ttattatata
56881	aagtttgagc	aaaacagcct	ttcagcagcc	actgtttgta	gcatacagac	aatcctggca
56941	tttatatgct	ctttttccca	gctgatcttt	aaagatacac	ccgaaaaacc	aggaatccta
57001	agttttggat	tcctgggagc	tctctgttta	aggggttgat	gcatcttcag	ttcgtggaga
57061	atgccttccg	ggttttataa	atggggagtc	cgtggaccat	gagtgtccac	tgtgagcatg
57121	tcggcatcac	aaggtcatgg	tggtgttcag	accgaacctg	aggcctgtgg	cccgagtgtg
57181	gcagcaggcg	tggcccatgg	cctgtcctct	tgcaaaccct	gcaaaatatg	ggtcaagaga
57241	cttgaagcca	ccagggccct	ccgcctcccc	agctcattgc	ccgcttactc	cacag accca
57301	ctccttgcca	gtcgtggtca	tctccaacat	ctgtcagatg		

Sequenz STAT3_2j

57085			ggagtc	cgtggaccat	gagtgtccac	tgtgagcatg
57121	tcggcatcac	aaggtcatgg	tggtgttcag	accgaacctg	aggcctgtgg	cccgagtgtg
57181	gcagcaggcg	tggcccatgg	cctgtcctct	tgcaaaccct	gcaaaatatg	ggtcaagaga
57241	cttgaagcca	ccagggccct	ccgcctcccc	agctcattgc	ccgcttactc	cacag accca
57301	ctccttgcca	gtcgtggtca	tctccaacat	ctgtcagatg	cccaacgcct	gggcctccat
57361	cctgtggtat	aatatgctga	ccaacaaccc	<u>caaggtgagc</u>	ctgggctccg	ggttctccgg
57421	agacttctgg	gcttgtggcg	gtgcctgggg	cggctcatca	ggcaccaccc	tcatctcaag
57481	gagcccatgt	atgtcgtttc	cctag aacgt	gaactttttc	accaagcccc	cgatcggaac
57541	gtgggatcaa	gtggccgagg	tgctgagctg	gcagttctct	tccaccacca	agcgagggct
57601	gagcatcgag	cagttgagca	cgctggcaga	gaaactccta	<u>g</u> gtcagctct	ttgcctcctt
57661	tctctcccgc	cttcctctga	aaaggaatcc	cgcccctgga	gctggtcctt	taggagtg

Sequenz STAT3_1k

58801	tctgggtctg	gctggacaat	atcattgacc	ttgtgaaaaa	gtacatcctg	gccctttgga
58741	ggacttggtt	ttcctgttat	tcttttctcc	ag gaaaacat	ggctggcaag	ggcttctcct
58681	tgcgcctgag	ggttttgctg	gcacctcgcc	ccgcggaagg	gacagcctgg	gatggttgag
58621	gggggcctga	agggcctgga	ctctcggtcc	agcagccagt	agcacctgcc	caagggtagg
58561	aagcaactgt	gtgaattagg	ggagggggag	gggtgcacac	ctgcggggtc	tcagaaggct
58501	ttcag gacct	ggtgtgaact	attcagggtg	tcagatcacg	tgggctaagt	tttgcaaa gt
58441	gaaggaatga	gatcttgatt	caaagtcgaa	aattatacta	ctttattatt	atttttccc
58412				ggacagatg	tgtatgagtg	tgttccgtat

58861atgaagg
s8921ggtcgaacaccagtctggcagcgtacacggtgtgacaagtcccccact58921gaggacctgaggaaccctcagcccaaaccttgttgtcttccaggtaca58981tatcggctttatcagtaaggagagggagcgggccatcttgagcaccaagcccccaggca59041ccttcctgctgagattcagtgaaggaggagcaggaaggaggagtcaccttcacttgggtgg59101agaaggacatcagcgccccaggcaccccacaccacctggtagcttatgggtgg59161tgctgccttgactgctgctagtgtcaggcacc

Sequenz STAT3_21

59661					catagttttc	ttggagctca
59581	cctagtcttt	gcctcccata	tcccatggca	g gtaagaccc	agatccagtc	ggtggaaccg
59641	tacaccaagc	agcagctcaa	caacatgtcg	tttgctgaaa	tcatcatggg	ctataagatc
59701	atggatgcta	ccaacatcct	cgtgtctccg	ctggtctacc	tctaccctga	cattccaaag
59761	gaagaggggt	ttagaaagta	ttatagggga	asasaaasaa	aggatgggga	aggtgaggga
	<u> </u>	ccggaaagta	LIGLUGGUUA	gagageeagg	ageateeega	agelgacela
59821	ggtagttgtt	gattttccgc	aataggcatt	tcattccggg	gaaaagcagg	aaatggcagg
59821 59881	ggtagttgtt atccttggag	gattttccgc gatgggatgg	aataggcatt gtcaatgcct	tcattccggg gaagaacctg	gaaaagcagg gtc	aaatggcagg

Sequenz STAT3_2m

62758						ggc
62761	aggtgagctt	cctccgaggg	aaatgggagt	tccagacaat	ctctggtcca	ggatggagtg
62821	agtttcaggt	cagcattggg	gaaaggcttc	ctcctgcccg	ggacccaggg	tggagtcaga
62881	atcagtgagc	ctgagttttc	tccttcccag	gtgctgcccc	atacctgaag	accaagttca
62941	tctgtgtgac	acc gtaagtg	gcttctcttc	ctgattttgc	cttcatttct	aacgtcctca
63001	attacccctg	ggaacaggcc	actgggtgag	agaactctgg	tgaggggttg	gaaccctcgg
63061	agctatggtc	ggtattcaaa	gtgacctggt	gtgtttaaaa	agcttgagct	tgtattttt
63121	ttgtttttt	tttgtttttc	ttttggagac	cagagtttga	tgagcttgtg	tgtgtgtgtt
63181	ctgttcttct	tttttttt	cctccattgt	gtcttgtcaa	cccggccctt	tccgctccta
63241	ctgctccccg	tttcctacag	aacgacctgc	agcaatacca	ttgacctgcc	gatgtccccc
63301	cgcactttag	attcattgat	gcagtttgga	aataatggtg	aaggtgctga	gccctcagca
63361	ggagggcagt	ttg gtgagta	tccacttgtc	cctgtgatgc	tcccgcttac	agagccgagc
63421	tgggcacctg	gattgggagc	agg			

Sequenz STAT3_1n

64338		tct	gagctcctct	tgagcacaag	gggccagaga	ctggatggca
64381	ggggcggcct	gagcctctgt	ccccaccccc	accccccaca	aggccagggg	tgcgcgccct
64441	gccagccgtc	gggctcaggc	gactgaacca	gctctccctg	tgtgtccccc	gcag agtccc
64501	tcaccttcga	catggagctg	aactcggagt	gcgctacctc	ccccatgtga	ggagccgagg
64561	acaggagctg	cagagagcga	tgacaaggca	cctccccgcg	gtccaccacc	ccttaaacag
64621	ccccacccca	gatcaactca	actcccaact	ttgtggttcc	agattttctt	tttttctgtc
64681	tcctactttg	gctatctttg	agcaatctgg	gcactttta	aaatagagaa	aggagtgaat
64741	gtgggtgata	cgcttttatc	taaatgcaaa	taaggatgcg	ctctctgaga	ctgtgatcag
64801	gggaggtgga	aggggtggtg	agaggaagaa	agaggaaatg	tctttttgt	cccccctcc
64861	cttctcagca	gcttgttgtt	gttgttgtca	gacaagtgcc	tc	

Sequenz STAT3_20

172						ctggctgat
181	tcccacgtgg	taagtggctc	ctaactcacc	cccacgtggt	gccaagggcc	gggaaaaggg
241	agagtaggca	aaagagagcc	gcatcagggg	catttaaagt	gtcttgacgt	cacacactgc
301	caggaactca	gctgagtttt	cagcaggaca	ttccggtcat	ctttcttccc	tccctccggg
361	tctctcagcc	caaggccttg	gctcttccct	tactgttgcg	gagggagtag	cagtgagccc
421	tcggaacagc	cagtacaggg	gcgttcccgg	ccttgtgttg	gctccgcccc	ttctccaagg
481	agctctcctc	attggcaagt	gggtggggct	tcggagatac	agtacattca	ccagggcctc
541	tgtgtggcag	agaaaactgg	tcgtctcatg	aataatgcat	gagcggagtg	cccaggccag
601	gcgggggctg	ggcggggatt	ggctggaggg	gctgtaattc	agcggtttcc	ggagctgcgg
661	cggcgtagac	cgggaggggg	agcctggggt	tccgacgtcg	ccgcggaggg	agcgagcccg
721	aacaggatcc	ttgacgagca	cccctacttg	gcgctctccc	cgtgtctaat	aggggagact
781	ctgcggcctg	agggagccct	qcqqcccqca	ccccqqcqca	agcgcagccc	cggccagtcg

841 ggcctcagcc ggagcagcag gtgaaggggg ttaagggtgg ggccgccccc cccctccccg 901 ggcgacggcc

Der Promotor konnte ab Position 172 sequenziert werden.

LMNB1

Sequenz LMNB1_2a

964	cgccgcg	gtccgcgcca	cctccgcccc	ccgcccgccc	ctccgccctc	ctcccccgc
1021	ccgcggctca	gcgccgtttg	agaggaaaca	aagtgctgcg	ggcgggagac	tcagcggcgg
1081	cggcggcgcg	cggattctgc	tcggccatcc	cggccaccct	tgccccgtat	ttcccgagcg
1141	tgtgtgtgcg	cgcgtgtgtg	agtgtgtgca	tgttttctta	cacaggatat	tttacgactg
1201	attgattttg	tagtcctccc	cctttgccct	ttgtgctgta	acccctctcc	cgccatccca
1261	ggtgcttcgt	ccttcctcct	cacgccggtc	tctccgcgag	cgtgggtcgc	cggttcgcgc
1321	cttctctccc	gcttcggccc	ctgccgcccc	tcttattccc	gtgctgccca	cggcctccgc
1381	gccccgctct	ccccgccgat	cgcc atggcg	acagcgaccc	ccgtgcagtc	gcgcacgggc
1441	agccgcgcgg	gcggccccac	cacgccgctg	agccccacgc	ggctgtcgcg	gctgcaggag
1501	aaggaggagc	tgcgcgagct	caacgaccgg	ctggccgtgt	acatcgacaa	ggtgcgcagc
1561	ctggagacag	agaacagcgc	gctgcagctg	caggtgaccg	aacgcgagga	ggtgcgtggc
1621	cgcgagctca	ccggcctcaa	ggctctctac	gagacagagc	tggccgacgc	acgacgcgcg
1681	ctcgacgaca	cggcccgcga	acgcgccaag	ctgcagatcg	agctgggcaa	gttcaaagcc
1741	gagcacgacc	agctgctcct	caa gtgagtg	ctcgcctggc	ggccgcggta	actcacacga
1801	qqqqtqqqqq	gcgcagctcg	ggcgggagg			

Sequenz LMNB1_1b

25217		ctct	acgcagggag	ggagaaggct	tcaagtcagg	ggtaaaattt
25261	gatgtcttgc	acttgttcaa	atgtcttata	g ttatgcgaa	gaaagaatct	gatcttaacg
25321	gagcccagat	caagcttcgc	gaatatgaag	ccgctctcaa	ttcgaaagat	gcagctctgg
25381	ctactgcact	tggtgataaa	aaaagtttag	agagtgattt	ggaggatctg	aaggatcaga
25441	ttgcccag gt	gaggtaaacc	ctgtttttga	gccatatttg	gcaggttcat	tgtccggtct
25501	gtccagattg	attgaaaaag	ttttaaaata	ttttttattt	ttaaaaattt	attaagttat
25561	tttggggggg	ggtgtaccag	cacgtgtagt	cttgagctaa	catgtaaagc	atctttacct
25621	cttactcatt	gtgtctgtat	tatgaagatc	ttgttgctgc	tcttcttcct	ctgttgtggt
25681	taggctcatt	ctgttttttg	ctctcacagt	ctatttcata	attgtaccaa	aatgtgagga
25741	aagaagagaa	aaggtgtcat	aatggtgctc	ctcacacagg	aaacaaatga	aagtggtagc
25801	tcagattgtt	ggtttgagtt	ttgaaaagtg	gtcatttgcc	atttaccaaa	tttgagaggt
25861	gttttgatgt	ggcaccttgt	gggtgggacc	agcagtggaa	cccatggttc	tgggataaag
25921	gactctccta	cattggcaga	tacatagaaa	ctataatact	tgatgtgatt	caatccatag
25981	gtatctatta	agttcattgc	taaatgattg	ctgaagtatt	tccgttaatt	ctttttcttt
26041	atgttattag	ttggaagcct	ctttagctgc	tgccaaaaaa	cagttagcag	atgaaacttt
26101	acttaaagtg	gatttggaga	atcgctgtca	gagtcttact	gaggacttgg	agtttcgtaa
26161	aaacatgtat	gaggag gtaa	ctatgtataa	ttttaacttt	tttaaggaat	gaatgggtcc
26221	cagaaggctt	tattatatac	tatgtgtgtg	aaacatggaa	gaattttata	ggcaaattat
26281	ttaaggcact	gttgcttaaa	ggttgcatat	aagaattcag	actgctg	

Sequenz LMNB1_1c

29424			ccaggac	agacacaagg	aggctggtgt	gtaaaacttc
29461	agctggcccc	gtgtcactca	gactggtacc	agtgcagcca	cggtgagtaa	cttggtttga
29521	cgtcatttcc	accctccccc	ag gagataaa	cgagaccaga	aggaagcatg	aaactcgctt
29581	ggtagaagtg	gattctgggc	gtcagatcga	gtatgagtac	aagctggctc	aagcccttca
29641	tgagatgaga	gaggaagatg	atoccaaot	assaatatsa	aadaaadadd	tagaggagag
	egagaegaga	gageaacaeg	acgeceaage	caagetgtae	aaggaagagc	Lygaycayac
29701	gtaccacgcc	aaa gtgagca	gactcttctg	gggacggctc	taagccgttg	tgcacagtct

Die Sequenzierung ist nur bis zu dem Repeat ab Position 29805 möglich.

Sequenz LMNB1_1d

31249 gc cttgagagga 31261 gtcgtacttc ttcatttgct tgttctaatt caccaggtca gactgaccat ggttggtttc 31321 ctttttagc ttgagaatgc cagactgtca tcagagatga atacttctac tgtcaacagt 31381 gccagggaag aactgatgga aagtcgtatg agaatcgaga gcctctcgtc tcagctttct 31441 aatctacaga aagag</mark>gtgag taagcacctt ccctcaggga gaattggagc tgcatctgca 31501 ggccaccttc accacagtcg tccgctttgc tctgcctgaa gtcac

Sequenz LMNB1_1e

37295gttaga gattgcacaa cgtcctcttt37321gttccagccc aggaaatggt ttaaaatagc tgccttgtgc tgatgttgta atgttcctag37381aaagtcaacg tgttcccttg aatcttaagt ctagggcatg tttggagagg attcaggagt37441tggaggactt gcttgctaaa gaaagagaca actctcgccg catgctgtct gacaaagaga37501gagagatggc ggaaatacgg gatcagatgc agcaacagct caatgattat gaacaacttc37561ttgatgtaaa gctagctctg gacatggaaa tcagcgctta caggaaactc ttagaggcg37621aagaagagag gtaagtaact taggtg

Die Sequenz ist nur bis Position 37646 auswertbar.

Sequenz LMNB1_2f

38927					tttc	aaggtgggaa
38941	ggacatgtgt	gtttcacaac	tggactgttt	tgttcctccc	atatag attg	aagctctctc
39001	caagcccttc	ttcccgtgtg	acagtgtctc	gtgcctcctc	gagtcgcagc	gtacgtacaa
39061	ccagaggaaa	gcggaagaga	gtggacgtag	aagaatccga	ggccagcagc	agtgtcagta
39121	tctctcattc	cgcctcagcc	actgggaatg	tctgcattga	agagatagat	gttgatggga
39181	aatttatccg	cttgaagaac	acttcagaac	ag gtgaaaac	agactctttt	tttttttt
39241	ttt					

Die Sequenz ist nur bis zum Repeat ab Position 39227 auswertbar.

Sequenz LMNB1_1g

40825			ccacgt	ctctgacctg	tgccacagct	cacggcaatg
40861	ccggatcctt	aacctactga	gcaaggccag	ggatcgaacc	cacaatctca	tggttcccag
40921	tcggattggt	tagcccctca	gctacaaggg	gaactcgctt	attttcttt	tatagtagga
40981	aaatatgagc	catggaaaga	tagccataaa	actgtcttag	tttatctgcc	tatagattga
41041	tttatgcaat	tatttcctaa	ctttctatat	atttgaagtc	accttatttt	attttgttct
41101	ttcaatag ga	tcagccaatg	ggaggctggg	agatgatcag	aaaaattgga	gacacgtcag
41161	tcagttacaa	atatacctca	agatatgtgc	tgaaggcagg	ccagactgtt	aca gtaagtt
41221	aatttagtca	tcatttaatt	taacttgatt	atcttaacca	acagttaaag	taattaaaac
41281	catttgggct	tgaatagaaa	cattttagga	atgggcctta	aaacattttt	gttattatta
41341	gggaattaca	agtgctatta	aacattttaa	aaattgtatg	tgattgagag	tggtaataca
41401	ctaataaaag	cgaaagaatt	gacctttgag	ttctttttgt	ctgcttcagt	ggatagaagg
41461	cagcttcctc	ttccttccct	gttggctccc	cagaaaacaa	aacagaatag	ctacttcttg
41521	attgatagtg	gtagccctgc	tgtggttcag	gaggttctgc	ttggcgtaaa	gaactgtcag
41581	gagataactg	ttaatactag	gggtgcttta	gccctgttag	gggtaagcag	cacagtcatc
41641	tggagagtg					

Sequenz LMNB1_2h

44637						ggat
44641	gctattactg	acacatggga	gagctgggct	cggaataacc	tgatgtcctt	tctttttcc
44701	ag atctgggc	tgccaatgcc	ggcgtcacag	ccagtcctcc	caccgacctc	atctggaaga
44761	accagaactc	ctggggcact	ggcgaagacg	tgaaggttat	attgaaaaat	tctcagggag
44761 44821	accagaactc aggtacggtc	atttggttgg	ggcgaagacg gtccaccaca	tgaaggttat gtgtctcttc	attgaaaaat accatgcaag	tgtgatttct
44761 44821 44881	accagaactc aggtacggtc ctgcagaaat	ctggggcact atttggttgg cagattgaaa	ggcgaagacg gtccaccaca tgtgaagtaa	tgaaggttat gtgtctcttc cag	attgaaaaat accatgcaag	tctcagggag tgtgatttct

Sequenz LMNB1_1i

51574aaccett atgtagaatt getgttett51601aaatttacac aaagaagggt egteteece ecceegeece acagteettg tggttttaa51661gtatagtgtt tgaacttaaa gtecaactet egtgtgtagg aggtggeag aagaageage tgaagtget51721gtetteaaa eccaceataee tgaagaggag gaggaggaag aagaageage tgaagtget51781gtegaggag aacttttee ecageaget ttatttaat geattettt taagtteet51841taacagagtt acagtaaace acaceaaa

Die Auswertung der Sequenz des Ebers ist nur bis Position 51868 möglich.

Sequenz LMNB1_1j

54149 ct ggtgaacttg tcgtatctct gccttattt 54181 gaaatgetgt gateegttt eteettegea etaatggtte teetette eeteetaa 54241 gageeeeea aggtteeaa agaagetgt egattatgta a 54241 teeteeaa taaagaagta gggtaateet taeetaeatg eagtgeagag eetteetaaga 54361 ageaeagaat attttatat tteetttatg tgaatttta agetgegaat etgatggeet 54421 taatteett ttttgaeaet gaaagtttg taaaagaaat eatateeata eaetttgttg 54481 caagatgtga aetgtegaea etgaaetaae tgtgtaetgt ttggaaaagg teeeteaaat 54541 ttttgaeatg tttttgtat gtgtgettt tttt

Die Sequenzierung erfolgte nur bis zum Repeat ab Position 54574.

Sequenz LMNB1_2k

154				acaagtt	tagatcttga	tgcatcagat
181	tttactgcag	catgacaata	aacagcatgt	ttactatctg	cttagtaaca	tgttaatcgt
241	atcacttgtg	aggtggtttt	gattttatag	cgccctaaat	tgttaagaaa	tagatggatc
301	agggactgct	catcagcagt	tggcgtttct	gggatcttat	ctgtcggctt	ggctgcagga
361	cacgcgtgcg	tcaatttgat	gggaggaggt	gttctgatac	accattttcc	ccttgagaga
421	aaaaaggctt	cccttggacc	ccgcacgcag	ttggttttga	acctcggaca	ccagcgtcca
481	ttacgtaact	ccaaggcggc	ccggcctcca	ggcagttttc	cgaaccctct	ccgcgggggcg
541	gggtataagg	ttacaatgcc	cgcggtcgtc	ccggcctcta	cgagttttgc	gcgtggctgt
601	tagagacgtt	tacttttgaa	tttccctgaa	ccgccgggtg	tgggcggcgg	ctcggacccg
661	ccccggaaac	ctctgggctc	cttcccgcca	tccgctggcc	cggccccgcc	gggggtcccc
721	gcagggtggt	ggggaagacc	aggccggctc	agggccccgg	gccgccgcgc	gagcagtcct
781	cgccgcccct	ccccgccgcc	ctcagtcctt	cccccgccac	gcccagccag	gcgctcacag
841	acccgacagt	tgccagaagg	catgattttg	aatttacagg	cccgccccct	gctgctggct
901	ccccattggc	cagtgacggt	cacgtgaggt	atcagagcgc	gccggccatc	ttgggaagcg
961	cggcgccgcg	gtccgcgcca	cctccgcccc	ccgcccgccc	ctccgccctc	ctcccccgc
1021	ccgcggctca	gcgccgtttg	agaggaaaca	aagtgctg		

Der Forward-Primer wurde im Promotor und der Reverse-Primer in der 5'-UTR des Gens plaziert. Die dargestellte Sequenz liegt nur für die beiden Sauen vor. Das PCR-Produkt des Ebers konnte nicht sequenziert werden. Daher war ein Alignment nicht möglich.

Sequenz LMNB1_21

```
54561gtgtgcttttttttaagttcttacgagaaggggaggggag54601ggtaaataaaccactgtgtgtctgggtataatttgagattgctgcatctagattagcaat54661ctgctcttgattattctctgctatataaacggtgctgtgacgaggagagaacatttt54721caatatacgaacttttgtactgaattttttgtaaaaacaatcaaggctacaaaaattt54781tttttaaaatagaaagagaaattttgtaagaaggcaatattaatctaatcatcatgta54841agcactctggatgaaaggatccacaaaactttgttttatggttacttctcgtagattctt54901aattcaccaggggaacgggaggggtgaggggggagggaagggtttctcctaaaatgcatt
```

54961 agttgtgttt tttaaaatag cataacttgc ttaaatttct tatgtgacat taacaaataa 55021 aaaaagctgt tttaatatta atttactgtc ttttttaac tttagtaata tttttagggg 55081 agaaaagtat tgtttcagtt ttactgtttg tttgtttgtt tgtttgttt agggccacac

Der Forward-Primer wurde in der 3'-UTR des Gens und der Reverse-Primer hinter dem 3'-UTR-Ende platziert um den Abschnitt der 3'-UTR hinter Position 54574 zu sequenzieren. Die Sequenzierung erfolgte sowohl mittels Forward- als auch mittels Reverse-Primer. Eine Auswertung der Sequenzen der Sauen war aufgrund von Überlagerungen anderer Sequenzen im PCR-Produkt nicht möglich. Daher konnte kein Alignment durchgeführt werden.

Alignment Founder-Tiere

NR3C1

Alignment der Sequenz NR3C1, Forward-Primer:

Sau 173 2.ab1/Sau 366 5.ab1/Eber 8.ab1

2.ab1:CATATAGTATCTATGGTATCAACGTAAAAAGTGGGTTTTTCTGCTGTTTGAA 8.ab1:CATATAGTATCTATGGTATCAACGTAAAAAGTGGGTTTTTCTGCTGTTTGAA 2.ab1:CTATGCTATTTTTAGCATGTGCTCTGGTCTGTCATCATATCATCATACTGTTT SNP 5 2.ab1:TGATAAGGGGACTTTGTGCAAGGATATAAACAGTATCACTCTCTTCATTGTA 8.ab1:TGATAAGGGGACTTTGTGCAAGGATATAAACAGTATCAGTCTCTTCATTGTA SNP 1 2.ab1:TGTATCCACAATTCAGATTACCTAAGCTGCAGTGGCTAGTCTCGTATCACAA 8.ab1:TGTATCCACAATTCAGATTACCTAAGCTGCAGTGGCTAGTCTC TTATCACAA SNP 2 2.ab1:CTTAGATTCATTCTTTCAATTGATAGTAAAAGTAATTTAAGAAAAATTTGAC 8.ab1:CTTAGATTCATTCTTTCAATTGATAGTAAAAGTAATTTAAGAAAAATCTGAC SNP 3 2.ab1:ATTTTGACATATGTGGTAAGACAATTTTATATAAGTACAGCTATGATGAGGA 8.ab1:ATTTTGACATATGTGGTAAGACAATTTTATATAAGTACAGCTATGATGAAGA SNP 6 2.ab1:TCTGCTTTCAGGAGGAAAGCAATGTGTTTTCTCTCCCTTCCATGTCACTATCA 8.ab1:TCTGCTTTCAGGAGGAAAGCAATGTGTTTTCTCTCCCTTCCATGTCACTATCA 2.ab1:TAATT GCTAAATTAAAGAGTTGTCGTCTTTTAAACAAAATA TTTGAGAAAT 8.ab1:TAATT GCTAAATTAAAGAGTTGTCGTCTTTTAAACAAAATA TTTGAGAAAT

2.ab1:TTGAATAAACTGTGCCACCCAGACTTTCCCATTACAATTCATTTGTGTATTTT 8.ab1:TTGAATAAACTGTGCCACCCAGACTTTCCCATTACAATTCATTTGTGTATTTT

2.ab1:AGCAGGCCACTACAGGAGTCTCACAAGAAACTTCTGAAAAATTCTGCTAATA 8.ab1:AGCAGGCCACTACAGGAGTCTCACAAGAAACTTCTGAAAAATTCTGCTAATA

2.ab1:AAACAATAGTTCCTGCAACGCTACCACAGCTCACCCCACCCTGGTGTCACT 8.ab1:AAACAATAGTTCCTGCAACGCTACCACAGCTCACCCCCACCCTGGTGTCACT rs81219175 2.ab1:GCTGCAAGTCATTCAACCCCGAGGTGTTGTATCCAGGATATCACAGCTCGAT

2.ab1:GCTGGAAGTCATTGAACCCGAGGTGTTGTATGCAGGATATGACAG CTCGAT 8.ab1:GCTGGAAGTCATTGAACCCGAGGTGTTGTATGCAGGATATGACAG CTCGAT

2.ab1:GCAGGTGATTGCG GCAGTGAAATGGGCAAAGGCAATACCAGGT AAGGTG 8.ab1:GCAGGTGATTGCA GCAGTGAAATGGGCAAAGGCAATACCAGGT AAGGTG SNP 4 2.ab1:CCAAAGATGCCACCCAGCTCAGGTACG 8.ab1:CCAAAGATGCCACCCAGCTCAGGTACG

Das Aligment der Sau 366 mit dem Eber entspricht dem dargestellten Alignment.

Der SNP rs81219175 konnte für diese Versuchsgruppe nicht bestätigt werden.

Alignment der Sequenz NR3C1_UTR, Forward-Primer:

Sau 173 3.ab1/Sau 366 6.ab1/Eber 9.ab1

3.ab1:ATTGGAAATGGACTCTTGGAGGAAAGAGAGAGGAATTAGTGTATTATTGGCAA 9.ab1:ATTGGAAATGGACTCTTGGAGGAAAGAGAGAGGAATTAGTGTATTACTGGCAA rs81509148 3.ab1:CCTATGAGATTCTGCACTATTTACATATTGCTGGTACCTCTATGCATATTATT 9.ab1:CCTATGAGATTCTGCACTATTTACATATTGCTGGTACCTCTATGCATATTATT

3.ab1:GCCCAACTTCTAAAGCCTCTATTTTATTAAACTGTGGAGAGAGGCTGTATGTG 9.ab1:GCCCAACTTCTAAAGCCTCTATTTTATTAAACTGTGGAGAGAGGCTGTATGTG

3.ab1:GTGATGCCTGTTAGTGTGCAAGCACCACCTTTCTGTCCCTTGTTCACAGACT 9.ab1:GTGATGCCTGTTAGTGTGCAAGCACCACCTTTCTGTCCCTTGTTCACAGACT

3.ab1:TGAGCGTGAGGGGAGGTTTAGGAAACTAAACCCACGTGGACAGACTCACTG 9.ab1:TGAGCGTGAGGGGGGGGGGGGTTTAGGAAACTAAACCCACGTGGACAGACTCACTG

Das Alignment der Sau 366 mit dem Eber entspricht dem dargestellten Aligment.

<u>RPL38</u>

Alignment der Sequenz RPL38_3b, Reverse-Primer:

Sau 173 154.ab1/Sau 366 155.ab1/Eber 156.ab1

154.ab1:TCGCTTATCTCGA CCTCAGGACGATCACTTACATTTGGCGTCCTTTCGTC 156.ab1:TCGCTTATCTCGACCCTCAGGACGATCACTTACATTTGGCGTCCTTTCGTC

154.ab1:TGGCCGTCAGCAGAAAGTCCTTGATTTCCTCAATTTTGCGAGGCTGCAAG 156.ab1:TGGCCGTCAGCAGAAAGTCCTTGATTTCCTCAATTTTGCGAGGCTGCAAG

154.ab1:GCAAAGAAAAGGAAATCACCTGCAGAAACACACTTCCCGGGCTGGTCAA 156.ab1:GCAAAGAAAAGGAAATCACCTGCAGAAACACACTTCCCGGGCTGGTCAA

154.ab1:GTCTGCCACCCTCTCAGGCCTCCGGAGCCTCTCGCAGAGGCCTGCTCT 156.ab1:GTCTGCCACCCTCTCAGGCCTCCGGAGCCTCTCGCAGAGGCCTGCTCT

154.ab1:CGCTCCCGACCCGCGACCCCCGGCCCCCGGAGAATCCCCCAGAAACGG 156.ab1:CGCTCCCGACCCGCGACCCCCGGCCCCCCGGAGAATCCCCCAGAAACGG

154.ab1:GTTGTACTCACCATGGCGACGAGGCGCGGAGAGCGAGGCTGGAACCTGC 156.ab1:GTTGTACTCACCATGGCGACGAGGCGCGGGAGAGCGAGGCTGGAACCTGC

154.ab1:GGGGAAAACGGGCATTGGCGTTAGCGGCGTACGCGGACTCGTGGGGAA 156.ab1:GGGGAAAACGGGCATTGGCGTTAGCGGCGTACGCGGACTCGTGGGGAG SNP 1

154.ab1:CCCCGCTTTCCCTCCCCGCATGCCCGAAATGCCGGCCCCACCGCACTCCA 156.ab1:CCCCGCTTTCCCTCCCCGCATGCCCGAAATGCCGGCCCCACCGCACTCCA

154.ab1:TCCTTCTCCCCGCACCCTTGATCCAGGCCCAGGATTCCCAGGTGCTACTT 156.ab1:TCCTTCTCCCCCGCACCCTTGATCCAGGCCCAGGATTCCCAGGTGCTACTT

154.ab1:GGCCGTGGATTACCACGGATTCCTCCCGAATCCCCAGGTACGGCCCGAGA 156.ab1:GGCCGTGGATTACCACGGATTCCTCCCGAATCCCCAGGTACGGCCCGAGA

154.ab1:ACTTCCGCTT 156.ab1:ACTTCCGCTT

Die Sequenz der Sau 366 entspricht der dargestellten Sequenz der Sau 173.

<u>IL-9</u>

Alignment der Sequenz IL9_1a, Reverse-Primer:

Sau 173 64.ab1/Sau 366 65.ab1/Eber 66.ab1

64.ab1:CCCACTGATCGAGGCCAGGGATCAAACCCACATCCTCACAGAAACAATGT 66.ab1:CCCACTGATCGAGGCCAGGGATCAAACCCACATCCTCACAGAAACAATGT

 $64.ab1: CAGGTTCTTAACCCACTGAGGCACAAGGGGGTCCTCCTTAAGTAACACTTTC\\ 66.ab1: CAGGTTCTTAACCCACTGAGGCACAAGGGGTCCTCCTTAAGTAACACTTTC\\$

 $64.ab1:TTAGTTGAAATAGCAACTAGAAAAGTTTATTTTGACTTAACAATGTTCAAA\\ 66.ab1:TTAGTTGAAATAGCAACTAGAAAAGTTTATTTTGACTTAACAATGTTCAAA$

64.ab1: AAACAATCGGTCACCTGCAAAAGAGAAATTTCGGAGTAAAGATGCAAGAT66.ab1: AAACAATCGGTCACCTGCAAAAGAGAAAATTTCGGAGTAAAGATGCAAGAT

64.ab1:GTGGAAATTAAAATTAGTTTGGAAAGTTCTTAAAAGATAATTTACTCACAT 66.ab1:GTGGAAATTAAAATTAGTTCGGAAAGTTCTTAAAAGATAATTTACTCACAT SNP 1 64.ab1:TGGGGCTGCAGCTGCATTTTGCAGGTGGGTGTTTCTAAAGTCAGGAGAGA 66.ab1:TGGGGCTGCAGCTGCATTTTGCAGGTGGGTGTTTCTAAAGTCAGGAGAGA

64.ab1:GACAAGAACGCT CGATGAGTGGTGTGTTTTT CCTCCTCTTATATTTCACCT 66.ab1:GACAAGAACGCT CGATGAGTGGTGTGTTTTT CCTCCTCTTATATTTCACCT

64.ab1:AAGTTTTCAACAGCAGCCTTTCCTGCTGGCCCCCC 66.ab1:AAGTTTTCAACAGCAGCCTTTCCTGCTGGCCCCCC

Das Alignment der Sau 366 mit dem Eber entspricht dem dargestellten Alignment.

Alignment der Sequenz IL9_1b, Forward-Primer:

SNP 2

Sau 173 67.ab1/Sau 366 68.ab1/Eber 69.ab1

 $67.ab1: CTGAGATCATTTCCTAGACTGGCAAGGGACCTGTCTGAAAGTAATGCAAG\\69.ab1: CTGAGATCATTTCCTAGACTGGCAAGGGACCTGTCTGAAAGTAATGCAAG$

67.ab1:ATTAGGTTACGCTGGTTAAATTAAAATAG TCTCCGAAAGCTTTCTCTTTGT 69.ab1:ATTAGGTTACGCTGGTTAAATTAAAATAG TCTCCGAAAGCTTTCTCTTTGT

 $67.ab1: GATTTTAACTCCGAGCTGTCCTCTGAATGTCCATTTTCCCAAATCGTTGTTA\\ 69.ab1: GATTTTAACTCCGAGCTGTCCTCTGAATGTCCATTTTCCCAAATCGTTGTTA$

67.ab1:TTTATCAGGACGACTGCACCACCGCG TGCTTCCAGGAGGGCCTATCGAAG 69.ab1:TTTATCAGGACGACTGCACCACCGCG TGCTTCCAGGAGGGCCTATCGAAG

67.ab1:TTTTTATTATCTGTGATGTGTTGTTGTGGTTAGTAATTTGTGGGTGAATGTCAAC 69.ab1:TTTTTATTATCTGTGATGTGTTGTTGTGGTTAGTAATTTGTGGGTGAATGTCAAC 67.ab1:GCCAACTCCATCTGAATGAGAAAGG GGGATGAAGCTGGAACTGGTAGTTC 69.ab1:GCCAACTCCATCTGAATGAGAAAGG GGGATGAAGCTGGAACTGGTAGTTC 67.ab1:AAGGTTGATTAGGGACATCTAAGAAATTTAATCAGAACAACAGAATTAAG 69.ab1:AAGGTTGATTAGGGACATCTAAGAAATTTAATCAGAACAACAGAATTAAG 67.ab1:GTGAGATATGACCCCCAAAACG CAT TGTTCCCCCTTT GTTGTTGCTTTTT 69.ab1:GTGAGATATGACCCCCAAAACT CAT TGTTCCCCCTTT GTTGTTGCTTTTT SNP 3 67.ab1:TTTAATCTCCCCCCTCTGTTGGCTTTTACCTCTCCACCTCTTGAATAATG 69.ab1:TTTAATCTCCCCCCTCTGTTGGCTTTTACCTCTCCACCTCTTGAATAATG 67.ab1:AAAGAATCAAGCCTGATTATAATAAGAAGCTAAAATCTATAGCCCACACA 69.ab1:AAAGAATCAAGCCTGATTATAATAAGAAGCTAAAATCTATAGCCCACACA 67.ab1:ATTCTTAATTATCCTAGAGATTCAATTATCCTCAGAGATGTGCTGAGTAGA 69.ab1:ATTCTCAATTATCCTAGAGATTCAGTTATCCTCAGAGATGGGCTGAGTAGA SNP 4 SNP 5 SNP 6 67.ab1:TACTGTGGCCTGTATGTTACAGGTTTTCTTTCCATTGGCCAAAGAGGTGTTT 69.ab1:TACTGTGGCCTGTATGTTACAGGTTTTCTTTCCATTGGCCAAAGAGGTGTTT 67.ab1:AAAGGAAGACACCCCAAGTCCAGGTGGAAG CCTGTCATTTGCCCCCAAAT 69.ab1:ACAGGAAGACACACCCAAGTCCAGGTGGAAG CCTGTCATTTGCCCCCAAAC SNP 7 SNP8 67.ab1:GCCTATCAGCGTGTTCTCTTCCTGAGCATCTACCACAGCTGCTGGAGGAAA 69.ab1:GCCTATCAGCGTGTTCTCTTCCTGAGCATCTACCACAGCTGCTGGAGGAAA 67.ab1:GGGGGGGGGGGGGGGGAACTTTGGTTGCTACCTACATGAGGGCCCCTCCTCACTC 69.ab1:GGGGGGGGGGGGGGGAACTTTGGTCGTTACCTACATGAGGGCCCCTCCTCACTC SNP 9 67.ab1:AGCTGTTGA 69.ab1:AGCTGTTGA

Das Alignment der Sau 366 mit dem Eber entspricht dem dargestellten Alignment.

<u>IL-5</u>

Alignment der Sequenz IL5_1a, Forward-Primer:

Sau 173 58.ab1/Sau 366 59.ab1/Eber 60.ab1

58.ab1:GCCAAGGCAAAGGTTGAACATTTCAGAACCATGAGAATGCTTCTGCATTT 60.ab1:GCCAAGGCAAAGGTTGAACATTTCAGAACCATGAGAATGCTTCTGCATTT 58.ab1:GAGTTTGCTAGGTCTTGGAGCTGCCTACGTTAGTGCCATTG CTGTAGAAAA 60.ab1:GAGTTTGCTAGGTCTTGGAGCTGCCTACGTTAGTGCCATTG CTGTAGAAAA

 $58.ab1: TACCATGAATAGACTGGTGGCAGAGACCTTGACACT GCTCTCCATTCATCG\\ 60.ab1: TACCATGAATAGACTGGTGGCAGAGACCTTGACACT GCTCTCCATTCATCG$

58.ab1:TAAATATATAGGTAATAATTTGCTGTGGCTACTTTTTTAAAGATCTGTTATT 60.ab1:TAAATATATAGGTAATCATTTGCTGTGGCTACTTTTTTAAAGATCTGTTATT SNP 1 58.ab1:AATCATGCAATTATGAGTGATAGCAATATATAACTGATAACCATATTAGTA

60.ab1:AATCATGCAATTATGAGTGATAGCAATATATAACTGATAACCATATTAGTA 60.ab1:AATCATGCAATTATGAGTGATAGCAATATATAACTGATAACCATATTAGTA

 $58.ab1: GTAAGTCAAATCATGATTTGATAAGTGTCTGCACAAATAAGTAAATTTCAT\\ 60.ab1: GTAAGTCAAATCATGATTTGATAAGTGTCTGCACAAATAAGTAAATTTCAT$

58.ab1:ATTTTCAGCTATAAAAACATTAGTTATCACTGGAATTATTTAATTTTGTCCAT 60.ab1:ATTTTAAGCTATAAAAACATTAGTTATCACTGGAATTATTTAATTTTGTCCAT SNP 2

58.ab1:TTTGCTTTTATGTGTGTGGATGCAAACGTATGTACTTAGAAATATTAGGAA 60.ab1:TTTGCTTTTATGTGTGTGGATGCAAACGTATGTACTTAGAAATATTAGGAA

 $58.ab1: TGATTTTATGACAAACAGAATCCATTAAAAAAGTGGATCAGGCCCTTCGA\\ 60.ab1: TGATTTTATGACAAACAGAATCCATTAAAAAAGTGGATCAGGCCCTTCGA$

Das Alignment Sau 366 mit dem Eber entspricht dem dargestellten Alignment.

STAT3

Alignment der Sequenz STAT3_1e, Forward-Primer:

Sau 173 37.ab1/Sau 366 38.ab1/Eber 39.ab1

 $37.ab1: CTCAGGGGCTGCTCTCATTATTAAGGATGAGCGTATTCCCTCAGCTCAAGG\\ 39.ab1: CTCAGGGGCTGCTCTCATTATTAAGGATGAGCGTATTCCCTCAGCTCAAGG\\$

37.ab1:AGTGTCTCCCTTCTCCTCAGATATGCAAGACCTGAATGGAAACAACCAGTC 39.ab1:AGTGTCTCCCTTCTCCTCAGATATGCAAGACCTGAATGGAAACAACCAGTC

37.ab1:CAGTGACCAGGCAGAAGATGCAGCAGCAGGCAGATGCTCACTGCGCTG 39.ab1:CAGTGACCAGGCAGAAGATGCAGCAGCAGCAGATGCTCACTGCGCTG

37.ab1:GACCAGATGCGGCGAGTAAGAGCGCTGGACCCCTTCCTTGCGGGTCTCGC 39.ab1:GACCAGATGCGGCGAGTAAGAGCGCTGGACCCCTTCCTTGCGGGTCTCGC
37.ab1:TCGCCTGCGGGATTTGGGCATCTTGGAGAAGAACTTGTTTGT
37.ab1:AGTTCCTTCTCTGGAATTGACTAAAGCCTGTGGTTAGAAACAGTGCGAGGC 39.ab1:AGTTCCTTCTCTGGAATTGACTAAAGCCTGTGGTTAGAAACAGTGCGAGGC
37.ab1:AATGTTTTCTGACTTTGCTTTTGGTTTCCAACCAGAGCATCGTGAGTGA
37.ab1:TTGTCAGCTATGGAGTATGTGCAGAAAACTCTCACGGATGAAGAGCTGGC 39.ab1:TTGTCAGCTATGGAGTATGTGCAGAAAACTCTCACGGATGAAGAGCTGGC
37.ab1:TGACTGGAAGAGGCGGCAGCAGATTGC GTGCATTGGAAGGCCCTCCCAAC 39.ab1:TGACTGGAAGAGGCGGCAGCAGATTGC GTGCATTGGAAGGCCCTCCCAAC
37.ab1:ATCTGCCTGGATCGGCTAGAAAACTGGTAAAACAGAAAAGAGATGTTCTT 39.ab1:ATCTGCCTGGATCGGCTAGAAAACTGGTAAAACAGAAAAGAGATGTTCTT
37.ab1:TCTTTCTAGAAAGCTGTGCTGAATTATGGTCAGCACTGCAAGCCCAAAGAA 39.ab1:TCTTTCTAGAAAGCTGTGCTAAATTATGGTCAGCGCTGCAAGCCCAAAGAA SNP 1 SNP 2
37.ab1:TGGCGTCTGTGTTTCAGAGGTGGAGGTCTTAACATACTCAAATTTAGTCCA 39.ab1:TGGCGTCTGTGTTTCAGAGGTGGAGGTCTTAACATACTCAAATTTAGTCCA
37.ab1:AGGGTAGGAGTTCCCTGGTGGTTTCGTGGTTCGGACTCGGCACTTTCACCC 39.ab1:AGGGTAGGAGTTCCCTGGTGGTTTCGTGGTTAGGACTCGGCACTTTCACCC SNP 3
37.ab1:TGTGGCCCAGGCTGGATCCCTGGTCTAGGGACTGAGATCCCACATCAAGC 39.ab1:TGTGGCCCAGGCTGGATCCCTGGTCTAGGGACTGAGATCCCACATCAAGC
37.ab1:CATGGCCAAAAAAATTAGCCTAAGAGTTAAAGCTTTTACTTTATTTGGACT 39.ab1:CATGGCCAAAAAAATTAGCCTAAGAGTTAAAGCTTTTACTTTATTTGGACT
37.ab1:TATTTATTATTCAACTAACCTAAACTGAACTGTGCATTTAGAAACAGTTG 39.ab1:TATTTATTATTCAACTAACCTAAACTGAACTGTGCATTTAGAAACAGTTG
37.ab1:ATTTTCTGCTATGCTTATTTTCTCACAATAAAAAAAATGCCCCCTTTCTTCTG 39.ab1:ATTTTCTGCTATGCTTATTTTCTCACAATAAAAAAAATGCCCCCTTTCTTCTG
37.ab1:TTCGGGGGACCGCATGGAAGGTGTTTATACCTGTGCTATCCTCTTCCCCTTCT 39.ab1:TTCGGGGGACCGCATGGA GGTGTTTATACCTGTGCTATCCTCTTCCCCTTCT
37.ab1:CCAGCTCCCCTGTGTACACCCACTCCGGTAACTGGG 39.ab1:CCAGCTCCCCTGTGTACACCCACTCCGGTAACTGGG
Die Sequenz der Sau 366 entspricht der Sequenz der Sau 173.

Alignment der Sequenz STAT3_1f, Forward-Primer:

Sau 173 40.ab1/Sau 366 41.ab1/Eber 42.ab1

40.ab1:GGGAACTTCCTTGTTCTATTGGCAGGATAACCTCATTAGCAGAATCTCAAC 42.ab1:GGGAACTTCCTTGTTCTATTGGCAGGATAACCTCATTAGCAGAATCTCAAC

40.ab1:TTCAGACCCGCCAACAAATTAAGAAACTAGAGGAGCTGCAGCAGAAAGT 42.ab1:TTCAGACCCGCCAACAAATTAAGAAACTAGAGGAGCTGCAGCAGAAAGT

 $40.ab1: GAGCTACAAAGGGGGACCCCATTGTACAGCACCGGCCCATGCTGGAGGAGAGA \\ 42.ab1: GAGCTACAAAGGGGGACCCCATTGTACAGCACCGGCCCATGCTGGAGGAGA \\$

 $40.ab1: GAATCGTGGAGCTGTTCAGAAACTTGATGAAAAGGTATCCTAGAGCCCTC\\ 42.ab1: GAATCGTGGAGCTGTTCAGAAAACTTGATGAAAAGGTATCCTAGAGCCCTC\\$

40.ab1:GTCCCTTTCCCGCATCACCTCTCCCCCACAGAATGTCCTCCAACAGGAG 42.ab1:GTCCCTTTCCCGCATCATGTCTCCCCCTCCACAGAATGTCCTCCAACAGGAG SNP 1; SNP 2

40.ab1:GTTGGCTGACTTCAGAGGAACAGGACAGGGACAGGACACGAGGCCCA 42.ab1:GTTGGCTGACTTCAGAGGAACAGGAACAGGGACAGGGACACGAGGCTCA SNP 3

40.ab1:CTGGCTAGTGTGTGACCTGCTGCCCTTCTCTTCCCCTTCCAGTGCCTTCGTG 42.ab1:CTGGCTAGTGTGTGACCTGCTGCCCTTCTCTTCCCCCTTCCAGTGCCTTCGTG

40.ab1:GTGGAGCGACAGCCCTGCATGCCTATGCACCCTGACCGGCCATTAGTCATC 42.ab1:GTGGAGCGACAGCCCTGCATGCCTATGCACCCTGACCGGCCATTAGTCATC

 $40.ab1: AAGACCGGTGTCCAGTTTACAACGAAAGTCAGGTGGGCCCCAGCACCGCC\\ 42.ab1: AAGACCGGTGTCCAGTTTACAACGAAAGTCAGGTGGGCCCCAGCACCGCC\\$

 $40.ab1: ACTTCTGGCAGATGCTGTATGGAGGGATGCTTTTGCAGCGAGAGCAGCGTT\\ 42.ab1: ACTTCTGGCAGATGCTGTATGGAGGGATGCTTTTGCAGCGAGAGCAGCGTT$

40.ab1:GGTGGCCAGGGTTGTCCTTTGGAGGCCTCCCGGTTACTGTGATGGGGAAA 42.ab1:GGTGGCCAGGGTTGTCCTTTGGAGGCCTCCCGGTTACTGTGATGGGGAAA

40.ab1:GTGTGATTATGGAATGTGTTGGCCTAATATCAGCTTGCTCTTTGGTTCTCCT 42.ab1:GTGTGATTATGGAATGTGTTGGCCTAATATCAGCTTGCTCTTTGGTTCTCCT

 $40.ab1: ATGATTCAGGCTCACTCTGTTCTGAAGATTTCAAGCCGAAAGTCAGGCCAT\\ 42.ab1: ATGATTCAGGCTCACTCTGTTCTGAAGATTTCAAGCCGAAAGTCAGGCCAT$

 $40.ab1: AACGTCTCGGCTGTCCTACAAAAGGGGGCAAAATGTGTTATTTTCTGGTTTT \\ 42.ab1: AACGTCTCGGCTGTCCTACAAAAGGGGCAAAATGTGTTATTTTCTGGTTTT \\$

40.ab1:GGAGCCTACCCTTCCCTGCAGATAATAAGGGAAAGAGCCCAGTAGAGATA 42.ab1:GGAGCCTACCCTTCCCTGCAGATAATAAGGGAAAGAGCCCAGTAGAGATA 40.ab1:ATAGAAGCTGAGAGGCCGCAGGACAGGTGGGTGGAGCGTTTCTTCCATAT 42.ab1:ATAGAAGCTGAGAGGCCGCAGGACAGGTGGGTGGAGCGTTTCTTCCATAT

Das Alignment der Sau 366 mit dem Eber entspricht dem dargestellten Alignment.

Primer STAT3_2l, Reverse-Primer:

Sau 173 106.ab1/Sau 366 107.ab1/Eber 108.ab1

106.ab1:TTTCCTGCTTTTCCCCGGAATGAAATGCCTATTGCGGAAAATCAACAACT 108.ab1:TTTCCTGCTTTTCCCCGGAATGAAATGCCTATTGCGGAAAATCAACAACT

106.ab1:ACCTGGGTCAGCTTCGGGATGCTCCTGGCTCTCTGGCCGACAATACTTTC 108.ab1:ACCTGGGTCAGCTTCGGGATGCTCCTGGCTCTCTGGCCGACAATACTTTC

106.ab1:CAAACGCCTCTTCCTTTGGAATGTCAGGGTAGAGGTAGACCAGCGGAGA 108.ab1:CAAACGCCTCCTCCTTTGGAATGTCAGGGTAGAGGTAGACCAGCGGAGA SNP 1

106.ab1:CACGAGGATGTTGGTAGCATCCATGATCTTATAGCCCATGATGATTTCAG 108.ab1:CACAAGGATGTTGGTAGCATCCATGATCTTATAGCCCATGATGATTTCAG SNP 3

106.ab1:CAAACGACATGTTGTTGAGCTGCTGCTTGGTGTACGGTTCCACCGACTGG 108.ab1:CAAACGACATGTTGTTGAGCTGCTGCTTGGTGTACGGTTCCACCGACTGG

106.ab1:ATCTGGGTCTTACCTGCCATGGGATATGGGAGGCAAAGACTAGGTGAGCT 108.ab1:ATCTGGGTCTTACCTGTCATGGGATATGGGAGGCAAAGACTAGGTGAGCT SNP 2 106.ab1:CCAGAAAAACTATGAC 108.ab1:CCAGAAAAACTATGAC

Die Sequenz der Sau 366 entspricht der Sequenz der Sau 173.

Alignment der Sequenz STAT3_20, Forward-Primer:

Sau 173 172.ab1/Sau 366 173.ab1/Eber 174.ab1

172.ab1:CTGGCTGATTCCCACGTGGTAAGTGGCTCCTAACTCACCCCCACGTGGTG 174.ab1:CTGGCTGATTCCCACGTGGTAAGTGGCTCCTAACTCACCCCCACGTGGTG

172.ab1:CCAAGGGCCGGGAAAAGGGAGAGAGTAGGCAAAAGAGAGCCGCATCAGG 174.ab1:CCAAGGGCCGGGAAAAGGGAGAGAGTAGGCAAAAGAGAGCCGCATCAGG

172.ab1:GGCATTTAAAGTGTCTTGACGTCACACACTGCCAGGAACTCAGCTGAGTT 174.ab1:GGCATTTAAAGTGTCTTGACGTCACACACTGCCAGGAACTCAGCTGAGTT

172.ab1:TTCAGCAGGACATTCCGGTCATCTTTCTTCCCTCCGGGTCTCTCAGC 174.ab1:TTCAGCAGGACATTCCGGTCATCTTTCTTCCCTCCCGGGTCTCTCAGC

172.ab1:CCAAGGCCTTGGCTCTTCCCTTACTGTTGCGGAGGGAGTAGCAGTGAGCC 174.ab1:CCAAGGCCTTGGCTCTTCCCTTACTGTTGCGGAGGGAGTAGCAGTGAGCC 172.ab1:CTCGGAACAGCCAGTACAGGGGGCGTTCCCGGCCTTGTGTTGGCTCCGCCC 174.ab1:CTCGGAACAGCCAGTACAGGGGGCGTTCCCGGCCTTGTGTTGGCTCCGCCC

172.ab1:CAGTACATTCACCAGGGCCTCTGTGTGGCAGAGAAAACTGGTCGTCTCAT 174.ab1:CAGTACATTCACCAGGGCCTCTGTGTGGCGGAGAAAACTGGTCGTCTCAT SNP 1

172.ab1:GAATAATGCATGAGCGGAGTGCCCAGGCCAGGCGGGGGGCTGGGCGGGG 174.ab1:GAATAATGCATGAGCGGAGTGCCCAGGCCAGGCGGGGGGCTGGGCGGGG

172.ab1:ATTGGCTGGAGGGGCTGTAATTCAGCGGTTTCCGGAGCTGCGGCGGCGTA 174.ab1:ATTGGCTGGAGGGGCTGTAATTCAGCGGTTTCCGGAGCTGCGGCGGCGTA

172.ab1:CCCGAACAGGATCCT TGACGAGCACCCCTACTTGGCGCTCTCCCCGTGTC 174.ab1:CCCGAACAGGATCCT TGACGAGCACCCCTACTTGGCGCTCTCCCCGTGTC

172.ab1:TAATAGGGGAGACTCTGCGGCCTGAGGGAGCCCTGCGGCCCGCACCCCG 174.ab1:TAATAGGGGAGACTCTGCGGCCTGAGGGAGCCCTGCGGCCCGCACCCCG

172.ab1:GCGCAAGCGCAGCCCGGCCAGTCGGGCCTCAGCCGGAGCAGCAGGTGA 174.ab1:GCGCAAGCGCAGCCCGGCCAGTCGGGCCTCAGCCGGAGCAGCAGGTGA

172.ab1:AGGGGGTTAAGGGTGGGGCCGCCCCCCCCCCCGGGC 174.ab1:AGGGGGTTAAGGGTGGGGCCGCCCCCCCC CCCGGGG

SNP 2

Der SNP 1 liegt bei Sau 173 als homozygoter SNP "CC", bei Sau 366 dagegen als heterozygoter SNP "GA" vor.

LMNB1

Alignment der Sequenz LMNB1_2a, Reverse-Primer:

Sau 173 175a.ab1/Sau 366 176b.ab1/Eber 177b.ab1

176b.ab1:GAGCACTCACTTGAGGAGCAGCTGGTCGTGCTCGGCTTTGAACTTGCCC 177b.ab1:GAGCACTCACTTGAGGAGCAGCTGGTCGTGCTCGGCTTTGAACTTGCCC

176b.ab1:AGCTCGATCTGCAGCTTGGCGCGCGTTCGCGGGCCGTGTCGTCGAGCGCGC 177b.ab1:AGCTCGATCTGCAGCTTGGCGCGCGTTCGCGGGGCCGTGTCGTCGAGCGCGC

176b.ab1:GTCGTGCGTCGGCCAGCTCTGTCTCGTAGAGAGCCTTGAGGCCGGTGAG 177b.ab1:GTCGTGCGTCGGCCAGCTCTGTCTCGTAGAGAGCCTTGAGGCCGGTGAG

176b.ab1:CTCGCGGCCACGCACCTCCTCACGTTCGGTCACCTGCAGCTGCAGCGCG 177b.ab1:CTCGCGGCCACGCACCTCCTCACGTTCGGTCACCTGCAGCTGCAGCGCG
176b.ab1:CTGTTCTCTGTCTCCAGGCTGCGCACCTTGTCGATGTACACGGCCAGCCG 177b.ab1:CTGTTCTCTGTCTCCAGGCTGCGCACCTTGTCGATGTACACGGCCAGCCG
176b.ab1:GTCGTTGAGCTCGCGCAGCTCCTCCTTCTCCTGCAGCCGCGACAGCCGC 177b.ab1:GTCGTTGAGCTCGCGCAGCTCCTCCTTCTCCTGCAGCCGCGACAGCCGC
176b.ab1:GTGGGGCTCAGCGGCGTGGTGGGGGCCGCCGCGCGGGCTGCCCGTGCGCG 177b.ab1:GTGGGGCTCAGCGGCGTGGTGGGGGCCGCCGCGCGCGGCTGCCCGTGCGCG
176b.ab1:ACTGCACGGGGGTCGCTGTCGCCATGGCGATCGGCGGGGGAGAGCGGGG 177b.ab1:ACTGCACGGGGGTCGCTGTCGCCATGGCGATCGGCGGGGGGAGAGCGGGG
176b.ab1:CGCGGAGGCCGTGGGCAGCACGGGAACAAGAGGGGGCGGCAGGGGCCG 177b.ab1:CGCGGAGGCCGTGGGCAGCACGGGAATAAGAGGGGGCGGCAGGGGCCG SNP 1
176b.ab1:AAGCGGGAGAGAGAGGCACGAACCGGCGACCCACGCTCGCGGAGAGAGA
176b.ab1:GGCGTGAGGAGGAAGGACGAAGCACCTGGGATGGCGGGAGAGGGGGTT 177b.ab1:GGCGTGAGGAGGAAGGACGAAGCACCTGGGATGGCGGGAGAGGGGGTT
176b.ab1:ACAGCACAAAGGGCAAAGGGGGGGGGGGACTACAAAATCAATC
176b.ab1:AATATCCTGTGTAAGAAAACATGCACACACTCACACACGCGCACACACA
176b.ab1:CACGCTCGGGAAATACGGGGGCAAGGGTGGCCGGGATGGCCGAGCAGAA 177b.ab1:CACGCTCGGGAAATACGGGGGCAAGGGTGGCCGGGATGGCCGAGCAGAA
176b.ab1:TCCGCGCGCCGCCGCCGCCGCCGCGAGTCTCCCGCCGCAGCACTTTGTTTC 177b.ab1:TCCGCGCGCCGCCGCCGCCGCCGCTGAGTCTCCCGCCCGC
176b.ab1:CTCTCAAACGGCGCTGAGCCGCGGGGGGGGGGGGGGGGG
176b.ab1:GGGCGGGGGG 177b.ab1:GGGCGGGGGG
Die Sequenz der Sau 173 entspricht der dargestellten Sequenz der Sau 366.

Alignment der Sequenz LMNB1_1c, Forward-Primer:

Sau 173 73.ab1/Sau 366 74.ab1/Eber 75.ab1

73.ab1:GTGTCACTCAGACTGGTACCAGTGCAGCCACGGTGAGTAACTTGGTTTGAC 75.ab1:GTGTCACTCAGACTGGTACCAGTGCAGCCACGGTGAGTAACTTGGTTTGAC

73.ab1:AACTCGCTTGGTAGAAGTGGATTCTGGGCGTCAGATCGAGTATGAGTACA 75.ab1:AACTCGCTTGGTAGAAGTGGATTCTGGGCGTCAGATCGAGTATGAGTACA

73.ab1:AGCTGGCTCAAGCCCTTCATGAGATGAGAGAGCAACATGATGCCCAAGTC 75.ab1:AGCTGGCTCAAGCCCTTCATGAGATGAGAGAGCAACATGATGCCCAAGTC

73.ab1:AAGCTGTACAAGGAAGAGCTGGAGCAGACGTACCACGCCAAAGTGAGCA 75.ab1:AAGCTGTACAAGGAAGAGCTGGAGCAGACGTACCACGCCAAAGTGAGCA

73.ab1:GACTCTTCTGGGGGACGGCTCTAAGCCGTTGTGCACAGTCTCCCCCAGAACA 75.ab1:GACTCTTCTGGGGACGGCTCTAAGCCGTTGTGCACAGTCTCCCCCAGAACA

Alignment der Sequenz LMNB1_2d, Reverse-Primer:

Sau 173 97.ab1/Sau 366 98.ab1/Eber 99.ab1

97.ab1:CTGCAGATGCAGCTCCATTCTCCCTGAGGGAAGGTGCTTACTCACCTCTTT 99.ab1:CTGCAGATGCAGCTC ATTCTCCTTGAGGGAAGGTGCTTACTCACCTCTTT SNP 1 97.ab1:CTGTAGATTAGAAAGCTGAGACGAGAGGGCTCTCGATTCTCATACGACTTTC 99.ab1:CTGTAGATTAGAAAGCTGAGACGAGAGGGCTCTCGATTCTCATACGACTTTC

97.ab1:CATCAGTTCTTCCCTGGCACTGTTGACAGTAGAAGTATTCATCTCTGATGA 99.ab1:CATCAGTTCTTCCCTGGCACTGTTGACAGTAGAAGTATTCATCTCTGATGA

97.ab1:CAGTCTGGCATTCTCAAGCTAAAAAAGGAAACCAACCATGGTCAGTCTG 99.ab1:CAGTCTGGCATTCTCAAGCTAAAAAAGGAAACCAACCATGGTCAGTCTG

Das Alignment der Sau 366 mit dem Eber entspricht dem dargestellten Alignment.

Alignment der Sequenz LMNB1_1g, Forward-Primer:

Sau 173 91.ab1/Sau 366 92.ab1/Eber 93.ab1

91.ab1:ATCTTACCTACTGAGC AGGCCAGGGATCGAACCCACAATCTCATGGTTCC 93.ab1:ATCTTACCTACTGAGCAAGGCCAGGGATCGAACCCACAATCTCATGGTTCC

91.ab1:CAGTCGGATTGGTTAGCCCCTCAGCTACAAGGGGAACTCGCTTATTTCTT 93.ab1:CAGTCGGATTGGTTAGCCCCTCAGCTACAAGGGGAACTCGCTTATTTTCTT

91.ab1:TTTATAGTAGGAAAATATGAGCCATGGAAAGATAGCCATAAAACTGTCTT 93.ab1:TTTATAGTAGGAAAATATGAGCCATGGAAAGATAGCCATAAAACTGTCTT

91.ab1:AGTTTATCTGCCTATAGATTGATTTATGCAATTATTTCCTAACTTTCTATAT 93.ab1:AGTTTATCTGCCTATAGATTGATTTATGCAATTATTTCCTAACTTTCTATAT
91.ab1:ATTTGAAGTCACCTTATTTTATTTTGTTCTTTCAATAGGATCAGCCAATGGG 93.ab1:ATTTGAAGTCACCTTATTTTATTTTGTTCTTTCAATAGGATCAGCCAATGGG
91.ab1:AGGCTGGGAGATGATCAGAAAAATTGGAGACACGTCAGTCA
91.ab1:ATACCTCAAGATATGTGCTGAAGGCAGGCCAGACTGTTACAGTAAGTTAA 93.ab1:ATACCTCAAGATATGTGCTGAAGGCAGGCCAGACTGTTACAGTAAGTTAA
91.ab1:TTTAGTCATCATTTAATTTAACTTGATTATCTTAACCAACAGTTAAAGTAAT 93.ab1:TTTAGTCATCATTTAATTTAACTTGATTATCTTAACCAACAGTTAAAGTAAT
91.ab1:TAAAACCATTTGGGCTTGAATAGAAACATTTTAGGAATGGGCCTTAAAAC 93.ab1:TAAAACCATTTGGGCTTGAATAGAAACATTTTAGGAATGGCCCTTAAAAC
91.ab1:ATTTTTGTTATTATTAGGGAATTACAAGTGCTATTAAAACATTTTAAAAAATTG 93.ab1:ATTTTTGTTATTATTAGGGAATTACAAGTGCTATTAAAACATTTTAAAAAATTG
91.ab1:TATGTGATTGAGAGTGGTAATACACTAATAAAAGCGAAAGAATTGACCTT 93.ab1:TATGTGATTGAGAGTGGTAATACACTAATAAAAGCGAAAGAATTGACCTT
91.ab1:TGAGTTCTTTTTGTCTGCTTCAGTGGATAGAAGGCAGCTTCCTCTTCCTTC
91.ab1:CTTCCCTGTTGGCTGCCCAGAAAACAAAACAGAATAGCTACTTCTTGATTG 93.ab1:CTTCCCTGTTGGCTGCCCAGAAAACAAAACAAAACAGAATAGCTACTTCTTGATTG
91.ab1:ATAGTGGTAGCCCTGCTGTGGTTCAGGAGGTTCTGCTTGGCGTAAAGAACT 93.ab1:ATAGTGGTAGCCCTGCTGTGGTTCAGGAGGTTCTGCTTGGCGTAAAGAACT
91.ab1:GTCAGGAGATAACTGTTAATACTAGGGGTGCTTTAGCCCTGTTAGGGGTAA 93.ab1:GTCAGGAGATAACTGTTAATACTAGGGGTGCTTTAGCCCTGTTAGGGGTAA
91.ab1:GCAGCACA 93.ab1:GCAGCACA
Das Alignment der Sau 366 mit dem Eber entspricht dem dargestellten Alignment.
Alignment der Sequenz LMNB1_1j, Forward-Primer:

Sau 173 82.ab1/Sau 366 83.ab1/Eber 84.ab1

82.ab1:TTTTCCTCATCAGGGAGCCCCCAGAGGTTTCCAATAGAAGCTGTGCGATTA 84.ab1:TTTTCCTCATCAGGGAGCCCCCAGAGGTT CCAATAGAAGCTGTGCGATTA

82.ab1:GTAAACTTCTCAAGTCGACTGTCTTCCTCCAAATAAAGAAGTAGGGTAATC 84.ab1:GTAAACTTCTCAAGTCGACTGTCTTCCTCCAAATAAAGAAGTAGGGTAATC

82.ab1:CTTACCTACATGCAGTGCAGAGCCTTCTCAGAAGCACAGAATATTTTATA 84.ab1:CTTACCTACATGCAGTGCAGAGCCTTCTCAGAAGCACAGAATATTTTTATA

$82.ab1: TTTCCTTTATGTGAATTTTTAAGCTGCGAATCTGATGGCCTTAATTTCCTTT\\ 84.ab1: TTTCCTTTATGTGAATTTTTAAGCTGCGAATCTGATGGCCTTAATTTCCTTT$

82.ab1:TTTGACACTGAAAGTTTTGTAAAAGAAATCATATCCGTACACTTTGTTGCA 84.ab1:TTTGACACTGAAAGTTTTGTAAAAGAAATCATATCCATACACTTTGTTGCA SNP 1 82.ab1:AGATGTGAACTGTCGACACTGAACTAACTGTGTACTGTTTGGAAAAGGTCC 84.ab1:AGATGTGAACTGTCGACACTGAACTAACTGTGTACTGTTTGGAAAAGGTCC

82.ab1:CTCAAATTTTTGACATGTTTTTTGTATGTGTGTACTTTTTTT 84.ab1:CTCAAATTTTTGACATGTTTTTTGTATGTGTGTGCTTTTTTT SNP 2

Das Alignment der Sau 366 mit dem Eber entspricht dem dargestellten Alignment.

Genotypen

Genotypen des SNP RPL38 c.1-83C>T

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
Eber 1	G	G	F2 74	А	А
Sau366	G	А	F2 75	А	А
Sau173	G	А	F2 76	G	G
F1 104	G	А	F2 77	G	А
F1 105	G	А	F2 79	G	А
F1 107	G	G	F2 181	G	G
F1 108	G	А	F2 182	G	G
F1 109	G	А	F2 183	G	А
F1 111	G	G	F2 184	G	А
F1 112	G	А	F2 160	G	G
F1 115	G	А	F2 161	G	G
F1 116	G	G	F2 162	А	А
F1 117	G	G	F2 163	G	А
F1 121	G	G	F2 164	G	А
F2 134	А	А	F2 165	А	А
F2 135	А	А	F2 166	G	А
F2 136	А	А	F2 167	G	А
F2 137	G	А	F2 51	G	G
F2 138	G	G	F2 52	А	А
F2 139	G	G	F2 54	G	А
F2 140	G	А	F2 55	G	А
F2 141	G	А	F2 56	G	А
F2 142	G	G	F2 57	А	А
F2 143	А	А	F2 58	G	А
F2 42	G	А	F2 59	А	А
F2 43	G	А	F2 60	G	G
F2 44	G	А	F2 61	А	А

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 45	G	А	F2 62	G	А
F2 46	G	G	F2 63	G	А
F2 47	А	А	F2 201	G	G
F2 48	G	А	F2 202	G	G
F2 49	G	G	F2 203	G	А
F2 50	А	А	F2 204	G	А
F2 65	G	А	F2 205	А	А
F2 66	А	А	F2 206	А	А
F2 69	G	А	F2 207	G	А
F2 70	G	G	F2 208	G	G
F2 71	G	А	F2 209	G	G
F2 72	G	G	F2 210	G	G
F2 73	G	А	F2 211	G	А

Genotypen SNP NR3C1 c.1483G>A

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
Eber 1	С	Т	F2 43	С	Т
Sau366	С	С	F2 44	С	Т
Sau173	С	С	F2 45	С	Т
F1 104	С	Т	F2 46	С	Т
F1 105	С	Т	F2 47	С	Т
F1 107	С	С	F2 48	С	Т
F1 108	С	Т	F2 49	С	С
F1 109	С	С	F2 50	С	С
F1 111	С	Т	F2 97	С	Т
F1 112	С	Т	F2 99	С	Т
F1 115	С	С	F2 100	С	Т
F1 116	С	С	F2 101	С	Т
F1 117	С	С	F2 102	С	С
F1 121	С	С	F2 103	С	Т
F2 32	С	Т	F2 104	С	С
F2 33	С	Т	F2 190	С	Т
F2 34	С	Т	F2 191	С	С
F2 35	С	Т	F2 192	С	С
F2 36	С	С	F2 193	С	С
F2 37	С	Т	F2 194	С	С
F2 38	С	Т	F2 195	С	С
F2 39	С	Т	F2 196	С	Т
F2 40	С	Т	F2 197	С	С
F2 41	С	С	F2 198	С	С
F2 81	С	Т	F2 199	С	Т
F2 83	С	Т	F2 200	С	С
F2 84	С	Т	F2 65	С	Т
F2 85	С	Т	F2 66	С	Т

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 86	С	С	F2 69	С	Т
F2 87	С	Т	F2 70	С	С
F2 88	С	Т	F2 71	С	Т
F2 89	С	Т	F2 72	С	Т
F2 90	С	Т	F2 73	С	Т
F2 168	С	Т	F2 74	С	Т
F2 169	С	Т	F2 75	С	Т
F2 170	С	С	F2 76	С	Т
F2 171	С	С	F2 77	С	Т
F2 172	С	Т	F2 79	С	Т
F2 173	С	С	F2 181	С	Т
F2 174	С	Т	F2 182	С	Т
F2 175	С	С	F2 183	С	Т
F2 176	С	Т	F2 184	С	Т
F2 177	С	С	F2 160	С	Т
F2 178	С	Т	F2 161	С	Т
F2 179	С	С	F2 162	С	Т
F2 180	С	Т	F2 163	С	С
F2 105	С	Т	F2 164	С	Т
F2 106	С	Т	F2 165	С	Т
F2 107	С	Т	F2 166	С	С
F2 108	С	Т	F2 167	С	С
F2 109	С	С	F2 51	С	Т
F2 110	С	С	F2 52	С	Т
F2 113	С	С	F2 54	С	С
F2 114	С	Т	F2 55	С	Т
F2 115	С	С	F2 56	С	Т
F2 116	С	С	F2 57	С	Т
F2 117	С	Т	F2 58	С	Т
F2 222	С	С	F2 59	С	С
F2 224	С	С	F2 60	С	Т
F2 225	С	Т	F2 61	С	Т
F2 226	С	Т	F2 62	С	Т
F2 227	С	Т	F2 63	С	Т
F2 228	С	Т	F2 201	С	Т
F2 229	С	Т	F2 202	С	С
F2 230	С	Т	F2 203	С	С
F2 231	С	С	F2 204	С	С
F2 232	С	С	F2 205	С	С
F2 233	С	С	F2 206	С	С
F2 134	С	Т	F2 207	С	Т
F2 135	С	Т	F2 208	С	С
F2 136	С	Т	F2 209	С	Т
F2 137	С	Т	F2 210	С	Т
F2 138	С	Т	F2 211	С	С
F2 139	С	С	F2 119	С	Т
F2 140	С	Т	F2 121	С	Т

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 141	С	Т	F2 122	С	Т
F2 142	С	Т	F2 123	С	С
F2 143	С	Т	F2 124	С	Т
F2 144	С	Т	F2 126	С	С
F2 145	С	С	F2 128	С	С
F2 146	С	Т	F2 129	С	С
F2 149	С	Т	F2 130	С	Т
F2 150	С	Т	F2 131	С	С
F2 151	С	Т	F2 132	С	С
F2 152	С	Т	F2 237	С	Т
F2 153	С	С	F2 240	С	Т
F2 154	С	Т	F2 241	С	С
F2 155	С	Т	F2 242	С	С
F2 156	С	С	F2 243	С	Т
F2 157	С	С	F2 244	С	Т
F2 158	С	Т	F2 245	С	С
F2 42	С	С	F2 246	С	С

Genotypen SNP rs81509148

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
Eber 1	Т	С	F2 43	Т	С
Sau366	Т	Т	F2 44	Т	С
Sau173	Т	Т	F2 45	Т	С
F1 104	Т	С	F2 46	Т	С
F1 105	Т	С	F2 47	Т	С
F1 107	Т	Т	F2 48	Т	С
F1 108	Т	С	F2 49	Т	Т
F1 109	Т	Т	F2 50	Т	Т
F1 111	Т	С	F2 97	Т	С
F1 112	Т	С	F2 99	Т	С
F1 115	Т	Т	F2 100	Т	С
F1 116	Т	Т	F2 101	Т	С
F1 117	Т	Т	F2 102	Т	Т
F1 121	Т	Т	F2 103	Т	С
F2 32	Т	С	F2 104	Т	Т
F2 33	Т	С	F2 190	Т	С
F2 34	Т	С	F2 191	Т	Т
F2 35	Т	С	F2 192	Т	Т
F2 36	Т	Т	F2 193	Т	Т
F2 37	Т	С	F2 194	Т	Т
F2 38	Т	С	F2 195	Т	Т
F2 39	Т	С	F2 196	Т	С
F2 40	Т	С	F2 197	Т	Т
F2 41	Т	Т	F2 198	Т	Т
F2 81	Т	С	F2 199	Т	С

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 83	Т	С	F2 200	Т	Т
F2 84	Т	С	F2 65	С	С
F2 85	Т	С	F2 66	Т	С
F2 86	Т	Т	F2 69	Т	С
F2 87	Т	С	F2 70	Т	Т
F2 88	С	С	F2 71	Т	С
F2 89	Т	С	F2 72	Т	С
F2 90	Т	С	F2 73	Т	С
F2 168	С	С	F2 74	Т	С
F2 169	Т	С	F2 75	С	С
F2 170	Т	Т	F2 76	С	С
F2 171	Т	Т	F2 77	Т	С
F2 172	С	С	F2 79	Т	С
F2 173	С	С	F2 181	С	С
F2 174	Т	С	F2 182	Т	С
F2 175	Т	Т	F2 183	Т	С
F2 176	Т	С	F2 184	Т	С
F2 177	Т	Т	F2 160	Т	С
F2 178	Т	С	F2 161	Т	С
F2 179	Т	Т	F2 162	Т	С
F2 180	С	С	F2 163	Т	Т
F2 105	Т	С	F2 164	Т	С
F2 106	Т	С	F2 165	Т	С
F2 107	Т	С	F2 166	Т	Т
F2 108	Т	С	F2 167	Т	Т
F2 109	Т	Т	F2 51	Т	С
F2 110	Т	Т	F2 52	Т	С
F2 113	Т	Т	F2 54	Т	Т
F2 114	Т	С	F2 55	Т	С
F2 115	Т	Т	F2 56	Т	С
F2 116	Т	Т	F2 57	Т	С
F2 117	Т	С	F2 58	Т	С
F2 222	Т	Т	F2 59	Т	Т
F2 224	Т	Т	F2 60	Т	С
F2 225	Т	С	F2 61	Т	С
F2 226	Т	С	F2 62	Т	С
F2 227	Т	С	F2 63	Т	С
F2 228	Т	С	F2 201	Т	С
F2 229	Т	С	F2 202	Т	Т
F2 230	Т	С	F2 203	Т	Т
F2 231	Т	Т	F2 204	Т	Т
F2 232	Т	Т	F2 205	Т	Т
F2 233	Т	Т	F2 206	Т	Т
F2 134	Т	С	F2 207	Т	С
F2 135	Т	С	F2 208	Т	Т
F2 136	С	С	F2 209	Т	С
F2 137	Т	С	F2 210	Т	С

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 138	Т	С	F2 211	Т	Т
F2 139	Т	С	F2 119	Т	С
F2 140	Т	С	F2 121	Т	С
F2 141	Т	С	F2 122	Т	С
F2 142	Т	С	F2 123	Т	Т
F2 143	С	С	F2 124	Т	С
F2 144	Т	С	F2 126	Т	Т
F2 145	Т	Т	F2 128	Т	Т
F2 146	Т	С	F2 129	Т	Т
F2 149	Т	С	F2 130	Т	С
F2 150	Т	С	F2 131	Т	Т
F2 151	Т	С	F2 132	Т	Т
F2 152	Т	С	F2 237	Т	С
F2 153	Т	Т	F2 240	С	С
F2 154	Т	С	F2 241	Т	Т
F2 155	Т	С	F2 242	Т	Т
F2 156	Т	Т	F2 243	Т	С
F2 157	Т	Т	F2 244	Т	С
F2 158	Т	С	F2 245	Т	Т
F2 42	Т	Т	F2 246	Т	Т

Genotypen SNP IL-9 c.269C>G

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
Eber 1	С	С	F2 43	G	А
Sau366	G	G	F2 44	G	А
Sau173	G	G	F2 45	G	А
F1 104	G	С	F2 46	G	А
F1 105	G	С	F2 47	А	А
F1 107	G	С	F2 48	G	А
F1 108	G	С	F2 49	G	А
F1 109	G	С	F2 50	G	G
F1 111	G	С	F2 97	G	А
F1 112	G	С	F2 99	А	А
F1 115	G	С	F2 100	А	А
F1 116	G	С	F2 101	G	А
F1 117	G	С	F2 102	G	А
F1 121	G	С	F2 103	G	А
F2 32	G	А	F2 104	G	А
F2 33	А	А	F2 190	G	G
F2 34	G	G	F2 191	G	А
F2 35	А	А	F2 192	G	А
F2 36	G	G	F2 193	G	А
F2 37	А	А	F2 194	G	G
F2 38	А	А	F2 195	G	G
F2 39	А	А	F2 196	А	А
F2 40	А	А	F2 197	А	А

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 41	G	А	F2 198	А	А
F2 81	G	А	F2 199	А	А
F2 83	А	А	F2 200	G	А
F2 84	А	А	F2 65	G	А
F2 85	G	А	F2 66	G	А
F2 86	G	G	F2 69	G	G
F2 87	G	А	F2 70	А	А
F2 88	А	А	F2 71	G	А
F2 89	G	А	F2 72	G	А
F2 90	G	G	F2 73	G	А
F2 168	А	А	F2 74	G	А
F2 169	А	А	F2 75	А	А
F2 170	G	G	F2 76	А	А
F2 171	G	А	F2 77	А	А
F2 172	А	А	F2 79	А	А
F2 173	G	А	F2 181	А	А
F2 174	G	А	F2 182	А	А
F2 175	G	G	F2 183	G	А
F2 176	G	А	F2 184	G	А
F2 177	G	G	F2 160	G	А
F2 178	G	А	F2 161	G	А
F2 179	G	G	F2 162	G	А
F2 180	А	А	F2 163	G	G
F2 105	G	G	F2 164	А	А
F2 106	G	А	F2 165	G	А
F2 107	А	А	F2 166	G	G
F2 108	G	А	F2 167	G	А
F2 109	G	А	F2 51	А	А
F2 110	G	А	F2 52	G	А
F2 113	G	А	F2 54	G	А
F2 114	А	А	F2 55	G	А
F2 115	G	А	F2 56	G	А
F2 116	G	G	F2 57	G	А
F2 117	А	А	F2 58	G	А
F2 222	G	А	F2 59	G	G
F2 224	G	G	F2 60	А	А
F2 225	А	А	F2 61	G	А
F2 226	А	А	F2 62	G	А
F2 227	G	А	F2 63	А	А
F2 228	G	G	F2 201	G	А
F2 229	G	А	F2 202	G	А
F2 230	G	А	F2 203	G	А
F2 231	G	А	F2 204	G	А
F2 232	G	А	F2 205	А	А
F2 233	G	А	F2 206	G	А
F2 134	А	А	F2 207	А	А
F2 135	G	А	F2 208	G	А

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 136	А	А	F2 209	G	А
F2 137	G	А	F2 210	G	А
F2 138	G	А	F2 211	G	А
F2 139	G	G	F2 119	G	А
F2 140	А	А	F2 121	G	А
F2 141	G	А	F2 122	G	А
F2 142	G	G	F2 123	G	А
F2 143	А	А	F2 124	А	А
F2 144	А	А	F2 126	G	А
F2 145	G	G	F2 128	G	G
F2 146	А	А	F2 129	G	А
F2 149	G	А	F2 130	А	А
F2 150	G	G	F2 131	G	А
F2 151	G	А	F2 132	G	G
F2 152	G	А	F2 237	А	А
F2 153	G	А	F2 240	G	G
F2 154	G	А	F2 241	G	А
F2 155	А	А	F2 242	G	А
F2 156	G	А	F2 243	G	А
F2 157	G	G	F2 244	G	А
F2 158	G	А	F2 245	G	А
F2 42	G	G	F2 246	G	G

Genotypen SNP IL-9 c.286G>A

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
Eber 1	G	G	F2 43	А	G
Sau366	А	А	F2 44	А	G
Sau173	А	А	F2 45	А	G
F1 104	А	G	F2 46	А	G
F1 105	А	G	F2 47	А	G
F1 107	А	G	F2 48	А	G
F1 108	А	G	F2 49	А	А
F1 109	А	G	F2 50	А	А
F1 111	А	G	F2 97	А	G
F1 112	А	G	F2 99	G	G
F1 115	А	G	F2 100	G	G
F1 116	А	G	F2 101	А	G
F1 117	А	G	F2 102	А	G
F1 121	А	G	F2 103	А	G
F2 32	А	G	F2 104	А	G
F2 33	G	G	F2 190	А	А
F2 34	А	А	F2 191	А	G
F2 35	G	G	F2 192	А	G
F2 36	А	А	F2 193	А	G
F2 37	А	G	F2 194	А	А
F2 38	G	G	F2 195	А	А

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 39	G	G	F2 196	G	G
F2 40	G	G	F2 197	G	G
F2 41	А	G	F2 198	G	G
F2 81	А	G	F2 199	G	G
F2 83	G	G	F2 200	А	G
F2 84	G	G	F2 65	А	G
F2 85	А	G	F2 66	А	G
F2 86	А	А	F2 69	А	А
F2 87	А	G	F2 70	G	G
F2 88	G	G	F2 71	А	G
F2 89	А	G	F2 72	А	G
F2 90	А	А	F2 73	А	G
F2 168	G	G	F2 74	А	G
F2 169	G	G	F2 75	G	G
F2 170	А	А	F2 76	G	G
F2 171	А	G	F2 77	G	G
F2 172	G	G	F2 79	G	G
F2 173	А	G	F2 181	G	G
F2 174	А	G	F2 182	G	G
F2 175	А	А	F2 183	А	G
F2 176	А	G	F2 184	А	G
F2 177	А	А	F2 160	А	G
F2 178	А	G	F2 161	А	G
F2 179	А	А	F2 162	А	G
F2 180	G	G	F2 163	А	А
F2 105	А	А	F2 164	G	G
F2 106	А	G	F2 165	А	G
F2 107	G	G	F2 166	А	А
F2 108	А	G	F2 167	А	G
F2 109	А	G	F2 51	G	G
F2 110	А	G	F2 52	А	G
F2 113	G	G	F2 54	А	G
F2 114	G	G	F2 55	А	G
F2 115	А	G	F2 56	А	G
F2 116	А	А	F2 57	А	G
F2 117	G	G	F2 58	А	G
F2 222	А	G	F2 59	А	А
F2 224	А	А	F2 60	G	G
F2 225	G	G	F2 61	А	G
F2 226	G	G	F2 62	А	G
F2 227	А	G	F2 63	G	G
F2 228	А	А	F2 201	А	G
F2 229	G	G	F2 202	А	G
F2 230	А	G	F2 203	А	G
F2 231	А	G	F2 204	А	G
F2 232	А	G	F2 205	G	G
F2 233	А	G	F2 206	А	G

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 134	G	G	F2 207	G	G
F2 135	А	G	F2 208	А	G
F2 136	G	G	F2 209	А	G
F2 137	А	G	F2 210	А	G
F2 138	А	G	F2 211	А	G
F2 139	А	А	F2 119	А	G
F2 140	G	G	F2 121	А	G
F2 141	А	G	F2 122	А	G
F2 142	А	А	F2 123	А	G
F2 143	G	G	F2 124	А	G
F2 144	G	G	F2 126	А	G
F2 145	А	А	F2 128	А	А
F2 146	G	G	F2 129	А	А
F2 149	А	G	F2 130	G	G
F2 150	А	А	F2 131	А	G
F2 151	А	G	F2 132	А	А
F2 152	А	G	F2 237	G	G
F2 153	А	G	F2 240	А	А
F2 154	А	G	F2 241	А	G
F2 155	G	G	F2 242	А	G
F2 156	А	G	F2 243	А	G
F2 157	А	А	F2 244	А	G
F2 158	А	G	F2 245	А	G
F2 42	А	А	F2 246	А	А

Genotypen SNP IL-5 c.144+47C>A

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
Eber 1	С	С	F2 43	С	А
Sau366	А	А	F2 44	С	А
Sau173	А	А	F2 45	С	А
F1 104	С	А	F2 46	С	А
F1 105	С	А	F2 47	С	А
F1 107	С	А	F2 48	С	А
F1 108	С	А	F2 49	А	А
F1 109	С	А	F2 50	А	А
F1 111	С	А	F2 97	С	А
F1 112	С	А	F2 99	С	А
F1 115	С	А	F2 100	С	С
F1 116	С	А	F2 101	С	С
F1 117	С	А	F2 102	А	А
F1 121	С	А	F2 103	С	А
F2 32	С	А	F2 104	С	А
F2 33	С	С	F2 190	А	А
F2 34	А	А	F2 191	С	А
F2 35	С	А	F2 192	С	А
F2 36	С	А	F2 193	С	А

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 37	С	С	F2 194	А	А
F2 38	С	С	F2 195	А	А
F2 39	С	С	F2 196	С	С
F2 40	С	С	F2 197	С	С
F2 41	С	А	F2 198	С	С
F2 81	С	А	F2 199	С	А
F2 83	С	С	F2 200	А	А
F2 84	С	С	F2 65	С	А
F2 85	А	А	F2 66	А	А
F2 86	А	А	F2 69	А	А
F2 87	С	А	F2 70	С	С
F2 88	С	С	F2 71	С	А
F2 89	С	А	F2 72	С	А
F2 90	С	А	F2 73	С	А
F2 168	С	С	F2 74	А	А
F2 169	С	С	F2 75	С	А
F2 170	А	А	F2 76	С	С
F2 171	С	А	F2 77	С	С
F2 172	С	С	F2 79	С	С
F2 173	С	А	F2 181	С	А
F2 174	С	А	F2 182	С	А
F2 175	С	А	F2 183	С	А
F2 176	C	А	F2 184	С	А
F2 177	A	А	F2 160	С	А
F2 178	С	А	F2 161	С	А
F2 179	А	А	F2 162	С	А
F2 180	С	С	F2 163	A	А
F2 105	A	A	F2 164	С	С
F2 106	C	A	F2 165	Ċ	Ā
F2 107	C	С	F2 166	С	А
F2 108	C	C	F2 167	A	А
F2 109	С	А	F2 51	С	С
F2 110	C	А	F2 52	С	A
F2 113	С	А	F2 54	С	А
F2 114	С	С	F2 55	С	А
F2 115	C	A	F2 56	С	А
F2 116	С	А	F2 57	С	А
F2 117	C	С	F2 58	С	А
F2 222	С	А	F2 59	А	А
F2 224	Ċ	Ā	F2 60	Ċ	Ċ
F2 225	Ċ	Ċ	F2 61	Ċ	Ă
F2 226	С	C	F2 62	С	А
F2 227	Ċ	Ā	F2 63	Ċ	Ċ
F2 228	Ā	A	F2 201	Ċ	Ā
F2 229	C	C	F2 202	Č	A
F2 230	Ċ	Ā	F2 203	Ā	A
F2 231	Č	A	F2 204	C	A

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 232	С	А	F2 205	С	А
F2 233	С	А	F2 206	А	А
F2 134	С	С	F2 207	С	С
F2 135	С	А	F2 208	С	А
F2 136	С	С	F2 209	С	С
F2 137	С	А	F2 210	С	А
F2 138	С	А	F2 211	С	А
F2 139	А	А	F2 119	С	А
F2 140	С	С	F2 121	С	А
F2 141	С	А	F2 122	С	А
F2 142	А	А	F2 123	С	А
F2 143	С	С	F2 124	С	С
F2 144	С	С	F2 126	А	А
F2 145	А	А	F2 128	С	А
F2 146	С	С	F2 129	А	А
F2 149	С	А	F2 130	С	С
F2 150	А	А	F2 131	С	А
F2 151	С	С	F2 132	А	А
F2 152	С	А	F2 237	С	С
F2 153	С	А	F2 240	А	А
F2 154	С	А	F2 241	С	А
F2 155	С	С	F2 242	С	А
F2 156	С	А	F2 243	С	А
F2 157	А	А	F2 244	С	А
F2 158	С	С	F2 245	С	А
F2 42	А	Α	F2 246	Α	Α

Genotypen SNP STAT3 c.-33743G>A

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
Eber 1	G	G	F2 102	G	G
Sau366	А	А	F2 103	А	G
Sau173	А	G	F2 104	А	G
F1 104	А	G	F2 190	А	G
F1 105	А	G	F2 191	А	G
F1 107	А	G	F2 192	А	G
F1 108	А	G	F2 193	G	G
F1 109	А	G	F2 194	А	G
F1 111	А	G	F2 195	А	А
F1 112	А	G	F2 196	G	G
F1 115	А	G	F2 197	А	А
F1 116	А	G	F2 198	А	G
F1 117	А	G	F2 199	А	А
F1 121	G	G	F2 200	А	G
F2 81	G	G	F2 65	А	А
F2 83	А	G	F2 66	А	G
F2 84	А	А	F2 69	А	

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 85	G	G	F2 70	G	G
F2 86	А	G	F2 71	А	G
F2 87	А	А	F2 72	А	G
F2 88	G	G	F2 73	А	А
F2 89	G	G	F2 74	А	G
F2 90	А	G	F2 75	А	А
F2 168	А	G	F2 76	G	G
F2 169	А	А	F2 77	А	G
F2 170	А	G	F2 79	А	G
F2 171	А	А	F2 181	G	G
F2 172	G	G	F2 182	А	G
F2 173	А	G	F2 183	А	G
F2 174	А	G	F2 184	А	А
F2 175	А	А	F2 160	G	G
F2 176	А	А	F2 161	G	G
F2 177	А	А	F2 162	G	G
F2 178	А	А	F2 163	А	G
F2 179	А	G	F2 164	А	А
F2 180	А	А	F2 165	А	G
F2 105	G	G	F2 166	G	G
F2 106	А	G	F2 167	А	G
F2 107	А	G	F2 51	А	G
F2 108	А	А	F2 52	А	А
F2 109	А	G	F2 54	А	G
F2 110	А	G	F2 55	G	G
F2 113	А	А	F2 56	А	А
F2 114	А	А	F2 57	А	А
F2 115	А	G	F2 58	А	G
F2 116	А	G	F2 59	А	А
F2 117	А	G	F2 60	G	G
F2 222	А	А	F2 61	А	G
F2 224	А	А	F2 62	А	А
F2 225	А	А	F2 63	А	А
F2 226	А	G	F2 201	G	G
F2 227	А	А	F2 202	G	G
F2 228	А	А	F2 203	А	G
F2 229	А	А	F2 204	А	G
F2 230	А	G	F2 205	А	G
F2 231	G	G	F2 206	А	А
F2 232	A	G	F2 207	G	G
F2 233	А	G	F2 208	A	G
F2 134	А	A	F2 209	А	G
F2 135	Ā	Ā	F2 210	Ā	Ğ
F2 136	A	A	F2 211	A	Ā
F2 137	A	G	F2 119	A	G
F2 138	G	Ğ	F2 121	G	G
F2 139	Ğ	Ğ	F2 122	Ă	Ğ

Tiernummer	Base 1	Base 2	Tiernummer	Base 1	Base 2
F2 140	А	G	F2 123	А	G
F2 141	А	А	F2 124	А	G
F2 142	G	G	F2 126	G	G
F2 143	G	G	F2 128	А	G
F2 42	А	G	F2 129	А	G
F2 43	А	G	F2 130	А	А
F2 44	G	G	F2 131	А	А
F2 45	А	G	F2 132	G	G
F2 46	G	G	F2 237	G	G
F2 47	А	G	F2 240	А	А
F2 48	А	G	F2 241	А	G
F2 49	G	G	F2 242	А	G
F2 50	А	А	F2 243	А	А
F2 97	А	А	F2 244	А	А
F2 99	А	А	F2 245	G	G
F2 100	А	А	F2 246	А	G
F2 101	А	G			

Ich erkläre:

Die vorgelegte Dissertation wurde von mir selbstständig, ohne unerlaubte Hilfe Dritter und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe.

Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht.

Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der "Satzung der Justus-Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis" niedergelegt sind, eingehalten.

Danksagung

Ich danke Herrn Prof. Dr. Dr. habil. Gerald Reiner für die Bereitstellung dieses Themas und Betreuung meiner Promotion. Des Weiteren geht ein Dank an Herrn PD Dr. Hermann Willems und seinem Labor-Team für die fachliche Hilfestellung im Labor.

Ein großes Danke an die Kollegen und Kolleginnen, die ich während meines Studiums, meiner Praktika oder ersten beruflichen Schritte kennengelernt habe und die immer ein offenes Ohr für mich hatten – egal ob mentaler Beistand bei Prüfungen (und anschließendes Feiern der bestandenen Prüfung) fällig war, das eigene Haustier mal wieder tierärztliche Hilfe zu Notdienstzeiten brauchte oder ein aufmunternder Rat von einem erfahrenen Kollegen zur Disputationsvorbereitung nötig war.

Das wichtigste Dankeschön geht an meine Familie. Danke für die finanzielle Unterstützung meiner Doktorarbeit. Vor allem aber Danke an euch, Mama, Papa und Simone, für die seelische Unterstützung während der Doktorarbeit und den ersten Monaten im Berufsleben. Ihr hattet immer einem guten Ratschlag und aufbauende Worte parat und habt mir den Rücken gestärkt, wenn die Dinge mal nicht liefen wie ich das wollte.

Tel: 0641-5599888 Fax: -5599890 redaktion@doktorverlag.de www.doktorverlag.de

