SYNTHESE VON MELANIN UND PITYRIACITRIN BEI EXOPHIALA DERMATITIDIS:

EIN VERGLEICH ZWEIER UV-PROTEKTIVER SUBSTANZEN

CHRISTIAN GHEORGHE JUNCU

INAUGURALDISSERTATION

zur Erlangung des Grades eines Doktors der Zahnmedizin des Fachbereichs Medizin der Justus-Liebig-Universität Gießen

édition scientifique VVB LAUFERSWEILER VERLAG

Das Werk ist in allen seinen Teilen urheberrechtlich geschützt.

Jede Verwertung ist ohne schriftliche Zustimmung des Autors oder des Verlages unzulässig. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung in und Verarbeitung durch elektronische Systeme.

1. Auflage 2007

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Author or the Publishers.

1st Edition 2007

© 2007 by VVB LAUFERSWEILER VERLAG, Giessen Printed in Germany

VVB LAUFERSWEILER VERLAG

édition scientifique

STAUFENBERGRING 15, D-35396 GIESSEN Tel: 0641-5599888 Fax: 0641-5599890 email: redaktion@doktorverlag.de

www.doktorverlag.de

Synthese von Melanin und Pityriacitrin bei Exophiala dermatitidis:

Ein Vergleich zweier UV-protektiver Substanzen

INAUGURALDISSERTATION

zur Erlangung des Grades eines Doktors der Zahnmedizin des Fachbereichs Medizin der Justus-Liebig-Universität Gießen

vorgelegt von

Christian Gheorghe Juncu

aus Mülheim an der Ruhr

Gießen 2007

Aus dem Zentrum für Dermatologie und Andrologie des Universitätsklinikums Gießen und Marburg GmbH, Standort Gießen Kommissarischer Leiter: Prof. Dr. P. Mayser

> Gutachter: Prof. Dr. P. Mayser Gutachter: PD Dr. A.Oksche

Tag der Disputation: 14.06.2007

"Ich erkläre: Ich habe die vorgelegte Dissertation selbständig, ohne unerlaubte fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht. Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der "Satzung der Justus-Liebig-Universität Giessen zur Sicherung guter wissenschaftlicher Praxis" niedergelegt sind, eingehalten."

Abkürzungsverzeichnis

ATCC	American Type Culture Collection
CBS	Centralbureau voor Schimmelcultures (Utrecht, the Netherlands)
CF	Cystic Fibrosis (Mukoviszidose)
DHN	Dihydroxynaphtalen
HPLC	high liquid performance chromatography
Mel	Mutationen im Melaninsyntheseweg
Муа	million years ago
Ρ	Stammsammlung Prof. Haase Institut für Medizinische Mikrobiologie, Aachen
PKS	Polyketid-Synthase
Rf-Wert	gibt das Verhältnis der Substanzlaufstrecke zur Laufstrecke des Fliessmittels an
ROS	reactive oxygen species
TLC	thin layer chromatography

Inhaltsverzeichnis

1.	Einleitung	1
1.1.	Ultraviolettstrahlung und ihr Effekt auf biologische Systeme	1
1.2.	Schutz vor ultravioletter Strahlung	2
1.3.	Melanin	4
1.3.1.	DHN-Melanin	5
1.3.2.	DOPA Melanin	8
1.4.	Pityriacitrin	9
1.5.	Schwärzepilze	12
1.5.1.	Taxonomische Einordnung der Schwärzepilze	12
1.6.	Mykosen	13
1.7.	Exophiala dermatitidis	15
2.	Hintergrund und Fragestellung	19
3.	Material und Methode	21
3.1.	Verwendete Referenzstämme	21
3.2.	Kulturmedien und Kryokonservierung	21
3.3.	Pigmentgewinnung und Aufreinigung	24
3.3.1.	Gewinnung des Rohextraktes	24
3.3.2.	Säulenchromatographie	25
3.3.3.	Dünnschichtchromatographie	26
3.3.4.	Hochleistungs-Flüssigkeits-Chromatographie (HPLC)	29
3.3.4.1.	Präparative HPLC	29
3.3.4.2.	Analytische HPLC	30
3.4.	Strukturaufklärung	30
3.5.	Bestrahlungsversuche	31
3.5.1.	Zellzahlbestimmung	31
3.5.2.	Wachstumskurven	33
3.5.3.	Eichkurven	35
3.5.4.	Bestrahlung	36
3.6.	Statistische Auswertung	39

4.	Ergebnisse	40
4.1.	Vorversuche	40
4.1.1.	Wachstumskurven	40
4.1.2.	Wärmeblock	46
4.1.3.	Eichkurven	47
4.1.4.	Bestrahlung	50
4.2.	Pigmentproduktion	51
4.3.	Bestrahlung	58
4.3.1.	Bestrahlung von Exophiala dermatitidis P 201 mit UVA	64
4.3.2.	Bestrahlung von Exophiala dermatitidis P 201 mit UVB	66
4.3.3.	Bestrahlung von Exophiala dermatitidis P 202 mit UVA	68
4.3.4.	Bestrahlung von Exophiala dermatitidis P 202 mit UVB	70
4.3.5.	Vergleich von Exophiala dermatitidis P201 und P202	72
4.3.5.1.	Vergleich auf UVA	72
4.3.5.2.	Vergleich auf UVB	74
5.	Diskussion	76
6.	Zusammenfassung	91
7.	Summary	94
8.	Literaturübersicht	96
9.	Anhang	105
	Lebenslauf	133
	Danksagung	134

Tabellenverzeichnis

Tab 1.1.	Einteilung der UV-Strahlung					
Tab 1.2.	Isolate von <i>Exophiala dermatitidis</i> nach Schnitzler et al. 7					
Tab 1.3.	Auflistung verschiedener Isolate von <i>Exophiala dermatitidis</i> mit 1 ihren Pityriacitrin-haltigen Fraktionen					
Tab 1.4.	Bezeichnungen von Exophiala dermatitidis	15				
Tab 3.1.	Übersicht über die verwendeten Isolate	21				
Tab 3.2.	Zusammensetzung des Selektiv Agars für pathogene Pilze	22				
Tab 3.3.	Zusammensetzung des modifizierter 1b Agars	23				
Tab 3.4.	Einstellung des Linomaten für eine analytische Trennung der Fraktionen	26				
Tab 3.5.	Einstellung des WinCATS-Programms zum Abfotografieren der Dünnschichtplatten	27				
Tab 3.6.	Einstellung des Linomaten für eine präparativen Trennung der Fraktionen	28				
Tab 3.7.	Bestrahlung mit UVA bei einer Intensität von 124 mW / cm^2	38				
Tab 3.8.	Bestrahlung mit UVB bei einer Intensität von 2,05 mW / cm ²	38				
Tab 4.1.	Zellzahlen von Exophiala dermatitidis P201 auf Selektiv Agar	41				
Tab 4.2.	Zellzahlen von Exophiala dermatitidis P202 auf Selektiv Agar	42				
Tab 4.3.	Zellzahlen von Exophiala dermatitidis P201 auf 1b Agar	43				
Tab 4.4.	Wachstumskurve von Exophiala dermatitidis P202 auf 1 b Agar	44				
Tab 4.5.	Reagenzgläser im Techne Dri Block DB3	46				
Tab 4.6.	Testbestrahlung	50				
Tab 4.7.	Studieninterne Bezeichnung der einzelnen Isolate auf den jeweiligen Nährböden	58				
Tab 4.8.	Bildungsvermögen der verwendeten Isolate bzgl. Melanin und Pityriacitrin	63				

Abbildungsverzeichnis

Abb 1.1.	Übersicht der DHN-Melanin-Synthese	5
Abb 1.2.	Übersicht der DOPA-Melanin-Synthese	8
Abb 1.3.	Strukturformel des Pityriacitrins	10
Abb 1.4.	Absorptionsspektrum von Pityriacitrin	10
Abb 3.1.	Berechnung der Zellzahl	33
Abb 3.2.	Berechnung Trockengewichtes	34
Abb 3.3.	Berechnung der Bestrahlungszeit	36
Abb 3.4.	Versuchsablauf bis zur Bestrahlung	38
Abb 4.1.	Wachstumskurve von <i>Exophiala dermatitidis</i> P201 auf Selektiv Agar	41
Abb 4.2.	Wachstumskurve von <i>Exophiala dermatitidis</i> P202 auf Selektiv Agar	42
Abb 4.3.	Wachstumskurve von Exophiala dermatitidis P201 auf 1b Agar	43
Abb 4.4.	Wachstumskurve von <i>Exophiala dermatitidis</i> P202 auf 1 b Agar	44
Abb 4.5.	Vergleich von <i>Exophiala dermatitidis</i> P201 und P202 auf Selektiv Agar	45
Abb 4.6.	Vergleich von Exophiala dermatitidis P201 und P202 auf 1b Agar	45
Abb 4.7.	Eichkurve für <i>Exophiala dermatitidis</i> P 201 auf Selektiv Agar	47
Abb 4.8.	Eichkurve für <i>Exophiala dermatitidis</i> P 202 auf Selektiv Agar	48
Abb 4.9.	Eichkurve für <i>Exophiala dermatitidis</i> P 201 auf 1 b Agar	48
Abb 4.10.	Eichkurve für <i>Exophiala dermatitidis</i> P 202 auf 1 b Agar	49
Abb 4.11.	<i>Exophiala dermatitidis</i> P202 nach Wachstum von 6 Tagen auf 1b Agar bei Tageslicht	51
Abb 4.12.	<i>Exophiala dermatitidis</i> P201 nach Wachstum von 6 Tagen auf 1b Agar bei Tageslicht	51
Abb 4.13.	Vergleich von P201 und P202 nach Wachstum von 6 Tagen auf 1b Agar bei Tageslicht	52
Abb 4.14.	Vergleich von P201 und P202 nach Wachstum von 6 Tagen auf 1b Agar bei UV 366	52
Abb 4.15.	P202 auf 1b Agar bei UV 366	53
Abb 4.16.	P201 auf 1b Agar bei UV 366	53
Abb 4.17.	P201 auf Selektiv Agar bei Tageslicht	53
Abb 4.18.	P201 auf Selektiv Agar bei UV 366	53
Abb 4.19.	P202 auf Selektiv Agar bei Tageslicht	54
Abb 4.20.	P202 auf Selektiv Agar bei UV 366	54

Abb 4.21.	Dünnschichtchromatographische Darstellung der verschiedenen Fraktionen des Isolates P201 im Tageslicht	55
Abb 4.22.	Dünnschichtchromatographische Darstellung der verschiedenen Fraktionen des Isolates P201 im UV-Licht (366 nm)	56
Abb 4.23.	Dünnschichtchromatographischer Vergleich der Isolate P202 und P201 mit einem Pityriacitrin-Standard	57
Abb 4.24.	Exophiala dermatitidis P201 UVA 100	59
Abb 4.25.	Exophiala dermatitidis P201 UVA 150	59
Abb 4.26.	Exophiala dermatitidis P201 UVA 200	59
Abb 4.27.	Exophiala dermatitidis P201 UVA 250	59
Abb 4.28.	Exophiala dermatitidis P201 UVB 500	60
Abb 4.29.	Exophiala dermatitidis P201 UVB 1000	60
Abb 4.30.	Exophiala dermatitidis P201 UVB 1500	60
Abb 4.31.	Exophiala dermatitidis P201 UVB 2000	60
Abb 4.32.	Exophiala dermatitidis P202 UVA 200	61
Abb 4.33.	Exophiala dermatitidis P202 UVB 500	61
Abb 4.34.	Exophiala dermatitidis P202 UVB 1000	61
Abb 4.35.	Exophiala dermatitidis P202 UVB 1500	61
Abb 4.36.	Exophiala dermatitidis P202 UVB 2000	62
Abb 4.37.	Bestrahlungsergebnisse des Isolates <i>Exophiala dermatitidis</i> P201 mit UVA	64
Abb 4.38.	Bestrahlungsergebnisse des Isolates <i>Exophiala dermatitidis</i> P201 mit UVB	66
Abb 4.39.	Bestrahlungsergebnisse des Isolates <i>Exophiala dermatitidis</i> P202 mit UVA	68
Abb 4.40.	Bestrahlungsergebnisse des Isolates <i>Exophiala dermatitidis</i> P202 mit UVB	70
Abb 4.41.	Vergleich der Bestrahlungsergebnisse von P201 und P202 im UVA-Bereich	72
Abb 4.42.	Vergleich der Bestrahlungsergebnisse von P201 und P202 im UVB-Bereich	74

1. Einleitung

1.1. Ultraviolettstrahlung und ihr Effekt auf biologische Systeme

Die Sonnenstrahlung ist für das Leben auf der Erde von fundamentaler Bedeutung. Der Ablauf biologischer Prozesse ist direkt oder indirekt von der Strahlungsenergie der Sonne abhängig. Sonnestrahlung ist maßgeblich für den Wärmehaushalt der Erde und damit auch für das Klima und das Wetter bedeutsam. Die elektromagnetische Strahlung hat ihr Maximum im Wellenlängenbereich des sichtbaren Lichts (400-760 nm). Oberhalb dieses Wellenlängenbereichs schließt sich das nahe, mittlere und ferne Infrarot, unterhalb dieses Wellenlängenbereichs das Ultraviolett und die Röntgenstrahlung an. Die zentrale Bedeutung der Sonne für die Lebensprozesse auf der Erde zeigt sich vor allem an ihrem elektromagnetischen Spektrum. Die belebte und unbelebte Natur hat sich am besten an den sichtbaren Teil Spektrums evolutionär unsichtbare des angepasst. Die intensive Ultraviolettstrahlung stellt seit Beginn der Evolution eine Herausforderung an alle biologischen Systeme dar.

Ultraviolettstrahlung (10-380 nm) ist im Gegensatz zum Licht für den Menschen nicht sichtbar. Sie hat optisch weitgehend die gleichen Eigenschaften wie sichtbares Licht, wird daher auch als UV-Licht bezeichnet. UV-Strahlung wird in drei Hauptbanden unterteilt: UVA, UVB und UVC (vergleiche hierzu Tabelle 1.1). Vakuum-UV-Strahlung gehört zu der UVC-Strahlung. Sie besitzt eine Wellenlänge von unter 200 nm. Luft wird in diesem Bereich undurchsichtig. UVC-Strahlung liegt in der Region zwischen 100 und 280 nm. Vakuum-UV und UVC sind sehr kurzwellige Strahlungen. Sie gelangen nicht bis zur Erdoberfläche. Ihre Absorption findet in den obersten Luftschichten der Erdatmosphäre statt und ist unterhalb von etwa 200 nm (Vakuum-UV) durch Photolyse des Luftsauerstoffs ozongenerierend. UVB-Strahlung liegt im Wellenlängenbereich von 280- 315 nm. Ein Großteil der UVB-Strahlung wird durch die Ozonschicht abgeschwächt. UVA-Strahlung liegt im Bereich von 315-400 nm. Sie erreicht die Erdoberfläche fast ohne Abschwächung. Der Energiegehalt nimmt von

UVC bis UVA stetig ab. Nur etwa 5 % der solaren UV-Strahlung erreichen die Erdoberfläche. Die restliche Strahlung wird durch die Ozonschicht absorbiert oder reflektiert. (Brockhaus Enzyklopädie Bd.20, 1993; Brockhaus Enzylkopädie Bd.22, 1993; DTV-Atlas, 1996)

Tab. 1.1. Einteilung der UV-Strahlung

UV-Bereich	Wellenlänge in nm
UVA	315 – 400 nm
UVB	280 – 315 nm
UVC	100 – 280 nm

UV-Strahlung hat eine Vielzahl von Effekten auf biologische Systeme. Negative Wirkungen sind vor allem DNA-Schädigungen in den meisten Organismen, Hemmung der photosynthetischen Aktivität in Mikroorganismen und Reduktion der mikrobiellen Motilität. Unter positiven Effekten ist zum Beispiel die UVA-Reflektion des Anthocyanins im pflanzlichen Blatt zu sehen, die einigen Insekten die Erkennung der jeweiligen Pflanzen ermöglicht. Befruchtende Insekten wie Bienen tragen somit zur Fortpflanzung bei. Die UVA-Reflektion der Flügel bei Schmetterlingen hilft zur Erkennung des Partners während der Paarung. Einige Spinnen nutzen die UV-Reflektion ihrer Netze zum Fangen von Beute (Cockell & Knowland, 1999).

1.2. Schutz vor ultravioletter Strahlung

Vor Entstehung der Ozonschicht war die intensive solare UV-Strahlung auf der Erde ein großes Problem für die Entstehung präbiotischer Reaktionen. UVB- und UVC-Strahlung trafen ungehindert auf die Erdoberfläche und verhinderten weitestgehend biologische Reaktionen. Dies entspricht dem Erdzeitalter des Archaikums, ca. 3.800 bis 2.500 mya (million years ago). Im Archaikum waren die ersten Mikroorganismen einem großen evolutionären Druck ausgesetzt. Zum einen war die solare Energie der Sonnenstrahlung lebensnotwendig, zum anderen war die intensive Strahlung für die frühen biologischen Systeme ohne nötigen Schutz letal. Nur die Mikroorganismen mit gutem UV-Schutz konnten überleben. In der weiteren Evolution entstanden viele unterschiedliche Schutzstrategien gegen UV-Strahlung.

Die Schutzmechanismen können grob in drei Gruppen eingeteilt werden: die Meidung von UV-Strahlung, die Produktion von schützenden Substanzen und die Reparaturmechanismen des Organismus durch DNA-Reparatur.

Einige Mikroorganismen entgingen der Strahlung aufgrund ihres Lebensraums und des dazugehörigen Lifestyles. Unter der Erdoberfläche, in den Tiefen des Ozeans und in Höhlen konnte ein bis zu 100%iger UV-Schutz durch Abschirmung von Strahlung erzielt werden. Unterschiedliche Schutzmechanismen physikalischer (Gestein, Sand, Eisen, Sulfur, etc.) und chemischer (Scytonemin, Flavonoide, etc.) Herkunft konnten vor allem phototrophischen Organismen Schutz bieten, welche die meiste Zeit ihres Lebenszyklusses UV-Strahlung ausgesetzt waren. Für die an den Mikroorganismen verursachten Schäden allem der DNA) (vor wurden Reparaturprozesse entwickelt, die jedoch nicht 100% effizient waren. Eine frühe Abschwächung der UV-Intensität wird durch hohe Konzentrationen von elementarem Schwefel (Cockell, 1998) und H₂S (Kasting *et al.* 1989; Sagan, 1973) angenommen. In Meerwasser gelöste organische Substanzen, Eisenverbindungen und gelöstes NaCl erzielten auch einen gewissen Schutz. Die präbiotische Evolution wird in der Tiefe des Ozeans oder unter der Erdoberfläche angenommen.

Viele Mikroorganismen produzieren MAAs (mycosporine-like amino acids) als diskreten natürlichen UV-Schutz. Das Scytonemin (Garcia-Pichel, Wingard & Castenholz, 1993), ein fettlösliches indolisches und phenolisches Derivat, wird von Cyanobakterien produziert und bietet einen Schutz im UVA-, UVB- und UVC-Bereich. Flavonoide sind ein Produkt von Pflanzen, die einen breiten Schutz im UVA- und UVB-Bereich liefern. Melanin wird vor allem vom Menschen und vielen Säugetieren als UV-Schutz verwendet. Das Indolderivat Pityriacitrin wurde von Mayser et al. 2002 zum ersten Mal bei dem Hefepilz *Malassezia furfur* beschrieben.

Es stellt möglicherweise einen weiteren UV-Filter für Mikroorganismen dar (Cockell & Knowland, 1999). Im Einzelnen sollen das Melanin und das Pityriacitrin charakterisiert werden.

1.3. Melanin

Melanin ist der Oberbegriff für eine Gruppe von Pigmenten unterschiedlichen Ursprungs (Bakterien, Pflanzen, Pilzen, Tieren und Mensch) aber gleichen Eigenschaften (Langfelder *et al.* 2003). Zu den gleichen Eigenschaften zählen die Unlöslichkeit in Wasser oder organischen Lösungsmitteln, die Widerstandsfähigkeit gegen heiße Säuren, heiße konzentrierte Laugen und die Bleichwirkung von Oxidantien (Casadevall, Rosas & Nosanchuk, 2000), die Heterogenität, die Fähigkeit als Radikalfänger, die Neutralisation von Oxidantien und die UV-Protektion. Melanine sind Makromoleküle, die durch oxidative Polymerisation von phenol- oder indolhaltigen Komponenten entstanden sind (Hamilton & Gomez, 2002; Hamilton & Holdom, 1999; Jacobson, 2000; Langfelder *et al.* 2003). Sie sind hydrophob und negativ geladen.

Aufgrund ihrer physikalischen Eigenschaften ist die Untersuchung des Melanins schwierig. Melanine sind multifunktionale Polymere mit typischer dunkelbrauner bis schwarzer Farbe und hohem molekularem Gewicht (Hamilton & Gomez, 2002).

Melanin bekam aufgrund seiner Eigenschaften auch die Rolle als Pathogenitätsfaktor zugeschrieben. Es fungiert als potenter Radikalfänger und schützt die Zelle somit vor Oxidantien der Immuneffektorzellen (Wang & Casadevall, 1994a). Darüber hinaus dient Melanin der Zelle als UV-Schutz, es schützt vor extremen Temperaturen und antimikrobiellen Peptiden. Des Weiteren übernehmen Melanine Aufgaben wie die Metallbindung und die Funktion der physiologischen Redox-Pufferung (Langfelder *et al.* 2003).

Die zwei am weitesten verbreiteten Melanin-Typen bei Pilzen sind das Dihydroxynaphtalen-(DHN)-Melanin und das Dihydroxyphenylalanin-(DOPA)-Melanin.

1.3.1. DHN-Melanin

Die Biosynthese des DHN-Melanins basiert auf Untersuchungen von Verticillium dahliae durch Wheeler 1981 und 1982 und Untersuchungen von Exophiala dermatitidis durch Wheeler und Bell 1988 (Geis, Wheeler & Szaniszlo, 1984); (Wheeler & Stipanovic, 1985). Sie ist in Abbildung 1.1 dargestellt. Ein weiterer humanpathogener Pilz, bei dem dieser Syntheseweg untersucht wurde, ist Aspergillus fumigatus (Tsai et al. 1997; Tsai et al. 1998). DHN-Melanin wurde ebenfalls bei den humanpathogenen Pilzen Aspergillus nidulans, Aspergillus niger, Alternaria alternata, Cladosporium carionii, Exophiala jeanselmei, Fonsecaea compacta, Fonsecaea pedrosoi, Hendersonula torulloidii. Phaeoannellomyces wernickii, Phialophora richardsiae, Phialophora verrucosa und Xylohypha bantiata nachgewiesen (Jacobson, 2000). Zwischenprodukte der DHN-Biosynthese wurden mit Hilfe der Dünnschicht-Chromatographie (TLC) oder der Hochleistungs-Flüssigkeits-Chromatographie (HPLC) isoliert und nachgewiesen. Geis et al. 1984 konnte den Nachweis für einen Pentaketidweg in Schwärzepilzen erbringen.

Die Polyketid Synthase (PKS) konvertiert Malonyl-CoA in das erste Zwischenprodukt der Biosynthese: 1,3,6,8-Tetrahydroxynaphthalen (1,3,6,8-THN). Dieses wird durch ein spezifisches Reduktase Enzym, die HN Reduktase, zu Scytalon umgewandelt. Das fungizide Tricyclazol, ein spezifischer Reduktase Inhibitor, bewirkt die Akkumulation von Flaviolin als Nebenprodukt von 1,3,6,8-THN (Thompson et al. 2000). Scytalon wird enzymatisch, durch die Scytalon Dehydratase, zu 1,3,8-Trihydroxynaphtalen dehydriert, welches durch eine wahrscheinlich weitere Reduktase zu Vermelon reduziert wird (Thompson et al. 2000). Auch diese Reduktase kann durch Tricyclazol inhibiert werden. Eine weitere Dehydratation, wahrscheinlich auch durch die Scytalon Dehydrase katalysiert, bringt das Zwischenprodukt 1,8-Dihydroxynaphtalen (DHN), durch welches dieser Syntheseweg seinen Namen erhielt. Anschließende Schritte führen zur Dimerisation und Polymerisation von DHN, welches durch oxidative Polymerisation in Melanin umgewandelt wird. (Tsai et al. 1999). Dieses allgemeine Modell der DHN-Melanin Biosynthese kann in unterschiedlichen Pilzen Abweichungen zeigen (Langfelder et al. 2003).

Abb. 1.1. Übersicht der DHN-Melanin-Synthese (Langfelder et al. 2003)

Die DHN-Biosynthese wurde ausführlich an *Exophiala dermatitidis* und seinen Mutanten untersucht (siehe Tabelle 1.2.). Die letzten Schritte der Biosynthese von 1,3,6,8-Tetrahydroxynaphtalen zu Scytalon und von Scytalon zu Vermelon und DHN sind gut verstanden worden. Tricyclazol inhibiert in *E. dermatitidis* die Reduktion von Scytalon zu Vermelon und verhindert somit die charakteristisch dunkle Pigmentierung der Kulturen. Die Pigment-defekten Mutanten Mel 1 und Mel 2 produzieren Zwischenprodukte, welche in der Lage sind, in der weißen Mutante Mel 3 (P201) eine Melanisierung auszulösen. Aus diesem Grund muss die Inhibition in Mel 1 und Mel 2 zu einem späteren Zeitpunkt der Melaninbiosynthese angreifen als in Mel 3. Mel 1, welcher das Zwischenprodukt Scytalon produziert, kann durch einen Reduktasedefekt Scytalon nicht zu Vermelon reduzieren. Mel 3 wird zu einem früheren Zeitpunkt inhibiert, hat jedoch alle nötigen Enzyme zur Umwandlung von Scytalon zu DHN. Mel 2, welcher DHN bildet, hat einen Mangel an DHN-Reduktase (Feng *et al.* 2001; Jacobson, 2000; Langfelder *et al.* 2003).

Stamm	ATCC Nr.	GHP Nr.	Farbe	Pigmentsynthese-	
				defekte	
8656	34100	P202	Schwarz	Kein Defekt,Wildtyp	
Mel 1	44502	P 1108	Rötlichbraun	Produktion von	
				THN aus Scytalon	
Mel 2	44503	P 1112	Dunkelbraun	Produktion von	
				Melanin aus DHN	
Mel 3	44504	P201	Hyalin bis weiß	Produktion von	
				1,3,6,8,THN aus	
				Acetat,	
				Carotenoidsynthese	
Mel 4	58058	P 914	Orange bis rot	Melaninsynthese	
Mel 5	58059	P 1109	Orange bis rot	Melaninsynthese	
Mel 6	58060	P 1113	Orange bis rot	Melaninsynthese	

Tab. 1.2. Isolate von Exophiala dermatitidis nach Schnitzler et al.

1.3.2. DOPA Melanin

Abb. 1.2. Übersicht der DOPA-Melanin-Synthese (Langfelder et al. 2003)

Die Biosynthese des DOPA-Melanins wurde an unterschiedlichen Pilzen, wie z.B. *Neurospora crassa, Podospora anserina, Aspergillus nidulans, Aspergillus oryzae* und *Cryptococcus neoformans* untersucht. Sie ist in Abbildung 1.2 dargestellt. Im Wesentlichen gleicht dieser Biosyntheseweg dem, der in Säugetierzellen beschrieben wurde. Tyrosinkinase oder Laktase katalysiert die Hydroxylierung von L-

Tyrosin zu Dopaquinon oder die Oxidation von L-DOPA zu Dopaquinon. Für beide Reaktionen ist L-DOPA ein notwendiger Co-Faktor. Dopaquinon ist ein hochaktives Zwischenprodukt. In der Abwesenheit von Thiol entsteht aus Dopaquinon Leucodopaquinon, welches zu Dopachrom oxidiert wird. Durch Hydroxylierung und Decarboxylierung entsteht Dihydroxyindol. Dihydroxyindol polymerisiert zu DOPA-Melanin (Langfelder *et al.* 2003; Ozeki *et al.* 1997b; Ozeki *et al.* 1997a; Williamson, Wakamatsu & Ito, 1998). Anders als das DOPA-Melanin bei Säugetieren, welches aus Eumelanin (ohne Thiolgruppen) und Pheomelanin (mit Thiolgruppen) besteht, konnte Williamson 1998 in *Cr. neoformans* keinen Nachweis für das Vorhandensein von Pheomelanin erbringen (Williamson *et al.* 1998).

DOPA-Melanin und DHN-Melanin stellen beide Pathogenitätsfaktoren dar (Hamilton & Gomez, 2002; Jacobson, 2000; Kwon-Chung, Polacheck & Popkin, 1982; Wheeler & Bell, 1988b).

Pityriacitrin

Im Jahr 2002 wurden von Mayser et al. erstmalig aus Kulturen von Malassezia furfur chemische Verbindung eine neuartige sowie ihre physikalischen und spektroskopischen Eigenschaften veröffentlicht, der sie aufgrund ihrer Eigenfarbe den Namen Pityriacitrin gaben. Durch Zugabe von Tryptophan als alleiniger Stickstoffguelle zu einem Minimalagar konnten unterschiedliche Pilze zur Bildung von Pityriacitrin Nachforschungen angeregt werden. ergaben, dass eine Forschungsgruppe um Nagao (1999) aus dem Marine-Bakterium Paracoccus (Stamm F-1547) ebenfalls dieses ultraviolette strahlenabsorbierende Material isolierte, ohne dies weiter zu charakterisieren. Das gelbe Indolderivat Pityriacitrin (C₂₀H₁₃N₃0) stellt aufgrund seiner komplizierten Ringstruktur wahrscheinlich einen komplexen UV-Filter dar (Mayser et al. 2002). Abbildung 1.3. zeigt die Strukturformel von Pityriacitrin, Abbildung 1.4. das Absorptionsspektrum von Pityriacitrin.

Abb. 1.3. Strukturformel des Pityriacitrins

C₂₀H₁₃N₃O MW 311.34

Abb. 1.4. Absorptionsspektrum von Pityriacitrin

Klinisch interessant wurde Pityriacitrin im Zusammenhang mit der Pityriasis versicolor alba. Die bei dieser Erkrankung beobachtbare Abschirmung vor UV-Strahlen in den pigmentlosen Arealen, welche trotz nicht fehlendem Melanin nicht mehr sonnenstrahlen-empfindlich sind als gesunde Bereiche, wurde auf die absorbierenden Eigenschaften des Pityriacitrins zurückgeführt (Nies, 2006).

Im Rahmen von weiteren Dissertationsarbeiten konnten Nies 2006 und Wenzel 2006 Pityriacitrin in mehreren phylogenetisch weit entfernten Pilzen nachweisen. Bei Exophiala dermatitidis wurde in 13 Isolaten Pityriacitrin nachgewiesen. In P201 (Mel 3), einer im Melaninweg veränderten Mutante dieser Spezies, konnte Pityriacitrin nach Auftrennung der Substanzen Säulenchromatographie, in der HPLC Dünnschichtchromatographie und der nachgewiesen und durch

spektroskopische Untersuchungen von der Technischen Universität München, Institut für Biochemie, Forschungsgruppe Dr. Spiteller, bestätigt werden. Der Rf-Wert dieses Isolates in der Dünnschichtchromatographie diente bei weiteren *Exophiala dermatitidis* Isolaten als Vergleich. Tabelle 1.2 zeigt weitere Isolate von *Exophiala dermatitidis*, die in der Dünnschichtchromatographie eine dem Pityriacitrin entsprechende Bande aufwiesen.

Tab. 1.3. Auflistung verschiedener Isolate von *Exophiala dermatitidis* mit ihren pityriacitrinhaltigen Fraktionen

1		DCM/(D
isolat	Fraktion	RT-wert	Bemerkung
P 1108 (Mel 1)	6	0,21	Bestätigt durch dünnschichtchromatograph. Vergleich
P 914 (Mel 4)	4,5	0,15	Pityriacitrin durch spektroskopische Untersuchungen an
			der TU München bestätigt
P 1109 (Mel 5)	4	0,20	Bestätigt durch dünnschichtchromatograph. Vergleich
P 1112 (Mel 2)	3	0,20	Bestätigt durch dünnschichtchromatograph. Vergleich
P 1113 (Mel 6)	3	0,18	Bestätigt durch dünnschichtchromatograph. Vergleich
P 195	3	0,17	Bestätigt durch dünnschichtchromatograph. Vergleich
P 2065	4	0,19	Bestätigt durch dünnschichtchromatograph. Vergleich
P 2428	3	0,17	Bestätigt durch dünnschichtchromatograph. Vergleich
P 2429	3	0,21	Bestätigt durch dünnschichtchromatograph. Vergleich
P 1814	5	0,17	Bestätigt durch dünnschichtchromatograph. Vergleich
P 2432	4	0,15	Bestätigt durch dünnschichtchromatograph. Vergleich

Nies konnte 2006 Pityriacitrin bei *Exophiala phaeomuriformis, Exophiala spinifera, Aureobasidium pullulans und Trichosporon louberi, Geotrichum capitatum, Trichosporon asteroides und Trichosporon cutaneum* nachgewiesen. Eine gelbe Bande mit ähnlichem Rf-Wert lässt bei *Schizophyllum commune* Pityriacitrin vermuten (Nies, 2006).

Wenzel konnte 2006 Pityriacitrin ebenfalls in gewissen Candida-Hefen nachweisen.

1.5. Schwärzepilze

Die Gruppe der Schwärzepilze (Dematiaceae) trägt ihren Namen aufgrund ihres Melaningehalts. Sie lagern das Melanin in der Zellwand des Myzels und / oder in den Konidien ein und erscheinen deshalb makroskopisch häufig mit dunkelbrauner, olivfarbener oder schwarzer Eigenfarbe (Platz, 2004).

1.5.1. Taxonomische Einordnung der Schwärzepilze

Schwärzepilze sind polymorph wachsende Pilze, die entweder als Hefen wachsen oder gleichzeitig auch Luftmyzel ausbilden können. Sie bilden Konidien in unterschiedlicher Weise aus (de Hoog *et al.* 1994). Häufig sind in einer Kultur mehrere Wachstumsformen nebeneinander zu beobachten (Szaniszlo *et al.* 1993). Dies erschwert die taxonomische Zuordnung der einzelnen Pilze und führt zu einer verwirrenden nomenklatorischen Vielfalt (z.B. bei *Exophiala dermatitidis*).

Die Taxonomie der höheren Pilze (Eumyzeten) erfolgt anhand der sexuellen Sporenbildung. Zu unterscheiden sind Zygomyzeten (Jochpilze), Ascomyzeten (Schlauchpilze) und Basidiomyzeten (Ständerpilze).

Schwärzepilze gehören zur Formgattung der Deuteromyzeten (Fungi imperfekti), bei denen das sexuelle Stadium fehlt oder noch nicht nachgewiesen werden konnte. Sie können aufgrund des Zellwandaufbaus, des Septums und der molekularen Phylogenese zum Teil den Ascomyzeten und zum Teil den Basidiomyzeten zugeordnet werden (Platz, 2004). Die Einteilung der Deuteromyzeten erfolgt anhand ihrer Konidiogenese. Beurteilt werden die Ontogenese der Konidien und deren Morphologie. Die Art der Konidiogenese ist bei vielen Spezies abhängig von Temperatur, Licht, Feuchtigkeit, pH-Wert, etc. (Karuppayil & Szaniszlo, 1997). Deuteromyzeten können in Coelomyzeten und Hyphomyzeten unterteilt werden. Die Konidien in Coelomyzeten werden von konidiogenen Zellen an einer bestimmten Stelle im Myzel gebildet. Bei Hyphomyzeten weist die Konidienbildung eine zufällige Verteilung auf.

1.6. Mykosen

Obwohl Schwärzepilzen eine niedrige Virulenz nachgesagt wird (Silveira & Nucci, 2001), werden immer häufiger schwere Infektionen beobachtet (Garcia-Martos, Marquez & Gene, 2002; Liou *et al.* 2002; Myoken *et al.* 2003; Nucci *et al.* 2001; Rossmann, Cernoch & Davis, 1996). 25 % der tödlichen Infektionen bei Leukämiepatienten wurden von systemischen Pilzinfektionen ausgelöst (de Pauw & Meunier, 1999). Bei der Betrachtung von Schwärzepilzinfektionen zeigt sich eine Kontinuität von Erkrankungen, die in drei Kategorien eingeteilt werden können: Chromoblastomykose, Phaeohyphomykose und das eumykotische Myzetom (Fader & McGinnis, 1988; Hofmann *et al.* 2005).

Die Phaeohyphomykose gehört zu den opportunistischen Mykosen. Hier bilden die Pilze im Gewebe melanisierte Filamente aus (Correale *et al.* 2005; de Hoog, 1997). Die Erkrankung kann an der lokalen, meist traumatischen Inokulationsstelle verbleiben oder sich weiter verbreiten (Fothergill, 1996). Die Erkrankung zeigt sich superfiziell, kutan, subkutan, korneal oder systemisch (Dixon & Polak-Wyss, 1991). Auch wurden Fälle von invasiver Sinusitis, allergischer Sinusitis und zerebraler Infektionen gefunden (Brandt & Warnock, 2003). Oft sind Zysten oder Papeln mit eventuell sekundärer Ulzeration zu beobachten. Das histologische Bild zeigt in der Subkutis Granulome, Abszesse oder Zysten sowie Hyphen der Pilze. Als Erreger gelten u.a. *Phialophora-*, *Aureobasidium-*, *Cladosporium-*, *Alternaria-* und *Exophiala* Spezies (Braun-Falco O., Plewig G. & Wolff H.H., 1996). Nach de Hoog (1998) soll der Begriff Phaeohyphomykose rein deskriptiv ohne biologische Bedeutung aufgefasst werden (de Hoog *et al.* 1998). Infektionen treten weltweit auf, zeigen sich jedoch zumeist in tropischen und subtropischen Klimazonen (Brandt & Warnock, 2003).

Die Chromoblastomykose (Dermatitis verrukosa) gehört zu den subkutanen Mykosen. Sie tritt hauptsächlich in den tropischen und subtropischen Gebieten auf, selten auch in Europa. Hauptsächlich wird die Erkrankung traumatisch erworben, wobei vor allem Füße und Hände als Prädilektionsstellen anzugeben sind. Die Verwendung von offenen Schuhen und das Barfussgehen sind häufig der Grund für ein Fußtrauma. Ein Fallbericht aus Indien (2005) und ein Fallbericht über einen jamaikanischen Mann (2005) beschreiben jeweils eine Chromoblastomykose des linken Beins (Brown & Pasvol, 2005; Vijaya & Kumar, 2005). Ein Fallbericht aus Nordafrika und ein Fallbericht aus Tunesien berichten über Chromoblastomykosen im Gesichtsbereich (Ezzine-Sebai *et al.* 2005; Hofmann *et al.* 2005). Die Chromoblastomykose zeigt derbe Knoten, die flächenhaft verhornende Warzen ausbilden, blumenkohlartig wuchern oder geschwürartig zerfallen. Zeigt sich eine tumorartige Verdickung, so ergibt sich eine langwierige Behandlung von 6-12 Monaten oder eine chirurgische Lösung (Braun-Falco O. *et al.* 1996). Histologisch zeigt sich eine granulomatöse, abszedierende und fibrosierende Entzündung und eine pseudoepitheliomatöse Hyperplasie der Epidermis. Ein Befall der inneren Organe wurde nicht beobachtet. Als Erreger sind bisher *Cladosporium-, Phialophora-*und *Exophiala-*Spezies bekannt.

Das eumykotische Myzetom (Madurafuß, Maduramykose) gehört zu den subkutanen Mykosen. Sie tritt überwiegend in tropischen Regionen auf, wurde aber auch in Rumänien und Bulgarien beobachtet. Wie bei der Chromoblastomykose sind auch bei dem eumykotischen Myzetom häufig die Füße betroffen (Beketi *et al.* 2005); Unterschenkel, Hände und andere Körperstellen sind weniger oft befallen. Die Erkrankung beginnt als lokale chronische Infektion und durchsetzt Haut, subkutanes Gewebe und eventuell den Knochen. Es erscheinen tumorartig deformierende Schwellungen und Fisteln mit eitrigem Sekret, welches Drusen enthält. Zu den Erregern zählen die Pilzgattungen *Madurella*, *Allescheria*, *Streptomyces* und *Exophiala*. Die Inkubationszeit beträgt mehrere Tage bis Monate. Die Therapie ist schwierig. Oft bleibt nur die Amputation (Hof, 2003).

2005 berichtet Beketi et al. aus Dakar, Senegal über 3 Fälle eines seltenen Befalls von Kopf und Halswirbelsäule mit Mycetomen (Beketi *et al.* 2005). Correale et al. beschreiben 2005 in einem Fallbericht aus Foggia, Italien über neugeborenes Kind, das nach dem Legen eines zentralen Venenkatheters an einem Myzetom erkrankte (Correale *et al.* 2005). Von einem Myzetom im Bereich der Lunge berichten Gutierrez et al. aus Alicante, Spanien (Gutierrez *et al.* 2005). Brownell et al. berichten über einen Mann aus Trinidad mit einem Myzetom in Fußbereich (Brownell,

Pomeranz & Ma, 2005). Eine retrospektive Studie über 28 Jahre von Daoud et al. berichtet von 5 Fällen aus Tunesien.

1.7. Exophiala dermatitidis

Exophiala gehört zur Gattung der Schwärzepilze. Seine Taxonomie und Nomenklatur unterliegt andauernden Korrekturen (Garcia-Martos *et al.* 2002). 1937 wurde der Pilz von Kano als *Hormiscium dermatitidis* beschrieben, 1950 von Carrion als *Fonsecaea dermatitidis*, 1954 von Conant als *Hormodendrum dermatitidis*, 1955 von Borelli als *Phialophora gougerotii*, 1958 von Huges als *Torula dermatitidis*, 1962 von Cooke als *Aureobasidium*, 1963 von Emmons als *Phialophora dermatitidis*, 1968 von Schol-Schwarz als *Rhinocladiella mansonii*. 1977 beschrieb McGinnis den von Kano isolierten Stamm ATCC 34100 als Typspezies einer neuen Gattung *Wangiella*, weil seine beobachtete Konidiogenese keiner anderen bekannten Gattung zuzuordnen war. Im selben Jahr 1977 ordnete de Hoog diesen Stamm der 1967 neu geschaffenen Gattung *Exophiala* zu. Bis zum heutigen Tag hält die Diskussion über die korrekte Einordnung des Pilzes an (Platz, 2004).

Jahr	Nomenklatur
1937	Hormiscium dermatitidis
1950	Hormodendrum dermatitidis
1954	Hormodendrum dermatitidis
1955	Phialophora gougerotii
1958	Torula dermatitidis
1962	Aureobasidium
1963	Phialophora dermatitidis
1968	Rhinocladiella mansonii
1977	Wangiella dermatitidis
1977	Exophiala dermatitidis

Tab. 1.4. Bezeichnungen von Exophiala dermatitidis

Schnitzler et al. beschrieb 1999 *Exophiala dermatitidis* (Stamm 8656) und seine Mutanten Mel 1 bis Mel 6 (siehe Tabelle 1.2.) (Schnitzler *et al.* 1999). Zwei der von Schnitzler beschriebenen Isolate bilden die Grundlage dieser Arbeit: der Wildstamm 8656 (P202 / ATCC 34100) und eine seiner Mutanten, die weiße Mel 3 (P201 / ATCC 44504).

Nach Matos sind bei *E.dermatitidis* Umweltisolate (B) und klinische Isolate (A) zu unterscheiden. Alle Stämme, die an schweren Hirninfektionen und an systemischen Infektionen in Ostasien beteiligt waren, gehörten zu Genotyp A. Die Hauptunterscheidung der beiden Genotypen A und B liegt demnach in der Virulenz (Matos *et al.* 2003).

Als Umweltisolat wächst *Exophiala dermatitidis* hauptsächlich auf Erdboden, Holz und organischen Rückständen. Er konnte schon mehrmals aus Pflanzenmaterial isoliert werden (Kazanas, 1986). In den USA wurde der Pilz bei der Untersuchung von Holz-, Pflanzen- und Erdbodenproben und in einer Probe aus einem Gewächshaus nachgewiesen. Bei der Untersuchung von Erdbodenproben aus dem brasilianischen Regenwald wurden sieben *Exophiala dermatitidis* Isolate gefunden (Platz, 2004). Als oligotrophischer Pilz wächst *Exophiala dermatitidis* besonders unter heißen und feuchten Bedingungen (de Hoog *et al.* 2000). Es hat sich gezeigt, dass dieser Pilz die einzige *Exophiala* Spezies ist, die bei einer Temperatur von 40 °C wächst (de Hoog & Haase, 1993). Matos hat herausgefunden, dass die Produktion eigener extrazellulärer Polysaccharide (EPS) das Wachstum bei feuchten und heißen (42 °C) Bedingungen möglich macht. Es zeigte sich, dass der Pilz, der in Ost-Asien schwere Hirninfektionen auslöst, auch in europäischen Saunas zu finden ist (Matos *et al.* 2002).

In Japan wurde der Pilz im Abflussrohr öffentlicher Badeanstalten, privater Haushalte und im Klärschlamm entdeckt. Auch konnte der Pilz in einer Raumbefeuchtungsanlage nachgewiesen werden (Nishimura *et al.* 1987; Nishimura & Miyaji, 1982).

Exophiala dermatitidis konnte auch bei Tierinfektionen festgestellt werden. So berichtete KANO 2000 über die erste bekannte Infektion eines Hundes mit dem Pilz

(Kano *et al.* 2000). 1981 und 1993 wurde *Exophiala dermatitidis* von Fledermäusen isoliert (Mok & Luizao, 1981; Muotoe-Okafor & Gugnani, 1993).

Beim Menschen ist *Exophiala dermatitidis* am häufigsten an Schwärzepilzinfektionen beteiligt (de Hoog *et al.* 2005). Er scheint jedoch der normalen Flora der Haut anzugehören. Mok konnte 1984 bei Untersuchungen von Kopfhaut, Zehen- und Fingerzwischenräumen von gesunden Probanden im Amazonas Gebiet *Exophiala dermatitidis* isolieren. Eine Übertragung des Pilzes über die Luft konnte noch nicht berichtet werden (de Hoog *et al.* 2005).

Eine Studie von de Hoog 2005 zeigt, dass der Pilz die Fähigkeit besitzt, im Darm prädisponierter Patienten für lange Zeit zu bleiben und nur in Phasen von Durchfallerkrankungen in ausreichenden Zellzahlen entdeckt zu werden.

Mehrere Autoren berichten über Phaeohyphomykosen, die durch *Exophiala dermatitidis* ausgelöst wurden. Suh et al. beschreiben 2005 2 Fälle aus Korea, Chung et al. beschreiben 2000 eine zerebrospinale Phaeohyphomykose aus Korea (Chang *et al.* 2000; Suh, 2005). Aus Japan berichten Hiruma et al. von einem 24 Jahre alten Mann mit systemischer Phaeohyphomykose (Hiruma *et al.* 1993). Liou et al. berichten 2002 von einem Fall aus Taiwan (Liou *et al.* 2002).

Bei Infektionen, die das ZNS betrafen, konnten mehrere Formen unterschieden werden: Infektionen der Zerebrums, Ausdehnung der Infektion von anliegenden Höhlen ins Gehirn, Befall des Liquors, und Meningitis. Die meisten dieser Infektionen verliefen tödlich. Durch Konzentrierung dieser Fälle auf Ost-Asien wird eine genetische Veranlagung vermutet. Es hat sich gezeigt, dass ebenfalls bei jungen und gesunden Patienten granulomatöse Läsionen mit einer großen Anzahl mehrkerniger Riesenzellen, neutrophiler Granulozyten und eosinophiler Granulozyten ausgelöst & werden (Kantarcioglu de Hoog, 2004). Trotzdem sind überwiegend immunsupprimierte Patienten betroffen. Mit vermehrter Anwendung immunsupprimierte Medikamente werden Exophiala Infektionen weiter ansteigen (Liou et al. 2002).

Bei Patienten mit Mukoviszidose (CF) liegt ein erhöhtes Risiko pulmonaler Kolonisation durch opportunistische Mikroorganismen vor (Horre *et al.* 2004), wie z.B. *Candida albicans, Aspergillus fumigatus* und *Exophiala dermatitidis*. Obwohl *Exophiala dermatitidis* als asymptomatischer Kolonisierer gilt, sind Pneumonien bei

CF-Patienten durch den Pilz bekannt (Kusenbach *et al.* 1992). Behandlungen mit Glukokortikoiden, Antibiotika-Gaben und Mangelernährung verstärken das Risiko für diese Erkrankung. Des weiteren wird in diesen Fällen auch eine genetische Disposition vermutet (Horre *et al.* 2004; Kantarcioglu & de Hoog, 2004).

Zwischen 1990 und 1992 wurden diese Lungeninfektionen durch *Exophiala dermatitidis* zum ersten Mal beobachtet (Horre *et al.* 2004; Kusenbach *et al.* 1992). Mit einem neuartigen Kultivierungsmedium, dem Erythritol-Chloramphenicol-Agar (ECA), wurde eine effektive Diagnostizierungsmöglichkeit geschaffen (de Hoog & Haase, 1993). Seit dieser Zeit wurde der Pilz in höheren Zahlen auch in Sputumproben von CF-Patienten gefunden (Horre *et al.* 2004).

1998 konnten Mayser et al. erstmals zeigen, dass der Hefepilz *Malassezia furfur* durch Zugabe von Tryptophan als alleiniger Stickstoffquelle zu einem Minimalagar zur Bildung von Pigmenten und Fluorochromen angeregt werden kann. Dieses Phänomen zeigte sich makroskopisch durch eine braune Verfärbung des Nährbodens, sowie gelblich-grüne Fluoreszenzen des Mediums im UV-Licht (Mayser *et al.* 1998). 2002 wurden von Mayser et al. erstmalig aus diesen Pigmenten eine neuartige chemische Verbindung sowie ihre physikalischen und spektroskopischen Eigenschaften veröffentlicht, die aufgrund ihrer gelben Eigenfarbe und der vermuteten Beteiligung an der Dermatomykose Pityriasis versicolor den Namen Pityriacitrin erhielt. Es wurde angenommen, dass das Indolderivat mit der Summenformel $C_{20}H_{13}N_{3}0$ wegen seiner komplizierten Ringstruktur und seines Absorptionsspektrums vermutlich einen komplexen UV-Filter darstellte (Mayser *et al.* 2002).

Weiterführende Forschungsarbeiten von Wenzel 2006 und Nies 2006 konnten Pityriacitrin in diversen phylogenetisch weit entfernten Pilzen nachweisen. Nies beschrieb Pityriacitrin erstmalig in Isolaten des Schwärzepilzes *Exophiala* dermatitidis (Nies, 2006). *Exophiala dermatitidis* gehört zur Gattung der Schwärzepilze, welche Ihren Eigennamen aufgrund der Dunkelfärbung durch den Gehalt an Melanin tragen (Nies, 2006). Melanin wird unter anderem ein potenter UV-Schutz zugeschrieben (Hamilton & Gomez, 2002; Hamilton & Holdom, 1999; Jacobson, 2000; Langfelder *et al.* 2003). Es wurde vermutet, dass *Exophiala dermatitidis* die Anlagen für zwei verschiedene UV-Filtersysteme in seinem Genom verankert haben könnte: Melanin und die durch den neu beschriebenen tryptophanabhängigen Stoffwechselweg produzierten Substanzen. Dem Indolderivat Pityriacitrin wird hier eine maßgebliche Rolle zugeschrieben.

Diese Studie soll nun anhand des Wildstamms P202 (ATCC No. 34100) und der Melanin defekten weißen Mutante P201 (ATCC No. 44504) nachweisen, inwieweit die durch den von Mayser et al. neu beschriebenen Stoffwechselweg produzierten Pigmente und Fluorochrome im Vergleich zu dem Pigment Melanin bei den untersuchten Referenzstämmen einen UV-Schutz im Bereich von UVA- und UVB-Strahlung bieten. Von dem Pigment Pityriacitrin wird angenommen, dass es aufgrund der nachgewiesenen UV-absorbierenden Eigenschaften hauptverantwortlich für den UV-Schutz der in dem neu beschriebenen Stoffwechselweg produzierten Substanzen ist. Pityriacitrin wurde für die Bestrahlungsversuche aus diesem Grund nicht gesondert isoliert.

Im Einzelnen sollen folgende Fragen beantwortet werden:

- Ist der Schwärzepilz *Exophiala dermatitidis* P202 in der Lage zwei unterschiedliche UV-Filter zu synthetisieren (Melanin und Pityriacitrin)?
- Unter welchen Umständen produziert *Exophiala dermatitidis* die beschriebenen UV-Filter?
- Welcher UV-Filter bietet den besseren Schutz bzw. was ergibt der Vergleich von vier verschiedenen UV-Filter-Varianten (1- nur Melanin, 2- nur Indolderivate, 3- Kombinierter Schutz von Melanin und Indolderivaten, 4- kein bekannter UV-Filter)?
- Agieren die UV-Filter synergistisch, additiv, konkurrierend oder getrennt von einander?
- Wie lässt sich der neu beschriebene UV-Filter evolutionsgeschichtlich einordnen?
- Ergibt sich durch den zweiten UV-Filter ein Vorteil für den Pilz?
- Welche weiterführenden Untersuchungen könnten von dieser Studie abgeleitet werden?

Material und Methode

3.1. Verwendete Referenzstämme

Als Grundlage dieser Arbeit dienen zwei Referenzstämme der Spezies *Exophiala*, die von Prof. Gerhard Haase vom Institut für medizinische Mikrobiologie des Universitätsklinikums Aachen für dieses Gemeinschaftsprojekt zur Verfügung gestellt wurden: *Exophiala dermatitidis* P201 (ATCC 44504 / Mel 3) und *Exophiala dermatitidis* P202 (ATCC 34100 / Stamm 8656). Vergleiche hierzu Tabelle 3.1. *Exophiala dermatitidis* P202 ist Ausgangspilz mehrerer Mutationen und wurde deswegen für die Untersuchung ausgewählt. P201 ist seine im Melaninsyntheseweg veränderte melanindefekte weiße Mutante.

Tab. 3.1	.1. Übersicht	über die	verwendeten	Isolate
Tab. 3.1.	.1. Übersicht	über die	verwendeten	Isola

Isolat	GHP	Stamm	ATCC No.	Farbe
Exophiala	P202	8656	34100	braun-schwarz
dermatitidis				(Wildtyp)
Exophiala	P201	Mel 3	44504	Weiß
dermatitidis				

3.2 Kulturmedien und Kryokonservierung

Nach Erhalt der Referenzstämme aus Aachen wurden die Pilze mit einer sterilen Platinöse von dem zum Transport verwendeten Agar auf frischem Agar ausgestrichen. Dieser Agar musste dem Pilz alle notwendigen Nährstoffe und zusätzlich einen Schutz gegen Schimmel aus der Anflugflora (Cycloheximid) und Bakterien (Chloramphenicol) bieten. In Vorversuchen mit anderen *Exophiala dermatitidis* Isolaten erwies sich Selektiv Agar für pathogene Pilze (Merck, Darmstadt) als der richtige Nährboden für die Dauerkultur. Seine Zusammensetzung kann Tabelle 3.2 entnommen werden. Nach 6 Tagen Wachstum bei 32°C in einem Brutschrank (Heraeus Holding GmbH, Hanau) auf diesem Agar wurde ein Teil der kultivierten Pilze kryokonserviert (HC 35, Taylor-Wharton, Königsstein). Bei der Kryokonservierung wurden die Pilze in ein steriles Kunststoffröhrchen (Cryo Tube Vials, Nunc, Roskilde, Denmark) gegeben und bei -196°C in flüssigem Stickstoff eingefroren. Für die Dauerkultur wurden die Pilze mit einem Wattestäbchen (Cotton buds, Karl Beese, Barsbüttel) einmal wöchentlich auf frischen Selektiv Agar für pathogene Pilze weiterverimpft. Der Agar wurde bei Firma Merck aus Darmstadt käuflich erworben.

Zusammensetzung	g / Liter
Agar-Agar	12,5
Pepton aus Sojamehl	10,0
D(+)-Glucose	10,0
Chloramphenicol	0,05
Cycloheximid	0,4

Tab. 3.2 Zusammensetzung des Selektiv Agars für pathogene Pilze

Für den eigentlichen Bestrahlungsversuch wurde ein weiterer Nährboden verwendet: modifizierter 1b Agar mit Tryptophan als alleiniger Stickstoffquelle. Dieser Agar diente bereits Mayser *et al.* 1998 bei der Entdeckung der indolhaltigen Pigmente bei *Malassezia furfur* als Nährboden. 1b Agar ist ein transparenter Minimalagar, der um Vitamine, Spurenelemente, Elektrolyte und Kohlenhydrate reduziert wurde und nur noch aus einer Lipidquelle und der Aminosäure Tryptophan besteht. Die in dieser Studie verwendeten Pilze benötigen im Gegensatz zu den *Malassezia*-Hefen Kohlenhydrate zum weiteren Wachstum. Der Minimalagar wurde aus diesem Grund um Glukose ergänzt. Cycloheximid dient zur Unterdrückung der Anflugflora und wurde ebenfalls dem Agar zugefügt. Des Weiteren wurde dem Agar die Lipidquelle Tween zugeführt. Die Verwendung von Tween war nicht essentiell für das Wachstum der Pilze. Dessen Anwendung macht den Nährboden lipophiler und bewirkt, dass das Pigment in den Agar diffundiert. Es beschleunigt damit den Prozess der Verfärbung des Nährbodens und erlaubt die Pigmentbildung auf einfache Weise nachzuweisen. Die exakte Zusammensetzung des Pigmentinduktionsmediums ist Tabelle 3.3 zu entnehmen.

Zusammensetzung	g / Liter Aqua ad iniectabilia	Hersteller
Agar-Agar	20,0	Merck, Darmstadt
D(+)-Glucose	10,0	Merck, Darmstadt
Tween 80	30 ml	Sigma-Aldrich, Steinheim
L-Tryptophan	3,0	Sigma-Aldrich, Steinheim
Cycloheximid	0,4	Sigma-Aldrich, Steinheim

Tab. 3.3 Zusammensetzung des modifizierter 1b Agars

Der modifizierte 1b Agar wurde selbst hergestellt. Dazu wurden 6 g Agar-Agar, 3 g D(+)-Glucose und 0,01 g Cycloheximid mit 300 ml Aqua ad iniectabilia (Baxter, Unterschleißheim) in einen Erlenmeyerkolben gegeben, mit einem Rührmagneten auf einem Magnetrührer (IKAMAG, IKA-Labortechnik, Staufen i. Br.) vermischt und mit Alu-Folie abgedeckt. Nach dem Autoklavieren bei 1 bar über 30 Minuten (Melag Autoklave Typ 23, Melag, Berlin, FRG) und Abkühlen auf etwa 50°C wurden 9 ml Tween 80 und 0,9 g L-Tryptophan hinzugegeben und ebenfalls mit dem Magnetrührer verrührt. Unmittelbar danach wurden unter einer Sterilbank (Uniflow Biohazard Laminar Flow, Gerätetyp UVUB 1200, Uniequip Laborgerätebau Martinsried) unter Zuhilfenahme einer sterilen 20ml Einmalspritze (B.Braun, Melsungen) jeweils 15 ml des Nährbodens in Kunststoffpetrischalen von 10 cm Durchmesser (Nunc, Roskilde, DK) gegossen. Zum Vermeiden von Luftblasen in den späteren Agar-Platten wurden 17ml Agar mit einer Einmalspritze aufgezogen und 15 ml in die Petrischale abgegeben. Die in der Spritze verbliebenen 2 ml dienten der Sammlung von eventuell aufgetretenen Luftblasen.

3.3 Pigmentgewinnung und Aufreinigung

3.3.1. Gewinnung des Rohextraktes

Exophiala dermatitidis P201 und *Exophiala dermatitidis* P202 wurden über 4 Wochen bei 32 °C im Brutschrank inkubiert. Nach dieser Zeit zeigte sich in der vorher transparenten Nährbodenschale eine durch die Pigmentbildung begründete durchgehende Verfärbung des Agars und der Kulturen. Diese deutliche Verfärbung nahm auch nach längerem Warten nicht mehr an Intensität zu.

Im UV-Licht zeigte sich bei 254 nm und 366 nm eine deutliche Fluoreszenz im gelbgrünen Bereich.

Der Inhalt dieser Schalen wurde mit einem Pürierstab zerkleinert und mit Ethylacetat übergossen. Nach ca. 12 Stunden wurde das Extrakt mittels Glaswolle abfiltriert. Anschließend wurde diese Flüssigkeit mit Aqua ad iniectabilia in einem Scheidetrichter aufgegossen und gut durchmischt.

Nach kurzer Zeit konnten zwei Phasen getrennt werden: eine obere Ethylacetat-Phase und eine untere schaumige Wasser-Phase, welche ebenfalls Agar- und Fettreste enthielt. Nach der Trennung wurde dem Ethylacetat-Pigment-Gemisch Natriumsulfat zur Bindung des Restwassers beigegeben. Nach wiederholtem Abfiltrieren wurde das Extrakt mit einem Rotationsverdampfer (Typ VVI, Heidolph-Elektro KG, Kehlheim) getrocknet und das hochvisköse Pigment in 96%igem Methanol aufgenommen. Die Lagerung erfolgte lichtgeschützt in Autosampler-Gewindeflaschen (Volumen 1,8 ml) bei -18° C bis zur weiteren Aufreinigung der Pigmente.
3.3.2. Säulenchromatographie

Zunächst wurde das Rohextrakt durch die Säulenchromatographie aufgetrennt. Das liegt, Prinzip, welches hier zugrunde ist die Gelpermeationsund Ausschlußchromatographie. Moleküle unterschiedlicher Größe werden in einer flüssigen (mobilen) Phase durch eine feste (stationäre) Phase geführt. Infolge eines Siebeffektes erfolgt dabei eine Verteilung der Moleküle nach ihrer Größe. Verantwortlich für den Siebeffekt ist die stationäre Phase, die aus einem Gel besteht, dass Poren bestimmter Größe aufweist: Moleküle, deren größter Durchmesser kleiner als die Porenöffnung ist, verteilen sich in stationärer und mobiler Phase. Größeren Molekülen hingegen, die nicht in die Poren passen, steht ein relativ kleineres Verteilungsvolumen zur Verfügung. In der Folge werden sie schneller durch die Säule bewegt und so von den niedermolekularen Substanzen getrennt.

Verwendet wurde eine Säule mit einer Nutzlänge von ca. 525 mm (NS29 mit Fritte, Durchmesser 30 mm, Por. 1, PTFE-Küken NS 14/2,5 mm spitz ausgezogen, Fa. Pfeuffer, Hannover). Als Träger diente Sephadex LH 20 (Sigma), ein hydroxyprophyliertes Derivat des Sephadex G-25 (Pharmacia, Uppsala, Schweden). Es wird für die Gelpermeationschromatographie, die Normalverteilungs- und Adsorptionschromatographie von z. B. Lipiden, Steroiden, Fettsäuren, Hormonen und Vitaminen verwendet.

Als Laufmittel diente Methanol, der Fluss betrug etwa 19 ml/min bei Druckaufbau über einen Gummiball (Laufzeit der Säule etwa 130 min, Elutionsvolumen 2500 ml). Das aufgetragene Rohextrakt wurde unter UV-Licht (Desaga GmbH, Heidelberg, Type 131200) von 366 nm Wellenlänge in einzelne Fraktionen aufgetrennt. Diese Fraktionen wurden in getrennten Glasgefäßen aufgefangen, jeweils zur Trocknung mittels Rotationsverdampfer abrotiert, in etwa 2 ml Methanol wieder aufgenommen und in Autosampler-Röhrchen überführt.

3.3.3. Dünnschichtchromatographie

Die einzelnen aus der Säulenchromatographie gewonnen Fraktionen wurden mit der Dünnschichtchromatographie (Kieselgel 60-Platten, Merck) weiter aufgetrennt. Zum Auftragen wurde eine Linomat IV verwendet mit folgender Einstellung zur analytischen Trennung der Fraktionen (Tabelle 3.4):

Plattenbreite	200 mm
Bandenbreite	15 mm
Auftragsgeschwindigkeit	12 sec/µl
Abstand zwischen den Banden	10 mm
Startposition	23 mm
Volumen	15 µl
Druck am Hauptventil	>100 bar
Druck am Reduzierventil	4-5 bar

Tab.3.4. Einstellung des Linomaten für eine analytische Trennung der Fraktionen

Die Entwicklung der Kieselgelplatten erfolgte in einem Laufmittelgemisch Toluol-Ethylformiat-Ameisensäure im Verhältnis 10:5:3 innerhalb von ungefähr 45 min. Die charakteristischen Bandenmuster der jeweiligen Fraktionen erlaubten sowohl die Überprüfung des nicht immer konstanten Säulenabschnitts, gleichzeitig erleichterten sie in Kombination mit den Rf-Werten die Identifikation der interessierenden Banden. Nach der Entnahme aus den Laufkammern wurden die Platten unter einem Abzug getrocknet. Anschließend erfolgte die Fotografie mit einem Camag Reprostar 3 (Camag, Muttenz, Schweiz).

Die Tabelle 3.5 listet die standardisierte Einstellung des dazu verwendeten "WinCATS"-Programms zum Abfotografieren der Dünnschichtplatten auf. Die Bedampfung der Kieselgelplatten mit HCl bzw. NH₃ diente der Überprüfung einer möglichen pH-Abhängigkeit der vorliegenden Banden:

Image 1	Aufnahme bei Tageslicht
Image 2	Aufnahme bei 366 nm
Image 3	Aufnahme bei 254 nm
Image 4	Aufnahme bei Tageslicht nach Bedampfung mit Schwefelsäure (rauchend, 37%, Merck)
Image 5	Aufnahme bei 366 nm nach Bedampfung mit Schwefelsäure (rauchend, 37%, Merck)
Image 6	Aufnahme bei Tageslicht nach Bedampfung mit Ammoniaklösung (reinst, Merck)
Image 7	Aufnahme bei 366 nm nach Bedampfung mit Ammoniaklösung (reinst, Merck)

Tab. 3.5. Einstellung des WinCATS-Programms zum Abfotografieren der Dünnschichtplatten

Anhand des Computerprogramms "WinCATS" erfolgte anschließend die Charakterisierung der einzelnen Banden jeder Fraktion durch die Bestimmung des Rf-Wertes (Rf-Wert: Strecke Start-Fleck/Strecke Start-Lauffront).

Diejenigen Banden, welche vermutlich das Pityriacitrin enthielten (Mayser *et al.* 2002), wurden für weitere Versuche gekennzeichnet und mit dem Linomaten zur präparativen Trennung noch einmal aufgetragen. Tabelle 3.6 listet die Einstellung des Linomaten zur präparativen Trennung der Fraktionen auf:

Plattenbreite	200 mm
Bandbreite	165 mm
Auftragsgeschwindigkeit	8 sec/µl
	•
Startposition	20 mm
Abstand der Banden	0
Volumen	300 µl
Druck am Hauptventil	> 100 bar
Druck am Reduzierventil	5 bar

Tab. 3.6. Einstellung des Linomaten für eine präparative Trennung der Fraktionen

Die so präparierte Dünnschichtplatte wurden ebenfalls mit dem o. g. Laufmittel entwickelt.

Anschließend wurde nach Trocknung der Platte die gewünschte Bande mit Bleistift angezeichnet, mit dem Einmalskalpell ausgekratzt, das Kieselgel sorgfältig mit Mörser und Pistill zerkleinert und mit Ethylacetat und Aqua dest. aufgegossen.

Es bildeten sich zwei Phasen: die obere ethylacetathaltige Phase enthielt das gelöste Pigment, die untere wasserhaltige Phase beinhaltete das ausgefallene Kieselgel. Die obere Phase wurde mittels Einmalpipette abpipettiert und zur Bindung des Restwassers mit Natriumsulfat (Fluka Biochemika, Buchs, Schweiz) versetzt.

Die Flüssigkeit wurde nun mittels Rotationsverdampfer bis kurz vor der kompletten Trocknung abrotiert. Die nun erhaltene visköse Lösung wurde in Autosampler-Röhrchen überführt und unter einem Stickstoffstrom in einem Techne DRI-Block DB (Thermo Dux, Heidelberg) bei 40° C getrocknet.

3.3.4. Hochleistungs-Flüssigkeits-Chromatographie (High Performance Liquid Chromatography, HPLC)

Zur Isolierung der Bestandteile der Sephadex-Säulen-Fraktionen wurde die präparative HPLC angewendet. Die erhaltenen Unterfraktionen wurden mittels analytischer HPLC auf Reinheit untersucht.

3.3.4.1. Präparative HPLC

Durch präparative HPLC können die trotz Vorreinigung noch recht komplexen Sephadex-Säulen-Fraktionen (durchschnittlich 5 – 10 Komponenten) über einen Gradienten mit einer LiChrospher-RP8 Säule (Merck, Darmstadt, 30x250mm) mit entsprechender Vorsäule getrennt und in größeren Mengen rein dargestellt werden. Als Gradientenpumpe diente die Gilson Masterpumpe M305 gekoppelt mit einer Pumpe Gilson Modell 302 (Gilson, USA) mit jeweils einem präparativen 50ml/min Pumpenkopf, gesteuert von einem Gilson 802-Modul. Mittels UV-Detektor (Holochrome, Gilson) erfolgte die Detektion bei 220 nm. Die Chromatogramme wurden mittels XY-Schreiber (LKB, Schweden) aufgezeichnet. Der verwendete lineare Gradient (180 min) lief von 0 – 100 % Acetonitril bzw. 100 – 0 % Wasser (Lösungsmittel sind Gradient Grade von Merck, Darmstadt). Die Flussrate betrug 5 ml/min. In 180 Fraktionen von je 5 ml werden die eluierenden Verbindungen mittels Fraktionensammler (Super Frac, Pharmacia Biotech) aufgefangen und anschließend lyophilisiert (Lyovac GT2). Die Fraktion wurde nach Chromatogrammverlauf, Farbe und Fluoreszenz kombiniert, lyophilisiert und nach analytischer HPLC eines Aliquots nochmals mittels eines im Verlauf flacheren und gespreizten Gradienten weiter aufgetrennt. Auch hier wurden entsprechende Fraktionen vereinigt und erneut lyophilisiert. Anschließend wurde ein Aliquot zur analytischen HPLC verwendet und bei ausreichender Reinheit im Zellkulturversuch eingesetzt bzw. oder per Express unter Stickstoffatmosphäre auf Trockeneis zur Strukturaufklärung an den Kooperationspartner in München geschickt.

3.3.4.2. Analytische HPLC

Zur analytischen HPLC wurde eine Reversed-Phase-Säule (RP-18, 4 × 250 mm, stationäre Phase Shandon ODS Hypersil 3 µm, Life Science International LTD, Cheshire, England) verwendet. Die Elution erfolgte mittels Hochdruck-Gradienten (Gynkotek Gradientenpumpe 480, Gynkotek, Germering). Als mobile Phase wurde Acetonitril-Wasser (linearer Gradient von 0 – 100% Acetonitril bzw. 100 – 0% Wasser über 100 min) bei einer Flussrate von 1 ml/min eingesetzt. Die Detektion eluierter Substanzen erfolgte bei 220 nm (Detektor UV-Detektor 785, bai, Bensheim), die Chromatogramme wurden mittels eines Thermoschreibers (Gynkotek C-R 6A Chromatopac, Gynkotek, Germering) bei einer Schreibergeschwindigkeit von 2mm/min aufgezeichnet. Der Probenauftrag erfolgte mittels eines Autosamplers (Alcott Modell 738, Bischoff Analysentechnik, Leonberg) in einem Volumen von 100 μ l.

3.4. Strukturaufklärung

Die Strukturaufklärung isolierter Substanzen erfolgte durch Dr. Peter Spiteller, Institut für Organische Chemie und Biochemie II, TU München. Es wurden folgende Untersuchungen durchgeführt:

NMR-Spektren [Bruker AMX-600, (¹H: 600.19 MHz, ¹³C: 150.92 MHz) und ARX-300 (¹H: 300.13 MHz, ¹³C: 75.47 MHz)], hochauflösende Massenspektrometrie (HRMS) mit Finnigan MAT 90/ MAT 95 Q und IR-Spektrum (Perkin-Almer 1420 oder Bruker IFS 45 FT-IR). Röntgenstrukturanalyse (Enraf-Nonius CAD4), UV-Spektrometrie (Perkin-Almer Lambda 16) sowie Schmelzpunktbestimmung mittels Reichert Thermovar.

Da diese Untersuchungen ausschließlich in München durchgeführt wurden, wird hier auf eine ausführliche Darstellung der dort verwendeten Methoden verzichtet. Verwiesen sei an dieser Stelle auf die Dissertation von Dr. G. Wille (Wille G., 2000)

3.5. Bestrahlungsversuche

In der vorliegenden Untersuchung werden 2 unterschiedliche Pilze (*Exophiala dermatitidis* P202 und *Exophiala dermatitidis* P201) auf 2 unterschiedlichen Nährböden (Selektiv Agar für pathogene Pilze und 1b-Agar) mit Licht in 2 unterschiedlichen Wellenlängenbereichen (UVA und UVB) bestrahlt und miteinander verglichen. Für beide Pilze mussten möglichst gleiche und reproduzierbare Bedingungen geschaffen werden, um einen Vergleich zu ermöglichen.

Beide Pilze wurden zunächst auf einem Nährboden ausgestrichen, der die Pilze mit allen für ein gutes Wachstum nötigen Nährstoffen versorgt und gleichzeitig einen potenten Schutz gegen Verunreinigungen durch die Anflugflora bietet: Selektiv Agar für pathogene Pilze. Auf diesem Nährboden sollten beide Pilze so lange angezüchtet werden, bis ihr optimales Wachstum erreicht war. Dieser Zeitpunkt wurde in die Logphase der sigmoidalen Wachstumskurve gelegt, da in dem sich anschließenden gesättigten Bereich keine wesentlichen Veränderungen mehr zu erwarten waren. Somit wurde für die folgenden Versuche ein optimales Wachstum der Pilze vorgegeben.

In einem zweiten Schritt wurden die Pilze auf die zu untersuchenden Nährböden (1b Agar und Selektiv Agar) ausgestrichen, um sie zu den bereits beschriebenen unterschiedlichen UV-Filtern anzuregen (Indolhaltiges Pigmentgemisch und Melanin). Wieder konnte die Wachstumsdauer anhand von Wachstumskurven ermittelt werden. Die so angezüchteten Pilze wurden unmittelbar vor der Aussetzung mit der UV-Strahlung auf einen einheitlichen Nährboden aufgetragen (Selektiv Agar), um einen genauen Vergleich des Pilzwachstums nach der Bestrahlung zu erzielen und trotzdem den Einfluss der indolhaltigen Pigmente beizubehalten. So konnte der Einfluss der Bestrahlung auf das Pilzwachstum bzw. die unterschiedliche Abschirmung vor der UV-Strahlung durch die verschiedenen Filtersysteme möglichst klar herausgehoben werden.

3.5.1. Zellzahlbestimmung

Zum Erstellen der Wachstumskurven war es notwendig, eine genau definierte Menge an Pilzzellen auf den Agar aufzubringen. Um dies zu gewährleisten, wurde eine Pilzsuspension hergestellt und mit Hilfe der Neubauer Zählkammer unter dem Mikroskop die Zellzahl bestimmt. Es wurde unter einer Sterilbank (Uniflow Biohazard Laminar Flow, Gerätetyp UVUB 1200, Uniequip Laborgerätebau Martinsried) gearbeitet.

Zur Zellzahlbestimmung wurden beide Pilze zunächst für sechs Tage auf Selektiv Agar für pathogene Pilze angezüchtet, um eine gleiche Ausgangsbasis zu gewährleisten. Jeder Pilz wurde auf 10 Agar Platten ausgestrichen, um eine ausreichende Menge an Pilzzellen zum Erstellen einer Pilzsuspension zu erhalten. Die Pilze wurden unter zu Hilfenahme eines Deckgläschens (Menzel-Gläser, Germany) von den jeweiligen Agar Platten abgehoben und in einen sterilen Mörser gegeben. In diesem Mörser wurden die Pilze mit 4 ml steriler NaCl 0,9% Lösung (Braun – Melsungen AG) gemischt. Mit einem sterilen Pistill wurden die Pilze anschließend gemörsert. Dies war notwendig, um Pilzverbände zu lösen und einzelne Zellen zu erhalten. Die Pilzsuspension wurde in sterile Kunststoffröhrchen gegeben und in einer Zentrifuge (Hettrich, Rotanta/RP) gewaschen. Der Überstand wurde mit einer sterilen Pipette abgesaugt und mit 5 ml NaCl 0,9% Lösung wieder aufgefüllt. Mit einem Reagenzglasrüttler (Vortex, Genie 2) wurden die Pilzzellen gründlich mit dem NaCl vermischt. Zum Auszählen der Zellen in der Neubauer Zählkammer wurden mit einer Eppendorfpipette aus der fertigen Pilzsuspension 10 µl entnommen und 1:100 mit steriler NaCl 0,9% Lösung verdünnt. Eine geringere Verdünnung hätte zu große Zellzahlen und somit einen größeren Fehler mit sich gebracht. In der Neubauer Zählkammer wurde die Anzahl der Zellen in 5 Gruppenquadraten der 4x4 Quadrate ausgezählt, wobei in jedem Quadrat 2 Außenseiten nicht mitgezählt wurden. Die Gesamtzahl der Zellen wurde mit folgender Formel berechnet:

n /
$$\mu$$
I = S / (V_k x N_k)
= S / (0,25 x 10⁻³ μ I x 80)
= S / 20 x 10⁻³
= S x 50 / μ I

Weiterhin wird mit dem jeweiligen Verdünnungsfaktor multipliziert:

 $n / \mu I = S \times 50 / \mu I \times A \times R$

n / μl = S x 50 / μl x 5000 μl x 100 μl

 $n/\mu 1$ = Anzahl der Zellen pro Mikroliter Suspension

S = Summe der ausgezählten Zellen in 5 Gruppenquadraten

 V_k = Volumen über dem Kleinstquadrat (0,25x10⁻³ µl)

 N_k = Anzahl der ausgezählten Kleinstquadrate (16 x 5 = 80)

A = Verdünnung der Ausgangslösung mit NaCl (5000 μl)

R = Verdünnung auf 1/100 mit NaCl im Reagenzglas (100 μl)

Abb. 3.1 Berechnung der Zellzahl

3.5.2. Wachstumskurven

Zum Erstellen von Wachstumskurven wurde eine Zellsuspension auf 1x10⁶ Zellen pro µl mit steriler NaCl 0,9% Lösung eingestellt.

Die Zellsuspension wurde auf die jeweilige Agarplatte mit Hilfe einer Eppendorfpipette mit steriler Pipettenspitze aufgetragen. Auf jede Agarplatte wurden an 8 Stellen jeweils 4 µl der Ausgangssuspension aufgetragen. Untersucht wurde das Wachstum von Exophiala dermatitidis P201 und Exophiala dermatitidis P202 jeweils auf Selektiv Agar und 1b Agar. Es wurde nach 2 Tagen, 4 Tagen, 6 Tagen und 8 Tagen abgeerntet und das Trockengewicht bestimmt. Für jeden Versuchstag wurde eine Platte Selektiv Agar und ein Platte 1b Agar für jeden Pilz angefertigt, um die Kontaminationsgefahr der Platten zu minimieren. Die Pilze wurden bei 32°C bis zur Aberntung in einem Brutschrank (Heraeus Holding GmbH, Hanau) aufbewahrt. Vor dem Abernten wurden Reagenzgläser (Test Tube, heavy walled, Assistent, Hannover) vorbereitet. Das Leergewicht wurde auf einer elektronischen Halbmikrowaage (Sartorius Research, Modell R 180 D) bestimmt. Zum Ausgleich von Luftdruckschwankungen wurde die Waage vor jedem Wiegedurchgang neu justiert. Zum Abernten wurden die Pilzkolonien mit einer sterilen Platinöse abgelöst und anschließend in ein mit NaCl 0,9% Lösung gefülltes Reagenzglas gegeben. Um das Ergebnis nicht zu verfälschen, durfte kein Agar mit abgehoben werden. Die mit Pilzzellen und NaCl gefüllten Reagenzgläser wurden zentrifugiert (Hettrich, Rotanta), der Überstand vorsichtig mit einer Pipette abgesaugt und anschließend bei 60°C für 24 Stunden in einem Trockenblock (Techne Dri Block DB3) getrocknet. Nach Entnahme aus dem Trockenblock wurden die Reagenzgläser nach 30 Minuten abkühlen sofort gewogen (Sartorius Research), um eine erneute Feuchtigkeitsaufnahme der getrockneten Pilzzellen zu vermeiden.

Das zuvor bestimmte Gewicht der leeren Reagenzgläser wurde anschließend von dem Gewicht der vollen Reagenzgläser subtrahiert. Somit erhielt man das Trockengewicht der Pilzzellen.

Vollgewicht – Leergewicht = Trockengewicht der Pilzzellen

Abb. 3.2. Berechnung Trockengewichtes

Zum besseren Vergleich der Daten wurde anstatt des Trockengewichts die Zellzahl verwendet, um mögliche Differenzen der Zellmasse der unterschiedlichen Pilze mit einzubeziehen. Die Umrechnung von Trockengewicht in Zellzahl erfolgte mit Hilfe von Standardeichkurven für jeden Pilz und jeden Agar individuell.

Ein wichtiger Zwischenschritt bei der Bestimmung des Trockengewichts war das Trocknen der abgeernteten Pilze im Wärmeblock. Es sollten standardisierte Trockenzeiten verwendet werden, um immer trockene aber nicht verkohlte Pilzzellen zu erhalten.

Nach dem Abernten der Pilzzellen mit einer sterilen Platinöse wurden die Pilze zusammen mit steriler NaCl 0,9% Lösung in ein Reagenzglas eingebracht. Die NaCl Lösung diente dazu, alle Pilzzellen von der Platinöse abzulösen, um einen Verlust an Pilzzellen zu vermeiden. Der Überstand an NaCl wurde nach dem Zentrifugieren größtenteils abgesaugt. Das verbliebene NaCl wurde im Wärmeblock (Techne Dri Block DB3, Thermo Dux, Heidelberg) getrocknet. Dieses Verfahren wurde bereits von Voß et al. bei *M. furfur* erfolgreich angewendet. Voß *et al.* ließen die Reagenzgläser bei 65°C über 24 Stunden trocknen (Voß, 2003) Bei eigenen Versuchen mit *Exophiala dermatitidis* zeigte sich jedoch bei 65 °C eine bräunliche Verfärbung im Reagenzglas. Die Temperatur wurde deshalb auf 60 °C herabgesetzt.

3.5.4. Eichkurven

Die quantitative Bestimmung des Pilzwachstums erfolgte über das Wiegen des Trockenzellgewichts in Gramm. Um einen Vergleich zwischen zwei unterschiedlichen Pilzen herstellen zu können, war es jedoch notwendig die Zellzahl zu bestimmen, da Pilzzellen von unterschiedlichen Pilzen und differenten Kulturbedingungen unter Umständen eine unterschiedliche Masse und somit auch ein unterschiedliches Gewicht aufweisen können. Die Zellzahl wurde anhand einer Eichkurve bestimmt. Es musste für jeden Pilz eine Suspension mit NaCl auf 1×10^6 Zellen pro µl eingestellt werden. Diese Pilzsuspension wurde in 3 x 7 genau definierten Mengen in zuvor beschriftete und gewogene Reagenzgläser gefüllt, die, nachdem sie im Wärmeblock (Techne Dri Block DB3) 24 Stunden bei 60°C getrocknet wurden, anschließend gewogen wurden. Das Leergewicht des Reagenzglases wurde von dem Vollgewicht subtrahiert, um das Trockengewicht des Pilzes zu erhalten.

Das Pilzgewicht wurde für 25, 50, 75, 100,150, 200 und 250 Mio. Zellen bestimmt. Somit mussten jeweils 25, 50, 75, 100, 150, 200 und 250 µl mit einer Eppendorfpipette in jeweils drei Reagenzgläser gefüllt werden. Aus den drei Gewichtswerten wurde der Median zum Ausschluss stark abweichender Werte bestimmt. Alle Mediane wurden graphisch dargestellt und eine Trendlinie durch den Nullpunkt zugefügt. Zum späteren Berechnen der Zellzahlen wurden die Zellzahlen auf der y-Achse und das Trockengewicht auf der x-Achse dargestellt.

3.5.5. Bestrahlung

Für die UVA- und UVB-Bestrahlung wurden zwei unterschiedliche Geräte verwendet. Beide Bestrahlungsgeräte werden in der Lichtambulanz des Instituts für Dermatologie der Justus-Liebig Universität Gießen hauptsächlich zur Lichttherapie verwendet. Die Bestrahlung mit UVA wurde mit einem Sellamed 4000 (Sellas Sunlight Gevelsberg, Germany) Lichtgerät durchgeführt. Zur Bestrahlung mit UVB wurde ein UV / Puva 800 Lichtgerät (Waldmann, Schwenningen, Germany) verwendet. Sellamed 4000 hatte ein Strahlenspektrum von 320-440 nm mit einem Maximum bei 365 nm. Das Strahlenspektrum von UV / Puva 800 lag zwischen 285 nm und 350 nm mit einem Maximum bei 315 nm.

Zum Erreichen der gewünschten Bestrahlungsintensitäten wurden unterschiedliche Bestrahlungszeiten mit folgender Formel berechnet:

Bestrahlungszeit in sec =

Strahlungsintensität in mW / cm²

Abb. 3.3. Berechnung der Bestrahlungszeit

Bei Bestrahlung mit UVA wurde eine Strahlungsleistung von 124 mW / cm², bei der Bestrahlung mit UVB eine Strahlungsleistung von 2,05 mW / cm² verwendet. Zur Gewährleistung konstanter Bestrahlungsverhältnisse wurde eine aus Papier hergestellte Schablone mit drei kreisförmigen Feldern in der Größe von Agarplatten der Firma Merck für die Dauer aller Versuche in dem Bestrahlungsfeld auf einer Arbeitsplatte fixiert. Um ein Erhitzen der Schablone unter der UVA Lampe zu vermeiden, musste die Schablone weiß sein. Zur richtigen Ausrichtung der Schablone wurde ein UV-Meter (Waldmann Lichttechnik) mit Doppelsensor für UVAund UVB-Strahlung benutzt. An der digitalen Anzeige des UV-Meters konnte wahlweise die Intensität der UVA- oder die Intensität der UVB-Strahlung in mW / cm² abgelesen werden. Die spektrale Empfindlichkeit des Doppelsensors entsprach exakt dem Spektrum der original Waldmann Niederdrucklampen (im Bereich UVA Lampen bis 199,9 mW / cm² und im Bereich UVB Lampen bis 19,99 mW / cm²). Vor der Bestrahlung wurden die Agarplatten auf der Schablone platziert und die Deckel entfernt. Die Bestrahlungsintensität wurde regelmäßig mit dem UV-Meter kontrolliert.

Zu Beginn eines Bestrahlungsversuchs wurden die Pilze zunächst auf jeweils 10 Platten Selektiv Agar sechs Tage bei 32 °C im Brutschrank angezüchtet. Die Wachstumsdauer wurde anhand der Logphase der sigmoidalen Wachstumskurven auf 6 Tage eingestellt, um bei optimalem Wachstum auch die größtmögliche Pilzmenge zu erhalten. Von den 10 Platten Selektiv Agar wurden beide Pilze für sechs Tage bei 32 °C im Brutschrank auf 10 Platten Selektiv Agar und 10 Platten 1b Agar ausgestrichen. Da es sich bei dem 1b Agar um einen Minimalagar handelt, der dem Pilz gerade die zum Überleben notwendigen Nährstoffe bietet und somit das Wachstum der Pilze auf 1b Agar eingeschränkt ist, mussten die Pilze unmittelbar vor der Bestrahlung wieder einheitlich auf Selektiv Agar überführt werden. Aus den 10 Platten Selektiv Agar und den 10 Platten 1b Agar wurde für jeden Pilz eine Pilzsuspension hergestellt und auf 1×10^6 Zellen pro μ l steriler NaCl (0,9%) eingestellt. Mit einer sterilen Eppendorfpipette wurden sofort nach Herstellung der Suspension 3 Inokulationspunkte à 2 µl von 1b Agar und von Selektiv Agar auf den frischen Selektiv Agar aufpipettiert. Somit war ein direkter Vergleich des Einflusses von den 2 Nährböden gewährleistet. Die Inokulationspunkte wurden mit 2 µl aufgetragen, um eine Überlagerung von Zellen und somit einen physikalischen Sonnenschutz zu minimieren. Außerdem wurde dadurch das Bestrahlungsfeld von ca. 5 cm Durchmesser eingehalten. Die Bestrahlung von Exophiala dermatitidis P201 und Exophiala dermatitidis P202 wurde auf verschiedenen Selektiv Agar Platten unmittelbar nacheinander durchgeführt. Im Wellenlängenbereich von UVA und von UVB wurden jeweils vier unterschiedliche Intensitäten gewählt. Es wurde bei UVA 100, UVA 150, UVA 200, UVA 250 und bei UVB 500, UVB 1000, UVB 1500, UVB 2000 bestrahlt. Bei jedem Bestrahlungsversuch wurde jeweils eine Referenzplatte nicht bestrahlt. Die bestrahlten Platten wurden für 5 Tage im Brutschank bei 32 °C aufbewahrt und anschließend mit einer sterilen Platinöse abgeerntet. Nach dem Trocknen der Pilze im Wärmeblock wurde das Trockengewicht bestimmt und in Zellzahlen umgerechnet.

Abb.3.4. Versuchsablauf bis zur Bestrahlung

Tab. 3.7. Bestrahlung mit UVA bei einer Intensität von 124 mW / ${\rm cm}^2$

Dosis	0	UVA 100	UVA 150	UVA 200	UVA 250
Dauer	0	13,44 min	21,01 min	27,28 min	34,00 min

Tab. 3.8. Bestrahlung mit UVB bei einer Intensität von 2,05 mW / cm²

Dosis	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
Dauer	0	4 min	8 min	12 min	16 min

3.6. Statistische Auswertung

Die Erfassung der Daten sowie die Erstellung der Grafiken erfolgte mit Microsoft Excel 2000. Die statistische Auswertung wurde mit SPSS für Windows in Zusammenarbeit mit dem Institut für medizinische Informatik an der JLU Gießen durchgeführt. Von den gemessenen Daten wurden die Mediane errechnet. Die Normalverteilung wurde vorausgesetzt. Die Daten wurden als zweifache und dreifache Varianzanalyse mit Messwiederholungen sowie mit dem t-Test mit gepaarten Stichproben beurteilt und das Signifikanzniveau bei einem zweiseitigen p von < 0,05 festgesetzt.

4. Ergebnisse

4.1. Vorversuche

4.1.1. Wachstumskurven

In Vorversuchen wurde das Pilzwachstum von *Exophiala dermatitidis* P201 (ATCC No. 44504) und *Exophiala dermatitidis* P202 (ATCC No. 34100) über acht Tage verfolgt und bildlich in Wachstumskurven dargestellt. Die in den Wachstumskurven angegebenen Zellzahlen sind Mittelwerte aus acht unterschiedlichen Pilzkolonien. Am ersten Tag wurden Proben von jeweils 4 Millionen Zellen auf den Agar aufgetragen. Untersucht wurde das Pilzwachstum jeweils auf Selektiv Agar und auf 1b Agar. Die x-Achse beschreibt die Anzahl der Wachstumstage, die y-Achse die Zellzahl in Millionen Zellen. Bei beiden Pilzen zeigt sich ein S-förmiger Verlauf der Wachstumskurven, mit der größten Steigung (Log-Phase) zwischen dem vierten und sechsten Tag. Die Umrechnung der Trockengewichte in die Zellzahl erfolgte mit dem jeweiligen Umrechnungsfaktor, welcher durch das Erstellen von Eichkurven für den jeweiligen Pilz ermittelt wurde (siehe Kapitel 4.1.3. Eichkurven).

Abbildung 4.1 stellt das Wachstumsverhalten von *Exophiala dermatitidis* P201 auf Selektiv Agar dar. Es zeigt sich ein sigmoidaler (S-förmiger) Verlauf. Bis zum 4. Wachstumstag zeigt P201 ein relativ langsames Wachstum. Am 2. Tag sind 47,7 Millionen Zellen gewachsen, am 4. Tag 70,2 Millionen Zellen. Bis zum 6. Tag erhöht sich die Wachstumsgeschwindigkeit deutlich auf 125,7 Millionen Zellen. Die Wachstumsgeschwindigkeit nimmt nach 6 Wachstumstagen wieder ab. Bis zum 8. Wachstumstag sind 136,0 Millionen Zellen gewachsen (vergleiche Tabelle 4.1).

Abb. 4.1. Wachstumskurve von *Exophiala dermatitidis* P201 auf Selektiv Agar (n=8; Mittelwert+/-Standardabweichung). Die dargestellte Wachstumskurve von P201 ist zusammen mit der Wachstumskurve von P202 aus Abb.4.2. in Abb. 4.5. im Vergleich dargestellt.

Tab. 4.1. Zellzahlen von *Exophiala dermatitidis* P201 nach 2,4,6,8 Tagen Wachstum auf Selektiv Agar. Ausgangszellzahl: 4 Mio.Zellen in 4 μ l NaCl

	Kolonie 1	Kolonie 2	Kolonie 3	Kolonie 4	Kolonie 5	Kolonie 6	Kolonie 7	Kolonie 8	Mittelwert in Mio	Standardabweichung in Mio Zellen
	(in g)	Zellen								
0.Tag									4	0
2.Tag	0,00280	0,00276	0.00288	0,00261	0,00283	0,00263	0,00274	0,00255	47,7	1,87181
4.Tag	0,00398	0,00385	0,00411	0,00413	0,00405	0,00392	0,00388	0,00391	70,2	1,88232
6.Tag	0,00711	0,00705	0,00709	0,00704	0,00712	0,00724	0,00702	0,00731	125,7	1,79852
8.Tag	0,00762	0,00771	0,00782	0,00781	0,00775	0,00761	0,00783	0,00750	136,0	2,11060

Abbildung 4.2 stellt das Wachstumsverhalten von *Exophiala dermatitidis* P202 auf Selektiv Agar dar. Es zeigt sich ein sigmoider Verlauf. Bis zum 4. Wachstumstag zeigt P202 ebenfalls ein relativ langsames Wachstum. Am 2. Tag sind 60,2 Millionen Zellen gewachsen, am 4. Tag 87,4 Millionen Zellen. Bis zum 6. Tag erhöht sich die Wachstumsgeschwindigkeit deutlich auf 135,8 Millionen Zellen. Die Wachstumsgeschwindigkeit nimmt nach 6 Wachstumstagen wieder ab. Bis zum 8. Wachstumstag sind 141,1 Millionen Zellen gewachsen (vergleiche Tabelle 4.2).

Abb. 4.2. Wachstumskurve von *Exophiala dermatitidis* P202 auf Selektiv Agar (n=8; Mittelwert+/-Standardabweichung). Die dargestellte Wachstumskurve von P202 ist zusammen mit der Wachstumskurve von P201 aus Abb.4.1. in Abb. 4.5. im Vergleich dargestellt.

Tab. 4.2. Zellzahlen von *Exophiala dermatitidis* P202 nach 2,4,6,8 Tagen Wachstum auf Selektiv Agar. Ausgangszellzahl: 4 Mio.Zellen in 4 µl NaCl

	Kolonie 1 (in g)	Kolonie 2 (in g)	Kolonie 3 (in g)	Kolonie 4 (in g)	Kolonie 5 (in g)	Kolonie 6 (in g)	Kolonie 7 (in g)	Kolonie 8 (in g)	Mittelwert in Mio Zellen	Standardabweichung in Mio Zellen
0.Tag									4	0
2.Tag	0,00257	0,00305	0,00249	0,00335	0,00308	0,00298	0,00239	0,00250	60,2	7,31027
4.Tag	0,00472	0,00356	0,00425	0,00404	0,00472	0,00422	0,00417	0,00331	87,5	10,21937
6.Tag	0,00709	0,00718	0,00697	0,00648	0,00706	0,00571	0,00638		135,8	11,00738
8.Tag	0,00680	0,00726	0,00744	0,00669	0,00653	0,00643			141,2	8,34951

Abbildung 4.3 beschreibt das Wachstumsverhalten von *Exophiala dermatitidis* P201 auf 1b Agar. Insgesamt zeigt sich ein geringeres Wachstum auf 1b Agar als auf Selektiv Agar. Die Wachstumskurve fällt deutlich flacher aus. Ein S-förmiger Verlauf lässt sich erkennen. Am 2. Tag sind 39,1 Millionen Zellen gewachsen, am 4. Tag 47,9 Millionen Zellen. Bis zum 6. Tag erhöht sich die Wachstumsgeschwindigkeit leicht auf 59,0 Millionen Zellen. Am 8. Wachstumstag sind 61,6 Millionen Zellen gewachsen (vergleiche Tabelle 4.3).

Abb. 4.3. Wachstumskurve von *Exophiala dermatitidis* P201 auf 1b Agar (n=8; Mittelwert+/-Standardabweichung). Die dargestellte Wachstumskurve von P201 ist zusammen mit der Wachstumskurve von P202 aus Abb.4.2. in Abb. 4.6. im Vergleich dargestellt.

Tab. 4.3. Zellzahlen von *Exophiala dermatitidis* P201 nach 2,4,6,8 Tagen Wachstum auf 1b Agar. Ausgangszellzahl: 4 Mio.Zellen in 4 μ l NaCl

	Kolonie 1	Kolonie 2	Kolonie 3	Kolonie 4	Kolonie 5	Kolonie 6	Kolonie 7	Kolonie 8	Mittelwert in Mio Zellen	Standardabweichung in Mio Zellen
	(in g)									
0.Tag									4	0
2.Tag	0,00079	0,00100	0,00088	0,00112	0,00102	0,00109	0,00107	0,00109	39,2	4,50127
4.Tag	0,00125	0,00128	0,00103	0,00117	0,00118	0,00126	0,00136	0,00135	48,0	4,17955
6.Tag	0,00195	0,00209	0,00219	0,00211	0,00205	0,00214	0,00191	0,00192	79,5	4,13285
8.Tag	0,00234	0,00216	0,00204	0,00198	0,00224	0,00226	0,00218	0,00221	84,6	4,55929

Abbildung 4.4 beschreibt das Wachstumsverhalten von *Exophiala dermatitidis* P202 auf 1b Agar. Insgesamt zeigt sich ein geringeres Wachstum auf 1b Agar als auf Selektiv Agar. Die Wachstumskurve fällt deutlich flacher aus. Ein S-förmiger Verlauf lässt sich erkennen. Am 2. Tag sind 52,5 Millionen Zellen gewachsen, am 4. Tag 66,1 Millionen Zellen. Bis zum 6. Tag erhöht sich die Wachstumsgeschwindigkeit leicht auf 90,4 Millionen Zellen. Am 8. Wachstumstag sind 93,7 Millionen Zellen gewachsen (vergleiche Tabelle 4.4).

Abb. 4.4. Wachstumskurve von *Exophiala dermatitidis* P202 auf 1 b Agar (n=8; Mittelwert+/-Standardabweichung). Die dargestellte Wachstumskurve von P202 ist zusammen mit der Wachstumskurve von P201 aus Abb.4.2. in Abb. 4.6. im Vergleich dargestellt.

Tab. 4.4. Zellzahlen von *Exophiala dermatitidis* P202 nach 2,4,6,8 Tagen Wachstum auf 1b Agar. Ausgangszellzahl: 4 Mio.Zellen in 4 µl NaCl

	Kolonie	Mittelwert	Standardabweichung							
	1	2	3	4	5	6	7	8	in Mio	in Mio Zellen
	(in g)	Zellen								
0.Tag									4	0
2.Tag	0,00103	0,00079	0,00088	0,00097	0,00077	0,00070	0,00076	0,00101	52,5	7,69762
4.Tag	0,00119	0,00107	0,00098	0,00102	0,00109	0,00118	0,00108	0,00110	66,1	4,33766
6.Tag	0,00156	0,00137	0,00157	0,00151	0,00149	0,00145	0,00144	0,00151	90,4	4,01331
8.Tag	0,00168	0,00155	0,00144	0,00149	0,00144	0,00152	0,00160	0,00162	93,7	5,26361

Abb. 4.5. Vergleich von *Exophiala dermatitidis* P201 und P202 auf Selektiv Agar nach 8 Tagen Wachstum. Ausgangszellzahl: 4 Mio.Zellen in 4 µl NaCl (Werte entsprechend Abb. 4.1. und 4.2.).

Abb. 4.6. Vergleich von *Exophiala dermatitidis* P201 und P202 auf 1b Agar. Ausgangszellzahl: 4 Mio.Zellen in 4 µl NaCl (Werte entsprechend Abb. 4.3. und 4.4.).

Die Abbildungen 4.5 und 4.6 zeigen ein vergleichbares Wachstum beider Pilze auf Selektiv Agar und 1b Agar.

4.1.2. Wärmeblock

Jede Pilzkolonie wurde in einem Reagenzglas mit 0,9% NaCl gelöst. Vor dem Bestimmen des Trockengewichtes mussten die Pilzzellen im Wärmeblock getrocknet werden. Dieser Vorversuch diente der Bestimmung der optimalen Trockentemperatur der gelösten Pilzzellen und einer Standardisierung der Trockenzeiten, um trockene und nicht verkohlte Pilzzellen zu erhalten.

Tabelle 4.5 ist zu entnehmen, dass sich bei 50°C einige Reagenzgläser (300,200 Mio. Zellen) noch feucht zeigten, bei 70°C zeigten sich einige Reagenzgläser leicht verkohlt (25, 50, 75 Mio. Zellen). Für *Exophiala dermatitidis* erwies sich 60°C für 24 Stunden als die richtige Trockentemperatur.

Tab. 4.5. Reagenzgläser im Techne Dri Block DB3 nach 24h bei 50,60,70°C mit 25-300 Mio.Zellen in NaCl

Zellzahl in Mio.	50°C / 24h	60°C / 24h	70ºC / 24h
300	Feucht	Trocken	Trocken
200	Leicht feucht	Trocken	Trocken
100	Trocken	Trocken	Trocken
75	Trocken	Trocken	Trocken, bräunlich verfärbt
50	Trocken	Trocken	Trocken, bräunlich verfärbt
25	Trocken	Trocken	Trocken, bräunlich verfärbt

4.1.3. Eichkurven

Zur Umrechnung der Pilzmenge in Gramm (g) in die Anzahl der Pilzzellen in Millionen (Mio.) wurden für beide Pilze auf 1b Agar und auf Selektiv Agar Eichkurven erstellt, die als spätere Umrechnungsvorlage dienen sollen. Diese sind den Abbildungen 4.7 – 4.10 zu entnehmen. Die x-Achse zeigt das Trockengewicht der Pilzzellen in Gramm, die y-Achse die Zellzahl in Millionen Zellen. Eine Trendlinie durch den Nullpunkt verbindet die Messpunkte. Für die Spätere Umrechnung von Gramm in Zellzahl ist für jedes Diagramm die Steigung der Trendlinie berechnet worden.

Tabelle 4.6 listet die Umrechnungsformeln der verwendeten Isolate bzw. Nährmedien zur Bestimmung der Zellzahlen auf. Das Pilzgewicht wurde für 25, 50, 75, 100, 150, 200 und 250 Millionen Zellen bestimmt.

Abb. 4.7. Eichkurve für Exophiala dermatitidis P201 auf Selektiv Agar

Abb. 4.8. Eichkurve für Exophiala dermatitidis P202 auf Selektiv Agar

Abb. 4.9. Eichkurve für Exophiala dermatitidis P201 auf 1 b Agar

Abb. 4.10. Eichkurve für Exophiala dermatitidis P202 auf 1 b Agar

4.1.4. Bestrahlung

Vor dem eigentlichen Bestrahlungsversuch war es notwendig, die Intensitäten so zu wählen, dass weder Agar noch Pilz aufgrund der Rahmenbedingungen (Temperaturanstieg durch die Bestrahlungslampen) Schaden nahmen.

Vorversuche zeigten einen Temperaturanstieg durch die Bestrahlung mit UVA (bei 60 mW / cm² 36 °C, bei 124 mW / cm² 42 °C). Bei 300 UVA kam es zur Austrocknung der Selektiv Agar Platten. Somit musste die Bestrahlung bis UVA 250 limitiert werden. Es wurde auf kühlende Maßnahmen, wie das Verwenden eines Ventilators verzichtet, da sonst das Kontaminationsrisiko der offenen Agar Platten zu hoch gewesen wäre.

Da bei der Bestrahlung mit UVB kein erheblicher Wärmeanstieg zu verzeichnen war, wurde hier das Pilzwachstum als Limit ausgewählt.

UVA 100	UVA 150	UVA 200	UVA 250	UVA 300
A+	A+	A +	A +	A –
P+	P+	P +	P +	Ρ-
A+	A+	A +	A +	Α-

P +

Tab. 4.6. Testbestrahlung mit *Exophiala dermatitidis* P202 bei unterschiedlichen Intensitäten im Wellenlängenbereich von UVA und UVB (Vgl. Kapitel 3.5.).

UVB 500	UVB 1000	UVB 1500	UVB 2000	UVB 2500
A+	A+	A +	A +	A +
P+	P+	P +	P +	Ρ-
A+	A+	A +	A +	A +
P+	P+	P +	P +	P -

P +: Pilzwachstum erkennbar

- A +: Selektiv Agar nicht vertrocknet
- P : Pilzwachstum nicht erkennbar

P+

P+

A - : Selektiv Agar vertrocknet

P +

P -

4.2. Pigmentproduktion

Zwei Isolate Exophiala dermatitidis wurden dieser Arbeit für von in Bestrahlungsversuche verwendet. Auf 1b Minimalagar unter Zugabe von Tryptophan als alleinige Stickstoffquelle wiesen beide bereits am zweiten Wachstumstag eine beginnende gelblich bis bräunliche Verfärbung des Minimalagars auf, die über die Dauer von 6 Wochen noch deutlich zunahm und den gesamten Agar verfärbte. P202 bildete auf 1b Agar gelblich-bräunliche Kolonien, die nur ein sehr geringes Dickenwachstum aufwiesen. P201 zeigte ein Wachstum von gelblichen Kolonien, die auf 1b Agar ebenfalls kaum Dickenwachstum zeigten. Abbildung 4.11 zeigt Exophiala dermatitidis P202 nach 6 Tagen Wachstum auf 1b Agar mit bräunlichem Hof. Abbildung 4.12 zeigt Exophiala dermatitidis P201 nach 6 Tagen Wachstum auf 1b Agar mit gelblichem Hof. Abbildung 4.13 zeigt Exophiala dermatitidis P201 und Exophiala dermatitidis P202 auf einer gemeinsamen Agarplatte nach 6 Tagen Wachstum im Vergleich. Dabei konnte kein großer Unterschied zwischen den melaninbildenden Isolaten (P202 / ATCC 34100) oder den zur Melaninbildung nicht mehr befähigten Mutanten (P201/ ATCC 44504) in der produzierten Menge und der Schnelligkeit der Pigmentbildung festgestellt werden.

Gelöste Pigmente, u.a. Pityriacitrin

Abb. 4.11. Exophiala dermatitidis P202 nach 6 Tagen Wachstum auf 1b Agar bei Tageslicht. Ausgangszellzahl: 4 Mio.Zellen in 4 µl NaCl

Abb. 4.12. Exophiala dermatitidis P201 nach 6 Tagen Wachstum auf 1b Agar bei Tageslicht Ausgangszellzahl: 4 Mio.Zellen in 4 µl NaCl

Abb. 4.13.Vergleich von P201 (obere 2 Inokulationssstellen) und P202 (untere 2 Inokulationsstellen) nach 6 Tagen Wachstum auf 1b Agar bei Tageslicht. Ausgangszellzahl: 4 Mio.Zellen in 4 μ l NaCl.

Des Weiteren konnte bei allen Nährbodenschalen der o.g. Spezies eine gelb-grüne Fluoreszenz im UV-Licht (366 nm) im Bereich der Pigmenteinlagerung im Agar deutlich beobachtet werden. Die Fluoreszenz ist in den Abbildungen 4.14, 4.15 und 4.16 zu erkennen. Es zeigte sich bei beiden Isolaten nach 6 Wochen Wachstum eine bemerkenswert hohe Pigmentsyntheseleistung, welche sich durch große Mengen von extrahierbarem Rohextrakt aus dem verfärbten Agar auszeichnete.

Abb. 4.14. Vergleich von P201 (obere 2 Inokulationssstellen) und P202 (untere 2 Inokulationsstellen) nach 6 Tagen Wachstum auf 1b Agar bei UV 366. Ausgangszellzahl: 4 Mio.Zellen in 4 μ l NaCl.

Abb. 4.15. *Exophiala dermatitidis* P202 nach 6 Tagen Wachstum auf 1b Agar bei UV 366 nm. Ausgangszellzahl: 4 Mio.Zellen in 4 μl NaCl.

Abb. 4.16. *Exophiala dermatitidis* P201 nach 6Tagen Wachstum auf 1b Agar beiUV 366nm. Ausgangszellzahl: 4 Mio.Zellen in 4 µl NaCl.

Beide Pilze zeigen auf dem nährstoffreichen Selektiv Agar für pathogene Pilze keinen Anhalt für die Bildung von Pigmenten, abgesehen von Melanin bei P202. P201 bildet auf Selektiv Agar weiße Kolonien, die neben dem Flächenhaften Wachstum auch ein Dickenwachstum von bis zu 1mm zeigten Abbildungen 4.15 und 4.16 zeigen *Exophiala dermatitidis* P201 auf Selektiv Agar bei Tageslicht und UV 366 ohne erkennbare Pigmentbildung.

Abb. 4.17. *Exophiala dermatitidis* P201 nach 6 Tagen Wachstum auf SelektivAgar bei Tageslicht. Ausgangszellzahl: 4 Mio.Zellen in 4 µl NaCl.

Abb. 4.18. *Exophiala dermatitidis* P201 nach 6Tagen Wachstum auf SelektivAgar bei UV 366. Ausgangszellzahl: 4 Mio.Zellen in 4 µl NaCl.

Abbildungen 4.17 und 4.18 zeigen *Exophiala dermatitidis* P202 bei Tageslicht und UV 366 auf Selektiv Agar mit erkennbarer Melaninbildung, aber ohne weitere sichtbare Pigmentsynthese. P202 wächst in Kolonien von brauner Farbe, welche genau wie P201 neben dem flächenhaften Wachstum auch ein Dickenwachstum von bis zu 1mm zeigten.

Abb. 4.19. *Exophiala dermatitidis* P202 nach 6 Tagen Wachstum auf SelektivAgar bei Tageslicht. Ausgangszellzahl: 4 Mio.Zellen in 4 µl NaCl.

Abb. 4.20. *Exophiala dermatitidis* P202 nach 6Tagen Wachstum auf SelektivAgar bei UV 366. Ausgangszellzahl: 4 Mio.Zellen in 4 µl NaCl.

Zum Nachweis der Pigmentproduktion wurde von *Exophiala dermatitidis* P202 das Rohextrakt gewonnen und in der Dünnschichtchromatographie weiter aufgetrennt.

Abb. 4.21. Dünnschichtchromatographische Darstellung der Fraktionen 2-5 von *Exophiala dermatitidis* P202 bei Tageslicht auf einer Kieselgelplatte. Aufgetragen durch Linomat IV, Laufmittelgemisch: Toluol-Ethylenformiat-Ameisensäure im Verhältnis 10:5:3. In den einzelnen Fraktionen zeigen sich unterschiedlich farbige Banden, welche verschiedene Pigmente darstellen. Eine gelbe Bande in Fraktion 4 zeigt das Indolderivat Pityriacitrin.

Abbildung 4.21 zeigt das dünnschichtchromatographische Bild der einzelnen Fraktionen von *Exophiala dermatitidis* P202. Die erste tweenhaltige Fraktion wurde wegen ihres hohen Verunreinigungsgrades verworfen. In einer gelben Bande dieses Isolates mit dem Rf-Wert 0,16 aus der vierten Fraktion konnte das Indolderivat Pityriacitrin vermutet werden. Diese Bande wurde deshalb mittels präparativer Dünnschichtchromatographie vorbereitend gesäubert. Bei der sich anschließenden analytischen HPLC betrug die Elutionszeit der gelben Bande 63-64 min. Diese Zeit

ist, wie bereits aus den vorausgegangenen Untersuchungen bekannt, charakteristisch für Pityriacitrin, da die entsprechenden Banden nur wenige oder keine Begleitstoffe enthalten. Darüber hinaus konnten die strukturaufklärenden Spektroskopien der TU München ebenfalls diese gelbe Bande als Pityriacitrin bestimmen.

Bei UV 366 nm wird Pityriacitrin aufgrund seiner UV-absorbierenden Eigenschaften als schwarze Bande dargestellt (siehe Abbildung 4.20).

Abb. 4.22. Dünnschichtchromatographische Darstellung der Fraktionen 2-5 von *Exophiala dermatitidis* P202 bei UV 366 nm auf einer Kieselgelplatte. Aufgetragen durch Linomat IV, Laufmittelgemisch: Toluol-Ethylenformiat-Ameisensäure im Verhältnis 10:5:3. In den einzelnen Fraktionen zeigen sich unterschiedlich farbige Banden, welche verschiedene Pigmente darstellen. Eine schwarze Bande in Fraktion 4 zeigt das Indolderivat Pityriacitrin.

Ein Vergleich der Fraktion 4 von *Exophiala dermatitidis* P202 und der Fraktion 6 von *Exophiala dermatitidis* P201 zum Standard Pityriacitrin in Abbildung 4.21 zeigt bei beiden Pilzen die den gleichen Rf-Wert von 0,16.

Abb. 4.23. Dünnschichtchromatographischer Vergleich der Fraktion 4 von *Exophiala dermatitidis* P202 mit der Fraktion 6 von *Exophiala dermatitidis* P201 und dem Pityriacitrin-Standard bei Tageslicht auf einer Kieselgelplatte. Aufgetragen durch Linomat IV, Laufmittelgemisch: Toluol-Ethylenformiat-Ameisensäure im Verhältnis 10:5:3.

4.3. Bestrahlung

Exophiala dermatitidis P201 und *Exophiala dermatitidis* P202 wurden auf 2 unterschiedlichen Ausgangsnährböden angezüchtet. Zur Vereinfachung wird *Exophiala dermatitidis* P201 mit 1b Agar als Ausgangsnährboden als " Pilz 1" bezeichnet, *Exophiala dermatitidis* P201 mit Selektiv Agar als Ausgangsnährboden als "Pilz 2", *Exophiala dermatitidis* P202 mit 1b Agar als Ausgangsnährboden als "Pilz 3" und *Exophiala dermatitidis* P202 mit Selektiv Agar als Ausgangsnährboden als "Pilz 3" und *Exophiala dermatitidis* P202 mit Selektiv Agar als Ausgangsnährboden als "Pilz 3" und *Exophiala dermatitidis* P202 mit Selektiv Agar als Ausgangsnährboden als "Pilz 4" (siehe Tabelle 4.8).

Pilz	Ausgangsnährboden	Bezeichnung im Text
Exophiala dermatitidis P201	Selektiv Agar	Pilz 1
Exophiala dermatitidis P201	1b Agar	Pilz 2
Exophiala dermatitidis P202	Selektiv Agar	Pilz 3
Exophiala dermatitidis P202	1b Agar	Pilz 4

Tab. 4.7. Studieninterne Bezeichnung der einzelnen Isolate auf den jeweiligen Nährböden

Die Abbildungen 4.24 bis 4.36 zeigen das Wachstum der Pilze in Abhängigkeit der unterschiedlichen Bestrahlungsintensitäten in Form von Fotos mit und ohne Pityriacitrin. Die oberen 3 Pilzkolonien beinhalten das Indolderivat Pityriacitrin. Die unteren 3 Pilzkolonien - getrennt durch die schwarze Markierung – stellen Zellkolonien des gleichen Pilzes ohne Pityriacitrin dar. Die Kolonien wurden einzeln abgeerntet, in NaCl gelöst, getrocknet und gewogen. Das Gewicht der Pilzzellen wurde mit Hilfe von Eichkurven in die Zellzahl umgerechnet und in Form von Diagrammen bildlich dargestellt. Die Auswertung der Diagramme ist in den Kapiteln 4.3.1.- 4.3.5. beschrieben.

Abb.4.24. *Exophiala dermatitidis* P201 nach Bestrahlung mit **UVA 100** und 5 Tagen Wachstum auf Selektiv-Agar. Oberhalb der Linie: mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Abb.4.25. *Exophiala dermatitidis* P201 nach Bestrahlung mit **UVA 150** und 5 Tagen Wachstum auf Selektiv-Agar. Oberhalb der Linie: mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Abb.4.26. *Exophiala dermatitidis* P201 nach Bestrahlung mit **UVA 200** und 5 Tagen Wachstum auf Selektiv-Agar. Oberhalb der Linie:

mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Abb.4.27. *Exophiala dermatitidis* P201 nach Bestrahlung mit **UVA 250** und 5 Tagen Wachstum auf Selektiv-Agar. Oberhalb der Linie: mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Abb.4.28. *Exophiala dermatitidis* P201 nach Bestrahlung mit **UVB 500** und 5 Tagen Wachstum auf Selektiv Agar. Oberhalb der Linie: mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Abb.4.29. *Exophiala dermatitidis* P201 nach Bestrahlung mit **UVB 1000** und 5 Tagen Wachstum auf Selektiv Agar. Oberhalb der Linie: mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Abb.4.30. *Exophiala dermatitidis* P201 nach Bestrahlung mit **UVB 1500** und 5 Tagen Wachstum auf Selektiv-Agar. Oberhalb der Linie: mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Abb.4.31. *Exophiala dermatitidis* P201 nach Bestrahlung mit **UVA 2000** und 5 Tagen Wachstum auf Selektiv-Agar. Oberhalb der Linie: mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Abb.4.32. *Exophiala dermatitidis* P202 nach Bestrahlung mit **UVA 200** und 5 Tagen Wachstum auf Selektiv-Agar. Oberhalb der Linie: mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Abb.4.33. *Exophiala dermatitidis* P202 nach Bestrahlung mit **UVB 500** und 5 Tagen Wachstum auf Selektiv-Agar. Oberhalb der Linie: mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Abb.4.34. *Exophiala dermatitidis* P202 nach Bestrahlung mit **UVB 1000** und 5 Tagen Wachstum auf Selektiv-Agar. Oberhalb der Linie: mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Abb.4.35. *Exophiala dermatitidis* P202 nach Bestrahlung mit **UVB 1500** und 5 Tagen Wachstum auf Selektiv-Agar. Oberhalb der Linie: mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Abb.4.36. *Exophiala dermatitidis* P202 nach Bestrahlung mit **UVB 2000** und 5 Tagen Wachstum auf Selektiv-Agar. Oberhalb der Linie: mit indolhaltigem Pigment, unterhalb der Linie: ohne Pigment.

Im Anhang sind die einzelnen Messergebnisse tabellarisch aufgeführt.

Die Abbildungen 4.37 – 4.40 stellen die Zellzahl in Millionen nach 5 Tagen Wachstum in Abhängigkeit von der jeweiligen Strahlendosis in Balkendiagrammen dar. Die dargestellten Daten sind die Mittelwerte der Mediane aus 6 unabhängigen Bestrahlungsversuchen. Die Mediane wurden aus 3 unabhängigen Werten erstellt. Die x-Achse zeigt die Dosis in mJ / cm² UVB bzw. J / cm² UVA die y-Achse die Zellzahl in Millionen. Zusätzlich wurde die Standardabweichung graphisch dargestellt. Bei stärkeren Dosen konnte zum Teil kein Pilzwachstum mehr festgestellt werden. Die Nullwerte wurden in die Berechnungen mit einbezogen. Signifikante Unterschiede Zellzahl Pilzen (p<0,05) der zwischen beiden bei einer mit Bestrahlungsintensität wurden einem Sternchen (*), hochsignifikante Unterschiede (p<0,001) mit zwei Sternchen (**) im Diagramm markiert. Tabelle 4.9 zeigt eine Übersicht der verwendeten Pilze und ihrem Bildungsvermögen von Melanin und Pityriacitrin.

	Melanin	Pityriacitrin
P202 auf Minimalagar	+	+
P202 auf nähstoffreichem Agar	+	-
P201 auf Minimalagar	-	+
P201 auf nähstoffreichem Agar	-	-

Tab. 4.8. Bildungsvermögen der verwendeten Isolate bzgl. Melanin und Pityriacitrin

4.3.1 Bestrahlung von Exophiala dermatitidis P201 mit UVA (weiße Mutante)

Abb. 4.37. Bestrahlungsergebnisse des Isolates *Exophiala dermatitidis* P201 mit UVA (Median aus 3 Pilzkulturen in 6 Einzelversuchen (n=6) +/- Standardabweichung, Signifikanzniveau festgelegt bei zweiseitigem p von< 0,05) (*UVA 250: p=0,001)

Abbildung 4.37 gibt das Ergebnis der Bestrahlung von *Exophiala dermatitidis* P201 mit UVA wieder. Diese Bestrahlung zeigt generell mit steigender Dosis der Bestrahlung (0 – 250 J / cm^2) eine Abnahme des Zellwachstums bei beiden Pilzen (p=0,001).

Die beiden Referenzplatten ohne Bestrahlung (Dosis 0) zeigen ein annähernd gleich ausgeprägtes Wachstum. Die Zellzahlen liegen bei 37,17 Mio. Zellen bei Pilz 1 und 36,46 Mio. Zellen bei Pilz 2. Es kann hiermit gezeigt werden, dass der Ausgangsnährboden für das Pilzwachstum keinen signifikanten Unterschied macht (p=0,390). Pilz 2 von dem Minimalagar 1b zeigt das gleiche Zellwachstum wie Pilz 1 von Selektiv Agar nach gleichzeitigem Ausstreichen auf frischem Selektiv Agar und 5 Tagen Wachstum. Trotzdem zeigt Pilz 1 eine größere Abnahme der Zellzahl als Pilz 2. Die Zellzahl fällt bei Pilz 1 von 37,17 (Referenzplatte) auf 17,99 Mio. Zellen bei 250 J / cm², bei Pilz 2 von 36,46 (Referenzplatte) auf 24,85 Mio. Zellen bei 250 J / cm² ab.

Pilz 1 zeigt bei einer Dosis von 100 J / cm^2 bezogen auf die Referenzplatte eine Abnahme um 3,47 Mio. Zellen. Bei einer Dosis von 250 J / cm^2 zeigt sich eine Abnahme der Zellzahl um 19,17 Mio. Zellen gegenüber dem Referenzwert.

Bei Pilz 2 zeigt sich bei einer Dosis von 100 J / cm² im Vergleich zur Referenzplatte eine Abnahme von 2,68 Mio. Zellen. Bei einer Dosis von 250 J / cm² zeigt sich eine Abnahme der Zellzahl um 11,61 Mio. Zellen gegenüber der Referenzplatte.

Bei einer Dosis von 250 J / cm² wachsen bei Pilz 2 7,56 Mio. Zellen mehr als bei Pilz 1, dieser Unterschied ist signifikant (p=0,001). Bei UVA 250 und UVA 200 ist Pilz 2 am besten geschützt. Die Wachstumsdifferenz zwischen den beiden Pilzen bei UVA 250 ist mit p=0,001 als signifikant eingestuft. Bei UVA 100 und UVA 150 zeigt sich kein signifikanter Unterschied in der Schutzwirkung des Pigmentes. Durch die 2-fache Varianzanalyse von Nährboden und Intensität konnte bestätigt werden, dass der Effekt der bestrahlten Dosis abhängig vom jeweiligen Nährboden ist (p<0,001). Die Intensität wirkt sich generell aus, auch unabhängig vom Nährboden (p<0,001).

4.3.2 Bestrahlung von Exophiala dermatitidis P201 mit UVB

Abb. 4.38. Bestrahlungsergebnisse des Isolats *Exophiala dermatitidis* P201 mit UVB (Median aus 3 Pilzkulturen in 6 Einzelversuchen (n=6) +/- Standardabweichung, Signifikanzniveau festgelegt bei zweiseitigem p von< 0,05) (*UVB 500 : p= 0,009) (*UVB 1000: p= 0,001) (*UVB 1500: p= 0,003)

Abbildung 4.38 gibt das Ergebnis der Bestrahlung von *Exophiala dermatitidis* P201 mit UVB wieder. Diese Bestrahlung zeigt generell mit steigender Dosis der Bestrahlung (0 – 2000 mJ / cm^2) eine Abnahme des Zellwachstum bei beiden Pilzen. Pilz 1 zeigt eine größere Abnahme der Zellzahl als Pilz 2.

Die Daten der UVB Bestrahlung wurden mit den gleichen Referenzplatten (Dosis 0) wie bei der UVA Bestrahlung verglichen. Die Zellzahl fällt bei Pilz 1 von 37,17 (Referenzplatte) auf 0,50 Mio. Zellen bei 250 J / cm^2 , bei Pilz 2 von 36,46 (Referenzplatte) auf 1,03 Mio. Zellen bei 250 J / cm^2 ab.

Bei Pilz 1 ist bei einer Dosis von 100 J / cm² bezogen auf die Referenzplatte eine Abnahme um 23,38 Mio. Zellen zu verzeichnen. Bei einer Dosis von 250 J / cm² zeigt sich eine Abnahme der Zellzahl um 36,67 Mio. Zellen gegenüber dem Referenzwert.

Bei Pilz 2 zeigt sich bei einer Dosis von 100 J / cm² im Vergleich zur Referenzplatte eine Abnahme von 20,17 Mio. Zellen. Bei einer Dosis von 250 J / cm² zeigt sich eine Abnahme der Zellzahl um 35,43 Mio. Zellen gegenüber der Referenzplatte.

Ein Vergleich von Pilz 1 zu Pilz 2 bei UVB 500, 1000 und 1500 zeigt jeweils einen signifikanten Wachstumsunterschied.

Die größte Differenz der Zellzahlen von Pilz 1 und Pilz 2 zeigt sich bei UVB 1000 mit 3,97 Mio. Zellen (p=0,001). Ähnlich zeigt sich die Differenz bei UVB 1500 mit 3,24 Mio. Zellen (p=0,003). Die geringste Differenz zeigt bei UVB 2000 mit 0,53 Mio. Zellen keinen signifikanten Unterschied.

Bei UVB 1500 konnte Pilz 1 bei 2 von 6 Einzelversuchen kein Wachstum verzeichnen. Bei UVB 2000 zeigte Pilz 1 bei 5 von 6 Einzelversuchen kein Zellwachstum, Pilz 2 zeigte bei 3 von 6 Einzelversuchen bei dieser Dosis kein Zellwachstum.

Bei einer Dosis von 2000 UVB sind beide Pilze nicht mehr ausreichend vor der UV Strahlung geschützt. Die Pigmente scheinen bei dieser Dosis keinen Schutz mehr zu bieten. Bei UVB 500, UVB 1000 und UVB 1500 zeigt sich jedoch, dass die Pigmente auch im UVB Bereich eine deutliche Schutzwirkung für den Pilz bieten.

4.3.3. Bestrahlung von Exophiala dermatitidis P202 mit UVA

Abb. 4.39. Bestrahlungsergebnisse des Isolats *Exophiala dermatitidis* P202 mit UVA (Median aus 3 Pilzkulturen in 6 Einzelversuchen (n=6) +/- Standardabweichung, Signifikanzniveau festgelegt bei zweiseitigem p von< 0,05) (*UVA 200: p= 0,025) (*UVA 250: p= 0,001)

Abbildung 4.39 gibt das Ergebnis der Bestrahlung von *Exophiala dermatitidis* P202 mit UVA wieder. Diese Bestrahlung zeigt analog der Bestrahlung von *Exophiala dermatitidis* P201 mit steigender Dosis der Bestrahlung (0 – 250 J / cm²) eine Abnahme des Zellwachstums bei beiden Pilzen. Pilz 4 zeigt eine größere Abnahme der Zellzahl als Pilz 3. Insgesamt zeigen beiden Pilze jedoch bei allen Dosen ein gutes Pilzwachstum.

Die beiden Referenzplatten ohne Bestrahlung (Dosis 0) zeigen ein annährend gleich ausgeprägtes Wachstum. Die Zellzahlen liegen bei 41,47 Mio. Zellen bei Pilz 3 und 41,13 Mio. Zellen bei Pilz 4. Es kann also auch für *Exophiala dermatitidis* P202 gezeigt werden, dass der Ausgangsnährboden für das Pilzwachstum keinen Unterschied macht. Pilz 4 von dem Minimalagar 1b zeigt das gleiche Zellwachstum wie Pilz 3 von Selektiv Agar nach gleichzeitigem Ausstreichen auf frischem Selektiv Agar und 5 Tagen Wachstum.

Die Zellzahl fällt bei Pilz 3 von 41,48 (Referenzplatte ohne Bestrahlung) auf 33,62 Mio. Zellen bei 250 J / cm², bei Pilz 4 von 41,13 (Referenzplatte) auf 31,73 Mio. Zellen bei 250 J / cm² ab. Trotz Bestrahlung wachsen bei beiden Pilzen noch über 30 Mio. Zellen. Die Pilze weisen insgesamt einen guten Schutz gegen UVA Bestrahlung auf, wobei bei UVA 200 und UVA 250 Pilz 3 von Selektiv Agar einen besseren Schutz bietet. Bei UVA 200 wachsen 2,60 Mio. Zellen mehr und bei UVA 250 wachsen 3,47 Mio. Zellen mehr bei Pilz 3 als bei Pilz 4. Beide Bestrahlungsintensitäten zeigen einen signifikanten Unterschied. Bei UVA 100 und UVA 150 wachsen die Pilze annährend gleich gut. Statistisch konnte gezeigt werden, dass sich die Bestrahlung abhängig vom jeweiligen Nährboden auswirkt (p<0,029) und sich die Intensität unabhängig vom Nährboden auswirkt (p<0,001).

4.3.4. Bestrahlung von Exophiala dermatitidis P202 mit UVB

Abb. 4.40. Bestrahlungsergebnisse des Isolats *Exophiala dermatitidis* P202 mit UVB (Median aus 3 Pilzkulturen in 6 Einzelversuchen (n=6) +/- Standardabweichung, Signifikanzniveau festgelegt bei zweiseitigem p von< 0,05) (*UVB 500 : p=0,003) (**UVB 1000: p=0,000) (**UVB 1500: P=0,001) (*UVB 2000: P=0,000)

Abbildung 4.40 gibt das Ergebnis der Bestrahlung von *Exophiala dermatitidis* P202 mit UVB wieder. Diese Bestrahlung zeigt generell mit steigender Dosis der Bestrahlung (0 – 2000 mJ / cm^2) eine Abnahme des Zellwachstums bei beiden Pilzen. Pilz 4 zeigt eine größere Abnahme der Zellzahl als Pilz 3.

Die Daten der UVB Bestrahlung wurden mit den gleichen Referenzplatten (Dosis 0) wie bei der UVA Bestrahlung verglichen.

Die Zellzahl fällt bei Pilz 3 von 41,48 (Referenzplatte) auf 31,73 Mio. Zellen bei 2000 mJ / cm^2 , bei Pilz 4 von 41,13 (Referenzplatte) auf 17,12 Mio. Zellen bei 2000 mJ / cm^2 ab.

Bei Pilz 3 ist bei einer Dosis von 500 mJ / cm^2 bezogen auf die Referenzplatte eine Abnahme um 4,33 Mio. Zellen zu verzeichnen. Bei einer Dosis von 2000 mJ / cm^2

zeigt sich eine Abnahme der Zellzahl um 9,75 Mio. Zellen gegenüber dem Referenzwert.

Bei Pilz 4 zeigt sich bei einer Dosis von 500 mJ / cm² im Vergleich zur Referenzplatte eine Abnahme von 7,51 Mio. Zellen. Bei einer Dosis von 2000 mJ / cm² zeigt sich eine Abnahme der Zellzahl um 24,02 Mio. Zellen gegenüber der Referenzplatte. Somit zeigt Pilz 4 bereits bei UVB 500 annährend den gleichen Verlust an Zellen wie ihn Pilz 3 erst bei UVB 2000 zeigt. Pilz 3 von 1b Agar als Ausgangsnährboden zeigt ein wesentlich schlechteres Wachstum als Pilz 4 mit Selektiv Agar als Ausgangsnährboden, beziehungsweise Pilz 3 bietet einen besseren Schutz gegen UVB Strahlen als Pilz 4. Der bessere Schutz von Pilz 4 vor UVB Strahlung zeigt sich generell bei allen Dosen. Bei UVB 1500 und UVB 2000 ist er aber am deutlichsten erkennbar. Statistisch konnte gezeigt werden, dass sich die Bestrahlung abhängig vom jeweiligen Nährboden (p<0,001) und sich die Intensität unabhängig vom Nährboden auswirkt (p<0,001). Die Pilze zeigen untereinander bei allen Intensitäten außer den Referenzplatten einen signifikanten Unterschied.

4.3.5 Vergleich von Exophiala dermatitidis P201 und P202

Der Vergleich von dem Melanin bildenden P202 (Pilz 1 und Pilz) zu seiner weißen Mutante P201 (Pilz 3 und Pilz 4) lässt sich am Besten prozentual, bezogen auf die jeweiligen Referenzplatten, darstellen. Es wurden Balkendiagramme verwendet. Die x-Achse zeigt die Dosis in J / cm^2 , die y-Achse % bezogen auf die jeweilige Referenzplatte.

4.3.5.1. Vergleich auf UVA

Abb. 4.41. Vergleich der Bestrahlungsergebnisse von P201 und P202 im UVA-Bereich

Es kann durch Abbildung 4.41 eindeutig gezeigt werden, dass *Exophiala dermatitidis* P202 einen besseren UVA Schutz bei allen Dosen aufweist. Dies lässt sich auf seinen Gehalt an Melanin zurückführen. Ein Vergleich beider Pilze von 1b Agar nach Pigmentproduktion (Pilz 2 und Pilz 4) zeigt ebenfalls ein besseres Wachstum von P202 (Pilz 4). Pilz 2 kommt dem Zellwachstum von Pilz 4 aber sehr nahe: Bei UVA 100 zeigt sich ein Unterschied im Wachstum von gerade 2,00 %, bei UVA 2000 ein Unterschied von 5,16 %.

Bei Pilz 2 ohne Melanin lässt sich das relativ gute Wachstum durch den zusätzlichen Schutz der Pigmente erklären. Bei Pilz 4 mit Melanin scheint das vorherige Wachstum auf dem Minimalagar den Pilz in seinem jetzigen Wachstum zu limitieren. Die Pigmente haben bei diesem Melaninhaltigen Pilz keinen additiven oder synergistischen Effekt auf das Wachstum.

Ein Vergleich beider Pilze von Selektiv Agar (Pilz 1 und Pilz 3) zeigt einen sehr deutlichen Unterschied im UVA Schutz. Pilz 3 (P202 von Selektiv Agar) zeigt durch seinen Melaningehalt und dem guten Wachstum auf Selektiv Agar einen potenten Schutz gegen UVA Strahlen. Nach Bestrahlung mit UVA 100 wachsen noch 95,20% der Pilzzellen, nach Bestrahlung mit UVA 2000 noch 81,06%. Pilz 1 ohne Melanin wächst nach Bestrahlung mit UVA 100 noch zu 90,66%, nach Bestrahlung mit UVA 2000 noch zu 48,42%. Der Melanin bildende Pilz wächst somit 32,64% besser als die Mutante auf dem gleichen Nährboden. Statistisch konnte unter Verwendung der Rohdaten in der 3-fachen Varianzanalyse gezeigt werden, dass P202 mehr Schutz bietet als P201 (p<0,001). Während auf Selektiv Agar der Schutz von P202 größer ist, sind die Wechselwirkungen auf 1b Agar relativ gleich (p<0,001).

4.3.5.2. Vergleich auf UVB

Abb. 4.42. Vergleich der Bestrahlungsergebnisse von P201 und P202 im UVB-Bereich

Nach Bestrahlung der Pilze mit UVB zeigt sich eindeutig ein besserer UVB Schutz bei dem Melanin bildenden *Exophiala dermatitidis* P202 (vergleiche Abbildung 4.42). Der Vergleich beider Pilze von 1b Agar nach Pigmentproduktion (Pilz 2 und Pilz 4) zeigt ein besseres Wachstum von Pilz 4. Der Melaninbildende Pilz 4 zeigt bei UVB 500 81,73 %, bei UVB 1000 71,48 %, bei UVB 1500 64,22 und bei UVB 2000 41,62 % Zellwachstum. Pilz 2 zeigt bereits bei UVB 500 nur noch 44,68 % Wachstum und bei UVB 1500 nur noch 14,43 %. Bei UVB 2000 sind von 6 Bestrahlungsversuchen nur noch bei 2 versuchen Pilze gewachsen. Aus diesem Grund ergeben sich für UVB 2000 nur noch 2,82 %. Der Pigmentbildende P201 zeigt zwar bei UVB 500, UVB 1000 und UVB 1500 ein besseres Wachstum als der P201 ohne Pigmentproduktion, im Vergleich zu einem Melaninhaltigen P202 ist der Unterschied jedoch wesentlich deutlicher. Einen sehr konstanten UVB Schutz bietet Pilz 3 (P202 von Selektiv Agar). Dieser Pilz zeigt bei UVB 2000 noch 76,51 % Wachstum. Dieser Pilz scheint durch das Melanin und durch einen besseren Ernährungszustand auch besser vor UVB geschützt zu sein. Pilz 1 ohne Melanin und ohne gebildetes Pigment fällt bereits bei UVB 500 auf 37,10 % Zellwachstum und nur noch 1,34 % bei UVB 2000. Statistisch konnte unter Verwendung der Rohdaten in der 3-fachen Varianzanalyse gezeigt werden, dass P202 mehr Schutz bietet als P201 (p<0,001). Während auf Selektiv Agar der Schutz von P202 größer ist, sind die Wechselwirkungen auf 1b Agar relativ gleich (p<0,001).

5. Diskussion

Bei Untersuchungen von Malassezia furfur wurde von Mayser et al. 1998 das Phänomen der Bildung von Pigmenten und Fluorochromen nach Zugabe von Tryptophan als alleiniger Stickstoffquelle zu einem Minimalagar beschrieben. Es konnte ein neuartiger Stoffwechselweg entdeckt werden, der bis heute noch nicht vollständig aufgeklärt wurde. Dem von *M.furfur* gebildeten Substanzgemisch wurde ein potenter Lichtschutz im Bereich von UVA-, UVB- und UVC-Strahlung zugeschrieben (Mayser et al. 1998). Im Rahmen einer Dissertationsarbeit konnten von Mayser et al. 2002 eine von M. furfur gebildete neuartige chemische Verbindung aus dem tryptophanhaltigen Minimalagar isoliert und erstmalig beschrieben werden, möglicherweise maßgeblich für die UV-protektiven Eigenschaften des die Substanzgemisches verantwortlich sein könnte. Mayser et al. vermuteten, dass das neu entdeckte Indolderivat mit der Summenformel C₂₀H₁₃N₃0 aufgrund seiner komplizierten Ringstruktur einen komplexen UV-Filter darstellt. Ein klinischer Bezug wurde zur Dermatomykose Pityriasis versicolor hergestellt, einer der häufigsten erregerbedingten Hauterkrankungen. Obwohl Hefen der Gattung Malassezia zur residenten Keimflora der menschlichen Haut gehören. können sie die Hauterkrankung auslösen. Unter den verschiedenen prädispositionierenden Faktoren spielt vor allem ein feuchtes Mikroklima und eine erhöhte Schweißneigung eine große Rolle. Die von M. furfur ausgelöste Mykose zeigt klinisch hyper- und insbesondere hypopigmentierte Areale, welche trotz der Hypopigmentierung keine erhöhte Sonnenempfindlichkeit aufweisen. (Mayser et al. 2002). Schon sehr früh wurde dieses Phänomen mit den von *M.furfur* gebildeten Substanzen in Zusammenhang gebracht (Machowinski et al. 2006).

Aufgrund seiner gelben Eigenfarbe und der erwarteten Beteiligung an dieser Dermatomykose wurde das von Mayser et al. neu entdeckte Indolderivat mit der Summenformel $C_{20}H_{13}N_30$ Pityriacitrin genannt (Mayser *et al.* 2002).

Weitere Untersuchungen sollten klären, ob es sich bei dem durch Tryptophan angeregten Stoffwechselweg, welcher unter anderem eine Substanz mit

möglicherweise potentem UV-Schutz bildet (Pityriacitrin), um einen bei Pilzen weit verbreiteten Stoffwechselweg handelt. Weiterführende Dissertationsarbeiten von Wenzel 2006 und Nies 2006 konnten in diversen phylogenetisch weit entfernten Pilzen, nach Zugabe von Tryptophan als alleiniger Stickstoffquelle zu einem Minimalagar, ebenfalls den oben genannten Stoffwechselweg nachweisen. Wieder konnte Pityriacitrin aus dem Substanzgemisch isoliert werden (Nies, 2006).

Nies beschrieb Pityriacitrin erstmalig bei 13 Isolaten von Exophiala dermatitidis (unter anderem auch bei Exophiala dermatitidis P201). Exophiala dermatitidis gehört zur Gattung der Schwärzepilze, welche Ihren Eigennamen aufgrund der Dunkelfärbung durch den Gehalt an Melanin tragen. Melanin wird unter anderem ein potenter UV-Schutz zugeschrieben (Hamilton & Gomez, 2002; Hamilton & Holdom, 1999; Jacobson, 2000; Langfelder et al. 2003). Es wurde daher vermutet, dass Exophiala dermatitidis die Anlagen für zwei verschiedene UV-Filtersysteme in seinem Genom verankert haben könnte: Melanin und die durch den neu beschriebenen Stoffwechselweg produzierten Substanzen. Dem Indolderivat Pityriacitrin wird hier eine maßgebliche Rolle zugeschrieben. Von diesen beiden UV-Filtern scheint das Melanin permanent, das Pityriacitrin nur in ganz speziellen Situationen genutzt zu werden (Nies, 2006). Mayser et al. konnten zeigen, dass der neu beschriebene Stoffwechselweg vermutlich nur in besonderen Mangelsituationen auftritt, in denen die Aminosäure Tryptophan die alleinige Stickstoffquelle darstellt. Der indolinduzierte zweite UV-Filter scheint also abhängig von dem neu beschriebenen tryptophaninduzierten Stoffwechselweg zu agieren und deshalb vermutlich nur in Situationen einer Mangelernährung einen UV-Schutz zu bieten.

Aufgabe dieser Arbeit war die Überprüfung der Hypothese, ob der Schwärzepilz *Exophiala dermatitidis* in seinem Genom zwei unterschiedliche Systeme zur Filterung von UV-Strahlung aufweist. Welches System bietet einen potenteren Schutz? Arbeiten beide Systeme synergistisch, additiv oder getrennt voneinander? Ergeben sich Vorteile für den Pilz durch einen zweiten UV-Schutz? Ist das zweite Filtersystem Ausdruck eines nicht mehr genutzten phylogenetisch sehr alten Stoffwechselwegs oder ergibt sich eine natürliche Situation für den zweiten UV-Filter?

Eine sinnvolle Untersuchung schien der Vergleich des melaninbildenden Wildstamms *Exophiala dermatitidis* P202 (ATCC No. 34100) mit einer im Melaninsyntheseweg veränderten weißen Mutante Exophiala dermatitidis P201 (ATCC No. 44504) zu sein, welche nicht befähigt ist, das vor UV-Strahlung schützende Pigment Melanin zu bilden. Beide Pilze sollten auf Selektiv Agar für pathogene Pilze bei normaler Wachstums- und Stoffwechselfunktion, aber auch unter Bedingungen der Mangelernährung unter Zugabe von Tryptophan als alleinige Stickstoffquelle zu dem Minimalagar 1b kultiviert werden. Es wird angenommen, dass das Pigment Pityriacitrin, wessen UV-schützende Eigenschaften bereits nachgewiesen wurden, maßgeblich für die UV-absorbierenden Eigenschaften der gebildeten Pigmente verantwortlich ist. Pityriacitrin wurde für die Bestrahlungsversuche nicht gesondert isoliert. Durch die Auswahl oben genannter Pilze für die folgenden Bestrahlungsversuche mit UVA und UVB sollten vier Varianten des UV-Schutzes miteinander verglichen werden. Der melaninbildende Ausgangsstamm P202 bildet unter normalen Wachstumsbedingungen Melanin als UV-Filter (Variante 1), unter Mangelernährung auf tryptophanhaltigem 1b Minimalagar Melanin und vermutlich auch Indolverbindungen als UV-Filter (Variante 2). Die melanindefekte Mutante P201 bildet unter normalen Wachstumsbedingungen keinen bekannten UV-Filter (Variante 3), oben genannten Mangelbedingungen jedoch UV-protektive unter Indolverbindungen, v.a. das beschriebene Pityriacitrin (Variante 4). Die Bildung von Pityriacitrin durch Exophiala dermatitidis P201 wurde bereits durch Nies 2006 beschrieben.

Ergebnisse dieser Arbeit konnten zunächst zeigen, dass P202 unabhängig vom Nährboden Melanin bildet, welches sich makroskopisch durch die bräunliche Verfärbung der Pilzkolonien darstellte. Auf tryptophanhaltigem Minimalagar konnte P202, genau wie die 13 anderen von Nies 2006 beschriebenen Isolate, zur Bildung von Pityriacitrin angeregt werden. Mit Hilfe der Dünnschichtchromatographie konnte das gewonnene Rohextrakt des Pilzes aufgetrennt und Pityriacitrin als gelbe Bande dargestellt werden. Die Identität des Pityriacitrins konnte durch den Rf-Wert und die spätere Untersuchung in der HPLC-Retentionszeit nachgewiesen werden. Das Ergebnis konnte von der TU München bestätigt werden.

Für die Bestrahlungsversuche wurden die zwei Pilze (*Exophiala dermatitidis* P201 und P202) zur Gewährleistung gleicher nutritiver Bedingungen zunächst für 6 Tage

auf Selektiv Agar für pathogene Pilze kultiviert. Anschließend wurden die Pilze jeweils 6 Tage auf tryptophanhaltigem Minimalagar zur Bildung von Pigmenten angeregt und ebenfalls auf nährstoffreichem Selektiv Agar für pathogene Pilze ohne Bildung von Pigment kultiviert. In sechs Einzelversuchen wurden beide Pilze mit UVA 100, 150, 200 und 250 J / cm² bzw. mit UVB 500, 1000, 1500, 2000 mJ / cm² in einmaliger Dosis unter standardisierten Bedingungen in vitro bestrahlt, nach 5 weiteren Wachstumstagen abgeerntet und gewogen. Das Gewicht wurde mit Hilfe zuvor angefertigter Eichkurven in die Anzahl der Zellen pro μ l umgerechnet. Die statistische Auswertung der Daten erfolgte in Zusammenarbeit mit dem Institut für medizinische Informatik der Justus Liebig Universität Gießen.

Die Ergebnisse konnten zeigen, dass die gebildeten Pigmente und das Melanin jeweils einen Schutz vor UV-Strahlung bieten, da die Pilze auch nach der Bestrahlung insgesamt ein gutes Wachstum zeigten.

Bestrahlungsversuche mit der weißen, im Melaninsyntheseweg defekten Mutante P201, welche nicht die Fähigkeit besitzt, Melanin zu synthetisieren, konnten zunächst herausstellen, in wieweit die gebildeten Indolpigmente einen Schutz bieten. Die weiße Mutante wurde auf tryptophanhaltigem 1b Agar zur Bildung von Pigment angeregt und mit dem gleichen Pilz ohne diese Pigmentbildung verglichen. Die pigmentbildende Mutante zeigte nach der Bestrahlung und 5 Tagen Wachstum auf Selektiv Agar für pathogene Pilze einen signifikant besseren Schutz bei UVA 250, UVB 500, UVB 1000 und UVB 1500 als die ungeschützte Mutante. Diese Ergebnisse beweisen, dass vor allem im Bereich der UVB-Strahlung der pigmentierte Pilz einen Wachstumsvorteil hat.

In Bestrahlungsversuchen mit dem melaninbildenden Ausgangsstamm P202 konnten die UV-protektiven Eigenschaften von Melanin aufgezeigt werden. Es sollte an dieser Stelle untersucht werden, ob sich beide UV-Filtersysteme untereinander ergänzen. Der pigmentbildende Ausgangsstamm zeigte jedoch ein schlechteres Zellwachstum nach der Bestrahlung, als der Pilz ohne Indolpigmentbildung, also mit reinem Melanin-Schutz. Nach der Bestrahlung und 5 Tagen Wachstum auf Selektiv Agar für pathogene Pilze zeigten sich bei UVA 200, UVA 250, UVB 500 und UVB 1500 signifikante (p<0,05) Wachstumsunterschiede, bei UVB 1000 und UVB 2000 hochsignifikante (p<0,001) Wachstumsunterschiede. Die Tatsache, dass der mit zwei

UV-Filtern geschützte P202 ein schlechteres Zellwachstum aufweist, lässt vermuten, tryptophanhaltigen dass dieses Ergebnis mit dem Minimalagar als Ausgangsnährboden in Zusammenhang steht. Die Mangelernährung könnte zu dem Wachstumsnachteil geführt haben. Bei ausgeglichenem Ernährungszustand hätte sonst bei beiden Pilzen zumindest ein vergleichbarer UV-Schutz erwartet werden können, da beide Pilze Melanin produzieren. Ein synergistischer oder additiver Effekt beider UV-Filter konnte nicht festgestellt werden. Einen schlechteren Schutz vor UV-Strahlung bei Vorhandensein von zwei UV-Filtern lässt auch die Frage zu, ob beide Wege miteinander in Konkurrenz stehen. Die Verwendung des gleichen Enzymsystems durch beide UV-Filter wäre eine gute Erklärung für einen schlechteren UV-Schutz vor allem im Bereich des Melanins. Eine gehemmte Melaninproduktion könnte hier zu einem verminderten UV-Schutz führen, welcher auch durch das zusätzlich vorhandene zweite UV-Filter System nicht vollständig ausgeglichen werden kann.

Ein prozentualer Vergleich aller vier Varianten zeigt, dass Melanin den besten Schutz vor UVA- und UVB-Strahlung bietet. Der Pilz mit beiden UV-Filtern zeigt das zweitstärkste Zellwachstum, gefolgt von dem Pilz mit Pityriacitrin als UV-Schutz und dem Pilz ohne UV-Filter. Im Bereich der Bestrahlung mit UVA zeigen sich die Wachstumsunterschiede nicht so ausgeprägt, wie bei der Bestrahlung mit UVB. Nach der Bestrahlung mit UVB zeigt sich P201 mit und ohne Pityriacitrin deutlich schlechter geschützt als P202 mit und ohne Pityriacitrin. Bei UVB 2000 zeigt die Mutante, mit oder ohne Pityriacitrin, kein Zellwachstum mehr, wobei P202 mit Melanin als einzigen UV-Filter noch 76,51% Zellwachstum gewährleistet. Auch P202 vom 1b Minimalagar weist mit 41,62% noch einen guten UVB-Schutz auf.

Die vorliegende Studie konnte nach Wenzel 2006 und Nies 2006 einen weiteren Pilz beschreiben, welcher in der Lage ist, indolhaltige Pigmente unter Mangelbedingungen und der Zugabe von Tryptophan als alleinige Stickstoffquelle zu synthetisieren: *Exophiala dermatitidis* P202. Der Nachweis von Pityriacitrin in dem Marinebakterium *Paracoccus* (Stamm F-1547), welches auf den Klippen im Japanischen Meer hohen Lichtbelastungen ausgesetzt ist, lässt vermuten, dass es sich um einen in der Pflanzenwelt weit verbreiteten Stoffwechselweg handelt. Der von der japanischen Forschergruppe entdeckte Stoff wurde jedoch nicht weiter charakterisiert. Mayser *et al.* vermuten bereits, Pityriacitrin auch in Algen nachweisen zu können.

Die UV-absorbierenden Eigenschaften der Pigmente und v.a. des Indolderivates Pityriacitrin konnte in dieser Studie bestätigt werden. Weitere Studien belegen, dass eine Zunahme der UV-Intensität das Wachstumsverhalten von Pilzen und Mikroorganismen stark einschränkt.

In Bestrahlungsversuchen konnte Faergemann 1986 zeigen, dass viele unterschiedliche Mikroorganismen, die zur Standardflora der menschlichen Haut gehören, durch UVA- und UVB-Exposition in ihrem Wachstum gehemmt werden. (Faergemann & Larkö, 1987).

1988 führten Rivers et al. eine Doppelblindstudie mit Malassezia Hefen in den seborrhoischen Arealen des oberen Rückens durch. Die Zahl der Malassezia Hefen zeigte sich nach der UV-Exposition verringert (Rivers *et al.* 1989).

1989 bestätigten Wikler et al. ebenfalls, dass das Wachstum von *Pityrosporon*-Hefen (heute: *M.furfur*) durch UV-Licht eingeschränkt wird. (Wikler *et al.* 1990).

1998 führten Pape *et al.* an sechs Isolaten von *M. furfur* Bestrahlungsversuche durch. Erstmalig wurden hier die unter Mangelbedingungen und Zugabe von Tryptophan als alleiniger Stickstoffquelle produzierten Pigmente auf ihre UV-protektive Eigenschaften untersucht. Bei den auf Tryptophan angezüchteten Hefen war das Wachstum weniger stark gehemmt als bei denen auf Arginin. Die Unterschiede der beiden Wachstumsraten der jeweiligen Pilzstämme waren besonders in hohen UVA- und UVB-Bereichen signifikant, was auch in dieser Studie bei *Exophiala dermatitidis* beobachtet wurde. Es wurde damals vermutet, dass *M.furfur* unter tryptophanhaltigen Bedingungen einen noch unbekannten UV-Filter synthetisiert, welcher den Pilzen trotz UV-Bestrahlung ein ausgeprägtes Wachstum im Vergleich zu den Vergleichsplatten erlaubte.

Voß *et al.* führten 2003 Bestrahlungsversuche mit *M.furfur* durch, wobei die Pilze in trptophanabhängige Pigmente gebadet wurden. Das Zellwachstum zeigte sich wiederum durch die Bestrahlung mit UVA und UVB hauptsächlich bei höheren Dosen signifikant reduziert. Ein größeres Zellwachstum ließ sich bei den auf

tryptophanhaltigem Minimalagar gewachsenen Pilzen feststellen. Durch Baden der Zellen vor der Bestrahlung in Rohextrakt konnten vor allem im UVB-Bereich signifikant höhere Wachstumsraten erzielt werden. Dieses Ergebnis konnte zeigen, das nicht der Pilz selbst, sondern eine Substanz aus dem Rohextrakt für das bessere Zellwachstum verantwortlich ist. Es wurde vermutet, dass sie auch zum UV-Schutz anderer Zellen angewendet werden kann.

Die Ergebnisse von Faergemann 1986, Rivers 1988, Wikler 1989 und Pape 1998 demonstrieren mit *M.furfur* ein ähnliches Ergebnis wie auch in dieser Studie mit *Exophiala dermatitidis*. UVA- und UVB-Bestrahlung hemmen generell das Wachstum der Pilze. Pape konnte nachweisen, dass die auf tryptophanhaltigem Minimalagar gewachsenen Pilze mehr Zellwachstum aufwiesen. Voß isolierte das Rohextrakt und konnte somit die Pilze gezielt darin baden, wodurch sich, wie ebenfalls in dieser Studie gezeigt werden konnte, vor allem bei höheren Intensitäten und bei UVB-Bestrahlung signifikante Unterschiede aufzeigten. In dieser Studie konnte anhand der Bestrahlung des Schwärzepilzes *Exophiala dermatitidis* ein Vergleich zwischen den lichtschützenden Indolderivaten und dem Melanin angestellt werden.

Der von Mayser *et al.* beschriebene Stoffwechselweg und die damit verbundene Produktion des UV-absorbierenden indolderivates Pityriacitrin lassen einen Vergleich zu weiteren bekannten potenten UV-Filtern zu, wie die Mycosporine-like amino acids (MAAs), das Scytonemin und die Flavonoide.

Mycosporine-like amino acids (MAAs) werden von vielen Organismen als natürlicher UV-Filter produziert. Sie schützen die Organismen weitestgehend im UVA- und im UVB-Bereich. In einem einzelnen Organismus kann der UV-Schutz von 320-400 nm mit einem Peak bei 310 bis 360 nm reichen. Die Produktion von MAAs kann durch UV-Bestrahlung angeregt werden, was bei Pityriacitrin bisher noch nicht untersucht wurde. Nachgewiesen wurde dieser Mechanismus unter anderem in Pilzen, Korallen, Geißeltierchen und Cyanobakterien (Garcia-Pichel & Castenholz, 1993; Garcia-Pichel, Sherry & Castenholz, 1992). MAAs zeigen insgesamt einen schwachen Schutz (Garcia-Pichel & Castenholz, 1993).

Von Cyanobakterien wird angenommen, dass Sie mit zu den ersten Organismen auf der Erde gehörten. Wahrscheinlich dienten MAAs bereits im Archaikum zunächst neben der UVC-Filterung hauptsächlich als Schutzsystem vor UVB-Strahlung. Später, nach Anstieg des Sauerstoffgehaltes auch als UVA-Filter (Garcia-Pichel, 1998).

Scytonemin konnte ebenfalls als UV-Filter identifiziert werden. Bereits 1877 wurde eine Braunfärbung von Cyanobakterien von Nägli & Schwenderer beschrieben, die später als Scytonemin identifiziert wurde (Cockell & Knowland, 1999). Es zeigt einen effektiven UV-Schutz im Bereich der UVA-Strahlung mit einem Maximum bei 370 nm. Die Produktion von Scytonemin wird ähnlich den MAAs proportional zur Intensität von UVA und sichtbarem Licht induziert (Garcia-Pichel *et al.* 1992).

Garcia-Pichel et al. untersuchten 1992 den Einfluss von Scytonemin auf das Cyanobakterium *Chlorogloeopsis sp.*. Es zeigte sich, dass bei Kulturen mit angereichertem Scytonemin das Zellwachstum ausgeprägter war als bei den Kontrollgruppen (Garcia-Pichel *et al.* 1992). Ein einzelliges Cyanobakterium (ohne Zellverband) filtert bis zu 60% der UV-Strahlung von 320 nm durch den kombinierten Schutz von Scytonemin als extrazellulären UV-Filter und den MAAs als intrazellulären UV-Filter (Garcia-Pichel & Castenholz, 1993).

Aufgrund Ihres Stoffwechsels, der Photosynthese, sind viele Pflanzen abhängig von den Sonnestrahlen. Flavonoide werden deshalb von vielen Pflanzen als natürlicher UV-Filter produziert. Flavonoide können durch UVB angeregt werden und in manchen Pflanzen (z.B. *Petroselinum hortense*) einen linearen Zusammenhang zwischen UVB-Bestrahlung und Flavonoidkonzentration zeigen. Auch wurde die Induktion durch UVA beschrieben. Einige Flavonoide zeigen einen Schutz im UVAund UVB-Bereich. Die meisten Pflanzen synthetisieren jedoch eine Bandbreite von Flavonoiden, wodurch der UV-Schutz noch effizienter wird (Cockell & Knowland, 1999).

Ein signifikanter UV-Schutz von Pityriacitrin konnte im Bereich von UVA- und UVB-Strahlung in dieser Studie belegt werden. Im Gegensatz zu den MAAs, dem Scytonemin und den Flavonoiden scheinen die von *Exophiala dermatitidis* gebildeten Substanzen jedoch nur unter bestimmten Mangelbedingungen induzierbar zu sein. Eine Verstärkung der Pityriacitrinproduktion durch UV-Bestrahlung konnte makroskopisch nicht festgestellt werden, wie es bei den MAAs, Scytonemin und den Flavonoiden der Fall ist. Diese Fähigkeit wurde aber in dieser Studie nicht gesondert untersucht. Cyanobakterien zeigen durch die Produktion einer Bandbreite unterschiedlicher Stoffe einen additiven bzw. synergistischen Effekt. Dieser kann bei *Exophiala dermatitidis* nicht beschrieben werden.

Mayser et al. konnten 2002 ein breites UV-Absorptionsspektrum von Pityriacitrin feststellen. Seine Absorptionsmaxima liegen bei 212 nm, 289 nm, 315 nm und 389 nm (Mayser *et al.* 2002). Pityriacitrin absorbiert also im UVA-, UVB- und vor allem aber auch im Bereich der UVC-Strahlung (Siehe Abbildung 1.4. auf Seite 10). Dieser Sachverhalt lässt vermuten, dass es sich bei dem neu beschriebenen Stoffwechselweg, genau wie bei dem von Scytonemin und den MAAs, um einen phylogenetisch sehr alten Weg handelt.

Im Zeitalter des Archaikums (3.800 bis 2.500 mya) war die intensive solare UV-Strahlung auf der Erde ein großes Problem für die Entstehung präbiotischer Reaktionen. Die schützende Ozonschicht hatte sich noch nicht entwickelt. UVB- und UVC-Strahlung trafen ungehindert auf die Erdoberfläche und verhinderten weitestgehend biologische Reaktionen. Ein Schutz vor den lebensfeindlichen Strahlen war für alle derzeit vorherrschenden Mikroorganismen essentiell. Die Evolution brachte unterschiedliche Schutzstrategien zum Vorschein, welche hauptsächlich die Meidung von UV-Strahlung, die Produktion von schützenden Substanzen und die Reparaturmechanismen des Organismus durch DNA-Reparatur beinhalteten. Da eine vollständige Meidung vor Ultraviolettstrahlung für viele Organismen nicht möglich war und die entwickelten Reparaturmechanismen nur bis zu einem bestimmten Grad der Schädigung von nutzen waren und nie den optimalen Ausgangszustand wieder herstellen konnten, stellten sich bald Substanzen heraus, die unter anderem dem UV-Schutz dienten. (Cockell & Knowland, 1999). Der von Mayser et al. beschriebene Stoffwechselweg könnte dieser Zeit entstammen, einer Zeit in der UVC-Strahlung vorherrschend war. Es scheint sich also um ein sehr altes Genom zu handeln, welches in früherer Zeit wichtig für das Überleben der vorherrschenden Mikroorganismen war, welche gleichzeitig die Grundlage für die Entwicklung der später auftretenden Tier- und Pflanzenwelt darstellten.

Die Notwendigkeit eines potenten UV-Filters in der Tier- und Pflanzenwelt ist unumstritten. Der neu beschriebene Stoffwechselweg scheint jedoch nur unter invitro Bedingungen induzierbar zu sein. Eine natürliche Situation für den Stoffwechselweg konnte bei *Exophiala dermatitidis* bisher noch nicht beschrieben werden. Es muss sich aber um einen Zustand handeln, in dem die Aminosäure Tryptophan als alleinige Stickstoffquelle vorhanden ist. Dies könnte auch dadurch entstehen, dass der Pilz zunächst alle anderen, für ihn besser verwertbaren Aminosäuren verstoffwechselt und letztendlich nur noch das Tryptophan zur Verfügung steht.

Liappis *et al.* führten 1980 Versuche mit 20 gesunden jungen Männern in einer Sauna durch. Es wurden definierten Abständen Schweißproben am Unterarm der Probanden entnommen. Es konnte gezeigt werden, dass durch exzessives Schwitzen die Aminosäure Tryptophan möglicherweise als alleinige Stickstoffquelle auf der Haut zur Verfügung steht (Liappis *et al.* 1980). Auf der menschlichen Haut könnte also das Schwitzen eine natürliche Situation für den beschriebenen Stoffwechselweg darstellen.

lässt sich ein Zusammenhang zwischen dem neu beschriebenen Auch Stoffwechselweg und der Dermatomykose Pityriasis versicolor geben. Die Pityriasis versicolor zeigt im klinischen Bild depigmentierte Areale, welche nicht stärker sonnenempfindlich sind als gesunde Areale. Bei der im klinischen Erscheinungsbild ähnlichen autoimmunen Hauterkrankung Vitiligo, bei der aufgrund von Melanozytenverlust weiße, pigmentfreie Hautflecken, auftreten, werden gehäuft Sonnenbrände beobachtet (Mayser et al. 2002). Die sonnenunempfindlichen Areale scheinen durch das Vorhandensein von M.furfur als Hauptverursacher der Erkrankung vor der Sonneneinstrahlung geschützt zu sein.

Für den Menschen könnte die Erforschung des neu beschriebenen Stoffwechselwegs eine weitere Möglichkeiten sein, dem optimalen Schutz vor UV-Strahlen näher zu kommen. Durch den Anstieg der Umweltschadstoffe in der Erdatmosphäre und der damit verbundenen Schädigung der Ozonschicht nimmt die UV-Belastung stetig zu. Als Beispiel soll hier die australische Bevölkerung genannt werden, die sich aufgrund der Abnahme der UV-Schicht über dem australischen Kontinent immer besser schützen muss. Die Erforschung von potenten natürlichen UVC-Filtern könnte das gehäufte Auftreten von schweren Hauterkrankungen minimieren.

Unter starker UV-Bestrahlung beginnt die menschliche Haut nicht nur zu schwitzen, sondern bildet reaktive Sauerstoffverbindungen (ROS- reactive oxygen species), welche zum großen Teil von UVA, aber auch von UVB-Strahlung getriggert und schließlich zu Zellschädigung führen können. Zu den ROS gehören das Sauerstoffradikal 0²⁻, Wasserstoffperoxid H₂0₂, das Hydroxylion OH⁻ und Sauerstoff 0₂. In Tierversuchen mit Mäusen konnte Yasui 2000 das Auftreten der oben genannten ROS nachweisen. Das Sauerstoffradikal 0²⁻ trat nach Bestrahlung spontan auf, 0₂ nur auf durch UV-Strahlung irritierter Haut (Yasui & Sakurai, 2000). Wojtaszek beschreibt 1997 das Auftreten der ROS als normale Abwehrreaktion auf Umweltreize bei Pflanzen (Wojtaszek, 1997). Die Abwehrreaktion kann bei der menschlichen Haut eine sichtbare Entzündungsreaktion in Form eines Lichterythems auslösen. Freie Sauerstoffradikale beteiligen sich an der charakteristischen Zellformation bei Sonnenbränden und dem verminderten Auftreten von Langerhans Zellen nach UV-Bestrahlung (Hruza & Pentland, 1993).

Die Aminosäure Tryptophan zeigt sich vor allem unter UVB-Bestrahlung als Photoreaktiv. Es ist an der Produktion von 0_2 und 0^{2-} Radikalen beteiligt und nimmt somit indirekt Einfluss auf die Membran-, Zytoplasma- und DNA-Schädigung der Zellen (Babu & Joshi, 1992). Der von Mayser *et al.* beschriebene Stoffwechselweg könnte zu einer Reduktion der ROS führen, indem von entsprechenden Pilzen Tryptophan verstoffwechselt wird.

Das seit 40 Jahren und von vielen Autoren beschriebene gehäufte Auftreten von Hautkrebs erfordert einen potenten Schutz vor den irritierenden UV-Strahlen. Berking stellt aufgrund des gehäuften Auftretens von Melanomen der menschlichen Haut die Effektivität der Sonnencremes in Frage (Berking, 2005). Pityriacitrin könnte möglicherweise in eine neue Richtung des UV-Schutzes weisen, indem es durch seine Produktion vor der exzessiven Entstehung von reactive oxygen species Zusammenhang schützt. Voß vermutet einen zwischen der geringen Sonnenbrandneigung in den depigmentierten Arealen der Pityriasis versicolor und dem verminderten Auftreten von reaktiven Sauerstoffverbindungen (Voß, 2003). Afag beschreibt 2002 die Entwicklung neuer Schutzstrategien gegen das Auftreten von

Hautkrebs als ein hochangestrebtes Ziel der Wissenschaft. Er schlägt vor, Substanzen gegen das gehäufte Auftreten von ROS zu entwickeln und somit der Entstehung von Hautkrebs entgegenzuwirken. Eine Kombination von pflanzlichen Antioxidantien, Sonnencremes und der Vermeidung exzessiven Sonnenbadens erscheint ihm eine angemessene Strategie zu sein (Afaq *et al.* 2002; Afaq & Mukhtar, 2002)

Eine weitere Aussage, die dieser Arbeit zu entnehmen ist, ist die Bestätigung von Melanin als potenten UV-Filter. Das Pigment Melanin ist in der internationalen Literatur gut untersucht. Die internationale Literatur beschreibt Melanin als Pathogenitätsfaktor. DOPA-Melanin und DHN-Melanin sind beide Pathogenitätsfaktoren (Hamilton & Gomez, 2002; Jacobson, 2000; Kwon-Chung *et al.* 1982; Wheeler & Bell, 1988a).

Die Inzidenz von Pilzerkrankungen ist in den letzten Jahren, aufgrund der Zunahme immunsupprimierter Patienten stark gestiegen (Garcia-Ruiz, Amutio & Ponton, 2004). Dieser Sachverhalt stellte die Erforschung von Pathogenitätsfaktoren in den Mittelpunkt der Untersuchungen. Die eigentliche Virulenz eines Erregers entsteht aus einem komplexen Zusammenspiel zwischen Erreger und Wirt (Kurokawa, Sugizaki & Peracoli, 1998). Dem Erreger wird nicht durch einen einzigen Faktor erlaubt, eine Erkrankung bei dem Wirt auszulösen. Eine Vielzahl von Pathogenitätsfaktoren ist meist an der breiten Palette der Erkrankungen, von leichten bis zu letalen systemischen Mykosen, beteiligt.

Zunächst wird zwischen primär pathogenen Pilzen und opportunistisch pathogenen Pilzen unterschieden. Primär pathogene Pilze sind in der Lage, auch bei völlig gesunden, nicht immunsuppressierten Patienten, eine schwere Erkrankung auszulösen (z.B. *Coccidioides immitis, Histoplasma capsulatum, Blastomyces dermatitidis, Paracoccidioides brasiliensis*) (Nies, 2006; Odds, Gow & Brown, 2001). Das bedeutet, dass sie die intakten Abwehrmechanismen des Wirts durchbrechen müssen. Abwehrmechanismen sind natürliche Barrieren wie Haut und Schleimhaut, die normale Flora der Haut, Zilien clearance, fungostatische Produkte im Serum (Metall Chelatoren), das Komplement-System und Antikörper (Levitz, 1992; Shoham & Levitz, 2005). Meistens sind jedoch opportunistisch pathogene Pilze der Auslöser, welche nicht in der Lage sind, gesunde Patienten zu infizieren (z.B. *C. albicans, A.fumigatus*).

Kwon-Chung et al. untersuchte die Virulenz von vier unterschiedlich wachsenden *Cr. neoformans*-Isolaten an Mäusen. Er konnte Melanin als Pathogenitätsfaktor herausstellen (Kwon-Chung *et al.* 1982). Jacobson konnte die Melaninresistenz gegen Oxidantien nachweisen. (Jacobson & Tinnell, 1993). Auch Wang konnte 1994 bestätigen, dass der melanisierte *Cr. neoformans* gegen Oxidantien weniger anfällig ist (Wang & Casadevall, 1994a; Wang & Casadevall, 1994b). Eine weiße Mutante (Mel-) von *Cr. neoformans* zeigte unter der Electron Spin Resonance (ESR) Spektroskopie eine wesentlich höhere Anfälligkeit gegen Stickstoff- und Sauerstoff-Radikale als der Wildstamm (Mel+) und ebenfalls eine geringere Phenoloxidase Aktivität (Wang, Aisen & Casadevall, 1995). Doering bewies 1999, dass Melanin diverse Proteine und Peptide, wie Defensin, Protegrin und Magainin, bindet und somit eine schützende Funktion für die Zelle bietet (Doering *et al.* 1999).

Ein Vergleich der weißen Mutante Exophiala dermatitidis P201 (Mel3) mit dem Wildstamm P202 bezüglich der Virulenz an Mäusen zeigte eine signifikant geringere Virulenz der melaninlosen Mutante Mel 3 gegenüber dem melaninhaltigen Wildstamm. Untersucht wurden die Überlebensrate, Infektionszeichen im ZNS und histologische Präparate diverser Organe. Nach 21 Tagen Inkubation nach intravenöser Injektion des Pilzes zeigte der Wildstamm 100% Mortalität, die Mutante jedoch keine Mortalität (Dixon, Polak & Szaniszlo, 1987). 2 Jahre später konnte das Ergebnis nochmals bestätigt werden (Dixon, Polak & Conner, 1989). 1992 wurde der Wildtyp P202 mit einer melaninhaltigen (Mc3) und einer Melaninlosen (Mc3W) Mutante an Mausversuchen verglichen. Die Melaninhaltige Mutante zeigte genau wie der Wildstamm nach intravenöser Injektion eine Mortalität von 100%, wobei die Melaninlose Mutante weniger virulent war (Dixon et al. 1992). Uijthof beschrieb 1994, dass derselbe genetische Stamm der schwarzen Hefe Exophiala dermatitidis in Asien und Europa unterschiedlich pathogen ist. Dies scheint an immunologischen Differenzen und dem häufigeren Kontakt mit dem Pilz in Asien zusammenzuhängen (Uijthof et al. 1994). 1999 untersuchte Schnitzler die Pathogenität des Wildstamms P202 und der Mutante P201 (Mel3). Es konnte gezeigt werden, dass P201 weniger virulent war als der Wildstamm. Durch cross-feeding wurde daraufhin die Mutante

melanisiert, der Wildstamm durch Wachstum auf einem low-pH Medium albanisiert. Der weiße Wildstamm zeigte daraufhin eine geringere Virulenz, die melaninhaltige Mutante eine hohe Virulenz (Schnitzler *et al.* 1999).

Die Rolle von Pityriacitrin als Pathogenitätsfaktor wurde bislang noch nicht hinreichend untersucht. Da Pityriacitrin zusammen mit weiteren Pigmenten nur unter bestimmten Mangelbedingungen gebildet wird und derzeit für *Exophiala dermatitidis* keine natürliche Situation für den von Mayser et al. beschriebenen Stoffwechselweg bekannt ist, erklärt sich das o.g. Ergebnis von Schnitzler et al. für die weiße Mutante *Exophiala dermatitidis* P201. Der vermutete Zusammenhang von Pityriacitrin und der Dermatomykose Pityriasis versicolor lässt jedoch auch bei dem von Mayser et al. erstmalig beschriebene Indolderivat eine Rolle als Pathogenitätsfaktor nicht ausschließen.

Abschließend können die Eingangs gestellten Fragen wie folgt beantwortet werden:

- In dieser Studie konnte erstmals nachgewiesen werden, dass der Wildstamm Exophiala dermatitidis P202 unter bestimmten Voraussetzungen in der Lage ist, zwei unterschiedliche UV-Filter zu synthetisieren (Melanin und Pityriacitrin). Die Induzierbarkeit des neu beschriebenen Stoffwechselwegs konnte ebenfalls bei Exophiala dermatitidis P201 bestätigt werden. Melanin und den gebildeten Indolderivaten konnte jeweils ein UV-Schutz nachgewiesen werden.
- Melanin tritt als permanenter UV-Filter im Bereich von UVA- und UVB-Strahlung in den Vordergrund. Der von Mayser et al. neu beschriebene Stoffwechselweg und damit auch die Produktion von Pityriacitrin ist nur durch Wachstum des Pilzes unter Mangelbedingungen auf Minimalagar und der Zugabe von Tryptophan als alleinige Stickstoffquelle induzierbar.
- Die in vitro Versuche konnten zeigen, das Melanin wahrscheinlich den potenteren UV-Filter im Bereich von UVA- und UVB-Strahlung darstellt. Eine Kombination beider UV-Filter zeigt einen schlechteren UV-Schutz bei steigenden Intensitäten, gefolgt von dem UV-Schutz durch die Indolderivate.

Das schlechteste Wachstum nach UV-Bestrahlung zeigte der Pilz ohne UV-Schutz.

- Die UV-Filter zeigten keinen synergistischen oder additiven Effekt. Ein konkurrierendes Verhalten beider Systeme lässt sich vermuten.
- Bei dem von Mayser et al. neu beschriebenen Stoffwechselweg lässt sich aufgrund seines breiten UV-Absorptionsspektrums und besonders der Fähigkeit im Bereich von UVC-Strahlung zu absorbieren ein phylogenetisch sehr alter Stoffwechselweg vermuten, die bis auf das Erdzeitalter des Archaikums zurückzuführen sein könnte.
- Bisher ist keine natürliche Situation beschrieben worden in der Exophiala dermatitidis den zweiten Stoffwechselweg anwendet. Es scheint zu einem sehr alten Genom zu gehören, welches dem Pilz in der heutigen Zeit keine bisher bekannten Vorteile bringt.
- Für zukünftige Studien sollte über Pityriacitrin als möglichen Pathogenitätsfaktor nachgedacht werden. Bei der Dermatomykose Pityriasis versicolor lässt sich eine Rolle von Pityriacitrin in *M.furfur* als Pathogenitätsfaktor nicht vollständig ausschließen (Machowinski et al. 2006). Des Weiteren könnte die Erforschung von UVC-Filtern, wie dem Pityriacitrin, bei weiterer Abnahme der Ozonschicht immer mehr an Bedeutung gewinnen. Auch könnten über weitere Forschungen hinsichtlich der Minimierung von Reactive Oxygen Spezies (ROS) durch Pilze mit oben beschriebenem Stoffwechselweg nachgedacht werden.

6. Zusammenfassung

Durch Zugabe von Tryptophan als alleiniger Stickstoffquelle zu einem Minimalagar konnten Mayser et al. den Hefepilz *M. furfur* zur Bildung von Pigmenten und Fluorochromen anregen. Es wurde eine neuartige chemische Verbindung isoliert und erstmalig beschrieben, welche einen komplexen UV-Filter darstellt. Das Indolderivat mit der Summenformel C₂₀H₁₃N₃O wurde Pityriacitrin genannt (Mayser *et al.* 1998; Mayser *et al.* 2002). Nachdem phylogenetisch weit entfernte Pilze ebenfalls zur Pigmentproduktion angeregt werden konnten (Nies, 2006), vermuteten Mayser et al., dass der in der internationalen Literatur gut untersuchte melaninbildende Wildstamm des Schwärzepilzes *Exophiala dermatitidis* P202 (ATCC No. 34100) zwei verschiedene UV-Filtersysteme in seinem Genom verankert haben könnte: Melanin und die durch den neu beschriebenen Stoffwechselweg produzierten Substanzen.

Durch Bestrahlung von *Exophiala dermatitidis* P202 und einer melaninlosen weißen Mutante *Exophiala dermatitidis* P201 (ATCC No. 44504) mit UVA und UVB sollten die UV-filternden Eigenschaften der neu beschriebenen Substanzen herausgestellt und mit der des Melanins verglichen werden.

Die Pigmentbildung von *Exophiala dermatitidis* P202 wurde nach Kultivierung auf tryptophanhaltigem Minimalagar dünnschichtchromatographisch und durch die HPLC (high liquid performance chromatography) untersucht. Die pigmentbildenden Eigenschaften von P201 konnten bereits von Nies 2006 nachgewiesen werden.

In 6 Einzelversuchen wurden P201 und P202 jeweils 6 Tage auf tryptophanhaltigem Minimalagar zur Bildung von Pigmenten angeregt und ebenfalls 6 Tage auf nährstoffreichem Selektiv Agar für pathogene Pilze ohne Bildung dieser Pigmente kultiviert. Die Pilze wurden abgeerntet, seine Zellen ausgezählt und in standardisierten Mengen nochmals auf Selektiv Agar weiterverimpft. Auf diesen Agarplatten wurden die Kolonien anschließend mit UVA 100, 150, 200 und 250 mJ / cm² bzw. mit UVB 500, 1000, 1500, 2000 mJ / cm² in einmaliger Dosis unter standardisierten Bedingungen in vitro bestrahlt. Nach 5 weiteren Wachstumstagen konnten die Pilzkolonien abgeerntet werden. Das Trockengewicht der Pilzzellen wurde bestimmt und mit Hilfe von Eichkurven in die Zellzahl umgerechnet.

Die Studie ergab folgende Ergebnisse:

- In dieser Studie konnte erstmals nachgewiesen werden, das Exophiala dermatitidis P202 unter bestimmten Voraussetzungen in der Lage ist, zwei unterschiedliche UV-Filter zu synthetisieren (Melanin und Pityriacitrin). Die Induzierbarkeit des neu beschriebenen Stoffwechselwegs konnte ebenfalls bei Exophiala dermatitidis P201 bestätigt werden. Bei Melanin und den gebildeten Indolderivaten konnte jeweils ein UV-Schutz bestätigt werden.
- Melanin tritt als permanenter UV-Filter in den Vordergrund, wobei der von Mayser et al. neu beschriebene Stoffwechselweg - und damit auch die Produktion von Pityriacitrin - nur durch Wachstum des Pilzes unter Mangelbedingungen auf Minimalagar und der Zugabe von Tryptophan als alleinige Stickstoffquelle induzierbar ist.
- Die in vitro Versuche konnten zeigen, das Melanin den potenteren UV-Filter im Bereich von UVA- und UVB-Strahlung darstellt. Eine Kombination beider UV-Filter zeigt einen schlechteren UV-Schutz bei steigenden Intensitäten, gefolgt von dem UV-Schutz durch die Indolderivate. Das schlechteste Wachstum nach UV-Bestrahlung zeigte der Pilz ohne UV-Schutz.
- Die UV-Filter zeigten keinen synergistischen oder additiven Effekt. Ein konkurrierendes Verhalten in der Synthese beider Systeme lässt sich vermuten.
- Bei dem von Mayser et al. neu beschriebenen Stoffwechselweg lässt sich aufgrund seines breiten UV-Absorptionsspektrums und besonders der Fähigkeit im Bereich von UVC-Strahlung zu absorbieren, ein phylogenetisch sehr alter Stoffwechselweg vermuten, der bis auf das Erdzeitalter des Archaikums zurückzuführen sein könnte.
- Bisher ist keine natürliche Situation beschrieben worden, in der Exophiala dermatitidis den zweiten Stoffwechselweg anwendet. Es scheint zu einem sehr alten Genom zu gehören, welches dem Pilz in der heutigen Zeit keine bisher bekannten Vorteile bringt.
- Künftige Studien könnten sich mit Pityriacitrin als möglichen Pathogenitätsfaktor befassen. Bei der Dermatomykose Pityriasis versicolor

lässt sich eine Rolle von Pityriacitrin in *M.furfur* als Pathogenitätsfaktor nicht vollständig ausschließen (Machowinski *et al.* 2006). Weiter gewinnt die Erforschung von UVC-Filtern, wie dem Pityriacitrin, bei fortschreitender Abnahme der Ozonschicht immer mehr an Bedeutung. Auch könnten über zusätzliche Forschungen hinsichtlich der Minimierung von Reactive Oxygen Spezies (ROS) durch Pilze mit oben beschriebenem Stoffwechselweg nachgedacht werden.

7. Summary

By addition of tryptophan as sole nitrogen source to minimal agar Mayser et al. induced the formation of pigments and fluorochromes in the yeast fungus *M. furfur*. A new chemical compound with complex UV filter properties was isolated and described for the first time. The indole derivative with the chemical formula $C_{20}H_{13}N_{3}O$ was called pityriacitrin (Mayser *et al.* 1998; Mayser *et al.* 2002). After phylogenetically far distant fungi could also be stimulated to produce pigment (Nies, 2006), MAYSER et al. assumed that the melanin-forming wild strain of the black mold *Exophiala dermatitidis* P202 (ATCC No. 34100), which is well described in the international literature, might have a genomic anchoring of two different UV filter systems: melanin and the substances produced by the newly detected metabolic pathway.

By UVA and UVB irradiation of wild-type strain *Exophiala dermatitidis* P202 and a melaninless white mutant *Exophiala dermatitidis* P201 (ATCC No. 44504) the UV filter properties of the newly described substances were demonstrated and compared with those of melanin.

Following cultivation on tryptophan-containing minimal agar, the formation of pigment by *Exophiala dermatitidis* P202 was investigated by thin-layer chromatography and high performance liquid chromatography. Pigment production by P201 was already demonstrated by Nies (2006).

In 6 individual trials running for 6 days each, P201 and P202 were stimulated to produce pigment on tryptophan-containing minimal agar and, on the other hand, cultivated on nutritious selective agar for pathogenic fungi without pigment formation. The molds were harvested, the cells were counted and inoculated at standardized amounts onto selective agar. The colonies on these agar plates were then irradiated with single doses of UVA 100, 150, 200 and 250 mJ / cm² or UVB 500, 1000, 1500, 2000 mJ / cm² at standardized conditions *in vitro*. After another 5 days of growth the colonies were harvested. The dry weight of the fungal cells was determined and converted to cell number by means of calibration curves.

The study revealed the following results:

- It was shown for the first time that under certain conditions *Exophiala dermatitidis* P202 is able to synthesize two different UV filters (melanin and pityriacitrin). The inducibility of the newly described metabolic pathway was also confirmed in *Exophiala dermatitidis* P201. UV protection was evidenced for melanin and the produced indole derivatives.
- Melanin predominates as a permanent UV filter, whereby the newly described pathogenic pathway – and thus also the production of pityriacitrin – is only inducible by fungal growth under deficient conditions on minimal agar and addition of tryptophan as sole nitrogen source.
- The *in vitro* trials showed that melanin as a UV filter is more potent in the UVA and UVB range. Combination of both UV filters results in poorer UV protection at increasing intensities, followed by UV protection by the indole derivatives. Without UV protection the fungus showed poorest growth after UV irradiation.
- The UV filters had no synergistic or additive effect. A competiting behavior of both systems may be assumed.
- Because of its broad UV absorption spectrum and especially its ability to absorb radiation in the UVC range the novel metabolic pathway described by Mayser et al. is thought to be a phylogenetically very old metabolic pathway which might be retraceable back to the archaic era.
- To date, no natural situation has been described in which *Exophiala* dermatitidis uses the second metabolic pathway. It seems to belong to a very old part of the genome which does not offer the fungus known advantages in this day and age.
- Future studies should investigate pityriacitrin as a potential pathogenicity factor. It cannot be completely excluded that pityriacitrin in *M.furfur* plays a pathogenetic role in the dermatomycosis pityriasis versicolor (Machowinski *et al.* 2006). Furthermore, exploration of UVC filters such as pityriacitrin might become increasingly important with persistent degradation of the ozon layer. Finally, further studies could be performed in terms of minimizing reactive oxygen species (ROS) by fungi using the abovementioned metabolic pathway.

- 8. Literaturübersicht
- Afaq,F., Adhami,V.M., Ahmad,N. & Mukhtar,H. (2002). Botanical antioxidants for chemoprevention of photocarcinogenesis. *Front Biosci.* 7:d784d792.
- 2. Afaq,F. & Mukhtar,H. (2002). Photochemoprevention by botanical antioxidants. *Skin Pharmacol.Appl.Skin Physiol* **15**:297-306.
- Babu,V. & Joshi,P.C. (1992). Tryptophan as an endogenous photosensitizer to elicit harmful effects of ultraviolet B. *Indian J.Biochem.Biophys.* 29:296-298.
- Beketi,A.K., Ba,M.C., Sy,M.H., Bah,L., Ndao,A.K., Tagny,R.M., Diallo,A., Sakho,Y. & Badiane,S.B. (2005). [Cranial and cervical vertebral mycetoma. Report of three cases]. *Neurochirurgie* **51**:471-475.
- 5. Berking,C. (2005). [The role of ultraviolet irradiation in malignant melanoma]. *Hautarzt* **56**:687-696.
- Brandt,M.E. & Warnock,D.W. (2003). Epidemiology, clinical manifestations, and therapy of infections caused by dematiaceous fungi. *J.Chemother.* 15 Suppl 2:36-47.
- 7. Braun-Falco O., Plewig G. & Wolff H.H. (1996) Dermatologie und Venerologie. Springer Verlag, 4. Auflage.
- 8. Brockhaus Enzyklopädie Bd.20 (1993) Ultraviolett-Strahlung. Brockhaus Enzyklopädie, 19.Auflage, Bd.20, Fa.Brockhaus GmbH, Mannheim, 459-461.
- 9. Brockhaus Enzylkopädie Bd.22 (1993) Sonne. Brockhaus Enzyklopädie, 19.Auflage, Bd.22, Fa. Brockhaus GmbH, Mannheim, 588-589.
- 10. Brown,M. & Pasvol,G. (2005). Images in clinical medicine. Chromoblastomycosis. *N.Engl.J.Med.* **352**:e19.
- 11. Brownell,I., Pomeranz,M. & Ma,L. (2005). Eumycetoma. *Dermatol.Online.J.* **11**:10.
- 12. Casadevall,A., Rosas,A.L. & Nosanchuk,J.D. (2000). Melanin and virulence in Cryptococcus neoformans. *Curr.Opin.Microbiol.* **3**(4):354-358.
- Chang,C.L., Kim,D.S., Park,D.J., Kim,H.J., Lee,C.H. & Shin,J.H. (2000). Acute cerebral phaeohyphomycosis due to Wangiella dermatitidis accompanied by cerebrospinal fluid eosinophilia. *J.Clin.Microbiol.* 38:1965-1966.
- 14. Cockell,C.S. (1998). Biological effects of high ultraviolet radiation on early earth--a theoretical evaluation. *J.Theor.Biol.* **193**:717-729.
- 15. Cockell,C.S. & Knowland,J. (1999). Ultraviolet radiation screening compounds. *Biol.Rev.Camb.Philos.Soc.* **74**:311-345.
- 16. Correale, M., Ieva, R., Rinaldi, M., Rinaldi, G. & Di, B.M. (2005). Voluminous mycetoma in a newborn with down syndrome: Role of echocardiography. *Eur.J.Echocardiogr.* **7**:398-400.
- de Hoog,G.S. (1997). Significance of fungal evolution for the understanding of their pathogenicity, illustrated with agents of phaeohyphomycosis. *Mycoses* **40 Suppl 2**:5-8.
- de Hoog,G.S., Bowman,B., Graser,Y., Haase,G., EI,F.M., Gerrits van den Ende AH, Melzer-Krick,B. & Untereiner,W.A. (1998). Molecular phylogeny and taxonomy of medically important fungi. *Med.Mycol.* 36 Suppl 1:52-56.
- de Hoog,G.S. & Haase,G. (1993). Nutritional physiology and selective isolation of Exophiala dermatitidis. *Antonie Van Leeuwenhoek* 64:17-26.
- de Hoog,G.S., Matos,T., Sudhadham,M., Luijsterburg,K.F. & Haase,G. (2005). Intestinal prevalence of the neurotropic black yeast Exophiala (Wangiella) dermatitidis in healthy and impaired individuals. *Mycoses* 48:142-145.
- de Hoog,G.S., Queiroz-Telles,F., Haase,G., Fernandez-Zeppenfeldt,G., Attili,A.D., Gerrits van den Ende AH, Matos,T., Peltroche-Llacsahuanga,H., Pizzirani-Kleiner,A.A., Rainer,J., Richard-Yegres,N., Vicente,V. & Yegres,F. (2000). Black fungi: clinical and pathogenic approaches. *Med.Mycol.* **38 Suppl 1**:243-250.
- de Hoog,G.S., Takeo,K., Yoshida,S., Gottlich,E., Nishimura,K. & Miyaji,M. (1994). Pleoanamorphic life cycle of Exophiala (Wangiella) dermatitidis. *Antonie Van Leeuwenhoek* 65:143-153.
- 23. de Pauw,B.E. & Meunier,F. (1999). The challenge of invasive fungal infection. *Chemotherapy* **45 Suppl 1**:1-14.
- Dixon,D.M., Migliozzi,J., Cooper,C.R., Jr., Solis,O., Breslin,B. & Szaniszlo,P.J. (1992). Melanized and non-melanized multicellular form mutants of Wangiella dermatitidis in mice: mortality and histopathology studies. *Mycoses* 35:17-21.
- 25. Dixon,D.M., Polak,A. & Conner,G.W. (1989). Mel- mutants of Wangiella dermatitidis in mice: evaluation of multiple mouse and fungal strains. *J.Med.Vet.Mycol.* **27**:335-341.

- Dixon,D.M., Polak,A. & Szaniszlo,P.J. (1987). Pathogenicity and virulence of wild-type and melanin-deficient Wangiella dermatitidis. *J.Med.Vet.Mycol.* 25:97-106.
- 27. Dixon,D.M. & Polak-Wyss,A. (1991). The medically important dematiaceous fungi and their identification. *Mycoses* **34**:1-18.
- Doering,T.L., Nosanchuk,J.D., Roberts,W.K. & Casadevall,A. (1999). Melanin as a potential cryptococcal defence against microbicidal proteins. *Med.Mycol.* 37:175-181.
- 29. DTV-Atlas (1996) DTV-Atlas zur Physik, Band 1, 5.Auflage, Deutscher Taschenbuch Verlag GmbH & Co. KG, München. 177
- Ezzine-Sebai, N., Benmously, R., Fazaa, B., Chaker, E., Zermani, R. & Kamoun, M.R. (2005). Chromomycosis arising in a Tunisian man. *Dermatol.Online.J.* 11:14.
- Fader,R.C. & McGinnis,M.R. (1988). Infections caused by dematiaceous fungi: chromoblastomycosis and phaeohyphomycosis. *Infect.Dis.Clin.North Am.* 2:925-938.
- 32. Faergemann, J. & Larkö, O. (1987). The Effect of UV-Light on Human Skin Microorganisms. *Acta Derm.Venereol.* **67**:69-72.
- Feng,B., Wang,X., Hauser,M., Kaufmann,S., Jentsch,S., Haase,G., Becker,J.M. & Szaniszlo,P.J. (2001). Molecular cloning and characterization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis. *Infect.Immun.* 69:1781-1794.
- 34. Fothergill,A.W. (1996). Identification of dematiaceous fungi and their role in human disease. *Clin.Infect.Dis.* **22 Suppl 2**:S179-S184.
- Garcia-Martos, P., Marquez, A. & Gene, J. (2002). [Human infections by black yeasts of genus Exophiala]. *Rev.Iberoam.Micol.* 19:72-79.
- 36. Garcia-Pichel, F. (1998). Solar ultraviolet and the evolutionary history of cyanobacteria. *Orig.Life Evol.Biosph.* **28**:321-347.
- Garcia-Pichel, F. & Castenholz, R.W. (1993). Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. *Appl.Environ.Microbiol.* 59:163-169.
- Garcia-Pichel, F., Sherry, N.D. & Castenholz, R.W. (1992). Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. *Photochem.Photobiol.* 56:17-23.

- Garcia-Pichel,F., Wingard,C.E. & Castenholz,R.W. (1993). Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. *Appl.Environ.Microbiol.* **59**:170-176.
- 40. Garcia-Ruiz, J.C., Amutio, E. & Ponton, J. (2004). [Invasive fungal infection in immunocompromised patients]. *Rev.Iberoam.Micol.* **21**:55-62.
- 41. Geis,P.A., Wheeler,M.H. & Szaniszlo,P.J. (1984). Pentaketide metabolites of melanin synthesis in the dematiaceous fungus Wangiella dermatitidis. *Arch.Microbiol.* **137**:324-328.
- Gutierrez, F., Masia, M., Ramos, J., Elia, M., Mellado, E. & Cuenca-Estrella, M. (2005). Pulmonary mycetoma caused by an atypical isolate of Paecilomyces species in an immunocompetent individual: case report and literature review of Paecilomyces lung infections. *Eur.J.Clin.Microbiol.Infect.Dis.* 24:607-611.
- 43. Hamilton,A.J. & Gomez,B.L. (2002). Melanins in fungal pathogens. *J.Med.Microbiol.* **51**:189-191.
- 44. Hamilton,A.J. & Holdom,M.D. (1999). Antioxidant systems in the pathogenic fungi of man and their role in virulence. *Med.Mycol.* **37**:375-389.
- 45. Hiruma,M., Kawada,A., Ohata,H., Ohnishi,Y., Takahashi,H., Yamazaki,M., Ishibashi,A., Hatsuse,K., Kakihara,M. & Yoshida,M. (1993). Systemic phaeohyphomycosis caused by Exophiala dermatitidis. *Mycoses* **36**:1-7.
- 46. Hof,H. (2003). [Candida, aspergillus and company. Pathogenic fungi]. *Pharm.Unserer Zeit* **32**:96-103.
- Hofmann,H., Choi,S.M., Wilsmann-Theis,D., Horre,R., de Hoog,G.S. & Bieber,T. (2005). Invasive chromoblastomycosis and sinusitis due to Phialophora verrucosa in a child from northern Africa. *Mycoses* 48:456-461.
- Horre,R., Schaal,K.P., Siekmeier,R., Sterzik,B., de Hoog,G.S. & Schnitzler,N. (2004). Isolation of fungi, especially Exophiala dermatitidis, in patients suffering from cystic fibrosis. A prospective study. *Respiration* **71**:360-366.
- 49. Hruza,L.L. & Pentland,A.P. (1993). Mechanisms of UV-induced inflammation. *J.Invest Dermatol.* **100**:35S-41S.
- 50. Jacobson,E.S. (2000). Pathogenic roles for fungal melanins. *Clin.Microbiol.Rev.* **13**:708-717.
- 51. Jacobson,E.S. & Tinnell,S.B. (1993). Antioxidant function of fungal melanin. *J.Bacteriol.* **175**:7102-7104.

- Kano,R., Kusuda,M., Nakamura,Y., Watanabe,S., Tsujimoto,H. & Hasegawa,A. (2000). First isolation of Exophiala dermatitidis from a dog: identification by molecular analysis. *Vet.Microbiol.* **76**:201-205.
- Kantarcioglu,A.S. & de Hoog,G.S. (2004). Infections of the central nervous system by melanized fungi: a review of cases presented between 1999 and 2004. *Mycoses* 47:4-13.
- 54. Karuppayil,S.M. & Szaniszlo,P.J. (1997). Importance of calcium to the regulation of polymorphism in Wangiella (Exophiala) dermatitidis. *J.Med.Vet.Mycol.* **35**:379-388.
- Kasting, J.F., Zahnle, K.J., Pinto, J.P. & Young, A.T. (1989). Sulfur, ultraviolet radiation, and the early evolution of life. *Orig.Life Evol.Biosph.* 19:95-108.
- Kazanas, N. (1986). Pathogenicity of a fungus resembling Wangiella dermatitidis isolated from edible mushrooms. *Appl.Environ.Microbiol.* 51:261-267.
- Kurokawa,C.S., Sugizaki,M.F. & Peracoli,M.T. (1998). Virulence factors in fungi of systemic mycoses. *Rev.Inst.Med.Trop.Sao Paulo* 40:125-135.
- Kusenbach,G., Skopnik,H., Haase,G., Friedrichs,F. & Dohmen,H. (1992). Exophiala dermatitidis pneumonia in cystic fibrosis. *Eur.J.Pediatr.* 151:344-346.
- 59. Kwon-Chung,K.J., Polacheck,I. & Popkin,T.J. (1982). Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. *J.Bacteriol.* **150**:1414-1421.
- Langfelder,K., Streibel,M., Jahn,B., Haase,G. & Brakhage,A.A. (2003). Biosynthesis of fungal melanins and their importance for human pathogenic fungi. *Fungal.Genet.Biol.* 38:143-158.
- 61. Levitz,S.M. (1992). Overview of host defenses in fungal infections. *Clin.Infect.Dis.* **14 Suppl 1**:S37-S42.
- Liappis, N., Janssen, E., Kesseler, K. & Hildenbrand, G. (1980). A quantitative study of free amino acids in eccrine sweat collected from the forearms of healthy young men during sauna bathing. *Eur.J.Appl.Physiol Occup.Physiol* **45**:63-67.
- Liou, J.M., Wang, J.T., Wang, M.H., Wang, S.S. & Hsueh, P.R. (2002). Phaeohyphomycosis caused by Exophiala species in immunocompromised hosts. *J.Formos.Med.Assoc.* 101:523-526.
- 64. Machowinski,A., Kramer,H.J., Hort,W. & Mayser,P. (2006). Pityriacitrin--a potent UV filter produced by Malassezia furfur and its effect on human skin microflora. *Mycoses* **49**:388-392.

- 65. Matos,T., de Hoog,G.S., de Boer,A.G., de,C., I & Haase,G. (2002). High prevalence of the neurotrope Exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities. *Mycoses* **45**:373-377.
- Matos,T., Haase,G., Gerrits van den Ende AH & de Hoog,G.S. (2003). Molecular diversity of oligotrophic and neurotropic members of the black yeast genus Exophiala, with accent on E. dermatitidis. *Antonie Van Leeuwenhoek* 83:293-303.
- Mayser, P., Schafer, U., Kramer, H.J., Irlinger, B. & Steglich, W. (2002). Pityriacitrin -- an ultraviolet-absorbing indole alkaloid from the yeast Malassezia furfur. *Arch.Dermatol.Res.* 294:131-134.
- Mayser,P., Wille,G., Inkampe,A., Thoma,W., Arnold,N. & Monsees,T. (1998). [Synthesis of fluorochromes and pigments in Malassezia furfur by using tryptophan as the single source of nitrogen]. *Mycoses* **41 Suppl 2**:74-77.
- Mok,W.Y. & Luizao,R.C. (1981). Serological analysis and pathogenic potentials of Wangiella dermatitidis isolated from bats. *Mycopathologia* 73:93-99.
- Muotoe-Okafor,F.A. & Gugnani,H.C. (1993). Isolation of Lecythophora mutabilis and Wangiella dermatitidis from the fruit eating bat, Eidolon helvum. *Mycopathologia* **122**:95-100.
- Myoken,Y., Sugata,T., Fujita,Y., Kyo,T., Fujihara,M., Katsu,M. & Mikami,Y. (2003). Successful treatment of invasive stomatitis due to Exophiala dermatitidis in a patient with acute myeloid leukemia. *J.Oral Pathol.Med.* **32**:51-54.
- 72. Nies,S.M. (2006). Tryptophanabhängige Synthese von indolhaltigen Pigmenten bei verschiedenen humanpathogenen Asco- und Basidiomyzeten. *Dissertation, Justus-Liebig Universität Giessen*.
- 73. Nishimura,K. & Miyaji,M. (1982). Studies on a saprophyte of Exophiala dermatitidis isolated from a humidifier. *Mycopathologia* **77**:173-181.
- Nishimura,K., Miyaji,M., Taguchi,H. & Tanaka,R. (1987). Fungi in bathwater and sludge of bathroom drainpipes. 1. Frequent isolation of Exophiala species. *Mycopathologia* 97:17-23.
- Nucci,M., Akiti,T., Barreiros,G., Silveira,F., Revankar,S.G., Sutton,D.A. & Patterson,T.F. (2001). Nosocomial fungemia due to Exophiala jeanselmei var. jeanselmei and a Rhinocladiella species: newly described causes of bloodstream infection. *J.Clin.Microbiol.* **39**:514-518.
- 76. Odds,F.C., Gow,N.A. & Brown,A.J. (2001). Fungal virulence studies come of age. *Genome Biol.* **2**:reviews1009.1-reviews1009.4.

- Ozeki,H., Ito,S., Wakamatsu,K. & Ishiguro,I. (1997a). Chemical characterization of pheomelanogenesis starting from dihydroxyphenylalanine or tyrosine and cysteine. Effects of tyrosinase and cysteine concentrations and reaction time. *Biochim.Biophys.Acta* 1336:539-548.
- Ozeki,H., Wakamatsu,K., Ito,S. & Ishiguro,I. (1997b). Chemical characterization of eumelanins with special emphasis on 5,6dihydroxyindole-2-carboxylic acid content and molecular size. *Anal.Biochem.* 248:149-157.
- 79. Platz,A. (2004). Flowzytometrische Erfassung der Phagozytose schwarzer Hefen durch humane Granulozyten. *Dissertation, Rheinisch Westfälische Hochschule Aachen*.
- Rivers,A., Norris,P.G., Murphy,G.M., Chu,A.C., Midgley,G., Morris,J., Morris,R.W., Young,A.R. & Hawk,J.L. (1989). UVA sunbeds: tanning, photoprotection, acute adverse effects and immunological changes. *Br.J.Derm.* **120**:767-777.
- 81. Rossmann,S.N., Cernoch,P.L. & Davis,J.R. (1996). Dematiaceous fungi are an increasing cause of human disease. *Clin.Infect.Dis.* **22**:73-80.
- Sagan,C. (1973). Ultraviolet selection pressure on the earliest organisms. *J.Theor.Biol.* **39**:195-200.
- Schnitzler,N., Peltroche-Llacsahuanga,H., Bestier,N., Zundorf,J., Lutticken,R. & Haase,G. (1999). Effect of melanin and carotenoids of Exophiala (Wangiella) dermatitidis on phagocytosis, oxidative burst, and killing by human neutrophils. *Infect.Immun.* 67:94-101.
- 84. Shoham,S. & Levitz,S.M. (2005). The immune response to fungal infections. *Br.J.Haematol.* **129**:569-582.
- 85. Silveira, F. & Nucci, M. (2001). Emergence of black moulds in fungal disease: epidemiology and therapy. *Curr.Opin.Infect.Dis.* **14**:679-684.
- 86. Suh,M.K. (2005). Phaeohyphomycosis in Korea. *Nippon Ishinkin.Gakkai Zasshi* **46**:67-70.
- Szaniszlo,P.J., Karuppayil,S.M., Mendoza,L. & Rennard,R.J. (1993). Cell cycle regulation of polymorphism in Wangiella dermatitidis. *Arch.Med.Res.* 24:251-261.
- Thompson, J.E., Fahnestock, S., Farrall, L., Liao, D.I., Valent, B. & Jordan, D.B. (2000). The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea: tetrahydroxynaphthalene reductase. *J.Biol.Chem.* 275:34867-34872.

- Tsai,H.F., Chang,Y.C., Washburn,R.G., Wheeler,M.H. & Kwon-Chung,K.J. (1998). The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. *J.Bacteriol.* **180**:3031-3038.
- Tsai,H.F., Washburn,R.G., Chang,Y.C. & Kwon-Chung,K.J. (1997). Aspergillus fumigatus arp1 modulates conidial pigmentation and complement deposition. *Mol.Microbiol.* 26:175-183.
- 91. Tsai,H.F., Wheeler,M.H., Chang,Y.C. & Kwon-Chung,K.J. (1999). A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. *J.Bacteriol.* **181**:6469-6477.
- Uijthof, J.M., de Hoog, G.S., de Cock, A.W., Takeo, K. & Nishimura, K. (1994). Pathogenicity of strains of the black yeast Exophiala (Wangiella) dermatitidis: an evaluation based on polymerase chain reaction. *Mycoses* **37**:235-242.
- 93. Vijaya, D. & Kumar, B.H. (2005). Chromoblastomycosis. Mycoses 48:82-84.
- 94. Voß,H.M. (2003). Fluoreszierende Metaboliten im Tryptophanstoffwechsel. *Dissertation, Justus-Liebig-Universität Giessen*.
- Wang,Y., Aisen,P. & Casadevall,A. (1995). Cryptococcus neoformans melanin and virulence: mechanism of action. *Infect.Immun.* 63:3131-3136.
- Wang,Y. & Casadevall,A. (1994a). Decreased susceptibility of melanized Cryptococcus neoformans to UV light. *Appl.Environ.Microbiol.* 60:3864-3866.
- 97. Wang,Y. & Casadevall,A. (1994b). Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. *Infect.Immun.* **62**:3004-3007.
- 98. Wheeler, M.H. & Bell, A.A. (1988b). Melanins and their importance in pathogenic fungi. *Curr.Top.Med.Mycol.* **2**:338-387.
- 99. Wheeler, M.H. & Bell, A.A. (1988a). Melanins and their importance in pathogenic fungi. *Curr.Top.Med.Mycol.* **2**:338-387.
- Wheeler,M.H. & Stipanovic,R.D. (1985). Melanin biosynthesis and the metabolism of flaviolin and 2-hydroxyjuglone in Wangiella dermatitidis. *Arch.Microbiol.* 142:234-241.
- 101. Wikler, J.R., Janssen, N., Bruynzeel, D.P. & Nieboer, C. (1990). The effect of UV-light on pityrosporum yeasts: ultrastructural changes and inhibition of growth. *Acta Derm.Venereol.* **70**:69-71.

- 102. Wille G. (2000). Synthese und Strukturaufklärung von Sekundärmetaboliten aus Schleimpilzen und lipophilen Hefen. *Dissertation, Justus-Liebig-Universität Giessen*.
- 103. Williamson, P.R., Wakamatsu, K. & Ito, S. (1998). Melanin biosynthesis in Cryptococcus neoformans. *J.Bacteriol.* **180**:1570-1572.
- 104. Wojtaszek, P. (1997). Oxidative burst: an early plant response to pathogen infection. *Biochem.J.* **322 (Pt 3)**:681-692.
- 105. Yasui,H. & Sakurai,H. (2000). Chemiluminescent detection and imaging of reactive oxygen species in live mouse skin exposed to UVA. *Biochem.Biophys.Res.Commun.* **269**:131-136.

9.Anhang *Exophiala dermatitidis* P201 von Selektiv Agar (Versuch 1) Alle Werte in Gramm (g)

Tab.9.1.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,48535	4,44094	4,45665
100 UVA	4,45684	4,44102	4,44077
150 UVA	4,44992	4,4448	4,45531
200 UVA	4,49494	4,3944	4,42252
250 UVA	4,46528	4,48656	4,42043
500 UVB	4,46447	4,42757	4,4437
1000 UVB	4,43282	4,49228	4,47105
1500 UVB	4,49142	4,42167	4,45284
2000 UVB	4,57591	4,47478	4,50210

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,48323	4,43888	4,45478
100 UVA	4,45509	4,43920	4,43899
150 UVA	4,44834	4,44320	4,45381
200 UVA	4,49362	4,39319	4,42123
250 UVA	4,46437	4,48575	4,41951
500 UVB	4,46368	4,42689	4,44317
1000 UVB	4,43232	4,49176	4,47072
1500 UVB	4,49142	4,42167	4,45284
2000 UVB	4,57591	4,47478	4,50210

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00212	0,00206	0,00187	0,00206
100 UVA	0,00175	0,00182	0,00178	0,00178
150 UVA	0,00158	0,00160	0,00150	0,00158
200 UVA	0,00132	0,00121	0,00129	0,00129
250 UVA	0,00091	0,00081	0,00092	0,00091
500 UVB	0,00079	0,00068	0,00053	0,00068
1000 UVB	0,00050	0,00052	0,00033	0,00050
1500 UVB	0,00000	0,00000	0,00000	0,00000
2000 UVB	0,00000	0,00000	0,00000	0,00000

Tab.9.2.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von Selektiv Agar (UVA)	0,00206	0,00178	0,00158	0,00129	0,00091

UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von Selektiv Agar (UVB)	0,00206	0,00068	0,00050	0	0,00000

UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 Selektiv Agar (UVA)	100	86,407767	76,6990291	62,6213592	44,1747573

UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 Selektiv Agar (UVB)	100	33,0097087	24,2718447	0	0

Exophiala dermatitidis P201 von 1b Agar (Versuch 1) Alle Werte in Gramm (g)

Tab.9.3.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,50510	4,42731	4,44828
100 UVA	4,45924	4,42468	4,41964
150 UVA	4,43578	4,46537	4,44636
200 UVA	4,42466	4,41171	4,41624
250 UVA	4,46388	4,43934	4,47473
500 UVB	4,48075	4,46811	4,46020
1000 UVB	4,42220	4,42371	4,44810
1500 UVB	4,49080	4,46637	4,46818
2000 UVB	4,47902	4,43877	4,52500

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,50315	4,42541	4,44622
100 UVA	4,45736	4,42293	4,41797
150 UVA	4,43424	4,46372	4,44461
200 UVA	4,42323	4,41044	4,41473
250 UVA	4,46263	4,43825	4,47348
500 UVB	4,48007	4,46732	4,45940
1000 UVB	4,42152	4,42323	4,44749
1500 UVB	4,49080	4,46627	4,46806
2000 UVB	4,47902	4,43877	4,52500

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00195	0,00190	0,00206	0,00195
100 UVA	0,00188	0,00175	0,00167	0,00175
150 UVA	0,00154	0,00165	0,00175	0,00165
200 UVA	0,00143	0,00127	0,00151	0,00143
250 UVA	0,00125	0,00109	0,00125	0,00125
500 UVB	0,00068	0,00079	0,00080	0,00079
1000 UVB	0,00068	0,00048	0,00061	0,00061
1500 UVB	0,00000	0,00010	0,00012	0,00010
2000 UVB	0,00000	0,00000	0,00000	0,00000

Tab.9.4.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von 1b Agar (UVA)	0,00195	0,00175	0,00165	0,00143	0,00125

UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von 1b Agar (UVB)	0,00195	0,00079	0,00061	0,00010	0,00000

UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von 1b Agar (UVA)	100	89,7435897	84,6153846	73,3333333	64,1025641

UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von 1b Agar (UVB)	100	40,5128205	31,2820513	5,12820513	0

Exophiala dermatitidis P201 von Selektiv Agar (Versuch 2) Alle Werte in Gramm (g)

Tab.9.5.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,48095	4,57538	4,544
100 UVA	4,44358	4,52034	4,45293
150 UVA	4,52755	4,42602	4,51239
200 UVA	4,48671	4,49453	4,34467
250 UVA	4,55519	4,48868	4,46224
500 UVB	4,54151	4,50373	4,49068
1000 UVB	4,57299	4,48661	4,42705
1500 UVB	4,47367	4,44718	4,57439
2000 UVB	4,46498	4,47726	4,54621

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,47877	4,57308	4,54196
100 UVA	4,44169	4,51832	4,451
150 UVA	4,52561	4,42424	4,51052
200 UVA	4,48511	4,49277	4,34311
250 UVA	4,55409	4,48752	4,46121
500 UVB	4,54048	4,50286	4,48978
1000 UVB	4,57224	4,48587	4,42611
1500 UVB	4,47329	4,44691	4,57411
2000 UVB	4,46488	4,47682	4,54604

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00218	0,00230	0,00204	0,00218
100 UVA	0,00189	0,00202	0,00193	0,00193
150 UVA	0,00194	0,00178	0,00187	0,00187
200 UVA	0,00160	0,00176	0,00156	0,00160
250 UVA	0,00110	0,00116	0,00103	0,00110
500 UVB	0,00103	0,00087	0,00090	0,00090
1000 UVB	0,00075	0,00074	0,00094	0,00075
1500 UVB	0,00038	0,00027	0,00028	0,00028
2000 UVB	0,00010	0,00044	0,00017	0,00017

Tab.9.6.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von Selektiv Agar (UVA)	0,00218	0,00193	0,00187	0,0016	0,0011
		-	-	-	-

UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von Selektiv Agar (UVB)	0,00218	0,0009	0,00075	0,00028	0,00017
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von Selektiv Agar (UVA)	100	88,5321101	85,7798165	73,3944954	50,4587156
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von Selektiv Agar (UVB)	100	41,2844037	34,4036697	12,8440367	7,79816514

Exophiala dermatitidis P201 von 1b Agar (Versuch 2) Alle Werte in Gramm (g)

Tab.9.7.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,52641	4,46118	4,59802
100 UVA	4,53024	4,55928	4,54504
150 UVA	4,52628	4,56946	4,53492
200 UVA	4,50397	4,53228	4,60134
250 UVA	4,45394	4,55613	4,51040
500 UVB	4,47637	4,4686	4,62215
1000 UVB	4,52754	4,44856	4,56413
1500 UVB	4,43748	4,51937	4,51029
2000 UVB	4,48934	4,59182	4,44893

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,52403	4,45899	4,596
100 UVA	4,52826	4,55703	4,5431
150 UVA	4,52426	4,56776	4,53305
200 UVA	4,50228	4,53058	4,59951
250 UVA	4,45229	4,55451	4,50856
500 UVB	4,47526	4,46749	4,62078
1000 UVB	4,52666	4,44759	4,56299
1500 UVB	4,43708	4,51903	4,50983
2000 UVB	4,48916	4,59151	4,44884

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00238	0,00219	0,00202	0,00219
100 UVA	0,00198	0,00225	0,00194	0,00198
150 UVA	0,00202	0,00170	0,00187	0,00187
200 UVA	0,00169	0,00170	0,00183	0,00170
250 UVA	0,00165	0,00162	0,00184	0,00165
500 UVB	0,00111	0,00111	0,00137	0,00111
1000 UVB	0,00088	0,00097	0,00114	0,00097
1500 UVB	0,00040	0,00034	0,00046	0,00040
2000 UVB	0,00018	0,00031	0,0009	0,00018

Tab.9.8.

P 201 von 1b Agar (UVB)

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von 1b Agar (UVA)	0,00219	0,00198	0,00187	0,0017	0,00165
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von 1b Agar (UVB)	0,00219	0,00111	0,00097	0,0004	0,00018
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von 1b Agar (UVA)	100	90,4109589	85,3881279	77,6255708	75,3424658
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000

100 50,6849315 44,2922374 18,2648402 8,21917808

Exophiala dermatitidis P201 von Selektiv Agar (Versuch 3) Alle Werte in Gramm (g)

Tab.9.9.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,68915	4,64475	4,56384
100 UVA	4,71964	4,49966	4,57707
150 UVA	4,53351	4,60396	4,71496
200 UVA	4,63477	4,70617	4,6345
250 UVA	4,60687	4,48564	4,53612
500 UVB	4,64971	4,58056	4,53563
1000 UVB	4,63597	4,64492	4,65571
1500 UVB	4,51179	4,44131	4,63474
2000 UVB	4,62988	4,51263	4,56503

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,68695	4,64258	4,56190
100 UVA	4,71763	4,49758	4,57496
150 UVA	4,53141	4,60232	4,71309
200 UVA	4,63311	4,70458	4,63239
250 UVA	4,60558	4,48458	4,53507
500 UVB	4,64903	4,57971	4,53469
1000 UVB	4,63515	4,64447	4,65502
1500 UVB	4,51179	4,44131	4,63474
2000 UVB	4,62988	4,51263	4,56503

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00220	0,00217	0,00194	0,00217
100 UVA	0,00201	0,00208	0,00211	0,00208
150 UVA	0,00210	0,00164	0,00187	0,00187
200 UVA	0,00166	0,00159	0,00211	0,00166
250 UVA	0,00129	0,00106	0,00105	0,00106
500 UVB	0,00068	0,00085	0,00094	0,00085
1000 UVB	0,00082	0,00045	0,00069	0,00069
1500 UVB	0,00000	0,00000	0,00000	0,00000
2000 UVB	0,00000	0,00000	0,00000	0,00000

Tab.9.10.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von Selektiv Agar (UVA)	0,00217	0,00208	0,00187	0,00166	0,00106

UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von Selektiv Agar (UVB)	0,00217	0,00085	0,00069	0	0,00000

UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von Selektiv Agar (UVA)	100	95,8525346	86,1751152	76,4976959	48,8479263

UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von Selektiv Agar (UVB)	100	39,1705069	31,797235	0	0

Exophiala dermatitidis P201 von 1b Agar (Versuch 3) Alle Werte in Gramm (g)

Tab.9.11.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,55109	4,51393	4,54422
100 UVA	4,61067	4,52353	4,51174
150 UVA	4,68104	4,52613	4,55564
200 UVA	4,55902	4,43861	4,59356
250 UVA	4,54747	4,52794	4,39092
500 UVB	4,53778	4,50019	4,55379
1000 UVB	4,59783	4,57096	4,50661
1500 UVB	4,59066	4,59048	4,61789
2000 UVB	4,69930	4,69634	4,66746

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,54884	4,51179	4,54218
100 UVA	4,60873	4,52148	4,50964
150 UVA	4,67911	4,52402	4,55361
200 UVA	4,55703	4,43683	4,59177
250 UVA	4,54593	4,52658	4,38957
500 UVB	4,53690	4,49915	4,55294
1000 UVB	4,59703	4,57018	4,50573
1500 UVB	4,59040	4,59021	4,61753
2000 UVB	4,69930	4,69634	4,66746

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00225	0,00214	0,00204	0,00214
100 UVA	0,00194	0,00205	0,00210	0,00205
150 UVA	0,00193	0,00211	0,00203	0,00203
200 UVA	0,00199	0,00178	0,00179	0,00179
250 UVA	0,00154	0,00136	0,00135	0,00136
500 UVB	0,00088	0,00104	0,00085	0,00088
1000 UVB	0,00080	0,00078	0,00088	0,00080
1500 UVB	0,00026	0,00027	0,00036	0,00027
2000 UVB	0,00000	0,00000	0,00000	0,00000

Tab.9.12.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von 1b Agar (UVA)	0,00214	0,00205	0,00203	0,00179	0,00136

UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von 1b Agar (UVB)	0,00214	0,00088	0,00080	0,00027	0,00000

UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von 1b Agar (UVA)	100	95,7943925	94,8598131	83,6448598	63,5514019

UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von 1b Agar (UVB)	100	41,1214953	37,3831776	12,6168224	0

Exophiala dermatitidis P201 von Selektiv Agar (Versuch 4) Alle Werte in Gramm (g)

Tab.9.13.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,44977	4,51592	4,6
100 UVA	4,665	4,4928	4,41897
150 UVA	4,45283	4,55416	4,47313
200 UVA	4,54988	4,59791	4,51893
250 UVA	4,51991	4,57203	4,51596
500 UVB	4,56041	4,53677	4,53275
1000 UVB	4,4705	4,4559	4,49601
1500 UVB	4,43616	4,51916	4,48977
2000 UVB	4,49519	4,47467	4,54725

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,44749	4,51393	4,59796
100 UVA	4,66324	4,49111	4,41702
150 UVA	4,45108	4,55248	4,47122
200 UVA	4,54868	4,59661	4,5175
250 UVA	4,51881	4,57110	4,51519
500 UVB	4,55954	4,53589	4,53195
1000 UVB	4,47001	4,45531	4,49543
1500 UVB	4,43576	4,51895	4,48952
2000 UVB	4,49489	4,47467	4,54725

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00228	0,00199	0,00204	0,00204
100 UVA	0,00176	0,00169	0,00195	0,00176
150 UVA	0,00175	0,00168	0,00191	0,00175
200 UVA	0,00120	0,00130	0,00143	0,00130
250 UVA	0,00110	0,00093	0,00077	0,00093
500 UVB	0,00087	0,00088	0,00080	0,00087
1000 UVB	0,00049	0,00059	0,00058	0,00058
1500 UVB	0,00040	0,00021	0,00025	0,00025
2000 UVB	0,00030	0,00000	0,00000	0,00000

Tab.9.14.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von Selektiv Agar (UVA)	0,00204	0,00176	0,00175	0,0013	0,00093
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von Selektiv Agar (UVB)	0,00204	0,00087	0,00058	0,00025	0
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von Selektiv Agar (UVA)	100	86,2745098	85,7843137	63,7254902	45,5882353
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von Selektiv Agar (UVB)	100	42,6470588	28,4313725	12,254902	0

Exophiala dermatitidis P201 von 1b Agar (Versuch 4) Alle Werte in Gramm (g)

Tab.9.15.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,65285	4,63461	4,49965
100 UVA	4,50201	4,60730	4,62198
150 UVA	4,58348	4,67927	4,59440
200 UVA	4,65691	4,47218	4,65036
250 UVA	4,58080	4,70127	4,50441
500 UVB	4,50449	4,63368	4,49125
1000 UVB	4,63913	4,59076	4,60125
1500 UVB	4,59144	4,61206	4,52258
2000 UVB	4,54004	4,53066	4,54714

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,65084	4,63242	4,49748
100 UVA	4,50004	4,60547	4,61991
150 UVA	4,58156	4,67752	4,59252
200 UVA	4,65510	4,47066	4,64855
250 UVA	4,57936	4,69993	4,50287
500 UVB	4,50355	4,63273	4,49015
1000 UVB	4,63831	4,58972	4,60047
1500 UVB	4,59108	4,61169	4,52209
2000 UVB	4,53987	4,53024	4,54703

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00201	0,00219	0,00217	0,00217
100 UVA	0,00197	0,00183	0,00207	0,00197
150 UVA	0,00192	0,00175	0,00188	0,00188
200 UVA	0,00181	0,00152	0,00181	0,00181
250 UVA	0,00144	0,00134	0,00154	0,00144
500 UVB	0,00094	0,00095	0,00110	0,00095
1000 UVB	0,00082	0,00104	0,00078	0,00082
1500 UVB	0,00036	0,00037	0,00049	0,00037
2000 UVB	0,00017	0,00042	0,00011	0,00017

Tab.9.16.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von 1b Agar (UVA)	0,00217	0,00197	0,00188	0,00181	0,00144
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von 1b Agar (UVB)	0,00217	0,00095	0,00082	0,00037	0,00017
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von 1b Agar (UVA)	100	90,7834101	86,6359447	83,4101382	66,359447
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von 1b Agar (UVB)	100	43,7788018	37,7880184	17,0506912	7,83410138

Exophiala dermatitidis P201 von Selektiv Agar (Versuch 5) Alle Werte in Gramm (g)

Tab.9.17.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,58058	4,60028	4,49899
100 UVA	4,64697	4,48822	4,62677
150 UVA	4,63916	4,66077	4,43938
200 UVA	4,65744	4,50454	4,6097
250 UVA	4,68904	4,64289	4,51167
500 UVB	4,53226	4,64319	4,50499
1000 UVB	4,48283	4,571	4,44932
1500 UVB	4,57014	4,6552	4,53221
2000 UVB	4,58102	4,47765	4,66792

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,57829	4,59851	4,49683
100 UVA	4,64513	4,48628	4,62473
150 UVA	4,63692	4,65899	4,43761
200 UVA	4,65596	4,50312	4,60809
250 UVA	4,68806	4,64128	4,51064
500 UVB	4,53166	4,64251	4,50419
1000 UVB	4,48221	4,57029	4,44871
1500 UVB	4,56994	4,65499	4,53180
2000 UVB	4,58102	4,47765	4,66792

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00229	0,00177	0,00216	0,00216
100 UVA	0,00184	0,00194	0,00204	0,00194
150 UVA	0,00224	0,00178	0,00177	0,00178
200 UVA	0,00148	0,00142	0,00161	0,00148
250 UVA	0,00098	0,00161	0,00103	0,00103
500 UVB	0,00060	0,00068	0,00080	0,00068
1000 UVB	0,00062	0,00071	0,00061	0,00062
1500 UVB	0,00020	0,00021	0,00041	0,00021
2000 UVB	0,00000	0,00000	0,00000	0,00000

Tab.9.18.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von Selektiv Agar (UVA)	0,00216	0,00194	0,00178	0,00148	0,00103
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von Selektiv Agar (UVB)	0,00216	0,00068	0,00062	0,00021	0
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von Selektiv Agar (UVA)	100	89,8148148	82,4074074	68,5185185	47,6851852
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von Selektiv Agar (UVB)	100	31,4814815	28,7037037	9,72222222	0

Exophiala dermatitidis P201 von 1b Agar (Versuch 5) Alle Werte in Gramm (g)

Tab.9.19.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,64100	4,52404	4,43992
100 UVA	4,58034	4,44947	4,61217
150 UVA	4,64845	4,58878	4,54203
200 UVA	4,58285	4,51221	4,62752
250 UVA	4,73100	4,65416	4,50172
500 UVB	4,54022	4,68024	4,60263
1000 UVB	4,56154	4,56526	4,62152
1500 UVB	4,64452	4,55576	4,57453
2000 UVB	4,60613	4,55716	4,61550

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,63900	4,52210	4,43793
100 UVA	4,57849	4,44788	4,60988
150 UVA	4,64675	4,58725	4,53985
200 UVA	4,58092	4,51068	4,62605
250 UVA	4,72913	4,65267	4,50047
500 UVB	4,53957	4,67939	4,60156
1000 UVB	4,56081	4,56446	4,62041
1500 UVB	4,64419	4,55526	4,57421
2000 UVB	4,60613	4,55716	4,61541

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00200	0,00194	0,00199	0,00199
100 UVA	0,00185	0,00159	0,00229	0,00185
150 UVA	0,00170	0,00153	0,00218	0,00170
200 UVA	0,00193	0,00153	0,00147	0,00153
250 UVA	0,00187	0,00149	0,00125	0,00149
500 UVB	0,00065	0,00085	0,00107	0,00085
1000 UVB	0,00073	0,00080	0,00111	0,00080
1500 UVB	0,00033	0,00050	0,00032	0,00033
2000 UVB	0,00000	0,00000	0,00009	0,00000

Tab.9.20.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von 1b Agar (UVA)	0,00199	0,00185	0,0017	0,00153	0,00149
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von 1b Agar (UVB)	0,00199	0,00085	0,0008	0,00033	0
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von 1b Agar (UVA)	100	92,9648241	85,4271357	76,8844221	74,8743719
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von 1b Agar (UVB)	100	42,7135678	40,201005	16,5829146	0

Exophiala dermatitidis P201 von Selektiv Agar (Versuch 6) Alle Werte in Gramm (g)

Tab.9.21.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,54935	4,5527	4,53814
100 UVA	4,62941	4,53055	4,64739
150 UVA	4,53062	4,57761	4,48505
200 UVA	4,48431	4,61436	4,51194
250 UVA	4,62235	4,53577	4,48895
500 UVB	4,48742	4,52384	4,5825
1000 UVB	4,54115	4,49156	4,54364
1500 UVB	4,50227	4,56037	4,43596
2000 UVB	4,43575	4,44701	4,41073

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,54719	4,55067	4,53614
100 UVA	4,62708	4,52858	4,64548
150 UVA	4,52849	4,57603	4,48359
200 UVA	4,48288	4,61302	4,51045
250 UVA	4,62127	4,53468	4,48779
500 UVB	4,48678	4,52301	4,58179
1000 UVB	4,54055	4,49101	4,54326
1500 UVB	4,50203	4,56018	4,43579
2000 UVB	4,43575	4,44701	4,41073

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00216	0,00203	0,00200	0,00203
100 UVA	0,00233	0,00197	0,00191	0,00197
150 UVA	0,00213	0,00158	0,00146	0,00158
200 UVA	0,00143	0,00134	0,00149	0,00143
250 UVA	0,00108	0,00109	0,00116	0,00109
500 UVB	0,00064	0,00083	0,00071	0,00071
1000 UVB	0,00060	0,00055	0,00038	0,00055
1500 UVB	0,00024	0,00019	0,00017	0,00019
2000 UVB	0,00000	0,00000	0,00000	0,00000

Tab.9.22.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von Selektiv Agar (UVA)	0,00203	0,00197	0,00158	0,00143	0,00109
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von Selektiv Agar (UVB)	0,00203	0,00071	0,00055	0,00019	0
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von Selektiv Agar (UVA)	100	97,044335	77,8325123	70,4433498	53,6945813
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von Selektiv Agar (UVB)	100	34,9753695	27,0935961	9,35960591	0

Exophiala dermatitidis P201 von 1b Agar (Versuch 6) Alle Werte in Gramm (g)

Tab.9.23.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,39481	4,53635	4,56563
100 UVA	4,54797	4,57340	4,61078
150 UVA	4,41792	4,57826	4,52148
200 UVA	4,59293	4,56720	4,50119
250 UVA	4,51236	4,64551	4,42707
500 UVB	4,61477	4,60964	4,51626
1000 UVB	4,60224	4,47714	4,53111
1500 UVB	4,56004	4,65055	4,47796
2000 UVB	4,55038	4,66851	4,70301

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,39285	4,53431	4,56384
100 UVA	4,54604	4,57153	4,60889
150 UVA	4,41610	4,57665	4,51991
200 UVA	4,59141	4,56575	4,49973
250 UVA	4,51101	4,64425	4,42595
500 UVB	4,61398	4,60868	4,51512
1000 UVB	4,60149	4,47634	4,53018
1500 UVB	4,55974	4,65023	4,47754
2000 UVB	4,55038	4,66851	4,70281

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00196	0,00204	0,00179	0,00196
100 UVA	0,00193	0,00187	0,00189	0,00189
150 UVA	0,00182	0,00161	0,00157	0,00161
200 UVA	0,00152	0,00145	0,00146	0,00146
250 UVA	0,00135	0,00126	0,00112	0,00126
500 UVB	0,00079	0,00096	0,00114	0,00096
1000 UVB	0,00075	0,00080	0,00093	0,00080
1500 UVB	0,00030	0,00032	0,00042	0,00032
2000 UVB	0,00000	0,00000	0,00020	0,00000

Tab.9.24.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von 1b Agar (UVA)	0,00196	0,00189	0,00161	0,00146	0,00126
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von 1b Agar (UVB)	0,00196	0,00096	0,0008	0,00032	0
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 201 von 1b Agar (UVA)	100	96,4285714	82,1428571	74,4897959	64,2857143
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 201 von 1b Agar (UVB)	100	48,9795918	40,8163265	16,3265306	0

Exophiala dermatitidis P202 von Selektiv Agar (Versuch 1) Alle Werte in Gramm (g)

Tab.9.25.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,60734	4,51082	4,44479
100 UVA	4,37224	4,41477	4,53093
150 UVA	4,51501	4,53015	4,51063
200 UVA	4,43102	4,60876	4,62789
250 UVA	4,48443	4,54924	4,41882
500 UVB	4,5371	4,55827	4,57786
1000 UVB	4,57208	4,40829	4,59078
1500 UVB	4,47348	4,54246	4,51915
2000 UVB	4,58299	4,50196	4,56435

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,60501	4,50859	4,44278
100 UVA	4,37014	4,41266	4,52908
150 UVA	4,51291	4,52817	4,50865
200 UVA	4,42922	4,60705	4,62603
250 UVA	4,48264	4,54736	4,4171
500 UVB	4,53509	4,55633	4,57614
1000 UVB	4,57043	4,40656	4,58911
1500 UVB	4,4717	4,54079	4,51763
2000 UVB	4,58131	4,50027	4,56263

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00233	0,00223	0,00201	0,00223
100 UVA	0,00210	0,00211	0,00185	0,00210
150 UVA	0,00210	0,00198	0,00198	0,00198
200 UVA	0,00180	0,00171	0,00186	0,00180
250 UVA	0,00179	0,00188	0,00172	0,00179
500 UVB	0,00201	0,00194	0,00172	0,00194
1000 UVB	0,00165	0,00173	0,00167	0,00167
1500 UVB	0,00178	0,00167	0,00152	0,00167
2000 UVB	0,00168	0,00169	0,00172	0,00169

Tab.9.26.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von Selektiv Agar (UVA)	0,00223	0,0021	0,00198	0,0018	0,00179
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von Selektiv Agar (UVB)	0,00223	0,00194	0,00167	0,00167	0,00169
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von Selektiv Agar (UVA)	100	94,1704036	88,7892377	80,7174888	80,2690583
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von Selektiv Agar (UVB)	100	86.9955157	74.8878924	74.8878924	75.7847534

Exophiala dermatitidis P202 von 1b Agar (Versuch 1) Alle Werte in Gramm (g)

Tab.9.27.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,47243	4,45032	4,36332
100 UVA	4,50502	4,48941	4,45585
150 UVA	4,61435	4,53442	4,61497
200 UVA	4,43802	4,49751	4,52548
250 UVA	4,54960	4,63667	4,47021
500 UVB	4,51084	4,50163	4,48698
1000 UVB	4,46351	4,47849	4,43244
1500 UVB	4,53553	4,55925	4,55100
2000 UVB	4,52145	4,49773	4,62036

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,47021	4,44812	4,36151
100 UVA	4,50285	4,48748	4,45379
150 UVA	4,61239	4,53260	4,61307
200 UVA	4,43602	4,49587	4,52368
250 UVA	4,54805	4,63516	4,46870
500 UVB	4,50926	4,49995	4,48512
1000 UVB	4,46203	4,47704	4,43099
1500 UVB	4,53429	4,55825	4,54965
2000 UVB	4,52060	4,49714	4,61958

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00222	0,00220	0,00181	0,00220
100 UVA	0,00217	0,00193	0,00206	0,00206
150 UVA	0,00196	0,00182	0,00190	0,00190
200 UVA	0,00200	0,00164	0,00180	0,00180
250 UVA	0,00155	0,00151	0,00151	0,00151
500 UVB	0,00158	0,00168	0,00186	0,00168
1000 UVB	0,00148	0,00145	0,00145	0,00145
1500 UVB	0,00124	0,00100	0,00135	0,00124
2000 UVB	0,00085	0,00059	0,00078	0,00078

Tab.9.28.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von 1b Agar (UVA)	0,0022	0,00206	0,0019	0,0018	0,00151
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von 1b Agar (UVB)	0,0022	0,00168	0,00145	0,00124	0,00078
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von 1b Agar (UVA)	100	93,6363636	86,3636364	81,8181818	68,6363636
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von 1b Agar (UVB)	100	76,3636364	65,9090909	56,3636364	35,4545455

Exophiala dermatitidis P202 von Selektiv Agar (Versuch 2) Alle Werte in Gramm (g)

Tab.9.29.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,53977	4,45847	4,51895
100 UVA	4,54	4,55324	4,56186
150 UVA	4,43971	4,4532	4,49927
200 UVA	4,57579	4,48549	4,60252
250 UVA	4,45787	4,52559	4,42942
500 UVB	4,437	4,47326	4,48033
1000 UVB	4,57176	4,54294	4,527
1500 UVB	4,50321	4,52602	4,53447
2000 UVB	4,4804	4,4899	4,47529

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,53788	4,45670	4,51711
100 UVA	4,53803	4,55143	4,56016
150 UVA	4,43787	4,45159	4,49759
200 UVA	4,57411	4,48391	4,60079
250 UVA	4,45619	4,52409	4,42788
500 UVB	4,43526	4,47171	4,4787
1000 UVB	4,57012	4,54146	4,52552
1500 UVB	4,50170	4,52458	4,53305
2000 UVB	4,47880	4,48845	4,47387

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00189	0,00177	0,00184	0,00184
100 UVA	0,00197	0,00181	0,00170	0,00181
150 UVA	0,00184	0,00161	0,00168	0,00168
200 UVA	0,00168	0,00158	0,00173	0,00168
250 UVA	0,00168	0,00150	0,00154	0,00154
500 UVB	0,00174	0,00155	0,00163	0,00163
1000 UVB	0,00164	0,00148	0,00148	0,00148
1500 UVB	0,00151	0,00144	0,00142	0,00144
2000 UVB	0,00160	0,00145	0,00142	0,00145

Tab.9.30.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von Selektiv Agar (UVA)	0,00184	0,00181	0,00168	0,00168	0,00154
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von Selektiv Agar (UVB)	0,00184	0,00163	0,00148	0,00144	0,00145
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von Selektiv Agar (UVA)	100	98,3695652	91,3043478	91,3043478	83,6956522
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von Selektiv Agar (UVB)	100	88.5869565	80.4347826	78.2608696	78.8043478

Exophiala dermatitidis P202 von 1b Agar (Versuch 2) Alle Werte in Gramm (g)

Tab.9.30.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,56682	4,51772	4,39292
100 UVA	4,56134	4,48985	4,47667
150 UVA	4,59788	4,55259	4,54343
200 UVA	4,49745	4,61393	4,44541
250 UVA	4,49716	4,59113	4,53504
500 UVB	4,56028	4,50240	4,52254
1000 UVB	4,49266	4,57672	4,58784
1500 UVB	4,59631	4,58706	4,57035
2000 UVB	4,56912	4,60748	4,45878

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,56488	4,51587	4,39119
100 UVA	4,55964	4,48800	4,47462
150 UVA	4,59579	4,55093	4,54174
200 UVA	4,49609	4,61239	4,44392
250 UVA	4,49556	4,58975	4,53366
500 UVB	4,55865	4,50088	4,52105
1000 UVB	4,49131	4,57539	4,58639
1500 UVB	4,59501	4,58588	4,56912
2000 UVB	4,56837	4,60653	4,45878

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00194	0,00185	0,00173	0,00185
100 UVA	0,00170	0,00185	0,00205	0,00185
150 UVA	0,00209	0,00166	0,00169	0,00169
200 UVA	0,00136	0,00154	0,00149	0,00149
250 UVA	0,00160	0,00138	0,00138	0,00138
500 UVB	0,00163	0,00152	0,00149	0,00152
1000 UVB	0,00135	0,00133	0,00145	0,00135
1500 UVB	0,00130	0,00118	0,00123	0,00123
2000 UVB	0,00075	0,00095	0,00000	0,00075

Tab.9.31.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von 1b Agar (UVA)	0,00185	0,00185	0,00169	0,00149	0,00138
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von 1b Agar (UVB)	0,00185	0,00152	0,00135	0,00123	0,00075
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von 1b Agar (UVA)	100	100	91,3513514	80,5405405	74,5945946
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von 1b Agar (UVB)	100	82 1621622	72 972973	66 4864865	40 5405405

Exophiala dermatitidis P202 von Selektiv Agar (Versuch 3) Alle Werte in Gramm (g)

Tab.9.32.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,58501	4,5853	4,56769
100 UVA	4,62952	4,44365	4,65089
150 UVA	4,51668	4,54422	4,62668
200 UVA	4,70903	4,54457	4,57018
250 UVA	4,51302	4,64786	4,72319
500 UVB	4,52398	4,61455	4,60088
1000 UVB	4,44613	4,58464	4,44254
1500 UVB	4,58686	4,5626	4,53241
2000 UVB	4,56182	4,68097	4,48543

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,58283	4,58337	4,56539
100 UVA	4,62743	4,44167	4,64875
150 UVA	4,51463	4,54231	4,62467
200 UVA	4,70706	4,54261	4,56817
250 UVA	4,51119	4,64601	4,72135
500 UVB	4,52199	4,61279	4,59885
1000 UVB	4,44445	4,58283	4,44079
1500 UVB	4,58517	4,56069	4,53079
2000 UVB	4,56022	4,67947	4,48378

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00218	0,00193	0,00230	0,00218
100 UVA	0,00209	0,00198	0,00214	0,00209
150 UVA	0,00205	0,00191	0,00201	0,00201
200 UVA	0,00197	0,00196	0,00201	0,00197
250 UVA	0,00183	0,00185	0,00184	0,00184
500 UVB	0,00199	0,00176	0,00203	0,00199
1000 UVB	0,00168	0,00181	0,00175	0,00175
1500 UVB	0,00169	0,00191	0,00162	0,00169
2000 UVB	0,00160	0,00150	0,00165	0,00160

Tab.9.33.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von Selektiv Agar (UVA)	0,00218	0,00209	0,00201	0,00197	0,00184
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von Selektiv Agar (UVB)	0,00218	0,00199	0,00175	0,00169	0,0016
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von Selektiv Agar (UVA)	100	95,8715596	92,2018349	90,3669725	84,4036697
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von Selektiv Agar (UVB)	100	91.2844037	80.2752294	77.5229358	73.3944954

Exophiala dermatitidis P202 von 1b Agar (Versuch 3) Alle Werte in Gramm (g)

Tab.9.34.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,45325	4,56461	4,67762
100 UVA	4,53014	4,45545	4,56026
150 UVA	4,51360	4,51574	4,55084
200 UVA	4,47643	4,54988	4,58853
250 UVA	4,50383	4,60702	4,50432
500 UVB	4,55242	4,57484	4,55771
1000 UVB	4,60749	4,54933	4,45727
1500 UVB	4,53620	4,69549	4,64993
2000 UVB	4,53282	4,51946	4,62677

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,45103	4,56260	4,67550
100 UVA	4,52819	4,45367	4,55825
150 UVA	4,51173	4,51404	4,54897
200 UVA	4,47467	4,54845	4,58683
250 UVA	4,50207	4,60550	4,50267
500 UVB	4,55060	4,57311	4,55534
1000 UVB	4,60588	4,54772	4,45526
1500 UVB	4,53484	4,69404	4,64826
2000 UVB	4,53179	4,51827	4,62577

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00222	0,00201	0,00212	0,00212
100 UVA	0,00195	0,00178	0,00201	0,00195
150 UVA	0,00187	0,00170	0,00187	0,00187
200 UVA	0,00176	0,00143	0,00170	0,00170
250 UVA	0,00176	0,00152	0,00165	0,00165
500 UVB	0,00182	0,00173	0,00237	0,00182
1000 UVB	0,00161	0,00161	0,00201	0,00161
1500 UVB	0,00136	0,00145	0,00167	0,00145
2000 UVB	0,00103	0,00119	0,00100	0,00103

Tab.9.35.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von 1b Agar (UVA)	0,00212	0,00195	0,00187	0,0017	0,00165
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von 1b Agar (UVB)	0,00212	0,00182	0,00161	0,00145	0,00103
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von 1b Agar (UVA)	100	91,9811321	88,2075472	80,1886792	77,8301887
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von 1b Agar (UVB)	100	85,8490566	75,9433962	68,3962264	48,5849057

Exophiala dermatitidis P202 von Selektiv Agar (Versuch 4) Alle Werte in Gramm (g)

Tab.9.36.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,63147	4,50541	4,42751
100 UVA	4,62725	4,61224	4,53842
150 UVA	4,47481	4,43397	4,66971
200 UVA	4,58331	4,49084	4,69115
250 UVA	4,6395	4,72539	4,53569
500 UVB	4,71853	4,48572	4,6579
1000 UVB	4,55439	4,60892	4,60973
1500 UVB	4,53072	4,5899	4,55563
2000 UVB	4,57839	4,74431	4,60483

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,62958	4,50361	4,42555
100 UVA	4,62535	4,61028	4,5367
150 UVA	4,47297	4,43237	4,66796
200 UVA	4,58143	4,48927	4,68949
250 UVA	4,63806	4,72385	4,5341
500 UVB	4,71679	4,48418	4,65605
1000 UVB	4,55281	4,60716	4,60813
1500 UVB	4,52927	4,58852	4,55436
2000 UVB	4,57703	4,74291	4,60334

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00189	0,00180	0,00196	0,00189
100 UVA	0,00190	0,00196	0,00172	0,00190
150 UVA	0,00184	0,00160	0,00175	0,00175
200 UVA	0,00188	0,00157	0,00166	0,00166
250 UVA	0,00144	0,00154	0,00159	0,00154
500 UVB	0,00174	0,00154	0,00185	0,00174
1000 UVB	0,00158	0,00176	0,00160	0,00160
1500 UVB	0,00145	0,00138	0,00127	0,00138
2000 UVB	0,00136	0,00140	0,00149	0,00140

Tab.9.37.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von Selektiv Agar (UVA)	0,00189	0,0019	0,00175	0,00166	0,00154
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von Selektiv Agar (UVB)	0,00189	0,00174	0,0016	0,00138	0,0014
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von Selektiv Agar (UVA)	100	100,529101	92,5925926	87,8306878	81,4814815
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von Selektiv Agar (UVB)	100	92.0634921	84.6560847	73.015873	74.0740741

Exophiala dermatitidis P202 von 1b Agar (Versuch 4) Alle Werte in Gramm (g)

Tab.9.38.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,55396	4,54723	4,54877
100 UVA	4,54418	4,56262	4,46447
150 UVA	4,57696	4,63777	4,48619
200 UVA	4,51850	4,64084	4,62623
250 UVA	4,68634	4,64583	4,46375
500 UVB	4,58860	4,50508	4,53337
1000 UVB	4,55832	4,49654	4,56244
1500 UVB	4,50259	4,62169	4,62112
2000 UVB	4,58242	4,66924	4,55810

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,55179	4,54523	4,54687
100 UVA	4,54195	4,56066	4,46249
150 UVA	4,57511	4,63603	4,48439
200 UVA	4,51688	4,63921	4,62462
250 UVA	4,68497	4,64443	4,46225
500 UVB	4,58699	4,50331	4,53171
1000 UVB	4,55689	4,49493	4,56102
1500 UVB	4,50147	4,62039	4,61993
2000 UVB	4,58136	4,66855	4,55741

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00217	0,00200	0,00190	0,00200
100 UVA	0,00223	0,00196	0,00198	0,00198
150 UVA	0,00185	0,00174	0,00180	0,00180
200 UVA	0,00162	0,00163	0,00161	0,00162
250 UVA	0,00137	0,00140	0,00150	0,00140
500 UVB	0,00161	0,00177	0,00166	0,00166
1000 UVB	0,00143	0,00161	0,00142	0,00143
1500 UVB	0,00112	0,00130	0,00119	0,00119
2000 UVB	0,00106	0,00069	0,00069	0,00069

Tab.9.39.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von 1b Agar (UVA)	0,002	0,00198	0,0018	0,00162	0,0014
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von 1b Agar (UVB)	0,002	0,00166	0,00143	0,00119	0,00069
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von 1b Agar (UVA)	100	99	90	81	70
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von 1b Agar (UVB)	100	83	71,5	59,5	34,5

Exophiala dermatitidis P202 von Selektiv Agar (Versuch 5) Alle Werte in Gramm (g)

Tab.9.40.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,57994	4,57343	4,45951
100 UVA	4,58065	4,46868	4,52276
150 UVA	4,74905	4,58011	4,49288
200 UVA	4,59454	4,70706	4,66931
250 UVA	4,56048	4,60492	4,60695
500 UVB	4,53247	4,70267	4,65705
1000 UVB	4,53674	4,57679	4,61549
1500 UVB	4,66041	4,59275	4,56937
2000 UVB	4,53144	4,62447	4,65167

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,57806	4,57138	4,45764
100 UVA	4,57894	4,46700	4,52079
150 UVA	4,74742	4,57852	4,49120
200 UVA	4,59292	4,70534	4,6677
250 UVA	4,55906	4,60342	4,60529
500 UVB	4,53083	4,70121	4,65539
1000 UVB	4,53521	4,57510	4,61395
1500 UVB	4,65883	4,59137	4,56781
2000 UVB	4,52984	4,62293	4,65013

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00188	0,00205	0,00187	0,00188
100 UVA	0,00171	0,00168	0,00197	0,00171
150 UVA	0,00163	0,00159	0,00168	0,00163
200 UVA	0,00162	0,00172	0,00161	0,00162
250 UVA	0,00142	0,00150	0,00166	0,00150
500 UVB	0,00164	0,00146	0,00166	0,00164
1000 UVB	0,00153	0,00169	0,00154	0,00154
1500 UVB	0,00158	0,00138	0,00156	0,00156
2000 UVB	0,00160	0,00154	0,00154	0,00154

Tab.9.41.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250		
P 202 von Selektiv Agar (UVA)	0,00188	0,00171	0,00163	0,00162	0,0015		
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000		
P 202 von Selektiv Agar (UVB)	0,00188	0,00164	0,00154	0,00156	0,00154		
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250		
P 202 von Selektiv Agar (UVA)	100	90,9574468	86,7021277	86,1702128	79,787234		
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000		
P 202 von Selektiv Agar (UVB)	100	87.2340426	81.9148936	82.9787234	81.9148936		

Exophiala dermatitidis P202 von 1b Agar (Versuch 5) Alle Werte in Gramm (g)

Tab.9.42.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,56924	4,50504	4,58302
100 UVA	4,67901	4,56521	4,56490
150 UVA	4,62116	4,41374	4,60143
200 UVA	4,50878	4,50816	4,59172
250 UVA	4,52134	4,57313	4,48597
500 UVB	4,64414	4,52030	4,61703
1000 UVB	4,66163	4,62323	4,60054
1500 UVB	4,50663	4,41559	4,55931
2000 UVB	4,48985	4,49146	4,40110

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,56738	4,50336	4,58114
100 UVA	4,67730	4,56351	4,56308
150 UVA	4,61949	4,41222	4,59973
200 UVA	4,50729	4,50660	4,59026
250 UVA	4,51993	4,57154	4,48456
500 UVB	4,64254	4,51880	4,61555
1000 UVB	4,66021	4,62189	4,59923
1500 UVB	4,50524	4,41429	4,55800
2000 UVB	4,48897	4,49056	4,40014

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00186	0,00168	0,00188	0,00186
100 UVA	0,00171	0,00170	0,00182	0,00171
150 UVA	0,00167	0,00152	0,00170	0,00167
200 UVA	0,00149	0,00156	0,00146	0,00149
250 UVA	0,00141	0,00159	0,00141	0,00141
500 UVB	0,00160	0,00150	0,00148	0,00150
1000 UVB	0,00142	0,00134	0,00131	0,00134
1500 UVB	0,00139	0,00130	0,00131	0,00131
2000 UVB	0,00088	0,00090	0,00096	0,00090

Tab.9.43.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250		
P 202 von 1b Agar (UVA)	0,00186	0,00171	0,00167	0,00149	0,00141		
UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000		
P 202 von 1b Agar (UVB)	0,00186	0,0015	0,00134	0,00131	0,0009		
UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250		
P 202 von 1b Agar (UVA)	100	91,9354839	89,7849462	80,1075269	75,8064516		
UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000		
P 202 von 1b Agar (UVB)	100	80,6451613	72,0430108	70,4301075	48,3870968		

Exophiala dermatitidis P202 von Selektiv Agar (Versuch 6) Alle Werte in Gramm (g)

Tab.9.44.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,5113	4,40576	4,49896
100 UVA	4,38543	4,5388	4,39766
150 UVA	4,49552	4,44545	4,49489
200 UVA	4,47162	4,49181	4,42461
250 UVA	4,55717	4,50373	4,59064
500 UVB	4,61289	4,4602	4,48578
1000 UVB	4,43495	4,51257	4,53571
1500 UVB	4,57111	4,55895	4,50491
2000 UVB	4,53945	4,62829	4,52125

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,50919	4,40383	4,49689
100 UVA	4,38347	4,53702	4,39576
150 UVA	4,49355	4,44381	4,49308
200 UVA	4,46994	4,49018	4,42265
250 UVA	4,55558	4,50230	4,58903
500 UVB	4,61098	4,45831	4,48415
1000 UVB	4,43328	4,51077	4,53405
1500 UVB	4,56954	4,55757	4,50330
2000 UVB	4,53812	4,62672	4,51963

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00211	0,00193	0,00207	0,00207
100 UVA	0,00196	0,00178	0,00190	0,00190
150 UVA	0,00197	0,00164	0,00181	0,00181
200 UVA	0,00168	0,00163	0,00196	0,00168
250 UVA	0,00159	0,00143	0,00161	0,00159
500 UVB	0,00191	0,00189	0,00163	0,00189
1000 UVB	0,00167	0,00180	0,00166	0,00167
1500 UVB	0,00157	0,00138	0,00161	0,00157
2000 UVB	0,00133	0,00157	0,00162	0,00157

Tab.9.45.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von Selektiv Agar (UVA)	0,00207	0,00190	0,00181	0,00168	0,00159

UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von Selektiv Agar (UVB)	0,00207	0,00189	0,00167	0,00157	0,00157

UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von Selektiv Agar (UVA)	100	91,7874396	87,4396135	81,1594203	76,8115942

UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von Selektiv Agar (UVB)	100	91,3043478	80,6763285	75,8454106	75,8454106

Exophiala dermatitidis P202 von 1b Agar (Versuch 6) Alle Werte in Gramm (g)

Tab.9.46.

Lichtintensität	Reagenzglas 1 mit Pilz	Reagenzglas 2 mit Pilz	Reagenzglas 3 mit Pilz
0	4,60931	4,44230	4,62673
100 UVA	4,43341	4,45351	4,50005
150 UVA	4,44132	4,37627	4,52678
200 UVA	4,50742	4,52419	4,46810
250 UVA	4,48035	4,46284	4,49089
500 UVB	4,51388	4,43618	4,46871
1000 UVB	4,41063	4,49560	4,48193
1500 UVB	4,41317	4,44242	4,48961
2000 UVB	4,46455	4,52566	4,42396

Lichtintensität	Reagenzglas 1 leer	Reagenzglas 2 leer	Reagenzglas 3 leer
0	4,60735	4,44024	4,62485
100 UVA	4,43161	4,45176	4,49823
150 UVA	4,43978	4,37452	4,52503
200 UVA	4,50571	4,52269	4,46655
250 UVA	4,47891	4,46164	4,48941
500 UVB	4,51226	4,43439	4,46711
1000 UVB	4,4092	4,49431	4,48054
1500 UVB	4,41187	4,44114	4,48879
2000 UVB	4,46371	4,52491	4,42297

Lichtintensität	Reagenzglas 1 pilz-leer	Reagenzglas 2 pilz-leer	Reagenzglas 3 pilz-leer	Median
0	0,00196	0,00206	0,00188	0,00196
100 UVA	0,00180	0,00175	0,00182	0,00180
150 UVA	0,00154	0,00175	0,00175	0,00175
200 UVA	0,00171	0,00150	0,00155	0,00155
250 UVA	0,00144	0,00120	0,00148	0,00144
500 UVB	0,00162	0,00179	0,00160	0,00162
1000 UVB	0,00143	0,00129	0,00139	0,00139
1500 UVB	0,00130	0,00128	0,00082	0,00128
2000 UVB	0,00084	0,00075	0,00099	0,00084

Tab.9.47.

UVA Gewicht in g	0	UVA 100	UVA 150	UVA 200	UVA 250	
P 202 von 1b Agar (UVA)	0,00196	0,00180	0,00175	0,00155	0,00144	

UVB Gewicht in g	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von 1b Agar (UVB)	0,00196	0,00162	0,00139	0,00128	0,00084

UVA %	0	UVA 100	UVA 150	UVA 200	UVA 250
P 202 von 1b Agar (UVA)	100	91,8367347	89,2857143	79,0816327	73,4693878

UVB %	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
P 202 von 1b Agar (UVB)	100	82,6530612	70,9183673	65,3061224	42,8571429

Exophiala dermatitidis P 202 von Selektiv Agar Mittelwertberechnung aus 6 Einzelversuchen

Alle Werte in Gramm (g)

Tab.9.48.

P 202 von Selektiv Agar					
(UVA,g)	0	UVA 100	UVA 150	UVA 200	UVA 250
Versuch 1	0,00223	0,00210	0,00198	0,00180	0,00179
Versuch 2	0,00184	0,00181	0,00168	0,00168	0,00154
Versuch 3	0,00218	0,00209	0,00201	0,00197	0,00184
Versuch 4	0,00189	0,00190	0,00175	0,00166	0,00154
Versuch 5	0,00188	0,00171	0,00163	0,00162	0,00150
Versuch 6	0,00207	0,00190	0,00181	0,00168	0,00159
Mittelwert	0,002015	0,00191833	0,00181	0,001735	0,00163333

P 202 von 1b Agar (UVA,g)	0	UVA 100	UVA 150	UVA 200	UVA 250
Versuch 1	0,00220	0,00206	0,00190	0,00180	0,00151
Versuch 2	0,00185	0,00185	0,00169	0,00149	0,00138
Versuch 3	0,00212	0,00195	0,00187	0,00170	0,00165
Versuch 4	0,00200	0,00198	0,00180	0,00162	0,00140
Versuch 5	0,00186	0,00171	0,00167	0,00149	0,00141
Versuch 6	0,00196	0,00180	0,00175	0,00155	0,00144
Mittelwert	0,00200	0,00189167	0,00178	0,00160833	0,001465

P 202 von Selektiv Agar					
(UVB,g)	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
Versuch 1	0,00223	0,00194	0,00167	0,00167	0,00169
Versuch 2	0,00184	0,00163	0,00148	0,00144	0,00145
Versuch 3	0,00218	0,00199	0,00175	0,00169	0,00160
Versuch 4	0,00189	0,00174	0,00160	0,00138	0,00140
Versuch 5	0,00188	0,00164	0,00154	0,00156	0,00154
Versuch 6	0,00207	0,00189	0,00167	0,00157	0,00157
Mittelwert	0,002015	0,001805	0,00161833	0,00155167	0,00154167

202 von 1b Agar (UVB,g)	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
Versuch 1	0,00220	0,00168	0,00145	0,00124	0,00078
Versuch 2	0,00185	0,00152	0,00135	0,00123	0,00075
Versuch 3	0,00212	0,00182	0,00161	0,00145	0,00103
Versuch 4	0,00200	0,00166	0,00143	0,00119	0,00069
Versuch 5	0,00186	0,00150	0,00134	0,00131	0,00090
Versuch 6	0,00196	0,00162	0,00139	0,00128	0,00084
Mittelwert	0,00200	0,00163333	0,00142833	0,00128333	0,00083167

Exophiala dermatitidis P 202 von Selektiv Agar Mittelwertberechnung aus 6 Einzelversuchen

Alle Werte umgerechnet in <u>Zellzahl</u> (Millionen Zellen)

Tab.9.49.					
202 von Selektiv Agar					
(UVA,z)	0	UVA 100	UVA 150	UVA 200	UVA 250
Versuch 1	45,90232	43,22640	40,75632	37,05120	36,84536
Versuch 2	37,87456	37,25704	34,58112	34,58112	31,69936
Versuch 3	44,87312	43,02056	41,37384	40,55048	37,87456
Versuch 4	38,90376	39,10960	36,02200	34,16944	31,69936
Versuch 5	38,69792	35,19864	33,55192	33,34608	30,87600
Versuch 6	42,60888	39,10960	37,25704	34,58112	32,72856
Mittelwert	41,47676	39,48697333	37,25704	35,71324	33,6205333

202 von 1b Agar (UVA,z)	0	UVA 100	UVA 150	UVA 200	UVA 250
Versuch 1	45,28480	42,40304	39,10960	37,05120	31,08184
Versuch 2	38,08040	38,08040	34,78696	30,67016	28,40592
Versuch 3	43,63808	40,13880	38,49208	34,99280	33,96360
Versuch 4	41,16800	40,75632	37,05120	33,34608	28,81760
Versuch 5	38,28624	35,19864	34,37528	30,67016	29,02344
Versuch 6	40,34464	37,05120	36,02200	31,90520	29,64096
Mittelwert	41,13369	38,93806667	36,63952	33,10593333	30,15556

202 von Selektiv Agar					
(UVB,z)	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
Versuch 1	45,90232	39,93296	34,37528	34,37528	34,78696
Versuch 2	37,87456	33,55192	30,46432	29,64096	29,84680
Versuch 3	44,87312	40,96216	36,02200	34,78696	32,93440
Versuch 4	38,90376	35,81616	32,93440	28,40592	28,81760
Versuch 5	38,69792	33,75776	31,69936	32,11104	31,69936
Versuch 6	42,60888	38,90376	34,37528	32,31688	32,31688
Mittelwert	41,47676	37,15412	33,31177333	31,93950667	31,7336667

202 von 1b Agar (UVB,z)	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
Versuch 1	45,28480	34,58112	29,84680	25,52416	16,05552
Versuch 2	38,08040	31,28768	27,78840	25,31832	15,43800
Versuch 3	43,63808	37,46288	33,14024	29,84680	21,20152
Versuch 4	41,16800	34,16944	29,43512	24,49496	14,20296
Versuch 5	38,28624	30,87600	27,58256	26,96504	18,52560
Versuch 6	40,34464	33,34608	28,61176	26,34752	17,29056
Mittelwert	41,13369	33,62053333	29,40081333	26,41613333	17,1190267

Exophiala dermatitidis P 201 von Selektiv Agar Mittelwertberechnung aus 6 Einzelversuchen

Alle Werte in Gramm (g)

Tab.9.50.

201 von Selektiv Agar					
(UVA,g)	0	UVA 100	UVA 150	UVA 200	UVA 250
Versuch 1	0,00206	0,00178	0,00158	0,00129	0,00091
Versuch 2	0,00218	0,00193	0,00187	0,00160	0,00110
Versuch 3	0,00217	0,00208	0,00187	0,00166	0,00106
Versuch 4	0,00204	0,00176	0,00175	0,00130	0,00093
Versuch 5	0,00216	0,00194	0,00178	0,00148	0,00103
Versuch 6	0,00203	0,00197	0,00158	0,00143	0,00109
Mittelwert	0,00211	0,00191	0,00174	0,00146	0,00102

201 von 1b Agar (UVA,g)	0	UVA 100	UVA 150	UVA 200	UVA 250
Versuch 1	0,00195	0,00175	0,00165	0,00143	0,00125
Versuch 2	0,00219	0,00198	0,00187	0,00170	0,00165
Versuch 3	0,00214	0,00205	0,00203	0,00179	0,00136
Versuch 4	0,00217	0,00197	0,00188	0,00181	0,00144
Versuch 5	0,00199	0,00185	0,00170	0,00153	0,00149
Versuch 6	0,00196	0,00189	0,00161	0,00146	0,00126
Mittelwert	0,00207	0,00191	0,00179	0,00162	0,00141

201 von Selektiv Agar					
(UVB,g)	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
Versuch 1	0,00206	0,00068	0,00050	0	0,00000
Versuch 2	0,00218	0,00090	0,00075	0,00028	0,00017
Versuch 3	0,00217	0,00085	0,00069	0	0,00000
Versuch 4	0,00204	0,00087	0,00058	0,00025	0,00000
Versuch 5	0,00216	0,00068	0,00062	0,00021	0,00000
Versuch 6	0,00203	0,00071	0,00055	0,00019	0,00000
Mittelwert	0,00211	0,00078	0,00061	0,00016	0,00003

201 von 1b Agar (UVB,g)	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
Versuch 1	0,00195	0,00079	0,00061	0,00010	0,00000
Versuch 2	0,00219	0,00111	0,00097	0,00040	0,00018
Versuch 3	0,00214	0,00088	0,00080	0,00027	0,00000
Versuch 4	0,00217	0,00095	0,00082	0,00037	0,00017
Versuch 5	0,00199	0,00085	0,00080	0,00033	0,00000
Versuch 6	0,00196	0,00096	0,00080	0,00032	0,00000
Mittelwert	0,00207	0,00092	0,00080	0,00030	0,00006

Exophiala dermatitidis P 201 von Selektiv Agar Mittelwertberechnung aus 6 Einzelversuchen

Alle Werte umgerechnet in Zellzahl (Millionen Zellen)

Tab.9.51.

201 von Selektiv Agar					
(UVA,z)	0	UVA 100	UVA 150	UVA 200	UVA 250
Versuch 1	36,34252	31,40276	27,87436	22,75818	16,05422
Versuch 2	38,45956	34,04906	32,99054	28,22720	19,40620
Versuch 3	38,28314	36,69536	32,99054	29,28572	18,70052
Versuch 4	35,98968	31,04992	30,87350	22,93460	16,40706
Versuch 5	38,10672	34,22548	31,40276	26,11016	18,17126
Versuch 6	35,81326	34,75474	27,87436	25,22806	19,22978
Mittelwert	37,1658133	33,69622	30,6676767	25,75732	17,99484

201 von 1b Agar (UVA,z)	0	UVA 100	UVA 150	UVA 200	UVA 250
Versuch 1	34,40190	30,87350	29,10930	25,22806	22,05250
Versuch 2	38,63598	34,93116	32,99054	29,99140	29,10930
Versuch 3	37,75388	36,16610	35,81326	31,57918	23,99312
Versuch 4	38,28314	34,75474	33,16696	31,93202	25,40448
Versuch 5	35,10758	32,63770	29,99140	26,99226	26,28658
Versuch 6	34,57832	33,34338	28,40362	25,75732	22,22892
Mittelwert	36,46013	33,78443	31,57918	28,58004	24,8458167

201 von Selektiv Agar (UVB,z)	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
Versuch 1	36,34252	11,99656	8,82100	0,00000	0,00000
Versuch 2	38,45956	15,87780	13,23150	4,93976	2,99914
Versuch 3	38,28314	14,99570	12,17298	0,00000	0,00000
Versuch 4	35,98968	15,34854	10,23236	4,41050	0,00000
Versuch 5	38,10672	11,99656	10,93804	3,70482	0,00000
Versuch 6	35,81326	12,52582	9,70310	3,35198	0,00000
Mittelwert	37,1658133	13,7901633	10,84983	2,73451	0,49985667

201 von 1b Agar (UVB,z)	0	UVB 500	UVB 1000	UVB 1500	UVB 2000
Versuch 1	34,40190	13,93718	10,76162	1,76420	0,00000
Versuch 2	38,63598	19,58262	17,11274	7,05680	3,17556
Versuch 3	37,75388	15,52496	14,11360	4,76334	0,00000
Versuch 4	38,28314	16,75990	14,46644	6,52754	2,99914
Versuch 5	35,10758	14,99570	14,11360	5,82186	0,00000
Versuch 6	34,57832	16,93632	14,11360	5,64544	0,00000
Mittelwert	36,46013	16,2894467	14,1136	5,26319667	1,02911667
Lebenslauf

Christian Gh	eorghe Juncu
10. Januar 1	978
Mülheim an der Ruhr	
deutsch	
ledig	
evangelisch	
Vater:	Dr. Aurel Juncu
	Arzt für Orthopädie
Mutter:	Elke Juncu
	Rechtspflegerin
Sonja Juncu	, Daniel Juncu
	Christian Gh 10. Januar 1 Mülheim an deutsch ledig evangelisch Vater: Mutter: Sonja Juncu

Schulischer und beruflicher Werdegang

1984 - 1988	Grundschule an der Bruchstrasse in Mülheim a. d. Ruhr
1988 - 1997	Otto-Pankok-Gymnasium in Mülheim a. d. Ruhr
	Schulabschluss: Abitur
Wehrdienst	Januar-Oktober 1998
Auslandsstudium	Januar-Oktober 1999
	Aquinas College, Grand Rapids, Michigan, USA
	Fachrichtung: Pre-Medical Studies
1999 - 2005	Studium der Zahnmedizin an der Justus-Liebig-Universität
	in Giessen
Juli 2000	Naturwissenschaftliche Vorprüfung
April 2002	Zahnärztliche Vorprüfung
Juli 2005	Staatsexamen
Aug 2005 -Feb 2006	Experimenteller Teil der Promotion
seit 01.03.2006	Oralchirurgische Tätigkeit als Vorbereitungsassistent bei
	Dr. Hassfurther in Wettenberg/Launsbach
14.06.2007	Disputation

Danksagung

Mein besonderer Dank gilt Prof. Dr. P. Mayser für die Überlassung dieses interessanten Themas und die außerordentlich gute Betreuung bei der Erstellung dieser Arbeit.

Weiterhin möchte ich mich bedanken bei Dr. H.-J. Krämer für seine Unterstützung sowie bei Frau Förste für Ihre nette Mithilfe.

Ebenso gilt mein Dank Prof. Dr. G. Haase für die großzügige Bereitstellung des Pilzmaterials sowie PD. Dr. Spiteller für die schnelle Bearbeitung der Substanzproben.

Zuletzt möchte ich mich bei meinen Eltern bedanken, die mich während meines Studiums und der Doktorarbeit in jeder Hinsicht unterstützt haben.

VVB LAUFERSWEILER VERLAG STAUFENBERGRING 15 D - 3 5 3 9 6 GIESSEN

Tel: 0641-5599888 Fax: -5599890 redaktion@doktorverlag.de w w w . d o k t o r v e r l a g . d e

