
 

 

 

 

 

 

 

 

 

C1 esterase inhibitor mediated protection from 

    acute lung injury 

 

 

 

 

 

 

Inaugural Dissertation 

Submitted to the 

Faculty of Medicine 

of the Justus Liebig University Giessen 

 

by 

Hess, Rosanna Marie 

from Frankfurt am Main, Germany 

 

 

 

 

Giessen 2016 

 



 

 

 

 

 

 

C1 esterase inhibitor mediated protection from 

    acute lung injury 

 

 

 

 

 

 

Inaugural Dissertation 

Submitted to the 

Faculty of Medicine 

of the Justus Liebig University Giessen 

 

by 

Hess, Rosanna Marie 

from Frankfurt am Main, Germany 

 

 

 

 

Giessen 2016 



 
 

 
 

From the Biochemistry Institute 
Director: Prof. Dr. Lienhard Schmitz 

of the Faculty of Medicine of the Justus Liebig University Giessen 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

First Supervisor and Committee Member:  Prof. Dr. Malgorzata Wygrecka-Markart 
Second Supervisor: Prof. Dr. Bellusci 

 
 

Date of Defense: 13.06.2017  



 
Table of contents 
 

I 

I. Table of contents 

I. Table of contents……………………………………………………………... I 

1. Introduction……………………………………………………………………. 1 

1.1  Hemostasis………………………………………………………………. 1 

1.1.1 The pathways of coagulation…………………………………………... 1 

1.1.2  Contact activation pathway………………………………………….…. 2 

1.1.2.1  Factor XII…………………………………………………………........... 2  

1.1.2.1.1  FXII structure…………………………………………………………….. 3 

1.1.2.1.2  FXII activities…………………………................................................. 4 

1.1.2.1.3  Activation and inhibition of FXII………………………………………... 4 

1.1.2.2  Factor XI………………………………………………………………….. 5 

1.1.2.3  Kallikrein………………………………………………………………….  6 

1.1.2.4  High molecular weight kininogen……………………………………… 6  

1.1.2.4.1  Bradykinin…………………………………………………….………….. 7 

1.1.3  Cellular interaction of the contact activation system………………… 7 

1.1.4  The role of contact activation in hemostasis 

           and thrombosis………………………………………………………….. 8 

1.1.5  The role of contact activation in inflammation…............................... 9   

1.2  C1 esterase inhibitor……………………………………………………. 9 

1.3  Acute respiratory distress syndrome………………………………….. 10 

1.3.1  Definition and etiopathology of ARDS………………………………… 11 

1.3.2  Pathogenesis of ARDS…………………………………………………. 12 

1.3.3  Alveolar coagulation in ARDS…………………………………………. 13 

1.3.3.1  The role of extrinsic coagulation factors in ARDS............................  13 

1.3.3.2  The role of intrinsic coagulation factors in  

              inflammation and fibrotic alteration of the lung………………………. 14  

2. Material and methods………………………………………………………... 17 

2.1  Material………………………………………………………….............. 17 

2.1.1 Apparatuses and Equipments…………………………………………. 17 

2.1.2  Reagents…………………………………………………………………. 17 

2.1.3  KITs…………………………………………………………………........  20 

2.2   Methods………………………………………………………………….  21 

2.2.1 Test samples…………………………………………………………….  21 

2.2.1.1  Study population………………………………………………………...  21        

2.2.1.2  Murine samples………………………………………………………….  22 

2.2.1.2.1  Bleomycin administration………………………………………………. 22



 
Table of contents 
 

II 

2.2.1.2.2  C1 INH administration…………………………………………………..  22 

2.2.1.2.3  Histological staining…………………………………………………….. 22 

2.2.1.2.4  Wet-dry-lung weight ratio………………………………………………  22 

2.2.1.2.5   Flow cytometry………………………………………………………….  23 

2.2.2  Western Blot…………………………………………………………….. 23 

2.2.2.1 Preparation of the samples for gel electrophoresis…………………. 23  

2.2.2.2 Sodium dodecyl sulfate polyacrylamid gel electrophoresis…….......  24 

2.2.2.3  Immunoblotting………………………………………………………….. 24   

2.2.3  Enzyme linked immunosorbent assay (ELISA)……………………… 25  

2.2.3.1 FXII detection in BALF………………………………………………….. 25  

2.2.3.2  FXII detection in plasma……………………………………………….. 25  

2.2.3.3 BK detection in BALF and plasma…………………………………….. 26  

2.2.4 Isolation of leukocyte……………………………………………………. 26   

2.2.5  Molecular Analysis………………………………………………………. 27 

2.2.5.1  RNA Isolation……………………………………………………………. 27 

2.2.5.2  Reverse Transcriptase (RT) reaction……………………….………… 27 

2.2.5.3  Real-time PCR (qPCR)……………………………………………........ 28     

2.2.6  Statistics………………………………………………………………….. 29  

3.    Results………………………………………………………………........... 30     

3.1   Contact activation factors are elevated in BALF  

  and lung homogenate of ARDS patients……………………………… 30 

3.2   FXII expression is increased in blood cells of ARDS patients……… 36   

3.3   The protein level of FXII and BK is elevated in lungs of  

  bleomycin treated mice…………………………………………………. 37 

3.4   C1 esterase inhibitor (C1 INH) decreases inflammatory      

 response in bleomycin challenged murine lungs…………………….. 40 

3.4.1  C1 INH alleviates the inflammatory response  

  induced by bleomycin application……………………………………... 40 

3.4.2  Expression of proinflammatory mediators in  

  bleomycin injured lungs is reduced after C1 INH application………. 43       

3.4.3  C1 INH administration has no impact on coagulation  

         in bleomycin challenged mice………………………………………….. 45  

4. Discussion……………………………………………………………………... 47 

4.1   The contact activation factors are increased in ARDS lungs………. 47 

4.2   C1 INH administration moderates the inflammatory response in  

  acute lung injury……………………………………….………………… 51  

5.       Conclusion…………………………………………………………………….. 56



 
Table of contents 
 

III 

 

6.       Summary……………………………………………………………………….. 57 

7. Zusammenfassung ………………………………………………………….. 59 

8.  List of abbreviations…………………………………………………………. 62 

9.  List of figures and tables……………………………………………………. 65 

9.1   List of figures…………………………………………………………..... 65 

9.2   List of tables……………………………………................................... 66  

10. References…………………………………………………………………….. 67  

11. Declaration…………………………………………………………………….. 80  

12.  Acknowledgements………………………………………………………….. 81 

13.  Curriculum vitae………………………………………………………………. 82 

 

 

  

 

 



Introduction 

 

- 1 - 
 

1.  Introduction 

1.1  Hemostasis 

Hemostasis is an essential feature of the human defense system and the physiological 

response to blood vessel damage and injury of endothelial cells. Initially, the blood flow 

is reduced by local vasoconstriction, accompanied with aggregation of activated 

platelets to instantly cover the lesion of the endothelium and consequently prevent 

further extravasation of the blood. This initial process is also referred to as primary 

hemostasis. The concurrent activation of the coagulation proteases induces extensive 

fibrin generation, finally resulting in a stable fibrin-clot, which seals the surface of the 

blood vessel. Correspondingly, this process is described as secondary hemostasis.      

Importantly, this hemostatic response is strictly limited to the site of vessel injury, 

physiologically not affecting the systemic blood flow. Thus, an accurate, locally limited 

interaction of thrombocytes and damaged endothelium as well as a precise regulation 

of procoagulant and anticoagulant mediators is required. In the case of a pathological 

predominance of either condition, thrombotic formation or bleeding disorder, 

respectively, will result. 

 

1.1.1 The pathways of coagulation 

The classic model of the coagulation system distinguishes two different pathways of 

coagulation, the extrinsic and the intrinsic pathway, each characterized by a cascade of 

reactions of proteases and cofactors. Primordially, both coagulation pathways were 

thought to independently contribute to fibrin formation during hemostasis. However, 

presently a more complex scheme of coagulation emerges and research up to date 

indicates a preponderant importance of the extrinsic pathway as the main activator of 

coagulation in vivo (1-4). The intrinsic pathway, also referred to as contact activation 

pathway, is initiated by surface contact (5-7) and includes the Hageman factor (FXII), 

factor XI (FXI), kallikrein (KLK) and high molecular weight kininogen (HK). While its 

contribution to fibrin formation in hemostasis is presumed to be of minor importance, 

the contact activation factors were found to be involved in pathological thrombosis and 

in other activities related to modulation of the complement- and kinin-system. 
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1.1.2   Contact activation pathway 

1.1.2.1 Factor XII  

The gene encoding for FXII is located on chromosome 5 (8). FXII zymogen is 

synthesized in the liver (9) and secreted as a single chain glycoprotein with a molecular 

weight of 80kDa (10). In vitro FXII has been found to have the special property of 

autoactivation when bound to activating surfaces. Activation of FXII can either result in 

generation of activated α-FXII (α-FXIIa) or by further cleavages in formation of 

activated β-FXII (β-FXIIa), also referred to as Hageman fragment (HFf), both 

possessing serine protease activity (11). Activated α-FXII consists of an amino-terminal 

heavy chain of 50 kDa and a carboxyl terminal light chain of 28 kDa, linked by a 

disulfide bond (12, 13). β-FXIIa is also composed of two chains, the 28 kDa chain 

identical with the light chain of α-FXIIa and a 2 kDa chain, which originates from the 

heavy chain, equally held together by a disulfide bond (11, 12, 14).    

 

 

Figure 1.1 Contact activation pathway.                

FXII is converted when bound to negatively charged surface into activated FXII (FXIIa). FXIIa activates 

prekallikrein (PK) into kallikrein (KLK), which reciprocally activates FXII. Additionally KLK cleaves high 

molecular weigh kininogen (HK) into HKa under release of vasoactive and proinflammatory bradykinin 

(BK). HK has an accelerating impact on KLK triggered FXII activation. FXIIa further activates FXI, FXIa 

cleaves FIX, a protease known to essentially contribute to coagulation.   
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1.1.2.1.1 FXII structure 

Structurally, FXII is composed of various functional domains. Starting at the amino-

terminus following regions were immuno-localized: The fibronectin domain type II, 

followed by an epidermal growth factor (EGF)-like domain, a fibronectin domain type I, 

a second EGF-like domain, a kringle-domain, a proline-rich domain and a carboxy-

terminal located catalytic domain (14). Although the different domains of FXII have 

been identified, not all functional properties of the respective regions are yet 

determined. Surface binding sites have been detected in the fibronectin domain type II 

(residues 1-28) (15) and type I region (residues 134-153) (16). An additional surface 

binding site is surmised in either the kringle domain or the second EGF-like domain 

(10). The first EGF-like as well as the fibronectin type II region were identified to 

contain binding sequences for zinc, a putative promoter of FXII surface binding and 

activation (17, 18).  Previous studies further provided evidence of a critical role of the 

fibronectin type II domain (residues 3-19) in FXI activation and interaction with 

endothelial cells and neutrophils (19-21). The precise function of the EGF-like domains 

of FXII remains to be examined; however, a mitogenic effect of this region has been 

demonstrated (22). Containing the catalytic domain, the light chain represents the site 

of proteolytical activity. This section includes the catalytic triad, composed of the amino 

acid residues His393-Asp442-Ser544, which is specific for serine proteases and essential 

for its enzymatic activity (23). The amino acid sequence of the catalytic domain has 

been found to share homologies with those of other proteases, notably plasmin, tissue 

plasminogen activator (t-PA) and urokinase (12). The proline-rich domain, however, 

appears to be unique for FXII, its significance is not yet understood. It is worthwhile 

noting that the structure of FXII has a particularly striking similarity with the t-PA, only 

differing in one domain; whereas FXII consists of the proline-rich domain, t-PA contains 

a second kringle region (14).   

 

 Figure 1.2 Model of FXII structure with detail view on catalytic domain.  
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1.1.2.1.2 FXII activities 

Containing both the catalytic domain, α-FXIIa and β-FXIIa possess the ability of 

proteolytically activating prekallikrein (PK) to kallikrein (KLK), which launches the kinin-

kallikrein system and reciprocally activates FXII, a reaction found to be enhanced by 

the cofactor high molecular weight kininogen (HK) (13, 24). Furthermore β-FXIIa 

possesses the property of promoting immunological defense by activating the first 

component (C1) of the classical complement pathway (25-27). However, lacking the 

particular domains, β-FXIIa does not bind to negatively charged surfaces (26). Also the 

ability to initiate the clotting activity of the intrinsic pathway by proteolytical activation of 

coagulation FXI is exclusively reserved to α-FXIIa (27).                 

Besides its procoagulant activity, in purified systems FXII has also been demonstrated 

to contain fibrinolytic properties at physiological concentration by direct activation of 

plasminogen (28, 29). This property has been reported to be enhanced by negatively 

charged surfaces, dextran sulfate (30) and in the presence of zinc ions (29). 

Furthermore, indirect fibrinolytic effects have been attributed to FXII firstly by cleavage 

of plasminogen proactivator (31) and secondly by complex formation with plasminogen 

activator inhibitor type-1 and its subsequent inactivation (32). In line with these findings 

are the structural homologies of FXII with t-PA (12, 14). A mitogenic effect of FXII has 

been demonstrated in HepG2 cells (22), fetal alveolar cells, endothelial cells, 

epithelioid carcinoma cells and aortic smooth muscle cells (33), most likely involving 

the EGF-like domains.  

     

1.1.2.1.3 Activation and inhibition of FXII 

FXII zymogen is activated by cleavage of the Arg353-Val354 bound either during 

autoactivation or by KLK. Numerous substrates have been found to be in vitro capable 

of triggering autoactivation of FXII as kaolin (34), dextran sulfates (35), sulfatides (36-

38), bacterial lipopolysaccarides (39), heparin, chondroit sulfate (40), articular cartilage 

and calcium pyrophosphat (13, 41). Although the process of FXII activation under 

physiological conditions remains unsettled, potential activators have been identified as 

RNA (42), collagen (43) and inorganic polyphosphates (PolyP) (44). The latter has 

been observed to be released by activated platelets in vivo and induce the contact 

activation system (45).  The reciprocal KLK-driven activation of FXII with HK as 

cofactor amplifies FXIIa generation and is required for a sufficient rate to initiate the 

intrinsic clotting pathway and the kinin-kallikrein system (46, 47). The significant role of 

C1 esterase inhibitor (C1 INH) as irreversible inhibitor of FXII is generally 

acknowledged (48, 49). This serine protease inhibitor was first described in connection 
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with the first component of complement, as it was detected to inactivate the 

subcomponents C1r and C1s (50). Since then  a wide range of additional proteases 

have been identified to be target of C1 INH inactivation, among them α-FXIIa and β-

FXIIa (51). The inhibition rate is attenuated in the presence of kaolin, sulfatides and 

other negatively charged surfaces, thus α-FXIIa appears to be protected from inhibition 

when bound to a surface. Accordantly, this effect does not apply for β-FXIIa due to its 

lack of a surface binding site (52). Anti-thrombin III (AT III), α-2-macroglobulin and α-2-

antiplasmin were additionally demonstrated to have inhibiting effects on FXIIa, though 

to a much lower degree (48, 53). However, the predominant role of C1 INH is 

challenged by a study, demonstrating a preponderant complex formation of FXII-AT III, 

when FXII activation is triggered by activated platelets. This might draw new attention 

to the in vivo role of AT III as inhibitor of FXII (54). 

 

1.1.2.2   Factor XI  

The liver represents the main source of FXI synthesis. However, human FXI RNA has 

additionally been located in the kidney and pancreas, though their contribution to the 

FXI plasma level is presumed to be negligible (55).            

FXI is a zymogen of 160 kDa molecular weight, with the unique feature among 

coagulation proteases of a homodimeric structure (55-57). This homodimer contains 

two identical polypeptide chains, linked by a disulfide bond (58, 59). Each of the two 

chains is composed of a heavy and a light chain, the latter containing the catalytic 

portion with the classic triad of His, Asp and Ser as found in FXII (60). Each heavy 

chain is composed of four tandem repeats, containing 90-91 amino acid residues 

respectively, referred to as Apple domains (A1-4) (57, 60, 61). Remarkably, the amino 

acid sequence of FXI is to 58% homologous to prekallikrein (PK) (57), a discovery 

elucidated by a common evolutionary ancestor (62, 63). Both proteins share the feature 

of being substrates of FXII and are each by majority found associated in a non-covalent 

complex with HK (63, 64). The particular dimeric formation of FXI is presumed to be 

essential for the activation by α-FXIIa and thrombin (56, 65). FXIIa triggered FXI 

activation is performed by cleavage of the Arg 369- Ile 370 bond (57), an interaction found 

to involve HK as important cofactor (61, 66). FXIa possesses serine protease 

properties and activates FIX, a crucial contributor to thrombin generation (3, 67).    
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1.1.2.3  Kallikrein      

Contrary to FXI the precursor of plasma kallikrein, prekallikrein (PKLK), is of 

monomeric structure, containing 619 amino acids (68). Activation of PK is initiated by 

internal cleavage of the Arg371- Ile372 bond, resulting in formation of a heavy chain of 52 

kDa and a light chain, linked together by a disulfide bond (60, 69). Two different 

variations of the light chain were detected at 33 kDa and 36 kDa, respectively (70). 

Analogous to FXI, the heavy chain of KLK contains the four Apple domains (A1-4) of 

repeat sequences in the amino-terminal part (68). The light chain contains the 

carboxyl-terminal located catalytic domain and has similar amino acid sequences as 

the trypsin family of serine proteases (68, 70).  Further cleavage of the heavy chain of 

KLK, a process determined to be of autolytic nature, induces β-KLK generation (70, 

71). The heavy chain has been reported to be the essential site for interactions with HK 

and FXII (72, 73). Thus, regions participating in HK binding have been localized within 

the A2 domain (74) as well as in domain A1 and A4 (75) of the heavy chain. The non-

covalent complex formation with HK not only facilitates surface binding with 

subsequent enhanced activation by FXII, but further protects KLK from inhibition by its 

major inhibitors C1 IHN and α-2-macroglobulin in plasma (76, 77). Activated KLK 

cleaves HK into HKa, liberating bradykinin (BK). HKa is found to have a more 

accelerating impact as cofactor on FXII activation than its precursor (78).  Additionally, 

fibrinolytic activity is attributed to KLK; directly by activation of plasminogen and 

indirectly by cleavage of pro-urokinase, a plasminogen activator (79, 80). 

 

1.1.2.4 High molecular weight kininogen (HK) 

Despite having no enzymatic activity of its own, the pathophysiological functions of HK 

are manifold and of indispensable relevance in contact activation. Firstly, HK is the 

precursor of BK, a highly significant modulator of vasodilatation and inflammatory 

response. Secondly, HK has an accelerating effect as a cofactor on contact activation. 

HK is a glycoprotein with a molecular weight of 120 kDa. It is cleaved by KLK into a 

heavy chain of 62 kDa and a light chain of 56kDa, joined together by a disulfide bond 

(60, 81-83). HK consists of six different regions, referred to as D1-D6. Whereas the 

domains D1-D3 account for the heavy chain, D4 constitutes BK, and the light chain is 

composed of the domain D5-6 (60, 81, 84). Remarkably, all contact activation pathway 

activity is linked to the light chain (76). The binding site for anionic surfaces in vitro as 

well as for endothelial cells, neutrophils and platelets, is localized on D5 of the light 

chain (84-87). D6 has been identified to contain the binding site for FXI and PK (84). 

The presence of HK during contact activation is of essential importance; besides its 
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function as an associate for FXI and KLK in plasma, it also serves as an anchor, linking 

the proteases to the surface and consequently providing ideal conditions for FXII 

triggered activation (66).   

 

1.1.2.4.1 Bradykinin 

Liberated BK, a nanopeptid of nine amino acids, is involved in a wide range of vascular 

and inflammatory processes (88, 89). The half-life of BK is briefly limited due to a rapid 

degradation by different enzymes, particularly the angiotensin-converting enzyme 

(ACE) (90, 91). Vascular modulative effects include the release of superoxide anion 

(92), prostacyclin (93), nitric oxide (NO) (94) and promotion of hyperpolarization and 

relaxation of arterial smooth muscle cells (95). Furthermore, this kinin has been found 

to stimulate the release of t-PA, thus contributing to the regulation of fibrinolysis (96, 

97). The inflammatory impact of BK is mediated through the bradykinin-1-receptor 

(B1R) and bradykinin-2-receptor (B2R). The former is exclusively expressed in 

response to inflammatory stimuli such as interleukin-1β (IL-1β) and tumor necrosis 

factor-α (TNF-α) (91). By contrast, B2R is constitutively produced (90, 91) and its 

expression is recognized to be reinforced by BK itself (98, 99). Both receptors are 

identified to be involved in BK induced recruitment of lymphocytic cells during 

inflammation (100, 101). BK stimulates the release of interleukin-8 (IL-8), granulocyte-

colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor 

(GM-CSF), monocyte chemoattractant protein-1 (MCP-1) and TNF-β in lung fibroblasts 

(101). Particularly IL-8 is an essential inflammatory mediator and a highly effective 

neutrophil chemoattractant. BK further effectuates the release of the proinflammatory 

cytokines interleukin-6 (IL-6) (102) and IL-1β (88) in airway smooth muscle cells and 

human fibroblasts via B2R.  

 

1.1.3  Cellular interaction of the contact activation system 

The finding of intrinsic components on human cells has given rise to the question 

whether these cells might serve as a platform for the proteins to assemble and 

represent the site of contact phase activation in vivo. Furthermore, a potential effect of 

contact proteins on cellular processes through receptor binding has been put into 

consideration. On the surface of human neutrophils FXII, FXI, PK and HK have been 

immune-localized (21, 103). Whereas FXII and HK bind directly to neutrophils, FXI and 

PK are attached to the cell surface through HK. Apparently, both chains of HK contain 

regions responsible for the leukocytes binding. An essential receptor for HK was 

determined to be Mac-1 (CD11b/CD18) (85), a leukocyte integrin known to be also 
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involved in neutrophil adhesion and transendothelial migration (104). The assembly of 

the contact proteins presents a potential source of BK generation attached to the 

immune cells. Considering its effect on the permeability of vessels, liberated BK might 

thereby locally promote neutrophils diathesis (21).       

The presence of the intrinsic components has also been recognized on human 

endothelial cells. Up to this day, three different receptors, namely urokinase 

plasminogen activator receptor (u-PAR), gC1qR and cytokeratin-1, have been 

identified to be targets of zinc dependent FXII and HK binding. The interaction of FXII 

with u-PAR, in complex with β1 integrin and EGFR, has been observed to stimulate 

proliferation of endothelial cells and angiogenesis (105). Of great interest is further the 

binding process of the intrinsic factors to the receptor for the C1 subcomponent of the 

first component of complement gC1qR (18, 19, 106). The binding site of the contact 

proteins within the receptor appears to differ from that of C1q, as no mutual 

interference or inhibition is observed (18). Cytokeratin-1 constitutes the third identified 

receptor and exists partly as a bimolecular complex in association with u-PAR (90, 107) 

or gC1qR (19, 90). Lastly, contact activation factors have been localized on activated 

platelets, and their enzymatic activity while being bound to thrombocytes has been 

demonstrated (44, 54). Thus, platelets may also provide a platform for the activation 

and activity of contact pathway proteases.    

 

1.1.4  The role of contact activation in hemostasis and thrombosis 

The negligible contribution of intrinsic pathway factors to thrombin generation during 

hemostasis has been acknowledged in the past decades of research, mainly based on 

the objective fact that FXII deficient patients do not suffer of a bleeding disorder. More 

recently, data have been published which are consistent with this perception, but 

indicate an essential contribution of the proteases in pathological thrombus formation. 

This hypothesis was supported by the finding that FXII deficient (FXII-/-) mice were 

protected from thrombus formation after artificially induced vessel injury. This protective 

effect was rescinded after FXII infusion, confirming the favorable effect of FXII 

deficiency (108, 109). Defective thrombus formation in FXII -/- mice was also noticed for 

cerebral ischemia models, further highlighting a predominant role of FXII in thrombosis 

(110), (109, 111). These antithrombotic effects in FXII -/- mice were observed not to be 

limited to FXII. Similar results were found in FXI deficient (FXI-/-) mice, expanding a 

potential role of pathological thrombus formation to the intrinsic cascade (112, 113). 

Considering their lack of interference with physiological hemostasis, the intrinsic factors 
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might provide optimal conditions for thrombosis prevention. However, to date this 

antithrombotic effect of FXII depletion has not been established for humans.   

 

1.1.5  The role of contact activation in inflammation 

Research of the recent decades indicates an essential importance of the contact 

pathway as modulator of inflammatory processes. In this context, FXII and KLK have 

been found to be capable of attracting neutrophils and inducing their aggregation (114-

116). Moreover, both proteases were demonstrated to promote the degranulation of 

neutrophils and the subsequent release of neutrophil elastase (116-119). The pro-

inflammatory attribute is further emphasized in a study showing that inhibition of FXII in 

septic baboons resulted in declining activation of the complement system and reduced 

release of neutrophil elastase and IL-8 (118). Additionally, FXII has been reported to 

have a reinforcing effect on cytokine expression, stimulating the synthesis of IL1-β in 

monocytes (115). A potential impact on septic conditions has been also described for 

FXI, thus inhibition of this protease was noted to attenuate inflammation and improve 

survival of affected mice (120). However, the crucial contribution of contact activation to 

inflammation emerges to be the HK-derived liberation and rapid provision of BK, the 

key participant in a broad diversity of inflammatory disorders (121).  

 

1.2  C1 esterase inhibitor 

C 1 esterase inhibitor (C1 INH) is a single chain glycoprotein, belonging to the family of 

serine protease inhibitor (serpins). The inhibitor has a molecular weight of 105 kDa and 

is exceptionally heavily glycosylated. Two domains can be distinguished; the carboxyl 

terminal located serpin domain represents the site of its inhibitory activity, containing 

the protease recognizing compartment, also called the reactive center loop (122, 123). 

The interaction of the active serine of the target protease with the serpin domain of C1 

INH results in an irreversible complex formation with disruption of the molecular 

structure of the protease (124). The second domain of C1 INH is the particularly richly 

glycosylated amino terminal domain, which is unique to the inhibitor and has been 

acknowledged to be not involved in its protease inhibitory activity (123). Having an 

extended range of substrates within the coagulation, fibrinolytic and complement 

activation system, C1 INH represents a serpin of high biological relevance. A 

particularly critical role is assigned to the inhibitor as important regulator of 

inflammation as C1 INH is the exclusive inhibitor of the classic pathway of complement 

and manifested to be the main inhibitor of FXII and KLK of the contact system. 
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Proteolytical cleavage of C1 INH in the reactive center causes the inactivation of its 

protease inhibitory activity. An enzyme identified among others to be capable of C1 

INH inactivation is the neutrophil elastase, an important participant in a wide range of 

inflammatory diseases, including the acute respiratory distress syndrome (125).  Aside 

from its extended significance as inhibitor of plasma proteases, C1 INH has been 

recognized to directly interact with endothelial and immune cells and may therefore 

contain additional anti-inflammatory attributes independent from its activities as plasma 

protease inhibitor (122, 126, 127). Heterozygous C1 INH deficiency results in 

hereditary angioedema (HAE), a disease with the clinical pattern of sudden phases of 

increased vasopermeability with severe edema formation mediated by unrestricted BK 

generation (122).    

  

1.3  Acute respiratory distress syndrome  

Acute respiratory distress syndrome (ARDS) is a lung disease of inflammatory nature, 

commonly culminating in fibroproliferative tissue remodeling and fibrotic alteration of 

the lung. Over the past decades, a high discrepancy has been reported in trials 

investigating the incidence of ARDS. These controversial observations may partly be 

explained by a deviation of the definition of the disease, recent improvements in 

medical treatment and regional differences.  An incidence of 58.7/100,000/year was 

stated in an extensive investigation including 21 hospitals in the United States. Milder 

variations of lung injury were estimated to account for 78.9/100,000/year. Furthermore 

the incidence and mortality was found to be highly dependent on the age of the 

patients (128). A more limited incidence has been reported in European trials (129-

131), for example a rate of 7.2/100,000/year was acknowledged in Spain (131). In line 

with these data, a recent retrospective evaluation in Iceland stated the incidence of 

ARDS at a similarly low level (130). Additionally, this study revealed a steady increase 

of 0.2 cases/year from 1988 to 2010 (130). Though various approaches concerning the 

treatment of ARDS have been made, only lung protective ventilation has proven to 

have a beneficial effect on survival (132). Thus, despite a declining trend (130, 133) 

mortality still remains high, varying between 33% (130)  and 47.8% (131).  

 

1.3.1  Definition and etiopathology of ARDS 

The definition of ARDS has undergone multiple alterations and concisions since first 

described in 1967 by Ashbaugh. This first definition included a severe respiratory 

distress associated with hypoxemia refectory to oxygen therapy, a decline of lung 

compliance and diffuse lung infiltration appearing and rapidly spreading in the chest 
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radiograph (134). Intending to specify and internationally standardize the ARDS term, 

the American-European-Consensus Conference Committee (AECC) redefined the 

criteria of the disease in 1994. This recommendation is the currently prevalent utilized 

definition of ARDS, differentiating according to the degree of hypoxemia:                                                                                                                                                                                                                                                                                                          

A mild type, named acute lung injury (ALI) and a severe type called the acute 

respiratory distress syndrome (ARDS), using the ratio of partial pressure of arterial 

oxygen to fraction of inspired oxygen (PaO2 / FiO2) as criterion for the degree of 

hypoxemia. Thus, hypoxemia with a PaO2/ FiO2 < 300mmHg is classified as ALI, a PaO2/ 

FiO2 <200 mmHg as ARDS (135). Additionally, diseases with similar symptoms, but 

chronic course, were excluded from the definition. The pulmonary artery wedge 

pressure was determined to be less than 18 mmHg or absence of clinical signs of left 

atrial hypertension must be verified, excluding cardiac failure as origin of the 

symptoms. Radiologically, bilateral infiltration in the front chest radiograph was 

advocated to be a dispositive criterion for ALI/ ARDS (135). 

The latest definition published, referred to as the Berlin Definition further specifies 

these criteria. Accordingly, it is suggested to differentiate three different categories, 

mild (PaO2/FiO2= 200-300 mmHg), moderate (PaO2/FiO2 =100-200mmHg) and severe 

(PaO2/FiO2 <100 mmHg) ARDS, based on the degree of hypoxemia, also stating the 

Positive Expiratory End Pressure (PEEP) at a minimum of 5 cmH2O. Furthermore, the 

acute onset was concretized, determining a period of less than one week (136).  The 

pulmonary wedge pressure was eliminated from the definition to avoid exclusion of 

ARDS patients with coexisting heart failure. Instead, patients with a diseased heart and 

clinical signs respective to the criteria of ARDS are included into the definition, when 

the extent of respiratory distress is not to be explained by cardiac failure only. The 

report proposes in such cases further clinical efforts to clearly identify the origin of the 

edema causing the respiratory distress (136). Etiologically, two different kinds of ARDS 

are to be distinguished. Direct ARDS is based on pulmonary genesis, most commonly 

as a result of a pulmonary infection, but also after aspiration, nearly-drowning or 

inhalation of toxic gas (130, 131). By contrast indirect ARDS has an extrapulmonary 

source and may occur as accompanying complication during sepsis, acute pancreatitis 

and blood transfusion (132, 137). 
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1.3.2   Pathogenesis of ARDS 

The pathogenesis of ARDS is a complex and not entirely explored process, involving a 

high diversity of biochemical components contributing to the alterations of the lung 

tissue. Initially, the pathological characteristic is acute inflammation, accompanied by 

injury of the endothelial and epithelial alveolar membrane (132, 138). The permeability 

of the alveolar barrier increases, leading to influx of protein-rich fluids, which results in 

interstitial and alveolar edema (132, 137). In this period, a high amount of 

proinflammatory mediators notably secreted by alveolar macrophages are found in 

bronchoalveolar lavage fluids (BALF), as IL-1β, IL-6, IL-8 and TNF- α (132, 139). 

Elevated plasma levels of IL-1β and IL-6 have been found to be predictors of poor 

outcome, correlating with a high mortality rate (140-142). The particular significance of 

IL-8 as chemotactic stimulant has thoroughly been explored (139, 140). Along with the 

keratinocyte-derived chemokine (CXCL1) and macrophage inflammatory protein 2 

(MIP-2) IL-8 is part of a complex network leading to excessive neutrophil activation and 

abundant neutrophil recruitment from capillaries via interstitium into the alveolar space 

(140, 143). Under these pathological conditions the infiltrating neutrophils release 

various proinflammatory mediators (132, 140). In particular, the neutrophil elastase has 

been focus of several investigations revealing a critical role of the enzyme in the 

pathology of ARDS (140, 144, 145). Besides, also other neutrophil-derived mediators 

as matrix metalloproteinases, cationic peptides and oxidants are identified to contribute 

to the pathogenesis of ARDS (140, 144). Accordingly, α-defensin, a cationic peptide 

synthesized by neutrophils and stored in granules, increases the alveolar endothelial 

and epithelial permeability and boosts neutrophil activation when set into extracellular 

space (146).   

At this stage, the main histological feature is diffuse alveolar damage and a denuded 

basement membrane with formations of hyaline membranes, consisting of fibrin 

deposits (132, 147, 148). The destruction of alveolar cells, causing a decline of the 

normal epithelial fluid transport, aggravates the alveolar edema and prohibits its 

resolution (132). Physiologically, type I cells constitute 80% of the alveolar surface. 

Their loss within the inflammatory destruction is compensated by type II cells, which 

differentiate into type I to cover the denuded membrane. In consequence surfactant 

production, an ability mainly inherent to type II cells, is reduced. Deficiency of 

surfactant leads to an increased surface tension, precipitating atelectasis (132, 140, 

149). This effect is reinforced by a decrease of functional surfactant due to its 

contamination with protein-rich fluids (150). The acute, exsudative phase merges into a 

fibroproliferative process hallmarked by alveolar type II and fibroblast proliferation with 

excessive deposition of fibrin, fibronectin and collagen (151-153). The ancient 
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perception that this proliferative phase is a late feature of ARDS has been challenged 

by investigations, demonstrating an elevation of procollagen peptide III, an early 

marker of collagen synthesis, from the third day onwards (154). This finding makes it 

reasonable to conclude that fibroproliferative alteration occurs simultaneously with the 

inflammatory response, rather than subsequently (153).  Activated fibroblasts are found 

to migrate into the interstitium as well as into the intra-alveolar space and excessively 

release collagen and other extracellular matrix proteins. This contributes to the 

development of diffuse fibrosis, resulting in alveolar obliteration and diminution of 

pulmonary compliance (148, 151, 153). Interestingly, the individual course of ARDS 

appears heterogeneous and complete resolution subsequent to the inflammatory 

phase occurs in other patients (132). In this regard, genetic disposition is suspected to 

have essential influence on the susceptibility and course of ARDS (155). Some 

uncertainties remain concerning the pathogenesis of ARDS. For instance, only some 

mediators contributing to the development of fibrosing alveolitis are yet identified. 

Transforming growth factor-β1 (TGF-β1) is well recognized to be an essential factor to 

initiate collagen synthesis and deposition as well as fibroproliferation in the  lung (151, 

156-158) and found to be elevated in BALF of ARDS patients (157). 

Also mediators affiliated to the inflammatory response, such as TNF-α and IL-1β, have 

been identified as contributive to the genesis of fibrosis (159-161), most likely by 

inducing TGF-β1 (161). Furthermore, another significant factor promoting fibrin 

deposition and fibrosing alteration of the lung is the unbalanced state of hemostasis in 

favor of procoagulation and antifibrinolysis (152, 162-167).  

 

1.3.3   Alveolar coagulation in ARDS  

1.3.3.1 The role of extrinsic coagulation factors in ARDS 

A striking imbalance in alveolar hemostasis is detected in lungs of ARDS patients. 

Within the scope of animal studies, a significant increase of procoagulant activity is 

observed, while fibrinolytic efficiency has been noted to be reduced (162, 163). 

Correspondingly, extrinsic pathway activity has been found to be elevated in BALF of 

ARDS patients with concurrent inhibition of fibrinolytic activity by diminishment of 

urokinase-type plasminogen activator and increased plasminogen-activator inhibitor-1 

levels. These conditions are observed, regardless of whether the acute respiratory 

distress syndrome is due to pulmonary or non-pulmonary causes (162). It is worthwhile 

noting that a comparable hemostatic status also applies for patients with severe 

pneumonia, who are spontaneously breathing. Thus, the assumption of the hemostatic 
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imbalance being only due to ventilator treatment can be dismissed, eliciting the idea of 

a pathological role of the elevated coagulant factors in lung injury (162). In line with this 

conclusion, attenuation of lung injury is observed in animal studies, when the 

procoagulant state is restrained by competitive inhibition of the tissue factor, the 

initiator of the extrinsic pathway. Furthermore, the blockade precipitates a decrease of 

local pro-inflammatory cytokines as IL-1β and IL-6 (168), underscoring the hypothesis 

of an inflammatory impact of coagulation factors and a pathological accountability 

beyond fibrin deposition in ARDS (165, 169). This assumption is supported by further 

research, confirming pro-inflammatory effects of coagulation factor Xa and thrombin 

(169-171), mainly linked to interactions with the protease-activated receptor (PAR)-1 

(167, 169, 172, 173). This reinforcing effect between coagulation and inflammation 

mediators appears to be reciprocal as, for example, the tissue factor activation is 

stimulated by cytokines as TNF-α and IL-6 (174).            

The preponderance of procoagulant activity results in abundant fibrin deposition, 

potentially culminating in interstitial and intra-alveolar fibrosis (152, 153, 162, 163, 167). 

Fibrin and its degrading products were found not only to have inflammatory attributes 

by inducing neutrophil recruitment (175, 176), but additionally they were reported to 

stimulate fibroblast migration and proliferation (177). Besides the fibrin deposition as 

consequence of boosted extrinsic pathway activity, factor Xa (FXa) and thrombin 

further contribute to the fibrotic alteration to the lung. Thus, both proteins are identified 

to stimulate procollagen synthesis in fibroblasts putatively via PAR-1 (178, 179) and to 

contain mitogenic effects on fibroblasts (180, 181).  

 

1.3.3.2 The role of intrinsic factors in inflammation and fibrotic alteration of the  

   lung 

The focus of previous studies regarding the contribution of coagulation factors to lung 

inflammation and remodeling has commonly been on extrinsic factors rather than on 

proteins of the intrinsic pathway. Nevertheless, there is growing evidence of an 

underestimated relevance of intrinsic coagulation factors in the pathogenesis of lung 

injury. Thus, recent studies investigating a potential pathological contribution of intrinsic 

factors on Idiopathic Pulmonary Fibrosis (IPF) and murine bleomycin-induced lung 

injury, revealed a profibrotic activity of FXII related to its mitogenic activities towards 

human and mice lung fibroblasts (182). Within the scope of this investigation, a 

protection from bleomycin-induced lung fibrosis was noted in FXII deficient mice as well 

as in mice with inhibition of FXII by corn trypsin inhibitor (CTI). This profibrotic effect of 

FXII was independent of fibrin generation as no difference in fibrin disposition was 
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found compared to wild type (WT) mice (182, 183). Thus, a contribution of contact 

activation rather based on its pro-inflammatory and mitogenic properties during the 

pathogenesis of fibrotic lung diseases seems reasonable.     

Pro-inflammatory attributes of FXII and KLK have been demonstrated in cultured cells 

and animal studies (115, 117-119).  In line with these findings, a preventive effect in 

lung injury caused by Salmonella was observed when FXII and KLK were inhibited 

(184), illustrating a putative role of these factors not only in sepsis, but also in lung 

injury. Worthwhile mentioning is further the discovery of an inducing effect of TGF-β on 

FXII gene transcription in fibroblasts. Considering the elevated level of TGF-β in ARDS 

patients (157) and its established role in inflammatory and fibrotic processes in lung 

injury (156, 158, 185), the hypothesis of a contributing effect of FXII on ARDS 

pathogenesis gains further support. A possible stimulus for FXII activation in ARDS 

might be extracellular RNA, released from dying cells (42).  

Given the extended involvement of BK in inflammation, great interest arises in the 

potential role of this contact activation product in the pathogenesis of ARDS. BK is well 

acknowledged to contain chemotactic features and might therefore promote neutrophil 

migration into the lung as found during the course of the disease. Particularly the 

stimulating effect of BK on human lung fibroblasts and airway epithelial cells to release 

chemokines has been demonstrated (99, 101). Furthermore, administration of inhibitors 

of either receptor of BK has led to attenuation of pulmonary leukocyte accumulation 

(100). Thus, BK is a pivotal intermediary during different inflammatory processes in the 

lung and it appears imperative to determine its putative role in the pathology of ARDS.  

It seems reasonable to conclude that the perception of a functional role of coagulation 

factors limited on blood hemostasis is obsolete. Numerous cellular effects beyond 

coagulation have been found to be induced by coagulation proteases and a 

considerable impact on the development of inflammation and proliferation up to fibrotic 

tissue remodeling has been observed. Therefore the consideration of a critical role of 

coagulation factors in lung injury in general, and ARDS in particular, appears 

indispensable. Previous investigations support the idea of a pathological contribution of 

extrinsic pathway proteins on the pathological process in chronic and acute lung 

diseases, including ARDS. However, the research regarding a potential role of the 

contact pathway in severe lung injury and subsequent lung tissue remodeling is as yet 

in the initial stage.  

 

The objective of the present study is to investigate the occurrence and properties of the 

contact pathway components in the pathogenesis of ARDS and in bleomycin-induced 

lung injury in mice. The incidence of FXII, KLK, HK, BK and FXI, respectively, was 
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examined in clinical as well as in animal samples. The possible therapeutic 

consequences of the inhibition of contact phase proteins were studied in a murine 

model of lung injury.  The main emphasis of this study is on FXII, the initiator of intrinsic 

coagulation and the kinin-kallikrein system, and its potential contribution to the 

pathogenesis of ARDS.  
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2.  Materials and methods 

2.1  Materials 

2.1.1  Apparatuses and Equipments 

 
Centrifuge  Mikro20, Hettich GmbH, Tuttlingen, 

Germany                

Centrifuge II   Heraeus Labofuge 400R, Functional line, 

ThermoFisher Scientific, Waltham, MA 

Electrophoresis chambers   Biometra, Göttingen, Germany 

Falcon tubes                                       Greiner Bio-One, Frickenhausen, Germany 

Film cassette     Kodak, Rochester, NY 

Filter tips     Eppendorf, Hamburg, Germany 

Pipetboy     Eppendorf, Hamburg, Germany 

Pipets      Eppendorf, Hamburg,Germany 

Power Pac 1000    BIORAD, Hercules, CA 

PVDF membrane    Amersham Biosciences, Little Chalfont, UK 

Radiographic film    Amersham Biosciences, Little Chalfont, UK 

SpectraMax 190  Molecular Devices, Silicon Valley, CA 

StepOne Real time PCR System  Life Technologies, Carlsbad, CA 

Thriller Thermoshaker-incubator  PeQlab, Erlangen, Germany 

Vortex machine    VWR, Darmstadt Germany 

Western blot chambers   Biometra, Göttingen, Germany 
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2.1.2 Reagents 

Acrylamide solution    Roth, Karlsruhe, Germany 

Agarose     Roth, Karlsruhe, Germany 

Ammonium persulfate   Sigma-Aldrich, St-Louis, MO 

Albumine, bovine serum   Sigma-Aldrich, St-Louis, MO 

Biocoll      Biochrom, Cambrige, UK 

β-mercaptoethanol    Sigma-Aldrich, St-Louis, MO 

EDTA      Sigma-Aldrich, St-Louis, MO 

Ethanol     Roth, Karlsruhe, Germany 

Ethidium bromide    Sigma-Aldrich, St-Louis, MO 

Glycerol     Roth, Karlsruhe, Germany 

Glycine     Roth, Karlsruhe, Germany 

Hematoxylin     Roth, Karlsruhe, Germany 

HEPES     Roth, Karlsruhe, Germany 

Hydrochloric acid    Roth, Karlsruhe, Germany 

Methanol     Roth, Karlsruhe, Germany 

Milk powder     Roth, Karlsruhe Germany 

Phenylmethylsulfonylflourid   Sigma-Aldrich, St-Louis, MO 

Potassium chloride    Roth, Karlsruhe, Germany 

Potassium phosphate monobasic  Sigma-Aldrich, St-Louis, MO 

Skim Milk powder    Sigma-Aldrich, St-Louis, MO 

Sodium bicarbonate    Sigma-Aldrich, St-Louis, MO 

Sodium chloride     Sigma-Aldrich, St-Louis, MO 

Sodium carbonate    Roth, Karlsruhe, Germany 
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Sodium deoxycholate    Sigma-Aldrich, St-Louis, MO 

Sodium dodecyl sulfat (SDS)   Sigma-Aldrich, St-Louis, MO 

Sodium hydroxide    Sigma-Aldrich, St-Louis, MO 

Sodium phosphate dibasic   Sigma-Aldrich, St-Louis, MO 

TEMED     Sigma-Aldrich, St-Louis, MO 

Tris      Roth, Karlsruhe, Germany 

Triton-X-100     Sigma-Aldrich, St-Louis, MO 

Tween 20     Sigma-Aldrich, St-Louis, MO  

Xylene      Roth, Karlsruhe, Germany 
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2.1.3 KITs 

AssayMax FXII ELISA KIT   Assaypro, Saint Charles, MO 

Matched Pair Antibody Set for FXII  Affinity Biologicals, Ancaster, Canada 

Human Bradykinin ELISA KIT  Cusabio Biotech Co., Wuhan, China 

PeqGOLD Total RNA Kit                          PeqLab, Erlangen, Germany 

Permanent AP Red Kit   Zytomed Systems GmbH, Berlin,   

      Germany 

Pierce BCA Protein Assay Kit  Thermo Fisher Scientific, Waltham, MA 

Pierce ECL Plus WB Substrate                     Thermo Fisher Scientific, Waltham, MA 

Zyto-Chem-Plus AP Polymer-Kit   Zytomed Systems GmbH, Berlin, Germany 
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2.2  Methods 

2.2.1   Test samples 

2.2.1.1 Study Population 

The human BAL 

F samples were obtained from 46 consecutive mechanically ventilated ARDS patients 

admitted to the intensive care unit of Department of Internal Medicine, Pneumology and 

Intensive Care Medicine at the University of Gießen. All patients met the criteria of the 

American-European Consensus Conference on ARDS (135), 28 were suffering from 

direct ARDS (Pneumonia, n=26; gastritic aspiraton, n=2) and 18 of indirect ARDS 

(sepsis, n=13; trauma/surgery, n=3; pancreatitis, n=1; polytransfusion, n=1). From the 

first day after diagnosis onward to day 8 BALF was obtained by flexible fiberoptic 

bronchoscopy at several different times. The control group was composed of 20 

healthy, spontaneously breathing volunteers and ten mechanically-ventilated patients 

with cardiogenic pulmonary edema (CLE).  

 

                                                                  

  a) 
Cardiogenic pulmonary edema; 

b) 
PaO2 : Partial pressure of oxygen in arterial blood;  

  FiO2: Fraction of  inspired oxygen   

  Table 2.1 Study population for BALF samples. 
 
 

 

The plasma samples were collected from ARDS patients (n=26) hospitalized at the 

University Clinic of Gießen and from healthy volunteers serving as controls (n=19) 

Blood leukocytes were isolated from 6 ARDS patients and 10 healthy subjects. 

Furthermore, the lung homogenate of 7 ARDS patients was obtained by autopsy. As 

the control the lung specimens of 6 patients were utilized of whom 5 had died of 

myocardial infarction and 1 of drug intoxication. Institutional approval was provided for 

all experiments involving human specimens by the Ethics Committee of the Faculty of 

Medicine of the University of Gießen. 



Material and methods 

 

- 22 - 
 

2.2.1.2 Murine samples  

2.2.1.2.1 Bleomycin administration 

In all experiments 8 to 10 week old mice (C57BL/6NJ) were used. Bleomycin (Hexal, 

Holzkirchen, Germany) was applied by microsprayer (Penn-Century Inc., Philadelphia, 

PA) as a single dose of 5 U/kg bw. Age and sex-matched controls received saline. 

After 5 and 10 days, respectively, of bleomycin application, the mice were sacrificed 

with a lethal dose of pentobarbital. Bronchoalveolar lavage fluid (BALF) was collected 

and the lung tissue was either prepared for the histological examination or shock frozen 

for RNA or protein extraction.  The animals were kept according to NIH guidelines and 

the experiments were undertaken with the permission of the local authorities.  

 

2.2.1.2.2 C1 INH administration 

Starting on day 1 post bleomycin or saline administration, respectively, the animals 

were daily treated with intraperitoneal C1 INH (500 µg/ mouse; CSL, Behring GmbH, 

Marburg, Germany) administration until they were sacrified on day 5. For the control 

group 0.9% NaCl was used as vehicle. Subsequently, murine BALF was obtained and 

lung homogenate prepared for histological assessment and RNA extraction was 

performed for real-time PCR.  

 

2.2.1.2.3 Histological staining 

Murine lung tissue was formalin fixed and embedded in paraffin blocks, which were 

sectioned into 5 micrometer and transferred onto microscope slides. Prior to the tissue 

staining the samples were deparaffinized and rehydrated using xylene and alcohol of 

descending concentrations (100%, 96%, 70%, 50%). Hematoxylin-eosin staining was 

performed to visualize the histological structure and inflammatory alteration of the 

tissue. The slides were scanned with Mirax Desk Digital Slide Scanner (Zeiss, 

Göttingen, Germany) and assessed using the Mirax Viewer (Zeiss).  

 

2.2.1.2.4 Wet-to-dry lung weight ratio  

The wet-to-dry weight ratio was evaluated by the gravimetric analysis to assess the 

degree of the alveolar oedema. Initially the weight of the wet left lobe was measured 

and then incubated at 60°C for 72h. The dried lung was then again weighted and the 

ratio between the wet and the dry left lobe was determined. 
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2.2.1.2.5 Flow cytometry 

For identification of different cell phenotypes in murine BALF multicolour flow cytometry 

analysis was performed. To detect the neutrophils and other cell populations the 

following fluorochrome-conjugated surface antibodies were applied: CD11c, siglec-F, 

F4/80, GR1, CD 11b and CD11c. Following to the addition of the antibodies, the 

samples, after pretreatment with 10% (v/v) mouse serum were then incubated for 45 

minutes in darkness on ice. Prior to flow cytometry the samples were washed using 

compositions of PBS.  The analysis was then conducted using the FACS Canto II flow 

cytometer (Becton Dickinson, San Joe, CA). 

 

2.2.2   Western Blot 

For determination of the contact activation proteins in lung tissue, BALF and plasma, 

Western blotting was performed for murine and human samples. 

 

2.2.2.1 Preparation of the samples for gel electrophoresis 

Up till then stored at – 80°C, the lung tissue samples were initially lysed in Radio 

Immuno Precipitation Assay (RIPA) buffer [50 mM Tris-HCl, pH 7.4, 150 mM NaCl,       

1 mM EDTA, 1% (v/v) Triton-X-100, 1% (w/v) sodium deoxycholate, 0.1% (w/v) sodium 

dodecyl sulfate (SDS)], supplemented with protease inhibitors [1 mM PMSF, 1 µg/ml 

complete protease inhibitor cocktail (Roche Applied Science, Penzberg, Germany)] and     

1 mM Na3VO4. Afterwards the samples were incubated for 30 minutes on ice and then 

centrifuged for 10 minutes at 10 000 rpm at 4°C. Supernatants were collected and 

protein concentration was measured using the Assay BCA Protein Kit (ThermoFisher 

Scientific, Waltham, MA) according to the manufacture´s instruction. The 

measurements were executed with the microplate photometer (SpectraMax 190, 

Molecular Devices, Silicon Valley, CA). To each sample of 20 µg proteins 5 µl of 5x 

SDS-loading buffer [0.25 M Tris-HCl, pH 6.8, 10% (w/v) SDS, 50% (v/v) glycerol, 10% 

(v/v) β-mercaptoethanol] was added. The mixture was then heated at 98 °C for 10 

minutes (Thriller Thermoshaker-incubator, peQlab, Erlangen, Germany) followed by 

centrifugation. Plasma and BALF samples had also been stored at -80°C and were 

slowly thawed on ice before 20 µl of each samples was mixed with 5 µl of 5x SDS-

loading buffer.  
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2.2.2.2 Sodium dodecyl sulfate polyacrylamid gel electrophoresis 

Sodium dodecyl sulfate polyacrylamid gel electrophoresis (SDS PAGE) was utilized to 

separate the proteins according to their molecular weight. Firstly, a discontinuous SDS 

Polyacrylamid gel was prepared, consistent of a lower separating gel [resolving gel 

(10%): 10% acrylamide: bisacrylamide, 375 mM Tris-HCl, pH 8.8, 0.1% (w/v) SDS, 

0.1% (w/v) ammonium persulfate (APS), 0.1% (v/v) tetramethylethylenediamine 

(TEMED)] and a laminating stacking gel [stacking gel  (4%): 4% acrylamide: 

bisacrylamide, 125 mM Tris-HCl, pH 6.8, 0.1% (w/v) SDS, 0.1% (w/v) APS, 0.1% (v/v) 

TEMED]. After polymerization the prepared samples and 5 µl of protein marker (Page 

Ruler, Prestained Protein Ladder, ThermoFisher Scientific, Waltham, MA) were applied 

upon the gel.  

The proteins were then separated in SDS-running buffer [25 mM Tris, 250 mM glycine, 

0,1 % (w/v) SDS] via electrophoresis at a voltage of 100 V (Power Pac 1000, Biorad, 

Hercules, CA). 

 

2.2.2.3 Immunblotting 

The separated proteins were electrotransferred from the gel onto a PVDF membrane 

(Amersham Biosience, Little Chalfont, UK). This transfer was performed in blotting 

buffer [25 mM Tris, 192 mM glycine, 20% (v/v) methanol] at a voltage of 100 V for 1 

hour and was proceeded on ice. Blockage of non specific binding sites was achieved 

by incubation of the membrane with 5% (w/v) Skim Milk Powder in Tris-Buffered Saline 

containing Tween 20 [TBS-T (25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% (v/v) 

Tween 20)]. Afterwards the membrane was washed with TBS-T and then incubated 

overnight at 4°C with one of the following primary antibodies: goat anti-FXII (Zytomed 

Systems, Berlin, Germany, dilution 1:1000); goat anti-FXI (Abcam, Cambridge, UK, 

dilution 1:1000); rabbit anti-KLK (Zytomed Systems,dilution 1:1000); rabbit anti-HK 

(Abcam, dilution 1:1000). All primary antibodies were diluted in 1% (w/v) bovine serum 

albumin (BSA) in TBS-T. After washing with TBS-T, the membrane was incubated with 

the peroxidase-labeled secondary antibody (all from Dako, Gostrup, Denmark, dilution 

1:3000 in 5% (w/v) Skim Milk Powder in TBS-T) for 1 hour at room temperature. Final 

detection of proteins was performed using the ECL Plus Kit (Amersham Bioscience). 

To determine the amount of protein loaded on the gel, the membrane was stripped in 

stripping buffer (100 mM glycine, 0.32% (v/v) HCl ) and reprobed with mouse β-actin 

antibody (Sigma- Aldrich, St. Louis, MO, dilution 1:10000).  
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2.2.3 Enzyme linked immunsorbent assay (ELISA) 

Further quantitative analysis targeting Factor XII and BK was performed by an Enzyme 

Linked Immunsorbent Assay (ELISA). For FXII detection in human BALF Matched Pair 

Antibody Set for FXII (Affinity Biologicals, Ancaster, Canada) was utilized and 

AssayMax Human Factor FXII (Assay Pro, Saint Charles, MO) for human plasma 

samples. BK determination was implemented with the Human Bradykinin (BK) ELISA 

Kit (Cusabio Biotech, Wuhan, China). Each assay was executed precisely in 

accordance with the respective manual instruction. 

 

2.2.3.1 FXII detection in BALF 

The microtiter plates were coated with FXII capture antibody diluted in coating buffer 

(1:100) over night at 4°C. The content of each well was decanted before they were 

filled with 150 µl of blocking buffer to prevent unspecific binding. Blockage was 

executed for 90 minutes at room temperature. This was followed by a diligent washing 

procedure with washing buffer, repeated 3 times. The thorough removal of fluids after 

every washing step was realized by subsequent tapping of the plate on absorbent 

paper towels. The standard´s were prepared as recommended by the manufacture with 

0.9% NaCl serving as diluent. Into each well 50 µl of the standards and samples were 

pipetted. Incubation was performed for 1 hour at room temperature with a following 

washing procedure. The peroxidase conjugated detecting antibody was then 

administered at a dilution of 1:100. After 1 hour of incubation, another washing step 

was executed. For visualization of the peroxidase activity 3,3′,5,5′-tetramethylbenzidine 

(TMB) Substrate (Thermo Scientific) was added. The color generating reaction was 

interrupted by addition of 2 M H2SO4 after 5 minutes. The concentration of the target 

protein was then determined by quantification of the optical density in the microplate 

reader (SpectraMAX 190) at 490 nm. 

 

2.2.3.2 FXII detection in plasma 

The AssayPro Kit provided microplates precoated with murine FXII antibody. The 

standards and samples were therefore directly administered at a volume of 50µl into 

each well. Prior to the performance of the assay the optimal dilution factor for the 

plasma samples had been determined in a test run to be 1:2000. The EIA Diluent of the 

Kit served as diluting agent. The incubation was then executed at room temperature for 

2 hours. This was followed by a washing sequence, which was repeated 5 times as 

prescribed in the manual with subsequent thorough removal of residual liquids. Then 

50 µl of biotinylated FXII antibody diluted in EIA Diluent (1:100) was added and 
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incubated for 1 hour. After another washing step, 50 µl of peroxidase conjugated 

Streptavidin was pipetted into each well. Possessing a particularly high affinity to biotin, 

Streptavidin binds to the biotinylated FXII antibody. Unbound material was eliminated 

after 30 minutes by another washing procedure. Peroxidase activity was then 

expressed by addition of the chromogen substrate TMB. After 10 minutes, a 0.5 N HCl 

stopped the chromogen substrate reaction. The absorbance was determined at a 

wavelength of 450 nm. 

 

2.2.3.3 BK detection in BALF and plasma 

The microtiter plates for BK detection were delivered pre-coated. Initially, the optimal 

dilution of the plasma samples was determined in a test run to be 1:400. 

Corresponding to the FXII assay, BALF samples were not diluted. The standards were 

prepared as advised by the manual. In each well 100 µl of standard and samples were 

administered and incubated for 2 hours at 37°C (Hereaus Function Line Incubator, 

ThermoFisher Scientific). The fluids were then decanted. Biotinlyated antibody was 

added and incubated at 37°C for 2 hours. After removal of the antibody working 

solution, a volume of 200 µl washing buffer was filled into each well. After 2 minutes 

the washing solution was completely removed by aspiration of the fluids and 

subsequent patting of the plate on a paper towel. This process was repeated 3 times. 

Then 100 µl of HRP-avidin was applied into each well and incubated for 1 hour at 

37°C. A washing step followed, this time repeated 5 times in a row. TMB Substrate was 

added and after 20 minutes the color forming reaction was interrupted by 2 M H2So4. 

The color generated was quantified at a wavelength of 450 nm. 

 

2.2.4 Isolation of leukocytes 

Blood samples were collected in 7.5 ml EDTA-tubes and mixed with the same amount 

of PBS. This mixture was prudently placed upon 14 ml Biocoll 2 400 rpm (Biochrom 

AG, Berlin, Germany), followed by 30 minutes of centrifugation at room temperature 

separating the blood components into different phases. Forming a thin layer above the 

plasma phase, leukocyte phase was extracted and collected in a tube. 45 ml PBS was 

added at a subsequent speed of 1 500 rpm for 10 minutes with brake. Supernatant 

liquids were removed. In case of contamination with erythrocytes, 1 ml of ultra pure 

water (Mini Plasco connect, B.Braun, Melsungen, Germany) was added into the tube 

and swiveled for a few seconds. Subsequently, 9 ml of PBS was added. This was 

followed by 10 minutes of centrifugation at 1 500 rpm at room temperatur. Supernatant 
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fluids were discarded from the leukocyte pellet. Isolated leucocytes were used for RNA 

isolation. 

 

2.2.5 Molecular Analysis 

2.2.5.1 RNA Isolation  

The pellet of isolated leucocytes was thoroughly mixed with 400 µl of RNA lysis buffer 

(PeqGOLD Total RNA Kit, PeqLab, Erlangen, Germany). After incubation the fluids 

were run through a DNA column for 1 minute at 12 000 rpm (Mikro 20, Hettich GmbH, 

Tuttlingen, Germany). 400 µl of Ethanol was added to the flow through and vortexed. 

The fluids were then placed on a RNA column and centrifuged for 1 minute at 12 000 

rpm. This was followed by a washing treatment including 3 steps with the solutions 

provided by the Kit with subsequent centrifugation for 15 seconds, respectively. The 

column was dried in a following spin and then transferred to a sterile collection tube 

and RNA free water was applied to the column and incubated for 2 minutes. Then at 5 

000 rpm the RNA was eluted for 1 minute. The RNA concentration was determined 

with a biophotometer (Eppendorf, Hamburg, Germany)  

 

2.2.5.2 Reverse transcriptase (RT) reaction 

The ingredients for cDNA synthesis are illustrated in the table (Table 2.2).To this 

mixture 1 µg of RNA was then added with a maximum volume of 10µl. The reaction 

was then performed in the thermocycler (TGradient Thermocycler, Biometra, 

Göttingen, Germany) at 25 °C for 10 minutes, 37°C for 2 hours and 85°C for 5 minutes.  
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     Table 2.2 Ingredients of the reverse transcriptase reaction. 

 

2.2.5.3 Real-time PCR (qPCR) 

The real time polymerase chain reaction was executed utilizing Platinum® SYBR 

Green qPCR Super Mix (Invitrogen, Karlsruhe, Germany). The primers used in qPCR 

experiments are listed in the following table (Table 2.3).       

   

a) 
Tm, Melting temperature;

 b) 
nt, nucleotides 

c)
 F, forward; 

d)
 R, reverse 

  Table 2.3 Sequences of the primers used in the study. 

In table 2.4 all components of the reaction are represented. The ingredients were 

pipetted into a microtitre plate (Thermo-Fast 96 PCR Detection Plate, ABGene 

ThermoFisher Scientific) and the volume of 1 µl of cDNA was added. Subsequently, 
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the plate was sealed with a foil (Absolute Q-PCR Seal, ABGene- Thermo Fisher 

Scientific) and the reaction was performed by the StepOnePlus™ Real time PCR 

System (Life Technologies, Carlsbad, CA). 

 

  
     Table 2.4 Ingredients of the qPCR reaction.  
 
 

The cycling conditions were comprised of initial 10 min at 95°C, followed by 40 cycles 

of the following temperature-time profile: 95°C for 15 seconds and 1 minute at 60°C. 

The data were evaluated with StepOne™ Software (Life Technologies). Exclusion of 

non specific amplification or contamination was verified in melt curve analysis and 

agarose gel electrophoresis. All changes in the target gene mRNA levels are presented 

as delta ct (∆ct), which was calculated by subtracting the ct value of the target gene 

from the ct value of the reference gene. 

 

2.2.6 Statistics 

For statistic assessment of the results the GraphPad Prism software (GraphPad 

Software,Inc., San Diego, CA) was used. All data of patient and animal experiments 

are presented in form of box-whisker-plots. The upper whiskers indicate the maximal, 

the lower the minimal value, while the box constitutes the interquartile range. The 

median value is marked as a horizontal line within the box. In the experiments 

comparing two different groups, the statistic significance was determined by means of 

the Mann-Whitney-U test. In the case of three groups, ANOVA was utilized, followed by 

Turkey´s post noc test. The p value less than 0.05 was considered as statistically 

significant.
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3.  Results 

3.1  Contact activation factors are elevated in BALF and lung 

 homogenate of ARDS patients 

In order to investigate the characteristics of contact activation proteins in the 

pathogenesis of ARDS, their occurrence in lungs of affected patients was determined. 

As illustrated in Figure 4.1 Western blot analysis revealed increased protein levels of 

FXII, FXI, HK and KLK in BALF of ARDS patients compared to the healthy control 

group. Remarkably, two signals appeared for FXII, one 80 kDa band representing the 

FXII zymogen and a 50 kDa band corresponding to the heavy chain of FXIIa, indicating 

that FXII conversion into activated FXII is taking place. The nonappearance of the light 

chain of FXII at 30 kDa is justified by the specific antibody targeting an epitope only 

presented on the heavy chain of FXII.  

 

 

 

Figure 4.1 Elevated levels of contact activation factors in BALF of ARDS patients.            

FXII, FXI, HK and KLK protein levels in BALF of ARDS patients in comparison to the healthy control group 

assessed by Western blot. Here, 8 out of 46 ARDS patients and 5 out of 20 healthy controls are 

demonstrated.  The different bands are labeled. HCh, heavy chain; LCh, light chain. Coomassie Brilliant 

Blue (CBB) was applied as loading control for visualization of total protein content.  

 

Concurrent with indication of FXII conversion, activation of KLK was implied, as 

virtually no inactive zymogen at 88 kDa was detectable, while a strong signal for 

cleaved KLK heavy chain was apparent at 52 kDa in the BALF of ARDS patients. 

Accordingly, KLK substrate HK was identified in its activated two chain form, 

represented by its heavy chain at 62 kDa and the light chain at 56 kDa. Similar 
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observations were made for FXI, which was represented in its cleaved two chain active 

form at 80 kDa.  

In line with the Western blot results, the quantification of FXII concentration assessed 

by ELISA showed a significantly higher amount of the protein in lavage specimens of 

ARDS patients. In the patients group the interquartile range of FXII level was found to 

extend from 140 to 390 ng/ml with a total average of  274 ng/ml. The determination of 

FXII in the control group however revealed a total average of 130 ng/ml with an 

interquartile range stretching from 55 to 195 ng/ml (Figure 4.2 A). Interestingly, no 

significant increased of the FXII level was observed in patients suffering from cardiac 

lung edema compared to the control group, excluding the possibility of the FXII 

increase being due to the mechanical ventilation. In respect of the two different 

etiopathogenic forms of ARDS, FXII concentration was observed to be at a similarly 

high level in direct as in indirect ARDS samples (Figure 4.2 B). Further distinction 

revealed a variation of the FXII concentration according to the temporal course of the 

disease. Within the first 24 hours of the diagnosis the amount of FXII is found to be 

increased, remaining high for four days and subsequently decreasing on day 6-8  to 

values comparable to those of the control group (Figure 4.2 C). In contrast to the 

observations made for BALF samples, the determination of FXII in blood plasma 

revealed decreased levels of the protein in ARDS patients compared to the healthy 

control group. Thus, in the specimens of the patients the FXII concentration showed a 

total average of 32 µg/ml with an interquartile range between 20 µg/ml to 47 µg/ml, 

whereas the healthy group showed significantly higher values with a total average of 53 

µg/ml and an interquartile range from 36 µg/ml to 68 µg/ml (Figure 4.2 D).     
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     A        B

          
    C                     D 

                
 

 

 

Figure 4.2 Increased levels of FXII in the BALF of ARDS patients.                   

(A) FXII levels were determined in BALF obtained from ARDS patients (n=46), patients with cardiogenic 

lung edema (CLE) (n=10) and healthy controls (n=20).  (B) Differentiation of FXII levels in BALF of direct 

(n=28) and indirect (n=18) ARDS patients, all versus healthy control group subjects. (C) FXII levels in 

BALF from patients in the course of ARDS on day 1 (n= 46) , day 3-4 (n= 28) and 6-8 (n=27) opposed to 

healthy controls. (D) Determination of FXII level in blood plasma of ARDS patients (n=26) in comparison 

with control group (n=19). All data assessed by ELISA.  **p < 0.01; ***p < 0.001; ns, non significant. 

 

 

 

Representing an indirect product of the FXII activation with a major involvement in 

inflammatory processes, BK was another component of interest for the investigation. 

Particularly the observation of elevated occurrence of cleaved HK in the immunoblot of 

the patients gave rise to the assumption of a correspondingly altered BK level.  
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Therefore determination of BK concentration in BALF was assessed by ELISA, 

showing significantly higher amounts of the protein in specimens of the patients group 

(Figure 4.3).  

 

A                   B 

               

      C 

 

 

Figure 4.3 BK is elevated in BALF of ARDS patients.                  

(A) Quantification of BK level determined in BALF specimens from ARDS patients (n= 46), patients with 

cardiogenic lung edema (n=10) and the healthy controls (n=20) assessed by ELISA. (B) Comparison of BK 

levels in BALF of ARDS patients of pulmonary (n=28) versus non pulmonary (n=18) source. (C) Analysis 

of the BK concentration in BALF obtained from ARDS patients at day 1 (n=46), day 3-4 (n=28) and day 6-8 

(n= 27) during the temporal progression of the disease. **p < 0.01, *** p < 0.001; ns, non significant.  
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While the BALF of ARDS patients contained an average concentration of 3.47 ng/ml 

BK with an interquartile range between 2.10 - 4.00 ng/ml, the average control group 

was stated at a significantly lower level of 0.45 ng/ml and an interquartile range of 0-

0.50 ng/ml. By contrast, in patients with a lung edema due to cardiac failure, no 

significant alteration of BK levels was detected in comparison to the healthy donors 

(Figure 4.3 A). In view of the etiopathologic differentiation, elevated BK levels were 

observed in direct as in indirect ARDS, showing no significant difference between the 

two groups (Figure 4.3 B). Analysis of the temporal evolvement reveals an initial high 

level on day 1 after the diagnosis, remaining elevated for eight days with declining 

tendency from day six on (Figure 4.3 C).   

Additional experiments were performed to examine the expression of intrinsic blood 

coagulation factors in human lung homogenate. Western blot analysis revealed a 

steady high protein level in ARDS affected lung tissue in comparison to the control 

group (Figure 4.4). With regard to the previous observations in BALF specimens; 

indicators of FXII conversion were equally present in the lung tissue.  

 

 

Figure 4.4 Altered expression of contact activation factors in ARDS lung tissue.        

Determination of protein level of FXII, FXI, HK and KLK in lung homogenate of ARDS patients and healthy 

controls. 5 out of 7 ARDS patients and 5 out of 6 controls are demonstrated. As a loading control β-actin 

was used. * unspecific band. 
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A                 B    

  
 C      D     

      

    E      F 

                      

   G 

        
Figure 4.5 Altered expression of contact activation factors in ARDS lung tissue     

Densitometry analysis of the immunoblot of Figure 4.4 for FXII zymogen (A) and FXIIa HCh (B), FXIa (C), 

HKa HCh (D) and HKa LCh(E), PKLK (F) and KLK HCh (G). ARDS (n=7), Control (n=6). Rel., relative; 

HCh, heavy chain; LCh, light chain. *p < 0.05 
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Quantification of the Western blot results performed by densitometry analysis 

confirmed higher protein levels in ARDS lung tissue. Accordingly the relative protein 

expression of FXII was detected in ARDS lungs to shift between 0.33 - 0.56 with an 

average of 0.45, whereas the control group showed FXII rates of 0.03 - 0.57 with an 

average of 0.21. The protein expression of FXIIa heavy chain revealed an average of 

0.12, in comparison of 0.03 to the control group.  The relative protein rate of FXIa in 

ARDS lungs was detected to vary among 0.04 and 0.45 with an average of 0.38, while   

in control lungs FXIa protein expression was determined at 0.012 to 0.34 with an 

average rate of 0.17. The expression of HKa heavy chain was detected in ARDS lungs 

to shift from 1.12 to 0.39, in the control group from 0.03 to 0.9.  HKa light chain was 

found at a significantly higher protein rate in ARDS lungs compared to healthy controls, 

with rates of 1.2 to 0.02, whereas in lung tissue of the control group the protein 

expression shifted from 0.01 to 0.03.  Minor variation in protein expression was 

determined for PKLK, with an average in ARDS patients of 0.15 and in the control 

group of 0.08. For KLK protein expression no difference was detectable in the ARDS 

group compared to the healthy controls.  

In summary, FXII, FXIIa, FXI and HKa were found in higher protein rates in ARDS 

lungs compared to the control group, however not reaching statistical significance 

(Figure 4.5 A-G).  

 

3.2  FXII expression is increased in blood cells of ARDS patients   

The role of hepatocytes as main producer of FXII is generally acknowledged, however 

evidence of extrahepatic synthesis has been obtained in previous research (183). 

Consequently, the interest arose whether within lung injury supplementary cells might 

play a role as a potential source of FXII protease. To this end, mRNA of FXII was 

evaluated in human lung homogenate and leukocytes by means of qPCR. Interestingly, 

the FXII expression was significantly higher in lung homogenate of ARDS patients in 

comparison to control subjects (Figure 4.6 A). Furthermore, in leukocytes isolated from 

the blood of healthy donors FXII mRNA was not detectable, whereas in leukocytes of 

ARDS patients FXII was distinctly expressed (Figure 4.6 B).  
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A       B 

             

 

Figure 4.6 Expression of FXII is altered in lung tissue and blood cells of ARDS patients.      

Expression of FXII in (A) lung homogenates obtained from control subjects (n=5) and ARDS (n=5) patients 

and in (B) leucocytes of healthy donors (n=10) and ARDS patients (n=6) assessed by qPCR. All data are 

expressed as ∆ct using β-actin as a reference gene. *p < 0.05; N.D., non-detectable. 

 

 

 

3.3  The protein level of FXII and BK is elevated in lungs of bleomycin-

 treated mice 

To ascertain whether comparable conditions apply for the animal model of lung injury, 

Western blots of FXII were performed for BALF of bleomycin-treated mice. To 

reproduce the feature of human lung injury most realistically, the lavage samples used 

were of mice 5 days after bleomycin application, thus representing the acute 

inflammatory response. FXII concentrations were found to be significantly elevated in 

murine BALF of bleomycin challenged mice compared to the saline treated mice in 

Western blot analysis (Figure 4.7). 
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Figure 4.7 Levels of FXII and FXIIa is elevated in BALF of bleomycin treated mice.                      

Levels of FXII and FXIIa in BALF of mice treated with either saline or bleomycin 5 days post application. 

Representative Western blot is demonstrated. Here 4 Saline and 5 out of 9 bleomycin challenged mice are 

shown. 

 
 

FXII conversion in BALF of bleomycin treated mice was indicated by a signal for FXII 

zymogen with concurrent appearance of FXII heavy, leading to the assumption of 

ongoing FXII activation. Moreover, detection of FXII was executed for murine lung 

tissue samples at day 5 and day 10 post bleomycin application. Illustrated in Figure 

4.8, a strong signal was observed in bleomycin challenged murine lung homogenate, 

whereas saline treated mice showed markedly lower expression of FXII. Quantification 

of the protein band by densitometry analysis confirmed significantly higher FXII/FXIIa 

levels in samples of bleomycin injured lungs (Figure 4.8 B, C). In view of the temporal 

course, FXII concentration is found to be higher at day 5 post bleomycin instillation with 

subsequent reduction.  
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  B                  C     

                                       

       
Figure 4.8 Increased protein level of FXII/FXIIa in lung homogenate of mice at day 5 and day 10 
after bleomycin instillation.                   
(A) Levels of FXII/XIIa in lung tissue of mice treated with bleomycin on day 5 and day 10 post application. 

Representative Western blot is demonstrated. As a loading control β-actin was applied. Quantification of 
Western blot results for (B) FXII zymogen and (C) FXIIa HCh was assessed by densitometric analysis. 

Saline (n=5), bleomycin day 5 (n=9) and bleomycin day 10 (n=9) mice are shown. HCh, heavy chain; Rel., 
relative. *p < 0.05, **p < 0.01.  
 

 

 
Determination of BK protein level in murine lungs was further assessed by ELISA, 

revealing significantly higher BK levels in the BALF of bleomycin injured lungs. 

Whereas the average concentration of BK in BALF of the saline treated control group 

was 15.27 ng/ml, the mean value of BK after bleomycin administration was 43.3 ng/ml 

at day 5 and 34.94 ng/ml at day 10 post application.    
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Figure 4.9 Increased level of BK in BALF of mice at day 5 and day 10 after bleomycin application   

Determination of BK level in BALF of mice at day 5 (n=9) and day 10 (n=9) after bleomycin application 
compared to saline control group (n=5)  assessed by ELISA. **p < 0.01; ns, non significant               
 

 
3.4  C1 esterase inhibitor (C1 INH) decreases inflammatory response in 

 bleomycin challenged murine lungs 

 

3.4.1  C1 INH alleviates the inflammatory response induced by bleomycin 

 application 

To further define the role of contact activation, effects of its inhibition on acute lung 

injury were examined in murine lungs. The animals were divided into three different 

experimental groups. While the first group received saline application, the second and 

third group were challenged with bleomycin. Subsequently, C1 INH, acknowledged to 

be a main inhibitor of the contact system, was administered to the former (Saline+C1 

INH) and the second group (Bleo+C1 INH), whereas the third group received a vehicle 

only (Bleo+Vehicle). All animals of the investigation were sacrified on day 5 after 

bleomycin or saline application, respectively. 

Morphological evaluation of the lung tissue was then performed. In the lungs of saline 

treated mice that received C1 IHN no alterations of the lung tissue were found and the 

physiological alveolar architecture was maintained (Figure 4.10). In the bleomycin 

group, the mice with vehicle administration only showed the typical feature of 

bleomycin induced lung injury including infiltration of leukocytes into the interstitial 

space and swelling of the alveolar wall. By contrast, in lungs of mice treated with C1 

INH a striking diminution of the bleomycin caused inflammation was observed. 

Accordingly, a considerable reduction of inflammatory cells in the interstitial and 

alveolar compartment was apparent (Figure 4.10) 
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Figure 4.10 Application of C1 INH reduces the inflammatory response in bleomycin treated mice. 

Hematoxylin-eosin stained paraffin embedded lungs obtained from animals either treated with saline+C1 

INH, bleomycin+vehicle or bleomycin+C1 INH, n=5-8/group. Magnification 20x. 

 

 

These observations were confirmed by the analysis of the BALF, revealing an increase 

of leukocytes in specimen of mice after bleomycin challenge and a significant lower 

number of leukocytes after C1 INH administration compared to those after vehicle 

treatment (Figure 4.11 A).  

Accordingly, neutrophils, a subgroup of leukocytes known to be of pivotal importance in 

the pathogenesis of ARDS were significantly reduced in animals receiving C1 INH 

(Figure 4.11 B),  the relative proportion of neutrophils among total leukocytes, however, 

remained the same (Figure 4.11 C).  
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      C 

       

Figure 4.11 Application of C1 INH reduces number of inflammatory cells in bleomycin challenged 

mice. (A-C) Quantification of leukocytes and neutrophils in BALF of bleomycin challenged mice assessed 

by flow cytometry. n=5-8/group; *p < 0.05, **p < 0.01; ***p < 0.001; ns, non significant. 

 

 

Evaluation of the wet/dry ratio as indicator for edema formation in the lungs revealed a 

significantly higher rate after bleomycin application compared to the saline control 

group. The edema was found to be significantly reduced after C1 INH administration 

(Figure 4.12.) 
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Figure 4.12 Decrease of edema formation after C1 INH administration in bleomycin treated mice. 

Determination of the wet/dry ratio in the lungs of either saline control group or bleomycin challenged lungs 

with vehicle or C1 INH application;  n=5-8/group;  *p< 0.05, ***p< 0.001.   

             

   

3.4.2  Expression of proinflammatory mediators in bleomycin injured lungs is 

 reduced after C1 INH application 

To further scrutinize the putative effect of C1 INH administration on bleomycin injured 

lungs, mediators known to be involved in the inflammatory response were examined. 

The macrophage inflammatory protein 2 (MPI-2/CXCL2) is known to be a crucial 

participant in neutrophil recruitment in the course of ARDS. Determination of MIP-2 

mRNA expression in lung homogenate revealed a remarkable increase of MIP-2 in 

bleomycin injured lungs with vehicle administration and a significantly decreased 

expression in mice treated with C1 INH (Figure 4.13 A). TNF-α, known to be a pro-

inflammatory mediator and contributor to fibrotic alterations in the lung, was found to be 

significantly higher expressed in vehicle treated bleomycin mice, whereas C1 INH 

application induced a significant decline of the cytokine (Figure 4.13 B). By contrast, C1 

INH failed to exhibit an impact on the expression of IL-1β. Thus, IL-1β expression was 

significantly increased in all bleomycin treated mice, independent of whether they had 

subsequently received C1 INH or vehicle only (Figure 4.13 C). 
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Figure 4.13 Expression of MIP-2 and TNF-α is reduced after C1 INH administration in bleomycin 

challenged mice.            

Expression of MIP-2 (A), TNF- α (B) and IL-1β (C) in lung homogenates of mice post saline instillation with 

C1 INH application (saline+C1 INH), in bleomycin mice with vehicle administration (bleomycin+vehicle) 

and bleomycin mice with C1 INH application (bleomycin+C1 INH) assessed by qPCR. Data are expressed 

as ∆ct using β-actin as a reference gene, n=5-8/group. *p< 0.05, **p< 0.01; ns, non significant. 
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3.4.3  C1 INH administration has no impact on coagulation in bleomycin 

 challenged mice 

It is well established that alveolar coagulation is subject to alterations in lungs of ARDS 

patients; therefore it was of particular interest to investigate possible effects of C1-INH 

administration on the hemostatic status. For this reason, measurement of the clotting 

time was performed for a saline control group and bleomycin challenged mice, the 

latter either treated with C1 INH or vehicle only. The evaluation revealed a highly 

significant acceleration of the clotting time in bleomycin challenged mice compared to 

the saline control group. Whereas the clotting time of the saline treated mice was 

observed to vary between 580 to 800 seconds, a striking diminution with an average of 

100 seconds was noted in mice after bleomycin application. This observation is 

consistent with the current knowledge of a predominantly procoagulant setting during 

lung injury. Remarkably, the clotting time was not decelerated after C1 INH 

administration, thus no difference to the vehicle treated mice was observable (Figure 

4.14 A).  

Representing the final product of coagulation activity, fibrinogen was another object of 

the investigation. Determination of fibrin(ogen) in murine lung samples assessed by 

Western blot analysis revealed an explicit increase of the protein in samples of animals 

challenged with bleomycin. No difference was noted in the experimental groups, 

showing a comparably high amount of fibrinogen independent of whether they were 

treated with C1 INH or vehicle only (Figure 4.14 B). Further examination included 

determination of D-dimer, the decomposition product of cross-linked fibrin and 

therefore marker of fibrin formation and dissolution. The amount of D-dimer in the 

plasma of mice with lung injury was detected to be significantly higher than in the 

control group. No significant effects could be found in the experimental group after C1 

INH treatment (Figure 4.14 C). In conclusion, after bleomycin application the mice 

developed the known features of acute lung injury with an increase of procoagulant 

activity, represented by the accelerated clotting time and increase of fibrin and fibrin 

degradation products. No significant distinction could be identified in the experimental 

group between animals which had received C1 INH treatment and those after vehicle 

application. Consequently, the results demonstrate the administration of C1 INH as 

having no effect on the hemostatic state. 
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Figure 4.14 C1 INH application has no impact on altered coagulation in bleomycin induced lung 

injury.             

(A) Procoagulant activity of BALF from animals subjected to saline or bleomycin and then treated with 

either C1 INH or vehicle.  (B) Fibrin(ogen) deposition in the lungs of mice post saline instillation and C1 

INH administration (Saline+C1 INH) and bleomycin mice treated either with C1 INH (bleomycin+C1 INH) or 

vehicle only (bleomycin+vehicle). Representative Western blot is shown.  (C) Quantification of D-dimer 

antigen level in BALF samples from each group, Saline+C1 INH, bleomycin+C1 INH and bleomycin + 

vehicle. n= 5-8/group. **p<0.01; ns, non significant.                                                                                       
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4.  Discussion 

4.1  The contact activation factors are increased in ARDS lungs  

The altered alveolar hemostatic state is a condition generally recognized in 

inflammatory lung diseases and it has been an object of research to clarify the role of 

coagulation factors within inflammatory and fibrotic processes in this context. Extrinsic 

proteases of blood coagulation are found to be increased in the lungs of ARDS patients 

(162) and have been identified to not only promote fibrin formation via the coagulation 

cascade, but to additionally contain pro-inflammatory properties by inducing the 

expression of cytokines (168, 173). Furthermore, pro-fibrotic effects are attributed to 

the FXa protease, attaching further importance to the components of the clotting 

cascade in view of fibrotic remodeling of the lung (186).  The present study examines 

the impact of the contact system on the pathogenesis of acute lung injury, particularly 

ARDS, exhibiting elevated protein levels of FXII, FXI, KLK and HK in BALF and lung 

tissue of ARDS patients. This surge of intrinsic blood coagulation factors in BALF and 

lung tissue is presumably primarily due to the impaired integrity of the alveolar barrier 

generally found in the lung of ARDS patients, leading to influx and accumulation of 

proteins in the alveolar and interstitial compartment (132, 187). However, it seems 

worthwhile considering whether besides the alveolar leakage; intrapulmonary 

generation may be another cause for the accrued amount of intrinsic factors at the site 

of lung injury. In this context, results of the current study draw particular attention to 

inflammatory cells as putative source of FXII, revealing FXII expression in leukocytes of 

ARDS patients whereas in the white blood cells of healthy subjects FXII was not 

detectable. Thus, the inflammatory cells may represent an extrahepatic origin of FXII 

production and leukocytes invading into the pulmonary tissue within the inflammation 

may contribute to elevated FXII levels in the lung tissue of ARDS patients. Moreover, 

the possibility of FXII generation by resident lung cells can neither be excluded from 

consideration. Evidence of intrapulmonary FXII production has been obtained in lungs 

of IPF patients as under fibrotic conditions human lung fibroblast have been detected to 

express FXII (182). Whether local synthesis by lung fibroblasts or epithelial alveolar 

cells may play a role in inflammatory lung diseases remains object of future studies. 

 

Another important aspect of this study was the provision of evidence of intrinsic 

pathway activity in the lungs of ARDS patients. Accordingly, conversion of FXII into its 

activated form and complete activation of its substrates was detected in the presented 

Western blot results. However, it should not be neglected that FXII independent 

pathways have been described for KLK and FXI cleavage respectively, which 
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consequently also need to be taken into consideration as a potential mechanism for 

their activation in affected lungs (188, 189). Within the course of the disease a higher 

rate of FXII conversion is suspected to eventuate with local accumulation in the lung. 

Amplified degradation of the protein due to the boosted activation leads then to 

extended consumption of FXII, which is reflected in the decline of the protease in the 

plasma. This is particularly remarkable, as in septic patients decreased FXII plasma 

levels have been noted to signify an unfavorable prognosis (190). Consequently, the 

question arises of how FXII activation may occur during lung injury. A variety of 

approaches have been pursued in the past years concerning the mechanism of FXII 

activation under physiological conditions. In view of potential pro-inflammatory features 

of the protease, particular interest has been drawn to studies indicating that the 

activation of contact factors might occur on the surface of neutrophils. In line with this 

approach, previous investigations demonstrated  binding of purified FXII and HK, 

respectively, to the surface of neutrophils, notably in immediate vicinity to each other, 

resulting in an increase of KLK activity (191). In this way, the activation of the contact 

system proteases in acute lung injury might occur on infiltrating neutrophils at the site 

of inflammation.  Additionally, platelets have been suspected to be associated with the 

initiation of the contact activation system (44). A possible mechanism seems to include 

the release of inorganic polyphosphate (PolyP) from thrombocytes, which bind to FXII 

and thereby trigger its activation and subsequent BK generation (45). Another potential 

activator of FXII further represents extracellular RNA, contingently originating from 

dying cells within tissue damage or disintegrating pathogens (42). In ARDS of 

infectious origin bacterial mediated contact activation may further play an essential 

role. Accordingly, assembly and activation of the proteases belonging to the contact 

system have been observed on the surface of Streptococcus pyrogens, 

Staphylococcus aureus and Escherichia coli (192-194).  

 

The current results further revealed an independence of the FXII augmentation from 

the etiopathologic origin of the disease. Thus, no considerable difference was 

detectable whether ARDS was based on pulmonary or non pulmonary genesis. This 

observation coincides with the findings for extrinsic coagulation factors, showing 

equally elevated activity of tissue factor and FVII in direct as in indirect ARDS (162).  

The differentiated analysis of the temporal course revealed an instant increase of FXII 

within the first 24 hours of the diagnosis. The protein level remains high for four days 

and then declines to rates comparable to the values of the healthy control group.                                                                                                                   

In view of a potential role of contact system activation in ARDS, this discovery draws 

particular attention to the early stage of the disease, which is known to be 



Discussion 

 

- 49 - 
 

characterized by inflammatory alteration of the lung tissue with a surge of cytokines 

and infiltration of leukocytes (187). In this context it is noteworthy that pro-inflammatory 

attributes of contact activation proteases in general and in the lung in particular have 

been addressed in previous research (115, 184). Thus, ample evidence has been 

provided that KLK and FXIIa induce aggregation of neutrophils and stimulate the 

release of neutrophil derived elastase in vitro (114, 117, 119). Accordingly, in KLK and 

FXII deficient plasma a remarkable decline of neutrophil elastase liberation has been 

described (119).  Therefore it is of special interest, that in BALF and plasma of ARDS 

patients the level of the neutrophil elastase has been detected to be significantly 

elevated (195, 196). Containing destructive effects on the endothelium of the lung, the 

neutrophil elastase crucially contributes to the alteration of the alveolar membrane, 

leading to a protein rich edema and extravasation of inflammatory mediators into the 

alveolar and interstitial space (197). The molecular mechanism of the interaction 

between the contact system factors and the leukocytes engendering the release of 

neutrophil elastase remains unknown. Earlier investigations suggest an involvement of 

the catalytic domain as well as the heavy chain, since β-FXIIa failed to unfold its impact 

on the immune cells (117), possibly due its inability to bind to the cells. Of further 

particular interest in this regard is the present finding of elevated amounts of BK in 

BALF of ARDS patients. Given the manifested role of the nanopeptide in inflammatory 

processes (88, 89, 100, 102), the suggestion arises as to whether a significant 

participation in the pathogenesis of acute lung injury might be assigned to BK. (101) Up 

to date, various pro-inflammatory effects of BK in the lung have been explored as 

inducing the release of cytokines with neutrophil chemotactic activity, particularly IL-8, 

in pulmonary epithelial cells  (101, 102). Aside from FXII and KLK, BK represents 

another component, demonstrated to induce the release of neutrophil elastase and 

thereby promoting the leakage of the alveolar membrane (198). In addition to the 

inflammatory attributes of the contact system factors, a pro-fibrotic contribution in 

ARDS might also be worthwhile considering. According to the present state of 

knowledge, fibrotic alterations in affected lungs appear within the early phase of the 

disease (153, 199), thus concurrent with the elevated FXII levels observed in the 

present study. In a former animal study, limited fibrotic manifestation in FXII (-/-) mice 

after bleomycin challenge has been demonstrated (182), implying pro-fibrotic features 

of the serine protease. A fibrotic capability of FXII might be attributed to its activity as a 

component of blood coagulation, initiating via proteolytical cleavage the intrinsic 

coagulation cascade and thereby promoting fibrin generation. This is contradicted, 

however, by the restricted significance of the intrinsic pathway in hemostasis in vivo. 

Furthermore, despite reduced fibrosis in FXII (-/-) mice, fibrin generation was equally 
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detected in the experimental and control group, thus the involvement of the contact 

system protease in fibro-proliferative alteration seems to be found beyond its 

procoagulative action (182). Promising approaches in this context are attributed to the 

mitogenic features of FXII. Accordingly, FXII has been identified to contain mitogenic 

activity on hepatocytes, endothelial cells, alveolar cells and aortic smooth muscle cells 

(22, 33), most likely involving the EGF-like domains of the protease.  In line with these 

findings, a FXII mediated proliferative effect under participation of u-PAR has also been 

observed in murine lung fibroblasts (182). Besides, pro-fibrotic attributes may also be 

assigned to BK as in lung fibroblasts the peptide has been described to provoke 

proliferation, increased expression of α-smooth muscle actin (α-SMA) and enhanced 

collagen synthesis (200). Thus, BK possibly represents another component involved in 

the fibrotic response within ARDS. 

 

The observations in ARDS lungs of the current study corresponded to the findings in 

the animal model of lung injury. To reproduce the pattern of lung injury, mice were 

intratracheal bleomycin challenged. Evoking similar pathological changes in murine 

lungs by inducing the release of cytokines, infiltration of neutrophils and formation of a 

pulmonary edema, bleomycin application is a common method to provoke the 

pathological pattern observed in the lungs of ARDS patients (201). Besides, another 

analogy with ARDS is found as the bleomycin induced neutrophilic alveolitis merges 

into a reversible fibrotic alteration. The conditions 5-10 days post bleomycin application 

particularly meet the criteria of the acute inflammatory early fibrotic phase of lung injury 

(201). Therefore, the experimental animals used were sacrified on day 5 or 10 after 

intratracheal bleomycin instillation. However, the pathological processes within acute 

lung injury are multifarious and may not be fully reproduced in animal models, thus 

there are naturally limitations to these experiments. This study revealed an elevation of 

the FXII level in BALF of mice after bleomycin challenge with indicators for FXII 

conversion, leading to assume an ongoing activity of the contact system. Significantly 

increased levels of FXII zymogen and FXIIa were further detected in murine lung 

homogenate. The temporal comparison showed the protease at a higher level on day 5 

then on day 10. These observations are in line with the findings for ARDS lungs, 

revealing the FXII concentration to be initially at its highest and then to decline, 

emphasizing the particular involvement of contact activation within the early events of 

lung injury.  

As there are few measures identified to be of therapeutic benefit in ARDS, it is crucially 

important for future approaches to gain additional knowledge of the mediators involved 

in the pathological process. The current finding of elevated and activated contact 
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activation proteases in ARDS lungs with an elevated amount of the downstream 

product BK underscores the hypothesis of a contributive role of these factors within the 

progression of the disease. Not interfering with hemostasis, the inhibition of contact 

activation may represent an attractive therapeutic option. In the future, further research 

is required to focus on revealing more details of the pathological circumstances leading 

to pulmonary accumulation of the proteases and to identify the molecular processes 

contact activation may actuate within the development of ARDS. 

 

 

4.2  C1 INH administration moderates the inflammatory response in acute 

 lung injury 

Another pivotal discovery of this study was the recognition of a mitigating effect of C1 

INH on the inflammatory processes in bleomycin induced lung injury. This favorable 

impact includes a regression of the alveolitis with a marked reduction of inflammatory 

cells, especially neutrophils, just as a decline of the pulmonary edema. Remarkably 

both pulmonary edema formation as excessive neutrophil infiltration with subsequent 

degranulation, are key features of ARDS. Here the curiosity arises to determine the 

components involved in this protective effect of C1 INH, drawing paramount interest to 

the substrates possessing pro-inflammatory attributes. FXII, KLK and complement 

factor C1 are acknowledged to be inhibited by C1 INH (48-51). The inhibition of KLK 

further restricts the generation of BK, equally representing a mediator of inflammation. 

It is noteworthy that the complement system as well as the contact activation system 

are found activated in lung injury (202-204), thus the inhibition of either system might 

cause the beneficial effects of C1 INH administration.  

 

In research to date, mounting evidence of an advantageous impact of C1 INH 

administration in inflammatory diseases has been gained. Accordingly, a beneficial 

effect of the inhibitor application has been observed in an in vivo study on septic 

patients, revealing a decline of PMN activation after C1 INH administration 

accompanied by a reduced expression of disease-relevant cytokines (205). Besides, 

the referenced report accentuates the significance of the complement system, as C1 

INH substitution attenuated the activation of the classic pathway of complement, 

whereas no such effect was witnessed for FXII or KLK (205).  A preventive impact on 

the pulmonary function was further demonstrated in endotoxin challenged animal 

lungs, significantly ameliorating the PaO2 after C1 INH administration. The authors of 

the study suggest the beneficial effect to be mainly traced back to the inhibition of 

contact system factors (203). In line with this assumption, a reduced inflammatory 
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response was observed in experiments on septic baboons after C1 INH treatment with 

concomitantly decreased activity of contact system proteases (206). There are different 

conceivable scenarios of how contact system activation might participate in the 

pathogenesis of acute lung injury. Firstly, as pointed out above, contact system factors 

induce the aggregation of neutrophils and the release of the neutrophil elastase, an 

enzyme essentially contributing to the destruction of the alveolar membrane. 

Additionally the neutrophil elastase has been described to inactivate C1 INH under 

generation of cleaved C1 INH which lacks the ability to inhibiting plasma proteases. It 

may be therefore speculated that FXII induced release of the neutrophil elastase leads 

to enhanced C1 INH inactivation, which putatively may cause unrestricted activation of 

the contact and the complement activation system. Interestingly, in septic patients the 

level of cleaved, inactivated C1 INH is described to be elevated and to correlate with 

the clinical outcome (207). Similar conditions seem conceivable for ARDS and 

insufficient inhibition of the contact and complement activation system might reinforce 

the inflammatory response. Besides the neutrophil elastase, other tissue destroying 

components may be released due to contact system triggered neutrophil degranulation. 

Increased endothelial permeability in the lung may be augmented by HK derived-BK 

generation (90). As FXII, KLK and HK have been localized on endothelial cells, the 

alveolar endothelium might represent a potential site of activation of the contact system 

proteases where liberation of BK occurs. Released BK may effectuate in paracrine 

manner the increase of alveolar permeability, thus exacerbating the influx of protein 

rich fluids into the alveolar space.         

 

Previous investigations on the impact of C1 INH in septic baboons have revealed a 

decline of the cytokines IL-6, IL-8, Il-10 and TNF-α after the administration of the 

inhibitor, an effect suspected by the authors to be attributable to the inhibition of the 

contact activation system (206). Supporting this assumption, inhibition of FXII by 

monoclonal antibody C6B7 in baboons similarly revealed a decrease of IL-6 release 

during sepsis (118). In consistency with this observation, the present study 

demonstrated a decrease of the pro-inflammatory mediators MIP-2 and TNF-α after C1 

INH administration in bleomycin induced lung injury (206), whereas the expression of 

IL-1β remained unaffected. Finally, the activities of contact activation factors towards 

the complement system remain to be considered. Previous studies demonstrated that 

the first component of the complement system may also be activated by β-FXII, thus 

linking the pathways of the complement system and the contact activation cascade 

together (25, 26). The C1 of the complement represents the initiating component of the 

classic pathway, through proteolytic processing leading to the release of C5a, an 
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acknowledged chemo-attractant. C5a is recognized to bind to endothelial cells, induce 

neutrophil capture and increase vascular permeability under hypoxic conditions (208). 

The complement system as the central target of endogenous C1 IHN administration 

has been the focus in previous studies with controversial results. In septic patients, C1 

IHN substitution was demonstrated to lead to inhibition of the complement system and 

concurrent decline of neutrophil degranulation (205). However, in bacterial induced 

lung injury in an animal model, the administration of the inhibitor failed to prevent 

complement activation (202). Similarly, an insufficient inhibition of the complement 

system via C1 IHN administration has also been described for septic baboons (206). A 

most likely explanation for this may be found in the fact that the C1 INH interferes at an 

early level of the classic pathway of the complement system, without affecting the 

alternative cascade or other proteolytic processes leading to generation of the 

downstream complement products. Therefore, it is of no surprise, that C5a was found 

to be barely lowered after C1 INH administration (206). Based on these observations, it 

seems reasonable to presume that the complement system solely is insufficient to 

induce severe lung injury, as found in ARDS lungs. Instead, it seems more reasonable 

to conclude, that both systems, contact system activation in concert with the 

complement pathway precipitate the infiltration of neutrophils into the lung and 

concurrent edema formation. Summarily, the present results sustain the critical role of 

the contact system without dismissing an additional participation of the complement 

pathway.   

The imbalanced hemostatic state as generally found in inflammatory lung diseases was 

equally observed in the bleomycin-injured lungs. Accordingly, the clotting time was 

accelerated and D-dimer as indicator of boosted coagulation activity was significantly 

higher after bleomycin application. C1 INH substitution exhibited no impact on this 

procoagulative state, underlining the strongly limited significance of FXII in blood 

clotting. Determination of fibrin deposits revealed to be increased after bleomycin 

challenge. In line with previous investigations, the fibrin accumulation remained 

unaffected from C1 INH triggered-FXII blockage (194). These results indicate that the 

role of contact system within the pathogenesis of lung injury does not include an impact 

on the fibrin generation. Similar observations have been made in murine lungs with 

bleomycin induced fibrosis. Despite a significantly lower extent of fibrotic alteration in 

the lung of FXII (-/-) mice compared to the WT mice, no difference in fibrin generation 

was detectable between both groups (182).  
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The limitation of the investigation at hand is evidently based on the extended inhibiting 

activities of C1 INH, thus the present results do not exclude that the anti-inflammatory 

effect may be due to inhibition of factors other than the contact system proteases.  

 

Furthermore, the protection from lung injury might also be directly mediated by C1 INH 

itself, as evidence of anti-inflammatory activities independent of its function as protease 

inhibitor has been provided. Thus, C1 INH at plasma concentrations generally found in 

inflammation is observed to directly interfere with leukocyte extravasation (127).  By 

binding to P- and E- selectin adhesion molecules, C1 INH has been demonstrated to 

restrict leukocyte adhesion to endothelial cells in both in vitro and in vivo experiments 

(126, 127). Furthermore, in animal models of sepsis and endotoxin shock, C1 INH 

attaches directly to the bacterial lipopolysaccharids (LPS) and thereby inhibits LPS 

induced activation of macrophages and suppresses TNF-α synthesis (209). With 

regard to the results of the present study, the beneficial effect of C1 INH application in 

lung injury might be precipitated by direct C1 INH activity with the alveolar epithelial 

cells. It might therefore be of interest for future studies to examine whether the 

protective impact in lung injury is also observed when C1 INH is applied in its cleaved, 

inactivated form. 

Further research is also required to prove the explicit involvement of the contact 

activation system. Thus, a subject for prospective investigation might be the 

assessment of contact system activity after C1 INH substitution in bleomycin-injured 

lungs. A conceivable approach may further be the examination of a potential protection 

of FXII (-/-) mice from inflammatory alteration of the lung. Following the same reasoning, 

investigations on BK receptor (-/-) mice may elucidate the particular involvement of the 

peptide in lung injury.  An additional restriction of C1 INH may be due to its inability to 

inhibited surface bound contact proteases. Pursuing the idea of alveolar endothelial 

attached contact activation with local synthesis of BK, C1 INH administration may not 

achieve complete inhibition of the proteases. Another approach might therefore be to 

make use of a different inhibitor which also accesses to cell surface bound FXII, for 

instance the monoclonal Ab to FXII (C6B7) (194).  

 

However, despite the stated limitations, the significance of C1 INH as a main inhibitor 

of the contact, kallikrein-kinin and complement system is up to date undisputed, 

justifying that the inhibitor was chosen in the presented experiments. The anti-

inflammatory effect of C1 INH is substantiated by the current results, leading to the 

conclusion that the inhibitor might represent an effective way to interfere with contact 

activation triggered impairment of the lung. C1 INH for therapeutic application has 
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already been established in the treatment of hereditary angioedema with very few side 

effects; here an extended role of C1 INH as potential future medication in inflammatory 

lung diseases finds support.  
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5.  Conclusion 

In the past the biological relevance of the intrinsic proteases had been put to question, 

based on their dispensability in blood coagulation in vivo. Presently, the interest has 

been revived by the discovery of proinflammatory attributes of individual factors. This 

supplement role as intermediary in inflammation particular includes the FXII- and KLK- 

triggered induction of neutrophil aggregation and degranulation as well as the release 

of different cytokines. Of particular significance is further the KLK initiated liberation of 

BK. Being a well established mediator of vasodilatation and inflammatory processes, 

BK has been described to stimulate the release of various cytokines in lung fibroblasts 

and airway smooth muscle cells.  

In line with this recognition the results of the present study imply an involvement of the 

contact activation proteases in inflammatory lung diseases such as ARDS. In BALF 

and lung homogenate of ARDS patients the protein level of FXII, FXI, KLK and HK 

were elevated with indications of enhanced proteolytic activity of the contact system. 

The protein levels of FXII and BK were simultaneously raised in the early, inflammatory 

phase of ARDS and declined from day 6 onwards. The increase of both proteins was 

detected to be independent of the etiopathological origin and specific for ARDS as no 

increase of FXII and BK was apparent in BALF of patients with pulmonary edema 

based on cardiac failure. These findings were in accordance with the results of the 

animal model of lung injury, showing FXII and BK protein levels significantly elevated. 

In the qPCR analysis FXII was detected to be expressed by leukocytes of ARDS 

patients, revealing a potential extrahepatic source of the contact system initiating factor 

during lung injury.  

The administration of C1 INH prevented the inflammatory destruction of the alveolar 

tissue in bleomycin lungs. This beneficial effect of the inhibitor included a decline of 

immigrating immune cells, particularly of neutrophils and the decrease of the 

inflammatory cytokines TNF-α and MIP-2, both known to reinforce the inflammatory 

response in lung injury. Moreover, a significant regression of the alveolar edema was 

observed after C1 INH application. As expected the unbalanced hemostatic state 

remained unaffected by C1 INH treatment.  

In conclusion, the present data demonstrate an anti-inflammatory effect of C1 INH 

administration on lung injury and provid founded reason to suggest an involvement of 

the contact system proteases.   
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6.     Summary 

The pathological features of the acute respiratory distress syndrome (ARDS) are 

hallmarked by inflammatory processes in the lung with an impairment of the alveolar 

membrane precipitating the formation of a pulmonary edema and commonly 

accompanied by massive interstitial fibrin disposition. Despite the increasing 

knowledge of the disease, protective ventilation with a low tidal volume is the only 

therapeutic measure recognized to substantially reduce the mortality. Accordingly, over 

the past decades mortality has remained at a high level, emphasizing the necessity for 

further scientific research and analysis. Research up to date has substantiated the 

finding of an altered alveolar hemostatic state, accrediting a potential role in lung injury 

to the factors of blood coagulation. Thus, in the lungs of ARDS patients boosted activity 

of procoagulant proteases has been observed with contemporary restriction of the 

fibrinolytic system, resulting in amplified generation and interstitial accumulation of 

fibrin. Investigations performed heretofore focused particularly on the extrinsic factors 

of blood coagulation due to their established role as a source of fibrin. On the contrary, 

the intrinsic proteases are acknowledged to be of limited importance for blood clotting 

in vivo however, accumulating evidence has been gained of an extended participation 

in fibrotic and inflammatory processes. The intrinsic pathway of blood coagulation is 

also referred to as the contact system and consists of the factor XII (FXII), factor XI 

(FXI), kallikrein (KLK) and high molecular weight kininogen (HK). 

C1 esterase inhibitor (C1 INH) represents not only the sole inhibitor of the classic 

pathway of complement activation but also the main inhibitor of the contact system, 

irreversibly inactivating FXII and KLK by complex formation. The anti-inflammatory 

attributes of C1 INH have been detected to extend beyond its activity as serine 

protease inhibitor, including also the prevention of leukocyte migration by directly 

interacting with endothelial cells. This study contemplates the involvement of the 

intrinsic factors of blood coagulation in lung injury with particular focus on FXII, the 

initiator of the intrinsic cascade. The investigation further aims at determining whether 

C1 INH application might display an effect on the course of the disease. Elevated 

levels of FXII, FXI, KLK and HK in the bronchoalveolar lavage fluids (BALF) and lung 

tissue of ARDS patients were observed with evidence of ongoing contact system 

activity. The investigation revealed an instant increase of FXII concomitant with the 

onset of the disease, leading to assume that the impact of the contact system is to be 

found within the early phase of the disease. In consistency with these results for ARDS 

patients were the observations made in the animal model of lung injury; here 

correspondingly increased FXII levels in BALF and lung homogenate became evident 
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after bleomycin application. As unrestrained activation and infiltration of neutrophils 

represents a central feature of ARDS, one might speculate that the mechanism of how 

contact system proteases may aggravate lung injury is possibly related to the ability of 

FXII and KLK to trigger neutrophil aggregation. Another decisive discovery of the 

investigation was the increased BK level in the BALF of ARDS patients and the mouse 

model of lung injury, presumably due to enhanced contact system activity. In addition 

to its proinflammatory attributes, BK can be assumed to contribute to lung injury by 

increasing the alveolar capillary permeability and thereby aggravating the pulmonary 

edema. The study further indicated that under pathological conditions, cells other than 

hepatocytes play a role in FXII generation as FXII mRNA was detected in leukocytes of 

ARDS patients. Of pivotal interest for future therapeutic approaches is the here 

presented recognition of a favorable effect of C1 INH administration in lung injury. 

Thus, C1 INH application was shown to attenuate the inflammatory process in 

pulmonary tissue of bleomycin injured lungs, significantly reducing the number of 

inflammatory cells, particularly neutrophils and inducing a regression of the alveolar 

edema. Furthermore, administration of the inhibitor was followed by a significant 

decrease of tumor necrosis factor- α (TNF-α) and macrophage inflammatory protein-2 

(MIP-2); both cytokines are well established as mediators of inflammation in lung injury.  

In summary, the present study provides reason to assume an implication of the contact 

system factors in the inflammatory process of the ARDS, possibly by promoting the 

release of cytokines causing neutrophil derived lung tissue destruction. Furthermore, a 

protective effect of C1 INH in lung injury is described, pointing towards the anti-

inflammatory properties of the serine protease inhibitor such as the inhibition of 

neutrophil recruitment to the sites of injury via binding of C1 INH to selectins. Therefore 

the investigation draws new attention to C1 INH as a potential future option in the 

therapy of inflammatory lung diseases such as ARDS.  
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7.  Zusammenfassung 

Der pathologische Prozess des acute respiratory distress syndrome (ARDS) ist 

gekennzeichnet durch eine entzündliche Veränderung der Lunge mit Beeinträchtigung 

der Alveolarmembran, in deren Folge es zur Ausbildung eines Lungenödems und 

massiver interstitieller Fibrinablagerung kommt. Trotz zunehmender Erkenntnisse über 

die Erkrankung bleibt die lungenprotektive Beatmung mit niedrigen Tidalvolumina die 

bis heute einzig anerkannte, therapeutisch wirksame Maßnahme. Gegenwärtig liegt die 

Mortalität des ARDS weiterhin auf einem hohen Niveau von bis zu 48%, woraus sich 

die dringende Notwendigkeit weiterer wissenschaftlicher Untersuchungen ergibt. Die 

Entdeckung eines veränderten alveolar-hämostatischen Status bei betroffenen 

Patienten wurde in verschiedenen Studien bestätigt und lässt einen möglichen Einfluss 

verschiedener Blutgerinnungsfaktoren auf die Lungenschädigung vermuten. In der 

bronchoalveolären Lavage (BALF) von ARDS Patienten ist die Gerinnungsaktivität 

erhöht mit gleichzeitiger Reduktion der Fibrinolyse, woraus eine verstärkte Produktion 

sowie interstitielle Ansammlung von Fibrin resultiert. Aufgrund ihrer etablierten Rolle in 

der Generierung von Fibrin konzentrierten sich bisherige Studien in diesem 

Zusammenhang insbesondere auf die Bedeutung extrinsischer Gerinnungsfaktoren. 

Die begrenzte Wirkung der Faktoren des intrinsischen Weges in der Blutgerinnung in 

vivo ist allgemein anerkannt, hingegen scheint ihre Beteiligung an verschiedenen 

entzündlichen und fibrotischen Prozessen von höherer Relevanz zu sein. Der 

intrinsische Weg der Blutgerinnung setzt sich zusammen aus den Faktoren XII (FXII), 

Faktor XI (FXI), Kallikrein (KLK) und high molecular weight kininogen (HK) und wird 

auch als Kontaktaktivierungssystem bezeichnet.  

Der C1 Esterase Inhibitor (C1 INH) ist ein Serinprotease-Inhibitor und in dieser 

Funktion nicht nur der einzige Inhibitor des klassischen Wegs des 

Komplementsystems, sondern auch Hauptinhibitor des intrinsischen Systems. Die anti-

entzündlichen Eigenschaften von C1 INH sind jedoch nicht allein auf seine Aktivität als 

Proteaseinhibitor begrenzt. Eine direkte Wechselwirkung von C1 INH mit 

Endothelialzellen wurde ebenfalls beschrieben, welche die Bindung von Leukozyten an 

das Endothel und somit die Diapedese verhindert.  

Gegenstand dieser Studie ist die Untersuchung einer potentiellen Beteiligung der 

Faktoren des Kontaktaktivierungssystems in der Pathogenese akuter 

Lungenschädigung. Hierbei liegt der Schwerpunkt der Experimente vorwiegend auf 

dem FXII, welcher als Initiator der Kaskade von besonderem Interesse ist. Ein weiterer 
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Fokus ist die Untersuchung eines möglichen Effekts von C1 INH auf den 

Krankheitsverlauf. In den Experimenten zeigte sich ein erhöhter Proteinlevel der 

intrinsischen Faktoren FXII, FXI, KLK und HK in der Lungenlavage sowie im 

Lungengewebe von ARDS Patienten. Außerdem ließen die Beobachtungen auf eine 

fortlaufende Aktivität des Kontaktaktiverungssystems schließen. Der Anstieg des FXII 

Levels zeigte sich hierbei unmittelbar mit dem Beginn der Erkrankung. Diese 

Beobachtung lässt vermuten, dass der Einfluss der intrinsischen Faktoren auf den 

pathologischen Verlauf insbesondere in der frühen Phase der Erkrankung zu finden ist.  

Übereinstimmend mit diesen Erkenntnissen waren auch die Ergebnisse der Versuche 

an Tiermodellen der akuten Lungenschädigung. Auch hier zeigte sich ein Anstieg des 

FXII Levels in BALF und im Lungenhomogenat nach Bleomycin Applikation. 

Angesichts der massiven Infiltration von Leukozyten im Verlauf des ARDS, scheint ein 

möglicher Beitrag des Kontaktaktiverungssystems zur Lungenschädigung die von FXII 

und KLK induzierte Aktivierung von Neutrophilen zu sein. Eine weitere wichtige 

Erkenntnis war die Beobachtung eines erhöhten Bradykinin (BK) Levels bei ARDS 

Patienten ebenso wie im Tiermodel der Lungenschädigung, mutmaßlich ausgelöst 

durch die erhöhte Aktivität des Kontaktaktivierungungssystems. Zur Schädigung der 

Lunge trägt BK möglicherweise neben seiner proentzündlichen Wirkung auch durch die 

Erhöhung der alveolarkapillären Permeabilität bei, welche eine Zunahme des 

Lungenödems zur Folge hat. Desweiteren konnte der Nachweis von mRNA in 

Leukozyten von ARDS Patienten erbracht werden, eine extrahepatische FXII Synthese 

scheint folglich unter pathologischen Bedingungen eine zusätzliche Rolle zu spielen. 

Von besonderem Interesse für zukünftige therapeutische Forschungsansätze ist der 

hier erbrachte Nachweis eines positiven Effekts von C1 INH Applikation auf die 

Lungenschädigung. Die Verabreichung von C1 INH milderte den entzündlichen 

Prozess im Lungengewebe, reduzierte die Anzahl der inflammatorischen Zellen, 

insbesondere der Neutrophilen und bewirkte eine Reduktion des Lungenödems. 

Desweiteren  zeigte sich ein signifikanter Rückgang der Zytokine Tumornekrose 

Faktor-α (TNF-α) und macrophage inflammatory protein-2 (MIP-2).  

Zusammenfassend weisen die Ergebnisse dieser Studie auf eine Beteiligung der 

Faktoren des Komplementaktivierungssystems in der Pathogenese von ARDS hin. 

Möglicherweise induzieren die untersuchten Proteasen hierbei die Zytokinfreisetzung 

und unterstützen so die Lungengewebsschädigung durch Überstimulation von 

Neutrophilen. Die Gabe von C1 INH zeigte einen protektiven Effekt auf die 

Lungenschädigung und weist auf die antiinflammatorische Kapazität des Serine 

Protease Inhibitors hin. Diese beruht möglicherweise auf der Fähigkeit des C1 INH 
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mittels Blockade von Selektinen die endothelial Leukozyten Adhäsion zu stören und 

somit die Invasion der Entzündungszelle in das Lungengewebe zu hemmen.  Die 

Untersuchung richtet somit ein neues Interesse auf C1 INH als eine zukünftige 

therapeutische Option in der Behandlung von entzündlichen Lungenerkrankungen wie 

ARDS. 
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