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Abstract 

Aging in psychology has been investigated for decades and general aging declines in behavioral 

cognitive tasks have been well established. With advances in neuroimaging techniques, some 

changes have been found in the brain activity patterns of older adults. Their associations with 

better performance indicate their functions as compensations rather than impairments. The nature 

of these compensations is unknown: Are they passive responses to structure impairments or 

active adaptations to the altered environments. Sensorimotor control is supposed to be a pretty 

good way to explore it because of its natural connections with the external environments and its 

strong interactions with cognition.  

Visuomotor control has been extensively explored with visuomotor adaptation tasks and distinct 

mechanisms and subcomponents have been identified, such as model based learning and model 

free learning. In model-base learning, multiple states have been found: fast state, responding 

strongly to error whereas retaining information poorly, and slow state, responding weakly to error 

whereas retaining information well. Corroborating these multiple states, fast adaptation and slow 

adaptation have been identified as well as learning processing and retention processing. For 

model free learning, recently visuomotor adaptation has been found to be impacted by reward and 

punishment. How aging impacts these processes has been relative less explored.      

Saccadic eye movement is so brief that its online trajectory is resistant to any sensory feedback, 

making it an especially good way to investigate model-based learning. Saccade adaptation could 

be induced by different factors, ranging from low-level intrasaccadic step to high-level perceptual 

task. The first study investigated how aging impacts these two different processing with two 

different paradigms. A double-step paradigm was used in the first experiment which was 

designed to trigger primarily low-level, gradual motor adaptation and a perceptual task paradigm 

was used in the second experiment in which adaptation was induced by a perceptual task that 

emphasizes high-level, fast processes. Equivalent adaptation of saccadic gain was found in the 

two age groups in the first experiment whereas the fast, strategic adaptation response was 

significantly more pronounced in the young adult group in the second experiment.  

Reaching movement is with longer duration and less precision so that it is a pretty good 

complimentary way to investigate model free learning. The second study investigated age-related 

effects on learning processing and retention processing in reaching adaptation and motivational 
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modulations of these effects. In the study, a reaching task was used in which participants were 

asked to make fast shooting movements towards visual targets with their right hand through a 

robotic manipulandum (vBOT system) allowing to measure reaching trajectories. Adaptation was 

induced by a 30° screen-cursor visuomotor rotation. Participants were assigned to one of 

motivational feedback conditions, i.e. neutral, reward, or punishment. Reward and punishment 

feedback was based on reaching endpoint error. Equivalent retention rate was found in the two 

age groups whereas learning rate was smaller in older adults. However, the learning rate was 

equivalently enhanced by reward in the two groups suggesting the benefits from motivational 

feedback during reaching adaptation so that age-related differences in visuomotor plasticity, 

though persisting, can be attenuated. 

Saccade landing position and saccade latency has been found to be impacted by low-level factor 

salience and high-level factor value, making saccadic eye movement a good way to explore 

decision making. Recently the integration of salience and value was found to be dynamic, i.e. 

their influence on saccade landing position is dependent on saccade latency. The third study 

investigated how aging impacts these dynamics. In the study, salience and expected value was 

traded off by asking participants to make saccades to target patches with subregions differing in 

salience and associated reward. No differences were found between two groups on saccade 

landing position when only salience was administered. A significant interaction was found 

between value manipulation and age group on saccade landing position with equivalent reward 

effects in two groups but weaker penalty effects in senior group. When respecting with saccade 

latency, reward triggers an average latency decrease in senior adults but not in young adults. 

These differential reward effects on saccade landing position and saccade latency were also 

reflected by the less dependence of saccade direction on latency although the dependence exists 

in both groups.   

Taken together, this thesis consistently found reserved low-level processing in older adults, such 

as equivalent gradual adaptation in the first study, equivalent retention rate in the second study, 

equivalent influence of salience in the third study. However, the high-level processing was 

impaired in older adults, such as impaired faster adaptation in the first study, reduced learning 

rate in the second study, reduced reward effects on saccade latency in the third study. The 

impairments could be result from impairments in the brain area the high-level processing 

involved in or from strategy changes.  
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Chapter 1: General introduction 

According to the census data from Germany government, there were 17.5 million people who 

were older than 65 years old in Germany in 2016, which was more than 21% of the whole 

population1. Generally most older adults have some kinds of impairments in cognition and 

movements and more than 15% of them suffered from Alzheimer’s disease who do not even 

remember their grandchildren’s names (Hebert et al., 2013). As they get older, they will suffer 

from more and more illness. Elderly patients (older than 65 years) in 2011 accounted for only 11% 

of the US population yet they accounted for 34% of health care expenditure (Marik, 2015; Moses 

et al., 2013). Their medical treatments brought a huge burden for themselves, their family and the 

society. To make things worse, there will be more and more older adults which will be 28% of 

the whole population of EU27 countries in 2060 (Harper, 2014). All these facts make it 

imperative to acquire a comprehensive understanding of aging processing and to find ways to 

optimize their performance and life.    

Psychology of aging has been investigated for several decades and most of these studies focus on 

aging effects on cognition. General declines have been well established in behavioral cognitive 

tasks (Cabeza, Nyberg & Park, 2016; Nyberg & Bäckman, 2004; Hultsch et al., 1998; Park et al., 

2002; Salthouse, 2010b). Older adults have been found to be bad at various tasks. However, as 

the neuroimaging techniques advanced, such as the emerging of Positron emission tomography 

(PET), Magnetic Resonance Imaging (MRI), functional Magnetic Resonance Imaging (fMRI) 

and Diffusion tensor imaging (DTI), they became widely available and were widely applied in 

psychology and aging. Several distinct brain activity patterns have been found in older adults’ 

brain and their associations with better performance indicate their functional role as 

compensation rather than impairments (Park & Reuter-Lorenz, 2009). However, whether these 

compensations are just passive responses to aging declines or active adaptations to altered 

environments is unknown (Sugiura, 2016). Potential answers could come from investigations on 

sensorimotor control because of its natural connections with external environments and strong 

functional connections with cognition.     

Although we look, point, reach and walk in everyday life and although older adults show 

impairments in movements, aging research on sensorimotor control is rather neglected. Although 

initially perception and action were supposed to involve in distinct systems (Goodale & Milner, 
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1992), more and more studies found the strong interactions between them (O'Regan & Noë, 

2001). These interactions are even much stronger in older adults (Lindenberger & Baltes, 1994). 

Sensorimotor control system has been well computed by different models and distinct 

subcomponents in the system are identified (Hopp & Fuchs, 2004; Krakauer & Mazzoni, 2011; 

Pélisson et al., 2010; Smith, Ghazizadeh & Shadmehr, 2006; Wolpert & Flanagan, 2016). 

Comparing to cognitive tasks, sensorimotor tasks are more nature. These characteristics make 

sensorimotor tasks especially suitable to investigate aging effects on distinct processing. The 

three studies of this thesis would use different visuomotor tasks to investigate the differential 

aging processing and reward and punishment effects on these processing.  

In the next sections of this chapter, I would introduce what has been found about aging effects on 

behavioral cognitive tasks and what theories have been proposed to explain them, how aging 

research with sensorimotor tasks could help reconcile discrepancies in literature, what knowledge 

has been acquired about visuomotor control and aging effects on it, and finally the outline of the 

studies included in this thesis. 

General but differential aging declines in behavioral cognitive tasks  

 It is well-established that old adults are worse at various laboratory cognitive tasks than young 

adults: they have worse capacities of attention, working memory, problem solving, reasoning so 

on and so forth (Cabeza, Nyberg & Park, 2016; Nyberg & Bäckman, 2004; Hultsch et al., 1998; 

Park et al., 2002; Salthouse, 2010b). For example, Park and colleagues (2002) found that as 

people age, except world knowledge, many aspects of information processing become less 

efficient, such as speed of processing, working memory capacity, and long-term memory 

(illustrated in Fig. 1).  
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Figure 1. Behavioral performance in various cognitive tasks changes with age. Speed of 
processing, working memory capacity and long-term memory decreases with age while world 
knowledge is resistant to aging. From Park & Reuter-Lorenz (2009). 

However, the extent to which their performance is impaired varies from tasks to tasks so that 

there are some kinds of tasks in which no aging impairments are found, such as the world 

knowledge tasks (red and orange lines in Fig. 1). To account for these differential age-related 

declines in different behavioral cognitive tasks, different theories were proposed. It ranges from 

resource hypothesis (Craik & Byrd, 1982), inhibition hypothesis (Hasher & Zacks, 1988), 

processing speed hypothesis (Salthouse, 1996) to not-defined common source hypothesis (Baltes, 

Staudinger & Lindenberger, 1999). These different hypotheses are proposed based on the 

understanding of the general cognition. They all agreed on that there were core functions and 

processing underlying cognition and that this core function or processing was impaired in older 

adults which lead aging declines in various cognitive tasks. In a word, they posited the general 

declines of older adults and this generality is based on a common cause. Corroborating with this 

general decline hypothesis, some damages were found in the structure of older adults’ brain in 

PET and fMRI studies (Cabeza, Nyberg & Park, 2016; Raz, et al., 2005; Raz, et al., 2010). 

Common cause hypotheses and their supportive brain structure evidence  
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At the beginning, differential impairments were found in different memory tasks (Craik, 1977). 

For example, little aging effects were found in the digit span task, in which subject needed to 

report a list of digit numbers, whereas a large age difference was found on the free recall of a list 

of words (Craik, 1977). At that moment, the dominant idea about memory was that different 

types of memory have discrete mechanisms and structures (Tulving, 1984). Based on this 

understanding, differential aging effects on various tasks were interpreted as impairments in 

distinct brain structures or systems. Therefore, Tulving (1984) thought the semantic memory 

holds up through the life span whereas episodic memory declines.  

However, this interpretation could not explain the different performance of older adults in the 

same type memory but with different materials. For example, older adults’ memory of factual 

knowledge was remembered as well as young adults whereas they remembered recent events 

much worse (Perlmutter, 1978).    

Resource hypothesis 

 Instead of thinking memory from the system and structure view, Craik (1983; 1984; 1986; Craik 

& Byrd, 1982) thought it from resource (functions and processes) view, in which he thought 

“memory” should not be thought of as some attribute or characteristic of the organism along; 

rather, the activity of remembering, like the parallel activity of perceiving, must be understood as 

the interaction of different processes, such as external factors as cues (environmental supports 

from cues and context), and task demands with internal mental operations (self-initiated activity). 

As illustrated in Fig.2, different memory tasks involve different extends of environmental 

supports and self-initiated activity. Older adults only had problems with self-initiated activity so 

that the aging impairment in one task depends only on how much it involves the self-initiated 

activity.  
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Figure 2. Memory tasks showing differential effects of aging. From Craik (1986) 

Inhibition hypothesis 

Similar to the resource hypothesis, Hasher and Zacks (1979; 1984) postulated that multiple 

processing operations are assumed to occur in almost every task and they need different resources 

to reach maximal performance and it is the availability of these resources which constrained 

cognitive functioning (general capacity hypothesis). They (1988) further specified the main 

responsibility of inhibition processing for ageing effects on discourse comprehension.  

As an especially important capacity in discourse comprehension, working memory was 

conceived of as a limited capacity mechanism which shares its resources between a storage 

function and a set of processing functions. At that moment, the processing component of working 

memory was found to have higher priority than the storage component (Spilich, 1983). These two 

components were suggested to reduce differentially with aging because older adults showed 

larger impairments when the demands on storage were high (Cohen & Faulkner, 1984; Light & 

Anderson, 1988; Wright, 1981). Inhibitory mechanisms were highly related to the contents of 

working memory because it served to limit entrance into working memory (Neumann, 1987).   

In their discourse comprehension studies, old adults were found to have no problems with 

comprehension and inference of the discourse when it was explicitly described and was self-

spaced presented whereas they did have problems if it was described in an unexpected way or it 

was presented in limited time. In the latter occasion, older adults had more problems with 

formatting their inference and had less changes of their inference once it was formatted.  
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Hasher and Zacks (1988) proposed the inhibition theory to account for these differential aging 

effects.  In the inhibition theory (as illustrated in Fig. 3), they proposed that old adults have 

problems with inhibiting nongoal information and tend to have more self-generated on-line 

personal values and experience so that they use more working memory resources to maintain 

activation of nongoal path ideas which leads to their problems in retrieving goal path ideas and / 

or in comprehension style how they use to understand and inference goal path ideas.  

 

 

Figure 3. The theoretical framework of inhibition hypothesis. Adapted from Hasher & Zacks 
(1988). 

Processing speed hypothesis 

Salthouse (1993; 1994) found strong correlation between age and various measurements of speed 

(the median correlation was .45, as illustrated in Fig. 4) suggesting the broad phenomenon of age-

related slowing in that age-related slowing is not simply attributed to specific and independent 

processing deficits.  

A serial of studies of Salthouse found largely shared age-related variance across various measures 

of speed and various measures of memory performance (the average is more than 80%, as 

illustrated in Fig. 5). And the correlation between age and memory performance were eliminated 

after controlling the speed, suggesting the important mediator function of processing speed in the 

relations between age and measures of cognitive functioning.  
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Figure 4. Strong correlations were found among age and various measurements of speed. From 
Salthouse (1996) 

Given these findings, Salthouse (1996) proposed the processing speed hypothesis, in which it was 

conceived that the main cause of age-related impairments in cognition is due to reduced speed of 

many processing operations of old adults.   
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Figure 5. Correlations among age, measurements of speed and various memory performances 
from results of several studies. Age, speed and memory performances were highly correlated with 
each other and were highly correlated to age whereas the correlations were largely reduced after 
control reaction time speed and perceptual speed. Dashes indicate that measures were not 
available. From Salthouse (1996).   
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In this theory, Salthouse postulated that there is a general processing constrain so that processing 

speed is highly responsible for performance of cognitive tasks because 1) if time to perform is 

limited, slower processing would lead to bad performance in that the operations are not fully 

executed in simple task or that later processing operations are not fully executed in complex tasks 

due to large proportion of time occupied by earlier processing (limited time mechanism) and 2) 

even when time to perform is not limited, slower processing would still lead to bad performance 

in that different information or processing fail to be integrated because the quality and /or 

quantity of products of earlier processing is lost due to decay or displacement when the later 

processing is completed and /or synchronization is disrupted (Simultaneity mechanism). The 

reduced processing speed is the major factor responsible for declined cognition in older adults.  

Common source hypothesis 

Consistent with the processing-speed theory, Lindenberger, Mayr and Kliegl (1993) confirmed 

the powerful predictor role of speed in individual difference in intelligence in old and very old 

adults (beyond 70 years old). With the structural equation model, they found that the model with 

speed mediating age and cognition is more prominent than the model without speed between 

them. Lindenberger and Baltes (1994) found that visual and auditory acuity mediates age and 

cognition as well as speed. What is more, these sensory functioning accounts for speed better 

than speed account for sensory functioning, which suggests the more powerful role of sensory 

functioning. They speculated that these cross-domain relations could be result from a common 

micro-level factor, such as sensory deprivation or physiological changes with aging. The sensory 

deprivation, i.e., extensive sensory deprivation may reduce opportunities for intellectually 

stimulating exchanges with the environment and thus reduce the general level of cognitive 

abilities. Or maybe they just both reflect the physiological architecture of the brain. The sensory 

deprivation speculation was ruled out by the following evidence that the powerful association 

between sensory functioning and intelligence also exits in young adults who have little sensory 

deprivation (Baltes & Lindenberger, 1997) and that cognitive performance of middle-aged adults 

is not impaired by artificially reducing their visual and auditory acuity to the levels of old adults 

(Lindenberger, Scherer & Baltes, 2001).    
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To summarize, various kinds of cognitive performance are impaired in different degrees in older 

adults which brought the ideas to think of cognitive performance as results of compounds of 

different functions or processing. The differential aging effects on different tasks were supposed 

to be caused by different extents of involvement of some core functions and / or processing, such 

as self-initiated processing, inhibition processing, speed of processing or common micro-level 

factors, such as physiological changes with aging. All of the theories point to general factor 

responsible for aging declines.     

Supports from brain structure evidence 

Corroborating with the aforementioned hypotheses, neuroimaging studies also found atrophies 

and shrinkages of brain structure of old adults (Cabeza, Nyberg & Park, 2016; Raz, et al., 2005; 

Raz, et al., 2010). As illustrated in Fig.6, Caudate Nucleus, lateral Prefrontal Cortex, Cerebellum 

and Hippocampus diminishes with age at different rates.  

 

 

Figure 6. The volume of Caudate Nucleus, lateral Prefrontal Cortex, Cerebellum and 
Hippocampus diminishes with age. From Raz et al., (2005) 
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The impaired structures are highly involved in the aforementioned mainly impaired processing. 

For example, the deficits of white matter integrity found in old adults may reduce conduction 

speed and slow down processing speed in older adults (Head et al., 2004; Raz, 2000). Both cross-

sectional and longitudinal investigations found that there are substantial shrinkages in old adults’ 

brain cortex, especially shrinkage in working memory related cortex caudate, hippocampus and 

prefrontal cortex (Raz et al., 2005; West, 1996), executive function and inhibition related 

prefrontal cortex (Haug & Eggers, 1991; Raz et al., 2005; West, 1996).  What is more, the 

shrinkage in older adults in hippocampus (Rosen et al., 2003) and prefrontal cortex (Salat et al., 

2002) could predict memory performance.    

Function neuroimaging results: compensative and adaptive aging brain  

Contrast to the general passive declines in laboratory tasks in older adults, they can still perform 

daily life very well. Compared to the damages to their brain structure, older adults’ performance 

is generally relatively good. Specifically most healthy aging people do some tasks as good as 

younger adults, such as world knowledge memory (Salthouse, 2010b), self-relevant memory 

(Glisky & Marquine, 2009; Gutchess et al., 2007) and several social cognitive functions 

(Keightley et al., 2006; Ruby et al., 2009). Empirically there are still many older adults who have 

substantial cognitive reserve such as Profs. Jan Koenderink2 and Andrea J. van Doorn3, who are 

in their seventies but visit several labs every year and published about 10 first-author peer-

reviewed papers every year on average in recent 3 years.  

Corroborating with these impressions, some distinct patterns have been found in older adults’ 

brain activity (Eyler et al., 2011; Sugiura, 2016; Spreng, Wojtowicz & Grady, 2010). Some of 

them are associated with better performance suggesting their functional role as compensations 

rather than impairments. When it comes to the nature of these compensations, they could be 

interpreted as passive changes to countact the impairments in older adults’ brain structure (Park 

& Reuter-Lorenz, 2009) or active adaptive responses to their more narrow and central 

environments (Sugiura, 2016).  

Posterior-Anterior Shift 

Comparing to young adults, older adults’ brain during various tasks seems to involve much 

stronger activity in frontal cortex whereas weaker activity in sensory processing cortex (Eyler et 
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al., 2011; Davis et al., 2008; Dennis & Cabeza, 2008; Grady et al., 1994; Cabeza et al., 2004). 

For example, Grady and colleagues (1994) used PET to measure subjects’ regional cerebral blood 

flow (rCBF)  activities during location matching tasks and found that comparing to young adults, 

older adults show weaker activations in prestriate cortex whereas surprising stronger activations 

in prefrontal cortex, occipitotemporal cortex, inferior and medial parietal cortex. These weaker 

activations in sensory processing cortex and stronger activations in prefrontal cortex in older 

adults were replicated in studies with different tasks and materials (Cabeza, 2001; Cabeza et al., 

1997; Reuter-Lorenz et al., 2000). Similarly Cabeza and colleagues (2004) used fMRI to measure 

subjects’ Blood-oxygen-level dependent (BOLD) activities during working memory, visual 

attention and episodic retrieval tasks and found that older adults show weaker activations in 

occipital cortex and hippocampus in all the tasks whereas they show stronger activities in 

prefrontal and parietal cortex.  

The more widespread prefrontal activations in older adults was speculated to be compensated for 

the impaired structure in PFC (Persson et al., 2006) and / or for their reduced processing 

efficiency of occipital cortex (Daselaar et al., 2006; Davis et al., 2008; Reuter-Lorenz & Lusitig, 

2005) because of the found correlation between the enhanced activations in PCF and the impaired 

structure or the reduced activations in posterior brain area.  

Dedifferentional PFC activity 

Older adults are also found to show more general bilateral prefrontal activity compared to left or 

right lateralized prefrontal activity in young adults (Cabeza, 2002; Cabeza & Dennis, 2012). For 

example, Grady and colleagues (1994) found that young adults showed activations in right 

prefrontal cortex during facing matching task whereas older adults in both prefrontal cortex. This 

right PFC in younger and both sides of PFC in older adults pattern was replicated in different 

tasks, such as episodic memory retrieval task (Cabeza et al., 1997), word-pair cued-recall task 

(Bäckman et al., 1997), and word recognition task (Madden et al., 1999). Furthermore this pattern 

was not limited to the aforementioned verbal materials, but was extended to nonverbal materials 

(Grady et al., 2002). In addition to the bilateral PFC activities in older adults when it is right 

lateralized in young adults, older adults also show bilateral PFC activities when it is left 

lateralized in young adults. For example, the left PFC of younger adults is always activated 

stronger than the right PFC during episodic memory encoding and semantic memory retrieval 
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(Cabeza et al., 1997; Tulving et al., 1994). However, older adults still show bilateral PFC activity 

through reducing left PFC activity during these tasks (Stebbins et al., 2002).  

Some studies found the associations between these bilateral changes and better performance 

(Bergerbest et al., 2009; Cabeza, 2002). For example, Reuter-Lorenz and colleagues (2000) found 

that older adults with a more bilateral activation pattern performed more quickly in a verbal 

working memory task. Cabeza et al. (2002) found bilateral PFC recruitment in high- but not in 

low-performing older adults. Performance of older adults in recognition memory task was 

impaired by TMS to either PFC hemisphere whereas that of young adults was impaired by TMS 

to only one side (Rossi et al, 2005). 

The benefits of this compensation might be through the recruitments of contralateral regions, 

which were also found in patients with brain injury (Butefisch et al. 2005; Saur, Ronneberger, et 

al. 2010; Tyler et al. 2011).  

Scaffolding hypothesis 

To integrate all these evidences in aging and cognition, Park & Reuter- Lorenz (2009) proposed 

the scaffolding theory of aging and cognition (STAC). In the theory, as illustrated in Fig. 7, on 

one hand, they posited that level of cognitive functioning declines due to age-related neural 

challenges (such as shrinkage, white matter changes, cortical thinning and dopamine depletion, 

poses neural changes) and functional deterioration (dedifferentiation of ventral visual area, 

decreased medial temporal recruitment, increased default activity); on the other hand, these 

declines could be reduced by compensatory scaffolding through more frontal recruitment, 

neurogenesis, distributed processing and bilaterality. In this STAC theory, the brain is assumed to 

be adaptive and it would increase or active the scaffolding once it is fronted by challenges, such 

as novel skill acquisition in young adults, aging so on and so forth. 
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Figure 7. A conceptual model of the scaffolding theory of aging and cognition (STAC). From 
Park & Reuter- Lorenz (2009). 

Adaptation interpretations 

However, the compensation interpretation could not explain everything. For example, for the 

posterior-anterior shift, if the structure of the posterior area is not impaired, such as primary 

visual cortex (Raz et al., 2005), why does its activations become weaker and need to be 

compensated by additional PFC activations. The adaptive interpretation is it is a cognitive 

strategy change from a proactive to a reactive control ((Davis & Cabeza, 2015; Jimura & Braver, 

2010; Martins et al., 2012; Paxton et al., 2008). For example, Jimura and Braver (2010) used a 

task switching task, in which stimuli could be judged from two dimensions (small / large or 

manmade / nature) and which dimension should be judged was indicated by a preceding cue, and 

found that older adults showed less cue-related sustain activities in PFC whereas stronger stimuli-

related transient activities in PFC. Only the transient activity could predict behavioral 

performance.  
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For the compensation of the dedifferentiaonal PFC activity, it is beneficial when one hemisphere 

is impaired. However, if there is no damage, bilateral activity would be less efficient and that is 

why young adults do in unilateral way. Then the problem is why older adults even want to keep 

this bilateral activity with reducing left PFC activity (Stebbins et al., 2002). The adaptive 

interpretation is that this is a general strategy and that it is more efficient for older adults. Firstly, 

this bilateral pattern could be more general because it is not limited to PFC but also extended to 

some other areas (Cabeza, 2002), such as temporal and parietal regions (Grady et al., 2000), 

temporoparietal regions (Grady et al., 2002). And this general way might be more efficient for 

older adults (Davis & Cabeza, 2015). Davis and Cabeza (2015) found that cross-hemispheric 

functional connectivity in young adults increased in domain-general frontal cortex but decreased 

in domain-specific ventral temporal cortex when the task was more difficult. 

The strategy change from a proactive to reactive control and change from specific area to general 

area might be related to older adults’ narrow and more central environments (Sugiura, 2016). For 

example, older adults tend to have less growth-oriented goals (Ebner et al., 2006; Heckhause, 

1997), narrow intimate personal relationships (Carstensen, 1992) and a focused positive self-

concept (Riediger & Freund, 2006; Staudinger et al., 1999). This tendency is considered as an 

adaptive attitude change in response to the altered perception of the social environment, in terms 

of the increased awareness of the limited time left in life (Carstensen et al., 1999).  

Certainly, the compensation hypothesis and the adaptation hypothesis are not exclusive to each 

other and the integration of them could provide a more unified picture of brain and aging. Sugiura 

(2016) mentions that one potential way to reconstruct them is investigations on sensorimotor 

control because the peripheral nerve system of sensorimotor control is like the external 

environment to the brain and there are strong connections between sensorimotor control and 

cognition. 

The main task of sensorimotor system is to integrate information from multiple sensory channels 

about the world, and to use them to plan and execute meaningful motor responses. Sensorimotor 

system is highly interacted with cognitive system. For example, sensory is the antecedent of 

perception and cognition and it controls which kind of information is put into the brain. For 

example, fixation is the sampling of information (Toscani, Valsecchi & Gegenfurtner, 2013a; 

2013b). Moving fixation distributes attention sources before moving (Chen, Valsecchi & 
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Gegenfurtner, 2017). Sole vision and hearing acuity of older adults could account for 97% 

variance of age-related performance in cognition and intelligence (Baltes & Lindenberger, 1997). 

Older adults who regularly participate in physical activity have faster psychomotor speed on 

simple and choice reaction-time tests comparing to their sedentary peers (Pierson & Montoye, 

1958). Several studies found that cognitive performance could be improved through physical 

excise (Hillman, Erikson & Kramer, 2008), such as Tao chi (Wayne et al., 2014).  

However, sensorimotor control has rather been ignored and less explored in older adults. 

General introduction to visuomotor Control 

The basic visuomotor control system consists of extrinsic coordinate system and intrinsic 

coordinate system. For example, in real life, if we want to move your eyes to an object, firstly the 

visual location of the object should be transformed to our-eyes-referenced position, such as how 

much degree (extent) it is far from our eyes and in which orientation (direction) of our eyes it is. 

The system serving to these functions is called extrinsic coordinate system. After receiving this 

visuomotor transformation, the motor command specifies our eye muscle forces to make the 

action. In this processing, the command system should consider the current biomechanical 

properties of our eye muscles. For example, if we have watched a movie for 2 hours and our eyes 

are tied (muscle fatigue), the command at this moment should be different from the command 

when we just wake up in the morning. The system serving to these functions is called intrinsic 

coordinate system. Similarly if we want to move our hand to an object, firstly the visual location 

of the object should be transformed to body- and hand-referenced position. After receiving this 

transformation the motor command specifies muscle forces and joint motions after considering 

current biomechanical properties of the moving arm, such as musculoskeletal dynamics and other 

forces acting on the limb. 

Visuomotor control system is extensively explored through investigating saccadic eye 

movements, pointing movements and reaching movements with many different tasks, such as 

visuomotor adaptation, visuomotor sequence learning, visually-guided motor decision making so 

on and so forth. Saccadic eye movements and reaching movements have their own special 

characteristics. For example, comparing to pointing and reaching movements, saccadic eye 

movements are extremely faster (saccade duration is about 40 ms) and more precise. Therefore 

these different movements are investigated from different respects with different tasks although 
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they point to similar scientific questions. Investigations from these different movements provide 

complementary knowledge about the visuomotor control. This thesis mainly focuses on saccadic 

eye movement and reaching movement. 

Visuomotor plasticity is an important ability and is an important form to predict the future state 

both of the environment and of ourselves and then to compensate for noise, delays and errors. 

The most important questions in visuomotor adaptation studies are how subjects learn the internal 

models and how they remember these internal models. To answer these questions, most 

investigations focused on 1) what factors could induce adaptation; 2) whether adaptation to one 

factor could be transferred to another or influence another factor; 3) computational models to 

account for behavioral results; 4) neural mechanisms underlying the adaptation. In the next two 

sections, I would introduce what has been found on these aspects in saccade adaptation and 

reaching adaptation.  

Saccade adaptation 

 Saccadic eye movement is the rapid shift of gaze direction. It is so brief that information from 

online visual or proprioceptive feedback cannot be used to correct its trajectory (Gaveau et al., 

2003; Guthrie et al., 1983; Zee et al., 1976). Therefore the initiation of saccades depends 

critically on a continuous recalibration of the oculomotor system which means there must be a 

system to guarantee it. This control system is called forward model. 

The plasticity capacity of saccade system is widely found in patients with eye lesions and has 

been well explored with laboratory double-step paradigm. The mechanisms of saccade adaptation 

have been extensively investigated through the factors driving adaptation, the transfer between 

saccade adaptations to different factors and neural studies with monkeys and patients. Evidence 

from different lines suggests distinct mechanisms of saccade adaptation.    

Forward model to guarantee saccade accuracy 

The saccade system is not perfect. It has inevitable internal noise and variation cause by 

mechanical properties of the oculomotor plant, such as muscle fatigue so on and so forth. But the 

saccade is highly correct. The saccade gain (the ration of saccade amplitude to target eccentricity) 

is stick to 0.9 to 0.95 (Becker, 1989). How the movement is executed with so high accuracy 

despite of the imperfect of its system?  There must be some error-correcting mechanisms to make 
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it. Robinson (1975) proposed the internal model in which the motor command is speculated to be 

copied to the motor controller (so-called efference copy) so that the output of command can be 

predicted without external sensory feedback and this prediction is speculated to be calculated in 

cerebellum. The hypothesis was confirmed by Xu-Wilson and colleagues (2009), in whose study 

they found that the decreased acceleration of saccade velocity caused by repetition of saccade is 

compensated with later decreased deceleration in healthy subjects so that they still keep the 

accuracy of saccade whereas patients with lesion in cerebellum do not show this compensation 

resulting in dysmetric saccade.  

 

Figure 8. Forward model in motor control system. From Xu-Wilson et al., (2009). 

Categories of saccade adaptation 

Natural adaptation caused by eye lesions 

The saccade accuracy is highly maintained despite of weakening of the extraocular muscles. For 

example, Kommerell and colleagues (1976) found that a patient with weakened lateral rectus 

muscle of his dominant eye, which results in problem with rotating the eye laterally, show large  

hypermetric saccade of his normal eye naturally. However, saccade of his normal eye became 

normetric after his dominant eye was patched for 3 days. Similar saccade adaptation was 

confirmed by Abel et al. (1978) in another patient and confirmed in monkeys with resection of 

the tendons of the horizontal recti of one eye (Optican & Robinson, 1980; Snow et al., 1985).   

Laboratory adaptation induced by intransaccadic step 

Saccade adaptation has been extensively investigated in laboratory with a double-step paradigm 

firstly reported by McLaughlin (1967). In the paradigm, as illustrated in Fig. 9, subject 

experienced an error between saccade landing position and the target due of the imperceptible 
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displacement of the target during saccade execution. At the beginning of the adaptation, subject 

made a second automatically corrective saccade because of the post-saccadic retina error. This 

correction makes the saccade system recalibration the visual position and motor position to 

reduce the experienced error which is reflected by the amplitude change of the primary saccade. 

Therefore, amplitude of primary saccade changes to the displaced target position gradually. After 

the adaptation, amplitude of primary saccade changes back to the initial target position gradually, 

which is always called recovery.  

 

Figure 9. Courses of representative saccadic amplitude adaptations for monkeys. Top:Adaptation 
and recovery of saccades made to 10◦ horizontal target steps with a 30% backward adaptation 
step. Saccadic amplitude is plotted as a function of the number of the trial in each direction. 
Magenta points, data from preadaptation trials. Red points, data from trials in the adapted 
direction. Green points, data from interleaved trials in the non-adapted direction. Adaptation and 
recovery data are fit by exponential function blue. Arrow indicates initial rapid recovery phase. 
Bottom: Representative examples of target (gray dashed lines) and eye (black lines) position for 
different trials during preadaptation and adaptation. From Hopp & Fuchs, 2004. 

During the first several trials of the beginning of the adaptation, there is a relative fast change of 
the primary saccade amplitude (so-called fast adaptation) and followed by gradual slower 
adaptation. The adaptation and recovery could be well fitted with an exponential function (as the 
blue line in Fig. 9). Correspondingly, there is always a fast recovery at the beginning of the post-
adaptation phase (black arrow in Fig. 9) and followed by a gradual slower recovery. 
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Mechanisms of Saccade adaptation 

Considerable studies have been done to investigate the mechanisms of saccade adaptation. 

Distinct mechanisms underlying the adaptation have been confirmed from different lines of 

studies, such as what drives the laboratory adaptation, how adaptation to different vectors 

influence each other, differences between natural and laboratory saccade adaptation so on and so 

forth.  

Drivers: error signal, reinforcement, perceptual task 

What drives the adaptation can tell something about the mechanisms of adaptation. Apparently 

the adaptation in double-step paradigm is driven by the mismatch between the primary saccade 

and displaced target (error-driven). However, what is the nature of the error? The visual 

hypothesis posits that given the forward model this driver error could be prediction error, i.e., the 

visual estimate of the spatial separation between target position and saccade endpoint. But the 

motor hypothesis thinks that this adaptation is due to the corrective saccade so that the error is 

retinal error, i.e., the motor commands of the corrective saccades generated toward the target. The 

prediction error or visual hypothesis was confirmed by findings that the adaptation happened 

even with the post-saccadic error minimized or eliminated (Bonnetblanc & Baraduc, 2007; 

Gegenfurtner et al., 2008; Noto & Robinson, 2001; Wallman & Fuchs, 1998;). For example, 

Gegenfurtner and colleagues (2000) found that amplitude of saccade to a stationary target filled 

with a drifting sine-wave grating which changed its motion direction during the saccade and thus 

creates a visual illusion of target displacement could also be changed by this illusion, suggesting 

that saccade adaptation can also be elicited without any physical change of target position, i.e., no 

retinal error. Collins and Wallman (2012) even elicited backward saccade adaptation (amplitude 

decrease) with selectively giving feedback of the landing position of saccades with larger-than-

median amplitude and forward adaptation (amplitude increase) with giving feedback of the 

landing position of saccades with smaller-than-median amplitude. In this case, there is no retinal 

error at all and this adaptation is just elicited by the reinforcement of some saccades. Schütz, 

Kerzel and Souto (2014) further elicited saccade adaptation with a perceptual task. As illustrated 

in Fig. 10, subjects were asked to make a saccade to the peripheral array with 7 characters and 

then to report the content of the black character. During the baseline trials (Fig. 10A), the target 

character letter was in the middle (4th position) of the array whereas in the far-away position (6th 
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position, forward adaptation, Fig. 10B) or the closer position (2nd position, backward adaptation, 

Fig. 10C) during the adaptation trials. They found clear forward adaptation and backward 

adaptation. The adaptation of vertical saccade was also determined when the characters were 

vertically aligned whereas no adaptation was found when subjects were only asked to make the 

saccade without reporting the character. Therefore, the adaptation is mainly induced by the 

perceptual task but not the displacement of the black character. Meanwhile, they also compared 

the adaptation induced by this perceptual task with that induced by ISS and found that the fast 

adaptation is much larger in the perceptual task whereas the slower adaptation is equivalent.    

       

 

Figure 10. Perceptual tasks paradigm. Subjects were asked to make a saccade to the peripheral 
array with 7 characters and then to report the content of the black character. (A) During baseline 
trials, the black target was placed in the middle (4th position) of the array; (B) During forward 
adaptation trials, the target was placed in the far-away position (6th position); (C) During 
backward adaptation trials, the target was placed in the closer position (2th position). From 
Schütz, Kerzel & Souto (2014). 
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Taken together, saccade adaptation could be induced by different factors, from prediction error to 

reinforcement to perceptual task. The differential differences in faster and slower adaptation 

between different paradigms suggest distinct mechanisms of saccade adaptation.  

Adaptation is specific to saccade vector 

The distinct mechanisms hypothesis is also implicated by studies on adaptation transfer. On one 

hand, saccade adaptation is specific to saccade vector (saccade direction and amplitude) and the 

adaptation of one saccade vector could be not fully transferred to saccade with different 

amplitude or direction (Alahyan & Pélisson, 2004; Frens & van Opstal, 1997; Deubel, 1987; 

1989; Noto, Watanabe & Fuchs, 1999; Straube et al., 1997; Alahyan & Pélisson, 2004) which 

suggests the low-level mechanism of saccade adaptation.  

On the other hand, the adaptation can be elicited by high-level processing, such as 

aforementioned reinforcement and perceptual task which suggests the high-level mechanism of 

saccade adaptation (Collins & Wallman, 2012; Wong & Shelhamer, 2012; Schütz, Kerzel & 

Souto, 2014; Schütz & Souto, 2015).   

Timecourse of adaptation: multiple states  

The timecourse of saccade adaptation could tell something about its mechanisms. The different 

timecourse of natural saccade adaptation and laboratory saccade adaptation suggest there might 

be distinct mechanisms: patients with damage of the eye muscles or their innervations need 

several days to compensate for the abnormal saccades caused by this lesion (Abel et al., 1978; 

Kommerell et al., 1976; Optican & Robinson, 1980; Snow et al., 1985;) whereas it just takes tens 

of minuses for human or hours for monkeys to adapt to the laboratory double-step manipulates 

(McLaughlin, 1967; Miller et al., 1981; Straube et al., 1997; Scudder et al., 1998). Although the 

slower adaptation in patients could be explained by specificity of adaptation to saccade vector so 

that they need more time to adapt to saccades with different directions and amplitude (Miller et 

al., 1981; Scudder et al., 1998; Robinson et al., 2002), different components of adaptation were 

still be proposed because 1) of the incomplete adaptation, i.e., the magnitude of adaptation is 

smaller than the step size (Miller et al., 1981; Robinson et al., 2002); 2) the rapid adaptation at 

the first several trials of adaptation but slower adaptation at the late adaptation phase (Scudder et 

al., 1998).    
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This distinct mechanisms hypothesis is further suggested by facilitations for relearning (Kojima, 

Iwamoto & Yoshida, 2004). In their study, Kojima and colleagues found that re-adapting to the 

previous adaptation after the recovery is faster than the initial adaptation (this facilitation is called 

savings), suggesting the facilitation from history of adaptation. Although re-adaptation is faster at 

the beginning, it achieved to the similar level as the initial adaptation which might be due to the 

slower adaptation at the late phase. These differential effects imply distinct mechanisms 

underpinned the adaptation.  

Neural mechanisms 

All the studies from the factors inducing adaptation, transfer of adaptation and the timecourse of 

adaptation suggest distinct mechanisms of adaptation. This is also supported by neural studies 

which found different areas responsible for the adaptation.  

Firstly superior colliculus has been found to involve in the adaptation. As mentioned above, 

saccade adaptation is specific to saccade vector and adaptation of specific direction and 

amplitude is partly or not transferred to saccade with other directions and amplitudes. This 

adaptation field (the transfer relation of the adapted saccade vector and other vectors) is very 

similar with SC movement field, i.e., the relation between SC neuron response to preferred 

saccade vector and to other vectors (Deubel, 1987, 1989; Noto et al., 1999). This similarity 

suggests that the adaptation occurs at or upstream of the SC or at collicular descending pathways 

where the saccade is represented as a vector and thus are supposed to involve low-level 

processing mechanisms.  

Secondly cerebellum has also been confirmed to involve the adaptation and different parts of 

cerebellum are involved in adaptation of reactive and voluntary saccades separately. Human 

patients with cerebellar lesions show saccadic dysmetria which could not be resolved with time 

suggesting the role of cerebellum in establishing normal saccades (Zee et al., 1976; Straube et al., 

1995). Desmeurget and colleagues (1998) found the correlation between the magnitude of 

adaptation induced by double-step paradigm and PET signal in subjects’ medio-posterior 

cerebellum. Specifically patient with lesion in medio-posterior cerebellum only has problem with 

adaptation of reactive saccades whereas patient with lesion in latero-anterior cerebellum only has 

problem with adaptation of voluntary saccades (Alahyane et al., 2008). Similar results were 
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found in monkeys with lesions in cerebellum (Goldberg et al., 1993; Optican & Robinson, 1980; 

Robinson et al., 2002).  

Finally cortical areas, such as thalamus and basal ganglia might also involve in the adaptation 

(Alahyane et al., 2007; Gaymard et al., 2001).  

Aging effects on saccade adaptation 

Some studies have explored aging effects on saccade control. It seems different processing is 

impacted by aging differentially. For details please seen “aging effects on saccade control” in the 

saccadic decision making section. 

There has been no study investigating how ageing influence saccade adaptation. Therefore, to 

further explore how aging impacts different parts of saccade system, the first study of this thesis 

investigated the low-level and high-level mechanism of saccade adaptation in younger and older 

adults with double-step paradigm and perceptual tasks paradigm respectively.   

Reaching adaptation 

Reaching control system differs from saccade control system in target representation and 

trajectory formation. When representing the targeting object, extra-retinal information and head-

trunk information should be added into the motor command in addition to the retina information. 

After this visuomotor transformation (extrinsic coordinate system), motor commands specify 

muscle forces and joint motions to move the hand to the desired location (intrinsic coordinate 

system). This transformation needs to take account of the biomechanical properties of the moving 

arm, such as musculoskeletal dynamics and other forces acting on the limb.  

Reaching movements are with longer duration and less precision so that the two coordinate 

systems could be more easily and separately manipulated. The mechanisms of reaching 

adaptation have also been investigated through comparing adaptations of these two systems. 

Similar as investigating saccade adaptation with double-step paradigm, the learning of extrinsic 

coordinate system of reaching system has also been investigated by visuomotor rotation paradigm; 

instead of using lesions to study intrinsic coordinate system of saccade system, the intrinsic 

coordinate system of reaching system has been investigated by lateral force fields paradigm.  
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Comparing to the imperceptible manipulations or adaptations in saccade adaptation tasks, 

manipulations are more noticeable to subjects in reaching adaptation so that explicit processing is 

more profound in reaching adaptation. Mechanisms of reaching adaptation have also been 

investigated through the interactions between implicit processing and explicit processing.  

Given these difference between saccade system and reaching system, reinforcement learning has 

been relatively more investigated in reaching adaptation. 

Categories of reaching adaptation 

Most of reaching adaptation studies use error-based paradigm, such as prisms, visuomotor 

rotations, or lateral force fields. In these paradigms, an error between the movement execution 

and the targeting movement was made through the lateral displacement by prisms, rotation of 

movement direction, or lateral forces applied by a robot arm. These paradigms could be 

categorized into two types: learning of kinematics (visuomotor-rotation-based adaptation induced 

by prisms or screen-cursor rotation) and learning of dynamics (lateral-force-based adaptation 

induced by lateral force imposed to the arm). 

The left of Fig.11 is a typical adaptation induced by cursor-screen rotation (learning of 

kinematics). In the experiment, subjects are asked to reach to the target (vertical position in this 

example) but cannot see their hand and movement at all so that there would be a cursor indicating 

the position of their hand. During the adaptation, the cursor is always rotated in certain degree to 

the exact movement (45° counter-clock wised in Fig.11 left). The error between reaching 

direction of subjects and target direction is very similar with the results illustrated in Fig. 12A, in 

which the rotation is 30°. At the beginning of the adaptation, subjects have no idea about the 

rotation so that the error is close to the rotation 45°. Then the error reduces gradually.  

The right of Fig.11 is a typical adaptation induced by lateral force field (learning of dynamics). 

During the adaptation, a lateral force induced by extra mass placed laterally to the forearm on an 

outrigger attached to an airsled.  The adaptation induced by this lateral force is very similar with 

the results illustrated in Fig. 12C and it is very similar with that induced by screen-cursor 

rotation. 

However, in spite of the similarity between the two learning, they have been found to involve in 

different systems.  
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Figure 11. visuomotor rotation paradigm (left) and force field paradigm (right). From Krakauer, 
Ghilardi &Ghez (1999) 

Characteristics of reaching adaptation: Aftereffect, savings, consolidation 

As similar as what found in saccade adaptation, adaptation of reaching movement is limited to 

adapted vector (Cunningham, 1989; Krakauer et al., 2000) and have large aftereffects (Caithness 

et al., 2004; Wigmore,  Tong & Flanagan, 2002), i.e., subjects continuously made the 

compensation even when the visuomotor rotation or lateral force was removed. When exposed to 

the same visuomotor rotation or lateral force again on subsequent days, contrast to no savings at 

all in saccade adaptation with ISS (Straube et al., 1997), Savings in reaching adaptation is larger 

and longer, and can be as long as a week, if not longer (Krakauer, Ghez & Ghilardi, 2005). This 

savings is supposed to be caused by recall of the off-line consolidation. 

Mechanisms of reaching adaptation 

Mechanisms of reaching adaptation have been explored through investigating the differences and 

interactions between the two coordinal systems with the two categories of adaptation tasks, and 

through investigating the distinct acquisition and retention processing and neural studies with 

PET, fMRI, tDCS, TMS and patients with lesions.  

Drivers: Errors in extrinsic coordinate system and intrinsic coordinate system 
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The reaching kinematics (reaching position and direction) are supposed to be learned from errors 

in extrinsic coordinate system whereas dynamics are supposed to be learned from proprioceptive 

errors in intrinsic coordinate system (Flanders, Tillery & Soechting, 1992; Desmurget et al., 

1998).  

Krakauer, Ghez and Ghilardi (1999) further investigated these two systems through the 

consolidations and interferences of these two types of adaptation. In their study, as illustrated in 

Table 1,  the learning of the two systems were separately investigated by reaching adaptation 

induced by visuomotor rotation (Group 1), and by mass force (Group 3). Consolidation of the 

adaptation was tested by the same second adaptation tested on the successive day. The 

interference from the same system was investigated by testing how adaptation on the second day 

is impacted by another different adaptation with the same type on the first day (Group 2 and 

Group 4). The interactions between the two systems were tested by interfering the consolidation 

of rotation adaptation by doing later-force adaptation on the first day (Group 5) and by doing the 

two adaptations simultaneously (Group 6).   

 

As illustrated in Fig. 12, subjects in all the groups showed clear adaptation on both of the two 

days. However, although Group 1 showed clear consolidation (smaller error at the beginning of 

the next day comparing to the error at the beginning of the first day), the consolidation is not 

complete (Fig.12A, error at the beginning of the next day is larger than the error at the end of the 

first day). Besides, the consolidation is removed by adaptation of an opposite rotation: there is no 

difference (consolidation) between adaptations on the two days in Group 2 (Fig12. B).  
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Figure 12. Learning and consolidation of reaching adaptation on the first day (gray lines) and the 
successive day (black lines) induced by visuomotor rotation (A), by visuomotor rotation with 
opposite adaptation interference during the two days (B), by lateral mass (C), by lateral mass with 
medial mass interference during the two days (D), by visuomotor rotation with lateral mass 
interference during the two days (E), rotation plus lateral mass (F, results for rotation and G, 
results for lateral mass). X axis is the cycle (set of trials) number; y axis is error between reaching 
movement and desired target. Grey lines represent adaptation on the first; black lines represent 
that on the second day; dash line represents the movement of the baseline trials on first day. 
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Subjects in Group 3 showed complete consolidation: adaptation at the beginning of second is 

similar with that at the end of the first day (Fig.12C). This consolidation is also removed by 

adaptation of another adaptation of medial force (Fig.12D). 

No interference of the mass-force was found on adaptation of rotation: adaptation on the second 

in Group 5 is similar with that in Group 1(Fig.12E). Neither difference is found between Group 6 

(Fig.12 F/G) and Group 1(Fig.12A) or Group 3(Fig.12C).  

 These findings suggest that learning of the two systems do not interfere with each other and they 

are constructed and consolidated in parallel. 

However, the lack of interference across two kinds of learning might also result from the fact that 

the context was sufficiently different to put them in distinct working memory system. Then the 

problems came out: When an error occurred in a reaching movement, how the system figures out 

what is the source of the error and how to adjust the movement in the following movement. 

Before answering this question, we should firstly figure out its inverse question how the motor 

command integrates these two stream information to make the movement. It is found that the two 

streams of information are integrated through Bayesian model, i.e., the weight of each stream is 

inversely related to the variance of each system (Körding & Wolpert, 2004; Körding,  Ku & 

Wolpert, 2004; Izawa & Shadmehr, 2008). Similarly how much of the error would be corrected is 

also found to depend on the internal noise of movement system and the quality of visual feedback 

signal. For example, Wei and Kording (2010) found that the error during a reaching adaptation 

with visuomotor rotation is less corrected every trial when the visual feedback of the movement 

trajectory is uncertain through being artificially blurred.  

Consistently the Bayesian causal inference is found to solve the problem how the system figures 

out the source of the experienced error (Berniker & Kording, 2008).  In this source-estimation 

casual inference model, the nervous system constantly updates its parameter estimates and its 

uncertainty about those estimates through an application of Bayesian inference and uses the 

probability to source the error. Wei and Kording (2009) extended this hypothesis that the nervous 

system estimates the relevance of observed error and only adapts to relevant errors. The relevance 

of the error could also be estimated through context (wearing a prism goggle or not), cues, or 

cognitive strategies.  

Implicit processing could not be overridden by explicit strategies 
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Contexture cues could help identify the source of experienced error and help to recall learning of 

specific internal model in the end. These cues might also bring cognitive strategies into 

adaptation and then impact adaptation. For example, in the study of Mazzoni & Krakauer (2006)’, 

they told subjects explicitly about the visuomotor rotation (45° CCW) and asked subjects to 

cancel it by aiming 45° CW the target. At the beginning, subjects successfully used the strategy 

and made an abrupt stepwise cancelling the rotation resulting in near zero error. However, as 

subjects continued to make movements, a CW error increased gradually which was very similar 

with the adaptation when subjects did not know the rotation at all (normal adaptation). These 

results suggest that subjects still adapted their internal models under explicit strategies and that 

the learning of the internal model could not be eliminated by the explicit awareness of the 

rotation and explicit strategies. Therefore, the adaptation of the internal model is also called 

implicit processing because it is non-intentional and automatic. Other processing is called explicit 

processing. 

Christou and colleagues (2006) further found that individual difference in working memory 

would make a contribution to individual difference in xx adaptation but this contribution is 

through the explicit strategy so that its contribution is eliminated once the strategy is restricted by 

the task. 

Multiple states: Acquisition, retention and reward 

The reaching adaptation induced by visuomotor rotation is similar with saccade adaptation 

induced by ISS; the reaching adaptation induced by lateral force is similar with saccade 

adaptation induced by eye lesion. Similar with the rapid and slow two-state in saccade adaptation, 

multiple states are also found in reaching adaptation. For example, Smith, Ghazizadeh and 

Shadmehr (2006) found that a two-rate state-space model can fit the reaching adaptation very 

well. In their model, it is posited that there are two states in the adaptation: The fast state 

responds strongly to error but has poor retention whereas the slow state responds weakly to error 

but retains information well. This two-rate state model does not fit the adaptation data very well 

but also predicts that the saving comes from the fast decay of the fast state, which is the same 

direction of subsequent initial rotation.  
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From the two-rate two-state space model, two distinct processing during the adaptation are 

identified: Acquisition and retention. Acquisition refers to learning of the internal models through 

trial-by-trial error reduction; retention refers to the memory of the learned internal models.  

In addition to explicit knowledge, reward and punishment are also found to impact reaching 

adaptation but the results are rather mixed. Firstly, using implicit procedural learning, Wächter 

and colleagues (2009) found enhanced learning by monetary reward but no punishment effect on 

learning. Abe and colleagues (2011) found improved long-term retention by reward whereas 

limited impairment by punishment. Izawa and Shadmehr (2011) found that performance-based 

reward auditory feedback (a sound of explosion in successful performance) could only induce 

reaching adaptation when the visual feedback of the end moving position is presented but not 

without visual feedback.  Nikooyan and Ahmed (2015) found reward feedback could induce 

reaching adaptation alone and reward plus visual feedback could accelerate reaching adaptation. 

But Gelea and colleagues (2015) found the dissociable effects of monetary reward and 

punishment during reaching adaptation: punishment speeds up acquisition of adaptation but does 

not impact retention whereas reward does not impact acquisition but increases retention. Despite 

these inconsistency, they appear to support the distinct function of reward-based learning and 

implicit learning of internal models.     

Neural mechanisms of reaching adaptation 

Numerous Studies have explored the neural structures underlying reaching adaptation using PET, 

fMRI, transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS) 

and neurological populations. Comparing the brain activity during normal movement and 

reaching adaptation with PET, a network including cerebellum, posterior parietal cortex, primary 

motor cortex (M1), dorsolateral prefrontal cortex, and striatum is engaged specifically in reaching 

adaptation not just to reaching movement (Krakauer et al., 2004; Krebs et al., 1998; Nezafat et al., 

2001; Shadmehr & Holcomb, 1997). The function of cerebellum and PPC in acquisition and M1 

in retention and consolidation has been confirmed by studies with TMS and tDCS. 

As similar as patients with lesion in cerebellum showed problems in saccadic adaptation, they 

also showed problems in pointing adaptation with prism (Weiner, Hallett & Funkenstein, 1983; 

Martin et al. 1996) and in reaching adaptation (Smith & Shadmehr, 2005; Maschke et al., 2004). 

Rabe and colleagues (2009) even found atrophy of the intermediate and lateral zone of the 
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anterior lobe correlated with impairment in adaptation with force field whereas atrophy of the 

intermediate zone of the posterior lobe correlated with adaptation deficits in adaptation with 

visuomotor rotation.  Galea and colleagues (2011) found that when anodal tDCS was applied to 

subjects’ cerebellum while they performance visuomotor rotation reaching adaptation, their 

adaptation much faster whereas the aftereffect of adaptation is not impacted at all. 

Although substantial studies support the role of PPC in visuomotor transformations and its 

function in motor planning, studies from patients with Optic ataxia also suggest its role in 

adjustment in on-line reaching movement. Optic ataxia is a disorder that results from damage to 

the posterior parietal cortex (PPC) leading to deficits in reaching and grasping objects presented 

in the visual field opposite to the damaged hemisphere (Perenin & Vighetto, 1988; Battaglia-

Mayer and Caminiti, 2002; Pisella, Rossetti & Rode, 2017), suggesting the role of PPC in 

reaching adaptation.  For example, Pisella and colleagues (2000) found that normal subjects 

could automatically correct their hand path when the reaching target was displaced whereas the 

patient with optic ataxia cause by bilateral damage to the PPC could not. Similarly with this study, 

Desmurget and colleagues (1999) used similar task and found that the application of single pulses 

of TMS over PPC at the onset of movement disrupts the adjustment of hand paths to displaced 

target but not to stationary targets. The direct evidence of the role of PPC in reaching adaptation 

is Della-Maggiore and colleagues’ study (2004). Their study found that single pulses of TMS 

stimulation over the left PPC 40ms after the onset of movement during lateral-force adaptation 

does not impact the early stages of adaptation but decrease the later stages of adaptation. But it 

has no effect on aftereffect.   

Initially M1 is found to be involved in movement execution (Li et al., 2001), but its specific role 

in movement adaptation is unknown. Accumulating evidence from monkey studies and TMS 

studies suggests its role in consolidation of reaching adaptation (Baraduc et al., 2004; Hadipur-

Niktarash et al., 2007; Li, Padoa-Schioppa & Bizzi, 2001; Paz et al., 2003). For example, 

Richardson and colleagues (2006) stimulated subjects’ M1 with repetitive transcranial magnetic 

stimulation (rTMS) for 15mins before they performance the force lateral reaching adaptation. 

They found that this before stimulation does not impact subjects’ following adaptation at all. 

However, subjects received rTMS stimulation showed less adaptation in the re-adaptation on the 

following day. When anodal transcranial direct current stimulation (tDCS) was applied to 

subjects’ M1 when they performance visuomotor rotation or the force field reaching adaptation, 
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their adaptation was not impacted at all whereas they show larger aftereffect (Gelea et al., 2011; 

Hunter et al., 2009).  

Aging effects on reaching adaptation 

One decade ago aging effects on reaching adaptation have been explored by numerous studies 

whereas the results are still not very clear (Boch & Schneider, 2002; Seidler 2006). For example, 

Fernandez-Ruiz and colleagues (2000) found that older adults showed slower adaptation rate and 

larger aftereffect. But using similar task, Roller and colleagues (2002) found adaptation in older 

adults is preserved. With more and more knowledge about motor adaptation from studies in 

young adults, through well-designed experiments these discrepant results could be reconciled by 

the preserved implicit learning but declined explicit learning (Bock, 2005; Heuer &Hegele, 2008; 

Hegele & Heuer, 2013; McNay & Willingham, 1998). Therefore when different tasks involves in 

different extent of different processing, the aging effects on these tasks would be different. For 

example, found older adults show deficit in awareness of the nature of the task. For example, 

Hegele and Heuer (2013) found stronger age effects in younger and older adults who have high 

explicit knowledge whereas this difference is missing in younger and older adults who have poor 

explicit knowledge.  

From the limited studies in young adults, there seems to be positive influence of monetary reward 

and punishment on reaching adaptation. Their influence on reaching adaptation in older adults 

has never been explored although their influence on behaviors has between explored, the second 

study of thesis aimed to figure out whether monetary reward and punishment helps to reduce 

aging declines in reaching adaptation. 

Saccadic decision making 

Visuomotor control has also been explored by motor decision making: how the motor landing 

positions are influenced by different factors. As a window of cognition, decision making is an 

action based on information and values related to potential outcomes (Shadlen & Kiani, 2013). 

Saccade landing position is impacted by several factors, including physical properties of object 

and value of the outcome so that saccade-making has been investigated as decision making 

recently. This decision making processing has been explored mainly with reward.  

Factors influencing saccade-making 
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Saccade landing position is found to be influenced by different factors (Schutz, Braun & 

Gegenfurtner, 2011), from salience of object, to object recognition, to value and plans (illustrated 

in Fig. 13). For example, when viewing a static scene, our eyes are firstly attracted by the salient 

parts of the scene (Itti, Koch & Niebure, 1998) and this landing position could be predicted by a 

salience map model (Betz et al., 2010; Itti, Koch & Niebure, 1998; Talter & Vincent, 2009). 

Subjects tended to fixate faces in scenes even when there they were not instructed to search for 

them (Cerf, Frady & Koch, 2009). Saccades were made to target with reward (Sohn & Lee, 2006). 

However, how these different information are combined and finally determine the landing 

position is still not clear. 

 

Figure 13. Framework for the control of saccadic eye movements. There are several interacting 
layers of control that influence saccadic target selection and landing position. From Schutz, 
Braun & Gegenfurtner, 2011.  
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Saccade latency is also influenced by some of the factors. For example, reactive saccade, such as 

making gazes shift to an immediately disappeared target, is much faster than voluntary saccade, 

such as saccading to a target in memory (Hopp & Fuchs, 2004). Saccades to faces are faster 

(Crouzet, Kirchner & Thorpe, 2010).  

Reward influences on saccade-making 

Firstly although both amplitude and probability of reward impact saccade landing position, it is 

the expected reward (product of them) which determines the landing position (Navalpakkam et 

al., 2010). However, only information available before saccade execution is taken into account 

(Caspi, Beutter & Eckstein, 2004). As such, when top-down processing, such as reward competes 

with bottom-up processing, such as salience, saccades go to which object or which part of one 

single object depends on saccade latency, i.e., when saccades are executed. For example, 

Markowitz and colleagues (2011) found that saccade ending positions of monkey observers are 

dominated by salience if they are made before the switch time (140-180 ms after target onset); 

they are dominated by value if they are made after the switch period. Furthermore, with varying 

luminance of different parts of one single object we found that the integration of salience and 

value information is dynamic and most observers could learn to use strategies to make optical 

saccades to position with expected reward (Schütz, Trommershäuser, & Gegenfurtner, 2012). 

Not only saccade landing position is influenced by reward, but also is saccade latency (Bucker et 

al., 2015; Stankevich & Geng, 2015). On one hand, this influence could be executed through low-

level processing (Dunne, Ellison, & Smith, 2015; Watanabe, Lauwereyns, & Hikosaka, 2003). 

For example, Dunne, Ellison and Smith (2015) found that saccades to the rewarded hemisphere 

are faster than that to the unrewarded hemisphere in a simple stimulus-driven saccade task. This 

reward speeding up effect is specific to rewarded hemisphere and does not transfer to unrewarded 

hemisphere in saccadic peripheral cuing task and oculomotor inhibition of return task, suggesting 

it is executed through reducing the distance between baseline and execution threshold rather than 

evidence accumulating rate. On the other hand, this influence could also be executed through top-

down control (Heuer et al., 2017; Milstein & Dorris, 2007; Theeuwes & Belopolsky, 2012; Wolf 

et al., 2017). For example, Milstein and Dorris (2007) found that saccade latency does not simply 

decrease with the increase of magnitude and probability of reward, but rather decreases with 

expected reward. Furthermore, Wolf and colleagues (2017) found that reward effects on saccade 
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latency are influenced by the necessity, uncertainty of outcome and task difficulty. The 

integration of low-level influence and top-down influence could yield no overall changes in 

average saccade latency (Leon & Shadlen, 1999; Platt & Glimcher, 1999) and the integration can 

also be dynamic (Schütz, Trommershäuser, & Gegenfurtner, 2012). For example, reward speeds 

up the salience-dominated short-latency saccades overall while slows down the value-dominated 

long-latency saccades overall (Schütz, Trommershäuser, & Gegenfurtner, 2012). 

Neural system of generation of saccadic eye movements 

The neural structures and pathways involved in generating saccade are illustrated in Fig. 14. The 

centers of saccade system are in the brainstem and cerebellum and they are similarly involved in 

generating all kinds of saccades and their pathway is illustrated in black lines (Leigh and Zee, 

2015; Scudder et al., 2002). Posterior cortical areas (visual, parietal) show larger involvement for 

reactive saccades and the pathway is illustrated in white line; frontal areas and basal ganglia are 

more recruited for voluntary saccades and the pathway is illustrated in grey lines (McDowell et 

al., 2008; Munoz & Everling, 2004; Pierrot-Deseilligny et al., 2003). 
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Figure 14. Schematics of neural network involved in the generation of saccadic eye movements. 
FEF: frontal eye fields, SEF: supplementary eye fields, DLPFC: dorso-lateral prefrontal cortex, 
PEF: parietal eye fields, Sup Coll: superior colliculus, Ret Form: reticular formation 

Aging effects on saccade control 

Age-related changes in saccadic control have been investigated by numerous studies. On one 

hand, saccade latency of older adults has been consistently found to be slower in different kinds 

of saccades (Abel & Douglas, 2007; Goldring & Armstrong, 1998; Peltsch et al., 2011; Warabi, 

Kase, & Kato, 1984;) suggesting that there might be age-related declines in older adults’ saccade 

system. At least some parts of the circuitry saccade system were found to be damaged, such as 

frontal and parietal lobes, and cerebellum (Raz et al., 2005). On the other hand, older adults, even 

at the age of 80, could make saccades to a target as accurately as young adults (Munoz et al., 

1998; Warabi, Kase & Kato, 1984) suggesting that there might be some compensations in their 

system. Furthermore, differential age-related changes were found in different categories of 

saccades (Peltsch et al., 2011). For example, Peltsch and colleagues (2011) found that the 

proportion of express saccade during pro-saccade is similar among different age groups whereas 

all the measurements of anti-saccade changes with age, suggesting more impaired age effects in 

voluntary saccades.  

Outline 

Aging effects have been investigated for decades, ranging from the initial studies with behavioral 

cognitive tasks to recent more neuroimaging studies. The theories accounting for these effects 

changed from the initial general decline hypotheses to recent compensative and / or adaptive 

aging brain hypothesis. Discrepancies between these studies and theories underlie the differential 

aging effects and the potential role of environments in them. To reconcile these discrepancies, 

investigations on aging effects on distinct processing should be especially helpful.  

Visuomotor control is naturally connected to external environment and is also tightly connected 

to cognition. Besides, it is well modeled with distinct subcomponents, making it a pretty good 

way to investigate aging processing. 

Visuomotor control system consists of extrinsic coordinate system transforming visual 

information into motor-based information and intrinsic coordinate system specifying the motor 
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information into motor forces and motions, as well as their interactions with other factors, such as 

cognitive strategies, reward, so on and so forth. 

This control system has been extensively explored with visuomotor adaptation tasks, in which 

subjects learn to reduce the error from the internal models and remember and consolidate the 

learned internal models. Explicit knowledge about the nature of the tasks and strategies to cancel 

the errors could also impact the adaptation. But they could not override the learning of the 

internal models during the tasks so that the learning of internal models is implicit. The processing 

underlying this implicit learning is called implicit processing. Although several labs have 

explored ageing effects on visuomotor adaptation through reaching adaptation tasks, the results 

started to become clear from last decade. It seems that the implicit processing is preserved in 

older adults. Aging effects on saccade adaptation had not been explored yet. The first study of 

this thesis explored it through two saccade adaptation tasks, in one of which the double step task 

was used and the implicit processing is dominant, and in the other of which the perceptual task 

was used and the explicit processing is dominant so that aging effect on the processing, if there is, 

will be much easier to detect.  

The distinct mechanisms of visuomotor adaptation are suggested by the differences between 

natural and behavioral saccade adaptation and the differences between reaching adaptation of 

extrinsic coordinate system and intrinsic coordinate system. Multiple states space models account 

for these differences really well and two distinct processing are identified by these models: 

learning and retention.  

Given the substantial importance of motivation in behaviors and actions, reward effects have 

captured considerable attention in many disciplines in recent decades. Reward and punishment 

effects on visuomotor control have also been investigated through reaching adaptation by several 

studies although the results are inconsistent. Despite the inconsistency, it seems that they impact 

learning and retention of adaptation positively, if there is any impact, and distinctively. Aging 

effects on reaching adaptation have been explored before and it seems like the learning is 

impaired by aging whereas the retention is preserved. Whether these differential aging effects 

could be impacted by reward and punishment has never been explored. The second study of this 

thesis investigated this issue with a screen-cursor rotation task, in which performance-based 
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monetary reward and punishment were administered during the initial adaptation trials between 

different groups of subject.  

Reward and punishment effects on visuomotor control have also been explored with saccadic 

decision making. Although different tasks have been used, it seems that they impact several 

saccade kinematics, such as saccade landing position (direction), saccade latency, saccade peak 

velocity so on and so forth. Besides, some impacts seem to be are interacted. For example, impact 

on saccade direction depends on saccade latency. Given differential aging effects on saccade 

accuracy (position or amplitude) and saccade latency, the third study of this thesis investigated 

how reward and punishment impact this kinematics of older adults and their interaction. 
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Chapter 2: Age effects on saccadic adaptation 

 

 

 

Age effects on saccadic adaptation: Evidence from different paradigms reveals specific 

vulnerabilities 

Jing Huang1, Karl Gegenfurtner1, Alexander C. Schütz2, Jutta Billino1 

1 Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Gießen, Gießen, Germany 

2 Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany 

 

 

Published in Journal of Vision 17.6(2017): 9-9 

  



48 
 

Abstract 

Saccadic eye movements provide an opportunity to study closely interwoven perceptual, motor, 

and cognitive changes during aging. Here, we investigated age effects on different mechanisms of 

saccadic plasticity. We compared age effects in two different adaptation paradigms that tap into 

low- and high-level adaptation processes. A total of 27 senior adults and 25 young adults 

participated in our experiments. In our first experiment, we elicited adaptation by a double-step 

paradigm, which is designed to trigger primarily low-level, gradual motor adaptation. Age groups 

showed equivalent adaptation of saccadic gain. In our second experiment, adaptation was induced 

by a perceptual task that emphasizes high-level, fast processes. We consistently found no 

evidence for age-related differences in low-level adaptation, however, the fast, strategic 

adaptation response was significantly more pronounced in the young adult group. We conclude 

that low-level motor adaptation is robust during healthy aging, but that high-level contributions, 

presumably involving executive strategies, are subject to age-related decline. Our findings 

emphasize the need to differentiate between specific aging processes in order to understand 

functional decline and stability across the adult lifespan. 

 

Keywords: healthy aging, saccadic eye movements, visuomotor adaptation, plasticity, visual error, 

executive control 
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Introduction 

Increased life expectancy and decreased birth rates contribute to massive demographic changes in 

most developed societies. The mean age of the population is continuously shifting toward the 

senior range so that it appears imperative to acquire a detailed understanding of functional 

resources across the adult lifespan. Whereas cognitive changes have been extensively studied 

over the last decades (for reviews see Baltes, Staudinger, & Lindenberger, 1999; Cabeza, Nyberg, 

& Park, 2005b; Craik & Byrd, 1982; Hasher & Zacks, 1988; Park & Reuter-Lorenz, 2009; 

Salthouse, 1996), age effects on sensorimotor capacities have been rather neglected. In particular, 

age-related changes in plasticity of sensorimotor behavior, which is highly relevant in a 

continuously changing environment, are not well understood. 

Previous studies concerned with age-related differences in sensorimotor plasticity have almost 

exclusively focused on adaptation of hand and arm movements, i.e. reaching movements. 

Although findings from cognitive studies consistently indicated a plasticity decline with 

increasing age, results for reaching adaptation have been ambiguous (e.g. Bock, 2005; Bock & 

Schneider, 2001; Buch, Young, & Contreras-Vidal, 2003; Heuer & Hegele, 2008a). Overall, only 

a minor decline of sensorimotor plasticity has been reported, however, the detrimental impact of 

reduced cognitive strategies during adaptation has been emphasized (Bock & Girgenrath, 2006; 

Heuer & Hegele, 2008b; Heuer, Hegele, & Sulzenbruck, 2011). We suggest that the investigation 

of saccadic adaptation is particularly well suited to disentangle age-related vulnerabilities that 

contribute to plasticity changes. 

Saccadic eye movements provide a fundamental possibility to explore our visual environment 

and offer the opportunity to investigate basic mechanisms of sensorimotor control (Krauzlis, 

2005). Indeed, age-related changes in saccadic control have been explored by numerous studies. 

Results consistently support a pronounced increase of latencies with age, but stability of saccade 

dynamics (Abel & Douglas, 2007; Munoz, Broughton, Goldring, & Armstrong, 1998; Peltsch, 

Hemraj, Garcia, & Munoz, 2011). A further robust finding is an age-related increase of 

directional error rates in saccade tasks that require inhibitory control processes, e.g. in the 

antisaccade task (Gottlob, Fillmore, & Abroms, 2007; Olk & Jin, 2011; Peltsch et al., 2011; 

Sweeney, Rosano, Berman, & Luna, 2001). In particular saccade accuracy seems to be 

maintained stable across the adult lifespan, even up to an age of 80 years (Munoz et al., 1998). 
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This suggests preserved capacities to compensate for possible age-related changes of ocular 

muscles or neuronal circuitries that might challenge saccadic accuracy. However, only a single 

study so far has been dedicated to age effects on saccadic adaptation and has provided evidence 

of similar capacities in different adult age groups (Bock, Ilieva, & Grigorova, 2014). 

Adaptation of saccadic eye movements is well described and can be considered as a very basic 

model of sensorimotor plasticity (Hopp & Fuchs, 2004; Pelisson, Alahyane, Panouilleres, & 

Tilikete, 2010). Saccades allow for bringing relevant visual information rapidly to the fovea, 

which enables detailed analysis. If inaccuracies are experienced, e.g. due to fluctuations in the 

oculomotor system, accuracy of saccades is re-established by adjusting their amplitude. Adaptive 

adjustments can be robustly induced in the laboratory by an unnoticed target shift during the 

saccade that results in a post-saccadic error. This manipulation elicits adaptive amplitude changes 

that compensate for the experienced error and maintain accuracy of saccades. The retinal error 

was identified to be the dominant or even exclusive error signal driving this adaptation process 

(e.g. Wallman & Fuchs, 1998). Given this focus on bottom-up error signals, saccadic adaptation 

was understood as a low-level mechanism that compensates for accuracy deviations. 

More recent findings from a variety of adaptation paradigms, though, have challenged this 

classical view on saccadic adaptation (for review see Herman, Blangero, Madelain, Khan, & 

Harwood, 2013). In several studies saccadic gain changes were reliably elicited without visual 

errors. Dissociating retinal error from prediction error, i.e. the discrepancy between predicted and 

actual movement outcome, there has been evidence that saccadic adaptation might be primarily 

driven by prediction errors (Collins & Wallman, 2012; Wong & Shelhamer, 2012). Moreover, it 

has been shown that saccadic adaptation can be induced even in the absence of any error signal. 

Amplitude-dependent reinforcement has proved to be sufficient to trigger appropriate gain 

changes (Madelain, Paeye, & Darcheville, 2011; Madelain, Paeye, & Wallman, 2011). 

Congruently, saccadic adaptation has been successfully induced using a perceptual task without 

manipulation of the visual target (Schütz, Kerzel, & Souto, 2014; Schütz & Souto, 2015). Thus, 

plasticity can be also driven by behavioral goals. In summary, these recent results question that 

saccadic adaptation exclusively represents a low-level mechanism that compensates for 

systematic errors in the oculomotor system. They rather suggest that saccades can as well be 

adapted based on high-level mechanisms involving top-down behavioral goals and strategies.  
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We aimed to investigate how age affects different mechanisms of saccadic adaptation. Since age-

related cognitive decline, in particular decline of executive functioning, is well-documented (Park 

& Reuter-Lorenz, 2009), we hypothesize that high-level adaptation mechanisms might be 

especially prone to age-related decline, while low-level mechanisms might tend to be preserved. 

We chose two established saccadic adaptation paradigms that are supposed to tap into different 

mechanisms. For each paradigm we compared saccadic plasticity between young adult and 

healthy, community-dwelling senior adults. 

Experiment 1: Evidence from the double-step paradigm 

In our first experiment we chose the well-known double-step paradigm (McLaughlin, 1967) to 

induce saccadic adaptation. The typical procedure demands a saccade to a visual target, which is 

displaced during saccade execution. The target step results in a post-saccadic error and repeated 

experience triggers adaptive changes of saccade amplitude within few trials. Notably, this 

adaptation process occurs without conscious perception of the target manipulation (Bridgeman, 

Hendry, & Stark, 1975). Efficient stabilization of movement accuracy is driven by post-saccadic 

errors. Thus, saccadic adaptation in the double-step paradigm is generally considered to reflect a 

low-level mechanism that enables compensation for systematic errors and maintains accuracy of 

the oculomotor system (for review see Hopp & Fuchs, 2004; Pelisson et al., 2010). 

Methods 

Participants 

A total of 18 young adults (12 females) and 19 senior adults (13 females) participated in the 

experiment. Age ranged from 22 to 38 years with a mean age of 27.9 years (SD = 4.7) in the 

young adult group, and from 52 to 76 years with a mean age of 66.6 years (SD = 6.0) in the 

senior adult group. Recruitment of subjects was managed by calls for participation at the 

University of Giessen and in local newspapers. All subjects were paid for participation. Any 

history of ophthalmologic, neurologic, or psychiatric disorders as well as medications presumed 

to interfere with oculomotor functioning were screened out by a detailed interview protocol. 

Visual acuity was measured binocularly confirming normal or corrected-to- for all participants. In 

addition, we ran a battery of standard cognitive tasks in order to exclude pathological age-related 

decline. Moreover, measures of executive functioning were of particular interest for our study. 
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The battery included several standard executive tasks, i.e. span measures of verbal and visual 

working memory, task switching, and problem solving (Berch, Krikorian, & Huha, 1998; Horn, 

1983; Kessels, van den Berg, Ruis, & Brands, 2008; Kortte, Horner, & Windham, 2002). 

Methods and procedures agreed with the Declaration of Helsinki (World Medical Association, 

2013) and were approved by the local ethics committee. Informed consent was obtained by all 

participants and protection of data privacy was provided. 

Task and procedure 

We applied a standard double-step paradigm to elicit backward saccadic adaptation. Subjects 

were asked to fixate a black cross (0.5° x 0.5°) presented on a mean gray background. Location 

of the fixation cross was randomly jittered within an area around the centre of the screen 

extending -5° to 0° horizontally and -3° to 3° vertically. Subjects initiated each trial by pressing 

the space bar. Given stable fixation the cross turned red and jumped 10° rightward after a delay 

that varied uniformly between 300 and 400 ms. Subjects were instructed to follow the cross with 

their eyes. Saccade onset was determined online. The experiment consisted of three phases, i.e. 

50 pre-adaptation trials, 300 adaptation trials, and 50 post-adaptation trials. In the pre- and post- 

adaptation trials the target cross disappeared as soon as saccade onset was detected. In the 

adaptation trials the cross was displaced backwards by 2.5° during the saccade and maintained 

visible at the new location for 600 to 700 ms, uniformly jittered. The experiment was divided into 

a total of 7 blocks, a pre-adaptation block, 5 adaptation blocks with 60 trials each, and finally a 

post-adaptation block. 

Eye tracking equipment 

Stimuli were generated using Matlab with the Psychophysics Toolbox (Brainard, 1997). They 

were displayed on a 22-inch Samsung SynMaster 2233BW monitor driven by an Nvidia GeForce 

9800 graphics board with a refresh rate of 120 Hz. The spatial resolution was set to 1680 x 1050 

pixels. Subjects were seated in a darkened room at a distance of 90 cm in front of the monitor. 

Eye position was recorded by an SR Research Eyelink 1000 Desktop Mount system (SR 

Research Ltd., Missisauga, Ontario, Canada) at a sampling rate of 1000 Hz. Viewing was 

binocular and subjects’ heads were stabilized by a chin- and headrest. A standard 9-point 

calibration covering the whole screen was applied before each block and accuracy was accepted 

if the validation procedure yielded values of average error not larger than 0.4 deg and worst error 
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not larger than 0.7 deg. Each trial started with a drift correction in order to guarantee calibration 

across data collection. Subjects were instructed to keep their sitting position as stable as possible. 

The experimenter continuously monitored the subjects and restarted the calibration procedure 

when an accidental change in position occurred.  

Data analysis 

Saccade onset during each trial was determined on-line using a combined velocity criterion. 

Onset was defined by the time when eye velocity of two consecutive samples exceeded 50°/s and 

100°/s, respectively. Subsequently eye position data was analyzed off-line using the Eyelink 

built-in algorithms. We excluded trials from further analyses if saccades had latencies < 80 ms or > 

500 ms, if they had a duration of < 10 ms or > 100 ms, or if they had an amplitude < 5° or >15°. 

We excluded on average 25.5% of trials (SD = 10.1%) in the young adult group and 31.4% of 

trials (SD = 10.8%) in the senior adult group. Data of five observers (two young adults) were 

discarded because more than 50% of their trials had to be excluded based on our criteria.  

We first analyzed saccade gain for four defined trial intervals. The average across all pre-

adaptation trials was used as baseline performance. For the adaptation phase we derived two 

parameters. Initial adaptation performance was derived by averaging across the first 10 

adaptation trials; final adaptation performance was derived by averaging across the last 10 

adaptation trials. The average across all post-adaptation trials was used as measure of post-

adaptation performance. Gain differences between intervals were considered to be indicative for 

specific adaptation components. We supposed that the difference between baseline and initial 

adaptation reflects immediate adjustment, while the difference between initial and final 

adaptation indicates gradual adjustment. The difference between final adaptation and post-

adaptation performance was taken as a measure of recovery from adaptation. 

Furthermore, we fitted an exponential model to the gain data in all adaptation trials for each 

subject. We applied a model with three free parameters (Souto, Gegenfurtner, & Schütz, 2016): 

𝑆(𝑡) = 𝛼 + 𝛽𝑒−𝜆𝑡 (1) 

S(t) gives the fitted saccadic gain for a given trial t. The three free parameters used are the 

asymptotic level α, the amplitude of adaptation β, and the adaptation rate λ; 1/λ corresponds to 

the exponential rate constant, i.e. the number of trials it takes the function to reach about a third 
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of the initial value. Given the definition of parameters (for illustration see Figure 3A) the 

difference between α and β provides a measure for immediate adjustment and β directly reflects 

gradual adjustment. After removing baseline gain in adaptation trials was fitted iteratively until 

best solution was found using a nonlinear least-squares fitting procedure provided by the OPTI 

toolbox for Matlab (Currie & Wilson, 2012). In order to obtain robust fits we constrained α and β 

to a range of -0.5 to 0.5, and λ to a range of 0.001 to 1. 

Results 

The applied double-step paradigm robustly elicited backward saccadic adaptation in both age 

groups. Figure 1 shows exemplary saccadic gain data across trials for a single young and senior 

subject, respectively.  Data overall appeared similar across both subjects. For the young adult we 

determined an average gain of 0.92 in the baseline trial interval; by the end of the adaptation 

phase the gain was reduced to 0.76. The senior subject showed a gain of 0.97 in the baseline trial 

interval and reduced it to 0.73 across the adaptation trials. Note that gain did not increase to 

baseline in the post-adaptation phase because the target was extinguished after saccade onset and 

did not reappear. Thus, the gain shift reflects retention, rather than the extent of re-adaptation to 

baseline. 

 

Figure 1. Single-subject data of an exemplary young adult, left panel, and an exemplary senior 
adult, right panel. Saccadic gain is given as a function of trial number. Black open dots: 
individual trials; green filled dots: average data across specified intervals; error bars: SD. Gray-
shaded areas indicate pre-adaptation phase and post-adaptation phase, respectively; vertical lines: 
trial blocks; horizontal lines: perfect gain, i.e. eye and target positions match perfectly after the 
saccade. 
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We analyzed age group differences across the specified trial intervals by a mixed ANOVA with 

the within-subject factor trial interval (baseline, initial adaptation, final adaptation, and post-

adaptation), and the between-subject factor age group (young adults and senior adults). If 

appropriate we used the Greenhouse-Geisser correction. Figure 2A illustrates saccadic gain 

results for both age groups and shows saccadic plasticity across the experiment in both age 

groups. Congruently, the ANOVA yielded a significant main effect of trial interval, F(3, 90) = 

215.83, p < .001, η2 = .88. However, we found neither a main effect of age group, F(1, 30) < 0.01, 

p =.995, η2 < .01, nor an interaction effect of both factors, F(3, 90) = 0.41, p = .696, η2 = .01.  

 

Figure 2. Saccadic gain in the double-step paradigm. (A) Average gain in the specified trial 
intervals for young adults and senior adults. (B) Changes in gain indicating immediate adjustment, 
gradual adjustment, and recovery for young adults and senior adults. Error bars: SEM. 

The main effect of trial interval was followed up by post hoc paired comparisons with Bonferroni 

correction. Results indicated that average gain differed significantly between all specified 

intervals (all p < .001). Highest gain was found in the baseline trials (M = 0.98, SD = 0.06). A 

significant decrease was already found at the beginning (M = 0.93, SD = 0.06) and also at the end 

(M = 0.78, SD = 0.06) of the learning phase. After removal of the target manipulation gain 

increased again, but did not reach the baseline level within the post-adaptation phase (M = 0.82, 

SD = 0.05). 
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We also explored adaptation across the experiment by directly considering gain differences 

between the specified trial intervals. Change data are shown in Figure 2B. Additional analyses 

overall confirmed the results from the initial ANOVA. We used one-sample t tests to evaluate 

whether changes differed significantly from zero. In both age groups we observed significant 

immediate adjustment at the beginning of the learning phase, significant gradual adjustment 

across the learning phase, and finally significant recovery from adaptation (all p < .005). This 

further supports that the paradigm robustly elicited learning processes in both age groups. We 

used one-tailed t tests in order to clarify whether young adults show more pronounced plasticity 

than senior adults. Neither immediate adjustment, t(30) = -1.14, p = .132, d = 0.40, nor gradual 

adjustment, t(30) = 0.50, p = .309, d = -0.20, nor recovery from adaptation, t(30) = -0.29, p 

= .386, d = -0.10, were found to be significantly more pronounced in young adults. 

Fitting of the data with the three-parameter model yielded consistent results. Figure 3A illustrates 

saccadic gain as a function of trial number averaged across young adults and senior adults, 

respectively. 

The model fits for the averaged data suggests only minor differences between both age groups. 

Parameters of the individual fits are provided in Figure 3B. Using one-tailed t tests we analyzed 

whether parameters reveal more pronounced adaptation processes in young adults than in senior 

adults. Results yielded no significant differences between both age groups, asymptotic level α: 

t(30) = -0.43, p = .334, d = -0.15, difference between asymptotic level and adaptation amplitude 

α-β: t(30) = 0.38, p = .335, d = 0.13, adaptation amplitude β: t(30) = -0.83, p = .206, d = -0.29, 

and adaptation rate λ: t(30) = -1.08, p = .146, d = -0.38. Consistency across the applied analysis 

approaches was supported by significant correlations between immediate adjustment of saccadic 

gain and the parameter difference score α – β, r(31) = 0.75, p < 0.001), as well as between 

gradual adjustment of saccadic gain and the parameter β, r(31) = 0.62, p < 0.001). In summary, 

fitting results confirmed that young and senior adults show similar adaptation capacities 

immediately at the beginning of the learning phase and gradually across the learning phase. 

Furthermore, they provided evidence that the adaptation rate was not affected by age. 
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Figure 3. Fitting results for the double-step paradigm. (A) Saccadic gain as a function of trial 
number. The thin pink and blue lines represent the averaged gain across young and senior adults, 
respectively. Data are smoothed by a running average with a bin size of 10 trials. Shaded areas: 
95% confidence intervals; vertical lines: trial blocks; horizontal lines: perfect gain, i.e. eye and 
target positions match perfectly after the saccade. The thick pink and blue lines represent the 
three-parameter model fit for young and senior adults, respectively. Meaning of parameters is 
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illustrated within the plot for young adults’ data; the parameter α gives the asymptote of the 
function starting from the average baseline gain level; the parameter β gives the overall amplitude 
of adaptation from beginning of the adaptation phase to its end; the parameter λ gives the 
adaptation rate and 1/λ corresponds to the number of trials it takes the function to reach about a 
third of the initial value. (B) Estimated model parameters for young adults and senior adults. 
Panels form left to right: asymptotic level α, difference between asymptotic level and adaptation 
amplitude α - β, adaptation amplitude β, adaptation rate λ. Error bars: 95% confidence intervals. 

We finally explored saccadic latencies in the double-step paradigm by an additional ANOVA. 

Figure 4 illustrates average latencies for each age group. Increased saccadic latencies represent 

the most consistently reported age effect on oculomotor control. As expected age groups differed 

substantially in saccadic latencies across all trial intervals, younger adults showing lower 

latencies, F(1, 30) = 23.11, p < .001, η2 = .44. Latencies decreased across trial intervals, F(3, 90) 

= 4.64, p = .011, η2 = .13. There was no significant interaction between both main effects, F(3, 90) 

= 0.11, p = 0.957, η2 < .01.Furthermore, latencies did not correlate with any parameter derived 

from fitting accuracy data with the exponential model. Thus, exploration of latencies yielded 

support for expected age differences, but also showed that these differences do not affect saccadic 

plasticity. 

 

Figure 4. Average saccadic latencies in the specified trial intervals of the double-step paradigm 
for young adults and senior adults. Error bars: SEM. 

Discussion 
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In our first experiment we studied saccadic adaptation in the established double-step paradigm. 

We explored whether sensorimotor plasticity differs between young and senior adults. When 

adaptation was induced by systematic post-saccadic errors, we found robust plasticity in young 

and senior adults. Both age groups showed similar adaptive changes of saccadic gain at the 

beginning as well as at the end of the adaptation phase and they did not differ in adaptation rate, 

i.e. after how many trials they reached a given change criterion. In addition, there was no 

evidence for age differences in recovery from adaptation when error information was abolished. 

It is well known that aging challenges behavioral and neuronal plasticity (Jones et al., 2006; 

Lustig, Shah, Seidler, & Reuter-Lorenz, 2009). Thus, the question arises which mechanisms 

contribute to preserved saccadic plasticity we observed in the double-step paradigm. Most 

basically, we can exclude that our senior age group represented a positively biased sample saved 

from age-related functional decline. Saccadic latencies in the senior adult group were found 

significantly increased, consistent with seminal studies on aging of saccadic control (Munoz et al., 

1998; Peltsch et al., 2011) and indicating typical age-related slowing of processing speed 

(Salthouse, 1996). Similar adaptive capacities despite distinctive latency differences moreover 

corroborate results showing that saccade latencies per se do not influence the magnitude of 

adaptation (e.g. Schütz & Souto, 2015). 

Our findings contribute to the understanding of age-related changes in  visuomotor plasticity. 

Notably, they are consistent with evidence provided by the only previous study concerned with 

saccadic adaptation, suggesting preserved plasticity across adult lifespan (Bock et al., 2014). This 

is in contrast to the heterogeneous pattern of results for reaching adaptation. Several studies have 

documented an age-related decline of reaching plasticity induced by visuomotor rotations (e.g. 

Bock, 2005; Bock & Girgenrath, 2006; Buch et al., 2003; Heuer & Hegele, 2008a), but 

vulnerabilities have been primarily attributed to reduced explicit, strategic adjustments. When 

dissociating explicit and implicit components of reaching adaptation by appropriate paradigms, 

age effects have been shown to be limited to less efficient use of explicit strategies while sparing 

implicit adjustments (Hegele & Heuer, 2010b, 2013; Heuer et al., 2011; McNay & Willingham, 

1998; Roller, Cohen, Kimball, & Bloomberg, 2002). These results indicate resiliency of low-level 

adaptation mechanisms, which might contribute to robust saccadic plasticity in the double-step 

paradigm. Reaching movements and saccadic movements differ fundamentally. Saccades 

represent extremely fast, ballistic movements that cannot be corrected online after initiation. In 
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addition, due to perceptual suppression during the saccade the observer usually remains unaware 

of the target manipulation inducing post-saccadic errors. These characteristics exclude or at least 

minimize the use of explicit strategies during adaptation. Thus, in particular in the double-step 

paradigm in which adaptive changes are considered to rely on low-level mechanisms, the absence 

of age effects can be reconciled with differential results for reaching adaptation. They further 

support that fundamental components of visuomotor plasticity are not affected by healthy aging. 

This interpretation also agrees with our detailed results on different components contributing to 

adaptive shifts in saccade amplitude. In our analysis, we distinguished between immediate, 

strategic adjustments after the onset of target manipulation and gradual adjustments that develop 

over the adaptation phase. In the typical double-step paradigm this distinction can be considered 

as redundant since strategic processes require awareness of the target manipulation. Intra-

saccadic target displacement usually prevents awareness due to perceptual suppression. Thus, 

immediate adjustments can be expected to contribute only minimally to overall adaptation 

induced by the double-step paradigm. We indeed observed less than 5% immediate adjustment, 

but about 16% gradual adjustment across the adaptation course (compare also Schütz et al., 2014). 

Thus, adaptation primarily relied on gradual, automatic processes, whereas strategic, high-level 

processes, which are assumed to be more vulnerable to aging, played only a minor role. We 

suggest that the still significant immediate adjustments at the beginning of the adaptation phase 

are most likely based on incomplete intra-saccadic suppression of target displacement (see 

Bridgeman et al., 1975). Thus, awareness was clearly minimized, but probably not completely 

abolished, allowing for some strategic contributions to adaptation. However, these contributions 

were not reliable enough to indicate age-related differences. In summary, our findings 

corroborate that adaptation in the double-step task is dominated by gradual processes and that 

these processes remain efficient across the adult lifespan.  

Although our results for immediate and gradual adjustments cannot be directly mapped onto the 

distinction between fast and slow adaptation processes proposed by Körding, Tenenbaum, and 

Shadmer (2007), some plausible links can be presumed. Sensorimotor adaptation has been 

modeled as a combination of fast and slow processes. Whereas fast processes drive rapid adaptive 

changes which are prone to rapid decay, slow processes contribute gradually over a prolonged 

timescale to adaptation and decay only slowly (Ethier, Zee, & Shadmehr, 2008). In our paradigm, 

immediate adjustments are presumably linked to fast processes. Gradual adjustments might 
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involve both fast and slow processes, but we suppose that they predominantly rely on slow 

processes. Thus, recovery from adaptation after removal of the visual error can be expected to be 

rather slow. In the post-adaptation phase, when the target was extinguished during the saccade 

and did not reappear, we congruently determined a re-increase of saccadic amplitude of about 5%, 

showing a rather slow decay or in other words strong retention in both age groups. This pattern 

tentatively indicates that slow adaptation processes are preserved during aging. 

To conclude, stable saccadic adaptation in the double-step paradigm across the adult age range 

suggests robust low-level visuomotor plasticity that compensates primarily for visual errors. 

Since our data does not allow to dissociate the contributions of prediction errors and visual errors 

to adaptation in the double-step paradigm (compare Collins & Wallman, 2012), the particular role 

of prediction errors cannot be specified. 

Expperiment2: Evidence from a perceptual task 

In our second experiment we induced saccadic adaptation by a perceptual task recently 

introduced by Schütz and colleagues (Schütz et al., 2014; Schütz & Souto, 2015). While in the 

double-step paradigm visual errors drive adaptation, the applied perceptual task triggers adaptive 

changes of saccade amplitude by a behavioral goal. This task specifically allows studying high-

level mechanisms that contribute to saccadic plasticity because amplitude is shaped by top-down 

goals, not by bottom-up visual errors. Efficient goal-directed behavior relies substantially on 

executive functions which are particularly prone to age-related decline (Park & Reuter-Lorenz, 

2009; West, 1996). Thus saccadic adaptation induced by a perceptual task might be particularly 

attenuated with increasing age. 

Methods 

Participants 

A total of 17 young adults (11 females) and 16 senior adults (5 females) participated in the 

experiment. Age ranged from 22 to 37 years with a mean of 26.4 years (SD = 4.6) in the young 

adult group, and from 64 to 83 years with a mean age of 71.3 years (SD = 4.8) in the senior adult 

group. The recruitment procedure and screening protocol were equivalent to experiment 1. 

Task and Procedure 
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We applied a perceptual task to induce vertical adaptation saccade amplitude. The general task 

procedure is illustrated in Figure 5A. 

 

Figure 5. Perceptual task inducing adaptation. (A) General task procedure. After a variable 
fixation period a vertical stimulus compound was shown at an eccentricity of 7° either to the left 
or the right of the fixation square. The fixation square was always shown at the vertical center of 
the screen; horizontal position was determined by the position of the compound in the previous 
trial. The discrimination target was a black square within the compound. It had a gap either at the 
bottom or at the top and participants had to indicate its location. In baseline trials the 
discrimination target was always placed in the center of the compound. (B) Adaptation procedure. 
In adaptation trials the position of the discrimination target within the compound was shifted 
upward or downward in the case of leftward or rightward saccades, respectively. The coupling of 
shift direction and saccade direction was counterbalanced across participants. Dotted rectangles 
illustrate possible locations of the stimulus compound. 

Subjects had to fixate a fixation square (0.36° x 0.36°) presented on a mean gray background. 

The fixation period was uniformly varied between 500 and 1000 ms. Subsequently the fixation 

square was extinguished and a compound stimulus appeared at an eccentricity of 7°, randomly 

either to the right or to the left. The compound consisted of seven vertically aligned squares (0.36° 

x 0.36°) with a line width of 0.05°. Squares were displayed on a random noise background that 

extended 0.16° beyond them. Contrast of squares and noise background were set to 50%. The 

compound had a total height of 5.52° and a total width of 0.68°. Position of the fixation square 
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and the stimulus compound followed a random walk across five horizontal positions shown in 

Figure 5B. The fixation square was always shown at the vertical center of the screen; the 

horizontal position was determined by the position of the compound in the previous trial. 

Subjects were asked to accomplish a discrimination task. The stimulus compound included 

always six white squares and a unique black square, representing the target. All squares had a gap 

either at the bottom or at the top. Subjects had to decide whether the gap of the target square was 

at the bottom or at the top. The task was designed to require foveal acuity so that subjects had to 

saccade to the compound in order to solve the task successfully. The compound was displayed for 

100 ms after saccade onset, which was determined online. Subjects had to indicate their decision 

within 1500 ms after saccade onset by a key press. If the perceptual judgment was incorrect, 

negative feedback was provided by a beep. 

The experiment consisted of three phases, i.e. 50 pre-adaptation trials, 200 adaptation trials, and 

200 post-adaptation trials. In pre-adaptation and post-adaption trials the target square was always 

centered in the compound (compare Figure 4A). In adaptation trials the target was shifted two 

positions, corresponding to 1.47°, either upward or downward within the compound (compare 

Figure 4B). The direction of the target shift depended on the saccade direction. For half of the 

subjects rightward saccades were coupled with downward shifted targets and leftward saccades 

were coupled with upward shifted targets, whereas for the other subjects coupling was the other 

way around. The specific coupling was counterbalanced across subjects within each age group. 

Notably, the manipulation in the adaptation trials did not induce bottom-up visual errors since the 

position of the stimulus compound remained stable. Adaptive changes in saccade direction, i.e. 

rotation upward or downward, were exclusively driven by the demands of the discrimination task. 

The experiment was divided into a total of 5 blocks, a pre-adaptation block, 2 adaptation and 2 

post-adaptation blocks with 100 trials each. Between blocks there were breaks of 30 s in which 

subjects were advised to close their eyes. 

Eye tracking equipment 

We used exactly the same setup as in experiment 1 and applied the same calibration procedure. 

Data analysis 
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Saccades were analyzed using the same procedures as in experiment 1. Criteria for exclusion of 

trials were also consistent, except for the saccade amplitude criterion. Given the stimulus layout 

we classified saccades with a horizontal amplitude < 3.5° or > 10.5° as invalid. We excluded on 

average 9.1% of trials (SD = 5.2%) in the young adult group and 20.7% of trials (SD = 8.5%) in 

the senior adult group. Data of three senior observers were discarded because more than 40% of 

their trials had to be excluded based on our criteria. 

Discrimination performance in the behavioral task was measured across all trial intervals. Young 

adults performed at ceiling with an average accuracy rate of 98.2% (SD = 1.1%). Senior adults 

showed a slightly lower accuracy rate of 93.7% (SD = 3.2%), but performed the task 

appropriately. We discarded data of one senior observer because his performance was at chance 

level (48.4%) and thus we assumed that he misunderstood task instructions. 

The critical parameter of interest for our analyses was vertical saccade amplitude. Since 

adaptation was found to be similar in upward and downward conditions, we collapsed data in 

order to increase the trial number for our analyses. We derived vertical amplitude for baseline, 

initial adaptation, final adaptation, and post-adaptation trial intervals according to the methods 

used in experiment 1. We again calculated defined change scores. Amplitude data was further 

analyzed by fitting the three-parameter exponential model (see Formula 1). We first removed 

baseline amplitude from all trials and then we fitted amplitude in adaptation and post-adaptation 

trials with the model until the best solution was found. We constrained α and β to a range of -5 to 

5, and λ to 0.001 to 0.2.  

Results 

Both age groups showed substantial adaptive changes in vertical saccade amplitude induced by 

the perceptual task. In the baseline trial interval vertical saccade amplitude was close to zero, on 

average-0.06° and 0.07° for young and senior adults, respectively. The young adults increased the 

amplitude to 1.06° by the end of the adaptation phase; the senior adults reached on average an 

amplitude of 0.84°. Figure 6A summarizes vertical amplitudes in the different trial intervals for 

both age groups. 
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Figure 6. Vertical saccade amplitude in the perceptual task. (A) Average amplitudes in the 
specified trial intervals for young adults and senior adults. (B) Changes in amplitude indicating 
immediate adjustment, gradual adjustment, and recovery for young adults and senior adults. Error 
bars: SEM. 

We analyzed amplitude data equivalent to the procedure applied for experiment 1. ANOVA 

results showed a main effect of trial interval, F(3, 81) = 74.74, p < .001, η2 = .74, whereas there 

was no main effect of age group, F(1, 27) < 0.21, p =.650, η2 < .01. The interaction effect of both 

factors just failed to reach significance, F(3, 81) = 3.17, p = .068, η2 = .11. 

We explored adaptive changes further by considering amplitude differences between specified 

trial intervals. Change data is provided in Figure 6B. For both age groups all change scores, i.e. 

immediate adjustment, gradual adjustment and recovery from adaptation, differed significantly 

from zero (all p < .001). Thus, data consistently supported saccadic plasticity across the 

perceptual task. However, one-tailed t tests yielded specific plasticity advantages for young 

adults. Senior adults showed less pronounced immediate adjustment, t(27) = -3.71, p < .001, d = -

1.42, and a trend towards attenuated recovery from adaptation t(27) = 1.69, p = .051, d = 0.68. In 

contrast, age groups did not differ in gradual adjustment, t(27) = -0.49, p = .313, d = -0.20. 

Results from fitting of the amplitude data corroborated age-related differences. Figure 7A 

illustrates vertical saccade amplitude as a function of trial number averaged across young adults 

and the senior adults. Note that for purpose of illustration, the data for upward and downward 

conditions are plotted separately here, but analyses are based on collapsed data as described 
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above. Inspection of model fits indicates that the adaptation process differs between young and 

senior adults. Individual fit parameters are shown in Figure 7B.  

 

Figure 7. Fitting results for the perceptual task. (A) Averaged vertical saccade amplitude as a 
function of trial number of young (left panel) and senior (right panel) group. Please note that data 
for upward and downward conditions are plotted separately for the purpose of illustration, but 
analyses are based on collapsed data as described in the methods. The solid vertical lines indicate 
onset and offset of adaptation phase, the horizontal line indicates target position. The thin color 
lines represent averaged amplitude across participants. Data are smoothed by averaging across a 
bin size of 10 trials for display. The shaded regions represent 95% confidence intervals. The thick 
gray lines represent the three-parameter model fits. For interpretation of parameters, please see 
Figure 3A. (B) Estimated model parameters for young adults and senior adults. Panels form left 
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to right: asymptotic level α, difference between asymptotic level and adaptation amplitude α- β, 
adaptation amplitude β, adaptation rate λ. Error bars: 95% confidence intervals. 

We again ran one-tailed t tests in order to explore age group differences. Asymptotic level α, t(27) 

= -2.80, p = .005, d = -1.06, as well as the difference between asymptotic level and adaptation 

amplitude α-β, t(27) = -2.51, p = .009, d = -0.98, differed significantly between young and senior 

adults. Adaptation amplitude β, t(27) = -0.74, p = .231, d = -0.28, and adaptation rate λ, t(27) = -

0.50, p = .310, d = -0.20, were not affected by age. Consistency across analysis methods was 

confirmed by significant correlations between immediate adjustment of saccade amplitude and 

the parameter difference score α – β, r(28) = 0.63, p < 0.001), as well as between gradual 

adjustment of saccade amplitude and the parameter β, r(28) = 0.57, p = 0.002). Overall, model 

fits provided evidence that young adults show more pronounced immediate adjustment at the 

beginning of the adaptation phase than senior adults. Gradual adjustment and adaptation rate 

were found equivalent in both age groups. 

Since we considered in particular immediate adaptive changes in the perceptual task as driven by 

top-down goals, we aimed to explore their association with standard measures of executive 

functioning. Multiple regression analysis was used to test whether immediate adjustment can be 

predicted by individuals’ performance in standard executive tasks included in our battery of 

cognitive tasks, i.e. span measures of verbal and visual working memory, task switching, and 

problem solving. Results indicated that the four predictor model explained 47.4% of the variance 

in the magnitude of immediate adjustment, R = .69, F(4, 23) = 5.18, p = .004. This result further 

validates that saccadic plasticity in the perceptual task is substantially triggered by high level 

mechanisms. 

Consistent with our findings in the double-step paradigm, we found a pronounced saccadic 

latency difference between age groups, F(1, 27) = 17.34, p < .001, η2 = .39, and a latency 

decrease across trial intervals, F(3, 81) = 3.98, p = .011, η2 = .13. The interaction between both 

main effects was not significant, F(3, 81) = 0.65, p = 0.585, η2 = .02. Figure 8 illustrates average 

latencies for each age group. Latencies did not correlate with any parameter derived from fitting 

vertical amplitude data with the exponential model. This replicates the finding of Experiment 1 

that saccadic plasticity is not modulated by latency differences. 
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Figure 8. Average saccadic latencies in the specified trial intervals of the perceptual task for 
young adults and senior adults. Error bars: SEM. 

Discussion 

In our second experiment we studied saccadic adaptation in a perceptual task (Schütz et al., 2014; 

Schütz & Souto, 2015). In this task, adaptive changes of saccade amplitude are triggered by a 

behavioral goal, i.e. accomplishing a discrimination task, while low-level visual errors are not 

manipulated. We thus explored age differences in sensorimotor plasticity when high-level 

mechanisms are emphasized. Although young as well as senior adults showed efficient amplitude 

shifts, they substantially differed in the contributions of immediate and gradual adjustments to 

overall adaptation in this perceptual task. Whereas immediate, strategic adjustments were found 

to be significantly stronger in young adults than in senior adults, gradual adjustments were not 

affected by age. Similar as in the double-step paradigm age groups showed equivalent adaptation 

rates. In the post-adaptation phase, more pronounced recovery from adaptive amplitude shifts 

was observed in younger adults. 

Differential age effects on immediate and gradual adjustments across the adaptation process 

suggest a specific decline of underlying mechanisms. In particular, immediate adjustments reflect 

high-level strategic capacities, which are applied to meet the demands of the suddenly 

manipulated task at the beginning of the adaptation phase. Notably, task manipulation is 

completely transparent and thus fully accessible to awareness. Accordingly, in contrast to 
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adaptation dynamics in the double-step paradigm immediate adjustments in the perceptual task 

contribute crucially to overall adaptation. In senior adults, immediate adjustments contributed to 

50% of the final amplitude change at the end of the adaptation phase, however, in young adults 

this contribution reached 65%. This difference indicates that visuomotor adaptation in younger 

adults relies more on strategic shifts than in senior adults. Gradual adjustments across the 

adaptation course were equivalent in both age groups. The advantage of young adults in 

immediate adjustments was perpetuated at the end of the adaptation phase when young and senior 

groups had compensated 73% and 57% of the target amplitude manipulation, respectively. Less 

pronounced amplitude shifts presumably also contributed lower discrimination accuracy we 

observed in senior adults because their saccades were not sufficiently optimized for the 

behavioral task. 

Consistent with our findings in the double-step paradigm saccadic latencies were not associated 

with adaptive changes. We observed the typical age-related differences in saccadic latencies 

(Munoz et al., 1998; Peltsch et al., 2011), but these did not explain adjustment differences. 

However, we were able to predict immediate adjustment by standard measures of executive 

functioning. This further emphasizes that fast adaptive changes of saccade amplitude reflect high-

level, strategic adjustments. Age-related vulnerability of these strategic adjustments agrees with 

evidence from reaching adaptation indicating that reduced sensorimotor plasticity is due to less 

efficient explicit strategy use while low-level mechanisms are preserved (Hegele & Heuer, 2010a, 

2013; Heuer & Hegele, 2011; McNay & Willingham, 1998; Roller et al., 2002). In addition, 

particular decline of executive behavior control is consistently supported by findings on cognitive 

aging (Hasher & Zacks, 1988; Park & Reuter-Lorenz, 2009; Span, Ridderinkhof, & van der 

Molen, 2004; West, 1996). Executive functioning is widely accepted as psychological core 

primitive of functional changes with increasing age. Our findings show that this impact is also 

valid for visuomotor control. Age-related decline of saccadic plasticity is primarily based on less 

efficient high-level mechanisms. 

Interpretation of more pronounced recovery from adaptation in young adults appears ambiguous. 

We speculate that young adults’ plasticity relies more on immediate, strategic changes which are 

most likely linked to proposed fast adaptation processes that decay rapidly (Ethier et al., 2008; 

Körding et al., 2007). In contrast, given less efficient use of executive functions senior adults 

might rely more on gradual changes which are dominated by slow adaptation processes that 
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decay slowly. This pattern could contribute to faster recovery from adaptation in young adults 

than in senior adults. However, modeling of two adaptation components that differ in build-up 

and decay considers pure retention without sensory feedback. Since visual feedback was 

available in the post-adaptation phase of the perceptual task, the model might not apply to our 

data directly. Thus, the link between differences in recovery and dominance of specific 

adaptation components has to remain tentative. 

The observed age-related vulnerabilities of saccadic adaptation are functionally based on age 

effects on involved neuronal substrates. Candidate structures are in particular the cerebellum and 

the brainstem (Robinson, Fuchs, & Noto, 2002). However, more recently also cortical areas, 

especially frontal and parietal areas, have been found to be involved in saccadic adaptation 

(Blurton, Raabe, & Greenlee, 2012; Gerardin, Miquée, Urquizar, & Pélisson, 2012; Panouilleres 

et al., 2014). Different areas might contribute to specific adaptation components. Whereas 

subcortical structures can be assumed to be functionally relevant rather for low-level mechanisms 

of sensorimotor plasticity, cortical areas might specifically fuel high-level mechanisms. Age-

related detrimental changes have been described in all functionally involved regions (Jernigan et 

al., 2001; Raz et al., 2005; Sowell et al., 2003), but subcortical decline occurs later than decline 

in cortical areas. Thus, our finding of preserved low-level visuomotor plasticity, but impaired 

high-level processes in senior adults might reflect differential time courses of regional decline. 

In summary, age effects on saccadic adaptation in a perceptual task show that in particular fast, 

strategic changes that reflect high-level mechanisms are attenuated with increasing age. In 

contrast, slower, gradual changes that are primarily driven by low-level mechanisms seem robust 

across the adult lifespan, at least across the age range covered in our study. 

General Conclusions 

Our results provide evidence of differential aging processes in saccadic adaptation. Current 

theories of age-related functional changes assume a general reduction in processing resources and 

global decline with increasing age (Salthouse, 1996). Our data highlight that differentiation 

between specific vulnerabilities and preserved resources is needed. Differential age effects 

emphasize the often ignored complexity of aging processes and call for comprehensive 

investigation of subprocesses in order to improve our understanding of decline and stability 

(Cabeza, Nyberg, & Park, 2005a). 



71 
 

Resiliency of low-level mechanisms and specific vulnerability of high-level mechanisms in 

saccadic adaptation moreover provide a link between cognitive and sensorimotor aging. Our 

findings indicate that psychological core primitives identified for cognitive decline, i.e. executive 

functioning, apply also to age-related changes in sensorimotor capacities. Saccadic plasticity was 

not affected by age-related slowing and there was no evidence for reduced compensation for 

visual errors, however, we found age-related decline of strategic adaptive adjustments. Thus, not 

sensorimotor plasticity per se might be reduced in senior adults, but rather executive 

contributions to efficient resource control (compare also Chang, Shibata, Andersen, Sasaki, & 

Watanabe, 2014). 
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Abstract 

Previous studies have provided consistent evidence that adaptation to visuomotor rotations during 

reaching declines with age. Since it has been recently shown that learning and retention 

components of motor adaptation are modulated by reward and punishment, we were interested in 

how motivational feedback affects age-related decline in reaching adaptation. We studied 35 

young and 32 older adults in a reaching task which required fast shooting movements towards 

visual targets with their right hand. A robotic manipulandum (vBOT system) allowed measuring 

reaching trajectories. Targets and visual feedback on hand position were presented using a setup 

that prevented direct vision of the hand and projected a virtual image by a semi-silvered mirror. 

After a baseline block with veridical visual feedback we introduced a 30° counterclockwise 

visuomotor rotation. After this adaptation block we also measured retention of adaptation without 

visual feedback and finally readaptation for the previously experienced rotation. In the adaptation 

block participants were assigned to one of three motivational feedback conditions, i.e. neutral, 

reward, or punishment. Reward and punishment feedback was based on reaching endpoint error. 

Our results consistently corroborated reduced motor learning capacities in older adults (p < .001, 

η2 = .56). However, motivational feedback modulated learning rates equivalently in both age 

groups (p =.028, η2 = .14). Rewarding feedback induced faster learning, though punishing 

feedback had no effect. For retention we determined a significant interaction effect between 

motivational feedback and age group (p =.032, η2 = .13). Previously provided motivational 

feedback was detrimental for young adults, but not for older adults. We did not observe robust 

effects of motivational feedback on readaptation (p =.167, η2 = .07). Our findings support that 

motor learning is subject to modulation by motivational feedback. Whereas learning is boosted 

across both age groups, retention is vulnerable to previously experienced motivational incentives 

in young adults. In summary, in particular older adults benefit from motivational feedback during 

reaching adaptation so that age-related differences in visuomotor plasticity, though persisting, can 

be attenuated. We suggest that the use of motivational information provides a potentially 

compensatory mechanism during functional aging. 

Keywords: motor learning, visuomotor adaptation, reaching, healthy aging, motivation  
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Introduction 

The current understanding of functional aging processes is dominated by a strong focus on 

cognitive capacities (for reviews see Baltes, Staudinger, & Lindenberger, 1999; Hasher & Zacks, 

1988; Park & Reuter-Lorenz, 2009; West, 1996). Whereas sophisticated models for cognitive 

decline and the underlying neural mechanisms have been developed, visuomotor changes across 

the adult lifespan are still not well understood. However, they provide a unique opportunity to 

investigate the complexity of functional aging in which sensory, motor, cognitive, and also 

motivational processes interact. Although most cognitive theories share the general assumption of 

a core primitive of aging that ultimately results in global decline, there is emerging evidence that 

emphasizes the need to investigate developmental changes considering the complexity of 

interwoven functional subprocesses that ultimately shape behavioral capacities (van den Bos & 

Eppinger, 2016). This comprehensive approach might contribute to improving ageing models in 

order to differentiate between decline and stability across the lifespan. 

Plasticity of visuomotor behavior represents a crucial capacity in a continuously changing 

environment and a number of studies have explored age-related changes. Previous studies were in 

particular concerned with motor adaptation, i.e. the recalibration of well-trained movements to 

changes in the environment. Motor adaptation thus represents a basic type of motor learning that 

is generally distinguished from skill acquisition which refers to learning of novel movement 

patterns (Diedrichsen & Kornysheva, 2015; Wolpert, Diedrichsen, & Flanagan, 2011). Note that 

in the context of motor adaptation learning is frequently inferred from both changes in 

performance during adaptation as well as subsequent retention and transfer tests. In contrast, skill 

acquisition, characterized as a peristent change in the behavioral capabilities of the learner, has 

typically been assessed in retention and transfer tests in order to obtain purer measures of the 

newly acquired skill independent of practice-related variables (Schmidt & Lee, 2011; Sternad, 

2018). This distinction should be kept in mind to avoid confusions. Typical motor adaptation 

paradigms elicit gradual changes in eye or reaching movements in order to compensate for 

manipulated visual feedback on movement outcome or disturbing force fields during movement 

execution. Age effects on motor adaptation have been primarily investigated in reaching 

paradigms introducing a visuomotor rotation (for review see Bock & Schneider, 2002). 
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Congruent with knowledge on cognitive plasticity decline with increasing age (for review see 

Jones et al., 2006), numerous studies on reaching adaptation in different age groups have 

provided overall support for an age-related vulnerability (e.g. Bock, 2005; Buch, Young, & 

Contreras-Vidal, 2003; Heuer & Hegele, 2008a; Seidler, 2006). However, it has remained 

ambiguous which processes contribute to the observed deterioration and which processes are 

robust to decline, thus potentially stabilizing adaptation capacities. Indeed several findings have 

suggested that reaching adaptation might be subject to only minor decline or can be even 

preserved across the lifespan depending on specific experimental conditions (Bock & Schneider, 

2001; Cressman, Salomonczyk, & Henriques, 2010; Heuer & Hegele, 2008b). These results 

suggest that adaptation can be driven by a variety of processes that differ in vulnerability during 

aging. Consequently, vivid efforts have emerged aimed at identifying critical modulators of age-

related decline in motor plasticity. 

A particularly important distinction has been made between implicit and explicit knowledge 

fuelling visuomotor adaptation. Implicit knowledge eludes consciousness and builds up gradually 

across adaptation. In contrast, explicit knowledge of visuomotor perturbations triggers intentional, 

conscious movement corrections in order to compensate for the experienced error. The 

availability and efficiency of this adaptation component is closely linked to executive resources 

and cognitive strategies. Using paradigms that allowed dissociating both components, consistent 

evidence has been provided that aging is detrimental to explicit adaptation processes, whereas 

implicit adaptation processes remain remarkably stable across the lifespan (Bock & Girgenrath, 

2006; Hegele & Heuer, 2010c, 2010b, 2013; Heuer & Hegele, 2009; Heuer, Hegele, & 

Sülzenbrück, 2011; Huang, Gegenfurtner, Schütz, & Billino, 2017). Another candidate modulator 

of age-related effects on motor adaptation has been suggested recently by a study on the role of 

reinforcement mechanisms during adaptation (Heuer & Hegele, 2014). Findings indicated that a 

reduced efficiency of motivational mechanisms might add to the decline in adaptive capacities. 

This evidence for the impact of motivational factors on age-related changes in motor adaptation 

appears intriguing because there is a coincidence with accumulating recent work on the effects of 

reward and punishment during motor adaptation. In the traditional understanding of motor 

adaptation as a most basic mechanism of motor control, the effects of motivational feedback on 

plasticity were assumed to be negligible (e.g. Mazzoni & Krakauer, 2006; Wolpert et al., 2011). 

However, this assumption has been questioned by several findings. A number of studies have 
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supported beneficial effects of motivational feedback, in particular reward, on motor adaptation 

(Kojima & Soetedjo, 2017; Nikooyan & Ahmed, 2015; Quattrocchi, Greenwood, Rothwell, 

Galea, & Bestmann, 2017; but see van der Kooij & Overvliet, 2016). In addition, Galea, Mallia, 

Rothwell, and Diedrichsen (2015) disentangled differential contributions of reward and 

punishment to learning and retention during adaptation. Their results showed that punishment 

was associated with faster learning, but reward boosted retention when visual feedback on 

movement outcomes was withdrawn. In summary, motivational feedback qualifies for a 

substantial modulator of motor adaptation. The question arises how this functional link is affected 

by increasing age. 

The impact of motivational processing on behavioral control during aging has been intensively 

investigated over the last years, however almost exclusively in cognitive learning or decision 

paradigms. Findings suggested a reduced sensitivity to reward and punishment with increasing 

age, resulting in an attenuation of motivational feedback effects on behavior (e.g. Bauer et al., 

2013; Brown & Ridderinkhof, 2009; Eppinger, Hämmerer, & Li, 2011; Eppinger, Schuck, 

Nystrom, & Cohen, 2013; Mata, Josef, Samanez-Larkin, & Hertwig, 2011). Heterogeneity of 

results, though, points to a strong dependence on task characteristics and the critical role of 

cognitive control processes. It remains to be clarified whether age-related changes in motivational 

mechanisms also challenge motor control. Neural correlates of motivational processing in 

particular include dopaminergic neuromodulation and connectivity between brain networks 

(Ernst & Fudge, 2009; Montague, Hyman, & Cohen, 2004). These are known to be subject to 

pronounced age-related decline (Bäckman, Lindenberger, Li, & Nyberg, 2010; Sala-Llonch, 

Bartrés-Faz, & Junqué, 2015; Samanez-Larkin & Knutson, 2015). Thus, the effects of 

motivational manipulations on motor performance might differ between age groups. 

We aimed to investigate how motivational incentives modulate age-related differences in motor 

learning. Using an established visuomotor rotation paradigm that is known to robustly induce 

adaption in reaching movements, we compared motor plasticity between young adults and 

healthy, community-dwelling older adults. In addition, within each age group we provided 

neutral, rewarding, or punishing feedback when adapting for reaching endpoint errors. We 

expected to observe age-related decline in reaching adaptation, but hypothesized that the age-

related differences are modulated by motivational feedback.  
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Methods 

Participants 

A total of 35 young adults (22 females) and 32 older adults (18 females) participated in our study. 

In the young adult group age ranged from 18 to 37 years with a mean age of 25.3 years (SD = 

4.3). In the senior adult group age ranged from 60 to 77 years with a mean age of 68.4 years (SD 

= 5.0). Recruitment of subjects was managed by calls for participation at the University of 

Giessen and in local newspapers. All participants were naive with respect to the purpose of the 

study and were paid for participating. Any history of ophthalmologic, neurologic, or psychiatric 

disorders as well as medications presumed to interfere with perceptual capacities were screened 

out by a detailed interview protocol. In addition, we ran a battery of standard cognitive tasks in 

order to exclude pathological age-related decline. Visual acuity was measured binocularly 

confirming normal or corrected-to-normal for all participants. Assessment by the Edinburgh 

Inventory (Oldfield, 1971) showed right-handedness for the majority of participants. We 

identified three left-handed young adults and three ambidextrous adults, one in the young adult 

group and two in the older adult group, respectively. Methods and procedures agreed with the 

Declaration of Helsinki (World Medical Association, 2013) and were approved by the local 

ethics committee of the Faculty of Psychology and Sports Science, Justus-Liebig-Universität 

Gießen. Informed consent was obtained by all participants and protection of data privacy was 

provided. 

Setup and stimuli 

Figure 1A illustrates the setup of our study. We used a two-dimensional planar manipulandum, a 

vBOT system (Howard, Ingram, & Wolpert, 2009), to investigate reaching movements in our 

participants. Position of the manipulandum handle was recorded at a sampling rate of 1000 Hz. 

The vBOT system was integrated in a virtual-reality setup consisting of a monitor/mirror 

projection system. Stimuli were generated using Matlab with the Psychophysics Toolbox 

(Brainard, 1997) and displayed on the monitor. The monitor image was projected onto a semi-

silvered mirror which produced a virtual image of the display. Participants were seated on a 

height-adjustable chair so that they were able to take a comfortable position in order to look at the 

semi-silvered mirror and to grasp the manipulandum handle that was occluded by the mirror. 

Head position was supported by a chin and a head rest. Distances and angles between monitor, 
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mirror, and the handle plane under the mirror were calibrated such that the virtual image was 

perceived being at the same plane as the handle. 

 

Figure 1. Illustration of setup and stimuli. (A) Side view showing the participant in front of the 
vBOT and looking at the semi-silvered mirror that reflects the image of the monitor. (B) Layout 
of reaching targets; note that only one target was shown at a time, the dotted circles here just 
illustrate defined positions; the green dotted arrow shows a veridical handle trajectory, the green 
solid arrow shows the corresponding displayed trajectory in an adaptation trial, i.e. a trajectory 
rotated counterclockwise by 30°. (C) Example adaptation trial, reward condition; at trial start the 
handle position was indicated by a green dot; the reaching trajectory was displayed online by a 
moving green dot with a 30° counterclockwise rotation; the reaching endpoint was indicated by a 
yellow dot and was accompanied by feedback on points based on endpoint error. (D) Sequence of 
experimental blocks, for details see text. 

The layout of possible reaching targets is shown in Figure 1B. At the center of a black 

background a white square with edge length of 1 cm indicated the starting position of the 

reaching movement. The reaching target was a white dot with a diameter of 0.3 cm. There were 

eight possible target positions arranged circularly around the start square at a distance of 8 cm 

and separated by 45° each. 

Procedure 

Before each trial a white square appeared at the center of the display. As soon as the participant 

encompassed the handle the vBOT system guided it to the square, i.e. the starting position. The 

square then disappeared and reappeared after 200 ms indicating the trial start. At the same time 

the reaching target was shown at one of the eight possible positions. In a sequence of eight trials 

each position occurred once and the order of positions was randomized. All participants used 

their right hand for steering the handle and were asked to reach to the target as fast and accurately 
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as possible. Response time was defined as the time between the trial start and the handle leaving 

the starting square, giving the movement onset. Movement time was defined by the time between 

movement onset and the handle hitting the virtual circle around the starting square on which the 

target positions were arranged. Visual feedback on the handle position could be provided by a 

green dot with a diameter of 0.3 cm. An example adaptation trial is shown in Figure 1C. 

The complete reaching adaptation procedure consisted of five blocks and is illustrated in Figure 

1D. The participants started with a baseline block with 96 trials overall. While in the first half of 

this block veridical visual feedback on the handle position was provided, no visual feedback was 

given in the second half. Both halves were separated by a short rest period that was limited to one 

minute. In the baseline block participants were supposed to get used to the task under conditions 

with and without visual feedback. Movement accuracy differences between both feedback 

conditions were not observed since participants were instructed to reach fast and directly to the 

targets. 

Following the baseline trials, the adaptation block started in which visual feedback on the handle 

trajectory was provided, but introducing a counterclockwise rotation by 30°. There were a total of 

288 adaptation trials split in two halves by a short rest period limited to one minute. At the end of 

each trial the final handle position was indicated by a yellow dot with a diameter of 0.3 cm and 

displayed for 500 ms. Additional motivational feedback was simultaneously displayed next to the 

reaching target (see Figure 1C). There were three different motivation conditions, i.e. neutral, 

reward, and punishment. In the neutral condition, two uninformative horizontal lines were 

displayed. In the reward and the punishment conditions, participants were told in advance that 

they could earn additional points in some phases of the experiment that would be finally 

converted to money, i.e. two points yielding one cent. In the reward condition, participants started 

with zero points and their gain added up across the trials; in the punishment condition participants 

were given an initial credit of 1200 points that was reduced by negative points. As motivational 

feedback both points earned or lost in each trial and totally accumulated points were displayed. 

Points were based on endpoint error. In the reward condition and the punishment condition, 

respectively, hitting the target gave 4 points and 0 points, an error < 10° gave 3 points and -1 

point, an error < 20° gave 2 points and -2 points, an error < 30° gave 1 point and -3 points, an 

error > 30° gave 0 points and -4 points. In order to avoid strategic slowing in the adaptation block, 

a warning signal was shown in trials in which movement time exceeded the 90th percentile of the 
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baseline block. The starting square then turned to red indicating that the reaching movement was 

too slow. In those trials 0 points and -4 points were given in the reward condition and in the 

punishment condition, respectively. Assignment of participants to one of the three motivation 

conditions was done according to the order in which they participated in the study. For every 

three consecutive young and older adults, respectively, each condition was applied once and was 

randomly assigned. In the young adult group, there were 13 participants in the neutral condition, 

10 participants in the reward condition, and 12 participants in the punishment condition. In the 

older adult group, there were 10 participants in the neutral condition, 10 participants in the 

reward condition, and 12 participants in the punishment condition. 

The adaptation block was followed by a retention block that comprised 288 trials again split in 

two halves by a short rest period limited to one minute. Similar to the second half of the baseline 

block, here no visual feedback on the handle position was provided. Thus, participants did not 

receive any performance information that could drive further motor learning processes. This 

block allowed for investigating retention without feedback on movement errors, i.e. errorless 

retention. The gradual decay of the adaptive shift in reaching direction specifically characterizes 

retention. 

After retention a washout block with a total of 192 trials was supposed to return the reaching 

error to the baseline level. Veridical visual feedback of the handle trajectory was given. Finally, 

relearning was investigated in a readaptation block. There were 96 trials in which the visual 

feedback was manipulated equivalently to the adaptation block. However, no motivational 

feedback was provided. 

After the last block participants received 8 € per hour plus their additional gain if they were 

assigned either to the reward or to the punishment condition. Overall the procedure took about 60 

to 90 minutes and thus the duration was still appropriate for the older participants. 

Data analysis 

Analyses of time measures, i.e. response times and movement times, were based on average data 

across defined blocks including all trials. Since the washout block was not critical for the 

investigation of learning parameters, time measures from this block were not considered in detail. 



85 
 

Angular reaching direction was calculated as the difference between the angular target position 

and the angular handle position at the end of each trial. Thus, in trials without visuomotor 

rotation reaching directions closer to 0° indicated smaller deviations between the final handle 

position and the target. In contrast, in adaption trials reaching directions closer to 30° indicated 

the more accurate movements since feedback on the handle position was rotated 

counterclockwise by 30°. We excluded trials with extreme reaching directions exceeding 50° or -

20°. In addition, trials with response times larger than 1500 ms were discarded because initiation 

of the reaching movement was considered as overly delayed putatively due to high-level 

cognitive processes. Based on these criteria on average 4.4% (SD = 2.7%) of all trials had to be 

discarded. Data from four participants, i.e. one young adult and the three older adults, who 

showed exclusion rates > 10% were excluded from further analyses. 

Furthermore, we examined overall time needed for reaching movements in the baseline block in 

order to identify participants who did not accomplish the task appropriately. We determined 

within each age group outlier data by inspection of boxplots and considered time measures 

deviating more than 1.5 times the interquartile range from the range borders as outliers. We 

identified outlier data for two young adults and two older adults. They were also excluded from 

further analyses. 

Reaching direction data was analyzed using angular measure circular statistics (Berens, 2009). 

For each participant the average of reaching directions across all trials in the baseline block was 

removed from the following trials in order to adjust for individual biases in reaching movements. 

We then derived different parameters that characterize motor learning. As model-free parameters 

for adaptation and retention we considered the reaching direction shown by the end of the 

adaptation block and the retention block, respectively. We were here specifically interested in the 

finally achieved adaptive shift and the persisting retention status. In order to obtain robust 

measures, we averaged reaching direction across the last third of trials in both the adaptation and 

the retention block, i.e. across 96 trials each. In addition, we derived model-based parameters 

using a single-state state-space model to quantify learning and retention parameters (Smith, 

Ghazizadeh, & Shadmehr, 2006). For the adaptation block, the retention block, and the 

readaptation block we fitted reaching direction data trial-by-trial based on the following model 

equations. 
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𝑦�𝑛 = −𝑧𝑛𝑡         and        𝑧𝑛+1𝑡 = 𝐴𝑧𝑛𝑡 + 𝐵(𝑟𝑛 − 𝑧𝑛𝑡 )      (1) 

𝑦�𝑛 gives the angular reaching direction on trial n. The current estimated visuomotor rotation 

associated with the target t is given by 𝑧𝑛𝑡   . 𝑟𝑛 represents the visuomotor rotation on trial n. Thus, 

𝑟𝑛 − 𝑧𝑛𝑡  gives the reaching error on trial n. Given the model equation, the parameter A provides a 

measure for retention rate, i.e. persistence of the previous learning state. For the adaptation and 

readaptation blocks this parameter was not further followed up since in each trial consistent 

rotated feedback was given excluding substantial forgetting. The parameter B provides a measure 

for adaptation for the experienced reaching error on the previous trial, i.e. the learning rate. Since 

no visual feedback on the reaching error was provided in the retention block, we set B = 0 for 

fitting. A measure for the learning benefit based on repeated exposure to the visuomotor rotation 

was given by the difference between the learning rates in the readaptation block and the 

adaptation block, i.e. savings. 

By evaluating boxplots for the different learning parameters and applying the same criteria as 

described above we determined further outlier data for each age group. Extreme parameters 

suggested that the corresponding participants showed insufficient compliance with the task 

instructions, applied specific strategies for accomplishing the task, or were affected early by 

fatigue. In the adaptation block, two young participants showed an extremely high or low 

learning performance, respectively. For another young participant we determined almost 

complete persistence of adaptation in the retention block. Finally, an older adult showed 

extremely low savings, i.e. benefit from repeated learning, in the readaptation block suggesting 

pronounced fatigue across the experiment. In order to reduce noise in our data we excluded the 

identified participants from further analyses. 

The exploratory data analysis and the corresponding exclusion of participants reduced our dataset 

to 29 young adults and 26 older adults. We tested whether exclusion of participants was related to 

age group or motivational condition. There was no significant bias in exclusion that could 

complicate analyses of the final dataset, Φ = .63, p = .091. 

If not stated otherwise, data were analyzed using two-way factorial ANOVAs with the between-

subjects factor age group (young adults vs. older adults) and the between-subjects factor 

motivation condition (neutral vs. reward vs. punishment). Significant main effects were followed 

up by planned simple contrasts comparing both the reward and the punishment condition to the 
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neutral condition, respectively. Significant interaction effects were scrutinized by one-way 

ANOVAs for each age group with the factor motivation condition. Post-hoc contrasts were 

Bonferroni-Holm corrected for multiple comparisons. A significance level of α = .05 was used 

for all statistical analyses. Descriptive values are given as means ± SEMs. 

Results 

We aimed to investigate how motivational incentives modulate age-related differences in motor 

learning. Performance of a young adult group and an older adult group was assessed in a reaching 

task that required fast shooting movements towards visual targets. 

Adaptive processes were triggered by manipulation of visual feedback on the individual reaching 

trajectories. The applied visuomotor rotation paradigm robustly elicited adaptation of reaching 

direction in both age groups. Figure 2 shows the averaged angular reaching direction across the 

experimental blocks for young adults (panel A) and older adults (panel B). Reaching direction is 

plotted epochs that give the average across eight reaching movements. 

The illustration shows an overall similar pattern in both age groups. In the baseline block, 

reaching direction fluctuated around 0°, i.e. a perfect match between final handle position and the 

target. Considering the complete sample, we indeed determined a counterclockwise bias, -0.91 ± 

0.18°, that significantly deviated from 0°, t(54) = -5.11, p < .001, d = -1.39. This bias was most 

likely due to our procedure requiring that the right hand was used for the reaching movements. A 

one-way ANOVA with the factor motivation condition yielded no evidence that this bias was 

affected by the motivation condition participants were assigned to, F(2, 52) = 0.47, p = .631, η2 

= .02. As described above in the Methods section we adjusted reaching direction data for the bias 

by removing the average across the baseline block from the following trials. 

In the adaptation block, in which visual feedback on reaching trajectories was systematically 

rotated counterclockwise by 30°, reaching direction shifted across the epochs so that the angular 

error between the final handle position and the target was reduced. In the retention block without 

visual feedback the adaptive shift in reaching direction declined, but was not completely 

abolished. The washout block with veridical visual feedback on reaching trajectories finally 

brought the reaching direction back close to 0°. Picking up rotated visual feedback in the 

readaptation block again elicited adaptive shifts of reaching direction. In summary, young and 

older adults showed the expected pattern of shifts in reaching direction that were supposed to be 
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triggered by the experimental procedure. However, the comparison between panels A, i.e. young 

adults, and B, i.e. older adults, in Figure 2 points to substantial differences in magnitude of shifts 

observed in both age groups and in particular to specific effects of motivational feedback 

provided in the adaptation. In the following, detailed results for motor learning parameters in the 

adaptation block, the retention block, and the readaptation block are presented. 

 

Figure 2. Averaged reaching direction across the experimental blocks for (A) the young adult 
group and (B) the older adult group, respectively. Epoch data, i.e. average across eight trials, is 
used for plotting reaching direction. Data is given in gray for neutral condition groups, in green 
for the reward condition groups, and in red for the punishment condition groups. 
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Visuomotor learning 

In the adaptation block, participants who were assigned to either the reward or the punishment 

condition had the opportunity to earn points based on endpoint error of their reaching movements 

(see Methods section). Thus, better motor learning yielded more points in the reward condition 

and reduced lost points in the punishment condition, respectively. For both conditions we 

determined significant age effects on the point outcome. In the reward condition, young adults 

won on average 2.72  ± 0.04 points per trial, but older adults won only 1.90 ± 0.12 points per trial 

(t(11.1) = 6.33, p < .001, d = 2.79). In the punishment condition, young adults lost on average -

1.55  ± 0.07 points per trial whereas older adults lost -2.30 ± 0.12 points per trial (t(18) = 5.46, p 

< .001, d = 2.57). These differences indicated an age-related disadvantage in motor learning that 

was corroborated by analysis of the specified learning parameters in the adaptation block. 

Figure 3A illustrates the learning rate for both adult groups in the different motivational feedback 

conditions. We determined significant main effects of age group, F(1, 49) = 66.19, p <.001, η2 

= .56, and motivation condition, F(2, 49) = 3.84, p =.028, η2 = .14. The interaction effect of both 

factors did not reach significance, F(2, 49) = 1.74, p =.185, η2 = .07. Older adults showed lower 

learning rates than young adults in all motivational feedback conditions. 

 

Figure 3. Learning results in the adaptation block. (A) Average learning rates in the different 
motivation condition groups for young and older adults. (B) Average final reaching direction in 
the different motivation condition groups for young and older adults. Error bars depict ± 1 SEM. 
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The main effect of motivation condition was followed up by two planned contrasts comparing the 

neutral condition to the reward and the punishment condition, respectively. Whereas the learning 

rate was significantly higher in the reward condition than in the neutral condition, contrast 

estimate 0.05 ± 0.02, p = .046, punishment did not affect the learning rate, contrast estimate < 

0.01 ± 0.02, p = .991.  

The final adaptive state at the end of the adaptation block is shown in Figure 3B. Reaching 

direction in the last third of trials was significantly affected by age group, F(1, 49) = 115.63, p 

<.001, η2 = .70, and motivation condition, F(2, 49) = 6.05, p =.005, η2 = .20. However the main 

effects were qualified by a significant interaction of both factors, F(2, 49) = 3.27, p =.046, η2 

= .12. As post-hoc analyses we ran separate one-way ANOVAs with the factor motivation 

condition for both age groups. For young adults, the effect motivation condition just failed to 

reach significance, F(2, 26) = 3.18, p =.058, η2 = .20. In contrast, in the older adult group 

significant differences between the motivational feedback groups were supported, F(2, 23) = 4.10, 

p =.030, η2 = .26. Planned contrasts showed a more pronounced adaptive shift in the reward 

condition than in the neutral condition, contrast estimate 4.95 ± 1.74°, p = .018. The comparison 

between the punishment condition and the neutral condition neared significance, contrast 

estimate 3.50 ± 1.74°, p = .056. 

In summary, our findings in the adaptation block consistently corroborated expected reduced 

motor learning capacities in older adults when compared with young adults. In addition, analyses 

yielded evidence that motivational feedback modulates motor adaptation in both age groups. 

Results from model-based and model-free analyses did not overlap completely, but overall 

supported a similar pattern. Faster learning was induced by rewarding feedback. Punishing 

feedback was less efficient and did not boost learning significantly relative to neutral feedback. 

This pattern was observed for young adults as well as for older adults. However, at the end of the 

adaptation block it only neared significance for younger adults. Since the adaptive shift in 

reaching direction then was close to complete for young adults, the attenuation of the 

motivational effect might be due to a ceiling effect. 

Visuomotor retention 

In the retention block no visual feedback was provided and thus it allowed for investigating 

errorless retention. Figure 4A shows the retention rate for both adult groups in the different 
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motivational feedback conditions. The lower the retention rate was, the faster the reaching 

direction shift built up across the adaptation block decayed in the absence of performance 

feedback. The two-factorial ANOVA yielded a significant main effect for motivation condition, 

F(2, 49) = 3.20, p =.049, η2 = .12, but not for age group, F(1, 49) = 0.21, p =.650, η2 < .01. In 

addition, a significant interaction effect of both factors was found, F(2, 49) = 3.70, p =.032, η2 

= .13. Post-hoc one-way ANOVAs for each age group showed that retention rate significantly 

varied across motivational feedback conditions in young adults, F(2, 26) = 5.47, p =.010, η2 = .30, 

but not in older adults, F(2, 23) = 0.20, p =.825, η2 = .02. For the young adults, we further 

clarified that the retention rate was significantly lower in the reward condition than in the neutral 

condition, contrast estimate -0.09 ± 0.03, p = .006. However, retention rates in the punishment 

condition and in the neutral condition were equivalent, contrast estimate -0.02 ± 0.02, p = .317. 

 

Figure 4. Retention results. (A) Average retention rates in the different motivation condition 
groups for young and older adults. (B) Average final reaching direction in the different 
motivation condition groups for young and older adults. Error bars depict ± 1 SEM. 

Figure 4B gives the final reaching direction in the last third of the retention block. For this 

parameter we determined a significant main effect of age group, F(1, 49) = 13.02, p =.001, η2 

= .21, but not for motivation condition, F(2, 49) = 1.28, p =.287, η2 = .05. Again a significant 

interaction effect of both factors, F(2, 49) = 3.66, p =.033, η2 = .13, qualified main effect results. 

Post-hoc one-way ANOVAs again yielded a significant effect of motivation condition for young 

adults, F(2, 26) = 3.95, p =.032, η2 = .23, but not for older adults, F(2, 23) = 0.57, p =.572, η2 

= .05. Young adults showed a significantly lower retention rate in both the reward condition, -
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5.01 ± 1.96°, p = .034, and in the punishment condition, -0.02 ± 0.02°, p = .044, when compared 

to the neutral condition. 

Overall results in the retention block pointed to an interaction effect between motivational 

feedback and age group. For young adults motivational feedback during initial learning was 

detrimental for retention performance. In particular, rewarding feedback induced significantly 

faster forgetting and was associated with a smaller persisting adaptive shift at the end of the 

retention block. Punishing feedback, though not triggering performance differences during initial 

learning, similarly was associated with a smaller persisting adaptive shift. In contrast to these 

finding for younger adults, older adults’ retention performance was not affected by the 

motivational condition during initial learning. 

Visuomotor relearning 

We investigated relearning rates in the readaptation block in order to clarify how motivational 

effects on adaptation and retention affect relearning in the different age groups. By the end of the 

washout block reaching direction was close to 0° in all experimental groups (compare Figure 2). 

Using the last 16 trials of the washout block as reference, we however found a persisting shift in 

reaching direction for the complete sample, 0.80 ± 0.23°, t(54) = 3.56, p = .001, d = 0.97. This 

means that no complete washout was accomplished by the 192 trials with veridical visual 

feedback. The persisting shift, though, did not correlate with learning rate in the following 

readaptation block, r(55) = .05, p = .729. Furthermore, factorial analysis yielded no evidence for 

significant main effects of age group, F(1, 49) = 2.10, p =.153, η2 = .04, or motivation condition, 

F(2, 49) = 0.11, p =.897, η2 = .01, on the reaching direction by the end of the washout block. In 

addition, the interaction effect was also not significant, F(2, 49) = 0.82, p =.446, η2 = .03. Thus 

we suggest that any differences in relearning are rather unlikely to be induced by incomplete 

washout, but can be linked to differences in previous adaptation and retention. 

Figure 5A illustrates the learning rate in the readaptation block for each age group in the different 

motivational feedback conditions. Please note that during readaptation no additional motivational 

feedback was provided. We determined a significant main effect of age group, F(1, 49) = 36.71, 

p <.001, η2 = .43. Older adults showed lower learning rates during readaptation than young adults 

in all motivational feedback conditions. Neither the main effect of motivation condition, F(2, 49) 
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= 1.86, p =.167, η2 = .07, nor the interaction effect, F(2, 49) = 1.02, p =.369, η2 = .04, reached 

significance. 

 

Figure 5. Learning in the readaptation block. (A) Average learning rates in the different 
motivation condition groups for young and older adults. (B) Average savings, i.e. the difference 
between the learning rates in the readaptation block and the adaptation block, in the different 
motivation condition groups for young and older adults. Error bars depict ± 1 SEM. 

In Figure 5B savings, i.e. the difference between the learning rate in the readaptation block and 

the learning rate in the adaptation block, are shown. Savings represent the learning benefit when 

participants adapt to a visuomotor manipulation that they have already experienced before. In all 

age groups and motivational feedback condition, respectively, savings were significantly larger 

than zero (all ps ≤ .017). We found a significant main effect of age group, F(1, 49) = 11.06, p 

=.002, η2 = .18, but neither a significant main effect of motivation condition, F(2, 49) = 0.73, p 

=.489, η2 = .03, nor a significant interaction effect, F(2, 49) = 0.35, p =.710, η2 = .01. Older 

adults benefitted less from the previous learning experience than young adults.  

In summary, congruent with our findings in the adaptation block learning rate in the readaptation 

block was significantly lower in older than in young adults. In addition, older adults showed 

smaller benefits from repeated learning indicated by savings. However, there was no significant 

evidence that motivational feedback during initial learning affected learning performance during 

readaptation. Although visual inspection of Figure 5 suggests an overall beneficial effect of 

motivational feedback on learning rate and savings across both age groups, differences did not 

reach significance given pronounced variability of parameters in this last experimental block. 
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Response and movement times 

Finally we analyzed response and movement times in order to clarify whether the effects of 

motivation condition during reaching adaptation are linked to differential movement strategies. 

Table 1 summarizes the data for young and older adults. 

Time measures were specifically of interest in the adaptation block, the retention block, and the 

readaptation block since the learning parameters were derived from these blocks. Data from the 

baseline block was used for checking systematic differences between our participant groups that 

were not due to the specific motivational manipulations. For each block we ran 2 (age group) x 3 

(motivation condition) ANOVAs on both response times and movement times, respectively. 

In the baseline block we only determined a significant main effect of age group on response 

times, F(1, 49) = 28.1, p < .001, ηp
2 = .36. Older adults started their movements significantly 

slower than young adults. Most importantly, response times were affected neither by a main 

effect of motivation condition nor an interaction effect between both factors (ps ≥ .292). Analysis 

of movement times yielded no significant effects. Thus, we found no evidence for systematic 

biases in the baseline block that could limit interpretation of our results in the later blocks. 

ANOVAs for the main experimental blocks consistently showed significant main effects of age 

group on response times (adaptation block: F(1, 49) = 24.0, p < .001, ηp
2 = .33; retention block: 

F(1, 49) = 19.2, p < .001, ηp
2 = .28; readaptation block: F(1, 49) = 16.2, p < .001, ηp

2 = .25). 

However, reaction times were not affected by main or interaction effects of motivation condition 

(all ps ≥ .463). Analysis of movement times again yielded no significant effects across all 

considered blocks. In summary, these results indicated that motivational effects on the different 

learning parameters could not be explained by specific strategies for movement initiation or 

execution that would have affected time measures. Congruently, in neither age group we found 

significant correlations between the time measures and the relevant learning parameters in the 

specific experimental blocks (all ps ≥ .10). 
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Table 1. Response times (RT) and movement times (MT) in the different motivation condition 
groups for young and older adults; data is given for the baseline block and the main experimental 
blocks. 

  Younger adults  Older adults 

  RT [ms]  MT [ms]  RT [ms]  MT [ms] 

Baseline         

 Neutral  403 ± 10  123 ± 6  481 ± 11  144 ± 8 

 Reward  413 ± 19  131 ± 14  514 ± 18   137 ± 10 

 Punishment  424 ± 10  144 ± 13  529 ± 38  140 ± 11 

Adaptation         

 Neutral  441 ± 20  121 ± 9  542 ± 10  142 ± 16 

 Reward  415 ± 34  120 ± 13  523 ± 22  143 ± 9 

 Punishment  439 ± 19  137 ± 13  567 ± 41  138 ± 7 

Retention         

 Neutral  408 ± 16  109 ± 5  484 ± 19  125 ± 7 

 Reward  396 ± 22  117 ± 12  519 ± 36  134 ± 8 

 Punishment  432 ± 22  116 ± 9  523 ± 31  123 ± 6 

Readaptation         

 Neutral  421 ± 18  117 ± 6  557 ± 34  142 ± 18 

 Reward  419 ± 30  130 ± 16  554 ± 66  140 ± 10 

 Punishment  431 ± 22  137 ± 12  550 ± 35  150 ± 16 
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Discussion 

This study was concerned with motivational modulation of motor learning. We investigated 

reaching adaptation in a well-established visuomotor rotation paradigm that is known to robustly 

induce adaptive movement shifts (e.g. Krakauer, 2009; Krakauer, Pine, Ghilardi, & Ghez, 2000). 

We coupled movement endpoint error experienced during adaptation to neutral, rewarding, or 

punishing feedback. Comparing reaching performance in a group of young adults and a group of 

healthy older adults, we explored whether motivational incentives modulate age-related decline 

in motor learning. 

Visuomotor perturbations in our paradigm triggered consistent recalibration of reaching direction 

across all participants. However, motor plasticity was found significantly reduced in older adults. 

This result corroborated findings from previous studies using similar reaching adaptation 

procedures (e.g. Bock, 2005; Buch et al., 2003; Heuer & Hegele, 2008a, 2009). It has been 

suggested that in particular an age-related vulnerability of explicit, strategic components 

contributing to adaptation drive these age effects; in contrast implicit components have found to 

be preserved across the lifespan and putatively stabilize motor learning (Heuer et al., 2011; Heuer 

& Hegele, 2009; Huang et al., 2017). Although both implicit and explicit components were 

supposed to be involved in the observed recalibration of reaching direction (see Taylor, Krakauer, 

& Ivry, 2014), our procedure putatively favored the flexible application of explicit strategies. The 

visuomotor perturbation was introduced abruptly and no supporting instructions were given. In 

addition, we used varying target directions for which explicit, but not implicit components 

generalize (Heuer & Hegele, 2011). Given the particular vulnerability of explicit adaptation 

components, we suggest that the age-related attenuation of reaching adaption primarily reflects 

reduced availability or use of explicit strategies. 

Although we determined an overall detrimental age effect on reaching adaptation, motivational 

modulation of motor learning was found to be stable across both age groups. In particular error-

based reward boosted learning during acquisition, while punishment was less efficient. Young 

and older adults equivalently showed faster learning rates with rewarding feedback than with 

neutral feedback. The final adaptive state as measured by reaching direction at the end of the 

adaptation block varied between the feedback conditions in older adults, but not in young adults. 

Older adults showed larger adaptive shifts with rewarding feedback. Also punishing feedback 
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tended to have a positive effect, though significance was failed. We speculate that in young adults 

motivational modulation was obscured at the end of the adaptation block because their adaptive 

shifts in reaching direction then were close to complete, resulting in a ceiling phenomenon. 

Indeed, our paradigm seemed to trigger especially high learning rates in young adults when 

compared with previous studies using similar visuomotor rotations by 30°. In the neutral 

condition we determined an average learning rate of 0.16 for young adults, whereas e.g. in the 

study of Galea and colleagues (2015) a learning rate of about 0.06 was described. Thus, by the 

end of the adaptation block the additional beneficial impact of motivational feedback was 

probably limited. In summary, our findings supported a significant boost of motor learning 

induced by rewarding feedback. This motivational modulation is preserved across the adult life 

span and qualifies as a potentially compensating mechanism for age-related functional decline. 

Beneficial effects of reward on motor learning are congruent with recently accumulating 

evidence showing increased learning rates when rewarding feedback is provided (Kojima 

& Soetedjo, 2017; Nikooyan & Ahmed, 2015). Even in participant groups with presumably 

reduced processing resources, i.e. stroke patients, reward was found to enhance adaptive 

processes (Quattrocchi et al., 2017). However, our findings on punishment effects on reaching 

adaptation deviate from previous reports. Galea and colleagues (2015) as well as Quatttrocchi 

and colleagues (2017) determined significant beneficial effects of punishing feedback during 

adaptation in a reaching task. The absence of an equivalent effect in our study might be explained 

by procedural details. It has been speculated that the observed punishment effects were driven by 

loss avoidance. However, actual loss avoidance is strongly shaped by contextual parameters 

(Palminteri, Khamassi, Joffily, & Coricelli, 2015; Sternad & Körding, 2015). In our procedure, 

participants assigned to the punishment condition started with an initial credit of 1200 points 

which was reduced by losses and converted to money only by the end of the experiment. Either 

the magnitude of the initial credit or the rather abstract concept of points might have buffered loss 

avoidance. In the previous studies, initial credit was immediately provided in concrete units of 

money, i.e. 12 and 50 £, respectively. Thus, we tentatively assume that the operationalization of 

punishment feedback constrained its functional efficiency. 

In our experimental procedure, the adaptation block was followed by a block in which 

participants did not receive any feedback on their reaching trajectories. Thus, we were able to 

explore errorless retention in both adult age groups and in particular in the different motivational 
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feedback conditions. Our data showed an intriguing interaction effect between age group and 

motivational feedback. Corroborating previous results we found no main effect of age group on 

retention rates (e.g Bock, 2005; Hegele & Heuer, 2013; Heuer & Hegele, 2008b, 2008a). 

However, while motivational feedback during learning was detrimental to retention in young 

adults, older adults’ retention performance did not vary across motivational conditions. 

The results for the young adults provided further support that beneficial effects of motivational 

feedback during adaptation do not necessarily transfer to retention (compare Galea at al., 2015; 

Steel, Silson, Stagg, & Baker, 2016). In addition, a detrimental effect on performance might be 

triggered by withdrawal of extrinsic incentives so that intrinsic motivation is reduced (for review 

see Deci, Koestner, & Ryan, 1999). Galea and colleagues (2015) indeed found that a beneficial 

effect of punishment during adaptation disappeared during following retention, whereas reward 

only became efficient for retention. They interpreted this pattern as evidence for independent 

mechanisms driving learning and retention in reaching adaptation. We did not replicate the 

positive effect of reward on retention; in contrast our results showed that in particular reward 

was detrimental to retention rates. However, since efficiency of reward and punishment we found 

during adaptation substantially deviated from the previous study, we refrain from direct 

comparison and suggest that a more elaborated clarification is needed.  

Discrepant effects of motivational feedback for both age groups might indicate that motivational 

feedback modulates differential adaptation components in young and older adults. Körding, 

Tenenbaum, and Shadmer (2007) proposed that sensorimotor adaptation can be modeled as a 

combination of fast and slow processes. Fast processes are supposed to drive rapid adaptive 

changes which are prone to rapid decay when visuomotor feedback is withdrawn. Slow processes, 

in contrast, contribute to adaptation and decay only slowly (Ethier, Zee, & Shadmehr, 2008). We 

suggest that the distinction between explicit and implicit components involved in adaptation can 

be linked to the distinction between fast and slow processes, respectively (compare Huang et al., 

2017). It can be supposed that adaptation primarily driven by explicit strategies decays faster, 

whereas contributions of implicit components result in movement shifts more robust to decay. 

Given this pattern we speculate that motivational feedback in particular boosts explicit adaptation 

components in young adults, resulting in more pronounced decay. In contrast, in older adults the 

availability and use of explicit strategies during reaching adaptation have been shown to be 

reduced (Hegele & Heuer, 2010a; Heuer et al., 2011). Thus, in this age group motivational 
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feedback might primarily act on implicit adaptation components that decay slowly and stabilize 

retention. Since we did not assess the differential contributions of explicit and implicit 

components directly in our study, this link has to remain speculative, but points to a highly 

relevant dissociation that could underlie observed age effects.  

Readaptation to the previously experienced visuomotor rotation was subject to significant age 

effects, but modulation by motivational feedback failed to reach significance. Older adults 

showed again lower learning rates and benefitted less from repeated learning as indicated by 

savings. Savings represent the ability of initial learning to enhance later relearning (Smith et al., 

2006). Although both implicit and explicit processes are involved in readaptation, explicit 

processes, e.g. recognition of the previously experienced rotation, can be assumed to play a 

dominant role. Thus, our results for readaptation appear consistent with the age-related 

vulnerability of explicit, strategic mechanisms contributing to adaptation. Descriptive inspection 

of our data supported persistence of the beneficial effects of reward on learning in both age 

groups. Also punishment absolutely enhanced learning rates and savings during readaptation. 

Even though these observed effects were not statistically significant and therefore elude 

authoritative conclusions, overall the beneficial trend of motivational feedback agrees with 

previous findings (Galea et al., 2015; Quattrocchi et al., 2017). 

There was no evidence that within each age group motivational feedback affected response or 

movement times. It has been recently suggested that the use of explicit strategies during 

adaptation is associated with increasing latencies (Benson, Anguera, & Seidler, 2011; Fernandez-

Ruiz, Wong, Armstrong, & Flanagan, 2011; Sülzenbrück & Heuer, 2012). Thus, varying 

latencies across the different feedback conditions could indicate differential contributions of 

implicit and explicit adaptation components. Since slowing represents a core primitive of 

functional changes with increasing age (Salthouse, 1996), a comparison of latency differences 

between age groups did not allow for specific conclusions. Most importantly, neither in the 

young nor in the older adult group motivational effects on learning parameters were linked to 

motivational feedback. We propose that motivational feedback does not substantially shift the 

balance between explicit and implicit components contributing to adaptation, but affects the 

components that are particularly efficient in the specific age group, i.e. explicit components in 

young adults and implicit components in older adults. 
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Several neuronal substrates have been suggested to functionally contribute to motor learning. 

Candidate structures in particular include the cerebellum and the motor cortex (see e.g. Krakauer 

et al., 2004; Li, Padoa-Schioppa, & Bizzi, 2001). There is evidence that the cerebellum 

contributes to error-based learning, whereas cortical areas are crucial for retention of motor 

adaptation (Galea, Vazquez, Pasricha, Orban de Xivry, & Celnik, 2011; Hadipour-Niktarash, Lee, 

Desmond, & Shadmehr, 2007; Orban de Xivry, Criscimagna-Hemminger, & Shadmehr, 2011). 

Aging is supposed to negatively affect both processes since cortical as well as cerebellar 

structures are subject to pronounced age-related decline (Jernigan et al., 2001; Raz et al., 2005; 

Sowell et al., 2003). However, differential contributions to reduced motor learning capacities 

during aging appear far from conclusive. For example, impaired use of explicit learning strategies 

has been identified as characteristic of age effects on motor learning. At the same time, this 

capacity has been found preserved in cerebellar patients (Taylor, Klemfuss, & Ivry, 2010). 

Consistent with previous findings, our results indicate detrimental age effects on learning as well 

as retention during reaching adaptation, but specific underlying neuronal substrates remain 

ambiguous. Motivational modulation of motor learning is critically conveyed by dopamine (Hosp 

& Luft, 2013; Montague et al., 2004). Although dopaminergic transmission is known to decline 

with increasing age (for review see Bäckman et al., 2010), our results provided evidence for 

preserved motivational modulation of reaching adaptation. They further emphasized that robust 

behavioral resources can be available despite significant physiological changes during healthy 

aging. Age-related pathological processes, though, might challenge these resources. 

To conclude, our study provides evidence that motivational modulation of reaching adaptation is 

preserved during healthy aging. Although older adults showed reduced motor learning capacities 

and typical slowing effects, they substantially benefitted from motivational incentives during 

learning. Most importantly, this benefit applied to learning as well as retention of adaptive shifts. 

We suggest that motivational feedback can be used as a potentially compensatory mechanism 

during functional aging. Although our data corroborate a persistent age-related decline in 

visuomotor plasticity, motivational feedback attenuates performance differences. Our findings 

further emphasize the complexity of processes that contribute to motor adaptation (compare also 

Krakauer & Mazzoni, 2011). There is a need to disentangle these processes in order to evaluate 

their behavioral significance, in particular in populations that face functional challenges. 
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Chapter 4: Age effects on integration of salience and value in saccadic control 
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Abstract 

Saccadic control has been shown to depend on both salience and value and the integration of 

them is dynamic. Saccades with long latency are more remarkably influenced by value whereas 

saccades with short latency are mainly determined by target salience. This integration could be 

challenged by healthy aging because of its well-documented association with slower saccade 

latency as well as declines in value representation. To investigate how these processes impact the 

integration, we explored the trade-off between salience and expected value in young and senior 

adults by asking them to make saccades to target patches with subregions differing in salience 

and associated reward. We determined a significant interaction between value manipulation and 

age group on saccade direction with equivalent reward effects in two groups but weaker penalty 

effects in senior group. When respecting with saccade latency, reward triggers an average latency 

decrease in senior adults but not in young adults. These differential reward effects on saccade 

direction and latency are also reflected by the less dependence of saccade direction on latency 

although the dependence exists in both groups. We suggest that the less dependency might result 

from the facilitated top-down modulation by the general slower response in senior adults.  

 

Key words: neuroeconomics, decision-making, cue combination, visual perception, aging   
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Introduction 

As a window of cognition, decision making is an action based on information and values related 

to potential outcomes (Shadlen & Kiani, 2013), accuracy of which is challenged by age-related 

declines in cognitive abilities (for review see Mata, Josef, & Lemaire, 2015). However, results of 

how ageing influences decision making vary substantially depending largely on tasks and 

mythologies (McGovern et al., 2017), calling more studies to tap into specific processes to 

elucidate its influences. 

As a kind of motor decision making, saccadic eye movement has been studied for decades and is 

a good way to investigate decision making (Glimcher, 2003; Gold & Shadlen, 2007). It is found 

to be determined not only by visual-stimulus-based bottom-up processing, such as luminance 

(Schütz, Braun, & Gegenfurtner, 2011), but also by top-down processing, such as task demands 

(Johansson et al., 2001; Jovancevic-Misic & Hayhoe, 2009; Land, 2006; Schütz, Kerzel, & Souto, 

2014; Schütz & Souto, 2015; Williams, 1996) and reward (Ikeda & Hikosaka, 2003, McCoy & 

Theeuwes, 2016). We tapped into implicit processing and explicit processing with different 

paradigms for saccadic eye movements and found specific stability and vulnerability associated 

with aging (Huang et al., 2017).  

The weighting of different information can to some degree predict saccadic eye movements (Itti 

& Koch, 2001; Tatler et al., 2011). Navalpakkam and colleagues (2010) even found that this 

integration of information is to reach the goal of expected reward but not the most valuable or the 

easiest achievable goal. However, only information available before saccade execution is taken 

into account (Caspi, Beutter & Eckstein, 2004). As such, when top-down processing, such as 

reward competes with bottom-up processing, such as salience, saccades go to which object or 

which part of one single object depends on saccade latency, i.e., when saccades are executed. For 

example, Markowitz and colleagues (2011) found that saccade ending positions of monkey 

observers are dominated by salience if they are made before the switch time (140-180 ms after 

target onset); they are dominated by value if they are made after the switch period. Furthermore, 

with varying luminance of different parts of one single object we found that the integration of 

salience and value information is dynamic and most observers could learn to use strategies to 

make optical saccades to position with expected reward (Schütz, Trommershäuser, & 

Gegenfurtner, 2012). 
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Not only saccade ending-position is influenced by reward, but also is saccade latency (Bucker et 

al., 2015; Stankevich & Geng, 2015). On one hand, this influence could be executed through low-

level processing (Dunne, Ellison, & Smith, 2015; Watanabe, Lauwereyns, & Hikosaka, 2003). 

For example, Dunne, Ellison and Smith (2015) found that saccades to the rewarded hemisphere 

are faster than that to the unrewarded hemisphere in a simple stimulus-driven saccade task. This 

reward speeding up effect is specific to rewarded hemisphere and dose not transfer to unrewarded 

hemisphere in saccadic peripheral cuing task and oculomotor inhibition of return task, suggesting 

it is executed through reducing the distance between baseline and execution threshold rather than 

evidence accumulating rate. On the other hand, this influence could also be executed through top-

down control (Heuer et al., 2017; Milstein & Dorris, 2007; Theeuwes & Belopolsky, 2012; Wolf 

et al., 2017). For example, Milstein and Dorris (2007) found that saccade latency does not simply 

decrease with the increase of magnitude and probability of reward, but rather decreases with 

expected reward, i.e., the combination of magnitude and probability. Furthermore, Wolf and 

colleagues (2017) found that reward effects on saccade latency are influenced by the necessity, 

uncertainty of outcome and task difficulty. The integration of low-level influence and top-down 

influence could yield no overall changes in average saccade latency (Leon & Shadlen, 1999; Platt 

& Glimcher, 1999) and the integration can also be dynamic (Schütz, Trommershäuser, & 

Gegenfurtner, 2012). For example, reward speeds up the salience-dominated short-latency 

saccades overall while slows down the value-dominated long-latency saccades overall (Schütz, 

Trommershäuser, & Gegenfurtner, 2012). 

The dynamic integration of information of salience and value could be changed by healthy aging. 

On one hand, this integration would be less influential by value since senior adults are found to 

have impairments in representation of expected reward value (Eppinger, Hämmerer, & Li, 2011; 

Chowdhury et al., 2013). Since the optical saccades towards positions with expected reward 

needs strategies (Schütz, Trommershäuser, & Gegenfurtner, 2012), they would also be challenged 

by aging because senior’s performance is always found to be worse in cognitive tasks or strategy 

demanding tasks (Mata, von Helversen, & Rieskamp, 2010).  Even their performance is as 

suboptimal as to young adults, their strategies are different (Valsecchi, Billino, & Gegenfurtner, 

2018), which might also change the integration or saccade making. On the other hand, the 

integration in senior adults could be facilitated in nature saccades because they have general 
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slower response and longer saccade latency (Huang et al., 2017; Munoz et al., 1998; Peltsch et al., 

2011) so that more top-down information is available when their saccades are executed.  

Taken together, how aging changes these processes is unknown and has not been explored 

together before. In current study, to investigate this question we used the paradigm we created 

before (Schütz, Trommershäuser, & Gegenfurtner, 2012), in which salience was manipulated by 

varying contrasts of different regions of target and value was manipulated in different blocks 

through administering nothing, reward and reward and penalty.    

Methods 

Participants 

Twenty-one young adults aging from 22 to 39 years old (mean = 30.0; SD = 4.6; Female = 13) 

and 20 senior adults aging from 62 to 81 years old (mean = 69.7; SD = 4.7; Female = 7) 

participated in our experiment. As the same as participants in our other studies (Huang et al, 2017; 

Huang, Hegele, & Billino, submitted ; Valsecchi, Billino, & Gegenfurtner, 2018), all participants 

in this study were naïve to the purpose of the study and were paid volunteers from our battery 

database, in which all the participants were recruited from local residence by calls or in local 

newspapers. They were screened by a battery of standard cognitive tasks and a detailed interview 

protocol to make sure they did not have any history of ophthalmologic, neurologic, psychiatric 

disorders or medications interfering with perceptual capacities. Visual acuity was measured 

binocularly confirming normal or corrected-to-normal for all participants. Agreeing with the 

Declaration of Helsinki (World Medical Association, 2013), methods and procedures were 

approved by the local ethics committee. All participants gave their informed consent and their 

data was protected by privacy.   

Stimuli and procedure 

Participants were seated in a dimly lit room with their forehead rested on a chin in front of a 22-

inch monitor with a resolution of 1680 x 1050 at a refreshing rate of 120 Hz. For each trial, they 

were asked to fixated at the center bull’s eye first (0.15 deg v.a. x 0.3deg v.a.) for 500 ms and 

then make a saccade to the target which appeared 200 ms after the bull offset and was presented 

for 500 ms. The saccade targets were patches with a generalized Gaussian envelope with a power 
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of 4 in the radial (r) and angular (α) dimension (Eq. 1) 
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in which the mean radial 𝜇𝑟  = 6.5 deg v.a ; standard deviation of radial 𝜎𝑟  = 2 deg v.a.; mean 

angular 𝜇𝛼 = ± 8°; standard deviation of angular 𝜎𝛼 = 8°. The contrast of each patch was either 

10% (low contrast) or 40% (high contrast). The center of the configured patches could be 

presented at one of the four cardinal axes, and the clockwise or counterclockwise arrangement of 

dark and light patches was randomized (Fig.1).  

To manipulate the value effect, the experiment was divided into 3 value conditions, Salience (192 

trials), Reward (288 trials), and Reward & Penalty (288 trials). A break was following every 96 

trials. In trials of Salience condition, luminance of the target could be homogeneous (only one 

luminance was used) or heterogeneous (two luminance were used yielding the contrast 10% or 

40%). Participants were asked to make a saccade from the central fixation to the peripheral target. 

In trials of Reward condition, all the targets were heterogeneous and participants were told that 

they would earn 2 cents in each trial if their saccade landed in the dark patch (Fig. 1). In trials of 

Reward & Penalty condition, all the things were as same as that in Reward trials except 

participants would lose 2 cents if their saccade landed in the light patch (Fig. 1).  All the 

participants did Salience condition first, then Reward and Reward & Penalty finally. The 

experiment took about 80 minutes in young and 90 minutes in old adults. 

 

Figure 1. Stimuli and experiment design. A compound patches consisting of 2 different 
luminance was presented at one of the four cardinal positions. The contrast of the patches could 
be 10% or 40%. Each participant did Saliency condition first in which saccades were neither 
rewarded nor penalized; then they did Reward condition in which saccades landing on the dark 
patch would gain 2 cents each trial; finally they did Reward & Penalty condition in which 
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saccades landing on the dark patch would gain 2 cents, on the light patch would lose 2 cents each 
trial.    

Eye movements recording and data analysis 

During the experiment, participants viewed the display binocularly and movements of their right 

eye were recording at a sampling rate of 1000 Hz with SR Research Eyelink 1000. Starting and 

ending of saccade was identified with Eyelink saccade detector. 

Primary saccade of each trial was analyzed and all the saccades were rotated as that all the targets 

were presented at the right size of horizontal axis with the light patch on the top and dark patch 

on the bottom. As such, positive saccade direction means saccade towards the light region of 

target; negative saccade direction means saccade towards the dark region of target. Trials were 

excluded for further analysis if their saccades latency was beyond 80 to 500 ms, if their saccade 

amplitude was beyond 0.5 to 1.5 target amplitude (6°), if their saccade direction was beyond -30 

to 30° or if their fixation was 2° outside horizontal position of presenting fixation or 1° outside 

vertical position. Since there were no practice trials at the beginning of Reward and Reward & 

Penalty condition, only trials in the last 2 blocks of these conditions were used for analysis. One 

young participant was excluded because he had less than 64 trials (one third of total trials) in 

Salience condition, which made his data noisy. We excluded 24.0 ± 18.86 % of trials on average 

in young adults and 32.7 ± 14.29 % in senior adults.  

Cents each participant earned per trial in Reward and Reward & Penalty condition were 

calculated by dividing the total number of valid trials from the sum cents they earned in these 

trials. Two senior adults did not performance appropriately and were excluded because they 

earned less than 0.58 cents per trial in Reward condition, which were more than 2.09 S.D. away 

from the group mean (1.18 ± 0.288).  

For saccade latency analysis, median mean was used for average across all trials in each 

condition. To look into the dependence of saccade direction on latency, firstly saccades were split 

into 6 bins based on their latency for each contrast, each value condition and each individual 

separately; then trials in each bin were averaged.  
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To quantify the extent to which saccade direction is dependent on saccade latency and to which it 

is influenced by contrast, we used multiple regression to fit saccade direction of each trial with 3 

dependent variables for Reward and Reward & Penalty condition and each individual separately: 

𝑆𝑎𝑐𝑐𝑎𝑑𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  𝛽0 +  𝛽1 ∗ 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 +  𝛽2 ∗ 𝑠𝑎𝑐𝑐𝑎𝑑𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 

in which contrast is a virtual variable with setting 0 for trials with 10% contrast and 1 for trials 

with 40% so that positive estimated 𝛽1 means saccade direction is larger in trials with 40% 

contrast, i.e., more further to the lighter region of target, which is expected, and negative 

estimated 𝛽1 means saccade direction is smaller in trials with 40%, i.e., more further to the dark 

region of target. In the equation, saccade latency is a continuous variable (in ms) and estimated 

𝛽2 means how many degrees saccade direction changes when saccade latency changes by 1 ms. 

Positive estimated 𝛽2 means saccade direction increases (shifting towards the light region of 

target) when saccade latency increases and negative estimated 𝛽2 means saccade direction 

decreases (shifting towards the dark region of target) when saccade latency increases. Therefore 

negative estimated 𝛽2  is expected. Estimated betas were compared with 0 by student T-test to see 

whether variables predict saccade direction statistically significantly. 

For other statistic analysis, data were analyzed using ANOVAs with between-subject factor Age 

(young, senior) and potential with-in-subject factor Latency (6 bins), Contrast (10%, 40%), Value 

(Salience, Reward, Reward & penalty). Reward effects were always measured by the difference 

between Salience condition and Reward condition (Salience VS. Reward); penalty effects were 

always measured by difference between Reward condition and Reward & Penalty condition 

(Reward VS. Reward & Penalty). A significance level of α = .05 was used for all statistical 

analyses.  

Results 

Score 

To investigate the influence of reward on saccadic eye movements, we told participants that they 

would gain 2 cents if their primary saccade landed on the rewarded dark region of target in each 

trial in Reward condition (Fig.1). We found that this manipulation is significantly and 

equivalently effective in two age groups: senior adults earned 1.25 ± 0.214 cents per trial on 

average comparing to 1.33 ± 0.173 gained by young adults (see Fig.2A). These earnings are both 
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significantly larger than zero (ts > 24.87,  ps < .001, ds > 12.06 ) but do not sig nificantly differ 

from each other (t(36) = 1.24, p = .224, d = 0.40).  

To investigate the influence of penalty on saccadic eye movements, in Reward & Penalty 

condition we told participants that they would gain 2 cents if their primary saccade landed on the 

rewarded dark region of target and that they would lose 2 cents if their primary saccade landed on 

the penalized light region of target (Fig.1). As similar as what we found in the Reward condition, 

the penalty manipulation is also significantly and equivalently effective in two age groups, 

supported by a significant main Value effect (F(1,  36) = 504.21,  p < .001, η2 = .93 ) and 

nonsignificant Value X Age interaction (F(1,  36) = 2.80,  p = .103, η2 = .07) in the ANOVA 

analysis with Value (Reward, Reward & Penalty) and Age (Young, Senior) . However, the 

overall combination of reward and penalty was significantly different between two groups (young: 

0.37 ± 0.318; senior: 0.14 ± 0.201; t (36) = 2.64, p = .012, d = 0.87 ; see Fig.2A), yielding a 

significant Age main effect (F(1,  36) = 6.46,  p = .016 , η2 = .15) in the ANOVA analysis. 
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Figure 2. Score and saccade latency results. (A) Cents participants earned per trial on average in 
Reward (blue bars) and Reward & Penalty (yellow bars) condition. Filled bars represent young 
group and empty bars represent senior group. Error bars represent ±1SEM  and dots represent 
individuals. (B) Saccade latency in Salience (black bars), Reward and Reward & Penalty 
condition. (C) Difference latency measuring reward (calculated by subtracting latency in Salience 
from that in Reward condition) and penalty (calculated by subtracting latency in Reward from 
that in Reward & Penalty condition) effects on saccade latency. (D) Cumulative saccade latency 
for all the participants of young (solid lines) and senior group (dash lines). 

Saccade latency  

As illustrated in Fig.2B, senior adults made their primary saccade 256 ± 32.6 ms on average after 

target appeared, forty-eight ms significantly longer than young adults (208 ± 19.50), supported by 

the main Age effect (F(1, 36) = 32.03, p < .001,  η2 = .47) in the ANOVA analysis with Value 
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(Salience, Reward, Reward & Penalty) and Age. Reward and penalty impacts latency 

significantly (main Value effect: F(2, 72) = 8.15, p = .001, η2 = .19) and these impacts differ 

between two age groups (Value X Age interaction: F(2, 72) = 5.74, p = .005, η2 = .14). This 

interaction is shown more obviously by difference latency calculated by subtracting latency in 

Salience and Reward condition from that in Reward and Reward & Penalty condition (see 

Fig.2C): Latency of senior adults decreases by 18 ± 35.3 ms in Reward condition comparing to 

that in Salience condition, which is significantly different from zero( t(17) = 2.17, p = .04, d = 

1.05), and decreases further by 12 ± 28.0 ms in Reward & Penalty condition, which tends to be 

different from zero (t(17) = 1.81, p = .088, d = 0.88) whereas latency of young adults does not 

change in Reward condition (1 ± 19.1ms, t(19) = 0.23, p = 0.817, d = 0.11) and decreases slightly 

in Reward & Penalty (-4 ± 14.8 ms, t(19) = 1.21, p = 0.240, d = 0.56).  

Since it is found that the distribution of saccade latency is more sensitive to reward than average 

latency (Wolf et al., 2017), we also looked into saccade latency distribution of all the participants 

together. We found that the decreased average latency in Reward and Reward & Penalty in senior 

adults is due to a general left-shift of latency (dash lines in Fig. 2D); the slightly or not changed 

latency in young adults is due to cancellation of increasing frequencies before and after the 

latency 209 ms in Reward condition (solid blue line in Fig. 2D) and before and after the latency 

212 ms in Reward & Penalty condition (solid yellow line in Fig. 2D). 

Saccade direction  

When participants were asked to make a saccade from a central fixation to the peripheral target 

without any reward or penalty involved in Salience condition, saccade directions are impacted 

significantly by contrast (Contrast main effect in the ANOVA analysis with Contrast (10%, 40%) 

and Age: F(1,36) = 283.50, p <.001 , η2 = .89; see Fig.3). However, it is not impacted by age at 

all: Neither Age main effect nor Age X Contrast interaction is significant (Fs < 0.86, ps > .361, 

η2s < .03).  

When the darker region of target was rewarded in Reward condition, saccade ending position 

shifts towards it substantially, supporting by significant Value main effect (F(1,36) = 36.62,  p 

<.001 , η2 = .50) in the ANOVA analysis with Value (Salience, Reward), Contrast and Age. This 

shift does not differ between two age groups (Value X Age interaction: F(1,36) = 2.13,  p = .153 , 

η2 = .06) but it is more pronounced in trials of high contrast (Value X Contrast interaction: F(1,36) 
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= 18.61,  p <.001 , η2 = .34) although the shift is still significant in trials of low contrast (Value 

main effect in the post-hoc analysis for low contrast condition: F(1,36) = 18.18,  p <.001 , η2 

= .34). The interaction between Value and Contrast is similar in two groups (Value X Contrast X 

Age interaction: F(1,36) = 0.68, p = .417, η2s = .02). 

 

Figure 3.  Average saccade direction as a function of value and contrast. Big black dots and error 
bars represent mean and 95% confidence interval with filled dots representing young group and 
empty dots senior group. All the small dots represent individuals with dark green representing 
contrast with 40% and light green contrast of 10%.  

When not only the darker region of target was rewarded but also was the lighter region of target 

was penalized in Reward & Penalty condition, The penalty influences saccade direction 

significantly (main Value effect in the ANOVA analysis with Value (Reward, Reward & Penalty), 

Contrast and Age: F(1,36) = 13.65,  p =.001 , η2 = .28). This penalty influence is not impacted by 

contrast (Value X Contrast interaction: F(1,36) = .15,  p = .701 , η2 < .01), although the 

difference between 2 contrasts still exists (main Contrast effect: F(1,36) = 42.38,  p < .001 , η2 

= .54). However, it is impacted by age (Value X Age interaction: F(1,36) = 5.51,  p = .025 , η2 

= .13). Follow-up post-hoc analysis found that the penalty influence is not significant in senior 

adults (main Value effect: F(1,17) = 1.22,  p =.285 , η2 = .07). The diminishing penalty effect in 
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senior adults is similar in two contrasts conditions ( Value X Age X Contrast interaction (F(1,36) 

= 1.11,  p = .299 , η2 = .03), yielding a significant main Age effect(F(1,36) = 6.25,  p = .017 , η2 

= .15).  

Dependence of saccade direction on saccade latency 

Previously we found that effects of value on saccade direction are dependent on saccade latency: 

long-latency saccades are much more influenced by value whereas short-latency saccades are 

more determined by salience (Schütz, Trommershäuser & Gegenfurtner, 2012). To investigate 

this dynamic integration of salience and value, we split trials into 6 bins based on their latency for 

each individual. Four –way ANOVA with Latency, Value, Contrast and Age found significant 

Latency main effect (F(5, 360) = 19.87, p < .001 , η2 = .36; see Fig.4) and Latency X Value 

interaction (F(10, 360) = 8.72, p < .001 , η2 = .20).   

 

Figure 4. Saccade direction as a function of saccade latency in young adults (top panel) and 
senior adults (bottom panel) for Salience (left panel), Reward (middle) and Reward & Penalty 
condition (right), respectively. Dots and error bars represent mean and ± 1 SEM. Dark green dots 
represent contrast with 40% and light green contrast of 10%. 
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Follow-up 3-way ANOVA with Latency, Contrast and Age in Salience condition found that 

Latency main effect is not significant (F(5,180) = 1.85,  p = .105 , η2 = .05; see left panel of Fig. 

4), suggesting independence of saccade direction on saccade latency. This independence is not 

influenced by either contrast or age (interactions: Fs < 0.49, ps > .784, η2s < .02). Confirming 

what were found in average direction (Fig.3), Contrast main effect is significant (F(1,180) = 

252.73,  p < .001 , η2 = .88) but neither Age main effect (F(1,36) = 0.69,  p = .413 , η2 = .02) nor 

Age X Contrast interaction (F(1,180) = 0.01,  p = .911 , η2 < .01). 

 On the contrary, Latency main effect is significant in Reward condition (F(5,180) = 16.53,  p 

< .001 , η2 = .32; see middle panel of Fig.4), suggesting dependence of saccade direction on 

saccade latency. This dependence is not influenced by either contrast (interaction: F(5,180) = 

1.62,  p = .158 , η2 = .04) or age (interaction: F(5,180) = 0.70,  p = .621 , η2 = .02). Confirming 

what were found in average direction(Fig.3), Contrast main effect was significant (F(1,180) = 

24.62,  p < .001 , η2 = .41) but neither Age main effect (F(1,36) = 3.11,  p = .086 , η2 = .08) nor 

Age X Contrast interaction (F(1,180) = 1.03,  p = .318 , η2 = .03). 

As similar as what were found in Reward condition, Latency main effect is significant (F(5,180) 

= 16.74,  p < .001 , η2 = .32; see right panel of Fig.4) in Reward & Penalty condition. Its 

interaction with Contrast and Age are neither significant (Fs < 1.62, ps > .158, η2s < .05). 

Confirming what were found in average direction, Contrast main effect was significant (F(1,180) 

= 23.64,  p < .001 , η2 = .40)  as well as Age main effect (F(1,36) = 8.77,  p = .005 , η2 = .20) and 

their interaction (F(1,180) = 6.12,  p = .018 , η2 = .15).  

Separation of contrast and value effects on saccade direction 

To further quantify the extent to which saccade direction is dependent on saccade latency and to 

which it is influenced by contrast in value conditions, general linear model was used to fit 

saccade direction with predictors Contrast and Latency. We found that in Reward condition both 

contrast and latency predict saccade direction significantly in both groups (T-test against zero: ts > 

4.82, ps < .001, ds > 1.58; see blue bars in Fig.5). Besides, the dependence on saccade latency is 

smaller in senior adults (t(36) = 2.96, p = .006, d = 0.97; see blue bars in Fig.5B) whereas the 

influence of contrast is similar (t(36) = 0.93, p = .359, d = 0.30; see blue bars in Fig.5A). 

In Reward & Penalty condition, betas of predictors are different from zero in both groups (ts > 

4.13, ps < .001, ds > 1.36; yellow bars of Fig.5). Comparing to saccade direction of young adults, 
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saccade direction of senior adults is more strongly influenced by contrast (t(36) = 2.43, p = .020, 

d = 0.78; yellow bars of Fig.5A) whereas it is less dependent on saccade latency (t(36) = 3.01, p 

= .005, d = 0.98; yellow bars of Fig.5B). The influence of contrast and the dependence of saccade 

latency are equivalent in Reward and Reward & Penalty conditions (Fs < 1.18,  ps > .284 , η2s 

< .04; see Fig.5). 

 

Figure 5. Estimated beta of contrast (A) and saccade latency (B) in multiple regression of 
saccade direction in Reward (in blue color) and Reward & Penalty condition (in yellow color), 
respectively. (A) Positive beta of contrast means direction in trials with 40% contrast is larger 
than that with 10% (i.e., more further to the light region of target); negative beta means the 
opposite, namely, direction in trials with 40% contrast goes more further to the dark region of 
target. (B) Negative beta of latency means direction decreases (going toward the darker region of 
target) when saccade latency increases; positive beta means direction increases (going toward the 
lighter region of target) when saccade latency increases. Bars and error bars represent mean and 
±1 SEM. Dots represent individuals.   
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Learning effect 

To check whether there is any learning effect on saccade latency and saccade direction in Reward 

and Reward & Penalty condition, we compared them across successive trials as a function of trial 

number. As illustrated in Fig.6A (blue lines), average saccade latency is 235 ms in young adults 

and 254 ms in senior adults at the first bin of Reward condition and ends with 209 ms in young 

adults and 252 ms in senior adults, with a significant decrease in young adults (F(23, 414) = 3.66, 

p < .001, η2 = .17; see blue line with circles in Fig.6A) but without in senior adults (F(23, 391) = 

1.30, p = .165, η2 = .07; see blue line with asterisks in Fig.6A). However, these are no changes in 

saccade latency in Reward & Penalty condition (main Bin effect: F(23, 805) = 1.12, p = .319, η2 

= .03; see yellow lines in Fig.6A) in both groups (Bin X Age interaction: F(23, 805) = 0.70, p 

= .547, η2 = .02). 

 There are no significant changes in saccade direction in either Reward condition (F(23, 805) = 

1.53, p = .054, η2 = .04; see blue lines in Fig.6B) or Reward & Penalty condition (F(23, 805) = 

1.27, p = .177, η2 = .04; see yellow lines in Fig.6B). Neither any interaction with Age is found 

(Fs < 1.10, ps > .342, η2s < .03). 
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Figure 6. Saccade latency (A) and Saccade direction (B) changes over trials. Black, blue and 
yellow color represents salience, reward and reward & penalty condition with dots and asterisks 
representing young and senior, respectively. Bin size is 12 trials. Error bars represent ±1 SEM.   

 

Discussion 

To investigate how aging impacts the integration of salience and value for saccadic eye 

movements, we traded off salience against expected value of target patches whilst recording 

eyemovements of young and senior adults. We found that reward and penalty makes no changes 

to saccade latency of young adults whereas makes decreases to that of senior adults. Reward 

encourages saccade direction towards rewarded darker region in both young and senior adults; 

Penalty discourages saccade direction towards penalized lighter region in young adults but not in 

senior adults.  

Lacking of learning effect in young adults 
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Confirmed what we found previously reward-related influences on saccade direction in young 

adults are latency-dependent: Ending position of saccade shifts to rewarded darker region further 

as saccade latency increases. This may be because the value information takes time to reach to 

the saccadic system (Caspi, Beutter & Eckstein, 2004; Schütz, Trommershäuser, & Gegenfurtner, 

2012). However, we did not replicate the previous finding that optimal saccades are made 

towards the position with expected value. This might be due to the much smaller amount of trials 

in current study (288 trials VS. 576 trials in the previous study) so that there is little learning to 

use strategies - lengthening saccade latency to wait until value information available to make the 

optimal saccades. There is strong learning effect in the previous study (see Fig.4A of the paper), 

i.e. substantial increases in saccade latency and decreases in saccade direction, and most of the 

optical saccades are made after the 192th trial. However, there is no learning in current study (see 

Fig. 6). This failed optimal control makes the relationship between saccade direction and saccade 

latency more like linear so that we used general linear model to analyze it instead of the previous 

MEGaMove (Maximum Expected Gain). Besides, Milstein and Dorris (2007) also found the 

linear relationship between expected reward value and saccade latency, which suggests saccade 

latency as a good proxy of immediate value influence when value information reaching to the 

saccadic system fluctuate along with saccade latency.  

Equivalent reward effect on saccade direction in senior adults 

Surprisingly, we found equivalent reward-related effects on monetary score and saccade direction 

in senior adults. These results are also kind of unsurprising. Firstly, we previously found that 

implicit low-level processes are immune to aging ((Huang et al., 2017) as well as reward 

influences on them (Huang, Hegele & Billino, submitted). In current study there is almost no 

learning or strategies involved in Reward condition, as discussed in last paragraph, so that what 

reward impacts is almost implicit processing. Besides, some studies also suggest that the reason 

why senior adults perform worse in reward-related tasks is because of the complexity of the tasks 

but not of reward itself . Supporting this speculation we found that senior adults need more trials 

to adapt to the task by showing age differences at the first block of Reward condition (see 

Fig.5B). But the difference disappears at the first bin after the first block (96 trials is one block). 

To note, there were no practice trials for Reward and Reward & Penalty condition. 

Weaker dependence on saccade latency in senior adults 
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Although the reward influence on saccade direction in senior adults is as strong as that in young 

adults, their influence and dependence on saccade latency are substantially different. Saccade 

latency is generally slower and is generally speeded up by reward in senior adults whereas it is 

both speeded up and slowed down by reward in young adults. Besides, the amount of change in 

saccade direction caused by 1 ms increase in saccade latency is smaller in senior adults. 

Consistent with our results, studies with the diffusion model found that senior adults have an 

about 50 ms longer nondecision time (Fisher & Glaser, 1996; Ratcliff, Thapar, & McKoon, 2001; 

2003). Reward influence on saccade latency is content-dependent. For example, Wolf and 

colleagues (2017) found that this influence is impacted by the necessity. Besides, they also found 

that even when saccades are faster in choices with high reward, it is because of the reduced 

baseline level in choices with low reward. The longer nondecision time in senior adults would 

make their latency long enough to receive the value information so that it is unnecessary to 

reducing the baseline level of decision. As such, there is only seeding up effect in senior adults 

but no slowing down effect. Taken together, this means nature saccades in senior adults receive 

relatively more top-down control because of their general slower response.  

Penalty effects in young and senior adults 

In addition to reward, we also found penalty effective in influencing saccade direction of young 

adults in Reward & Penalty condition with more profound effects in trials with high contrast. 

However, failure of learning also happens in this condition. In the previous study (Schütz, 

Trommershäuser & Gegenfurtner, 2012), saccade latency increases at the 192nd trial obviously 

and maintains after that (see Fig.4A of the paper); similarly saccade direction reaches to the 

optimal direction at that trial and also maintains after that (see Fig.4B of the paper). However, 

saccade latency does not change in current study or decreases slightly and saccade direction just 

has a general decrease which looks as similar as that in the first 192 trials in the previous study 

(the first 4 yellow bins of Fig.4B of the paper).   

In contrast, penalty does not impact saccade direction at all in senior adults. Two reasons may be 

account for these results. Firstly, reward and penalty is found to involve activities in different 

brain area with reward involving more in vmPFC whereas penalty more in cognitive control areas 

such as the dlPFC, the dACC and the inferior parietal lobule (Eppinger et al., 2013;Hämmerer & 

Eppinger, 2012). Secondly, the combination of reward and loss signals mostly occurs in the 
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prefrontal cortex (Basten et al., 2010; Hare et al., 2011). The cognitive control and prefrontal 

cortex might be more impaired by aging. 

In conclusion, we found that when people get old reward effects on their decision making are 

stable when strategies and learning not involve in whereas penalty effects always decline. 

Although senior adults have general slower response, it facilitates top-down influence naturally.      
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Discussion 

In this thesis, firstly with a double-step paradigm and a perceptual tasks paradigm, the first study 

found preserved low-level saccade adaptation capacity in older adults but impaired high-level 

saccade capacity. With a screen-cursor reaching adaptation task, the second study found 

preserved retention rate in older adults but impaired learning rate. However, the impaired 

learning rate could be reduced by reward. With a saccade making task, the third study found 

equivalent salience and reward influence on the saccade landing position. Taken together, this 

thesis found reserved low-level processing in older adults but impaired the high-level processing 

which are both consistent what found in cognitive tasks. 

Although the results are consistent with the dominant impressions of the literature, it contributes 

substantially to the literature. 

Consistency and Extensions  

Although previous literature found either age-related vulnerability or stability, this thesis found 

both stability and vulnerability of one task through teasing different processes. Consistent with 

the common cause theories, these differential aging effects could result from the different extents 

to which the high-level and the low-level processing the tasks involve. For example, in tasks 

which involve almost low-level processing, performance of old adults would be similar with that 

of young adults, such as situations like the saccade adaptation with intrasaccadic step of the first 

study, the salience condition in the third study). In tasks which involve more high-level 

processing, performance of old adults would show impairments, such as situations like saccade 

adaptation with perceptual tasks, reaching adaptation with large visuomotor rotation.  

This thesis could also extend how we think about aging, for example in a circuitry. Initially, 

researchers thought that the aging effects were based on the structure of the tasks, such as short-

term memory, long-term memory (Tulving, 1984). Then it evolved to be based on functions, 

operations or processing (Craik, 1986; Hasher and Zacks, 1988; Salthouse, 1996), such as 

working memory, attention, inhibition so on and so forth. However, this thesis extends that to a 

circuitry system, such as low-level system. This extension is consistent with all kinds of 

preserved capacity in the implicit tasks and the reorganized aging brain system. The aging brain 

does not change locally, but from proactive processing to reactive processing, from specific 

processing to general processing.    
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Adaptive way to interpret declines 

Supports of the adaptive hypothesis of aging also come from the alternative interpretation of the 

aging decline results in this thesis, strategy change.  

One declining but also puzzling result is that the aging declines in saccade adaptation with the 

perceptual task. Schütz and colleagues found that the closer the saccade landing position is to the 

target, the better their perceptual discrimination performance would be (Schütz, Kerzel, & Souto, 

2014). This is also confirmed in my study. However, if it helps, why do older adults not do it?  

After all, saccades are very cheap. Maybe the reason is they do not need / want to instead of they 

could not do, i.e., change in strategy.  

During reading, older adults are found to have larger saccade length, which means their eyes are 

more far away from the reading characters, and this could be explained by their risky guess 

strategies to predict next characters (Rayner et al., 2006; Rayner, Castelhano & Yang, 2009). 

Despite this difference, the comprehension performance in two groups is the same. Therefore, 

this truth seems to be that older adults have more knowledge to predict what the next several 

characters would be so that they do not need short-amplitude saccade to check them. Since this 

reading pattern does not result in any problems with comprehension, it becomes the reaching 

habit. 

This reading habit might be automatically used in any reading or reading similar task, such as 

character discrimination tasks in the Experiment 2 of the first study. This prediction is confirmed 

by the reduced horizontal saccade amplitude during the baseline trials in which the target 

character is placed horizontally to the fixation. 

This strategy change could be in the saccade making study. In the study, to get the reward money, 

young adults lengthen their saccade latency so that the saccade system could receive the reward 

information. Therefore there is no change in the average saccade latency. But older adults do not 

lengthen their saccade latency that could be: their saccade latency is longer enough to get the 

reward information. After all, even they do not do it, they still can get similar amount of money.  

Familiarity and strategy effects on Reward 
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Previously some studies found equivalent rewards effects in old adults whereas some studies 

found reduced effects in old adults. This thesis consistently found positive reward effects on 

performance indicating its potential function in reducing aging declines. 

Some studies speculated that the factor is involved in the discrepancy of these results could be 

task complexity. Older adults always need more time to understand the tasks and use strategies. 

Two results of the saccade making study support this speculation.  

In the saccade making study, there were no practice trials before the reward condition. As 

illustrated in the Fig. 6, young adults changed their saccade latency at the beginning of the reward 

condition so that their saccade landing position also shifted to the rewarded parts of the target. 

Whereas older adults only started to do that from the second block so that there were relatively 

larger group difference at the first block of reward. This practice effect was also found in 

cognitive tasks. Salthouse (2010a) found that even the second time measurement in longitude 

study is better than the first time measurement in cross-section study. 

As discussed before, the reward effect on saccade latency in older adults could be a strategy 

change. Therefore strategy also changes the reward effects. 

Future 

Results from this thesis emphasize the future investigations on circuitry processing, familiarity 

and strategy. They are highly related. Since older adults seem to use reactive processing 

strategies so that familiarity of the tasks are especially important for them or familiarity 

contributes substantially to observed aging declines. This might also explain differential age-

related changes in behavioral and neural performance in perceptual decision making (McGovern 

et al. 2018). Given that sensorimotor control tasks could be pretty good for aging research 

because it is more natural and could be more natural with the advances in movement recording 

devices. 

Taken together, this thesis found both stability and vulnerability in older adults whereas the 

vulnerability could result from strategy change suggesting the adaptive brain. 
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Footnotes 

1 The population of Germany in 2016:   https://www.statista.com/statistics/454349/population-by-

age-group-germany/ 

2 Google Scholar profile of Prof. Jan Koenderink who are even more productive after his 

retirement: https://scholar.google.de/citations?user=lxW3wvMAAAAJ&hl=en 

3 Google Scholar profile of Prof. Andrea J. van Doorn, who are even more productive after his 

retirement: https://scholar.google.de/citations?user=_6VnqIwAAAAJ&hl=en&oi=sra  
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