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Abstract  

In order to experience something through our sense of touch, we usually have to actually 

‗touch‘, in other words, to actively move the fingers for a certain time. During this period of 

time, several sequential movements generate new sensory information (Gibson, 1962; Klatzky & 

Lederman, 1999). Haptic perception can, therefore, be considered as a dynamic process in which 

the sensory basis for perception and movements is continuously updated. In the past, several 

studies investigated how sensory information from multiple sources is integrated into a final 

percept (e.g., Ernst & Banks, 2002). Other studies examined movement control in haptic 

exploration (e.g., Klatzky & Lederman, 1987; Kaim & Drewing, 2011). However, existing 

literature on natural haptic exploration did not consider dynamic developments in movements 

and perception over the entire process. Within my thesis, I aimed to overcome these limitations 

by studying the sequential nature of the haptic perceptual integration and the online adjustments 

of movements in natural haptic exploration.  

Across the first two studies, I investigated how sequentially gathered sensory information 

is integrated into a unified percept for two central haptic dimensions, softness and texture. First, 

in Study I, participants compared two textures after exploring them one after the other with 

varying numbers of exploration movements. The integration of the sensory information from 

sequential movements resulted to be more complex than predicted by an optimal integrator 

model which is known from the integration of simultaneous information (MLE, e.g., Ernst & 

Bülthoff, 2004). Second, Study II focused on the contributions of individual sequential 

movements for softness judgments. The psychophysical results of this study were well in 

agreement with neurophysiologic literature on decision-making (e.g., Deco, Rolls, & Remo, 

2010) and - again - not consistent with a simple MLE model. In order to account for the temporal 
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dynamics of the sequential exploration process, I developed a Kalman filter model (Kalman, 

1962) as an expanded optimal integrator model. Predictions from this model resulted to be 

consistent with the empirical data. In sum, the model incorporates online comparisons between a 

memory representation of the first object and the current sensory information about the second 

object during each movement over the second object (see e.g., Romo & Salinas, 2003). The 

memory representation of the first object, however, is additionally assumed to decay during the 

exploration of the second object (see e.g., Murray, Ward & Hockley, 1975). 

Studies III and IV investigated whether sequentially gathered sensory information impact 

the control of key movement parameters for softness and texture perception. Specifically, Study 

III examined peak indentation forces during the process of softness exploration. The results 

revealed that sensory information had less impact on the executed movements than predictive 

information. However, the impact of sensory information was moderated by motivation, which is 

in line with models on optimal movement control (e.g., Todorov & Jordan, 2002). Study IV, 

focused on movement directions during the process of texture exploration. Within this study, I 

developed a novel method that allows directly comparing the use of sensory signals in movement 

control to its use in perception. The results indicated that sensory signals are incorporated in 

movement control and that this can improve perception. In sum, movements were reported to be 

adjusted over the exploration process with the goal to optimize haptic perception while 

minimizing motor costs.  

Taken together, the presented thesis expands the exciting literature by demonstrating that 

due to the sequential gathering of sensory information perception and movements continuously 

evolve and mutually influence each other in a process of natural haptic exploration.  
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Zusammenfassung 

Um etwas mit unserem Tastsinn zu erfühlen, müssen wir üblicher Weise ‚tasten‗, also 

einige Zeit die Finger aktiv bewegen. In dieser Zeitspanne werden mit mehreren sequentiellen 

Bewegungen sensorische Information erzeugt (Gibson, 1962; Klatzky & Lederman, 1999). 

Haptische Wahrnehmung kann somit als ein dynamischer Prozess verstanden werden, bei dem 

die sensorische Basis für Wahrnehmen und Bewegen kontinuierlich aktualisiert wird. Einige 

Studien haben in der Vergangenheit erforscht, wie sensorische Informationen verschiedener 

Quellen zu einem finalen Perzept integriert werden (e.g., Ernst & Banks, 2002). Andere Studien 

untersuchten Bewegungskontrolle innerhalb haptischer Exploration (e.g., Klatzky & Lederman, 

1987; Kaim & Drewing, 2011). Jedoch wurden bisher die dynamischen Entwicklungen der 

Bewegung und Wahrnehmung im Laufe des Explorationsprozesses nicht beachtet. Das Ziel 

meiner Thesis ist es die Integration sequentieller Informationen und die laufenden 

Bewegungsanpassungen zu untersuchen und damit die bestehenden Limitationen zu überwinden. 

Die Studien I und II erforschten für zwei zentrale haptische Dimensionen, nämlich 

Weichheit und Textur, wie sequentiell erzeugte sensorische Informationen zu einer einheitlichen 

Perzeption integriert werden. In Studie I, verglichen Versuchsteilnehmer zwei Texturen nachdem 

sie diese mit einer variablen Anzahl an Bewegungen hintereinander exploriert hatten. Hierbei 

schien die Integration der durch die einzelnen sequentiellen Bewegungen erzeugten sensorischen 

Informationen komplizierter zu sein als ein Modell optimaler Integration für simultane 

Informationen vorhersagen würde (MLE, e.g., Ernst & Bülthoff, 2004). Im Fokus von Studie II 

stand welche Bedeutung die durch einzelne Bewegungen erzeugten sensorischen Informationen 

für Weichheitsbeurteilung haben. Die Ergebnisse waren im Einklang mit neurophysiologischer 

Literatur zur Entscheidungsfindung (z.B. Deco, Rolls, & Remo, 2010) aber - wieder - im 
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Widerspruch zu einem einfachen MLE model. Um zeitliche Dynamiken sequentieller 

Exploration zu berücksichtigen, habe ein Kalman Filter Model (Kalman, 1962) als ein 

erweitertes Modell optimaler Integration entwickelt. Die Vorhersagen dieses Models waren 

konsistent mit den empirischen Daten. Hierbei nimmt das Modell an, dass während jeder 

Bewegung über das zweite Objekt ein Vergleich zwischen der Gedächtnisrepräsentation des 

ersten Objekts und der aktuellen Information über das zweite Objekt stattfindet (vgl. z.B. Romo 

& Salinas, 2003). Jedoch wird angenommen, dass die Gedächtnisspur des ersten Objekts 

während der Exploration des zweiten Objekts zerfällt (vgl. z.B. Murray, Ward, & Hockley, 

1975). 

In den Studien III und IV habe ich untersucht ob die Bewegungsparameter haptischer 

Exploration von Weichheit und Textur durch sequentiell erzeugte sensorische Information 

beeinflusst werden. Im Speziellen, erforscht Studie III Weichheitswahrnehmung angewandte 

Maximalkräfte. Sensorische Informationen beeinflussten Bewegungen weniger als prädiktive 

Informationen. Jedoch schien Motivation den Effekt sensorischer Signale zu moderieren, was zu 

Modellen optimaler Bewegungskontrolle passt (z.B. Todorov & Jordan, 2002). Studie IV 

untersuchte die für Texturexploration genutzten Bewegungsrichtungen. Hierbei habe ich eine 

neuartige Methode entwickelt, welche ermöglicht den Gebrauch sensorischer Information in 

Bewegungen und Wahrnehmung miteinander zu vergleichen. Die Ergebnisse zeigten, dass 

sensorische Informationen in die Bewegungssteuerung einfließen und, dass dies die 

Wahrnehmung verbessern kann. Zusammengefasst scheinen Bewegungen über den 

Explorationsprozess so angepasst zu werden, dass sie die haptische Wahrnehmung optimieren 

und motorische Kosten minimieren. 
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Insgesamt liefert die vorgelegte Thesis einen bedeutenden Beitrag da sie aufzeigt, dass 

aufgrund des sequentiellen Erzeugens sensorischer Informationen sich im Laufe eines 

Explorationsprozess Wahrnehmung und Bewegung kontinuierlich verändern und gegenseitig 

beeinflussen.  
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1. Introduction 

When people use the expression ‗at first glance‘, they refer to the first impression of 

something, before having looked at it carefully. This first impression is rather unreliable and will 

most probably be adjusted after a proper examination. Similarly, a ‗haptic glance‘ refers to first 

contact between the fingers and the object, which is spatially and temporally restricted and 

involves no or minimal movement (Klatzky & Lederman, 1995). The ‗haptic glance‘ may allow 

judging some coarse material or local shape properties. However, a big part of relevant object 

information cannot be processed within this initial contact. Therefore, natural haptic perception 

includes more than just a ‗first glance‘. In natural circumstances, haptic perception extends up to 

several seconds in time (Klatzky & Lederman, 1999). Within this time, active finger movements 

are performed in order to generate sensory information (Gibson, 1962). Movements and 

perception evolve over the course of exploration (e.g., Saig, Gordon, Assa, Arieli, & Ahissar, 

2012). The percept is updated by the added sensory information of each additional movement. 

Also movement control can rely on an increasing amount of sensory information with more 

extended exploration. In the past, several studies investigated the integration of sensory 

information for perception (e.g., Ernst & Banks, 2002) and movement control in haptic 

exploration (e.g., Klatzky & Lederman, 1987). But, these studies did not consider developments 

over the entire exploration process and, thus, lack to represent the sequential nature of the 

perceptual integration and the movement adjustments in natural haptic exploration. Therefore, I 

aim to overcome these limitations by providing a model for the integration of sequential sensory 

information and investigating dynamic adjustment of movements within the entire exploration 

process. Further, I will investigate the interdependencies between perception and movements, 

which result from the dynamic nature of the exploration process. I aim to describe how 
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perception and movements influence each other mutually and provide suggestions about the 

basis and goal of such sensorimotor interdependencies. 

1.1. Sensory Integration of Simultaneous Signals 

Perception is multimodal by nature. All our senses constantly receive sensory information 

about the external world. Information coming from different sources is often referred to as 

different ‗signals‘ or ‗cues‘. When multiple signals complement each other, that is to say, 

provide information about different content, they can be combined (Ernst & Bülthoff, 2004). So 

for instances, if you grab a mug from its back and see its front side, the visual and haptic signals 

can be combined to improve the estimated diameter of the mug. However, if you would hold the 

mug on the front side, visual and haptic signals would be redundant (provide information about 

the same content) rather than complementary. Redundant signals can be integrated to a unified 

percept. For the integration of simultaneous redundant information the Maximum Likelihood 

Estimation (MLE) model is well-established (overview in Ernst & Bülthoff, 2004). Here, all 

redundant signals are assumed to be used in integration (Jacobs, 2002). Each signal i is 

transferred into a signal-specific estimate Si of the property of interest. All available estimates 

are, then, integrated into a unified perceptual estimate 𝐸  by weighted averaging: 

𝐸 = 𝑤𝑖𝑖 𝑆 𝑖  where   𝑤𝑖 = 1  and𝑖  𝑤𝑖 ∈  0,1 .                 (1) 

This is to say, in our example the diameter of the mug would be computed as the 

weighted average of individual estimates derived from the visual (𝑆 𝑉) and haptic (𝑆 𝐻) sense. 

However, estimates derived from each signal are prone to noise. In other words, multiple 

judgments of the same property result in slight variation of the signal-specific estimate. Thus, 
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each estimate can also be described by its specific variance (𝜍𝑖
2). Figure 1.1a schematically 

illustrates a probability density distribution for multiple judgments of one property, which 

follows a Gaussian shape. 

 

 
Figure 1.1. (a) Gaussian shaped probability density distribution: The probability of the estimate 

resulting in a particular diameter is plotted against all possible diameter estimates. The mean (S) 

defines the final signal-specific diameter estimate and the standard deviation (σ ) defines the 

perceptual noise of this signal. (b) Psychometric function: Cumulative Gaussian function, which 

is fitted to the proportion of trials, in which the participant indicated that the comparison 

diameter was bigger than the standard diameter (S0) for each diameter of the comparison. PSE is 

defined as the comparison value for which discrimination performance at chance level (50%). 

JND is defined as the difference between the PSE and the comparison value, for which the 

comparison is judged bigger than standard in 84% of the time. (c) Probability density 

distributions of visual, haptic and visual-haptic estimates. Based on the MLE integration rule the 

visual-haptic distribution has the smallest variance and its mean (𝑆𝐻𝑉) is closer to the less variant 

signal-specific estimate (in this example: 𝑆𝑉 , as σH = 4 ∗ σ V
).(d) Psychometric function of the 

visual-haptic estimate: PSE indicates with which weights the visual and the haptic estimate have 

contributed to the final percept (Figure adapted from Ernst,2006 and Ernst & Banks, 2002). 

(d) 

(c) (a) 

(b) 
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Within the MLE approach, weights are considered optimal if they are in inverse 

proportion to estimate‘s variance (𝑤𝑖 ∝ 1 𝜍𝑖
2 ). Thus, in optimal integration less variable 

estimates contribute more to the final percept. Weighted averaging with optimal weights leads to 

the minimal variance of the final percept(𝜍𝐸 
2; Landy, Maloney, Johnston, & Young, 1995). 

𝑤𝑗 =
1/𝜍𝑗

2

 1/𝜍𝑖
2

𝑖=1…,𝑗 ,…𝑁
  with  𝜍𝐸 

2 =
1

 1/𝜍𝑖
2

𝑖
.     (2) 

Whether integration follows MLE principles can be tested when participants can make 

use of multiple signals which are slightly discrepant (e.g., Ernst & Banks, 2002; Gepshtein & 

Banks, 2003; Alais & Burr, 2004). Due to this discrepancy, it is possible to measure the weight 

given to each signal. To do so, usually discrimination tasks are implemented. If one implemented 

such a discrimination task for our example of the mug diameter estimated from vision and 

haptics, participants would judge whether the diameter of a comparison (S) is bigger than the 

diameter of the standard (S0) in each trial. Under the assumption that standard and comparison 

constitute independent percepts with the same level of internal noise (σSo
² = σS²), responses can 

be fitted by a cumulative Gaussian (Fig. 1.1b), which is commonly referred to as psychometric 

function. In the psychometric function, the comparison value corresponding to discrimination at 

chance level (50%) is defined as the Point of Subjective Equality (PSE). PSEs from a multi-

signal discrimination task can assess weights of signal-specific estimates, when slight 

discrepancies between signals were introduced (𝑆𝑉 = 𝑆𝐻 + 𝛥). The Just Noticeable Difference 

(JND) in the same task measures the estimate‘s variance (JND= 2σ). JNDs can be defined as 

the difference between the PSE and the comparison value, for which the comparison is judged 

bigger than standard in 84% of the time. The optimal final estimate should be less variable than 

each unimodal estimate. Therefore, in our example, the combined estimate should be less 
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variable than the visual and the haptic estimate. Additionally, if we assume that the visual 

estimate of the mugs diameter is less variable than the haptic estimate (e. g. , σH = 4 ∗ σ V
), the 

final estimate should be more influenced by the visual estimate according to MLE (𝑤𝑉 = 4 ∗ 𝑤𝐻; 

see Fig.1.1c-d). 

Several studies compared MLE predictions on the weighted average (measured by the 

PSE) and noise reduction (measured by the JND) with empirical data for multimodal perception. 

For instance, Alais and Burr (2004) investigated the visuo-auditory integration of brief visual 

―blobs‖ and sound ―clicks‖. The authors showed that for not-blurred vision the bimodal 

localization followed almost only the visual location of the event. This can basically explain the 

ventriloquist effect, in other words the subjective impression that a voice originates from the 

puppets mouth and not it‘s actual sounds source (the performer‘s mouth). The more blurred the 

presentation of the visual stimulus was, the more the perceived location shifted towards the 

sound source. Additionally, bimodal localization was less variable then unimodal localization. 

Similarly, visual-haptic size perception was found to follow MLE principles (Ernst & Banks, 

2002). Ernst and Banks (2002) used a 2-interval forced-choice (2-IFC) discrimination task on the 

height of visual-haptically experienced bars. The visual and the haptic representation of the 

stimulus were rendered independently so that slight discrepancies between the two signals were 

introduced in the bimodal standards. The haptic representation was rendered with two 

PHANToM force-feedback devices, one for the thumb and one for the index finger. The visual 

representation constituted a random-dot stereogram. The reliability of the visual representation 

was manipulated by adding noise to a random-dot stereogram (0%-200% noise in depth relative 

to the height the bar). Both predictions from the MLE modal were consistent with the empirical 

data. First, when the visual variance increased (with more added noise) the perceived height 
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(measured by the PSE) was increasingly closer to the haptic height estimate and further from the 

visual height estimate. Second, the visual-haptic estimates were less variable (lower JNDs) as 

compared to the unimodal estimates. More specifically, based on the unimodal distribution 

(measured in separate unimodal conditions) the final estimate (PSE) and the variance (JND) for 

each bimodal visual-noise conditional was predicted using MLE. The authors found a good 

correspondence between predicted and observed values in both measures. More recent studies 

additionally reported neurophysiologic correlates of optimal multisensory integration (e.g. 

Fetsch, DeAngelis, & Angelaki, 2013; Helbig et al., 2012; Seilheimer, Rosenberg & Angelaki, 

2014) and even trimodal optimal integration (Wozny, Beierholm & Shams, 2008).  

However, optimal integration was also reported for multiple signals coming from the 

same modality. For instance, when judging surface slant visually, the integration of texture and 

stereo information was consistent with MLE predictions (Knill & Saunders, 2003; Hillis,Watt, 

Landy & Banks, 2004). Also, texture frequency and orientation were shown to be combined 

optimally for the visual localization of texture-defined edges (Landy & Kojima, 2001). MLE 

optimality principles were not only tested for visual integration, but also for multiple haptic 

signals that were simultaneously available. For instance, object shape is haptically experienced 

by a position signal and a force signal (Robles-De-La-Torre & Hayward, 2001). The position 

signal is defined by the surface geometry and refers to up- and down shift in the finger position 

when sliding over an object. The force signal is defined by the direction of reaction force 

produced when sliding over the object and therefore is depended on the surface slope. Drewing 

and colleagues (Drewing & Ernst, 2006; Drewing, Wiecki & Ernst, 2008) showed that for 

perceiving the shape of a virtual bump force and position signals are integrated in agreement 

with MLE predictions.  
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In total, optimality principles were tested for multi-signal integration between sense and 

also within the haptic sense. The reported studies, however, investigated integration of 

simultaneously available signals. In contrast to this, natural haptic perception extends in time 

(Klatzky & Lederman, 1999) and, therefore, also sequentially available redundant signals need to 

be integrated (Henriques & Soechting, 2005).  

1.2. Sensory Integration of Sequential Signals 

If multiple signals for integration are gathered sequentially, several possible 

consequences for the optimal integration model arise. On the one hand, assumptions of the MLE 

model might be violated and, on the other hand, the classical MLE might not capture temporal 

dynamics, which arise for sequential signals. One assumption of the MLE model is that the noise 

of signal-specific estimates is uncorrelated. However, when estimates are based on signals that 

are generated by multiple movements of the same finger over the same object, they possibly have 

correlated noise. Oruç, Maloney and Landy (2003) investigated the integration of signals on 

linear perspective and texture gradient for the visual perception of surface slant without the 

assumption of uncorrelated noise. The results indicated that correlated noise increased the final 

estimate variance and slightly changed weights. However, estimates still benefitted from 

integration. For two correlated estimates the final percept‘s variance could be well predicted by 

the following formula with ρ being the correlation: 

 𝜍𝐸 
2 =

1−𝜌2

 1/𝜍𝑖
2

𝑖 −2𝜌 (𝜍1 ∗𝜍2)
         (3) 

A second assumption of the MLE model is that the observer believes that signals 

originated from the same source. Besides spatial coincidence, temporal synchrony is one of the 
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most important cues for the implicit knowledge that multiple signals refer to the same source 

(Helbig & Ernst, 2007). Therefore, temporal segregation of cues, as it is the case for sequentially 

generated signals, might potentially influence their integration. For instance, auditory and tactile 

stimuli were integrated automatically if appearing simultaneously, and this effect disappeared 

gradually with temporal asynchrony (Bresciani et al., 2005). Similar synchrony effects were 

reported for two signals within the haptic modality. When virtual bumps were presented to 

thumb and index finger while sliding over an surface, synchrony increased the probability that 

both events are attributed to a common source (Manuel, Klatzky, Peshkin & Colgate, 2015) and 

reduced variance in the localization of the assumed object (Lezkan et al., 2016). Such variations 

in temporal segregation could be incorporated in an extended model of optimal perception. 

Similarly, for spatial coincidence variations, Körding et al. (2007) suggested that the model of 

optimal perception should include priors which specify the probability that certain signals are 

generated by the same source and therefore has to be expanded to the framework of Bayesian 

inference. The probability of a common source determines whether signals will be integrated or 

not. The authors argue that their data on audio-visual localization (like in the ventriloquist effect) 

is best explained by a mixture model, in which integration takes place or does not take place 

depending on the probability of a common source given the spatial separation between the 

signals (see Fig. 1.2).  

 

 

 

 

Figure 1.2. Causal inference in the ventriloquist effect. Either one cause (C=1) or two different 

causes (C=2) are assumed for the visual and auditory signals. Perception is modeled by a mixture 

of both situations depending on their probabilities (reprinted from Körding et al., 2007). 
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Because sequential signals are natural to haptic perception one might argue that this kind 

of temporal separation between signals will not harm the assumption of a common source as 

long as the finger stays in continuous contact with the object. Nevertheless, introducing Bayesian 

inference might be fundamental for the integration of sequentially gathered signals because it 

allows implementing priors. When signals are generated sequentially, what is considered to be a 

current signal and what a prior changes dynamically. Earlier signals also constitute the priors for 

later signals. Therefore, including priors is an important improvement for the optimality model. 

In Bayesian inference the prior 𝑃(𝑋) is combined with the signal-specific estimates (e.g. S1 & 

S2). The aim of an optimal integration would be to compute the conditional density function of 

the object property value (X) - the posterior probability - given the sensory estimates. The 

posterior probability 𝑃(𝑋|𝑆1, 𝑆2) is proportional to the product of the likelihood function 

𝑃(𝑆1, 𝑆2|𝑋) and prior probability distribution 𝑃(𝑋) (Ernst, 2006; Knill & Pouget, 2004). Further, 

if the noise of individual estimates is independent, the likelihood function is the product of the 

likelihood functions associated with each individual estimate. Thus, the following formula 

results: 

𝑃(𝑋|𝑆1, 𝑆2) ∝  𝑃(𝑆1|𝑋) 𝑃(𝑆2|𝑋) 𝑃(𝑋)     (4) 

When no prior is given, the Bayesian inference makes the same predictions as the MLE 

model. In the case of two sequentially generated signals, the first estimate (i.e., posterior after the 

first signal) can be considered the prior for the calculation of the second estimate (i.e., posterior 

after both signals). However, when more than two signals are given, Bayesian inference would 

have to be applied several times in a row. This process of continuously applying Bayesian 

inference (e.g., for multiple sequential movements) was also described as the Kalman filter 
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framework (Kalman, 1962). In the Kalman filter framework the posterior estimate (𝐸  𝑖+1 ) after 

gathering the signal i is computed in the following way (cf. Shadmehr & Mussa-Ivaldi, 2012): 

𝐸  𝑖+1 = 𝐸  𝑖 + 𝑘(𝑖)(𝐸(𝑖) −  𝐸  𝑖 )       (5) 

where  𝑘(𝑖) =
𝑝(𝑖|𝑖−1)

𝑝(𝑖|𝑖−1)+𝜍
𝐸(𝑖)
2   and 𝑝(𝑖|𝑖−1) =

𝑝(𝑖−1|𝑖−2)∗𝜍
𝐸(𝑖−1)
2

𝑝(𝑖−1|𝑖−2)+𝜍
𝐸(𝑖−1)
2  (6) 

 

The posterior estimate 𝐸  𝑖+1  is derived from the prior 𝐸  𝑖  (that is given by the estimate 

from the previous signal) plus the prediction error of the previous estimate (𝐸 𝑖 −  𝐸  𝑖 ) 

weighted by Kalman gain 𝑘 𝑖 . The Kalman gain describes the ratio between the prior variance 

(𝑝 𝑖 𝑖−1 ) and the sensory variance (𝜍
𝐷(𝑖)
2 ). This is to the say, in the Kalman filter priors and 

present information are combined as in Bayesian interference, but it additionally incorporates 

potential changes in the estimates over time. Also the MLE model is captured within the Kalman 

filter framework as a simple case with no priors and stable estimates over time (Battaglia, 

Jacobs, & Aslin, 2003; Ernst & Bülthoff, 2004). However, the Kalman filter can also describe 

how a series of sequential estimates are used for estimating a property in a way that the variance 

of the final estimate is minimized in more general circumstances. For instance, if estimates have 

to be stored in memory, they get noisier over time (e.g., Murray, Ward & Hockley, 1975; 

Olkkonen, McCarthy & Allred, 2014). This kind of temporal dynamics can only be included 

when modeling optimal perception with the Kalman filter framework.  

Taken together, previous research successfully modeled how the brain integrates different 

simultaneously available sources of information by the MLE approach. However, integrating 

sequentially gathered information presumably leads to more complex processing then we would 

predict from MLE. More specifically, the MLE model would be especially challenged to 
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represent temporal dynamics, as for instance changes in estimate variance over time. Together 

with my colleagues, I investigated the integration of sequentially gathered haptic signals for 

softness and texture, which are considered to be two central dimensions of haptic perception 

(Bergman Tiest & Kappers, 2006), in the first two studies. Further, I proposed and tested a 

Kalman filter model of optimal perception that can account for temporal dynamics of a 2-IFC 

texture discrimination task.  

1.3. Exploration Movements 

 

Figure 1.3. Sensation-Perception-Action Loop including Bayesian inference (reprinted from 

Ernst & Bülthoff, 2004). 

 

So far, I described how sensations (signals) might lead to a specific percept. However, 

perception is usually not an aim on its own; people perceive in order to interact with the 

environment (see Fig. 1.3). When the movements for this interaction are selected, not only the 
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priors and the sensory signals (which are integrated in the posterior) play a role. Also, a 

motivational (gain/loss) value of the task might be important (Ernst & Bülthoff, 2004). 

Additionally, exploratory movements have to be considered in a repetitive cycle, where every 

movement produces new sensory signals. These signals constitute the basis for the control of the 

upcoming movement. In the following paragraphs, I will review previous literature on natural 

exploration movements in haptic perception and I will question whether movements are adjusted 

or even optimized online, i.e. within one exploration process. 

In the concept of the sensation-perception-action loop sensations are the basis for 

movements and movements serve the generation of new sensations. In 1962 Gibson described in 

an article on a number of behavioral and introspective observations that “when one explores 

anything with his hand, the movements of the fingers are purposive”. In other words, hand 

movements are actively chosen in order to generate sensations and, therefore, haptic perception 

is considered to be an active process. Lederman and Klatzky (e.g., Lederman & Klatzky 1987; 

Klatzky, Lederman & Reed, 1989) extended Gibson‘s ideas by providing a systematic overview 

of ‗purposive‘ finger movements stereotypically performed for specific object properties. In their 

seminal work (Lederman & Klatzky, 1987), the authors used a ‗match-to-sample‘ task, in which 

blindfolded participants had to learn about one object property of a standard stimulus and then to 

match the most similar stimulus out of three comparisons based on this property. In every set, the 

four objects varied among several object properties, for example, softness, texture or shape. The 

participants chose different movement patterns depending on the object property they were 

instructed to focus on.  Movement patterns were classified into so-called ‗exploratory 

procedures‘ (EPs). Figure 1.4 depicts typical EPs and the associated properties. For instance, in 

order to match softness/hardness, participants typically applied a force normal to the object 
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surface. Texture matching, in contrast, was performed after using lateral motion. In this EP, 

participants typically make side-to-side movements (strokes). In the second experiment of that 

study the authors restricted the participants to execute a specific EP in each trial. After pairing 

each property task with each EP, Lederman and Klatzky concluded that spontaneously executed 

EPs tended produce optimal performance.  

 
Figure 1.4. Exploratory procedures with their linked properties (reprinted from Lederman, 

1991). 

 

Further, Klatzky and Lederman (1999) suggested that individual EPs optimize the signal 

for the sensory receptors and higher-order neural computations. In the example of temperature 

perception, the EP called static contact is usually performed. This EP allows heat flow between 
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skin and surface. In contrast to static touch, dynamic interactions with the object inhibit thermal 

sensations (Green, 2009). Another example is surface roughness, which is perceived by the 

spatial pattern of slowly adapting (SA1) afferent activation at the macroscale and vibration based 

Pacinian (PC) afferent activation at the microscale (Hollins & Bensmaïa, 2007). Roughness, as a 

texture property, is usually explored with the EP lateral motion. The resulting tangential 

movement between skin and surface, enhances the responses of SA1 (Johnson & Lamb, 1981) 

and PC afferents (Weber et al., 2013) and, therefore, potentially optimizes the signals for the 

task. However, we still lack a complete understanding of the optimization mechanisms.  

More recent studies focused on a fine-grained analysis of exploration behavior. 

Therefore, individual parameters, like force or velocity, of movements within specific EPs were 

investigated. While some researchers described perceptual biases (e.g., measured by PSEs) 

depending on the movement parameters (e.g., Armstrong & Marks, 1999; Debats, van de 

Langenberg, Kingma, Smeets, & Beek, 2010), others focussed on the perceptual perfromance 

(e.g., measured by JNDs). For instance, the amount of movement force was reported to improve 

the perception of details virtually rendered shapes (O‘Malley & Goldfarb, 2002). Also for 

softness judgments, higher normal force during the EP pressure was shown to be associated with 

better discrimination (Srinivasan & LaMotte, 1995; Kaim & Drewing, 2011). Within the EP 

lateral motion, the orientation of finger movements relative to a textures surface can have an 

impact on perceptual performance (Lamb, 1983).  

In sum, previous research showed that variations in individual movement parameters 

influence haptic perception. Nevertheless, an additionally important question is whether people 

use these parameters optimally when they explore spontaneously. Some studies reported 

variations in movement parameters, which seem to be beneficial for the task. For instance, Nefs, 
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Kappers and Koenderink (2002) reported that participants spontaneously increased the contact 

force of their lateral movements for higher line frequency of gratings, which might have 

improved their perceptual performance. Riley, Wagman, Santana, Carello and Turvey (2002) 

focused on object properties that can be perceived with the EP of wielding. The authors showed 

that exploratory dynamics within wielding varied depending on the object property of interest. 

Also Smith, Gosselin and Houde (2002) investigated several movement parameters within one 

EP and reported that tangential finger speed, normal contact and tangential shear force were 

selected, in ways which seemed optimal given a specific surface friction. Similarly, Tanaka, 

Bergman Tiest, Kappers and Sano (2014) described spontaneous effective variations in normal 

force, scanning velocity, and break times depending on the tasks and roughness of the stimuli. 

Some other studies investigated the optimality of spontaneous movement parameters more 

rigorously. Drewing (2012) tested haptic shape discrimination for different movement directions. 

By experimentally manipulating the noise for certain movement directions, it was possible to 

change the relation between exploratory direction and discrimination performance. After 

experience with the new task, participants chose directions that improved perception and, 

therefore, optimized the movement parameter direction. A similar optimization was reported for 

the normal force of indentations used for softness discrimination. Kaim and Drewing (2011) 

measured the first spontaneous indentation peak force for hard and soft stimuli, when their 

softness category was either predictable or not. For predictably hard stimuli, participants used 

higher indentation force than for predictably soft stimuli. This was shown to be an optimal 

behavior when participant were instructed to use more or less force than they would do 

spontaneously. While using less force for hard stimuli impaired discrimination, more force did 

not improve discrimination.  
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 Taken together, exploration movements were described to be purposive and even 

optimally chosen. Depending on the object property people qualitatively change movement 

pattern, i.e. EPs. Depending on the property value people also quantitatively change the exact 

movement parameter. However, exploration is an entire process and movements evolve within 

one exploration. Therefore, it is not enough to represent one exploration with one movement 

parameter value only, as it was commonly done in the literature. In my thesis I aimed to 

overcome this limitation and investigate so-called online adjustments of exploration movements. 

1.4. Online Adjustments of Exploration Movements 

Given a sensation-perception-action loop, movement control is based on available 

sensory signals and the resulting percept. Over the course of one exploration additional 

movements add sensory signals. The availability of more sensory signal should increase the 

precision (i.e., lower the variance) of the percept (e.g., Quick, 1974; Gescheider, Berryhill, 

Verrillo, & Bolanowski, 1999; Louw, Kappers, & Koenderink, 2005; Giachritsis, Wing & 

Lovell, 2009). Additionally, perception might be changed over the exploration. For instance, 

Lakatos and Marks (1999) described that for short exploration times, local features dominated 

the overall percept, whereas global features became more important with longer exploration 

times. Therefore, the basis for motor control changes constantly.  

In one of the first studies on how exploration behavior evolves, Lederman and Klatzky 

(1990) described haptic object identification as a two-stage process. In the first stage, general 

exploration procedures, like grasping and lifting, were performed. This gave the possibility to 

obtain information about a variety of properties while the signals were imprecise. Thereafter, in a 

second step, the specific optimal exploratory procedure was applied. In other words, sensory 



31 

information obtained in the first step was used to adjust exploration movements in the second 

step. 

More recent studies reported online adjustments of individual movement parameters. 

For instance, Weiss and Flanders (2011) showed that gradually gathered sensory signals are used 

for continuously updating motor commands. Participants followed with their finger the contour 

of virtual spheres. Within a trial of 2-3 seconds duration participants were able to adjust the 

velocity and force of finger movements to the unpredictable surface curvature. Additionally, 

when unexpected changes in surface curvature were introduced a compensatory force adjustment 

followed in only 50 ms. The authors suggested that a spinal control mechanism compares actual 

sensory signals with the expected sensory signals on the basis of the efferent copy of the motor 

command. While there are not many studies, which examined how humans adjust exploratory 

movements based on sensory signals, as Weiss and Flanders (2011) did, this was widely 

investigated in rodents (e.g., Mitchinson, Martin, Grant & Prescott, 2007; Deutsch, Pietr, 

Knutsen, Ahissar & Schneidman, 2012; Saraf-Sinik, Assa & Ahissar, 2015). Inspired by the 

rodent whisking behavior Saig, Gordon, Assa, Arieli, and Ahissar (2012), used an artificial 

whisking task for humans. Hereby, artificial whiskers were attached to the right and left index 

finger of the participant. While sitting between two poles, participants performed self-directed 

whisking movements and reported which of the poles was more posterior in the horizontal plane. 

The results showed that sensory signals were used to adjust movement parameters over the 

exploration process until they converged to a steady state.  

In sum, sensory signals gathered during the exploration were previously reported to 

evoke adjustments of motor variables. However, for most of the natural exploration behaviours 

of non-virtual objects online adjustments have so far not been investigated. In order to overcome 
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these limitations within my thesis, I conducted Study III and IV. The studies investigated 

whether people adjust movement parameters online when judging softness and texture. 

Previous  research suggested to directly compare movements and perception in order to 

investigate in how far sensory signals contribute to motor control. In vision research, 

‗oculometric‘ functions were used for comparisons of eye movements with visual perception 

(e.g., Kowler & McKee, 1987). Comparing the noise in both systems allowed vision scientist to 

propose models on whether shared signals are contributing and whether the processing is parallel 

or rather serial (e.g., Stone & Krauzlis, 2003; Gegenfurtner, Xing, Scott & Hawken, 2003). 

Similar analyses for online adjustments of movements and their perceptual basis would help to 

understand the mechanisms behind the sensation-perception-action loop in active touch. 

Additionally, based on previous research we know that motor commands will not only 

depend on current sensory signals but also other factors. The sensation-perception-action loop 

describes two kinds of processes influencing chosen movements. These are also known from 

movement control literature, as feedforward processes via prediction/ prior knowledge and 

feedback processes via sensory signals (e.g., Wolpert, 1997). Therefore, besides sensory signals, 

prediction was reported to play a role in movement control (e.g., Wing & Lederman, 1998; 

Johansson & Westling, 1988; Kaim & Drewing, 2011). Prediction was shown to have higher 

impact on movement control for regular events, like smooth changes in contrast to abrupt ones 

(Tramper & Flanders, 2013). The relative contribution of different sources of signals, like 

prediction and sensory signals, for movement control was reported to vary over the exploration 

process depending on their variances (Saunders & Knill, 2004). Therefore, sensory signals 

should have more effect on movement control the less noisy they are, which is achieved with 

increasing accumulated sensory evidence (e.g., Quick, 1974; Gescheider, Berryhill, Verrillo, & 
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Bolanowski, 1999; Louw, Kappers, & Koenderink, 2005; Giachritsis, Wing & Lovell, 2009). 

This is to say, later in the exploration process movements should be more influenced by sensory 

signals. Under the assumption that the overall goal is to get the least noisy final percept, later 

movement parameters should also be closer to optimal values.  

In active touch, additional sensory signals are generated with additional movements 

generate. However, additional movements are also associated with additional movement costs, in 

terms of effort (Todorov & Jordan, 2002; Todorov, 2004). This trade-off between movement 

benefits (more sensory signals) and movement costs (effort) seem to be moderated by reward/ 

motivation (in Fig. 1.3 this is incorporated as the gain/loss function). Studies on eye movements 

showed that the expectation of reward influences movement costs (e.g., Takikawa, Kawagoe, 

Itoh, Nakahara, & Hikosaka, 2002; Xu-Wilson, Zee, & Shadmehr, 2009). Similar moderation 

processes seem to be reasonable for the active haptic exploration movements. However, these 

were not investigated so far.  

Taken together, some first studies focused on online adjustments of exploration 

movement in haptic perception (Weiss & Flanders, 2011; Saig et al. 2012). Other studies 

described that prediction influences movement parameters besides sensory signals. When prior 

knowledge constitutes the prediction it influences first exploration movements (Kaim & 

Drewing, 2011). But when predictions are continuously updated, they can impact movement 

control over the entire exploration course (Tamper & Flanders, 2013). However, for most EPs, 

we lack an understanding of how movement parameters develop in the exploration process. In 

Study III and IV, I investigated the adjustments in key movement parameters for softness and 

texture perception, which occur on the basis of previously gathered sensory signals. In contrast to 

hand movements, exploratory eye movements were more intensively examined (e.g., Najemik & 
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Geisler, 2005). In the Studies III and IV, I incorporated concepts which are known from visual 

research into the investigation of exploration movement in the process of natural haptic 

perception. By doing so, I introduced the concept of motivation in the control of natural haptic 

exploration movement (Study III) and developed a novel method to compare finger movement 

and perceptual noise (Study IV). 

1.5. Aims and Experimental Approaches 

The aim of this thesis „Haptic Perception as a Dynamic Process - How Movements and 

Perception Evolve‟ was to investigate perceptual and motor dynamics of a natural haptic 

exploration process. In Study I and II, I investigated how sequential sensory signals are 

integrated in texture and softness perception. In Study III and IV, I focused on how specific 

movement parameters, that is, indentation force for softness perception and movement direction 

for texture perception, evolve over the exploration process. 

The aim of the first study was to compare the integration of sequentially gathered sensory 

signals to predictions for optimal integration of simultaneous signals (MLE; e.g., Ernst & Banks, 

2002) and propose a better suited model (Kalman filter; Kalman, 1962). First I investigated how 

the extension of exploratory movements (i.e., the number of strokes) affects discrimination 

thresholds for virtual textures with small repetitive structures (rendered with the PHANToM 

force-feedback device). I derived MLE prediction on discrimination thresholds (see Ernst & 

Banks, 2002; Quick, 1974) and tested them against the empirical data. Therefore, participants 

performed a 2-IFC discrimination task on the spatial frequency or the amplitude of textures with 

small repetitive spatial structures defining the textures, which they explored with one to eight 

strokes. In both tasks, discrimination thresholds decreased with an increasing number of strokes, 



35 

however, the decrease was over 3 times smaller than predicted by MLE. Further, I compared the 

weighting of individual strokes to MLE predictions. In order to measure with which weight 

individual strokes contribute to the overall percept, a slight discrepancy between the information 

presented in one specific stroke and the information presented in the remaining strokes over the 

standard stimulus was introduced. Empirical weights deviated from MLE predictions. In this 

study, I proposed that the processing of sequential signals is likely to be more complex than the 

optimal integration for simultaneous signals (MLE). Based on previous literature, I developed 

and tested a Kalman filter model, which captured the memory decay in the representation of the 

first stimulus (e.g., Murray, Ward & Hockley, 1975; Olkkonen, McCarthy & Allred, 2014) and 

an online comparison process within each stroke over the second stimulus (e.g., Romo, 

Hernández, Zainos, Lemus, & Brody, 2002; Romo & Salinas, 2003). In contrast to the MLE 

model, the quantitative Kalman filter model predications were consistent with empirical weights. 

The aim of the second study was to investigate the sequential integration of signals 

generated by multiple indentations on silicone rubber stimuli. Specifically, weights of individual 

indentations within softness exploration were measured. Therefore, haptically perceived softness 

within individual indentations was manipulated by a novel method. In this method, subtle forces 

were transmitted to the exploring finger during bare finger contact with natural silicon rubber 

stimuli. This allowed creating a slight discrepancy between the stimulation in an individual 

indentation and the stimulation in the remaining indentations and assessing its relative 

contribution to the overall percept. Participants performed a 2-IFC task with two to five 

indentations and reported which stimulus felt softer. The weights of individual indentations 

within the exploration of the first and the second stimulus were compared to MLE predictions. 

While MLE predicted equal contributions for all indentations (Ernst & Banks, 2002), this was 



36 
 

only true for the indentations on the first stimulus. However, for the second stimulus, estimates 

from later compared to earlier indentations contributed less. Based on these results, this study 

suggests that the discrimination of natural softness stimuli fits well the neurophysiologic model 

of perceptual decision-making by Deco, Rolls and Remo (2010). In sum, Study II was in good 

agreement with the data and the model presented in Study I and expanded its application to a 

further EP and more naturalistic stimuli. 

Study III investigated movement control during unrestricted exploration of natural 

silicone rubber stimuli for softness perception. For softness perception, people repeatedly press 

their finger against an objects‘ surface, i.e., indent the object (Lederman & Klatzky, 1987). 

Additionally to choosing this optimal EP, peak force of pressing movements is further adjusted 

to the expected softness in order to improve perception (Kaim & Drewing, 2011). The aim of this 

study was to disentangle the contribution of predictive and sensory signals in the control of 

indentation peak forces and to test whether motivation can play a moderating role. In the first 

experiment, participants explored a stimulus pair from a specific softness category and judged 

which stimulus was softer while the predictability of the softness category was manipulated. The 

softness category was predictable when all stimulus pairs of the same category were presented in 

a blocked fashion (predictive signals high). When trials with stimulus pairs from different 

categories were randomly intermixed, predictions about the category of the upcoming pair were 

impossible (predictive signals low). In contrast to predictive signals, sensory signals are gathered 

during exploration. This is to say, for one exploration process, sensory signals are low in the first 

indentation and high in the last indentation. We contrasted the cases with low vs. high 

availability of each signal source in order to estimate the effects of sensory and predictive 

signals. Participants systematically adjusted indentation forces based on sensory or predictive 
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signals, in a way that was described to optimize perception (see Kaim & Drewing, 2011). 

Interestingly, the effect of predictive signals was more pronounced than the effect of sensory 

signals. In a second experiment, we manipulated participants‘ motivation by introducing rewards 

for good performance. The effect of sensory signals was increased when participants were more 

motivated. Further, higher motivation resulted in more effort to generate of additional sensory 

signals. In sum, natural movement control within the process of softness exploration was based 

on predictive and sensory signals with varying contributions depending on the participants‘ 

motivation. 

The aim of the fourth study was to investigate how movements and perception influence 

each other mutually in the natural exploration process. In this study we used 3-D printed oriented 

textures and investigated the movement parameter direction. Periodically repeating grooves 

defined texture orientation. For these textures, the direction of finger movement relative to 

texture orientation is theoretically a crucial movement parameter, because it determines the 

availability of temporal cues to spatial period. Movements orthogonal to texture orientation 

maximize the temporal frequency of stimulation, i.e. temporal cues. In contrast, movements in 

line with texture orientation provide no temporal cues. First, I tested whether texture perception 

gets more precise when movement direction is more orthogonal to the texture, and, therefore, 

this can be considered an optimal movement direction. In a 2-IFC spatial period discrimination 

task the movement direction was systematically varied. I restricted movement directions using 

the PHANToM force-feedback device by defining specific exploration tunnels and manipulated 

the movement direction relative to the texture orthogonal. Discrimination thresholds were 

smaller for directions closer towards the texture orthogonal as compared to in parallel to the 

texture. Based on this evidence of an optimal movement direction I, further, tested whether in 
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free exploration movements are optimized based on sensory signals. Only in the last stroke over 

clearly oriented standards (in contrast to not clearly oriented comparisons) movements were 

directed orthogonally to the texture. Therefore, sensory signals on texture orientation were 

gathered over the course of exploration and used to optimize movements. In a further 

experiment, I tested whether the sensory signals on which movement adjustments are based also 

constitute the basis for the perception of texture orientation. Therefore, I developed a novel 

method that allows directly comparing the use of sensory signals in movement control and 

perception. More specifically, I determined perceptual thresholds for orientation discrimination 

and computed ‗movometric‘ thresholds from the stroke-by-stroke adjustment of movement 

direction. A common factor, namely spatial period, influenced perception and movements. This 

indicates that the same sensory signals contributed to perception and movements. Overall, this 

study described high interdependencies between movements and perception in the process of 

natural exploration. In line with the results of Study III, this study suggests that the goal of 

movement control is to optimize haptic perception. Additionally, in this study, I strengthen the 

evidence that this is achieved by choosing specific parameters of exploratory movement on the 

basis of previously gathered sensory signals. 
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2. Processing of Haptic Texture Information Over Sequential 

Exploration Movements  

A similar version of this manuscript has been published as: 

Lezkan, A. & Drewing, K. (2018). Processing of haptic texture information over sequential 

exploration movements. Attention, Perception, & Psychophysics, 80(1), 177-192, 

doi:10.3758/s13414-017-1426-2. 

Where textures are defined by repetitive small spatial structures, exploration covering a 

greater extent will lead to signal repetition. We investigated how sensory estimates derived from 

these signals are integrated. In Experiment 1, participants stroked with the index finger one to 

eight times across two virtual gratings. Half of the participants discriminated according to ridge 

amplitude, the other half according to ridge spatial period. In both tasks just noticeable 

differences (JNDs) decreased with an increasing number of strokes. Those gains from additional 

exploration were over 3 times smaller than predicted for optimal observers who have access to 

equally reliable, and therefore equally weighted estimates for the entire exploration. We assume 

that the sequential nature of the exploration leads to memory decay of sensory estimates. Thus, 

participants compare an overall estimate of the first stimulus, which is affected by memory 

decay, to stroke-specific estimates during the exploration of the second stimulus. This was tested 

in Experiments 2 and 3. The spatial period of one stroke across either the first or second of two 

sequentially presented gratings was slightly discrepant from periods in all other strokes. This 

allowed calculating weights of stroke-specific estimates in the overall percept. As predicted, 

weights were approximately equal for all strokes in the first stimulus, while weights decreased 

during the exploration of the second stimulus. A quantitative Kalman filter model of our 
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assumptions was consistent with the data. Hence, our results support an optimal integration 

model for sequential information given that memory decay affects comparison processes.  

2.1. Introduction 

Textures are preferably judged by touch. Heller (1982, 1989) reported a greater 

contribution from touch as compared to vision to texture perception. Given that textures are 

defined by repetitive small spatial structures on an object‘s surface, exploration covering a 

greater extent result in repetitive, redundant, intake of the same stimulus signals. Texture 

perception can therefore benefit from integrating sensory information over time. Current models 

of information integration mostly refer to simultaneously presented redundant signals (e.g. Ernst 

& Banks, 2002; Drewing et al., 2008); e.g., holding a pen in the hand simultaneously results in 

both tactile and kinesthetic information about its diameter. In the present study, we investigate 

information integration for sequentially gathered signals in texture perception. In three 

experiments we challenge predictions from models on simultaneous information and develop and 

test a more general Kalman filter model which allows accounting for specific observations in the 

integration of sequential information (e.g. Knill & Pouget 2004) by memory-decay affected 

comparison processes. 

To describe the integration of simultaneous redundant information the Maximum 

Likelihood Estimation (MLE) model is well-established (overview in Ernst & Bülthoff, 2004). 

Jacobs (2002) suggested that integration uses all signals available for a property. First, signal-

specific estimates si for the property are derived from each signal i. Second, all estimates are 

combined into a coherent percept P by weighted averaging: 

P= 𝑤𝑖𝑖 𝑠𝑖   where   𝑤𝑖 = 1  𝑎𝑛𝑑𝑖  𝑤𝑖 ∈  0,1 .                 (1) 
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Estimates derived from each signal are prone to noise σi
2. Averaging different estimates 

can decrease the perceptual variance (σs 
2) of the combined percept (Landy, Maloney, Johnston, 

& Young, 1995). According to the maximum likelihood estimation (MLE) model, the variance 

(σs 
2) of a percept is lowest and the weights (wi) are optimal if the weights are proportional to the 

inverse variances of the signal-specific estimates (1/σi
2): 

𝑤𝑗 =
1/𝜍𝑗

2

 1/𝜍𝑖
2

𝑖=1…,𝑗 ,…𝑁
    with  𝜍𝑠 

2 =
1

 1/𝜍𝑖
2

𝑖
.     (2) 

Weighted averaging (Eq. 1) well describes the percept of a property, when stimuli with 

signals slightly conflicting in their information on this property are created (e.g., Ernst and 

Banks, 2002). Experimental data also quantitatively confirm the predicted reduction of 

perceptual variance (measured via discrimination thresholds) in multi-estimate as compared to 

single-estimate situations (Eq. 2), and even the predicted optimal weights, e.g. for the case of 

visuo-haptic and visuo-auditory integration of size and location (Alais & Burr, 2004; Ernst & 

Banks, 2002). Recent studies found neurophysiological correlates of optimal multisensory 

integration (e.g. Fetsch, DeAngelis, & Angelaki, 2013; Helbig et al., 2012).  

Within haptic perception, observers use multiple redundant signals that are 

simultaneously available and integrate them in agreement with MLE predictions (Drewing & 

Ernst, 2006; Drewing, Wiecki & Ernst, 2008). However, in haptic perception, the integration of 

information over time is at least as important as integration over different sensory sources 

(Henriques & Soechting, 2005). Typical haptic exploratory procedures extend over time and 

space, and can be decomposed into several exploration segments. For specific object dimensions, 

such as surface orientation or texture, exploratory behavior comes along with a systematic 

repetition of the same stimulus information. In texture exploration individual exploration 

segments refer to scans of the finger over the same spatial region. Thereby, extending the 
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exploration by repeating exploration segments increases the amount of redundant information. In 

order to formulate a model for such sequential and not simultaneous information, a Kalman filter 

(Kalman, 1962) may be better suited than the MLE model. The Kalman filter takes a more 

general approach to optimal information integration: It is able to describe how a series of 

sequential estimates are used for estimating a property in a way that the variance of the final 

estimate is minimized. The Kalman filter uses Bayesian interference, combining prior with 

present information, and can account for changes in the estimates over time. Thus, a Kalman 

filter approach can, e.g. model if memorized information from sequentially gathered signals gets 

noisier over time. First empirical studies observed correlates of fundamental Kalman filter 

characteristics, prediction and updating, in the brain activity of mice (Funamizu, Kuhn, & Doya, 

2016). The MLE model and its predictions are captured within the Kalman filter framework as a 

(simple) special case with non-informative prior information and estimates that are stable over 

time (Battaglia, Jacobs, & Aslin, 2003; Ernst & Bülthoff, 2004). 

The present study aimed to challenge predictions from the MLE model and to develop a 

better-suited Kalman filter model for the sequential integration of texture information. The 

exploratory procedure for textures includes several lateral strokes in different directions 

(Lederman & Klatzky, 1987). We define an exploration segment as a single uni-directional 

stroke across the texture. Then, a segment-specific estimate for a property is derived from the 

information gathered during a single stroke. We assume that each exploration segment i yields an 

estimate with equal variance (𝜍𝑖
2=𝜍0

2, with 𝜍0
2 being a constant value). The assumptions 

underlying the MLE model, then, predict that all estimates are weighted equally in the percept 

(Eq. 2, left) and the final variance of the percept (𝜍𝑠 
2) can be computed by 𝜍𝑠 

2 = 𝜍0
2/𝑁 (Eq. 2, 

right) with N being the number of redundant estimates. Given that the discrimination threshold 
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(𝑡𝑠 
2 ) assesses the percept‘s variance (𝜍𝑠 

2) with 𝑡𝑠 
2 = 2𝜍𝑠 

2   (Jovanovic & Drewing, 2014; Lezkan 

et al., 2016) it follows for discrimination thresholds:  

 𝑡𝑠 =  2𝜍0
2/𝑁     and    log⁡(𝑡𝑠 ) = −

1

2
log 𝑁 + const.    (3) 

That is, discrimination thresholds should depend on the number of exploration segments 

in a well defined fashion and a linear fit on log-log scales should have a slope of -1/2. Previous 

research on sequential integration of extended haptic stimulation seems not to support these 

predictions. Quick (1974) had already suggested in his model that visual thresholds linearly 

decrease with increasing stimulation on a log-log scale, but with diverse slopes. For haptic 

detection thresholds, the observed slope in Quick‘s model was close to -1 (Gescheider, Berryhill, 

Verrillo, & Bolanowski, 1999; Gescheider, Bolanowski, Pope, & Verrillo, 2002; Gescheider, 

GüÇlü, Sexton, Karalunas, & Fontana, 2005; Louw, Kappers, & Koenderink, 2005), and thus 

clearly below the slope of -1/2 predicted from the assumptions underlying the MLE model. 

However, performance in detection tasks might not be relevant, because detection does not 

require perceiving the magnitude of a stimulus property (Louw et al., 2005). In a discrimination 

task on felt surface orientation, thresholds decreased with increasing length of exploration, and 

the decrements were smaller the longer the explored surface was (Giachritsis, Wing & Lovell, 

2009). This is qualitatively in line with the threshold predictions but was not quantitatively 

analyzed, and thus is not conclusive. Importantly, results from Metzger, Lezkan and Drewing 

(2017) are at odds with the prediction of equal weights in the integration of sequential haptic 

information. The authors investigated softness discrimination, where people typically indent a 

soft stimulus repeatedly, and determined the weights of indentation-specific softness estimates 

for the first and the second stimulus in a trial. While a rather equal weighting was visible for the 
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indentations of the first stimulus, during the exploration of the second stimulus weights 

decreased for later indentations.  

Thus, Metzger et al.‘s (2017) results casts the assumptions of the MLE model into doubt 

and call for a more complex model of the processes of sequential integration during 

discrimination tasks. These results seem to be in agreement with a model of the comparison 

process between first and second stimulus that can be derived from single cell measurements on 

monkeys: In a vibrotactile discrimination task, Romo and colleagues (Romo, Hernández, Zainos, 

Lemus, & Brody, 2002; Romo & Salinas, 2003) found that neuronal responses in area SII are 

different for the first and the second stimulus in a trial. While the response to the first stimulus 

was only associated with the first stimulus‘ characteristics, the response to the second stimulus 

also included information about the first remembered stimulus. This is to say, neural responses 

during the second stimulus reflected the comparison between the two stimuli, which was the task 

of the monkey. Hernandez et al. (2010) measured the monkey‘s cortical activity during 

vibrotactile discrimination. The activity of frontal lobe circuits was associated with the result of 

the sensory decision which of the two stimuli had higher frequency as well as with the past 

information about the stimuli. Most importantly, cortical areas that receive inputs from area SI 

were reported to combine present sensory information from SI with sensory representations 

stored in working memory. Overall the results suggest that comparison processes take place 

during the presentation of the second stimulus, after the first stimulus has been captured and 

memorized as a reference.  

This can explain the data from Metzger et al. (2017) on decreasing weight of sequential 

estimates during the exploration of the second stimulus in softness discrimination, as follows: 

During the exploration of the second stimulus a comparison between present sensory signals and 
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the remembered estimate is continuously going on. Within this comparison process the variance 

of the estimate of the remembered first stimulus increases due to memory decay. Hence, 

information gathered sooner after the first stimulus may have lead to a more precise judgment on 

the difference between the two stimuli than later information and was therefore weighted higher. 

Such a process will not be captured by the rather simple assumptions underlying the MLE model, 

but requires a Kalman filter model that can additionally account for changes in the estimates‘ 

variance. 

In the first experiment of the present study, we investigated for texture discrimination 

how the (spatio-temporal) extension of exploratory movements, i.e. the number of strokes across 

the texture, affects discrimination thresholds. The assumptions underlying the MLE model 

predict that the reduction of thresholds follows a power function of the number of strokes with 

exponent -1/2, whereas the outlined model on the comparison process with memory decay 

predicts less reduction (i.e. a larger exponent). In the second experiment we tested whether 

stroke-specific estimate weights are unequal, and follow the pattern predicted from the outlined 

model on the comparison process. Finally, in Experiment 3 we tested quantitative predictions for 

the estimate weights that stem from a Kalman filter model of optimal integration given memory 

decay affected the comparison process.  

2.2. Experiment 1 

We created haptic texture stimuli by using a PHANToM force-feedback device. The 

device is attached to a finger via a thimble. It simulates objects by monitoring 3D-finger position 

and by applying an appropriate reaction force. We used virtual gratings that consisted of 

sinusoidal ridges on an otherwise planar surface. Different grating stimuli differed in ridge height 
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or the distance between adjacent ridges (=period). On each trial, participants explored one of the 

two possible standard gratings and one comparison grating. Afterwards, half of the participants 

decided which grating had felt higher (amplitude judgment), the other half decided about grating 

period (period judgment). Participants were instructed to explore with back and forth movements 

having a defined finger velocity and force, in order to avoid confounds. As a consequence, 

participants had to simultaneously focus on the discrimination task and on their exploratory 

movement. In order to reduce the attention needed for movement control, the movement was 

guided by intuitive visual feedback and participants initially practiced the instructed force and 

velocity.  

The experiment started with this “practice phase”. Afterwards, in the “exploration phase”, 

we varied the number of strokes (1 … 8) that participants used to explore each stimulus. We 

measured just-noticeable differences (JNDs; assessing discrimination thresholds) for either task 

by using the adaptive staircase procedure called BestPEST (Lieberman & Pentland, 1982). We 

expected that JNDs would decrease with the number of strokes conducted following a power 

function. Furthermore, we tested the exponent of the power function against -1/2, which is the 

value predicted by the assumptions underlying the MLE model. 

2.2.1.  Participants 

A total of 16 healthy participants, students from Giessen University, were tested (mean 

age: 22 years, range: 19-26 years; 9 females, 7 males). All participants had normal or corrected-

to normal visual acuity, were right-handed and none of them reported cutaneous or motor 

impairments. Participants were naïve to the purpose of the study. They participated for course 

credit. Methods and procedures of both experiments were approved by the local ethics committee 



47 

LEK FB06 at Giessen University and they were in accordance with the ethical standards laid 

down in the 1964 Declaration of Helsinki. Participants gave written informed consent. 

 

Figure 2.1. Sketch of the visuo-haptic setup (a), the visualization presented during exploration 

(b) and a stimulus (c). (a) Participants were sitting in front of the workbench, wearing earplugs 

and headphones. A head and chin rest limited head movements. (b) Visual feedback on the two 

movement parameters velocity and force. Feedback lines were only displayed while the finger 

was outside the grating area. Please notice: what is depicted as solid lines were actually blue 

lines and what is depicted in dashed lines were red lines. (c) Stimuli were virtual gratings, which 

varied in the period length for half of the participants and in the amplitude for the other half.  

 

2.2.2. Apparatus and Stimuli 

The apparatus can be seen in Figure 2.1a. Participants sat in front of a custom-made 

visuo-haptic workbench, which comprised a PHANToM 1.5A haptic force feedback device and a 

22"-computer screen (120 Hz, 1024 x 1280 pixel). The right index finger was connected to the 

PHANToM via a thimble-like holder, which allows for free finger movements having all six 

degrees of freedom in a 38x27x20 cm³ workspace. Simultaneously, the participants looked 
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through stereoglasses (CrystallEyesTM) and via a mirror onto the screen (40-cm viewing 

distance). The mirror prevents participants from seeing their hand and enables spatial alignment 

of the 3D-visual with the haptic display. The participants‘ heads were stabilized by a chinrest. 

The devices were connected to a PC. A custom-made software controlled the experiment, 

collected responses and recorded finger positions and reaction forces (from PHANToM, every 2 

ms). Noise presented via headphones and ear plugs masked sounds generated by the PHANToM. 

Both stimuli were presented after each other in front of the participants. The stimuli were 

virtual gratings covering an area of about 30 mm width (x-axis) X 15 mm depth (z-axis). 

Gratings consisted of ridges (width 1 mm; extending over the entire depth) on an otherwise 

planar surface. Ridge height was a sine-function (within 0 to )of x-position. Programmed peak 

amplitudes of the ridges varied between 0.16 and 0.74 mm; the peak-to-peak period between 

ridges varied between 2 and 9 mm. In each single stimulus, ridge amplitudes and periods were 

constant. Strokes started left or right from the grating. Haptic grating stimuli were created using 

the PHANToM force feedback device. The device simulates objects by applying reaction forces 

𝐹 𝑝  as a function of the 3D-finger position P. Force magnitude linearly increases with the 

indentation depth of the finger into a virtual object (𝑖𝑝) and force direction is normal to the 

object‘s surface (𝑛  𝑝 : normal vector, 𝐷: spring constant): 

𝐹 𝑝 =  𝑛  𝑝 ∗  𝐹 𝑝       and      |𝐹 𝑝 | = 𝐷 ∗  𝑖𝑝      (4) 

The spring constant D was replaced by the variable K in order to keep object indentation 

constant under differing finger forces. The variable K was defined such that for the target 

indentation I (set to 1 mm) the magnitudes of finger force and reaction force were (approx.) 

equal. Vertical finger force was estimated from the device‘s reaction forces in y-direction 𝐹𝑦(𝑗) 

(y-axis = height) in the previous device cycles 𝑗 = 1 …𝑛 (~previous 300 ms): 
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 𝐾 =

1

𝑛
 𝐹𝑦(𝑗)𝑗=1…𝑛

𝐼
                    (5) 

2.2.3. Design and Procedure 

Participants successively explored two gratings. Between participants we varied the 

Judged Dimension (Amplitude, Period). Half of the participants judged which of the two gratings 

had felt higher (Amplitude); the other half judged which grating had higher spatial period 

(Period). We further varied the Number of strokes (1, 2, 3, 4, 5, 6, 7, 8) that participants used to 

explore each of the two stimuli (within-participant variable). A single stroke was defined by a 

single unidirectional exploratory movement across the grating. We measured 75%-discrimination 

thresholds (JNDs) for two standard stimuli. The standard stimuli in the Amplitude group had 

amplitudes of 0.4 or 0.5 mm and periods of 5 mm. In the Period group the standard stimuli had 

periods of 5 or 6 mm and amplitudes of 0.4 mm.  

JNDs were determined using the BestPEST adaptive staircase procedure combined with 

the two-interval forced-choice task. In the BestPEST method (Lieberman & Pentland, 1982) 

before each stimulus presentation, the likelihood distribution of possible thresholds is calculated 

by using the sigmoid-shaped psychometric function with a slope of one, on the basis of all 

previous responses of the participant. The value with the maximum likelihood of being the 

threshold value is then chosen as the comparison stimulus. This method is an optimum strategy 

for fast threshold determination. In effect, the procedure raises the difference between the values 

of comparison and standard after a wrong response and lowers it after a correct response. We 

terminated the procedure after 26 trials per staircase, estimating the 75%–threshold (JND) by the 

final maximum-likelihood estimate. For each Number of strokes and each standard stimulus two 

up- and two down- staircases measured the upper and lower JNDs, respectively. In the 
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Amplitude condition, initial amplitudes of the comparison stimuli were given by the standard‘s 

amplitude plus or minus 0.35 mm; the comparisons‘ period was always 5 mm. In the Period 

condition, initial periods of the comparisons were the standard‘s period plus/minus 3 mm; the 

comparisons‘ amplitude was always 0.4 mm. Trials from all staircases were randomly 

interleaved in the measurement phase. Overall, the measurement phase consisted of 2 [standards] 

* 2 [staircases] * 26 [staircase length] * 2 [repetitions] * 8 [Number of strokes] = 1664 trials. The 

entire experiment consisted of 5 sessions lasting about 2 hours each. Prior to the experiment, 

participants were trained for about 30 min to execute exploratory movements with constant 

instructed finger velocity (15 cm/s) and force (1.5 N). The training consisted of two parts. In the 

first part participants trained on a virtual plane without ridges. In the second part of the training 

movements were performed on virtual gratings. Each part ended after participants had performed 

20 trials in a sequence with maximally 3 movement errors. We defined movement errors as a 

deviation of actual velocity or force values by more than 60 % from the target velocity and force. 

Each trial started with a visual representation of the upcoming stimulus and start point 

(left or right of the grating, balanced). Participants initiated the trial with a button press at the 

start point location. Then, participants stroked across a first grating back and forth. The computer 

program stopped the stimulus presentation, when the required number of strokes had been 

conducted. Afterwards a second grating was explored using the same number of strokes as for 

the first grating. Finally, participants had to decide by a button press (done with the PHANToM) 

which grating had felt higher in amplitude / had higher spatial period. During the strokes, a 

vertical line that moved forth or back along the exploratory axis indicated the prescribed finger 

velocity (15 cm/s) and stroke direction. A stationary horizontal line indicated prescribed force 

(1.5 N). Participants monitored their current velocity and force by further feedback lines, which 



51 

were displayed while the finger was outside the grating area. A vertical line displayed the current 

1D-finger position on the x-axis; a horizontal line moved up and down with exerted force. Trials 

were repeated later in the session when a movement error was detected. 

2.2.4. Data Analysis 

 We calculated individual JNDs per Number of strokes condition by averaging across the 

two upper and the two lower JNDs for each standard stimulus (8 JND values). These values were 

log-transformed (base 10) before analyses. According to the predictions it is the log JNDs that 

should linearly decrease with the log Number of strokes. In addition, the log-transformation 

allows comparing gain ratios in the amplitude and the period conditions: It transforms the ratios 

between JNDs for different Numbers of Strokes into differences, which can be directly analyzed 

by an ANOVA.  

2.2.5. Results 

Individual log JND values entered an ANOVA with the within-participant variable 

Number of strokes (1…8) and the between-participant variable Judged Dimension (Amplitude, 

Period). For the variable Number of strokes, we calculated linear contrasts, which provide a 

targeted test of our hypotheses. The linear contrast of Number of strokes was significant, F(1,14) 

=15.326, p<.001 (one-tailed), confirming the predicted decrease of JNDs with an increasing 

Number of Strokes. The interaction Number of strokes (linear contrast) X Judged Dimension 

failed to reach significance, F(1,14)=.350, p=.563, which may suggest that both amplitude and 

period JNDs depend in similar manner on the Number of strokes. To be more precise, the lack of 

effects on log values suggests that the ratios between the JNDs of different Number of strokes 
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conditions are similar. Finally, the main effect of Judged Dimension was significant, F(1,14) 

=584.050, p<.001, which is, however, essentially non-interesting, because it only reflects the fact 

that (log) amplitude and period JNDs differ in scale. Figure 2.2 shows a log-log plot of the JNDs. 

 

 
 

Figure 2.2. Exp.1: Log-Log plot. Average JNDs for frequency discrimination (left; expressed as 

period) and amplitude discrimination (right) and standard errors as a function of Number of 

strokes and Judged Dimension. The gray line represents the MLE model prediction of an optimal 

integration. 

 

We fit a power function separately to the amplitude JNDs and to the period JNDs. To 

achieve this aim, we linearly regressed log transformed JNDs on log transformed stroke 

numbers. As a consequence, the slope of the fitted line corresponds to the exponent of a power 

function fitted to the non logarithmized data. In both cases the fitted line described the data well. 

For the Amplitude group the regression line explained r² = 88% of the variance. For the Period 
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group the explained variance was r² = 80%. According to the MLE predictions the slope is 

expected to be -0.5. In contrast, the slopes of the fitted lines reached values of -0.148 for the 

Amplitude group and -0.112 for the Period group. By fitting regression lines to the individual 

log-log data we were able to calculate a t-test against the predicted slope of -0.5. In the 

Amplitude group (M=-.148, SD=.151) as well as in the Frequency group (M=-.112, SD=.066) the 

slopes differed significantly from the MLE prediction, t(7)=6.580, p<.001 and t(7)=16.673, p < 

.001. 

2.2.6. Discussion Experiment 1 

In Experiment 1, we found that participants discriminate grating stimuli the more 

precisely the longer they explore them. Such redundancy gains were smaller than predicted by 

the assumptions underlying the MLE model. According to these assumptions each single 

estimate is weighted according to its inverse variance. In case of repeated strokes across the same 

stimulus, estimates from each single stroke should have equal variance and, hence, each estimate 

should obtain equal weight. The present results disprove the MLE predictions, and thus extend 

the previous evidence (Metzger et al.‘s, 2017), suggesting that the assumptions underlying the 

MLE model do not apply to sequential integration.  

As outlined in the introduction, an alternative model, which may explain the present and 

previous observations on sequential integration, links to memory decay during the comparison 

process of the discrimination task: There is evidence that discrimination performance is based on 

a continuously ongoing comparison process between a remembered estimate from the first 

stimulus and present sensory signals from the second stimulus (Romo et al., 2002; Romo & 

Salinas, 2003; Hernandez et al., 2010). During the comparison process, i.e. during exploration of 
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the second stimulus, the memory trace of the first stimulus might diminish from stroke to stroke, 

and thus the variance of the remembered estimate increases. Memory decay and increasing 

variance will, as observed, lead to lower redundancy gains than predicted from the MLE 

assumption of equal variance, and higher overall estimate variance. An optimality model 

including these factors in sequential presentation, would further predict that strokes within the 

second stimulus are not weighted equally, but decrease for later strokes. We designed further 

experiments to test whether information from different strokes during the exploration is 

unequally weighted in the grating percept. 

2.3. Experiment 2 

In Experiment 2 participants discriminated a standard and a comparison stimulus 

according to grating period using a two-interval forced choice task combined with the method of 

constant stimuli. They stroked 3 times across each stimulus. While participants explored the 

standard stimulus, we presented slightly discrepant period information in one of the strokes. That 

is, the grating period of each stroke in the standard stimulus could take one of two values. The 

stroke with the deviant period in the standard stimulus is the discrepant stroke. We defined 

several standard stimuli by varying the Position [1, 2, 3] of the discrepant stroke within the 

presentation of the standard. Additionally, the standard was either presented as the first or as the 

second stimulus of the trial, which is represented in the variable Stimulus order [first vs. second]. 

Each standard stimulus was combined with 14 comparisons. The comparisons differed in their 

periods, but for the strokes across each single comparison stimulus the period was kept constant. 

For each of the standards we determined the point of subjective equivalence (PSE) with the 

comparison. Based on this we calculated the weight of the discrepant information in the standard 
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stimulus for each combination of Position and Stimulus order. We predicted an interaction 

between those two variables. Weights were expected to decrease with higher Position in the 

second but not in the first stimulus. 

2.3.1. Participants 

The final sample included eleven students (8 females, 3 males). Four additional 

participants had been excluded because they had problems with the task, either with the 

movement (>30% trials with movement error) or with the discrimination (JND ≥ 6 mm in 

experimental conditions, exceeding the effective range of measurement of the present design). 

Participants in the final sample were naïve to the purpose of the study, right handed, had an age 

range of 19-26 years, no sensory or motor impairments and participated for course credit. 

2.3.2. Apparatus and Stimuli 

 The apparatus and the virtual gratings were the same as in Experiment 1. The ridges of 

all grating stimuli had peak amplitudes of 0.5 mm. Typically, a standard stimulus was explored 

by 3 strokes. For strokes over standard stimuli we used periods of 6 and 4.5 mm. In the 

experimental conditions the period presented in two of three strokes is called the dominant 

period. In the remaining stroke the participant was presented a discrepant period. Thus, if the 

dominant period was e.g. 4.5 mm, we presented in one stroke the discrepant period of 6 mm. The 

discrepant period of 6 mm could be presented in either the first, middle or last stroke, while in 

the other 2 strokes the dominant information of 4.5 mm would be presented. Additionally, in 

control conditions with 1 or 3 strokes we used standard stimuli, in which no discrepant 
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information was presented. Further, we presented 14 comparison stimuli that varied in period (2 - 

8.5 mm in steps of 0.5mm), and in which also no discrepant information was presented. 

2.3.3. Design and Procedure 

 Similar to Experiment 1, in each trial, participants explored a standard and a comparison 

grating in random order. A trial was constructed as in Experiment 1. Participants always judged 

which grating had higher spatial frequency. In the experimental conditions, each stimulus was 

explored with 3 strokes. For the majority of the standards, one stroke (discrepant period stroke) 

differed in his spatial period from the two others (dominant period strokes). We varied the 

Position of the discrepant stroke within the standard stimulus (1, 2 or 3 strokes) and the Stimulus 

order (standard as 1
st
 or 2

nd
 stimulus) as within-participant variables. Additionally, we included 

control conditions, in which we presented standard stimuli with dominant period information 

from each stroke, either 4.5 mm or 6 mm. Participants explored these stimuli with three or one 

stroke. In contrast to Experiment 1, the point of subjective equivalence (PSE) and just noticeable 

differences (JND) of the standard periods were assessed using the method of constant stimuli: for 

each stimulus order each standard was compared 8 times to each of the 14 comparisons. Overall, 

the experiment comprised 10 [standards] * 14 [comparisons] * 2 [stimulus order] * 8 

[repetitions] = 2240 trials. The entire experiment consisted of 4 sessions lasting about 2 - 2.5 

hours each. In one session each standard-comparison pairing was repeated four times. The first 

sessions started with a phase for training instructed finger force and velocity as in Exp. 1.  
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2.3.4. Data Analysis 

 We determined individual psychometric functions for each standard stimulus and each 

Stimulus order (standard is first vs. second stimulus). The percentage of trials in which the 

participant perceived the standard to be higher in spatial frequency than the comparison was 

calculated as a function of the comparison stimulus. We fitted cumulative Gaussian functions to 

the psychometric functions, using the psignifit toolbox that implements maximum-likelihood 

estimation procedures (Wichmann & Hill, 2001) and estimated PSEs by the Gaussian parameter 

μ and JNDs by σ (84% discrimination thresholds). We calculated individual weights of the 

discrepant stroke (wd) from the PSEs in the experimental conditions ( Pe), and from the two 

average PSEs in the control conditions (Pd: PSEs for standard with the same period as the 

discrepant stroke, Po: PSEs relating to period of dominant strokes):  

wd = (Pe − Po )/(Pd − Po)          (6) 

We averaged over the two weights for the two standard stimuli in each condition. 

Additionally, all weights were restricted to have values within 2 standard deviations from the 

condition average (5 outliers in 66 cases). The individual average weights of the discrepant 

stroke were analyzed by ANOVAs. 

2.3.5. Results 

2.3.5.1. PSEs  

In the control condition, participants explored either with one or three strokes two 

sequential gratings without any discrepant information within the standard. The PSEs represent 

the perceived period of the stimuli and are plotted in Figure 2.3. We analyzed the PSEs by an 

ANOVA with the three factors Period in the standard stimulus (4.5 mm vs. 6 mm), Number of 
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strokes (1 vs. 3) and Stimulus order (1
st
 vs. 2

nd
). The PSEs in the control conditions differed 

significantly regarding the spatial Period of the standard stimulus, F(1,10) = 166.57, p<.001, 

which ensures our manipulation. There was no significant effect of the Number of strokes, 

F(1,10)=0.22, p=.651, the Stimulus order, F(1,10)=3.90, p=.077, Number of strokes x Stimulus 

order, F(1,10)=1.02, p=.336, or the Number of strokes x Period x Stimulus order, F(1,10)=0.001, 

p=.981. However, the interaction between Stimulus order and Period was significant, F(1,10) = 

18.29, p=.002. As it can be seen from Figure 2.3, the difference between the percepts of the 4.5 

mm stimulus and the 6 mm stimulus was higher in the second in contrast to the first stimulus. It 

is important to note that these effects will not affect our predictions about the weights, as average 

PSEs measured in the control condition are accounted for in the computation of weights.  

 

Figure 2.3. Exp.2, control condition: Average PSEs and standard errors (11 participants) as a 

function of the spatial period of the standard and of the Stimulus order. Left is the control 

condition with 1 stroke, right the control condition with 3 strokes. 

 

In order to check whether the discrepant information influenced perception, we compared 

the PSEs from experimental conditions, i.e. from standards including discrepant information, to 
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the PSEs from the control conditions. This analysis was done separately for the first and the 

second stimulus and each dominant period. As should be the case, discrepant stimuli with the 

dominant period of 4.5 mm were perceived to have higher period than the corresponding control 

stimuli (t(11)=2.242, p=.024 and t(11)=4.986, p<.001, one-tailed, for first and second stimulus, 

respectively), and discrepant stimuli with the dominant period of 6 mm were perceived as having 

lower period (t(11)=-3.050, p=.006 and t(11)=-3.332, p=.004). 

 

2.3.5.2. Weights of Discrepant Information 

The position of a stroke in a stimulus differently affected this stroke‘s weight depending 

on whether the first or the second stimulus was considered (see Fig. 2.4). Individual weights 

were entered into an ANOVA with the within-participant variables Stimulus order (1st vs. 2nd in 

trial) and Position within stimulus (1st vs. 2nd vs. 3rd stroke). The Position of the discrepant 

stroke within the stimulus did not show a significant main effect on the weight, F(2,20)=.166, 

p=.849. The main effect of Stimulus order was also not significant, F(1,10)=0.019, p=.894. More 

importantly and as expected, the interaction of Stimulus order and Position was significant, 

F(2,20)=4.666, p=.022. We tested further whether, as also predicted, weights in the first stimulus 

do not depend on the Position within the stimulus, while weights in the second stimulus decrease 

the further their position is from the first stimulus. We calculated linear contrast analyses 

separately for the first and the second stimulus. In the first stroke these analyses did not reveal a 

significant linear effect of position, F(1,10)=4.065, p=.071. Also as predicted, in the second 

stroke weights systematically decreased with increasing stroke position, F(1,10)=6.233, p=.016 

(one-tailed). 
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Figure 2.4. Exp. 2, Average estimated weights and standard errors of the discrepant stroke as a 

function of Position within the stimulus and Stimulus order within the trial. 

 

 

2.3.5.3. JNDs 

In Experiment 1 the participants showed better discrimination thresholds for increasing 

numbers of strokes. In the present Experiment, we can test with the two control conditions if this 

effect can be replicated. We expect better discrimination thresholds in the 3-stroke condition than 

in the 1-stroke condition. A paired one-tailed t-test of the log-transformed (base 10) JNDs 

showed a significant difference between the two control conditions, t(10)=3.347, p=.004 (JNDs 

1-stroke condition: M=4.32, SEM=0.70; JNDs 3-stroke condition: M=3.24, SEM=0.43). 

 

  

*** 
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2.3.6. Discussion Experiment 2 

We introduced slight discrepancies in spatial period information in a one of several 

strokes across a grating stimulus. We varied the position of the discrepant spatial period 

information within the standard stimulus presentation. None of the participants reported to have 

noticed the discrepant periods when being asked after the experiment. But discrepant information 

contributed to the grating percept, as can be seen from the significant PSE shifts in the expected 

directions. From PSEs we calculated individual weights of the discrepant stroke for each 

condition. Our results confirmed our predictions: Weights depended differently on stroke 

position for the first and the second stimulus. Weights did not significantly change within the 

first stimulus. But in the second stimulus, a stroke‘s weight was higher the closer the discrepant 

stroke was to the first stimulus. Our data are consistent with the assumption that the comparison 

process during the exploration of the second stimulus becomes - due to decay of the memory 

trace of the first stimulus - increasingly more variable over time and later strokes are weighted 

less.  

One may wonder whether correlated errors between stroke-specific estimates can 

alternatively explain the results, as had been the case for other failures of MLE predictions 

(Oruç, Maloney, & Landy, 2003; Rosas, Wichmann, & Wagemans 2007): Positively correlated 

errors reduce the effect of an additional estimate on the percept‘s overall variance as compared to 

the MLE predictions (Eq. 2). That is, the higher the correlation between the additional estimate 

and previous estimates, the higher the variance of the final percept. In the case of a sequential, 

step-by-step integration of correlated estimates, estimates gathered later would correlate more 

with the previously collected information than earlier estimates, and hence, effectively decrease 

variance less and obtain less weight in the percept (cf. Oruç et al. 2003). That is, correlated errors 
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between stroke-specific estimates predict lower weights for later strokes. This prediction applies 

to both strokes across the first stimulus and strokes across the second stimulus in a trial. 

However, for the first stimulus we did not observe such a downward trend, rejecting the 

alternative explanation by correlated errors.  

Sensory adaption could be considered as another possibility to explain the data. It was 

reported that after repeated stimulation sensory adaptation leads to aftereffects by reducing 

sensitivity (e.g. Thompson & Burr, 2009). Such aftereffects were shown in different aspects of 

the sense of touch (Kappers & Bermann Tiest, 2015) including the perception of vibration 

(Lederman, Loomis, & Williams, 1982; Hollins, Bensmaïa & Washburn, 2001). Thereby, the 

sensitivity should be the more reduced the more stimulations were presented.  Sensory 

adaptation, thus, may predict that information from later strokes is noisier and hence weighted 

less. However, sensory adaption would predict the same pattern as correlated errors do, namely a 

general position effect, which applies to the first and the second stimulus. Thus, sensory 

adaptation can be rejected as an alternative explanation for the observed pattern of weights. Still 

a possible reducing role of adaptation for the overall variance in longer explorations might 

deserve further investigation in the future.  

Indeed we observed, as expected, no position effect for the first stimulus. But the results 

on a lack of position effect are not as convincing, as we hoped. Numerically, the line of 

regression of weight on stroke position for the first stimulus shows an upward trend with high 

standard errors, which may or may not explain the lack of significance. We conducted another 

experiment, in that we aimed to replicate the findings and extend them for different numbers of 

strokes. As importantly, Experiment 3 tests quantitative predictions from a Kalman filter model 
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of optimal integration under conditions of memory decay during the comparison process, i.e. 

during exploration of the second stimulus. 

2.4. Experiment 3 

Experiment 3 is meant to generalize the investigations from Experiment 2 to explorations 

of varying lengths and to compare the results to predictions from a formal Kalman filter model. 

We manipulated the number of strokes used to explore standard and comparison stimulus. 

Participants explored each stimulus either with 2, 3, 4 or 5 strokes. Additionally, as in 

Experiment 2, we varied the position of the discrepant information within the standard stimulus 

(1st ... Nth position with N being the number of strokes), and the stimulus order (standard 

presented first vs. second). We measured the PSEs and JNDs for each condition and calculated 

the weight of the discrepant stroke.  

Additionally, we tested in Experiment 3 if our model of a comparison process with 

memory decay can quantitatively predict the data. Put in a nutshell, the model assumes that 

estimates from the individual strokes of the first stimulus are integrated to an overall percept, and 

that during the exploration of the second stimulus estimates from each stroke are compared 

stroke-by-stroke with the integrated estimate from the first stimulus. The initial integration of the 

first stimulus estimate is modelled in line with the assumptions of the MLE model. However, 

importantly, the first stimulus‘ estimate is affected by memory decay. To account for the 

comparison process during the exploration of the second stimulus, we used a more complex 

Kalman filter model of optimal integration.  
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2.4.1. Model 

We assume that for each stroke (i) of the second stimulus the stroke-specific estimate is 

compared to the overall estimate from the first stimulus, resulting in a sensory difference value 

𝑫 𝒊 . The posterior estimate of the difference between first and second stimulus after this stroke 

𝑫  𝒊+𝟏  is based on the present sensory difference value 𝑫 𝒊  and a prior that is given by the 

difference estimate from the previous stroke 𝑫  𝒊  (=posterior estimate after previous stroke; cf. 

Shadmehr & Mussa-Ivaldi, 2012): 

𝑫  𝒊+𝟏 = 𝑫  𝒊 + 𝒌(𝒊)(𝑫(𝒊) −  𝑫  𝒊 )    (7) 

That is, the present difference estimate 𝑫  𝒊+𝟏  is the previous estimate 𝑫  𝒊  plus the 

prediction error of the previous estimate (𝑫 𝒊 −  𝑫  𝒊 ) weighted by the Kalman gain 𝒌 𝒊 . The 

Kalman gain describes the ratio between the prior variance (𝒑 𝒊 𝒊−𝟏 ) and the sensory variance 

(𝜍
𝑫(𝒊)
2 ). For determining the Kalman gain, it is important to consider that our model is based on 

multiple comparisons with the first stimulus estimate and thus the first stimulus estimate is 

included in the computation of each difference estimate. The resultant covariance between prior 

and sensory estimate has to be taken into account (cf. Oruç et al., 2003, Eqs. 5 &7): 

 𝒌(𝒊) =
𝒑(𝒊|𝒊−𝟏)−𝒄𝒐𝒗(𝑫 𝒊 ,𝑫  𝒊 )

𝒑(𝒊|𝒊−𝟏)+𝜍
𝑫(𝒊)
2 −𝟐𝒄𝒐𝒗(𝑫 𝒊 ,𝑫  𝒊 )

  (8) 

with    𝒑(𝒊|𝒊−𝟏) =
𝒑(𝒊−𝟏|𝒊−𝟐)∗𝜍

𝑫(𝒊−𝟏)
2 −𝒄𝒐𝒗(𝑫 𝒊−𝟏 ,𝑫  𝒊−𝟏 )𝟐

𝒑(𝒊−𝟏|𝒊−𝟐)+𝜍
𝑫(𝒊−𝟏)
2 −𝟐𝒄𝒐𝒗(𝑫 𝒊−𝟏 ,𝑫  𝒊−𝟏 )

   (9) 

In our model sensory variance of the difference value (𝜍
𝑫(𝒊)
2 ) is the sum of the variance of 

a one-stroke based estimate (𝜍N=1
2 ) and the variance of the first stimulus estimate (𝜍S1N =j

2 ) 

modified by memory decay. The variance of the one-stroke based estimate (𝜍N=1
2 ) was estimated 

from the corresponding JND in Experiment 1 (considering the transformation from 75%- to 
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84%- discrimination thresholds). The variance of the first stimulus overall estimate was 

estimated by 𝜍S1N =j

2 = 𝜍0
2/j (Eq. 2, right), i.e. from the MLE prediction on overall variance as a 

function of number of strokes (N=j) and one-stroke based variance; it was therefore lower the 

more strokes over the first stimulus were performed (e.g. 𝜍S1N =4

2 > 𝜍S1N =5

2 ). 

Additionally, an effect of memory decay was modelled for the variance of the first 

stimulus estimate 𝜍S1N =j

2 . The rate of the decrease due to memory decay is usually described by a 

power function of the time t with a negative exponent (Wixted & Ebbesen, 1991, 1997). Murray, 

Ward and Hockley (1975) reported such a power function for an experiment that resembles the 

present one: Two-point thresholds T at the thumb increased with the prolongation of the time 

interval t (in sec) between the first and the second touch by T=2.303𝑡0.221 . The change in 

thresholds can be directly linked to change in the variance of the individual measurements 

(𝜍2 =
1

2
𝑇2; assuming uncorrelated errors). We modelled memory decay for the variance of the 

first stimulus estimate as a function of number of strokes over the second stimulus (i) with the 

exponent taken from Murray and colleagues (1975): 𝜍S1
N =j(i)

2 =𝜍S1N =j

2 *𝑖0.442 . Assuming that the 

prior for the first stroke on the second stimulus is non-informative (variance set to infinite), we 

predicted weights of each stroke-specific estimate in the second stimulus. 

2.4.2. Participants  

Fifteen right-handers, naïve to the purpose of the experiment, were in the final sample 

(mean age: 25.4 years, range: 20-36 years; 10 females, 5 males). Four subjects had to be 

excluded from analyses because of problems with the task according to criteria described for 

Experiment 2. 
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2.4.3. Apparatus, Stimuli, and Procedure 

The Apparatus, the configuration of the grating stimuli and the procedure in single trials 

were identical to those in Experiment 2.  

2.4.4. Design and Data Analysis 

Additionally to Stimulus order and Position, we varied the Number of strokes: 

Participants applied 2, 3, 4 or 5 strokes per stimulus. As in Experiment 2, we measured PSEs and 

JNDs using the method of constant stimuli. Each standard was compared 10 times to each of 14 

comparison gratings. In addition, in the present experiment we analyzed the movement force and 

velocities used in each condition. 

Table 2.1 gives an overview of the 28 possible combinations of Number of strokes, the 

Stimulus order and the Position. Two types of standards were used: A period of 4.5 mm could be 

the discrepant or the dominant information, a period of 6 mm assumed the other role. 24 standard 

stimuli corresponded to the conditions with more than two strokes, each of which was either 

presented as first or second stimulus. However, for the two-stroke condition one standard 

operationalized two different conditions, depending on which information is defined as being 

dominant. One of the two-stroke standards can be interpreted both as a 4.5 mm dominant 

stimulus with discrepant information in the second stroke and as a 6 mm dominant stimulus with 

discrepant info in the first stroke; for the other two-stroke standard it is vice versa. That is, the 

two-stroke conditions are operationalized by only two standard stimuli, either presented as first 

or second stimulus. Overall, the experiment consisted of 3640 Trials = (24 + 2) [standards] x 2 

[stimulus order] x 14 [comparisons] x 5 [repetitions] divided into 5 sessions, each lasting about 
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2.5 – 3 hours. The first sessions started with a training of finger force and velocity similar to 

Exp. 2. 

We determined individual psychometric functions for each standard and in each 

experimental condition. As in Experiment 2, we calculated weights of the discrepant stroke by 

taking into account the average PSEs measured in the control conditions of Experiment 2 and 

restricting individual weights to be within 2 standards deviations from the mean (22 outliers in 

420 cases). The individual weights were analyzed by linear contrast analyses over positions 

separated by Number of strokes and Stimulus order conditions. We expected that weights for the 

discrepant stroke in the second stimulus, but not in the first stimulus, systematically decrease 

with Position.  

Number of strokes Stimulus order Position of the discrepant stroke 

   

2 1 2 1 2    

3 1 2 1 2 3   

4 1 2 1 2 3 4  

5 1 2 1 2 3 4 5 

 

  

Table 2.1 Experiment 3: Overview of experimental conditions. Each condition was defined by 

the Number of Strokes, the Stimulus order and the Position. 
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2.4.5. Results 

2.4.5.1. Movement parameters Velocity and Force 

In order to check for potential confounds in weight assessment, we tested whether 

participants systematically varied exploratory force or velocity during the exploration of a 

stimulus. On average 95% of the movement data of each participant could be used for this 

analysis. For each Number of strokes condition we calculated a separate ANOVA with the 

within-participant variables Stroke Position and Stimulus order. We did not find any significant 

effect of stimulus order on movement force (2 strokes: F(1,14)=0.636 p=.438; 3 strokes: 

F(1,14)=.811 p=.383; 4 strokes: F(1,14)=.014 p=.907; 5 strokes: F(1,14)=2.732 p=.121; if 

necessary p-value corrected according to Greenhouse and Geisser, 1959) nor on movement 

velocity (2 strokes: F(1,14)=1.150 p=.241; 3 strokes: F(1,14)=1.161 p=.694; 4 strokes: 

F(1,14)=1.029 p=.328; 5 strokes: F(1,14)=1.698 p=.214). Also, there was no significant 

interaction Stroke Position X Stimulus Order (force: 2 str.: F(1,14)=1.902, p=.190; 3 str.: 

F(2,28)=2.839, p=.113; 4 str.: F(3,42)=0.653, p=.472; 5 str.: F(4,56) = 1.211, p=.312; velocity: 2 

str: F(1,14)=.000, p=.992; 3 str.: F(2,28)=1.591, p=.228; 4 str.: F(3,42)=1.724, p=.177; 5 str.: 

F(4,56)=1.086, p=.372), indicating that differences between the first and the second stimulus in 

the pattern of stroke-specific weights cannot be due to movement variation.  

However, a main effect of position can be found for each Number of strokes for velocity 

(2 str.: F(1,14)=7.143, p=.018; 3 str.: F(2,28)=5.827, p=.024; 4 str.: F(3,42)=13.924, p<.001; 5 

str.: F(4,56) =10.633, p=.001) and force (2 str.: F(1,14)=27.987, p<.001; 3 str.: F(2,28)=13.234, 

p=.001; 4 str.: F(3,42)=10.487, p=.001; 5 str.: F(4,56) =7.584, p=.003).  
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2.4.5.2. Weights of discrepant information  

 The detailed results of the linear contrast analyses of the individual weights can be seen 

in Table 2.2 and Figure 2.5. Analyses were two-tailed for the first stimulus and one-tailed for the 

second one, because we expected a position effect only for the second stimulus. As expected for 

the first stimulus we did not observe significant linear effects of position on the weights in most 

conditions, expect for an increase in the two-stroke condition. For the second stimulus we 

observed the expected significant linear decrease of weights in the 4- and 5-stroke conditions, 

and for the 3-stroke condition we observed a corresponding trend. Taken together, these data 

replicate and extend the findings of Experiment 2. Both experiments offer support for the idea of 

a different processing for the first and the second stimulus.  

 

Table 2.2     Experiment 3: Linear trend analysis of the Position effect separately for each 

combination of Number of strokes and Stimulus order conditions 

Number of 

strokes 

Stimulus order 

Standard ... 

F df p 

2 first 6.213 1,14 .026 

second 0.065 1,14 .401 

3 first 0.022 1,14 .885 

 second 1.892 1,14 .096 

4 first 0.281 1,14 .604 

 second 4.642 1,14 .025 

5 first 0.014 1,14 .909 

 second 5.461 1,14 .018 
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Figure 2.5. Exp.3: Average estimated weights of the discrepant stroke and standard error as a 

function of Stimulus order (first vs. second stimulus) and Position within the standard, plotted 

separately for all Number of strokes conditions. 

 

2.4.5.3. Model Data vs. Empirical Data 

In Figure 2.6 we compare model predictions on the weights with empirical data for the 

second stimulus. For each combination of Number of strokes and Position conditions we 

calculate t-tests between the empirical weights and the predicted value. As is the case for the 

predicted weights, empirical weights were normalized for each Number of strokes separately so 

that averages across all positions sum up to a value of 1. For 13 out of 14 conditions the 

*** 
*** 
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predicted and the measured weights did not differ significantly, t(14)≤|1.374|, p≥.191. Only, in 

the second stroke of the 3-stroke conditions, t(14)=3.722, p=.002, the empirical weight was 

higher than expected. Predicted values explained r²=0.83 of the empirical variance between 

conditions, p<.001. Overall, empirical data followed model predictions.  

 

Figure 2.6. Exp.3: Average empirical (plotted with 95%- confidence intervals) vs. predicted 

weights for the discrepant stroke in the second stimulus depending on its Position within the 

standard, plotted separately for all Number of strokes conditions. 
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2.4.5.4. JNDs  

 We averaged the log-transformed (base 10) JNDs across all Position and Stimulus order 

conditions with the same number of strokes (Fig. 2.7). The log JND values decreased with an 

increasing number of strokes in a linear contrast analysis, F(1,14)=4.161, p=.031 (one-tailed). 

The regression of log JND on log Number of strokes explained r² = 0.72 of the data. The slope of 

the regression line is -0.146. As in Experiment 1, this slope not in line with MLE predictions, in 

that it is significantly different from -.5, t(14)=4.501, p<0.001. 

 

Figure 2.7. Exp.3: Log-log plot. Log average JNDs and standard errors as a function of log 

Number of strokes collapsed across all Position and Stimulus order conditions. 

 

2.4.6. Discussion Experiment 3 

Experiment 3 replicated and extended the results of Experiment 2 by including different 

exploration lengths (Number of strokes) and comparing the results to model predictions. As in 

Experiment 2, we found evidence for a different processing of information from the first and the 

second stimulus. While stroke-specific estimates were rather equally weighted for all strokes 
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across the first stimulus, weights decreased with the position of the stroke in the second stimulus. 

Predictions from a Kalman filter model of a comparison process that is affected by memory 

decay fit the weight data well. The model has no free parameter; the rate of memory decay was 

estimated from a previous study (Murray et al., 1975). We conclude that in discrimination tasks 

on sequentially gathered information memory decay affects the comparison process. 

2.5. General Discussion 

The present study addressed the integration of redundant texture signals from sequentially 

sampled strokes. The integration of simultaneously presented, redundant signals had been 

successfully described by the MLE model of optimal integration. As expected, the present results 

show that the assumptions underlying this simple model do not describe the integration of 

sequentially presented texture information: The MLE assumptions predict a specific rate with 

which discrimination thresholds decrease with a prolonged exploration over the textures, and it 

predicts that equally reliable estimates should contribute equally to the percept. We found lower 

rates of threshold decrease as predicted by the MLE assumptions (Exp. 1 & 3) and unequal 

weights of estimates from different strokes (Exp. 2 & 3). However, the data can be well 

explained by an extended model of an optimal observer that we had derived from the literature 

(Romo et al., 2002; Romo & Salinas, 2003; Hernandez et al., 2010; Metzger et al., 2017; 

Kalman, 1962): We state that the two stimuli in a trial, when presented sequentially, are not 

processed in the same way. Information from the first stimulus is integrated in a MLE fashion 

(with equal weights) into a final estimate. We speculate that the final estimate is transferred to a 

different structure where it is stored in memory. This memorized estimate from the first stimulus 

gets noisier over time. Due to this circumstance, information from the second stimulus is 
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processed differently. For each exploration segment of the second stimulus, a comparison 

process between the overall first stimulus estimate and the segment-specific second stimulus 

estimate is performed. The model predicts that the information coming from different strokes of 

the first stimulus are integrated with equal weights, whereas segment-specific weights should 

systematically decrease over time for the second stimulus. –As, the comparison process is 

affected by memory decay and not the integration process, the empirical weights assessed for 

various exploration lengths are in line with this prediction (Exp. 2 & 3). A Bayesian-type 

Kalman filter model of the process, which uses a literature based rough estimation of the 

memory decay and has no free parameter, can quantitatively predict the weights assessed in 

Experiment 3. Taken together, our experiments help to better understand haptic integration of 

signals over time. Optimality, in the sense of seeking for the lowest variance of the final percept, 

is still the aim of our system. However, more complicated system properties, such as memory, 

need to be taken into account to describe sequential as compared to simultaneous integration 

processes.  

Our result might be surprising given the fact that recent studies on visual perception did 

find hints for MLE integration of sequential information. For instance, Wolf and Schütz (2015) 

reported close to MLE-optimal trans-saccadic integration of information. The authors compared 

weights of presaccadic, peripheral and postsaccadic, foveal signals with predictions of the MLE 

model. One reason why MLE predicted integration might occur in this case, but not in our study, 

is the task itself. In the study by Wolf and Schütz (2015) participants had to indicate whether the 

vertical component of a plaid stimulus was tilted clockwise or counterclockwise. Thus, in 

contrast to comparing a memorized first stimulus to a sequentially experienced second stimulus, 

participants compared one sequentially experienced stimulus to a fixed reference. This task, 
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consequently, did not include memory transfer and storage of a representation of the reference‘s 

perceptual estimate, which possibly decays over time. These results may be similar to the 

integration of information in the first stimulus in a trial within our experiments. That is, the tasks 

in Wolf and Schütz‘ (2015) study required a single overall estimate of the stimulus, rather than 

comparing sequentially gathered information from a (second) stimulus to a memorized and 

therefore decaying reference.  

Other studies do provide examples for perceptual optimization under conditions of 

memory decay. A recent study on the comparison between a memorized reference stimulus and a 

comparison stimulus showed that a Bayesian model that includes memory decay can explain the 

so-called contraction bias (Ashourian & Loewenstein, 2011). In a delayed comparison task, 

participants compared the visual length of two bars, the first of which was memorized. 

Participants tended to report the size of the memorized bar to be closer to the overall mean of the 

used sample of bars than the size of the second bar (= contraction bias). The authors suggest 

from their data a Bayesian model of optimal processing in that the sample of overall used bars 

provides a prior for the judgment on the memorized size of the first stimulus, and in that this 

prior gets weighted higher the more the memorized stimulus representation is affected by 

memory decay. Their conclusions are in good agreement with our model, in which memory 

decay is as well assumed to add variance to the memorized representation of the first stimulus. 

Similarly, in the field of color vision, Olkkonen, McCarthy, and Allred (2014) reported a central 

tendency bias in a delayed color estimation task, which was also modelled by a Bayesian model 

including memory decay. In a similar manner, Fassihi, Akrami, Esmaeili, and Diamond (2014) 

were able to explain performance of humans and rats in a tactile working memory task.  
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Taken together, it depends on the task, which factors need to be considered in order to 

achieve optimal perceptual estimates. For some tasks the assumptions underlying the MLE 

model are sufficient, however in sequential comparison tasks memory decay needs to be taken 

into account. Other factors may also play a role: Fisher and Whitney (2014) recently suggested 

that visual perception is ‗serially dependent‘, in the sense that it uses both prior information and 

the present sensory input to inform perception at the present moment. Interestingly, the authors 

showed in their data that attention is able to modulate the impact of the prior information. Future 

research focussing on haptic sequential integration may hence also include attention as a 

potentially modifying factor. 

Our proposed model of a comparison process that is affected by memory decay has 

interesting implications on how participants should ideally explore texture stimuli in a 

discrimination task, when they are less constrained in their exploratory behaviour. Yet 

Wismeijer, Erkelens, van Ee and Wexler (2010) described that sensory estimates as predicted by 

an optimal observer model can predict subsequent visual exploration movements. It has been 

argued that movements performed in free exploration are aimed to optimize the gathering of 

sensory information and to enhance task performance (e.g. Kaim & Drewing 2011, Lezkan, 

Metzger & Drewing, 2017). Given the proposed model, certain exploration strategies should lead 

to more precise discrimination than other strategies and therefore should be more preferentially 

performed by the observers. For instance, when participants are free to choose how often they 

stroke across each of two successively explored texture stimuli, the model would predict that 

more strokes are conducted across the first than across the second stimulus. The reason is that 

memory decay is assumed to take place only for the first stimulus estimate during the exploration 

of the second stimulus. As a consequence, benefit from additional strokes across the second 
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stimulus is counteracted by memory decay, but not benefit from additional strokes across the 

first stimulus. To give another example, in completely free exploration, participants might prefer 

to go back to the first stimulus, when its memory traces gets too noise and frequent changes 

between the two stimuli can be expected. It would be interesting to address those points in 

further research. 

It is further noteworthy, that in Experiment 2 the control conditions revealed considerable 

biases in the perception of the 4.5 mm period stimulus, when it was presented as the second one. 

As argued previously, we used the average measured values in the control conditions to calculate 

the weights of discrepant information and therefore the biases did not affect our predictions on 

the weights. However, here we ask why this bias might have occurred. Karim, Harris, Morley, 

and Breakspear (2012) described that when participants discriminate two vibrotactile stimuli 

they perform better when the first stimulus lies between the global mean of all stimuli and the 

second stimulus. This is known as the ‗time-order effect‘ (e.g. Karim et al., 2012; Preuschhof, 

Schubert, Villringer, & Heekeren 2010). It was suggested that the reason for this observation is a 

‗drift‘ of neural responses for the first stimulus towards the global mean. We speculate that this 

effect in combination with a stimulus range effect causes the biases we observe in the control 

conditions. While we chose an equal spacing of periods between 2 mm and 8 mm, this could be a 

perceptually not completely symmetric space. If you assume that the standard with the 6 mm 

period is closer to the perceived global mean than the standard with 4.5 mm, ‗time-order‘ effects 

might explain biases in the perception of the 4.5 mm standard. Interestingly, even this perceptual 

bias hints to the same conclusion we draw from our main results. That is, in a task of comparing 

two sequentially presented stimuli the first and the second stimulus are not processed in the same 

way. 
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2.6. Conclusion 

This study asked the fundamental question of how information is integrated over time in 

the mainly sequentially working haptic sense. Our results show that spatio-temporal integration 

does take place within haptic perception. However, gains from this integration were lower than 

we predicted by an optimal integrator model (MLE), which is usually applied to the integration 

of simultaneously presented information. A closer investigation of the integration process 

revealed that the processing in our sequential task is likely to be more complex. The perceptual 

system we describe takes the loss of information due to memory decay into account and 

counterbalances such decay with weighting this information less over time. We suggest a 

Bayesian model to describe the perceptual process, which focuses on comparing the two stimuli 

online in order to produce the least noisy estimate of the difference between the two stimuli. 
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3. Integration of Serial Sensory Information in Haptic Perception 

of Softness 

A similar version of this manuscript has been published as: 

Metzger, A., Lezkan, A., & Drewing, K. (2018). Integration of serial sensory information in 

haptic perception of softness. Journal of Experimental Psychology: Human Perception and 

Performance, 44(4), 551-565, doi: 10.1037/xhp0000466. 

Redundant estimates of an environmental property derived simultaneously from different 

senses or cues are typically integrated according to the maximum likelihood estimation model 

(MLE): Sensory estimates are weighted according to their reliabilities, maximizing the percept‘s 

reliability. Mechanisms underlying the integration of sequentially derived estimates from one 

sense are less clear. Here we investigate the integration of serially sampled redundant 

information in softness perception. We developed a method to manipulate haptically perceived 

softness of silicone rubber stimuli during bare-finger exploration. We then manipulated softness 

estimates derived from single movement segments (indentations) in a multisegmented 

exploration to assess their contributions to the overall percept. Participants explored two stimuli 

in sequence, using 2–5 indentations, and reported which stimulus felt softer. Estimates of the 

first stimulus‘s softness contributed to the judgments similarly, whereas for the second stimulus 

estimates from later compared to earlier indentations contributed less. In line with unequal 

weighting, the percept‘s reliability increased with increasing exploration length less than was 

predicted by the MLE model. This pattern of results is well explained by assuming that the 

representation of the first stimulus fades when the second stimulus is explored, which fits with a 

neurophysiological model of perceptual decisions (Deco, Rolls, & Romo, 2010). 
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3.1. Introduction 

Perception is the process of estimating the properties of our environment. If there are 

redundant signals from an environmental property, meaning a signal is repeated (sequential 

redundancy), or there are simultaneous signals in different dimensions (simultaneous 

redundancy), the property can be better detected (Mulligan & Shaw, 1980; Shaw, 1982; Swets, 

Shipley, McKey, & Green, 1959; Swets & Birdsall, 1978). Consequently, perception of an 

environmental property is more reliable with repeated estimates or estimates derived from 

different senses or cues, as compared to when perception is based on a single estimate. For 

example, sequential viewing (e. g. Oostwoud Wijdenes, Marshall & Bays, 2015) or touching (e. 

g. Louw, Kappers & Koenderink, 2005) usually increases perceptual reliability. An object's 

position and its properties can be estimated more reliably using different senses simultaneously, 

e. g. when estimating the position of the hand from vision and proprioception (van Beers, Sittig 

& van der Gon, 1998) or the size of an object from vision and touch (Ernst & Banks, 2002). Also 

combining different cues from a single sense increases perceptual reliability e. g. estimating the 

slant of a plane from the texture gradient and the linear perspective (Oruc, Maloney & Landy, 

2003).  

The integration of redundant information is often modeled as maximum likelihood 

estimation (MLE, Ernst & Buelthoff, 2004): single estimates are integrated by linear weighted 

averaging with the weights being proportional to the single estimates‘ relative reliabilities 

(Cochran, 1937). Reliability is defined as the inverse of variance r =  
-2
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Ŝ denotes the combined estimate (i.e., the percept), si the different single estimates, wi 

their individual weights and n the number of available estimates. If the single estimates are 

independent Gaussian variables, the combined estimate would have the maximal possible 

reliability of  

ˆ

1

 
n

iS
i

R r


 .                    (2) 

 Several studies on the integration of simultaneously available estimates (overview: 

Landy, Banks & Knill, 2011) support the MLE model for multisensory and cue integration in 

human perception (e. g. Alais & Burr, 2004; Ernst & Banks 2002; Fetsch, DeAngelis & 

Angelaki, 2010; Hartcher-O'Brien, Di Luca & Ernst, 2014; Helbig & Ernst, 2007; Hillis, Watt, 

Landy & Banks, 2004; Moscatelli et al. 2016). Nevertheless, there are also some reports of 

integration of simultaneous estimates, where perceptual reliability was not maximized or where 

weights could be changed by feedback without changing reliability (e.g. Cellini, Kaim & 

Drewing, 2013; Ernst, Banks, & Buelthoff, 2000; Jacobs & Fine, 1999; Rosas, Wagemans, Ernst 

& Wichmann, 2005; van Beers, van Mierlo, Smeets & Brenner, 2011). There is evidence that 

multisensory integration also depends on the exploration mode (visual and haptic both parallel or 

serial vs. visual parallel and haptic serial or vice versa, Plaisier, van Dam, Glowania & Ernst, 

2014). 

In contrast, studies investigating the mechanisms underlying the integration of sequential 

estimates from one sense do not yet reveal concordant models. For visual perception of color 

Oostwoud Wijdenes et al. (2015) found that pre- and postsaccadic estimates were integrated 

consistent with the MLE model with a higher weight given to the more reliable estimate (derived 

when the disc was closer to the fovea). Wolf and Schuetz (2015) showed that the orientation of a 

visually presented grating and the estimate's reliability could be predicted by the MLE model 
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from the reliabilities of estimates sequentially derived in the periphery and the fovea. Also in 

haptic perception sequential redundancy is exploited to increase reliability. For example, 

extended exploration or longer stimulus presentation decreased thresholds in haptic 

discrimination of surface orientation (Giachritsis, Wing and Lovell, 2009), or in the detection of 

sine-wave gratings and vibro-tactile stimuli (Gescheider, Bolanowski, Pope and Verrillo, 2002; 

Louw et al., 2005). However, Drewing, Lezkan and Ludwig (2011) showed for virtual sine-wave 

gratings that the gain of sequential redundancy was significantly lower than the gain predicted by 

the MLE model.  

A Kalman filter (Bryson & Ho, 1975) could potentially be more appropriate than the 

MLE model to account for sequential integration of information. The Kalman filter is an optimal 

model for estimating the state of dynamic linear systems over time. It is a recursive algorithm 

estimating the current state of a system by combining the current measurement with prior 

information, maximizing the estimate's reliability. Within the Kalman filter framework 

sequential integration of sensory estimates can be considered as recursive combination of the 

current sensory estimate (measurement) with the information obtained from prior sensory 

estimates. The dynamics of a (one-dimensional) system are predicted in the Kalman filter by a 

transition function from the previously estimated state ŝi-1 with the estimated noise 1
ˆ

i  to a 

hypothetical current state: si = Aŝi-1 + εp (εp being the process noise drawn from N[0,p]). This 

prediction is combined with the current measurement yi = S + εm (εm being the measurement noise 

drawn from N[0,m] and S the true state of the system) by weighted averaging to obtain a new 

state estimate: 
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The updated reliability is then given by 

1i i mr r r   with 
2 2 2

1 1
ˆ

i i pr A    

    and 2

m mr   .    (4) 

Similar to the MLE model weights that maximize reliability are proportional to the 

relative reliabilities of the prior information and the measurement. In contrast to the MLE model, 

the Kalman filter also includes the process noise that influences the prior sensory information 

and it can be extended to model non-linear systems (Anderson, & Moore, 1979). The Kalman 

filter was shown to approximate well aspects of state estimation of dynamic systems in human 

visual perception and learning (e.g. Kwon, Tadin & Knill, 2015; Rao, 1999) and visuomotor 

behavior (e. g. Burge, Ernst & Banks, 2008; Koerding & Wolpert, 2004). However, sequential 

integration in the perception of a constant stimulus corresponds to the estimation of the state of a 

static system (constant state). For the estimation of the state S of an one-dimensional static 

system (A = 1) with negligible process noise (p ~ 0), n iterations of the Kalman filter (Eqs. 3 & 

4) result in an final estimate Ŝ as given by Eq. 1 and a final reliability 
Ŝ

R  as given by Eq. 2 in 

the MLE model. Hence in this case, the estimate and its reliability obtained after n Kalman filter 

iterations are identical to the ones obtained from MLE integration of n estimates.  

The question thus remains why and under which conditions in haptic perception 

sequential redundancy did not result in maximal possible reliability (Eq. 2). For discrimination of 

virtual gratings in extended exploration Drewing et al. (2011) had predicted maximal reliability 

under the assumption that the repeated estimates from one sense are equally weighted, because 

they are all gathered in the same manner and thus have similar reliability. The authors suggested 

that the observed lower reliability is associated with unequal weighting. Lezkan and Drewing 

(2014) hypothesized that memory decay might cause unequal weighting of sequential estimates. 

In haptic perception, the accumulation of sensory information spans longer times than in visual 
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perception. Due to memory decay, early estimates might become less reliable over time, so that 

they are weighted less. Lezkan and Drewing (2014) measured the contribution (weight) of every 

estimate to the discrimination of spatial frequency of two virtual sine-wave gratings (explored 

successively using 2-5 strokes, each stroke regarded to provide one estimate) by slightly 

changing spatial frequency during one stroke on the standard. Strokes' weights decreased 

monotonically as a function of their temporal distance to the comparison stimulus being highest 

around the time point when participants switched between the stimuli. The findings provide 

important first hints to the sequential integration during haptic perception: In contrast to 

simultaneous integration, estimates that were gathered with equal reliability were not equally 

weighted, and perceptual performance was correspondingly lower than predicted by the MLE 

model (Eq. 2).  

However, the perceptual situation investigated in the study by Lezkan and Drewing 

(2014) might represent a highly specific case: Only virtual stimuli were used that were explored 

with a thimble connected to a force feedback device, thereby omitting several cutaneous cues, 

typically dominating haptic perception of softness (e.g. Bergmann Tiest & Kappers, 2009 for 

softness). Furthermore, participants could not explore the stimuli in a natural manner, because 

force and velocity were prescribed. These conditions differ considerably from everyday haptic 

perception, in that cutaneous information is highly relevant and exploration is hardly constrained. 

Hence the question arises, whether the results are representative for natural haptic perception. In 

the present study we investigated the integration of sequential sensory information in haptic 

perception for naturalistic conditions and stimuli, using softness perception as an example. We 

used real stimuli (silicon rubber) and constrained the stimulus‘ exploration only according to its 

length.  
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Softness refers to the perception of an object‘s compliance (ratio between displacement of 

the object's surface and the force applied to the object). Active exploration of softness usually 

involves successive manipulation of the object using a stereotypical movement classified as the 

Exploratory Procedure of Pressure, in which the object is repeatedly squeezed between the 

fingers or palpated with a finger or a tool (Lederman & Klatzky, 1987; Kaim & Drewing, 2011). 

Active haptic perception of an object‘s softness could thus be thought of as a multi-segmented 

exploration, where the movement segments refer to single indentations of the object. A single 

indentation comprises an increase of finger force up to a peak force, followed by a force decrease 

down to a local minimum, yielding a pattern of increasing and decreasing deformation of the 

object by the finger. We considered a single indentation as the basis of a single ―indentation-

specific‖ estimate of softness. The combined percept of softness would then be based on the 

integration of these multiple estimates.  

Since in our experiment participant explored real stimuli, whose physical softness was 

given, we could not present a different stimulus for a single indentation as in Lezkan and 

Drewing (2014) to assess indentation-specific weights. We developed a paradigm to manipulate 

perceived softness of real deformable objects during the exploration with bare fingers 

(Experiment 1). We transmitted subtle external forces to the exploring finger of the participant 

(Figures 1 and 2) which pressed the finger more into the stimulus (pushing force) or pulled it 

away (pulling forces). External forces (proportional by factor α to the forces participants applied 

themselves) changed perceived softness proportional to α. Results from Experiment 1 have been 

presented in a conference article (Metzger & Drewing, 2015), where they were discussed in the 

context of the cutaneous and kinesthetic integration. We reconsider the results here, because they 
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are the basis for the following experiments: We used external forces to manipulate softness 

estimates from single indentations. 

In four connected Experiments 2a-d, differing in the length of the exploration (2-5 

indentations) we studied the integration of sequential softness estimates during multi-segmented 

exploration of deformable silicon rubber stimuli. We first investigated how perceptual reliability 

depends on the number of exploratory movement segments. We hypothesized that perceptual 

reliability would increase with an increasing number of indentations, but less than predicted by 

the MLE model (Eq. 2; cf. Drewing et al., 2011).  

Second, we studied how estimates from single exploratory segments are weighted in 

perceived softness. Based on the findings of Lezkan and Drewing (2014), we expected to find 

the highest weights of indentation-specific estimates around the time point when participants 

switched between the stimuli in order to compare them, and that weights would decrease with 

increasing temporal distance to this time point. The MLE model predicts equal weights wi for the 

integration of estimates gathered with equal reliabilities.  

3.2. General Methods 

3.2.1. Participants  

Participants were right-handed (with the exception of one), naïve to the purpose of the 

experiments, volunteered to participate, and were reimbursed for their time. No participant 

reported sensory or motor impairments of the index finger of the dominant hand, which we 

confirmed by measuring a two-point discrimination threshold lower than 3 mm on this finger 

(Johnson & Phillips, 1981). In total 70 participants took part in the experiments; 10 participants 

were excluded from the analysis (six due to misdetection of indentations in more than 5% of 
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trials (see Data analysis, Experiments 2a-d); two due to repeated loss of connection between the 

finger and the force-feedback device during external force transmission); two due to reporting in 

the post-experimental survey that the restrictions imposed by our setup strongly impeded the 

exploratory behavior). The main characteristics of the final sample are listed in Table 3.1. More 

participants were recruited for Experiments 2c-d, because subtler effects in weights were 

expected with longer explorations. The study was approved by the local ethics committee LEK 

FB06 at Giessen University and was in line with the declaration of Helsinki from 1964. Written 

informed consent was obtained from each participant.  

 

Table 3.1  Main characteristics of the final sample. 

Experiment Participants Mean age Age range Female/Male  Duration (h) 

1,   1 indentation 10 23.8 19-29 4/6 5 

2a, 2 indentations 10 24.3 19-27 6/4 2.5 

2b, 3 indentations 8 26.9 21-32 4/4 4 

2c, 4 indentations 13 24.5 21-29 9/4 5 

2d, 5 indentations 19 25.3 21-35 12/7 6 

3.2.2. Apparatus and Setup  

The experiments were conducted at a visuo-haptic workbench (Fig. 3.1), which displayed 

haptic stimuli by a PHANToM 1.5A haptic force feedback device, and 3D visual stimuli using a 

22"-computer screen (120 Hz, 1280x1024 pixel) viewed via stereo glasses indirectly through a 

mirror from 40 cm viewing distance. The mirror enabled spatial alignment of visual and haptic 

displays and prevented participants from seeing their hand when touching the stimuli. Force 

feedback was limited to the transmission of subtle external forces during the exploration of real 
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stimuli. Two rubber stimuli were placed side-by-side in front of the participants on a force sensor 

(produced by ME-Messsysteme GmbH) consisting of a bending beam load cell (LCB 130) and a 

measuring amplifier (GSV-2AS, resolution 0.05 N, temporal resolution 682 Hz) to record 

exerted forces. Participants touched the stimuli with the index finger of their dominant hand 

using a downward directed movement. The finger was connected to the PHANToM arm. The 

visual 3D scene comprised a schematic representation of the finger (sphere of 8 mm diameter) 

and the two stimuli. Visual information was used only to guide participants through the 

experiment. Importantly, no visual information about the finger movement and stimulus 

compliance was presented when the stimuli were touched (force > 0.1 N). The head was fixated 

by a chin rest. 

 

Figure 3.1. Visuo-haptic workbench. Real stimuli were placed in front of the participant on the 

force sensor next to each other (distance 2 cm). A visual representation of the stimuli was 

displayed on the screen and viewed via stereo glasses. The head of the participant was stabilized 

by a head and a chin rest. The index finger of the dominant hand was connected via a custom-

made adapter to the PHANToM, which was used to measure the position of the finger and to 

apply external forces during the exploration. White noise was presented via headphones to mask 

sounds from the motors of the PHANToM. 

 



89 

A custom-made gimbal-like adapter was used to connect the participant's index finger to 

the PHANToM (Fig. 3.2). It was designed to have no vertical degrees of freedom to ensure the 

transmission of forces and to allow (despite this restriction) natural and comfortable exploration 

of the stimuli. The adapter left the finger pad uncovered and was adjusted to the preferred 

inclination of the finger between 0° and 45° before the experiment, by rotating the main gimbal 

of the adapter, which was then fixed by two screws during the experiment. We used a circular 

design for the adapter to ensure that the direction of external forces as well as the calibrated zero-

position of the PHANToM would not change with inclination. To exclude finger movement 

independent of the adapter, the dorsal side of the finger was affixed to the adapter by adhesive 

deformable glue pads (Pritt Multi-Fix). The weight of the adapter was counterbalanced with a 

constant upward force (0.2 N) produced by the PHANToM. While attached to the PHANToM 

participants were able to move freely in a 38x27x20 cm workspace. 

 

Figure 3.2. Adapter to connect the index finger of the participant to the PHANToM. The adapter 

was designed to leave the finger pad uncovered and to ensure the transmission of forces, by 

restricting the vertical degrees of freedom. Preferred vertical inclination between 0° to 45° was 

adjusted before the experiment. Due to a circular design the direction of the external force and 

the calibrated zero-position was unchanged by the adjustment. The adapter was additionally 

affixed to the dorsal side of the finger by adhesive deformable glue pads. 
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Via the adapter external forces were transmitted by the PHANToM to the index finger 

vertically, either pushing the finger into the stimulus orthogonal to the stimulus‘ surface or 

pulling it out of the stimulus. The amounts of external force were fixed fractions α of the force 

applied by the participant. The total vertical force was measured every 3 ms with the force 

sensor. We calculated the force applied by the participant by subtracting the external force 

transmitted at the previous time point. To avoid amplification of noise produced by the force 

sensor (causing vibrations), external forces were calculated based on the force average from the 

last 15 ms. External forces were transmitted only during one indentation of the standard stimulus, 

i.e., in Experiment 1 during the single performed indentation and in Experiments 2a-d during one 

of the indentations.  

The algorithm to detect and count the indentations was developed and trained using 

samples of trajectory data (force and vertical position) from free softness explorations (described 

in Lezkan & Drewing, 2015). The algorithm distinguished between three states in the temporal 

course of exploratory movements:  

1. The state without indentation.  

2. Force increase and downward directed vertical displacement. 

3. Force decrease and upward directed vertical displacement.  

These states alternated circularly as long as the participant explored the stimulus and 

were detected using different threshold combinations of time, force, vertical position, and 

derivatives of force and vertical position (Fig. 3.3). When a full cycle of these states was 

completed, one indentation was counted. The beginning of "force increase" marked the 

beginning of the indentation and the end of "force decrease" marked its end.  
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Figure 3.3. Detection of indentations. Depicted are the force (solid line) and vertical finger 

position (dotted line) during a single indentation of a stimulus in Exp. 1 as a function of time. 

The thresholds (absolute values and first derivatives) used to detect the indentation are 

symbolically indicated by black dots in the axes and by text inside the plot. The right part 

outlines schematically how these thresholds were used to distinguish the different states (min. = 

minimum/minimal). The states are depicted in bold font. The circle indicates in what order the 

states changed. Conditions for the change from one state to another are listed between the 

corresponding two states. 

 

In the beginning of a trial the state was set to "no indentation". If a minimal force (1N, 

measured by the force sensor below the stimulus, Fig. 3.1) was reached and minimal increase in 

force (0.01) and decrease in vertical position (-0.01) were detected, the state changed to "force 

increase". If after a minimal time from the beginning of the indentation (200ms) the force 

minimally decreased again (-0.01), the state changed to "force decrease". Finally, if after the 

minimal time following the onset of "force decrease" (30ms) the force fell below 17N and 

stopped to decrease (force derivative > -0.01), the indentation was considered to be terminated 

("no indentation") and the next cycle could begin. The thresholds used by the algorithm were 
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optimized to produce less than 5% misses (absent or wrong detection of an indentation) as 

compared to careful visual inspection.  

If the indentation was the one to be manipulated, transmission of external force started 

with the beginning of the indentation. To prevent sudden on- and offsets at the indentation' 

beginning and end the fraction of participants' forces used to calculate external forces linearly 

increased to α or decreased to 0 (respectively) within 30 ms. 

A custom-made software (C++) controlled the experiment, collected responses, and 

recorded finger positions and reaction forces. White noise presented via headphones masked 

possible sounds from the PHANToM's engines when transmitting external forces. 

3.2.3. Softness Stimuli  

The stimuli were made from two-component silicon rubber solution (AlpaSil EH 10:1), 

which was mixed with varying amounts of a diluent (polydimethylsiloxane, viscosity 50 mPa∙s) 

to obtain different compliances. The solution was poured into cylindrical plastic dishes (75 mm 

diameter x 38 mm high) avoiding the formation of air pockets, to obtain flat surfaces without any 

discriminable differences in texture. After the stimuli were completely cured, compliance was 

measured using the experimental apparatus but replacing the finger-adapter at the PHANToM 

arm by a flat–ended cylindrical probe of 1 cm² area (‗standard finger‘). The probe was repeatedly 

pressed into the stimulus using sufficiently high forces (15-25N), to warrant that enough data 

was sampled in the analyzed force range (0-9 N). The compliance was calculated as the slope of 

the regression line, fitted to the measured displacement–force traces (example plot in Fig. 3.4). 

For analysis we used only the trajectories caused by the increase of force, to exclude hysteresis 

effects during the decrease of force. Possible biases from non-uniform data sampling due to 
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manual indentation of the stimuli were reduced by calculating the mean displacement in 2N steps 

for bins of +/-0.4 N. For further details and discussion on the measurement method see Kaim and 

Drewing (2011). 

 

Figure 3.4. Compliance measurement. A force-displacement function of an exemplar stimulus as 

used in our Experiments. The average displacements calculated for every 2N steps for bins of +/-

0.4 N are plotted as black solid dots. The regression line with the slope corresponding to the 

compliance of the stimulus is plotted as a black line.  

 

We produced two sets of rubber stimuli, each consisting of one standard and ten 

comparison stimuli. As standards we used one rather hard (0.32 mm/N) and the other rather soft 

(0.67 mm/N) stimulus. In each set half of the comparisons had increasingly lower and the other 

half increasingly higher compliance as compared to the standard. The compliance difference 

between two neighbored comparison stimuli was about 1/2 Weber fraction (0.03 mm/N step for 

the hard and 0.05 mm/N step for the soft set) and the range covered by the comparisons was 

about 2.5 Weber fractions in each direction. Different Weber fractions of about 20% and 15% 
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were used for the hard and the soft stimulus sets respectively (values taken from Kaim & 

Drewing, 2011). To reduce the traces of usage we produced each stimulus in two similar 

versions and alternated them. The compliance values of the stimuli are listed in Table 3.2. 

 

Table 3.2  Compliances of the silicone rubber stimuli. 

Set Compliance (mm/N) 

Hard 0.16 0.19 0.23 0.26 0.29 0.32 0.36 0.39 0.43 0.46 0.49 

Soft 0.41 0.47 0.52 0.56 0.62 0.67 0.72 0.77 0.82 0.87 0.92 

 

3.2.4. Design  

3.2.4.1. Experiment 1 

The experimental design comprised two within-participant variables: Compliance of 

Standard      0.32, 0.67  
mm

c
N

  and the fraction of External Force      .16, .11, 0, .11,.16     , 

resulting in 10 conditions. We measured individual Points of Subjective Equality (PSE) of the 

manipulated standard stimulus as compared to non-manipulated comparison stimuli for each 

condition. For that purpose, we used a Two-Interval Forced Choice (2IFC) task combined with a 

1-Up-1-Down staircase paradigm. We also estimated individual Just Noticeable Differences 

(JND) from fitted psychometric functions. In Experiment 1 each stimulus was indented once. 

3.2.4.2. Experiments 2a-d 

The Experiments 2a-d differed by the Exploration length, as instructed by the number of 

indentations of each stimulus,  2, 3, 4, 5N  . The experimental design of each Experiment 2a-d 
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comprised the two within-participant variables Number of Intervening Indentations (0,…, N-1) 

and the fraction of External Force      .16, 0, .16    . The compliance of the standard was always 

c = 0.67 mm/N. An external pulling or pushing force was applied during a single indentation of 

the standard stimulus or was not applied at all. We distinguished between different indentations 

by their distance to the exploration of the comparison stimulus, as expressed by the Number of 

Intervening Indentations. For example, when the standard was explored first the standard‘s last 

indentation had the minimum distance (0 intervening indentations) to the exploration of the 

comparison and when it was explored second, its first indentation had the minimum distance. 

The order in which the standard and the comparison were presented was balanced and 

randomized. Each Experiment 2a-d comprised 2*N conditions with external forces and one 

baseline condition without. Again, we measured individual PSEs for each standard stimulus 

using a 2IFC softness discrimination task and a 1-Up-1-Down staircase paradigm. From the 

PSEs we calculated the weights of single indentation-specific estimates. To assess the gain of 

sequential redundancy we estimated for each Experiment 2a-d JNDs from fitted psychometric 

functions.  

3.2.5. Procedure  

There were up- and downwards directed staircases. In the first trial of the downwards 

directed staircase the standard was paired with the comparison stimulus of highest compliance in 

the set. The upwards directed staircase started with the comparison stimulus of lowest 

compliance. The comparison for trial j in a staircase depended on the participant‘s response in 

trial j-1 of this staircase. If the comparison had felt softer (harder) than the standard, the next 

comparison in the staircase was less soft (hard). If the calculated comparison was out of the 
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range of the staircase, the same comparison was presented again in the next trial. The estimation 

of the PSE and JND by one staircase was considered terminated after 10 reversals (changes of 

direction in the staircase because participants changed their judgment from softer to harder and 

vice versa), which were reached on average after 18.43 trials (SD = 1.67).  

Each of the five experiments was split into two sessions, which were completed on two 

days within one week, except for Experiment 2a which was completed on the same day. In each 

session the estimation of the PSE and JND of each condition was completed by one upward and 

one downward directed staircase. There were thus in total four staircases, two per condition and 

session. Each session consisted of blocks in which the current step of each staircase was 

presented once in random order (number of trials = number of conditions*2). Toward the end of 

the session, the number of trials in one block decreased, because staircases were increasingly 

terminating. The sessions were interspersed with pauses (1 min every 45 trials, about every 15 

min). In the first session participants completed a practice session prior to the experiment 

consisting of 8 trials to familiarize them with the setup and the task. After the last session 

participants completed a survey in which they reported whether they noticed differences between 

the trials, which technique they used to compare the softness of the two stimuli, and how they 

experienced the experiment overall. 

In the beginning of each trial the stimulus to be touched first (standard or comparison) 

was displayed on the computer screen (left or right). A tone presented via the headphones 

signaled the participant to start the exploration. Participants were instructed to touch each 

stimulus in its center, which was visually rendered as a cross on the stimulus representation. 

Depending on the design of each experiment (1, 2a-d) participants were instructed how many 

times to indent each stimulus. The standard and the comparison stimuli were always indented the 
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same number of times. As soon as the first stimulus was touched, the second stimulus appeared 

in the visual scene and after its exploration, participants reported which stimulus felt softer by 

moving their finger to one of the two virtual decision buttons displayed above the stimuli. They 

did not receive any feedback about the correctness of their response. If participants used more or 

less indentations than instructed, the trial was repeated later in the block. Between trials, 

participants moved their finger to an indicated position in the corner of the 3D-scene to wait until 

the experimenter had manually changed the stimuli. The position (left, right) of the standard was 

randomized by the computer program.  

3.2.6. Data Analysis  

3.2.6.1. Psychometric Functions  

In both Experiments 1 and 2a-d in order to assess PSEs and JNDs, we calculated for each 

participant, each condition and each comparison stimulus the percentage of trials in which it was 

perceived to be softer than the standard. These values, combined for all comparisons composed 

the individual psychometric data, to which we fitted cumulative Gaussian functions using the 

psignifit4 toolbox (Schuett, Harmeling, Macke, & Wichmann, 2016). From the fitted 

psychometric functions, we estimated the PSE as the 50% discrimination threshold and the JNDs 

as the 84% discrimination threshold, corresponding to the standard deviation of the cumulative 

Gaussian function (Helbig & Ernst, 2007). The goodness of fit of the psychometric functions was 

assessed by comparing the measure of deviance (D) to the critical χ
2
 value for 10 comparisons, 

2

10;95% 18.31   (Wichmann & Hill, 2001). Deviance is the log-likelihood ratio between the full 

model (one parameter for every observation) and the fitted model (achieved by maximum 

likelihood) - the smaller the deviance, the better the fit.  
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We estimated PSEs using psychometric functions instead of averaging over compliances 

at reversals, in order to eliminate the influence of trials in which the manipulation of force was 

not warranted and to be able to analyse the data separately for the cases that the standard was 

explored first or second. Estimates from both methods are highly correlated (R = 0.95).  

 

3.2.6.2. Experiment 1 

We assumed that external forces (calculated as the fraction  of force applied by 

participants) would proportionally increase (pushing forces, +) or decrease (pulling forces, -) 

perceived softness (ĉm) as compared to perceived softness without external forces (ĉ0; Metzger & 

Drewing, 2015):  

01ˆ ˆ ( )m fc w c  .        (5) 

with wf being the extent by which external forces are translated into a perceptual change. To 

calculate wf we performed linear regressions of individual PSE shifts with external forces relative 

to the PSE without external force ( 0

0

ˆ

ˆ

 ˆ
mc c

c


) on . According to Eq. (5) the relative PSE shift 

caused by external force is a linear function of  (cf. Landy, Maloney, Johnston & Young, 

1995):  
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with wf being the slope. We expected the slope to be positive and used a one-tailed t-test to test 

this hypothesis. Two-sided t-tests were used to analyze the regression intercepts and to compare 

the regression parameters between the Compliance of standard conditions. To verify that 

external forces do not affect perceptual reliability, we additionally assessed individual JNDs for 

each External Force condition and performed a one-way repeated measures ANOVA.   
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3.2.6.3. Experiments 2a-d  

In order to verify that the manipulation of perceived softness was successful in 

Experiments 2a-d, i.e., that external force was transmitted in the target segment and only in the 

target segment, force applied by the participant and external force were visually inspected for 

every trial. Trials in which the manipulation was not successful were excluded for the fit of 

psychometric functions (total of 0.9% trials). Participants for whom more than 5% of trials had 

to be excluded were excluded from the analysis.  

To analyze perceptual reliability we assessed individual JNDs for each Exploration 

length (1-5 indentations, Experiments 1,2a-d), by averaging over the External Force conditions 

in both Experiments 1 and 2 and additionally over the Number of Intervening Indentations 

conditions in Experiments 2a-d. Individual JNDs were entered in a one-way ANOVA with the 

between participant factor Exploration length. To test whether perceptual reliability decreased 

with increasing length of the exploration, we performed a trend analysis using linear contrasts. 

We wanted to analyze whether the JNDs decreased as predicted by the MLE model. According 

to Eq. 2 integration of N statistically independent estimates with the same variance σ² results in a 

variance of 
2

N



 
for the combined estimate, which predicts that the JNDs, which are proportional 

to 
2  (Ernst & Banks, 2002), decrease with the number of indentations N by the factor of N

-1/2
 

(Quick, 1974; Drewing et al., 2011). We log-transformed the JNDs and the total number of 

indentations in order to linearise the relationship, fitted a linear regression model to this data and 

compared the decrease in JNDs to the predicted decrease which corresponds to a slope of -0.5 in 

of the regression function.  
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In our experiments JNDs were estimated from psychometric data sampled with the 1-Up-

1-Down staircase. Simulations show that JNDs are proportionally underestimated in similar 

cases (Leek, Hanna & Marshall, 1992). We replicated the simulation of Leek et al. (1992) for the 

estimation of JNDs with our 1-Up-1-Down staircase and found a small proportional bias of 12%. 

However, a proportional bias in the JND estimates might change the intercept but not the slope 

of the analyzed decrease of JNDs with the extension of the exploration, because we perform it on 

log-transformed data. Nevertheless, due to this proportional distortion caution is advised when 

generally comparing JNDs estimated from a 1-Up-1-Down staircase to JNDs estimated with 

more appropriate methods (e.g. constant stimuli).     

For each condition in Experiments 2a-d we estimated individual PSEs. To confirm that 

the manipulation of perceived softness was successful, we entered the PSEs in ANOVAs with 

the within-participant factor fraction of External Force, separately for each Experiment 2a-d.  

From the PSEs we calculated individual indentation-specific weights wi for each 

indentation i and each Exploration length (2-5 indentations, Experiments 2a-d). We assumed that 

the overall percept (as assessed by the PSE) was the result of a weighted linear combination of 

indentation-specific estimates (Eq. 1) and that indentation-specific estimates of non-manipulated 

indentations equal the perceived softness without external force ĉ0. According to the results of 

Experiment 1, external forces transmitted during the exploration, shifted perceived softness 

following Eq. (6). In a multi-segmented exploration, the manipulation of a single indentation i 

would then shift the overall percept ĉmi relatively to ĉ0 by:  

0

0

ˆ  ̂
   

ˆ
mi

i fw
c

c c
w 


 .        (7) 
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To assess wiwf we performed a linear regression of the relative PSE shift 0

0

ˆ ˆ

ˆ

 mic c

c


 on . wf 

(0.3) was estimated from the results of Experiment 1 as the average of the factors wf for rather 

soft and rather hard stimuli.  

To confirm that the weights sum up to 1 as predicted by Eq. (1) we performed a t-test on 

individual weight sums against one. To analyze whether the weights decreased with the Number 

of Intervening Indentations, we performed linear regressions of the weights on the number of 

intervening indentations, for each participant and exploration length and computed a t-test of 

individual slopes against 0. 

We additionally investigated whether the weight of each estimate depended on whether 

the stimulus was explored first or second. For this purpose, we estimated the PSEs, using only 

trials in which the standard was the first or the second stimulus (respectively) and repeated the 

analysis reported above. Additionally, we analyzed for each exploration length whether the 

pattern of weights differed between the first and the second stimulus (interaction Number of 

Intervening Indentations X Presentation of the Standard as first vs. as second stimulus in two-

way ANOVA) and whether the decrease of weights with the number of intervening indentations 

depended on the length of the exploration (one-way ANOVA on the slopes of the weights with 

between-participant factor Exploration Length). We did this analysis only for the second 

stimulus, because only there we found a decrease of weights.  

3.3. Experiment 1 

3.3.1. Results 

Participants did not report in the surveys that they noticed any differences between the 

trials. Thus, it can be assumed that they were not aware of external forces. For all external force 
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conditions, we observed a shift in the PSEs in the predicted direction: to a softer percept with 

pushing external forces and to a harder percept with pulling external forces. In Figure 3.5, the 

PSEs with and without force manipulation are plotted as a function of  (fraction of force 

participants applied themselves used to calculate external forces).  

 

 

Figure 3.5. Average PSEs (black dots) with standard errors as a function of the fraction of 

external force separately for the soft and the hard standard. The average PSE without external 

forces is plotted as a solid black line. The respective standard error is indicated by the grey area. 

Additionally regression lines are plotted as black dotted lines. 

 

The average regression slopes (wf, Eq. 6) were significantly positive for both standards: 

hard: t(9) = 4.80, p < .001; soft: t(9) = 5.93, p < .001 (one-tailed tests). The intercepts were not 

significantly different from zero for both, the hard, t(9) = 1.18, p = 0.268 and the soft, t(9) = 

0.95, p = 0.365 standards. The regression functions were 0

0

 
   0.28

ˆ ˆ
 0.03

ˆ
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   for the soft standard (dashed black lines in Fig. 3.5). Paired 
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t-tests on individual slopes and intercepts showed no significant difference in the average slope, 

t(9) = -0.72, p = .4891, nor in the average intercept, t(9) = 0.74, p = .476, between the hard and 

soft conditions.  

The one-way repeated measures ANOVA on the JNDs did not reveal a significant effect 

of the within-participant factor External Force, F(4,36) = 0.22, p = 0.928, indicating that 

external forces did not change perceptual reliability.  

3.3.2. Discussion 

Force feedback has been previously used for virtual and augmented softness (Biggs & 

Srinivasan, 2002; Jeon & Choi 2009, 2011). However, the effect of external forces had not yet 

been studied for the exploration of compliance stimuli with bare fingers. In Experiment 1, we 

showed that haptically perceived softness of deformable silicon rubber stimuli can be 

manipulated during the exploration with bare fingers. Perceived softness was changed by 

transmission of subtle external forces (calculated as a fraction of the forces α participants exerted 

themselves). PSEs shifted as a linear function of α. The same stimuli were judged to be softer 

when pushing forces were transmitted, and judged to be harder with pulling forces. We argued 

that the linear relationship between α and the resulting PSE shift reflected the exclusive 

perturbation of the force estimate provided by the kinesthetic system and the efference copy 

(Metzger & Drewing, 2015). As kinesthetic afferent subsystem we subsume the receptors in the 

muscles and tendons and the efference copy of the motor command (Wolpert & Flanagan, 2001) 

whereas mechanoreceptors innervating the skin are referred to as the cutaneous afferent 

                                                           
1
 Please note, average slopes were erroneously reported to be significantly different for the soft 

and the hard standard in Metzger & Drewing, 2015. 
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subsystem. It is likely that the kinesthetic force receptors and the efference copy only inform 

about self-produced forces (Jones, 1986). Hence, if assuming further that the kinesthetic and the 

cutaneous subsystem provide separate softness estimates which are integrated with constant 

weights (Eq. 1), the slope (wf) in the regression function (Eq. 6) corresponds to the weight of the 

kinesthetic estimate.  

However, the impact of external forces might have been not as exclusive. The two 

estimates (cutaneous and kinesthetic) might not have been perfectly disentangled. For instance 

the change in contact area as sensed by the cutaneous afferent subsystem could have been also 

interpreted as displacement of the finger (Moscatelli et al, 2016). It is also possible that external 

forces triggered resistance forces (similar to resistance forces reported for the ocular system, 

Stark and Bridgeman, 1983), resulting in an additional efference copy, which would have 

reduced the impact of external forces on the kinesthetic estimate. Furthermore, averaging and 

ramping in the calculation of external forces (cf. Apparatus and setup) introduced small 

asynchronies and nonlinearities of external forces with respect to participants' forces possibly 

modulating the perceptual effect (cf. impact of delays in softness perception; Di Luca, Knoerlein, 

Ernst & Harders; Knoerlein, Di Luca & Harders, 2009; Leib, Karniel & Nisky, 2015; Pressman, 

Welty, Karniel & Mussa-Ivaldi, 2007). Here, we used the effect of external forces on perceived 

softness, and the average extent wf (0.3, Eq. 6) to which  is translated into a perceptual 

difference in order to study the integration of sequential information in Experiments 2a-d. 

3.4. Experiments 2a-d 

3.4.1. Results 
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3.4.1.1. Psychometric Functions 

Overall, the participants‘, responses were well fit by cumulative Gaussian functions: The 

deviance values were below the critical 
2

10;95% 18.31   in more than 99% of all fitted 

psychometric functions. When splitting the data into the sets where the standard was explored as 

the first or as the second stimulus, the deviance values were still below the critical χ
2
 values in 

more than 95% of the psychometric fits in these datasets.  

 
Figure 3.6. Average JNDs and standard errors as a function of the Number of Indentations in 

Log-Log space. The regression line is plotted as a solid line and the dashed line indicates 

integration yielding maximal possible reliability. 

 

3.4.1.2. JNDs 

The one-way ANOVA on the JNDs revealed a significant main effect of the between 

participant factor Exploration length, F(4,55) = 3.27, p = 0.018 and the trend analysis confirmed 

that the JNDs linearly decreased with an increasing number of indentations, F(1,55) = 7.89, p = 

.007 (Fig. 3.6). Averages and standard errors of logarithmized JNDs are plotted as a function of 

logarithmized exploration length (number of indentations) in Figure 3.6. The slope of the linear 



106 
 

regression function (solid line) was -0.141. The 95% confidence interval of the slope, ranging 

from -0.884 to -0.048, did not include the value of -0.5 predicted by the MLE (dotted line), 

indicating a shallower decrease of JNDs with increasing length of the exploration as compared to 

the prediction of the MLE.  

3.4.1.3. PSEs 

For each Experiment 2a-d average PSEs for each fraction of external force transmitted in 

each indentation are plotted in Figure 3.7. As expected from the results in Experiment 1 overall 

the pushing external force shifted the PSEs to a softer percept, and a pulling external force 

shifted it to a harder percept. The separate one-way ANOVAs revealed a significant main effect 

of External Force in all Experiments 2a-d (all p's < .008), indicating successful manipulation of 

perceived softness. 

 
Figure 3.7. PSE-shift as a function of external force and the number of intervening indentations. 

The perceived softness is plotted separately for each Experiment 2a-d (exploration lengths of 2-5 

indentations) as a function of the number of intervening indentations to the comparison. The 

mean values are plotted as black and individual measurements as grey triangles. Average and 

individual PSEs as well as the standard error are plotted for both external force conditions 
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(pushing force and pulling force, downward and upward pointing triangles respectively). For 

each length of the exploration average perceived softness in the condition without external forces 

is plotted as a solid line. The respective standard error is indicated by the grey area. Additionally, 

the two grey dotted lines indicate the two PSEs, which would result if the manipulation of one 

indentation would entirely determine perceived softness (maximal possible shift, according to the 

effect of manipulating a single-indentation exploration in Experiment 1). This value could have 

been reached if the softness estimate of one indentation would be weighted by 1.  

 

3.4.1.4. Weights 

 
Figure 3.8. Weights of the estimates derived from single indentations as a function of their 

temporal distance to the comparison stimulus. The average weights of the estimates and their 

standard errors are plotted separately for each length of exploration.  

 

The average weights are plotted as a function of the number of intervening indentations to 

the comparison, separately for each length of the exploration (Experiments 2a-d) in Figure 3.8. A 

t-test showed that (consistent with Eq. 1) for none of the exploratory lengths (N) the average sum 

of the weights was significantly different from 1 (all p's > 0.5). The average slope of the 

regression of weights on the number of intervening indentations was significantly negative for 
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the exploration lengths of 2 indentations, t(9) = -4.96, p < .001 and 3 indentations, t(7)= -3.23, p 

= .015 but not for 4 indentations, t(12) = .06, p = .95 and 5 indentations, t(18) = -2.09, p = .051.  

In Figure 3.9 the weights of indentation-specific estimates are plotted separately for the 

first and the second stimulus. In both cases the sum of the weights was not significantly different 

from 1 for all exploration lengths (all p's > 0.2). The ANOVA on individual weights with the 

within-participant factors Number of Intervening Indentations and Presentation of the Standard 

(as first vs. as second stimulus) revealed a significant interaction for the exploration lengths of 2 

indentations, F(1,9) = 36.07, p < .001, 3 indentations, F(2,14) = 10.07, p = .002, was at the edge 

of significance for 4 indentations, F(3,36) = 2.81, p = .053 and not significant for 5 indentations, 

F(4,72) = 1.06, p= .385, indicating differences between the first and the second stimulus in the 

pattern of weights for the shorter exploration lengths. When the standard was explored first the 

slopes of linear regressions of the weights on the Number of Intervening Indentations were not 

significantly different from 0 for all exploration lengths: 2 indentations, t(9) = 0.23, p = .820; 3 

indentations, t(7) = 1.19, p = .274; 4 indentations, t(12) = 0.84, p = .417; 5 indentations: t(18) = -

0.35, p = .733. When the standard was explored as the second stimulus, the slopes were 

significantly negative for 2 indentations, t(9) = -9.35, p < .001, 3 indentations, t(7) = -4.53, p = . 

0.003, and 4 indentations t(12) = -3.03, p = .010 but not for 5 indentations t(18) = -1.22, p = 

.240. A one-way ANOVA on the slopes of the weights in the exploration of the second stimulus 

with the Exploration length as the between-participant factor revealed that the slopes were 

affected by the Exploration length, F(3,46) = 49.65, p < .001. A trend analysis showed that the 

slopes increased with the decreasing exploration length, F(1,46) = 134.48, p < .001. 
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Figure 3.9. The weights of the estimates from single indentations on the first and the second 

stimulus separately as a function of their distance to the comparison stimulus and time. The 

average weights of estimates from single indentations of the first and the second stimulus and 

their standard errors are plotted separately for each length of the exploration. Time is depicted in 

arbitrary units.  

 

3.4.2. Discussion 

As predicted, JNDs in softness discrimination decreased with an increasing length of the 

exploration. This finding demonstrates that participants were able to increase perceptual 

reliability by accumulating information about softness over time, and is in concordance with 

earlier reported redundancy gains as a result of spatiotemporal extension of the exploration 

(Drewing et al., 2011; Giachritsis et al., 2009; Lezkan & Drewing, 2014; Louw et al., 2005). 
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Also as expected, the decrease in the JNDs with increasing exploration length was significantly 

smaller than would have been predicted by the MLE model (N
-0.14

 vs. N
-0.5

 for N indentations). 

Drewing et al. (2011) and Lezkan and Drewing (2014) found similarly flat decreases of JNDs (N
-

0.12
, N

-0.15
) with increasing length of the exploration of virtual gratings. Hence, we can extend the 

conclusion that the integration of sequential information in haptic perception does not follow the 

MLE model, to a naturalistic task.  

To approach the question, why sequential information was not integrated according to the 

MLE model, we assessed the weights of softness estimates derived from single exploratory 

segments (i.e., indentations). In agreement with previous observations on the perception of 

virtual gratings (Lezkan & Drewing, 2014), we found that the weights of indentation-specific 

estimates decreased significantly as a function of the indentation‘s distance to the comparison - 

at least for the short explorations comprising 2-3 indentations. Distinguishing between the 

indentation-specific weights on the first and the second stimulus in the 2IFC task, we found that 

the estimates from indentations of the first stimulus were weighted approximately equal, and that 

only the estimates gathered during the exploration of the second stimulus were weighted 

unequally, decreasing with increasing distance to the comparison stimulus (significant for 

explorations comprising 2-4 indentations). We did not find a significant decrease in weights over 

time for the exploration of the second stimulus comprising 5 indentations. Smaller effects in 

weights were expected with an increasing number of indentations (weights sum to 1), thus the 

differences between the weights might have been too small to be measured. We conclude that in 

the natural integration of sequential haptic information, softness estimates from different 

movement segments of the exploration of the second stimulus are unequally weighted, at least 

for explorations comprising less than 5 indentations.  



111 

The question arises why observers did not use all of the information provided by the 

repeated exploration of the stimulus. Estimates with correlated noises do not provide as much 

information as statistically independent estimates (Oruc et al., 2003). However, correlations 

between signal estimates do not predict that estimates with similar reliabilities are integrated 

with unequal weights, as we find for the integration of information on the second stimulus' 

softness. 

Unequal weights of estimates derived in the same sense on the same environmental 

quality by repeated exploration (comparable in length to a typical haptic exploration [~2s]) were 

also observed in several studies on summary statistics (review: Hubert-Wallander & Boynton, 

2015), which addressed the ability of humans to estimate the mean value of serially presented 

visual cues (e.g. mean size of a dot that changed size over time). Some of these studies observed 

so-called recency effects (late information is weighted higher; Cheadle et al., 2014; Toscani, 

Zdravković & Gegenfurtner, 2016) others observed primacy effects (early information is 

weighted higher; Drugowitsch, Moreno-Bote, Churchland, Shadlen & Pouget, 2012). Whereas 

recency effects cannot explain the pattern of our results, a primacy effect could be responsible 

for higher weights of early estimates of the second stimulus' softness.  

For primacy effects it is hypothesized that early information is weighted higher, due to 

increasing costs of sampling and processing of information. In our experiments participants were 

instructed to indent each stimulus a fixed number of times. It is possible that in order to reduce 

the costs and effort of sampling and processing, participants had decided which stimulus felt 

softer before the end of the exploration of the second stimulus. At the same time, it is a feasible 

assumption that resources were not saved during the exploration of the first stimulus, because the 

difficulty of the decision was unknown at this time point. From such a strategy, equal weights 
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during the exploration of the first stimulus and a decrease of weights during the exploration of 

the second stimulus over time might be explained. However, this explanation does not fit with 

observations on the muscular effort that participants spend over the time course of the 

exploration: participants significantly increased peak force in their last indentation as compared 

to all previous indentations of the first t(49) = -9.14, p < .001, as well as the second stimulus, 

t(49) = -4.76, p < .001 (paired t-tests comparisons of peak forces averaged over indentations 

1,...,n-1 and peak forces in the n-th indentation).  

As already outlined, in the introduction for the integration of information over time a 

Kalman-filter approach might be more appropriate than the MLE. Remember, that for the 

estimation of a static variable the Kalman-filter approach yields the same estimate and the same 

reliability as the MLE model, if the process noise is negligible. However, unequal weights of 

estimates could be expected in our experiment if the process noise were large. According to Eq. 

(3) high process noise would bias the estimate towards the current sensory measurement in every 

iteration. In our experiment where we manipulated always one of the estimates this would result 

in higher weights if the manipulated estimate was acquired later in the exploration. However, we 

instead observed a decrease of weights towards the end of the exploration and only in the 

exploration of the second stimulus. Thus, high process noise cannot explain the pattern of 

weights we found in our experiment.  

Given different patterns of weights of indentation-specific estimates of the first and the 

second stimulus, it might be assumed that there are different underlying mechanisms in 

information processing for these two stimuli. There is indeed an important difference - 

participants could compare the softness of both stimuli only when they explored the second 

stimulus. Deciding which stimulus is softer requires them to keep the perceived softness of the 
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first stimulus in memory while they explore the second stimulus. Romo, Hernández and Zainos 

(2004) studied the neural correlates of such perceptual decisions. Monkeys were trained to 

compare two vibrotactile stimuli with frequencies f1 and f2, which were sequentially presented to 

the fingertips, and to report which stimulus had higher frequency. The authors recorded single 

neurons in the ventral premotor cortex (VPC).  

The VPC receives input from the sensory areas and sends projections to motor areas 

(Godschalk, Lemon, Kuypers & Ronday, 1984; Matelli, Camarda, Glickstein & Rizzolatti, 1986; 

Luppino, Murata, Govoni & Matelli, 1999; Lu, Preston & Strick, 1994). Its neurons exhibit both 

sensory (Rizzolatti & Luppino, 2001; Graziano, Hu & Gross, 1997; Graziano, Reiss & Gross, 

1999) and motor (Gentilucci, Fogassi, Luppino, Matelli, Camarda & Rizzolatti, 1988) related 

response properties, and inactivation of VPC impairs sensorimotor tasks (Fogassi, Gallese, 

Buccino, Craighero, Fadiga & Rizzolatti, 2001). Therefore, the VPC is thought to likely be 

involved in the mechanisms that link sensory events with actions (Romo et al., 2004).  

Romo et al. (2004) found neurons in the VPC which encoded f2 and two other 

populations representing the decisions f1 < f2 and f1 > f2. Yet other neurons which the authors 

labeled "partially differential neurons", encoded f1 during the presentation of the first stimulus 

and were modulated by f2 afterwards. However, there were no neurons coding f1 during the 

presentation of the second stimulus. The question arose how the difference between the 

frequencies of the two stimuli was computed.  

On the basis of this work, Deco et al. (2010) suggested a synaptic mechanism to model 

the activity of the "partially differential neurons" and their role in decision making. They 

proposed that the memory of f1 is realized by short-term synaptic facilitation of the "partially 

differential neurons". The phenomenological model of short-term synaptic facilitation is based 
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on residual calcium accumulated during the firing of the cells increasing the probability of 

transmitter release (Mongillo, Barak & Tsodyks, 2008). This means that as long as f1 is 

presented, recurrent connections between the selective neurons are strengthened. When f2 is 

presented, the activity of these selective neurons depends on the synaptic history and on f2. Deco 

et al. (2010) proposed that the activity of these neurons might represent the sum of f1 and f2, 

from which the difference between f1 and f2 can be read out by comparing it with the activity of 

neurons representing f2. This difference might then be the input to a standard attractor based-

decision-making network comprising competing neuronal populations representing the decisions 

f1 < f2 and f1 > f2. 

Our observations on information processing in a comparison of haptic softness fit well 

with the model of perceptual decision making proposed by Deco et al. (2010). If we assume that 

for softness discrimination there are "partially differential neurons" in the VPC or an analogous 

area, they would encode the softness of the first stimulus c1 during its presentation. Our results 

suggest that in this case, the gathered information equally contributes to the overall percept. This 

might be implemented by e. g. computing the mean over the activity of neurons in lower areas, 

which show a tuning to certain softness values (possible model in Knudsen, Lac & Esterly, 1987; 

Metzger & Drewing, 2016). When the second stimulus with softness c2 is presented, the 

"partially differential neurons" would reflect the sum of c1 and c2 which would be compared to 

the activity of the neurons encoding c2. Since the short-term memory of c1 is implemented by 

synaptic properties of "partially differential neurons", it decays over time. Accordingly, the 

estimates from the indentations in the beginning of the exploration of the second stimulus would 

be weighted higher, because they can reliably be compared to the estimated softness of the first 

stimulus. Furthermore, also the observation that weights decreased less rapidly in a longer 
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exploration is consistent with the synaptic model of perceptual decisions. If the memory of c1 is 

implemented as calcium based synaptic facilitation of the "partially differential neurons", it could 

be expected that in a certain range, longer explorations facilitate the neurons more than shorter 

ones (Deco et al., 2010; Mongillo et al., 2008). Thus the decay of the memory of c1 after the 

exploration of the first stimulus is more rapid the shorter the exploration.  

Taken together, the model of perceptual decision making by Deco et al. (2010) can well 

explain the observed pattern of unequal weights during softness discrimination. We 

correspondingly suggest that our observation of sequential integration with unequal weighting 

leads back to the the decay of the representation of the softness of the first stimulus in memory, 

which is stronger the longer the stimulus is explored.  

3.5. General Discussion and Conclusions 

In the present study we showed that haptically perceived softness can be manipulated 

using subtle external forces. The value of perceived softness can be shifted to softer or to harder 

percepts by pushing or pulling forces. For the multi-segmented exploration of softness, we found 

that the redundant information is not being exploited according to the MLE model. Unequal 

weights of indentation-specific estimates of the second stimulus are most likely the reason for the 

lower reliability gain than predicted by the MLE. The results are well explained by a model of 

synaptic dynamics in a perceptual decision task (Deco et al., 2010), that attributes our findings to 

decay of the memory about the first stimulus during the discrimination task. Noise introduced by 

memory effects is considered neither in the MLE nor in the Kalman filter model. These models 

in their simplest form assume constant measurement noise (Eq. 1 and 3), which might change 

over time. However, in an extended Kalman filter model further assumptions on the sources of 
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noise e.g. memory decay could be included to model the integration of estimates of the second 

stimulus' softness. For this purpose it is necessary to determine the relevant factors influencing 

memory decay (e.g. does it progress with time or with acquisition of information about the 

second stimulus?). Our results further indicate that also decision making processes might be 

involved in this kind of information integration, so a combination of an information integration 

model (e.g. MLE/Kalman filter) with decision making demands might be required. Such model 

of the integration of serially sampled information might then represent a theoretically optimal 

integration in the sense of exploiting actually available information in a decision making task. 
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4. Active Haptic Exploration of Softness: Indentation Force is 

Systematically Related to Prediction, Sensation and Motivation 

A similar version of this manuscript is currently under review (after second revision):  

Lezkan, A., Metzger, A., & Drewing, K. (under review). Active haptic exploration of softness: 

indentation force is systematically related to prediction, sensation and motivation. Frontiers in 

Integrative Neuroscience. 

Active finger movements play a crucial role in natural haptic perception. For the 

perception of different haptic properties people use different well-chosen movement schemes 

(Lederman & Klatzky, 1987). The haptic property of softness is stereotypically judged by 

repeatedly pressing one‘s finger against an objects‘ surface, actively indenting the object. It has 

been shown that people adjust the peak indentation forces of their pressing movements to the 

expected stimulus‘ softness in order to improve perception (Kaim & Drewing, 2011). Here, we 

aim to clarify the mechanisms underlying such adjustments. We disentangle how people 

modulate executed peak indentation forces depending on predictive versus sensory signals to 

softness, and investigate the influence of the participants‘ motivational state on movement 

adjustments. In Experiment 1, participants performed a 2AFC softness discrimination task for 

stimulus pairs from one of four softness categories. We manipulated the predictability of the 

softness category. Either all stimuli of the same category were presented in a blocked fashion, 

which allowed predicting the softness category of the upcoming pair (predictive signals high), or 

stimuli from different categories were randomly intermixed, which made prediction impossible 

(predictive signals low). Sensory signals to softness category of the two stimuli in a pair are 

gathered during exploration. We contrasted the first indentation (sensory signals low) and last 
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indentation (sensory signals high) in order to examine the effect of sensory signals. The results 

demonstrate that participants systematically apply lower forces when softer objects (as compared 

to harder objects) are indicated by predictive signals. Notably, sensory signals seemed to be not 

as relevant as predictive signals. However, in Experiment 2, we manipulated participant 

motivation by introducing rewards for good performance, and showed that the use of sensory 

information for movement adjustments can be fostered by high motivation. Overall, the present 

study demonstrates that exploratory movements are adjusted to the actual perceptual situation 

and that in the process of fine-tuning, closed- and open-loop mechanisms interact, with varying 

contributions depending on the observer‘s motivation. 

4.1. Introduction 

Hand movements are a fundamental part of haptic perception. In a natural exploration 

process, haptic sensations are generated by active hand movements (Gibson, 1962). The way 

people naturally move their hands depends on what object property they are interested in 

(Lederman & Klatzky, 1987). Imagine two possible situations: First, you want to test how ripe a 

mango is. Second, you want to know whether a blouse is made out of silk. In order to explore in 

these two situations you would probably apply two fundamentally different movements. The 

ripeness of a mango is probably best judged by its softness. Softness is a central dimension in 

haptic perception (Bergman Tiest & Kappers, 2006) and refers to the subjective impression of 

how compressible and deformable an object is. In order to explore softness people typically 

perform a specific movement scheme: they apply a normal force to the surface with their fingers, 

indent the object (Lederman & Klatzky, 1987). This movement scheme is systematically used 

only for softness perception and not for the exploration of other object properties. However, 
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people do not only choose appropriate movement schemes, they also seem to adjust individual 

movement parameters to the perceptual situation. In the case of softness, it was found that higher 

peak forces were used for the first indentation when stimuli were expected to be hard as 

compared to soft (Kaim & Drewing, 2011). Here we aim to clarify the mechanisms underlying 

such fine-tuning. We study whether indentation forces are systematically adjusted to gradually 

varying softness values, and in particular, we investigate the contribution of predictive signals, 

sensory signals, and motivation to the fine-tuning of force over the course of a natural 

exploration.  

Previous research found that movement parameters are adjusted in haptic exploration for 

various tasks. Specific movement parameters, like force, velocity, or direction, matter for 

different tasks. Tanaka, Bergman Tiest, Kappers and Sano (2014), for instance, reported that 

participants vary their normal force, scanning velocity, and break times depending on the 

roughness of objects. Some other studies also described how movement adjustments may 

influence perception (e.g., Drewing, 2012; O‘Malley & Goldfarb, 2002; DiLuca, 2011). With 

regard to softness perception, it was reported that (especially for hard stimuli) higher indentation 

forces can improve softness discrimination (Srinivasan & LaMotte, 1995; Kaim & Drewing, 

2011). Kaim and Drewing (2011) described a corresponding fine-tuning of the peak force in the 

first indentation for a discrimination task. Two interesting results were reported. First, 

participants exerted a higher peak force in the first indentation in a trial, when they predicted that 

the stimulus pair would be hard in contrast to soft. Without predictions, no difference was found 

between the initial peak force used for hard and soft stimuli. Second, in an additional experiment 

participants were instructed to indent with either less or more force than they used 

spontaneously. When participants indented hard stimuli with less force, their ability to 
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discriminate them diminished, whereas more force did not improve discrimination performance. 

Taken together, this study suggests that people adjust indentation force based on predictive 

signals, and that these adjustments can improve softness perception. 

The reported indentation force adjustments were only analyzed for two categories of 

softness. Additionally, only the first indentation was investigated, and a role for sensory 

information in force adjustments was neglected. However, natural exploration goes far beyond 

the previously investigated first indentation. People tend to repeat movements, because a single 

touch seems not to generate sufficient sensory signals to reach a decision (Klatzky & Lederman, 

1999). This means that in natural exploration, sensory information about the stimulus is 

accumulated and may also be used for further movement control. Here, we aim to consider the 

entire process of softness exploration and the determinants of force adjustments over the course 

of the exploration. Therefore, we test whether indentation force adjustments occur not only based 

on prediction (predictive signals) but also based on sensation (sensory signals).  

When the entire exploration process was considered previously, exploration movements 

were reported to change systematically over the course of the exploration. Lederman and Klatzky 

(1990) showed a corresponding two-stage exploration in haptic object identification. First, 

participants applied general exploration procedures, like grasping and lifting, which allowed 

them to obtain some initial (yet imprecise) information about a variety of properties. Secondly, a 

specific exploratory procedure was used- typically one that was associated with a property that is 

highly informative for the explored object. Thus, people qualitatively adjusted their exploration 

behavior in the second stage based on previously gathered sensory information. Some studies 

also reported adjustments of individual movement parameters, for instance, of speed and force to 

an unpredictable surface curvature (Weiss & Flanders, 2011). Another example is the study of 
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Saig, Gordon, Assa, Arieli, and Ahissar (2012), in which the authors reported online adjustments 

of specific movement parameters for a localizing task with artificial whiskers. The authors 

showed that, rather than repeating the same movements all over again, movement parameters 

converged during the task to a steady state. Training on the task resulted in changes of the hand 

velocity, which was connected to better performance. This is to say, sensory signals gathered 

during the exploration led to adjustments of motor variables. Our study investigates whether in 

the natural exploration of softness a similar closed sensorimotor control loop is involved, in 

which − besides predictive signals − sensory signals also affect movement parameters

That is to say, we speculate that movement parameters are influenced by feedforward 

processes via predictive signals; and by feedback processes via sensory signals (cf. Wolpert, 

1997). Predictive signals are available before any interaction with the object and are, for 

instance, based on previous experiences or on vision. Sensory signals are gathered during the 

exploration. Therefore, later in the exploration process, more sensory signals are available 

(Lezkan & Drewing, 2018). We propose that the sensory signals from initial movements are 

taken into account as feedback and, thus, that they influence upcoming motor commands, which 

will generate further sensory signals until a decision on the to-be-judged property is reached (i.e., 

softness).Consequently, later in the exploration process, movements are assumed to be better 

tuned to fit object characteristics (here called ―online adjustments‖) based on sensory signals. 

This is similar to ideas of ‗Iterative Learning Control‘ incorporated in control theory, where 

repetitiveness is used for control optimization (Chen, Moore & Ahn, 2012). Note also that the 

acquisition of sensory signals may vary substantially, as people are able to decide how many 

movements they perform. The more exploratory movements are performed, the more sensory 

signals are generated, and the more reliable the sensation will be (e.g., Lezkan & Drewing, 2018; 



122 
 

Quick, 1974; Gescheider, Berryhill, Verrillo, & Bolanowski, 1999). Although additional 

exploratory movements can add sensory signals, they are also associated with additional 

movement costs. In consequence, there is a trade-off between benefits of additional movements 

(more reliable sensation) and their movement costs (effort). It has been suggested that the 

rewarding nature of the performed movement determines where the balance between movement 

costs, in terms of effort,  and benefits from additional movements, in terms of additional sensory 

signals, is found (Todorov & Jordan, 2002; Todorov, 2004). The rewarding nature of a task can 

be also rephrased as the motivation to perform the task (Beckmann & Heckhausen, 2006). So far 

most of the evidence for the fact that higher energetic effort is spent when the task motivation 

(i.e., its‘ rewarding nature) is higher comes from studies on eye movements (Schütz, 

Trommershäuser, & Gegenfurtner, 2012; Takikawa, Kawagoe, Itoh, Nakahara, & Hikosaka, 

2002; Xu-Wilson, Zee, & Shadmehr, 2009). We assume that in free haptic exploration, 

motivation influences the participant‘s effort, and thus the gathering and subsequent influence of 

sensory signals, in a similar way. Higher motivation should lead to the willingness to spent more 

effort in order to generate more sensory signals. Therefore, we suggest that increased motivation 

will lead to an increased impact of sensory signals. In particular, Experiment 1 investigates 

whether and in how far sensory and predictive signals lead to the adjustments of indentation 

force. Experiment 2 tests if effects of sensory signals are moderated by motivation. 

4.2. Experiment 1 

On every trial, two deformable silicone stimuli were discriminated according to their 

softness. Stimuli were defined by the physical correlate of softness, namely compliance, which is 

the relationship between a physical force applied to an object and the resulting deformation of 
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the object‘s surface. We used four different softness categories (‗soft‘ ~0.7 mm/N, ‗medium soft‘ 

~0.4 mm/N, ‗medium hard‘ ~0.2 mm/N or ‗hard‘ ~0.1 mm/N). Both stimuli of each pair were 

from the same softness category and differed only by 15-20% in their exact compliance.  

We studied the influences of predictive signals on movement control by manipulating the 

presentation order. Hence, within one experimental block, all stimulus pairs could either be from 

the same softness category, which implicitly induced prior knowledge of the softness category of 

the upcoming stimulus pair (predictive signals high) or from all four categories (predictive 

signals low). Extending Kaim and Drewing (2011), we used more than two categories of 

softness, and tested whether movement adjustments systematically follow the softness category. 

We expected systematic adjustments of force with respect to object softness: Peak forces should 

be systematically adjusted towards higher forces when it can be predicted that stimuli will be 

harder. Specifically, when subtracting peak forces based on low predictive signals from peak 

forces based on high predictive signals, we expected linearly increasing values with harder 

categories.  

We further investigated force adjustments based on sensory signals. We focused on the 

first (sensory signals low) and the last (sensory signals high) indentations during each trial, 

because those indentations represent the two extremes of the availability of sensory signals. We 

expected that indentation forces would be systematically adjusted between the first and the last 

indentation, which would correspond to the feedback influence of sensory signals (low vs. high 

sensory signals, respectively). Specifically, difference values, produced by subtracting peak 

forces based on low sensory signals from peak forces based on high sensory signals, should show 

a systematic increase for less soft categories.  

4.2.1. Material and Methods 
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4.2.1.1. Participants 

The sample consisted of one left-handed and fifteen right-handed participants (mean age: 

24.9 years, range: 19 – 33 years; 8 females). Participants from both experiments were naïve to 

the purpose of the experiment and were reimbursed for participating. All participants had no 

sensory or motor impairments or recent injuries of the right index finger, and had a two-point 

discrimination threshold of 2 mm or less for the right index finger. Methods and procedures of 

both experiments were approved by the local ethics committee LEK FB06 at Giessen University, 

which were in accordance with the ethical standards of the 2008 Declaration of Helsinki. 

Participants gave written informed consent.  

4.2.1.2. Apparatus and Stimuli 

Participants sat in front of a custom-made visuo-haptic workbench (Fig. 4.1), which 

comprised a PHANToM 1.5A haptic force feedback device, a force sensor (682 Hz, resolution: 

0.05 N), and a 22" computer screen (120 Hz, 1024 x 1280 pixels). A head and chin rest limited 

head movement. Participants saw the screen via stereo glasses and a mirror, which prevented 

them from seeing their hand or the stimuli. The right index finger was connected to the 

PHANToM via an adapter for the fingernail (Fig. 4.1). In order to make kinesthetic and tactile 

signals available, we used double-sided adhesive tape and an adapter, which left the finger pad 

bare. The PHANToM measured finger positions. The force sensor, consisting of a measuring 

beam (LCB 130) and a force amplifier (GSV-2AS) was placed below the stimuli. Custom 

software controlled the experiment, collected responses, and recorded force and position data at 

recording intervals of 3 ms. 
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Figure 4.1. Setup. Stimuli were visually represented on a monitor and seen through a mirror and 

stereo glasses. Rubber stimuli were placed on a force sensor next to each other. The right index 

finger was connected to the PHANToM via an adapter.  

Participants touched two real compliance stimuli placed side by side in front of them. We 

produced custom-made silicone rubber discs (diameter: 75 mm; height: 38 mm) by mixing a 

two-component silicone rubber mold material (Alpa Sil EH 10:1) with adjusted amounts of 

silicone oil (polydimethylsiloxane). The final stimulus set contained compliances between 0.12 

mm/N and 0.88 mm/N. Compliances were defined as the slope of the regression line, fitted to 

vertical surface displacement produced by a mechanical ‗standard finger‘ for forces between 0 

and 9 N. The ‗standard finger‘ was a flat–ended cylindrical probe (1 cm² area-- for details on 

compliance measurement, Kaim & Drewing 2011). Figure 4.2 shows deformation of a stimulus 

from the ‗soft‘ and the ‗hard‘ category for ‗standard finger‘ exploration with peaks up to 30 N, 

which is the average range of peak forces in natural exploration. As it can be seen in the figure, 

the deformation of stimuli from both extreme categories (‗soft‘ and ‗hard‘) does not saturate 

within this range, which excludes full compression as a possible discrimination clue. 
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Figure 4.2. Deformation behavior of example ‗soft‘ and ‗hard‘ stimuli with ‗standard finger‘ 

exploration up to 30 N. The curves for both categories that all stimuli in our range would not 

reach full compression for typical peak forces (Kaim & Drewing, 2011). 

 

Stimuli were grouped into four softness categories. Each category consisted of a standard 

stimulus and two comparison stimuli: ‗hard‘ (standard [s]: 0.14 mm/N, comparisons [c]: 0.12 

mm/N & 0.15 mm/N), ‗medium hard‘ (s: 0.21 mm/N, c: 0.18 mm/N & 0.24 mm/N), ‗medium 

soft‘ (s: 0.37 mm/N, c: 0.29 mm/N & 0.46 mm/N), or ‗soft‘ (s: 0.74 mm/N, c: 0.62 mm/N & 0.88 

mm/N). The compliance differences between the stimuli of a stimulus pair were at least three 

times smaller than compliance differences between stimuli of different categories. The 

comparisons of each compliance category were chosen to differ approximately by one JND (just 

noticeable difference) from the standard. The calculations were based on interpolations from 

Weber fractions for harder (21.2 %) and softer (13.5 %) stimuli reported in Kaim and Drewing 

(2011).  

Stimuli were displayed on the screen as three-dimensional (3D) cylindrical discs in a 

virtual 3D scene. Position and size of the ‗visual‘ stimuli corresponded to those of the real 

objects. Outside the stimulus area, the current finger position was visible as a sphere (8 mm 

diameter). No visual feedback about stimulus compliance was provided; the finger representation 

disappeared when the stimulus was touched (> 0.1 N force). 
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4.2.1.3. Design and Procedure 

In each trial, a stimulus pair, which comprised a standard and a comparison stimulus, was 

explored. We manipulated two within-participant variables: Softness Category of the stimulus 

pair (hard, medium hard, medium soft, soft) and Presentation Order (predictive signals high vs. 

low) of pairs within one block. For the manipulation of Presentation Order either all stimulus 

pairs of a block were taken from the same softness category (blocked condition: predictive 

signals high), or from all four categories (random condition: predictive signals low). In each 

block of the blocked condition, only the two pairs from the same softness category were 

presented. Therefore, a prediction of the softness category of the upcoming stimulus pair was 

possible (predictive signals high). In each block of the random condition, all eight stimulus pairs 

were presented. Therefore, no prediction of the softness category of the upcoming stimulus pair 

was possible (predictive signals low).We analyzed data from two Exploration Moments (first 

indentation: sensory signals low vs. last indentation: sensory signals high). 

The experiment consisted of four sessions. Each session comprised four blocks of 96 

trials (1536 trials in total) and was conducted on a different day. Per session, either only blocks 

from the blocked, or from the random condition, were presented. After balancing which stimulus 

was left (standard or comparison), each of the four combinations (stimulus pair × positioning) 

was randomly repeated 24 times in a block of the blocked condition. For the random blocks, we 

balanced the positioning of the standard, and made sure that each combination was repeated six 

times in a block. Additionally, we balanced between participants which condition they started 

with in the first session. In the following sessions, the two conditions alternated from session to 

session. The order of softness categories in a blocked session was counterbalanced across 
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participants according to a Latin square and stayed the same for the two blocked sessions of one 

participant.  

On each trial, participants performed a two alternative forced-choice (2AFC) 

discrimination task, judging which stimulus was softer. A cross indicated the center of the 

stimulus to be touched. Only the left or the right stimulus was presented on the screen before the 

first touch, which indicated which stimulus to explore first. Participants were free to perform as 

many indentations as they wanted, and to switch between left and right stimuli at any point in 

time. No immediate feedback about the correctness of the answer was given. However, at the end 

of each session, the percentage of correct trials was shown, so that participants would be 

motivated to perform equally well in all sessions.  

4.2.1.4. Data Analysis 

We analyzed the first and last indentations performed on the stimulus pair for each trial 

(Fig. 4.3). We focused on the peak indentation forces, which play an important role in softness 

perception (Srinivasan & LaMotte, 1995; Tan, Durlach, Beauregard & Srinivasan, 1995). Peak 

forces were defined as the forces for which the derivative of force over time changed from 

positive to negative. Force signals were previously smoothed by a moving-averaging window 

with a kernel of 45 ms. We restricted the time interval between two peaks to be at least 180 ms in 

order to exclude finger shaking or movement pauses. We calculated average individual peak 

forces for the first and last indentations per experimental condition (Presentation Order × 

Softness Category). To test for systematic effects, we used a linear contrast analysis of 

differences produced by predictive signals (predictive signals low vs. predictive signals high) as 

well as those produced by sensory signals (sensory signals low vs. sensory signals high). This is 
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to say, we calculated for each softness category the difference in peak forces between blocked 

and random sessions (effect of predictive signals) as well as between the first and last 

indentations (effect of sensory signals). Those difference values were tested in linear contrast 

analyses, in which the linear combination of mean values for softness category is tested against 

‗0‘. We expected that difference values produced by the effect sensory signals as well as those 

produced by the effect of sensory signals systematically increase for less soft categories. Because 

we have well-defined directed hypotheses about the linear contrasts for the effect of sensory 

signals and the effect of predictive signals, we used one-tailed tests. Two-tailed tests were used 

for all the other reported statistics. 

 

Figure 4.3. Example trial for exploration of one stimulus pair. As it can be seen, participants 

were free to indent the stimuli and switsch between the two stimuli of a pair, as often as they 

wished. The difference between the last first peak indentation force is the measure of the effect 

of sensory signals. 
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4.2.2. Results  

4.2.2.1. Task Performance and Number of Indentations 

On average, participant accuracy was approximately 92%. Individual values ranged 

between 81% and 98%. Performance was significantly higher when predictive signals were high 

(blocked condition: 93.2 %) than when predictive signals were low (random condition: 90.8 %), 

t(15) = 3.17, p = .006.This performance enhancement in the blocked condition as compared to 

the random condition was present independent whether participants started their first session 

with the random, t(7) = 2.47, p = .043, or the blocked condition, t(7) 3.63, p = .008. Additionally, 

in a between-participant comparison, the number of indentations was significantly correlated 

with discrimination performance (r = 0.62, p = .01). Hence, participants who explored the 

stimulus with more indentations had a better performance on average. Overall, participants 

performed 6.1 indentations per stimulus pair on average, which was more than the minimum of 2 

indentations that would have been necessary to do the task. The individual average ranged from 

2.5 to 14.1 indentations. The average number of indentations was not significantly different 

between the random (6.3) and the blocked (5.8) Presentation Order, t(15) = -1.33, p = .20.  

4.2.2.2. Peak Forces 

Average peak forces per experimental case are plotted in Fig. 4.4. On the upper left of 

this figure, the peak forces in the first indentation (low sensory signals) within the random 

condition (low predictive signals) are plotted, which constitutes the baseline, for which signals 

on softness category as much reduced as possible. Importantly and as should be the case, in this 

baseline, there is no systematic increase of peak forces for softer objects, t(15) = 1.64, p = .122 

(linear contrast analysis., two-tailed). Therefore, the difference values which we calculate in the 
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following indicate meaningful adjustments. In other words, higher difference values in indicate 

that higher absolute peak forces were used. First, we computed linear contrast analyses of the 

effects of predictive signals (differences in peak force between blocked/ high predictive signals 

and random/ low predictive signals condition, see Fig. 4.5a). For the linear contrast, the linear 

combination of mean values for each softness category was tested against ‗0‘ with a one-sided t-

test. As expected, there was a significant linear contrast over the Softness Categories for one-

sided testing, t(15) = 3.00, p = .005, indicating that participants strived to systematically use 

lower peak forces for softer objects and higher peak forces for harder objects, when softness 

could be predicted. We then calculated linear contrast analyses based on the effects of sensory 

signals (differences in peak force between last indentation/ high sensory signals and first 

indentation/ low sensory signals, see Fig. 4.5b). Here, the expected linear combination of mean 

values over the Softness Categories was not statistically significant and showed only a trend in 

the predicted direction, t(15) = 1.24, p = .088, one-sided. 

However, we performed an additional analysis of the movement adjustments based on 

sensory signals. Similarly to Saig et al. (2012), we calculated coefficients of variation in peak 

force (standard deviation normalized by the mean) for the first and the last indentation. In 

agreement with Saig et al. (2012), we found a significant decrease in the coefficient of variation, 

i.e. a convergence of movement parameters to steady values, when we compared peak forces in 

the first and the last indentations (t(15) = 1.94 p = 0.036, one-sided). That is, although there is 

only a trend for adjustment in peak forces based on sensory signals, the convergence to steady 

movement parameters might indicate that sensory signals had at least some effect on movement 

control.  
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Figure 4.4. Average peak indentation forces for each condition. Error bars are indicating within-

participant standard errors (Morey, 2008). 

 

4.2.3. Discussion Experiment 1 

We investigated the influence of predictive and sensory signals on the control of peak 

forces during softness exploration. We found systematic influences of predictive signals. 

Participants strived to systematically use lower peak forces for softer objects and higher peak 

forces for harder objects, when softness could be predicted. This result is in agreement with the 

existing literature on active movement control (e.g., Wing & Lederman, 1998; Johansson & 

Westling, 1988; Kaim & Drewing, 2011). Based on the finding that using higher peak forces for 

hard stimuli enhances discrimination performance (Kaim & Drewing, 2011), we can conclude 

that the observed movement adjustments optimize movements. We were additionally able to 

show that the effect of predictive signals is systematic in that it depends on the softness category 

in a linear fashion.  
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Figure 4.5. Differences in peak forces produced by (a) predictive or (b) sensory signals. (a) Peak 

force differences produced by predictive signals were calculated by subtracting values of the 

random (predictive signals low) conditions from values of the blocked (predictive signals high) 

conditions. The black line represents a linear contrast of peak force difference on softness 

category (hard; med. hard; med.soft; soft). (b) Peak force differences produced by sensory 

signals were calculated by subtracting values of the first indentation (sensory signals low) from 

the values of the last indentation (sensory signals high). Again, the black line represents a linear 

contrast on softness category. Error bars indicate within-participant standard errors (Morey, 

2008). 

 

The expected influence of sensory signals was not significant. In the present study, we 

observed only a tendency to use lower forces for softer objects based on sensory signals. The 

follow-up question is, how can we explain the finding that predictive signals had a clear 

influence on motor control, whereas the relevance of sensory signals was not evident? First, we 

can consider possible difference in the measurement of the effect of predictive and sensory 

signals. The effect of sensory signals was measured within one trial (last indentation vs. first 

indentation) while the effect of predictive signals was measured between sessions (blocked 
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condition vs. random condition). Potentially when comparing force measurements between 

separate sessions estimates of an effect are likely to be noisier than when comparing two force 

measurements within one trial of a session. However, this would predict a higher power to detect 

effects of sensory signals as compared to effects of predictive signals, whereas we found a 

significant effect of predictive but not sensory signals. Thus these methodological considerations 

cannot explain the difference between sensory and predictive signals. However, the literature on 

motor control might provide an explanation. The most prominent theory of motor control states 

that our motor system functions like an optimal controller. In the idea of an optimal controller it 

is suggested that the system uses all available signal sources, but weights those signals that are 

more reliable more heavily (e.g., Saunders & Knill, 2004). This is the same principle that 

theories of optimal signal integration describe for perception (Ernst & Banks, 2002). In order for 

one source of signals to show a major effect on movement control, it has to be sufficiently 

reliable to be weighted heavily in the computation. Consequently, it may be that in our 

experiment, the reliability of sensory information was not sufficient to warrant a significant 

effect on movement control. In active touch, sensory information gains reliability with extension 

of exploration; the more movements performed, the more sensory signals are generated, and the 

more reliable the sensory information overall will be (Lezkan & Drewing, 2018). Therefore, it 

seems possible that our participants did not explore with the necessary extension to generate 

sufficient sensory signals.  

The fact that people do not necessarily use a maximum number of movements for a task 

was previously explained in movement control literature (Todorov & Jordan, 2002; Todorov, 

2004) by the additional energetic effort every extra movement costs. It was suggested that 

movement costs (in terms of effort) are counterbalanced with the rewarding nature of the 
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performed movement. This means that higher energetic costs should only be spent if they 

increase the reward. Corroborating these notions, research from visual perception indicates that 

the expectation of reward impacts eye movements. When rewarded, saccades (especially longer 

saccades) had higher peak velocities and shorter latencies in monkeys and humans (Schütz, 

Trommershäuser, & Gegenfurtner, 2012; Takikawa, Kawagoe, Itoh, Nakahara, & Hikosaka, 

2002; Xu-Wilson, Zee, & Shadmehr, 2009). This is evidence for a link between higher energetic 

effort and expected reward in visual perception. We speculate that similarly our participants 

might not have gathered sufficient sensory signals because they were not expecting higher 

reward for high perceptual performance. In Experiment 2, we investigate the influence of 

motivational factors. In the present case, we refer to the rewarding value of a task as the 

motivation to perform it (Beckmann & Heckhausen, 2006). We investigate whether motivation 

influences the effort spent for exploration movements in haptic perception. In particular, we 

assume that high reward (yielding high motivation) increases the gathering of sensory signals 

and the online adjustment of movement. 

4.3. Experiment 2 

We manipulated motivation via the possibility to win money with each correct response 

in half of the experiment (motivation part) and pretending that the system does not work in the 

other half (demotivation part). Participants performed a 2AFC softness discrimination task 

among stimulus pairs from either the soft (0.61 - 0.73 mm/N) or the hard (0.15 - 0.16 mm/N) 

category. With higher motivation, we expected more pronounced adjustments of peak force 

based on sensory signals. Thus, motivation should moderate the effect of sensory signals on 

movement adjustments. Specifically, we expect a statistically significant linear contrast when 
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calculating the differences between the two motivation conditions in the effect of sensory signals 

(i.e., the peak force differences between the first and the last indentation) for each softness 

category. Please note, in the 2x2 design the expected linear contrast is equivalent to the 

interaction effect in a standard ANOVA. 

4.3.1. Material and Methods 

4.3.1.1. Participants 

Sixteen participants (10 female; mean age: 25.6 years, range: 20 – 32 years) entered in 

the final sample based on a successful manipulation of motivation. For fourteen other people, 

who filled in the questionnaire, we were not able to manipulate motivation as intended. The a-

priori defined inclusion criterion was that motivational values (i.e., the points achieved in the 

motivational questionnaire) in the motivational part were higher than motivational values in the 

demotivation part. Therefore, participants, who did not meet this criterion, were not part of the 

main analysis. Participants were compensated by 24-32€ (29€ on average). The compensation 

was calculated from a fixed value (12 €) for the demotivation part of the experiment, plus the 

monetary equivalent of the achieved points in the motivation part with a fixed bonus (in total 12-

20 €, 17 € on average).  

4.3.1.2. Apparatus and Stimuli 

The apparatus and setup were identical to Experiment 1. In each softness category, the 

standard was paired with one of two comparisons (‗soft‘: 0.61, 0.67, 0.73 mm/N; ‗hard‘: 0.152, 

0.156, 0.162 mm/N). Compliance differences of the two comparison and the standard were either 

easier or more difficult discriminate. We chose stimuli in adaptive piloting procedure (duration: 

30-45 minutes per participant). Thirteen participants (who were not part of either of the main 
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experiments) explored stimulus pairs of either both or one of the softness categories. We 

changed the stimuli of a pair across participants until at least two participants showed a 

performance of approximately 90% for one pair and 80% for the other pair of the same softness 

category.  

4.3.1.3. Design and Procedure 

Motivation (motivation vs. demotivation) and Softness category (hard vs. soft) were 

manipulated as within-participant variables. The manipulation of motivation restricted us to a 

single-session design. Given the single-session design we did not manipulate presentation order 

as a within-participant variable, because it was not the focus of this experiment to look for 

interactions of predictive signals with motivation. The presentation order was approximately 

balanced between the participants in the final sample (nine blocked, seven random), but not 

further analyzed, because this design does not provide sufficient statistical power for these 

analyses. As in Experiment 1, a 2AFC softness discrimination task was used. Visual cues were 

similar to Experiment 1, except for an additional screen to inform participants about gaining 

monetary rewards.  

The experiment consisted of one session with four blocks of 112 trials (448 trials in 

total), and breaks were given between blocks. The total experiment took about three hours. In 

each block, the eight stimulus pair combinations were repeated fourteen times. Stimulus pair 

combinations were defined by the compliances of the stimulus pair and the positioning (standard 

left vs. right). Two successive blocks constituted the motivation part and two other successive 

blocks constituted the demotivation part. We approximately balanced the order of conditions 

between the participants in the final sample (nine started with the motivation condition, seven 

started with the motivation condition). All participants were instructed to consider the 
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experiment as a game, in which they can gain points. Before the start of the exploration, a screen 

indicated how many points (50 or 100) could be gained with a correct response (randomly 

associated to half of the trials each). Whenever the participant accumulated 1000 points, an 

additional euro was gained. Thus, based on the pilot data, we estimated that participants accrued 

1€ every 18 trials. Visual and auditory feedback was given one to three trials after gaining an 

additional euro. This gaining rule was only true for half of the experiment (two subsequent 

blocks; motivation part). For the other half of the experiment, we pretended that the reward 

system stopped working and we had to reimburse participants with the conventional payment 

(demotivation part). We induced demotivation in this way, because a not working system implies 

that a reward will be expected but not given. Losing the expected reward should be weighted 

more than not being rewarded (cf. Kahnemann & Tversky, 1974; Crespi, 1942) and we wanted to 

maximize the difference between the two within-participant motivation conditions as much as 

possible. This ‗error‘ was presented by the system displaying a zero for the points in each trial. 

For participants who started with the demotivation part, we pretended that the only person able to 

fix this ‗error‘ was not reachable at first. However, after the first experimental part 

(demotivation), this person came back and was able to fix the ‗problem‘ so that the second half 

was conducted with the possibility to win money (motivational part). For the other half of 

participants, the experiment worked as instructed in the first half of the session. After the second 

break, the ‗error‘ appeared. Again, no one who could fix it was reachable and the second part of 

the experiment did not allow participants to gain points (demotivation). 

4.3.1.4. Motivational Questionnaire  

In order to ensure the manipulation, a motivational questionnaire was given to 

participants after each experimental half. The questionnaire was constructed by adapting two 
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questionnaires that access task motivation and adding four items that capture the social 

desirability bias (used for distraction and individual correction (cf. below)). The basis for the 

motivational questionnaire was the following two surveys: PMI (―Potsdamer 

Motivationsinventar‖, Rheinberg & Wendland, 2002), originally used to measure task-specific 

motivation values in a school environment, and the PANAVA scale (PA: positive activation, 

NA: negative activation, VA: valence) which measures one‘s mental state while performing a 

task (Schallberger, 2000).  

To measure social desirability, we chose four items from the German SDS-E scale of 

social desirability (items 7, 8, 17, 22; Lück & Timaeus, 2014), which would not stand out if 

added to the PMI scale. Our adapted PMI scale included all ten items from the original PMI, in 

which we only modified task-specific expressions, like ‗mathematical task‘ into ‗this task‘. The 

responses were given on Likert-type items, which could be rated from ―does apply‖ (1) to ―does 

not apply‖ (5). Two examples are: ―I wish I did not have to perform this task‖ and ―Performing 

this task has positive effects on my mood‖. The PANAVA scale asks how the participant felt 

―directly before starting a trial‖. Assessments were done on a seven-step scale between two 

adjectives, representing opposite poles of one dimension. Four items captured positive activation 

(awake vs. tired; full of energy vs. shiftless; energetic vs. inert; excited vs. bored); two items 

measured valence (happy vs. unhappy; satisfied vs. unsatisfied). These six items are positively 

related with motivation. The other four items measured negative activation (relaxed vs. stressed; 

good-humored vs. upset; calm vs. nervous; carefree vs. worried), which is negatively related to 

motivation. The questionnaires were rated after each experimental part (motivation vs. 

demotivation). For each item‘s response, the associated values were read out as points. For each 

questionnaire, a range between the minimum and maximum sum of points was defined (PMI: 
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min.10, max. 50; PANAVA: min.-22, max. 38, note: NA only contributes negative points) and 

transformed in percentages between the minimum (0%) and maximum (100%) sum of points. An 

uncorrected motivation score was calculated by averaging these two motivational values from 

the two scales for each experimental part. Additionally, to improve the validity, individual 

motivation scores were corrected by the social desirability score. As a corrected motivation 

score, we used the residuals of a linear regression of uncorrected motivation scores on social 

desirability, which is common practice in several scales as the MMPI (Lubin, 1957; Paulhus, 

1981). 

4.3.1.5. Data Analysis 

We estimated the exhibited energetic effort of the exploration in one trial by the sum of 

peak forces over all indentations performed in this trial. Additionally, we calculated individual 

peak forces per condition and the effects of sensory signals on peak force, as described in 

Experiment 1. Because we have directed hypotheses about the effect of motivation on the task 

performance, the energetic effort and the linear contrast produced by sensory signals we used 

one-tailed tests for these analyses.   

4.3.2. Results  

4.3.2.1. Questionnaire  

On average, participants in the final sample reported 39.5 % (SD = 12.5 %) from the 

maximal points they could achieve in the motivational questionnaire in the demotivation part and 

49.1 % (SD = 7.7 %) in the motivation part. This difference between the motivation conditions 

was statistically significant, t(15) = -4.89, p < .001. Additionally, differences in motivational 

values between the motivation conditions in the subgroup that started with the motivation 
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condition were not significantly different from the difference values in the other subgroup, t(14) 

= 1.61, p = .320.The data from participants, that we excluded based on the questionnaire are fully 

consistent with our hypothesis: As it is to expect from the not successful manipulation, their data 

showed no differences in performance, effort or movement adjustments between the conditions.  

4.3.2.2. Task Performance and Energetic Effort 

We calculated individual percentages of correct answers (Fig. 4.6a). We analyzed 

whether Motivation significantly increased performance with a one-sided t-test (after rationalized 

arcsine transformations of the individual proportional data). We found a significant effect of 

Motivation, t(15) = 4.43, p < .001 with 88.9 % (SD = 5.7 %) correct answers in the Motivation 

condition vs. 85.3 % (SD = 7.6 %) in the Demotivation condition. Further, values of energetic 

effort (Fig. 4.6b) were tested in the same way. As expected, we found a significant effect of 

Motivation in one-sided testing, t(15) = 2.06, p = .029. 

 

Figure 4.6. (a) Performance, as measured by the percentage of correct responses, plotted 

separately for motivation vs. demotivation and hard vs. soft softness category. (b) Estimate of 

effort per trial based on the sum of peak forces from all indentations of one trial. Error bars 

indicate within-participant standard errors (Morey, 2008). 
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4.3.2.3. Peak Forces and Motivational Effects on Adjustments to Sensory Signals 

Peak forces are plotted in Figure 4.7. As in Experiment 1, we calculated the difference 

between the first and the last peak forces in each trial in order to assess effects of sensory signals 

(Fig. 4.8). First we computed, the linear contrast analyses, of mean force difference values over 

the Softness Categories with a one-sided t-test. The linear contrast analyses over both Motivation 

conditions, which represents the overall adjustments to sensory signals, revealed a statistically 

significant effect, t(15) = 2.71, p = .016. More importantly, we calculated the linear contrast on 

the differences in mean values between the two Motivation conditions, which revealed a 

significant interaction between Motivation and the linear contrast on Softness Category in the 

one-sided test, t(15) = 2.25, p = .020. This result supports our hypothesis, that effects of sensory 

signals were higher in the motivation part. That is to say, peak force adjustments based on 

sensory signals were higher with higher motivation.  

 

 

Figure 4.7. Average peak indentation forces for each condition. Grey bars represent the 

demotivation part and black bars the motivation part. Error bars indicate within-participant 

standard errors (Morey, 2008). 
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Figure 4.8. Differences in peak forces produced by sensory signals. The peak force differences 

were calculated by subtracting values of the first indentation from the values of the last 

indentation. Error bars indicate within-participant standard errors (Morey, 2008). 

 

In order to test whether adjusted movements based on sensory signals were moderated by 

the experimental half, we performed the same analyses as previously but with experimental half 

(instead of motivation) as the moderator. Therefore, we calculated the linear combination of the 

differences in force difference values between the two experimental half and tested it with a two-

sided t-test against ‗0‘. The experimental half, was not a significant moderator of the effect of 

sensory signals, t(15) = 1.24, p = .235.  
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4.3.3. Discussion Experiment 2 

The motivational manipulation influenced the exploration process as expected: When 

motivated, participants adjusted movements based on sensory signals more profoundly as 

compared to when being demotivated. Additionally, participants spent more energetic effort for 

the exploration and performed better when motivated.  

Our participants started the experiment with either the motivation or the demotivation 

condition which we approximately counterbalanced (9 to 7). One could ask whether this slight 

disproportion in favor of the participants who started in the motivation condition might have 

caused the effect. That is to say, did the experimental half influence movement adjustment 

instead of the motivation condition? As we did not find a significant moderation of the effect of 

sensory signals by the experimental half, our results speak against the experimental half as a 

possible confound in our data set.   

An increase of the effect of sensory signals, as produced in the motivation condition, 

could be either due to the availability of more sensory signals or to a higher weighting of sensory 

signals in motor control. The present results show that participants not only improve motor 

adjustment, but also show better perceptual performance and generate more sensory signals 

when being motivated. Therefore, in our case, changes in online adjustment of movements are 

more parsimoniously explained by the acquisition of more sensory signals. Although, the 

acquisition of additional sensory signals seems to rule out the up-regulation as an alternative 

explanation in our experiment, previous literature has reported conditions under which sensory 

signals gain or lose influence on motor adjustment without any change in their availability (e.g., 

Jakobson and Goodale,1991; Knill, Bondada, & Chhabra, 2011). For instance, Knill et al. (2011) 
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demonstrated that, after a perturbation of the visual feedback, participants corrected their 

pointing movements more if the accuracy demands of the task were greater. 

4.4. General Discussion 

We investigated whether peak indentation forces are adjusted based on predictive or 

sensory signals to softness category, in natural exploration. Participants systematically used 

higher peak force for harder objects when they were informed about the softness by predictive. 

Interestingly, self-generated sensory signals in Experiment 1 had a less clear impact on 

movement adjustments (if any) than predictive signals. We reasoned this to be due to a lack of 

motivation to generate sufficient sensory signals. Thus in Experiment 2, we manipulated the 

motivation to do the task in order to modulate the effect of sensory signals. When participants 

were motivated, they adjusted their peak forces significantly to the sensed softness. We 

associated this with the generation of additional sensory signals, because participants also spent 

more energetic effort for exploration when motivated. This was additionally indicated by an 

improved perceptual performance. Taken together, this study provides evidence that softness 

exploration constitutes a closed sensorimotor loop, where prediction, sensation, and motivation 

are relevant determinants of movement control.  

In our experiments, we showed that when participants adjusted their peak force more 

precisely to the object they also generated more sensory signals. In previous work, we 

additionally showed that perception gets more precise with more generated sensory signals 

(Lezkan & Drewing, 2018; Metzger, Lezkan & Drewing, 2018). In sum, accumulating sensory 

signals seems to improve the precision of movement and perception. Therefore, we propose that 

in natural softness exploration, a strong links exist between sensory signals and following 
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movements. We believe that the softness estimates used for motor control are similar to softness 

estimates used for perception. However, there is a long-standing debate on whether sensory 

signals are used in the same manner when being processed for action versus for perception 

(Milner & Goodale, 1992; Smeets & Brenner, 2006). Interestingly, Leib, Karniel, and Nisky 

(2015) described for a task, similar to our own, a dissociation between the use of sensory signals 

for movement control and for perception. In their experiment, participants explored the stiffness 

of virtual elastic force fields using a tool. When the force feedback was delayed, participants 

underestimated the stiffness, meaning that perception did not discount the temporal delay. In 

contrast, their grip forces, with which they were holding the tool, were adjusted to the force 

feedback delay. However, in that study, not only the use of sensory signals differed between 

perception and action, but also the tasks for which the sensory signals were used: The motor task 

involved keeping a stable grip, while the perceptual task required estimating the stiffness of an 

object. Thus, the motor control required information about the time course of feedback force in 

order to program grip forces that warrant a stable grip. In contrast, for the perceptual task force 

feedback and position feedback had to be combined into an estimate of stiffness. Thus, the 

dissociation observed in Leib et al. (2015) might be caused by the differences between the 

perceptual and the motor task, rather than a differential use of the same signals (cf. Smeets & 

Brenner, 2006). In the present study, sensory signals have been used for the same basic task, 

namely to derive a softness estimate. Future experiments are required to test our assumption that 

softness estimates used in perception and for motor adjustment are indeed highly linked. 

Based on our observations, we can summarize several observations about movement 

control in natural exploration: Exploratory movements seem to be executed with the aim of 

enhancing performance. When possible, our motor system uses predictions to lower movement 
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costs. Additional exploration movements are performed when perceptual performance is not yet 

at the target level. However, this active sensory gathering is moderated by motivation. Thus, our 

results may be taken to suggest that the aim of motor control is to change the internal state to be 

more rewarding. This can happen internally by a better perceptual representation or externally by 

reward. If so, motivation could be understood as a driving mechanism in the motor control 

system. So far, this is rather a hypothesis which we derive from our results and which should be 

investigated in future.  

In our study we tried to systematically clarify the mechanisms underlying movement 

control for softness exploration. However, more research is needed in order to understand 

whether the described mechanisms can be generalized to other natural exploration behaviors. 

Understanding general mechanisms of movement control in natural exploration might also be 

useful to help in cases, when these mechanisms do not work. Several links between 

abnormalities in the sensorimotor mechanisms and psychological dysfunctions have been 

suggested. In a recent study, Mosconi, Mohanty, Greene, Cook, Vaillancourt, and Sweeney 

(2015) reported that patients with an autism spectrum disorder show impairments in feedforward 

as well as in feedback processes of sensorimotor control. Additionally, Shadmehr, de Xivry, Xu-

Wilson, and Shih (2010) discussed the relation between diseases of the reward system, such as 

Parkinson‘s disease or schizophrenia, and movement control. The authors suggest, similar to our 

conclusions, that rewards are driving motor signals and see these diseases in the context of a 

discounting of rewards, which can be achieved with motor commands. Our study offers a first 

step in understanding the role of motivation in motor control for natural exploration movements. 

Further systematic research about factors influencing motor control may not only help to 

understand natural exploration behavior, but also diseases of the movement system. 
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Apart from the investigated factors, which seem to be indispensable for a functioning 

motor control, our data allows to speculate which additional variables may influence motor 

control in natural softness exploration. One interesting observation is that participants did not use 

a fixed order of indentations for the two stimuli. In the last indentation before giving a response, 

participants touched disproportionally more often the stimulus, which they were about to choose 

(Experiment 1: 75.74%; Experiment 2: 72.68%). Similar behavior of fixating the object right 

before choosing it was also reported for vision (Krajbich Armel, & Rangel, 2010; Manohar & 

Husein, 2013). In the haptic modality, Mitsuda and Yoshioka (2015) described that participants 

tended to sample last the object they reported to be more preferable to the other object. This 

behavior could reflect attention or decision making processes. One possibility is that participants 

perform the last movement to reaffirm their choice based on the sensory signals gathered up to 

that point.  

Additionally, we observed an unexpected general effect of the exploration moment (last 

vs. first indentation) on peak forces. In the last indentation, peak forces increased in comparison 

to the first indentation (Experiment 1: t(15) = -3.81, p = .002; Experiment 2: t(15) = -3.99, p = 

.001). This increase happened gradually, given that it was also reflected in the middle 

indentation. One possible explanation is that through perceptual adaptation to force, the softness 

sensitivity diminished. Every indentation is associated with a force profile on the finger tip, 

which varies over time and space. The adaptation to pressure was one of the first characteristics 

described for mechanoreceptors (Nafe & Wagoner, 1941; Zigler, 1932; Johnson, 2001). 

Adaptations on a neural basis are reflected in changed perception (Cohen & Viereck, 1993). 

Consequently, repeated indenting within static contact with the object might lead to diminished 

neural responses, and thus, reduced sensation during softness exploration. On the other hand, 
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increases in contact force between finger and stimulus were previously observed to scale 

population responses upwards (Goodwin, Browning, &Wheat, 1995). Thus, increasing 

indentation force might be a way to counteract declining neural response due to adaptation. That 

is to say, increasing indentation force could be a reasonable strategy to counteract negative 

effects of such perceptual adaptation. However, this is mere speculation at this point and further 

research is needed. Taken together, we assume that although prediction, sensation, and 

motivation have a high impact on movement control in natural exploration, there are likely 

further impact factors, including bottom-up factors like adaptation, or top-down factors, like 

decision-making. In order to build a model of natural motor control, several of those factors have 

to be further investigated.  

4.5. Conclusion 

This study provides new and important insights in movement control within 

unconstrained haptic softness exploration. Participants applied systematically lower forces in the 

exploration of softer objects when the softness category was predictable, or previously 

experienced within the exploration of this stimulus. Based on this finding, softness exploration 

can be understood as a sensorimotor control loop containing a feedforward process based on 

predictive signals, and a feedback process, based on sensory signals. The roles of the 

feedforward and feedback processes seem to change during the exploration. While the existence 

of a feedforward process influences movement control during the entire exploration process, the 

feedback process gains importance as more sensory feedback is gathered over time. Our findings 

highlight the role of motivation as a moderator of feedback processes. Increased motivation led 

to an increase in motor adjustments based on sensory signals. Overall, such a system seems to 
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aim for the most effective way to perform a task. Movements are chosen as appropriately as 

possible at a given point in time. Energetic effort of the movements is kept low in order to 

achieve an aimed performance. 
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5. Interdependences between Finger Movement Direction and 

Haptic Perception of Oriented Textures 

A similar version of this manuscript is currently under review (after second revision): 

Lezkan, A,. & Drewing, K. (under review). Interdependences between finger movement direction 

and haptic perception of oriented textures. PLOS ONE. 

Although the natural haptic perception of textures includes active finger movements, it is 

unclear how closely perception and movements are linked. Here we investigated this question 

using oriented textures. Textures that are composed of periodically repeating grooves have a 

clear orientation defined by the grooves. The direction of finger movement relative to texture 

orientation determines the availability of temporal cues to the spatial period of the texture. These 

cues are absent during movements directed in line with texture orientation, whereas movements 

orthogonal to texture orientation maximize the temporal frequency of stimulation. This may 

optimize temporal cues. In Experiment 1 we tested whether texture perception gets more precise 

the more orthogonal the movement direction is to the texture. We systematically varied the 

movement direction within a 2-IFC spatial period discrimination task. As expected, perception 

was more precise (lower discrimination thresholds) when finger movements were directed closer 

towards the texture orthogonal as compared to in parallel to the texture. In Experiment 2 we 

investigated whether people adjust movement directions to the texture orthogonal in free 

exploration. We recorded movement directions during free exploration of standard and 

comparison gratings. The standard gratings were clearly oriented. The comparison gratings did 

not have a clear orientation defined by grooves. Participants adjusted movement directions to the 

texture orthogonal only for clearly oriented textures (standards). The adjustment to texture 
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orthogonal was present in the final movement but not in the first movement. This suggests that 

movement adjustment is based on sensory signals for texture orientation that were gathered over 

the course of exploration. In Experiment 3 we assessed whether the perception of texture 

orientation and movement adjustments are based on shared sensory signals. We determined 

perceptual thresholds for orientation discrimination and computed ‗movometric‘ thresholds from 

the stroke-by-stroke adjustment of movement direction. Perception and movements were 

influenced by a common factor, the spatial period, suggesting that the same sensory signals for 

texture orientation contribute to both. We conclude that people optimize texture perception by 

adjusting their movements in directions that maximize temporal cue frequency. Adjustments are 

performed on the basis of sensory signals that are also used for perception.  

5.1. Introduction 

Imagine entering a room with the lights turned off. In order to perceive the world around 

you with your sense of touch, you would probably move your hands and explore. The way you 

would move your hands will depend on the things you encounter. In other words, hand 

movements generate haptic sensations (Gibson, 1962) and exploratory movements depend on the 

object property of interest (Lederman & Klatzky, 1987). Recent studies described the mutual 

influence of movement and sensation in haptic perception of location, softness, and roughness 

(Saig, Gordon, Assa, Ariali, & Ahissar, 2012; Lezkan & Drewing, 2015; Tanaka, Bergman Tiest, 

& Kappers, 2014). Our study investigates the interaction between movement and sensation in 

natural exploration of oriented texture. In three experiments, we test whether people optimize the 

perception of oriented textures by adjusting the direction of exploratory movements based on 

sensory signals for texture orientation. Experiment 1 tests whether there is a systematic influence 
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of movement direction on the precision of perceiving the spatial period of oriented textures. 

Experiments 2 and 3 investigate whether sensory signals for texture orientation influence the 

control of movement directions, first by studying whether movement direction is adjusted to the 

orientation of the explored texture (Experiment 2), and then by investigating whether sensory 

signals that underlie the perception of texture orientation are also used in the adjustment of 

movement direction (Experiment 3).  

Texture perception by touch is multidimensional and people can describe multiple facets 

of a surface texture including roughness, coarseness, jaggedness, spatial element density, or 

configuration (Lederman, Thorne, & Jones, 1986). However, texture perception has often been 

investigated using rather simple textures such as periodic grooved gratings, which can be defined 

by their spatial period (e.g., Sathian, 1989), and most researchers have asked for roughness 

judgments (e.g., Cascio & Sathian, 2001; Lederman & Taylor, 1972; Drewing, 2016). However, 

several others also asked for a more direct spatial period judgment (e.g., Morley, Goodwin, & 

Darian-Smith, 1983; Gamzu & Ahissar, 2001; Nefs, Kappers, & Koenderink, 2002; Zhang, 

Mariola, Stilla, Stoesz, Mao, Hu & Sathian, 2005). Results from both tasks suggest that haptic 

perception of such aspects of the structure of textures is based on spatial and temporal cues 

(Gamzu & Ahissar, 2001; Weber, Saal, Lieber, Cheng, Manfredi, Dammann, & Bensmaia, 

2013). Spatial cues are the kind of information we can get from skin deformation after pressing a 

textured surface against the skin without permitting lateral movement (e.g., Hollins & Risner, 

2000). The neural coding of spatial cues, as shown in roughness perception, is strongly based on 

the spatial pattern of activation of the slowly adapting afferents (SA1; Weber et al., 2013). 

Temporal cues arise from movement over a textured surface and refer to the changes of signals 

over time, i.e. vibrations (e.g., Klatzky & Lederman, 1999). Those vibrations are mainly coded 
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by rapidly adapting (RA) and Pacinian (PC) afferents, as also shown in the perception of 

roughness (Weber et al., 2013). Although, in natural situations, textures are typically explored 

with lateral movements (Lederman & Klatzky, 1987), it has been previously discussed how 

much movements can actually enhance perceptual precision (at least for certain kind of textures; 

Lederman, 1974; Johnson & Hsiao, 1994). For fine textures, movements seem to be crucial; 

roughness discrimination was reported to be seriously impaired without the temporal cues 

produced by movements (Hollins, Bensmaia, & Roy, 2002). In contrast, the roughness of coarse 

textures was reported to be highly distinguishable by static touch alone (Hollins & Risner, 2000). 

Nevertheless, there is evidence that even for coarse textures, as well as for most natural surfaces, 

spatial cues are combined with temporal cues (Cascio & Sathian, 2001; Weber et al., 2013). 

Gamzu and Ahissar (2001) demonstrated the advantage of temporal cues. For their frequency 

(=1/spatial period) discrimination task, poor haptic performers were able to improve by changing 

movement velocity as a strategy, which accentuated temporal cues. Similarly, Lamb (1983) 

showed that when exploration generates temporal cues, the precision of texture perception can be 

increased. In his study, textures, which incorporated stripes of raised dots, were passively moved 

against the participant‘s finger. The spacing between stripes was either modified perpendicular to 

the movement track or along the movement track. After the sequential presentation of two 

textures, participants reported in which of the two textures the spacing between stripes was 

modified. Performance was better for manipulations along the movement track than 

perpendicular to it. This can be attributed to the added temporal cues in the case of variations 

along the movement track. These two reported studies indicate that not only movements (or the 

lack of them) but also the specific movement parameters matter. More precisely, the study of 

Gamzu and Ahissar describes an influence of movement velocity on perception and Lamb‘s 
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study describes an influence of direction of passive movement between the skin and the surface. 

For oriented textures, movement direction is systematically linked to temporal cue frequency. 

Therefore, if temporal cues matter in active touch, movement direction should impact the 

perception of the spatial period of the texture. To our knowledge, however, there exists no study 

that investigated the influence of movement direction in active touch on perceptual precision and 

did so by systematically varying movement direction.  

Assuming that there is one movement direction that leads to the best perceptual precision, 

it can be referred to as the optimal movement direction. But do humans utilize this optimal 

movement direction in free exploration? Freely chosen movements used in active exploration 

were suggested to aim for maximization of sensory information gain (e.g., Najemnik & Geisler, 

2005; Klatzky & Lederman, 1999). As a matter of fact, in visual research, the orientation of 

depicted textures was found to influence eye movement direction (Wexler & Ouarti, 2008; 

Wismeijer, Erkelens, van Ee, & Wexler, 2010; Wismeijer & Gegenfurtner, 2012). For haptic 

softness and shape perception, it has been demonstrated that participants enhance the precision of 

perception through motor control (Kaim & Drewing, 2011; Drewing, 2012). For roughness 

perception, Tanaka, Bergman Tiest, Kappers, and Sano (2014) observed that participants adjust 

normal force, scanning velocity, and break times in ways that seem effective for different tasks 

and explored stimuli. Along these lines, Nefs, Kappers and Koenderink (2002) reported that 

applied contact force increased with line frequency of gratings and suggested that this might 

have improved perception in the task. However, these two studies on texture perception have not 

assessed whether movement adjustments actually optimize perceptual precision, neither did they 

investigate movement direction.  
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The objective of the current study is to investigate the interdependence between sensation 

and movements in the perception of texture spatial period. Our hypothesis is that humans adjust 

their movement direction when exploring oriented textures in order to optimize perceptual 

performance, and that they do so based on sensory signals for texture orientation. Our textures 

are defined by periodic parallel grooves; they are orientated by the groove orientation. For these 

oriented textures, movement direction and temporal cues are systematically linked. Finger 

movements in the direction of the texture orientation do not produce temporal cues to the spatial 

period of the texture. Finger movements directed orthogonally to the texture orientation produce 

temporal cues with maximal frequency. The more movement directions are shifted from the 

texture orthogonal (i.e., the direction along which a grating modulates), the lower is the temporal 

frequency of stimulation. Therefore, the temporal frequency also differs less between textures 

with different spatial frequencies, which probably yields less precise estimates of spatial 

frequency. By prescribing the movement direction on oriented textures, Experiment 1 

systematically investigates the impact of movement direction on the perception of spatial period 

of textures. We expect that perceptual precision is enhanced when movements are directed 

orthogonally to the texture. Experiments 2 and 3 test whether participants use sensory signals for 

texture orientation in order to optimize movement directions.  

In Experiment 2, we investigate adjustments of movement direction over different strokes 

of the exploration process. Any adjustment of movement direction can only be based on the 

sensory signals gathered during the exploration process, when no prior knowledge is given. 

Thus, movement direction will only be adjusted after sufficient sensory signals for texture 

orientation are available. The integration of sensory signals can extend over several movements 

(Henriques & Soechting, 2005), and, because sensory signals are accumulated haptic perception 
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becomes more precise with extended exploration (Lezkan & Drewing, 2018). Hence, we expect 

that only in the late strokes, at the end of natural exploration movement, are directions adjusted 

to optimize temporal cues (i.e., towards the texture orthogonal). Note that a previous analysis of 

part of the data of Experiment 2 has been pre-published in a conference paper (Lezkan & 

Drewing, 2016). However, here a considerably improved analysis of movement data has been 

used, so that the present results have not been previously published. 

 In Experiment 3, we investigate whether adjustments of movement direction and the 

perception of texture orientation rely on a common basis, namely shared sensory signals for 

texture orientation. In vision, numerous studies have investigated how far underlying sensory 

signals are shared by eye movement control and perception. These studies compared perceptual 

precision to eye movement precision as derived from psychophysical and ‗oculometric‘ 

functions, respectively (e.g., Watamaniuk, & Heinen, 1999; Stone & Krauzlis, 2003; 

Gegenfurtner, Xing, Scott, & Hawken, 2003). Here, we construct ‗movometric‘ functions based 

on the exploratory behavior, which allow for the direct comparison between the precision of 

motor adjustments and the perception of texture orientation. We expect that the precision of 

perception and movement vary with the same factor, namely texture period. 

5.2. Experiment 1 

Experiment 1 investigates the impact of movement direction on the perception of texture 

period. Haptic texture stimuli were 3D printed (Stratasys Objet 30 Pro). All gratings were 

cylindrical discs with a groove pattern following a sine-wave function on top of the surface. 

Participants stroked once over each of two gratings in a pair and judged which one had a higher 

spatial frequency (=1/spatial period). We used a PHANToM force-feedback device to restrict 
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finger movements to specific directions by defining exploration tunnels (orientation: 0°, 30°, or 

60°). The movement direction relative to the texture orthogonal was manipulated (0° vs. 45° vs. 

90° shifted from the texture orthogonal). The orientation of the textures relative to the body was 

varied systematically depending on the exploration tunnel orientation and the movement 

direction relative to the texture orthogonal. For each of the relative movement directions we 

measured the just noticeable difference (JND) of the textures‘ spatial period. Based on the 

decreasing availability of temporal cues, we predict a systematic increase in JNDs (i.e., 

discrimination thresholds assessing perceptual precision) with higher shifts from orthogonal 

movement direction. 

5.2.1. Methods and Materials 

5.2.1.1. Participants  

The sample was composed of sixteen right-handed participants aged 19 - 29 years (11 

females). All participants were naïve to the purpose of the experiment and were paid for 

participating. Nobody reported recent injuries of the right index finger or sensory or motor 

impairments. All had a two-point discrimination threshold of 3 mm or lower at the finger pad of 

the right index finger. In all three experiments, the reported methods and procedures were 

approved by the local ethics committee (LEK) of FB 06 at Giessen University (approval number: 

2013-0021). Participants gave written informed consent. The study was conducted in accordance 

with the ethical standards laid down in the 2008 Declaration of Helsinki. 

5.2.1.2. Apparatus and Stimuli 

Participants sat in front of a visuo-haptic setup (see Fig. 5.1). The setup contained a 

PHANToM 1.5A haptic force feedback device, force sensor (682 Hz, resolution: 0.05 N) and a 

22"-computer screen (120 Hz, 1024 x 1280 pixel). Circular grating stimuli were presented next 
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to each other placed on the force sensor, which measured the finger force applied to the stimuli. 

Participants looked on the computer screen through stereo glasses and a mirror (40 cm viewing 

distance in total). Due to this mirror, participants were not able to see the real stimuli or their 

hand. Additionally, the setup allowed for a spatial alignment of the 3D-visual representation with 

the haptic display. In the virtual 3D-scene stimuli were displayed as three dimensional 

cylindrical discs with a border. This visual representation did not present the texture pattern or its 

orientation. The participant‘s finger position was visible as a small sphere (8 mm diameter) when 

moving outside the stimulus area. We connected the right index finger to the PHANToM via an 

adapter, which was attached by double-faced adhesive tape to the nail. This setup allowed for 

free finger movements having all six degrees of freedom in a 38 x 27 x 20 cm³ workspace. 

However, here we used the PHANToM device to restrict finger movements to follow a 

predefined direction within the exploration tunnel and to measure finger position. Exploration 

tunnels were defined by a 16 mm wide path across the texture‘s surface, where the PHANToM 

device displayed no force. Outside this exploration tunnel, forces F (in N) were presented that 

drove the finger back to the exploration tunnel, and increased by a square function with the 

finger‘s distance D (in mm) to the tunnel‘s border (𝐹 =  2 𝐷² 441  mm²/N). The exploration 

tunnel was displayed by a cuboid on top of the stimulus in the 3D-visual representation. In order 

to provide stable 3D vision, the participants head was stabilized by a chinrest. Custom-made 

software controlled the experiment, collected responses, and recorded the data from the force 

sensor and the PHANToM with recording intervals of 3 ms. We used headphones and ear plugs 

to mask sounds from haptic exploration.  

 

 



160 
 

 
Figure 5.1. Sketch of setup and stimulus. Stimulus location, shape and the exploration tunnel 

contour were visually represented on a monitor and were seen through a mirror and stereo 

glasses. The participant‘s right index finger was connected to the PHANToM via an adapter. The 

PHANToM measured the finger position and restricted the movement to a predefined 

exploration tunnel. Both real grating stimuli were placed in the same orientation next to each 

other on a force sensor. 

Haptic gratings were created with the OpenSCAD software and 3D printing. The 3D 

printer (Objet 30 Pro, Stratasys Ltd., United States) builds drop-wise arbitrary 3D objects from 

3D digital data (photopolymer material: VeroClear; build resolution: 600 x 600 x 1600 dpi (x-, y-

, z-axis). The grating discs were 4 mm high (z-axis) with a texture diameter of 90.7 mm (total 

diameter with border: 100.7 mm). A grip (10 x 5 mm) indicated the texture orientation for the 

experimenter (Fig. 5.1). The height of the texture z followed a sine-wave function with the peak 

amplitude (A) of 0.3 mm (see Equation 1). The advantage of sine-wave stimuli is that they 

consist of only one spatial frequency component (Loomis & Lederman, 1986). The standard 

stimulus had a period (P) of 1.78 mm. We created 25 comparison gratings with periods between 

1.14 and 2.79 mm, with an approximate step size of 0.016*log (P). The spatial period of grooves 

was chosen so that they would be big enough to fall in the range of macrostructures (≥ 1mm) and 
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small enough to lie in the range where manipulations of spatial period are in a monotonic 

relationship to perceived roughness (≤ 3 mm; Klatzky, Lederman, Hamilton, Grindley & 

Swendsen, 2003; Drewing, 2016).  
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5.2.1.3. Design and Procedure 

Participants explored a stimulus pair consisting of one standard and one comparison 

stimulus in each trial. They judged which of the two had a higher spatial frequency, as this is 

more intuitive to judge than the spatial period. We explained spatial frequency as the number of 

experienced (i.e., felt) grooves over a certain distance. Note that textures included 40-80 ridges 

that were typically explored within less than a second (movement speed ~ 10 cm/s); therefore, 

counting of individual ridges is likely impossible. Stimuli with a longer period have lower spatial 

frequencies. We randomized which of the two stimuli was presented on the left side. During each 

trial, both stimuli of the stimulus pair were placed in the same orientation (example for one 

stimulus in Fig. 5.1). The orientation of the stimulus pair was determined by a) the variable 

orientation of the exploration tunnel which was randomly chosen to be 0°, 30°, or 60°, and b) the 

presented level of the within-participant variable shift of movement direction from the texture 

orthogonal (0° vs. 45° vs. 90°). We measured just noticeable differences (JNDs) in terms of the 

discrimination of spatial period as a function of movement direction shift from the texture 

orthogonal. The lower the JNDs the better discrimination performance, that is to say the higher 

the perceptual precision. JNDs were assessed by the 75% discrimination threshold using the Best 

PEST adaptive staircase procedure (Lieberman & Pentland, 1982) combined with the two-

interval forced-choice task. In this method, the next comparison stimulus is chosen by an 
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algorithm, which takes in to account previous responses for this condition. More precisely, the 

algorithm chooses the comparison with the maximum likelihood of being the threshold. In this 

way, the information gain in each step is maximized, which makes this method optimal in order 

to fasten threshold determination. The procedure came to an end after 45 trials per staircase. The 

final maximum-likelihood estimate in each staircase estimated the JND. For each condition, one 

upper and one lower staircase were implemented starting with the 2.79 and 1.14 mm, 

respectively. The trials from all 6 staircases were randomly interleaved. In order to practice the 

task and the movement restrictions through the exploration tunnel, participants performed 4 trials 

of each staircase prior to the experiment. 

At the beginning of each trial a blank three dimensional cylindrical disc with a border 

indicated the location of the first stimulus (randomly assigned to the left and the right stimulus of 

the stimulus pair). Additionally, a cuboid on top of the stimulus displayed the exploration tunnel 

(orientation: 0°, 30°, or 60°). A dot, which was randomly assigned to be either on the left end 

(0°, 30°, or 60°) or the right end (180°, 210°, or 240°) of the exploration tunnel, indicated on 

which point the exploration should start. The visualization served to guide the participant 

through the trial without giving any information about textural structure or texture orientation. 

Participants were instructed to move from one point on the stimulus border to another through 

this ‗tunnel‘ and they couldn‘t see their hands moving during this time. After the participant 

stroke once over the texture within the exploration tunnel, the visualization of the second 

stimulus appeared. Exploration tunnel, shift from orthogonal, and starting point were identical 

for both stimuli of a pair. After one stroke over each stimulus, participants decided which of the 

two textures had a higher spatial frequency by pressing virtual buttons rendered by the 

PHANToM. 
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5.2.1.4. Data Analyses 

The data for each participant consisted of upper and lower JNDs for each of the three 

movement direction shifts from the texture orthogonal. In order to calculate JNDs for each 

movement direction shift, we averaged the corresponding upper and lower JND estimates. These 

values were entered into an ANOVA with the within-participant variable, Direction Shift of 

movement from the texture orthogonal (0° vs. 45° vs. 90°). We tested our hypothesis of a 

systematic monotonic increase in JNDs with higher Direction Shift by performing a linear 

contrast analysis on the direction-specific JNDs. Further, we calculated planned paired one-sided 

t-tests to analyze whether the contrasts between individual conditions reflect the increase in 

JNDs with higher Directional Shift. 

Additionally, in order to check for the manipulation of the exploration tunnel, we 

analyzed the exploratory movement data. We extracted the direction of one stroke over each 

stimulus within each trial and averaged over the two strokes of a trial. Strokes were analyzed 

from exploratory parts of the movement, when the finger was touching the stimulus area with at 

least 0.1N of force for at least 200 msec. We detected strokes as continuous movements either 

from one texture border to another or between two movement turns, which we extracted by zero 

crossings in the 1st order derivatives of the x- or y-position over time. Stroke detection 

algorithms were considerably improved in comparison to a previous conference article on Exp. 2 

(Lezkan & Drewig, 2016), as follows: First, in order to exclude that curved movements will be 

detected as movement turns, we only included those zero crossings for which the 1st order 

derivative changed by more than 0.01 rad. Second, we increased the precision of measuring 

movement endpoints: In case the z-position of a movement turn was an outlier based on the 

exploratory part of the movements for this trial, stroke endpoints were defined as the closest 
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positions within the 95%-confidence interval of z-positions. In case several strokes over one 

stimulus were detected by the algorithm (which might occur due to movement pause or slip) we 

analyzed only the stroke with the longest duration. We included only trials in this analysis for 

which we were able to extract strokes from the movement data for both stimuli of a trial (94%). 

5.2.2. Results  

5.2.2.1. Movement Data 

We plotted the movement directions from all participants and all trials in a circular 

histogram (see Fig. 5.2). The different colors represent trials with different exploration tunnels. 

As can be seen from the graph, movements followed the aimed direction with little spread. 

 

Figure 5.2. Movement directions. Circular histogram (bin size 3°) of all trials and participants 

for different exploration tunnels. Movement direction for trials with the exploration tunnel of 0° 

are plotted in dark gray, light grey stands for the 30°, and black for the 60° exploration tunnel. 

The numbers indicate the proportion of strokes in a certain direction. 
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5.2.2.2. JNDs 

Individual JNDs were entered into the ANOVA with the within participant variable 

Direction Shift from the texture orthogonal (0°, 45°, and 90°; depicted in Fig 5.3). The main 

effect of Direction Shift was significant, F(2,30) = 5.513, p = .009. The linear contrast analysis 

revealed a significant linear increase in the JNDs with larger Direction Shift, F(1,15) = 8.758, p 

= .005. As expected, JNDs were higher with larger Direction Shifts from the texture orthogonal. 

In addition, our directional a-priori hypothesis allowed for a secondary analysis through one-

sided t-tests between individual conditions (Bonferroni-corrected alpha levels at 0.017). The 

JNDs were significantly higher for the 90° condition than for the 0° condition, t(15) = 2.959, p 

=.005. The JNDs in the 45° condition were not significantly higher than the JNDs in the 0° 

condition, t(15) = -.690, p = .256. They were also not significantly lower than the 90° condition, 

t(15) = 2.219, p = .021, but showed a trend. We conducted a sensitivity analyses with G*Power 3 

(Faul, Erdfelder, Lang, &Buchner, 2007). The power of finding an effect of 0.15 mm (8.5 % 

Weber fraction difference) or more was at least 96% for the Bonferroni-corrected one-sided t-

tests (standard deviation assessed as 0.143 mm by the average standard deviation of the 

differences between all conditions). However, 0.15 mm is a rather large effect, comparable to 

difference for moving and stationary roughness discrimination in fine textures (Hollins& Risner, 

2000). It is reasonable to expect such large effect sizes for the comparison between the extreme 

conditions of directional shift 0° (maximal temporal cues) and 90° (no temporal cues). The 

middle condition should vary by less, which is why the associated t-tests might not have had 

sufficient power to detect an effect.  
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Figure 5.3. Average JNDs for the 3 conditions of movement direction shift from the texture 

orthogonal. Error bars are indicating within-participant standard errors (Loftus & Masson, 1994). 

 

5.2.3. Discussion Experiment 1 

In overall analysis participants were better in discriminating the spatial period of the 

texture as they moved more orthogonal to the texture. Although not all individual comparisons 

were able to confirm the effect, moving orthogonally or obliquely to the texture was or tended to 

be better than moving in line with the texture. The results are consistent with the prediction of a 

systematic monotonic increase in perceptual precision with movement directions closer to 

texture orthogonal, which we had made from the systematic increase of the temporal frequency 

of signals. A higher temporal frequency of signals likely allows for a better differentiation of 

textures based on temporal cues. Thus, our results support the idea that movement direction can 
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influence perceptual precision, and that different movement directions come along with 

differently useful sensory signals for texture period.  

In Experiment 1, we were interested in the effect of movement direction relatively to the 

texture orientation. However, one might wonder whether the absolute direction of the movement 

might also have affected texture perception. Such effects of the absolute movement direction 

were previously described for other tasks, such as shape perception (Drewing, 2012). In order to 

test whether the absolute movement direction might have additionally influenced the spatial 

period judgments, we reanalyzed the staircase data by fitting psychometric functions for all trials 

with absolute movement direction (i.e. the same exploration tunnel). Neither the points of 

subjective equality (PSEs), F(2,30) = 1.447, p = .251, nor the just noticeable differences (JNDs), 

F(2,30) = . 891, p = .421, were significantly affected by the absolute direction of the movement. 

That is, in contrast to the results for relative movement direction we did not find evidence that 

also absolute movement direction considerably influenced perceptual precision nor did the 

different motion angles introduce a noteworthy bias in the perceived spatial period. 

In optimal exploration, the systematic relationship between the movement direction 

relative to texture orientation and precision of perception should be exploited (Najemnik & 

Geisler, 2005; Klatzky & Lederman, 1999; Kaim & Drewing, 2011). Some studies demonstrated 

that exploration movements are adjusted based on previously accumulated sensory signals - for 

different movement parameters during a haptic localization task (Saig et al., 2012), and for finger 

force during softness perception of differently compliant objects (Lezkan & Drewing, 2015). In 

order to test for similar mechanisms in texture perception we designed Experiment 2, in which 

we measure the freely chosen movement direction for texture exploration. We expect to find 
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results complementary to Experiment 1, that is, that sensory signals for texture orientation 

influence movement direction.  

5.3. Experiment 2 

In Experiment 2, we investigate movement direction in different strokes of the 

exploration process. We expect that movement directions are adjusted over time when doing so 

can improve perceptual performance, but not when there is hardly an effect of movement 

direction on perception. In order to test this assumption, we created two kinds of stimuli, again 

using 3D printing. The first type of stimuli, standard gratings, was composed of a groove pattern 

following the sine-wave function along one dimension, like the stimuli of Experiment 1 (periods 

1.27 and 1.44 mm; Fig. 5.4). The texture pattern of the second type of stimuli, comparison 

gratings, was composed of the intersections of two orthogonal sine-wave function patterns 

(periods: 1.02 to 1.69 mm). Thus, standards have one clear orientation, and a systematic 

relationship between movement direction and temporal frequency of stimulation exists: We state 

that for the standards, finger movements in the direction of the texture orientation generate no 

temporal cues to the texture period. In contrast, orthogonal movements generate optimal 

temporal cues by maximizing the temporal frequency of cues and, therefore, also maximizing the 

differences in temporal cues from different textures. For comparisons, in contrast to standards, 

there is not a single direction which maximizes the temporal frequency of stimulation. 

Movements in two orthogonal directions (0° and 90°) over comparisons provide similar temporal 

cues to spatial period. Participants explored one standard and one comparison stimulus grating in 

a trial and reported which of the two had a higher spatial-frequency. We manipulated the 

orientation of the stimuli in each trial, and measured movement direction for individual strokes. 
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Participants were free to use as many strokes as they wanted. We predicted that, movements over 

the standard will be preferentially directed orthogonally to the texture orientation after sufficient 

sensory signals for orientation have been gathered. In contrast, we did not expect corresponding 

adjustments for the comparisons. The basic methods and a work-in-progress analysis of the raw 

data from the current Experiment 2 were presented in a conference paper (Lezkan & Drewing, 

2016). For the sake of readability, we repeat the experimental methods in the present study. 

Importantly, however, the presented results are novel because raw movement data were entirely 

reanalyzed using improved algorithms (as described for Experiment 1). 

5.3.1. Methods and Materials 

5.3.1.1. Participants 

Thirteen right-handed healthy participants (age range: 19 – 32 years; 7 females; two-point 

discrimination threshold 3 mm or lower) were paid for participating. Participants were naïve to 

the purpose of the experiment and had not participated in Experiment 1.  

5.3.1.2. Apparatus and Stimuli 

The setup was identical to that used in Experiment 1, and stimuli had the same size and 

grip. Standard gratings were constructed exactly as for Experiment 1 (Fig. 5.4), using two 

standard stimuli with the periods (P) of 1.27 mm and 1.44 mm (1 D sine-wave). In this 

experiment, however, we defined comparison stimuli in a way that they would not have a single 

clear orientation while still having spatial periods comparable to the standards. This was 

achieved by computing the texture height of the comparison stimuli from two overlaid sine-wave 

functions that were oriented perpendicular to each other. The intersection of both textures 

defined the comparison. A cut through two orthogonal axes of comparison stimuli would result 
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in identical images (Fig. 5.4), and the texture height z was at each point the minimum of the two 

sine-wave functions (2 D sine-wave; peak amplitude A = 0.3 mm):  
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Figure 5.4. Sketch of a stimulus pair. The standard stimulus on the left is an oriented grating 

defined by the sine-wave function on one of the axis. The comparison stimulus on the right is a 

grating with no clear orientation defined by the union of two sine-wave functions on two axes. 

The two stimuli are depicted in the texture orientation of 75°. 

We created 5 comparison gratings with periods P of 1.02, 1.19, 1.35, 1.52, and 1.69 mm. 

For each of the two standards, we used three comparisons. Two comparisons were defined by +/- 

20% of the standard‘s period, because 20% corresponds to the Weber fraction in active touch 

(Nefs, Kappers, & Koenderink, 2001; Experiment 1). The third comparison was the same 

stimulus for both standards (1.35 mm); it has 6% lower period than the standard of 1.44 mm and 

6% higher period than the standard of 1.27 mm. Based on the stimulus construction, we defined 

texture orientation in standard gratings as the orientation of the parallel grooves. By definition, 



171 

comparison gratings had two equal groove orientations. In the following, we will refer to one of 

them as the texture orientation (75° in Fig. 5.4). It is important to note that the comparison 

grating had the same temporal frequency of stimulation for two movement directions, along (0°) 

or against (90°) its orientation. All other movement directions lowered the frequency of 

stimulation only moderately (< 30%). The highest deviation in temporal frequency of stimulation 

is produced by a movement direction of 45° to the texture orientation, which corresponds to a 

multiplication with sin(45°) (≈ 0.7 = -30%). Therefore, there is hardly an effect of texture 

orientation on the frequency of stimulation for comparisons, in contrast to standards.  

5.3.1.3. Design and Procedure 

In each trial, a standard and a comparison stimulus were explored and participants had to 

judge which of the two had a higher spatial-frequency−regardless of other differences between 

the textures. We manipulated the orientation of the stimulus pair on the force sensor (15°, 45°, 

75°, 105°, 135°, and 165°; Fig. 5.4). We measured the movement directions over the standard 

and comparison gratings. Hereby, we focused on the first, middle and last stroke per stimulus, as 

they represent movement adjustments at different segments within the exploration process. 

We used two standard stimuli paired with one of three comparisons (standard 1.27 mm 

with comparisons 1.02, 1.35, and 1.52 mm; standard 1.44 mm with 1.19, 1.35, and 1.69 mm). 

The standard was either presented at the left or the right side in order to control for potential 

effects of the hemispace. Both gratings of one stimulus pair were placed in the same orientation.  

The focus of this experiment was on the adjustments of movements based on sensory 

signals gathered over the exploration process. Hence, it was essential to design this experiment in 

a way that encourages participants to perform a higher number of strokes over each texture. We 

chose a difficult perceptual task (small differences in the periods of standards and comparisons) 
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in order to ensure that several strokes would be required to gather sufficient information for a 

correct response. Further, in free exploration, it is possible that participants avoid additional 

movement due to the associated additional movement costs. Movement costs, however, can be 

counterbalanced by rewarding the performed movement (Todorov & Jordan, 2002). Therefore, 

we introduced the experiment as a game and included rewards for correct responses. By giving a 

correct response participants could earn 10 or 100 points, which was equally distributed among 

all trials. Overall, the experiment consisted of 2 [standards] x 3 [comparisons] x 6 [orientations] 

x 2 [standard left or right] x 2 [10 or 100 points] = 144 trials. The order of the trials was 

randomized. Trials were presented in 3 successive blocks of 48 trials. Between two blocks, 

participants were instructed to take a break of at least two minutes. In total, the experiment lasted 

2-3 hours. Prior to the experiment participants performed a flexible training with up to 8 trials to 

ensure that they understood the task. 

Before each trial, the number of points corresponding to a correct response (10 or 100) 

was displayed on screen. When the first stimulus was displayed, a dot indicated the start position. 

Exploration started randomly either with the left or the right stimulus on a random position at the 

stimulus border (20°-350°, in steps of 30°). Participants were free to perform as many strokes 

and to switch as often between stimuli as they wanted. Participants received 16€ plus an 

additional euro for every accumulation of 500 points. Winning of this additional euro was 

indicated by a visual and auditory signal, which was displayed randomly 1-3 trials after the 

points had been accumulated. The total payment was not lower than 23€ (guessing) and not 

higher than 31€ (perfect performance).  
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5.3.1.4. Data Analyses 

Exploration movements on each stimulus were segmented into individual strokes. For the 

exploration of each stimulus we analyzed 3 strokes (first, middle, last). If the total number of 

strokes was even, the middle stroke was defined as the later one of the two possible. Strokes 

were segregated from the movement data as in Experiment 1 (and thus raw data was reanalyzed 

by improved algorithms as compared to Lezkan & Drewing, 2016). The analysis was based only 

on those trials in which participants performed at least two strokes on each stimulus. When 

participants performed exactly two strokes, the second stroke was coded as the middle and last 

stroke. We aligned all stimulus orientations with an orientation of 0° in order to collapse data 

over trials. To do so, we rotated stroke directions by their corresponding texture orientation in 

opposite direction. We weighted individual strokes with their duration, as strokes had 

considerable differences in their duration. Based on the weighted data we calculated individual 

histograms of movement directions (bin size: 15°) separately for each combination of grating 

type and stroke (first, middle, or last). Each histogram displays which proportion of exploration 

time one participant moved in a specific direction. For an overall analysis, we computed an 

average histogram for each combination of grating type and stroke based on the individual 

participant analyses. For each combination of stroke (first, middle, last) and grating type 

(standard, comparison) circular statistics on the averaged binned data were conducted using the 

Matlab Circular Statistics Toolbox (Berens, 2009). We performed a V-test, a variant of the 

Rayleigh test, which tests the hypothesis that the population is not distributed uniformly around 

the circle but has a specified mean direction (see Mardia & Jupp, 2000), which was 90° in our 

case. We applied Bonferroni-corrected alpha levels at 0.0083 (α=.05/6). This statistical analysis 

outputs V-values, which are higher the bigger the deviation of the empirical distribution from a 
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uniform distribution is and the more consistent the empirical mean direction is with the predicted 

one. Therefore, non-significant results could either be due to a uniform distribution, or a 

distribution with a mean that deviates from the predicted direction of 90°. We predict that 

movement directions will get increasingly distributed non-uniformly over the course of the 

exploration of the standard stimulus. That is to say, we expect significant results for the last 

stroke over the standard.  

5.3.2. Results  

5.3.2.1. Exploration and Task Performance 

On average, participants spent 7.55 seconds (SD = 2.75) on the standard and performed 

4.29 strokes (SD = 1.93), and they spent 7.45 seconds (SD = 2.52) on the comparison with 4.02 

strokes (SD = 1.84). They switched twice between the stimuli (M = 2.05, SD = .82): once from 

first to the second stimulus and then once back to the first stimulus. The time spent on the 

stimulus did not significantly differ for the two gratings, t(12) = .688, p = .505, but participants 

used more strokes for the standard gratings, t(12) = 2.585, p = .024. Participants gave 59.2% 

correct responses on average (SD = 8%), which is significantly higher than guessing (50%), t(12) 

= 3.956, p = .002 (t-test against 50% after rationalized arcsine transformation). There was no 

significant difference in the arcsine-transformed percentages of correct responses between the 

trials with different spatial periods of the standard stimulus, t(12) = .024, p = .814. Similarly, the 

texture orientation did not produce a significantly non-uniform distribution of the number of 

correct answer, when being tested in a Rayleigh test, R = 0.12, p= .889 (means of percentage 

correct answers ranged between 55.1 % and 64.7 %). 
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5.3.2.2. Movement Directions 

For the first, middle, and last stroke over the standard or the comparison grating we 

plotted the angular distributions of movement directions in Fig 5. We performed V-tests on each 

distribution testing whether it is not uniform but rather has a specified mean direction of 90° 

(Bonferroni-corrected alpha levels at 0.0083). In the first stroke, the V-tests were not significant 

for both gratings (standard: V = -8.622, p= .892; comparison: V = .167, p = .491). Similarly, in 

the middle stroke both tests did not reveal significant results, although there is a trend for the 

standard stimulus (standard: V = 10.492, p = .069; comparison: V = -2.922, p = .659). As 

predicted, participants showed a significant non-uniformity in their movement directions and 

moved orthogonally (90°) to the grating orientation in the last stroke over the standard, V = 

19.425, p = .003. In the last stroke over the comparison, non-uniformity did not reach 

significance, V = 7.275, p = .152. The overall results of the V-tests are well reflected in the 

individual participant analyses when applying (Bonferroni-corrected) V-tests to the individual 

data. As expected, no participant showed more significant adjustments to the comparison than to 

the standard. The data of three participants had the same pattern as the average data, with an 

adjustment in the last stroke over the standard only. One participant adjusted in the last and 

middle stroke over the standard while showing no adjustment for the comparison. Four 

participants adjusted their middle and last stroke significantly to the standard, and the last stroke 

to the comparison. Five participants showed no significant adjustments to standard or 

comparison. For non-uniform individual distributions, the precision of the mean estimation 

ranged between ± 5.94° and ± 24.23° (95% confidence interval). 
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Figure 5.5. Movement direction histograms for each stroke and texture type separately including 

all participant data. Textures were aligned to a 0° orientation. Note, possible movement 

directions varied only between 0-180° and were mirrored on the lower part of each figure.  
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Additionally, in order to examine the changes in movement directions which occurred 

over the exploration process, we calculated the proportion of movements directed orthogonally 

to the texture (directions of 90° ± 15°) for the first and the last stroke. As it can be seen in Figure 

5.5, 25% of the last strokes over standard gratings were adjusted to move approximately 

orthogonally to the texture orientation (directions of 90° ± 15°). In contrast, only 17% of the first 

movements approximated this direction. When calculated for all individual participants, the 

difference in percentage of movements following the 90° (± 15°) direction between the first and 

the last stroke over the standard is significant, t(12)= 4.123 p=.001. This is to say participants 

changed their movement direction significantly, from the first to the last stroke. 

5.3.3. Discussion Experiment 2 

Experiment 2 demonstrated that participants adjust their movement direction over the 

course of exploration. In the first stroke, movement directions were not dependent on texture 

type or orientation, but rather were uniformly distributed. However, in the last stroke participants 

moved along the texture orthogonal for uniquely oriented textures. Movements in the last stroke 

were not only directed in 90° to the texture orientation, but they also were significantly adjusted 

from the first stroke. These results suggest that motor adjustments are based on available sensory 

signals for texture orientation. 

One might wonder why participants‘ task performance was only at about 59 %.It is 

important to note in this regard that we purposely chose a difficult task in order to ensure that 

participants would perform multiple exploration movements. The difference in spatial period 

between the two stimuli of stimulus pair ranged from 20% (~1 Weber fraction) to 6%. Thus, 

performances below 70% are reasonable. Additionally, structural differences between textures 
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(1D sine-wave vs. 2D sine-wave), can explain further performance problems. Note though, as 

participants were significantly better than chance, they were actually performing the task, and 

not guessing. We also tested whether fatigue might have decreased participants‘ performance. 

However, a comparison of performance in the first vs. in the second half of trials, did not 

indicate any systematic fatigue effect (paired t-test after rationalized arcsine transformation for 

percent correct responses, t(12) = .636, p = .573).  

In Experiment 3, we further test the hypothesis that motor adjustments are based on 

sensory signals by investigating whether sensory signals that underlie the perception of texture 

orientation are also used in the adjustment of movement direction. We compare the precision of 

the direct perception of texture orientation with that of movement adjustments to texture 

orientation. We use a method similar to the ‗oculometric‘ functions that have been invented to 

compare eye movement precision to perceptual precision in vision (e.g., Watamaniuk & Heinen, 

1999; Stone & Krauzlis, 2003; Gegenfurtner et al., 2003). Oculometric functions mimic the 

construction of (perceptual) psychophysical functions by recoding eye movements into binary 

―motor decisions‖ (e.g., movement to left vs. right half of visual field). Here, we define 

corresponding ‗movometric‘ functions for exploratory movement direction. We manipulate the 

spatial period of the gratings, because perceptual discrimination of gratings is known to be better 

for gratings with larger grooves (Johnson & Phillips, 1981), and expect that spatial period will 

affect perceptual and movement precision in a similar way.  

5.4. Experiment 3 

Experiment 3 consisted of two parts: In each trial of the perceptual part, participants 

explored one oriented texture with two strokes within a limited exploration tunnel and judged the 
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texture orientation relative to their movement direction. In the equivalent trial of the motor part, 

participants again performed two strokes on the same oriented texture within the limited 

exploration tunnel and then performed one stroke in a freely chosen direction. Here, we assessed 

the rotation of the freely chosen direction relative to the previous movement directions. Half of 

the participants started with the perceptual part and the other half with the motor part. In both 

experimental parts, we varied the texture orientation relatively to the exploration tunnel in the 

same way. Additionally, we manipulated the spatial period of the texture. The data from the 

perceptual part served to estimate psychometric functions on the perceived texture orientation 

relative to the movement direction. The data from the motor part was used to define 

‗movometric‘ functions on the movement adjustments made during the free stroke. In the 

‗movometric‘ function, the rotation of the movement direction (clockwise vs. counterclockwise) 

corresponds to the binary response in the psychometric function. Therefore, cumulative Gaussian 

functions estimating the JNDs can be fitted to the perceptual and motor response. In this way, we 

are able to directly compare perceptual and movement data. Because they both follow the same 

sensory signals, we expect that the JNDs of both the haptic orientation perception and the 

movement direction increase for smaller spatial period. 

5.4.1. Methods and Materials 

5.4.1.1. Participants  

Twelve right-handed healthy participants (age 20 - 33 years, 8 females; two-point 

discrimination threshold of 3 mm or lower) entered the sample of this experiment. Participants 

were naïve to the purpose of the experiment and had not participated in the other two 

experiments. 
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5.4.1.2. Apparatus and Stimuli 

The apparatus was identical to that used in Experiment 1. Stimuli were defined as in 

Experiment 1. We used two different spatial periods P for the standard stimulus (1.44 and 1.86 

mm). For the motor part, we additionally used 3 stimuli as the comparison stimulus (P=1.27, 

1.61, and 2.03 mm).  

5.4.1.3. Procedure and Design 

This experiment consisted of two parts: a perceptual part and a motor part. Half of the 

participants started with the perceptual part and the other half with the motor part. In the 

perceptual part, we aimed to estimate individual psychometric functions, and in the motor part 

individual ‗movometric‘ functions. Both parts were equivalent in the experimental design and 

were each preceded by 6 trials of training.  

In the perceptual part, the task of the participant in each trial was to report the texture 

orientation of the standard stimulus relative to the exploration tunnel. We visualized two 

response options in order to get intuitive orientation judgments (Zangaladze, Epstein, Grafton, & 

Sathian, 1999) on the upper third of the screen (Fig. 5.6, actual size of each response option ~ 

45.5 x 45.5 mm). Each of the response options stood for a class of texture orientations relative to 

the exploration tunnel. Response options were represented with single lines. On the left we 

presented the class of texture orientations, in which the texture orthogonal was rotated 

counterclockwise from the exploration tunnel. On the right we presented the class of texture 

orientations, in which the texture orthogonal was rotated clockwise from the exploration tunnel. 

The participant could choose one of the classes of the texture orientation by pressing virtual 

buttons rendered with the PHANToM. We presented texture orientation because this is intuitive 

for the participants to report. For our analyses, however, we recoded orientation to the 
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corresponding texture orthogonal. As the dependent variable we measured the proportion of 

trials in which participants reported that the texture orthogonal was rotated counterclockwise to 

the exploration tunnel. 

 

Figure 5.6. Visually displayed response options in the perceptual part of Experiment 3. Options 

are plotted individually for the 3 exploration tunnels (from left to right: 45°, 0°, 135°). The light 

grey bar depicts the exploration tunnel and the dark grey lines represent each for sample texture 

orientations. The left button always visualized the class of texture orientations rotated clockwise 

from the exploration tunnel, and thus texture orthogonals were rotated counterclockwise. The 

right button visualized the class, defined by counterclockwise rotation of orientation, and thus 

the texture orthogonal rotated clockwise from the exploration tunnel. 

 

In the motor part, participants performed a two-interval forced choice (2-IFC) task 

judging spatial period. At the beginning of each trial, one of the comparison gratings was placed 

in their hands. For the haptic exploration of the comparison there were no restrictions; textures 

could be rotated and explored with both hands. Afterwards participants explored the standard 

grating. The standard grating had the same spatial period and relative orientation (of the textures 

orthogonal to the exploration tunnel) as in the equivalent trial of the perceptual part. However, 

now - after the two strokes within the exploration tunnel - the subjects were free to perform one 

additional stroke in any direction they wanted. We measured the movement direction in the free 

stroke as the dependent variable. More specifically, we looked for the proportion of trials, in 

which the movement direction was achieved by counterclockwise rotation from the exploration 

tunnel. 

In each experimental part, participants explored a standard stimulus with two strokes 

within one of three predefined exploration tunnels (0°, 45°, or 135°). We manipulated the spatial 
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period of the stimulus (P = 1.44 mm, P = 1.86 mm) and the rotation of the texture orthogonal 

relative to the exploration tunnel in 9 steps (-60°, -45°, -30°, -15°, 0°, 15°, 30°, 45°, 60°; 0° 

indicates the exploration direction orthogonal to the texture) following the method of constant 

stimuli. Additionally, the starting point within the exploration tunnel could be at either end of the 

tunnel which was determined randomly. In each experimental part, every combination of spatial 

period and relative orientation was presented 10 times, resulting in a total of 540 trials per 

participant (2 [spatial periods] x 9 [relative orientations] x 3 [exploration tunnels] x 10 

[repetitions]). Each experimental part was subdivided into 5 blocks with 2 repetitions each and 

the resulting 108 trials per block were randomly ordered. Each experimental part resulted in one 

session of about 3 hours. 

5.4.1.4. Data Analyses 

For the perceptual part, we calculated the proportion of trials in which the participant 

responded that the texture orthogonal was rotated counterclockwise from the exploration tunnel 

as a function of the actual relative rotation of the texture orthogonal. Cumulative Gaussian 

functions were fit to the individual psychometric functions for each standard (see Fig. 5.7a for 

example data). For this purpose, the psignifit4 toolbox for Matlab that implements maximum-

likelihood estimation procedures was used (Schütt, Harmeling, Macke, & Wichmann, 2016). 

Points of subjective equality (PSEs) were estimated by the Gaussian parameter μ and just 

noticeable differences (JNDs) by σ (84% discrimination thresholds). In Figure 5.7 the JND is 

indicated as the difference between the rotation values of the texture orthogonal that are 

associated with 50% and 84% proportions of ―counterclockwise‖ responses.  

For the motor part, the movement directions in the free stroke were analyzed as described 

in Experiment 1. Thereafter, we recoded movement directions into the dichotomous variable 
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rotation from exploration tunnel (clockwise vs. counterclockwise). If a participant moves only a 

few degrees different from the previous stroke direction, the categorization into clockwise vs. 

counterclockwise rotation is straightforward. However, if a participant moves almost 

orthogonally to the previous stroke (around 90° / -90° rotation) the proper categorization of the 

underlying rotation is less clear. Therefore, trials were included only if the relative movement 

direction of the last stroke was rotated between - 85° and + 85° from the exploration tunnel, and 

we were able to segregate 3 strokes (90% of trials). That is, we included data from trials with a 

relatively clear interpretation, which thus improved measurement precision. The total number of 

presented trials (270 per condition) was chosen in advance to be well above the number required 

for stable fitting of psychometric curves (Schütt et al., 2016), so that the exclusion of some trials 

would not be problematic. We determined whether the executed movement direction was 

achieved by clockwise or counterclockwise rotation from the exploration tunnel. Rotations 

between 0° - 85° were defined as counterclockwise rotations, whereas rotations between - 85° - 

0° were defined as clockwise rotations.  

Furthermore, we calculated the proportions of trials in which the participant rotated their 

finger movement counterclockwise from the exploration tunnel. To the individual ‗movometric‘ 

functions for each standard period, we fit cumulative Gaussian functions (see Fig 7(B) for 

example data) using the psignifit4 toolbox for Matlab [46]. While fitting ‗movometric‘ functions, 

we allowed for positive and negative slopes of the cumulative Gaussian, and choose the better 

fitting of the two curves. We used the fitting parameter ɳ as a measure of goodness-of-fit for the 

negative slope fit and the positive slope fit. As ɳ accounts for overdispersion and varies between 

0 (no overdispersion) and 1 (high overdispersion), the fit with the lower ɳ was chosen (for 

details, see Schütt et al., 2016). For 18 of 24 data sets, the positive slope resulted in the better 
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fitting curve, while for 6 data sets the negative slope provided a better fit. Because also a 

negative slope indicates an adjustment to the texture orientation, we will consider all the data for 

further analyses. However, it is important to note that the predicted main effects of the ANOVA 

remained significant when participants with negative slopes were excluded.  

The individual psychometric and ‗movometric‘ PSEs and JNDs for each standard period 

were entered into repeated-measures ANOVAs with the factors Mode (perception vs. movement) 

and Standard Period (P=1.44 vs. 1.86 mm). 

 

Figure 5.7. Example data of participant 9 for one standard (P = 1.86 mm). (a) Psychometric 

curve: the proportion of trials in which the participant perceived the texture orthogonal to be 

rotated counterclockwise from the exploration tunnel against the actual relative rotation of the 

texture orthogonal. (b) ‗Movometric‘ curve: plotting the proportion of trials in which the 

participant rotated the finger counterclockwise from the exploration tunnel to perform the free 

stroke against the relative rotation of the texture orthogonal to the exploration tunnel. 

 

5.4.2. Results 

a 
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5.4.2.1. PSEs 

As expected, none of the PSEs differed significantly in a single sample t-test against the 

relative Rotation of 0° (p ≥ .222; P = 1.44 mm: perception -3.9°, movement 3.2°; P = 1.86 mm: 

perception -1.7°, movement 2.4°). This result indicates that no constant biases are observed for 

the perceptual or the movement data. Additionally, neither any main effect nor the interaction, 

F(1,11) =. 203, p = .661, were significant in an ANOVA with the within-participant variables 

Mode (perception vs. movement), F(1,11) = 1.432, p = .257, and Standard Period (1.44 vs. 1.86 

mm), F(1,11) = .027, p = .871. 

5.4.2.2. JNDs 

 

Figure 5.8. Average JNDs. JNDs from the psychometric (dark grey) and the ‗movometric‘ 

curves (light grey) plotted with their within-participant standard errors (Loftus & Masson, 1994). 

Individual JNDs (Fig. 5.8) entered an ANOVA with the within-participant variables 

Mode (perception vs. movement) and Standard Period (1.44 vs.1.86 mm). As expected, JNDs 

were lower for higher Spatial Period, F(1,11) = 34.015, p < .001. The JNDs were significantly 

lower in the perception Mode, F(1,11) = 5.369, p = .041. The interaction between the two 
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variables did not reach significance, F(1,11) = 2.016, p = .183. The estimated statistical power of 

our experimental design to find an effect of at least 10° in a one-sided test is more than 90% 

(standard deviation assessed as 11°). 

5.4.3. Discussion Experiment 3 

Experiment 3 carefully examined the relationship between the perceived orientation of a 

haptic texture and a freely chosen movement direction over the texture. Our results show that 

both perception and movements were influenced by spatial frequency. Participants perceived the 

orientation of textures with low spatial frequencies more precisely. This expands previous 

findings about the role of spatial period for orientation discrimination (Van Boven & Johnson, 

1994; Zhang et al., 2005) to active perception. Additionally, we show that movement 

adjustments were more pronounced in the condition of low spatial frequencies. This allows us to 

conclude that perception and movements are based on a similar mechanism in natural haptic 

exploration of surface texture.  

Furthermore analyzing participants‘ ‗movometric‘ and psychometric curves, we found 

that movements were less precise than perception. This result is in line with Gegenfurtner and 

Franz (2007), who showed that visual location perception was more precise than pointing 

movements to a seen location, and explained this finding by additional motor variance. Along 

these lines, studies on visual perception reported (at least for certain time windows) that 

perceptual precision was better than movement precision (e.g., Watamaniuk & Heinen, 1999; 

Ross, Goettker, Schütz, Braun, & Gegenfurtner, 2017). However, other studies on visual 

perception report similar perceptual and eye movement precision (e.g., Gegenfurtner et al., 2003; 

Stone & Krauzlis, 2003; Braun & Gegenfurtner, 2016). These different findings are likely due to 



187 

the complexity of the tasks, whereby less fine and more complex movements, such as the present 

hand movements, seem to come along with more motor variance (Vetter, Flash, & Wolpert, 

2002; Ko, Poleti, & Rucci, 2010; Fitts, 1954). However, it is important to note that in the present 

experiment we measured movements and perception in different experimental parts with 

different tasks. Although the identical standard stimulus with the identical texture orientation 

was presented in each given trial for both experimental parts for a specific participant, 

differences in the precision of movements and perception may have arisen by the fact that both 

were not measured in exactly the same moment in time rather than by motor variance alone. In 

contrast to the studies on visual perception (Gegenfurtner et al., 2003; Stone & Krauzlis, 2003; 

Gegenfurtner & Franz, 2007) we, therefore, do not want to draw strong conclusion about the 

exact differences in the information processing. Nevertheless, given these possible differences in 

the measurement of movements and perception, the main effect of spatial period provides even 

stronger evidence for common mechanisms in orientation perception and movements in the 

exploration of spatial frequency.  

5.5. General Discussion and Conclusion 

This study investigated the interdependence between perception and movement directions 

for oriented textures. On the one hand, our results indicate that perception depends on the exact 

movement parameters executed: When participants followed the texture orthogonal in their 

movement directions more closely, they perceived the texture‘s spatial period more precisely as 

compared to moving in line with the texture (Experiment 1, absolute movement orientation seem 

not to play a similar role). On the other hand, movement control depends on the sensation of 

texture orientation: Only after gathering sufficient sensory signals did participants adjust their 
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movement in the direction of the texture orthogonal in free exploration (Experiment 2). In 

addition, sensory signals that are used to perceive texture orientation are likely also used for 

movement adjustment, as shown by the finding that the precision of perception and movement 

adjustments were influenced in the same manner by the spatial period of the stimuli (Experiment 

3). Taken together, our study speaks in favor of sensorimotor control mechanisms that improve 

haptic perception by choosing parameters of exploratory movement on the basis of sensations.  

Our results extend previous research in several ways. First, as for the long standing 

debate about the role of temporal cues produced by movements in texture perception (e.g., 

Hollins & Risner, 2000; Weber et al., 2013), we provide an estimate for the advantage of 

movements, at least in the context of our spatial period discrimination task. We can estimate the 

advantage of temporal cues, when comparing JNDs measured in Experiment 1 for movement 

orthogonal to the texture (= optimal temporal cues) to the JNDs for movements in line with the 

texture (= no temporal cues). JNDs are composed of the variance for standard (σs²) and the 

variance for the comparison stimulus (σc²), which is assumed to be equal in our design (σc² = 

σs²). Under the assumption of independent percepts of comparison and standard, the JND can be 

directly related to the variance of the stimulus (JNDj² = 2 σs² for the condition j). The empirical 

JNDs indicate that the variance doubles when temporal cues are removed. In this case, the 

Maximum Likelihood Estimation (MLE) model of optimal integration (e.g., Ernst & Bülthoff, 

2004) suggests that temporal cues are equally important and therefore should be weighted 

equally to spatial cues for the frequency estimation. However, it is important to note, that in 

contrast to other studies addressing the question on the role of temporal cues (e.g., Hollins & 

Risner, 2000; Lederman, 1974) we asked for a spatial frequency instead of a roughness 

judgment. Therefore, we cannot draw conclusions about roughness perception from our study. 
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Nevertheless, we would suspect that when measuring roughness discriminability and 

manipulating directional shift of movements from texture orthogonal, results could be 

comparable. The reason is that we chose stimuli in a range where spatial period manipulation and 

roughness perception are monotonically related (see Drewing, 2016). Additionally, it should be 

noted that previous research was also often measuring the magnitude of perceived roughness 

rather than its discriminability (e.g., Lederman, 1974 ). Second, we introduced a new method, the 

‗movometric‘ functions, which allowed a systematic comparison between movements and 

perception. Such functions are not limited to the context of our task. Natural movement 

adjustments fordiverse exploration tasks can be used to assess the movement precision as in the 

present study. This only requires that movement data be converted to binary responses in order to 

fit ‗movometric‘ functions. Future research could define such ‗movometric‘ functions for 

movement adjustments within other exploratory procedures. For instance, indentation force is a 

key parameter in softness exploration (Lezkan & Drewing, 2015). Here one could fit 

‗movometric‘ functions to the probability that indentation force was reduced or increased as a 

function of stimulus softness, and then compare these to psychometric data on perceived 

softness. 

Moreover, it is interesting to note, that not all participants moved in the way we expected. 

In Experiment 2, individual data for 4 out of 13 participants showed adjustments in the last 

stroke also over the comparison stimulus, and yet this stimulus did not have one clear 

orientation. While this adjustment does not seem to be very useful, it also does not harm 

perceptual performance. In Experiment 3, some participants adjusted their movements to the 

oriented textures in a way that deviated from our prediction. That is, some of the fitted 

psychometric curves had negative slopes. This indicates that the respective participant moved 
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along the texture orientation rather than orthogonal to it. Nevertheless, it is important to note that 

even reverse adjustments indicate that these participants used sensory information to adjust their 

movement direction. Based on the results from Experiment 1, we could argue that these 

participants moved in an inefficient way. However, one possible explanation for both 

observations might be that, in addition to our predicted bottom-up effects, movements are also 

influenced by top-down effects. Thus, in Experiment 2, the 90° direction of movement over the 

(not uniquely oriented) comparison was possibly chosen in order to match the movement over 

the standard grating of the same trial. Given that the task is to compare two stimuli, moving over 

each of them in the same way could be a reasonable strategy. Hence, even if there is no sensory 

information gain to maximize (bottom-up), the task itself might influence movement control 

(top-down). This is in line with a recent study which showed that movement kinematics depend 

on both the task and the texture characteristics (Callier, Saal, Davis-Berg, & Bensmaia, 2015).  

The task requirements might explain the unnecessary (but not inefficient) adjustments we 

observed in Experiment 2, but how does the task relate to the inefficient movers in Experiment 

3? On first sight, the task in Experiment 3 does not seem to induce movement in line with texture 

orientation. However, the instruction of having only one free movement might have provoked 

some participants to strategize more for this task compared to more natural exploration tasks 

(like Experiment 2). This was also indicated by the comments of 2 observers, who reported to 

have chosen movements orthogonal to the previous movement. In contrast to rather natural 

movement planning strategies, cognitive strategic decision making seems more prone to non-

optimality (Trommershäuser , Maloney, & Landy, 2003; Tversky & Kahneman, 1974). 

Therefore, if some participants felt the need to choose a cognitive strategy, they might have 

chosen the wrong one. For instance, the strategy to move orthogonal to the previous movement 
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might seem like a good idea to collect information in the most diverse way. Taken together, 

some parts of the data might be due to task induced top-down influence on movement control. 

However, we suggest that these task effects act in addition to our proposed sensorimotor 

processes and are not an alternative to it. We base this assumption on the fact that these 

movement effects are represented in some individual participants, not the average data across 

participants. Hence, they also do not devaluate our significant findings. Further studies might 

systematically investigate the importance of top-down influences for movement control in haptic 

exploration. 

Overall, we presented evidence that perception and movement are highly interdependent 

for the exploration of oriented textures. Sensory information about texture orientation is used to 

adjust movement directions towards the texture orthogonal. As a consequence, optimal sensory 

information about the structure of the texture can be extracted and used for the perceptual task. 

Interestingly, this co-influence happens, although it was shown that textural orientation and 

structure information are not processed within the same pathway (Zhang et al., 2005; Sathian, 

2016; Sathian, Zangaladze, Hoffman, & Grafton, 1997). By introducing a method, which allows 

for a direct comparison between perception and movement control, we were able to demonstrate 

that shared sensory information is supplied to both systems. Future studies can apply our method 

to study other perceptual dimensions, which will help to understand the interplay between 

sensory and motor processes in general. 
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6. Discussion 

6.1. Summary – How Perception Evolves 

In Study I and II, I investigated how sequentially gathered sensory signals are integrated. 

Study I focused on the perception of virtual textures, by contrast, Study II focused on softness 

perception of natural deformable objects. Nevertheless, results of both studies match each other 

well and allow me to suggest a common model for the optimal integration of sequential signals. 

This is to say, a model for how perception evolves during the exploration process. 

Across the first two studies, the number of exploration movements (1-8 strokes in Study 

I; 2-5 indentations in Study II) was varied and the effects on discrimination thresholds were 

analyzed. Discrimination thresholds (i.e., perceptual variance) decreased with more exploration 

movements in both cases. This decrease was less steep than predicted from the MLE model of 

optimal integration (-1/2 on a log (threshold) – log (no. of movements) scale, see Quick, 1974; 

Ernst & Bülthoff, 2004). This is to say, perception benefited from additional movements, but the 

benefit was smaller than predicted by a simple model of an optimal integrator which is usually 

applied to predict the integration of simultaneous signals. In order to better understand this 

finding, I tested the MLE model by its second criterion, the prediction of the empirical weights. 

The MLE model predicts that estimates derived from individual movements over the same object 

should be equally noisy and, therefore, contribute to the final percept with equal weights (e.g., 

Ernst & Bülthoff, 2004). In order to estimate the empirical weights, I introduced a discrepancy 

between sensory signals from one ‗discrepant‘ movement and sensory signals from the 

remaining movements. During the ‗discrepant‘ movement, participants received a stimulation 

which differed from the stimulation in all other movements on this stimulus. The hereby 
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measured pattern of empirical weights differed depending on whether this ‗discrepant‘ 

movement was within the exploration of the first or the second stimulus. While movements 

within the first stimulus contributed with equal weights, this was not the case for the second 

stimulus. Here, movements were systematically weighted higher the closer they were to the first 

stimulus. Taken together, neither MLE predictions on discrimination thresholds (i.e., perceptual 

variance) nor its predictions on weights were consistent with the empirical data in Study I and II.  

In order to account for the temporal dynamics arising from sequentially gathered 

information, I developed an extended model of an optimal observer. More specifically, this 

model predicts the following: During the processing of the first stimulus, sensory signals are 

integrated into a final estimate with equal weights (i.e., consistent with the MLE model). 

However, this final estimate is, then, transferred to a kind of memory structure where it is stored. 

Because memory representations decay over time (see e.g., Murray, Ward & Hockley, 1975; 

Olkkonen, McCarthy & Allred, 2014), the memory representation of the first stimulus gets 

noisier during the exploration of the second stimulus. Based on neurological studies (e.g., Romo 

et al., 2002; Romo & Salinas, 2003; Hernandez et al., 2010), I additionally assumed that a 

comparison process between the memorized estimate of the first stimulus and the movement-

specific current estimate of the second stimulus takes place during each movement over the 

second stimulus. As a consequence, each movement is processed differently within the 

exploration of the second stimulus. Taken together, the model predicts that the estimates from 

different strokes of the first stimulus are integrated with equal weights, whereas weights should 

systematically decrease for later movements over the second stimulus. In Study I (Experiment 3), 

this theoretical model was mathematically formalized in a Kalman filter approach (Kalman, 

1962). Model predictions resulted to be consistent with empirical weights. In sum, Study I and II 
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suggest that in order to understand the integration of sequential signals (in contrast to 

simultaneous signals) more complicated mechanisms need to be considered. These mechanisms 

include factors as memory and the nature of the task (e.g., comparison). Nevertheless, the goal of 

the perceptual system in the extended model fits previous understanding of optimality, meaning 

that it aims for the least noisy final percept.  

6.2. Summary – How Movements Evolve 

Study III and IV investigated online adjustments of key movement parameters during the 

exploration of softness (Study III) and texture (Study IV). Both studies compared first 

movements, which are based on the minimal sensory input, and last movements, which are based 

on the maximal sensory input to each other. These comparisons allowed describing how 

movement parameters evolve on the basis of sequentially gathered sensory signals.  

When object properties are actively explored, different exploratory movement patterns 

(also known as exploratory procedures, EPs) serve perception differently well. The optimal way 

to explore softness is to apply a normal force to the surface with the fingers, i.e., to indent the 

object (Lederman & Klatzky, 1987). The movement parameter indention force can be further 

optimized, by applying higher force especially for rather hard objects (Srinivasan & LaMotte, 

1995; Kaim & Drewing, 2011). For texture perception, the optimal exploration pattern is to 

move the finger side-to-side (Lederman & Klatzky, 1987). In Study IV (Experiment 1), I 

demonstrated that for oriented textures (defined by periodically repeating grooves) movements 

can be further optimized when they are directed orthogonally to texture orientation.  

I suggested that over the course of exploration, people can access or learn the connection 

between specific movements and its consequences in terms of noisiness of the sensory signals 
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(see Drewing, 2012) and actively adjust movements to optimal parameters. In other words, they 

adjust their movements to the parameters that lead to the most precise (i.e. least noisy) percept. 

Under these assumptions, exploration behavior can be described it as a multistep process within 

the sensorimotor control loop. Hereby, the very first movement generates sensory feedback, 

which is taken into account when the motor commands for the second movement are 

programmed. This second movement generates further sensory signals and the process continues 

in this way until a decision on the to-be-judged property is reached. Consequently, later in the 

exploration process, movement control is based on more sensory signals than earlier in the 

process. Assuming that the system is aiming for the least noisy final percept, I predicted that 

movements that are performed later in the exploration process (e.g., last movements) are closer 

to the optimal movement parameter value than first exploration movements. 

In Study IV, I demonstrated that when exploring oriented textures, participants went from 

a random direction in the first movement to a tuned direction towards texture orthogonal in the 

last movement. In this study, additional evidence was presented for the fact that movement 

adjustments were based on sensory signals. That is, movements and perception were influenced 

by the same factor, the spatial period of the texture. A similar optimization of movement 

parameters based on sensory signals was also visible in Study III. Indentation forces were 

systematically adjusted from the first to the last movement towards higher forces for harder 

objects. However, this study showed that movement parameters are not only adjusted online. In 

fact, when a prediction, in form of implicit knowledge of the object softness, was possible, 

participants adjusted even more profoundly than based on sensory signals. Movement 

adjustments based on sensory signals (in contrast to movement adjustments based on predictions) 

depend on the amount of voluntary generated sensory signals, which is in a trade-off with the 
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needed effort. The more exploratory movements are performed, the more sensory signals are 

generated (see Study I & II). On the downside, however, additional movements are associated 

with additional movement costs (effort; see Study III). In Study III (Experiment 2), I 

demonstrated that motivation can foster the effect of sensory signals by evoking more voluntary 

movements. That is to say, when participants are motivated they trade in more effort for a better 

perceptual performance. 

Overall, I propose that in the process of exploration, movements are executed with a dual 

goal. The first goal is to improve perception (see also Drewing, 2012; Lederman & Klatzky, 

1987). In order to achieve this goal, movements are adjusted on the basis of sensory (and 

predictive) signals (see Study III & IV). Importantly, however, keeping movement costs low 

constitutes the second goal. Although this goal is known from motor control literature (e.g., 

Todorov & Jordan, 2002) and eye movement studies (e.g., Xu-Wilson, Zee, & Shadmehr, 2009), 

it was not considered in the haptic literature so far. In order to optimize for both goals, the 

motivation to achieve a high task performance determines where the balance between perceptual 

optimization - as a benefit - and effort - as a cost - of additional movements is found.  

6.3. Limitations of a Specific Exploration Task 

In my thesis, I described how perception and movements evolve over the process of 

active haptic exploration. Overall, I suggested that the changes in both, movements and 

perception, are based on the sequentially gathered sensory signals. However, it is important to 

keep in mind, that the findings are reported in the specific context of a discrimination task 

between two alternatives. For measuring perception, we actually used a 2-IFC task, where one 

stimulus follows the other in a rigid order. Although this method is commonly used and 
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recommended (Blackwell, 1952), it implies a specific task (comparison) and a fixed order of 

exploration, both of which might influence perception. Similarly, discriminating between two 

alternatives might as well introduce task-specific influences on movements. 

In general, the task could have a fundamental impact on movements in free exploration. 

For instance, free gaze was reported to be highly influenced by the observer‘s task (Ballard & 

Hayhoe, 2009; DeAnglus & Pelz, 2009). In the haptic literature task effects were not the focus of 

attention for a long time. For instance, in the study of Lederman and Klatzky (1987) the effect of 

the task cannot be completely disentangled from the effect of stimulation, because different 

stimulus sets were used for the assessment of different object properties (tasks). However, a 

recent study on texture perception systematically manipulated the task and the stimulus 

characteristics. There, movement parameters were found to depend as well on the task, namely 

rating hardness, roughness or slipperiness, as the surface characteristics (Callier, Saal, Davis-

Berg, & Bensmaia, 2014). 

In my investigations of haptic exploration movements (Study III & IV), some side-results 

can probably be attributed to the given task. For instance, in Study III, in which participants were 

asked to decide which of two stimuli felt softer, they touched disproportionally more often the 

stimulus, which they perceived as being softer with their last touch (Experiment 1: 75.74%; 

Experiment 2: 72.68%). Similar behaviors were previously reported for eye fixations (Krajbich 

Armel, & Rangel, 2010; Manohar & Husein, 2013) and for haptic preference (Mitsuda & 

Yoshioka, 2015). Future studies could examine whether this effect is indeed induced by the task 

by changing the task to ‗harder‘ judgments (in contrast to the used ‗softer‘ judgments).  

Another example of probably task-driven exploration movements is reported in 

Experiment 2 of Study IV: Several participants (4 out of 13) did not direct their last movement 
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over the not clearly oriented comparison stimulus in a random direction, but, rather, 

systematically in the direction orthogonal to the standard orientation. It is likely that the reason 

for this is the comparison task: Participants might have tried to match movements over the 

comparison with movements over the standard grating in a given trial. Similarly, the perceptual 

data in Study I and II reflected comparison processes during the exploration of the second 

stimulus (see also Romo & Salinas, 2003). This is to say, my findings for movements and 

perception seemed to be influenced by the task to compare two objects. 

Therefore, it would be interesting to investigate the natural exploration process with 

additional tasks in the future. To this end, methods might be applied, in which the stimulus 

property is compared to a reference that is not sequentially explored. For instance, the task could 

be to compare the orientation of a haptic texture to a visual bar that will be presented afterwards 

in an unpredictable orientation. After delays between the haptic texture and the visual 

comparison bar would be introduced, one could test whether discrimination performance reflects 

the decay of the representation of the first stimulus and whether it can be modeled with a 

Kalman-filter. In a simpler version of this task, the reference bar could have a fixed orientation. 

For such a setting, the response should be already prepared as soon as the haptic texture is 

explored. Therefore, memory decay should not play a role and sensory integration should follow 

a simple version of Kalman-filter, which predicts the same results as the MLE approach. 

Additionally, it would be interesting to investigate perception and movements in trials without a 

comparison task. For instance, exploration movement directions could be measured within one-

stimulus trials in a magnitude-estimation task (Stevens, 1952). In this task, movements over not 

clearly oriented textures, like the comparisons in Experiment 2 of Study IV, should not be 
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influenced from movements on oriented textures, even if trials with both texture-types would be 

interleaved.  

Taken together, in my studies I investigated the contribution of sensory signals gathered 

during the exploration process to the evolvement of natural movements and perception. Future 

research should expand these investigations to other perceptual tasks. Similarities in exploration 

movements as well as perception across various tasks will help finding general principles of 

natural active haptic perception.   

6.4. Memory Systems in the Process of Exploration 

I presented a model for the processing of sequential signals which describes that the 

comparison process, but not the integration, is affected by memory decay. According to this 

model, estimates from previous movements are stored without loss during sensory integration, as 

it is happening within the exploration of the first stimulus. This was evident from the fact that for 

the first stimulus, the information gathered from the first movement was entering in the final 

percept in the same way as information gathered in the last movement (see Studies I & II). In 

contrast to this, during the exploration of the second stimulus, the representation of the first 

stimulus is decaying (i.e., getting noisier) over time. While this is happening, the first stimulus is 

being compared to every movement-specific estimate of the second stimulus. In consequence, 

later movements over the second stimulus were contributing less to the final percept in the 

empirical data (see Studies I & II). This suggests that there are at least two memory systems 

involved. The first system retains sensory information for integration and is not affected by 

decay. The second memory system receives the final estimate of the first stimulus and is affected 

by memory decay. 
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The concept of haptic memory was far less investigated than visual memory. However, 

previous findings are consistent with the assumption of several subsystems in haptic memory 

(Gallace & Spence, 2009). The memory system, which retains sensory information for 

integration seems to coincidence with the concept of sensory memory. Sensory memory is 

assumed to capture complete, modality-specific, sensory information for very short durations. 

Most of the knowledge on sensory memory is based in vision science, where it is also known as 

iconic memory (Sperling, 1960). In his seminal experiments, Sperling (1960) briefly flashed 

letter arrays and asked participants to report the letters. If participants were asked to report 

everything (‗whole report‘) they only were able to report four to five letters. However, when 

immediately after the letter array a cue was presented, which indicated that only one specific row 

needed to be reported (‗partial report‘), participants reported any row almost perfectly. This 

implied that all letters were stored and still available at the time of the cue. A few studies 

addressed the question of a haptic equivalent to the iconic memory (Bliss, Crane, Mansfield, & 

Townsend, 1966; Gallace, Tan, Haggard, & Spence, 2008). Gallace et al. (2008) presented 

vibrotactile stimulation on multiple body parts in parallel. Participants were asked to either report 

the total number of stimulations (‗whole report‘) or to judge whether a cued position had been 

previously stimulated (‗partial report‘). The authors found advantages of the ‗partial report‘ in 

haptics and concluded that there is a haptic equivalent of the iconic memory. Based on our 

results we would assume that this memory system is also involved in the storage of movement-

specific estimates for the integration process. However, it will be necessary to investigate the 

role of sensory memory in active haptic perception in the future. One possibility to pursue this, 

might be to use masking (e.g., Laskin & Spence, 1979), which (in contrast to non-stimulation 
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control) was reported to erase the content of sensory memory (Averbach & Sperling, 1961; 

Gegenfurtner & Sperling, 1993). 

A second memory system was described as the haptic working memory, which is longer 

lasting than sensory memory but limited in capacity (Gallace & Spence, 2009). Pasternak and 

Greenlee (2005) reported that working memory in sensory systems is usually investigated by a 

delayed discrimination task, in which the information from the first stimulus has to be hold in 

memory. With a similar method Sinclair and Burton (1996) found that during the delayed 

discrimination of vibratory stimuli the discrimination performance decreased rapidly during the 

first 5 seconds. The rate of such a memory related decrease is usually described by a power 

function of the time t with a negative exponent (Wixted & Ebbesen, 1991, 1997). Murray, Ward, 

and Hockley (1975) reported the power functions for two-point thresholds. In their study, 

participants discriminated whether they were stimulated on the same location with the first and a 

delayed second stimulus. While varying the duration of the delay, thresholds were measured at 

the different body locations. Interestingly, I incorporated the decrease function that Murray et al. 

(1975) reported for stimulations on the thumb in the Kalman filter model (Study I) and model 

predictions resulted to be consistent with our empirical data. Besides psychophysical studies, 

neurophysiologic studies reported evidence for a haptic working memory. Romo and colleagues 

(Romo & Salinas, 2003; Hernandez et al., 2010) described that the information from the first 

stimulus in a 2-IFC task is still visible in SII and other cortical areas (PFC, VPC, MPC, DPC), 

which seem to be related to the haptic working memory, up to 3 seconds after stimulation. In 

contrast to the sensory memory, working memory is assumed to be processed more centrally as 

implicated by common capacity limits for multimodal stimulation (Saults & Cowan, 2007). 

Nevertheless, the role of working memory in active haptic perception should be further 
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investigated in the future. Based on the literature, it is to expect that the rate of decay of the first 

stimulus estimate will depend on its noisiness (Wixted et al., 1975; Deco et al., 2010). Therefore, 

future research could manipulate the nosiness of the first stimulus estimate (by varying 

exploration extension or by adding noise; see Metzger & Drewing, 2017) and insert systematic 

delays between the first and the second stimulus, while measuring the rate of decay. 

Taken together, I proposed a model for the integration of sequential signals which 

implicates the existence of at least two memory systems in haptic perception. This implication is 

in high agreement with previous literature on haptic memory. However, further research is 

needed to be able to describe the memory systems involved in the exploration process more 

specifically. Additionally, the role of memory for exploration movements needs to be further 

investigated. Previously, it has been suggested that sensory experiences are stored in memory by 

an internal model, which relates dynamics of the motor systems to resulting sensory signals. The 

internal model is then updated after comparing sensory signals generated with later movements 

and the expectations about them based on the internal model (Nowak, Glasauer & Hermsdörfer, 

2004). This process was described to continue until the desired or even an imagined sensory 

feedback is achieved (Presyna, Pundi & Flanders, 2011). Future investigations could use a 

Kalman filter approach to model exploration behaviour, based on memory models. However, in 

order to do so movement parameters and perception need to be measured simultaneously in a 

comparable way after every movement within the exploration process. A first step in this 

direction might be to apply the method of ‗movometric‘ functions, which we developed in Study 

IV as the motor equivalent to psychometric functions.  
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6.5. Future Perspectives for Science and Application 

In this thesis, I investigated several questions regarding the natural process of active 

haptic perception. Some of the findings lead to new possible research questions, which directly 

build on the presented work. As I described above, it would consolidate our understanding of 

haptic sensorimotor control if the role of the task and different memory systems will be further 

investigated in the future. Beyond this, continuing this line of research might lead to more far-

reaching research questions and applications in the long run. 

One promising topic for research and application would be to investigate the linkage 

between natural exploration movements and perception. Within Study IV, I showed that the 

same factor can systematically influence movements and perception. Namely, for textures with 

smaller spatial periods the perceived texture orientation and the movement direction over the 

texture were both noisier (as compared to bigger spatial periods). Future research could broaden 

our understanding of such systematic links between movements and perception. One possibility 

to approach this in the future might be to revisit the idea of ‗necessary‘ exploration movements 

that was originally introduced by Lederman and Klatzky (1987). They referred to exploration 

procedures as ‗necessary‘ whenever they were the only ones producing over chance 

performance. In cases when participants perform such a ‗necessary‘ exploration movement, the 

probability is high that the corresponding perceptual dimension is being judged. Therefore, it 

would be feasible to extract these ‗necessary‘ movement segments from natural exploration in 

order to predict the examined object property in the future. Predicting perception from observed 

hand movements might be a major topic for research and application in the future. Previously, 

scientists have suggested ways to decode perception from brain activity (e.g., Kay, Naselaris, 

Prenger, & Gallant, 2008). Some research focused on eye movements and, for instance, predicted 
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the observer‘s task from eye movement patterns (e.g., Boisvert & Bruce, 2016). More recently, 

these ideas are also evolving in the research field of haptics. Yokosaka, Kuroki, Watanabe, and 

Nishida (2017, 2018) described links between exploratory movements and subjective haptic 

ratings. The authors reported correlations between tactile ratings and hand and eye movements 

even for exploration with no specific task. Additionally, they showed that different observers 

highly agree with each other when rating the percept of another person after seeing videos of his 

or her exploration movements. Therefore, their results suggest that there might be a possibility of 

decoding haptic perception from the performed exploration movements. If in the future the 

explored haptic dimension or even the parametric value within this dimension could be 

predicted, several applications would emerge. For example, one could imagine that video-based 

software will assist sales personal in the clothing business to lead the customer to the desired 

material by analyzing their exploration movements on previous pieces of clothing. 

Another fruitful direction of future research would be to broaden the understanding of the 

biological basis for sensorimotor control in natural explorations. This research might lead to 

improvements in at least two applied areas: the medical treatment of malfunctioning systems and 

the robotic sensing. In Study III of my thesis, motor adjustments based on sensory feedback were 

found to be moderated by motivation. More specifically, our participants gathered more sensory 

signals and adjusted their indentation forces more to the object softness when they were higher 

motivated. This finding could be taken as an indication for the involvement of the dopaminergic 

(reward) system in a functioning motor control during natural haptic exploration. In line with this 

speculation, Shadmehr, de Xivry, Xu-Wilson, and Shih (2010) showed that diseases of the 

reward system, such as Parkinson‘s disease or schizophrenia are connected to dysfunctions of 

movement control. Interestingly, patients with other disorders, like autism, were also reported to 
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have impaired sensorimotor control including feedforward and feedback processes (Mosconi, 

Mohanty, Greene, Cook, Vaillancourt, & Sweeney, 2015). Better understanding the biological 

mechanisms behind a functioning senrosorimotor control will advance medical treatments in the 

area of neuroprosthetics and treatments for patients with lesions (for opinion papers on this topic, 

see Flanders, 2011; Shadmehr & Krakauer, 2008). Additionally, robotic applications might 

improve by better imitating the neural functions of a biological sensorimotor control system (for 

a review, see Pfeifer, Lungarella, & Iida, 2007). One possibility to reach this goal is to 

implement computational models that seem to reflect human movements and perception well in 

the area of robotic sensing. For instance, Bayesian approaches were successfully implemented 

for movement guidance during robotic perception of object identity (Lepora, Martinez-

Hernandez, & Prescott, 2013) and texture perception with a biologically inspired tactile sensor 

(Fishel & Loeb, 2012).  

6.6. Conclusions 

The present thesis investigated fundamental questions about the mainly sequentially working 

haptic sense. The results of Study I and II indicated that perception changes within the 

exploration process, as sequential sensory signals are continuously integrated. This integration 

differs from an optimal integrator model (MLE), which is usually applied to the integration of 

simultaneously presented signals. In order to account for the higher complexity of sequentially 

gathered signals, I presented a Kalman filter model. This model described a perceptual process 

which focuses on online comparisons and incorporates memory decay while maintaining its goal 

to minimize the variance of the final percept. Further, in Study III and IV, I presented evidence 

for the impact of sequentially gathered sensory signals on executed movements. The influence of 

sensory signals on movement control seemed to be moderated by motivation, which is probably 
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due to the motor costs for active gathering of sensory signals. Therefore, a central goal of 

movement control seems to be optimizing haptic perception while minimizing motor costs. 

Overall, the results suggest that in natural haptic exploration, the sequential gathering of sensory 

signals continuously impacts perception and movements. As they both rely on this common 

basis, perception and movements are highly interdependent.  

In 1925, Katz wrote „Farbschöpfend sind [] Augenbewegungen nicht wie die Bewegungen 

der Finger tastschöpfend sind“ (Katz, 1925; in translation: “Eye movements do not create color 

the way finger movements create touch.”). Today, based on the presented literature and findings, 

it seems reasonable to expand his idea to say that ―finger movements and touch (sensations) form 

each other mutually‖. 
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