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Abstract 
 

Look around. Nearly everything we see, we can act upon with our hands. We utilize our hands as all-

purpose tools to feel and touch the world, to climb, point, create art (e.g., by playing musical 

instruments, drawing, or sculpting), communicate, and to pick up objects. Throughout these actions 

the hand shapes differently. When reaching out to grasp something, the human hand unfolds into a 

shape that is appropriate for grasping and manipulating the object securely. Humans can grasp an 

object in a variety of ways by varying their digit placements on it. Even when we consider a precision 

grip, where only thumb and index finger are in contact with, e.g., a coffee cup, there might already be 

several thousand combinations of finger and thumb locations on the cup’s surface available to choose 

from. Computationally, this choice is far from trivial. However, selecting the proper grasp locations is 

necessary to ensure successful interaction with the object. Despite that computational challenge, 

humans are able to determine secure, comfortable grasp locations that minimize slippage and torsion 

by considering an object's shape, material characteristics, and the desired action outcome. The aim of 

this thesis was to understand how humans achieve this complex task. 

Study 1 investigated which factors determined where humans grasped 3D objects and how these were 

prioritized according to their relative importance. We used motion tracking to record and analyze 

participants’ grasping behavior with blocky wooden and brass objects and merged those findings with 

a computational model in order to predict where novel 3D-printed plastic objects would be grasped. 

We found that the limits force closure imposed on a grasp, the participants’ natural grip axis (NGA), 

and grasp aperture were the three key factors that participants considered to determine ideal grasp 

locations. The amount of torque a grasp would produce, and to what extend the participant’s hand 

would occlude the object, were factors that we found to carry less relevance for grasp choice. Whether 

torque, specifically, would be considered, depended on the overall weight of the object. Predicting 

human grasps, even for the novel objects, worked remarkably well and our research had thus far 

demonstrated that human grasps followed our ideal grasp rules. Moving on, we were interested in 

how grasp rules might interact.  

Study 2 inspected whether grasp locations would be chosen so that the grasp would be aligned to the 

NGA, or so that the grasp would fall on the higher friction contact areas and result in a more secure 

grasp pose. Our goal was to understand how the interactions between these two factors influenced 

grasp preference. NGA alignments were manipulated by rotating a cubic target object, whereas grasp 

stability was manipulated by altering the object’s surface characteristics. We discovered that 

participants favored the higher friction surfaces and sacrificed alignments with their NGA in order to 

create stable grasp configurations. Having researched the various factors that influenced grasp 

locations, their relative importance and, to some extent, their interactions, we aimed to understand 

how the brain computes and combines these constraints to produce appropriate motor outputs. 

Study 3 used functional magnetic resonance imaging (fMRI) to examine, how grasp-relevant 

information is represented across sensorimotor brain areas. Participants planned and carried out pre-

selected grasps to multi-material 3D objects, designed to disentangle how the brain coded the NGA, 

object mass, and grasp aperture. We found that the orientation of the grasp was predominantly 

encoded during grasp planning in dorsal regions. The size of the grasp was, encoded during both 

planning and execution phases in various groupings of dorsal and ventral regions. Predominantly 
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during execution, we found encoding of object mass throughout dorsal, ventral, and motor areas. 

Taken together, these sets of experiments provide insights into how humans use a combination of 

factors to make decisions about where to place their grasps. 
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Chapter 1 
 

 

INTRODUCTION 
 

1.1 The complexity of human grasping 
In our every-day life we interact with a multitude of different objects and materials. Without 

consciously thinking about it, we can see an object and form appropriate grasps to interact with it. 

Our hands have a very delicate and complex structure, with their muscles and joints offering a great 

range of movement and precision. While typing away at my laptop, I can lift up my coffee cup to take 

a sip of coffee. I visually perceive the cup’s location, move my hand to the cup and effortlessly wrap 

my fingers around its handle to transport the cup to my lips. Certainly, I had previously left it in a 

position now known to me and in an orientation that made it easy to lift it up by its handle. However, 

even unknown objects in unknown orientations can be grasped and manipulated by us with ease. Yet, 

the underlying computational problem of how to successfully grasp a novel object is far more complex 

than we may feel it is.  

In order to successfully interact with the world and the objects around us, we must select a grasp 

strategy that satisfies both task and object requirements. That means the goal of our grasping action 

(e.g. quenching one’s thirst by guiding a cup of tea to one’s mouth and subsequently tilting it) must 

be combined appropriately with the object’s requirements (grasping the cup by its handle, to avoid 

the hot surface as well as keeping it level to avoid spillage). Choosing and performing the appropriate 

grasp for a given object is a computationally complex problem, due to an essentially infinite number 

of possible grasp locations and grasp movements. Even if we consider a simplified version of a grasping 

task with only two contact points, using only thumb and index finger, the question remains: 

How do we select a grasp strategy that satisfies task and object requirements? 

To address and expand on the challenges described above that we face in investigating grasping, this 

thesis is structured to first examine the specific properties of objects, then move on to describe the 

human hand as well as the specifics of grasping movements. Lastly, the Introduction will finish with 

an outlook onto the individual studies included into this dissertation (Chapters 2-4).  

1.2 The object 

1.2.1 Perception of object properties 
Already before a grasp commences, we can visually acquire information about the object to be 

grasped. We can detect the object’s location, which can be coded in allocentric or egocentric 
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coordinates. An egocentric reference frame represents the absolute position of the object with 

respect to the viewer, and an allocentric reference frame encodes the position of the object with 

respect to other objects in the environment (Colby, 1998). Humans can recognize and categorize 

objects quickly and accurately (Masquelier & Thorpe, 2010; Rousselet et al., 2002; Thorpe et al., 2001; 

Wiebel et al., 2013), even quicker than they can do so with materials (Sharan, 2009; Sharan et al., 

2014). How we perceive material properties, such as texture, color, or transparency, has been the 

focus of scientific experiments for over two centuries already (Julesz, 1981; Metelli, 1970; von 

Helmholtz, 1867; Young, 1802). Upon perceiving material, studies suggest we can recognize it belongs 

to a specific class, estimate its specific properties, or figure out how to manipulate the things around 

us (for a review, see Fleming, 2017).  

 
Figure 1.1: Office desk with four folders, a steaming cup of coffee, a glass filled with soda and ice cubes, a plate of raspberries, 

a light bulb, two computer screens with a keyboard and mouse, a plush bunny, a potted cactus, a stapler, a desk lamp, and a 

pair of scissors (left to right).  

Being able to predict an object’s material properties allows us to foresee suitable ways for interacting 

with that object. It is necessary to modify grasps, to account for an object’s material properties, such 

as mass, friction, and fragility. Not only can we estimate stable grasp locations, we can further predict 

the object’s response to our touch if we can work out what the object is made of. Lightweight, fragile 

objects, such as a raspberry in Figure 1.1, will need a gentler touch than the sturdy, much heavier glass 

filled to the rim. Yet, to visually estimate an object’s fragility, or its stiffness, is a challenge, because 

stiffness is not optically defined. We can, however, make assumptions based on prior knowledge 

associated with material classes or look for deformation cues (Paulun et al., 2017). Not only are we 

using visual cues related to shape deformation, motion, and optical appearance to decide which 

posture we choose to grasp an object. That choice might also depend on the object’s relationship to 

the environment, as well as our spatial relationship to the object to be grasped. Jeannerod (1981) 

differentiates between extrinsic and intrinsic object properties, which are discussed in detail below. 

1.2.2 Extrinsic object properties 
Extrinsic properties are spatial object properties in an egocentric body space, such as its location or 

distance (Sivak & Mackenzie, 1992), orientation with respect to the body (Chan et al., 1990; Jeannerod 
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& Decety, 1990), and, when the object is moving, its velocity and direction (Paulignan et al., 1991). 

These properties may include support constraints, such as the desk supporting the stapler’s underside 

(Figure 1.1), and additional obstacle constraints (e.g., the soda glass one has to reach around when 

trying to grasp the coffee cup in Figure 1.1 or Figure 1.2 (top)), as well. Even though orientation was 

initially categorized as extrinsic (Jeannerod, 1981), it is sometimes considered to be intrinsic 

(Jeannerod et al., 1995).  

 

1.2.3 Intrinsic object properties 
Intrinsic object properties are physical properties of objects that are fundamental to their design. 

These include structural properties (shape, size, distribution of mass and overall weight), surface 

properties (texture, hardness, and temperature), and functional properties (part motion, specific 

function). Participants can extract many intrinsic object properties relevant to the grasping task using 

the visual or the haptic system (Klatzky, 1990; Klatzky et al., 1987).  

During the planning phase of a grasping movement, humans can visually perceive object shape 

(Jeannerod, 1984; Klatzky & Lederman, 1988), volume (Klatzky & Lederman, 1988), surface spatial 

density (Klatzky et al., 1987) can infer the location of the center of mass, the CoM (Mason, 1986), and, 

while performance is better in extreme lighting directions, they can even perceive surface roughness 

(Bergmann Tiest & Kappers, 2007; Ho et al., 2006; Lawrence et al., 2007; Pont & Koenderink, 2008). In 

several experiments, participants were asked to report object size by matching the distance between 

two opposable surfaces of a target object by separating their thumb and index finger. When 

participants could see the object, but not see their own hands, mean grip size correlated positively 

with object size (Jeannerod & Decety, 1990). Even without visual cues, participants successfully 

reported object size through an aperture between thumb and index finger, after holding the object in 

their other hand and feeling its size (Chan et al., 1990).   

Some intrinsic properties may even be inferred through auditory cues (Owens et al., 2016). Using 

isolated simple sound events, listeners were able to determine object properties, such as size and 

shape (Carello, 1998; Grassi, 2005; Grassi et al., 2013; Houben et al., 2004; Kunkler-Peck & Turvey, 

2000; Lakatos et al., 1997), or material (Kunkler-Peck & Turvey, 2000). Once in contact with the object, 

humans can use the haptic sense to extract information about the object, such as roughness 

(Bergmann Tiest & Kappers, 2007; Lawrence et al., 2007). Specifically, through exploratory hand 

motions, we can perceive surface roughness, temperature, and weight (Klatzky et al., 1987), whereas 

weight can also be inferred from holding and jiggling the object (Brodie & Ross, 1985; Raj et al., 1985). 

Length, weight, moment of inertia, and center of mass can be perceived through wielding (Hoisington, 

1920; Solomon et al., 1989).  

Grasp posture is affected in multiple ways by intrinsic object properties, as object size and shape can 

impose limits onto potential contact locations for the fingers and hand. The same holds true for weight 

distribution and shape. Object surfaces in contact with other objects (such as the stapler’s underside 

resting flat on the desk in Figure 1.1) will not be available as initial contact locations for the grasp. The 

object’s weight and its hardness interact to constrain how many fingers can be used in a grasp and 

how strong the grip can be (Iberall & Mackenzie, 1994). The hardness of an object also influences the 

force required to impart motion to the object (Iberall & Mackenzie, 1994). The application of forces 

underlies frictional constraints, which are affected by object texture (Iberall & Mackenzie, 1994).   
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Figure 1.2: Office desk with items highlighted to visualize extrinsic (top) and intrinsic (bottom) object properties. Top: 

Examples of extrinsic object properties. The glass of soda presents an obstacle, when reaching for the cup of coffee. All items 

are positioned at a certain location and with a specific distance to the observer. When moving the mouse around on the desk, 

it has a certain velocity and moves in a specific direction. The desk lamp’s top part is set up in a specific orientation. Bottom: 

Examples of intrinsic object properties. Four folders differ in their size. A steaming cup of coffee is hot. The glass filled with 

soda and ice cubes is cold. A raspberry is soft and delicate, whereas the light bulb is hard. The plush bunny and the potted 

cactus show a similar global shape (the bunny’s ears and head are shaped similarly to the cactus), but the cactus has a 

different texture and local features. The stapler is used with a specific downwards motion, the pair of scissors with a rotational 

part motion. The desk lamp might tilt, depending on its mass distribution. 

1.3 The human hand as an end effector 
The human hand is highly versatile with over 25 degrees of freedom (i.e. independent states of a 

system or the number of values free to vary independently (Pitarch et al., 2005; Touvet et al., 2012). 
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It is composed of a collection of bones, muscles, tendons, ligaments, fascia, and vascular structures 

wrapped in a thin layer of skin. First, we reach out and our hand opens up into a suitable shape to 

grasp and manipulate the object according to the task we envisioned. Yet, we do not consciously plan 

explicit movements for individual fingers or joints, nor do we need to see the entire object from all 

possible perspectives in order to form the grasp. When our fingers move towards and touch an object, 

thousands of sensors in the skin, muscles, and joints can send information about the current state to 

our brain. We use our hands every day to touch and feel, to pick up and manipulate objects, to explore 

the world around us. Using small movements of as little as one digit, we can scroll through the internet 

on our smart phones, buy musical instruments, and even learn to play them. 

Taking into account what the human hand is capable of, we aim to adopt a stable grasp pose while 

being able to produce the movements needed for the given task. What exactly determines a stable 

grasp, depends on the object’s properties, as well as the forces applied by our hand. When we speak 

of a stable grasp, it is considered to keep the grasped object secure in the grasp, even when the object 

turns out to be more slippery than anticipated, or it unexpectedly collides during transport with 

another object. That means, if any error in object position brought on by a disturbance goes away 

soon after the disturbance goes away, the grasp is stable (Bruyninckx et al., 1998; Howard & Kumar, 

1996; Lin et al., 1997). Specifically, the skin of our hand and fingers offers properties critical for secure 

grasping: no (or minimal) hair growth enables high friction. Our skin provides sensibility, force 

generation, compliance, adhesion through the specific characteristics of our epidermis, dermis, and 

the papillary ridges, the visible ridges on the skin of our palms and fingers. These characteristics are 

found almost exclusively in the friction surfaces of primates and marsupials (Montagna & Parakkal, 

1974). These ridges help increasing grip and facilitating weight bearing through the increased surface 

area and specific pattern. Thus, our hands seem to be equipped to form a secure grasp. Below, it will 

be discussed, how the entire grasp movement can be divided into its individual components.  

1.3.1 The stages of a grasp 
When we want to investigate how grasping is controlled, we should first describe and understand the 

individual stages of the grasping movement and explore the parameters that influence it. Marc 

Jeannerod’s influential study  (1981) declared the grasp as a combination of transporting the hand 

and adjusting the grip. Jeannerod connected hand posture to the graspable object’s size and shape 

(intrinsic properties) and movements of wrist and arm segments to be governed by extrinsic object 

properties, such as location.  

1.3.1.1 Approach/ reach 

Once we have made the decision to grasp an object, e.g., the stapler from Figure 1.1 and Figure 1.2, 

our hand can start moving towards that object following a curved trajectory. The exact path can be 

influenced by many factors, such as the distance between us and the target object (Jakobson & 

Goodale, 1991) or the orientation of the object (Desmurget & Prablanc, 1997; Fan et al., 2006; 

Gentilucci et al., 1996; Mamassian, 1997). Obstacles located close to the trajectory or the object can 

also affect the approach trajectory, as the presence of obstacles may limit the range of possible 

postures, thus influencing the choice of grasping points. Grasp locations, however, only seemed to be 

affected by the presence of obstacles, if they were placed too close to the otherwise preferred grasp 

locations and therefore constrained the movement (Garzorz et al., 2018; Rosenbaum et al., 2001; 

Voudouris et al., 2012b).  
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Figure 1.3: The stages of the grasp. (a) Graspable object: stapler on this office desk. (b) Hand approaching the stapler to grasp 

it. (c) Thumb and index finger making contact with the stapler, initiating the Contact phase of the grasp. (d) The stapler is 

lifted off the desk in the Lift phase. 

 

The reach component of the grasp is divided into a shorter acceleration phase at the beginning and a 

longer deceleration phase towards the end of the movement (e.g., Jeannerod, 1984; Mon-Williams & 

Tresilian, 2001; Smeets & Brenner, 1999). When the precision requirements of grasping and aiming 

tasks are varied (pointing vs. grasping; grasping a tennis ball vs. a light bulb; placing vs. throwing; 

(Marteniuk et al., 1987)) the deceleration phase at the end of the movement is lengthened 

disproportionally to the rest of the movement. The duration of the reach movement depends on the 

distance between the hand’s start location and target object (Jakobson & Goodale, 1991), but also the 

perceived slipperiness of the object’s surface (Fikes et al., 1994) or perceived fragility of the object 

(Savelsbergh et al., 1996) and was shown to increase with object distance (Kudoh et al., 1997) and 

decrease with object size (Marteniuk et al., 1990). 

 

As our hand moves towards the object, our fingers are already preshaped in anticipation of the 

object’s shape (Jeannerod, 1981). For the most commonly studied grasp, the precision grip, the 

maximum distance between index finger and thumb during the approach is called maximum grip 

aperture (MGA) (Jeannerod, 1984, 1986; Smeets & Brenner, 1999), which occurs when the hand is 

decelerating towards the object (Castiello, 2005; Jeannerod, 1984; Mon-Williams & Tresilian, 2001; 

Smeets & Brenner, 1999). The MGA’s size and timing can be affected by the object’s shape (Cuijpers 

et al., 2004; Verheij et al., 2014), size (larger MGA for larger objects; e.g., Jeannerod, 1981; Marteniuk 

et al., 1990, size and distance (Jakobson & Goodale, 1991)), weight (higher weight increases the MGA; 

(Eastough & Edwards, 2006); higher weight increases movement duration; (Fleming et al., 2002)), or 

other factors. Depending on how the target object is oriented and which surfaces are available as 

potential contact locations, that will constrain the orientation of the reach. As object shape, material, 

and orientation continue to be factors influencing different stages of the grasp, they will be 

investigated in our studies as well.   
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1.3.1.2 Contact 

Upon contact with the object, the approach ends and the touch phase begins. Our fingers are pressed 

against the object on contact, stabilizing the object. Where our digits make contact with the objects 

has presumably already been determined before the approach began (Voudouris et al., 2010) even 

though adjustments may occur during movement execution (Chen & Saunders, 2015). Initial grasp 

selection may be influenced by several object properties, such as its shape (Cuijpers et al., 2004; 

Goodale et al., 1994; Kleinholdermann et al., 2013; Lederman & Wing, 2003), size (Paulignan et al., 

1997), surface friction (Fikes et al., 1994), mass, mass distribution, and center of mass (Crajé et al., 

2011; Eastough & Edwards, 2006; Endo et al., 2011; Goodale et al., 1994; Kleinholdermann et al., 2007; 

Lederman & Wing, 2003; Lukos et al., 2007; Paulun et al., 2016), and position (Desmurget & Prablanc, 

1997; Paulignan et al., 1997; Schot et al., 2010), as well as factors determined by the way our hand is 

positioned within our body structure and the way our digits can move, i.e., grasp orientation (Cuijpers 

et al., 2004; Lederman & Wing, 2003; Paulun et al., 2016; Roby-Brami et al., 2000; Schot et al., 2010; 

Voudouris et al., 2010) and the size of the grasp (Cesari & Newell, 1999). Starting out from a relaxed 

posture, where your right hand and arm rest on a table surface in front of you, it might be possible to 

grasp an espresso cup, located slightly to your left side with ease. However, if you had to grasp a big, 

two-liter water bottle, located on a higher shelf to the right of your hand, you might want to readjust 

your entire body position before coming in contact with the object. The fact that our hands are 

asymmetrical and the way our hands can move does constrain factors such as grasp orientation or the 

size of the grasp.  

1.3.1.3 Lift 

We start applying forces at our fingertips as soon as we touch the object’s surface. Grip force is exerted 

perpendicular to the surface normal whereas load force counteracts gravity tangentially to the 

object’s surface (Edin et al., 1992; Forssberg et al., 1991; Johansson, 1991; Johansson & Westling, 

1984b, 1988; Kinoshita et al., 1997; Macefield et al., 1996; Westling & Johansson, 1984). The grip force 

humans use when lifting and manipulating objects follows an optimization process: it is large enough 

to prevent the object from slipping, but not so large as to cause the object or hand to be damaged or 

the muscles to become fatigued. As load forces increase or decrease, grip force (normal to the grasp 

surface) is automatically adjusted along with them (Johansson & Westling, 1984b; Westling & 

Johansson, 1984). Before the object is lifted up and right at the beginning of the movement, both 

forces increase simultaneously (Johansson & Westling, 1984b; Westling & Johansson, 1984). For a 

heavier object, this handling or loading phase (time between touching and lifting the object) is longer, 

because overcoming gravity requires more force than with a lighter object (Johansson & Westling, 

1984b). When asked to pick up objects of varying weights, both grip and load force were affected 

(Johansson & Westling, 1984b; Westling & Johansson, 1984, 1987). Varying the surface texture on the 

other hand, seemed to influence only grip force, not load force (Johansson & Westling, 1984a, 1990), 

suggesting that participants had to grip a more slippery object more forcefully to achieve the same 

load force.  

It has also been shown that participants grasp objects with more force than necessary to keep the 

object from slipping (Westling & Johansson, 1984), with this additional force, or safety margin, being 

fairly constant (Goodwin et al., 1998; Jenmalm et al., 1998).  
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1.3.1.4 Objective of the Grasp 

A grasp is dexterous if the hand can manipulate the object in a manner that is appropriate for the task 

at hand. What follows the lift depends on which task we wish to accomplish and which goal is imposed 

on the grasp (Napier, 1956). After an object is lifted up from a table, it can be held and released back 

onto the table, or can be transported to be released elsewhere. If planning a specific action (e.g., 

rotating an object a certain amount), we may select grasps that consider the end-state comfort of the 

movement  (Rosenbaum et al., 1990). That is the tendency to choose an initially potentially 

uncomfortable grasp pose to allow a more comfortable end pose, once the grasping task is completed. 

As an example, you can think of grasping a light bulb. You might pick it up differently, depending on 

what you aim to do with it – depending on the task. If you want to pick it up to place it into a box, you 

might grasp its metal part. However, if you want to screw it into your lamp, you will pick it up at the 

glass part and turn your hand to an initially potentially strained joint angle, in order to allow guiding 

its grooves in a rotating fashion into your lamp. That way, by the time you let go of the light bulb, you 

end the contact phase in a more comfortable position compared to how you initially started the 

rotation movement. Similarly, we can think of joint actions, where we anticipate our partner’s goal 

(Sacheli et al., 2012, 2013, 2015) and even their end-state comfort (Dötsch et al., 2021; Dötsch & 

Schubö, 2015). When I am asked to hand a screwdriver to a friend, I will pick it up by the pointy end 

to place the handle into my partner’s hand. That way, they can use the screwdriver right away.  
 

 

1.3.2 Important factors for stable grasps (precision grips) 
To create, maintain, and release a stable grasp involves considering a variety of forces and torques, as 

there are many complex interactions between the skin and the object surfaces. Furthermore, it is 

important that a stable grasp is maintained during further manipulations. The hand should be able to 

generate torques and forces that will restore stability even after small external perturbations. Where 

stable grasps can be achieved on an object depends on a variety of factors, which I will introduce for 

the precision grip in this section. Working similar to tweezers, in a precision grip (or pinch grip), the 

thumb is located opposite the fingertip and can thereby manipulate even delicate objects (Napier, 

1956). The precision grip allows the hand to grasp even small objects with a controlled grip.  

1.3.2.1 Force closure 

We start applying grip force as soon as we touch the object’s surface. To avoid the object slipping out 

of the grasp under the grip force, potential grasp locations should be in force closure, a criterion 

borrowed from the robotics literature (Nguyen, 1988). In earlier studies Jameson and Leifer (1987) 

and Ji (1987) suggested algorithms for finding "double normals" (i.e., faces with opposed, collinear 

normals) on the object surface and Iberall, Bingham, and Arbib (1986) called this requirement the 

opposition space. A grasp that fulfills the requirements of force closure (like the grey grasp in Figure 

1.4a) is considered stable and can resist an arbitrary wrench applied to the object. Force closure is a 

physical necessity for a successful grasp. The surface normals of a two-digit force closure grasp are 

required to be approximately aligned (see purple arrows in Figure 1.4a). That means, in order to hold 

the object steadily, the index and thumb surface normals should align with those of the object’s 

surface at the contact points. Where the surface normals are too far from alignment, the object will 

slip out of the grasp (purple grasp in Figure 1.4a).  
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Figure 1.4: Important factors at play when grasping a stapler. a) Force closure. b) Grasp axis. c) Grasp aperture. d) Torque. e) 

Different tasks of either handing the stapler off to another person (top) or using it to staple together some pages. f) Visibility/ 

object occlusion. 

 

1.3.2.2 Friction 

How far from alignment is tolerable, depends on the friction coefficient. The object and the hand 

surfaces together determine the coefficient of friction. Westling and Johansson (1984b) examined 

how to grasp objects that have different textures and weights with precision grips. Sandpaper, for 

example, has a higher frictional component to the interactive forces than suede or silk, which have a 

lower frictional component. Not only can different objects be made of various materials and therefore 

have different friction coefficients, also the skin of our fingers can change. Naylor (1955) found that 

the coefficient of friction varied with changes in the skin's surface caused by environmental conditions, 

as he had participants sweat by sitting under blankets. A stable grasp is always required to have its 

grasp axis (the dotted lines connecting the two contact points in Figure 1.4a) fall within the cones of 

friction (Iberall et al., 1986; Kerr & Roth, 1986) of both digits. This is an important physical constraint 

for a successful grasp, because this way the object will stay securely between thumb and index finger, 

even once it is grasped and lifted.  

 

1.3.2.3 Torque 

Another factor that can be used to evaluate grip quality is torque (Goodale et al., 1994). A preferred 

grasp location will minimize the distance between grasping axis and the object’s center of mass (CoM) 

(Lederman & Wing, 2003). A grasp, where the connection between index finger and thumb contact 

point on the object (i.e. the grasping axis) leads through the object’s CoM, will yield low torque and it 

will be easier to lift the object straight up compared to a high torque grasp. A grasp far from the 

object’s CoM will instead cause the object to rotate under the force of gravity (see Figure 1.4d), likely 

making subsequent object manipulation unstable. Yet, grasps with similar torques my still require 

different grip forces to keep the object from rotating between your fingertips. In some cases it is 

possible to partially compensate for torque by vertically offsetting the position of the fingers. In other 
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cases, applying larger grip forces will satisfy the requirement for rotational friction (Hartmann, 2022; 

Maiello, 2022). 

1.3.2.4 Natural grasp axis and comfortable grasp poses 

Our arm and hand have a specific number of degrees of freedom and a limited range of motion. 

Consequently, there are natural movements and configurations of our hand in space that will feel 

comfortable and stable for grasping. It has been argued that we usually use hand postures that keep 

our joint stabilized and where forces can be applied optimally while avoiding strain on ligaments and 

muscles (Chao et al., 1976). This becomes apparent, when we perform grasps, or in this case, imagine 

to perform them: Imagine moving your hand to grasp the stapler in Figure 1.1. There certainly are 

some movements and hand poses that can feel much more comfortable and natural (grey hand pose 

in Figure 1.4b) than others (orange hand pose in Figure 1.4b). This becomes drastically clear if you 

were to try and rotate your hand to switch your thumb and index finger positions on a grasp. Hence, 

the factor of comfort is an important aspect of grasping that determines how we move and orient our 

wrist for a grasp (Kleinholdermann et al., 2013; Lederman & Wing, 2003). When asked to pick up 

cylinders with a precision grips, participants clearly had a preference for a certain grip angle (Cuijpers 

et al., 2004; Lederman & Wing, 2003) which depended on object location (Schot et al., 2010). We can 

measure the vector between thumb and index finger (orange arrows in Figure 1.4b) in this preferred 

configuration and call this the NGA. Small deviations from the natural grasp axis (NGA) will still be 

comfortable and possible, whereas large deviations will be uncomfortable and difficult.  

1.3.2.5 Comfortable grasp aperture  

Cesari and Newell (1999) have shown that for small lightweight objects, humans use precision grasps, 

but with increasing object size and weight, they switch to multi-digit grasps. A comfortable grasp 

aperture depends on a human’s individual hand size and their specific grip size, as well as the object’s 

material properties. A grasp pose with our optimal grip size (i.e. distance between thumb and index 

finger tip) can best apply forces at the fingertips. The small aperture grey grasp in Figure 1.4c allows 

for a stable grasp. Large deviations from this aperture will make it difficult or even impossible to apply 

the necessary forces for a successful grasp (see blue grasp in Figure 1.4c).  

1.3.2.6 Visibility 

Object visibility can be affected by how we choose to position our hand (Bozzacchi et al., 2018; Huang 

et al., 2012; Maiello et al., 2019; Paulun et al., 2014; Volcic & Domini, 2014). In Figure 1.4f, the red 

grasp occludes the majority of the grasped object, whereas the grey grasp leaves almost the entire 

stapler visible during the grasp. Visual feedback is found to be particularly important during later 

stages of the reach movement (Bozzacchi et al., 2018; Churchill et al., 2000; Fukui & Inui, 2013a, 

2013b; Gentilucci et al., 1994; Rand et al., 2007), but it was also found that during handling, grasp 

locations that allow for more visibility of the object are preferred over occluding grasp points (Maiello 

& Paulun, 2019).   

1.3.2.7 Task 

Even though, the touch technically only consists of the two components making contact (object and 

hand), the task or goal of movement, however, is another key factor influencing where and how we 

execute the movement to perform the grasp (Napier, 1956). The timing of the movement onset is not 

merely limited by the muscles’ electromechanical delay times, but task complexity as well. Henry and 

Rogers (1960) found that reaction times increased with task complexity. It has also been shown that 
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we may even choose an initially more uncomfortable grasp pose, in order to achieve a comfortable 

pose at the end of the grasp movement, where we might release the grasp. This concept is known as 

end-state comfort (Rosenbaum et al., 1990).  

These factors have been extensively studied and continue to amaze researchers interested in grasping.  

It has not yet been solved, how the human brain computes how these factors affect stable grasping, 

how they interact, and what their relative importance is. This thesis will investigate the importance 

and the interaction of multiple factors, as well as how our brain computes successful grasp locations. 

1.4 Beyond precision grips 
Objects can be grasped and moved in different ways: using power grips or precision grips. With ease, 

we can configure our hands in many distinct ways. This depends on the size, shape, weight, and ease 

of handling of the object. Precision grips are used for small, delicate objects, whereas power grips are 

better suited for large, heavy objects. But how do we go from a visual representation of an object in 

front of us with a specific task in mind (e.g. seeing the stapler on my desk and wanting to staple my 

latest publication) to configuring our hand in a pose, appropriate to perform the required action 

(stapling a couple pages together at the top corner (see Figure 1.4e))? Even if we think of the goal of 

the action as “stapling”, most grasping actions’ key goals include not dropping the object and 

therefore establishing and maintaining a stable grasp.  

 

Even over the course of a single task with a single object, the hand adopts different grips to adjust to 

changing force/torque conditions. The role of task forces and torques on grip choice is most apparent 

when the hand shifts between grips during a task. Imagine, e.g., unscrewing a jar lid. In this case, 

additional friction and torque are desired, as they are required to open the jar. For extra torque, the 

palm of the hand is pressed against the lid in the beginning. With the lid loosening, dexterity becomes 

more important than torque, causing the hand to adopt a light grip where only the fingertips touch 

the jar lid. Napier first noticed this task dependence (Napier, 1956) and suggested categorizing grasps 

based on their function rather than their appearance. He divided grasps into precision grips and power 

grips.  

 

1.4.1 Power grips 
Power grips are characterized by large areas of contact between the grasped object and the fingers 

and palm, and almost no ability for the fingers to impart motion. Power grips are used to hold objects 

in the palm of the hand and use long flexor tendons to pull the fingers and thumb in order to tightly 

grasp them. Where considerations of stability and security predominate (as in holding a hammer or 

getting a jar lid unstuck) a power grasp is chosen. A heavier object and a smoother surface require 

more strength to move and hold. Where considerations of sensitivity and dexterity predominate 

instead, a precision grasp is chosen. In precision grasps, the object is held with the tips of the fingers 

and thumb. 

 

1.4.2 Grasp Taxonomies  
There are several examples of grasp taxonomies in the literature (Abbasi et al., 2016; Feix et al., 2016; 

Stival et al., 2019). In one study, concerned with grasp classification, canonical hand poses are 

primarily based on observations. The recent study (Feix et al., 2016) has converged on a set of 33 

different grasp types, by comparing publications from the field of robotics, biomechanics, 
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occupational therapy, and developmental medicine. They divide grasps into power, intermediate, and 

precision grips using two to five digits. How these, however, compare to our everyday grasp poses 

used in unconstrained life remains unclear. A data driven approach is needed to check, how grasps 

cluster. Ideally, an approach capable of replicating soft tissue deformations while grasping. These 

occur at the fingertips of the human hand during contact, as a human grasp does not only produce 

one individual contact point per finger/thumb. In fact, humans can use haptic feedback, also derived 

through these deformations and tactile mapping to recognize objects and infer their characteristics.  

A more recent study (Sundaram et al., 2019) presents a tactile glove, for which a cognitive neural 

network (CNN) can accurately classify eight different pantomimed grasps. The same glove is used to 

grasp 26 objects, which can be recognized by how their surface connects to our hand. This compares 

our hand's surface to a haptic grip retina. In the future modelling will open the door into predicting 

grips, even taking into account soft tissue deformations that occur at our fingertips or wherever else 

the skin deforms upon contact with the grasped object or itself. As a result, we will be able to move 

from the selection of contact points to studying contact areas on an object. 

1.5 Two-streams hypothesis 
The human brain controls fine and complex movements, such as grasping. The right hand is controlled 

by the left hemisphere of the brain and vice versa. In the early 1990s David Milner and Mel Goodale 

proposed the two-streams hypothesis (TSH) that argued for a dorsal visual processing stream 

associated with vision-for-action and an anatomically and functionally independent ventral processing 

stream that deals with object perception and recognition. This model has been extremely successful 

in driving forward our understanding of the visual brain and has inspired a considerable amount of 

research investigating visually guided behavior.  

After performing multiple macaque monkey lesion studies, Unglerleider and Mishkin were the first to 

postulate that the dorsal processing stream, the ‘where-pathway’, spreads from V1 dorsally to the 

parietal lobe and processes location, distance, relative position, position in egocentric space, and 

motion (Mishkin & Ungerleider, 1982). The ventral processing stream, the ‘what-pathway’, allows 

perceiving and recognizing shape, orientation, size, objects, faces, and text.  

Milner’s and Goodale’s TSH suggested the different perceptual processing streams should be outlined 

in terms of what the visual information is used for, instead of what type of input is received. The TSH 

postulates a clear anatomical and functional separation between the two steams, with no or minimal 

cross-talk between the two pathways. The ventral pathway (the ‘what-pathway’) is concerned with 

visual recognition, memory, and emotional content and may lead to a conscious percept. No 

introspection is possible along the dorsal route (the ‘how-pathway’), which processes visual 

information for action and feeds into the motor cortex and frontal lobe. In both cases the TSH assumes 

a linear, hierarchical relationship between the posterior and anterior processing stages of each 

pathway.  

When the availability of research methods grew, the original TSH has been challenged a number of 

times (e.g., de Haan & Cowey, 2011; Jackson & Shaw, 2000; Jeannerod & Jacob, 2005; Mishkin & 

Ungerleider, 1982; Rizzolatti & Matelli, 2003; Rossetti et al., 2003; Schenk & McIntosh, 2010; Singh-

Curry & Husain, 2009). Functional brain imaging became available and made whole-brain, 

connectivity, and functional brain network analyses possible. Together with the use of computer-

intensive modelling some objections to core ideas of the TSH were raised. Specifically, the clear 
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anatomical and functional independence of the two streams, based on a double dissociation of visual 

form agnosia and optic ataxia, could no longer be sustained.  

On the journey of understanding visual perception for action, which is what this thesis is concerned 

with, functional brain imaging provides an exciting tool to investigate how brain networks encode 

object material and object weight for grasping. Given that visual perception of object shape and 

material distribution are putatively a ventral-stream function; whereas, grasping is putatively a dorsal-

stream function, we investigated the role of brain regions in both streams during grasping of multi-

material objects. Compared to the original TSH, the brain's functional anatomy is argued to have (1) 

increased complexity in the processing of object representations and visually guided actions, to have 

(2) more visual processing streams than originally hypothesized, as well as (3) a set of highly interactive 

brain networks that can combine flexibly and dynamically according to the tasks at hand. In Chapter 4, 

we provide insights into which regions from both visual streams are recruited, when materials and 

their distribution are relevant for grasping. 
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1.6 Overview: Motivation and core questions 
Precision grip grasping seems like a trivial task, but there are many combinations of two contact points 

between object and digit, which yield uncomfortable and impossible grasps. Consequently, the task 

of finding and executing successful and suitable grasps is far from trivial. In our research, we aim to 

answer the questions: 

 

How does our brain compute which grasp configuration will be successful? 

 

Which factors play the largest role in grasp selection  

and how do multiple factors interact? 

 

 

 

 

 

 

STUDY I 

Predicting precision grip grasp locations on three-dimensional objects  
Our first study aimed at solving which grasp configurations were employed to pick up objects and to 

reveal what individual aspects of those grasps made them favorable. We recorded and analyzed 

grasping behavior and then combined the results with a computational model to predict where novel 

objects would be grasped to answer the question: 

What factors determine optimal grasp locations  

and optimal human grasp poses?  

In our experiments, human participants grasped different 3D objects with a precision grip. We tracked 

their movements with markers on their thumb and index finger, connected to an Optotrak motion 

capture system, to measure the contact points between object surface and thumb and index finger. 

The objects varied in shape, material configuration, and orientation and were made up of wooden and 

brass cubes. For our final experiment, we 3D printed smooth plastic objects.  

We found that human grasps were highly regular and constrained. For any given object, grasp clusters 

occupied only a very small portion of the entire graspable space available to the thumb and index 

finger. Our research showed that the grasps on our objects clustered following only a few constraints. 

These optimal grasp constraints included criteria based on:  

Force closure 

The surface normals of a two-digit grasp in force closure needed to be approximately 

aligned for a stable grasp. This is a physical necessity.  
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Minimum torque  

A high torque grasp (where the connection between digit contact points was 

far from the object’s center of mass) would produce an unstable grasp where 

the object tended to rotate under gravity. Our experiments confirmed that 

object mass and mass distribution modulated grasp point selection in such a 

way that participants aimed to reduce torque. 

Natural grasp axis (NGA)  

When grasping spheres, cylinders, or simple shapes, humans exhibited a 

preferred grasp orientation, in which the vector between thumb and index 

finger is called the Natural grasp axis, or NGA (Cuijpers et al., 2004; Lederman & 

Wing, 2003; Paulun et al., 2016; Roby-Brami et al., 2000; Schot et al., 2010; 

Voudouris et al., 2010). 

Optimal grasp aperture (OGA)  

Due to their limited movement range, our fingers have an optimal grip size (i.e. 

distance between thumb and index finger tip) in which we can best apply forces at the 

fingertips. Large deviations from this Optimal grasp aperture (OGA) would make it 

challenging or even unmanageable to apply the necessary forces to form a successful 

grasp.   

Optimal visibility  

Related behavioral work (Maiello et al., 2019) suggested that participants aimed to 

keep object occlusion to a minimum as they grasped it. In our study, we observed 

that participants favored grasps that enabled good visibility of the object over 

grasps where their hand would occlude large portions of the object.  

For each constraint and each arbitrary 3D object, we could compute how far away every possible grasp 

was from optimally satisfying each of the five constraints. We computed for every combination of 

index finger and thumb contact points on the object, how far that combination was away from fulfilling 

e.g., force closure. We used this procedure to reveal optimal grasp configurations for each factor. We 

then combined the results for all five factors to create a global penalty map, which showed at its 

minima the overall optimal grasp locations. Projecting the human grasps from our experiments onto 

our maps, revealed that they neatly aligned with the maps’ minima. 

Conversely, to investigate where predicted, optimal grasp locations were located on the objects, we 

projected optimal grasp locations, i.e., minima from our maps, onto our objects. We found that those 

were very similar to the human data. Furthermore, the model even worked beyond the blocky, 

wooden and brass objects for which the model was initially designed: in a final experiment, we 3D 

printed novel, curvy objects out of a lightweight plastic. Even these were grasped by participants at 

locations very similar to those predicted by our model. 

Thus far, our work showed that human grasps align with our optimal grasp constraints. Yet, there were 

various questions that still needed to be addressed. We were interested in where and how humans 

computed these constraints and how they interacted. 
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STUDY II 

Friction in preferred over grasp configuration in precision grip grasping 
An object’s material properties affect how humans can appropriately interact with it. In our first study, 

we had incorporated the material related properties of object mass and mass distribution through the 

factor torque into our model. Previous studies suggest that surface friction is another important factor 

affecting the selection of grasp locations, because low friction surfaces required greater grasp force 

to stabilize the grasp. In this study, we therefore evaluated the importance of surface friction in grasp 

selection by posing the question 

How do multiple grasp relevant factors interact: 

is grasp stability or grasp configuration considered more important? 

In this study we pitched surface friction against a constraint that had a strong 

influence on grasping in our previous study: the natural grasp axis (NGA). First, 

we measured each individual participant’s preferred grasp posture, their NGA, 

using a brass cylinder. Then we used three cuboids of identical weight made of 

brass with manipulated surfaces. One object was a brass cuboid, the other was 

the same brass cuboid, except that two opposing sides were covered with a 

thin strip of wood, providing slightly higher friction than the brass surfaces. 

Two of the third cuboid’s sides were covered with sandpaper while the other 

sides were smeared with Vaseline to make them slippery.  

In one experimental condition the objects’ corners were aligned to the 

individual NGA. That means that the NGA effectively splits the object in 

half along its diagonal. If the NGA were the only factor influencing 

where participants grasped, by design, participants should not have 

had a preferred pair of sides in this experimental condition. 

Consequently, their grasps should have fallen on either side 50% of the 

time. If, however, surface friction played a role in choosing where to 

grasp, their grasps should have fallen on a favored pair of sides. We 

found that the latter hypothesis held true, as participants favored the 

higher friction surfaces. 

The second set of conditions investigated further, how this strong influence 

of surface friction compared to the previously identified strong influence of 

the NGA. We rotated the object corners away from the NGA, practically 

aligning one pair of sides with the NGA. While the brass object was grasped 

almost exclusively at the NGA-aligned pair of sides, the sand paper-

Vaseline object was grasped away from the NGA, when the Vaseline-

covered sides were aligned with it. We found that surface friction played a 

key role in grasp selection, strong enough to even overrule grasp locations 

potentially dictated by the NGA. Participants adopted even highly unusual 

grasp poses in order to grasp higher friction surfaces.  
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STUDY III 

Distinct neural components of visually guided grasping during planning and 

execution 
We conducted an fMRI study to identify the brain networks for planning and executing visually guided 

grasping. We focused on a subset of factors that previous research confirmed to be relevant to grasp 

selection: Grasp axis, aperture, and object weight. Specifically, we selected specific grasps on L-

shaped, multi-material objects that disentangled the relative contributions of these factors, by using 

a computational approach, which predicted human grasp locations. Which brain networks were 

responsible for computing certain grasping constraints was still unknown. Previous studies suggested 

that selection of the grasp axis and aperture were putatively a dorsal stream function, while visually 

estimating material properties relevant for estimating torque was putatively a ventral stream task. 

Furthermore, the timing of these computations remained unclear. That lead to the questions: 

Which distinct grasping constraints are 

represented in distinct cortical areas and which brain networks? 

Which attributes of grasping are coded before and which after initiation of the grasp? 

We asked participants to grasp three real L-shaped objects, one 

made of wood and the others made of wood and brass. Specific 

grasps were cued on the objects, preselected in order to 

differentiate our three components of grasping. I.e., in terms 

of the necessary hand orientation, a chosen grasp would be 

close to ideal, but its aperture might be suboptimal. In each 

trial, participants first visually planned and then executed the 

cued grasp. As these grasps were being planned and executed, 

we examined blood-oxygen-level-dependent (BOLD) activity 

using fMRI. 

The conditions were selected, specifically so that they would create three 

uncorrelated representational dissimilarity matrices (RDMs) for each model 

of interest. We correlated neural activation patterns in regions of interest 

(ROIs) along both, dorsal and ventral streams, with our model RDMs during 

planning and execution phases.  

We found that grasp axis was strongly encoded through visual and motor regions along the dorsal 

pathway during the planning phase. Grasp aperture was encoded in ventral and pre-motor areas 

during both planning and execution of the grasp. Object mass was more robustly encoded during grasp 

execution in dorsal and ventral stream and motor areas. In general, sensorimotor processing switched 

from grasp planning in the dorsal stream over to the ventral stream during grasp execution. Overall, 

dorsal and pre-motor areas encoded the components tied to our hand movements during grasp 

planning, whereas ventral areas involved in encoding grasp-relevant object properties were recruited 

in the execution phase. Presumably, this was when forces, related to object mass, needed to be 

applied and adjusted.  
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Taken together, the research presented in this thesis shows that humans used visually perceived, 

action-relevant physical object properties to plan how to grasp an object. Our behavioral experiments 

demonstrate how intrinsic and extrinsic object properties were combined with constraints imposed 

by the anatomy of the human hand to determine grasp locations. Specifically, our approach uncovered 

interactions between different constraints, which allowed us to accurately predict grasp locations for 

novel objects. Our neuroimaging investigations instead uncovered, for different the stages of a grasp, 

the distinct networks of brain areas involved in computing the different constraints. 
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Chapter 2 
 

 

STUDY I 

Predicting precision grip grasp locations  

on three-dimensional objects 
 

 

A similar version of this manuscript has been published as: 

Klein, L. K., Maiello, G., Paulun, V. C., & Fleming, R. W. (2020). Predicting precision grip grasp locations 

on three-dimensional objects. PLOS Computational Biology, 16(8), e1008081. 

https://doi.org/10.1371/journal.pcbi.1008081 

 

 

We rarely experience difficulty picking up objects, yet of all potential contact points on the surface, 

only a small proportion yield effective grasps. Here, we present extensive behavioral data alongside a 

normative model that correctly predicts human precision grasping of unfamiliar 3D objects. We 

tracked participants’ forefinger and thumb as they picked up objects of 10 wood and brass cubes 

configured to tease apart effects of shape, weight, orientation, and mass distribution. Grasps were 

highly systematic and consistent across repetitions and participants. We employed these data to 

construct a model which combines five cost functions related to force closure, torque, natural grasp 

axis, grasp aperture, and visibility. Even without free parameters, the model predicts individual grasps 

almost as well as different individuals predict one another’s, but fitting weights reveals the relative 

importance of the different constraints. The model also accurately predicts human grasps on novel 

3D-printed objects with more naturalistic geometries and is robust to perturbations in its key 

parameters. Together, the findings provide a unified account of how we successfully grasp objects of 

different 3D shape, orientation, mass, and mass distribution.  
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2.1 Introduction  
In everyday life, we effortlessly grasp and pick up objects without much thought. However, this ease 

belies the computational complexity of human grasping. Even state of the art robotic AIs fail to grip 

objects nearly 20% of the time (Levine et al., 2018). To pick something up, our brains must work out 

which surface locations will lead to stable, comfortable grasps, so we can perform desired actions 

(Figure 2.1a). Most potential grasps would actually be unsuccessful, e.g., requiring thumb and 

forefinger to cross, or failing to exert useful forces (Figure 2.1b). Even many possible grasps would be 

unstable, e.g., too far from the object’s center, so it rotates when lifted (Figure 2.1c). Somehow, the 

brain must infer which, of all potential grasps, would actually succeed. Despite this, we rarely drop 

objects or find ourselves unable to complete actions because we are holding them inappropriately. 

How does the brain select stable, comfortable grasps onto arbitrary 3D objects, particularly objects 

we have never seen before?  

 

 

Figure 2.1. The computational complexity of human grasp selection. (a) Possible (b) Impossible (c) Possible but uncomfortable 

or unstable grasps.  

Despite the extensive literature describing human grasping patterns, movement kinematics, and grip 

force adjustments (Bozzacchi et al., 2016; Christopoulos & Schrater, 2009; Eloka & Franz, 2011; 

Goodwin et al., 1998; Jenmalm & Johansson, 1997; Johansson & Westling, 1984b; Karok & Newport, 

2010; Rosenbaum, Meulenbroek, Vaughan, & Elsinger, 1999; Rosenbaum, Meulenbroek, Vaughan, & 

Jansen, 1999; Smeets & Brenner, 1999; Smeets & Brenner, 2001; Volcic & Domini, 2014, 2016), little 

is understood about the computational basis of initial grasp selection. Few authors have attempted to 

study and model how humans select grasps (e.g. Gilster et al., 2012; Kleinholdermann et al., 2013), 

and even then, only for 2D shapes. This is because, even for two-digit precision grip, many factors 

influence grasping. Object shape must be considered, since the surface normals at contact locations 

must be approximately aligned (a concept known as force closure (Nguyen, 1988)), otherwise the 

object will slip through our fingertips (Figure 2.1b, bottom). Object mass and mass distribution must 

be evaluated, since for grips with high torques (i.e. far from the center of mass, CoM (Eastough & 

Edwards, 2006; Goodale et al., 1994; Lederman & Wing, 2003; Lukos et al., 2007; Paulun et al., 2016)) 
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the object will tend to rotate under gravity and potentially slip out of our grasp (Figure 2.1c, top). The 

orientation (Lederman & Wing, 2003; Paulun et al., 2016; Roby-Brami et al., 2000; Schot et al., 2010; 

Voudouris et al., 2010) and size (Cesari & Newell, 1999) of grasps on an object must be considered, 

since the arm and hand can move and apply forces only in specific ways. Grasps that do not conform 

to the natural configuration of our hand in 3D space might be impossible (Figure 2.1b, top), or 

uncomfortable (Figure 2.1c, bottom). The hand’s positioning may also determine an object’s visibility 

(Bozzacchi et al., 2018; Huang et al., 2012; Maiello et al., 2019; Paulun et al., 2014; Volcic & Domini, 

2014).  

Most previous research did not assess the relative importance of these factors, nor how they interact. 

Here we sought to unify these varied and fragmented findings into a single normative framework. We 

therefore constructed a rich dataset in which we could tease apart how an object’s 3D shape, mass, 

mass distribution, and orientation influence grasp selection. We devised a set of objects made of wood 

and brass cubes in various configurations (Figure 2.2), and asked participants to pick them up with a 

precision grip, move them a short distance and place them at a target location, while we tracked their 

thumb and forefinger. We measured initial contact locations (i.e. not readjusted contact regions 

during movement execution). By varying the shapes and orientation of the objects in Experiment 1, 

we (i) determined how consistent at selecting grasp locations participants are with themselves and 

other people, and (ii) measured the interactions between allocentric 3D shape and egocentric 

perspective on those shapes. If actors take the properties of their own effectors into account (e.g., 

hand orientation, grasp size), we should expect the same shape to be grasped at different locations 

depending on its orientation relative to the observer (Lederman & Wing, 2003). In Experiment 2, we 

varied the mass and mass distribution of the objects (Figure 2.2c) to test the relative role of 3D shape 

and mass properties. If participants take torques into account, identical shapes with different mass 

distributions should yield systematically different grasps (Eastough & Edwards, 2006; Goodale et al., 

1994; Lukos et al., 2007; Paulun et al., 2016).   

Next, we employed this rich dataset to develop a computational model to predict human grasp 

patterns. We reasoned that grasps are selected to minimize costs associated with instability and 

discomfort. Accordingly, we implemented a model that combines five factors computed from the 

object’s shape, mass distribution, and orientation: (i) force closure (Nguyen, 1988), (ii) torque 

(Eastough & Edwards, 2006; Goodale et al., 1994; Lederman & Wing, 2003; Lukos et al., 2007; Paulun 

et al., 2016) (iii) natural grasp axis (Lederman & Wing, 2003; Roby-Brami et al., 2000; Schot et al., 2010; 

Voudouris et al., 2010), (iv) natural grasp aperture for precision grip (Cesari & Newell, 1999) and (v) 

visibility (Huang et al., 2012; Paulun et al., 2014). The model takes as input a near-veridical 3D mesh 

representation of on object to be grasped, performs free-body computations on the mesh, and 

outputs minimum-cost, optimal grasp locations on the object. We found that the optimal grasps 

predicted by the model matched human grasp patterns on the wooden and brass polycube objects 

from Experiments 1 and 2 strikingly well. We then employed the model to generate predictions 

regarding where humans should grasp novel shapes with curved surfaces. In a final Experiment 3, we 

had participants grasp these novel 3D-printed, curved, plastic objects. Human grasps well aligned with 

the model predictions. Finally, we employed these data to show that model predictions are robust to 

perturbations in the model input and key parameters. 
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2.2 Results 

2.2.1 Experiment 1: 3D shape and orientation 

2.2.1.1 Human grasps are tightly clustered and represent a highly constrained 

sample from the space of potential grasps 

Twelve participants grasped four objects made of beech wood presented at two orientations (Figure 

2.2a,b; see Methods). Figure 2.3a shows how grasp patterns tend to be highly clustered. In each 

condition, different grasps have similar sizes (finger-to-thumb distance) and orientations, and also 

cover the same portions of the objects. Fitting multivariate Gaussian mixture models to the responses 

reveals that grasps cluster around only 1, 2, or 3 modes. Figure 2.3b shows three distinct modes for 

object U at orientation 2 in a unitless 2D representation of grasp space. Human grasps cover only a 

minute portion of the space of potential grasps. Note that we define the space of potential grasps as 

the set of all combinations of thumb and index finger positioning attemptable on the accessible 

surfaces of an object (i.e., those not in contact with the table). Figure 2.3c also shows how, for one 

representative condition, different grasps from the same subjects are more clustered than grasps from 

different subjects, since individuals predominantly selected only one (70%) or two (27%) modes, and 

only rarely (3%) grasped objects in three separate locations. 

 

 

Figure 2.2. Setup and stimuli for Experiments 1 and 2. (a) Experimental setup. Seated participants performed grasping 

movements with their right hand. Following an auditory signal (coinciding with the shutter window turning transparent) they 

moved from one of the starting positions to the object and grasped it with a precision grip. They transported and released 

the object at the goal position and returned to the start position. (b) In Experiment 1 we employed four objects made of 

wooden cubes. Each object had a unique shape (that here we name L, U, S, V) and was presented at one of two different 

orientations with respect to the participant. (c) In Experiment 2 the objects had the same shapes as in Experiment 1, but now 

were made of wood and brass cubes. The brass and wood cubes were organized either in an alternate pattern (middle), so 

that the CoM of the object would remain approximately the same as for the wooden object, or grouped so that the CoM 

would be shifted either closer to (right) or away from (left) the participant’s hand starting location. 

 

To further quantify how clustered these grasping patterns are we designed a simple metric of similarity 

between grasps (see Methods). Figure 2.3d shows how both between- and within-subject grasp 

similarity are significantly higher than the similarity between random grasps only constrained by 

accessible object geometry (t(7)=9.96, p=2.2*10-5 and t(7)=26.15, p=3.1*10-8 respectively). 
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Additionally, within-subject grasp similarity is significantly higher than between subjects (t(7)=3.89, 

p=0.0060). Nevertheless, the high similarity between grasps from different participants demonstrates 

that different individuals tend to grasp objects in similar ways. The even higher level of within-subject 

grasp similarity further demonstrates that grasp patterns from individual participants are 

idiosyncratic, which may reflect differences in the strategies employed by individual participants, or 

may be related to physiological differences in hand size, strength, or skin slipperiness. We observe no 

obvious learning effects across trial repetitions: between-subject grasp similarity does not change 

from first to last repetition across objects and orientations (t(7)=0.62, p=0.56).  

 

 

Figure 2.3. Human grasps are clustered. (a) Human grasps from Experiment 1. Grasps are represented as thumb (red triangles) 

and index finger (blue diamonds) contact positions, connected by dotted black lines. (b) Human grasps (blue blobs) for object 

U, orientation 2, when projected in a unitless 2D representation of the space of potential grasps, cluster around three distinct 

modes. (c) Distribution of thumb contact points on object L, orientation 2. Different colors represent grasps from different 

participants. (d) The level (%) of grasp similarity expected for grasps randomly distributed on the object surface (i.e. random 

combinations of thumb and index finger positioning attemptable on an object) and the observed level of between- and within-

participant grasp similarity, averaged across objects and orientations. Error bars are 95% bootstrapped confidence intervals 

of the mean. ** p<0.01, *** p<0.001 

 

2.2.1.2 Findings reproduce several known effects in grasp selection 

Previous research suggests haptic space is encoded in both egocentric and allocentric coordinates 

(Volcic & Kappers, 2008), and that grasps are at least partly encoded in egocentric coordinates to 

account for the biomechanical constraints of our arm and hand (Lederman & Wing, 2003). Our findings 

reproduce and extend these observations. If humans selected grasps in allocentric coordinates tied to 

an object’s 3D shape, then grasps onto the same object in different orientations should be located on 

the same portions of the object but in different 3D world coordinates. Conversely, if actors take their 

own effectors into account, they should grasp objects at different locations depending on the object’s 

orientation. For each object we computed grasp similarity across the two orientations in both 
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egocentric (tied to the observer) and allocentric coordinates (tied to the object). Figure 2.4a shows 

that, as the extent of the object rotation increases, grasp encoding shifts from allocentric to egocentric 

coordinates. Across small rotations (object S, 55 degree rotation), grasps are more similar if encoded 

in allocentric coordinates (t(11)=13.90, p=2.5*10-8), whereas for large rotations (object L, 180 degrees) 

grasps are more similar if encoded in egocentric coordinates (t(11)=4.59, p= 7.8*10-4). Therefore, both 

3D shape as well as movement constraints influence grasps. 

 

 

Figure 2.4. Spatial encoding and bias. (a) Difference in grasp similarity across orientations when grasps were encoded in 

object-centered (allocentric) vs human-centered (egocentric) coordinates, as a function of magnitude of rotation across the 

two orientation conditions. (b) Average grasp trajectories viewed in the x-y plane (red curves) from start location towards the 

objects (always contained within the gray shaded region). The average human grasp (red dot) across conditions is biased 

toward shorter reaching movements compared to the object centroids (black dot). In both panels data are means, error 

bars/regions represent 95% bootstrapped confidence intervals. *** p<0.001 

 

Figure 2.4b shows that participants also selected grasps that were on average 26 mm closer to the 

starting location than the object centroid (t(11)=9.74, p=9.6*10-7), reproducing known spatial biases 

in human grasp selection (Desanghere & Marotta, 2015; Glowania et al., 2017; Kleinholdermann et 

al., 2013; Maiello et al., 2019; Paulun et al., 2014). 

Consistent with Kleinholdermann et al. (2013) but contrary to previous claims (Eastough & Edwards, 

2006; Goodale et al., 1994; Lederman & Wing, 2003; Lukos et al., 2007; Paulun et al., 2016), our 

findings suggest humans care little about torque when grasping lightweight objects (of ~100 g). If 

actors sought to minimize torque, the selected grasps should be as close as possible to the CoM. 

Conversely, if participants were to disregard torque, then grasps should be at least as distant from the 

CoM as grasps randomly selected on the surface of the object. Figure 2.5a plots the difference 

between the CoM distance of participant grasps and the average CoM distance of random grasps, 

which we name ‘CoM attraction compared to random grasps’. In Experiment 1, grasps were on 

average 9 mm farther from the CoM than the average distance to the object’s CoM of grasps uniformly 

sampled onto the surface of the objects (t(11)=4.53, p=8.6*10-4). This negative value means that 
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participants grasped the objects towards their extremities, farther from the CoM than even random 

chance. 

 

 

Figure 2.5. Mass and Mass Distribution. (a) Attraction towards the object CoM for grasps executed onto light (Experiment 1) 

and heavy (Experiment 2) objects compared to the average CoM distance of grasps uniformly distributed on the object 

surfaces (zero reference). (b) Attraction towards the object CoM in Experiment 2 as a function of trial repetition. Red line is 

the best-fitting regression line through the data (c) Human grasps from Experiment 2 onto object S presented at orientation 

2. (d) Attraction towards the object CoM compared to Experiment 1 grasps (zero reference), for Experiment 2 grasps onto 

heavy objects whose CoM is closer, the same distance as, or farther than the light wooden objects from Experiment 1. In 

panels a, b, and d, data are means, error bars represent 95% bootstrapped confidence intervals. ** p<0.01, *** p<0.001 

 

2.2.2 Experiment 2: Mass and Mass Distribution 

2.2.2.1 Humans grasp objects close to their center of mass when high grip torques 

are possible and instructions demand the object does not rotate 

Due to the low density of beech wood, even the grasps farthest from the CoM in Experiment 1 would 

produce relatively low torques. Therefore, in Experiment 2 we tested whether participants grasp 
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objects closer to the CoM when higher torques are possible. We did this by using objects of greater 

mass and asymmetric mass distributions. Specifically, for each of the shapes in Experiment 1, we made 

three new objects, each made of five brass and five wooden cubes: two ‘bipartite’ objects, with brass 

clustered on one or the other half of the object, and one ‘alternating’ object, with brass and wood 

alternating along the object’s length. These objects had the same 3D shapes as in Experiment 1, but 

were nearly tenfold heavier (Figure 2.2c, see Methods). 

Figure 2.5a shows how human grasps are indeed significantly attracted towards the CoM of heavy 

objects, presumably to counteract the larger torques associated with higher mass. In Experiment 2, 

grasps were on average 11 mm closer to the object CoM than grasps sampled uniformly from the 

objects’ surfaces (t(13)=4.89, p= 2.9*10-4), and on average 20 mm closer than the grasps from 

Experiment 1 (t(24)=6.60, p= 8.0*10-7). Figure 2.5b shows how this behavior was evident already from 

the very first trial performed by participants, but also that grasps clustered more toward the object 

CoM in later trials, presumably as participants refined their estimates of CoM location (correlation 

between CoM attraction and trial repetition: r = 0.86, p = 0.13). Importantly, participants shifted their 

grasps towards the CoM—not the geometrical centroid—of the objects (observe how the grasp 

patterns shift in Figure 2.5c). Figure 2.5d shows that when the object CoM was shifted towards the 

hand’s starting location, participants did not significantly adjust their grasping strategy compared to 

Experiment 1 (t(13)=0.81, p=0.43). Conversely, when the object CoM was in the same position as in 

Experiment 1, grasps shifted on average by 8 mm towards the CoM (t(13)=3.92, p=0.0017). When the 

CoM was shifted away from the hand’s starting position, grasps were on average 37 mm closer to the 

CoM compared to Experiment 1 (t(13)=8.49, p=1.2*10-6), a significantly greater shift than both the 

near and same CoM conditions (t(13)=8.66, p=9.2*10-7 and t(13)=7.58, p=4.0*10-6). These differential 

shifts indicate that participants explicitly estimated each object’s CoM from visual material cues. 

Even with the heavier objects, participants still systematically selected grasps that were closer to the 

starting location than the object centroid (t(13)=4.03, p=0.0014). However, now participants exhibited 

only a 9 mm bias, which was significantly smaller than the 26 mm bias observed for the light wooden 

objects in Experiment 1 (t(24)=4.67, p= 9.6*10-5). 

Together these findings suggest that participants combine multiple constraints to select grasp 

locations, taking into consideration the shape, weight, orientation, and mass distribution of objects, 

as well as properties of their own body to decide where to grasp objects. We next sought to develop 

a unifying model that could predict these diverse effects based on a few simple underlying principles. 

 

2.2.2.2 Normative model of human grasp selection. 

Based on the insights gained from our empirical findings, we developed a model to predict human 

grasp locations. The model takes as input 3D descriptions of the objects’ shape, mass distribution, 

orientation, and position relative to the participant, and computes as output a grasp cost function, 

describing the costs associated with every possible combination of finger and thumb position on 

accessible surface locations (i.e., those not in contact with table). We reasoned that humans would 

tend to grasp objects at or close to the minima of this cost function, as these would yield the most 

stable, comfortable grasps. Low cost grasps can then be projected back onto the object to compare 

against human grasps. It is important to note that this is not intended as a process model describing 

internal visual or motor representations (i.e., we do not suggest that the human brain explicitly 
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evaluates grasp cost for all possible surface locations). Rather, it is a normative model for predicting 

which grasps are optimal under a set of pre-defined constraints. It provides a single, unifying 

framework based on a subset of the factors that are known to influence human grasp selection 

(Kleinholdermann et al., 2013). 

For each object, we create a triangulated mesh model in a 3D coordinate frame, from which we can 

sample (Figure 2.6a-b). For precision grip, we assume one contact point each for thumb and index 

finger. Thus, all possible precision grip grasps can be ordered on a 2D plane, with all possible thumb 

contact points along the x-axis, and on the y-axis, all possible index contacts in the same ordering as 

for the thumb. 

 

 

Figure 2.6. A framework that unifies distinct aspects of grasp selection. (a) Mesh model of object in same 3D reference frame 

as participant poised to execute grasp. (b) Discrete sampling of the reachable surface defines a 2D space containing all 

potential combinations of index and thumb contact points on the object. (c) Color-coded maps showing penalty values for 

each potential grasp for each penalty function. (d) Overall penalty function computed as the linear combination of maps in 

(c). (e) Human grasps projected into 2D penalty-function space neatly align with minimum of combined penalty map.  

 

To estimate the cost associated with each grasp, we take the combination of five penalty functions, 

determined by the object’s physical properties (surface shape, orientation, mass, mass distribution) 

as well as constraints of the human actuator (i.e. the human arm/hand). Specifically, we consider 

optimality criteria based on: (i) optimum force closure (Nguyen, 1988), (ii) minimum torque (Eastough 

& Edwards, 2006; Goodale et al., 1994; Lederman & Wing, 2003; Lukos et al., 2007; Paulun et al., 

2016), (iii) alignment with the natural grasp axis (Lederman & Wing, 2003; Roby-Brami et al., 2000; 

Schot et al., 2010; Voudouris et al., 2010), (iv) optimal grasp aperture (Cesari & Newell, 1999), and (v) 

optimal visibility (Huang et al., 2012; Maiello et al., 2019; Paulun et al., 2014) (see Methods for 

mathematical definitions). Figure 2.6c shows maps for each penalty function: white indicates low 

penalty, dark blue high penalty. To compare and combine penalty, values are normalized to [0,1]. 
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Force closure 

Force closure is fulfilled when the two contact-point surface normals, along which gripping forces are 

applied, are directed towards each other (Nguyen, 1988). Thus, we penalize lateral offsets between 

the grasp point normals (Figure 2.7). 

 

Figure 2.7. Force Closure. Examples of grasps with (a) low penalty and (b) high penalty force closure.  

 

Minimum torque 

Grasping an object far from its CoM results in high torque, which causes the object to rotate when 

picked up (Eastough & Edwards, 2006; Goodale et al., 1994; Lederman & Wing, 2003; Lukos et al., 

2007; Paulun et al., 2016). Large gripping forces would be required to prevent the object from rotating. 

We therefore penalize torque magnitude (Figure 2.8). 

 

 

Figure 2.8. Torque. Examples of grasps with (a) low penalty and (b) high penalty torque.  

 

Natural grasp axis 

When executing precision grip grasps, humans exhibit a preferred hand posture known as the natural 

grasp axis (Lederman & Wing, 2003; Roby-Brami et al., 2000; Schot et al., 2010; Voudouris et al., 2010). 

Grasps that are rotated away from this axis result in uncomfortable or restrictive hand/arm 

configurations (Figure 2.9). We therefore penalize angular misalignment between each candidate 

grasp and the natural grasp axis (taken from Schot et al., 2010). Unlike force closure and torque, this 

penalty map is asymmetric about the diagonal: swapping index and thumb positioning produces the 

same force closure and torque penalties, but changes the penalty for the natural grasp axis by 180 

degrees. 
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Figure 2.9. Natural grasp axis. Examples of grasps with (a) low penalty and (b) high penalty grasp axis.  

 

Optimal grasp aperture 

For two-digit precision grips humans prefer the distance between finger and thumb at contact (‘grasp 

aperture’) to be below 2.5 cm (Cesari & Newell, 1999). We therefore penalize grasp apertures above 

2.5 cm (Figure 2.10).  

 

 

Figure 2.10. Optimal grasp aperture. Examples of grasps with (a) low penalty and (b) high penalty aperture.  

 

Optimal visibility 

Our behavioral data, and previous studies, suggest humans exhibit spatial biases when grasping. It has 

been proposed that these may arise from an attempt to minimize energy expenditures through 

shorter reach movements (Huang et al., 2012). However, Paulun et al. (2014) have shown that these 

biases may in fact arise from participants attempting to optimize object visibility. While our current 

dataset was not designed to untangle these competing hypotheses, re-analyzing published data 

(Maiello et al., 2019; Paulun et al., 2016) confirms that object visibility—not reach length—is most 

likely responsible for the biases. We therefore penalized grasps that hindered object visibility (Figure 

2.11). We also designed a penalty function for reach length and verified that, since reach length and 

object visibility are correlated in our dataset, employing one or the other penalty function yields very 

similar results.  
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Figure 2.11. Optimal visibility. Examples of grasps with (a) low penalty and (b) high penalty visibility.  

 

We assume that participants select grasps with low overall costs across all penalty functions. Thus, to 

create the overall grasp penalty function, we take the sum of the individual penalty maps. The minima 

of this full penalty map represent grasps that best satisfy all criteria simultaneously. The map in Figure 

2.6d exhibits a clear minimum: the white region in its lower right quadrant.  

To assess the agreement between human and optimal grasps, we may visualize human grasps in the 

2D representation of the grasp manifold. The red markers in Figure 2.6e are the human grasps from 

object L at orientation 2, projected in 2D and overlain onto the full penalty map. Human grasps neatly 

align with the minima of the penalty map, suggesting that human grasps are nearly optimal in terms 

of the cost criteria we use. 

Model Fitting 

The simple, equal combination of constraints considered thus far already agrees with human grasping 

behavior quite well. However, it is unlikely that actors treat all optimality criteria as equally important. 

Different persons likely weight the constraints differently (e.g., due to strength or hand size). 

Therefore, we developed a method for fitting full penalty maps to participants’ responses. We 

assigned variable weights to each optimality criterion, and fit these weights to the grasping data from 

each participant, to obtain a set of full penalty maps whose minima best align with each participant's 

grasps (see Methods). 

Model grasps are nearly indistinguishable from measured human grasps 

To compare human and optimal grasps directly, we can sample predicted optimal grasps from around 

the minimum of the full penalty map (see Methods) and project back onto the objects. Figure 2.12a 

shows human grasps (left) and unfitted model predictions (right) on a few representative objects (see 

Figure 2.S1 for complete set). Human and predicted grasps have similar size and orientation, and also 

cover similar portions of the objects. 

Figure 2.12b depicts grasp similarity at the population level, i.e., across participants and between 

human and unfitted model grasps. Grasp similarity between participants was computed (for each 

object and condition), as the similarity between the medoid grasp of each participant and the medoid 

grasp across all others. Grasp similarity between human and model grasps was computed as the 

similarity between the medoid unfitted model grasp and the medoid grasp across all participants.  
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Figure 2.12. Model Results. (a) Grasping patterns reconstructed through the normative framework (right) closely resemble 

human grasps onto real objects varying in shape, orientation, and material (left). Simulated grasp patterns are generated 

with no knowledge of our human data (i.e. model not fit to human grasps). (b) Population level grasp similarity, i.e. similarity 

of human and unfitted model grasps to medoid human grasp across all participants. (c) Individual level grasp similarity, i.e. 

similarity of human, unfitted, and fitted model grasps to the medoid grasp of each participant. In panels (b, c), dashed line is 

estimated chance level of grasp similarity due to object geometry, bounded by 95% bootstrapped confidence intervals. (d) 

Pattern of fitted weights across Experiments 1 and 2. (e) Relative weight of the minimum torque constraint in Experiments 1 

and 2. (f) Relative weight of the visibility constraint in Experiments 1 and 2. Data are means; error bars, 95% bootstrapped 

confidence intervals. ***p<0.001 

 

Unfitted model grasps were significantly more similar to human grasps than chance (t(31)=9.34, 

p=1.6*10-10), and effectively indistinguishable from human-level grasps similarity (t(31)=0.53, p=0.60). 

Note that this does not mean our current approach perfectly describes human grasping patterns; it 

suggests instead that our framework is able to predict the medoid human grasping patterns nearly as 

well as the grasps of a random human on average approximate the medoid human grasp. 
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Fitting the model can account for individual grasp patterns 

In both Experiments, participants repeatedly grasped the same objects in randomized order. Figure 

2.12c depicts how similar human and model grasps are to the medoid grasp of each individual 

participant in each experimental condition. Individual subjects are highly consistent when grasping 

the same object on separate trials. Grasps predicted through our framework with no knowledge of 

the empirical data were significantly less similar to the medoid grasps of individual humans 

(t(31)=9.28, p=1.9*10-10). This is unsurprising, since the unfitted model predicts the average pattern 

across observers, but there is no mechanism for it to capture idiosyncrasies of individual humans. 

Fitting the model to the human data (see Methods) significantly improved grasp similarity (t(31)=4.26, 

p=1.8*10-4). Note however that model grasp patterns fit to a single participant are still distinguishable 

from random real grasps by the same individual (t(31)=4.91, p=2.8*10-5).  

Force closure, hand posture, and grasp size explain most of human grasp point selection 

The pattern of fitted weights across both experiments (Figure 2.12d) reveals the relative importance 

of the different constraints. Specifically, we find that force closure is the most important constraint on 

human grasping, which makes sense because force closure is a physical requirement for a stable grasp. 

Next in importance are natural grasp axis and optimal grasp aperture, both constraints given by the 

posture and size of our actuator (our hand). In comparison, participants appear to care only marginally 

about minimizing torque, and almost negligibly about object visibility.  

Analyzing the patterns of fitted weights confirms our empirical findings 

The model also replicates our main empirical findings in a single step. Figure 2.12e shows that the 

relative importance of torque was much greater for the heavy objects tested in Experiment 2 

compared to the light objects from Experiment 1 (t(24)=7.93, p=3.7*10-8). Conversely, Figure 2.12f 

shows that the relative importance of object visibility instead decreased significantly from Experiment 

1 to Experiment 2 (t(24)=2.62, p=0.015). Additionally, by simulating grasps from the fitted model, we 

are able to recreate the qualitative patterns of all behavioral results presented in Figures 3,4 and 5 

(see Figure 2.S2).  

2.2.3 Experiment 3: Model Validation 
To further validate the model, we tested whether the model makes sensible predictions on novel 

objects and whether the model is robust to perturbations.  

2.2.3.1 Model Predictions on Novel Objects 

The model was designed from the insights derived from Experiments 1 and 2 with polycube objects 

made of brass and wood. To test whether the model generalizes beyond this type of object, we 

selected four mesh models of objects with smooth, curved surfaces from an in-house database (two 

familiar, two unfamiliar objects). We input these meshes to the model and generated grasp 

predictions (Figure 2.13a). The model was instantiated using the weights derived from Experiment 1. 

Next, we 3D printed these objects out of light plastic (~80g, comparable to Experiment 1 objects), and 

asked 14 human participants to grasp these novel objects. Figure 2.13b shows how human grasps 

agree with model predictions. Human and model grasps once again have similar size and orientation, 

and also cover similar portions of the objects. Figure 2.13c confirms this observation: predicted model 

grasps are as similar to medoid human grasps as grasps from a random human participant (t(13)=1.21, 

p=0.25).  
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Figure 2.13. Model predictions for novel objects align with human grasps. (a) Grasping patterns predicted through the 

normative framework for novel objects with smooth and curved surface geometry. (b) Human grasps onto 3D printed versions 

of the objects align with model predictions. (c) Similarity of human and predicted model grasps to medoid human grasp across 

objects and participants. Dashed line is estimated chance level of grasp similarity, bounded by 95% bootstrapped confidence 

intervals. 

 

2.2.3.2 Model Perturbation Analysis 

The model designed thus far receives as input a near-veridical representation of the objects to grasp. 

However, it is unlikely that humans have access to such a veridical object representation. We therefore 

implemented some perturbations to the inputs and key parameters of the model and observed how 

robust the model is to these perturbations. Specifically, we tested how model performance in 

predicting human grasping patterns from Experiment 3 varies as a functions of these perturbations.  

 The model input thus far consisted of densely sampled 3D mesh models. It’s unlikely that 

humans also have such a dense, accurate 3D representation of an object’s surface. Figure 2.14a 

therefore shows model performance (in terms of similarity with human grasping patterns) with 

different levels of surface mesh subsampling. Model performance is robust to relatively high levels of 

subsampling, and decreases only once sampled surface locations are on average more than 4 mm 

distant from one another (below 5% mesh subsampling).  

 Since the backside of objects is occluded from view, it is unlikely that participants have an 

accurate estimate of the required grip aperture across the whole object. Additionally, since we 

constrained participants to two-digit precision grips, grasps above the threshold defined by Cesari and 

Newell (1999) might be acceptable, as long as these are within a maximum comfortable grasp span. 

Figure 2.14b shows that indeed model performance is robust to increases in aperture threshold up to 

100 mm.  

 Similarly, humans might also exhibit some tolerance for grasps oriented away from the natural 

grasp axis. Given that the ease of a rotation of the arm and hand is likely asymmetric along different 

directions, these tolerances likely also vary depending on rotation direction. Figure 2.14c shows how 

model performance does indeed decrease for perturbations of the natural grip axis along the 

transverse plane, and this decrease is more steep for clockwise (negative) rotations, as already 

suggested by Kleinholdermann and colleagues (2013). Model performance is instead more robust to 

perturbations along the sagittal plane (Figure 2.14d), and particularly for (positive) counterclockwise 

rotations in which the thumb tilts below the index finger.   
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Figure 2.14. Perturbation Results. All panels show model performance (in terms of grasp similarity to human data from 

Experiment 3) as a function of different perturbations. Grasp similarity for the original model implementation is shown in 

green. Red and black dashed lines are respectively human and chance levels of grasp similarity, bounded by 95% bootstrapped 

confidence intervals. (a) Model grasp similarity with input meshes subsampled by varying degrees. (b) Model grasp similarity 

for model implementations employing increasing aperture thresholds. (c, d) Model grasp similarity for models implemented 

with deviated natural grasp axis along the transverse (c) and sagittal (s) planes.  

 

 

2.3 Discussion 
We investigated how an object’s 3D shape, orientation, mass, and mass distribution jointly influence 

how humans select grasps. Our empirical analyses showed that grasping patterns are highly 

systematic, both within and across participants, suggesting that a common set of rules governs human 

grasp selection of complex, novel 3D objects. Our findings reproduce, unify, and generalize many 

effects observed previously: (i) both 3D shape and orientation determine which portion of the object 

people grasp (Chen & Saunders, 2015; Cuijpers et al., 2004, 2006; Eloka & Franz, 2011; Goodale et al., 

1994; Kleinholdermann et al., 2013; Lederman & Wing, 2003; Schettino et al., 2003).; (ii) humans 

exhibit spatial biases even with complex 3D objects varying in shape and mass (Desanghere & Marotta, 

2015; Glowania et al., 2017; Kleinholdermann et al., 2013; Maiello et al., 2019; Paulun et al., 2014); 

(iii) object weight modulates how much humans take torque into account when selecting where to 

grasp objects (Eastough & Edwards, 2006; Goodale et al., 1994; Lederman & Wing, 2003; Lukos et al., 

2007; Paulun et al., 2016). We then combined this diverse set of observations into a unified theoretical 

framework that predicts human grasping patterns strikingly well, even with no free parameters. By 

fitting this normative model to human behavioral data, we showed that force closure, hand posture, 

and grasp size are the primary determinants of human grasp selection, whereas torque and visibility 
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modulate grasping behavior to a much lesser extent. We further demonstrated that the model is able 

to generate sensible predictions for novel objects and is robust to perturbations.   

2.3.1 3D Shape  
Behavioral research on the influence of shape on grasping is surprisingly scarce, primarily employs 2D 

or simple geometric 3D stimuli of uniform materials, and rarely investigates grasp selection (Chen & 

Saunders, 2015; Cuijpers et al., 2004, 2006; Eloka & Franz, 2011; Goodale et al., 1994; Lederman & 

Wing, 2003; Schettino et al., 2003). For example, by using 3D stimuli that only varied in shape by a few 

centimeters, Schettino et al. (2003) concluded that object shape influences hand configuration only 

during later phases of a reaching movement during which subjects use visual feedback to optimize 

their grasp. Here, we show that distinct 3D shapes are grasped in systematically distinct object 

locations, and our behavioral and model analyses can predict these locations directly from the object 

3D shape.  

2.3.2 Orientation  
When grasping spheres or simple geometrical shapes, humans exhibit a preferred grasp orientation 

(the NGA) (Lederman & Wing, 2003; Roby-Brami et al., 2000; Schot et al., 2010; Voudouris et al., 2010), 

and most previous work on how object orientation influences grasping has primarily focused on hand 

kinematics (Cuijpers et al., 2006; Goodale et al., 1994; Mamassian, 1997; Paulun et al., 2016). 

Conversely, with more complex 3D shapes we show that the same portion of an object is selected 

within a range of orientations relative to the observer, whereas for more extreme rotations the grasp 

selection strategy shifts significantly. Therefore, object shape and orientation together determine 

which portion of an object will be grasped, and thus the final hand configuration.  

2.3.3 Spatial Biases  
The spatial biases we observe are consistent with participants attempting to increase object visibility 

(Maiello et al., 2019; Paulun et al., 2014), and our data also replicate the finding that these biases are 

reduced when object weight increases (Paulun et al., 2014, 2016).  

2.3.4 Material/Weight/Torque  
Goodale et al. (1994) were among the first to show that participants tend to grasp objects through 

their CoM, presumably to minimize torque. Lederman and Wing (2003) found similar results, yet in 

both studies low-torque grasps also correlated with grasps that satisfied force closure and aligned 

with the natural grasp axis. Kleinholdermann et al. (2013) found torque to be nearly irrelevant in grasp 

selection, yet Paulun et al. (2016) observed that grasp distance to CoM was modulated by object 

weight and material. More recent work by Paulun et al. has further shown that participants are fairly 

accurate at visually judging the location of the CoM even for bipartite objects made of two different 

materials (Paulun et al., 2019). Our findings resolve these conflicting findings. By using stimuli that 

decorrelate different aspects of grasp planning, we find that shape and hand configuration are 

considerably more important than torque for light weight objects, and that the importance of 

minimizing torque scales with mass. Additionally, shifting an object’s mass distribution significantly 

attracted grasp locations towards the object’s shifted CoM, demonstrating that participants could 

reliably combine global object shape and material composition to successfully infer the object’s CoM.  
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2.3.5 Modelling Grasp Selection  
Previous models of grasping have mainly focused on hand kinematics and trajectory synthesis 

(Christopoulos & Schrater, 2009; Rosenbaum, Meulenbroek, Vaughan, & Elsinger, 1999; Rosenbaum, 

Meulenbroek, Vaughan, & Jansen, 1999;  Smeets & Brenner, 1999; Smeets & Brenner, 2001) whereas 

we attempt to predict which object locations will be selected during grasping. Our modelling approach 

takes inspiration from Kleinholdermann et al., (2013), which to the best of our knowledge is the only 

previous model of human two-digit contact point selection, but only for 2D shape silhouettes. In 

addition to dealing with 3D objects varying in mass, mass distribution, orientation, and position, our 

modeling addresses several limitations of previous approaches. The fitting procedure quantifies the 

relative importance of different constraints, and can be applied to any set of novel objects to test how 

experimental manipulations affect this relative weighting. Additionally, while model fitting 

significantly improved the similarity between model and individual participant grasps, the agreement 

was not perfect. This suggests that grasp planning may involve additional, undiscovered constraints, 

which our approach would be sensitive enough to detect. The modular nature of the model specifically 

allows additional constraints to be included, excluded or given variable importance. For example, we 

know that end-state comfort of the hand plays a role in grip selection (Rosenbaum et al., 1990; Short 

& Cauraugh, 1999), yet the tradeoff between initial and final comfort is unclear (Lee Hughes et al., 

2012). By varying the participants’ task to include object rotations, and by including a penalty function 

penalizing final hand rotations away from the natural grasp axis, it would be possible to assess the 

relative importance of initial, final (or indeed intermediate) hand configurations on grasp planning. 

Relatedly, the effect of obstacles (and self-obstacles, such as the vertically protruding portions of some 

of the objects employed in this study) could also be assessed. The presence of obstacles could affect 

grasp selection by requiring reach-to-grasp trajectories that avoid an obstacle, although previous 

research has shown that forcing different hand paths does not affect selected grasp locations 

(Voudouris et al., 2010). Alternatively, the presence of obstacles might alter the configuration of the 

arm and hand during a grasp (Voudouris et al., 2012), which could be incorporated into the model by 

modifying the grip comfort penalties.   

Previous literature has also shown that object surface properties such as curvature (Goodwin et al., 

1998), tilt (Jenmalm & Johansson, 1997), and friction (Burstedt et al., 1999; Cadoret & Smith, 1996) 

modulate the fingertip forces employed during grasping. While the current study was not designed to 

examine how these factors influence grasp selection, the current model is already able to predict grasp 

patterns for objects with curved surfaces, even if not perfectly. Model performance with these objects 

could likely be improved by including into our framework penalty functions that take into account 

local surface structure and friction. Incorporating friction into the model could even improve model 

performance for our composite objects from Experiment 2, as wood and brass may have different 

friction coefficients. Since surface friction plays a decisive role in determining force closure, friction 

coefficients could even be directly integrated into the force closure computations. Friction is also a 

particularly interesting test case for our assumption of a weighted linear combination of costs, as it 

may interact with other factors. When friction is low, it could cause the cost of torque to be 

upregulated, to avoid slipping (Paulun et al., 2016). This would require the addition of parameters 

describing interactions between factors. Alternatively, friction and torque might be unified into a 

single penalty function capturing the magnitude of grip force required to avoid slippage. However, 

incorporating friction into the model would be non-trivial, since the coefficient of friction between 
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skin and different materials depends on several factors, including temperature, hydration, and age 

(Veijgen et al., 2013). 

The model should also be extended to multi-digit grasping, by adding to each penalty function three 

dimensions for each additional finger considered (the x,y,z coordinates of the contact point). This 

approach is consistent with (and complementary to) the approach by Smeets and Brenner (Smeets & 

Brenner, 1999; J. Smeets & Brenner, 2001), who posit that grasping is a combination of multiple 

pointing movements. Given that human participants adjust the number of digits they employ to grasp 

an object depending on grip size and object weight (Cesari & Newell, 1999), multiple size/weight 

thresholds could be employed to determine the preferred multi-digit grip. Future models should also 

generalize from contact points to contact patches of nonzero area, as real human grasp locations are 

not only points but larger areas of contact between digit and object. To facilitate such developments, 

we provide all data and code (doi: 10.5281/zenodo.3891663). 

2.3.6 Neuroscience of Grasping  
While our model is not intended as a model of brain processes, there are several parallels with known 

neural circuitry underlying visual grasp selection (for reviews see Castiello, 2005; Castiello & 

Begliomini, 2008; Janssen & Scherberger, 2015). Of particular relevance is the circuit formed between 

the Ventral Premotor Cortex (Area F5), Dorsal Premotor Cortex (Area F2), and the Anterior 

Intraparietal Sulcus (AIP). Area F5 exhibits 3D-shape-selectivity during grasping tasks and is thought to 

encode grip configuration given object shape (Murata et al., 1997; Raos et al., 2006; Theys et al., 2012), 

whereas area F2 encodes the grip-wrist orientation required to grasp objects under visual guidance 

(Raos et al., 2004). Both regions exhibit strong connections with AIP, which has been shown to 

represent the shape, size, and orientation of 3D objects, as well as the shape of the handgrip, grip size, 

and hand-orientation (Murata et al., 2000). Additionally, visual material properties, including object 

weight, are thought to be encoded in the ventral visual cortex (Cant & Goodale, 2011; Gallivan et al., 

2014; Goda et al., 2014, 2016; Hiramatsu et al., 2011), and it has been suggested that AIP might play 

a unique role in linking components of the ventral visual stream involved in object recognition to hand 

motor system (Borra et al., 2008). Therefore, the neural circuit formed between F5, F2, and 

particularly AIP is a strong candidate for combining the multifaceted components of visually guided 

grasping identified in this work (Davare et al., 2010; Jeannerod et al., 1995; Sakata et al., 1995; 

Srivastava et al., 2009; Theys et al., 2015). Combining targeted investigations of brain activity with the 

behavioral and modelling framework presented here holds the potential to develop a unified theory 

of visually guided grasp selection.  

 

2.4 Materials and Methods 

2.4.1 Participants 
Twelve naïve participants (5 males and 7 females between the ages of 20 and 31, mean age: 25.2 

years) participated in Experiment 1. A different set of fourteen naïve participants (9 males and 5 

females between the ages of 21 and 30, mean age: 24.4 years) participated in Experiment 2. An 

additional, different set of fourteen naïve participants (5 males and 9 females between the ages of 19 

and 58, mean age: 25.1 years) participated in Experiment 3. Participants were students at the Justus 

Liebig University Giessen, Germany and received monetary compensation for participating. All 

participants reported having normal or corrected to normal vision and being right handed. All 
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procedures were approved by the local ethics board and adhered to the declaration of Helsinki. All 

participants provided written informed consent prior to participating. 

2.4.2 Apparatus 
Experiments 1 and 2 were programmed in Matlab version R2007a using the Optotrak Toolbox by V. H. 

Franz (Franz, 2004). Participants were seated at a table with their head positioned in a chinrest (Figure 

2.2a), in front of an electronically controlled pane of liquid crystal shutter glass (Milgram, 1987), 

through which only part of the table was visible and which became transparent only for the duration 

of a trial. Objects were placed at a target location, 34 cm from the chinrest in the participant’s sagittal 

plane. Small plastic knobs placed on participants’ right side specified the hand starting positions. A 

plate (28.5 cm to the right of the target location and with a 13 cm diameter at 26 cm from start position 

1 in the participant’s sagittal plane) specified the movement goal location. We tracked participants’ 

fingertip movements with sub-millimeter accuracy and resolution using an Optotrak 3020 infrared 

tracking system. The Optotrak cameras were located to the left of the participants. To record index 

finger and thumb movement, sets of three infrared markers (forming a rigid body) were attached to 

the base of the participants’ nails. The fingertip and tip of the thumb were calibrated in relation to the 

marker position, as participants grasped a wooden bar with a precision grip, placing their fingertips at 

two known locations on the bar.  

 

 

Figure 2.15. Setup and stimuli for Experiment 3. (a) Experimental setup. Seated participants performed grasping movements 

with their right hand. Following an auditory signal, they opened their eyes, and moved from the starting position to the object 

and grasped it with a precision grip. They transported and released the object at the goal position and returned to the start 

position. (b) We employed four 3D-printed objects. Two objects had an abstract shape (that here we name ‘swan’ and ‘blob’), 

the other two objects were printed versions of a croissant and a cat. They were presented to the participant in the orientations 

displayed in here. 

Experiment 3 was programmed in Matlab version R2019b using the Motom Toolbox (Derzsi & Volcic, 

2018). Participants were seated at a table with their head positioned in a chinrest and had their eyes 

open only for the duration of the movement execution (Figure 2.15a). Objects were placed at a target 

location, 36 cm from the chinrest in the participant’s sagittal plane. A piece of tape placed 30 cm to 

the right of the chinrest specified the hand starting position. A plate (30 cm to the right of the target 
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location and with an 18 cm diameter at 30 cm from the start position in the participant’s sagittal plane) 

specified the movement goal location. We tracked participants’ fingertip movements using an 

Optotrak Certus infrared tracking system. The Optotrak cameras were located to the left of the 

participants. To record index finger and thumb movement, sets of three infrared markers (forming a 

rigid body) were attached to the base of the participants’ nails. The fingertip and tip of the thumb 

were calibrated in relation to the marker position, as participants touched another marker using a 

precision grip, placing their finger- and thumb tip at the center of the marker one after the other. 

2.4.3 Stimuli 

2.4.3.1 Experiment 1: Light objects made of wood.  

Four differently shaped objects (defined as objects L, U, S and V; Figure 2.2b) each composed of 10 

wooden (beech) cubes (2.53 cm³), served as stimuli. Objects were fairly light with a mass of 97 g. Two 

of the objects featured cubes stacked on top of each other, whereas the other two objects were 

composed exclusively of cubes lying flat on the ground. The objects were presented to the participants 

at one of two orientations. Across orientations, object L was rotated by 180 degrees, objects U and V 

were rotated by 90 degrees, and object S was rotated by 55 degrees. Figure 2.2b shows the objects 

positioned as if viewed by a participant.  

2.4.3.2 Experiment 2: Heavy composite objects made of wood and brass.  

For each of the 4 shapes from Experiment 1, we created 3 new objects (12 in total) to serve as stimuli 

for Experiment 2 (Figure 2.2c). Individual cubes were made of either wood or brass. The objects were 

composed of 5 cubes of each material, which made them fairly heavy with a mass of 716g. By 

reordering the sequence of wood and brass cubes, we shifted the location of each shape's CoM. For 

each shape we made one object in which brass and wooden cubes alternated with one another, and 

two bipartite objects, where the 5 brass cubes were connected to one another to make up one side 

of the object with the wooden cubes making up the other side. This configuration was also inverted, 

(i.e., wooden and brass cubes switched locations). The ‘alternating’ objects had approximately the 

same CoM as their wooden counterparts (mean ± sd distance: 5.1±2.5 mm). Conversely, the CoM of 

bipartite objects was noticeably shifted to one side of the object compared to their wooden 

counterparts (mean ± sd distance: 33.3±4.4 mm). The CoM locations for all stimuli are shown in 

Supplementary Figure 2.S3. All objects were presented at the same two orientations as Experiment 1. 

2.4.3.3 Experiment 3: Curved 3D-printed object.  

Four novel, differently shaped objects were 3D-printed. They were made from a yellow plastic with a 

stabilizing mesh inside. Two objects were abstract, curved shapes objects (defined as ‘swan’ (64g) and 

‘blob’ (121g), the other two objects were known shapes: a cat (72g) and a croissant (74g). All objects 

were presented to participants in one orientation, as displayed in Figure 2.15b.  

2.4.3.4 Object meshes.  

For Experiments 1 and 2 triangulated mesh replicas of all objects were created in Matlab; each cube 

face consisted of 128 triangles. For Experiment 3 we selected non-uniform mesh model objects from 

an in-house database, each mesh consisting of between 4500 and 9000 triangles. To calibrate mesh 

orientation and position, we measured, using the Optotrak, four non planar points on each object at 

each orientation. We aligned the model to the same coordinate frame employed by the Optotrak using 

Procrustes analysis.  
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2.4.4 Procedure 

2.4.4.1 Experiments 1 and 2 

Prior to each trial, participants placed thumb and index finger at a pre-specified starting location. In 

Experiment 1, two start locations were used (start 1 at 28 cm to the right of the chinrest in the 

participant’s coronal plane and 9.5 cm forward in the sagittal plane; start 2 9 cm further to the right 

and 3 cm further forward, 23 cm from the center of the goal plate). Given that we observed no effect 

of starting position in our data, in Experiment 2 only the first starting location was employed. When 

the subject was at the correct start position, the experimenter placed one of the stimulus objects at 

the target location behind the opaque shutter screen. Each object could be presented at one of two 

orientations with respect to the participant. The experimenter could very precisely position each 

object at the correct location and orientation by aligning two small groves under each object with two 

small pins on the table surface.  

Once both stimulus and participant were positioned correctly, a tone indicated the beginning of a trial, 

at which point the shutter window turned translucent. Participants were then required to pick up the 

object using only forefinger and thumb and place it at the goal location. Participants had 3 seconds to 

complete the task before the shutter window turned opaque. In Experiment 1, no instructions were 

given regarding how the objects had to be transported, yet we observed that participants never 

allowed the objects to rotate. Therefore, to match the movement task across experiments, in 

Experiment 2 participants were instructed to keep the objects as level as possible.  

Experiment 1 had sixteen conditions: two starting locations, four wooden objects of different shapes, 

each object presented at two orientations. Each participant repeated each condition five times (eighty 

trials per participant).  

Experiment 2 had thirty-six conditions: twelve distinct objects (four shapes in three material 

configurations) presented at two orientations. Half of the participants handled only shapes L and V, 

the other half handled shapes U and S. Each participant repeated each condition seven times (eighty-

four trials per participant). In both experiments trial order was randomized.  

Following each trial, the experimenter visually inspected the movement traces to determine whether 

the trial was successful or not. Unsuccessful grasps were marked as error trials, added to the 

randomization queue, and repeated.  

2.4.4.2 Experiment 3 

Prior to each trial, participants placed thumb and index finger at the starting location, closed their 

eyes, and the experimenter placed one of the stimulus objects at the target location. The 

experimenter could precisely position each object by aligning it with its outline, drawn on millimeter 

paper. Once both stimulus and participant were positioned correctly, a tone indicated the beginning 

of a trial, at which point the participants opened their eyes. Participants were then required to pick 

up the object using only forefinger and thumb and place it at the goal location. Participants had 3 

seconds to complete the task. Each participant picked up each object seven times (28 trials per 

participant). Trial order was randomized. Following each trial, the experimenter visually inspected the 

movement traces to determine whether the trial was successful or not. Unsuccessful grasps were 

marked as error trials, and repeated immediately.  
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2.4.4.3 Error trials 

A total of 397 error trials (13.8% of trials from Experiment 1, 13.9% from Experiment 2, and 6.9% from 

Experiment 3) were not analyzed. Trials were deemed unsuccessful when participants did not 

conclude the movement within the allotted time (10.1% of error trials in Experiment 1, 41.4% of error 

trials in Experiment 2, and 0% in Experiment 3), and/or when tracking was lost (94.2% of error trials 

in Experiment 1, 88.7% of error trials in Experiment 2, and 100% of error trials in Experiment 3), or 

when participants placed the objects too hastily on the goal location, which resulted in the objects 

toppling over off the goal plate where they were supposed to rest (this occurred only twice throughout 

the study). Note that there was some overlap between causes of error. The trajectories of lost-tracking 

error trials, where the data are available, fall within the clusters of trajectories of corresponding non-

error trials in 92.2% and 99.0% of cases across Experiments 1 and 2 respectively. In Experiment 3 the 

experimenter manually recorded grasp locations for error trials, and these locations are all 

represented in the final dataset. It is therefore unlikely that excluded error trials differed strongly from 

the data included in our analyses.  

 

2.4.5 Training 
At the beginning of the experiments, each participant completed six practice trials in Experiments 1 

and 2 (using a Styrofoam cylinder in Experiment 1, and by lifting random objects from the shapes not 

used in that participant’s run in Experiment 2) and five practice trials in Experiment 3 (using the 

wooden L-object from Experiment 1). This was done to give participants a sense for how fast their 

movement should be in order to complete the entire movement within three seconds. Prior to 

Experiment 2, participants were familiarized with the relative weight of brass and wood using two 

rectangular cuboids of dimensions 12.5x2.5x2.5 cm, one of wood (50 g) and one of brass (670 g). 

Practice trial data were not used in analyses. Prior to Experiment 3, participants were familiarized with 

the weight of all four test objects by having each object placed on the flat, extended palm of their 

right hand. 

2.4.6 Analyses 
All analyses were performed in Matlab version R2018a. Differences between group means were 

assessed via paired or unpaired t-tests, or through Pearson correlation, as appropriate. Values of 

p<0.05 were considered statistically significant.  

2.4.6.1 Contact points 

Contact points of both fingers with the object were determined as the fingertip coordinates at the 

time of first contact, projected onto the surface of the triangulated mesh models of the object. The 

time of contact with the object was determined using the methods developed by Schot et al. (2010) 

and previously described in Paulun et al. (2016).  

2.4.6.2 Grasp similarity 

We described each individual grasp 𝑮⃗⃗  as a 6D vector of the x-, y-, z-coordinates of the thumb and index 

finger contact points: 

𝑮⃗⃗ = [𝒙𝑻, 𝒚𝑻, 𝒛𝑻, 𝒙𝑰, 𝒚𝑰, 𝒛𝑰] 
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To compute the similarity 𝑆 between two grasps  𝑮𝟏
⃗⃗ ⃗⃗    and  𝑮𝟐

⃗⃗ ⃗⃗  , we first computed the Euclidian distance 

between the two 6D grasp vectors. We then divided this distance by the largest possible distance 

between two points on the specific object 𝑫𝒎𝒂𝒙, determined from the mesh models of the objects. 

Finally, similarity was defined as 1 minus the normalized grasp distance, times 100: 

𝑆 = 100 ∗ (1 −
‖ 𝑮𝟏

⃗⃗ ⃗⃗  − 𝑮𝟐
⃗⃗ ⃗⃗  , ‖

𝑫𝒎𝒂𝒙
) 

In this formulation, two identical grasps, which occupy the same point in a 6D space, will be 100% 

similar, whereas the two farthest possible grasps onto a specific object will be 0% similar. Within-

subject grasp similarity was the similarity between grasps from the same participant to the 

participant's own medoid1 grasp. Between-subject grasp similarity was the similarity between the 

medoid grasp of each participant and the medoid grasp across all other participants.  

2.4.7 Normative model 
The model takes as input 3D meshes of the stimuli and outputs a cost function describing the costs 

associated with every possible combination of finger and thumb position on the accessible surface 

locations of our objects (i.e., those not in contact with the table plane). First, we define the center of 

each triangle in the mesh as a potential contact point. Then, given all possible combinations of thumb 

and index finger contact points 𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = [𝒙𝑻, 𝒚𝑻, 𝒛𝑻]; 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝒙𝑰, 𝒚𝑰, 𝒛𝑰], the surface normal at both 

contact points  𝒏𝑻⃗⃗ ⃗⃗  = [𝒙𝑻
𝒏, 𝒚𝑻

𝒏, 𝒛𝑻
𝒏]; 𝒏𝑰⃗⃗⃗⃗ = [𝒙𝑰

𝒏, 𝒚𝑰
𝒏, 𝒛𝑰

𝒏], and the CoM of the object 𝑪𝒐𝑴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

[𝒙𝑪𝒐𝑴, 𝒚𝑪𝒐𝑴, 𝒛𝑪𝒐𝑴], the five penalty functions we combined into a normative model of grasp selection 

were defined as follows: 

2.4.7.1 Force closure 

For two-digit grasping, a grasp fulfills force closure when the grasp axis connecting thumb and index 

contact points lies within the friction cones resulting from the friction coefficient between object and 

digits (Nguyen, 1988). A grasp that does not fulfill force closure will not be able to lift and freely 

manipulate the object, no matter the amount of force applied at the fingertips. A grasp perfectly fulfills 

force closure when the grasp axis is perfectly aligned with the vectors along which gripping forces are 

applied, which are the opposite of the contact-point surface normals. Therefore, we defined the force 

closure penalty function as the sum of the angular deviances (computed using the atan2 function) of 

the grasp axis from both force vectors 𝑭𝑻
⃗⃗ ⃗⃗  = −𝒏𝑻⃗⃗ ⃗⃗  ; 𝑭𝑰

⃗⃗⃗⃗ = −𝒏𝑰⃗⃗⃗⃗ : 

𝑷𝑭𝑪(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =  𝒂𝒕𝒂𝒏𝟐(‖𝑭𝑻
⃗⃗ ⃗⃗  × (𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )‖, 𝑭𝑻

⃗⃗ ⃗⃗  ∙ (𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) )  

+ 𝒂𝒕𝒂𝒏𝟐(‖𝑭𝑰
⃗⃗⃗⃗ × (𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗)‖, 𝑭𝑰

⃗⃗⃗⃗ ∙ (𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) )  

2.4.7.2 Torque 

If a force is applied at some position away from the CoM, the object will tend to rotate due to torque, 

given by the cross product of force vector and lever arm (the vector connecting CoM to the point of 

force application). Under the assumption that is possible to apply forces at the thumb and index 

contact points that counteract the force of gravity  𝑭𝒈
⃗⃗⃗⃗  ⃗ , we can compute the total torque of a grip as 

 
1 The medoid (a concept similar to the mean) is the element of a set that minimizes its distance to all other 
elements. We employ the medoid over the mean because it better represents the grasp data: while the 
medoid grasp belongs to the set of executed grasps, the mean grasp can result in a grasp that falls inside or 
outside of the grasped object.  



Chapter 2 – Predicting precision grip grasp locations on three-dimensional objects 

  
43 

the sum of torques exerted by each contact point. Therefore, we defined the torque penalty function 

as the magnitude of the total torque exerted by a grip: 

𝑷𝑻(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =  ‖(𝑪𝒐𝑴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) × −𝑭𝒈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + (𝑪𝒐𝑴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗) × −𝑭𝒈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 

2.4.7.3 Natural grasp axis 

Schot, Brenner, and Smeets (2010) have carefully mapped out how human participants grasp spheres 

placed at different positions throughout the peripersonal space, and provide a regression model that 

determines the naturally preferred posture of the arm when grasping a sphere. We input the 

configuration of our current experimental setup into the regression model developed by these 

authors, and found the natural grasp axis for our participants to be 𝑵𝑮𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝟎. 𝟒𝟗 𝟎. 𝟖𝟕 𝟎]. We 

therefore defined the natural grasp axis penalty function as the angular deviance from this established 

natural grasp axis: 

𝑷𝑵𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =  𝒂𝒕𝒂𝒏𝟐(‖𝑵𝑮𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ × (𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )‖,𝑵𝑮𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ (𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) ) 

2.4.7.4 Optimal grasp aperture for precision grip 

Cesari and Newell (1999) have shown that, when free to employ any multi-digit grasp, human 

participants selected precision grip grasps only for cubes smaller than 2.5 cm in length. As cube size 

increases, humans progressively increase the number of digits employed in a grasp. Therefore, since 

our participants were instructed only to employ precision grip grasps, we defined the optimal grasp 

aperture penalty function as 0 for grasp sizes smaller than 2.5 cm, and as a linearly increasing penalty 

for grasp sizes larger than 2.5 cm: 

𝑷𝑶𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = {
0,                                          𝑖𝑓 ‖𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ < 25𝑚𝑚

‖𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ − 25, 𝑖𝑓 ‖𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ > 25 𝑚𝑚
  

In pilot work, we observed that a penalty map linearly increasing from 0 cm worked equally as well as 

one linearly increasing from 2.5 cm. In Experiment 3 we further observed that increasing this threshold 

up to 10 cm did not hinder model performance. However, constructing this penalty function with the 

2.5 cm threshold motivated by previous literature will allow us, in future work, to construct penalty 

functions with multiple thresholds for multi-digit grasping, as those observed by Cesari and Newell 

(1999).  

2.4.7.5 Object Visibility 

Under the assumption that humans are attempting to minimize the portion of the objects hidden from 

view by their hand, we defined the optimal visibility penalty function as the proportion of object still 

visible during each possible grasp. We first defined the line on the XZ plane that passes through the 

thumb and index finger contact points. We made the simplifying assumption that, given all possible 

surface points on the object 𝑺𝑷𝑻𝑶𝑻, the surface points 𝑺𝑷𝑶𝑪𝑪(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) that fall to the side of the 

line where the hand is located will be occluded. Therefore, the object visibility penalty function was 

defined as: 

𝑷𝑶𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =
𝐿𝑒𝑛𝑔𝑡ℎ (𝑺𝑷𝑶𝑪𝑪(𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗))

𝐿𝑒𝑛𝑔𝑡ℎ(𝑺𝑷𝑻𝑶𝑻)
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2.4.7.6 Overall grasp penalty function 

To obtain the overall grasp penalty function, each grasp penalty function was first normalized to the 

[0 1] range (i.e., across all possible grasps for each given object, independently of the other objects). 

Then, we took the sum of the individual penalty functions: 

𝑷𝑶(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 𝑷𝑭𝑪(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 𝑷𝑻(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 𝑷𝑵𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 

𝑷𝑶𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 𝑷𝑹𝑻(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

For display purposes this final function was normalized to the [0 1] range. The minima of this overall 

grasp penalty function represent the set of grasps that best satisfy the largest number of constraints 

at the same time. 

2.4.7.7 Model fitting  

In both Experiments 1 and 2, human participants executed repeated grasps to the same objects at 

each orientation. To fit the overall grasp penalty function to these human data, for each participant in 

each condition we first defined a human grasp penalty function 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) in which all grasps 

selected by a participant onto an object were set to have 0 penalty, and all grasps that had not been 

selected were set to have a penalty of 1. Then, we fit the function: 

𝑷𝑶,𝒇𝒊𝒕(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = √∑𝑤𝑖 ∗ 𝑷𝒊(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗)
2

𝑖

 

to the human grasp penalty function. More specifically, we employed a nonlinear least-squares solver 

to search for the set of weights  𝑤𝑖 = [𝑤𝐹𝐶 ;𝑤𝑇; 𝑤𝑁𝐺𝐴; 𝑤𝑂𝐺𝐴; 𝑤𝑅𝑇] that minimized the function: 

𝑭(𝒘𝒊) = √𝑹(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) ∗ [√∑𝑤𝑖 ∗ 𝑷𝒊(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗)
2

𝑖

− 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗)] 

i.e. we searched for the set of weights for which 𝑷𝑶,𝒇𝒊𝒕 best approximated the human grasp penalty 

function 𝑷𝑯. The solver employed the trust-region-reflective algorithm; we set the lower and upper 

bounds of the weights to be 0 and 1, and 0.2 as the starting value for all weights. The number of non-

selected grasps with 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 1 vastly outnumbered the few selected grasps for which 

𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 0. To avoid overfitting the model to the regions of the grasp space where 

𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 1, we designed 𝑹(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗)  as a regularization function which served to give equal 

importance to high and low penalty grasps in the human grasp penalty function. Thus, for grasps 

where 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 0, 𝑹(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) was equal to the number of times the participant had 

selected that specific grasp. For grasps where 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 1 instead, 𝑹(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =
𝑁𝐺,𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝑁𝐺,𝑛𝑜𝑛−𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
; where 𝑁𝐺,𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 was the total number of grasps performed by the participant onto the 

object, and 𝑁𝐺,𝑛𝑜𝑛−𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 was the total number of non-selected grasps within the grasp manifold. 

This way for both selected and non-selected grasp regions, the sum of 𝑹(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) was 𝑁𝐺,𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 

and both regions of grasp space were accounted for equally during the fitting. 
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2.4.7.8 Predicting Grasps 

The minima of both the equally weighted (non-fitted) and the fitted overall grasp penalty functions 

represent the set of grasps predicted to be optimal under the weighted linear combination of the five 

penalty functions included in our normative model. To visualize these predicted optimal grasps, we 

sampled them from the minima of the penalty functions. First, we removed all grasps with penalty 

values greater than the lower 0.1th percentile. This percentile value was selected to approximately 

match the proportion of grasp space actually covered by human grasps. The remaining grasps were 

therefore all optimal or near-optimal. From this subset, we then randomly selected (with 

replacement) a number of grasps equal to the number of grasps executed by the human participants. 

The probability with which any one grasp was selected was set to be 1 minus the grasp penalty, thus 

grasps with zero penalty had the highest probability of being selected. These sampled grasps can then 

be projected back onto the objects for visualization purposes (Figure 2.12a, 2.13a), or they can be 

directly compared to human grasps using the grasp similarity metric described above (Figures 12b,c, 

13c).  
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Chapter 3 
 

 

STUDY II 

Friction is preferred over grasp configuration  

in precision grip grasping 
 

 

 

A similar version of this manuscript has been published as: 

Klein, L. K., Maiello, G., Fleming, R. W., & Voudouris, D. (2021). Friction is preferred over grasp 

configuration in precision grip grasping. Journal of Neurophysiology, 125(4), 1330–1338. 

https://doi.org/10.1152/jn.00021.2021 

 

How humans visually select where to grasp an object depends on many factors, including grasp 

stability and the final grasp configuration. We examined how endpoints are selected when these two 

factors are brought into conflict: Do people favor stable grasps or do they prefer their natural grasp 

configurations? Participants reached to grasp one of three cuboids that was oriented so that its two 

corners were either aligned with each individual’s natural grasp axis (NGA) or rotated 22.5° away from 

that NGA. All objects were made of brass (mass: 420 g) but the surfaces of their sides were 

manipulated to alter friction: 1) all-brass, 2) two opposing sides covered with wood, while the other 

two remained of brass, or 3) two opposing sides covered with sandpaper, and the two remaining brass 

sides smeared with vaseline. Grasps were evaluated as either clockwise (thumb to the left of finger in 

frontal plane) or counterclockwise of the NGA. Grasp endpoints depended on both object orientation 

and surface material. For the all-brass object, grasps were bimodally distributed for the NGA-aligned 

object but predominantly clockwise for the NGA-unaligned object. These data reflected the 

participants’ natural grasp configuration independently of surface material. When grasping objects 

with different surface materials, endpoint selection changed: Participants sacrificed their usual grasp 

configuration to choose the more stable object sides. A model in which surface material shifts 

participants’ preferred grip angle proportionally to the perceived friction of the surfaces accounts for 

our results. Our findings demonstrate that a stable grasp is more important than a biomechanically 

comfortable grasp configuration. 
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3.1 Introduction  
When grasping, humans must select appropriate contact points with the object out of a plethora of 

possible options. This choice is nontrivial and depends on several characteristics of the object, such as 

its position in relation to the actor (Brière & Proteau, 2011; Paulignan et al., 1997), orientation (Paulun 

et al., 2016; Voudouris, Smeets, et al., 2013), size (Hesse & Franz, 2009; Kamp et al., 2009), center of 

mass (J. Lukos et al., 2007; Voudouris et al., 2019), surface material (Fikes et al., 1994; Wing & 

Lederman, 2009), and visibility (Maiello et al., 2019; Paulun et al., 2016). We have recently shown 

computationally that grasp endpoint selection is determined by an intersection of constraints derived 

from these factors (Klein et al., 2020; Maiello et al., 2021). Two critical underlying factors for endpoint 

selection are the prioritization of a stable grasp and the adoption of the natural grasp configuration. 

Stable grasps are ensured by applying forces within the cone of friction, so humans bring their digits 

orthogonally to the object’s surface (Kleinholdermann et al., 2007). When grasping low-friction 

objects, humans reduce endpoint variability (Paulun et al., 2016) and tailor each digit’s grip forces to 

the local surface properties (Burstedt et al., 1999), suggesting more careful endpoint selection when 

anticipating unstable grasps. Unsurprisingly, when grasping elongated objects of combined smooth 

and rough surfaces, humans choose endpoints on the rough surfaces, presumably to foster grasp 

stability. Interestingly, though, endpoints are chosen on smooth surfaces if doing so minimizes the 

torques associated with subsequent object manipulation (Glowania et al., 2017; Wing & Lederman, 

2009), suggesting that, although grasp stability is important, other energetic factors are also 

considered when choosing endpoints. 

Grasp control attempts to optimize energy expenditures (Glowania et al., 2017) and minimize travel 

and spatial error costs (Rosenbaum et al., 2001). A key aspect for selecting the grasp configuration is 

that extreme joint angles should be avoided (Rosenbaum et al., 2001) because such configurations 

increase spatial errors (Rossetti et al., 1994). To this end, humans keep their final grasp configurations 

approximately invariant (Grea et al., 2000; Rosenbaum & Jorgensen, 1992; Voudouris, Radhakrishnan, 

et al., 2013), even when obstacles hinder these configurations (Voudouris et al., 2012b). When 

grasping cuboid objects that can be grasped with only two configurations, one of which requires the 

digits to be placed on object positions that are occluded, humans still prioritize their natural grasp 

configuration by tolerating invisible endpoints (b). These examples further highlight the importance 

of grasp configuration in the selection of endpoints. 

Considering the critical role that both grasp stability and final grasp configuration have in grasp 

endpoint selection, an emerging question relates to the trade-off between these two factors. If grasp 

stability is prioritized, humans should choose endpoints that provide stable grasps, even when this 

requires unusual grasp configurations. Alternatively, if final grasp configuration is prioritized, humans 

should keep their natural grasp posture invariant, even if this would lead to unstable endpoints. To 

examine this, we asked participants to reach, grasp, and lift cuboid objects of different surface 

materials. By using cuboids, participants could choose endpoints on only one of the two pairs of 

opposing surfaces, requiring grasp configurations orthogonal to each other. By manipulating the 

friction properties of each pair of surfaces, we disentangled the contributions of grasp stability and 

grasp configuration by examining whether humans prioritize their usual grasp configuration, even if 

this would sacrifice grasp stability, or whether they prioritize grasp stability by adopting awkward final 

grasp postures.  
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3.2 Materials and Methods 

3.2.1 Participants  
Twenty-one naïve self-reported right-handed participants (mean age: 24.4 years, 16 females) with 

normal or corrected-to-normal vision participated in our study. This sample size was selected though 

a-priori power analysis, based on a pilot experiment (N=7), to guarantee that we could detect the 

smallest effect of interest at the 95% confidence level with 80% power. All procedures were approved 

by the local ethics board and adhered to the declaration of Helsinki (2013). All participants provided 

written informed consent prior to the experiment and received monetary compensation for their 

efforts. 

3.2.2 Apparatus 
A schematic depiction of the setup is shown in Figure 3.1a. Participants sat at a table with their right 

hand at a start position aligned to their shoulder, 9 cm from the table’s edge. Objects were placed in 

front of the participants at a target position aligned with their midline, 16 cm from the table’s edge. 

Movements of the participants’ right thumb and index fingers were recorded at 100 Hz with an 

Optotrak Certus (Northern Digital Inc., Waterloo, ON, Canada) that tracked the position of small 

infrared markers attached to the respective fingernails (with sub-millimeter accuracy and resolution). 

A monitor was placed on the table in front of the experimenter, who sat next to the participants. The 

monitor displayed to the experimenter which condition to set up on each trial. The experiment was 

programmed in Matlab R2019b using the Motom Toolbox (Derzsi & Volcic, 2018).  

The target objects and the experimental conditions are shown in Figure 3.1b. In the main experiment, 

the object was one of three possible cuboids (5 cm x 5 cm x 2 cm) that was oriented either with its 

corners aligned to the participant’s individual NGA or rotated 22.5° counterclockwise. All objects were 

made of brass (mass: 420 g) but the surface material of the sides was manipulated, so that the sides 

were either all-brass (baseline object), or two of the opposing sides were covered with wood and the 

other two remained with brass (wooden object), or two of the opposing sides were covered with 

sandpaper and the other two brass sides were made slippery using Vaseline (“brasseline” object). Each 

of the wooden and brasseline objects could be placed in two configurations, such that their higher- 

and lower-friction sides were alternated clockwise and counterclockwise. 

3.2.3 Procedure 
Before each trial, participants placed their thumb and index finger at the start position and the 

experimenter placed the object at the target position at the appropriate orientation and 

configuration. The experimenter could very precisely position each object at the correct angle by 

aligning the edges with the corresponding outlines on a protractor template on the table. An auditory 

cue prompted participants to reach and grasp the object using only their thumb and index finger, and 

then lift it ~10 cm high while keeping it level. Participants had to place the object back down at roughly 

the same position before returning to the start position in anticipation of the next trial. Participants 

were to execute the task in 3 seconds and could see the object at all times during the experiment. No 

other instructions were given. 
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Figure 3.1: Experimental setup and predictions. a Participants reached to grasp and lift an object placed in front of them. 

After lifting it, they put the object back down, before returning to the start position. 1 They first grasped a cylinder 10 

consecutive times to determine each individual’s NGA. 2 The experimenter aligned the object outline template with the NGA. 

3 The target cuboid object was aligned with a protractor template according to the condition angle and orientation. b Each 

cuboid was presented at two orientations: with its corners either aligned with the NGA or rotated 22.5° counterclockwise. 

The wooden and brasseline objects were presented also in two configurations, so that their higher- and lower-friction sides 

were alternated clockwise and counterclockwise. The cylinder was only used to determine the NGA before the trials involving 

the cuboids. Object pictures are presented next to the corresponding conditions. c,d Predictions regarding the percentage of 

clockwise grasps for different surface material configurations, for c NGA-aligned and d NGA-unaligned conditions. Arrows 

visualize a change in behavior compared to the baseline prediction. A thin downwards pointing arrow predicts a small 

decrease in clockwise grasps, a large arrow a larger decrease. The hands’ degree of translucency represents the amount of 

predicted clockwise (cyan hand) vs. counterclockwise (orange hand) grasps.  

Prior to the main experiment, to measure each individual’s NGA, participants performed 10 grasps to 

a brass cylinder (diameter 5 cm, height 2 cm, weight 332 g). From these 10 trials, an individual’s NGA 

was calculated as the median orientation of the grip at the moment of grasp. The experimenter then 

marked two orientations on the protractor template around the target position so that one 

corresponded to the calculated NGA (NGA-aligned) and another was rotated 22.5° counterclockwise 

(NGA-unaligned). Using these outlines, participants performed 6 practice trials drawn from a subset 

of the experimental conditions, during which they were familiarized with the task and cuboid objects.  

The main experiment then started, in which participants grasped only the cuboids. Each of the 10 

conditions (Figure 3.1b) was presented 10 times (100 trials per participant), across three object-

specific sub-blocks to minimize trial-order effects (Maiello et al., 2018): presentation of baseline, 
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wooden, and the brasseline objects were shuffled across participants in a Latin square design. Within 

each sub-block, object orientation and configuration were presented in pseudorandomized order.  

Immediately after the grasping experiment, we asked participants to judge the slipperiness and 

pleasantness to the touch of each of the four surfaces they could grasp during the experiment. On the 

monitor participants viewed pictures of the objects with one of the four possible materials facing the 

participants. Using the mouse in eight separate trials, they first set a slider on a scale from slippery to 

not slippery and afterwards rated the same four surfaces from pleasant to not pleasant.  

3.2.4 Analyses  

3.2.4.1 Endpoints 

Endpoints of both fingers with the objects were determined as the coordinates of the markers on the 

fingernails at the time of contact, as this was determined using the method developed by Schot et al. 

2010 and previously described in Paulun et al. (2016). In detail, the average position of the two 

markers on the fingernails, which represented the position of the hand, had to travel more than half 

the distance between the start and the target position, and the likelihood of a sample being the 

moment of contact increased with lower vertical positions and with lower speeds of the hand. 

3.2.4.2 Grip Angle 

We were interested in which pair of opposing sides was grasped at the moment of object contact in 

relation to the objects’ surface material. Therefore, for each trial we first computed the final grip angle 

along the horizontal plane as: 𝜂 = 𝑎𝑡𝑎𝑛2(𝑦𝑖𝑛𝑑𝑒𝑥 − 𝑦𝑡ℎ𝑢𝑚𝑏, 𝑥𝑖𝑛𝑑𝑒𝑥 − 𝑥𝑡ℎ𝑢𝑚𝑏). Then, we classified 

each grip as either clockwise, if the grip angle was 𝜂 < 𝑁𝐺𝐴 (thumb to the left of finger in frontal 

plane), or counterclockwise, if 𝜂 ≥ 𝑁𝐺𝐴. Finally, we computed the percentage of clockwise grasps for 

each participant in each condition.  

3.2.4.3 Predictions 

Our a-priori, qualitative predictions are illustrated in Figure 3.1(c,d). For the NGA-aligned orientation 

there is no obvious preferred grasp configuration for the baseline object (Voudouris et al., 2012a), so 

participant grasps, at least in the group level, should be split equally between clockwise and 

counterclockwise. For wooden and brasseline objects, we predict more grasps on the wooden and 

sandpaper sides, respectively, as these surfaces have higher friction and facilitate more stable grasps. 

For the NGA-unaligned conditions, one pair of sides requires counterclockwise rotations away from 

the NGA that are twice as large as those required for the clockwise pair of sides (Voudouris et al., 

2012a). Therefore, in these conditions we can directly contrast grasp configuration with grasp stability. 

If the former is more important, participant grasps should be predominantly clockwise, independently 

of the surface material. If, instead, grasp stability is prioritized, we predict lower proportions of 

clockwise grasps when the higher friction cube sides are oriented counterclockwise.  

3.2.4.4 Statistical analyses: a priori, hypothesis-driven analyses 

To assess whether our experimental manipulations shifted participants’ grasps clockwise or 

counterclockwise, we analyzed the percentage of clockwise grasps using a repeated-measures 

generalized linear mixed effects model (GLMM) with fixed effects for object orientation, surface 

configuration, and the interaction between these, plus random subject-level effects. We defined a 

logit link function and the conditional distribution of the responses as a Binomial distribution. This is 

conceptually similar to repeated measures analysis of variance, but overcomes ANOVA shortcomings 
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with percentage data (Jaeger, 2008). Comparisons between condition pairs were performed via two-

tailed, paired samples t-tests after variance-stabilizing the percentage data via arcsine square root 

transformation. We report effect size for differences between condition means on variance-stabilized 

data as 𝑑 = 𝜇𝐶1−𝐶2 𝜎𝐶1−𝐶2⁄ . Statistical significance was set at α < 0.05. All analyses were performed 

in Matlab version R2019b.  

3.3 Results 
We investigated grasp endpoint selection when trading-off between grasp configuration and grasp 

stability. Participants grasped and lifted a cuboid while we varied the surface material of each pair of 

its sides. This introduced conditions in which higher friction surfaces were orthogonal to the usual 

grasp configuration, and thereby we could quantify the contribution of each of these factors in 

endpoint selection.  

Figure 3.2a displays each participant’s ten grip orientations and the associated median (the NGA 

estimate) when grasping the brass cylinder. Across participants, the mean ± standard deviation NGA 

was 66° ± 9°. Figure 3.2b,c presents an overview of the distributions of the grip angles (relative to each 

individual’s NGA) for each condition involving the cuboid. For objects aligned with the NGA (Figure 

3.2b), baseline grips (top row) were bimodally distributed across participants. This bimodal 

distribution was somewhat skewed when grasping the low-constraint wooden object (rows 2,3), and 

became clearly unimodal when grasping the brasseline object (rows 4,5). For objects rotated 22.5° 

away from the NGA (Figure 3.2c), baseline grips were predominantly clockwise, and remained so when 

the higher friction surfaces were aligned with this natural grasp configuration (rows 2 and 4). 

Interestingly, when the higher friction surfaces were orthogonal to the baseline grip axis, participants 

switched their grasp configuration to choose more stable endpoints, subtly for the wooden object 

(row 3) but massively for the brasseline object (row 5).  

These results were further confirmed by our statistical analyses. GLMM analysis on the percentage of 

clockwise grasps (Figure 3.2d,e) showed a significant main effect of object orientation (p<.001), as 

participants grasped the NGA-aligned objects with a bimodal distribution of grip angles, but the NGA-

unaligned objects primarily with clockwise grips, in line with previous findings (Voudouris et al., 

2012a). The percentage of clockwise grips was further affected by the surface material configuration 

(p<.001), and this effect was different depending on the object’s orientation (interaction; p<.001). 

Specifically, for the brasseline object, grips were more often clockwise and counterclockwise following 

the higher friction material in both the NGA-aligned (t(20)=17.9, p<.001, d=3.9) and unaligned 

orientations (t(20)=13, p<.001, d=2.8). This pattern was observed also for the wooden object, but was 

weaker (NGA-aligned: t(20)=3.4, p=.0031, d=0.73; NGA-unaligned: t(20)=2.8, p=.011, d=0.61). Note 

that this interaction arose because in the NGA-aligned orientation, grips shifted both clockwise and 

counterclockwise from baseline, whereas in the NGA-unaligned orientation they only shifted 

counterclockwise.  

Figure 3.2f further shows the effect of surface material assessed independently of object orientation. 

Specifically, for each object orientation we calculated the difference in clockwise grasps between the 

two configurations of each (wooden and brasseline) object, and then calculated the average difference 

across the two object orientations, with greater values indicating stronger preference for higher 

friction surfaces. We found that grasps were significantly attracted toward the higher friction sides 

both for the wooden (t(20)=3.4, p=.003, d=0.74) and the brasseline objects (t(20)=16.5, p<.001, d=3.6), 
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but that the strength of this attraction was greater in the brasseline than the wooden object 

(t(20)=10.4, p<.001, d=2.3). Participants performed repeated trials for each condition. We thus 

wondered whether the observed shifts in grasp orientation were based on visual estimation of object 

properties or on the memory from repeated experience with the object. To answer this question, we 

repeated our analyses using only the first trial from each participant in each condition, and found that 

our findings remained unvaried (correlation between full and reduced dataset: r = 0.99, p<.001). 

Figure 3.2: Shifts in grasp orientation following object orientation and surface material. a NGA estimation: grip orientation 

of all ten trials (colored lines) and median grip angles (black lines) for each participant (separate panels) when grasping the 

brass cylinder. All median NGA estimates are depicted in the lower right panel. b,c The proportion of grip angles, relative to 

each individual’s NGA, for all material configurations. Grip angles to the left and right of the dotted green line (NGA) are 

counterclockwise (orange hand) and clockwise grasps (cyan hand), respectively. b Cube corners aligned with the NGA. c Cube 

corners rotated 22.5° away from the NGA. d,e The percentage of clockwise grip angles for each of the five conditions when 

cuboid corners were d aligned with the NGA and e when not. f Difference in %clockwise grips between surface configurations 

for the wooden and brasseline objects, collapsed across object orientations. In panels d,e,f, circles denote individual 

participants, bars are means across participants, error bars are 95% bootstrapped confidence intervals. Y-axes are scaled 

following the arcsine square root transform. *p<.05; **p<.01;***p<.001. 
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In short, participants grasped the higher friction surfaces more often than the lower friction surfaces. 

This was clearly evident when the higher friction surfaces were orthogonal to the baseline grip axis, 

and particularly apparent in the NGA-unaligned orientation conditions, when grasp stability and final 

grasp configuration were fully contrasted. Indeed, when grasping the NGA-unaligned brasseline 

object, participants used grasp configurations that were almost never used when grasping the NGA-

unaligned baseline object (compare first and last rows of Figure 3.2c). It is possible that participants 

were content to select these unusual grasp configurations because they could readjust their grip and 

arm posture when lifting the object off the table. We thus compared grip angles at moment of first 

contact with grip angles 500 ms after contact, i.e., during object lift. Even when adopting the postures 

farthest from the NGA (last row of Figure 3.2c), participants readjusted their grip posture on average 

only by 1 ± 4°, suggesting they maintained postures away from the NGA throughout the grasping 

action. Therefore, humans prefer endpoints that facilitate stable grasps, even when this requires 

unusual grasp configurations. 

3.3.1 A simple model: surface friction shifts participants’ preferred grip angle 
To gain further insights into the process by which grasp stability and grasp configuration interact when 

choosing endpoints, we devised a simple model to explain our pattern of results (Figure 3.3). First, we 

assumed that an individual participant will exhibit a preferred grip axis that follows a normal 

distribution 𝑁(𝜇, 𝜎), with mean 𝜇𝑁𝐺𝐴 and standard deviation 𝜎𝑁𝐺𝐴. In the equal material conditions 

(Figure 3.3a), a participant’s grasps will be clockwise or counterclockwise depending on whether this 

participant’s NGA is clockwise or counterclockwise of the cube’s diagonal, here named 𝜉. Thus, in the 

NGA-aligned condition (Figure 3.3a, top), where we aligned the cube’s diagonal with each participant’s 

estimated NGA, approximately 50% of grasps should be oriented clockwise (green shaded region of 

the distribution) and 50% of grasps should be counterclockwise (orange region). In the NGA-unaligned 

condition (Figure 3.3a, middle), where the cube diagonal is rotated away from each participant’s 

measured NGA, most of the NGA distribution should fall clockwise to this diagonal, thus most grasps 

should be clockwise. The proportion of clockwise grasps 𝑃𝑐𝑤 can thus be formalized as the value of 

the cumulative normal function 𝛷(𝑥, 𝜇𝑁𝐺𝐴, 𝜎𝑁𝐺𝐴), evaluated at 𝑥 = 𝜉: 

𝑃𝑐𝑤 = 𝛷(𝜉, 𝜇𝑁𝐺𝐴, 𝜎𝑁𝐺𝐴) 

In conditions with different materials at the opposing pairs of surfaces (Figure 3.3a, bottom), we 

assumed that each individual's 𝜇𝑁𝐺𝐴 shifts clockwise and counterclockwise by amounts proportional 

to the perceived friction of the surfaces 𝜈𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 and to the clockwise or counterclockwise rotations 

required to grasp these surfaces, 𝜑𝜃,𝑐𝑤 and 𝜑𝜃,𝑐𝑐𝑤, with: 

𝜑0,𝑐𝑤 = −45; 𝜑0,𝑐𝑐𝑤 = +45;  𝜑𝜋/8,𝑐𝑤 = −22.5; 𝜑𝜋/8,𝑐𝑐𝑤 = +67.5 

 

Specifically: 

𝜇𝜃,𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙−𝑐𝑤/𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙−𝑐𝑐𝑤 = 𝜇𝑁𝐺𝐴 + 𝜈𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙−𝑐𝑤 × 𝜑𝜃,𝑐𝑤 + 𝜈𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙−𝑐𝑐𝑤 × 𝜑𝜃,𝑐𝑐𝑤 

The unknown variables in this framework are thus the positive valued, perceived friction coefficients: 

𝜈𝑤𝑜𝑜𝑑 , 𝜈𝑏𝑟𝑎𝑠𝑠, 𝜈𝑠𝑎𝑛𝑑𝑝𝑎𝑝𝑒𝑟 , 𝜈𝑏𝑟𝑎𝑠𝑠𝑒𝑙𝑖𝑛𝑒 
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Note that we measured each participant’s NGA prior to our main experiment, and we could thus 

estimate 𝜇𝑁𝐺𝐴, 𝜎𝑁𝐺𝐴 from these measurements. However, as validation of our model, we also seeded 

the model with the NGA measurements, but allowed 𝜇𝑁𝐺𝐴, 𝜎𝑁𝐺𝐴 as free parameters. We fit this simple 

model to each individual participant’s data, and found that the model is able to closely replicate the 

observed patterns of human data both at the group level (Figure 3.3b) and at the level of individual 

participants (Figure 3.3c), even after adjusting for the number of predictors in the model (r=0.98, 

p<.001, r2=0.96, r2
adjusted=0.90). Figures 3d and 3e show that the model’s fitted 𝜇𝑁𝐺𝐴 and  𝜎𝑁𝐺𝐴 

parameters both significantly correlate with the NGA measurements taken with the brass cylinder 

object prior to the main experiment (r=0.48, p=.027 and r=0.85, p<.001, respectively). Figure 3.3f 

further shows that the fitted friction coefficients also significantly correlate with human perceptual 

ratings of friction (r=0.75, p<.001; per participant average r=0.75, IQR = [1, 0.5]). 

 

Figure 3.3. Model results. a Model behavior, exemplified at the group level. In the same material conditions (top and middle), 

the cube diagonals (black lines) in the aligned and unaligned conditions split the NGA distribution into clockwise (green) and 

counterclockwise (orange) grips by different amounts. In one example condition with different surface materials, the NGA 

distribution is shifted counterclockwise following the surface with higher friction (sandpaper/black). For clarity, here we show 

the NGA distribution in both Cartesian (left) and polar axes (right), but please note that these plots show absolute grip angles, 

not relative grip angles as in panels b and c of Figure 3.2. b These shifts very closely capture the patterns of human data, both 

at the group level, and at the level of individual participants (data for two example participants with corresponding fitted 

model outputs are shown as green and red dots). c Human vs Fitted model percent clockwise grasps. d,e Human vs Fitted 

model 𝜇𝑁𝐺𝐴 and 𝜎𝑁𝐺𝐴. f Human ratings of perceived surface friction vs Fitted model friction coefficients.  

Note that the human perceptual ratings of friction also correlated with the ratings of pleasantness 

(r=0.80, p<.001), and thus pleasantness ratings also correlated with model friction coefficients (r=0.58, 
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p<.001). However, human perceptual ratings of friction explain 20% more of the variance in the fitted 

model coefficients.  

Given the correlations between model and human NGA parameters, it is also possible to construct a 

model with only the friction coefficients as free parameters, fixing 𝜇𝑁𝐺𝐴 and  𝜎𝑁𝐺𝐴 to the 

experimentally measured values for each participant. This reduced model is also able to replicate the 

observed patterns of human data (r=0.84, p<.001, r2=0.71, r2
adjusted=0.51), and the fitted friction 

coefficients again significantly correlate with human perceptual ratings of friction (r=0.65, p<.001) 

better than with pleasantness ratings (r=0.45, p<.001). This simple model is thus able to directly relate 

human perception of surface friction to the selected hand posture for grasping.  

 

3.4 Discussion 
We examined whether the selection of grasp endpoints depends primarily on the grasp stability or on 

the adoption of the usual grasp configuration at the moment of the grasp. To this end, we first 

measured individual NGAs and then oriented cuboid objects so that their corners were either aligned 

with the individual NGA or rotated 22.5° counterclockwise from the NGA. By having participants grasp 

cuboids, we implicitly asked them to grasp the cuboid object with one of two possible grasp 

configurations. By placing these cuboids at two different orientations, we created conditions in which 

grasps could be either bimodally distributed or systematically directed to one pair of the object’s sides. 

By further manipulating the materials of the object’s surfaces, we introduced conditions in which the 

axis connecting the higher friction surfaces was orthogonal to the grasp axis required for adopting the 

usual final grasp configuration, eventually allowing us to test which of the two factors is more 

important for contact point selection. Our results are clear: Humans choose endpoints that promote 

stable grasps, even if this requires adopting unusual grasp configurations. 

The object’s orientation influenced the selection of endpoints as expected (Voudouris et al., 2012a). 

When grasping the NGA-aligned all-brass object, grasp orientations at the population level were 

bimodally distributed, reflecting that objects could indeed be grasped from both pairs of sides without 

adopting awkward grasp configurations. Interestingly however, single participant grasps were less 

bimodally-distributed than at the group level, even when participants should not have had a clear 

preference in grip orientation, perhaps reflecting the fact that grasp planning is sensitive to 

sensorimotor memories obtained in previous trials (Dixon et al., 2012; Dixon & Glover, 2009; Jax & 

Rosenbaum, 2007; J. R. Lukos et al., 2013; Volcic & Domini, 2018; Witney et al., 2001). When grasping 

the NGA-unaligned all-brass object, the grasp distribution was clearly unimodal, suggesting that 

participants systematically chose grasp configurations within the midrange of their joints and avoided 

extreme joint angles at the moment of the grasp (Rosenbaum et al., 2001), likely to avoid pronounced 

endpoint errors (Rossetti et al., 1994). 

Our main interest, though, was whether participants would sacrifice their usual grasp configuration to 

choose stable endpoints or whether they would tolerate endpoints on the lower friction surfaces to 

maintain their usual grasp configuration. We show that participants were content to adopt unusual 

grasp configurations that foster grasp stability. This is reflected in the systematic switches of grasps 

between the two different configurations of each (wooden and brasseline) object, and is highlighted 

in the clear change of behavior when grasping the different configurations of the brasseline object: 

Participants tailored their grasp configurations to ensure that their digits landed almost always on the 
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sandpaper rather than on the vaseline-covered surface (see Figure 3.2d,e). This behavior was also 

evident for the wooden object, but less pronounced. A possible reason for this difference might be 

that participants avoided the vaseline-covered surface for other reasons than slipperiness per se, for 

instance to avoid having vaseline stuck on their digits or due to the unpleasantness of that material. 

We believe that this is unlikely, as our modelling demonstrates that participant grasps are more 

directly related to perceived surface friction, rather than perceived pleasantness to the touch. Rather, 

the difference between the wooden and the brasseline objects should be attributed to the lower 

relative costs of grasping the two surfaces of the wooden object (brass over wooden) compared to 

the greater costs of grasping the two surfaces of the brasseline object (vaseline-covered brass over 

sandpaper). Of course, if grasping the higher friction surfaces required particularly extreme grasp 

configurations (e.g., at the very limits of what is biomechanically possible), participants may have 

favored the lower friction of the two alternative grasps, as long as they could produce sufficient forces 

to overcome the lack of friction. However, we find that within the range of conditions tested, 

participants spontaneously adopted grasp configurations that they otherwise would almost never 

produce to avoid the difficulties associated with grasping a slippery surface.  

Our model linking perceptual ratings of friction to final grip orientation hints at how a simple neural 

circuit could implement these changes in grip selection in the brain, for example within the network 

formed between the Ventral Premotor Cortex (Area F5), Dorsal Premotor Cortex (Area F2), and the 

Anterior Intraparietal Sulcus (AIP). Areas F5 and F2 encode grip-wrist configuration and orientation 

(Raos et al., 2004, 2006). Both regions exhibit strong connections with AIP (Murata et al., 2000), which 

in turn plays a key role in linking the ventral visual stream (where visual material properties are 

encoded) to the hand motor system (Borra et al., 2008). Therefore, through area AIP, estimates of 

surface friction coming from ventral visual areas could bias our preferred grip orientation encoded in 

areas F5 and F2.   

Choosing grasp endpoints requires the consideration of several factors. Two main factors are grasp 

stability and the final grasp configuration (Klein et al., 2020). Grasp stability is important when 

controlling grasping and choosing endpoints (Paulun et al., 2016; Smeets & Brenner, 1999). 

Interestingly, humans have been found to sacrifice grasp stability in order to adopt grasp 

configurations that minimize other energy-related costs, such as torques during object manipulation 

(Glowania et al., 2017). Yet the magnitude of grip force that is required to overcome surface friction 

also determines energy expenditure and thus places additional constraints on grasp point selection, 

suggesting a crucial role of surface material properties in grasping. By directly juxtaposing the 

contributions of grasp configuration and stability, we demonstrate that participants systematically 

chose endpoints that promote stable grasps, even when these endpoints required grasp 

configurations that would otherwise be avoided. We conclude that humans strive for stable grasp 

endpoints at the expense of their final grasping posture. 



 

 

 

 

  



Chapter 4 – Distinct neural components of visually guided grasping 

  
59 

Chapter 4 
 

 

STUDY III 

Distinct neural components of visually guided 

grasping during planning and execution 
 

 

 

 

 

A similar version of this manuscript is under preparation for submission to a peer-reviewed journal: 

Klein, L. K., Maiello, G., Stubbs, K., Proklova, D., Paulun, V. C., Culham. J. C., & Fleming, R. W. (in 

prep.) Distinct neural components of visually guided grasping during planning and execution. 

 

Selecting suitable grasps on three-dimensional objects is a challenging visuomotor computation, 

which involves combining information about an object (e.g., its shape, size, and mass) with 

information about the actor’s body (e.g., the optimal grip aperture and hand posture for comfortable 

manipulation). Here we used functional magnetic resonance imaging to investigate brain networks 

associated with these distinct aspects during grasp planning and execution. Human participants 

viewed and then executed preselected grasps on L-shaped objects made of wood and/or brass. By 

leveraging a computational approach that accurately predicts human grasp locations, we selected 

grasp points that disentangled the role of multiple grasp-relevant factors: grasp orientation, grasp size, 

and object mass. Representational Similarity Analysis revealed that grasp orientation was encoded 

along dorsal regions during grasp planning. Grasp size was first encoded in ventral areas during grasp 

planning, then in premotor regions during grasp execution. Object mass was encoded in ventral and 

(pre)motor regions only during grasp execution. Premotor regions further encoded visual predictions 

of grasp comfort, whereas the ventral stream encoded grasp comfort during execution, suggesting its 

involvement in haptic evaluation. These shifts in neural representations thus capture the sensorimotor 

transformations that allow humans to grasp objects.  
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4.1 Introduction 
Grasping is one of the most frequent and essential everyday actions performed by humans and other 

primates (Betti et al., 2021), yet planning effective grasps is computationally challenging. Successful 

grasping requires identifying object properties including shape, orientation, and mass, and considering 

how these interact with the capabilities of our hands (Fabbri et al., 2016; Maiello et al., 2019, 2021; 

Klein, Maiello et al., 2020). Whether an object is large or small, heavy or light, determines how wide 

we open our hands to grasp it and how much force we apply at the fingertips to lift it (Cesari & Newell, 

1999; Johansson & Westling, 1988). Such grasp-relevant object properties are often estimated 

visually. For example, by visually recognizing an object’s material composition one can infer its weight, 

mass distribution, and surface friction (Fleming, 2017; Klein et al., 2021). 

We recently developed a computational model that accurately predicts human precision-grip grasp 

locations on 3D objects of varying shape and non-uniform mass (Klein, Maiello et al., 2020). The model 

suggests that grasping may be solved by combining multiple constraints related to properties of the 

object and the effector, such as the torque associated with different grasps and the actor’s natural 

grip axis. It remains unclear, however, which brain networks are involved in computing specific 

grasping constraints. Moreover, it is unknown whether all constraints are estimated during grasp 

planning (i.e., before initiation of the action; Gallivan et al., 2013, 2019) or whether some aspects are 

computed primarily during action execution, allowing the actor to refine grasp parameters on-line 

before or during contact with the object.  

Previous studies show that grasp-relevant representations are distributed across ventral and dorsal 

visual processing streams. Representations of object shape are present throughout both streams 

(Konen & Kastner, 2008; Orban, 2011; Orban et al., 2006; Sereno et al., 2002), with dorsal 

representations emphasizing information required for grasp planning (Srivastava et al., 2009). For 

example, dorsomedial area V6A—which falls within the superior parieto-occipital cortex (SPOC) of 

humans—plays a role in selecting hand orientation given object shape (Fattori et al., 2004, 2009, 2010; 

Monaco et al., 2011). Visual representations of material properties—also crucial for grasping—have 

instead been identified predominantly in ventral regions such as lateral occipital cortex (LOC), the 

posterior fusiform sulcus (pFS), and parahippocampal place area (PPA; Cant and Goodale, 2011; 

Hiramatsu et al., 2011; Gallivan et al., 2014; Goda et al., 2014, 2016). Brain regions that transform 

these disparate visual representations into appropriate motor codes for grasping include Anterior 

Intraparietal Sulcus (aIPS), Ventral Premotor Cortex (PMv), Dorsal Premotor Cortex (PMd), and 

primary motor cortex (M1). Neurophysiological work in primates suggests that PMv (primate Area F5) 

encodes grip configuration (Murata et al., 1997; Raos et al., 2006; Theys et al., 2012), while PMd 

(primate Area F2) encodes grip/wrist orientation (Raos et al., 2004). Both regions exhibit strong 

connections with aIPS, which could play a key role in linking visual representations—including those 

in ventral stream regions (Borra et al., 2008)—to the motor commands generated and sent to the 

hand through M1 (Janssen & Scherberger, 2015; Murata et al., 2000).  

How information flows and is combined across this complex network of brain regions is far from 

understood. We therefore sought to identify cortical regions associated with distinct components of 

grasping and test their relative importance during grasp planning and execution. To disentangle 

grasping constraints, we used our modelling approach (Maiello et al., 2021) to select grasps which 

placed different constraints in conflict with one another. For example, a selected grasp could be near 

optimal in terms of the required hand orientation, but sub-optimal in terms of grasp aperture. We 
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then measured functional magnetic resonance imaging (fMRI) blood-oxygen-level-dependent (BOLD) 

activity, during planning and execution of these preselected grasps. Combining this model-guided 

approach with representational similarity analysis (RSA; Kriegeskorte, 2008) let us tease apart the 

relative contributions of object mass, grip size, and orientation, at different stages of grasping. 

 

4.2 Results 
Participants in a 3-Tesla MRI scanner were presented with physical 3D objects on which predefined 

grasp locations were shown (Figure 4.1A). On each trial, participants first planned how to grasp the 

objects (planning phase, Figure 4.1B) and then executed the grasps (action phase). We designed 

objects and grasp locations to produce a set of nine distinct conditions (Figure 4.1C) that would 

differentiate three components of grasping: the grip orientation, the size of the grip aperture, and 

object mass. By computing pairwise distances between all conditions for each of these grasp-relevant 

dimensions, we constructed one representational dissimilarity matrix (RDM) for each component 

(Figure 4.1D-F). In each brain region of interest (ROI) tested in the study, brain-activity patterns elicited 

by each condition were compared to each other via Pearson correlation to construct brain RDMs. 

Figure 4.1G shows one such RDM computed from brain region PMv for one example participant during 

the planning phase. In this participant, this area appeared to strongly encode grasp axis.  

 

Figure 4.1. Study design. (A) Participants in the MRI scanner were cued to grasp 3D objects at specific locations. (B) Sequence 

of events for one example trial during which participants were instructed to grasp the object at the predefined location 

marked by different color dots or arrows. (C) Preselected grasps on stimulus objects of wood and brass produced nine distinct 

conditions designed to differentiate three components of grasping using RSA. (D-F) RDMs for grasp axis, grasp size, and object 

mass. Colored cells represent condition pairs with zero dissimilarity, white cells represent maximum dissimilarity. (G) An 

example RDM computed from fMRI BOLD activity patterns in region PMv of one participant during the planning phase. Note 

the strong similarity to the grasp axis RDM in panel D.  
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4.2.1 How grasp-relevant neural representations develop across the grasp 

network 
Figure 4.2A shows average neural RDMs computed throughout the network of visuomotor brain 

regions we investigated. ROIs were selected from the literature as regions most likely specialized in 

the components of visually guided grasping investigated in our study. We included primary visual 

cortex, V1, as the first stage of cortical visual processing. Areas LOC, pFS, and PPA within the ventral 

visual stream (occipitotemporal cortex) were included as they are known to process visual shape and 

material appearance (Cant & Goodale, 2011; Gallivan et al., 2014; Goda et al., 2014, 2016; Hiramatsu 

et al., 2011), and could thus be involved in estimating object mass. Areas SPOC, aIPS, PMv, and PMd 

within the dorsal visual stream (occipitoparietal and premotor cortex) were included as they are 

thought to transform visual estimates of shape and orientation into motor representations (Janssen 

& Scherberger, 2015). Primary motor and somatosensory area (M1/S1, in the central sulcus) was 

included as the final stage of cortical sensorimotor processing. The patterns of correlations between 

model and neural RDMs across participants and ROIs (Figure 4.2B-G) reveal which information was 

encoded across these visuomotor regions during grasp planning and execution phases. 

 

Figure 4.2. RSA results. (A) Mean neural RDMs computed in the nine ROIs included in the study. Only for visualization purposes, 

RDMs within each region are first averaged across participants and then rescaled. (B-G) Correlations between model and 

neural RDMs in each brain ROI during planning (top, B,D,F) and action phases (bottom, C,E,G). In bar graphs, grey shaded 

regions represent the noise ceiling for each ROI. Bars are means, error bars represent 95% bootstrapped confidence intervals. 

The same data are represented topographically as dots scaled proportionally to the mean correlation in each region. Bright 

colors represent significant positive correlations (p<.05 with FDR correction); correlations shown in dark colors are not 

statistically significant. 

4.2.1.1 Grip orientation was encoded in visuomotor regions more robustly during 

grasp planning 

Figure 4.2B,C shows that neural representations in V1 and ventral region LOC were significantly 

correlated with grip orientation during both grasp planning and action phases. In contrast, 

representations in ventral areas pFS and PPA were never significantly correlated with grip orientation. 
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Further, grip orientation was significantly correlated with neural representations across all dorsal 

areas (SPOC, aIPS, PMv, PMD), as well as M1/S1, but only during grasp planning. Dorsal and motor 

areas thus robustly encoded the orientation of the hand when preparing to grasp objects, suggesting 

that the hand-wrist orientation was among the first components of the action computed across these 

regions.  

4.2.1.2 Grip aperture was encoded across both visual streams during grasp 

planning and execution 

During the planning phase (Figure 4.2D), grip size significantly correlated with neural representations 

in all ventral areas (LOC, pFS, PPA), and with representations in dorsal regions aIPS and PMd. During 

the action phase (Figure 4.2E), grip size remained significantly correlated with neural representations 

in ventral areas LOC and PPA, but not pFS. In the dorsal stream during the action phase, grip size 

remained significantly correlated with neural representations in PMd but not aIPS, and became 

significantly correlated with representations in PMv. Neural representations in early visual area V1 

were significantly correlated with grip size only in the action phase, but not during planning. Finally, 

neural representations in motor area M1/S1 were never significantly correlated with grip size. Thus, 

different ventral and dorsal areas encoded grip aperture at different time points. These data suggest 

that ventral regions may have been initially involved in computing grip size and might have relayed 

this information (e.g., through aIPS) to the premotor regions tasked with generating the motor codes 

to adjust the distance between fingertips during the action phase.   

4.2.1.3 Object mass was encoded across dorsal and ventral streams and in motor 

areas, but only during grasp execution 

During the planning phase (Figure 4.2F), none of the investigated ROIs exhibited any activity that was 

significantly correlated with object mass. Conversely, during the action phase (Figure 4.2G), object 

mass significantly correlated with representations in ventral areas pFS and PPA, dorsal areas aIPS and 

PMd, and sensorimotor area M1/S1. Object mass was thus encoded in the later stages of grasping, 

likely when the hand was approaching the object and preparing to apply appropriate forces at the 

fingertips.  

 

4.2.2 Representational similarities within the grasp network 
Figure 4.3 summarizes the structure of representational similarity across ROIs, both within and 

between planning and action phases. Specifically, we took the RDMs generated for each of the nine 

ROIs (Figure 4.2) and correlated them with one another to reveal inter-ROI similarity relationships. 

Neural representations were significantly correlated across many selected ROIs during both grasp 

planning (Figure 4.3A) and execution (Figure 4.3C). 

4.2.2.1 The dorsal stream linked visual and motor regions during grasp planning 

In the planning phase (Figure 4.3B), similarities among neural representations appeared to form one 

main cluster: dorsal stream areas aIPS and SPOC grouped together with premotor area PMd and 

sensorimotor area M1/S1, separately from remaining regions. To aid visualizing the similarities in 

representational content between ROIs, we also show these correlation patterns arranged 

topographically within a schematic brain, with the strength of connections between ROIs proportional 

to the correlations between their corresponding RDMs. This topographical plot highlights how the 

strongest correlations occurred along the dorsal stream between V1 and SPOC, SPOC and M1/S1, and 
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between M1/S1, PMd, and aIPS. The MDS plot also shows how dorsal regions SPOC and aIPS fell 

between V1 and motor regions. During grasp planning, we thus observed similar representational 

structure from early visual to dorsal regions, and from dorsal to motor regions.  

 

 

Figure 4.3. The representational structure of grasping. (A) Matrix showing correlations of data RDMs between regions during 

the planning phase. White asterisks represent significant correlations (p<.05 with Bonferroni correction). (B) The same data 

in A are shown through hierarchical clustering and 2D multidimensional scaling, and significant correlations are shown 

topographically. (C,D) As in A, except for the planning phase. (E) Correlations between ROIs across planning and action phases. 

(F) Sankey diagram depicting significant correlations from E. 

4.2.2.2 The ventral stream linked visual and motor regions during action execution 

In the action phase (Figure 4.3D) the similarities among brain regions formed two main clusters. One 

cluster of visual regions was formed by V1, SPOC, and LOC. The second cluster comprised aIPS, 

premotor areas PMv and PMd, and M1/S1. MDS and topographical plots highlight how these two 

clusters appeared to be share representational content predominantly through ventral stream regions 

pFS and PPA.  

4.2.2.3 Shared representations across planning and action phases 

Neural representation patterns were also partly correlated across grasp planning and execution 

phases (Figure 4.3E,F). Notably, aIPS representations during the planning phase were significantly 

correlated with representational patterns in ventral (PPA), dorsal (SPOC, PMd), and sensorimotor 

(M1/S1) regions during the action phase. This suggests that aIPS may play a key role in linking grasp 

planning to execution. Further, neural representation patterns in nearly all ROIs (except PMv) during 

the planning phase were robustly correlated with representations in V1 during the action phase, and 

representations in pFS, SPOC, PMd, and M1/S1 during action planning were correlated with LOC 

representations during action execution. In the discussion, we speculate how this might reflect mental 

simulation and prediction mechanisms at play.  
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4.2.3 Grasp comfort 
We recently demonstrated that humans can visually assess which grasp is best among competing 

options and can refine these judgements by executing competing grasps (Maiello et al., 2021). These 

visual predictions and haptic evaluations of grasp comfort were well captured by our multi-factorial 

model (Klein, Maiello et al., 2020), suggesting they may play a role in grasp selection. We thus 

wondered whether we could identify, within the grasp network investigated here, brain regions that 

encoded visual predictions and haptic evaluations of grasp comfort. To this end, once an imaging 

session was completed, we asked participants (while still lying in the scanner) to execute once more 

each of the nine grasps and rate how comfortable each felt on a scale of 1 to 10. Comfort ratings were 

consistent across participants (Figure 4.4A). Comfort was slightly modulated by grip axis (Figure 4.4B, 

t(20)=3.3, p=.0037) and was not modulated by grip size (Figure 4.4C, t(20)=0.89, p=.39). The factor 

that most affected grasp comfort was object mass, with heavy objects being consistently rated as less 

comfortable than light objects (Figure 4.4D, t(20)=8.1, p<.001). This was also evident when we 

computed RDMs from comfort ratings (Figure 4.4E) and found that these were significantly correlated 

with the model RDM for object mass (p<.001) but not with RDMs for grasp axis (p=.54) or grasp size 

(p=.83) (Figure 4.4F).  

 

Figure 4.4. Grasp comfort. (A) Average grasp comfort ratings for each grasp condition in the fMRI experiment. (B,C,D) Grasp 

comfort ratings averaged across (B) grasp axis, (C) grasp size, and (D) object mass. (E) Average RDM computed from 

participant comfort ratings. (F) Correlations between grasp comfort and model RDMs. (G,F) Correlations between grasp 

comfort and neural RDMs in each brain ROI during planning (top, G) and action phases (bottom, H). In bar graphs, grey shaded 

regions represent the noise ceiling for each ROI. Bright blue bars represent significant positive correlations (p<.05 with FDR 

correction); correlations shown in dark blue are not statistically significant. The same data are represented topographically 

as dots scaled proportionally to the mean correlation in each region. Across figure panels, bars are means, error bars 

represent 95% bootstrapped confidence intervals. **p<0.01, ***p<0.001 
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4.2.3.1 Neural representations of grasp comfort were present during both grasp 

planning and execution phases 

To identify brain regions that encoded grasp comfort, we next correlated neural RDMs with the 

average RDM derived from participant comfort ratings. Neural representations in premotor regions 

PMv and PMd were significantly correlated with grasp comfort during grasp planning (Figure 4.4G). 

During the action phase instead, grasp comfort correlated with neural representations in ventral 

stream region PPA (Figure 4.4H). This suggests that dorsal premotor regions encoded the visually 

predicted comfort of planned grasps (which in our conditions was primarily related to the object 

mass). Area PPA instead encoded comfort during the action phase, and might thus either be involved 

in the haptic evaluation of grasp comfort or it is involved in material properties, which are correlated 

with mass, which is correlated with comfort. 

 

 

4.3 Discussion  
We investigated how grasp-relevant information is represented across sensorimotor brain regions 

during visually guided grasping. We found that grip orientation, which is adjusted at the very beginning 

of reach-to-grasp movements (Cuijpers et al., 2004), was predominantly encoded across dorsal regions 

during grasp planning. Grip size, which is adjusted throughout reach-to-grasp movements (Cuijpers et 

al., 2004), was encoded in different sets of ventral and dorsal regions during grasp planning and 

execution. Object mass, which gains relevance when applying forces at the fingertips upon hand-

object contact (Johansson & Flanagan, 2009; Johansson & Westling, 1988), was instead encoded 

across ventral, dorsal and motor regions during grasp execution. Broadly speaking, sensorimotor 

processing appeared to shift from the dorsal stream during grasp planning to the ventral stream during 

action execution. Our results also corroborate previously hypothesized mechanisms for sensorimotor 

prediction and evaluation that could enable the detection and correction of movement errors and 

help refine subsequent actions (Wolpert et al., 2011; Wolpert & Ghahramani, 2000). In the following, 

we first discuss our findings with respect to the individual ROIs investigated, and then we address 

network function as a whole.  

4.3.1 Individual regions of interest 

4.3.1.1 V1 

Primary visual cortex represents the first stage of cortical visual processing upon which all subsequent 

visuomotor computations rely. In our data, V1 activity during grasp planning encoded grasp axis, 

whereas during grasp execution it encoded both grasp axis and size. The fact that V1 activity encoded 

grasp axis and size during action execution is perhaps unsurprising, since participants could view their 

own hands performing the distinct actions. The finding that the future grasp axis was encoded in V1 

activity during action preparation instead is in line with previous work showing that future actions can 

be decoded from patterns of activity in early visual cortex during action preparation (Gallivan et al., 

2019; Gutteling et al., 2015). This finding could be explained by top-down enhancement of grasp-

relevant orientations from area aIPS (Gutteling et al., 2011, 2013). This would be coherent with our 

results, since during action preparation aIPS also encoded grasp axis, and neural representations in 

aIPS were significantly correlated with V1 representations.  
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4.3.1.2 LOC 

Ventral visual area LOC encoded both grasp axis and grasp size during both planning and action phases. 

The area we selected  resides within the lateral occipital complex, a large ventral stream region 

strongly implicated in visual object recognition (Grill-Spector et al., 2001), which was initially thought 

not to play a role in grasping (Cavina-Pratesi et al., 2007; Culham et al., 2003). More recent work 

however suggests that the lateral occipitotemporal cortex supports action perception and 

understanding, including the anticipated perceptual effects of planned movements (Lingnau & 

Downing, 2015). Gallivan et al. (2013) even demonstrated that action intentions can be decoded 

specifically from area LO within this broader region. Our data is therefore consistent with the notion 

that the selected region could be implicated in more abstract planning of the required movements. 

Such abstract action intentions could be communicated though the hypothesized ventro-dorsal 

stream (Rizzolatti & Matelli, 2003) for example to area aIPS, a possibility supported by the significant 

correlation we observed between neural representations in LOC and aIPS during grasp planning. 

Contrary to our expectations instead, and unlike previous work (Cant & Goodale, 2011; Gallivan et al., 

2014; Goda et al., 2014, 2016; Hiramatsu et al., 2011; van Polanen, Rens, et al., 2020), we did not 

observe representations of object material and weight in LOC.   

4.3.1.3 pFS and PPA 

Perhaps due to their proximity to each other, patterns of results in ventral areas PPA and pFS were 

similar. Both regions encoded grasp size during grasp planning. During the execution phase, only PPA 

encoded grasp size, and both regions encoded object mass. Even though these regions are thought to 

be predominantly involved in object recognition (Grill-Spector et al., 2001) and scene perception 

(Epstein & Kanwisher, 1998), the fact that pFS and PPA representations correlated with grasp size 

during the planning phase is also consistent with (Gallivan et al., 2013) who found that action 

intentions could be decoded from these regions. Additionally, the finding that pFS representations 

correlated with object mass during grasp execution agreed with our expectations and with previous 

research (Gallivan et al., 2014; Goda et al., 2014; Hiramatsu et al., 2011). Further, during grasp 

execution representations in pFS and PPA correlated with representations in aIPS, PMv, PMd, and 

M1/S1. This result is consistent with the notion that ventral regions may communicate visual estimates 

of object weight to the dorsal and (pre)motor regions that use this information to plan and modulate 

the fingertip forces at object lift-off (Wolpert et al., 2011; Wolpert & Ghahramani, 2000). Finally, the 

fact that PPA encoded both object mass and grasp comfort during action execution could suggest a 

previously unexplored role of this region in the haptic evaluation of grasp quality.  

4.3.1.4 SPOC 

Dorsal visual region SPOC encoded grasp axis during the planning phase, and never encoded grasp size 

or object mass. Given that our stimulus objects were always presented in the same orientation, this 

result closely agrees with (Monaco et al., 2011). These authors found neural adaptation within this 

region when an object was repeatedly grasped with the same orientation, but not when participants 

simply reached towards or passively viewed an object in the same orientation, suggesting that SPOC 

encoded grasp orientation, not object orientation. In the macaque, activity in parieto-occipital area 

V6A is modulated by hand orientation during reach-to-grasp movements (Fattori et al., 2004, 2009, 

2010). Our data are thus consistent with the notion that SPOC is the human homologue of macaque 

V6A (Monaco et al., 2011; Pitzalis et al., 2013). Additionally, during grasp planning, representations in 

SPOC correlated strongly with V1 representations, as well as with representations in aIPS, PMv, PMd, 
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and M1/S1. This suggests that SPOC may represent a key node in the dorso-dorsal visual stream 

involved in the early stages of reach to grasp movements (Rizzolatti & Matelli, 2003).  

4.3.1.5 aIPS 

In our results, aIPS encoded grip axis and size during the grasp planning phase, and object mass during 

the execution phase. This agrees with previous results showing that processing within aIPS is likely to 

be goal dependent and serial (Tunik et al., 2005), and that aIPS is specialized in integrating object 

properties in order to pre-shape the hand during grasping (Binkofski et al., 1999; Culham et al., 2003; 

Frey et al., 2005; Monaco et al., 2015; Rice et al., 2006). More specifically, (Taubert et al., 2010) 

showed that transcranial magnetic stimulation (TMS) disrupted grip rotations when applied to aIPS in 

earlier movement phases and when applied to PMd in later movement phases. Similarly, and in line 

with our results, (Glover et al., 2005) used TMS to show that aIPS was involved in planning but not 

execution of grasp size. Additionally, (Davare et al., 2007) found that TMS applied over aIPS in early 

movement phases disrupted hand shaping, whereas TMS applied during later movement phases 

disrupted grip force scaling. This agrees with Dafotakis et al. (2008) who suggest that this region is 

involved in the reactive online adjustment of grip force. Our results thus unify these previous 

findings—predominantly obtained using TMS—and suggest that aIPS likely first computes grasp axis 

(Taubert et al., 2010; Tunik et al., 2005), then grasp size (Davare et al., 2007; Tunik et al., 2005), then 

grip forces (Davare et al., 2007). 

During grasp planning, aIPS representations correlated with representations in early ventral and dorsal 

regions LO, PPA, and SPOC, as well as (pre)motor regions PMd and M1/S1. During action execution, 

aIPS representations correlated with representations in ventral region pFS and (pre)motor regions 

PMv, PMd, and M1/S1. Further, aIPS representations during grasp planning correlated with 

representations in PPA, SPOC, PMd and M1/S1 during action execution. These patterns of 

representational similarity match the intricate patterns of structural connectivity exhibited by anterior 

intraparietal area with both ventral and dorsal regions in the macaque sensorimotor cortex (Borra et 

al., 2008). Taken together, these findings suggest that aIPS plays a key role in linking early visual 

representations in both ventral and dorsal regions to motor representations (Davare et al., 2010, 

2011), even across movement planning and execution phases.  

4.3.1.6 PMv 

Premotor area PMv encoded grasp axis during the planning phase, and grasp size during the execution 

phase. These results confirm previous findings from macaque neurophysiology and extend these 

findings to humans. In macaque, Fogassi et al. (2001) showed that inactivation of area F5 (the 

homologue of human PMv) led to the loss of a monkey’s ability to preshape the hand using visual 

object shape and size information. Raos et al. (2006) were perhaps the first to propose that area F5 

encoded both grip configuration and the grip/wrist rotation required to match the axis orientation of 

the object. Fluet et al. (2010) further found that area F5 encoded grasp orientation more strongly 

during movement preparation, while during movement execution orientation representation dropped 

and grip type representation increased. This observation was confirmed by Townsend et al. (2011) 

who found that F5 exhibited orientation tuning during grasp planning, and strong grip type tuning 

during movement execution. Even though research in humans has shown that PMv is involved in 

controlling grip size during action execution Davare et al. (2006), to the best of our knowledge no 

previous research has shown that human PMv also separately encodes grasp orientation. Thus, our 
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results suggest that, similarly to what occurs in macaque F5, human PMv sequentially processes grip 

orientation during movement planning and grip size during action execution.  

In the macaque, some authors have found cells in premotor ventral regions which were also 

modulated by grip force (Hepp-Reymond et al., 1994, 1999). In our data instead, even though 

representations in PMv did correlate with object mass to some extent, statistical significance for these 

patterns did not survive correction for multiple comparisons. This might agree with Davare et al. 

(2006), who did not observe changes in predictive grip force scaling when applying TMS over PMv. 

However, in our study PMv representations did significantly correlate with participant comfort ratings 

during grasp planning, i.e., before executing the grasps, and comfort ratings were predominantly 

related to object mass. Our results are thus more in line with Dafotakis et al. (2008), who found that 

applying TMS over PMv before hand-object contact disrupted the predictive scaling of grip force. Our 

findings thus suggest that PMv might process visual estimates of object mass to anticipate haptic and 

proprioceptive perceptual experience when applying forces at the fingertips (Johansson & Flanagan, 

2009).  

4.3.1.7 PMd 

Premotor area PMd encoded grasp axis only during the planning phase, grasp size during both 

planning and execution phases, and object mass only during action execution. In macaque area F2, 

the putative homologue of human PMd, Raos et al. (2004) found neurons selective for grips of 

different sizes and for the grip/wrist orientation required for grasping an object, during both 

preparation and execution phases of grasp movements. Additionally, (Hendrix et al., 2009) identified 

F2 neurons which were modulated by grip aperture during reach-to-grasp movements, and by grip 

force predominantly during grasping, when forces were actively applied to an object. These findings 

have been largely confirmed in humans. For example, Taubert et al. (2010) found that TMS applied 

over PMd disrupted wrist rotations during goal directed grasps. Davare et al. (2006) further employed 

TMS to show that PMv and PMd sequentially process grip size after movement onset. Perhaps 

surprisingly however, these authors also found that premotor regions did not seem to be involved in 

the control of grip forces. Nevertheless, both Chouinard (2005) and Nowak et al. (2009) found that 

disrupting PMd activity interfered with the scaling of grip forces according to learned color to mass 

associations.  

Our results thus confirm the role of PMd in encoding grip orientation. Additionally, the correlations 

we observed between representations in PMd, aIPS, and SPOC during grasp planning suggests that 

PMd could receive visual estimates of grasp-relevant object orientation from SPOC (Fattori et al., 2004, 

2009, 2010, 2015) and aIPS (Taubert et al., 2010). This would corroborate neurophysiological data 

from the macaque monkey showing that area F2 receives visual input predominantly from area V6A 

and the intraparietal sulcus (Matelli et al., 1998).  

The fact that in our data, grip size was encoded in PMd during both grasp planning and execution, but 

in PMv only during execution, might appear at odds with Davare et al., (2006) who found that PMd 

processed grip size after PMv during movement execution. This apparent incongruity is potentially 

resolved however by Vesia et al. (2018), who demonstrate that PMd encodes handgrip formation 

during action preparation. Our results thus suggest that PMd encodings of grip size serve different 

functions during planning and execution phases. During grasp planning, PMd could be involved in 

selecting the correct grip size and feedforward grasp plan from visual estimates of object dimensions 

(Monaco et al., 2015; Vesia et al., 2018). During the execution phase instead, PMd could be involved 
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in online monitoring and adjustment of grasp configuration to ensure a successful grip (Davare et al., 

2006; Fattori et al., 2015).  

Our data also corroborate the role of PMd in selecting appropriate grip forces based on visual 

estimates of object material and mass (Chouinard, 2005; Nowak et al., 2009). Further, we found that 

PMd representations were significantly correlated with participant comfort ratings during grasp 

planning, which in turn were related to object mass. Given that PPA representations during grasp 

execution were also correlated with grip comfort, it is suggestive to note that representations in areas 

PPA and PMd were significantly correlated during both grasp planning and execution phases, and that 

PMd representations during grasp planning were correlated to PPA representations during action 

execution. These patterns imply that PMd could play a previously unexplored role in mapping visual 

estimates of object material properties to haptic and proprioceptive evaluations of grasp quality.  

4.3.1.8 M1/S1 

The hand region of primary motor cortex is where motor commands are generated and sent to the 

arm and hand. In both humans and monkeys, this area is essential for grasping. Lesions to M1 lead to 

a near total loss of digit control and severe impairments in wrist rotations (e.g., Hoffman & Strick, 

1995; Jeannerod, 1986; Lang & Schieber, 2003; Murata et al., 2008; Passingham et al., 1983), and 

neural activity recorded from M1 can be used to reconstruct finger joint angles and muscle kinematics 

during grasping (Michaels et al., 2020; Vargas-Irwin et al., 2010). Further, hand orientation can be 

decoded from M1 activity prior to movement initiation (Peng Zhang et al., 2014), whereas grip type 

can be decoded from M1 activity during movement execution (Schaffelhofer et al., 2015). M1 is also 

implicated in the fine adjustment of grip forces during grasping (Chouinard, 2005; Hendrix et al., 2009). 

It is unsurprising therefore that in our data, primary motor and somatosensory area M1/S1 encoded 

grasp axis during grasp planning, and object mass during action execution. We also found patterns of 

correlations between representations in M1/S1 and representations in aIPS, PMv, and PMd during 

both grasp planning and execution. These patterns reflect the crucial role played by aIPS, PMv, and 

PMd in transforming dorsal stream representations during action planning, and ventral stream 

representations during execution, into motor commands sent to the hand through M1 (Borra et al., 

2008; Janssen & Scherberger, 2015; Murata et al., 2000).  

4.3.2 Limitations and future directions 
Our results provide compelling evidence of a distinct series of neural computations occurring across 

and even within different brain regions at different phases of grasping in humans. Nevertheless, the 

reader should be aware of the limitations of our study, and of how future research might attempt to 

address such limitations.  

To begin with, while we should be reasonably confident in statistically significant findings—particularly 

those which survive corrections for multiple comparisons—lack of statistical significance should 

always be interpreted with caution. For this reason, we attempt to contextualize null results and 

interpret their plausibility through the lens of previous literature. One potential source for the absence 

of a significant effect is uncertainty in the localization of brain regions (Brett et al., 2002). Our 

standardized approach to defining ROIs across participants allowed us to investigate a relatively wide 

selection of ROIs, as it would have been impractical to employ functional localizers to study the same 

selection of ROIs. However, variability in brain anatomy between individuals could have led to mis-

localization of ROIs in some participants. Cortical surface-based alignment methods might alleviate 

these issues (Fischl et al., 1999), yet such methods can also be sensitive to co-registration errors 
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(Jezzard & Clare, 1999). Thus, even though the alignment and ROI definition procedures we employed 

were appropriate for the goals of the current study, future work could employ more sophisticated 

techniques to further pinpoint specific processing steps across the visuomotor grasp network.  

A related limitation of our study is that we tested a targeted selection of brain ROIs. We cannot 

therefore exclude that additional brain regions could be involved in the sensorimotor computations 

investigated here. One possibility to discover additional brain networks involved in grasp-related 

visuomotor processing would be to employ whole-brain RSA searchlight analysis (Kriegeskorte et al., 

2006). As the exploratory nature of this technique limits its statistical power, our current dataset could 

be used to estimate appropriate sample sizes for future studies employing this method.  

One notable finding of our study is that object mass is encoded in sensorimotor regions during action 

execution. This finding is sensible, as information about object mass is required to modulate grip and 

lift forces. However, we have previously demonstrated that mass and mass distribution also play an 

important role in selecting where to grasp an object (Klein, Maiello et al., 2020). It is thus reasonable 

to expect that visuomotor processing of object material and mass should occur also when planning 

how to grasp an object. However, in our study grasps were preselected, thus participants did not need 

to process an object’s material properties to select appropriate grasp locations. In order to investigate 

the role of visual material representations in grasp selection, future research could use our 

computational framework (Klein, Maiello et al., 2020; Maiello et al., 2021) to identify objects that 

produce distinct grasp patterns, rather than constraining participants to predefined grasp locations. 

Conditions that require visual processing of object material properties to select appropriate grasp 

locations would then reveal whether the same or different sensorimotor regions process object mass 

during grasp planning and execution. However, such designs would require disentangling activity 

related to representing shape per se from activity related to grasp selection and execution. 

One factor which is known to be important for grasp selection and execution is grip torque, i.e., the 

tendency of an object to rotate under gravity when grasped away from its center of mass (Eastough 

& Edwards, 2006; Goodale et al., 1994; Lederman & Wing, 2003; Lukos et al., 2007; Paulun et al., 

2016). While torque is directly related to object mass, it is possible to select different grasps on the 

same object which produce substantially different torques (Maiello et al., 2021). Since grasps with 

high torque require greater forces at the fingertips to maintain an object level, humans tend to avoid 

such high-torque grasps (Klein, Maiello et al., 2020). We originally designed our stimuli in the hope of 

dissociating torque from object mass. Unfortunately, in pilot testing we observed that certain object 

and grip configurations in the magnetic field of the MRI scanner produced eddy currents in the brass 

portions of our stimuli. These currents caused unexpected magnetic forces to act on the stimuli, which 

in turn altered fingertip forces required to grasp and manipulate the objects. To avoid the occurrence 

of such eddy currents in our experiment, we decided to forgo conditions differentiating the effects of 

object mass from those of grip torques. By employing nonconductive materials, in future work our 

approach could be extended to test whether grasp-relevant torque computations occur in the same 

visuomotor regions responsible for estimating object material and shape.  

An additional limitation related to fMRI is that the BOLD hemodynamic response signal is slow, it lags 

neural events by several seconds, and its time course varies across brain regions and individuals 

(Handwerker et al., 2004). For this reason, we only investigated a coarse binary distinction between 

grasp planning and execution. This level of analysis cannot closely track sensorimotor transformations 

across brain networks. Future work could combine fMRI with TMS and EEG, to establish temporally 



Chapter 4 – Distinct neural components of visually guided grasping 

  
72 

precise and causal relationships in sensorimotor processing occurring across brain regions (Bergmann 

et al., 2021; Bestmann et al., 2008; Taylor et al., 2008). 

A final yet important limitation to note is that RSA is a correlational analysis, from which causation or 

directionality cannot be directly inferred. In particular, if neural representations in two brain regions 

are correlated, this alone cannot tell us whether these regions are structurally and functionally 

connected, or whether information flows from region A to region B or from B to A, or from C to both 

A and B. We thus take care to only make such inferences where previous literature indicates that 

structural/functional connections and sequential processing are likely to exist. Cases where 

connections have not yet been proposed are nevertheless intriguing, and future research could test 

whether such connections exist.  

4.3.3 Ideas and Speculation: Thoughts on mental simulation, sensory 

prediction, and motor evaluation 
Our analyses regarding patterns of representational similarity across planning and action phases, and 

regarding grasp comfort, could reflect mental simulation, prediction, and evaluation mechanisms at 

play.  

Neural representation patterns in many brain regions during grasp planning were significantly 

correlated with representations in V1 and LOC during the action phase. Could these patterns be due 

to sensorimotor simulation (Jeannerod, 2001)? While our study and analyses were not designed to 

answer this question, it is conceivable that activity across the grasp network during the planning phase 

could be due to participants mentally simulating the grasps they were preparing to execute 

(Jeannerod, 1995; Jeannerod & Decety, 1995). These simulations could be used to generate motor 

plans and sensory predictions. Sensory predictions could then be compared to visual, tactile, and 

proprioceptive inputs during the grasping phase, to facilitate online movement corrections and 

evaluate the success of the generated motor plan (Desmurget & Grafton, 2000; Wolpert et al., 2011; 

Wolpert & Ghahramani, 2000). The observed patterns of representational similarity across planning 

and execution phases could thus reflect the agreement of motor simulations and visual predictions 

computed during grasp planning with visual inputs during action execution. This possibility is 

supported by recent work showing that planned actions can be decoded from activity in V1 and LOC 

before movement onset (Gallivan et al., 2013, 2019; Gutteling et al., 2015; Monaco et al., 2020), and 

that V1 and LOC are re-recruited when performing delayed actions toward remembered objects 

(Singhal et al., 2013).  

Relatedly, our analyses found that representations in areas PMv and PMd during grasp planning were 

correlated with grasp comfort, as were representations in area PPA during grasp execution. Further, 

representations in PMd during grasp planning were correlated with representations in PPA during 

action execution. Could these patterns be related to haptic prediction and evaluation processes? A 

recent study by Kilteni et al. (2018) has shown that motor imagery and action planning both entail 

sensorimotor simulations that predict the tactile consequences of movements. Previous research has 

also shown that PMd is involved in learning to associate appropriate grip forces based on visual (color) 

cues to object mass (Chouinard, 2005; Nowak et al., 2009), whereas Dafotakis et al. (2008) have shown 

that PMv is involved in the predictive scaling of grip forces according to the most recent lift. 

Additionally, scene-sensitive PPA and adjacent regions have been shown to process visual and tactile 

estimates of surface texture (Cant & Goodale, 2007, 2011; Hiramatsu et al., 2011; Podrebarac et al., 

2014). Thus visual material information in our context might have been used not just to control the 
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fingertip forces, but also to anticipate haptic percepts by the fingertips at object lift-off (Johansson & 

Flanagan, 2009). We thus put forth a speculative interpretation of our results. We posit that during 

grasp planning, PMv and PMd could have been processing visual estimates of object mass to predict 

haptic and proprioceptive percepts. During grasp execution, these haptic expectations could have 

been communicated to PPA, which then monitored and evaluated the quality of the performed grasps. 

These three regions could thus be involved in learning to associate visual material cues to a particular 

object mass (Chouinard, 2005; Nowak et al., 2009), but also with the scaling grip forces based on 

previous lifts (Dafotakis et al., 2008). It would further be intriguing to examine whether PMv, PMd, 

and PPA are involved in the perceptual consequences of associative learning and sensorimotor 

adaptation, such as the material-weight (Paulun et al., 2019; Wolfe, 1898) and sequential-weight 

illusions (Maiello et al., 2018; van Polanen, Buckingham, et al., 2020; van Polanen & Davare, 2015).  

4.3.4 The grasp circuit in action 
Our results show that different ventral and dorsal regions encode different grasp components at 

different time points. Even though the design of our study and our analyses do not allow us to directly 

infer causality from these results, we believe it likely that the observed shifts in sensorimotor 

encodings reflect visuomotor transformations. Therefore, by combining the results of our study with 

previous literature, we can speculate how events unfolded throughout the sensorimotor grasp 

network investigated.  

4.3.4.1 Planning phase: grasp axis 

First, ventral regions LOC, pFS, and PPA jointly interpreted the cued grasp configuration (orientation 

and size) and communicated this abstract action representation (Gallivan et al., 2013) though the 

ventro-dorsal pathway to aIPS (Rizzolatti & Matelli, 2003). Through feedback connections (Gutteling 

et al., 2011, 2013), area aIPS enhanced V1 processing of orientations aligned with the required grasp 

axis (Gallivan et al., 2019; Gutteling et al., 2015). V1 signals were transformed into visual estimates of 

object shape and positioning by dorsal region SPOC (Monaco et al., 2011). This information was 

relayed, through aIPS along the dorso-dorsal visual stream (Rizzolatti & Matelli, 2003), to premotor 

regions PMv (Raos et al., 2006) and PMd (Raos et al., 2004), tasked with transforming the visually-

derived orientation information into grip-wrist orientation codes. These motor commands were then 

ready to be sent to the arm and hand via primary motor region M1 (Peng Zhang et al., 2014). The 

orientation of the wrist and hand was thus quickly adjusted at the very beginning of reach-to-grasp 

movements (Cuijpers et al., 2004).  

4.3.4.2 Planning phase: grasp size 

In parallel to the visuomotor processing of grip axis, ventral regions LOC, pFS, and PPA also relayed 

the size of the cued grasp configuration to aIPS (Gallivan et al., 2013; Rizzolatti & Matelli, 2003). This 

information was sent to premotor region PMd, which selected an appropriate feedforward motor 

schema (Monaco et al., 2015; Vesia et al., 2018) and communicated it to PMv.  

4.3.4.3 Action phase: grasp size 

PMv implemented the motor plan (Davare et al., 2006), and the grip began to widen. As the reach-to-

grasp movement progressed and the fingertips approached the surface of the object, PMd became 

involved in the online adjustment of grasp aperture (Davare et al., 2006; Fattori et al., 2015).  PMv and 

PMd thus sequentially adjusted the grip size throughout the reaching movement (Cuijpers et al., 
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2004), with PMv providing the triggering information to PMd about when the hand configuration was 

adequate to begin applying grip forces (Davare et al., 2006).  

4.3.4.4 Action phase: object mass 

Finally, as the fingertips approached the surface of the object, ventral areas pFS and PPA computed 

visual estimates of object material and mass (Hiramatsu et al., 2011; Gallivan et al., 2014; Goda et al., 

2014). These estimates were sent through aIPS (Dafotakis et al., 2008; Davare et al., 2007; Rizzolatti 

& Matelli, 2003) to premotor region PMd (Davare et al., 2010, 2011). Here, mass estimates were 

transformed into fingertip forces sent to the hand through primary motor region M1 (Chouinard, 

2005; Hendrix et al., 2009; Nowak et al., 2009), allowing participants to successfully grip and lift the 

object. 

 

4.4 Materials and Methods 

4.4.1 Participants 
The study included 21 participants (13 female, mean [range] age: 25.5 [18-33]) recruited from the 

University of Western Ontario. Data from two additional participants were excluded due to excessive 

head motion. All participants had normal or corrected-to-normal vision and were fully right-handed 

as measured by the Edinburgh Handedness Inventory. Informed consent was given prior to the 

experiment. The study was approved by the Health Sciences Research Ethics Board at the University 

of Western Ontario and followed the principles in the Declaration of Helsinki. Participants were given 

instructions on how to perform the experimental task before entering the MRI room, yet remained 

naïve with respect to the study’s hypotheses. All participants were financially compensated at a rate 

of 25 CA$/hour.  

4.4.2 Setup 
A schematic of our setup is shown in Figure 4.1A. Each participant lay supine inside the MRI scanner 

with their head placed in a head coil tilted by ~30° to allow direct viewing of real stimulus objects 

placed in front of them. Below the head we positioned the bottom 20 channels of a 32-channel head 

coil and we suspended a 4-channel flex coil via loc-line (Lockwood Products, Inc.) over the forehead. 

A black wooden platform, placed above a participant’s hip, enabled the presentation of real objects 

that participants were required to grasp, lift, and set back down using their right hand. The platform’s 

flat surface was tilted by ~15° towards a participant in order to maximize comfort and visibility. Objects 

were placed on a black cardboard target ramp (Figure 4.1A: “Ramp”, dimensions: 15 x 5 x 13 cm) on 

top of the platform that created a level surface which prevented objects from tipping over. The 

objects’ exact placement was adjusted such that all required movements were possible and 

comfortable. Between trials, a participant’s right hand rested on a button at a start position on the 

table’s lower right side. The button monitored movement start and end times. A participant’s upper 

right arm was strapped to their upper body and the MRI table using a hemi-cylindrical brace (not 

displayed in Figure 4.1A). This prevented shoulder and head movements, thus minimizing movement 

artefacts while enabling reach-to-grasp movements through elbow and wrist rotations. A small red 

LED fixation target was placed above and at a slightly closer depth location than the object to control 

for eye movements. Subjects were required to maintain fixation on this target at all times during 

scanning. An MR-compatible camera was positioned on the left side of the head coil to record the 

participant’s actions. Videos of the runs were screened offline and trials containing errors were 
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excluded from further analyses. A total of 22 error trials were excluded, 18 of which occurred in one 

run where the subject erroneously grasped the objects during planning phase.  

Two bright LEDs illuminated the workplace for the duration of the planning and action phase of each 

trial, one was mounted on the head coil and the other was taped to the ceiling of the bore. Another 

LED was taped to the outside of the bore and was only visible to the experimenter to cue the extraction 

and placement of the objects. The objects were kept on a table next to the MRI-scanner, on which 

three LEDs cued the experimenter on which object to place inside the scanner. Participant’s wore MR-

safe headphones through which task instructions were relayed on every trial. The LEDs and 

headphones were controlled by a Matlab script on a PC that interfaced with the MRI scanner. Triggers 

were received from the scanner at the start of every volume acquisition. All other lights in the MRI 

room were turned off and any other potential light sources and windows were covered so that no 

other light could illuminate the participant’s workspace. 

4.4.3 Stimuli 
Stimuli were three L-shaped objects of the same size, created from seven blocks (cubes of 2.5 cm side 

length). One object was constructed with seven cubes of beech wood (object weight: 67g), whereas 

the other two were both constructed of four brass and three wooden cubes (object weight: 557g). 

The two identical wood-brass objects were positioned in two different orientations, one with the brass 

“arm” pointing up (see Figure 4.1A: “BrassUp”), the other with the brass arm lying down 

(“BrassDown”). In a slow event-related fMRI design, on each trial participants directly viewed, 

grasped, and lifted an object placed on a platform.  

4.4.4 Task 
Participants performed three distinct grasps per object, each grasp marked on the objects with colored 

stickers during the experiment. The colors were clearly distinguishable inside the scanner and served 

to cue participants about which grasp to perform. Participants were instructed to perform three-digit 

grasps with their right hand, by placing the thumb in opposition to index and middle fingers. This grasp 

was similar to the precision grip grasps employed in our previous work (Maiello et al., 2019, 2021; 

Klein, Maiello et al., 2020; Klein et al., 2021), but ensured participants could apply sufficient grip force 

to lift all objects to a height of approximately 2 cm above the platform. Grasp contact locations for the 

index and thumb were selected in order to produce a set of uncorrelated—and thus independent—

representational dissimilarity matrices (RDMs) for the three grasp factors investigated: grasp 

orientation, grasp size, and object mass. Specifically, grasps could be rotated 45° either clockwise or 

counter clockwise around the vertical axis, and could require small (2.5 cm) or large (7.5 cm) grip 

apertures. In pilot testing we further refined the positioning of the objects and grasps within the 

magnetic field of the MRI scanner to avoid the forming of eddy currents within the brass parts of the 

objects which could hinder participants from executing the grasps. The complete set of grasp 

conditions is shown in Figure 4.1C. 

4.4.5 Procedure 

4.4.5.1 fMRI Experiment 

We employed a slow event-related fMRI design with trials spaced every 23-31 s. Participants 

underwent four experimental runs in which they performed each combination of 3 objects x 3 grasps 

twice per run in a pseudorandom order for each run (18 trials per run, 72 trials in total). The sequence 

of events occurring on each trial is schematized in Figure 4.1B. Prior to each trial, the experimenter 
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was first cued on which object to place inside the scanner. The experimenter placed the object on the 

ramp (6-12 s before trial onset). At trial onset, the illumination LEDs turned on and over the 

headphones the participant heard the instruction “plan”, immediately followed by the auditory cue 

specifying which grasp to execute. The auditory cue was “blue”, “green”, or “red”, which 

corresponded to colored stickers marking the grasp locations on the objects. The duration of the 

planning phase of the task was randomly selected to be 6, 8, 10, or 12 s. During this time, the 

participant was required to hold still and mentally prepare to grasp the object at the cued location. 

Once the planning phase ended, “lift” was played over headphones to cue the participant to execute 

the grasp. During the execution phase of the task, the participant had 7 s to reach, grasp, and lift the 

object straight up by approximately 2 cm, place it back down on the target ramp, and return their 

hand to the start position. The experimenter then removed the object and the next trial commenced. 

Participants were instructed about the task, familiarized themselves with the objects, and practiced 

the grasps outside of the MRI room for about 5 minutes prior to the experiment. Once participants 

were strapped into the setup, they practiced all grasps again, thus ensuring that they could 

comfortably grasp each object.  

4.4.5.2 Grasp Comfort Ratings 

At the end of the fMRI experiment, participants remained positioned in the scanner and performed a 

short rating task. Participants were asked to perform one more time each of the nine grasp conditions. 

For each grasp, participants verbally reported how comfortable the grasp was on a scale of 1-10 (1 

being highly uncomfortable and 10 being highly comfortable). Verbal ratings were manually recorded 

by the experimenter.  

4.4.6 Analyses 
Data analyses were conducted using Brain Voyager 20.0 (BV20) and 21.4 (BV21.4) software packages 

(Brain Innovation, Maastricht, The Netherlands), as well as Matlab version R2019b.  

4.4.6.1 fMRI data acquisition 

Imaging was performed using a 3-Tesla Siemens Prisma Fit MRI scanner located at the Robarts 

Research Institute at the University of Western Ontario (London, Ontario, Canada). Functional MRI 

volumes were acquired using a T2*-weighted, single-shot, gradient-echo echo-planar imaging 

acquisition sequence. Functional scanning parameters were: time to repetition (TR) = 1000 ms; time 

to echo (TE) = 30 ms; field of view = 210 x 210 mm in-plane; 48 axial 3-mm slices; voxel resolution = 3-

mm isotropic; flip angle = 40°; and multi-band factor = 4. Anatomical scans were acquired using a T1-

weighted MPRAGE sequence with parameters: TR = 2300 ms; field of view = 248 x 256 mm in-plane, 

176 sagittal 1-mm slices; flip angle = 8°; 1-mm isotropic voxels.  

4.4.6.2 fMRI data preprocessing 

Brain imaging data were preprocessed using the BV20 Preprocessing Workflow. First, we performed 

Inhomogeneity Correction and extracted the brain from the skull. We then coregistered the functional 

images to the anatomical images, and normalized anatomical and functional data to Montreal 

Neurological Institute (MNI) space. Functional scans underwent motion correction and high-pass 

temporal filtering (to remove frequencies below 3 cycles/run). No slice scan time correction and no 

spatial smoothing were applied. 
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4.4.6.3 General linear model 

Data were further processed with a random-effects general linear model (GLM) that included one 

predictor for each of the 18 conditions (3 grasp locations x 3 objects x 2 phases [action vs. planning]) 

convolved with the default Brain Voyager “two-gamma” hemodynamic response function (Friston et 

al., 1998) and aligned to trial onset. As predictors of no interest, we included the six motion 

parameters (x, y, and z translations and rotations) resulting from the 3D motion correction.  

4.4.6.4 Definition of Regions of Interest 

We investigated a targeted range of regions of interest (ROIs). The locations of these ROIs are shown 

in Figure 4.5; the criteria used to define the regions and their MNI coordinates are given in Table 4.1. 

ROIs were selected from the literature as regions most likely specialized in the components of visually 

guided grasping investigated in our study. These included primary visual cortex V1, areas LO, pFS, and 

PPA within the ventral visual stream (occipitotemporal cortex), areas SPOC, aIPS, PMv, PMd within the 

dorsal visual stream (occipitoparietal and premotor cortex), and primary sensorimotor cortex M1/S1.  

Primary visual cortex (V1) was included because it represents the first stage of cortical visual 

processing upon which all subsequent visuomotor computations rely. Primary motor area M1 was 

included instead as the final stage of processing, where motor commands are generated and sent to 

the arm and hand. In our study however we refer to this ROI as primary motor and somatosensory 

cortex M1/S1, because our volumetric data do not allow us to distinguish between the two banks of 

the central sulcus along which motor and somatosensory regions lie.  

We next selected regions believed to perform the sensorimotor transformations that link the visual 

input to the motor output. The dorsal visual stream is thought to be predominantly specialized for 

visually guided actions, whereas the ventral stream mostly specializes in visual object recognition 

(Cavina-Pratesi et al., 2007; Culham et al., 2003; Goodale & Milner, 1992). Nevertheless, significant 

crosstalk occurs between these streams (Budisavljevic et al., 2018), and visual representations of 

object material properties have been found predominantly in ventral regions. We therefore selected 

areas across both dorsal and ventral visual streams that would encode grasp orientation, grasp size, 

and object mass.  

Regions that we expected could encode grasp orientation were dorsal stream regions SPOC (Fattori et 

al., 2004, 2009, 2010; Monaco et al., 2011), aIPS (Taubert et al., 2010), PMv (Murata et al., 1997; Raos 

et al., 2006; Theys et al., 2012), and PMd (Raos et al., 2004). Regions that we expected could encode 

grasp size were dorsal stream regions SPOC, aIPS (Monaco et al., 2015), PMd (Monaco et al., 2015), 

and PMv (Murata et al., 1997; Raos et al., 2006; Theys et al., 2012), as well as ventral stream regions 

LO (Monaco et al., 2015). Finally, based on previous literature we expected visual estimates of object 

mass to be encoded in ventral stream regions LO, pFS, and PPA (Cant & Goodale, 2011; Gallivan et al., 

2014; Goda et al., 2014, 2016; Hiramatsu et al., 2011). We further hypothesized that the network 

formed by aIPS, PMv, and PMd might play a role in linking ventral stream representations of object 

mass to the motor commands generated and sent to the hand through M1 (Borra et al., 2008; Janssen 

& Scherberger, 2015; Murata et al., 2000).  

Figure 4.5 shows the locations of our selected ROIs as volumes within the Colin27 template brain 

(Figure 4.5A) and as cortical surface patches on an inflated brain (Figure 4.5B). To locate all other left 

hemisphere ROIs (except V1) in a standardized fashion we searched the automated meta-analysis 

website neurosynth.org (Yarkoni et al., 2011) for key words (See Table 4.1), which resulted in 

volumetric statistical maps in nifti files. Visual inspection of the maps allowed us to locate the ROIs we 
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had pre-selected based on a combination of activation peaks, anatomical criteria, and expected 

location from the relevant literature. For example, aIPS was selected based on the hotspot for 

“grasping” in Neurosynth nearest the intersection of the intraparietal and postcentral sulci (Culham 

et al., 2003). Spherical ROIs of 15-mm diameter, centered on the peak voxel, were selected for all 

regions except V1. Because Neurosynth is based on a meta-analysis of published studies, search terms 

like “V1” would be biased to the typical retinotopic locations employed in the literature and likely 

skewed towards the foveal representation (whereas the objects and hand would have been viewed 

across a larger expanse within the lower visual field).  As such, we defined V1 in the left hemisphere’s 

V1 using the atlas from Wang et al. (2015), which mapped retinotopic cortex +/- ~15° from the fovea. 

 

Figure 4.5. ROI locations. (A) Visualization of ROIs within the Colin27 template brain. All ROIs except V1 were built as spheres 

centered on coordinates recovered from neurosynth.org. V1 coordinates were taken from the (Wang et al., 2015) atlas. Note 

that surface-rendering is for presentation purposes only as data were analyzed in volumetric space and no cortex-based 

alignment was performed. (B) The same ROIs visualized as cortical surface patches on the Colin27 inflated brain.  

Table 4.1 presents an overview of our ROI selection, where we list all our neurosynth-extracted ROIs 

with their peak coordinates, search terms and download dates.  

Table 4.1. Regions of interest and their peak x-, y-, and z-coordinates in MNI space. Associated search term used on 

neurosynth.org with the number of studies the meta-analyses are based on and the extraction date (when the files were 

downloaded from the website). V1-coordinates were taken from (Wang et al., 2015).  

 

ROIs in the left hemisphere 
Center 

X 
Center 

Y 
Center 

Z 
Search term 
(neurosynth) 

Based on 
# of 

studies 

Extraction 
date 

V1 (primary visual) see Wang et al. (2015)    

LO (lateral occipital) -42 -78 -6 lateral occipital 226 July 17 2020 

pFS (posterior fusiform sulcus) -36 -45 -18 objects 692 May 14 2020 

PPA (parahippocampal place area)  -30 -45 -9 place 189 Feb. 18 2021 

SPOC (superior parietal occipital cortex) -18 -78 39 reaching 99 June 25 2019 

aIPS (anterior intraparietal area) -42 -33 45 grasping 90 June 25 2019 

PMv (ventral premotor)  -56 7 31 grasping 90 June 25 2019 

PMd (dorsal premotor)  -24 -12 60 grasping 90 June 25 2019 

M1/S1 (primary sensory/motor)  -33 -27 63 grasping 90 June 25 2019 
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4.4.6.5 Representational Similarity Analysis  

The analysis of activation patterns within the selected ROIs was performed using multivoxel pattern 

analysis, specifically representational similarity analysis (RSA) (Kriegeskorte, 2008; Kriegeskorte et al., 

2008). An activation pattern corresponded to the set of normalized β-weight estimates of the blood 

oxygenation level-dependent (BOLD) response of all voxels within a specific ROI for a specific 

condition. To construct representational dissimilarity matrices (RDMs) for each ROI, we computed the 

dissimilarity between activation patterns for each condition. Dissimilarity was defined as 1-r, where r 

was the Pearson correlation coefficient. RDMs were computed separately from both grasp planning 

and grasp execution phases. These neural RDMs computed were then correlated to model RDMs 

(Figure 4.1D,E,F) to test whether neural representations encoded grasp axis, grasp size, and object 

mass. To estimate maximum correlation values expected in each region given the between-participant 

variability, we computed the upper and lower bounds of the noise ceiling. The upper bound of the 

noise ceiling was computed as the average correlation of each participant’s RDMs with the average 

RDM in each ROI. The lower bound of the noise ceiling was computed by correlating each participant’s 

RDMs with the average of the other participants’ RDMs. All correlations were performed between 

upper triangular portions of the RDMs excluding the diagonal. We then used one-tailed Wilcoxon 

signed rank tests to determine whether these correlations were significantly >0 within each ROI. We 

set statistical significance at p<.05 and applied false discovery rate (FDR) correction for multiple 

comparisons following (Benjamini & Hochberg, 1995).  

To visualize the representational structure of the neural activity patterns within grasp planning and 

grasp execution phases, we first averaged RDMs across participants in each ROI and phase. We then 

correlated average RDMs across ROIs within each phase, and used hierarchical clustering and 

multidimensional scaling to visualize representational similarities across brain regions. We also 

correlated average RDMs across ROIs and across planning and action phases. Statistically significant 

correlations (p<.05 with Bonferroni correction) are shown also as topological connectivity plots 

(within-phase data) and as Sankey diagram (between-phase data).  

4.4.6.6 Grasp Comfort Ratings 

Grasp comfort ratings were analyzed using simple t-tests to assess whether ratings varied across 

different grasp orientations, grasp sizes, or object mass. The difference between ratings for each 

condition was then used to create grasp comfort RDMs for each participant. Grasp comfort RDMs 

were correlated to model RDMs to further test how strongly grasp comfort corresponded to grasp 

orientation, grasp size, and object mass. To search for brain regions that might encode grasp comfort, 

the average grasp comfort RDM was correlated to neural RDMs following RSA as described above.  
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Chapter 5 
 

 

DISCUSSION 
 

 

 

5.1 Main results 
This thesis addressed the question of how the human brain determined effective and appropriate 

grasp locations on 3D objects, which factors affected grasp choice the most, and how different factors 

interacted. 

In our first study, we focused on how object 3D shape, orientation, weight, and weight distribution, 

as well as properties of the hand jointly affect the location of grasp points. We found that grasping 

patterns are highly systematic, within and among participants, suggesting that humans chose grips for 

complex, novel 3D objects based on a common set of rules. Specifically, we found that it was both 3D 

shape and orientation that determined which portion of the object people grasped; humans exhibited 

spatial biases even when handling objects of different shapes and masses; the weight of the object 

influenced the degree to which humans took torque into consideration when selecting where to grasp 

objects. Fitting a normative model to human behavioral data revealed that force closure, hand 

posture, and grasp size were the major determinants of grasping behavior in humans, while torque 

and visibility played a less significant role. Our model accurately predicted human grasping patterns, 

even for novel 3D printed objects.  

When trying to predict grasping behavior, it is essential to uncover the different factors at play, but it 

is also important to reveal how they interact and if there is a hierarchy. We first identified five 

constraints through behavioral analyses, then constructed penalty functions to reflect these 

constraints, and finally, by fitting our model, we assessed the costs associated with every possible 

combination of finger and thumb location on accessible object surfaces. The pattern of fitted weights 

revealed the relative importance of different constraints, the most important being force closure, 

followed by the natural grasp axis (NGA) and aperture. Torque and object visibility were taken into 

account far less when it came to choosing grasp locations. Still, there were factors that we did not 

consider in that first study. To study these, rather than just repeating our study with added factors, 

we chose to investigate, what happened when two factors were put in conflict with one another, to 

figure out which factor was the more important one when choosing grasp locations. 
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Many previous grasping studies have highlighted the importance of the human NGA, which we also 

observed in our first study. As one of the major factors in grasp choice, we chose this factor to pit 

against another potentially important determinant in grasping: surface friction. In our second study, 

we carefully analyzed sequences of human grasps directed at three different objects that varied in 

surface friction and orientation. Especially the condition where the object’s extremely slippery pair of 

sides was aligned with the individual NGA, allowed us to investigate whether participants valued a 

stable grasp (contact points at the higher friction surface pair) over their NGA or vice versa. We clearly 

found that humans opted for the stable grasps and sacrificed their NGA-alignments.  

The grasp-relevant object properties, which we investigated in the first two studies were often 

estimated visually. For example, by visually recognizing an object’s material composition one could 

infer its mass and mass distribution. However, it remained unclear how the brain translated this piece 

of information into choosing appropriate grasp locations. In our third study, we thus examined the 

representation of grasp-relevant information across sensorimotor brain areas while participants 

planned and executed grasps to multi-material 3D-objects. We discovered that during grasp planning, 

dorsal areas were primarily used to encode grip orientation, which was adjusted in the very beginning 

of reach-to-grasp motions (Cuijpers et al., 2004). Different groups of ventral and dorsal areas were 

used to encode grip size during grasp planning and execution. Grip size was modified throughout 

reach-to-grasp motions (Cuijpers et al., 2004). Instead, during grasp execution, the object mass—

which became important when applying forces at the fingertips—was encoded throughout ventral, 

dorsal, and motor areas. In general, we observed a switch in the encoding of sensorimotor 

information: from the dorsal stream during planning to the ventral stream during the execution of the 

grasp. Our findings also supported the idea, that mechanisms for sensorimotor prediction and 

evaluation could aid in the identification and correction of errors in movement as well as the 

improvement of subsequent movements (Wolpert et al., 2011; Wolpert & Ghahramani, 2000). 

 

5.2 Individual factors influencing grasp selection 
The past decades have seen an increase in research on motor coordination and object manipulation 

in a variety of fields, including robotics, artificial physical intelligence, sport psychology, cognitive and 

computational neuroscience, and engineering (Bach et al., 2014; W. Chen et al., 2018; Gibson, 1977; 

Grafton, 2010; Jeannerod, 2001; McDonough et al., 2020; Paulignan et al., 1997; Veiga et al., 2020; 

White, 2012; Wolpert & Ghahramani, 2000). However, there are still many open questions to be 

discussed. This is probably because the procedures involved in object handling are incredibly complex. 

In order to generate the proper afferent/efferent signals (e.g., relating to sensory and motor systems) 

for precise movement control, dexterous manipulation has to take into account information relating 

to an object's intrinsic properties (e.g., texture, hardness, curvature), biophysical-biomechanical 

characteristics (e.g., of the hand, fingertip and skin, and of joint kinematics), and interaction dynamics 

(e.g., forces, pressure, torsion) (O’Shea & Redmond, 2021). The development of an integrated account 

of skillful behavior is further complicated by the diverse theoretical viewpoints that exist regarding 

the respective contributions of the motor, sensory, and cognitive systems to dexterous object 

handling (Foglia & O’Regan, 2016; Friston, 2010; Jeannerod, 2006; Kawato, 1999; Wolpert & 

Ghahramani, 2000). In the following section, I will discuss this ongoing dialogue in the context of the 

work presented in Chapters 2-4. 
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5.2.1 Orientation and 3D shape  
For an example grasp toward your coffee cup to be successful, many aspects must be taken into 

account, including the cup's location, weight, the surface structure, and shape and orientation of its 

handle (Schuetz & Fiehler, 2022). These visually perceived aspects influence where we choose to grasp 

objects, such as a cup. In the first experiment presented in Chapter 2, we manipulated 3D shape (by 

constructing 3D geometric shapes made of little cubes) and object orientation (by presenting the same 

objects in different orientations with respect to the participants). This allowed us to measure how 

allocentric 3D shape and egocentric perspective on those shapes interacted, as well as how consistent 

participants were in choosing grasp locations.  

5.2.1.1 Orientation 

For a particular object shape and orientation, previous studies have shown that the maximum grasp 

aperture depends on an object’s size, whereas the transport component depends on the object's 

location in space (Jeannerod, 1981; Paulignan et al., 1991, 1997). A correlation also exists between 

object orientation and hand orientation (Cuijpers et al., 2004), e.g., as an object's orientation can 

change wrist pronation without altering its transport kinematics (Stelmach et al., 1994). In Chapter 2, 

object orientation was changed by rotating the objects on the table. We found grasp locations 

encoded in allocentric coordinates (tied to the object) increasingly varied with increasing object 

rotation. Specifically, for object rotations larger than 90 degrees, grasps were more similar when they 

were encoded in egocentric coordinates (tied to the observer).  

It has been demonstrated that within the first half of the movement, the hand orientation is already 

adjusted to the object orientation (Glover & Dixon, 2001; Mamassian, 1997). This is consistent with 

our findings in Chapter 4, where grasp orientation was encoded already during the planning phase. 

An important aspect of the hand orientation is the preferred grasp orientation (called the natural 

grasp axis, or NGA) (Lederman & Wing, 2003; Roby-Brami et al., 2000; Schot et al., 2010; Voudouris et 

al., 2010). Where most previous research focused on hand kinematics (Cuijpers et al., 2006a; Goodale 

et al., 1994; Mamassian, 1997; Paulun et al., 2016), we used complex 3D shapes and a range of 

orientations to show that object shape and orientation together determine the final hand 

configuration.  

5.2.1.2 Shape 

Surprisingly little behavioral research has been done on how shape affects grasp choice; this previous 

research often used 2D or simple geometric 3D stimuli made of homogenous materials and hardly 

ever examined grasp selection (Z. Chen & Saunders, 2015; Cuijpers et al., 2004, 2006b; Eloka & Franz, 

2011; Goodale et al., 1994; Lederman & Wing, 2003; Schettino et al., 2003a). It has also been shown, 

that it is usually preferable to choose grasp points on the cube's opposing faces rather than on its 

edges or vertices. This is because grasps on edges and vertices will be unstable due to the high 

curvatures at these edges and vertices (Montana, 1992). These findings were in line with our results 

for grasps on the cubic objects, presented in Chapters 2 and 3. Here, we demonstrated how complex 

3D objects were grasped in systematically distinct object locations.  

5.2.1.3 Curvature 

Previous research in humans has demonstrated that grasping forces are modulated by surface 

characteristics such as friction (Burstedt et al., 1999; Cadoret & Smith, 1996), tilt (Jenmalm & 

Johansson, 1997), and curvature (Goodwin et al., 1998). However, the role of surface curvature is 
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somewhat unclear, since Jenmalm et al. (1998) found that as human participants grasped various 

convex and concave surfaces, when a grasp was subjected to linear load forces, surface curvature had 

little effect on fingertip forces or minimum grasp force required for grasp stability. The perception and 

impact of surface curvature of objects on grasping has also been particularly of interest in the robotics 

literature, where robotic grippers chose grasp locations and formed grasps based on different surface 

curvatures (Calli et al., 2011; Goodwin et al., 1998; Jenmalm et al., 2000; Sanz et al., 1999; Vahrenkamp 

et al., 2017). There, curvature has been shown to be an important factor for parallel gripper grasps, 

where curvature and symmetry could even be used to evaluate potential contact points on-line (Sanz 

et al., 1999). When investigating grasp stability instead, the majority of previous studies asked human 

participants to grasp flat surfaces. However, most objects that we encounter in our everyday life have 

curved surfaces (Jenmalm et al., 1998). Thus how surface curvature affects grasp choice is not yet well 

understood. In our studies we also did not explicitly manipulate surface curvature. We did however 

ask participants to grasp 3D printed objects with curved surfaces in the final experiment of Chapter 2. 

We found that our model was already able to predict grasp locations for those objects quite well. 

However, if we compare closely the model predictions to the human data, we notice subtle differences 

that could well be due to surface curvature. Specifically, when participants grasped the 3D printed cat 

in Chapter 2, our model predicted grasp locations positioned in a concave ridge, alongside the cat’s 

front leg. Human grasps, however, did not fall along those predicted locations and instead fell on 

mostly convex surfaces. Further research on the effects of the extend of different surface curvature is 

needed to investigate, whether human grasps systematically avoid highly concave or convex local 

curvatures.   

5.2.2 Material: Surface friction 
The shape and curvature of an object are just some amongst many properties that make up an object’s 

surface. When humans visually perceive an object, they can also quickly determine which material it 

is made of and draw appropriate conclusions about its specific physical properties. One factor of 

interest in material perception is surface friction. Our objects were composed of different materials 

in the experiments presented in Chapter 2. In the second experiment, participants could freely choose 

to grasp the objects at their brass or their wooden parts. In Chapter 3, we pitched surface friction 

against the relative importance of the natural grasp axis (NGA). The latter results will be discussed in 

section 5.3.4, where we focus on the relative importance of different factors. 

How we perceive surface properties is not the focus of this thesis, but studies have shown that humans 

perceive friction through both vision and touch. Grasp and load forces are adjusted to variations in 

weight or friction (Johansson & Westling, 1984b; Westling & Johansson, 1984) in an anticipatory 

fashion (e.g. Flanagan & Beltzner, 2000; Forssberg et al., 1991). The higher friction object parts offered 

more desirable grasp locations (Wing & Lederman, 2009), whereas lower friction surfaces demanded 

greater precision and allowed for less grasp error tolerance, resulting in more grasp points close to 

the CoM (Fikes et al., 1994). The higher the weight and the lower the surface friction on the object, 

the slower the movements were both before and after making contact with it, and the more precisely 

the grasp points were chosen and approached (Paulun et al., 2016).  

5.2.3 Material: Object weight, mass distribution, and torque 
A person performing a grasp towards an object might need to consider that object's center of mass 

(CoM). The vector connecting the thumb and index finger contact points defines the grasp axis. When 

the object's CoM lies off the grasp axis, a torque will develop (Lederman & Wing, 2003). The torque is 
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approximately equal to the weight of the object multiplied by the distance between the CoM and the 

grasp axis (Lederman & Wing, 2003).  

5.2.3.1 Torque 

In our first study (Chapter 2), we observed frequent grasps far away from the object’s CoM for 

lightweight objects, which suggested that torque was not taken into account when grasping. These 

findings were consistent with those from Kleinholdermann et al. (2013), but contrary to other studies 

(Eastough & Edwards, 2006; Goodale et al., 1994; Lederman & Wing, 2003; J. Lukos et al., 2007; Paulun 

et al., 2016). In many of these studies, the objects were relatively simple 2D shapes, which meant that 

torque was correlated with force closure. With our stimuli, instead, there were many possible force 

closure grasps that were far from the CoM. Thus, our initial results called into question the role of 

torque in determining grasp selection.  

5.2.3.2 An object’s center of mass (CoM)  

Multiple studies have shown that humans can visually estimate the location of the CoM with varying 

accuracy for 2D objects (Samuel & Kerzel, 2011) and higher accuracy for 3D objects (Cholewiak et al., 

2015) or stacks of objects (Battaglia et al., 2013). Even though the variability of the perceptual 

estimates of the location of an object’s center have long been known to increase proportionally with 

size (Wolfe, 1923), humans can still use this information to inform their grasp choice. Lederman and 

Wing (2003) investigated whether participants use a visually derived estimate of the CoM when the 

positions of the digits are unconstrained to select a grasp axis that includes the CoM. They found that 

participants used visual cues of symmetry to determine the CoM and chose a grasp axis with a short 

perpendicular distance from the CoM. These findings are in line with our observations regarding grasp 

choice for heavier objects, where the average grasp distance from the CoM was much smaller than 

for our lightweight objects. As the lightweight objects were 10 times lighter than the heavy ones, 

torque was much smaller and probably below the threshold where it would have affected grasp 

location or grasp security or comfort. We thus reconciled our findings with the literature and 

concluded that object weight influences the degree to which humans take torque into consideration. 

5.2.3.3 Processing of material and weight 

Many fMRI studies investigating object recognition have focused on the role played by geometric 

features such as shape (Jenmalm et al., 1998; Kourtzi & Kanwisher, 2000; S. O. Murray et al., 2003), 

size (Cavina-Pratesi et al., 2007; G. L. Murray et al., 2006), and orientation (Rice et al., 2007; Valyear 

et al., 2006). Weight instead is an action-relevant, but predominantly non-visual material feature. 

However, by recognizing an object’s material composition, humans can deduce its weight and mass 

distribution. For example, Sharan (2009) found that humans could visually identify and categorize 

materials even from images. Further, Buckingham et al (2009) have shown that humans could interact 

appropriately with objects using their empirical knowledge about material properties. Studying 

weight, Gallivan et al. (2014) further discovered that the human ventral visual stream represents 

object weight based on sensorimotor memory (i.e., prior grasps) or based on learned material-weight 

correlations. This theory is in line with our findings (Chapter 4) that representations in pFS and PPA 

during grasp execution were correlated with the representations in aIPS, PMv, PMd, and M1/S1. This 

suggests that ventral regions may transmit visual estimations of object weight to the dorsal and 

premotor regions, which then use this knowledge to anticipate and adjust the fingertip forces during 

object lift-off (Wolpert et al., 2011; Wolpert & Ghahramani, 2000).  
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5.2.3.4 The ventral visual stream’s role in material and weight processing 

Evidence that materials are processed in the ventral visual stream, was presented e.g., by Hiramatsu 

and colleagues (2011), who discovered that, without physically handling objects, image statistics were 

linked to activation in early visual areas, whereas perceptual variations between materials were linked 

to activation in higher ventral visual areas—and even some dorsal regions. In a related study, Gallivan 

et al. (2014) required participants to plan and execute lifting movements with equally sized cylinders 

of different weights. They discovered that the human ventral visual stream represents object weight 

based on sensorimotor memory (i.e., prior grasps) or based on learned material-weight correlations. 

In Chapter 4 participants grasped lightweight objects made of wood or heavier objects made of a 

combination of brass and wood. Participants could clearly visually distinguish the materials.  

5.2.3.5 The LOC’s role in material and weight processing 

Given the previously discussed relationship between object material and weight, we studied the 

lateral occipital cortex (LOC), a region within the ventral stream, as this region encodes object shape 

(e.g., Cant & Goodale, 2007; Kanwisher et al., 1997; Kourtzi & Kanwisher, 2000; Malach et al., 1995; 

Romaiguère et al., 2014), object weight (Gallivan et al., 2014), and shows some activation in response 

to  texture (Cant et al., 2009). Before or slightly after lifting an object, LOC also seems to be sensitive 

to differences in an object’s CoM. This relates to LOC’s involvement in hand shaping and to subtle 

grasp characteristics that must be integrated with lift forces in order to provide the required 

compensatory torque to offset the inherent object torque attribute (Marneweck & Grafton, 2020).  

Contrary to these findings, as well as results from other previous work (Cant & Goodale, 2011; Gallivan 

et al., 2014; Goda et al., 2014, 2016; Hiramatsu et al., 2011; van Polanen, Rens, et al., 2020), we did 

not observe representations of object material and weight in LOC (Chapter 4). To discuss why that 

might be the case, we compared these findings with the results presented in lesion-studies. These 

have also shed light on the role of dorsal and ventral brain areas in perceiving material and weight. 

For example, different neurological patients (DF (Humphrey et al., 1994; Milner et al., 1991) and MS 

(Newcombe & Ratcliff, 1975)) exhibit dissociable patterns of deficits in perceiving object shape, 

material, texture, and color. These deficits depend on exactly where each patient’s visual streams is 

damaged (Cavina-Pratesi et al., 2010a, 2010b; Heywood & Kentridge, 2003). According to structural 

MRI, patient DF suffered bilateral lateral occipital cortex (LOC) damage (James et al., 2003), which 

resulted in her significant visual form agnosia (Humphrey et al., 1994; Milner et al., 1991). Patient MS, 

instead, suffered extensive damage to his bilateral ventromedial occipitotemporal cortices, but can 

readily discriminate between different shapes. The study performed by Cavina-Pratesi et al. (2010a) 

found that patient DF performed well on a texture-discrimination task but at chance for shape 

discrimination, whereas MS showed the opposite pattern. The authors concluded that geometric 

shape, not the surface texture, was the causal role of LOC. That is consistent with the results presented 

by Gallivan et al. (2014), who could not reliably decode object texture from LOC. In our study, the 

objects all had the same shape and we did not explicitly task participants with object recognition, nor 

texture or material perception. In our case, participants performed preselected grasps towards 

objects. In most of the above mentioned imaging studies (excl. Gallivan et al., 2014) participants were 

not performing actions on objects with varying material properties. The specific role of LOC in material 

and weight perception for predefined grasping actions might therefore be a special case, for which 

more research could be beneficial.  
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5.2.3.6 Tactile suppression may affect haptic judgments of weight and friction 

When a limb is actively moved while a stimulus is applied to that limb, the threshold for perceiving 

stimuli increases (Angel & Malenka, 1982; Broda et al., 2020; Buckingham et al., 2010; Dyhre-Poulsen, 

1978; Garland & Angel, 1974; Gertz et al., 2017; Juravle et al., 2018; Voudouris & Fiehler, 2017). That 

effect is called tactile suppression and occurs when humans reach to grasp an object and during 

interaction with that object (Buckingham et al., 2010; Fraser & Fiehler, 2018; Voudouris & Fiehler, 

2017). Even before a movement is initiated, the detection thresholds can be increased (Coquery, 1978; 

Voss et al., 2008) and can be increased correspondingly for both active and passive movements 

(Chapman et al., 1987).  

During the second set of experiments presented in Chapter 2, we did observe slight slipping on some 

occasions when grasp locations were far from the CoM on our heavier objects. Nevertheless, 

participants reacted in time to adjust their grasps and keep the objects securely between their 

fingertips, i.e. no objects slipped out of the grasp completely or were dropped. Even though tactile 

suppression does occur during grasping movements, participants received sufficient online feedback 

while they executed the grasps and were able to adapt to those updated haptic signals. Studies 

performed by Broda et al. (2020) and Voudouris et al. (2019) found that tactile suppression is stronger 

for object interactions where mass distribution of the object was predictable compared to objects 

where mass distribution was not predictable. We can assume stronger tactile suppression when 

participants handled our objects, as participants could clearly view and distinguish the wooden from 

the brass cubes. That means, the movement-related object feature (mass distribution) was not 

concealed on our objects. Yet, participants were still able to feel the object slipping and could react 

fast enough to prevent the object from falling. These important and task-relevant information 

processes were not hampered to the extent where participants were not able to successfully perform 

a secure grasping movement throughout the complete duration of interaction. 

5.2.4 Grasp aperture 
Most research on the relationship between grip aperture and object size has focused on the maximum 

grip aperture (Cuijpers et al., 2004). In Chapters 2 and 4, our experiments considered grasp aperture 

as an important factor in grasp selection. Importantly, we investigated the final grasp aperture, the 

size of the grasp upon contact, once the object is securely in hand. The final grip aperture when 

grasping irregular objects is established by the grasping points on the surface of the object (Goodale 

et al., 1994). This is not to be confused with the maximum grasp aperture (MGA), which occurs as the 

hand opens up while travelling towards the object and has been subject to many previous studies 

(Castiello, 2005; Jeannerod, 1984, 1986; Mon-Williams & Tresilian, 2001; Smeets & Brenner, 1999). 

Yet, there are still connections to be drawn between the two measures of aperture. 

According to Weber’s law, the certainty of stimulus estimation decreases with stimulus magnitude 

(Fechner, 1860). This includes all aspects of a stimulus or what is perceived after a stimulus, with the 

exception of human grasping movements (Derzsi & Volcic, 2022). Accordingly, when an object is about 

to be grasped, the variability in the maximum grip aperture between fingers is independent of object 

size (Ganel et al., 2008). This violation of Weber’s law present in grasping is thought to be related to 

the perception-action dissociation, stated in the two-streams hypothesis (visual size estimation is 

computed differently for perception and action)(Goodale, 2011, 2014; Goodale & Milner, 1992). 

According to this theory, vision for perception, which is carried out by the ventral visual stream, is 

based on relative metrics that take into account both the overall characteristics of the visual scene 
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and the size of the objects in the scene. The dorsal visual stream, which serves as the vision-for-action 

system, is instead thought to be based on absolute metrics that represent the object's true size, which 

results in a violation of Weber's law (Ganel et al., 2008, 2014). 

A recent study (Derzsi & Volcic, 2022), however, found no signs of a perception-action dissociation. 

Participants were asked to either point to the center of elongated rectangular objects of different 

widths or grasp them with a precision grip and to keep them balanced during the lift. Grasping the 

center of the bar ensured a balanced lift. The authors thereby contrasted the degree of uncertainty in 

grasping contact points chosen for objects of various sizes with the degree of uncertainty in perceptual 

estimates of the same objects’ centers. The results gave convincing proof that Weber's law influences 

both the variability of visually directed grasping as well as the variability of perceptual estimates. 

Additionally, their conditions were designed to test whether the two-streams hypothesis provides an 

explanation for the exception to Weber’s law in grasping. If vision-for-action were based on absolute 

metrics, the variability of estimating the object center through grasping would have been expected to 

be constant over object sizes in this study. As this was not the case, the authors postulate that absolute 

metrics are used exclusively during grasping for shaping the grip aperture, but the selection of optimal 

grasp contact positions is based on relative metrics. In our study, however (fMRI study, Chapter 4), we 

found grip aperture encoding took place in both visual streams during planning and execution of the 

grasp. Our results showed that regions in the ventral stream linked visual and motor regions during 

action execution. Thus, our findings may help reconcile this previous literature by demonstrating 

interactions between dorsal and ventral visual stream estimates of objects size and grasp apertures.  

 

5.3 The relative importance of different grasp factors 
While many previous studies have discovered and investigated the various individual factors related 

to grasping, the question remains, how these different factors interact and what happens when 

multiple factors vary in competing directions.  

 

5.3.1 The lack of visibility 
Usually, an object is identified before humans move to grasp it. Using vision alone, surface clues can 

aid in object identification, even when parts of the object are occluded (Tanaka & Presnell, 1999). 

Occlusion can take place before the grasp, (i) when an object is (partly) hidden behind another, (ii) or 

when some object surfaces are not accessible to the viewer due to self-occlusion (i.e. the object’s 

shape causes parts of the object to be in the line of view and thereby covers other parts of the object). 

It has been shown that without visibility, both the magnitude of the grasp aperture and the temporal 

characteristics of the transport component changed (Rand et al., 2007). In reach-to-grasp movements 

without vision, the transport duration increased, meaning participants moved their hand slower 

towards the object (Camponogara & Volcic, 2019a, 2019b; Connolly & Goodale, 1999; Gentilucci et 

al., 1994; Jakobson & Goodale, 1991; Schettino et al., 2003b; Watt & Bradshaw, 2000; Winges et al., 

2003). Without vision, also the maximum grasp aperture (MGA) during the reach-to-grasp movement 

increased (Jackson et al., 1995; Jakobson & Goodale, 1991; Pettypiece et al., 2009, 2010; Wing et al., 

1986; without vision of the hand: Berthier et al., 1996; Churchill et al., 2000; Gentilucci et al., 1994). 

This wider maximum grasp aperture was thought to result from participants increasing the safety 

margin for initial contact with the object.  

 



Chapter 5 – Discussion  

  
89 

Visibility of the object is therefore an important factor that can change various parameters of the 

grasping action. Object parts can also be occluded due to our own movements, e.g., due to how our 

hand and arm are positioned during both the approach and once in contact with the object. Although 

people tend to look at grasping points, they may not always and necessarily reach toward visible 

contact points (Voudouris et al., 2012b). The investigations of how grasp locations were affected by 

reach distance and occlusion are summarized in the following paragraph.  

 

5.3.2 Object visibility versus the reach distance 
Our investigations presented in Chapter 2 lead us to design an experiment to contrast effects of object 

visibility with the hand’s trajectory against one another. Luckily, we realized that this experiment had 

already been conducted as one of the conditions in another study (Paulun et al., 2016). Together with 

Maiello and colleagues (Maiello et al., 2019), we reanalyzed some of the data presented in Paulun et 

al. (2016), as two conditions from that study serendipitously pitted reach distance against object 

visibility. We found that the aim to increase object visibility rather than reducing reach distance 

accounts for spatial biases observed in human grasping patterns and confirmed that visibility seemed 

to be the more important constraint when it came to predicting grasp locations in our study (Chapter 

2), as well.  

5.3.3 Object visibility versus the aim to reduce torque (depending on object 

weight):  
Even though participants were attempting to increase object visibility (Maiello et al., 2019; Paulun et 

al., 2014) our data presented in Chapter 2 also replicated the findings that this bias was reduced when 

object weight increased. These findings are in line with the results from several studies (Maiello et al., 

2019; Paulun et al., 2014, 2016). Paulun et al. (2014) found that a rougher (and heavier) object 

required more movement time than a smoother (and lighter) object. In the first case, grasp points 

remained closer to the object’s center of mass and were less variable than in the latter case.  

5.3.4 Influence of the previously handled object on weight perception – an 

illusion 
In Chapter 3, we noted that group level grasps were more bimodally distributed than individual 

participant grasps and suggested that previously handled objects in the previous trials might have an 

effect on grasp choice. Additionally, the influence of previously handled objects has already been of 

special interest to us when we handled the objects used in Chapter 2. In fact, many studies have 

investigated the effect of previous sensory experience on grasping (Dixon et al., 2012; Dixon & Glover, 

2009; Jax & Rosenbaum, 2007, 2007; Johansson & Westling, 1988; Kelso et al., 1994; J. R. Lukos et al., 

2013; Rosenbaum & Jorgensen, 1992). We therefore reason that it is plausible for trial history to play 

a role here, as well. Due to these considerations, we discovered the strong illusion, where the 

perceived weight of an object changed, depending on the weight of the previously handled object 

(Maiello et al., 2018). This effect is likely related to sensorimotor memory (Maiello et al., 2018; van 

Polanen, Buckingham, et al., 2020; van Polanen & Davare, 2015). Interestingly, we observed that the 

effect was strong enough to cross hands but was not modulated by the material appearance of the 

objects, which instead occurs in the material-weight illusion (Paulun et al., 2019; Wolfe, 1898).  
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5.3.5 Natural grasp axis versus surface friction 
In Chapter 3, we introduced conditions where the axis connecting the cube’s higher friction surfaces 

was orthogonal to the grasp axis necessary for adopting the individual comfortable grasp axis (or 

NGA). Our primary focus was to answer the question of what happens when surface friction and 

natural grasp axis are competing factors. Would participants forego their typical grasp configuration 

in favor of stable endpoints or would they tolerate endpoints on the lower friction surfaces in order 

to keep their typical grip configuration? 

We demonstrated that participants readily adopted grasp configurations that promoted grasp stability 

rather than adhering to their NGA. Our findings presented in Chapter 3 agree with the previous 

literature, that makes grasp stability out to be an important factor when choosing grasp locations 

(Paulun et al., 2016; Smeets & Brenner, 1999). Our findings were not in full agreement with those 

presented by Cuijpers et al. (2004), who found that their participants seem to value comfort of posture 

over grasp stability. Their findings lead them to suggest that subjects tolerated less stable grasps in 

order to increase the comfort of their grasp. They were investigating how grasp points were affected 

by the shape and size of different cylinders with elliptical bases. All objects were made of the same, 

uniform material and an unstable grasp in this case meant not aligning the grasp axis with one of the 

cylinder’s principal axes. Even without aligning the grasp axis with one of those axes, however, one 

can still form a successful grasp, without dropping the object. Therefore, the danger of dropping the 

object due to unstable grasp locations in this case was probably much lower compared to grasping the 

Vaseline-covered cuboid objects employed in Chapter 3. In a related object manipulation study, 

participants sacrificed grasp stability in favor of minimizing energy-related costs, such as torques 

(Glowania et al., 2017). Our results extend this previous research by demonstrating that when it comes 

to a trade-off between NGA and stability, choosing the more stable grasp locations usually wins over 

adopting the usual grasp pose.  

5.3.6 Natural grasp axis versus visibility 
Work along the same lines as the study presented in Chapter 3 was published by Voudouris et al. 

(2012b). They investigated what happens when visibility and natural grasp axis conflict one another. 

Subjects saw cuboids resting on the table in front of them and grasped them in different orientations. 

Similar to our setup, these could be grasped with a clockwise or a counterclockwise grasp. In one 

condition, however, there was a screen, occluding one side of the cuboid, so in one condition only the 

counterclockwise grasp would allow participants to see their thumb while they grasped the object. 

They found that humans still prioritized their natural grasp configuration by tolerating these invisible 

grasp endpoints. The studies we mentioned in this section could be further expanded to pin the 

different factors against one another, in order to build a more complete understanding of the relative 

importance of the individual factors. This way, the ability to predict natural and unconstrained human 

grasping behavior can improve even more. Discussions along these lines are found in the next section 

of this thesis, giving an outlook onto potential future directions.  
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5.4 Limitations and future directions 

5.4.1 Motion tracking using markers and cameras 
One should always critically examine the methods used to acquire data, and grasping studies are no 

exception from this rule. In the case of the experiments presented in Chapter 2, we used an active 

motion tracking system with markers and cables. The advantages (high temporal and spatial accuracy) 

come at a cost: participants have markers attached to their fingers and cables running along their 

hands and arms, which can feel restrictive. Only a limited range of hand motions and therefore object 

orientations allowed for successful tracking, due to the system’s requirements that all markers needed 

to be visible to the cameras at all times. As soon as any part of the object or other fingers were 

positioned in the line of sight between camera and marker, tracking data were unavailable. Even the 

orientation of the markers relative to the cameras posed an issue, as markers pointing away from the 

cameras were neither seen nor recorded.  

In our studies, these issues meant that we had to design and pilot test our conditions such that objects 

were oriented specifically to allow for visible trackers during the performed grasps. That meant that 

we were limited in the preselection of object orientations, specifically by which grasps were used 

during piloting to determine marker visibility. Additionally, grasp poses, which differed largely from 

those employed by the pilot participants, were potentially lost to the tracking. The markers 

themselves were secured on participants’ fingernails via adhesive reusable pads (UHU patafix) and the 

cables were taped to participants’ fingers, the backs of their hands, and their arms. Despite those 

security measures, markers sometimes fell off during the experiments, or cables got hooked on 

something, restricting participants in their movements. Some of our findings may therefore not 

entirely generalize to unrestricted grasping. However, we think this is not the case, because we 

controlled for or manually recorded error trial data. When possible, error trials due to tracking or task 

execution issues were repeated. Where markers were not visible during grasping in the final 

experiment in Chapter 2, the experimenter manually recorded grasp positions. Analyses of the 

available error trial data revealed highly similar patterns to the grasp pose data from non-error trials, 

suggesting that our results were not affected by these tracking issues.  

Nevertheless, future work could overcome the majority of these limitations by using marker-less 

tracking, such as DeepLabCut (Mathis et al., 2018; Nath et al., 2019), OpenMonkeyStudio (Bala et al., 

2020), DANNCE (Dunn et al., 2021), DeepPoseKit (Graving et al., 2019), WormPose (Hebert et al., 

2021), LEAP (Fernández-González et al., 2019), and TRex (Walter & Couzin, 2021). DeepLabCut (Mathis 

et al., 2018; Nath et al., 2019) is an open-source tool that can do high quality markerless pose 

estimation of bodies or body parts across frames in a method that is computationally affordable for 

the majority of labs. Pose estimation involves virtually marking animals so that they may be tracked 

throughout time using tracking software. In order to train the neural network that will handle the 

data, the experimenter first identified and marked the relevant body components in a series of video 

frames. 

5.4.2 Contact points versus contact areas 
In our studies, we focused on precision grips and contact points. When humans grasp in a natural 

context, however, the precision grip is only one of the many, many grips that are available. The human 

hand is extremely versatile and adapts very well to various objects and tasks. There is evidence that 

the effects of material properties are not limited to the precision grip. Therefore using marker-less 
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tracking of free grasps (where no instructions are given as to how many digits can be used) or whole-

hand grasps specifically, would approximate natural grasping behavior better than restricted two-digit 

grasps with markers attached and could give new insights into unrestricted grasps.  

When our fingers and hands come into contact with a grasped object, measuring contact points is 

merely an approximation of the grasp. In the methods employed in this thesis, contact points are only 

ever the best guess at where the contact locations are, because human fingertips (and the majority of 

robotic fingertips, as well) are continuous surfaces (that exhibit a range of curvature values (Montana, 

1992)). Further, our skin deforms slightly or even heavily and contact areas can expand under the 

pressure created between skin and object. While we do primarily use our fingertips (i.e. the opposite 

side of the finger nail) in a precision grip to make contact with the object, the contact areas can be 

much more complex and differ greatly between different multi-digit and whole-hand grasps. An object 

can be encased by the entire hand, making contact with the complete inside of your fingers and palm, 

or we can even have an object rest between our fingers.  

A major direction for future studies should move towards developing methods to study contact areas, 

instead of contact points of grasping (Hartmann et al., 2022; Moscatelli et al., 2016). Additional 

propositions for achieving this could be to use paint to leave behind finger- or handprints on the 

grasped objects, or objects made from a temperature-sensitive material that changes color when in 

contact with the warmth of a human hand. Potentially, a camera could even be encased in translucent 

objects to record contact areas from within the object.  

5.4.3 Virtual reality follow-up study to Chapter 2 
In Chapter 2, we demonstrated that human grasp behavior is close to optimal with respect to a 

weighted combination of different cost functions. In a peer-reviewed follow-up study, we asked 

whether the same behavior can be seen in virtual reality (VR) (Chessa et al., 2019). 

In this study (Chessa et al., 2019) the same four wooden objects, used in our original study (Klein et 

al., 2020), were presented in a virtual environment. Participants viewed them in the same two 

orientations as our real-world wooden objects in the original experiment (Klein et al., 2020). In the VR 

setting, participants could see the virtual object, the table upon which it was resting, and a simplified 

model of their hand that moved synchronized with their own hand movements. Given a specific object 

and orientation, participants selected the same portions of the virtual objects as of the real-world 

objects in Chapter 2.  

5.4.3.1 Advantages of virtual reality (VR) 

The virtual reality (VR) approach in this follow-up-study (Chessa et al., 2019) offers major advantages 

in experimental control and reproducibility. Virtual environments are ideal for providing the user with 

rich, complex, multimodal sensory information and can significantly increase the impression of 

realness and agency in the person experiencing such an artificial world (Riva et al., 2006). Grasping 

studies, which combine visual and haptic inputs into one perceptual experience, are a particularly 

good candidate for being translated into VR. There, VR offers the advantage of interacting with many 

different objects with the appearance of different materials or surface properties, without having to 

build them or a setup that supports them. An experimenter can also convincingly offset the 

participant’s hand or move the stimuli around and investigate participants’ behavior in response to 

perturbations. Where grip force sensors may obscure your desired object shape or be blocking access 

to desired grasp locations or surface properties in a real-world experiment, there is no need for them 
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in a VR setting (e.g. when using a PHANToM device for force feedback based micromanipulation, for 

examples, see Seifi et al., 2022; Zoeller et al., 2019; Zoeller & Drewing, 2020). Specifically, a grasping 

experiment run with the appropriate VR-setup will offer the opportunity to measure grip forces 

without compromising object appearance and VR objects will not occlude grasp locations.  

Particularly fMRI experiments could benefit from incorporating VR into the experimental design, as 

they come with their own set of specific challenges. During any fMRI experiment, participants 

sometimes struggle to focus on the task while the scanner is making loud noises and all they see is the 

tight bore. The goal, however, is for naturalistic, interactive behaviors to take place even while brain 

activity is being monitored. A grasping task virtually immersed in a natural environment might put 

participants at ease and allow them to perform more naturally while being more relaxed. Even joint 

actions could be simulated this way, without having multiple participants crammed in one scanner. 

Unfortunately, there is no standard option for combining the VR and fMRI (Beck et al., 2007), but there 

have been studies that did combine the two methods (Marsh et al., 2010).  

5.4.3.2 Limitations of VR 

Still, we need to be cautious about the fact that not all real-world experiences can be translated into 

the virtual environment. Depending on the setup, it might be difficult to have subjects experience e.g. 

different aspects of haptic feedback (such as object weight and surface properties). Even though VR 

software and hardware are evolving to be more reliable, cost effective, and pleasing in terms of size 

and appearance, the costs remain relatively high and equipment may still be too bulky to be used in 

some setups (Bohil et al., 2011). Hand tracking with a commercial setup, such as the Leap motion (Leap 

Motion Controller, 2022) or the integrated hand tracking in the Meta Quest 2 (formerly known as 

Oculus Quest (Oculus Quest 2, 2022)), now offers a cost effective option, however, those systems 

often struggle with occlusion. Some VR headsets even include fairly reliable eye tracking (Schuetz & 

Fiehler, 2022). 

Cybersickness might also have a negative impact on certain studies depending on the methodology 

used as participants may drop out of the experiment (Dennison et al., 2016), or related to the topic of 

this thesis, cybersickness can lead to a change in sensory weighting (Weech et al., 2020). Errors in 

tracking or updating the headset or virtual scene might lead to displacements in the perception of 

where something is, such as a virtual hand. In a reaching and grasping task this could have serious 

consequences. However, misalignments between real and virtual body parts have been found to have 

less of an impact on our sense of ownership of that body part compared to the delays between our 

sensory experiences (Perez-Marcos et al., 2012). Temporal delays between head movements and 

updates to the visual scene can also lead to decreases in the sense of ownership and agency of a virtual 

body part (Ismail & Shimada, 2016), though this can improve over time (van Dam & Stephens, 2018). 

Stereo cues need to be implemented convincingly and studies have also shown that distances may be 

misjudged by participants in virtual reality (i.e. depth compression, see Armbrüster et al., 2008; Kim 

et al., 2022; Knapp & Loomis, 2004; Willemsen et al., 2008). However, since grasping studies generally 

have a relatively small range of action, because objects need to be close enough to be grasped, 

distance compression would likely not play a huge factor in these cases (Armbrüster et al., 2008). 

Additionally, there can be vergence and convergence issues as the VR display sits right in front of your 

eyes, yet you appear to be looking in the distance (for a review see Rushton & Riddell, 1999). Finally, 

the experimenter must be sure that the interpupillary distance (IPD) is appropriately set for each 

participant. Otherwise eye strain can occur (Kim et al., 2021) or double vision, if the offset was 
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extreme, leading to difficulties reaching to an object. Some VR headsets currently do not encompass 

a wide enough range of IPDs, particularly for women, as depending on the headset between 7 and 

40% of women are not covered by the IPD range (Stanney et al., 2020). Given these challenges, it is 

already a substantial achievement, that we have been able to replicate our findings for the real-world 

setup with the four original shapes in a VR setting. 

5.4.4 Chapter 2 - Follow-up study: Conscious access to grasp-relevant factors 
In a second follow-up study (Maiello et al., 2021) we investigated, whether humans can consciously 

access four of the five grasp rules (excluding force closure) that help avoid large apertures and 

uncomfortable, unstable, impossible, and high torque grasps. We asked participants to explicitly 

report grasp optimality of specific grasps on a subset of our wood-brass objects, that either reflected 

near-optimal or sub-optimal grasp size, orientation, torque, or visibility according to our optimality 

functions. We tested whether participants could infer grasp quality from vision and haptics. In three 

separate experiments, participants were asked to identify the best between two competing grasps on 

an object through either vision alone, by watching videos of others executing grasps, or through 

executing the grasps themselves. Participants performed well for most objects using vision alone, 

already, but performance significantly improved in the video and grasping sessions. These findings 

suggest that we can already understand what makes up a good grasp, perhaps by using motor imagery, 

i.e. mentally simulating the motor task. Sensorimotor feedback or passively viewing others grasp the 

objects might lead to even further refinements of understanding all aspects of the grasp. Which 

aspects of a grasp specifically make individual participants consciously choose one grasp over another, 

has not been investigated yet. Whether individuals prioritize a more accessible grasp location, faster 

movements, an easier grip, or a more comfortable grasp configuration still needs to be addressed in 

order to fully understand how grasp quality is judged.  

As we have seen a difference in grasp quality evaluation using vision alone, compared to watching 

videos of grasps and executing the grasp, a similar experiment using the VR-setup from Chessa et al. 

(2019) could investigate if that holds true in virtual reality as well. Specifically, this set of experiments 

could use the multi-material objects. If the same effects could be observed in VR, that could confirm 

the successful translation of real-world findings into the VR, meaning that participants find 

representations as convincing as in the real world.  

5.4.5 How to investigate the factor torque 
In our first study, we found the importance of torque was correlated with object weight. Participants 

seemed to consider torque significantly more in their grip choice when they picked up the brass-wood 

objects, compared to the wooden objects. The second set of experiments used two differently 

weighted object classes: wooden objects weighed 97g and wood-brass objects weighed 716g. It would 

be interesting to further investigate, how strongly humans considered torque in their grasp choice, 

using a greater variance of weights. Those experiments could examine, at what threshold torque 

would be taken into account above other factors.  

5.4.5.1 Neural representations of torque  

In our third study (Chapter 4), we found different activations for the factors of grasp size, grasp axis, 

and mass for planning and execution of the grasp, as well as for ventral, dorsal, and motor regions. 

Initially, we ran a pilot experiment, hoping to investigate grasps that also differ in their torques. Once 

participants tried to execute those grasps inside the fMRI scanner, however, the brass was reacting 
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inside the scanner’s magnetic field. That meant that participants were neither able to lift the objects 

with ease, nor to keep their heads still, as they tried to perform the task. Especially in light of the 

recent study exploring the different kinds of forces needed to counteract the different possible 

torques (Hartmann, 2022; Maiello, 2022), future studies should investigate whether there are neural 

correlations for those different torques, as well. Appropriate grasp locations on differently shaped 

objects, made from materials that will not react with the MRI’s magnetic field, could be chosen by 

using our model presented in Chapter 2.   

5.4.5.2 Neural representations of estimates of the CoM 

We used our computational modeling framework to design an fMRI experiment to test the processing 

of individual aspects of grasping. We focused on the natural grasp axis, the size of the grasp, and mass 

we experience when picking up an object. Naturally, there are multiple other factors that are of 

interest when we perform simple grasping tasks that we had not addressed here. Related to 

considerations of torque, future studies may explore brain activation patterns when human 

participants are performing visual estimations of an object’s location of its center. Our fMRI study did 

investigate regions relevant for estimating object material and object shape, but we did not study how 

they are related to estimations of the object’s centroid or its location of the CoM. We found that 

object mass was encoded in both streams and motor areas during grasping. In our study, participants 

were not free to choose their grasp points, as we did not investigate grasp choice. Therefore, 

participants had to adhere to pre-selected grasp locations, indicated on the objects. Another set of 

experiments, where participants are free to choose grasp locations on objects and their grasp 

locations can be tracked could be used to contrast the two conditions, if both low- and high-torque 

grasps were possible to perform.  

Another way of investigating what goes on “behind the scenes” when humans visually estimate the 

center of mass of objects, could be through intuitive-physics experiments. For example, an 

experimenter could design and position a complexly shaped, multi-material object (“o”) in a way that 

it would tip over. Preventing “o” from tipping over would be one of two guardian objects (“ag”= active 

guardian and “pg”= passive guardian), supporting the fall-prone “o”. Only “ag”, however, would be 

actively supporting “o” and preventing “o” from tipping over. The other guardian, “pg”, could be 

cleverly positioned, so that it may superficially appear as if it was supporting “o”, but no weight would 

be actually resting on “pg”. Removing “pg” would thereby have no effect on “o’s” position and it would 

not fall over. Removing the support-guardian “ag” would result in the definite fall of “o”. By asking 

participants which object they could remove without causing the structure to tip over would reveal 

their estimates of an object’s center of mass. Examining participants in the fMRI scanner while they 

choose, which of the two guardians is safe to remove, without “o” falling over, could give us insights 

into the neural mechanisms underlying the estimation of an object’s CoM.  

5.4.5.3 Measuring grasp force in response to high and low torque 

Spatiotemporal data were an important source of information when we investigated grasp 

locations. On the path towards the full understanding of human grasp choice, a holistic approach 

might include measuring the kinetics, as well. Measuring and understanding the force profiles 

associated with different object shapes, orientations, materials, and tasks could give an even 

more in-depth perspective on which factors are at play in various grasping scenarios.  
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In the second and third experiments in Chapter 2, as well as the experiments presented in Chapters 3 

and 4, participants were asked to keep the objects level while picking them up. It has even been shown 

that participants can anticipate torque loads for objects held with offset grip axes (Lederman & Wing, 

2003), that occur due to inertial effects when they are accelerated and decelerated (Jenmalm & 

Johansson, 1997). Participants adjusted grasp force in parallel with rotations when an object held with 

an offset grasp axis was about to rotate about the grasp axis (Jenmalm & Johansson, 1997). This 

indicates that people can anticipate the consequences of off-axis loading (Lederman & Wing, 2003). It 

is conceivable that participants increased their grasp force to resist the object's rotational tendency 

under gravity in our studies, as well. In agreement with previous findings, that way they could have 

generated sufficient torsional friction to counteract the vertical load force.  

The conventional approach when measuring grip force uses force plates attached to the object. 

This approach does not easily lend itself to researching the effects of surface properties, local 

shapes, and curvature effects, as the force plates alter exactly these variables of interest. It would, 

however be quite interesting to include these additional measurements into an experiment 

similar to the second study from Chapter 2. In at least one instance in that study, we have reports 

of a participant, who used a high-torque grasp, complaining about the task being very physically 

exhausting. That was the case, when the participant picked up the brass-wood objects, where the 

brass cubes were grouped, thereby shifting the CoM of the object further towards the brass side. 

Nevertheless, the participant did manage to keep the object level and did not change grasp positions 

to opt for a lower torque. We conclude that the only way he could have achieved keeping the object 

level, was by increasing his grasp force. Even though the participant felt uncomfortable enough to 

complain, apparently the grasp still was comfortable enough to be maintained and repeated. 

Therefore it would be interesting to measure grasp force on a spectrum of heavy objects and high-

torque grasps, to investigate if participants switch to lower torque grasps upwards of certain grip force 

values.  

5.4.6 Uncertainty in shape perception 
An object’s shape and orientation can be recognized with the use of prior knowledge or visual cues, 

but they are always accompanied by some uncertainty (Faisal et al., 2008; Faisal & Wolpert, 2009; 

Schultheis et al., 2021). One example of uncertainty derives from the way we perceive the world 

around us: the objects and scenes on our 3D world are reduced to a 2D projection onto our retina. 

Additionally, humans usually do not get to see an entire object in all its orientations and from all 

possible viewing angles before performing a grasp. Yet, many human grasping locations fall on the 

unseen side of objects, sometimes with the thumb location being the only one that allows visual 

access. That was also observed in the grasping experiments presented in Chapters 2 and 3, where 

participants were entirely free to choose their grasp locations on differently shaped objects. In the 

majority of experiments in Chapter 2, the objects were made of cubes, with flat surfaces and 90° 

corners. They were complex shapes, but since they followed a clear and simple geometric pattern, 

imagining what the unseen backside looked like was easily done, much more easily, compared to our 

unfamiliar 3D-printed shapes with surfaces of different curvatures.  

It might therefore be an important direction for future research to investigate (i) how well participants 

can foresee what the backside is shaped like without visual access and, (ii) how they adjust their initial 

and final grip locations on the unseen backside accordingly. This could potentially be performed by 

presenting participants with an unfamiliar, irregular 3D shape positioned to be grasped. Ahead of the 
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grasp, they would have to pick from multiple differently rendered backside options, what they think 

the backside of the object in front of them looks like. Once, they made the choice, they have to 

perform the grasp, with their grasp locations being tracked. It could then be investigated, whether 

there is an interaction between how well their predictions line up with reality, and how much they 

adjust their initial contact locations and  final grasp endpoints.    

 

5.5 Conclusion 
In our first set of experiments (Chapter 2), we investigated which factors were considered when 

choosing grasp locations and how these factors were ranked in terms of their relative importance. The 

most important rule, participants had to follow was obeying the restrictions force closure imposed on 

a grasp, followed by the natural grasp axis (NGA), and grasp aperture. Torque and object visibility were 

taken into account less. Our related work investigated a subset of these optimal grasp factors. 

Discussions around the factors torque and visibility inspired our discoveries of the Sequential-Weight 

Illusion (Maiello et al., 2018) and the greater importance of object visibility over the aim to reduce 

reach distance (Maiello et al., 2019). Two additional follow-up studies found that participants were 

able to consciously access the above mentioned grasp rules (where force closure was satisfied for all 

grasps (Maiello et al., 2021)) and that these rules were even used in a virtual reality setup (Chessa et 

al., 2019). In Chapter 3, we investigated whether participants valued a higher friction contact area 

over their natural grasp axis (NGA) or vice versa and found that humans sacrificed alignments with 

their NGA in order to achieve stable grasp configurations. Having investigated the different aspects of 

grasping, as well as their relative importance to some extent, we were curious to understand how the 

brain translated these pieces of information into choosing appropriate grasp locations. In Chapter 4 

we used fMRI to investigate how considerations of grasp aperture, the NGA, as well as object mass 

are coded in the brain to inform grasping.  

Taken together, these sets of experiments provide insights into how humans use a combination of 

factors to inform their choice of grasp locations. Yet, multiple considerations have not been discussed 

in this context: for example, how constraints on precision or timing, or the specifics of the task, 

comfort, and various material and surface properties might influence grasp selection. Even the factors 

already investigated in this thesis as well as previous research could be expanded upon. Expanding the 

research in order to map out the different factors important for grasp selection would certainly be an 

ambitious but important goal. In this context, for each specific factor, future research should aim to 

understand how, when, and where its relative importance trumps the other factor(s). These findings 

could then be incorporated into a unified model that could mimic natural, unconstrained human 

grasping.  

Understanding how the combination of factors influences grasp choice is a fundamental endeavor in 

itself, but we can also use these basic-science findings to achieve additional, applied goals. In a 

(distant) future, we aim to have the action space fully mapped out, to know where the human hand is 

held comfortably and in what pose it can act upon which objects in the best way to achieve a given 

task. With this knowledge, we could then build a model to predict naturalistic grasping behavior. Such 

a model could be used with an intelligent prosthesis of the human hand (and arm). Having a prosthesis 

behave naturally could significantly cut down rejection rates and learning time. This might especially 

help amputees who need only one prosthesis (as the other hand and arm remain functional). Being 



Chapter 5 – Discussion  

  
98 

able to use two hands that behave similarly naturally would be a major advantage compared to having 

one naturalistic hand and one that requires an entirely different set of commands and exhibits a 

different set of behaviors. To date, our model still requires as input a 3D model of the object to be 

grasped. However, with the continuous advances in computer vision and with the help of artificial 

intelligence, soon a combination of sensors might be able to use a similar model to not only choose 

appropriate contact areas, but to also refine motor commands after the hand comes into contact with 

the object, to successfully grasp, lift, and interact with the object. On the journey towards a unified 

understanding of grasping, we are excited to report that this thesis has already taken steps to expand 

upon and combine different factors that influence how humans choose where to grasp objects. 
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Supporting Information S1 Figure for Chapter 2 

(a) Experiment 1 

                      Human                          Unfitted Model      Fitted Model 
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(b) Experiment 2 

                      Human                          Unfitted Model      Fitted Model 
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Figure S1. Grasping patterns from human participants (left), unfitted model (middle), and fitted model (right). (a) Grasping 
patterns on wooden objects from Experiment 1 (Chapter 2). (b) Grasping patterns on mixed material objects from Experiment 
2 (Chapter 2).  
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Supporting Information S2 Figure for Chapter 2 
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S2 Figure. Pattern of empirical results from Experiments 1 and 2 (Chapter 2) recreated from simulating grasps from the fitted 
model. Panels are the same as in Figures 2.3, 2.4 and 2.5 of this thesis, except that the data are simulated from the model. 
The grasp trajectories in panel (4b) are from the human data, to highlight how the model correctly reproduces the biases in 
human grasping patterns. Panel 5b is omitted since the model cannot learn to refine CoM estimates. 

 

Supporting Information S3 Figure for Chapter 2 

 

S3 Figure. Location of the center of mass for the stimuli employed in Experiments 1 and 2 (Chapter 2). The center of mass 
of the light wooden objects from Experiment 1 is shown as a black dot. The centers of mass for the heavy alternate and 
bipartite wood/brass objects from Experiment 2 are shown as red dots and squares respectively. 
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