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Preface

Given the climate crisis and the sharp rise in energy costs, discussions on the

potential of new technologies to reduce energy consumption and mitigate envi-

ronmental damage are frequently part of the public debate. In the thesis at hand,

which is submitted in partial fulfilment of the requirements for the academic degree

of doctor rerum politicarum, I contribute to this discourse by shedding new light

on the measurement of current technological progress and its impact on energy

use patterns, as well as changes in mobility. To this end, I apply econometric, text

mining, and machine learning methods to firm-level data. My dissertation consists

of four self-contained essays, which I wrote between December 2018 and April 2023

as an external doctoral candidate at the Chair of Economics of Digitalisation at the

Justus Liebig University Giessen. During this time, I was employed as a researcher

at ZEW Mannheim. The thesis is divided into six chapters.

Chapter 1 serves as an introduction to the thesis. It presents the problems

that are addressed and introduces fundamental definitions and concepts that are

applied. The chapter ends with a (brief) outline of each essay.

Accurately observing technological change is a prerequisite for determining

whether new technologies can help tackle current socioeconomic crises. In Chapter

2 (Essay 1), I leverage natural language processing techniques to analyse the

potential of firm websites to detect innovation efforts (in co-authorship with Patrick

Breithaupt). We find that firm websites contain useful information that can be

linked to traditional, survey-based indicators of firm-level innovation activities.

As web-based information can be quickly updated, is available at a very granular

regional level, and is less expensive than information from questionnaire-based sur-

veys, we conclude that web-based innovation indicators are a useful complement to

traditional data sources. My relative contribution to the chapter is 50%.
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In the other three essays of this thesis, I scrutinise the potential of current

technological change to enhance environmental sustainability. Here, I focus on in-

formation and communications technologies (ICT), which have been fundamentally

reshaping our socioeconomic system for several decades. I empirically examine

how the ongoing diffusion of ICT affects environmental outcomes.

In Chapter 3 (Essay 2), I analyse the link between firm digitalisation and

reductions in mobility during the Covid-19 pandemic. In particular, I examine

whether a potential ICT-enabled decline in mobility persisted after the end of most

Covid-19 restrictions in Germany, as this may reduce the environmental burden of

transportation in the long term. My co-authors Irene Bertschek, Patrick Breithaupt,

Daniel Erdsiek, and I show that the variation in the degree of firm digitalisation

between German districts can be robustly linked to a greater decrease in mobility

(measured via mobile network data) during Covid-19 waves. However, mobility

reductions diminished after the severity of the pandemic declined in March 2022,

suggesting no persistent environmental improvements. I contributed 50% of the

chapter’s total content.

In the following two chapters, I analyse the relationship between digital tech-

nologies and energy consumption. In both chapters, I use administrative panel data

on manufacturing firms retrieved from German statistical offices.

In Chapter 4 (Essay 3), Thomas Niebel and I analyse the link between digital

technologies and energy intensity improvements in manufacturing industries at

the firm level. Results indicate no substantial energy intensity improvements in

connection with ICT adoption. My relative contribution to the chapter is 60%.

In Chapter 5 (Essay 4), I investigate, in co-authorship with Anne Berner and

Thomas Kneib, the heterogeneity of the link between ICT adoption and absolute

energy consumption. To this end, we apply flexible tree-based machine learning.

The results indicate that the relationship is heterogeneous but suggest that ICT

adoption relates more frequently to an increase in absolute energy use than to a

decline. I contributed 45% of the chapter’s total content.

In Chapter 6, the findings from each essay are synthesised, leading to final con-

clusions and an outlook for future research.
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Chapter 1

Introduction

1.1 Technological Change, Digitalisation, and Environmen-

tal Outcomes ± New Opportunities for Measuring Rela-

tionships

Technological change is considered key to economic growth (Solow 1956, 1957). In

particular, it is believed that general purpose technologies (GPT), such as the steam

engine or semiconductors, lead to large leaps in technological progress and produc-

tivity gains (Bresnahan & Trajtenberg 1995). To this day, digital technologies, which

rely on the encoding of information into binary code (zeroes and ones), are regarded

as one of the most significant GPT (Jovanovic & Rousseau 2005). In this thesis, the

terms ‘information and communication technologies’ (ICT) and ‘digital technolo-

gies’ are used interchangeably and the term ‘digitalisation’ refers to the widespread

deployment of these technologies. GPT have in common that they allow for per-

vasive implementation, have an inherent potential for technical improvements, and

spark complementary innovations (Bresnahan & Trajtenberg 1995). As digital tech-

nologies possess these attributes, they can be associated with fundamental changes

in the way we live and work. Examples here are the rise of online shopping and

remote work enabled by communication technologies, as well as the growing adop-

tion of automated decision-making processes, which are supported by artificial in-

telligence (AI).

Alongside the digital transformation, a shift towards a more environmentally

sustainable society is currently (slowly) taking place to combat climate change. As

a result, there is a growing policy focus on a twin transition towards a green and

digital future (Muench et al. 2022).

Generally speaking, technological change is pivotal for reaching climate targets,

as emerging technologies can mitigate or replace current activities that harm the en-

vironment.1 However, new technologies can also aggravate pollution (Jaffe et al.

1For instance, clean energy technologies are necessary for the decarbonisation of our energy system.
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2003).2 Hence, technological change can help or hinder environmental progress and

the relationship appears to be intricate in nature. This ambivalence also applies to

digital technologies (Lange et al. 2020). On the one hand, digital technologies can

contribute to improved environmental outcomes by increasing energy and resource

efficiency and providing dematerialised solutions (Berkhout & Hertin 2001). For in-

stance, big data and artificial intelligence can help to prevent excess production and

reduce error rates by providing more precise information. Also, virtual meetings

require less energy than in-person ones. On the other hand, the production, use, and

disposal of digital technologies also consume energy as well as resources and it is es-

timated that the direct emissions of digital technologies currently account for 2.1% to

3.9% of global greenhouse gas emissions (Freitag et al. 2021). Also, ICT-induced eco-

nomic growth may spark energy consumption, as more goods can be consumed due

to increased wealth. Consequently, it is unclear whether the green and the digital

transitions complement each other or if the diffusion of digital technologies hinders

the realisation of climate goals.

The complexity of the relationship may be a reason why previous empirical stud-

ies on the net effect of digital technologies on environmental outcomes, such as en-

ergy consumption, energy intensity, and carbon emissions, show inconsistent results

(Zhang & Wei 2022). While some studies confirm environmental improvements (e.g.

Schulte et al. 2016, Taneja & Mandys 2022, Wang et al. 2022, Xu et al. 2022), other

studies find an increase in environmental harms (e.g. Sadorsky 2012, AlataËs 2021,

Ren et al. 2021). Most of these studies have in common that they rely on aggregated

data and assume a linear relationship between digital technologies and environmen-

tal outcomes. Thus, diverging results may stem from some inherent shortcomings.

Firstly, aggregation tends to bias results (e.g. Robinson 1950, Solow 1987, Koetse

et al. 2008, Haller & Hyland 2014). Secondly, due to its complexity, the link between

digitalisation and environmental outcomes is likely to be heterogeneous, i.e., it may

depend on specific factors (cf. Horner et al. 2016, Lange et al. 2020). Hence, standard

linear regression models may fall short of fully uncovering the intricate nature of

the link. As technological progress is critical for economic growth and environmen-

tal outcomes, however, unbiased insights are of great public interest.

Furthermore, a prerequisite for the thorough analysis of the impact of technolog-

ical progress on socioeconomic outcomes is to adequately measure the direction and

diffusion of technological change. Standard innovation and digitalisation indicators

are often based on questionnaire-based surveys (cf. Peters & Rammer 2013), which

suffer from additional drawbacks, such as a lack of timeliness and regional granular-

ity, as well as high non-response rates. In consequence, researchers are limited to the

2For example, the increasing use of rechargeable batteries to support renewable energies by auxil-
iary energy storage systems can contribute to water, soil, and air pollution if not disposed of properly
(Mrozik et al. 2021).
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information that is collected and very current analyses are rarely possible, which is

especially an issue for the analysis of fast-changing technological trends. Measuring

digitalisation poses some further challenges, as the term does not relate to a single

but to a group of technologies and there is no universally agreed-upon method for

measuring it.

Just as the digital transformation is reshaping our economy, it also offers new

opportunities to address previous shortcomings in measuring technological change

and analysing the impact of technological change on environmental outcomes.3 For

instance, digital technologies enable the collection and usage of larger, more gran-

ular, and more diverse data sets (Einav & Levin 2014). One example are secure

remote connections, which provide online access to large firm-level administrative

data sets, facilitating analyses at the disaggregated level. This may allow for more

precise insights into the link between digital technologies and environmental out-

comes. Moreover, web data, i.e., information that is accessible via the internet, may

pave the way for new approaches to measure technological change. Web data can

be analysed in real-time (Choi & Varian 2012), which provides an advantage over

survey-based innovation indicators that tend to have substantial time lags. How-

ever, web data is usually unstructured, which imposes additional challenges for em-

pirical economists. Statistical learning algorithms (the most dominant form of AI)4

provide a remedy, as they allow to structure the data and to extract meaningful in-

formation (Mullainathan & Spiess 2017, Gentzkow et al. 2019). For instance, website

texts can be converted into a format that is suitable for regression analyses by apply-

ing natural language processing tools. In addition, statistical learning enhances the

accuracy of predictions for counterfactual outcomes, leading to an improved esti-

mation of individualised treatment effects (Einav & Levin 2014, Chernozhukov et al.

2018, Athey & Wager 2019). As a result, differences in effects, i.e., heterogeneous

relationships, can be observed with greater accuracy, allowing for new insights into

the intricate link between digital technologies and environmental outcomes.

1.2 Contribution

In this dissertation, I leverage the new opportunities created by the digital transfor-

mation for empirical economists, such as (1) access to larger as well as more granular,

diverse, and timely data sets, (2) statistical learning tools for structuring data, and (3)

innovative methods for measuring heterogeneous relationships, to shed novel light

on the measurement of technological change and the link between digitalisation and

environmental outcomes.
3Please note that the list of advantages is not exhaustive.
4Statistical learning and machine learning are used as synonyms in this thesis.
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The first essay of this thesis (Chapter 2) deals with the measurement of techno-

logical change. Here, my co-author Patrick Breithaupt and I explore the potential

of firm websites in combination with text and data mining techniques to improve

current survey-based measurement of firm-level innovation activities.

Today, nearly every firm has a website, which includes direct or indirect infor-

mation about firm-level innovation activities, such as information on new products,

key personnel decisions, and firm strategies (Gök et al. 2015). This information can

be accessed in real-time and at a large scale, however, little is known about its ac-

curacy. For instance, firms could present themselves in an unrealistically positive

way. To provide insights into how useful this information is for measuring inno-

vation activities, we use data on 4,487 firms from the Mannheim Innovation Panel

(MIP) 2019, which is a large-scale questionnaire-based survey. Using this survey as

a benchmark, we analyse which firm website characteristics perform best as predic-

tors for survey-based innovation indicators. Website characteristics are measured by

several text and data mining methods and are used as features in different Random

Forest classification models. Our results show that the most relevant website char-

acteristics are textual content in general, the percentage of text written in English

language, the number of subpages, and the number of characters on a website. Fur-

thermore, when all website characteristics are used together, the accuracy increases

by up to 18 percentage points compared to a baseline prediction based on the sample

mean. Results also indicate a better performance for the prediction of product inno-

vators and firms with innovation expenditures than for the prediction of process

innovators. Hence, we conclude that especially web-based information on product

innovations and innovation expenditures is a useful complement to survey-based

information. This essay was written as part of the research project ªTOBI - Text Data

Based Output Indicators as Base of a New Innovation Metricº (funding ID: 16IFI001,

Dr. Georg Licht) and is published in the peer-reviewed journal PLoS One. In total,

my contribution to this essay amounts to 50%.

All remaining essays focus on the link between digitalisation on environmental

outcomes. In the second essay (Chapter 3), my coauthors Irene Bertschek, Patrick

Breithaupt, Daniel Erdsiek, and I analyse the impact of digitalisation on changes

in mobility over the course of the Covid-19 pandemic. Transportation is responsi-

ble for a large share of global carbon emissions (IEA 2020). However, the Covid-19

pandemic has sparked hope that firm digitalisation through remote work and online

services will lead to long-lasting reductions in mobility, thereby persistently improv-

ing environmental outcomes. We scrutinise this belief by leveraging information on

firm websites as in Chapter 2. However, in this chapter, we apply a novel text-

mining approach based on transfer learning that allows for measuring the extent to

which firms write about digitalisation on their websites. We use this information
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as an indicator for firm digitalisation. This approach has the advantages that it al-

lows for the timely measurement of digitalisation for a large number of firms and

it does not focus on specific digital technologies but rather aims at measuring digi-

talisation in general. We link the derived firm digitalisation indicator to changes in

mobility (observed via mobile network data) within German districts between Jan-

uary 2020 and December 2022. Our results indicate a decrease in mobility associated

with firm digitalisation compared to the pre-crisis level during the first two years of

the pandemic. However, the decrease in mobility diminished after most Covid-19

restrictions were lifted, suggesting that environmental improvements are not long-

lasting. This essay did not receive any funding and I contributed 50% of the total

content.

The ongoing digital transformation has also raised hopes for ICT-based climate

protection within manufacturing industries, but restricted access to administrative

micro-data has made it difficult, in the past, to determine how digital technologies

affect firm-level energy use. Previous studies that examine manufacturing indus-

tries tend to find substantial improvements in energy intensity but rely on aggre-

gated data, such as Bernstein & Madlener (2010), Schulte et al. (2016), and Taneja &

Mandys (2022). In the last two essays of my thesis, I contribute to closing this re-

search gap and explore administrative panel data on more than 25,000 manufactur-

ing firms collected by German statistical offices between 2009 and 2017. Thoroughly

calculated software capital stocks serve as an indicator for the firm-level degree of

digitalisation. Both essays have been written as part of the research project ªClimate

Protection Potential of Digital Transformation (CliDiTrans): Micro- and Macroeco-

nomic Evidence on the Role of Demand Effects and Production Relocationº (funding

ID: 01LA1818B, Dr. Thomas Niebel).

The first of both essays (Chapter 4) addresses the shortcoming of a potential ag-

gregation bias in previous empirical literature on the climate protection potential

of digital technologies in manufacturing. For this purpose, my co-author Thomas

Niebel and I use firm-level data to re-estimate production/cost function approaches

previously used to measure the link between digitalisation and energy intensity with

aggregated data. Our results confirm a robust link between software capital and

energy intensity improvements. However, the effect size is rather small. For the

average firm, we find that a one per cent increase in software capital relates to a de-

crease in energy intensity by 0.003%. Hence, in contrast to previous industry-level

results, we do not observe substantial energy intensity improvements in connection

with ICT adoption. Moreover, we find that the relationship between ICT and en-
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ergy intensity exhibits properties that can lead to an aggregation bias. My relative

contribution to this essay is 60%.

The second of both essays (Chapter 5) extends existing literature by focusing

on the heterogeneous impacts of digital technologies on absolute energy consump-

tion in manufacturing firms and sheds light on the most important drivers of differ-

ences in effects. My co-authors Anne Berner, Thomas Kneib, and I apply non-linear,

flexible tree-based statistical learning. Our results strongly indicate firm-level het-

erogeneity, but suggest that digital technologies are more frequently related to an

increase in absolute energy use than to a decline. Multiple characteristics such as

energy prices and firms’ energy mix explain differences in the effect. I contributed

45% of this essay’s content.

In summary, my research shows that (1) the use of web data and text mining tools

can improve measurement of technological change, and (2) leveraging large admin-

istrative data sets as well as web data in combination with advanced statistical learn-

ing methods provides a new understanding of the link between digitalisation and

environmental outcomes. In particular, my results with respect to environmental

outcomes indicate that digitalisation, at least at its current stage, does not necessar-

ily lead to significant environmental improvements. This result is especially relevant

for policymakers, as it challenges the belief that a green and digital future will occur

naturally without political guidance.

All essays were originally written for publication in peer-reviewed journals. In

Table 1.1, I list these essays, referring to the co-authors, the publication status, and

my contribution. The remainder of this thesis is structured as follows: In Chapter

2, the first essay is presented, Chapter 3 contains the second essay, Chapter 4 the

third essay, and Chapter 5 the fourth essay. In Chapter 6, I link the research strands,

discuss my results, and provide avenues for future research.
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Table 1.1: Contribution table.

Paper Innovation Indicators Based on Firm Websites ± Which Website Characteristics
Predict Firm-Level Innovation Activity?

Co-authors Patrick Breithaupt

Status Published in PLoS One

Own key
contributions

My contribution is 50%:

• I conceptualised the paper together with Patrick Breithaupt.

• I was responsible for the data curation and data analysis jointly with Patrick
Breithaupt.

• I wrote the manuscript jointly with Patrick Breithaupt.

Paper Firm Digitalisation and Mobility ± Do Covid-19-Related Changes Persist?

Co-authors Irene Bertschek, Patrick Breithaupt, and Daniel Erdsiek

Status Working paper

Own key
contributions

My contribution is 50%:

• I conceptualised the paper together with Irene Bertschek and Daniel Erdsiek.

• I conceptualised the digitalisation indicator together with Patrick Breithaupt.

• I was responsible for the data curation and econometric analysis.

• I mainly wrote the manuscript.

Paper Digital Technology Adoption and Energy Intensity in Manufacturing ± Firm-Level
Insights

Co-authors Thomas Niebel

Status Working paper

Own key
contributions

My contribution is 60%:

• I conceptualised the paper together with Thomas Niebel.

• I developed the empirical strategy and I was responsible for the data analysis.

• I mainly wrote the manuscript.

Paper What Drives the Relationship Between Digitalisation and Industrial Energy
Demand? Exploring Firm-Level Heterogeneity

Co-authors Anne Berner and Thomas Kneib

Status Working paper

Own key
contributions

My contribution is 45%:

• I conceptualised the paper together with Anne Berner.

• I developed the empirical strategy and implemented the econometric modelling
jointly with Anne Berner.

• I wrote major parts of the manuscript.
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Chapter 2

Innovation Indicators Based on

Firm Websites ± Which Website

Characteristics Predict Firm-Level

Innovation Activity?
joint work with Patrick Breithaupt

2.1 Introduction

Innovation, defined as the implementation of either new or significantly improved

products or processes as well as combinations thereof (OECD/Eurostat 2019), brings

vast benefits to consumers and businesses. Moreover, technological progress is con-

sidered a main driver of economic growth (Solow 1957). It is, therefore, a matter of

public interest to analyse and understand innovation dynamics, as it is conducted

in several studies (e.g., Crepon et al. 1998, Klomp & Van Leeuwen 2001, Belderbos

et al. 2004, Hall et al. 2005, Griffith et al. 2006, Frenz & Ietto-Gillies 2009, Kogan et al.

2017).

A prerequisite for the analysis of innovation-related questions is to correctly mea-

sure firm-level innovation activities. However, it should be noted that no universally

accepted measurement approach exists. For example, firm-level innovation indi-

cators are traditionally constructed with data from large-scale questionnaire-based

surveys like the biennial European CIS or the annual MIP (see Rammer et al. 2019,

Peters & Rammer 2013), which is also the German contribution to the CIS. How-

ever, these innovation indicators suffer from some major drawbacks (cf. Mairesse &

Mohnen 2010, Pukelis & Stanciauskas 2019, Kinne & Axenbeck 2020). For instance,

the MIP annually covers around 18,000 firms, which corresponds to only a fractional

share of the total number of German firms. As a result, the survey may lack regional

granularity and comprehensive coverage. In addition, questionnaire-based surveys
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± especially on a large scale ± have the added disadvantages of being costly and lack-

ing timeliness. Also, most surveys require firm participation and as a consequence,

surveys such as the MIP suffer from low response rates (Mairesse & Mohnen 2010).

Besides, firm-level innovation can also be studied by patent or publication analysis.

However, respective indicators only cover technological progress for which legal

protection is sought (Archibugi & Planta 1996, Arundel & Kabla 1998) and not every

innovation can be patented. For example, due to the German regulatory framework

it is quite difficult to patent software, i.e., digital innovations.

Issues, however, could be solved by adding web-based information: Advances

in computing power, statistical learning methods, as well as natural language pro-

cessing tools enable, e.g., researchers to extract website information on a large scale.

This makes it technically possible to complement traditional innovation indicators

with information from scraped firm websites. Nowadays, almost every firm has an

online presence. Firm websites can include information about new products, key

personnel decisions, firm strategies, and relationships with other firms (Gök et al.

2015). Those pieces of information might be directly or indirectly related to a firm’s

innovation status. By using this information, it is possible to conduct an automatic,

timely, and comprehensive analysis of firm-level innovation activities, as measure-

ments can be carried out faster and in shorter intervals in comparison to traditional

indicators.

The contribution of this paper to the question of whether web-based innovation

indicators are feasible is threefold. First, we analyse to what extent firm websites

improve predictions of firm-level innovation activity. Second, we assess which char-

acteristics of a website relate most to a firm’s innovation status. Third, we examine

which characteristics are appropriate for predicting different forms of innovation ac-

tivity. We test the latter by additionally comparing the predictive power for different

innovation indicators related either to product innovations, process innovations or

innovation expenditures. We assume differences between indicators, for example,

because firms with process innovations may have a smaller incentive to announce

respective innovation activity on their websites. This may be due to the fact that new

processes are less relevant for most website visitors.

For our analysis, data on 4,487 German firms from the MIP 2019 is used. We

extract their websites’ text and hyperlink structure by applying the ARGUS web-

scraper (Kinne & Axenbeck 2020). Several methods including topic modelling and

other natural language processing tools are applied to generate features that poten-

tially relate to the firm-level innovation status. Furthermore, we extract informa-

tion related to a website’s technical maturity, such as how fast it is responding and

whether a version for mobile end user devices is available. After extracting and cal-

culating a wide variety of features, we divide them into three different feature sets:

9



Chapter 2. Innovation Indicators Based on Firm Websites ± Which Website

Characteristics Predict Firm-Level Innovation Activity?

I) text-based features including, e.g., words, document-topic probabilities derived

from a topic modelling algorithm, and the share of English language, II) meta infor-

mation features including, e.g., website size-related features, availability of a mobile

version and loading time, and III) network features including, e.g., hyperlinks to so-

cial networks, as well as incoming and outgoing hyperlinks. Based on these three

feature groups, we analyse which website characteristics best predict a firm’s inno-

vation status reported in the MIP 2019 by using a Random Forest classifier.

Our results show that predictions based on website characteristics can perform

significantly better than a random prediction based on the sample mean. Conse-

quently, firm websites include information that relates to firm-level innovation ac-

tivity. In addition, our website characteristics better predict firms with product in-

novations and innovation expenditures than with process innovations. Moreover,

text features make the biggest contribution to our prediction performance.

Evaluating the predictive power of single variables across feature sets by means

of the mean decrease in impurity (MDI) reveals that the language of a website and

website size measured by the number of subpages as well as the total amount of

characters are always relevant in the models with the highest predictive power for all

considered innovation indicators. Moreover, there are characteristics that are highly

important only for specific indicators, e.g., the verb ªto developº is more important

for innovation expenditures and product innovators than for process innovators.

The remainder of this paper is structured as follows: Previous literature is reviewed

in Section 2.2. In Section 2.3, we present our data and in Section 2.4 the descriptive

statistics. Section 2.5 describes the methodology and Section 2.6 shows the results,

which are discussed in Section 2.7. This paper concludes in Section 2.8.

2.2 Literature Review

The use of text data to generate innovation-related indicators has already been tested

in previous studies. For example, Kelly et al. (2021) show that the significance, i.e.,

relevance, of a patent is higher when its textual content is very distinct to previous

patents but similar to subsequent ones. Lenz & Winker (2020) generate innovation-

related topics from 170,000 technology news articles using a Paragraph Vector Topic

Model. They analyse the diffusion of the identified topics within the text corpus.

Their results suggest that technology trends can be assessed by measuring the im-

portance of topics over time. Using PATSTAT data, Tacchella et al. (2020) show that

context similarity of technological codes relates to innovative events. The likelihood

that new combinations of technological codes appear in one patent can be predicted

by their context similarity in patents where they have been used before.

Remarkable work is also conducted by Bellstam et al. (2021). In this study, a La-

tent Dirichlet Allocation (LDA) model is fitted with analyst reports of firms included
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in the S&P 500 index. The LDA topic that has the lowest Kullback-Leibler divergence

to the wording of a mainstream economic textbook on innovation is chosen as an in-

novation indicator. The authors show that firms have patents with greater impact

(i.e., more citations per patent) if the innovation topic has a larger share in their an-

alyst report. However, analyst (or also annual) reports are not available for every

firm and smaller firms are particularly underrepresented. In contrast, firm websites

are available for a large share of small and medium-sized firms.

Furthermore, previous literature shows that information produced online can be

used to construct frequent real-time estimates (Gentzkow et al. 2019). Famous ‘now-

casting’ examples that utilize web-based information are Ginsberg et al. (2009), who

use Google search queries to accurately predict influenza activity in the United States

(US). Choi & Varian (2012) claim that search engine query indices are also often

correlated with economic activities and enable to generate frequent indicators. They

show that forecasts concerning, for example, automobile sales and unemployment

can be significantly improved by including search term indices in prediction models.

Not only information from online searches but also firm website information can

be used to generate economic indicators. As firm websites provide detailed infor-

mation about the firm as well as its products, they appear to be suitable for mea-

suring firm-level innovation activities (Gök et al. 2015). Kinne & Axenbeck (2020)

summarise previous studies that analyse the possibility of firm website-based inno-

vation indicators (e.g., Katz & Cothey 2006, Ackland et al. 2010, Arora et al. 2013,

Gök et al. 2015, Beaudry et al. 2016, Nathan & Rosso 2022). Most studies solely focus

on the hyperlink structure of websites or only conduct a simple keyword search and

are limited to small amounts of firms from a particular economic sector.

Firstly applying advances in statistical learning, Kinne & Lenz (2021) attempt

to predict innovation at the firm level using textual information on websites and

novel machine learning tools. They use a questionnaire-based firm-level product

innovation indicator (innovative/ non-innovative) from the MIP (years 2015-2017)

as a target variable to train an artificial neural network classification model on web-

site texts. The authors only consider stable product innovators in their main anal-

ysis. Firms that switch between innovation statuses, which is a phenomenon that

is highly relevant in the field of innovation economics, are only observed in a sec-

ondary analysis. The average F1-score for the respective prediction is 0.68%. More-

over, Pukelis & Stanciauskas (2019) fit several machine learning models to develop a

firm website-based innovation indicator, with their annotated data set being limited

to 500 firms. One important characteristic of their work is the individual analysis of

websites’ subpages instead of predicting the innovation status of an entire website,

i.e., a firm. Additionally, their subpages are manually labelled as either innovation

or non-innovation-related messages instead of using survey or patent data as target
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variables. The best performance is achieved with an artificial neural network. Even

though the predictive performance is very high, the authors cannot show a credible

external validity of their indicator.

Furthermore, another issue of both approaches is that neural networks do not

reveal any decision rule that can be easily interpreted by humans, which is why

they are often called black box models. It should also be noted that both studies

only consider text. Nonetheless, previous results show that there must be distinct

website characteristics that relate to a firm’s innovation status, but the particular

website characteristics are not identified yet.

Gandin & Cozza (2019) analyse whether firms’ expenditures on innovation can

be predicted by means of administrative records and balance sheet data. Using a

Random Forest regression approach, the authors identified firm size, sectoral affilia-

tion, and investment in intangible assets as the most important predictors. Random

Forests usually provide better predictive performance than linear methods while re-

taining the interpretability of feature relevance.

By applying a Random Forest approach to large-scale firm-level web data, we are

able to analyse which website characteristics are linked to firms’ innovation activity.

2.3 Data

Based on the Oslo Manual, we define an innovation as ªa new or improved product

or process (or combination thereof) that differs significantly from the unit’s previous

products or processes and that has been made available to potential users (product

innovation) or brought into use by the unit (process innovation)º (OECD/Eurostat

2019, p. 20). Furthermore, we consider all expenditures spent for innovation pur-

poses as innovation expenditures and summarise firm-level product or process in-

novation as well as innovation expenditures as innovation activity.

We use data from the MIP 2019 to classify firms as either innovative or non-

innovative.5 The MIP is an annual survey conducted by the ZEW ± Leibniz Centre

for European Economic Research. The survey covers firms from manufacturing and

service sectors and is conducted as a mail survey with the option to respond online.

In the MIP 2019, firms were asked whether they introduced a product or pro-

cess innovation within the last three years (between 2016 and 2018) and for the total

amount spent on innovation activities in the last year (2018). We consider a firm

that stated it introduced a product innovation within the considered time frame as

a product innovator, and a firm that stated that it introduced a process innovation

within the considered time frame as a process innovator. A firm is an innovator if

5See [data set] ZEW ± Leibniz Centre for European Economic Research (2019).
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it introduced at least one of both. Every firm that spent financial resources on in-

novation - independent of the magnitude - is regarded as a firm with innovation

expenditures. Our initial sample consists of 13,747 firms from the MIP 2019. We

merge these firms with the Mannheim Enterprise Panel (MUP), which consists of

more than 3.2 million economically active firms (see Bersch et al. 2014), to receive in-

formation about the firms’ website addresses. The MUP serves as a sampling frame

for surveys like the MIP and, e.g., contains firm-level information on turnover, num-

ber of employees, and sector affiliation. Only 54% of the firms in our sample can be

linked to website addresses, as we limit ourselves to quality-assured observations.

In total, we have 6,368 firms with information on the website address and at least

one innovation indicator. We extract website content by applying the ARGUS web-

scraper, which allows us to collect texts as well as hyperlinks to other websites.6

Firm websites were first scraped in September 2018 to collect texts, then again in

January 2019 for adding hyperlinks. We scraped a third time in October 2019 to

add information about technical features, e.g., information on the existence of firm

websites for mobile end user devices. The maximum limit of scraped subpages per

website is set to 50. We consider this to be a sufficient number, as the median num-

ber of subpages in the MUP is 15 (see Kinne & Axenbeck 2020), and only 1.5% of all

firms in our subsample have 50 or more subpages. Moreover, the scraping program

is set to prefer subpages with shorter website addresses because we assume these

subpages include more important information about the firm. Also, ARGUS is set

to prefer websites in German language. Hence, when we calculate the share of dif-

ferent languages on a website, we expect a small bias. However, since only a few

firms exceed the subpage limit, we assume this bias to be negligible. While scraping

the data, especially while collecting meta information features, we received several

error messages. Furthermore, we only use observations for which all features are

non-missing. If, for example, a meta information feature is not available, the ob-

servation will not be used for training or testing with other feature sets. Therefore,

after the entire data collection process, we have a sample of 4,487 firms for predicting

product innovators and innovators, and 4,484 firms for predicting process innova-

tors.7 For predicting whether a firm has innovation expenditures, the sample size is

1,893 (Table 2.1).

Additionally, a random sample of approximately 32,000 website addresses of

firms not included in the MIP is drawn from the MUP and scraped with the AR-

GUS web-scraper using the same settings as for the MIP sample. The sample is used

for topic modelling. We train a topic model on a separate sample for two reasons.

6For a detailed description of the ARGUS web-scraper, see Kinne & Axenbeck (2020) and Kinne
(2018).

7There are three observations more for product innovators than for process innovators. Since we
know that these observations have at least a product innovation, we also consider them in the innova-
tor sample.
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Table 2.1: Summary statistics for product innovators, process innovators, innovators, as
well as firms with innovation expenditures.

Variable Definition N Mean SD Min Max
Product innovators 1: If firm is a

product innovator
0: Otherwise

4,487 0.39 0.49 0 1

Process innovators 1: If firm is a
process innovator
0: Otherwise

4,484 0.52 0.50 0 1

Innovators 1: If firm is a
product or / and
process innovator
0: Otherwise

4,487 0.61 0.49 0 1

Innovation expen-
ditures

1: If firm
innovation
expenditures were
reported
0: Otherwise

1,893 0.39 0.49 0 1

First, it allows to include more data points. Second, it ensures that no observation

used for calibrating topics is considered for evaluating the Random Forest models.

Hence, it prevents data leakage. The sample is hereinafter referred to as the LDA

sample.

As we need to exclude a large share of observations due to missing values in our

MIP sample, we cannot rule out a selection bias. Also, firms from certain industries

and smaller firms are less likely to have a website and may, therefore, be underrep-

resented. In machine learning, adverse selection might lead to two issues: It could

cause that our model is better fitted for groups that are overrepresented in our sam-

ple, and it could induce that the class correlated with the overrepresented group is

predicted more often. To identify whether a potential selection bias exists, we anal-

yse how the sample distribution changes with respect to the number of employees

and industry sectors, when excluding observations with missing information (see

A.1 and A.2). Except for ªtransportation and postº (sector 15), we do not see a no-

table change in the distribution of firms that could be linked to a severe selection

bias.

To capture website characteristics, we apply several methods to generate features

like a keyword search and natural language processing as well as an analysis of

hyperlinks (network analysis methods). We use Python as programming language

for calculating our features and for training our Random Forest models. For an

overview of feature sets see Table 2.2.
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Table 2.2: Features related to text, meta information, and network measures.

Text-based features
1) Textual content Term-document matrix with the 5,000 most frequent words

(TF-IDF applied).
2) Emerging

technologies
Dummy variable that measures whether a technology of
Wikipedia’s list of emerging technologies appears on a
firm’s website.

3) Latent patterns Topic-document probabilities of 150 topics generated by the
LDA approach.

4) Topic popularity
index

The sum of LDA topic probabilities per document. Each
probability is weighted with the relative frequency of its ap-
pearance in the entire LDA sample.

5) International
orientation

Share of subpages in English language and the share of all
other non-German subpages in all subpages.

6) Share of numbers The share of numbers in a text of a website (measured in
characters).

7) Flesch-reading-ease
score

Numerical metric assessing the readability of texts.

Meta information features
8) Website size Number of subpages on a website, total amount of charac-

ters on a website.
9) Loading time The time from sending a request (http/https) to a webserver

(to get the start page of a website) until the arrival of the
response (in ms).

10) Mobile version Dummy variable that is one if a version for mobile end user
devices exists and zero otherwise.

11) Domain purchase
year

The year of the first entry on web.archive.org.

Network features
12) Centrality The total number of incoming and the total number of out-

going hyperlinks, as well as the PageRank centrality.
13) Social media Number of hyperlinks to Facebook, Instagram, Twitter,

YouTube, Kununu, LinkedIn, XING, GitHub, Flickr, and
Vimeo.

14) Bridges Number of bridges a firm is part of in the hyperlink net-
work.

2.3.1 Text-based Features

Information from website texts is analysed, as it might be related to a firm’s in-

novation status for the following reasons: Presumably, most firms are using their

websites to inform customers about new products or services and might mention

whether their product is new or innovative, i.e., it is likely that innovative firms

use particular innovation-related words. Information about process innovations can

also be detected and used if reported on the website.

Moreover, a firm might report that it uses a recently emerging technology like

blockchain, 3D printing or augmented reality (for an overview of recently emerging
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technologies, see Appendix A.2). Hence, an emerging technology term might appear

on a firm’s website and if so it is likely that the firm can be considered as innovative,

as it makes use of technologies that are fairly new.

Additionally, there might be latent patterns on a website that reveal a firm’s in-

novation status, these latent patterns can be captured by the LDA topic modelling

approach as successfully shown in Bellstam et al. (2021). Furthermore, innovative

firms might follow some general technological trends like the digital transforma-

tion. As these technological trends are quite general, LDA topics related to these

trends might appear quite often on firm websites. To capture this, we construct a

topic popularity index that indicates the distribution of popular and less popular

topics on a website.

We additionally analyse the following text-based metrics: Languages that ap-

pear on a website might relate to the export status of a firm and this could pro-

vide information about a firm’s innovation status because the export status is

linked to firm-level innovation (e.g., Lachenmaier & Wöûmann 2006, Kirbach &

Schmiedeberg 2008, Cassiman & Golovko 2011). Also, we test whether the share

of numbers in all string characters (text) as well as the text complexity measured

by the Flesch-reading-ease score (Flesch 1948) differ between innovative and non-

innovative firms.

2.3.2 Meta Information Features

Second, meta information of firm websites (see Table 2.2) might allow to distinguish

innovative from non-innovative firms. For example, the website size might help to

predict a firm’s innovation status. Large firms are more likely to be innovative (Ram-

mer et al. 2019). As the number of subpages of a website correlates with the number

of employees of a firm (Kinne & Axenbeck 2020), the size of a website might provide

information about whether a firm introduced an innovation. Also, the technologi-

cal properties of a website could be relevant. Innovative firms might have a better

technical knowledge and are able to apply more technologically advanced features

on their websites. For example, the loading time of a website could be faster and a

mobile version might be more often available when firms are more technologically

advanced. However, there might be some noise because the loading time may also

be short if the website is relatively simple.

Another potentially relevant feature is the age of a website, i.e., the domain pur-

chase year, as it might relate to the actual firm age.8 One has to consider, however,

that this relationship is unlikely to be linear. On the one hand, a website that is fairly

new might indicate a start-up with an innovative idea. On the other hand, having a

8We approximate a website’s domain purchase year by the year of the first entry on web.archive.org.
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very old website means the firm has adopted this new technology very early. This

could also relate to a more technologically advanced, hence, innovative firm.

2.3.3 Network Features

Third, hyperlinks between websites (see Table 2.2) might also help to identify the

firm-level innovation status. Firms that have more business relationships with other

firms or are more relevant according to centrality measures might be better informed

and know earlier about new profitable applications. Hence, firms with more rela-

tionships to other firms could be more likely to be innovative. Moreover, innovation

projects are often realised in cooperation with other firms (e.g., Becker & Dietz 2004).

Thus, patterns in firm-level cooperation are expected to be of interest. A firm that

connects (or bridges) different network parts is usually relevant and its removal will

decompose the network. Lastly, Bertschek & Kesler (2022) show that a firm’s use

of the social network Facebook is linked to product innovations. Hence, the use of

social media might reveal information about a firm’s innovation status, as well.

Our study analyses whether the three groups of features differ in their perfor-

mance when predicting a firm’s innovation status. A more detailed description of

the feature generation can be found in Appendix A.3.

2.4 Descriptive Analysis

The descriptive statistics for our predictor variables are presented in this section.

Table 2.3 shows mean values for innovative and non-innovative firms, as well as

p-values, obtained from a t-test, regarding the difference of both means for selected

features.

Differences exist for most variables. Looking at ‘text’ features, innovative firms

are more likely to mention an emerging technology term and have more subpages

in English language. The share of subpages in other languages, however, does not

show any significant difference between both groups. Differences are also small for

the share of numbers, our topic popularity index, and the Flesch-reading-ease score,

but the deviation is statistically significant for some forms of innovation activity.

The descriptive statistics for ‘meta’ features show that innovative firms have

larger websites with respect to the number of subpages as well as with respect to

the number of characters. The loading time is slightly faster for process innovators

and innovators, but not for product innovators and firms with innovation expendi-

tures. However, differences are not statistically significant. The first occurrence on

web.archive.org is significantly later for non-innovative firms indicating their do-

main purchase year, i.e., website age, is slightly lower. Additionally, non-innovative

firms have less often a version of their website for mobile end user devices. Looking
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Table 2.3: Descriptive statistics for selected variables.

Group-specific means

Product innovator Process innovator Innovator Innovation expend.

Feature (Variable name) Yes No P-val. Yes No P-val. Yes No P-val. Yes No P-val

Text-based features

Emerging technology term (emerging_tech) 0.18 0.07 0.00 0.15 0.07 0.00 0.15 0.05 0.00 0.19 0.06 0.00

Percentage of English language (english_language) 0.16 0.10 0.00 0.14 0.10 0.00 0.14 0.09 0.00 0.17 0.08 0.00

Percentage of other languages (other_lang) 0.02 0.02 0.45 0.02 0.02 0.25 0.02 0.02 0.74 0.02 0.02 0.30

Topic popularity index (pop_score) 34.64 34.35 0.36 34.78 34.11 0.03 34.68 34.13 0.08 35.07 33.82 0.01

Share of numbers (share_numbers) 0.025 0.028 0.00 0.025 0.028 0.00 0.026 0.028 0.00 0.027 0.027 0.97

Flesch-reading-ease score ( f lesch_score) 40.09 41.22 0.01 40.54 41.03 0.26 40.47 41.26 0.09 39.28 41.28 0.01

Meta information features

Website size: length (text_length) 75,269.35 56,746.84 0.00 71,629.95 55,685.73 0.00 71,193.63 52,859.37 0.00 75,334.75 52,462.63 0.00

Website size: nr. of pages (nr_subpages) 30.37 24.65 0.00 28.75 24.87 0.00 28.92 23.75 0.00 31.23 23.58 0.00

Loading time (load_time) 0.57 0.55 0.69 0.51 0.60 0.25 0.55 0.57 0.76 0.51 0.49 0.57

Mobile version (mobile_version) 0.76 0.70 0.00 0.76 0.68 0.00 0.75 0.67 0.00 0.73 0.69 0.06

Domain purchase year (domain_purchase_year_proxy) 2004.22 2004.98 0.00 2004.42 2004.96 0.00 2004.37 2005.17 0.00 2004.38 2005.01 0.01

Network features

Outgoing hyperlinks (outgoing_links) 15.93 12.95 0.00 15.18 12.97 0.00 15.19 12.46 0.00 16.23 12.38 0.00

Incoming hyperlinks (incoming_links) 14.78 5.22 0.00 13.24 4.30 0.00 12.11 4.09 0.00 12.09 3.70 0.00

Use of social media (social_media) 1.62 1.02 0.00 1.51 0.98 0.00 1.47 0.92 0.00 1.62 0.91 0.00

PageRank centrality (pagerank_index) 2 ∗ 10−6 1 ∗ 10−6 0.00 2 ∗ 10−6 1 ∗ 10−6 0.00 1 ∗ 10−6 1 ∗ 10−6 0.00 1 ∗ 10−6 1 ∗ 10−6 0.01

Bridges (bridge_index) 0.43 0.26 0.01 0.38 0.28 0.05 0.37 0.27 0.04 0.31 0.27 0.35

Number of observations 4,487 4,484 4,487 1,893

Notes: All variables were rounded to the second decimal place except PageRank centrality, which was rounded to the sixth decimal place and share of numbers which was rounded
to the third decimal place.
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at ‘network’ features, significant differences also exist for outgoing and incoming

hyperlinks as well as for hyperlinks to social media websites. Innovative firms have

on average more hyperlinks. Moreover, the difference is larger for incoming than

for outgoing or social media hyperlinks. Additionally, innovative firms also are sig-

nificantly more important in firm networks looking at the PageRank centrality. The

statistical significance of differences regarding the bridge index is, however, limited

to the form of innovation activity. In summary, Table 2.3 confirms previous assump-

tions. Innovative firms seem more likely to apply emerging technologies, to have

more technically advanced websites, and to be better connected with each other ac-

cording to most network indicators.

Figure 2.1 shows the average occurrence of different emerging technology terms

on a firm website with respect to product innovators. The emerging technology

terms differ strongly in their likelihood of occurrence. The emerging technology

term Internet of Things is the most likely to occur. It appears on more than 8% of all

product innovator websites and only on less than 2% of all non-product innovator

websites. Also, terms relating to different machine learning applications, biometrics,

blockchain technology and mobile collaboration appear relatively often. Moreover, for

nearly every emerging technology term it is more likely to appear on a product in-

novator website than on a non-product innovator website. This result is the same

for all innovation indicators.

Table 2.4 shows the ten most innovation-relevant LDA topics. The highest av-

erage value of Pearson correlation coefficients for all four innovation indicators and

the document-topic probabilities is used to identify the most relevant LDA topics.

The topics are sorted in descending order. LDA topic 98, which relates according to

its keywords to research & development, has a positive and by far the strongest rela-

tionship to innovation. Also, LDA topic 35, which relates to ICT infrastructure, has

a comparatively strong positive correlation with our innovation indicators. Among

the top ten, the LDA topics 20 (tourism), 120 (consulting & customer support) and

23 (family business & craftsmanship) have the weakest correlation. Moreover, the

correlation is negative.

19



C
h

ap
ter

2.
In

n
o

v
atio

n
In

d
icato

rs
B

ased
o

n
F

irm
W

eb
sites

±
W

h
ich

W
eb

site

C
h

aracteristics
P

red
ict

F
irm

-L
ev

el
In

n
o

v
atio

n
A

ctiv
ity

?

Figure 2.1: Average occurrence of different emerging technology terms on firm websites with and without product innovations. Emerging
technology terms not appearing on firm websites are not illustrated. The y-axis has a scale break at 2%.
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Table 2.4: Content of the LDA topics with the strongest relationship to MIP-based innovation indicators.

Topic number Content Translated Top words Correlation*

LDA topic 98 Research & develop-
ment

yes ‘company’ ‘customer’ ‘development’ ‘to develop’ ‘department’ ‘employee’ ‘partner’
‘project’ ‘successful’

positive
(0.15)

LDA topic 35 ICT infrastructure yes ‘system’ ‘software’ ‘data centres’ ‘server’ ‘version’ ‘support’ ‘date’ ‘windows’ ‘auto-
matic’ ‘document’

positive
(0.10)

LDA topic 65 Construction yes ‘to build’ ‘project’ ‘new building’ ‘architect’ ‘planning’ ‘renovation’ ‘reconstruction’
‘construction’ ‘to plan’ ‘architecture’

negative
(-0.09)

LDA topic 134 Business software no ‘array’ ‘value’ ‘news’ ‘office’ ‘paket’ ‘error’ ‘data’ ‘page’ ‘SAP’ ‘search’ positive
(0.08)

LDA topic 7 Product experience no ‘centro’ ‘company’ ‘best’ ‘use’ ‘experience’ ‘world’ ‘please’ ‘product’ ‘may’ ‘find’ positive
(0.08)

LDA topic 41 Common terms yes ‘and’ ‘far’ ‘to take place’ ‘to put’ ‘frame’ ‘that’ ‘information’ ‘total’ ‘receive’ ‘department negative
(-0.07)

LDA topic 5 Carpentry yes ‘to tile’ ‘woods’ ‘to lay’ ‘laminate’ ‘tile’ ‘to put’ ‘material’ ‘stairs’ ‘floor’ ‘to glaze’ negative
(-0.07)

LDA topic 20 Tourism yes ‘region’ ‘city’ ‘to be located’ ‘to offer’ ‘museum’ ‘old’ ‘historical’ ‘nature’ ‘tour’ ‘land-
scape’

negative
(-0.06)

LDA topic 120 Consulting & cus-
tomer support

yes ‘pleased’ ‘to offer’ ‘customer’ ‘to advise’ ‘individual’ ‘consulting’ ‘available’ ‘question’
‘competent’ ‘to find’

negative
(-0.06)

LDA topic 23 Family business &
craftsmanship

yes ‘company’ ‘to operate’ ‘visit’ ‘to stand’ ‘roofing’ ‘Michael’ ‘son’ ‘specialize’ ‘work’ negative
(-0.06)

*Measured by the average of all Pearson correlation coefficients between the average topic share per document and each innovation indicator.

21



Chapter 2. Innovation Indicators Based on Firm Websites ± Which Website

Characteristics Predict Firm-Level Innovation Activity?

Figure 2.2 also relates to the ten most innovation-relevant LDA topics. It shows

for every topic the average share in a document for innovative and non-innovative

firms. The figure reflects the results presented in Table 2.4. The selected topics con-

siderably differ between innovative and non-innovative firms. Also, relationships

are constant, e.g., if a topic has a larger share on product innovator than on non-

product innovator websites, it will also be relatively stronger represented on pro-

cess innovator websites. Nonetheless, differences between innovation indicators ex-

ist. Average topic share differences diverge between indicators and are larger when

considering firms’ innovation expenditures than when taking product or process in-

novators into account.

Figure 2.2: Differences in the topic share of the top ten topics with the strongest aver-
age correlation with MIP-based innovation indicators. For instance, the LDA topic 98 has
an average share of 10% in a document if a firm has innovation expenditure, compared to
merely 6% if a firm does not have innovation expenditure.

2.5 Methodology

The objective of our work is the identification of website characteristics that allow

for predicting firm-level innovation activities. For this purpose, we integrate the

described features as predictor variables in Random Forest classification models

(Breiman 2001, Friedman et al. 2001). For each of our feature sets (‘text’, ‘meta’,

and ‘network’ features), as well as for all features jointly, a separate Random Forest

model is fitted. We use the Python package scikit-learn for the exercise. The Random
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Forest algorithm is an ensemble method used for classification or regression tasks.

Like any other machine learning algorithm, as defined in Mohri et al. (2018), it uses

past experience (in our case survey data) to learn how to perform predictions. The

Random Forest algorithm makes its decision based on the modus or mean of a multi-

tude of decorrelated decision trees. Each tree is built based on bootstrapped samples

of training data. By splitting the data at nodes into branches that are more ªpureº

with respect to the target variable, the algorithm learns to improve. We chose the

Random Forests algorithm because it has the advantage that it allows for the calcu-

lation of feature importances, while providing high predictive power and enabling

the consideration of complex interactions.

A formal description of the ªdecrease in impurityº is given by Equation (2.1).

i(t) measures impurity at the node level, which is in our case indicated by the Gini

impurity index. t is a node within one tree and s is a split at a certain value of a

variable. Nx is the number of samples reaching node x ∈ {t, tL, tR}. Lastly, if t is the

parent node, tL is the left child node and tR is the right child node for the split s at

node t. The split s for node t that maximizes ∆i(s, t) is iteratively chosen.

∆i(s, t) = i(t)− NtR /Nt ∗ i(tR)− NtL /Nt ∗ i(tL) (2.1)

Feature importance is then derived by the sum of ªdecreases in impurityº of a

single variable divided by the sum of ªdecreases in impurityº of all features used

to build the tree. The value is additionally averaged over all trees in the forest and

again normalised so that all values sum up to one. If multiple variables will lead

to similar impurity decreases at one node, only one variable is selected for splitting.

Hence, (multi-)collinearity of features can bias feature importance. This issue can be

illustrated by the following. In this example, the same variable is included twice in

a model. When choosing a variable for splitting, the model can randomly choose

between the two and the feature relevance is, thus, divided between both variables.

To evaluate the performance of collected website characteristics, we use a base-

line model. A random coin toss model based on the sample distribution is chosen.

A baseline model works as a benchmark to assess the performance of more complex

solutions, i.e., it helps to analyse whether a trained model performs better than a

random prediction.

To estimate whether we achieve considerable improvements in comparison to

baseline predictions, we perform a McNemar test (McNemar 1947). Assuming a

chi-squared frequency distribution, the McNemar test measures if predictions from

two machine learning models significantly disagree with each other, as illustrated

in Equation (2.2). RF captures the number of observations misclassified by a fitted

Random Forest model, but not by the baseline model. BL captures the number of
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observations misclassified by the baseline model, but not by a fitted Random Forest

model.

χ2 =
(RF − BL)2

(RF + BL)
(2.2)

If a model including a distinct feature set significantly disagrees with baseline

predictions according to the McNemar test and its evaluation metrics show superior

values, we consider this feature set to be relevant for the prediction of firm-level

innovation activity.

To further evaluate and compare models, we use the metrics ªarea under the

curveº (AUC), accuracy, and improvement of accuracy in comparison to the baseline

model. We also use precision, recall, and the F1-score for positive as well as negative

observations (Fawcett 2006).

false positive rate =
FP

(FP + TN)
(2.3)

true positive rate (recall for the positive class) =
TP

(TP + FN)
(2.4)

The AUC can be explained as follows. The formulas listed in Equations (2.3)

and (2.4) are based on the number of false positive predictions (FP), capturing non-

innovative firms wrongly predicted as innovative; true positive predictions (TP),

capturing innovative firms correctly predicted as innovative; false negative predic-

tions (FN), capturing innovative firms wrongly predicted as non-innovative; and

true negative predictions (TN), capturing non-innovative firms correctly predicted

as non-innovative. The receiver operating characteristic curve (ROC) is a graphical

illustration of a binary classifier performance. For different classification thresholds,

the ªfalse positive rateº is plotted against the ªtrue positive rateº and the AUC value

is an approximation of the area below the ROC. Accordingly, the AUC value is the

probability that a randomly chosen innovative firm is assigned a higher probabil-

ity of being innovative than a randomly chosen non-innovative firm. Usually, AUC

values above 0.7 are considered as acceptable (Hosmer et al. 2013).

For the other metrics, a classification threshold has to be set. The classification

threshold is also called cut-off value and refers to the transformation of the regres-

sion output to a binary classification. Different cut-off values can be chosen if for

example ªfalse negativesº are considered more costly than ªfalse positivesº or if cer-

tain metrics need to be optimised. We select 0.5 as a cut-off value for all fitted models

because this value is commonly used and we do not prefer one metric or class over

the other.
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precision for positive class =
TP

(TP + FP)
(2.5)

precision for negative class =
TN

(TN + FN)
(2.6)

true negative rate (recall for the negative class) =
TN

(FP + TN)
(2.7)

Formal definitions of precision for innovative and for non-innovative firms are

illustrated in Equations (2.5) and (2.6). Recall for innovative and for non-innovative

firms is measured by the ªtrue positive rateº or ªtrue negative rateº as illustrated

in Equations (2.4) and (2.7). Precision measures, for instance, the share of correctly

classified innovative firms in all firms classified as innovative, while recall measures

the fraction of innovative firms that have been correctly identified as innovative.

accuracy =
(TP + TN)

(TP + TN + FP + FN)
(2.8)

F1-scoreP,N =2 ∗ (
(PrecisionP,N ∗ RecallP,N)

(PrecisionP,N + RecallP,N)
) (2.9)

Accuracy and F1-score are presented in Equations (2.8) and (2.9). Accuracy mea-

sures the share of correct predictions in all predictions. The F1-score captures the

harmonic mean between precision and recall for positive (P) and negative (N) obser-

vations, respectively. Baseline outcomes of accuracy, F1-scores, as well as precision

and recall for our different innovation activity indicators are presented in Table 2.5

in Section 2.6. The random coin toss model assumes a fixed chance of being innova-

tive (based on the sample mean). Hence, results do not change when the threshold

is varied and, therefore, the AUC value is not displayed for baseline outcomes.

To control for overfitting, we analyse model performance by using out-of-sample

predictions. Accordingly, we do not evaluate the models’ performance with the ob-

servations that are already used for learning. The data is split into a training sample

(for fitting models) and a test sample (for evaluating models). To be more precise,

the test sample is a ªhold-outº sample and, therefore, never used for model training.

The training sample consists of 75% and the test sample consists of 25% of our

observations. In the supervised learning context, this is a common partitioning

method. It constitutes a trade-off between the generalisation of the model and the

validity of the evaluation. We also apply a grid-search to tune the hyperparameters

of all our models (Friedman et al. 2001) on our training sample. We explore the hy-

perparameter space for the ‘number of trees’ (100, 500, 1,000, and 1,500), ‘maximum

tree depth’ (50, 100, 150, and 200), and ‘minimum impurity decrease’ (0.01, 0.001).

For all other hyperparameters, we use default values provided by scikit-learn.

This leads to 32 different hyperparameter combinations for every model. For

each hyperparameter combination in our grid-search, a five-fold cross-validation
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is performed. The k-fold cross-validation belongs to the non-exhaustive cross-

validation methods. It is a technique to assess the generalisability of machine learn-

ing models to new data, and to detect overfitting as well as potential sample biases.

The data are split into k subsets, so that 100 − (100/k)% of the data are used for

training the model and 100/k % for validation. In each of the k iterations, a different

training and validation data set is used.

Considering all models fitted in the cross-validated grid-search, we choose the

model with the highest AUC value. The selected model is then evaluated on the test

sample.9

2.6 Results

In this section, we present the predictions of MIP-based innovation indicators using

a Random Forest classification approach. Table 2.5 shows evaluation metrics for all

baseline as well as fitted models. We analyse four different innovation indicators

(four target variables), which we predict based on three different subsets of features

as well as their union (four different groups of features). Accordingly, we train 16

Random Forest models.

Looking at product innovators, the highest AUC score (73%) is realised with ‘all’

features. The baseline accuracy is 0.53. The largest increase can be observed for

the ‘all’ feature model (17 percentage points). Text-based features alone, however,

lead to an increase of 16 percentage points. Moreover, ‘network’ and ‘meta’ fea-

tures have a relatively weak impact. They just lead to improvements of 13 and 11

percentage points, respectively. This indicates that a large share of predictive power

results from website text. The baseline F1-score for product innovators is 0.39 and for

non-product innovators it is 0.61. Hence, the sample is slightly imbalanced towards

non-product innovators and the chances of randomly predicting this class correctly

are higher. Furthermore, the F1-scores show a similar result to other metrics. Only

the ‘text’ and the ‘all’ feature model improve F1-scores notably. When solely apply-

ing ‘meta’ or ‘network’ features, F1-scores for innovative firms are even worse than

the baseline performance. Precision values do not considerably differ between inno-

vative and non-innovative firms and are always higher than the baseline prediction.

Moreover, there is a comparatively large increase in precision for innovative firms.

In contrast, there is a great difference between both classes with respect to recall val-

ues. For innovative firms, recall values of fitted models are always worse than those

of the baseline prediction. For non-innovative firms, the recall fluctuates between 88

and 95%.
9To ensure the reproducibility of our study, we fixate the random seed when necessary. The random

seed influences the model performance to some extent, e.g., observations are assigned to the train or
test sample based on the random seed.
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Table 2.5: Results for Random Forest classification models using different feature sets and target variables. Evaluation metrics are
presented for the test sample.

Feature sets Accuracy F1-Score Precision Recall McNemar
Baseline Text Meta Network AUC Value ∆ Positive Negative Positive Negative Positive Negative P-values Support
Product innovators

x - 0.53 - 0.39 0.61 0.39 0.61 0.39 0.61 - 1,122
x 0.72 0.69 0.16 0.47 0.78 0.69 0.69 0.35 0.90 0.00 1,122

x 0.66 0.64 0.11 0.37 0.75 0.59 0.66 0.27 0.88 0.00 1,122
x 0.65 0.66 0.13 0.30 0.77 0.72 0.65 0.19 0.95 0.00 1,122

x x x 0.73 0.70 0.17 0.49 0.79 0.71 0.70 0.37 0.90 0.00 1,122
Process innovators

x - 0.50 - 0.52 0.48 0.52 0.48 0.52 0.48 - 1,121
x 0.62 0.59 0.09 0.63 0.54 0.59 0.59 0.67 0.50 0.00 1,121

x 0.60 0.57 0.07 0.64 0.46 0.57 0.58 0.74 0.39 0.01 1,121
x 0.59 0.57 0.07 0.62 0.52 0.58 0.56 0.66 0.48 0.01 1,121

x x x 0.63 0.60 0.10 0.64 0.55 0.60 0.60 0.68 0.52 0.00 1,121
Innovators

x - 0.52 - 0.60 0.40 0.60 0.40 0.60 0.40 - 1,122
x 0.67 0.63 0.11 0.75 0.30 0.63 0.59 0.91 0.20 0.00 1,122

x 0.64 0.62 0.10 0.74 0.33 0.64 0.56 0.88 0.23 0.00 1,122
x 0.62 0.60 0.08 0.75 0.00 0.60 0.00 1.00 0.00 0.00 1,122

x x x 0.68 0.63 0.11 0.75 0.31 0.64 0.59 0.91 0.21 0.00 1,122
Innovation expenditures

x - 0.54 - 0.36 0.64 0.36 0.64 0.36 0.64 - 474
x 0.74 0.73 0.19 0.55 0.80 0.68 0.74 0.47 0.88 0.00 474

x 0.67 0.65 0.11 0.33 0.76 0.53 0.67 0.24 0.87 0.00 474
x 0.65 0.67 0.13 0.25 0.79 0.68 0.67 0.16 0.96 0.00 474

x x x 0.75 0.72 0.18 0.55 0.80 0.67 0.74 0.47 0.87 0.00 474

Notes: Numerical values are rounded. The baseline values are calculated assuming perfect knowledge about the test sample distribution, which
means that the test sample mean is used for predictions. P-values relate to the significance level at which a model disagrees with its baseline model
according to the McNemar test for 10,000 baseline prediction rounds. The significance levels are based on mean values.
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Our evaluation metrics for models predicting process innovators have predomi-

nantly lower values than those predicting the product innovator status. Nonethe-

less, fitted models show for nearly all evaluation metrics better results than the

process innovator baseline model and the McNemar test also confirms a significant

difference. Hence, website characteristics still improve predictions. The best per-

formance, in terms of accuracy, is reached by our ‘all’ feature model and leads to a

performance increase of 10 percentage points. Moreover, ‘meta’ and ‘network’ fea-

tures perform slightly worse than ‘text’ features.

The performance for innovators is slightly better than for process innovators in

terms of AUC and accuracy. As the sample is slightly imbalanced towards innova-

tors, this performance difference, however, is also partly related to different baseline

values. Furthermore, similar to product innovators, we see remarkably higher AUC

values of models including ‘text’ features. However, considering all other evalu-

ation metrics, ‘meta’ features perform very similarly to ‘text’ features. Looking at

F1-scores, predictions for the negative class always perform worse than the baseline

model. In particular, the prediction solely based on ‘network’ features leads to zero

F1-scores. This means the model predicts for every firm a likelihood that a firm is in-

novative larger than 0.5, which implies that the model always predicts the majority

class. This is known as zero rule prediction. For applying this rule, the information

included in our baseline model is sufficient. In this regard, ‘network’ features do not

provide information gains for innovators. Looking at precision and recall (and not

considering the ‘network’ feature model), we find general improvements for inno-

vative firms in comparison to the baseline model. For non-innovative firms, we only

find improvements in precision. Recall values, however, are very low and worse

than in the baseline model.

Even though the number of observations is the smallest, the predictive perfor-

mance as well as the performance increase for firms with innovation expenditures is

the highest in terms of AUC and accuracy. Looking at the ‘all’ feature model, firms

with innovation expenditures can be predicted with an AUC value of 75% and an

accuracy of 72%, which corresponds to an accuracy increase of 18 percentage points.

The model solely based on ‘text’ features performs even slightly better than the ‘all’

feature model considering accuracy. Besides, values of all other evaluation metrics

are always better than random for the ‘text’ and ‘all’ feature model. Both models

only using ‘network’ or ‘meta’ features show also strict improvements in accuracy

and precision, but F1-scores and recall are partly worse than the baseline model.

Furthermore, the McNemar test confirms that all fitted models significantly dis-

agree with baseline predictions. The divergence is always highly significant (p-

values are below 0.001), except for models that predict process innovators with ei-

ther ‘meta’ or ‘network’ features, which are significant at the 0.01-level. This may be
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due to the fact that both feature sets as well as models predicting process innovators

perform relatively worse. Hence, the difference to baseline predictions is especially

low when combining both. It is also noteworthy that even though the McNemar test

is significant, it does not necessarily mean that the model is strictly better than the

baseline model. Key evaluation metrics also have to show predominately superior

values. We want to highlight one example here. The Random Forest model that

predicts innovators using ‘network’ features has a large share of inferior values in

comparison to baseline predictions. It uses the zero rule for its prediction. Accord-

ingly, it significantly disagrees with the baseline model as it uses another decision

rule. However, the fitted model is not strictly better, because its decision is also

solely based on the sample mean and the fitted model is not learning sufficiently

from the provided features, as the evaluation metrics show.

Lastly, we want to note that we do not find a particular combination of hyperpa-

rameters across innovation indicators and feature sets that is always selected by the

grid-search algorithm. However, preferred ‘number of trees’, ‘maximum tree depth’,

and ‘minimum impurity decrease’ do exist across feature sets and target variables.

For the ‘number of trees’, 1000 and 1500 are mostly chosen. The most dominant

‘maximum tree depth’ values are 50 and 100. Moreover, a ‘minimum impurity de-

crease’ of 0.001 is more frequently selected than 0.01. For more details see Table A.5.

To analyse the robustness of presented results, we re-estimate the ‘all’ feature

model for each indicator using all possible combinations of splits between the train-

ing and test sample from 0.1/0.9 to 0.9/0.1 (in steps of 0.01). The corresponding

change of respective AUC values with respect to an increasing training sample is

displayed in Figure A.3. We find that AUC values for product innovators, process

innovators, and innovators increase until a training sample size of 0.6 and then stay

roughly constant at levels pointed out in Table 2.5. Hence, AUC values seem robust

with respect to the sample split if a sufficiently large training sample size is reached.

Besides, values fluctuate more strongly between 0.8 and 0.9, which is presumably

related to a declining test sample size.

The performance of the model predicting innovation expenditures constantly in-

creases until a training sample size of about 0.85. It has a comparatively large drop

afterwards and tends to be more volatile in general. Both can be explained by a

much smaller overall sample size for this indicator. For instance, a train/test split

of 0.5 implies fewer absolute observations included in the training sample. Also,

the test sample is always smaller, which makes the evaluation of the performance

less robust. Furthermore, the increasing trend indicates that the model would have

continued to improve, if we had added more observations. AUC values based on

training sample sizes between 75% and below 85% fluctuate around the AUC value

pointed out in Tables 2.5.
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In summary, it can be stated that the analysed website characteristics show a

better performance in the prediction of product innovators and firms with innova-

tion expenditures than of process innovators. Moreover, text-based features show a

greater relative relevance.

To compare the relevance of single features across feature sets, the ten most im-

portant predictor variables measured by the MDI are displayed in Figure 2.3 for each

‘all’ feature model, respectively.

‘LDA topic 35’

‘english_language’

‘word: system’

‘text_length’

‘LDA topic 134’

‘nr_subpages’

‘word: software’

‘LDA topic 65’

‘word: to develop (transl.)’

‘word: application (transl.)’

0 0.002 0.004 0.006 0.008 0.01
Product innovators

‘text_length’

‘english_language’

‘LDA topic 98’

‘nr_subpages’

‘word: system’

‘word: to develop (transl.)’

‘LDA topic 65’

‘LDA topic 35’

‘word: worldwide (transl.)’

‘word: innovative (transl.)’

0 0.002 0.004 0.006 0.008 0.01
Innovators

‘text_length’

‘LDA topic 98’

‘english_language’

‘social_media’

‘LDA topic 41’

‘flesch_score’

‘incoming_links’

‘LDA topic 7’

‘LDA topic 75’

‘word: worldwide (transl.)’

0 0.002 0.004 0.006 0.008 0.01
Process innovators

‘english_language’

‘LDA topic 98’

‘text_length’

‘nr_subpages’

‘word: system’

‘word: development (transl.)’

‘word: to develop (transl.)’

‘word: technology (transl.)’

‘LDA topic 134’

‘word: innovative (transl.)’

0 0.002 0.004 0.006 0.008 0.01
Innovation expenditure

Feature importance

Figure 2.3: Feature importance values for ‘all’ feature models. For instance, a value that is
two times larger implies that the mean decrease in impurity of the related feature is twice as
high. Product innovators (top left), process innovators (top right), innovators (bottom left)
and firms with innovation expenditures (bottom right) as target variable.

Three features exist that nearly always appear among the ten most relevant: the

total number of characters (text_length), the number of subpages (nr_subpages) (this

feature only appears on the twelfth position for process innovators), and the share

of English language (english_language). A further investigation of the top 100 most
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relevant features (see Appendix A.4) reveals that additional website characteristics

exist with some general relevance. The words ‘worldwide’, ‘innovative’, ‘applica-

tion’, ‘to develop’, ‘product’, ‘technology’ (all translated), the word ‘system’, as well

as certain LDA topics, and the topic popularity index (pop_score), incoming (incom-

ing_links), outgoing (outgoing_links), as well as social media hyperlinks (social_media),

the Flesch-reading-ease score (flesch_score), the loading time of a website (load_time),

and the share of numbers (share_numbers) are among the 100 most relevant features

for every indicator. This shows that particular website characteristics exist, which

have some relevance across indicators. In contrast, it is also noteworthy that fea-

tures exist that show a large difference in the descriptive statistics but seem less

important when predicting the innovation status. For example, the emerging tech-

nology term dummy never appears among the top ten features for any indicator

and is also not frequently observed among the top 100 features. Furthermore, some

features are more relevant for certain innovation indicators than for others. For in-

stance, IT-related features seem to be highly relevant for product innovators. The

IT-related LDA topics 35 (ªICT infrastructureº) and 134 (ªbusiness softwareº), as

well as the words software and system are (only) among the top ten features for this

indicator. Besides, LDA topic 7 with keywords linked to product experience and the

word ‘application’ appear among the top 15 features.

On the contrary, the research & development related LDA topic 98 is more im-

portant when estimating process innovators and firms with innovation expenditure.

Besides, the LDA topic 65 occurs in Figure 2.3 for product innovators and innova-

tors, which should be related to a negative relationship to innovation activity, as the

descriptive statistics show that this LDA topic is more likely to appear on websites

of firms with no innovation activity. With respect to process innovators, it should be

mentioned that only a single word can be found in the ten most important features

and it is the only indicator that has ‘network’ features among its top ten. Further-

more, it is also interesting that the bottom left part of Figure 2.3, which relates to in-

novators, is at least for most features a combination of the most relevant features for

product and process innovators. Last but not least, research & development-related

words are highly important for predicting firms with innovation expenditures.

2.7 Discussion

Descriptive statistics as well as our fitted Random Forest models show that web-

site characteristics are relevant predictors for firm-level innovation activity. We see

a significant difference in means between innovative and non-innovative firms for

most of our features. For each innovation indicator, Random Forest models using

all features jointly show almost always a considerably higher performance than the

baseline prediction with respect to the presented evaluation metrics. Moreover, the
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McNemar test confirms a significant difference to baseline predictions for all mod-

els. Also, our results are in line with Kinne & Lenz (2021). Their statistical model has

reached a similar accuracy for product innovators only observed in one MIP wave.

Our exercise also reveals ± especially when predicting product innovators and

firms with innovation expenditures ± that ‘text’ features are relatively more impor-

tant than ‘meta’ and ‘network’ features. Besides, we see a pattern regarding the most

important characteristics that is independent of different target variables: Across in-

dicators, the total number of characters, the number of subpages, and the share of

English language belong always to the most relevant. It is also noteworthy that these

features are more important than the word ªinnovativeº. This finding suggests that

website size and language should be considered for different types of website-based

innovation indicators, which has not been done in previous studies. Meeting expec-

tations, features that show insignificant differences in Table 2.3 almost never belong

to the top ten most relevant features in Figure 2.3. An exception is the flesch_score

in the case of process innovators. Furthermore, considering the poor performance

of the ‘meta’ feature models and the result that ‘text’ is the most relevant feature

set, the relevance of website size is quite counter-intuitive. One has to consider,

however, that the importance of features is considered separately. The relevance of,

e.g., the number of subpages is compared to the relevance of single words. If all

words appearing in the term-document matrix would be considered jointly instead,

their aggregated relative relevance would lie between 74 and 77%, depending on the

indicator. This perspective illustrates why ‘text’ features and in particular textual

content are still much more important for an accurate prediction. Nonetheless, as

explained before, relative MDI importance should always be considered cautiously,

as it is affected by multicollinearity. Moreover, other web-based features may exist

that possess predictive power and have not been considered in our analysis. These

features would most likely change the result.

Furthermore, it would also impact relative MDI importance, if this study’s web-

site data would be complemented with information from other sources, for example,

non-web data from the MUP. In this case, innovation activity could potentially be

predicted more accurately. However, we have deliberately decided against adding

non-web data to our analysis, since this study focuses on the comparison of website

information, which is up-to-date and freely accessible for everyone. Nonetheless, it

would certainly be interesting to investigate in a further study the effect of adding

additional non-web data. For potentially relevant features, see Gandin & Cozza

(2019).

Another aspect that we want to emphasise is the fact that features which are

highly important for one particular indicator usually relate to its form of innovation

activity. We see this as a strong indication that models use relevant information.
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Especially for firms with innovation expenditures, the selected word-based features

appear particularly convincing. Terms like ªto developº (transl.) and ªtechnologyº

(transl.) are highly ranked and have a very strong and direct connection to research

& development expenditures. Another example is that the product experience re-

lated LDA topic 7 (top 15 most important features) and the term ‘application’ have

a high importance for product innovators. Additionally, the ten most relevant fea-

tures of product innovators have a clear focus on information and communication

(ICT) technologies, which is in line with the innovation spawning characteristic of

ICT, as well as with the result of Hall et al. (2013). They find that ICT investment

intensity is positively associated with innovation and is stronger linked to product

than to process innovation.

Moreover, firms have a great incentive to present new products on their web-

sites, process innovators, however, have a smaller incentive to announce innovation

activity because new processes are less relevant for most website visitors. This might

explain why results show a better predictive performance for product innovators

than for process innovators and for innovators in general. In addition, only a sin-

gle word appears among the ten most relevant features of process innovators and,

even though this model differs on a higher significance level, ‘text’ features alone

do only lead to slightly better predictions than ‘meta’ and ‘network’ features. This

result supports the assumption that process innovations are often not mentioned

explicitly.

Regarding innovators, most of the top ten features either appear in the product or

process innovator ranking and the predictive performance of the ‘all’ feature model

lies between both as well. This result meets our expectations as the innovator target

variable is a combination of product and process innovators.

Interesting is also the fact that, contrary to our expectations, some features are

not that relevant. For instance, even though the descriptive statistics show a large

difference between innovative and non-innovative firms, the emerging technology

dummy does not seem to be very decisive for predictions. Looking at the Pearson

correlation coefficients between this and all other features reveals that the emerg-

ing technology dummy has a comparatively strong relationship with other fea-

tures. Hence, their relative MDI importance is probably ranked lower due to multi-

collinearity. Besides, even though the descriptive statistics do not show a significant

difference for every form of innovation activity, the Flesch-reading-ease score, the

loading time of a website, and the share of numbers appear to be relevant for every

indicator (according to the 100 most relevant features). These features, however, do

not relate strongly to other features and might, therefore, provide some extra infor-

mation. Hence, they are relatively relevant despite small differences.

Although we show a clear link between website characteristics and innovation
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status, the predictive performance of our models leaves room for improvement as

we, for example, still misclassify the existence of innovation expenditures for a con-

siderable share of firms. Predictions might perform slightly better if neural net-

works were used. Our main criteria for choosing a Random Forest approach are

the explainability of results and the fact that non-linear relationships can be learned.

Neural networks unfortunately do not offer a direct possibility to disclose decision

processes. Hence, there is a trade-off, which often occurs in practice, between perfor-

mance and explainability. If explainability is not necessary, predictive performance

can most likely be improved by neural networks.

Within our sample, there can be, of course, also innovative firms that do not

mention their innovation activity (implicitly or explicitly) on their websites. In other

words, some inaccuracy might relate to the nature of our data. In particular, product

innovators, process innovators, and innovators might suffer from noise as they cover

a three-year span. Websites can change a lot during this period. Comparatively good

results for firms with innovation expenditures may be explained by the fact that this

information is observed on an annual basis. Solving this matching problem seems

to us a necessary step to improve predictions. Nonetheless, text data is always noisy

and models with perfect accuracy are almost never identified.

Furthermore, it could be criticised that website-based innovation indicators can

only be applied to firms that have a website. Another point of criticism would be that

it could cause noise if firms falsely claim on their website that they are innovative,

e.g., for marketing purposes. The MIP contains self-reported data as well, however,

firms do not have the incentive to make false declarations, as answers should not

affect their public image. For this reason, we expect MIP data to reveal the actual

innovation status and we consider the usage of MIP-based information as target

variables as a solution to the problem of false declarations of innovation activity

on firm websites. Besides, patent data could have also been used as an alternative

target variable. However, patent-based indicators rather measure inventions than

innovations.

2.8 Conclusion

In this research article, we contribute to the discussion on whether web-based in-

novation indicators are a feasible alternative to survey-based innovation indicators.

We conduct our analysis with data on 4,487 German firms, which reported different

forms of innovation activity in a large-scale questionnaire-based survey (the MIP

2019). We extract website texts, additional website-related meta information, as well

as hyperlinks of these firms and use the information to predict firm-level innova-

tion activity reported in the MIP. The performance of our machine learning models

shows that website characteristics unambiguously relate to MIP-based innovation
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indicators. Furthermore, we find that website characteristics better predict product

innovators and firms with innovation expenditures than process innovators. Hence,

website characteristics rather appear to be suitable for measuring only certain as-

pects of innovation. Additionally, the importance of certain website characteristics

varies between indicators. Accordingly, different features should be taken into ac-

count depending on the kind of innovation activity that is analysed. Lastly, our work

and related studies show that state-of-the-art web-based predictive modelling can-

not fully replace traditional surveys as error rates remain quite high. However, our

models provide information about innovation activities that can be quickly updated,

are on a very granular level (firm level), and are less expensive than questionnaire-

based surveys.
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Firm Digitalisation and Mobility ±

Do Covid-19-Related Changes

Persist?
joint work with Irene Bertschek, Patrick Breithaupt, and Daniel Erdsiek

3.1 Introduction

The adverse environmental impacts associated with transportation have continu-

ously increased in recent decades and transportation accounted globally for about

23% of total energy sector’s direct carbon emissions in 2019, with passenger cars

being responsible for a large proportion thereof (IEA 2020). In 2020, however, the

Covid-19 pandemic fundamentally interrupted mobility patterns. In order to pre-

vent infections, digital technologies have been widely leveraged to avoid physical

contact. For instance, remote access and virtual meetings allowed employees to

work from home (WFH) and online shopping and delivery services enabled cus-

tomers to purchase goods without leaving the house. Empirical evidence by Alipour

et al. (2021) and Alcedo et al. (2022) indicates that these behavioural changes can be

linked to lower levels of mobility around the beginning of the crisis. The observed

decline sparked hope that the intensified use of digital technologies will result in

persistent mobility reductions and a long-run decrease in associated carbon emis-

sions. Comprehensive evidence on the relationship between digitalisation and mo-

bility changes over the entire course of the pandemic, however, is missing. This

study aims to close this research gap and quantifies the extent to which firm dig-

italisation effectively contributed to mobility reductions throughout the pandemic,

covering the time frame from January 2020 until December 2022.

The long-term effects of the initial Covid-19 shock are not clear a priori. On the

one hand, substantial investments in digital infrastructure and human capital, tech-

nological innovation, as well as a persistent increase in WFH arrangements give rea-

son to believe that reductions in mobility are long-lasting (Barrero et al. 2021, Bloom
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et al. 2021, Bachelet et al. 2022, Erdsiek & Rost 2022). On the other hand, after the

initial Covid-19 shock, social isolation and physical inactivity while working from

home may have been compensated by social meetings and an increase in mobility

during leisure time. In particular, such compensatory behaviour may have been am-

plified by the decreasing severity of the pandemic and the lifting of restrictions in

2022. Also, working from home and improved access to services online increased the

incentive to move further away from commercial districts, where rents are cheaper,

potentially resulting in fewer trips taken but longer distances travelled (Marz & ËSen

2022).

For our analysis, we make use of unique, web-scraped firm-level data for Ger-

many, a large European country with an average level of digitalisation among EU

countries (e.g., European Commission 2022). Moreover, we concentrate on firm dig-

italisation, which we approximate by estimating the extent to which firms communi-

cate about digital topics on their websites. To this end, we apply a novel text-mining

approach based on transfer learning.10 The indicator has the advantage that it con-

tains, on the one hand, information on online and delivery services and, on the other

hand, information relating to firms’ potential of offering WFH, since it is likely that

more tasks can be carried out remotely if firms have a high level of digital profi-

ciency. Shortly before the start of the pandemic, we predicted the level of digitalisa-

tion for all 750,000 firms whose website addresses were available in the Mannheim

Enterprise Panel (MUP).11 The prediction was repeated in December 2022 based on

1,300,000 firms. For our analysis, we average firm-level predictions for German dis-

tricts (ªKreiseº) to approximate the local economy’s level of digitalisation. Further-

more, we use mobile network data to measure daily changes in mobility over the

observed time frame (e.g., Persson et al. 2021).

We use an event study approach based on a difference-in-differences design

to analyse how the link between mobility and firm digitalisation evolves over the

course of the pandemic. Our regression results indicate a significant decrease in

mobility associated with firm digitalisation for the time after the first lockdown up

until the end of most Covid-19 restrictions in March 2022. After the lifting of most

restrictions, however, ICT-related mobility reductions are no longer significant. The

main contribution of our study is, thus, twofold. First, we show that firm digitalisa-

tion can indeed be leveraged to reduce physical travel during times of severe health

threats. Secondly, however, if health threats and government restrictions ease up, the

potential of digital technologies to reduce overall mobility is hardly exploited. This

holds, even though factors that facilitate the substitution between physical travel

and remote work or online services greatly improved during the pandemic. Hence,

10See Axenbeck & Breithaupt (2022) for a detailed description of the method.
11The MUP is the most comprehensive micro database of German firms besides the official business

register, which is not publicly accessible.
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we cannot confirm long-term changes in mobility behaviour that might result in en-

vironmental improvements. Our results withstand an extensive set of robustness

tests. We also contribute to the literature by using a novel text-based measure to

approximate firm digitalisation and are able to cover a much longer time frame than

previous studies analysing the effects of the Covid-19 crisis.

The remainder of this paper is structured as follows: In Section 3.2, we sum-

marise related literature and derive our research question. In Section 3.3, we explain

the data as well as the applied transfer learning approach. In Section 3.4, we present

descriptive insights and in Section 3.5 econometric results. Section 3.6 includes ro-

bustness checks. In Section 3.7, we discuss our findings and conclude.

3.2 Related Literature

Whether telecommunications and travel are complements or substitutes has been a

subject of intense debate for several decades (e.g., Kraemer 1982, Mokhtarian 1990).

According to Kraemer & King (1982), telecommunications-transportation substi-

tution depends on certain factors, such as transportation costs and the quality of

telecommunication technologies. In contrast, Salomon (1986) puts forward the hy-

pothesis that human beings have an intrinsic need for mobility, and thus travelling is

unlikely to decline due to new technological opportunities, rather mobility patterns

will change.

A strand of the empirical literature on ICT-enabled mobility reductions focuses

on telecommuting. Remote work is highly relevant for the overall environmental

debate, as a large proportion of the daily distance travelled is for work, and most

people use their car to get there.12 Conducting a meta-analysis of 39 empirical stud-

ies, Hook et al. (2020) find that the large majority of studies observe environmental

improvements associated with telecommuting, which are mainly driven by a re-

duction in work-related trips. Considering also non-work travel, however, Wöhner

(2022) only observes mobility savings for people that fully work remotely. People

who only partly work from home completely offset saved commutes by an increase

in non-work travel.

In most countries, working from home was only occasionally practised until

the start of the Covid-19 pandemic, when the number of people working from

home tremendously increased. For instance, the share of employees that fully work

from home grew from 4 to 27% during the first lockdown in Germany (Emmler &

Kohlrausch 2021). In addition, by June 2020, the share of firms using WFH increased

from 48 to 74% in service industries and from 24 to 46% in the manufacturing sector

12For instance, between 27 and 47% of the daily distance travelled of employees in EU member states
is for the purpose of work (Eurostat 2021); in EU countries, such as Germany and France, roughly two
third of all workers use the car to get to their workplace (Destatis 2021, Insee 2021).
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(Erdsiek 2021). Similarly, Brynjolfsson et al. (2020) find that regions with a higher

share of employment in information work were more likely to shift towards WFH.

Moreover, Alipour et al. (2021) confirm for the first weeks of the pandemic that a dis-

trict’s WFH potential can indeed be associated with overall mobility reductions, but

only shortly before the first lockdown was put in place. Using the Global Survey of

Working Arrangements, Aksoy et al. (2023) estimate that WFH approximately saved

two hours of commuting per worker each week during the pandemic and will save

one hour on average each week after the end of the pandemic. Bachelet et al. (2022)

calculate for Germany that if 15% of all full-time employees in Germany will con-

tinue to work from home, 3% of carbon emissions attributed to the transport sector

could be saved.

Besides WFH, online shopping may improve environmental outcomes. In the-

ory, e-commerce can lead to mobility reductions, as orders can be consolidated and

distributed more efficiently (e.g., Siikavirta et al. 2002, Durand & Gonzalez-Feliu

2012, Wiese et al. 2012).13 For example, Siikavirta et al. (2002) estimate that the maxi-

mum greenhouse gas emissions saving potential of e-grocery home delivery services

is roughly between 0.3 and 1.3% for Finland. Using empirical data, Jaller & Pahwa

(2020) find for Dallas and San Francisco that e-commerce has cut vehicle miles trav-

elled by 7% on average in 2016, but highlight that environmental improvements

depend on the modal split and are lower if people visit commercial districts by foot,

bike, or public transportation instead of using the car (cf. Durand & Gonzalez-Feliu

2012, Wiese et al. 2012).

In contrast to WFH, online spending already substantially grew before the

Covid-19 crisis (e.g., Alcedo et al. 2022). Nonetheless, the share of online spend-

ing in total consumer spending extremely increased at the beginning of the pan-

demic, jumping from roughly 17% to above 35% during the first two lockdowns. In

mid-2022, however, the share of online revenue declined but remained above the

pre-crisis level at roughly 24% (Alipour et al. 2022).14 Moreover, Alcedo et al. (2022)

find for the first phase of the pandemic that online spending is positively linked

to Google’s index of residential activity at the country level, i.e., the approximated

relative time spent at home, but the correlation declined until mid-2021.

In addition, empirical evidence shows that digitalisation supports firm resilience

during economic crises (e.g., Bertschek et al. 2019, Reveiu et al. 2022). With respect to

the Covid-19 crisis, Ben Yahmed et al. (2022) find that a region’s digital capital relates

to a lower level of short-time work usage at the beginning of the crisis. Also, firms

in countries with a better digital infrastructure had comparatively higher revenue in

13Please note that we refrain from discussing further consequences for the environment of e-
commerce that result, for instance, from frequent returns or additional packaging.

14Also, absolute online revenue increased during the first two years of the pandemic (bevh 2022),
indicating that the relative increase in online spending did not solely happen due to a decline in offline
sales, but there must have been an additional shift towards online commerce.
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2020 (Doerr et al. 2021). Comin et al. (2022) confirm that technological sophistica-

tion can be associated with higher sales at early stages of the crisis. Bertschek et al.

(2022) show that the self-employed whose businesses were highly digitalised, bene-

fited much more from the state aid provided by the German government during the

pandemic compared to those whose businesses were less digitalised. By analysing

World Bank data, Cariolle & Léon (2022) as well as Wagner (2021) show that hav-

ing a website is related to firm survival during the pandemic. Moreover, Cariolle

& Léon (2022) find that having a firm website is positively correlated with strate-

gies that helped to cope with Covid-19 restrictions, such as home-delivery services,

online sales, and remote work. Also, Bai et al. (2021), who observe that firm-level

WFH feasibility can be associated with higher sales, net income, and stock returns

during the pandemic, highlight the complementarity between digital technologies

and WFH practices.

Although there are some insights into how digital strategies helped firms during

the crisis, comprehensive empirical evidence is missing that accurately quantifies

the extent to which firm digitalisation has effectively contributed to mobility reduc-

tions over the course of the pandemic, and, most importantly, whether changes have

been sustained after most restrictions were lifted. Persistent reductions may exist

because factors determining the substitutability between telecommunications and

transportation greatly improved in order to cope with the pandemic (cf. Kraemer &

King 1982), such as the technical quality of online communication due to large in-

vestments into digital infrastructure and a pandemic-driven surge in technological

innovations (Barrero et al. 2021, Bachelet et al. 2022). For instance, the share of new

patent applications that support WFH technologies more than doubled from January

to September 2020 (Bloom et al. 2021). Moreover, geopolitical instability in Europe

has driven gasoline prices extremely high in 2022, providing an additional incentive

to replace fuel-based travel with digital solutions.15 The assumption of long-lasting

mobility reductions is supported by surveys as well. These confirm that the share of

people working from home did not largely decline after the pandemic became less

severe in March 2022 (ifo Institute 2022, Aksoy et al. 2022).16 They also show that

many customers anticipate doing more online shopping after the pandemic than be-

fore (Shaw et al. 2022).

However, in the light of an intrinsic human need for travel (cf. Salomon 1986),

there is reason to believe that increased remote work and improved online access to

services and products do not necessarily result in permanent mobility reductions.

15See https://www.dashboard-deutschland.de [online; accessed on 5 Jan. 2023].
16The Google Covid-19 Community Mobility Trends indicator suggests as well that less people vis-

ited their workplace after the pandemic than before (see https://ourworldindata.org/covid-googl

e-mobility-trends [online; accessed on 5 Jan. 2023]).
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For instance, as people have social and self-realisation needs, they may have en-

hanced social interaction after work over the course of the pandemic, especially after

the crisis became less severe in March 2022 and the need to avoid physical contact

declined. Furthermore, WFH increases the difficulty of managerial control (Felstead

et al. 2003) and the stigma that people work less (efficiently) when they work re-

motely may not have diminished as much as expected during the pandemic. For

instance, results from a questionnaire-based survey indicate that more than half of

the firms did not noticeably change their assessment of remote work productivity

(ZEW Mannheim 2022). As a consequence, employers still may prefer on-site or

hybrid work arrangements because both facilitate monitoring employees as well as

interaction. It could also be that a lack of supervision has the opposite effect, i.e.,

individuals who work from home are more efficient in order to work fewer hours.

However, the resulting spare time may, in turn, also increase mobility.

In addition, working from home and increased access to online services may

incentivise people to move further away from commercial districts, where rents are

cheaper. This phenomenon can lower or even offset mobility reductions, as people

may travel less often but longer distances (Marz & ËSen 2022). Moreover, if workers

are allowed to work remotely they usually can work from everywhere. Hence, long-

distance trips, e.g., at weekends, become more appealing as it is possible to work

while travelling. Finally, even though studies indicate that individuals buy more

often products online than before the pandemic (Alipour et al. 2022, Shaw et al.

2022), people may prefer hybrid shopping modes and search for products offline

and only buy them online.

Hence, whether a relationship between digitalisation and mobility reductions

during different phases of the pandemic exists is a priori unclear. Therefore, this

study analyses how the link between firm digitalisation and changes in mobility

evolved over time in comparison to the pre-crisis level. In particular, we aim to

shed light on whether changes in mobility persist after the lifting of most Covid-19

restrictions.

3.3 Data

For our analysis, we combine several data sources at the district level, which are all

listed in Table B.1 in the Appendix.

3.3.1 Mobility

We use mobile network data provided by the German Federal Statistical Office

(Destatis) for 400 German districts between January 2020 and December 2022 ([data
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set] Destatis 2023a).17 The data stem from the Telefónica network and is processed

by the company Teralytics before being forwarded to Destatis. Mobility is measured

by the number of switches between mobile network cells per device within one dis-

trict.18 The change in mobility (in %) is our variable of interest and captures the dif-

ference between mobility on a given day to the monthly average mobility in 2019

for the same weekday. For instance, switches between cells on the first Monday in

September 2020 are compared to the average switches between cells on all Mondays

in September 2019. We observe mobility changes for the entire day as well as for

daytime and nighttime separately (6 a.m. to 10 p.m. and 10 p.m. to 6 a.m.).

The use of mobile network data has the advantage that it allows measuring mo-

bility within precise, short time intervals. Nonetheless, we would like to acknowl-

edge some of the shortcomings of our mobility indicator. For instance, it should be

noted that the Telefónica network does not cover the entire mobile network market.

As a result, we only observe changes in mobility for approximately one third of the

German population, with varying market shares at the district level. To address this

limitation, the data provider extrapolates the data to ensure representativeness.19

Furthermore, mobile network cells have an average size of 2.8 km to 4.8 km in rural

areas and 0.7 km to 1.9 km in urban and suburban areas (Stobbe et al. 2023). Since

changes in mobility can only be detected when there is a switch between mobile

network cells, it is important to acknowledge that we are unable to observe a large

portion of trips that are below these thresholds. Before the pandemic, however, the

average distance travelled per day was 46 km, with an average distance of 12 km for

a single trip (infas 2018). Therefore, we assume that we capture the majority of the

daily distance travelled and consider this as a minor issue. One further limitation

is that mobile network cells differ in size. The size mainly depends on population

density since each cell can only handle a certain number of users. This makes it

more difficult to capture changes in short distance trips in rural areas. To address

this limitation, we control for the average population density and network quality

in a district, as well as for whether a district is a city (ºStadtº) or a countryside area

(ªLandkreisº). It is also worth noting that rural travel generally involves longer

distances, which mitigates this limitation (infas 2018). Additionally, most of the Ger-

man population lives in urban or suburban areas. As we weight our data based on

population size, we further reduce the impact of this limitation.20

17Please note that we consider ªWartburgkreisº and ªEisenachº as one district.
18In addition to mobile phones, also tablets, laptops, and vehicles can have SIM cards, which are

removed from the analysis by approximation to avoid double counting.
19See [data set] Destatis (2023a).
20It is possible that decisions for WFH and e-commerce are different in rural areas than in urban

areas because of the greater distances that have to be travelled. However, due to the different mobile
network cell sizes, we refrained from heterogeneity analyses that address this difference, as the de-
scribed measurement problems could strongly distort the result here. However, since longer distances
are travelled in rural areas, and mostly by car, mobility reductions presumably lead to greater carbon
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3.3.2 Firm Digitalisation

To measure firm digitalisation, we take advantage of the fact that nowadays a large

share of firms have a website, which usually provides insights into a firm’s use of

digital technologies, such as online shops, digital products, and social media. We

collect these insights using a two-step transfer learning approach. The procedure is

thoroughly described in the paper ªMeasuring the Digitalisation of Firms ± A Novel

Text Mining Approachº by Axenbeck & Breithaupt (2022).

Firstly, we train a text-based machine learning model that allows for automati-

cally determining whether a text contains content on digitalisation. For this purpose,

we exploit news articles, as we can easily identify whether they deal with digitali-

sation topics.21 This is because news articles appear within clearly defined sections,

such as ªbusinessº and ªpoliticsº. Also, news outlets can create special sections if a

current topic is particularly relevant, such as ªthe digital transformationº. We use

these section titles as labels for supervised machine learning. Online articles have

the additional advantage that their HTML code includes keywords for search en-

gine optimisation (SEO), which also relate to the overarching subject of an article.

Accordingly, we label all news articles appearing in a section about digitalisation or

having the SEO keyword ‘digital’ embedded in their HTML code as digital and all

other articles as non-digital.22 Based on the annotated newspaper corpus, we train

a supervised machine learning model that allows for predicting whether a text is

about digitalisation.23 Secondly, we apply the fitted model to German firms, estimat-

ing the likelihood that their website text is about digitalisation. This is the transfer

learning step of our text mining approach. The result is a continuous indicator mea-

suring a firm’s degree of digitalisation between zero and one. The entire procedure

is illustrated in Figure 3.1.

We retrieve website addresses (URLs) from the Mannheim Enterprise Panel

(Bersch et al. 2014). Using all available URLs and the ARGUS Web Scraping Tool

(Kinne & Axenbeck 2020), we scraped 740,875 firm websites in January 2020 as part

of the TOBI project.24 Additionally, we collected information on 1,257,832 firm web-

sites in December 2022 in order to have information covering the end of the observed

time frame. In both years, we scraped up to 50 subpages of a firm website. As Kinne

emission savings here. For this reason, it would be beneficial for future research to investigate whether
there are differences between urban and rural areas in terms of how digital technologies impact mo-
bility changes.

21We use news articles from a large German newspaper corpus, which is described in detail in Ax-
enbeck & Breithaupt (2022).

22Moreover, we only consider articles before 2020, as articles related to the Covid-19 crisis might bias
later firm-level predictions.

23To this end, we use a Random Forest regression model suggested by Breiman (2001).
24A research project on the potential of firm websites to measure technological progress funded by

the German Federal Ministry of Education and Research (funding ID: 16IFI001).

43



Chapter 3. Firm Digitalisation and Mobility ± Do Covid-19-Related Changes

Persist?

News article data set 

News articles 

with the label 

"digital" 

All other 

news 

articles 

0.40

0.34 

0.85 

0.62 

0.58 

News article database

for training a classifier
Prediction of firm 

digitalisation based 

on websites

Machine Learning Model Result

Calibration of machine 

learning model

Figure 3.1: Transfer learning approach for measuring firm digitalisation. News article
data with binary labels (left), machine learning model (middle), and continuous firm digi-
talisation scores based on scraped websites (right). Illustration from Axenbeck & Breithaupt
(2022).

& Axenbeck (2020) show that the median number of subpages of a firm website is

15, we consider this threshold to be sufficient.

After applying the machine learning model to firm websites, we average and

standardise predictions (mean zero and unitary standard deviation) for all firms

in a district for both scraping periods, respectively. Regional distributions are dis-

played in Figure 3.2. It is apparent that firms in western Germany are more digital

than those located in the eastern part of the country, which is plausible for historical

reasons. Moreover, average firm digitalisation only slightly changed between both

scraping periods.25

Despite small changes, we consider firm digitalisation in levels and do not focus

on the effect of changes in firm digitalisation over time in our main analysis. We

do this for two reasons. Firstly, we face the issue that the scraping software has

changed within the observed time frame, which affects the scale of the indicator

and we cannot reliably compare changes. The second reason why we cannot simply

compare the change in average firm digitalisation per district between both scraping

periods is that the number of available firm websites notably grew.26 In a robustness

check in Section 3.6, we present a potential approach on how to consider the growing

number of firm websites when analysing changes in firm digitalisation at the district

25The Pearson correlation coefficient between both periods is 0.85.
26The increase in available firm websites may have been due to more research effort being put into

identifying web addresses by the data provider or because the number of firms that have a website
has increased. Presumably, both factors played a part, but we assume the second reason had a larger
impact, since establishing a firm website helped sustain business during the pandemic.
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Figure 3.2: Regional distribution in January 2020 and in December 2022 of the web-based
firm digitalisation indicator. Values are standardised (mean zero and unitary standard de-
viation).

level. The changing number of firms with a website also points us to the fact that we

only observe the degree of digitalisation for firms that have a website. We address

this issue in the same robustness check. Besides, a further minor issue is that most

online services are available nationwide. However, we mostly observe small and

medium-sized enterprises in our sample and it is likely that their online services are

rather locally relevant, even though they are available across district borders.

3.3.3 Control Variables

Furthermore, as changes in mobility and firm digitalisation can be simultaneously

affected by several factors, we add a broad variety of control variables.

3.4 Descriptive Insights

In the following, we provide descriptive insights into the relationship between firm

digitalisation and changes in mobility, measured as the difference between mobility

on a given day and the average monthly mobility in 2019 on the same day of the

week.

In total, mobility increased by 1.02 % over the observed time frame (see Table

B.2 in the Appendix, which also provides descriptive statistics of control variables).
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Moreover, the increase in mobility is largely driven by a rise in short-distance travel

below 30 km (see Figure B.1 in the Appendix).27

In a next step, we examine how the link between firm digitalisation and mobil-

ity changes evolved over the course of the pandemic. Figure 3.3 presents a scatter

plot displaying weekly changes in mobility in each district during the observation

period. The dots are coloured based on average firm digitalisation in 2020. Greener

dots indicate a higher average level of digitalisation.

Mobility increases in the first weeks of 2020 in comparison to 2019 for most dis-

tricts. Moreover, districts that are more digital tend to be at the centre of the distri-

bution and no clear correlation between firm digitalisation and changes in mobility

is visible. We date the start of the first Covid-19 wave to March 22nd, 2020, as this is

the day the first lockdown in Germany started and many businesses, such as restau-

rants and coffee places, had to close in order to slow down the spread of the virus.

In the last week before the start of the lockdown, a large drop in mobility can be

observed. The distribution also changes and districts that are more digital tend to

be located at the bottom of the distribution, where the drop in mobility is the most

pronounced. With the onset of the lockdown, the distribution is altered again and

digital districts are gradually shifting back towards the centre of the distribution.28

After the first shock, mobility slowly increases, however, districts that are more digi-

tal are moving back to the bottom end of the distribution. They remain there during

the second lockdown when mobility starts decreasing again for most districts. In

January 2021, as the number of Covid-19 infections did not decline, the German

government implemented an additional obligation for employers to offer working

from home to employees if feasible. However, according to Figure 3.3 mobility only

declines for most districts at the very beginning of this first WFH obligation. Then,

we observe a slightly increasing trend until the period of the first WFH obligation

ends. Nonetheless, districts that are more digital still tend to show a decrease in mo-

bility in comparison to 2019. After the end of the first WFH obligation, districts that

are more digital do not show a clear reduction in mobility anymore.

Due to high infection rates, the WFH obligation as well as stricter restrictions

on contacts were re-implemented during the last quarter of 2021. As shown in the

corresponding part of Figure 3.3, however, mobility does not drop. The correlation

between mobility changes and firm digitalisation remains but it is slightly smaller

than during the first WFH obligation (perhaps because people took the second WFH

27Please note that the increase in overall mobility could also be due to the expansion of the 5G net-
work, which potentially involves smaller grid cells that could imply changes in the measurement of
short-distance mobility over time. In the later analysis, we control for the network quality by consid-
ering the area in a district that is not covered or not covered by all network providers.

28Alipour et al. (2021) observe a similar phenomenon with respect to a district’s WFH potential
and explain it by the strictness of confinement rules during the first lockdown that pushed people
into short-time work when WFH was not possible. Hence, WFH feasibility may have played only a
marginal role in reducing mobility during the first very strict lockdown.
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Figure 3.3: Average weekly change in mobility per district over the observed time frame. The change in mobility measures the difference between
mobility on a given day and the average monthly mobility in 2019 on the same day of the week. The dots are coloured based on the average degree
of firm digitalisation in a district observed in 2020. The dots are plotted on top of each other so that districts that are more digital are more visible.
The red line denotes the start of the first lockdown on March 22nd, 2020. White areas mark periods with no or few Covid-19 restrictions, grey areas
mark lockdown periods and blue areas mark periods where the government-imposed WFH obligation was additionally in place. We observe gaps
when missing data exist at the beginning of the week.
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obligation less seriously). In spring 2022, the severity of the pandemic lessened and

the second WFH obligation ended on March 20th, 2022.29 Also, many other Covid-19

restrictions were lifted around that date, such as restrictions on contacts for unvac-

cinated people. It is apparent that after the end of these restrictions, the correlation

between changes in mobility and firm digitalisation continues to decline.30

Figure B.2 in the Appendix shows average changes in mobility for different

phases of the pandemic with respect to quintiles of firm digitalisation observed in

2020 as well as in 2022 and a district’s WFH potential calculated by Alipour et al.

(2023) and used in Alipour et al. (2021), respectively. Average mobility changes

barely differ across the corresponding quintiles of a district’s WFH potential and

both firm digitalisation indicators. Moreover, higher quintiles of all three indicators

can unambiguously be linked to lower levels of mobility between the first open pe-

riod and the end of the second WFH obligation, whereas no clear pattern is visible

during the pre-pandemic phase, the first lockdown, and after the end of restrictions.

Differences may exist with respect to different phases of the pandemic because firm

digitalisation only represents a potential to reduce mobility that can be leveraged if

needed. As the pandemic’s severity as well as the strictness of restrictions fluctuated

greatly over time, the mobility-reducing potential of digital technologies may have

been fully realised only during specific periods of the pandemic.

3.5 Econometric Approach and Results

We conduct an event study based on a dynamic difference-in-differences (DiD)

design with two-way fixed effects and clustered standard errors at the district

level to provide inferential statistical insights into how the relationship between

firm digitalisation and changes in mobility evolved. In the context of the Covid-19

pandemic, similar approaches at the regional level have been conducted by Alipour

et al. (2021), Ben Yahmed et al. (2022), and Alipour et al. (2022). The link between

firm digitalisation and mobility changes is modelled as follows:

∆mobilityi,t = ∑
m ̸=Feb ′20

βm(digitalisationi × year-monthm)

+ ∑
m ̸=Feb ′20

∑
c∈C

γm
c (ci,t × year-monthm) + year-monthm

+ districti + ui,t.

(3.1)

29This day is referred to as the German Freedom Day by many media outlets.
30The outlier at the bottom of the distribution during the end of the observed time frame is ªJenaº,

which is a small district with a digital hub that is characterised by a large level of emigration. See ht

tps://www.zeit.de/gesellschaft/grossstaedte/jena-bevoelkerungsentwicklung-zuwanderung

-abwanderung [online; accessed on 5 Jan. 2023].
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Figure 3.4: Monthly change in mobility associated with digitalisation (estimated βm coef-
ficients). Our reference period is February 2020 (grey line). The red line denotes the start of
the first lockdown on March 22nd, 2020. White areas mark periods with no or few Covid-
19 restrictions, grey areas mark lockdown periods and blue areas mark periods where the
government-imposed WFH obligation was additionally in place. Confidence intervals are at
the 90% significance level.

Changes in mobility relative to 2019 are observed for district i on day t. βm repre-

sents the change in mobility in month m for a given year (measured as the difference

to our reference period which is February 2020) that is related to firm digitalisation.

We focus on firm digitalisation observed in January 2020, as this measure is exoge-

nous to the onset of the Covid-19 crisis.31 γm
c captures the parallel varying trend of

control variable c in control variable set C for each month.32 We include year-month

fixed effects to control for common shocks that affect all districts simultaneously.

Moreover, we incorporate district-level fixed effects to address potential confound-

ing factors that result from unobserved differences between districts. In addition,

observations are weighed based on their population size.

Digitalisation did significantly impact changes in mobility over the course of the

pandemic as shown in Panel A of Figure 3.4, which displays results only with digital-

isation interacted with time dummies, as well as year-month and district-level fixed

effects. Importantly, the βm coefficient is close to zero and insignificant in January

2020, i.e., the month before the reference period. Thus, we do not observe a notable

31A threat to endogeneity would be, for example, if more online services have emerged as a response
to the onset of the crisis in districts with a greater adherence to social distancing. This could be the case
because online services were more important for reaching customers in these areas.

32Please note that not all control variables vary over time. Moreover, we also interact the weekly
incidence rate and the containment measure index with time dummies, even though they are time-
varying. We do this because the sensitivity to the incidence rate as well as to Covid-19 restrictions
most likely changed over time.
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pre-trend.33 After the first Covid-19 outbreak, the effect size starts to increase until

it peaks in the last quarter of 2020. In October 2020, the average reduction in mobil-

ity is roughly 6.6 percentage points (pp) for every standard deviation of digitalisa-

tion. One explanation for the increase in ICT-related mobility reductions in the first

months of the pandemic is that the first lockdown was very strict and many people

had to stay at home anyway. Therefore, differences in firm digitalisation may have

had a less visible impact on mobility reductions at the beginning of the crisis. In the

subsequent summer months, incidence rates were low and people worked less due

to the holiday season. Hence, the mobility-reducing potential of digital technologies

might not have been fully exploited during this period. In autumn 2020, however,

incidence rates increased again, but restrictions were less severe than during the first

lockdown. In consequence, differences in firm digitalisation may have become more

critical for changes in mobility. Moreover, the effect size may also have increased

during the initial months, as digital capacities that allow for social distancing had to

be built, such as online sales channels as well as VPN and fast internet connections

(e.g., Barrero et al. 2021, Bloom et al. 2021). We assume that firms which already

had a certain digital proficiency prior to the crisis had advantages in this regard (cf.

Cariolle & Léon 2022).

In 2021, the effect size slightly decreases and levels off at around roughly -4 pp

until the end of the year. Moreover, during the second WFH obligation, the effect

size further declines. After lifting most restrictions in March 2022, the effect size

continues to diminish and becomes insignificant for most months.

When we allow for differential time trends of control variables (displayed in

Panel B of Figure 3.4), digitalisation coefficients still tend to be negative and sig-

nificant for most months of the first two years of the pandemic, however, the effect

size is notably smaller. Surprisingly, we find a significantly positive effect in April

2020 (the middle of the first lockdown period). Alipour et al. (2021) observe a very

similar phenomenon when analysing the link between a district’s WFH potential

and changes in mobility at the beginning of the crisis and controlling for covari-

ates. The authors explain the positive link by the strictness of the first lockdown, in

which many employees were put on short-time work and many (rather non-digital)

establishments had to close in order to avoid contagion. This reasoning is confirmed

by Ben Yahmed et al. (2022), who show that regions with lower digital capital had

higher short-time work usage rates at the beginning of the crisis. Thus, during this

33As our pre-crisis time frame is very short, we cannot thoroughly verify whether the assumption
of parallel trends, on which our event study is based, is fulfilled. To address this issue, we conduct
a robustness check by re-estimating our model for the beginning of the crisis using weeks instead of
months (results are presented in Figure B.3 in the Appendix and also discussed in Section 3.6). Also, in
the specification that uses weeks, we do not observe a significant pre-trend between firm digitalisation
and changes in mobility. Hence, we can assume that the parallel trends assumption holds.
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time, the widespread use of short-time work and closed factories might have re-

duced mobility especially in low-digitalised regions. This situation at the beginning

of the pandemic attenuates the association between a district’s mobility reductions

and its digitalisation level and can even lead to a positive coefficient. In fact, the sign

of our focal coefficient is only reversed, if we include time-varying effects of socio-

economic and demographic characteristics that might partially capture the effect of

a district’s feasibility to work from home on mobility (see Table 3.1, discussed in the

next paragraph).

In Panel B, we observe the maximum realised mobility reduction in September

2020, in which the differential decrease is 3.2 pp for every standard deviation of

digitalisation. Moreover, after the end of the second WFH obligation, the effect size

declines and becomes insignificant. Hence, we also find diminishing effects after the

end of restrictions when we condition on differential time trends of control variables.

Thus, we do not find evidence for long-lasting environmental improvements.

In a next step, we re-estimate Equation (3.1) but summarise differential time

trends by the different phases of the pandemic. Table 3.1 shows that the digitalisa-

tion coefficient for the post-pandemic phase is always insignificant, independent of

the considered control variables. Furthermore, the coefficient of the post-pandemic

phase is always less negative than the coefficients of previous phases in which dig-

italisation can be unambiguously linked to a decrease in mobility. The difference

to these previous phases is predominantly significant at the 10% threshold. Thus,

this specification also strongly indicates that the effect size diminishes in the post-

pandemic phase.

In the last step, we estimate the average change in mobility that can be linked

to firm digitalisation during the two years of the pandemic (from March 22nd, 2020

to March 19th, 2022), considering all covariates. Column (1) of Table B.3 in the Ap-

pendix displays a negative and significant digitalisation coefficient, indicating that

firm digitalisation can on average be associated with mobility reductions during the

crisis. The effect size is -1.68 pp. Column (2) and Column (3) show results for day-

time and nighttime mobility separately. We also find a significantly negative link be-

tween firm digitalisation and daytime mobility changes, but the effect size is much

smaller and insignificant for nighttime mobility, which is highly plausible as most

people only work and engage in commercial activities during daytime. Column (4)

presents findings only for working days and Column (5) only for weekends esti-

mated with daytime mobility changes. We find that the coefficient is slightly smaller

at weekends, which is plausible as people usually do not work during these days,

but commercial activities may continue. Another reason for a decrease in mobility
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Table 3.1: DiD results providing insights into changes in the link between mobility re-
ductions and firm digitalisation for different phases of the pandemic.

dependent variable: ∆ mobility

(1) (2) (3) (4) (5) (6) (7)

digitalisation (Jan ’20)
× (1) 1st lockdown -2.079∗∗∗ -2.050∗∗∗ 1.096+ -0.340 1.289+ -0.315 1.732∗∗

(-3.68) (-3.87) (1.79) (-0.50) (1.89) (-0.51) (2.76)
× (2) 1st open period -3.920∗∗∗ -3.902∗∗∗ -2.479∗∗∗ -2.776∗∗∗ -1.851∗∗ -2.843∗∗∗ -1.504∗

(-8.70) (-8.97) (-3.58) (-4.50) (-2.80) (-5.35) (-2.17)
× (3) 2nd lockdown/ 1st WFH o. -4.895∗∗∗ -5.142∗∗∗ -2.914∗∗∗ -2.817∗∗∗ -2.214∗∗∗ -3.328∗∗∗ -1.728∗∗

(-13.72) (-14.17) (-5.20) (-5.30) (-4.14) (-8.10) (-3.05)
× (4) 2nd open period -3.837∗∗∗ -4.046∗∗∗ -3.177∗∗∗ -3.056∗∗∗ -3.319∗∗∗ -3.408∗∗∗ -2.237∗∗

(-7.34) (-7.72) (-3.82) (-4.02) (-4.17) (-5.73) (-2.69)
× (5) 2nd WFH obligation -3.028∗∗∗ -3.296∗∗∗ -2.352∗∗∗ -1.738∗ -3.487∗∗∗ -3.186∗∗∗ -2.207∗∗

(-6.83) (-7.66) (-3.44) (-2.54) (-4.92) (-5.67) (-3.19)
× (6) post-pandemic 0.242 -0.0244 0.502 0.612 -1.542 -0.276 -0.291

(0.40) (-0.04) (0.55) (0.63) (-1.57) (-0.35) (-0.30)

year-month fixed effects x x x x x x x
district-level fixed effects x x x x x x x
pandemic controls x x
socioeconomic controls x x
infrastructure controls x x
demographic controls x x
geographic controls x x
observations 433999 433999 433999 433999 433999 433999 433999
R2 0.57 0.58 0.58 0.57 0.59 0.58 0.62

β1 = β6 0.00 0.00 0.52 0.34 0.00 0.96 0.03
β2 = β6 0.00 0.00 0.00 0.00 0.67 0.00 0.08
β3 = β6 0.00 0.00 0.00 0.00 0.32 0.00 0.02
β4 = β6 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β5 = β6 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: βm coefficients of Equation (3.1) estimated using OLS. t statistics in parentheses. Clustered
standard errors. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Observations are weighted
based on their population size. The time frame is split into different phases as presented in Figure 3.3.
The pre-Covid-19 phase is used as a reference period. Fixed effects for every phase are additionally
included. The table also includes t-tests for the equality of coefficients. (1) no control variables; (2) only
controlled for the pandemic situation; (3) only controlled for socioeconomic characteristics; (4) only
controlled for characteristics that relate to a district’s infrastructure; (5) only controlled for demographic
characteristics; (6) only controlled for geographic characteristics; (7) all control variables included.
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associated with digitalisation on weekends could be that people spread their work-

ing hours over the entire week when working from home and also work at weekends

(e.g., McDermott & Hansen 2021).

3.6 Robustness

Our event study relies on the assumption that no difference in mobility changes with

respect to firm digitalisation between districts would have occurred if the Covid-19

outbreak did not happen. To explore this issue, we re-estimate Equation (3.1) for the

period between January 7th, 2020 and May 4th, 2020, but analyse weekly instead of

monthly differences. We use the week before Shrove Monday 2020 as a reference

period because the first large-scale Covid-19 outbreaks occurred in Germany as part

of the carnival festivities in 2020. Figure B.3 in the Appendix shows that no statis-

tically significant difference in mobility changes with respect to firm digitalisation

exists for the weeks before the first large-scale outbreaks.

As firms heavily invested in digital infrastructure in the course of the pandemic,

one reason for insignificant effects in the post-pandemic phase could be that firm

digitalisation changed to such an extent in the observed time frame that we do not

find an effect in 2022 if we consider firm digitalisation observed in 2020. To explore

this issue, we conduct the same event study but with firm digitalisation measured

in 2022. Figure B.4 and Table B.4 in the Appendix show that changes in the degree

of firm digitalisation during the pandemic do not appear to cause the diminishing

effect size, as the results are generally very similar to our main results.

As stated above, one drawback of our web-based digitalisation indicator is that

we only observe the degree of digitalisation for firms that have a website. To address

this issue, we modify the way we average the degree of firm digitalisation at the

district level. To this end, we assume that there are J + K = N firms in a district

i. Firm j ∈ J has a website and firm k ∈ K does not. We conjecture that firms

without a website address available in the MUP do not have a website, i.e., they

are part of set K. Moreover, we suppose that these firms have a lower degree of

digitalisation than firms with a website and set their digitalisation score to zero.

Since firm digitalisation of firms in set K is zero, we divide the sum of our web-

based predictions by the total number of firms in a district to adjust our indicator for

firms without a website (see Equation [3.2]):

digitalisationi =
∑ji∈Ji

digitalisationji
+ ∑ki∈Ki

digitalisationki

Ni

=
∑ji∈Ji

digitalisationji

Ni
.

(3.2)
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Column (1) and Column (2) of Table B.5 in the Appendix show results with re-

spect to different phases of the pandemic, including all control variables for modi-

fied firm digitalisation observed in 2020 and in 2022, respectively. The coefficients

of both modified digitalisation indicators point in the same direction as in the es-

timation with unmodified firm digitalisation. For the indicator observed in 2020,

we find mostly insignificant effects. For 2022, however, we observe weakly signifi-

cant results until the end of the second open period and no significant effect in the

post-pandemic period.

Despite the fact that the scraping algorithm has changed between both scrap-

ing periods and the size of predictions at the firm level is not reliably comparable

between both scraping periods, we also provide insights about the extent to which

results differ if we consider the change in predictions instead of the level of firm dig-

italisation. To this end, we calculate the standardised difference between modified

firm digitalisation observed in 2020 and in 2022. This allows us to consider changes

in the degree of digitalisation for firms that have a website as well as to take the

increase in the number of firms with a website into account. Column (3) in Table B.5

displays that coefficients point into familiar directions when considering changes

in firm digitalisation at the district level, but only the coefficient for the first open

period shows a weakly significant negative effect.

Column (4) of Table B.5 shows coefficients of household broadband availability

as a proxy for the level of household digitalisation. Firm digitalisation is excluded

from the estimation. In this specification, coefficients are predominately insignifi-

cant, indicating that household broadband availability is not as relevant for changes

in mobility as firm digitalisation. Column (5) and Column (6) show results of un-

modified firm digitalisation in 2020 and in 2022 but with districts not weighted by

their population size. Digitalisation coefficients are comparable to our main results.

Moreover, in our main analysis, we conjecture that firm digitalisation leads to a

decrease in mobility via remote work and e-commerce. To provide some evidence in

favour of this mechanism, we analyse whether our web-based digitalisation indica-

tor can indeed be associated with increased firm-level remote work and e-commerce

at the onset of the crisis. For this purpose, we use the Mannheim Innovation Panel

(MIP) in 2021,34 in which German firms were asked about the percentage of em-

ployees that worked from home before the pandemic as well as during the first and

second lockdown, and whether they increased e-commerce activities at the begin-

ning of the crisis. Merging the MIP 2021 with the MUP allows us to analyse this

information for 3014 firms. Results with respect to remote work are displayed in Ta-

ble B.6 in the Appendix. We find that the share of employees that work from home

34See [data set] ZEW ± Leibniz Centre for European Economic Research (2021).
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increased by 6 to 7 pp if firm digitalisation observed in 2020 is one standard devi-

ation larger. Results with respect to e-commerce are provided in Table B.7 in the

Appendix. We also observe that firms which are more digital are more likely to have

expanded digital products, services, and sales channels with the onset of the crisis.

Furthermore, we analyse how firm digitalisation relates to the link between a

district’s WFH potential and mobility reductions. In Table B.8 in the Appendix, we

replace firm digitalisation by a district’s capacity to work from home according to

Alipour et al. (2023).35 Our results indicate that mobility reductions at daytime are

also related to a district’s WFH potential. However, the link becomes insignificant

when we additionally include firm digitalisation, whereas the latter remains sig-

nificant. This finding suggests that firm digitalisation better explains variation in

changes in mobility than a district’s WFH potential, which either could be because

firm digitalisation is the more precisely measured variable or because firm digitali-

sation has further impact channels such as e-commerce.36

3.7 Discussion & Conclusion

Given the climate crisis and sharply rising energy costs, discussions on the exploita-

tion of the mobility-reducing potential of digital technologies are repeatedly part of

the public debate. It is generally believed that the Covid-19 pandemic has acceler-

ated the utilisation of this potential. We contribute to the discussion by quantifying

the actual extent to which firm digitalisation can be linked to mobility reductions

from January 2020 to December 2022. Using German data at the district level and

considering a broad variety of control variables, we find that mobility decreased

on average by 1.68 pp in comparison to 2019 for every standard deviation of firm

digitalisation during the first two years of the pandemic. We observe the largest

mobility reductions associated with digital technologies in the last quarter of 2020.

During this period mobility decreased up to 3.2 pp for every standard deviation of

firm digitalisation if we control for differential trends of covariates and up to 6.6 pp

if we do not. Moreover, we observe that the effect size diminishes and becomes in-

significant after most Covid-19 restrictions were lifted in March 2022, suggesting no

long-lasting environmental improvements.

This result raises the question of why ICT-enabled mobility reductions declined

after the end of most restrictions. In Section 3.2, we hypothesise that even though

35For a description of the variable, see Appendix B.1.
36Also, we looked into the robustness of results with respect to spatial correlation and estimated a

spatial Durbin regression model, including spatial lags of our dependent variable and independent
variables. Our results are robust in the sense that we find a diminishing effect in the post-pandemic
period and no significant effect of spatially lagged firm digitalisation. Results can be retrieved from
the authors upon request.
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factors that promote telecommunications-transportation substitution improved dur-

ing the pandemic, mobility reductions can diminish for several reasons, which we

now discuss individually. A mentioned reason that explains why mobility increased

again, is that managers still prefer employees to work on-site as it facilitates su-

pervision and interaction. However, we consider this reason rather unlikely as

questionnaire-based surveys confirm that a large share of employees still work re-

motely. The same applies to the argument that, after the pandemic, people take

long-distance trips more often. We do not consider this to be a significant reason be-

cause after the pandemic long-distance travel is roughly at the same level as during

the second open period, in which digitalisation can still be linked to mobility reduc-

tions (see Figure B.1 in the Appendix). An additional argument is that people move

further away from their working place where rents are cheaper because they have to

commute less frequently. However, if people would move to another district a no-

table positive correlation between firm digitalisation and changes in in-commuters

should exist. In fact, we find a slightly negative correlation of -0.04 if we do not

weigh by population size and only a small positive correlation of 0.08 if we do. An-

other argument why this reason is not substantial is that if people move away, ICT-

enabled mobility reductions should decline gradually, but both, the descriptive and

the econometric analysis, strongly suggest that the relationship changed at a certain

point in time, namely when most restrictions were lifted. Figure B.1 in the Appendix

also reveals that short-distance travel increased to a greater extent than long-distance

travel. Hence, it could also be that an expansion of the 5G network caused an overall

increase in mobility, as smaller grid cells allow us to observe short-distance mobility

at a more granular level. However, this issue only affects the link between digitalisa-

tion and changes in mobility if the 5G expansion correlates with our measure of firm

digitalisation. If this is the case, ICT-enabled mobility reductions should also tend to

gradually decline, but, as stated above, the relationship changes rather abruptly.

The compensation of social and self-realisation needs during leisure time as well

as a preference for hybrid shopping remain as possible reasons for diminishing ICT-

enabled mobility reductions, which both point to Salomon’s (1986) argument that

people have an intrinsic need for mobility that prevents them from comprehensive

telecommunications-transportation substitution. Since this is likely to be the case,

we conclude that it is more desirable from a societal perspective to promote green,

carbon neutral mobility patterns, than advocating the replacement of physical travel

by digital solutions.
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Chapter 4

Digital Technology Adoption and

Energy Intensity in Manufacturing

± Firm-Level Insights
joint work with Thomas Niebel

4.1 Introduction

The pressing need to slash global carbon emissions in combination with more re-

cent disruptions to energy markets have spotlighted the importance of reducing the

energy intensity of the manufacturing sector.37 At the same time, the use of digital

technologies has strongly increased in recent decades, with ICT exerting significant

impacts on how firms produce and provide goods and services, not least given the

ever-wider adoption of the Internet of Things and big data analytics (see, e.g., Bryn-

jolfsson et al. 2021). Most likely, digital technologies have also changed the energy

use patterns of manufacturing firms and will continue to do so in the future. How-

ever, how digital technologies influence energy intensity is ambiguous. On the one

hand, ICT adoption may increase firm-level energy intensity, as digital technologies

consume electrical power. On the other hand, despite their power demand, such

technologies may reduce overall firm-level energy intensity due to energy efficiency

improvements and dematerialisation (Berkhout & Hertin 2004). For instance, digital

technologies improve the quantity and quality of information, which allows for an

improved prevention of excess production and a reduction in error rates.

Despite the ambiguous impact of ICT on energy consumption, a wide range of

industrialised countries have launched programs to promote smart manufacturing,

such as the German ªIndustrie 4.0º and the US ªSmart Manufacturing Leadership

37In 2020, for instance, the manufacturing sector accounted for 28.5% of energy demand in Germany
(German Environment Agency 2021).
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Coalitionº (SMLC) (Thoben et al. 2017), assuming large potentials for more sus-

tainable production.38 Similarly, with its ªNew Industrial Strategy for Europeº, the

EU is vigorously promoting a ªtwin green and digital transitionº (European Com-

mission 2021a). However, digital technologies could either contribute to or impair

the achievement of climate targets set forth by the Paris Agreement (see UNFCCC

2015). Therefore, it is highly important from a policy perspective to accurately as-

sess whether digital technologies and energy are actual substitutes within produc-

tion processes, and if so, whether the relationship is substantial enough to drive

sustainability.

By employing aggregated data at the industry level, previous econometric stud-

ies find strong evidence for ICT-energy substitutability within economic sectors

(Schulte et al. 2016, Taneja & Mandys 2022) as well as ICT-related electricity intensity

improvements in manufacturing industries (Bernstein & Madlener 2010). However,

the use of aggregated data has several drawbacks. For instance, it is not possible

to observe whether actual substitution between inputs within firms takes place or

whether energy intensity decreases due to a change in the composition of firms and

associated products over time. Furthermore, as production processes differ, digital

technologies may have varying energy-saving potentials depending on the industry

(Bernstein & Madlener 2010). As a consequence, different effects across industries

can result in a heterogeneity bias (see Imbs & Mejean 2015, Campello et al. 2019).

Solow (1987) states that the question of substitutability between capital and energy

can only be satisfactorily answered at the micro level, as aggregation will bias re-

sults.39 This argumentation also applies to ICT capital. The aim of this paper is,

therefore, to measure the substitutability between digital technologies and energy at

the firm level and to answer to what extent relationships change when more granular

data is considered. Additionally, we aim to identify characteristics that can explain

differences between observational levels.

To the best of our knowledge, no large-scale microeconometric study exists yet

that analyses the link between digital technologies and energy intensity. We con-

tribute to the literature by filling this gap, investigating administrative panel data on

28,600 German manufacturing firms (AFiD)40 collected between 2009 and 2017 and

provided by the Research Data Centres of the Statistical Offices of the Federation

and the Federal States (RDC). AFiD data are of particular high quality, as reporting

to the statistical offices is obligatory and the data is thoroughly checked.41 We use

38The use of sensors, computing platforms, communication technology, control and simulation
methods, data-intensive modelling, and predictive engineering within production processes is sub-
sumed under the term smart manufacturing (Kusiak 2018).

39Also, see Koetse et al. (2008) and Haller & Hyland (2014).
40Amtliche Firmendaten für Deutschland.
41See Berner et al. (2022), Kube et al. (2019), and Richter & Schiersch (2017) for highly regarded

studies on environmental issues employing AFiD data.

58



Chapter 4. Digital Technology Adoption and Energy Intensity in Manufacturing ±

Firm-Level Insights

firm-level software capital stocks as an indicator of ICT usage, which is a commonly

used indicator in firm-level studies of digitalisation (see, e.g., Almeida et al. 2020,

Bessen & Righi 2020, Barth et al. 2022).42 In comparison to other digital technologies,

such as 3D printing or cloud computing, software capital has the advantage that it

is a comprehensive indicator for the firm-level degree of digitalisation, as almost all

hardware requires additional software. Also, respective investments are observed

by German official statistics in a panel format and in monetary terms, which allows

for a thorough calculation of capital stocks.

By focusing on energy intensity as the outcome of interest and applying a

translog cost function approach for the econometric analysis, we enhance compara-

bility to previous findings at the industry level. We find that a one per cent increase

in software capital relates to a decrease in energy intensity of 0.003% at average

relative energy costs, i.e., for the average firm. Hence, we also find evidence for

ICT-energy substitutability ± however, at a much smaller magnitude than previous

industry-level studies suggest. Our results are robust to different sample restrictions

as well as software capital stock modifications. To further analyse the robustness of

firm-level results, we conduct a reduced form estimation with a selection of vari-

ables based on a CES production function. The respective result leads to the same

conclusion, which is that the use of digital technologies cannot be linked to substan-

tial energy intensity improvements at the firm level, even though substitutability is

suggested.

Moreover, we contribute to the literature by showing that the link between ICT

and energy intensity entails properties that can lead to biased estimates at the ag-

gregate level. We find that effects are heterogeneous across industries and that the

link is rather statistically significant in industries that are more energy-intensive. We

explain this phenomenon by pointing to the larger incentives to reduce energy con-

sumption in these industries (whether using digital or non-digital technologies). As

differences are systematic in the sense that they relate to different levels of energy

intensity, they can potentially bias results at the industry level. Moreover, we find

larger differences between than within firms. Hence, firms with a high software cap-

ital stock are on average less energy-intensive, but when the software capital stock

changes within a firm, effects have a much smaller magnitude. This phenomenon

can result in a large omitted variable bias if firm characteristics are not appropriately

considered. Additionally, it can contribute to an aggregation bias if one does not ad-

equately control for changes in the composition of firms and associated products.

Both issues are highly relevant for future studies on ICT-energy substitutability as

they point to problems that can arise from aggregation.

42We use the term digitalisation synonymously to digital transformation.
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The remainder of this paper is structured as follows: Section 4.2 summarises re-

lated literature and Section 4.3 presents theoretical frameworks. Section 4.4 describes

the data and provides descriptive statistics. Our results are reported in Section 4.5

and discussed in Section 4.6. Section 4.7 concludes.

4.2 Related Literature

ICT adoption may influence overall energy use and intensity in various ways.43 Us-

ing aggregated data to measure energy intensity improvements within manufactur-

ing and service industries, studies come to mixed results but tend to support the hy-

pothesis that digital technologies are associated with a decrease in energy intensity.

Using a CES production function, Collard et al. (2005) investigate the relationship be-

tween ICT and energy use in the French service sector from 1986 to 1998. The authors

find that electrical energy intensity decreased with the diffusion of communication

devices, while it increased with the use of computers and software. Applying the

same approach, Bernstein & Madlener (2010) analyse the impact of ICT capital on

electrical energy intensity in five manufacturing industries and eight EU countries

from 1991 to 2005. Even though the effect seems to depend on the industry-specific

production processes, the authors conclude that the diffusion of ICT is generally

linked to electricity intensity improvements.

Analysing 27 industries in ten OECD countries between 1995 and 2007 and using

a translog cost function approach, Schulte et al. (2016) conclude that there is strong

evidence for substitutability between ICT capital and energy. Additionally, a sample

split into the manufacturing and service sector shows only significant effects for the

manufacturing sector. Employing a translog cost function approach on aggregated

data, but analysing disaggregated ICT capital with quantile regressions, Taneja &

Mandys (2022) confirm economically relevant substitution behaviour for 13 coun-

tries and 28 industries for the same time frame.44

While an empirical link between digital technologies and energy intensity seems

to exist, questions surround the nature of this relationship. Berkhout & Hertin

(2004), Hilty et al. (2006), and Lange et al. (2020) develop frameworks that posit po-

tential impact mechanisms by which ICT influences environmental outcomes. Based

on these frameworks, the net effect consists of three different channels:45

43Energy intensity measures the actual amount of energy used to generate one unit of output, not
necessarily considering differences in prevailing conditions, e.g., the type of product or local weather
(cf. IEA 2022), whereas ªenergy efficiency is a generic termº and ªrefers to using less energy to produce
the same amount [of output]º (Patterson 1996, p. 377).

44We have to acknowledge that Taneja & Mandys (2022) find no significant effect for software capital
when controlling for other ICT equipment.

45Please note that within the framework of Lange et al. (2020), there are four different channels.
Instead of behavioural and structural effects, growth effects and tertiarisation effects exist.
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(I) Direct (Berkhout & Hertin 2004, Lange et al. 2020) or first-order effects (Hilty

et al. 2006) relate to the energy and resource consumption during the production,

usage, and disposal of ICT. Accordingly, direct effects have a negative environmental

impact and increase energy and resource use.46

(II) Indirect (Berkhout & Hertin 2004), second-order effects (Hilty et al. 2006) or

energy efficiency improvements (Lange et al. 2020) refer to changes in consump-

tion due to the application of digital technologies. Due to improvements in energy

efficiency as well as substitution by dematerialised solutions, digital technologies

have the potential to decrease energy intensity.47 For example, big data and artificial

intelligence allow for an improved prediction of demand and may prevent excess

production. They also help to reduce error rates. Simulation methods as well as 3D

printing may drastically reduce resource and energy use associated with the design

and development of new products (OECD 2017a, IEA 2017). Hence, even though

digital technologies consume energy, they can have a positive net effect on the firm,

especially if digital systems serve as a substitute for rather than a complement to

existing solutions (Berkhout & Hertin 2004).

(III) Structural and behavioural impacts (Berkhout & Hertin 2004) or third-order

effects (Hilty et al. 2006) describe fundamental changes associated with the use of

digital technologies. For instance, a decrease in overall energy use due to energy ef-

ficiency improvements is only possible when these are not largely offset by rebound

effects. Moreover, structural and behavioural impacts have no clear direction of im-

pact. For example, additional consumption resulting from ICT-induced economic

growth may lead to increased energy and resource consumption, while shifts to less

energy-intensive products and services may contribute to environmental improve-

ments (see Lange et al. 2020).

These frameworks illustrate the complexity of the relationship between digital

technologies and environmental improvements.48 Accordingly, accurately identi-

fying the magnitude of ICT-related energy savings within production processes is

not trivial. According to Schulte et al. (2016), substitutability between ICT and en-

ergy is determined by the net effect between an energy use effect and an energy

efficiency-enhancing effect (comparable to direct vs. indirect effects within the pre-

sented frameworks). The more aggregated the data, however, the more difficult it

becomes to disentangle direct and indirect effects from structural or behavioural im-

pacts. By employing industry-level data, for instance, it is not possible to determine

46For examples of findings on the energy consumption of YouTube, see Preist et al. (2019); for the
cryptocurrency Bitcoin, see Stoll et al. (2019), Corbet et al. (2021), and Jones et al. (2022); and for data
centres, see Masanet et al. (2020).

47For instance, see Zhang et al. (2019), Ghobakhloo & Fathi (2021) or Friedrich et al. (2021) for studies
that qualitatively discuss ICT-enabled energy savings in manufacturing.

48Not without reason do studies on overall trends come to different conclusions. See Table 1 in
Chimbo et al. (2020).
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whether actual changes in inputs are taking place or whether only the composition

of firms and associated products is changing (Solow 1987).49

Despite arguments that technological substitutability between capital and en-

ergy can only be satisfactorily measured at the micro level (Solow 1987, Koetse et al.

2008, Haller & Hyland 2014), empirical studies at the firm level analysing the link

between ICT usage and energy intensity are scarce. While considering the few

firms that apply industrial robots in order to assess changes in coal consumption,

Huang et al. (2022) find improvements in coal intensity. Further firm-level insights

are based on questionnaire-based surveys with non-technical self-assessments. For

instance, in a survey conducted in 2020, 1,700 German manufacturing and service-

sector firms were asked about measures in the areas of energy efficiency and dig-

italisation (Bertschek et al. 2020). Energy savings was the least frequently named

reason for conducting ICT projects. Moreover, most manufacturing firms stated that

their absolute and (relative) ICT-related energy use remained constant during the

last three years. The largest study in this regard was conducted on behalf of the

European Commission in 2021. For this purpose, 10,006 firms were interviewed. In

this survey, firms confirmed that improving the environmental footprint is not the

dominant motivation for implementing digital technologies. Nonetheless, 70% of all

firms reported energy savings due to their usage.

4.3 Theoretical Frameworks

Previous industry-level studies employing production function approaches to mea-

sure the link between ICT and energy intensity apply a translog cost function ap-

proach, such as Schulte et al. (2016) or Taneja & Mandys (2022), or, alternatively,

a CES production function approach, such as Collard et al. (2005) or Bernstein &

Madlener (2010). In our firm-level analysis, we also focus on a translog cost function

approach for two reasons. Firstly, translog cost functions have the advantage that

they are more flexible than CES production functions, i.e., they make no restrictive

assumptions on estimated substitution behaviour and on the optimal path of input

factor adjustments induced by price changes (Christensen et al. 1973, Koetse et al.

2008, Wurlod & Noailly 2018). Secondly, previous industry-level estimates employ-

ing a translog cost function are not only limited to electricity but to overall energy.

We, therefore, believe that the translog cost function approach is better suited for a

direct comparison between different levels of aggregation.

However, in comparison to the CES production function formulated by Collard

et al. (2005), the employed translog cost function has the disadvantage that energy

intensity is not used directly as a dependent variable. To provide confidence that we

49Moreover, further aggregation issues can occur (see , e.g., Imbs & Mejean 2015).
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are measuring actual changes in energy intensity, we also estimate a reduced form

CES production function in the later analysis to show that results derived at the firm

level are robust to the two theoretical approaches. We will explain both ± the translog

cost function and the CES production function approach ± in the following.

4.3.1 Translog Cost Function

The applied dual translog cost function approach is based on the seminal work of

Christensen et al. (1973), Berndt & Wood (1975), Brown & Christensen (1980), and

Berndt & Hesse (1986). Schulte et al. (2016) were the first to adjust a translog function

to measure substitution behaviour between ICT and energy. In the spirit of Shep-

hard (1953), Diewert (1971), and Berndt & Wood (1975), Schulte et al. (2016) apply

the duality theorem. Accordingly, a cost function instead of a production function is

estimated. The cost function is twice differentiable, linearly homogeneous, concave

in factor prices, and corresponds to a given level of output Y. Different forms of cap-

ital are considered as quasi-fixed factors and materials as weakly separable, which

results in a restricted variable cost (VC) function that depends on the following pa-

rameters:

VC = f (PE, PL, KICT, KN , Y, t). (4.1)

E indicates energy, L labour, and P respective prices. KICT relates to ICT capital

and KN to tangible (non-ICT) capital. Disembodied technological change is captured

by time t. Variable costs consist of energy and labour costs (VC = PEE + PLL).

Equation (4.1) can be approximated by a translog specification (Schulte et al.

2016):

lnVC =β0 + βYlnY +
1
2

βYYln(Y)2 + βTt +
1
2

βTTt2 + ∑
k

βklnPk

+ ∑
m

βKm lnKm +
1
2 ∑

k
∑

l

βkllnPklnPl +
1
2 ∑

m
∑
n

βKmKnlnKmlnKn

+ ∑
k

βkYlnPklnY + ∑
m

βKmYlnKmlnY + ∑
k

∑
m

βkKmlnPklnKm

+ ∑
k

δkTlnPkt + ∑
m

δKmTlnKmt + δYTlnYt,

(4.2)

with k, l ∈ {E, L} and m, n ∈ {ICT, N}. Applying Shephard’s lemma, assum-

ing symmetry (βEL = βLE), and homogeneity of degree one (βEL = −βEE) allows

estimating the following equation (see Christensen et al. [1973] and Berndt & Wood

[1975]), in which the share of energy costs in variable costs, SE, is a function of the
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energy price relative to the labour price, time, output, as well as ICT and non-ICT

capital intensity:50

∂lnVC
∂lnPE

=
PEE
VC

= SE =βE + βEEln
(

PE

PL

)

+ βEKICT ln
(

KICT

Y

)

+ βEKN ln
(

KN

Y

)

+ β∗
EYlnY + δETt.

(4.3)

Under the zero profit condition, total costs equal the production price, PY, times

output. The elasticity of energy intensity with respect to ICT capital can be obtained

by approximating total costs by variable costs (VC ≈ PYY). Then, multiplying SE by

PY/PE allows observing that E/Y = (PY/PE)SE (cf. Welsch & Ochsen 2005, Ma et al.

2008, Wurlod & Noailly 2018). Using this property enables the calculation of the

elasticity for energy intensity, assuming no effect of software investments on prices:

ϵE/Y,KICT
=

∂ln(E/Y)
∂lnKICT

=
∂(E/Y)
∂lnKICT

Y
E

=
∂ ((PY/PE) SE)

∂lnKICT

Y
E

=
∂SE

∂lnKICT

Y
E

PY

PE
= βEKICT

PYY
PEE

= βEKICT

1
SE

=
βEKICT

SE
.

(4.4)

4.3.2 CES Production Function

To test the robustness of results derived by the translog model, we estimate a re-

duced form of a CES production function in the spirit of Collard et al. (2005) and

Bernstein & Madlener (2010). This approach has the advantage that energy intensity

is directly considered as a dependent variable. It is a nested approach with 3-inputs

(KL; E) and constant returns to scale, in which output is generated by:

Y =
[

ω {AE}
σ−1

σ + (1 − ω) {F}
σ−1

σ

]
σ

σ−1
(4.5)

with ω ∈ [0, 1]. Tangible capital and labour are combined to form a composite

input F. σ > 0 captures the elasticity of substitution between energy and the cap-

ital/labour nest. A denotes the energy-related level of technology, which evolves

as function of ICT capital relative to tangible capital and disembodied technological

change:

lnA = θ0 + θICTln
(

KICT

KN

)

+ θtt. (4.6)

50β∗EY = βEY + βEKN + βEKICT ; Schulte et al. (2016) scale capital by output to be consistent with
literature that measures effects of ICT on labour and output. Consequently, βEY has to be modified to
β∗EY .
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By assuming perfect competition and price-taking behaviour of firms, which im-

plies that the unit of the cost function gives the price of output, we obtain the fol-

lowing equation after applying Shephard’s lemma, taking logarithms, rearranging,

and plugging Equation (4.6) into Equation (4.5):51

ln
(

E
Y

)

= σln(ω)− σln
(

PE

PY

)

+ (σ − 1)(θ0 + θICTln
(

KICT

KN

)

+ θtt). (4.7)

Accordingly, energy intensity can be expressed as a function of the energy-

related level of technology and the energy price relative to the production price.

The equation is later estimated in reduced form.

4.4 Data

Our analysis focuses on firm-level data on the German manufacturing sector (AFiD)

collected between 2009 and 2017 and provided by the RDC. Within our data, firms

are assigned to the manufacturing sector if they have the highest value added in

associated industries.

4.4.1 Data Sources

We combine two AFiD data sets merged by internal identifiers from the RDC:

(A) The ªAFiD Panel Industrial Unitsº, which contains two sub-data sets that are

relevant for our analysis:52 The Census on Investment includes information

about investments in tangible and intangible assets. It is a full census cover-

ing all German firms in the manufacturing sector with 20 employees or more.

From this survey, we retrieve our indicator for the firm-level degree of digitali-

sation, which is software capital. Information on software investments is avail-

able from 2009 onward. We include information on investments in property,

plant, and equipment from 2003 onward. This allows considering investments

in tangible assets before the observation period and improves the calculation of

respective capital stocks.53 The second applied sub-data set is the Cost Struc-

ture Survey. It contains comprehensive annual information at the firm level

about produced output as well as inputs, such as energy costs, labour costs,

and the number of employees. The Cost Structure Survey is a stratified, partly

51Please note that we follow Van der Werf (2008) and Lagomarsino (2020) by considering the loga-
rithmised ratio between the energy and output price.

52See [data set] Research Data Centres of the Statistical Offices of the Federation and the Federal
States (2019a).

53Software investments have a very high depreciation rate. Therefore, not observing such invest-
ments before the observation period is not a substantive issue.
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rotating panel. Firms with 500 employees or more are fully covered in the sur-

vey, whereas firms with fewer employees are generally observed for at least

four consecutive years if they are surveyed.54

(B) The ªAFiD Module Use of Energyº contains detailed information about the use

of different energy sources at the plant level.55 The data set is also a full census

including all German manufacturing plants with 20 employees or more. For

information on firm-level energy use, we aggregate plant-level information for

each firm.56

Additionally, we add information from several data sources. We combine AFiD

with gross value added deflators from Eurostat at the two-digit industry level

(NACE Rev. 2 classification) to calculate real output. Annual software deflators

are also taken from Eurostat. This allows us to consider real software investments

and thus to take into account quality improvements in software. EU KLEMS data

is added (also at the two-digit industry level) to receive information about capital

growth rates, depreciation rates, as well as tangible capital deflators. The data are

also supplemented by the yearly producer price index maintained by the German

Federal Statistical Office (Destatis) as well as information on the prices of different

energy carriers. For a detailed overview of supplementary data, see Table C.1 in the

Appendix.

4.4.2 Variable Description

Based on the raw data described in Section 4.4.1, we conduct the following addi-

tional calculations. We define overall firm-level energy use (E) as the sum of the

energetic use of different energy carriers plus electricity use (in kWh).57 The de-

scriptive statistics in Table 4.1 show that mean energy use is above 30 GWh and that

the median fluctuates around 2 GWh. Hence, the distribution of energy use is highly

skewed; some firms consume far more energy than the large body of firms. Energy

costs (PEE) can be directly retrieved from the Cost Structure Survey. Furthermore,

54Accordingly, our entire observation period can be divided into three sequences (2009-2011, 2012-
2015, 2016-2017).

55See [data set] Research Data Centres of the Statistical Offices of the Federation and the Federal
States (2019b).

56One minor drawback is that we do not observe the firm units that are assigned to the service sector.
Hence, when we observe software investments, it may be that they were made in a service sector unit
and we cannot observe corresponding changes in energy use in that unit. However, service sector
sites consume a much smaller fraction of energy compared to plants in the manufacturing sector. We
also do not expect to see large differences in the degree of digitalisation within firms, as digitalisation
projects are most likely implemented for entire companies.

57We consider the following energy carriers: biomass, natural gas, coal, heating oil, district heat,
liquid gas, and the category ªother energy sourcesº. Additionally, we subtract self-generated electricity
by means of the listed energy carriers from electricity use to avoid double counting when calculating
overall energy use.
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the analysis requires information on energy prices, which are not directly available

in AFiD. Following Haller & Hyland (2014), we divide energy costs by energy use

(E) to receive information on the energy price for each firm (PE; in e/kWh). The

energy price borne by most firms is between 0.02 and 0.20 e/kWh, which seems

plausible considering industry prices for different energy sources.58

Gross wages and salaries, statutory contributions, and other social insurance

costs are summarised to receive information on labour costs (PLL). The amount

of full-time equivalents (L) is measured by the total number of employees adjusted

for part-time employees. In the analysed time frame, firms employ slightly more

than 270 full-time equivalents on average. The yearly wage is derived by dividing

labour costs by full-time equivalents. For hourly wages, we adjust values by the av-

erage yearly hours worked in 2016 in German manufacturing.59 The average hourly

labour price (PL) is e29.60

Variable costs (VC) are calculated based on the sum of energy and labour costs.

SE measures the share of energy costs in variable costs; SL the share of labour costs.

The average share of energy costs in variable costs is around 0.09, which is compara-

ble to the average industry-level share derived by Schulte et al. (2016). Output (Y) is

measured by real value added based on information specified in the Cost Structure

Survey and deflated using Eurostat data at the two-digit industry level.61

Software capital (KSW) approximates the firm-level degree of digitalisation and

tangible capital, i.e., property, plant, and equipment, represents the non-software

capital stock (KN).62 Please note that we only account for purchased software capital

and firms may also use software that is free of charge. We deflate capital stocks based

on Eurostat (software) and EU KLEMS (non-software) data. Furthermore, the per-

petual inventory method (PIM) is applied to estimate capital stocks (Griliches 1980,

Berlemann & Wesselhöft 2014, Lutz 2016, Löschel et al. 2019, Dhyne et al. 2021a). If

calculated correctly, PIM allows us to measure the total productivity-relevant capi-

tal by considering previous investments and depreciation rates alongside current in-

vestments.63 Moreover, PIM requires assumptions about initial capital stocks, which

58To control for outliers, we exclude the highest and lowest percentile with respect to the energy
price from our analysis. The resulting price distribution is displayed in Figure C.1 in the Appendix.
See Figure C.2 in the Appendix for a comparison with the average energy price calculated using prices
for different energy sources (if available) from official statistics.

59See https://iab.de/en/daten/iab-working-time-measurement-concept/ [Online; accessed
on 11 Apr. 2023].

60The value is slightly higher in statistics adjusted for the overall population (https://www-genes
is.destatis.de/genesis/online?language=en&sequenz=tabelleErgebnis&selectionname=6243

1-0001 [Online; accessed on 11 Apr. 2023].
61We do not subtract energy costs to calculate value added, as capital, energy, and labour (KLE) are

part of the optimisation problem in the later analysis. Materials are considered as weakly separable.
62Leasing capital is excluded.
63The depreciation rate of software capital in our preferred specification is 31.5%, as in EU KLEMS.

We also calculate an average depreciation rate for non-software capital based on EU KLEMS.
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are calculated based on average investments in the first three observation periods as

well as depreciation and capital growth rates. Consequently, we only consider ob-

servations that are observed at least three years in a row.64 Our calculated capital

stocks confirm the findings of Kaus et al. (2020), who analyse tangible and intangi-

ble capital within the German manufacturing sector. Software capital (as a form of

intangible capital) is growing faster in comparison to tangible capital. Furthermore,

both distributions of respective investments are heavily skewed and lumpy, but soft-

ware investments show these characteristics to a greater extent. For instance, we find

approximately 25% of firms without any software investments in the analysed pe-

riod. Accordingly, we add e1 to every software capital stock, as this allows us to

take the logarithm when software capital stocks are zero.65 To evaluate whether the

estimated software capital stocks are a sufficient proxy for the firm-level degree of

digitalisation, we compare our results with the Survey on the Use of Information

and Communication Technologies in Companies (ICT survey, 2012 ± 2017), which is

a stratified random sample and contains more detailed information on ICT usage.66

Figure 4.1 shows mean software capital intensity, i.e., the amount of software capital

used to generate one unit of output, for firms in which at least 20% of employees use

a personal computer (PC) and for firms in which less than 20% use a PC. Firms have

a much higher software capital intensity when at least every fifth employee uses

a PC. Figure 4.2 illustrates software capital intensity by the firm-level maximum

data transmission rate, i.e., the internet speed. The figure shows that the higher

the Mbit/s range, the higher the mean software capital intensity. Consequently, a

clear relationship between software capital and the use of other digital technologies

exists.67

Additionally, the following control variables are included in the analysis. We

add federal state dummies, industry dummies at the two-digit level, and dummies

capturing different size classes, measured by the number of employees. We consider

six different size classes: (1) 20 to 49 employees, (2) 50 to 99 employees, (3) 100 to

249 employees, (4) 250 to 499 employees, (5) 500 to 999 employees, and (6) 1,000 or

more employees. Moreover, we generate a dummy indicating whether a firm has

multiple units. By means of the electric energy consumption and the ratio of electric

energy costs to value added, we approximate whether firms receive a full or a partial

64For a detailed description of PIM see C.2.
65We consider this issue in various robustness checks presented in C.6.1.
66The ICT survey is additionally provided by the [data set] Research Data Centres of the Statistical

Offices of the Federation and the Federal States (2019c). We are able to match 16,813 observations from
our sample with the ICT survey. Unfortunately, different questions are asked every year and there is a
large share of missing values, so the number of observations is much lower for each survey item.

67See C.3.4 for an analysis of whether industry-level and regional differences with respect to software
usage are plausible.

68



Chapter 4. Digital Technology Adoption and Energy Intensity in Manufacturing ±

Firm-Level Insights

0.002

0.004

0.006

0.008

0.010

0.012

m
ea

n 
of

 so
ftw

ar
e 

ca
pi

ta
l i

nt
en

sit
y

PC <20 
PC >20 

N = 3717

0

0.005

0.01

0.015

m
ea

n 
of

 so
ftw

ar
e 

ca
pi

ta
l i

nt
en

sit
y

<2 MBit/s 2- <10 MBit/s 10 - <30 MBit/s 30 - <100 MBit/s >100 MBit/s 

N = 8709

Figure 4.1: Software capital intensity by
firms’ PC usage. The brighter grey relates
to firms in which 20% of all employees or
more use a computer. Error bars relate to
confidence intervals at the 95% level.

Figure 4.2: Software capital intensity by
maximum data transmission rate. Error bars
relate to confidence intervals at the 95%
level.

exemption from the EEG levy.68 Accordingly, we include two dummies relating

either to a full or partial exemption. Also, a dummy that controls for whether a firm

produces energy is included, as this may affect energy costs as well. Last but not

least, we include a dummy that is set to one if a firm is trading commodities.

Although AFiD data are the cornerstone of many official German governmental

statistics and several plausibility checks are conducted by Destatis, we find small

shares of implausibly small or high values. To address this, we trim our sample by

the labour and energy price at the 1th and 99th percentile, and winsorise all growth

rates at the 0.1th and the 99.9th percentile. We also exclude firms with zero labour,

energy or non-software capital use, as well as firms with a negative output. Ad-

ditionally, we exploit the panel structure to identify outliers and exclude firms for

which the standard deviation relative to the median of input-output ratios as well as

labour and energy prices is higher than 100.

4.4.3 Additional Descriptive Statistics

After the described prepossessing steps our sample includes 123,362 observations,

28,600 firms in total, and on average about 13,700 firms per year (see Table C.2 in

the Appendix). Around 13% of these firms have multiple units. Moreover, we apply

the first-difference estimator in the subsequent statistical analysis. This reduces our

main estimation sample to 89,653 observations.

68A special surcharge used to support the expansion of renewable energy. The government grants
exemptions to some energy-intensive firms in order to avoid harming their international competitive-
ness.
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Table 4.1: Summary statistics of selected variables.

(1) (2)
sample statistics in levels 100 × ∆ln*

variable description mean median sd mean median sd

E energy use in kWh 33,331,227.84 2,021,331.63 405,383,675.97 2.23 1.76 25.28
PEE energy costs in e 1,848,518.09 245,000.00 14,004,206.33 3.81 2.93 29.79
L full-time employees 273.15 88.50 1,957.65 1.28 0.86 11.88
PLL labour costs in e 16,269,208.85 3,778,850.00 158,115,569.30 3.80 3.75 11.46
PE energy price per kWh in e 0.13 0.11 0.09 1.57 1.32 35.98
PL hourly labour price in e 28.74 27.99 9.17 2.52 2.46 11.24
KSW software capital in e 258,458.48 13,389.11 2,703,507.41 18.05 0.00 133.26
KN tangible capital in e 20,110,799.14 3,011,534.63 204,487,549.41 2.11 −1.50 18.06
Y output in e 22,929,312.43 5,060,662.00 213,216,121.19 3.82 3.31 27.48
Y/L output per employee in e 65,881.09 57,474.03 42,847.85 2.54 1.94 29.16
E/Y energy intensity in kWh/e 1.07 0.38 3.86 −1.59 −1.70 36.24
KSW /Y software capital intensity 0.01 0.0024 0.06 14.37 −9.56 136.68
KN/Y tangible capital intensity 0.93 0.54 4.50 −1.64 −3.33 33.02
VC variable costs in e 18,117,726.95 4,190,796.00 165,630,044.11 3.71 3.62 11.35
SL labour cost share 0.91 0.94 0.10 0.05 0.02 2.24
SE energy cost share 0.09 0.06 0.10 −0.05 −0.02 2.14

Observations 123,362 89,653

*Please note that all change rates are in per cent except those of SE and SL, which are not logarithmised. Respective
change rates are, therefore, denoted in percentage points.
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An overview of the mean, median, and standard deviation for selected variables

can be found in Table 4.1. Values are also presented for annual change rates (100 ×

∆ ln).

Column group (1) displays the sample statistics in levels. Mean software capi-

tal intensity is 0.01 and median software capital intensity is 0.0024. In comparison,

mean tangible capital intensity is 0.93 and median tangible capital intensity is 0.54.69

Column group (2) shows descriptive statistics for growth rates. Mean growth

rates for energy use, labour use, tangible capital, and software capital are positive.70

Hence, the absolute use of input factors grows over time at the firm level. Moreover,

the growth rate for output is also positive. Looking at intensities, we see that labour,

energy, and capital intensity decrease over time. In contrast, software capital inten-

sity strongly increases. It has an average growth rate of 14.37%. At 18.05%, unscaled

software capital rises even more sharply. As a clear relationship between software

usage and the use other digital technologies exists, we can assume that overall ICT

capital also grew strongly within the analysed time frame. Furthermore, the descrip-

tive statistics of growth rates point to an issue: Median software capital growth is

zero and median growth rates for software capital intensity, tangible capital, and tan-

gible capital intensity are negative. Negative median growth rates can be explained

by the fact that we generally observe a highly skewed distribution of investments. In

addition, we measure a zero median software capital stock growth rate because we

allow for firms with no software investments at all. Related software capital stocks

remain constant at one (obligatory) euro. Thus, they cannot shrink and their growth

rate is zero. These observations are potentially problematic for the econometric anal-

ysis. Therefore, a considerable share of our robustness checks address this issue (see

C.6.1).

4.5 Econometric Analysis

4.5.1 Translog Cost Function

First, we estimate the translog cost function. A potential omitted variable bias with

respect to unobserved firm characteristics is a common problem in empirical stud-

ies. To address this issue, we remove time-invariant firm-specific fixed effects from

the estimation by taking first differences from Equation (4.3). Accordingly, ∆ui,t cap-

tures the time-specific deviation of firm i. Moreover, we add a dummy variable for

every year to capture disembodied technological change at time t. To be accurate,

69Ratios are comparable to aggregated EU KLEMS data.
70It should also be noted here that standard deviations for all logarithmic growth rates are larger

than those of aggregated industry-level data.
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we replace ICT capital (KICT) by software capital (KSW). Equation (4.8) denotes the

empirical specification of the translog model:71

∆SEi,t =β̂EE∆ln
(

PE

PL

)

i,t
+ β̂EKSW ∆ln

(

KSW

Y

)

i,t
+ β̂EKN ∆ln

(

KN

Y

)

i,t

+ β̂∗
EY∆lnYi,t +

T

∑
t=2010

δ̂Etti,t + ∆ui,t.

(4.8)

Table 4.2: First-difference estimation results of Equation (4.8).

dependent variable: ∆ SE

(1) (2) (3) (4) (5)

△ln( PE
PL
) 0.0285∗∗∗ 0.0284∗∗∗ 0.0295∗∗∗ 0.0251∗∗∗ 0.0288∗∗∗

(62.02) (169.56) (51.02) (35.08) (53.34)
△ln( KSW

Y ) -0.000245∗∗∗ -0.000238∗∗∗ -0.000206∗∗∗ -0.000214∗∗∗ -0.000220∗∗∗

(-5.20) (-5.19) (-4.47) (-4.11) (-3.85)
△ln( KN

Y ) -0.0013∗∗∗ -0.0015∗∗∗ -0.0013∗∗ -0.0011 -0.00181∗∗

(-3.43) (-4.42) (-3.27) (-1.31) (-3.28)
△ln(Y) 0.0017∗∗ 0.0013∗∗∗ 0.0010 0.0014 0.00151∗

(3.21) (3.32) (1.48) (1.43) (2.15)

ϵE/Y,KSW
-0.0069 -0.0067 -0.0059 -0.0062 -.0062

ϵE/Y,KSW
at SE -0.0026 -0.0026 -0.0022 -0.0024 -.0024

Year x x x x x
Industry x x x x
Multi-unit x x x x
Federal state x x x x
Size class x x x x
EEG exemption x x x x
Producer x x x x
Trading x x x x
Firm x
Observations 89,653 89,653 59,405 25,715 89,653
Adjusted R2 0.267 0.271 0.290 0.250 0.267

Notes: Column (1): Basic specification. Column (2): Preferred specification including control
variables. Column (3): Only changes in software capital stocks after observed in their third
period or later. Column (4): Only increasing software capital stocks. Column (5): Additional
firm-level fixed effects. t statistics in parentheses. First-difference estimation. Clustered stan-
dard errors. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. ϵEKSW displays the average elasticity for
energy intensity. ϵEKSW at SE displays the elasticity for energy intensity at the average of rela-
tive energy costs.

Column (1) of Table 4.2 presents results for the baseline specification, not in-

cluding any additional control variables. Column (2) includes control variables as

described in Section 4.4.2. It is our preferred specification. Both columns show very

similar results.72 The coefficient for software capital intensity (hereafter ªsoftware

71We allow for clustering of observations at the firm level when calculating the standard errors of
estimates.

72If Schulte et al.’s (2016) and Taneja & Mandys’s (2022) estimated coefficients point in the same
direction, this studies estimated coefficients do so as well.
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coefficientº) is negative and significant at a high threshold, but its effect size is much

smaller than in previous industry-level estimates. Calculating the energy intensity

elasticity by Equation (4.4) leads to the following result: An increase in software

capital of one per cent is associated with a 0.007% decrease in energy intensity on

average. The energy intensity elasticity for the average firm, i.e., at average relative

energy costs, is −0.003%.73 Consequently, the relationship is highly inelastic in this

assessment of microeconometric data.

Comparing these results to previous industry estimates reveals large differences

between both levels of aggregation. The results derived by Schulte et al. (2016) al-

low us to compute the industry-level energy intensity elasticity at average relative

energy costs, which is −0.173 (ϵE/Y,KSW
at SE).74 We consider this a fundamental

difference from the firm-level value of −0.003.

One reason why effects at the firm level have a smaller magnitude could be a

potential measurement error. For instance, initial capital stocks may be biased and

investments need to be considered for a couple of periods to calculate reliable cap-

ital stocks. To shed light on whether the effects are smaller due to this reason, we

estimate the translog model only with firms observed in their third period or later.

Column (3) shows that, when exclusively considering more reliable software capi-

tal stocks, the magnitude of the software coefficient is consistent with our preferred

specification.75

Additionally, we may observe a misleading correlation. In general, if firms do not

invest, their capital stock is depreciated. Hence, it decreases automatically. If espe-

cially those firms that do not invest, increase their relative energy use, we would also

measure negative capital intensity coefficients. However, this result would be decep-

tive, as we cannot relate energy intensity improvements to investments. To analyse

whether this is an issue with respect to software usage, we re-estimate Equation (4.8)

and only consider observations for which the software capital stock is increasing.

Column (4) shows that if only increasing software capital stocks are considered, the

effect size is comparable to our preferred specification and the software coefficient

is significantly negative at a high threshold. In Column (5), we additionally control

for firm-level fixed effects. The software coefficient remains highly significant at a

comparable magnitude to our preferred specification.76

The fact that the energy intensity elasticity is small does not necessarily mean

that it is not relevant, as software capital grew strongly in our sample in the observed

73The difference between the average effect and the effect at the average can be explained by the
skewed distribution of relative energy costs. See Table C.3 in the Appendix.

74The coefficient for ICT capital derived by Schulte et al. (2016) is −0.016. It is divided by the average
energy cost share at the industry level, which is 0.092.

75For further robustness checks with respect to endogeneity issues caused by a potential measure-
ment error of our main variable of interest see C.6.1.

76Besides, including firm-level fixed effects marginally downsizes the R-squared. That is why, we
consider the specification without fixed effects as our preferred specification.
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time frame. Hence, software capital may still relate to considerable energy intensity

improvements due to its large growth rate. To discuss this, we perform a back-of-

the-envelope calculation. We multiply the average elasticity by the average annual

growth rate of software capital,77 which is 18.05%. This translates into an annual

decrease in energy intensity of 0.12%, using the average elasticity of our preferred

specification. Over ten years this would result in energy intensity improvements

of roughly 1.5%, assuming that software capital would continue to grow at such a

high rate and the relationship between software and energy remains stable. This

shows that software investments do relate to energy intensity improvements and

cost savings to some extent, but are not a key driver for achieving sustainability

targets.

A further question is whether it would be economically rational to invest in soft-

ware to save energy. To shed light on this economic consideration, we perform a sec-

ond back-of-the-envelope calculation and approximate average energy costs savings

per euro invested in software in the year of investment. We use again the average

energy intensity elasticity based on our preferred specification.78 We measure that

e1 invested in software saved approximately e0.02 in energy costs on average in the

analysed time frame. This calculation illustrates that investing in software to save

energy (costs) generally does not appear to be economical from a firm’s perspec-

tive. This confirms a rationale already observed in questionnaire-based surveys, in

which firms were asked for non-technical self-assessments: Savings in energy con-

sumption due to the use of digital technologies are more accurately described as a

welcome side effect and do not appear to be large enough to be the main motivation

for conducting digitalisation projects (Bertschek et al. 2020, European Commission

2021b).

To sum up, an increase in software capital is associated with a decrease in rela-

tive energy use, but the relationship has a much smaller magnitude than previous

industry-level estimates suggest. Effect sizes at the firm level are robust with respect

to various econometric specifications of the translog model.79

4.5.2 Reduced Form CES Production Function

In this section, we analyse the robustness of firm-level results with respect to the

theoretical approach. To this end, we additionally estimate a reduced form CES-

based approach, following Collard et al. (2005) and Bernstein & Madlener (2010).

To derive our empirical specification, we take first differences of a reduced form

77Please note that we could also have used here mean software capital intensity. However, as it does
barely influence the coefficient whether we consider software as an intensity or not (see Column (1)
of Table C.8 in the Appendix), we selected the software capital growth rate because it is larger. This
allows us getting an upper bound estimate of energy intensity savings.

78In C.4, our approach is described in detail.
79For further robustness checks see C.6.2.
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of Equation (4.7). Additionally, we measure the general input price level by the

producer price index, which we retrieve at a two-digit industry level from Destatis.80

Similar to the translog model, we capture disembodied technological progress by

time dummies and replace ICT capital (KICT) by software capital (KSW). Accordingly,

the empirical specification of the CES-based approach is denoted as follows:

∆ln
(

E
Y

)

i,t
=β̂ PE

PPPI

∆ln
(

PE

PPPI

)

i,t
+ β̂ KSW

KN

∆ln
(

KSW

KN

)

i,t

+
T

∑
t=2010

δ̂Etti,t + ∆ui,t.

(4.9)

We estimate the same five specifications that we present for the translog model

in Table 4.2. Table 4.3 shows that the energy intensity elasticity with respect to the

software-tangible capital ratio is robust across different specifications.

Table 4.3: First-difference results of Equation (4.9).

dependent variable: ∆ln E/Y

(1) (2) (3) (4) (5)

△ln( PE
PPPI

) -0.449∗∗∗ -0.446∗∗∗ -0.416∗∗∗ -0.481∗∗∗ -0.455∗∗∗

(-58.72) (-58.43) (-44.54) (-34.27) (-51.64)
△ln( KSW

KN
) -0.00278∗∗∗ -0.00289∗∗∗ -0.00278∗∗∗ -0.00239∗∗ -0.00240∗

(-3.57) (-3.71) (-3.54) (-2.68) (-2.52)

Year x x x x x
Industry x x x x x
Multi-unit x x x x x
Federal state x x x x x
Size class x x x x x
EEG exemption x x x x x
Producer x x x x x
Trading x x x x x
Firm x
Observations 89,267 89,267 59,405 25,609 89,267
Adjusted R2 0.224 0.228 0.208 0.252 0.249

Notes: Column (1): Basic specification. Column (2): Preferred specification including
control variables. Column (3): Only changes in software capital stocks after observed
in their third period or later. Column (4): Only increasing software capital stocks. Col-
umn (5): Additional firm-level fixed effects. t statistics in parentheses. First-difference
estimation. Clustered standard errors. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

However, it has to be acknowledged that results presented in the last two

columns are significant at lower thresholds. The software/tangible capital coeffi-

cient varies between −0.002 and −0.003. Thus, the CES-based elasticity is slightly

smaller than the average elasticity derived with the translog approach (ϵE/Y,KSW
).

However, elasticities overlap when the translog model is considered at average rel-

ative energy costs (ϵE/Y,KSW
at SE). Hence, both approaches are consistent at mean

80We lose a small fraction of observations as the producer price index is not available for the repair
and installation industry (Division 33) for 2009.
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values. A possible explanation for this phenomenon is the fact that we assume a

strictly linear relationship in the CES-based approach. Accordingly, the CES-based

model is less flexible and could be biased at large divergences from mean values.

Nonetheless, the qualitative interpretation of the CES-based approach is compara-

ble to the translog approach in that sense that the link between ICT and energy

intensity is only small and reductions in energy intensity related to the use of digital

technologies cannot be associated with substantial energy intensity improvements ±

independent of the theoretical approach.81

4.5.3 Properties of the Link Between ICT and Energy Relating to Aggre-

gation Issues

It is a common issue in environmental economics that results diverge between differ-

ent levels of aggregation (see Fezzi & Bateman 2015, Heerink et al. 2001), especially

when analysing the substitutability between production function inputs (e.g., Haller

& Hyland 2014). For instance, in a meta-analysis focusing on empirical results based

on translog cost functions and one-, two-, or four-digit industry-level data, Koetse

et al. (2008) find that studies using more aggregate data tend to find larger substi-

tution elasticities between tangible capital and energy. An aggregation bias occurs

when estimates derived from aggregated data do not accurately reflect individual

behaviour. According to Koetse et al. (2008), the fact that substitution is a microe-

conomic phenomenon results in an overestimation of actual substitution behaviour

between tangible capital and energy at aggregate levels.82

Given that this study’s results also differ from previous industry-level studies,

the question arises as to which level of aggregation correctly reflects the link be-

tween software capital and energy intensity. In the following, we demonstrate that

the relationship at the firm level indeed entails certain properties that can cause an

overestimation of individual substitutability when aggregated data is employed.

Differences Across Industries

The manufacturing sector produces a variety of goods that require different produc-

tion processes, diverging in their energy intensity. This being the case, the energy-

saving potential of digital technologies may be different across industries, such as

the paper industry or the cement industry (see, e.g., Bernstein & Madlener 2010,

Zhang et al. 2018, and AteËs et al. 2021). However, diverging effects, i.e., slope het-

erogeneity, can result in a heterogeneity bias if slopes correlate with the variance of

81Besides, in the CES-based approach we specify the use of digital technologies by the soft-
ware/tangible capital ratio and not by software capital intensity. We examine whether the difference
between both variables can explain the small divergence in elasticities between both theoretical ap-
proaches. However, we find that elasticities are robust to different specifications of software use.

82See also Solow (1987) and Haller & Hyland (2014) for similar arguments.
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the variable of interest (Imbs & Mejean 2015, Campello et al. 2019), even if we control

for industry-specific fixed effects.83

To analyse differences across industries, we split our sample based on industry

affiliations and individually fit the translog model for industries at the two-digit

NACE level.84 Estimation coefficients for software capital intensity by industry are

displayed in Figure 4.3. If estimated independently, the software coefficient is neg-

ative but insignificant for most industries. However, it shows significant negative

effects at the 90% threshold85 for manufacturers of paper and paper products (Divi-

sion 17); chemicals and chemical products (Division 20); other non-metallic mineral

products ± including the cement industry ± (Division 23); basic metals ± including

the iron and steel industry ± (Division 24); electrical equipment (Division 27); as

well as for the repair and installation industry (Division 33). Most of these indus-

tries are considered energy-intensive.86 Consequently, a reduction in energy costs

as a share of variable costs, as well as related energy intensity improvements ap-

pear to be driven by industries that consume relatively more energy, such as the

non-metallic mineral products and the basic metals industries. One economic expla-

nation for this phenomenon may be that the incentives to promote energy efficiency

improvements (through ICT) are larger in industries consuming higher amounts of

energy.87

Further, we analyse whether differences between industries are statistically sig-

nificant. Equal coefficients would imply that no bias is involved in simple linear

aggregation (Zellner 1962). To test for coefficient heterogeneity, we follow Zellner

(1962) and Baltagi (1981) and apply the F-test: We interact industry dummies with

software capital intensity growth rates and test the null that coefficients of interac-

tion terms are all equal, as illustrated by Equation (4.10):

H0 : β̂EKICT N10 = β̂EKICT N11 = · · · = β̂EKICT N33. (4.10)

The resulting F-statistic is 4.20 with 22 degrees of freedom88 and a p-value of

0.00. As a consequence, we reject the null, as differences between industries are

statistically significant and assume that slope heterogeneity exist.

As results suggest slope heterogeneity, we may face a heterogeneity bias at dif-

ferent levels of aggregation. This issue exists if observed industry-specific slopes

83For a formal illustration of the problem, see Appendix C.5.
84We only consider firms that do not switch between industries in the analysis (N = 85220).
85We lower the threshold as there are relatively few observations available for certain industries.
86See https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Energy/_Graphic

/_Interactive/energy-consumption-industry.html [Online; accessed on 11 Apr. 2023].
87Besides, only particular (energy-intensive) industries, such as cement and steel, are part of the

European Union Emissions Trading System (EU ETS). Hence, the EU ETS potentially generates extra
cost pressure for these industries to save energy-related carbon emissions. See https://ec.europa.eu
/clima/eu-action/eu-emissions-trading-system-eu-ets_en [Online; accessed on 11 Apr. 2023].

88Note that the tobacco industry is excluded.
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Figure 4.3: Industry-specific estimations by Equation (4.8). Each colour relates to an industry at the two-digit NACE level. The dots mark
respective estimation coefficients and the corresponding lines represent confidence intervals at the 90% level. We change the threshold as much
fewer observations are available if we consider each industry separately. Additionally, the tobacco industry is excluded because of few observations
and a very low R-squared. Regression results including all variables can be found in Table C.10 in the Appendix.
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correlate with the variance of the software capital growth rate (hereafter referred to

as the ªvariance of softwareº). Moreover, an aggregation bias is present when this

correlation occurs only at aggregate levels. It is not possible to test for this issue

directly, as most software coefficients are not statistically significant. Therefore, we

have to take a different approach to provide insights into this issue. To construct an

argumentative bridge, we use our claim that the magnitude of ICT-enabled energy

efficiency improvements within one industry relates to the level of energy intensity.

In a first step, we show that the more energy-intensive industries and firms are,

the larger the magnitude of ICT-related energy intensity improvements. Then, we

demonstrate that energy intensity correlates with variance of software at the indus-

try level but not at the firm level.

Firstly, we illustrate that a higher average energy intensity relates to greater ICT-

related reductions in the energy cost share. For this purpose, we sort our sample into

quartiles based on average energy intensity at the two-digit NACE level and at the

firm level, respectively. After splitting the sample, we estimate Equation (4.8) for ev-

ery quartile separately. The left panel of Figure 4.4 shows that for firms being in the

two quartiles corresponding to industries with a low average energy intensity, the

point estimates have a much lower magnitude than the average effect for the pooled

sample (displayed in our main results), even though improvements are significant

in the lowest quartile. For the two quartiles corresponding to firms in industries

with higher average energy intensity, the magnitude of the coefficient increases and

the coefficient of the highest quartile is much larger than the average effect for the

pooled sample. We observe a similar phenomenon when we sort by average firm-

level energy intensity (right panel). Here, the software coefficient is also much more

pronounced for the most energy-intensive quartile. We conclude that the higher the

average energy intensity of an industry or firm, the more evident the ICT-related

reductions in energy costs as a share of variable costs.

-.0006 -.0004 -.0002 0 .0002

β EK

1st quartile 2nd quartile 3rd quartile 4th quartile

-.0006 -.0004 -.0002 0-.0008

sorted at industry level sorted at firm level

SW

Figure 4.4: Differences with respect to the average level of energy intensity estimated by
Equation (4.8). Quartiles sorted by average energy intensity of the associated industry (left
panel) and at the firm level (right panel). 1st quartile: Lowest level of average energy in-
tensity, respectively. The dots mark respective estimation coefficients and the corresponding
lines represent confidence intervals at the 90% level.
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Secondly, we analyse to what extent average energy intensity correlates with the

variance of software at different levels of aggregation.89 Table 4.4 shows Pearson cor-

relation coefficients between average energy intensity and the variance of software at

the industry (two-digit NACE level) and at the firm level. The correlation coefficient

is 0.55 at the industry level and 0.02 at the firm level. Accordingly, a higher average

energy intensity at the industry level can be strongly associated with a higher vari-

ance of software. In contrast, a higher average energy intensity is to a much lower

degree linked to a higher variance of software at the firm level. We conclude that

due to a more pronounced correlation at the industry level, systematic differences

across industries predominantly relate to problematic properties when aggregating

the data and, therefore, potentially involve an aggregation bias. As results indicate

that the variance of software at the industry level is larger when ICT-related energy

intensity improvements are higher, industries with steeper slopes are given more

weight in econometric estimations.90 We, therefore, assume an overestimation of

substitution behaviour at the industry level. In addition, we have to acknowledge

that a small but significant correlation also exists at the firm level. Hence, we also

cannot completely rule out a slight heterogeneity bias at this observational level as

well.91

Table 4.4: Correlation between average energy intensity at the industry (two-digit NACE
level) as well as at the firm level and the variance of the software capital growth rate,
respectively. p-values in parentheses.

variance of software industry level firm level

energy intensity 0.55 (0.00) 0.02 (0.00)

Differences Between and Within Firms

Furthermore, there might be an overestimation of substitution behaviour at the ag-

gregate level, as it remains unobserved whether ICT-related energy intensity im-

provements take place because firms substitute between ICT and energy or because

the composition of firms and associated products changes in the market (see Solow

1987). This issue is particularly relevant when examining the substitutability be-

tween ICT capital and energy within production processes, as newly established

89Please note that we do not consider software capital as an intensity here, as then both variables
would be influenced by output.

90An unambiguous direction of the heterogeneity bias can be identified if one controls for appropri-
ate fixed effects. For a technical explanation see C.5.

91To analyse whether a potential heterogeneity bias exists at the firm level, it is possible to compare
coefficients derived by the mean group estimator (every industry is estimated separately and then
averages are taken) with a standard panel estimator (Pesaran et al. 1996). Here, we do not find any
significant statistical difference. Hence, we cannot reject the null that no difference between both esti-
mators exists. However, as most industries have very large confidence intervals this result should be
taken with a grain of salt. Results can be retrieved from the authors upon request.
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firms with innovative products are likely to be more ICT-intensive and energy-

efficient, making it challenging to accurately assess the extent of substitutability be-

tween these two factors.

Our main results demonstrate that if software intensity increases within a firm,

the magnitude of reductions in energy intensity is only small. However, if aver-

age energy intensity and software usage relate to each other, we might observe a

large difference between firms, indicating an omitted variable bias when not control-

ling for (unobserved) firm characteristics, such as management ability or diverging

products. Firm-level data allows for the disentanglement of differences in effects

between and within firms.

In order to analyse to what extent omitted firm characteristics can affect results

at the aggregate level, we re-estimate the translog model, but apply a pooled OLS

and a hybrid Mundlak model instead of taking first differences (e.g., Mundlak 1978,

Allison 2009). A comparison of pooled OLS with more sophisticated panel estima-

tors allows us to approximate the potential omitted variable bias that occurs when

firm characteristics are not taken appropriately into account. The hybrid Mundlak

estimator additionally enables splitting the effect size into a within effect, reflecting

substitution behaviour within firms, and a between effect, indicating the effect of

firm-level characteristics at their averages. In technical terms, it is a random effects

estimator in which variables are decomposed into firm-level means (between effect)

as well as their distance to the firm-level mean (within effect).92 The within-effect

coefficients of the Mundlak estimator have to be consistent with coefficients of the

fixed effects (FE) estimator. To illustrate this consistency, we additionally present

results for the translog model estimated with fixed effects (but not taking first differ-

ences).

Column (1) of Table 4.5 displays results for the pooled OLS estimator. The soft-

ware coefficient is now nearly seven times larger than in our preferred specification

(see Column [2] of Table 4.2). Column (2) provides results for the fixed effects estima-

tor. The software coefficient of the fixed effects model is comparable to the coefficient

derived by the first difference estimator. Both point in the same direction and have

more or less the same magnitude. Column (3) shows results for the hybrid Mundlak

model, in which the overall effect is decomposed into a between and within effect.

A clear finding is that the within-effects software coefficient is nearly the same as

the one obtained with the fixed effects estimator. Moreover, the between effect is

comparable to the software coefficient of the pooled OLS estimator. Hence, firms

that have a higher software capital intensity tend to have on average lower relative

energy costs.

92Including group means allows to relax assumptions of the random-effects estimator. In the case of
one independent variable, a hybrid Mundlak model would be yi,t = β0 + βW(xi,t − Åxi) + βB( Åxi) + εi,t.
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These results confirm that differences between firms are associated with a much

larger software coefficient than changes within a firm. However, this property most

likely relates to structural characteristics, rather than to technological substitution

within firms. This phenomenon may have consequences at the aggregate level. If

changes in the composition of firms and products are not appropriately considered,

they can lead to an overestimation of substitution elasticities.93

Table 4.5: Comparison of software coefficients for Pooled OLS, FE, and Mundlak

dependent variable: ∆ SE

(1) (2) (3)

ln( KSW
Y ) -0.00165∗∗∗

(-32.95)

ln( KSW
Y ) -0.00151∗∗∗

(-16.13)
△ln( KSW

Y ) -0.000213∗∗∗ -0.000214∗∗∗

(-3.48) (-3.48)
Observations 123362 123362 123362
R2 0.577 0.268 0.268

Notes: Column (1): Pooled OLS specification. Column (2):
Fixed effects specification. Column (3): Mundlak specifi-
cation. The following additional control variables are in-
cluded: Year, industry, multi-unit, federal state, size class,
EEG exemption, producer, and trading. For coefficients of
all model variables see Table C.9 in the Appendix. t statis-
tics in parentheses. Robust standard errors in Column (1).
Clustered standard errors in Column (2) and Column (3). ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

4.6 Discussion

Previous studies employing industry-level data indicate substantial synergies be-

tween the ongoing digital transformation and improving energy intensity. Using

software capital intensity as a proxy for the firm-level degree of digitalisation, we

also observe that an increase in digitalisation is associated with a decrease in relative

energy use, but of a much smaller magnitude than suggested by previous industry-

level estimates.

It is not unusual that effects are smaller when more granular data is employed.

In a meta-analysis on the relationship between tangible capital and energy demand,

93The finding that a higher level of relative energy costs is on average associated with lower software
capital intensity can also be related to a larger variance of software. If the software capital stock is
relatively small, even small amounts of investment can lead to a relatively large growth rate. The issue
that growth rates are more volatile when levels are lower is, for instance, a well-known phenomenon
when comparing developing and industrialised countries (Pritchett 2000).
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Koetse et al. (2008) observe a similar phenomenon. Nevertheless, we would like to

acknowledge that the link between software capital and energy intensity improve-

ments could also be less pronounced at the firm level due to endogeneity issues

related to a measurement error in software capital. However, the software coeffi-

cient is robust to several sample restrictions and different modifications of software

capital stocks (see C.6.1). This consistency may provide some confidence.

A potential aggregation bias explains diverging outcomes between observational

levels. Looking at individual industries, we find mostly insignificant effects, but

software-related reductions in relative energy costs tend to be significant for exactly

those industries that are energy-intensive. Hence, the heterogeneity between indus-

tries appears to be systematic. Moreover, results indicate a large omitted variable

bias if firm-specific characteristics are not appropriately considered. Both issues can

result in an aggregation bias. This insight is highly valuable for future research be-

cause it points to potential problems that need to be considered when analysing the

link between ICT and energy. Nevertheless, we want to emphasise that these char-

acteristics cannot explain the entire divergence between observational levels. The

potential omitted variable bias as well as slopes of highly energy-intensive indus-

tries, which determine the heterogeneity bias, are still small in comparison to results

derived at the industry level, for instance, by Schulte et al. (2016). In other words,

there have to be further reasons for the discrepancy between observational levels.

Differences in study design, such as a divergent selection of countries and years,

as well as further aggregation issues, may be additional arguments that explain the

entire discrepancy.94

Furthermore, it could also be that effects are small because software capital is

insufficient to approximate the firm-level degree of digitalisation. Considering all

possible indicators, we believe that for the purpose of this study, software capital is

the most suitable indicator. Unlike other digitalisation indicators, e.g., the number

of employees working with a computer, software capital has the advantage that it is

measured in monetary values. Another advantage in using software capital is that it

is very general in comparison to other digital technologies, such as cloud computing

or 3D printing. Almost all hardware requires software and we show a clear rela-

tionship between software usage and the use of other digital technologies in Section

4.4.2. Especially technologies that optimise production by analysing large amounts

of data, and, thus, potentially improve energy efficiency, rely heavily on software.

Nonetheless, further analyses looking at different types of digital technologies may

be useful, as heterogeneous effects in this respect could exist as well. Additionally,

we have to acknowledge that we do not consider the use of software that is free of

charge. However, as we only look at relative percentage changes and it is likely that

94It may also be worth looking into diverging effects with respect to short-run and long-run elastici-
ties in future studies.
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for most firms both, the use of free of charge and paid software, are proportional to

each other, we assume that this does not have a large effect on our results.

One further issue that could explain why energy intensity improvements are

small is that energy efficiency improvements may be accompanied by rebound ef-

fects, which can also take place at the firm level (Amjadi et al. 2018). For example,

potential energy savings may not be fully realised because improvements in energy

efficiency increase the attractiveness of using energy as an input factor. How digital

technologies relate to this issue could be worth analysing in further research.

Last but not least, the question arises as to what our results imply for the net

impact of ICT on total energy consumption. By means of the translog model, we

analyse the relationship between software capital intensity and the ratio between

energy and labour costs. By estimating a reduced form of a CES production func-

tion, we consider the relationship between software usage and the ratio between

energy use and output. Many economic studies show a clear link between labour

and ICT (e.g., Van Reenen 2011, Michaels et al. 2014, and Atasoy et al. 2016) as

well as productivity and ICT (Stiroh 2005, Cardona et al. 2013). In other words, the

observed relationship may be driven by the positive effects of software capital on

labour and output as well.95 Therefore, we refrain from coming to conclusions on

absolute energy consumption.96

4.7 Conclusion and Policy Implications

Climate change and the digital transformation are hugely influential megatrends.

Consequently, analysing their interrelationships is of major importance. Previous

studies that employ aggregated data indicate that ICT adoption is associated with a

substantial decrease in energy intensity, especially in manufacturing industries.

This is the first large-scale empirical study to analyse the relationship between

the use of digital technologies and energy intensity improvements at the firm level.

For this purpose, we employ administrative panel data on 28,600 firms in the Ger-

man manufacturing sector collected between 2009 and 2017. Furthermore, we use

software capital intensity as an indicator for the firm-level degree of digitalisation

and apply a translog cost function approach for our main analysis. Our results show

95We want to emphasise that even if output or labour increase due to software usage and energy
consumption remains constant or grows to a lower extent, energy intensity improvements still occur,
as energy is used relatively less.

96Moreover, we solely measure energy intensity improvements inside firms, i.e., we cannot draw
conclusions about additional energy that is consumed in external data centres due to an increase in the
use of could computing. However, cloud computing has not been used very frequently in the observed
time frame and its use has only picked up in more recent years. See https://digital-agenda-data.

eu/charts/desi-see-the-evolution-of-an-indicator-and-compare-breakdowns/embedded#cha

rt={%22indicator%22:%22desi_idt_cloud%22,%22breakdown-group%22:%22total%22,%22unit-m

easure%22:%22pc_ent%22,%22ref-area%22:%22DE%22} [Online; accessed on 11 Apr. 2023].
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a statistically significant negative link between software capital and energy costs as

a share of variable costs, but the effect size is much smaller than expected. Our

findings are robust to several econometric specifications. Thus, we conclude that an

increase in the firm-level software capital stock cannot be associated with substan-

tially lower levels of energy intensity within firms.

Moreover, we find that the link between ICT and energy intensity entails proper-

ties that can result in an overestimation of substitution behaviour at more aggregate

levels. This insight is highly valuable for further studies as it clearly points to is-

sues that arise from aggregation, which need to be considered when analysing the

substitutability between digital technologies and energy.

In the light of the current energy crisis, our results may be especially relevant

for policy makers, consultants, and managers who aim to mitigate escalating energy

costs within firms, yet who overestimate the ability of digital technologies to in-

duce energy intensity improvements. Our results also have policy implications for

strategies limiting global climate change and fostering sustainability. As the adop-

tion of digital technologies in manufacturing, at least at its current stage, does not

appear to significantly contribute to energy intensity improvements, our findings

underpin the importance to combine digital efficiency improvements with environ-

mental strategies (Digitalization for Sustainability (D4S) 2022) and ª[...] to include

specific holistic sustainability and resilience targets within Europe’s [and individual

countries’] digital road map[s] [...]º, which was recently requested by the European

Commission (p.12, 2022) in its Industry 5.0 vision.97

97See https://research-and-innovation.ec.europa.eu/research-area/industry/industry-5

0_en [Online; accessed on 11 Apr. 2023].
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What Drives the Relationship

Between Digitalisation and

Industrial Energy Demand?

Exploring Firm-Level

Heterogeneity
joint work with Anne Berner and Thomas Kneib

5.1 Introduction

The growing number of applications and the rapidly evolving performance of in-

formation and communication technologies (ICT) have raised hopes of increasing

productivity while simultaneously reducing greenhouse gas emissions and energy

use (Kander et al. 2015, IEA 2019). Digital technologies such as smart sensors and ad-

vanced data analytic tools offer the opportunity to make energy use more efficient

and help to save resources. As a result, current European environmental policies

consider digitalisation as a key element in lowering environmental burdens (Euro-

pean Commission 2019, 2020, 2021a). However, digital technologies also consume

energy and resources, and the negative environmental impacts of producing, using,

and disposing of digital devices are becoming increasingly apparent (Williams 2011,

Andrae & Edler 2015, Belkhir & Elmeligi 2018, Lange et al. 2020). Therefore, it is

a priori unclear whether the ongoing digital transformation will bring synergies or

trade-offs between technological progress and environmental benefits. Moreover,

the impact of digital technologies on energy consumption could also be heteroge-

neous and vary across firm- and market-specific characteristics. For instance, the

amount of energy used in a digitalised production process may depend on the in-

dustry association, such as the chemical and the automotive industry. Additionally,
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market concentration and input prices can influence how digital technologies affect

energy use, as low competition and input prices may reduce firms’ incentives to save

on energy costs.

Given the continued growth in the deployment of digital technologies, it is cru-

cial to better understand which factors shape the impact of digital technologies on

energy consumption. In the current study, we examine drivers of the relationship in

manufacturing. We focus on the manufacturing sector, as it is responsible for a large

share of global carbon emissions.98 Previous empirical studies on the link between

ICT and environmental impacts mainly attempt to prove a homogeneous and di-

rectional link between ICT and CO2 emissions (Zhang & Liu 2015, Chen et al. 2019,

Kopp & Lange 2019) or energy outcomes (Collard et al. 2005, Bernstein & Madlener

2010, Schulte et al. 2016, Huang et al. 2022).99 However, as the relationship may be

heterogeneous and, thus, non-linear (Ben Lahouel et al. 2021, Taneja & Mandys 2022,

Xu et al. 2022), standard regression models fall short of fully uncovering the com-

plexity of the relationship. To fill this research gap, we aim to reveal effect hetero-

geneity by applying a non-parametric, flexible tree-based algorithm, which is called

the Generalised Random Forest (GRF) algorithm (Athey et al. 2019). By allowing for

heterogeneous effects of observables, this method enables the identification of spe-

cific firm-level and external characteristics that influence energy demand. Moreover,

the algorithm has the advantage that no assumptions have to be made in advance

about the relationships among variables that may cause differences in effects. In-

stead, relationships are identified in an exploratory manner.

Previous studies have already demonstrated the usefulness of tree-based algo-

rithms for analysing heterogeneity (Davis & Heller 2017, Johnson et al. 2020, Knaus

et al. 2021) and apply them to evaluate environmental outcomes (e.g., Valente 2023,

O’Neill & Weeks 2019, Prest 2020, Miller 2020, Knittel & Stolper 2021). We contribute

to this literature by analysing an extensive administrative panel data set on German

manufacturing firms (AFiD)100 for the years 2009 to 2017. Besides, previous microe-

conometric studies on the relationship between digitalisation and energy use tend to

focus on energy intensity or specific energy carriers. We also extend previous liter-

ature by firstly analysing ICT-related changes in overall energy demand at the firm

level. To account for sources of self-selection and to considerably reduce potential

endogeneity issues, we combine the GRF algorithm with R-learning (Nie & Wager

2021) and apply a difference-in-difference approach to leverage the panel structure

of our data. Firm digitalisation is measured by a binary variable that takes a value

of one if a firm experiences an increase in software capital and is zero otherwise.

98For example, manufacturing industries accounted for 26 % of global CO2 emissions and for 38 %
of global energy use in 2020 (IEA 2021).

99This also includes the results from Chapter 4. Examples for energy outcomes are energy use,
energy efficiency, and energy intensity.

100Amtliche Firmendaten für Deutschland.
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Our results confirm heterogeneity but indicate a trade-off between an increase

in the use of digital technologies and absolute energy savings for the majority of

firms. We identify multiple characteristics that explain heterogeneity. For instance,

the relative increase in energy consumption is smaller in energy-intensive industries,

an increase in market concentration is associated with a higher rise in energy use,

and digital firms appear to be less sensitive to electricity price changes (and price

policies).

On average, we find that an increase in the firm-level degree of digitalisation re-

lates to a simultaneous rise in energy use of 1.03 %. Analysing electricity use and

non-electric fossil fuel use separately reveals that the magnitude of the effect is even

larger for electricity use (1.34 %), yet we do not find a significant effect for fossil fuel

use, and the respective point estimate is close to zero. Thus, the results suggest that

the overall increase is driven by an intensified use of electricity, which is intuitive as

digital technologies mostly consume electric power. In the context of policy objec-

tives, however, our results contradict the expectation that digital technologies will

lead to a significant reduction in energy consumption. Nonetheless, as electricity is

potentially renewable, our analysis suggests that digital technologies may facilitate

an increase in the use of sustainable energy sources, thereby enabling the decarbon-

isation of energy production.

Currently, a considerable share of European industrial digitalisation policies in-

volves funding for small and medium-sized enterprises (SMEs) as well as for regions

that are considered structurally weak. Selective targeting of digitalisation that relates

to lower levels of energy demand may allow for greater progress toward climate tar-

gets. To evaluate the current synchronisation of industrial digitalisation and climate

policies, we examine whether present funding criteria are associated with a smaller

increase in energy consumption. In a subgroup analysis, we reveal that smaller firms

in structurally weak regions show higher average growth in energy use than larger

firms in regions that are considered economically strong. Therefore, the results also

indicate a policy trade-off between lowering energy use and supporting technologi-

cal progress in firms with a need for economic assistance.

The remainder of this paper is organised as follows: The next section deciphers

the link between energy use and digitalisation in the light of the current literature

(Section 5.2). Section 5.3 explains our empirical strategy with a focus on the Gen-

eralised Random Forest methodology to measure heterogeneous relationships. Our

empirical analysis relies on an extensive administrative firm-level panel data set that

will be described in Section 5.4. Section 5.5 presents and discusses the main results,

while Section 5.6 discusses the robustness of our results. Section 5.7 concludes.
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5.2 Digitalisation and Energy Use in Manufacturing

In economic literature, the introduction of digital technologies is usually linked to

changes in productivity, for example, due to increased process efficiency and the

optimisation of work practices (Brynjolfsson & Hitt 2000, Brynjolfsson & McAfee

2011, Cardona et al. 2013). We already know from this strand of literature that digital

technologies can have very different effects on productivity improvements at the

firm level (Bresnahan et al. 2002, Gal et al. 2019, Dhyne et al. 2021b, Cirillo et al.

2023).

Additionally, more and more studies focus on the environmental impacts con-

nected to digitalised production processes, in particular, on the effect on energy con-

sumption. In this context, the literature identifies four impact channels that drive

or mitigate the overall effect on energy demand. At the economy-wide level, these

transmission channels can be characterised by the following keywords: (1) direct ef-

fects, (2) economic growth, (3) energy efficiency, and (4) sectoral change (Lange et al.

2020).101

Direct effects comprise the energy that is embodied in the production, usage, and

disposal of ICT and lead to an increase in energy demand (Williams 2011). The same

holds for the second channel, which subsumes that digital technologies can act as a

multiplier for economic growth. Subsequently, the resulting enhanced consumption

of products and services can increase energy use indirectly (Belkhir & Elmeligi 2018,

Lange et al. 2020). The third channel implies that energy efficiency improvements may

lower energy intensity. Especially, grey literature assigns high climate protection po-

tentials to the application of ICT. For instance, GeSI & Accenture (2015) state that

digital technologies could abate 2.7Gt of CO2 emissions by 2030 in manufacturing

industries.102 This is asserted because, for example, industrial control systems allow

for an improved fault detection, which potentially reduces per-unit energy and re-

source consumption as well as wastage (Berkhout & Hertin 2004, Baer et al. 2002).

Also, simulation methods and 3D printing can considerably decrease the environ-

mental footprint during product design and engineering processes (OECD 2017b).

More generally, Berkhout & Hertin (2004) identify five areas in which ICT can lower

relative energy use: a) simulation of production processes, b) intelligent design and

operation of products and services, c) intelligent distribution and logistics, e.g., sup-

ply chain efficiency or alternative distribution structures, d) changing seller-buyer

relationships, e.g., mass customisation, and e) work organisation, e.g., teleworking.

101Please note that other frameworks, such as those proposed by Berkhout & Hertin (2004) and Hilty
et al. (2006), have only three transmission channels. Economic growth and sectoral change are com-
bined as third-order effects.

102It should be noted here that the study is financially related to telecommunication companies.
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However, Lange et al. (2020) point out that the desired effects of energy efficiency im-

provements on energy demand can be mitigated by rebound effects. These describe

the energy-increasing consequences that might be triggered by energy efficiency im-

provements and lead to a situation where potential savings will not be fully realised

(cf. Khazzoom 1980, Gillingham et al. 2016). Last but not least, sectoral change, i.e.,

tertiarisation, relates to a shift to a more service-oriented economy. For instance,

software-based solutions do not need to be physically manufactured and thus po-

tentially require less energy and capital.

In a nutshell, ICT directly consume energy and stimulate economic growth,

which can increase energy use indirectly, but digital technologies can also foster

energy-efficient manufacturing as well as the dematerialisation of goods. Conse-

quently, their usage may have simultaneous positive and negative impacts on en-

ergy use, and the respective net environmental impact is a priori ambiguous from a

theoretical perspective.

The wide range of mechanisms may explain why it is still under debate whether

digital technologies increase or decrease energy use. Studies that find synergies be-

tween energy savings and ICT highlight that the energy mix, sector association,

production factors, and regional characteristics may influence empirical results:

Analysing ten OECD countries, Schulte et al. (2016) conduct a parametric econo-

metric analysis at the sectoral level and confirm that reductions in relative energy

demand can be linked to ICT usage. They highlight that relative demand decreases,

in particular, for non-electric energy, while relative demand for electric energy is

not significantly affected. Accordingly, the relationship may depend on the energy

source. Bernstein & Madlener (2010) find mixed results with respect to the effect

of computers and software on relative electricity demand for European manufac-

turing industries. They state that the sign of the effect depends heavily on the in-

volved sector-specific production processes. Applying quantile regression, Taneja

& Mandys (2022) find a reduction in relative energy demand, but the magnitude of

the reduction varies depending on the level of energy intensity.103 Focusing on in-

dustrial robots, as well as considering 38 countries and 17 manufacturing industries,

Wang et al. (2022) find energy intensity improvements due to robot usage. A closer

look at the mechanism reveals that the level of energy use is barely affected, while

output increases in response to the intensified use of robots. Thus, the authors do

not find absolute environmental improvements. In addition, their results indicate

effect heterogeneity with respect to labour and capital intensity. Using a compound

index to measure digitalisation, Xu et al. (2022) find reductions in absolute energy

use and improvements in the share of renewable energy in total energy at the coun-

try level. They also show that effects are mediated by technological innovation and

103Energy intensity denotes the ratio between energy demand and output.
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are more pronounced in low-income countries. Therefore, they postulate heteroge-

neous effects with respect to regional characteristics. Majeed (2018) confirms diverg-

ing effects of ICT on CO2 emissions between developed and developing countries.

Moreover, applying a non-linear model Ben Lahouel et al. (2021) find that ICT have

increased carbon efficiency in Tunisia within the last decades.

In contrast to these rather optimistic findings, other studies indicate a trade-off

between environmental outcomes and technological progress. Ren et al. (2021) find

that internet development can be linked to an increase in energy use per capita in

China. Sadorsky (2012) measures that digital technologies are positively linked to an

increase in electricity consumption in emerging economies. Covering 93 countries

over the period 1995±2016, AlataËs (2021) confirms that ICT increase CO2 emissions

at the country level.

Econometric evidence at the firm level is scarce. To the best of our knowledge,

no econometric study to date examines absolute energy use in the manufacturing

sector, yet empirical evidence exists with respect to changes in energy intensity: In

Chapter 4, we observe only marginal average energy intensity improvements re-

lated to software usage. Besides, we find that, even though overall effects are small,

relative savings are more pronounced in energy-intensive industries, which indi-

cates effect heterogeneity with respect to different production processes. Applying

propensity score matching and focusing on the effect of industrial robots on coal

consumption, Huang et al. (2022) find improvements in coal intensity. However, as

described in Wang et al. (2022) above, the origin of the improvements is mainly an

increase in output. A study conducted by Wen et al. (2021) focuses on environmental

pollution measured by chemical oxygen demand (COD) and sulphur dioxide (SO2).

The authors find that an increase in ICT investments and services at the provincial-

city level relates to a significant firm-level reduction of pollutants. On the contrary,

a study conducted by Brozzi et al. (2020) states that firms seldom consider digital

improvements (summarised under the term "Industry 4.0") beneficial for environ-

mental targets but pursue predominately economic opportunities in this regard. A

questionnaire-based survey with 1,700 German firms indicates diverging effects. Ac-

cording to non-technical self-assessments, 65% of all surveyed manufacturing firms

said that their ICT-related energy use remained constant during the last three years,

22% stated it decreased, and 13% mentioned an increase (Bertschek et al. 2020).

To sum up, previous studies on the relationship between digital technologies

and energy use show ambiguous results. One reason for different study outcomes

could be that parallel impact channels might lead to diverging effects of ICT on the

environment (cf. Lange et al. 2020). While the described channels relate to entire

economies, analogous mechanisms can also exist within firms. For instance, digi-

tal firms may experience more rapid growth. Also, it is possible that digitalisation
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can induce a shift in a firm’s product offerings towards an increased provision of

services, which tend to be less energy intensive. As already indicated in previous

studies but not yet comprehensively investigated, various firm- and market-specific

characteristics could influence the magnitude of these individual effects and, in turn,

moderate the net effect. In this vein, Berkhout & Hertin (2004, p. 903) argue for mov-

ing ªbeyond the dichotomy between pessimism and optimismº to recognise that

the relationship between ICT and energy is ªcomplex, interdependent, [and] deeply

uncertainº. It is an urgent political task to create the conditions for placing digital-

isation at the service of sustainable development. To optimally use the potential of

digital technologies for climate protection, Lange et al. (2020) argue that fields of ap-

plication with a positive environmental impact should be promoted without favour-

ing effects that have negative environmental impacts. Horner et al. (2016, p.16) also

conclude from their review study that a ªfocus on identification of important param-

eters driving the energy use in ICT-infused systemsº is important in future research

studies.

Focusing on manufacturing firms, our contribution is not only to measure the

impact of ICT on energy use and but also to identify characteristics that moderate

the net effect in an exploratory manner. More precisely, we are interested in the

following three questions:

1. What role do digital technologies generally play for energy consumption

in manufacturing firms?

2. Which firm-level and external characteristics relate to heterogeneity?

3. To what extent does current targeting of industrial digitalisation policies

influence energy use?

5.3 Methodology

The literature review shows that identifying the role and importance of ICT for en-

ergy use is a complex endeavour. Accordingly, the identification of characteristics

that moderate energy consumption in digitalised production processes by applying

a linear OLS model would quickly result in estimating too many interaction coeffi-

cients. Interpreting all of them would get soon out of hand and hardly be useful from

a scientific perspective (Prest 2020, Gulen et al. 2021). As a consequence, we apply a

flexible tree-based algorithm, which is suitable to measure complex non-linear rela-

tionships. Our estimation approach builds on the Generalised Random Forest (GRF)

algorithm (Athey et al. 2019), which is a non-parametric modelling approach that al-

lows us revealing heterogeneity and uncovering subgroup differences by applying

the potential outcome framework (Rubin 1974).
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5.3.1 Measuring Heterogeneous Relationships

In order to capture the effect that digital technologies may have on energy use, we

compare a sample of i = 1, . . . , n firms F over a time period of t = 1, . . . , T years. For

each firm, we define a binary variable Wi,t = 1 {∆ Di,t > 0} that indicates whether

the firm i increases its use of digital technologies D in period t or not. As we follow

a method that has its origin in the causal inference literature, we consider firms for

which W = 1 as ªtreatedº and firms for which W = 0 as ªuntreatedº or ªcontrol

groupº.

Our variable of interest is energy consumption Yi,t. We denote the potential en-

ergy consumption of a firm that increases its use of digital technologies in period

t as Yi,t(Wi,t = 1) and the corresponding energy consumption that we would have

observed if the firm had not increased its use of digital technologies as Yi,t(Wi,t = 0).

We define the expected difference between the two potential energy outcomes as the

average treatment effect (ATE) τ. If we additionally condition on different covari-

ates Xi,t = x, we receive the conditional average treatment effect (CATE), which is

formally defined as (Athey & Wager 2019):

τ(x) = E [Yi,t(Wi,t = 1)− Yi,t(Wi,t = 0) | Xi,t = x] . (5.1)

5.3.2 Generalised Random Forests

A promising method to reveal these heterogeneous treatment effects from observa-

tional data is the Causal Forest algorithm (Wager & Athey 2018, Knaus et al. 2021).

While the name promises to automatically determine causal relationships, in fact

it allows the measurement of high-dimensional interaction. The Causal Forest is a

special case of the GRF approach introduced by Athey et al. (2019). This approach

builds on the recursive partitioning, sampling, and split selection of the Random

Forest algorithm (Breiman 2001), an aggregation method applied to decision trees,

i.e., classification and regression trees (CART). The goal of this algorithm is to pre-

dict an outcome ŷ using a non-parametric function of splitting variables, for instance,

various covariates. Within one decision tree, the sample is recursively split into sub-

groups, optimising the accuracy of the prediction. If a further split does not result in

accuracy improvements, we call the subgroup at this node a final ªleafº of the tree.

Variation, and hence, decorrelation between decision trees is achieved, on the

one hand, by basing each tree on a subsample Sb of the entire data set (bagging),

and on the other hand, by choosing a random subset of all possible covariates to

build each tree. This procedure also allows for out-of-bag predictions. Hence, we

only consider trees where i ̸∈ Sb to determine relationships and predict ŷ−i(Xi,t)

(Athey & Wager 2019). This encounters problems, when working with panel data,

as a firm constitutes a cluster of observations. This means that we have to exclude
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trees containing the same observation, i.e., firm i at period t, and trees including the

same firm i at period t + s to avoid information leakage.

To account for the clustered structure of our data when drawing subsamples

for each decision tree, we manipulate the sampling of observations as follows

(Athey et al. 2020): Instead of directly drawing Sb, we first sample clusters Jb from

{F1, ..., Fn}. Based on each sampled Jb, we then draw k observations to build each

tree.

The ensemble method applied to single trees can be described as a data-adaptive

kernel method and formulated by the following, when considering clusters:

ŷ(x) =
n

∑
i=1

T

∑
t=1

αi,t(x)Yi,t, αi,t(x) =
1
B

B

∑
b=1

1 ({Xi,t ∈ Lb(x), Fi ̸∈ Jb})

|{i : Xi,t ∈ Lb(x), Fi ̸∈ Jb}|
, (5.2)

where B indicates the number of ªgrownº trees, indexed by b = 1, . . . , B. Lb(x) is

the leaf of the b-th tree containing test point x. Accordingly, αi,t(x) indicates how

often an observation falls in the identical leaf as x and it can be used to calculate a

weighted average of Yi,t based on the forest-based adaptive neighbourhood of x.

The weighting procedure is one of the main building blocks of the ªGeneralised

Random Forestº framework (Athey et al. 2019). It is implemented in the grf package

in R, on which we base our analysis.

All firms

. . .

West
Germany?

. . .

≥ 100 employees?

control

no increase?

treatment

increase in

ICT?

<
100 employees?

East Germany?

CATE
= 3%

Figure 5.1: Illustration of Causal Forest partitioning. The conditional average treatment
effect (CATE) is calculated by comparing the effect of an increase of digital technologies
between firms within groups of similar firms.

The Causal Forest algorithm aims to predict treatment effects τ̂, which denote the

difference between treated and untreated observations within leaves. Accordingly,

splits are conducted by maximising treatment effect heterogeneity. Nevertheless, the

work horse of the algorithm remains a decision tree. See Figure 5.1 for a graphical il-

lustration of a respective causal tree. The sample is split at each node recursively into

two child nodes according to the covariates that maximise the discrepancy between

the subgroup ATE. Unequal child node sizes are penalised. Final nodes report the
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estimated ATE conditional on the covariates that were responsible for the splitting,

which is also known as CATE (Athey et al. 2019).

The size of our database allows us to follow an ªhonestº estimation procedure,

which means that we split the firm panel into two groups: With the first half of the

sample, we build the tree structure to calculate weights. Based on these weights,

we use the second half of the training sample to estimate CATEs. This procedure

prevents overstating the goodness of fit (Athey & Imbens 2019). For the analysis, we

grow a forest of 10,000 trees.104

Identifying Assumptions

Since it is not possible to observe both, firm i increasing its use of digital technologies

and not increasing its use in period t, we need the following additional assumptions

to accurately estimate Equation (5.1):105

A.1 Common support: 0 < P[Wi,t = 1 | Xi,t = x] < 1, for all x in the support of Xi,t .

A.2 Unconfoundedness: {Yi,t(1), Yi,t(0)} ⊥ Wi,t | Xi,t .

A.3 Exogeneity of covariates: X1
i,t = X0

i,t .

A.4 Stable Unit Treatment Value Assumption (SUTVA): Yi,t = Wi,tY1
i,t + (1 −

Wi,t)Y0
i,t .

The first assumption requires that no subgroup of firms defined by the covari-

ates Xi = x is located in either the treatment or the control group only, which im-

plies that the (inverse) treatment probability must be bounded away from zero and

one. The second assumption ensures that potential outcomes are independent of the

treatment status, conditional on the covariates. The third assumption imposes that

covariates are not affected by the treatment. The fourth assumption requires that

there is no interference or no spillover between treated and untreated observations.

Throughout our rigorous analysis, we acknowledge the possibility that all un-

derlying assumptions, whether implicit or explicit, could be scrutinised and called

into question. For instance, selection effects may occur, as investments in digital

technologies could correlate with specific firm characteristics (Athey & Wager 2019,

Gulen et al. 2021). As an illustration, firms that generate more output might con-

sume more energy and have a higher probability to invest in digital technologies.

This phenomenon may result in confounding effects and also increase the difficulty

to identify counterfactual observations for these firms.

104In addition to the size of the sample and the covariates used, the forest estimation is also influenced
by the maximum split imbalance (between treatment and control group in the child-node) and the
minimum node size (minimum number of observations in a final leaf). We tune all parameters by
using cross-validation. See Athey & Imbens (2019) for details.

105We refer here to Knaus et al. (2021) for an extended explanation.
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To ensure a substantial degree of overlap (or common support), we trim our sam-

ple and only use observations which have propensity scores that match the counter-

factual group (Dehejia & Wahba 1999, 2002). For instance, we drop all observations

in the group that does not increase its use of digital technologies with an estimated

propensity score lower than the smallest estimated propensity score in the group

that increases its use of digital technologies, and vice versa for observations with a

rising level of digitalisation.

Second, we have to ensure unconfoundedness. In Section 5.3.2 and 5.3.2, we de-

scribe how we improve robustness to confounding by employing orthogonalisation

and exploiting the panel structure of our data.

The assumption of exogenous covariates might also be violated, since the use

of digital technologies can, in addition to energy use, influence other production

function inputs, such as tangible capital, labour, as well as output. To solve this

issue, we refrain from including critical variables measured concurrently in the same

period as the treatment status. Instead, we incorporate them in lagged levels. This

procedure allows for the consideration of these variables without risking that the

assumption of homogeneity of covariates is violated.106

We cannot assume with certainty that the fourth assumption of Stable Unit Treat-

ment Values (SUTVA) is fulfilled a priori. For instance, digital technologies can im-

prove the efficiency of entire supply chains and alternate distribution structures. In

particular, improved coordination can enable energy and resource savings across

decision-making units. Potential changes in energy consumption are, thus, not only

a function of a firm’s own level of digitalisation, but may also depend on the use

of digital technologies by other firms. We assume that such effects are most pro-

nounced between subsidiaries within a firm. Since we consider companies and not

plants as the unit of observation, we are able to integrate these kinds of effects into

the analysis. However, we would like to acknowledge that taking into account en-

ergy efficiency improvements due to enhanced coordination between companies is

beyond the scope of our analysis.107

106We do not include the variables in lagged growth rates because this would require an additional
year to be considered with potentially missing values and we wanted to maintain the maximum
amount of observations available in our data set.

107In addition, a possible violation of the SUTVA may exist due to changes in the market price result-
ing from ICT-related shifts in energy demand. However, we assume that the potential violation of the
SUTVA from this factor is of negligible size.
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Orthogonalisation

The assumption of independent assignment of treatment conditional on firm char-

acteristics X is important for unbiased estimates (Assumption A.2). To fulfil this

assumption, we account for variables that determine selection into treatment. Pre-

vious empirical studies reveal that firm characteristics, including firm size, R&D ex-

penditure, export-intensity, and industry association can drive ICT adoption. Also,

external characteristics, such as competition intensity and firm location, as well as

the policy situation may play a part (e.g., Giunta & Trivieri 2007, Haller & Siedschlag

2011, Guerrieri et al. 2011, Kinkel et al. 2022, Cho et al. 2023). Accordingly, we add

information related to these characteristics to our control variable set.108

To ensure unconfoundedness by the mentioned characteristics, we orthogonalise

treatment and outcome variables by regressing X on Y and W and then subtracting

predictions (Robinson 1988, Nie & Wager 2021).109 This procedure allows for differ-

encing out the variation in outcome and treatment variables attributed to covariates.

To this end, we train separate Random Forests to compute estimates of propensity

scores e(x) = P [Wi,t | Xi,t = x] and expected outcomes m(x) = P [Yi,t | Xi,t = x].

This approach is also known as R-learning or local centring.

The (−i)-superscript in this case stands for leave-one-out estimates, indicating

that the i-th observation was not used to compute, e.g., m̂(−i) (Xi,t). The resulting

residualised outcome (Y − m(x)) and treatment (W − e(x)) variables, as well as the

weights are combined in the estimation. Hence, treatment effects are estimated by

solving the following equation:

τ̂ =
∑

n
i=1 ∑

T
t=1 αi,t(x)

(

Yi,t − m̂(−i) (Xi,t)
) (

Wi,t − ê(−i) (Xi,t)
)

∑
n
i=1 ∑

T
t=1 αi,t(x)

(

Wi,t − ê(−i) (Xi,t)
)2 . (5.3)

Table 5.1 summarises the main steps of the Causal Forest algorithm including or-

thogonalisation and honesty.

Table 5.1: Summary of the steps of the Causal Forest algorithm with orthogonalisation
and honesty.

1. Regress Wi,t on Xi,t to obtain a prediction model for ê(−i)(Xi,t).
2. Regress Yi,t on Xi,t to obtain a prediction model for m̂(−i)(Xi,t).
3. With the first half of the sample generate Causal Trees but replace Wi,t and Yi,t

with Wi,t − ê(−i) (Xi,t) and Yi,t − m̂(−i) (Xi,t). Then calculate αi,t as in Equation
(5.2).

4. Use the second half of the sample and weights obtained in Step 3 to calculate
τ̂(x) by solving Equation (5.3).

108For a detailed description of all control variables, see Section 5.4.2.
109This step can be compared to the consideration of main effects in an OLS regression.
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Panel Structure

To reduce confounding due to unobservable characteristics, which can either be

time-invariant or time-varying, we exploit the panel structure of our data. Firstly,

similar to Athey et al. (2020) and Knittel & Stolper (2021), we take first differences

from our outcome variable as well as from control variables to remove individual

fixed effects.110 This enables the elimination of a potential time-invariant omitted

variable bias. Secondly, in the spirit of Prest (2020), Knittel & Stolper (2021), and Va-

lente (2023), we additionally include a lagged outcome variable, to reduce possible

time-varying confounding due to unobservables. This can help to reduce potential

confounding, as the outcome from the previous period may be influenced by the

same unobservables as current firm characteristics (Lechner 2015). In other words,

conditioning on pre-treatment outcomes allows controlling for previous behaviour

that might motivate investment in ICT.

5.4 Data

5.4.1 Microdata on the German Manufacturing Sector

Our analysis builds on firm-level data on the German manufacturing sector (AFiD)

collected by the Research Data Centres of the Statistical Offices of the Federation and

the Federal States (RDC) between 2009 and 2017 ([data set] Research Data Centres of

the Statistical Offices of the Federation and the Federal States 2019a,b). We combine

two different AFiD data sources: (1) The AFiD-Panel Industrial Units and (2) the

AFiD-Module Use of Energy with additional information such as energy prices and

deflators.111

Our final panel contains annual information on German manufacturing firms

with at least 20 employees at the firm level (yielding around 90,000 observations in

total). The longitudinal data set covers basic information about production value,

employees, wages, as well as details on production function inputs (e.g., machines

and resources). Most importantly, it contains information about energy use, the re-

lated energy sources, and software investments.

Even though our data set covers an extensive set of firms, it is a rolling window

survey (most firms are observed for four or more consecutive years), which means

that not every firm is participating in the survey every year. This makes it difficult to

assess whether firms are exiting or entering the market, and, therefore, aggregated

effects at the sectoral level cannot be assessed properly. However, as our analysis

concentrates on the firm level, this is only a minor limitation.

110Note here that our treatment is also dichotomised based on the growth rate of ICT usage. Hence,
also for our variable of interest first differences are taken before it is converted into a binary indicator.

111The data set is also used and described in detail in Chapter 4.
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Table 5.2: Variable overview.

variable description variation transformation
Outcome

Y energy use firm, year ∆ln
electricity use firm, year ∆ln
(non-electric) fossil fuel use firm, year ∆ln

Treatment
W binary indicator for an increase in digitalisation firm, year 1 {∆D > 0}

Covariates
X output (Q) firm, year ln t − 1

tangible capital (K) firm, year ln t − 1
number of employees (L) firm, year ln t − 1
producer price index (pM) year, sector ∆ln
energy price (pE) year, sector/district ∆ln
prices for electricity and gas year, consumption level ∆ln
prices for other energy sources year ∆ln
lagged outcome (Yt−1) firm, year ln t − 1
share of energy source (e.g., natural gas/energy use) firm, year t − 1
R&D intensity (R&D divided by Q) firm, year ∆

tax intensity firm, year ∆

subsidy intensity firm, year ∆

trading intensity firm, year ∆

HHI year, sector ∆

relative use of self-produced fossil-based energy firm, year ∆

relative use of self-produced renewable energy firm, year ∆

proxy for renewable levy (EEG) exemption firm, year one-hot
multi/single unit firm, year one-hot
main industrial grouping firm, year one-hot
structurally weak region district one-hot
sector association sector LASSO vector
location federal state LASSO vector
time or disembodied technological change (t) year LASSO vector

5.4.2 Variable Description

In this section, we briefly characterise the variables included in the analysis. Unless

stated explicitly, first differences are taken. Please find an overview of all employed

variables in Table 5.2 and a detailed description of the variables in Appendix D.1.

We provide descriptive statistics in Appendix D.2.

We look at three different outcomes of interest (denoted by Y): energy use, elec-

tricity use, and non-electric energetic fossil fuel use (hereafter abbreviated by fossil

fuel use). Energy use represents the sum of consumed energy sources (renewable

and fossil, e.g., natural gas or biomass) plus electricity consumption. All variables

are measured in kWh and are log-transformed.112

The degree of firm-level digitalisation D is approximated via a software capi-

tal stock. We consider software capital to be a suitable indicator for firm-level ICT

usage, as it is a precursor to almost all digital hardware. In particular in manufac-

turing, technologies that optimise production processes usually require additional

software. The monetary measurement of the software capital stock makes it easy to

112Note here that electricity consumption and fossil fuel use do not sum up to energy use, since non-
electric non-fossil energy, such as biomass, cannot be accounted to either of the two.
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compare the proxy across different sectors and provides a certain generality in con-

trast to investments in single technologies, such as Cloud Computing or robotics.113

Not without reason, it is a commonly used indicator at the firm level (cf. Almeida

et al. 2020, Bessen & Righi 2020, Barth et al. 2022). We also integrate a tangible cap-

ital stock K. We calculate both capital stocks by applying the perpetual inventory

method (PIM), which allows for generating a productivity-relevant capital stock (cf.

Griliches 1980, Lutz et al. 2017). For this purpose, we use deflated investments.

Moreover, we base the calculation of software capital on information on software in-

vestments, while tangible capital is approximated using information on investments

in property, plants, and equipment. We include tangible capital in logarithmised

lagged levels in the estimation.

Furthermore, we take first differences of the software capital stock. Based on this

transformation, we define a binary treatment indicator W that approximates an in-

crease in the use of digital technologies. Accordingly, the indicator is one if firm i

shows an increase in software capital in the year t and zero otherwise.114 Although

the Generalised Random Forest (GRF) algorithm allows for the consideration of a

continuous treatment indicator, we decided to dichotomise our variable of interest.

We do this for two reasons. Firstly, changes in software capital are often accompa-

nied by hardware investments and the use of open source software. We, therefore,

rather see the rise in software capital as an indicator for a digital event that takes

place inside the firm. Secondly, a continuous treatment indicator would result in

the estimation of linear treatment effects, which we believe is a rather unrealistic as-

sumption.115 In summary, we observe for approximately 30% of firms an increase in

software capital.

We additionally include numerous covariates for each firm in the analysis. These

can serve two purposes. Firstly, they can moderate the impact of ICT on energy con-

sumption. Secondly, they may influence selection into treatment, as well as energy

use in general and we, therefore, have to control for them via orthogonalisation. We

group these covariates in five categories: Production function in- and outputs, ex-

ternal factors, firm structure, policy situation, and energy mix. We provide a brief

113For a detailed description of the capital stock approximation, for a descriptive analysis of the suit-
ability of software capital as an indicator for firm digitalisation, as well as for robustness checks with
respect to the depreciation rate, we refer to Chapter 4.

114We are aware of the fact this approach generates an unconventional composition of the control
group, comprising companies that do not have any software capital as well as those whose software
capital stock remains constant or declines. To analyse whether this may be an issue, we compared
descriptive statistics between both subgroups. If weighted by their propensity scores, these descriptive
statistics revealed no significant difference between the two groups. Results can be retrieved from the
authors upon request.

115Still, we would like to acknowledge that by dichotomising our variable of interest we are discard-
ing information and accepting a possible measurement error. Using a continuous variable may provide
additional insights, but since we only have limited access to the administrative data, we refrain from
conducting this analysis as an additional robustness check at this stage of our work.
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description of the variables here, but refer to the overview in Appendix D.1 for a

detailed description and the data sources.

We select production function in- and outputs based on a simple energy demand

model,116 in which energy and materials are treated as flexible inputs. Hence, in

addition to tangible capital K, we consider labour use L, which is approximated by

the number of employees, the price for materials pM, and the energy price pE, as

well as the firm-level production value Q in the analysis. The number of employees

and the firm-level production value are integrated in lagged levels to ensure that

the exogeneity of the covariates is fulfilled (Assumption A.3 in Section 5.3.2). We

approximate the price for materials by the producer price index. For the energy

price, we use the location-specific industry average of firm-level expenditure for

one kilowatt-hour of energy. We additionally add prices for different energy carriers

from external data sources: We merge electricity, natural gas, coal, heating oil, dis-

trict heat, biomass, and liquid gas prices. Also, we log-transform all price variables.

Information on external factors covers variables, such as location (federal state),

year of observation t, which approximates disembodied technological change, and

industry association. In a standard OLS regression, all three characteristics would

typically be included as one-hot-encoded fixed effects. However, trees-based algo-

rithms have difficulties with large one-hot-encoded matrices. Therefore, we follow

Jens et al. (2021) and modify them in a two-step procedure. First, we estimate the

effect of each variable, coded as fixed effects dummies in a LASSO regression, on

Y. For instance, we estimate the effect of each manufacturing industry, such as the

automotive industry, on energy use. Second, we create a vector of the respective

estimation coefficients for each variable and include this vector as a feature in the

GRF estimation instead of a one-hot-encoded matrix. Jens et al. (2021) show the ef-

fectiveness of this approach in Monte Carlo simulations. Further external factors

that are integrated in the estimation are the competitive situation in each industry

approximated by the Herfindahl±Hirschman Index (HHI) and a dummy indicating

whether the firm is situated in a region considered ªstructurally weakº due to its

limited economic productivity.

Additionally, we include information on the firm structure, such as information

on the number of plants, industrial grouping (intermediate goods, capital goods,

durable consumer goods, non-durable consumer goods, and energy producer), and

the volume of traded commodities, as well as investment in research and develop-

ment (R&D) relative to output. Except for the last two variables, which are contin-

uous, we integrate all information in levels and one-hot-encoded. Here, we refrain

from applying LASSO-based fixed effects vectors, as the number of categories is

small.
116Y∗ = Y (Q, pE, pM, K, L, ϑ), with ϑ relating to all other parameters that may impact energy use.
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The policy situation of the firm is characterised by paid taxes and received sub-

sidies. The information is considered proportional to output. Information whether

the firm is potentially fully or partly exempt from the EEG levy,117 which is the case

for various energy-intensive firms, is also included as a categorical variable.

Last but not least, we include covariates that describe the energy mix of the firm,

starting with the share of different energy sources used in the production process.

All shares are integrated as lagged levels, as current changes may be strongly cor-

related with the outcome variable. Moreover, we add the share of self-generated

energy (fossil and renewable energies).

After this preprocessing our data set contains p = 78 covariates and our sample

includes 92,315 observations based on 28,734 firms.118

5.5 Results

We structure our results according to the three research questions posed in Section

5.2. Hence, we first discuss the general role of digital technologies for energy con-

sumption in the manufacturing sector. Then, we turn to heterogeneity-driving char-

acteristics before presenting results on selective targeting of current industrial digi-

talisation policies and their influence on energy use.

5.5.1 Conditional Average Treatment Effects

We start by estimating the conditional average treatment effects of an increase in the

use of digital technologies, approximated by a binary indicator, on total energy use,

electricity use, and non-electric fossil fuel use. We use each outcome in a separate

analysis, i.e., we estimate three separate Causal Forest models.

Figure 5.2 depicts the distributions of the treatment effects predicted by the

Causal Forest for the three different outcomes. All panels show out-of-bag (OOB)

predictions, which are average predictions for each observation, using only trees

that do not include the respective observation (James et al. 2021).119 We find for to-

tal energy use that the ICT-related increase in energy consumption ranges roughly

from −3% to 6% and has its mean at 1.03%. When electricity use is our dependent

variable, the ICT-related increase in electricity consumption is slightly higher and

at 1.34%. The contrary holds for fossil fuels, where the ATE decreases to 0.23% and

becomes insignificant. It has to be acknowledged here that the range of the CATE

117A levy paid in Germany for electricity consumption to promote renewable energies.
118Please note that the number of observations in Chapter 4 and Chapter 5 marginally diverges be-

cause the variable prepossessing is slightly different.
119We excluded a small test sample of 2% of our observations from the training procedure of the

Causal Forest model to analyse the external validity. Figure D.7 in the Appendix shows the CATE
predictions for this test sample. The similarity between the distributions indicates that the model is
well calibrated.
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Figure 5.2: Distribution of the conditional average treatment effect (CATE) for the three
different outcome variables: energy use, electricity use, and non-electric fossil fuel use.

distribution is now much broader and spans roughly from −30% to 30%.120 Overall,

the average treatment effect indicates that an increase in the firm-level degree of dig-

italisation is significantly related to higher levels of energy use. However, there is

a small share of firms for which the potential outcome declines. Thus, we conclude

that for some firms we can observe both, energy savings and an increase in digital

technologies, i.e., potential synergies. Nonetheless, firms for which an increase in the

software capital stock relates to growing energy use are far more frequent. The posi-

tive relationship seems to be particularly pronounced for the electricity use of a firm,

while we cannot determine an unambiguous direction of ICT-related changes in en-

ergy consumption for fossil fuel use. Accordingly, results suggest that the change in

overall energy use is driven by an increase in electricity use. This is in line with the

reasoning that ICT consume mainly electric energy.

At first sight, this finding contradicts previous results from Schulte et al. (2016),

who observe that ICT relate to a reduction in non-electric energy, but do not sig-

nificantly affect the demand for electric energy. However, comparing both studies

reveals that Schulte et al. (2016) use different outcome variables. For instance, in-

stead of considering absolute electricity use, they use the share of electricity costs in

variable costs as a dependent variable. This divergence may explain the differences

between the two studies.
120Please note that if not stated otherwise average treatment effects are estimated doubly robust.
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We evaluate the Causal Forest fit by applying the Best Linear Prediction Test
(Chernozhukov et al. 2018). The test uses the OOB predictions of ICT-related
changes in energy consumption to predict actual changes and thereby evaluates the
quality of estimates with the following linear model:121

(Yi,t − Yi,t−1)− m̂(−i) (Xi,t) = βATE Åτ
(

Wi,t − ê(−i) (Xi,t)
)

+ βCATE

(

τ̂(−i) (Xi,t)− Åτ
) (

Wi,t − ê(−i) (Xi,t)
)

+ ϵi,t.
(5.4)

The results for the two β-coefficients are reported in Table 5.3 with respect to over-

all energy use. Since βATE is close to 1, the model captures the average ICT-related

changes in energy consumption well. We also find evidence that the covariates ad-

equately capture the underlying heterogeneity, as the second coefficient (βCATE) is

also close to 1 and significant. The results of the other two outcomes are reported in

Table D.3.122 Although the results for the electricity model are comparable to those

of the overall energy model, the fossil fuel model does not appear to adequately pre-

dict ICT-related changes in fossil fuel consumption. Thus, for fossil fuels, we cannot

reject the null that no heterogeneity exists.

Table 5.3: Best Linear Predictor Test for the forest with total energy use as outcome.

Estimate SE t-stat p-value
βATE 0.998 0.235 4.245 1.09e − 05∗∗∗

βCATE 1.261 0.366 3.448 0.0003∗∗∗

Notes: Results of the best linear predictor test for
model calibration and heterogeneity that seeks to
fit the estimated CATE as a linear function of the
out-of-bag predictions (see Equation 5.4).

As our results confirm an increase in energy use at the firm level. It is intuitive

to ask how this result affects the overall energy consumption of the manufacturing

sector. However, we have to face a limitation in this regard, as even though our

data set covers an extensive set of firms, it is a rolling window survey, which means

that not every firm of the manufacturing sector has to answer the survey every year.

This makes it difficult to assess whether firms exit or enter the market and, therefore,

aggregated effects at the sectoral level cannot be assessed properly. Thus, we refrain

from conclusions with respect to changes in aggregated energy consumption.

121The model is calibrated well if βATE and βCATE are close to one.
122Table D.3 in the Appendix also contains a t-test that approximately examines based on rounded

coefficients and standard errors, as well as 10,000 degrees of freedom whether the coefficients of the
Best Linear Prediction Test are significantly different from one. For energy use and electricity use, we
cannot reject the null that coefficients are equal to one. Hence, we do not find statistical evidence that
the model over- or underestimates changes in total energy consumption and electricity consumption
related to ICT usage.
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5.5.2 Analysing Effect Heterogeneity

While the CATE distributions indicate that the relationship is heterogeneous for to-

tal energy and electricity use, it does not clarify how the observed covariates are

associated with ICT-related changes in energy consumption.
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Figure 5.3: Bivariate distributions and smoothed regression lines for ICT-related changes
in energy consumption and selected variables (total energy use). The colour of the
hexagons symbolises the density of the observations and each hexagon comprises at least
5 individual observations. Individual observations cannot be presented due to anonymity
constraints.

Figure 5.3 shows bivariate distributions and smoothed regression lines for pre-

dicted ICT-related changes in overall energy consumption with respect to the fol-

lowing variables: energy use and relative electricity consumption in the previous

period, changes in market concentration, and changes in the overall energy price.

The four variables were chosen according to the variable importance in the splitting

algorithm for overall energy consumption (see Figure D.5 in the Appendix).123

Previous level of energy use and share of electricity. The upper right panel of Fig-

ure 5.3 indicates that firms which used relatively little energy in the previous period

are associated with a greater increase in ICT-related energy use. This may imply

that smaller firms increase their energy use to a greater extent when investing in

ICT, which can be explained by the phenomenon that digital technologies spark eco-

nomic growth. In addition, the joint distribution of ICT-related changes in overall

123The importance of prices is considered jointly.
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energy consumption and the electricity share in the previous period indicates a pos-

itive relationship (upper left panel). This result potentially confirms that digitalisa-

tion more strongly affects electricity-using firms.

HHI. The HHI is positively correlated with predicted CATEs (lower left). This

might imply that digital firms which face less competition use relatively more energy

than digital firms in less concentrated markets. Accordingly, fierce competition may

provide larger incentives to save costs and mitigate the additional energy consumed

by digital technologies.

Energy prices. The lower right panel of Figure 5.3 relates to the overall energy

price. It suggests that the association between ICT-related changes in energy con-

sumption and changes in the energy price is positive. Assuming a negative ªbase-

lineº effect for energy prices (Labandeira et al. 2017), i.e., a negative own price elas-

ticity, this result indicates that the sensitivity to the energy price decreases for firms

that increase their use of digital technologies, since the slope of their energy demand

curve potentially becomes less steep compared to firms that do not increase their use

of digital technologies.

The energy price only reflects the average price of the energy sources consumed,

weighted by their usage. However, in fact, the effects for different energy outcomes

may diverge with respect to prices for different energy sources. We assume this

because different energy sources can be used as substitutes, and digital technolo-

gies may influence own and cross-price elasticities differently. As digital technolo-

gies consume electricity, we conjecture that firms that increase their use of digital

technologies become more dependent on electricity. Thus, on the one hand, their

sensitivity to an increase in the electricity price may decline. On the other hand, if

firms increase their use of digital technologies, they may also respond differently to

changes in fossil fuel prices. We assume this because they can potentially substitute

fossil fuels more easily with electricity and, therefore, may become more sensitive to

fossil fuel prices. In summary, we hypothesise that own and cross-price sensitivity

for different energy sources is affected if a firm increases its use of digital technolo-

gies.

To analyse this claim, we compare the difference between the prices of different

energy sources between the 20 % of firms (Q5) with the highest predicted increase

in ICT-related energy consumption and the 20 % of firms (Q1) with the lowest pre-

dicted increase. The first panel of Figure 5.4 depicts results for overall energy use

as dependent variable. Each bar represents the price difference of an energy source.

We see that the electricity price per kWh is higher in Q5 than in Q1. Hence, the firms

for which the ICT-related difference in energy consumption is the largest face higher

electricity prices. For natural gas, district heat, and coal, we do not observe any no-

table price differences between Q1 and Q5. For heating oil and liquid petroleum gas
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Figure 5.4: Difference between energy prices with respect to the 20% of firms with the
highest predicted ICT-related change in energy, electricity, or fossil fuel consumption and
the 20% with the lowest predicted ICT-related change. We calculate Q5 -Q1.

(LPG), we find a negative divergence. Hence, we observe lower respective prices

where the difference in energy consumption between ICT-increasing and not ICT-

increasing firms is the largest.

The second panel of Figure 5.4 shows price differences for changes in electricity

consumption. It is straightforward to see that electricity and fossil fuel prices are

higher where the difference in electricity consumption between ICT-increasing and

not ICT-increasing firms is the largest. As explained above, two different mecha-

nisms that work in parallel may explain this difference. On the one hand, sensitivity

to electricity prices declines for digital firms. On the other hand, digital firms can

more easily switch to electricity if prices of fossil fuels increase; hence, the sensitiv-

ity to other prices may increase.

The third panel of Figure 5.4, shows for fossil fuel use that a higher respective

positive divergence between ICT-increasing and not ICT-increasing firms can be as-

sociated with lower fossil fuel prices. Furthermore, there is no difference between

both quintiles with respect to the electricity price. This result is in line with our as-

sumption that price sensitivity increases for fossil fuel prices. However, since the

Best Linear Prediction Test does not confirm heterogeneity for fossil fuels, results for

fossil fuel use should be interpreted with caution.

In summary, we find that when the electricity difference between ICT-increasing

and not ICT-increasing firms is larger than electricity prices are also higher. Fur-

thermore, we find that a smaller increase in energy consumption is more frequently

linked to higher fossil fuel prices. Policymakers should be aware that this result sug-

gests that digital firms may be less responsive to an electricity price policy, such as
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a levy to promote renewable energies, but may be more responsive to a fossil fuel

price policy (targeting non-electric energy consumption).

5.5.3 Group Differences in the Light of Current Policies

In the following, we look at the differences between subgroups with respect to

current digitalisation policies. So far, German and also European digitalisation

policies,124 involve subsidies and funding for small and medium-sized enterprises

(SMEs) and for regions that are considered structurally weak. To analyse the inter-

play of this strategy with climate targets, we conduct a subgroup analysis investi-

gating whether and how the estimated ICT-related increase in energy consumption

varies along firm size and regional structure.

We use group average treatment effects (GATEs) for the analysis. GATEs refer to

the average of individual treatment effects over pre-defined, low-dimensional char-

acteristics (Knaus et al. 2021). Therefore, they are more granular than the overall

ATE but are easier to interpret than the previously described firm-level effects. In

the spirit of Athey et al. (2020), we split the sample into quintiles for the exercise.125

We estimate GATEs for firms located in regions that are considered either struc-

turally weak or strong along three continuous variables that indicate firm size: the

number of employees, the tangible capital stock, and output. We consider these vari-

ables all from the previous period, as decision-makers usually observe firm charac-

teristics, and funding decisions are subsequently made. Figure 5.5 shows the GATEs

for each of the three ªsizeº variables separately. The horizontal axes depict quintiles

for ªsizeº variables. The vertical axes show the estimated ICT-related increase in

energy consumption. Note that we calculate the quintiles before grouping the data

by region. Green lines relate to firms in structurally weak regions and purple lines

to firms in structurally strong regions.

All three panels indicate that the ICT-related increase in energy consumption de-

clines with firm size in both, structurally weak and strong regions. The effects in

structurally weak regions vary between 1.45% for firms in the lowest quintiles of

labour and output and 0.9% for firms in respective highest quintiles. Furthermore,

the effect size is smaller for structurally strong regions, for which the effect range

is between 1.25% − 0.85% for quintiles of labour and output. Effect differences for

quintiles of tangible capital are slightly less pronounced. Besides, the difference be-

tween the energy use of firms with increasing software capital and those without is,

124For instance ªgo digitalº, https://www.innovation-beratung-foerderung.de/INNO/Naviga
tion/DE/go-digital/Foerdermodell/foerdermodell.html [Online; accessed 17 Mar. 2023] and
ªdigital jetztº, see https://www.foerderdatenbank.de/FDB/Content/DE/Foerderprogramm/Bund/BM

Wi/digital-jetzt-investitionsfoerderung-kmu.html [Online; accessed 17 Mar. 2023]
125Note that we do not estimate GATEs doubly robust, as AIPW-scores tend to not perform well on

smaller samples and the common support assumption may not be fulfilled anymore (Glynn & Quinn
2010).

108



Chapter 5. What Drives the Relationship Between Digitalisation and Industrial

Energy Demand? Exploring Firm-Level Heterogeneity

Figure 5.5: Group average treatment effects (GATE) grouped by the economic strength
of the corresponding region for different quintiles of labour (number of employees; L),
tangible capital (K) and output (Q). The two lines relate to the economic strengths of the
region, shaded areas denote 90% confidence intervals

in particular, strong for small firms in structurally weak regions, while the difference

between regions is partly insignificant for higher quintiles for each ªsizeº variable

and never significant for the highest quintile.

One potential explanation for the higher increase in energy consumption in small

firms in structurally weak regions is the fact that digital technologies are a cata-

lyst for economic growth by improving productivity, especially for laggard firms

(Borowiecki et al. 2021). Related efficiency improvements exist for economic rea-

sons, such as the generation of scale and scope economies and the reduction of

transaction costs (Brynjolfsson & Hitt 2000). Since larger firms in industrialised re-

gions potentially have advantages in economies of scale and scope and fewer trans-

action costs, digital technologies may spark here productivity improvements and

economic growth to a lower magnitude. This phenomenon may explain why we ob-

serve a larger increase in energy consumption for smaller firms in structurally weak

regions. We conclude that a policy trade-off between the goal of saving energy and

economic assistance by increasing the use of digital technologies may be especially

pronounced for those firms.

In the next step, we analyse group differences with respect to energy-intensive

and other industries. We already put forward the hypothesis that relationships may

diverge between industries as production processes vary and, hence, can be differ-

ently affected by digitalisation. Considering that a large share of manufacturing’s
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total energy consumption is driven by a few industries, differences between indus-

tries are policy relevant and may be crucial for achieving climate targets.

Figure 5.6: Group average treatment effects (GATE) grouped by energy-intensive (Divi-
sions: 10-12, 17,19, 20, 23, 24) and remaining industries for different quintiles of labour
(number of employees; L), tangible capital (K) and output (Q). The two lines relate to the
economic strengths of the region, shaded areas denote 90% confidence intervals

Similarly to differences between structurally strong and weak regions, we calcu-

late GATEs for energy-intensive and other industries. We consider the following

industries as energy intensive, as they jointly account for more than 80 % of the

total energy consumption in manufacturing: ªfood, beverages, tobacco productsº

(Division 10±12, 5.8 %), ªpaper & paper productsº (Division 17, 5.7 %), ªcoke, re-

fined petroleum productsº (Division 19, 14.4 %), ªchemicals & chemical productsº

(Division 20, 32.9 %) ªnon-metallic productsº (Division 23, 7.4 %), ªbasic metalsº

(Division 24, 16.9 %).126 We also calculate sector GATEs with respect to quintiles of

different ªsizeº variables, as the previous analysis shows large differences in this

regard.

Figure 5.6 shows that the increase in energy consumption is less for firms in

energy-intensive industries. For the lowest quintile of labour, for example, the in-

crease in energy consumption for energy-intensive industries is only 1.1%, whereas

it is 1.35% for other industries. However, the differences decrease for the higher

quintiles of ªsizeº variables and are only significant for the highest quintile of tangi-

ble capital.

126See German Environmental Agency; www.umweltbundesamt.de/daten/umwelt-wirtschaft/in
dustrie/branchenabhaengiger-energieverbrauch-des#primarenergienutzung-des-verarbeiten

den-gewerbes [Online; accessed 9 Apr. 2023].
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As assumed, the results suggest that industry differences affect ICT-related

changes in energy consumption.127 Energy-intensive industries are part of the Eu-

ropean Union Emissions Trading System (EU ETS). This system generates an addi-

tional incentive to save carbon emissions. Hence, an increase in energy consump-

tion may be attenuated for energy-intensive firms by an increasing pressure to save

energy-related carbon emissions.128

5.6 Robustness

The role of output, labour use, and tangible capital for the relationship between ICT

and energy use is ambiguous in our analysis. On the one hand, these variables might

be influenced by digital technologies. Therefore, they are a potential source of biased

results, as this would violate Assumption A.3, and we cannot consider contempo-

raneous changes in variables. However, on the other hand, production function in-

and outputs may also be potential confounders. For instance, an increase in tangible

capital may correlate with the use of digital technologies. This might lead to the rise

in tangible capital being the reason for a higher energy consumption, while digital

technologies had actually no impact on energy use. Consequently, by integrating

only lagged levels, we cannot fully control for confounding due to simultaneous

changes in production function in- and outputs.

To control for respective simultaneous changes, we re-estimate our model and re-

place lagged output, tangible capital, and labour use by logarithmised growth rates

(see Appendix D.5). Since the results are comparable to those of our main model,

we conclude that the results are robust and contemporaneous changes only play a

minor role.

Moreover, we conduct a second robustness check in which we constrain our def-

inition of an increase in digitalisation and only consider firms as digital for which

the software capital stock per employee increases additionally. In this specification,

the ATE is now 0.006%, but with a p-value of 0.12 (see Appendix D.5). The Best

Linear Prediction Test shows significant results at the 95%-level. Hence, consider-

ing software capital per employee, our results also confirm firm-level heterogeneity.

However, it should be acknowledged that this result is significant at a much lower

level. An explanation for an attenuated statistical power may be, on the one hand,

that we now control more strictly for firm growth (also for the ICT-induced one). On

127This result does not contradict findings of Chapter 4, in which we show that energy intensity
improvements are rather statistically significant in energy-intensive industries. If output increases
parallel to ICT investments than energy intensity can decrease. It will probably improve to a greater
extent where the rise in absolute energy consumption is smaller.

128We have to acknowledge that prices of emission allowances were rather low between 2011 and
2017.
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the other hand, we observe firms now in the control group which have been previ-

ously considered as digital, i.e., firms with an increasing software capital stock but

with a decreasing software capital stock per employee. Observing these firms in the

control group may decrease measured ICT-related changes in energy consumption.

A further study should shed more light on whether electricity consumption rises be-

cause digital firms grow faster or whether digital technologies spark electricity use

independent of economic growth.129

5.7 Summary and Conclusion

On the one hand, the ongoing digital transformation has raised hopes of climate

protection potentials in the energy-intensive manufacturing sector. On the other

hand, digital technologies may actually contribute further to environmental dam-

age because they themselves consume energy and resources. However, there is little

evidence in the literature that identifies key parameters that determine this relation-

ship.

The main contribution of the article is to disentangle the heterogeneity at the

firm level regarding the relationship between ICT and energy use in manufacturing.

For this purpose, we apply the Generalised Random Forest algorithm proposed by

Athey et al. (2019) to a large administrative panel data set. We harness the panel

structure of the data to reduce confounding and mitigate endogeneity issues.

We find that for most firms with an increase in ICT capital, energy use increases

relative to firms that do not or barely invest in ICT. Comparing electricity and non-

electric fossil fuel use, we additionally show that the relationship differs with respect

to different energy sources. We find no significant changes in the use of non-electric

fossil fuels, but an average increase in electricity use of 1.34%. Contrary to political

hopes, digital technologies seem to increase energy use at the firm level. However,

the increase is particularly related to electricity consumption, for which decarbon-

isation can be realised by renewable energy sources. Furthermore, there is a small

share of firms for which energy use declines. Looking closer at the external and

firm-level characteristics that may explain heterogeneity, our analysis confirms an-

ticipated rationales. Most interestingly, we observe a growing ICT-related increase

in energy consumption with respect to the electricity price, which indicates that the

sensitivity to the electricity price declines for digital firms.

Analysing current policy rationales to target SMEs and firms in regions that are

considered structurally weak, the analysis reveals that digitalisation policies might

not mitigate energy use, while simultaneously fostering technological progress.

129It may also be beneficial for future research to examine whether effects of digital technologies on
energy consumption in the periods following the investment still persist and if effects differ from the
initial period.
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However, since our study is the first to shed light on characteristics that determine a

change in firms’ energy consumption as a response to the ongoing digital transfor-

mation, there is a strong need for further research. As digital technologies become

even more important in the next few years, so will the question of how to actively

shape this process into a direction that supports sustainability goals. To be able to

systematically align both policies that support technological progress and instru-

ments that reduce energy use, a better understanding of drivers and moderators,

i.e., of firm-level heterogeneity, is essential.
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Concluding Remarks

The goal of this thesis is to shed new light on measuring technological change and its

environmental impacts, in order to better understand to what extent current techno-

logical progress enables the achievement of sustainability targets. To this end, I make

use of new opportunities for empirical economists arising from the widespread

adoption of digital technologies. My contributions to this field of research include

(1) insights into the usefulness of web-based information to measure technological

change, and (2) a novel understanding of the link between digitalisation and energy

use patterns, as well as changes in mobility, based on large-scale firm-level data.

In detail, jointly with my co-authors, I show in Chapter 2 that firm websites in

combination with emerging text and data mining techniques serve particularly as

a useful complement to the survey-based measurement of firm-level product inno-

vation activities as well as innovation expenditure. In Chapter 3, we show that this

approach also provides plausible estimates of the degree of digitalisation for a local

economy. Moreover, one specific advantage of web data is that information can be

accessed in real-time and at a large scale, which is additionally leveraged in Chapter

3 in the context of the Covid-19 pandemic.

Furthermore, by employing large-scale administrative panel data, my co-authors

and I find in Chapter 4 for the years 2009 to 2017 that the use of digital technologies,

approximated by software capital, in German manufacturing can only be linked to a

marginal decline in energy intensity at the firm level. In Chapter 5, we additionally

observe an increase in absolute energy consumption, using the same data source. It

has to be noted, however, that the observed increase in absolute energy consumption

differs between firms and depends, among other factors, on energy prices and on the

utilised energy sources. In addition, we find in Chapter 3 that firm digitalisation can

only be associated with mobility reductions during the Covid-19 pandemic. An ICT-

enabled decline in mobility as well as (most likely) in related carbon emissions did

not sustain after most Covid-19 restrictions were lifted. This result holds despite

the fact that factors that facilitate telecommunications-transportation substitution

greatly improved in the course of the pandemic. Thus, the findings of my thesis

with respect to environmental outcomes strongly suggest that it is not given that the
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digital and green transitions will promote each other naturally in all areas of our

economy. This result is especially policy-relevant because it clearly indicates that

digitalisation, at least for this thesis’ research subjects, does not sufficiently support

the achievement of climate targets and more action is needed to unleash (potential)

synergies between both transitions.

My results raise several specific questions for future research that are thoroughly

discussed in the respective chapters.130 Additionally, I would like to draw attention

to two broader issues that pertain to more than one of the presented essays and

merit, in my opinion, consideration by future research, as they allow for further

insights into the link between technological change and environmental outcomes:

1. Merging web-based and administrative firm-level data.

This thesis uses, on the one hand, data generated in the digital world and, on

the other hand, large-scale administrative panel data from German statistical

offices. However, both data sources are not analysed jointly at the firm level.

They are not merged because very strict data protection regulations of the re-

search data centres of the German statistical offices do not allow the two data

sources to be merged at a granular level (with manageable effort). Yet, combin-

ing firm websites with large firm-level administrative panel data would enable

generating more in-depth insights into the impact of digital technologies and

environmental outcomes. For instance, Chapter 4 and Chapter 5, in which

digitalisation is approximated by software capital, would have profited from

additional robustness checks with software capital being replaced by the web-

based digitalisation indicator from Chapter 3, as the latter aims to measure

firm digitalisation in a more general way.131

Moreover, combining information on firm websites with the employed admin-

istrative panel data would have provided the opportunity to consider addi-

tional variables. Latent characteristics such as a firm’s management style and

attitude towards environmentally-friendly business practices may influence

differences in ICT-related changes in energy consumption. Hence, Chapter

5, which focuses on heterogeneity in the link between digital technologies and

energy consumption, would have particularly profited from this additional

information. However, such insights are generally not available in German

administrative panel data. In contrast, firm websites frequently contain in-

formation on key management decisions and environmental strategies. Thus,

merging both data sources would allow for taking such aspects into account.

130For example, Chapter 3 addresses the problem that technological progress can only be measured
by firms that have a website. Chapter 4 discusses whether software capital is a suitable indicator to
measure firm digitalisation.

131I want to acknowledge here that such robustness checks are only possible for firms that have a web
presence.
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Furthermore, the joint analysis of web data and administrative data can pro-

vide a variety of insights which are relevant for guiding the green transition,

beyond analysing the impact of digital technologies. For instance, green-

washing practices of firms are generally seen as a threat to the achievement

of climate targets. A comparison of self-reported environmental claims on

firm websites with actual environmental outcomes would enable a more

precise understanding of the extent to which firms are genuinely striving

for environmental progress and to what degree such claims are merely used

to gain competitive advantages. In addition, factors such as competition

intensity or industry affiliation could be identified that may determine the

extent to which firms engage in greenwashing. Moreover, apart from environ-

mental questions, it may be fruitful for economic research to link self-reported

information on firm websites to information on a firm’s cost structure, as

researchers could then analyse which claims on firm websites can be linked to

an increase in wages and productivity, as well as firm growth. This may allow

for finding new answers to questions related to economic prosperity. Hence,

the possibility of combining both data sources can pave the way for future

research to provide new insights into a broad range of pressing questions.

Thus, researchers and decision-makers should strive to facilitate merging

both, e.g., through less restrictive data protection regulations.

2. Energy intensity improvements but increased energy consumption.

At first sight, it seems contradictory that the results of Chapter 4 indicate that

digital technologies (marginally) improve energy intensity, whereas the results

of Chapter 5 suggest that ICT increase on average total energy consumption.

One plausible explanation for this phenomenon is that if firms invest in digital

technologies, a concurrent increase in output is taking place. More precisely,

both, energy consumption and output, rise with ICT adoption, but output

grows to a larger extent, allowing for a simultaneous improvement in energy

intensity.

I look into the plausibility of this reasoning by conducting an additional

reduced-form regression analysis in Appendix E. Here, I estimate the impact

of an increase in software capital on changes in absolute energy consumption,

output, and energy intensity, respectively (see Equation [E.1]). The results of
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Table E.1 in the Appendix confirm that, when firms increase their software cap-

ital, output grows more strongly than absolute energy consumption, parallel to

observed improvements in energy intensity. Therefore, a concurrent increase

in output resolves the apparent inconsistencies between both chapters.132

Nonetheless, I want to highlight that the findings of the Chapters 4 and 5, as

well as of Appendix E do not allow for a thorough understanding of why the

adoption of digital technologies does not result in absolute energy savings,

despite promised potentials to improve energy efficiency.133 It is difficult to

obtain comprehensive insights as the results do not indicate clear causal rela-

tionships between digitalisation, energy use patterns, and changes in output.

The following three reasons may explain why the results do not indicate a

notable decrease in energy use. Firstly, it may be that the energy-saving po-

tential of digital technologies is not as significant as expected.134 Secondly, it

is possible that specific digital solutions exist that improve energy efficiency,

but these were not largely adopted in the observed time frame. Instead, in-

vestments were made in other digital technologies that may not necessarily

enhance energy efficiency. Thirdly, it could be that digital technologies which

improve energy efficiency are available and being used, but adjustments in

production factors in response to lower energy service costs (direct rebound

effects) sparked additional energy consumption (cf. Amjadi et al. 2018).

To better understand the extent to which digital technologies are being used to

improve energy efficiency and whether rebound effects are occurring, it would

be helpful to have more detailed information on the current deployment of

digital technologies that promise energy efficiency improvements, such as ar-

tificial intelligence.135 To gain more insights, for instance, a text-based analysis

of firm websites or business reports could be conducted to measure the extent

to which firms are mentioning that they employ environmentally-beneficial

digital technologies.

Furthermore, digitalisation could lead to increased energy consumption

through different chains of events. For instance, digitalisation may improve

energy efficiency. This can give firms a cost advantage, leading to increased

demand and output. As a result of this increased output, energy consumption

may also rise (cf. Berner et al. 2022). Another possible mechanism would be

132It is important to note here that a matching is performed in Chapter 5, but not in Chapter 4 and in
Appendix E. Thus, respective results also have slightly different implications.

133See Chapter 4 for an explanation of the difference between energy intensity and energy efficiency.
134For instance, see Friedrich et al. (2021), Ghobakhloo & Fathi (2021), IEA (2017), OECD (2017a) or

Zhang et al. (2019) for examples that promise potentials to improve energy efficiency.
135Additionally, it would be interesting to analyse whether digital technologies with energy-saving

potentials are being increasingly used since the start of the current energy price crisis.
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that firms solely invest in digital technologies to gain a competitive advantage,

which, in turn, may allow firms to increase prices as well as sales.136 As the

employed digital technologies also consume energy, total energy consumption

would increase at the firm level as well. Moreover, energy intensity would

improve as long as sales grow to a greater extent than energy use.

The lack of clarity regarding these impact channels makes it difficult to de-

velop effective digitalisation policies that allow for lowering energy consump-

tion. Therefore, future research on ICT-related changes in energy consumption

should put more effort into identifying causal relationships between digitali-

sation, energy use patterns, and changes in output. One possible path for fu-

ture research could be to analyse the impact of an external digitalisation shock,

such as subsidies for digitalisation. Then, by analysing temporal variations in

changes in output, energy consumption, and energy intensity improvements,

it may be possible to determine which of these factors is affected first and

whether changes in one variable have an impact on the other.

In addition, the derived results on the link between digital technologies

and firm-level energy consumption do not necessarily allow conclusions on

changes in aggregated energy consumption. Two potential scenarios intro-

duce ambiguity. Either it could be that aggregated output remains roughly

the same, but more digital and energy-efficient firms displace those that are

less digital and energy-efficient (displacement effect). Or it could be that the

increase in output of digital firms leads to overall output growth, allowing

the larger, more digital firms and less digital firms to coexist (growth effect).

Hence, aggregated energy consumption could either decrease or increase, de-

pending on whether displacement or growth effects dominate. As descriptive

results of Chapter 5 suggest that energy consumption and output generally

increase regardless of whether firms invest in software capital, it is possible

that the growth effect predominates and digitalisation can be associated with

an increase in aggregated energy consumption (see Table D.2). However, this

argument needs further investigation. Hence, in addition to identifying di-

rections of causality in the nexus of digitalisation, energy consumption, and

output, future research should also focus on the question of how changes at

the firm level impact dynamics at the aggregated level.

136In this paragraph, the term ‘output’ refers to the quantity of produced goods or services, while the
term ‘sales’ refers to the revenue generated by selling output.

118



Chapter 6. Concluding Remarks

As the adoption of digital technologies continues to grow, actively guiding this

process in a direction that allows for reaching climate targets becomes increasingly

important. This thesis shows that the use of novel data and methods can provide

a new understanding of how digitalisation is linked to environmental outcomes.

However, my concluding remarks also illustrate that while the results obtained in

this thesis are important, deeper insights still need to be gained. The continuation

of the utilisation of detailed information at the firm level, combining different data

sources and observational levels, as well as a stronger focus on causal relationships

between digital technologies and environmentally-relevant outcomes are ways to

obtain these insights.
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Appendix A

Innovation Indicators Based on

Firm Websites ± Which Website

Characteristics Predict Firm-Level

Innovation Activity?

A.1 Comparison of the Distribution Between the MIP and

the Applied Subsample
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Figure A.1: Firm distribution based on the number of employees.
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A.2 List of Emerging Technology Terms Used in the Con-

ducted Keyword Search

English terms: agricultural robot, closed ecological systems, cultured meat, pre-

cision agriculture, vertical farming, micro air vehicle, neural-sensing headset,

four-dimensional printing, arcology, aerogel, bioplastic, conductive polymers,

cryogenic treatment, fullerene, graphene, lab-on-a-chip, magnetorheological fluid,

metamaterials, metal foam, multi-function structures, nanomaterials, carbon nan-

otube, quantum dots, superalloy, synthetic diamond, translucent concrete, 3D

displays, ferroelectric liquid crystal display, holography, interferometric modulator

display, laser video displays, OLED displays, micro LED displays, telescopic

pixel display, time-multiplexed optical shutter, volumetric display, biometrics,

digital scent technology, electronic nose, e-textiles, flexible electronics, memristor,

molecular electronics, nano electro mechanical systems, spintronics, thermal copper

pillar bump, three-dimensional integrated circuit, concentrated solar power, electric

double-layer capacitor, flywheel energy storage, grid energy storage, home fuel

cell, lithium iron phosphor battery, lithium-sulfur battery, magnesium battery,

nanowire battery, ocean thermal energy conversion, smart grid, vortex engine,

wireless energy transfer, zero-energy building, computer-generated imagery, vir-

tual reality, ultra-high-definition television, 5G cellular communications, artificial

general intelligence, augmented reality, blockchain, carbon nanotube field-effect

transistor, civic technology, cryptocurrency, exascale computing, gesture recogni-

tion, internet of things, emerging memory technologies, emerging magnetic data

storage technologies, fourth generation optical discs, holographic data storage,

general purpose computing on graphics processing units, exocortex, machine

translation, machine vision, mobile collaboration, nano radio, optical computing,

quantum computing, quantum cryptography, radio-frequency identification, se-

mantic web, smart speaker, software-defined radio, speech recognition, subvocal

recognition, hybrid forensics, body implants, prosthesis, cryonics, de-extinction,

genetic engineering of organisms and viruses, suspended animation, artificial

hibernation, immunotherapy/oncology, nano medicines, nano sensors, oncolytic

viruses, personalized medicine, whole genome sequencing, robotic surgery, stem

cell treatments, synthetic biology, synthetic genomics, tissue engineering, tricorder,

brain-computer interface, neuro informatics, electro encephalography, neuro pros-

thetics, caseless ammunition, directed energy weapon, electro laser, electromagnetic

weapons, electrothermal-chemical technology, green bullet, laser weapon, par-

ticle beam weapon, sonic weapon, stealth technology, vortex ring gun, wireless

long-range electric shock weapon, artificial gravity, stasis chamber, inflatable space

habitat, miniaturized satellite, android, gynoid, nanorobotics, powered exoskeleton,
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self-reconfiguring modular robot, unmanned vehicle, airless tire, alternative fuel

vehicle, electro hydrodynamic propulsion, flying car, fusion rocket, hoverbike,

jetpack, backpack helicopter, maglev train, vactrain, magnetic levitation, mass

driver, personal rapid transit, physical internet, scooter-sharing system, propellant

depot, reusable launch system, space elevator, spaceplane, supersonic transport,

vehicular communication systems.

German terms: Agrarroboter, geschlossenes ökologisches System, Zuchtfleisch,

Präzisionslandwirtschaft, vertikale Landwirtschaft, Mikro-Luftfahrzeug, neu-

ronales Headset, vierdimensionales Drucken, Arkologie, Aerogel, Bio-Kunststoff,

leitfähige Polymere, kryogene Behandlung, Fulleren, Graphen, Labor auf einem

Chip, magnetorheologische Flüssigkeit, Metamaterialien, Metallschaum, Mul-

tifunktionsstrukturen, Nanomaterialien, Kohlenstoffnanoröhre, Quantenpunkte,

Superlegierung, synthetischer Diamant, durchsichtiger Beton, 3D-Display, fer-

roelektrische Flüssigkristallanzeige, Holographie, interferometrische Modula-

toranzeige, Laser-Video-Display, OLED Display, Mikro-LED Display, Teleskop-

Pixelanzeige, zeitgemultiplexter optischer Verschluss, volumetrische Anzeige,

Biometrie, digitale Dufttechnologie, elektronische Nase, E-Textil, flexible Elek-

tronik, Memoristor, molekulare Elektronik, nanoelektromechanisches System,

Spintronik, Thermo-Kupfer-Säulen-Stoû, dreidimensionale integrierte Schaltung,

konzentrierte Solarenergie, elektrischer Doppelschicht-Kondensator, Schwungrad-

speicherung, Speicherung von Netzenergie, Heim-Brennstoffzelle, Lithium-Eisen-

Phosphor-Batterie, Lithium-Schwefel-Batterie, Magnesium-Batterie, Nanodraht-

Batterie, Ozean-Thermische Energieumwandlung, intelligentes Netz, Vortex-

Motor, drahtlose Energie-Übertragung, Nullenergiehaus, computergeneriertes

Bild, virtuelle Realität, hochauflösendes Fernsehen, 5G zellulare Kommunika-

tion, künstliche Intelligenz, erweiterte Realität, Blockchain, Kohlenstoffnanoröhren-

Feldeffekttransistor, zivile Technik, Kryptowährung, Exascale-Computing, Gesten-

erkennung, Internet der Dinge, neue Speichertechnologie, neue magnetische

Speichertechnologie, optische Platten der vierten Generation, holografischer

Speicher, allgemeines Rechnen auf Grafikprozessoren, Exokortex, maschinelle

Übersetzung, maschinelles Sehen, mobile Zusammenarbeit, Nano-Funk, optis-

che Datenverarbeitung, Quantencomputer, Quantenkryptographie, Radiofrequenz-

Identifikation, semantisches Web, intelligenter Lautsprecher, Software-definiertes

Radio, Spracherkennung, subvokale Erkennung, Hybrid-Forensik, Körper-

implantat, Kryonik, Wiederbelebung ausgestorbener Tierarten, Gentechnik,

verzögerte Reanimation, künstlicher Winterschlaf, Immuntherapie/-onkologie,

Nanomedizin, Nanosensoren, onkolytische Viren, individualisierte Medizin, whole
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genome sequencing, Roboterchirurgie, Stammzellentherapie, synthetische Bi-

ologie, synthetische Genomik, Gewebezüchtung, Tricorder, Gehirn-Computer-

Schnittstelle, Neuroinformatik, Elektroenzephalographie, Neuroprothetik, hülsen-

lose Munition, gerichtete Energiewaffe, Elektro-Laser, elektromagnetische Waffen,

elektrothermisch-chemische Technologie, grünes Geschoss, Laser-Waffe, Strahlen-

waffe, Schallwaffe, Tarntechnologie, Wirbelringkanone, Elektroschockwaffe, kün-

stliche Schwerkraft, Stasiskammer, aufblasbares Weltraum-Habitat, Miniatursatel-

lit, Android, Nanorobotik, Exoskelett, selbstkonfigurierender Roboter, unbeman-

ntes Fahrzeug, luftlose Reifen, Fahrzeug mit alternativen Kraftstoffen, Elektro-

hydrodynamischer Antrieb, Fluidik, Fusionsrakete, Schwebefahrrad, Jetpack,

Rucksackhelikopter, Magnetschwebebahn, Vactrain, magnetische Schwebetechnik,

Massenantrieb, Personal Rapid Transit, physisches Internet, Roller-Sharing-System,

fliegendes Treibstofflager, wiederverwendbares Startsystem, Raumaufzug, Raum-

flugzeug, Überschalltransport, Fahrzeugkommunikationssystem.

A.3 Detailed Information on the Calculation of Features

Text-Based Features

1) Texts ± To identify the most relevant terms when predicting a firm’s innovation

status, we transform the scraped texts into a format that allows us to do mathemat-

ical operations: We convert the website texts into a term-document matrix, e.g., see

Baeza-Yates & Ribeiro-Neto (1999), Blei et al. (2003), which is a matrix that counts the

frequency of terms that occur in a collection of documents (websites in this particu-

lar case). Every column represents a document and a row represents a word from a

predefined vocabulary space. Accordingly, every cell counts how often a particular

word appears in a particular document. We define our vocabulary space as the 5,000

most frequent words in our entire training text corpus. Before we calculate the term-

document matrix, we conduct the following preprocessing steps. First, we merge all

scraped subpages related to a single firm and delete irrelevant subpages (imprints,

information about cookies or texts that are prescribed by law) by using the gold stan-

dard approach based on a supervised machine learning regression model (see Kinne

& Lenz 2021). Also, every word is converted into lower case and lemmatised by

means of the Python package spacy. We exclude punctuation as well as English and

German stop words (word lists are derived from the Python package nltk). Addition-

ally, we manipulate the term-frequency counts by the TF-IDF scheme (Baeza-Yates

& Ribeiro-Neto 1999), as it usually improves predictions. Therefore, each document

is tokenised and the term-document frequency is calculated by means of the Tfid-

fVectorizer algorithm from scikit-learn.
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2) Emerging technology terms ± To capture firms that mention emerging tech-

nologies, we conduct a keyword search in which we calculate whether a technology

from Wikipedia’s list of emerging technologies appears on a firm’s website using all

subpages and the entire vocabulary as well as the Python package regex.137 We only

search for a selection of technologies that are in a research, development, diffusion

or commercialisation stage, as it is a criterion for an innovation to be brought into

use. A detailed list of all used keywords is provided in Appendix A.2. The feature

emerging_tech is a dummy variable that captures whether an emerging technology

term appears on a firm website.

3) Latent patterns ± Latent patterns on a website, which might reveal a firm’s

innovation status, are captured by the latent Dirichlet allocation model (LDA) (see

Blei et al. 2003). The LDA algorithm assumes that a document consists of a set of

topics, while every topic is a distribution of words. By linking each word in a doc-

ument to a topic and iteratively improving assignments, the algorithm learns the

distribution of topics in the text corpus as well as the distribution of words related

to each topic. Moreover, after applying the LDA algorithm, the topic-document ma-

trix shows how much every topic contributes to a document (website). We do not

want our topic model to be exclusively valid for our sample. Hence, we calibrate

our topics on a separate sample, which consists of 32,276 websites of firms observed

in the MUP 2019 but not in the MIP 2019. We apply the same text preprocessing to

it as to our MIP sample, but with two differences. First, we use a larger vocabulary

space (15,000 most frequent words). Second, we do not manipulate word counts by

means of the TF-IDF formula, but generate a TF-IDF stop word dictionary exclud-

ing words with a lower sum of TF-IDF scores than three within the LDA corpus.

The latter is applied to ensure that rather words that are characteristic for particu-

lar websites are considered. Also, to improve our model performance, we delete all

words that appear less than 50 times and in more than 90 per cent of all documents

in the LDA corpus. We use the TfidfVectorizer to calculate the stop word dictionary.

This dictionary as well as the CountVectorizer from scikit-learn is applied to generate

a term-document matrix for our LDA sample. A term-document matrix for the MIP

sample is calculated in the same manner. The Python package scikit-learn is used to

train the LDA model. In the standard LDA approach, the number of topics needs to

be defined. To solve this issue, we apply the grid-search technique to optimize the

number of topics. For this, we use the GridSearchCV algorithm from scikit-learn. It is

evaluated which model parameter combination leads to the best result according to

the log likelihood. We conduct a grid-search over different values for the ‘number

of topics’-parameter as well as the document-topic prior. We try 200, 180, 150, 250

topics and values of 0.05, 0.1 for the document-topic prior. The optimal number of

137See https://en.wikipedia.org/wiki/List_of_emerging_technologies [Online; accessed 16
Aug. 2018].
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topics is 150, the highest log-likelihood is achieved with a document-topic prior of

0.1. After fitting the LDA model with the separate sample, the topic distribution for

each website in our MIP sample is predicted (LDA topic) and used in our Random

Forest models, i.e., the predicted topic share in a document for each topic is used as

a feature.

4) Topic popularity index ± The topic popularity index is the sum of document-

topic probabilities weighted by the relative frequency each topic appears in the en-

tire text corpus (pop_score). A topic is considered to appear in a document if the

document-topic probability is larger than 2%.

5) Language classification ± The export orientation of a website might provide

information about a firm’s innovation status. English is worldwide the most widely

spoken language by the total number of speakers. Therefore, it is quite likely that

firms with international customers describe their products in English. We measure

the share of subpages in English language, as well as all other languages except Ger-

man to approximate the export orientation of a firm (english_language, other_lang).

For the language classification of subpages, we apply the Python package langdetect.

6) Share of numbers ± We also test whether the share of numbers in the total text

length per document relates to the innovation status. The share was calculated by

the ratio of digits within a string (document). For example, the text ‘This book costs

500 dollars.’ has a ratio of 3/28, i.e., 10.7 per cent. The corresponding variable is

named share_numbers.

7) Flesch-reading-ease score ± The Flesch-Reading-Ease score is a metric used to

assess the complexity of texts. The main idea for the index is that short words and

short sentences are easier for readers to understand. The Python package Readabil-

ityCalculator was used to calculate the score.138 The full definition can be found in

Flesch (1948) and the corresponding variable is named flesch_score.

Meta Information Features

8) Website size ± Approximating firm size might help to predict a firm’s innovation

status. For example, Kinne & Axenbeck (2020) show that the number of subpages

correlates with firm size and larger firms tend to be more likly to implement an in-

novation. Hence, we use the number of subpages as a feature to predict a firm’s

innovation status (nr_pages). One problem related to this feature is that it is trun-

cated at 50 subpages due to the scraping limit of the web-scraper. However, as only

1.5 per cent of our observations exceed the scraping limit, we do not see a severe

problem here. Moreover, we use a Random Forest model that selects cut-off points

for splitting. Hence, it can cope with truncated features. We additionally analyse

138Retrieved from https://pypi.org/project/ReadabilityCalculator/ [Online; accessed 15 Apr.
2023].
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to what extent the number of characters per website (text_length), which might also

relate to firm size, informs about the firm’s innovation status.

9) Loading time ± This feature serves as a proxy for a firm’s hardware structure.

A website’s loading time (load_time) is determined by a http or https request. The

time from sending the request until the arrival of the response is measured. Servers

which are far away or which only process the requests slowly (e.g., due to bad hard-

ware or an overload) have a higher loading time (in milliseconds). However, it

should be noted that the IT infrastructure can also be outsourced to professional

hosting firms. We retrieved the loading time by means of the the Python packages

requests and time. The latter is a standard Python library.

10) Mobile version ± For each website, it is retrieved whether a version for mo-

bile end user devices exists. A Google API is used to extract this information from

the websites. The data is delivered as JSON object. Within the delivered data, the

binary variable "score" within the data structure ªusabilityº is used (mobile_version).

It indicates Google’s mobile version passing score. The Python packages json, mech-

anize, socket and urllib are used for this exercise.

11) Website age ± To determine the website age, we use web.archive.org. The

website includes an Internet archive that allows to look at websites at earlier stages.

We wrote a small program that automatically goes to web.archive.org and searches

for the first entry of a particular website. This characteristic serves as a proxy for

the digital age of a firm (domain_purchase_year_proxy). Our program uses the Python

package urllib.

Network Features

12) Centrality ± Relationships with other firms might also link to a firm’s innovation

status. If a firm is related to another firm, it is likely that the firm will refer on its

website to it. Hence, to capture relationships with other firms, the sum of outgoing

(outgoing_links) and incoming (incoming_links) hyperlinks to other firms is observed.

Outgoing hyperlinks are measured by the number of external links on a firm web-

site. We measure incoming hyperlinks by counting how often firms which are listed

in the entire MUP refer to a particular firm. Additionally, a directed graph is con-

structed. Here, a vertex represents a firm and an edge a hyperlink from one firm

to another. The Pagerank centrality measure is calculated with the Python pack-

age igraph139 and the function "pagerank". The default parameters are used and the

resulting variable is called pagerank_index.

13) Social media ± The use of social media could also be correlated with the

firm’s innovation status. Therefore, the sum of hyperlinks to the websites Facebook,

Instagram, Twitter, YouTube, Kununu, LinkedIn, XING, GitHub, Flickr, and Vimeo

139See https://igraph.org [Online; accessed 15 Apr. 2023].
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is counted and used as another feature (social_media). This is calculated by means of

regex again.

14) Bridges ± An undirected graph is constructed, as well. A bridge is an edge

of a graph whose removal increases the number of connected components. For each

vertex, we count the number of times it is part of a bridge. The Python package net-

workx (https://networkx.github.io [Online; accessed 15 Apr. 2023]) and the function

"bridges" is used to calculate the bridges and the described measure. The resulting

variable is named bridge_index.
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A.4 Most Relevant Features for Each ‘All’ Feature Model140

Table A.1: Most relevant features for product innovators.

Model Top 100 most relevant features
Product in-
novators

‘LDA topic 35’, ‘english_language’, ‘word: system’, ‘text_length’, ‘LDA topic 134’, ‘nr_subpages’,
‘word: software’, ‘LDA topic 65’, ‘word: to develop (transl.)’, ‘word: application (transl.)’,
‘LDA topic 105’, ‘word: test’, ‘LDA topic 7’, ‘word: product (transl.)’, ‘incoming_links’, ‘word:
worldwide (transl.)’, ‘word: innovative (transl.)’, ‘LDA topic 98’, ‘domain_purchase_year_proxy’,
‘word: version’, ‘word: innovative’, ‘LDA topic 41’, ‘LDA topic 20’, ‘word: technology (transl.)’,
‘share_numbers’, ‘word: sensor’, ‘LDA topic 127’, ‘social_media’, ‘flesch_score’, ‘word: develop-
ment (transl.)’, ‘emerging_tech’, ‘LDA topic 34’, ‘word: technology’, ‘LDA topic 38’, ‘LDA topic
96’, ‘LDA topic 75’, ‘LDA topic 46’, ‘pop_score’, ‘LDA topic 39’, ‘word: automatic (transl.)’, ‘LDA
topic 101’, ‘LDA topic 70’, ‘LDA topic 78’, ‘LDA topic 84’, ‘LDA topic 128’, ‘outgoing_links’, ‘LDA
topic 148’, ‘LDA topic 97’, ‘word: to optimize (transl.)’, ‘word: software development (transl.)’,
‘word: application (transl.)’, ‘LDA topic 119’, ‘LDA topic 36’, ‘word: component (transl.)’, ‘LDA
topic 69’, ‘load_time’, ‘LDA topic 52’, ‘LDA topic 56’, ‘LDA topic 60’, ‘LDA topic 143’, ‘word: dig-
ital’, ‘LDA topic 8’, ‘LDA topic 113’, ‘LDA topic 120’, ‘word: complex (transl.)’, ‘LDA topic 53’,
‘LDA topic 138’, ‘LDA topic 144’, ‘LDA topic 51’, ‘LDA topic 15’, ‘LDA topic 19’, ‘word: support’,
‘LDA topic 103’, ‘LDA topic 106’, ‘word: user (transl.)’, ‘LDA topic 57’, ‘LDA topic 107’, ‘LDA
topic 49’, ‘LDA topic 104’, ‘word: deployment (transl.)’, ‘LDA topic 5’, ‘LDA topic 111’, ‘word:
interfaces (transl.)’, ‘LDA topic 85’, ‘LDA topic 61’, ‘LDA topic 114’, ‘LDA topic 43’, ‘LDA topic
45’, ‘LDA topic 26’, ‘LDA topic 132’, ‘LDA topic 16’, ‘word: production (transl.)’, ‘LDA topic 125’,
‘LDA topic 146’, ‘word: year (transl.)’, ‘LDA topic 140’, ‘LDA topic 91’, ‘word: integrate (transl.)’,
‘LDA topic 79’, ‘word: special (transl.)’

Table A.2: Most relevant features for process innovators.

Model Top 100 most relevant features
Process in-
novators

‘text_length’, ‘LDA topic 98’, ‘english_language’, ‘social_media’, ‘LDA topic 41’, ‘flesch_score’,
‘incoming_links’, ‘LDA topic 7’, ‘LDA topic 75’, ‘word: worldwide (transl.)’, ‘outgoing_links’,
‘nr_subpages’, ‘LDA topic 84’, ‘word: product (transl.)’, ‘word: system’, ‘LDA topic 65’, ‘LDA
topic 20’, ‘LDA topic 57’, ‘LDA topic 53’, ‘share_numbers’, ‘LDA topic 106’, ‘LDA topic 148’,
‘LDA topic 104’, ‘load_time’, ‘LDA topic 99’, ‘LDA topic 122’, ‘LDA topic 140’, ‘word: technology
(transl.)’, ‘pop_score’, ‘word: to develop (transl.)’, ‘LDA topic 35’, ‘LDA topic 31’, ‘LDA topic
127’, ‘LDA topic 12’, ‘word: ISO’, ‘LDA topic 39’, ‘LDA topic 121’, ‘LDA topic 32’, ‘LDA topic 36’,
‘word: innovative (transl.)’, ‘LDA topic 2’, ‘LDA topic 100’, ‘LDA topic 6’, ‘LDA topic 13’, ‘LDA
topic 120’, ‘word: standard’, ‘word: successful (transl.)’, ‘LDA topic 43’, ‘LDA topic 103’, ‘LDA
topic 60’, ‘LDA topic 64’, ‘LDA topic 96’, ‘LDA topic 23’, ‘LDA topic 133’, ‘LDA topic 93’, ‘LDA
topic 78’, ‘LDA topic 40’, ‘LDA topic 146’, ‘LDA topic 74’, ‘LDA topic 101’, ‘LDA topic 97’, ‘word:
to start (transl.)’, ‘word: international’, ‘LDA topic 147’, ‘LDA topic 86’, ‘LDA topic 73’, ‘LDA
topic 144’, ‘LDA topic 14’, ‘LDA topic 46’, ‘word: partner’, ‘LDA topic 19’, ‘LDA topic 68’, ‘word:
team’, ‘LDA topic 30’, ‘LDA topic 141’, ‘LDA topic 123’, ‘LDA topic 111’, ‘LDA topic 34’, ‘LDA
topic 134’, ‘word: application (transl.)’, ‘LDA topic 22’, ‘word: as well as (transl.)’, ‘LDA topic 0’,
‘LDA topic 24’, ‘LDA topic 113’, ‘LDA topic 88’, ‘LDA topic 105’, ‘LDA topic 8’, ‘LDA topic 94’,
‘LDA topic 44’, ‘LDA topic 79’, ‘LDA topic 114’, ‘LDA topic 5’, ‘LDA topic 126’, ‘LDA topic 83’,
‘LDA topic 45’, ‘LDA topic 129’, ‘LDA topic 56’, ‘LDA topic 117’, ‘LDA topic 145’

140transl.: translated from German to English language.

152



Appendix A. Innovation Indicators Based on Firm Websites ± Which Website

Characteristics Predict Firm-Level Innovation Activity?

Table A.3: Most relevant features for innovators.

Model Top 100 most relevant features
Innovators ’text_length’, ‘english_language’, ‘LDA topic 98’, ‘nr_subpages’, ‘word: system’, ‘word: to de-

velop (transl.)’, ‘LDA topic 65’, ‘LDA topic 35’, ‘word: worldwide (transl.)’, ‘word: innovative
(transl.)’, ‘LDA topic 84’, ‘LDA topic 134’, ‘LDA topic 41’, ‘LDA topic 20’, ‘word: product(transl.)’,
‘LDA topic 7’, ‘LDA topic 31’, ‘social_media’, ‘flesch_score’, ‘domain_purchase_year_proxy’,
‘word: development (transl.)’, ‘word: application (transl.)’, ‘incoming_links’, ‘LDA topic 78’, ‘out-
going_links’, ‘LDA topic 96’, ‘LDA topic 75’, ‘word: successful (transl.)’, ‘LDA topic 103’, ‘word:
complex (transl.)’, ‘LDA topic 101’, ‘LDA topic 100’, ‘LDA topic 140’, ‘share_numbers’, ‘LDA topic
5’, ‘LDA topic 105’, ‘LDA topic 122’, ‘LDA topic 0’, ‘LDA topic 56’, ‘LDA topic 114’, ‘load_time’,
‘LDA topic 127’, ‘LDA topic 50’, ‘LDA topic 6’, ‘LDA topic 53’, ‘LDA topic 69’, ‘LDA topic 94’,
‘LDA topic 51’, ‘LDA topic 46’, ‘LDA topic 120’, ‘pop_score’, ‘LDA topic 102’, ‘LDA topic 90’,
‘LDA topic 113’, ‘word: to offer (transl.)’, ‘LDA topic 121’, ‘LDA topic 36’, ‘LDA topic 52’, ‘LDA
topic 32’, ‘LDA topic 19’, ‘LDA topic 89’, ‘word: experience (transl.)’, ‘LDA topic 2’, ‘LDA topic
60’, ‘LDA topic 142’, ‘word: innovative’, ‘LDA topic 43’, ‘LDA topic 23’, ‘LDA topic 87’, ‘LDA
topic 28’, ‘LDA topic 39’, ‘LDA topic 148’, ‘LDA topic 133’, ‘LDA topic 106’, ‘LDA topic 11’, ‘LDA
topic 34’, ‘LDA topic 82’, ‘LDA topic 37’, ‘LDA topic 13’, ‘LDA topic 86’, ‘word: as well as (transl.)’,
‘LDA topic 61’, ‘LDA topic 33’, ‘LDA topic 12’, ‘LDA topic 126’, ‘word: high (transl.)’, ‘LDA topic
22’, ‘LDA topic 71’, ‘LDA topic 85’, ‘LDA topic 138’, ‘LDA topic 144’, ‘LDA topic 117’, ‘LDA topic
83’, ‘LDA topic 16’, ‘word: deployment (transl.)’, ‘LDA topic 136’, ‘LDA topic 147’, ‘LDA topic
123’, ‘LDA topic 64’, ‘LDA topic 68’

Table A.4: Most relevant features for innovation expenditure.

Model Top 100 most relevant features
Innovation
expend.

’english_language’, ‘LDA topic 98’, ‘text_length’, ‘nr_subpages’, ‘word: system’, ‘word: develop-
ment (transl.)’, ‘word: to develop (transl.)’, ‘word: technology’, ‘LDA topic 134’, ‘word: innova-
tive (transl.)’, ‘word: innovation’, ‘incoming_links’, ‘word: international’, ‘LDA topic 148’, ‘LDA
topic 105’, ‘word: product (transl.)’, ‘word: application (transl.)’, ‘word: research (transl.)’, ‘word:
worldwide (transl.)’, ‘LDA topic 84’, ‘LDA topic 7’, ‘domain_purchase_year_proxy’, ‘LDA topic
36’, ‘LDA topic 106’, ‘outgoing_links’, ‘LDA topic 35’, ‘flesch_score’, ‘LDA topic 28’, ‘LDA topic 5’,
‘LDA topic 20’, ‘LDA topic 65’, ‘load_time’, ‘LDA topic 100’, ‘word: innovative’, ‘LDA topic 39’,
‘LDA topic 125’, ‘share_numbers’, ‘LDA topic 41’, ‘LDA topic 120’, ‘LDA topic 73’, ‘LDA topic 1’,
‘integration’, ‘pop_score’, ‘LDA topic 82’, ‘LDA topic 13’, ‘social_media’, ‘emerging_tech’, ‘LDA
topic 104’, ‘LDA topic 57’, ‘LDA topic 6’, ‘LDA topic 53’, ‘LDA topic 109’, ‘LDA topic 26’, ‘LDA
topic 75’, ‘word: high’, ‘LDA topic 34’, ‘LDA topic 32’, ‘LDA topic 89’, ‘LDA topic 49’, ‘LDA topic
140’, ‘LDA topic 81’, ‘word: workshop’, ‘LDA topic 83’, ‘LDA topic 113’, ‘word: management’,
‘LDA topic 22’, ‘LDA topic 59’, ‘LDA topic 56’, ‘LDA topic 31’, ‘LDA topic 67’, ‘LDA topic 24’,
‘LDA topic 0’, ‘LDA topic 79’, ‘LDA topic 68’, ‘LDA topic 102’, ‘LDA topic 61’, ‘LDA topic 3’,
‘LDA topic 138’, ‘LDA topic 44’, ‘LDA topic 40’, ‘LDA topic 128’, ‘LDA topic 146’, ‘LDA topic
141’, ‘word: to optimize’, ‘LDA topic 70’, ‘LDA topic 78’, ‘LDA topic 132’, ‘LDA topic 95’, ‘word:
process (transl.)’, ‘LDA topic 80’, ‘LDA topic 127’, ‘LDA topic 60’, ‘LDA topic 93’, ‘LDA topic 133’,
‘LDA topic 114’, ‘LDA topic 46’, ‘word: high’, ‘word: as well as’, ‘LDA topic 96’, ‘LDA topic 8’
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A.5 Learned Hyperparameters for Random Forest Models

Using Different Feature Sets and Target Variables

Table A.5: Learned hyperparameters for Random Forest models using different feature
sets and target variables.

Feature sets Number of trees Max. depth Min. impurity decrease
Text Meta Network
Product innovators

x 1000 50 0.001
x 1000 50 0.001

x 1500 50 0.001
x x x 1500 100 0.001

Process innovators
x 1000 50 0.001

x 1500 50 0.01
x 1000 50 0.001

x x x 1500 50 0.001
Innovators

x 1500 50 0.001
x 1000 50 0.001

x 500 50 0.001
x x x 1000 50 0.001

Innovation expenditures
x 1500 100 0.001

x 1000 50 0.01
x 1000 50 0.01

x x x 1000 50 0.001
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A.6 AUC Values for Different Splits Between Training and

Test Sample

Figure A.3: AUC values for different splits between training and test sample. Line plot
that illustrates for each indicator how AUC values of the ‘all’ feature model increase if the
train/test split changes from (0.1/0.9) to (0.9/0.1) in steps of 0.01.
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B.1 Variable Description

Table B.1: Description of variables.

variable description source

Main variables

mobility The change in switches between phone cells per mobile
device at a given day relative to monthly pre-crisis av-
erages in 2019 for the same weekday (in %, 01/01/’20 -
31/12/’22) at the district level. The change in mobility
is reported for daytime and nighttime separately (day-
time mobility: 6 a.m. to 10 p.m.; nighttime mobility: 10
p.m. to 6 p.m.). Overall mobility is a weighted mean
of daytime and nighttime mobility. Mobility data is be-
ing processed and provided by the Teralytics AG. Please
note that we observe missing values over the entire time
period.

[data set] Destatis (2023a). Mobile
Network Data. (https://www.de
statis.de/EN/Service/EXDAT/D

atensaetze/mobility-indicat

ors-mobilephone.htm [retrieved
on 03/01/2023]). Data was obtained
upon request.

digitalisation We train a Random Forest regression model on a large
German newspaper corpus. The fitted model allows for
predicting the likelihood that a firm’s website content
relates to digitalisation. These predictions are used as
a continuous indicator for firm digitalisation. For this
purpose, we scraped 750,000 firm websites in January
2020 and 1,300,000 firm websites in December 2022. For
more details see Axenbeck & Breithaupt (2022). Validity
checks with external data show a clear relationship with
already established digitalisation indicators at the firm,
sectoral, and regional level. We average predictions at
the district level.

[data set] ZEW ± Leibniz Centre
for European Economic Research
(2022). Web addresses are re-
trieved from the Mannheim Enter-
prise Panel (MUP), which comprises
a large set of German firms (Bersch
et al. 2014). The MUP is fed by data
from Creditreform.
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Table B.1: Description of variables.

variable description source

Control variables

Pandemic characteristics

weekly cases Sum of confirmed Covid-19 cases in the last 7 days per
100,000 inhabitants (01/03/’20 - 31/12/’22) at the district
level considered as a rolling window. We include weekly
cases and not daily cases as a control variable, because
weekly cases better reflect the number of people that are
infectious and it is also the number, which was mostly
communicated in the media. We, therefore, assume that
people made their mobility decisions on weekly cases.
We set values before 01/03/’20 to zero.

[data set] Destatis (2023b) (https://
www.corona-daten-deutschland

.de/dataset/infektionen_kreise

[retrieved on 04/01/2021]).

containment mea-
sures

Index that captures the severity of containment measures
at the district level (01/03/’20 - 30/11/’22). The index
was calculated by infas 360. We set values that are be-
fore the observed time frame to zero. We use the last ob-
served value to replace missing values after the observed
time frame.

[data set] Destatis (2023b) (https:
//www.corona-daten-deutschla

nd.de/dataset/massnahmeninde

x_kreise_pro_tag [retrieved on
04/01/2023]).

socioeconomic characteristics

share of academics Number of persons aged 15 or older with a Bachelors,
Masters, Ph.D., or comparable university degree divided
by the number of inhabitants being 15 or older in 2019 at
the district level.

[data set] Destatis (2023b) (number
of academics, https://www.coro
na-daten-deutschland.de/data

set/bildungsniveau [retrieved on
02/06/2022], number of inhabitants:
https://www.corona-daten-deu

tschland.de/dataset/bevoelkeru

ng [retrieved on 02/06/2022]).
GDP per inhabitant Gross domestic product in e1,000 per person in 2020 at

the district level.
[data set] Destatis (2023b) (https://
www.corona-daten-deutschland

.de/dataset/volkswirtschaftl

iche_gesamtrechnung [retrieved on
2/06/2022]).

low-income house-
holds

The number of low-income households (≤ e1,000 per
month) in 2019 at the district level per 1,000 inhabitants.

[data set] Destatis (2023b) (number
of low-income households: https:

//www.corona-daten-deutschla

nd.de/dataset/private_finanz

en [retrieved on 12/11/2022], num-
ber of inhabitants: https://www.co
rona-daten-deutschland.de/da

taset/bevoelkerung [retrieved on
02/06/2022]).

people on social bene-
fits

The number of recipients of benefits under SGB II and
the number of recipients of benefits under SGB XII per
1,000 inhabitants in 2017.

[data set] Destatis (2023b) (https://
www.corona-daten-deutschland

.de/dataset/sozialindikatoren

[retrieved on 12/11/2022]).
share of workers in the
service sector

The number of people that work in the service sector di-
vided by all workers observed at the end of 2019.

[data set] Destatis (2023b) (https://
www.corona-daten-deutschland

.de/dataset/arbeitsmarktstrukt

ur [retrieved on 12/11/2022]).

infrastructure
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Table B.1: Description of variables.

variable description source

cars per person Number of cars per 1,000 inhabitants in 2021. [data set] Destatis (2023b) (https://
www.corona-daten-deutschland

.de/dataset/verkehr [retrieved on
12/11/2022]).

≥ 50 Mbit/s Share of households with a broadband availability of at
least 50 Mbit/s in each district in 2020.

[data set] atene KOM GmbH (2021).
Breitbandatlas des Bundes (German
Broadband Atlas) - Release 2/2021.
Data is restricted in usage. Ac-
cess can be requested at atene KOM
GmbH (https://atenekom.eu/pr
oject/breitbandatlas/ [retrieved
on 09/04/2021]).

not covered by all Area that is not covered by 4G, 5G or 5G DSS by every
network provider in % for the year 2022. Please note that
information is only available for 388 districts. Missing
vs are set to zero and an additional dummy variable is
added that controls whether the information is available
or not.

[data set] Bundesnetzagentur (2022).
Mobilfunkmonitoring (https://ww
w.breitband-monitor.de/mobi

lfunkmonitoring/download [re-
trieved on 22/12/2022]).

not covered Area that is not covered by 4G, 5G, or 5G DSS by any
network provider in % for the year 2022. Please note that
information is only available for 388 districts. Missing
values are set to zero and an additional dummy variable
is added that controls whether the information is avail-
able or not.

[data set] Bundesnetzagentur (2022).
Mobilfunkmonitoring (https://ww
w.breitband-monitor.de/mobi

lfunkmonitoring/download [re-
trieved on 22/12/2022]).

demographic characteristics

share of men The number of male inhabitants divided by all inhabi-
tants in 2020.

[data set] Destatis (2023b) (number
of male inhabitants & number of in-
habitants, https://www.corona

-daten-deutschland.de/data

set/bevoelkerung [retrieved on
02/06/2022]).

not of working age The percentage of the population in a district that is ei-
ther under 15 years old or over 65 years old.

[data set] Destatis (2023b) (number
of people younger than 15 years or
older than 65 years & number of in-
habitants, https://www.corona

-daten-deutschland.de/data

set/bevoelkerung [retrieved on
02/06/2022]).

number of inhabitants The number of people that are registered in a district (di-
vided by 1,000).

[data set] Destatis (2023b) (https://
www.corona-daten-deutschland

.de/dataset/bevoelkerung [re-
trieved on 02/06/2022]).

changes in population Changes in % of the number of people that are registered
in a district. We consider changes in the population be-
tween 2019 and 2020 for the year 2020 and changes be-
tween 2019 and 2021 for the years 2021 and 2022 (as in-
formation for 2022 was not available when the analysis
was conducted).

GENESIS-ONLINE: Table 12411-
0015 (https://www-genesis.desta
tis.de/genesis/online [retrieved
on 02/06/2022]).

population density Inhabitants per square kilometre in 2019 at the district
level.

[data set] Destatis (2023b) (https:
//www.corona-daten-deutschla

nd.de/dataset/besiedlung [re-
trieved on 2/06/2022]).
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Table B.1: Description of variables.

variable description source

in-commuters Changes in the number of employees that work in a dis-
trict but live elsewhere in %. We consider changes in in-
commuters between 2019 and 2020 for the year 2020 and
changes between 2019 and 2021 for the years 2021 and
2022 (as information for 2022 was not available when the
analysis was conducted).

[data set] Bundesagentur für Ar-
beit (2022). Pendlerverflechtungen
der sozialversicherungspflichtig
Beschäftigten nach Kreisen -
Deutschland (https://statis
tik.arbeitsagentur.de [retrieved
on 01/12/2022]).

out-commuter Changes in the number of employees that live in a dis-
trict but work elsewhere in %. We consider changes in
out-commuters between 2019 and 2020 for the year 2020
and changes between 2019 and 2021 for the years 2021
and 2022 (as information for 2022 was not available when
the analysis was conducted).

[data set] Bundesagentur für Ar-
beit (2022). Pendlerverflechtungen
der sozialversicherungspflichtig
Beschäftigten nach Kreisen -
Deutschland (https://statis
tik.arbeitsagentur.de [retrieved
on 01/12/2022]).

one-person house-
holds

Number of people per 1,000 inhabitants that live in a one-
person household in a district for the year 2019.

[data set] Destatis (2023b) (number
of one-person households: https:

//www.corona-daten-deutschla

nd.de/dataset/haushalte [re-
trieved on 01/11/2022], number of
inhabitants: https://www.corona

-daten-deutschland.de/data

set/bevoelkerung [retrieved on
02/06/2022]).

living space per
household

Average living space per household in a district for the
year 2019.

[data set] Destatis (2023b) (https://
www.corona-daten-deutschland

.de/dataset/wohnsituation [re-
trieved on 01/11/2022]).
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Table B.1: Description of variables.

variable description source

geographic characteristics

city A dummy variable that is one if a district is a ªStadtkreisº
or a ªKreisfreie Stadtº (city) and zero if a district is a
ªLandkreisº or ªKreisº (countryside area).

[data set] atene KOM GmbH (2021).
Breitbandatlas des Bundes (German
Broadband Atlas) - Release 2/2021.
Data is restricted in usage. Ac-
cess can be requested at atene KOM
GmbH (https://atenekom.eu/pr
oject/breitbandatlas/ [retrieved
on 09/04/2021]).

West Germany A dummy that is one if a district is in the former Federal
Republic of Germany (West Germany) and that is zero if
a district is in the former German Democratic Republic
(East Germany).

[data set] Destatis (2023b) (https:
//www.corona-daten-deutschla

nd.de/dataset/raumordnung [re-
trieved on 01/11/2022]).

other variables

WFH potential The percentage of employees who can potentially work
from home according to their self-assessment and con-
sidered at the location of their workplace. The calcula-
tion is described in detail in Alipour et al. (2023).

[data set] Destatis (2023b) (https://
www.corona-daten-deutschland

.de/dataset/arbeitsmarktstrukt

ur [retrieved on 01/11/2022]).
number of firms Number of firms in a district in March 2020. [data set] Destatis (2023b) (https://

www.corona-daten-deutschland

.\de/dataset/firmeninformation

en [retrieved on 05/1/2023]).
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B.2 Additional Descriptive Statistics

Table B.2: Overview of descriptive statistics.

N mean sd p10 p90
∆ mobility 433999 (daily) 1.02 17.87 -21.33 22.67
∆ mobility daytime 433999 (daily) 5.04 18.24 -17.00 27.00
∆ mobility nighttime 433999 (daily) -7.02 21.69 -34.00 18.00
digitalisation (Jan ’20) 400 0.00 1.00 -1.16 1.33
digitalisation (Dec ’22) 400 0.00 1.00 -1.22 1.33
digitalisation modified (Jan ’20) 400 0.00 1.00 -1.35 1.39
digitalisation modified (Dec ’22) 400 0.00 1.00 -1.19 1.34
∆ digitalisation modified (Dec ’22) 400 0.00 1.00 -1.12 1.35
weekly cases 433999 (daily) 289.68 464.14 0.80 852.60
containment measures 433999 (daily) 31.58 20.03 8.01 58.76
share of academics 400 0.16 0.05 0.11 0.22
GDP per inhabitant in e1000 400 37.08 16.05 24.80 53.80
low-income households per 1,000 inhabitants 400 69.71 43.48 23.26 133.49
people on social benefits per 1,000 inhabitants 400 8.99 4.14 4.20 15.20
share of workers in the service sector 400 0.49 0.07 0.41 0.58
cars per 1,000 person 400 549.82 77.11 434.00 630.00
≥ 50 mbit/s 400 91.94 7.23 81.50 98.80
not covered by all 400 15.22 10.21 1.39 29.21
not covered 400 2.45 3.16 0.00 6.55
share of men 400 0.49 0.01 0.49 0.50
share not of working age 400 0.36 0.03 0.33 0.40
number of inhabitants divided by 1,000 400 207.77 244.81 72.04 346.97
change in population 800 (’19-’20, ’19 -21) 0.00 0.00 -0.01 0.01
population density per square kilometre 400 536.46 709.62 83.00 1484.00
change in out-commuters 800 (’19-’20, ’19 -21) 0.02 0.02 -0.01 0.05
change in in-commuters 800 (’19-’20, ’19 -21) 0.02 0.03 -0.02 0.06
one-person households per 1,000 inhabitants 400 198.38 59.32 135.33 292.64
living space per household 400 115.32 18.40 89.00 138.00
city 400 0.26 0.44 0.00 1.00
West Germany 400 0.81 0.39 0.00 1.00
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Figure B.1: Change in mobility compared to 2019 by distance in % (7-day average). The red line denotes the start of the pandemic on March 22nd,
2020. Grey areas mark lockdown periods and blue areas mark periods where a government-imposed WFH obligation was additionally in place.
Data Source: Destatis (2023).
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Figure B.2: Comparison between quintiles. Comparison between quintiles of the WFH potential derived by Alipour et al. (2023) and the web-based
digitalisation indicator with respect to differences in average mobility.
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B.3 Results With Respect to the Average Effect

To measure the average effect during the two years of the pandemic (from March

22nd, 2020 to March 19th, 2022), we estimate the following linear model using year-

month fixed effects and clustered standard errors at the district level:

∆mobilityh
i,t = α + β digitalisationi + ∑

c∈C
γcci,t + ui,t. (B.1)

h refers to the period (daytime, nighttime, or the entire day) for which mobility is

observed in district i at day t. C denotes our set of control variables c. Observations

are weighted based on their population size.

Table B.3: Average decrease in mobility associated with digitalisation considering mobil-
ity changes over the entire day, daytime mobility changes, nighttime mobility changes, as
well as differences between working days and weekends during the two pandemic years.
Firm digitalisation is observed in 2020.

dependent variable: ∆ mobility

(1) (2) (3) (4) (5)

digitalisation (Jan ’20) -1.681∗∗∗ -2.374∗∗∗ -0.297 -2.565∗∗∗ -1.900∗∗∗

(-3.44) (-4.60) (-0.59) (-5.01) (-3.50)

year-month fixed effects x x x x x
pandemic controls x x x x x
socioeconomic controls x x x x x
infrastructure controls x x x x x
demographic controls x x x x x
geographic controls x x x x x
observations 288399 288399 288399 205599 82800
R2 0.566 0.532 0.474 0.565 0.501

Notes: Equation B.1 estimated using OLS and all control variables. t
statistics in parentheses. Clustered standard errors. ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001. Observations are weighted based on their
population size. (1) mobility changes over the entire day; (2) mobility
changes during daytime; (3) mobility changes during nighttime; (4) mo-
bility changes on working days during daytime; (5) mobility changes on
weekends during daytime.
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B.4 Results of Robustness Checks

B.4.1 Parallel Trends

Figure B.3: Analysis of parallel trends before the Covid-19 pandemic (estimated βm coef-
ficients). Equation (3.1) is estimated at the weekly level. Digitalisation and control variables
are interacted with time dummies. We estimate the time frame between January 7th, 2020,
and May 4th, 2020. The latter date denotes the end of the first lockdown. We exclude the
first week in January because it is a holiday period with irregular mobility patterns. We use
the week before Shrove Monday 2020 as the reference period, as the first large-scale Covid-
19 outbreaks occurred in Germany as part of carnival festivities (grey line). Digitalisation is
observed in 2020. Confidence intervals are at the 90% significance level.
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B.4.2 Digitalisation Observed in December 2022

Figure B.4: Monthly change in mobility associated with digitalisation observed in Decem-
ber 2022 (estimated βm coefficients). Our reference period is February 2020 (grey line). The
red line denotes the start of the first lockdown on March 22nd, 2020. White areas mark peri-
ods with no or few Covid-19 restrictions, grey areas mark lockdown periods and blue areas
mark periods where the government-imposed WFH obligation was additionally in place.
Confidence intervals are at the 90% significance level.
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Table B.4: DiD results providing insights into changes in the link between mobility re-
ductions and firm digitalisation with respect to different phases of the pandemic using
digitalisation observed in 2022.

dependent variable: ∆ mobility

(1) (2) (3) (4) (5) (6) (7)

digitalisation (Dec ’22)
× (1) 1st lockdown -1.816∗∗ -1.900∗∗∗ 1.439∗ 0.254 2.069∗∗ 0.411 2.168∗∗∗

(-3.10) (-3.53) (2.31) (0.39) (3.20) (0.62) (3.83)
× (2) 1st open period -3.769∗∗∗ -3.777∗∗∗ -2.352∗∗∗ -2.303∗∗∗ -1.531∗ -2.431∗∗∗ -1.250+

(-8.15) (-8.54) (-3.38) (-3.92) (-2.33) (-4.20) (-1.90)
× (3) 2nd lockdown/ 1st WFH o. -4.654∗∗∗ -4.959∗∗∗ -2.529∗∗∗ -2.287∗∗∗ -1.709∗∗ -2.761∗∗∗ -1.306∗

(-13.07) (-13.88) (-4.72) (-4.51) (-3.22) (-6.16) (-2.41)
× (4) 2nd open period -3.561∗∗∗ -3.813∗∗∗ -2.811∗∗∗ -2.358∗∗ -2.758∗∗∗ -2.897∗∗∗ -2.004∗

(-7.02) (-7.57) (-3.47) (-3.28) (-3.55) (-4.62) (-2.50)
× (5) 2nd WFH obligation -2.436∗∗∗ -2.748∗∗∗ -1.492∗ -0.496 -2.236∗∗ -2.466∗∗∗ -1.735∗∗

(-5.25) (-6.20) (-2.27) (-0.76) (-3.25) (-4.29) (-2.60)
× (6) post-pandemic 0.893 0.591 1.384 1.929∗ -0.0779 0.618 0.359

(1.50) (1.00) (1.52) (2.18) (-0.09) (0.80) (0.39)

year-month fixed effects x x x x x x x
district-level fixed effects x x x x x x x
pandemic controls x x
socioeconomic controls x x
infrastructure controls x x
demographic controls x x
geographic controls x x
observations 433999 433999 433999 433999 433999 433999 433999
R2 0.57 0.59 0.58 0.58 0.59 0.58 0.62

β1 = β6 0.00 0.00 0.95 0.07 0.02 0.81 0.04
β2 = β6 0.00 0.00 0.00 0.00 0.03 0.00 0.02
β3 = β6 0.00 0.00 0.00 0.00 0.01 0.00 0.01
β4 = β6 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β5 = β6 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Equation 3.1 estimated using OLS. t statistics in parentheses. Clustered standard errors. + p <

0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Observations are weighted based on their population size.
The time frame is split into different phases as presented in Figure 3.3. The pre-Covid-19 phase is used as
a reference period. Fixed effects for every phase are additionally included. The table also includes t-tests
for the equality of coefficients. (1) no control variables; (2) only controlled for the pandemic situation;
(3) only controlled for socioeconomic characteristics; (4) only controlled for characteristics that relate
to a district’s infrastructure; (5) only controlled for demographic characteristics; (6) only controlled for
geographic characteristics; (7) all control variables included.
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B.4.3 Further Robustness Checks

Table B.5: Further robustness checks.

∆ mobility ∆ mobility ∆ mobility ∆ mobility ∆ mobility ∆ mobility
′20 modified ′22 modified ′22 −′ 20 ≥ 50 Mbit/s ′20 ′22

modified no weights no weights

(1) (2) (3) (4) (5) (6)

digitalisation
× (1) 1st lockdown 1.900∗∗∗ 0.838∗ 0.0639 0.193∗ 2.120∗∗ 2.032∗∗∗

(3.55) (2.20) (0.23) (2.46) (3.24) (3.56)
× (2) 1st open period -0.210 -0.831+ -0.633+ -0.0456 -1.539∗ -1.503∗

(-0.33) (-1.68) (-1.72) (-0.47) (-2.00) (-2.00)
× (3) 2nd lockdown/ 1st WFH o. -0.711 -0.922∗ -0.544 0.0149 -1.471∗ -1.249+

(-1.26) (-2.05) (-1.60) (0.19) (-2.31) (-1.93)
× (4) 2nd open period -0.359 -1.051+ -0.773 -0.133 -2.259∗ -2.132∗

(-0.44) (-1.65) (-1.61) (-1.16) (-2.48) (-2.28)
× (5) 2nd WFH obligation -0.821 -0.711 -0.324 -0.171+ -2.203∗∗ -1.685∗

(-1.14) (-1.28) (-0.74) (-1.89) (-3.03) (-2.25)
× (6) post-pandemic 0.700 0.266 -0.00608 0.0445 -0.425 0.177

(0.65) (0.37) (-0.01) (0.41) (-0.47) (0.19)

year-month fixed effects x x x x x x
district-level fixed effects x x x x x x
pandemic controls x x x x x x
socioeconomic controls x x x x x x
infrastructure controls x x x x x x
demographic controls x x x x x x
geographic controls x x x x x x
observations 433999 433999 433999 433999 433999 433999
R2 0.619 0.619 0.619 0.619 0.558 0.558

Notes: Equation 3.1 estimated using OLS. t statistics in parentheses. Clustered standard errors. + p < 0.10, ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Observations weighted by population size if not stated otherwise. The
time frame is split into different phases as presented in Figure 3.3. The pre-Covid-19 phase is used as a reference
period. Models are estimated with all control variables. Fixed effects for every phase are additionally included.
(1) All firms are considered when calculating the average degree of firm digitalisation in a district, i.e., firms with
no available website are set to zero; the indicator is calculated for digitalisation in 2020; (2) same modification but
the indicator is calculated for digitalisation in 2022; (3) change in a district’s degree of digitalisation is calculated
by subtracting the modified indicators for 2020 from the modified indicator for 2022; (4) firm digitalisation is
excluded and coefficients for broadband availability are used as a proxy for effects of household digitalisation
over time and displayed; (5) - (6) firm digitalisation is calculated for 2020 and for 2022 as in the main analysis,
but observations are not weighted by population size.
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B.4.4 Firm-Level Link

To analyse the link between firm digitalisation and the share of employees that work

from home, we estimate the following model using MIP 2021 data:141

WFH sharej,t = α + βd digitalisation2020
j + βld lockdownt

+βdld digitalisation2020
j ∗ lockdownp

t + uj,t.
(B.2)

Digitalisation is considered for firm j at time t, which can either be the time be-

fore the first lockdown (January/February 2020) or a lockdown period. p denotes

the considered lockdown, which can either be the first or second one. Results are

displayed in Table B.6.

Table B.6: Link between firm digitalisation and WFH at the
firm level.

dependent variable: WFH share

(1) (2) (3) (4)

digitalisation (Jan ’20) 0.729 0.634 0.624 0.522
(1.45) (1.30) (1.33) (1.16)

1st lockdown 13.47∗ 13.47∗

(2.33) (2.22)
2nd lockdown 15.72∗ 15.71∗

(2.57) (2.51)
digitalisation (Jan ’20) × 1st lockdown 6.364∗ 6.361∗

(2.30) (2.19)
digitalisation (Jan ’20) × 2nd lockdown 7.022∗ 7.017∗

(2.53) (2.47)
constant -0.999 1.196 -2.121 -0.268

(-0.15) (0.20) (-0.31) (-0.04)

ln(sigma) 2.990∗∗∗ 2.977∗∗∗ 3.012∗∗∗ 3.000∗∗∗

(7.00) (6.63) (7.75) (7.54)

industry x x x x
federal state x x
log-likelihood -18466.7 -18392.3 -18297.7 -18225.1
observations 6028 6028 6028 6028

Notes: Equation B.2 estimated using an interval-censored regression model.
Coefficients can be directly interpreted (see Wooldridge 2002). Sigma is com-
parable to the standard error of an OLS estimate. t statistics in parentheses.
Clustered-standard errors at the firm level. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001. Digitalisation is standardised with respect to the firm sample.
(1) first lockdown only controlling for different industries; (2) first lockdown
controlling for different industries and federal-state fixed effects; (3) second
lockdown only controlling for different industries; (4) second lockdown con-
trolling for different industries and federal-state fixed effects.

141See [data set] ZEW ± Leibniz Centre for European Economic Research (2021).
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Furthermore, we analyse whether our web-based firm digitalisation indicator

can be associated with a greater likelihood that a firm increased its digital products,

services, and sales channels with the onset of the Covid-19 crisis based on the MIP

2021. To this end, we fit the following linear model:

e-commercej = α + βd digitalisation2020
j + uj. (B.3)

The increase in digital business activities is denoted by the binary variable e-

commerce. Results are displayed in Table B.7:

Table B.7: Link between firm digi-
talisation and increased e-commerce
activity at the firm level.

dependent variable:
increased e-commerce

(1) (2)

digitalisation (Jan ’20) 0.0723∗∗∗ 0.0717∗∗∗

(7.54) (7.42)
constant 0.665∗ 0.702∗

(2.11) (2.25)

industry x x
federal state x
R-squared 0.0661 0.0760
observations 3014 3014

Notes: Equation B.3 estimated using OLS. t
statistics in parentheses. ∗ p < 0.05, ∗∗ p <

0.01, ∗∗∗ p < 0.001. Robust standard errors.
Digitalisation is standardised with respect to
the firm sample. (1) only controlled for differ-
ent industries; (2) controlled for different in-
dustries and federal-state fixed effects.
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B.4.5 Link to a District’s WFH Potential

Table B.8: Equation B.1 with digitalisation replaced by a district’s WFH potential. Only
daytime mobility changes are considered.

dependent variable:
∆ mobility

(1) (2)

WFH potential -0.506∗∗ -0.271
(-2.93) (-1.50)

digitalisation (Jan ’20) -1.593∗∗

(-2.78)
constant 27.41 14.41

(0.57) (0.30)

year-month fixed effects x x
socioeconomic controls x x
infrastructure controls x x
demographic controls x x
geographic controls x x
observations 433999 433999
adjusted R2 0.452 0.454

Notes: Equation B.1 estimated using OLS and all
control variables. t statistics in parentheses. Clus-
tered standard errors. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001. Observations are weighted based on
their population size. (1) Equation B.1 estimated
for daytime mobility with digitalisation replaced
by a district’s WFH potential; (2) Equation B.1 es-
timated for daytime mobility with digitalisation
and a district’s WFH potential included.
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Appendix C

Digital Technology Adoption and

Energy Intensity in Manufacturing

C.1 Additional Data

For our analysis, we add, inter alia, information on prices of different energy sources,

gross value added deflators to calculate real value added, and growth and deprecia-

tion rates, as well as investment deflators to calculate capital stocks. All data sources

are listed in Table C.1. The identifier denotes the variable that is used to merge the

dataset with AFiD.

Table C.1: Description of additional data sources.

Information Data source Comments Identifier

Price for energy
source
(electricity,
natural gas,
heating oil, coal)

Gesamtausgabe der Energiedaten,
Federal Ministry for Economic Af-
fairs and Energy (BMWi); Status:
31.03.2020, https://www.bmwi.d
e/Redaktion/DE/Artikel/Ene

rgie/energiedaten-gesamta

usgabe.html [Online; accessed
on 15 Apr. 2023] (Retrieved on:
01.04.2020)

Prices for hard coal (import
prices), heavy heating oil (indus-
try prices, VAT excluded), light
heating oil (light, industry prices,
VAT excluded), electricity, and
natural gas prices independent
from the consumption level are
retrieved. The respective units
have all been converted to €/kWh.

Year

Price for energy
source (district
heat)

Fernwärme ± Preisübersicht,
AGFW | Der Energieeffizienzver-
band für Wärme, Kälte und KWK
e. V.; Status: 01.10.2017, https://
www.agfw.de/energiewirtsch

aft-recht-politik/wirtschaf

t-und-markt/markt-preise/pr

eisanpassung/ [Online; accessed
on 15 Apr. 2023] (Retrieved on:
14.08.2019)

Absolute price development from
2009-2017 for the connected loads
of 160 kW (p.8) are used. Val-
ues are converted from €/MWh to
€/kWh. Prices are retrieved with-
out VAT.

Year
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Table C.1: Description of additional data sources.

Information Data source Comments Identifier

Price for energy
source (biomass)

Brennstoffkostenentwicklung von
Gas, Öl und Pellets, Deutsches
Pelletinstitut GmbH (DEPI); Sta-
tus: 2019, https://depi.de/de
/pelletpreis-wirtschaftlic

hkeit#dau2v [Online; accessed
on 15 Apr. 2023] (Retrieved on:
13.09.2019)

Pellet price for 2015 is taken,
value converted from cent/kWh
to €/kWh (VAT excluded).

Year

Price for energy
source (biomass)

Index der Erzeugerpreise
gewerblicher Produkte (5.10
Holzprodukte - GP09-1629 14
908 Pellets, Briketts, Scheiten
o.ä. Formen aus Sägespänen u.a.
Sägenebenprodukt), from: Daten
zur Energiepreisentwicklung -
Lange Reihen von Januar 2005 bis
Mai 2020, Statistisches Bundesamt
(Destatis); Status: 26.06.2020, http
s://www.destatis.de/DE/Theme

n/Wirtschaft/Preise/Publikat

ionen/Energiepreise/energiep

reisentwicklung-pdf-5619001

.pdf?__blob=publicationFile

[Online; accessed on 15 Apr. 2023]
(Retrieved on: 16.07.2020)

The base year of the Destatis in-
dex is 2015. Therefore, the DEPI-
price is taken from the year 2015
and multiplied by the index for
each year to receive information
about the change in the price for
biomass.

Year

Price for energy
source (liquid
gas)

IEA Energy Prices and Taxes
Statistics, International Energy
Agency; Status: 1.Quarter 2019, ht
tps://www.oecd-ilibrary.org/

energy/data/iea-energy-price

s-and-taxes-statistics_enep

rice-data-en [Online; accessed
on 15 Apr. 2023] (Retrieved on:
04.09.2019)

Prices (VAT excluded) from 2009-
2017 for liquid gas are retrieved.
Values are converted from €/l to
€/kWh.

Year

Producer price
index (PPI)

Index der Erzeugerpreise
gewerblicher Produkte (In-
landsabsatz) nach dem Güter-
verzeichnis für Produktionsstatis-
tiken Ausgabe 2009 (GP 2009)
- Lange Reihen der Fachserie
17, Reihe 2 von Januar 2005 bis
September 2020, Statistisches
Bundesamt (Destatis), Status:
20.10.2020, https://www.destat
is.de/DE/Themen/Wirtschaft

/Preise/Erzeugerpreisindex

-gewerbliche-Produkte/Publ

ikationen/Downloads-Erzeuge

rpreise/erzeugerpreise-lan

ge-reihen-pdf-5612401.html

[Online; accessed on 15 Apr. 2023]
(Retrieved on: 12.11.2020)

Index on the yearly average
change is retrieved.

Year, in-
dustries
(two-digit
NACE
code)
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Table C.1: Description of additional data sources.

Information Data source Comments Identifier

Gross value
added deflators

National accounts aggregates
by industry, Eurostat, Status:
24.03.2020, https://ec.europ

a.eu/eurostat/de/ [Online; ac-
cessed on 15 Apr. 2023] (Retrieved
on: 01.04.2020)

Price index (implicit deflator),
base year 2010, national currency.

Year

Capital stock Cross-classification of gross fixed
capital formation by industry and
by asset (flows) - Computer soft-
ware and databases (gross), Euro-
stat, Status: 30.03.2020, https://
ec.europa.eu/eurostat/de/

[Online; accessed on 15 Apr. 2023]
(Retrieved on: 01.04.2020)

Table PD10_NAC, price index (im-
plicit deflator), base year 2010, na-
tional currency. Software deflators
are retrieved. See C.2 for detailed
information on how we calculate
software as well as non-software
capital stocks.

Year

Capital stock EU KLEMS database - 2019 re-
lease, Germany capital input data,
see Stehrer, R., A. Bykova, K. Jäger,
O. Reiter and M. Schwarzhappel
(2019): Industry level growth and
productivity data with special fo-
cus on intangible assets, wiiw Sta-
tistical Report No. 8. https://

euklems.eu/excel/DE_Capital_

SDB_2019.xlsx [Online; accessed
on 15 Apr. 2023] (Retrieved on:
18.04.2020)

Real gross fixed capital formation
(in prices from 2010) to calculate
growth rates, depreciation rates as
well as investment deflators (ex-
cept software deflators) are taken
from the EU KLEMS database for
the years 2003-2017. See C.2 for
detailed information on how we
calculate software as well as non-
software capital stocks

Year, in-
dustries
(two-digit
NACE
code)

Household
broadband
availability

Breitbandatlas des Bundes (Ger-
man Broadband Atlas) - Release
2/2021. Data is restricted in usage.
Access can be requested at atene
KOM GmbH, https://atenekom
.eu/project/breitbandatlas/

[Online; accessed on 15 Apr. 2023]
(Retrieved on: 9.04.2021)

Not integrated in the analysis municipality
level (AGS)
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C.2 Perpetual Inventory Method (PIM)

In the spirit of Griliches (1980), Berlemann & Wesselhöft (2014), Lutz (2016), Löschel

et al. (2019), and Dhyne et al. (2021a) capital stocks are calculated for software capital

and non-software capital by means of the perpetual inventory method (PIM).

Given geometric constant depreciation, the capital stock Kt at period t can be

written as a function of previous period’s capital stock Kt−1, gross investments It,

and the consumption of fixed capital at rate δ. Hence, capital stocks except initial

ones can be calculated by the following equation:

Kt = (1 − δ)Kt−1 + It. (C.1)

To calculate initial capital stocks, one can express annual percentage increase in

capital as the amount of investments minus the capital depreciated in the previous

period:

Kt − Kt−1

Kt−1
=

It

Kt−1
− δ. (C.2)

Assuming that capital grows at a constant rate (gK = (Kt − Kt−1)/Kt−1), one can

obtain the following expression:

Kt−1 =
It

gK + δ
. (C.3)

Setting t = 1 allows to calculate the initial capital stock:

K0 =
I1

gK + δ
. (C.4)

For the calculation of firm-level initial capital stocks, it is recommended to use

average investments of the first three years within the observation period because

investments highly fluctuate over time:142

Î1 =
∑

3
t=1 It

n
. (C.5)

Accordingly, in this study we calculate initial capital stocks by applying Equation

(C.4) and (C.5), subsequent capital stocks are calculated by Equation (C.1).

PIM requires information on capital growth rates. These are estimated by calcu-

lating the compound annual growth rate at the industry level using real gross fixed

capital formation at prices from 2010. Information on the gross fixed capital forma-

tion volume of software and total capital is retrieved from the EU KLEMS database.

142Please note here that we do robustness checks with respect to different period lengths to calculate
initial capital stocks.
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Depreciation rates and deflators for non-software capital are also taken from the EU

KLEMS database. Software capital deflators are retrieved from Eurostat (see Table

C.1).
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C.3 Additional Descriptive Statistics

C.3.1 Number of Observations per Year

Table C.2: Number of observations per year. We point out that the last panel sequence
includes slightly fewer observations than the first two.

Year

Panel sequence 1 2 3
Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 Total

% multi-unit firms 13.5% 13.8% 11.3% 11.3% 13.5% 13.8% 13.8% 13.9% 13.9% 13.2%
Observations 13,886 14,196 13,671 13,672 14,139 13,931 13,581 13,306 12,980 123,362

C.3.2 Distribution of Energy Prices

Energy prices may be endogenous as they depend, for instance, on the chosen quan-

tity. To solve this issue, we calculate a second price variable using external energy

prices (PE [external]). We use prices of different energy sources (if available) from of-

ficial statistics and weight them by the firm-level use of the respective energy source

(see Table C.1). The distribution of external prices is displayed in Figure C.2 and is

similar to internal energy prices (Figure C.1), but the distribution is less skewed to

the right. We use the external energy price variable in a later robustness check (see

Column (3) and Column (4) of Table C.8).
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Figure C.1: Distribution of PE.
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Figure C.2: Distribution of PE [external].

C.3.3 Details on the Distribution of SE

Table C.3: Detailed descriptive statistics on the distribution of SE.

mean sd p5 p50 p95
SE 0.090 0.102 0.012 0.055 0.292
Observations 123,362

177



Appendix C. Digital Technology Adoption and Energy Intensity in Manufacturing

C.3.4 Plausibility of Differences in Software Usage with Respect to In-

dustry and Regional Characteristics

In the following, we analyse whether industry-level and regional differences with

respect to software usage are plausible. Figure C.3 shows the average software cap-

ital intensity for different industries. Manufacturers of wearing apparel (Division

14) and basic pharmaceutical products (Division 21) show the highest average soft-

ware capital intensity. The pharmaceutical industry (combined with the chemical

industry) was the most digital German manufacturing industry in 2018 according

to Weber et al. (2018). The high software capital intensity of the wearing apparel

industry can be explained by the fact that it is a market with highly interconnected

supply chains and fast-changing trends. In addition, digitalisation allows for an

increased individualisation of products, which is especially important for this in-

dustry. Furthermore, it is also intuitive that the computer industry (Division 26)

uses more software than most other industries. Manufacturers of other transport

equipment (Division 30) may have a comparatively high software capital intensity

because related industries, such as aircraft and spacecraft construction, are highly

innovative.
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Figure C.3: Average software capital intensity by industry between 2009 and 2017. Each
bar relates to an industry at the two-digit NACE level. The tobacco industry is excluded
because of too few observations.

The geographic distribution of software capital intensity is displayed in Figure

C.4. The darker the blue colour of the respective area, the higher the average soft-

ware capital intensity. The white area in between marks regions for which we either

178



Appendix C. Digital Technology Adoption and Energy Intensity in Manufacturing

observe no or fewer than three enterprises.143 We find that areas with a very high

software capital intensity coincide with major German cities. For example, Berlin,

Munich, Dresden, Stuttgart, and Hanover show very high values. As digital enter-

prises usually concentrate in larger cities, we consider this as a further indicator that

software capital is suitable for measuring the firm-level degree of digitalisation.

Figure C.4: Average software capital intensity by region between 2009 and 2017. The dark
blue regions represent those with the highest average software capital intensity. Regions
with fewer than three observations per year or with no observations are not displayed.

143As the RDC is not allowed to provide information at this granular level due to German data pro-
tection laws.
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C.4 Calculation of Energy Cost Savings per Software Invest-

ment in the Year of Investment

By Equation (C.6), we initially calculate relative improvements in energy use in the

year of investment related to the increase in software capital (relative savings). To

do this, we multiply the energy intensity elasticity (ϵE/Y,KSW
) by the relative change

in software capital (∆lnKICT) for each firm i in year t:

relative savingsi,t = ϵE/Y,KSWi,t
× ∆lnKSWi,t . (C.6)

To calculate savings in energy consumption, we assume that output is constant

and calculate how much energy consumed in the previous period has been saved in

the current period with respect to changes in the software capital stock. Savings in

energy costs are then approximated by multiplying savings in energy consumption

by the firm-specific energy price:

cost savingsi,t = relative savingsi,t × Ei,t−1 × PE. (C.7)

In order to estimate the average savings in energy costs per euro invested in

software, we sum up firm-level energy cost savings in the year of investment over all

periods for which we have information and divide them by the sum of all software

investments that have taken place in the same time period:

savings per investment =
∑

2017
t=2010 ∑

N
i=1 cost savingsi,t

∑
2017
t=2010 ∑

N
i=1 software investmentsi,t

. (C.8)
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C.5 Technological Illustration of the Heterogeneity Bias

For illustrating the issue, we consider a uni-variate model in which changes in the

energy cost share are regressed on the ICT intensity growth rate at the aggregation

level a:144

∆SEa,t = βEKICTh
∆ln

(

KICT

Y

)

a,t
+ ∆ea,t. (C.9)

Assume that βEKICTh
captures the group-specific link between growth in ICT in-

tensity in each industry and changes in the energy cost share of group h.145 In the

spirit of Imbs & Mejean (2015), this link differs by the amount of ηh with E[ηh] = 0

between industries:

βEKICTh
= βEKICT + ηh. (C.10)

Previous industry-level studies constrain the link between ICT and energy

to homogeneity and push heterogeneity into the residual (∆ua,t = ∆ea,t +

ηh∆ln (KICT/Y)a,t) by estimating:

∆SEa,t = βEKICT ∆ln
(

KICT

Y

)

a,t
+ ∆ua,t. (C.11)

According to Imbs & Mejean (2015), the respective point estimate can than be

written as:

β̂EKICT = βEKICT +
cov (∆lnKICT/Ya,t, ∆ua,t)

var (∆lnKICT/Ya,t)
, (C.12)

where cov(·) [var(·)] denotes the covariance (variance) operator. For simplicity,

∆lnKICT/Y is now expressed as z and the notation EKICT is omitted from β̂ and β.

After rearranging, plugging in Equation (C.10), and assuming no endogeneity bias,

the expression can be written as:

β̂ − β =
cov (za,t, ηhza,t)

var (za,t)
. (C.13)

Equation (C.13) is further rearranged. E(·) denotes the expectation operator. The

expectation of β equals the expectation of βh. Moreover, since β is a constant, it

can be placed either inside or outside the expectation operator. If not controlled for

appropriate fixed effects, then its bias can be expressed as:

144Please note here that an aggregation bias due to systematic slope differences can also occur when
aggregate control variables correlate with the variable of interest at the firm level as suggested by
Haque et al. (1999) and Theil (1971).

145Note that a can be equal to h. h may be the level of aggregation at which heterogeneous effects
occur.
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β̂ − β =
cov (za,t, ηhza,t)

var (za,t)

=
E (za,t · ηhza,t)− E (za,t) · E (ηhza,t)

var (za,t)

=
E (za,t

2(βh − β))− E (za,t)E ((βh − β)za,t)

var (za,t)

=
E (za,t

2βh)− βE (za,t
2)− E (za,t)E (βhza,t − βza,t)

var (za,t)

=
cov (za,t

2, βh)− E (za,t)E (βhza,t − βza,t)

var (za,t)
.

(C.14)

However, most studies that employ industry-level panel data control for average

effects at the industry level, such as Schulte et al. (2016). Hence, when applying fixed

effects at the level of a, Equation (C.15) determines the bias:

β̂FEa − βFEa =
cov ((za,t − za)

2, βh)− E (za,t − za)E (βh(za,t − za)− β(za,t − za))

var (za,t − za)

=
cov ((za,t − za)

2, βh)

var (za,t − za)
.

(C.15)

Now, it can be seen that a heterogeneity bias can evolve if the variance of a

demeaned variable of interest within one industry correlates with group-specific

slopes, even if controlled for specific fixed effects.

In our case, the bias becomes zero if all industry-specific ICT intensity growth

rates share the same variance, if the variance is uncorrelated with βh or if slopes

are homogeneous. However, the bias becomes negative (positive), i.e., b will be

biased downwards (upwards) if industry-specific ICT intensity growth rates that

face a larger variance correlate with a more (less) negative βEKICTh
.
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C.6 Additional Econometric Estimations

C.6.1 Robustness Checks with Respect to a Potential Measurement Error

Calculation of Software Capital Stocks

In the following, we provide robustness checks with respect to different modifica-

tions in the calculation of software capital stocks and respective growth rates. For

instance, we analyse how results change if we calculate software capital stocks, as-

suming depreciation rates of 25, 33, and 50%. Also, different period lengths are em-

ployed to calculate initial capital stocks: We estimate initial software capital stocks

based on two, four, and six observation periods if available. Table C.4 shows that

changes in the depreciation rate of the software capital stock only lead to marginal

differences between coefficients. Hence, the results appear to be robust in this re-

gard. The results for different maximum lengths of observation periods considered

for the initial capital stock calculation are displayed in Table C.5. We find slight

differences for initial software capital stocks that include two as well as up to six

periods. For initial stocks based on two periods, we find effects that are marginally

smaller. For initial stocks based on up to six periods, the effect size is slightly larger

and the software coefficient becomes −0.0003. However, we do not consider this de-

viation to be large enough to have an effect on the economic interpretation of results.
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Table C.4: Equation (4.8) with software capital stocks modified by different depreciation
rates.

dependent variable: ∆ SE

(1) (2) (3)

△ln( PE
PL
) 0.0284∗∗∗ 0.0284∗∗∗ 0.0284∗∗∗

(61.74) (61.74) (61.74)
△ln( KSW

Y ) -0.000219∗∗∗ -0.000237∗∗∗ -0.000242∗∗∗

(-5.13) (-5.18) (-5.16)
△ln( KN

Y ) -0.0015∗∗∗ -0.0015∗∗∗ -0.0015∗∗∗

(-3.76) (-3.77) (-3.78)
△ln(Y) 0.0014∗ 0.0013∗ 0.0013∗

(2.56) (2.51) (2.49)

Year x x x
Industry x x x
Multi-unit x x x
Federal state x x x
Size class x x x
EEG exemption x x x
Producer x x x
Trading x x x
Observations 89,653 89,653 89,653
Adjusted R2 0.271 0.271 0.271

Notes: Column (1): Depreciation rate is 25%. Column (2): De-
preciation rate is 33%. Column (3): Depreciation rate is 50%. t
statistics in parentheses. First-difference estimation. Clustered
standard errors. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001.
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Table C.5: Equation (4.8) with software capital stocks modified by different lengths of
periods considered for the initial capital stock calculation.

dependent variable: ∆ SE

(1) (2) (3)

△ln( PE
PL
) 0.0284∗∗∗ 0.0284∗∗∗ 0.0284∗∗∗

(61.74) (61.74) (61.74)
△ln( KSW

Y ) -0.000167∗∗∗ -0.000212∗∗∗ -0.000325∗∗∗

(-4.68) (-4.25) (-4.69)
△ln( KN

Y ) -0.0015∗∗∗ -0.0015∗∗∗ -0.0015∗∗∗

(-3.83) (-3.82) (-3.82)
△ln(Y) 0.0014∗∗ 0.0013∗ 0.0012∗

(2.61) (2.52) (2.29)

Year x x x
Industry x x x
Multi-unit x x x
Federal state x x x
Size class x x x
EEG exemption x x x
Producer x x x
Trading x x x
Observations 89,653 89,653 89,653
Adjusted R2 0.271 0.271 0.271

Notes: Column (1): 2 periods maximal included for initial soft-
ware capital stock calculation. Column (2): 4 periods maximal
included for initial software capital stock calculation. Column
(3): 6 periods maximal included for initial software capital stock
calculation. t statistics in parentheses. First-difference estima-
tion. Clustered standard errors. + p < 0.10, ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001.
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ªZeroº Software Capital Stocks

One reason why software capital stocks may be imprecisely estimated may be that

a large share of firms do not report any software investments. As we impute these

capital stocks in every period by an obligatory euro, they can neither rise nor shrink.

However, it is not clear whether this is accurate, since firms could very well have

invested in software before the observation period and their software capital stock

would actually decrease in the observed time frame. Another problem may occur

for firms that do not invest in periods used to calculate initial capital stocks but

start to invest afterwards. We then observe huge percentage increases in software

capital stocks, since change rates from ªzeroº to large natural numbers are large by

construction.146

We conduct the following robustness checks to analyse issues with respect to

ªzeroº software capital stocks. Firstly, we exclude all observations that have ªzeroº

software capital stocks as well as those observations that have a software capital

stock that increases from ªzeroº and re-estimate our model. This approach allows us

to measure to what extent results differ when potentially problematic observations

are excluded. Secondly, we look closer at observations that have ªzeroº software

capital stocks. Hence, their software capital growth rate is zero. We do not know

whether firms actually have acquired no software capital or whether they invested

before the observation period and their software capital stock decreases due to de-

preciation. To analyse whether this makes a difference, we impute ªzeroº growth

rates. We replace them by the logarithmic change rate that we would have observed

in a firm that has software capital but does not invest in the current period. Hence,

in a further re-estimation, software capital decreases by the depreciation rate for all

observations that do not invest. Thirdly, we deal with the issue that some software

capital stocks increase from ªzeroº. This may result in implausibly large growth

rates. Therefore, we censor very large values that increase from ªzeroº. We con-

sider increases more than 5-fold as implausible, limit them at this threshold, and

re-estimate the model.

Results with respect to issues related to ªzeroº software capital stocks can be

found in Table C.6 in the Appendix. In the first column, we exclude observations

that have ªzeroº software capital stocks as well as observations that have a software

capital stock that increases from ªzeroº. The effect size of the software coefficient is

comparable to our preferred specification; however, it is only significant at the 10%

level. Consequently, even though the exclusion of potentially problematic observa-

tions does only marginally alter the coefficient size, we have to acknowledge that

the relationship is now significant at a lower threshold. The second column displays

results for imputed depreciation rates for ªzeroº software capital stocks that would

146In fact, they actually rise from e1 as zero values are imputed.
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occur if a firm had invested in previous periods. We find that this modification does

not notably affect results and the coefficient of interest is comparable to baseline re-

sults. Hence, is does not make a difference whether we depreciate ªzeroº software

capital stocks or not. The last two columns relate to estimates in which increases

from ªzeroº software capital stocks are limited to a threshold. In Column (3), ªzeroº

software capital stocks are additionally excluded and in Column (4) included. The

results in both columns are comparable and the coefficient slightly increases but not

substantially. To sum up, different treatments of growth rates related to ªzeroº soft-

ware capital stocks only marginally affect our results, i.e. they can hardly be the

reason why we find smaller effects in comparison to aggregated estimates.

Table C.6: Robustness checks with respect to ªzeroº software capital stocks.

dependent variable: ∆ SE

(1) (2) (3) (4)

△ln( PE
PL
) 0.0270∗∗∗ 0.0284∗∗∗ 0.0270∗∗∗ 0.0284∗∗∗

(50.15) (61.74) (51.13) (61.74)

△ln( KSW
Y ) -0.000225+ -0.000238∗∗∗ -0.000356∗∗∗ -0.000350∗∗∗

(-1.87) (-5.14) (-4.86) (-4.77)

△ln( KN
Y ) -0.0017∗∗∗ -0.0015∗∗∗ -0.0015∗∗ -0.0015∗∗∗

(-3.42) (-3.78) (-3.17) (-3.76)
△ln(Y) 0.0011+ 0.0013∗ 0.0011+ 0.0012∗

(1.70) (2.52) (1.69) (2.32)

Year x x x x
Industry x x x x
Multi-unit x x x x
Federal state x x x x
Size class x x x x
EEG exemption x x x x
Producer x x x x
Trading x x x x
Observations 65,226 89,653 66,841 89,653
adj. R2 0.258 0.271 0.260 0.271

Notes: Column (1): Potentially problematic observations excluded. Columns
(2): ªZeroº growth rates imputed. Column (3): Growth rates starting from
ªzeroº limited and ªzeroº capital stocks excluded. Column (4): Growth rates
starting from ªzeroº limited. t statistics in parentheses. First-difference esti-
mation. Clustered standard errors. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001

187



Appendix C. Digital Technology Adoption and Energy Intensity in Manufacturing

Additional Robustness Checks

Moreover, we conduct a robustness check with respect to the economic crisis and

exclude observations before 2011. We also estimate our model only with single-

unit firms to analyse to what extent our results may be biased due to inaccurately

matched information in multi-unit firms. Additionally, we test whether the inclusion

of tangible capital may lead to multicollinearity issues, as software investments are

often complementary. Further, we estimate a specification in which we consider

software capital intensity from the previous period to examine whether there is a

time lag in effects. For this purpose, we apply fixed effects instead of first difference,

as this allows us to consider all observations that are included in the main analysis.

In an additional specification, we include industry-year fixed effects.

Table C.7 shows effects for single-unit firms (Column [1]) and estimation results,

in which only observations after 2011 are considered (Column [2]). The restricted

estimates are consistent with our baseline results. Both software coefficients point in

a negative direction and are significant, but software coefficients are slightly smaller

for both restricted samples. Moreover, our results are also robust with respect to the

exclusion of tangible capital (Column [3]). We additionally estimate the influence of

lagged software capital and find a negative but insignificant effect for lagged soft-

ware capital (Column [4]). Including industry-year-level fixed effects does not affect

baseline results notably (Column [5]).147

147In addition, we also performed an estimation in which we replaced software capital intensity with
software investments and measured a comparable relationship. The results are available from the
authors upon request.
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Table C.7: Further robustness checks.

dependent variable:
∆ SE SE ∆ SE

(1) (2) (3) (4) (5)

△ln( PE
PL
) 0.0292∗∗∗ 0.0290∗∗∗ 0.0284∗∗∗ 0.0328∗∗∗ 0.0284∗∗∗

(52.32) (59.68) (61.74) (43.27) (61.80)
△ln( KSW

Y ) -0.000209∗∗∗ -0.000177∗∗∗ -0.000249∗∗∗ -0.000205∗∗ -0.000228∗∗∗

(-4.52) (-3.78) (-5.37) (-3.10) (-4.95)
△ln( KN

Y ) -0.0013∗∗∗ -0.0015∗∗∗ -0.000120 -0.0014∗∗∗

(-3.30) (-3.81) (-3.13) (-3.60)
△ln(Y) 0.00087 0.0015∗∗ 0.0028∗∗∗ 0.00318 0.0018∗∗∗

(1.39) (2.71) (7.43) (4.09) (3.37)
△ln( KSW

Y )t−1 -0.0000400
(-0.56)

Year x x x x x
Industry x x x x x
Multi-unit x x x x x
Federal state x x x x x
Size class x x x x x
EEG exemption x x x x x
Producer x x x x x
Trading x x x x x
Economic industry × Year x
Observations 62,821 77,029 89,653 89,653 89,653
adj. R2 0.285 0.284 0.271 0.277 0.281

Notes: After 2011. Column (2): Single-unit firms, i.e., firms with only one business location. Column (3):
Not controlled for tangible capital. Column (4): Additional lagged KSW and estimated in fixed effects (to
ensure the same amount of observations). Column (5): Additional industry-year fixed effects. t statis-
tics in parentheses. First-difference estimation except Column (4), which uses fixed effects. Clustered
standard errors. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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C.6.2 IV Estimates

Endogenous control variables do not lead to biased coefficients when uncorrelated

with the variable of interest, but they do if they relate to each other (Frisch & Waugh

1933). In particular, the relationship between output and software capital could po-

tentially bias results, because both variables may highly depend on each other. A

similar problem may exist with respect to the energy-labour-price ratio, as the use

of software usually requires skills that are in high demand. To test whether these

issues affect results, we conduct the following IV estimates as further robustness

checks. The results are displayed in Table C.8.

For the analysis of endogeneity problems related to our output indicator, a prob-

lem arises because the variable is included in the model and at the same time both

capital stocks are scaled by output. However, from an econometric perspective it is

not necessary to scale capital stocks by output since we already control for it.148 Ac-

cordingly, we rearrange Equation (4.3) and do not scale both capital stocks by output

anymore. Hence, we now estimate β̂EY instead of β̂∗
EY (see Section 4.3). The translog

model is re-estimated and displayed in Column (1). It is straightforward to see that

this modification barely affects software and tangible capital coefficients. In a sec-

ond step, we instrument output by a firm’s market share in terms of sales. Market

shares are calculated using four-digit and two-digit industry levels and employing

the Census on Investments; accordingly, two different instruments are used. Addi-

tionally, we calculate market shares only if at least five observations per industry

are available. Hence, we exclude a small share of observations from the estimation.

The results are displayed in Column (2). The output coefficient gently increases, but

the software coefficient is barely affected. In a last step, we instrument the energy-

labour-price ratio by an exogenous energy price variable. To calculate the exogenous

energy price, we use prices of different energy sources (if available) from official

statistics and weight them by the individual use of the respective energy source.149

The results are displayed in Column (3); in Column (4) output is instrumented as

well. The effect size of the price coefficient decreases and it is now significant at a

lower threshold, but the software coefficient is not affected and is comparable to the

baseline specification. Furthermore, tests for underidentification and weak identifi-

cation, as well as the Sargan±Hansen test indicate that the exogenous energy price

and market shares are appropriate instruments.

148We scale software capital by output in our preferred specification to be consistent with Schulte
et al. (2016).

149See Table C.1 in the Appendix for more details on data sources. The distribution of the exogenous
price variable and its relationship to the potentially endogenous energy price variable is displayed in
C.3.2.
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Table C.8: IV estimates.

dependent variable: ∆ SE

(1) (2) (3) (4)

△ln( PE
PL
) 0.0284∗∗∗ 0.0283∗∗∗ 0.0023∗ 0.0018+

(0.000) (0.000) (0.019) (0.068)
△ln(KSW) -0.000242∗∗∗ -0.000260∗∗∗ -0.000245∗∗∗ -0.000265∗∗∗

(0.000) (0.000) (0.000) (0.000)
△ln(KN) -0.0016∗∗∗ -0.0019∗∗∗ -0.0012∗∗ -0.0015∗∗

(0.000) (0.000) (0.006) (0.002)
△ln(Y) 0.0031∗∗∗ 0.011∗∗∗ 0.0036∗∗∗ 0.0108∗∗

(0.000) (0.001) (0.000) (0.001)

Year x x x x
Industry x x x x
Multi-unit x x x x
Federal state x x x x
Size class x x x x
EEG exemption x x x x
Producer x x x x
Trading x x x x
Observations 89,653 89,017 89,653 89,017
Underidentification 64.16 816.0 63.83
Weak identification 42.61 1139.2 27.93
P-value Hansen J statistic 0.864 0.909

Notes: Column (1): Capital not scaled by output. Column (2): Y instrumented. Column
(3): PE/PL instrumented. Column (4): Y and PE/PL instrumented. p-values in paren-
theses. First-difference estimation. Clustered standard errors.+ p < 0.10, ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001. The underidentification test displays the Kleibergen-Paap LM
statistic and the weak identification test displays the Kleibergen-Paap Wald F-statistic.
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C.6.3 Pooled OLS, FE, and Mundlak

Table C.9: Pooled OLS, FE, and Mundlak (all model coefficients).

dependent variable: SE

(1) (2) (3)

ln( PE
PL
) -0.00376∗∗∗

(-8.73)

ln( PE
PL
) -0.00494∗∗∗

(-5.83)
△ln( PE

PL
) 0.0316∗∗∗ 0.0316∗∗∗

(57.23) (57.21)
ln( KSW

Y ) -0.00165∗∗∗

(-32.95)

ln( KSW
Y ) -0.00151∗∗∗

(-16.13)
△ln( KSW

Y ) -0.000213∗∗∗ -0.000214∗∗∗

(-3.48) (-3.48)
ln( KN

Y ) 0.0061∗∗∗

(30.85)

ln( KN
Y ) 0.00499∗∗∗

(14.62)
△ln( KN

Y ) -0.000116 -0.000116
(-0.26) (-0.26)

ln(Y) 0.0397∗∗∗

(69.70)
ln(Y) 0.0356∗∗∗

(29.68)
△ln(Y) 0.00396∗∗∗ 0.00396∗∗∗

(6.18) (6.18)

Year x x x
Industry x x x
Multi-unit x x x
Federal state x x x
Size class x x x
EEG exemption x x x
Producer x x x
Trading x x x
Observations 123,362 123,362 123,362
R2 0.577 0.268 0.268

Notes: Column (1): Pooled OLS specification. Column (2): Fixed effects specification. Column (3):
Mundlak specification. t statistics in parentheses. Robust standard errors in Column (1). Clustered
standard errors in Column (2) and Column (3). ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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C.6.4 Industry-Specific Effects ± Regression Table

Table C.10: Differences across industries ± Regression results.
dependent variable: ∆ SE

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
N10 N11 N12 N14 N15 N16 N17 N18 N19 N20 N21 N22

△ln(
PE
PL

) 0.0489∗∗∗ 0.0586∗∗∗ 0.0405∗∗∗ 0.0199∗∗∗ 0.0165∗∗∗ 0.0235∗∗∗ 0.0419∗∗∗ 0.0289∗∗∗ 0.0536∗∗∗ 0.0365∗∗∗ 0.0264∗∗∗ 0.0322∗∗∗

(26.23) (12.01) (10.53) (5.83) (5.75) (9.41) (10.18) (8.43) (6.19) (13.51) (7.11) (15.69)

△ln(
KSW

Y ) -0.000220 -0.000331 -0.000167 0.000284 0.000509 -0.000245 -0.000516+ -0.0000985 0.000292 -0.000426∗ 0.000158 -0.000209
(-1.45) (-1.05) (-0.72) (1.31) (1.00) (-0.59) (-1.88) (-0.40) (0.35) (-2.01) (0.51) (-1.07)

△ln(
KN
Y ) -0.00488∗ -0.00308 -0.000797 -0.000863 -0.00689 0.00309 0.000420 -0.000133 -0.00993 -0.00116 -0.00176 -0.00172

(-2.24) (-0.71) (-0.49) (-0.67) (-1.51) (0.86) (0.16) (-0.08) (-0.84) (-0.36) (-0.96) (-1.10)
△ln(Y) 0.000123 -0.00398 0.00311 0.000459 -0.00546 0.0138∗∗ 0.00475 -0.00349 0.00910 0.00996∗ -0.000809 0.00214

(0.05) (-0.86) (0.91) (0.30) (-1.08) (2.96) (1.04) (-1.14) (0.47) (2.42) (-0.25) (0.89)

ϵE/Y,KSW
(-) (-) (-) (-) (-) (-) -.0068 (-) (-) -.0083 (-) (-)

ϵE/Y,KSW
at SKSW

(-) (-) (-) (-) (-) (-) -.0031 (-) (-) -.0029 (-) (-)

Observations 11,043 1,483 1,975 1,079 566 1,838 2,522 1,698 217 4,965 1,090 4,825
Adjusted R2 0.355 0.439 0.318 0.316 0.193 0.204 0.293 0.343 0.422 0.263 0.330 0.304

dependent variable: ∆ SE

(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23)
N23 N24 N25 N26 N27 N28 N29 N30 N31 N32 N33

△ln(
PE
PL

) 0.0451∗∗∗ 0.0448∗∗∗ 0.0311∗∗∗ 0.0144∗∗∗ 0.0169∗∗∗ 0.0180∗∗∗ 0.0224∗∗∗ 0.0238∗∗∗ 0.0246∗∗∗ 0.0145∗∗∗ 0.0158∗∗∗

(14.01) (10.53) (26.78) (10.33) (16.34) (23.08) (11.54) (8.86) (9.48) (18.01) (13.18)

△ln(
KSW

Y ) -0.000790∗ -0.000338+ -0.0000753 -0.000163 -0.000228+ -0.0000248 -0.0000923 0.000293 0.0000621 0.0000947 -0.000322+

(-2.42) (-1.74) (-0.63) (-1.06) (-1.92) (-0.38) (-0.52) (1.42) (0.33) (0.75) (-1.91)

△ln(
KN
Y ) -0.00246 -0.00216 -0.00117 -0.0000138 0.000422 -0.000687 -0.00127 -0.00171 0.0000232 0.00113 -0.00148

(-1.26) (-0.99) (-1.40) (-0.01) (0.52) (-1.34) (-1.07) (-1.03) (0.01) (1.38) (-1.63)
△ln(Y) 0.00749∗∗ 0.00858∗∗ -0.000107 0.00141 0.000617 -0.000665 -0.000833 -0.00198 -0.000207 -0.00259+ -0.00162

(2.60) (2.94) (-0.09) (0.93) (0.61) (-1.06) (-0.61) (-0.90) (-0.09) (-1.89) (-1.19)

ϵE/Y,KSW
-.0093 -.0038 (-) (-) -.0110 (-) (-) (-) (-) (-) -.0272

ϵE/Y,KSW
at SKSW

-.0043 -.0020 (-) (-) -.0058 (-) (-) (-) (-) (-) -.0105

Observations 4,314 4,021 10,942 3,737 5,157 12,079 3,173 1,079 1,797 3,093 2,402
Adjusted R2 0.333 0.310 0.385 0.260 0.324 0.342 0.278 0.382 0.361 0.337 0.348

Notes: N10: Food products; N11: Beverages; N13: Textiles; N14: Wearing apparel; N15: Leather & related products; N16: Wood, wood & cork products; N17: Paper & paper products; N18: Printing,
recorded media; N19: Coke, refined petroleum products; N20: Chemicals & chemical products; N21: Basic pharmaceutical products; N22: Rubber & plastic products; N23: Other non-metallic
mineral products; N24: Basic metals; N25: Fabricated metal products; N26: Computer, electro, optical products; N27: Electrical equipment; N28: Machinery and equipment n.e.c.; N29: Motor
vehicles, (semi-)trailers; N30: Other transport equipment; N31: Furniture; N32: Other manufacturing; N33: Repair and installation. The following additional control variables are included: Year,
multi-unit, federal state, size class, EEG exemption, producer, and trading. Firms that switch between industries are excluded. The tobacco industry is excluded because of too few observations and
a very low R-squared. t statistics in parentheses. First-difference estimation. Clustered standard errors. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Appendix D

What Drives the Relationship

Between Digitalisation and

Industrial Energy Demand?

D.1 Description of Variables

Table D.1: Description of variables.

Main variables

total energy use Overall firm-level energy use, i.e. the sum of energetic use of different energy
carriers plus electricity use (in kWh) observed in the AFiD-Module Use of En-
ergy.

electricity use Total electricity consumption (in kWh) observed in the AFiD-Module Use of En-
ergy.

fossil fuel use The sum of firm-level use of natural gas, coal, heating oil, district heat, and liquid
petroleum gas (in kWh) observed in the AFiD-Module Use of Energy.

treatment Software capital approximates the degree of firm-level digitalisation (in e). We
calculate firm-level software capital stocks as in Chapter 4 and base them on
software investments reported in the AFiD-Panel Industrial Units. Firstly, we
generate real software investments using software deflators from Eurostat. Sec-
ondly, we apply the perpetual inventory method (PIM) to estimate capital stocks
(Griliches 1980, Lutz et al. 2017). We consider a depreciation rate of 31.5%. The
value is retrieved from the EU KLEMS database.150 Based on these software cap-
ital stocks, we calculate software capital growth rates and dichotomise them to
generate treatment W. Accordingly, W is one if the software capital stock of firm
i increases in period t and zero otherwise. It has to be acknowledged that we
only account for purchased software capital and firms may also use open source
software. We refer to Appendix C.5 for a detailed description of the calculation
of software capital stocks and to Section 4.4.2 for a discussion of their representa-
tiveness for the firm-level degree of digitalisation. Moreover, Section C.6.1 con-
tains robustness checks with different depreciation rates for the translog model
applied in Chapter 4. The link between software capital intensity and energy
intensity appear to robust to different depreciation values (25%, 33%, and 50%).

150 See EU KLEMS database - 2019 release, Germany capital input data, see Stehrer, R., A. Bykova,
K. Jäger, O. Reiter and M. Schwarzhappel (2019): Industry level growth and productivity data with
special focus on intangible assets, wiiw Statistical Report No. 8. https://euklems.eu/excel/DE_Ca
pital_SDB_2019.xlsx [Online; accessed on 11 Apr. 2023] (Retrieved on: 18.04.2020).
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Table D.1: Description of variables.

Covariates

lagged outcome We include the lagged outcome in log-levels in the estimation. If we integrated
change rates from the previous period, we would need to consider t − 2 as well.
This would imply that we loose a large share of observations, as our panel is
imbalanced.

output We take the gross production value and subtract turnover from trade and other
activities to calculate output (in e). All variables are observed in the AFiD-Panel
Industrial Units.

tangible capital Tangible capital is calculated using real investments in property, plant, and
equipment (AFiD-Panel Industrial Units, in e) and applying the PIM. Defla-
tors and depreciation rates are taken from the EU KLEMS data. We refer also to
Chapter 4 for a detailed description of the calculation of tangible capital stocks.

labour use Labour use is measured by the number of employees observed in the AFiD-Panel
Industrial Units. We convert part-time employees to full-time employees and
adjust the number of employees in this regard.

producer price index Average material prices are approximated by the index of producer prices of
industrial products (domestic sales) retrieved from Destatis. https://www.dest
atis.de/DE/Themen/Wirtschaft/Preise/Erzeugerpreisindex-gewerbliche

-Produkte/Publikationen/Downloads-Erzeugerpreise/erzeugerpreise-l

ange-reihen-pdf-5612401.html [Online; accessed on 11 Apr. 2023] (retrieved
on: 12.11.2020).

price energy We calculate overall firm-level energy prices in a two-step procedure. Firstly, we
divide firm-level energy costs by firm-level energy use to approximate the firm-
level energy price (in e/kWh). However, this approach may be endogenous
and prone to issues resulting from misreporting. Consequently, we calculate in
a second step, based on the firm-level energy price, the average energy price
within an industry (four-digit NACE level) in one region (five-digit AGS level
[Kreisbene]). We then approximate the firm-level energy price by the regional
industry average. This allows considering a more robust energy price. Moreover,
if we observe less than five firms in a region within one industry, we approximate
the firm-level energy price by the federal-state average at the two-digit NACE
level.

price electricity Electricity prices are retrieved from Eurostat (status: 08.04.2019, in e/kWh). We
consider prices for non-household consumers, which is bi-annual data and we,
therefore, take the yearly average. Moreover, prices depend on the consumption
level and we exclude VAT and other recoverable taxes and levies. As firms switch
their consumption level over time, we consider a firm’s consumption level of the
first period that we observe to match prices. This allows for not considering price
variations due to changes in the consumption level. https://ec.europa.eu/e
urostat/de/ [Online; accessed on 11 Apr. 2023] (retrieved on: 15.07.2020).

price natural gas Natural gas prices are also retrieved from Eurostat (status: 10.02.2020, in e/ GJ).
We consider bi-annual natural gas prices (average price per year is calculated)
for non-household consumers. Natural gas prices depend on the consumption
level. Accordingly, we consider a firm’s consumption level of the first period
that we observe to match prices. Prices are retrieved excluding VAT and other
recoverable taxes and levies. Natural gas prices are converted from GJ to kWh.
https://ec.europa.eu/eurostat/de/ [Online; accessed on 11 Apr. 2023]
(retrieved on: 15.07.2020).

prices of other energy carriers Other energy prices are retrieved from the IEA (liquid petroleum gas, re-
trieved on: 04.09.2019), Destatis & DEPI (biomass, retrieved on: 16.07.2020
[Destatis], and retrieved on: 13.09.2019 [DEPI]), AGFW (district heat, retrieved
on: 14.08.2019), and BMWK former BMWi (heating oil, retrieved on: 01.04.2020).
For a more detailed description on sources for energy prices see Appendix C.1.
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Table D.1: Description of variables.

share of energy sources To consider the energy mix, we divide the use of electricity, natural gas, coal,
heating oil, district heat, liquid petroleum gas, and biomass by overall energy
consumption and consider each share as a variable in the Causal Forest model.
All variables are observed in the AFiD-Module Use of Energy. We include each
energy share in lagged levels in our estimation.

R&D intensity We divide the total expenditure on research & development observed in the
AFiD-Panel Industrial Units by output.

tax intensity The amount of taxes (e.g. property tax, motor vehicle tax, excise duties; exclud-
ing income and corporation tax, equalization levies on burdens and VAT) ob-
served in the AFiD-Panel Industrial Units is divided by output.

subsidy intensity The amount of subsidies received for current production in the business year
observed in the AFiD-Panel Industrial Units is divided by output.

trading intensity The total turnover of trading goods during the business year observed in the
AFiD-Panel Industrial Units is divided by output. Trading goods are considered
to be goods of foreign origin that are generally resold unprocessed and without
a production-related connection to own products.

Herfindahl±Hirschman Index The HHI captures the competitive situation that a firm has to face. It is calculated
using yearly revenue-based market shares at the four-digit NACE level observed
in the AFiD-Panel Industrial Units. For a detailed description of the HHI, see
Rhoades (1993). We exclude industries for which we observe less than five firms
per year.

share renewable production Own electricity generation from renewable power observed in the AFiD-Module
Use of Energy is divided by overall energy use.

share fossil production Own electricity generation from fossil sources observed in the AFiD-Module Use
of Energy is divided by overall energy use.

weak region We include a dummy indicating whether a firm is situated in a region (five-digit
AGS level) that is considered as ªstructurally weakº (0) due to its limited eco-
nomic productivity or ªstructurally strongº (1). An overview map of structurally
weak regions can be found at: https://www.bmwi.de/Redaktion/DE/Dossier
/Digital-Jetzt/digital-jetzt-infografik-strukturschwache-regione

n.html [Online; accessed on 11 Apr. 2023] (retrieved on: 14.03.2022)
EEG exemption A one-hot encoded variable is generated that indicates whether a firm is not (1),

partly (2), or fully (3) exempted from charges under the law on renewable ener-
gies (EEG). This is calculated by means of the approximated ratio between elec-
tricity costs and value added as well as electricity use. For this purpose, we com-
bine information from the AFiD-Panel Industrial Units and the AFiD-Module
Use of Energy.

energy intensive industry We define an energy-intensive industry as an industry or a group of industries
at the two-digit NACE level that accounts for more than 5 % of total energy
consumption of the manufacturing sector (Divisions: 10-12, 17,19, 20, 23, 24).
The information is retrieved from the German Environmental Agency (https:
//www.umweltbundesamt.de/daten/umwelt-wirtschaft/industrie/branch

enabhaengiger-energieverbrauch-des#primarenergienutzung-des-verar

beitenden-gewerbes [Online; accessed on 11 Apr. 2023]).
main industrial grouping We add a one-hot encoded variable that indicates the industrial main group of

the firm: intermediate goods producer (1), capital goods producer (2), durable
goods producer (3), consumer goods producer (4), and energy producer (5).

single- / multi-unit firm A one-hot encoded variable is included that indicates whether a firm is a single-
unit firm (1), a multi-unit firm in one federal-state (2), or a multi-unit firm in
several federal states (3).

industry association A LASSO-based fixed effects vector controlling for the industry assignment is
calculated based on two-digit NACE codes. For a detailed description, see Jens
et al. (2021).

year A LASSO-based fixed effects vector controlling for the observation period (year)
is generated based on Jens et al. (2021).
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Energy Demand?

Table D.1: Description of variables.

federal states A LASSO-based fixed effects vector controlling for the federal state of the firm’s
registered office is calculated based on Jens et al. (2021).
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D.2 Descriptive Statistics

Table D.2: Averages and standard errors of firm characteristics for treated and untreated
firms (2010 to 2017).

variable mean control s.d. control mean treated s.d. treated

total energy use (in GWh) 29.64 414.65 45.14 396.57
total energy use ln ∆ 0.02 0.27 0.03 0.27
total energy use ln t − 1 14.72 1.9 15.2 1.92
electricity use (in GWh) 9.61 74.67 16.18 132.21
electricity use ln ∆ 0.02 0.27 0.03 0.28
electricity use ln t − 1 13.88 1.9 14.42 1.9
fossil fuel use (in GWh) 17.71 281.98 25.89 262.55
fossil fuel use ln ∆ 0.05 1.38 0.06 1.34
fossil fuel use ln t − 1 13.23 3.55 13.84 3.29
treatment (W) 0.0 0.0 1.0 0.0
output (in million e) 62.15 572.48 122.86 1250.08
output ln ∆ 0.04 0.2 0.06 0.21
output ln t − 1 16.53 1.44 17.11 1.44
tangible capital (in million e) 16.55 152.71 33.75 326.58
tangible capital ln ∆ 0.02 0.24 0.05 0.22
tangible capital ln t − 1 14.78 1.93 15.51 1.76
number of employees 241.07 1699.02 431.28 2836.52
number of employees ln ∆ 0.01 0.13 0.03 0.13
number of employees ln t − 1 4.59 1.09 5.04 1.16
producer-price index 99.5 3.63 99.57 3.74
producer-price index ln ∆ 0.01 0.03 0.01 0.03
price energy 0.13 0.03 0.13 0.03
price energy ln ∆ 0.01 0.12 0.01 0.13
price biomass 0.04 0.0 0.04 0.0
price biomass ln ∆ 0.02 0.08 0.02 0.07
price coal 0.01 0.0 0.01 0.0
price coal ln ∆ 0.02 0.19 -0.0 0.21
price district heat 0.07 0.0 0.07 0.0
price district heat ln ∆ 0.01 0.05 0.01 0.05
price electricity 0.14 0.03 0.14 0.02
price electricity ln ∆ 0.04 0.06 0.05 0.06
price heating oil 0.06 0.01 0.06 0.01
price heating oil ln ∆ 0.0 0.22 -0.01 0.24
price liquid petroleum gas 0.06 0.01 0.06 0.01
price liquid petroleum gas ln ∆ -0.02 0.16 -0.03 0.18
price natural gas 0.04 0.01 0.04 0.01
price natural gas ln ∆ -0.01 0.09 -0.02 0.1
biomass share [in %] 0.02 0.1 0.02 0.09
biomass share [in %] t − 1 0.02 0.1 0.01 0.09
coal share [in %] 0.01 0.06 0.01 0.06
coal share [in %] t − 1 0.01 0.05 0.01 0.06
district heat share [in %] 0.03 0.12 0.04 0.13
district heat share [in %] t − 1 0.03 0.12 0.03 0.13
electricity share [in %] 0.49 0.25 0.51 0.24
electricity share [in %] t − 1 0.49 0.25 0.51 0.24
natural gas share [in %] 0.32 0.29 0.33 0.28
natural gas share [in %] t − 1 0.31 0.29 0.32 0.28

N 64,933 27,382
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Table D.2: Averages and standard errors of firm characteristics for treated and untreated
firms (2010 to 2017).

variable mean control s.d. control mean treated s.d. treated

heating oil share [in %] 0.11 0.22 0.09 0.19
heating oil share [in %] t − 1 0.12 0.22 0.1 0.2
liquid petroleum gas share [in %] 0.01 0.06 0.01 0.05
liquid petroleum gas share [in %] t − 1 0.01 0.06 0.01 0.05
R&D intensity [in %] 0.01 0.03 0.02 0.04
R&D intensity [in %] ∆ -0.0 0.02 0.0 0.02
tax intensity [in %] 0.01 0.02 0.01 0.03
tax intensity [in %] ∆ -0.0 0.01 -0.0 0.01
subsidy intensity [in %] 0.0 0.01 0.0 0.01
subsidy intensity [in %] ∆ -0.0 0.01 0.0 0.01
trading intensity [in %] 0.11 1.06 0.12 0.5
trading intensity [in %] ∆ 0.01 1.0 -0.0 1.54
share self-produced fossil-based energy [in %] 0.0 0.02 0.01 0.03
share self-produced fossil-based energy [in %] ∆ 0.0 0.01 0.0 0.02
share self-produced renewable energy [in %] 0.01 0.04 0.01 0.04
share self-produced renewable energy [in %] ∆ 0.0 0.03 0.0 0.03
HHI 0.07 0.09 0.07 0.09
HHI ∆ 0.0 0.03 0.0 0.03
no EEG exemption [in %] 0.92 0.28 0.92 0.28
partial EEG exemption [in %] 0.08 0.27 0.07 0.26
full EEG exemption [in %] 0.01 0.09 0.01 0.1
single-unit firm 0.78 0.41 0.75 0.43
multi-unit firm in one federal state [in %] 0.08 0.27 0.07 0.26
multi-unit firm in several federal states [in %] 0.14 0.35 0.18 0.38
intermediate goods producer [in %] 0.44 0.5 0.44 0.5
capital goods producer [in %] 0.29 0.45 0.34 0.47
durable goods producer [in %] 0.04 0.19 0.04 0.2
consumer goods producer [in %] 0.23 0.42 0.18 0.39
energy producer [in %] 0.0 0.02 0.0 0.03
year 2010 [in %] 0.14 0.35 0.13 0.34
year 2011 [in %] 0.14 0.34 0.15 0.36
year 2012 [in %] 0.06 0.23 0.07 0.25
year 2013 [in %] 0.14 0.35 0.13 0.34
year 2014 [in %] 0.15 0.36 0.13 0.34
year 2015 [in %] 0.15 0.35 0.13 0.34
year 2016 [in %] 0.08 0.28 0.13 0.33
year 2017 [in %] 0.14 0.35 0.12 0.33
Industry: Food products [in %] 0.14 0.35 0.09 0.29
Industry: Beverages [in %] 0.02 0.13 0.02 0.12
Industry: Tobacco products [in %] 0.0 0.0 0.0 0.0
Industry: Textiles [in %] 0.02 0.15 0.02 0.14
Industry: Wearing apparel [in %] 0.01 0.11 0.01 0.1
Industry: Leather & related products [in %] 0.01 0.08 0.0 0.07
Industry: Wood, wood & cork products [in %] 0.02 0.15 0.02 0.13
Industry: Paper & paper products [in %] 0.03 0.17 0.03 0.16
Industry: Printing, recorded media [in %] 0.02 0.14 0.02 0.13
Industry: Coke, refined petroleum products [in %] 0.0 0.02 0.0 0.03
Industry: Chemicals & chemical products [in %] 0.06 0.23 0.06 0.24
Industry: Basic pharmaceutical products [in %] 0.01 0.1 0.02 0.12
Industry: Rubber & plastic products [in %] 0.06 0.23 0.06 0.24
Industry: Other non-metallic mineral prod. [in %] 0.05 0.22 0.05 0.21
Industry: Basic metals [in %] 0.05 0.21 0.05 0.21

N 64,933 27,382

199



Appendix D. What Drives the Relationship Between Digitalisation and Industrial

Energy Demand?

Table D.2: Averages and standard errors of firm characteristics for treated and untreated
firms (2010 to 2017).

variable mean control s.d. control mean treated s.d. treated

Industry: Fabricated metal products [in %] 0.13 0.34 0.12 0.33
Industry: Computer, electro, optical prod. [in %] 0.04 0.2 0.05 0.23
Industry: Electrical equipment [in %] 0.06 0.24 0.07 0.25
Industry: Machinery and equipment n.e.c. [in %] 0.13 0.34 0.18 0.38
Industry: Motor vehicles, (semi-)trailers [in %] 0.04 0.19 0.05 0.21
Industry: Other transport equipment [in %] 0.01 0.12 0.02 0.12
Industry: Furniture [in %] 0.02 0.14 0.02 0.14
Industry: Other manufacturing [in %] 0.04 0.19 0.04 0.19
Industry: Repair and installation [in %] 0.03 0.17 0.02 0.15

N 64,933 27,382
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D.3 Evaluating Assumptions and the Fit of the Causal Forest

To assess the overlap assumption, we plot the propensity scores that indicate the

probability of treatment for each observation in Figure D.1. Note that we lose four

observations due to trimming. The histograms for the (trimmed) treated and not

treated firms overlap in a way that makes it impossible to deterministically decide

on the treatment status of a firm, as the scores are bounded away from zero and one.

Hence, the overlap assumption is fulfilled.

W 0 1

Propensity Score

0.00 0.25 0.50 0.75 1.00

Robustness check (differenced input variables)

Propensity Score

co
u
n
t

Original (lagged input variables)

8000

6000

4000

2000

0

0.00 0.25 0.50 0.75 1.00

8000

6000

4000

2000

0

Figure D.1: Distribution of propensity scores between treatment and control group.

Furthermore, the internal validity of the Causal Forest approach is based on the

idea that the treatment is random. Therefore, we assess the balance of the covari-

ates between firms that increase software capital and firms that do not increase soft-

ware capital. Figure D.2 depicts these differences in the distributions of the treated

and untreated samples after re-weighting the covariates with the inverse propensity

score (as we apply AIPW weights). Except for some very rare outliers, the distribu-

tions do not show any notable differences between both groups. Thus, our model is

able to appropriately balance covariates.

Additionally, we test the model calibration by comparing OOB predictions to

actual changes in energy consumption (see Equation 5.4). The results for all three

model outcomes are presented in Table D.3. According to the test results, the model

for electricity use seems to be calibrated well and the performance is comparable to

the model with energy use as an outcome variable. In contrast, the model using fos-

sil fuels as an outcome variable fails in predicting an average treatment effect that is

different from zero and does not seem to capture the underlying heterogeneity ade-

quately. Model results of this outcome should therefore be interpreted cautiously.
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Table D.3: Best Linear Predictor Test for the forest with all outcomes.

difference from zero difference from one
Outcome variable Coefficient Estimate SE t-stat p-value t-stat p-value
Energy use βATE 0.998 0.235 4.245 1.09e05∗∗∗ −0.008 0.993

βCATE 1.261 0.366 3.448 0.0003∗∗∗ 0.713 0.475
Electricity use βATE 0.980 0.172 5.695 1.96e−09∗∗∗ −0.116 0.907

βCATE 0.914 0.316 2.897 0.002∗∗∗ −0.272 0.785
Fossil fuel use βATE 1.442 3.870 0.373 0.355 0.1142 0.909

βCATE −0.833 0.784 −1.061 0.856 −2.338 0.019∗

Notes: Results of the Best Linear Predictor Test for model calibration and heterogeneity that seeks to
fit the estimated CATE as a linear function of the out-of-bag predictions (see Equation 5.4). Difference
from zero: one-tailed t-test that tests whether estimated coefficients are significantly larger than zero;
difference from one: two-tailed t-test that tests whether estimated coefficients significantly differ from
one. Please note that the test results of the ªdifference from oneº test are approximated by the pre-
sented rounded β-coefficients and standard errors, as well as 10,000 degrees of freedom.
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Figure D.2: Inverse-propensity weighted histograms for treated and untreated observations (Part I).
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Figure D.3: Inverse-propensity weighted histograms for treated and untreated observations (Part II).
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Figure D.4: Inverse-propensity weighted histograms for treated and untreated observations (Part III).
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Appendix D. What Drives the Relationship Between Digitalisation and Industrial

Energy Demand?

D.4 Variable Importance

To understand the main drivers of treatment heterogeneity, we analyse the firm char-

acteristics that were used as splitting variables in the forest. Variable importance

(VI) measures how many times a covariate was used for splitting at level l across

all trees t, where relative split frequency (RSF) denotes the split frequency (SF) of

variable m divided by all splits at level l. Additionally, weights (wl = l−2) are used

that exponentially favour higher tree levels.

VIm =
∑

L
l=1 RSFml ∗ wl

∑
L
l=1 wl

(D.1)

RSFml =
SFml

∑
M
m=1 SFml

(D.2)

energy total fossil fuels
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Figure D.5: Variable Importance for the three Causal Forests with the outcome variables
total energy use, electricity use, and fossil fuels.

Figure D.5 lists the 15 most important variables for splitting the sample into

groups. Combined, energy prices are by far the most important variable if we sum

up the importance values of the energy prices (total energy price, price of heat oil,

price of LPG, price of electricity, and price of coal). Furthermore, the share of electric-

ity use (of the previous period) is important for the splitting procedure of all three

outcomes.
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Appendix D. What Drives the Relationship Between Digitalisation and Industrial

Energy Demand?

D.5 Robustness Analysis

We conduct the following robustness analysis:

Growth rates: We repeat our analysis and replace output, tangible capital, and

labour use in lagged levels by logarithmic growth rates as one al-

ternative specification.

D/L: In a further robustness test, we modify our treatment variable and

consider only firms as treated if their software capital per employee

increases. We repeat the analysis and replace the treatment dummy

D with a relative dummy that represents the change in the capital

stock (∆KICT) relative to the number of employees (L).

Table D.4 shows estimated ATEs as well as the performance of the Best Linear

Prediction Test for both robustness checks. In the first specification (growths rates),

the ATE is now at 0.01 and significant. The mean and differential forest prediction

indicate that treatment effects are well calibrated. Hence, different formulations of

production function in- and outputs do not alter main results. However, it is note-

worthy that the variable importance of these critical variables increases when they

are included in logarithmic growth rates (not displayed). In the second robustness

test (D/L), the ATE is now at 0.006, which is slightly smaller than in our main spec-

ification and the p-value is at 0.12. The Best Linear Prediction Test confirms that the

model is well calibrated. Hence, we can also confirm heterogeneity by our modified

digitalisation indicator.

Table D.4: Robustness tests.

Robustness type Outcome variable Variable Estimate SE t-stat p-value
Growth rates Energy use ATE 0.010 0.003 3.330 0.0004∗∗∗

βATE 1.052 0.308 3.413 0.0003∗∗∗

βCATE 1.117 0.420 2.660 0.0004∗∗

D/L Energy use ATE 0.006 0.005 1.180 0.119
βATE 1.011 0.459 2.202 0.012∗

βCATE 0.815 0.418 1.950 0.026∗

Notes: Results for the different robustness models.
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Energy Demand?
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Appendix D. What Drives the Relationship Between Digitalisation and Industrial

Energy Demand?
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Figure D.7: Comparison between OOB predictions and predictions of the test sample.
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Appendix E

Link Between ICT Adoption and

Changes in Total Energy

Consumption, Output, as well as

Energy Intensity

To analyse how an increase in ICT adoption relates to changes in total energy con-

sumption, output, and energy intensity, I estimate the following linear model:

∆lnZj
i,t =α + β PE

PPPI

∆ln
(

PE

PPPI

)

i,t
+ βWWi,t + ∑

c∈C
γcci,t + ∆ui,t. (E.1)

Z captures changes in total energy consumption (E), output (Y), and energy in-

tensity (E/Y), respectively (with j ∈ E, Y, E/Y). W captures a dummy that is one if

firm i has an increase in software capital in period t and zero otherwise. I addition-

ally control for changes in the energy price relative to changes in the producer price

index and include the same control variables as in Chapter 4 (yearly fixed effects,

industry dummies, a dummy indicating whether a firm has multiple units, federal

state dummies, two dummies relating either to a full or partial exemption of the

EEG levy, a dummy that controls for whether a firm produces energy, and a dummy

that is set to one if a firm is trading commodities). Table E.1 shows that if firms

increase their software capital, energy consumption approximately increases by 1%

and output grows by 1.95%. Simultaneously, energy intensity roughly improves by

0.9%.151 Hence, output increases to a greater extent than total energy consumption

when firms invest in digital technologies. This phenomenon resolves the contradic-

tion that we observe energy intensity improvements in Chapter 4, but an average

increase in energy consumption in Chapter 5.

151Assuming that roughly 30% of all firms increase their software capital stock every year, the average
yearly improvement in energy intensity is a bit larger but qualitatively comparable with the value
derived in Chapter 4.
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Appendix E. Link Between ICT Adoption and Changes in Total Energy

Consumption, Output, as well as Energy Intensity

Please be aware that the estimation strategy in Chapter 5 includes a matching

and the results of Table E.1 include a comparison of firms that may be very different

from each other. Hence, the results of both approaches involve slightly different

implications.

Table E.1: Link between ICT adoption and changes in total energy consumption, output, and
energy intensity.

(1) (2) (3)
△lnE △lnY △ln(E/Y)

△ln( PE
PPPI

) -0.406∗∗∗ 0.0532∗∗∗ -0.459∗∗∗

(-55.22) (16.62) (-61.02)
W 0.0100∗∗∗ 0.0195∗∗∗ -0.00940∗∗∗

(6.86) (10.05) (-4.18)
Year x x x
Industry x x x
Multi-unit x x x
Federal state x x x
Size class x x x
EEG exemption x x x
Producer x x x
Trading x x x
Observations 89267 89267 89267
Adjusted R2 0.332 0.006 0.206

Notes: OLS estimation of Equation (E.1). t statistics
in parentheses. First-difference estimation. Clustered
standard errors. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Column (1): Changes in energy consumption as the
dependent variable. Column (2): Changes in output as
the dependent variable. Column (3): Changes in energy
intensity as the dependent variable.
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