* Encoding: ISO-8859-15. **descriptives + group differences** DESCRIPTIVES VARIABLES=age BMI AUDIT_sum Ph_month_final sum_sIAT TSMQ_auto TSMQ_stell TSMQ_suche TSMQ_norm TSMQ_ges /STATISTICS=MEAN STDDEV MIN MAX. T-TEST GROUPS=group(0 1) /MISSING=ANALYSIS /VARIABLES=age BMI AUDIT_sum Ph_month_final sum_sIAT TSMQ_auto TSMQ_stell TSMQ_suche TSMQ_norm TSMQ_ges /CRITERIA=CI(.95). DESCRIPTIVES VARIABLES=neu_Valenz_mean neu_Arousal_mean neu_sexuelle_Erregung_mean sex_Valenz_mean sex_Arousal_mean sex_Sexuelle_Erregung_mean /STATISTICS=MEAN STDDEV MIN MAX. T-TEST GROUPS=group(0 1) /MISSING=ANALYSIS /VARIABLES=neu_Valenz_mean neu_Arousal_mean neu_sexuelle_Erregung_mean sex_Valenz_mean sex_Arousal_mean sex_Sexuelle_Erregung_mean /CRITERIA=CI(.95). effect size compute here: https://www.psychometrica.de/effect_size.html FREQUENCIES VARIABLES=partnership smoking kinsey /ORDER=ANALYSIS. CROSSTABS /TABLES=partnership BY group /FORMAT=AVALUE TABLES /STATISTICS=CHISQ /CELLS=COUNT EXPECTED /COUNT ROUND CELL. CROSSTABS /TABLES=smoking BY group /FORMAT=AVALUE TABLES /STATISTICS=CHISQ /CELLS=COUNT EXPECTED /COUNT ROUND CELL. effect size: Phi = root (X2/N) **manipulation check** one-way ANOVA with repeated measures with planned simple contrasts to compare the difference between the baseline time point and both, post-affect induction and post-cue reactivity time point FREQUENCIES VARIABLES=Coverstory /ORDER=ANALYSIS. CROSSTABS /TABLES=Coverstory BY group /FORMAT=AVALUE TABLES /STATISTICS=CHISQ /CELLS=COUNT EXPECTED /COUNT ROUND CELL. --> n=1 neutral condiction: unchanged negative affect, more positive affect --> n=10 negative feedback condition: 3 unchanged PA, 3 decrease PA, 4 increase PA (between 1 and 5 scale points); 2 unchanged NA, 7 increased NA, 1 decreased NA (-1 scale point) GLM sumNA_t1 sumNA_t2 sumNA_t3 BY group /WSFACTOR=time 3 Simple(1) /METHOD=SSTYPE(3) /PLOT=PROFILE(time*group) /EMMEANS=TABLES(group*time) /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /WSDESIGN=time /DESIGN=group. GLM sumPA_t1 sumPA_t2 sumPA_t3 BY group /WSFACTOR=time 3 Simple(1) /METHOD=SSTYPE(3) /PLOT=PROFILE(time*group) /EMMEANS=TABLES(group*time) /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /WSDESIGN=time /DESIGN=group. GLM craving_pornografie_1 craving_pornografie_2 craving_pornografie_3 BY group /WSFACTOR=time 3 Simple(1) /METHOD=SSTYPE(3) /PLOT=PROFILE(time*group) /EMMEANS=TABLES(group*time) /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /WSDESIGN=time /DESIGN=group. GLM craving_masturbation_1 craving_masturbation_2 craving_masturbation_3 BY group /WSFACTOR=time 3 Simple(1) /METHOD=SSTYPE(3) /PLOT=PROFILE(time*group) /EMMEANS=TABLES(group*time) /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /WSDESIGN=time /DESIGN=group. **sexual cue reactivity** mixed-model ANOVAs were performed with the between-factor condition (negative affect, neutral) and the within-factor image category (sexual, control) GLM P300_neutral P300_sex BY group /WSFACTOR=category 2 Polynomial /METHOD=SSTYPE(3) /PLOT=PROFILE(category*group) /EMMEANS=TABLES(group*category) /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /WSDESIGN=category /DESIGN=group. GLM LPP_neutral LPP_sex BY group /WSFACTOR=category 2 Polynomial /METHOD=SSTYPE(3) /PLOT=PROFILE(category*group) /EMMEANS=TABLES(group*category) /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /WSDESIGN=category /DESIGN=group. GLM neu_Valenz_mean sex_Valenz_mean BY group /WSFACTOR=category 2 Polynomial /METHOD=SSTYPE(3) /PLOT=PROFILE(category*group) /EMMEANS=TABLES(group*category) /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /WSDESIGN=category /DESIGN=group. GLM neu_Arousal_mean sex_Arousal_mean BY group /WSFACTOR=category 2 Polynomial /METHOD=SSTYPE(3) /PLOT=PROFILE(category*group) /EMMEANS=TABLES(group*category) /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /WSDESIGN=category /DESIGN=group. GLM neu_sexuelle_Erregung_mean sex_Sexuelle_Erregung_mean BY group /WSFACTOR=category 2 Polynomial /METHOD=SSTYPE(3) /PLOT=PROFILE(category*group) /EMMEANS=TABLES(group*category) /PRINT=DESCRIPTIVE ETASQ /CRITERIA=ALPHA(.05) /WSDESIGN=category /DESIGN=group. **moderator analyses for traits** Condition was included at step 1, mean-centered moderators entered regression at step 2, and step 3 included the condition X moderator interactions **group mean (GM) centering = CWG centered with group** AGGREGATE /OUTFILE=* MODE=ADDVARIABLES /BREAK=group /Ph_month_GM=MEAN(Ph_month_final) /sum_sIAT_GM=MEAN(sum_sIAT) /TSMQ_auto_GM=MEAN(TSMQ_auto) /TSMQ_stell_GM=MEAN(TSMQ_stell) /TSMQ_suche_GM=MEAN(TSMQ_suche) /TSMQ_norm_GM=MEAN(TSMQ_norm). COMPUTE Ph_CWG=Ph_month_final - Ph_month_GM. COMPUTE sIAT_CWG=sum_sIAT - sum_sIAT_GM. COMPUTE TSMQ_auto_CWG=TSMQ_auto - TSMQ_auto_GM. COMPUTE TSMQ_stell_CWG=TSMQ_stell - TSMQ_stell_GM. COMPUTE TSMQ_suche_CWG=TSMQ_suche - TSMQ_suche_GM. COMPUTE TSMQ_norm_CWG=TSMQ_norm - TSMQ_norm_GM. EXECUTE. compute group_Ph_CWG = group * Ph_CWG. compute group_sIAT_CWG = group * sIAT_CWG. compute group_TSMQ_auto_CWG = group * TSMQ_auto_CWG. compute group_TSMQ_stell_CWG = group * TSMQ_stell_CWG. compute group_TSMQ_suche_CWG = group * TSMQ_suche_CWG. compute group_TSMQ_norm_CWG = group * TSMQ_norm_CWG. execute. *Difference sex to neutral** compute LPP_diff = LPP_sex - LPP_neutral. compute P300_diff = P300_sex - P300_neutral. execute. **outcome P300** REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT P300_diff /METHOD=ENTER group /METHOD=ENTER Ph_CWG /METHOD=ENTER group_Ph_CWG /PARTIALPLOT ALL /SCATTERPLOT=(*SDRESID ,*ZPRED) /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID) /CASEWISE PLOT(ZRESID) OUTLIERS(3). REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT P300_diff /METHOD=ENTER group /METHOD=ENTER sIAT_CWG /METHOD=ENTER group_sIAT_CWG /PARTIALPLOT ALL /SCATTERPLOT=(*SDRESID ,*ZPRED) /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID) /CASEWISE PLOT(ZRESID) OUTLIERS(3). REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT P300_diff /METHOD=ENTER group /METHOD=ENTER TSMQ_auto_CWG /METHOD=ENTER group_TSMQ_auto_CWG /PARTIALPLOT ALL /SCATTERPLOT=(*SDRESID ,*ZPRED) /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID) /CASEWISE PLOT(ZRESID) OUTLIERS(3). REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT P300_diff /METHOD=ENTER group /METHOD=ENTER TSMQ_stell_CWG /METHOD=ENTER group_TSMQ_stell_CWG /PARTIALPLOT ALL /SCATTERPLOT=(*SDRESID ,*ZPRED) /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID) /CASEWISE PLOT(ZRESID) OUTLIERS(3). REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT P300_diff /METHOD=ENTER group /METHOD=ENTER TSMQ_suche_CWG /METHOD=ENTER group_TSMQ_suche_CWG /PARTIALPLOT ALL /SCATTERPLOT=(*SDRESID ,*ZPRED) /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID) /CASEWISE PLOT(ZRESID) OUTLIERS(3). REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT P300_diff /METHOD=ENTER group /METHOD=ENTER TSMQ_norm_CWG /METHOD=ENTER group_TSMQ_norm_CWG /PARTIALPLOT ALL /SCATTERPLOT=(*SDRESID ,*ZPRED) /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID) /CASEWISE PLOT(ZRESID) OUTLIERS(3). **outcome LPP** REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT LPP_diff /METHOD=ENTER group /METHOD=ENTER Ph_CWG /METHOD=ENTER group_Ph_CWG /PARTIALPLOT ALL /SCATTERPLOT=(*SDRESID ,*ZPRED) /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID) /CASEWISE PLOT(ZRESID) OUTLIERS(3). REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT LPP_diff /METHOD=ENTER group /METHOD=ENTER sIAT_CWG /METHOD=ENTER group_sIAT_CWG /PARTIALPLOT ALL /SCATTERPLOT=(*SDRESID ,*ZPRED) /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID) /CASEWISE PLOT(ZRESID) OUTLIERS(3). REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT LPP_diff /METHOD=ENTER group /METHOD=ENTER TSMQ_auto_CWG /METHOD=ENTER group_TSMQ_auto_CWG /PARTIALPLOT ALL /SCATTERPLOT=(*SDRESID ,*ZPRED) /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID) /CASEWISE PLOT(ZRESID) OUTLIERS(3). REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT LPP_diff /METHOD=ENTER group /METHOD=ENTER TSMQ_stell_CWG /METHOD=ENTER group_TSMQ_stell_CWG /PARTIALPLOT ALL /SCATTERPLOT=(*SDRESID ,*ZPRED) /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID) /CASEWISE PLOT(ZRESID) OUTLIERS(3). REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT LPP_diff /METHOD=ENTER group /METHOD=ENTER TSMQ_suche_CWG /METHOD=ENTER group_TSMQ_suche_CWG /PARTIALPLOT ALL /SCATTERPLOT=(*SDRESID ,*ZPRED) /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID) /CASEWISE PLOT(ZRESID) OUTLIERS(3). REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT LPP_diff /METHOD=ENTER group /METHOD=ENTER TSMQ_norm_CWG /METHOD=ENTER group_TSMQ_norm_CWG /PARTIALPLOT ALL /SCATTERPLOT=(*SDRESID ,*ZPRED) /RESIDUALS DURBIN HISTOGRAM(ZRESID) NORMPROB(ZRESID) /CASEWISE PLOT(ZRESID) OUTLIERS(3).