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Soil organisms play an important role in the equilibrium and cycling of

nutrients. Because elevated CO2 (eCO2) a�ects plant metabolism, including

rhizodeposition, it directly impacts the soil microbiome and microbial

processes. Therefore, eCO2 directly influences the cycling of di�erent

elements in terrestrial ecosystems. Hence, possible changes in the cycles of

carbon (C), nitrogen (N), and sulfur (S) were analyzed, alongside the assessment

of changes in the composition and structure of the soil microbiome through

a functional metatranscriptomics approach (cDNA from mRNA) from soil

samples taken at the Giessen free-air CO2 enrichment (Gi-FACE) experiment.

Results showed changes in the expression of C cycle genes under eCO2 with

an increase in the transcript abundance for carbohydrate and amino acid

uptake, and degradation, alongside an increase in the transcript abundance

for cellulose, chitin, and lignin degradation and prokaryotic carbon fixation.

In addition, N cycle changes included a decrease in the transcript abundance

of N2O reductase, involved in the last step of the denitrification process,

which explains the increase of N2O emissions in the Gi-FACE. Also, a shift in

nitrate (NO−

3
) metabolism occurred, with an increase in transcript abundance

for the dissimilatory NO−

3
reduction to ammonium (NH+

4
) (DNRA) pathway. S

metabolism showed increased transcripts for sulfate (SO2−
4

) assimilation under

eCO2 conditions. Furthermore, soil bacteriome, mycobiome, and virome

significantly di�ered between ambient and elevated CO2 conditions. The

results exhibited the e�ects of eCO2 on the transcript abundance of C,

N, and S cycles, and the soil microbiome. This finding showed a direct

connection between eCO2 and the increased greenhouse gas emission, as

well as the importance of soil nutrient availability to maintain the balance of

soil ecosystems.
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Introduction

World atmospheric carbon dioxide (CO2) concentration has
increased by about 50%, from pre-industrial levels of about 278
parts per million volume (ppmV) to the current concentration
of more than 415 ppmV (IPCC, 2021; NASA, 2022), and
the current anthropogenic emissions of the greenhouse gases
(GHG) are the highest in history (IPCC, 2021). Because
terrestrial ecosystems act as a “sink” for a significant portion of
the global carbon (C), fluctuations in net C exchange between
soil and atmosphere impact the CO2 concentration in the
atmosphere profoundly (DOE.2020, 2020). Hence, the response
of terrestrial ecosystems to increasingly higher concentrations
of CO2 under a changing climate has important implications
for the global carbon cycle (Vestergard et al., 2016). In
this sense, it has been widely described that elevated CO2

(eCO2) concentration affects plants in such a way that it
decreases transpiration (Owensby et al., 1997; Kimball, 2016)
and increases growth (Idso, 1994; He et al., 1995), plant yield
(Kimball, 1983), photosynthetic capacity (Habash et al., 1995; He
et al., 1995; Johnson and Pregitzer, 2007), below-ground biomass
(Jongen et al., 1995), and the efflux amounts of root exudates
(Phillips et al., 2012; Jia et al., 2014; Dong et al., 2021).

Consequently, the supply of fresh plant-derived C to the
soil matrix due to eCO2 may accelerate the decomposition
of soil organic matter (SOM) and decrease soil C stocks
(Fontaine et al., 2004; Blagodatskaya and Kuzyakov, 2008), a
process known as “the priming effect”. This alteration in the
increased decomposition of SOM has been previously reported
in different ecosystems, such as grasslands (Vestergard et al.,
2016; Liu et al., 2017), forests (Phillips et al., 2012; Qiao et al.,
2014; Liu et al., 2017), and crop fields (Trivedi et al., 2016).
Old SOM pools contain significant physically and chemically
protected N stocks; consequently, soil microorganisms under
plenty of C supply gain access to a reservoir of N to meet
their enhanced N demand (Derrien et al., 2014; Vestergard
et al., 2016; Liu et al., 2017), causing alterations in soil N
balance and N cycle. This process has been described for
the Gi-FACE grassland by Müller et al. (2009), who reported
that under eCO2, the mineralization of labile organic N
became more important. Müller et al. (2009) found that eCO2

caused an increase in dissimilatory NO−
3 reduction to NH+

4
(DNRA) and immobilization of NO−

3 and NH+
4 ions. Other

alterations in the N cycle due to eCO2 have been described
by Kammann et al. (2008), who indicated an increase in N2O
emissions. Likewise, Moser et al. (2018) reported that N2O
emissions were 1.79-fold higher for the Gi-FACE grassland
under the eCO2 treatment. Also, Moser et al. (2018) described
that N2O emissions from denitrification, nitrification, and
heterotrophic nitrification showed a 2.09-fold, 1.64-fold, and
1.66-fold increase, respectively. More recently, Du et al. (2022),
based on a meta-analysis, indicated that eCO2 significantly

increased N2O emissions, NO−
3 content, and soil microbial

biomass N by 44, 13, and 7% for agricultural soils.
Likewise, C and N cycle changes are directly related to the

soil microbiome and soil microbial processes. For example, Xu
et al. (2013) described that the abundance of genes involved in
labile C degradation and C and N fixation, and denitrification
processes significantly increased under eCO2. Similarly, He
et al. (2014) and Xiong et al. (2015) have reported a shift
in soil microbial communities under eCO2 in a soybean and
maize agroecosystem, respectively. These changes included
stimulation of key functional genes involved in carbon fixation
and degradation, nitrogen fixation, denitrification, methane
metabolism, and phosphorus cycling. Simonin et al. (2015)
reported that shoot biomass, root biomass, and soil respiration
were increased under eCO2 and N supply, and these variables
were positively correlated with the abundance of ammonia-
oxidizing bacteria. Le Roux et al. (2016) described that the
potential nitrite oxidation rate was enhanced in soil by eCO2.
Furthermore, the increase in soil microbial C and N cycling
may be accompanied bymicrobial sulfur (S) and phosphorus (P)
demand (Xiong et al., 2015; Yu et al., 2018a, 2021). Regarding S
cycle alterations under eCO2, Yu et al. (2018a,b); Yu et al. (2021)
have reported an increase in S cycling in semiarid grassland
soils exposed to eCO2, indicating a significant increase in the
abundance of dsrA, dsrB, and sox genes. Likewise, Padhy et al.
(2020) described that several genera, such as Desulfatibacillum,
Desulfotomaculum, Desulfococcus, and Desulfitobacterium, were
more abundant under eCO2 conditions in a lowland rice field
and that several enzymes involved in S assimilation pathways
showed higher counts at eCO2 concentrations as well.

Nonetheless, all the above-mentioned studies utilized a
DNA-based approach to assessing the changes in the gene
abundance involved in the C, N, and S cycles and the
microbiome composition under eCO2 conditions. DNA-based
approaches could lead to biases because DNA from dead cells
or free DNA represented a significant fraction of microbial
DNA in many soils (Carini et al., 2016). In addition, DNA
from dead cells can remain in soils for weeks to years and
may cloud DNA-based assessments of microbiome analyses
(Dlott et al., 2015; Morrissey et al., 2015). Therefore, using
RNA instead of DNA for metastudies provides an ideal tool
to study the microbial populations that actively participate
in various ecological processes (Sharma and Sharma, 2018).
In this sense, some studies were done in the Giessen
free-air CO2 enrichment experiment (Gi-FACE) in Giessen,
Germany, which addressed this issue by performingmicrobiome
metatranscriptomics analyses with rRNA and mRNA. Their
findings were that eCO2 significantly affected the expression of
16S rRNA, transcription machinery, oxidative phosphorylation,
translation and transcription factors, membrane transport,
and nucleotide metabolism, among others, associated with
rhizosphere microbiomes and plant roots. Likewise, the
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structure and composition of the rhizosphere soil microbiome
were the most affected by eCO2 (Bei et al., 2019; Rosado-Porto
et al., 2021). Furthermore, these reports showed that through the
use of RNA instead of DNA, it was possible to assess the effects
of eCO2 on the soil microbiome in the Gi-FACE, contrary to the
previous studies, which reported little or no effect of it (Regan
et al., 2011; de Menezes et al., 2016; Brenzinger et al., 2017).

Nevertheless, in the current literature, the use of
mRNA metatranscriptomics to assess the effects of eCO2

conditions on C, N, and S cycle processes has not been
described. mRNA metatranscriptomics allows addressing
which genes are transcribed and to what extent, thereby
enabling the demonstration of the functions of a potential
range of microorganisms (Franzosa et al., 2014). From such
functional data, active metabolic pathways can be identified
in the microbiome and can be associated with particular
environmental conditions, offering a more informative
perspective, as it can reveal details about populations that are
transcriptionally active (Bashiardes et al., 2016). Therefore, we
hypothesized that the soil metatranscriptome was significantly
affected by the eCO2 treatment, including the abundance of
transcripts involved in nutrient cycling, because of the shifted
microbial community under eCO2 (Bei et al., 2019; Rosado-
Porto et al., 2021). The aims of the present study were: i) to
assess the effect of long-term eCO2 concentrations on active
soil bacteriome, mycobiome, protistome, and virome through
an mRNA-based approach; ii) to evaluate the influence of eCO2

on C, N, and S cycle expressed genes in a grassland ecosystem;
and iii) to propose an interaction model of C, N, and S cycle
processes under eCO2 conditions.

Materials and methods

Study site description

The Gi-FACE study is located at 50◦32’N and 8◦41.3’E near
Giessen, Germany, at an elevation of 172m above sea level. It
consists of three pairs of rings with a diameter of 8m; each
pair consists of an ambient and an elevated CO2 treatment ring
(Jäger et al., 2003). FromMay 1998 until the present, eCO2 rings
have been continuously enriched by 20% above ambient CO2

concentrations during daylight hours. Ambient and elevated
CO2 rings are separated by at least 20m, and each pair is
placed at the vertices of an equilateral triangle. The presence of a
slight slope within the experimental site (between 0.5 and 3.5◦)
places the rings on a moisture gradient, such that pair 1 has the
lowest mean moisture content (38.8± 10.2%) and pair 2 has the
highest mean moisture content (46.1± 13.2%), whereas pair 3 is
intermediate (40.7 ± 11%) (Jäger et al., 2003; de Menezes et al.,
2016). The average annual air temperature and precipitation are
9.4 ◦C and 580mm, respectively.

The vegetation is an Arrhenatheretum elatioris

Br.Bl. Filipendula ulmaria subcommunity, dominated by
Arrhenatherum elatius, Galium album, and Geranium pratense.
At least 12 grass species, 15 non-leguminous herbs, and up
to 5 legumes with small biomass contributions (<5%) are
present within a single plot (Andresen et al., 2018). The
experimental field has not been plowed for more than 100
years. It has received N fertilization in the form of granular
mineral calcium-ammonium-nitrate (40 kg N ha−1 year−1)
once a year since 1995 and has been mown two times a
year since 1993. The soil at the Gi-FACE site is classified as
Fluvic Gleysol; its texture is a sandy clay loam over a clay
layer, with pH = 6.2 and average C and N contents of 4.5
and 0.45%, respectively, as measured in 2001 (Jäger et al.,
2003).

Soil sampling, total RNA extraction, and
ribodepletion

Soil sampling was performed utilizing sawed-off 50ml
syringes (11 × 3 cm), and four samples were taken to a
depth of ∼10 cm within each ring in September 2017. Once
taken, samples were refrigerated and transported to the lab for
immediate processing. Upon arrival in the laboratory (10-min
driving), soil cores were gently shaken by hand to remove loosely
attached soil (bulk soil), while the soil that remained attached to
the roots was considered rhizosphere soil. Rhizosphere soil was
detached from the roots with sterile tweezers and directly sieved.
If roots were still present, they were sorted out before sieving.
Bulk and rhizosphere soils were sieved (<2mm) and stored at
−80 ◦C for further analyses. Sample processing took less than
1 h before freezing.

Total RNA extraction was performed following a modified
protocol of Mettel et al. (2010), as described by Rosado-
Porto et al. (2021). After extraction, samples were treated for
DNA digestion with RNase-Free DNase Set (QIAGEN GmbH -
Germany) according to the manufacturer’s instructions. DNase
reaction was stopped with 10 µl of 50mM EDTA. With the
DNA-free RNA, a PCR was carried out, using the universal 16S
rRNA gene primers 27F (5’-AGAGTTTGATCMTGGATCMT
GGCTCAG-3’) and 1492R (5’- GGTTACCTTGTTACGACTT-
3’) (Lane, 1991; Weisburg et al., 1991) and checked on agarose
gel electrophoresis to verify the absence of remaining DNA
in the samples as described by Rosado-Porto et al. (2021).
Afterward, total RNA technical replicates were pooled into a
composite sample according to the ring number and rhizosphere
or bulk soil. Later, total RNA samples were ribodepleted using
the MICROBExpressTM Kit (Life Technologies, 5791, Carlsbad
– California, USA), following the manufacturer’s instructions.
Finally, mRNA was reverse transcribed to produce double-
stranded cDNA (LGC Genomics GmbH, Berlin, Germany).
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cDNA sequencing and
metatranscriptomics analysis

The cDNA products were sequenced with Illumina MiSeq
V3 (2 × 300 bp), 40M read pairs/12 Gb of raw data (LGC
Genomics GmbH, Berlin, Germany). After sequencing, all
libraries for each sequencing lane were demultiplexed using the
Illumina bcl2fastq 2.17.1.14 software (Illumina, 2019). Later,
sequencing adapter remnants were removed, and reads with
a final length of < 100 bases were discarded. Afterward,
the sequencing outputs were analyzed using SqueezeMeta
version 1.3.1 (Tamames and Puente-Sánchez, 2019). Next,
sequence assembly was performed using Megahit (Li et al.,
2015), and the removal of short contigs (<200 bps) was
done with Prinseq (Schmieder and Edwards, 2011). Afterward,
RNAs, tRNA/tmRNA, and open reading frames (ORFs) were
predicted using Barrnap (Seemann, 2014), Aragorn (Laslett and
Canback, 2004), and Prodigal (Hyatt et al., 2010), respectively.
Subsequently, Diamond was utilized (Buchfink et al., 2015)
to perform the alignment and search of similarities against
GenBank (Clark et al., 2016), eggNOG (Huerta-Cepas et al.,
2016), and Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000) databases, using an e-value of 10 ×

10−3 andminimum identity values of 40 and 30 for taxonomical
and functional identities, respectively. Additionally, HMM
homology searches were done by HMMER3 (Eddy, 2009) for the
Pfam database (Finn et al., 2016) applying an e-value of 10 ×

10−10. Moreover, additional ORFs were produced by Diamond
BlastX (Buchfink et al., 2015), implementing an e-value of 10 ×
10−3 and a minimum identity value of 40. Later, taxonomical
classification of the mRNA transcripts was performed using the
hits for each query gene utilizing the results of the Diamond
search against the GenBank nr database and applying the lowest
common ancestor (LCA) algorithm, allowing a 0.2% of different
taxa from the LCA and the minimum number of hits per
taxa of 2. The read mapping against contigs was performed
using Bowtie2 (Langmead and Salzberg, 2012), and the binning
was done utilizing MaxBin2 (Wu et al., 2016) and Metabat2
(Kang et al., 2019), and later bin statistics were computed using
CheckM (Parks et al., 2015).

Diversity and di�erential abundance
analyses

For the analysis of SqueezeMeta output, data were imported
into R studio software 1.1.419 with package SQMtools version
0.6.1. (Puente-Sánchez et al., 2020). For diversity assessment
of bacteria, archaea, fungi, viruses, and protists, frequency
tables were created and analyzed with package Phyloseq 1.28.0
(McMurdie and Holmes, 2013). Core features for each of the
above taxonomical groups were calculated for eCO2 and aCO2

conditions by transforming the frequency table counts to relative
abundance with Microbiome package version 1.8.0 (Lahti and
Shetty, 2019). Later, features with a total relative abundance≥10
× 10−4% and present in ≥95% of samples were included as
part of the core. Likewise, for KEGG and GenBank Clusters
of Orthologous Groups (COG) protein outputs, features with
unknown functions or unassigned names were removed from
the frequency tables, and core features were calculated as
described above.

For beta diversity analysis, core datasets were transformed
using the centered log-ratio (clr) method (Aitchison, 1982, 1986)
using the R package ALDEx2 1.22.0 (Fernandes et al., 2013,
2014). Afterward, community dissimilarity distance matrices
were generated using the Aitchison distance (Aitchison, 1982,
1986) and visualized using principal components analysis (PCA)
(Jolliffe and Cadima, 2016). Statistical differences between
CO2 conditions were assessed by a permutational multivariate
analysis of variance using the Adonismethod and employing 999
permutations (Anderson, 2001).

Differential abundance analysis of core features was done
with R package ALDEx2 1.22.0 (Fernandes et al., 2013, 2014)
by performing the clr transformation using as denominator
the geometric mean abundance of all features and 128 Monte
Carlo instances. Subsequently, features with absolute ALDEx2
effect sizes of >0.8, >0.5, and >0.2 were considered to have a
significantly greater, moderate, and slightly higher abundance,
respectively, between aCO2 and eCO2 rings (Sawilowsky, 2009).

Pathway reconstruction analysis

Pathway prediction for KEGG (Kanehisa and Goto,
2000) and MetaCyc (Caspi et al., 2018) databases was
done using MinPath (Ye and Doak, 2009). In addition,
pathway reconstruction and assessment of the log2 fold
change between aCO2 and eCO2 rings were performed with
SQMtools version 0.6.1. (Puente-Sánchez et al., 2020) and its
function “exportPathway” and analyzing feature frequencies as
relative abundances.

Results

Sequencing and assembly

In total, 23,970,892,090 bases were obtained, comprising
90,534,066 raw sequences, from which 72,253,754 sequences
were mapped and assembled with Megahit, with the percentage
of sequences successfully mapped per sample ranging between
81.14 and 78.12%. A total of 1,396,973,823 bases from
the mapped sequences were retained after short contigs
were removed and assembled into 3,997,902 contigs with
lengths ranging from 9,714 to 200 bases. From the contigs,
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there were predicted 4,063,836 ORFs, 1,199,550 rRNAs, and
2,406 tRNAs/tmRNAs, which subsequently were annotated,
producing 92,698 successfully annotated taxa and 483,556 and
1,163,975 KEGG and COG annotations, respectively. Details
regarding the number of total annotated transcripts per sample
are provided in Supplementary material S3.

Beta diversity and microbe di�erential
abundance

Metatranscriptome results from the Gi-FACE exhibited
changes in the composition and structure of soil microbial
communities due to elevated concentrations of atmospheric
CO2. Our data indicated that the soil core bacteriome (p
< 0.05), mycobiome (p < 0.05), and virome (p < 0.05)
were the most affected by eCO2 concentrations and showed
significantly different compositions between aCO2 and eCO2

rings, according to the permutational multivariate analysis
(Figures 1A–C). In contrast, the general structure of the Gi-
FACE soil core archaeome and protistome was not significantly
affected by eCO2 (Figures 1D,E).

Moreover, differential abundance results from ALDEx2
(Figure 2) indicated that several taxa were significantly increased
or decreased under eCO2 conditions and that these affected taxa
shaped the soil microbiome of the Gi-FACE. Besides, differential
abundance results showed that the number of bacterial taxa
that were positively stimulated under eCO2 is greater than
the number of taxa that were negatively affected. Among
the bacterial taxa which were highly stimulated under eCO2

conditions are Flavobacterium, Ruminiclostridium, Gemmata,
Dehalococcoides, Minicystis, Ureaplasma, Saccharopolyspora,
Asaia, Nocardioides, Defluviimonas, Bacillus, Nannocystis,
Glaesserella, Pedosphaera, Arenimonas, Nitrospirae bacterium,
Blastopirellula, Amycolatopsis, Tatlockia, Povalibacter,
Thermasporomyces, Halolactibacillus, Clostridium, Pedobacter,
Aminipila, Rhodovastum, Pirellula, and Burkholderia, which
showed ALDEx2 effect sizes between 1.5 and 0.8 (Figure 2A,
Supplementary material S1.1). Likewise, soil mycobiome was
shaped by several fungi greatly affected under eCO2 conditions,
most belonging to phyla Basidiomycota, Mucoromycota,
and Ascomycota, as is the case of the genus Aspergillus

(phylum Ascomycota), which showed an ALDEx2 effect
size of 1.15 (Figure 2B, Supplementary material S1.2).
Additionally, fungi like Rhizopus, Cadophora, Gigaspora,
Histoplasma, and Aplosporella were also highly stimulated in
eCO2 rings with effect sizes from 0.86 to 1.33 (Figure 2B).
Regarding the Gi-FACE soil virome, viruses like Brome
mosaic virus, Panicovirus, and Cocksfoot mild mosaic
virus decreased in eCO2 rings presenting effect sizes
ranging from −0.58 to −0.74. In contrast, viruses such
as Penicillium discovirus, unclassified Picornavirales, and

unclassified Endornaviridae were positively affected under
eCO2 conditions with effect sizes from 0.54 to 0.87
(Figure 2D, Supplementary material S1). Moreover, some
viral features belonging to the families Leviridae, Siphoviridae,
Bromoviridae, and Dicistroviridae were affected by eCO2 as
well (Supplementary material S1.3).

Although our data did not show that eCO2 significantly
influenced the general structure of the soil archaeome
and protistome, the differential abundance test showed that
some archaea and protist taxa were either positively or
negatively affected under eCO2 conditions (Figures 1D,E, 2C,E,
Supplementary materials S1.4, S1.5).

Functional metatranscriptome and
di�erential abundance

Beta diversity of transcripts analyzed against GenBank,
COG, and KEGG databases showed that the functional
metatranscriptome was greatly affected under eCO2 conditions
in which the annotations performed to both databases were
significantly different in their structure and composition
between eCO2 and aCO2 conditions (Figures 1G,H). After
removing unclassified and non-characterized proteins, 7,780
remained for GenBank COG and 8,880 for KEGG datasets.
Furthermore, our data indicated that the sequences analyzed
against both databases showed similar results regarding the
number of proteins with an ALDEx2 effect size greater than
0.5. In the case of GenBank COG data, 146 transcripts were
moderately or greatly stimulated under eCO2 conditions, in
contrast to 161 negatively affected under these conditions.
Similarly, KEGG results showed that the abundance of 147
and 156 transcripts was positively and negatively affected,
respectively (Supplementary material S2.1).

Moreover, eCO2 conditions positively influenced the
transcript abundance of several COG categories, such
as energy production and conversion, inorganic ion
transport and metabolism, cell envelope biogenesis, outer
membrane intracellular trafficking carbohydrate transport and
metabolism, and signal transduction mechanisms Figure 3,
(Supplementary material S2.2). In contrast, categories for
translation, ribosomal structure, and biogenesis; transcription;
secondary metabolite biosynthesis, transport, and catabolism;
nucleotide transport and metabolism; DNA replication,
recombination, and repair; and coenzyme metabolism
were negatively affected at eCO2 concentrations (Figure 3,
Supplementary material S2.2).

Nitrogen cycle

The data showed that, under eCO2 conditions, an increase
in the dissimilatory nitrate (NO−

3 ) reduction to ammonium
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FIGURE 1

Beta diversity analysis of core microbial taxa and transcripts from the Gi-FACE metatranscriptome. Principal components analysis (PCA) of (A)

bacteria, (B) fungi, (C) virus, (D) archaea, (E) protist, (F) other eukarya, (G) GenBank COG, and (H) KEGG functions; p-values from PERMANOVA

test.

(NH+
4 ) (DNRA) pathway and a decrease in the assimilatory

NO−
3 reduction to NH+

4 occurred (Figure 4A). Specifically,
the transcripts for the DNRA enzymes nitrite reductase
(NADH) (NirBD) and nitrate reductase (NarGHI) showed
greater abundances under eCO2 conditions (Figures 4A,B).
In contrast, the transcript abundance for the enzymes nitrate
reductase (NAD(P)H) (NR), ferredoxin-nitrite reductase
(NirA), and assimilatory nitrate reductase (NasAB) was
negatively affected at eCO2 concentrations (Figures 4A,B,
Supplementary material S2.3).

Similarly, the denitrification process showed changes as well.
Transcript abundance for the denitrification enzymes nitrate
reductase/nitrite oxidoreductase (NarGHI/NapAB) and nitric
oxide reductase (NorBC) showed higher levels under eCO2

conditions with ALDEx2 effect sizes of 0.44 and 0.64. These
enzymes are responsible for the transformation of NO−

3 to
nitrite (NO−

2 ) and the reduction of nitric oxide (NO) to nitrous
oxide (N2O), respectively. On the contrary, the transcription
of the gene for the enzyme nitrous oxide reductase (NosZ),
which catalyzes the transformation of N2O to atmospheric
nitrogen (N2), was reduced in the eCO2 rings (Figures 4A,B,
Supplementary material S2.3).

Likewise, the nitrification process was also affected. The
data exhibited changes in the expression patterns of the
enzymes methane/ammonia monooxygenase (AmoCAB)
and nitrate reductase/nitrite oxidoreductase (NrxAB),
which were negatively and positively affected, respectively

(Figures 4A,B, Supplementary material S2.3). Furthermore,
pathway reconstruction and differential abundance analyses did
not show significant changes in the abundance of N fixation
enzymes under eCO2 conditions.

Sulfur cycle

The metatranscriptomics results indicated changes in the
dissimilatory and assimilatory pathways of sulfate (SO2−

4 )
reduction. Transcript abundance for the enzymes sulfate
adenylyltransferase (Sat) and adenylylsulfate reductase (AprAB),
part of the dissimilatory SO2−

4 reduction pathway, was highly
decreased under eCO2 conditions. Furthermore, the transcript
abundance for the enzyme AprAB was the one that showed
the highest decrease, with an ALDEx2 effect size of −0.86.
This protein catalyzes the transformation of sulfite (SO2−

3 ) to
adenosine 5’-phosphosulfate (APS) (Figures 5A,B).

Similarly, the decrease in transcript abundance of the
sulfate adenylyltransferase subunit 2 (CysND) and sulfate
adenylyltransferase (PAPSS), part of the assimilatory sulfate
reduction pathway, suggested a decrease in the reduction of
SO2−

4 to APS at eCO2 concentrations. These two proteins
showed ALDEx2 effect sizes of −0.58 and −0.41, respectively
(Figures 5A,B, Supplementary material S2.4). Nonetheless, the
enzymes adenylylsulfate kinase (CysC) and sulfite reductase
(NADPH) (CysJI), which are involved in the reduction of
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FIGURE 2

Di�erential abundance of core microbial taxa from the Gi-FACE metatranscriptome of (A) bacteria, (B) fungi, (C) archaea, (D) virus, and (E)

protist. ALDEx2 results of features with an ALDEx2 e�ect size > 0.5 using centered log ratio (clr) transformation and the geometric mean

abundance of all features.

APS to 3
′

-Phosphoadenosine-5
′

-Phosphosulfate (PAPS)
and the reduction of SO2−

3 to sulfide (S2−), respectively,
were increased at eCO2 concentrations (Figures 5A,B,
Supplementary material S2.4).

Moreover, our data showed that several enzymes belonging
to pathways responsible for the transformation of organic S
compounds had higher transcript abundances at eCO2, as

is the case with dimethylsulfone monooxygenase, thiosulfate
dehydrogenase [quinone], and taurine dioxygenase (Figure 5B,
Supplementary material S2.4). Although the SOX system for the
oxidation of S was generally not over-expressed under eCO2

concentrations, transcripts of the enzyme sulfane dehydrogenase
subunit (SoxC) showed a slight increase at these conditions, with
an ALDEx2 effect size of 0.28.
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FIGURE 3

Di�erential abundance of Gi-FACE metatranscriptome core transcripts annotated against GenBank Clusters of Orthologous Groups (COG) and

grouped according to COG categories. Results expressed as relative abundance (right) and ALDEx2 e�ect size (left) of transcripts with an

ALDEx2 e�ect size > 0.5 using centered log ratio (clr) transformation and the geometric mean abundance of all features.

Carbon cycle

Functional metatranscriptome showed changes in
the metabolism of C compounds. The main changes
comprised a general increase in transcripts from the
glycolytic and pentose phosphate pathways, which
included the increase in the abundance of transcripts for
the enzymes phosphoglucomutase, glucose-6-phosphate
isomerase, phosphoenolpyruvate carboxykinase (ATP),

pyruvate water dikinase, 2-oxoglutarate, gluconate 2-
dehydrogenase, gluconolactonase, transketolase, and
xylulose-5-phosphate/fructose-6-phosphate phosphoketolase,
all with ALDEx2 effect sizes ranging from 0.79 to 0.52
(Figure 6A). Likewise, the data exhibited an increase in the
transcription of genes coding for enzymes responsible for the
degradation of chitin, cellulose, and aromatic compounds, for
example, alpha-N-arabinofuranosidase; endo-1,4-beta-xylanase,
and chitinase (Figure 6A). In contrast, the metabolism of
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FIGURE 4

Reconstructed KEGG (Kanehisa and Goto, 2000) N pathways of NO−

3 assimilatory and dissimilatory reduction, denitrification, and nitrification

processes. (A) N transformations expressed as log2 fold change of transcripts as relative abundance. ALDEx2 e�ect size: (**) >0.5, (*) >0.2. (B)

Di�erential abundance of N cycle transcripts with ALDEx2 e�ect sizes > 0.2.

fatty acids, starch, and sucrose was negatively affected under
eCO2 conditions, with the most affected features having
ALDEx2 effect sizes ranging from −0.84 to −0.51 (Figure 6A,
Supplementary material S2.5).

Furthermore, our results indicated a stimulation
in the metabolism of aromatic, branched-chain, and
sulfur amino acids. In the case of sulfur amino acid
metabolism, an increase in the transcript abundance of
enzymes for the metabolism of homocysteine, taurine,
and thiol groups occurred (Supplementary material S2.5).
Likewise, the transcript abundance of several enzymes
involved in the degradation of aromatic amino acids was
highly stimulated, for example, aminocarboxymuconate-
semialdehyde decarboxylase case enoyl-CoA hydratase,
amidase, monoamine oxidase, acylpyruvate hydrolase, and

gentisate 1,2-dioxygenase, with ALDEx2 effect sizes between
1.10 and 0.54. Moreover, the transcript abundance for genes
involved in the Arnon–Buchanan cycle (reductive citric acid
cycle) increased under eCO2, including key enzymes like
phosphoenolpyruvate carboxykinase (ATP), pyruvate water
dikinase, and pyruvate ferredoxin oxidoreductase (Figure 6A,
Supplementary material S2.5).

ABC membrane transporters

The metatranscriptomic data on the ABC membrane
transport proteins suggested changes in the uptake and
transport of different carbon compounds under eCO2

conditions. For example, membrane transporters for
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FIGURE 5

Reconstructed KEGG (Kanehisa and Goto, 2000) pathways of S metabolism. (A) Assimilatory SO2−
4 reduction and dissimilatory SO2−

4 reduction

and oxidation processes expressed as log2 fold change of transcripts as relative abundance. ALDEx2 e�ect size: (***) >0.8, (**) >0.5, (*) >0.2. (B)

Di�erential abundance of S cycle transcripts with absolute ALDEx2 e�ect sizes > 0.1 involved in assimilatory SO2−
4 reduction, dissimilatory SO2−

4

reduction, and oxidation, and uptake of S from organic compounds and sulfide synthesis.

glucose/mannose, α-glucoside, ribose/D-xylose, and chitobiose
increased at eCO2 concentrations. In contrast, there was
a decrease in the expression of membrane transporters
for raffinose/stachyose/melibiose, rhamnose, galactose
oligomer/maltooligosaccharide, maltose, and fructose
(Figure 6B, Supplementary material S2.6). Similarly, a shift
in the ABC transporters for amino acids occurred, with
an increase in the transcript abundance of the transporters
for general L-amino acids and branched-chain amino acids
and a decrease in glutamate/aspartate and oligopeptide
transporters (Figure 6B, Supplementary material S2.6).
Additionally, other membrane transport proteins over-
expressed under eCO2 conditions, including transporters for
osmoprotectants, lipopolysaccharides, and iron (II) (Figure 6B,
Supplementary material S2.6).

Discussion

Soil microbiome response to eCO2

Our results on the functional metatranscriptome of the
Gi-FACE confirm previous reports from Bei et al. (2019) and
Rosado-Porto et al. (2021) on the changes in microbiome
composition due to eCO2 concentrations. Additionally, the
outcome expands our understanding of eCO2 concentrations in
N, S, and C cycles. The metatranscriptome data presented in
this study are a one-time snapshot of the gene expression of the
microbiome. Although transcriptomes are dynamic and variable
in response to diverse environmental factors (Nuccio et al., 2021;
Zhao et al., 2021), it nevertheless provides valuable information
on soil ecosystems’ response to climate change scenarios.
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FIGURE 6

Di�erential abundance of transcripts grouped by KEGG Orthology (KO) second level of (A) carbon compounds metabolism and (B) ABC

transporters.

Our data confirm that the structure of the Gi-FACE soil
bacteriome was strongly affected under eCO2 (Figure 1A). Prior
studies have already portrayed differences in the composition
of the bacteriomes between aCO2 and eCO2 conditions (Bei
et al., 2019; Rosado-Porto et al., 2021), who have described
significant changes mainly in the rhizosphere. Additionally,
several bacterial taxa found in the present study (Figure 2A,
Supplementary material S1.1) have already been described
as stimulated under eCO2 conditions, as is the case of
genera Bacillus, Burkholderia, Mesorhizobium, Streptomyces,

and Dongia (Rosado-Porto et al., 2021). Besides the soil
bacteriome, the results showed that the soil mycobiome
was greatly affected at eCO2 concentrations. Like Bei et al.
(2019), our data indicated that the Gi-FACE mycobiome was
composed mainly of phyla Basidiomycota, Mucoromycota,
and Ascomycota (Supplementary material S1.2). Moreover,
several highly affected fungi belonged to Ascomycota
families, such as Mycosphaerellaceae, Didymosphaeriaceae,
Ophiocordycipitaceae, Saccharomycetaceae, and

Aspergillaceae, and Mucoromycota families, such as
Cunninghamellaceae, Rhizopodaceae, and Glomeraceae
(Supplementary material S1.2). Nevertheless, although our
results showed a significant effect of eCO2 concentrations on
the mycobiome composition, the reports of its effect on soil
fungal communities vary according to different authors. Carney
et al. (2007) described a decrease in fungal abundance under
eCO2 conditions, whereas some others reported no significant
change in the fungal communities (He et al., 2010; Hayden et al.,
2012). This indicates that the response of fungal communities to
eCO2 depends on other environmental factors like temperature
and soil moisture and may be ecosystem specific as well.

The effects of CO2 concentration on the metagenome or
metatranscriptome of soil archaeomes have not been widely
studied; however, some reports described a strong influence
of CO2 concentrations on soil archaeal communities (Hayden
et al., 2012; Lee et al., 2015; Lee and Kang, 2016). Although the
Gi-FACE archaeome did not show significant differences in its
structure and composition in response to eCO2 concentrations,
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some taxa showed changes in their abundance (Figure 2C,
Supplementary material S1), most belonging to the family
Nitrosopumilaceae (phylum Thaumarchaeota). In addition, in
the present study, the core archaeome was mainly composed
of the phylum Euryarchaeota, contrary to that reported by Bei
et al. (2019), who reported the phylum Thaumarchaeota as the
most abundant.

Furthermore, our data exhibited that alongside the
soil bacteriome and mycobiome, the soil core virome
was affected by the eCO2 in the Gi-FACE (Figure 2D,
Supplementary material S1.3). So far, in the current literature,
there are no reports about the effects of eCO2 on the soil
virome. Moreover, some reports indicated that, in general,
the diversity of the soil virome is highly underestimated,
with most of the current information focused on bacterial
phages, while almost nothing is known about viruses that
infect non-bacterial soil microbes, such as the archaea, fungi,
and soil protozoa (Williamson et al., 2017; Pratama and
van Elsas, 2018). Our results on the differential abundance
of the core virome under eCO2 conditions suggested that
several viral transcripts were reacting to changes in bacterial,
archaeal, and fungal taxa. For example, the Leviridae and
Siphoviridae families include viruses that use bacteria and
archaea as hosts and in our study were increased under
eCO2 conditions (Supplementary material S1.3) (Duin and
Olsthoorn, 2012; Hendrix et al., 2012; Krupovic et al.,
2020). Similarly, some fungal viruses, such as Mitovirus and
Penicillium discovirus, have shown significant changes in
their abundance under eCO2 conditions, which might be
linked to the changes in some fungal features as observed
in Penicillium oxalicum and members belonging to the
class Ophiostomatales (Hong et al., 1999; Krishnamurthy,
2017).

Changes in C compound assimilation and
priming e�ect

The data showed changes in transcript abundance from
pathways involved in the metabolism of different C compounds,
indicating that C dynamics have changed due to eCO2. It
has been widely described that eCO2 increases the efflux of
soluble sugars, amino acids, phenolic acids, and organic acids
in the root exudates (Phillips et al., 2012; Jia et al., 2014;
Dong et al., 2021), which produces the so-called “priming
effect,” thus leading to an acceleration in SOM decomposition
(Fontaine et al., 2004; Blagodatskaya and Kuzyakov, 2008). The
metatranscriptome data showed an increase in the priming effect
due to eCO2 concentrations in the Gi-FACE soil. The priming
effect in our data is represented mainly by the over-expression of
transcripts from the glycolysis and pentose phosphate pathways
and an increase in transcript abundance for certain amino acid

metabolism, alongside an increase in transcript abundance of
enzymes responsible for the degradation of chitin, cellulose, and
lignin (Figure 7). Similarly, He et al. (2010, 2014), Xiong et al.
(2015), and Yu et al. (2018a,b) have reported the stimulation
of functional gene abundance for C compound degradation,
either labile or recalcitrant under eCO2. Likewise, other authors
have described the increase in the degradation of soil organic
polymers as part of the decomposition of older soil C (Van
Groenigen et al., 2005; Xie et al., 2005; Niklaus and Falloon, 2006;
Vestergard et al., 2016). This enhancement of carbohydrate,
amino acid, and SOM degradation would be reflected in a
higher respiration rate and, consequently, a higher efflux of
CO2. In our previous study, CO2 soil fluxes were 35% higher
in eCO2 rings compared to the aCO2 ones (Rosado-Porto et al.,
2021).

Furthermore, the data suggested a shift in the uptake and
use of C sources at eCO2 concentrations, reflected in a shift
toward higher utilization of sugars and amino acids and a
decrease in the metabolism of lipids, especially fatty acids
(Figures 3, 6A). Additionally, the analysis of ABC membrane
transporters revealed changes in the transcript abundance for
saccharide uptake systems that are more often used under
eCO2 conditions, indicating a shift in preference for the
uptake of glucose, mannose, α-glucosides, ribose, xylose, and
chitobiose instead of raffinose, stachyose, melibiose, rhamnose,
galactose, maltose, and fructose. Moreover, our results revealed
an increase in transcripts for prokaryotic carbon fixation at
eCO2 concentrations. This included increases in enzymes,
such as phosphoenolpyruvate carboxykinase, pyruvate water
dikinase, and pyruvate ferredoxin oxidoreductase, accompanied
by a decrease in the ribulose-bisphosphate carboxylase (Rubisco)
(Figure 6A, Supplementary material S2.5). These results are
opposite to the ones reported by He et al. (2010, 2014), Xu
et al. (2013), Xiong et al. (2015), and Yu et al. (2018a,b), who
described a significant increase in the gene abundance of the
Rubisco enzyme under eCO2 conditions. The aforementioned
results suggest that in the Gi-FACE, the C fixation performed
by prokaryotes at eCO2 concentrations is very likely to be done
through the reverse reductive citric acid cycle, also known as
the Arnon–Buchanan cycle (Evans et al., 1966; Buchanan and
Arnon, 1990; Buchanan et al., 2017) instead of the Rubisco
pathway. The increase in transcript abundance of the described
enzymes involved in the reverse citric acid cycle could be
associated with the increase of some members of the Nitrospirae
and Aquificae phyla, which were significantly augmented
under eCO2 (Figure 2, Supplementary material S1.1) (Berg,
2011; Alfreider et al., 2018; Mundinger et al., 2019; Steffens
et al., 2021). Nonetheless, it is difficult to differentiate CO2

fixation for autotrophic growth from anapleurotic reactions of
the citric acid cycle. Moreover, this autotrophic pathway might
bemore widespread among anaerobic andmicroaerobic bacteria
(Berg, 2011) and possibly in aerobic bacteria (Buchanan et al.,
2017).
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FIGURE 7

Model diagram of the interaction of C, N, and S cycles in the Gi-FACE.

Shift in N cycle processes

Changes in the N cycle have been previously described in the
Gi-FACE (Kammann et al., 2008; Müller et al., 2009; Moser et al.,
2018). However, the underlying microbiological mechanisms
driving these processes were not detected until now. The
metatranscriptomic results confirmed a switch in the NO−

3
reduction at eCO2 concentrations, from an assimilatory process
to a DNRA, reflected by the increase in transcript abundance
of the enzymes nitrite reductase (NADH) (NirBD) and nitrate
reductase (NarGHI), responsible for the transformations of
NO−

3 to NO−
2 and from NO−

2 to NH+
4 in the DNRA process

(Figures 4A,B, 7). Previously, Müller et al. (2009), utilizing a 15N
labeling approach, identified an increase in the DNRA and the
immobilization of NH+

4 and NO−
3 .

Additionally, our functional metatranscriptomic approach
gives some clarity about the processes leading to the excess
production of N2Ounder eCO2 conditions previously described
by Kammann et al. (2008),Moser et al. (2018), andmore recently
in the meta-analysis of Du et al. (2022). The data suggest that
the alteration in the denitrification process leads to an increase
in N2O production. This increase results from over-expression
of the N2O-producing enzyme nitric oxide reductase (NorBC)
and a reduced expression of the enzyme nitrous oxide reductase
(NosZ), which lead to a decrease in N2O reduction to N2.

Furthermore, results indicate that the increase in N2O is caused
both by an increase in N2O production and a decrease in N2O
reduction (Figure 7). These results seem to denote that changes
in nitrous oxide reductase (NosZ) occur at a transcriptional
level. Contrary to our data, previous reports from Liu et al.
(2010) and Bakken et al. (2012) indicated that the high N2O:N2

product ratio is a post-transcriptional phenomenon only due
to the sensitivity of this enzyme to lower pH values that
are usually found at eCO2 concentrations and therefore affect
its translation/assembly.

The results also showed changes in the nitrification process,
represented by a reduction in transcripts involved in the
conversion of NH+

4 to hydroxylamine (H3NO) performed by
the enzyme methane/ammonia monooxygenase (AmoCAB),
accompanied by an increase in the transcript abundance for
the enzyme nitrate reductase/nitrite oxidoreductase (NrxAB),
suggesting an increase in the rate of transformation from NO−

2
to NO−

3 (Figures 4A,B, 7). Additionally, a reduction in the
transcript abundance for the first nitrification step was observed,
which denotes that under eCO2 conditions, soil organisms
obtain N from other sources instead of NH+

4 . Previously, Müller
et al. (2009) described that the mineralization of labile organic N
became more critical at eCO2 concentrations.

The changes in transcript abundance for the nitrification
process might suggest an increase in heterotrophic
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nitrification by fungi. The fungal nitrification comprises
the oxidation of different forms of organic N, such as L-
asparagine, propionamide, malonylmonohydroxamate, and
3-nitropropionate, using peroxidase enzymes (Hora and
Iyengar, 1960; Marshall and Alexander, 1962; Doxtader and
Alexander, 1966). More recently, Laughlin et al. (2008) and Zhu
et al. (2015) have described that fungi carried out a significant
part of the nitrification in soils and that they can simultaneously
oxidize NH+

4 and organic N. Moreover, many of the fungal taxa
that are able to perform nitrification are members of the genus
Aspergillus (Hora and Iyengar, 1960; Marshall and Alexander,
1962; Doxtader and Alexander, 1966), one of the most positively
affected in the Gi-FACE mycobiome (Figure 2B). Therefore, the
above-mentioned results might support the idea of the mining
of SOM by soil microorganisms, very likely fungi, in order to
fulfill their N requirements under eCO2, and could be linked to
the previously reported data of higher C:N ratios in eCO2 rings
(Brenzinger et al., 2017; Rosado-Porto et al., 2021).

Additionally, our data did not show any increase in the
transcript abundance of N fixation enzymes under eCO2

conditions, in contrast to the reports fromHe et al. (2010, 2014),
Xu et al. (2013), Xiong et al. (2015), and Yu et al. (2018a,b).
These results support the idea that in the Gi-FACE, the enhanced
N requirements are being met through the uptake of organic
sources. According to our results, these sources of organic N
might have been the aromatic, sulfur, and branched-chain amino
acids, since their metabolism and uptake were augmented at
eCO2 concentrations (Figures 6A, 7).

S metabolism at eCO2 concentration

Most studies about the effects of eCO2 on the cycling
of nutrients have focused on C and N cycles; nonetheless,
the effects of eCO2 conditions have also been assessed for
other elements, including S (He et al., 2010, 2014; Yu et al.,
2018; Padhy et al., 2020). There are no reports about the
changes in the S cycling and metabolism in the Gi-FACE.
The results in the present study exhibited alterations in the
metabolism of SO2−

4 . There was a reduction in transcripts
involved in the dissimilatory metabolism of SO2−

4 reduction,
evidenced by the decrease in the expression of the enzymes
sulfate adenylyltransferase (Sat) and adenylylsulfate reductase
(AprAB) under eCO2 conditions (Figures 5, 7). Similarly, the
first step of the assimilatory SO2−

4 reduction metabolism
changed due to eCO2, comprised by the depletion in the
reduction step from SO2−

4 to APS. However, the other steps
of the assimilatory SO2−

4 reduction, from the reduction of
APS up to the production of S2−, were increased under eCO2

conditions (Figure 5). This phenomenon could indicate that
similar to N metabolism, due to the augmented C supply,
S has also become a limiting element for the development
of soil organisms. Thus, the assimilatory metabolism of S

was enhanced at eCO2 concentrations as a response to this
environmental pressure. Although there are not many reports
about the effect of eCO2 on the S cycle, Yu et al. (2018b)
have described that under eCO2, an increase in S cycling
occurred. Likewise, Padhy et al. (2020) reported an increase
in the genes of the assimilatory metabolism of S under
eCO2 conditions.

Moreover, our data suggest that the obtention of S in
the Gi-FACE is not from inorganic sources but from organic
ones. This process is likely a consequence of the priming
effect and the mining of S from the SOM. According
to our data, one of the sources for the supply of S
might be sulfur amino acids, and molecules with thiol
groups, due to the metabolism of these compounds, were
augmented under eCO2 conditions (Figures 5B, 7). Moreover,
although our data did not show an overall increase in
the transcripts for the SOX system for the acquisition of
sulfur, a slight increase in transcript abundance of the
enzyme sulfane dehydrogenase (SoxC) occurred. These data
indicate that soil organisms have used organic molecules
to supply the S requirements in the Gi-FACE under eCO2

concentrations. He et al. (2014) have reported similar results,
describing an increase in the expression of sox genes under
eCO2 conditions.

Conclusion

Our research showed for the first time how eCO2

simultaneously affects the gene expression in C, N, and S
cycles, and potentially affects these processes at the ecosystem
scale. The lower abundance of nitrogen fixation transcripts
suggests that soil microorganisms degrade the SOM to fulfill
their N requirements due to a higher C supply. Likewise,
an increase in transcripts for carbohydrates, amino acids,
chitin, lignin, and cellulose assimilation and degradation was
observed. In addition, the changes in the transcript abundance
of the DNRA and denitrification shed some light on the
underlying mechanisms that lead to the increase of N2O
emissions previously reported in the Gi-FACE. Additionally,
this research presents evidence for the first time that the
gene expression in the S cycle from the Gi-FACE changes
at eCO2, comprised mainly by an increase in the transcript
abundance of the assimilatory SO2−

4 metabolism. Regarding
soil microbiome structure, our findings confirmed previous
data on the changes of bacterial and fungal communities
at eCO2 concentrations. In addition, the results revealed
new evidence of eCO2 effects on the virome with still
unknown effects on ecosystem processes. In summary, our
findings enhance our understanding of the observed changes
in greenhouse gas fluxes under eCO2 that result in positive
feedback by increased N2O, CH4, and CO2 emissions and
reduced CH4 uptake.
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