
Acta Informatica (2022) 59:163–181
https://doi.org/10.1007/s00236-021-00402-0

ORIG INAL ART ICLE

Finite automata with undirected state graphs

Martin Kutrib1 · Andreas Malcher1 · Christian Schneider1

Received: 13 February 2019 / Accepted: 11 May 2021 / Published online: 24 May 2021
© The Author(s) 2021

Abstract
We investigate finite automata whose state graphs are undirected. This means that for any
transition from state p to q consuming some letter a from the input there exists a symmetric
transition from state q to p consuming a letter a as well. So, the corresponding language
families are subregular, and in particular in the deterministic case, subreversible. In detail,
we study the operational descriptional complexity of deterministic and nondeterministic
undirected finite automata. To this end, the different types of automata on alphabets with few
letters are characterized. Then, the operational state complexity of the Boolean operations
as well as the operations concatenation and iteration is investigated, where tight upper and
lower bounds are derived for unary as well as arbitrary alphabets under the condition that the
corresponding language classes are closed under the operation considered.

1 Introduction

The operation problem for a language family is the question of costs (in terms of states) of
operations on languages from this family with respect to their representations. More than
two decades ago, the operation problem for regular languages represented by deterministic
finite automata as studied in [14,15] renewed the interest in descriptional complexity issues
of finite automata in general. In the meantime, impressively many results have been obtained
for a large number of language families. It seems that the recent studies of operational state
complexity focus on subregular languages. A recent survey of the several branches and
details can be found in [4], which is also a valuable and comprehensive source of references.
Already since the early days of automata theory, a significant theory on subfamilies of regular
languages has been developed in the literature. Examples of early studied classes are finite
languages, definite languages and variants, star-free languages, etc. Some of these regular
subfamilies were motivated by particular issues such as, for instance, neural nets or circuit

Some of the results of this paper have been announced at DCFS 2018 in Halifax, July 2018. An extended
abstract appeared in the proceedings of that conference [10].

B Martin Kutrib
kutrib@informatik.uni-giessen.de

Andreas Malcher
andreas.malcher@informatik.uni-giessen.de

1 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-021-00402-0&domain=pdf
http://orcid.org/0000-0002-9564-2625
http://orcid.org/0000-0002-9589-5833

164 M. Kutrib et al.

design. A list of some of these early regular subfamilies, their structure, and their properties
was already given by Havel [5,6].

Since then, new developments in the theory of computer science triggered the study of
new subregular language families. For instance, deterministic expression languages or one-
unambiguous regular languages [2] are motivated from document type definitions (DTDs)
used in standard generalized markup language (SGML) and extensible markup language
(XML) schemes. In particular, the determinization of nondeterministic finite automata that
accept some subregular languages has been investigated in detail [1]. In most cases, it turned
out that the conversion problem is nearly as costly (in terms of the number of states) as in
the general case.

Subregular language families of particular interest are the families of languages accepted
by types of reversible finite automata. Reversibility is a fundamental principle in physics.
Since abstract computational models with discrete internal states may serve as prototypes of
computingdeviceswhich canphysically be constructed, it is interesting to knowwhether these
abstractmodels are able to obey physical laws. The observation that loss of information results
in heat dissipation [12] strongly suggests to study computations without loss of information.
Recent results on reversible finite automata can be found, for example, in [7–9,13].

Here, we are interested in a strict form of reversible finite automata, namely we do not only
require that every state of the automaton has a unique predecessor for a given input letter, but
that this predecessor can already be reached by a forward transition with the same input letter.
These automata can be seen as finite automata whose state graphs are undirected. So, this
notion is even stronger than the concept of time-symmetry studied in [3,11]. Time-symmetry
appears in physics when a system can go back in time by applying the same transition
function as for forward computations after a weak transformation of the phase-space. For
example, in Newtonian mechanics one can go back in time by applying the same dynamics
after a transformation that leaves masses and positions unchanged but reverses the sign of the
momenta. While time-symmetric machines themselves cannot distinguish whether they run
forward or backward in time, for undirected automata the time directions fade away since
they are both available in the transition.

In the next section, we present the necessary notations and give an introductory example.
Since the definition of undirected finite automata implies strong restrictions on the possible
state graphs and, thus, the possible automata themselves, it is possible to characterize the
different types of undirected automatawith small alphabets in Sect. 3. These characterizations
are a powerful tool to derive tight bounds on the operational state complexity of deterministic
(Sect. 4) and nondeterministic (Sect. 5) undirected finite automata. All bounds obtained are
summarized in Table 1. Finally, in Sect. 6, we discuss open and untouched problems for
future work.

2 Preliminaries

Let �∗ denote the set of all words over the finite alphabet �. The empty word is denoted
by λ, and �+ = �∗ \ {λ}. The reversal of a word w is denoted by wR . For the length of w

we write |w|. For the number of occurrences of a symbol a in w, we use the notation |w|a .
Set inclusion is denoted by ⊆ and strict set inclusion by ⊂. We write 2S for the power set
and |S| for the cardinality of a set S.

123

Finite automata with undirected state graphs 165

Fig. 1 State graph of an
nondeterministic undirected finite
automaton accepting the
language { w ∈ {a, b}∗ | |w|a ≥
1 and |w|a mod 2 = 0 }

A nondeterministic finite automaton (NFA) is a system 〈Q, �, δ, q0, F〉, where Q is the
finite set of internal states, � is the finite set of input symbols, q0 ∈ Q is the initial state,
F ⊆ Q is the set of accepting states, and δ : Q × � → 2Q is the transition function.

A finite automaton is deterministic (DFA) if and only if |δ(q, a)| = 1, for all states q ∈ Q
and letters a ∈ �. In this case, we simply write δ(q, a) = p instead of δ(q, a) = {p}
assuming that the transition function is a mapping δ : Q × � → Q.

So, by definition, any DFA is complete, that is, the transition function is total, whereas it
may be a partial function for NFAs in the sense that the transition function of nondeterministic
machines may map to the empty set.

If the state graph induced by some finite automaton is undirected, then we obtain the
subclasses of nondeterministic undirected finite automata (NUFA) and deterministic undi-
rected finite automata (DUFA). Formally, for undirected finite automata, it is required that
q ∈ δ(p, a) if and only if p ∈ δ(q, a), for all p, q ∈ Q and a ∈ �. The language accepted
by a finite automaton M is

L(M) = {w ∈ �∗ | δ(q0, w) ∩ F �= ∅ },
where the transition function is recursively extended to δ : Q × �∗ → 2Q .

In order to illustrate the definitions, we continue with an example.

Example 1 The NUFA M = 〈{q0, q1, q2}, {a, b}, δ, q0, {q2}〉 whose transition function is
given through the state graph shown in Fig. 1 accepts the language {w ∈ {a, b}∗ | |w|a ≥
1 and |w|a mod 2 = 0 }.
�

3 Characterization of undirected finite automata with small alphabets

The definition of undirected finite automata implies strong restrictions on the possible state
graphs and, thus, the possible automata themselves. These restrictions allow only a very few
different state graphs for minimal deterministic undirected finite automata with a unary or
binary input alphabet. The situation for nondeterministic automata is still rather restricted,
but there are more types of distinguishable state graphs. The following characterizations of
possible types of state graphs is used for later results on the closure properties of the families
of accepted languages as well as their operational state complexity. In the rest of the section,
we tacitly assume � = {a} for unary languages and � = {a, b} for binary languages.

3.1 Unary and binary deterministic undirected finite automata

The situation for unary deterministic undirected finite automata is straightforward. The only
two possible state graphs are depicted in Fig. 2. Any of the states can be made accepting or
rejecting which yields four different languages that are accepted by unary DUFAs.

Corollary 1 Let M be a unary DUFA. Then, language L(M) is one of the following:

123

166 M. Kutrib et al.

Fig. 2 Possible state graphs of
unary deterministic undirected
finite automata

1. L1 = ∅,
2. L2 = a∗,
3. L3 = { an | n is even },
4. L4 = { an | n is odd }.
We continue with the analysis of possible state graphs of deterministic undirected finite

automata accepting binary languages.

Theorem 1 Let M be a minimal binary DUFA. Then, its state graph is of one of the five types
shown in Fig. 3.

Proof Let M = 〈Q, {a, b}, δ, q0, F〉 be a binary DUFA. First, we consider the cases where
δ(q0, a) = δ(q0, b). If δ(q0, a) = δ(q0, b) = q0 then the transition function is fully specified
and the state graph of M is of type 1 in Fig. 3.
�
�

If δ(q0, a) = δ(q0, b) �= q0, then there is a new state, say state q1, such that δ(q0, a) =
δ(q0, b) = q1. Since M is symmetric, again the transition function is fully specified. Now,
the state graph of M is of type 2 in Fig. 3.

For the remaining cases, we assume δ(q0, a) �= δ(q0, b). Now, we can distinguish two
subcases. The first subcase is givenwhen one transition is a loop from q0 to q0, while the other
goes to some new state q1. So, let us first assume δ(q0, a) = q0 and δ(q0, b) = q1. Then,
all transitions from state q0 are specified. Due to the symmetry, the only transition missing
is δ(q1, a). Here a loop from q1 to q1 is possible or a transition to another new state q2. For
the case δ(q1, a) = q1, the transition function is fully specified and we have a state graph of
type 3 with n = 1. For the case δ(q1, a) = q2, the only missing transition is δ(q2, b). Now,
the argumentation used for q1 applies. Since the number of states is finite, eventually we end
up with a loop transition and obtain a state graph of type 3.

The second subcase is given when both transitions δ(q0, a) and δ(q0, b) go to different
new states, say q1 and p1. Then all transitions from state q0 are specified. The transitions
missing are δ(q1, b) and δ(p1, a). For both branches of the state graph we can argue as before
for type 3. If one branch ends in a loop from a state to itself, the other branch necessarily
ends also in a loop from a state to itself. The lengths of the branches determine the numbers
m, n ≥ 1 and the state graph is of type 4. Finally, if one branch does not end in a loop, but
with a transition to some state of the other branch, then the other branch does not end in a
loop as well (due to the symmetry). In this case, both branches are connected such that the
state graph becomes a cycle, that is, it is of type 5. Since no more cases exist, the assertion
follows.
�

3.2 Unary nondeterministic undirected finite automata

In this subsection, we turn to the possible state graphs of unary NUFAs.

Theorem 2 Let M be a unary NUFA. Then, language L(M) is of one of the following types:

1. L1 = ∅,

123

Finite automata with undirected state graphs 167

Fig. 3 Possible state graphs of binary deterministic undirected finite automata, where m, n ≥ 1, the letters a
and b are interchangeable, x, y ∈ {a, b}, x̄ = a ⇐⇒ x = b, and ȳ = a ⇐⇒ y = b. Accepting states can
be anywhere

2. L2 = {λ},
3. L3,k = { an | n ≥ k and n even }, for some k ≥ 0,
4. L4,k = { an | n ≥ k and n odd }, for some k ≥ 0,
5. L5,k,l = { an | n ≥ k and n is even if k ≤ n < l }, for some k ≥ 0 and l > k,
6. L6,k,l = { an | n ≥ k and n is odd if k ≤ n < l }, for some k ≥ 0 and l > k.

Proof Let M = 〈Q, {a}, δ, q0, F〉 be an NUFAwith unary input alphabet. Basically, the type
of the accepted language is determined by two numbers (if they exist) k ≥ 0 and l > k. The
number k is defined to be the shortest path from the initial state q0 to some accepting state
q+ ∈ F . If k exists, that is, if L(M) is non-empty, then l is defined dependent on whether k
is even or odd. If k is even, l is defined to be the shortest path longer than k that leads from

123

168 M. Kutrib et al.

Fig. 4 State graph of a minimal nondeterministic undirected finite automaton accepting the language L3,k or
L4,k

the initial state q0 to an accepting state q ′+ and has odd length. If such a path does not exist,
l remains undefined. Similarly, if k is odd then l must be even.

Now, we can determine the type of L(M). If there is no path from q0 to some accepting
state then L(M) = L1 = ∅. Otherwise the number k is defined.

If k = 0 and, thus, q0 ∈ F , then λ ∈ L(M). If additionally δ(q0, a) is undefined, then
L(M) = L2 = {λ}.

Next, assume that k is defined, δ(q0, a) is defined, and l is undefined. SinceM is undirected
we obtain q0 ∈ δ(q0, a2). We conclude that ak belongs to L(M) and, for all i ≥ 0, the input
ak+2i belongs to L(M) as well. Since l is undefined there are no words whose parity is
different from ak in L(M). Therefore, if k is even, we derive L(M) = L3,k = { an | n ≥
k and n even }. Similarly, if k is odd, we have L(M) = L4,k = { an | n ≥ k and n odd }.

Finally, let k, δ(q0, a), and l be defined. As before we may conclude that the input ak+2i

belongs to L(M), for all i ≥ 0. On the other hand, since l is defined and l > k, we also have
al+2i ∈ L(M), for all i ≥ 0. The parities of k and l are different. Therefore, all words al+i ,
for i ≥ 0, belong to L(M). This implies L(M) = L5,k,l = { an | n ≥ k and n even for k ≤
n < l } if k is even, and L(M) = L6,k,l = { an | n ≥ k and n odd for k ≤ n < l } if k is odd.

Note that all language types are different and are, in fact, accepted by some NUFA.
�
Note that the languages { an | n ≥ k } are equal to L5,k,k+1, if k is even, and equal to

L6,k,k+1, if k is odd. Next, we turn to the minimal numbers of states that are necessary for
some NUFA to accept languages of different type.

Lemma 1 Let M be a unary NUFA that accepts a language of type L1 or L2. Then, one state
is sufficient and necessary for M.

Proof Clearly, one non-accepting initial state for which the transition function is undefined
is a witness when M accepts the empty set.

Similarly, if the initial state whose transition function is undefined is accepting, then M
accepts the language {λ}.
�
Lemma 2 Let k ≥ 1 and M be a unary NUFA that accepts a language of type L3,k or L4,k .
Then, k + 1 states are sufficient and necessary for M.

Proof Since the shortest word accepted has length k, automaton M must have at least k + 1
states. Otherwise, L(M) would be empty or a shorter word would be accepted. The NUFA
depicted in Fig. 4 accepts L3,k or L4,k with k + 1 states.
�

Lemma 3 Let k ≥ 0, l > k, and M be a unary NUFA that accepts a language of type L5,k,l
or L6,k,l . Then, l states are sufficient and necessary for M.

Proof Since the shortest word accepted has length k, automaton M must have at least k + 1
states. If l = k + 1, the assertion follows.

In contrast to the assertion, assume now thatM has k+1 ≤ j < l states. Since al ∈ L(M),
there is a loop passed through in an accepting computation on input al . Let m ≥ 1 be the

123

Finite automata with undirected state graphs 169

Fig. 5 State graph of a minimal nondeterministic undirected finite automaton accepting the language L5,k,l
or L6,k,l

length of the loop. So, there is an accepting computation on input al−m . Since k and l have
different parities, m must be odd.

Consider the sequence of l + 1 states p0, p1, . . . , px , with px accepting, passed through
in an accepting computation of al . Then, we let M accept al−m along the same sequence
with leaving out the loop.

First assume that at least two of the states in the sequence belong to the loop left out, say
pi and p j with i < j . While M runs through the loop from pi to pi via p j , it reads an odd
number of input symbols. So, either the computation from pi to p j or the computation from
p j on the loop back to pi consumes an odd number of input symbols, but not both since the
total length of the loop is odd. Since M is undirected, once in state pi , M can reach p j by
following the loop or following the loop backward. On one path, it reads an even, and on the
other path, it reads an odd number of input symbols. Continuing the computation from p j

to px gives in both cases a computation with less than l steps. However, only words of even
or words of odd lengths less than l belong to L(M). We derive from the contradiction that
exactly one state in the sequence p0, p1, . . . , px belongs to the loop left out.

If there are more than one of such loops, the sum of their lengths must be odd. This implies
that at least one has an even and at least one of them has an odd length. So, running through
this one or that one gives accepted inputs of different parities shorter than l, a contradiction.

This implies that there is exactly one such loop that involves exactly one of the states, say
pi . We conclude that all states pi , 0 ≤ i ≤ x are different. Moreover, x + m must be l, and
all states on the loop are different. Therefore, altogether x + 1 + m − 1 = x + m = l states
are necessary.

The NUFA depicted in Fig. 5 accepts L5,k,l or L6,k,l with l states.
�

4 Deterministic operational state complexity

In this section, we investigate the operational state complexity of DUFAs. Let ◦ be a binary
operation under which the class of languages accepted by DUFAs is closed. The ◦-operation
problem for DUFAs can be defined as follows:

– Given some m-state DUFA A and some an n-state DUFA B.
– Howmany states are sufficient and necessary (in terms ofm and n) for a DUFA to accept

the language L(A) ◦ L(B)?

123

170 M. Kutrib et al.

Table 1 Summary of the state complexities of the operations studied in this paper

unary DUFA DUFA unary NUFA NUFA

L1 ∪ L2 1 or 2 [Th. 3] mn [Th. 7, Th. 8] — —

L1 ∩ L2 1 or 2 [Th. 3] mn [Th. 5, Th. 6] max(m, n) + 1 [Th. 9] mn [Th. 12]

L 1 or 2 [Th. 3] n [Th. 4] — —

L1 · L2 — — m + n − 1 [Th. 10] —

L∗ — — — —

LR 1 or 2 [Th. 3] ? n [Th. 11] —

It is marked by — if an automata class is not closed under the corresponding operation, ? means that the
closure property is unknown. The complexities depicted are upper bounds which are tight in the sense that for
all m, n there are automata of size m and n for which the upper bound is also necessary. The only exceptions
are the intersection and union of DUFAs, where the upper bounds are shown to be tight for infinitely many
m, n only

Table 2 Summary of the operational state complexities of DFAs and NFAs, where t is the number of accepting
states of the “left” automaton

unary DFA DFA unary NFA NFA

L1 ∪ L2 mn mn m + n + 1 m + n + 1

L1 ∩ L2 mn mn mn mn

L n n 2�(
√
n·log n) 2n

L1 · L2 mn m2n − t2n−1 m + n − 1 ≤ · ≤ m + n m + n

L∗ (n − 1)2 + 1 3 · 2n−2 n + 1 n + 1

LR n 2n n n + 1

The tight lower bounds for union, intersection, and concatenation of unary DFAs require m and n to be
relatively prime

Obviously, this problem generalizes as well to unary language operations like, for example,
complementation. Moreover, it also generalizes to other devices. The notion state complexity
is used when the size of the finite automata is measured by their number of states.

Let L1 and L2 be languages over some alphabet �. In the following, we are particularly
interested in the Boolean operations complementation (L1 = �∗ \ L1), union (L1 ∪ L2 =
{w | w ∈ L1 or w ∈ L2 }), intersection (L1 ∩ L2 = {w | w ∈ L1 and w ∈ L2 }) as
well as in the operations concatenation (L1 · L2 = { uv | u ∈ L1 and v ∈ L2 }), iteration
(L∗

1 = ⋃
i≥0 L

i
1 where L

0
1 = {λ} and Li+1

1 = Li
1 ·L1), and reversal (LR

1 = {wR | w ∈ L1 }).
The results on the deterministic state complexity obtained in this section, and the results

on the nondeterministic state complexity that is obtained in Sect. 5 are summarized in Table 1.
In order to compare the operational state complexities ofDUFAs andNUFAswith classical

deterministic and nondeterministic finite automata, we summarize the latter complexities in
Table 2 (see, for example, [4] for details and references).

Before we can turn to study the operational state complexity of DUFAs under the above-
mentioned operations, we have to give evidence under which operations their language class
is not closed. The evidence of the closure under the remaining operations follows from the
subsequent considerations of their state complexities.

The family of languages accepted by DUFAs is neither closed under concatenation nor
under iteration. In the unary case, we have just the four languages from Corollary 1. Con-

123

Finite automata with undirected state graphs 171

catenating L2 = a∗ with L4 = { an | n is odd } yields a unary language that contains words
of even as well as odd length, but does not contain the empty word. Thus, this language is not
accepted by any DUFA. The iteration of L1 = ∅ yields the language {λ} that is not accepted
by any DUFA either. This is already sufficient to show the non-closure under concatena-
tion and iteration also in the general case. For the sake of completeness, we give non-unary
examples witnessing the non-closure as well. Let A and B be the following DUFAs:

q0 q1

b b

astart q0 q1

a a

bstart

The shortest word in L(A) · L(B) is ab. So, a DUFA accepting L(A) · L(B) must have
the following state sub-graph:

q0 q1 q2
a bstart

However, we have ab ∈ L(A) and b ∈ L(B) but abb cannot be accepted by any DUFA
with a state sub-graph as depicted.

Concerning the iteration, we consider the DUFA A with the following state graph:

q0 q1 q2

b a

a bstart

Assume there is a DUFA B that accepts L(A)∗. Since λ ∈ L(A)∗, the initial state of B is
accepting. Moreover, the word ab belongs to L(A)∗. This implies that aa is accepted by B
as well, but aa /∈ L(A)∗.

The question whether the family of languages accepted by DUFAs is closed under reversal
in the non-unary case is currently open. For the special case that the DUFAs have only one
accepting state the closure follows by running the DUFAs backward, that is, the unique
accepting state and the initial state switch their roles. However, this construction fails for
more than one accepting state and, due to the symmetry, the usual trick to add an extra state
and appropriate transitions fails as well.

We continue with the operational state complexity of DUFAs on unary alphabets. It has
been shown in Corollary 1 that in this case, the automata have an easy form which makes it
possible to show closure under the Boolean operations and reversal, and to establish upper
and lower bounds for each of the operations. In the second part of the section, we investigate
the state complexity of the Boolean operations for DUFAs over arbitrary alphabets and can
establish tight bounds as well.

Theorem 3 Let m, n ∈ {1, 2} be integers and A be a minimal m-state and B be a minimal
n-state DUFA over the same unary alphabet. Then one state is sufficient for a DUFA to accept
L(A), L(A) ∩ L(B), L(A) ∪ L(B), or L(A)R if m + n = 2. Two states are sufficient for a
DUFA to accept L(A), L(A) ∩ L(B), L(A) ∪ L(B), or L(A)R if m = 2.

123

172 M. Kutrib et al.

Table 3 Summary of the results for the union and intersection of languages accepted by unary DUFAs

∪ L1 L2 L3 L4
L4 L4 L2 L2 L4
L3 L3 L2 L3 L2
L2 L2 L2 L2 L2
L1 L1 L2 L3 L4

∩ L1 L2 L3 L4
L4 L1 L4 L1 L4
L3 L1 L3 L3 L1
L2 L1 L2 L3 L4
L1 L1 L1 L1 L1

Moreover, there are minimal m-state DUFAs and minimal n-state DUFAs such that these
sufficient numbers of states are necessary.

Proof Owing to Corollary 1, we know that every language that is accepted by a unary DUFA
has one of the following forms, namely L1 = ∅, L2 = a∗, L3 = { an | n is even }, or
L4 = { an | n is odd }. For L1 and L2 one state and for L3 and L4 two states are necessary.

Now, we have to show that any application of the operations complementation, intersec-
tion, union, or reversal gives again one of the four unary languages which implies the upper
bounds for the operations. For complementation, we have L1 = L2, L2 = L1, L3 = L4,
and L4 = L3. For reversal, we have LR

i = Li for 1 ≤ i ≤ 4. For the operations union and
intersection, we obtain the results which are summarized in Table 3 from which the lower
bounds follow.
�

Now, we turn to arbitrary alphabets and consider first the complementation of DUFAs.

Theorem 4 Let n ≥ 1 be an integer. Then, n states are sufficient for a DUFA to accept
the complement of any language accepted by an n-state DUFA. Moreover, for any minimal
n-state DUFA An, any DUFA accepting the language L(An) has at least n states.

Proof For the upper bound, it is sufficient to observe that the classical construction for the
complementation of deterministic machines, that is, the interchanging of accepting and non-
accepting states, works for DUFAs as well.

For the lower bound, let An be a minimal n-state DUFA. Assume that the complement
L(An) is accepted by some DUFA B with m < n states. Then, by the upper bound, L(B) =
L(An) is accepted by a DUFA with m states which contradicts the minimality of An .
�
Example 2 For every n ≥ 1, the lower bound of the operational state complexity of DUFA
complementation is witnessed by the following n-state DUFA An = 〈{q0, q1, . . . , qn−1},
{a, b}, δn, q0, {q0, q1, . . . , qn−2}〉 which is depicted for even n in the upper figure and for
odd n in the lower figure.

q0 q1 qn−2 qn−1· · ·

a

b a a b

a

start

q0 q1 qn−2 qn−1· · ·

a

b a b a

b

start

123

Finite automata with undirected state graphs 173

Let us assume that B = 〈Q, {a, b}, δ, qI , F〉 is a DUFA accepting the complement L(An)

with less than n states. Then, we considerwn = (ba)(n−1)/2 for odd n andwn = (ba)(n−2)/2b
for even n. In both cases, we have |wn | = n − 1 and wn /∈ L(An) which implies that
wn ∈ L(An). Hence, L(B) �= ∅ and there must be some f ∈ F that is reachable from the
initial state qI . Since B has less than n states, there is some v with |v| < n − 1 such that
δ(qI , v) = f . Thus, v ∈ L(B) and |v| < n− 1 = |wn |. On the other hand, wn is the shortest
word in L(An) = L(B) which gives the contradiction.
�

Next, we continue with the intersection operation. To this end, we provide the following
preparatory lemma which is needed to prove a tight lower bound.

Lemma 4 Let m ≥ 4 be an even integer. There are natural numbers x1, x2, y1, and y2 such
that the following equations hold simultaneously. Moreover, one can choose x1, x2, y1, and y2
such that both equations additionally assume their minimum.

m − 1 + 2mx1 = 1 + (2m − 2)y1, (1)

m + 1 + 2mx2 = 2m − 3 + (2m − 2)y2. (2)

Proof First, we show that Eq. (1) holds with a minimal value if we set x1 = m/2 = y1 − 1.
Let x1 = y1 − 1, then y1 = m/2 + 1 and we have

1 + (2m − 2)y1 = 1 + (2m − 2)(m/2 + 1) = 1 + 2m · m/2 + 2m − m − 2 =
= m − 1 + 2mx1.

Thus, Eq. (1) holds if x1 = y1 − 1 = m/2, and assumes the value m2 + m − 1. Next, we
consider the case when x1 �= y1 − 1 and show that in this case either Eq. (1) is not solvable
or a value larger than m2 + m − 1 is assumed. Let x1 ≥ y1. Then, we have

m − 1 + 2mx1 = 1 + (2m − 2)y1 ⇒
m − 1 + 2mx1 ≤ 1 + (2m − 2)x1 ⇒

x1 ≤ 1 − m/2.

This gives that the equation is not solvable, since x1 ≥ 0, but 1 − m/2 < 0. Now, consider
the remaining case x1 < y1 − 1. Then, we have

m − 1 + 2mx1 = 1 + (2m − 2)y1 ⇒
m − 1 + 2mx1 − (2m − 2) = 1 + (2m − 2)(y1 − 1) ⇒
m − 1 + 2mx1 − (2m − 2) > 1 + (2m − 2)x1 ⇒

x1 > m/2.

In this case, the value of the equation becomes larger than m2 +m − 1, since m − 1+ 2mx1
is a strictly increasing function of x1. It follows that Eq. (1) holds with a minimal value, if
x1 = m/2 and y1 = x1 + 1 = m/2 + 1.

Second, we show that setting x2 = m/2−2 = y2 implies that Eq. (2) holds with aminimal
value as well. Let x2 = y2, then we have

2m − 3 + (2m − 2)y2 = 2m − 3 + (2m − 2)(m/2 − 2) =
= 2m − 3 + 2m(m/2 − 2) − m + 4 = m + 1 + 2mx2.

Thus, Eq. (2) holds if x2 = y2 = m/2 − 2, and assumes the value m2 − 3m + 1. Next, we
consider the case when x2 �= y2 and show that in this case either Eq. (2) is not solvable or a

123

174 M. Kutrib et al.

value larger than m2 − 3m + 1 is assumed. Let x2 < y2. Then, we have

m + 1 + 2mx2 = 2m − 3 + (2m − 2)y2 ⇒
m + 1 + 2mx2 > 2m − 3 + (2m − 2)x2 ⇒

x2 > m/2 − 2.

Since m + 1 + 2mx2 is a strictly increasing function of x2, Eq. (2) assumes a value larger
than m2 − 3m + 1. Now, we consider the remaining case x2 > y2. Then, we have

m + 1 + 2mx2 = 2m − 3 + (2m − 2)y2 ⇒
m + 1 + 2my2 < 2m − 3 + (2m − 2)y2 ⇒

y2 < m/2 − 2.

The left-hand side of Eq. (2) can be written as (1 + 2x2)m + 1 and the right-hand side can
be written as (2 + 2y2)m − (2y2 + 3). Setting g(x2) = 1 + 2x2 and h(y2) = 2 + 2y2, we
can write Eq. (2) as g(x2)m + 1 = h(y2)m − (2y2 + 3). We observe that at both sides of
the equation there are multiples of m which are added by 1 and −(2y2 + 3), respectively.
Hence, 1 + 2y2 + 3 has to be a multiple of m which gives that 2y2 + 3 = km − 1 for some
integer k ≥ 1. Thus, we obtain y2 = (km)/2 − 2 which is a contradiction to the shown fact
that y2 < m/2− 2. We conclude that Eq. (2) is not solvable if x2 > y2. Altogether, we have
shown that Eq. (2) holds with a minimal value, if x2 = y2 = m/2 − 2.
�
Theorem 5 For any integers m, n ≥ 1 let A be an m-state and B be an n-state DUFA. Then,
m · n states are sufficient for a DUFA to accept the language L(A) ∩ L(B).

Proof For the upper bound, we use the usual cross-product construction. Let A =
〈QA, �, δA, q0,A, FA〉 be an m-state and B = 〈QB , �, δB , q0,B , FB〉 be an n-state DUFA.
Then define C = 〈QA × QB , �, δ, (q0,A, q0,B), FA × FB〉, where δ((q1, q2), a) =
(δA(q1, a), δB(q2, a)) for all q1 ∈ QA, q2 ∈ QB , and a ∈ �. Clearly, C is an (m · n)-
state DUFA that accepts L(A) ∩ L(B).
�
Theorem 6 There are infinitely many integers m, n ≥ 1 with n = 2m − 2 such that A is an
m-state DUFA, B is an n-state DUFA, and m ·n states are necessary for any DUFA to accept
the language L(A) ∩ L(B).

Proof For the lower bound, we consider two minimal DUFAs A and B, where A hasm states
for even m ≥ 4 and B has n = 2m − 2 states. Both DUFAs have the form depicted in Fig. 6.

�
Now, let C be a minimal DUFA accepting L(A) ∩ L(B). First, consider words in L(A) ∩

L(B) that have the form (ab)�a for some � ≥ 1. Then, the left-hand side of Eq. (1) indicates
the length of such words that are accepted by A, whereas the right-hand side of Eq. (1)
indicates the length of such words that are accepted by B. According to Lemma 4, there are
integers x1 = m/2, x2 = m/2 − 2, y1 = m/2 + 1, and y2 = m/2 − 2 such that Eqs. (1)
and (2) hold simultaneously while assuming a minimal value. Hence, due to the equality and
the minimality, we obtain a word (ab)(m

2+m−2)/2a of minimal length m2 + m − 1 which
belongs to L(A) ∩ L(B). Analogously, considering words in L(A) ∩ L(B) of the form
(ba)�b for some � ≥ 1 the left-hand side and right-hand side of Eq. (2) provides a word
(ba)(m

2−3m)/2b of minimal length m2 − 3m + 1 which belongs to L(A) ∩ L(B) as well.
Since both minimal lengths are different, automaton C has to have two different paths from
the initial state to an accepting state which implies, according to Theorem 1, that C is of

123

Finite automata with undirected state graphs 175

Fig. 6 The DUFA A (upper automaton) and B (lower automaton) used for proof of the lower bound

type 4 or type 5. Let us first assume that C is of type 4. Then, in particular the upper path
contains an accepting state f that is entered after reading w = (ab)(m

2+m−2)/2a and the
upper path ends in some state q that ends in a loop. If f = q , then there is a transition from f
to f on input a which implies that input wa is accepted by C . This is a contradiction, since
wa is not accepted by B. If f �= q , then there are two possibilities, namely the remaining
path from f to q processes inputs of the form (ba)kb∗ or of the form (ba)k−1ba∗ for some
k ≥ 1. In either case, we can construct a wordw′ which is accepted byC , but not by B which
gives the contradiction. In the first case, we consider w′ = w(ba)kb(ab)k , and in the second
case, we setw′ = w(ba)k−1ba(ba)k−1b. Hence, we conclude thatC is of type 5. This means
that C has two different paths which start in the initial state and end in the same state. Thus,
C has at least m2 + m + m2 − 3m + 2 − 2 = 2m2 − 2m = m(2m − 2) = m · n states.
�

Finally, we study the union operation and obtain the same tight bound as for intersection.
For the upper bound we can again use the usual cross-product construction as in the proof of
Theorem 5.

Theorem 7 For any integers m, n ≥ 1 let A be an m-state and B be an n-state DUFA. Then,
m · n states are sufficient for a DUFA to accept the language L(A) ∪ L(B).

Theorem 8 There are infinitely many integers m, n ≥ 1 with n = 2m − 2 such that A is an
m-state DUFA, B is an n-state DUFA, and m ·n states are necessary for any DUFA to accept
the language L(A) ∪ L(B).

Proof For the lower bound, we consider two DUFAs A′ and B ′ accepting the complements
of the languages accepted by A and B used in the proof of Theorem 6. Both DUFAs can be
obtained due toTheorem4by interchanging accepting and non-accepting states. The resulting
DUFAs are minimal, have m and n states, respectively, L(A′) = L(A) and L(B ′) = L(B).
Now, let C ′ be a minimal DUFA accepting L(A′) ∪ L(B ′) and assume that C ′ has � < m · n
states. By applying Theorem 4, we can then construct an �-state DUFA C such that L(C) =
L(C ′) = L(A′) ∪ L(B ′) = L(A′) ∩ L(B ′) = L(A) ∩ L(B). This is a contradiction to the
proof of Theorem 6 where it is shown that every DUFA accepting L(A) ∩ L(B) needs at
least m · n states.
�

123

176 M. Kutrib et al.

5 Nondeterministic operational state complexity

In this section, we complement the operational state complexity results by investigating
NUFAs. As in the deterministic case, we first give evidence under which operations the
family of languages accepted by NUFAs is not closed. By Theorem 2, unary languages from
this family are of one of the six types mentioned in the theorem.

To show the non-closure under union, it is sufficient to consider language L2 = {λ} and
L4,3 = { an | n ≥ 3 and n odd }. Their union is not of type 1 or 2 (of Theorem 2). Assume
that the union is of one of the other types. Then k must be 0. So, either a or aa or both do
belong to the language as well. However, both words do not belong to the union. The same
reasoning applies to language L∗

4,3, which shows the non-closure under iteration. We turn to
complementation. The complement of language L3,4 = { an | n ≥ 4 and n even } includes
the words ai for 0 ≤ i ≤ 3. Therefore, L3,4 is not of type 1, 2, 3, or 4. Assume that it is
of type 5 or 6. Then, k must be 0 and l must be 1 which implies that the language is a∗, a
contradiction.

In the non-unary case, we have additionally the non-closures under concatenation and
reversal. As in the deterministic case, for the sake of completeness, we give next non-unary
examples witnessing some non-closures. Let A and B be the following NUFAs:

q0 q1

a

astart q0 q1

b

bstart

We have L(A) = a+ and L(B) = b+. So, an NUFA accepting L(A) ∪ L(B) must have
either the following state sub-graph or the state sub-graph obtained by merging states q1 and
q2.

q1

q0

q2

a

b

start

So, the word aab is accepted but neither belongs to L(A) nor to L(B). This shows the
non-closure under union. It will turn out that the family of languages accepted by NUFAs is
closed under intersection. So, by its non-closure under union and DeMorgan’s law, it follows
that it is not closed under complementation.

The non-closure under concatenation is witnessed by the following NUFAs A and B:

q0 q1
astart q0 q1

bstart

123

Finite automata with undirected state graphs 177

The shortest word in L(A) · L(B) is ab. So, an NUFA accepting L(A) · L(B) must have
the following state sub-graph:

q0 q1 q2
a bstart

Therefore, the word abbaab is accepted but cannot be factorized as uv with u ∈ L(A)

and v ∈ L(B). This shows the non-closure under concatenation. Let this state sub-graph
be the state graph of an NUFA A. We consider the iteration L(A)∗. Since λ ∈ L(A)∗, the
initial state of an NUFA accepting L(A)∗ is accepting. Since ab ∈ L(A)∗, an a-transition
from the initial state is defined. Therefore, aa /∈ L(A)∗ is accepted as well. This shows the
non-closure under iteration.

Finally, we consider the operation reversal. The non-closure under reversal is witnessed
by the following NUFA A:

q1

q0

q2

a

b

start

Assume that there is an NUFA B that accepts the reversal L(A)R . Since a ∈ L(A)R and
b ∈ L(A)R , there is an a-transition and a b-transition from B’s initial state to some accepting
state. So, due to the symmetry, B accepts aab as well. However, the word baa does not
belong to L(A) and, thus, the non-closure under reversal follows.

We continue with the operational state complexity of unary NUFAs. Owing to the char-
acterization given in Theorem 2, we can show tight bounds by a detailed case analysis. If
the underlying alphabet is at least binary, then NUFAs are only closed under intersection.
However, it is possible to obtain tight bounds as well. We start with the unary case.

Theorem 9 For any integers m, n ≥ 1 let A be an m-state and B be an n-state NUFA over
the same unary alphabet. Then, max(m, n) + 1 states are sufficient for an NUFA to accept
L(A) ∩ L(B).

Moreover, there are minimal m-state NUFAs and minimal n-state NUFAs such that this
sufficient number of states is necessary.

Proof According to Theorem 2, L(A) and L(B) belong to one of the types L1, L2, L3,k , L4,k ,
L5,k,l , or L6,k,l for some k ≥ 0 and l > k. Hence,we have to show that each combination leads
to anNUFAwith atmostmax(m, n)+1 states. The results of all combinations are summarized
in the following table,where k = max(k1, k2), l = max(l1, l2), L7,k1,l1,k2,l2 = L5,max(k1,l2),l1 ,
if l1 > l2, L7,k1,l1,k2,l2 = L6,max(k2,l1),l2 , if l1 ≤ l2, and L8,k2 = L2, if k2 = 0, and L8,k2 = L1

otherwise.

123

178 M. Kutrib et al.

∩ L1 L2 L3,k1 L4,k1 L5,k1,l1 L6,k1,l1

L6,k2,l2 L1 L1 L3,max(k1,l2) L4,k L7,k1,l1,k2,l2 L6,k,l
L5,k2,l2 L1 L8,k2 L3,k L4,max(k1,l2) L5,k,l L7,k2,l2,k1,l1
L4,k2 L1 L1 L1 L4,k L4,max(k2,l1) L4,k
L3,k2 L1 L8,k2 L3,k L1 L3,k L3,max(l1,k2)
L2 L1 L2 L8,k1 L1 L8,k1 L1
L1 L1 L1 L1 L1 L1 L1

We will not consider all combinations in detail, but exemplarily discuss two intersections.
First, we consider L3,k1 ∩ L6,k2,l2 which is

{an | n ≥ k1 and n even } ∩ {an | n ≥ k2 and n odd for k2 ≤ n < l2} =
{an | n ≥ k1 and n even and n ≥ l2} = L3,max(k1,l2).

Second, we consider L5,k1,l1 ∩ L6,k2,l2 where necessarily l1 is odd and l2 is even. If l1 > l2,

L5,k1,l1 ∩ L6,k2,l2 = {an | n ≥ k1 and n even for k1 ≤ n < l1} ∩ {an | n ≥ l2}
= {an | n ≥ max(k1, l2) and n even for k1 ≤ n < l1}
= L5,max(k1,l2),l1 .

Otherwise, if l1 < l2,

L5,k1,l1 ∩ L6,k2,l2 = {an | n ≥ l1} ∩ {an | n ≥ k2 and n odd for k2 ≤ n < l2}
= {an | n ≥ max(k2, l1) and n odd for k2 ≤ n < l2}
= L6,max(k2,l1),l2 .

For the upper bound, we can read off the table the following cases. If L1, L2, or L8,t is
obtained,weknow that one state is sufficient to accept the languages.Hence, 1 ≤ max(m, n)+
1 is an upper bound. If L3,t or L4,t is obtained, we know that t + 1 states are sufficient to
accept the languages. Now, we have t ∈ {k1, k2, l1, l2}. Since k1 < l1 = m and k2 < l2 = n,
we obtain that k1 + 1 ≤ m − 1+ 1 ≤ max(m, n) + 1, k2 + 1 ≤ n − 1+ 1 ≤ max(m, n) + 1,
l1+1 = m+1 ≤ max(m, n)+1, and l2+1 = n+1 ≤ max(m, n)+1. Thus, max(m, n)+1
is an upper bound.

Finally, if L5,t1,t2 or L6,t1,t2 is obtained, we know that t2 states are sufficient for an NUFA
to accept the languages. Now, we have t2 ∈ {l1, l2,max(l1, l2)}. Since l1 = m and l2 = n,
we obtain that l1 = m ≤ max(m, n) + 1, l2 = n ≤ max(m, n) + 1, and max(l1, l2) =
max(m, n) ≤ max(m, n) + 1. Thus, max(m, n) + 1 is an upper bound also for these cases.

For the lower bound, we first consider L3,k1 ∩ L6,k2,l2 = L3,max(k1,l2). We know that
L3,k1 is accepted with k1 + 1 = m states due to Lemma 2 and L6,k2,l2 is accepted with
l2 = n states due to Lemma 3. Moreover, to accept L3,max(k1,l2) at least max(k1, l2) + 1 =
max(m − 1, n) + 1 states are necessary due to Lemma 2. Second, consider the symmetric
case L6,k1,l1 ∩ L3,k2 = L3,max(l1,k2) with m = l1 and n = k2 + 1. Then max(m, n − 1) + 1
states are necessary to accept L3,max(l1,k2). Altogether,

max(max(m − 1, n) + 1,max(m, n − 1) + 1) = max(m, n) + 1

is the lower bound.
�
Theorem 10 For any integers m, n ≥ 1 let A be an m-state and B be an n-state NUFA
over the same unary alphabet. Then, m + n − 1 states are sufficient for an NUFA to accept
L(A) · L(B).

123

Finite automata with undirected state graphs 179

Moreover, there are minimal m-state NUFAs and minimal n-state NUFAs such that this
sufficient number of states is necessary.

Proof We show that each combination leads to an NUFAwith no more thanm+n−1 states.
The results of all combinations are summarized in the following table, where k = k1 + k2
and l = k1 + k2 + min(l1 − k1, l2 − k2).

· L1 L2 L3,k1 L4,k1 L5,k1,l1 L6,k1,l1

L6,k2,l2 L1 L6,k2,l2 L6,k,k1+l2 L5,k,k1+l2 L6,k,l L5,k,l
L5,k2,l2 L1 L5,k2,l2 L5,k,k1+l2 L6,k,k1+l2 L5,k,l L6,k,l
L4,k2 L1 L4,k2 L4,k L3,k L6,k,l1+k2 L5,k,l1+k2
L3,k2 L1 L3,k2 L3,k L4,k L5,k,l1+k2 L6,k,l1+k2
L2 L1 L2 L3,k1 L4,k1 L5,k1,l1 L6,k1,l1
L1 L1 L1 L1 L1 L1 L1

We show exemplarily that L5,k1,l1 · L6,k2,l2 = L6,k,l , where necessarily l1 is odd and l2 is
even. All words in L5,k1,l1 · L6,k2,l2 have a length of at least k1 + k2. Let t1 = l1 − k1 and
t2 = l2 − k2. If t1 < t2, then all words of length at least l1 + k2 belong to the concatenation
and all words of length at least k1 + k2 and less than l1 + k2 have to have odd lengths, since
k1 + k2 is odd. If t2 < t1, then all words of length at least k1 + l2 belong to the concatenation
and all words of length at least k1 + k2 and less than k1 + l2 have to have odd lengths,
since k1 + k2 is odd. Hence, the concatenation yields L6,k,l by setting k = k1 + k2 and
l = k1 + k2 + min(t1, t2) = k1 + k2 + min(l1 − k1, l2 − k2).

For the upper bound, we can read off the table the following cases. If L1 or L2 is obtained,
we know that one state is sufficient to accept the languages. Hence, 1 ≤ m + n − 1 is an
upper bound. If L3,t or L4,t is obtained, we know that t + 1 states are sufficient to accept
the languages. Now, we have t ∈ {k1, k2, k1 + k2}. Since m = k1 + 1 and n = k2 + 1, we
obtain that k1 + 1 = m − 1 + 1 ≤ m + n − 1, k2 + 1 = n − 1 + 1 ≤ m + n − 1, and
k1 + k2 + 1 = m − 1+ n − 1+ 1 = m + n − 1. Thus, m + n − 1 is an upper bound. Finally,
if L5,t1,t2 or L6,t1,t2 is obtained, we know that t2 states are sufficient to accept the languages.
Now, we have t2 ∈ {l1, k2 + l1, l2, k1 + l2}. Since k1 < l1 = m and k2 < l2 = n, we obtain
that l1 = m ≤ m+n−1, k2 + l1 ≤ m+n−1, l2 ≤ n ≤ m+n−1, and k1 + l2 ≤ m+n−1.
Thus, m + n − 1 is an upper bound also for these cases as well.

For the lower bound, we consider L3,k1 · L5,k2,l2 = L5,k1+k2,k1+l2 . We know that L3,k1
is accepted with k1 + 1 = m states owing to Lemma 2 and L5,k2,l2 is accepted with l2 = n
states owing to Lemma 3. Moreover, to accept L5,k1+k2,k1+l2 at least k1 + l2 = m − 1 + n
states are necessary due to Lemma 2.
�

Since the reversal of a unary language L is the language L again, the following statement
is obvious.

Theorem 11 Let n ≥ 1 be an integer. Then, n states are sufficient for an NUFA to accept the
reversal of any language accepted by an n-state NUFA.

Moreover, for any minimal n-state NUFA A, any NUFA accepting the language L(A)R

has at least n states.

Finally, we consider the general intersection operation for NUFAs.

123

180 M. Kutrib et al.

Theorem 12 For any integers m, n ≥ 1 let A be an m-state and B be an n-state NUFA. Then,
m · n states are sufficient for an NUFA to accept the language L(A) ∩ L(B).

Moreover, there are minimal m-state NUFAs and minimal n-state NUFAs such that this
sufficient number of states is necessary.

Proof For the upper bound, we can use the usual cross-product construction as in the proof
of Theorem 5. Clearly, the resulting automaton is an (m ·n)-state NUFA that accepts L(A)∩
L(B).

For the lower bound, we consider Lm = {w ∈ {a, b}∗ | |w|a ≥ m − 1 } and L ′
n = {w ∈

{a, b}∗ | |w|b ≥ n − 1 } that are each accepted by an m-state NUFA and n-state NUFA,
respectively. Next, we show that any NUFA for Lm ∩ L ′

n needs at leastm ·n states. By way of
contradiction, we assume that there is an NUFAC = 〈Q, {a, b}, δ, q0, F〉 accepting Lm ∩L ′

n
with less than m · n states. Then, consider ai1b j1 and ai2b j2 such that ai1b j1 �= ai2b j2 for
0 ≤ i1, i2 ≤ m − 1 and 0 ≤ j1, j2 ≤ n − 1. Without loss of generality, we may assume that
i1 > i2 or j1 > j2. Since there are m · n such words and |Q| < m · n, we can conclude that
the intersection

{ q ∈ Q | q ∈ δ(q0, a
i1b j1) and δ(q, am−1−i1bn−1− j1) ∩ F �= ∅ } ∩ δ(q0, a

i2b j2)

is not empty for at least two words ai1b j1 and ai2b j2 . Thus, we obtain for w =
ai2b j2am−1−i1bn−1− j1 that δ(q0, w) ∩ F �= ∅, hence, w ∈ Lm ∩ L ′

n . Now, if i1 > i2,
we obtain that |w|a = i2 + m − 1 − i1 < m − 1. On the other hand, if j1 > j2, we obtain
that |w|b = j2 + n − 1 − j1 < n − 1. In both cases, we conclude that w /∈ Lm ∩ L ′

n which
gives the contradiction and concludes the proof of the lower bound.
�

The results on the deterministic and nondeterministic state complexity obtained are sum-
marized in Table 1.

6 Conclusions

In this paper, we have introduced deterministic and nondeterministic finite automata with
undirected state graphs. It was possible to characterize the languages accepted by such
automata in the unary case for deterministic and nondeterministic automata as well as in
the binary case for deterministic automata. This characterization enabled us to study the
deterministic and nondeterministic operational state complexity in depth and an almost com-
plete picture with tight bounds could be obtained. The deterministic state complexity of the
reversal operation as well as the question of whether the language class is closed under rever-
sal are currently open questions. For DUFAs with one accepting state, the construction of a
DUFA accepting the reversal is straightforward and needs no additional states. However, the
construction cannot directly be generalized to DUFAs with more than one accepting state.

Concerning the operational state complexity, we have investigated so far only those oper-
ations under which the corresponding language classes are closed. However, even in the case
of non-closure, we still obtain regular languages. Thus, it would clearly be of interest to
determine upper and lower bounds for the remaining operations from this point of view.

Since the language classes accepted by DUFAs and NUFAs are subregular, it would be
interesting to devise an effective algorithm that decides, given an arbitrary finite automaton
A, whether or not L(A) could be accepted by an NUFA or DUFA as well. Naturally, the
complexity of such an algorithm is of great interest. In the positive case, such an algorithm
should construct an equivalent NUFA or DUFA. Then, the determination of the exact trade-

123

Finite automata with undirected state graphs 181

off concerning the number of states between NUFAs and DUFAs as well as arbitrary NFAs
and DFAs becomes a challenging task.

Acknowledgements The authors wish to thank the anonymous referees for useful and kind comments.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bordihn, H., Holzer, M., Kutrib, M.: Determinization of finite automata accepting subregular languages.
Theoret. Comput. Sci. 410, 3209–3222 (2009)

2. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inform. Comput. 140, 229–253
(1998)

3. Gajardo, A., Kari, J., Moreira, A.: On time-symmetry in cellular automata. J. Comput. Syst. Sci. 78,
1115–1126 (2012)

4. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. J. Autom. Lang. Comb.
21, 251–310 (2016)

5. Havel, I.M.: The theory of regular events I. Kybernetica 5, 400–419 (1969)
6. Havel, I.M.: The theory of regular events II. Kybernetica 6, 520–544 (1969)
7. Holzer,M., Jakobi, S., Kutrib,M.:Minimal reversible deterministic finite automata. Int. J. Found. Comput.

Sci. 29, 251–270 (2018)
8. Holzer, M., Kutrib, M.: Reversible nondeterministic finite automata. In: Phillips, I., Rahaman, H. (eds.)

Reversible Computation (RC 2017). LNCS, vol. 10301, pp. 35–51. Springer, Berlin (2017)
9. Kutrib, M.: Reversible and irreversible computations of deterministic finite-state devices. In: Italiano,

G.F., Pighizzini, G., Sannella, D. (eds.) Mathematical Foundations of Computer Science (MFCS 2015).
LNCS, vol. 9234, pp. 38–52. Springer, Berlin (2015)

10. Kutrib, M., Malcher, A., Schneider, C.: Finite automata with undirected state graphs. In: Konstantinidis,
S., Pighizzini, G. (eds.) Descriptional Complexity of Formal Systems (DCFS 2018). LNCS, vol. 10952,
pp. 212–223. Springer, Berlin (2018)

11. Kutrib, M., Worsch, T.: Time-symmetric machines. In: Dueck, G.W., Miller, D.M. (eds.) Reversible
Computation (RC 2013), LNCS, vol. 7948, pp. 168–181. Springer, Berlin (2013)

12. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191
(1961)

13. Lavado, G.J., Pighizzini, G., Prigioniero, L.: Weakly and strongly irreversible regular languages. In:
Csuhaj-Varjú, E., Dömösi, P., Vaszil, G. (eds.) Automata and Formal Languages (AFL 2017). EPTCS,
vol. 252, pp. 143–156 (2017)

14. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol.
1, Chapter 2, pp. 41–110. Springer, Berlin (1997)

15. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234 (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Finite automata with undirected state graphs
	Abstract
	1 Introduction
	2 Preliminaries
	3 Characterization of undirected finite automata with small alphabets
	3.1 Unary and binary deterministic undirected finite automata
	3.2 Unary nondeterministic undirected finite automata

	4 Deterministic operational state complexity
	5 Nondeterministic operational state complexity
	6 Conclusions
	Acknowledgements
	References

