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Humans represent the precision 
and utility of information acquired 
across fixations
Emma E. M. Stewart1*, Casimir J. H. Ludwig2 & Alexander C. Schütz3,4

Our environment contains an abundance of objects which humans interact with daily, gathering visual 
information using sequences of eye-movements to choose which object is best-suited for a particular 
task. This process is not trivial, and requires a complex strategy where task affordance defines the 
search strategy, and the estimated precision of the visual information gathered from each object may 
be used to track perceptual confidence for object selection. This study addresses the fundamental 
problem of how such visual information is metacognitively represented and used for subsequent 
behaviour, and reveals a complex interplay between task affordance, visual information gathering, 
and metacogntive decision making. People fixate higher-utility objects, and most importantly retain 
metaknowledge about how much information they have gathered about these objects, which is used 
to guide perceptual report choices. These findings suggest that such metacognitive knowledge is 
important in situations where decisions are based on information acquired in a temporal sequence.

The visual world is full of objects, each unique, and each rich in visual detail. In order to scrutinise these 
objects with higher-precision foveal vision, humans make sequences of saccades, sampling information with 
each  fixation1–4. In such natural daily behaviour, humans make multiple saccades per second, and use the infor-
mation that has been gathered across multiple fixations to inform decisions and actions. It is an open question 
as to what extent human observers have knowledge of the quantity and quality of perceptual evidence gathered 
across fixations and use this metaknowledge to guide their  behaviour5. In daily life, representing the precision 
of the information one has about objects and locations in the world may be important when deciding on a 
course of action. For example, during an activity such as rock-climbing, one might need to find the most suitable 
object to use as the next hand-hold, based on visual information alone. Here one needs to not only represent the 
value, or utility of potential hand-hold-objects, but also the amount of confidence one has in the available visual 
information, to avoid choosing a bad object that is too small, slippery, or unstable, with potentially disastrous 
consequences. Such situations involve a number of processes: first, selecting potential high-utility objects to fix-
ate, based on the particular affordance of the task; second, gathering higher-precision visual information about 
these objects using a sequence of saccades; third, maintaining a metacognitive representation about the preci-
sion of information gathered about each object; and fourth, choosing an object based on both its utility, and the 
metacognitive judgment about the precision of the information used to make this value-based comparison. It 
is unknown how such processes may interact, and in particular how humans represent and use metaknowledge 
about visual information acquired across sequences of saccades in such complex tasks.

The question of how much metaknowledge humans have about their own oculomotor behaviour has been 
assessed in divergent studies investigating how much people know about their own eye movements. A number 
of authors have shown that people are unable to accurately report the locations of their  fixations5–7 or recognize 
their own scanpaths from a visual search  task8. However, other evidence suggests that people can remember 
their own fixations and better than  chance9. More importantly, this memory for one’s own fixation behaviour 
seems to be particularly object-oriented10–12. People seem to retain a sparse memory representation of their 
own search  history13, and the visual system itself seems to retain some implicit knowledge and memory of items 
and locations that have been fixated in visual  search14,15. But while these studies assessed whether people knew 
where they looked, they did not assess whether people retained a representation of how much information they 
had gathered from each fixation. A highly influential model of optimal visual search assumes that the amount 
of information gathered at different locations of the search display is represented across multiple  fixations16. 
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However, how participants represent and use any metaknowledge of how much information they have gathered 
is unknown. In the studies gauging awareness of oculomotor behaviour, as well as standard search or informa-
tion foraging paradigms, participants are asked to make reports such as whether a specific target is present or 
absent, where a particular target is located, or where they  fixated17. However, these studies do not reveal whether 
participants retain metaknowledge about how much information they have gathered, and how they might use this 
metaknowledge to guide subsequent choices. While participants may gather information about various objects 
and locations during such search tasks, the subsequent report characteristics do not require participants to draw 
upon any metaknowledge they may have about how much information they have gathered (Fig. 1a). Many of 
the paradigms investigating what people know about their own eye movements also involve gauging partici-
pants’ explicit awareness of their own fixations: participants are asked to explicitly select objects, or locations 
they thought they had looked at, an approach which may under-estimate the amount of knowledge participants 
actually have about their fixation  behaviour18. Therefore, in order to gauge how much information participants 
gather during fixations, and how much metaknowledge they have about this information, a different approach 
may be required than has been previously used.

Choice paradigms are commonly used in studies investigating value-based decision behaviour, where partici-
pants are asked to choose which of a number of stimuli they prefer. In many scenarios, these choices are based 
on both the subjective and relative value of these options, as well as viewing behaviour, with gaze amplifying the 
value of a choice  option19–23. Oculomotor measures such as fixation duration and saccade  vigour24 are predictive 
of choice (although these studies do not necessarily imply a causal role for gaze). Choice paradigms can also pro-
vide information about a participant’s level of uncertainty about a stimulus: when participants are able to choose 
which stimulus they prefer to report on, they consistently choose the less uncertain  stimulus25,26. Report choice 
can also therefore be used as a proxy measure of perceptual confidence about a stimulus (Type 2 judgment), and 
can be used to probe knowledge about stimuli on a more metacognitive level. Confidence in perceptual decisions 
is dependent on factors such as the strength and duration of sensory  inputs27, so in the context of this study, 
should relate to the higher-precision information gathered by fixations, and also fixation duration.

Results
In this study we utilised a novel search, choice and report paradigm, in which participants free-viewed an array 
of five real-world objects for 1500 ms, and were then asked to choose which two objects they would prefer for 
a subsequent perceptual match-to-sample task (Figs. 1b, 2a). This task aimed to determine how the affordances 
of a specific task influence how humans use saccades to sample information, and how they use the metaknowl-
edge about this sampled information to make report choices. We assume a theoretical framework, outlined in 
Fig. 1b, in which participants start a trial with the knowledge that they will have to complete a match-to-sample 
task at the end of that trial. Given the naturalistic and heterogenous nature of the presented objects, some items 
are inherently easier to report than others—these objects can be said to have greater task-utility. Participants 
should therefore use peripheral information to determine which objects in the trial have the greatest task-utility, 
and use saccades to sample more information from these objects. We hypothesise that participants retain a 
representation, or metaknowledge of the precision of the information gathered across fixations. If participants 
know how much information they have about each object, they should choose to report those objects that they 
have fixated and that they have more information about and can report more precisely. Therefore, report choice 
may be used as a measure of perceptual confidence. As a result, we predict links between fixation behaviour, 
information uptake, perceptual confidence (report choice) and perceptual error. Our primary hypotheses are 
therefore that (1) participants have more information for fixated items, compared to non-fixated items; (2) fixated 
items are more likely to be chosen for report; and (3) chosen and fixated items are reported more accurately. The 
properties of the objects used in this paradigm may also influence both report choice and fixation behaviour, 
such that participants should choose objects that are more suitable, or have greater task utility for the perceptual 
match-to-sample task, and should therefore fixate these easier objects in order to gather more information from 
them. Our secondary hypotheses therefore predict that objects with greater task-utility are more likely to be 
(4) chosen and (5) fixated. Note that when we refer to “more information”, or “more precise information”, we 
refer to the degree of (un)certainty about the object (or, its task-relevant dimension, namely orientation). We 
do not distinguish between the “quality” of information (i.e. higher acuity in foveal than peripheral vision), and 
“quantity” of information (i.e. more information can be obtained with longer fixation durations)—both direct 
fixation and prolonging fixation duration are ways of reducing uncertainty.

Results are split into two main sections: the first section relates to the question of how people use meta-
knowledge of the information they have acquired across fixations to make decisions about perceptual report. 
The second section relates to how people use intrinsic object properties and the task-utility of objects to guide 
these fixations and report choices.

Metaknowledge and information. Fixations vs perceptual confidence vs performance. First, we investi-
gated how participants used the information they have acquired about the objects that were selected as saccade 
targets. Note that participants did not simply fixate all five objects, but were clearly selective. Figure 3a shows 
that on most trials 2–4 objects were fixated. The overall amount of time available to participants was limited 
to 1.5 s and this may have forced them to target more “promising” objects for fixation. To determine whether 
participants retained a representation of the precision of information acquired across the course of a trial, we 
compared fixations, report choice, and perceptual performance. If participants do retain a representation of this 
precision, they should choose objects that they have more information about as a result of fixation (hypothesis 
2), which should also allow them to complete the behavioural task more accurately (hypothesis 3). More precise 
information should result from fixating an object, therefore performance should also be better for fixated ob-
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Figure 1.  Comparison of classic search paradigms with the search and choice paradigm used in this study. (a) 
Example of a classic search paradigm, with a linear task structure: a search task is completed based on a template 
or instruction, but metaknowledge about the amount of information gathered for fixated objects is not necessary 
for, or probed in, the perceptual report task. (b) The framework for this experiment. In this framework, the 
constraints of the match-to-sample perceptual report task influence how information is sampled, and how this 
information is subsequently used. Here, the task structure is circular, because the requirements of the perceptual 
report task directly feed into the task affordance at the outset of the task: there are no specific search templates or 
instructions given at the start of each trial, rather the knowledge of the requirements of the eventual report task 
feed into the task affordances. The stimulus set comprises 577 unique objects, each with 360° viewpoints. Some 
objects, like the duck, are very easy to distinguish as they are rotated; others, like the ramekin, are very difficult 
to discriminate from one rotation to the next. Potential high-utility objects (in this case, those that are easier/
more discriminable for the match-to-sample perceptual report task) are selected to be saccade targets; with 
each fixation, evidence about the orientation of the fixated object is gathered, along with a meta-representation 
of the degree of (un)certainty around this orientation: this can be roughly equated to perceptual confidence. 
Participants have to choose which objects they would prefer to report: they should choose those that they are 
more confident about (have more information about), and which, given the hypothesised search strategy, should 
also be easier to report. In this paradigm, the information gathered with each fixation is directly probed in the 
match-to-sample perceptual report task.
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jects. Figure 3b shows that this indeed the case: participants were more likely to choose objects they had fixated, 
irrespective of the number of objects fixated on a given trial, for both first and second chosen objects.

In addition, perceptual performance was better (lower perceptual error) for both chosen and fixated objects 
(Fig. 3c,d). A linear mixed model with fixed effect of fixation (fixated, not fixated) and report choice (chosen, 
not-chosen) and random by-participant intercepts was fitted to predict perceptual error on every trial. There was 
a significant main effect of fixation: F (1, 2995) = 23.65, p < 0.001; report choice: F (1, 2995) = 332.82, p < 0.0001; 
and an interaction between fixation and report choice: F (1, 2995) = 7.32, p = 0.0068.

How much information is needed to make choices? With each fixation, the visual system processes information 
from a certain area around the locus of fixation: this may occur in a very localised manner, where only high-
acuity foveal information is processed; or may occur more broadly, where lower-acuity information is processed 
in a more diffuse manner from the entire visual field. We refer to the spatial extent of the information processed 
as an information uptake window. To investigate the link between fixation and report choice in more detail, we 
estimated the size of the “information uptake” window that was used to make report choices. We assumed that 
with every fixation, the visual system takes up information from a region of a certain size around the fixated 
point, and the precision of this information decreases with increasing distance from fixation. We additionally 
assumed that information uptake is a function of time, such that more information can be accumulated during 
a longer  fixation29,30. We modelled this information uptake window as a Gaussian probability density function 
around each fixation, multiplied with the duration of that fixation:

Figure 2.  Methods. (a) Overview of experimental procedure: after fixation, an array of five objects at random 
rotations appeared for 1500 ms. Participants were free to inspect this array throughout this period. They were 
then asked to choose two objects they would prefer to report, and then rotate an on-screen image of one of the 
objects to match the shown rotation. The report object was more likely to be a chosen object, but non-chosen 
objects might also be probed. (b) Example of the perceptual error measure for two objects, based on low-
level image properties: the top graph shows an object where angular difference corresponds almost linearly to 
perceptual dissimilarity. The bottom graph shows a regularly-shaped object where perceptual similarity peaks 
every 90° rotation. Perceptual error was calculated as the difference in perceptual  similarity28 between shown 
and response angles: the same angular distance can result in a different perceptual distance for different objects. 
(c) Rotational discriminability (empirical) was measured in a separate, online study, and was estimated as the 
concentration of responses to axis labels for each object. Examples show a low and high concentration object, 
equating to low and high utility.
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where µx and µy are the x and y fixation coordinates and σ is the circular standard deviation of the uptake win-
dow. As the size of this window is unknown, we varied σ between 0.2° and 50° (from 0.2 to 3 in step sizes of 0.2, 
from 4 to 12 in step sizes of 1, and 20 and 50). At smaller values of σ , the assumption is that information is used 
from primarily foveal vision, including only information about objects close to fixation; at larger values of σ , 
the assumption is that information is parsed from a larger region of the visual field (Fig. 4a), including multiple 
objects also more distant from fixation. To determine how much information was taken-up from a particular 
object, we summed the Information Uptake values over the (x, y) coordinates occupied by that object across all 
fixations in a trial (Fig. 4a).

We then related this amount of information uptake for each object to report choice behaviour: if participants 
retained an accurate representation of how much information they had about each object, they should choose 
those they had more information about. Given the limited number of object locations used throughout the 
experiment, for larger window sizes we would already expect a significant amount of information uptake from 
the objects, even if fixation behaviour was entirely random. It is important to quantify this expected degree 
of information uptake for fixation behaviour that was not purposefully driven by the demands of the report 

(1)Information uptake =
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2σ2 × fixation duration

Figure 3.  Fixations vs report choice vs performance. (a) Histogram of number of objects fixated in a trial, 
across all trials and participants. (b) Participants were more likely to choose objects that had been fixated, 
irrespective of how many items were fixated in a trial, for both first chosen (blue) and second chosen (yellow) 
objects. The grey diagonal line denotes chance performance for choosing a fixated item. (c) Perceptual error 
for report choice (chosen = green, not-chosen = grey) and fixation (fixated = circles, not-fixated = diamonds). 
(d) Perceptual error for first (blue), second (yellow) and not-chosen (grey) objects. (c, d) Light colors indicate 
individual participants and dark colors the mean across participants. The pink horizontal line denotes chance 
(for each trial, perceptual error was calculated using the perceptual similarity curve of one random object out of 
all 577 objects, and chance is the mean performance for this randomly-shuffled error). (b–d) All error bars are 
95% confidence intervals.
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choice task. We therefore computed a shuffled, baseline information uptake measure (see “Supp. materials”) 
(Fig. 4b, dotted lines). To quantify the difference between first, second, and non-chosen items across different 
size Gaussian windows, we used a generalised additive model (GAM) to describe information uptake by report 
choice and SD (similar  to31). We compared the difference in information uptake between first and second chosen 
objects compared to non-chosen objects (non-chosen as baseline choice level). First, without taking window 
size into account, there was a significant main effect across all window sizes between non- and first-chosen 
objects (estimate = 0.39; std. error = 0.0085; t = 45.74; p < 0.0001); and between non- and second-chosen objects 
(estimate = 0.34; std. error = 0.0085; t = 40.32; p < 0.0001).

For the shuffled chance conditions (Fig. 4b, dotted lines), there was no significant difference between either 
non- and first chosen objects (estimate = − 0.0036; std. error = 0.0021; t = -1.72; p = 0.086); or between non- and 
second chosen objects (estimate = − 0.0035; std. error = 0.0021; t = − 1.66; p = 0.098). Therefore, the difference in 
information uptake between chosen and non-chosen is not an artefact arising from the window sizes adopted 
and the constrained object locations used throughout the experiment. We used difference smooths to compare 
the information uptake between chosen (first, second) and non-chosen objects across window size: the window 
sizes at which the 95% CI around these smooths do not contain 0 are considered significant (Fig. 4b, bottom). 
First-chosen objects had a different amount of information uptake to non-chosen objects for a SD range of 
0.2–19.37 (non-log scale); second chosen objects differed from non-chosen for a SD range of 0.2–18.32. These 
results suggest that participants had more information about chosen objects compared to non-chosen objects, 
regardless of what assumptions we make about the size of the uptake window (up to very large windows of ~ 20° 
at least). Note that the peak difference between first-chosen and non-chosen, and between second-chosen and 
non-chosen were very similar (2.59° and 2.69°; in terms of full-width at half-height: 6.1° and 6.3°, respectively) 
(Fig. 4a “Overlap Gaussian and object” panel depicts a window with SD 2.6).

To determine whether the amount of information uptake for each object was predictive of perceptual error, 
beyond the categorical fixated/chosen predictors (as in Fig. 3c), we ran a linear mixed model as above, with 
information uptake (assuming a 2.6° window) as a factor. The mixed model contained a fixed effect of fixation 
(fixated, not fixated), report choice (chosen, not-chosen), and information uptake, with random intercepts by 
participant, and was fitted to predict perceptual error on every trial. The model was formulated such that the 
effect of information uptake was calculated given the effects of report choice and fixation (type I sequential sum 
of squares). There was a significant main effect of fixation: F (1, 2998) = 129.04, p = 0.0001; report choice: F (1, 
2998) = 178.93, p < 0.0001; and more importantly information uptake: F (1, 2998) = 13.16, p < 0.0001, showing 
that information uptake accounted for performance beyond both report choice and fixation. There was also a 
significant interaction between information uptake, fixation, and report choice: F (1, 2998) = 6.83, p = 0.009. 
To investigate the effect of information uptake on perceptual error whilst controlling for fixation, we used this 
model to calculate the estimated difference in slopes of information uptake for fixated vs non-fixated objects 
(averaged across chosen/non-chosen). There was no difference in slopes between fixated and non-fixated objects: 
contrast Estimate [CI] − 0.05 [− 0.13 0.027], suggesting that the link between information uptake and percep-
tual error was independent of whether an object was fixated. When taking report choice into account, there is 
again no difference in slope between fixated and non-fixated chosen objects: estimate [CI] 0.053 [− 0.038 0.144], 
estimated slopes: non-chosen, non-fixated = 0.023 [− 0.047 0.11]; non-chosen, fixated = − 0.023 [− 0.07 0.025]. 
However, slopes differ for the chosen objects: estimate [CI] − 0.15 [− 0.28 − 0.028], estimated slopes: chosen, 

Figure 4.  Overview of the information uptake model. (a) Information uptake was calculated by assuming 
Gaussian windows with different SDs around fixations for each trialscreen. Information uptake was calculated 
by summing the values of this Gaussian window across the object’s (x, y) pixel coordinates. Example overlap 
calculation is shown for the optimal window size, 2.6SD. (b) Top: Information uptake by report choice for first 
(blue), second (yellow) and not-chosen (grey) objects, by log SD of the Gaussian window. Dotted lines of the 
same colour indicate chance performance for each condition. Bottom: Difference between chosen and not-
chosen objects from GAM models fitted to real (solid) and chance (dotted) data—note that the chance data 
overlap almost entirely. Error bars are 95% confidence intervals.
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non-fixated = − 0.19 [− 0.31 − 0.06]; chosen, fixated = − 0.034 [− 0.05 − 0.011]. Specifically, when an object was 
chosen, there was a greater effect of information uptake on perceptual error for non-fixated objects. This indi-
cates that the information uptake about an object may be a more accurate predictor of perceptual performance 
than fixation alone.

Task constraints affect choice and fixation strategy. Report choice vs object features. To determine 
whether, on top of fixations, inherent object properties can also account for which objects were chosen in a trial 
(hypothesis 4), we related report choice decisions to a number of image properties: rotational discriminability 
(computational and empirical), salience, and entropy (Fig. 5a). Rotational discriminability was a measure of the 
utility of objects for the perceptual report task: if an object was more rotationally discriminable from one angle 
to the next, it would be easier to rotate it to match the shown angle (Fig. 2c), and therefore have more utility for 
the task. Participants should choose objects that were easier for the perceptual report task. Entropy was a meas-
ure of visual complexity, or variability in pixel values within each object, and salience was measured as an object 
feature that may affect report choice and fixation behaviour, but is not a measure of usefulness or information 
of an object.

For each object, in every trial, for every participant, we used a generalised linear mixed model to relate the 
binary outcome “chosen” (0 = not-chosen, 1 = chosen) to each object feature predictor (choice ~ fixation + rota-
tional discriminability (computational) + rotational discriminability (empirical) + salience + entropy), with ran-
dom by-subject intercepts. Fixation was the strongest predictor for report choice: estimate = 2.22, SE = 0.046, 
χ2 = 2322.99, p < 0.0001; followed by salience: estimate = 0.068, SE = 0.011, χ2 = 40.32, p < 0.0001; rotational 
discriminability (empirical): estimate = 0.026, SE = 0.009, χ2 = 8.01, p = 0.0046; and rotational discriminability 
(computational): estimate = − 0.02, SE = 0.01, χ2 = 4.8, p = 0.028 (note opposite direction as less peaks = higher 
rotational discriminability); and entropy: estimate = 0.022, SE = 0.011, χ2 = 3.93, p = 0.047 (Fig. 5b). This suggests 
that the best predictor of whether an object was chosen was whether it was fixated, but people were also more 

Figure 5.  Object features as predictors of report choice and fixation. (a) Example images with high and low 
feature levels. (b) Model coefficient estimates from GLMM with object features as a predictor of report choice. 
The shaded area in the inset panel is a zoomed axis of the main plot. (c) Model coefficient estimates from 
GLMM with object features as a predictor of fixation. (d) Example of how the feature difference plots in E and 
F are calculated. The plot from an example observer shows the difference between the 2nd and 3rd highest 
rotational-discriminability of objects as a predictor for report choice, with the diagram depicting the difference 
calculation from a trial with arbitrary example values. Hits refer to trials where participants chose or fixated the 
two highest feature-value objects; miss refers to all other trials. (e) Model coefficient estimates from separate 
GLMMs for each feature, relating relative differences in object properties to report choices. (f) Model coefficient 
estimates from separate GLMMs for each feature, relating relative differences in object properties to fixation. (b, 
c, e, f) Error bars are 95% confidence intervals. Significant predictors are depicted in dark grey, insignificant in 
light grey.
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likely to choose objects that were salient, had higher rotational discriminability (therefore more utility for the 
task), or that had higher entropy.

To investigate whether the relationships between choice and object features were independent of fixation, we 
ran a second model which included an interaction between fixation and each feature predictor (choice ~ rotational 
discriminability (computational)*fixation + rotational discriminability (empirical)*fixation + salience*fixation + 
entropy*fixation). Model comparisons showed that adding interaction terms did not significantly improve the 
fit of the model  (AICno-interction = 17,997;  AICinteraction = 18,002, χ2 = 2.86, p = 0.58). To further compare the effect 
of specific predictors on report choice whilst controlling for fixation, we calculated the estimated slope of each 
model covariate (feature) for fixated vs non-fixated objects. There was no difference in the slopes between fix-
ated vs non fixated objects for salience: estimate [CI] 0.02 [− 0.03, 0.07]; RD (empirical): − 0.28 [− 0.07 0.016]; 
RD (theoretical): − 0.017 [− 0.06 0.03]; or entropy: − 0.03 [− 0.08 0.022]. This suggests that the effect of specific 
object features on report choice was independent of whether those objects were fixated or not.

If participants use a certain strategy to choose objects, for example choosing those that are more rotationally 
discriminable and therefore have a higher utility for the task, they should take into account the relative rotational 
discriminability of the objects in a particular trial. This relative judgement should be easier if there is a greater 
relative difference between higher and lower value objects. To see whether participants accounted for the rela-
tive magnitude of certain object properties, we looked at whether participants were more likely to choose the 
two objects with the highest magnitude of feature value, as the difference between the second and third highest-
magnitude objects increased, or the relative difference between “higher” and “lower” magnitude objects increased 
(Fig. 5d). We tested the three object-property predictors: rotational discriminability/utility (empirical), salience, 
and entropy (the lack of variation in the rotational discriminability (computational) measure made it impossible 
to fit a model with this predictor, so we excluded it from this analysis), to see whether participants chose the most 
salient objects, or whether they chose objects based on their utility for the task, or the amount of information 
contained within an object. For each predictor, we ran a separate GLM with binary outcome of report choice 
(chosen, not-chosen) as predicted by the difference between second-highest and third-highest object for each trial 
and each subject (subject was included as a random effect). Wald chi-square tests showed a significant effect for 
rotational discriminability (empirical): estimate = 0.15, SE = 0.055, χ2 = 8.1, p = 0.0044; but no significant effect of 
salience: estimate = 0.07, SE = 0.064, χ2 = 3.19, p = 0.07; or entropy: estimate = 0.068, SE = 0.064, χ2 = 1.14, p = 0.28 
(Fig. 5e). This demonstrates that participants chose objects based on their relative utility, rather than salience or 
entropy. This suggests a higher-level strategy whereby participants can assess how suitable each object is for the 
perceptual discrimination task, and then choose objects based on this relative judgement.

Fixation vs object features. Participants were more likely to choose objects that are better for the perceptual 
report task; this may suggest that they also used a strategy to fixate higher-utility objects in order to extract 
more information from them for the eventual perceptual report task (hypothesis 5). We therefore also investi-
gated whether inherent object properties influenced fixation strategies. As above, for each object in every trial 
for every participant, we used a generalised linear mixed model to relate the binary outcome “fixated” (0 = not 
fixated, 1 = fixated) to each object feature predictor (fixation ~ rotational discriminability (computational) + rota-
tional discriminability (empirical) + salience + entropy), with random effect of subject. Salience was the strongest 
predictor for fixation: Estimate = 0.085, SE = 0.01, χ2 = 63.07, p < 0.0001; followed by entropy: Estimate = 0.03, 
SE = 0.01, χ2 = 7.03, p = 0.008; rotational discriminability (empirical): Estimate = 0.02, SE = 0.009, χ2 = 5.056, 
p = 0.025; and rotational discriminability (computational): Estimate = -0.01, SE = 0.009, χ2 = 1.3, p = 0.25 (Fig. 5c). 
This suggests that, after salience, the largest predictors of fixation were entropy and rotational discriminability 
(empirical), with higher entropy objects (those that contained more detailed information), and more rotation-
ally discriminable (higher utility) objects being fixated more often. We further investigated whether the relative 
magnitude of objects’ features affected which objects were fixated: as with the report choice analysis, we looked at 
whether participants were more likely to fixate the two objects with the highest feature magnitude as a function 
of the difference in feature strength between the second and third highest objects. There was a significant effect of 
relative rotational discriminability: Estimate = 0.1, SE = 0.04, χ2 = 5.6, p = 0.018; relative entropy: Estimate = 0.11, 
SE = 0.04, χ2 = 7.9, p = 0.0048; and relative saliency: Estimate = 0.043, SE = 0.02, χ2 = 4.71, p = 0.03 (Fig. 5f). As 
with report choice, this suggests that participants accounted for the relative strength of features in objects, and 
used this to guide saccades, and that the relatively utility of objects, or the amount of information contained 
within an object, may play more of a role than their relative salience.

Discussion
This study provides insights into how information is acquired, represented, and used in a complex visually-guided 
choice task. The results showed that humans retain an accurate representation of the precision of information 
acquired across a sequence of saccades. Participants had higher perceptual confidence and lower perceptual error 
for objects that they had fixated, and thus had higher-precision information for. Participants also chose objects 
based on relevant features, such as their relative utility for the perceptual report task (as judged independently 
by a different sample of participants in a different experiment).

This novel paradigm provides strong evidence that humans know how much information they have gathered 
about objects across sequences of fixations. In the context of studies investigating whether humans can explicitly 
remember their own oculomotor  behaviour7–10,12, this metaknowledge may be functionally more useful than 
retaining knowledge of exact fixation locations: knowing whether the available information about an object is 
reliable is important when this information informs subsequent decisions and actions. Our model of informa-
tion uptake also suggests that humans consider primarily foveal information to make choices, suggesting that 
choices are based on the higher-precision, foveal information that is gained from fixations. However, when the 
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influence of fixations is accounted for, intrinsic object features also determined which objects people chose, 
regardless of whether they were fixated or not. This suggests that participants did not solely rely on information 
from fixated objects, but to a lesser extent also processed and used peripherally-viewed object information, 
potentially accumulating evidence for both fixated and peripherally-viewed objects in parallel over the course 
of multiple  fixations32,33.

The task affordances in this paradigm showed a secondary behavioural outcome: participants could account 
for the relative inherent utility of objects when making choices. Here, utility was not measured as an explicit 
rating or reward, but as an implicit measure, where items with a higher utility were those that made the percep-
tual task easier (operationalized as “rotational discriminability”). Participants were more likely to choose, and 
fixate objects with higher utility relative to all objects presented, demonstrating that they retained an accurate 
representation of not only the internal precision of information they had about each object, but also the relative 
utility of each object in the display. Similar links between fixations, choice, and subjective value have been found 
in studies where participants had to choose food items that they had given overt explicit value ratings  for20,21,30, 
where participants made decisions and saccades based on both the strength of purely sensory evidence and 
explicit value of potential  targets34–37. The measure of utility in this study differs from these previous studies, 
however, as no explicit valuation was given for objects, and participants had to infer the utility of each object 
for the perceptual report task based on visual information alone: in this sense these findings bridge studies on 
perceptual and value-based decision-making20,30,34,36,38, by considering the inherent perceptual utility of objects, 
where the utility of each option is based on how its visual properties make an object more or less suitable for a 
purely perceptual task, independent of the behaviour of the participant. It is of course possible that participants 
can select the best objects without this choice being accompanied by a metacognitive, subjective experience of 
confidence. However, that seems unlikely given the wealth of evidence that people have knowledge about their 
own level of uncertainty in perceptual decision  making26. Nevertheless, it is a possibility that any subjective expe-
rience of confidence that accompanies selection of the items for report, plays no causal role in the selection of the 
objects and is constructed post-hoc, after the selection has been made (e.g. post-decision models of confidence 
such  as39). However, we refrain from making inferences about whether people have explicit access to their own 
internal, subjective states—this is why this paradigm uses an implicit measure of confidence based on choice.

This paradigm also allowed us to relate how fixation strategy might be driven by task affordances. Participants 
tended to fixate more salient items (Fig. 5a)40–42. Note that many studies have reported that salience is not the 
greatest predictor for  fixations43–46, but these findings generally apply to natural scene viewing. In our study, 
where discrete objects are placed in an array on a black screen, the role of saliency might be higher due to a lack 
of context or contextual meaning. However, once salience was accounted for, people also seemed to fixate the 
higher-utility (i.e. more rotationally-discriminable) objects that would be more appropriate for the perceptual 
report task, and those that had higher entropy, or contained a higher variability of visual information within the 
shown view of the object. Indeed, these measures had a larger effect than saliency when considering the relative 
magnitude of features in an object in the context of the whole visual scene—i.e. participants were more likely 
to fixate the objects with relatively higher utility and entropy, but not those with relatively higher salience. This 
suggests that when accounting for features that relate directly to the task affordance (such as utility), it is the 
relative magnitude of these features that is important.

The link between fixations and object features is interesting in the context of influential saccade sampling 
theories such as those of Najemnik and  Geisler16,47, which suggest that humans fixate objects and regions with 
higher uncertainty, in order to gain information. In this experiment one might expect people to fixate a “dif-
ficult” object in order to gain as much information as possible, in case they have to report this object. However, 
the strategy of looking at “better” items in this case suggests a more confirmatory approach to choosing fixation 
targets, where participants’ sampling strategies are biased toward preferred, or more valuable items (similar to 
the MAP strategy rejected by Najemnik and  Geisler47, but see also Eckstein et al.48). Why might this be the case? 
The first explanation may again relate to the constraints of the paradigm itself: when sampling visual informa-
tion for a subsequent report choice, the strategy of fixating objects based on the expected utility of the object 
for the task could outweigh any low-level perceptual consequences such as information gain (where one might 
expect participants to fixate more difficult objects to gather more information—this strategy might arguably be 
used if the task constraints differed, i.e. if participants were not able to choose a preferred report item, or if the 
contingency between choice and probe were changed, so that non-chosen items had to be reported more often). 
The sampling strategy seen in this study may also reflect studies showing that a later reward associated with a 
decision may influence saccade strategies leading up to that  decision48. This strategy is reminiscent of confir-
mation bias in economic decision making, where participants’ sampling strategies are biased toward preferred, 
or more valuable  items38,49,50. However, in the context of this study, object utility was not based on monetary 
reward, but on perceptual information. The second explanation proposes a strategy where participants account 
for both utility and visual information  gain16,47. The utility of an object may represent an upper bound on the 
amount of information that can be gained from fixating that object: more information can be gained (or more 
uncertainty reduced) from high- than low-utility items. For example, for objects such as the ramekin (Fig. 2c), 
fixation would not provide any more beneficial information about the object for the task. Maximum information 
gain is achieved through fixating an object, but when the upper bound on potential information gain is low (as 
with low-utility items), the information that can be gained from fixation may not necessarily increase compared 
to the information gained from peripheral viewing.

One limitation of our study is that we did not analyse to what extent fixations and report choices were deter-
mined by semantic information about the objects. Semantic information has been shown to be an important 
determinant of fixations in real-world  scenes45,51–56. However, we do not believe that semantic information 
played a major role in our study for three reasons: first, our displays were composed of unrelated, isolated objects 
without any (semantic) scene context. Second, we used a purely perceptual task that could be achieved even 
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without recognizing a particular object. Third, semantic information only guides attention when searching for a 
semantically related  object57. Since participants were not searching for a particular object in our task, guidance 
by semantic information should not be activated.

A related issue, relevant to both semantics and utility, is whether participants used some inherent metaknowl-
edge of the objects themselves as a predictor of rotational discriminability. We cannot, for example, know whether 
participants knew from experience and encounters with objects in the real world, that a rubber duck may have 
higher utility for the task than a uniform glass bowl, or whether they used low-level visual cues to judge utility. 
Additionally, while we see convincing evidence for the effect of utility, it is certainly possible that our measure of 
utility could also correlate with a different visual cue—with such heterogenous stimuli there could be boundless 
possibilities for what this cue might be.

Gathering visual information to make a visually-guided choice about the best object for a task is a non-trivial 
process: this study reveals a complex interplay between task affordance, visual information gathering, and meta-
cognitive decision making, and suggests first, that humans can retain and use metacognitive knowledge about the 
precision of visual information gathered across sequences of saccades; and second that task affordances result in 
participants using the inherent perceptual utility of objects to guide both fixations and choices.

Methods
For more detailed methods please refer to “Supplementary material”.

Participants. Twenty-one participants aged 18–30 (16 female, 5 male) took part in the experiment for 
money or course credits. This sample size is similar to previous studies on reporting oculomotor  behaviour7,12. 
Ethics approval was obtained from the local ethics commission of the Department of Psychology of Marburg 
University (proposal numbers 2015-35k and 2020-43k), participants provided informed consent, and experi-
ments were conducted in accordance with the Declaration of Helsinki (1964).

Stimuli. Stimuli came from the Amsterdam Library of Object images (ALOI)58, which comprises real-world, 
everyday objects, photographed from 72 viewpoints (360°, in 5° rotational increments) on a black background 
(Fig. 1b). We selected a subset of objects that were easily recognisable and nameable for our subjects, which 
resulted in 577 objects being used in the experiment. The images appeared at random locations on an equally 
spaced triangular grid (such that x and y distances in the grid were equal), with a maximum horizontal eccen-
tricity of 15°, and vertical eccentricity of 10° from the centre of the screen. The fixation cross was a white com-
bination of a bulls-eye and a cross-hair  shape59, and never appeared at the same location as an image in a trial.

Procedure. To start the experiment, participants fixated on a cross which appeared randomly at one of eight 
locations equally spaced on an imaginary circle with radius 8° from screen centre, and pressed the space bar 
(Fig. 2a). After a random delay between 500 and 1000 ms, five images appeared on the screen for subjects to view 
freely. After 1500 ms, the images disappeared and a list of the names of the five objects appeared. Subjects had to 
use the mouse to select two objects that they preferred to report on. After selection, a response image appeared. 
The response image could be an image that was both chosen and fixated, chosen but not fixated, not-chosen 
and fixated, or neither chosen nor fixated (see “Supplementary material” for fixation classification details). Par-
ticipants were told that it was more likely that the response image would be one they chose. Participants used a 
mouse to rotate the response image to match the rotation they saw, and clicked to confirm. We aimed for chosen 
objects to be presented at double the probability of non-chosen items. Due to differing choice/fixation behaviour 
between participants, it was not always possible to achieve consistent probabilities for report items: the mean and 
SD of response items across participants for each choice/fixation combination are: chosen, fixated: 0.56 (0.04); 
chosen, not-fixated: 0.07 (0.04); not-chosen, fixated: 0.19 (0.08); not-chosen, not-fixated: 0.18 (0.09). Each par-
ticipant completed 150 trials; an object could only be repeated after 70 trials to avoid memory interference. Note 
that participants were given no instructions as to which objects they should look at, or which objects might be 
easier for the task. They were given no specific instructions in regards to their viewing behaviour. Participants 
were unaware of how perceptual error was calculated, and were given no explicit feedback on their performance 
during the experiment.

Analysis. Performance—perceptual similarity. To determine perceptual performance, we used a perceptual 
similarity metric rather than calculating error as angular error between the shown and reported object orienta-
tions: some objects, for example a cube-shaped box, look very similar with every 90° rotation, so measuring 
perceptual similarity between rotations gives a more accurate representation of perceptual error than measuring 
pure angular error (compare, for example, Fig. 2b top to bottom where the same angular error can result in dif-
ferent perceptual error for different objects). To do this, we used the Perceptual Similarity measure of Neumann 
and  Gegenfurtner28, which uses low-level image features such as colour and spatial frequency to calculate the 
perceptual similarity of two images. We calculated perceptual error between the shown rotation of the response 
image and all other rotations of that image, and normalised these values between 0 and − 1 per object, such that 
the comparison of an image to itself had a similarity score of 0, and the most dissimilar rotation had a score of 
− 1 (normalisation did not affect overall results). The perceptual error was the absolute similarity score on this 
perceptual similarity curve at the reported object rotation (Fig. 2b).

Object properties analyses. We used the following methods to quantify the properties of the objects used in the 
experiment. For full analysis details see “Supplementary material”.
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Rotational discriminability. A key measurement was rotational discriminability, which was used to quantify 
how easy each object was for the match-to-sample task. This measurement was used as a proxy for object util-
ity. We quantified rotational discriminability with both an empirical, and computational measure. Rotational 
discriminability (computational) was based on the perceptual similarity metric described above (Fig. 2b), and 
was defined as the number of peaks on that curve for an object’s shown rotation. An object such as the duck has 
a single peak, and is thus more discriminable from each angle compared to an object such as the yellow box. 
Rotational discriminability (empirical) was measured via a separate, online study. Participants were instructed 
to rotate objects to match the cardinal axis labels: front, back, left, right, prototypical. To quantify rotational 
discriminability, we examined the distribution of responses for each cardinal axis label separately. If an object 
was highly rotationally-discriminable, there should be high agreement between participant responses to an 
axis label; if an object was not rotationally-discriminable, there should be lower agreement between participant 
responses to an axis label. To quantify this, we measured the mean resultant length of responses for each axis 
label (between 0 for highly dispersed and 1 for highly concentrated; Fig. 2c): an object with high concentration 
has distinct angles, and therefore has high rotational discriminability; an object with low concentration looks 
similar from one angle to the next, and therefore has low rotational discriminability.

Salience. Low-level saliency for each object was computed using the CovSal saliency  metric60. As we were 
interested in the relative saliency of objects as they appeared in a trial, salience was calculated on a trial-wise 
basis, such that each object in a given trial was given a salience score in comparison to the other objects in the 
trial.

Entropy. Shannon’s  entropy61 was calculated to quantify the visual complexity of an object, or the variability 
in pixel values contained within the image. An object with higher entropy, therefore more pixel variability may 
provide may fine-grain visual cues to perform the visual matching task than an object with little variability.

Statistical analyses. All statistical analyses were conducted in R. For mixed-model analyses, random 
effects structures are described in the results section.

Linear mixed model (LMM) details. Linear mixed models were fit using the nlme  package62. Pairwise compari-
sons and estimated marginal means were calculated using the emmeans  package63. For linear mixed models, 
fixed effects of fixation (fixated, not fixated) and choice (chosen/not-chosen or first, second, not-chosen) were 
categorically coded using treatment coding, with the baseline level coded as not-chosen or not fixated. Individ-
ual trials which were influential to the regression fit for a particular analysis were removed (Cook’s  distance64). 
Where models had heterogenous variance (differing variability across different levels of a factor), model com-
parisons were used to determine the best-fitting variance structure (i.e. different variance allowed for different 
factor levels). Significance was determined using a Type I (sequential sum of squares) analysis of variance. F-sta-
tistics were calculated using the estimated error variance from the full form of the model. All model estimates 
are included in the SI.

Generalised additive models (GAM) details. GAMs were used for Information Uptake modelling analyses. 
GAMs were fit with the package  mgcv65. All GAMs had a thin plate regression spline smoother applied to log 
Gaussian SD, for each choice condition (first, second, non-chosen), and random smooth for subjects.

Generalised linear mixed model (GLMM) details. GLMMs were fitted using the lme4  package66. GLMMs were 
used to relate object features to choices and fixations. Feature predictors were scaled by the mean level of the 
predictor across all trials, divided by 2  SD67 to normalise the large differences in scale between predictors and 
improve model fit. To ensure collinearity between predictors did not affect model estimations, we calculated the 
variance inflation factor (VIF) for each predictor. For fixation, VIF = 1.00; rotational discriminability (empirical), 
VIF = 1.03; rotational discriminability (theoretical), VIF = 1.09; entropy VIF = 1.46; salience VIF = 1.4. Given the 
low VIF values for all predictors, it is unlikely that predictor collinearity affected  estimates68. Significance was 
determined using a Wald chi-square test.

Data availability
Data is available at https:// doi. org/ 10. 5281/ zenodo. 52665 20.
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