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Abstract
We construct a delay functional d on an open subset of the space C1

r = C1([−r , 0],R) and
find h ∈ (0, r) so that the equation

x ′(t) = −x(t − d(xt ))

defines a continuous semiflow of continuously differentiable solution operators on the solu-
tion manifold

X = {φ ∈ C1
r : φ′(0) = −φ(−d(φ))},

and along each solution the delayed argument t −d(xt ) is strictly increasing, and there exists
a solution whose short segments

xt,short = x(t + ·) ∈ C2
h , t ≥ 0,

are dense in an infinite-dimensional subset of the space C2
h . The result supplements ear-

lier work on complicated motion caused by state-dependent delay with oscillatory delayed
arguments.

Keywords Delay differential equation · State-dependent delay · Complicated motion

AMS Subject Classification 34 K 23

1 Introduction

The present paper continues the studies [6,10–14] of how time lags which are state-dependent
affect the behaviour of feedback systems. The basic equation considered is

x ′(t) = −α x(t − r) (α, r )
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with α > 0 and constant time lag r > 0. This is the simplest delay differential equation
modelling negative feedbackwith respect to the zero solution. LetC0

r denote theBanach space
of continuous functions [−r , 0] → R with the maximum norm, |φ|0,r = max−r≤t≤0 |φ(t)|.
The solutions x : [−r ,∞) → R of Eq. (α, r), which are continuous and have differentiable
restrictions to [0,∞)which satisfy Eq. (α, r), define a strongly continuous semigroup on C0

r
by the equations T (t)x0 = xt with the solution segments

xt : [−r , 0] � s 	→ x(t + s) ∈ R for t ≥ 0,

see [2]. Except for α = π
2 + 2kπ , k ∈ N0 the zero solution is hyperbolic [2,15].

LetC1
r denote theBanach space of continuously differentiable functionsφ : [−r , 0] → R,

with the norm given by |φ|1,r = |φ|0,r + |φ′|0,r . In [6,10–12] delay functionals d : C1
r ⊃

U → [0, r ] were constructed so that for certain α > 0 the modified equation

x ′(t) = −α x(t − d(xt )) (α, d)

has homoclinic solutions, with chaotic motion nearby.
The results in [13,14] established another kind of complicated solution behaviour, namely,

the existence of delay functionals d and parameters α > 0 so that for a positive number h < r
there are solutions whose short solution segments

xt,short : [−h, 0] � s 	→ x(t + s) ∈ R, t ≥ 0,

are dense in open subsets of the space C1
h .

In [13] density of short segments in the whole space C1
h was achieved for a continuous

delay functional on a setY ⊂ C1
r which is large in some sense but not open, nor a differentiable

submanifold. Because of this lack of regularity results from [8,9] on well-posedness of initial
value problems and on differentiability of solutions with respect to initial data do not apply.

In [14] we constructed a continuously differentiable delay functional d : U → [0, r ],
U ⊂ C1

r open, so that the results from [8] apply, and found h ∈ (0, r) so that the previous
equation with α = 1, namely,

x ′(t) = −x(t − d(xt )) (1.1)

has a solution x : [−r ,∞) → R whose short segments are dense in an open subset of the
space C1

h . The construction involves that the delayed argument function

[0,∞) � t 	→ t − d(xt ) ∈ R

along the solution x is not monotonic, and this oscillatory behaviour seems crucial for density
of short segments in an open subset of the space C1

h .
Before stating the result of the present paper let us mention that equations with non-

constant, state-dependent delay are not covered by the theory with state space C0
r which is

familiar from monographs on delay differential equations [1–3]. We recall what was shown
in [8] for delay differential equations in the general form

x ′(t) = f (xt ) (f)

under hypotheses designed for applications to examples with state-dependent delay. Let C0
r ,n

and C1
r ,n denote the analogues of the spaces C0

r and C1
r , for maps [−r , 0] → R

n . Assume
f : U → R

n , U ⊂ C1
r ,n open, is continuously differentiable so that

(e) each derivative D f (φ) : C1
r ,n → R

n , φ ∈ U , has a linear extension De f (φ) : C0
r ,n →

R
n and the map

U × C0
r ,n � (φ, χ) 	→ De f (φ)χ ∈ R

n
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is continuous.
The extension property (e) is a variant of the notion of being almost Fréchet differentiable

for maps C0
r ,n ⊃ V → R

n which was introduced in [7].
Suppose also there exists φ ∈ U with φ′(0) = f (φ). Then the nonempty set

X f = {φ ∈ U : φ′(0) = f (φ)}
is a continuously differentiable submanifold with codimension n in C1

r ,n , and each initial
value problem

x ′(t) = f (xt ) for t > 0, x0 = φ ∈ X f ,

has a unique maximal solution x : [−r , tφ) → R
n , 0 < tφ ≤ ∞, which is continuously

differentiable with x ′(t) = f (xt ) for all t ∈ [0, tφ). The arrow

(t, φ) 	→ xφ
t ,

with the said maximal solution x = xφ , defines a continuous semiflow of continuously
differentiable solution operators

{φ ∈ X f : tφ > t} � φ 	→ xφ
t ∈ X f , t ≥ 0.

In the present paperwe prove the following result on complicatedmotion caused by a delay
functional so that the delayed argument functions along solutions of Eq. (1.1) are monotonic.

Theorem 1.1 There exist r > h > 0 and a continuously differentiable delay functional d :
N → (0, r), N ⊂ C1

r open, and an open subset A of a closed affine subspace of codimension
6 in C2

h so that Eq. (1.1) has a twice continuously differentiable solution x (d) : [−r ,∞) → R

whose short segments x (d)
t,short , t ≥ 0, are dense in A ∪ (−A).

The functional f : N � φ 	→ −φ(−d(φ)) ∈ R is continuously differentiable and has
property (e), and for each φ ∈ X f the delayed argument function

[0, tφ) � t 	→ t − d(xφ
t ) ∈ R

along the maximal continuously differentiable solution xφ : [−r , tφ) → R of the initial value
problem

x ′(t) = f (xt ) = −x(t − d(xt )) for t > 0, x0 = φ ∈ X f ,

is strictly increasing.

Here C2
h denotes the Banach space of twice continuously differentiable functions ψ :

[−h, 0] → R, with the norm given by |ψ |2,r = ∑2
k=0 max−r≤t≤0 |ψ(k)(t)|.

A different result on complicated motion caused by state-dependent delay with monotonic
delayed argument functions has recently been obtained in [5].

The proof of Theorem 1.1 begins in Sect. 2 belowwith the choice of subsets A = Ah ⊂ C2
h

as in the theorem, for arbitrary h > 0. For arbitrary s > 0 Sect. 3 prepares a sequence of
twice continuously differentiable functions κs,n : [−s, s] → R so that certain translates of
κs,n and κs,k , n = k, keep a minimal distance from each other, in the sense that there is a
constant a > 0 with

|(κs,n)′(t + u) − (κs,k)
′(u)| ≥ a

4

for small t and some u.
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Section 4 is the core of the proof of Theorem 1.1. For suitably chosen tb < 0 < t5, h > 0,
s > 0, a sequence of continuously differentiable delay functions �n : [0, t5] → (0,∞)

together with a sequence of twice continuously differentiable functions x(n) : [tb, t5] → R

and a subset A = Ah ⊂ C2
h as in Sect. 2 are constructed so that for each n ∈ N - the linear

nonautonomous equation

(x(n))
′(t) = −x(n)(t − �n(t))

holds for 0 ≤ t ≤ t5 ,

– the delayed argument function [0, t5] � t 	→ t −�n(t) ∈ R along the delay function �n

is strictly increasing,
– on some subinterval of length h in [0, t5] the function x(n) coincides with a translate of

a member pn of a sequence which is dense in A,
– on some subinterval of length 2s in [0, t5] the function x(n) coincides with a translate of

κn = κs,n .

In Sect. 5 shifted copies of the functions �n and of the functions ±x(n) are concatenated,
respectively, and yield a twice continuously differentiable function x : [tb,∞) → R and
a continuously differentiable delay function � on [0,∞) which is bounded by some r >

max{h,−tb}. A twice continuously differentiable extension of the function x to the ray
[−r ,∞) → R satisfies the linear equation

x ′(t) = −x(t − �(t)) (1.2)

for all t ≥ 0. Proposition 5.1 states that the curve [r ,∞) � t 	→ xt ∈ C1
r is injective, hence

the equation

d(xt ) = �(t)

converts the delay function into a delay functional d on the trace {xt ∈ C2
r : t ≥ r}.

Sections 6, 7, and 8 prepare the extension of this functional to an open neighbourhood
N of the trace {xt ∈ C2

r : ( jr − 1)t5 ≤ t} in the space C1
r , with an integer jr ≥ 2 so that

r < ( jr − 1)t5. Section 6 contains an ingredient of the construction which will be used in
the final Sect. 9, namely, separation of nonadjacent arcs

{xt ∈ C2
r : (n − 1)t5 ≤ t ≤ nt5} and {xt ∈ C2

r : ( j − 1)t5 ≤ t ≤ j t5},
2 ≤ n ∈ N and 2 ≤ j ∈ N with |n − j | > 1,

in the space C1
r . The separation result is based on the properties of the functions κs,n from

Sect. 3whose translates appear as restrictions of x on a sequence ofmutually disjoint intervals
tending to infinity.

The constructions in Sects. 2, 3, 4, 5, and 6 are to some extent parallel to constructions in
[14]. The next steps in Sects. 7 and 8 are rather different from their counterparts in [14]. The
new tool, introduced in Sect. 7, is a bundle of transversal hyperplanes Kt , t > 0, along the
curve (0,∞) � t 	→ xt ∈ C0

r . Working with the bundle allows for an extension of the delay
functional from an arc {xt ∈ C2

r : (k − 1)t5 ≤ t ≤ kt5}, jr ≤ k ∈ N, to a kind of tubular
neighbourhood Uk ⊂ C0

r (Sect. 8), and for the arrangement of compatibility relations on
overlapping domains Uk ∩ Uk+1, in ways which are simpler than corresponding procedures
in [14].

Section 9 begins with the definition of the domain N ⊂ C1
r and the functional d :

N → (0, r), and completes the proof of Theorem 1.1. The verification that the functional
f : N → R in Theorem 1.1 has property (e) uses that the delay functional d : N → (0, r) has
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property (e). The latter is achieved by means of the following proposition whose statement
involves the injective linear continuous inclusion map

J : C1
r � φ 	→ φ ∈ C0

r .

Proposition 1.2 [14, Proposition 1.2] Suppose d : C1
r ⊃ N → R is continuously dif-

ferentiable and for every φ ∈ N there exist an open neighbourhood V of Jφ in C0
r and

a continuously differentiable map dV : C0
r ⊃ V → R with d(ψ) = dV (Jψ) for all

ψ ∈ N ∩ J−1(V ). Then d has property (e), with

Ded(φ)χ = DdV (Jφ)χ for all φ ∈ N ∩ J−1(V ) and χ ∈ C0
r .

Notation, preliminaries.A sequence in a metric space is called dense if each point of the
metric space is an accumulation point of the sequence. A metric space is called separable if
it contains a dense sequence.

For ε > 0 the open ε-neighbourhoods of a point x in a normed space X and of a subset
S ⊂ X are given by

Uε(x) = {y ∈ X : |y − x | < ε}.
and

Uε(S) = {y ∈ X : dist(y, S) < ε},
respectively, with

dist(y, S) = inf
x∈S

|y − x |.

For a < b in R and j ∈ N let C j
a,b denote the Banach space of j times continuously

differentiable functions φ : [a, b] → R, with the norm given by

|φ| j,a,b =
j∑

0

max
a≤t≤b

|φ j (t)|,

and let C0
a,b denote the Banach space of continuous functions φ : [a, b] → R, with the norm

given by

|φ|0,a,b = max
a≤t≤b

|φ(t)|.

In case a = −r and b = 0, the abbreviations

C j
r = C j

−r ,0 and | · | j,r = | · | j,−r ,0

are used. If functions φ ∈ C2
r and φ ∈ C1

r are considered as elements of the ambient space
C0

r then we use φ ∈ C0
r or Jφ ∈ C0

r , depending on which form makes an argument more
transparent.

For r > 0 the evaluation map

C0
r × [−r , 0] � (φ, t) 	→ φ(t) ∈ R

is continuous but not locally Lipschitz continuous, and the evaluation map

ev1r : C1
r × (−r , 0) � (φ, t) 	→ φ(t) ∈ R

123
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is continuously differentiable with

D ev1r (φ, t)(φ̂, t̂) = D1ev1h(φ, t)φ̂ + D2ev1r (φ, t)t̂ = φ̂(t) + t̂φ′(t),

see e. g. [4,8].
In Sect. 8 below the following is used.

Proposition 1.3 Let B be a Banach space. Let reals a < b, a continuous injective map
c : [a, b] → B, some t ∈ (a, b), and ε > 0 be given. Then there exists ρ > 0 with

Uρ(c([a, t]) ∩ Uρ(c([t, b]) ⊂ Uε(c(t)).

Proof By continuity there exists ta ∈ (a, t) with c([ta, t]) ⊂ Uε/2(c(t)). The compact sets
c([a, ta]) and c([t, b]) are disjoint, which gives

0 < min
a≤u≤ta

dist(c(u), c([t, b])).

Choose ρ ∈ (
0, ε

2

)
with

2 ρ < min
a≤u≤ta

dist(c(u), c([t, b])).
Consider z ∈ Uρ(c([a, t])) ∩ Uρ(c([t, b])). There exist ua ∈ [a, t] and ub ∈ [t, b] with

|z − c(ua)| < ρ and |z − c(ub)| < ρ,

hence |c(ua)− c(ub)| < 2ρ. The assumption ua < ta yields a contradiction to the inequality
2ρ < mina≤u≤ta dist(c(u), c([t, b])). It follows that ua ∈ [ta, tb]. Consequently,

|z − c(t)| ≤ |z − c(ua)| + |c(ua) − c(t) < ρ + ε

2
< ε,

which means z ∈ Uε(c(t)).

2 Separability

Let h > 0 be given. The restrictions of polynomials R → R to the interval [−h, 0] are
dense in C2

h , which is an easy consequence of the Weierstraß approximation theorem. Let
P5 ⊂ C2

h denote the subspace of restrictions of polynomials of degree not larger than 5 and
let C2

h−0 ⊂ C2
h denote the closed subspace given by the equations

φ( j)(−h) = 0 = φ( j)(0) for j ∈ {0, 1, 2}.
Then dim P5 = 6 and

C2
h = C2

h−0 ⊕ P5,

which follows from the fact that given φ ∈ C2
h there exists a unique p ∈ P5 satisfying

p( j)(−h) = φ( j)(−h) and p( j)(0) = φ( j)(0) for j ∈ {0, 1, 2},
or, φ − p ∈ C2

h−0.

Proposition 2.1 Let an open set U ⊂ C2
h and p∗ ∈ C2

h with A = U ∩ (p∗ + C2
h−0) = ∅ be

given. The open subset A of the affine space p∗ + C2
h−0 contains a sequence which is dense

in A.
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Proof The restricted polynomials with rational coefficients form a sequencewhich is dense in
C2

h . Projection along P5 onto C2
h−0 yields a sequence which is dense in C2

h−0, and translation
by adding p∗ results in a sequencewhich is dense in p∗+C2

h−0. Themembers of this sequence
which belong to U form a sequence which is dense in A.

Example 2.2 For given reals w0 < u0 < 0, u1 < w1 < 0, u2 > 0, w2 > 0 let p∗ ∈ P5
denote the unique restricted polynomial which satisfies

p( j)∗ (−h) = u j , p( j)∗ (0) = w j for j ∈ {0, 1, 2},
and take

U = {φ ∈ C2
h : 0 < φ′′(t) on [−h, 0]}.

Notice that

A = U ∩ (p∗ + C2
h−0)

= {φ ∈ C2
h : 0 < φ′′(t) on [−h, 0],

φ( j)(−h) = u j , φ( j)(0) = w j for j ∈ {0, 1, 2}}.
We add the obvious fact that the dense sequence provided by Proposition 2.1 is dense in

A ⊂ C2
h ⊂ C1

h also with respect to the norm | · |1,h .

3 Differentiable Functions with Separated Shifted Copies

Let s > 0 be given. We construct a sequence of functions κn ∈ C2−s,s , n ∈ N, so that shifted
copies of these functions keep a positive minimal distance from each other with espect to the
norm | · |1,−s,s .

Let also positive reals a, ξ, η be given and choose ε ∈ (
0, a

4

)
. There exists χ ∈ C1−s,0

with

χ(−s) = −a,

χ([−s, 0]) ⊂ [−a,−a + ε],
χ ′(−s) = η,

χ ′(t) > 0 on [−s, 0].
For every n ∈ N there exists ρn ∈ C1−s,s with

ρn(t) = −ρn(−t) on [−s, s]
and

ρn(t) = χ(t) on
[
−s,− s

2n

]
,

ρn

(
− s

2n+1

)
= −a

2
,

ρn(0) = 0,

(ρn)′(t) = (ρn)′(0) constant on
[
− s

2n+1 , 0
]
,

(ρn)′(t) > 0 on [−s, 0].
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Fig. 1 The function ρ1 for
−s ≤ t ≤ 0

Proposition 3.1 For all integers n = k in N and for each t ∈ [− s
2 , 0

]
there exists u ∈ [−s, s]

with t + u ∈ [−s, s] and

|ρn(t + u) − ρk(u)| ≥ a

2
− ε.

Proof Let positive integers n = k and t ∈ [− s
2 , 0

]
be given. In case n > k consider

u = − s
2k+1 . Then u ∈ [− s

4 , 0
]
and

−s ≤ − s

2
− s

2k+1 ≤ t + u ≤ u = − s

2k+1 ≤ − s

2n
,

hence

ρn(t + u) − ρk(u) = χ(t + u) −
(
−a

2

)

∈ [−a,−a + ε] + a

2
=

[
−a

2
,−a

2
+ ε

]
.

In case k > n set u = −t + s
2n+1 . Then

0 <
s

2k
≤ s

2n+1 = u + t ≤ u
(

≤ s

2
+ s

2n+1 ≤ s
)

,

hence

|ρn(t + u) − ρk(u)| =
∣
∣
∣ρn

( s

2n+1

)
− ρk

(
−t + s

2n+1

)∣
∣
∣

=
∣
∣
∣−ρn

(
− s

2n+1

)
+ ρk

(
− s

2n+1 + t
)∣
∣
∣

=
∣
∣
∣−

(
−a

2

)
+ χ

(
− s

2n+1 + t
)∣
∣
∣

≥
∣
∣
∣χ

(
− s

2n+1 + t
)∣
∣
∣ − a

2
≥ a − ε − a

2

= a

2
− ε.

For n ∈ N define κn ∈ C2−s,s by

κn(t) = −ξ +
∫ t

−s
ρn(u)du

and observe that

κn(−t) = κn(t) on [−s, s],
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κn(−s) = −ξ = κn(s),

(κn)′(t) < 0 on [−s, 0),

(κn)′(t) > 0 on (0, s],
(κn)′(−s) = −a,

(κn)′(s) = a,

(κn)′′(t) > 0 on [−s, s],
(κn)′′(−s) = η.

Using Proposition 3.1 and ε < a
4 we get the following result.

Corollary 3.2 For all integers n = k in N and for each t ∈ [− s
2 , 0

]
there exists u ∈ [−s, s]

with t + u ∈ [−s, s] and

|(κn)′(t + u) − (κk)
′(u)| ≥ a

4
.

4 The Delay Function on a Compact Interval

In this section we find h > 0, a set A ⊂ C2
h , constants tb < 0 and t5 < −tb, and functions

�n : [0, t5] → (0,∞) and x(n) : [tb, t5] → R, n ∈ N,

which in the next section will be used to form a solution of Eq. (1.2) whose short segments
are dense in the set A ∪ (−A). Choose reals

ξ > b > a > 0 with ξ − a > b

such that there exists t2 > 1 with
bt2 > ξ > at2,

and choose tb ∈ (−1, 0) with
b < (−tb)ξ.

Choose v ∈ C1
tb,0 with

v(t) < 0 on [tb, 0],
v′(t) > 0 on [tb, 0],
v(tb) = −ξ,

v(0) = −b,

v′(tb) = a

2
,

Because of v([tb, 0]) = [−ξ,−b] and
b + tbb > 0 > b + tbξ

we can choose v in such a way that also

b +
∫ 0

tb
v(t)dt = 0.
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Fig. 2 The function x ∈ C2
tb,0

Fig. 3 The function v ∈ C1
tb,t2

The equation

x(t) = b +
∫ t

tb
v(u)du

defines a strictly decreasing function x ∈ C2
tb,0 with

x(tb) = b and x(0) = 0.

Let ta ∈ (tb, 0) be given by x(ta) = a.
Extend v ∈ C1

tb,0 to a function in C1
tb,t2 with

v(t) < 0 on [0, t2],
v(t2) = −a,

v′(t) > 0 on [0, t2].
Because of v([0, t2]) = [−b,−a] and

−bt2 < −ξ < −at2
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Fig. 4 The function x ∈ C2
tb,t2

we can choose v ∈ C1
ta ,t2 in such a way that also

∫ t2

0
v(t)dt = −ξ.

Set

η = v′(t2) > 0.

Extend x ∈ C2
tb,0 to a strictly decreasing function in C2

tb,t2 by

x(t) =
∫ t

0
v(u)du = b +

∫ t

tb
v(u)du on (0, t2],

so that x(t2) = −ξ , and let t1 ∈ (0, t2) be given by x(t1) = −a.
Fix td ∈ (t1, t2) and

h > 0 with t1 < td − h

and define

u j = x ( j)(td − h) and w j = x ( j)(td) for j ∈ {0, 1, 2}.
Then 0 > u0 > w0, u1 < w1 < 0, 0 < u2, 0 < w2. Consider the set A ⊂ C2

h from
Example 2.2. The functions in A are negative and strictly decreasing, with the derivative
strictly increasing. Proposition 2.1 guarantees a sequence (pn)n∈N in A which is dense in A.
For n ∈ N define x(n) ∈ C2

tb,t2 by

x(n)(t) = x(t) on [tb, td − h] ∪ [td , t2],
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x(n)(t) = p n+1
2

(t − td) on [td − h, td ]
in case n odd,

x(n)(t) = p n
2
(t − td) on [td − h, td ]

in case n even.

Notice that x(n) is strictly decreasing on [tb, t2] with
x(n)(tb) = b, x(n)(0) = 0, x(n)(t1) = −a, x(n)(t2) = −ξ,

(x(n))
′(t) < 0 on [tb, t2],

(x(n))
′(t2) = x ′(t2) = v(t2) = −a,

(x(n))
′′(t) > 0 on [tb, t2],

(x(n))
′′(t2) = v′(t2) = η.

The inverse yn = (x(n))
−1 ∈ C2−ξ,b maps its domain [−ξ, b] onto the interval [tb, t2], with

(yn)′(u) = 1

(x(n))′(yn(u))
< 0 for all u ∈ [−ξ, b].

Obviously,

(x(n))
′([0, t2]) = [(x(n))

′(0), (x(n))
′(t2)] = [−b,−a],

−(x(n))
′([0, t2]) = [a, b] ⊂ [−ξ, b].

It follows that the equation

yn(−(x(n))
′(t)) = t − �n(t)

defines a function �n ∈ C1
0,t2

with

1 − (�n)′(t) = (yn)′(−(x(n))
′(t))[−(x(n))

′′(t)] > 0 on [0, t2],
0 − �n(0) = yn(−(x(n))

′(0)) = yn(b) = tb,

t2 − �n(t2) = yn(−(x(n))
′(t2)) = yn(a) = ta,

(x(n))
′(t) = −x(n)(t − �n(t)) on [0, t2].

In particular,

(id − �n)([0, t2]) = [tb, ta].
The estimate t − �n(t) ≤ ta on [0, t2] yields

�n(t) ≥ t − ta ≥ t ≥ 0 on [0, t2].
Fix some s > 0 and recall κn ∈ C2−s,s from Sect. 3, with a, ξ, η from the present section.
Then

(κn)( j)(−s) = (x(n))
( j)(t2) for j ∈ {0, 1, 2}.

Set

t3 = t2 + 2s

and define an extension of x(n) to a map in C2
tb,t3 by

x(n)(t) = κn(t − t3 + s) on [t2, t3].
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Fig. 5 The function x(n) ∈ C2
tb,t3

By the symmetry of κn ,

x(n)(t3) = x(n)(t2) = −ξ,

(x(n))
′(t3) = −(x(n))

′(t2) = a,

(x(n))
′′(t3) = (x(n))

′′(t2) = η,

and

(x(n))
′([t2, t3]) = (κn)′([−s, s]) = [−a, a] = x(n)([ta, t1]).

It follows that the equation

yn(−(x(n))
′(t)) = t − δn(t) on [t2, t3]

defines a map δn ∈ C1
t2,t3 , with

t2 − δn(t2) = yn(−(x(n))
′(t2)) = yn(a) = ta,

t3 − δn(t3) = yn(−(x(n))
′(t3)) = yn((x(n))

′(t2)) = yn(−a) = t1,

1 − (δn)′(t) = (yn)′(−(x(n))
′(t))[−(x(n))

′′(t)] > 0 on [t2, t3],
(x(n))

′(t) = −x(n)(t − δn(t)) on [t2, t3].
Notice that δn(t2) = t2 − ta = �n(t2) and

1 − (δn)′(t2) = (yn)′(−(x(n))
′(t2))[−(x(n))

′′(t2)] = 1 − (�n)′(t2).
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The estimate t − δn(t) ≤ t1 on [t2, t3] yields
δn(t) ≥ t − t1 ≥ t2 − t1 > 0 on [t2, t3].

Setting

�n(t) = δn(t) on [t2, t3]
we get an extension of �n ∈ C1

0,t2
to a nonnegative map in C1

0,t3
, with

1 − (�n)′(t) > 0 on [0, t3] and (id − �n)([t2, t3]) = [ta, t1].
Because of a < ξ − b there exists t4 > t3 with

a(t4 − t3) < ξ − b < ξ(t4 − t3),

for example, t4 = t3 + 1.

Proposition 4.1 There exists δn∗ ∈ C1
t3,t4 with

1 − (δn∗)′(t) > 0 in [t3, t4],
t3 − δn∗(t3) = t1,

t4 − δn∗(t4) = t3,

1 − (δn∗)′(t3) = 1 − (�n)′(t3),

1 − (δn∗)′(t4) = 1

2
, and

−ξ +
∫ t4

t3
x(n)(t − δn∗(t))dt = −b.

Proof Consider the discontinuous function g0 : [t3, t4] → R given by g0(t3) = t1 and
g0(t) = t3 for t3 < t ≤ t4. There is a sequence of functions g j ∈ C1

t3,t4 , j ∈ N, with

(g j )
′(t) > 0 on [t3, t4],

g j (t3) = t1,

g j (t4) = t3,

(g j )
′(t3) = 1 − (�n)′(t3),

(g j )
′(t4) = 1

2
.

which converge pointwise to g0. For every j ∈ N, g j ([t3, t4]) = [t1, t3], and the Lebesgue
dominated convergence theorem yields

G j =
∫ t4

t3
[−x(n)(g j (t))]dt → −

∫ t4

t3
x(n)(t3)dt = ξ(t4 − t3) as j → ∞.

Similarly there is a sequence of functions h j ∈ C1
t3,t4 with the same properties as g j which

converge pointwise to h0 : [t3, t4] → R given by h0(t4) = t3 and h0(t) = t1 for t3 ≤ t < t4,
and

Hj =
∫ t4

t3
[−x(n)(h j (t))]dt → −

∫ t4

t3
x(n)(t1)dt = a(t4 − t3) as j → ∞.

The limits satisfy
a(t4 − t3) < ξ − b < ξ(t4 − t3),

123



Journal of Dynamics and Differential Equations (2022) 34:2867–2900 2881

due to the choice of t4. So there exists j ∈ N with

Hj < ξ − b < G j .

The function

k : [0, 1] × [t3, t4] � (θ, t) 	→ g j (t) + θ(h j (t) − g j (t)) ∈ R

is continuous. Using the intermediate value theorem we find some θ ∈ (0, 1) with
∫ t4

t3
x(n)(k(θ, t))dt = (1 − θ)G j + θ Hj = ξ − b.

Notice that the convex combination k(θ, ·) ∈ C1
t3,t4 shares the properties of g j and h j . Define

δn∗ by
t − δn∗(t) = k(θ, t).

The estimate t − δn∗(t) ≤ t3 on [t3, t4] yields
δn∗(t) ≥ t − t3 ≥ 0 on [t3, t4].

It follows that the equation

�n(t) = δn∗(t) for t3 < t ≤ t4

extends �n ∈ C1
0,t3

to a nonnegative function in C1
0,t4

which satisfies

1 − (�n)′(t) > 0 on [0, t4],
t4 − �n(t4) = t3,

t − �n(t) ∈ [t1, t3] for t3 ≤ t ≤ t4,

1 − (�n)′(t4) = 1

2
.

The function xn∗ ∈ C2
t3,t4 given by

xn∗(t) = −ξ +
∫ t

t3
[−x(n)(u − �n(u))]du

satisfies

xn∗(t3) = −ξ = x(n)(t3),

xn∗(t4) = −b,

(xn∗)′(t) = −x(n)(t − �n(t)) on [t3, t4],
(xn∗)′(t3) = −x(n)(t3 − �n(t3)) = −x(n)(t1) = a = x ′

(n)(t3),

(xn∗)′(t4) = −x(n)(t4 − �n(t4)) = −x(n)(t3) = ξ,

(xn∗)′′(t3) = −(x(n))
′(t3 − �n(t3))[1 − (�n)′(t3)] = (x(n))

′′(t3)
(xn∗)′′(t4) = −(x(n))

′(t4 − �n(t4))[1 − (�n)′(t4)]
−(x(n))

′(t3)
1

2
= −a

2
.

Therefore the equation

x(n)(t) = xn∗(t) for t3 < t ≤ t4
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Fig. 6 The function x(n) ∈ C2
tb,t4

defines a continuation of x(n) ∈ C2
tb,t3 to a function inC2

tb,t4 which satisfies Eq. (1.2) on [0, t4]
and maps the interval [t3, t4] onto [−ξ,−b], with positive derivative and

x(n)(t4) = −b = −x(n)(tb),

(x(n))
′(t4) = ξ = −v(tb) = −(x(n))

′(tb),

(x(n))
′′(t4) = −a

2
= −v′(tb) = −(x(n))

′′(tb).

We set t5 = t4 − tb and extend x(n) ∈ C2
tb,t4 to a function in C2

tb,t5 by

x(n)(t) = −xn(t − t5) on [t4, t5].
Then

−(x(n))
′([t4, t5]) = (x(n))

′([tb, 0]) = [−ξ,−b] = x(n)([t3, t4]).
The derivative of the function

yn,5 = (x(n)|[t3,t4])−1 ∈ C2−ξ,−b

is strictly positive, due to (x(n))
′(t) > 0 on [t3, t4]. The equation

yn,5(−(x(n))
′(t)) = t − δn,5(t) for t4 ≤ t ≤ t5

defines a function δn,5 ∈ C1
t4,t5 which satisfies

t4 − δn,5(t4) = yn,5(−(x(n))
′(t4)) = yn,5((x(n))

′(t4 − t5))

= yn,5((x(n))
′(tb)) = yn,5(−ξ) = t3 = t4 − �n(t4),

t5 − δn,5(t5) = yn(−(x(n))
′(t5)) = yn((x(n))

′(0)) = yn(−b) = t4,

1 − (δn,5)
′(t) = (yn,5)

′(. . .)[−(x(n))
′′(t)]
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= (yn,5)
′(. . .)[(x(n))

′′(t − t5)] > 0 on [t4, t5],
1 − (δn,5)

′(t4) = (yn,5)
′(−(x(n))

′(t4))[−(x(n))
′′(t4)]

= (yn,5)
′((x(n))

′(tb))[(x(n))
′′(tb)] = (yn,5)

′(−ξ)
a

2

= (yn,5)
′(x(n)(t3))

a

2
= 1

(x(n))′(t3)
a

2
= 1

a

a

2

= 1

2
= 1 − (�n)′(t4).

The estimate t − δn,5(t) ≤ t4 on [t4, t5] yields
δn,5(t) ≥ t − t4 ≥ 0 on [t4, t5].

It follows that the equation

�n(t) = δn,5(t) for t4 < t ≤ t5

defines a continuation of �n ∈ C1
0,t4

to a nonnegative function in C1
0,t5

so that we have

t4 − �n(t4) = t3,

t5 − �n(t5) = t4, or equivalently,

�n(t5) = t5 − t4 = −tb = �n(0),

1 − (�n)′(t) > 0 on [0, t5],
(x(n))

′(t) = −x(n)(t − �n(t)) on [0, t5].
Also,

(�n)′(t5) = (�n)′(0)

because of

1 − (�n)′(t5) = 1 − (δn,5)
′(t5) = (yn,5)

′(−(x(n))
′(t5))[−(x(n))

′′(t5)]
= (yn,5)

′((x(n))
′(0))(x(n))

′′(0) = (yn,5)
′(−b)(x(n))

′′(0)

= 1

(x(n))′(t4)
(x(n))

′′(0) = 1

−(x(n))′(tb)
(x(n))

′′(0)

and

(x(n))
′′(0) = −(x(n))

′(0 − �n(0)[1 − (�n)′(0)] = −(x(n))
′(tb)[1 − (�n)′(0)].

5 Concatenation

All functions x(n) ∈ C2
tb,t5 , n ∈ N, coincide on the set

[tb, td − h] ∪ [td , t2] ∪ [t4, t5],
we have t4 = t5 + tb, and for every n ∈ N,

x(n)(t) = −x(n)(t − t5) for all t ∈ [t4, t5].
Moreover, for every n ∈ N the nonnegative function �n ∈ C1

0,t5
satisfies

�n(t5) = �n(0) = −tb,
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Fig. 7 The function x(n) ∈ C2
tb,t5

(�n)′(t5) = (�n)′(0),
1 − (�n)′(t) > 0 for all t ∈ [0, t5],

and we have

(x(n))
′(t) = −x(n)(t − �n(t)) for all t ∈ [0, t5].

Therefore the relations

x(t) = (−1)n−1x(n)(t − (n − 1)t5) for n ∈ N, (n − 1)t5 + tb ≤ t ≤ nt5,

�(t) = �n(t − (n − 1)t5) for n ∈ N, (n − 1)t5 ≤ t ≤ nt5

define a twice continuously differentiable function x : [tb,∞) → R and a continuously
differentiable nonnegative function � : [0,∞) → R so that Eq. (1.2) holds for all t ≥ 0,
�(0) = −tb, and

1 − �′(t) > 0 for all t ≥ 0.

The short segments x(n−1)t5+td ,short = p n+1
2

∈ C2
h , n ∈ N odd, which are given by

x(n−1)t5+td ,short (u) = x((n − 1)t5 + td + u) for − h ≤ u ≤ 0,

are dense in the infinite-dimensional set A ⊂ C2
h ⊂ C1

h with respect to the norm | · |1,h .
Recall

tb ≤ t − �n(t) in [0, t2],
ta ≤ t − �n(t) in [t2, t3],
t1 ≤ t − �n(t) in [t3, t4],
t3 ≤ t − �n(t) in [t4, t5] = [t4, t4 − tb]

for each n ∈ N and set

r = max{t2 − tb, t3 − ta, t4 − t1, t4 − tb − t3, t5 + 3s}.
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Then

�(t) ≤ r for all t ≥ 0.

Extend x : [tb,∞) → R backward to a twice continuously differentiable function x :
[−r ,∞) → R, with long segments xt ∈ C2

r ⊂ C1
r , t ≥ 0, given by

xt (u) = x(t + u) for − r ≤ u ≤ 0.

The curve

x̂ : (0,∞) � t 	→ xt ∈ C1
r

is continuously differentiable with

Dx̂(t)1 = (xt )
′ = (x ′)t ∈ C1

r for all t > 0,

compare [13, Proposition 4.1]. As t2+t3
2 is the only zero of (x(n))

′ : [tb, t5] → R, for any
n ∈ N, we have

Dx̂(t)1 = (xt )
′ = 0 for all t > 0.

Proposition 5.1 The restriction of the curve x̂ to the ray [r ,∞) is injective.

Proof Assume r ≤ t ≤ u and x̂(t) = x̂(u). Then

x(t + v) = x(u + v) for all v ∈ [−r , 0].
There are n ∈ N and k ∈ N with

(n − 1)t5 ≤ t < nt5 and (k − 1)t5 ≤ u < kt5.

From t5 < r ≤ t we have n ≥ 2, and from t ≤ u we have n ≤ k.
1. Proof of t − (n − 1)t5 = u − (k − 1)t5. The argument w = (n − 1)t5 − t is contained

in (−t5, 0] ⊂ [−r , 0], and
0 = x((n − 1)t5) = x(t + w) = x(u + w).

As the interval (u − t5, u] contains exactly one zero of x , situated at (k − 1)t5, we get
u + w = (k − 1)t5, hence

u − (k − 1)t5 = −w = t − (n − 1)t5.

2. The case (n − 1)t5 + t3 ≤ t (< nt5). Using Part 1 of the proof we get

(k − 1)t5 + t3 ≤ u.

For every w ∈ [−s, s] we obtain
κn(w) = (−1)n−1x(n)(t3 − s + w) = x((n − 1)t5 + t3 − s + w)

= x(t + [−t + (n − 1)t5 + t3 − s + w])
= x(u + [−t + (n − 1)t5 + t3 − s + w])

(with [−t + (n − 1)t5 + t3 − s + w] ∈ [−t5, 0] ⊂ [−r , 0])
= x(u + [−u + (k − 1)t5 + t3 − s + w])

(with Part 1)

= x((k − 1)t5 + t3 − s + w) = (−1)k−1x(k)(t3 − s + w) = κk(w),
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and it follows that n = k. By Part 1, t = u.
3. The case ((n − 1)t5 ≤) t < (n − 1)t5 + t3. Using Part 1 of the proof we get

((k − 1)t5 ≤) u < (k − 1)t5 + t3.

For every w ∈ [−s, s] we have
−t + (n − 2)t5 + t3 − s + w > −[(n − 1)t5 + t3] + (n − 2)t5 + t3 − s + w

= −t5 − s + w ≥ −t5 − 2s ≥ −r

and

−t + (n − 2)t5 + t3 − s + w ≤ −(n − 1)t5 + (n − 2)t5 + t3 − s + w

≤ −t5 + t3 − s + s ≤ 0,

hence [−t + (n − 2)t5 + t3 − s + w] ∈ [−r , 0]. It follows that
κn−1(w) = (−1)n−2x(n−1)(t3 − s + w) = x((n − 2)t5 + t3 − s + w)

= x(t + [−t + (n − 2)t5 + t3 − s + w])
= x(u + [−t + (n − 2)t5 + t3 − s + w])

(with [−t + (n − 2)t5 + t3 − s + w] ∈ [−r , 0])
= x(u + [−u + (k − 2)t5 + t3 − s + w])

(with Part 1)

= x((k − 2)t5 + t3 − s + w) = (−1)k−2x(k−1)(t3 − s + w) = κk−1(w).

Hence n − 1 = k − 1, and by Part 1, t = u.

6 Separation of Arcs

Proposition 6.1 There exists â > 0 so that for all integers n ≥ 2, j ≥ 2 with |n − j | > 1
and for all t ∈ [(n − 1)t5, nt5], u ∈ [( j − 1)t5, j t5] we have

|x̂(t) − x̂(u)|1,r ≥ â.

Proof 1. Recall from Sect. 4 the function v ∈ C1
tb,t2 . Let n ∈ N. Notice that

(x(n))
′(t) = v(t) < 0 on [ta, t1].

With vm = −maxta≤t≤t1 v(t) and x(n)(0) = 0 we obtain

|x(n)(t)| ≥ |t |vm on [ta, t1].
On [t1, t5 + ta] we have x(n)(t) ≤ −a.

2. Let n ∈ N, j ∈ N and t ∈ [(n − 1)t5, nt5], u ∈ [( j − 1)t5, j t5] be given. Then
t = (n − 1)t5 + t∗ with 0 ≤ t∗ ≤ t5 and u = ( j − 1)t5 + u∗ with 0 ≤ u∗ ≤ t5.

We may assume u∗ ≤ t∗. Set w = u∗ − t∗ ∈ [−t5, 0].
3. In case t1 ≤ −w ≤ t5 + ta Part 1 yields the estimate

|x̂(t) − x̂(u)|1,r ≥ |xt (−u∗) − xu(−u∗)|
= |x((n − 1)t5 + t∗ − u∗) − x(( j − 1)t5 + u∗ − u∗)|
= |x((n − 1)t5 − w)| = |x(n)(−w)| ≥ a.
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4. In case min
{
t1,

s
2

} ≤ −w ≤ t1 Part 1 yields the estimate

|x̂(t) − x̂(u)|1,r ≥ |xt (−u∗) − xu(−u∗)|
= |x((n − 1)t5 − w)| = |x(n)(−w)| ≥ (−w)vm ≥ vm · min

{
t1,

s

2

}
.

5. In case t5 + ta ≤ −w ≤ t5 − min
{−ta, s

2

}
we have ta ≤ −w − t5 ≤ −min

{−ta, s
2

}
.

Using Part 1 we infer

|x̂(t) − x̂(u)|1,r ≥ |xt (−u∗) − xu(−u∗)|
= |x((n − 1)t5 − w)| = |x(nt5 − w − t5)|
= |x(n+1)(−w − t5)| ≥ | − w − t5|vm ≥ vm · min{−ta, s}.

6. The case n − j ∈ 2Z+ 1, −w ≤ s, and t3 ≤ u∗.Then t2 + s − t∗ ∈ [−t5, 0] ⊂ [−r , 0]
since

−t5 ≤ −t∗ ≤ t2 + s − t∗ ≤ t3 − t∗ ≤ t3 − u∗ ≤ 0.

Using x(m)(t) ≤ −ξ for all m ∈ N and all t ∈ [t2, t3] = [t2, t2 + 2s] we infer
|x̂(t) − x̂(u)|1,r ≥ |xt (t2 + s − t∗) − xu(t2 + s − t∗)|

= |x((n − 1)t5 + t∗ + t2 + s − t∗) −
x(( j − 1)t5 + u∗ + t2 + s − t∗)|

= |x((n − 1)t5 + t2 + s) − x(( j − 1))t5 + t2 + s + w)|
= |(−1)n−1x(n)(t2 + s) − (−1) j−1x( j)(t2 + s + w)|
= |(−1)n− j x(n)(t2 + s) − x( j)(t2 + s + w)|
≥ 2ξ.

7. The case 0 = n − j ∈ 2Z,−w ≤ s
2 , and t3 ≤ u∗. Corollary 3.2 yields some v ∈ [−s, s]

so that w + v ∈ [−s, s] and
|(κ j )

′(w + v) − (κn)′(v)| ≥ a

4
.

We have t2 + s + v − t∗ ∈ [−t5, 0] ⊂ [−r , 0] since
−t5 ≤ −t∗ ≤ t2 + s + v − t∗ ≤ t3 − t∗ ≤ t3 − u∗ ≤ 0.

Hence

|x̂(t) − x̂(u)|1,r ≥ |(xt )
′(t2 + s + v − t∗) − (xu)′(t2 + s + v − t∗)|

= |x ′((n − 1)t5 + t∗ + t2 + s + v − t∗) −
x ′(( j − 1)t5 + u∗ + t2 + s + v − t∗)|

= |x ′((n − 1)t5 + t2 + s + v) − x ′(( j − 1))t5 + t2 + s + w + v)|
= |(−1)n−1(x(n))

′(t2 + s + v) − (−1) j−1(x( j))
′(t2 + s + w + v)|

= |(−1)n− j (x(n))
′(t2 + s + v) − (x( j))

′(t2 + s + w + v)|
= |(κn)′(v) − (κ j )

′(w + v)| ≥ a

4
.

8. The case n − j ∈ 2Z+ 1, 2 ≤ n, 2 ≤ j , −w ≤ s, and u∗ < t3. Then t5 + t∗ − t2 − s ∈
[0, t5 + 2s] ⊂ [0, r ] since

0 ≤ t5 − t3 + u∗ ≤ t5 − (t2 + s) + t∗ = t5 + t∗ − t2 − s
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≤ t5 + (u∗ + s) − t2 − s ≤ t5 + t3 − t2 = t5 + 2s ≤ r .

Hence

|x̂(t) − x̂(u)|1,r ≥ |xt (−t5 − t∗ + t2 + s) − xu(−t5 − t∗ + t2 + s)|
= |x((n − 1)t5 + t∗ − t5 − t∗ + t2 + s) −

x(( j − 1)t5 + u∗ − t5 − t∗ + t2 + s)|
= |x((n − 2)t5 + t2 + s) − x(( j − 2)t5 + w + t2 + s)|
= |(−1)n−2x(n−1)(t2 + s) − (−1) j−2x( j)(w + t2 + s)|
= |(−1)n− j x(n−1)(t2 + s) − x( j)(w + t2 + s)| ≥ 2ξ.

9. The case 0 = n − j ∈ 2Z, 2 ≤ n, 2 ≤ j , −w ≤ s
2 , and u∗ < t3. Corollary 3.2 yields

some v ∈ [−s, s] so that w + v ∈ [−s, s] and
|(κ j−1)

′(w + v) − (κn−1)
′(v)| ≥ a

4
.

We have t5 + t∗ − t2 − s − v ∈ [0, t5 + 3s] ⊂ [0, r ] since
0 ≤ t5 − t3 + u∗ ≤ t5 − (t2 + 2s) + t∗ ≤ t5 + t∗ − t2 − s − v

≤ t5 +
(

u∗ + s

2

)
− t2 − s − v < t5 + t3 − t2 − v = t5 + 2s − v ≤ r .

Hence

|x̂(t) − x̂(u)|1,r ≥ |(xt )
′(−t5 − t∗ + t2 + s + v) −

(xu)′(−t5 − t∗ + t2 + s + v)|
= |x ′((n − 1)t5 + t∗ − t5 − t∗ + t2 + s + v) −

x ′(( j − 1)t5 + u∗ − t5 − t∗ + t2 + s + v)|
= |x ′((n − 2)t5 + t2 + s + v) − x ′(( j − 2))t5 + t2 + s + w + v)|
= |(−1)n−2(x(n−1))

′(t2 + s + v) − (−1) j−2(x( j−1))
′(t2 + s + w + v)|

= |(−1)n− j (x(n−1))
′(t2 + s + v) − (x( j−1))

′(t2 + s + w + v)|
= |(κn−1)

′(v) − (κ j−1)
′(w + v)| ≥ a

4
.

10. The case 0 = n − j ∈ 2Z, 2 ≤ j , t5 − min{−ta, s} ≤ −w = t∗ − u∗ ≤ t5. Then

u∗ ≤ t∗ − t5 + s ≤ s,

and w∗ = t∗ − u∗ − t5 satisfies w∗ ∈ [−s, 0]. We have t5 + u∗ − t2 − s ∈ [0, t5] ⊂ [0, r ]
since

0 ≤ t5 − t3 ≤ t5 − t2 − s ≤ t5 + u∗ − t2 − s ≤ t5 + s − t2 − s ≤ t5 ≤ r .

Hence

|x̂(t) − x̂(u)|1,r ≥ |xt (−t5 − u∗ + t2 + s) − xu(−t5 − u∗ + t2 + s)|
= |x((n − 1)t5 + t∗ − t5 − u∗ + t2 + s) −

x(( j − 1)t5 + u∗ − t5 − u∗ + t2 + s)|
= |x((n − 1)t5 + w∗ + t2 + s) − x(( j − 2)t5 + t2 + s)|
= |(−1)n−1x(n)(w∗ + t2 + s) − (−1) j−2x( j−1)(t2 + s)|
= |(−1)n− j+1x(n)(w∗ + t2 + s) − x( j−1)(t2 + s)| ≥ 2ξ.

123



Journal of Dynamics and Differential Equations (2022) 34:2867–2900 2889

11. The case n − j ∈ 2Z+1, 2 ≤ j , j −1 = n, t5 −min
{−ta, s

2

} ≤ −w = t∗ −u∗ ≤ t5.
Now

u∗ ≤ t∗ − t5 + s

2
≤ s

2
,

and w∗ = t∗ − u∗ − t5 belongs to
[− s

2 , 0
]
. Corollary 3.2 yields v ∈ [−s, s] so that w∗ + v ∈

[−s, s] and
|(κ j−1)

′(v) − (κn)′(w∗ + v)| ≥ a

4
.

We have t5 + u∗ − t2 − s − v ∈ [0, t5 + s] ⊂ [0, r ] since
0 ≤ t5 − t3 = t5 − t2 − 2s ≤ t5 + u∗ − t2 − 2s ≤ t5 + s

2
− t2 − s − v

≤ t5 − v ≤ t5 + s ≤ r .

Hence

|x̂(t) − x̂(u)|1,r ≥ |(xt )
′(−t5 − u∗ + t2 + s + v) −

(xu)′(−t5 − u∗ + t2 + s + v)|
= |x ′((n − 1)t5 + t∗ − t5 − u∗ + t2 + s + v) −

x ′(( j − 1)t5 + u∗ − t5 − u∗ + t2 + s + v)|
= |x ′((n − 1)t5 + w∗ + t2 + s + v) − x ′(( j − 2))t5 + t2 + s + v)|
= |(−1)n−1(x(n))

′(t2 + s + w∗ + v) − (−1) j−2(x( j−1))
′(t2 + s + v)|

= |(−1)n− j+1(x(n))
′(t2 + s + w∗ + v) − (x( j−1))

′(t2 + s + v)|
= |(κn)′(w∗ + v) − (κ j−1)

′(v)| ≥ a

4
.

12. Combining the results of Parts 3-11 and the relation ξ > a we arrive at the estimate

|x̂(t) − x̂(u)|1,r ≥ min
{a

4
, vm · min{t1, s}, vm · min{−ta, s}

}

for all integers n ≥ 2, j ≥ 2 with |n− j | > 1 and all t ∈ [(n−1)t5, nt5], u ∈ [( j −1)t5, j t5].

7 Delay Functionals on C0
r -Neighbourhoods of Compact Arcs

For t > 0 define x ′
t ∈ C0

r by x ′
t (u) = x ′(t + u), −r ≤ u ≤ 0. Then

x ′
t = J (x ′)t = J Dx̂(t)1.

The curve

x̂ ′ : (0,∞) � t 	→ x ′
t ∈ C0

r

is continuously differentiable since the derivative x ′ : [−r ,∞) → R is continuously differ-
entiable, compare [13, Proposition 4.1]. Consider the map

L : (0,∞) × C0
r → R

given by

L(t, φ) = φ(0)x ′(t) + φ(tb)x ′(t + tb).
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We have

L = m ◦ ((ev0 ◦ x̂ ′ ◦ pr1) × (ev0 ◦ pr2)) + m ◦ ((evtb ◦ x̂ ′ ◦ pr1) × (evtb ◦ pr2))

with the projections

pr1 : (0,∞) × C0
r → R, pr2 : (0,∞) × C0

r → C0
r

onto the first and second component, respectively, with the continuous linear evaluationmaps

ev0 : C0
r � φ 	→ φ(0) ∈ R, evtb : C0

r � φ 	→ φ(tb) ∈ R,

and with the multiplication m : R × R → R. So L is continuously differentiable.
Each map L(t, ·) : C0

r → R, t > 0, is linear. For the nullspace

Kt = {φ ∈ C0
r : L(t, φ) = 0}

of L(t, ·) we have
x ′

t /∈ Kt

since

L(t, x̂ ′(t)) = (x ′(t))2 + (x ′(t + tb))
2 > 0,

which follows from the fact that the zeros of x ′ in [tb,∞) are given by 1
2 (t2 + t3) + j t5,

j ∈ N0. We infer

C0
r = Rx ′

t ⊕ Kt for all t > 0.

In the sequel we show that every compact arc J x̂([u, v]) ⊂ C0
r , r < u < v, has a neighbour-

hood U in C0
r on which the representation

φ = xt + κ with κ ∈ Kt , t close to [u, v], and κ = φ − xt small in C0
r

is unique. Knowing this we shall define a delay functional dU : C0
r ⊃ U → R by

d(φ) = �(xt ).

Then d is constant along each fibre (xt + Kt ) ∩ U , with t close to [u, v].
Obviously,

φ − xt ∈ Kt ⇔ L(t, φ − xt ) = 0

for all φ ∈ C0
r and all σ > 0.

Proposition 7.1 [Local fibre representation] For every t > 0 there exist δ ∈ (0, t), ε ∈ (0, δ],
and a continuously differentiable map

τ : C0
r ⊃ Uε(xt ) → (t − δ, t + δ) ⊂ R

with τ(xt ) = t so that for every (σ, φ) ∈ (t − δ, t + δ) × Uε(xt ),

L(σ, φ − xσ ) = 0 ⇔ σ = τ(φ)}.
For every φ ∈ Uε(xt ) and for σ = τ(φ),

|φ − xσ |0,r ≤
(

1 + sup
t−δ≤u≤t+δ

|x ′
u |0,r

)

δ.
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Proof Let t > 0 be given. The map

f : (0,∞) × C0
r � (σ, φ) 	→ L(σ, φ − J x̂(σ )) ∈ R

is continuously differentiable and satisfies f (t, xt ) = 0. Using the formula defining the map
L we infer

D1 f (t, φ)1 = φ(0)x ′′(t) + φ(tb)x ′′(t + tb)

−((x ′(t))2 + x(t)x ′′(t)) − ((x ′(t + tb))
2 + x(t + tb)x ′′(t + tb)),

hence

D1 f (t, xt )1 = −(x ′(t))2 − (x ′(t + tb))
2 < 0.

Apply the Implicit Function Theorem and obtain δ ∈ (0, t), ε > 0, and a continuously
differentiable map τ with the properties stated in the first sentence of the proposition. Notice
that one can achieve ε ≤ δ. For φ ∈ Uε(xt ) and σ = τ(φ) we get

|φ − xσ |0,r ≤ |φ − xt |0,r + |xt − xσ |0,r
= |φ − xt |0,r + |J x̂(t) − J x̂(σ )|0,r
≤ ε + sup

t−δ≤u≤t+δ

|D J x̂(u)1|0,r |t − σ |
= ε + sup

t−δ≤u≤t+δ

|J Dx̂(u)1|0,r |t − σ |

= ε + sup
t−δ≤u≤t+δ

|x ′
u |0,r |t − σ |

≤ (1 + sup
t−δ≤u≤t+δ

|x ′
u |0,r )δ.

Proposition 7.2 (Fibre representation along compact arcs) Let reals u < v in (r ,∞) and
n ∈ N be given. There exist positive ρ = ρ(u, v, n) ≤ 1

n so that for every φ ∈ Uρ(J x̂([u, v]))
there is one and only one

σ ∈
[

u − 1

n
, v + 1

n

]

∩ (0,∞)

such that

L(σ, φ − xσ ) = 0 and |φ − xσ |0,r ≤ 1

n
.

In case φ = xt with t ∈ [u, v] we have σ = t .

Proof 1. Let reals u < v in (r ,∞) be given. As the curve J ◦ x̂ is continuously differentiable
with D J x̂(w)1 = x ′

w ∈ C0
r for all w > 0 we obtain

|xt − xσ )|0,r ≤ c|t − σ | for all t, σ in
[u

2
, v + 1

]

with

c = max
u
2 ≤w≤v+1

|x ′
w|0,r .

2. Apply Proposition 7.1 to each w ∈ [u, v], and obtain ε = εw and δ = δw and τ = τw

according to Proposition 7.1. Notice that one my assume

u

2
≤ w − δw, (1 + c)δw ≤ 1

n
.
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Using the compactness of J x̂([u, v]) ⊂ C0
r one finds a strictly increasing finite sequence

(w j )
j̄
1 in [u, v] so that the associated neighbourhoods Uεw j

(x̂(w j )), j ∈ {1, . . . , j̄}, form a

covering of J x̂([u, v]). There exists a positive real number

ρ = ρ(u, v, n) ≤ min
j=1,..., j̄

εw j

with

Uρ(J x̂([u, v]) ⊂
j̄⋃

j=1

Uεw j
(x̂(w j )).

Notice that

ρ ≤ min
j=1,..., j̄

εw j ≤ max
j=1,..., j̄

δw j ≤ 1

n
.

For every φ ∈ Uρ(J x̂([u, v]) we obtain (at least one)

σ ∈
j̄⋃

j=1

(w j − δw j , w j + δw j )

⊂
[

max

{
u

2
, u − 1

n

}

, v + 1

n

]

with

L(σ, φ − xσ ) = 0 and |φ − xσ |0,r ≤ (1 + c) max
j=1,..., j̄

δw j ≤ 1

n
.

Or, the set Rn ⊂ (0,∞) of all ρ ∈ (
0, 1

n

]
such that for every φ ∈ Uρ(J x̂([u, v])) there exist

σ ∈ [
u − 1

n , v + 1
n

] ∩ (0,∞) with

L(σ, φ − xσ ) = 0 and |φ − xσ |0,r ≤ 1

n

is nonempty. Observe that

ρn = 1

2
sup Rn

belongs to Rn .
3. Assume that the set I of all n ∈ N such that Uρn (J x̂([u, v])) contains φ with

2 ≤ #

{

σ ∈
[

u − 1

n
, v + 1

n

]

∩ (0,∞) : L(σ, φ − xσ ) = 0

and |φ − xσ |0,r ≤ 1

n

}

is unbounded.Wederive a contradiction. The elements of I forma strictly increasing sequence
(nk)

∞
1 . For every k ∈ N select some φk in Uρ(J x̂([u, v])) with ρ = ρnk and σ

(1)
k < σ

(2)
k in[

u − 1
nk

, v + 1
nk

]
∩ (0,∞) with

L(σ
(m)
k , φk − x

σ
(m)
k

) = 0 and |φk − x
σ

(m)
k

|0,r ≤ 1

nk
for m ∈ {1, 2}.
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Using the compactness of, say, [0, v + 1], and successively choosing subsequences we find
a strictly increasing sequence (kκ )∞1 so that the equations

z(m)
κ = σ

(m)
kκ

for κ ∈ N and m ∈ {1, 2}
define two sequences which converge to z(1) ≤ z(2) in [0, v + 1], respectively. Necessarily,
u ≤ z(1) ≤ z(2) ≤ v. The continuity of J ◦ x̂ yields x

z(m)
κ

→ xz(m) in C0
r as κ → ∞, for

m ∈ {1, 2}. Using the inequalities

|φk − x
σ

(m)
k

|0,r ≤ 1

nk
for m ∈ {1, 2} and k ∈ N

we obtain φkκ → xz(1) = xz(2) as κ → ∞. As x̂ is injective on [r ,∞) ⊃ [u, v], z(1) = z(2).
Apply Proposition 7.1 to t = z(1) = z(2) and choose positive ε ≤ δ according to this
proposition. For κ ∈ N sufficiently large we have

φkκ ∈ Uε(xt ),

both z(1)
κ < z(2)

κ belong to (t − δ, t + δ), and

L(σ, φkκ − xσ ) = 0 for σ = z(1)
κ and for σ = z(2)

κ .

This yields a contradiction to the first part of Proposition 7.1.
4. Combining the results of Parts 1 and 2 we obtain n(u, v) ∈ N such that for every

integer n ≥ n(u, v) and for every φ ∈ Uρn (J x̂([u, v])) there exists one and only one
σ ∈ [

u − 1
n , v + 1

n

]∩ (0,∞)with L(σ, φ − xσ ) = 0 and |φ − xσ |0,r ≤ 1
n . Now the assertion

of Proposition 7.2 follows easily.

Proposition 7.2 yields that for u < v in (r ,∞) and n ∈ N there exists ρ ≤ 1
n so that the

relations

φ ∈ Uρ(J x̂([u, v])), σ ∈
[

u − 1

n
, v + 1

n

]

∩ (0,∞),

L(σ, φ − xσ ) = 0, |φ − xσ |0,r ≤ 1

n

define a map

su,v,ρ : C0
r ⊃ Uρ(J x̂([u, v])) → (0,∞)

with

|φ − xsu,v,ρ (φ)|0,r ≤ 1

n
for all φ ∈ Uρ(J x̂([u, v])).

Proposition 7.3 Let reals u < v in (r ,∞) and n ∈ N be given and choose ρ = ρ(u, v, n)

according to Proposition 7.2. There exist η = η(u, v, n) ∈ (0, ρ] so that the restriction su,v,η

of su,v,ρ to Uη(J x̂([u, v])) is continuously differentiable.
For every φ ∈ Uη(J x̂([u, v])) and for every σ ∈ [

u − 1
n , v + 1

n

] ∩ (0,∞),

σ = su,v,η(φ) ⇔
(

L(σ, φ − xσ ) = 0 and |φ − xσ |0,r ≤ 1

n

)

.

For every σ ∈ [u, v], su,v,η(xσ ) = σ .
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Proof For each t ∈ [u, v] choose ε = εt ≤ δt = δ and τ = τt according to Proposition 7.1.
Observe that we may assume that δt satisfies

max

{

0, u − 1

n

}

< t − δt , t + δt < v + 1

n

and

(1 + sup
t−δt ≤w≤t+δt

|x ′
w|0,r )δt <

1

n
.

For every φ ∈ Uρ(J x̂([u, v])) ∩ Uεt (xt ) we have that

σ = τt (φ) ∈ (t − δt , t + δt ) ⊂
[

u − 1

n
, v + 1

n

]

∩ (0,∞)

satisphies L(σ, φ − xσ ) = 0 and

|φ − xσ |0,r ≤ (1 + sup
t−δt ≤w≤t+δt

|x ′
w|0,r )δt <

1

n
.

By the definition of su,v,ρ ,

su,v,ρ(φ) = σ = τt (φ).

It follows that the restriction of su,v,ρ to Uρ(J x̂([u, v])) ∩ Uεt (xt ) is continuously differen-
tiable. There exists η ∈ (0, ρ) with

Uη(J x̂([u, v])) ⊂
⋃

u≤t≤v

Uρ(J x̂([u, v])) ∩ Uεt (xt ).

The last statement in Proposition 7.3 is obvious from Proposition 7.2.

Using continuous differentiability of the delay function � we infer that the delay func-
tional

du,v,η = � ◦ su.v,η

defined on the open neighbourhood Uη(J x̂([u, v])) of the arc J x̂([u, v]) is continuously
differentiable (with respect to the topology ofC0

r ). For every σ ∈ [u, v]we have su,v,η(xσ ) =
σ , hence

du,v,η(xσ ) = �(su,v,η(xσ )) = �(σ).

8 Compatibility on C0
r -Neighbourhoods of Adjacent Arcs

Let j = jr ≥ 2 denote the smallest integer with r < ( j − 1)t5. For j ≤ k ∈ N set

Xk = x̂([(k − 1)t5, kt5]) ⊂ C1
r .

In the sequel we construct open neighbourhoodsUk of J Xk in C0
r and continuously differen-

tiable delay functionals dk : C0
r ⊃ Uk → (0, r)with dk(xt ) = �(t) for all t ∈ [(k−1)t5, kt5]

so that for every integer k ≥ j we have

dk(φ) = dk+1(φ) for all φ ∈ Uk ∩ Uk+1. (8.1)
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The construction is iterative. We carry out the initial step and the step thereafter. This second
step is the model for the step from statements for general k ≥ j to statements for k + 1.

1. The initial step for k = j .
1.1. Apply Proposition 7.1 with t = j t5 at x̂(t), choose δ = δ( j) > 0, ε = ε( j) ∈ (0, δ],

and a map τ = τ j from Uε(x̂(t)) ⊂ C0
r into (t − δ, t + δ) accordingly. By continuity there

are n = n( j) ∈ N with

x̂

([

t − 1

n
, t + 1

n

])

⊂ Uε(x̂(t)) and r < ( j − 1)t5 − 1

n
,

and ε j ∈ (0, ε( j)] with

τ(Uε j (x̂(t))) ⊂
[

t − 1

n
, t + 1

n

]

.

An application of Proposition 1.3 with a = ( j − 1)t5, b = ( j + 1)t5, t = j t5 yields
ρ = ρ( j) > 0 with

Uρ(J X j ) ∩ Uρ(J X j+1) ⊂ Uε j (x̂(t));
notice that X j = x̂([a, t]) and X j+1 = x̂([t, b]).

1.2. We apply Proposition 7.3 twice, first with u = ( j − 1)t5, v = j t5, and n = n( j).
This yields η > 0 and a continuously differentiable map

su,v,η : Uη(J X j ) →
[

u − 1

n
, v + 1

n

]

⊂ R

so that for every φ ∈ Uη(J X j ) we have
(

σ ∈
[

u − 1

n
, v + 1

n

]

and L(σ, φ − xσ ) = 0

)

⇔ σ = su,v,η(φ).

Also, su,v,η(xw) = w for all w ∈ [u, v]. We may assume

η < ρ = ρ( j).

Set

U j = Uη(J X j ) and s j = su,v,η.

The map

d j : U j � φ 	→ �(s j (φ)) ∈ (0, r)

is continuously differentiable with d j (xw) = �(w) for all w ∈ [( j − 1)t5, j t5].
The second application of Proposition 7.3, with û = ( j + 1) − 1)t5 = j t5, v̂ = ( j + 1)t5,

and n = n( j) yields η̂ > 0 and a continuously differentiable map sû,v̂,η̂ : Uη̂(J X j+1) →
[
û − 1

n , v̂ + 1
n

] ⊂ R such that for every φ ∈ Uη̂(J X j+1) we have
(

σ ∈
[

û − 1

n
, v̂ + 1

n

]

and L(σ, φ − xσ ) = 0

)

⇔ σ = sû,v̂,η̂(φ).

Also, sû,v̂,η̂(xw) = w for all w ∈ [û, v̂]. We may assume

η̂ < ρ = ρ( j).

Set

Û j+1 = Uη̂(J X j+1) and ŝ j+1 = sû,v̂,η̂.
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1.3. Let φ ∈ U j ∩ Û j+1. Proof of s j (φ) = ŝ j+1(φ).
We have φ ∈ Uε j (x̂(t)), due to Part 1.1 and to max{η, η̂} ≤ ρ( j). Hence

τ(φ) ∈
[

t − 1

n
, t + 1

n

]

.

Notice that t = v = û, and thereby
[

t − 1

n
, t + 1

n

]

⊂
[

u − 1

n
, v + 1

n

]

∩
[

û − 1

n
, v̂ + 1

n

]

.

For σ = τ(φ) we have L(σ, φ − xσ ) = 0, see Proposition 7.1. Now the properties of s j and
of sû,v̂,η̂ from Part 1.2 yield

s j (φ) = σ = sû,v̂,η̂(φ) = ŝ j+1(φ).

2. The second step, which includes the definitions of U j+1 ⊂ Û j+1, of s j+1, and of d j+1,
and contains the proof of d j (φ) = d j+1(φ) on U j ∩ U j+1.

2.1. Apply Proposition 7.1, now at x̂(t) with t = ( j +1)t5, and choose δ = δ( j +1) > 0,
ε = ε( j + 1) ∈ (0, δ], and a map τ = τ j+1 from Uε(x̂(t)) into (t − δ, t + δ) accordingly.
By continuity there is an integer n = n( j + 1) ≥ n( j) with

J x̂

([

t − 1

n
, t + 1

n

])

⊂ Uε(x̂(t))

(

and r < (( j + 1) − 1)t5 − 1

n

)

,

and there exists ε j+1 ∈ (0, ε( j + 1)] with

τ(Uε j+1(x̂(t))) ⊂
[

t − 1

n
, t + 1

n

]

.

An application of Proposition 1.3 with a = (( j + 1) − 1)t5 = j t5, b = (( j + 1) + 1)t5 =
( j + 2)t5, t = ( j + 1)t5 yields ρ = ρ( j + 1) > 0 with

Uρ(J X j+1) ∩ Uρ(J X j+2) ⊂ Uε j+1(x̂(t));
notice that X j+1 = x̂([a, t]) and X j+2 = x̂([t, b]).

2.2. First we restrict ŝ j+1 from Part 1.2. As ŝ j+1 maps J X j+1 onto [( j t5, ( j + 1)t5]
continuity yields η̃ ∈ (0, ρ( j + 1)] such that

U j+1 = Uη̃(J X j+1)

is contained in Û j+1 and

ŝ j+1(U j+1) ⊂
[

j t5 − 1

n
, ( j + 1)t5 + 1

n

]

,

with n = n( j + 1). Set s j+1 = ŝ j+1|U j+1 . Part I.3 gives

s j+1(φ) = s j (φ) for all φ ∈ U j+1 ∩ U j ,

and it follows that the continuously differentiable map

d j+1 : U j+1 � φ 	→ �(s j+1(φ)) ∈ (0, r)

satisfies d j+1(φ) = �(s j+1(φ)) = �(s j (φ)) = d j (φ) for all φ ∈ U j+1 ∩ U j . Also,
d j+1(xw) = �(s j+1(xw)) = �(w) for all w ∈ [ j t5, ( j + 1)t5].
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Next we apply Proposition 7.3, with ǔ = ( j + 2) − 1)t5 = ( j + 1)t5, v̌ = ( j + 2)t5, and
n = n( j+1). This yields η̌ > 0 and a continuously differentiablemap sǔ,v̌,η̌ : Uη̌(J X j+2) →
[
ǔ − 1

n , v̌ + 1
n

] ⊂ R such that for every φ ∈ Uη̌(J X j+2) we have
(

σ ∈
[

ǔ − 1

n
, v̌ + 1

n

]

and L(σ, φ − xσ ) = 0

)

⇔ σ = sǔ,v̌,η̌(φ).

Also, sǔ,v̌,η̌(xw) = w for all w ∈ [ǔ, v̌]. Again we may assume

η̌ < ρ = ρ( j + 1).

Set

Û j+2 = Uη̌(J X j+2) and ŝ j+2 = sǔ,v̌,η̌.

2.3. Proof of s j+1(φ) = ŝ j+2(φ) for all φ ∈ U j+1∩Û j+2. Such φ belong toUε j+1(x̂(( j +
1)t5), due to Part 2.1 and to the inequality max{η̃, η̌} ≤ ρ( j + 1). Hence σ = τ(φ) is
contained in

[
t − 1

n , t + 1
n

]
, for n = n( j + 1). Notice that t = ( j + 1)t5 = ǔ, and thereby

[

t − 1

n
, t + 1

n

]

⊂
[

j t5 − 1

n
, ( j + 1)t5 + 1

n

]

∩
[

ǔ − 1

n
, v̌ + 1

n

]

⊂
[

j t5 − 1

n( j)
, ( j + 1)t5 + 1

n( j)

]

∩
[

ǔ − 1

n( j + 1)
, v̌ + 1

n( j + 1)

]

.

We also have L(σ, φ − xσ ) = 0, see Proposition 7.1. Now the properties of ŝ j+1 from Part
1.2 and of ŝ j+2 = sǔ,v̌,η̌ from Part 2.2 yield

ŝ j+1(φ) = σ = ŝ j+2(φ),

which is s j+1(φ) = ŝ j+2(φ).
This ends the second step.

9 A Functional on a C1
r -Neighbourhood of the Trace x̂([(jr − 1)t5,∞))

In this section the constructions from Sects. 2–8 are used to prove Theorem 1.1. Let an integer
k ≥ jr be given. On the open set of all reals t > 0 with J x̂(t) ∈ Uk we have that the map
given by t 	→ dk(J x̂(t)) is continuously differentiable, with the derivatives given by

Ddk(J xt )J Dx̂(t)1 = Ddk(J xt )x ′
t ∈ R.

On [(k − 1)t5, kt5] we have �(t) = dk(J x̂(t)). It follows that on this interval,

1 > �′(t) = Ddk(J xt )x ′
t .

Recall the constant â from Proposition 6.1. The subset

Nk = {φ ∈ C1
r ∩ J−1(Uk) : Ddk(Jφ)φ′ < 1 and there exists

t ∈ [(k − 1)t5, kt5] with |φ − xt |1,r <
â

2

}

of the space C1
r is open. Proposition 6.1 yields Nk ∩ Nm = ∅ for all integers k ≥ jr and

m ≥ jr with |k − m| > 1. Also, Nk ∩ Nk+1 ⊂ J−1(Uk)∩ J−1(Uk+1) for jr ≤ k ∈ N. Using
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the relations (8.1) we obtain that on the open set

N =
⋃

k≥ jr

Nk ⊃ x̂([( jr − 1)t5,∞))

the equations

d(φ) = dk(Jφ) for φ ∈ Nk and jr ≤ k ∈ N

define a map d : C1
r ⊃ N → (0, r). It follows that

d(xt ) = �(t) for all t ≥ ( jr − 1)t5 (9.1)

since for such t there exists k ≥ jr with t ∈ [(k − 1)t5, kt5], hence xt ∈ Nk , and thereby
d(xt ) = dk(J xt ) = dk(xt ) = �(t), see Sect. 8.

Proposition 1.2 applies and yields that the functional d is continuously differentiable and
has property (e).

Proposition 9.1 The functional

f : C1
r ⊃ N � φ 	→ −φ(−d(φ)) ∈ R

is continuously differentiable and has the extension property (e).

This is analogous to [14, Proposition 11.1]. We include the proof for convenience.

Proof We have

f (φ) = −ev1r (φ,−d(φ)) = −(ev1r ◦ (id × (−d)))(φ) for all φ ∈ N ,

which shows that f is continuously differentiable. Recall D1ev1r (φ, t)φ̂ = φ̂(t) and
D2ev1r (φ, t)t̂ = t̂φ′(t). The chain rule yields

D f (φ)φ̂ = −φ̂(−d(φ)) − φ′(−d(φ))[−Dd(φ)φ̂] = φ′(−d(φ))Dd(φ)φ̂ − φ̂(−d(φ)).

For φ ∈ N the equation

De f (φ)χ = φ′(−d(φ))Ded(φ)χ − χ(−d(φ)).

defines a linear extension De f (φ) : C0
r → R of the derivative D f (φ) : C1

r → R. Using the
continuity of the evaluation map C0

r × [−r , 0] � (χ, t) 	→ χ(t) ∈ R and property (e) of d
one finds that the map N × C0

r � (φ, χ) 	→ De f (φ)χ ∈ R is continuous.

For t ≥ jr t5 we have xt ∈ N and, due to Eq. (9.1),

x ′(t) = −x(t − �(t)) = −x(t − d(xt )) = f (xt ).

This implies that the twice continuously differentiable function

x (d) : [−r ,∞) � t 	→ x(t + jr t5) ∈ R

is a solution of the equation

y′(t) = f (yt )

with the flowline [0,∞) � t 	→ x (d)
t ∈ C1

r in the solution manifold

X f = {φ ∈ N : φ′(0) = f (φ)}.
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Recall the non-empty set A ⊂ C2
h chosen in Sect. 4 as a special case of the sets from Example

2.2. The set A is open in the affine space p∗ + C2
h−0 of codimension 6 in C2

h−0. Recall the

choice of x on [td − h, td ] ⊂ [0, t5] in Sect. 4. The short segments x (d)
td+(n−1)t5,short ∈ C2

h ,
n ∈ N, are dense in A ∪ (−A).

Finally we show that for each φ ∈ X f the delayed argument function

[0, tφ) � t 	→ t − d(xφ
t ) ∈ R

is strictly increasing. Let φ ∈ X f and t ∈ (0, tφ) be given and set y = xφ . As y : [−r , tφ) →
R is continuously differentiable the curve ỹ : [0, tφ) � t 	→ J yt ∈ C0

r is continuously
differentiable with Dỹ(u)1 = y′

u for all u > 0, compare [13, Proposition 4.1]. The segment
yt ∈ X f ⊂ N is contained in Nk for some integer k ≥ jr . By continuity of the flowline
[0, tφ) � u 	→ yu ∈ X f ⊂ N ⊂ C1

r , there is ε > 0 with yu ∈ Nk for all u ∈ (t − ε, t + ε).
Then d(yu) = dk(J yu) = dk(ỹ(u)) on (t − ε, t + ε). It follows that the curve

(t − ε, t + ε) � u 	→ d(yu) ∈ R

is differentiable with derivatives given by Ddk(J yu)y′
u < 1. This implies that on (0, tφ) the

delayed argument function is differentiable with positive derivative, fromwhich the assertion
follows.
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