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Abstract

Schistosomiasis japonica is a major parasitic disease threatening millions of people in China. Though overall prevalence was
greatly reduced during the second half of the past century, continued persistence in some areas and cases of re-emergence
in others remain major concerns. As many regions in China are approaching disease elimination, obtaining quantitative data
on Schistosoma japonicum parasites is increasingly difficult. This study examines the distribution of schistosomiasis in
eastern China, taking advantage of the fact that the single intermediate host serves as a major transmission bottleneck.
Epidemiological, population-genetic and high-resolution ecological data are combined to construct a predictive model
capable of estimating the probability that schistosomiasis occurs in a target area (‘‘spatially explicit schistosomiasis risk’’).
Results show that intermediate host genetic parameters are correlated with the distribution of endemic disease areas, and
that five explanatory variables—altitude, minimum temperature, annual precipitation, genetic distance, and haplotype
diversity—discriminate between endemic and non-endemic zones. Model predictions are correlated with human infection
rates observed at the county level. Visualization of the model indicates that the highest risks of disease occur in the
Dongting and Poyang lake regions, as expected, as well as in some floodplain areas of the Yangtze River. High risk areas are
interconnected, suggesting the complex hydrological interplay of Dongting and Poyang lakes with the Yangtze River may
be important for maintaining schistosomiasis in eastern China. Results demonstrate the value of genetic parameters for risk
modeling, and particularly for reducing model prediction error. The findings have important consequences both for
understanding the determinants of the current distribution of S. japonicum infections, and for designing future
schistosomiasis surveillance and control strategies. The results also highlight how genetic information on taxa that
constitute bottlenecks to disease transmission can be of value for risk modeling.
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Introduction

Schistosomiasis japonica is a major parasitic disease threatening

50–65 million people living in subtropical areas of China [1].

Though overall prevalence and intensity of infection were reduced

by more than 90% during the second half of the past century [2,3],

the possibility of continued reduction of schistosomiasis to achieve

rapid elimination has recently been questioned [4]. Highly

variable rates of reduction across counties, continued persistence

in some areas, and cases of re-emergence in others, remain major

concerns [3,5,6]. The conditions that characterize the current,

critical stage of disease elimination in China call for new strategies

in disease surveillance and control [7]. The current control target

aimed at reducing human and bovine infection rates in all

endemic counties to less than 1% by 2015 [8–11] largely focuses

on morbidity control. This strategy could benefit from the

inclusion of evolutionary and ecological perspectives, particularly

as concerns key epidemiological and surveillance concepts.

For instance, a basic epidemiological concept used in China’s

schistosomiasis surveillance and control strategy is ‘endemic area’.

It refers to a region where a particular disease is prevalent [12]

based on standardized parameters, mainly rates of infection in

residents and/or cattle [13]. It does not explicitly consider

evolutionary aspects such as the relative spatial isolation of

populations transmitting the disease [7,14]. Such an evolutionary

(i.e., population-based) approach, however, could help shift

capabilities from simply analyzing the patterns of disease

transmission to understanding the actual processes responsible

for generating these patterns.

Another instance where an evolutionary perspective could be

useful relates to the fact that China’s current control strategy

primarily targets only two main hosts, humans and cattle [15],
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even though more than 40 mammalian species are known to serve

as definitive host [7]. Therefore, it is reasonable to assume that

cases of cryptic persistence of schistosomiasis are common, calling

for approaches focusing on the snail host as major transmission

bottleneck in the schistosome life cycle (‘‘no snails, no disease’’)

[16].

Unlike other snail-schistosome models, Schistosoma japonicum is

carried by a single species of snail with a peculiar amphibious life

style, and there are no known cases of snail host-switching and/or

host-addition in China [16]. This makes Oncomelania hupensis a

crucial target for disease control. Empirical evidence even suggests

a close link between snail genetic characters and rates of infection

in snails [16–19], a possible consequence of the effects of positive

frequency dependent selection, e.g., genetic warfare between host

and parasite leading to sustained oscillations in genotype

frequencies [20–22].

Given the large number of definitive hosts for S. japonicum, and

the fact that quantitative parasite data are increasingly difficult to

obtain due to low rates of natural infections [7], the intermediate

snail host thus becomes of particular interest. Here, we take a fresh

look at schistosomiasis distribution in eastern China from the

evolutionary and ecological viewpoint of a single intermediate host

system. For the first time, epidemiological with spatially explicit

population-genetic and high-resolution ecological data are com-

bined to develop a predictive model capable of estimating the

probability that schistosomiasis occurs in a target area (here

termed ‘spatially explicit schistosomiasis risk’—SESR). The study

pursues four specific goals:

N We test whether genetic intermediate host characters (i.e.,

intrinsic evolutionary properties of populations), in principle,

are reflected by previously defined endemic areas.

N We use a candidate set of topographical, ecological and genetic

variables together with maximum entropy modeling to identify

those explanatory characters that significantly discriminate

between endemic/non-endemic areas.

N Based on the parameters with the highest discriminatory

power, we then develop a SESR model, converting categorical

infection data for administrative units into spatially explicit,

high-resolution, and quantitative reaction data.

N Finally we compare the model data with actual human

infection rates to evaluate our SESR model and to assess the

significance of intermediate host traits for future epidemiolog-

ical modeling of schistosomiasis.

Materials and Methods

Specimens Studied
Today, the human blood fluke S. japonicum (Katsurada, 1904) is

transmitted in the Yangtze River area by two snail subspecies,

Oncomelania hupensis hupensis Gredler, 1881 and O. h. robertsoni

Bartsch, 1946. The two taxa (and therefore the disease as well)

have disjunct ranges; the eastern subspecies O. h. hupensis occurs in

the lowlands of the Yangtze River below the Three Gorges (Fig. 1);

the western subspecies O. h. robertsoni in mountainous regions of

Sichuan and Yunnan provinces.

This study includes 530 specimens of the eastern subspecies O. h.

hupensis from 45 sites (‘populations’) in six Chinese provinces.

Specimens were largely collected between 1996 and 2005 (plus

three additional populations in 1984) in and around the lower

Yangtze River basin. Thirty one of these sites are located within

and fourteen outside of previously proposed endemic areas (Fig. 1;

Supporting Table S1).

All specimens were obtained before the completion of the Three

Gorges Dam (TGD) project in 2007. It is assumed that dam-

associated changes in water regime and sedimentation rates of the

lower Yangtze River will have significant effects on the distribution

patterns of the intermediate host and thus disease distribution

[10,16,23]. As these demographic processes are likely reflected by

snail population structures [16], the data presented here may also

serve as valuable baseline for future studies of pre- vs. post-dam

effects on schistosomiasis in China.

Molecular Data
DNA extraction, amplification and sequencing. Genomic

DNA was extracted from individual snail specimens utilizing a

CTAB protocol [24]. Digital images of selected specimens were

taken prior to consumptive DNA isolation and deposited at the

University of Giessen Systematics and Biodiversity collection

(UGSB). We amplified a fragment of the mitochondrial cyto-

chrome c oxidase subunit I (COI) gene with a target length of 658

base pairs (excluding primer sequence). Forward and reverse

primers for PCR amplification and DNA sequencing were

LCO1490 [25] and COR722b [26]; the latter is a modification

of primer HCO2198 [26]. Bidirectional DNA sequencing

according to the ‘Sanger’ chain-termination method [27] was

performed either on a Long Read IR2 4200 sequencer (LI-COR,

Lincoln, NE, USA) or an ABI3730XL sequencer (Life Technol-

ogies Corporation, Carlsbad, CA, USA). The protein-coding COI

sequences, which are free of insertions and deletions in the family

Pomatiopsidae [28], were aligned in BioEdit 7.1.3.0 [29]. As the

first base pairs behind the 39 end of each primer were difficult to

read, we trimmed these regions, leaving a 638 bp-long overlapping

fragment. All 440 newly generated sequences were deposited in

GenBank. Additional 90 sequences were taken from GenBank,

resulting in a total dataset of 530 sequences (Supporting Table S1).

Correlation Analysis of Previously Defined Endemic Areas
and Intermediate Host Genetics

In order to test whether genetic snail parameters, in principle,

can be explained by the distribution of previously defined endemic

areas (see Goal 1), we used two independent approaches. With an

Analysis of Molecular Variance (Amova) [30], it was tested

Author Summary

Schistosomiasis is considered the second most devastating
parasitic disease after malaria. In China, it is transmitted to
humans, cattle and other vertebrate hosts by a single
intermediate snail host. It has long been suggested that
the close co-evolutionary relationship between parasite
and intermediate host makes the snail a major transmis-
sion bottleneck in the disease life cycle. Here, we use a
novel approach to model the disease distribution in
eastern China based on a combination of epidemiological,
ecological, and genetic information. We found four major
high risk areas for schistosomiasis occurrence in the large
lakes and flood plain regions of the Yangtze River. These
regions are interconnected, suggesting that the disease
may be maintained in eastern China in part through the
annual flooding of the Yangtze River, which drives snail
transport and admixture of genotypes. The novel ap-
proach undertaken yielded improved prediction of schis-
tosomiasis disease distribution in eastern China. Thus, it
may also be of value for the predictive modeling of other
host- or vector-borne diseases.

Modeling of Schistosomiasis Risk in Eastern China
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whether there is a significant partitioning of variance of genetic

characters from populations within vs. populations outside of

endemic areas. This analysis is not fully spatially-explicit as the

overall geographical distribution of snail populations is not

considered. Alternatively, we used Multivariate Regression Trees

(MRT) [31] to test whether genetic characters can be predicted

using endemic areas. This analysis differs from the Amova by

being spatially-explicit (see below).

As our snail populations were collected over a period of

approximately 20 years (see Supporting Table S1), we conducted

two Amova tests (A, B). Amova A served as a pre-analysis to

exclude the possibility of a sampling bias by testing for the

presence of a significant partitioning of variance of genetic

characters from populations being collected during different time

periods. Amova B was then used to test for a partitioning of

variance between populations from endemic vs. non-endemic

areas. For the former analysis, our grouping variables were

sampling periods (1980s, 1990s, and 2000s) according to

Supporting Table S1. For the latter one, populations were

grouped according to their assignment to endemic vs. non-

endemic areas based on the endemic area distribution as

previously suggested [5] (also see Fig. 1 and Supporting Table

S1). Then, a distance matrix of pairwise nucleotide differences was

calculated in Arlequin 3.5.1.2. [32] and the significance of the W
statistic (a#0.05) tested by generating a null-distribution based on

10,000 permutations of the original dataset.

The MRT approach used the principle coordinates obtained by

multidimensional scaling of pairwise differences as response

variables. The variables were standardized by dividing by the

respective maximum, and endemic state and geographical

coordinates served as explanatory variables (latitude and longitude

information was converted into northing and easting according to

the Asia North Equidistant Conic projection for obtaining

equidistant values). As previously suggested [33], the first split of

the tree can be forced for hypothesis testing. Accordingly, we pre-

defined this split to discriminate between endemic and non-

endemic areas. Hierarchical nesting for MRT was then done with

the MVPARTwrap 0.1.8 package [33] for R 2.15 statistical

environment [34]. The overall best tree was selected by running

1000 10-fold cross validations.

SESR Modeling
Candidate snail traits. For identifying the genetic param-

eters that significantly reflect the spatial distribution of endemic

areas, four candidate population indices were calculated from the

COI dataset. They comprised within-site (‘diversity’) and between-

Figure 1. Schistosomiasis study area in eastern China. The map shows the localities of the intermediate snail host Oncomelania h. hupensis
sampled (red dots), the assumed maximum distribution area of this subspecies in the lower Yangtze River basin (dashed gray line), and previously
delineated endemic areas [5] (highlighted areas). The distribution area is based on our own sampling data and literature records [58,74,80,81],
restricted by a reasonable vertical distribution of 0 to 200 m a.s.l. [2]. For detailed locality information see Supporting Table S1. TGD = Three Gorges
Dam.
doi:10.1371/journal.pntd.0002327.g001

Modeling of Schistosomiasis Risk in Eastern China

PLOS Neglected Tropical Diseases | www.plosntds.org 3 July 2013 | Volume 7 | Issue 7 | e2327



site (‘divergence’) parameters. The first set of parameters consisted

of nucleotide diversity p (average number of nucleotide differences

per site within populations based on equation 10.5 in Nei [35]) and

Tajima-Nei-distance DTN (average number of nucleotide differ-

ences per site between populations, corrected for unequal rates of

substitution [36]), calculated in the R statistical environment. The

second set of indices utilized haplotype information, which was

previously suggested to be correlated with infection rates in snails

[2,16,19] (also see section ‘‘Predictive variables of SESR’’ in the

Discussion). We calculated both haplotype diversity (HD) and

haplotype divergence (HMH) in order to assess within and between

population differentiations, respectively. HD was estimated in

DnaSP v5 based on equation 8.4 in Nei [35]. For calculating

HMH, we treated haplotypes as species [37] and estimated the

dissimilarity between the haplotype structures of two groups in R

2.15 applying the Morisita-Horn index [38]. Note that the two

divergence indices DTN and HMH were obtained by estimating the

average pairwise distances between the population of concern and

all other populations in the dataset.

Additional candidate ecological and topographical parameters

of O. hupensis to be used for the modeling of schistosomiasis risks

were selected based on their potential relevance for the

distribution and/or susceptibility of snail populations [16,39–41]

(see Table 1).

Model building. In order to identify the candidate characters

that discriminate between endemic/non-endemic areas and to

build and visualize our SESR model, we here used maximum

entropy modeling as implemented in MaxEnt 3.3.3k [42]. The

software has been shown to perform well in species distribution

[43] and disease modeling analyses [44]. The MaxEnt algorithm

fits predictor variables (i.e., our snail traits) to the endemic state by

discriminating between the 31 populations located within previ-

ously defined endemic areas [5] and 10,000 random extralimital

points. Our genetic data were based on 45 distinct collection

points and hence did not have the continuity of the topographical

and ecological characters. We therefore first interpolated the gaps

between populations using Inverse Distance Weighting (IDW) [45]

as implemented in the gstat 1.0–14 package [46] for the R

statistical environment. The IDW algorithm estimated values for

the population indices by weighting the information of the nearest

twelve sampling points with distance to the respective grid cell.

As correlated variables may lead to a decrease of model quality

[47], we first tested similar variables (the four genetic variables,

bio06 vs. bio11, and bio12 vs. bio16) in R for potential correlation

using a conservative Pearson’s r of 0.8 sensu Elith et al. and Rodda

et al. [48,49] as threshold. Whereas no correlation could be

detected among the genetic variables, variable pairs bio6/bio11

and bio12/bio16 were correlated with r = 0.89 and r = 0.85,

respectively. The final selection of the best combination of

topographical, ecological and genetic candidate variables was

done in MaxEnt by determining the area under the receiver

operator curve (AUC), with increasing numbers of variables being

penalized. In order to account for the presence of two pairs of

correlated variables, we ran four individual MaxEnt analyses (all

uncorrelated variables+bio06+bio12; all uncorrelated variable-

s+bio06+bio16; all uncorrelated variables+bio11+bio12; and all

uncorrelated variables+bio11+bio16). For each variable combina-

tion, 5-fold cross validation was done with 50 repeats. Individual

variable contributions were evaluated by jacknife testing of

significant differences in AUC values, applying parametric boot-

strapping with 10,000 replicates. The best combination of

variables that fulfilled the quality criteria was then used for the

final run of 500 predictions. In order to avoid false positive

predictions [50], we assessed the risk threshold for each prediction

using a receiver operator curve plot (ROC) [51] with predictions

below the threshold being omitted. After calculating the mean of

the 500 final run predictions, the information was processed with

the GIS-package dismo 0.7–23 [52] in R to visualize our SESR

model.

Linking Model Data for Schistosomiasis Risk with
Infection Data

To evaluate our model and to assess its epidemiological value,

we compared model predictions to observed human infection rates

at county levels. Total numbers of human cases for each county

were derived from Zhang et al. [53] and are based on

Table 1. Candidate topographical and ecological characters of Oncomelania h. hupensis used for the SESR modeling.

Parameter Source/data transformation Original resolution Relevance

Elevation SRTM3 90 m Digital Elevation Model 90 m Main snail distribution parameter

Slope SRTM3 90 m Digital Elevation Model 90 m Main snail distribution parameter

Bioclimatic variable bio6 (minimum
temperature of coldest month)

Global Climate database at
www.worldclim.org [82]

1000 m Lethal temperature for O. hupensis is
22.7uC [71]

Bioclimatic variable bio11 (mean
temperature of coldest quarter)

Global Climate database at
www.worldclim.org [82]

1000 m The development of both snails and
parasite larvae requires a minimum
temperature [72,83,84]

Bioclimatic variable bio12 (annual
precipitation)

Global Climate database at
www.worldclim.org [82]

1000 m Proxy for suitable snail habitat [84]

Bioclimatic variable bio16 (precipitation
of wettest quarter)

Global Climate database at
www.worldclim.org [82]

1000 m Proxy for flooding, transporting and/or
potentially drowning of snails

Euclidean distances to water bodies Calculated in ArcMap 9.3 based on water
body data in www.diva-gis.org

90 m Proxy for suitable snail habitat and/or
flooding

Normalized Difference Vegetation
Index (NDVI)

Moderate Resolution Imaging Spectroradiometer
(MODIS) data for 2000–2010, United States
Geological Survey. Clouds were masked and
the ten year average was calculated by using
the raster 2.0–12 package [85] for R 2.15

250 m Proxy for soil moisture [8] and therefore
suitable snail habitat (wetlands)

All original resolutions were re-sampled to 500 m.
doi:10.1371/journal.pntd.0002327.t001

Modeling of Schistosomiasis Risk in Eastern China
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epidemiological studies conducted in 1999–2001, 2007 and 2008.

Average human infection rates were then expressed as average

ratio of total number of incidences and population sizes for the

respective area and year. Year-specific human population sizes

were obtained from the NASA Socioeconomic Data and

Applications Center (SEDAC) available at http://sedac.ciesin.

columbia.edu/gpw.

We note that this validation routine is not completely

independent: the state of endemic areas used as response variable

is based on local environment and prevalence of infection [5], with

the latter being derived from cattle and/or human [13]. However,

as we only used non-human and non-cattle traits for our

subsequent risk modeling, a validation of this model by actual

infection data can be informative.

We tested the infection dataset for spatial autocorrelation

utilizing Moran’s I Test [54]. Semiparametric Eigenvector filtering

[55], as implemented in the R-package spdep 0.5–51 [56], was

performed to quantify the potential effect of spatial autocorrela-

tion. Then a linear regression analysis was conducted in R by

linking the county level infection rates to the mean model

prediction values for the respective areas. The anova function in R

was used to assess the contribution of the explanatory variables

relative to spatial eigenvectors and to correct the values

accordingly.

Results

Genetic Indices
Genetic indices for individual populations are provided in

Supporting Table S2. Our dataset of 530 specimens consisted of

212 haplotypes. Values for haplotype diversity (HD) and haplotype

divergence (HMH) ranged from 0.0 to 1.0 and 0.801 to 1.0,

respectively. Nucleotide diversity (p) and Tajima-Nei-distance

(DTN) varied from 0.0 to 0.016 and from 0.0 to 0.019, respectively.

Spatially explicit heat maps of genetic values for indices that were

later used for the SESR modeling (i.e., DTN and HD) are given in

Supporting Figure S1.

Correlation Analysis of Previously Defined Endemic Areas
and Snail Genetics

Analysis of molecular variance (Amova). The WCT value

for individuals collected during different sampling periods (i.e.,

1980s, 1990s, and 2000s; Amova A) was 20.016 (p = 0.464). As

negative values should be interpreted as zero [57] and as the high

p-value indicates that our hypothesis (i.e., that the means of the

groups are equal) is not rejected, a possible bias in our SESR

modeling caused by different sampling periods appears to be

unlikely.

The variation among groups of populations collected in

endemic vs. non-endemic areas (Amova B) explained 18.1% of

the total variation (WCT = 0.18, p,0.001), the variation among

populations within groups explained 40.4% (WSC = 0.49, p,0.001),

and the variation within populations 41.6% (WST = 0.58,

p,0.001). As the WCT value is relatively high and as there is a

significant partitioning of variance of snail parameters from

populations belonging to endemic areas vs. extralimital popula-

tions, genetic characters appear to explain in part the endemic

area state (see Goal 1).

Multivariate Regression Trees (MRT). Overall, the spa-

tially-explicit MRT explained 62.79% of the total variance in the

dataset. The pre-defined first split between endemic and non-

endemic areas contributed a substantial 24.14% to this variance,

confirming the results of the Amova B (see previous section).

SESR Modeling
Based on the four individual MaxEnt runs and a possible

combinations of a total of twelve candidate variables, the

combination of altitude, bio11, bio12, DTN, and HD was selected

by MaxEnt (Goal 2; see Fig. 2).

The goodness-of-fit (AUC) of this model had a median value of

0.97 (95% confidence limit: 0.80–1.00). When considering the two

genetic and the three topographical/environmental parameters

alone, the goodness-of-fit was 0.84 (0.57–1.00) and 0.92 (0.68–

1.00), respectively (Fig. 3). The average goodness-of-fit value for

two of the three topographical/environmental parameters was

0.86 (N = 3; details not shown here) and thus very similar to the

value of the two genetic parameters (0.84). Parametric boot-

strapping showed significant differences in means between the

model with all variables and the model without genetic param-

eters. The mean risk threshold as indicated by the ROC plot was

0.115.

The visualization of the SESR model (Goal 3), conducted with

the R-package dismo, is shown in Fig. 4. Accordingly, the

predicted schistosomiasis risk is highest in the regions of (i)

Dongting Lake and (ii) Poyang Lake, as well as in the Yangtze

River floodplains and islands in (iii) Hanyang and Jianli counties

(Hubei Province), and in (iv) Tongling and Guichi counties (Anhui

Province). Moderate to high risks were inferred for the remaining

floodplains of the Yangtze River in Hubei and Anhui provinces.

Linking SESR Model Data with Human Infection Data
Our spatial risk model was compared to human infection rates

[53] (Goal 4). Significant spatial autocorrelation was observed

within a distance of 100 km using Moran’s I test. The Anova

conducted showed that linear regression including spatial eigen-

vectors significantly explained more variation than without

(r2 = 0.476 and 0.238, respectively). Removing spatial autocorre-

lation from the infection dataset resulted in a final adjusted r2 of

0.338 (p,0.001, N = 284). Thus, SESR model predictions are

correlated with human infection rates.

Discussion

The basic findings of our study were: (i) intermediate host

genetic parameters inferred from the COI gene are correlated with

the distribution of previously defined endemic areas (Goal 1); (ii)

the maximum entropy modeling suggested five explanatory

variables (altitude, bio11, bio12, DTN, and HD) to discriminate

between endemic/non-endemic areas (Goal 2); (iii) the visualiza-

tion of our SESR model indicated the highest risks for the regions

of Dongting and Poyang lakes as well as some floodplains of the

Yangtze River in Hubei and Anhui provinces (Goal 3); and (iv) our

model predictions are correlated with human infection rates (Goal

4). These findings are discussed further below in relation to the

spatial distribution of endemic areas, the quality of predictive

intermediate host traits (particularly genetic traits), and the

implications of our risk modeling for future schistosomiasis

surveillance and control strategies.

High Risk Areas
Model predictions suggested four relatively distinct, yet not fully

isolated, areas as high risk regions. These areas, and the lack of

complete isolation thereof, fit relatively well the spatial distribution

of schistosomiasis previously suggested based on Bayesian random-

effect modeling of reported schistosomiasis cases [53]. The areas

include the two major lake systems Dongting and Poyang, which

are at the center of schistosomiasis control in eastern China [11].

They have long been considered to be endemic areas [58] and a

Modeling of Schistosomiasis Risk in Eastern China
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Figure 2. Individual response plots of five variables used for the SESR modeling. The plots were generated with the function response in
the R-package dismo based on 500 model runs. Bio11 = mean temperature of coldest quarter, bio12 = annual precipitation, DTN = Tajima-Nei-distance,
HD = haplotype diversity.
doi:10.1371/journal.pntd.0002327.g002

Figure 3. Results of jackknife testing of variable importance for the SESR modeling. The boxplots show the median goodness-of-fit values
(AUC) of the models based on three environmental (bio11, bio12, altitude), two genetic (DTN, HD), and all five variables together with their respective
95% confidence limits (whiskers).
doi:10.1371/journal.pntd.0002327.g003

Modeling of Schistosomiasis Risk in Eastern China
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high number of human re-infections occur there [13,59]. Both lake

regions are heavily affected by the annual flooding of the Yangtze

River and the associated rainy season (July–September) that causes

a considerable increase of their surface areas [60,61]. These floods

may have countervailing effects on the transmission of schistoso-

miasis in the lakes. Whereas they may result in large-scale

drowning of adult snails and are therefore used in some regions as

snail control measure [62], flooding and heavy rains generally

promote schistosomiasis transmission in the region: (i) floods and

associated sediment input create and sustain suitable snail habitat,

(ii) floods are a major source of introduction and re-introduction of

snails, (iii) floods lead to the admixture of different parasite lineages

to which snail populations may not be well adapted, and (iv)

inundation following heavy rains helps sustain suitable habitat for

free-swimming parasite larvae.

Moreover, the lakes serve as major sediment traps for upstream

Yangtze River sections during the flood season and as suppliers of

suspended sediments for downstream river sections during the dry

season [63–66]. In addition, the extensive floodplain areas of the

lakes play an important role in flood control of downstream river

sections. As a result, the parts of the Yangtze River upstream to

the lakes are, generally, less suited as snail habitat than

downstream parts. Our modeling confirmed these differential

effects of the lakes on the Yangtze River. Whereas parts of the

river upstream of the lakes only had low to medium risks, two high

risk areas were located downstream of Lake Dongting (Hanyang

and Jianli counties) and Lake Poyang (Tongling and Guichi

counties). Overall, the enhancing effect of Lake Dongting seemed

to be larger than that of Lake Poyang (Fig. 4). This could be

explained with the upstream position of Lake Dongting. However,

this could also partly result from a slight sampling bias (i.e., we

studied comparable few snail populations from Yangtze River

sections downstream of Lake Poyang). Interestingly, the high risk

regions inferred are not completely isolated. Therefore, re-

introductions may play an important role for maintaining

infections in populations [7] (also see section below).

In summary, the SESR modeling indicated four interconnected

areas in the lower Yangtze River basin with high probabilities of

disease occurrence. Risk values can vary considerably on small

scales (i.e., within few kilometers) and are thus not associated with

administrative entities. We suggest the complex hydrological

interplay of lakes Dongting and Poyang with upstream and

downstream sections of the Yangtze River in space and time as an

important driver for the maintenance of the disease in eastern

China.

Predictive Variables for SESR
Several studies have identified variables associated with

schistosomiasis risk based on the life cycle of S. japonicum

[2,39,40,67–70]. However, none of these studies utilized genetic

characters, although their predictive value has long been suggested

(see below). Our results confirmed the value of intermediate host

genetic information for risk modeling. Two of the five final risk

model variables were genetic characters (Fig. 2). In fact, the

parameter with the single highest predictive value was haplotype

diversity (HD). In addition to this diversity parameter, the model

also suggested a divergence index (DTN) as risk variable,

confirming the assumption that for understanding endemic areas

and the potential isolation thereof, both genetic diversity (i.e.,

differences within populations) and divergence parameter (i.e.,

differences between populations) are of interest. In fact, one of the

key findings of this study is that low divergence values indicate

high risks (Fig. 2). In other words, not spatial isolation of endemic

populations but high levels of gene flow and/or local effective

population sizes drive schistosomiasis. This has been hypothesized

before within the framework of frequency dependent selection

Figure 4. Output of the SESR modeling. Visualization of the schistosomiasis risk in eastern China (green color: low risk; red color: high risk).
TGD = Three Gorges Dam.
doi:10.1371/journal.pntd.0002327.g004
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and/or in the context of demographic effects. The annual flooding

of the Yangtze River, for example, may not only cause high levels

of gene flow in snail but also in parasite populations, potentially

leading to multiple infections or infection with parasites to which

the snails are not adopted locally [16,19,24].

The remaining three variables—altitude, mean temperature of

coldest quarter (bio11), and annual precipitation (bio12)—are all

environmental (note that bio11 and bio12 are correlated with

bio06 and bio16, respectively). These and several related variables

have been previously suggested to be risk indicative [68,69,71]. In

contrast, other environmental variables previously found to be

important, such as water availability and vegetation index [68,72],

did not significantly improve the goodness-of-fit of our model.

Overall, the relative contribution of the genetic parameters is

very similar to the predictive power of the environmental ones.

However, given the already high values of environmental and

genetic parameters alone, complementing genetic with ecological

variables and vice versa resulted in a significant but only slight

increase in total goodness-of-fit. Nonetheless, genetic parameters

appear to be particularly important as predictive variables as their

application considerably reduces the confidence intervals of the

predictions compared to environmental variables alone (i.e., by

.40%; Fig. 3). As their addition helps improving the accuracy of

the model, they are particularly helpful in areas with a high spatial

risk dynamic. There, genetic parameters will likely enhance local

risk modeling.

In summary, our results indicate that genetic intermediate host

parameters can explain the endemic area state as well as the

underlying evolutionary processes (i.e., ‘population’ isolation vs.

admixture). The results also demonstrate the value of these

parameters for risk modeling and for improving the local accuracy

of model predictions. Both divergence and diversity parameters

are of interest, and genetic and environmental parameters can be

complementary in such an analysis.

Implications of SESR Modeling for Schistosomiasis
Surveillance and Control Strategies

Our findings have several implications for schistosomiasis

surveillance and control in China, particularly under the current

situation of decreasing overall disease transmission rates and

increasing potential for re-emergence:

(i) With quantitative parasite data being extremely difficult to

obtain, data of the co-evolved intermediate host can be

used for risk modeling as previously suggested [16,18].

(ii) Given that risk values can vary over small distances, fine-

scale units should be used in place of administrative

boundaries when making surveillance and control deci-

sions.

(iii) High-risk areas as derived from risk models should receive

surveillance and control priority, yet given the complex

hydrological interplay of water bodies in the Yangtze River

floodplains, information from extralimital areas should be

considered as well for local strategies.

(iv) As population genetic parameters of the intermediate host

significantly increase the quality of risk predictions, future

routine genetic surveys of snail populations are encour-

aged, particularly within and near high risk areas to better

understand both local population structures as well as

regional patterns of population isolation and exchange

among lakes and rivers.

In summary, this study stressed the role of intermediate host

traits for understanding schistosomiasis occurrence in China in a

spatially-explicit manner. It also showed that these traits may serve

as sensible proxies for infection risks and highlighted the potential

of genetic characters for future risk modeling.

Limitations and Outlook
This study extended the traditional ecological niche-modeling

approach, which is frequently used to predict the occurrence of

parasite and/or host species, to an approach for predicting the

probability of disease occurrence. This was possible by two key

modifications/additions. First, we included epidemiological data

(i.e., the spatial distribution of endemic areas) that were used to

discriminate against. In a recent study on the West Nile virus

mosquito vector [73], the authors demonstrated that such an

approach was useful for predicting human incidences of West Nile

virus. They also suggested that this method for creating probability

distribution maps could be applied to the study of other vector-

borne diseases. Second, we accounted for the problem that

traditional niche-modeling approaches are typically based on

(extrinsic) environmental data and not on intrinsic evolutionary

information of the actual target populations. We here attempted to

overcome this problem by including evolutionary and demo-

graphically relevant genetic information of the intermediate host

in our disease occurrence modeling. To our best knowledge, this is

the first study on vector-borne diseases that used this approach.

Whereas our findings could have important consequences for

future schistosomiasis surveillance and control strategies, such

study with pilot character also has some limitations. Given the

considerable genetic diversity of O. hupensis in mainland China

[24,74–76], our study of only 500+ specimens did likely not cover

the full genetic structure of the intermediate snail host. Moreover,

the mitochondrial COI gene used in this study can only reflect the

phylogeographical and demographic history of populations; it is

very likely not directly involved in co-evolutionary processes.

Therefore, we encourage future deep-sequencing based geno-

mic and transcriptomic studies of the intermediate host that aim at

identifying the genes responsible for susceptibility and/or

resistance to infections (incl. horizontal gene transfer from parasite

to snail). Furthermore, the view point of the intermediate host

system as major transmission bottleneck has proven to be useful for

understanding disease distribution. However, more specific

evolutionary analyses such as identifying loci under selection

(‘selective sweeps’) in high risk snail populations would help to

better delineate co-evolutionary processes leading to rapid

adaptation [77]. Using this information in future risk models will

very likely further improve the predictive power of genetic

information and may open new control perspectives. Finally, for

an explicit modeling of actual infection risks in a multi-host

parasite system, quantitative data on interspecies transmission

dynamics are necessary [78,79]. This, in turn, would require

future cross-disciplinary studies focusing on host-parasite ecolog-

ical networks that consider all participating species [79].
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