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Abstract

Numerous restoration campaigns focused on re-establishing species-rich floodplain mead-

ows of Central Europe, whose species composition is essentially controlled by regular

flooding. Climate change predictions expect strong alterations on the discharge regime of

Europe’s large rivers with little-known consequences on floodplain meadow plants.

In this study, we aim to determine the effects of flooding on seedlings of different ages of

four typical flood meadow species. To this end, we flooded seedlings of two familial pairs of

flood meadow species of wetter and dryer microhabitats for 2 weeks each, starting 2, 4, 6,

and 8 weeks after seedling germination, respectively.

We show that a 2-week-flooding treatment had a negative effect on performance of seed-

lings younger than 6 weeks. Summer floods with high floodwater temperatures may have

especially detrimental effects on seedlings, which is corroborated by previous findings. As

expected, the plants from wet floodplain meadow microhabitats coped better with the flood-

ing treatment than those from dryer microhabitats.

In conclusion, our results suggest that restoration measures may perform more success-

fully if seedlings of restored species are older than the critical age of about 6 weeks before a

spring flooding begins. Seasonal flow patterns may influence vegetation dynamics of flood-

plain meadows and should, therefore, be taken into account when timing future restoration

campaigns.

Introduction

Natural floodplains are among the ecosystems with the highest biodiversity on earth [1,2].

Their azonal vegetation is shaped by a broad hydrological gradient, regular flooding and soils

of diverse composition, resulting in high habitat and species diversity [3]. Floodplain vegeta-

tion is also strongly influenced by humans [4,5]. Species-rich floodplain grassland, in particu-

lar, plays a crucial role in maintaining regional biodiversity but has also experienced a

dramatic decline in Central Europe [6] mainly due to altered hydrological conditions through
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river training [7]. In particular floodplain meadows are amongst the most threatened plant

communities in Europe [6,8]. They harbor typical and often endangered flood meadow spe-

cies, also called river corridor plants, which are adapted to the specific disturbance regimes of

floodplains [9]. To maintain the diversity of these species rich Cnidion dubii grasslands, pro-

tected by the EU Habitats Directive (Council Directive 92/43/EEC, habitat type 6440: alluvial

meadows of river valleys of the Cnidion dubii) numerous restoration measures, mainly focus-

ing on the reestablishment of rare species, have been conducted along the Rhine and Elbe Riv-

ers, e.g. [10,11].

A challenge for such restoration projects is to consider and incorporate the effects of regular

flooding, which represents a key factor in these dynamic floodplain meadows [12,13]. Plant

species zonation of these grasslands is mainly driven by hydrologic conditions and land use

[14–16] but also on a micro-habitat scale flood sensitive species are located on elevated micro-

sites, whereas species with higher flooding resistance occupy depressions [17,18]. Flooding

promotes recruitment of less competitive species through creation of open soil patches and

suppression of flood-sensitive competitors [19] and plays a crucial role for maintaining diver-

sity of rare species through recruitment of seedlings from the soil seed bank [20,21].

Additionally, vegetation dynamics are strongly driven by inter-annual-variation of flooding

and drought [22]. Van Eck et al. [23] showed that summer flooding predominantly determines

plant zonation in flood meadows, due to the more intense impact of summer floods vs. winter

floods on plants. Hence, the timing of flooding events in relation to the plant life cycle strongly

influences the occurrence and distribution of plant species. In particular, seedling establish-

ment is the critical phase in the life cycle of many plants due to high mortality through dis-

eases, injuries, and flooding or water deficit [24]. The age of seedlings at which these are

exposed to flooding may play a crucial role for survival [25] and higher flooding tolerance may

be related to species specific growth timing [26]. Nabben et al. [27] studied the effect of flood-

ing on juvenile vs. mature Rumex plants (i.e. 5 vs. 14 weeks after germination) and confirmed

the higher flooding tolerance of two-months-older plants. Since the timing of flooding events

during the life cycle is of crucial importance for survival, a shift in the flooding regime might

have large consequences. Other experimental studies focused on the duration of flooding

events but did not take the age of plants into consideration [13,17,23,28].

Flooding dynamics in present-day floodplains are highly transformed by humans and

through ongoing climate change. Multiple anthropogenic stressors and their impacts on flow

regime are hard to distinguish and quantify [5,16]. Direct human alterations of rivers, such as

construction of dams and dikes, trigger changes in water level fluctuations, which lead to alter-

ations in terrestrial plant species composition [29]. Furthermore, possible large-scale flood-

plain restoration, such as dike relocation projects or ecological flooding (also known as

managed flooding) [30,31] could additionally alter hydrological conditions of floodplain

meadows [32] and subsequently their terrestrial plant diversity.

In addition, effects of climate change are supposed to alter plant species diversity in Central

Europe [33] through altered discharge regimes of rivers [34]. For the river Rhine, a seasonal

change of the discharge regime with increasing discharge in winter and decreasing discharge

in summer is projected for the current century [35–37]. Additionally, intensity and frequency

of extreme discharge events will increase [36,38]. Accordingly, zonation of floodplain ecosys-

tems and similarly plant composition of flood meadow habitats might change through these

multiple alterations in the discharge regime [39].

These alterations might also influence sediment deposition in the floodplain, since their soil

composition strongly depends on frequency and magnitude of flooding events [40]. Models

project considerable changes in sedimentation regime for the Rhine basin already within the

current century [41]. Generally, sandy sediments can be found closest to the river channel

Flooding tolerance of four floodplain meadow species depends on age

PLOS ONE | https://doi.org/10.1371/journal.pone.0176869 May 3, 2017 2 / 15

https://doi.org/10.1371/journal.pone.0176869


whereas sites further away from the river are characterized by sediments with higher amounts

of clay and organic matter [40,42]. Changes in these patterns may also influence vegetation

since, e.g., the growth of woody floodplain plants depends on soil composition and is limited

on coarse substrates after water table alterations [43]. However, effects of sediment grain size

have not been studied with respect to flood meadow species in an experimental setup so far.

In summary, the increased unpredictability of habitat conditions under climate change

induced shifts in the flow and sediment regime may act as obstacles for floodplain meadow

restoration. To tackle this problem, the effects of flooding on survival and performance of

plants should be investigated in more detail, to ensure success of future restoration campaigns.

A recent study on flooding tolerance of wetland plants suggests that seasonal timing of flood-

ing events plays a crucial role in flooding tolerance [44]. While the effects of flooding on adult

plants have been studied before [13,17,18,23], studies of seedling establishment are scarce (but

see Nabben et al. [27]).

Therefore, we investigate the impact of a 2-week flooding period on seedlings of different

age (i.e. between 2 and 8 weeks after germination) of four characteristic species of flood mead-

ows. To this end, we employed a completely randomized multi-factorial experiment to eluci-

date the impact of the factors species, microhabitat, seedling age, and soil composition on the

performance of seedlings. We inundated seedlings of different ages and analyzed the impact of

different factors on seedling survival and establishment.

Specifically, we tested the following hypotheses: Under a 2-week flooding period,

1. older seedlings perform better than younger seedlings,

2. the performance of seedlings decreases with increased sand content, and

3. plant species from wet microhabitats perform better compared to those of dry

microhabitats.

Materials & methods

Study species

We chose two familial pairs of floodplain meadow species with preference for wetter and dryer

microhabitats: Sanguisorba officinalis L. and Veronica maritima L. vs. Sanguisorba minor Scop.

and Veronica teucrium L. (Table 1, The plant species nomenclature follows Jäger [45]). This

balanced design avoids phylogenetic bias of the results [46]. All four species are perennials typ-

ically occurring on floodplain meadows along the Upper Rhine valley. The species characteris-

tic of dryer microhabitats typically grow on slightly higher elevation than the species of wetter

microhabitats. The plant species’ preferences for wetter and dryer micro niches are underlined

by their Ellenberg indicator values (EIV) for moisture (F value, EIV m in Table 1) [47]. The

species are target species in floodplain meadow restoration projects along the northern Upper

Rhine [10]. In this experiment, they serve as umbrella species in the sense of Groom et al. [48]

for the plant community of the Cnidion dubii meadows [49]. Here, that also comprises species

from the EU Habitats Directive Annex I habitat type 6510: Lowland hay meadows. Seed mate-

rial of a producer of autochthonous seeds (Rieger-Hofmann GmbH, Blaufelden-Raboldshau-

sen, Germany) was used for the experiment.

Experimental design

The experiment was carried out from March to July 2015. The combination of four species,

two types of soil composition, and five age groups (four groups differing in seedling age at
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start of flooding period, and one unflooded control) with ten replicates per combination

resulted in a total number of 400 experimental plants. Seeds were cold-wet stratified for 21

days at 3˚C in trays with potting soil in a climate chamber (Rumed type 3401; Rubarth Appa-

rate GmbH, Laatzen, Germany).

Seeds germinated after 7 days (V. teucrium and S. minor) and after 10 days (V. maritima
and S. officinalis) in a greenhouse (20˚C by day / 15˚C by night; photoperiod: 12 hours daily).

Eleven days after germination 100 plants of every species, having almost the same size, were

planted into pots (diameter: 9 cm on top, height: 7.8 cm). All these 400 plants had the same age

of 11 days due to synchronous germination on day one.

Half of the plants were planted in a mixture of standard potting soil (F.-E. Typ P, HAWITA

Gruppe GmbH, Vechta, Germany) and sand with a ratio of 3:1 and the other half in a soil:sand

mixture of 1:1. We obtained nutrient equivalency in both soil treatment levels by adding slow

release osmocote (Osmocote Exact Standard 3-4M, Everris International B.V., Geldermalsen,

The Netherlands; 7.1% NO3-N, 8.9% NH4-N, 9% P2O5, 12% K2O) to the pots. With respect to

Hidding et al. [44] we choose an intermediate nutrient scenario for this experiment with an

osmocote equivalence (i.e. nutrients in standard potting soil + osmocote) of 100 grams osmo-

cote per square meter.

At day 15 after germination, each of the 400 pots were placed inside a 1.2 L transparent

polypropylene cup (diameter: 11.4 cm on top, height: 17 cm) and randomly distributed on a

paved area at the research station Linden-Leihgestern (Hesse, Germany, UTM: 32U 478260

5598300, S1 Fig). Plants were placed under a rain shelter (height: 0.6 m, PE greenhouse grid

film “Original Delta Folie SUV”) to avoid accidental flooding of the cups by precipitation.

Under regular growth conditions plants were watered according to their daily demand

(approx. 20–50 mL day-1).

To test the response of seedlings of different age to a 2-week flooding period we performed

five different treatments. Four groups of seedlings were flooded 2, 4, 6, and 8 weeks, respec-

tively, after germination (age2, age4, age6, age8). One control group (noFl) was grown for 12

weeks without any flooding (Fig 1A). The flooding procedure comprehended 2 weeks of com-

plete inundation: the cups each with one plant pot inside were filled completely with tap water

(S1 Fig). Water levels were kept constant during the flooding period.

Survival (dead or alive) was assessed every 2 to 3 days based on physical appearance of

plants: plants with green, turgid leaves and green buds were regarded as alive [27]. Total height

of the plants and number of leaves were measured at the end of the experiment, i.e. after 12

Table 1. Differences in the survival of four floodplain meadow species among five age groups.

species family micro-habitat EIV m chisq df p survival differences

age2 age4 age6 age8 noFl

Sanguisorba officinalis L. Rosaceae wet 7 ~ 31.5 4 <0.001 a a b c b

Sanguisorba minor Scop. Rosaceae dry 3 94.5 4 <0.001 a b c d c

Veronica maritima L. Plantaginaceae wet 8 ~ 0.0 4 1 a a a a a

Veronica teucrium L. Plantaginaceae dry 3 66.2 4 <0.001 ab a c b c

Differences were tested using a Wilcoxon-Mann-Whitney test (chi-square statistic), and subsequently, each paired combination was tested using a log-rank

test with scores of Sun [50] for interval censored data (Z statistic). Four groups differed in seedling age at start of flooding period (age2-age8) and one group

was the unflooded control (noFl). EIV m, Ellenberg indicator value for moisture;
~, indicator for alternating moisture conditions (F value, Ellenberg et al. [47]); chisq, chi-square value; df, degrees of freedom; p, error probability; p

values < 0.05 are in bold; survival differences, significant differences (p < 0.05) in survival of plants between age groups according to log-rank test; for each

species-seedling age combination: n = 20.

https://doi.org/10.1371/journal.pone.0176869.t001
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weeks. We quantified specific leaf area (SLA) and aboveground biomass from measurable and

living plants. For SLA, three fully expanded leaves with average size were collected of every

plant, scanned and leaf area was measured with the software ImageJ [51]. The leaves were

dried (48 hours at 60˚C) and weighed, SLA was calculated as leaf area per leaf dry mass

(m2�kg-1). Aboveground biomass was dried (24 hours at 100˚C) and weighed and the biomass

of the three leaves (SLA measurement) was added. Temperature data was obtained from Hes-

sian Agency for Nature Conservation, Environment and Geology, weather station Linden (dis-

tance from experimental site: 700 m) [52].

Analysis

In a first analysis, we tested the effects of seedling age on the cumulative seedling survival of

the four species separately. To this end, a Kaplan-Meier survival analysis for interval censored

data was done (i.e. measurements were taken at intervals of 2 to 3 days) [53]. We computed

Fig 1. Time schedule and air temperatures for the flooding experiment of four floodplain meadow

species. (A) Time schedule of age groups: four age groups with a 2-week flooding treatment starting 2, 4, 6,

and 8 weeks after germination (age2, age4, age6, age8) and one unflooded control group (noFl) with regular

growth through 12 weeks. (B) Temperature trend during time of the experiment (solid line: daily mean

temperature, dashed line: daily minimum temperature, dotted line: daily maximum temperature). Temperature

data from HLNUG (Hessian Agency for Nature Conservation, Environment and Geology, http://www.hlnug.

de), weather station Linden (distance from experimental site: 700 m).

https://doi.org/10.1371/journal.pone.0176869.g001
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the non-parametric maximum likelihood estimate for the distribution from interval censored

data to plot cumulative survival distributions for each species-seedling age combination with

the R-package interval [54]. To test for differences among species, we calculated a Wilcoxon-

Mann-Whitney test with generalized Wilcoxon-Mann-Whitney scores (chi-square statistic).

Subsequently, differences between treatments were tested applying a log-rank test, which uses

the most commonly used log-rank scores for right-censored data and reduces to the scores of

Sun [50] for interval censored data (Z statistic).

In order to evaluate the effects of species, microhabitat, seedling age, and soil composition

on survival of the plants, we computed accelerated failure time models [55]. We compared

whether results from these analyses, containing all 400 plants, showed similar results as ANO-

VAs with only survived plants (n = 259). We fitted models with six error distributions (i.e.

Weibull, exponential, gaussian, logistic, log-normal and log-logistic) of which the Weibull dis-

tribution, able to deal with non-constant hazards, produced the minimum error deviance and

thus was preferred (function survreg, R-package survival [56]). The scale parameter of this

analysis describes the form of the hazard function: scale parameter < 1: risk of death decreases

with time; scale parameter > 1: risk of death increases with time [57]. To rule out other effects

on survival (i.e. plant height and number of leaves before beginning of treatment) we com-

puted Wilcoxon-Mann-Whitney tests, which did not show differences in plant height or num-

ber of leaves between surviving and dead plants.

In a next analysis, we tested for importance of the above factors on response variables: plant

height, number of leaves, biomass and SLA of survived individuals using ANOVAs. We

excluded dead plant individuals from this analysis to avoid detrimental effects of zero values

on ANOVAs. Before analysis, the variables plant height, number of leaves and biomass were

standardized using a natural logarithmic response ratio (RR) as suggested by [58].

RR ¼ lnðPT=PCÞ ð1Þ

This standardization of the parameter value of the treated sample (PT) with the mean value

of the control treatment (PC ) for each species allows species comparisons. Effects of flooding

treatments on survived plants were considered significant (i.e. different from the controls)

when 95% CI did not overlap with zero in Fig 2A–2C. As SLA values already represent a ratio,

we skipped the RR procedure for this response variable.

Thereafter, one-way ANOVAs with the factor plant family were computed for every

response variable, to account for potential phylogenetic effects (plant height: F = 0.692,

p = 0.407; number of leaves: F = 21.14, p<0.001; biomass: F = 20.55, p<0.001; SLA: F = 0.012,

p = 0.914). The residuals of these ANOVAs were used for the subsequent analyses. We calcu-

lated ANOVAs for each response variable (RR plant height, RR number of leaves, RR biomass

and SLA) with the factors species (nested in microhabitat preference), seedling age and soil

composition. To calculate the relative contribution of each factor or interaction to the total

variance, we used the ratio: sum of squares of a factor/interaction divided by total sum of

squares. Requirements to conduct ANOVA analyses (e.g. normality) were visually checked

using diagnostic plots. All statistical analyses were carried out using R [59].

Results

Survival of plants

Of the 400 seedlings at the start of the experiment, 259 (64.75%) survived until the end. Sur-

vival across all treatments (4 seedling ages + control) was 14% in V. teucrium, 100% in V. mari-
tima, 44% in S. minor, and 74% in S. officinalis (n = 100 plants per species). In the control

group, i.e. no flooding treatment, overall only one individual of V. teucrium died (Fig 3).

Flooding tolerance of four floodplain meadow species depends on age
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Results of the survival analysis showed that the 2-week flooding treatment had a significant

negative effect on cumulative survival of seedlings of three plant species (i.e. S. minor, S. offici-
nalis, and V. teucrium) that belonged to the age groups age2, age4, and age8 (Table 1). All

individuals of V. maritima survived until the end of the experiment; hence, our flooding

treatments had no effect on this species (Fig 3). In the two species from dry microhabitats

Fig 2. Performance of four floodplain meadow plant species after a 2-week flooding period. Mean (± 95% confidence interval)

logarithmic response ratio of plant height (A), leaf number (B) and biomass (C), and mean (± 95% confidence interval) specific leaf area

(SLA, D) for each species-seedling age group combination: Veronica maritima L., Veronica teucrium L., Sanguisorba officinalis L., and

Sanguisorba minor Scop.; flooding started 2, 4, 6, and 8 weeks after germination (age2-age8), and control group with no flooding (noFl).

Effects of flooding treatments on survived plants were considered significant (i.e. different from the controls) when 95% CI did not overlap

with zero. Missing bars represent groups with a mortality of 100%.

https://doi.org/10.1371/journal.pone.0176869.g002
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(S. minor, V. teucrium) two age groups showed 100% mortality (S. minor: age2, age4; V. teu-
crium: age4, age8). Contrarily, in species from wet microhabitats (S. officinalis, V. maritima)

about half of the plants survived the flooding (e.g. S. officinalis lowest cumulative survival 0.45

and 0.5, Fig 3).

The risk of death in our experiment decreases with age, as indicated by the scale parameter

of the accelerated failure time models of 0.31 being less than one. As expected, the significance

of individual factors and interactions on survival showed a similar picture as the ANOVA anal-

yses (Table 2). The effects of the flooding treatment showed similar impact on plant survival

and on plant performance of survived plants. The survival of the species was affected by factors

microhabitat (survival rates dry: 28.75%, wet: 83.75%) and seedling age (survival rates age2:

42.5%, age4: 37.5%, age6: 96.25%, age8: 48.75%), as well as species (nested in microhabitat)

and species (nested in microhabitat) x seedling age interaction (Table 2).

Fig 3. Effects of a 2-week flooding treatment on survival of four floodplain meadow plant species.

Cumulative survival of Veronica maritima L., Veronica teucrium L., Sanguisorba officinalis L., and

Sanguisorba minor Scop. after a 2-week flooding treatment, starting 2, 4, 6, and 8 weeks, respectively, after

germination (age2-age8), and a control group with no flooding (noFl). age2, dot-dashed line & plus; age4,

dotted line & filled triangle point up; age6, two-dashed line & circle; age8, long-dashed line & triangle point

down; noFl, solid line & cross.

https://doi.org/10.1371/journal.pone.0176869.g003
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Performance of plants

The performance of seedlings was not affected by differences in soil compositions (ANOVA

analyses and accelerated failure time models: all p> 0.05). Negative flooding effects on plant

growth i.e. reduced plant height, leaf number, and biomass production were significant for age

groups age2 and age4 of all plants except S. minor, where both groups showed 100% mortality

(Fig 2A–2C). This effect did not clearly decrease with age, but for the two species from wet

microhabitats (i.e. V. maritima and S. officinalis) fitness of flooded plants was mostly not sig-

nificantly different from the control for older seedlings (6 and 8 weeks after germination). Sim-

ilarly, a slight but non-significant trend of increasing plant height with age was visible for V.

maritima and S. officinalis (Fig 2A).

Microhabitat preference of the species, as reflected in Ellenberg indicator values (EIV) for

moisture, had a significant impact on plants (over all four response variables, and on sur-

vival, Table 2): Plants from wet microhabitats showed less reduction in plant height and leaf

number, higher biomass, and slightly higher SLA than plants from dryer microhabitats (all

p < 0.001).

At the end of the experiment, the seedlings flooded at younger age (i.e. age groups age2 and

age4) were smaller, had fewer leaves, and lower biomass than older seedlings (except for S.

minor). Thus, also the factor seedling age explained a high amount of the total variance (vc,

Table 2). Similarly, in the accelerated failure time models analysis, we found a significant effect

of seedling age on the survival of the plants (Table 2).

Response of plants on flooding treatments was species-dependent, as indicated by the sig-

nificance of species (nested in microhabitat) x seedling age interaction in accelerated failure

time models and ANOVAs (Table 2). Inundated plants produced thinner leaves, which

resulted in slightly higher SLA (not significant) compared to non-flooded plants from the con-

trol group (Fig 2D).

Table 2. Performance of four floodplain meadow plant species after a 2-week flooding period.

survival plant height number of leaves biomass SLA

df dev p df F p vc df F p vc df F p vc df F p vc

microhabitat (M) 1 96.1 <0.001 1 18.1 <0.001 5.6 1 53.2 <0.001 17.2 1 82.4 <0.001 20.9 1 13.5 <0.001 2.4

seedling age (A) 4 270.3 <0.001 3 23.1 <0.001 21.4 3 12 <0.001 11.7 3 22.2 <0.001 16.9 4 30.7 <0.001 22.1

soil (S) 1 1.5 0.214 1 0.6 0.427 0.2 1 0.9 0.347 0.3 1 0 0.976 0 1 2.2 0.135 0.4

species(microhabitat)

[Sp(M)]

6 55.7 <0.001 2 1.2 0.302 0.7 2 0.6 0.532 0.4 2 4 0.020 2 2 45.4 <0.001 16.4

M x A 4 1.5 0.823 2 29.3 <0.001 18.1 2 22.5 <0.001 14.5 2 30.2 <0.001 15.3 2 16.9 <0.001 6.1

M x S 1 1.4 0.234 1 0.4 0.512 0.1 1 1.9 0.165 0.6 1 1.4 0.232 0.4 1 0.1 0.718 0

A x S 4 8.2 0.084 3 1.2 0.326 1.1 3 1.6 0.188 1.6 3 0.4 0.747 0.3 4 0.5 0.706 0.4

Sp(M) x A 24 56.4 <0.001 3 2.4 0.072 2.2 3 0.3 0.798 0.3 3 3 0.030 2.3 5 13 <0.001 11.7

Sp(M) x S 6 0.3 0.999 2 0.8 0.462 0.5 2 0.6 0.555 0.4 2 0.5 0.607 0.3 2 0.1 0.904 0

M x A x S 4 1.2 0.884 2 0.7 0.500 0.4 2 2.8 0.065 1.8 2 2.2 0.117 1.1 2 0.4 0.647 0.2

Sp(M) x A x S 24 1.0 1.000 3 1.4 0.239 1.3 3 0.9 0.443 0.9 3 1.2 0.314 0.9 5 0.6 0.696 0.5

Residuals 319 156 48.2 156 50.4 156 39.6 220 39.7

Effects of factors microhabitat, species nested in microhabitat, seedling age, and soil composition on the survival of all plant individuals, and on plant height

(logarithmic response ratio), number of leaves (logarithmic response ratio), biomass (logarithmic response ratio), and specific leaf area (SLA) of survived

plant individuals were tested performing a likelihood-ratio test of an accelerated failure time model using a Weibull error distribution and four ANOVA

Analyses. df, degrees of freedom; dev, deviance; F, variance ratio; p, error probability; vc (%), relative contribution of individual factors and their interactions

to total variance; p values < 0.05 are written in bold.

https://doi.org/10.1371/journal.pone.0176869.t002
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Discussion

The effects of age on the survival and performance of seedlings in

response to flooding

Our experiment revealed that 2 weeks of flooding lowered survival of three of the four tested

species (i.e. S. officinalis, S. minor and V. teucrium) and that survival increased with the age of

the seedlings, as risk of death decreased. Our first hypothesis that under a 2-week flooding

period, older seedlings perform better than younger seedlings, therefore was accepted. These

results are in line with a study by Nabben et al. [27], who found that juvenile plants of three

Rumex species showed lower survival (approx. by factor four) than mature plants. In accor-

dance to this study, we expected survival increasing with age of the seedlings over individual

age groups. However, for the oldest group, with flooding start at an age of 8 weeks after germi-

nation, survival was lower than expected. This outcome can be explained by particularly high

temperatures during this flooding treatment (age8, Fig 1B). Summer floods may result in heat-

ing of the slow flowing, ponded water on the floodplain meadows and this probably also hap-

pened to our experimental plants. This rise in water temperature most likely forced additional

damage of flooded plants, as warm temperatures increase enzyme activity and limit oxygen

solubility [60]. Detrimental flooding effects on mature grasses are known to be greater at high

water temperature (30˚C) compared to low temperature (10˚C) floods [61]. Hence, summer

floods are likely more harmful than flooding events earlier in the year. Likewise, Van Eck et al.

[23] showed that mainly summer flooding defines zonation of plants on flood meadows. Our

data may suggest an age threshold for flood meadow species from wet microhabitats between 4

and 6 weeks after which the negative effects of a 2-week flooding event appears to be signifi-

cantly reduced. Likewise, Hidding et al. [44] recently suggested that flooding outcome (i.e. pro-

motion of plant growth vs. severe damaging of plants) depends strongly on the timing of

flooding. In their experiment, wetland plants, with an age of approx. 5 weeks at the start of the

flooding treatment, showed elongation of plant growth (7 out of 8 species) but also unclear

responses in horizontal expansion and biomass production after flooding. Also for Phragmites
australis seedlings the tolerance to submergence increased with age [25], hence this effect may

be ubiquitous for plants from riparian ecosystems.

The effects of substrate on the survival and performance of seedlings in

response to flooding

Differences in soil composition (i.e. soil:sand ratio of 3:1 vs. 1:1) had no effect on the response

variables (Table 2). Thus, our second hypothesis that under a 2-week flooding period, the per-

formance of the seedlings decreases with increased sand content, was rejected. Interestingly,

Lenson et al. [62] showed that wetland species produce more biomass on soils with organic

sediments compared to mineral sediments. They concluded that this was caused by the low

nutrient availability in the mineral-sediment soil. In our study, maintaining nutrient equiva-

lence in the two soil:sand ratio groups resulted in similar plant performance, which supports

the conclusions of Lenson et al. [62]. Likewise, in a study on floodplains along the Middle

Elbe, sand content only weakly explains species composition [63].

Differences in the survival and performance of seedlings from wet vs. dry

microhabitats in response to flooding

We found evidence that under flooding treatment, species preferring wet microhabitats grow

higher and survive longer compared to species from dry microhabitats. This confirmed our

third hypothesis that under a 2-week flooding period, plant species from wet microhabitats

Flooding tolerance of four floodplain meadow species depends on age

PLOS ONE | https://doi.org/10.1371/journal.pone.0176869 May 3, 2017 10 / 15

https://doi.org/10.1371/journal.pone.0176869


perform better compared to those of dry microhabitats. Higher survival and plant growth of V.

maritima compared to S. officinalis within the wet microhabitat is consistent with differences

in Ellenberg indicator values between the two species (Table 1) [47]. More generally, our find-

ings cohere with the expectations that flood sensitive species are located on higher parts of the

floodplain where flooding impacts are limited. In contrast, flood tolerant species survive at

areas with more frequent flooding at lower elevations [13,23,64]. Likewise, leaf thickness of

plants varies between species with different microhabitat preferences. SLA of plants adapted to

wet microhabitats is higher than of plants from dry microhabitats (Table 2). Also Koike et al.

[65] found contrasting SLA values for birch species with different microhabitat preferences

under wet soil moisture conditions. In addition, our result that leaf plasticity differs between

treatment and control (i.e. SLA of flooded plants is slightly higher than for plants from control

group, Fig 2D) is in accordance with previous findings. Plants under submergence develop

thinner, elongated leaves and therefore show increased SLA (for review see [66]).

Synopsis for restoration management

From a restoration ecological perspective, our finding that seedlings of flood-meadow species

respond differently to flooding events at young age show the difficulties of measures that aim

to reestablish floodplain vegetation (e.g. via the transfer of seed-containing plant material)

[67]. The forecasted increase in extreme discharge events owing to climate change will simulta-

neously raise the risk for restoration measures in terms of costs and logistic effort. To increase

restoration success, habitat requirements of the individual target plant species and microhabi-

tat characteristics of restoration sites have to match. Habitat-suitability maps on a microhabitat

scale for the target species could incorporate all these factors and enhance restoration planning

[68]. In case of planning large-scale restoration projects, especially regarding ecological (i.e.

prescribed) flooding, our findings should also be taken into account. After a floodplain resto-

rations, the schedule of gate openings at ecological flooding sites should be adapted to germi-

nation timing of target species to enhance survival and establishment of target species.

Conclusions

In conclusion, our results demonstrated the importance of seedling age and microhabitat pref-

erence of plants on their flooding tolerance, whereas soil composition had no effect. Based on

our data, we predict that for future restoration measures of floodplain meadows (e.g. the trans-

fer of freshly cut seed-containing plant material) the restoration success after a medium flood-

ing event will be higher, if the plants have reached the critical threshold age of about 6 weeks

after germination. Besides, flooding in summer may also lead to stronger damages of plants

due to higher floodwater temperatures. Vegetation of floodplain meadows indeed is affected

by seasonal flow patterns (for review see [69]). All these aspects demonstrate the increasing

vulnerabilities of floodplain meadow species under the predicted alterations of climatic and

thus hydrologic conditions [39]. Hence, the complexity regarding timing of floodplain

meadow restorations and of conservation planning in floodplain landscapes in general is

increasing.

Supporting information

S1 Fig. Photograph of experimental setup. Photograph showing experimental plant pots

placed inside of 1.2L transparent polypropylene cups and distributed randomly on a paved

area at the research station Linden-Leihgestern (Hesse, Germany, UTM: 32U 478260 5598300)

in May 2015. Photo: Johannes P. Gattringer.
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