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Chapter 1 – Introduction 

1.1 Motivation 

In nature a diverse range of chemical reactions is catalysed by metalloenzymes. 

Metalloenzymes, a subclass of metalloproteins, bind and activate small molecules 

for specific catalytic reactions. Many metalloenzymes perform remarkable 

chemical transformations for which, under comparable conditions, no simple 

analogues in the laboratory exist (for e. g. catalytic reduction of N2 to NH3 (nitrogen 

fixation), the oxidation of water to O2). 

Bioinorganic chemistry constitutes the discipline at the interface of inorganic 

chemistry and biology. One area bioinorganic chemists are interested in is 

exploring the reactivity and trying to elucidate the reaction mechanisms of metallo-

proteins and metalloenzymes. These reactions take place at the so-called “active 

site” of the enzyme or protein. The active site is formed by metal ions coordinated 

by donor atoms of the amino acid chains. Parallel to investigations of these en-

zymes and proteins itself model complexes have been investigated to gain better 

insight into the biochemical reaction pathways and furthermore to use these com-

pounds in selective catalytic oxidations of organic substrates under mild 

conditions.  

Questions like “Why does an apple turn brown?” or “Why is our blood red, spider’s 

blood blue and Mr. Spock’s blood green?” lead to the biological transport and acti-

vation of dioxygen by metalloproteins and metalloenzymes. Many active sites of 

these compounds contain iron or copper ions.1-4   

1.2 Iron and copper proteins 

Iron proteins can be classified into two groups, the heme and the non-heme 

proteins. In heme proteins such as hemoglobin (Hg) or cytochrome P450 the iron 

centre is incorporated into a porphyrin ring. Hemoglobin is the oxygen transport 

protein of mammals and is responsible for the red colour of our blood.3 

Cytochrome P450 catalyzes the oxidation of organic substrates by dioxygen, 

performing key roles in the biosynthesis of essential substances (e.g. vitamin D3). 

In non-heme proteins like hemerythrin (Hr) or protocatechuat-3,4-dioxygenase 
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(3,4-PCD) iron is coordinated to amino acid side chains of the protein. Hemerythrin 

is the dioxygen transporting molecule of some marine worms like annelides and 

sipunculides.5 Scheme 1-1 shows the binding of dioxygen to the active site of 

hemerythrin3,5 and Figure 1-1 shows the active site of protocatechuat-3,4-

dioxygenase.3 In Chapters 2.1 and 3.1 reactions of model compounds for these 

iron proteins are described. 

O
FeII FeII

(His)N N(His)
(His)N

(His)N N(His)
O

Asp

O O

Glu

O

deoxy Hr

O
FeIII FeIII

(His)N

N(His)(His)N

(His)N N(His)
O

Asp

O O

Glu

O

oxy Hr

O2
O

OHH

 
Scheme 1-1: Binding of dioxygen to the active site of hemerythrin 

FeIII

HO

O

O

HN

N

N
NH

 

Figure 1-1: Active site of protocatechuat-3,4-dioxygenase3 

In nature several important enzymes contain copper, ranging from active sites with 

one up to four copper centres. An overview of copper enzymes and the great 

variety of their reactions is presented in Figure 1-2.6 The dioxygen transport 

protein hemocyanin (Hc, responsible for the blue blood of arthropods such as 

spiders and molluscs such as snails) is shown in Scheme 1-2.3 The enzyme 

tyrosinase has a similar structure, however it acts as a monooxygenase and 

catalyses the ortho-hydroxylation of the amino acid tyrosine (and subsequent 

oxidation to a chinone). After the polymerisation is complete the pigment melanin 

is formed (Scheme 1-3), which is responsible for the colour of our skin and further-

more for the browning reaction of vegetables and fruit such as apples.7 For further 

reactions and model compounds for these metalloproteins see introductions of 

Chapter 4 and Chapter 5. 

2 
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Figure 1-2: Selected copper enzymes 
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Scheme 1-3: Conversion of tyrosine to melanin catalysed by tyrosinase 

1.3 Mechanisms of dioxygen binding 

That metalloproteins can bind and activate dioxygen is a consequence of the pro-

tein structure. The nature of the protein structure modulates the electronic 

properties of the metal centres for the enzymatic reaction (e. g. oxidizing the metal 

centres is only possible if the associated change in geometry is stabilized by the 

protein). In model compounds for such proteins the ligand systems plays a crucial 

role in the stabilisation of metal-bound “dioxygen adduct” complexes and therefore 

the design and synthesis of suitable ligands plays an important role in bioinorganic 

chemistry. The geometry of the metal complexes is affected by the ligand and is 

therefore responsible for the stabilisation of the different geometries. These reac-

tions are strongly dependent on solvent and temperature. In the past it was possi-

ble using different ligand systems to characterise structurally or spectroscopically 

copper dioxygen adduct complexes which are shown in Figure 1-3. Similar 

observations have been made for the according iron complexes, however so far 

less of these dioxygen adduct complexes have been characterised in detail.8 The 

stability and the reactivity of the system can be influenced by changing the ligand 

system of the model. Accessible pathways for fine tuning are: the ligand donor 

atoms (e. g. aromatic or aliphatic amine ligand or change of HSAB-acidity), the 

steric demand, the denticity, the charge, the chelate ring size or introducing 

electron withdrawing or donating substituents into the ligand. The systematic 

4 
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change of all these aspects lead to a great variety of copper complexes, which 

have their analogues in nature (see Figure 1-3).4 

LCuII O
O LCuII O

O
CuIIL

LCuII O
O

LCuIII O
O

LCuII O
CuIIL

O

LCuIII O
CuIIIL

O LCuIII O
O CuIIIL
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O O
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LCuII

CuIIL
CuIIL

O

O

LCuII
LCuII

CuIIL
CuIIL

η1-superoxo

η2-superoxo

η2-peroxo

trans-µ-1,2-peroxo

µ−η2:η2-peroxo

bis-(µ-oxo) bis-(µ3-oxo)

cis-µ4-η2:η2-peroxo

trans-µ4-η2:η2-peroxo

Cu:O2= 1:1 2:1 3:1 4:1

CuII

CuIII

LCuII O
O

η1-hydroperoxo

H LCuII

O
O

CuIIL

η1-peroxo

LCuII CuIIL
O

µ-1,1-peroxo

O
H

 

Figure 1-3: Cu/O2 species 

1.4 Characterisation 

In order to characterise model complexes of metalloproteins the following physical 

methods can be employed: 

• X-Ray-crystallography: Determination of molecular structure (bond lengths 

and angles). 

• EXAFS (Extended X-Ray absorption fine structure): Information on metal-

donor atom distances is obtained. 

• XAS (X-Ray absorption spectroscopy): Information on oxidation state of the 

metal ions can be derived. 

• IR/rR (Infrared/ resonance Raman spectroscopy): Information on vibrational 

modes is achieved. 

• UV-vis (ultraviolet-visible spectroscopy): Information on charge transfer or 

d-d bands of the metal complexes is obtained. 

• Kinetics (e. g. SF [Stopped-flow] experiments): Information on the reaction 

rate and the reaction mechanisms can be derived. 

5 
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6 

• NMR (nuclear magnetic resonance spectroscopy): Information of chemical  

environment of atomic cores (e. g. 1H and 13C) 

• Electrochemistry: Determination of redox potentials of the metal centres 

• Mössbauer spectroscopy: Determination of oxidation state of the metal 

centres 

1.5 Projects 

As discussed above it is important to study the reactions of model complexes of 

iron and copper proteins in detail. Investigations on the following projects were 

conducted and the results are presented in Chapters 2 – 5.  

• The influence of chelate ring size on the reactivity of model complexes for 

the iron enzyme protocatechuate-3,4-dioxygenase (3,4-PCD) (Chapter 2). 

• The effect on the reactivity of the model complexes of 3,4-PCD by 

systematically replacing the ligand’s aromatic donor atoms with aliphatic 

donor atoms (Chapter 3). 

• New model compounds for the enzyme tyrosinase were synthesised and 

structurally characterised. The magnetic coupling between the bridged 

copper ions has been determined (Chapter 4). 

• The reactivity of another model for the enzyme tyrosinase has been studied 

by altering steric hindrance, the properties of the donor atoms and the che-

late ring size of the ligand (Chapter 5). 
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Chapter 2 - Chelate Ring Size Variations and their 
Effects on Coordination Chemistry and Catechol 
Dioxygenase Reactivity of Iron(III) Complexes 

This work has been published previously in Inorganic Chemistry. 

Merkel, M., Pascaly, M., Krebs, B., Astner, J., Foxon, S., Schindler, S., Inorg. 

Chem., 2005, 44, 21, 7582-7589. 

2.1 Introduction 

A large variety of mononuclear non heme iron enzymes are involved in redox 

processes with molecular oxygen.8,9 For example, intradiol cleaving catechol 

dioxygenases catalyse the insertion of dioxygen into catechols10 and during the 

oxidation reaction substrates are converted to acyclic cis,cis-muconic acid deriva-

tives. Mimicking the structure and function of these enzymes has been an impor-

tant goal in bioinorganic chemistry during the last decade.8,11 The crystal struc-

tures of a number of complexes of protocatechuate 3,4-dioxygenase (3,4-PCD) 

from Pseudomonas putida reveal an endogenous His2Tyr2 donor set,12-16 and 

model compounds have been prepared that contained phenolate donor groups. 

Although such complexes were good structural and spectroscopic models for the 

active site of 3,4-PCD, they exhibited only poor catechol oxidation abilities. One of 

the best structural and spectroscopic models to date of the 3,4-PCD-site is a 

model complex, based upon a modified salen ligand, prepared by Fujii and Funa-

hashi.17  

The first functional models for catechol dioxygenases were reported by Funabiki, 

who observed catechol cleavage in the presence of an iron salt, pyridine and 

bipyridine. However, the nature of the active species involved in the reactions is 

unknown.18,19 At present, the most efficient biomimetic model compound for intra-

diol cleaving catechol dioxygenases is an iron(III) complex of the ligand tris[(2-

pyridyl)methyl]amine (tmpa; also abbreviated as tpa in the literature; Scheme 2-1), 

reported by Que and coworkers in 1991.20  

This result was derived by systematic variation of tetradentate tripodal ligands in 

which functional groups were changed from phenolate to carboxylate to pyridine in 
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order to alter electron-donating properties of the ligand.8,21 The resulting change in 

Lewis acidity of the iron(III) centre was observed in the UV-vis-NIR spectra of the 

complexes. A correlation between the red shift in the LMCT bands of the catecho-

late complexes and higher catechol dioxygenase activity was observed.22 In a 

previous study, we reported that besides electronic effects, the steric demand of 

the ligands clearly influenced the reactivity of the corresponding iron(III)-catecho-

late complexes towards dioxygen.23 It has been reported previously that variations 

of the chelate ring size strongly affected the properties of manganese and copper 

compounds.24-26 However, to date, no attempt has been made to investigate the 

properties of iron coordination compounds featuring ligands closely related to 

tmpa, in which the arms of the tripodal ligand have been lengthened or shortened 

by the insertion or removal of a methylene spacer group (see Scheme 2-1). 

Therefore, we describe herein the effect of chelate ring size variations on the co-

ordination chemistry and catechol dioxygenase reactivity of the corresponding 

N

N

N N

L1

N

N

N
N

L2

N
N

N

N

tpa

N N

N

N

tmpa

N N

N

N

pmea

N N
N

N

pmap

N
N

N

N

tepa  

Scheme 2-1: Tmpa-based ligands with shortened and extended arms 
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iron(III) complexes of the ligands shown in Scheme 2-1 using the catecholates 

presented in Scheme 2-2. 

O
O

O
O

Cl
Cl

Cl

Cl
O

O

Br
Br

Br

Br

dbc tcc tbc  

Scheme 2-2: Dianions of substrates and inhibitor substrates used in this study and their 
abbreviations 

2.2 Experimental Section 

2.2.1 General Remarks  

All chemicals were purchased from commercial sources and used as received. 

CAUTION! The perchlorate salts used in this study are potentially explosive and 

should be handled with care. 

2.2.2 Physical Measurements. 

Elemental analyses were carried out on an Elementar vario EL III analyser. UV-vis 

spectra were measured at 25.0°C on a Hewlett-Packard 8453 diode array spec-

trometer using quarz cuvettes (1 cm). 

2.2.3 Stopped-flow Measurements.  

Spectroscopic grade methanol for the kinetic measurements was used without 

further purification. Preparation and handling of air-sensitive compounds was car-

ried out in a glove box (M. Braun, Germany). Dioxygen saturated solutions for the 

kinetic measurements were prepared by bubbling dioxygen (Linde, Germany) 

through the solvent for 15 minutes in a glass syringe with a three-valve stopcock 

(solubility of dioxygen in methanol is 8.5 x 10-3 M at 760 Torr and 25°C).27 Varying 

dioxygen concentrations were obtained by mixing, in appropriate amounts, an 

oxygen saturated solution with an argon saturated solution in syringes. Time 

resolved spectra of the reactions of dioxygen with the iron(III) complexes were re-

corded on a modified Hi-Tech SF-3 L low temperature stopped-flow unit (Hi-Tech, 

9 
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Salisbury, UK) equipped with a J&M TIDAS 16-500 diode array spectrophotometer 

(J&M, Aalen, Germany). Data fitting was performed using the integrated J&M 

software Kinspec, Origin (OriginLab Corporation, Northampton, MA, USA) or Igor 

(WaveMetrics, Inc., Lake Oswego, OR, USA) for simple exponential functions. 

2.2.4 Determination of the Catechol 1,2-Dioxygenase activity.  

The catechol cleaving activities of the complexes prepared in situ in methanol 

were investigated by adding piperidine as an external base. The amount of base 

yielding the highest reaction rate possible for each individual complex was deter-

mined according to the following spectrophotometric titration. 0.02 mL of a 2 x 10-2 

mol L-1 (one equivalent) solution of 3,5-H2dbc (3,5-di-tert-butylcatechol) was added 

to 2 mL of a 2 x 10-4 mol L-1 methanolic solution consisting of Fe(ClO4)3·H2O and 

the ligand. The determined amount of base (piperidine) was added to the reaction 

mixture as a 2 x 10-2 mol L-1 solution (see Table 2-1). The decomposition of the 

complexes was followed at least three times by UV-vis spectroscopy. 

Table 2-1: Results of the spectrophotometric titrations and catechol-1,2-dioxygenase activi-
ties. 

Ligand 
Base equivalents needed 
for optimal catecholate 

binding 
Reaction rate constant 

[M-1s-1] 

tpa -a -b 
L1 -a -b 
L2 1.3 0.05 

tmpa 2.25 Ref.20 
pmea 2.25 0.022 
pmap 2.5 0.004 
tepa 2.5 -b 

a: UV spectra did not show sufficient amounts of the desired [Fe(L)dbc]+ complex during 
the titration 

b: complex did not show a significant catechol dioxygenase activity 
 

2.2.5 Spectrophotometric Titrations.  

The spectrophotometric titrations were carried out with the same solutions as de-

scribed above for the activity determination. To avoid cleavage of the substrate, all 

manipulations were carried out under an argon atmosphere. A 0.1 mL sample of 
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the 3,5-H2dbc solution was added to 10 mL of the complex solution. The resulting 

solution was titrated with piperidine and the UV-vis spectra were monitored in a 

flow cell. 

2.2.6 Ligand Syntheses.  

The ligands tpa,28 L1,26 L2,26 tmpa,25 pmea,25,29,30 pmap,24,25 and tepa24,25 (see 

Scheme 2-1) were synthesised according to methods reported previously. 

2.2.7 Complex Syntheses. 

[Fe(tmpa)(dbc)]B(C6H5)4 (1) was prepared according to a method described pre-

viously.20  

[Fe(L2)(tcc)Br] (2). Tetrachlorocatechol monohydrate (27 mg, 0.1 mmol) was 

added to a stirred solution of L2 (28 mg, 0.1 mmol) and anhydrous FeBr3 (30 mg, 

0.1 mmol) in methanol (8 mL). Triethylamine (28 µL, 20 mg, 0.2 mmol) was then 

added and the mixture was heated to reflux for a few seconds and filtered. Vapor 

diffusion of diethyl ether into the dark blue complex solution yielded needle-like 

crystals of compound 2 suitable for X-ray analysis. Yield: 32 mg (0.05 mmol, 50%). 

Anal. Calcd. for C23H16BrCl4FeN4O2: C, 42.0; H, 2.5; N 8.5. Found: C, 42.2; H, 2.4; 

N, 8.7. M.p.: 203°C (decomposition). 

[(Fe(L2)Br)2O][(FeBr3)2O] x 2CH3OH (3). Anhydrous FeBr3 (30 mg, 0.1 mmol) 

was added to a stirred solution of L2 (28 mg, 0.1 mmol) in methanol (6 mL). The 

reaction mixture was heated for a few minutes and filtered. Vapor diffusion of 

diethyl ether into the complex solution yielded red crystals of compound 3 suitable 

for X-ray diffraction. Yield: 47 mg (0.03 mmol, 60%). Anal. Calcd. for 

C36H40Br8Fe4N8O4: C, 28.6; H, 2.7; N 7.4. Found: C, 28.9; H, 2.6; N, 7.7. M.p.: 

204°C (decomposition). 

[Fe(pmea)Cl2]ClO4 x (C2H5)2O (4). Anhydrous FeCl3 (16 mg, 0.1 mmol), Fe(ClO4)3 

x 6H2O (19 mg, 0.05 mmol), and pmea (46 mg, 0.15 mmol) were dissolved in 

acetone (7 mL). The reaction mixture was heated to reflux for a few seconds and 

filtered. Vapor diffusion of diethyl ether into the complex solution yielded crystalline 

yellow plates of compound 4 which were suitable for X-ray analysis. Yield: 56 mg 

(0.09 mmol, 62%). Anal. Calcd. for C20.33H23.33Cl3FeN4O4.33 ([Fe(pmea)Cl2]ClO4 x 
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1/3(C2H5)2O): C, 44.0; H, 4.2; N 10.1. Found: C, 44.4; H, 3.9; N, 10.1. M.p.: 175°C 

(decomposition). 

[Fe(pmea)(tbc)]ClO4 x H2O (5). Fe(ClO4)3 x 6H2O (37 mg, 0.1 mmol) and pmea 

(30 mg, 0.1 mmol) were dissolved in acetone (7 mL). With stirring, tetrabromo-

catechol (42 mg, 0.1 mmol) and triethylamine (28 µL, 20 mg, 0.2 mmol) were 

added changing the colour of the solution to dark blue. The reaction mixture was 

heated and filtered. Vapor diffusion of diethyl ether into the complex solution 

yielded dark blue crystals of compound 5 that were suitable for X-ray analysis. 

Yield: 63 mg (0.07 mmol, 70%). Anal. Calcd. for C25H20Br4ClFeN4O7: C, 34.0; H, 

2.3; N 6.2. Found: C, 34.0; H, 2.3; N, 6.4. M.p.: 218°C (decomposition). 

2.2.8 X-ray Crystallographic studies.  

The intensity data of 2 - 5 were collected on a Bruker AXS SMART 6000 CCD dif-

fractometer (Cu-Kα, λ = 1.54178 Å, Göbel mirror) using an ω-scan technique. The 

collected reflections were corrected for absorption effects.18,31 All structures were 

solved by direct methods and refined by full-matrix least-squares methods on F2.32 

Further data collection parameters are summarised in Table 2-2. Selected bond 

lengths and angles for the iron(III) complexes are reported in Table 2-3. Crystallo-

graphic data (excluding structure factors) for the structures reported in this paper 

have been deposited with the Cambridge Crystallographic Data Centre. Copies of 

the data can be obtained free of charge on application to the CCDC, 12 Union 

Road, Cambridge CB2 1EZ, UK, on full quoting the journal citation and deposition 

number CCDC 247601 (2), 247602 (3), 247603 (4) and 247604 (5).  

2.3 Results and Discussion 

In an early study, Cox and Que described the reaction of dioxygen with dbc 

iron(III) complexes using NTA (nitrilotriacetate) and the related ligands PDA (N-(2-

pyridylmethyl)iminodiacetate) and BPG (N,N-bis(2-pyridylmethyl)glycinate).21 

While these oxidations proceeded very slowly they can be regarded as model re-

actions for the intradiol cleavage of dioxygenases, and from a kinetic study activa-

tion parameters were obtained. However, when the related tmpa ligand was used 

the reaction proceeded much faster and second order rate constants in DMF and 

methanol were obtained at 25°C (15 (DMF) and 10 (MeOH) M-1 s-1). In contrast to  
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Table 2-2: Selected crystallographic data. 

Compound 2 3 4 5 

Empirical formula C23H16BrCl4FeN4O2 C36H40Br8Fe4N8O4 C23H30Cl3FeN4O5 C25H20Br4ClFeN4O7

Mr 657.96 1511.44 604.71 901.41 

Temperature [K] 140(2) 130(2) 110(2) 110(2) 

Radiation (λ[Å]) Cu-Kα (1.54178) Cu-Kα (1.54178) Cu-Kα (1.54178) Cu-Kα (1.54178) 

Crystal shape rod rod Rod rod 

Crystal size [mm] 0.25 x 0.08 x 0.03 0.15 x 0.06 x 0.05 0.22 x 0.12 x 
0.02 0.20 x 0.10 x 0.07 

Crystal system triclinic monoclinic Monoclinic monoclinic 

space group P1bar (No. 2) P21/c (No. 14) P21/c (No. 14) P21/c (No. 14) 

A [Å] 7.6179(2) 10.9771(2) 15.7539(4) 9.3253(2) 

b [Å] 11.3109(2) 15.4213(2) 12.3338(3) 36.3832(7) 

c [Å] 15.1385(3) 15.2598(2) 15.4396(4) 8.6778(2) 

α [°] 83.574(1)    

β [°] 88.235(2) 99.740(1) 118.321(2) 92.141(2) 

γ [°] 70.800(1)    

V [Å3] 1224.09(5) 2545.96(7) 2640.9(2) 2942.2(2) 

Z 2 2 4 4 

ρcalcd. [g·cm-3] 1.785 1.961 1.521 2.030 

µ [mm-1] 11.133 16.674 7.728 11.763 

F(000) 654 1456 1252 1756 

Scan range θ [°] 2.94 to 71.20 4.09 to 71.33 3.19 to 71.30 2.43 to 71.42 

Index ranges -8 ≤ h ≤ 8 -10 ≤ h ≤ 12 -19 ≤ h ≤ 16 -10 ≤ h ≤ 11 

 -13 ≤ k ≤ 13 -17 ≤ k ≤ 18 -14 ≤ k ≤ 13 -44 ≤ k ≤ 41 

 -16 ≤ l ≤ 18 -18 ≤ l ≤ 16 -16 ≤ l ≤ 18 -10 ≤ l ≤ 10 

Reflections collected 7149 14507 14845 17053 

Unique reflections 4066 4714 4872 5414 

Reflections I >2σ(I) 3564 3953 3451 4444 

Rint 0.0364 0.0418 0.0930 0.0551 

Data/restraints/parameters 4066/0/316 4714/0/292 4872/0/327 4486/0/334 

Goodness-of-fit on F2 0.997 1.084 0.943 1.031 

Final R indices [I > 2σ(I)] R1 = 0.0408 R1 = 0.0403 R1 = 0.0482 R1 = 0.0539 

 wR2 = 0.1060 wR2 = 0.1114 wR2 = 0.1100 wR2 = 0.1326 

R indices (all data) R1 = 0.0446 R1 = 0.0478 R1 = 0.0716 R1 = 0.0646 

 wR2 = 0.1081 wR2 = 0.1142 wR2 = 0.1176 wR2 = 0.1376 

Largest diff. peak/hole 
[e·Å-3] 0.929/-0.566 1.670/-0.823 0.482/-0.604 1.536/-1.043 
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the other investigated ligands no temperature dependence measurements of this 

system were performed and no activation parameters reported. As pointed out 

previously by Zuberbühler, for kinetic studies on the reaction of dioxygen with cop-

per(I) complexes, it can be misleading to propose mechanistic arguments on the 

sole basis of a comparison of kinetic and equilibrium constants at a given tem-

perature rather than on activation and thermodynamic parameters.33 

A reaction mechanism was proposed for the intradiol cleavage of catechols 

(Scheme 2-3).8 However, the proposed intermediates could not be detected 

spectroscopically. 

O
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O
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FeIIO

O

O
O

O
HO-FeIII

COO
COO

O
O

FeIIO

O
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Scheme 2-3: Proposed mechanism for intradiol cleavage of catechols 

Despite efforts to increase the rate of the intradiol cleavage reaction using other 

ligands, the iron(III) tmpa complex remains, at present, the most active catalyst 

(some examples are given in the references).8,34,35 When BPIA34 ([(1-methylimida-

zol-2-yl)methyl]bis[(2-pyridyl)methyl]amine, a ligand closely related to tmpa) or L-

N4H2
36 (the non-methylated form of tetraazamacrocycle N,N'-dimethyl-2,11-di-

aza[3,3](2,6)pyridinophane, a ligand thoroughly investigated by Krüger and co-

workers)37 were used as ligands, reaction rates rather close to the tmpa system 

were observed. 

The oxidative cleavage of [Fe(tmpa)(dbc)]B(C6H5)4 (1) is accompanied by a dra-

matic change in the UV-vis spectrum. The reaction of dioxygen with 1 in methanol 

can be followed using low-temperature stopped-flow techniques and typical time- 

resolved spectra are presented in Figure 2-1. Measurements were performed us-

ing pseudo-first-order conditions ([O2] >> [1]) and absorbance vs. time traces were 
14 
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obtained at different wavelengths that could be fitted to a one exponential function. 

Observed rate constants (kobs) at different temperatures showed a linear depend-

ence on the dioxygen concentration (Figure 2-2) with no intercept and herewith the 

second order rate law reported previously was confirmed (the published rate con-

stant of 10 M-1 s-1 at 25°C20 was very close, within error, to our determined rate 

constant). 

From the temperature dependence studies the activation parameters were calcu-

lated using the Eyring equation as: ∆H‡ = 23 ± 1 kJ mol-1 and ∆S‡ = –199 ± 4 J 

mol-1 K-1. Negative values for the activation entropy were reported for NTA and 

derivatives (for the NTA complex: ∆H‡ = 12.8 kcal mol-1 and ∆S‡ = –22 eu).21 As 

discussed previously these data are in line with related reactions in copper chem-

istry33,38-40 and indicate that the attack of dioxygen on the catecholate complexes is 

the rate determining step. However, it is not possible from these data to describe a 

detailed reaction pathway for this reaction because no intermediates were ob-

served. 

Unfortunately, our hope to spectroscopically observe one of the postulated inter-

mediates (Scheme 2-3) using low-temperature stopped-flow kinetic methods (an 

approach used successfully in copper dioxygen chemistry) was not fulfilled. Only 

the UV-vis spectra of the starting complex and the final products were observed. 

Our kinetic results do not contradict the postulated reaction mechanism (Scheme 

2-3); however, they also do not provide additional evidence for the occurrence of 

the described reaction steps. The kinetic data support a rate determining step of 

the reaction of the catecholate complex with dioxygen. However, at which site this 

attack takes place cannot be determined in a kinetic study without the observation 

of intermediates. Furthermore, for the same reason conclusions in regard to the 

mechanism of the enzyme should not be drawn from the results of this kinetic 

study. 

Compared to the enzyme, the activity of the tmpa iron(III) complex is still low. 

Chelate ring size plays an important role in regard to the reactivity of coordination 

compounds and so far it has not been investigated for iron(III) complexes of the 

tmpa system. The ligands shown in Scheme 2-1 can be readily prepared in good 

yields by synthetic procedures described previously. 
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Figure 2-1: Time resolved spectra for the reaction of [Fe(tmpa)(dbc)]B(C6H5)4 (1) (0.16 mmol 
L-1) with dioxygen (4.25 mmol L-1 at 20°C, total time 153.9 s) in methanol. 

 

Figure 2-2: Plot of observed rate constants kobs (obtained from measurements at 578.0 nm) 
vs. dioxygen concentration at different temperatures. 

16 
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The reactivity of the iron(III) complexes of the ligands depicted in Scheme 2-1 was 

investigated (see Table 2-1). The iron(III) complexes were prepared in situ to-

gether with dbc and their catechol cleaving activity was determined according to 

the protocol described in the Experimental Section. Frustratingly, all of the com-

plexes were found to react by orders of magnitude slower than the tmpa system 

and therefore were not further investigated. The more variations that were made 

on the original tmpa system, the lower the observed reaction rate constants were. 

For the ligands L1 and tpa the reason for the low reaction rates was a low con-

centration of the desired mononuclear [Fe(L)dbc]+ complexes in solution. The 

geometric constraints of the ligands may lead to the formation of less reactive di-

nuclear species or even triscatecholato iron(III) complexes that are also favoured 

due to the high affinity of catecholates for iron(III) ions. 

Similar to related studies on the reaction of dioxygen with copper(I) complexes of 

the same ligands,25,26 increasing or decreasing chelate ring sizes in the iron(III) 

complexes (compared to the tmpa system) causes a dramatic decrease in the re-

activity of these compounds (the larger the changes, the larger the decrease in 

reactivity). 

Control experiments with just iron(III) perchlorate, 4.5 equivalents of piperidine and 

one equivalent of H2dbc revealed only negligible decay of the formed catecholate 

complexes over a period of days. Furthermore, Funabiki et al. reported that in 

oxygenation reactions that utilised a mixture of bipyridine and pyridine as ligands, 

the main product was the simple oxidation product, 3,5-di-tert-butylquinone.19 For 

the reason of comparison with other systems, piperidine was used as a base in all 

reactivity studies reported herein (no reactivity differences were observed with 

triethylamine instead of piperidine; triethylamine was used in the syntheses of the 

complexes reported below).  

Iron(III) tmpa complexes20,41,42 and an iron(II) complex of tpa43 have been pre-

pared and structurally characterised. However no crystal structures of the iron(III) 

complexes of the other ligands (depicted in Scheme 2-1) have been reported. 

Therefore Iron(III) complexes of the ligands (depicted in Scheme 2-1) were iso-

lated as solids and crystals suitable for X-ray structural analysis were obtained for 

iron(III) complexes of the ligands L2 and pmea with and without catecholate as 

additional ligands. 
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[Fe(L2)(tcc)Br] (2). Compound 2 crystallizes in the triclinic space group P1bar 

with two molecules per unit cell. The structure of the neutral complex is depicted in 

Figure 2-3, while selected bond lengths and angles are given in Table 2-3. The 

iron(III) centre is surrounded by a distorted octahedral N3O2Br environment. As 

reported for copper(II) complexes of the ligand L2,26 the shorter arm is not coordi-

nated to the metal centre, avoiding the formation of a strained four membered 

chelate ring which leads to a facial coordination mode for L2 in complex 2. The 

catecholate oxygens [O(1) and O(2)] and the bound pyridine nitrogen donors of L2 

[N(2) and N(3)] occupy the equatorial plane of the coordination octahedron, 

whereas the apical sites are occupied by the bromide anion and nitrogen donor 

N(1) of the tripodal ligand. The iron(III) donor bond lengths reveal a stretching of 

the coordination octahedron along the N(1)–Fe(1)–Br(1) axis. The uncommon 

length of the Fe(1)–N(1) bond [2.398(3) Å] can be attributed to both the lack of  π-

donor abilities of the aliphatic amine nitrogen N(1) and to a trans-influence of the 

opposing bromo ligand. The distorted octahedral geometry is also reflected in the 

bond angles around the iron(III) centre; the bite angles involving the five mem-

bered chelate rings of L2 are significantly reduced from 90° [83.4(2)° for O(1)– 

Fe(1)–O(2), 72.3(2)° and 76.1(2)° for N(1)–Fe(1)–N(2/3)], whereas the cis angles  

Cl(1)

Br(1)

N(3)
O(1)

Cl(2)

Fe(1)

N(4)

O(2)

N(1)

N(2) Cl(3)

Cl(4)

 

Figure 2-3: Ellipsoid plot of [Fe(L2)(tcc)Br] (50% probability ellipsoids);  

hydrogen atoms omitted for clarity. 
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incorporating the bromide anion are significantly larger than 90° because of its 

steric demand and electrostatic repulsions. 

 [(Fe(L2)Br)2O][(FeBr3)2O] x 2CH3OH (3). Compound 3 crystallizes in the mono-

clinic space group P21/c with two complex cations, two complex anions and four 

disordered methanol molecules per unit cell. The structure of the cationic metal 

complex is depicted in Figure 2-4, while selected bond lengths and angles are 

given in Table 2-3. The bridging µ-oxo group of the [(Fe(L2)Br)2O]2+ cation as well 

as that of the [(FeBr3)2O]2- anion are located on crystallographic centres of inver-

sion so that one half of each complex is symmetry generated. The 

iron(III)···iron(III) distance in the cation is 3.550(2) Å. The remaining coordination 

sites of the iron(III) centre are occupied by the µ-oxo bridge and a bromide anion 

resulting in an N4BrO donor set around each iron(III) centre. The most striking 

feature of the dinuclear complex 3 is that all three pyridyl groups of L2 are bound 

to the iron(III) centre, which is in stark contrast to all other known metal complexes 

of L2. As a consequence the very small bite angle of 61.6(2)° for N(1)–Fe(1)–N(2) 

is observed. The high tension of the four-membered chelate ring and the trans- 

influence of the opposing µ-oxo-bridge weaken the Fe(1)–N(2) bond [2.247(4) Å], 

which is, despite the possibility of π-bonding, even longer than the Fe(1)–N(1) 

N(1)

O(1)

N(4)

Fe(1)

N(3)

N(2)
Br(1)

 

Figure 2-4: Ellipsoid plot of [(Fe(L2)Br)2O]2+ (50% probability ellipsoids);  

hydrogen atoms omitted for clarity. 
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bond [2.216(4) Å]. The other cis angles that are formed by the ligand and the 

iron(III) centre are also significantly distorted from 90°;[N(1)–Fe(1)–N(3) = 75.6(2)° 

and N(1)–Fe(1)–N(4) = 75.7(2)°]. The steric demand of the bromide anion in 

creases the Br–Fe–N/O angles. Due to the electrostatic repulsions between Br(1) 

and O(1), these donors form the largest cis angle found around the iron(III) centre 

[Br(1)–Fe(1)–O(1) = 106.83(3)°]. Such a large angle is enabled by the small 

opposing angle N(1)–Fe(1)–N(2) (vide infra). 

[Fe(pmea)Cl2]ClO4 x (C2H5)2O (4). Compound 4 crystallizes in the monoclinic 

space group P21/c with four complex cations, four perchlorate counter ions and 

four diethyl ether molecules per unit cell. An ellipsoid plot of the cation’s structure 

is depicted in Figure 2-5, with selected bond lengths and angles in Table 2-3. The 

coordination geometry around the iron(III) centre Fe(1) is best described as dis-

torted octahedral with an N4Cl2 donor set. The equatorial plane around Fe(1) con-

sists of two chloride anions Cl(1) and Cl(2), the pyridyl donor atom N(3) and the 

amine donor atom N(1) of the ligand pmea. The apical sites are occupied by the 

pyridyl donors N(2) and N(4) with the two five-membered chelate rings located cis 

to each other. The largest cis angle within complex 4 is Cl(1)–Fe(1)–Cl(2) = 

98.52(4)°. The rigid five membered chelate rings of pmea cause a strong distortion 

of the octahedral coordination sphere around the iron(III) centre, with the following 

N(1)
Cl(2)

N(2)

Fe(1)

N(3)

N(4)

Cl(1)

 

Figure 2-5: Ellipsoid plot of [Fe(pmea)Cl2]+ (50% probability ellipsoids); hydrogen atoms 
omitted for clarity. 
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angles deviating from 90°: [N(1)–Fe(1)–N(3) = 78.1° and N(1)–Fe(1)–N(4) = 

74.5(2)°]. In contrast, the six membered chelate ring in complex 4 is more flexible 

and the angle N(1)–Fe(1)–N(2) has an almost ideal value of 91.9(2)°. The coordi-

nation of the two chloride anions leads to an expansion of the equatorial plane in 

their direction with the corresponding bond lengths being about 0.1 Å longer than 

the average Fe–N bond in complex 4. Furthermore, the Fe–Cl bonds show a slight 

trans influence derived from the different nature of the opposing donors; the longer 

Fe(1)–Cl(2) bond is trans to the stronger Fe(1)–N(3) bond of a pyridine donor, 

while the shorter Fe(1)–Cl(1) bond is located vis-à-vis to the weaker Fe(1)–N(1) 

bond of the aliphatic amine. 

 [Fe(pmea)(tbc)]ClO4 x H2O (5). Compound 5 crystallizes in the monoclinic space 

group P21/c with four complex cations, four perchlorate counter ions and four wa-

ter molecules per unit cell. Each of the water molecules is hydrogen bonded to one 

perchlorate ion. The structure of the cation in 5 is depicted in Figure 2-6, selected 

bond lengths and angles are listed in Table 2-3. As observed for the iron complex 

4, the coordination geometry around the iron(III) centre is distorted octahedral. The 

nitrogen donor atoms of the N4O2 donor set are provided by the ligand pmea, while  

Br(4)

N(1)

N(3)

Br(3)
O(2)

Fe(1)

N(4)

O(1)

N(2)

Br(2)
Br(1)

 

Figure 2-6: Ellipsoid plot of [Fe(pmea)(tbc)]+ (50% probability ellipsoids); hydrogen atoms 
omitted for clarity. 
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Table 2-3: Selected bond lengths [Å] and angles [°] for compounds 2–5. 

2      

Fe(1)–Br(1)  2.4525(7) Br(1)–Fe(1)–O(1) 100.96(8) O(1)–Fe(1)–N(3) 94.7(2) 

Fe(1)–O(1)  1.946(2) Br(1)–Fe(1)–O(2) 96.95(7) O(2)–Fe(1)–N(1) 89.6(2) 

Fe(1)–O(2)  1.958(2) Br(1)–Fe(1)–N(1) 167.78(7) O(2)–Fe(1)–N(2) 88.5(2) 

Fe(1)–N(1)  2.398(3) Br(1)–Fe(1)–N(2) 97.47(8) O(2)–Fe(1)–N(3) 165.6(2) 

Fe(1)–N(2)  2.169(3) Br(1)–Fe(1)–N(3) 97.45(8) N(1)–Fe(1)–N(2) 72.3(2) 

Fe(1)–N(3)  2.136(3) O(1)–Fe(1)–O(2) 83.4(2) N(1)–Fe(1)–N(3) 76.1(2) 

O(1)–C(18)  1.322(4) O(1)–Fe(1)–N(1) 90.0(2) N(2)–Fe(1)–N(3) 88.9(2) 

O(2)–C(23)  1.323(4) O(1)–Fe(1)–N(2) 160.6(2)   

3 

Fe(1)--Fe(1A)  3.550(2) Br(1)–Fe(1)–O(1) 106.8(3) O(1)–Fe(1)–N(4) 92.5(2) 

Fe(1)–Br(1)  2.4046(8) Br(1)–Fe(1)–N(1) 158.1(2) N(1)–Fe(1)–N(2) 61.6(2) 

Fe(1)–O(1)  1.7747(7) Br(1)–Fe(1)–N(2) 96.5(2) N(1)–Fe(1)–N(3) 75.6(2) 

Fe(1)–N(1)  2.216(4) Br(1)–Fe(1)–N(3) 103.9(2) N(1)–Fe(1)–N(4) 75.7(2) 

Fe(1)–N(2)  2.247(4) Br(1)–Fe(1)–N(4) 102.8(2) N(2)–Fe(1)–N(3) 83.5(2) 

Fe(1)–N(3)  2.172(4) O(1)–Fe(1)–N(1) 95.1(2) N(2)–Fe(1)–N(4) 82.9(2) 

Fe(1)–N(4)  2.152(4) O(1)–Fe(1)–N(2) 156.7(2) N(3)–Fe(1)–N(4) 151.2(2) 

  O(1)–Fe(1)–N(3) 90.0(2)   

4 

Fe(1)–Cl(1)  2.274(2) Cl(1)–Fe(1)–Cl(2) 98.52(4) Cl(2)–Fe(1)–N(4) 92.4(8) 

Fe(1)–Cl(2)  2.285(2) Cl(1)–Fe(1)–N(1) 163.98(9) N(1)–Fe(1)–N(2) 91.9(2) 

Fe(1)–N(1)  2.180(3) Cl(1)–Fe(1)–N(2) 100.01(8) N(1)–Fe(1)–N(3) 78.1(2) 

Fe(1)–N(2)  2.180(3) Cl(1)–Fe(1)–N(3) 92.66(8) N(1)–Fe(1)–N(4) 74.5(2) 

Fe(1)–N(3)  2.164(3) Cl(1)–Fe(1)–N(4) 93.07(8) N(2)–Fe(1)–N(3) 82.8(2) 

Fe(1)–N(4)  2.173(3) Cl(2)–Fe(1)–N(1) 92.22(8) N(2)–Fe(1)–N(4) 166.3(2) 

  Cl(2)–Fe(1)–N(2) 89.72(8) N(3)–Fe(1)–N(4) 92.6(2) 

  Cl(2)–Fe(1)–N(3) 167.49(8)   

5 

Fe(1)–O(1)  1.927(4) O(1)–Fe(1)–O(2) 83.4(2) O(2)–Fe(1)–N(4) 89.1(2) 

Fe(1)–O(2)  1.947(4) O(1)–Fe(1)–N(1) 171.0(2) N(1)–Fe(1)–N(2) 94.8(2) 

Fe(1)–N(1)  2.172(5) O(1)–Fe(1)–N(2) 90.8(2) N(1)–Fe(1)–N(3) 76.6(2) 

Fe(1)–N(2)  2.148(5) O(1)–Fe(1)–N(3) 96.1(2) N(1)–Fe(1)–N(4) 79.1(2) 

Fe(1)–N(3)  2.134(5) O(1)–Fe(1)–N(4) 108.1(2) N(2)–Fe(1)–N(3) 92.7(2) 

Fe(1)–N(4)  2.114(6) O(2)–Fe(1)–N(1) 91.5(2) N(2)–Fe(1)–N(4) 88.4(2) 

O(1)–C(20)  1.319(7) O(2)–Fe(1)–N(2) 172.7(2) N(3)–Fe(1)–N(4) 155.7(2) 

O(2)–C(25)  1.326(7) O(2)–Fe(1)–N(3) 92.4(2)   
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the oxygen donors derive from a tetrabromocatecholate dianion (tbc) that acts as 

an inhibitor substrate. The equatorial plane around Fe(1) is occupied by O(1) and 

O(2) of the tbc, the aliphatic nitrogen N(1) and the pyridyl donor N(2) of the ex-

tended ligand arm which forms the six membered chelate ring. This is in contrast 

to precursor complex 4, where this arm was located in an apical position. Within 

this equatorial plane, the deviations from the ideal geometry are relatively small for 

a metal complex of a tmpa-type ligand. Large deviations can be found for the an-

gles that span the apical positions: [N(1)–Fe(1)–N(3) = 76.6(2)° and N(1)–Fe(1)– 

N(4) = 79.1(2)° are narrowed, whereas O(1)–Fe(1)–N(3) = 96.1(2)° and O(1)– 

Fe(1)–N(4) = 108.1(2)° are widened significantly]. The Fe–N bond lengths are 

within the typical range for a high-spin iron(III) complex. As expected, the Fe(1)–

N(1) bond is the longest Fe– N bond in 5 due to the lack of π-bonding abilities. The 

binding of the catecholate is slightly asymmetric, but the Fe–O bond lengths as 

well as those of the corresponding C–O bonds are still in good agreement with a 

dianionic binding of the inhibitor substrate. 

2.4 Comparative Discussion.  

In the following, the structures of the metal complexes 2 and 3 will be compared to 

the complexes [Fe(tmpa)Cl2]+ (A) and [Fe2OCl2(tmpa)2]2+ (B) that were crystallised 

by Que and coworkers.42 Furthermore, structural aspects of the substrate-bound 

iron(III) complexes [Fe(pmea)(tbc)]+ (cation of 5) and [Fe(tmpa)(dbc)]+ (1)20 will be 

discussed. 

Ligand L2 is a derivative of tmpa in which one ligand arm lacks a methylene 

spacer between the central amine group and the pyridyl group. This variation has 

dramatic effects on the coordination chemistry of L2. Not only have different bond 

lengths and angles been observed for the primary coordination sphere of the 

iron(III) centre, but also the coordination mode of the ligand was found to be tri-

dentate in the mononuclear substrate complex 2 and tetradentate in the dinuclear 

compound 3, whereas tmpa acts as a tetradentate ligand in both A and B. The 

very small N(1)–Fe(1)–N(2) angle of 61.6(2)° in 3 compared to 76.8° for the corre-

sponding angle in B is indicative of the high ring tension that leads to the detach-

ment of the pyridyl group of L2 upon substrate binding. 
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The complexes [Fe(tmpa)(dbc)]+ (1) and [Fe(pmea)(tbc)]+ (5) show a wide similar-

ity, however there are differences that might explain the lower reactivity of the 

pmea complex towards dioxygen. A calculation of the angle between the least-

squares planes of the catecholate unit and the equatorial pyridine group of the 

ligand in 1 and 5 was performed. In 5 this angle has a value of 1.5° and the corre-

sponding groups are nearly coplanar, while in 1 the dihedral angle has a value of 

35.0° due to the ligand’s geometric constraints. The twist of the pyridyl group has 

an impact on the overlap of the ligand’s  π-orbital with the metal’s d-orbitals and 

thus influences the electronic properties of the metal centre. Another difference 

can be observed for the Fe–Ocat bond lengths which are both more than 0.03 Å 

longer in 5 than in 1 [1.917(3) Å and 1.898(2) Å, respectively]. Since this discrep-

ancy might be a result of the different catechol substrates used in these com-

plexes, we will not go into detail on this point. However, a higher covalency of 

these bonds that leads to shorter Fe–O distances would simplify charge transfer 

from the catecholate to the metal centre and thereby enhance reactivity towards 

dioxygen. The slight asymmetry in the substrate binding that was found in 1 (the 

Fe-O bonds differ by about 0.02 Å) can also be observed in the catecholate com-

plexes in this work (∆Fe-O = 0.01 Å or 0.02 Å for 2 and 5, respectively). 

2.5 Summary 

Activation parameters for the reaction of dioxygen with [Fe(tmpa)(dbc)]B(C6H5)4 

were determined by low-temperature stopped-flow kinetics. The large negative 

value of ∆S‡ (–199 ± 4 J mol-1 K-1) indicated an associative character of the reac-

tion. However, no intermediates could be detected during the oxidation process to 

support the postulated mechanism outlined in Scheme 2-3. Furthermore, we could 

clearly demonstrate that chelate ring size modification in the iron tmpa catecholate 

system decreased the reaction rate dramatically. In our efforts to crystallize iron 

catecholate complexes of all ligands investigated we succeeded in structurally 

characterizing complexes with the ligands L2 and pmea. Single-crystal X-ray 

structure analyses of complexes 2 and 3 showed that either all pyridine nitrogen 

atoms of ligand L2 are coordinated (leading to one four-membered chelate ring in 

complex 3), or as for complex 2 one arm of L2 is replaced by an additional ligand.  
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3.1 

- Iron(III) Complexes with the Ligands 
N',N'-bis[(2-pyridyl)methyl]ethylenediamine (uns-
penp) and the Amide N-Acetyl-N'N'-bis[(2-
pyridyl)methyl]ethylenediamine (acetyl-uns-penp) 

This work has been accepted for publication in European Journal of Inorganic 

Chemistry. 

Xu, J.-Y.; Astner, J.; Walter, O.; Heinemann, F. W.; Schindler, S.; Merkel, M.; Krebs, 

B.  

Introduction 

Tripodal ligands such as tris-((2-pyridyl)methyl)amine (= tmpa, also abbreviated as 

tpa in the literature) as well as derivates, e. g. N4py (Scheme 3-1), have been used 

successfully in experimental studies to model copper and iron enzymes. 4,8,40,44,45 

Iron(II) complexes of the related ligand Rtpen (R = Me, Bz etc.) were shown to react 

with an excess of hydrogen peroxide to form an end-on hydroperoxo complex that 

can convert to a side-on peroxo complex at higher pH values.46-50 More recently it 

was demonstrated that iron complexes with the ligand Bztpen as well as N4py can 

form an iron(IV) oxo species that is able to oxidize alkanes such as cyclohexane.51  

Rtpen can be prepared in two different synthetic procedures. The first one described 

previously starts from a mono-substituted ethylendiamine that is reacted with picolyl-

chloride.48-50 The second one takes advantage of the amine N’,N’-bis[(2-

pyridyl)methyl]ethylenediamine (uns-penp; Scheme 3-1), a versatile tripodal ligand 

described previously, 52,53 as a starting material. Interestingly, so far only an iron(II) 

complex of uns-penp has been described in the literature that has been investigated 

in regard to its spin cross over properties. 54 Furthermore, very recently an iron(II) 

complex of a derivative of uns-penp was described. 55 However, so far no iron(III) 

complexes were described in the literature. Therefore, we decided to study the ap-

propriate iron(III) complexes of this ligand as well as of its acetyl derivative (N-Acetyl-

N’,N’-bis[(2-pyridyl)methyl]ethylenediamine (acetyl-uns-penp; Scheme 3-1), an amide 

that was obtained during the synthesis of uns-penp. 
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Scheme 3-1: Ligands discussed in the text 

3.2 Results and Discussion 

Only more recently different research groups have started to use uns-penp as a ver-

satile ligand in different areas of coordination chemistry and different synthetic pro-

cedures were described.52,53,55-59 However, most of the authors unfortunately do not 

refer to the original synthesis of this ligand by Mandel and coworkers52 and in one 

case even describe it incorrectly a second time as a new compound (ten years later 

in the same journal).54 Some of us have used this ligand previously in studies in cop-

per chemistry and have improved its preparation.53 During the two step synthesis of 

uns-penp its protected form, N-Acetyl-N’,N’-bis[(2-pyridyl)methyl]ethylenediamine 

(acetyl-uns-penp), was easily obtained in pure form in high yields. Recrystallisation 

from petroleum ethers afforded single crystals that were suitable for X-ray diffraction 

studies. Acetyl-uns-penp crystallises with two molecules per unit cell. Those are 

dimerised by hydrogen bonding between the carboxamido group and one of the pyri-

dine groups. The molecular structure of one of these dimers is presented in Figure 

3-1 (see Table 3-1 for a summary of the crystallographic data and refinement 

parameters). Besides the hydrogen bonding, the crystal structure shows no extraor-

dinary features.  
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Furthermore, the synthesis of iron complexation with carboxamide ligands has raised 

the interest of inorganic chemists to gain better understanding of metal-peptide bond 

coordination chemistry in life sciences60 and to use such complexes as model com-

pounds for the anti-tumor drug bleomycin61,62 or nitrile hydratase.63-65 Important in 

that regard are the results reported by Mascharak and coworkers, who have investi-

gated in detail the structures and properties of Fe(II)/Fe(III) complexes of a number of 

carboxamide ligands, several based on a pyridine-2-carboxamide framework, e. g. 

N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy3H).61,63,66-71 

The ligand PaPy3H (Scheme 3-1) is related to acetyl-uns-penp; instead of the methyl 

group in acetyl-uns-penp it contains an additional coordinating pyridyl unit. 

 

Figure 3-1: Ellipsoid representation of an acetyl-uns-penp dimer (50% probability). 

3.2.1 [Fe2(acetyl-uns-penp)2O](ClO4)2 x H2O (6).  

Acetyl-uns-penp so far has only been used by some of us to synthesize and charac-

terize a copper(II) complex with this ligand. Herein the amide is not deprotonated, 

however the carboxamido function of acetyl-uns-penp is no longer truly sp2 hybrid-

ised and the nitrogen atom undergoes a weak interaction with the metal centre.53 The 

copper complex of PaPy3H forms a dimer in which the oxygen atom of the amide is 

coordinated to the copper(II) ion.72 In contrast the iron amide complexes of PaPy3H 

described by Mascharak and coworkers contained the deprotonated ligand 
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form.67,70,72,73 However, our own efforts to synthesize the mononuclear deprotonated 

iron(III) complex [Fe(acetyl-uns-penp)](ClO4)2 were only partially successful. Instead 

of the mononuclear species we obtained the dinuclear complex [Fe2(acetyl-uns-

penp)2O](ClO4)2 x H2O (6). It is interesting to note at this point that the stoichiometri-

cally identical compound [Fe2(PaPy3H)2O](ClO4)2 (containing additional ethanol sol-

vent molecules) derived through oxidation of the iron(II) complex is structurally com-

pletely different from 6.67 In this complex the oxo-bridge assembles two mononuclear 

amide complexes (with coordinated deprotonated amide nitrogen atoms while the 

oxygen atoms are not coordinated) to form the dimer (as one would expect). In con-

trast and as discussed below, in 6 the ligand acetyl-uns-penp is additionally bridging 

the two iron(III) ions and involves the amide nitrogen as well as the oxygen atom into 

the coordination. 

Crystals of 6 at first were obtained from the reaction of Fe(ClO4)3, acetyl-uns-penp 

and NaN3 in methanol followed by recrystallisation of the precipitate in acetonitrile. In 

contrast to our expectations no azide complex was formed but instead deprotonation 

of the amide occurred under these conditions and due to the presence of water the 

oxo-bridged dinuclear complex 6 was obtained. Taking this result into account it was 

furthermore possible to crystallise 6 successfully by replacing the NaN3 by Et3N or 

NaOH as deprotonating agent. The cation of 6, as depicted in Figure 3-2, shows that 

the crystallographically equivalent iron(III) centres are triply bridged by one oxo and 

two carboxamido groups from two acetyl-uns-penp ligands, respectively, leading to 

an intramolecular Fe-Fe distance of 2.992 Å and an Fe-O-Fe angle of 113.1°. A 

summary of the crystallographic data and refinement parameters for the structures 

are presented in Table 3-1. Selected bond lengths and angles for the iron(III) com-

plexes are reported in Table 3-2. 

It is interesting to note that in 6, the acetyl-uns-penp ligand shows an unusual 

pentadentate coordination mode displaying deprotonated carboxamido NCO bridging 

groups (η2, µ2) involving the delocalisation of π-bonding [d(C-O) = 1.283 Å, d(C-N) = 

1.306 Å], which is in agreement with the values of a related (η2, µ2) NCO-bridged iron 

complex reported previously.74 However, in contrast, structural properties of 6 are 

quite different to a related iron(III) complex with a bridging urea anion.75 Compared to 

other diiron(III) complexes with three bridging ligands, of which at least one is a µ-oxo 

unit, 6 exhibits some unique structural features. The Fe-Fe separation is significantly 
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shorter than those of other µ-oxo-tribridged diiron(III) complexes (range 3.048-3.335 

Å) and the Fe-O-Fe angle is among the smallest of them all (range 113.8-134.7°).76 

Each iron(III) ion adopts a distorted octahedron coordination geometry by a N4O2 

donor set, in which two pyridine nitrogen atoms (N2 and N3), one carboxamido 

nitrogen atom (N4) and a carboxamide oxygen atom (O2A) from the second acetyl-

uns-penp ligand reside in the equatorial plane while oxo-bridged O(1) and the tertiary 

amino N(1) atoms occupy the axial positions. The negative charge of the µ-oxo-

bridge leads to a rather short Fe(1)-O(1) bond (1.7923 Å) and likewise due to the 

trans effect, the opposing Fe(1)-N(1) bond is weakened with a distance of 2.246(2) Å. 

All cis angles around O(1) are larger than the ideal 90°, with values of 98.35(5)° for 

O(1)-Fe(1)-O(2A), 102.11(6)° for O(1)-Fe(1)-N(2), 96.96(5)° for O(1)-Fe(1)-N(3) and 

103.62(6)° for O(1)-Fe(1)-N(4). Obviously, deprotonation of the carboxamide groups 

faciliates the increase of bond lengths around the Fe(III) ions (Table 3-2). 

 

 

Figure 3-2: Ellipsoid representation of the dinuclear complex in 6  

(50% probability; hydrogen atoms omitted for clarity) 
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Table 3-1: Crystallographic data and experimental details. 

Compound       acetyl-uns-penp 6 7 8 9 10
Empirical formula C16H20N4O C32H40Cl2Fe2N8O12 C    26H30BrCl4FeN4O4 C53H64Cl8Fe2N8O10 C16H21Cl3FeN5O4 C32H42Cl4Fe2N10O9 
Mr 284.36    

     
455.66 740.10 1368.42 509.58 964.26

Temperature [K] 140(2) 200(2) 100(2) K 150(2) 100(2) 100(2)
Radiation (λ [Å]) Cu-Kα, 1.54178 Mo-Kα, 0.71073 Cu-Kα, 1.54178 Cu-Kα, 1.54178 Mo-Kα, 0.71073 Mo-Kα, 0.71073 
Crystal colour and shape colourless cuboid brown prism red plate brown cuboid yellow prism brown, irregular  
Crystal size [mm] 0.20 x 0.14 x 0.10 2.00 x 0.40 x 0.50 0.13 x 0.12 x 0.03 0.31 x 0.29 x 0.29 0.24 x 0.15 x 0.12 0.23 x 0.22 x 0.12 
Crystal system Triclinic monoclinic monoclinic monoclinic monoclinic triclinic
Space group P1 bar(No. 2) C2/c (No. 15) P21/c (No. 14) P21/n (No. 14) P2(1)/n (No 14) 

 
P-1 bar (No 2) 

 a [Å] 9.3758(2)  16.2248(17) 12.4448(5)  

    

  
      
  

   
      

      
      

       

     
       

   

10.4477(3) 11.241(1) 8.4308(5)

b [Å] 9.6178(2)  12.8536(13) 13.4022(6) 20.9973(7) 7.8366(6) 11.2769(6)
c [Å] 10.2342(3)  19.653(2) 

 
18.1585(8) 
 

13.9166(5) 
 

24.330(2) 
 

11.8246(8)  
α [°] 82.807(2) 71.583(4)
β [°] 68.351(2) 112.910(1)

 
92.758(3)
 

94.824(2)
 

91.443(7)
 

76.621(5)
γ [°] 62.401(2) 80.422(4)
V [Å3] 751.10(3) 3775.2(7) 3025.1(2) 3042.1(2) 2142.6(3) 1032.4(2)
Z 2 4 4 2 4 1
ρcalcd. [g·cm-3] 1.257 1.603 1.625 1.494 1.580 1.551
µ [mm-1] 0.652 0.983 9.127 7.570 1.111 1.024
F(000) 304 1880 1500 1412 1044 496
θ range [°] 4.66 to 71.30 2.09 to 28.28 3.56 to 71.35 3.82 to 71.44 3.14 to 27.88 3.30 to 27.87 
Index ranges -10 ≤ h ≤ 11 -16 ≤ h ≤ 21 -14 ≤ h ≤ 14 -11 ≤ h ≤ 12 -14 ≤ h ≤ 14 -11 ≤ h ≤ 10 
 -10 ≤ k ≤ 11 -17 ≤ k ≤ 16 -15 ≤ k ≤ 16 -22 ≤ k ≤ 24 -10 ≤ k ≤ 10 -14 ≤ k ≤ 14 
 -11 ≤ l  ≤ 12 -26 ≤ l ≤  26 -20 ≤ l  ≤ 22 -15 ≤ l ≤  17 -32 ≤ l ≤  32 -15 ≤ l ≤  15 
Reflections collected 4369 13663 16266 17174 32406 27493 
Unique reflections 

 
2521 4476 5631 5614 5103 4910 

Rint 0.0285 0.0263 0.0766 0.0650 0.0792 0.0272
Data/restraints/parameters

 
2521/0/195

 
4476/0/266

 
5631/0/368

 
5614/0/380

 
5103/0/263

 
4910/0/260

 Goodness-of-fit on F2 1.099 1.040 0.888 0.954 1.032 1.065

Final R indices [I > 2σ(I)] R1 = 0.0490 
wR2 = 0.1381 

R1 = 0.0365 
wR2 = 0.0954 

R1 = 0.0492 
wR2 = 0.0981 

R1 = 0.0463 
wR2 = 0.1065 

R1 = 0.0330 
wR2 = 0.0671  

R1 = 0.0240 
wR2 = 0.0580  

R indices (all data) R1 = 0.0553 
wR2 = 0.1443 

 

R1 = 0.0428 
wR2 = 0.1000  

 

R1 = 0.0864 
wR2 = 0.1082 

R1 = 0.0683 
wR2 = 0.1118 

R1 = 0.0568 
wR2 = 0.0721  

R1 = 0.0323 
wR2 = 0.0606  

Largest diff. peak/hole [e·Å-3] 0.210/-0.325 0.937/-0.644 1.458/-0.501 0.400/-0.692 0.401/-0.525 0.434/-0.442
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  atoms 6 atoms 7 8 atoms 9 atoms 10 
Fe(1)-O(1)          1.792(2) Fe(1)-X 2.4813(9) 1.7929(5) Fe(1)–N(1) 2.127(2) Fe(1)-O(1) 1.798(1)
Fe(1)-O(2A)        

       
      
      

       
   

        
       

      
     

     
        

     
        

        
        

   
        
        
        

       
        
        
        

  

2.013(2) Fe(1)-O(2)  1.961(3) 2.012(2) Fe(1)–N(3) 2.136(2) Fe(1)-N(3) 2.141(2)
Fe(1)-N(4) 2.100(2) Fe(1)-O(3)  1.969(3) 2.008(2) Fe(1)–N(4) 2.172(2) Fe(1)-N(1) 2.147(2)
Fe(1)-N(2)  2.157(2) Fe(1)-N(1)  2.266(4) 2.366(3) Fe(1)–N(2) 2.214(2) Fe(1)-N(2) 2.213(2)
Fe(1)-N(3)  2.162(2) Fe(1)-N(2)  2.191(4) 2.170(3) Fe(1)–Cl(1) 2.2622(5) Fe(1)-N(4) 2.235(2)
Fe(1)-N(1) 2.245(2) Fe(1)-N(3)  2.159(4) 

 
2.175(2)

 
Fe(1)–Cl(2)
 

2.3081(6) Fe(1)-Cl(1) 2.3166(4)
O(1)-Fe(1A)   1.792(2) Fe(1)···Fe(1A) 3.586  O(1)-Fe(1A) 1.798(1)

O(2)-Fe(1A) 2.013(2) Fe(1)···N(4) 3.692(3) Fe(1)···Fe(1A)
 

 3.596
 Fe(1)···Fe(1A)

 
2.992 O(2)···N(4)

 
2.755(3)
 

O(1)-Fe(1)-O(2A) 98.35(5) X-Fe(1)-O(2) 96.2(2) 98.25(6) N(1)-Fe(1)-N(3)        153.61(6) O(1)-Fe(1)-N(3) 93.26(3)
O(1)-Fe(1)-N(4) 103.62(6) X-Fe(1)-O(3) 99.8(2) 106.26(7) N(1)-Fe(1)-N(4)        83.51(6) O(1)-Fe(1)-N(1) 90.95(3)
O(2A)-Fe(1)-N(4) 93.13(7) X-Fe(1)-N(1) 165.6(2) 161.78(7) N(3)-Fe(1)-N(4)        90.55(6) N(3)-Fe(1)-N(1) 153.72(5)
O(1)-Fe(1)-N(2) 102.11(6) X-Fe(1)-N(2) 93.5(2) 95.87(7) N(1)-Fe(1)-N(2)       

 
78.07(6) O(1)-Fe(1)-N(2) 93.08(3)

O(2A)-Fe(1)-N(2) 85.80(6) X-Fe(1)-N(3) 95.4(2) 92.24(7) N(3)-Fe(1)-N(2) 75.55(6) N(3)-Fe(1)-N(2) 76.04(4)
N(4)-Fe(1)-N(2) 154.12(7) O(2)-Fe(1)-O(3) 82.9(2) 81.31(8) N(4)-Fe(1)-N(2)        79.08(6) N(1)-Fe(1)-N(2) 77.84(4)
O(1)-Fe(1)-N(3) 96.96(5) O(2)-Fe(1)-N(1) 95.4(2) 95.28(9) N(1)-Fe(1)-Cl(1)       105.57(4) O(1)-Fe(1)-N(4) 170.11(3)
O(2A)-Fe(1)-N(3) 164.53(6) O(2)-Fe(1)-N(2) 168.1(2) 160.74(9) N(3)-Fe(1)-Cl(1)       100.04(4) N(3)-Fe(1)-N(4) 88.86(4) 
N(4)-Fe(1)-N(3) 85.43(7) O(2)-Fe(1)-N(3) 86.5(2) 96.38(9) N(4)-Fe(1)-Cl(1)       89.42(4) N(1)-Fe(1)-N(4) 82.98(4)
N(2)-Fe(1)-N(3) 88.81(6) O(3)-Fe(1)-N(1) 90.1(2) 87.77(9) N(2)-Fe(1)-Cl(1)       167.56(5) N(2)-Fe(1)-N(4) 78.04(4)
O(1)-Fe(1)-N(1) 173.14(7) O(3)-Fe(1)-N(2) 88.7(2) 82.20(9) N(1)-Fe(1)-Cl(2)       89.33(5) O(1)-Fe(1)-Cl(1) 102.82(2)
O(2A)-Fe(1)-N(1) 87.39(7) O(3)-Fe(1)-N(3) 162.3(2) 161.50(9) N(3)-Fe(1)-Cl(2)       92.30(5) N(3)-Fe(1)-Cl(1) 100.45(3)
N(4)-Fe(1)-N(1) 79.68(7) N(1)-Fe(1)-N(2) 76.2(2) 74.16(9) N(4)-Fe(1)-Cl(2)       169.15(4) N(1)-Fe(1)-Cl(1) 103.87(3)
N(2)-Fe(1)-N(1) 74.44(7) N(1)-Fe(1)-N(3) 76.8(2) 74.12(9) N(2)-Fe(1)-Cl(2)       

 
91.49(4) N(2)-Fe(1)-Cl(1) 163.93(3)

N(3)-Fe(1)-N(1) 77.19(7) N(2)-Fe(1)-N(3)
 

99.5(2)
 

96.10(9)
 

Cl(1)-Fe(1)-Cl(2)
 

100.38(2) N(4)-Fe(1)-Cl(1) 86.26(3)
Fe(1A)-O(1)-Fe(1) 113.1(2)  Fe(1A)-O(1)-Fe(1) 180.000(1)

Table 3-2: Selected distances [Å] and angles [°] in 6 - 10. 

X = Br(1) in 7 or O(4) in 8                                         A: x,y,-z+1/2 (for 6); -x+2,-y,-z+2 (for 10) 
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Model complexes for intradiol catechol dioxygenases. One reason for our ef-

forts to obtain the mononuclear iron(III) complex with the deprotonated acetyl-uns-

penp as ligand was our hope that this complex might be an excellent functional 

model for intradiol catechol dioxygenases. These mononuclear non-heme iron en-

zymes catalyse the oxidative cleavage of catechol derivatives by insertion of both 

atoms of dioxygen into the substrate - a key step in the degradation of aromatic 

compounds.8-10  

Since Funabiki et al. reported the first functional models for catechol dioxy-

genases, increased efforts have been made by bioinorganic chemists to mimic the 

structure and function of these enzymes.8-10,18,19,77,78 Besides macrocyclic 

ligands,36,37,79 especially tetradentate tripodal ligands have shown considerable 

abilities to regulate the properties of model complexes, indicating that dioxygenase 

activity strongly depends on the nature of the ligand. The most effective biomi-

metic catalyst to date is the iron(III) tmpa (tpa) complex that was first reported by 

Que and coworkers8,20. Furthermore, several other systems with tripodal N4 donor 

ligands showed considerable catechol dioxygenase activity.23,34 Complexes with 

enzyme analogous N2O2 donor sets represent good structural and spectroscopic 

model compounds, however, they are poor functional models so far.17,80-86 Our 

recent efforts to reach higher activities than the iron(III) tmpa complex by increas-

ing or decreasing the chelate ring sizes in this system were unsuccessful.87  

The substrate binding process in the reaction cycle of the catechol cleavage in-

volves protonation of two ligands at the active site, Tyr447 and a hydroxide.14,88 

These two proton acceptors dissociate from the metal ion and herewith enable the 

proton donor molecule, the catechol, to coordinate in its dianionic form (see 

Scheme 3-2).  

OHFeIII
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H460

Y447

H462

OH
HO

- H2O

FeIII
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H460
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Y447 O
H
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Scheme 3-2: Proposed substrate binding process in catechol-1,2-dioxygenases 
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The special electronic properties of the leaving Tyr447 group have been studied 

extensively using spectroscopic methods and seem to influence the reactivity of 

the enzyme to a large extent.89 In previous work some of us used a tmpa derived 

ligand [(6-bromo-2-pyridyl)methyl]bis[(2-pyridyl)methyl]amine (brtpa) to mimic the 

weak bonding of one of the donor groups, however again it was observed that 

catechol dioxygenase reactivity decreased compared to the iron tmpa system, 

most likely due to steric hindrance.35  

Replacing one pyridyl moiety of the tmpa ligand with a deprotonated carboxamide 

function we had hoped to finally increase reaction rates of the oxidation of cate-

cholates compared to the tmpa system. However, as discussed below we did not 

reach this goal and furthermore, in contrast to the synthesis of complex 6, we did 

not succeed in the preparation of deprotonated amide complexes when using 

acetyl-uns-penp, catecholates and base. 

3.2.2 [Fe(acetyl-uns-penp)(tcc)Br] x (C2H5)2O (7). 

 When iron(III) bromide, acetyl-uns-penp, tetrachlorocatechol and triethylamine 

were mixed in acetone the complex [Fe(acetyl-uns-penp)(tcc)Br] x (C2H5)2O (7) 

was obtained. Slow diffusion of diethyl ether into the complex solutions allowed the 

precipitation of single crystals that were suitable for X-ray diffraction studies. Four 

complex molecules and four diethyl ether molecules form the unit cell of Com-

pound 7. The diethyl ether molecules are attached to the complex via hydrogen 

bonding to the non coordinating carboxamide function of the ligand. The structure 

of 7 is depicted in Figure 3-3 (the solvate molecule has been omitted for clarity; 

crystallographic data are presented in Table 3-1 and Table 3-2). 

The iron(III) core is ligated by three nitrogen atoms, two catecholate oxygens and 

one bromide. The longest bonds formed by iron and its donor atoms are found for 

Fe(1)-Br(1) and Fe(1)-N(1) with 2.4813(9) and 2.266(4) Å, respectively. This 

causes stretching of the coordination octahedron along the Br(1)-Fe(1)-N(1) axis. 

The cis angles around the bromide ion are widened to an averaged angle of 96.2°. 

On the other hand, the formation of five membered chelate rings leads to small 

values for the N(1)-Fe(1)-N(2) and N(1)-Fe(1)-N(3) angles of 76.2(2) and 76.8(2)°, 

respectively. 
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Figure 3-3: Ellipsoid representation of the iron(III) complex in 7 (50% probability; hydrogen 
atoms omitted for clarity). 

3.2.3 [{Fe(acetyl-uns-penp)(tcc)}2O] x (C2H5)2O x CH3OH (8). 

Interestingly, applying the same experimental conditions as for the synthesis of 7, 

however using a slightly larger amount of base the dinuclear oxo bridged complex 

[{Fe(acetyl-uns-penp)(tcc)}2O] x (C2H5)2O x CH3OH (8) was obtained (the syn-

theses of 7 and 8 could be reproduced applying these conditions). The molecular 

structure of the cation of 8 is shown in Figure 3-4 (crystallographic data are 

presented in Table 3-1 and Table 3-2). 

The unit cell contains two complexes as well as four diethyl ether and two disor-

dered methanol molecules. Since the bridging oxygen atom O(4) is located on a 

symmetry centre, one half of the dinuclear complex is generated by inversion. The 

metal metal distance is 3.586 Å and both iron ions are surrounded by an N3O3 do-

nor set. The nitrogen donor atoms are provided by the ligand acetyl-uns-penp, 

whereas the oxygen atoms belong to the dianionic tetrachlorocatecholate ligand 

and the µ-oxo-bridge. The coordination sphere of the iron centre has a distorted 

octahedral geometry. The negative charge of the µ-oxo-bridge leads to a rather 

short Fe(1)-O(4) bond (1.793 Å) and due to a trans effect, the opposing Fe(1)-N(1) 

bond is weakened. All cis angles around O(4) are larger than the ideal 90°. Espe-

cially those to the catecholate oxygens are widened, since this effect can be at-

tributed to electrostatic repulsions. The negative charge of O(2) is reduced by the 
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intramolecular hydrogen bond and therefore the corresponding O(2)-Fe(1)-O(4) 

angle has a value of only 98.25(6)° compared to 106.74(9)° for O(3)-Fe(1)-O(4). 

The most striking feature of 8 is the intramolecular hydrogen bond between the 

carboxamide nitrogen N(4) and O(2) of the catecholate. The donor acceptor dis-

tance has a typical value of 2.755(3) Å and the distance between Fe(1) and N(4) is 

3.692 Å. This is in good agreement with similar intramolecular hydrogen bonding 

some of us reported recently.35 In a way this hydrogen bonding indicates a possi-

ble pathway for the deprotonation of the catechol similar to the enzyme reaction 

shown in Scheme 3-2. 

 

Figure 3-4: Ellipsoid representation of the dinuclear complex in 8 (50% probability; 
hydrogen atoms omitted for clarity). 

Spectrophotometric titrations. To gain a better understanding of the influence of 

the base and furthermore to achieve optimised conditions for catechol cleavage by 

molecular dioxygen it is necessary to provide a high concentration of the mononu-

clear iron complex with one coordinated catecholate dianion ([Fe(L)(3,5-dbc)]+). To 

determine these ideal conditions for the catechol cleavage experiments, spectro-

photometric titrations were performed (see Figure 3-5 and 3.4 Experimental) as 

described previously for related systems.35 
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Figure 3-5: Spectrophotometric titration of a solution of iron(III) perchlorate hydrate, acetyl-
uns-penp and 3,5-dbc against piperidine; solid lines: 0.0 and 0.5 equivalents; dashed lines: 
1.0 - 1.6 equivalents; dotted lines: 1.8 – 4.0 equivalents. 

This analysis allowed to gain insight into the species distribution in solution de-

pending on the amount of external base that was added to a mixture of iron salt, 

the ligand and the substrate 3,5-dbc. At the beginning of the titration (0.0 – 0.5 

equivalents of piperidine; piperidine was used for comparison with previous stud-

ies, however triethylamine works the same way) an absorption band at 375 nm 

can be observed that is assigned to an oxo-iron(III)-CT transition. We suggest that 

the main species in solution is a µ-oxo-bridged dinuclear compound without coor-

dinated substrate. Such dinuclear complexes are thermodynamically favoured in 

presence of water and many examples have been reported in the literature.42,90-99 

With regard to the previous results of some of us it is possible that the carbox-

amido group of the ligand already undergoes a very weak interaction with the 

metal centre and is not truly sp2 hybridised, however not yet deprotonated. 53 Fur-

thermore, two weak transitions occur at 580 and 920 nm which are typical for 

catecholate-iron(III)-CT transitions and indicate the presence of a low concentra-

tion of the desired mononuclear substrate adduct. Upon further addition of base 
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(1.0 – 1.6 equivalents) these two absorption bands raise dramatically and so does 

the concentration of the mononuclear substrate adduct. In the last part of the titra-

tion (1.8 – 4.0 equivalents) the bands at 580 and 920 nm disappear and two new 

bands rise at 430 and 690 nm that are also assigned to catecholate-iron(III)-CT 

transitions. The shift to higher energies indicates a higher electron density on the 

iron(III) core that makes the charge transfer from the catecholate more difficult. In 

accordance to the crystal structure of 8 we suggest that a dinuclear µ-oxo-bridged 

substrate adduct is formed in which the large electron density of the oxo-group is 

partially transferred to the metal ions and one ligand arm is detached. Finally, the 

amount of base that is necessary to reach optimal reaction conditions for the cate-

chol cleavage was determined from a plot of the absorption of the lower energy CT 

band versus the amount of base added (see Figure 3-6). The maximum of this plot 

is located at 1.7 equivalents. 

 

Figure 3-6: Absorbance vs. base equivalents-plot ( λ = 980 nm).  

Catechol 1,2-dioxygenase activity. An in situ prepared complex solution con-

taining equimolar amounts of iron(III) perchlorate hydrate and acetyl-uns-penp was 

treated with 1 equivalent of 3,5-dbc and 1.7 equivalents of piperidine. The de-

crease in the lower energy LMCT band was monitored by UV-vis-spectroscopy. 
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The reaction was performed in air saturated methanol, resulting in a more than 

tenfold excess of dioxygen that ensures pseudo-first-order kinetics for the 

complete reaction. From the slope of the ln(absorbance) vs. time plot, the reaction 

rate was determined to be 0.05 M-1s-1, which is more than two orders of magnitude 

lower than that reported for the iron-tmpa system under similar reaction condi-

tions.20 Due to this low reactivity no further experiments were performed with this 

system. 

3.2.4 [Fe(uns-penp)Cl2]ClO4 x CH3CN (9).  

The ligand uns-penp was obtained in good yields according to the procedures de-

scribed in the literature. Mixing uns-penp together with iron(III) salts in methanol 

afforded a yellow material that could be recrystallised from acetonitrile by ether 

diffusion to yield crystals suitable for X-ray structural analysis. The ORTEP repre-

sentation of [Fe(uns-penp)Cl2]+ is shown in Figure 3-7. The structure of the cation 

of 9 shows a distorted octahedral geometry coordinated with four N atoms of the 

uns-penp ligand and two chloride ions, as represented by the trans ligand angles 

of 153.61(6)° for N1-Fe1-N3, 167.56(5)° for N(2)-Fe(1)-Cl(1), and 169.15(4)° for  

 

Figure 3-7: Thermal ellipsoids plot of the cation of 9 (50% probability;  

hydrogen atoms omitted for clarity). 
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N(4)-Fe(1)-Cl(2). Moreover, the angle for Cl(1)-Fe(1)-Cl(2) is 100.38(2)°, which is 

significantly larger than 90°. As is often the case with a tripodal ligand that forms 5-

membered chelate rings, the coordination geometry is distorted toward the tertiary 

amino group (average Namine-Fe-Npy/amine = 77.55°). The Fe-Npy bonds (av 2.132 Å) 

are shorter than the Fe-N(amine) bond (av. 2.193 Å), which are comparable to the 

values of Fe(III) tmpa complexes. 20,100,101 Consequently the Fe(1)–Cl(1) bond 

which is trans to the tertiary amino group (2.2622(5) Å is shorter than the Fe(1)–

Cl(2) bond trans to a primary amino nitrogen (2.3081(6) Å). 

3.2.5 [{Fe(uns-penp)Cl}2O](ClO4)2 x 2CH3CN (10).  

It is well known that a general problem in iron(III) chemistry is the formation of oxo-

bridged dimers during the synthesis of the complexes such as for example the 

iron(III) tmpa complex or the acetyl-uns-penp ligand system described above. Ad-

dition of base can accelerate this reaction and therefore when base was added 

during the synthesis of 9 the dinuclear oxo bridged complex 10 was obtained in-

stead. The thermal ellipsoids representation of the cation of 10 is shown in Figure 

3-8. The molecular structure is composed of centrosymmetric dimeric cations with 

a linear Fe-O-Fe unit. Each iron centre is in a distorted octahedral environment 

ligated by the two pyridine nitrogen atoms, the primary and tertiary amine nitro-

gens, as well as the oxygen which is bound to the second iron centre. The Fe-O 

bond distance of 1.7981(2) Å is in keeping with the mean values of 1.79(6) (with a 

range of 1.73- 1.82 Å) for such bond lengths in oxo-bridged iron(III) complexes.102 

The Fe-Npy bonds of 2.141(2) Å and 2.147(2) Å are considerably shorter than the 

Fe-Namine bond (2.213(2) and 2.235(2) Å). This is analogous to the structures of 

the respective (µ-oxo)diiron(III) complexes of tmpa. The chloride ligands coordi-

nate trans to the tertiary amine nitrogen on each iron centre and anti to each other 

relative to the Fe-O-Fe axis. The Fe-Cl bond distances of 2.3166(4) Å are slightly 

longer than the values of 9 arising from steric hindrance in the dimer. The Fe-Fe 

distance of 3.596 Å is typical for complexes with singly bridged Fe-O-Fe cores, 

which are usually in the range 3.4 - 3.6 Å, whereby the longer distances are asso-

ciated with Fe-O-Fe angles that are linear or close to linearity. 
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Figure 3-8: Thermal ellipsoids plot of the cation of 10 (50% probability; hydrogen atoms 
omitted for clarity). 

 
Catechol 1,2-dioxygenase activity of the iron(III)-uns-penp system. The 

iron(III)-uns-penp complex was investigated under the same conditions used pre-

viously for the according iron(III) tmpa catecholate (3,5-dbc) system. 87 Stopped-

Flow kinetic investigations revealed again that the rate of the reaction of the iron 

tmpa system is faster under these conditions, however, at least the iron-uns-penp 

complex was only slower by a factor of 20. No further detailed kinetic studies were 

performed on this system due to the fact that the rate could not be increased and 

that no reactive intermediates could be detected spectroscopically. 

3.3 Conclusions 

 40

Acetyl-uns-penp has not been used in coordination chemistry so far despite its 

interesting ligand properties and in contrast to related ligands (in which additional 

pyridine or phenol donor groups are present) that attracted a lot of interest in am-

ide chemistry recently.57,66-70,72,73,103-105 Some of us recently reported a copper(II) 

complex, where the carboxamido function of acetyl-uns-penp is no longer truly sp2 

hybridised and the nitrogen atom undergoes a weak interaction with the metal 

centre.53 In our present work, we demonstrated that acetyl-uns-penp is capable of 
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3.4 

influencing coordination chemistry by building hydrogen bonds with hydrogen ac-

ceptors in the vicinity of the carboxamido function. The intramolecular hydrogen 

bond between one arm of the tripodal ligand and a coordinated substrate molecule 

in 8 suggests a pathway for the second substrate deprotonation step in the reac-

tion cycle of intradiol cleaving catechol dioxygenases according to Scheme 3-2. 

Taken into account that the carboxamide also can undergo strong binding interac-

tions with a metal centre upon deprotonation, as demonstrated in 6, acetyl-uns-

penp is a very versatile ligand. Furthermore, structural characterisation of two 

iron(III) complexes of the ligand uns-penp and its catechol dioxygenase reactivity 

provided additional information on the chemistry of this interesting ligand. 

Experimental 

3.4.1 Materials.  

All chemicals were obtained from commercial sources and used without further 

purification. 

CAUTION! The syntheses and procedures described below involve compounds 

that contain perchlorate and azide ions, which can detonate explosively and with-

out warning. Although we have not encountered any problems with the com-

pounds used in this study, they should be handled with extreme caution. 

3.4.2 Physical Measurements.  

UV-vis spectroscopy was performed on a Hewlett-Packard 8453 diode array 

spectrometer. Elemental analyses were carried out on an Elementar Vario EL III 

analyser at the University of Münster. 

3.4.3 Syntheses 

Ligand Syntheses. The ligand acetyl-uns-penp as well as uns-penp were pre-

pared according to literature procedures.53  

[Fe2(acetyl-uns-penp)2O](ClO4)2 x H2O (6). Iron(III) perchlorate hexahydrate (177 

mg, 0.5 mmol) and acetyl-uns-penp (142 mg, 0.5 mmol) were combined in 10 mL 

of methanol. After 10 min of stirring, to the resulting brown solution NaN3 (49 mg, 

0.75 mmol) was added, immediately  leading to a very dark red suspension. After 
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2 h a brown precipitate was filtered off, washed with methanol and diethyl ether, 

and dried under vacuum. Dark brown prism crystals, air stable and suitable for X-

ray diffraction analysis, were obtained by slow evaporation of an acetonitrile solu-

tion after one week (69 mg, 0.03 mmol, 30%). (Found: C, 42.6; H, 4.2; N, 12.7%. 

C16H20ClFeN4O6 (Mr = 455.66 g/mol) requires C, 42.2; H, 4.4; N, 12.3%). 

6 could also be prepared analogously to the former synthesis except that Et3N 

(101 mg, 1.0 mmol) or NaOH (40 mg, 1.0 mmol) were used instead of NaN3. 

[Fe(acetyl-uns-penp)(tcc)Br] x (C2H5)2O (7). Anhydrous iron(III) bromide (30 mg; 

0.1 mmol) and acetyl-uns-penp (28 mg, 0.1 mmol) were dissolved in 7 mL of ace-

tone. After addition of tetrachlorocatechol hydrate (27 mg, 0.1 mmol) and triethyl-

amine (24  µL, 17 mg; 0.17 mmol) the  reaction mixture was stirred for 10 minutes 

and filtered. Vapor diffusion of diethyl ether into the complex solution yielded sin-

gle crystals of 7 (58 mg, 0.09 mmol, 90%), mp 181°C (decomposition) (Found: C, 

39.0; H, 3.9; N, 7.9%. C22H20N4BrCl4FeO3 (without solvent, Mr = 666.0 g/mol) re-

quires C, 39.7; H, 3.0; N, 8.4%). 

[{Fe(acetyl-uns-penp)(tcc)}2O] x (C2H5)2O x CH3OH (8). The synthetic procedure 

is identical the same as for the preparation of 7 with the only difference that a 

slightly larger amount of triethylamine (28  µL, 20 mg; 0.2 mmol) was used instead. 

Vapor diffusion of diethyl ether into the complex solution yielded single crystals of 

8 (37 mg, 0.03 mmol, 60%), mp 223°C (decomposition) (Found: C, 43.8; H, 3.7; N, 

9.1%. C44H40N8Cl8Fe2O7 (without solvent, Mr = 1188.2 g/mol) requires C, 44.5; H, 

3.4; N, 9.4%). 

[Fe(uns-penp)Cl2]ClO4 x CH3CN (9). To a solution of uns-penp (219 mg; 0.9 

mmol) in methanol (10 mL) was added a solution of Fe(ClO4)3 x 6H2O (139 mg, 

0.3 mmol) and FeCl3 (109 mg, 0.6 mmol) in methanol (10 mL). The resulting brown 

solution was stirred for 1 h at room temperature during which time a greenish yel-

low solid precipitated and then filtered. The precipitate was washed with methanol 

and diethyl ether, and dried under vacuum. Yellow prism crystals for crystallo-

graphic studies were obtained by vapour diffusion of diethyl ether into the acetoni-

trile solution. Yield: 221 mg (ca. 50%). Anal. Calcd. for C16H21Cl3FeN5O4: C, 37.71; 

H, 4.15; N 13.75%. Found: C, 37.59; H, 4.13; N, 13.68%. 
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[{Fe(uns-penp)Cl}2O](ClO4)2 x 2CH3CN (10) To a methanol suspension (15 mL) 

of Fe(ClO4)3 x 6H2O (115 mg, 0.25 mmol), FeCl3 (41 mg, 0.25 mmol) and uns-

penp ligand (122 mg; 0.5 mmol) was added Et3N (51 mg, 0.5 mmol) in 5 mL of 

methanol under stirring. After 1 h, the resulting greenish brown slurry was filtered 

and the precipitate was washed with methanol and diethyl ether. Dark brown cube 

crystals suitable for X-ray diffraction analysis were achieved by slow evaporation 

of an acetonitrile solution about one week. Yield: 200 mg (ca. 42%). Anal. Calcd. 

for C32H42Cl4Fe2N10O9: C, 39.86; H, 4.39; N 14.53%. Found: C, 39.62; H, 4.24; N, 

14.41%. 

3.4.4 X-ray Crystallographic Studies.  

Intensity data of 6 was collected on a Siemens SMART CCD 1000 diffractometer 

using graphite monochromated Mo- Kα radiation (λ = 0.71073 Å) by the ω-scan 

technique. The collected reflections were corrected for absorption effects.31 All 

structures were solved by direct methods and refined by least-squares techniques 

using the SHELX97 programme package.32 Further data collection parameters are 

summarised in Table 3-1. 

Intensity data of acetyl-uns-penp, 7, and 8 were collected on a Bruker AXS 

SMART 6000 CCD diffractometer (Cu-Kα, λ = 1.54178 Å, Göbel mirror) using the 

ω-scan technique. The collected reflections were corrected for absorption effects.31 

All structures were solved by direct methods and refined by full-matrix least-

squares methods on F2.32 Further data collection parameters are summarised in 

Table 3-1. 

Intensity data of 9 and 10 were collected at a temperature of 100 K on a Bruker-

Nonius KappaCCD diffractometer with graphite-monochromated Mo-Kα radiation 

(λ = 0.71073 Å). Data were corrected for Lorentz and polarisation effects. Absorp-

tion effects were corrected  numerically106 for 9 and by semi-empirical methods 

based on multiple scans105 for 10. The structures were solved by direct methods; 

full–matrix least–squares refinement was carried out on F2 using SHELXTL NT 

6.12.107 All non–hydrogen atoms were refined anisotropically. All hydrogen atoms 

were geometrically positioned; their isotropic displacement parameters were tied 

to those of their corresponding carrier atoms by a factor of 1.2 or 1.5.  
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CCDC 266956 (acetyl-uns-penp), 263645 (6), 266957 (7), 266958 (8), 283894 (9), 

and 283895 (10) contain the supplementary crystallographic data for this paper. 

These data can be obtained free of charge at www.ccdc.cam.ac.uk/ 

conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, 

Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) +44-1223-336-033; E-mail: 

deposit@ccdc.cam.ac.uk]. 

3.4.5 Determination of the Catechol 1,2-Dioxygenase activity.  

The catechol cleaving activity of an in situ prepared complex solution was tested 

using piperidine as an external base as described previously.35 The amount of 

base afforded to reach the highest reaction rates was determined according to the 

spectrophotometric titration described below. To 2 mL of a 2 x 10-4 M methanolic 

solution of Fe(ClO4)3 x H2O and the ligand were added 0.02 mL of a 2 x 10-2 M (1 

equivalent) solution of 3,5-H2dbc. The proper amount of base was added to the 

reaction mixture from a 2 x 10-2 M stock solution. To limit the occurrence of errors, 

the oxidation of the complex was followed three times by UV-vis spectroscopy. 

3.4.6 Spectrophotometric Titrations.  

The spectrophotometric titrations were carried out with the same solutions as de-

scribed above for the activity determinations. To avoid cleavage of the substrate, 

all manipulations were carried out under an argon atmosphere. A 0.1 mL sample 

of the 3,5-H2dbc solution was added to 10 mL of the complex solution. The result-

ing mixture was titrated with piperidine and the UV-vis-spectra were monitored 

using a flow cell (1 cm). 
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Chapter 4 - Reaction behavior of dinuclear cop-
per(I) complexes with m-xylyl-based ligands to-
wards dioxygen 

This work has been published previously in Journal of the Chemical Society, Dal-

ton Transactions. 

Foxon, S. P.; Utz, D.; Astner, J.; Schindler, S.; Thaler, F.; Heinemann, F. W.; 

Liehr, G.; Mukherjee, J.; Balamurugan, V.; Ghosh, D.; Mukherjee, R., Reaction 

behavior of dinuclear copper(I) complexes with m-xylyl-based ligands towards di-

oxygen. J. Chem. Soc., Dalton Trans. 2004, 15, 2321-2328. 

4.1 Introduction 

Modelling of the copper enzyme tyrosinase (a monooxygenase causing hydroxyla-

tion of monophenols and subsequent oxidation of catechols to quinones)2,108-111 

was first performed successfully by Karlin and coworkers who found that an in-

tramolecular ligand hydroxylation of the complex [Cu2(R-XYL-H)]2+ during its reac-

tion with dioxygen occurred (Scheme 4-1).112,113  

N N

N N
N NCu Cu

N N

N N
N NCu Cu

O

O
H

R R

[Cu2(R-XYL-H)]2+ [Cu2(R-XYL-O)-OH]2+

O2

 

Scheme 4-1: Intramolecular ligand hydroxylation of [Cu2(R-XYL-H)]2+. 

A detailed kinetic analysis performed at low temperature as well as a resonance 

Raman study revealed the formation of a µ-η2:η2-peroxo complex as an intermedi-

ate.39,114-116 However, it has been shown that bis-µ-oxo copper units are also capa-

ble of performing ligand hydroxylation reactions.117  

At present it remains unclear why substitution of the pyridine groups in [Cu2(R-

XYL-H)]2+ with pyrazole or benzimidazole donors completely suppresses the 
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above reaction, while with triazacyclononane units the intramolecular ligand hy-

droxylation reaction occurs.40,117-125 

Furthermore, similar and structurally related binuclear copper(I) imine complexes 

also showed intramolecular ligand hydroxylation when reacted with dioxygen 

(Scheme 4-2), however, in these cases the intramolecular hydroxylation reaction 

was less sensitive towards ligand modifications.123,126-136 

N N

N N
Cu Cu

S S

N N

N N
Cu Cu

O
H

R R

O

[Cu2(R-BPB-H)S2]2+

S = CH3CN
[Cu2(R-BPB-O)OH]2+

O2

2 S

2+ 2+

 

Scheme 4-2: Intramolecular ligand hydroxylation of [Cu2(H-BPB-H)S2]2+ 

The reaction of dioxygen with complexes derived from reduction of the imine 

bonds of such complexes (e. g. [Cu2(H-BPB-H)S2]2+ in Scheme 4-2) has not been 

studied so far in detail, although phenolate bridged binuclear copper(II) complexes 

with such amine ligands are well known (a few examples are given in the refer-

ences).137-141  

Therefore, in our efforts to gain a better understanding of the intramolecular ligand 

hydroxylation reactions of xylyl-bridged dicopper complexes, we investigated the 

reactivity of dioxygen towards the dinuclear copper(I) complex of the ligand α,α'-

bis[(2-pyridylethyl)amino]-m-xylene (L3, Scheme 4-3), the reduced form of the 

imine H-BPB-H (Scheme 4-2). Additionally we analysed the reaction of dioxygen 

with the copper(I) complex of the ligand α,α'-bis[N-(2-pyridylethyl)-N-(2-pyridyl-

methyl)-amino]-m-xylene (L5) (Scheme 4-3) which differs from R-XYL-H (Scheme 

4-1) by two shorter ligand "arms", leading to the formation of two smaller chelate 

rings in the metal complex. 
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NR' R'N

N N

R

NR' R'N

N N

OH

L3-OH:       R' = H,         R = H
L4-OH:       R' = CH3,     R = H
Me-L5-OH: R' = CH2py, R = H

L3: R' = H,         R = H
L4: R' = CH3,     R = H
L5: R' = CH2py, R = H  

Scheme 4-3: Ligands used in this study 

4.2 Results and Discussion  

L3, L5 and Me-L5-OH were readily prepared using standard synthetic procedures 

(see experimental section; however, alternative methods for the syntheses of L5 

and Me-L5-OH have been used as well: e. g. L5 can be prepared from L3 using 2-

picolyl chloride and base or by an in situ reductive alkylation53,142 with 2-

pyridinecarbaldehyde and NaBH(OAc)3). The crude oils were purified by chroma-

tography. 

As described above it is well known that intramolecular ligand hydroxylation occurs 

when [Cu2(R-XYL-H)]2+ is reacted with dioxygen (Scheme 4-1). The different reac-

tion pathways of related xylyl-bridged copper complexes during oxidation raised 

the question about the basic essential requirements for the occurrence of an in-

tramolecular ligand hydroxylation. That intramolecular ligand hydroxylation was 

observed when the Schiff base complex [Cu2(H-BPB-H)S2]2+ (Scheme 4-2) was 

reacted with dioxygen demonstrated that only two of the four "ethyl-pyridine arms" 

in [Cu2(R-XYL-H)]2+ are required for this kind of oxidation. However, it was not 

clear from the above finding if the imine donor atoms present in [Cu2(H-BPB-

H)S2]2+ are essential. It had been demonstrated by some of us earlier that imine 

donor atoms are not prerequisite by analysing the oxidation of the dinuclear cop-

per(I) complex with L4.143,144 Once again intramolecular ligand hydroxylation was 

observed and therefore suggesting that only two nitrogen donor atoms of the 

ligand (per copper ion) are sufficient for intramolecular ligand hydroxylation reac-

tions. Our findings were confirmed furthermore by the observations of Tolman and 

coworkers who observed ligand hydroxylations using bidentate ligands with nitro-
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gen donor atoms.117 However, the question remained and is addressed herein, as 

to whether the methyl group (or more general an alkyl group) needs to be attached 

to the secondary amine nitrogen donor atoms for intramolecular ligand hydroxyla-

tion to be observed. 

Unfortunately we were unsuccessful in isolating the copper(I) complex of L3 as a 

pure solid material. Therefore, solutions of this complex employed in the oxygena-

tion experiments were prepared in situ by mixing [Cu(CH3CN)4]ClO4 with L3 in 

methanol (or dichloromethane) under an inert atmosphere. The yellow coloured 

complex [Cu2L3(CH3CN)2x](ClO4)2 (x = 1 or 2) is most likely formed, where one or 

two acetonitrile molecules are coordinated additionally as co-ligands to each cop-

per(I) ion. After the reaction with dioxygen the green coloured phenolate-bridged 

product [Cu2(L3-O)(OH)(ClO4)]ClO4 (11) was isolated in good yield, clearly demon-

strating again that intramolecular ligand hydroxylation had occurred. Crystals of 

complex 11 suitable for a single-crystal X-ray structure analysis were obtained by 

slow diffusion of Et2O into a MeOH solution containing 11. The quality of the crys-

tals was poor and could not be improved by varying the crystallisation conditions. 

This seems to be a general problem when six-membered chelate rings are present 

in this type of ligands (see below) while in contrast it was much easier obtaining 

crystals of high quality for diffraction studies if only five-membered chelate rings 

are present.137 This might be a consequence of the fact that copper(II) ions usually 

prefer five-membered chelate rings in their complexes. We obtained acceptable 

diffraction data for [Cu2(L3-O)(OH)(ClO4)]ClO4 (11) at 183(2) K. A summary of the 

crystallographic data, bond lengths and angles for 11 can be found in Table 4-1 

and Table 4-2. An ORTEP145 view of the cation of 11 is shown in Figure 4-1. 

The two copper(II) centres (intramolecular separation Cu(1)…Cu(2) = 3.006(2) Å) 

in 11 are both penta-coordinate; Cu(1) is ligated by pyridyl nitrogen atom N(4), 

aliphatic amine N(3), phenolate oxygen O(1) and oxygen atoms O(2) and O(3) of 

the respective bridging hydroxo and perchlorate moieties. The bond angle be-

tween Cu(1), the µ-phenolate oxygen and Cu(2) [Cu(1)–O(1)–Cu(2)] = 101.1(3)˚; 

the bond angle between Cu(1), the µ-hydroxo moiety and Cu(2) [Cu(1)–O(2)–

Cu(2)] = 102.2(3)˚. The coordination geometry about Cu(1) and Cu(2) is best de-

scribed as close to square pyramidal with values of the trigonality index146 (τ) 

equal to 0.12 for Cu(1) and 0.11 for Cu(2) (where τ = (β–α)/60, with α and β being 
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the two largest coordination angles around the metal centre: τ = 0 for square py-

ramidal geometry and τ = 1 for trigonal bipyramidal geometry). The basal plane of 

the square pyramid around Cu(1) contains O(1), O(2), N(3) and N(4) with O(3) 

occupying the axial coordination site. Metric parameters around Cu(2) are similar 

to Cu(1). A non-coordinating water solvent molecule and perchlorate anion (not 

shown in Figure 4-1) complete the structure of 11. 

 

Figure 4-1: ORTEP145 representation (50% probability displacement ellipsoids) of cation of 
11. Hydrogen atoms omitted for clarity 

Phenolate bridged complexes similar to 11 are well known and their properties 

have been studied extensively (a few examples are provided in the refer-

ences).120,121,137,139,141 A structurally related complex to 11 has been characterised 

by Grzybowski et al.140 The ligand employed differed from L3-OH in that a para-

methyl group was present on the central aromatic ring (Scheme 4-3, L3-OH, how-

ever with R = CH3 instead of H). Although the authors presented detailed physico-

chemical studies no crystal structure of the complex was described probably due 

to the same difficulties we had with obtaining crystals of 11 suitable for X-ray 

crystal structure determination. 

Comparison of the crystal structure of 11 with the complex [Cu2(L4-O)(OH)](ClO4)2 

(12) described previously144 shows that bond lengths and angles around the cop-

per(II) centres are similar, with the distance between the two copper(II) ions being 

close to 3 Å. The situation is different if we compare the crystal structure of 11 with 

an analogous complex described earlier by some of us, where the chelate ring 

sizes are smaller.137 There are significant differences in bond lengths and bond 

angles between the two complexes. The most striking effect of the smaller chelate 
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ring size is reflected in the bond angles N(1)–Cu(1)–N(2) and N(3)–Cu(2)–N(4): 

these values are 84.8(4)° and 84.1(4)° in the structure with the smaller chelate 

rings present and 96.3(3)° and 94.7(3)° for 11. 

Karlin and coworkers and some of us observed that reducing the chelate ring sizes 

in [Cu2(R-XYL-H)]2+ by substituting the "ethyl-pyridine arms" with "methyl-pyridine 

arms" completely suppressed intramolecular ligand hydroxylation.143,147 Therefore, 

it was an obvious question to address as to whether partial substitution, i.e. the 

substitution of only two "arms", would support or suppress the intramolecular 

ligand hydroxylation reaction. Reaction of L5 (Scheme 4-3) and [Cu(CH3CN)4]ClO4 

in acetone lead to the formation of [Cu2L5](ClO4)2 (13) that could be crystal-

lographically characterised. A summary of the crystallographic data, bond lengths 

and angles for 13 is presented in Table 4-1 and Table 4-2. An ORTEP145 view of 

the cation of 13 (including the weak interaction of an acetone molecule and a per-

chlorate anion) is shown in Figure 4-2: 

 

Figure 4-2: ORTEP145 representation (50% probability displacement ellipsoids) of the cation 
of 13 (including the weakly coordinated acetone molecule and perchlorate anion). Hydrogen 
atoms omitted for clarity 

Similar to the crystal structure of [Cu2(R-XYL-H)]2+ acetonitrile molecules are not 

coordinated to the copper(I) ions as additional ligands.112 However, bond dis-

tances and angles are clearly different due to the "replacement" of a six mem-

bered chelate ring with a five membered chelate ring (e. g. Cu(1)–N(1) = 2.334(2) 

and Cu(2)–N(4) = 2.308(2) Å are longer in 13 compared with Cu(1)–N(1) = 

2.121(8) and Cu(2)–N(4) = 2.196(7) Å in [Cu2(R-XYL-H)]2+).112  
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Oxidation of the solution-generated dicopper(I) complex of the m-xylyl-based dinu-

cleating ligand L5 and [Cu(CH3CN)4]ClO4 in MeOH at 298 K with O2 again lead to 

an intramolecular ligand hydroxylation. This was proved by isolation and charac-

terisation of the hydroxylated ligand L5-OH according to the published procedure 

for the hydroxylation of [Cu2(R-XYL-H)]2+.112 No crystals of the product complex 

suitable for an X-ray crystal structure analysis were obtained (however, see below:  

Table 4-1: Crystallographic data for 11, 13 and 17 

 11 13 17 

Molecular formula C22H28Cl2Cu2N4O11 C37H42Cl2Cu2N6O9 C24H29Cl3Cu2N4O 

Mr 722.46 912.75 622.94 

Temperature /K  183(2) 100(2) 293(2)  

Radiation used (λ /Å) Mo-Kα (0.71073) Mo-Kα (0.71073) Mo-Kα (0.71073) 

Crystal system Triclinic Triclinic Triclinic 

Space group P–1 (P1 bar) P–1 (P1 bar) P–1 (P1 bar) 

a /Å 10.570(5) 8.8457(5) 9.931(4)  

b /Å 12.130(5) 12.839(2) 16.66(2)  

c /Å 12.360(5) 18.430(2) 17.64(2)  

α /˚ 68.590(5) 75.861(6) 61.26(5) 

β /˚ 73.080(5) 78.533(5) 87.52(5)  

γ /˚ 71.198(5) 85.776(6) 87.59(5)  

V [Å3] 1369(1) 1988.5(4) 2557(4)  

Z 2 2 4 

Dcalc. /g cm–3 1.752 1.524 1.618  

µ /mm–1 1.814 1.265 2.002 

Reflections measured 9128 51968 7019 

Unique reflections, Rint 5370, 0.1048 8770, 0.0952 6583, 0.0987 

Refined parameters 384 507 609 

Goodness-of-fit on F2 1.029 1.049 1.031 

R(F, F2>2σ) 0.0836 0.0447 0.0964 

Rw(F2, all data) 0.2358 0.0926 0.3169 
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Table 4-2: Selected bond lengths (Å) and interbond angles (°) for 11, 13 and 17 

11      
Cu(1)–N(1) 2.026(8) Cu(1)–N(2) 1.946(8) Cu(1)–O(1) 1.973(7) 

Cu(1)–O(2) 1.918(7) Cu(1)–O(3) 2.528(8) Cu(2)–N(3) 2.028(8) 

Cu(2)–N(4) 1.941(8) Cu(2)–O(1) 1.916(6) Cu(2)–O(2) 1.943(7) 

Cu(2)–O(4) 2.499(7) Cu(1)…Cu(2) 3.006(2)   

N(1)–Cu(1)–N(2) 96.3(3) N(1)–Cu(1)–O(1) 172.3(3) N(1)–Cu(1)–O(2) 97.6(3) 

N(2)–Cu(1)–O(1) 90.1(3) N(2)–Cu(1)–O(2) 165.3(3) O(1)–Cu(1)–O(2) 76.4(3) 

N(3)–Cu(2)–N(4) 94.7(3) N(3)–Cu(2)–O(1) 93.9(3) N(3)–Cu(2)–O(2) 165.1(3) 

N(4)–Cu(2)–O(1) 171.4(3) N(4)–Cu(2)–O(2) 94.4(3) O(1)–Cu(2)–O(2) 77.1(3) 

13      

Cu(1)–N(1) 2.334(2) Cu(1)–N(2) 1.909(2)  Cu(1)–N(3) 1.921(2) 

Cu(1)–O(40) 2.835(2) Cu(2)–N(4) 2.308(2) Cu(2)–N(5) 1.902(2) 

Cu(2)–N(6) 1.916(2) Cu(2)–O(24) 3.087(2)   

N(1)–Cu(1)–N(2) 96.40(9) N(1)–Cu(1)–N(3) 83.50(9) N(2)–Cu(1)–N(3) 172.8(1) 

N(1)–Cu(1)–O(40) 123.55(8) N(2)–Cu(1)–O(40) 92.14(9) N(3)–Cu(1)–O(40) 93.92(9) 

N(4)–Cu(2)–N(5) 97.2(1) N(4)–Cu(2)–N(6) 83.74(9) N(5)–Cu(2)–N(6) 171.2(2) 

N(4)–Cu(2)–O(24) 136.90(8) N(5)–Cu(2)–O(24) 93.42(9) N(6)–Cu(2)–O(24) 91.80(9) 

17      

Cu(1)–N(1) 2.03(2) Cu(1)–N(2) 2.06(2) Cu(1)–O(1) 1.92(2) 

Cu(1)–Cl(1) 2.339(5) Cu(1)–Cl(2) 2.457(6) Cu(2)–N(3) 2.03(2) 

Cu(2)–N(4) 2.00(2) Cu(2)–O(1) 1.95(2) Cu(2)–Cl(2) 2.426(5) 

Cu(2)–Cl(3) 2.421(5) Cu(1)…Cu(2) 3.293(5)   

N(1)–Cu(1)–O(1) 168.2(5) N(1)–Cu(1)–Cl(1) 94.5(5) N(2)–Cu(1)–Cl(2) 126.9(4) 

N(2)–Cu(1)–O(1) 91.2(6) N(2)–Cu(1)–Cl(1) 118.5(4) Cl(1)–Cu(1)–Cl(2) 114.0(2) 

N(1)–Cu(1)–N(2) 93.6(6) O(1)–Cu(1)–Cl(2) 79.1(4) N(1)–Cu(1)–Cl(2) 89.3(4) 

O(1)–Cu(1)–Cl(1) 92.7(4) N(3)–Cu(2)–O(1) 90.3(6) N(4)–Cu(2)–O(1) 167.6(5) 

N(3)–Cu(2)–N(4) 93.1(6) O(1)–Cu(2)–Cl(3) 94.6(4) N(4)–Cu(2)–Cl(3) 95.5(4) 

N(3)–Cu(2)–Cl(3) 110.0(4) O(1)–Cu(2)–Cl(2) 79.4(4) N(4)–Cu(2)–Cl(2) 90.7(4) 

N(3)–Cu(2)–Cl(2) 142.8(4) Cl(2)–Cu(2)–Cl(3) 106.4(2)   
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independent synthesis of a phenolate bridged complex derived from Me-L5-OH). 

As described above, it was possible to observe a peroxo intermediate complex 

spectrophotometrically when [Cu2(R-XYL-H)]2+ was oxidised with dioxygen using 

low temperature stopped-flow techniques.39,115,116 However, our efforts to detect 

such a transient "dioxygen adduct" with the dinuclear copper complexes of the 

ligands L3, L4 and L5 using stopped-flow techniques were unsuccessful. Even at 

low temperatures only the formation of the final products was observed spectro-

scopically. This finding is in agreement with our earlier results on the related imine 

complex [Cu2(H-BPB-H)S2]2+ described above (Scheme 4-2) and a dinuclear 

macrocyclic copper Schiff base compound; in both cases no "dioxygen adduct" 

was observed.127-129 Furthermore, Murthy et al. could not detect spectroscopically 

such an intermediate during the analysis of the reaction of dioxygen with 

[Cu2(UN2-H)]2+ where the unsymmetric ligand UN2-H consists of one half of R-

XYL-H and one half of L4.148 The probable reason in all these cases most likely is 

based on the kinetics of the reaction: the rate of formation of any "dioxygen ad-

duct" is slower than its consecutive reactions and therefore cannot be detected. 

4.3 Phenolate bridged complexes 

As described above the phenolate-bridged complexes [Cu2(L3-O)(OH)(ClO4)]ClO4 

(11) and [Cu2(L4-O)(OH)](ClO4)2 (12) could be readily prepared in good yields by 

oxidizing the copper(I) complexes of L3 and L4 with dioxygen while this was not 

possible with the ligand L5. Therefore, we prepared three copper(II) complexes 

[Cu2(Me-L5-O)X](ClO4)2•nH2O (Me-L5-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridyl-

methyl)amino]-4-methylphenol) with X = C3H3N2
– (prz) (14), MeCO2

– (15) and N3
– 

(16); n = 1 for 14 and n = 2 for 15 and 16. Microanalytical data, IR spectra and 

solution electrical conductivity measurements are in conformity with our proposed 

formulations. The IR data demonstrates that in complex 16 the azide group most 

likely is present in a µ-1,1-bridging mode. So far we have been unsuccessful in 

determining the three-dimensional X-ray structures of the complexes 14–16 be-

cause of the poor quality of crystals obtained. In contrast we obtained crystals of 

[Cu2(Me-L5-O)(H2O)2](ClO4)3 by reacting the ligand Me-L5-OH with 

[Cu(H2O)6](ClO4)2 in a mixture of water and methanol. A crystal structure determi-

nation supported the above formulation and showed that in the phenolate-bridged 
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complex an additional water molecule is coordinated to each copper(II) ion, in a 

similar manner to the structurally characterised complexes [Cu2(F-L6-

O)(H2O)2](ClO4)3 and [Cu2(CF3-L6-O)(H2O)2](ClO4)3 where L6 = 2,6-bis[bis(2-

pyridylmethyl)aminomethyl]-4-R-phenol.149 The quality of the structural refinement 

of [Cu2(Me-L5-O)(H2O)2](ClO4)3 was not good enough for publication due to disor-

der problems encountered with the perchlorate anions. Efforts in obtaining better 

quality single-crystals have also been unsuccessful. However, we accurately de-

termined a pKa value of 4.76(2) for the deprotonation of [Cu2(Me-L5-

O)(H2O)2](ClO4)3 leading to [Cu2(Me-L5-O)(OH)](ClO4)2. The pKa value we deter-

mined is very close to the one obtained for the acid-base equilibrium between 

[Cu2(Me-L6-O)(H2O)2](ClO4)3 and [Cu2(Me-L6-O)(OH)](ClO4)2 (pKa = 4.95).149  

Treating complex 12 with an excess of chloride ions lead to the formation of 

[Cu2(L4-O)Cl3] (17). It was also possible to regenerate 12 from 17 by adding water 

to a solution of 17 in acetonitrile, with both exchange reactions being readily 

monitored by UV-vis spectroscopy. Confirmation of the composition of 17 was ob-

tained from a single-crystal X-ray structure determination. The asymmetric unit 

contains two crystallographically independent molecules of complex 17. Both 

molecules have essentially identical coordination geometries, but the correspond-

ing bond lengths and bond angles are different. A summary of the crystallographic 

data, bond lengths and angles for 17 can be found in Table 4-1 and Table 4-2. An 

ORTEP145 view of one of the crystallographically independent molecules of 17 is 

shown below in Figure 4-3. 

 

Figure 4-3: ORTEP145 representation (50% probability displacement ellipsoids) of 17. 
Hydrogen atoms omitted for clarity. 
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Complex 17 is a dinuclear copper(II) complex of the same dinucleating ligand as in 

complex [Cu2(L4-O)(OH)](ClO4)2 (12).144 The two copper(II) centres in complex 17 

(Cu(1)…Cu(2) separation = 3.293(5) Å; for the other molecule 3.272(5) Å) are 

bridged by an endogenous phenolate and an exogenous chloride moiety, with ad-

ditional chloride coordination at each copper(II) centre. Both Cu(1) and Cu(2) are 

penta-coordinate being ligated by one pyridyl nitrogen, one aliphatic amine nitro-

gen, a phenolate oxygen and two chloride ions. The phenolate oxygen and a chlo-

ride ion bridge the copper(II) centres. The geometry about each copper(II) centre 

is best described as distorted trigonal bipyramidal: τ146 = 0.69 [Cu(1)] and τ = 0.41 

[Cu(2)], the corresponding values for the other molecule are τ = 0.74 [Cu(1a)] and 

τ = 0.51 [Cu(2a)]. Cu(1) is displaced 0.09 Å and Cu(2) 0.11 Å out of the trigonal 

plane, towards the pyridyl nitrogen atom N(1) and N(4), respectively. The angles 

between the central phenolate ring and pyridyl rings are 18.4.1(8)o and 42.1(7)o for 

the molecule shown in Figure 4-3. The structural motif exhibited in complex 17 is 

rare; there are only three other structurally characterised copper(II) complexes of 

nitrogen donor-based ligands containing both a bridging phenolate anion and a 

chloride anion.150-152  

4.4 Magnetic characteristics 

Due to the presence of the phenoxo-/hydroxo-bridge in 12 significant antiferro-

magnetic exchange coupling is present (–440 cm-1).143 Variable-temperature (80–

300 K) magnetic susceptibility analyses for 14–17 were performed. Their magnetic 

properties are of interest owing to the presence of an invariant phenoxide bridge 

and variable exogenous bridges. At 300 K the µeff/Cu values (in µB) for this set of 

compounds are: 1.73 (14), 1.76 (15), 1.77 (16) and 1.25 (7). The corresponding 

values at 80 K are: 1.28, 1.33, 1.34 and 0.34, respectively. Plots of χMT vs. T for 

two representative complexes 14 and 17 are shown in Figure 4-4.  

The observed magnetic susceptibility data were fitted to the modified Bleaney-

Bowers Equation (4.1)153 by allowing for the presence of monomeric impurity, 

where ρ is the mole-fraction of the non-coupled copper(II) impurity. 
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In this expression, N, g and k have their usual meaning; 2J is the energy differ-

ence between the singlet and triplet states; χM is the molar susceptibility per dimer. 

The values of g and temperature-independent paramagnetic susceptibility (Nα) 

were kept fixed at g = 2.1 [typical value for a tetragonal Cu(II)] and 60 x 10-6 cm3 

mol-1, respectively, during fitting procedure. To get a better control of g values the 

EPR spectra of 14–16 were recorded. In fact, in the polycrystalline state at 300 K 

each complex exhibits almost isotropic signal. The g values are: 2.08 for 14, 2.07 

for 15, 2.11 (gav value from a weak axial spectrum). The best-fit parameters of J 

and ρ using Eq. 4.1 were obtained by a non linear least-squares fitting procedure. 

The quality of fit was estimated by the R index defined as R = Σ(χM
expt – χM

calc
.)

2/Σ(

χM
expt)2. The parameters that were obtained are collected in Table 4-3. 

 

Figure 4-4: χmT versus temperature T plots for 14 and 17 (from left to right). Circles repre-

sent experimental data, the solid line represents the fit 

There is an appreciable drop in the extent of antiferromagnetic coupling, compar-

ing complexes 12 and 17 (Table 4-3). A similar trend was observed by Karlin and 

co-workers, for closely related systems (the geometry around the copper(II) cen-

tres, however, remained invariant).151 Thus the extent of antiferromagnetic ex-

change coupling is much higher in 17 than that present in complexes 13 – 16. 

Within the similar class of complexes 14–16, temperature-dependent magnetic 

susceptibility studies reveal that (i) there is medium antiferromagnetic exchange 

coupling between pairs of copper(II) ions in each case and (ii) the magnitude of 
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the antiferromagnetic exchange depends on the identity of the exogenous bridge 

(prz > azide > acetate). It is worth noting that the present work complements the 

ones of several authors who investigated the effect of exogenous bridges in the 

transmission of magnetic exchange between two copper(II) centres.154  

The effective magnetic moments for 14–16 in MeCN solution (300 K) were deter-

mined by using the NMR method to examine whether or not the solid state struc-

tures of the complexes are retained in solution. The µeff/Cu values for 14 and 15 

are in reasonable agreement with solid-state values. However, for 16 the solution-

state value (1.55 µB) is slightly less than the solid-state value (1.77 µB). This be-

haviour could be due to a relaxed geometry in the solution state, allowing a better 

pathway for magnetic coupling. 

Table 4-3: Magnetic data for endogenously phenoxo-bridged dicopper(II) complexes 

Complex -2J (cm–1) ρ (%) 108R Ref. 

[Cu2(L4-O)(OH)](ClO4)2 (12) –440   155 

[Cu2(Me-L5-O)(µ-pyz)](ClO4)2 x 

H2O (14) 

–92 0.44 5.67 this work 

[Cu2(Me-L5-O)(µ-OAc)](ClO4)2 x 

2H2O (15) 

–86 0.40 11.60 this work 

[Cu2(Me-L5-O)(µ-1,1-N3)](ClO4)2 x 

2H2O (16) 

–88 0.53 20.20 this work 

[Cu2(L4-O)Cl3] (17) –374 0.91 7.05 this work 

[Cu2(L-O)(OH)](PF6)2 –600   
112,149  

[Cu2(L-O)Cl](BPh4)2 x MeCOMe –335   149  

[Cu2(L-O)(µ-1,1-N3)](PF6)2 –440   156  

L-OH = 2,6-bis[N-(2-pyridylethyl)aminomethyl]phenol.  

4.5 Conclusions 

Considering the large number of studies that have been performed on xylyl-

bridged dicopper(I) complexes it is surprising that at present we do not have a 

detailed understanding of their reaction pathways when oxidised with dioxygen. 

Sorrell commented earlier that attempts to find a correlation between the physical 
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properties of the complexes and their ability to support intramolecular ligand hy-

droxylation reactions have been unsuccessful.121 Chelate ring sizes in the com-

plexes seem to play an important role; for imine complexes such as [Cu2(H-BPB-

H)S2]2+ (Scheme 4-2) or for the amine complex [Cu2(R-XYL-H)]2+ (Scheme 4-1) a 

decrease in the chelate ring size from six to five completely suppressed the in-

tramolecular ligand hydroxylation. In our work presented herein we also observed 

intramolecular ligand hydroxylation when dioxygen was reacted with the copper(I) 

complex of L3 with only six-membered chelate rings present. Furthermore, in-

tramolecular ligand hydroxylation was observed with the copper(I) complex of L5, 

where two five-membered chelate rings were introduced additionally. Several 

other copper(I) complexes containing only five-membered chelate rings are 

known, which also show ligand hydroxylation reactions. Therefore, the occurrence 

of intramolecular ligand hydroxylation cannot be a result of chelate ring size alone. 

Based on the results/observations available it is more probable that the overall 

geometry, which the ligand enforces on the copper centres, plays an important 

role in determining the fate of the metal-bound "activated dioxygen adduct". If the 

ligand backbone allows the approach of the "activated oxygen adduct" close to the 

aromatic C-H bond to be activated then intramolecular ligand hydroxylation is ob-

served. However, if the steric demands of the ligand enforces a larger distance 

between the metal-bound "dioxygen adduct" and the aromatic ring then the hy-

droxylation reaction is suppressed and "normal" intermolecular oxidation reactions 

are observed. 

4.6 Experimental 

4.6.1 Reagents and materials 

Reagents and solvents used, unless stated otherwise, were of commercially avail-

able reagent grade quality. [Cu(CH3CN)4]PF6 and [Cu(CH3CN)4]ClO4 were synthe-

sised according to literature procedures.157  

4.6.2 Physical measurements 

Elemental analyses were obtained either from the University of Erlangen-Nürnberg 

or the Facility for Ecological and Analytical Testing (FEAT) laboratory, Indian In-

stitute of Technology, Kanpur. Solution electrical conductivity measurements were 
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carried out with an Elico (Hyderabad, India) Type M-82 T conductivity bridge with a 

solute concentration of  ≈1.0 x 10-3 M. Spectroscopic data were obtained by using 

the following instruments: infrared, Bruker Vector 22; 1H NMR, Bruker DXP 300 

AVANCE (300 MHz, University of Erlangen-Nürnberg); UV-vis, Agilent 8453 diode-

array. Variable-temperature solid-state magnetic susceptibility measurements 

were performed either by the Faraday technique using a local built magnetometer 

(at a fixed main field strength of ≈ 10 kG)153 or a Quantum Design (Model 

MPMSXL-5) SQUID magnetic susceptometer operating at a magnetic field of 0.5 

T. Solution state magnetic susceptibility measurements were done by the NMR 

technique of Evans158 in MeCN with a PMX-60 JEOL (60 MHz, IIT Kanpur) NMR 

spectrometer. Susceptibilities were corrected by using appropriate diamagnetic 

corrections.159  

Stopped-flow measurements at ambient and at low temperatures were performed 

as described previously.39,160 Solutions of copper(I) complexes were prepared by 

mixing stoichiometric amounts of copper(I) salts with the appropriate ligand under 

argon in a glove box (Braun, Germany; water and dioxygen less than 1 ppm) and 

then transferred with gas-tight syringes to the instrument. A dioxygen saturated 

solution was prepared by bubbling dioxygen through the solvent for 20 min. 

4.6.3 Ligand Syntheses 

α,α′-Bis[(2-pyridylethyl)aminomethyl]benzene (L3). 2-(2-aminoethyl)pyridine 

2.44 g (20 mmol) was added to a solution of isophthalaldehyde 1.34 g (10 mmol) 

in MeOH (110 cm3) and the solution was stirred for 2 h at 60°C. NaBH4 1.00 g (26 

mmol) was added slowly to the solution and the cloudy solution was stirred over-

night. By careful addition of 10 M HCl the excess NaBH4 was destroyed and the 

solution was brought to a pH value of 2. After concentration of the solution in 

vacuo, aqueous 5 M NaOH was added to the residue until a pH value of 12 was 

reached. The aqueous solution was extracted with CH2Cl2 (4 × 30 cm3 portions) 

and the organic fractions were combined and dried over anhydrous Na2SO4. Re-

moval of the solvent yielded the crude product as a yellow coloured oil which was 

chromatographed on silica gel (60 Å pore size, 70–230 mesh) with MeOH/Et3N 

(50:1) as eluent (Rf = 0.37) yielding L3 as a pale-yellow coloured oil (6.2 g, 90%). 

δΗ(300 MHz; solvent CDCl3; standard SiMe4) 8.42 [2 H, d, Ar–H],  7.49–6.93 [10 H, 
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m, Ar–H], 3.68 [4 H, s, ArCH2NH–], 2.98 [8 H, m, –NHCH2CH2py]. δC(75 MHz; sol-

vent CDCl3; standard SiMe4) 160.3, 149.5, 140.4, 128.9, 128.3, 127.5, 124.2, 

121.4, 54.3, 49.1, 38.4. 

α,α′-Bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene (L4). L4 was synthesised 

as described previously.143  

α,α′-Bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene (L5). A solution 

of Et3N (0.475 g, 4.69 mmol) in dry MeOH (20 cm3) was added dropwise to a solu-

tion of 2-pyridylethyl-(2-pyridylmethyl)amine161 (1.0 g, 4.69 mmol) in dry MeOH (40 

cm3) at 10°C with magnetic stirring. A solution of α-α′-dibromo-m-xylene (0.62 g, 

2.35 mmol) in dry MeOH (40 cm3), over a period of 10 min was then added. The 

reaction mixture was stirred for a further 2.5 h and then was kept at ~30°C over-

night. The solvent was removed in vacuo to obtain the crude product as a brown-

yellow coloured semi-solid. The desired ligand was obtained by exhaustive extrac-

tion of the aqueous phase with CHCl3 (a little water was also added at this stage) 

until the aqueous layer was colourless. The organic fractions were combined and 

then dried over anhydrous Na2SO4. Filtration and removal of the solvent yielded 

the crude product as a red-brown coloured oil which was chromatographed on 

neutral aluminium oxide with ethyl acetate as eluent (Rf = 0.40) yielding L3 as a 

yellow coloured oil (0.9 g, 60%). δΗ(300 MHz; solvent CDCl3; standard SiMe4) 8.46 

[4 H, d, py–H], 7.60–7.04 [16 H, m, Ar–H], 3.79 [4 H, s, pyCH2N–], 3.69 [4 H, s, 

ArCH2N–], 2.98 [8 H, m, pyCH2CH2N–]. δC(75 MHz; solvent CDCl3; standard 

SiMe4) 160.6, 160.2, 149.1, 148.7, 139.2, 136.2, 136.0, 129.2, 128.1, 127.4, 

123.4, 122.7, 121.7, 121.0, 60.1, 58.5, 54.1, 36.0. 

2,6-Bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol (Me-L5-
OH). A solution of 2,6-bis(chloromethyl)-4-methylphenol152 in MeOH (20 cm3) was 

added dropwise to a vigorously stirred solution of 2-pyridylmethyl-(2-

pyridylethyl)methylamine (0.50 g, 2.44 mmol) and Et3N (0.49 g, 4.88 mmol) in 

MeOH (40 cm3) at 0°C. The solution was then stirred at ~10°C for 3 h and then 

stirred overnight at ~30°C. Solvent was removed in vacuo and the ligand was ex-

tracted with CHCl3. The organic layer was washed first with a saturated brine solu-

tion and then with distilled water and dried over anhydrous Na2SO4. Removal of 

the solvent in vacuo afforded Me-L5-OH as a brown coloured oil (0.67 g, 88%) that 

can be further purified by chromatography using basic alumina oxide with ethyl 
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acetate as eluent (Rf = 0.50). δΗ(300 MHz; solvent CDCl3; standard SiMe4) 8.54 [2 

H, d, 3JHH = 4.4 Hz, py–H], 8.48 [2 H, d, 3JHH = 4.4 Hz, py–H], 7.54–7.44 [4 H, m, 

py–H], 7.25–7.01 [8 H, m, py–H], 6.84 [2 H, s, Ar–H], 3.86 [4 H, s, pyCH2N–], 3.76 

[4 H, s, ArCH2N–], 3.00 [8 H, s, pyCH2CH2N–], 2.16 [3 H, s, –CH3]. δC(75 MHz; 

solvent CDCl3; standard SiMe4) 160.3, 159.2, 153.5, 149.1, 148.8, 136.4, 136.2, 

129.2, 127.5, 123.4, 121.9, 121.1, 59.9, 54.7, 53.9, 35.6, 20.6. 

Preparation of [Cu2(L3-O)(OH)(ClO4)]ClO4 (11). L3 (0.173 g, 0.50 mmol) in MeOH 

(5 cm3) was added dropwise under nitrogen to a suspension of [Cu(CH3CN)4]ClO4 

(0.327 g, 1.00 mmol) in MeOH (15 cm3). The solution turned yellow in colour and 

was very sensitive towards oxidation by air. Exposure to air lead to the formation 

of a deep green coloured solution. After removal of the solvent in vacuo a solid 

was obtained which was recrystallised by diffusion of Et2O into a MeOH solution of 

complex 11 (0.26 g, 75%). Crystals of 11 suitable for a single-crystal X-ray struc-

ture determination were obtained in this manner. Found: C, 37.8; H, 3.7; N, 7.6. 

Calc. for C22H26Cl2Cu2N4O10: C, 37.5; H, 3.7; N, 7.9%. 

Preparation of [Cu2(L5)(C3H6O)(ClO4)]ClO4 (13). Under inert conditions 

[Cu(CH3CN)4]ClO4 (0.327 g, 1.00 mmol) was added in small portions to a stirred 

solution of 0.264 g (0.5 mmol) L5 in acetone (15 cm3). Diffusion of Et2O into this 

solution lead to the formation of yellow coloured crystals suitable for a single-

crystal X-ray structure determination. 

Preparation of [Cu2(Me-L5-O)(C3H3N2)](ClO4)2 x H2O (14). A mixture of Me-L5-

OH (0.10 g, 0.179 mmol), NaOMe (0.0097 g, 0.358 mmol) and pyrazole (0.0012 g, 

0.179 mmol) in MeCN (5 cm3) was stirred at 0oC for 0.5 h. A solution of 

[Cu(H2O)6](ClO4)2 (0.133 g, 0.358 mmol) in MeCN (5 cm3) was then added drop-

wise. After 12 h the resulting greenish brown coloured solution was filtered and 

allowed to evaporate slowly at room temperature. A deep brownish green coloured 

microcrystalline product that deposited was filtered off, washed with a MeCN-Et2O 

(1:4) mixture (5 cm3) and recrystallised from a 2:1 (v/v) mixture of Et2O-MeCN (15 

cm3) (0.1 g, 49%). Found: C, 47.6; H, 4.3; N, 11.6. Calc. for C38H42Cl2Cu2N8O10: C, 

47.1; H, 4.3; N, 11.6%. IR (KBr disc, selected peaks) v max/cm-1: 3440br (OH); 1090 

and 630 (ClO4
–). Molar conductance, ΛM (MeCN, 298 K) = 245 Ω-1 cm2 mol-1 (ex-

pected value for a 1:2 electrolyte162: 220–300 Ω-1 cm2 mol-1).  UV-vis (MeCN) 

 61



Chapter 4 

λmax/nm (ε/M-1 cm-1): 660 (sh) (250), 470 (sh) (1000), 290 (sh) (9400) and 258 

(19000). µeff/Cu (in MeCN, 298 K) 1.70 µB. 

Preparation of [Cu2(Me-L5-O)(O2CMe)](ClO4)2 x 2H2O (15). A mixture of Me-L5-

OH (0.10 g, 0.179 mmol) and Et3N (0.018 g, 0.178 mmol) in MeCN (5 cm3) was 

stirred at 0°C for 20 min.  [Cu(H2O)6](ClO4)2 (0.133 g, 0.358 mmol) was added and 

the mixture was stirred for 5 min resulting in a colour change from light brown to 

dark brown. A solution of NaO2CMe·3H2O (0.024 g, 0.179 mmol) in MeOH (2 cm3) 

under magnetic stirring was then added. During the addition the colour changed 

from deep brown to deep greenish brown. After 4 h of stirring the reaction mixture 

was filtered through a celite pad and the filtrate kept for slow evaporation. The 

solid obtained was filtered off and recrystallised from a 1:2 (v/v) mixture (15 cm3) 

of MeCN-Et2O (0.112 g, 58%). Found: C, 45.4; H, 4.7; N, 8.8. Calc. for 

C37H44Cl2Cu2N6O13: C, 45.4; H, 4.5; N, 8.6%. IR (KBr disc, selected peaks) 

v max/cm-1: 3436 (OH); 1570 and 1445 (OAc); 1084 and 626 (ClO4
–). Molar conduc-

tance, ΛM (MeCN, 298 K) = 260 Ω-1 cm2 mol-1. UV-vis (MeCN) λmax/nm (ε/M-1 cm-1): 

680 (sh) (250), 450 (sh) (1250), 290 (sh) (9400) and 258 (sh) (19400). µeff/Cu (in 

MeCN, 298 K) 1.72 µB. 

Preparation of [Cu2(Me-L5-O)(N3)](ClO4)2 x 2H2O (16). This compound was pre-

pared in the same way as 14 using NaN3 (0.012 g, 0.179 mmol) as the bridging 

ligand; microcrystals of 16 were obtained and recrystallised from a 1:2 (v/v) mix-

ture (15 cm3) of MeCN-Et2O (0.121 g, 64%). Found: C, 44.0; H, 4.5; N, 13.3. Calc. 

for C35H41Cl2Cu2N9O11: C, 43.7; H, 4.3; N, 13.1%. IR (KBr disc, selected peaks) 

v max/cm-1: 3440 (OH); 2076 (N3
–); 1090 and 630 (ClO4

–). Molar conductance, ΛM 

(MeCN, 298 K) = 290 Ω-1 cm2 mol-1. UV-vis (MeCN) λmax/nm  (ε/M-1 cm-1): 660 (sh) 

(300), 500 (sh) (800), 390 (sh) (1560), 290 (sh) (8580) and 258 (17870). µeff/Cu (in 

MeCN, 298 K) 1.55 µB. 
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Preparation of [Cu2(L4-O)Cl3] (17). A solution of [Et4N]Cl x (H2O)x (0.075 g, 0.402 

mmol) in MeCN (5 cm3) was added dropwise to a magnetically stirred MeCN (5 

cm3) solution of [Cu2(L4-O)(OH)](ClO4)2
144 (0.060 g, 0.082 mmol). During the pro-

gress of the reaction the colour of the solution changed from deep green to red-

dish-brown. After an additional stirring for 4 h the solution was concentrated in 

vacuo and Et2O was slowly allowed to diffuse into the solution. Shiny red-brown 

crystals of 17 were obtained within two days (0.020 g, 40%), which were suitable 
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for a single-crystal X-ray structure determination. Found: C, 45.8; H, 4.6; N, 8.7. 

Calc. for C24H29Cl3Cu2N4O (6): C, 46.3; H, 4.7; N, 9.0%. Molar conductance, ΛM 

(DMF, 298 K) = 30 Ω-1 cm2 mol-1 (expected value for a 1:1 electrolyte162: 65–90 Ω-1 

cm2 mol-1). UV-vis (DMF) λmax/nm (ε/M-1 cm-1): 980 (sh) (100), 805 (140), 460 

(730) and 284 (sh) (2000). 

4.6.4 Crystallography 

Data collection and refinement details for 11, 13 and 17. Intensity data for 11 

and 17 were collected on a Enraf Nonius CAD-4-Mach four-circle diffractometer 

(ω-2θ scan technique) (University of Erlangen-Nürnberg and IIT Kanpur) and for 

13 on a Nonius Kappa CCD instrument using graphite-monochromated Mo-Kα 

radiation (λ = 0.71073 Å). Intensity data for 11, 13 and 17 were corrected for Lor-

entz-polarisation effects. The structures were solved by direct methods for 11 and 
13 and Patterson heavy-atom method for 17. 11 and 17 were refined by full-matrix 

least-squares methods on F2 using SHELXL-9732 which was incorporated in the 

WINGX 1.61 collective crystallographic package.163 All non-hydrogen atoms were 

refined with anisotropic thermal parameters. Problems during the refinement pro-

cedure for 17 were encountered; the problem was due to the poor diffracting na-

ture of the crystals. All carbon atoms of the methylene groups of the m-xylyl spac-

ers, N-methyl groups and one of the carbon atoms of the ethylene spacer on each 

arm of the ligand in one of the molecules of 17 (the molecule shown in Figure 4-2 

did not show any disorder) were disordered over two positions and were refined 

with isotropic displacement parameters. The positions of hydrogen atoms in 17 

were calculated assuming ideal geometries of the atoms concerned, and their po-

sitions and thermal parameters were not refined. 13 was refined by full-matrix 

least-squares methods on F2 using SHELXTL NT 6.12.107 Absorption effects have 

been corrected on the basis of multiple scans using SADABS (Tmin = 0.791, Tmax = 

1.000).164 All non-hydrogen atoms were refined with anisotropic displacement pa-

rameters and are geometrically positioned with isotropic displacement parameters 

being 1.2 or 1.5 times U(eq) of the preceding C atom. 

CCDC reference numbers 211842 (11) 238967 (13) and 211448 (17). 

See http://www.rsc.org/suppdata/dt/b4/b406329p/ for crystallographic data in CIF 

or other electronic format. 
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Chapter 5 - Copper(I) Complexes with Tridentate 
Ligands and their Reactivity towards Dioxygen 

This work has been submitted for publication in Inorganic Chemistry. 

Astner, J.; Weitzer, M.; Foxon, S. F.; Schindler, S.; Heinemann, F. W.; Mukherjee, 

J.; Gupta, R.; Mahadevan, V.; Mukherjee, R.; Copper(I) Complexes with Tridentate 

Ligands and their Reactivity towards Dioxygen. Submitted for publication to Inorg. 

Chem. 

5.1 Introduction 

The activation of molecular oxygen by copper complexes plays a central role in 

synthetically useful stoichiometric and catalytic oxidative conversions of organic 

molecules and in biological systems.4,40,45,154,165 Copper superoxo and peroxo 

intermediates are very important species in the process of activating the O-O bond 

in dioxygen for further reactions.4,45,166,167 One of the major goals in the research of 

metal/dioxygen interactions is to gain a real understanding of the mechanism of 

the activation and the cleavage of the O-O bond and its consecutive attack of the 

substrate. 

Tetradentate tripodal ligands proved to be useful in stabilizing trans-peroxo copper 

complexes and with tris(2-pyridylmethyl)amine (tmpa, Figure 5-1) the first dinu-

clear copper peroxo complex was crystallographically characterised.168 Further-

more, in addition to the roles played by well-known triazacyclononane (TACN) and 

tris-pyrazolylborate derivatives,4,45,169,170 simple bidentate and tridentate open-

chain ligands4,45,171-176 have been used to investigate reactivity between copper(I) 

complexes and dioxygen. Such studies have clearly demonstrated stabilisation of 

both [CuII
2(µ-η2:η2-O2)]2+ [side-on peroxodicopper(II)] and [CuIII

2(µ-O)2]2+ [bis(µ-

oxo)dicopper(III)] species with these ligands.4,45  

Bis(µ-oxo)dimetal ''diamond'' cores are of great interest in copper as well as in iron 

chemistry because they seem to play an important role in the oxidation of sub-

strates.4,8,45,177 An important finding was the observation that copper dioxygen ad-

ducts with TACN derivatives can undergo reversible interconversion of a µ-η2:η2-
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peroxo to a bis(µ-oxo) core depending on solvent, ligand substituents and con-

centration.45,122,178  

For studying the factors which govern the binding mode and the interconversion 

properties of these copper/O2 adducts some of us performed preliminary investi-

gations with the copper(I) complex of the tridentate ligand 1,1,4,7,7-pentame-

thyldiethylethylenetriamine (Me5dien, Figure 5-1).40 Me5dien can be regarded as 

an open-chain analogue of a substituted triazacyclononane (R3-TACN)179,180 and 

using this ligand we observed spectroscopically the formation of a bis(µ-oxo) cop-

per complex at low temperatures in acetone, dichloromethane and propionitrile.40  
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R = Me:  Me6tren

MeL

R2N
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NR2
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R = Et:    Et5dien

tmpa

 

Figure 5-1: Ligand abbreviations. 

Furthermore, Me5dien is closely related to the tetradentate tripodal aliphatic amine 

tris(2-dimethylaminoethyl)amine (Me6tren, Figure 5-1). Me5dien is structurally re-

lated to Me6tren by the replacement of one ethyleneamine "arm" in Me6tren by a 

methyl group on the bridgehead nitrogen atom. As a consequence only 3 donor 

atoms coordinate to the copper(I) ion with an additional acetonitrile molecule as 

ligand as observed in the previously reported crystal structure.181 In the past some 

of us demonstrated in a detailed kinetic study that the reaction of dioxygen with the 

copper(I) complexes of Me6tren and tmpa as ligands follows the same mechanism 

with some differences in the kinetic parameters and the stabilities of the formed 

"dioxygen adduct" intermediates.179 Therefore, we assumed that this parallelism 

would hold in a similar way if Me5dien, N-methyl-[bis(2-pyridyl)methyl]amine (Me-

bpa), and N-methyl-[(2-pyridyl)ethyl(2-pyridyl)methyl]amine (MeL) are used as 
 65
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ligands (Figure 5-1). Herein we report a detailed study on the reactivity of the cop-

per(I) complexes towards dioxygen using these tridentate ligands. 

5.2 Experimental Section 

5.2.1 Materials and Reagents.  

Commercial reagents were used as obtained without further purification. Solvents 

were dried according to standard procedures. Absolute (dry) acetone for kinetic 

measurements was either obtained commercially (Acros) or by distillation of ana-

lytical grade acetone from dry B2O3. All handling (as well as storage) of oxygen 

sensitive compounds and materials used in the kinetic studies was carried out in a 

glovebox (Braun, Germany, O2 < 0.1 ppm, H2O < 0.1 ppm) within an argon atmos-

phere. 

5.2.2 Physical Measurements.  

Elemental analyses were obtained from the Department of Inorganic Chemistry, 

Indian Association for the Cultivation of Science, Kolkata, India or from the Insti-

tute of Organic Chemistry, Justus-Liebig-Universität Gießen, Germany. Infrared 

spectra (KBr pressed discs) were recorded on a Bruker Vector 22 spectropho-

tometer (4000-600 cm-1) or on a Bruker IFS 25 (7000-400 cm-1). Electronic spectra 

were recorded either using a Perkin Elmer Lambda 2 or Agilent 8453 diode-array 

spectrophotometer. 

5.2.3 Kinetic Measurements.  

Instrumentation setup and protocols for kinetic measurements have been de-

scribed previously.160,179 The copper(I) complex of Me5dien and the other ligands 

were formed in situ during the mixing time in the mixing cell. Dioxygen saturated 

solutions of the ligand were prepared in the following way: 5 mL of a stock solution 

of the ligand was added to dioxygen saturated acetone (the acetone was bubbled 

with dry dioxygen gas (grade 4.8, Messer Griesheim, Germany) in a Schlenk tube 

– closed with a septum – to avoid moisture for at least 20 min. The solubility of 

dioxygen in acetone is 8.0 mM at 20°C.44 Four series of different dioxygen concen-

trations were used to carry out a total of 244 measurements with the copper(I) 

complex of Me5dien. The concentrations of the copper(I) complex solutions used 
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were 1.0 x 10-4 M and the concentrations of the dioxygen solutions were (1.0 - 4.0) 

x 10-3 M. The temperature was varied between -90.0 and -35.0°C and the data 

collection time ranged from 2.82 to 0.12 s. Complete spectra were collected with 

the integrated J&M software Kinspec 2.30 and analysed  by the program Specfit 

(BioLogic Science Instruments, Claix, France).182  

5.2.4 X-ray Crystallography.  

X-ray data were collected either on a Siemens P4 four-circle diffractometer for 

[(Me-bpa)Cu(Cl)2] (18), a Bruker-Nonius KappaCCD diffractometer for [{(Me-

bpa)Cu(Cl)(ClO4)}2] (19) or on an Enraf Nonius CAD-4-Mach3 four-circle diffrac-

tometer for complexes [{(MeL)CuCl(ClO4)}2] (20) and [(MeL)Cu(NCS)2] (21) with 

graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). For 18 and 19 data 

were corrected for Lorentz and polarisation effects. Absorption effects were cor-

rected by semi-empirical methods based on Psi-scans183 for 18 or numerically184 

for 19. The structures were solved by direct methods; full-matrix least-squares re-

finement was carried out on F2 using SHELXTL NT 6.12.107 All non-hydrogen at-

oms were refined anisotropically. All hydrogen atoms were geometrically posi-

tioned; their isotropic displacement parameters were tied to those of their corre-

sponding carrier atoms by a factor of 1.2 or 1.5. The ClO4
- anion in 19 is subjected 

to rotational disorder; two sites for the oxygen atoms were refined that are occu-

pied by 53.4(5) and 46.6(5)%, respectively. 

For 20 and 21 data were corrected for Lorentz-polarisation effects; anomalous 

dispersion was applied for all non-hydrogen atoms and analytical absorption cor-

rections were also applied. The structures were solved with SIR97 and refined 

isotropically with the SHELXL package incorporated in the WINGX 1.61 crystallo-

graphic collective package.185 Anisotropic refinements were performed by full-ma-

trix least-squares procedure on F2, where the function minimised was Σw(Fo – Fc)2 

with w = 1. The positions of the hydrogen atoms were calculated assuming ideal 

geometries, but not refined. 

Crystallographic data (excluding structure factors) for the structures reported in 

this paper have been deposited with the Cambridge Crystallographic Data Centre. 

Copies of the data can be obtained free of charge on application to the CCDC, 12 

Union Road, Cambridge CB2 1EZ, UK, on full quoting the journal citation and 
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deposition number CCDC 279865 (18), 279866 (19), 253089 (20) and 287248 

(21). 

5.2.5 Syntheses of ligands.  

Commercially available Et5dien was distilled over KOH prior to use. Commercially 

available Me5dien (Aldrich) was purified in the following way. The hydrochloride 

salt of Me5dien was prepared by reacting conc. HCl with the amine, followed by 

recrystallisation of the crude product from water. Concentrated KOH solution was 

added to the hydrochloride salt and the free amine was extracted with CH2Cl2. Af-

ter evaporation of CH2Cl2 the amine was distilled from solid KOH and stored under 

an argon atmosphere. 

N-methyl-[bis(2-pyridyl)methyl]amine (Me-bpa). 33% Aqueous formaldehyde 

solution (1.70 g, 20.9 mmol) was added to a solution of bis[2-(2-

pyridyl)methyl]amine (2.08 g, 10.45 mmol) in 1,2-dichloroethane (50 mL). After 15 

min, NaBH(OAc)3 (4.42 g, 21.00 mmol) was added portionwise to the stirred solu-

tion and the reaction mixture was left to stir for a further 24 h at room temperature. 

The reaction was quenched by the addition of an aqueous solution of 2 M NaOH 

(100 mL), the organic layer was separated and the aqueous layer was extracted 

with CH2Cl2 (3 × 100 mL portions). The organic fractions were combined and dried 

over MgSO4. Filtration and removal of the solvent in vacuo yielded an oily semi-

solid which was taken up in diethyl ether (100 mL), filtered and the diethyl ether 

removed in vacuo to yield Me-bpa as a translucent golden coloured oil (yield: 2.09 

g, 9.8 mmol, 94%). 1H NMR (300 MHz, CDCl3) δ: 2.31 (s, 3H, –NCH3), 3.77 (s, 4H, 

–NCH2py), 7.15 (m, 2H, py–H), 7.52 (d, 3JHH = 8 Hz, py–H), 7.66 (dt, 2H, 3JHH = 8 

Hz, 2 Hz, py–H), 8.54 (d, 2H, 3JHH = 5 Hz, py–H). 13C NMR (75 MHz, CDCl3) δ: 

42.7, 63.6, 122.0, 123.1, 136.4, 149.0, 159.2. 

N-methyl-[(2-pyridyl)ethyl(2-pyridyl)methyl]amine (MeL). This ligand was pre-

pared as reported previously186 or according to the following procedure. 

33% Aqueous formaldehyde solution (1.79 g, 21.00 mmol) was added to a solution 

of 2-pyridylmethyl-(2-pyridylethyl)amine187 (2.13 g, 10.00 mmol) in 1,2-dichloro-

ethane (50 mL). After 15 min, NaBH(OAc)3 (4.42 g, 21.00 mmol) was added por-

tionwise to the stirred solution and the reaction mixture was left to stir for a further 

24 h at room temperature. The reaction was quenched by the addition of an aque-
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ous solution of 2 M NaOH (100 mL), the organic layer was separated and the 

aqueous layer was extracted with CH2Cl2 (4 × 80 mL portions). The organic frac-

tions were combined and dried over MgSO4. Filtration and removal of the solvent 

in vacuo yielded an orange brown oil which was extracted with diethyl ether (30 

mL), filtered and the diethyl ether removed in vacuo to yield the ligand as a golden 

yellow oil (yield: 1.90 g, 84%). 1H NMR (300 MHz, CDCl3) δ: 2.31 (s, 3H, –NCH3), 

2.81 (t, 2H, 3JHH = 5 Hz, 10 Hz, -NCH2CH2py), 3.05 (t, 2H, 3JHH = 7 Hz, 6 Hz, -

NCH2CH2py), 3.77 (s, 4H, –NCH2py), 7.15 (m, 2H, py–H), 7.30 (d, 3JHH = 8 Hz, 

py–H), 7.66 (dt, 2H, 3JHH = 8 Hz, 2 Hz, py–H), 8.53 (d, 2H, 3JHH = 5 Hz, py–H). 13C 

NMR (75 MHz, CDCl3) δ: 36.2, 42.4, 57.7, 63.8, 121.0, 121.8, 122.9, 123.2, 136.2, 

136.3, 149.0, 149.2, 159.6, 160.6. 

5.2.6 Synthesis of Copper(II) Complexes. 

CAUTION! Transition metal perchlorates are hazardous and may explode. Only 

small quantities should be prepared, and they should be used with great care. 

[(Me-bpa)Cu(Cl)2] (18). CuCl2·2H2O (0.08 g, 0.47 mmol) in MeOH (1 mL) was 

added dropwise to Me-bpa (0.10 g, 0.47 mmol) in MeOH (2 mL). On addition of 

the metal salt the pale yellow solution turned deep royal blue. Diethyl ether (10 

mL) was added with stirring causing the immediate precipitation of a green solid. 

The solid was collected, washed with a little diethyl ether and dried to give 18 as a 

green solid (yield: 0.138 g, 79%). Blue block crystals of 18 suitable for a single-

crystal X-ray structure analysis were grown within 48 h from the slow diffusion of 

diethyl ether into a methanol solution of 18. Anal. calc. for C13H15Cl2CuN3: C, 

44.90; H, 4.35; N, 12.08%. Found C, 44.58; H, 4.27; N, 11.91. Absorption spec-

trum [λmax /nm (ε /M-1 cm-1)]: (MeOH) 680 (128); (CH2Cl2) 758 (211); (MeCN) 752 

(214). 

[{(Me-bpa)Cu(Cl)(ClO4)}2] (19). A mixture of Cu(ClO4)2 x 6 H2O (0.09 g, 0.24 

mmol) and CuCl2 x 2 H2O (0.04 g, 0.24 mmol) in 1:1 MeCN:H2O mixture (1 mL) 

was added dropwise to Me-bpa (0.10 g, 0.47 mmol) in the same solvent mixture (2 

mL). On addition of the metal salt the pale yellow solution turned a deep blue col-

our. The mixture was stirred for 1 h and the blue coloured precipitate was collected 

by filtration and dried in vacuo. Dissolution of the complex in MeCN:H2O (1:1) 
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mixture and slow evaporation resulted in the formation of blue crystalline material 

of 19 suitable for X-ray structural analysis (yield: 0.159 g, 79%). Anal. calc. for 

C26H30Cl4Cu2N6O8: C, 37.92; H, 3.67; N, 10.21%. Found C, 37.88; H, 3.35; N, 

10.08. IR (KBr disc, selected peaks) /cm-1: 1109, 1086, 1030, 625 ν(ClO4
–). 

Absorption spectrum [λmax /nm (ε /M-1cm-1)]: (MeCN) 258 (24 300), 290 sh (6660), 

650 (220). 

[{(MeL)Cu(Cl)(ClO4)}2] (20). MeL in EtOH (10 mL) was added dropwise to a 

stirred solution of CuCl2 x 2 H2O (0.226 g, 1.32 mmol) in EtOH (10 mL). The mix-

ture was heated on a water bath (~ 50oC) for 5 min. A saturated solution (2 mL) of 

NaClO4 x H2O was added  to the cooled solution and left to evaporate slowly at 

room temperature. After 24 h, dark blue crystals of 20 formed and were filtered off, 

washed with cold EtOH, and dried in vacuo (yield: 0.46 g, ~82%). Dark blue col-

oured crystals of 20 suitable for a single-crystal X-ray structural analysis were ob-

tained by slow evaporation at room temperature of an EtOH solution of 20. Anal. 

calc. for C28H34Cl4Cu2N6O8: C, 43.00; H, 3.10; N, 23.40%. Found: C, 43.30; H, 

3.30; N, 23.20%. IR (KBr disc, selected peaks) /cm-1: 1110, 1080, 1050, 630 ν

(ClO4
–). Absorption spectrum [λmax /nm (ε /M-1cm-1)]: (MeCN) 259 (20 320), 290 sh 

(4620), 650 (200). 

[(MeL)Cu(NCS)2] (21). Solid KSCN (0.024 g, 0.24 mmol) was added to a stirred 

solution of 20 (0.05 g, 0.12 mmol) in MeCN (5 mL). The resulting dark green col-

oured solution was stirred for a further 2 h and then filtered through a pad of celite. 

The filtrate was left to evaporate slowly at room temperature. Within 24 h well-

formed dark green crystals of 21 suitable for a single-crystal X-ray structure de-

termination were collected by filtration, washed with water, and air-dried (yield: 

0.04 g, ~80%). Anal. calc. for C16H17CuN5S2: C, 47.22; H, 4.18; N, 17.21%. Found: 

C, 47.25; H, 4.21; N, 17.30%. IR (KBr disc, selected peak) /cm-1: 2090 ν(NCS–). 

Absorption spectrum [λmax /nm (ε /M-1 cm-1)]: (MeCN) 256 (13640), 290 (2600), 

392 (1030), 680 (200), 950 sh (70). 
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5.3 Results and Discussion 

5.3.1 Syntheses of ligands and copper complexes.  

The aliphatic amines dien, Me5dien and Et5dien were commercially available and 

only needed to be purified by distillation prior to use. The extensive purification of 

Me5dien was necessary for the kinetic investigations described below. The modi-

fied synthesis of N-methyl-[bis(2-pyridyl)methyl]amine (Me-bpa) and N-methyl-[(2-

pyridyl)ethyl(2-pyridyl) methyl]amine (MeL) reported herein presents a significant 

improvement in comparison with currently known literature procedures.186,188-190 In 

contrast to the classical Eschweiler Clark reaction (Leuckart reaction),191-194 the 

reductive amination with NaBH(OAc)3 in 1,2-dichloroethane195 and 37% aqueous 

formaldehyde afforded pure Me-bpa and MeL in excellent yields. 

5.3.2 Copper complexes.  

Copper(I) complexes of the ligands used herein were only prepared in situ for the 

kinetic measurements due to the known problems of decomposition (dispropor-

tionation) if higher concentrations of copper(I) complexes were used.196 However, 
a copper(I) complex of Me5dien has been described previously by Holm and co-

workers and structural characterisation of this compound was reported.181 Further-

more, the copper(I) complex of MeL was obtained by Karlin and coworkers, how-

ever, no structural characterisation was reported.197 So far our efforts to obtain 

crystals of copper(I) complexes of Me-bpa and MeL suitable for X-ray structural 

characterisation were unsuccessful. In contrast when related ligands were used 

that enforce six-membered chelate rings upon metal coordination, the according 

copper(I) complexes can be prepared quite easily and show much larger stabili-

ties.196,198,199  

Copper(II) complexes were readily obtained by reaction of the copper(II) salt with 

the appropriate ligands in a stoichiometric ratio. Crystal structure characterisations 

of copper(II) complexes of Me5dien, Me-bpa and MeL were reported previously 

(only a selection of references for Me5dien is given).181,200-208 Herein we report four 

new crystal structures of copper(II) complexes with the ligands Me-bpa and MeL. 

To understand the different reaction pathways of the copper(I) complexes of 

Me5dien and Me6tren with dioxygen it is useful to compare the X-ray structures of 
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both complexes even though the geometries in solution could be completely dif-

ferent from the crystal structures. [Cu(Me5dien)CH3CN]+ has an irregular structure 

around the copper(I) centre that has been described as distorted tetrahedral.181 

The Cu-N bond in the centre is significantly shorter than the other two Cu-N bonds 

and one molecule of acetonitrile is additionally coordinated. For [Cu(Me6tren)]ClO4 

the geometry is best described as trigonal-pyramidal, or including the weak inter-

action with the perchlorate anion in the axial position, the structure can be re-

garded as trigonal-bipyramidal.180 The copper(I) ion is situated slightly below the 

plane of the three equatorial nitrogen atoms. There is no acetonitrile molecule co-

ordinated to the copper(I) centre even though the complex was recrystallised from 

acetonitrile. The strong coordination of the axial nitrogen atom in 

[Cu(Me6tren)]ClO4 may prohibit coordination of an acetonitrile ligand. From previ-

ous experiments it is known that in solution nitrile solvent molecules strongly inter-

act with the copper(I) Me6tren complex.180 As a consequence of the "missing 

coordinating arm" in Me5dien compared to Me6tren the reaction of dioxygen with 

the copper(I) complex of Me6tren leads to a trans-µ-peroxo species while with 

Me5dien as ligand a bis(µ-oxo) intermediate complex is obtained (see below).40,180  

So far only one copper(II) complex of Me-bpa has been characterised structurally 

by some of us.202 However, the crystal structure of the copper(II) complex of a de-

rivative of Me-bpa has been described previously.209 Similarly, for MeL only two 

crystal structures of copper(II) complexes have been reported by some of us.200,201 

However, a copper(II) complex of a derivative of MeL was described.210 To gain 

better information on the geometry of these complexes in the solid state we 

therefore prepared copper(II) complexes of Me-bpa and MeL ligands and structur-

ally characterised them. 

5.3.3 Description of the molecular structure of 18.  

Blue crystals of 18 suitable for X-ray structure determination were grown by slow 

diffusion of diethyl ether into a methanol solution of the complex. An ORTEP re-

presentation of 18 is shown in Figure 5-2. Table 5-1 and Table 5-2 contain the 

data collection and structure refinement parameters and the essential bond dis-

tances and bond angles.  
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Complex 18 is a discrete monomer. Each copper(II) centre is penta-coordinated by 

two pyridyl nitrogen atoms N(26) and N(36) and one tertiary amine nitrogen N(10) 

of the ligand Me-bpa and two chloride ligands Cl(1) and Cl(2). The ligand Me-bpa 

coordinates the copper(II) ion in a meridional mode and the coordination environ-

ment around the copper(II) ion is best described as distorted square pyramidal. 

The Addison structural distortion index parameter τ is 0.38 (τ = (β-α)/60, with α 

and β being the two largest coordination angles)146 with N(10), N(26), N(36) and 

Cl(1) forming the basal plane and chloride ion Cl(2) occupying the axial position 

[Cu(1)–Cl(2) = 2.419(2) Å]. In a perfect square-pyramidal geometry, τ equals 0, 

while it is 1 in a perfect trigonal-bipyramidal geometry.146 The Cu(II)–N(aliphatic 

amine) bond length [2.087(3) Å] is longer than the Cu(II)–N(pyridine) bond dis-

tances [2.003(3) and 2.009(3) Å] as expected. 

 

Figure 5-2: Molecular structure of [(Me-bpa)Cu(Cl)2] (18). 

5.3.4 Description of the structure of complex 19.  

An ORTEP representation of 19 is shown in Figure 5-3. Table 5-1 contains the 

data collection and structure refinement parameters, and Table 5-2 summarizes 

the essential bond distances and bond angles. The X-ray structure analysis estab-

lishes that the complex has a pseudo-dimeric arrangement of two copper(II) ions 

surrounded by a Me-bpa ligand coordinated to each copper(II) ion in a meridional 
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mode, the two halves of the dimer being related by a crystallographic inversion 

centre. The geometry at each copper centre is best described as distorted square 

pyramidal, with two pyridine nitrogen atoms N(26) and N(36) and one aliphatic ni-

trogen atom N(10) from Me-bpa and one chloride ion Cl(1) coordinated in the 

equatorial plane. An additional bonding interaction exists at 2.8283(6) Å, provided 

by a chloride ion Cl(1A) of a neighbouring molecule. The Addison structural distor-

tion index parameter τ is 0.21. From the equatorial plane the copper(II) ion is dis-

placed towards Cl(1A) by 0.015(1) Å. The Cu---Cu separation between the two 

mononuclear units [Cu(1)---Cu(1A)] is 3.6540(6) Å and the angles Cu(1)–Cl(1)–

Cu(1A) and Cl(1)–Cu(1)–Cl(1A) are 91.12(2)° and 88.88(2)° respectively. Due to 

its inherent inversion symmetry the four-membered Cu2Cl2 ring [Cu(1)–Cl(1)–

Cu(1A)–Cl(1A)] is exactly planar. The coordination sphere of each of the copper(II) 

centres is completed by a distant oxygen atom of ClO4
- at a distance of 2.73(2) Å. 

Taking this interaction into account the structure would correspond to a CuN3Cl2O 

coordination, giving rise to a pseudo-tetragonally elongated octahedral geometry 

around each copper(II) ion. The copper(II)–Npyridyl, copper(II)–Namine, and cop-

per(II)–Cl distances are in line with the metric parameters of closely related com-

plexes.211,212  

 

Figure 5-3: Molecular structure of [{(Me-bpa)Cu(Cl)(ClO4)}2] (19). 
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5.3.5 Description of the structure of complex 20.  

The IR spectra of [{(MeL)Cu(Cl)(ClO4)}2] clearly demonstrated the presence of co-

ordinated perchlorate ions; however, in MeCN solution they are dissociated (solu-

tion electrical conductivity data, 1:2 electrolyte).162 An ORTEP representation of 

the crystal structure of this compound is shown in Figure 5-4. 

As for 19 (Figure 5-3), structural analysis of 20 also shows a pseudo-dimeric ar-

rangement of two copper(II) ions. The MeL ligand binds each copper(II) ion in a 

meridional mode. Each copper(II) ion is coordinated in the equatorial plane by two 

pyridine nitrogen atoms N(1) and N(3) and one aliphatic nitrogen atom N(2) from 

MeL and one chloride ion Cl(1). An additional bonding interaction exists at 

2.891(2) Å, provided by a chloride ion of a neighbouring molecule Cl(1A). From the 

equatorial plane the copper(II) ion is displaced towards Cl(1A) by 0.035 Å. The 

coordination environment for each copper(II) ion is best described as distorted 

square-pyramidal (τ = 0.12). The Cu---Cu separation between the two mononu-

clear units [Cu(1)---Cu(1A)] is 3.820(3) Å and the angles Cu(1)–Cl(1)–Cu(1A) and 

Cl(1)–Cu(1)–Cl(1A) are 94.77(5)° and 85.23(5)°. It reveals that the four-membered 

Cu2Cl2 ring [Cu(1)–Cl(1)–Cu(1A)–Cl(1A)] is planar. A weak interaction between 

each copper(II) ion with the O(1) atom of a perchlorate ion [Cu(1)–O(1) = 2.840(6) 

Å] in the axial position is also clearly observable (cf. 2.73(2) Å in 19). 

 

Figure 5-4: Molecular structure of [{(MeL)Cu(Cl)(ClO4)}2] (20). 
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Table 5-1: Data collection and structure refinement parameters for 18 - 21. 

Complex 18 19 20 21 

Molecular formula C13H15Cl2CuN3 C26H30Cl4Cu2N6O8 C28H34Cl4Cu2N6O8 C16H17CuN5S2 

Mr 347.72 823.5 851.5 407.01 

Temperature/K 298(2) 100(2) 293(2) 293(2) 

Radiation used 

(λ/Å) 

Mo-Kα (0.71073) Mo-Kα (0.71073) Mo-Kα (0.71073) Mo-Kα (0.71073) 

Crystal system Monoclinic Triclinic Triclinic Triclinic 

Space group P21/n P1 P1 P1 

a/Å 8.445(1) 8.1433(4) 8.236(2) 8.408(5) 

b/Å 12.759(1) 10.0878(5) 10.156(2) 8.536(2) 

c/Å 13.322(1) 10.8258(4) 11.270(8) 14.320(1) 

α/deg 90 102.119(3) 102.85(5) 101.90(8) 

β/deg 94.95(1) 101.160(3) 100.74(5) 105.98(6) 

γ/deg 90 107.751(4) 107.81(5) 104.05(8) 

V/Å3 1430.1(2) 795.79(6) 841.5(8) 916(7) 

Z 4 2 1 2 

Dc/g cm-3 1.615 1.718 1.680 1.475 

µ/mm-1 1.889 1.730 1.639 1.426 

crystal size/mm  0.48 × 0.38 × 0.30 0.28 × 0.21 × 0.14 0.60 × 0.50 × 0.20 0.50 × 0.40 × 0.20 

Complex 18 19 20 21 

Reflections 

measured 

4496 15533 3170 3447 

Unique reflec-

tions, Rint 

3452, 0.0315 4274, 0.0516 2943, 0.0078 3206, 0.0329 

goodness-of-fit on 

F2 

1.013 1.052 1.063 0.968 

R1, wR2 [I > 

2σ(I)] 

0.0481, 0.0883 

0.0392, 0.0779 0.0508, 0.1420 

0.0676, 0.1835 

R1, wR2 (all data) 0.0913, 0.1019 0.0717, 0.0844 0.0597, 0.1484 0.1330, 0.2135 

Max./min. el. 

density/e Å-3 
+0.448, −0.351 +0.615, –0.769 +0.762, –0.778 +0.770, –0.899 
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Table 5-2: Selected bond lengths (/Å) and bond angles (/°) for compounds 18 - 21. 

18 

Cu(1)–N(36) 2.009(3) Cu(1)–N(10) 2.087(3) Cu(1)–N(26) 2.003(3) 

Cu(1)–Cl(1) 2.287(2) Cu(1)–Cl(2) 2.419(2)   

      

N(36)–Cu(1)–N(10) 80.7(2) N(36)–Cu(1)–N(26) 161.8(2) N(10)–Cu(1)–N(26) 81.2(2) 

N(36)–Cu(1)–Cl(1) 95.85(9) N(10)–Cu(1)–Cl(1) 139.10(9) N(26)–Cu(1)–Cl(1) 96.76(9) 

N(36)–Cu(1)–Cl(2) 94.45(8) N(10)–Cu(1)–Cl(2) 105.99(8) N(26)–Cu(1)–Cl(2) 92.08(9) 

Cl(1)–Cu(1)–Cl(2) 114.91(5)     

      

19 

Cu(1)–N(36)  1.983(2) Cu(1)–N(10) 2.036(2) Cu(1)–N(26)  1.989(2) 

Cu(1)–Cl(1) 2.2587(6) Cu(1)–Cl(1A)* 2.8283(6) Cu(1)–O(22)#  2.728(9) 

Cu(1)…Cu(1)*  3.6540(6)     

N(36)–Cu(1)–N(10)  82.70(7) N(36)–Cu(1)–N(26) 164.54(8) N(10)–Cu(1)–N(26) 81.92(8) 

N(36)–Cu(1)–Cl(1)  97.96(6) N(10)–Cu(1)–Cl(1) 177.26(6)  N(26)–Cu(1)–Cl(1) 97.48(6) 

N(36)–Cu(1)–Cl(1A)* 89.23(6) N(10)–Cu(1)–Cl(1A)* 88.47(5) N(26)–Cu(1)–

Cl(1A)* 
91.90(6) 

Cl(1)–Cu(1)–Cl(1A)* 88.88(2) Cu(1)–Cl(1)–Cu(1A)* 91.12(2)   

* -x, -y+1, -z;   # -x+1, -y+2, -z 

20 

Cu(1)–N(1)  1.982(3) Cu(1)–N(2) 2.065(3) Cu(1)–N(3)  1.996(3) 

Cu(1)–Cl(1) 2.269(2) Cu(1)–Cl(1)*  2.891(2) Cu(1)–O(1)  2.840(6) 

Cu(1)…Cu(1)*  3.820(2)     

      

N(1)–Cu(1)–N(2)  89.1(2) N(1)–Cu(1)–N(3) 169.8(2) N(2)–Cu(1)–N(3) 81.8(2) 

N(1)–Cu(1)–Cl(1)  93.9(2) N(2)–Cu(1)–Cl(1) 177.0(2)  N(3)–Cu(1)–Cl(1) 95.3(2) 

N(1)–Cu(1)–Cl(1)*  100.8(2) N(2)–Cu(1)–Cl(1)* 93.8(2) N(3)–Cu(1)–Cl(1)* 84.6(2) 

Cl(1)–Cu(1)–Cl(1)* 85.23(4) Cu(1)–Cl(1)–Cu(1)* 94.77(4)   

* 1-x, -y, 1-z      
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Table 5-2 (cont’d): Selected bond lengths (/Å) and bond angles (/°) for compounds 18 - 21. 

21 

Cu(1)–N(1)  2.002(6) Cu(1)–N(2)  2.125(8) Cu(1)–N(3)  1.994(6) 

Cu(1)–N(4)  1.97(2) Cu(1)–N(5)  2.098(9)   

      

N(1)–Cu(1)–N(2)  91.5(3) N(1)–Cu(1)–N(3)  171.4(2) N(1)–Cu(1)–N(4)  91.4(4) 

N(1)–Cu(1)–N(5)  94.7(3) N(2)–Cu(1)–N(3)  82.0(3) N(2)–Cu(1)–N(4)  141.1(4) 

N(2)–Cu(1)–N(5)  108.8(5) N(3)–Cu(1)–N(4)  90.1(4) N(3)–Cu(1)–N(5)  92.8(3) 

 

5.3.6 Description of the structure of complex 21.  

Complex 21 was synthesised following a controlled nucleophilic substitution reac-

tion of the perchlorate and chloride ligands in complex 20 in MeCN. The N-coordi-

nated NCS group in 21 is clearly observable in the IR spectrum and as expected 

the complex is non-conducting in MeCN solution. An ORTEP representation of the 

molecular structure of 21 is shown in Figure 5-5. The copper(II) ion is five-coordi-

nate with a coordination environment clearly in between square pyramidal and  

 

Figure 5-5: Molecular structure of [(MeL)Cu(NCS)2] (21). 
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trigonal-bipyramidal and τ = 0.485. The copper(II)–Namine and copper(II)–Npyridyl 

distances are comparable to those in compound 20, [{MeL}CuCl(ClO4)}3(µ-OCO2)] 

ClO4,201 and [(MeL)Cu(Cl)2].200 

5.3.7 Kinetic investigations of the reactions of [Cu(Me5dien)RCN] 
ClO4 with dioxygen.  

Although the crystal structure of [Cu(Me5dien)(CH3CN)]ClO4 was solved previ-

ously, handling of this complex is difficult as disproportionation of the complex hin-

ders kinetic studies. To overcome this problem we reacted the copper(I) salt (ClO4
- 

as anion) with Me5dien in situ (as described previously for the copper(I) Me6tren 

complex)179 directly during the mixing time of the stopped-flow experiment. This 

was possible because the complex formation reaction is almost diffusion controlled 

and hence much faster than the reaction of the copper(I) complex with dioxygen. A 

detailed kinetic analysis was performed in that way. 

Time-resolved spectra were recorded using low-temperature stopped-flow tech-

niques. During rapid mixing of acetone solutions of Me5dien/O2 and 

[Cu(CH3CN)4]ClO4 respectively, fast temperature-dependent UV-vis spectral 

changes are detectable. An example for time-resolved spectra for the oxygenation 

reaction at -90.0°C is shown in Figure 5-6. Absorbance maxima are observed at 

403 nm and below 320 nm. Unfortunately in acetone, the second absorption is not 

fully visible due to the absorbance of the solvent itself. However, previous meas-

urements with a different diode array setup allowed furthermore the detection of 

both absorption bands with maxima at 314 and 407 nm in propionitrile. Carrying 

out the reaction of [Cu(Me5dien)CH3CN]+ with dioxygen in CH2Cl2 or propionitrile 

(see Figure 5-7) caused nearly identical spectra changes, however no kinetic stud-

ies were performed in these solvents (reaction rates were different). According to 

the UV-vis data we assign the formed complex as an bis(µ-oxo)dicopper(III) spe-

cies (resonance Raman measurements to further support this assignment so far 

were unsuccessful).  

Compared to the triazacyclononane complex [Cu(i-Pr3TACN)(CH3CN)]+ (in THF) 

with absorbances at λmax = 324 nm (ε = 11 000 M-1cm-1) and 448 nm (ε = 13 000 

M-1cm-1)178,213, for the present species a strong hypsochromic shift of the second 

band is observed. However, very similar results (λmax = 410 nm in CH2Cl2) were 
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obtained for the oxo-bridged form of the copper complex of related open chain 

ligands (Figure 5-8) described previously by Karlin and coworkers.171,198,199  

 

Figure 5-6: Time-resolved, low-temperature UV-vis spectra for the reaction of 
[Cu(Me5dien)(CH3CN)]ClO4 with dioxygen in acetone solution. [Complex] = 1.0 x 10-4 M, [O2] 
= 3.0 x 10-3 M, T = -90.0°C, total time = 2.82 s. Insert: absorbance vs. time trace at 404 nm. 

 

Figure 5-7: Time-resolved, low-temperature UV-vis spectra for the reaction of 
[Cu(Me5dien)(CH3CN)]ClO4 with dioxygen in propionitrile solution. [Complex] = 4.4 x 10-4 M, 
[O2] = 1.47 x 10-3 M, T = -90.0°C, total time = 80 s. Insert: absorbance vs. time trace at 407 
nm. 
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Figure 5-8: Ligands used in kinetic studies by Karlin and coworkers214 

For the final calculation the formation of the copper bis(µ-oxo) complex and the 

back reaction was analysed. As a consequence of a slow but significant decay and 

a fast back reaction the bis(µ-oxo) copper complex is not fully formed for the whole 

temperature range. Despite the fact that no spectroscopic evidence for the forma-

tion of a superoxo species was obtained, such intermediates must occur, at least 

as extremely short-lived species according to the following reaction Scheme 5-1: 

[Cu(Me5dien)(CH3CN)]+ + O2                                                   [Cu(Me5dien)(O2)]+ + CH3CN

[Cu(Me5dien)(CH3CN)]+ + [Cu(Me5dien)(O2)]+                         [Cu(Me5dien)2(µ-O)2]2+ + CH3CN

[Cu(Me5dien)2(µ-O)2]2+ + CH3CN  decomposition  

Scheme 5-1: Proposed mechanism for reaction of [Cu(Me5dien)(CH3CN)]+ with O2 

As the reaction scheme above indicates, the adduct formation must be stepwise 

via a mononuclear superoxo complex. However, its supposed steady state be-

haviour and the actual rate law allows to use a simpler kinetic description for data 

fitting without including such a reactive intermediate. Similar kinetic data fitting 

procedures have been described previously.122,198,199 For the numerical analysis 

with the program Specfit the following model (Scheme 5-2) was used, in which A 

and C were set as coloured species. 

2 [Cu(Me5dien)(CH3CN)]+ + O2                              [Cu(Me5dien)2(µ-O)2]2+ + 2 CH3CN
                A                           B                                              C

[Cu(Me5dien)2(µ-O)2]2+                                          decomposition
                C                                                                       D

k1

k-1

k2

 

Scheme 5-2: Simplified reaction of [Cu(Me5dien)(CH3CN)]+ with O2 for data fitting 
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From the Specfit calculations Eyring plots for k1, k-1 and k2 were obtained and are 

presented in Figure 5-9 to Figure 5-11. Discrepancies in the Eyring plots (espe-

cially for k-1 and k2 in the lowest temperature area) are presumably a consequence 

of well known photochemical effects that are quite common with such compounds 

under irradiation of an intensive UV lamp.199 Nevertheless, a good determination 

of the activation parameters was possible and the results are summarised in Table 

5-3. 

The features in the UV-vis spectra and the successful fitting with the model shown 

above suggest the formation of a pure bis(µ-oxo) complex with neither evidence of 

the formation nor an equilibrium of a copper peroxo species, as in the work of 

Tolman or Karlin. 

The kinetic results of the reaction of [Cu(Me5dien)(CH3CN)]+ with dioxygen in 

acetone compared to previous work from Karlin, Zuberbühler and co-workers, who 

- in this case - used related open-chain ligands (Figure 5-8), are summarised in 

Table 5-3.171,198,199,215 However, in contrast to [Cu(Me5dien)(CH3CN)]+ all copper(I) 

complexes of the other shown ligands either only form µ-η2:η2-peroxo complexes, 

mixtures of µ-η2:η2-peroxo complexes and bis(µ-oxo) dioxygen species (depend-

ing on the solvent).171,198,199,215,216 Only for the copper(I) complex of AN does the 

formation of the bis(µ-oxo) copper complex takes place explicitly if the oxidation 

reaction is performed in CH2Cl2.198  

It is remarkable that the binding of dioxygen to the [Cu(Me5dien)(CH3CN)]+ com-

plex is much faster than the other complexes, which is most likely a consequence 

of their larger chelate ring size (6-membered chelate rings in general stabilize 

copper(I) complexes,25 however this does not explain all results; see below) com-

pared to [Cu(Me5dien)(CH3CN)]+. In all cases the ∆S# value is strongly negative, 

which indicates an associative mechanism. The back reaction (k-1) can be 

compared to AN and MeAN whereas the complexes with the aromatic donors 

show a slower rate constant. The decomposition reaction of the dioxygen adducts 

of the copper complexes with pure aliphatic ligands is faster (as would be ex-

pected) compared with the complexes with the aromatic PYAN and MePY2 

ligands. 

 



Chapter 5 

 

Figure 5-9: Eyring plot of k1 for the reaction of [Cu(Me5dien)(CH3CN)]ClO4 with dioxygen 

 

Figure 5-10: Eyring plot of k-1 for the reaction of [Cu(Me5dien)(CH3CN)]ClO4 with dioxygen 

 

Figure 5-11: Eyring plot of k2 for the reaction of [Cu(Me5dien)(CH3CN)]ClO4 with dioxygen 
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Table 5-3: Kinetic and thermodynamic parameters for the reaction of O2 with 
[Cu(Me5dien)CH3CN]+ and related copper(I) complexes 

 

Solvent 

Product 

Temperature 
[K] 

Me5dien 

Acetone 

Bis(µ)oxo 

AN217 

CH2Cl2 

Bis(µ)oxo 

MeAN217 

CH2Cl2 

Peroxo 

PYAN214 

Acetone 

Mixture 

MePY2218 

Acetone 

Peroxo 

iPr3TACN219,220 

Acetone 

Mixture 

k1 (M-2s-1) 

 

 

 

 

∆H# (kJmol-1) 

∆S# (JK-1mol-1) 

183.15 

193 

203 

223.15 

253.16 

 

4.1x107 

 

 

2.3x107 

 

-6.7 ± 0.7 

-131 ± 4 

2.7x104 

 

 

 

 

-9.9 ± 0.6 

-210 ± 3 

690 

 

 

 

 

-27 ± 3 

-335 ± 16 

 

 

1.5 x105 

 

 

-13.8 ± 0.2 

-211 ± 1 

 

 

 

 

1.91x104 

-0.7 ± 1 

-164 ± 4 

 

0.191 (M-1s-1) 

 

5.02 

 

37.2 ± 0.5 

-62 ± 2 

k-1 (s-1) 

 

 

∆H# (kJmol-1) 

∆S# (JK-1mol-1) 

183.15 

223.15 

203 

 

2.4x10-2 

1.8 

 

44 ± 2 

-44 ± 9 

   

 

5x10-5 

66 ± 1 

-1 ± 6 

  

k2 (s-1) 

 

 

∆H# (kJmol-1) 

∆S# (JK-1mol-1) 

183.15 

203 

223.15 

2.8x10-3 

 

2.6x10-1 

45 ± 2 

-51 ± 8 

 

 

0.3 

35 ± 2 

-95 ± 11 

- 

- 

- 

- 

- 

 

7.7x10-4 

 

39.9 ± 0.3 

-105 ± 1 

 - 

 

1.13x10-3 

49.1 ± 0.6 

-79 ± 2 

 

During the reaction of [Cu(i-Pr3TACN)(CH3CN)]+ with dioxygen in acetone at -78°C 

an approximate 4:1 mixture of the µ-η2:η2-peroxo and the bis(µ-oxo) complex was 

formed.122,178 Accordingly the model used for this reaction, the 1:1 Cu:O2 adduct 

formation is followed by intermolecular trapping by a second copper(I) complex to 
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yield a bis(µ-oxo) complex which rapidly equilibrates with the µ-η2:η2-peroxo spe-

cies122. Therefore, a direct comparison between the kinetic results of [Cu(i-

Pr3TACN)(CH3CN)]+ and the other complexes in Table 5-3 is difficult because kon 

for the formation of the dinuclear dioxygen adduct of [Cu(i-Pr3TACN)(CH3CN)]+ 

describes the formation of the superoxo complex that could not be determined for 

the other complexes and leads to different units for kon (M-2s-1 vs. M-1s-1, Table 

5-3). The activation parameters for the decay of [{(i-Pr3TACN)Cu}2(O2)]2+ are in 

line with the data of the open chain ligands. 

5.3.8 Kinetic investigations of the reactions of dioxygen with the 
copper(I) complexes of the ligands Me-bpa and MeL and 
Et5dien.  

Most surprisingly and in contrast to our expectations discussed in the introduction 

(tmpa vs. Me6tren), copper(I) complexes with the ligands Me-bpa and MeL did not 

show observable formation of bis(µ-oxo) species when reacted with dioxygen, un-

der the same conditions as [Cu(Me5dien)(CH3CN)]ClO4. Copper(I) complexes with 

the ligands Me-bpa and MeL were oxidised, however even at low temperatures 

during the stopped-flow experiments we could not observe the clear formation of a 

copper "dioxygen adduct complex": In contrast Itoh and coworkers could clearly 

demonstrate in recent publications that the copper(I) complex with the ligand 
PhLPym2 (N,N-di(2-pyridylmethyl)-2-phenylethlamine; a derivative of Me-bpa in 

which the methyl group is replaced by a phenylethyl group) reacts with dioxygen to 

form a bis(µ-oxo) complex at low temperatures (stopped-flow measurements 

showing the very fast increase of a absorbance maximum at 385 nm).196,221 So far 

we cannot provide an explanation why we did not observe such intermediates for 

Me-bpa or Me-L. 

Furthermore, it was surprising that during the oxidation of the copper(I) complex of 

Et5dien we could not observe any "dioxygen intermediate complex" using the 

same conditions as for the studies with Me5dien. Using this sterically more hin-

dered ligand we had hoped to detect the 1:1 adduct (spectroscopically or during 

fitting of the kinetic data), the superoxo complex, prior to its further reaction to the 

2:1 product (dinuclear bis(µ-oxo) or peroxo complex) if this dimerisation still can 
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occur. So far only a few crystal structures of copper(II) complexes with the ligand 

Et5dien have been reported.222-225  

5.4 Summary and Conclusions 

Copper(I) complexes of the ligands Me5dien, Et5dien, Me-bpa and MeL have been 

investigated in regard to their oxidation with dioxygen. In that regard crystal struc-

tures of the copper(II) complexes of Me-bpa and MeL were solved. Crystals of 

copper(I) complexes could not be obtained, however Holm and coworkers previ-

ously described the crystal structure of [Cu(Me5dien)CH3CN]+.181 In contrast to our 

expectations we only succeeded in a detailed kinetic study on the reaction of 

[Cu(Me5dien)CH3CN]+ with dioxygen during which a dinuclear bis(µ-oxo) copper 

complex was formed. Despite previous excellent work by the groups of Itoh, Karlin, 

Stack, Tolman and Zuberbühler related to our investigations described herein (and 

referred to above) at the current state we do not completely understand the differ-

ent reactivity of copper(I) complexes with bidentate and tridentate ligands. 
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Chapter 6 - Summary 

To provide a better understanding of the reactions of iron and copper proteins with 

dioxygen, the corresponding reactions of small molecule model complexes with 

dioxygen were analysed using spectroscopic and kinetic methods. Special 

attention focused upon the binding and activation of dioxygen by iron proteins 

such as hemerythrin (Hr) and protocatechuat-3,4-dioxygenase (3,4-PCD) and by 

copper proteins like hemocyanin (Hc) and tyrosinase. 

Iron complexes of the ligand tmpa (tmpa = tris[(2-pyridyl)methyl]amine, also known 

as tpa in literature) were synthesised and modifications of the tmpa ligand were 

made. Increasing as well as decreasing chelate ring sizes in the highly active 

complex [Fe(tmpa)(dbc)]B(C6H5)4 (dbc = 3,5-di-tert-butylcatecholate dianion), only 

resulted in decreased reactivity of the investigated compounds (see Figure 6-1, 

left). A detailed low-temperature stopped-flow investigation of the reaction of 

dioxygen with [Fe(tmpa)(dbc)]B(C6H5)4 was performed and activation parameters 

of ∆H‡ = 23 ± 1 kJ mol-1 and ∆S‡ = –199 ± 4 J mol-1 K-1 were obtained (in Figure 

6-1, right, time resolved UV-vis spectra of the reaction of iron complex with O2 are 

shown).  
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Figure 6-1: ligands related to tmpa and time resolved UV-vis spectra of reaction of iron 
complex with O2 
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Crystal structures of bromo-(tetrachlorocatecholato-O,O')(bis((2-pyridyl)methyl)-2-

pyridylamine-N,N',N'')-iron(III) (2), (µ-oxo)-bis(bromo)(bis((2-pyridyl) methyl)-2-

pyridylamine-N,N',N'',N''')-diiron(III) (3), dichloro-((2-(2-pyridyl)ethyl)bis((2-

pyridyl)methyl)amine-N,N',N'',N''')-iron(III) (4) and (tetrabromocatecholato-O,O')((2-

(2-pyridyl)ethyl)bis((2-pyridyl)methyl)amine-N,N',N'',N''')-iron(III) (5) are reported 

(Chapter 2).  

Besides altering the chelate ring size the influence of the donor atoms of the ligand 

on catechol dioxygenase reactivity was investigated. Two derivatives of the tmpa 

ligand (uns-penp and acetyl-uns-penp) were synthesised, where one aromatic 

nitrogen donor was replaced by an aliphatic nitrogen donor (see Figure 6-2). The 

iron(III) complexes of the tripodal ligands N’,N’-bis[(2-

pyridyl)methyl]ethylenediamine (uns-penp), [Fe(uns-penp)Cl2]ClO4 x CH3CN, 

[{Fe(uns-penp)Cl}2O](ClO4)2 x 2CH3CN and the amide derivative N-Acetyl-N’,N’-

bis[(2-pyridyl)methyl]ethylenediamine (acetyl-uns-penp), [Fe2(acetyl-uns-

penp)2O](ClO4)2 x H2O, [Fe(acetyl-uns-penp)(tcc)Br] x (C2H5)2O and [{Fe(acetyl-

uns-penp)(tcc)}2O] x (C2H5)2O·CH3OH were synthesised and characterised. 

Catechol dioxygenase reactivity of in situ prepared complex solutions only showed 

slower reactions in comparison with the iron tmpa system (Chapter 3). 
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O

N

N

N NH2
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Figure 6-2: ligands uns-penp and acetyl-uns-penp 

Corresponding ligand system variations in the small molecule model complexes of 

copper proteins were made and analysed with respect to dioxygen reactivity.  

Intramolecular ligand hydroxylation was observed during the reactions of dioxygen 

with the dicopper(I) complexes of the ligands L3 (L3 = α,α′-bis[(2-

pyridylethyl)amino]-m-xylene) and L5 (L5 = α,α′-bis[N-(2-pyridylethyl)-N-(2-pyridyl-

methyl)-amino]-m-xylene). The dinuclear copper(I) complex [Cu2L5](ClO4)2 and the 

dicopper(II) complex [Cu2(L3-O)(OH)(ClO4)]ClO4 were characterised by single-

crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were 

synthesised with the ligand L4-OH and Me-L5-OH (structurally characterised: 
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[Cu2(L4-O)Cl3] with L4 = α,α′-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene and 

[Cu2(Me-L5-O)(µ-X)](ClO4)2·nH2O with Me-L5-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-

pyridylmethyl)amino]-4-methylphenol and X = C3H3N2
– (prz), MeCO2

– and N3
–; 

ligands see Figure 6-3). Temperature-dependent magnetic studies revealed the 

antiferromagnetic coupling of the copper ions of these complexes (Chapter 4). 
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L
L

3-OH:       R' = H,         R = H
4-OH:       R' = CH3,     R = H

-L5-OH: R' = CH2p Me y, R = H

L3: R' = H,         R = H
L4: R' = CH3,     R = H
L5: R' = CH2py, R = H

Figure 6-3: ligands L3, L4, L5 and L3-OH, L4-OH and Me-L5-OH  

The reactions of dioxygen with copper(I) complexes of the tridentate ligands 

1,1,4,7,7-pentamethyldiethylethylenetriamine (Me5dien), 1,1,4,7,7-pentaethyldi-

ethylethylenetriamine (Et5dien), N-methyl-[bis(2-pyridyl)methyl]amine (Me-bpa) 

and N-methyl-[(2-pyridyl)ethyl(2-pyridyl)methyl]amine (MeL) have been investi-

gated using low-temperature stopped-flow techniques. The formation of a 

bis(µ−oxo) copper complex as a reactive intermediate could only be detected 

spectroscopically at low temperatures for [Cu(Me5dien)(CH3CN)]ClO4 and allowed 

a quantitative kinetic analysis to be performed. Crystal structures of the copper(II) 

complexes [(Me-bpa)Cu(Cl)2], [{(Me-bpa)Cu(Cl)(ClO4)}2], [{(MeL)Cu(Cl)(ClO4)}2] 

and [(MeL)Cu(NCS)2] are reported. (Ligands see Figure 6-4 and Figure 6-5; Chap-

ter 5) 
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Figure 6-4: Ligands Me5dien and Et5dien 
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Figure 6-5: Ligands MeL and Me-bpa 
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Kapitel 7 

Kapitel 7 - Zusammenfassung 

Zum besseren Verständnis der Reaktionen von Eisen- und Kupferproteinen mit 

elementarem Sauerstoff wurden im Rahmen dieser Arbeit für Eisen- und Kupfer-

proteine Modellkomplexe mit geringer Molekularmasse mit spektroskopischen 

oder kinetischen Methoden untersucht. Besondere Aufmerksamkeit wurde hierbei 

der Bindung und der Aktivierung von elementarem Sauerstoff durch die Eisenpro-

teine, wie z. B. Hämerythrin (Hr) und Protocatechuat-3,4-dioxygenase (3,4-PCD), 

und die Kupferproteine, wie z. B. Hämocyanin (Hc) und Tyrosinase, gewidmet. 

Bezüglich der Modelle für Eisenenzyme wurde der Ligand tmpa (tmpa = tris[(2-

pyridyl)methyl]amin; in der Literatur auch mit tpa abgekürzt) untersucht und sys-

tematisch variiert. Die Vergrößerung und Verkleinerung der Chelatringgröße im 

hochreaktiven Komplex [Fe(tmpa)(dbc)] B(C6H5)4 (dbc = 3,5-Di-tert-butylcatecholat 

Dianion) führte nur zu einer verringerten Reaktivität der untersuchten Verbindun-

gen (Liganden siehe linke Seite der Abbildung 7-1). Die Reaktion von elementaren 

Sauerstoff mit [Fe(tmpa)(dbc)]B(C6H5)4 wurde mittels der Tieftemperatur-„stopped-

flow“-Technik untersucht und ergab die Aktivierungsparameter ∆H‡ = 23 ± 1 kJ 

mol-1 und ∆S‡ = –199 ± 4 J mol-1 K-1 (rechte Seite der Abbildung 7-1: 

zeitaufgelöste UV-Vis Spektren der Reaktion des Eisnekomplexes mit O2).  
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Abbildung 7-1: Liganden abgeleitet von tmpa und UV-Vis Spektrenschar des 
Eisenkomplexes mit O2 
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Weiterhin wurden die Kristallstrukturanalysen der Verbindungen bromo-(tetra-chlo-

rocatecholato-O,O')(bis((2-pyridyl)methyl)-2-pyridylamine-N,N',N'')-eisen(III) (2), 

(µ-oxo)-bis(bromo)(bis((2-pyridyl)methyl)-2-pyridylamine-N,N',N'',N''')-dieisen (III) 

(3), dichloro-((2-(2-pyridyl)ethyl)bis((2-pyridyl)methyl)amine-N,N',N'',N''')-eisen (III) 

(4) und (tetrabromocatecholato-O,O')((2-(2-pyridyl)ethyl)bis((2-pyridyl)methyl) 

amine-N,N',N'',N''')-eisen (III) (5) beschrieben (Kapitel 2). 

Neben der Änderung der Chelatringgröße wurde auch der Einfluss der Donor-

atome des Liganden untersucht. Dazu wurden abgeleitet vom tmpa zwei Liganden 

(uns-penp und acteyl-uns-penp) synthetisiert, bei denen ein aromatischer 

Stickstoff durch einen aliphatischen Stickstoff ersetzt wurde (siehe Abbildung 7-2). 

Die Eisen(III) Komplexe mit den tripodalen Liganden N’,N’-bis[(2-

pyridyl)methyl]ethylenediamin (uns-penp), [Fe(uns-penp)Cl2]ClO4 x CH3CN, 

[{Fe(uns-penp)Cl}2O](ClO4)2 x 2CH3CN und dem Amidderivat N-Acetyl-N’,N’-

bis[(2-pyridyl)methyl]ethylenediamin (acetyl-uns-penp), [Fe2(acetyl-uns-

penp)2O](ClO4)2 x H2O, [Fe(acetyl-uns-penp)(tcc)Br] x (C2H5)2O und [{Fe(acetyl-

uns-penp)(tcc)}2O] x (C2H5)2O·CH3OH wurden synthetisiert und charakterisiert. 

Untersuchungen zur Catecholdioxygenasereaktivität der in situ dargestellten 

Komplexlösungen zeigten nur langsamere Reaktionen im Vergleich zu dem Eisen-

tmpa-System (Kapitel 3).  
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Abbildung 7-2: Die Liganden uns-penp und acetyl-uns-penp 

Die Ligandensysteme für Modelle von Kupferproteinen wurden nach denselben 

Gesichtspunkten verändert wie bei den Modellen für die Eisenproteine.  

Intramolekulare Hydroxylierung des Liganden war bei der Reaktion von elementa-

ren Sauerstoff mit Dikupfer(I)-Komplexen der Liganden L3 (L3 = α,α′-bis[(2-pyridy-

lethyl)amino]-m-xylol) und L5 (L5 = α,α′-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)-

amino]-m-xylol) zu beobachten. Der dinukleare Kupfer(I)-Komplex [Cu2L5](ClO4)2 
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und der Dikupfer(II)-Komplex [Cu2(L3-O)(OH)(ClO4)]ClO4 konnten durch Einkristall-

röntgenstrukturanalyse charakterisiert werden. Zusätzlich wurden Phenolat-

verbrückte Komplexe mit den Liganden L4-OH und Me-L5-OH synthetisiert (Struk-

turlösungen für [Cu2(L4-O)Cl3] mit L4 = α,α′-bis[N-methyl-N-(2-pyridylethyl)amino]-

m-xylol und [Cu2(Me-L5-O)(µ-X)](ClO4)2·nH2O (Me-L5-OH = 2,6-bis[N-(2-pyridyl-

ethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol und X = C3H3N2
– (prz), MeCO2

– 

und N3
–); Liganden siehe Abbildung 7-3). Temperaturabhängige magnetische 

Untersuchungen zeigten antiferromagnetische Kopplung der Kupferionen in 

diesen Komplexen (Kapitel 4).  
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Abbildung 7-3: Die Liganden L3, L4, L5 und L3-OH, L4-OH und Me-L5-OH  

Die Reaktionen von elementaren Sauerstoff mit Kupfer(I)-Komplexen der dreizäh-

nigen Liganden 1,1,4,7,7-pentamethyldiethylethylenetriamin (Me5dien), 1,1,4,7,7-

pentaethyldiethylethylenetriamin (Et5dien), N-methyl-[bis(2-pyridyl) methyl]amin 

(Me-bpa) und N-methyl-[(2-pyridyl)ethyl(2-pyridyl)methyl]amin (MeL) mit Hilfe der 

Tieftemperatur-„stopped-flow“-Technik untersucht. Die Bildung eines bis(µ−oxo)-

Kupferkomplexes konnte dabei bei tiefen Temperaturen nur für den Komplex 

[Cu(Me5dien)(CH3CN)]ClO4 spektroskopisch beobachtet und quantitativ kinetisch 

analysiert werden. Die Komplexe [(Me-bpa)Cu(Cl)2], [{(Me-bpa)Cu(Cl)(ClO4)}2], 

[{(MeL)Cu(Cl)(ClO4)}2] und [(MeL)Cu(NCS)2] konnten kristallographisch charakte-

risiert werden. (Liganden sieheAbbildung 7-4und Abbildung 7-5; Kapitel 5) 
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Abbildung 7-4: Die Liganden Me5dien und Et5dien 
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Abbildung 7-5: Die Liganden MeL und Me-bpa 
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Fachgruppe und im Fachbereichsrat, 
Zusatzseminare für Studenten 

FAU Erlangen-Nürnberg und  
TU München 

09/98 – 10/98 
Ferienakademie „Katalyse in der Anwendung und 
Forschung“ 

Collegium Alexandrinum der 
FAU Erlangen-Nürnberg 

09/00 – 11/00 
Planung und Teilnahme an der experimentellen 
Vorlesung „Chemische Zaubertricks“ von Prof. 
van Eldik 

FAU Erlangen-Nürnberg und 
JLU Gießen 

05/02 – 11/02 
Organisation und Durchführung des Umzugs der 
Arbeitsgruppe von Prof. Schindler 

Indian Institute of Technology,  
Kanpur, Indien 

02/04 – 04/04 
6 wöchiger Forschungsaufenthalt im Rahmen der 
Promotion  

 

 



Bibliography 

 98

Bibliography 

1.  Star Trek, The Original Series,  Journey to Babel, Season 2, Episode 10  
1967. 

 
2. Solomon, E. I.; Chen, P.; Metz, M.; Lee, S.-K.; Palmer, A. E., Angew. 

Chem. 2001, 113, (24), 4702-4724. 
 
3. Lippard, S.; Berg, J., Bioanorganische Chemie,  Spektrum, Akad. Verlag: 

Heidelberg, 1995. 
 
4. Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P., Chem. Rev. 2004, 104, (2), 

1013-1045. 
 
5. Stenkamp, R. E., Chem. Rev. 1994, 94, (3), 715-726. 
 
6. Kaim, W.; Rall, J., Angew. Chem. 1996, 108, 47-64. 
 
7. Jolley, R. L.; Evans, L. H.; Makino, N.; Mason, H. S., J. Biol. Chem. 1974, 

249, 335. 
 
8. Costas, M.; Mehn, M. P.; Jensen, M. P.; Que junior, L., Chem. Rev. 2004, 

104, (2), 939-986. 
 
9. Que junior, L.; Ho, R. Y. N., Chem. Rev. 1996, 96, (7), 2607-2624. 
 
10. Bugg, T. D. H.; Winfield, C. J., Nat. Prod. Rep. 1998, 15, (5), 513-530. 
 
11. Yamahara, R.; Ogo, S.; Masuda, H.; Watanabe, Y., Inorg. Biochem 2002, 

88, (3-4), 284-294. 
 
12. Ohlendorf, D. H.; Lipscomb, J. D.; Weber, P. C., Nature 1988, 336, (6197), 

403-405. 
 
13. Ohlendorf, D. H.; Orville, A. M.; Lipscomb, J. D., J. Mol. Biol. 1994, 244, (5), 

586-608. 
 
14. Orville, A. M.; Lipscomb, J. D.; Ohlendorf, D. H., Biochem. 1997, 36, (33), 

10052-10066. 
 
15. Elgren, T. E.; Orville, A. M.; Kelly, K. A.; Lipscomb, J. D.; Ohlendorf, D. H.; 

Que junior, L., Biochem. 1997, 36, (38), 11504-11513. 
 
16. Orville, A. M.; Elango, N.; Lipscomb, J. D.; Ohlendorf, D. H., Biochem. 

1997, 36, (33), 10039-10051. 
 
17. Fujii, H.; Funahashi, Y., Angew. Chem. Int. Ed. 2002, 41, (19), 3638-3641. 
 
18. Funabiki, T.; Sakamoto, H.; Yoshida, S.; Tamara, L., J. Chem. Soc., Chem. 

Commun. 1979, 17, 754-755. 



Bibliography 

 99

 
19. Funabiki, T.; Mizoguchi, A.; Sugimoto, T.; Tada, S.; Tsuji, M.; Sakamoto, H.; 

Yoshida, S., J. Am. Chem. Soc. 1986, 108, (11), 2921-2932. 
 
20. Jang, H. G.; Cox, D. D.; Que junior, L., J. Am. Chem. Soc. 1991, 113, (24), 

9200-9204. 
 
21. Cox, D. D.; Que junior, L., J. Am. Chem. Soc. 1988, 110, (24), 8085-8092. 
 
22. Cox, D. D.; Benkovic, S.; Bloom, L. M.; Bradley, F. C.; Nelson, M. J.; Que 

junior, L.; Wallick, D. E., J. Am. Chem. Soc. 1988, 110, (7), 2026-2032. 
 
23. Pascaly, M.; Duda, M.; Schweppe, F.; Zurlinden, K.; Müller, F. K.; Krebs, B., 

J. Chem. Soc., Dalt. Trans. 2001, (6), 828-838. 
 
24. Dietrich, J.; Heinemann, F. W.; Schrodt, A.; Schindler, S., Inorg. Chim. Acta 

1999, 288, (2), 206-209. 
 
25. Schatz, M.; Becker, M.; Thaler, F.; Hampel, F.; Schindler, S.; Jacobson, R. 

R.; Tyeklár, Z.; Murthy, N. N.; Gosh, P.; Chen, Q.; Zubieta, J.; Karlin, K. D., 
Inorg. Chem. 2001, 40, (10), 2312-2322. 

 
26. Foxon, S. P.; Walter, O.; Schindler, S., Eur. J. Inorg. Chem. 2002, (1), 111-

121. 
 
27. Battino, R., Ed., Solubility Data Series, Vol. 7: Oxygen and Ozone,  

Pergamon Press: New York, 1981;  519 pp. 
 
28. Yang, W.; Schmider, H.; Wu, Q.; Zhang, Y.; Wang, S., Inorg. Chem. 2000, 

39, (11), 2397-2404. 
 
29. Oki, A. R.; Glerup, J.; Hodgson, D. J., Inorg. Chem. 1990, 29, (13), 2435-

2441. 
 
30. Hojland, F.; Toftlund, H.; Yde Andersen, S., Acta Chem. Scand., Series A 

1983, A37, (3), 251-257. 
 
31. SADABS, Siemens Area Detector Absorption Correction,  Siemens. 
 
32. Sheldrick, G. M., SHELX-97,  Universität Göttingen: 1997. 
 
33. Karlin, K. D.; Kaderli, S.; Zuberbühler, A. D., Acc. Chem. Res. 1997, 30, (3), 

139-147. 
 
34. Duda, M.; Pascaly, M.; Krebs, B., Chem. Comm. 1997, (9), 835-836. 
 
35. Merkel, M.; Schnieders, D.; Baldeau, S. M.; Krebs, B., Eur. J. Inorg. Chem. 

2004, (4), 783-790. 
 



Bibliography 

 100

36. Raffard, N.; Carina, R.; Simaan, A. J.; Sainton, J.; Riviere, E.; Tchertanov, 
L.; Bourcier, S.; Bouchoux, G.; Delroisse, M.; Banse, F.; Girerd, J.-J., Eur. 
J. Inorg. Chem. 2001, (9), 2249-2254. 

 
37. Koch, W. O.; Krüger, H.-J., Angew. Chem. Int. Ed. 1996, 34, (23-24), 2671-

2674. 
 
38. Feig, A. L.; Becker, M.; Schindler, S.; van Eldik, R.; Lippard, S., Inorg. 

Chem. 1996, 35, (9), 2590-2601. 
 
39. Becker, M.; Schindler, S.; Karlin, K. D.; Kaden, T. A.; Kaderli, S.; Palanché, 

T.; Zuberbühler, A. D., Inorg. Chem. 1999, 38, (9), 1989-1995. 
 
40. Schindler, S., Eur. J. Inorg. Chem. 2000, (11), 2311-2326. 
 
41. Merkel, M.; Pascaly, M.; Wieting, M.; Duda, M.; Rompel, A., Z. Anorg. Allg. 

Chem. 2003, 629, (12-13), 2216-2221. 
 
42. Kojima, T.; Leising, R. A.; Shiping, Y.; Que junior, L., J. Am. Chem. Soc. 

1993, 115, (24), 11328-11335. 
 
43. Kucharski, E. S.; R., M. W.; White, A. H., Aust. J. Chem. 1978, 31, (1), 53-

56. 
 
44. Kryatov, S. V.; Rybak-Akimova, E. V.; Schindler, S., Chem. Rev. 2005, 105, 

(6), 2175-2226. 
 
45. Lewis, E. A.; Tolman, W. B., Chem. Rev. 2004, 104, (2), 1047-1076. 
 
46. Simaan, A. J.; Döpner, S.; Banse, F.; Bourcier, S.; Bouchoux, G.; Boussac, 

A.; Hildebrandt, P.; Girerd, J.-J., Eur. J. Inorg. Chem. 2000, (7), 1627-1633. 
 
47. Simaan, A. J.; Banse, F.; Mialane, P.; Boussac, A.; Un, S.; Kargar-Grisel, 

T.; Bouchoux, G.; Girerd, J.-J., Eur. J. Inorg. Chem. 1999, (6), 993-996. 
 
48. Hazell, A.; McKenzie, C. J.; Nielsen, L. P.; Schindler, S.; Weitzer, M., J. 

Chem. Soc., Dalt. Trans. 2002, (3), 310-317. 
 
49. Duelund, L.; Hazell, R.; McKenzie, C. J.; Preuss Nielsen, L.; Toftlund, H., J. 

Chem. Soc., Dalt. Trans. 2001, (2), 152-156. 
 
50. Bernal, I.; Jensen, I. M.; Jensen, K. B.; McKenzie, C. J.; Toftlund, H.; 

Tuchagues, J.-P., J. Chem. Soc., Dalt. Trans. 1995, (22), 3667-3675. 
 
51. Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.; Stubna, A.; 

Kim, J.; Münck, E.; Nam, W.; Que junior, L., J. Am. Chem. Soc. 2004, 126, 
(2), 472-473. 

 
52. Mandel, J.; Maricondi, C.; Douglas, B., Inorg. Chem. 1988, 27, (17), 2990-

2996. 
 



Bibliography 

 101

53. Schatz, M.; Leibold, M.; Foxon, S. P.; Weitzer, M.; Heinemann, F. W.; 
Hampel, F.; Walter, O.; Schindler, S., J. Chem. Soc., Dalt. Trans. 2003, (8), 
1480-1487. 

 
54. Matouzenko, G. S.; Bousseksou, A.; Lecocq, S.; van Koningsbruggen, P. 

J.; Perrin, M.; Kahn, O.; Collet, A., Inorg. Chem. 1997, 36, (14), 2975-2981. 
 
55. Davies, C. J.; Fawcett, J.; Shutt, R.; Solan, G. A., J. Chem. Soc., Dalt. 

Trans. 2005, (15), 2630-2640. 
 
56. Hanaoka, K.; Kikuchi, K.; Urano, Y.; Nagano, T., J. Chem. Soc., Perkin 

Trans. 2 2001, (9), 1840-1843. 
 
57. Incarvito, C.; Lam, M.; Rhatigan, B.; Rheingold, A. L.; Quin, C. J.; Gavrilova, 

A. L.; Bosnich, B., J. Chem. Soc., Dalt. Trans. 2001, (23), 3478-3488. 
 
58. Horner, O.; Charlot, M.-F.; Boussac, A.; Un, S.; Kargar-Grisel, T.; 

Bouchoux, G.; Girerd, J.-J., Inorg. Chem. 1999, 38, (6), 1222-1232. 
 
59. Mandel, J.; Douglas, B., Inorg. Chim. Acta 1989, 155, (1), 55-69. 
 
60. Sigel, H.; Martin, R. B., Chem. Rev. 1982, 82, (4), 385-426. 
 
61. Guajardo, R. J.; Hudson, S. E.; Brown, S. J.; Mascharak, P. K., J. Am. 

Chem. Soc. 1993, 115, (18), 7971-7977. 
 
62. Marlin, D. S.; Mascharak, P. K., Chem. Soc. Rev. 2000, 29, (1), 69-74. 
 
63. Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K., J. Am. Chem. Soc. 

2001, 123, (14), 3247-3259. 
 
64. Huang, W.; Jia, J.; Cummings, J.; Nelson, M.; Schneider, G.; Lindqvist, Y., 

Structure 1997, 5, (5), 691-699. 
 
65. Nagashima, S.; Nakasako, M.; Dohmae, N.; Tsujimura, M.; Takio, K.; 

Odaka, M.; Yohda, M.; Kamiya, N.; Endo, I., Nat. Struct. Biol. 1998, 5, (5), 
347-351. 

 
66. Afshar, R.; Patra, A. K.; Olmstead, M. M.; Mascharak, P. K., Inorg. Chem. 

2004, 43, (18), 5736-5743. 
 
67. Patra, A. K.; Afshar, R.; Rowland, J. M.; Olmstead, M. M.; Mascharak, P. 

K., Angew. Chem. Int. Ed. 2003, 42, (37), 4517-4521. 
 
68. Patra, A. K.; Rowland, J. M.; Marlin, D. S.; Bill, E.; Olmstead, M. M.; 

Mascharak, P. K., Inorg. Chem. 2003, 42, (21), 6812-6823. 
 
69. Marlin, D. S.; Olmstead, M. M.; Mascharak, P. K., Eur. J. Inorg. Chem. 

2002, (4), 859-865. 
 



Bibliography 

 102

70. Patra, A. K.; Afshar, R.; Olmstead, M. M.; Mascharak, P. K., Angew. Chem. 
Int. Ed. 2002, 41, (14), 2512-2515. 

 
71. Guajardo, R. J.; Chavez, F.; Farinas, E. T.; Mascharak, P. K., J. Am. Chem. 

Soc. 1995, 117, (13), 3883-3884. 
 
72. Rowland, J. M.; Olmstead, M. M.; Mascharak, P. K., Inorg. Chim. Acta 

2002, 332, (1), 37-40. 
 
73. Patra, A. K.; Mascharak, P. K., Inorg. Chem. 2003, 42, (23), 7363-7365. 
 
74. Müller, H.; Seidel, W.; Görls, H., J. Organomet. Chem. 1994, 472, (1-2), 

215-220. 
 
75. Kryatov, S. V.; Nazarenko, A.; Robinson, P. D.; Rybak-Akimova, E. V., 

Chem. Comm. 2000, (11), 921-922. 
 
76. Kurtz junior, D. M., Chem. Rev. 1990, 90, (4), 585-606. 
 
77. Bugg, T. D. H.; Lin, G., Chem. Comm. 2001, (11), 941-952. 
 
78. Yamahara, R.; Ogo, S.; Masuda, H.; Watanabe, Y., J. Inorg. Biochem. 

2002, 91, (1), 151-158. 
 
79. Jo, D.-H.; Que junior, L., Angew. Chem. Int. Ed. 2000, 39, (23), 4284-4287. 
 
80. Velusamy, M.; Palaniandavar, M., Inorg. Chem. 2003, 42, (25), 8283-8293. 
 
81. Viswanathan, R.; Palaniandavar, M.; Balasubramanian, T.; Muthiah, T. P., 

Inorg. Chem. 1998, 37, (12), 2943-2951. 
 
82. Merkel, M.; Müller, F. K.; Krebs, B., Inorg. Chim. Acta 2002, 337, (all), 308-

316. 
 
83. Mialane, P.; Anxolabéhère-Mallart, E.; Blondin, G.; Nivorojkine, A.; 

Guilhem, J.; Tchertanova, L.; Cesario, M.; Ravi, N.; Bominaar, E.; Girerd, 
J.-J.; Münck, E., Inorg. Chim. Acta 1997, 263, (1-2), 367-378. 

 
84. Spartalian, K.; Carrano, C. J., Inorg. Chem. 1989, 28, (1), 19-24. 
 
85. Heistand II, R. H.; Roe, L. A.; Que junior, L., Inorg. Chem. 1982, 21, (2), 

676-681. 
 
86. Heistand II, R. H.; Lauffer, R. B.; Fikrig, E.; Que junior, L., J. Am. Chem. 

Soc. 1982, 104, (10), 2789-2796. 
 
87. Merkel, M.; Pascaly, M.; Krebs, B.; Astner, J.; Foxon, S. P.; Schindler, S., 

Inorg. Chem. 2005, 44, (21), 7582-7589. 
 
88. Vetting, M. W.; D' Argenio, D. A.; Ornston, L. N.; Ohlendorf, D. H., Biochem. 

2000, 39, (27), 7943-7955. 



Bibliography 

 103

 
89. Davis, M. I.; Orville, A. M.; Neese, F.; Zaleski, J. M.; Lipscomb, J. D.; 

Solomon, E. I., J. Am. Chem. Soc. 2002, 124, (4), 602-614. 
 
90. Moon, D.; Lah, M. S.; Sesto, R. E. D.; Miller, J. S., Inorg. Chem. 2002, 41, 

(18), 4708-4714. 
 
91. Pascaly, M.; Duda, M.; Rompel, A.; Sift, B. H.; Meyer-Klaucke, W.; Krebs, 

B., Inorg. Chim. Acta 1999, 291, (1-2), 289-299. 
 
92. Nishida, Y.; Okuno, T.; Ito, S.; Harada, A.; Ohba, S.; Matsushima, H.; Tokii, 

T., Chem. Lett. 1995, (10), 885-886. 
 
93. Wilkinson, E. C.; Dong, Y.; Que junior, L., J. Am. Chem. Soc. 1994, 116, 

(18), 8394-8395. 
 
94. Kwak, B.; Cho, K. W.; Pyo, M.; Lah, M. S., Inorg. Chim. Acta 1999, 290, (1), 

21-27. 
 
95. Whittlesey, B. R.; Pang, Z.; Holwerda, R. A., Inorg. Chim. Acta 1999, 284, 

(1), 124-126. 
 
96. Itoh, S.; Okuno, T.; Matsushima, H.; Tokii, T.; Nishida, Y., J. Chem. Soc., 

Dalt. Trans. 1996, (23), 4479-4484. 
 
97. Hazell, A.; Jensen, K. B.; McKenzie, C. J.; Toftlund, H., Inorg. Chem. 1994, 

33, (14), 3127-3134. 
 
98. Buchanan, R. M.; Chen, S.; Richardson, J. F.; Bressan, M.; Forti, L.; 

Morvillo, A.; Fish, R. H., Inorg. Chem. 1994, 33, (15), 3208-3209. 
 
99. Dong, Y.; Fujii, H.; Hendrich, M. P.; Leising, R. A.; Pan, G.; Randall, C. R.; 

Wilkinson, E. C.; Zang, Y.; Que junior, L., J. Am. Chem. Soc. 1995, 117, 
(10), 2778-2792. 

 
100. Norman, R. E.; Yan, S.; Que junior, L.; Backes, G.; Ling, J.; Sanders-Loehr, 

J.; Zhang, J. H.; O'Connor, C. J., J. Am. Chem. Soc. 1990, 112, (4), 1554-
1562. 

 
101. Yan, S.; Cox, D. D.; Pearce, L. L.; Juarez-Garcia, C.; Que junior, L.; Zhang, 

J. H.; O'Connor, C. J., Inorg. Chem. 1989, 28, (13), 2507-2509. 
 
102. Musie, G.; Lai, C.-H.; Reibenspies, J. H.; Sumner, L. W.; Darensbourg, M. 

Y., Inorg. Chem. 1998, 37, (16), 4086-4093. 
 
103. Rowland, J. M.; Olmstead, M. M.; Mascharak, P. K., Inorg. Chem. 2001, 40, 

(12), 2810-2817. 
 
104. Hanaoka, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T., Angew. Chem. 

Int. Ed. 2003, 42, (26), 2996-2999. 
 



Bibliography 

 104

105. Ghosh, K.; Eroy-Reveles, A. A.; Avila, B.; Holman, T. R.; Olmstead, M. M.; 
Mascharak, P. K., Inorg. Chem. 2004, 43, (9), 2988-2997. 

 
106. Coppens, P., Crystallographic Computing,  Eds. Ahmed, F. R.; Hall, S. R.; 

Huber, C. P., Munksgard, Copenhagen, 1970;  255-270. 
 
107. SHELXTL NT 6.12; Bruker AXS, Inc.: Madison, WI, U.S.A., 2002. 
 
108. Decker, H.; Dillinger, R.; Tuczek, F., Angew. Chem. Int. Ed. 2000, 39, (9), 

1591-1595. 
 
109. Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E., Chem. Rev. 1996, 96, 

(7), 2563-2606. 
 
110. Lerch, K., ACS Symp. Ser. 1995, 600, 64-80. 
 
111. Sánchez-Ferrer, Á.; Rodriguéz-López, J. N.; García-Cánovas, F.; García-

Carmona, F., Biochim. Biophys. Acta 1995, 1247, (1), 1-11. 
 
112. Karlin, K. D.; Hayes, J. C.; Gultneth, Y.; Cruse, R. W.; McKnown, J. W.; 

Hutchinson, J. P.; Zubieta, J., J. Am. Chem. Soc. 1984, 106, (7), 2121-
2128. 

 
113. Karlin, K. D.; Dahlstrom, P. L.; Cozzette, S. N.; Scensny, P. M.; Zubieta, J., 

J. Chem. Soc., Chem. Commun. 1981, (17), 881-882. 
 
114. Pidcock, E.; DeBeer, S.; Obias, H. V.; Hedman, B.; Hodgson, K. O.; Karlin, 

K. D.; Solomon, E. I., J. Am. Chem. Soc. 1999, 121, (9), 1870-1878. 
 
115. Karlin, K. D.; Nasir, M. S.; Cohen, B. I.; Cruse, R. W.; Kaderli, S.; 

Zuberbühler, A. D., J. Am. Chem. Soc. 1994, 116, (4), 1324-1336. 
 
116. Cruse, R. W.; Kaderli, S.; Karlin, K. D.; Zuberbühler, A. D., J. Am. Chem. 

Soc. 1988, 110, (20), 6882-6883. 
 
117. Holland, P. L.; Rodgers, K. R.; Tolman, W. B., Angew. Chem. Int. Ed. 1999, 

38, (8), 1139-1142. 
 
118. Battaini, G.; Casella, L.; Gullotti, M.; Monzani, E.; Nardin, G.; Perotti, A.; 

Randaccio, L.; Santagostini, L.; Heinemann, F. W.; Schindler, S., Eur. J. 
Inorg. Chem. 2003, (6), 1197-1205. 

 
119. Blackman, A. G.; Tolman, W. B., Struct. Bonding (Berlin) 2000, 97, 179-

211. 
 
120. Karlin, K. D.; Tyeklár, Z.; Zuberbühler, A. D., Bioinorganic Catalysis,  Ed. 

Reedijk, J., Marcel Dekker, Inc., 1993. 
 
121. Sorrell, T. N., Tetrahedron 1989, 45, (1), 3-68. 
 



Bibliography 

 105

122. Mahapatra, S.; Kaderli, S.; Llobet, A.; Neuhold, Y.-M.; Palanché, T.; Halfen, 
J. A.; Young junior, V. G.; Kaden, T. A.; Que junior, L.; Zuberbühler, A. D.; 
Tolman, W. B., Inorg. Chem. 1997, 36, (27), 6343-6356. 

 
123. Casella, L.; Gullotti, M.; Bartosek, M.; Pallanza, G.; Laurenti, E., J. Chem. 

Soc., Chem. Commun. 1991, (18), 1235-1237. 
 
124. Sorrell, T. N.; Vankai, V. A.; Garrity, M. L., Inorg. Chem. 1991, 30, (2), 207-

210. 
 
125. Sorrell, T. N.; Garrity, M. L., Inorg. Chem. 1991, 30, (2), 210-215. 
 
126. Ma, H.; Allmendinger, M.; Thewalt, U.; Lentz, A.; Klinga, M.; Rieger, B., Eur. 

J. Inorg. Chem. 2002, (11), 2857-2867. 
 
127. Utz, D.; Heinemann, F. W.; Hampel, F.; Richens, D. T.; Schindler, S., Inorg. 

Chem. 2003, 42, (5), 1430-1436. 
 
128. Ryan, S.; Adams, H.; Fenton, D. E.; Becker, M.; Schindler, S., Inorg. Chem. 

1998, 37, (9), 2134-2140. 
 
129. Becker, M.; Schindler, S.; van Eldik, R., Inorg. Chem. 1994, 33, (24), 5370-

5371. 
 
130. Menif, R.; Martell, A. E.; Squattrito, P. J.; Clearfield, A., J. Am. Chem. Soc. 

1990, 29, (23), 4723-4729. 
 
131. Menif, R.; Martell, A. E., J. Chem. Soc., Chem. Commun. 1989, (20), 1521-

1523. 
 
132. Gelling, O. J.; van Bolhuis, F.; A., M.; Feringa, B. L., J. Chem. Soc., Chem. 

Commun. 1988, (8), 552-554. 
 
133. Casella, L.; Gullotti, M.; Pallanza, G.; Rigoni, L., J. Am. Chem. Soc. 1988, 

110, (13), 4221-4227. 
 
134. Casella, L.; Gullotti, M.; Pallanza, G., Biochem. Soc. Trans. 1988, 16, (5), 

821-822. 
 
135. Casella, L.; Rigoni, L., Rev. Port. Quim. 1985, 27, 301. 
 
136. Drew, M. G. B.; Trocha-Grimshaw, J.; McKillop, K. P., Polyhedron 1989, 8, 

(20), 2513-2515. 
 
137. Schindler, S.; Elias, H., Z. Naturforsch. 1990, 45b, 607-618. 
 
138. Lorösch, J.; Haase, W., Inorg. Chim. Acta 1985, 108, (1), 35-40. 
 
139. Mandal, S. K.; Nag, K., J. Chem. Soc., Dalt. Trans. 1984, (10), 2141-2149. 
 



Bibliography 

 106

140. Grzybowski, J. J.; Merell, P. H.; Urbach, F. L., Inorg. Chem. 1978, 17, (11), 
3078-3082. 

 
141. Dickson, I. E.; Robson, R., Inorg. Chem. 1974, 13, (6), 1301-1306. 
 
142. Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. 

D., J. Org. Chem. 1996, 61, (11), 3849-3862. 
 
143. Ghosh, D.; Mukherjee, R., Inorg. Chem. 1998, 37, (26), 6597-6605. 
 
144. Ghosh, D.; Lal, T. K.; Ghosh, S.; Mukherjee, R., J. Chem. Soc., Chem. 

Commun. 1996, (1), 13-14. 
 
145. Farrugia, L. J., J. Appl. Cryst. 1997, 30, (5 Pt. 1), 565. 
 
146. Addison, W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C., J. 

Chem. Soc., Dalt. Trans. 1984, (7), 1349-1356. 
 
147. Karlin, K. D.; Hayes, J. C.; Hutchinson, J. P.; Zubieta, J., Inorg. Chim. Acta 

1983, 78, (4), L45-L46. 
 
148. Murthy, N. N.; Mahroof-Tahir, M.; Karlin, K. D., Inorg. Chem. 2001, 40, (4), 

628-635. 
 
149. Belle, C.; Beguin, C.; Gautier-Luneau, I.; Hamman, S.; Philouze, C.; Pierre, 

J.-L.; Thomas, F.; Torelli, S.; Saint-Aman, E.; Bonin, M., Inorg. Chem. 2002, 
41, (3), 479-491. 

 
150. Majeste, R. J.; Klein, C. L.; Stevens, E. D., Acta Cryst. Sect. C, Cryst. 

Struct. Commun. 1983, C39, (1), 52-54. 
 
151. Karlin, K. D.; Farooq, A.; Hayes, J. C.; Cohen, B. I.; Rowe, T. M.; Sinn, E.; 

Zubieta, J., Inorg. Chem. 1987, 26, (8), 1271-1280. 
 
152. Kamaras, P.; Cajulis, M. C.; Rapta, M.; Brewer, G.; Jameson, G. B., J. Am. 

Chem. Soc. 1994, 16, (22), 10334-10335. 
 
153. Gupta, R.; Mukherjee, R., Polyhedron 2000, 19, (6), 719-724. 
 
154. Mukherjee, R., Chapter on Copper,  Eds. McCleverty, J. A.; Meyer, T. J., 

Volume Ed: Fenton, D. E., Comprehensive Coordination Chemistry-II: From 
Biology to NanotechnologyElsevier/Pergamon, Amsterdam, 2003; Vol. 6,  
747-910. 

 
155. Ghosh, D.; Lal, T. K.; Ghosh, S.; Mukherjee, R., Chem. Commun. 1996, 13. 
 
156. Karlin, K. D.; Cohen, B. I.; Hayes, J. C.; Farooq, A.; Zubieta, J., Inorg. 

Chem. 1987, 26, (1), 147-153. 
 
157. Kubas, G. J.; Monzyk, B.; Crumbliss, A. L., Inorg. Synth. 1979, 19, 90-92. 
 



Bibliography 

 107

158. Evans, D. F., J. Chem. Soc., Abstracts 1959, 2003-2005. 
 
159. O'Connor, C. J., Prog. Inorg. Chem. 1982, 29, 203-283. 
 
160. Weitzer, M.; Schatz, M.; Hampel, F.; Heinemann, F. W.; Schindler, S., J. 

Chem. Soc., Dalt. Trans. 2002, (5), 686-694. 
 
161. Mahapatra, S.; Gupta, N.; Mukherjee, R., J. Chem. Soc., Dalt. Trans. 1992, 

(20), 3041-3045. 
 
162. Geary, W. J., Coord. Chem. Rev. 1971, 7, (1), 81-122. 
 
163. Farrugia, L. J., J. Appl. Cryst. 1999, 32, (4), 837-838. 
 
164. SADABS, Bruker-AXS, Inc.,  Madison, WI, U.S.A., 2002. 
 
165. Reedijk, J.; Bouwman, E.; Editors, Bioinorganic Catalysis, Second Edition, 

Revised and Expanded,  1999;  606 pp. 
 
166. Schatz, M.; Raab, V.; Foxon, S. P.; Brehm, G.; Schneider, S.; Reiher, M.; 

Holthausen, M. C.; Sundermeyer, J.; Schindler, S., Angew. Chem. Int. Ed. 
2004, 43, (33), 4360-4363. 

 
167. Hatcher, L. Q.; Karlin, K. D., J. Biol. Inorg. Chem. 2004, 9, (6), 669-683. 
 
168. Jacobson, R. R.; Tyeklár, Z.; Farooq, A.; Karlin, K. D.; Liu, S.; Zubieta, J., J. 

Am. Chem. Soc. 1988, 110, (11), 3690-3692. 
 
169. Holland, P. L.; Cramer, P. J.; Wilkinson, E. C.; Mahapatra, S.; Rodgers, K. 

R.; Itoh, S.; Taki, M.; Fukuzumi, S.; Que junior, L.; Tolman, W. B., J. Am. 
Chem. Soc. 2000, 122, (5), 792-802. 

 
170. Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, Y.; Hashimoto, S.; 

Kitegawa, T.; Toriumi, K.; Tatsumi, K.; Nakamura, A., J. Am. Chem. Soc. 
1992, 114, (4), 1277-1291. 

 
171. Obias, H. V.; Lin, Y.; Murthy, N. N.; Pidcock, E.; Solomon, E. I.; Ralle, M.; 

Blackburn, N. J.; Neuhold, Y.-M.; Zuberbühler, A. D.; Karlin, K. D., J. Am. 
Chem. Soc. 1998, 120, (49), 12960-12961. 

 
172. Cole, A. P.; Mahadevan, V.; Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P., 

Inorg. Chem. 2005, 44, (21), 7345-7364. 
 
173. Sanyal, I.; Mahroof-Tahir, M.; Nasir, M. S.; Ghosh, P.; Cohen, B. I.; 

Gultneth, Y.; Cruse, R. W.; Farrugia, L. J.; Karlin, K. D.; Liu, S.; Zubieta, J., 
Inorg. Chem. 1992, 31, (21), 4322-4332. 

 
174. Itoh, S.; Taki, M.; Nakao, H.; Holland, P. L.; Tolman, W. B.; Que junior, L.; 

Fukuzumi, S., Angew. Chem. Int. Ed. 2000, 39, (2), 398-400. 
 



Bibliography 

 108

175. Cole, A. P.; Root, D. E.; Mukherjee, P.; Solomon, E. I.; Stack, T. D. P., 
Science 1996, 273, (5283), 1848-1850. 

 
176. Osako, T.; Tachi, Y.; Taki, M.; Fukuzumi, S.; Itoh, S., Inorg. Chem. 2001, 

40, (26), 6604-6609. 
 
177. Que junior, L.; Tolman, W. B., Angew. Chem. Int. Ed. 2002, 41, (7), 1114-

1137. 
 
178. Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Kaderli, S.; Young junior, V. 

G.; Que junior, L.; Zuberbühler, A. D.; Tolman, W. B., Science 1996, 271, 
(5254), 1397-1400. 

 
179. Weitzer, M.; Schindler, S.; Brehm, G.; Schneider, G.; Hörmann, E.; Jung, 

B.; Kaderli, S.; Zuberbühler, A. D., Inorg. Chem. 2003, 42, (6), 1800-1806. 
 
180. Becker, M.; Heinemann, F. W.; Schindler, S., Chem. Eur. J. 1999, 5, (11), 

3124-3129. 
 
181. Scott, M. J.; Holm, R. H., J. Am. Chem. Soc. 1994, 116, (25), 11357-11367. 
 
182. Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbühler, A. D., Talanta 1985, 32, 

(2), 95-101. 
 
183. North, A. C. T.; Phillips, D. C.; Mathews, F. S., Acta Cryst. Sect. A, 

Foundations of Crystallography 1968, A24, (3), 351-359. 
 
184. Coppens, P., Evaluation of absorption and extinction in single-crystal 

structure analysis,  Eds. Ahmed, F. R.; Hall, S. R.; Huber, C. P., Crystallogr. 
Comput., Proc. Int. Summer Sch.Munksgard, Copenhagen, 1970;  255-270. 

 
185. Farrugia, L. J. WINGX ver 1.61, An Integrated Systems of Windows 

programs for the Solution, Refinement and Analysis of Single-Crystal X-ray 
Diffraction data; Department of Chemistry, University of Glasgow, 2004. 

 
186. Gupta, R.; Mukherjee, S.; Mahapatra, S.; Ray, M.; Mukherjee, R., Inorg. 

Chem. 1992, 31, (1), 139-141. 
 
187. Romary, J. K.; Zachariasen, R. D.; Barger, J. D.; Schiesser, H., J. Chem. 

Soc. C 1968, (23), 2884-7. 
 
188. de Bruin, B.; Verhagen, J. A. W.; Schouten, C. H. J.; Gal, A. W.; 

Feichtinger, D.; Plattner, D. A., Chem. Eur. J. 2001, 7, (2), 416-422. 
 
189. Mukherjee, J.; Balamurugan, V.; Gupta, R.; Mukherjee, R., J. Chem. Soc., 

Dalt. Trans. 2003, (19), 3686-3692. 
 
190. Jensen, K. B.; McKenzie, C. J.; Simonsen, O.; Toftlund, H.; Hazell, A., 

Inorg. Chim. Acta 1997, 257, (2), 163-172. 
 



Bibliography 

 109

191. Houben, J.; Weyl, T., Methoden der Organischen Chemie,  4 ed.; G. 
Thieme Verlag, Stuttgart, 1957; Vol. XI(I),  650-654. 

 
192. Clarke, H. T.; Gillespie, H. B.; Weisshaus, S. Z., J. Am. Chem. Soc. 1933, 

55, (11), 4571-4587. 
 
193. Moore, M. L., Org. Reactions 1949, 5, 301-330. 
 
194. Eschweiler, W., Ber. Deutsch. Chem. Gesell. 1905, 38, 880-882. 
 
195. Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. 

D., J. Org. Chem. 1996, 61, 3849-3862. 
 
196. Osako, T.; Ueno, Y.; Tachi, Y.; Itoh, S., Inorg. Chem. 2003, 42, (24), 8087-

8097. 
 
197. Lee, D. H.; Murthy, N. N.; Lin, Y.; Nasir, N. S.; Karlin, K. D., Inorg. Chem. 

1997, 36, (27), 6328-6334. 
 
198. Liang, H.-C.; Zhang, C. X.; Henson, M. J.; Sommer, R. D.; Hatwell, K. R.; 

Kaderli, S.; Zuberbühler, A. D.; Rheingold, A. L.; Solomon, E. I.; Karlin, K. 
D., J. Am. Chem. Soc. 2002, 124, (16), 4170-4171. 

 
199. Liang, H.-C.; Henson, M. J.; Hatcher, L. Q.; Vance, M. A.; Zhang, C. X.; 

Lahti, D.; Kaderli, S.; Sommer, R. D.; Rheingold, A. L.; Zuberbühler, A. D.; 
Solomon, E. I.; Karlin, K. D., Inorg. Chem. 2004, 43, (14), 4115-4117. 

 
200. Balamurugan, V.; Mukherjee, J.; Hundal, M. S.; Mukherjee, R., J. Mol. 

Struct. 2005, in press. 
 
201. Mukherjee, J.; Gupta, R.; Mallah, T.; Mukherjee, R., Inorg. Chim. Acta 

2005, 358, (9), 2711-2717. 
 
202. Mukherjee, J.; Balamurugan, V.; Hundal, M. S.; Mukherjee, R., J. Chem. 

Sci. 2005, 117, (2), 111-116. 
 
203. Scott, M. J.; Zhang, H. H.; Lee, S. C., J. Am. Chem. Soc. 1995, 117, (1), 

568-569. 
 
204. Breeze, S. R.; Wang, S., Inorg. Chem. 1996, 35, (11), 3404-3408. 
 
205. Scott, M. J.; Goddard, C. A.; Holm, R. H., Inorg. Chem. 1996, 35, (9), 2558-

2567. 
 
206. Kickelbick, G., Acta Cryst. Sect. E, Struct. Rep. Online 2001, E57, (8), 

m365-m367. 
 
207. Brennan, T. F.; Davies, G.; El-Sayed, M. A.; El-Shazly, M. F.; Rupich, M. 

W.; Veidis, M., Inorg. Chim. Acta 1981, 51, (1), 45-48. 
 



Bibliography 

 110

208. Scott, M. J.; Lee, S. C.; Holm, R. H., Inorg. Chem. 1994, 33, (21), 4651-
4662. 

 
209. Elder, M.; McKenzie, E. D., Inorg. Chim. Acta 1978, 31, 211-215. 
 
210. Lee, D. H.; Murthy, N. N.; Karlin, K. D., Inorg. Chem. 1996, 35, (4), 804-

805. 
 
211. Bürger, K.-S.; Chauduri, P.; Wieghardt, K., Inorg. Chem. 1996, 35, (9), 

2704-2707. 
 
212. Jiang, F.; Conry, R. R.; Bubacco, L.; Tyeklár, Z.; Jacobson, R. R.; Karlin, K. 

D.; Peisach, J., J. Am. Chem. Soc. 1993, 115, (6), 2093-2102. 
 
213. Tolman, W. B., Acc. Chem. Res. 1997, 30, (6), 227-237. 
 
214. Liang, H.-C.; Henson, M. J.; Hatcher, L. Q.; Vance, M. A.; Zhang, C. X.; 

Lahti, D.; Kaderli, S.; Sommer, R. D.; Rheingold, A. L.; Zuberbühler, A. D.; 
Solomon, E. I.; Karlin, K. D., Inorg. Chem. 2004, 43, 4115-4117. 

 
215. Liang, H.-C.; Karlin, K. D.; Dyson, R.; Kaderli, S.; Jung, B.; Zuberbühler, A. 

D., Inorg. Chem. 2000, 39, (26), 5884-5894. 
 
216. Henson, M. J.; Vance, M. A.; Zhang, C. X.; Liang, H.-C.; Karlin, K. D.; 

Solomon, E. I., J. Am. Chem. Soc. 2003, 125, (17), 5186-5192. 
 
217. Liang, H.-C.; Zhang, C. X.; Henson, M. J.; Sommer, R. D.; Hatwell, K. R.; 

Kaderli, S.; Zuberbühler, A. D.; Rheingold, A. L.; Solomon, E. I.; Karlin, K. 
D., J. Am. Chem. Soc. 2002, 124, 4170-4171. 

 
218. Obias, H. V.; Lin, Y.; Murthy, N. N.; Pidcock, E.; Solomon, E. I.; Ralle, M.; 

Blackburn, N. J.; Neuhold, Y.-M.; Zuberbühler, A. D.; Karlin, K. D., J. Am. 
Chem. Soc. 1998, 120, 12960-12961. 

 
219. Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Kaderli, S.; Young Jr., V. G.; 

Que Jr., L.; Zuberbühler, A. D.; Tolman, W. B., Science 1996, 271, 1397-
1400. 

 
220. Mahapatra, S.; Kaderli, S.; Llobet, A.; Neuhold, Y.-M.; Palanché, T.; Halfen, 

J. A.; Young Jr., V. G.; Kaden, T. A.; Que Jr., L.; Zuberbühler, A. D.; 
Tolman, W. B., Inorg. Chem. 1997, 36, 6343-6356. 

 
221. Osako, T.; Terada, S.; Tosha, T.; Nagatomo, S.; Furutachi, H.; Fujiunami, 

S.; Kitagawa, T.; Suzuki, M.; Itoh, S., J. Chem. Soc., Dalt. Trans. 2005, 
(21), 3514-3521. 

 
222. Verdaguer, M.; Gouteron, J.; Jeannin, S.; Jeannin, Y.; Kahn, O., Inorg. 

Chem. 1984, 23, (25), 4291-4296. 
 
223. Escuer, A.; Font-Bardia, M.; Penalba, E.; Solans, X.; Vicente, R., Inorg. 

Chim. Acta 1999, 286, (2), 189-196. 



Bibliography 

 111

 
224. Sletten, J.; Hope, H.; Julve, M.; Kahn, O.; Verdaguer, M.; Dvorkin, A., Inorg. 

Chem. 1988, 27, (3), 542-549. 
 
225. Escuer, A.; Font-Bardia, M.; Penalba, E.; Solans, X.; Vicente, R., Inorg. 

Chim. Acta 2000, 298, (2), 195-201. 
 
 
 


	Inaugural-Dissertation
	Jörg Astner
	Inaugural-Dissertation

	Jörg Astner
	Acknowledgements
	For my Parents
	For Maike


	Table of Contents
	Ligands used
	Abbreviations
	– Introduction
	Motivation
	Iron and copper proteins
	Mechanisms of dioxygen binding
	Characterisation
	Projects

	- Chelate Ring Size Variations and their Effects on Coordina
	Introduction
	Experimental Section
	General Remarks
	Physical Measurements.
	Stopped-flow Measurements.
	Determination of the Catechol 1,2-Dioxygenase activity.
	Spectrophotometric Titrations.
	Ligand Syntheses.
	Complex Syntheses.
	X-ray Crystallographic studies.

	Results and Discussion
	Comparative Discussion.
	Summary

	- Iron(III) Complexes with the Ligands N',N'-bis[(2-pyridyl)
	Introduction
	Results and Discussion
	[Fe2(acetyl-uns-penp)2O](ClO4)2 x H2O (6).
	[Fe(acetyl-uns-penp)(tcc)Br] x (C2H5)2O (7).
	[{Fe(acetyl-uns-penp)(tcc)}2O] x (C2H5)2O x CH3OH (8).
	[Fe(uns-penp)Cl2]ClO4 x CH3CN (9).
	[{Fe(uns-penp)Cl}2O](ClO4)2 x 2CH3CN (10).

	Conclusions
	Experimental
	Materials.
	Physical Measurements.
	Syntheses
	X-ray Crystallographic Studies.
	Determination of the Catechol 1,2-Dioxygenase activity.
	Spectrophotometric Titrations.


	- Reaction behavior of dinuclear copper(I) complexes with m-
	Introduction
	Results and Discussion
	Phenolate bridged complexes
	Magnetic characteristics
	Conclusions
	Experimental
	4.6.1 Reagents and materials
	4.6.2 Physical measurements
	4.6.3 Ligand Syntheses
	4.6.4 Crystallography


	- Copper(I) Complexes with Tridentate Ligands and their Reac
	Introduction
	Experimental Section
	Materials and Reagents.
	Physical Measurements.
	Kinetic Measurements.
	X-ray Crystallography.
	Syntheses of ligands.
	Synthesis of Copper(II) Complexes.

	Results and Discussion
	Syntheses of ligands and copper complexes.
	Copper complexes.
	Description of the molecular structure of 18.
	Description of the structure of complex 19.
	Description of the structure of complex 20.
	Description of the structure of complex 21.
	Kinetic investigations of the reactions of [Cu(Me5dien)RCN] 
	Kinetic investigations of the reactions of dioxygen with the

	Summary and Conclusions

	- Summary
	- Zusammenfassung
	Publications
	Curriculum Vitae
	Ausbildung
	Berufstätigkeit
	Ausbildungsbegleitende Tätigkeiten



	Bibliography

