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1 Introduction 

1.1 Organic Agriculture 

The interest in organic farming and the demand for organically produced food has grown 

considerably over the last years. In Germany, the organically managed arable land area and 

the number of organic farms increased continuously up to 811,724 ha corresponding to 4.78% 

of the total agricultural area and up to 16,791 organic farms corresponding to 3.99% of 

German farms in 2005, respectively (www.organic-europe.net/europe_eu/statistics). The 

transaction volume of organic food in Germany steadily rose up to 3.5 billion Euro in 2004 

(www.soel.de/oekolandbau/deutschland_ueber.html). In 1991 the European Community 

released a directive on organic farming (EU regulation 2092/91) to assure comparable 

production standards in the member states, whereas in Germany already in 1984 common 

basic standards (“Rahmenrichtlinien”) had been developed. The common German seal 

“Ökoprüfzeichen” for organic products was launched in 1999 which was replaced two years 

later by the state organic seal “Biosiegel”. 

Guiding principals of organic agriculture are sustainable cultivation and animal husbandry 

preserving and enhancing soil fertility, achieving, if possible, a closed nutrient cycle on the 

farm, and keeping animals in a manner conducive to their welfare. Limited and strictly land-

related stocking densities, feeding of farm-grown fodder, and avoidance of antibiotics are 

features of organic livestock husbandry. Organic farming disallows the use of synthetic 

fertilizers, pesticides, and growth regulators and instead relies on organic fertilizers, green 

manuring, biological pest and mechanical weed control in crop cultivation. Wide crop 

rotations and cultivation of N2-fixing legumes, intercrops, and green manures characterize 

organic cropping systems indicating the dependence and importance of biological N2 

fixation, soil management, and cultivation techniques.  

Key concerns in organic agriculture such as “sustainability”, “soil quality”, and “soil fertility” 

are frequently used terms, however, the finding of appropriate definitions and even more the 

determination of measurable parameters describing those key words is difficult and 

problematic. Maintenance of high productivity, sufficient food and fibre production, soil 

conservation, economic viability, and environmental responsibility seem to be important 

issues of sustainability (Lal 1994; Kirchmann and Thorvaldsson 2000). Soil quality has been 

described according to its function of biomass production, capacity to filter, buffer, and 

transform organic matter, genetic reserve and biological habitat for plants, as well as 

physical medium for technical and industrial structures, source of raw materials, and cultural 

heritage (Blum and Santelises 1994). Soil biota are recognized to play an important role in the 

maintenance of soil fertility and productivity-driving processes like mineralization of organic 

material, nutrient cycling, availability, and retention, and stabilization of soil aggregates 

(Insam and Rangger 1997; Wardle et al. 1999; Coleman et al. 2004). Watson et al. (2002b) 

emphasized crop rotation and management of manures and crop residues as central tools 
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for maintaining and devolping soil fertility in organic farming systems. Stockdale et al. (2002) 

concluded that the underlying processes supporting soil fertility are not different in organically 

compared to conventionally managed soils, although the nutrient management differs 

fundamentally. 

Diverse biological soil characteristics like general enzyme activities (FADase, alkaline 

phosphatase, urease, dehydrogenase, catalase), soil respiration, substrate-induced 

respiration, microbial biomass C and N content, fungal abundance, arbuscular mycorrhiza, 

microbial metabolic potential, earthworm population and biomass, and bacterial and 

archaeal diversity have been investigated in organic farming sytems, partly in comparison to 

conventional agriculture, entailing wide ranges of results (Fließbach and Mäder 1997; 

Lundquist et al. 1999; Carpenter-Boggs et al. 2000; Fließbach and Mäder 2000; Mäder et al. 

2002; Cardelli et al. 2004; Elmholt and Labouriau 2005; Gosling et al. 2006; Tu et al. 2006b; van 

Diepeningen et al. 2006). Higher biological activities and higher diversities were partly but not 

necessarily observed in organically managed soils. Shepherd et al. (2002) argued that it is not 

the organic farming system per se which is important in promoting better soil structure and 

higher soil organic matter fraction, but the amount and quality of organic matter returned to 

a soil. Friedel and Gabel (2001) found significantly elevated soil microbial biomass C and N 

contents after 41 but not after nine years of organic farming practice in comparison to three 

years of organic cultivation. Assuming 5 - 6 year crop rotations in organic agriculture, the 

authors supposed that at least two rotation cycles might be necessary to detect increased 

amounts of microbial biomass C and N.  

The input of mineral fertilizers is not allowed in organic agriculture to meet the plant nitrogen 

requirement which is a challenge and a crucial role for organic crop production. Nitrogen is 

frequently considered to be one of the key limiting factors responsible for the limited 

productivity of organic systems (Eltun 1996; Berensten et al. 1998; Thorstensson 1998). Crops 

under organic management are almost exclusively dependent on soil biological processes 

which provide nutrients by mineralization of applied organic matter like animal manure, crop 

residues, or green manuring. Notably in organic farming systems without livestock in which no 

animal excreta emerge for manuring, cultivation of legumes play a key role due to 

atmospheric N2 fixation and hence to import nitrogen into the production system (Watson et 

al. 2002a). However, the nutrient management in those cropping systems is difficult because 

no additional mobile fertilizer pool like farmyard manure is available. Leguminous intercrops 

and green manures like lucerne and clover are not necessarily mulched and incorporated to 

the soil and subsequently decomposed when the nutrient demand of the following crops 

occurs, resulting in temporal discrepancies between N demand and N supply. Berry et al. 

(2002) questioned whether the productivity in organic systems is restricted by the supply of 

available nitrogen. They reviewed published results and provided evidence that organic 

farming systems do have the potential to supply adequate amounts of available N to meet 

the crop demand. Moreover, even positive N balances for organic farms were often 
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observed (Watson et al. 2002b). However, the level of available N is seldom achieved in 

practice mainly due to a non-sychronized timing of mineralization with the crop demand as 

mentioned before.  

The asynchronous dynamics of N availability and plant demand in organic crop production in 

general as well as the lack of a mobile fertilizer pool in organic farming systems without 

livestock may be compensated through the use of a biogas plant within the production 

process. Biomass of intercrops and green manures, but also growth of fallow land and crops 

residues could be taken off the field, fermented in the biogas plant, stored, and then applied 

as fertilizer when the nutrient demand of the crops occurs. Consequently, a demand-

compatible temporal shift of nutrient input to the soil is achieved that enhances the plant 

nitrogen supply and contemporaneously reduces nitrogen losses from the system. Principles 

and operation modes of anaerobic fermentation in biogas plants as well as properties of 

fermented organic fertilizers are summarized in section 1.2. 

 

1.2 Anaerobic Fermentation in Biogas Plants 

The use of biogas plants for anaerobic fermentation of agricultural residues is mainly 

implemented to produce energy entailing an improved manure quality only as “by-product”. 

In Europe, the produced biogas, a mixture of primarily methane (CH4) and carbon dioxide 

(CO2), a renewable energy source, is used for electricity generation in combined heat and 

power plants (Amon et al. 2006; Clemens et al. 2006). In Germany, animal slurries and 

especially cultivated energy crops such as silage maize and cereals are mainly used for 

biogas production (Eder and Schulz 2006). However, the advantageous use of agricultural 

organic residues, which do not entail up to now a direct benefit, might be possible. Crop 

biomass derived from green manures, intercrops, fallow land, crop residues, and forage left-

overs might be suitable additional substrates for fermentation. Notably in organic cropping 

systems without livestock in which no mobile fertilizer is available, the utilization of biogas 

plants could be interesting. The fermentation of legume-grass mixes, a fundamental 

component in those crop rotations due to N2 fixation but without direct use, would create a 

mobile fertilizer and might reduce partly high volatile nitrogen losses caused by the common 

mulching practice (Heuwinkel et al. 2005). 

Various types of biogas plants are in use which can be grouped 1. according to the way of 

processing (i.e. fully mixed or plug flow digesters which is linked with the fermenter form),  

2. according to the operation arrangement (i.e. one, two, or multiple stage digesters with 

separated processes of fermentation and methanogenesis), 3. according to the mode of 

feeding (i.e. continuous or batch (mostly applied in “dry fermentation systems” with  

dry matter contents of ~20 - 40%) operation), or 4. according to the temperature level 

(mesophilically (~30 - 35°C) or thermophilically (~50 - 55°C) operated) (Eder and Schulz 2006). 
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During fermentation, complex organic compounds are degraded in a series of microbial 

metabolic pathways by various bacteria (hydrolytic, acidogenic, and acetogenic bacteria) 

and methanogenic archaea mainly to CH4 and CO2. The initial step of hydrolyzing the 

organic polymers (polysaccharides, lipids, and proteins) entails monomers like pentoses and 

hexoses, free organic acids and other simple compounds such as glycerol, and various 

amino acids. Those monomers are subsequently metabolized directly or in part via organic 

acids, volatile fatty acid, or alcohols to acetate (also partly in formate and methanol), 

hydrogen (H2), and carbon dioxide (CO2). During methanogenesis, CH4 is generated by 

methanogenic archaea either via the acetoclastic (using acetate) or the hydrogenotrophic 

pathway (using CO2 and H2).  

Anaerobic digestion yields fermented materials with altered characteristics compared to the 

respective “raw material”. Fermentation of both, slurry and crop biomass results in digested 

products exhibiting an increased NH4+-N content, a smaller ratio of NH4+-N/total N, a 

decreased organic dry matter and total carbon content, a reduced biological oxygen 

demand (BOD), and a smaller C/N ratio. No alterations arise with respect to the total 

nitrogen, potassium, and phosphate content. Fermented slurries reveal additionally an 

elevated pH value, a decreased dry matter content, and a reduced viscosity in comparison 

to raw slurries (Field et al. 1984; Asmus et al. 1988; Kirchmann and Witter 1992; Wulf et al. 2001). 

Notably the elevated NH4+ concentration in the fermented material indicates its suitability as 

a plant-available N fertilizer. Due to the decomposition mainly of the easily degradable C 

compounds during anaerobic fermentation, the digested products are more recalcitrant and 

therefore might reduce the rate of microbial degradation and oxygen consumption in the 

soil. Consequently, less anoxic microsites, favorable for denitrifying activities entailing N2O and 

N2 losses, might emerge. 

 

1.3 Trace Gas Fluxes in Agriculture 

Nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are so-called “greenhouse 

gases”, which are present in trace amounts in the atmosphere (“trace gases”). They are 

important to atmospheric chemistry and earth´s radiative balance. They absorb infrared 

radiation in the troposphere, thus contributing to the greenhouse effect and global warming. 

The trace gases are responsible for the “natural greenhouse effect” which causes the global 

average temperature of 15°C. Without the natural greenhouse effect the temperature on 

earth would be ~30°C lower, and the earth would be uninhabitable. While the trace gas 

concentrations in the atmosphere remained relatively constant in pre-industrial times over 

hundreds of years, concentrations increased between 1750 and 2000 from 270 to 316 ppb 

N2O, from 700 to 1750 ppb CH4, and from 280 to 368 ppm CO2 corresponding to increments 

of 17%, 151%, and 31%, respectively (IPCC 2001). The atmospheric lifetimes of N2O and CH4 

are ~114 and ~12 years, whereas no single lifetime of CO2 can be defined because of the 
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different uptake rates by different removal processes resulting in a range of 5 - 200 years. On 

a per-weight basis and a 100-year time frame, N2O is about 296 and CH4 about 23 times more 

effective at trapping infrared radiation than CO2 (global warming potential) (IPCC 2001). N2O 

is also involved in the depletion of the ozone (O3) layer in the stratosphere, which protects the 

biosphere from the harmful effects of ultraviolett radiation (Crutzen 1981). 

In 1997, the first step towards a stabilization of the world´s climate was taken with the meeting 

of more than 160 nations in Kyoto, Japan, to negotiate policies related to greenhouse gas 

emissions. The nations consented to limit their greenhouse gas emissions, relative to the 1990 

emissions. The EU-15 agreed to reduce total greenhouse gas emissions by 8% until 2008 - 2012. 

With the agreement of the EU-15 member states in 2002 on different emission reduction or 

limitation targets within the EU, the reduction target for Germany was forced up to 21%. By 

2003 the reduction obligation was already mostly fulfilled with a decrease of 18.5% 

(Nationaler Inventarbericht Deutschland 2005, http://www.bmu.de/klimaschutz/ 

klimaschutzberichterstattung/doc/35575.php).  

The agricultural sector is the largest source for N2O and CH4 emissions in Germany. Although 

the agricultural N2O and CH4 emissions decreased between 1990 and 2003 by 20%, the 

contribution of agriculture to the total German greenhouse gas emissions (measured in CO2 

equivalents) remained at 8 - 9%. The percentage of the agriculture-derived N2O and CH4 

emissions amounted in 2003 to 62.3% and 63.3% of the total German N2O and CH4 emissions, 

respectively. Agriculture´s main emission sources are N2O from soils and manure 

management and CH4 from enteric fermentation and manure management (Umweltdaten 

Deutschland Online, www.env-it.de/umweltdaten).  

Since nitrogen input in organic agriculture is generally restricted and particularly in organic 

cropping systems without livestock, the N supply is often difficult, nutrient losses from the 

agricultural production systems, including trace gas emissions, should be minimized. Arable 

soils as site for N2O emissions and CH4 fluxes as well as the respective microbiologically driven 

processes are introduced in sections 1.4 and 1.5. 

 

1.4 Nitrous Oxide Emissions from Arable Soils 

The soil nitrogen cycle (figure 1.1) is a very complex system consisting of various 

simultaneously ocurring processes like N2 fixation, N mineralization, N immobilization, 

nitrification, and denitrification, which import nitrogen, transform nitrogen components or 

lead to nitrogen losses from soil. Several metabolic pathways like denitrification, nitrification, 

nitrifier denitrification, chemodenitrification, and dissimilatory nitrate reduction to ammonium 

are able to generate N2O either as end product, intermediate product, or side product 

(overview given e.g. by Bremner (1997) and Stevens and Laughlin (1998)). Depending on 

many factors such as available nitrogen and carbon, soil texture, pH value, temperature, 

water-filled pore space, and oxygen concentration, the different metabolic pathways 
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contribute variously to in-situ N2O effluxes. Microbial denitrification and nitrification are 

considered to be the two major N2O-producing processes in soil.  

 

 
 
Figure 1.1: Nitrogen transformation processes within the nitrogen cycle. Chemo-Denitrification*: 
collective term for several non-biological decomposition processes. 
 

1.4.1 Denitrification 

Denitrification is a major process contributing to N2O emissions (Firestone and Davidson 1989). 

Nitrate reduction to nitrogen gas in prokaryotes is mediated mostly by Bacteria, but also a 

few Archaea and some fungi are capable to denitrify. With very few exceptions, denitrifiers 

can also use oxygen as terminal electron acceptor, which is typically preferred if both 

terminal oxidants are available. Denitrifiers are ubiquitous in soils but are also present in 

environments such as sediments, aquatic and marine habitats, and wastewater treatment 

systems. Generally, denitrification activities increase with elevated organic carbon and 

nitrate supply, water-filled pore space (WFPS), pH value, and temperature (Tate III 1995). The 

mole fraction of N2O in comparison to N2 as denitrification end product increases with 

elevated nitrate concentration but decreases with elevated organic carbon content, WFPS, 

pH value, and temperature (see also reviews by Ferguson (1994), Granli and Bøckmann 

(1994), Stevens and Laughlin (1998), and Barton et al. (1999)). 

Complete denitrification is a multi-step process requiring separate enzymes to transform 

nitrate via nitrite, nitric oxide, and nitrous oxide to dinitrogen. Each redox couple of the 
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reaction sequence has a more positive redox potential so that every step in denitrification is 

coupled to energy conservation. The conversion of nitrite to nitric oxide is considered to be 

the crucial step in the reaction sequence since it causes on the one hand the first gaseous 

product, and on the other hand it distinguishes denitrifiers from nitrate respirers. 

 

NO3
- N O2

Nar
NO2

- NO
Cu-Nir

N2

Nor Nos

Nap Cd1-Nir qNor   
after Philippot and Hallin (2005) 

 

In the following, the different denitrifying enzymes in Bacteria responsible for the stepwise 

nitrogen reduction are introduced. Overviews about the denitrification enzymology are given 

by Knowles (1982), Ferguson (1994), Zumft (1997), Ferguson (1998), and Shapleigh (2000). 

Currently, it is assumed that all denitrification enzymes are encoded by single copy genes 

except narG whose copy number varies between one and three per genome (Philippot and 

Hallin 2005). Most of the denitrifying steps are catalyzed by two different, but functionally 

equivalent enzymes. The respiratory reduction of NO3- to NO2- is carried out by two types of 

dissimilatory nitrate reductases which differ in their location: a membrane-bound (Nar) and a 

periplasmic (Nap) nitrate reductase. The membrane-bound nitrate reductase is composed of 

three subunits (alpha, beta, and gamma) which are encoded by the narG, narH, and narI 

genes, whereas the periplasmic reductase is a heterodimer encoded by the napA and napB 

genes. Many microorganisms contain both nitrate reductases (Philippot and Højberg 1999; 

Richardson et al. 2001).  

The reduction of NO2- to NO is catalyzed by evolutionary unrelated enzymes that are entirely 

different in terms of structure and the prosthetic metal: the copper- and the cytochrome cd1-

nitrite reductase (Cu-Nir and Cd1-Nir), which are both located in the periplasm and are 

encoded by the nirK and nirS genes, respectively. The two genes seem to occur mutually 

exclusively in a given strain, but both types have been found in different strains of the same 

species. Presumably, nirS is more widely distributed, while nirK might emerge in a greater 

variety of physiological groups from different habitats (Coyne et al. 1989). Previously, nirS 

denitrifiers were supposed to be predominant in marine ecosystems, whereas nirK denitrifiers 

were preferentially found in soils (Braker et al. 2000; Avrahami et al. 2002). However, Throbäck 

et al. (2004) demonstrated that nirS denitrifiers are also common in many different soils 

harboring a substantial diversity of nirS denitrifying bacteria.  

The nitric oxide reductase mediates the reduction of NO to N2O, which represents an unusual 

reaction in biology, the formation of an N-N bond. The enzyme (Nor) has been described in 

denitrifying bacteria as complex of a cytochrome b and cytochrome c subunit being 

located in the membrane encoded by the norB and norC genes. Another nitric oxide 

reductase lacking the cytochrome c subunit was purified from the denitrifier Ralstonia 
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eutropha that exhibited a quinol dehydrogenase (qNor) instead. The gene encoding for it 

was termed norZ (Cramm et al. 1997). The majority of known denitrifying bacteria seemingly 

harbors norB genes, but also denitrifiers carrying the norZ gene exist (Braker and Tiedje 2003). 

Moreover, a variety of non-denitrifying strains were also found possessing qNor, suggesting an 

NO-detoxifying function. 

The last step of the denitrifying process, the reduction of N2O to N2, is catalyzed by the nitrous 

oxide reductase. In contrast to the other denitrification steps, nitrous oxide reduction is 

mediated by only one enzyme (Nos) encoded by the nosZ gene. It is a periplasmic multi-

copper enzyme composed of two identical subuntis. Just as nitrate respiration is not coupled 

obligatorily to denitrification, bacteria are known that respire N2O without being denitrifiers, 

e.g. those, which reduce nitrate via nitrite to ammonia and nitrous oxide to dinitrogen 

(Yoshinari 1980; McEwan et al. 1985; Zumft 1997). Nitrous oxide accumulates during 

denitrification when nitrate reductase, nitrite reductase, and nitric oxide reductase are more 

active than nitrous oxide reductase (Betlach and Tiedje 1981). The latter seems to be more 

sensitive to oxygen than the other three enzymes, low carbon/nitrate ratio, and low pH value 

– the primary environmental regulators of these enzymes´ synthesis and activity (Firestone and 

Davidson 1989; Bouwman 1990).  

 

1.4.2 Nitrification 

Nitrification is also an important N2O-producing process in soil. Chemolithoautotrophic 

nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, involves two different 

groups of bacteria. Ammonia-oxidizing bacteria (AOB) oxidize ammonia via hydroxylamine to 

nitrite (nitritation) catalyzed by the enzymes ammonia monooxygenase (AMO) and 

hydroxylamine oxidoreductase (HAO), respectively. The produced nitrite is further oxidized in 

a one-step reaction to nitrate (nitratation) by nitrite-oxidizing bacteria (NOB) using the nitrite 

oxidoreductase (NOR).  

 

NH  + O  + 2 H  + 2 e3 2
+ - NH OH + H O2 2

AMO
NO  + 5 H  + 4 e2

- + -
HAO

NO  + 0.5 O 2 2
- NO -

3

NOR

 
 

The sole energy source of nitrifiers for CO2 fixation originates from NH3 and NO2- oxidation. 

However, the substrates are not very effective in energy yield, hence explaining the slow 

growth of nitrifying organisms. Beside ammonia, a variety of other substrates such as 

methane, carbon monoxide, and methanol can be oxidized by the ammonia 

monooxygenase (AMO) (summarized by Bédard and Knowles (1989)). The multiplicity of 

oxidations carried out by ammonia oxidizers reflects the low substrate specificity of AMO 
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comparable to the low substrate specificity of the methane monooxygenase (MMO) in 

methanotrophic bacteria (see section 1.5.1). 

N2O might be formed as side product during NH3 oxidation through chemical decomposition 

of NH2OH, an intermediate between NH4+ and NO2-, or of NO2- itself (Chalk and Smith 1983). 

Likewise, incomplete oxidation of NH2OH can also lead to N2O emissions (Hooper and Terry 

1979). Nitrifying bacteria may contribute substantially to N2O emissions from soils, and many 

investigators have identified nitrification as an important source of N2O in soil systems 

(Breitenbeck and Bremner 1986; Klemedtsson et al. 1988b; a; Davidson 1992).  

Ammonia-oxidizing bacteria (AOB) are widely distributed in soils, but also in fresh water, 

seawater, wastewater treatment systems, rocks, and masonry, and require only CO2, O2, and 

NH4+ to proliferate. The limiting factor for nitrification in most soils is the availability of NH4+ 

(Hutchinson and Davidson 1993). In addition, low pH value, low water potential, low soil 

temperature, low organic matter content, and NO2- toxicity can limit nitrifying activities 

(Bremner and Blackmer 1980; 1981; Sahrawat and Keeney 1986).  

Known ammonia oxidizers that exist in pure culture comprise two monophyletic groups based 

on 16S rRNA sequence analysis belonging to the gamma-Proteobacteria with Nitrosococcus 

oceani and Nitrosococcus halophilus as known species and to the beta-Proteobacteria 

including the genera Nitrosomonas, Nitrosovibrio, Nitrosolobus, and Nitrosospira (Purkhold et 

al. 2000; Bock and Wagner 2001). Nitrifiers in soils have been studied by targeting beside the 

16S rRNA genes the gene encoding for the ammonia monooxygenase, mainly amoA, a 

subunit that carries the active site of the enzyme (Rotthauwe et al. 1995). For environmental 

investigations amoA serves as useful target because it reflects the phylogeny of AOB 

(Rotthauwe et al. 1997; Purkhold et al. 2000). According to 16S rRNA sequence analysis, nitrite-

oxidizing bacteria (NOB) form the four genera Nitrobacter, Nitrococcus, and Nitrospina, 

which are assigned to the alpha, gamma, and delta subclass of the Proteobacteria, 

respectively, and Nitrospira, the name-giving genus of an independent bacterial phylum 

(Bock and Wagner 2001).  

Recently, Könneke et al. (2005) succeeded in the isolation of a marine archaeon that grows 

chemolithoautotrophically by aerobically oxidizing ammonia to nitrite, hence the first 

observation of nitrification in the domain of Archaea. The presence of putative archaeal 

AMO encoding genes in marine and soil Archaea implies a wide distribution of nitrifying 

physiology in these organisms. Leininger et al. (2006) evidenced in 12 pristine and arable soils 

of three climatic zones higher abundances of archaeal than bacterial ammonium oxidizers, 

indicating that (cren-)archaeota may be the most abundant ammonia oxidizing organisms in 

soil ecosystems on earth. 

In addition to autotrophs, heterotrophically living fungi and bacteria can oxidize ammonia or 

organic N compounds to hydroxylamine, nitrite, and nitrate. In contrast to N oxidation as only 

energy yielding process in autotrophic nitrifiers, nitrification in heterotrophic organisms is not 

coupled to energy conservation. Heterotrophic nitrification is considered to be more 
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common among fungi than bacteria playing an important role in low-pH soils, e.g. in acid 

forest soils, but not in agricultural and grassland soils (Killham 1990; Landi et al. 1993). However, 

Müller et al. (2004a) revealed heterotrophic nitrification activities also in a temperate 

grassland soil with pH 6.2. Features of autotrophic and heterotrophic nitrification are 

summarized and reviewed e.g. by Granli and Bøckmann (1994), Bremner (1997), Bothe et al. 

(2000), Bock and Wagner (2001), Kowalchuk and Stephen (2001), and Wrage et al. (2001). 

 

1.5 Methane Fluxes in Arable Soils 

Net CH4 fluxes in soil are determined by the relative activites of CH4 production and CH4 

consumption within the profile. Soils contain both, methane-producing and methane-

consuming soil microorganisms that may be active simultaneously in arable terrestrial 

ecosystems. Harriss et al. (1982) performed methane measurements in a swamp soil, which 

acted as CH4 source during waterlogged conditions and as CH4 sink during drought 

conditions. Singh et al. (1996) observed in a rice/wheat agroecosystem during cultivation of 

rice CH4 emissions and in the subsequent wheat and fallow period CH4 consumption. 

Generally, agricultural soils are recognized as important sinks for atmospheric CH4. Based on 

published data, Le Mer and Roger (2001) calculated median CH4 oxidation rates of 5.5 g 

CH4-C ha-1 d-1 for cultivated soils, 6.5 g CH4-C ha-1 d-1 for grassland soils, 8.3 g CH4-C ha-1 d-1 for 

non-cultivated upland soils, and 9.9 g CH4-C ha-1 d-1 for forest soils. Hütsch (2001a) reviewed 

CH4 consumption rates mainly under temperate climatic conditions and determined mean 

uptake rates of 0.28, 0.52, and 1.51 mg CH4 m-2 d-1 from arable, grassland, and forest soils, 

respectively. Various land uses and agricultural practices such as tillage and fertilization are 

the main factors that influence the soil CH4 oxidation activity. The large differences between 

minimum and maximum values of CH4 consumption in both studies indicate a high temporal 

and spatial variability of CH4 fluxes. 

 

1.5.1 Methane Oxidation 

Methanotrophic bacteria are responsible for CH4 consumption under oxic conditions, which 

are unique in their ability to use CH4 as sole carbon and energy source. By using molecular 

ecology techniques, it has become evident that methanotrophs are ubiquitous in nature and 

well adapted to high or low temperature, pH value, and salinity (Trotsenko and Khmelenina 

2002). These bacteria are classified into two groups in dependence of morphological, 

physiological, biochemical, and phylogenetic characteristics. Type I methanotrophs belong 

to the gamma-subdivision of the Proteobacteria and use the ribulose monophosphate 

(RuMP) pathway for carbon incorporation into the cellular biomass. Type X methanotrophs 

may be partly distinguished from Type I organisms because they follow the RuMP and the 

serine pathway. Type II methanotrophs belong to the alpha-subdivision of the Proteobacteria 

and use the serine pathway for carbon assimilation. The key enzyme catalyzing the initial 
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oxidation of methane is the methane monooxygenase (MMO), which occurs in two different 

forms: a membrane-bound particulate form (pMMO) in all types of methanotrophs, and a 

cytoplasmatic or soluble form (sMMO) in Type II methanotrophs and only in Methylococcus of 

Type X methanotrophs that is expressed preferentially under copper-deficient conditions 

(summarized by Higgins et al. (1981), Conrad (1995; 1996), Hanson and Hanson (1996), and 

Lidstom (2001)). Although these enzymes exhibit similar function, they do not have any 

genetic or structural identity. Bender and Conrad (1992; 1995) revealed that there might be 

two types of CH4 oxidizers. One population having a low affinity for CH4 (Km (apparent half 

saturation constant) in the range of 1000 nM CH4), and another population having a high 

affinity for CH4 (Km in the range of 30 - 60 nM CH4). In upland soils typically high affinity 

methanotrophs occur that consume atmospheric CH4, whereas all methanotrophs in culture 

show low affinity for methane. 

Beside methane-oxidizing bacteria, also ammonia (NH3)-oxidizing bacteria are able to oxidize 

CH4 (Hyman and Wood 1983; Jones and Morita 1983). The reaction is catalyzed by the 

ammonia monooxygenase (AMO), an enzyme that is very similar to MMO (Hanson and 

Hanson 1996). The oxidation processes of CH4 and NH3 catalyzed by the monooxygenases 

are: 
 

NH  + O + 2 H  + 2 e3 2 
+ - NH OH + H O2 2

AMO

CH OH + H O3 2CH  + O  + 2 H  + 2 e4 2
+ -

MMO

 
 

Similarly, methanotrophs can also oxidize ammonia. The multiplicity of oxidation by 

methanotrophs and ammonia oxidizers reflects the lack of substrate specifity of both, the 

methane and the ammonia monooxygenase, respectively, resulting in a fortuitous 

metabolism of a large number of compounds (Dalton 1977; Bédard and Knowles 1989; King 

and Schnell 1994). However, the specific rates of ammonia oxidation by methanotrophs were 

two orders of magnitude lower than those of the nitrifiers (Bédard and Knowles 1989). 

Inhibition of CH4 oxidation by NH3 is of importance for the ecology of methanotrophic 

bacteria in arable, grassland, and forest soils. The most substantiated explanation for 

inhibition of CH4 consumption due to ammonia is the competitive inhibition at the enzyme 

level (Dunfield and Knowles 1995; Gulledge and Schimel 1998). In addition, production of 

toxic nitrite from NH3 oxidation and the depletion of the reducing equivalent pool has been 

discussed (King and Schnell 1994). 

 

1.5.2 Methane Production 

Non-water-saturated, generally oxic soils have the potential to produce CH4 (Sexstone and 

Mains 1990; Koschorreck and Conrad 1993). Likewise, in-situ CH4 emissions were observed in 
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temporarily wet or water-saturated upland soils (Steudler et al. 1989; Castro et al. 1995; 

MacDonald et al. 1996; Kamp et al. 2001; Merino et al. 2004). Since oxic and anoxic zones 

may co-exist in soil ecosystems, CH4 production may also occur for short term in oxic soils 

where microniches provide oxygen-free conditions for methanogenesis (hot-spots). 

Production of CH4 is performed under strict anoxybiosis by methanogenic archaea that 

belong to five different orders within the Euryarchaeota (Whitman et al. 2001; Hedderich and 

Whitman 2005). Methanogens occur ubiquitously and have a limited trophic spectrum 

comprised of a small number of simple substrates like H2 and CO2, acetate, formate, simple 

methylated compounds, and primary and secondary alcohols (Le Mer and Roger 2001). 

However, the two major pathways of CH4 production in methanogenic ecosystems in nature 

seem to be acetoclastic and CO2 reduction by H2 (e.g. Chin and Conrad (1995).  

 

CO  + 4 H2 2 CH  + 2 H O4 2

CH + CO4 2 CH COOH3

 
 

Methanogenic archaea, their phylogenetic and ecological diversity, and their function in 

soils have been reviewed by Conrad (1995; 1996) and Garcia et al. (2000). 

 

1.6 Objectives and Setting of the Study 

The objective of the present study was the comparative quantification of in-situ trace gas 

fluxes, primarily N2O and CH4, in organic cropping systems with and without livestock 

husbandry, respectively. Little is known about trace gas fluxes in organic agriculture in 

general and in particular when anaerobically fermented manures are used for fertilization. 

Possibly, trace gas fluxes would vary in various crops in dependence of the fertilizer regimes 

differing in intercrop and green manure management and the fermentation of respective 

organic materials such as cattle slurry and/or herbal organic matter. Therefore, different crops 

and several manuring treatments with fermented or non-fermented organic manures were 

selected within both organic cropping systems to investigate soil-derived trace gas fluxes. The 

same crops and manuring treatments were monitored during three years because N2O 

production and CH4 oxidation are affected by the amount and distribution of precipitation in 

conjunction with temporal temperature dynamics.  

Since denitrification is an important, N2O-producing, microbiological pathway, 

accompanying studies in the greenhouse and in the laboratory should contribute to clarify 

the impact of the different fermented and non-fermented organic manures on the soil 

bacterial denitrifying community composition and activity as well as on various 

microbiological soil parameters after fertilization.  
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Finally, after more than three years of different manuring management, field soil samples 

should be comparatively investigated regarding different biological and chemical 

characteristics related to the nitrogen and carbon metabolism to reveal possible effects and 

differences between the manuring treatments. 

The present study was conducted within the framework of a collaborative project between 

the Professorship for Organic Farming, University of Giessen, the Institute for Energy and 

Environment, Leipzig, and the Institute for Applied Microbiology, University of Giessen, that 

was supported by a research grant from the Deutsche Bundesstiftung Umwelt (DBU), 

Osnabrück, Germany. Two organic cropping systems, with and without livestock husbandry, 

respectively, were performed operating different manuring systems. In some manuring 

treatments, cattle slurry and/or herbal biomass were fermented in a biogas plant, which then 

were used for fertilization in contrast to the common organic manuring practices in the 

respective cropping systems. Two Ph.D. students of the Giessen Organic Farming group 

mainly investigated classic cultivation parameters within the crop rotations like grain yield, 

nutrient contents, biomass of green manures, amount of straw, etc., whereas the Ph.D. 

student in Leipzig carried out an ecological and economical evaluation of organic model 

farms with or without the operation of biogas plants to demonstrate the operating profitability 

of biogas plants in organic agriculture under various determining conditions.  
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2 Material and Methods 

2.1 Experimental Site 

Two field trials conducted in organic agriculture as cropping system with and without 

livestock formed the basis of the experimental setup. Those field trials were conducted at the 

research station for organic farming “Gladbacherhof” of the Giessen University, 17 km east of 

Limburg in Hesse in the “Lahn” valley. The research station is located 140 - 230 m above sea 

level at the edge of the “Limburger Becken” in the foothills of the low mountain range 

“Taunus”. There is a high variability of soil types, however most of the soils have silty loam 

texture derived from loess with pH values of 6.6 - 7.0 and are classified as Calcic Luvisols 

(Schmidtke 1997). Long-term annual temperature and annual precipitation average 9.3°C 

and 680 mm, respectively. Figure 2.1 reveals long-term means of monthly precipitation and 

air temperature as well as monthly precipitation and air temperature during the whole 

measurement period. Daily data of precipitation and air temperatures are shown in figure 2.2 

according to the three measurement seasons. Further illustrations concerning data of daily 

precipitation, air temperature, and soil temperature in 5 cm and 20 cm depth are shown in 

Appendix A.1 - A.3. The field study started in 2001 and was conducted in plots of 6 x 12 m size 

comprising four replicates each. 

 

 
 
Figure 2.1: Long-term means of monthly precipitation and mean air temperature as well as monthly 
precipitation and mean air temperature during the measurement period. (Data: Franz Schulz, Villmar, 
personal communication) 
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Figure 2.2: Daily data of precipitation and air temperature during the three measurement seasons. 
(Data: Franz Schulz, Villmar, personal communication) 
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2.1.1 Experimental Design of the Cropping System without Livestock 

The cropping system without livestock consisted of a six-field crop rotation (table 2.1) in which 

the common mulching practice in organic agriculture without livestock (w/o L-M, control 

treatment) was compared to two manuring systems including a biogas plant. In both 

treatments, w/o L-FC and w/o L-FC+FE, the growth of lucerne-grass-mix, intercrops, and crop 

residues within the crop rotation were harvested (table 2.2), taken off the field and fermented 

in the biogas plant. In w/o L-FC+FE, external substrates (potatoes and spelt glumes or lucerne-

grass) were additionally fermented in amounts according to the BIOLAND guideline resulting 

in a higher level of nitrogen input (max. + 40 kg N ha-1 a-1) in this treatment.  

 

Table 2.1: Six-field crop rotation of the cropping system without livestock (w/o L) (Stinner et al. 2006).  
X indicate which plant material was harvested for fermentation and which crops were fertilized by 
application of fermented plant material in manuring treatments w/o L-FC and w/o L-FC+FE. 
 

w/o L-FC and w/o L-FC+FE 
 Crops Crops Used for 

Fermentation Fertilized Crops 

1. Year Lucerne-Grass-Mix X  

2. Year Potatoes  X 

3. Year Winter Wheat 3  X 

Intercrops X  
4. Year 

Pea   

Intercrops X  
5. Year 

Winter Wheat 5  X 

Intercrops X  

Spring Wheat  X 6. Year 
undersown  

Lucerne-Grass-Mix   

 

 

Table 2.2: Manuring treatments of the cropping system without livestock (w/o L) (Stinner et al. 2006). 
 

Manuring Treatments 
”without Livestock” (w/o L) 

Crop Residues, Intercrops & 
Lucerne-Grass 

w/o L-M Remain on Field (Mulched, M) 

w/o L-FC Fermented (FC) 

w/o L-FC+FE Fermented with Additional External 
Substrates (FC+FE) 
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Fermentation was carried out in a two-step percolation reactor (Edelmann et al. 1996) at 

mesophilic temperatures and a mean fermentation period of 5 - 7 days, depending on th e 

crop biomass. During the anaerobic degradation process, the complex organic compounds 

were converted in a series of microbial metabolic pathways by a consortium of bacteria 

(hydrolytic, acidogenic, and acetogenic bacteria, and methanogenic archaea) to CH4 and 

CO2. Beside the generation of biogas (CH4), a renewable energy form, anaerobic 

fermentation resulted in products with lower carbon and dry mass contents, smaller C:N 

ratios, less organic nitrogen, higher concentration of mineral nitrogen (NH4+), and slightly 

elevated pH value.  

Liquid of the fermentation process was applied in spring as fertilizer to the cashcrops within 

the crop rotation (table 2.1) in accordance with their nutrient demand. Manuring was 

performed by hand with watering cans near the soil surface simulating application via trail 

hose. Solid residues of the fermented crop material were turned back to the field prior to 

grubbing/ploughing before spring wheat and potatoes were sown and dibbled. Spreading of 

solid fermented crop residues were also accomplished by hand using dung forks. In contrast, 

in w/o L-M (control treatment) the growth of the lucerne-grass-mix, the plant material of the 

intercrops and the crop residues remained on the field, were mulched and 

grubbed/ploughed into the soil. Thus, due to operating the biogas plant, a mobile fertilizer 

was created in agriculture without livestock that was applied when demand emerged/arose. 

Additionally, nutrients were shifted within crop rotations of both biogas treatments, w/o L-FC 

and w/o L-FC+FE, away from legume crops advantaging cashcrops. 

 

2.1.2 Experimental Design of the Cropping System with Livestock 

In the cropping system with livestock consisting of an eight-field crop rotation (table 2.3), the 

common farmyard manure (wL-FYM) and raw slurry (wL-RS) manuring practices were 

compared to three manuring systems in which the cattle slurry was fermented in a biogas 

plant prior to field application (wL-FS; wL-FS+FC; wL-FS+FC+FE) (table 2.4). Fermentation of the 

cattle slurry was carried out in a batch reactor at mesophilic temperatures and a mean 

fermentation period of 30 days. Those biogas manuring systems differed in the handling of the 

intercrops and crop residues and in the additional fermentation of external substrates. In wL-

FS, intercrops and crop residues remained on the field, e.g. they were mulched and grubbed 

into the soil. In contrast, in wL-FS+FC and wL-FS+FC+FE this plant material was harvested, 

taken off the field and fermented in the two-step percolation reactor as described above. 

External substrates like potatoes and spelt glumes or lucerne-grass were additionally 

fermented in wL-FS+FC+FE to increase the amount of nitrogen applied in this manuring 

treatment. However, not more than 40 kg N ha-1 a-1 accessory were fertilized in compliance 

to the BIOLAND guideline.  
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Table 2.3: Eight-field crop rotation of the cropping system with livestock (wL) (Möller et al. 2006). 
X indicate which plant material was harvested for fermentation and which crops were fertilized. 
 

 Crops 
Fertilized Crops  

(in all five 
Manuring Treatments) 

Crops Used for Fermentation 
in wL-FS+FC and  

wL-FS+FC+FE 

1. Year Lucerne-Grass-Mix   

2. Year Lucerne-Grass-Mix   

3. Year Winter Wheat X  

Intercrops  X 
4. Year 

Potatoes X  

5. Year Winter Rye X  

Intercrops  X 
6. Year 

Pea   

Intercrops  X 
7. Year 

Spelt X  

Intercrops  X 

Spring Wheat X  8. Year 
undersown  

Lucerne-Grass-Mix   

 
 
Table 2.4: Manuring treatments of the cropping system with livestock (wL) (Möller et al. 2006). 
 

Manuring Treatments 
“with Livestock” (wL) Cattle Excreta Crop Residues & Intercrops 

wL-FS Fermented Slurry (FS) Remain on Field (Mulched) 

wL-FS+FC Fermented Slurry (FS) Fermented (FC) 

wL-FS+FC+FE Fermented Slurry (FS) Fermented with Additional 
External Substrates (FC+FE) 

wL-FYM Farmyard Manure (FYM) Remain on Field (Mulched) 

wL-RS Raw Slurry (RS) Remain on Field (Mulched) 

 

 

Slurry, fermented slurry and liquid of the crop fermentation were applied as fertilizer to the 

cashcrops within the crop rotation in spring (table 2.3) according to their nutrient demand. 

Simulating trail hose application technique, those fertilizers were applied by hand with 

watering cans near the soil surface. Before spring wheat and potatoes were sown and 

dibbled, solid residues of the fermented plant material were turned back to the field prior to 

grubbing/ploughing in wL-FS+FC. In wL-FYM the farmyard manure was applied and 
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incorporated into the soil prior to all crops other than peas and lucerne-grass. Solid fertilizers 

were also spread by hand using dung forks. 

Climate data were collected by Franz Schulz, employee of the research station, and 

provided for illustration (figures 2.1 and 2.2; A.1 - A.3). Performance of manure management 

and fermentation processes were carried out by employees of the Professorship for Organic 

Farming. Crop cultivation and harvest at the field site were conducted by employees of the 

Professorship for Organic Farming and of the research station. Data concerning fertilization 

and cultivation operations (tables 2.5 and 2.6; A.4 - A.7) as well as soil mineral nitrogen 

contents in the depth profile (figures 3.5, 3.10, 3.16, and 3.20; tables 3.4. 3.6, 3.13, and 3.15), 

and total soil nitrogen and carbon concentrations at the field site (tables 3.5 and 3.14) were 

provided by Kurt Möller and Walter Stinner, employees of the Professorship for Organic 

Farming, for compilation and illustration.  

 

2.2 Field Trial 

2.2.1 In-situ Gas Flux Measurements 

The principle of a static chamber system as described by Hutchinson and Mosier (1981) was 

employed to determine in-situ fluxes of N2O, CH4, and CO2. From autumn 2002 until summer 

2005 trace gas fluxes were measured with transparent chambers between 10:00 h and  

12:00 h in selected combinations of crops and manuring treatments in both cropping systems 

in three field replicates. In the cropping system without livestock, fluxes were examined in 

winter wheat 5 and spring wheat with the prior intercrops in the control mulching treatment 

(w/o L-M) and in w/o L-FC. An overview of the agricultural activities carried out in winter 

wheat 5 and spring wheat including date and amount of fertilizer applications is given in 

table 2.5. In the cropping system with livestock, fluxes were investigated in spelt and potatoes 

with prior intercrops each fertilized with RS, FYM, FS, and FS+FC. Cultivation, tillage operations 

as well as manuring dates with respective fertilizer amounts in spelt and potatoes are shown 

in table 2.6. 

Base frames of stainless steel (40 x 40 cm) were pressed into the soil and stayed permanently 

in the field. For drilling, tillage, mechanical weed control and harvest, base frames were 

removed and afterwards reinstalled at the same locations. For measurements, transparent 

chambers made of PETG equipped with battery-driven ventilator were placed on the frames 

enclosing the crops. Chambers could be adjusted in height to actual plant size (20 - 100 cm) 

resulting in varying covering periods between 60 and 100 minutes. During the cover period 

five gas samples were taken with 50 ml plastic syringes (Omnifix, B. Braun, Melsungen) and 

analyzed within 24 h by gas chromatography (2.7.1). 
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2.2.2 Soil Mineral Nitrogen Measurements 

Between October 2002 and April 2003, soil samples were taken additionally to the gas 

samples from all investigated plots and were analyzed for nitrate (NO3-) and ammonium 

(NH4+). Nmin-analyses were continued in the cropping system without livestock in spelt until 

June 2004. Representative aliquots of 60 g soil derived from five sub-samples per plot in a 

depth of 30 cm (ploughed layer) were taken, immediately cooled and analyzed within 48 h 

(2.8.4). 

 

2.3 Incubation Experiments 

Incubation experiments with different organic fertilizers and arable soil were performed to 

determine in more detail the impact of the fertilizers on N2O emissions. The investigated 

fertilizers were representative samples (well homogenized before taking aliquots) of the raw 

slurry (RS) and the fermented slurry (FS) from the cropping system with livestock, and of the 

fermented plant material (FC) from the cropping system without livestock that had been 

applied in spring 2003 in spelt and winter wheat 5, respectively. Arable soil derived from the 

upper soil layer of the field trial (field “Bremsberg 1”) was air-dried, sieved ≤ 2 mm, and well 

homogenized. Soil aliquots of 20 g and 20 g of soil amended with 7.5 ml fertilizer, respectively, 

were weighted into 250 ml flasks (three replicates each) and were adjusted with deionized 

water to maximum soil water-holding capacity of 75%. In addition, 3 x 15 ml of the pure 

fertilizer were also filled in flasks. Bottles were sealed with butyl stoppers and the headspaces 

were flushed with N2 using two needles to generate anoxic conditions under ambient air 

pressure. The flasks were incubated at 25°C on a rotary shaker (200 rpm, Swip, Edmund Bühler, 

Hechingen) and sampled over a period of 53 h by taking 0.3 ml headspace gas samples with 

gas-tight syringes (B-D Plastipak, 1 ml Luer Lock, BD Biosciences, Heidelberg). Gas samples 

were immediately analyzed by gas chromatography (2.7.2). In an additional set of flasks NO3- 

and NH4+ concentrations were measured in the fertilized soil in three replicates during the 

incubation (2.8.4). Anoxic incubation with 10% acetylene (C2H2) in the headspace was 

accessorily performed to determine N2O emission rates under inhibition of the N2O reductase. 

Therefore, 10% of the N2 volume in the flask were replaced with C2H2 before incubation. Gas 

samples of 0.3 ml volume were taken with gas-tight syringes during an incubation period of  

53 h and analyzed gas-chromatographically (2.7.2). 

 

2.4 Greenhouse Studies 

The manuring experiment in the greenhouse was performed for studies of both denitrification 

activity and soil bacterial denitrifying community under controlled conditions for 22 d after 

fertilizer application in comparison to an unfertilized control soil. Soil was picked from the field 

trial (topsoil, derived from field “Bremsberg 1”), was crushed, mixed, and filled into 
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microcosms (13 cm x 13 cm x 13 cm; 1.3 kg dw soil pot-1). Spring wheat was sowed, 

cultivated, and adjusted to 25 plants pot-1 before manuring. Three organic fertilizers, raw 

cattle slurry (RS) and fermented cattle slurry (FS), both derived from the cropping system with 

livestock, and fermented crop material (FC) from the cropping system without livestock, 

respectively, were applied in amounts of 18.1 mmol Nt kg-1 dry soil (RS, FS) and 4.5 mmol Nt  

kg-1 dry soil (FC), each in three replicates. The reduced amount of Nt in manuring treatment 

FC was necessary due to toxic effects on the spring wheat. The differently fertilized soils and 

the unfertilized control soil were examined at 70% WHC and 20°C air temperature. 

Before applying the fertilizers to the microcosms, pH-value (2.8.1), water content (2.8.2), 

amount of NH4+ and NO3- (2.8.4), Nt after Kjeldahl (2.8.5), most probable number of nitrate 

reducers by MPN (2.9.3), community composition of dominant and PCR-amplifiable nirS 

denitrifiers (2.10.5), and nirK and nirS gene target numbers (2.10.6) were determined within the 

fertilizers. Furthermore, nirS gene fragments of the three fertilizers as well as of the arable soil 

were cloned, sequenced and phylogenetically analyzed for diversity check (2.10.6.3 - 

2.10.6.5). 

Trace gas (N2O, CH4, and CO2) flux rates were investigated in three replicates using the 

closed chamber technique by putting tranparent chambers made of PETG (20 cm x 20 cm x 

25 cm) over the microcosms. During the cover period of 50 min five gas samples were taken 

with 50 ml plastic syringes (Omnifix, B. Braun, Melsungen) and were analyzed gas-

chromatographically (2.7.1). Flux rates were determined daily in the first nine days after 

manuring. 

Soil samples were taken 2 hours, 2, 4, 7, 10, 15, and 22 days after fertilizer application, at every 

sampling day from three new microcosms per treatment. After removing the wheat stems  

5 - 6 cm of the upper soil were sampled, well mixed, subsampled, and, unless the 

investigations started at once, stored at 4°C. The solid residues of RS and FS that crusted on 

the soil surface, were scraped off prior to the sampling and thus were excluded from the 

investigations. Soil samples were analyzed for NH4+, NO3-, and NO2- contents (2.8.4), potential 

denitrifying activity (2.9.1), MPN of denitrifiers (2.9.3), number of nirK and nirS gene copies 

(real-time PCR, 2.10.7), and community composition of the dominant and PCR-amplifiable 

denitrifiers targeting the nirS genes using SSCP (2.10.5). Each of the three manuring replicates 

was investigated separately.  

 

2.5 Investigations of Field Soil Samples after 3.5 Years of Different Manuring 

After 3.5 years of differentiated manuring systems in both, the cropping system with and the 

cropping system without livestock, soil samples under spelt (wL) and under winter wheat 5 

(w/o L), respectively, were comparatively analyzed on diverse chemical-physical and 

microbial soil parameters concerning the nitrogen and carbon metabolism. Representative 

aliquots per plot derived from four sub-samples in a depth of 30 cm (ploughed layer) were 
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taken in all four field replicates and immediately cooled for transport. Samples were well 

homogenized before subsampling and, unless the investigations started at once, stored 

temporarily at 4°C. Mineral nitrogen (NH4+, NO3-, and NO2-) contents (2.8.4), Ct and Nt 

concentrations (2.8.6), microbial biomass carbon (2.8.7), water-extractable carbon (2.8.8), 

potential denitrifying activity (2.9.1), potential nitrification activity (2.9.2), soil respiration (2.9.4), 

substrate-induced respiration (SIR, 2.9.5), carbon-source utilization (2.9.6), community 

composition of dominant and PCR-amplifiable nirS denitrifiers by SSCP (2.10.5), and amount 

of nirK and nirS gene targets via real-time PCR (2.10.7) were determined in the soil samples. 

 

2.6 Chemicals, Gases, and Water 

All chemicals used during this work exhibited the purity grade “purest” and “for analysis”, 

respectively, and were purchased from the following companies: Fluka (Switzerland), Merck 

(Darmstadt), Peqlab (Erlangen), Riedel-de Haën (Seelze), Serva (Heidelberg), and Sigma-

Aldrich (Seelze). The gas mixes used for calibration of the gas chromatographs were 

purchased as “ready-to-use” mixes from Deuste Steininger (Mühlhausen). The gases 

dinitrogen, FID-Mix, hydrogen, argon-methane, helium, and nitrogen/carbon dioxide had a 

purity grade of 4.5 (99.995%) until 5.0 (99.999%) and were provided by Air Liquide (Kassel-

Kaufungen). The acetylene gas (Air Liquide) exhibited a purity grade of 2.6 and was used 

after purification according to Gross and Bremner (1992). All media, solutions, and buffers 

were made of deionized water derived from a pure-water-plant (Ultra-PurPlus, ELGA, Celle). 

Distilled, DNAse and RNAse free water used for all molecular investigations was purchased 

from Invitrogen (Karlsruhe). 

 

2.7 Gas-Chromatographic Analyses 

2.7.1 Gas Samples of 50 ml Volume 

Air samples of 50 ml volume were analyzed using a gas chromatrograph (GC-14B, Shimadzu, 

Duisburg) equipped with an automated sampler and the respective software package Probe 

65 (both LAL, Neu Eichenberg). Both, precolumn (length 0.8 cm) and main column (length 3.2 

m) with a diameter of 1/8 inch were packed with Porapak Q mesh 80 to 100 (Millipore, 

Schwalbach) and heated at 65°C. The gas chromatograph had a flow rate of pure N2 as 

carrier gas of approximately 25 ml min-1 and provided two detectors, an electron capture 

detector, ECD, 320°C and flame ionization detector, FID (fuel gas: H2 and FID-Mix), 230°C to 

quantify simultaneously N2O, CO2, and CH4. For detailed information about the autosampler, 

the control and data logging unit, and the gas chromatograhic system refer to Loftfield et al. 

(1997). Using various standard gas mixtures, peak areas were calculated, which were 

converted afterwards by means of the “gas law” and linear regression to gas flux rates for 

each chamber and subsequently per m2 and h1, respectively. 
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=  n: amount of substance [µmol] 

 Vch: volume chamber [l] 

 c: gas concentration within sample [ppmV = µl l-1] 

 p: air pressure [mbar] 

 R = 83.14 [l mbar mol-1 K-1]: gas constant 

 T: temperature [K] 

 

2.7.2 Gas Samples of 1 ml Volume or Less 

Air samples of one ml volume or less were gas-chromatographically analyzed with the 

Autosystem XL (PerkinElmer LAS, Rodgau-Jügesheim) including an ECD (350°C, make up gas: 

argon 95% - methane 5%) for N2O detection and a TCD (temperature conductivity detector, 

180°C) for CO2 quantification. An FID (230°C) for CH4 analysis was located in a second, 

adjoining gas chromatograph (Type 8500, PerkinElmer) that was connected with the other 

gas chromatograph. FID and ECD shared a precolumn (Porapak Q mesh 80 to 100 (Millipore), 

1 m length, 1/8 inch) and a main column (Porapak Q mesh 80 to 100 (Millipore), 3 m length, 

1/8 inch), both heated at 50°C and flushed with pure N2 as carrier gas (flow rate 

approximately 30 ml min-1). The TCD possessed a different column (Porapak Q mesh 80 to 100 

(Millipore), 2 m length, 1/8 inch, 50°C) and used helium as carrier gas (approximately 28 ml 

min-1). In case of gas samples containing 10% acetylene, the runtime per sample was 

elongated from 4 to 7 min directing the acetylene peak over the FID. Detector signals were 

evaluated with the Peak Simple Chromatography Data System (Model 202, Version 2.66, SRI 

Instruments, California, U.S.A.). Calculation of flux rates were processed as described above. 

 

2.8 Chemical-Physical Analyses of Environmental Samples 

Standard methods of soil investigations were applied for chemical-physical analyses 

(Schlichting et al. 1995) unless otherwise noted. 

 

2.8.1 pH-Value 

Soil pH-value measurements were performed with a pH electrode (CG 840 B, Schott, Mainz) in 

0.01 M CaCl2 after suspending 10 g of soil in 25 ml, whereas pH values of the liquid organic 

fertilizers was directly determined in the fertilizer. 

 

2.8.2 Water Content 

The water content was gravimetrically determined after drying at 105°C until the weight of 

the sample remained constant.  
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2.8.3 Water-holding Capacity 

Soil water-holding capacity (WHC) was determined gravimetrically using ≤ 2 mm sieved dry 

soil and was given in % of maximum water-holding capacity. 

 

2.8.4 Mineral Nitrogen 

Mineral N contents (NH4+-, NO2--, and NO3--N) were photometrically determined in CaCl2 

extracts using the Spectrophotometer U-3200 (Hitachi, Düsseldorf). Soil samples of 60 g and 

fertilizer aliquots of 10 g, respectively, were extracted with 200 ml 0.0125 M CaCl2 for 60 min 

on a horizontal shaker (VKS, Edmund Bühler, Hechingen) and filtered by type 595 fluted filter 

(Schleicher & Schuell, Dassel). 

Ammonium: NH4+ contents of environmental samples were measured as indophenol complex 

at 660 nm (Kandeler and Gerber 1988). 

Nitrite: NO2- concentrations were investigated via a pink diazo-complex  at 535 nm (Keeney 

and Nelson 1982). 

Nitrate: NO3- contents were either measured at 210 nm before and after the reduction of 

nitrate via nascent hydrogen (Navone 1964) or after reduction of nitrate to nitrite via a pink 

diazo-complex (Keeney and Nelson 1982) at 535 nm. 

 

2.8.5 Total Nitrogen 

Quantification of Nt was processed after Kjeldahl by colleagues of the Professorship for 

Organic Farming at the University of Giessen. 

 

2.8.6 Total Carbon and Total Nitrogen 

The contents of total C and total N were measured in dry, ground soil using the elementar 

analyser (vario MAX CNS, Hanau) by colleagues of the Institute for Plant Ecology at the 

University of Giessen. 

 

2.8.7 Microbial Biomass Carbon 

Soil microbial biomass carbon was estimated by the fumigation-extraction-method 

(Joergensen 1996). Principle of the determination is the comparison of the direct carbon 

extraction and the extraction of soil after chloroform-fumigation since due to the fumigation, 

microbes are killed and subsequently, the microbial biomass carbon can be easily extracted. 

A sub-sample of about 12.5 g fresh soil was incubated for 24 h in darkness under chloroform 

atmosphere at 25°C. Both, the incubated soil and a non-incubated sub-sample were 

extracted with 50 ml 0.5 M K2SO4 for 30 min on a horizontal shaker, filtered, and measured 

photometrically at 280 nm. After correction of blank value, soil water content, dilution factor, 

and soil mass, the difference of extinction between fumigated and non-fumigated sample 
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was determined. Using the slope calculated by Turner et al. (2001) that covers a range of soil 

organic matter between 2.9% and 8% and a range of clay content between 22% and 68%, 

extinction values were converted to microbial biomass C g-1 dw soil. 

 

2.8.8 Water-Extractable Carbon 

Water-extractable C fraction as a measure for easily degradable carbon was investigated in 

30 g fresh soil after Burford and Bremner (1975). After soil extraction with 60 ml pure water on a 

horizontal shaker, addition of 10 ml Na2SO4 as flocculant, and filtration, an aliquot of 25 ml 

was evaporated at 80°C. Adhering the Lichterfelder method (Schlichting et al. 1995), the 

residues were dissolved in 9 ml concentrated H2SO4 and 5 ml 2 N K2Cr2O7, oxidized at 120°C 

for 90 min, replenished with pure water to 50 ml and centrifugated (Labofuge, Heraeus Christ, 

Hanau) for 10 min at 1630 g. Extinction of the reduced Cr3+ ions was photometrically 

determined at 578 nm in comparison to a standard curve prepared with sodium oxalate. 

 

2.9 Microbial Analyses of Environmental Samples 

2.9.1 Potential Denitrifying Activity 

Potential denitrification activities (Smith and Tiedje 1979; Luo et al. 1996) were determined in 

slurry experiments in anoxic atmosphere with 10% acetylene using 250 ml flasks sealed with 

butyl stoppers. Fresh sub-sampled soil (25 g) was enriched with 1.4 mM KNO3 and 10 mM 

glucose-C and incubated at 25°C on a rotary shaker (Swip, Edmund Bühler, Hechingen). After 

15, 30, and 45 min, gas samples of 1 ml volume (B-D Plastipak, Luer Lock, BD Biosciences, 

Heidelberg) were taken from the headspace using gas tight syringes and were analyzed by 

gas chromatography (2.7.2) for N2O. 

 

2.9.2 Potential Nitrifying Activity 

Potential nitrification activities were measured after Berg and Rosswall (1985) modified by 

Schinner et al. (1991). For this purpose, 5 g fresh soil were enriched with 20 ml 1 mM (NH4)2SO4 

and 0.1 ml 1.5 M NaClO3 and incubated at 25°C for 5 h on a horizontal shaker. Afterwards, 

the samples were extracted with 5 ml 2 M KCl and filtered. An aliquot of 5 ml filtrate was 

mixed with 3 ml 0.19 M NH4Cl buffer (pH 8.5) and 2 ml dye solution (200 ml solution contain 2 g 

sulfanilamide, 0.1 g naphtyl-1-diethylene-dammonium-dichloride, and 20 ml conc. H3PO4) 

and incubated for 15 min in darkness. The generated NO2- was measured photometrically at 

520 nm via a pink diazo-complex in comparison to a standard curve prepared with sodium 

nitrite (2.8.4). 
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2.9.3 MPN of Nitrate-Reducing Bacteria 

The most probable number method (MPN) was used to enumerate nitrate reducers in the 

environmental samples. Five g of soil or fertilizer, respectively, were dispersed in 495 ml of 

0.18% sodium pyrophosphate solution and subsequently 1:10 diluted with sterile 0.9% sodium 

chloride solution. 3 x 9 ml of the anoxic denitrifier medium were inoculated with 1 ml per 

dilution step, resulting in dilution series between 10-6 and 10-12 in three replicates. The 

headspace of the test tubes were immediately flushed with N2/CO2 (80:20 [vol/vol]) using the 

hungate technique, sealed with butyl stoppers and incubated at 25°C. Bacterial growth was 

verified per eye by turbidity of the medium every week. When changes in turbidity did not 

occur anymore in the dilution series, medium aliquots of the last tube with growth and the first 

tube without growth were taken to check the nitrate concentration. NO3- was analyzed by 

ion chromatography (IC-System S135, conductivity detector S3111, IC Modul S4260AB, 

autosampler S5200, Sykam, Fürstenfeldbruck) according to the modified method from Bak et 

al. (1991). Signals were evaluated with the Peak Simple Chromatography Data System 

(Model 202, Version 2.66, SRI Instruments, California, U.S.A.). Only if growth of the nitrate 

reducers could be confirmed by decrease of NO3-, the samples were assessed as positive. 

The highest three dilutions steps exhibiting growth were selected to read the combination of 

numbers that then were looked up in the corrected MPN table (de Man 1983) for 3 parallels. 

The resulting cell counts were converted to cells per g dw soil and per g fresh fertilizer, 

respectively. 

 
Denitrifier medium 

NaCl 1.0 g l-1 
MgSO4 x 7 H2O 0.486 g l-1 
CaCl2 x 2 H2O 0.15 g l-1 
KCl 0.5 g l-1 
KH2PO4 0.2 g l-1 
NH4Cl 0.25 g l-1 
NaNO3 0.425 g l-1 
 
The salts listed above were dissolved in demineralized water and autoclaved in a special flask 

(modified after Widdel and Bak (1992) for denitrifier). After the medium had cooled down 

under an N2/CO2 (80/20 [vol/vol]) atmosphere, the following components were added: 

 
NaHCO3-buffer (1M) 30 ml l-1 
Vitamin B12 (5 mg Cyanocobalamin 100 ml-1) 1 ml l-1 
Mix of 5 vitamins * 1 ml l-1 
Riboflavin (5 mg Riboflavin 100 ml-1 20 mM acetic acid) 1 ml l-1 
Vitamin B1 (10 mg Thiamin-hydrochloride 100 ml-1 25 mM 1 ml l-1 
 sodium phosphate buffer pH 3,4) 
Solution of trace elements (EDTA)** 1 ml l-1 
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* Mix of 5 vitamins: 
Pyridoxine-dihydrochloride 15 mg 100 ml-1 
Nicotinic acid  10 mg 100 ml-1 
Calcium-D(+)-Pantothenate 5 mg 100 ml-1 
4-Aminobenzoic acid  4 mg 100 ml-1 
D(+)-biotine 1 mg 100 ml-1 
 

** Solution of trace elements (EDTA) (Widdel and Bak 1992): 
Na2-EDTA 5200 mg l-1 
FeSO4 x 7 H2O 2100 mg l-1 
CoCl2 x 6 H2O 190 mg l-1 
ZnSO4 x 7 H2O 144 mg l-1 
MnCl2 x 4 H2O 100 mg l-1 
Na2MoO4 x 2 H2O 36 mg l-1 
H3BO3 30 mg l-1 
NiCl2 x 6 H2O 24 mg l-1 
CuCl2 x 2 H2O 2 mg l-1 
CuSO4 x 5 H2O 29 mg l-1 

 
After addition of the solutions, the pH-value was measured and, if necessary, adjusted with  

1 M HCl or Na2CO3 to pH 7 - 7.2. 

 

2.9.4 Basal Respiration 

Determination of soil basal respiration was done using the OxiTop® Control BM (WTW 

Weilheim) analysis system that is based on pressure drop measurement in a closed system 

(Conzelmann 1996; Wagner and Fink 1996). Oxygen is consumed by respiration, and the 

produced CO2 is absorbed by NaOH, thus creating a negative pressure. For this purpose, 100 

g fresh soil were put in a 1 l preserving jar and were adjusted to approximately 63% WHC with 

5 ml pure water. After two hours of pre-incubation at room temperature, a 50 ml plastic 

beaker filled with 50 ml 1 M NaOH was inserted into the jar without any contact to the soil 

sample by placing it on the loft underneath the cover. The jar was sealed gas-tightly with the 

special lid adapter including the measuring head equipped with a built-in pressure sensor 

and infrared interface. Incubation was done at 20°C for 66 h. By pointing the respective 

controller OC 110 at the measuring heads, the registered 360 data points over the incubation 

period were transferred via infrared interface to the controller and further by cable and the 

communication program Achat OC to the PC for evaluation. Linear pressure decrease was 

converted to oxygen consumption rate using the equation:  
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1000*
ms*T*R

)VsvV(bCR n
2O

−
=  CRO2: oxygen consumption rate [mmol O2 kg-1 dw soil h-1] 

 b: pressure drop rate [mbar h-1] evaluated  

by linear regression 

 Vnv: netto vessel volume without soil volume [l] 

 Vs: soil volume [l] 

 R = 83.14 [l mbar mol-1 K-1]: gas constant 

 T = 293 [K] 

 ms: soil mass in the vessel [kg] 

 1000: conversion factor mol to mmol 

 

Beside continuous pressure drop measurement an end-point quantification of CO2 produced 

was done by titration of a 20 ml NaOH aliquot with 1 M HCl. HCl consumption was converted 

to the amount of absorbed CO2 by the equation: 

 

20
50*)VV(V HClHaliquotNaO

NaOH
−

=  VNaOH: volume of neutralized 1 M NaOH through CO2 

absorption [ml] 

 Valiquot NaOH = 20: volume of titrated aliquot [ml] 

 VHCl: volume of used 1 M HCl by titration [ml] 

 20 and 50: conversion factors from titrated NaOH 

 aliquot to total amount of NaOH 

 

Since 1 ml of 1 M NaOH corresponds to 1 mmol NaOH, and 1 mmol NaOH neutralizes 0.5 

mmol CO2, the amount of VNaOH was subsequently devided by 2 to obtain the amount of 

absorbed CO2 in mmol. 

 

2.9.5 Substrate-Induced Respiration, SIR 

Substrate-induced soil respiration was conducted as described for basal respiration (2.9.4) in 

principle. However, 140 mg glucose-C per 100 g fresh soil were added in 5 ml water and the 

incubation period was shortened to 10 h. The optimum amount of glucose was found out in a 

preliminary test. 

 

2.9.6 BIOLOG Substrate Utilization Test 

The carbon substrate utilization test was conducted as a rapid community-level method, 

whose principle was described by Garland and Mills (1991), to check differences of potential 

metabolic diversity between heterotrophic microbial communities in the differently fertilized 

soils. Microplates (Kämpfer 1988) were provided by Prof. Dr. Dr.-Ing. Peter Kämpfer, Giessen. 

Beside utilization of sole-carbon sources also acid production was determined via tetrazolium 
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redox dye and production of extracellular enzymes via decomposition of chromogen 

substrates. Microorganisms were detached from soil particles by dispersing 10 g fresh soil in 90 

ml 0.18% [wt/vol] sodium pyrophosphate in a waring blendor (Breda Scientific, Cenco, 

Meerbusch) at low level for 30 s. After 10 min of sedimentation, the supernatant was 

removed, put into an ultrasonic bath (Sonorex RK 100 H, Bandelin, Berlin) for 30 s, and was 

diluted 1:10 with 0.9% [wt/vol] sodium chloride. Afterwards, soil extract was mixed in a ratio of 

1:2 with tetrazolium redox dye (0.3% [wt/vol] iodnitrotetrazoliumchloride, INT), and was diluted 

1:2 using pure water – to obtain the same soil dilution step in all wells – for verification of 

extracellular enzyme production, respectively. Wells were inoculated with 50 µl of the 

respective soil extract and sealed with a non-toxic film. Microplates were incubated at 20°C 

in darkness, since chromogen substrates were sensitive to light. Tests were performed in four 

independent replicates per manuring treatment. After 2, 3, and 5 days, plates were 

evaluated visually by means of color alteration. For examination, data after two incubation 

days were used since afterwards alterations could hardly be observed. Data analysis (Udo 

Jäckel, Giessen, personal communication) was performed by transforming color alteration in 

0/1 matrices (Excel, Microsoft, Unterschleißheim) of each plate. Afterwards, a “master matrix” 

was generated for each manuring treatment to get a survey of well positions that could be 

considered in the following process. Only well positions with at least three similar numbers 

within the four replicates of one manuring treatment were labeled for further evaluation. 

Cluster analyses (WinSTAT® for Microsoft Excel) of the labeled wells in the different manuring 

treatments were performed using “Ward” as agglomeration method within the respective 

cropping system (without and with livestock, respectively). Additionally, all eight manuring 

treatments were simultaneously evaluated. However, logically, only well positions that were 

evaluable in all treatments and replicates compared could be included into the cluster 

analysis.  

 

2.10 Molecular Biological Analyses 

To investigate the impact of the different manuring systems on denitrification activity and the 

denitrifying bacterial community in more detail and in additional, using entirely different tools, 

several molecular biological techniques were applied. Targets of investigations were 

denitrifiers capable of reducing nitrite to nitric oxide, the key step in the denitrification 

pathway since it leads to the first gaseous product.  

 

2.10.1 Genomic DNA Extraction from Environmental Samples 

Various protocols for soil DNA extraction methods were tested to extract genomic DNA from 

soil samples. Efficient and reproducible cell lysis without rigorous shearing of the nucleic acids, 

sample homogenization, protein solubilization, and elimination of contaminants like humic 

acids had to be achieved. Several protocols varying in time of distinct extraction steps and 
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used chemicals were tested leading to best results obtained with the FastDNA Spin Kit for Soil 

(Bio 101, Qbiogene, Heidelberg). Therefore, extraction and purification of DNA from all 

environmental samples, fertilized and non-fertilized arable soil as well as different organic 

fertilizers, were performed with this commercially available DNA extraction kit in at least 3 

replicates per sample according to the manufacturer´s instruction. Cell lysis by bead beating 

was done with a horizontal grinder (Retsch, Haan) for 30 s at maximum speed (approximately 

1 m s-1).  

 

2.10.2 Genomic DNA Extraction from Pure Cultures  

DNA was prepared from pure bacteria cultures (Henckel et al. 1999) that served as positive- 

or negative-control strains for nirS and nirK genes, respectively. Genomic DNA was obtained 

in duplicates by subsequent incubations of cell pellet with 100 µl lysozyme (10 mg ml-1) at 

37°C for 60 min and 15 µl proteinase K (20 mg ml-1) with 567 µl sodium dodecyl sulfate (10% 

SDS) at 60°C for 15 min. Subsequently, 700 µl sodium-phosphate-buffer (120 mM; pH 8) and 40 

vol % of cold ammonium acetate were added, chilled on ice for 5 min and centrifuged 

(Biofuge fresco, Heraeus, Hanau) at 13800 g for 5 min at 4°C. The supernatant was amended 

with 0.7 vol of 2-propanol and centrifugated again for 60 min. The DNA pellet was washed 2x 

with 600 µl of 70% ethanol, air-dried for 30 min, resuspended in Tris-EDTA-buffer, and stored at 

4°C overnight.  

 

2.10.3 Photometrical Quantification of Nucleic Acids 

Nucleic acid concentration and purity of both, DNA extracts and PCR products, were 

determined photometrically (Ultrospec 4000, Amersham Biosciences, Freiburg) at 230, 260, 

and 280 nm, and stored in aliquots of 8 µl at -20°C.  

 

2.10.4 Purification of PCR Products 

PCR products were purified with the Qiaquick PCR Purification Kit (Qiagen, Hilden) as 

recommended by the manufacturer, however, finally, nucleic acids were eluted with PCR 

water. 

 

2.10.5 Single Strand Conformation Polymorphism (SSCP) 

Bacterial denitrifying communities of the differently fertilized soils and the organic fertilizers 

were compared by the cultivation-independent fingerprinting technique “Single Strand 

Conformation Polymorphism” (SSCP) based on PCR amplification. Schwieger and Tebbe 

(1998) described for the first time the method derived from medical research for investigation 

of complex bacterial communities. PCR products were subjected to SSCP (Dohrmann and 
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Tebbe 2004) to generate genetic profiles, which corresponded to the diversity of the 

amplified nirS gene fragments.  

Single-strand DNA molecules fold under non-denaturing conditions into secondary 

conformations that are primarily caused by the sequence of bases since complementary 

bases tend to form hydrogen bonds thus forming the secondary structure. As a result of PCR 

with primers binding to a gene of many different organisms in a community, products are 

generated that have a very similar size but different base sequences. These conformations 

encounter differential impedance within a polyacrylamide gel matrix and can therefore be 

separated by electrophresis.  

 

2.10.5.1 PCR Assays for SSCP 

PCR for SSCP was processed using the nirS primers cd3aF (GT(C/G) AAC GT(C/G) AAG 

GA(A/G) AC(C/G) GG (Michotey et al. 2000)) and R3cd (GA(C/G) TTC GG(A/G) TG(C/G) 

GTC TTG A (Throbäck et al. 2004)) resulting in PCR fragments of 425 bp length. A modification 

of the reverse primer, i.e. phosphorylation at the 5’ end of R3cd, was necessary for 

subsequent single-strand digestion. PCR conditions comprising mastermix composition, 

amount of primers, annealing temperature and time, number of cycles, and “touchdown“ 

program had to be optimized in depencence of the used primers. Finally, PCR was 

performed in a total volume of 25 µl containing 1 x PCR buffer, 0.16 mM of each desoxy-

nucleotide, 3 mM MgCl2, 2 U recombinant Taq Polymerase, 0.5 µM each primer (MWG 

Biotech, Ebersberg), and 0.25 µl bovine serum albumin (20 mg ml-1, Fermentas, St. Leon-Rot) 

to enhance amplification of environmental DNA. The amount of template DNA was adjusted 

to 25 ng per reaction (2.10.1). DNA amplification was conducted in 6 replicates in the thermal 

cycler MyCycler (Bio-Rad, München). After a denaturation step of 3.5 min at 94°C, a 

“touchdown” PCR was performed that consisted for amplification of nirS fragments of a 

denaturation step of 30 s at 94°C, a primer-annealing step of 30 s, and an extension step of  

60 s at 72°C. The annealing temperature was decreased by 0.5°C each cycle, starting at 

63°C until it reached after 13 cycles a “touchdown“ at 57°C. Additional 19 cycles were 

processed at an annealing temperature of 57°C. After 32 cycles, a final extension step of  

15 min at 72°C was performed. The correct length of the amplification products was 

controlled by staining DNA with ethidium bromide after electrophoresis on 1.7% [wt/vol] 

agarose gels (Peqlab, Erlangen). 

 

2.10.5.2 Single-Strand Removal 

PCR products (2.10.5.1) were pooled, purified (2.10.4), and quantified (2.10.3). Double-

stranded DNA (approximately 700 ng) were converted to single-stranded products by 

selective removal of the reverse phosphorylated strands with 2.5 U lambda-exonuclease 

(New England Biolabs, Frankfurt/Main) in 1 x exonuclease buffer (provided by the 
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manufacturer) at 37°C for 45 min. Digestion was stopped by starting the purification of the 

remaining single-strands using the MinElute PCR Purification Kit (Qiagen, Hilden) according to 

the manufacturers instruction. Single-stranded DNA was eluted with 10 µl EB buffer included in 

the kit.  

Prior to loading on the polyacrylamid gel the single strands had to be denatured. Therefore, 

DNA was after spiking with 10 µl of SSCP loading buffer (10 mM NaOH, 0.25% [wt/vol] xylene 

cyanol, 0.25% [wt/vol] bromophenol blue, 95% [vol/vol] formamide) heated to 95°C for 2 min 

and immediately cooled on ice. 

 

2.10.5.3 SSCP Gel Casting and Electrophoresis 

Since the physicochemical environment during electrophoresis has an enormous effect on 

the electrophoretic mobility and the resolution of SSCP, composition of the polyacrylamide 

gel, buffer strength, temperature, and running time had to be optimized carefully depending 

on the DNA fragment length and the used primer. The electrophoretic separation was 

performed with the Protean II XL vertical electrophoresis cell (Bio-Rad, München) and the 

appropriate cooling module. 

Two glass plates (20 x 20 x 0.4 cm and 22 x 20 x 0.4 cm) were cleaned three times with 70% 

[vol/vol] ethanol and polished with lint-free tissues before gel-casting procedure started. 

Spacers and comb were cleaned likewise. The smaller plate was impregnated with a few 

drops of repel-silane (SEA-Spray, CLP, England) by a lint-free tissue, and after 2-3 min it was 

polished with a fresh tissue, rinsed subsequently with 70% ethanol and polished again. In 

contrast, the larger plate was impregnated with 1 ml of bind-silane use solution (10 ml 96% 

[vol/vol] ethanol + 100 µl bind silane (Amersham Biosciences, Freiburg) + 100 µl 100% [vol/vol] 

acetic acid) in the same way as described for the other plate. A sandwich of both glass 

plates and the 0.35 mm spacers were prepared and clamped in the casting stand. The SSCP 

gel matrix consisted of 0.725 x MDE gel solution (Cambrex Bio Science, Belgium), 10% [wt/vol] 

formamide, 1 x TBE buffer, 4% [wt/vol] APS (ammonium persulfate), and 0.04% [wt/vol] TEMED 

(N, N, N’, N’ - tetramethylethylenediamine). When APS and TEMED had been added to the 

gel solution (careful mixing with a magnetic stir bar, no bubbles should emerge) the gel had 

to be poured quickly between the glass plates without air bubbles. The comb was ca. 1 cm 

inserted inversely, i.e. with the linear border into the gel matrix. Afterwards, the gel 

polymerized at least 2 h at room temperature. Coolant circulation within the cooling core 

was already turned on and the temperature was adjusted to 19.5°C to ensure this constant 

temperature of the cooling system right at the beginning of the electrophoretic separation. 

After polymerization the comb was reversed, the plate sandwich was placed in the 

electrophoresis cell, and 1 x TBE buffer was poured into the vessel. Before some drops of the 

SSCP loading dye were transferred to the sample wells, they were rinsed with buffer using a 

syringe and a needle, and a “pre-run” of about 15 min was startet. Thereafter, the denatured 
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samples were loaded into the wells (up to 8 µl per well), and the gel was run for 17 h at 

constant 450 V and 19.5°C. 

 

2.10.5.4 Silver Staining of DNA 

To visualize the SSCP-profiles, DNA within the polyacrylamide gels was silver-stained (Bassam 

et al. 1991) in carefully cleaned trays of stainless steel. The gel fixed to the glass plate was 

removed from the electrophoresis chamber, was transferred into a tray filled with 300 ml 10% 

[vol/vol] acetic acid and was incubated for 30 min under mild shaking. In the meantime, the 

staining solution (500 ml pure water + 0.5 g AgNO3 + 0.75 ml 37% [wt/vol] formaldehyde) and 

the developer (500 ml pure water + 10.43 g Na2CO3 anhydrous) were prepared and stored in 

darkness and at 4°C, respectively. After the DNA fixation, the gel was washed three times for 

5 min with pure water. For color impregnation, the gel was incubated for 30 min in the 

staining solution protected from light and afterwards rinsed for 10 s with pure water. The 

cooled developer solution was completed by adding 1 ml 37% [wt/vol] formaldehyde and 

0.5 ml 0.2% [wt/vol] sodium thiosulfate, and the gel was then transferred to another tray filled 

with a small amount of the developer to rinse the gel for 20 s. In the residual developer, the 

gel was incubated until the patterns became clearly visible. To stop the staining process, the 

gel was transferred back to the first tray filled with 300 ml 10% [vol/vol] acetic acid for 4 min. 

After the color fixation, the gel was incubated in pure water for 30 min and subsequently 

dried at room temperature. Finally, the gel was scanned using the PowerLook 1120 (UMAX, 

Willich) scanner. 

 

2.10.6 Cloning of nir Gene Fragments 

2.10.6.1 PCR Assays for Cloning Real-Time PCR Standards 

Positive-control DNA (2.10.2) was PCR-amplified firstly to confirm the respective correct primer 

hybridization and fragment length and secondly to generate PCR products that could be 

used after cloning and reamplification as real-time PCR standards. DNA of 

Rhodopseudomonas palustris (strain FLaA3, provided by Prof. Dr. Sylvia Schnell) served as 

positive-control for nirK gene amplification and was used to generate a nirK real-time PCR 

standard. As positive-control for nirS gene amplification and nirS real-time PCR standard, DNA 

of Cupriavidus necator DSMZ 530 was employed. 

The PCR assay for the nirS real-time PCR standards was performed in 25 µl volume and in the 

thermal cycler MyCycler as described in 2.10.5.1. However, the protocol was slightly modified 

and optimized for amplification of positive-control DNA in the following way: PCR reactions 

were conducted without bovine serum albumine and with the non-phosphorylated reverse 

primer R3cd.  

The nirK real-time PCR standards were produced using the degenerated primer nirK876 

(AT(T/C) GGC GG(G/C/A) CA(T/C) GGC GA (Henry et al. 2004)) and nirK5R (GCC TCG ATC 
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AG(A/G) TT(A/G) TGG (Braker et al. 1998)). The composition of the mastermix corresponded 

to that described in 2.10.5.1 for nirS amplification, however, without addition of bovine serum 

albumine. The PCR protocol for nirK gene amplification was carried out as follows: After a 

denaturation step of 3.5 min at 94°C, a “touchdown” PCR was performed that consisted for 

amplification of nirK fragments of a denaturation step of 30 s at 94°C, a primer annealing step 

of 35 s, and an extension step of 35 s at 72°C. During the first 17 cycles, the annealing 

temperature was decreased by 0.5°C each cycle, starting at 63°C until it reached a 

“touchdown“ at 55°C. Additional 15 cycles were performed at an annealing temperature of 

55°C. After 32 cycles, a final incubation of 15 min at 72°C was carried out. The PCR 

amplification of nirK gene fragments was also performed in the thermal cycler MyCycler in 25 

µl volume. 

The amount of positive-control DNA was adjusted to 10 ng per reaction and DNA 

amplification was carried out in four replicates for both, the nirK and nirS gene fragment 

amplification. Correct amplification sizes were controlled via agarose gel (1.7%) 

electrophoresis and DNA staining with ethidium bromide.  

 

2.10.6.2 Cloning of nirK and nirS Gene Fragments for Real-Time PCR Standards 

Immediately after amplification check, nirK and nirS PCR products (2.10.6.1) were purified 

(2.10.3) and cloned using the TOPO TA Cloning® Kit (pCR2.1-TOPO vector, TOP10 cells, 

Invitrogen, Karlsruhe) according to the manufacturers instruction, however using 0.5 µl cloning 

vector instead of 1 µl. Ten clones each were analyzed by colony PCR using sterile toothpicks 

to pick up a small amount of cell material that was resuspended in 25 µl of the prepared PCR 

mix. In parallel, LB-masterplates (LB-medium: 1% tryptone, 0.5% yeast extract, 1% NaCl, 1.5% 

agar, adjusted with NaOH to pH 7 - 7.5; after autoclaving and cooling down addition of 

ampicillin with an end concentration of 100 mg l-1) were inoculated with the toothpicks to 

conserve the cell material of the selected clone. Masterplates were incubated overnight at 

37°C, sealed with parafilm and stored at 4°C. Accessorily to masterplates, glycerine stocks 

were prepared for longtime storage of clones freezing a mix of 700 µl overnight culture, 

grown in liquid LB-ampicillin medium, and of 300 µl sterile 99% glycerine at -80°C.  

Colony PCR was performed using the M13-F (GTA AAA CGA CGG CCA G) and M13-R (CAG 

GAA ACA GCT ATG AC) primers (TOPO TA Cloning Kit) that targeted the surrounding 

sequence of the cloning site. The PCR mix consisted of 1 x PCR buffer, 0.16 mM of each 

desoxy-nucleotide, 2.5 mM MgCl2, 2 U recombinant Taq Polymerase, and 0.2 µM of each 

primer. PCR was done in a T-Gradient Thermocycler (Biometra, Göttingen) under the 

following conditions: 5 min at 94°C, followed by 23 cyles of 30 s at 94°C, 50 s at 55°C, 60 s at 

72°C, and finally 7 min at 72°C. Amplification specifity was analyzed on 1.7% [wt/vol] agarose 

gels and DNA staining with ethidium bromide. Insert of one clone each with the expected 

fragment length was PCR-amplified again as described before in 25 replicates and controlled 
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via agarose gel electrophoresis. PCR replicates were pooled, purified (2.10.5) and then 

fluorimetrically quantified (DyNA Quant 200, Hoefer, California) using Hoechst dye 33258 

(Labarca and Paigen 1980) and stored at -20°C.  

 

2.10.6.3 PCR Assays of Environmental DNA Samples for Cloning 

PCR assays for cloning of nirS gene fragments derived from environmental DNA (2.10.1) were 

conducted as described in 2.10.5.1. However, PCR reactions were processed with the non-

phosphorylated reverse primer R3cd. 

 

2.10.6.4 Cloning of nirS Gene Fragments of Environmental Samples and Restriction Assays 

Cloning procedure was processed as described for generation of real-time PCR standards 

(2.10.6.2) inclusive the first PCR amplification with M13 primers. However, at least 60 clones 

derived from each environmental sample were picked for diversity check of the plasmid 

inserts. Aliquots of 5 ml PCR product were enzymatically digested with endonucleases HpaII 

and Hin6I (Fermentas, St. Leon-Rot), respectively. Restriction assays were carried out 

separately at 37°C for 3.5 h in 1 x endonuclease buffer (provided by the manufacturer) using 

0.1 µl of each enzyme, respectively. Separation of restriction fragments was achieved in 3% 

[wt/vol] TBE-agarose gels and visualized by DNA staining with ethidium bromide.  

Gel images were processed using the GelCompar II  software (version 3.5) as recommended 

by its designers (Applied Maths, Belgium). Restriction patterns of clones derived from one 

environmental sample digested with one endonuclease were normalized to a reference 

pattern which was loaded on four positions on each gel. After normalizing the respective 

restriction pattern each derived from one enzyme, both normalized gel images were 

adjusted in this way, that both restriction patterns of one clone (two gel lines) exactly fitted 

vertically. Cluster analysis of the composite data set was performed to obtain a dendrogram 

(UPGMA, Unweighted Pair Group Method using Arithmetic averages) revealing similar and 

different restriction patterns and hence probably similar and different inserts in the tested 

clones. 

 

2.10.6.5. Sequencing of Selected nirS Clones and Phylogenetic Analysis  

Plasmids selected for sequencing to represent preferably a high diversity among the clones 

were obtained by plasmid minipreparation using alkaline lysis with SDS (Sambrook and Russel 

2001). Sequencing reactions were performed with the M13-R primer and the BigDye® 

Terminator Cycle Sequencing Kit (Applied Biosystems, Darmstadt) whose cycle-sequencing 

products were analyzed with an Abi Prism® 310 Genetic Analyzer (Applied Biosystems, 

Darmstadt). Sequencing procedures were conducted by collegues of the Institute for 

Microbiology and Molecular Biology of the University of Giessen. 
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Nucleotide sequences were restricted to nirS gene fragments by alignment with the nirS 

primers using the CLUSTALW program (Thompson et al. 1994) within MEGA version 3.1 (Kumar 

et al. 2004). The obtained nirS sequences were compared with sequences in the National 

Center for Biotechnology Information (NCBI) data bank by the use of the BLASTN program 

(http://www.ncbi.nih.gov/BLAST/). Thereafter, all generated clone sequences were aligned 

(CLUSTALW) together with additional 85 DNA sequences found in the database. Amino acid 

sequences were deduced on the base of described species also using MEGA. The 

phylogenetic trees based on DNA and amino acid sequences, respectively, were 

constructed by the neighbor-joining method. Bootstrap analyses with 1000 replicates were 

carried out to check robustness of the trees. Finally, the trees were designed and plotted 

using the COREL DRAW program. 

 

2.10.7 Real-Time PCR 

Real-time PCR assays were developed for a highly sensitive quantification of denitrifiers in 

environmental samples targeting nirK and nirS genes and were performed using the Rotor-

Gene 3000 (Corbett Research, Australia) and the respective analysis software. Principles of 

the method have been described elsewhere (Becker et al. 2000; Raeymaekers 2000; Wilhelm 

and Pingoud 2003). The amount of PCR product was measured via the fluorescent signal of 

the fluorophore SybrGreen™ that was generated by binding to double-stranded DNA during 

the PCR reaction. Cycle number (CT), at which the fluorescence signal crosses a certain 

threshold, was noted and used for calculation of target concentrations in the assay, since the 

Ct value is proportional to the logarithm of the target concentration. As calibration standards 

for real-time PCR, dilution series of positive-control DNAs with known concentration of target 

sequences were used.  

First of all, several protocols, diverse mastermixes consisting of varying amounts of Sybr Green I 

and of different compositions of PCR chemicals, and the commercial ready-to-use reaction 

mix from Roche (LightCycler FastStart DNA Master SYBR Green I, Mannheim) were tested with 

different temperature profiles for an optimal real-time PCR performance. However, the 

outcome so far did not result in satisfying amplication curves, one distinct melting peak, and 

a unique DNA band on the agarose gel. In contrast, good results were obtained using the 

commercial kit ABsolute™ QPCR SYBR® Green Mix (ABgene®, Hamburg) after optimizing the 

amount of bovine serum albumine and primers in the mastermix and the amplification 

protocol. Therefore, all quantifications were carried out with the ABsolute™ QPCR SYBR® 

Green Mix. 

 

2.10.7.1 Real-Time PCR Standards 

Standard curves for nirS and nirK quantifications were created using a 10-fold dilution series of 

the cloned and reamplified PCR products of the positive-control DNAs of Cupriavidus necator 
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and Rhodopseudomonas palustris, respectively (2.10.6.2). Three independent dilution series 

were carried out resulting in DNA concentrations between 27.8 ng µl-1 and 0.0028 fg µl-1 for 

nirS, and 16.4 ng µl-1 and 0.0016 fg µl-1 for nirK. DNA concentrations were converted to target 

molecule numbers per µl using the equation: 

A
n

w
s N*

M*N
CC =  Cs: target number [µl-1] 

 Cw: DNA concentration [ng µl-1] 

 N: number of bases in the amplicon 

 MN = 649.5 [ng nmol-1]: average molecular weight of a basepair 

 NA = 6.23 x 1023 x 10-9 [nmol-1]: Avogadro constant 

 
Before quantification of target genes in the environmental samples, the three dilution series 

were run to confirm the accurateness of the dilutions and to determine the linear 

amplification range.  

Performance of real-time PCR startet at 95°C for 15 min in order to activate the chemically 

modified Thermo-Start® DNA polymerase included in the real-time PCR kit. Afterwards, 40 

cyles were run consisting of denaturation at 94°C for 20 s, primer annealing under stringent 

conditions at 64°C for 20 s, extension at 72°C for 15 s, and fluorescence data acquisition 

during an additional temperature step at 80°C for 15 s. The fourth step was included in the 

temperature profile to melt small unspecific PCR products and primer dimers prior to the data 

acquisition to minimize the false positive fluorescence. 

Real-time PCR was processed in a total volume of 10 µl using the Strip Tubes 0.1 ml (VE1000, 

Corbett Research, Australia). The DNA template (2 µl of diluted PCR products) was added to 

8 µl of master mix consisting of 5 µl of ABsolute™ QPCR SYBR® Green Mix (containing 3 mM 

MgCl2), 0.5 µM primers, and 0.1 µl of bovine serum albumin (20 mg ml-1). 

Purity of amplified fragments was checked by observation of a single melting peak in the 

melt curve analysis and the presence of a unique DNA band of the expected size after 

agarose gel electrophoresis (1.7%) and staining with ethidium bromide.  

 

2.10.7.2 Real-Time PCR Assays 

DNA extracts of environmental samples (2.10.1) had to be tested in advance for inhibitory 

effects of coextracted substances by a dilution series of each sample with DNA amounts 

ranging from 1 to 30 ng µl-1. The two lowest dilutions, which showed no inhibition in the PCR 

assay were then used for quantification. All environmental samples could be amplified in 

amounts of 2.5 ng and 1 ng DNA, each in three respective replicates, resulting in six replicates 

per sample. During each quantification run, a calibration curve was generated by amplifying 

dilutions steps from 10-5 to 10-9 of one dilution series of the respective positive-control DNA 

(2.10.7.1) in four replicates. 
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Quantification and evaluation of nirK and nirS gene targets in the environmental samples 

were done by the Rotor-Gene software comparing the values of the threshold cycles (CT) of 

the environmental samples with the CT values of the respectively performed standard curve. 

The calculated amount of targets per reaction was converted to target number g-1 dw 

sample using the equation: 

100%*
dm*ms*Vt

Vu*CrC =  C: copies [g-1 dw sample] 

 Cr: copies per reaction 

 Vu: used volume of DNA extract [µl] 

 Vt = 150 [µl]: total volume of DNA extract 

 ms: mass of extracted environmental sample [g] 

 dm: dry matter content of extracted environmental sample [%] 

 100%: factor 

 

2.11 Statistical Methods to Compare Collected Data 

The pairwise t-test was performed to evaluate significances between two mean values as for 

example in the cropping system without livestock between the manuring treatments w/o L-M 

and w/o L-FC (Excel 2000, Microsoft, Unterschleißheim). When more than two mean values 

had to be checked for statistically significant differences, a one-way analysis of variance 

(ANOVA) was performed using SigmaStat 2.0 (Systat, Erkrath). Averages were compared 

using the Student-Newman-Keuls (SNK) method (all pairwise multiple comparison procedure). 

If normality test or equal variance test failed, a one-way analysis of variance on ranks was 

performed (Kruskal-Wallis test) with subsequent application of the SNK method.  

 

2.12 Integration of Gas Flux Data Collected in the Field Trial 

Gas flux data (N2O and CH4) collected in the field trial were integrated for each crop, 

manuring treatment, and season over 365 days using ModelMaker 4 (ModelKinetix, UK). Fluxes 

were cumulated during the complete cultivation period of the respective crop plus the 

cultivation time of the preceding intercrop. Consequently, “annual emissions from winter 

wheat 5 and spelt” consist of emissions determined in those winter cereals during their 

complete cultivation period of approximately ten months and of emissions from the previous 

intercrops during two months. “Annual fluxes from spring wheat and potatoes” are 

composed of emissions from the respective crop during its complete cultivation period of 

nearly half a year plus emissions from the preceding intercrops also during half a year. 

CH4 effluxes resulting from degassing of CH4 dissolved in the applied fertilizer were only 

included for the day of measurement since experience showed a decay of emissions within 

approximately 24 hours. Likewise, elevated N2O emissions after manuring were included into 

the integration only for the day of sampling.  
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In the season 2002/2003, gas sampling in wL-FYM (cropping system with livestock) started at 

the end of April 2003 in spelt and at the beginning of May 2003 in potatoes. Therefore, 

integration of N2O emissions and CH4 fluxes over 365 days was not performed in this manuring 

treatment since data of just two and four months, respectively, were available.  

In 2004/2005, gas sampling in spelt could only be carried out until mid March 2005. Thus, 

integration was initially performed over this sampling time. Afterwards, the unavailable 

integration value over 365 days was extrapolated using data collected in 2003/2004 

(integration over the same sampling period and over 365 days) by applying the rule of three. 

Additionally, the rule of three was performed with data from season 2002/2003 to extrapolate 

the missing value again. Both values obtained were averaged to estimate the value of 

integrated emissions over 365 days in spelt in 2004/2005. However, due to the missing 

integration value in wL-FYM in 2002/2003 extrapolation of integrated N2O losses and CH4 fluxes 

over 365 days in wL-FYM in 2004/2005 could only be performed in comparison to season 

2003/2004. 

The amount of N2O emissions during the winter was calculated by integration of N2O fluxes 

between December 1 and March 15 since temperatures < 0°C were only observed during 

this period in all three seasons.  

 

2.13 Coefficients of Variation for Spatial and Temporal Variability of N2O and 

CH4 Fluxes in the Field Trial 

Coefficients of variation (CV) for the mean spatial variability of N2O and CH4 fluxes were 

assessed as follows: CV values of every sampling day were determined demonstrating the 

ratio of the standard deviation to the average of the fluxes in percent derived from the three 

parallels. The calculated CV values were then averaged per crop and manuring treatment 

within a season to obtain the mean spatial variabiltiy of the N2O and CH4 fluxes, respectively.  

 

100%*
average

deviation  standard
CV% =  

 

CV values for temporal variabilty of the fluxes were achieved by calculation of the average 

and the standard deviation of the mean daily fluxes per season, crop, and manuring 

treatment, and subsequently by the percentage of standard deviation to average in 

accordance to the formula. 
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2.14 Coefficients of Correlation between CH4 Fluxes and Temperatures in the 

Field Trial 

The strength of correlation between CH4 fluxes and air temperature as well as between CH4 

fluxes and soil temperature in 5 cm depth was described by the coefficient of correlation (r²) 

that was performed with Excel 2000. 
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3 Results 

3.1 Field Measurements in the Cropping System without Livestock 

3.1.1 N2O Fluxes and Soil Mineral Nitrogen Contents in Winter Wheat 5 

During season 2004/2005, N2O flux rates in winter wheat 5 and prior intercrops (vetch and oil 

radish) ranged from 5 to 358 µg N m-2 h-1 in the control treatment w/o L-M and from -1 to 254 

µg N m-2 h-1 in the biogas treatment w/o L-FC, respectively (figure 3.1). Except the sampling 

period between mid February and end of March 2005, mostly lower N2O losses were 

observed in w/o L-FC compared to w/o L-M that differed significantly on September 28, 

November 17, and December 8, 2004 (t-test, P ≤ 0.05). Notably high N2O effluxes occurred 

after tillage operations and drilling of wheat (October 5, 2004) in w/o L-M, where growth of 

intercrops remained on field, were mulched and were subjected to mineralization processes. 

However, higher N2O emissions in w/o L-FC were found between February 24 and March 29, 

2005 that were in part significanty different despite large standard deviations. Manuring of 

solid fermented residues on October 5, 2004 and liquid fermented fertilizer on January 31, 

2005 in w/o L-FC did not result in elevated N2O emissions. In contrast, on February 24, 2005, 

two days after application of liquid fermented fertilizer in w/o L-FC, significantly higher 

emission rates were detected (246 g N m-2 h-1) than in w/o L-M. N2O losses integrated over 365 

days amounted to 4087 g N ha-1 in w/o L-M and 3056 g N ha-1 in w/o L-FC, respectively, 

representing a reduction of N2O emissions by 25% (table 3.1) in w/o L-FC. The coefficient of 

variation (CV) for the spatial variability of N2O emissions averaged 84% in w/o L-M and 101% in 

w/o L-FC (table 3.2). The CV value for the temporal variability of N2O emissions accounted for 

151% in w/o L-M and for 141% in w/o L-FC (table 3.2). During the winter period from 

December 1 and March 15, proportions of the annual N2O losses of 25% and 34% were 

emitted in w/o L-M and w/o L-FC, respectively (table 3.3). 

In 2003/2004, N2O emissions in winter wheat 5 and prior intercrops (vetch and oil radish) were 

with 0 to 20 µg N m-2 h-1 (w/o L-FC) and 0 to 25 µg N m-2 h-1 (w/o L-M) relatively low in both 

manuring treatments (figure 3.2). A clear trend of lower N2O emissions in w/o L-FC compared 

to w/o L-M was observed during the whole measurement period. After soil tillage, with which 

in w/o L-M growth of intercrops was incorporated into the soil, and wheat drilling on  

October 14, 2003, N2O emission rates increased in w/o L-M. In January 2004, low emissions in 

both treatments occurred, whereas losses of N2O increased at the end of February and 

March with highest fluxes on July 7, 2004. On October 23, November 19, December 2, 

January 15, and March 11, significantly less N2O was evolved from w/o L-FC. N2O emissions a 

few hours after fertilizer application on February 27 and March 25 in w/o L-FC were low (2 and 

8 µg N m-2 h-1, respectively) and even lower than in w/o L-M (6 and 11 µg N m-2 h-1, 

respectively). However, two days after first manuring (February 29, 2004) more N2O was 

emitted in w/o L-FC than in w/o L-M (not significant).  
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Figure 3.1: N2O-, CH4-, and CO2- fluxes in winter wheat 5 and prior intercrops in the cropping system 
without livestock in season 2004/2005. Bold arrows: application of liquid fermented fertilizer, dotted 
arrows: application of solid fermented residues in w/o L-FC. 
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Figure 3.2: N2O-, CH4-, and CO2- fluxes in winter wheat 5 and prior intercrops in the cropping system 
without livestock in season 2003/2004. Bold arrows: application of liquid fermented fertilizer in w/o L-FC. 
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Figure 3.3: N2O-, CH4-, and CO2- fluxes in winter wheat 5 in the cropping system without livestock in 
season 2002/2003. Bold arrows: application of liquid fermented fertilizer in w/o L-FC. 
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Table 3.1: Integrated N2O emissions over 365 days in winter wheat 5 and spring wheat in the cropping 
system without livestock in w/o L-M and w/o L-FC, respectively. 
 

Manuring Treatments 

w/o L-M w/o L-FC Season Crops 
% of  

w/o L-M g N ha-1 % of  
w/o L-M g N ha-1 

Winter Wheat 5 100 2684 56 1497 
2002/2003 

Spring Wheat 100 699 146 1023 

Winter Wheat 5 100 801 61 490 
2003/2004 

Spring Wheat 100 1034 78 802 

Winter Wheat 5 100 4087 75 3056 
2004/2005 

Spring Wheat 100 765 184 1405 

 
Table 3.2: Coefficients of variation (CV) for temporal and mean spatial variability of the N2O emissions in 
winter wheat 5 and spring wheat in the cropping system without livestock in w/o L-M and w/o L-FC, 
respectively. 
 

Manuring Treatments 

w/o L-M w/o L-FC Season Crops 
CV % 
time 

Ø CV % 
space 

CV % 
time 

Ø CV % 
space 

Winter Wheat 5 178 92 150 71 
2002/2003 

Spring Wheat 102 61 233 79 

Winter Wheat 5 68 43 95 27 
2003/2004 

Spring Wheat 118 63 125 71 

Winter Wheat 5 151 84 141 101 
2004/2005 

Spring Wheat 101 106 191 1581 

 
Integration of N2O fluxes over 365 days revealed a loss of 801 g N ha-1 in w/o L-M and 490 g N 

ha-1 in w/o L-FC that means a decrease of 39% in w/o L-FC (table 3.1). The coefficient of 

variation for the mean spatial variability of N2O emissions amounted to 43% in w/o L-M and to 

27% in w/o L-FC (table 3.2). The CV value for the temporal variability of N2O emissions 

accounted for 68% in w/o L-M and for 95% in w/o L-FC (table 3.2). In the winter period 

between December 1 and March 15, 22% and 16% of the annual N2O losses were emitted in 

w/o L-M and w/o L-FC, respectively (table 3.3). 

N2O emissions during 2002/2003 in winter wheat 5 varied between 2 and 343 µg N m-2 h-1 in 

w/o L-M and between 0 and 188 µg N m-2 h-1 in w/o L-FC (figure 3.3). The outstanding high 

N2O loss on December 16, 2002 with 343 µg N m-2 h-1 in w/o L-M did not differ statistically from 

the emission rate of 150 µg N m-2 h-1 in w/o L-FC due to large standard deviation. Similarily, the 
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very high emission peak on March 13, 2003 (188 g N m-2 h-1) in w/o L-FC was not significant. 

Emission levels in both treatments between February and July 2003 were relatively low 

(except March 13) varying from 0 to 18 g N m-2 h-1. Application of liquid fermented fertilizer in 

w/o L-FC on February 19, 2003 did not result in elevated N2O fluxes contrary to manuring on 

March 13, when the very high emission rate described before was observed. Only on 

December 4, 2002 a significant difference between the fluxes of both manuring treatments 

could be determined. Integration of N2O losses over 365 days accounted for 2684 g N ha-1 in 

w/o L-M and 1497 g N ha-1 in w/o L-FC, thus revealing a flux reduction of 44% in w/o L-FC 

(table 3.1). The spatial variability of N2O emissions averaged 92% in w/o L-M and 71% in  

w/o L-FC (table 3.2). The CV value for the temporal variability of N2O emissions accounted for 

178% in w/o L-M and for 150% in w/o L-FC (table 3.2). During the winter period 46% and 47% of 

the annual N2O losses were emitted in w/o L-M and w/o L-FC, respectively (table 3.3). 

Comparing annual N2O losses in winter wheat 5 during the seasons 2004/2005, 2003/2004, and 

2002/2003 showed lowest emissions in 2003/2004 in both, the biogas treatment w/o L-FC and 

the control treatment w/o L-M, respectively. In all three investigated seasons, w/o L-FC clearly 

revealed in comparison to w/o L-M lower N2O emissions, where crop residues and intercrops 

were taken off the field, fermented in the biogas plant and applied as fertilizer when nutrient 

demand of the crops occurred. Neither an explicit pattern of N2O fluxes over the course of a 

season that appeared in all measurement periods emerged nor a regularity of N2O emission 

pattern after fertilizer application could be observed in the investigated seasons. 

 

Table 3.3: Integrated N2O emissions during the winter period (December 1 - March 15) in winter wheat 5 
and in intercrops before spring wheat in the cropping system without livestock in w/o L-M and w/o L-FC, 
respectively. 
 

Manuring Treatments 

w/o L-M w/o L-FC Season Crops 

Winter % Winter  
g N ha-1 Winter % Winter  

g N ha-1 

Winter Wheat 5 46 1244 47 704 
2002/2003 

Intercrops 29 201 47 482 

Winter Wheat 5 22 173 16 77 
2003/2004 

Intercrops 36 377 19 151 

Winter Wheat 5 25 1026 34 1028 
2004/2005 

Intercrops 30 228 16 223 

 
Soil NO3- concentrations in 2002/2003 in winter wheat 5 during the first five months of sampling 

were with 0.5 to 2 g N m-2 in 30 cm soil depth (ploughed layer) very low in w/o L-M and  

w/o L-FC, respectively (figure 3.4). However, lower amounts of NO3- were shown in w/o L-FC 

that were significantly different on December 16, 2002 and January 7, 2003. A significantly 
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higher concentration of NO3- in w/o L-FC was only observed on April 8, 2003. NH4+ 

concentrations were for all but one sampling time at the detection limit. No relationship was 

found between soil mineral nitrogen concentrations and the amount of emitted N2O. 

 

 
 
Figure 3.4: NO3--and NH4+- concentrations in winter wheat 5 in the cropping system without livestock in 
season 2002/2003. 

 
NO3-- and NH4+- contents in soil depths of 0 - 30 cm, 30 - 60 cm, and 60 - 90 cm in winter 

wheat 5 were investigated in fall/winter and spring revealing amounts of mineral nitrogen 

from 33 to 81 kg N ha-1 in w/o L-M and from 31 to 116 kg N ha-1 in w/o L-FC (figure 3.5). Each 

sampling in March showed (in part significantly) higher Nmin or NO3- concentrations in  

w/o L-FC, whereas in November/December more Nmin was found in w/o L-M except in 2003 

when similar amounts were observed. Ammonium values were mostly relatively small and 

negligible. All significant differences found by comparison of NO3- and NH4+ concentrations in 

the different soil layers between the manuring treatments are given in table 3.4. 

 

Contents of total nitrogen and total carbon were determined in all fields of the cropping 

system without livestock in the ploughed layer (30 cm soil depth) in spring 2001 (before 

starting the differentiated manuring) as well as in spring 2004. In table 3.5 the differences of 

total N and total C concentrations after three years of applying the different manuring 

treatments are shown. Fields are named with the first main crop cultivated in season 

2001/2002 that was followed by consecutive crops according to the crop rotation (table 3.1). 

Differences of total N varied between -0.120 and 0.019 mg N g-1 and differences of total C 

accounted for -1.929 to 0.119 mg C g-1 over all fields and manuring treatments. 
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Figure 3.5: Amounts of NO3--N and NH4+-N in winter wheat 5 in the cropping system without livestock 
between November 2002 and March 2005 in soil depths of 0 - 30 cm, 30 - 60 cm, and 60 - 90 cm, 
respectively, in the different manuring treatments. (Data: Kurt Möller and Walter Stinner, Giessen, 
personal communication) 
 

 

Table 3.4: Significant differences in amounts of NO3-, NH4+, and Nmin in winter wheat 5 in the cropping 
system without livestock between November 2002 and March 2005 in the different manuring treatments. 
(Data: Kurt Möller and Walter Stinner, Giessen, personal communication) 
 

  w/o L-M w/o L-FC 

NO3- 0 - 30 cm a b 

NO3- cumulative a b 

NH4+ 60 - 90 cm x y 
Mar. 18, 2003 

Nmin total s t 

NO3- 0 - 30 cm a b 

NH4+ 0 - 30 cm x y Mar. 24, 2004 

Nmin total s t 

NO3- 0 - 30 cm a b 
Dec. 13., 2004 

NO3- 30 - 60 cm a b 

NO3- 0 - 30 cm a b 
Mar. 22, 2005 

NO3- cumulative a b 

 



 3 Results 51 

However, no significant differences were found, neither between the treatments within one 

field (t-test) comparing nitrogen and carbon concentrations, respectively, nor between soil 

nitrogen and carbon contents, respectively, within a manuring treatment (ANOVA) 

comparing the six fields. Amounts of total N ranged in 2001 from 1.022 to 1.531 mg N g-1 dw 

soil and in 2004 from 0.543 to 1.606 mg N g-1 dw soil, concentrations of total C varied in 2001 

between 8.148 and 13.432 mg C g-1 dw soil and in 2004 between 8.219 and 13.805 mg C g-1 

dw soil. 

 

Table 3.5: Differences of soil total nitrogen and total carbon concentrations in the cropping system 
without livestock after three years of processing differentiated manuring treatments. Soil sampling in 
spring 2004 in the denoted crops and in spring 2001 before start of the cropping system without livestock 
and different manuring treatments. Positive and negative numbers mean increase and decrease, 
respectively, of total N or total C between 2001 and 2004. Numbers in parentheses are standard 
deviations. Amounts of total N ranged in 2001 from 1.022 to 1.531 mg N g-1 dw soil and in 2004 from 0.543 
to 1.606 mg N g-1 dw soil, concentrations of total C varied in 2001 between 8.148 and 13.432 mg C g-1 
dw soil and in 2004 between 8.219 and 13.805 mg C g-1 dw soil. (Data: Kurt Möller and Walter Stinner, 
Giessen, personal communication) 
 

Differences between 2001 – 2004 

Total Nitrogen [mg g-1 dw soil] Total Carbon [mg g-1 dw soil] 
Sampled Crops in 

Spring 2004 
w/o L-M w/o L-FC w/o L-M w/o L-FC 

Spring Wheat -0.035 
(± 0.038) 

-0.073 
(± 0.084) 

-0.291 
(± 0.488) 

-0.632 
(± 0.908) 

Lucerne-Grass-
Mix 

0.019 
(± 0.120) 

-0.098 
(± 0.164) 

0.119 
(± 0.721) 

-0.705 
(± 1.896) 

Intercrops before 
Potatoes 

-0.041 
(± 0.088) 

-0.028 
(± 0.083) 

0.078 
(± 0.774) 

-0.109 
(± 0.780) 

Winter Wheat 3 -0.030 
(± 0.081) 

-0.081 
(± 0.038) 

-0.130 
(± 0.677) 

-0.321 
(± 0.714) 

Pea -0.023 
(± 0.114) 

-0.030 
(± 0.057) 

-0.255 
(± 1.081) 

-0.115 
(± 0.779) 

Winter Wheat 5 -0.120 
(± 0,155) 

-0.231 
(± 0.342) 

-1.215 
(± 1.479) 

-1.929 
(± 3.219) 

 

 

3.1.2 N2O Fluxes and Soil Mineral Nitrogen Contents in Intercrops and Spring Wheat 

During season 2004/2005 N2O fluxes in intercrops (vetch and oil radish) and spring wheat 

ranged from 1 to 47 µg N m-2 h-1 in the control treatment w/o L-M and from 0 to 157 µg N  

m-2 h-1 in the biogas treatment w/o L-FC (figure 3.6). With exception of three sampling dates, 

emissions did not exceed 16 µg N m-2 h-1. Harvest of intercrops in w/o L-FC on November 1, 

2004 neither increased nor decreased N2O losses in comparison to w/o L-M, also no explicit 

trend of elevated N2O fluxes in one of the manuring treatments became apparent during the 

investigated period. Significantly higher emission rates in w/o L-FC compared to w/o L-M were 

observed after drilling of spring wheat on March 29 and on May 11, 2005. Integrated N2O 
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fluxes over 365 days revealed a loss of 699 g N ha-1 in w/o L-M and 1023 g N ha-1 in w/o L-FC, 

meaning an elevated emission of 46% in w/o L-FC (table 3.1). The coefficient of variation for 

the spatial variability of N2O emissions averaged 106% in w/o L-M and an exceedingly high 

value of 1581% in w/o L-FC (table 3.2). The CV value for the temporal variability of N2O 

emissions accounted for 101% in w/o L-M and for 191% in w/o L-FC (table 3.2). During the 

winter period from December 1 and March 15, proportions of the annual N2O losses of 30% 

and 16% were emitted in w/o L-M and w/o L-FC, respectively (table 3.3). 

In 2003/2004 N2O emission rates in intercrops (vetch and oil radish) and spring wheat varied 

between -5 and 70 µg N m-2 h-1 in w/o L-M and 0 and 48 µg N m-2 h-1 in w/o L-FC (figure 3.7). 

Noticeably low or even no fluxes were observed at the beginning of the sampling period in 

intercrops that still continued after harvest of intercrops in w/o L-FC on October 24, 2003. 

Incorporating solid fermented residues in w/o L-FC on February 19, 2004 did not result in 

elevated N2O emissions. After drilling of spring wheat on February 20, 2004, higher fluxes in 

w/o L-M compared to w/o L-FC were determined. Signifiantly decreased emissions were 

found on February 12, March 11, and May 18, 2004 in w/o L-FC. The trend of lower N2O fluxes 

in w/o L-FC was confirmed by integrated emission rates over 365 days exhibiting a loss of 1034 

g N ha-1 in w/o L-M compared to 802 g N ha-1 in w/o L-FC, an abatement of 22% N2O (table 

3.1). The mean spatial variability of N2O emissions (CV) amounted to 63% in w/o L-M and to 

71% in w/o L-FC (table 3.2). The CV value for the temporal variability of N2O emissions 

accounted for 118% in w/o L-M and for 125% in w/o L-FC (table 3.2). In the winter period 

between December 1 and March 15, 36% and 19% of the annual N2O losses were emitted in 

w/o L-M and w/o L-FC, respectively (table 3.3). 

N2O emission rates in 2002/2003 in intercrops (vetch and oil radish) and spring wheat ranged 

between 0 and 40 µg N m-2 h-1 in w/o L-M and 0 and 214 µg N m-2 h-1 in w/o L-FC (figure 3.8). 

With exception of outstanding high N2O losses on December 16, 2002 notabely in w/o L-FC 

(214 µg N m-2 h-1), emissions did not rise above 28 µg N m-2 h-1 in both manuring treatments. 

During the investigated period, no significant differences of N2O fluxes could be observed, 

not even on December 16, 2002 due to very large standard deviations in both treatments. 

There was no obvious trend of increased or decreased emissions recognizable in one 

manuring treatment, however, integration of N2O fluxes over 365 days showed losses of 765 g 

N ha-1 in w/o L-M and 1405 g N ha-1 in w/o L-FC, meaning an additional N loss of 84% in  

w/o L-FC (table 3.1). The spatial variability of N2O emissions averaged 61% in w/o L-M and 79% 

in w/o L-FC (table 3.2). The CV value for the temporal variability of N2O emissions accounted 

for 102% in w/o L-M and for 233% in w/o L-FC (table 3.2). During the winter period 29% and 

47% of the annual N2O losses were emitted in w/o L-M and w/o L-FC, respectively (table 3.3). 
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Figure 3.6: N2O-, CH4-, and CO2- fluxes in intercrops and spring wheat in the cropping system without 
livestock in season 2004/2005. Bold arrows: application of liquid fermented fertilizer, dotted arrows: 
application of solid fermented residues in w/o L-FC. 
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Figure 3.7: N2O-, CH4-, and CO2- fluxes in intercrops and spring wheat in the cropping system without 
livestock in season 2003/2004. Dotted arrows: application of solid fermented residues in w/o L-FC. 
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Figure 3.8: N2O-, CH4-, and CO2- fluxes in intercrops and spring wheat in the cropping system without 
livestock in season 2002/2003. Bold arrows: application of liquid fermented fertilizer, dotted arrows: 
application of solid fermented residues in w/o L-FC. 
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The comparison of results of annual N2O losses during the seasons 2004/2005, 2003/2004, and 

2002/2003 in intercrops and spring wheat revealed in 2003/2004 lowest emissions in the biogas 

treatment w/o L-FC, but highest emissions in the control treatment w/o L-M. This finding is in 

contrast to observations made in winter wheat 5 also within the cropping system without 

livestock. In 2002/2003 and 2004/2005, w/o L-FC showed increased N2O emissions compared 

to w/o L-M, whereas in 2003/2004 reduced N2O fluxes were observed in w/o L-FC. However, in 

winter wheat 5 an abatement of N losses could be confirmed in all three investigation periods 

in w/o L-FC. As in winter wheat 5 no definite pattern of N2O fluxes over the course of a season 

became apparent in all measurement periods. 

 

Soil NO3- concentrations between October 2002 and April 2003 in intercrops and spring wheat 

were slightly lower at the majority of samplings in w/o L-FC than in w/o L-M, however without 

significance (figure 3.9). Amounts of NO3- ranged between 0.6 and 6.2 g N m-2 in 30 cm soil 

depth (ploughed layer). NH4+ concentrations were mostly at the detection limit. On April 8 

significantly more NH4+ was found in w/o L-FC (2.3 g N m-2) than in w/o L-M (0.5 g N m-2). Thus, 

approximately similar observations concerning soil mineral nitrogen concentrations were 

made in intercrops and spring wheat compared to winter wheat 5, both within the cropping 

system without livestock, during the first months of season 2002/2003. Again, there was no 

relationship between NO3- and NH4+ concentrations and the amount of emitted N2O. 

 

 
 
Figure 3.9: NO3--and NH4+- concentrations in intercrops and spring wheat in the cropping system without 
livestock in season 2002/2003. 
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Figure 3.10: Amounts of NO3--N and NH4+-N in spring wheat and intercrops in the cropping system 
without livestock between November 2002 and March 2005 in soil depths of 0 - 30 cm, 30 - 60 cm, and 
60 - 90 cm, respectively, in the different manuring treatments. (Data: Kurt Möller and Walter Stinner, 
Giessen, personal communication) 
 

 

Table 3.6: Significant differences in amounts of NO3-, NH4+, and Nmin in spring wheat and intercrops in the 
cropping system without livestock between November 2002 and March 2005 in the different manuring 
treatments. (Data: Kurt Möller and Walter Stinner, Giessen, personal communication) 
 

  w/o L-M w/o L-FC 

NO3- 0 - 30 cm a b 

NO3- 30 - 60 cm a b 

NO3- cumulative a b 
Mar. 24, 2004 

Nmin total s t 

NH4+ 30 - 60 cm x y 
Dec. 13, 2004 

NH4+ cumulative x y 

 

Amounts of soil mineral nitrogen in 0 - 30 cm, 30 - 60 cm, and 60 - 90 cm soil depth in 

intercrops and spring wheat investigated in fall/winter and spring ranged between 12 and 

106 kg N ha-1 in w/o L-M and between 15 and 109 kg N ha-1 in w/o L-FC (figure 3.10). 

Ammonium values were mostly relatively small and negligible. Sampling in fall/winter showed 

lower NO3-- and NH4+- concentrations than in March, however, no trend of increased or 
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decreased mineral nitrogen could be observed comparing the manuring treatments. Only on 

December 13, 2004 a significant difference between Nmin values of w/o L-M and w/o L-FC 

was determined. All significant differences found by comparison of NO3- and NH4+ 

concentrations in the different soil layers between the manuring treatments are given in table 

3.6. 

 

3.1.3 CH4 Fluxes in Winter Wheat 5 

As expected, the arable soil functioned as CH4 sink during the whole season 2004/2005 in 

winter wheat 5 and prior intercrops with only three excepted sampling dates (figure 3.1). CH4 

oxidation rates ranged between 0 and 15 µg C m-2 h-1 in w/o L-M and between 0 and 19 µg 

C m-2 h-1 in w/o L-FC. Highest CH4 uptake rates of the soil occurred in May, June, and July 

2005. CH4 emissions were observed in w/o L-FC on February 1 (2.9 µg C m-2 h-1) and February 

24, 2005 (4.7 µg C m-2 h-1), i.e. one and two days after application of liquid fermented fertilizer, 

which derived from CH4 dissolved in the fertilizer. However, two days after manuring end of 

January, no CH4 emissions could be measured anymore but CH4 uptake. The only efflux of 

CH4 in w/o L-M was detected in winter wheat 5 on December 22, 2004 (2.6 µg C m-2 h-1), that 

differed significantly from CH4 uptake in w/o L-FC. Further significant differences were 

determined in intercrops on September 15, 2004 and in winter wheat 5 on March 15, 2005. 

CH4 fluxes integrated over 365 days resulted in similar carbon uptakes of 479 g C ha-1 in  

w/o L-M and 478 g C ha-1 in w/o L-FC, respectively (table 3.7). Generally, emissions derived 

from CH4 outgassing of the fertilizer (here on February 1 and 24, 2005) were included into the 

integration for the day of measurement and into the calculation of the coefficients of 

variation. Mean spatial variabilities of CH4 fluxes of 256% and exceedingly high 905% were 

assessed in w/o L-M and in w/o L-FC, respectively (table 3.8). The CV values for temporal 

variability of the CH4 fluxes amounted to 85% in w/o L-M and 131% in w/o L-FC (table 3.8). 

Coefficients of correlation (r²) between CH4 fluxes in winter wheat 5 and air temperature and 

between CH4 fluxes and temperature in 5 cm soil depths accounted for 0.37 and 0.51, 

respectively (table 3.9).  

CH4 fluxes measured in 2003/2004 in winter wheat 5 and prior intercrops similarily showed a 

continuous CH4 uptake of the soil with rates between 2.6 and 22 µg C m-2 h-1 in w/o L-M and 

between 1.1 and 23 µg C m-2 h-1 in w/o L-FC (figure 3.2). High CH4 oxidation rates were 

observed in June and July 2004. A single CH4 emission peak occurred a few hours after 

application of liquid fermented fertilizer on February 27, 2004 in w/o L-FC, when 153 µg C  

m-2 h-1 (CH4 dissolved in the fertilizer) were evolved. However, this efflux event was not 

significant. Manuring on March 25 and April 7, 2004 did not result in CH4 emissions at the 

investigated dates. The only significantly decreased CH4 oxidation rates in w/o L-FC were 

found on March 11 and April 15, 2004. Integration of CH4 fluxes over 365 days led to amounts 

of carbon uptake of 663 g C ha-1 in w/o L-M and 546 g C ha-1 in w/o L-FC, thus a reduction of 
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18% in w/o L-FC (table 3.7). The spatial variability of CH4 fluxes averaged 37% in w/o L-M and 

42% in w/o L-FC (table 3.8). The CV value for the temporal variability of CH4 fluxes accounted 

for 71% in w/o L-M and for exceedingly high 1592% in w/o L-FC (table 3.8). Coefficients of 

correlation of 0.37 and 0.51 between CH4 fluxes and air and soil temperature in 5 cm soil 

depth, respectively, were calculated (table 3.9). 

During season 2002/2003, CH4 oxidation rates in winter wheat 5 accounted for 0 to 36 µg C  

m-2 h-1 in w/o L-M and for 0 to 22 µg C m-2 h-1 in w/o L-FC (figure 3.3). The large CH4 influxes 

occurred in June and July 2003. Due to manuring of liquid fermented fertilizer in w/o L-FC on 

February 19, 2003, a very high CH4 emission peak of 175 µg C m-2 h-1 was observed 

approximately six hours after application (significant), whereas determination of a CH4 flux 

directly after fertilizing was not possible. However, manuring on March 13, 2003 did not result 

in CH4 efflux. A single observation of a non-significant CH4 emission in w/o L-M was made on 

May 22, 2003 when 10 µg C m-2 h-1 evolved. No CH4 fluxes could be observed on October 16, 

November 6, 2002, and January 7, 2003 in both treatments, on February 19 and May 7, 2003 in 

w/o L-FC, and on March 13, 2003 in w/o L-M. Integration of CH4 fluxes over 365 days showed 

a carbon uptake of 855 g C ha-1 in w/o L-M and 476 g C ha-1 in w/o L-FC, representing a 

decrease of 44% in w/o L-FC (table 3.7). CH4 emission on May 22, 2003 in w/o L-M was 

included in integration for one day. Mean spatial variabilities of CH4 fluxes of 84% and 45% 

were assessed in w/o L-M and in w/o L-FC, respectively (table 3.8). The CV values for 

temporal variability of the CH4 fluxes amounted to 163% in w/o L-M and 661% in w/o L-FC 

(table 3.8). Correlation coefficients (r²) between CH4 fluxes in winter wheat 5 and air 

temperature and between CH4 fluxes and temperature in 5 cm soil depths accounted for 

0.34 and 0.31, respectively (table 3.9). 

 

Table 3.7: Integrated CH4 fluxes over 365 days in winter wheat 5 and spring wheat in the cropping 
system without livestock in w/o L-M and w/o L-FC, respectively.  
 

Manuring Treatments 

w/o L-M w/o L-FC Season Crops 
% of  

w/o L-M g C ha-1 % of  
w/o L-M g C ha-1 

Winter Wheat 5 100 -855 56 -476 
2002/2003 

Spring Wheat 100 -585 90 -529 

Winter Wheat 5 100 -663 82 -546 
2003/2004 

Spring Wheat 100 -502 109 -547 

Winter Wheat 5 100 -479 100 -478 
2004/2005 

Spring Wheat 100 -714 90 -644 
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Table 3.8: Coefficients of variation (CV) for temporal and mean spatial variability of the CH4 fluxes in 
winter wheat 5 and spring wheat in the cropping system without livestock in w/o L-M and w/o L-FC, 
respectively.  
 

Manuring Treatments 

w/o L-M w/o L-FC Season Crops 
CV % 
time 

Ø CV % 
space 

CV % 
time 

Ø CV % 
space 

Winter Wheat 5 163 84 661 45 
2002/2003 

Spring Wheat 121 38 110 73 

Winter Wheat 5 71 37 1592 42 
2003/2004 

Spring Wheat 68 56 77 47 

Winter Wheat 5 85 256 131 905 
2004/2005 

Spring Wheat 159 47 205 76 

 
Table 3.9: Correlation coefficients (r²) between CH4 fluxes and air temperature as well as between CH4 
fluxes and soil temperature in 5 cm depth. CH4 emissions resulting from fertilizer application were 
excluded for correlation analysis. 
 

Season Crops CH4 Fluxes – 
Air Temp. 

CH4 Fluxes – 
Soil Temp. 

Winter Wheat 5 0.34 0.31 

Spring Wheat 0.47 0.50 

Spelt 0.57 0.58 
2002/2003 

Potatoes 0.48 0.44 

Winter Wheat 5 0.37 0.51 

Spring Wheat 0.46 0.44 

Spelt 0.57 0.64 
2003/2004 

Potatoes 0.29 0.27 

Winter Wheat 5 0.37 0.51 

Spring Wheat 0.42 0.51 2004/2005 

Spelt 0.28 0.46 

 
Comparing results of annual CH4 fluxes in winter wheat 5 and prior intercrops during the 

seasons 2002/2003, 2003/2004, and 2004/2005, the arable soil acted continuously as CH4 sink. 

Oxidation rates in intercrops slightly decreased from first to third sampling in 2004/2005 and 

2003/2004. Highest CH4 uptake rates were always observed at the end of the investigation 

periods, thus in summer. Manuring of liquid fermented fertilizer in w/o L-FC mostly entailed CH4 

emissions of CH4 dissolved in the fertilizer with different duration. Except 2004/2005 with similar 

amounts of carbon uptake, less CH4 was oxidized in w/o L-FC compared to w/o L-M, but in 
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different proportions. The level of uptake rates in w/o L-M decreased from 2002/2003 to 

2004/2005, whereas the level in w/o L-FC was higher in 2003/2004 than in the other two 

seasons. 

 

3.1.4 CH4 Fluxes in Intercrops and Spring Wheat 

During season 2004/2005 in intercrops and spring wheat, the arable soil showed CH4 uptake 

rates between 1.8 and 42 µg C m-2 h-1 in w/o L-M and between 0.9 and 26 µg C m-2 h-1 in  

w/o L-FC, respectively (figure 3.6). Large CH4 influxes were determined in June and July 2005. 

Unexpected CH4 emissions were observed at following sampling days: on December 22, 2004 

in both manuring treatments (2.6 µg C m-2 h-1 in w/o L-M and 0.8 µg C m-2 h-1 in w/o L-FC), on 

January 7, 2005 in w/o L-M (1.3 µg C m-2 h-1, significant), as well as on February 28 (2.6 µg C  

m-2 h-1) and May 11, 2005 (13 µg C m-2 h-1) in w/o L-FC. Significant differences in CH4 uptake 

rates were found on December 8, 2004 and June 22, 2005, whereas the outstanding high 

emission peak in w/o L-FC in May was not significant. Integration of the observed CH4 fluxes 

over 365 days led to a total carbon uptake of 714 g C ha-1 in w/o L-M and 644 g C ha-1 in  

w/o L-FC, thus a decrease of 10% in w/o L-FC (table 3.7). CH4 emission on February 28, 2005 

was used until February 28, CH4 efflux on May 11, 2005 was only calculated for that day. The 

spatial variability of CH4 fluxes averaged 47% in w/o L-M and 76% in w/o L-FC (table 3.8). The 

CV value for the temporal variability of CH4 fluxes accounted for 159% in w/o L-M and for 

205% in w/o L-FC (table 3.8). Coefficients of correlation of 0.42 and 0.51 between CH4 fluxes 

and air and soil temperature in 5 cm soil depth, respectively, were calculated (table 3.9). 

In 2003/2004, CH4 oxidation rates in intercrops and spring wheat were found between 0 and 

16 µg C m-2 h-1 in both manuring treatments (figure 3.7). An exception of the continuous CH4 

uptake represented February 27, 2004 when 3 µg C m-2 h-1 were emitted in w/o L-FC but 

without significance. No CH4 fluxes could be determined on January 15, 2004 in w/o L-FC and 

on March 25, 2004 in both manuring treatments. In the majority of sampling dates CH4 uptake 

rates were slighly higher in w/o L-FC than in w/o L-M, however just on December 2, 2004 with 

significant difference. Carbon uptake of 502 g C ha-1 in w/o L-M and 547 g C ha-1 in w/o L-FC, 

respectively, were calculated integrating CH4 fluxes over 365 days that corresponded to an 

increase of 9% in w/o L-FC (table 3.7). CH4 emission on February 27, 2004 was calculated for 

that day in the integration. Mean spatial variabilities of CH4 fluxes of 56% and 47% were 

determined in w/o L-M and in w/o L-FC, respectively (table 3.8). The CV values for temporal 

variability of the CH4 fluxes amounted to 68% in w/o L-M and 77% in w/o L-FC (table 3.8). 

Coefficients of correlation (r²) between CH4 fluxes air temperature and between CH4 fluxes 

and temperature in 5 cm soil depth accounted for 0.46 and 0.44, respectively (table 3.9). 

CH4 uptake rates measured in 2002/2003 in intercrops and spring wheat ranged between  

0 and 24 µg C m-2 h-1 in w/o L-M and between 0 and 18 µg C m-2 h-1 in w/o L-FC, respectively 

(figure 3.8). The higher oxidation rates were determined in June and July 2003. At the majority 
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of sampling dates larger CH4 influxes in the soil were analyzed in w/o L-M compared to  

w/o L-FC. On November 6, 2002 and April 27, 2003 neither CH4 uptake nor CH4 emission could 

be observed in both manuring treatments. On May 22, 2003 no flux was found in w/o L-M. 

During this season, no significant differences between the manuring treatments in CH4 fluxes 

could be determined. Integration of CH4 oxidation over 365 days showed a carbon uptake of 

585 µg C m-2 h-1 in w/o L-M and 529 µg C m-2 h-1 in w/o L-FC, meaning a reduction of 10% in 

w/o L-FC (table 3.7). Mean spatial variabilities of CH4 fluxes of 38% and 73% were assessed in 

w/o L-M and in w/o L-FC, respectively (table 3.8). The CV values for temporal variability of the 

CH4 fluxes amounted to 121% in w/o L-M and 110% in w/o L-FC (table 3.8). Coefficients of 

correlation (r²) between CH4 fluxes and air temperature and between CH4 fluxes and 

temperature in 5 cm soil depths accounted for 0.47 and 0.50, respectively (table 3.9). 

Comparison of annual CH4 fluxes during the seasons 2004/2005, 2003/2004,and 2002/2003 in 

intercrops and spring wheat revealed that the arable soil acted continuously as sink for CH4 

with oxidation rates mainly varying between 2 and 8 µg C m-2 h-1. Elevated uptake rates were 

found in the summer months. CH4 emissions were rarely observed without identifiable reason 

and without statistical significance. With exception of 2003/2004, when an increase of carbon 

uptake (9%) integrated over 365 days was observerd, less CH4 was taken up and was oxidized 

by the soil in w/o L-FC in comparison to w/o L-M (10%). Comparing integrated CH4 fluxes of 

winter wheat 5 with prior intercrops on the one hand and intercrops and spring wheat on the 

other hand higher carbon uptake was displayed in w/o L-M in winter wheat 5 in 2002/2003 

and 2003/2004, whereas in 2004/2005 in this manuring treatment less CH4 oxidized up 

compared to intercrops and spring wheat. Regarding w/o L-FC, less carbon uptake occurred 

in winter wheat 5 in comparison to intercrops and spring wheat in 2002/2003 and 2004/2005, 

but in 2003/2004 similar amounts of CH4 were oxidized in both crops. 

 

3.1.5 Net CO2 Fluxes in Winter Wheat 5 

Since the trace gas measurements were carried out in the soil-plant system with transparent 

chambers using the closed chamber method, the observed net CO2 fluxes represent an 

overlap of CO2 production and consumption processes. Quantification of CO2 flux rates  

was not possible when the photosynthetic activity was so high that the amount of CO2 

enclosed within the chamber plus any CO2 production were not sufficient for a linear 

regression analysis over at least three of the five sampling time points. Due to the non-

quantifiable uptake rates, integration of CO2 fluxes over 365 days (as done with N2O and CH4 

fluxes) was not performed. 

During season 2004/2005 in winter wheat 5 and prior intercrops, CO2 flux rates were observed 

in w/o L-M between -227 and 508 mg C m-2 ha-1 and in w/o L-FC between -187 and 481 mg C 

m-2 ha-1 (figure 3.1). After drilling of winter wheat CO2 emissions were determined in both 

manuring treatments in October, on December 22, 2004, in January, on March 1, in July, and 
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August 2005. Relatively high efflux rates occurred in w/o L-M in October (up to 265 mg C  

m-2 ha-1) and highest emissions in July in both treatments (508 mg C m-2 ha-1 in w/o L-M, 481 

mg C m-2 ha-1 in w/o L-FC). At the remaining sampling dates quantifiable and not 

quantifiable CO2 uptakes were found in both manuring treatments or in one of the 

treatments, respectively. During the season a trend of slightly decreased CO2 emissions and 

reduced CO2 uptake in w/o L-FC compared to w/o L-M became apparent. Significant 

differences of CO2 fluxes between the manuring treatments were shown on December 8, 

2004, January 7 and February 24, 2005. The very small emission of 4 mg C m-2 ha-1 in w/o L-FC 

possibly resulted from degassing of dissolved CO2 in liquid fermented fertilizer that was 

applied two days before. However, one day after fertilizer application in w/o L-FC at the end 

of January, strong CO2 uptake was observed. 

In 2003/2004 CO2 fluxes in winter wheat 5 and prior intercrops accounted for -48 to 64 mg C 

m-2 ha-1 in w/o L-M and for -34 to 61 mg C m-2 ha-1 in w/o L-FC, respectively (figure 3.2). After 

drilling of winter wheat on October 14, 2003, CO2 was evolved from both, w/o L-M and in 

lower amounts from w/o L-FC until mid January. Significantly higher emissions in w/o L-M were 

found on November 5 and 19, 2003. In January 2004, CO2 emission switched to CO2 uptake in 

both treatments that was mostly lower in w/o L-FC. The emission peak in w/o L-FC on February 

27, 2004 (61 mg C m-2 h-1, not significant) was probably due to degassing of CO2 dissolved in 

the liquid fermented fertilizer that was applied a few hours before. Further manuring on March 

25 and April 7, 2004 did not result in CO2 emissions. Non-quantifiable CO2 uptake rates were 

found in the intercrops (August 14 until October 9, 2003) and in winter wheat 5 as of  

April 15, 2004. 

In winter wheat 5 during season 2002/2003 CO2 fluxes ranged between -28 and 286 mg C  

m-2 ha-1 in w/o L-M and between -40 and 378 mg C m-2 ha-1 in w/o L-FC, frequently with high 

standard deviations (figure 3.3). No fluxes could be observed on February 12 and February 19, 

2003 in w/o L-M and w/o L-FC, respectively. Quantifiable CO2 uptake rates were determined 

in both manuring treatments on January 16, 2003 and in w/o L-M on March 13 and April 8, 

2003. Uptake rates in May were not quantifiable. Significances between the treatments were 

found on December 4, 2002 and April 8, 2003. CO2 emissions in w/o L-FC on February 19 and 

March 13, 2003 were probably due to degassing of CO2 dissolved in the liquid fertilizer 

applied to the soil a few hours before. 

Comparison of CO2 fluxes in winter wheat 5 and prior intercrops in all three seasons showed a 

trend of reduced CO2 emissions in w/o L-FC excluding emission peaks caused by fertilizer 

application, notabely in 2004/2005 and 2003/2004. In cases of quantifiable CO2 uptake mostly 

lower uptake rates occurred in w/o L-FC compared to w/o L-M. 
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3.1.6 Net CO2 Fluxes in Intercrops and Spring Wheat 

In 2004/2005, CO2 fluxes in intercrops and spring wheat ranged from -170 to 139 mg C  

m-2 ha-1 in w/o L-M and from -157 to 176 mg C m-2 ha-1 in w/o L-FC (figure 3.6). Sampling on 

October 13 and 27, 2004 in intercrops revealed largest CO2 uptake rates during the season in 

both manuring treatments. Furthermore, CO2 uptake was observed in November 24, 2004 

and August 8, 2005 in w/o L-M, and in February 28 and June 22, 2005 in w/o L-FC. CO2 uptake 

rates found in May 11, 2005 were not quantifiable in both treatments. At the other sampling 

dates, CO2 emissions occurred with notably high emission peaks on November 17, 2004 and 

July 15, 2005, however without any trend of increase or decrease in w/o L-FC compared to 

w/o L-M. Significant differences between the treatments were determined on November 24 

and December 8, 2004 as well as on February 24 and 28, 2005. 

During season 2003/2004 CO2 fluxes in intercrops and spring wheat accounted for -120 to 26 

mg C m-2 ha-1 in w/o L-M and for -68 to 47 mg C m-2 ha-1 in w/o L-FC (figure 3.7). Except 

February 12, 2004, CO2 emissions were observed between January and April 15, 2004 in both 

treatments, exhibiting a trend of reduced CO2 emissions in w/o L-FC. CO2 uptake 

(quantifiable and not quantifiable) occurred in both manuring treatments until October 23, 

on December 2, 2003, and as of April 27, 2004 until end of sampling period in July 2004. In 

November 2003 CO2 uptake in w/o L-M and CO2 efflux in w/o L-FC was found demonstrating 

the effect of cutting and harvesting the intercrops in w/o L-FC. CO2 fluxes on November 5, 

2003 and February 12, 2004 were significantly different.  

CO2 fluxes between -279 and 91 mg C m-2 ha-1 in w/o L-M and between -147 and 48 mg C  

m-2 ha-1 in w/o L-FC were determined in 2002/2003 in intercrops and spring wheat (figure 3.8). 

On November 6, 2002, from December 16, 2002 to April 8, 2003, and on July 20, 2003 CO2 

emissions in both manuring treatments occurred. However, no trend of reduced or elevated 

fluxes between the treatments emerged. At the remaining sampling dates, quantifiable and 

non-quantifiable CO2 uptake was found. Only on December 4, 2002 a significance between 

the treatments could be observed. 
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3.2 Field Measurements in the Cropping System with Livestock 

3.2.1 N2O Fluxes and Soil Mineral Nitrogen Contents in Spelt 

During season 2004/2005 N2O emissions in spelt and prior intercrops ranged between 1 and 

299 µg N m-2 h-1 in wL-FS, 1 and 164 µg N m-2 h-1 in wL-FS+FC, 2 and 436 µg N m-2 h-1 in wL-FYM, 

and 4 and 235 µg N m-2 h-1 in the control treatment wL-RS (figure 3.11). Notably high N2O 

losses occurred in all treatments on October 27, 2004, low emissions in all treatments were 

determined on September 15 and 28, 2004 (intercrops) as well as on January 7, 2005. N2O 

fluxes often exhibited high standard deviations entailing significant differences between the 

manuring treatments only at three sampling dates (October 27, 2004, February 26 and March 

1, 2005; multiple comparison of averages using Student-Newman-Keuls method, P ≤ 0.05). A 

trend of increased or decreased emissions in a distinct treatment in comparison to wL-RS did 

not become apparent, the emission patterns were very heterogenous. Elevated N2O fluxes 

on October 13, 2004 in wL-FS+FC and wL-FYM could be linked to application of solid 

fermented residues and farmyard manure, respectively. Integration of emission data over 365 

days (refer to 3.12) showed a nitrogen loss of 5449 g N ha-1 in wL-FS (147%), 2239 g N h-1 in  

wL-FS+FC (60%), and 3709 g N ha-1 (100%), thus a reduction in wL-FS+FC and an increase in 

wL-FS compared to wL-RS (table 3.10). Extrapolation of N2O emissions in wL-FYM during season 

2004/2005 was only performed in comparison to wL-FYM of the previous season 2003/2004 

because second reference data of season 2002/2003 were not available in this manuring 

treatment. Coefficients of variation for the mean spatial variability of N2O emissions 

amounted to 70% in wL-FS, 81% in wL-FS+FC, 70% in wL-FYM, and 68% in wL-RS (table 3.11). The 

CV value for the temporal variability of N2O emissions accounted for 160% in wL-FS, 127% in 

wL-FS+FC, 196% in wL-FYM, and 146% in wL-RS (table 3.11). In the winter period between 

December 1 and March 15, 12%, 27%, 11%, and 17% of the annual N2O losses were emitted in 

wL-FS, wL-FS+FC, wL-FYM, and wL-RS, respectively (table 3.12). 

In 2003/2004 N2O fluxes in spelt and prior intercrops varied in wL-FS from -2 to 62 µg N m-2 h-1, in 

wL-FS+FC from -5 to 17 µg N m-2 h-1, in wL-FYM from 0 to 41 µg N m-2 h-1, and in wL-RS from 0 to 

23 µg N m-2 h-1 (figure 3.12). No fluxes were determined in some of the manuring treatments 

on August 14 and October 9, 2003, and in all treatments in January and on March 7, 2004. 

Elevated N2O emissions in wL-FYM were observed after drilling of spelt on October 14 until 

December 2003, however just on December 2 with statistical significance. Further significant 

differences were only found on February 21, 2004 due to high standard deviations. 

Application of the respective liquid fertilizers on March 5, 2004 in wL-FS, wL-FS+FC, and wL-RS 

resulted in non-significant, higher emissons in those treatments that day. However, manuring 

in wL-FS+FC on March 25, 2004 did not increase N2O losses in this treatment that day. The 

seldom observation of N2O uptake was made on January 26 in wL-FS and on June 11, 2004 in 

wL-FS+FC. A clear pattern of emission with continuously reduced or elevated N2O fluxes in a  
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Figure 3.11: N2O-, CH4-, and CO2- fluxes in spelt and prior intercrops in the cropping system with livestock 
in season 2004/2005. Bold arrows: application of liquid fertilizers, dotted arrows: application of solid 
fermented residues or farmyard manure in the respective manuring treatments. 
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Figure 3.12: N2O-, CH4-, and CO2- fluxes in spelt and prior intercrops in the cropping system with livestock 
in season 2003/2004. Bold arrows: application of liquid fertilizers, dotted arrows: application of solid 
fermented residues or farmyard manure in the respective manuring treatments. 
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Figure 3.13: N2O-, CH4-, and CO2- fluxes in spelt in the cropping system with livestock in season 
2002/2003. Start of gas sampling in manuring treatment wL-FYM on April 27 2003. Bold arrows: 
application of liquid fertilizers, dotted arrows: application of solid fermented residues or farmyard 
manure in the respective manuring treatments. 
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treatment did not emerge. The nitrogen loss over 365 days amounted to 838 g N ha-1 in wL-FS, 

to 456 g N ha-1 in wL-FS+FC, to 1017 g N ha-1 in wL-FYM, and to 834 g ha-1 in wL-RS, meaning a 

decrease of 45% in wL-FS+FC, a very small increase of 1% in wL-FS, and an increase of 22% in 

wL-FYM compared to wL-RS (table 3.10). Coefficients of variation for the spatial variability of 

N2O emissions averaged 76% in wL-FS, 75% in wL-FS+FC, 36% in wL-FYM, and 37% in wL-RS 

(table 3.11). The CV value for the temporal variability of N2O emissions accounted for 129% in 

wL-FS, 90% in wL-FS+FC, 99% in wL-FYM, and 79% in wL-RS (table 3.11). During the winter 

proportions of the annual N2O losses of 16%, 28%, 17%, and 20% were emitted in wL-FS, wL-

FS+FC, wL-FYM, and wL-RS, respectively (table 3.12). 

 

Table 3.10: Integrated N2O emissions over 365 days in spelt and potatoes in the cropping system with 
livestock in the respective manuring treatments.  
 

Manuring Treatments 

wL-FS wL-FS+FC wL-FYM wL-RS Season Crops 
% of 

wL-RS g N ha-1 % of 
wL-RS g N ha-1 % of 

wL-RS g N ha-1 % of 
wL-RS g N ha-1 

Spelt 38 1474 40 1535 n.d. n.d. 100 3868 
2002/2003 

Potatoes 72 1524 105 2234 n.d. n.d. 100 2128 

Spelt 101 838 55 456 122 1017 100 834 
2003/2004 

Potatoes 92 2824 85 2586 105 3194 100 3054 

Spelt√ 124 2400 81 1570 157 3048 100 1943 
2004/2005 

Spelt 147 5449 60 2239 174 6465* 100 3709 
 

Spelt√ 2004/2005: Integrated N2O emissions during sampling period from September 2004 until March 
2005 
*Extrapolated value calculated only in comparison to season 2003/2004 due to missing value in   
 2002/2003 
n.d.: not determined 
 
Table 3.11: Coefficients of variation (CV) for temporal and mean spatial variability of the N2O emissions 
in spelt and potatoes in the cropping system with livestock in the respective manuring treatments. 
 

Manuring Treatments 

wL-FS wL-FS+FC wL-FYM wL-RS Season Crops 
CV % 
time 

Ø CV % 
space 

CV % 
time 

Ø CV % 
space 

CV % 
time 

Ø CV % 
space 

CV % 
time 

Ø CV % 
space 

Spelt 189 68 163 43 124 57 158 38 
2002/2003 

Potatoes 177 52 203 36 120 55 159 62 

Spelt 129 76 90 75 99 36 79 37 
2003/2004 

Potatoes 107 49 97 60 122 94 152 40 

2004/2005 Spelt√ 160 70 127 81 196 70 146 68 
 

Spelt√ 2004/2005: Coefficients of variation during sampling period from September 2004 until March 2005 
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Table 3.12: Integrated N2O emissions during winter period (December 1 - March 15) in spelt and in 
intercrops before potatoes in the cropping system with livestock in the respective manuring treatments. 
 

Manuring Treatments 

wL-FS wL-FS+FC wL-FYM wL-RS Season Crops 
Winter 

% 
Winter  

g N ha-1 
Winter 

% 
Winter  

g N ha-1 
Winter 

% 
Winter  

g N ha-1 
Winter 

% 
Winter  

g N ha-1 

Spelt 23 333 29 439 n.d. n.d. 29 1131 
2002/2003 

Intercrops 38 580 33 738 n.d. n.d. 18 388 

Spelt 16 131 28 129 17 172 20 163 
2003/2004 

Intercrops 26 732 31 808 22 696 12 357 

2004/2005 Spelt 12 653 27 594 11* 708* 17 623 
 

*Extrapolated value of annual emission calculated only in comparison to season 2003/2004 due to 
missing value in 2002/2003 
 

N2O fluxes in spelt and prior intercrops during 2002/2003 were observed in ranges of -3 to 155 

µg N m-2 h-1 in wL-FS, -2 to 142 µg N m-2 h-1 in wL-FS+FC, 0 to 14 µg N m-2 h-1 in wL-FYM (sampling 

in this treatment started end of April), and 0 to 296 µg N m-2 h-1 in wL-RS (figure 3.13). Until 

February 2003 highest N2O emissions were found in wL-RS compared to the fermented slurry 

treatments, however only on January 7, 2003 with significant difference. On May 7, 2003 flux 

rates also differed significantly. Notably high N2O emissions occurred in November 2002. No 

fluxes were determined on November 20, 2002 in wL-RS and on April 27, 2003 in wL-FS+FC as 

well as on February 20 (a few hours after fertilizer application), April 8, May 22, and June 22, 

2003 in all manuring treatments. Integration of flux rates over 365 days showed a nitrogen loss 

of 3868 g N ha-1 (100%) in wL-RS, 1474 g N ha-1 (38%) in wL-FS, and 1535 g N ha-1 (40%) in  

wL-FS+FC (table 3.10). No integration was carried out in wL-FYM since data of just two months 

were available. The mean spatial variability of N2O emissions amounted to 68% in wL-FS, 43% 

in wL-FS+FC, 57% in wL-FYM, and 38% in wL-RS (table 3.11). The CV value for the temporal 

variability of N2O emissions accounted for 189% in in wL-FS, 163% in wL-FS+FC, 124% in wL-FYM, 

and 158% in wL-RS (table 3.11). CV values in wL-FYM were achieved from existing data of only 

two months. During the winter period 23%, 29%, and again 29% of the annual N2O losses were 

emitted in wL-FS, wL-FS+FC, and wL-RS, respectively (table 3.12).  

Comparison of N2O fluxes in spelt and prior intercrops in 2004/2005, 2003/2004, and 2002/2003 

revealed highest nitrogen losses during season 2004/2005 and a level of low emissions in 

2003/2004. Looking at the emission patterns, no regularity of increased or reduced N2O fluxes 

in the different manuring treatments appeared in three years of sampling. However, 

concerning integrated N fluxes over 365 days, wL-FS+FC showed in all seasons clearly 

decreased N losses (19 - 60%), and wL-FYM exhibited elevated N2O emissions of 122% in 

2003/2004, and of 157% during sampling period from September 2004 to March 2005 

compared to wL-RS.  
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Figure 3.14: NO3--and NH4+- concentrations in spelt and prior intercrops in the cropping system with 
livestock in season 2003/2004. 
 
 

 
 
Figure 3.15: NO3--and NH4+- concentrations in spelt in the cropping system with livestock in season 
2002/2003. 

 
Soil NO3- concentrations in spelt and prior intercrops varied in 2003/2004 between 0.3 and 5.3 

g N m-2 in 30 cm soil depth (ploughed layer) in wL-FS, 0.5 and 4.8 g N m-2 in wL-FS+FC, 0.3 and 
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5.4 g N m-2 in wL-FYM, and 0.3 and 4.5 g N m-2 in wL- RS (figure 3.14). After drilling of spelt on 

October 14, 2003, NO3- concentrations increased in all manuring treatments up to 5 g N m-2 

on November 19, 2003 and decreased afterwards. In part elevated amounts of NO3- were 

detected after manuring on March 5 and 25, 2004 in the fertilized treatments, however, 

signifiant differences were only found on April 15, 2004. NH4+ concentrations were mostly at 

the detection limit with exception of sampling dates in March 2004 due to fertilizer 

application in wL-FS, wL-FS+FC, and wL-RS. Up to 4.8 g NH4+-N m-2 in wL-FS, 6.3 g NH4+-N m-2 in 

wL-FS+FC, and 9.3 g NH4+-N m-2 in wL-RS were observed on March 5, 2004 but without 

statistical significance. No relationship was found between soil mineral nitrogen 

concentrations and the amount of emitted N2O. 

In 2002/2003 soil NO3- concentrations in spelt ranged in 30 cm soil depth (ploughed layer) 

between 0.6 and 3.1 g N m-2 in wL-FS, 0.7 and 2.8 g N m-2 in wL-FS+FC, and 0.7 and 3.5 in  

wL-RS (figure 3.15), hence varied on a comparable level as in 2003/2004. Sampling in wL-FYM 

started on May 7 2003 and revealed NO3- amounts of 0.6 to 1.3 g N m-2. The only signifcant 

difference of NO3- concentrations was found on November 20, 2002 between wL-FS+FC and 

wL-RS. NH4+ concentrations were for many sampling days at the detection limit, slightly 

elevated amounts of NH4+ were observed on February 4 and April 8, 2003. As during season 

2003/2004 no indication of related N2O emissions and soil mineral nitrogen concentrations 

became apparent.  

 

NO3-- and NH4+- contents in soil depths of 0 - 30 cm, 30 - 60 cm, and 60 - 90 cm in spelt 

investigated in fall/winter and spring revealed amounts of mineral nitrogen from 66 - 152 kg N 

ha-1 in wL-FS, 48 - 149 kg N ha-1 in wL-FS+FC, 42 - 84 kg N ha-1 in wL-FYM, and 62 - 95 kg N ha-1 

in wL-RS (figure 3.16). Ammonium values were relatively small and negligible at most of the 

sampling times. On March 18, 2004, December 10, 2004, and March 21, 2005 significant 

differences of Nmin between the manuring treatments were found, and all further 

significances found by comparison of NO3- and NH4+ concentrations in the different soil layers 

between the manuring treatments are shown in table 3.13. During the investigation period no 

pattern of elevated or reduced NO3- and NH4+ in distinct treatments became apparent.  

 

In spring 2001 (before start of the differentiated manuring systems) as well as in spring 2004 

contents of total nitrogen and total carbon were determined in the cropping system with 

livestock in the ploughed layer (30 cm soil depth) in the fields “Pfaffengraben 3” and 

“Pfaffengraben 4”. Rye, peas, and spelt were subsequently cultivated in field “Pfaffengraben 

3”, and peas, spelt, and spring wheat were consecutively grown in field “Pfaffengraben 4” 

between both soil sampling dates. Table 3.14 exhibits the differences of total N and total C 

concentrations after three years of processing the different manuring treatments. Over both 

fields and all manuring treatments differences of total N amounts varied from -0.077 to 0.006  
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Figure 3.16: Amounts of NO3--N and NH4+-N in spelt in the cropping system with livestock between 
November 2002 and March 2005 in soil depths of 0 - 30 cm, 30 - 60 cm, and 60 - 90 cm, respectively, in 
the different manuring treatments. (Data: Kurt Möller, Giessen, personal communication) 
 
 
Table 3.13: Significant differences in amounts of NO3-, NH4+, and Nmin in spelt in the cropping system with 
livestock between November 2002 and March 2005 in the different manuring treatments. (Data: Kurt 
Möller, Giessen, personal communication) 
 

  wL-FS wL-FS+FC wL-FYM wL-RS 

NO3- 0 - 30 cm a a b ab 
NO3- cumulative a ab b ab 
NH4+ 0 - 30 cm x x y x 

NH4+ cumulative x x y x 

Mar. 18, 2004 

Nmin total s s t s 

NO3- 60 - 90 cm a a a b 
NO3- cumulative a b ab ab 
NH4+ 60 - 90 cm x x x y 

Dec. 10, 2004 

Nmin total s t st st 

NO3- 0 - 30 cm a b c c 
NO3- 60 - 90 cm a b ab ab 
NO3- cumulative a ab b b 
NH4+ 0 - 30 cm x y z z 

NH4+ 30 - 60 cm x y x x 
NH4+ cumulative x y z z 

Mar. 21, 2005 

Nmin total s s t t 
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mg N g-1 and differences of total C between -0.878 and 0.092 mg C g-1. However, no 

significant differences could be determined, neither between the five manuring treatments in 

2001 and 2004 (ANOVA), respectively, comparing both, nitrogen and carbon concentrations, 

nor between soil nitrogen and carbon contents, respectively, within a manuring treatment (t-

test) comparing year 2001 with year 2004. Amounts of total N ranged in 2001 from 1.001 to 

1.415 mg N g-1 dw soil and in 2004 from 1.009 to 1.405 mg N g-1 dw soil, concentrations of total 

C varied in 2001 between 8.824 and 12.541 mg C g-1 dw soil and in 2004 between 8.185 and 

12.053 mg C g-1 dw soil. 

 

Table 3.14: Differences of soil total nitrogen and total carbon concentrations in the cropping system with 
livestock after three years of processing differentiated manuring treatments. Soil sampling in spring 2001 
(before start of the different manuring treatments) and in spring 2004. Positive and negative numbers 
mean increase and decrease, respectively, of total N or total C between 2001 and 2004. Numbers in 
parentheses are standard deviations. Amounts of total N ranged in 2001 from 1.001 to 1.415 mg N g-1 dw 
soil and in 2004 from 1.009 to 1.405 mg N g-1 dw soil, concentrations of total C varied in 2001 between 
8.824 and 12.541 mg C g-1 dw soil and in 2004 between 8.185 and 12.053 mg C g-1 dw soil. (Data: Kurt 
Möller, Giessen, personal communication) 
 

Field Difference  
2001 – 2004 

wL- 
FS 

wL- 
FS+FC 

wL-
FS+FC+FE 

wL- 
FYM 

wL- 
RS 

Total Nitrogen  
[mg g-1 dw soil] 

0.000 
(± 0.111) 

0.006 
(± 0.057) 

-0.011 
(± 0.063) 

-0.045 
(± 0.038) 

-0.002 
(± 0.073) Pfaffen-

graben 3 Total Carbon  
[mg g-1 dw soil] 

-0.516 
(± 0.986) 

-0.370 
(± 0.632) 

-0.637 
(± 0.130) 

-0.878 
(± 0.197) 

-0.158 
(± 0.487) 

Total Nitrogen  
[mg g-1 dw soil] 

-0.072 
(± 0.091) 

-0.077 
(± 0.112) 

-0.035 
(± 0.113) 

-0.028 
(± 0.097) 

-0.036 
(± 0.114) Pfaffen-

graben 4 Total Carbon  
[mg g-1 dw soil] 

-0.336 
(± 1.160) 

-0.780 
(± 1.478) 

-0.352 
(± 0.855) 

-0.283 
(± 0.775) 

0.092 
(± 0.962) 

 

 

3.2.2 N2O Fluxes and Soil Mineral Nitrogen Contents in Intercrops and Potatoes 

During season 2003/2004 N2O emissions in intercrops and potatoes amounted up to 170 µg N 

m-2 h-1 in wL-FS, to 69 µg N m-2 h-1 in wL-FS+FC, to 149 µg N m-2 h-1 in wL-FYM, and to 251 µg N  

m-2 h-1 in wL-RS (figure 3.17). N2O effluxes increased partly after soil ploughing on January 24 

and notabely when potatoes were dibbled on April 21, 2004 and when the ridges were 

curried later on. A distinct emission pattern of the manuring treatments did not become 

apparent, however, as of February 21, 2004, lowest nitrogen losses always occurred in wL-

FS+FC. Despite five times of fertilizer application (liquid manure as well as solid fermented 

residues and farmyard manure) no significant differences in N2O emissions between the 

treatments could be determined. No fluxes in part or in all treatments were found in October, 

on November 19, 2003, on January 4 and 15, and on February 21, 2004. Integrated emissions 

over 365 days accounted for N losses of 3054 g N ha-1 in wL-RS, 2824 g N ha-1 in wL-FS, 2586 g 

N ha-1 in wL-FS+FC, and 3194 g N ha-1 in wL-FYM, hence reductions of 8% in wL-FS and 15% in 
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wL-FS+FC, and an increase of 5% in wL-FYM, respectively, compared to wL-RS (table 3.10). 

Coefficients of variation for the mean spatial variability of N2O emissions amounted to 49% in 

wL-FS, 60% in wL-FS+FC, 94% in wL-FYM, and 40% in wL-RS (table 3.11). The CV value for the 

temporal variability of N2O emissions accounted for 107% in wL-FS, 97% in wL-FS+FC, 122% in 

wL-FYM, and 152% in wL-RS (table 3.11). In the winter period between December 1 and 

March 15, 26%, 31%, 22%, and 12% of the annual N2O losses were emitted in wL-FS, wL-FS+FC, 

wL-FYM, and wL-RS, respectively (table 3.12). 

In 2002/2003, N2O emissions in intercrops and potatoes achieved up to 216 µg N m-2 h-1 in  

wL-FS, 388 µg N m-2 h-1 in wL-FS+FC, 175 µg N m-2 h-1 in wL-FYM (start of investigation on May 7, 

2003), and 201 µg N m-2 h-1 in wL-RS (figure 3.18). Effluxes increased with dibbling of potatoes 

on April 15, 2003 with notabely high flux rates on May 22 and June 5, 2003. Outstanding high 

N2O emissions were observed on December 16, 2002 in intercrops (wL-FS and wL-RS) and 

harvested intercrops (plant stubbels, wL-FS+FC) in all three investigated manuring treatments, 

whereas no effluxes occurred on April 8 and August 14, 2003. During the sampling period, no 

significances between the treatments could be determined although liquid and solid 

manures were applied at five time points. Integration of N2O flux rates over 365 days revealed 

nitrogen losses of 2128 g N ha-1 in wL-RS, 1524 g N ha-1 in wL-FS, and 2234 g N ha-1 in wL-FS+FC, 

exhibiting a reduction of 28% in wL-FS and an increase of 5% in wL-FS+FC compared to wL-RS 

(table 3.10). Integration over 365 d in wL-FYM was not carried out since emission data of just 

four months were available. Coefficients of variation for the spatial variability of N2O emissions 

averaged 52% in wL-FS, 36% in wL-FS+FC, 55% in wL-FYM, and 62% in wL-RS (table 3.11). The CV 

value for the temporal variability of N2O emissions accounted for 177% in wL-FS, 203% in  

wL-FS+FC, 120% in wL-FYM, and 159% in wL-RS (table 3.11). CV values in wL-FYM were 

calculated from existing data of around four months. During the winter period proportions of 

the annual N2O losses of 38%, 33%, and 18% were emitted in wL-FS, wL-FS+FC, and wL-RS, 

respectively (table 3.12).  

Comparison of season 2003/2004 and 2002/2003 revealed a higher level of N2O emissions in 

2003/2004. In both seasons, less nitrogen was evolved in wL-FS (8% and 28%) compared to 

respective wL-RS. In contrast, in wL-FS+FC 5% more N2O was emitted in 2002/2003 but in 

2003/2004 a decrease of N losses of 15% occurred. Except elevated emissions after dibbling 

of potatoes and no significant differences between the manuring treatments, no similarities or 

distinct flux pattern could be assessed. Due to the completely different chronology of tillage, 

intercrop management, cultivation and harvest technique of spelt and potatoes, elevated 

N2O emissions occurred with dibbling of potatoes in April and May whereas increased N2O 

effluxes in spelt were determined in October and November after drilling, if any distinct trend 

could be noticed. The level of integrated emissions over 365 days varied in 2002/2003 and 

2003/2004 in potatoes between 1524 and 3194 g N ha-1 and in spelt between 456 and 3868 g 

N ha-1 over all investigated manuring treatments.  
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Figure 3.17: N2O-, CH4-, and CO2- fluxes in intercrops and potatoes in the cropping system with livestock 
in season 2003/2004. Bold arrows: application of liquid fertilizers, dotted arrows: application of solid 
fermented residues or farmyard manure in the respective manuring treatments. 
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Figure 3.18: N2O-, CH4-, and CO2- fluxes in intercrops and potatoes in the cropping system with livestock 
in season 2002/2003. Bold arrows: application of liquid fertilizers, dotted arrows: application of solid 
fermented residues or farmyard manure in the respective manuring treatments. 
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Soil NO3- concentrations varied between 0.4 and 1.5 g N m-2 in 30 cm soil depth (ploughed 

layer) in all three investigated manuring treatments until December 4, 2002 and increased 

also in all treatments up to 5 g N m-2 on April 8, 2003 without statistical significance (figure 

3.19). NH4+ concentrations were for all sampling times at the detection limit. Similar 

observations concerning course and height of mineral nitrogen were made in the same 

cropping system in spelt in the same and the following season. 

 

 
 
Figure 3.19: NO3--and NH4+- concentrations in intercrops and ploughed soil before potatoes in the 
cropping system with livestock in season 2002/2003 
 
Amounts of soil NO3--N and NH4+-N in 0 - 30 cm, 30 - 60 cm, and 60 - 90 cm soil depth 

investigated in fall/winter and spring in intercrops and potatoes exhibited contents of mineral 

nitrogen from 13 - 148 kg N ha-1 in wL-FS, 19 - 145 kg N ha-1 in wL-FS+FC, 21 - 157 kg N ha-1 in 

wL-FYM, and 12 - 159 kg N ha-1 in wL-RS (figure 3.20). Ammonium values were always relatively 

small and negligible. Within both seasons, 2002/2003 and 2003/2004, respectively, lowest 

amounts of Nmin were found in November and highest contents in May in all manuring 

treatments. On March 18, 2003 and November 11, 2003 significant differences of mineral 

nitrogen between the manuring treatments were observed. All further significances found by 

comparison of NO3- and NH4+ concentrations in the different soil layers between the manuring 

treatments are given in table 3.15. During the investigation period no trend of elevated or 

reduced NO3- and NH4+ in distinct treatments could be determined.  
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Figure 3.20: Amounts of NO3--N and NH4+-N in potatoes and intercrops in the cropping system with 
livestock between November 2002 and May 2004 in soil depths of 0 - 30 cm, 30 - 60 cm, and 60 - 90 cm, 
respectively, in the different manuring treatments. In May 2003 and 2004 sampling down to 60 cm soil 
depth. (Data: Kurt Möller, Giessen, personal communication) 
 

 

Table 3.15: Significant differences in amounts of NO3-, NH4+, and Nmin in potatoes and intercrops in the 
cropping system with livestock between November 2002 and May 2004 in the different manuring 
treatments. (Data: Kurt Möller, Giessen, personal communication) 
 

  wL-FS wL-FS+FC wL-FYM wL-RS 

Nov. 26, 2002 NO3- 0 - 30 cm a b b ab 

NO3- 0 - 30 cm a a b a 

NO3- 30 - 60 cm a a b a 

NO3- cumulative a a b a 
Mar. 18, 2003 

Nmin total s s t s 

NO3- 0 - 30 cm a b a a 

NO3- cumulative a b a a Nov. 11, 2003 

Nmin total s t s s 
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3.2.3 CH4 Fluxes in Spelt 

During season 2004/2005 CH4 flux rates varied in spelt and prior intercrops between -10 and 

0.2 µg C m-2 h-1 in wL-FS, -11 and 9 µg C m-2 h-1 in wL-FS+FC, -8 and 235 µg C m-2 h-1 in wL-FYM, 

and -11 and 11 µg C m-2 h-1 in wL-RS (figure 3.11). Albeit single CH4 emission events were 

observed in October, on November 24, 2004, and on February 26, 2005, soil acted neverthless 

as sink for methane. Only on February 26, 2005 a significant emission peak could be 

determined that was eventually caused by fertilizer application three days before. Partly high 

CH4 effluxes in wL-FYM, that could be favored by incorporation of FYM on October 11, 2004, 

were not significantly different due to similarly high standard deviations. No fluxes occurred 

on March 14, 2005 in all treatments and on December 8, 2004 in wL-FS and wL-RS. Over the 

sampling time no trend of elevated or reduced uptake rates in a manuring treatment 

became apparent. Integration over the sampling period until March 2005 in wL-FYM revealed 

a carbon efflux 6.8 times higher (1645 g C ha-1) than carbon uptake in wL-RS. Including the 

CH4 effluxes in October and on November 24 only for the day of sampling in wL-FYM resulted 

in a carbon uptake of 42 g C ha-1 within the sampling time, thus a reduction of 78%. 

Integration of CH4 flux rates over 365 days was performed as described in 3.12. Extrapolation 

of CH4 fluxes in wL-FYM during season 2004/2005 was only performed in comparison to wL-FYM 

of the previous season 2003/2004 because the second reference data of season 2002/2003 

were not available in this manuring treatment. Calculation showed soil carbon uptake of 669 

g C ha-1 in wL-RS compared to 752 g C ha-1 in wL-FS, 799 g C ha-1 in wL-FS+FC, and 128 g C 

ha-1 in wL-FYM, representing an increased uptake of 12% in wL-FS and of 19% in wL-FS+FC, and 

a decreased CH4 oxidation of 81% in wL-FYM (table 3.16). Mean spatial variabilities of CH4 

fluxes of 77%, 134%, 101%, and 122% were assessed in wL-FS, wL-FS+FC, wL-FYM, and wL-RS, 

respectively (table 3.17). The CV values for temporal variability of the CH4 fluxes amounted  

to 75% in wL-FS, 160% in wL-FS+FC, 286% in wL-FYM, and 153% in wL-RS (table 3.17). 

Coefficients of correlation (r²) between CH4 fluxes in spelt and air temperature and between 

CH4 fluxes and temperature in 5 cm soil depths accounted for 0.28 and 0.46, respectively 

(table 3.9). 

In 2003/2004 CH4 oxidation rates ranged in spelt and prior intercrops between 1.1 and 19 µg 

C m-2 h-1 in wL-FS, 0.8 and 18 µg C m-2 h-1 in wL-FS+FC, 0.5 and 14 µg C m-2 h-1 in wL-FYM, and 

0.7 and 21 µg C m-2 h-1 in wL-RS with exception of March 5, 2004 when after manuring 49, 105, 

and 86 µg C m-2 h-1 were emitted in wL-FS, wL-FS+FC, and wL-RS, respectively (figure 3.12). 

However, no CH4 was evolved after fertilizer application on March 25, 2004. CH4 uptake 

decreased in fall/winter and increased markedly as of April 2004. Significant differences in 

CH4 fluxes between the treatments were found on January 4 as well as on March 5, 2004 a 

few hours after manuring. Integration of CH4 flux rates over 365 days (table 3.16) revealed soil 

carbon uptake of 664 g C ha-1 in wL-RS (100%), 677 g C ha-1 in wL-FS (102%), 591 g C ha-1 in 

wL-FS+FC (89%), and 523 g C ha-1 in wL-FYM (79%). The spatial variability of CH4 fluxes 

averaged 38% in wL-FS, 27% in wL-FS+FC, 36% in wL-FYM, and 28% in wL-RS (table 3.17). CV 
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values for the temporal variability of CH4 fluxes were in part very high and accounted for 

442%, 4779%, 84%, and 2069% in wL-FS, wL-FS+FC, wL-FYM, and wL-RS, respectively (table 

3.17). Coefficients of correlation of 0.57 and 0.64 between CH4 fluxes in spelt and air and soil 

temperature in 5 cm soil depth, respectively, were calculated (table 3.9). 

 

Table 3.16: Integrated CH4 fluxes over 365 days in spelt and potatoes in the cropping system with 
livestock in the respective manuring treatments.  
 

Manuring Treatments 

wL-FS wL-FS+FC wL-FYM wL-RS Season Crops 
% of 

wL-RS g C ha-1 % of 
wL-RS g C ha-1 % of 

wL-RS g C ha-1 % of 
wL-RS g C ha-1 

Spelt 96 -649 102 -687 n.d. n.d. 100 -675 
2002/2003 

Potatoes 88 -498 113 -644 n.d. n.d. 100 -568 

Spelt 102 -677 89 -591 79 -523 100 -664 
2003/2004 

Potatoes 120 -618 129 -662 114 -585 100 -514 

83 -158 88 -169 22 -42‡ 100 -191 
Spelt√ 

    8.6x t 1645t   2004/2005 

Spelt 112 -752 119 -799 19 -128* 100 -669 
 

Spelt√ 2004/2005: Integrated CH4 fluxes during sampling period from September 2004 until March 2005 
‡CH4 emissions included in integration but each only for one day 
t8.6 times more CH4 emitted than CH4 taken up in wL-RS if usual integration of CH4 emissions performed 
*Extrapolated value calculated only in comparison to season 2003/2004 due to missing value in  
  2002/2003 
n.d.: not determined 
 

 

Table 3.17: Coefficients of variation (CV) for temporal and mean spatial variability of the CH4 fluxes in 
spelt and potatoes in the cropping system with livestock in the respective manuring treatments. 
 

Manuring Treatments 

wL-FS wL-FS+FC wL-FYM wL-RS Season Crops 
CV % 
time 

Ø CV % 
space 

CV % 
time 

Ø CV % 
space 

CV % 
time 

Ø CV % 
space 

CV % 
time 

Ø CV % 
space 

Spelt 463 30 457 36 58 86 491 47 
2002/2003 

Potatoes 94 72 78 32 64 59 72 56 

Spelt 442 38 4779 27 84 36 2069 28 
2003/2004 

Potatoes 68 39 51 27 93 32 125 1315 

2004/2005 Spelt√ 75 77 160 134 286 101 153 122 
 

Spelt√ 2004/2005: Coefficients of variation during sampling period from September 2004 until March 2005 
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CH4 oxidation rates in spelt in 2002/2003 reached up to 22 µg C m-2 h-1 in wL-FS and wL-FS+FC, 

21 µg C m-2 h-1 in wL-FYM (start of investigation on April 27, 2003), and 17 µg C m-2 h-1 in wL-RS 

(figure 3.13). After application of liquid fertilizer on February 20, 2003, CH4 emissions of 472, 

719, and 571 µg C m-2 h-1 in wL-FS, wL-FS+FC, and wL-RS, respectively, were determined. No 

fluxes could be found on November 20, 2002, in January, on February 4, on April 8 and 27, 

2003 in parts or in all manuring treatments. Integrating CH4 fluxes over 365 days showed a 

carbon uptake of the arable soil of 675 g C ha-1 in wL-RS, 649 g C ha-1 in wL-FS, and 687 g C 

ha-1 in wL-FS+FC, representing a decrease of 4% in wL-FS and an increase of 2% in wL-FS+FC 

compared to wL-RS (table 3.16). Oxidation rates in wL-FYM were not integrated since only 

results of three months were available. Mean spatial variabilities of CH4 fluxes of 30%, 36%, 

86%, and 47% were assessed in wL-FS, wL-FS+FC, wL-FYM, and wL-RS, respectively (table 3.17). 

CV values for temporal variability of the CH4 fluxes amounted to 463% in wL-FS, 457% in  

wL-FS+FC, 58% in wL-FYM, and 491% in wL-RS (table 3.17). CV values in wL-FYM were obtained 

by calculation with the existing data of about three months. Coefficients of correlation (r²) 

between CH4 fluxes in spelt and air temperature and between CH4 fluxes and temperature in 

5 cm soil depths accounted for 0.57 and 0.58, respectively (table 3.9). 

The comparison of CH4 fluxes during season 2004/2005, 2003/2004, and 2002/2003 in spelt and 

prior intercrops exhibited that the arable soil acted continuously as methane sink, in summer 

as stronger, in winter as minor sink. No explicit pattern of elevated or reduced oxidation rates 

in a distinct manuring treatment became apparent. This determination was confirmed 

considering the integrated values over 365 days, when increased and decreased CH4 uptake 

was found in wL-FS and wL-FS+FC compared to the respective control treatment wL-RS in the 

three seasons.  

 

3.2.4 CH4 Fluxes in Intercrops and Potatoes 

In intercrops and potatoes during season 2003/2004 soil CH4 uptake rates were found of up to 

22 µg C m-2 h-1 in wL-FS, 13 µg C m-2 h-1 in wL-FS+FC, and 12 µg C m-2 h-1 in wL-FYM and wL-RS 

(figure 3.17). CH4 emission events were observed on April 22 in wL-FYM and on June 11, 2004 

in wL-RS without prior fertilizer application, however without statistical significance. Significant 

differences between the manuring treatments were determined on October 9 and 23, 2003 

in intercrops as well as on April 27, 2004 in potatoes. No fluxes occurred on February 21 in  

wL-FS+FC and wL-FYM as well as on March 25, 2004 in all treatments. Manuring of solid and 

liquid fertilizer did not show an obvious impact on CH4 flux rates at the sampling times. 

Integration of CH4 fluxes over 365 days resulted in soil carbon uptake of 514 g C ha-1 in wL-RS 

compared to 618 g C ha-1 in wL-FS, 662 g C ha-1 in wL-FS+FC, and 585 g C ha-1 in wL-FYM, 

hence an increase of 20% in wL-FS, 29% in wL-FS+FC, and 14% in wL-FYM (table 3.16). Emissions 

on April 22 and on June 11, 2004 were only for the day of measurement included into the 

integration. Mean spatial variabilities of CH4 fluxes of 39%, 27%, 32%, and exceedingly high 
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1315% were assessed in wL-FS, wL-FS+FC, wL-FYM, and wL-RS, respectively (table 3.17). CV 

values for temporal variability of the CH4 fluxes amounted to 68% in wL-FS, 51% in wL-FS+FC, 

93% in wL-FYM, and 125% in wL-RS (table 3.17). Coefficients of correlation (r²) between CH4 

fluxes in potatoes and air temperature and between CH4 fluxes and temperature in 5 cm soil 

depths accounted for 0.29 and 0.27, respectively (table 3.9). 

In season 2002/2003 soil CH4 influxes in intercrops and potatoes accounted for 0 to 16 µg C  

m-2 h-1 in wL-FS and wL-RS, 0 to 24 µg C m-2 h-1 in wL-FS+FC, and 0 to 12 µg C m-2 h-1 in wL-FYM 

(start of sampling on May 7, 2003) (figure 3.18). Only on May 7, 2003 in wL-FS a CH4 emission 

was observed (3 µg C m-2 h-1). Significant differences between the oxidation rates were just 

found on October 13, 2002. On February 12 and April 8, 2003 no CH4 fluxes could be 

detected in all treatments, on May 22, 2003 no flux occurred in wL-FYM. Integration of CH4 

fluxes over 365 days revealed that soil carbon uptake amounted to 568 g C ha-1 in wL-RS 

(100%) in comparison to 498 g C ha-1 in wL-FS (88%), and 644 g C ha-1 in wL-FS+FC (113%) 

(table 3.16). The efflux on May 7, 2003 in wL-FS was included into the integration for the day of 

sampling. In wL-FYM integration of oxidation rates over 365 days were not performed since 

only data of four month were available. The spatial variability of CH4 fluxes averaged 72% in 

wL-FS, 32% in wL-FS+FC, 59% in wL-FYM, and 56% in wL-RS (table 3.17). CV values for the 

temporal variability of CH4 fluxes accounted for 94%, 78%, 64%, and 72% in wL-FS, wL-FS+FC, 

wL-FYM, and wL-RS, respectively (table 3.17). CV values in wL-FYM are based on the existing 

data of about four months. Coefficients of correlation of 0.48 and 0.44 between CH4 fluxes in 

spelt and air and soil temperature in 5 cm soil depth, respectively, were calculated (table 

3.9). 

Comparison of CH4 fluxes in intercrops and potatoes in seasons 2003/2004 and 2002/2003 

revealed the arable soil as continuous CH4 sink with only single, non-significant exceptions. In 

both seasons an increase of soil CH4 uptake was observed in wL-FS+FC (113% in 2002/2003, 

and 129% in 2003/2004). However wL-FS exhibited in 2002/2003 a reduced soil carbon uptake 

of 22%, whereas in 2003/2004 an elevated carbon uptake of 20% was determined compared 

to respective wL-RS. The comparison of the CH4 fluxes within the cropping system with 

livestock over all seasons did not result in an explicit trend of elevated or reduced CH4 

oxidation in a manuring treatment.  

 

3.2.5 Net CO2 Fluxes in Spelt 

During season 2004/2005 quantifiable CO2 fluxes in spelt and prior intercrops were found in 

ranges of -22 to 134 mg C m-2 h-1 in wL-FS, -20 to 72 mg C m-2 h-1 in wL-FS+FC, -40 to 146 mg C 

m-2 h-1 in wL-FYM, and -28 to 147 mg C m-2 h-1 in wL-RS (figure 3.11). Highest emissions were 

determined after drilling of spelt in October 2004 with slightly reduced CO2 effluxes in  

wL-FS-FC. Non-quantifiable CO2 uptake rates were detected in all manuring treatments in 

September 2004 in the intercrops. Beside sampling days when in all treatments emission or 
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uptake was observed, respectively, emission and uptake occurred at the same sampling 

date on November 24, 2004, February 16 and 26, and on March 14, 2005. Significant 

differences, however, were only confirmed on February 26 (3 days after manuring) as well as 

on March 1, 2005. Integration of CO2 fluxes over 365 days (as done with N2O and CH4 fluxes) 

were not carried out due to the non-quantifiable uptake rates. 

In 2003/2004 quantifiable CO2 fluxes in spelt and prior intercrops varied between -155 and 73 

mg C m-2 h-1 in wL-FS, -130 and 104 mg C m-2 h-1 in wL-FS+FC, -136 and 66 mg C m-2 h-1 in wL-

FYM, and -136 and 70 mg C m-2 h-1 in wL-RS (figure 3.12). After drilling of spelt on October 14 

emissions in all treatments were observed until November 2003, with reduced effluxes in  

wL-FS+FC (significant on October 23). Significantly elevated CO2 emissions were found on 

March 5, 2004 a few hours after fertilizer application in wL-FS, wL-FS+FC, and wL-RS, when CO2 

dissolved in the fertilizer degassed. On March 11 significances in uptake rates between the 

treatments were determined. As of March 25, 2004 only not quantifiable CO2 uptake was 

detected in all treatments.  

Quantifiable CO2 fluxes in spelt during season 2002/2003 ranged between -71 and 204 mg C 

m-2 h-1 in wL-FS, -98 and 257 mg C m-2 h-1 in wL-FS+FC, and -30 and 116 mg C m-2 h-1 in wL-RS 

(figure 3.13). Sampling in wL-FYM started on April 27, 2003 and revealed in the remaining time 

only not quantifiable CO2 uptake. After drilling of spelt on October 11, 2002 CO2 emissions in 

all manuring treatments occurred until the beginning of November. Very high emissions were 

observed in all treatments a few hours after manuring on February 20, 2003 (significant) when 

degassing of CO2 dissolved in the fertilizers occurred. On April 8 CO2 uptake rates differed 

significantly. 

Comparison of CO2 fluxes in spelt and intercrops during season 2004/2005, 2003/2004, and 

2002/2003 showed a trend of elevated emissions after soil tillage and drilling of spelt in fall 

over few weeks. Likewise, a trend of reduced effluxes in wL-FS+FC was shown probably 

caused by harvesting of intercrops in this manuring treatment entailing a decreased amount 

of substrate for mineralization. When sampling at the day of manuring, very high emissions 

could be observed due to degassing of dissolved CO2 in the fertilizer. 

 

3.2.6 Net CO2 Fluxes in Intercrops and Potatoes 

In season 2003/2004 quantifiable CO2 fluxes in intercrops and potatoes accounted for -71 to 

135 mg C m-2 h-1 in wL-FS, -35 to 175 mg C m-2 h-1 in wL-FS+FC, -86 to 82 mg C m-2 h-1 in wL-FYM, 

and -78 to 146 mg C m-2 h-1 in wL-RS (figure 3.17). Until December 2003 CO2 uptake was 

observed in all manuring treatments with exception of wL-FYM and wL-RS on September 10 

and wL-FS+FC after harvest of intercrops on October 29, 2003. Sampling in November and 

December 2003 revealed significant differences between the treatments. As of January 2004 

in all treatments CO2 emissions were determined (except June and July with not quantifiable 

CO2 uptake rates) that differed significantly on February 21, on May 18, and on August 6, 
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2004. The significance found on May 19 could have been caused by fertilizer applicaton one 

day before. The level of CO2 effluxes increased in April 2004 with dibbling of potatoes on April 

21. No explicit trend of elevated or reduced emissions in a distinct manuring treatment 

became apparent even if slightly higher emission rates were often found in wL-FS+FC. 

During season 2002/2003 CO2 emissions in intercrops and potatoes amounted up to 197 mg C 

m-2 h-1 in wL-FS, 198 mg C m-2 h-1 in wL-FS+FC, 137 mg C m-2 h-1 in wL-FYM (start of investigation 

on May 7, 2003), and 311 mg C m-2 h-1 in wL-RS (figure 3.18). CO2 effluxes in all investigated 

treatments were determined on October 13 and on December 16, 2002 in intercrops, on May 

7 and 22, on July 20, and on August 14, 2003 in potatoes. Not quantifiable CO2 uptake rates 

were found in all treatments until October 3, 2002 and in June 2003, as well as in wL-FS and 

wL-RS in November and on December 4, 2002 in contrast to wL-FS+FC, where intercrops had 

been harvested for fermentation. No fluxes could be determined on February 12 in all 

treatments and on April 8, 2003 in wL-RS.  

Comparing CO2 fluxes measured in intercrops and potatoes in 2003/2004 and 2002/2003, CO2 

uptake was mostly found until December with exception of wL-FS+FC after cutting the 

intercrops. Elevated CO2 emissions were notabely observed after dibbling of potatoes.  
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3.3 Incubation Experiments 

Incubation experiments were performed to investigate in more detail N2O production after 

application of different fertilizers on arable soil. Investigations were performed with unplanted 

soil to exclude any crop effects and under optimized conditions for denitrification, thus in 

anoxic atmosphere. N2O production after anoxic incubation of the differently fertilized soils, 

the bare arable soil, and the pure fertilizers revealed clearly different production pattern 

(figure 3.21). None of the pure fertilizers raw slurry (RS), fermented slurry (FS), and fermented 

crops (FC) showed N2O production during the incubation time. In contrast, the bare soil 

exhibited high production up to 257 nmol N2O g-1 soil after 30 hours of incubation that had 

disappeared after 48 hours. In the fertilized soils N2O values of up to 11, 12, and 14 nmol N2O 

g-1 weighted sample were found in treatments of soil amended with RS, FS, and FC, 

respectively. After 24 hours N2O was not detectable anymore in each differently fertilized soil. 

Thus, N2O losses of the fertilized soils varied in similar range and took an intermediate position 

between production of the pure fertilizers and the bare soil. Since gas sampling was not 

performed in higher frequency, e.g. hourly, maximum values of emitted N2O could be 

underestimated. Time course of N2O effluxes and production pattern were in the fore instead 

of maximum production values. 

Evaluation of NO3- values measured in the differently fertilized soils (figure 3.22) showed a 

similar decrease of NO3- starting from 2300 nmol in Soil & RS, 2350 nmol in Soil & FS, and 1970 

nmol g-1 soil and fertilizer in Soil & FC. As of 23 hours NO3- concentrations remained at constant 

levels (exact time point when concentration did not decrease anymore was not determined) 

that were around 90, 380, and 20 nmol g-1 soil and fertilizer in Soil & RS, Soil & FS, and Soil & FC, 

respectively. 

Considering investigation of CH4 fluxes (figure 3.21), the highest amount of methane was 

found at the end of the sampling period in pure RS with 2404 nmol CH4 g-1 fertilizer. Pure FS 

and pure FC revealed CH4 effluxes of 1262 and 196 nmol CH4 g-1 fertilizer, respectively. CH4 

values obtained in the bare arable soil and in soil fertilized with FC ranged at the detection 

limit. CH4 emissions in soils amended with RS and FS amounted to 39 and 223 nmol CH4 g-1 

weighted sample, respectively. 

Regarding CO2 emissions, CO2 concentrations accounted for 21 µmol CO2 g-1 fertilizer in pure 

RS and pure FS and for 15 µmol CO2 g-1 fertilizer in pure FC after 54 hours of incubation (figure 

3.22). The smallest amount of emitted CO2 was observed in the bare arable soil with around 3 

µmol CO2 g-1 soil. CO2 effluxes in the differently fertilized soils ranged between pure fertilizers 

and bare soil and exhibiting 6, 10, and 8 µmol CO2 g-1 weighted sample in soil amended with 

RS, FS, and FC, respectively. 
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Figure 3.21: Amounts of N2O-, CH4-, and CO2 emitted of the differently fertilized soils, the bare soil, and 
the pure fertilizers during anoxic incubation. 
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Figure 3.22: NO3- contents in the differently fertilized soils during anoxic incubation. 
 
N2O production was investigated again in the bare arable soil as well as in the soil amended 

with the three different fertilizers, however with 10% acetylene in the anoxic atmosphere to 

inhibit the enzyme N2O reductase and hence to accumulate the produced N2O. At the 

beginning, most N2O was produced in soil amended with FC, whereas N2O production was 

lowest in the bare soil (figure 3.23). After 24 hours, amounts of 469, 510, and 502 nmol N2O g-1 

soil had been emitted in soils fertilized with RS, FS, and FC, respectively, the bare soil exhibited 

a loss of 440 nmol N2O g-1 soil. The fertilized soils showed thereafter no further increase of the 

N2O concentrations in the headspaces, whereas in the bare soil the amount of N2O still 

increased. After 53 hours a loss of 505 nmol N2O g-1 soil was determined in this treatment.  

 

 
 
Figure 3.23: Accumulation of emitted N2O during incubation under anoxic atmosphere containing 10% 
acetylene in the differently fertilized soils and the bare soil. 
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3.4 Greenhouse Studies 

The aim of the greenhouse studies was to investigate the impact of manuring on the 

denitrifying activity and the soil bacterial denitrifying community in more detail in planted soil 

and under comparable, standardized conditions. For characteristics of applied raw slurry 

(RS), fermented slurry (FS), and fermented crops (FC) to the microcosms refer to table 3.18.  

 

Table 3.18: Characteristics of the different fertilizers. MPN numbers in parentheses are 95% confidence 
limits multiplied by the respective order of magnitude. NirK and nirS gene target numbers in parentheses 
are standard deviations multiplied by the respective order of magnitude. 
 

 Raw 
Slurry (RS) 

Fermented 
Slurry (FS) 

Fermented 
Crops (FC) 

Total Nitrogen Applied  
[µmol g-1 Soil] 18.1 18.1 4.5 

NH4+ Applied  
[µmol N g-1 Soil] 5.56 4.5 2.45 

NO3- Applied  
[µmol N g-1 Soil] 0.0004 0.0003 0.0003 

Total Nitrogen 
[µmol g-1 Fertilizer] 230 252 80 

NH4+ 
[µmol N g-1 Fertilizer] 70.8 62.7 43.1 

NO3- 
[µmol N g-1 Fertilizer] 0.005 0.005 0.006 

Dry Matter Content 
[%] 10.9 9.8 2.5 

pH 7.0 7.1 5.9 

MPN of NO3- Reducers 
[g-1 Fertilizer] 

2.4 x 108 
(0.4 – 9.9) 

2.3 x 107 
(0.5 – 9.4) 

2.3 x 107 
(0.5 – 9.4) 

nirS Gene Targets 
[g-1 Fertilizer] 

4.7 x 107 
(± 1.2) 

3.9 x 107 
(± 1.4) 

2.1 x 107 
(± 0.3) 

nirK Gene Targets 
[g-1 Fertilizer] 

2.4 x 106 
(± 0.3) 

1.6 x 106 
(± 0.3) 

7.5 x 106 
(± 0.8) 

Potential Denitrifying 
Activity [nmol N2O g-1 h-1] 4.2 2.2 0.01 

 
Soil mineral nitrogen concentrations (figure 3.24) revealed two hours after manuring high NH4+ 

concentrations in the soil fertilized with FS (9290 nmol g-1 soil) and RS (6512 nmol g-1 soil) and 

lower amounts in FC (1762 nmol g-1 soil) in comparison to NH4+ concentrations ranging at the 

detection limit in the unfertilized soil. After seven days amounts of NH4+ had decreased in all 

manuring treatments to the detection limit. NO3- concentrations raised up to 900, 869, and 

823 nmol g-1 soil on day 4 in RS, FS, and FC, respectively, decreased subsequently and were 

not detectable anymore as of day 15 (RS) or day 22 (FS and FC). In the unfertilized soil 
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amounts of NO3- and NO2- fluctuated around the detection limit during the sampling period. 

NO2- concentrations in the fertilized soils increased faster but to a lesser extent (26 nmnol g-1 

soil in RS, 22 nmnol g-1 soil in FS, and 29 nmnol g-1 soil in FC) and had declined in all treatments 

to the detection limit on day 10. 

 

 
 
Figure 3.24: Soil mineral nitrogen contents of the differently fertilized soils and the unfertilized soil in the 
upper soil layer (~6 cm). After 15 days changes did not occur anymore. 
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The fresh weight of shoots and leaves in the different manuring treatments was assessed 22 

days after fertilization and revealed significantly higher values for the RS and FS amended 

crops (23.4 and 24.7 g pot-1) compared to the unfertilized crops (16.2 g pot-1) and the crops 

fertilized with FC (17.8 g pot-1). 

All fertilizers applied caused an increase of N2O emissions during the first five - six days (figure 

3.25), but after seven days changes of emission did not occur anymore. Very high flux rates 

(up to 29 µmol N2O m-2 h-1) were observed in the first two days in treatment FC, whereas 

emission rates in RS and FS remained on a constant elevated level of about 2.3 µmol N2O m-2 

h-1 in RS and 4 µmol N2O m-2 h-1 in FS for four and three days, respectively, before decreasing. 

N2O effluxes differed significantly between the manuring treatments until day 3. 

 

 
 
Figure 3.25: In-situ N2O emission rates of the differently fertilized soils and the unfertilized soil. After seven 
days no changes of emission occurred anymore. 
 
For easier comparableness denitrifying enzyme activities investigated in the different 

manuring treatments are presented in % of the respective N2O production rate at the same 

day in the unfertilized control soil. Absolute values of N2O production rates varied in soil 

fertilized with RS between 4.1 and 16.2 nmol N2O, with FS between 4.1 and 14.5 nmol N2O, 

with FC between 4.9 and 10.4 nmol N2O, and in the unfertilized soil between 4.8 and 10 nmol 

N2O g-1 soil h-1. Evaluation of the potential denitrifying activites (figure 3.26) did not reveal a 

significantly elevated activity in FC during the sampling period in contrast to N2O emissions. 

However, the unaffected activity agreed with the very low denitrification activity (0.01 nmol 

g-1 fertilizer h-1) in the pure FC fertilizer (table 3.18). Manuring of RS and FS resulted after two 

hours in significantly decreased and after two days in significantly stimulated denitrification 
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activities. At day 4 a significantly elevated denitrifying enzyme activity was still observed in RS, 

whereas at day 7 RS and FS differed only significantly of each other but not from the 

unfertilized control soil. Denitrification activities in the pure fertilizers RS and FS exhibited an 

emission rate of 4.2 and 2.2 nmol N2O g-1 fertilizer and h-1, respectively (table 3.18). After ten 

days significant changes in potential denitrifying activity were not assessed anymore.  

 

 
 
Figure 3.26: Potential denitrifying activity of the differently fertilized soils and the unfertilized soil in the 
upper soil layer (~6 cm).  
 
Enumeration of nitrate reducers by most probable number technique (MPN) in three parallels 

resulted in cell numbers g-1 dw soil between 2.6 x 108 and 6.6 x 109 in RS, 1.2 x 108 and 2.9 x 1010 

in FS, 1.8 x 108 and 1.9 x 109 in FC, and 2.7 x 108 and 2.9 x 109 in the unfertilized soil (table 3.19). 

Thus, notably when considering the 95% confidence limits, no broad numerical differences 

could be observed between the manuring treatments as well as during investigation. Nitrate 

reducers in pure fertilizers amounted to 2.4 x 108 in pure RS and 2.3 x 107 in pure FS and pure 

FC (table 3.18). 

Quantification of gene copies of the two alternative nitrite reductases by real-time PCR, 

however, led to frequent, mostly significant increases of nirK copies in the fertilized soils 

compared to the unfertilized soil, notably in RS and FS (figure 3.27). As done with results of the 

denitrifying enzyme activities, numbers of nirK and nirS gene copies in the manuring 

treatments are shown in % of the respective nirK and nirS copy number at the same day in the 

unfertilized control soil. Absolute values of nirK copies were determined in soil fertilized with RS 
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between 6.4 x 106 and 2.4 x 107, with FS between 5.8 x 106 and 2.5 x 107, with FC between  

5.5 x 106 and 2.0 x 107, and in the unfertilized soil between 3.7 x 106 and 1.7 x 107 targets g-1 

soil. Thus, nirK copies ranged in RS between 142 and 382%, in FS between 99 and 276%, and in 

FC between 90 and 245% of respective nirK copies in the unfertilized soil. NirS copies varied 

between 112 and 320% in RS, 106 and 293% in FS, and 39 and 325% of nirS copies in the 

unfertilized soil (figure 3.27). Significant increases of nirS copies in the soils amended with 

manure were observed from day 10 on after fertilization, i.e. in all manuring treatments at day 

10, in RS and FS at day 15, and in FS and FC at day 22. The absolute values of nirS copy 

numbers ranged in RS from 7.4 x 106 to 4.3 x 107, in FS from 8.7 x 106 to 4.3 x 107, in FC from  

2.8 x 106 to 3.2 x 107, and in the unfertilized soil from 6.6 x 106 to 2.4 x 107 targets g-1 soil. 

 

Table 3.19: MPN enumeration of nitrate reducers in the differently fertilized soils and the unfertilized soil in 
the upper soil layer (~6 cm). Numbers in parentheses are 95% confidence limits multiplied by the 
respective order of magnitude. 
 

MPN of NO3- Reducers [g-1 dw soil] 

Manuring Treatments Time after 
Manuring Soil & Raw Slurry Soil & Ferm. Slurry Soil & Ferm. Crops Unfertilized Soil 

2 h 6.5 x 108 

(1.3 – 28) 
3.3 x 108 

(0.7 – 14) 
5.8 x 108 

(1.2 – 24) 
5.7 x 108 

(1.2 – 24) 

2 d 1.5 x 109 

(0.4 – 4.6) 
3.1 x 109 

(0.5 – 13) 
1.9 x 108 

(0.6 – 4.7) 
3.5 x 108 

(1.1 – 12) 

4 d 2.6 x 108 

(0.6 – 5.0) 
2.9 x 1010 

(0.6 – 12) 
1.8 x 108 

(0.6 – 4.7) 
2.7 x 108 

(0.6 – 5.1) 

7 d 6.6 x 109 

(1.7 – 19) 
2.3 x 108 

(0.5 – 9.6) ---- 2.4 x 109 

(0.5 – 9.8) 

10 d 9.6 x 108 
(2.2 – 26) ---- 1.2 x 109 

(0.2 – 4.6) 
1.2 x 109 

(0.2 – 4.7) 

15 d 2.9 x 108 
(0.6 – 12) 

1.2 x 108 
(0.2 – 4.5) 

1.9 x 109 
(0.6 – 12) 

1.2 x 109 
(0.2 – 4.6) 

22 d 1.8 x 109 
(0.6 – 4.6) 

5.3 x 109 
(1.1 – 22) 

4.6 x 108 
(1.1 – 13) 

2.9 x 109 
(0.6 – 12) 

 
Evaluating SSCP fingerprinting patterns of nirS gene fragments during the sampling period, 

impact of fertilizer application on the denitrifier composition became visible directly after 

manuring (figure 3.28). Distinct bands had appeared two hours after fertilization, notably in RS 

and FS, which were mostly not present in the fertilizers. Until day 10, when the arisen bands of 

the nucleic acids in those two manuring treatments had disappeared, patterns of RS and FS 

altered between day 0 (two hours after application) and day 7. In contrast, manuring with FC 

did not result in broad changes in SSCP patterns during the investigation period so that 

patterns of the unfertilized soil and of the soil amended with FC remained similar.  
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Figure 3.27: nirS and nirK gene copies encoding the two alternative nitrite reductases quantified by  
real-time PCR in the differently fertilized soils in % of the respective unfertilized soil in the upper soil layer 
(~6 cm). 
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Figure 3.28: SSCP patterns of nirS nitrite reductase gene fragments in the differently fertilized soils 2 hours, 
2, 4, 7, 10, 15, and 22 days after manuring. 
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Partial nirS sequences (410 - 425 bp) were obtained from 34, 21, 23, and 21 clones derived 

from arable soil, raw slurry, fermented slurry, and fermented crop material, respectively. They 

were confirmed as nirS genes except clone FS 40, for which only very few and very short 

matching segments could be found by BLAST search. For both dendrogram calculations, 

regions of insertion or deletion were omitted from the analysis because of uncertain 

alignment and the sequence of clone FS 40 was disregarded. In the DNA-based tree 

appeared to be four major clusters consisting exclusively of clones derived from arable soil, 

from manures, or from manure and soil, respectively (figure 3.29). However, bootstrap analysis 

did not support those major clusters with high values in contrast to several subclusters. Within 

the mixed cluster, all soil clones grouped closely in a subcluster anyway. Thauera sp., 

Alcaligenes faecalis, and Pseudomonas stutzeri branched in this mixed cluster, whereas only 

Cupriavidus necator (formerly Ralstonia eutropha) coincided with the soil cluster. Acidovorax 

sp., Pseudomonas sp., Comamonas sp., Roseobacter denitrificans, and Paracoccus 

denitrificans clustered in the RS+FC group. Pseudomonas migulae, P. lini, P. mandelii, P. 

fluorescens, P. aeruginosa, and P. qianpuensis branched in the manure cluster. Comparing 

identities of denitrifying strains with environmental clones, Thauera sp. exhibited the highest 

nucleotide identity of 100% with clone FC 15. The highest nucleotide identities between the 

other isolates and the clones ranged between 93.3% (Pseudomonas qianpuensis - clone FC 

25) and 62.9% (Roseobacter denitrificans - clone FS 64). Frequently, clones derived from 

manures branched with clones or strains isolated from wastewater treatment plants or 

activated sludge. A clone sequence derived from an arable soil (clone US6A) grouped with 

clones derived from the arable soil. Nucleotide sequences of isolated strains often clustered 

rather with DNA sequences of other isolates than with sequences of the new environmental 

nirS clones.  

The dendrogram based on the deduced amino acid sequences tended to reveal similar 

major clusters even if Roseobacter denitrificans and Paracoccus denitrificans formed a 

separate cluster (figure 3.30). The topology differed slightly due to deeper branching of 

several (sub-)clusters. Nevertheless, within the mixed cluster of soil and manure clones, the soil 

clones grouped closely, and within the manure cluster, similar subclusters of FC and RS clones 

were recovered as in the DNA dendrogram. The soil cluster and the manure and soil cluster 

exhibited in both dendrograms a similar grouping of isolated strains, whereas in the amino 

acid tree the cluster of Acidovorax sp., Pseudomonas sp., and Comamonas sp. coincided 

now with the manure cluster. High bootstrap values of all major clusters were lacking, too. 

Roseobacter denitrificans and Paracoccus denitrificans showed the greatest distance to the 

environmental clones and the other strains exhibiting highest amino acid identities of only 

60.5% (R. denitrificans - e.g. clone FS 64) and 67.8% (P. denitrificans - e.g. clone AS 27). As on 

DNA level, the highest sequence identity was confirmed for Thauera sp. and clone FC 15. 

Identities between the remaining strains and environmental clones varied from 97.9% 

(Pseudomonas qianpuensis - clone FC 45) - 85.8% (Pseudomonas lini - clone FC 33). 
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Figure 3.29: Neighbor-joining analysis of partial nirS gene fragments (410 - 425 bp) cloned from the three 
different manures (RS, FS, FC) and the arable soil (AS). Bootstrap values indicate the percentage of 1000 
replicate trees supporting the branching order, values below 50 are omitted. Scale bar: 5 base pairs 
difference in 100 sequence positions. Only Roseobacter denitrificans is a type strain. 

Manures 
+Soil 

Soil 

RS+FC 

Manures 



 3 Results 99 

 
 

Figure 3.30: Neighbor-joining analysis of partial nirS gene products (136 - 141 deduced amino acids) 
cloned from the three different manures (RS, FS, FC) and the arable soil (AS). Bootstrap values indicate 
the percentage of 1000 replicate trees supporting the branching order, values below 50 are omitted. 
Scale bar: 5 amino acids difference in 100. Only Roseobacter denitrificans is a type strain. 
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3.5 Investigations of Field Soil Samples after 3.5 Years of Different Manuring 

After 3.5 years of performing different manuring treatments including differentiated handling 

of intercrops, green manures, and crop residues in both, the cropping system with and the 

cropping system without livestock, soil samples were comparatively analyzed on diverse 

parameters concerning the nitrogen and carbon metabolism.  

Evaluating soil mineral nitrogen contents, significantly lower amounts of NH4+, NO3-, and NO2- 

were found in wL-FYM in the cropping system with livestock and in w/o L-M in the cropping 

system without livestock, probably due to no fertilizer application in those treatments three 

weeks before soil sampling (table 3.20). Over all treatments amounts of NH4+ ranged between 

0.1 and 5.3 g N m-2, NO3- concentrations varied between 0.5 and 3.9 g N m-2, and NO2- 

contents occurred between 0.01 and 0.14 g N m-2 referring to ploughed layer of 30 cm soil 

depth. 

Soil analyses concerning the N metabolism (table 3.20) like potential nitrification and 

potential denitrification activity showed slightly lower activities in the respective control 

treatments wL-RS and w/o L-M, but without any statistical significance. Potential nitrification 

activites amounted to 96 to 208 ng N g-1 soil h-1 over all treatments, potential denitrification 

activities ranged between 67 and 142 ng N g-1 soil h-1. Similarly, total N contents of the soils 

were the same (1.3 - 1.7 mg N g-1 soil). C/N ratios of the soils were determined between 6.9 

and 8.4 exhibiting a significant higher ratio in w/o L-FC and w/o L-FC+FE in comparison to  

w/o L-M. 

Real-time PCR quantification of denitrifiers resulted in significantly lower copy numbers of nirK 

and nirS genes in the different manuring treatments compared to the respective control 

treatments wL-RS and w/o L-M (table 3.20). Between 36% and 77% of nirK copies, and 47% 

and 83% of nirS copies found in the respective control treatments were observed in the 

different fermented slurry treatments (wL-FS, wL-FS+FC, wL-FS+FC+FE) and farmyard manure 

treatment (wL-FYM) as well as in treatments of fermented crops in the cropping system 

without livestock (w/o L-FC and w/o L-FC+FE). Absolute values of nirS gene copy numbers 

ranged in the cropping system with livestock from 1.1 - 2.3 x 106, and in the cropping system 

without livestock from 4.2 - 8.9 x 105 targets g-1 soil. NirK copies varied in both cropping systems 

between 3.2 and 8.4 x 106 gene targets g-1 soil.  
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Table 3.20: Survey of results compassed by several investigations of arable soil that had been differently 
fertilized for 3.5 years. Numbers in parentheses are standard deviations. 
 

 wL- 
FS 

wL-
FS+FC 

wL-
FS+FC+FE 

wL- 
FYM 

wL- 
RS 

w/o L- 
M 

w/o L- 
FC 

w/o L-
FC+FE 

6.63 
(0.48) 

5.36 
(1.24) 

5.10 
(1.25) 

2.32 
(1.29) 

3.71 
(2.25) 

1.39 
(0.82) 

9.89 
(2.26) 

9.15 
(6.04) NO3- [µg N g-1] 

a ab ab b ab y z z 
5.27 

(2.29) 
8.35 

(9.32) 
6.81 

(7.01) 
0.18 

(0.02) 
0.75 

(0.53) 
0.18 

(0.01) 
13.65 

(13.12) 
2.25 
2.11) NH4+ [µg N g-1] 

a a a b a y z z 
0.23 

(0.06) 
0.22 

(0.08) 
0.22 

(0.09) 
0.03 

(0.01) 
0.19 

(0.16) 
0.04 

(0.02) 
0.36 

(0.16) 
0.30 

(0.11) NO2- [µg N g-1] 
a ab ab b ab y z z 

Total Nitrogen  
[mg g-1] 

1.43 
(0.09) 

1.46 
(0.10) 

1.31 
(0.28) 

1.53 
(0.09) 

1.50 
(0.19) 

1.67 
(0.18) 

1.37 
(0.22) 

1.37 
(0.18) 

7.4 
(0.30) 

7.4 
(0.25) 

6.9 
(0.58) 

7.5 
(0.47) 

7.0 
(0.80) 

6.9 
(0.22) 

8.4 
(0.39) 

8.1 
(0.55) C/N Ratio 

a a a a a y z z 
Potential 

Nitrification  
[ng N g-1 h-1] 

115.0 
(78.2) 

126.2 
(81.4) 

208.0 
(75.8) 

187.1 
(81.1) 

101.9 
(74.3) 

95.5 
(40.2) 

121.7 
(28.7) 

100.3 
(85.2) 

Potential 
Denitrification 
[ng N g-1 h-1] 

92.1 
(58.9) 

116.3 
(65.7) 

133.7 
(39.8) 

90.9 
(38.6) 

67.3 
(59.4) 

85.5 
(67.1) 

104.7 
(66.8) 

142.4 
(84.2) 

68.5 
(16.4) 

57.2 
(16.1) 

50.2 
(21.5) 

73.6 
(13.4) 

100 
(13.8) 

100 
(13.1) 

82.8 
(16.4) 

47.3 
(17.1) 

nirS Copies  
[% of Respective 
Control Treatm.] ab ab b a c y y z 

66.5 
(11.9) 

77.4 
(18.0) 

69.6 
(10.6) 

62.4 
(17.3) 

100 
(8.2) 

100 
(23.6) 

70.0 
(11.3) 

37.8 
(20.9) 

nirK Copies  
[% of Respective 
Control Treatm.] ab a ab b c x y z 

Total Carbon  
[mg g-1] 

10.61 
(0.89) 

10.82 
(1.09) 

9.15 
(2.62) 

11.56 
(1.30) 

10.46 
(2.38) 

11.45 
(1.62) 

11.47 
(1.93) 

11.14 
(2.02) 

Microb. Biomass 
[µg C g-1] 

1088 
(424) 

995 
(381) 

905 
(255) 

1175 
(254) 

1353 
(363) 

758 
(293) 

558 
(133) 

575 
(117) 

Water-Extract. 
Carbon [µg g-1] 

82.3 
(28.4) 

96.9 
(29.8) 

88.9 
(40.0) 

39.0 
(14.7) 

50.6 
(17.2) 

39.3 
(23.5) 

54.4 
(8.5) 

61.5 
(25.7) 

82.9 
(24.6) 

71.0 
(39.2) 

89.2 
(37.6) 

74.5 
(11.4) 

77.7 
(48.8) 

77.5 
(9.7) 

51.0 
(6.0) 

84.1 
(23.0) Basal Respiration∗ 

[nmol CO2 g-1 h-1] 
a a a a a y z y 

Basal Respiration 
[nmol O2 g-1 h-1] 

-90.3 
(9.8) 

-57.0 
(14.6) 

-79.4 
(22.6) 

-66.9 
(20.6) 

-84.1 
(13.1) 

-54.8 
(24.9) 

-92.3 
(42.1) 

-67.0 
(22.8) 

1662 
(75) 

1526 
(474) 

2047 
(100) 

2309 
(98) 

1110 
(224) 

896 
(292) 

987 
(112) 

772 
270) SIR∗ 

[nmol CO2 g-1 h-1] 
ab ab b c a z z z 

-472 
(50) 

-456 
(135) 

-479 
(124) 

-231 
(44) 

-367 
(90) 

-283 
(82) 

-483 
(97) 

-377 
(37) SIR  

[nmol O2 g-1 h-1] 
b b b a ab y z y 

 

∗CO2 emission rate calculated under assumption of linear CO2 production rate during sampling period 
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Also SSCP fingerprinting technique targeting the nirS nitrite reductase gene partly exhibited 

different patterns of nirS gene fragments in the differently fertilized soils with partly striking 

single bands (figure 3.31). However, beside those additional distinct bands, many bands of 

nucleic acids were found in all manuring treatments, sometimes in varying intensity. Lighter 

patterns like in wL-FS probably resulted from lower amounts of DNA applied to the SSCP gel 

despite determination of DNA concentrations in advance and thus should not necessarily 

lead to assumption of less diversity of denitrifying bacteria in this treatment. 

 

 
 
Figure 3.31: SSCP patterns of nirS nitrite reductase gene fragments in the differently fertilized soils. 
 
All investigations related to the C metabolism (table 3.20) did not reveal any significant 

differences between the manuring treatments indicating neither an increase nor a decrease 

of those C fractions through the different manuring management. Microbial biomass carbon 

ranged between 905 - 1353 µg C g-1 soil in the cropping system with livestock and amounted 

to 558 - 758 µg C g-1 soil in the cropping system without livestock. Over all treatments the 
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concentration of water-extractable carbon varied from 39 to 97 µg C g-1 soil and the amount 

of total carbon accounted for 9.2 - 11.6 mg C g-1 soil. Partly high standard deviations were 

responsible for missing significances.  

Regarding basal soil respiration (table 3.20), 3.4 - 5.9 µmol CO2 g-1 soil were produced during 

66 hours of incubation in the different manuring treatments representing a rate of 51 - 89 nmol 

CO2 g-1 h-1 by assumption of linear production rate. Oxygen consumption rates amounted to 

55 - 92 nmol O2 g-1 soil h-1 meaning a reduction of 3.6 - 6.1 µmol O2 g-1 in 66 hours postulating 

linearity. Significant differences could only be determined in CO2 production in the cropping 

system without livestock.  

Substrate-induced respiration (SIR) by addition of glucose (table 3.20) revealed CO2 

production of 11 - 23 µmol CO2 g-1 soil in the cropping system with livestock and 7.7 - 9.9 µmol 

CO2 g-1 in the cropping system without livestock during ten hours of incubation, thus rates of 

1110 - 2309 nmol CO2 g-1 h-1 and 772 - 987 nmol CO2 g-1 h-1, respectively, in the two cropping 

systems assuming linearity. However, oxygen consumption only ranged between 231 and 483 

nmol O2 g-1 soil h-1 over all treatments meaning amounts of 2.3 - 4.8 µmol O2 g-1 soil produced 

during the incubation period of ten hours when linear consumption was supposed. In both 

cropping systems significances between the manuring treatments were partly noticed. 

The BIOLOG substrate utilization test to check differences of potential metabolic diversity in 

the differently fertilized soils did not exhibit distinct clusters of the particular manuring 

treatments (figure 3.32). Cluster analysis of all eight manuring treatments did neither result in 

separation of the treatments nor in separation of the two different cropping systems. Cluster 

analyses within both, the cropping system with livestock and without livestock also revealed 

no partition between the five and three manuring treatments, respectively. Likewise, if wells of 

acid production and sole carbon sources, respectively, were compared separately, distinct 

clusters of the particular manuring treatments could not be observed, neither by comparison 

of all treatments nor by comparison of the treatments within the cropping systems.  
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Figure 3.32: Cluster analysis (method: Ward) of the BIOLOG substrate utilization test within the cropping 
system without livestock, with livestock, and within both cropping systems. 
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4 Discussion 

4.1 General Remarks to in-situ Gas Flux Measurements 

Performing investigations at the field site, courses and sums of temperature and precipitation, 

soil drying and wetting, freeze-thaw cycles, and duration of freezing vary in part considerably 

from year to year which affect the soil moisture content, the water and air filled pore space, 

the soil temperature, the release of available nutrients and hence the activity of soil 

microorganisms. Weather conditions also influence time of tillage, drilling, manuring, and 

harvest. Other important factors that should be considered for data interpretation are the 

spatial and temporal variabilities of trace gas fluxes. Crop cultivation, manuring, and tillage 

intensify spatial variability due to rhizosphere effects, uneven fertilizer application/ 

incorporation, and non-uniform soil loosening have to be taken into account as well. 

Comprehensive reviews on the interactions among N2O fluxes from agricultural soils and 

influencing factors can be found by Eichner (1990), Williams et al. (1992), Granli and Bøckman 

(1994), Ramos (1996), Mosier et al. (1998a), Barton et al. (1999), and Bouwman et al. (2002). 

Factors that may affect in-situ CH4 fluxes from agricultural soils have been reviewed by Mosier 

et al. (1998b), Hütsch (2001a), and Bodelier and Laanbroek (2004). 

Comparison and discussion of gas flux data in the present field trial are additionally 

complicated by the fact that (slightly) modified cultivation and manuring operations during 

the three investigated seasons have to be considered between the years such as varying 

amounts of applied nitrogen in the different seasons within one manuring treatment and 

different times of fertilizer application. The trace gas fluxes were interpreted with regard to 

precipitation data. 

The amount of published data concerning field investigations of N2O and CH4 fluxes in 

different habitats is huge. Many studies were performed on diverse forest soils, grassland soils, 

organic soils, meadows, and conventionally managed arable soils. However, only few results 

have been published on in-situ flux rates in organic agriculture, where cropping regime and 

manuring managements and not mineral fertilizer and pesticide applications are the only 

management options. Therefore, this field study aimed to obtain estimates of trace gas fluxes 

from organically managed cropping systems that are currently getting more important. Due 

to few data of N2O and CH4 fluxes in organic agriculture, data collected during this field 

study were mainly compared with flux measurements from conventionally managed arable 

soils. Primarily, emission rates of organically fertilized crops, i.e. application of dung, slurry, 

liquid manure and, if available, of fermented animal excreta, in conventional agriculture 

were used for discussion.  
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4.2 In-situ N2O Fluxes 

4.2.1 Annual N2O Fluxes 

Cumulative N2O losses in the cropping system without livestock ranged in winter wheat 5 from 

0.49 to 4.09 kg N ha-1 a-1 and in spring wheat from 0.70 to 1.41 kg N ha-1 a-1 (table 3.1) over the 

three years of investigation. In the cropping system with livestock annual emissions varied 

between 0.46 and 6.47 kg N ha-1 in spelt and from 1.52 to 3.19 kg N ha-1 in potatoes (table 

3.6). The calculated losses in the field trials are in line with other in-situ investigations of N2O 

emissions in arable soils: Bouwman (1990) gave a broad range of annual N2O fluxes from  

-0.6 to 41.8 kg N ha-1 for mineral soils. Kaiser and Ruser (2000) found by comparison of six long-

term field experiments in Germany emission ranges from 0.5 to 16.8, from 1.4 to 12.9, and from  

0.5 to 8.6 kg N ha-1 a-1 in treatments amended with mineral+organic fertilizers, exclusively with 

organic manures, and exclusively with mineral fertilizers, respectively. In contrast, annual N2O 

emissions only ranged between 1.1 and 3.1 kg N ha-1 in unfertilized winter wheat and winter 

barley on two different soils (Kaiser and Heinemeyer 1996; Röver et al. 1998).  

Model (2003) measured N2O emissions exclusively from organic agriculture in cropping 

systems with and without livestock in a three field crop rotation (lucerne-grass, spring wheat, 

and maize) with vetch-rye-mix as intercrop between wheat and maize, respectively. Annual 

emissions in the cropping system with livestock accounted for 1.5 kg N ha-1 in vetch-rye-mix, 

2.2 kg N ha-1 in lucerne-grass and spring wheat, and 4.4 kg N ha-1 in maize. In the cropping 

system without livestock N2O effluxes amounted to 2.0 kg N ha-1 a-1 in lucerne-grass, 2.1 kg N 

ha-1 a-1 in spring wheat, 2.4 kg N ha-1 a-1 in vetch-rye-mix, and 5.4 kg N ha-1 a-1 in maize.  

 

4.2.2 Spatial and Temporal Variability of N2O Emissions 

Generally, N2O emissions determined in field trials are characterized by high variability in time 

and space (Cates Jr. and Keeney 1987; Firestone and Davidson 1989; Christensen et al. 1990; 

Kaiser et al. 1996; Velthof et al. 1996; Ball et al. 2000; Mathieu et al. 2006). Flessa et al. (1995) 

noted that the spatial variability of N2O fluxes within one site can be as high as the temporal 

variability, but on average temporal variability was higher. They calculated coefficients of 

variation (CV) for one site at one sampling day of 12% to 230% performing five simultaneous 

flux measurements from individual chambers. Röver et al. (1999) observed high spatial and 

temporal variability over the whole experimental area (60 x 63 m) as well as in the reduced 

sampling scale (7 x 7 m). Data evaluation in this field study confirmed such a large spatial 

heterogeneity with high standard deviations of all gas flux measurements during three 

seasons in different crops and different manuring treatments (figures 3.1 - 3.3, 3.6 - 3.8,  

3.11 - 3.13, and 3.17 - 3.18). Coefficients of variation for spatial heterogeneity of N2O emissions 

varied between 27% and 106% (except outlier in spring wheat in 2004/2005: 1581%) across all 

seasons and crops (tables 3.2 and 3.11). High variance of N2O emissions was the reason that 
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differences in flux rates were seldom statistically significant between manuring treatments, 

even if averages of daily fluxes were clearly different.  

Parkin (1987) introduced the concept of organic hot-spots, in which the intensity of microbial 

respiration may create an O2 demand that exceeds the diffusive supply for a limited time. The 

extreme variability of denitrification activity observed under field conditions suggests that a 

substantial amount of denitrification may be associated with such hot-spots.  

High temporal variations of N2O emission were observed over the course of a season in the 

investigated crops. Due to seasonal temperature changes, rainfall, freeze-thaw cycles, tillage 

operations, and fertilizer applications CVs for temporal heterogeneity of N2O fluxes ranged 

between 68% and 233% in all seasons and investigated crops (tables 3.2 and 3.11). However, 

no explicit emission pattern became apparent in any of the investigated crops during the 

entire measurement period. The calculated CV values are in accordance with coefficients of 

variation in several field studies ranging from 86% - 350% (Flessa et al. 1995; Kaiser and 

Heinemeyer 1996; Kaiser et al. 1998; Kamp et al. 1998; Model 2003).  

Temporal heterogeneity was further assessed comparing cumulated N2O emissions (tables 3.1 

and 3.10) and CV of temporal variability (tables 3.2 and 3.11) in one crop during three 

seasons. For example, N2O losses in winter wheat 5 in the cropping system without livestock 

(manuring treatment w/o L-M) accounted for 2.68 kg N ha-1 a-1 in 2002/2003, 0.80 kg N ha-1 a-1 

in 2003/2004, and 4.09 kg N ha-1 a-1 in 2004/2005. Hence, annual emissions varied in one crop 

during three years up to a factor of five. Kaiser et al. (1998) studied N2O emissions in crops 

(winter wheat, winter barley, sugar beet, and winter rape) cultivated during three successive 

seasons with three respective N application rates. They found cumulative N2O losses that 

differed up to three fold in the same crop and fertilizer rate within three years. Additionally, 

the factor ”year” was identified as a significant influence on N2O emissions in both, the winter 

period and the whole year, respectively.  

 

4.2.3 Impact of Climate Conditions on N2O Emissions 

Amount and temporal distribution of precipitation in combination with course and sum of air 

and soil temperature are important to interpret trace gas fluxes in field studies as mentioned 

in 4.1. Notably intense rain, soil drying and wetting (Jørgensen et al. 1998; Priemé and 

Christensen 2001), freeze-thaw cycles, and duration of freezing (Cates Jr. and Keeney 1987; 

Christensen and Tiedje 1990; Röver et al. 1998; Teepe et al. 2004) promote high N2O emissions. 

In all investigated seasons, amounts of annual precipitations were smaller (637 mm in 

2002/2003 (August - July), 539 mm in 2003/2004, 567 mm in 2004/2005) than the long-term 

mean (682 mm). However, several months exhibited higher precipitations compared to the 

long-term mean of the respective monthly rainfall (figure 2.1). Daily precipitations during the 

three years are illustrated in figure 2.2 and demonstrate the variability and differences in 

amount and course between the seasons. Sums of monthly mean air temperatures did not 
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differ greatly between 2002/2003 (112.2°C), 2003/2004 (110.6°C), 2004/2005 (112.6°C), and 

the long-term mean of monthly mean air temperatures (111.4°C). However, monthly mean air 

temperatures showed in part clear differences between the seasons and the long-term mean 

(figure 2.1). Illustrations of daily temperatures in air and soil (in 5 cm and 20 cm soil depth) 

partly exhibit differences of the temperature course with decreasing temperature fluctuations 

in the order air > 5 cm soil depth > 20 cm soil depth in all three seasons (Appendix A.3). The 

smaller amount of precipitation in 2003/2004 in combination with partly decreased monthly 

mean air temperatures may have contributed to low emissions in all treatments analyzed in 

winter cereals spelt (cropping system with livestock) and winter wheat 5 (cropping system 

without livestock) (tables 3.1 and 3.10). Additionally, these crops and manuring treatments 

showed also the smallest CV values for temporal variability during this season. Only in January 

and May 2004 monthly rainfall rose above the long-term mean and monthly mean air 

temperatures of seven months were lower in comparison to the respective monthly long-term 

mean.  

The comparison of precipitation data with sampling days revealed that e.g. on March 29, 

2005 in spring wheat increased N2O emissions in both manuring treatments were possibly 

induced by 14 mm rainfall during the preceding two days. Significantly elevated N2O losses 

on the same day in winter wheat 5 in w/o L-FC could also have been caused by precipitation 

and eventually spatially limited higher concentrations of nitrogen and carbon in hot-spots 

due to fertilizer application a month before. The increase of N2O emissions after rainfall has 

frequently been observed in agricultural soils (Cates Jr. and Keeney 1987; Ball et al. 1999). 

Notably high N2O fluxes often occurred when the soil water content was high shortly after N 

fertilization (Smith et al. 1998b; Ruser et al. 2001). Model (2003) observed a second pulse of 

N2O losses after 22 mm of rain within 24 hours three days after application of liquid manure 

and slurry in spring wheat that accounted for half of the emissions after fertilizer application. 

Furthermore, precipitation of 26 mm within 48 hours after fertilizing liquid manure and slurry in 

maize induced N2O emission rates that were 10 times higher than N2O rates measured directly 

after manuring. Sehy et al. (2003) found 85% of all elevated N2O flux rates (> 50 µg N m-2 h-1) in 

maize at soil water contents between 55% and 90% water-filled pore space (WFPS), with 

maximum emissions at 65% WFPS. They detected highest emissions in spring and summer 

following N fertilization associated with rainfall. 

Many studies have indicated that considerable N2O might be emitted during winter periods 

in particular during freezing-thawing events. Although emissions are mostly limited to a few 

days, they might contribute as much as 70% of the total annual emissions from agricultural soil 

(Flessa et al. 1995; Wagner-Riddle et al. 1997; Wagner-Riddle and Thurtell 1998; Kaiser and 

Ruser 2000). Processes responsible for large N2O emissions in winter are mainly attributed to an 

enhanced supply of nutrients, which is caused by bacteria killed during freezing (Skogland et 

al. 1988; Teepe et al. 2001). Furthermore, nutrients become available when soil aggregates 

are disrupted as result of ice crystals expanding in pores between particles (Christensen and 
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Christensen 1991; van Bochove et al. 2000) and when fine roots die in the freezing soil (Priemé 

and Christensen 2001). Physical release of N2O upon thawing which was produced in the 

unfrozen subsoil and accumulation below the frozen layer have also been discussed as 

possible mechanisms (Burton and Beauchamp 1994; Teepe et al. 2004). The term “winter 

period” is not an accurately defined time period and may last between two and six months. 

In this field study “winter period” is considered to be between December 1 and March 15 

when temperatures below 0°C were observed during this period in all three seasons. Winter 

emissions in the cropping system with livestock accounted for 12% - 29% in spelt and  

12% - 38% in intercrops before potatoes, and amounted to 16% - 47% in winter wheat 5 and 

intercrops before spring wheat in the cropping system without livestock (tables 3.3 and 3.12). 

Kaiser et al. (1998) observed half of annual emissions between October and February. Ruser 

et al. (2001) determined winter emissions between October and March and measured on 

average 49% of N2O losses during that time. Röver et al. (1998) even assessed 70% of annual 

N2O effluxes between December and February, whereas Sehy et al. (2003) only observed  

10 - 20% of N2O emissions between October and March. In contrast, no elevated flux rates 

have been found by Model (2003) during two winter periods, neither in lucerne-grass nor in 

vetch-rye-mix, although soil freeze-thaw cycles occurred. 

Strikingly high N2O emissions as observed on December 16, 2002 in winter wheat 5 (up to  

343 µg N m-2 h-1, figure 3.3) and intercrops previous to spring wheat (up to 214 µg N m-2 h-1, 

figure 3.8) and potatoes (up to 388 µg N m-2 h-1, figure 3.18) were associated with a freezing-

thawing cycle. The soil temperature in 5 cm depth was below the freezing point during six 

days prior to the date but the air temperature varied between -8°C and 5°C. However, it 

remains unclear why elevated N2O emissions have not been observed in spelt at the same 

day. Sehy et al. 2003 determined in a field study N2O flux rates up to 120 µg N m-2 h-1 during 

freeze-thaw cycles, whereas Teepe et al. 2004 observed N2O emission rates up to 600 µg  

N m-2 h-1 in undisturbed soil columns of agricultural soils. Ruser et al. (2001) even measured 

peak emissions of > 900 µg N m-2 h-1 on a low fertilized wheat plot. Further peak emissions 

during the investigation period that could be explicitly and exlusively attributed to events of 

freezing and thawing have not been ascertained. This observation is supported by Model 

(2003) who did not find any elevated N2O emissions in conjunction with soil freezing and 

thawing during two years. However, elevated N2O emissions in this study were also observed 

in winter wheat 5 and spelt mid-end of February and on March 1, 2005 when air and soil 

temperature in 5 cm depth ranged at the freezing point. But manuring was also processed 

end of February so that soil freezing and thawing in combination with fertilizer application 

(change of soil conditions by addition of nitrogen, carbon, water,…) have most likely 

provoked higher emissions. 

Amount and temporal distribution of precipitation as well as the course and sum of air and 

soil temperatures may vary conspicuously between the years. Thus, field studies should be 

conducted at least during two, better more years to reduce possible strong influences of 
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weather conditions on parameters of interest. Ideally, trace gas emissions in similar crops 

should be investigated over several years, whereas emissions in different crops should be 

determined both, simultaneously (during the same season) and over multiple years.  

 

4.2.4 Impact of Crop Species on N2O Emissions 

Crop species may also affect N2O losses. Related to the management of the cultivated crop, 

the time of tillage as well as tillage operations may differ in the way green manures and crop 

residues are incorporated and the seed-bed is prepared. Generally, tillage may promote soil 

aeration, affect evaporation, and enhance accessability of crop residues for soil microbes 

(Granli and Bøckman 1994). Fertilization and hence addition of nutrients to the soil should 

correspond to the nutrient demand of the respective cultivated crop in time. Consequently, 

tillage and manuring affect conditions for biological processes, they may vary notedly in time 

(season) between different crop species and thus, are performed under different soil and 

climate conditions entailing different nitrogen dynamics. Furthermore, crop species 

themselves may influence soil biological processes, since production rates of trace gases are 

affected by substrate availability (Tate III 1995). According to Janzen (1990), root exudates 

influence nutrient dynamics and organic matter turnover in soil. Differences in root exudates 

between diverse plant species as well as during the vegetation period have been 

demonstrated (Gransee and Wittenmayer 2000; Hütsch et al. 2002). Bachman and Kinzel 

(1992) verified the impact of six different plant species on colonization and enzymatic 

activites in the rhizosphere. Höflich et al. (2000) provided evidence for stimulated microbial 

activity under legumes (pea and lupine) but not under cereals and oil flax. Tate III (1995) also 

pointed out that the availability of nutrients for microorganisms in the rhizosphere is 

dependent on plant species and the stage of plant development leading to differences in 

dynamic that may be the reason for the different temporal course of trace gas emissions 

under different crop species. Clays-Josserand et al. (1995) revealed a different distribution of 

fluorescent Pseudomonas spp. in dependence of crop species: according to their ability to 

dissimilate nitrogen, different proportions of non-dissimilatory and dissimilatory strains, nitrate 

reducers and true denitrifier with or without N2O reductase were observed in the rhizosphere, 

rhizoplane, and root tissue of tomato and flax.  

Over all three seasons in the present field study, no distinct order of N2O emissions in terms of 

the different crops has been observed. However, similar ranges of N2O effluxes were 

determined in winter wheat 5 (cropping system without livestock) and spelt (cropping system 

with livestock) in biogas treatments w/o L-FC and wL-FS+FC, respectively, within a season. 

Those winter cereals are comparable with respect to crop rotation (tables 2.1 and 2.3), similar 

cultivation strategies, manuring regimes (tables 2.5 and 2.6), and similar treatment of 

intercrops (tables 2.2 and 2.4) where biomass of intercrops was harvested in fall for 

fermentation and applied as fertilizer in spring. Amounts of approximately 1.5 kg N ha-1 a-1 in 
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2002/2003 and roughly 0.5 kg N ha-1 a-1 in 2003/2004 were emitted in both, w/o L-FC in winter 

wheat 5 and wL-FS+FC in spelt, respectively. Ruser et al. (2001) assessed N2O emissions from 

0.3 to 6.9 kg N ha-1 a-1 based on two year averages in the order fallow < maize, wheat < 

potatoes. On a scottish arable soil Smith et al. (1998a) measured annual N2O losses in the 

order winter wheat < spring barley < potatoes with emission ranges between 0.3 and 1.2 kg  

N ha-1. Kaiser et al. (1998) revealed a significant impact of cultivated crops on mean N2O 

emissions with respect to the measurement period (winter, vegetation period or whole year). 

Annual losses in winter wheat and winter barley (1.1 kg N ha-1) differed significantly from N2O 

emissions in winter rape and sugar beet (1.3 kg N ha-1). On the other hand, Hénault et al. 

(1998) described silmilar amounts of emitted N2O during a seven months investigation period 

in wheat and rape.  

However, comparing similar crops over several years the fertilizer regime consisting of fertilizer 

amount, fertilizer splitting, kind of manure (green manure, dung, slurry, fermented, not-

fermented, liquid, solid), viscosity, amount of applied total nitrogen and ammonium-nitrogen, 

application time (growth phase of crops), and soil and weather conditions before, during, 

and after manuring has to be taken into account. To identify the crop effect on trace gas 

emissions, it would be advantageous to keep the fertilizer regime the same over the three 

year study period. But considering manuring operations (tables 2.5, 2.6, Appendix A.4 - A.7) in 

more detail, partly distinct differences emerged between the investigated seasons. The 

fertilizer and cropping regimes were carried out as good as possible, however they were not 

standardized. For example, all intercrops in 2002/2003 consisted of peas, vetch, and oil radish 

but in the successive two seasons peas were omitted. Only in season 2004/2005 the following 

manures were applied compared to the previous two seasons under investigation: solid 

fermented residues in w/o L-FC before drilling of intercrops prior to spring wheat (41 kg Nt  

ha-1), solid fermented residues in w/o L-FC before drilling of winter wheat (95 kg Nt ha-1) (table 

2.5), and liquid fermented fertilizer in wL-FS+FC before drilling of intercrops prior to spelt (26 kg 

Nt ha-1) (table 2.6). Moreover, amounts of total nitrogen or ammonium-nitrogen applied in a 

distinct manuring treatment of a distinct crop varied in part considerably between the years. 

In w/o L-FC in winter wheat 5, for example, input of nitrogen amounted to 162 kg Nt ha-1 in 

2002/2003, 144 kg Nt ha-1 in 2003/2004, and 305 kg Nt ha-1 in 2004/2005 through liquid and solid 

fermented fertilizer, green manuring and pea straw (Appendix A.4). Additionally, in 2004/2005 

manuring of liquid fermented fertilizer was already completed on February 22, thus earlier 

than in the preceding seasons (table 2.5). 

Examining influences of crop species in this study on annual N2O emissions the follwing notes 

should be considered: The cultivation period of the respective crops differed considerably in 

terms of the time of intercrop incorporation, soil ploughing, and sowing. For instance, the 

winter cereals spelt and winter wheat were sown in fall while spring wheat and potatoes were 

drilled and dibbled, respectively, in spring. As a result of temporally diverse tillage operations 

and cultivation periods, the amount and distribution of mineral nitrogen in the soil profile 
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varied in spring and fall between the crops (figures 3.5, 3.10, 3.16, and 3.20). Furthermore, 

nutrient demands differed between winter and spring cereals and notably potatoes entailing 

varying manuring times. In this study integration of N2O losses from crops of interest with the 

respective intercrops were carried out over 365 days. Thus, N2O emitted from spring wheat 

contributed to a lesser extent to annual emissions than N2O losses from winter wheat because 

of the shorter cultivation period. The alternative method to integrate N2O emissions over the 

cultivation period and extrapolate those to 365 days pretending cultivation of spring wheat 

(and potatoes) during the whole year would have resulted in different yearly emissions 

because possibly high winter emissions would have been excluded. In the literature often 

information of the integration method, time periods, and the extrapolation of emission data 

are missing.  

Differences in cultivation techniques and the way N2O emissions are measured can result in 

different trace gas estimates. For instance, potatoes in contrast to cereals are usually 

cultivated using ridge culture leading to different bulk densities and pore size distributions in 

the ridge soil, the uncompacted interrow soil, and the tractor-compacted interrow soil (Ruser 

et al. 1998b). The spatial variability in soil properties should be considered for estimating total 

N2O effluxes. However, in the present field study the facilities were not available to monitor all 

areas with the respective replicates during the investigation period. Thus, only the ridge soil 

was sampled. Annual N2O emissions in potatoes and prior intercrops ranged in this field study 

between 1.52 and 3.19 kg N ha-1 over all manuring treatments and the investigated seasons. 

Smith et al. (1998a) measured N2O fluxes in the ridge soil and found losses of 1.2 - 3.2 kg N ha-1 

dependent on the year and the applied fertilizer. However, they observed high N2O emissions 

in the post-harvest period (2.0 kg N ha-1) which was not sampled in this study. Ruser et al. 

(1998b) investigated separately N2O effluxes on the ridges, on the interrow areas, and on the 

compacted interrow areas. Assuming that two-thirds of the field area are ridge soils, one-sixth 

uncompacted and one-sixth compacted interrow soils, they estimated that 16.0 kg N ha-1 

were emitted in average during the year (sampling during last two months (November and 

December) already in winter wheat). The major part (72%) of the total N2O release during the 

cropping period (May - September) evolved from the compacted interrow soil, while 21% 

and 7% were emitted from the ridges and the uncompacted interrow soil, respectively. Flessa 

et al. (2002) determined separately N2O emission rates in the different field areas during two 

cropping periods (May - September/October) and found total mean losses of 1.6 and 2.0 kg 

N ha-1, respectively. They calculated mean shares of 66%, 10%, and 24% for the ridges, 

uncompacted interrows, and compacted interrows, respectively, of the total in-situ emissions. 

Moreover, Gattinger et al. (2002) found in the same field experiment a more denitrifying 

microbial community in the compacted interrow soil by analyzing the phospholipid fatty 

acids (PLFA) and phospholipid etherlipids (PLEL). Based on the results of other field studies, 

N2O emissions in the present study are possibly underestimated.  
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4.2.5 Impact of Different Handling of the Intercrops on N2O Emissions 

Studies on arable land differ markedly whether they consider intercrop cultivation and the 

impact of different intercrop residues on mineralization or not (McKenney et al. 1993; 1995; 

Baggs et al. 2000a; Baggs et al. 2000b; Rosecrance et al. 2000; Burger et al. 2005). In the 

present field experiment intercrops were grown in all manuring treatments. However, 

treatments of intercrops varied among treatments within both cropping systems: The w/o L-FC 

and wL-FS+FC intercrops were harvested in fall for fermentation and were brought back to 

the field as fermented fertilizer in non-legume crops within the crop rotation at a different, 

later time point. In contrast, intercrops in w/o L-M, wL-FS, wL-FYM, and wL-RS were 

incorporated to the soil as green manure before main crops were cultivated.  

With intercrops, green manures, and crop residues which were kept on the field after harvest, 

considerable amounts of organic carbon and nitrogen were incorporated into the soil 

(Appendix A.4 - A.7). As revealed by Wagner-Riddle and Thurtell (1998) the impact of the 

preceding crop and green manures should be taken into account examining in-situ N2O 

emissions in field trials since they may affect the soil nitrogen status even after months 

(mineralization, release of nitrogen, C/N ratio of crop residues). 

Apart from a few exceptions, N2O emissions were clearly reduced through the harvest of 

intercrops in w/o L-FC and wL-FS+FC prior to winter crops after tillage and drilling of winter 

wheat and spelt in October, respectively (figures 3.1 - 3.3 and 3.11 - 3.13). Due to the harvest 

less organic material was available for mineralization, hence reducing the substrate for 

microbial metabolism and N2O production via nitrification and denitrification. Data of soil 

mineral nitrogen concentrations within 30 cm soil depth in 2002/2003 supported this theory 

with lower amounts of nitrate in w/o L-FC (figure 3.4) and wL-FS+FC (figure 3.15). In winter 

wheat 5, significantly lower nitrate concentrations were exhibited in fall in w/o L-FC 

compared to w/o L-M in 0 - 30 cm and 30 - 60 cm soil depth in all three seasons (figure 3.5). 

Similarly, in spelt lower amounts of total Nmin as well as lower nitrate contents in 0 - 30 cm and 

30 - 60 cm soil depth were observed in fall of all three seasons (figure 3.16). However, removal 

of intercrops (end of October or in November) prior to spring wheat and potatoes in w/o L-FC 

and wL-FS+FC did not entail such clear reductions of N2O losses. In contrast to winter cereals, 

intercrops or plant stubbles of harvested intercrops were not removed but incorporated into 

the soil not until January. Tillage operations for preparation of sowing (spring wheat) and 

dibbling (potatoes) were processed in February/March and April, respectively (tables 2.5, 

2.6). Thus, tillage, incorporation of plant biomass, sowing/dibbling, and manuring were 

processed at different time points with different soil and weather conditions in comparison to 

winter cereals, possibly leading to different N2O emission patterns. The Nmin values determined 

in fall in the cropping system with livestock were conspicuously lower in all manuring 

treatments in intercrops prior to potatoes (figure 3.20) than in spelt (figure 3.16). Likewise, the 

Nmin concentrations in the cropping system without livestock observed in fall in intercrops prior 

to spring wheat (figure 3.10) showed lower amounts than in winter wheat 5 (figure 3.5). The 
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consideration of nitrate contents also in deeper soil depths appears to be reasonable since 

Müller et al. (2004b) verified N2O production in soil depths down to 50 cm using 15N labeled 

fertilizers. They unambiguously exhibited elevated 15N labeled N2O concentrations in 50 cm 

depth that had been derived from 15N labeled nitrate. 

 

4.2.6 Impact of Manuring on N2O Emissions 

During this field study, several fertilizers were applied beside green manure and straw 

incorporation in dependence of cropping system and manuring treatment. In agro-

ecosystems application of organic manures marks an interesting and important event for 

analyzing N2O emissions. Manuring may lead to formation of hot-spots in the soil due to high 

concentrations of (available) organic carbon (Paul and Beauchamp 1989) which can sustain 

denitrification for extended periods (Thompson et al. 1987; Thompson 1989). In the cropping 

system without livestock, liquid of fermented crops as well as corresponding solid fermented 

crop residues were used for fertilization in w/o L-FC whereas in the control treatment w/o L-M 

the respective crop material was mulched and remained on field. Consequently, in that 

cropping system manuring in w/o L-FC could not be compared with applications of different 

fertilizers on N2O emissions, but the impact of fertilization in w/o L-FC was compared between 

the investigated seasons. In the cropping system with livestock diverse fertilizers were applied: 

raw slurry in wL-RS, fermented slurry in wL-FS, fermented slurry, liquid of fermented crops as well 

as solid fermented crop residues in wL-FS+FC, and farmyard manure in wL-FYM. Fermented 

slurry (wL-FS and wL-FS+FC) and liquid of fermented crops (wL-FS+FC) were applied 

simultaneously to raw slurry (wL-RS), whereas solid fermented crop residues (wL-FS+FC) were 

spread at the same time as farmyard manure (wL-FYM). In that cropping system, a direct 

comparison of manuring effects of the different fertilizers on N2O emissions was possible as 

well as a comparison between the investigated years. 

Anaerobic digestion in a biogas plant results in fermented products that differ from the 

respective “raw material” in the following way: increase of NH4+-N content, increase of NH4+-N 

proportion to total nitrogen content, increase of pH value, decrease of dry matter content, 

decrease of total carbon content, decrease of organic dry matter content, decrease of 

biological oxygen demand (BOD), decrease of viscosity, smaller C/N ratio, no alteration 

concering total nitrogen content, potassium content, and phosphate content (Field et al. 

1984; Asmus et al. 1988; Wulf et al. 2001). The elevated pH value and the increased amount of 

NH4+-N may potentially lead to an increased production of ammonia resulting in higher 

nitrogen losses in form of ammonia volatilization. However, the reduced viscosity of the 

fermented fertilizers may entail faster penetration into the soil with subsequently lower 

ammonia emissions but eventually increased N2O effluxes (Wulf et al. 2002b). On the other 

hand, the reduced amount of easily decomposable carbon in the fermented slurry may 

result in a lower rate of microbial activity (lower BOD). As a consequence, less or smaller 
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anoxic areas might emerge in the soil entailing lower denitrifying activity and less N2O 

emissions (Clemens and Huschka 2001).  

Considering the days following fertilizer applications, no distinct patterns of N2O emissions 

became apparent as exemplified by data collected in winter wheat 5 (cropping system 

without livestock) after manuring in all three years. On January 31, 2005 liquid of fermented 

crops (120 kg N ha-1) was manured in w/o L-FC. After one, two, and three days in-situ N2O 

fluxes were investigated without noticably elevated N2O emissions in the fertilized treatment. 

In contrast, application of the liquid fermented crops (62 kg N ha-1) on February 22, 2005 

resulted in a significantly increased N2O flux rate (246 µg N m-2 h-1) two days after manuring 

although less nitrogen (total N and NH4+-N) was applied. Elevated N2O fluxes were still present 

during the next three samplings in March that were characterized by high spatial variability. In 

2003/2004, an elevated N2O emission rate (but on lower level) was observed in winter wheat 

5 on February 29 in w/o L-FC (17 µg N m-2 h-1) two days after manuring of liquid fertilizer of 75 

kg N ha-1. Examining N2O effluxes on the date of fertilizer application as on February 27, 2004 

and February 19, 2003 in winter wheat 5 in w/o L-FC, no increased emissions were observed 

after manuring of 75 kg N ha-1 and 91 kg N ha-1, respectively, compared to the  

non-fertilized treatment w/o L-M. Only on March 13, 2003 a highly elevated flux (188 µg N m-2 

h-1) was found after manuring in w/o L-FC, but it was not significant due to large standard 

deviation. 

The concomitant application of water by manuring (slurry often contains > 90% water) may 

also affect N2O emissions (Davidson 1992; Jørgensen et al. 1998; Model 2003). The soil water 

content has a strong influence on the process that leads to N2O emissions and the amount of 

N2O emitted (Granli and Bøckman 1994). However, the amount of water alone does not 

explain the different observations of N2O emissions after manuring in winter wheat 5  

in w/o L-FC in January and February 2005. Less water was dispensed on February 22  

(19 m³ ha-1) than on January 31, 2005 (36 m³ ha-1), but higher N2O emissions were observed in 

February. 

Applying organic fertilizers, the input of considerable amounts of readily available organic 

carbon and the impacts it exerts on N2O production has to be considered. Clemens and 

Huschka (2001) assumed that the microbially available organic carbon determined the 

amount of N2O emitted shortly after slurry application. According to Paul and Beauchamp 

(1989), different carbon constituents of the manure revealed strong relationship on 

denitrification. However, liquid of fermented crop residues applied in spring and winter wheat 

in the cropping system without livestock during the whole investigation period did not differ 

greatly in C/N ratios (total carbon/total nitrogen) with values between three and five. 

Additionally, only fermented biomass and hence material with no or few easily degradable 

organic carbon was used for manuring in winter wheat 5. Consequently, different amounts of 

readily available organic carbon applied with the fermented manure in January and 

February 2005 might not be responsible for different N2O dynamics as described above.  
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N2O is a highly water soluble gas that is produced and released in varying amounts from slurry 

during storage and application in dependence of the pH value of the slurry (Oenema et al. 

1993). During and after slurry application, previously dissovled N2O might be slowly released 

and thus cannot be distinguished from a fast production in soil. Apart from a highly increased 

N2O efflux in winter wheat 5 on March 13, 2004 in one replicate leading to a large standard 

deviation of the mean emission, no elevated N2O emissions were observed on the day of 

fertilizer application. 

Elevated N2O emissions after fertilization on February 22, 2005 in winter wheat 5 coincided 

with air and soil temperature in 5 cm depth below the freezing point. Temperatures after 

fertilization on January 31, 2005, in contrast, ranged slightly above 0°C (section 4.2.3), when 

no elevated N2O emissions were observed. 

In the cropping system with livestock, four different fertilizers were investigated. Comparing 

simultaneous manuring of liquid fertilizer (raw slurry, fermented slurry, and fermented slurry + 

liquid of fermented crops), no distinct order of N2O emissions became apparent in both, spelt 

and potatoes during the investigation period. Similarly, no trend was noticeable concerning 

application of the solid fertilizers farmyard manure in wL-FYM and solid fermented crop 

residues in wL-FS+FC. For example, in spelt incorporation of farmyard manure (103 kg Nt ha-1) 

on October 13, 2003 seemed to increase N2O emissions for weeks, but this observation could 

not be confirmed with other fertilizer applications of farmyard manure, neither in spelt nor in 

potatoes. Thus, the missing explicit order of N2O emissions between the different manuring 

treatments in this cropping system during the sampling period was continued with the 

determination that a fertilizer-induced trend of N2O losses between the treatments was not 

detectable either. Furthermore, application of fermented slurry and fermented plant biomass 

(wL-FS and wL-FS+FC) did not result in explicit elevated or reduced N2O emissions compared 

to fertilization of raw slurry (wL-RS). However, integration of N2O emissions over 365 days in 

spelt showed in all three investigated seasons reduced N2O losses in wL-FS+FC compared to 

wL-RS. Thus, harvest of intercrops in fall and fermentation of cattle slurry and intercrop 

biomass entailed decreased N2O emissions although overall higher amounts of nitrogen (total 

N and NH4+-N) were applied in this treatment. Manuring treatment wL-FS, for comparison, in 

which only fermentation of cattle slurry was carried out, did not reveal in spelt decreased N2O 

emissions in all seasons. 

Elevated N2O emissions directly or during the first few days after application of manure as 

observed in the field study were often described in literature (Christensen 1983; Comfort et al. 

1990). Model (2003) determined on the day of application of liquid manure and slurry, 

respectively, peak N2O emissions of up to 183 µg N m-2 h-1 in spring wheat. Clemens et al. 

(2006) also analyzed suddenly elevated N2O emissions after manuring of mineral fertilizer, 

cattle slurry, and fermented cattle slurry, respectively, that had decreased during the 

subsequent one to three days to the level of the control plot. Rochette et al. (2000) assessed 

18 hours after spreading of pig slurry even a peak emission rate of 1260 µg m-2 h-1. Whalen 
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(2000) detected four hours after fertilization of liquid swine waste a significant increase of the 

N2O emission rate that was highest two days after manuring (103 µg N m-2 h-1).  

In the cropping system with livestock, no definite effect of fermentation of cattle slurry on N2O 

emissions could be determined with the feasible frequency of measurements. Wulf et al. 

(2001) and Clemens et al. (2006) did not assess significances in cumulated N2O losses during 

five weeks after application of raw cattle slurry and fermented cattle slurry and during one 

year, respectively. Petersen (1999) observed significantly lower mean rates of N2O evolution 

with and without irrigation before sampling in soils fertilized with fermented compared to raw 

slurry. However, no significant differences could be observed between the treatments a year 

before. Wulf et al. (2002b) found up to the second week after fertilization significantly higher 

cumulated emissions in raw slurry compared to fermented slurry amended soils that was 

ascribed to the reduced amount of degradable carbon in the fermented slurry. Similarly, 

Petersen et al. (1996) determined consistently lower soil denitrification rates in hot-spots 

derived from digested slurry compared to raw slurry in a laboratory experiment.  

The variability of results reflects the complex interplay of factors like fertilizer type, content of 

nitrogen and carbon, amount of water, fertilizer viscosity, application technique, soil moisture, 

temperature, precipitation,… that affect production and release of in-situ N2O emissions.  

 

4.2.7 Further Factors Influencing in-situ N2O Emissions 

In the literature, several further parameters are discussed in connection with in-situ N2O 

emissions in arable soils. However, since those factors did not differ in this field study, they 

cannot have contributed to or cannot have provoked differences of N2O effluxes in the 

diverse treatments. 

Soil texture and drainage play an important role because of their impact on oxygen and 

moisture status as well as on gas diffusion. Fine-textured clay soils can maintain a higher WFPS 

for longer periods due to more capillary pores within soil aggregates than coarse-textured 

soils. Thus, the potential for anoxic N2O formation via denitrification is higher in clay soils 

(Granli and Bøckman 1994; Bouwman et al. 2002). However, with decline of air filled porosity 

in heavier textured soil, gas diffusion becomes increasingly restricted and reduction of N2O to 

N2 might be favored. In this field study all in-situ measurements were performed in neighboring 

field plots at one location with similar soil texture. 

Soil pH values may also affect N2O production, but impact of pH is complex and results of 

diverse studies differ (for review refer e.g. to Granli and Bøckman (1994)). Bouwman et al. 

(2002) revealed by evaluation of more than 800 N2O emission measurements in agricultural 

fields that neutral to slighlty acidic conditions favor N2O effluxes. Nägele and Conrad (1990) 

showed that the N2O release decreased when pHH2O was raised from 4 to 7 in an acid forest 

soil. The release of N2O increased when pHH2O in an alkaline agricultural soil was reduced from 
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7.8 to 6.5, but decreased when pHH2O was further reduced to 4. Differences of soil pH values 

in this field trial are negliglible due to proximity of the plots. 

In several studies different application techniques of slurry like splash plate, band-spreading, 

trail hose, trail shoe with and without immediate shallow incorporation, and injection have 

been assessed with respect to N2O emissions (Dosch and Gutser 1996; Clemens et al. 1997; 

Flessa and Beese 2000). Greater contact of slurry with soil, e.g. after incorporation or injection, 

could induce conditions favorable for N2O production, whereas splash plate and band-

spreading could activate microorganisms in larger soil areas. Results of N2O emissions 

obtained so far in field studies on arable soil differ. Weslien et al. (1998) 1998 reported slightly 

but not significantly higher emissions after band-spreading followed by harrowing compared 

with band-spreading, trenching, and shallow injection. Wulf et al. (2002b) observed 

significantly increased N2O losses by injection compared to trail hose with and without 

incorporation or splash plate. In contrast, Clemens et al. (1997) did not determine any effects 

of application technique on N2O emissions with injection depths of 5 and 10 cm. In the 

present field trial, all slurries were applied by trail hose. 
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4.3 In-situ CH4 Fluxes 

4.3.1 Annual CH4 Fluxes 

Integrated CH4 uptake rates in the cropping system without livestock varied in winter wheat 5 

between 0.48 and 0.86 kg C ha-1 a-1 and in spring wheat from 0.50 to 0.71 kg C ha-1 a-1 during 

the investigation period of three years (table 3.7). In the cropping system with livestock, the 

amount of annual CH4 oxidation ranged in spelt from 0.13 to 0.80 kg C ha-1 and in potatoes 

from 0.50 to 0.66 kg C ha-1 (table 3.16). Consequently, the methane uptake rates are in line 

with published CH4 oxidation activities in arable soils ranging from 0.13 - 0.66 kg C ha-1 a-1 

(Flessa et al. 1995; Schmädeke et al. 1998; Kamp et al. 2001). Model (2003) observed in both, 

an organic cropping system with and without livestock CH4 uptake rates of 0.27 - 1.54 kg C 

ha-1 a-1 in lucerne-grass- and vetch-rye-mixes. For spring wheat and maize in both cropping 

systems, the integration of CH4 fluxes was performed with and without consideration of 

immediate CH4 emissions after fertilizer applications. Excluding CH4 emissions after manuring, 

annual soil CH4 uptakes amounted to 0.57 - 1.2 kg C ha-1 in spring wheat and maize in both 

cropping systems. Including fertilizer-related CH4 emissions, soil CH4 oxidation activities 

accounted for 0.03 - 0.61 kg C ha-1 a-1 in spring wheat in both systems. In contrast, the annual 

balances in maize exhibited CH4 losses between 0.72 and 1.76 kg C ha-1 in both cropping 

systems when CH4 emissions after fertilization were considered.  

CH4 oxidation activities in cultivated, arable soils are on average lower than in grassland soils 

and in forest soils (Hütsch 2001a). Boeckx et al. (1998) calculated overall CH4 uptakes of 1.03 

kg C ha-1 in a deciduous forest soil, 0.71 kg C ha-1 in a natural grassland soil, 0.33 kg C ha-1 in a 

fertilized pasture soil, and 0.34 to 0.37 kg C ha-1 in arable soils with different fertilizer treatment. 

Merino et al. (2004) assessed average annual in-situ soil CH4 oxidation activities of 4.7, 0.9, 

and 0.2 kg C ha-1 in forest, grassland, and cropfield soils, respectively. Willison et al. (1997) 

found up to ten times lower CH4 uptake rates in an arable than a grassland or woodland soil.  

 

4.3.2 Spatial and Temporal Variability of CH4 Fluxes 

Coefficients of variation (CV) for the mean spatial heterogeneity of the CH4 fluxes ranged in 

both, the cropping system with and without livestock, between 27% and 122% (tables 3.8, 

3.17) with exception of conspicuously higher values in potatoes 2003/2004 (wL-RS) and in 

winter wheat 5 2004/2005 (w/o L-M and w/o L-FC). The high standard deviations of the 

average CH4 fluxes in all crops and manuring treatments during the three seasons indicated 

high spatial variabilities and were the reason that flux rates among the manuring treatments 

were seldom statistically different. However, the CVs observed in this study are similar to those 

reported from other studies on arable soil that encompass a range between 13% and 663% 

(Flessa et al. 1995; Ruser et al. 1998b; Kamp et al. 2001).  

Temporal variability of CH4 fluxes in all investigated crops and manuring treatments ranged in 

this field study between 51% and 661% (tables 3.8, 3.17) without consideration of the 
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exceptional high CV values in spelt 2003/2004 (wL-FS+FC and wL-RS) and winter wheat 5 

2003/2004 (w/o L-FC). Those relatively high coefficients of variation resulted from a single, high 

CH4 emission rate after application of the respective organic fertilizer and are in line with the 

reported CVs (176% - 2200%) from studies in organic agriculture with and without livestock 

where crops have been fertilized with various organic manures (Model 2003). When CH4 

emissions after fertilization were omitted from the calculations, CV values ranged between 

70% and 157% for various crops and manuring treatments (Model 2003). Alternating oxidation-

emission periods in winter might have contributed to the temporal variability. Furthermore, it 

seemed that CH4 fluxes had a less pronounced seasonality compared to N2O and CO2 

(Flessa et al. 1995; Model 2003) which is in accordance with observations in the present field 

study. Comparison of cumulated CH4 fluxes in winter wheat 5 in manuring treatment w/o L-M 

during the three investigated seasons revealed only a variation of annual fluxes by a factor of 

1.8, whereas N2O emissions differed by a factor of five (see 4.2.2). Moreover, elevated CH4 

consumption rates were often determined in this field trial during the summer months which is 

in line with other in-situ investigations on arable land (Flessa et al. 1995; Ruser et al. 1998b). In 

contrast, Dobbie and Smith (1996) did not find significant differences between CH4 oxidation 

rates in winter wheat throughout a year.  

 

4.3.3 Impact of Climate Conditions on CH4 Fluxes 

The response of in-situ CH4 oxidation to soil moisture has been frequently reported with an 

inverse relationship between CH4 comsumption rate and moisture content for various soils 

(Steudler et al. 1989; Whalen et al. 1991; Dörr et al. 1993; Castro et al. 1995; MacDonald et al. 

1996; Singh et al. 1999) and has also been observed in a potato field for the interrow soil 

(Ruser et al. 1998b). However, no significant correlation could be determine for the ridges that 

was ascribed to the low percentage of the WFPS in the ridge soil. Highest CH4 uptake was 

exhibited during the summer months when soil temperatures were high and soil moisture 

relatively low. Merino et al. (2004) showed that the soil moisture was the main factor 

influencing in-situ CH4 fluxes (negative relationship) in a cropland soil with highest CH4 uptakes 

during the summer months, coinciding with low soil moisture contents throughout two years of 

investigation. Soil temperature was found to be a secondary factor in many studies for CH4 

fluxes. Flessa et al. (1995) found negative correlations between CH4 consumption rates and 

soil moisture and positive correlations of CH4 consumption rates with temperature in three 

arable soils. Those soils oxidized also more CH4 towards midsummer when soil temperatures 

were high, however, heavy rainfall in the middle of July markedly reduced CH4 uptake. The 

fourth site under investigation showed a different behavior with generally higher CH4 

consumption rates and without significant relationships between CH4 fluxes and soil moisture 

or soil temperature. 
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Looking at CH4 fluxes determined in this field study in all crops and manuring treatments, 

seasonal changes in CH4 oxidation rates were dependent on crop and year. Notably in the 

winter cereals spelt and winter wheat and particularly during season 2003/2004, highest soil 

uptake rates occurred in June and July. Lower CH4 consumption were observed during the 

winter period from December 1 to March 15. On a few sampling dates in winter, CH4 

emissions occurred that were not related to fertilizer applications. For example, on December 

22, 2004 a significant amount of CH4 was emitted in winter wheat 5 in manuring treatment 

w/o L-M. Also, both treatments in intercrops prior to spring wheat showed CH4 losses on this 

day. Similarly, on January 7, 2005 w/o L-M exhibited CH4 emission, but it was not significantly 

different from CH4 oxidation in w/o L-FC due to high standard deviations. Precipitation of  

11.4 mm during the preceding five days of December 22, 2004 and 3.2 mm on the day of 

sampling could have increased the water-filled pore space leading to anoxic conditions in 

the soil and hence to CH4 production surpassing CH4 consumption. Descriptions of net in-situ 

emissions of CH4 from arable soils were reported after heavy precipitation events which 

caused a sudden reduction in gas diffusivities (Merino et al. 2004). Kamp et al. (2001) found 

occasionally CH4 emissions from soil monoliths of a loamy sand that were attributed to 

frequently high soil moisture contents and saturated conditions in the upper horizon due to 

clay accumulation and hence stagnent water. Decreases of CH4 oxidation and even CH4 

losses with increasing WFPS were also assessed in forest soils and peat soils (Steudler et al. 

1989; Castro et al. 1995; MacDonald et al. 1996). Apart from reduced gas diffusivities, a slower 

consumption rate could also be the result of an initiation of in-situ CH4 production in anoxic 

zones that counterbalances consumption (Mosier et al. 1998b). 

Soil temperature often correlated (positively) with CH4 oxidation rates as mentioned above. It 

should be noted that CH4 uptake in aerobic soils does not cease in winter. Even in subalpine 

mountain soils under a snow pack (Sommerfeld et al. 1993) or when surface soils weere frozen 

(Mosier et al. 1991) CH4 oxidation continued. In winter soil temperature and biological activity 

are low, but as temperature rises in spring, biotic activity increases until the microbes become 

substrate-limited (Crill 1991; Castro et al. 1995). Demand surpasses supply and consumption 

rates eventually plateau at a diffusion-contolled maximum. However, if soils become very dry, 

oxidation rates can fall again since moisture stress affects the biological activity (Mosier et al. 

1991). However, some authors did not find any or only a weak relationship between in-situ 

CH4 uptake and soil temperature (Steudler et al. 1989; Crill et al. 1994; Dobbie and Smith 

1996). King and Adamsen (1992) as well as Born et al. (1990) concluded that microbial activity 

was mainly controlled by gas transport (diffusion). In the present field study, correlation 

coefficients (r²) between CH4 oxidation rates and soil temperature in 5 cm depth or air 

temperature varied from 0.51 to 0.80 and from 0.53 to 0.76, respectively (table 3.9). 

Schmädeke et al. (1998) calculated correlation coefficients for CH4 fluxes and soil 

temperature in 2.5 cm depth in winter rape, winter wheat, and winter barley for the winter 

and summer periods and obtained coefficients between 0.44 and 0.76.  
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4.3.4 Impact of Crop Species on CH4 Fluxes 

Different crop species may require different cultivation and tillage operations, different 

management and manuring strategies. Those activities may be performed at different time 

points in the season with varying soil and climatic conditions as described in more detail in 

section 4.2.4. Comparability of influences of different crops on trace gas fluxes is only given if 

investigations are performed during the same season on the same site under similar soil and 

climatic conditions. Ideally, comparative studies should also be conducted throughout at 

least two, better several years to minimize the possible strong impact of weather conditions. 

Only limited data on the effect of vegetation on in-situ CH4 oxidation in arable soils are 

available. Schmädeke et al. (1998) measured CH4 fluxes in three different crops with two 

different levels of nitrogen fertilizer during two years. However, the amount of applied N was 

reduced in the second year in both fertilizer levels. During the first summer period, in part 

significant differences occurred between the crop species, but they could not be confirmed 

in the following summer period. Ruser et al. (1998a) found in the first investigation season 

higher mean annual CH4 uptakes in potatoes than in winter wheat, but in the second season 

inverse results. Consequently, no crop species related influences on soil CH4 oxidation 

activities were determined. In the present field trial, mean annual CH4 uptakes of the four 

investigated crops across the manuring treatments varied between 479 and 740 g C ha-1, but 

no significant impact of the crop species on CH4 oxidation rates was observed. In incubation 

studies no differences in soil CH4 uptake was found between maize cropping and an 

unplanted control soil (Syamsul Arif et al. 1996).  

Indirect effects on CH4 fluxes may also emerge from cultivation of different crop species. 

Hütsch (1996) compared in incubation experiments CH4 oxidation rates of soils under 

continuous winter rye and maize and determined remarkably higher CH4 comsumption under 

rye than under maize. The results were probably caused by an indirect influence of different 

pesticides that had been applied to the monocultures for many decades and/or the lower 

soil pH value under maize could have been responsible for the observed differences in CH4 

oxidation activities.  

As mentioned in section 4.2.4, cultivation of potatoes differs markedly from other crops 

because of the ridge culture. Ruser et al. (1998b) quantified CH4 fluxes in an intensively and 

extensively fertilized potato field separately for the ridges, the uncompacted and the tractor-

traffic-compacted interrow soils. During the potato cropping period of five months (May - 

September), the ridge soils revealed the highest CH4 uptakes (98 and 143 g ha-1 (intensively 

and extensively fertilized, respectively)) followed by the interrow areas (30 and 25 g ha-1). Soil 

compaction by tractor traffic changed the soils from a sink to a source for atmospheric CH4 

(56 and 72 g ha-1) that pointed to an O2 limitation in the compacted soil. This is in line with the 

study by Hansen et al. (1993) who determined a 52% reduction in CH4 oxidation rates in an 

arable soil following compaction through tractor traffic. Thus, determining total in-situ CH4 

fluxes in potatoes, the particularity of the cropping area with different soil properties, 
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especially areas of soil compaction have to be considered. However, due to missing facilities 

to monitor all different areas with the respective replicates throughout the investigation 

period in this field study, only the ridges were sampled. Consequently, the calculated 

capacity of soil CH4 oxidation under potatoes (498 - 662 g C ha-1 a-1) is presumably 

overestimated.  

 

4.3.5 Impact of Different Handling of the Intercrops on CH4 Fluxes 

In the present field trial, different intercrop managements were carried out. In manuring 

treatments w/o L-FC and wL-FS+FC intercrops were harvested for fermentation and were 

applied to the field as fermented fertilizer to non-legume crops at a later time point. In 

contrast, in treatments w/o L-M, wL-FS, wL-FYM, and wL-RS the growth of the intercrops was 

incorporated into the soil as green manure before main crops were cultivated. Cumulated 

CH4 uptakes in the cropping system with livestock tended to be higher in wL-FS+FC than in the 

other manuring treatments (table 3.16), whereas in the cropping system without livestock soil 

CH4 uptake tended to be lower in treatment w/o L-FC compared to w/o L-M (table 3.7).  

With the incorporation of intercrops, green manures, and crop residues, considerable 

amounts of organic carbon and nitrogen remained on the field (Appendix A.4 - A.7). The 

impact of organic residue amendements on CH4 oxidation seems to depend on their C/N 

ratio. Crop residues with a wide C/N ratio (e.g. straw) stimulated N immobilization and did not 

affect CH4 oxidation, whereas residues with a narrow C/N ratio (e.g. sugar beet leaves) 

enhanced N mineralization resulting in a strong inhibition of CH4 oxidation, occasionally up to 

almost 100% (Boeckx and Van Cleemput 1996). Hütsch (1998) observed after application of 

fresh sugar beet leaves to a loamy arable soil an immediate inhibition of CH4 oxidation, 

however, with a reduction of only 20%. Application of wheat straw, in contrast, did not cause 

any changes of soil CH4 uptake.  

In the present study, incorporation of intercrops prior to spelt and winter wheat was 

conducted in October directly before drilling of the winter cereals, whereas intercrop 

incorporation prior to potatoes and spring wheat was performed in January/February. No 

explicitly increased or decreased CH4 oxidation rates were observed after incorporation of 

the intercrops or the intercrop stubbles in the various manuring treatments. Possibly, the 

variability at the field site masked an effect of the organic residues, but the C/N ratios of the 

incorporated intercrops varied in a range between 9 and 43 (Appendix A.4 - A.7) during the 

three seasons that might have led to variable, non-comparable effects and observations. The 

difference to the results by Boecks and Van Cleemput (1996) and Hütsch (1998) is possibly 

related to a more even incorporation of the organic matter in the soil in their laboratory 

studies and the higher sampling frequencies.  
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4.3.6 Impact of Manuring on CH4 Fluxes 

The application of the different liquid organic fertilizers resulted mainly in high short-term CH4 

emissions (figures 3.1, 3.2, 3.12, and 3.13). As revealed by incubation studies (figure 3.21), the 

CH4 was probably derived from the release of dissolved CH4 in the manures and not 

produced via methanogenesis in the soil (Sommer et al. 1996; Chadwick et al. 2000). CH4 

emissions directly after application of liquid organic manures were also observed by e.g. Wulf 

et al. (2002b) and Model (2003). Incorporation of solid fertilizers like solid fermented residues in 

w/o L-FC and wL-FS+FC or farmyard manure in wL-FYM did not seem to affect CH4 fluxes in 

the different crops (figures 3.7 and 3.12). However, after application of farmyard manure in 

spelt in season 2004/2005 elevated but non-significant CH4 emissions were assessed in wL-FYM 

during several weeks (figure 3.11).  

As discussed in 4.3.5, the C/N ratio of organic amendments might have influenced the soil 

CH4 oxidation rate, but no distinct pattern of reduced or increased CH4 fluxes was observed 

due to spreading of organic fertilizers in the subsequent days. The C/N ratios varied between 

3 and 5 in the liquid fermented fertilizers and between 11 and 26 in the solid fermented crop 

residues in the cropping system without livestock (Appendix A.4 and A.5). In the cropping 

system with livestock C/N values ranged from 4 - 13 in the different liquid fertilizers and from  

12 - 47 in the solid manures (Appendix A.6 and A.7).  

Generally, nitrogen fertilization is widely recognized as one of the key factors influencing CH4 

oxidation in agricultural soils whose impacts have to be distinguished in short-term and long-

term effects. It was shown that oxidation of CH4 and NH4+ exclude each other, and 

nitrification of the applied NH4+ has to be almost completed before CH4 consumption 

commences (Hütsch 1998). Due to the low substrate specificity of the methane 

monooxygenase (Hubley et al. 1974; Colby et al. 1977; Dalton 1977; Higgins et al. 1979; 

Burrows et al. 1984), methanotrophic bacteria may metabolize NH4+ as soon as it is applied 

and oxidize CH4 afterwards. Dalton (1977) and O´Neill and Wilkinson (1977) concluded that 

NH4+ acted as a competitive inhibitor whose effect was not completely reversible. In contrast, 

Dunfield and Knowles (1995) found in incubation studies a complete reversible inhibitory 

effect of NH4+ postulating a NH4+ concentration depending and time depending ability of 

methanotrophs to recover. However, different investigations under field conditions did not 

reveal any impact of NH4+ fertilizers or urea on CH4 uptake of fertile agricultural soils (Bronson 

and Mosier 1993; Hütsch et al. 1993; Dobbie and Smith 1996). 

Surprisingly, Bodelier et al. (2000b) showed that ammonium-based fertilization did not 

necessarily inhibit CH4 consumption in the root zone of rice plants but rather stimulated 

activity and growth of methanotrophic bacteria. CH4 oxidation and numbers of 

methanotrophs were stimulated by the fertilizer addition and by the presence of rice plants. 

Without fertilization, nitrogen limiting conditions for the CH4 consuming bacteria, that will be 

the normal situation in the rice rhizosphere, restrict CH4 oxidation (Bodelier et al. 2000a). Dan 
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et al. (2001) observed stimulated CH4 production and consumption in the top soil of a rice 

field during nine days following a modest urea fertilization, but major changes in CH4 emission 

were missing. Rice plants took up ammonium so fast that a direct impact of NH4+ on CH4 

oxidation was hardly possible. 

As mentioned in 4.2.6, fermentation in a biogas plant leads to products with increased NH4+-N 

contents and a higher proportion of NH4+-N of the total nitrogen content in comparison to the 

respective “raw material” (Field et al. 1984; Asmus et al. 1988; Wulf et al. 2001). In the 

cropping system with livestock, where the effects of non-fermented (wL-RS) and fermented 

slurry (wL-FS) could be compared, no definite influences on in-situ CH4 fluxes were 

determined.  

The soil moisture status is an important factor influencing CH4 fluxes. Physiological water stress 

of methanotrophic bacteria was shown to limit atmospheric CH4 consumption rates in a forest 

soil at low water contents (Schnell and King 1996). Maximum rates of atmospheric CH4 

oxidation occurred at a gravimetric soil water content of 25% corresponding to a water 

potential of about -0.2 MPa. CH4 uptake was strongly depressed by water potentials of -3 to  

-4 MPa indicating that soil methanotrophs require a certain amount of free water. Soil drying 

may reduce the CH4 oxidation and the capacity of soils to act as sink for CH4 (Nesbit and 

Breitenbeck 1992). Soil water not only affects the moisture availability to microorganisms but 

also influences the gaseous diffusion and the supply of CH4 (Born et al. 1990; Whalen et al. 

1990). The capacity of methylotrophic bacteria to consume CH4 commonly exceeds the 

potential of CH4 to diffuse from the atmosphere to the consumers. The maximum rate of 

uptake of atmospheric CH4 by soil is limited by diffusion and can be calculated from soil 

physical properties and the CH4 concentration gradient (Striegl 1993). Elevated soil moisture 

contents, on the other hand, may also lead to lower soil CH4 uptake rates of atmospheric CH4 

due to limited CH4 diffusion into the soil and enhanced CH4 production (Steudler et al. 1989; 

Nesbit and Breitenbeck 1992).  

Investigations on acid forests soil by Schnell and King (1994) exhibited that exogenous nitrite 

(NO2-) was an even more effective inhibitor of CH4 oxidation than NH4+. Although NO2- is the 

end product of NH4+ oxidation by methanotrophic bacteria (Bédard and Knowles 1989) it 

may accumulate and strongly restrict activities under low pH values (Schnell and King 1994). 

Probably, NO2- was a more effective and more persistent inhibitor because it is present in soil 

solution and not like NH4+ to 65% adsorbed to soil particles (Hütsch 1998). In soils with good 

conditions for nitrification (well aerated, approximately neutral pH value) inhibitory effects of 

NH4+ of urea via NO2- is unlikely since NO2- is oxidized immediately after its production and 

only minor accumulation occurs (Hütsch 1998). 

The effect of NO3- on CH4 oxidation is not clear. Many studies revealed that NO3- fertilization 

had no impact on soil CH4 uptake (Boeckx and Van Cleemput 1996; Hütsch 1998), whereas 

other investigations showed an adverse effect on the CH4 oxidation ability (Adamsen and 

King 1993; Bronson and Mosier 1994; Hütsch 1996). The discrepancy may be explained by 
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different NO3- application rates. If NO3- salts were applied in common agricultural amounts, 

CH4 oxidation rates did not differ from the unamended control soil (Hütsch 1998), but much 

higher fertilizer doses may cause osmotic stress to the methanotophic bacteria (Dunfield and 

Knowles 1995). Consequently, NO3- may effect indirectly soil CH4 uptake due to salinity 

effects. Furthermore, if potassium salts like KNO3 were used for fertilization, K+ is able to 

exchange NH4+ from surfaces and interfaces of clay particles which may inhibit CH4 

consumption through release of NH4+ (King and Schnell 1998). 

 

4.3.7 Further Factors Influencing in-situ CH4 Fluxes 

Further impact factors on soil CH4 oxidation activities are discussed in the literature, but they 

did not differ in the present field study and hence cannot have provoked different CH4 

oxidation rates in the investiated manuring treatments.  

DeVisscher et al. (1998) pointed out that the cation exchange capacity (CEC) of a soil is an 

important parameter for the degree of inhibition of CH4 oxidation through NH4+ that could 

partly explain contradictory observations in the literature. They revealed that on soils with high 

CEC rather large amounts of NH4+ entailed only small effects on CH4 uptake, whereas on soils 

with low CEC already small NH4+ applications caused strong inhibitory influences on CH4 

consumption. Consequently, only soils with the same CEC are directly comparable in their 

reaction of different fertilizers on CH4 oxidation activity. Since the present field trial was 

performed in neighboring field plots at one location without big differences in soil texture, the 

same CEC of the plots may be taken for granted. 

Long-term effects resulting from repeated N applications during several years and decades 

are also of interest and have been studied in arable soils. Various studies have been 

conducted in regularly fertilized arable soils that exhibited strong inhibitory influences of NH4+ 

on soil CH4 uptake (Bender and Conrad 1994; Flessa et al. 1996; Hütsch 1996; 1998; 2001b). 

Hütsch et al. (1993) observed in an incubation experiment with soil cores from the ”Broadbalk 

Wheat Experiment“ at Rothamsted, UK (began in 1843) highest CH4 oxidation rates in the 

unfertilized control treatment. The soil CH4 oxidation ability decreased progessively with 

increases in mineral N application (up to 144 kg N ha-1 a-1), whereas the soil amended with 

farmyard manure (nearly 240 kg N ha-1 a-1) exhibited almost the same CH4 oxidation activity 

as the unfertilized plot. Likewise, investigations with soil cores from the “Rye Experiment” at 

Halle, Germany (start in 1878), revealed enormous declines in the soil CH4 uptake rates due to 

mineral N application (60 kg N ha-1 a-1) (Hütsch 1996). Manuring of the same nitrogen amount 

with farmyard manure (12 t FYM ha-1 a-1) reduced also the soil CH4 consumption, but to a 

lesser extent. Investigations carried out on soil samples derived from the “Static Fertilization 

Experiment” at Bad Lauchstädt, Germany (established in 1902) resulted in a decreased CH4 

uptake of soil fertilized with mineral N, whereas application of farmyard manure entailed an 

increased CH4 oxidation rate (Willison et al. 1996). In contrast, Hütsch (1996) found no 
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differences among soils of the “Static Fertilization Experiment” without any nitrogen addition, 

with mineral N fertilizer, and with farmyard manure application. However, in a different 

subplot which did not receive periodically lime contrary to the first subplot and hence 

exhibiting lower pH values, mineral N application reduced CH4 oxidation significantly 

compared to the no-N treatments. In summary, the ability to oxidize CH4 seems to decrease 

in arable soils that had been amended with inorganic nitrogen for many decades in 

dependence of the amount and kind of applied nitrogen fertilizer as key determinants.  

Long-term applications of nitrogen fertilizer could cause changes in microbial ecology and 

probably a shift in microbial populations (Adamsen and King 1993). Seghers et al. (2005) 

determined in an incubation experiment three times higher CH4 oxidation rates in soils 

amended with organic fertilizer (compost) for five years than in soil fertilized with mineral 

nitrogen. The larger consumption rates were positively reflected in a significantly enhanced 

abundance of methanotrophic bacteria in the organically fertilized soil. Seghers et al. (2003) 

showed in a long-term field study that the composition of the Type I methanotrophic 

community differed between an agricultural soil receiving organic or mineral fertilizer, 

respectively. Since CH4 fluxes in soil are not only determined by methanotrophic but also by 

methanogenic activities, impact of manuring on CH4 producing community should be 

considered, too. Sheppard et al. (2005) exhibited marked differences in community patterns 

of methanogenic archaea between a long-term fermented sludge amended grassland soil 

and an untreated soil with reduced diversity in the fertilized soil. 
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4.4 Net in-situ CO2 Fluxes 

As minor part of the study, also net CO2 fluxes were determined in the soil-plant system using 

the closed chamber technique with transparent chambers that included plants. This 

experimental setup allowed the observation of differences in net CO2 fluxes among the 

manuring treatments, encompassing possible plant-stimulated direct effects on the soil 

respiration via the rhizosphere in the soil-plant system (Domanski et al. 2000; Ehrensberger and 

Kuzyakov 2000; Siniakina et al. 2000). It should be noted that the net CO2 flux is the result of 

various CO2 producing and CO2 consuming processes. The amount of CO2 enclosed within 

the chamber plus any CO2 production were not sufficient when the photosynthetic activities 

were high so that net CO2 rates could not be determined. Due to the above-mentioned 

problems, annual balances of CO2 fluxes in the different crops and manuring treatments 

were not assessed, and the net CO2 fluxes reported in this study should be regarded with the 

appropriate care.  

In other studies, opaque chambers were used to determine in-situ flux rates of trace gases 

(Sehy et al. 2003; Dörsch et al. 2004; Merino et al. 2004). Those chambers prevent 

photosynthetic activity, hence only respiratory processes are considered during the 

investigation period regardless of plant CO2 uptake. Subsequently, net CO2 emissions of the 

site are overestimated. 

 

In the present study, mostly lower CO2 emissions were observed in the winter cereals winter 

wheat and spelt in the manuring treatments w/o L-FC and wL-FS+FC, respectively, after 

intercrop incorporation (figures 3.1, 3.2, 3.11, and 3.12). Thus, the lower amount of 

degradable organic matter due to the intercrop harvest for fermentation (Appendix A.4 - 

A.7) entailed lower CO2 emission rates. However, significant differences were seldom 

assessed. CO2 flux patterns determined in intercrops prior to spring wheat and potatoes 

differed from those in winter cereals because the intercrops were incorporated to the soil not 

until January or February. Harvest of intercrops prior to potatoes in fall in wL-FS+FC resulted in 

CO2 emissions in the crop stubbles in contrast to CO2 uptake in the other manuring treatments 

with intact intercrops (figures 3.17 and 3.18). Comparable observations were made in 

intercrops prior to spring wheat (figure 3.7). Flux measurements in the ploughed soil prior to 

potatoes until May and later in summer revealed net CO2 emissions in both seasons. In all 

investigated crops and manuring treatments CO2 emission rates amounted up to 508 mg C 

m-2 h-1. Elevated CO2 emissions were partly observed after application of liquid manure due 

to degassing of dissolved CO2 (e.g. figures 3.2, 3.12, and 3.13).  

The CO2 emissions determined in this field study are in line with other field trials exhibiting CO2 

flux rates between 5 and 447 mg C m-2 h-1 (Model 2003; Sehy et al. 2003; Merino et al. 2004). 

Drury et al. (2006) even found CO2 emission rates up to 150 kg C ha-1 d-1 (625 mg C m-2 h-1) in 

dependence on tillage, season, and depth of nitrogen fertilizer placement.  
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Several factors may influence CO2 emissions such as soil moisture content, temperature, 

tillage, soil compaction, fertilization, C availability, and C/N ratio of organic amendments. 

Kessavalou et al. (1998b) assessed a general increase of mean annual CO2 emissions with 

intensity and degree of tillage. Largest CO2 emissions occurred during spring and decreased 

in the order spring > summer > fall > winter, regardless of cropping and tillage management. 

Furthermore, CO2 fluxes of the interrow soil in wheat increased linearly with soil temperature. 

Drury et al. (2006) observed a significant site - year effect in maize as well as greatest CO2 

emissions in July and August, when soil temperatures were high. Significant effects of tillage, 

soil water content, depth of N placement, or interactions between tillage and depth of N 

placement with respect to seasonal CO2 emissions were not determined. Ball et al. (1999) 

found that in-situ CO2 fluxes were not strongly influenced by tillage a few weeks after sowing 

of spring barley. Periods of low or zero CO2 fluxes (and very high N2O emissions) under no 

tillage were associated with reduced gas diffusion and air-filled porosity, both caused by 

heavy rainfall.  

Kessavalou et al. (1998a) observed short-term elevated CO2 emissions in fall after subtillage 

(V-blade) and in summer after discing. In summer, CO2 losses remained reduced in 

comparison to the averaged CO2 loss before discing, suggesting an instantaneous release of 

entrapped CO2 in soil pores. Presumably, the prolonged reduction in CO2 loss was partly 

caused by an altered soil microenvironment, such as a reduced soil water content resulting in 

reduced microbial activity. Overall, wetting induced an increase of CO2 emissions after 24 h 

and 72 h in all tillage treatments, indicating elevated microbial activity due to a more 

favorable soil environment from improved soil water conditions. Magid et al. (2001) 

investigated the decomposition of Medicago lupulina, Melilotus alba, and Poa pratensis at 

3°C, 9°C, and 25°C during four weeks and noticed an increased mineralization activity with 

rising temperature. Additionally, different proportions of the crop-bound C were respired as 

CO2 by the end of the experiment pointing to differences in substrate quality (highest 

proportions of mineralized C in the Melilotus alba treatment). Analysis of biochemical 

characteristics revealed that this crop material contained the highest nitrogen 

concentration, the lowest C/N ratio, and the lowest proportion of cellulose and lignin. 
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4.5 Incubation Experiments 

The incubation experiments were performed to investigate in more detail the N2O emissions 

of the fertilized arable soils and of the different pure fertilizers themselves under favorable 

conditions for denitrification activity. Although the investigation of nitrite reductase gene 

fragments (nirK and nirS) by real-time PCR, the enumeration of nitrate reducers by MPN, and 

the determination of the potential denitrifying enzyme activity confirmed the presence of 

denitrifying bacteria in the different fertilizers in the greenhouse experiment (table 3.18), no 

N2O production was observed during the anoxic incubation of the pure fertilizers (figure 3.21). 

Consequently, the substrates for denitrifying activity, in particular low nitrate contents, might 

have prevented high N2O production in the pure fertilizers, but stimulated the potential 

denitrification activity after addition of nitrate and glucose (table 3.18). 

The unfertilized arable soil exhibited the highest N2O production, whereas all fertilized soil 

samples revealed similar patterns of N2O production with only small amounts of emitted 

nitrous oxide (figure 3.21). Thus, the denitrifiers could have been either inhibited by addition of 

the fertilizers or the ratio of the denitrification products N2O and N2 was in favor of N2 

production. An inhibition of the denitrification activity could be excluded by incubation of 

the fertilized soils and the bare soil under anoxic atmosphere containing 10% acetylene to 

repress the N2O reductase so that only N2O was produced. All fertilized soil samples showed a 

similar or even faster N2O production than the bare soil (figure 3.23). After 53 h of incubation, 

similar N2O concentrations were found in all investigated samples. Consequently, the ratio of 

N2O and N2 must have been decreased by fertilizer addition during the anoxic incubation 

without acetylene (figure 3.21). Firestone and Davidson (1989) and Granli and Bøckman 

(1994) compiled in their reviews the impact of different factors on the N2O/N2 ratio during 

denitrification. Since temperature, absence of oxygen, soil moisture content, and nitrate 

content remained more or less unaffected by fertilization in comparison to the unfertilized soil, 

the addition of organic carbon through the fertilizers might have led to the shift of end 

products towards N2. The assumption is in accordance with the literature where easily 

degradable organic carbon is considered to promote full reduction to N2, i.e. low N2O/N2 

ratios (Elliott et al. 1990; Weier et al. 1993). Furthermore, the faster increase of N2O in the 

fertilized soils suggested a higher denitrification rate presumably also provoked by the added 

organic carbon through the manures (Paul and Beauchamp 1989; Drury et al. 1991). The 

question whether the soil autochtonous or the imported denitrifiers by the manures caused 

this result remains open. However, observations made during the greenhouse experiment 

investigating the nirS gene fragments of denitrifiers after manuring indicated a possible 

stimulation of fertilizer derived denitrifying bacteria (figure 3.28).  

As expected, a fast decrease of nitrate, the substrate for denitrification, in the fertilized soils 

was observed during the incubation (without acetylene) (figure 3.22). The concentration of 

nitrate remaining in the soil amended with fermented slurry might be due to interference of 



 4 Discussion 131 

the photometrical determination by turbidity caused by the manure. The difference between 

the amount of nitrate (up to 2350 nmol N g-1 soil and fertilizer) present in the fertilized soils and 

the recovered N2O concentration using the acetylene inhibition technique (maximum 1020 

nmol N g-1 soil and fertilizer), however, remains unclear. Possibly, nitrate assimilation by 

bacteria, dissolved N2O in the soil water phase, dissimilatory nitrate reduction to ammonia 

(DNRA), and measuring inaccuracy might have contributed to the discprepancy.  

Highest CH4 concentrations were found in the raw slurry (2400 nmol g-1 fertilizer), as 

anticipated. Surprisingly, the fermented slurry exhibited also a clearly elevated CH4 

concentration in the headspace (1262 nmol g-1 fertilizer), even if it was lower than in the raw 

slurry. The methane could either originate from degassing of already produced and dissolved 

CH4 in the fertilizer and/or it was produced during the incubation period suggesting an 

incomplete fermentation process in the biogas plant. The methane concentration in the 

headspace of the fermented crop material was comparatively low (196 nmol g-1 fertilizer) 

and might also have been derived from degassing or methanogenesis during the incubation. 

When the different fertilizers were applied at the field site, CH4 emissions were frequently 

observed directly after manuring (e.g. figures 3.2, 3.3, 3.12) indicating the degassing of 

already produced and dissolved methane because of the dramatic and abrupt increase of 

the surface area. Further comparisons of N2O and CH4 fluxes between the incubation 

experiment and the field observations are difficult due to differences between 1. anoxic and 

oxic conditions, 2. determination of gas accumulation and flux rates, and 3. determination in 

respect of the soil volume and the soil surface area, respectively.  
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4.6 Greenhouse Studies 

The aim of the greenhouse studies was to investigate the effect of the different organic 

fertilizers on the denitrifying activity and the soil bacterial denitrifying community in more 

detail. Due to unknown and unidentified toxic effects of the fermented crop material (FC) on 

the cultivated summer wheat only 25% of the planned fertilizer amount could be applied in 

comparison to raw slurry (RS) and fermented slurry (FS). Furthermore, the consistency of FC 

differed from RS and FS through lower viscosity and lower dry matter content favoring a fast 

and spacious distribution in the soil compared to RS and FS (table 3.18). Consequently, a 

larger soil zone was probably activated in the FC manuring treatment. The penetration of RS 

and FS into the soil was obviously slower, and solid residues within the manures formed a crust 

on the soil surface. However, since the upper soil layer of about 6 cm was sampled for the 

diverse investigations in the laboratory, the investigated soil zones amended with RS and FS 

might have received higher fertilizer concentrations than the soil fertilized with FC. 

The soil mineral nitrogen concentrations followed typical dynamics. The NH4+ concentrations 

decreased continuously and the NO2- dynamics were characterized by an initial increase 

followed by a decline between seven and ten days after fertilizer application. NO3- contents 

followed the NO2- dynamics with a delayed response and in higher concentrations (figure 

3.24). About two times more NH4+ was applied through RS and FS than through FC, but 

surprisingly, concentrations of nitrate and nitrite were similar in all manuring treatments during 

the sampling period. The different amounts of NH4+ originally applied were possibly 

compensated by diverse “losses” so that similar NH4+ amounts could have been available for 

subsequent microbial nitrification and denitrification activities in the different manuring 

treatments. Various proportions of the applied ammonium were likely lost through ammonia 

volatilization after manuring as revealed in similar studies (Dosch and Gutser 1996; Wulf et al. 

2002a; Amon et al. 2006; Clemens et al. 2006). This was probably associated with higher pH 

values in RS and FS compared to FC. In addition, more NH4+ might have been adsorbed to 

the soil matrix in RS and FS treatments. More ammonium might also have been directly 

assimilated by crops and/or soil microorganisms. In fact, the RS and FS manuring treatments 

revealed significant higher crop biomasses. However, the interpretation of Nmin data is 

complicated by the fact that the nitrite pool merges the intermediates of the overlaying 

processes nitrification and denitrification (and others).  

Nitrite and nitrate concentrations indicated a fast initiation of nitrification with seemingly 

similar metabolic rates in the differently fertilized soils. Nitrifiers (ammonium and nitrite 

oxidizers) are known to be slow-growing bacteria (Belser 1979) with only limited population 

size increases in the field (Okano et al. 2004). In the greenhouse experiment, NH4+ 

concentrations in all manuring treatments had declined by day 7 to an amount similar to that 

of the unfertilized control treatment. Thus, nitrification of NH4+ was probably performed by 

residing bacteria whose metabolic rate might have been at maximum in all manuring 
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treatments assuming a non-limitation of NH4+. Alternatively, the nitrifying bacteria might have 

been similarily affected by oxygen diffusion in the wet soils (Belser 1979). However, the 

observed Nmin dynamics are related to the sampling frequencies and therefore, it cannot be 

excluded that they do not represent the actual temporal dynamics. Possibly, maximum 

amounts of nitrite and nitrate differed between the treatments in height and time point.  

 

The elevated pool sizes of nitrate and nitrite in the manuring treatments did not coincide with 

the respective N2O fluxes (figure 3.25) (Müller et al. 2004b) indicating that nitrate was not the 

limiting factor for N2O production. During the first two days, highest N2O emission rates were 

observed in the soil fertilized with FC. This observation was probably linked to the rapid 

penetration of FC into the soil compared to RS and FS, and hence a faster activation of a 

larger soil zone. Not significantly elevated N2O fluxes were still measured till day 5 - 6 in the 

soils amended with RS and FS, respectively. The decrease of N2O emissions despite that 

nitrate was available may have been related to a reduced ratio of the denitrification 

products N2O and N2 and/or to the decline of available organic carbon.  

The observed N2O emission rates in the greenhouse experiment expressed in µg N m-2 h-1 as in 

the field study amounted to 71 in RS, 116 in FS, and 820 µg N m-2 h-1 in FC. Thus, the N2O 

effluxes in the soil amended with FC in the greenhouse were clearly higher than after 

fertilization in the field. But the applied amount of RS and FS in the greenhouse was with  

200 kg Nt ha-1 higher than in the field study. In contrast, the amount of FC fertilized in the 

greenhouse accounted just for 50 kg Nt ha-1 (due to toxic effects of the respective fertilizer 

charge on the crops) and hence was approximately in the range that had been applied on 

the field site. Although the amount of Nt in FC was only a quarter of RS and FS, the applied 

fertilizer volume was higher than in RS and FS due to the relatively low Nt concentration of the 

respective FC charge. This high amount of fertilizer liquid and its fast penetration into the 

relatively small soil volume in the greenhouse experiment might have contributed to the high 

N2O emission rates in the FC manuring treatment in the greenhouse compared to RS and FS 

as well as in comparison to the in-situ fluxes.  

 

Contrary to the high N2O emission rates, the potential denitrifying activity was not significantly 

affected by application of FC compared to the unfertilized soil. In contrast, fertilization with RS 

and FS induced a significant stimulation of the potential denitrifying activity two days after 

manuring (figure 3.26). Those observations agreed with the very low denitrification potential in 

the pure fermented crop material and the higher potential denitrifying activities in the pure 

raw and fermented slurry, respectively (table 3.18). Moreover, the significantly increased 

denitrification potentials in RS and FS coincided well with the significantly increased N2O 

effluxes in those manuring treatments two days after manuring (figure 3.25). However, the 

potential denitrification activities of the soils fertilized with RS and FS were significantly 

inhibited two hours after manuring. Possible reasons like nitrite accumulation or a drop of  
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pH value, triggering the decrease of the potential denitrifying activities, might not have  

been responsible in this case. Two and four days after manuring, when in part significantly 

elevated denitrification potentials were determined in the RS and FS treatments, even higher 

nitrite concentrations were measured than two hours after fertilization. Furthermore, a 

comparison of pH values of the applied fertilizers exhibited even higher pH values in RS and FS 

than in FC.  

Surprisingly, studies that compassed the impact of (organic) fertilizers on the denitrifying 

enzyme activity directly after manuring are rare. Hashimoto and Niimi (2001) found an 

enhanced denitrifying activity in surface soils with increasing slurry amounts. Hashimoto et al. 

(2002) reported on the effect of different slurry applications in spring and autumn 0 - 85 days 

after manuring and revealed a general increase of soil potential denitrification activities 

along with the increased levels of slurry applications in the autumn survey. However, as in the 

previous study, no data were shown, and the reading of N2O production rates on the basis of 

the graphs with log scale identifying the alterations of the denitrification potential between  

0 and 85 days was difficult. Moreover, it was only mentioned that slurry application enhanced 

the potential denitrifying activity. 

From long-term studies it is evident that organic fertilizers such as cattle slurry and sewage 

sludge promote higher denitrification rates from soil than mineral or unfertilized treatments 

(Wolsing and Priemé 2004; Enwall et al. 2005). The observed range of potential denitrification 

activities from 114 to 454 ng N2O-N g-1 dw soil h-1 in the greenhouse experiment was similar to 

the rates exhibited in the mentioned long-term studies (up to 550 ng N2O-N g-1 soil h-1).  

 

Considering the enumeration of nitrate reducers by MPN technique, no broad numerical 

differences of cell numbers occurred within a manuring treatment during the investigation 

period and between the different manuring treatments at the same time point, notably 

regarding the 95% confidence limits (table 3.19). Thus, mostly activity changes and not 

bacterial growth during the experiment must have been responsible for the observed 

elevated N2O fluxes (figure 3.25) and potential denitrifying activities (figure 3.26). Generally, 

the numbers of nitrate reducers across all manuring treatments were relatively high varying 

between 1.2 x 108 and 2.9 x 1010 g-1 dw soil. For comparison, enumeration of nitrate reducers 

by MPN in different soils resulted in cell numbers ranging from 104 to 108 g-1 dw soil (Chèneby 

et al. 1998; Cannavo et al. 2002; Hashimoto et al. 2002; Cannavo et al. 2004). However, the 

inherently reduced resolution, the generally large uncertainty between replicates (Cannavo 

et al. 2002), and the dependence of culturability of the respective nitrate reducers reduce 

the explanatory power of the MPN method.  

 

Quantification of denitrifiers targeting the two alternative nitrite reductase genes by real-time 

PCR exhibited results varying between 2.8 x 106 - 4.3 x 107 g-1 dw soil. Especially in soils fertilized 

with RS and FS (significant) increases of nirK copy numbers were frequently found, whereas 
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significant increases of nirS copies were observed from day 10 on after manuring (figure 3.27). 

Significant alterations in denitrifier populations were not noticed by the MPN technique. 

Currently, it is assumed that nirK and nirS genes are single copy genes (Philippot and Hallin 

2005), hence indicating denitrifier growth during the investigation period. The soil was 

homogenized as good as possible before soil DNA extraction, however, the results are based 

on the extraction of 3 x 0.5 g soil from the replicate pots that contained each 1.3 kg dw soil. 

Furthermore, the amplified nitrite reductase gene fragments rely on extracted DNA that might 

entail amplification of not functional genes, since DNA represents rather the potential of 

existing denitrifiers and not the metabolizing, active denitrifiers.  

In many cases, observations of elevated or reduced nirK and nirS copy numbers did not 

correspond well to increased or decreased N2O emissions, potential denitrification activities, 

or MPN enumeration. Possibly, homogenization of a very inhomogeneous substrate at the 

microscale like soil was not as successful as assumed maybe due to the small soil aliquots. 

However, the obviously and significantly elevated copy numbers of nirK and nirS genes ten 

days after manuring were determined when soil nitrite concentrations of the fertilized 

treatments had decreased to the detection limit. It is likely that denitrifying bacteria were 

sensitive to nitrite and hence were restricted in growth and metabolism until the soil nitrite 

concentrations decreased (Chèneby et al. 1998). 

Previously, it was assumed that nirS denitrifiers are predominant in marine ecosystems, 

whereas nirK denitrifiers are preferentially found in soils (Braker et al. 2000; Avrahami et al. 

2002). Sharma et al. (2005) did not succeed in nirS amplification with DNA and cDNA for any 

of the three different rhizosphere soils, while amplification of nirK genes derived from the same 

soil samples was successful. Likewise, Priemé et al. (2002) were not able to detect nirS copies 

from a mixed deciduous upland forest soil. Wolsing and Priemé (2004) detected nirS nitrite 

reductase genes at only one time point from soil sites receiving mineral fertilizer. However, 

Throbäck et al. (2004) revealed by re-evaluation and in part new developing of PCR primers 

targeting nirS and nirK genes that this conclusion should be revised. They demonstrated that 

nirS denitrifiers were common in many different soils and identified environmental habitats 

harboring a substantial diversity of nirS denitrifying bacteria. Since it is believed that nitrite 

reductases encoded by nirS are more widespread but less conserved among bacteria than 

nirK nitrite reductases, it was more difficult to design broad-range primers or probes for nirS 

than for nirK. The nirK gene occurs in bacteria of totally unrelated systematic affiliation but is 

apparently conserved throughout the bacterial world (Coyne et al. 1989; Bothe et al. 2000). 

The quantification of nirK and nirS gene copies in the present greenhouse study with gene 

target numbers between 106 and 107 g-1 dw soil are in line with estimations by Throbäck et al. 

(2004).  

Different studies report denitrifier quantification in several environments using real-time PCR 

assays via different target genes. Targeting nirS genes in various environmental habitats, gene 

copy numbers between 0 and 1.1 x 1011 µg-1 DNA were determined (Grüntzig et al. 2001; 
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Wallenstein and Vilgalys 2005). The quantification of nirK gene fragments in different soils 

revealed 9.7 x 104 - 3.9 x 106 gene copies g-1 soil (Henry et al. 2004) and 3,5 x 105 - 1,2 x 106 µg-1 

soil DNA (Wallenstein and Vilgalys 2005). Target numbers of the nosZ genes in forest soils were 

found in the range of 4.7 x 104 µg-1 soil DNA (Wallenstein and Vilgalys 2005). In various soils and 

freshwater sediments narG gene copy numbers varied betweeen 5.08 x 109 and 1.14 x 1011 

copies g-1 dw sample (López-Gutiérrez et al. 2004). Thus, nirK and nirS target numbers 

determined during the greenhouse experiment in the different manuring treatments fit in size 

to published nirK and nirS gene copy numbers.  

Comparing cell numbers revealed by MPN technique and the number of nitrite reductase 

gene fragments generated by real-time PCR assuming one gene copy per cell, a 

discrepancy of 2 - 3 orders of magnitude emerges. But it has to be noted that using the real-

time PCR assay denitrifying bacteria were quantified by targeting the two alternative nitrite 

reductase genes, whereas performing the MPN technique nitrate reducing bacteria were 

enumerated. It is known that the majority of bacteria selected by anaerobic growth with 

nitrate as electron acceptor only reduces nitrate as far as nitrite (“nitrate respirers”) (Gamble 

et al. 1977). A relatively small fraction of nitrate reducing bacteria is capable of producing 

gaseous nitrogen products via denitrification (“denitrifiers”). Thus, in addition to denitrifying 

bacteria, also bacteria capable only of nitrate respiration were enumerated by MPN. Higher 

narG than nirK and nirS copy numbers in diverse environmental samples support the 

observation with real-time PCR (Grüntzig et al. 2001; Henry et al. 2004; López-Gutiérrez et al. 

2004) even if 1 - 3 copies of the narG gene could be present per cell (Philippot 2002).  

In arable soils, portions of 21% and 2.7% of nitrate respirers that were able to denitrify were 

estimated finding cell numbers of denitrifiers between 105 and 107 g-1 dw soil (Chèneby et al. 

1998). However, those numbers could eventually not be true measures of the relative 

abundance because denitrifying bacteria might be more sensitive to nitrite concentrations. 

Enumeration of nitrate reducing bacteria in estuarine sediments exhibited 4 x 106 and 3.5 x 107 

cells g-1 dw sediment, while denitrifying bacteria were detected in amounts of 4 x 102 and  

3.5 x 103 cells g-1 dw sediment (Nogales et al. 2002). Cannova et al. (2002) revealed in upper 

vadose zone layers higher cell numbers of nitrate reducers (~106 g-1 dw soil) compared to 

denitrifiers (~104 g-1 dw soil) using the MPN technique.  

 

The impact of the different organic fertilizer on the composition of the dominant denitrifiers 

was investigated by SSCP fingerprinting patterns targeting the nirS genes. After fertilizer 

application different community patterns were found between the manuring treatments 

indicating a shift within the dominant denitrifying bacteria (figure 3.28). Different, distinct 

bands appeared, notably in treatments with addition of RS and FS, which were in part also 

present in the pure fertilizers. Consequently, either the denitrifying bacteria imported through 

the manures or the soil autochthonous denitrifiers were promoted by fertilization. The 

influence of FC on the denitrifier composition was weaker, but only 25% of FC were applied 
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compared to RS and FS on the basis of Nt. Thus, the apparently minor impact of FC on the 

dominant denitrifying bacteria could at least partly result from the lower fertilizer amount that 

had been applied. Nevertheless, it cannot be excluded that neither the FC manure itself was 

able to stimulate the soil autochthonous denitrifying bacteria by fertilization nor that the 

imported denitrifiers through FC were able to establish themselves. Not later than ten days 

after manuring, all emphasized bands had disappeared and only small differences between 

single bands in the nirS community patterns of the manuring treatments were observed. The 

nirS denitrifier community patterns were based on DNA extraction and hence on the gene 

pool level. The presence of a gene, however, does not imply its expression. Which denitrifying 

bacteria were activated by manuring and hence were responsible for e.g. the altered 

composition of the dominant denitrifiers, the elevated N2O emissions, the changed potential 

denitrification activity, or the higher nirK and nirS gene target numbers, the soil 

autochthonous or the imported denitrifying bacteria, could not be clarified.  

The influence of fertilizer application or rhizodeposition on the composition of soil denitrifying 

bacterial communities was the subject of several studies. Avrahami et al. (2002) observed a 

community shift of nirK denitrifiers in the soils amended with medium and high NH4+ 

concentrations. Thus, the elevated nitrogen level simulating fertilization entailed an adapted 

composition of the dominant nirK denitrifiers comparably to the nirS denitrifying bacteria in 

the greenhouse experiment. In a field study, Wolsing and Priemé (2004) revealed a wide and 

significant dispersion of nirK community patterns between differently fertilized soils indicating 

that the fertilizer type was an important determinant for the nirK population structure which 

might have been linked to the potential denitrifying activity, the nitrous oxide reductase 

activity, and their ratio between the soils. Those findings seem to support the observation that 

the nirS communities in the greenhouse experiment were temporarily altered due to different 

fertilizer application. Sharma et al. (2005) analyzed the diversity of nirK gene transcripts, thus 

targeting the active denitrifiers, in the rhizospheres of Vicia faba, Lupinus albus, and Pisum 

sativum. Each of the three legume rhizospheres produced a distinct molecular profile of nirK 

gene fragments. Vicia and Lupinus rhizosphere samples were more similar to each other than 

to the Pisum profile which was attributed to similar N rhizodeposition values between these 

two legumes compared to the value in Pisum. The rhizodeposits and the different organic 

manures in the greenhouse study might have similar influences on the denitrifier composition. 

Mounier et al. (2004) showed that a maize mucilage amendment of two weeks was enough 

to elevate the soil denitrifying activity, but only few stronger or additional bands could be 

observed with the RFLP fingerprint patterns of the narG gene fragments. No differences 

between the communities occurred within the nosZ gene fragment patterns. Consequently, 

the increase in the denitrifying activity did not reflect important changes in the diversity of this 

functional community. Moreover, Enwall et al. (2005) achieved related findings exhibiting 

clear influences of different fertilizers on both, the activity and the composition of the 

denitrifying communities in the long-term. However, fertilizer treatments entailing the most 
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different activities did not correspond to treatments in which the denitrifying community 

composition differed the most, pointing out that the activity was not coupled to the 

community composition. Similar results were obtained in the greenhouse experiment, where 

different SSCP community patterns of nirS gene fragments in the four manuring treatments 

were assessed up to seven days after manuring, notably through application of RS and FS. But 

the altered population composition was not necessarily reflected by e.g. activity 

investigations like nitrous oxide emissions and denitrification potential. With exception of the 

study by Sharma et al. (2005), all other investigations examined the functional diversity of 

denitrifiers on the gene pool (DNA) level that does not provide information about the active, 

metabolizing denitrifying bacteria. In a recent publication, Sharma et al. (2006) demonstrated 

that the most dominant denitrifiers (revealed by DNA-derived profiles) were not the most 

active ones (exhibited by RNA-derived profiles). In consequence of the relatively good 

agreement between changes in RNA-community patterns and N2O emissions, DNA-derived 

community patterns can only be used as an indication for changes of the active denitrifiers. 

 

Sequence analysis of cloned nirS gene fragments derived from the different origins showed 

that the arable soil as well as the investigated organic fertilizers coverd a substantial inherent 

nirS diversity (figures 3.29 and 3.30). Similar topologies emerged in both, the DNA- and the 

amino acid- based dendrogram, resulting in comparable major clusters consisting exclusively 

of clones derived from arable soil, from manures, or from manure and soil, respectively. 

However, Roseobacter denitrificans and Paracoccus denitrificans formed a distant cluster in 

the amino acid tree. The major clusters were not supported by high bootstrap values, neither 

in the DNA nor in the amino acid tree, in contrast to several subclusters. Striking (sub-)clusters 

between the three organic manures and the arable soil partly appeared in the dendrograms 

indicating special community compositions despite high diversity within the different origins. 

Consequently, the altered composition of dominant nirS denitrifying bacteria after fertilization 

revealed by SSCP (figure 3.28) was possibly due to imported denitrifiers by the manures. 

However, the possibility that the soil autochthonous denitrifying bacteria were stimulated by 

manuring cannot be excluded by the sequence analysis.  

In the literature and databases, nirS clones from soil, notably from arable soil, are rare, but no 

sequences matched nirS sequences derived from organic fertilizers performing the BLAST 

search. Prieme et al. (2002) studied the diversity of nirS gene fragments in forested upland 

and wetland soils, however, they were not able to amplify any nirS gene fragments from the 

upland soil. Rösch et al. (2002) investigated the diversity of nirS denitrifying bacteria in an acid 

forest soil, but of 15 sequenced clones ten provided false, non-nitrite reductase sequences. 

The remaining five showed distinct homology to Azospirillum brasilense and Ralstonia 

eutropha, respectively. In the present study, Cupriavidus necator (formerly Ralstonia 

eutropha) branched not closely but nearest to various arable soil clones. However, 

reassessing known PCR primers and developing new PCR primers for nirS genes, Throbäck et 
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al. (2004) succeeded in amplification of numerous diverse nirS gene fragments in arable soils. 

They exhibited that the environmental clones were scattered within many phylogenetic 

denitrifier lineages and demonstrated that nirS denitrifying bacteria are common in soils 

rebuting earlier assumptions that marine ecosystems are preferential habitats for nirS 

denitrifiers. The findings of Throbäck and co-workers were confirmed by the high diversity of 

nirS denitrifiers determined in the arable soil and the manures in the present study. The lack of 

similar sequences to numerous generated environmental clones suggested community 

compositions within the different origins of high and seemingly undiscovered diversity of nirS 

denitrifying bacteria. 
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4.7 Investigations of Field Soil Samples after 3.5 Years of Different Manuring 

A number of parameters related to the nitrogen and carbon metabolism have been 

obtained in field soil samples derived from both, the cropping system with and without 

livestock after 3.5 years of different manuring management. It is generally assumed that a 

change in agricultural mangement practices such as alterations of tillage, cultivation 

strategies, or fertilizer regimes take many years until the effects become manifested. 

However, this does not exclude that the different organic manuring strategies with and 

without utilization of biogas plants have led to measurable differences in various soil 

parameters. All results have to be considered against the background of this single “snap-

shot”. It cannot be excluded that further samplings and investigations at different time points 

during the year with different soil conditions and after shorter or longer intervals to manuring 

or incorporation of crop biomass would entail different results.  

The soil mineral nitrogen contents were afflicted with in part high standard deviations, but still 

significant differences were observed (table 3.20). Lower amounts of nitrate, nitrite, and 

ammonium were found within one cropping system in the manuring treatments wL-FYM and  

w/o L-M, respectively. Those treatments had not received any fertilizer application three 

weeks before soil sampling compared to all other manuring treatments which presumably 

caused the differences.  

The potential denitrification and nitrification activities as well as the total nitrogen contents of 

the soils did not show significant differences (table 3.20). The rates of the potential denitrifying 

activities varied between 67.3 and 133.7 ng N g-1 dw soil h-1 and hence were not as high as in 

the greenhouse experiment (114 - 454 ng N g-1 dw soil h-1). Possibly, the impact of elevated N 

application rates (200 kg Nt ha-1) on a conspicuously lower soil volume in the greenhouse 

study contributed to the higher denitrifying potential. In several long-term fertilization studies 

where different organic and mineral fertilizers have been applied, denitrifying enzyme 

activities were investigated showing N2O production rates between 14.8 - 550 ng N g-1 h-1 

(Simek et al. 2000; Enwall et al. 2005; Dambreville et al. 2006). The generally higher rates in the 

study of Enwall and co-workers were possibly caused by the use of thawed soil samples and 

the longer incubation time without inhibition of the synthesis of new denitrifying enzymes (Luo 

et al. 1996; Murray and Knowles 1999).  

Potential nitrification activities in the soil samples ranged between 95.5 and 208.0 ng N  

g-1 dw soil h-1 and hence were in line with published nitrifying data in other arable soils. 

Nitrification activities in different and differently fertilized soils varied betweeen 30 and 650 ng 

N g-1 h-1 (Kandeler 1988; Bollmann 1996; Fortuna et al. 2003). 

The soil total nitrogen contents in all manuring treatments amounted to 1.37 - 1.67 mg N g-1 

dw soil. Comparable N concentrations in organically managed soils ranging from 1.2 - 2.0 mg 

N g-1 dw soil have been observed in several studies (Fließbach and Mäder 1997; 2000; Friedel 

and Gabel 2001; van Diepeningen et al. 2006). 
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Surprisingly, denitrifier quantification by real-time PCR targeting the nirK and nirS genes 

encoding the two alternative nitrite reductases revealed more gene copy numbers in the 

respective control treatments wL-RS and w/o L-M (table 3.20). However, absolute values only 

varied within one order of magnitude and hence in similar ranges. The nirS gene copy 

numbers ranged in the cropping system with livestock from 1.1 - 2.3 x 106, and in the cropping 

system without livestock from 4.2 - 8.9 x 105 targets g-1 dw soil. In both cropping systems nirK 

copies varied between 3.2 and 8.4 x 106 gene targets g-1 dw soil. For comparison, 2.8 x 106 - 

4.3 x 107 nirS gene copies g-1 dw soil and 3.7 x 106 - 2.5 x 107 nirK gene copies g-1 dw soil were 

determined in the greenhouse study 0 - 22 days after manuring. Thus, the numbers of the 

nitrite reductase genes were approximately in the same order even if slightly less targets were 

assessed in the field soil samples. In the cropping system without livestock, the unfertilized 

control treatment w/o L-M exhibited signficantly higher nirK and nirS copy numbers and lower 

amounts of nitrate, nitrite, and ammonium (table 3.20). In the cropping system with livestock, 

highest numbers of nitrite reductase genes were found in the control treatment, but wL-RS 

had received a manure application in contrast to w/o L-M entailing neither significantly 

reduced Nmin values in this treatment (for further discussion see section 4.6). 

PCR-SSCP targeting the nirS gene of denitrifiers exhibited more or less different patterns of the 

dominant denitrifying bacteria in the differently fertilized soils (figure 3.31). Bands that 

emerged in all treatments were observed, but some single bands appeared only in one or a 

few manuring treatments. Possibly, manure applications three weeks before had a dominant 

impact on the denitrifier composition. However, the greenhouse experiment revealed 

comparatively similar nirS profiles of the different manuring treatments three weeks after 

fertilization. Unlike the greenhouse study, samples were taken in a soil depth of 0 - 30 cm 

hence investigating a more heterogeneous soil volume. Furthermore, the soil of the different 

manuring treatments had experienced different fertilizer applications, a different cover crop, 

intercrop, and crop residue management for 3.5 years that might have contributed to 

alterations in the nirS community composition. But, as mentioned above, it has to be 

scrutinized if the profiles can be considered as representative regarding the big soil sample 

volume in comparison to the marginal soil mass that had been extracted for PCR-SSCP. 

Which of the denitrifiers were active and contributed to the nitrite turnover in the soil could 

not be elucidated using this DNA-PCR based fingerprinting technique.  

Various authors (Wolsing and Priemé 2004; Enwall et al. 2005; Sharma et al. 2005) investigated 

the effect of different fertilizers or rhizodeposits of different crops on the composition of the 

dominant denitrifying bacteria. Different DNA-derived profiles of functional denitrifying genes 

were observed in different soil samples in comparison to the field samples. However, the 

investigations as well as the present study have to be interpreted against the backgound of a 

single “snap-shot”, with the exception of the study of Wolsing and Priemé (2004). They took 

soil samples at three different time points during the year and showed a significant seasonal 

shift in the community structure of nirK-containing bacteria despite the fact that no significant 
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relation to any single abiotic parameter could be determined. Seasonal fluctuations were 

also observed in the population of cultured, denitrifying bacteria in a Norway spruce forest 

(Mergel et al. 2001). Thus, seasonal impacts on community profiles may in part contribute to 

differences between manuring treatments.  

However, the different patterns of nirS denitrifiers in the manuring treatments may also point 

to an alteration on community compositions due to the different manuring management. 

Different denitrifying populations may have contrasting physiological characteristics such as 

growth kinetics or sensitivity of enzymes to oxygen, which are not taken into account when 

potential denitrifying activity measurements are being studied on the field soil samples 

(Cavigelli and Robertson 2000; Holtan-Hartwig et al. 2000; Cavigelli and Robertson 2001). 

 

The investigations related to the soil carbon metabolism, i.e. total C content, water-

extractable C, soil microbial biomass C, and C substrate utilization test did not reveal any 

significant differences between the manuring treatments and therefore were in line with soil 

nitrogen parameters (table 3.20). Total C contents of the differently fertilized soils varied 

between 9.15 - 11.56 mg Ct g-1 dw soil. Other organically managed arable soils exhibited 

comparable carbon contents in the range of 11.2 - 16.9 mg Ct g-1 soil (Fließbach and Mäder 

2000; Tu et al. 2006a). Likewise, the range of water-extractable carbon in the field study with 

39.0 - 96.9 µg C g-1 dw soil was in line with published sizes of water-extractable carbon 

concentrations (Tu et al. 2006b). The contents of soil microbial biomass carbon (MBC) in all 

manuring treatments (558 - 1353 µg MBC g-1 dw soil) seemed to be higher than in other 

organically cultivated agricultural soils which are often in the range between 149 - 451 µg 

MBC g-1 soil (Fließbach and Mäder 1997; 2000; Friedel and Gabel 2001; Böhme and Böhme 

2006; Tu et al. 2006a; Tu et al. 2006b). Increases of the soil microbial biomass often occur 

following increased amounts of organic inputs (Ocio et al. 1991; Wyland et al. 1996; 

Gunapala and Scow 1998), and higher stable amounts of microbial biomass may 

accumulate after several years of increased organic inputs (Schnürer et al. 1985; Collins et al. 

1992; Gunapala and Scow 1998). Consequently, the elevated amounts of MBC might have 

resulted from the organic fertilizer application three weeks before sampling. Sarathchandra 

et al. (2006) assessed 32 days after the first application of dairy factory high carbon effluent 

(corresponding to four days after the last application) to a pasture soil values of up to 1150 µg 

MBC g-1 soil that decreased with time but remained higher than in the untreated soil. A further 

explanation for the high soil microbial biomass content in the present field study might be a 

generally elevated biomass content of the arable soil caused by organic cultivation since 

1989 which is supported by mean MBC values (1450 - 1600 µg MBC g-1 dw soil) in soil samples 

derived from another field study at the same site (Stefan Ratering, Giessen, personal 

communication). 

The carbon substrate utilization test was performed to achieve rapidly an overview about 

differences in the potential metabolic diversity in the differently fertilized soils. However, the 
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utilization test did not yield a formation of distinct clusters of particular manuring treatments 

(figure 3.32) indicating similar community-level catabolic profiles. Prior to cluster analyses, 

differences within a treatment between the four replicates became apparent possibly due to 

high heterogeneity within a manuring treatment. Therefore, the lack of clustering was not 

surprising. Using the sole-carbon-source utilization approach, distinctive patterns among 

microbial habitats, different soil types, and spatial gradients within soil and estuarine sites can 

be observed (Garland and Mills 1991). Moreover, various land uses cause differences in 

catabolic capability of soil microbial communities (Graham and Haynes 2005). Different 

compost additions to two soils in laboratory scale experiments modified the community-level 

physiological profiles after ten days compared to the untreated soils (Pérez-Piqueres et al. 

2006). Repeated applications (four applications in four weeks) of dairy factory high carbon 

effluent to a pasture soil in a pot experiment led to significant differences in microbial 

functional diversity patterns and activities 32 days after the first (four days after the last) 

application (Sarathchandra et al. 2006). However, the effects were not detectable anymore 

after 130 (102) days. Fließbach and Mäder (1997) exhibited in carbon substrate utilization 

profiles of soil samples derived from a long-term field trial an often higher variation along with 

field replicates of the same treatments than between different treatments. Furthermore, the 

utilization patterns showed distinct overlapping and not distinct grouping which was 

explained by the variation within the field replicates (soil inhomogeneities).  

In summary, the use of substrate utilization assays to investigate community-level physiologic 

profiles seems to be appropriate to discriminate microbial communities derived from different 

habitats, different soil types, and spatial gradients within habitats. Differences of soil 

community-level catabolic profiles in homogenized soil samples and elevated fertilizer 

application rates could be revealed in the first few hours and days after N application. 

However, the differentiation of microbial communities at field scale with high spatial and 

temporal heterogeneity in the soil profile appear to be more difficult to analyze. Therefore, 

the sampling in the field three weeks after manuring and 3.5 years after performance of the 

different manuring treatments was possibly not ideal to identify differences in clustering. 

Community-level physiologic profiles focus on substrate utilization patterns of the cultivable 

fraction of soil communities that grows on various C sources. Smalla et al. (1998) 

demonstrated that the functional potential of the numerically dominant members of the 

microbial community was not necessarily reflected by carbon-source utilization profiles. Fast-

growing bacteria adapted to the high substrate concentrations dominated the wells and 

may have been responsible for the patterns. Furthermore, the limited number of samples used 

for the determination of the potential metabolic diversity may not have been adequate  

to reflect real differences in substrate utilization of soil microorganisms (Monokrousos et al. 

2006). 

The determination of soil respiration and substrate (glucose) induced respiration (SIR) partly 

exhibited little differences between the treatments (table 3.20). Soil respiration rates of the 
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differently fertilized soils determined during 66 hours of incubation varied between 51.0 - 89.2 

nmol CO2 g-1 soil h-1 CO2 evolution and 54.8 - 92.3 nmol O2 g-1 soil h-1 O2 consumption, 

respectively. Thus, the observed respiration rates were similar within the range reported from 

organically managed arable soils (5 - 191 nmol CO2 g-1 h-1) (Fließbach et al. 2000; Pérez-

Piqueres et al. 2006; Tu et al. 2006a; van Diepeningen et al. 2006). The substrate (glucose) 

induced soil respiration rates varied between 772 - 2309 nmol CO2 g-1 h-1 CO2 evolution and 

231 - 483 nmol O2 g-1 h-1 O2 consumption, respectively. Various compost amended soils 

revealed SIR rates from 187 - 872 nmol CO2 g-1 h-1 (Pérez-Piqueres et al. 2006; Saison et al. 

2006). Consequently, the determined SIR rates are in line with data found in the literature, 

maybe with the exception of some elevated CO2 values in the cropping system with 

livestock.  

The OxiTop methodology can only provide a rough survey of respiration activities and is not 

an appropriate method to determine soil O2 consumption and CO2 production rates 

accurately. The differences between O2 consumption and CO2 production rate analyzing the 

substrate-induced respiration indicate the shortcoming of the indirect determination of the 

oxygen concentration via pressure decrease. The pressure decrease due to respiration could 

have been masked by the production of gaseous products derived from anaerobic 

respiration processes in anoxic microsites, e.g. denitrification, consequently underestimating 

the O2 consumption rate. Denitrification could also have contributed in low amounts to 

elevated CO2 concentrations without O2 consumption. Another methodical shortcoming is 

the quantification of the produced CO2 by end point titration, so that the amount of CO2 had 

to be converted into a CO2 production rate assuming a linear production during the 

incubation period.  

 

To sum up, the results of the diverse investigations related to the soil nitrogen and carbon 

metabolism showed that the different organic manuring treatments performed during the last 

3.5 years did not affect measurably the nitrogen or carbon metabolism. The soil Nt and Ct 

contents prior to and after three years of the differentiated fertilization regimes did not differ 

significantly, too (tables 3.5 and 3.14). The differences between the eight organic manuring 

treatments performed in this field study are presumably smaller than differences between e.g. 

organic and inorganic fertilization regimes with and without cultivation of intercrops and 

green manures. Consequently, the lack of significances between the treatments of the 

various investigation parameters is not surprising taking the soil heterogeneity across the area 

and in the soil depth profile into account. Moreover, the time period processing the different 

manuring treatments was possibly not long enough so that the manuring management 

caused a measurable change. The molecular biological methods revealed some differences 

among the manuring treatments. However, even more than for the remaining  
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microbiological investigations, the crucial question is how much soil is needed to adequately 

address the heterogeneity at the field scale. Moreover, and as mentioned at the beginning 

of the section, it cannot be excluded to obtain different results at another sampling time 

point during the season or after several years of different manuring. 
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5 Summary 

The aim of the present study was to quantify in-situ N2O and CH4 fluxes in organic agriculture. 

Trace gas fluxes were observed in winter wheat and spring wheat within an organic cropping 

system without livestock as well as in spelt and potatoes within an organic cropping system 

with livestock. Thereby, the impact of different manuring treatments based on the 

fermentation of cattle slurry and/or plant biomass in biogas reactors was investigated in 

comparison to the respective, common manuring practices. In the cropping system without 

livestock, green manures, intercrops, and crop residues were anaerobically fermented and 

used for manuring in contrast to the common mulching practice. In the cropping system with 

livestock, cattle slurry or cattle slurry and intercrops and crop residues were fermented and 

then applied as fertilizer in comparison to the common slurry and farmyard manure practice. 

The same crops and manuring treatments were investigated during three years (2002/2003 - 

2004/2005) due to the high temporal variability of N2O production and CH4 oxidation which is 

partly caused by different precipitation patterns and temperature dynamics each year. 

The total annual N2O losses amounted to 490 - 4087 g N ha-1 in winter wheat and spring 

wheat of the cropping system without livestock and varied with crop types, manuring 

treatments, and year. In the cropping system with livestock (i.e. in spelt and potatoes), the 

annual N2O emissions ranged between 456 and 6465 g N ha-1. The integrated, annual soil CH4 

uptakes amounted to 476 - 855 g C ha-1 in the system without livestock and to 128 - 799 g C 

ha-1 in the system with livestock. Consequently, the N2O and CH4 fluxes observed in organic 

agriculture were not different from those measured in conventional farming systems. 

In the cropping system without livestock, N2O emissions in the biogas treatment with the 

fermented crop material were 44%, 39%, and 25% lower than in the mulching control 

treatment during the three observation periods. Likewise, in the cropping system with 

livestock, reduced N2O emissions of 60%, 45%, and 40%, respectively, were observed in the 

biogas treatment with fermented slurry and fermented crop material compared to the raw 

slurry control treatment. Thus, harvest of pea straw (preceding crop) or rather harvest of 

intercrop biomass in fall seemed to mitigate the N2O losses. However, these observations 

were only made for the winter cereals, when the incorporation of intercrops or intercrop 

stubbles was already processed in October, but not for spring wheat and potatoes. The 

proportions of the total annual N2O losses during the winter period (December 1 - March 15) 

accounted for 11% to 47%, hence are comparable to those reported in the literature. The 

winter losses were dependent on the cultivated crop type, the manuring treatment, and the 

year. 

Comparing the annual soil CH4 uptakes in the cropping system without livestock during the 

three-year investigation period, overall lower soil CH4 oxidation activities were observed in the 

biogas treatment (56 - 90%) than in the mulching treatment. In the cropping system with 
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livestock, no trend of decreased (up to 19%) or increased (up to 129%) CH4 uptake was 

found. 

Peak N2O emissions of 358 and 436 µg N m-2 h-1 were observed in the cropping system without 

and with livestock, respectively. The CH4 oxidation rates ranged between 0 and 42 µg C  

m-2 h-1 in the system without livestock, and between 0 and 24 µg C m-2 h-1 in the system with 

livestock. Elevated N2O emission rates as well as occasional CH4 emissions were related to 

fertilizer applications, freeze-thaw-periods, heavy rainfall, or incorporation of organic material. 

CH4 emissions after manuring were caused by degassing of dissolved CH4 and had declined 

after 24 h. 

 

Incubation experiments were carried out to assess the N2O and CH4 evolution from the 

fertilizers themselves, i.e. from raw slurry, fermented slurry, and fermented crop material under 

optimum conditions for denitrification. However, no N2O production was determined in any of 

the manures. CH4 evolutions were relatively high from the fermented slurry (1262 nmol g-1 

fertilizer) but lower than those from the non-fermented raw slurry (2400 nmol g-1 fertilizer). 

 

As part of the laboratory study, a three-week fertilization experiment was conducted in the 

greenhouse with spring wheat to investigate in more detail the impact of the different 

organic manures (raw slurry, fermented slurry, and fermented crop material) on the N2O 

emissions and the soil denitrifiers. The focus was on denitrifying bacteria because they are to 

a great extent responsible for N2O productions in soils. Within the first three days after 

application of the different organic fertilizers, considerably increased N2O emissions were 

observed. Moreover, the PCR-SSCP (Single Strand Conformation Polymorphism) fingerprint 

method targeting the nirS nitrite reductase gene of denitrifiers exhibited different community 

compositions of the dominant and PCR-amplifiable denitrifying bacteria in the different 

manuring treatments during the first week. Mostly higher amounts of nitrite reductase gene 

fragments (nirK and nirS) were observed by real-time PCR in the differently fertilized soils than 

in the unfertilized control soil at the different sampling dates. This points to a stimulation of the 

imported denitrifiers by manures and/or to growth of the soil autochthonous denitrifying 

bacteria. Generally, nirK and nirS gene copy numbers ranged between 2.8 x 106 - 4.3 x 107 g-1 

dw soil. Furthermore, a clone library of nirS gene fragments derived from the pure fertilizers 

and the arable soil was generated. Sequence analysis exhibited a relatively high diversity of 

the clones and only seldom high sequence identities to known denitrifying strains. The clone 

sequences often grouped in the dendrogram according to their origins possibly indicating 

special communitiy compositions in the different organic manures and the arable soil, hence 

supporting the different nirS gene fragment patterns via SSCP. 

 

After 3.5 years of different manuring regimes, field soil samples were compared with respect 

to the microbial nitrogen and carbon metabolism. The investigations exhibited distinct 
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differences only of some N and C parameters between the manuring treatments, which 

partly relied on the timing of fertilizer application. For instance, significantly lower 

concentrations of NO3-, NO2-, and NH4+ were observed in the previously not amended 

mulching treatment (cropping system without livestock) and the farmyard manure treatment 

(cropping system with livestock). SSCP fingerprint patterns of nirS gene fragments showed in 

part different community compositions of dominant denitrifying bacteria with partly striking 

single DNA bands in the differently fertilized soils. Real-time PCR quantification of denitrifiers 

targeting the nirS and nirK nitrite reductase genes resulted in all manuring treatments in 

approximately similar gene fragment copy numbers (nirS: 4.2 x 105 - 2.3 x 106 g-1 dw soil; nirK: 

3.2 - 8.4 x 106 g-1 dw soil). Soil potential denitrification and nitrification activities as well as total 

N contents did not differ significantly between the manuring treatments. Moreover, 

investigations of soil respiration, microbial biomass C, water-extractable C, total C content, 

and the BIOLOG carbon-source utilization assay were similar in all treatments. In summary, the 

modified fertilization management performed during 3.5 years had no measurabe influence 

on the investigated parameters related to the soil N and C metabolism. 
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6 Zusammenfassung 

Im Rahmen der vorliegenden Arbeit sollten N2O- und CH4-Flüsse in einem Winter- und 

Sommerweizenbestand eines viehlosen ökologischen Betriebssystems und in einem Dinkel- 

und Kartoffelbestand eines viehhaltenden ökologischen Betriebssystems in-situ quantifiziert 

werden. Dabei wurden die Einflüsse von Düngevarianten basierend auf der Vergärung von 

Rindergülle und/oder pflanzlicher Biomasse in Biogasanlagen auf die Spurengasflüsse 

vergleichend zu den sonst gängigen Düngestrategien untersucht. Im viehlosen Betriebssystem 

wurden im Vergleich zur üblichen Mulchwirtschaft die Schnitte der Gründüngungsrotation, die 

Zwischenfruchtaufwüchse sowie die Erntereste fermentiert und zur Düngung genutzt. Im 

viehhaltenden Betriebssystem wurde Rindergülle bzw. Rindergülle, Zwischenfruchtaufwüchse, 

Ernte- und Futterreste in Biogasanlagen vergoren und als Dünger appliziert und mit der 

üblichen Gülle- und Stallmistwirtschaft verglichen. Da bei Feldstudien die 

Niederschlagsverteilung und -menge im Zusammenhang mit dem Temperaturverlauf einen 

entscheidenden Einfluss auf die N2O-Produktion und CH4-Oxidation des Bodens ausüben, 

wurden über drei Jahre (2002/2003 - 2004/2005) die gleichen Bestände und Düngesysteme 

beprobt, um die Effekte unterschiedlicher Jahre besser einschätzen zu können.  

Die jährlichen N2O-Verluste beliefen sich auf 490 bis 4087 g N ha-1 in den Sommer- und 

Winterweizenbeständen des viehlosen Betriebssystems in Abhängigkeit von Düngesystem, 

Pflanzenbestand und Jahr. Im viehhaltenden Betriebssystem variierten die jährlichen N2O-

Emissionen zwischen 456 und 6465 g N ha-1 in den Dinkel- und Kartoffelbeständen. Die 

jährlichen CH4-Aufnahmen bewegten sich im viehlosen Betriebssystem zwischen 476 und 855 

g C ha-1 und im viehhaltenden Betriebssystem zwischen 128 und 799 g C ha-1. Damit 

unterschieden sich die im ökologischen Landbau gemessenen N2O- und CH4-Flüsse nicht in 

ihrer Höhe von denen in konventioneller Landwirtschaft.  

Der Vergleich der Düngevarianten zeigte im Winterweizenbestand (viehloses Betriebssystem) 

während der drei Jahre 44%, 39% bzw. 25% geringere N2O-Verluste aus der Variante mit 

vergorenem Pflanzenmaterial als aus der Kontrollvariante. Ebenso wurden im viehhaltenden 

Betriebssystem um 60%, 45% bzw. 40% geringere N2O-Emissionen im Dinkelbestand der 

Düngevarianten mit vergorener Gülle und vergorenem Pflanzenmaterial als in der 

Rohgüllevariante festgestellt. Damit scheint die Ernte des Erbsenstrohs (Vorfrucht) bzw. eher 

noch die Ernte des Zwischenfruchtaufwuchses im Herbst die N2O-Verluste zu reduzieren. 

Allerdings wurden diese Beobachtungen nur für die Wintergetreidebestände, bei denen das 

Einarbeiten der Zwischenfrucht bzw. der Zwischenfruchtstoppeln bereits im Oktober stattfand, 

nicht aber für den Sommerweizen- und Kartoffelbestand gemacht. Die Anteile der N2O-

Winteremissionen an den Jahresemissionen lagen mit 11% bis 47% je nach Pflanzenbestand, 

Jahr und Düngevariante in Bereichen, die aus der Literatur bekannt sind. 

Im Vergleich der jährlichen CH4-Oxidationsleistungen des Bodens innerhalb des viehlosen 

Betriebssystems waren meist geringere CH4-Aufnahmen in der Düngevariante mit 
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vergorenem Pflanzenmaterial (56% - 90%) als in der Mulchwirtschaft zu beobachten. Im 

viehhaltenden Betriebssystem dagegen wurde kein Trend reduzierter (bis 19%) oder erhöhter 

(bis 129%) CH4-Aufnahmen festgestellt. 

Im viehlosen und im viehhaltenden Betriebssystem wurden N2O-Emissionsraten bis 358 bzw. 

436 µg N m-2 h-1 gemessen. Die CH4-Oxidationsraten rangierten zwischen 0 und 42 µg C m-2 h-1 

im viehlosen und zwischen 0 und 24 µg C m-2 h-1 im viehhaltenden Betriebssystem. Einzelne, 

erhöhte N2O-Flussraten sowie gelegentliche CH4-Emissionen konnten häufig besonderen 

Ereignissen wie Düngerapplikation, Frost-Tau-Perioden, starkem Niederschlag und 

Einarbeitung von organischem Material zugeordnet werden. Die Methanemissionen nach 

Düngerapplikation beruhten auf der Ausgasung von im Dünger gelöstem Methan und waren 

nach 24 h abgeklungen.  

 

Die Feldmessungen ergänzend wurde in einem Inkubationsexperiment unter optimalen 

Denitrifikationsbedingungen die N2O- und CH4-Entwicklung aus den reinen Düngern Rohgülle, 

vergorene Gülle und vergorenes Pflanzenmaterial gemessen. Dabei wurde nachgewiesen, 

dass in den Düngern selbst kein N2O gebildet wurde. Bei Betrachtung der CH4-Entwicklung 

wurde festgestellt, dass aus der vergorenen Gülle noch relativ viel Methan freigesetzt (1262 

nmol g-1 Dünger) wurde, wenn auch in geringerem Maße als aus der Rohgülle (2400 nmol g-1 

Dünger).  

 

Im Gewächshaus wurde ein dreiwöchiges Düngungsexperiment mit Sommerweizen 

durchgeführt, um unter gleichen und kontrollierten Bedingungen die Wirkungen von Rohgülle, 

vergorener Gülle und vergorenem Pflanzenmaterial auf die bodenbürtigen N2O-Emissionen 

sowie auf die denitrifizierenden Bakterien detaillierter zu untersuchen. Die Gruppe der 

Denitrifizierer wurde genauer betrachtet, da sie einen großen Teil der bodenbürtigen N2O-

Emissionen verursacht. Alle drei organischen Dünger stimulierten signifikant die N2O-

Emissionen bis drei Tage nach Applikation. Außerdem war eine veränderte Zusammensetzung 

der dominanten und PCR-amplifizierbaren Denitrifizierer, die über Genfragmente der nirS-

Nitritreduktase auf DNA-Ebene mittels SSCP (Single Strand Conformation Polymorphism)-

Fingerprintmethode abgebildet wurde, während der ersten sieben Tage zu beobachten. Die 

molekulare Quantifizierung der denitrifizierenden Bakterien durch real-time PCR zu 

unterschiedlichen Beprobungsterminen zeigte meist eine höhere Anzahl an Nitritreduktasen-

Genfragmenten (nirS und nirK) der gedüngten Böden im Vergleich zum ungedüngten Boden. 

Dies könnte auf eine Populationszunahme der durch die Dünger eingetragenen Denitrifizierer 

hinweisen, jedoch ist auch eine Vermehrung der bodenbürtigen Denitrifizierer durch die 

Düngung nicht auszuschließen. Die Anzahl der nirS- und nirK-Genkopien variierte in allen 

Varianten über die Zeit zwischen 2.8 x 106 - 4.3 x 107 g-1 TB. Des weiteren wurde eine 

Klonbibliothek aus nirS-Genfragmenten aus den verschiedenen Düngern sowie aus dem 

ungedüngten Ackerboden erstellt. Die Sequenzanalyse zeigte eine relativ große 
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Klonsequenzdiversität und nur selten hohe Sequenzähnlichkeiten zu bekannten, 

denitrifizierenden Stämmen. Die Sequenzen fielen im Stammbaum häufig in gemeinsame 

Gruppen entsprechend ihrer Herkunft, was auf unterschiedliche Zusammensetzungen der 

Denitrifizierergemeinschaften in den verschiedenen organischen Düngern und dem 

Ackerboden hindeuten könnte und die unterschiedlichen DNA-Bandenmuster der 

dominanten nirS-Denitrifizierer mittels SSCP unterstützt.  

 

Nach 3,5 Jahren differenzierten Düngemanagements wurden verschiedene biologische und 

chemische Parameter, die in Beziehung zum mikrobiellen Stickstoff- und Kohlenstoff-

metabolismus stehen, in Feldbodenproben aus allen Düngesystemen analysiert. Die 

Untersuchungen ergaben nur in wenigen N- und C-Parametern signifikante Unterschiede 

zwischen den Düngesystemen, die meist auf die drei Wochen vorher stattgefundene 

Düngung zurückgeführt wurden. Beispielsweise wurden signifikant geringere Nitrat-, Nitrit- und 

Ammoniumkonzentrationen in der zuvor ungedüngten Mulchwirtschaft-Variante im viehlosen 

und der Stallmist-Variante im viehhaltenden Betriebssystem gefunden. Die Zusammensetzung 

der dominanten nirS-Denitrifizierer ermittelt über SSCP differierte teilweise zwischen den 

verschiedenen Düngevarianten und wies zum Teil distinkte DNA-Banden auf. Die 

Quantifizierung der Denitrifizierer über die nirS- und nirK-Genfragmente mittels real-time PCR 

resultierte in allen Düngesystemen in Targetzahlen ähnlicher Größenordnung (nirS: 4.2 x 105 - 

2.3 x 106 g-1 TB; nirK: 3.2 - 8.4 x 106 g-1 TB). Keine signifikanten Unterschiede wurden in der 

potenziellen Denitrifikations- und Nitrifikationsaktivität sowie im Nt-Gehalt der unterschiedlich 

gedüngten Böden festgestellt. Ebenso ergaben die Bodenuntersuchungen auf 

Bodenatmungsaktivität, mikrobiellen Biomasse-Kohlenstoff-, wasserlöslichen Kohlenstoff-, 

Gesamt-Kohlenstoffgehalt sowie der BIOLOG C-Quellen-Verwertungstest keine Signifikanzen 

zwischen den Düngesystemen. Damit lässt sich resümieren, dass die untersuchten Parameter 

des N- und C-Metabolismus durch die unterschiedlichen Düngestrategien während der 

letzten 3,5 Jahre scheinbar nicht messbar beeinflusst wurden.  
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Appendix 

 

 
 
A.1: Daily precipitation during the seasons 2002/2003, 2003/2004, and 2004/2005. (Data: Franz Schulz, 
Villmar, personal communication) 
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A.2: Daily temperature data during the seasons 2002/2003, 2003/2004, and 2004/2005 illustrated for air, 
soil in 5 cm, and soil in 20 cm depth, respectively. (Data: Franz Schulz, Villmar, personal communication) 
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A.3: Data of daily air temperatures and temperatures in 5 cm and 20 cm soil depth during the seasons 
2002/2003, 2003/2004, and 2004/2005. (Data: Franz Schulz, Villmar, personal communication) 
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A.4: Amounts and characteristics of the applied fertilizers in both manuring treatments in winter wheat 5 
and prior intercrops in the cropping system without livestock between 2002 and 2005. 
 

WINTER WHEAT 5 – Cropping System without Livestock 

Season Date 
Manuring 

Treat-
ment 

Manure Nt 
[kg ha-1] 

NH4+-N 
[kg ha-1] 

Org. Dry 
Matter 

[kg ha-1] 

Ct  
[kg ha-1] 

C/N 
Ratio 

w/o L-M 20 n.d. 2374 1169 58 
2. Aug. 

w/o L-FC 
Pea-Straw∆ 

6 n.d. 523 260 46 
w/o L-M 118 n.d. 2820 1560 13 

9. Oct. 
w/o L-FC 

Intercropsθ 
15 n.d. 763 423 28 

19. Feb. 91 70 414 270 3 
13. Mar. 31 19 148 96 3 
8. May 

w/o L-FC Liquid‡ 

19 14 112 70 4 
w/o L-M 138 n.c. 5194 2729 (20) 

2002/2003 

Sum 
w/o L-FC 

 
162 n.c. 1960 1119 (7) 

w/o L-M 41 n.d. 3259 1564 38 
19. July 

w/o L-FC 
Pea-Straw∆ 

8 n.d. 613 301 37 
w/o L-M 74 n.d. 2549 1317 18 

13. Oct. 
w/o L-FC 

Intercropsθ 
10 n.d. 640 326 34 

27. Feb. 75 52 556 295 4 
25. Mar. 50 34 354 245 5 
7. Apr. 

w/o L-FC Liquid‡ 

1 1 9 4 3 
w/o L-M 115 n.c. 5808 2882 (25) 

2003/2004 

Sum 
w/o L-FC 

 
144 n.c. 2172 1171 (8) 

w/o L-M 53 n.d. 5132 2534 48 
6. Aug. 

w/o L-FC 
Pea-Straw∆ 

10 n.d. 914 453 46 
w/o L-M 116 n.d. 2341 1236 11 
w/o L-FC 

Intercropsθ 
18 n.d. 690 369 21 5. Oct. 

w/o L-FC Solid* 95 6 3085 1632 18 
31. Jan. 120 86 661 428 4 
22. Feb. 

w/o L-FC Liquid‡ 
62 37 474 303 5 

w/o L-M 169 n.c. 7474 3770 (22) 

2004/2005 

Sum 
w/o L-FC 

 
305 n.c. 2739 3186 (10) 

 
Pea-Straw∆: incoporation of complete pea-straw in w/o L-M, and straw stubbles in w/o L-FC 
Intercropsθ: green manuring through incorporating of intercrops into the soil; whole plants in w/o L-M, 

and plant stubbles in w/o L-FC 
Liquid‡: liquid of crop fermentation in w/o L-FC 
Solid*: solid fermented crop residues in w/o L-FC 
n.d.: not determined 
n.c.: not calculable 
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A.5: Amounts and characteristics of the applied fertilizers in both manuring treatments in spring wheat 
and prior intercrops in the cropping system without livestock between 2002 and 2005. 
 

SPRING WHEAT – Cropping System without Livestock 

Season Date Manuring 
Treatment Manure Nt 

[kg ha-1] 
NH4+-N 

[kg ha-1] 

Org. Dry 
Matter  

[kg ha-1] 

Ct  
[kg ha-1] 

C/N 
Ratio 

w/o L-M 21 n.d. 5403 2597 122 
14. Aug. 

w/o L-FC 
Wheat-
Straw∫ 5 n.d. 843 402 87 

w/o L-M 120 n.d. 2247 1139 9 
w/o L-FC 

Intercropsθ 
17 n.d. 802 402 23 6. Jan. 

w/o L-FC Solid* 111 19 2551 1306 12 
27. May w/o L-FC Liquid‡ 10 7 57 36 4 

w/o L-M 142 n.c. 7651 3736 (26) 

2002/2003 

Sum 
w/o L-FC 

 
143 n.c. 4253 2147 (15) 

w/o L-M 38 n.d. 4830 2371 62 
10. Aug. 

w/o L-FC 
Wheat-
Straw∫ 7 n.d. 1146 564 81 

w/o L-M 78 n.d. 2885 1567 20 
w/o L-FC 

Intercropsθ 
10 n.d. 766 415 43 19. Feb. 

w/o L-FC Solid* 115 9 3093 1651 15 
w/o L-M 115 n.c. 7715 3939 (34) 

2003/2004 

Sum 
w/o L-FC 

 
132 n.c. 5005 2631 (20) 

w/o L-M 51 n.d. 7693 3713 72 
w/o L-FC 

Wheat-
Straw∫ 8 n.d. 1890 920 120 4. Aug. 

w/o L-FC Solid* 40 2 2070 1067 26 
w/o L-M 113 n.d. 2604 1377 12 
w/o L-FC 

Intercropsθ 
18 n.d. 873 461 26 

Solid* 82 18 1674 893 11 
7. Feb. 

w/o L-FC 
Liquid‡ 35 26 232 158 5 

18. Apr. w/o L-FC Liquid‡ 120 80 699 453 4 
w/o L-M 164 n.c. 10297 5090 (31) 

2004/2005 

Sum 
w/o L-FC 

 
302 n.c. 7437 3953 (13) 

 
Wheat-Straw∫: incorporation of complete winter wheat-straw in w/o L-M, and straw stubbles in w/o L-FC 
Intercropsθ: green manuring through incorporating of intercrops into the soil; whole plants in w/o L-M, 

and plant stubbles in w/o L-FC 
Liquid‡: liquid of crop fermentation in w/o L-FC 
Solid*: solid fermented crop residues in w/o L-FC 
n.d.: not determined 
n.c.: not calculable 
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A.6: Amounts and characteristics of the applied fertilizers in all manuring treatments in spelt and prior 
intercrops in the cropping system with livestock between 2002 and 2005.  
 

SPELT – Cropping System with Livestock 

Season Date Manuring 
Treatment Manure Nt 

[kg ha-1] 
NH4+-N 

[kg ha-1] 

Org. Dry 
Matter 

[kg ha-1] 

Ct  
[kg ha-1] 

C/N 
Ratio 

wL-FS 25 n.d. 2117 1057 42 
wL-FS+FC 6 n.d. 549 274 44 
wL-FYM 25 n.d. 2218 1111 45 

14. Aug. 

wL-RS 

Pea-Strawθ 

26 n.d. 2088 1044 40 
wL-FS 110 n.d. 2278 1223 11 

wL-FS+FC 16 n.d. 686 367 23 
wL-FYM 119 n.d. 2479 1326 11 
wL-RS 

Intercrops∇ 

115 n.d. 2364 1283 11 
9. Oct. 

wL-FYM Solid√ 71 8 2288 986 14 
wL-FS 68 33 1533 819 12 

wL-FS+FC 68 33 1533 819 12 20. Feb. 
wL-RS 

Liquid# 
49 24 776 432 9 

wL-FS 52 26 821 428 8 
wL-FS+FC 72 40 841 474 7 2. Apr. 

wL-RS 
Liquid# 

81 38 1578 845 10 
wL-FS 256 n.c. 6750 3527 (14) 

wL-FS+FC 162 n.c. 3609 1935 (12) 
wL-FYM 215 n.c. 6985 3423 (16) 

2002/2003 

Sum 

wL-RS 

 

271 n.c. 6807 3604 (13) 
wL-FS 54 n.d. 3923 2088 36 

wL-FS+FC 11 n.d. 840 109 37 
wL-FYM 50 n.d. 3663 1869 36 

27. July 

wL-RS 

Pea-Strawθ 

53 n.d. 3964 2015 37 
wL-FS 83 n.d. 2417 1086 14 

wL-FS+FC 12 n.d. 722 323 28 
wL-FYM 80 n.d. 2169 1032 13 
wL-RS 

Intercrops∇ 

79 n.d. 2171 1019 13 
wL-FS+FC 48 1 1508 817 17 

13. Oct. 

wL-FYM 
Solid√ 

103 9 2285 1244 12 
wL-FS 132 62 1986 1083 8 

wL-FS+FC 130 68 1601 899 7 5. Mar. 
wL-RS 

Liquid# 
132 63 2376 1313 10 

25. Mar. wL-FS+FC Liquid# 37 26 344 233 6 
wL-FS 269 n.c. 8326 4153 (15) 

wL-FS+FC 238 n.c. 5016 2695 (11) 
wL-FYM 233 n.c. 8117 4171 (18) 

2003/2004 

Sum 

wL-RS 

 

264 n.c. 8511 4253 (16) 
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A.6 continued 

Season Date Manuring 
Treatment Manure Nt 

[kg ha-1] 
NH4+-N 

[kg ha-1] 

Org. Dry 
Matter 

[kg ha-1] 

Ct  
[kg ha-1] 

C/N 
Ratio 

wL-FS 47 n.d. 4401 2148 46 
wL-FS+FC 12 n.d. 1083 530 43 
wL-FYM 58 n.d. 5004 25848 45 

8. Aug. 

wL-RS 

Pea-Strawθ 

46 n.d. 4374 2163 47 
9. Aug. wL-FS+FC Liquid# 26 14 320 180 7 

wL-FS 137 n.d. 2773 1402 10 
wL-FS+FC 21 n.d. 882 449 22 
wL-FYM 154 n.d. 2771 1514 10 
wL-RS 

Intercrops∇ 

141 n.d. 2830 1430 10 
wL-FS+FC 66 8 1725 922 13 

11. Oct. 

wL-FYM 
Solid√ 

110 18 2999 1557 14 
wL-FS 100 54 1121 642 7 

wL-FS+FC 162 101 1777 1027 6 23. Feb. 
wL-RS 

Liquid# 
108 48 1986 1076 10 

18. Mar. wL-FS+FC Liquid# 47 33 281 186 4 
wL-FS 284 n.c. 8295 4193 (15) 

wL-FS+FC 334 n.c. 6068 3294 (10) 
wL-FYM 322 n.c. 10773 5174 (16) 

2004/2005 

Sum 

wL-RS 

 

295 n.c. 9190 5150 (17) 
 
Pea-Strawθ: incorporation of complete pea-straw in wL-FS, wL-FYM, and wL-RS, and straw stubbles in  

wL-FS+FC 
Intercrops∇: green manuring through incorporating of intercrops into the soil; whole plants in wL-FS,  

wL-FYM, and wL-RS, plant stubbles in wL-FS+FC 
Liquid#: fermented cattle slurry (FS) in wL-FS; fermented cattle slurry (FS) and fermented crops (FC) in  

wL-FS+FC; raw cattle slurry (RS) in wL-RS 
Solid√ : solid fermented crop residues in wL-FS+FC; farmyard manure in wL-FYM 
n.d.: not determined 
n.c.: not calculable 
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A.7: Amounts and characteristics of the applied fertilizers in all manuring treatments in potatoes and 
prior intercrops in the cropping system with livestock between 2002 and 2004. 
 

POTATOES – Cropping System with Livestock 

Season Date 
Manuring 

Treat-
ment 

Manure Nt 
[kg ha-1] 

NH4+-N 
[kg ha-1] 

Org. Dry 
Matter 

[kg ha-1] 

Ct  
[kg ha-1] 

C/N 
Ratio 

wL-FS 5 n.d. 1169 574 114 
wL-FS+FC 5 n.d. 1061 521 113 
wL-FYM 4 n.d. 1013 495 125 

6. Aug. 

wL-RS 

Wheat-
Straw∫ 

4 n.d. 986 487 127 
wL-FS 35 20 468 265 7 

wL-FS+FC 35 20 468 265 7 28. Aug. 

wL-RS 

Liquid# 

35 19 465 264 8 
wL-FS 125 n.d. 3016 1609 13 

wL-FS+FC 15 n.d. 785 422 27 
wL-FYM 137 n.d. 3294 1770 13 
wL-RS 

Intercrops∇ 

117 n.d. 2990 1604 14 

6. Jan. 

wL-FYM Solid√ 249 40 6106 3176 13 
14. Apr. wL-FS+FC Solid√ 68 12 1621 827 12 

wL-FS 114 59 2058 1123 10 
wL-FS+FC 157 95 2227 1229 8 29. Apr. 

wL-RS 

Liquid# 
103 51 2489 1371 13 

wL-FS 48 25 719 392 8 
wL-FS+FC 50 26 748 407 8 30. May 

wL-RS 

Liquid# 
56 26 1019 564 10 

wL-FS 327 n.b. 7431 3962 (12) 
wL-FS+FC 336 n.b. 6910 3672 (11) 
wL-FYM 390 n.b. 10412 5441 (14) 

2002/2003 

Sum 

wL-RS 

 

315 n.b. 7949 4290 (14) 
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A.7 continued 

Season Date 
Manuring 

Treat-
ment 

Manure Nt 
[kg ha-1] 

NH4+-N 
[kg ha-1] 

Org. Dry 
Matter 

[kg ha-1] 

Ct  
[kg ha-1] 

C/N 
Ratio 

wL-FS 4 n.d. 864 425 105 
wL-FS+FC 6 n.d. 1061 524 81 
wL-FYM 4 n.d. 814 401 110 

3. Aug. 

wL-RS 

Wheat-
Straw∫ 

5 n.d. 921 454 84 
wL-FS 110 52 1993 1008 9 

wL-FS+FC 146 70 2361 1301 9 5. Aug. 

wL-RS 

Liquid# 

107 35 2343 1312 12 
wL-FS 108 n.d. 2744 1418 13 

wL-FS+FC 20 n.d. 1038 533 26 
wL-FYM 59 n.d. 1225 645 11 

6. Jan. 

wL-RS 

Intercrops∇ 

88 n.d. 1967 1024 12 
wL-FS+FC 114 21 2833 1507 13 

23. Jan. 
wL-FYM 

Solid√ 
256 23 7653 4015 16 

13. Apr. wL-FS+FC Solid√ 19 6 1773 883 47 
wL-FS 52 27 902 502 10 

wL-FS+FC 
Liquid# 

37 19 649 361 10 
wL-FYM Solid√ 50 8 1999 1041 21 

20. Apr. 

wL-RS Liquid# 52 23 1037 553 11 
wL-FS 11 6 164 92 8 

wL-FS+FC 40 21 589 329 8 17. May 

wL-RS 

Liquid# 
10 5 183 100 10 

wL-FS 285 n.c. 6667 3444 (12) 
wL-FS+FC 383 n.c. 10304 5438 (14) 
wL-FYM 368 n.c. 11691 6102 (17) 

2003/2004 

Sum 

wL-RS 

 

263 n.c. 6451 3442 (13) 
 
Wheat-Straw∫: incorporation of straw stubbles in all manuring treatments 
Intercrops∇: green manuring through incorporating of intercrops into the soil; whole plants in wL-FS, wL-

FYM, and wL-RS, plant stubbles in wL-FS+FC 
Liquid#: fermented cattle slurry (FS) in wL-FS; fermented cattle slurry (FS) and fermented crops (FC) in wL-

FS+FC; raw cattle slurry (RS) in wL-RS 
Solid√ : solid fermented crop residues in wL-FS+FC; farmyard manure in wL-FYM 
n.d.: not determined 
n.c.: not calculable 
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die Grundsätze guter wissenschaftlicher Praxis, wie sie in der „Satzung der Justus-Liebig-
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