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1. Introduction

1.1. General introduction to nuclear structure physics

The working field of nuclear spectra delivers an important possibility to study the nuclear
forces. As in every working field of physics one tries to obtain a unified theory which
describes the origin and occurrence of experimental facts. Starting from fundamental
nuclear forces such a theory should be able to describe the structure of nuclei, their
conversion from one nuclide to another as well as all properties of the ground state and
excited states.

Such a theory does not exist [1], because the complex system of the atomic nucleus is
mainly governed by three types of interaction between the nucleons, namely the strong,
electromagnetic and weak force. Even a simplification to only the strong force leads to
the problem that the properties of this force are not known with enough detail and there
are different approaches to describe the force between two nucleons. Additionally three-
or many-body forces lead to further complications.

Therefore a typical nucleus with A . 300 represents a complex many-body problem. As
known from classical mechanics [1], even the gravitational three-body problem cannot be
solved exactly. The problem is also not comparable to the many-body problem of atomic
physics because there is no charged center which allows one to neglect the interactions
as in case of the electrons.

These difficulties lead to consequences for the nuclear research. The first one is that one
must not confine oneself to only the nucleon-nucleon interactions which can be studied
in scattering experiments with free nucleons. One has to describe the nucleus with
specialized models which are suitable for nuclear decays or nuclear reactions. This work
is only treating the so-called nuclear structure models.

One of the earliest nuclear structure models was the liquid drop model which assumes a
strong interaction of all the nucleons and still plays an important role in the description
of binding energies of nuclei.

Later approaches considered the findings of quantum mechanics and enriched the purely
phenomenological models until a new step forward to a purely quantum mechanical
description was made. Since the nucleon velocity inside the nucleus is not coming close
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1. Introduction

to the light speed, relativistic effects can be neglected. With a strong interaction Vij
between the nucleons i and j, the stationary states of the nucleus are described by a
wave function Ψn(1, . . . , A), which is a solution of the Schrödinger equation [1]:(

A∑
i=1

Ti +
A∑

i<j=1

Vij

)
Ψn(1, . . . , A) = EnΨn(1, . . . , A) . (1.1)

One of the first and very successful solutions of (1.1) was the single-particle shell model.
In such a model it is assumed that the nucleons move in an average potential created
by all the nucleons while residual interactions are neglected.

One important step was the inclusion of a spin-orbit interaction, analoguous to atomic
physics. This idea was first published by Goeppert-Mayer, Jensen, Haxel and Suess in
1949 [2, 3] and allowed the explanation of the magic numbers as well as spins and parities
of the ground states and a few excited states. This model could also be extended to
the case of deformed nuclei. The used single-particle potentials are phenomenologically
motivated, for example the well-known case of a Woods-Saxon potential. The parameters
of such phenomenological potentials are then determined by adjustment to spectroscopic
data.

Another type of models could be called hydrodynamical, because they treat the dynamic
of a liquid drop. This can happen in two different ways. The drop can either expand
and contract in a rhythmic way, leading to density fluctuations. This is the so-called
“breathing mode”.

In a first approximation the nuclear fluid is very incompressible [1]. Therefore the
excitation energy for such types of oscillations should be very high. But it could also
happen that the surface performs various kinds of oscillations while the volume stays
constant. These deformations of the nuclear surface are then typically described by an
expansion of the nuclear surface into spherical harmonics.

Such geometrical collective models are very successful in the description of excitation
spectra in the energy region up to 2 MeV which show characteristic band structures. The
first use of such models was proposed by Bohr and Mottelson in 1952 [4, 5, 6] and they
were further developed and worked out by Faessler and Greiner [7, 8, 9, 10, 11, 12, 13].
Aage Bohr, Ben Mottelson and James Rainwater got the Nobel prize for their work on
collective models in 1975.

The inner structure with the individual nucleons is neglected and replaced by the picture
of a homogeneous and liquid-like nuclear matter. It is quite evident that the liquid drop
model is only applicable in those cases where the size of the nucleon is very small
compared to the total nuclear size. This restricts the model to heavier nuclei.

Another more microscopic approach to collective excitations is the method of Random
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1.2. The topics of this thesis

Phase Approximation (RPA) which goes beyond static independent particle models.
The name originates from an approximation made in one of the original derivations,
for example in [14] from 1964. Based on the shell model (or Hartree-Fock or Hartree-
Fock-Bogolyubov model), a series of excited states can be very adequately described as
particle-hole excitations [15]. The pure shell model fails to explain the high energy of
the giant dipole resonance of 16O for example.

The treatment is usually limited to 1 particle-1 hole excitations only which is indeed a
good approximation for a certain kind of states. The picture of surface vibrations used
in the collective models can be brought in connection to RPA solutions by means of
certain sum rules.

More detailed introductions to the different model approaches will be given at the be-
ginning of the corresponding chapters.

1.2. The topics of this thesis

The main purpose of this thesis is to describe energy levels and transition probabilities
of complex deformed nuclei. We follow two different approaches, namely a collective
quadrupole-octupole model and a microscopic random phase approximation based on
phenomenological single-particle calculations.

The work in the collective model is a continuation of the fundamental paper by N.
Minkov et al. [16] in which the model was first published. This work is extended in two
directions.

Firstly, there is a purely analytical approach to the model which was developed further
in several papers, especially in [17]. The description of energy levels is extended to
non-yrast band sequences and transitions between them.

Secondly, the model is solved numerically in the most general case when all model
parameters are allowed to vary freely. The analytical solution fails to describe this case
and one has to impose certain restrictions, which lead to the case of equal oscillation
frequencies, ω2 = ω3, the so-called case of coherent interplay.

The nuclei under consideration are mostly rare earths and actinides. These collective
model calculations are of interest and such research is up to date. For example, Bizzeti
and Bizzeti-Sona [18, 19] have done similar quadrupole-octupole calculations for energy
levels and transitions of the nuclei 150Nd, 152Sm, 154Gd and 156Dy in 2010.

Exactly the same nuclei (and others) are also under consideration in this work. The
similarity to this thesis goes even further because Bizzeti and Bizzeti-Sona solved the
same problem – the numerical solution of their model Hamiltonian.
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1. Introduction

The realization of the calculations is different however. While in their case they use the
finite differences method in combination with the Arnoldi-Lanczos method for diagonal-
ization, we calculate matrix elements to obtain the eigensolutions.

Besides this, there is ongoing research in the area of non-axial deformations. As one can
show, axial deformations usually minimize the energy. Therefore one would intuitively
assume that deformed nuclei prefer to be in axial deformations, since it is a general
principle of nature that a system goes in the direction where the energy is minimized.

However, S. Frauendorf has shown in calculations for 220Ra [20] that the spin-parity
sequence of the rotational ground band for this nucleus can be explained by assuming a
rotating heart-shaped nucleus.

An even larger interest nowadays is spent to nuclei with a tetrahedral shape. This
analysis is carried forward in the TetraNuc project with more than 100 collaborators.
As a side project of this thesis I contributed to this project, but since this work was
mainly a programming task and has not yet led to new results, it is omitted.

Furthermore, a study of the connection between collective shape characteristics and the
intrinsic reflection-asymmetric shell structure of the nucleus is carried out. Concerning
this topic I contributed to the papers [21, 22, 23, 24, 25] in which we examine the effect
of parity-mixing in the single-particle states of odd-mass nuclei as well as the Coriolis
decoupling factor as a function of the deformation.

Last but not least, deformed RPA calculations were carried out. As starting point for
these calculations we again use the single-particle program from Cwiok et al. [26]. The
matrix elements for the multipole operators have been worked out analytically and were
found to be simple Kronecker-Delta expressions, which are very fastly evaluated by the
computer.

Quite similar calculations were done by Yoshida [27] in 2007. In that work however the
consideration was limited to the axial quadrupole deformation only, while in the present
work the code is able to treat also axial octupole deformations.
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2. Quadrupole-Octupole Model

2.1. Some general remarks about collective models

One can think of a nucleus as a compound of individual nucleons, protons and neutrons,
each having a position, spin and isospin coordinates as degrees of freedom. This seems
to be a very natural choice for the degrees of freedom. This leads to a many-particle
Schrödinger equation with a huge number of degrees of freedom, increasing tremendously
for heavier nuclei.

But sometimes we are more interested in the behaviour of the system as a whole, similar
as one also treats a proton as a particle although it is a composed system of quarks and
gluons. These models are called collective models. The starting point for them is always
an expansion of the nuclear surface into spherical harmonics by means of [15, 28, 29]

R(θ, φ, t) = R0

(
1 +

∑
λµ

αλµ(t)∗Yλµ(θ, φ)

)
. (2.1)

As mentioned in the general introduction, the high incompressibility of nuclear matter
suppresses compressional excitations of volume character. The low energy modes are
therefore surface excitations or rotations of the nucleus as a whole.

Equation (2.1) is a quite natural approach if one thinks of the nucleus being made of some
liquid which behaves similar like a drop of water. A. Lauterwasser [30] has investigated
the many different oscillation patterns appearing when a drop of water is exposed to
sound of a given constant frequency. Ideally such experiments should take place in a
zero gravity environment. At certain frequencies – the eigenfrequencies of the drop –
characteristic patterns can be seen, similar to the Chladni sound patterns made of sand
on plates [31].

This formula has indeed also other important applications besides from nuclear physics.
For example one can use it for the problem of pattern recognition, e.g. the recognition
of human faces in a crowd or at entrances. If a face is projected onto a sphere in a
standardized way, the expansion coefficients carry information about the structure of
the face [32].

The collective coordinates introduced by (2.1) are the laboratory coefficients. To be
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2. Quadrupole-Octupole Model

more precise they are related to the intrinsic coordinates aλµ in the body-fixed frame of
reference by means of a Wigner-function,

aλµ =
∑
ν

Dλ
νµ(Ω)αλν , (2.2)

where Ω = Ω(ϑ1, ϑ2, ϑ3) is a short notation for the three Euler angles. The spherical
harmonics transform in the same way. Since λ = 0 leads to spherical compressional
modes and λ = 1 corresponds to a center of mass movement, λ = 2 is the lowest order
of interest. It is advantageous (and usually done) to use an intrinsic coordinate system
whose axis coincides with the symmetry axis of the nucleus. This leads to the fact that
we can choose

a2,−1 = a2,1 = 0 and a2,−2 = a2,2 . (2.3)

In the present work we most often consider pear-like shaped nuclei as seen in Figure 2.1.
The relevant degrees of freedom are then the axial quadrupole (β2 = a20) and octupole
(β3 = a30) deformation parameters.

Figure 2.1.: Pear-shaped nucleus with quadrupole and octupole deformation.

2.2. The model Hamiltonian

2.2.1. The vibrational part

Classically the natural ansatz for the total vibrational energy in the body fixed frame is

Tvib + Vvib =
3∑

ν=2

(
1

2
Bν β̇ν(t)

2 +
1

2
Cνβν(t)

2

)
(2.4)
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2.2. The model Hamiltonian

with mass parameters Bν and stiffness parameters Cν . The term for the kinetic energy
can be compared to the expression p2/2m, where we have to replace the classical linear
momentum by its quantum mechanical analogon,

pν −→ p̂ν =
~
i

∂

∂βν
. (2.5)

Adding together the quadrupole and octupole terms, we immediately obtain the vibra-
tional Hamiltonian of the model,

Ĥvib = − ~2

2B2

∂2

∂β2
2

− ~2

2B3

∂2

∂β2
3

+
1

2
C2β

2
2 +

1

2
C3β

2
3 . (2.6)

However, this is not a thorough derivation of the Hamiltonian, but only some argumen-
tation to make it plausible. If one works on a deeper level, one can also obtain (2.6)
as a certain approximation after applying the Pauli-Podolsky quantization procedure.
An example of applying the Pauli prescription and calculating the Laplace operator in
curvilinear coordinates can be found in [33].

2.2.2. The rotational part

The rotational part is somewhat more difficult to derive. Repeating the argumentation

from [34], we start from the definition of the angular momentum operator ~̂M ′(ϑj) of the
nucleus along the intrinsic axes. The components are [29]

M̂ ′
k(ϑj) = ~L̂′k(ϑj) k = 1, 2, 3 , (2.7)

with Euler angles ϑj connecting the intrinsic and the laboratory system. Explicitly
written out we have

L̂′1 = −i
(
−cosϑ3

sinϑ2

∂

∂ϑ1

+ sinϑ3
∂

∂ϑ2

+ cotϑ2 cosϑ3
∂

∂ϑ3

)
(2.8)

L̂′2 = −i
(

sinϑ3

sinϑ2

∂

∂ϑ1

+ cosϑ3
∂

∂ϑ2

− cotϑ2 sinϑ3
∂

∂ϑ3

)
(2.9)

L̂′3 = −i
(

∂

∂ϑ3

)
(2.10)

The Hamiltonian includes the square of the angular momentum operator, given by

~̂L2 = L̂2
1 + L̂2

2 + L̂2
3 = L̂′21 + L̂′22 + L̂′23

=

(
− ∂2

∂ϑ2
2

− cotϑ2
∂

∂ϑ2

− 1

sin2 ϑ2

(
∂2

∂ϑ2
1

+
∂2

∂ϑ2
3

)
+ 2

cosϑ2

sin2 ϑ2

∂2

∂ϑ1∂ϑ3

)
.

(2.11)
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2. Quadrupole-Octupole Model

Classically the rotational kinetic energy of a rigid body is given by

T =
3∑

k=1

1

2
Jkω2

k . (2.12)

This formula assumes that the origin of the coordinate system coincides with the center
of mass. The angular velocities ωk are relative to the x′-, y′- and z′-axis of the body-fixed
coordinate system. Using

M ′
k = Jkωk , (2.13)

we arrive at

T =
∑
k

M ′2
k

2Jk
. (2.14)

In the special case of a symmetric rigid rotator, charakterized by J1 = J2 ≡ J0, the
kinetic energy reads

T =
M ′2

1 +M ′2
2

2J0

+
M ′2

3

2J3

=
~M2 −M ′2

3

2J0

+
M ′2

3

2J3

. (2.15)

In the axial quadrupole-octupole case, which we want to consider, the last term has no
contribution. The deformations β2 = a20 and β3 = a30 lead to spherical harmonics Ylm
with m = 0 which do not depend on the azimuthal angle. Therefore the rotational part
of the Hamiltonian reads

Ĥrot =
~̂M2 − M̂ ′2

3

2J0

. (2.16)

In case of odd-A nuclei, we have to add together the angular momentum of the core ~̂M

and that of the outer particle ~̂j which is thought to orbit around the deformed core, see
Figure 2.2. Thus we have

~̂I~ = ~̂M + ~̂j~ , (2.17)

keeping in mind that ~ is already included in the definition of ~̂M . Replacing ~̂M in (2.16)
by

~̂M = ~̂I~− ~̂j~ , (2.18)

one gets to

Ĥrot =
~2

2J0

[
(~I −~j)2 − (I3 − j3)2

]
. (2.19)

Since it is clear that we work with operators and that the Hamiltonian is written for
intrinsic coordinates, the primes can be left away as well as the operator hats. Making
use of

2~I ·~j = I+j− + I−j+ + 2I3j3 (2.20)

with the definitions

I± = I1 ± iI2 (2.21)

j± = j1 ± ij2 (2.22)
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2.2. The model Hamiltonian

Figure 2.2.: Schematic illustration of the core-plus-particle model. The angular mo-
mentum of the core (denoted here by J) is coupled with the odd particle
angular momentum j to the to the resulting total angular momentum I.
Figure taken from [37].

we can write out the bracket term in (2.19) as

(~I −~j)2 − (I3 − j3)2 = (~I2 − 2~I ·~j +~j2)− (I2
3 − 2I3j3 + j2

3)

= ~I2 − (I+j− + I−j+ + 2I3j3) +~j2 − I2
3 + 2I3j3 − j2

3

= ~I2 − I2
3 − j2

3 − (I+j− + I−j+) +~j2 .

(2.23)

The term (I+j−+I−j+) classically corresponds to the Coriolis and centrifugal forces. The
~j2-term is often neglected in the derivation of the rotational Hamiltonian, see [29] and
[35] for example. Writing out ~j2 in components, the collective energy for rotation of an
axially symmetric nucleus around a perpendicular axis, the z-axis being the symmetry
axis, is given by

Ĥrot =
~2

2J0

[
~I2 − I2

3 + (j2
1 + j2

2)− (I+j− + I−j+)
]
. (2.24)

The same expression can be found in [36].

In the following we consider a strong coupling limit (see Figure 2.3). This limit is also
called the adiabatic approximation and assumes that the influence of the rotational
motion on the intrinsic structure of the nucleus can be neglected.

The projection of the total angular momentum on the nuclear symmetry axis is a pre-
served quantum number, which is given by K (see Figure 2.3). With no collective

17



2. Quadrupole-Octupole Model

Figure 2.3.: Schematic illustration of the strong coupling limit, also called deformation
alignment. Figure taken from [36].

component along this axis, we have Ω = K in the strong coupling limit. As I ≥ K, the
spins

I = K,K + 1, K + 2, . . . (2.25)

are observed.

The single-particle wave functions are obtained from the deformed shell model. The only
exact quantum number is the projection Ω of the angular momentum ~j on the symmetry
axis. If one introduces a counting index κ for the states with the same Ω, then the states
obey

ĤspχκΩ = εκΩχκΩ . (2.26)

The exact definition of Ĥsp is given further down.

Then we can write the result for the energies with respect to eigenvalues as

EIK = εκK +
~2

2J0

[
I(I + 1)−K2 + δK, 1

2
a(−1)I+

1
2

(
I +

1

2

)]
. (2.27)

This expression is based on the structure of the strong-coupling wave functions. More
details can be found for example in [36].

The moment of inertia can be calculated explicitly by matrix elements. In [38] it is
shown that for the quadrupole-octupole case we have

J0 = 3B2β
2
2 + 6B3β

2
3 . (2.28)

However, we prefer to only use the functional form. The ansatz then reads

J0 = d2β
2
2 + d3β

2
3 (2.29)
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2.2. The model Hamiltonian

with moment of inertia parameters d2 and d3 which describe the strength of the quadrupole
and octupole contributions to the total moment of inertia.

These results clearly motivate the following choice for the rotational Hamiltonian in the
quadrupole-octupole model:

Ĥrot =
X

d2β2
2 + d3β2

3

, (2.30)

with X as a function of angular momentum,

X(I) =
1

2
[d0 + I(I + 1)] , (2.31)

in the even-even case, where d0 is a fitting parameter which determines the shape of the
potential in the ground state. For odd-mass nuclei the above expression is generalized
to

X(I,K, πa) =
1

2

[
d0 + I(I + 1)−K2 + πaδK, 1

2
(−)I+1/2

(
I +

1

2

)]
, (2.32)

where a is the so-called decoupling parameter. a can in principle be calculated from
the single-particle wave function χK (for the exact definition see the chapter about the
single-particle program) in the case of K = 1/2. K is the third projection of the ground
state angular momentum and the parity π is defined as the product

π = πϕ · πχ (2.33)

of the parity of the even-even core oscillation function (defined below) and πχ, the parity
of the unpaired particle function.

2.2.3. Plots of the model potential

The potential

V (β2, β3) =
1

2
C2β

2
2 +

1

2
C3β

2
3 +

X(I)

d2β2
2 + d3β2

3

(2.34)

is plotted in Figures 2.4 and 2.5. As one can see the shape is similar to the Mexican hat
potential well known from chiral symmetry and the Higgs mechanism, see for example
chapter 11 in [39]. A major difference however is that there is a singularity at the origin,
preventing the nucleus from becoming completely spherical. In addition, the bottom
of the potential is an ellipse only in the case of coherent interplay (defined below by
equation 2.39). In the most general case there are two minima lying symmetrically to
each other.
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2. Quadrupole-Octupole Model

Figure 2.4.: Typical overall “Mexican hat” shape of the potential (2.34).

2.3. Analytical coherent solution

The collective Hamiltonian fully written out reads [16]

Ĥ = − ~2

2B2

∂2

∂β2
2

− ~2

2B3

∂2

∂β2
3

+
1

2
C2β

2
2 +

1

2
C3β

2
3 +

X

d2β2
2 + d3β2

3

. (2.35)

In a first step a coordinate transformation from the Cartesian β2 and β3 coordinates to
ellipsoidal coordinates η (radial coordinate) and φ (angle coordinate), given by

η =

[
2(d2β

2
2 + d3β

2
3)

d2 + d3

] 1
2

and φ = arctan

(
β3

β2

√
d3

d2

)
, (2.36)

is performed. The inverse transformation is worked out to be

β2 = pη cosφ, β3 = qη sinφ , (2.37)

with

p =

√
d

d2

, q =

√
d

d3

and d =
1

2
(d2 + d3) . (2.38)

It turned out that in order to obtain an analytical solution one can assume that the
oscillation frequencies are the same,

ω ≡ ω2 =

√
C2

B2

!
= ω3 =

√
C3

B3

≡
√
C

B
. (2.39)

In case of this coherent interplay the Hamiltonian in ellipsoidal coordinates is obtained
in the simple form

Hqo = − ~2

2B

[
∂2

∂η2
+

1

η

∂

∂η
+

1

η2

∂2

∂φ2

]
+ UI(η) , (2.40)
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2.3. Analytical coherent solution

Figure 2.5.: Contour plots of the potential (2.34). As one can see there are either two
minima or an ellipsoidal bottom of the potential in the special case of co-
herent interplay.

with

UI(η) =
1

2
Cη2 +

X(I)

dη2
. (2.41)

A separation ansatz
Φ(η, φ) = ψ(η)ϕ(φ) (2.42)

leads to two independent differential equations for the Schrödinger equation of the Hamil-
tonian, the one belonging to the η coordinate being of the Davidson potential [73, 74]
type

∂2

∂η2
ψ(η) +

1

η

∂

∂η
ψ(η) +

2B

~2

[
E − ~2

2B

k2

η2
− UI(η)

]
ψ(η) = 0 , (2.43)

and a simple harmonic oscillator differential equation for ϕ(φ),

∂2

∂φ2
ϕ(φ) + k2ϕ(φ) = 0 . (2.44)

The last equation is solved under the boundary condition

ϕ
(
−π

2

)
= ϕ

(π
2

)
= 0 , (2.45)

which provides two different solutions with positive and negative parity, respectively:

ϕ+(φ) =

√
2

π
cos(kφ), k = 1, 3, 5, . . . , (2.46)

ϕ−(φ) =

√
2

π
sin(kφ), k = 2, 4, 6, . . . . (2.47)

The reader might notice the similarity to the solutions for the quantum mechanical
problem of a particle in an infinitely deep box potential. The boundary condition is
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2. Quadrupole-Octupole Model

equivalent to an infinitely high and infinitely thin wall (δ-function like) which separates
the deformation plane in prolate (β2 > 0) and oblate (β2 < 0) shapes.

For the Davidson potential we can write down the eigenvalues as

En,k(I,K, πa) = ~ω
[
2n+ 1 +

√
k2 + bX(I,K, πa)

]
, (2.48)

where ω and b = 2B/(~2d) are taken as fitting parameters. n and k are quantum
numbers. n = 0, 1, 2, . . . can be considered as main quantum number and generates
n + 1 peaks of the wave function in radial direction. k = 1, 2, 3, . . . is the angular
quantum number and generates k peaks in angular direction from −π/2 to π/2.

The respective eigenfunctions ψ(η) are obtained in terms of generalized Laguerre poly-
nomials

ψIn(η) =

√
2cΓ(n+ 1)

Γ(n+ 2s+ 1)
e−cη

2/2(cη2)sL2s
n (cη2) , (2.49)

where

c =

√
BC

~
(2.50)

is another fitting parameter playing the role of an oscillator length 1/
√
c. The quantity

s =
1

2

√
k2 + bX(I,K, πa) (2.51)

corresponds to a generalized angular momentum variable. It was checked1 that with
the given normalizations the product (2.42) provides a complete set of orthonormal
functions, if the integration is carried out over the right half-plane only (with the limits
0 ≤ η <∞ and −π/2 ≤ φ ≤ π/2).

2.4. Theory of transition operators

In the following sections about coherent and non-coherent model extensions the calcula-
tions include reduced B(E1), B(E2) and B(E3) transition probabilities. The basic theory
about electromagnetic transitions can be found in [16].

Since the consideration is restricted to axial deformations only, the projection K of the
collective angular momentum on the principal symmetry axis is taken as zero. Then
the total wave function of the coherent quadrupole-octupole vibration and collective
rotation of an even-even nucleus has the form

Ψπ
nkIM0(η, φ) =

√
2I + 1

8π2
DI
M0(θ)Φπ

nkI(η, φ) , (2.52)

1I found that in [16] the normalization was given wrong by a misprint.
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2.4. Theory of transition operators

where
Φπ
nkI(η, φ) = ψInk(η)ϕπk(φ) (2.53)

is the quadrupole-octupole vibration part.

For a given model state Ψπ
nkIM0(η, φ), a given multipolarity λ as well as initial quantum

numbers n = ni, k = ki, I = Ii, and final quantum numbers n = nf , k = kf , I = If , we
have

B(Eλ;nikiIi → nfkfIf ) =
1

2Ii + 1

∑
MiMfµ

∣∣∣〈Ψ
πf
nfkf IfMf0(η, φ)|Mµ(Eλ)|Ψπi

nikiIiMi0
(η, φ)

〉∣∣∣2
(2.54)

The operators for the electric E1, E2 and E3 transitions are given in terms of the
collective coordinates as [16]

Mµ(Eλ) =

√
2λ+ 1

4π(4− 3δλ,1)
Q̂λ0D

λ
µ0, λ = 1, 2, 3, µ = 0,±1, . . . ,±λ , (2.55)

where
Q̂10 = M1β2β3 Q̂λ0 = Mλβλ, λ = 2, 3 . (2.56)

For the Q̂-operators we use first order expressions in β2 and β3 for the E2 and E3 case
while for E1 we use the second order expression.

The Mλ factors are electric charge factors which we take as [61]

Mλ =
3√

(2λ+ 1)π
ZeRλ

0 , λ = 2, 3 , (2.57)

where the nuclear radius R0 = r0A
1/3 is determined by the reduced radius r0 ≈ 1.2 fm,

Z is the proton number and e is the electric charge of the proton. The charge factor M1

is taken according to the droplet model concept [62, 63, 64] in the form [66]

M1 =
9AZe3

56
√

35π

(
1

J
+

15

8QA
1
3

)
. (2.58)

A reasonable choice for the quantities J and Q should lie in the regions [65, 66]

25 ≤ J ≤ 44 MeV 17 ≤ Q ≤ 70 MeV . (2.59)

For practical calculations we choose fixed average values J = 35 MeV and Q = 45 MeV.
We also replace the proton charge e by an effective charge e1

eff, which can have a value
different from one and which enters in the fitting procedure as an adjustable parameter.
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3. Extension of the coherent case to
non-yrast bands

The Coherent Quadrupole-Octupole Motion (CQOM) model is extended to non-yrast
alternating-parity structures in addition to the yrast band. This study provides not
only a test of the model in the higher energy parts of the spectra, but also gives an
interpretation of a large number of data that may guide the experimental search for
similar level structures in other nuclear regions. Since this work was published in [60]
and [17], only the essentials are summarized here.

3.1. Construction of alternating parity spectra

In case of only axial deformations we take the projection K of the collective angular
momentum on the symmetry axis as zero. For even-even nuclei the total wave function
of the coherent quadrupole-octupole vibration and collective rotation is given by (2.52).
For these functions different phase conventions exist which are summarized in Table 4.2
of reference [47]. In our case we use the phase convention of Bohr and Mottelson, see
[28].

The RP-symmetry has to be conserved. The R-operator is defined as a rotation by
an angle π about an axis perpendicular to the intrinsic z-axis, acting on the Wigner-
function and giving a factor (−1)I . The P-operator is the parity operator, which acts
on Φπ

nkI(η, φ), and simply gives a factor of +1 or −1.

Thus, the product of these two numbers, the so-called simplex quantum number π ·
(−1)I = 1, has to be conserved. This also leads to the fact that the total wave function
(2.52) is a D∞-invariant function.

The conservation of the simplex quantum number imposes a positive or negative parity
depending on the angular momentum for the states (2.52), namely positive parity for
even angular momentum and negative parity for odd angular momentum,

Φ+
nkI = ψInk(η)ϕ+

k (φ) for even I (3.1)

Φ−nkI = ψInk(η)ϕ−k (φ) for odd I . (3.2)
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3. Extension of the coherent case to non-yrast bands

This has direct consequences for the possible choice of the k quantum number. ϕπk(φ) has
a positive parity for odd k numbers and negative parity for even k numbers. In [16] the
yrast band is described with the lowest possible quantum numbers. Therefore the choice
for the main quantum number is n = 0. The positive-parity ground state band and the
lowest lying negative-parity band are described with the quantum numbers k = k(+) = 1
(ground state band) and k = k(−) = 2 (negative-parity band).

This scheme was extended to higher lying non-yrast bands by means of three postulates:

1. The sequences in each couple of level sequences are characterized by the same
value of the quantum number n = 0, 1, 2, . . . and by different values of k, chosen
as k = k

(+)
n being odd for the even angular momentum sequence and k = k

(−)
n

being even for the odd angular momentum sequence. A couple of k-values does
not necessarily have to consist of two neighbouring quantum numbers.

2. The lowest possible choices for the quantum number n correspond to the lowest
alternating-parity bands: n = 0 for the yrast band, n = 1 for the next couple of
non-yrast alternating parity bands and so on. The values of k

(+)
n and k

(−)
n are not

restricted except from the parity condition.

3. The excited β-bands in even-even nuclei can be interpreted as the positive-parity
counterparts of higher negative-parity sequences, or in other words, as the members
of non-yrast alternating-parity bands.

On the basis of these postulates the extended alternating-parity spectrum of an even-
even nucleus has the following form:

• The yrast alternating-parity set has the quantum number n = 0 and consists of the
g-band (ground state band) with the quantum number k = k

(+)
0 and the angular

momenta and parities Iπν = 0+
1 , 2

+
1 , 4

+
1 , 6

+
1 , . . . together with the first negative-

parity band denoted as n1 with k = k
(−)
0 and Iπν = 1−1 , 3

−
1 , 5

−
1 , . . .

• The first non-yrast set has the quantum number n = 1 and consists of the first
β-band with the quantum number k = k

(+)
1 and the angular momenta and parities

Iπν = 0+
2 , 2

+
2 , 4

+
2 , 6

+
2 , . . . together with the second negative-parity band denoted as

n2 with k = k
(−)
1 and Iπν = 1−2 , 3

−
2 , 5

−
2 , . . .

• The second non-yrast set has the quantum number n = 2 and consists of the second
β-band with the quantum number k = k

(+)
2 and the angular momenta and parities

Iπν = 0+
3 , 2

+
3 , 4

+
3 , 6

+
3 , . . . together with the third negative-parity band denoted as

n3 with k = k
(−)
2 and Iπν = 1−3 , 3

−
3 , 5

−
3 , . . .
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3.2. Theory of transition operators for non-yrast bands

3.2. Theory of transition operators for non-yrast bands

The basic CQOM concept for the calculation of electromagnetic transition probabilities
can be found in [16]. We extend this formalism to describe reduced B(E1), B(E2) and
B(E3) transition probabilities also in the higher lying alternating-parity bands. This
extension takes place with two modifications. One of them is very straightforward: one
simply uses higher quantum numbers.

The other modification is a generalization of the transition operators. Because of the
complicated possible shapes of the quadrupole-octupole wave functions it was necessary
to generalize the angular parts of the operators.

In continuation to the above mentioned transition theory, we can write the Q̂-operators
(2.56) as

Q̂10 = M1pqη
2 cosφ sinφ (3.3)

Q̂20 = M2pη cosφ (3.4)

Q̂30 = M3qη sinφ . (3.5)

The operators (3.3)-(3.5) correspond to a fixed nuclear shape situation with fixed values
of β2 and β3. In case of the CQOM the density distribution can have many maxima.
Some example plots are given for illustration in Figures 3.1 and 3.2.

Figure 3.1.: Density distribution ρnkI(β2, β3) = |Φπ
nkI(β2, β3)|2 for k = 2, I = 1 (left) and

k = 1, I = 2 (right) at n = 0 with schematic parameters. The model space
corresponds to the β2 > 0 half-plane.

This phenomenon can be interpreted as a kind of “overtones” related to the coherent
collective oscillations of the system.

The original operators (3.3)-(3.5) cannot take into account multiple maxima in the
collective states. As a consequence it was found that using these original operators the
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3. Extension of the coherent case to non-yrast bands

Figure 3.2.: Contour plots of the density distribution ρnkI(β2, β3) for k = 2, I = 1 (up
left) and k = 1, I = 2 (up right), k = 3, I = 2 (down left) and k = 4, I = 1
(down right) at n = 0 with schematic parameters. The ellipsoidal curves
outline the potential bottom. The model space corresponds to the β2 > 0
half-plane.

B(E3) transition probabilities are vanishing if the difference in the k numbers of the
initial and final state wave functions is larger than one.

As explained in [17], this limitation is removed by the introduction of the following
replacements:

cosφ −→ A20(φ) ≡
∞∑
k=1

a
(k)
20 cos(kφ) (3.6)

sinφ −→ A30(φ) ≡
∞∑
k=1

a
(k)
30 sin(kφ) , (3.7)

corresponding to a parity-conserving expansion into Fourier-series. If one choses a(k) =
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3.2. Theory of transition operators for non-yrast bands

1/k then the sums are convergent and the limit is known in analytical form.

A20(φ) =
∞∑
k=1

cos(kφ)

k
= −1

2
[ln 2 + ln(1− cosφ)] (3.8)

A30(φ) =
∞∑
k=1

sin(kφ)

k
=
π − φ

2
+ πFloor

(
φ

2π

)
, (3.9)

where Floor(x) is the next smaller integer to x. The angular part of the second order
operator can then be generalized by replacing the factors of the product with their
generalizations,

cosφ sinφ −→ A10(φ) ≡ A20(φ)A30(φ) =
∞∑
m=1

∞∑
n=1

cos(mφ)

m

sin(nφ)

n
. (3.10)

If one reduces the sums to only the first summand, the original operators are reobtained.
We now redefine the transition operators (3.3)-(3.5) as

Q̂10(η, φ) = M1pqη
2A10(φ) (3.11)

Q̂20(η, φ) = M2pηA20(φ) (3.12)

Q̂30(η, φ) = M3qηA30(φ) . (3.13)

If one carries out the integration over the rotational part involving the Wigner-functions,
one is left with

B(Eλ;nikiIi → nfkfIf ) =
2λ+ 1

4π(4− 3δλ,1)
〈Ii0λ0|If0〉2R2

λ(nikiIi → nfkfIf ) , (3.14)

where the square of a Clebsch-Gordan coefficient appears and Rλ is given by

Rλ(nikiIi → nfkfIf ) =
〈

Φ
πf
nfkf If

(η, φ)|Q̂λ0|Φπi
nikiIi

(η, φ)
〉
. (3.15)

Due to the separation ansatz we can also separate the integrations, leading to

R1(nikiIi → nfkfIf ) = M1pqS2(ni, Ii;nf , If )I
πi,πf
1 (ki, kf ) (3.16)

R2(nikiIi → nfkfIf ) = M2pS1(ni, Ii;nf , If )I
πi,πf
2 (ki, kf ) (3.17)

R3(nikiIi → nfkfIf ) = M3qS1(ni, Ii;nf , If )I
πi,πf
3 (ki, kf ) , (3.18)

where

S1(ni, Ii;nf , If ) =

∫ ∞
0

dηψ
If
nf (η)η2ψIini(η) (3.19)

S2(ni, Ii;nf , If ) =

∫ ∞
0

dηψ
If
nf (η)η3ψIini(η) (3.20)

and

I
πi,πf
λ (ki, kf ) =

2

π

∫ π
2

−π
2

Aλ0(φ)ϕ
πf
kf

(φ)ϕπiki (φ)dφ, λ = 1, 2, 3 . (3.21)

Analytical expressions for these integrals are worked out and are presented in appendix
A.4.
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3. Extension of the coherent case to non-yrast bands

3.3. Relations between ellipsoidal and Hamiltonian
parameters

There are a number of very easy relations between the ellipsoidal parameters ω, b, d0,
c, p and those parameters initially appearing in the Hamiltonian, i.e. B2, B3, C2, C3,
d2, d3 and d0. This makes it possible to calculate the unknown set of parameters if one
parameter set is known. If the ellipsoidal parameters are given for example, then we
immediately have the “Cartesian” parameters by means of

d2 =
2c

ωbp2
(3.22)

d3 = (2p2 − 1) · d2 (3.23)

B2 =
b

2
· d2 (3.24)

B3 =
b

2
· d3 (3.25)

C2 =
ω2b

2
· d2 (3.26)

C3 =
ω2b

2
· d3 . (3.27)

3.4. Numerical results and discussion

The presented formalism was applied to the nuclei 152,154Sm, 154,156,158Gd, 236U and
100Mo. The experimental data is taken from the ENSDF database [72] and the theoretical
energy levels are obtained by taking

Ẽn,k(I) = En,k(I)− E
0,k

(+)
0

(0) . (3.28)

The model parameters ω, b, d0, c, p and the effective charge e1
eff are adjusted to the

experimental energy levels and transitions. This is done individually for each considered
nucleus. Additionally the calculations are performed for different possible k quantum
numbers within the limit 1 ≤ k ≤ 20 and those providing the best model description are
chosen. The resulting parameters are shown in Table 3.1. The corresponding parameters
of the original Hamiltonian formulated with β2 and β3 are given in Table 3.2.

As the reader might notice the parameters do not vary very smoothly, even for the quite
neighbouring nuclei from the rare-earth region. This phenomenon repeats for the case
of non-coherent quadrupole-octupole motion, as we will see further down. One possible
explanation for this could be the following.

The parameters determine the shape of the potential and therefore also the shape of the
wave functions. The ground state wave function at angular momentum I = 0 can be
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3.4. Numerical results and discussion

used to calculate the quadrupole deformation expectation values of the nuclei. In case of
smoothly varying parameters these deformation expectation values would lie very closely
together. Instead, as we will see below, the wave functions have individual shapes for
the different nuclei and the deformation expectation values calculated from them follow
the experimentally known deformation parameters.

To further conclude, I can repeat a statement from [17]: “The results show that the
model scheme correctly reproduces the structure of the alternating-parity spectra in
the considered nuclei with a reasonable good agreement between the theoretical and
experimental energy levels. (. . . ) Further, the formalism takes into account the complex-
shape effects in the motion of the system and in addition provides estimations about
the shape of the quadrupole-octupole potential which governs the collective properties
of the considered nuclei.”

For a detailed discussion of the properties of the individual nuclei the interested reader
is referred to the before cited paper.

Table 3.1.: Parameters of the model fits.

Nucl ω [MeV/~] b [~−2] d0 [~2] c p e1
eff [e]

152Sm 0.295 2.450 78.8 113.2 0.854 1.01
154Sm 0.205 4.625 108.5 132.6 0.808 1.017
154Gd 0.306 2.948 114.7 113.4 0.777 1.048
156Gd 0.439 1.642 197.6 141.5 0.849 0.723
158Gd 0.168 3.626 42.6 39.7 0.864 0.435
236U 0.402 1.404 539.3 343.4 0.949 0.134

100Mo 0.318 2.674 1.366 54.6 0.715 0.282
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3. Extension of the coherent case to non-yrast bands

Table 3.2.: Resulting mass parameters B2 and B3 (in ~2/MeV) and parameters of the
model potential C2 and C3 (in MeV), d2 and d3 (in ~2/MeV).

Nucl B2 B3 C2 C3 d2 d3

152Sm 525 241 45.8 21.0 429 197
154Sm 987 303 41.7 12.8 427 131
154Gd 613 127 57.6 11.9 416 86
156Gd 447 197 86.2 38.0 545 240
158Gd 317 156 8.9 4.4 175 86
236U 948 760 153 123 1351 1083

100Mo 337 7 34.0 0.7 252 6

Table 3.3.: Theoretical and experimental values of B(E1), B(E2) and B(E3) transition
probabilities in Weisskopf units (W.u.) for alternating-parity spectra of sev-
eral even-even nuclei. Notations: g (ground-state band), b1 (first β-band), b2
(second β-band), n1 (first negative-parity band), n2 (second negative-parity
band), n3 (third negative-parity band). The data are taken from [79] except
for those for B(E3; 3−n1 → 0+

g ) transitions, which are taken from [43]. The
parity signs (+) for the even and (−) for the odd angular momenta, respec-
tively are omitted in the labels of the states to avoid overloading of notations.
The uncertainties (in parentheses) refer to the last significant digits in the
experimental data.

Mult Transition Th [W.u.] Exp [W.u.] Mult Transition Th [W.u.] Exp [W.u.]

152Sm

E2 2g → 0g 141 144 (3) E2 3n2 → 1n2 52
E2 4g → 2g 210 209 (3) E2 5n2 → 3n2 63
E2 6g → 4g 248 245 (5) E3 3n1 → 0g 14 14 (2)
E2 8g → 6g 284 285 (14) E3 3n2 → 0b1 10
E2 10g → 8g 322 320 (3) E3 1n1 → 4g 69
E2 12g → 10g 363 E3 1n2 → 4b1 70
E1 1n1 → 0g 0.0041 0.0042 (4) E2 2b1 → 0g 1.26 0.92 (8)
E1 1n1 → 2g 0.0088 0.0077 (7) E2 4b1 → 2g 0.2 0.7 (2)
E1 3n1 → 2g 0.0056 0.0081 (16) E2 2b1 → 2g 4.6 5.5 (5)
E1 3n1 → 4g 0.0087 0.0082 (16) E2 4b1 → 4g 4.2 5.4 (13)
E1 1n2 → 0b1 0.0041 E2 2b1 → 4g 27.4 19.2 (18)

continues on next page
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Table 3, continued
Mult Transition Th [W.u.] Exp [W.u.] Mult Transition Th [W.u.] Exp [W.u.]

E1 1n2 → 2b1 0.0095 E2 4b1 → 6g 35 4 (2)
E2 2b1 → 0b1 160 107 (27) E2 0b1 → 2g 30
E2 4b1 → 2b1 232 204 (38) E1 1n1 → 2b1 0.00402 0.00013 (4)
E2 3n1 → 1n1 47 E1 1n1 → 0b1 0.0023
E2 5n1 → 3n1 58 E1 1n2 → 0g 0.00006

154Sm

E2 2g → 0g 168 176 (1) E2 5n2 → 3n2 82
E2 4g → 2g 247 245 (6) E2 3n3 → 1n3 72
E2 6g → 4g 287 289 (8) E3 3n1 → 0g 10 10 (2)
E2 8g → 6g 322 319 (17) E3 1n1 → 4g 50
E2 10g → 8g 358 314 (16) E3 3n2 → 0b1 77
E2 12g → 10g 398 282 (19) E3 1n2 → 4b1 381
E1 1n1 → 0g 0.0051 0.0058 (4) E3 3n3 → 0b2 6
E1 1n1 → 2g 0.0110 0.0113 (7) E3 1n3 → 4b2 62
E1 3n1 → 2g 0.0069 0.0080 (11) E2 0b1 → 2g 1 12 (3)
E1 3n1 → 4g 0.0106 0.0092 (13) E2 2b1 → 0g 0.36 <0.58
E1 1n2 → 0b1 0.0109 E2 2b1 → 2g 0.39 <1.3
E1 1n2 → 2b1 0.0231 E2 2b1 → 4g 0.27 <2.4
E1 1n3 → 0b2 0.0044 E2 0b2 → 2g 5× 10−6

E1 1n3 → 2b2 0.0109 E2 0b2 → 2b1 16
E2 2b1 → 0b1 65 E1 0b1 → 1n1 0.0005
E2 4b1 → 2b1 93 E1 1n2 → 0g 0.0005
E2 2b2 → 0b2 68 E1 1n2 → 0b2 0.0058
E2 4b2 → 2b2 97 E1 1n3 → 0b1 3× 10−7

E2 3n1 → 1n1 60 E1 1n3 → 0g 8× 10−5

E2 5n1 → 3n1 72 E3 3n2 → 0g 1.7
E2 3n2 → 1n2 69 E3 3n3 → 0g 0.4

154Gd

E2 2g → 0g 160 157 (1) E2 5n2 → 3n2 64
E2 4g → 2g 235 245 (9) E2 3n3 → 1n3 51
E2 6g → 4g 273 285 (15) E3 3n1 → 0g 21 21 (5)
E2 8g → 6g 306 312 (17) E3 3n2 → 0b1 32
E2 10g → 8g 340 360 (4) E3 3n3 → 0b2 144
E2 12g → 10g 377 E3 1n1 → 4g 102
E1 1n1 → 0g 0.0102 0.0436 E3 1n2 → 4b1 179
E1 1n1 → 2g 0.0216 0.0485 E3 1n3 → 4b2 708
E1 3n1 → 2g 0.0137 E2 0b1 → 2g 25 52 (8)

continues on next page
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3. Extension of the coherent case to non-yrast bands

Table 3, continued
Mult Transition Th [W.u.] Exp [W.u.] Mult Transition Th [W.u.] Exp [W.u.]

E1 3n1 → 4g 0.0207 E2 2b1 → 0g 1.23 0.86 (7)
E1 1n2 → 0b1 0.0152 E2 2b1 → 4g 22.6 19.6 (16)
E1 1n2 → 2b1 0.0333 E2 0b2 → 2g 0.0553
E1 1n3 → 0b2 0.0333 E2 0b2 → 2b1 14
E1 1n3 → 2b2 0.0706 E1 1n1 → 0b1 0.0054 0.0057
E2 2b1 → 0b1 177 97 (10) E1 1n1 → 2b1 0.0099 0.0064
E2 4b1 → 2b1 256 E1 1n2 → 0g 2×10−5

E2 2b2 → 0b2 85 E1 1n2 → 0b2 0.0094
E2 4b2 → 2b2 122 E1 1n3 → 0b1 0.00023
E2 3n1 → 1n1 55 E1 1n3 → 0g 2×10−6

E2 5n1 → 3n1 67 E3 3n2 → 0g 1.8
E2 3n2 → 1n2 54 E3 3n3 → 0g 0.05

156Gd

E2 2g → 0g 150 187 (5) E2 3n2 → 1n2 44
E2 4g → 2g 219 263 (5) E2 5n2 → 3n2 53
E2 6g → 4g 249 295 (8) E3 3n1 → 0g 16.9 16.9 (7)
E2 8g → 6g 273 320 (14) E3 3n2 → 0b1 64
E2 10g → 8g 296 314 (14) E3 1n1 → 4g 73
E2 12g → 10g 321 300 (3) E3 1n2 → 4b1 282
E1 1n1 → 0g 0.0006 0.0019 (14) E2 0b1 → 2g 5 8 (4)
E1 1n1 → 2g 0.0013 0.0025 (18) E2 2b1 → 0g 0.32 0.63 (6)
E1 3n1 → 2g 0.00083 0.00098 (21) E2 4b1 → 2g 0.1 1.3 (7)
E1 3n1 → 4g 0.0012 0.00077 (16) E2 4b1 → 6g 5.6 2.1 (11)
E1 1n2 → 0b1 0.0013 E2 2b1 → 4g 4.3 4.1 (4)
E1 1n2 → 2b1 0.0026 0.0005 (3) E1 1n1 → 0b1 0.0002 0.0004 (3)
E1 3n2 → 2b1 0.0016 E1 1n2 → 0g 6× 10−6 0.0019 (7)
E2 2b1 → 0b1 74 52 (23) E1 1n2 → 2g 2× 10−5 0.0043 (15)
E2 4b1 → 2b1 107 280 (15) E1 3n2 → 2g 5× 10−6 0.0019 (14)
E2 6b1 → 4b1 120 E1 3n2 → 4g 2× 10−5 0.0031 (4)
E2 3n1 → 1n1 46 E3 3n2 → 0g 0.21
E2 5n1 → 3n1 56

158Gd

E2 2g → 0g 181 198 (6) E2 0b1 → 2g 8.7619 1.1652
E2 4g → 2g 274 289 (5) E2 2b1 → 0g 2.36 0.31 (4)
E2 6g → 4g 332 E2 2b1 → 2g 2.913 0.079 (14)
E2 8g → 6g 393 330 (3) E2 4b1 → 4g 2.40 0.37
E2 10g → 8g 460 340 (3) E2 2b1 → 4g 2.96 1.39 (15)

continues on next page
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3.4. Numerical results and discussion

Table 3, continued
Mult Transition Th [W.u.] Exp [W.u.] Mult Transition Th [W.u.] Exp [W.u.]

E2 12g → 10g 532 310 (3) E2 0b2 → 2g 1.86 2.09
E1 1n1 → 0g 0.0001 9.8443×10−5(4) E2 2b2 → 0g 0.68 0.37 (4)
E1 1n1 → 2g 2.5×10−4 9.6515×10−5(6) E2 2b2 → 4g 0.43 0.38 (6)
E1 3n1 → 2g 0.00015 0.00033 (10) E2 4b1 → 2g 3.75 1.32
E1 3n1 → 4g 0.00028 0.00029 (8) E2 4b1 → 6g 1.30 3.16
E1 5n1 → 4g 2.02×10−4 7.4324×10−4(13) E2 0b2 → 2b1 57
E1 5n1 → 6g 3.62×10−4 5.8691×10−4(8) E1 0b1 → 1n1 2.7×10−5 3.314×10−6

E1 3n2 → 2b1 0.00011 > 0.00035 E1 2b1 → 1n1 8.3×10−6 6.4×10−5(8)
E1 1n2 → 0b1 8.02×10−5 E1 2b1 → 3n1 2×10−5 1.89×10−4(24)
E1 1n2 → 2b1 0.0002 E1 1n2 → 2g 4×10−5 0.0064
E1 1n3 → 0b2 0.0004 E1 1n2 → 0g 2×10−5 0.0035 (12)
E1 1n3 → 2b2 0.0009 E1 3n2 → 2g 3×10−5 >0.0011
E1 3n3 → 2b2 0.0005 E1 3n2 → 4g 3×10−5 >0.0015
E2 2b1 → 0b1 200 E1 0b2 → 1n1 2×10−7 5.7831×10−5

E2 4b1 → 2b1 288 455 E1 2b2 → 1n1 2×10−8 2.7×10−6(19)
E2 2b2 → 0b2 217 E1 2b2 → 3n1 2×10−7 3.7×10−5(5)
E2 4b2 → 2b2 308 E1 0b2 → 1n2 6×10−5 6.02×10−4

E2 3n1 → 1n1 185 E1 2b2 → 1n2 1.8×10−5 1.50×10−4(21)
E2 5n1 → 3n1 227 369 (6) E1 2b2 → 3n2 4.2×10−5 2.40×10−4(5)
E2 3n2 → 1n2 200 > 1600 E1 4b1 → 3n1 7.7×10−6 4.63×10−4

E2 5n2 → 3n2 240 E1 4b1 → 5n1 2.1×10−5 6.12×10−4

E2 3n3 → 1n3 241 E1 1n2 → 0b2 2×10−5

E3 3n1 → 0g 11.9 11.9 (7) E1 1n3 → 0b1 3×10−6

E3 1n1 → 4g 81 E1 1n3 → 0g 0.00001
E3 3n2 → 0b1 519 E3 3n2 → 0g 5
E3 3n3 → 0b2 102 E3 3n3 → 0g 2

236U

E2 2g → 0g 237 250 (10) E2 2b1 → 0b1 112
E2 4g → 2g 342 357 (23) E2 4b1 → 2b1 160
E2 6g → 4g 382 385 (22) E2 3n1 → 1n1 68
E2 8g → 6g 408 390 (4) E2 5n1 → 3n1 80
E2 10g → 8g 429 360 (4) E2 7n1 → 5n1 87
E2 12g → 10g 450 410 (7) E2 3n2 → 1n2 54
E2 14g → 12g 471 450 (5) E2 5n2 → 3n2 64
E2 16g → 14g 493 380 (4) E3 1n1 → 4g 62 62 (9)
E2 18g → 16g 516 490 (5) E3 3n1 → 0g 15 23 (3)
E2 20g → 18g 539 510 (8) E3 1n2 → 4b1 695
E2 22g → 20g 564 520 (12) E3 3n2 → 0b1 172
E2 24g → 22g 590 670 (13) E2 0b1 → 2g 6

continues on next page
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3. Extension of the coherent case to non-yrast bands

Table 3, continued
Mult Transition Th [W.u.] Exp [W.u.] Mult Transition Th [W.u.] Exp [W.u.]

E2 26g → 24g 617 670 (19) E2 2b1 → 0g 0.66
E2 28g → 26g 645 1100 (5) E2 4b1 → 2g 0.59
E1 1n1 → 0g 2.7×10−8 2.7×10−8(4) E2 2b1 → 4g 4
E1 1n1 → 2g 5.5×10−8 E1 0b1 → 1n1 1.2×10−8

E1 3n1 → 2g 3.5×10−8 E1 2b1 → 1n1 4.6×10−9

E1 3n1 → 4g 4.8×10−8 E1 1n2 → 0g 1.6×10−9

E1 1n2 → 0b1 2.0×10−8 E3 3b2 → 0g 0.14
E1 1n2 → 2b1 4.0×10−8

100Mo

E2 2g → 0g 22.7 37.0 (7) E2 3n1 → 1n1 16
E2 4g → 2g 50 69 (4) E2 5n1 → 3n1 21
E2 6g → 4g 84 94 (14) E2 7n1 → 5n1 26
E2 8g → 6g 120 123 (18) E2 3n2 → 1n2 18
E2 10g → 8g 156 E2 5n2 → 3n2 22
E1 1n1 → 0g 2×10−6 E3 3n1 → 0g 34 34 (3)
E1 1n1 → 2g 1×10−5 E3 3n2 → 0b1 5
E1 3n1 → 2g 7×10−6 2.7×10−6(9) E3 1n1 → 4g 899
E1 3n1 → 4g 2×10−5 E2 0b1 → 2g 72 92 (4)
E1 1n2 → 0b1 2×10−7 E2 2b1 → 0g 0.5 0.62 (5)
E1 1n2 → 2b1 1×10−5 E2 4b1 → 2g 3
E1 3n2 → 2b1 3×10−6 E1 1n1 → 0b1 8× 10−6

E1 3n2 → 4b1 3×10−5 E1 1n1 → 2b1 2× 10−5

E2 2b1 → 0b1 25.4 5.5 (8) E1 3n1 → 2b1 1.4×10−5 2.5×10−5(8)
E2 4b1 → 2b1 45 E1 1n2 → 0g 5×10−7

E2 6b1 → 4b1 75 E3 3n2 → 0g 22
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3.4. Numerical results and discussion

Figure 3.3.: Theoretical and experimental alternating-parity bands in 152Sm. Data from
[72]. The oscillation quantum numbers n, k

(+)
n and k

(−)
n are given above the

theoretical bands.
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3. Extension of the coherent case to non-yrast bands

Figure 3.4.: The same as in Fig. 3.3, but for 154Sm.
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3.4. Numerical results and discussion

Figure 3.5.: The same as in Fig. 3.3, but for 154Gd.
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3. Extension of the coherent case to non-yrast bands

Figure 3.6.: The same as in Fig. 3.3, but for 156Gd.
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3.4. Numerical results and discussion

Figure 3.7.: The same as in Fig. 3.3, but for 158Gd.
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3. Extension of the coherent case to non-yrast bands

Figure 3.8.: The same as in Fig. 3.3, but for 236U.
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3.4. Numerical results and discussion

Figure 3.9.: The same as in Fig. 3.3, but for 100Mo.
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4. Full non-coherent numerical
solution with diagonalization

It is a very natural idea to extend the coherent quadrupole-octupole model beyond the
limit of coherency. In the coherent case the model is restricted to a certain class of
exact analytic solutions. These can only be obtained if certain relations among the
parameters are imposed (see Eq. (2.39)). In order to go beyond this restriction, more
sophisticated mathematical and numerical techniques have to be sought to solve the
problem. Diagonalization can provide a powerful tool to achieve this task.

4.1. The diagonalization method

Following [34], the crucial idea is to treat the Schrödinger equation as a matrix equation
and to calculate the eigenvalues and eigenvectors in its matrix representation. Under the
assumption that the basis states |ϕn〉 make up a complete orthonormal system (CONS),
an arbitrary state |ψ〉 of the Hilbert space can be written as a superposition of the basis
states. Suppose we want to solve the eigenvalue problem

Ĥ|ψ〉 = E|ψ〉 . (4.1)

Then, by inserting an indentity 1 at the right place

1Ĥ1|ψ〉 = E1|ψ〉 , (4.2)

we have ∑
n,n′

|ϕn〉〈ϕn|Ĥ|ϕn′〉〈ϕn′|ψ〉 = E
∑
n

|ϕn〉〈ϕn|ψ〉 . (4.3)

Because of the linear independence of the |ϕn〉, for each n the equation∑
n′

(
〈ϕn|Ĥ|ϕn′〉 − Eδnn′

)
〈ϕn′|ψ〉 = 0 (4.4)

must hold. This leads to a homogeneous and finite linear equation system. As usual the
condition that there is a non-trivial solution is given by a vanishing determinant of the
coefficient matrix,

det
(
〈ϕn|Ĥ|ϕn′〉 − Eδnn′

)
!

= 0 . (4.5)
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4. Full non-coherent numerical solution with diagonalization

From the matrix elements

〈ϕn|Ĥ|ϕn′〉 =

∫
ϕ∗nĤϕn′dV (4.6)

one can calculate the eigenvalues Ei from (4.5) and for each Ei one can use (4.4) to
calculate the components 〈ϕn′|ψi〉 and therefore the corresponding eigenstate |ψi〉.

In the ideal case of n′ → ∞ the method is exact. In real calculations one has to study
the dependence for a finite n′ in order to answer convergence questions. A criterion for
the choice for the basis states is given by symmetries of the problem which the basis
does take into account. It is also desirable to have a fast convergence and only little
numerical effort in solving the matrix elements.

4.2. Approach with coherent quadrupole-octupole basis
functions

A very good approach is to take the coherent quadrupole-octupole wave functions as
basis. It was checked that they are a complete orthonormal set. This basis has the nice
property that one can interpret the quantum numbers and that in case of coherence
(ω2 = ω3) the matrix representation of the Hamiltonian is already diagonal and only
becomes non-diagonal as one goes away from the case of coherence.

Moreover this basis has the nice property that the Hamiltonian matrix elements can be
obtained in an analytic form. Although the diagonalization is performed numerically, the
problem remains analytic in the mentioned sense. This guarantees a quite fast solution.

Last but not least the wave functions of the CQOM model provide a natural choice for
the basis because they automatically take into account the boundary condition (2.45)
of the model.

4.3. Details of the numerical algorithm

As a first step a basis truncation is performed since the basis space is infinite-dimensional.
The quantum numbers n and k, at which the basis is truncated, are determined by
imposing a certain limit on the energy in the CQOM expression eq. (2.48) for a given
set of model parameters.

The basis functions are completely determined if the CQOM parameters b, c and d0

are given. The values of these parameters should be chosen in an appropriate way. A
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4.3. Details of the numerical algorithm

suitable choice of them can reduce the number of basis states necessary for a certain
precision to a minimum, i.e. the basis can be optimized. Since the parameters B2, B3,
C2, C3, d2, d3 and d0 can vary independently in the non-coherent case, there are in
principle two choices, namely a quadrupole and an octupole one for b and c. For the
parameter b one has for example

bquad =
2B2

~2d2

or boct =
2B3

~2d3

. (4.7)

We have then chosen the arithmetic mean b = (bquad + boct)/2 which means that no
degree of freedom is preferred and in case of coherence (bquad = boct) the parameter is
chosen as in the CQOM model. A similar choice was done for the parameter c. The
parameter d0 can simply be taken over from the CQOM solution.

Then the integrals of the Hamiltonian matrix are calculated. As a first step, the Hamil-
tonian (2.35) has to be transformed to the ellipsoidal coordinates, equation (2.36), see
also equation (11) in [16] for the kinetic part. The matrix elements depend on the pa-
rameters B2, B3, C2, C3, d2, d3 and d0 of this Hamiltonian. The integration is over the
right half-plane only. The matrix elements for a fixed angular momentum are given by

〈n′ k′|H|n k〉I =

d√
d2d3

∫ π/2

−π/2

∫ ∞
0

ψIn′,k′(η)ϕk′(φ)H(η, φ)ψIn,k(η)ϕk(φ)ηdηdφ , (4.8)

where the parity of the angular functions ϕ±k is fixed by the quantum number k (odd
or even). Since the integration is performed in the coordinates η and φ, the Jacobian
from the transformation (2.36), J(η) = d√

d2d3
η, appears in the matrix elements (4.8).

Then the integrations over the “radial” coordinate η are always reduced to the following
known analytic expression [76]∫ ∞

0

tα−1e−ptLλm(pt)Lβn(pt)dt =
p−αΓ(α)Γ(n− α + β + 1)Γ(m+ λ+ 1)

m!n!Γ(1− α + β)Γ(λ+ 1)

× 3F2(−m,α, α− β;−n+ α− β, λ+ 1; 1) ,

(4.9)

which is fastly evaluated. The φ-integrations only involve trigonometric functions and
are easily performed.

In order to obtain a two-dimensional matrix instead of the four component tensor, equa-
tion (4.8), the basis functions are relabeled into a list with only one index. For a fixed
angular momentum I the resulting matrix is diagonalized and we obtain the eigenvalues
and eigenvectors. The corresponding physical state from the yrast band is determined
by the lowest eigenvalue whose eigenvector possesses the correct parity (−1)I . In this
way the model spectrum is constructed.

In the CQOM the yrast states are characterized by the quantum numbers (n, k) = (0, 1)
for even I and (0, 2) for odd I. In the non-coherent case n and k are no longer good
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4. Full non-coherent numerical solution with diagonalization

quantum numbers. Then the model eigenfunctions are characterized by their decomposi-
tion coefficients in the basis states. It was found that for a given eigenfunction the main
decomposition component still corresponds to the quantum numbers of the respective
state in the CQOM model. Other higher lying basis states are also mixed into the final
eigenstate to a certain amount.

We can advantageously use the CQOM theory for transitions shown above to calculate
the transition probabilities in the non-coherent case. Since the wave function is expanded
with respect to the basis functions and for them the transition theory is known, we
obtain for the non-coherent matrix elements the following double sum including known
expansion coefficients:

R̃λ(Ii → If ) =
∑
n′k′

∑
n′′k′′

c
If
n′′k′′c

Ii
n′k′Rλ(n

′ k′ Ii → n′′ k′′ If ) . (4.10)

In order to calculate the non-coherent transitions one simply has to replace Rλ with R̃λ

in the above expression (3.14).

We only take into account transition probabilities related to the yrast band. It has been
found that the consideration of transitions is very important and necessary in order to
obtain a set of model parameters which is uniquely determined. The reason for this is
that one of the fitting parameters, c, only appears in the wave functions. Its value could
be arbitrarily chosen in an approach without transition probabilities.

4.4. Application to selected nuclei

Once the diagonalizations have been performed for all angular momenta, one obtains
an yrast spectrum and is able to define a function σRMS which gives the root mean
square deviation from the experimental levels. The transition probabilities are calculated
from the above theory and we construct an overall root mean square deviation function
including both energies and transitions. The transitions are included with weight factors
providing the same order of magnitude for the fitting procedure.

Then the model parameters B2, B3, C2, C3, d2, d3, d0 and e1
eff can be adjusted so as to

provide the best description of experimental data. As a first guess for the minimization
we take the parameter values obtained from the CQOM model.

The model approach was applied to describe the yrast alternating parity spectra and
yrast transitions of the nuclei 152,154Sm, 154,156Gd, 100Mo and 236U. The resulting optimal
parameters are given in Table 4.1. It should be kept in mind that the fitting algorithm
finds a local minimum and it eventually could be that there is another minimum which
provides an even better description.

48



4.5. Discussion of the results

Table 4.1.: Parameters of the fits obtained for 152,154Sm, 154,156Gd, 100Mo and 236U. The
parameters B2, B3 are given in units of ~2/MeV, C2 and C3 are given in units
of MeV, d2 and d3 are given in ~2·MeV−1, d0 is given in ~2 and e1

eff is in units
of elementary charge.

Nucleus B2 B3 C2 C3 d2 d3 d0 e1
eff

152Sm 26.0 334.9 68.8 368.5 836.9 3886.7 24.3 1.43
154Sm 2.9 339.0 111.2 2443.0 330.4 12264.9 325.8 1.64
154Gd 7.5 172.5 85.8 482.7 486.7 4190.8 70.8 1.88
156Gd 6.2 337.9 193.3 1257.6 954.7 7395.0 153.9 0.95
100Mo 0.437 16.9 11379.9 87.6 682.2 577.5 18.9 0.56
236U 186.7 185.6 44.9 619.5 549.8 11475.9 258.2 0.27

Table 4.2.: Quadrupole deformations obtained from the wave functions for 152,154Sm,
154,156Gd, 100Mo and 236U. The experimental values are taken from RIPL-2
[80].

Nucleus βexp
2 βtheo

2
152Sm 0.3064 0.191
154Sm 0.3410 0.318
154Gd 0.3120 0.250
156Gd 0.3378 0.217
100Mo 0.2309 0.135
236U 0.2821 0.272

We also calculate the corresponding wave functions for zero angular momentum and the
resulting quadrupole deformation expectation values given by

〈β2〉 =

∫ ∞
−∞

∫ ∞
0

β2Φ(β2, β3)2dβ2dβ3 . (4.11)

The wave functions are plotted in Figures 4.1-4.6 and the obtained quadrupole defor-
mations are given in Table 4.2.

4.5. Discussion of the results

Compared to the CQOM case, the non-coherent approach leads to a better description
of the yrast spectra of all nuclei under consideration. Roughly speaking the root mean
square deviation from theory to experiment is improved by a factor of 2.
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4. Full non-coherent numerical solution with diagonalization

Figure 4.1.: Wave function for 152Sm at angular momentum I = 0.

Figure 4.2.: Wave function for 154Sm at angular momentum I = 0.

This is in agreement with our expectation since the numerical solution is a generalization
and contains the analytical solution as a special case. The restriction to equal frequen-
cies ω2 and ω3 is equivalent to certain relations between the model parameters (mass-,
stiffness- and inertia parameters) which must hold. The non-coherent approach does not
have these limitations and therefore consists of model parameters which are all allowed
to vary freely. This is further discussed in [81] where the reader can also find detailed
tables with energy level numbers.

Instead of discussing this obvious result, I would like to focus on a non-obvious re-
sult. What can be seen from Table 4.2 is that – without fitting these quantities(!) –
the quadrupole deformation expectation values calculated from the wave functions are
obtained reasonably and they even seem to reproduce the behaviour given by the exper-
iment for the different nuclei, especially the least deformed nucleus in the experiment
is also least deformed in the theory and the same holds for the most deformed nucleus.
Since these numbers are not fitted, they can be seen as a true model prediction.
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4.6. Outlook: non-axial deformations

Figure 4.3.: Wave function for 154Gd at angular momentum I = 0.

4.6. Outlook: non-axial deformations

The aim to generalize the Schrödinger equation to the case of arbitrary quadrupole and
octupole deformations, which means non-zero a22, a31 and a32 values for example, is of
large interest. For example the TetraNuc (short for Tetrahedral Nuclei) project aims to
get more insight about possible tetrahedral deformations of nuclei, associated with the
a32 deformation variable, and the resulting implications. Possible candidates for such
deformations are for example the nuclei 156Gd and 156Dy. The dimensionality of the
problem grows with each deformation, making it a difficult multi-dimensional problem.
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4. Full non-coherent numerical solution with diagonalization

Figure 4.4.: Wave function for 156Gd at angular momentum I = 0.

Figure 4.5.: Wave function for 100Mo at angular momentum I = 0.
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4.6. Outlook: non-axial deformations

Figure 4.6.: Wave function for 236U at angular momentum I = 0.
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5. The used single-particle model

5.1. Introduction

So far we were only concerned with collective calculations. This chapter is about the
deformed shell model which is used for further calculations. There should of course be
a self-consistency between nucleonic degrees of freedom and collective properties.

For example, the Coriolis decoupling factor a appeared from the rotational Hamilto-
nian and entered the energy formula (2.48) only phenomenologically in the sense of
an adjustable parameter. In chapter 6 we will put the calculation of this parameter
on a microscopic basis, calculating matrix elements with single-particle wave functions
according to the definition of the Coriolis decoupling factor.

In chapter 7 we use the single-particle states also as the starting point for deformed RPA
calculations.

Details about the corresponding single-particle Fortran program published in Computer
Physics Communications are given in [26]. The program solves the Schrödinger equation
for the single-particle Hamiltonian

Ĥsp = T̂kin + VWoods-Saxon + VCoul (5.1)

numerically with an axially-deformed Woods-Saxon potential. The different parts of this
Hamiltonian are explained in the following sections.

5.2. Average nuclear potential

5.2.1. Nuclear shape parameterization

The nuclear shape is assumed to be only axially deformed. Then, using the most general
ansatz with an expansion into spherical harmonics, the expansion can be reduced to
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5. The used single-particle model

spherical harmonics of the type Yλ0(cos θ) and yields

R(cos θ, β̂) = c(β̂)R0

[
1 +

∑
λ≥2

βλYλ0(cos θ)

]
(5.2)

for the radius. β̂ is a short notation for a set of βλ which determines the nuclear shape.
The factor c(β̂) is responsible for an overall scaling in such a way that the constant
volume condition is fulfilled.

Moreover, a center of mass transformation is performed in such a way that the center
lies in the coordinate origin. In case of axial deformations this obviously corresponds
to a shift along the z-axis which should be chosen in such a way that it aligns with the
symmetry axis of the nucleus.

5.2.2. Deformed Woods-Saxon potential

The deformed Woods-Saxon potential is defined as

V (r, β̂) =
V0

1 + exp
[
distΣ(r, β̂)/a

] , (5.3)

where distΣ is the distance function between the point r and the nuclear surface as defined
by (5.2). The parameter V0 gives the depth of the potential and a is the diffuseness
parameters which characterizes how much the potential is smeared out. The calculation
of the distance can only be done numerically in a minimization procedure.

5.2.3. Spin-orbit potential

For the definition of the spin-orbit potential usually the most general scalar expression
which can be constructed from the gradient of the potential, the spin and the linear
momentum and which is only containing the first power of p is used.

This means

Vso = λ

(
~

2Mc

)∇ V0

1 + exp
[
distΣ(r, β̂)/a

]
 (σ × p) , (5.4)

where λ is a strength parameter and M is the mass of a nucleon. The last bracket
contains the cross product of the operator σ which is composed of Pauli matrices, and
p is the linear momentum operator.
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5.3. Method of solution

5.2.4. Coulomb potential

For the Coulomb potential a uniform charge distribution of the Z−1 protons in the core
is assumed. For cylindrical coordinates it can be computed using the expression [40]

Vcoul = ρe

∫ z2

z1

{[
ρ2

Σ − ρ2 − (z′ − z)2 − (z′ − z)
∂ρ2

Σ

∂z′

]
F (a, b) + E(a, b)

}
, (5.5)

where ρΣ(z) denotes a value of ρ for a point on the surface with coordinate z, ρe as a
constant charge density, as well as

F (a, b) = a−1

∫ π/2

0

dφ

(
1− a2 − b2

a2
sin2 φ

)−1/2

(5.6)

E(a, b) = a

∫ π/2

0

dφ

(
1− a2 − b2

a2
sin2 φ

)1/2

(5.7)

with a2 = (z′ − z)2 + (ρ′ + ρ)2 and b2 = (z′ − z)2 + (ρ′ − ρ)2.

5.3. Method of solution

5.3.1. Axially deformed harmonic oscillator basis

The eigenfunctions of the axially symmetric harmonic oscillator in cylindrical coordinates
are

|nρ nz Λ Σ〉 = ψΛ
nρ(ρ)ψnz(z)ψΛ(φ)χ(Σ) , (5.8)

where Σ = ±1
2

and Λ is the projection of the orbital angular momentum on the symmetry
axis. Further written out we have

ψΛ(φ) =
1√
2π
eiΛφ (5.9)

ψnz(z) =
1√√
π2nznz!

(
Mωz

~

)1/4

e−ξ
2/2Hnz(ξ) (5.10)

ψΛ
nρ(ρ) =

√
nρ!√

(nρ + |Λ|)!

(
Mω⊥

~

)|Λ|/2
η

1
2
|Λ|e−

1
2
ηL|Λ|nρ (η) (5.11)

χ

(
1

2

)
=

(
1
0

)
, χ

(
−1

2

)
=

(
0
1

)
, (5.12)

using Hermite polynomials Hn(ξ) and generalized Laguerre polynomials LΛ
n(η) in the

dimensionless coordinates

η =
Mω⊥

~
ρ2 , ξ =

√
Mωz

~
z , ρ2 ≡ x2 + y2 . (5.13)
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5. The used single-particle model

The energies are known to be

Enρ,nz ,Λ =

(
nz +

1

2

)
~ωz + (n⊥ + 1)~ω⊥ (5.14)

with the main quantum number

N = nz + n⊥ (5.15)

and

n⊥ = 2nρ + |Λ| . (5.16)

This allows an easy transition between the notation of (5.8) and |N nz Λ Σ〉.

5.3.2. Basis optimization

The program uses some techniques to optimize the basis. The most important point
is to have good approximations for the oscillator frequencies ωz and ω⊥. In case of a
spherical oscillator

~ω0 ≈ 1.2

(
41

A1/3

)
MeV (5.17)

is a good approximation for its frequency ω0. The program uses this together with the
“volume conservation” condition

ω2
⊥ωz = ω3

0 (5.18)

and another deformation of the potential “match condition”.

Secondly, it is possible to give an energy limit Emax which leads to an exclusion of those
basis states lying very high in energy. In this way only the more important states with

Enρ,nz ,Λ < Emax (5.19)

are contributing.

5.3.3. Matrix elements of the Hamiltonian

The total Woods-Saxon single-particle Hamiltonian reads

HWS = T + V + Vso +
1

2
(1 + τ3)Vc . (5.20)

The corresponding matrix elements can be found in appendix A.3. In order to reduce
the necessary calculation costs one can make use of the symmetries of this Hamiltonian,
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5.4. Test of the program

namely time reversal symmetry and axial symmetry. The first leads to two-fold degener-
ate levels, the so-called Kramer’s degeneracy, while the latter implies that the projection
of the single-particle angular momentum on the symmetry axis

Ω ≡ Λ + Σ (5.21)

is a constant of the motion. This leads to the fact that the eigenstates do not depend
on the sign of Ω and it is enough to consider only positive Ω values for the calculation
of matrix elements.

Further, as can be shown by using the relation

Hn+1(ξ) = 2ξHn(ξ)− 2nHn−1(ξ) (5.22)

for the Hermite polynomials, the matrix elements of the potential term satisfy the re-
currence relation

〈n′z|V |nz〉 =

√
n′z + 1

nz
〈n′z+1|V |nz−1〉+

√
n′z
nz
〈n′z−1|V |nz−1〉−

√
nz − 1

nz
〈n′z|V |nz−2〉 .

(5.23)

5.4. Test of the program

Since the calculations based on this single-particle program rely on its correctness, ex-
tended checks have been performed.

This considers first and foremost the calculation of matrix elements of the different parts
of the single-particle Hamiltonian. It was checked that numerical results obtained with
Mathematica’s NIntegrate command were identical to the matrix elements extracted
from the deformed-shell model Fortran program.

The analytical formulas for the matrix elements were checked additionally. They are
given in detail in [67]. As a result it was found that the matrix elements for the kinetic
energy were given correctly while those for the Woods-Saxon potential were wrong by
a factor of 1/2 which was easily detected. The most difficult derivation has to be done
for matrix elements of the spin-orbit part of the Hamiltonian. Due to an inconsistency
which could not be resolved, I have rederived these matrix elements and found that in
[67] a pair of parenthesis is missing.

For reasons of completeness and as a helpful reference to repeat numerical checks or as
a starting point for programming all matrix elements are given in appendix A.3.

Furthermore the single-particle spectrum of 208Pb was calculated with a spherical shell
model using the same Woods-Saxon parameters. The levels have been compared to the
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5. The used single-particle model

deformed shell model in case of zero deformation, i.e. βλ = 0. 208Pb is a good test
nucleus since the level scheme of it can also be found in various textbooks, e.g. in [48].
Because of its double magicity the nucleus can be considered to be more or less spherical.

Calculations for spherical nuclei were furthermore compared to results obtained inde-
pendently [41]. The agreement is quite good but not perfect, which should be due to
slightly different parameter values used in the calculations.

In conclusion it can be said that the single-particle program is thoroughly tested and
that we can rely on its results for the further calculations.
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6. Connection of intrinsic and
collective motion

6.1. Introduction

This chapter treats odd-mass nuclei which are quadrupole-octupole deformed and in
which the coupling of the collective rotations and vibrations to the single-particle motion
of the unpaired nucleon provides a split parity-doublet structure of the spectrum [28, 54].
There exist various model approaches to explain this structure [55, 56, 57, 58, 59, 61, 65].
In the case of angular momentum projection K = 1/2 one also observes the Coriolis
interaction between the odd particle and the rotating even-even core.

We assume a strong coupling between the core and the odd nucleon. In case of a weak
coupling the odd nucleon does not “feel” the reflection-asymmetric shape of the nucleus
and thus the single-particle motion is characterized with a fixed good parity. In case of
a strong coupling the shape of the nucleus is much more imprinted on the single-particle
potential [56]. Although the single-particle states are now without a good parity the
coupling to the core is such that the total state of the nucleus remains with a good
parity.

We examine the effects of the parity-mixing in the single-particle state on the total
behaviour of the system. The parity mixing makes it necessary to modify the standard
definition for the Coriolis decoupling factor, given by the matrix element of the single-
particle angular momentum operator ĵ+ in the single-particle states with K = ±1/2
[28].

The behaviour of the parity mixing and its effect on the Coriolis interaction is studied
in dependence of the quadrupole and octupole deformations β2 and β3.
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6. Connection of intrinsic and collective motion

6.2. Core plus particle Hamiltonian

We consider a Hamiltonian for a vibrating and rotating nuclear system with quadrupole-
octupole degrees of freedom. It can be written in the form

H = Hcoll
qoc +Hsp +Hcoriol , (6.1)

where Hcoll
qoc corresponds to the collective quadrupole-octupole vibration and rotation of

the system, Hsp describes the motion of the odd particle (neutron or proton) in the field
of the even-even core, while Hcoriol represents the Coriolis interaction between the core
and the particle. The collective plus centrifugal Hamiltonian can be written in the form
[58]

Hcoll
qoc +Hcoriol = − ~2

2B2

∂2

∂β2
2

− ~2

2B3

∂2

∂β2
3

+
1

2
C2β

2
2 +

1

2
C3β

2
3 +

Î2 − Î2
z + Î+ĵ− − Î−ĵ+

2(d2β2
2 + d3β2

3)
, (6.2)

with mass, stiffness and inertial parameters B2, B3, C2, C3 and d2, d3, total angular
momentum operators Î± = Îx ± iÎy and spherical components ĵ± = ĵx ± iĵy of the total
intrinsic particle angular momentum ĵ, respectively. The resulting quadrupole-octupole
vibrational wave function which we denote by Φ±core has a well defined parity πc = (±).

The single-particle Hamiltonian is considered in the form as presented in chapter 5 of
this work. The solution of this Hamiltonian is obtained by diagonalization using of the
axially deformed harmonic oscillator (ADHO) basis. This implies that the wave function
of the odd particle is obtained as an expansion in the ADHO basis functions

FΩ =
∑
NnzΛ

CΩ
NnzΛ|N nz Λ Ω〉 . (6.3)

In the special case of quadrupole deformation only (β3 = 0), the reflection-symmetric
case, the single-particle wave function FΩ corresponds to a single-particle state with good
parity, either πsp = (+) or (−). The reflection-asymmetric case with β3 6= 0 belongs to
a mixed-parity state without determined parity.

The parity of the basis states |N nz Λ Ω〉 is given by (−1)N . This makes it possible to
separate the expansion in terms of the basis functions in two sums, containing only terms
with positive or negative parity. Hence we can write

FΩ =
∑

πsp=±1

F (πsp)
Ω = F (+)

Ω + F (−)
Ω , (6.4)

where F (+)
Ω contains only the positive parity components, while F (−)

Ω contains the neg-
ative ones with

π̂spF (±)
Ω = ±F (±)

Ω . (6.5)
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6.3. Total particle-core wave function

The action of the parity operator π̂sp on the function FΩ gives

π̂spFΩ = F (+)
Ω −F (−)

Ω (6.6)

and we can characterize the parity mixing of a given single-particle state by the expec-
tation value of the parity operator in this state

〈π̂sp〉 = 〈FΩ|π̂sp|FΩ〉

=
∑
NnzΛ

∑
N ′n′zΛ′

CΩ∗
N ′n′zΛ′C

Ω
NnzΛ〈N nz Λ Ω|π̂sp|N ′ n′z Λ′Ω〉

=
∑
NnzΛ

(−1)N |CΩ
NnzΛ|2 .

(6.7)

6.3. Total particle-core wave function

With the choices (6.2) and (5.1) for the collective and single-particle parts of the Hamil-
tonian (6.1), the total wave function can be given in a symmetrized form providing a
good total parity π andR1 invariance of the system. We write for the total wave function

Ψπ
IMK =

1

2
N (1 +R1)DI

MK(θ)(1 + πP̂ )Φπc
coreFK , (6.8)

with a rotation function DI
MK(θ) depending on the Euler angles and with a normalization

factor N .

The operator P̂ is the operator of the total parity of the system and gives π as eigenvalue.
It can be written as product

P̂ = π̂c · π̂sp (6.9)

of the core and single-particle operators π̂c and π̂sp, respectively.

The operator R̂1 acts as a rotation by an angle π about an axis perpendicular to the
intrinsic z-axis and acts of the different parts of (6.8) as follows

R1D
I
MK = (−1)I−KDI

M−K (6.10)

R1Φπc
core = π̂cΦ

πc
core = πcΦ

πc
core (6.11)

R1FK = F−K . (6.12)

The core wave function Φπc
core is characterized by a good core parity πc which we fix so as

to obtain πc = (+) for the split doublet counterparts containing the ground state (states
shifted down), and πc = (−) for the states shifted up.

The single-particle wave function FK is a mixture of two parts F (±)
K with opposite

parities. Then the operators 1 − πP̂ projects out the positive or negative component,
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6. Connection of intrinsic and collective motion

Figure 6.1.: Particle-core states coupling for split parity-doublets with positive (left part)
and negative (right side) ground-state parity. The respective expressions for
the decoupling factor apc = ±πa(±) are also given.

F (+)
K or F (−)

K , from FK and thus provides a good total parity of the states in the split
parity-doublet spectrum.

Assuming that the gound state (the lowest state of the doublet) has a positive parity, the

projected component is F (+)
K . If the ground state has negative parity then the projected

component is F (−)
K . These two possible situations are illustrated in Figure 6.1.

As explained in more detail in [24], this projection does not represent the exact solution
of the single-particle Schrödinger equation, but can be seen as an approximation which
is valid in certain physical limits. The mechanism corresponds to an effective restoration
of the parity invariance of the total Hamiltonian (6.1) which is originally broken because
of the presence of the reflection asymmetric single-particle Hamiltonian (5.1). It is clear
that this procedure is justified more and more as the missing part of the wave function
becomes smaller. The criterion should be that the expectation value of the single-particle
parity should be closer to the favoured parity rather than to the unfavoured one. This
is also very important for determining the physically reasonable regions of quadrupole-
octupole deformations in a given nucleus.

6.4. Decoupling factor for parity-mixed single-particle
states

In case of K = 1/2 the standard definition for the Coriolis decoupling factor is

a = 〈F1/2|ĵ+|F−1/2〉 . (6.13)

In the case of reflection asymmetry we need to modify this definition. The particle-core
decoupling factor apc is determined through the matrix element

−〈Ψπ
IM 1

2
|Î−ĵ+|Ψπ

IM 1
2
〉 = N 2(−1)I+

1
2

(
I +

1

2

)
· apc . (6.14)

64



6.4. Decoupling factor for parity-mixed single-particle states

Table 6.1.: Particular forms of the decoupling factor apc in dependence on the ground-
state parity πgs and the parity π of a given state in the split parity-doublet
spectrum.

π = (+) π = (−)

πgs = (+) apc = a(+) apc = −a(+)

πgs = (−) apc = −a(−) apc = a(−)

From this we can obtain apc by means of the total wave function (6.8) and the transfor-
mation properties (6.10)-(6.12) and (6.6) in the form

apc =
1

2
πc

(〈
F 1

2
|ĵ+|F− 1

2

〉
+ ππc

〈
π̂spF 1

2
|ĵ+|F− 1

2

〉)
=

1

2
πc
[
(1 + ππc)a

(+) + (1− ππc)a(−)
]
,

(6.15)

where

a(+) = 〈F (+)
1/2 |ĵ+|F (+)

−1/2〉 (6.16)

a(−) = 〈F (−)
1/2 |ĵ+|F (−)

−1/2〉 , (6.17)

with

〈F (+)
1/2 |ĵ+|F (−)

−1/2〉 = 〈F (−)
1/2 |ĵ+|F (+)

−1/2〉 = 0 . (6.18)

The factors a(+) and a(−) are projected matrix elements of the operator ĵ+ in the sub-
spaces of positive and negative parity components of the single-particle wave function,
respectively. We can write this out further with expansion coefficients as

a(±) =
∑
NnzΛ

∑
N ′n′zΛ′

C
1
2
∗

N ′n′zΛ′C
1
2
NnzΛ

〈
N ′ n′z Λ′

1

2
|ĵ+|N nz − Λ − 1

2

〉
, (6.19)

with N and N ′ being even or odd. This expression requires the calculation of matrix
elements of ĵ+ between ADHO basis states. This topic is treated in appendix A.5.

From equation (6.15) it is easy to derive that in a given state Iπ of the split parity-
doublet spectrum the decoupling factor apc is reduced to πa(+) = ±a(+) when the parity
of the ground state πgs is positive, πgs = (+), and to −πa(−) = ∓a(−) when the ground
state parity is negative, πgs = (−). Table 6.1 illustrates this fact.

In short this means that for a given state Iπ in the parity-doublet

apc = ππgsa
(πgs) = ±πa(±) (6.20)
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6. Connection of intrinsic and collective motion

holds. This makes it possible to obtain a correspondence between the values of the
decoupling factor aqoc fitted in the model of coherent quadrupole-octupole motion [58]
and the values of the projected decoupling factors a(±) in the present scheme. From

acoll = πaqoc ↔ ππgsa
(πgs) = ±πa(±) = apc (6.21)

it follows
aqoc ↔ πgsa

(πgs) = ±a(±) . (6.22)

As it should be, we reobtain the standard Coriolis decoupling factor in the limiting case
β3 = 0, namely a(+) when the downwards shifted sequence (containing the ground state)
is with positive parity and a(−) when this is the negative parity sequence.

6.5. Numerical results and discussion

Here the results from [24] are presented and the following is cited from this paper.

The numerical behaviour of the average s.p. model parity 〈π̂sp〉, Eq. (6.7), and of the
parity-projected decoupling factor apc, Eq. (6.20), was examined as a function of the
quadrupole and octupole deformations in several odd-mass nuclei. Numerical calcula-
tions were performed on a net in the two-dimensional space of the parameters β2 and
β3. The physical relevance of the decoupling factor in the various regions in the (β2, β3)-
plane was estimated by requiring that the dominant average parity in the given region
has the sign of the parity established in the experimentally measured ground state of
the nucleus.

In Fig. 6.2 the behaviour of the average s.p. model parity in the nuclei 237U, and 249Cm
is shown (upper plots) as a function of the octupole deformation β3 at β2 corresponding
to the experimentally estimated quadrupole deformations of the respective even-even
core nuclei and (lower plots) as a two-dimensional function (contour plot) in the plane
(β2, β3). From the upper plots it is seen that 〈π̂sp〉 smoothly changes with the increasing
of β3. In 237U the average parity starting by −1 at β3 = 0 goes through the zero value
at β3 ∼ 0.15 and further increases to 〈π̂sp〉 = 0.3−0.4. This is an important observation
showing that a presence of a dominant parity is possible at large β3 deformations. The
same result is well seen in the contour plot for the average parity in 237U in the lower
left part of Fig. 6.2. It follows that the presently considered parity-projection coupling
scheme should be applicable in wide ranges in the (β2, β3)-plane.

In 249Cm 〈π̂sp〉 smoothly approaches the zero value for β3 ∼ 0.2 indicating the presence
of a deformation region with strong parity mixing. Nevertheless, similarly to 237U, the
two-dimensional contour plot (the lower right part of Fig. 6.2) shows that in the most
regions in the (β2, β3)-plane the s.p. state is characterized with some dominant parity
instead of becoming totally mixed (〈π̂sp〉 ∼ 0). Another important result is that in
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6.5. Numerical results and discussion

the considered nuclei the s.p. wave functions appear strongly fragmented into various
Nilsson orbitals with different parities. This is indicated in Fig. 6.2 (upper plots) where
the contributions (in %) of the largest [N, nz,Λ] components of the wave function are
given for certain β3 deformations.

The behaviour of the quantity a(+) (which determines the decoupling factor apc in the
cases of a ground state with K = 1/2+) as a function of β2 and β3 in the nucleus 239Pu
is illustrated in Fig. 6.3. The left plot shows a two-dimensional surface containing the
values of a(+) in the (β2, β3)-regions with K = 1/2. The right plot contains a contour
which corresponds to the intersection of the two-dimensional surface with the plane
determined by the decoupling parameter value aqoc = −0.34 fitted in the collective
model [58]. This contour outlines deformation regions for which the microscopically
calculated decoupling factor apc provides a reasonable description of the split parity-
doublet structure, perturbed by the Coriolis interaction, of the experimental spectrum
in 239Pu. Two experimental guesses for the quadrupole deformation, β2 = 0.227 (from
a data base [80] for 239Pu) and 0.286 (from the core nucleus 238Pu [42]) and one for the
octupole deformation, β3 = 0.091 (also from 238Pu [43]), are given in the right plot of
Fig. 6.3. It is seen that the couple of 238Pu core-deformations (β2 = 0.286, β3 = 0.091)
lies exactly on the contour, while the value β2 = 0.227 suggests a slightly larger octupole
deformation β3 = 0.117 for the odd-mass nucleus 239Pu.

This result shows that various (β2, β3)-deformation sets provide consistency of the de-
coupling factor apc with the collective model factor aqoc = −0.34 outlining physically
reasonable regions of quadrupole and octupole deformations in the considered nucleus.
These regions can be further limited through the requirement for the dominant par-
ity corresponding to the experimental ground-state parity. In Fig. 6.4 (left part) the
(β2, β3)-contour corresponding to a(+) = aqoc = −0.34 is mapped on the contour-plot
for the average s.p. parity 〈π̂sp〉, allowing one to see the dominant parity at a given set
of deformations. In the right part of Fig. 6.4 the quantity 〈π̂sp〉 is plotted as a function
of β2 at several fixed β3- values in the deformation region of interest. Indeed, it is im-
mediately seen that the couple of deformations (β2 = 0.227, β3 = 0.117) lies in a region
with positive dominant parity. More precisely one has 〈π̂sp〉 ∼ 0.58 in that point, which
is consistent with the experimentally established positive parity of the ground state of
239Pu [72]. On the other hand the couple (β2 = 0.286, β3 = 0.091) appears in a re-
gion with negative average parity (〈π̂sp〉 ∼ −0.38) which is inconsistent with the known
ground state parity in 239Pu. Thus the implemented analysis suggests that among the
both considered deformation sets only the one (β2 = 0.227, β3 = 0.117) has a reasonable
physical meaning related to the Coriolis decoupling strength and the s.p. parity in the
ground state. In the above aspect, from Fig. 6.4 it is seen that the part of the contour
closed in the region from (β2 = 0.22, β3 = 0.11) to (β2 = 0.27, β3 = 0.14) with 〈π̂sp〉 > 0
provides physically reasonable quadrupole-octupole deformations for the nucleus 239Pu.

Similar analysis can be done for other nuclei. In Fig. 6.5 plots for the average parity
with contours for the decoupling factors are given for the nuclei 251Cf and 219Ac. In 251Cf
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two regions of consistency with the collective model [58] are obtained for the decoupling
factor, but only one of them placed in the right down corner of the plot provides a
positive dominant parity in correspondence to the experimental ground state parity. It
is seen that this region suggests quite a large quadrupole deformation β2 ∼ 0.42− 0.45
with reasonable values for the octupole deformation up to β3 = 0.1. In 219Ac the ground
state is with negative parity. Therefore, here the considered decoupling factor is −a(−)

with a negative dominant parity. The suggested region for the quadrupole-octupole
deformations appears in the left down corner of the plot.

The so far presented considerations allow one to discuss a more complicated problem
related to the estimation of the K-quantum number value on which the split parity-
doublet in a given nucleus is built. As shown in Ref. [58] the collective model fit of the
decoupling factor for the experimental spectrum of 223Ra suggests a considerable mani-
festation of the Coriolis interaction and, therefore, a presence of a K = 1/2 value in the
ground state of this nucleus. On the other hand the estimates given in the experimental
databases suggest K = 3/2 [72]. The present deformed shell model calculations in the
(β2, β3)-plane allow one to examine this problem in detail.

In Fig. 6.6 (left) a “map” of the ground-state K-values appearing in the various regions
of the (β2, β3)-plane is given for 223Ra. Indeed, it is seen that the regions with K = 1/2
are few, which explains why it is difficult to identify them if calculations are performed
for a limited number of β2 and β3 values. On the other hand, the right plot in Fig. 6.6
shows that in the obtained K = 1/2-regions contours of consistency between the values
of the decoupling factor a(+) and the collective decoupling parameter aqoc = 0.12 are
well determined. This result strongly supports the suggestion about the presence of
K = 1/2 with a considerable Coriolis interaction in the spectrum of 223Ra [58]. Further,
the examination of the dominant parity in the (β2, β3)-plane allows one to specify the
physically reasonable deformation regions within the obtained contours of consistency
with the collective model [58]. The average-parity plot for 223Ra is shown in Fig. 6.7. It
is immediately seen that the region with β2 ∼ 0.2 and β3 ∼ 0.05 has to be excluded from
consideration since there the dominant parity 〈π̂sp〉 is negative, while the experimental
ground state parity for 223Ra [72] is obtained positive. Then, one finds two other regions
in the upper right part of the plot where the dominant parity is already positive, 〈π̂sp〉 >
0. Based on this result one can suggest that the physically reasonable quadrupole-
octupole deformations of 223Ra are located in the region of β2 ∼ 0.3 and β3 ∼ 0.15−0.2.
The above result provides an argument for a revision of the value K = 3/2 assigned
to the ground state of 223Ra in experimental data bases. Also, the presently obtained
result suggests a revision of the deformation values proposed for the same nucleus in
a previous work [22], where the region (β2 ∼ 0.2, β3 ∼ 0.05) was misconsidered due to
the lack of a dominant-parity analysis. Also, one should recognize that the presently
obtained (β2, β3)-deformation region for 223Ra is still rather wide. Further detailed
analysis, especially through a consistent application of the deformed shell model and the
collective model, could provide a more precise result.
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6.6. Outlook: Averaging the single-particle Woods-Saxon potential

Figure 6.2.: Average s.p. model parity in 237U and 249Cm as a function of β3 at fixed β2-
values (upper plots) and as a two-dimensional function (lower plots) in the
plane (β2, β3). The light contours in the two-dimensional plots correspond
to a strong s.p. parity mixing, 〈π̂sp〉 ∼ 0, while the others correspond to
some (+) or (−) dominant parity.

6.6. Outlook: Averaging the single-particle
Woods-Saxon potential

The assumption that the collective potential influences the behaviour of the single-
particle wave function while the opposite is much less the case seems to be reasonable
if a single nucleon is attached in addition to a deformed core nucleus. As suggested
by P. Yotov, using this approximation, one could reduce the five-dimensional problem
of the Hamiltonian Ĥcoll + Ĥs.p. (two deformations from the collective part and three
coordinates for the single-particle part) to a three-dimensional one.

In order to do this, one could calculate the expectation value of the single-particle
Woods-Saxon potential with respect to the already obtained collective states Φ(β2, β3)
which are then so to say weighting factors in the calculation of the following average
value:

V (r) =

∫ ∞
0

∫ ∞
−∞

Φ∗(β2, β3)VWS(β2, β3, r)Φ(β2, β3)dβ2dβ3 (6.23)
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6. Connection of intrinsic and collective motion

Figure 6.3.: The projected decoupling factor a(+) in 239Pu as a function of β2 and β3.
The flat areas at a(+) = 0 in the left plot and the white areas in the contour
plot (right) correspond to K 6= 1/2.

The total Hamiltonian to treat is Ĥtot = Ĥcoll+Ĥsp and we can make a separation ansatz

for the solution wave function of Ĥtot.

The idea is now to use the potential V (r) obtained in (6.23) for the treatment of
the single-particle problem. The remaining task is therefore the solution of the three-
dimensional Schrödinger equation. In order to compare the results to the output of the
single-particle program by Cwiok et al. [26], it is a good idea to solve the Schrödinger
equation by means of diagonalization with a |nρ nz Λ Σ〉-basis in cylindrical coordinates.
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6.6. Outlook: Averaging the single-particle Woods-Saxon potential

Figure 6.4.: Average s.p. model parity in 239Pu: (left plot) as a two-dimensional function
in the plane (β2, β3) together with the contour a(+) = aqoc = −0.34 from
Fig 6.3; (right plot) as a function of β2 at several fixed β3-values.

Figure 6.5.: The same as in Fig. 6.4 (left), but for the nuclei 251Cf and 219Ac.
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6. Connection of intrinsic and collective motion

Figure 6.6.: Contour plot showing the different K-regions (left) and the projected de-
coupling factor a(+) (right) as a function of β2 and β3 in 223Ra. The black
contour at a(+) = 0.12 (right) corresponds to a decoupling parameter value
fitted in the collective model [58].

Figure 6.7.: Average s.p. model parity in 223Ra as a two-dimensional function in the
plane (β2, β3) together with the contour a(+) = aqoc = 0.12 from Fig 6.6.
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7. Random Phase Approximation for
complex deformed nuclei

7.1. Introduction

This theory gives some more insight on the relations to the microscopic degrees of free-
dom. Following [50], RPA is a theory widely used for the calculation of vibrational
excitations, particularly for low-lying quadrupole and octupole vibrations. One major
feature of this theory is that the ground state is not considered to be of purely indepen-
dent particle character. Instead, correlations can occur which lead to an enhancement
of some electromagnetic transition rates. Ground state correlations can be thought of
as vibrational zero-point motions.

Originating from a theory for the plasma oscillations of an electron gas (Bohm and Pines,
1953), it was later put on a more elegant basis by Gellmann, Brueckner and Hubbard
in 1957 by means of a summation of perturbation series. In the same year the first
application to nuclear physics was made by Ferrell for the monopole vibrations of the
spherical nucleus 16O.

In our approach we take the single-particle energies and wave functions from the cal-
culations presented in chapter 5. The treatment therefore rests on the Woods-Saxon
parameterization and is phenomenologically motivated. We also assume a separable
residual interaction as shown below.

The systematic study of deformed RPA calculations is relatively new, while spherical
nuclei, especially in the spherical tin region (from 114Sn to 140Sn) have been studied by
spherical quasiparticle RPA calculations as well as in the Quasiparticle-Phonon Model
(QPM) with HFB single-particle input by N. Tsoneva et al. Such calculations allow the
prediction of significant multi-phonon contributions to the mean energies and transition
strengths in these nuclei in contrast to the pygmy dipole resonance states with their
one-phonon character.
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7.2. Derivation of the RPA equation

In order to derive the RPA equations, we will first turn to the Tamm-Dancoff Approx-
imation (TDA) which considers the particle-hole interaction based on the uncorrelated
Hartree-Fock (HF) groundstate. We use a so-called equation of motion method [45, 50]
and follow the argumentation in [15] and [44].

As a starting point we take a set |ν〉 of exact eigensolutions of the Hamiltonian H

H|ν〉 = E|ν〉 (7.1)

and define creation and destruction operators by means of

|ν〉 = Q†ν |0〉 (7.2)

Qν |0〉 = 0 . (7.3)

Together with the Schrödinger equation (7.1) we get the equation of motion

[H,Q†ν ]|0〉 = (Eν − E0)Q†ν |0〉 . (7.4)

Multiplying this equation with an arbitrary state of the form 〈0|δQ gives

〈0|[δQ, [H,Q†ν ]]0〉 = (Enu− E0)〈0|[δQ,Q†ν ]|0〉 . (7.5)

The use of the commutator is legitimate because of 〈0|Q†ν = 〈0|HQ†ν = 0. The treatment
is exact until now because δQ|0〉 exhausts the whole Hilbert space. If we approximate
the exact ground state |0〉 by the HF ground state and the operator Qν by the collective
particle-hole operator

Q†ν =
∑
mi

Cν
mia

†
mai , (7.6)

we obtain the TDA equation∑
nj

〈HF |[a†iam, [H, a†naj]]|HF 〉Cν
nj = ETDA

ν Cν
mi , (7.7)

where ETDA
ν is the excitation energy in TDA approximation and Cν

mi is the expansion
coefficient for the state |ν〉. In order to consider 2p-2h correlations in the ground state,
we extend Q†ν as follows,

Q†ν =
∑
mi

Xν
mia

†
mai −

∑
mi

Y ν
mia

†
iam , (7.8)

where the minus sign has been chosen by convenience. As normalization condition for
the RPA states one chooses 〈0|QQ†|0〉 =

∑
(X2−Y 2). The RPA ground state is defined

in such a way that
Qν |RPA〉 = 0 . (7.9)
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7.3. Separable residual interaction

Instead of Cν
mi we obtain Xν

mi and Y ν
mi and additionally two variations. Therefore we

obtain two sets of equations from (7.5):

〈RPA|[a†iam, [H,Q†ν ]]|RPA〉 = ~Ων〈RPA|[a†iam, Q†ν ]|RPA〉 (7.10)

〈RPA|[a†mai, [H,Q†ν ]]|RPA〉 = ~Ων〈RPA|[a†mai, Q†ν ]|RPA〉 , (7.11)

where ~Ων is the excitation energy of the state |ν〉.

A further approximation frequently made is the so-called quasi-boson approximation.
Assuming that the correlated ground state does not differ from the HF ground state
very much, all expectation values can be calculated in the HF approximation:

〈RPA|[a†iam, a†naj]|RPA〉 = δijδmn − δmn〈RPA|aja†i |RPA〉 − δij〈RPA|a†nam|RPA〉
≈ 〈HF |[a†iam, a†naj]|HF 〉 = δijδmn .

(7.12)

The name quasi-boson approximation (QBA) comes from the use of the boson commu-
tator relations for the pair creation and destruction operators, which however violates
the Pauli principle. In the QBA it becomes clear that the absolute squares of the ampli-
tudes Xν

mi and Y ν
mi give the probability to find the state a†mai|0〉 and a†iam|0〉 in the exact

system |ν〉. For the corresponding components of the transition density ρ(1) = 〈0|a†qap|ν〉
one gets the relations

ρ
(1)ν

mi = 〈0|a†iam|ν〉 ≈ 〈HF |[a
†
iam, Q

†
ν ]|HF 〉 = Xν

mi (7.13)

ρ
(1)ν

im = 〈0|a†mai|ν〉 ≈ 〈HF |[a†mai, Q†ν ]|HF 〉 = Y ν
mi . (7.14)

This allows to write (7.11) in a compact way:(
A B
B∗ A∗

)(
Xν

Y ν

)
= ~Ων

(
1 0
0 −1

)(
Xν

Y ν

)
, (7.15)

with a Hermitian matrix A and a symmetric matrix B given by

Aminj = 〈HF |[a†iam[H, a†naj]]|HF 〉 = (εm − εi)δmnδij + v̄mjin (7.16)

Bminj = −〈HF |[a†iam[H, a†jan]]|HF 〉 = v̄mnij , (7.17)

with RPA energies ~Ων , single-particle energies ε as well as RPA forward and backward
amplitudes Xν and Y ν .

7.3. Separable residual interaction

From the single-particle program we obtain as output the single-particle energies εν and
wave functions ψν =

∑
α cαϕα with basis functions ψα = |α〉 where α is a short notation

for all quantum numbers,
|α〉 = |N nz Λ Ω〉 . (7.18)
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7. Random Phase Approximation for complex deformed nuclei

The states are filled with particles from the bottom of the potential up to the last
occupied orbital which defines the Fermi level. We then consider a given amount of states
below and above the Fermi surface and construct all possible particle-hole excitation
combinations.

We use multipole operators of the form

Q̂λµ = rλYλµ(θ, φ) (7.19)

with a simple power law for the radial part and spherical harmonics. When making
calculations for a given multipolarity λ we always make a summation over µ. Therefore
we define the summed multipole operators

Q̂λ =
λ∑

µ=−λ

Q̂λµ . (7.20)

The RPA matrices A and B are constructed as

Aminj = (εm − εi)δmnδij + v̄mjin (7.21)

Bminj = v̄mnij (7.22)

where A is a Hermitian matrix and B is symmetric. We take the matrix elements of the
residual interaction to be separable in the particle-hole indices. This means [15]

v̄mjin = κλ ·DmiD
∗
nj (7.23)

where m and n label particles while the notations i and j is reserved for holes. The
matrix elements (7.23) are calculated between a particle and a hole state

Dmi = 〈m|Q̂λ|i〉 =
∑
α,β

cαcβ〈α|Q̂λ|β〉 (7.24)

with expansion coefficients cα and cβ taken from the eigenvectors of the single-particle
program.

For technical reasons we relabel the particle-hole pair combinations into a single index

{m, i} −→ σ (7.25)

to obtain two-dimensional matrices A and B.

As the reader might notice there are four possible combinations for the product of the
D matrix elements in (7.23), depending whether the states are taken from protons or
neutrons. Therefore the matrices A and B can be constructed in a block form according
to

A =

(
Ann Anp

Apn App

)
B =

(
Bnn Bnp

Bpn Bpp

)
. (7.26)

The matrices A and B are the same except for the diagonal matrix elements in our case.
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7.4. Simultaneous diagonalization of the RPA matrices

7.4. Simultaneous diagonalization of the RPA matrices

We have to diagonalize the matrix

C =

(
A B
−B∗ −A∗

)
(7.27)

to obtain the RPA solution. Usually the dimension of this matrix is quite large so that it
would be advantageous to use the special symmetry of C instead of a direct calculation
of its eigenvalues and eigenvectors.

This is indeed possible and the procedure is for example given in [71]. In a very short
form it can be formulated as follows.

1. Construct the matrices M = A+B and N = A−B.

2. Check whether N is positive definite. In case of positive definiteness all eigenvalues
are positive. If N is not positive definite M is automatically positive definite. In
this latter case switch the notation of M and N , i.e. M becomes N and N becomes
M .

3. Diagonalize N and construct the transformation matrix T from the eigenvectors.
It is then possible to construct the diagonal matrix Nd = T̃NT where the tilde
denotes the transposed matrix.

4. Construct the matrix M ′ = T̃MT .

5. Construct the matrix M ′′ = N
1/2
d M ′N

1/2
d .

6. Diagonalize M ′′ and obtain eigenvalues ω2
ν and eigenvectors V ′′ν normalized to 1.

Multiply V ′′ν with
√
|ων | to obtain new eigenvectors V ′′ν normalized to |ων |.

7. The RPA amplitudes can now be constructed as

Xν =
1

2
T

(
1

ων
N

1/2
d +N

−1/2
d

)
V ′′ν (7.28)

Yν =
1

2
T

(
1

ων
N

1/2
d −N−1/2

d

)
V ′′ν (7.29)

It was checked that indeed this procedure gives the same eigenvalues and eigenvectors
as a direct diagonalization of the large matrix C. A computer code according to this
algorithm was written.
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7. Random Phase Approximation for complex deformed nuclei

7.5. Calculation of transition strengths

Once the RPA solution is obtained we can calculate the transition amplitude

〈0|F̂ |ν〉 =
∑
mi

(FimX
ν
mi + FmiY

ν
mi) , (7.30)

where F̂ is a transition operator, which is defined as follows. We have an isoscalar
operator

F̂ IS =
A∑
i=1

λ∑
µ=−λ

rλi Yλµ (7.31)

and an isovector operator

F̂ IV =
A∑
i=1

λ∑
µ=−λ

τ
(i)
3 rλi Yλµ (7.32)

where τ3 is the isospin of the isospin operator τ̂3.

7.6. Test calculations for 208Pb

The program is tested quite thoroughly. The formulas for the analytic matrix elements of
the multipole operators are also calculated numerically and are compared to the obtained
analytic values. The procedure of the simultaneous diagonalization of the RPA matrices
is checked to give the same results as the direct diagonalization of the C matrix.

Furthermore, we check that the amplitudes fulfill the normalization∑
mi

(
|Xmi|2 − |Ymi|2

)
= 1 (7.33)

for all particle-hole indices ν. For separable interactions the eigenvalue problem reduces
to a simple dispersion relation [15],

1

κλ
=
∑
mi

|Dmi|2
2εmi

~ω2
ν − ε2

mi

. (7.34)

We run test calculations for 208Pb for the multipolarities λ = 1, 2 and 3. Results for such
calculations can be found in [15] where early RPA calculations from Ring and Speth are
presented. The κλ-values were chosen in such a way so as to reproduce the energetically
low-lying peaks. Results are shown in Figure 7.1.
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7.7. Outlook

7.7.1. Improved treatment of the single-particle continuum

If one takes many particle-hole configurations for the RPA calculation, one has to con-
sider unbound continuum states with E > 0, too. The single-particle program delivers
such states from the diagonalization procedure, but they are not very closely lying to-
gether. In order to obtain a denser continuum, one can take basis states which go to zero
at a given boundary. By putting the boundary more outwards, the continuum states
come closer to each other as we will see.

Let us for simplicity imagine a spherical potential box with radius a, or, to be more
precise let us consider the potential

V (r) =

{
−V0 r < a

0 r > a
. (7.35)

Then, for continuum states with E > 0, one can make the ansatz

Rl(r) =

{
Ajl(qr) r < a

Bjl(kr) + Cnl(kr) r > a
, (7.36)

where jl and nl are spherical Bessel and spherical Neumann functions, respectively, with
wave numbers

k =

√
2mE

~
(7.37)

q =

√
2m(E + V0)

~
. (7.38)

Introducing the notation C/B = − tan δl(k) for the amplitude ratio, the form of Rl(r)
reads asymptotically [46]

Rl(r) =
B

cos δl(k)

1

kr
sin

(
kr − lπ

2
+ δl(k)

)
. (7.39)

If we place a boundary at Rb far enough outside (kr � l), where the wave function has
to vanish, Rl(Rb) = 0, then we obtain

kRb −
lπ

2
+ δl = nπ , (7.40)

and solving this for k = kn gives

kn = (2n+ l)
π

2Rb

− δl
Rb

. (7.41)

79



7. Random Phase Approximation for complex deformed nuclei

This leads to the easy relation

∆k = kn+1 − kn =
π

Rb

, (7.42)

from which one can read off that ∆k becomes smaller, and thus the spectrum becomes
denser, if Rb grows.

7.7.2. Starting from Hartree-Fock Bogolyubov calculations

The RPA program is based on a phenomenological single-particle program. A natural
improvement would be to base the RPA program on single-particle energies and wave
functions obtained from a self-consistent Hartee-Fock Bogolyubov calculation. Such a
code named HFODD is available and published in Computer Physics Communications
by J. Dobaczewski et al [68]. It solves the nuclear Skyrme-Hartree-Fock or Skyrme-
Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic oscillator
basis.

It is possible to run the code for different Skyrme parameter sets and for a given set
of multipole deformations αλµ. Then the single-particle wave functions are obtained
as expansions in the deformed harmonic oscillator basis. In order to extend the RPA
program to use the HFODD wave functions as input, one would have to calculate matrix
elements of the type 〈n′x n′y n′z|Q̂λµ|nx ny nz〉. These matrix elements have been worked
out by Martin and Robledo and can be found in [69].
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7.7. Outlook

Figure 7.1.: Early RPA calculation for 208Pb from 1974 on the left side and spherical
RPA calculations using the deformed RPA program on the right side.
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8. Conclusions

In chapter 3 the coherent quadrupole-octupole model is extended to the case of non-
yrast bands. Besides the ground state band the model also describes different negative
parity level-sequences as well as excited β-bands.

The model predicts possible E(1) and E(3) transitions between states with opposite
parity within various alternating-parity bands. It even can be said that the considered
scheme can be used for the interpretation of data on excitation energies whose place in
the structure of the collective spectrum has not yet been determined.

The approach was applied to a number of selected nuclei for which a relatively large
number of data on B(E1), B(E2) and B(E3) transitional probabilities are available. Of
course one can easily extend the approach to a wider range of nuclei, especially in the
rare-earth and actinide region.

In chapter 4 the quadrupole-octupole model is extended beyond the limit of a coherent
interplay. The oscillations in the quadrupole and octupole degree of freedom can have
different frequencies ω2 and ω3. In the analytically treatable case only a special class of
solutions with an ellipse as minimum in the potential is considered. The non-coherent
solution allows all parameters to vary freely and independently and the parameters can
be adjusted within the full class of solutions of the model.

A very evident result is that the root mean square deviation of the theoretical and
experimental data could be improved in this way. The independence of the parameters
leaves the fitting algorithm a lot of freedom to finally find a unique shape of the potential.
As the parameters for the different nuclei show some individuality and do not vary
completely smoothly, also the resulting wave functions are unique in their shapes.

A not so evident result is that the quadrupole deformation expectation values for the
different nuclei, obtained from the ground state wave functions at angular momentum
I = 0, at least roughly follow the experimentally known numbers. This can be seen as
a true model prediction since no information about the quadrupole deformation values
is used for the adjustment of the parameters.

In chapter 6 the connection of intrinsic and collective motion is investigated. We propose
a coupling scheme for a quadrupole-octupole vibrating and rotating nuclear core and a
single nucleon with a mixed parity. The considered coupling mechanism imposes a
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8. Conclusions

generalized projected form of the Coriolis decoupling factor for the single-particle states
with K = 1/2.

As a result, by comparing the deformed shell model values of the decoupling factor
with the values obtained from the collective model and by requiring a consistency in
the signs of the calculated dominant parity and the experimentally established parity in
the ground state, one is able to outline physically reasonable deformation regions in the
(β2, β3)-plane.

In chapter 7 the deformed shell model output is used as input for deformed RPA calcula-
tions. This work is still in an early stage. First test calculations for the case of spherical
208Pb show that the results of the deformed RPA program are in agreement with ear-
lier spherical RPA calculations. Extended checks of the program and its application to
deformed nuclei is subject of future work.
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A. Appendices

A.1. Equation of motion for the deformation parameters

This appendix treats the idea to perform classical calculations for the time-dependent
deformation parameters by applying the Lagrange equations of classical mechanics.

As I have shown [34], the vibrational part of the Hamiltonian leads to Lissajous-trajectories.
This is easily seen from the Lagrange function L = T −V in the generalized coordinates
β2, β3, β̇2 and β̇3 with a potential (deformation) energy

T (β̇2, β̇3) =
1

2
B2β̇

2
2 +

1

2
B3β̇

2
3 (A.1)

and a kinetic (surface movement) energy

V (β2, β3) =
1

2
C2β

2
2 +

1

2
C3β

2
3 (A.2)

leading to the differential equations

β̈2(t) + ω2
2β2(t) = 0 β̈3(t) + ω2

3β3(t) = 0 , (A.3)

where ω2 =
√
C2/B2 and ω3 =

√
C3/B3. The solutions are the well-known Lissajous-

curves.

The complete vibrational-rotational Hamiltonian was not solved however. This is where
we revisit the problem in the present work.

Some simple algebra shows that adding the coupling term

Vrot-vib =
X

d2β2
2 + d3β2

3

(A.4)

to the potential (A.2) leads to the coupled differential equation system

B2β̈2 + C2β2 −
2Xd2β2

(d2β2
2 + d3β2

3)2
= 0 (A.5)

B3β̈3 + C3β3 −
2Xd3β3

(d2β2
2 + d3β2

3)2
= 0 . (A.6)
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It should be noted that the binomial formula in the denominator leads a mixing β2
2β

2
3-

term which makes it very unprobable that an analytic solution exists. Indeed, Mathe-
matica did not find a solution when this system is tried to be solved with the DSolve

command.

Since there is no analytic solution we need a numeric approach to the problem. The
first step is to reduce the system with two equations of second order to a system with
four first-order differential equations. This is very advantageous in order to apply a
numerical solution method like Euler or Runge-Kutta.

The trick is to introduce new functions

z2(t) =
dβ2(t)

dt
z3(t) =

dβ3(t)

dt
(A.7)

which are defined as derivatives of β2 and β3.

It is a good idea to start with the easier case (A.3) because of reasons of simplicity and
because we can check the numerical result with the analytically known Lissajous-curves.
With (A.7) we have

d

dt
z2(t) = −ω2

2β2(t) (A.8)

d

dt
z3(t) = −ω2

3β3(t) (A.9)

and therefore the following first order differential equation system:

β̇2(t) = z2(t) (A.10)

β̇3(t) = z3(t) (A.11)

ż2(t) = −ω2
2β2(t) (A.12)

ż3(t) = −ω2
3β3(t) . (A.13)

We are not interested in a very accurate solution of the differential equation since it is
only used to get an idea about the classical movement of the system in the deformation
plane. For the purpose of generating some short animations to visualize the surface
motion of the nucleus in real 3D position space the Euler method should work just fine.

For this method we need an initial set of coordinates β2 and β3 and velocities β̇2 and
β̇3 at a given time t0 and a certain small step size h. Then for the next time step t1
one calculates a new set of coordinates and velocities and for the next time step t2 the
calculation relies on the values already known at t1 and so on. It is clear that small
errors tend to add up as time increases.

The most simple example would be a circle. It can be seen from the solution of (A.3),

β2(t) = β2,max sin(ω2t) β3(t) = β3,max sin(ω3t+ α) , (A.14)
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that we get a unit circle in the deformation plane if we set ω2 = ω3 = β2,max = β3,max = 1,
α = π/2 and let t run in the interval [0, 2π). Choosing t0 = 0 this leads to the following
initial conditions:

β2(0) =: β2,0 = 0 (A.15)

β3(0) =: β3,0 = 1 (A.16)

z2(0) =: z2,0 = β̇2(0) = 1 (A.17)

z3(0) =: z3,0 = β̇3(0) = 0 (A.18)

Performing one time step in the Euler algorithm we have

t1 = t0 + h (A.19)

β2,1 = β2,0 + β̇2(t0)h = β2,0 + z2(t0)h = β2,0 + z2,0h (A.20)

β3,1 = β3,0 + β̇3(t0)h = β3,0 + z3(t0)h = β3,0 + z3,0h (A.21)

z2,1 = z2,0 + ż2(t0)h = z2,0 + (−ω2
2β2(t0))h = z2,0 − ω2

2β2,0h (A.22)

z3,1 = z3,0 + ż3(t0)h = z3,0 + (−ω2
3β3(t0))h = z3,0 − ω2

3β3,0h (A.23)

and it is clear how to continue.

For the system (A.6) the procedure is completely analoguous. In that case the first order
system becomes

β̇2(t) = z2(t) (A.24)

β̇3(t) = z3(t) (A.25)

ż2(t) = −C2

B2

β2(t) +
2Xd2β2(t)

B2 [d2β2(t)2 + d3β3(t)2]2
(A.26)

ż3(t) = −C3

B3

β3(t) +
2Xd3β3(t)

B3 [d2β2(t)2 + d3β3(t)2]2
. (A.27)

This method was implemented in a Fortran program and choosing a not too small value
of h, like for example 0.1, it can be seen that the numerical solution curve tends to
deviate from the true solution. Adjusting h to a smaller value like 0.01 improves the
numerical solution considerably. The true solution is a closed circle and if one lets the
time run one never escapes this circle. In case of the numerical solution the circle is
almost closed but the curve tends to move slowly more and more in outward direction
with each rounding, giving the shape of a spiral.

Choosing Mathematica for the task of the numerical solution gave more precise results.
This is due to the fact that Mathematica’s command NDSolve works with a much more
sophisticated algorithm to solve the differential equation system. This has also the
advantage that one can directly produce a series of images of the nucleus in an array
which can be exported as e.g. a GIF-animation.
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In case of the Fortran program the output data was visualized using Gnuplot to produce
wire frame images of the nucleus.

There is one open question related to the analysis of this section, namely if there is
a possibility to have closed curves for the system (A.6). It was mentioned that the
numerical solution goes away from the true solution which simply lies in the nature of
the numerical method. So on the basis of numerical investigation it is doubtful if one is
able to decide if there are closed curves. We also do not have an analytic solution, so to
answer this question one would somehow have to decide it by looking at the differential
equation.

A.2. Path Integral Monte Carlo calculations

A somewhat more quantum mechanical approach to the problem of how the nucleus
moves is to assume a more random motion instead of given trajectories. This can be
achieved with a path integral approach to the problem. From the Metropolis algorithm
[52] explained below we get a path in the 2D deformation space, moving from one point
to a next neighbouring one in a way very similar to the Brownian motion. This gives a
more realistic picture of the surface motion of the nucleus. With this method we are even
able to obtain the groundstate energy and wave function which belongs to the potential.

A.2.1. Definition of the path integral

We closely follow the first section of [51]. The path integral is often called the Kernel
and is obtained by integration over all possible paths between two fixed points in space
and time,

K(b, a) =

∫ b

a

eiS[b,a]Dx(t) (A.28)

where S is the classical action for a given path:

S =

∫ tb

ta

L(ẋ, x, t)dt . (A.29)

In order to define integration over a functional space, one introduces a time lattice. The
time axis is sliced into N + 1 points and the coordinates (assuming a one-dimensional
motion) of the particle are given by (x1, x2, . . . , xN) with −∞ < xj <∞. This leads to
the following action on the lattice

Slat[x] =
N∑
j=1

a

[
m

2

(xj+1 − xj)2

a2
− V (xj)

]
, (A.30)
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where a = T/(N + 1) with which the path integral becomes

K(b, a)lat =

∫ xN=xb

x0=xa

eiSlat[x]

N∏
j=1

dxj
A

(A.31)

with a normalization factor A.

A.2.2. The Metropolis algorithm for the Harmonic Oscillator

In order to see how a numerical simulation looks like with the Path Integral Monte
Carlo (PIMC) method, we will treat the Harmonic oscillator. This system is analytically
treatable with the introduction of a time lattice, giving the result [51]

K(b, a) =

√
mω

2πi sin(ωT )
exp

{
imω

2 sin(ωT )
[(x2

a + x2
b) cos(ωT )− 2xaxb]

}
. (A.32)

Since we are more interested in a computer algorithm which works for an arbitrarily
given potential, we will now see how one can obtain the oscillator’s ground state wave
function (or its square to be more precise) as well as the ground state energy with the
Metropolis algorithm.

This algorithm was first presented by Metropolis in [52]. We follow the procedure given
in [53]. The Metropolis algorithm is a Markov chain updating algorithm. For a given
current configuration (path) a new configuration is proposed, the change δS in action is
computed and the new configuration is accepted with probability min

(
1, e−δS/~

)
.

To illustrate this let us take the action of the harmonic oscillator

S[x(t)] =

∫ tb

ta

(
1

2
mẋ2 +

1

2
mω2x2

)
dt (A.33)

and discretize it for Monte Carlo evaluation

S

~
=
mε

2~

N−1∑
j=0

[(
xj+1 − xj

ε

)2

+ ω2

(
xj+1 + xj

2

)2
]
, (A.34)

where Nε = tb − ta and ε chosen small enough to have small discretization errors.

Then the Metropolis algorithm to update location xj works as follows: First one proposes
a random shift −∆ ≤ δ ≤ ∆ with uniform probability. Then one calculates the change
in action δS/~ caused by this change. Then the new location xnew

j = xj + δ is accepted

with probability min
(
1, e−δS/~

)
. As a rule of thumb one should tune ∆ to an acceptance

rate of about 50 %. For a lower rate one wastes too much time with rejections and for
a higher rate one is moving through phase space too slowly.
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This procedure is repeated for each xj for j = 1, . . . , N − 1 which is called a sweep.
One should perform such a sweep several times in order to obtain sufficiently small
autocorrelations.

Figure A.1.: A typical path generated by the Metropolis algorithm for the harmonic
oscillator after several sweeps.

If one plots all the points belonging to the path in space, then one gets a point cloud
picture which gives a good information about the wave function. Indeed the wave
function can be obtained from the path by means of a bin count. One defines small
intervals for the position and counts how often the particle is in this bin for the given
path. This can be done very elegantly in Mathematica using the command BinCount.
The result can immediately be interpreted as |ψ0(x)|2 with ψ0 being the ground state
wave function.

In order to obtain the ground state eigenvalue one can square root this function to obtain
ψ0(x). If one applies a rule for second order numerical derivation of a function one gets
ψ′′0(x). This makes it possible to calculate E0 = 〈ψ0|Ĥ|ψ0〉.

A.3. Matrix elements for the s.p. Hamiltonian for an
axially deformed HO basis

These matrix elements are also given in [67] but were rederived in order to have them
in a form more suitable for a computer code and in order to eliminate some misprints.
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Figure A.2.: Point cloud generated by the Metropolis algorithm for a simple Gaussian
wave function (ground state of a 2D harmonic oscillator).

A.3.1. Kinetic energy matrix elements

The operator T̂ is diagonal in Λ and Σ and the matrix elements are given by

〈nρ, nz,Λ|T̂ |nρ, nz,Λ〉 =
1

2
~ω⊥(n⊥ + 1) +

1

2
~ωz

(
nz +

1

2

)
(A.35)

〈nρ, nz,Λ|T̂ |nρ − 1, nz,Λ〉 =
1

2
~ω⊥

√
nρ(nρ + |Λ|) (A.36)

〈nρ, nz,Λ|T̂ |nρ, nz − 2,Λ〉 = −1

4
~ωz
√

(nz − 1)nz (A.37)

A.3.2. Woods-Saxon potential matrix elements

The φ-integration is trivial and therefore we are left with two-fold integrals over the
variables ξ and η which are related to the cylindrical coordinates by

√
η ≡

√
Mω⊥

~
r ξ ≡

√
Mωz

~
z . (A.38)

The integrals are

〈n′ρ, n′z,Λ′,Σ′|V |nρ, nz,Λ,Σ〉 = δΛ′,ΛδΣ′,ΣNn′zNnzN
Λ′

n′ρ
NΛ
nρ

∫ ∞
0

dηηΛe−η

×
∫ +∞

−∞
dξe−ξ

2

Hn′z(ξ)Hnz(ξ)L
Λ′

n′ρ
(η)LΛ

nρ(η)V (ξ, η) (A.39)
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and can be fastly evaluated using Gauss-Hermite and Gauss-Laguerre quadrature rules.
In the previous expression we use the normalization factors

Nnz ≡
1√√
π2nznz!

NΛ
nρ ≡

√
nρ!

(nρ + |Λ|)!
. (A.40)

A.3.3. Spin-orbit potential matrix elements

The matrix elements are in the diagonal case

〈n′ρn′zΛΣ|Vso|nρnzΛΣ〉 =
κΛ

~
〈Σ|σz|Σ〉Nn′zN

Λ
n′ρ
NnzN

Λ
nρ

Mω⊥
~

∫ ∞
0

dηηΛ−1e−η

×
∫ ∞
−∞

dξe−ξ
2

V (η, ξ)

{[
Λ− η + 2n′ρ)L

Λ
nρ(η)LΛ

n′ρ
(η)− 2(n′ρ + Λ)LΛ

nρ(η)LΛ
n′ρ−1(η)

]
+[

(Λ− η + 2nρ)L
Λ
n′ρ

(η)LΛ
nρ(η)− 2(nρ + Λ)LΛ

n′ρ
(η)LΛ

nρ−1(η)
]}
Hnz(ξ)Hn′z(ξ) (A.41)

and

〈n′ρn′zΛ′Σ′|Vso|nρnzΛΣ〉 = − κ

2~
Nn′zNnzN

Λ′

n′ρ
NΛ
nρ

√
Mω⊥

~

√
Mωz

~
〈Σ′|σ±|Σ〉

×
∫ ∞

0

dηη
1
2

(Λ′+Λ−1)e−η
∫ ∞
−∞

dξe−ξ
2

V (η, ξ)

{[
Λ′
(
LΛ′

n′ρ
(η)LΛ

nρ(η)+{
(Λ′ − η + 2n′ρ)L

Λ
nρ(η)LΛ′

n′ρ
(η)− 2(n′ρ + Λ′)LΛ

nρ(η)LΛ′

n′ρ−1(η)
})

− Λ
{

(Λ′ − η + 2n′ρ)L
Λ
nρ(η)LΛ′

n′ρ
(η)− 2(n′ρ + Λ′)LΛ

nρ(η)LΛ′

n′ρ−1(η)
}]

×
(
−ξHn′z(ξ)Hnz(ξ) + 2nzHn′z(ξ)Hnz−1(ξ)

)
+

[
Λ
(
LΛ′

n′ρ
(η)LΛ

nρ(η) +
{

(Λ− η + 2nρ)L
Λ′

n′ρ
(η)LΛ

nρ(η)− 2(nρ + Λ)LΛ′

n′ρ
(η)LΛ

nρ−1(η)
})

− Λ′
{

(Λ− η + 2nρ)L
Λ′

n′ρ
(η)LΛ

nρ(η)− 2(nρ + Λ)LΛ′

n′ρ
(η)LΛ

nρ−1(η)
}]

×
(
−ξHnz(ξ)Hn′z(ξ) + 2n′zHnz(ξ)Hn′z−1(ξ)

)}
(A.42)

in the non-diagonal case with the same normalization factors as in the previous para-
graph.
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A.4. CQOM transition theory: analytic expressions for
the integrals

A.4.1. Explicit form of the integrals over η

The integrals over η, (3.19) and (3.20), can be written in the following common form
after taking into account the explicit expression for the radial wave functions

Sl(ni, Ii;nf , If ) =

∫ ∞
0

dηψ
If
nf (η)ηl+1ψIini(η)

= N

∫ ∞
0

e−cη
2

csfη2sfL
2sf
nf (cη2)ηl+1csiη2siL2si

ni
(cη2)dη, (A.43)

where l = 1, 2, si = (1/2)
√
k2
i + bX(Ii), sf = (1/2)

√
k2
f + bX(If ) and

N = Nni,nf (c, si, sf ) = 2c

[
Γ(nf + 1)Γ(ni + 1)

Γ(nf + 2sf + 1)Γ(ni + 2si + 1)

] 1
2

. (A.44)

To derive an explicit expression for the integral (A.43) one can apply the substitution
cη2 = x with dx = 2cηdη, such that

ηl+1dη =
1

2c1+l/2
xl/2dx. (A.45)

Then Eq. (A.43) reads as

Sl(ni, Ii;nf , If ) =
Nni,nf (c, si, sf )

2c1+l/2

∫ ∞
0

e−xxsi+sf+ l
2L

2sf
nf (x)L2si

ni
(x)dx. (A.46)

By using known formulas for integration of two generalized Laguerre polynomials with
different real ranks [75], [76] one obtains (A.46) in the following explicit form

Sl(ni, Ii;nf , If )

=
Nni,nf (c, si, sf )

2c1+l/2

Γ(nf + 2sf + 1)

Γ(1 + 2sf )

Γ(ni + si − sf − l
2
)

Γ(si − sf − 1)

Γ(si + sf + l
2

+ 1)

ni!nf !
(A.47)

× 3F2

(
−nf , si + sf +

l

2
+ 1, sf − si +

l

2
+ 1; 2sf + 1, sf − si +

l

2
+ 1− ni; 1

)
,

where 3F2 denotes a generalized hypergeometric function [77]. The generalized hyperge-
ometric function 3F2 is calculated numerically through a summation of its series repre-
sentation for which a Fortran code is available [78]. It can be easily checked that if the
first argument of 3F2 in (A.47) is zero, nf = 0, one has 3F2 = 1. In this case Eq. (A.47)
reduces to the following simpler expression

Sl(ni, Ii; 0, If ) =
1

c l/2
Γ(si + sf + l

2
+ 1)Γ(ni + si − sf − l

2
)√

ni!Γ(2sf + 1)Γ(ni + 2si + 1)Γ(si − sf − l
2
)
. (A.48)
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This corresponds to a transition from a non-yrast to an yrast state. The integrals for
the yrast intraband transitions, Eqs. (50) and (51) in [16], are directly obtained from
Eq. (A.48) when ni = 0. Simple explicit forms of the Sl integrals for interband and
intraband transitions in the particular cases up to n = 2, which are of practical interest,
are given below

Sl(1, Ii; 1, If )

=
1

c l/2

[
(2si + 1)(2sf + 1)− (si + sf −

l

2
)(si + sf +

l

2
+ 1)

]
×

Γ(si + sf + l
2

+ 1)√
Γ(2si + 2)Γ(2sf + 2)

, (A.49)

Sl(2, Ii; 1, If )

=

√
2

2c l/2

{
2(si + 1)(2si + 1)(2sf + 1)− (si + sf +

l

2
+ 1)

×
[
2(si + 1)(2si + 4sf + 3)− (si + sf +

l

2
+ 2)(3si + sf −

l

2
+ 2)

]}
×

Γ(si + sf + l
2

+ 1)√
Γ(2si + 3)Γ(2sf + 2)

. (A.50)

Sl(2, Ii; 2, If )

=
1

2c l/2

{
4(si + 1)(2si + 1)(sf + 1)(2sf + 1)

− (si + sf +
l

2
+ 1)

[
16(si + 1)(sf + 1)(si + sf + 1)

− (si + sf +
l

2
+ 2)

{
2(si + 1)(2si + 1) + 2(sf + 1)(2sf + 1) + 16(si + 1)(sf + 1)

− (si + sf +
l

2
+ 3)(3si + 3sf −

l

2
+ 4)

}]} Γ(si + sf + l
2

+ 1)√
Γ(2si + 3)Γ(2sf + 3)

. (A.51)

A.4.2. Explicit form of the integrals over φ

The integrals over the angular variable φ, (3.21), with the relevant parities πi and πf
can be obtained in the following explicit forms. For λ = 2 the integral I±±2 with k1 =
k2 = k = odd (++) or even (−−) is

I±±2 (k) =
2

π
Cat +

(−1)k+1

4k

[
1 +

4

π

2k−1∑
m=1

sin(mπ/2)

m

]
, (A.52)
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where Cat =
∑∞

n=0
(−1)n

(2n+1)2
≈ 0.915965594177... is the Catalan constant. In the case of

k1 6= k2, both odd or even, the integral is

I±±2 (k1, k2) =
1

2|k2 − k1|

1 +
4

π

|k2−k1|−1∑
m=1

sin(mπ/2)

m

 (A.53)

+
(−1)k1+1

2(k2 + k1)

[
1 +

4

π

k2+k1−1∑
m=1

sin(mπ/2)

m

]
.

For λ = 3 one has

I+−
3 (k1, k2) =

2k2

k2
2 − k2

1

− 1

π

[
(−1)(k2−k1−1)/2

(k2 − k1)2
+

(−1)(k2+k1−1)/2

(k2 + k1)2

]
, (A.54)

where k1 = 1, 3, 5, . . . , k2 = 2, 4, 6, . . . For λ = 1 the integral is obtained in the form
of an infinite, but reasonably converging series

I+−
1 =

1

2π

±∞∑
m=±1

±∞∑
n=±1

∑
ν=±1

sign(−n)

|mn|

×
[
(1− δk2+νk1,−m−n)

sin[(k2 + νk1 +m+ n)π
2
]

(k2 + νk1 +m+ n)
+
π

2
δk2+νk1,−m−n

]
, (A.55)

where k1 = 1, 3, 5, . . . , k2 = 2, 4, 6, . . .

A.5. Matrix elements of ĵ+ in the ADHO basis

An analytic expression for the matrix elements of ĵ+ = l̂+ + ŝ+ (l̂+ and ŝ+ are the
s.p. orbital momentum and spin operators, respectively) can be derived by using the
boson representation of the ADHO basis functions [82] and the “stretched” form of the
operator l̂+ in cylindric coordinates [83]. The ADHO basis states are given as [82]

|nzn⊥ΛΣ〉 = (−1)(n⊥−Λ)/2 (a+
z )nz√
nz!

(b+
1 )(n⊥+Λ)/2√

[(n⊥ + Λ)/2]!

(b+
2 )(n⊥−Λ)/2√

[(n⊥ − Λ)/2]!
|000〉|Σ〉, (A.56)

with n⊥ + nz = N (N is the major oscillator quantum number) and Λ + Σ = Ω. Here
the operators

a+
ξ =

1√
2

(
cξξ −

1

cξ
∂ξ

)
aξ =

1√
2

(
cξξ +

1

cξ
∂ξ

)
ξ = x, y, z , (A.57)
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with cξ =
√
mωξ/~ are the standard boson operators for the harmonic oscillator quanta

in the Cartesian coordinates x, y, z. The operators

b+
1 =

1√
2

(
a+
x + ia+

y

)
b+

2 =
1√
2

(
a+
x − ia+

y

)
(A.58)

are the result of a canonical transformation providing the operators

N⊥ = b+
1 b1 + b+

2 b2

Lz/~ = b+
1 b1 − b+

2 b2, (A.59)

whose eigenvalues are n⊥ and Λ, respectively, while the quantum number nz is the
eigenvalue of the operator a+

z az.

After reversing the relations (A.57) and (A.58) one obtains

x = 1
2c⊥

(b+
1 + b+

2 + b1 + b2) ∂x = c⊥
2

(−b+
1 − b+

2 + b1 + b2)

y = i
2c⊥

(−b+
1 + b+

2 + b1 − b2) ∂y = ic⊥
2

(b+
1 − b+

2 + b1 − b2)

z = 1√
2cz

(a+
z + az) ∂z = cz√

2cz
(−a+

z + az),
(A.60)

where c⊥ =
√
mω⊥/~ with ω⊥ = ωx = ωy. By using the above relations in the standard

definitions of the angular momentum operators

l̂ξi = −i~
(
ξj∂ξk − ξk∂ξj

)
, ξi,j,k = x, y, z cyclic, (A.61)

and

l̂± = l̂x ± il̂y, (A.62)

one obtains the raising operator of the single-particle orbital momentum l̂+ in terms of
the operators a+

z , az and b+
1 , b2 [83]

l̂+ =
~√
2

[
a+
z b

+
1 (−q1/2 + q−1/2) + a+

z b2(q1/2 + q−1/2)

+ azb
+
1 (−q1/2 − q−1/2) + azb2(q1/2 − q−1/2)

]
, (A.63)

with q = ω⊥/ωz = β2
⊥/β

2
z (β⊥ = (mω⊥/~)1/2, βz = (mωz/~)1/2 [84]).

The matrix element of the operator l̂+, Eq. (A.63), between basis states (A.56) is ob-
tained by using the action of the operators a+

z , az and b+
1 , b2 on the respective parts of the

basis vector (A.56). The raising operators a+
z and b+

1 increase the power factors of the
terms (a+

z )nz and (b+
1 )(n⊥+Λ)/2 by 1, and after rearranging respectively the denominators

one obtains the shifted vector parts |nz + 1〉 and |n⊥ + 1〉. The lowering operators az
and b2 act after the use of the relation b(b+)n = n(b+)n−1 +(b+)nb (with the second term
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giving zero) and lower the powers of the corresponding terms in the vector (A.56). As
a result the quantum numbers nz and n⊥ are shifted by −1. Thus one has

〈n′zn′⊥Λ′Σ′|l̂+|nzn⊥ΛΣ〉 = −~
2
δΛ′Λ+1δΣ′Σ

×
[
(q1/2 − q−1/2)

(√
(nz + 1)(n⊥ + Λ + 2) δn′⊥ n⊥+1δn′z nz+1

+
√
nz(n⊥ − Λ) δn′⊥ n⊥−1δn′z nz−1

)
+ (q1/2 + q−1/2)

(√
(nz + 1)(n⊥ − Λ) δn′⊥ n⊥−1δn′z nz+1

+
√
nz(n⊥ + Λ + 2) δn′⊥ n⊥+1δn′z nz−1

)]
. (A.64)

By using the relation N = n⊥ + nz, one can write the matrix element l̂+ between basis
states |NnzΛΣ〉

〈N ′n′zΛ′Σ′|l̂+|NnzΛΣ〉 = −~
2
δΛ′Λ+1δΣ′Σ

×
[
(q1/2 − q−1/2)

(√
(nz + 1)(N − nz + Λ + 2) δN ′N+2δn′z nz+1

+
√
nz(N − nz − Λ) δN ′N−2δn′z nz−1

)
+ (q1/2 + q−1/2)δN ′N

(√
(nz + 1)(N − nz − Λ) δn′z nz+1

+
√
nz(N − nz + Λ + 2) δn′z nz−1

)]
. (A.65)

The spin operator ŝ+ is given by

ŝ+|nzn⊥ΛΣ〉 =

√
3

4
− Σ(Σ + 1) |nzn⊥ΛΣ + 1〉, Σ = ±1

2
, (A.66)

and its matrix element is

〈n′zn′⊥Λ′Σ′|ŝ+|nzn⊥ΛΣ〉 = δn′z nzδn′⊥ n⊥δΛ′ ΛδΣ′ 1
2
δΣ− 1

2
. (A.67)

For the basis states |NnzΛΣ〉 the expressions (A.66) and (A.67) are the same with only
n⊥ being replaced by N . When the basis is denoted by |NnzΛΩ〉 the factors δΣ′Σ and
δΣ′ 1

2
δΣ− 1

2
in (A.65) and (A.67) are replaced by δΩ′Ω+1. The above matrix elements were

originally tabulated as selection rules for the ADHO basis quantum numbers in Ref.
[85], while here they are given in a closed form. The expression (A.65) is given in [86]
without derivation.
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