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veh.  vehicle-treated 

VLCFA  very long chain fatty acid 

VMAT2  vesicular monoamine transporter 2, aka solute carrier family 18, member 2  
  (SLC18A2), neurotransmitter dopamine 

VTA  Area tegmentalis ventralis, aka ventral tegmental area 

WHO  World Health Organization 

X-ALD  X-linked adrenoleukodystrophy 

XOx  xanthine oxidase 

YLD  years lost to disease 

ZNF804A gene encoding for zinc finger protein 804A (Homo sapiens) 
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Abstract 

 

 Signs of neurodegeneration are commonly found in schizophrenic patients, albeit still 

unclear, why they occur and whether they are a cause or rather an effect of schizophrenia. 

Although there are numerous studies supporting either theory, the working hypothesis of 

this thesis is that an overactivity of mesolimbic dopaminergic pathways leads to dopamine 

neurotoxicity in terms of an increased production of reactive oxygen species (ROS), in time 

leading to oxidative stress and thereby to so-called atypical neurodegeneration. This in turn 

negatively influences i.a. frontal glutamate neurotransmission, thereby linking the proposed 

schizophrenia-models of hyperdopaminergia and hypoglutamatergia.   

 A key player in the body’s antioxidant capacity is the peroxisome. This cell organelle 

is involved in both enzymatic (e.g. through the H2O2-degrading enzyme catalase) as well as 

non-enzymatic antioxidant metabolism. Its role in schizophrenia has, however, only been 

poorly examined, even though peroxisomes additionally are the only known source to-date 

of major enzymes for the degradation of cofactors of NMDA-receptors (including NMDA 

itself). Changes in peroxisomal metabolism and abundance therefore influence both the 

brain’s capacity to degrade ROS as well as the functionality of its NMDA receptors and vice 

versa. This thesis therefore examines the reactions of peroxisomes to increased dopamine. 

 Since peroxisomes are involved in a number of other metabolic functions apart from 

antioxidant defense, their enzyme content is highly heterogeneous. Catalase and ABCD3 are 

generally used as markers for peroxisomes. Their abundance is, however, highly dependent 

on metabolic demands and therefore varies extremely between as well as within different 

organs, tissues and cells. Especially in the brain, both catalase and ABCD3 are barely 

detectable, thereby leading to a marked underestimation of true peroxisomal abundance 

and distribution. 

 In the first part of this thesis it was therefore attempted to establish a new 

peroxisomal marker, peroxin 14 (Pex14p), which is part of a docking complex on the 

peroxisomal membrane relevant for import of all matrix proteins and therefore independent 

of individual peroxisomal metabolism. 

 Using various morphological methods in a large variety of organs, tissues and cell 

types from a number of different species it could be shown that Pex14p is indeed present in 
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the membrane of every healthy peroxisome and is expressed in similarly high levels in tissue 

sections and cell cultures of different organs and species.  

 As Pex14p is also highly suited as a peroxisomal marker in all neuronal tissue, post 

mortem brain sections of schizophrenic patients and controls were analyzed regarding the 

abundance and distribution of peroxisomes as well as catalase. The results were, however, 

inconclusive, wherefore the reactions of peroxisomes to increased dopamine were analyzed 

under more controllable conditions within the second part of this thesis. The effects of 

dopamine in vitro were examined using primary murine neuronal and astrocyte cell cultures 

and the in vivo-effects in a pharmacological mouse model (through subchronic systemic 

administration of the selective, non-competitive NMDAR-antagonist MK-801). 

 Analyses of gene expression patterns from the brains of the animals show i.a. an 

activation of antioxidant pathways in MK-801-treated animals compared to vehicle-treated 

controls as well as an increase in mRNA copies of enzymes involved in NMDAR-cofactor 

degradation. 

 Morphological experiments show that dopamine changes peroxisomal reactions and 

neuronal morphology specifically and only in intact neuron-astrocyte interactions, mimicking 

the atypical neurodegeneration found in schizophrenic patients. Additionally, increased 

levels of selected antioxidant enzymes were found to be increased in the brains of MK-801-

treated animals. 

 It can therefore be concluded that dopamine does indeed lead to increased ROS 

production in the brain, which is, however, initially still countered by an increase in 

antioxidant defense mechanisms. This strengthens the initial hypothesis that oxidative stress 

(i.e. the state of disequilibrium between ROS production and antioxidant defense) is an 

effect rather than a cause of schizophrenia. 

 Finally, the dopamine-related increase in the expression of genes encoding for 

enzymes degrading NMDAR-cofactors, thereby leading to a decrease of NMDAR-mediated 

neurotransmission, shows that hyperdopaminergia and hypoglutamatergia in schizophrenia 

are not separate entities, but rather influence, uphold and even exacerbate each other. This 

led to the proposition of a new integrative model of the etiopathogenesis of schizophrenia, 

linking both hyperdopaminergia and hypoglutamatergia together. 
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1. Introduction 

 

1.1 Schizophrenia 

 

 In the current version of the International Statistical Classification of Diseases and 

Related Health Problems, 10th Revision (ICD-10), subsection F (Classification of Mental and 

Behavioural Disorders) (World Health Organization, WHO, 2007,  p. 78) schizophrenia is 

described as “characterized in general by fundamental and characteristic distortions of 

thinking and perception, and by inappropriate or blunted affect. Clear consciousness and 

intellectual capacity are usually maintained, although certain cognitive deficits may evolve in 

the course of time.” The latter aspect of the WHO definition has particularly been scrutinized 

since increasingly more findings report cognitive dysfunction as a major symptom in 

schizophrenic patients (Kuperberg & Heckers, 2000; Mueser & McGurk, 2004; Ongur et al., 

2006; van Os & Kapur, 2009) often even in the prodromal phase of first episode patients 

before the emergence of psychotic symptom (Addington, Brooks & Addington, 2003; van Os 

& Kapur, 2009). Cognitive deficits are widely accepted to be more enduring than psychotic 

symptoms (Vinogradov, 2003; Mueser & McGurk, 2004; van Os & Kapur, 2009) and are 

considered a better predictor for clinical outcome than response to treatment. The current 

development presents a resurgence of interest regarding the cognitive alterations and 

decline over the course of the disorder as originally proposed by the dementia praecox 

model of Emil Kraepelin and refuted by the diagnostic model based on the concept of 

schizophrenia by Eugen Bleuler. Some schizophrenia researchers even suggest the idea that 

cognitive symptoms (rather than psychosis) may actually be the core feature of 

schizophrenia. 

 

1.1.1 Epidemiology and societal consequences 

 Reports in prevalence and incidence of schizophrenia are extremely heterogeneous 

(Goldner et al, 2002). The average incidence is reported between 0.02 and 0.2% per year. 

Due to the often chronic course of schizophrenia the prevalence is higher, being reported 

between 0.34 and 1%. The life time prevalence is estimated around 1% (Goldner et al., 2002; 

Mueser & McGurk, 2004; Austin, 2005; Picchioni & Murray, 2007; van os & Kapur, 2009). 

Data by the WHO estimated over 26 million cases of schizophrenia worldwide in 2004, 16.7 
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million of which were classified as a disabling condition. Schizophrenia therefore belongs to 

the most severe disability class (VII), alongside severe depression, severe migraine, 

quadriplegia and terminal cancer (WHO, 2008). Üstün et al. (1999) place schizophrenia third 

in their rank of disabling effect of health conditions by severity behind quadriplegia and 

dementia. The disorder causes 8.3/8.0 million years lost to disease (YLD), making up for 

2.8/2.6% of total YLD with values for males and females respectively (WHO, 2008). 

Compared to other diseases of similar disabling effects, but far higher prevalence, 

schizophrenia is one of, if not the major burden to society, requiring a disproportionate 

share of mental health services and leading to significant work place drop out. 

Approximately 25% of beds in psychiatric care facilities are occupied by schizophrenic 

patients, who also account for 50% of hospital admissions. The total costs of treating 

schizophrenia are high, estimated to be 44.9 billion dollars in the USA for the year 1994, 2.6 

billion pounds in the UK for 1996 and 2.35 billion Canadian dollars in Canada for the same 

year (Mueser & McGurk, 2004). The total direct and indirect economic annual burden 

caused by schizophrenia is estimated at roughly 1.2 trillion dollars in the US (Austin, 2005) 

The combined economic and social costs of schizophrenia place it among the world’s top ten 

causes of disability-adjusted life-years (DALY), accounting for an estimated 2.3% of all 

burdens in developed countries and 0.8% in developing economies (Mueser & McGurk, 

2004). The disorder is slightly more common in males than females (ratio approximately 

1.4:1), but has a definitive pattern of earlier onset, combined with more negative symptoms, 

worse clinical outcome and lower chance of full recovery in men compared to women 

(Hafner et al., 1993; Picchioni & Murray, 2007). Patients usually present with their first 

schizophrenic episode during late puberty to early adolescence. 

 

Fig. 1.1_1: Gender differences in age of onset of schizophrenia (modified from Hafner et al., 1993) 
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 Schizophrenia is also recognized (directly and indirectly) as a cause of excessive 

mortality in patients. Reasons here fore are often due to social withdrawal, lack of personal 

care, well-balanced eating habits and physical activity (e.g. inducing circulatory, digestive, 

endocrine, neurological and or respiratory diseases), side effects of antipsychotic medication  

as well as a significant increase in smoking-related deaths (Brown, Inskip & Barraclough, 

2000; Evins & Goff, 2008). The rate of successful as well as attempted suicides is also 

uncommonly high in schizophrenic patients (Caldwell & Gottesman, 1990; Radomsky et al., 

1999, Tandon, 2005). 

 

1.1.2 Signs and symptoms 

 Schizophrenic symptoms can generally be grouped into four categories: Positive, 

negative, cognitive and affective. Positive symptoms include delusions, hallucinations, 

thought and speech disorders and bizarre behavior. Negative symptoms are characterized by 

a reduction in normal psychophysical processes, e.g. alogia, avolition, asociality (not to be 

mistaken for antisociality) and catatonia. Cognitive deficits are common in schizophrenic 

patients and often predate the first florid psychotic episode (see introductory remarks to 

this chapter). Schizophrenic patients on average perform one standard deviation below the 

norm in various trials testing attention, processing speed, working and long-term memory, 

executive function and social cognition (van Os & Kapur, 2009) and their premorbid IQ, years 

before the onset of psychosis, is estimated on average at one-half of a standard deviation 

below that of healthy controls (Woodberry et al., 2008). Finally, affective disorders can range 

in both extremes from the norm (blunted affect & anhedonia vs. manic symptom) or involve 

so-called inappropriate affect, during which patients show affective responses not only 

incoherent with the socially accepted emotional expression (e.g. laughing upon receiving of 

bad news), but also sometimes not matching the emotion the patient “wants” to express 

(Davison & Neale, 1998). The model currently being able to best describe the congregation 

of such a broad array of (in part) seemingly unrelated symptoms is that of aberrant salience 

(Kapur, 2003). The inability of patients to discriminate between relevant and irrelevant 

stimuli at first leads to delusional ideas, which may then mature into full-blown positive and 

affective symptoms. Aberrant salience can also directly cause cognitive symptoms since 

patients will be incapable of adequate attention, sensorimotor gating including processing 

speed, stimulus perception and recognition as well as stimulus generalization, which is an 
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integral part of many learning processes. The added advantage of this proposed mechanism 

is that it also offers an explanation for the early onset as well as persistence of cognitive 

deficits, the ongoing mental decline observed in many patients as well as the high prediction 

value of cognitive impairment regarding the outcome of the disorder. Finally, aberrant 

salience may also present as lack of salience (because, in essence, all stimuli being processed 

as equally salient means that no stimulus is more salient than the others) thereby leading to 

negative symptoms, including blunted affectivity, anhedony and even post-schizophrenic 

depression. This can be illustrated nicely by a patient quotation from McGhie & Chapman, 

(1961, p. 106): “I can’t concentrate on television, because I can’t watch the screen and listen 

to what is being said at the same time. I can’t seem to take in two things like this at the same 

time, especially when one of them means watching and the other means listening. On the 

other hand I always seem to be taking in too much at the one time and then I can’t handle it 

and can’t make sense of it.” 

 

1.1.3 Diagnostic guidelines 

 Two major diagnostic manuals exist for psychiatric disorders, the aforementioned 

ICD-10 (mostly used in Europe) and the Diagnostic and Statistical Manual of Mental 

Disorders, 4th Edition, Text Revision (DSM-IV-TR) (American Psychiatric Association, APA, 

2000). The agreement between diagnoses derived from either system is reported to be very 

high (Jakobsen et al., 2005) (q.v. table 1.1_1). 

 Both manuals share the subdivisions paranoid schizophrenia, hebephrenic or 

disorganized schizophrenia, catatonic schizophrenia, undifferentiated schizophrenia and 

residual schizophrenia, whereby the developers of the DSM-V are contemplating on 

dropping these sub-classifications (www.dsm5.org). The ICD-10 additionally defines a post-

schizophrenic depression and simple schizophrenia, a slowly progressive form of the 

disorder consisting solely of negative symptoms and without any history of hallucinations, 

delusions or any other manifestations of an earlier psychotic episode.   
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Table 1.1_1: Diagnostic guidelines according to DSM-IV-TR and ICD-10  

Diagnostic criterion Description DSM-IV-TR ICD-10 

Characteristic 
symptoms (two or 

more during 1 month 
or more) 

Delusions – thought 
echo/insertion/withdrawal/ 
broadcasting 

+ 
(one during 1 

month if delusion is 
bizarre) 

+ 
(one during 1 
month, if very 

clear) 

 

Delusions – 
control/influence/passivity/ 
perception (referred to body, 
actions, sensations or thoughts) 

+ 
(one during 1 

month if delusion is 
bizarre) 

+ 
(one during 1 
month, if very 

clear) 

 
Delusions – persistent, culturally 
inappropriate and completely 
impossible 

+ 
(one during 1 

month if delusion is 
bizarre) 

+ 
(one during 1 
month, if very 

clear) 

 Hallucinations - auditory 

+ 
(one, if running 

commentary or two 
or more conversing 

voices) 

+ 
(one during 1 
month, if very 

clear) 

 
Hallucinations – persistent, of any 
other modality + + 

 

Incoherent/disorganized speech 
(resulting from breaks or 
interpolations in the train of 
thought) 

+ + 

 
Catatonic or grossly disorganized 
behavior (incl. negativism, mutism 
or stupor) 

+ + 

 Negative symptoms + + 

 

Significant and consistent changes 
in personal behavior (loss of 
interest, aimlessness, idleness, self-
absorbed attitude, social 
withdrawal) 

only if leading to 
social/ 

occupational 
dysfunction (see 

below) 

only for Simple 
Schizophrenia 
(duration of at 
least one year) 

Duration  

at least 6 months 
(including 

prodrome and 
residual) 

at least 1 month 

Social/occupational 
dysfunction 

 + 

possibly 
subclinical during 

prodrome 

Exclusion Affective/schizoaffective disorder + + 

 
Direct effects of substance 
intoxication/withdrawal + + 

 

Direct effects of general medical 
condition (includes brain 
disease/disorder, epilepsy, hyper-
/hypoglycemia etc.) 

+ + 
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1.1.4 Neurodegeneration in schizophrenia 

 Although not mentioned in either of the commonly used diagnostic manuals, 

schizophrenia is closely associated with neurodegenerative processes. Progressive reduction 

of brain total volume, enlargement of ventricles and loss of cortical as well as subcortical 

gray matter have been found in chronic and first-episode schizophrenic patients, whereby 

the exacerbation of neurodegeneration through antipsychotic pharmacotherapy cannot be 

excluded. The amount of neurodegeneration and loss of brain connectivity correlate with 

the severity of positive symptoms (Suzuki et al., 2005; Lui et al., 2009). The cause of 

neurodegeneration is still not clear, but could likely be due to oxidative damage caused by 

dopamine neurotoxicity (personal communication by Prof. Nancy Andreasen). Interestingly, 

the neurodegenerative processes appear to differ from those found in primary 

neurodegenerative disorders like Alzheimer’s disease, as there is no evidence of significantly 

increased neuronal death or reactive gliosis (Lieberman, 1999). It appears rather that 

schizophrenic patients show signs of atypical neurodegeneration, namely reduction of 

neuronal size resulting in secondary pathological features including loss of dendritic 

arborization and synaptic density, altered synaptic plasticity and increases in neuronal 

density (Benes et al., 1991a; 1991b; Browning et al., 1993; Daviss & Lewis, 1995; Selemon, 

Rajkowska & Goldman-Rakic, 1995; Arnold et al., 1996; Perrone-Bizzozero et al., 1996; 

Glantz & Lewis, 1997, Goldman-Rakic & Selemon, 1997; Zaidel, Esiri & Harrison, 1997;  

Rajkowska, Selemon & Goldman-Rakic, 1998). 
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1.1.5 Proposed causes of schizophrenia 

 Although the list of possible causes of schizophrenia is extensive, recent studies 

suggest a gene-environment interaction model (GxE), under which most of the commonly 

described ethiopathogenetic mechanisms can be subsumed (van Os & Kapur, 2009).  

 

 

Fig. 1.1_2: GxE-model of schizophrenia and related psychoses 

 

Many findings indeed show a significantly higher risk for schizophrenia as a result of 

environmental risk factors in patients carrying risk-alleles (van Os, Kenis & Rutten, 2010). 

 

 

Fig. 1.1_3: Carriers of “risk alleles” for schizophrenia (G+) are influenced more by environmental factors 

regarding schizophrenia-related symptoms and clinical admissions than non-carriers (G-). (modified from van 

Os, Kenis & Rutten, 2010) 

 

The following section shall therefore be divided into three aspects: (a) genetic risk factors, 

(b) environmental risk factors and (c) neurochemical mechanisms or alterations. 

 

1.1.5.1 Genetic risk factors: The genetic basis of schizophrenia is widely acknowledged. The 

risk of schizophrenia is extremely high in first degree relatives of schizophrenics, especially in 

monozygous twins (this effect is exacerbated due to common in-utero environment), very 
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high in second degree relatives and still considerably higher in third degree relatives than in 

the general population: 

 

Table 1.1_1: Rates of schizophrenia among relatives of schizophrenic patients  

Familial relationship 
Schizophrenia rates among relatives of schizophrenic patients 

Tsuang & Vandermey, 
1980 (approx. values) 

Gottesman, 1991 Rowe, 1994 

Siblings 9% 9% 7.3% 

Monozygotic twins 58% 48% 44.3% 

Dizygotic twins  17% 12.1% 

Siblings - neither 
parent schizophrenic 

8.5%   

Siblings - one parent 
schizophrenic 

14%   

Same sex siblings 12%   

Opposite sex siblings 6%   

Half-siblings 3.5% 6% 2.9% 

Nieces or nephews 2.5% 4% 2.7% 

Children 12% 13%  

Children - both parents 
schizophrenic 

37%  36.6% 

Children - one parent 
schizophrenic 

  9.4% 

Grandchildren 3% 5% 2.8% 

Parents 5% 6%  

Uncles or aunts 2.5% 2%  

First cousins 3% 2% 1.6% 

General 
population/spouses 

1% 1% 1% 

 

  

 The number of association studies published on potential genetic risk factors for 

schizophrenia borders on 2000, unfortunately with highly heterogeneous and often 

inconsistent results. In order to help with the interpretation of this wide array of results, 

Allen et al., created a regularly updated and publicly accessible online database (SzGene, 

www.szgene.org) of all genetic association studies for schizophrenia published in peer 

http://www.szgene.org/
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reviewed journals and written in English (Allen et al., 2008). For eligible polymorphisms with 

genotype data in at least four case-control samples, continuously updated random-effects 

meta-analyses are presented. In the initial paper on the SzGene-database a total of 24 

genetic variants were found in 118 meta-analyses within 16 different genes (APOE, COMT, 

DAO, DRD1, DRD2, DRD4, DTNBP1, GABRB2, GRIN2B, HP, IL1B, MTHFR, PLXNA2, SLC6A4, 

TP53 and TPH1) that showed nominally significant effects with average summary odds ratios 

of approximately 1.23. By 2011 SzGene lists a total of 1727 eligible studies performed on 

1008 genes with 8788 polymorphisms in question. The number of meta-analyses is currently 

287. SzGene also currently incorporates the findings of 14 genome-wide association studies 

(GWAS) and 12 other large-scale studies (mostly fine-mapping studies and GWAS re-

analyses/follow ups). In all these studies, merely three protein-coding genetic loci were 

found in more than one study: ZNF804A and HIST1H2BJ (in two studies each) and NOTCH4 

(in three studies). As of 2009, Taylor et al. reviewed 63 mouse models with mutations or 

complete knockouts of various considered risk genes for schizophrenia. The validity of these 

mouse models is very heterogeneous. Any inferences from knockout animals should be 

drawn with great care, since the dysfunction of an entire gene does not represent the actual 

underlying genetic component found in schizophrenic patients. Even more so, the lack of any 

protein missing through the genetic knockout during ontogeny may have influences and 

repercussions on a wide variety of (neuronal) functions not directly involved with the 

protein/gene that has been knocked out, e.g. neuronal migration and growth, 

synaptogenesis, myelination or glial (especially astrocyte) development. Finally, the vast 

interconnectivity between neuronal pathways and transmitter systems and their 

interdependence during brain maturation and ontogeny may lead to false interpretations 

regarding immediate causality, e.g. a gene knockout in transmitter system A may lead to 

alterations in the development of basal activity of transmitter systems B which in turn 

influences systems C and D, whereof only D is involved in the etiopathogenesis of the 

disorder in question. Drawing the conclusion from the exemplary knockout that alterations 

in transmitter A activity in humans causes the disorder would therefore be highly 

questionable. The issue of critical time periods for the etiopathogenesis of schizophrenia will 

therefore be addressed in the following section. 
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In humans allelic variants of many schizophrenic candidate genes have also been shown to 

have an impact on schizotypy or endophenotypes of schizophrenia in the general population 

(Stefanis et al., 2007; Billino, Hennig & Gegenfurtner, 2011a; 2011b). 

 

1.1.5.2 Environmental risk factors: Amongst the more commonly discussed environmental 

factors or negative life events (nLEs) that are discussed as being causally involved in the 

development of schizophrenia are intra-uterine and perinatal complications (e.g. intra-

uterine growth retardation, viral infections, hypoxia, malnourishment), physical, 

psychological and sexual abuse, high expressed emotions in the family, social adversity, 

double bind relationships, migration, urbanicity, stress and drug abuse (especially 

cannabinoids, cocaine, amphetamine and phencyclidine/ketamine). 

 Two concepts appear to be of major importance regarding the influences of nLEs on 

the outbreak of schizophrenia: Sensitization and critical time periods. The concept of 

sensitization refers to the observation that multiple exposure to environmental risk factors 

(either multiple single exposures to different factors or repeated exposure to similar factors 

or a combination of both) leads to a greater increase in the development of phenotypical 

symptoms, eventually resulting in lasting schizophrenia (Collip et al., 2008) 

 

Fig. 1.1_4: The concept of sensitization; Person A (green) has ‘‘normal’’ developmental expression of subclinical 

psychotic experiences that are mild and transient. Person B (yellow) has similar expression but longer 

persistence due to additional but mild environmental exposure. Person C (red) has prolonged persistence due 

to severe and/or repeated environmental exposure and subsequent transition to clinical psychotic disorder, 

which can be repeatedly and easily triggered again at later time-points by relatively mild stressors. (based on 

Collip et al, 2008) 
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 Evidence for the validity of this concept could be shown i.a. in an animal study on 

intra-uterine growth retardation induced through low-protein diet of the pregnant mother 

C57Bl/6J mice (Vucetic et al., 2010). Results showed significant alterations in dopamine 

metabolism in the offspring in comparison to pups of mice fed with a control diet (in 

essence, increase in dopaminergic neurons in the midbrain, higher levels of mRNA 

expression of genes related to dopamine metabolism, altered methylation patterns of same 

genes, increase in dopamine abundance in combination with reduced dopamine 

degradadation etc.). In regards to behavioral patterns (locomotion patterns as commonly 

used as schizophrenia-phenotypical symptom expression in rodents), however, mice did not 

show differences compared to control animals. When a second environmental risk factor 

was introduced (high fat diet or cocaine administration), experimental animals did show a 

clear phenotype.  

 

Fig. 1.1_5: Animals with intrauterine growth retardation (IUGR) initially show no schizophreniform phenotype, 

despite various significant epigenetic, morphological and neurochemical alterations, until exposed to an 

environmental stressor like cocain or high-fat diet. (modified from Vucetic et al., 2010) 

 

 Similar results regarding sensitization were found in a large national cohort study 

performed on all children born in Sweden between 1963 and 1983 (n = 2.1 million). Among 

other results the authors showed that the risk of admission for schizophrenia rose with the 
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number of adverse social variables, leading them to attribute 20% of cases of schizophrenia 

to adverse social exposure (Wicks et al., 2005). 

 Various other animal models with a wide range of validity exist for schizophrenia that 

involve environmental challenges, including brain lesions, induced metabolite deficiencies, 

intra-uterine, peri- and postnatal physical or social stress, viral infections of the pregnant 

mother animal etc. (Taylor et al., 2009; published on schizophreniaforum.org). 

 Many of the inconsistencies regarding environmental influences on the outbreak of 

psychosis can be explained through critical life or time periods. These are sensitive periods 

of neuronal development during which the basal activities and the interconnections within 

and between neuronal pathways/transmitter systems are established. In this context it is 

important to note that, apart from primary intrauterine neural development, the brain 

continues to mature long after birth with significant changes in synaptic plasticity and 

neurotransmission occurring during puberty, most likely due to the influences of sex 

steroids. Gestational brain maturation studies comparing the consequences of maternal viral 

infections show significant correlations between schizophrenia and influenza during the 

second to early third, but not the first trimester (Mednick et al., 1988; Sham et al., 1992; 

Kunugi et al., 1995). Vice versa, maternal nutritional deprivation was fund to be a major risk 

factor during the first, but not the second or third gestational trimester (Susser & Lin, 1992; 

Susser et al., 1996; Hoek, Brown & Susser, 1998; StClair et al., 2005; Xu et al., 2009). Also, 

maternal stress during pregnancy, especially during months 3-5 and 9, was shown to be 

associated with increased risk of schizophrenia compared to paternal loss during the first 

year of life (Huttunen & Niskanen, 1978). Similar results regarding critical time periods can 

be found for the influences of drug abuse during puberty, whereof especially cannabis is 

considered a major risk factor. A vast number of animal and human studies using different 

methods conclude that schizophrenia is associated to cannabis use during puberty, but not 

in adults. This can be explained through several interconnections: (a) external stimuli are 

important for unique brain development. (b) Dopaminergic systems undergo critical 

refinement during adolescence. (c) Dopaminergic, glutamatergic and GABA-ergic system 

interact in the mature and developing brain with each other as well as the endocannabinoid 

system. (d) The immature brain contains many silent glutamatergic synapses, which have 

NMDA receptors, but lack AMPA receptors (see section on glutamate transmission). These 

silent synapses are converted into functional ones during critical time periods due to the 
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incorporation of AMPA receptors. (e) Neuronal activity during critical time periods changes 

the composition of NMDA receptors, which are made up of different subunits, whereby 

immature NMDA receptors are more sensitive to glutamate and therefore to glutamate 

excitotoxicity. Therefore binding of glutamate as well as influencing the NMDA receptor 

indirectly through cannabinoids during critical periods will have long-lasting effects (for an 

extensive review on brain maturation and cannabinoids, see Bossong & Niesink, 2010). Over 

all it can be said that there is a vast amount of evidence that the influence of environmental 

factors on the development of schizophrenia is not only dependent on repetitive events as 

shown through studies on sensitization, but also that the brain undergoes significant periods 

during which it is sensitive to the influence of specific life events but not others. Therefore 

the risk of schizophrenia being exacerbated through negative life events is not only inter-, 

but also intraindividually different, meaning the same life event may or may not lead to an 

outbreak of psychosis between as well as within persons. 

 The common link between genes, environment and neurochemistry is believed to be 

active methylation and/or demethylation of genes (especially within promoter regions). 

During DNA methylation a methyl group is transferred from S-adenosyl-L-methionine (SAM) 

to (preferably) cytosine bases/deoxycytidine nucleosides through the enzyme DNA 

methyltransferase (DNA MTase, DNMT). The alterations of DNA methylation interfere with 

binding of transcription factors to promoter regions of genes, thereby altering their 

expression patterns.  

   

1.1.5.3 Neurochemical mechanisms: Two major theories regarding alterations in 

neurotransmission have been proposed as causally related to schizophrenia: The dopamine 

and the glutamate hypotheses of schizophrenia. The dopamine hypothesis as well as the 

possibility of interactions between both theories shall be discussed in more detail in the 

following chapter on dopamine. 

 The theory of glutamate hypofunction in schizophrenia was first proposed by Kim et 

al. in 1980, due to findings of low glutamate levels in the cerebrospinal fluid (CSF) of 

schizophrenic patients. These results were fortified through findings that schizophreniform 

symptoms could be induced acutely through blockage of glutamatergic N-methyl-D-

aspartate receptors (NMDARs) in healthy controls (Javitt & Zukin, 1991; Krystal et al., 1994). 

The same groups of substances were also shown to induce longer (8-24 hrs) episodes of 
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psychosis in schizophrenic patients strikingly resembling symptoms during florid episodes of 

their illness (Lahti et al., 1995). Unlike other pharmacological substances, NMDAR blockers 

are able to induce both positive and negative symptoms of schizophrenia (Bowers & 

Freedman, 1966; Krystal et al., 1994) as well as cognitive symptoms and thought disorders 

similar to schizophrenic patients (Oye, Paulsen & Maurset, 1992; Malhotra et al., 1996; Adler 

et al., 1999).  

 Post mortem studies on schizophrenic patients show changes in glutamate 

metabolism and NMDAR subunit composition (Tsai et al., 1995; Clinton & Meador-Woodruff, 

2004), and a pilot SPECT-study found reduced NMDAR binding in the hippocampus of 

medication-free schizophrenic patients (Pilowsky et al., 2006). 

 Double-blind, placebo-controlled studies have shown significant improvement in 

positive and negative symptoms comparable to control groups treated with olanzapine in 

patients treated with an agonist of the metabotropic glutamate 2/3 receptor (mGlu2/3R), 

however, with prolactin levels, extrapyramidal motor symptoms and weight gain 

comparable to placebo-treated controls (Patil et al., 2007; Mosolov et al., 2010). Due to the 

nature of the NMDAR, being both ligand- and voltage-gated (see below), agonists of other 

glutamate receptors, like the mGLU2/3R, could enhance post-synaptic membrane 

depolarization and thereby NMDAR transmission. 

 Based on the aforementioned indication of glutamatergic involvement in the 

etiopathogenesis of schizophrenia many animal models have been established using 

selective non-competitive NMDAR blockers (reviews by Bubeníková-Valesová et al., 2008 or 

Carpenter & Koenig, 2008) - alternatively mouse models were established with mutations or 

knockouts of various genes encoding for proteins involved in NMDAR-transmission. The 

most common pharmacological models of NMDAR blocking use phencyclidine (PCP, street 

name “Angel Dust”), ketamine (street name “Special K”) or dizocilpine (MK-801). Ketamine is 

still used across the world, including Germany, during full anesthesia, but usually only in 

cases where patients present with risk of peri-operative circulatory collapse, as they often 

report vivid and frightening sensory perceptions and/or nightmares during anesthesia 

(personal communication from Dr. Andrea Mietens, anesthesiologist, Giessen, Germany). In 

this thesis the pharmacological MK-801 model was chosen in male pubescent C57Bl/6J mice. 
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Table 1.1_2: Some animal correlates of schizophrenia symptoms (modified from Arguello & Gogos, 2006) 

Symptom type Clinical manifestation 
Preclinical model/ 

animal correlate 

Positive Psychomotor agitation 
Hyperlocomotion in response to 

novelty or stress 

 
Psychostimulant 

supersensitivity 

Enhanced locomotor response to 

psychostimulants 

Negative Social withdrawal 
Decreased interaction with 

conspecifics 

 Anhedonia 
Decreased reinforcing properties of 

drugs of abuse und natural rewards 

Cognitive Memory deficits 
Delayed nonmatch to sample tasks, 

serial odor span 

 
Attentional deficits 

Latent inhibition, 5-choice serial 

reaction time tasks 

 

 
Executive dysfunction Attention set-shifting task 

 

 Glutamate is the major excitatory neurotransmitter found in the mammalian central 

nervous systems, especially in the forebrain. It is stored in synaptic vesicles and released into 

the synaptic cleft upon Ca2+-dependent exocytosis, when an action potential reaches the 

presynaptic button. Apart from the aforementioned metabotropic glutamate receptors 

(mGluRs) three major ionotropic receptors are known. They are named according to their 

major agonists: AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), kainate 

and NMDA (N-methyl-D-aspartate) receptors. AMPA and kainate receptors are ligand-gated 

ion channels involved in fast excitatory synaptic transmission and lead to depolarization of 

the postsynaptic membrane (excitatory postsynaptic potential, EPSP). NMDA receptors, 

however, are blocked through a Mg2+-ion within the channel and are therefore not only 

ligand-, but also voltage-gated, as the Mg2+ only dissociates from within the pore, if the 

postsynaptic membrane has been sufficiently depolarized. Apart from the binding sites for 

NMDA/glutamate and Mg2+ the NMDAR also has several other binding sites for cofactors, 
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like D-serine, D-cycloserine and glycin, and antagonists like ketamine, PCP and MK-801. The 

open NMDAR is a channel for sodium, potassium and, importantly, also for calcium ions. 

 

Fig. 1.1_6: N-methyl-D-aspartate receptor (NMDAR); Gly: binding site for glycine, D-serine, D-cycloserine; 

NMDA: binding site for glutamate, D-aspartate, NMDA; PCP: binding site for phencyclidine (PCP), ketamine, 

dizocilpine (MK-801) (modified from Javitt, 2006) 

 

 Influx of calcium through the NMDAR pore leads directly and indirectly to the 

activation of various kinases, including Ca2+/calmodulin dependent (CaM) kinases, mitogen-

activated protein (MAP) kinases, tyrosine kinase and protein kinases A and C. This complex 

signal transduction cascade leads to the phosphorylation of a cyclic adenosine 

monophosphate (cAMP) response element binding protein (CREB), which then binds to the 

cAMP response element (CRE) in the promoter regions of various genes, e.g. for the 

expression of proteins for new AMPA receptor formation, thereby leading to alteration of 

the synaptic strength (synaptic plasticity). This process of neurotransmitter-induced gene 

expression, referred to as long term potentiation (LTP), is known for other transmitter 

receptors (e.g. dopamine receptors of the D1-family or the serotonin receptor 5-HT2A), but is 

best studied in NMDA receptors. 

 For NMDAR activation to work, a complex interplay between neurons and astrocytes 

is necessary, since both glutamate metabolism as well as the production of cofactors involve 

astrocytes. The important cofactor D-serine, for example, is produced in astrocytes from L-

serine through the enzyme serine racemase. It has been shown to effectively reduce 

positive, negative as well as cognitive symptoms in antipsychotic-resistant schizophrenia 

patients (Tsai et al., 1998; Heresco-Levy et al., 2005). Upon Ca2+-influx into the postsynaptic 
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neuron neuronal nitric oxidide synthase (nNOS) is activated producing NO, which then 

diffuses through the neuronal and astrocyte membranes and deactivates serine racemase, 

thereby functioning as negative feedback mechanism for NMDAR transmission. It has also 

been shown that NMDAR blockage using MK-801 leads to a rapid increase in expression of 

serine racemase mRNA (Yoshikawa et al., 2004a). In this thesis serine racemase expression 

induction was therefore chosen as an internal positive control for the action of MK-801. 

 

 

Fig. 1.1_7: Time course of changes in the levels of serine racemase mRNA in several brain areas of rat after 

systemic administration of MK-801 (0.4 mg/kg); St: striatum, Hip:hippocampus, Cx: cortex (modified from 

Yoshikawa et al., 2004a) 

 

 The alternative mechanism of termination of NMDAR transmission is through 

enzymes degrading amino acids of D-chirality, such as NMDA, D-serine and D-aspartate 

(which is also an NMDAR agonist). The currently only known enzymes to perform this 

function are the peroxisomal enzymes D-amino acid oxidase (DAAO) and D-aspartate oxidase 

(D-AspOx). Both enzymes have therefore also been discussed in the context of 

schizophrenia. Findings regarding the involvement of D-AspOx are few, but Errico et al. 

(2008) showed a reduction of a commonly used schizophrenic phenotype (prepulse 

inhibition, PPI) as well as an increase in hippocampal learning through unphysiological D-

aspartate increases in an MK-801 mouse model both after oral D-aspartate administration as 

well as in mice with a targeted deletion of the D-AspOx gene.  

 DAAO, on the other hand, is currently on 40th place on SZGene’s Top Results list since 

many studies have proposed links between polymorphic variations of the encoding gene and 
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schizophrenia (Chumakov et al., 2002; Liu et al., 2004; Schumacher et al., 2004; Wood, 

Pickering & Dechairo, 2007). Post-mortem studies show elevated DAAO activities and 

expression rates in brains from schizophrenic patients (Burnet et al., 2008; Madeira et al., 

2008), and increased levels of D-serine were found in patients’ CSF and serum (Hashimoto et 

al., 2003; 2005; Bendikov et al., 2007). 

 Interestingly, Yoshikawa et al. (2004b) found that inhibition of NMDAR trafficking 

through MK-801 leads to significant increases in DAAO mRNA expression. This process is, 

however, markedly slower than the aforementioned induction of serine racemase 

expression. A possible explanation is that the increase in D-serine would also lead to an 

increase in DAAO expression. Alternatively, sequences homologous to cAMP response 

elements (CREs) were found in the 5’-flanking region of the DAAO gene (Fukui & Miyake, 

1992). It is therefore possible that the increase in DAAO activity found in patients is not 

primarily the cause of schizophrenic symptoms, but could also be a side effect of transmitter 

system interactions (e.g. through activation of dopamine release and binding to certain D1-

like receptors involved in CREB phosphorylation). This side effect would in turn exacerbate 

rather than cause a schizophrenia phenotype. This is speculative, but other interactions 

between the glutamatergic and dopaminergic systems are better established, wherefore this 

argumentation would fit in line with a proposed model of hyperdopaminergia as a 

bottleneck within the etiopathogenesis of schizophrenia (q.v. the appropriate section in the 

next chapter). 
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1.2 Reactive oxygen species and antioxidant defense systems 

 

 Interestingly, oxygen was not originally found freely in earth’s atmosphere. Free 

oxygen, released from early obligate anaerobic prokaryotes during photosynthesis, was 

absorbed by minerals. Approximately 2.4 billion years ago, after the minerals had become 

saturated with oxygen, it began to accumulate freely in the atmosphere, thereby killing off a 

large portion of obligate anaerobics, an event known as the Great Oxygenation Event (GOE). 

Survival of organisms in this new toxic atmosphere made an evolutionary step necessary, 

which took place approximately 2 billion years ago through the endosymbiosis of what were 

to become mitochondria. These organelles are not only capable of enzymatically reducing 

and thereby detoxifying ROS, but also allowed archaebacteria, that had previously obtained 

their energy through glycolysis and fermentation, to use oxygen for respiration, thereby not 

only giving an evolutionary advantage, but ultimately allowing for life outside the ocean. 

Other theories state, that mitochondria were actually not the first endosymbionts, but were 

preceded by actinobacterial ancestors, which would then evolve into peroxisomes (Duhita et 

al., 2010). These indigestible parasitic invaders were also capable of degrading ROS, but 

could not generate energy through redox metabolism. 

 Even though oxygen now is an element vital for the survival of aerobic organisms, 

mainly during the generation of energy in form of adenosine triphosphate (ATP) through 

mitochondrial respiratory chain activity (ca. 80% cellular oxygen), it is also a highly reactive 

and potentially toxic molecule. The result of these reactions (removal of electrons from 

other molecules; oxidation) can lead to the formation of reactive oxygen species (ROS), 

which can be briefly divided into radicals and non-radicals. Accumulation of ROS can alter 

the intracellular redox balance and may lead to oxidation of cellular macromolecules like 

lipids, proteins or even nucleic acids. ROS are therefore usually combated by antioxidant 

defense mechanisms of the cells, which consist of enzymatic and non-enzymatic antioxidant 

mechanisms. A state of disequilibrium between pro- and antioxidant mechanisms is referred 

to as oxidative stress (Reddy & Yao, 1996). 

 

1.2.1 Oxygen chemistry, radicals and reactive oxygen species formation 

 Oxygen is the element with the atomic number 8 in the periodic table. It is 

represented by the abbreviation O and has an atomic weight of 15.994 u (Da; g/Mol). It has 
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eight protons in its core and eight electrons, whereof six are in its valence shell, making 

oxygen a potent electron acceptor (hence the term oxidization/oxidizing agent). Its major 

function in eukaryotes is therefore that of the being the most electronegative of all electron 

acceptors in the electron transport chain of mitochondrial respiration.  

 

 

Fig. 1.2_1: Illustration of a single oxygen atom undergoing a covalent bond with two hydrogen atoms to form 

molecular oxygen. Hereby the highly reactive oxygen receives two electrons to its outer shell transferring it into 

a non reactive state. (modified from Encyclopaedia Britannica) 

 The most common oxygen-allotrope, dioxygen (O2), usually exists in its ground state 

(triplet oxygen), since this form is least reactive. Of the eight electrons involved in the double 

bind between two oxygen atoms, two each occupy a molecular orbital alone. This makes 

dioxygen a diradical. In triplet oxygen, as opposed to the alternative state called singlet 

oxygen, however, both of these unpaired electrons have equal spins, wherefore triplet 

oxygen could only accept electrons from another reaction partner with two unpaired 

electrons of opposite spin to its own (Halliwell, 2006). Other electrons involved in double 

bonds are paired in an orbital with another electron of opposite spin, wherefore they would 

not be accepted by triplet oxygen. Through energy input it can occur that one of the 

unpaired electrons inverts its spin, thereby changing triplet oxygen into the highly reactive 

singlet oxygen, which can occur during photosensitization reactions or during lipid 

peroxidation (Halliwell et al., 2006) as is also used by the immune system amongst other 

reactive oxygen species for killing of bacteria (Wentworth et al., 2002). Singlet oxygen exists 

in two possible configurations: either both opposing electrons continue to occupy one 

molecular orbital each or they pair up in one molecular orbital leaving the other completely 

empty. 

 Since dioxygen has both the character of a double bound molecule (as shown 

through the skeletal formula <O=O>) as well as that of a radical (as shown through the 

skeletal formula ·O  -O  ·) the most accurate description of the molecules nature through a 
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skeletal formula would be <O÷O>. It can be reduced through either receiving 4 electrons 

alongside 4 protons, as is the case during mitochondrial respiration, to form water (O2 + 4 H+ 

+ 4 e-  >  2 H2O) or, receive only 2 electrons and 2 protons to form hydrogen peroxide (O2 + 2 

H+ + 2 e-  >  H2O2). This step is often a byproduct of enzymatic activity (e.g. during 

degradation of dopamine through monoamine oxidases). Although dioxygen is not a primary 

cause of oxidative damage in its triplet state, it can lead to autoxidation of other molecules. 

Especially in the brain, reaction of O2 with several aromatic neurotransmitters and their 

precursors or metabolites leads to the formation of quinones and semiquinones. These 

strong oxidizing agents consist of cyclic dione structures with two double bonded oxygen 

atoms. They no longer have aromatic character and can react with neutrophilic 

macromolecules to form other ROS. 

 

 

Fig. 1.2_2: Formation of a quinone through autoxidation of dopamine (modified from Stokes et al., 1999) 

 Dioxygen is, however, not directly the major font of intracellular ROS formation. Most 

oxidative damage comes from electron leakage during mitochondrial respiratory chain 

activity. Under physiological circumstances, electrons are transported along the inner 

mitochondrial membrane through a series of redox reactions, whereby the electrons are 

always passed on to a more electronegative redox-partner. The most electronegative 

molecule is dioxygen, which is reduced as described above by cytochrome c oxidase 

(complex IV) to water. Approximately 80% of the bodies inhaled oxygen is used in this 

pathway, which is therefore also referred to as cellular respiration (Halliwell, 2006). Through 

the energy won through these redox reactions protons are pumped from the mitochondrial 

matrix into the intermembrane space, thereby causing a proton gradient over the 

membrane, which in turn powers an ATP synthase. 

 Even under physiological conditions, however, there is a leak of electrons from this 

transport chain, mainly at complexes I and III. These free electrons then react with dioxygen 

within the mitochondrial matrix as well as the intermembrane space to form the superoxide 

radical (full name: superoxide radical anion; O2
°-). Since these electrons come one at a time, 



1.2 Reactive oxygen species and antioxidant defense systems 22 
 

 

molecular dioxygen can accept them even as triplet oxygen. The rate of leakage is usually 

less than 5 %, but can increase during hyperoxia (Halliwell, 2006). 
 

 

Fig. 1.2_3: Schematic illustration of the electron transport chain along the inner mitochondrial membrane 

showing common sites of electron leakage and superoxide radical anion (O2
°-) formation 

 The superoxide radical is usually not highly reactive, despite its “super” name, as it 

has only one unpaired electron left compared to dioxygen (Halliwell, 2006). It is usually 

reduced through the so called dismutation reaction (2 O2
°- + 2 H+  >  H2O2 + O2), which can 

occur spontaneously or be enzymatically catalyzed through superoxide dimutases (SODs; see 

section on antioxidant enzymes) (Maier & Chan, 2002), but also reacts with nitric oxide (NO°) 

to form peroxynitrite (ONOO-), linking the production of ROS to equally toxic reactive 

nitrogen species (RNS). The resulting hydrogen peroxide from the dismutation is then often 

broken down during Fenton reaction (H2O2 + Fe2+  >  Fe3+ + OH° + OH-), whereby the hydroxyl 

radical (OH°) is formed. OH° is one of the most reactive chemical species known and can 

damage cellular macromolecules by oxidizing them (Maier & Chan, 2002). 

 Another major source of hydrogen peroxide and potential hydroxyl radicals is as a 

byproduct of enzymatic oxidation (e.g. through xanthine oxidase, NADPH oxidases or 

cythochromes P450). Especially relevant thereof in this context is the enzymatic degradation 

of monoamines through monoamine oxidases (MAOs). Hereby the monoamine is converted 
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into an aldehyde with H2O2 and ammonia as byproducts (RCH2NH2 + O2 + H2O  >  RCHO + 

H2O2 + NH3) (Halliwell, 2006). 

 Apart from the aforementioned, other molecules can turn into ROS, often through 

contact with another ROS (radical chain reaction) or as a byproduct of enzymatic 

catalyzation.  

Table 1.2_1: List of common reactive oxygen species (ROS) (modified from Halliwell, 2006) 

Free radicals Non-radicals 

Superoxide O2°
-
 Hydrogen peroxide H2O2 

Hydroxyl OH° Hypobromous acid HOBr 

Hydroperoxyl HO2° Hypochlorous acid HOCl 

Carbonate CO3°- Ozone O3 

Peroxyl RO2° Singlet oxygen 1 g 

Akloxyl RO° Organic peroxides ROOH 

Carbon dioxide radical CO2°- Peroxynitrite ONOO- 

Singlet oxygen O2 
1 g+ Peroxynitrate O2NOO- 

 Peroxynitrous acid ONOOH 

 Peroxomonocarbonate HOOCO2
- 

 Nitrosoperoxycarbonate ONOOCO2
- 

 

1.2.2 Antioxidant defense mechanisms and oxidative stress 

 The primary defense mechanisms of aerobic organisms against oxidative damage can 

be divided into two categories: antioxidant enzymes (AOEs) or non-enzymatic reducing 

agents. Both systems act in synergy with each other and overlap at the glutathione system. 

Additionally it is discussed, whether a subgroup of ether lipids (plasmalogens) could be 

involved in antioxidant defenses by acting as radical scavengers within cellular membranes. 

Antioxidant defense is mainly carried out within the cytoplasm, but also in cellular 

organelles; mainly in mitochondria and peroxisomes. The main group of AOEs consists of 

superoxide dismutases (SODs), catalase (CAT) glutathione peroxidase (GPx) and its synergist 

glutathione reductase (GR). The expression of genes encoding for most antioxidant enzymes 

is regulated through the transcription factors nuclear factor (erythroid-derived 2)-like 2 

(Nrf2) and peroxisome proliferator-activated receptors (PPARs). 

 There are, however, a variety of other enzymes that are important in antioxidant 

pathways, such as different peroxidases, oxidases and reductases (Matés, 2000). A group of 
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peroxidases that have been the center of attention regarding brain antioxidant defenses are 

peroxiredoxins, which reduce both molecular hydrogen peroxide as well as organic 

peroxides (RO=OR), by offering a reducing SH group which is oxidized by the peroxide to 

sulfenic acid (SOH), thereby turning the organic peroxide into an alcohol. Some 

peroxiredoxins (2-Cys) have two SH groups, whereby the other reacts with the SOH groups 

forming a disulfide bond which in turn is now reduced by thioredoxin. Peroxiredoxins have a 

lower catalytic rate compared to other peroxide reducing enzymes, like CAT or GPx, although 

this is compensated for by large concentrations and low Michaelis constant for H2O2. A 

problem with peroxiredoxin pathways is that the enzymes are inhibited and also readily 

oxidized by hydrogen peroxide, whereby low levels of H2O2 can be cleared by 

peroxiredoxins, but increasing amounts will inhibit the detoxifying enzymes. This is probably 

due to the fact that H2O2 is also used in cellular signaling as well as in the immune system, 

wherefore acute increases in intracellular concentrations of hydrogen peroxide should not 

necessarily be degraded immediately. H2O2 then activates the expression of various 

antioxidant genes, including peroxiredoxin coding genes, leading to an increase in enzyme 

production to make up for the inhibited and oxidized base content, whereby H2O2 can now 

be degraded after having “done its job”. This mechanism, however, backfires during 

excessive and prolonged hydrogen peroxide increases, making the peroxiredoxin defense 

mechanism suboptimal during oxidative stress (Halliwell, 2006). 

 The bulk of ROS is degraded through SODs, CAT and GPx, whereby SODs form the 

first of a two step degradation and CAT and/or GPx the second. SODs are metalloproteins 

and are classified depending on the metal ion in their active centers. Manganese- containing 

superoxide dismutases (MnSOD; SOD2) are found within the mitochondrial matrix, whereas 

SODs with copper and zinc (CuZnSODs) are found either in the cytoplasm and mitochondrial 

intermembrane space (SOD1) or in the interstitium (SOD3). SODs have also been reported in 

peroxisomes of rats (Wanders & Denis, 1992; Kira, Sato & Inoue, 2002) and humans (Kira, 

Sato & Inoue, 2002), while other papers refute these findings in both species (Kobayashi et 

al., 1993; Liou et al., 1993). In plants the results are clearer, since many species appear to 

have peroxisomal SODs, like peas (del Río et al., 2003), peppers (Mateos et al., 2003), 

tomatoes (Kuzniak & Sklodowska, 2005) and watermelons (Sandalio et al., 1997; Rodríguez-

Serrano et al., 2007).  
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 As mentioned before the action of SODs is to enzymatically combine superoxide 

radicals in order to form hydrogen peroxide (dismutation reaction), thereby converting one 

reactive oxygen species into another. It is therefore necessary for healthy antioxidant 

capacities that cells have SODs as well as hydrogen peroxide degrading enzymes. Out of 

these catalase is limited only to H2O2 degradation and does not peroxidize organic peroxides 

(Aebi, 1984). It is one of the most efficient enzymes known to exist, being able to catalyze 

over 40 million molecules each second (Goodsell, 2004) and therefore being unable to be 

saturated with its substrate (Lledías et al., 1998). Catalase is a homoquadromer heme-

containing metalloprotein which converts hydrogen peroxide into dioxygen and water (2 

H2O2  >  2 H2O + O2). This two-step reaction starts with a reduction of the first hydrogen 

peroxide molecule to water, whereby the second O-atom is transferred to the heme-

containing region of the enzyme. Hereby the Fe3+ is converted through the loss of its 

electron and the addition of O to Fe4+=O, wherefore the heme is now a cation radical, which 

may now oxidize the second H2O2 molecule, turning over the O-atom and being reduced 

back to its original state in the progress. 

 The alternative mechanism of H2O2-degradation is the glutathione system, which 

also degrades organic peroxides. Hereby the tripeptide glutathione (GSH) functions as a 

reducing agent and is reduced itself in a second enzymatic reaction to its original state. The 

reduction of glutathione to glutathione disulfide (GSSG) through a donation of an electron to 

the peroxide substrate is catalyzed through selenium-dependent glutathione peroxidase 

(GPx) and produces water or an alcohol (ROH). GSSG is then reduced back to GSH through 

glutathione reductase (GR), whereby an electron is transferred from NADPH (Dringen, 

Pawlowski & Hirrlinger, 2005). 

 

Fig. 1.2_4: Degradation of hydrogen peroxide (A) and organic peroxides (B) through catalase and the 

glutathione system; GR: glutathione reductase, GPx: glutathione peroxidase, GSH: glutathione, GSSG: 

glutathione disulfide ( modified from Dringen, Pawlowski & Hirrlinger, 2005)  
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 Apart from enzymatic antioxidant defense, many reducing agents exist in most cells. 

Major examples hereof are vitamins A (retinol), C (ascorbic acid) and E ( -tocopherol), b-

carotene, melatonin, uric acid, NADPH and coenzyme Q10 (ubiquinol) as well as 

metallothionein, polyamines, adenosine, urate, polyphenols, flavonoids, phytoestrogens, 

cysteine, homocysteine, taurine, methionine, s-adenosyl-L-methionine, resveratrol, 

nitroxides & plasmalogens (Matés, 2000). The role of plasmalogens in this list is insofar 

extraordinary as they are not soluble molecules, but rather a group of etherlipids which 

make up between 20 % and 55% (tissue dependent) of biological membranes. They contain a 

vinyl ether at the sn-1 position of their glycerol backbone and are therefore highly targeted 

by ROS. It has been argued that this functions as a radical scavenging system to protect the 

integrity of membranes as well as membrane proteins. This interpretation is, however, 

highly controversial, since a reduction of plasmalogens through ROS does not break the 

chain of oxidative damage, but rather leads to the formation of other highly toxic ROS. It is 

therefore not clear, whether or not plasmalogens actually have antioxidant properties 

(Lessig & Fuchs, 2009).  

 

 

Fig. 1.2_5: Overview of the major ROS generating and degrading pathways (based on Bellance, Lestienne & 

Rossignol, 2009) 
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 Under normal physiological circumstances there is a constant production of ROS, 

which are degraded through cellular antioxidant mechanisms. If this equilibrium is, however, 

shifted in a way that either the ROS production overcomes the antioxidant systems, the 

latter underfunction and cannot cope with “normal” intracellular ROS-levels or elevated ROS 

levels lead to an underfunction of antioxidant defense, in any case the result is a chronic 

shift towards prooxidant conditions in the body. This state of disequilibrium is referred to as 

oxidative stress (Reddy & Yao, 1996; Matés et al., 2000; Emerit, Edeas & Bricaire, 2004; 

Dringen, Pawlowski & Hirrlinger, 2005). Oxidative stress is assessed through the 

measurements of (by)product of peroxidation of lipids, proteins and/or DNA. Lipid 

peroxidation is classically measured through quantification of malondialdehyde (MDA) 

through a ThioBarbituric Acid Reactive Substances (TBARS) assey during which the resulting 

red fluorescent derivative is detected spectrophotometrically. Aldehydes like MDA or 4-

hydroxynonenal (4-HNE) often react with proteins leading to the formation of protein 

carbonyl groups. These are made to react to hydrazones in a 2,4-dinitrophenylhydrazine 

(DNPH) assey, which can be quantified through fluorescence measurements or using 

spectrophotometry (Castegna, et al. 2003). Finally DNA also reacts with MDA which leads to 

the adduction of the carcinogenic molecule pyrimido[1,2-a]purin-10(3H)-one (M1G). 

Different assays for M1G can be performed based on mass spectrometry or immunochemical 

techniques (Marnett, 1999a; 1999b). 

1.2.3 Pro- and antioxidant metabolism in the brain 

 Since the mammalian brain is by far the most extremely oxygenated of all organs it is 

highly susceptible to oxidative damage. Making up only approximately 2% of the body’s 

weight in humans, the cells of brain utilize 20% of the consumed oxygen (Clarke & Solokoff, 

1999). The main reason for this high oxygen turnover is the extraordinary amount of ATP 

needed for the regulation of cellular membrane potentials via Na+/K+-ATPases. As previously 

mentioned, ATP is won primarily through mitochondrial respiratory chain activity. In neurons 

this means that a high risk for the formation of superoxide radicals through electron leakage 

exists. Since all areas of the brain contain SODs, the superoxide radicals can be dismutased 

leading to the production of H2O2. But also others of the aforementioned fonts of ROS are of 

high importance in neuronal tissue. First of all, since neurons and astrocytes are 

metabolically very active cells, they produce a major amount of intracellular hydrogen and 

organic peroxides through enzymatic activity.  On the one hand there are neurotransmitter-
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degrading enzymes like monoamine oxidases, which produce both H2O2 as well as 

aldehydes. On the other hand enzymes like cyclooxygenases or lipoxygenases produce 

specific organic peroxides (Dringen, Pawlowski & Hirrlinger, 2005). High oxygenation also 

leads to increased levels of autoxidation of aromatic compounds to quinones (Stokes et al., 

1999).  

 Apart from these previously mentioned mechanisms of ROS production the brain also 

has specific risks which make it especially vulnerable to oxidative stress: (a) Brain tissue is 

highly saturated in polyunsaturated fatty acids (PUFAs) which are common targets of 

membrane tissue peroxidation (Kuhn & Borchert, 2002). (b) Neurons suffer from the 

neurotransmission-linked Ca2+-influx, both in presynaptic buttons, where Ca2+ enters the 

neurons due to voltage-gated channels that open upon an action potential in order to allow 

for Ca2+-dependent fusion of vesicular and presynaptic membranes during exocytosis, as well 

as postsynaptically in NMDAR-expressing neurons, since the NMDAR is also a Ca2+-channel. 

Ca2+ activates neuronal nitric oxide synthase (nNOS). Aditionally the brain produces NO° 

through endothelial NOS (eNOS) as well as inducible NOS (iNOS) from activated microglia. 

NOS and superoxide radicals from the highly toxic ROS peroxynitrite (ONOO-) (Emerit, Edeas 

& Bricaire, 2004). (c) Some areas of the brain, like substantia nigra, caudate, putamen and 

pallidum, are rich in metal ions like iron, which increase the risk of ROS formation (Schenck & 

Zimmerman, 2004). Also many brain proteins contain iron, such as hemoglobin, 

cytochromes, ferritin, aconitases, non-heme iron proteins in the mitochondrial electron 

transport chain, cytochromes P450, and tyrosine and tryptophan hydroxylases (Halliwell, 

2006).  

 In contrast, the antioxidant capacities of the brain are relatively poorly developed. 

Neurons have extremely low levels of catalase (Arnold & Holtzman, 1978; Holtzman, 1982), 

which even decrease with maturation (Ahlemeyer et al., 2007). Most catalase in the brain is 

located in astrocytes which play an important part in maintaining the brain’s redox 

homeostasis (Ahlemeyer et al., 2007; Fisher, 2010). The brain’s most common mechanism of 

enzymatic peroxide degradation appears to be through peroxi- and thioredoxins, which are, 

however, probably not suited for detoxification of severely increased H2O2 levels as may 

occur in the brain (see above; Halliwell, 2006). The degradation of H2O2 through 

GSH/GpX/GR appears to be the major means of preventing oxidative stress under normal 

brain-physiological conditions, but is has been shown that, as is the case for catalase, 
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neurons contain relatively low amounts of GSH, which is mainly found in astrocytes 

(Halliwell, 2006). Over all, calculation of a specific H2O2-detoxification rate constant (D = p-1 x 

t1/2
-1; p, protein content in mg; t1/2, half-time in min; calculated for the detoxification of 100 

M H2O2) showed that neurons have the lowest peroxide disposal rate compared to other 

cells in the nervous system (Dringen, Pawlowski & Hirrlinger, 2005). 

 

 

Fig. 1.2_6: Comparison of specific H2O2-detoxification rate constants (D) between different cell types in nervous 

tissue; A: astrocytes, N: neurons, M: microglia; O: oligodendrocytes (modified from Dringen, Pawlowski & 

Hirrlinger, 2005) 

 

 Due to this high vulnerability for redox disequilibrium in the brain, oxidative stress 

has been reported in a number of neurodegenerative diseases. Examples hereof are 

Parkinson’s (Jenner, 2005; Chinta & Andersen, 2008), Huntington’s (Emeric, Edeas & Bricaire, 

2004), Alzheimer’s diseases (Moreira et al., 2005a; 2005b; 2005c; 2005d) and schizophrenia 

(see following chapter). 

  



1.3 Dopamine - Metabolism, transmission and neurotoxicity 30 
 

 

1.3 Dopamine - Metabolism, transmission and neurotoxicity 

 

 Since dopamine trafficking is widely considered to play an important role in the 

aethiopathogenesis of schizophrenia and since it is elemental to the argumentative line of 

this thesis, it as well as several aspects of its neurochemistry, -anatomy and -

(patho)physiology shall be discussed in the following chapter. Aim of the chapter is to build 

argumentative bridges between the metabolism and neurotransmission of dopamine and 

possible neurotoxic effects of (hyper)dopaminergia as well as interactions with the 

glutamatergic system. 

1.3.1 Dopamine metabolism - synthesis and degradation:  

The biogenic monoamine dopamine was first described as a proper neurotransmitter, 

rather than only a precursor to noradrenalin, under the name of 3-hydroxy-tyramine by 

Arved Carlsson in 1958 (Carlsson et al., 1958) as was reaffirmed shortly after as an 

endogenous neurochemical agonist independently distributed of its derivative noradrenalin 

(Bertler & Rosengren, 1959a; 1959b).  

Dopamine is mainly synthesized in the CNS and to a lesser extent in the 

postganglionic neurons of the sympathetic nervous system, including the chromaffine cells 

of the adrenal medulla, from the aromatic amino acid tyrosine. Like 

noradrenaline/norepinephrine and adrenaline/epinephrine it therefore belongs the group of 

catecholamines. The pseudo-essential amino acid tyrosine can either be taken up into the 

body through food or can be synthesized in the liver from the essential amino acid 

phenylalanine by the enzyme phenylalanine hydroxylase. It is taken up into 

catecholaminergic neurons and chromaffine cells and then converted through cytoplasmic 

tyrosine hydroxylase (TH) to 3,4-dihydroxyphenylalanine (DOPA). This is the rate-limiting 

step in catecholamine synthesis. It is very common to refer to DOPA, slightly more 

accurately, as L-DOPA or levodopa. Since, however, all biologically active enantiomers of the 

catecholamine synthesis (as well as most other bioactive substances in humans) share the L-

chirality, for reasons of simplicity, unless otherwise stated, e.g. as in D-serine, all 

enantiomers are of L-chirality. 

DOPA, unlike dopamine, is able to cross the blood brain barrier and is therefore 

commonly used in the pharmacotherapy of Parkinson’s disease. It is, whether if given as a 



1.3 Dopamine - Metabolism, transmission and neurotoxicity 31 
 

 

supplement or synthesized endogenously, converted in the cytoplasm into mature 

dopamine through the enzyme DOPA-decarboxylase (DDC). Dopamine is then taken up into 

synaptic vesicles through the amine/proton antiporter vesicular monoamine transporter 2 

(VMAT2), also known as solute carrier family 18, member 2 (SLC18A2) (Eiden et al., 2004). In 

dopaminergic neurons, and also to a low percentage in the sympathetic nervous system and 

adrenal medulla, it is stored here and secreted during action potential controlled Ca2+-

dependent exocytosis. In (nor-)adrenergic cells it is converted further through the vesicular 

emzyme dopamine- -hydroxylase (DBH) into noradrenaline.  

Apart from the conversion into noradrenaline through DBH, dopamine is degraded in 

homovanillic acid (HVA) through a two-step reaction by the enzymes catechol-O-

methyltransferase (COMT) and monoamine oxidase (MAOA and MAOB) in synergy with 

aldehyde dehydrogenase (AD). Hereby enzymatic degradation first through COMT leads to 

the intermediate product 3-methoxytyramine (3-MT), whereas MAOs/AD convert dopamine 

into 3,4-dihydroxyphenyl acetic acid (DOPAC) (Eisenhofer, Kopin & Goldstein, 2004).  
 

 

Fig. 1.3_1: Enzymatic dopamine metabolism  



1.3 Dopamine - Metabolism, transmission and neurotoxicity 32 
 

 

1.3.2 The dopaminergic synapse 

The storage of dopamine within synaptic vesicles is mainly regulated through VMAT2, 

which is essential for the stability of the transmitter as well as the health of the 

dopaminergic neurons due to reduced toxicity of dopamine within the vesicle (Miyazaki & 

Asanuma, 2008; Sulzer & Zecca, 1999), whereby there is a constant equilibrium between 

dopamine uptake and diffusion into the cytoplasm (Eisenhofer et al., 2004; 2008). The 

disruption of this equilibrium is thought to be involved in increased dopamine neurotoxicity 

and shall be discussed in a later chapter. 

Upon an action potential reaching the axonic terminal button (or the chromaffine cell 

through a preganglionic sympathetic cholinergic neuron) there is an influx of Ca2+ through 

voltage-gated channels which leads to the fusion of the vesicular and the target SNAREs 

(soluble N-ethylmaleimide-sensitive factor attachment protein receptors) which in turn 

allows for the exocytotic fusion of the vesicular membrane to the presynaptic membrane of 

the terminal button (Drenckhahn, 2003) and the release of dopamine into the synaptic cleft. 

Dopamine binds to one of five types of dopamine receptors (numbered D1 through 

D5 and encoded for by the genes DRD1 through DRD5), whereby the dopamine receptors D1 

and D5 form the D1-like family and the receptors D2 through D4 form the D2-like family 

(Girault & Greengard, 2004). All dopamine receptors are G-protein coupled metabotropic 

transmembrane proteins working through the adenyl cyclase (AC), cyclic adenosine 

monophosphate (cAMP) & protein kinase A (PKA) second messenger system, whereby D1-

like receptors activate AC through the Gs alpha subunit and the D2-like receptors inhibit AC 

through the Gi alpha subunit (Civelli et al., 1991a; 1991b; Neves at al., 2002). Most dopamine 

receptors are found postsynaptically, however, the D2-receptor has two isoforms - a long 

and a short form, differentiated through a sequence of 29 amino acids - (Civelli et al., 

1991b), whereby the short form acts as a presynaptic autoceptor (Castellano et al., 1993; 

Elsworth & Roth, 1997; Jomphe et al., 2005).  

Dopamine action is terminated primarily through removal of the transmitter from the 

synaptic cleft through the dopamine active transporter (DAT), also known as the solute 

carrier family 6, member 3 (SLC6A3). It is a Na+ and Cl- (2:1 per dopamine molecule) co-

transporter powered through an ion concentration gradient generated through a Na+/K+-

ATPase. After reuptake into the presynaptic neuron via the DAT dopamine is either restored 

into vesicles through VMAT2 or enzymatically degraded through MAOs/AD (Eisenhofer, 
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Kopin & Goldstein, 2004). In the postsynaptic neuron dopamine is degraded by both COMT 

and MAOs/AD into homovanillic acid, whereas remaining dopamine in the synaptic cleft is 

katabolised through postsynaptic membrane-bound COMT (Elsworth & Roth, 1997). In the 

prefrontal cortex (PFC) neurons express significantly less DAT in comparison to those in the 

nucleus accumbens (NAcc) or the striatum. In these cases it has been shown in knockout 

mice that dopamine is taken up into postsynaptic neurons by the norepinephrine 

[noradrenalin] transporter (NET) (Morón et al., 2002). 

An important part of the dopaminergic synapse is the astrocyte, since astrocytes 

have been repeatedly shown to express DAT, COMT and both MAOs (Fisher, 2010). 

 

 

Fig. 1.3_2: Dopaminergic synapse; 3-MT: 3-methoxythyramine, AD: aldehyde dehydrogenase, COMT: catechol-

O-methyl transferase, DA: dopamine, DAT: dopamine active transporter, DDC: DOPA decarboxylase, DOPA: 3,4-

dihydroxyphenylalanine, DOPAC: 3,4-dihydroxyphenylacetic acid, HVA: homovanillic acid, MAO: monoamine 

oxidase, TH: tyrosine hydroxylase, VMAT2: vesicular monoamine transporter 2 
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1.3.3 Dopaminergic pathways in the mammalian brain 

Dopamine synthesis not only occurs in terminal buttons of dopaminergic neurons, 

but also in their somata, where it is stored into vesicles which are then anterogradely 

transported by kinesine along axonal microtubules to the synaptic terminals. These long 

axon bundles form the dopaminergic neuronal pathways. The exact number of these 

pathways depends upon different nomenclatures, but most authors consider two to three 

major systems in which dopamine acts as a neurotransmitter (nidrostriatal and mesolimbic 

[sometimes divided into mesolimbic and mesocortical]) and one in which it has hormonal 

function (tuberoinfundibular) (Civelli et al., 1991a; Van den Heuvel & Pasterkamp, 2008).  

The tuberoinfundibular system is very clearly defined as a group of hypothalamic 

neurons in the arcuate nucleus of the tuber cinereum that project to the median eminence 

and infundibulum where they secrete dopamine into the hypophyseal portal vein. It is 

transported via the bloodstream to the mammotropic acidophilic cells of the anterior 

pituitary and here inhibits the secretion of the somatotropic hormone prolactin, wherefore 

dopamine in this pathway is also referred to as prolactin inhibiting hormone (PIH). 

The first of the classical dopamine neurotransmitter systems is the nigrostriatal 

(sometimes called mesostriatal) pathway, which consists of different subpathways 

emanating from the paranigral and retrorubral nuclei and mainly the substantia nigra pars 

compacta, running in the median forebrain bundle (MFB) and terminating in the caudate and 

putamen (dorsal striatum) (Standring (ed.), 2008, Gray’s Anatomy). It is involved in the 

modulation of striatal gating and is underfunctioning in patients suffering from Parkinson’s 

disease. 

The mesolimbic and mesocortical (sometimes referred to as mesolimbocortical or 

just mesolimbic) dopamine pathways begin in the ventral tegmental area of the midbrain 

(VTA) and terminate inter alia in the nucleus accumbens (NAcc) and the prefrontal cortex 

(PFC) respectively. Since they are both considered essentially dysregulated in patients 

suffering from schizophrenia (dopamine hypothesis of schizophrenia) (Howes & Kapur, 

2009), they shall be discussed in more detail in the following section.  
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Fig. 1.3_3: Schematic illustration of the nigrostriatal (black) and mesolimbic (red) dopamine systems (modified 

from Nieuwenhuys, Voogd & van Huijzen, 2007) 

1.3.4 The mesolimbic dopamine pathways - Specific motivation and Incentive Salience 

The mesolimbic and mesocortical dopamine pathways connect the mesencephalic 

ventral tegmental area (VTA) with structured of the limbic lobe or the areas of the neocortex 

involved in limbic functions, expressiv verbis the accumbens nucleus (NAcc), amygdala, 

hippocampus (Hp) and the prefrontal cortex (PFC) (Van den Heuvel & Pasterkamp, 2008). 

Since the discovery of specific rodent behavior shown when given the opportunity of 

electrically stimulating their own mesolimbic structures, intracranial self-stimulation, ICSS 

(Olds & Milner, 1954), it has often been described as the reward pathway of the mammalian 

brain. Mapping the rat midbrain by using electric self-stimulation revealed that most of the 

neurons giving rise to ICSS-behavior when stimulated were located in the VTA. Their axons 

travel into the lateral hypothalamus, form part of the medial forebrain bundle and terminate 

within a variety of structures of the forebrain. Self-stimulation was described as a rate of at 

least 500 responses per h for 15 minutes in different trials (Crow, 1972). 

Fundamentally in the field of neuroscience these findings clearly established the 

NAcc and the mesolimbic dopamine pathway as involved in appetitive or specific motivation 

and positive reinforcement (Salamone, 1994). The specificity of this stimulus-dependent 

reward pathway sets it apart, both anatomically and functionally, from the unspecific 
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motivation system ascending from the nucleus basalis MEYNERT within the substantia 

innominata of the basal forebrain. While the nucleus basalis MEYNERT projects diffusely into 

the entire cortex and is responsible for curiosity, drive and showing behavior out of one’s 

own volition (Duncker, 1999), the mesolimbic system consists of distinct pathways involved 

in the positive reinforcement of and approach towards specific conditioned stimuli.  

The NAcc is located bilaterally of the septal area and forms part of the ventral 

striatum. It can morphologically and functionally clearly be distinguished as consisting of two 

regions - NAcc core and NAcc shell, each with distinctive chemoarchitectural properties as 

well as different afferent and efferent connections. The NAcc core merges dorsally with the 

caudate nucleus and the putamen and bears morphological resemblance to these regions. It 

has therefore been suggested by Haber et al. (1990) that the nucleus accumbens cannot be 

distinguished from other parts of the striatum. This does not, however, seem to be 

corroborated by the fact that the dorsal and ventral parts of the striatum receive individual 

dopaminergic input from different regions within the midbrain (Niewenhuys, Voodg & van 

Huijzen, 2008). 

 The main efferents of the NAcc include projections to the PFC via the ventral 

pallidum and the dorsal thalamus. It also has decending connections to the striatum and 

substantia nigra and the pontine aspects of the reticular formation, thereby leading to 

disinhibition of approach behavior. The mesolimbic dopamine system has therefore been 

described as the Behavioral Activation System (BAS) within the Reinforcement Sensitivity 

Theory of personality by Jeffery Gray et al. (1982; 1987; Gray & McNaughton, 2000, 

Pickering & Gray, 2001; McNaughton & Corr, 2004) alongside projections to the PFC from 

the NAcc and directly from the midbrain (Depue and Collins, 1999; Pickering and Gray, 2001; 

Knutson and Cooper, 2005). It has also been associated with drug seeking behavior and with 

both positive as well as negative reinforcement during the development and the 

maintenance of addiction, since almost every recreational drug has been shown to lead to 

an increase of DA-signaling to the NAcc (Di Chiara et al., 2004). Since the NAcc also 

communicates directly with the amygdala and the hippocampus it is apparently involved in 

emotional learning and positive as well as negative reinforcement during operant learning in 

a sense of association formation regarding the prediction of future rewards. This was shown 

in studies on learning in rats with destroyed VTA and NAcc. These animals were still capable 
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of learning, but showed a lack in motivation to perform reward-bringing behavior (Berridge, 

2007).  

Importantly, however, during learning a shift in the firing pattern of the nucleus 

accumbens neurons occurs. Initially the NAcc is activated by unpredictable rewards. If these 

rewards are however coupled with a specific stimulus, the NAcc will be activated by the now 

conditioned reward-predicting stimulus, but no longer upon receiving the reward. This 

reflects the acquired incentive salience of the conditioned stimulus. If the reward-predicting 

stimulus is presented (and the NAcc activated), but is not followed by a reward, the firing 

rate of the NAcc is reduced exactly at the time the reward was expected to occur (Schultz, 

Dayan & Montague, 1997). 

 Finally it has been shown that repeated stimulation of the NAcc through the same or 

strongly similar stimuli (e.g. during addiction behavior) leads to a decrease of DA release as 

well as post-synaptic activation, explaining the so called b-process of hedonic dynamics and, 

in the clinical context, many of the various symptoms associated with withdrawal. This also 

leads to an increase in wanting or craving for a specific stimulus of growing incentive 

salience (Young, Gobrogge & Wang, 2011). 

The consequences of mesolimbic hyperfunction will be discussed further under the 

aspect of the dopamine hypothesis of schizophrenia. 

 

1.3.5 The dopamine hypothesis of schizophrenia 

 According to Oliver Howes and Shitij Kapur (2009) the evolution of the dopamine 

hypothesis of schizophrenia underwent three distinct evolutionary steps. The first 

involvement of the dopaminergic system was suggested as a result of pharmacological 

studies showing the discovery of antipsychotic drugs (Delay, Deniker & Harl, 1952) and their 

effects on dopamine metabolism (Carlsson & Linqvist, 1963). The fact that dopamine 

antagonists alleviated psychosis (Carlsson, Linqvist & Magnusson, 1957; Seeman & Lee, 

1975; Creese, Burt & Snyder, 1976; Seeman et al., 1976), whereas dopamine agonists, like 

amphetamine, could induce psychotic symptoms (Lieberman, Kane & Alvir, 1987), suggested 

an underlying hyperactivity at dopaminergic synapses in patients suffering from 

schizophrenia. This first dopaminergic hypothesis focused on the dopamine receptor 

(Snyder, 1976), but did not link hyperdopaminergia to specific regions of the brain. It could 

also not explain differences between positive or negative symptomatology or explain the 
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mechanism, by which an increase of dopaminergic activity could lead to the symptoms 

observed in schizophrenia (Howes & Kapur, 2009). 

 A “modified dopamine hypothesis of schizophrenia” was published in 1991 by Davis 

et al. addressing various issues that had been at odds with the dopamine receptor 

hyppothesis. Firstly it was shown in many schizophrenic patients that metabolites of 

dopamine in the cerebrospinal fluid were not generally elevated. Secondly, the fact that 

clozapine, a drug that has rather low affinity for and occupancy at the D2-receptor, was 

superior in treating psychotic symptoms in some patients, combined with post-mortem and 

PET-studies on D2- and D3-receptors in humans, conflicted heavily with the receptor-

centered model. Thirdly, findings on differential distribution of various dopamine receptor 

subtypes, namely higher levels of D1-receptors in the cortex compared to higher levels of D2-

receptors in the striatum and NAcc, suggested regional differences in erroneous dopamine 

signaling. The final straw were PET studies showing decrease of prefrontal blood flow and its 

correlation to schizophrenic symptoms. Davis therefore proposed that schizophrenia 

resulted as a combination of cortical hypodopaminergia and subcortical hyperdopaminergia, 

a model that was suggested to explain the occurrence of positive (through striatal 

hyperfunction) as well as negative (through frontal hypofunction) symptomatology. This 

model therefore no longer focused on the causal involvement of dopamine receptors, but 

rather on the transmitter itself. The hypothesis did not, however, explain the origins of 

dopaminergic abnormalities (Davis et al., 1991). 

 A third version of the dopamine hypothesis was proposed by Howes and Kapur in 

2009 and was called the “final common pathway”-hypothesis by the authors. Instead of 

focusing singularly on the mesolimbic pathway the authors propose that schizophrenia 

results from dysfunctions of multiple neuronal systems that lead to cognitive deficits and 

negative symptoms on the one hand and to hyperactivity of the mesolimbic pathway on the 

other, this being the cause of psychosis. It has been noted by the authors that this 

hypothesis should therefore more poignantly be called the “dopamine hypothesis of 

psychosis-in-schizophrenia”.  

 The underlying idea behind the “final common pathway”-model is that mesolimbic 

hyperactivity will lead to a state of aberrant salience, namely that the VTA neurons would 

fire not only with respect to incentively salient stimuli, but rather indiscriminately to a 

variety of (often completely irrelevant) stimuli. The human mind’s need to make sense of 
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these abnormally salient stimuli or combination of stimuli would then lead to either 

delusions or hallucinations, whereby the latter would be interpreted as reflection of actual 

experiences with regard to the aberrant salience. “Thus, dopamine, which under normal 

conditions is a mediator of contextually relevant saliences, in the psychotic state becomes a 

creator of saliences, albeit aberrant ones” (Kapur, 2003, page 15). During early onset of 

schizophrenic episodes (the prodromal phase) patients will often describe noticing stimuli in 

their environment as more clearly or keenly or with greater awareness. Alternatively this 

beginning psychosis is often described as an increase in sensory sharpness or brain activity. 

Colors are described as brighter and more saturated, music is perceived as more meaningful 

and patients often describe feelings of anticipation, foreboding or even premonition. Finally, 

irrelevant stimuli are explained cognitively in a “top-down” fashion dependent on the 

experiences and psychologically relevant themes of each individual, thereby explaining the 

cultural differences in delusion and hallucination types as well as contents. As soon as an 

individual has come up with his or her “psychotic explanation” of the aberrantly salient 

stimuli, new information will be integrated into the preexisting fabrication and new stimuli 

confirming this fabrication will be specifically sought out according to the patient’s frame of 

mind. Through this, a patient may experience entire theoretical buildings of aberrant 

conclusions and fabrications. In many cases these are perceived as acoustic phenomena 

either in the own voice or in a third voice (Kapur, 2003; Kapur, Mizrahi & Li, 2005). The latter 

situation is found in extremis in patients who report thought disorders like thought removal, 

disruption or inputting.  

 Subclinical disinhibition of incentive salience and mesolimbic dopaminergic action 

could likely explain early onset cognitive impairment in patients long before the first 

schizophrenic episodes, but also endophenotypes that focus on failures in sensorimotor 

gating, e.g. reduction of prepulse or latent inhibition (PPI, LI) or deficiencies in oculomotor 

efficiency. 

 In an attempt to integrate many of the various models of the aethiopathogenesis of 

schizophrenia with the dopaminergic systems and the hypothesis of aberrant insentive 

salience, the author proposes another dopamine hypothesis of schizophrenia, that, rather 

than place mesolimbic hyperdopaminergia at the end of the pathogenetic cascade, puts it in 

the middle and could therefore be coined the “mesolimbic bottleneck theory” of 

schizophrenia. This model depends upon a number of assumptions: 
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- Risk factors or vulnerabilities (like genes, substance abuse, social adversity, obstetric 

complications or infant viral infections etc.) can cause mesolimbic hyperactivity via 

mechanisms that are both unknown and most likely relatively idiosyncratic. 

- Mesolimbic hyperactivity causes cognitive deficits, endophenotypes and full blown 

psychotic symptoms in schizophrenia through the mechanism of aberrant incentive 

salience as proposed by the “final common pathway”-model. 

- Hyperdopaminergia leads to dopamine neurotoxicity (in form of oxidative stress). 

- Dopamine neurotoxicity in turn exacerbates cognitive deficits and causes structural 

deficits on the molecular, cellular and macroscopic levels (like loss of dendritic 

arborisation, reduced synaptic connectivity, atypical neurodegeneration, changes in 

laterality, loss of gray matter volume and cortical glutamate hypofunctionality). 

- The reduced glutamatergic activity (primarily through NMDAR hypofunction or even 

loss of NMDAR transmission in certain neurons or populations of neurons) will in turn 

lead to further disinhibition of the mesolimbic dopamine pathway turning the 

neuronal impairments to a self-sustaining vicious cycle. 

 

Fig. 1.3_4: Integrative “mesolimbic bottleneck theory” of schizophrenia; left hand side: possible GxE-

interactions leading to mesolimbic hyperdopaminergia; right hand side: signs and symptoms caused by 

hyperdopaminergia, in some cases sustaining mesolimbic hyperactivity 

 

Since the proposed model hinges mainly on the latter aspects, namely that 

hyperdopaminergia leads to dopamine neurotoxicity and dopamine induced oxidative stress 

and that reduced NMDAR activity in the forebrain in term leads to mesolimbic 

hypodopaminergia, they shall be discussed in more detail in the following sections. 
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1.3.6 Dopamine neurotoxicity and dopamine induced oxidative stress 

 Dopamine neurotoxicity depends widely on dopamine stability and abundance. While 

dopamine is prone to auto-oxidation in the intra- and extracellular spaces, it appears 

relatively stable within the presynaptic storage vesicles (Riddle, Fleckenstein & Hanson, 

2006). This mechanism is due to differential pH inside the vesicles (pH ca. 5.5) as compared 

to outside (pH ca. 7.5) (Rudnick & Clark, 1993; Eiden & Weihe, 2011). Substances belonging 

to the amphetamine family act as potent dopamine releasers from both the synapse and the 

vesicles, by interacting with both the DAT and VMAT2, being taken up into the presynaptic 

terminal and vesicles and then reversing the flow-direction of both transporters (Sulzer & 

Rayport, 1990; Fleckenstein et al., 2007). Dopamine is therefore found in large abundance in 

the cytoplasm and the synaptic cleft, where is begins to form reactive oxygen species (ROS) 

not only through auto-oxidation (Riddle, Fleckenstein & Hanson, 2006), but also through 

enzymatic degradation. The brains of humans or other mammals abusing or treated with 

amphetamines can therefore be considered as pivotal in vivo models for neurotoxicity and 

oxidative stress caused by hyperdopaminergia. The ability of amphetamines to release 

dopamine in the human brain has been shown in methamphetamine users (Laruelle et al., 

1995, Wilson et al., 1996; Moszczynska et al., 2004). And indeed, post-mortem gas 

chromatography-mass spectrometry studies showed significantly elevated levels of 

malondyaldehyde and 4-hydroxynonenal, both products of oxidative damage, in the 

caudate, frontal cortex and cerebellum of chronic methamphetamine users compared to 

controls (Fitzmaurice et al., 2006). The direct connection between these two findings has 

been examined in animal studies. Reviews suggest that methamphetamine leads to damage 

of dopaminergic synaptic terminal buttons caused by excessive oxidative stress possibly 

related to the formation on dopamine-derived oxidation products (Davidson et al., 2001). 

 Dopamine-induced oxidative stress was also reported in astrocyte cultures 

(Hirrlinger, Schulz & Dringen, 2002). In vitro neuronal cultures exposed to dopamine show 

oxidative stress as well as a significant decrease in dendritic spines (Grima et al., 2003).  

The activation of antioxidant genes through treatment with 6-Hydroxydopamine in vitro and 

in vivo was demonstrated in mice by Jakel et al. (2005), whereas more recent studies have 

shown dopamine to induce activity of Nrf2 (nuclear factor 2), a transcriptional factor that 

activates the expression of various antioxidant defense pathways by binding to the 
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antioxidant response element (ARE) in the promoter regions of antioxidant genes, through 

formation of ROS (Shih, Erb & Murphy, 2007). 

 The neurotoxicity of dopamine injections into the rat striatum, as measured through 

death of tyrosine hydroxylase-positive neurons as well as measurements of oxidation 

products of dopamine, were attenuated by equimolar injections of antioxidants like ascorbic 

acid or glutathione, which makes the oxidative capacity of excess dopamine more than likely 

(Hastings, Lewis & Zigmond, 1996). 

 In a pharmacological model of chronic Parkinson’s disease, part of the symptoms of 

which are generally considered to be caused by dopamine neurotoxicity and dopamine-

induced oxidative stress (Chinta & Andersen, 2008), even showed significant reduction of 

morphological, biochemical and behavioral Parkinson’s markers, when mice were pretreated 

with rosiglitazone, a PPAR  (peroxisome proliferator active receptor )-agonist and activator 

of antioxidant transduction pathways (Schintu et al., 2009). PPAR-agonists have since been 

suggested as therapeutic targets in the treatment of Parkinson’s (Chaturvedi & Beal, 2008). 

Similar results were found when Parkinson’s animals were treated with various cannabinoids 

of different receptor selectivity, also suggesting that the antioxidant capacity of these plant-

derived agents protect neurons against dopamine neurotoxicity (Lastres-Becker et al., 2005).  

 The biochemical mechanisms of dopamine neurotoxicity are auto-oxidation on the 

one hand and formation of ROS byproducts during enzymatic degradation on the other. 

 Dopamine has been shown to form highly reactive quinones through enzymatic 

action, presence of metal ions and spontaneous auto-oxidation, thereby causing damage to 

intracellular macromolecules like lipids, proteins or even nucleic acids (Stokes et al., 1999, 

Sulzer & Zecca, 1999). The quinone formation and therefore the cytotoxic potential is higher 

in dopamine compared to other catecholamines, due to the fact that dopamine oxidizes to 

quinones faster and reduces back more slowly (Graham, 1978; Graham et al., 1978). 

 Dopamine degradation through MAOs leads to the formation of the byproduct H2O2 

(Maker et al., 1981), which has high potential of producing ROS like hydroxyl radicals (OH°) 

through the Fenton reaction (Stokes et al., 1999). These in turn increase the rate of auto-

oxidation of dopamine to dopamine-quinone (Nappi et al., 1995) creating a vicious cycle of 

positive reinforcement between these two pathways of dopamine neurotoxicity through 

ROS formation. 
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Fig. 1.3_5: Biochemical mechanisms of dopamine neurotoxicity and dopamine induced oxidative stress 

(modified from Stokes et al., 1999) 

 

1.3.7 Oxidative stress in schizophrenia 

 Albeit prone to fall victim to oxidative damage, not only through dopamine 

neurotoxicity, the brain is poorly equipped with antioxidant defense mechanisms (Halliwell, 

1992, 2006). It is therefore not overly surprising that many researchers attribute various 

neuropathologies to oxidative stress. Especially for Parkinson’s disease and schizophrenia 

countless papers have linked these disorders of dopaminergic neurotransmission to 

dopamine neurotoxicity and oxidative stress.  

 Several studies have been published over the last thirty to forty years showing 

alterations of antioxidant enzyme levels and activities in blood cells of patients suffering 

from chronic schizophrenia (Glazov & Mamzev, 1976; Golse et al., 1978; Abdalla et al., 1986; 

Reddy et al., 1991; Mukherjee et al., 1996) as well as increases in plasma lipid peroxidation 

products (Prilipko, 1984; Peet at al., 1993; Mahadik et al., 1995; 1998) or both (Ranjenkar et 

al., 2003; Zhang et al., 2006). More recent studies even found significant correlations 

between antioxidant enzyme activities and levels of lipid peroxidation products in the blood 

of schizophrenic patients and measures of psychopathology (Li et al., 2006; Zhang et al., 

2006).  

 Addressing the issues of inferences of blood data on CNS metabolism, these findings 

have been corroborated through studies on post-mortem brain samples taken from 

schizophrenic patients and compared to matched controls. Results show membrane 
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phospholipid abnormalities, altered glutathione redox state and increased nitric oxide 

radicals (Yao, Leonard & Reddy, 2000; 2004; 2006) and overall impairments of the fatty acid 

composition (Horrobin et al., 1991; McNamara et al., 2007). Examinations of levels of 

thiobarbituric acid reactive substances (TBARS), another harmful lipid peroxidation product, 

also revealed elevated levels in the CSF of schizophrenic patients (Pall et al., 1987; Lohr et 

al., 1990). 

 Overall, although there are many findings that suggest significant oxidative damage 

or oxidative stress in schizophrenic patients, there are major confounding factors like typical 

vs. atypical neuroleptical therapy, schizophrenia type, age of onset and duration since onset. 

It is therefore difficult to find clear correlations between schizophrenic symptoms and 

oxidative stress. Furthermore the question of causal relationship - the chicken and the egg 

issue - cannot be answered through status quo analyses of schizophrenic patients. 

 Research therefore calls for different approaches to this topic, like endophenotype 

research in healthy and/or subclinical subjects or animal studies in which schizophreniform 

phenotypes can be induced specifically and controlled regarding the emergence of oxidative 

damage or antioxidant responses. 

 The two most common pharmacological models for schizophrenia in rodents are the 

amphetamine- and NMDAR-antagonist-models. Since the mechanism of amphetamine-

induced hyperdopaminergia (as described above) is less representative of likely metabolic 

alterations in the human schizophrenic brain, the model of NMDAR-antagonists seems the 

more internally and externally valid, since it appears to lead to an increase in endogenous 

dopamine pathway activity. Furthermore it mirrors the concept of schizophrenia being 

described as “dopaminergic noise and glutamatergic silence” (conference statement by 

Bernd Gallhofer, 2010), thereby allowing for a possible combination of two of the major 

described schizophrenia-theories into one conjoint model. The advances of this model and 

the most-likely connection between the glutamatergic and dopaminergic systems shall 

therefore be described in the next paragraph. 

 

1.3.7.1 NMDAR blockage leads to an increase in mesolimbic dopamine release: The 

associations of the glutamatergic system, especially the NMAR linked neurotransmission, to 

schizophrenic symptoms are observed clearly in humans, non-human primates and other 

mammalian species. Firstly, drugs blocking the NMDAR, like Ketamin, Phencyclidin 
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(Phenylcyclohexylpiperidin, PCP) and Dizocilpine (MK-801) lead to a specific 

schizophreniform phenotype both observed in overt behavior and in endophenotypical 

research (e.g. PPI-inhibition) (Luby, 1959; Long, Malone & Taylor, 2006). Secondly, patients 

with a past history of schizophrenia exhibit pronounced and sustained relapses after taking 

NMDAR-blockers (Domino and Luby, 1981; Braff, Geyer & Swerdlow, 2001; Yui et al, 1999a; 

1999b; 1999c). 

 This does not, however, answer the question whether this is an independent 

mechanism or whether there is a neuronal connection between NMDAR-transmission and 

mesolimbic dopamine release in a direction that blocking the NMDAR leads to an increase in 

dopamine in the striatum (especially the NAcc) and other regions of the forebrain. 

 PCP was shown to be a potent blocker of the NMDAR in the early 1980s, by when it 

had become a major recreational drug since its availability for this purpose under the name 

“angel dust” in the 1960s (Lodge & Anis, 1982). MK-801 was identified as another NMDAR-

antagonist shortly thereafter (Coan, Saywood & Collingridge, 1987). 

 An increase of dopamine was observed in microdialysis studies after NMDAR-blocking 

using MK-801 in different regions of the rat brain, namely the striatum and the NAcc 

(Loscher, Annies & Hönack, 1991; Mathé et al., 1996) as well as the medial PFC (Kuroki et al., 

1999). Apart from its role in NMDAR-antagonism, PCP was also shown to block dopamine 

reuptake (Pechnick, Bresee & Poland, 2006), although it was shown clearly that the increase 

of dopamine in the medial PFC, unlike in the striatum, is not mediated through blocking of 

dopamine reuptake, but rather through increasing dopamine flow to the mPFC from 

subcortical or even subprosencephalic regions (Nishijima et al., 1996). A similar conclusion, 

namely that the mechanism of dopamine increase is independently of reuptake-inhibtion 

was drawn for MK-801 (Wolf et al., 1994). It can therefore be assumed that NMDAR-

antagonists activate the mesolimbic and mesocortical dopamine pathways, rather than only 

inhibit the reuptake of dopamine in the forebrain. These findings from animal studies are 

also observed in imaging studies performed on human subjects (Kegeles et al., 2000; 

Laruelle, Kegeles & Abi-Dargham, 2003; Narendran et al., 2005).  

 Pharmacological influences on PCP- or MK-801 induced hyperdopaminergia as well as 

disruption of PPI and LI have been described for 1-adrenoceptor ligands (Mathé et al., 

1996; Takahashi, Horikomi & Kato, 2001), 5-HT2A/2C-receptor agonists and antagonists 

(Kuroki et al., 1999), lithium carbonate (Umeda et al., 2006) as well as cannabidiol (Long, 
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Malone & Taylor, 2006). Unpublished data from PsychoGenics showed attenuation of PCP- 

or MK-801 induced schizophreniform symptoms in rodents through olanzepine, clozapine, 

haloperidol and aripiprazole (www.psychogenics.com/pdf/Psychosis.pdf).  

 It is commonly suggested that neuronal pathways involved in mesolimbic 

disinhibition through blocking of NMDARs would have to be modulated through GABAergic 

interneurons which attenuate dopamine production in the VTA as well as release in the 

NAcc, when activated through the glutamatergic efferents. Upon blockage of NMDARs on 

these glutamatergic neurons, GABAergic neurons projecting onto mesolimbic dopaminergic 

neurons would no longer be activated, leading to a disinhibition of the mesolimbic pathway.  

 

 

Fig. 1.3_6: Interactions between the (frontal) glutamatergic and the mesolimbic dopamine system showing the 

mechanism of NMDAR-antagonist induced mesolimbic hyperdopaminergia; inhibition of NMDA-receptors leads 

to a reduction of GABAergic attenuation and thereby to disinhibition of dopaminergic neurons in the VTA and 

their axon terminals in the NAcc. 

 

1.3.7.2 Oxidative stress in pharmacological models of schizophrenia using NMDAR-

antagonists: Results regarding the influences of selective NMDAR-antagonists are few, but 

ambiguous. Some studies report antioxidant effects of treatment with NMDAR-blockers in 

cases of otherwise induced oxidative stress (Drian et al., 1991; Kalonia et al., 2009; da Cunha 

et al., 2011; Noh et al., 2011), probably through inhibition of glutamatergic excitotoxicity 

(Gao et al., 2007; Cheng et al., 2008; Sun et al., 2010). Other groups showed that MK-801 

http://www.psychogenics.com/pdf/Psychosis.pdf
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could enhance activity of antioxidant enzymes (Harkany et al., 1999; Selakovic, Janac & 

Radenovic, 2010), which can be interpreted in line with the argumentation that NMDAR-

blocking has alternative prooxidant effects which in turn would activate antioxidant 

defenses, since no direct interaction between NMDAR-antagonists and antioxidant signal 

transduction has been reported. A study by Bondy & Guo (1996) strengthens this hypothesis 

by showing that protective effects of MK-801 could not be attributed to antioxidant 

substance effects. 

 Experiments in which NMDAR-blockers were given not in combination with other 

prooxidant treatments showed that these drugs actually induce oxidative damage when 

given alone (Sharma et al., 1997; Rajdev, Fix & Sharp, 1998; Alva, Palomeque & Carbonell, 

2006; Zuo et al., 2007; de Oliveira et al., 2009; da Silva et al., 2010; Radonjic et al., 2010; 

Wang et al., 2010). These studies often also report subsequent increases in antioxidant 

defense mechanisms and are therefore in agreement with the interpretation that possible 

protective mechanisms of NMDAR-blockers are not only mediated through inhibition of 

glutamate excitotoxicity, but also induce antioxidant systems through their own prooxidant 

capacities. This supposition is strengthened further by showing that oxidative damage from 

MK-801 could be attenuated through antioxidant supplements (Ozyurt et al., 2007a; 2007b; 

Willis & Ray, 2007). Finally, Nasr, Carbery & Geddes (2009) found that NMDAR-antagonists 

had moderate to no protective effects on striatal degeneration induced through 3-

nitropropionic acid (3NP) injections, but rather exacerbated motor deficits caused by 3NP 

administration. Taken into account that ketamine, PCP and MK-801 are known to decrease 

sensorimotor gating and induce motor deficits, most likely through mesolimbic dopamine 

release, these findings seem so support the argumentation on the pro- vs. antioxidant 

effects of selective NMDAR-blocking.   

 Taken together, the ambiguity of results could be explained through the assumed 

interaction between the glutamatergic and dopaminergic systems. It can therefore be 

assumed that NMDAR-antagonists activate the mesolimbic and mesocortical pathways and 

thereby induce oxidative damage, which in turn leads to increases in antioxidant defense 

mechanisms. The MK-801-model of psychosis in animals and the activation of antioxidant 

metabolism as a measure for the extent of dopamine neurotoxicity can therefore be 

considered internally valid and shall be used in this thesis. 
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1.4 Peroxisomes 

 

 Peroxisomes are single lipid bilayer membrane organelles found in almost all 

eukaryotic cells including plant cells. They were first described by Rhodin (1954) in the 

proximal tubule of the mouse kidneys and referred to by him as microbodies. The name 

“peroxisome” was given by Christian de Duve (de Duve & Baudhuin, 1966), who was the first 

to isolate peroxisomes from rat liver and identify them as cell organelles (de Duve, 1969). 

The name was chosen due to his findings of various oxidases as well as a peroxidase 

(catalase) within the peroxisome. The phylogenic origins of peroxisomes are still unclear, 

although the fact that peroxisomal proteins are mostly formed on free ribosomes and 

imported into the organelles post-translationally, fully folded, oligomeric and co-factor-

bound directly from the cytoplasm (Léon, Goodman & Subramani, 2006) suggests a certain 

degree of (semi)autonomy as found in endosymbionts like mitochondria and chloroplasts. 

The fact that peroxisomes have no DNA and only a single membrane could be explained by 

the theory that peroxisomes preceded mitochondria in the phylogenic timeline, which could 

also explain why, unlike mitochondria, peroxisomes have the capability of degrading ROS 

and very long chain fatty acids (VLCFAs), but cannot generate ATP (q. v. chapter 1.2). These 

suggestions have been criticized (Gabaldón & Capella-Gutiérrez, 2010) and other 

mechanisms of peroxisomal biogenesis involving the ER have been discussed (Hoepfner et 

al., 2005; Kim et al., 2006; Titorenko & Mullen, 2006). Studies on peroxisomal ontogeny 

suggest that these finding do not, however, necessarily exclude the possibility of 

endosymbiotic peroxisomal origins (see following section). 

 

1.4.1 Peroxisomal ontogeny and metabolism 

 Out of the over 80 genes encoding for peroxisomal proteins found in Homo sapiens, 

roughly three quarters encode for metabolic enzymes, whereas the other 20 are involved in 

peroxisomal ontogeny, proliferation and maintenance (Schrader & Fahimi, 2008). The group 

of proteins expressed from these genes is referred to as peroxins and numbered 

continuously (e.g. peroxin 1, Pex1p; encoded by the PEX1 gene). 

 Preperoxisomal vesicles are generated both through division of existing peroxisomes 

as well as through budding off of the ER (South & Gould, 1999, Kim et al., 2006; Titorenko & 

Mullen, 2006). 
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Fig. 1.4_1: Peroxisomal biogenesis in plants and mammals (modified from Titorenko & Mullen, 2006) 

 The import of Pex16p into the membrane of this organelle precursor then turns the 

vesicle into a nascent peroxisome, which may then, upon import of members of the peroxin 

11 family, divide further to form new nascent peroxisomes. This mechanism is also relevant 

during the duplication of mature peroxisomes (South & Gould, 1999). Thereby new 

peroxisomes may proliferate both from pre-existing peroxisomes or be synthesized de novo. 

 

Fig. 1.4_2: A model of peroxisome biogenesis in the absence (top) and presence (bottom) of preexisting 

peroxisomes (adapted from South & Gould, 1999) 
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 Apart from Pex16p other perosisomal membrane proteins (PMPs) are then imported 

through mechanisms that are not clearly understood. PMPs that are synthesized on free 

polyribosomes contain a membrane targeting signal (mPTS) and are bound and shuttled to 

the nascent peroxisome by Pex19p and recruited into the membrane through binding to 

Pex3p. Pex16p is required for this machinery in mammals, although its exact function is not 

clear. Lack of all or either of these proteins therefore leads to complete absence of 

detectable peroxisomes (Schrader & Fahimi, 2008).  

 Peroxisomal progeny from preexisting parent organelles includes three steps: 

Elongation of parent peroxisomes, constriction leading to a “pearls on a string” appearance 

and, finally, fission into new daughter organelles. Elongation is thought to be controlled 

through members of the Pex11p family, fission through dynamin-like GTPases (DLPs), which 

are recruited from the cytosol to the dividing peroxisome through fission 1 protein (Schrader 

& Fahimi, 2008). 

 

Fig. 1.4_3: Pex11p-dependent peroxisomal proliferation (modified from Schrader & Fahimi, 2008) 

 Import of enzymes into the peroxisomal matrix requires the presence of a docking 

complex within the peroxisomal membrane. This complex is made up of the peroxins 13, 14 

and 17. Matrix proteins contain specific targeting signals (sequences of amino acids) either 

at the C-terminus (peroxisomal targeting signal 1, PTS1) or the N-terminus (PTS2) which are 

bound by Pex5p and Pex7p respectively and shuttled through these to the nascent 

peroxisome, where they interact with the docking complex described above. The actual 

dissociation and translocation into the matrix probably involves peroxins 2, 8, 10 and 12, 

leaving Pex5p and Pex7p to be recycled back into the cytoplasm. The exact method of 

transport through the peroxisomal membrane is unclear, since peroxisomes do not have 

pores unlike the nucleus, through which matrix proteins could be imported (Schrader & 

Fahimi, 2008). 
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Fig. 1.4_4: Peroxisomal matrix protein import 

1.4.2 Peroxisomal metabolism 

 Peroxisomes are involved in a majority of metabolic pathways, including ROS 

metabolism, -oxidation of VLCFAs, -oxidation of branched chain fatty acids, ether lipid 

synthesis and D-amino acid degradation. In the context of this thesis emphasis shall only be 

laid on ROS- and D-amino acid-metabolism. For a full list of peroxisomal functions see table 

1.4_1 (from Schrader & Fahimi, 2008). 
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Table 1.4_1: List of peroxisomal functions (modified from Schrader & Fahimi, 2008) 

Peroxide metabolism (catalase and H2O2-generating oxidases), ROS/NOS metabolism 

Lipid biosynthesis (i.a. ether phospholipids/plasmalogens, bile acids & cholesterol) 

Fatty acid -oxidation (i.a. VLFCAs, branched chain fatty acids, unsaturated fatty acids) 

Fatty acid -oxidation 

Long chain and VLCFA activation 

Regulation of acyl-CoA/CoA ratio 

Protein/amino acid metabolism (i.a. D-amino acid degradation, transamination, proteases) 

Catabolism of purines 

Glyoxylate and dicarboxylate metabolism 

Hexose monophsphate pathway 

Glycerol synthesis 

Nicotinate and nicotinamide metabolism 

Retinoid metabolism 

 

 Peroxisomes contain a number of enzymes that generate as well as others that 

degrade ROS, mainly in the form of hydrogen peroxide. The importance of peroxisomal 

antioxidant defense can be shown through incubation of cultured cells in UV radiation or 

with H2O2, whereby peroxisomes are shown to elongate, which is the first step in 

peroxisomal progeny. This effect is clearly linked to the detoxification of ROS as it could be 

attenuated through pre-incubation with the antioxidant N-acetylcysteine (Schrader, 

Wodopia & Fahimi, 1999). Cells successively adapted to increasing levels of dioxygen where 

shown to not only be able to survive in excessive O2-concentrations (99%), but also shown 

twice the amount of peroxisomes, both compared to control cells (van der Valk et al., 1985). 

H2O2-incubation has also been shown to increase the expression of various peroxin-encoding 

genes (Lopez-Huertas et al., 2000; Desikan et al., 2001). Finally, ROS induction also increases 

activity of peroxisomal AOEs (van der Valk et al., 1985; Dhaunsi et al., 1993). A full overview 

of peroxisomal ROS-metabolism is described in Schrader & Fahimi (2004; 2006). 
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Table 1.4_2: List of ROS-producing and -degrading peroxisomal enzymes (modified from Schrader & Fahimi, 

2006) 

 
Enzymes in peroxisomes that generate ROS 

 
Enzyme Substrate ROS 

Acyl-CoA oxidases 
Long chain fatty acids, methyl 
brachend fatty acids, bile acid 
intermediates 

H2O2 

Urate oxidase (not in 
hominoids) 

Uric acid H2O2 

Xanthine oxidase Xanthine H2O2, O2°- 

D-amino acid oxidase D-amino acids H2O2 

Pipecolic acid L-pipecolic acid H2O2 

D-aspartate oxidase D-aspartate, NMDA H2O2 

Sarcosine oxidase Sarcosine, pipecolate H2O2 

L-alpha-hydroxy acid oxidase Glycolate, lactate H2O2 

Poly amine oxidase N-Acetyl spermine/spermidine H2O2 

Nitric oxide synthase L-Arginine H2O2 

Plant sulfite oxidase Sulfite H2O2 

 
Enzymes in peroxisomes that degrade ROS 

 
Enzyme Substrate Enzyme also present in 

Catalase H2O2 
Cytoplasm (e.g. erythrocytes) 
and nucleus 

Glutathione peroxidase H2O2 All cell compartments 

MnSOD O2° Mitochondria 

CuZnSOD O2° Cytoplasm 

Epoxide hydrolase Epoxides ER and cytoplasm 

Peroxiredoxin 1 H2O2 
Cytoplasm, mitochondria, 
nucleus 

PMP20 H2O2  

Plant ascobate-glutathione 
cycle 

H2O2 plants only 
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 Fig. 1.4_5: Schematic overview of peroxisomal ROS metabolism (adapted from Schrader & Fahimi, 2006) 

 

 A noteworthy aspect of peroxisomal enzymatic content and metabolism is the 

phylogenic and inter-species difference in the activity of pathways involved in purine 

metabolism. Important peroxisomal enzymes hereof are xanthine oxidase and urate oxidase 

(aka uricase). Compared to other mammals certain primates, namely prosimians and Old 

World monkeys (Catarrhini), have generally lower levels of urate oxidase activity. In 

extremis, all genera of hominoids (comprised of hominids (Hominidae): Pongo, Gorilla, Pan 

and Homo,  and gibbons (Hylobatidae): Hylobates, Hoolock, Nomascus and Symphalangus) 

as well as a few species of New World monkeys (Platyrrhini) express absolutely no urate 

oxidase due to several mutations found in various regions of the encoding gene (Oda et al., 

2002). Although there appears to be an adaptive decrease in the activity of xanthine oxidase 

(Xu, LaVallee & Hoidal, 2000), which produces uric acid, the substrate of urate oxidase, 

especially in humans the amount of uric acid in the body is substantially elevated compared 

to that of other primate and mammalian species (Johnson et al., 2005). These differences 

have been suggested as essential in hominid and especially human evolution, since the 

antioxidant and anti-inflammatory capacity of uric acid is believed to be responsible for 

these species’ longevity, increased brain complexity and therefore intelligence. Since 
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intelligence and cognitive capacity are closely linked to the form of phenotypical symptoms 

of schizophrenia, this mutation may play a pivotal role in explaining the differences between 

expressed behavioral, cognitive and perceptional abnormalities in various animal models of 

the disorder. The inability to degrade uric acid is also the cause of gout, a disease which is 

only found in the aforementioned primate species. 

 

Fig. 1.4_6: Uric acid levels in primates (adapted from Johnson et al., 2005) 

 

1.4.3 Peroxisomes in the nervous system 

 The role of peroxisomes in the brain and other neuronal tissues is but poorly 

examined. A first description of the organelle’s abundance and distribution in nervous tissue 

was published by Gail Arnold and Eric Holtzman (Arnold & Holtzman, 1978; Holtzman, 1982), 

who found different populations of peroxisomes dependent on enzyme content. One 

population was rich in catalase and poor in D-amino acid oxidase (DAAO), whereas the other 

was oxidase-poor and catalase-rich. These populations of peroxisomes were differentially 

distributed between neuronal cells, in essence between neurons and glial cells, as well as 

between different brain regions. In general, both groups were found both in higher 

abundance and of larger size in glial cells compared to neurons. Largest quantities of 

peroxisomes were found in astrocytes and oligodendrocytes as well as in ependyma, 

suggesting the neuroprotective functions of these cells with regard to ROS metabolism. 
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Within neurons, peroxisomes were most abundant in the perikarya and the large dendrites 

and only very sparse in axons and synaptic terminals.  

 Regarding differential distribution between various brain regions, Holtzman 

emphasizes the lack or low abundance of catalase-containing peroxisomes in Purkinje cells, 

cerebrocortical neurons as well as dorsal root ganglion cells. In contrast he found relatively 

larger populations of catalase-positive bodies in catecholaminergic cells, with the exception 

of the adrenal medulla. He does, however, warn about the overinterpretation of negative 

cytochemical results. 

 Apart from differences between cells and regions, Holtzman also described 

ontogenetic differences within the same cells and regions. Whereas catalase is found in 

relatively high levels in developing neurons, including in synaptic terminals, as well as in 

oligodendrocytes during myelination, the amount of catalase is reduced drastically during 

the later stages of ontogeny. This is explained by a possible involvement of peroxisomes in 

membrano- and myelogenesis, which would be in line with previously described findings 

that peroxisomes are involved in ether lipid synthesis, of which there is a large concentration 

in neuronal and glial membranes.  

 Further investigations regarding the distribution of D-aspartate oxidase (D-AspOx) 

were performed by Kurt Zaar and coworkers (Zaar et al., 2002) on rat and human brain 

sections using immunohistochemistry, immunoelectronmicroscopy and in-situ hybridization. 

Findings indicate that D-AspOx is located solely in peroxisomes, widely distributed in the CNS 

and mainly localized in neurons and astrocytes.  
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Fig. 1.4_7: Cellular and subcellular distribution of D-aspartate oxidase in (a) rat kidney, (c) human hippocampal 

overview, (d) granule cells and (e) multipolar cells of the human dentate dyrus, (m) interneurons and astrocytes 

in the stratum lacunosum-moleculare of the human cornu ammonis and (h) Purkinje cell of the human 

cerebellar cortex; IEM: immunoelectron microscopy, IHC: immunohistochemistry, PO: peroxisome ( modified 

from Zaar et al., 2002) 

 

 A study using indirect immunofluorescence on mouse brain sections showed similar 

findings to Holtzman in that a significant down-regulation of catalase abundance and 

immunoreactivity was observed between postpartum days 2 and 38 and that catalase 

immunoreactivity was markedly different between neurons and glial cells with highest levels 

found in astrocytes. Moreover peroxisomal abundance was evaluated independently of 

enzymatic content through the usage of a novel peroxisomal marker protein, peroxin 14 
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(Pex14p, q.v. section on problems in labeling peroxisomes), which showed that the decrease 

in catalase immunoreactivity was not mirrored by the decrease in peroxisomal abundance 

(Ahlemeyer et al, 2007). These findings were corroborated through examination of various 

other peroxisomal proteins, catalase-activity assays and through Western blotting. The latter 

also clearly showed that, while catalase content decreases continuously throughout early 

ontogeny, Pex14p-levels remain stable after a global reduction of peroxisomal protein levels 

between postpartum days 2 and 15. These findings stress the importance of peroxisomes in 

the developing brain, not only during neuronal growth and myelination, but also during the 

transition from the hypoxic environment in utero to postnatal hyperoxia. 

 

 

Fig. 1.4_8: Distribution of Pex14p and catalase in the early and late developing mouse neocortex; I-V: 

neocortical laminae, CP: cortical plate, fCx: frontal cortex, IZ: intermediate zone, LV: lateral ventricle, P2/38: 

postpartum days, pCx: parietal cortex, PVZ: periventricular zone (modified from Ahlemeyer et al., 2007) 
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Fig. 1.4_9: Western blotting shows differential regulation of catalase and Pex14p during murine brain 

development (modified from Ahlemeyer et al., 2007) 

 

 The importance of intact peroxisomal function is also shown through marked 

neurological deficits, neuronal migration retardation and abnormal neurogenesis in all 

different knockout-models of various peroxisomal biogenesis proteins and metabolic 

enzymes (Baes et al., 1997 [Pex5p KO]; Faust et al., 1997; 2001; 2003 [Pex2p KO]; Li et al., 

2002 [Pex11 p KO]; Maxwell et al., 2003 [Pex13p KO]; Huyghe et al., 2006 [peroxisomal 

multifunctional protein 2, MFP-2 KO]).  

 

Fig. 1.4_10: Retardation of neuronal migration in the neocortex of the PEX5 knockout mouse; CP: cortical plate, 

GZ: germinative zone, IZ: intermediate zone (modified from Baes et al., 1997) 
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 Since these animals all show signs of a storage disease as is found in the human 

peroxisomal disorder “Zellweger syndrome” (see section on peroxisomal disorders) and 

neural migration is dependent on more than functional peroxisomes solely in the brain 

(Janssen et al., 2003; Krysko et al., 2007), owing to multiorgan peroxisomal dysfunction in 

these mouse models, they are not well suited for analysis of intrinsic roles of peroxisomes in 

the brain. This unsuitability is further underlined by the obvious conclusion that peroxisomal 

function in the developing brain is not equal to that in the adult brain. 

1.4.4 Peroxisomal disorders 

 Peroxisomal disorders can be divided into two groups: Peroxisomal biogenesis 

disorders (PBDs) on the one hand and single peroxisomal enzyme deficiencies (PEDs) on the 

other. The PBDs consist of rhizomelic chondrodysplasia punctata, type 1 (RCDP1), which is 

caused by a mutation in the PEX7 gene and the disorders of the so-called Zellweger 

spectrum, which include infantile Refsum disease, neonatal adrenoleukodystrophy and 

Zellweger syndrome. Disorders of the Zellweger spectrum, of which Zellweger syndrome is 

the most severe, are usually caused by multiple genetic mutations in a variety of PEX genes. 

The disorders are named after Hans Zellweger, who first described the disorder as 

cerebrohepatorenal syndrome, due to the multi-organ involvement. Patients exhibit 

symptoms of a storage disorder since their lack of functional peroxisomes inhibits 

degradation of VLCFAs and branched chain fatty acids. Patients also show decreased levels 

of plasmalogens and hypomyelination. This accompanied by neuronal migration and 

neurogenesis defects accounts for severe muscular hypotonia, seizure, apnea and inability to 

swallow. For a full description of the syndrome see Zellweger et al., 1988. There is currently 

no known curative treatment for Zellweger syndrome. Palliative measures involve 

pneumonia and asphyxiation prophylaxis as well as artificial nutrition. Patients usually die 

within their first year of life (Steinberg et al., 2006). 

 Peroxisomal enzyme deficiencies are far more numerous and can affect any of the 

peroxisomal metabolic pathways (see table 1.4_3). The most commonly known PED is 

probably X-linked adrenoleukodystrophy (X-ALD), a dysfunction of the peroxisomal fatty acid 

transporter ABCD1. The palliative treatment, Lorenzo’s oil, is a 4:1 mixture of glycerol 

trioleate and glycerol trierucate, developed and named by Augusto and Michaela Odone 

after their son Lorenzo, who suffered from X-ALD. 
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Table 1.4_3: List of the single peroxisomal enzyme deficiencies (modified from Wanders & Waterham, 2006) 

Peroxisomal pathway 

affected 

Defect 

enzyme 
Disease 

Ether phospholipid synthesis DHAPAT Rhizomelic chondrodysplasia punctata Type 2 (DHAPAT deficiency) 

Peroxisomal beta-oxidation ADHAPS Rhizomelic chondrodysplasia punctata Type 3 (alkyl-DHAP synthase) 

 ABCD1 X-linked adrenoleukodystrophy 

 ACOX1 Acyl-CoA oxidase deficiency 

 DBP D-bifunctional protein deficiency 

 AMACR 2-MethylacylCoA racemase deficiency 

 SCPx Sterol carrier protein X deficiency 

Peroxisomal alpha-oxidation PHYH/PAHX Refsum disease (phytanoyl-CoA hydroxylase deficiency) 

Glyoxylate detoxification AGT Hyperoxaluria Type 1 

H2O2-metabolism CAT Acatalasaemia 

 

1.4.5 Problems in labeling peroxisomes 

 The most common marker for the localization of peroxisomes in morphological or cell 

culture studies is catalase, an enzyme endogenous to peroxisomes and commonly found in 

eukaryotes. Its function is the decomposition of hydrogen peroxide to water and oxygen, 

thereby protecting the cell from oxidative damage. This organelle-specific cytochemical 

staining became available for light and electron microscopy due to the introduction of the 

alkaline 3,3’-diaminobenzidine (DAB) reaction for endogenous catalase (Fahimi, 1968; 1969; 

Novikoff & Goldfisher, 1969). It was originally believed that catalase was ubiquitously 

expressed in all animal cells (Hruban et al, 1972), but since catalase has the highest turnover 

numbers in all enzymes, it is therefore not present in all cell types and tissues in equal 

amounts at the same time, since one molecule of catalase can decompose millions of 

hydrogen peroxide molecules per second (Goodsell, 2004). Although all of the mechanisms 

for the Nrf2-dependent induction of catalase-expression are not yet completely understood, 

it is shown to be dependent on different factors like maturation (Ahlemeyer, 2007) or the 

amount of reactive oxygen species (ROS) in the respective cell. ROS are produced during 

subcellular metabolism, e.g. in mitochondrial respiratory chain, wherefore intracellular 

catalase-concentration is directly dependent on specific cellular ROS metabolism and only 

indirectly on peroxisomal abundance. Since a major part of ROS is produced during 

mitochondrial respiration, ROS-release and thereby mitochondrial amounts of manganese-
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superoxide dismutase (SOD2) also influence the levels of catalase. In general it can therefore 

be ascertained that the enzyme content of peroxisomes is highly heterogeneous, not only 

between cell types or tissues, but also within cell types and tissues depending on the stage 

of ontogeny (Baumgart, 1997, Baumgart et al, 2003, Luers et al., 2006). In the brain, for 

example, it has been shown that catalase is highly expressed in neurons during the 

embryonic development of the mouse central nervous system, but is then significantly 

downregulated and can, in adult animals, mainly be found only in glial cells (Arnold & 

Holtzman, 1978; Ahlemeyer et al. 2007). Similar intercellular differences in catalase-

concentration between male germ cells, different somatic cell types of the testis or the cells 

of the alveolar epithelium could be shown in mice (Nenicu et al, 2007; Karnati & Baumgart-

Vogt, 2008).  Therefore positive peroxisomal localization by using antibodies against catalase 

or by the cytochemical alkaline 3,3'-diaminobenzidine- (DAB)-reaction (Fahimi et al., 1976) 

turns out to be imprecise and heavily dependent on the metabolism of the respective cell 

type. 

The supposed low abundance of peroxisomes in neurons was shown to be incorrect 

by staining morphological samples from rat and human brain for other enzymes known to be 

found only in peroxisomes, namely D-amino acid oxidase (Holtzman, 1982) or D-aspartate 

oxidase (Zaar et al., 2002). Since these enzymes are, however, common to neuronal tissue, 

their capabilities as peroxisomal markers in other tissues and organs are limited. 

A similar statement can be made about another commonly used peroxisomal marker, 

namely adenosine triphosphate-binding cassette sub-family D member 3 (ABCD3), a 70-kDa 

peroxisomal membrane protein (formerly PMP70). This ABC-transporter is a major 

component of the peroxisomal membrane and is involved in transport of lipid derivatives 

through the peroxisomal membrane (Kamijo et al, 1992). ABCD3 expression is also highly 

dependent on cell metabolism. Due to its involvement in the initial steps of peroxisomal lipid 

metabolism, namely the bringing of the metabolites into the peroxisome, its expression 

pattern differs highly in some tissues from that of catalase.  

It is therefore necessary to find another peroxisomal marker, which is capable of 

labeling peroxisomes in all tissues and cell types independently of metabolic changes. The 

likelihood of finding an optimal ubiquitous peroxisomal marker is highest within the group of 

peroxisomal biogenesis proteins (peroxins) that are part of the organelle membrane such as 

the members of the docking complex for the import of matrix proteins are ideal for this 
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purpose. First attempts were done with antibodies against peroxin 13 (Pex13p) and peroxin 

14 (Pex14p: Distel et al., 1996) in testis and lung (Nenicu et al., 2007; Karnati & Baumgart-

Vogt, 2008), whereof Pex14p showed better and more uniform results, probably due to the 

better accessibility of the antigen compared to that of Pex13p.   

In this thesis the peroxin 14 is therefore presented as the optimal peroxisomal 

marker. Pex14p is a peroxisomal biogenesis protein (peroxin) involved in the docking of both 

PTS1- and PTS2-linked peroxisomal matrix enzymes (Albertini et al, 1997), present within 

every intact peroxisomal membrane and found in similarly high levels in distinct cell types 

and organs. To show this, a large variety of tissues and organs as well as primary cultured 

neurons and mouse and human hepatoma cells were compared regarding their distinct and 

individual abundance of catalase, ABCD3 and Pex14p. In order to compare levels of catalase 

with those of antioxidant enzymes in other organelles parallel tissue sections were also 

stained for SOD2. In addition to standard localization of the anti-Pex14p antibody with 

immunofluorescence, peroxidase-based immunohistochemistry and immunogold-labeling 

QuantumDots (Qdots) were used for localization of peroxisomes in cultured cells. The 

unique capabilities of this new peroxisomal marker for morphometric purposes can 

furthermore be shown through experiments on cells treated with the peroxisome-

proliferator ciprofibrate. 

Apart from the cell biological advantages of Pex14p as a peroxisomal marker, the 

temporal stability of the epitope, its sensitivity to different fixation techniques as well as the 

cross-species applicability of our self-created antibody were also examined. For this purpose 

labeling of peroxisomes in tissues from mouse, cat, Sacred Baboon (Papio hamadryas) and 

human was attempted, using samples from freshly perfused animals, samples taken from 

field studies almost 15 years ago, human autopsy samples as well as biopsies from body 

donors to the gross anatomy course of the Institute for Anatomy and Cell Biology (JLU 

Giessen). These samples were fixed in aqueous formaldehyde (formalin), pH-buffered 

formaldehyde solution (Lilie’s formol), pH-buffered paraformaldehyde- (PFA)-solution or in 

Bouin’s fixative.  

This is additionally the first attempt of localizing Pex14p in the human brain, which in 

and of itself makes localization of peroxisomes especially problematic. In classical 

immunohistochemical staining peroxisomes is complicated by diffusion artifacts of the 

reaction products into the surrounding cytosol. Since neuronal tissue is known to have very 
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few and exceptionally small peroxisomes this method is definitely inferior to 

immunofluorescence staining. This approach will be shown to work more than adequately in 

cultured cells and animal tissues, but comes with its own setbacks in the human brain, due 

to the accumulation of lipofuscin granules, which fill almost the entire cytoplasm of neurons. 

Since lipofuscin is made up of various lipid-containing residues of lysosomal digestion it 

autofluoresces in all emission wavelengths and brightly outshine specific 

immunofluorescence signals. Therefore, attempts were made to quench lipofuscin 

autofluorescence through pre-staining with a lipid staining agent (Sudan Black B), which in 

turn, however, also reduces the signal of the fluorochromes and leads to unspecific 

background fluorescence.  

 Nevertheless, this thesis suggests that Pex14p is the ideal standard marker protein for 

the localization of peroxisomes, allowing for reliable studies regarding abundance and 

distribution of peroxisomes, thereby giving accurate numerical values which would not be 

obtainable through catalase or ABCD3 stainings due to strong intra- and intercellular 

differences. 
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1.5 Aims and schematic overview 

 

 The primary aim of this thesis is to examine the role of oxidative stress and dopamine 

neurotoxicity in the etiopathogenesis of schizophrenia and attempt to integrate many 

preexisting models into one. Since the role of peroxisomes has not been researched 

extensively a special emphasis shall be laid on the involvement of this organelle. 

 

 

Fig. 1.5_1: Flow chart of the experiments performed within the first part of the thesis 
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The first part of this thesis shall therefore be an attempt of localizing peroxisomes 

ubiquitously and independently of metabolism and enzyme content using a new marker 

protein, peroxin 14 (Pex14p). Labeling of peroxisomes shall be attempted in various tissues 

and cell types of different species, including human (with special emphasis on human brain), 

through different methods, including immunohistochemistry, immunofluorescence and 

immunoelectronmicroscopy (see fig. 1.5_1). 

 

 

Fig. 1.5_2: Flow chart of the experiments performed within the second part of the thesis 

In the second part, the newly established marker shall be used to measure 

peroxisomal reactions to increased dopamine in vivo and in vitro. Additionally the expression 

levels and protein content of various enzymes involved in antioxidant defense and dopamine 

metabolism shall be analyzed alongside selected proteins believed to be relevant for the 

interaction between dopamine and glutamate neurotransmission and peroxisomal 

metabolism, e.g. D-amino acid oxidase, D-aspartate oxidase and serine racemase. Analyses 

shall be performed on post-mortem brain sections from schizophrenic patients, cultured 

murine astrocytes and neurons as well as male pubescent C57Bl/6J mice treated with the 

selective non-competitive NMDAR antagonist dizocilpine (MK-801) (see fig 1.5_2). 
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2. Materials and methods 

 All experiments were performed in accordance to international ethical standards of 

the Justus-Liebig-University, Giessen (Germany). Human tissues were taken from donors 

who testamentarily donated their bodies to the Institute of Anatomy and Cell Biology (JLU 

Giessen). Animal testing was approved through the regional board (animal research proposal 

“MK-801 und (anti-)oxidativer Stoffwechsel”, Geschäftszeichen V 54 - 19 c 20-15 (1) GI 20/23 

Nr. 05/2010, Feb. 25 2010), in accordance with § 8 paragraph 1, German Protection of 

Animals Act (TSchG). 

 For reasons of conciseness, the methods performed in this thesis shall only be 

described briefly in this section. For detailed information see appendix A. 

 

2.1 Animal treatment with MK-801 

 Animals used were male pubescent wild type C57Bl6/J mice, obtained from Charles 

River, Germany. Each experiment consisted of three animals, whereof one was treated with 

a vehicle (0.9% saline) and the other two with MK-801. The selective NMDAR-antagonist MK-

801 (dizocilpine, (5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-

imine maleate, Tocris Bioscience) was given in a final concentration of 0.5 mg per 1 g body 

weight. A 20x stock solution was prepared by dissolving 10 mg MK-801 (337.37 g/Mol) in 5 

ml sterile 0.9% saline solution. Aliquots of 10 ml were stored at -80°C, thawed prior to use 

and 190 ml of sterile 0.9% saline solution were added, where after the solution was sterilized 

using a sterile filter. Each animal was weighed and 5 ml of the MK-801 solution or a vehicle 

per g body weight were injected intraperitoneally to reach the final treatment amount of 0.5 

mg per 1 g body weight. 

 Animals were either treated once and sacrificed after 1 h or were treated once every 

24 hrs and sacrificed one hour after the final injection. Treatment durations were 25 hrs (2 

treatments), 49 hrs (3 treatments) or 73 hrs (4 treatments). Method of sacrifice was cervical 

dislocation. 
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2.2 Tissue preparation for morphological methods 

2.2.1 Tissue acquirement 

2.2.1.1 Mouse tissue: Animals used for the comparative morphological analyses were 

anaesthetized with isoflurane and subsequent intraperitoneal injection of a mixture of 

ketamine/xylazine/Sedastress®. After a short rinse with 0.9% NaCl to remove blood cells, 

animals were perfused anterogradely via the left ventricle with 4% depolymerized 

paraformaldehyde (PFA) in phosphate buffered saline (PBS, pH 7.4) containing 2% sucrose 

for light and immunofluorescence analyses or with 4% PFA in 0.1% phosphate buffer (PB) for 

electron microscopy, after which organs were individually removed and immersion fixed 

over night in the respectively same fixative. 

Animals used in the studies on MK-801-induced dopamine neurotoxicity were 

sacrificed through cervical dislocation. 

 

2.2.1.2 Rat tissue (liver): Tissues were obtained with kind permission of Dr. Wiebke Moebius 

(MPI Göttingen, Germany), fixed in 4% PFA and 0.2% glutardialdehyde (GDA) in 0.1% PB. 

 

2.2.1.3 Cat and Sacred Baboon: Sections were taken from paraffin blocks which were 

prepared for use in our histology course up to 20 years ago. Fresh tissue was dissected from 

the cadavers and fixed in Lilie’s formol. Samples were then refixed in Bouin’s fixative over 

night in the same fixative.  

 

2.2.1.4 Human tissue: Brain samples were taken from human autopsy-materials, kindly 

provided by Prof. Dr. Klaus Kuchelmeister (at that time: Department of Neuropathology, 

University of Giessen, Germany). Brains were removed from the bodies during postmortem 

and, after initial inspection, immersion fixed in 4% formaldehyde in tap water for at least 

three weeks. After thorough fixation, brains were dissected and small samples (ca. 2x2cm) 

were cut for paraffin embedding. 

 Samples from human submandibular glands were acquired from body donors to the 

Institute for Anatomy and Cell Biology’s gross anatomy course. Bodies were cooled over 

night and perfused retrogradely via the femoral artery with a fixation solution containing 5% 

phenoxytol, 66% ethanol 9% formaldehyde and 20% water.  

 



2. Materials and methods  69 
 

 

2.2.2 Embedding and processing for light and fluorescence microscopy 

 Samples were dehydrated through a graded alcohol series (50%, 70%, 80%, 96% and 

2x99%) and embedded in paraffin in an automated vacuum infiltration tissue processor 

(Leica TP 1020). Two micron sections were cut on a standard rotation microtome (Leica RM 

2135) with a block cooling system and collected on precoated SuperFrost Plus microscope 

slides (Menzel). 

 

2.2.3 Embedding and processing for electron microscopy 

 Samples were recut into approximately 1x1x1mm blocks. Some of the blocks were 

then embedded in either LR White resin (polymerization at 50°C) or in Unicryl resin (UV-

polymerization at 4°C). Blocks were neither refixed in glutardialdehyde nor in osmium 

tetroxide in order to preserve maximum antigenicity. Semithin and ultrathin (silver to gray 

interference colored) sections were cut with glass and diamond knives (Diatome ultratrim) 

on a Reichert Ultracut ultramicrotome. Ultrathin sections were collected on 100 mesh nickel 

grids coated with 1% formvar and dried at room temperature.  

 Other blocks were not embedded into synthetic resins, but infiltrated with 2.3M 

sucrose in 0.1% phosphate buffer (PB) according to the Tokuyasu method for cryo-

ultramicrotomy (Tokuyasu, 1973). After infiltration, blocks were mounted on T-pins and 

quick-frozen in boiling liquid nitrogen. Blocks were introduced into a Reichert Ultracut-S 

ultramicrotome with a Reichert FC R cryo-chamber and trimmed into a mesa with a glass 

knife at -80°C. Ultrathin sections (gold to gray interference colored) were then cut with a 

cryo-diamond (Diatome cryo immuno) at between -80 and -120°C (according to tissue 

consistency) and picked up onto formvar-coated nickel grids using a mixture of 2.3M sucrose 

and 2% methyl cellulose. 

 

2.3 Cell culture 

 

2.3.1 Mixed primary murine neuronal cultures 

2.3.1.1 Preparation of primary neuronal cultures of the medial neocortex of newborn mice:  

Primary cultures from the medial neocortex of newborn C57BL/6J mice were prepared as 

previously described (Ahlemeyer and Baumgart-Vogt, 2005). For a detailed description see 

appendix A, section A.1.1. 
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2.3.1.2 Peroxisome proliferator (ciprofibrate) treatment of primary neuronal cultures: 

Ciprofibrate was added to primary cortical neurons 4 h after seeding until day 6 at a final 

concentration of 100 µM, whereas controls received vehicle only. 

 

2.3.1.3 Dopamine and haloperidol treatment of murine primary neuronal cultures: On the 

seventh day of cultivation 20 ml of a vehicle (medium) or a sterile dopamine or haloperidol 

solution of defined concentration (100x of final concentration) were added to reach final 

concentrations of 0 (vehicle), 10, 25, 50, 100 or 200 mM. Cells were treated with dopamine 

or haloperidol for 24 hrs, where after the solution was removed by pipetting. Cells were then 

washed three times briefly with warm PBS and then fixed in 4% PFA in PBS for indirect 

immunofluorescence labeling.  

 

2.3.2 Primary astrocytes cultures 

2.3.2.1 Preparation of primary astrocyte cultures of the neocortex of newborn mice: 

Astrocytes were cultivated using the neocortices of entire litters of newborn C57Bl/6J mice. 

For a detailed description see appendix A, section A.1.2. 

 

2.3.2.2 Dopamine treatment of murine primary astrocyte cultures: On the third day after 

passaging the medium was changed and 60 ml of a vehicle (medium) or a sterile dopamine 

solution of defined concentration (100x of final concentration) were added to reach final 

concentrations of 0 (vehicle), 0.1, 1, 10, 50, 100, 200, 500 mM. Cells were treated for either 

24, 48 or 72 hrs, resulting in a 3x8-design. 

 

2.3.3 Mouse and human hepatoma cells 

 Hepa 1-6 cells (from DSMZ, Braunschweig, Germany) were cultured on Petri dishes 

containing a coverslip in DMEM supplemented with sodium pyruvate and 20% FCS. Semi-

confluent cultures at passages 13-15 were used for the experiments. 

HepG2 cells (from ATCC, HB-8065, delivered by Promochem, Wesel, Germany) were 

cultured on collagen-coated Petri dishes containing a coverslip in DMEM supplemented with 

sodium pyruvate, non-essential amino acids and 20% FBS. Semi-confluent cultures at 

passages 98-100 were used for the experiments.  
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2.4 Morphological staining techniques 

 

2.4.1 Histological staining 

2.4.1.1 Modified Kluver-Barrera staining: Sections were stained for 1.5-2 hrs at 60°C in luxol 

fast blue and differentiated in 0.1% NaOH (aq). Counterstaining with acidophilic cresyl violet 

was performed at RT for 8-15’. Kluver-Barrera stains myelin sheaths blue, nuclei, nucleoli 

and Nissl bodies (rER) violet and neuropil cyan. For a detailed description see appendix A, 

section A.2.1.1. 

 

2.4.1.2 Sudan Black B (SBB) staining: SBB staining was used in combination with subsequent 

indirect immunofluorescence staining in order to quench unspecific fluorescence from 

lipofuscin granules (Schnell, Staines & Wessendorf, 1999).  

 Sections were incubated over night at 60°C followed by 3 changes of xylene (5’ each) 

to remove the paraffin. Afterwards sections were rehydrated through a descending series of 

ethanol (2 x 99%, 1 x 96°; 90%, 80%, 70%; 5’ each) and then introduced into a solution of 

0.1% SBB in 70% ethanol for 10’. Thereafter rehydration of sections was continued using 

50% ethanol and ultrapure water for 5’ each. Hydrated sections were then used for indirect 

immunofluorescence labeling (see below). 

 

2.4.2 Indirect Immunohistochemistry (IHC), Immunofluorescence (IF) and 

ImmunoGoldLabeling (IGL) 

2.4.2.1 IHC on paraffin-embedded tissue sections: Stainings for Pex14p, catalase, ABCD3 as 

well as mitochondrial Mn-superoxide dismutase (SOD2) were carried out according to a 

standardized protocol for indirect immunofluorescence on formalin-fixed paraffin-

embedded (FFPE) tissues (based on Grabenbauer et al., 2001 and Baumgart et al., 2003).  For 

a detailed description see appendix A, section A.2.2.2. 

 

2.4.2.2 IF on paraffin-embedded tissue sections: The protocol was similar to that for IHC-

labeling (see above), but without H2O2-incubation or adding of avidin and biotin to the 

respective solutions. Secondary donkey antibodies against rabbit were coupled with 

AlexaFluor 488 fluorophore (Molecular Probes/Invitrogen) and diluted 1:300 in 1% PBSA 

with 0.05% Tween 20. Nuclei were counterstained with Hoechst 33342 (Sigma) and TOTO-3 
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iodide (Molecular Probes) diluted in PBS. All washing steps and incubation procedures 

(except for antigen retrieval) were performed at room temperature. Slides were mounted 

with Mowiol mounting medium (Polysciences) mixed two parts to one with n-propylgallate 

(Sigma) as fading agent.  

 

2.4.2.3 Multiplex IF on human and murine brain tissue sections: Main steps were the same 

as described above. Apart from a primary rabbit antibody against Pex14p, catalase or ABCD3 

further primary antibodies against MAP2 (neuronal marker) and GFAP (astrocyte marker), 

raised in different animals) were used simultaneously and visualized with respective 

secondary antibodies carrying green (for Pex14p, catalase, SOD2), red (for GFAP) and blue 

(for MAP2) fluorophores. For a detailed description see appendix A, section A.2.2.3. 

 

2.4.2.4 Multiplex IF on murine primary neuronal and astrocyte cultures: Labeling protocols 

were similar to those described above for human and murine brain sections. For a detailed 

description see appendix A, section A.2.2.4.   

 

2.4.2.5 IF using QuantumDots® on mouse and human hepatoma cells: Labeling cells and 

tissues with secondary antibodies coupled to QuantumDots® was performed using the 

standard protocols described above and in appendix A, however, without success. The 

labeling protocol was therefore carefully adapted stepwise by the author, until satisfactory 

results were obtained. For a detailed description of the final protocol for IF on cells using 

QuantumDots® see appendix A, section A.2.2.5.  

 

2.4.2.6 IGL for electron microscopy: All washing and incubation steps were performed on 

drops pipetted onto a specially cast rubber panel. Primary antibodies against Pex14p and 

catalase were visualized through nanogold-Fab’-probes with silver or gold enhancement. For 

a detailed description see appendix A, section A.2.2.6. 

 

2.5 Reverse transcription polymerase chain reaction (RT-PCR) 

 

Prior to RNA extraction all surfaces and gloves were treated with chaotropic agents 

(RNaseZap, Sigma) to avoid RNase contamination. Metal tools (scissors, tweezers and 
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scalpels) were incubated for 60’ in 70% ethanol. RNA extraction were performed using 

appropriate kits from Qiagen (RNeasy Mini Kit for cells and tissues; RNeasy Protect Animal 

Blood Kit for blood samples), wherefore buffer compositions cannot be described. Buffer 

names are those given by Qiagen. 

 

2.5.1 RNA extraction protocols 

2.5.1.1 RNA extraction from animal tissues: Excised organs were immediately placed into a 

stabilizing agent and flash frozen in liquid nitrogen for storage. RNA extraction was 

performed according to the RNeasy Mini Kit (Qiagen) protocol. For a detailed description see 

appendix A, section A.3.2.1. 

 

2.5.1.2 RNA extraction from primary murine astrocyte cultures: Dopamine- or vehicle-

containing medium was removed by pipetting and cultures were washed in cold RNase free 

PBS (4°C). Each Petri dish was incubated with 350 l buffer RLT + 3.5 l -ME for 30’ at room 

temperature to lyse the cells and reduce protein disulfide bonds. The cell lysate was then 

pipetted onto the QIAshredder spin column and centrifuged for 2’ at >8000 g. The 

subsequent steps were identical to those described for tissues in appendix A, section A.3.2.1. 

In the final step RNA was eluted with 43 l RNase-free water. 

 

2.5.1.3 RNA extraction from animal whole blood: After collection blood was mixed with an 

appropriate volume of RNA Protect Animal Blood Reagent (Qiagen), incubated for 2 hrs at RT 

and frozen in liquid nitrogen for storage. RNA extraction was performed according to the 

RNeasy Protect Animal Blood Kit (Qiagen) protocol. For a detailed description see appendix 

A, section A.3.2.2. 

 

2.5.2 RNA denaturation, quantification and quality control 

 All RNA eluates were denatured through incubation for 5’ at 65°C and quantified 

using a spectrophotometer (BioRad Smart SpecTM 3000). RNA-integrity was additionally 

controlled through a denaturing agarose-MOPS/FA-gel electrophoresis. For a detailed 

description see appendix A, section A.3.3. 
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2.5.2.1 DNase digestion: DNase digestion was either performed on column or prior to First 

Strand Synthesis. For a detailed description see appendix A, section A.3.3.1. 

2.5.3 First Strand Synthesis (FSS)  

 FSS was performed according to the SuperScriptTM II reverse transcriptase 

(Invitrogen) protocol. For a detailed description see appendix A, section A.3.4. 

2.5.4 Primer Design 

 Primers for cDNAs of the mRNAs of 28S rDNA, PEX14, CAT, SOD2, ABCD3 & GFAP 

were taken from the primer stock of the Division of Medical Cell Biology (Institute for 

Anatomy and Cell Biology, JLU Giessen). All other primers were self-designed using the 

Primer Basic Local Alignment Search Tool (Primer-BLAST) online program (NCBI, 

www.ncbi.nlm.nih.gov/tools/primer-blast). Primers were designed to be separated by at 

least one intron on the corresponding genomic DNA so that possible amplification products 

of contaminating genomic DNA could be detected and differentiated from the intended cDNA 

amplificates. Primers were only searched for in the species Mus musculus. PCR product size 

was set at default (70-1000 base pairs). Optimum primer melting temperatures were initially 

set at 59°C-61°C. Primer specificity stringency was set at at least 4 mismatches to 

unintended targets, including 4 mismatches within the last 7 base pairs at the 3’end. 

Maximum self complementarity and maximum 3’ end complementarity was set at 4 and 2 

respectively. 

 In cases were no primers matched the aforementioned criteria, these were loosened 

progressively until suitable primers were found. For a complete list of primers used for PCRs 

and nested PCRs see appendix B. 

 Primers were ordered as lyophylisates from Operon and diluted with PCR clean water 

(aqua ad iniectabilia, AAI, Braun) for 10’ at 37°C on a thermo-shaker set at 700 rpm to create 

stock solutions (100 pmol/ l), which were stored at -20°C. Before use, portions of the stock 

solutions were diluted 1:10 with AAI in RNase- and DNase-free reaction tubes. Ready-to-use 

primer solutions were also stored at -20°C. 

 Several primer-pairs for each template were tested in temperature graded PCRs (5 

temperature steps) with various numbers of PCR cycles until the best primers and the 

optimal conditions for each template (regarding cDNAs transcribed from cell-, tissue- or 

whole blood-RNA) and each primer pair were found (see appendix B).  

http://www.ncbi.nlm.nih.gov/tools/primer-blast
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2.5.5 Polymerase Chain Reaction (PCR) 

 PCRs were pipetted and run in DNase-free PCR-softstrips (0.2 ml, Biozym). Pipetting 

steps were all carried out either on crushed ice or PCR cool blocks. PCRs were run in an 

iCycler thermal cycler (BioRad). 

 PCR single reaction volume was 25 l, consisting of 5.2 l master mix, 1 g (0.5 g for 

samples taken from whole blood) cDNA (X l) and an appropriate volume of AAI (19.8-X l). 

For each primer pair a control samples was run containing just 5.2 l master mix and 19.8 l 

of AAI with the omission of cDNA. 

 For detailed information on the composition of master mixes as well as PCR protocols 

see appendix A, section A.3.5. 

 

2.5.5.1 Nested PCR: In the cell culture experiments the expression of specific templates 

(DAO, DRD1, DRD2, DRD3, DRD4, DRD5, COMT1t3 and DAT) appeared to be very low, 

wherefore the signal/noise-ratio of the PCR products was considered insufficient. In these 

cases nested PCRs were run. Here for a second (nested) primer pair was designed, whereby 

the nested primers lay farther towards the 3’-end of the amplicon in comparison to the 

original primers. The product of the first PCR run with the respective first primer pair was 

then amplified again, but using the nested primer pair. Thereby the target template was 

amplified even more, whereas unspecific noise was reduced simultaneously. For nested 

primer pairs see appendix B. 

 

2.5.5.2 Agarose-Gel Electrophoresis: PCR amplification products were mixed with 2ml DNA 

loading dye (Blue/Orange 6x loading dye, Promega) and analyzed through electrophoresis 

using a 1% agarose-gel. For detailed descriptions see appendix A, section A.3.5.1. 
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2.6 Imaging 

 

 Light and fluorescence microscopical images were taken with a Leica fluorescence 

microscope (Leica DMRD with a Leica DC 480 digital camera) and a confocal laser scanning 

microscope (Leica TCS SP2, setting at airy 1, average of 16 scans). 

 Gel pictures were taken in a BioRad GelDoc 2000 with QuanityOne® software (version 

4.3.0, BioRad) 

 EM pictures were taken at 80 kV with a LEO906 electron microscope (Zeiss, Wetzlar). 

 All ex post facto modifications of images were performed with Adobe® Photoshop® 

CS2 version 9.0 or Adobe® Photoshop® Elements version 9. 

 

2.7 Statistical Analyses 

 

 All statistical analyses were performed with the Statistical Package for the Social 

Sciences (SPSS), different versions.  
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3. Results 

 

In order to find an optimal ubiquitous marker for peroxisomes independently of 

metabolism, cell and tissue type or species the general abundance and distribution of 

catalase, ABCD3 and Pex14p was compared in a large variety of organs, tissues and cell types 

of different embryonic origin. Results show that a more accurate picture of the abundance as 

well as inter- und intracellular distribution of peroxisomes is given through Pex14p rather 

than catalase, which is the generally used maker enzyme (Hruban et al., 1972). Catalase and 

ABCD3 are metabolically dependent enzymes which are present in many cell types, but vary 

strongly regarding their abundance and distribution, whereas Pex14p is found in every 

healthy and intact peroxisomal membrane and can therefore be used as a general marker.  

With the new Pex14p-labeling it is therefore possible to localize peroxisomes in 

various species, different tissues and distinct cell types in all different stages of ontogeny. 

 

3.1 Establishing Pex14p as the optimal peroxisomal marker for comparative 

and experimental morphology 

 

3.1.1 Specificity of the self-created antibodies against catalase and Pex14p 

 Western blotting for catalase and Pex14p performed and published by co-workers 

shows the specificity of both antibodies. The specificity of the catalase antibody was also 

further established through preabsorption with bovine liver catalase. The incubated antibody 

was centrifuged and the supernatant was used for immunostaining on formalin fixed and 

paraffin embedded (FFPE) sections as described above for the IF technique. In these control 

experiments no signal for catalase could be detected (Ahlemeyer et al., 2007). 

 Additionally, the specificity of both antibodies was examined in immunogold-EM 

experiments, showing specific binding of both antibodies with a negligible amount of 

unspecific background. Pex14p-staining in electron microscopy has not been achieved before 

and could not be performed successfully on epoxy resins, even after etching with H2O2 or 70% 

ethanolic sodium hydroxide (data not shown here). In acrylic resins immunogold labeling of 

Pex14p was achieved, but labeling densities and signal/noise ratios were considered relatively 

unsatisfactory. Therefore labeling was attempted in cryo-ultrathin sections with markedly 

better results.  
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Pex14p as a membrane protein can be clearly shown around the perimeter of peroxisomes 

comparable to immunogold-labeling for ABCD 3 (Baumgart, 1997), whereas the functional 

enzyme catalase is located in the peroxisomal matrix (Fig. 3.1_1). The abundance of catalase 

is striking, especially in comparison to other matrix enzymes like acyl-CoA oxidase, enoyl-CoA 

hydratase (Litwin & Beier, 1988), D-amino acid oxidase, multifunctional protein 1 (Baumgart, 

1997) or D-aspartate oxidase (Zaar et al., 2002). The density of catalase labeling is also 

markedly increased in cryo-ultrathin sections compared to resin ultrathin sections (both in rat 

liver, e.g. Baumgart, 1997) showing that immunogold labeling using cryo-ultramicrotomy is far 

superior even than acrylic resin embedding, albeit more difficult during cutting and handling. 

The ultrastructural tissue preservation is, however, obviously superior in resin-embedded 

ultrathin sections.  

As peroxisomes are less abundant and smaller in the brain compared to the liver, 

enhancement times for the immunogold particles was increased, wherefore the particles 

surrounding two peroximes (probably in axons) are not round, but unevenly shaped. The 

areas devoid of catalase in the two larger peroxisomes are most likely caused by urate 

oxidase crystals, which are present in peroxisomes of most mammalian species, but not in 

hominoids (q.v. chapter 1.4.2). 
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Fig. 3.1_1: Immunogold labeling of Pex14p in acrylic resin (top row) and cryo (bottom rows) ultrathin sections; 

er: rough endoplasmic reticulum, gly: glycogen fields, m: mitochondria 

 

3.1.2 Specificity of secondary antibodies and peroxidase substrate reaction 

  Unspecific binding of secondary antibodies or unspecific reaction of the peroxidase 

substrate as well as adequate quenching of endogenous peroxidases was control for through 

sections which were incubated parallel to and in the same fashion as regular sections, but 

with omission of the primary antibodies. In these control sections no signal was ever 

observed. An example shall be given of catalase, Pex14p and the appropriate negative control 
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in the developing murine abdomen. Not only can the differential distribution of catalase and 

peroxin 14 be illustrated, but it can also be shown that the specificity of secondary antibodies 

and the peroxidase substrate reaction is given in all different tissues and organs (Fig. 3.1_2). 

 

 

 

3.1.3 Peroxisomes in epithelial cells of mesodermic and endodermic origin 

 Epithelia are known for their functional, structural and metabolic diversity. Their major 

functions are the lining of the body, the forming of a barrier to the outside world (also within 

the respiratory, gut and urinary organs) as well the endo- and exocrine secretion. 

 The epithelia of different organs with distinct functions were therefore examined 

regarding their peroxisome content and the differences in abundance and distribution of 

catalase (CAT), ABCD3 and Pex14p. Duodenum and kidney were chosen as examples for 

epithelial lining of different parts of the viscera with endodermic and mesodermic origin 

respectively. Epithelia serving a glandular function were investigated in the endocrine and 

exocrine pancreas as well as the serous, mucous and duct cells of the submandibular gland.  

 Due to the findings of coworkers in testis (Nenicu et al, 2007) epithelial cells involved 

in steroid hormone production were also examined more closely. 

Fig. 3.1_2: Immunohistochemical stainings of the 

developing mouse gut for Pex14p, catalase and an 

exemplary negative control under omission of any 

primary antibody 
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3.1.3.1 Kidney (Fig. 3.1_3): The distribution of peroxisomes within the different parts of the 

renal nephron is dichotomous. Pex14p is found in all cells of the renal corpuscle, the distal 

(marked by the macula densa) and intermediary tubules as well as the collecting ducts in 

similar abundance. There is, however, a marked increase in peroxisomal density within the 

proximal tubules, identifiable through the urinary pole. This dichotomy in the expression 

patterns is also found in ABCD3- and catalase-stainings. Both of the latter stainings, however, 

do not show peroxisomal distribution consistent to the staining for Pex14p. In ABCD3-

labeling, the renal corpuscle has less positive signals within the glomerulum and the parietal 

layer of Bowman’s capsule is completely negative. This would allow the supposition that the 

signals within the glomerulum are found within the endothelial cells of the blood vessels, 

while the podocytes of the visceral layer of Bowman’s capsule and maybe also the 

intraglomerular mesangial cells show no signal for ABCD3, which would explain the weaker 

and not as evenly distributed signal for ABCD3 compared to Pex14p. 

 Catalase is found in high abundance within the proximal tubules, which is concurrent 

with findings in electron microscopy and in situ hybridization (Baumgart, 1997), but catalase 

is found only very sparsely within the glomerulum. Again, similar to the staining for ABCD3, 

the parietal layer of Bowman’s capsule appears negative for catalase, wherefore it is again 

likely that the sporadic signals within the glomerulum are also within endothelial 

peroxisomes. The distal tubules are hardly stained for catalase. The distribution of catalase 

was therefore compared to that of mitochondrial SOD2, in order to assess whether catalase is 

expressed in high amounts within cells with high mitochondrial antioxidant activity. As 

expected, SOD2 is found in all cells of the renal duct system, but with markedly higher levels 

within the proximal tubules, whereas the renal corpuscle is mainly devoid of signal. This 

difference can also be seen in standard fluorescence microscopy in serial sections of the same 

renal corpuscle and macula densa in stainings for Pex14p and catalase. 

 The results from the FFPE-sections taken from a freshly perfused mouse were 

replicable in sections from the kidney of a Sacred Baboon, immersion fixed in Lilies’s formol 

and refixed in Bouin’s fixative in the year 1984 as part of our regular histology course for 

medical and dentistry students. 
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Fig. 3.1_3: Immunofluorescence labeling of Pex14p, catalase, ABCD3 and SOD2 in sections of mouse and baboon 

kidney; dt: distal tubule, g: glomerulum, md: macula densa, pt: proximal tubule, up: urinary pole 
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3.1.3.2 Endocrine pancreas: Whereas the exocrine pancreas shows a similar distribution of 

Pex14p as well as catalase as is found in other exocrine glands of endodermic origin (see next 

section), the exocrine cells in the islets of Langerhans differ markedly regarding both 

peroxisomal as well as catalase abundance. While the number of peroxisomes is extremely 

high within the exocrine cells, catalase appears to be almost absent and only traceable in 

what appear to be peroxisomes of endothelial cells (Fig 3.1_4). This would suggest a role of 

peroxisomes in pancreatic hormone metabolism that is independent of H2O2-degradation.  

 Multivariate analyses of the morphometric quantification of various parameters of 

fluorescence signal intensity (ratios signal/area, signal/nucleus and signal area/whole area) 

for Pex14p and catalase immunolabelings (n=29) showed significant differences between 

protein content (F = 21.76, p < .001; F = 25.42, p < .001; F = 10.00, p = .004) as well as 

between endocrine and exocrine pancreas (F = 24.25, p < .001; F = 63.9, p < .001; F = 6.78, p = 

.016). A principle component analysis (PCA with Varimax-rotation and Kaiser-normalization) 

of all items measuring the ratios signal/area & signal area/whole area revealed a two-factor 

solution (factor 1: endocrine pancreas, factor 2: exocrine pancreas) explaining for 76.1% of 

variance. The ratio signal/nucleus was excluded from PCA, due to the fact that the size and 

abundance of cells differ substantially between endocrine and exocrine pancreas, wherefore 

the aforementioned ratio was considered unsuitable in this context.    

 

 

Fig. 3.1_4: Immunofluorescence labeling for Pex14p and catalase in the mouse pancreas; left and middle images 

show an endocrine islet surrounded by exocrine acini. The right image shows an excretory duct in the exocrine 

part of the pancreas. 

 

3.1.3.3 Exocrine cells of mouse pancreas and submandibular gland (Figs. 3.1_4 & 3.1_5): The 

distribution of peroxisomes in the serous glandular cells of both the submandibular gland and 

the pancreas is quite comparable. Peroxisomes are found in moderate abundance throughout 
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the cytoplasm. In the serous part of the gland the abundance of peroxisomes in duct cells is 

markedly higher as is their distribution herein clearly perinuclear. Mucous cells of the 

submandibular gland exhibit higher numbers of peroxisomes within their cytoplasm, even 

higher than the adjacent duct cells. They appear to be displaced to the basal part of the cell.  

 Catalase is found in similar distribution within the serous cells of the submandibular 

gland and the pancreas, albeit in lesser amount. In duct cells, however, catalase is significantly 

increased both in pancreas and in the submandibular gland. In the larger ducts of the 

submandibular gland an unexpected catalase-pattern was found, which was not punctuate as 

usual, but appeared in the basal cell layer to be evenly distributed throughout the entire 

cytoplasm. This phenomenon was observed in different ducts, different sections and through 

different labeling techniques, suggesting that basal cells of the submandibular duct truly 

possess physiologically cytoplasmic catalase. 
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Fig. 3.1_5: Immunolabeling of Pex14p and catalase in serous, mucous and duct cells (arrows) of the mouse 

submandibular gland and in the duodenum (bottom two images on the right). In the middle left image the 

mucous part is on the left hand and the serous part on the right hand side of the image. The bottom two images 

on the left show higher magnifications of excretory ducts. 

 

3.1.3.4 Exocrine cells of the human submandibular gland (Fig. 3.1_6): Apart from the 

question of conservation of peroxisomal membrane protein expression and abundance 

between mouse and human, another question regarding this tissue sample was also, whether 

the protein was still detectable in samples that had not been prepared specifically for 
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laboratory research, thereby giving insight into the stability of the Pex14p-antigen as well as 

the sensitivity of the Pex14p-antibody.  

 Tissue was taken from body donors to the gross anatomy course and was therefore 

already in a state of beginning decay, as can be seen by the beginning autolysis of the 

glandular tissue. The labeling for Pex14p, however, is consistent with that achieved in 

samples taken from freshly perfused animals that had immediately been transferred into 

immersion fixation solution. Apart from the identical localization of the signals in the 

glandular ducts and parenchyma, the excellent quality of the staining (albeit in relatively poor 

quality of tissue preservation) shows the advantages of both the Pex14p-antigen as well as 

the high quality of the antibody.  

 

 

Fig. 3.1_6: Two sections of a human submandibular gland in an advanced stage of autolysis stained for Pex14p 

 

3.1.3.5 Duodenum (Fig. 3.1_5): Catalase-staining clearly allows a distinction between the 

epithelia of the villi and those of the krypts, as the positive signals on both sides of the nuclei 

of krypt-cells are markedly reduced in comparison to those of the villi. The amount of catalase 

within the lose connective tissue of the lamina propria is also highly reduced and barely 

detectable. Pex14p-staining, however, shows that peroxisomes are actually more or less 

evenly distributed in the epithelia of both villi and crypts. They are found around the nucleus 

and towards both ends of the cell with, however, relatively larger amounts towards the 

luminal/apical side of the duodenal epithelium. Peroxisomes are also found randomly 

throughout the lose connective tissue of the lamina propria within the villus. 
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3.1.4 Follicular development in the ovary (Figs. 3.1_7 & 3.1_8) 

 Oxidative stress is one of the key mechanisms in X-linked adrenoleukodystrophy (X-

ALD) (Powers et al., 2005; Fourcade et al., 2008), a rare inherited disorder leading not only to 

adrenal dysfunction, but in 80% of male patients to impairment of testicular functions 

(Powers, 1985). Male germ cells have just recently been shown to contain a large number of 

small peroxisomes, whereof some have very low levels of catalase. Additionally it was also 

shown in the same paper that the peroxisomal compartment undergoes drastic alterations 

and clustering in the cytoplasm of elongated spermatids during spermiogenesis (Nenicu et al., 

2007).  

 The peroxisomal abundance and distribution during the maturation of the oocyte 

within follicular development was therefore examined. Similarly to male germ cells (Nenicu et 

al., 2007) oocytes show little to no signal for catalase. Also the amount of traceable catalase 

in the surrounding corona radiata and granulosa epithelia is quite low, albeit that theca cells 

and cells of the corpus luteum exhibit extremely high levels of catalase.   

 

 

Fig. 3.1_7: Immunohistochemical stainings of a mouse ovary for Pex14p (left column) and catalase (right 

column); cl: corpus luteum 
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 To evaluate possible differences in the content of antioxidant enzymes between the 

various cells of the ovary a labeling for mitochondrial SOD2 was performed, showing a similar 

pattern of the enzyme to that of catalase, however with higher intensity in each instance. Low 

levels of SOD2 are found within the oocyte, medium levels in the follicular epithelia and the 

highest levels in the theca cells. ABCD3 and Pex14p are distributed in a comparable manner in 

the ovary, as can be seen by differential staining of the same tertiary follicle.  

 

 

Fig. 3.1_8: Immunofluorescence labeling of serial sections of the same tertiary follicle for Pex14p, catalase, 

ABCD3 and SOD2; cr: corona radiata, gc: granulosa cells, o: oocyte, tc: theca cells, asterisks mark the zona 

pellucida 
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 It can clearly be shown that peroxisomes are present in very high abundance not only 

in the endocrine cells of the ovary, but also in the oocyte itself. This observation holds true for 

all stages of follicular development and oocyte maturation. Primordial follicles are very small 

and enclose even smaller oocytes, whereof the cytoplasm is extremely small. The primordial 

follicle is in a dormant or quiescent state and biologically almost inactive, which makes the 

low number of peroxisomes not surprising. As the follicle develops into a primary follicle and 

the oocyte matures and increases in size, the cytoplasm becomes densely populated with 

peroxisomes of various sizes. This development continues through the secondary to the 

tertiary Graafian follicle. The specificity of all stainings can hereby clearly be seen through the 

obvious void surrounding the secondary and tertiary follicles, which marks the zona pellucida, 

a glycoprotein polymer capsule surrounding the oocyte and containing no cellular organelles. 

In several oocytes Pex14p-positive structures were found similar in shape compared to those 

described by Nenicu et al. (2007) in late spermatids (Fig. 3.1_10). They are significantly larger 

in size than those in late spermatids and can be viewed without the necessity of electron 

microscopy. It is most likely that they are indicative of the oocyte within an atretic follicle and 

represent the rearrangement of the peroxisomal compartment during cytoplasmic 

restructuring while the cell undergoes apoptosis. 
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Fig. 3.1_9: Immunofluorescence labeling of Pex14p in various stages of follicular development. All images were 

taken at 63x magnification, inserts of the oocytes are in 126x magnification. 

 

 The structures found in late spermatids before phagocytosis of the cytoplasmic 

droplet by Sertoli cells were described by light as well as electron microscopy and 

characterized as catalase-positive double membrane loops. They can also be shown through 

staining against Pex14p and are also present in seminiferous tubules from a male cat (Fig. 

3.1_10). These images also show the quality and sensitivity of the new Pex14p-staining 

method, as the paraffin blocks of the cat testis are over-20-year-old specimens from our 

regular histology course. The tissue was immersion fixed in Lilie’s formol and refixed in 

Bouin’s fixative rather than taken from animals freshly perfused with PFA. This also goes for 

sections taken from cat ductus epididymidis (Fig. 3.1_10). 
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Fig. 3.1_10: Pex14p in mouse and cat testis during different stages of spermatogenesis as well as in the cat 

epididymis; all images were taken at 63x magnification 

 

3.1.5 Steroid hormone producing cells 

 Peroxisomes are highly abundant in all cells involved in steroid hormone synthesis, 

albeit with interindividual differences in density. Most of these peroxisomes are also 

extremely rich in catalase, in some cases leading to more intense signals than in Pex14p-

staining (Fig. 3.1_11). This is probably due to high mitochondrial activity, namely side-chain 

cleavage during steroid synthesis as well as necessary for protection of steroidogenesis 

against H2O2. Interestingly, peroxisomes in many steroid secreting cells do not exhibit a 

punctuate pattern, but rather a tubular one at higher magnification (Fig. 3.1_11).  
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3.1.5.1 Ovary and testis: As previously shown by Nenicu et al. (2007), peroxisomes are 

present in Leydig cells of the testis as well as in the basal compartment of the germinal 

epithelium and in peritubular myoid cells (Fig. 3.1_11). Catalase signals are extremely high 

within Leydig cells (Fig. 3.1_11). 

 These results are mirrored by the analogous cells of the female gonad, namely the 

theca and granulosa cells within the ovary. Pex14p can be clearly seen in both the granulosa 

and the corona radiata epithelium. The signal is highest in the apical parts of the superficial 

layers of the granulosa cells. Outside the follicle, however, the signal is even more intense 

within the cells of the theca organ (Fig. 3.1_8). 

 The signal distribution for catalase is similar to that of Pex14p, however with clearly 

visible differences regarding intensity. While the signal within granulosa and corona radiata 

cells is slightly weaker than in stainings for Pex14p, the signal intensity within the theca cells, 

on the other hand, surpasses that of Pex14p. 

 The theca cells also clearly show the tubular peroxisomal pattern found in most 

steroid hormone producing cells (Fig. 3.1_11). 

 

 

Fig. 3.1_11: Pex14p and catalase in steroid hormone producing cells of the mouse testis (top row) and ovarian 

theca organ (bottom row); lc: Leydig cell, st: seminiferous tubule 
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3.1.5.2 Adrenal cortex (Figs. 3.1_12 & 3.1_13): The differences in peroxisomal distribution 

between the three layers of the adrenal cortex can already be seen at low magnification in 

both Pex14p- and Catalase-stainings. Levels are lowest within the zona fasciculata, slightly 

higher in the zona reticularis and markedly higher in the zona glomerulosa. These differences 

can also be seen at higher magnifications as well as in the staining for ABCD3, which is 

similarly distributed to Pex14p in the adrenal cortex. Higher magnifications of the zona 

glomerulosa also show the presence of peroxisomes in the cells of the surrounding adrenal 

fibrous capsule. Comparable to the layers of Bowman’s capsule in the kidney, catalase- and 

ABCD3-stainings were negative within the adrenal fibrous capsule (not shown here). Finally, 

the tubular pattern of peroxisomal distribution can also be seen at higher magnifications, 

similar to ovary and testis.   

 

 

Fig. 3.1_12: Immunofluorescence labeling of Pex14p, catalase and ABCD3 in the mouse adrenal gland; ac: 

adrenal capsule, am: adrenal medulla, zf: zona fasciculate, zg: zona glomerulosa, zr: zona reticularis 

 

 The extreme difference between Pex14p- and catalase-signals of the cells of the 

adrenal medulla shall be described together with the differences in other cells originating 

from the neural tube and crest. 
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3.1.6 Peroxisomes in cells originating from the neural tube and crest 

 The differential distribution of Pex14p and catalase within the developing mouse CNS 

as well as between primary cultured neurons and astrocytes was recently reported by co-

workers (Ahlemeyer et al., 2007). Furthermore, the sharp contrast between catalase-positive 

bodies in the developing nervous system and lack thereof in corresponding areas of the adult 

brain has also been described by Arnold and Holtzman (1978) and Holtzman (1982). 

 

3.1.6.1 Adrenal medulla (Figs. 3.1_12 & 3.1_13): Apart from cells of the central and 

peripheral nervous system, the chromaffine cells of the adrenal medulla originate from the 

neural crest and can be viewed upon as somewhat analogous to catecholaminergic cells of 

peripheral sympathetic ganglia, including their being supported by Schwann cells. They also 

share the extremely high dissonance of neurons regarding the number of peroxisomes 

labeled with Pex14p compared to the nearly undetectable amounts of catalase. The few 

positive catalase signals within the adrenal medulla (Fig. 3.1_12) are likely to come from 

peroxisomes in either endothelial cells of the large medullary vessels or from Schwann cells 

surrounding the adrenergic chromaffine cells.   

 

 

Fig. 3.1_13: Immunohistochemical overview of the mouse adrenal gland 

 

3.1.6.2 Primary neurons before and after treatment with a peroxisome proliferator (Fig. 

3.1_14): On the basis of the aforementioned, the reactions of Pex14p (as indicator of total 

number of peroxisomes) and catalase to the treatment of primary neurons from mouse 

neocortex with a peroxisome proliferator were examined. It is obvious that baseline catalase-
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signals are lower compared to those for Pex14p. Interesting, however, is the fact that catalase 

does not increase linearly to Pex14p upon treatment with ciprofibrate. This means that not 

only is catalase less abundant at baseline, but also that peroxisome proliferation in neurons 

does not lead to a proportionate increase in catalase-containing peroxisomes. 

 

Fig. 3.1_14: Primary cultured neurons from the mouse neocortex treated for 24 hrs with a vehicle (left column) 
or the peroxisome proliferator ciprofibrate (right column) 

  

3.1.6.3 Peroxisomes in the human brain: To further examine the distribution of peroxisomes 

in the central nervous system as well as to establish the value of the novel Pex14p marker, an 

attempt at labeling of peroxisomes in the human brain was made. This was done on samples 

taken from human autopsies. It has to be mentioned that human brain autopsy material is 

notoriously difficult to process, firstly, due to the brains tendencies for fast and early autolysis 

and, secondly, due to the accumulation of larger lipofuscin granules within the cytoplasm of 

the neurons (arrows in Fig. 3.1_15). Lipofuscin is a yellow brown pigment composed of lipid-

containing residues lysosomal digestion, which begins to accumulate in neurons during aging. 

It seriously complicates explorative immunostaining of aged neuronal tissue due to its filling 

out great part of the neuronal cytoplasm. In cases of direct or indirect immunofluorescence, 

lipofuscin also hinders the signaling in that it is comprised of various different lipid 
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derivatives, in turn containing a large amount of unconjugated pi-electrons and therefore 

strongly fluoresces at every excitation wavelength, outshining the fluorochromes of interest.  

 

 

Fig. 3.1_15: Lipofuscin granules in a human CA neuron fluorescing at different excitation wavelengths 

 

Lipofuscin is not susceptible to photobleaching, but can be quenched by staining with 

Sudan Black B (SBB) (Schnell et al., 1999), which, however, also seriously reduces the intensity 

of the signal of the respective flourochromes and often leads to unspecific background (Fig. 

3.1_16, q.v. Materials & Methods). 

 

 

Fig. 3.1_16: Granule cells from a human hippocampus showing specific and unscpecific (lipofuscin) fluorescence 

signals with and without SBB-pretreatment 
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 By carefully adapting the staining protocol and maximizing antigen retrieval, as well as 

through careful reduction of exposure times during photography and through ex post facto 

augmentation of the images with Adobe® Photoshop® peroxisomes in the human brain could 

successfully be labeled using IF and IHC procedures, but without significant contortion or 

falsification of the images (Fig. 3.1_17). 

 It could herefore be shown that peroxisomes are definitely present in neurons of the 

human cerebellum, hippocampal formation and lateral geniculate body (CGL) of the 

thalamus. 

 Notice the proportionality of peroxisomes to the sizes of the respective neurons. This 

can be shown in granule cells of the dentate gyrus compared to pyramidal cells from the 

cornu ammonis or a neuron from one of the magnocellular layers of the CGL. The same 

phenomenon can be used to distinguish the relatively larger Golgi cells within the granule cell 

layer of the cerebellar cortex (Fig. 3.1_17, asterisks). 

 It is also noteworthy that peroxisomes appear in distinctively larger number in places 

of dendritic fission, as shown by Purkinje cells from the cerebellar cortex (Fig. 3.1_17, arrows). 

This is in accordance with the supposition of Arnold and Holtzman (1978) that peroxisome 

content is related to cellular enlargement and the formation of neuronal processes. Finally, 

the Pex14p-staining can also be used to show that, although peroxisomes appear to be 

relatively sparsely distributed in the actual axons, their number is markedly increased within 

the initial axonal segment or axon hillock (Fig. 3.1_17, arrowhead). 



3. Results  98 
 

 

 

Fig. 3.1_17: Immunofluorescence and immunohistochemical labeling of Pex14p in various cell types and regions 

of the human brain; top left: granule cells from the hippocampal dentate gyrus, middle left: CA neurons from the 

hippocampal cornu ammonis, bottom left: neuron from the magnocellular region of the lateral geniculate body 

(CGL), top left: Purkinje cell perikaryon and larger dendrites from the cerebellar cortex (arrows show 

peroxisomal clusters at sites of dendritic branching), middle right: Purkinje cell perikaryon (arrow head shows 

peroxisomes in the initial axon segment/axon hillock), bottom right: Golgi cells (asterisks) in the granule cell 

layer of the cerebellar cortex 
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3.1.6.4 Overview of the microscopic anatomy of the human hippocampal formation: Since 

the human hippocampal formation is extremely large and intra- as well as interindividually 

diverse and the various sectors are difficult to differentiate in staining methods not 

specifically developed for brain, parallel sections were stained with the modified Kluver-

Barrera method. The microscopic anatomy of the human and mouse hippocampal formation 

share certain similarities, wherefore it shall be exemplarily illustrated here (Figs. 3.1_18 & 

3.1_19). 

 Due to the hemispheral rotation during brain ontogeny the human hippocampus in its 

entirety is roughly C-shaped reaching from the septal area (hippocampus precommissuralis) 

via the stria of the induseum griseum (hippocampus supracommissuralis) to the hippocampus 

proper (hippocampus retrocommissuralis). The first to parts of the hippocampus will not be 

discussed here. The hippocampal formation is comprised of two intertwined inverse 

archicortices, namely the dentate gyrus (DG) and Amun’s horn (cornu ammonis, CA), whereby 

the latter continues seamlessly into the subiculum. The cornu ammonis was divided by Rafael 

lorente de Nó into four fields, CA1 through CA4, whereby CA1 follows the subiculum and CA4 

was described as laying in the hilum of the dentate gyrus (Lorente de Nó, 1934). Studies by 

David Amaral and Ricardo Insausti, however, showed that the field CA4 does in fact not 

belong to Amun’s horn, but is the plexiform layer of the dentate gyrus (Amaral, 1978; Insausti 

& Amaral, 2004). This new nomenclature has, unfortunately, not yet been incorporated into 

all revisions of standard anatomy text books.  

 Since the cornu ammonis is an inverse cortex, the pyramidal cells have their apices 

away from the surface, wherefore the white matter lies directly beneath the external glial 

limiting membrane and is referred to as the alveus. It condenses into fringe-like structures, 

the fimbriae, which continue in the fornix, one of the major output pathways of the cornu 

ammonis. The major input into the hippocampal formation is comprised of myelinated axons 

from the entorhinal cortices, the perforant path (tractus perforans). 
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Fig. 3.1_18: Modified Kluver-Barrera staining of the human retrocommissural hippocampal formation; CA: cornu 

ammonis, CGL: lateral geniculate body 

 

 Being archicortical, both the dentate gyrus and the cornu ammonis are trilaminar in 

nature, whereby the cornu ammonis features efferent pyramidal cells and the dentate gyrus, 

as the primary input part of the hippocampal formation features spiny stellate cells. 

Additionally both cortices are comprised of a vast variety of interneurons. The dentate gyrus 

is also relatively inverse, wherefore its molecular layer borders directly on the perforant path, 

which lies within the molecular layer of the cornu ammonis. The granular layer of the dentate 

gyrus is followed by the plexiform layer, sometimes referred to as the hilum of the denate 

gyrus. In general, all fields of the cornu ammonis share the same stratification, with the 

exception of the field CA3. Beneath the alveus is the stratum oriens, followed by the 

pyramidal layer. The axons of the pyramidal cells mainly of fields CA3 give of so-called 

Schaffer collaterals on their way to the alveus, thereby forming the stratum radiatum. Since 

these collaterals terminate mostly in the field CA1, the end of the stratum radiatum marks the 

border between the cornu ammonis and the subiculum. The deepest layer (originally the 

most superficial layer in hippocampal ontogeny) is the stratum lacunosum-moleculare with 
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the perforant path. In addition hereto, the field CA3 features a small stratum between the 

pyramidal cell layer and the stratum radiatum, which is comprised mainly of unmyelinated 

mossy fibres from the granule cells of the dentate gyrus and is therefore called the stratum 

lucidum. The borders between the fields of the cornu ammonis are not sharp, but can be 

differentiated approximately through the morphology of the pyramidal layer. Whereas the 

field CA2 features a single band of densely packed pyramidal cells, both CA3 and CA1 have 

more loosely distributed pyramidal neurons, which make up two distinguishable layers within 

the field CA1. The border between CA3 and the plexiform layer of the dentate gyrus (formerly 

CA4) is marked by the end of the stratum lucidum. The fuzzy transition between CA1 and the 

subiculum, as described above, can be distinguished through the gradual disappearance of 

the stratum radiatum (Insausti & Amaral, 2004).  

 

 

Fig. 3.1_19: Modified Kluver-Barrera staining showing the microscopic anatomy of the human hippocampal 

formation; A: alveus, CA: cornu ammonis, asterisks show the approximate borders between the CA fields, DG sg: 

granule cell layer of the dentate gyrus, DG sm: molecular layer of the dentate gyrus, DG sp: plexiform layer of the 

dentate gyrus, sl: stratum lucidum of the CA, slm: stratum lacunosum-moleculare of the CA; so: stratum oriens of 

the CA, sp: stratum pyramidale of the CA, sr: stratum radiatum of the CA 
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3.1.7 Labeling of peroxisomes with QuantomDots (QDots®) (Fig. 3.1_20) 

 The usually rather small size of peroxisomes makes it better for morphometric 

purposes to use IF-techniques rather than IHC, as the spatial resolution of an IF fluorochrome 

signal is usually higher than that of an organic dye or substrate like DAB commonly used in 

IHC. The disadvantage of fluorochromes for morphometry, however, is (a) the sometimes 

insufficient strength of the signal (in IHC this could be remedied by extending the 

development time of the color-dye reaction) and (b) the susceptibility to photobleaching of 

the fluorochromes, even though this has become easier thanks to fading and bleaching agents 

as well as to the new generation of AlexaFluor® fluorochromes.  

 Even so, the possibility of labeling peroxisomes with a fluorescent marker with a signal 

yield higher than that of AlexaFluor®, which is also unsusceptible to photobleaching, is 

offered by nanocrystal technology in the form of QDots. 

 QDots are significantly more difficult to handle and markedly larger in size than 

classical fluorochromes (q.v. Materials & Methods), wherefore labeling was performed on 

mouse (Hepa 1-6) and human (HepG2) hepatoma cell lines. QDots are all excited by UV-light 

and differ in size and therefore in the wavelength of their emitted photons, for which they are 

also denominated. Both small Qdot 525 as well as significantly larger QDot 655 nanocrystals 

were successfully established for labeling of Pex14p in Hepa 1-6 and in HepG2 cells.  

 

Fig. 3.1_20: Labeling of Pex14p in mouse (Hepa 1-6) and human (HepG2) hepatoma cell lines using different 
sized QuantomDot nano-crystals 
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3.2 Analyzing peroxisomal reactions to increased dopamine 

 

3.2.1 Morphological analyses of Pex14p and catalase in the hippocampus of schizophrenic 

patients vs. controls (Fig. 3.2_1): 

 Labeling of catalase in hippocampal sections taken from different brains of patients 

diagnosed with schizophrenia showed no detectable signal for catalase as was the same in 

sections from control patients. As expected, catalase is not present in high enough abundance 

in the adult brain to detect through immunohistochemistry. Since many results report 

decreased amounts and activity levels of catalase in schizophrenics it is not surprising that no 

differences can be detected between schizophrenia and control cases. The differences 

between Pex14p signals are also very subtle, albeit that the number as well as size of 

peroxisomes appear to be slightly reduced in schizophrenic patients compared to controls. 

The remaining peroxisomes do, however, seem to be a little more densely packed in 

proximity to the nucleus, which would be in line with atypical neurodegeneration, wherein 

neuronal processes become stunted thereby also leading to a reduced number of organelles 

in the cells with remaining organelles located in the perikaryon. 

 

 

Fig. 3.2_1: Immunohistochemistry using DAB with nickel-enhancement of Pex14p and catalase in the dentate 

gyrus of post-mortem brain sections of schizophrenic patients and controls 
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 Unfortunately no information was available regarding the subtype or duration of 

schizophrenia or the (especially pharmaceutical) therapy regimens in the patients from whom 

the samples were obtained, wherefore these results were interpreted with great care and not 

many inferences could be drawn regarding the differences and lack thereof between groups. 

 

3.2.2 Effects of increased dopamine and haloperidol on primary murine neuronal cultures 

 To examine the effects of increased extracellular dopamine on peroxisomal 

abundance and catalase levels in a more controlled fashion, primary murine neurons were 

cultured and treated with different concentrations of dopamine for 24 hours. Unlike in the 

human brain sections, the differences in catalase levels are striking, especially in the few 

astrocytes that are present in these cultures. Catalase appears to be increased in a dose-

dependent fashion in dopamine-treated cultures compared to vehicle-treated controls (Fig. 

3.2_2). 

 Peroxisomal abundance and distribution changes in a fashion similar to that 

hypothesized from literature reports on atypical neurodegeneration as well as the findings 

from human hippocampal sections. Peroxisomes appear to be smaller in size, less abundant 

and distributed closer to the nucleus. They appear almost absent in both neuronal and 

astrocyte processes in comparison to vehicle-treated controls. Although the amount of MAP2 

signal (blue) appears similar in the 100 M dopamine culture to the vehicle-treated cells, the 

reduced signal density between the labeled neuronal processes indicates a loss of smaller 

dendritic processes that usually form a fine network in culture, which can be visualized 

through increasing the intensity of the appropriate laser. The reduction of these smaller 

processes, that were shown to express various synaptic proteins in experiments performed in 

another context (data is therefore not shown here), and the loss of peroxisomes therein as 

well as in the larger dendrites through incubation with dopamine is again in accordance with 

the model of atypical neurodegeneration caused by excess dopamine. 
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Fig. 3.2_2: Triple IF staining for MAP2 (neurons), GFAP (astrocytes) and Pex14p or catalase in primary murine 

cortical cultures treated for 24 hrs with different concentrations of dopamine or a vehicle 

 

 To further examine this, neuronal survival was measured in all cultures, showing that 

dopamine leads to a slight increase in cell death. This increase is, however, neither significant 

nor dose-dependent considering the high concentrations of dopamine some cultures were 

exposed to (Fig. 3.2_3). It can therefore be assumed that dopamine cultivation may lead to 

the death of a certain basal amount of cells, but that the majority of cells do not undergo 

apoptosis even if dopamine levels are increased tremendously. 

 In contrast hereto, parallel incubations of cells with haloperidol causes a dose-

dependent increase in cell death that reaches around 90% in the highest concentrations (Fig. 

3.2_3).  
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Fig. 3.2_3: Neuronal death in primary murine cortical cultures after 24 hrs of incubation with increasing dosages 

of dopamine or haloperidol 

 

 In morphological staining this can also be seen clearly in higher dopamine 

concentrations. Additionally, haloperidol leads to a marked dose-dependent increase in 

catalase content in the surviving cells, especially in astrocytes (Fig. 3.2_4). This increase is 

higher than that found in dopamine-treated cells. The abundance of peroxisomes decreases 

in the few surviving neurons, but increases in astrocytes. The remaining peroxisomes in 

neurons appear to be larger in size compared both to vehicle- as well as dopamine-treated 

cultures (Fig. 3.2_2). It therefore can be held that the effects of (typical) neuroleptics on the 

nervous system are pronouncedly different to those of dopamine, wherefore findings from 

pharmacologically treated patients should be interpreted with great care. 
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Fig. 3.2_4: Triple IF staining for MAP2 (neurons), GFAP (astrocytes) and Pex14p or catalase in primary murine 

cortical cultures treated for 24 hrs with different concentrations of haloperidol or a vehicle 

 

3.2.3 Effects of increased dopamine on primary murine astrocyte cultures 

 Since the influences of dopamine (and haloperidol) on both Pex14p and catalase were 

different between neurons and astrocytes, with astrocytes generally showing more 

pronounced reactions to either substance, the question emerged whether these findings 

were inherent to astrocyte metabolism or dependent on neuron-astrocyte interaction. From 

the general function of astrocytes as important factors i.a. in maintaining homeostases 

important for neuronal survival, it would be expectable that the reactions of astrocytes are 

dependent on signaling from neurons and should therefore be less pronounced, if not absent 

in cell cultures containing no neurons. 

 To examine the verisimilitude of these expectations, cultures of pure murine 

astrocytes were established and treated with different concentrations of dopamine for 24, 48 

and 72 hrs. For reasons of conciseness, the results from the cultures treated for 48 hrs shall 

not be shown here. For more detail see Fischer, 2010. 



3. Results  108 
 

 

3.2.3.1 Morphological analyses: The absence of neurons was controlled through 

immunolabeling for GFAP, MAP2 and nuclear counterstaining (Fig. 3.2_5). Apart from the high 

amount of GFAP-positive cells, no signal was detected for MAP2, wherefore it can be 

assumed that no neurons survived the cultivation procedure. The nuclei not belonging to 

GFAP-positive cells are likely to belong to fibroblasts which survive from (mainly) remnants of 

the pia mater and, unlike neurons, survive and multiply under the cultivation conditions. The 

effects of the fibroblasts on the validity of results are discussed extensively in Fischer (2010). 

It is considered unlikely that these connective tissue cells have a greatly falsifying effect. 

 

 

Fig. 3.2_5: Double IF labeling for MAP2 and GFAP in primary murine astrocyte cultures with nuclear 

counterstaining. Red cells are astrocytes. The lack of blue cells shows that no neurons are present in the 

culture. Nuclei outside of red cells belong to fibroblasts. 

 

 The effects of dopamine-incubation can be seen clearly through a distinct dose-

dependent discoloration of the medium even after 24 hrs (Fig. 3.2_6). This discoloration, due 

to changes in pH of the medium, is most probably caused by autoxidation of dopamine, 

dopamine metabolism of the cultivated cells and/or both. 
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Fig. 3.2_6: Dose-dependent discoloration of the medium of primary murine astrocytes after 24 or 72 hrs of 

incubation with dopamine 

 

 The effects of dopamine-treatment on astrocyte viability were negligible with on 

average only 3 % of cells undergoing apoptosis in all cultures, even those treated with a 

vehicle (Fig. 3.2_7). The range of nuclei with apoptotic morphology is slightly shifted from 

2,5 – 3,2 % (vehicle) to 2,8 – 3,6 % (dopamine), whereby this difference is neither significant 

nor dose-dependent. It can therefore be assumed that, even more so than in cultures 

containing neurons, dopamine does not induce apoptosis. 

 

 

Fig. 3.2_7: Comparison of astrocyte nuclei after 72 hrs of treatment with a vehicle or the highest concentration 

of dopamine shows the equally low rate of cell death under both conditions 

  

 Morphological analyses of GFAP and catalase immunoreactivity show little differences 

between vehicle-treated controls and cultures incubated with dopamine (Fig. R34). This also 

indicates that the reactions of astrocytes to dopamine-treatment, as observed in cell cultures 

with both neurons and astrocytes, are specific to neuron-astrocyte interactions. The only 

circumstance under which differences could be observed in pure astrocyte cultures were in 

those samples treated with 200 and 500 M for 72 hrs. The concentrations of RNA 

extractable from these preparations were markedly reduced compared to the other cultures. 
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In immunostainings the same cultures showed a reduction in outgrowing cellular processes, 

GFAP immunoreactivity and catalase content. It is probable that these cells exhibit a sort of 

“cellular sickness behavior”, during which the entire metabolism is reduced and shifted 

towards cellular survival at the expense of reduced anabolic activity. This again would be in 

line with the concept of atypical neurodegeneration. 

 

 

Fig. 3.2_8: Double IF labeling of catalase and GFAP in primary murine astrocytes incubated with a vehicle or 

different concentrations of dopamine for 24 or 72 hrs 

 

3.2.3.2 Analyses of gene expressions: In order to assess the capacity of the cultivated 

astrocytes to take up and metabolize the dopamine from the medium, RNA was extracted 

from untreated cell cultures and RT-PCRs were performed for all known dopamine 

synthesizing and catabolizing enzymes and the dopamine active transporter (DAT). Results 

clearly show that all genes encoding for the aforementioned proteins are actively expressed 

in the cell cultures (Fig. 3.2_9). 
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Fig. 3.2_9: RT-PCRs for the dopamine synthesizing and metabolizing enzymes as well as the dopamine active 
transporter from primary murine astrocytes; Th: tyrosine hydroxylase, Ddc: DOPA decarboxylase, Mao: 
monoamino oxidase, Comt: catechol-O-methyl transferase, transcripts 1 & 3 

 

 Additionally, the expression of genes coding for various dopamine receptors was 

examined. The number of mRNA copies, however, appeared to be very much lower leading 

to unspecific background amplification. Therefore, in these cases nested PCRs were 

performed. The results again show that the cultivated astrocytes contain RNAs of all five 

dopamine receptors, whereby the expression of dopamine receptor D5 is lower by far than 

that of the other receptors (Fig. 3.2_10). It can therefore be established that the cultured 

astrocytes are capable of taking up and metabolizing dopamine as well as that dopamine 

may bind to dopamine receptors expressed by the astrocytes, thereby leading to the 

activation or inhibition of intracellular cAMP-dependent metabolic pathways. 

 

 

Fig. 3.2_10: Nested RT-PCRs for the dopamine receptors from primary murine astrocytes 

 

 RT-PCRs for the mRNA of the 28S rDNA gene functioned as housekeeping controls and 

show that equal amounts of RNA were used for first strand synthesis as well as that equal 

amount of amplified cDNA were loaded onto the gel (Fig. 3.2_11).  
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Fig. 3.2_11: RT-PCRs for 28S rDNA (housekeeping gene) from primary murine astrocytes treated with different 

concentrations of dopamine or a vehicle for 24 or 72 hrs, showing equal amounts of RNA were used for first 

strand synthesis and equal amounts of amplified cDNA were loaded onto the gel 

 

 Expression profiles of the genes coding for the two major dopamine receptors (D1 and 

D2) as well as the dopamine active transporter (DAT) show that incubation with high 

concentrations of dopamine, even after 72 hrs, does not influence the number of mRNA 

copies transcribed from these genes in pure astrocyte cultures (Fig. 3.2_12). 

 

Fig. 3.2_12: RT-PCRs for dopamine receptors D1 and D2 as well as the dopamine active transporter from primary 

murine astrocytes treated with different concentrations of dopamine or a vehicle for 24 or 72 hrs 
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 Dopamine incubation in vitro does also not affect the expression of genes encoding for 

catabolizing enzymes after 24 hrs or 48 hrs (data not shown here). After 72 hrs, however, 

MAOA expression still remains unchanged, but a slight increase in mRNA copies for MAOB as 

well as COMT can be observed in dopamine treated cultures. This increase does not appear to 

be dose-dependent, with the exception of MAOB expression in the two highest 

concentrations (200 M & 500 M), wherein a reduction of band size can be observed (Fig. 

3.2_13). Why this reduction in mRNA copies is not mirrored by MAOA or COMT gene activities 

is not clear. 

 

Fig. 3.2_13: RT-PCRs for dopamine metabolizing enzymes from primary murine astrocytes treated with different 

concentrations of dopamine or a vehicle for 24 or 72 hrs 

 

 Expression analyses of selected peroxisomal genes also show no activation differences 

after 24 hrs of dopamine incubation. While the same goes for the genes encoding for catalase 

and ABCD3 after 72hrs, the gene number of mRNA copies transcriped from the PEX14 gene 

increases slightly after 72 hrs in cultures incubated with higher concentrations than 0.1 mM 

dopamine (Fig. 3.2_14). This shows that peroxisomal proliferation does not automatically 



3. Results  114 
 

 

induce the expression of all peroxisomal membrane bound or matrix enzymes, but rather 

appears to be a differentially regulated process. This is in accordance with findings of 

peroxisomal heterogeneity within this thesis and also with the results from primary murine 

neurons cultivated with a peroxisome proliferator for 24 hrs, wherein Pex14p levels increased 

in a non linear fashion compared to catalase levels. Finally the lack of increase in catalase 

expression could be indicative of the high efficiency of this enzyme, meaning that the increase 

in ROS caused by dopamine incubation can still be degraded by the relatively high basal level 

of catalase already present within the astrocytes. 

 

Fig. 3.2_14: RT-PCRs for selected peroxisomal proteins from primary murine astrocytes treated with different 

concentrations of dopamine or a vehicle for 24 or 72 hrs) 

  

3.2.4 Effects of MK-801-treatment in male pubescent C57Bl/6J mice 

 To examine the effects of increased mesolimbic dopamine in vivo wildtype animals 

were injected intraperitoneally with the NMDAR-antagonist MK-801, since it has been shown 

in literature that this group of drugs leads to an activation of mesolimbic pathways. Excised 

animal brains were used either for morphological analyses or for the extraction of RNA with 

subsequent RT-PCR. 



3. Results  115 
 

 

3.2.4.1 Analyses of gene expressions: In order to ensure maximum reliability and validity of 

results from experiments downstream of RNA isolation, the nucleic acid integrity was 

measured through MOPS/FA gel electrophoresis. With the exception of one sample from the 

liver of an animal treated for 49 hrs (which was not used for further analyses) the integrity of 

all RNA samples was considered more than sufficient. An exemplary gel shows clear bands for 

18S and 28S rRNAs, whereby the 28S band is larger than the 18S band (Fig. 3.2_15). 

 

 

Fig. 3.2_15: Exemplary MOPS/FA gel showing the integrity of extracted RNAs 

 

 Since it was not possible to record and quantify parameters of behavior which could 

identify the development of a schizophrenia-like phenotype (e.g. prepulse inhibition, latent 

inhibition, vertical activity or rearing behavior), animals were observed by blind raters and 

could always be accurately identified as control or experimental animals respectively. 

Additionally, the expression of serine racemase mRNA was examined after 1 hour of 

treatment as a metabolic internal positive control, since it has been shown that MK-801 leads 

to an increase in serine racemase expression. Using two different pairs of primers it was 

shown that animals treated with MK-801 did indeed have a markedly higher expression of 

serine racemase compared to vehicle-treated controls (Fig. 3.2_16). 
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Fig. 3.2_16: RT-PCRs for serine racemase using two different primer pairs as metabolic internal positive control 
of MK-801 treatment 

 
 The application of equal amounts of RNA for first strand synthesis was controlled 

through parallel analyses of a housekeeping gene, 28S rDNA, which encodes for 28S rRNA. 

 After 1 hour of treatment with MK-801 increases in gene expression in the forebrain 

were observed for serine racemase and D-aspartate oxidase and to a small extent for PEX14. 

Due to the non-quantitative nature of gel electrophoresis, especially the latter finding should 

be interpreted with care. No differences were observed in catalase, Nrf2 or any of the liver 

samples (Fig. 3.2_17). 
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Fig. 3.2_17: RT-PCRs of selected genes from forebrain and liver of animals treated with MK-801 or a vehicle for 
1 hour 

 

 Housekeeping controls for the expression profile of the 28S rDNA-gene show that 

equal amounts of RNA were used for first strand synthesis and that subsequently equal 

amounts of amplified cDNA were loaded onto the gel (Fig. 3.2_18). 

 Expression profiles of serine racemase are somewhat ambivalent. Even though, as 

expected, signal intensity is higher after 25 and 73 hrs in the MK-801-treated group, the 

expression appears to also increase after 49 and 73 hrs in the vehicle-treated animals. 

Especially after 49 hrs the intensity appears to be higher in the vehicle- rather than the MK-

801-treated animals. 
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Fig. 3.2_18: RT-PCRs of serine racemase and 28S rDNA (housekeeping gene) from the forebrain of animals 
treated for 25, 49 or 73 hrs with MK-801 or a vehicle as controls for the MK-801 treatment and the use of equal 
amounts of RNA for first strand synthesis as well as amplified cDNA for gel loading 
 
 
 Expression profiles of MAOA and COMT genes are similar in that there appears to be 

a slight decrease in MK-801-treated animals after 25 hrs followed by an upregulation of gene 

expression after 49 hrs. The major difference between these two genes shows up after 73 

hrs, where MAOA expression does not appear to be altered between groups, whereas COMT 

expression seems slightly decreased. The expression patter of MAOB, however, differs 

markedly from that of the other two degrading enzymes in that levels decrease in both 

groups from 25 over 49 to 73 hrs of treatment. Additionally the expression in the MK-801-

treated animals is lower in comparison to controls at all given time points. 

 

Fig. 3.2_19: RT-PCRs of the genes coding for dopamine metabolizing enzymes from the forebrain of animals 
treated for 25, 49 or 73 hrs with MK-801 or a vehicle 
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 Both antioxidant enzyme expression levels appear to increase after treatment with 

MK-801 (Fig. 3.2_20). In the case of catalase there appears to be no difference detectable 

between vehicle treated groups (25, 49 or 73 hrs), but in the appropriate MK-801 treated 

brains the signal intensity is always higher, with the most pronounced increase found after 

49 hrs. The differences in SOD2 expression levels are more complex. After 25 hrs the 

difference between control and MK-801 brains is minimal, but after 49 and 73 hrs it 

becomes apparent that SOD2 expression is induced in animals treated with MK-801. 

Interestingly, however, the levels in the 73 hrs group are lower both in vehicle and MK-801 

treated animals compared to the 49 hrs group, even though the expression is still relatively 

higher after MK-801 treatment. A possible explanation herefore could be that the increase in 

expression after 49 hrs creates a surplus of enzyme, wherefore not as many new mRNA 

copies need to be transcribed. Alternatively the stability of the mRNA could be altered, 

whereby each strand could serve as template for the translation of relatively more protein 

copies. In any case, the amount of enzyme present, as examined through immunolabeling, is 

equal in all vehicle-treated groups and always relatively higher in the MK-801-treated 

animals (see below). Unfortunately this explanation does not account for the reduction in 

band intensity in the vehicle treated animals after 73 hrs.  

 

Fig. 3.2_20: RT-PCRs of the genes coding for the antioxidant enzymes catalase and SOD2 from the forebrain of 
animals treated for 25, 49 or 73 hrs with MK-801 or a vehicle 

 

 Marker proteins of peroxisomes (Pex14p) and astrocytes (GFAP) show differential 

expression patterns. While treatment with MK-801 appears to have little to no effect on the 

expression of the PEX14 gene it appears to lead to an activation of astrocytes as shown 

through the rapid increase in GFAP expression after 25 hrs of treatment (Fig. 3.2_21). The 
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bands of all three vehicle-treated groups are relatively similar, whereas the expression of the 

gene in the MK-801 groups increases dramatically, but is then reduced in the 49 and 72 hrs 

groups. Since GFAP is a cytoskeleton protein, which can be seen in higher abundance in MK-

801-treated animals in the morphological analyses as well, an increase in gene expression 

early after treatment with MK-801 would lead to higher protein content in the astrocytes. 

Therefore an ongoing increased level of expression should not be necessary. The reduction 

of mRNA copies in the animals treated with MK-801 for 49 and 73 hrs could therefore be 

explained by the fact that the early increase after 25 hrs might be sufficient over a longer 

time, thereby negating the necessity for further increases in gene expression. 

 

Fig. 3.2_21: RT-PCRs of the genes coding for peroxisomal (PEX14) and astrocyte (GFAP) marker proteins from 
the forebrain of animals treated for 25, 49 or 73 hrs with MK-801 or a vehicle 
 

3.2.4.2 Morphological analyses: Immunolabeling of catalase in the hippocampus of vehicle- 

and MK-801-treated animals show shows results concurrent to those found in the 

expression analyses of the CAT-gene. Whereas the increase in enzymatic catalase cannot be 

observed in situ after 25 hrs, after 49 hrs the signal intensity is recognizably higher in the 

MK-801-treated animal compared to the vehicle-treated controls (Fig. 3.2_22). Since 

catalase is generally not found in high abundance in the mammalian nervous system, the 

increases are obviously only subtle. Unfortunately results for catalase from the animals 

treated for 73 hrs could not be obtained.  



3. Results  121 
 

 

 

Fig. 3.2_22: Triple IF labeling for catalase, MAP2 and GFAP in the hippocampal formation of animals treated for 
25 or 49 hrs with MK-801 or a vehicle 
 

 Immunostainings for Pex14p show that even after 73 hrs treatment of animals with 

MK-801 does not lead to noticeable alterations in peroxisomal abundance or distribution 

(Fig. 3.2_23). While treatments of primary murine neurons with a peroxisome proliferator as 

well as with dopamine showed that 24 hrs are sufficient time for both peroxisomal 

proliferation as well as redistribution from peripheral processes to the larger dendrites and 

perikarya, it would appear that the intrinsic increase in dopamine within the hippocampus 

caused by MK-801 is markedly lower than the concentrations used in experiments on 

cultured cells. Whether an ongoing treatment over the course of several weeks would finally 

lead to peroxisomal redistribution as found in vitro is presumable, but can only be 

speculated upon from the data at hand. 
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 Interestingly, however, these sections clearly show an increase in GFAP 

immunoreactivity, especially in the images taken from animals sacrificed after 25 and 49 hrs. 

This increase is mirrored by an increase in number of mRNA copies of the GFAP-coding gene, 

as shown through RT-PCR experiments.   

 

IF staining for mitochondrial manganese superoxide dismutase (SOD2) show a 

noticeable increase in protein content in all animals treated with MK-801 compared to 

vehicle-treated controls (Fig 3.2_24). This increase appears to be time-dependent, since 

SOD2 levels increase with treatment duration. Whereas the protein content at first only rises 

within the perikarya of the neurons and astroytes (as can be illustrated nicely in the 

relatively small and densely packed neurons of the dentate gyrus), after 73 hrs there appears 

to be an increase in immunoreactivity not only in perikarya, but also in the surrounding 

neuropil. 

 



3. Results  123 
 

 

 
Fig. 3.2_23: Triple IF labeling for Pex14p, MAP2 and GFAP in the hippocampal formation of animals treated for 
25, 49 or 73 hrs with MK-801 or a vehicle 
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Fig. 3.2_24: Triple IF labeling for SOD2, MAP2 and GFAP in the hippocampal formation of animals treated for 
25, 49 or 73 hrs with MK-801 or a vehicle 
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4. Discussion, summary and conclusions 

 

4.1 Peroxisomal localization with Pex14p as a novel marker protein 

 

It could be shown clearly that peroxisomal protein content is highly variable within as 

well as between distinct cell types and tissues, especially when comparing the abundance and 

distribution of proteins involved in specific peroxisomal metabolic function, like catalase or 

ABCD3, with proteins involved in peroxisomal biogenesis, like peroxins 13 or 14. It could 

further be illustrated that matrix enzymes like catalase are highly unsuitable for peroxisome 

marking on comparative morphometry since they are markedly altered by metabolic 

parameters, whereas peroxins, like Pex14p, give a far superior estimation of true peroxisomal 

abundance and distribution. 

It is therefore necessary to critically reexamine old publications which describe 

peroxisomal abundance solely on the base of (mainly histochemical) stainings of catalase. It 

was for example proposed by Arnold and Holtzman (1978) that even though 

microperoxisomes are abundant in the cells of the developing rat central nervous system they 

are no longer found in the fully developed adult rat CNS. In 1982 Holtzman published having 

observed heterogeneity of enzyme content between subgroups of peroxisomes, namely 

those containing high catalase and low levels of D-amino acid oxidase (DAAO) and those with 

low catalase, but high DAAO. A metabolically similar enzyme, D-aspartate oxidase (D-AspOx), 

is shown to be highly abundant in neurons, glial cells as well as the epithelia of the proximal 

tubules in the kidney in both rat and human samples. D-amino acids are knows to be of 

modulatory function in N-methyl-D-aspartate glutamate receptors (NMDAR), binding to a 

specific binding site at the NMDAR. Peroxisomes are described in kidney and liver as the only 

organelles known to contain D-AspOx (Van Veldhoven et al., 1991; Zaar et al., 1989; Zaar, 

1996). In this thesis it was, however, possible to show that peroxisomes can be found both in 

the adult brain as well as in distal tubules of the kidney, amongst other organs. It is therefore 

obvious that Pex14p is present in the membrane of different peroxisomal subtypes, as 

described by Holtzman, making it superior as marker protein compared to functional enzymes 

like catalase, DAAO or D-AspOx. 

The differences in peroxisomal distribution between distinct cells of the 

submandibular gland as well as within the same cells during the development of the gland 
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were described by Mooradian and Cutler in 1978 using a cytochemical demonstration of 

catalase through alkaline DAB.  These partially extreme differences are found not only in 

electron microscopy, but can also be seen in light and fluorescence microscopy using 

antibodies against catalase (Fig. 3.1_5). It is interesting to note that some cells in the ducts of 

the submandibular gland show what appears to be physiologically cytoplasmic catalase both 

in mouse as well as human samples. These findings were interpreted as differences in 

peroxisomal distribution by Mooradian, but appear to be mainly differences in catalase 

content of individual peroxisomes, as peroxisomal abundance shown through Pex14p appears 

relatively homogeneous within the mucous and serous parts of the gland, albeit obviously 

different between the serous and mucous cells. Finally the interpretation of cytoplasmic 

catalase is supported through the observation that, albeit that duct cells have slightly more 

Pex14p compared to primary secretory cells, the amount of Pex14p found within the duct is 

not nearly as high as that of catalase. This, according to peroxisome ultrastructure, is only 

possible, if catalase is in fact present outside of the peroxisomal membrane in these cells. 

Therefore, a membrane protein, like Pex14p, is again superior in its qualities as peroxisomal 

marker. Due to its role in the docking complex involved in both PTS1- and PTS2-linked matrix 

protein import, it cannot be found outside of peroxisomes, unlike metabolic enzymes which 

can leak or be mistargeted. Pex14p is also suitable for the labeling of peroxisomal membrane 

ghosts, which occur in specific peroxin knockouts, like the PEX5-knockout (Baes et al., 1997). 

The first extensive screening of various tissues and organs for peroxisomes (then 

called microbodies) again made use of the DAB-method for labeling of endogenous catalase 

(Hruban, et al., 1972). Albeit not necessary to discuss all findings in comparison to new 

findings within this thesis, some special points of interest may be emphasized. A main 

difference, which was also analyzed by co-workers (Ahlemeyer et al., 2007) is the abundance 

of peroxisomes in neural tissue, such as the cerebellar and cerebral cortices or the dorsal root 

ganglia, both of which are described by Hruban as having “occasional” microbodies with 

relatively weak DAB reaction. Analyses of the abundance of peroxisomes using Pex14p clearly 

show that peroxisomal abundance in neurons is relatively high in the somata and dendrites, 

as it also is in astrocytes, even though these peroxisomes appear to contain only very small 

amounts of catalase, wherefore they do not appear (strongly) when using the DAB reaction. 

Similarly Hruban et al. report a low number of DAB-detectable microbodies in 

testicular Leydig cells, various cells of the ovary, podocytes of the renal glomerula or 
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endocrine cells of the adrenal cortex. In all of these organs the results of this thesis show 

substantially higher numbers of Pex14p-positive peroxisomes compared to those found by 

others as well as compared to those found when staining for catalase. It would therefore 

appear that the advantages of Pex14p as peroxisomal marker are found in most organs and 

tissues and that there are only few organs in which catalase yields higher signal intensities 

compared to Pex14p. Examples hereof are liver or the corpus luteum. 

Online gene expression profile analyses (performed with BioGPS, www.biogps.gnf.org) 

show that PEX14 is expressed in similar amounts in most organs and cells types unlike ABCD3 

and especially CAT which show major differences between different organs and cell types. 

Furthermore PEX14 appears to be expressed in all analyzed samples, whereas catalase is not 

(Fig. 4_1). 

 

Fig. 4_1: Gene expression charts for PEX14, CAT and ABCD3; performed with BioGPS 

 

The importance of peroxisomes for healthy bodily functions is becoming more evident 

from year to year. Especially since the discovery that not only functional catalase is necessary 

www.biogps.gnf.org
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for peroxisomal defense against oxidative stress, as shown in patients suffering from X-ALD 

(Powers et al., 2005). The absence of the lipid transporter ABCD1 (formerly known as ALDP, 

adrenoleukodystrophy protein) leads to an accumulation of VLCFA, which in turn causes an 

imbalance in oxidative homeostasis in various tissues (Fourcade et al., 2008). Similar 

observations were made in mice after genetic knockout of the transporter ABCD2 (Fourcade 

et al., 2009). It has been shown under these circumstances that loss of peroxisomal 

antioxidant capacity, and thereby oxidative stress, is shown through an increase in 

mitochondrial manganese superoxide dismutase (SOD2). This relationship between 

peroxisomal and mitochondrial antioxidant defense appears to be vital for the equilibrium of 

oxidant and antioxidant chemicals within the body. For example, Baumgart et al. (2001) 

investigated the behavior of mitochondria in the Pex5p-knockout mouse, the first ever mouse 

model for Zellweger syndrome (Baes et al., 1997), to find proliferation of mitochondria with 

significant differences in ultrastructure, respiratory chain proteins and enzymes as well as a 

significant upregulation of mitochondrial SOD2. 

Also interestingly, Li et al. (2002) showed that a deficiency in the peroxisomal 

biogenesis protein PEX11  leads to a pathological picture similar to that found in patients 

suffering from or in mouse models for Zellweger syndrome (Baes et al., 1997; Faust & Hatten, 

1997; Maxwell et al., 2003), the severest form of peroxisomal biogenesis disorders. Upon 

closer examination, however, it could be shown that peroxisomal function was not 

significantly altered. Similarly hereto, it was shown that the neuronal migration defects 

prototypical to Zellweger syndrome were not caused by the inactivation of peroxisomal -

oxidation pathways (Baes et al., 2002). This was evaluated in mice carrying a defect in the 

gene encoding for multifunctional enzymes MFP1 and MFP2, the second step in peroxisomal 

-oxidation. These mice exhibited no noticeable changes in phenotype at birth.  

It therefore becomes quite obvious that peroxisomal function and involvement in 

various pathogenetic mechanisms are highly complex and far less understood than was 

believed initially. Peroxisomal function is essential as a protector against oxidative stress as 

well as lipid toxicity in many cell types and tissues. This function is, however, not solely 

dependent on single enzyme or protein actions, e.g. catalase, ABCD1 or MFP1/MFP2. 

Furthermore, peroxisomal function is also not solely dependent on functional peroxisomal -

oxidation or lipid import. This can also be shown through the knockout of another 

peroxisomal biogenesis protein encoding gene, namely PEX13 encoding for the peroxin 13 
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(Pex13p). Mice lacking the gene PEX13 exhibit a phenotype similar to that found in Zellweger 

Syndrome (Maxwell et al., 2003), as do mice lacking the gene PEX2 (Faust and Hatten, 1997; 

Faust et al., 2002 & Faust, 2003). 

A possible reason for the usefulness of Pex14p lies in its protein structure and how it is 

embedded into the peroxisomal membrane. The human orthologue was identified by Will et 

al. (1999) and analyzed and described in detail by Oliviera et al. (2002). They find major 

similarities between the Pex14proteins of human, rat and mouse. Overall the protein (in rat) 

has 377 aminos acids, whereof only the first 130 N-terminal amino acids serve as a true 

membrane protein. The remainder of the protein including the C-terminus is completely 

exposed to the cytosol. It is yet unclear, whether the N-terminus of the protein reaches the 

luminal side of the organelle or is in fact also exposed to the cytosol, as proposed earlier by 

Shimizu et al. (1999). It can, however, be concluded that since more than two thirds of the 

Pex14protein are actually cytoplasmic it can easily be accessed and bound to by antibodies 

against epitopes contained within this part of the amino-acid sequence. This optimal 

accessibility makes the protein highly suitable as a marker for comparative morphometry. 

Additionally it could be suggested that Pex14p would be a marker usable for cells and 

tissues of many different species, since, additionally to the species shown in this thesis (Homo 

sapiens, Mus musculus, Rattus norvegicus, Felis catus, and Papio hamadryas), the PEX14 gene 

and proteins sequence are also conserved in Pan troglodytes, Canis lups, Gallus gallus, Danio 

rerio, Drosophila melanogaster, and Anopheles gambiae (HomoloGene: 37936, NCBI). It is 

most likely that many more species share sequence homologies for PEX14 as well as Pex14p. 

 

Over all, the key pathogenetic mechanisms underlying most peroxisomal diseases 

appears to be oxidative stress, defined as a disequilibrium of reactive oxygen species (ROS) 

and antioxidant capacities of the cell. Both the production of ROS as well as the forms of 

antioxidant defense are multifaceted, wherefore it can be assumed that differences in 

peroxisomal content are adaptive mechanisms for combat of different form of oxidative 

danger. It was therefore important to find a common marker for all peroxisomes, which was 

found in Pex14p. In doing so, it is now possible to catalogue the distribution of peroxisomes in 

all tissues and to assess the exact differences in protein and enzyme content by tissue. 

The labeling of peroxisomes in morphological studies for example is by its very nature 

a diagnosis. The usage of a diagnostic tool (in this case a marker protein) for the prediction of 
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an unknown condition (in this case the existence of peroxisomes) is obviously prone to two 

kinds of errors (incorrect negative diagnosis and incorrect positive diagnosis) as well as likely 

to yield two forms of correct results (correct negative diagnosis and correct positive 

diagnosis). A diagnostic testing of this kind, as is done in every case of organelle-labeling 

through a marker protein, is therefore assessable in its quality through Bayes’ theorem and is 

dependent on the one hand on the sensitivity of the diagnostic tool (in this case the 

antibody’s capability of binding to the correct antigen) and on the other on its specificity (in 

this case the capability of the antibody not to bind to other antigens). By respecting the base 

rate of the diagnostic condition (in this case the amount of specific antigens in the cell or 

tissue sample) it is possible to estimate the positive (PPP) and negative predictive power 

(NPP) of the diagnosis, meaning both the validity of the statement that the marker 

successfully labels all of the respective organelles (PPP) as well as that of the statement that 

everything which is not labeled is also not the organelle in question (NPP). This theoretical 

reasoning easily goes to show the value of Pex14p as a marker for peroxisomes: Pex14p is (to 

date) known to be part of every intact peroxisomal membrane. The Pex14p-antibody has 

been shown through Western blotting to have a highly specific affinity for its antigen. And 

finally, the antibody exhibits a high sensitivity for its respective antigen, as shown through 

studies on partially decayed tissue samples from human body donors to the gross anatomy 

course (Fig. 3.1_6). One can therefore argue that Pex14p is not only suited best as a marker 

protein for peroxisomes due to its cell biological properties, but also due to its probabilistic 

assets, meaning that not only the labeling as such is excellent, but also the validity of the 

diagnostic conclusion based on this labeling. 

 These findings provide the possibility for future explorative and morphometric 

studies on alterations of the peroxisomal compartment in all tissues and cell types und 

different experimental conditions as well as in various human disorders, like schizophrenia. 
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4.2 Dopamine neurotoxicity, schizophrenia and peroxisomal metabolism 

 

 Although studies analyzing the protein abundance and activity of various peroxisomal 

enzymes, like catalase, DAAO or D-AspOx, find differences both between schizophrenic 

patients and controls as well as the result of dopamine neurotoxicity in vitro, no data exists in 

literature regarding the abundance or distribution of peroxisomes as an organelle in 

morphological and morphometric analyses. As could be shown in figure 3.2_1 the low amount 

of catalase in the healthy brain of humans makes the immunohistochemical labeling very 

difficult and does not allow for comparative morphometric analyses between schizophrenia 

patients and controls. Stainings for Pex14p, however, open the door to the localization of 

peroxisomes in the human brain and make more detailed in situ analyses of peroxisomal 

behavior in schizophrenia possible. The minute differences in peroxisomal size and 

distribution as shown also in figure 3.2_1 are, however, very subtle and should not be 

overinterpreted, due to the lack of information regarding the medical histories and case 

histories of the patients analyzed in these experiments. This holds true not only for the 

schizophrenia cases, but also for the controls, of whom not more information was available 

other than that they had never been diagnosed with schizophrenia and did not show any 

other detectable neuropathological alterations. To investigate the differences regarding 

peroxisomal abundance and distribution more detailed and especially controlled analyses are 

necessary. These, however, usually prove hard to accomplish, since sufficient numbers of 

standardized cases (e.g. first-episode patients or patients treated with known 

pharmaceuticals for known spans of time etc.) are generally not available. 

 It was therefore necessary to perform in vitro and animal studies in order to control as 

many confounding variables as possible.  

 

 4.2.1 Effects of dopamine treatment on primary murine neuronal and astrocyte cultures 

All analyses were performed under the assumptions mentioned in the chapter on 

dopamine metabolism, namely that the causal factor underlying the schizophrenia phenotype 

is mesolimbic hyperdopaminergia, that dopamine is neurotoxic by leading to the formation of 

ROS and that systemic injections of NMDAR-antagonists (like MK-801) in turn cause 

mesolimbic hyperdopaminergia. As illustrated also in the aforementioned chapter there is 

sufficient evidence in literature to support all these assumptions. Unfortunately the complex 
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interactions known to exists between various bodily functions and organs as well as between 

functional parts of the brain and systems of neurotransmission make it highly improbable that 

even the best animal model, be it through drug challenges or knock outs/downs of possible 

candidate genes, will be able to explain all of the differences found between schizophrenics 

and healthy controls or the differences within the rather heterogeneous group of phenotypes 

characterized under the diagnosis of clinical schizophrenia or related disorders. This is 

exacerbated by the still rather vague knowledge regarding the etiopathogenesis of 

schizophrenia spectrum disorders. The main advantage of in vitro or animal research, 

however, is the possibility to perform qualitative research through (relatively) controllable 

alterations to a cell culture or animal environment, metabolism or genome and use the 

gathered information to form more precise hypotheses, which can then be translated, 

operationalized and tested in human samples. The results of the second part of this thesis 

should therefore be viewed as well as interpreted in this light, namely as qualitative and 

hypothesis-generating, rather than quantitative and hypothesis-testing. 

 Incubation of primary murine neuronal cultures with different concentrations of 

dopamine showed a resulting dose-dependent increase in catalase abundance especially in 

astrocytes and neuronal perikarya. This allows the conclusion that hyperdopaminergia indeed 

leads to an increase in H2O2-production in both cell types. It also suggests that initially cells 

are able to activate compensatory antioxidant pathways, which raises the question whether 

or not these antioxidant defense mechanisms are sufficient to prevent oxidative stress as 

defined by disequilibrium between ROS production and ROS degradation. Unfortunately it 

was not possible within this thesis to measure the levels of oxidative damage and compare 

them to the activation of antioxidant pathways. Additionally the influences on other 

(peroxisomal, mitochondrial and cytosolic) antioxidant defense mechanisms like the 

peroxiredoxins, superoxide dismutases or the glutathione system have yet to be examined in 

this experimental setting. The lack of a major increase in cell death even in the cultures 

treated with extremely high dopamine concentrations suggests that the effects of dopamine 

neurotoxicity need to be prolonged in order to influence neuronal survival, as is hypothesized 

in Parkinson’s disease. This is also in line with findings of little cell death and gliosis in post-

mortem brains of schizophrenic patients. It is therefore arguable, if dopamine neurotoxicity 

over a specific time span may lead to neuronal degradation resulting in a Parkinsonian 

phenotype, that the underlying mechanisms in the schizophrenic brain must be different. This 
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is further supported by findings on cell death and catalase abundance in primary murine 

neuronal cultures treated with haloperidol. In these experiments there was also a dose-

dependent increase in catalase, which was, however, markedly higher compared to 

dopamine-treated cultures and was accompanied by an increase in cell death, which was also 

dose-dependent. Since haloperidol is known to lead to a Parkinsonian phenotype in patients 

it can therefore be seriously questioned, whether the causal relationship between disorder 

and oxidative stress reported in literature is the same for schizophrenia and Parkinson’s, even 

though both conditions involve dopamine neurotoxicity. And since oxidative stress is far 

better established as a causal factor for Parkinson’s, it would seem that the relationship in 

schizophrenia is probably different, likely vice versa, in that schizophrenia is not caused by 

oxidative stress, but rather that schizophrenia results in oxidative stress. 

 The influences of ROS production in schizophrenia may, however, play an important 

role in the maintenance of the disorder and also, in part, the expression of specific symptoms 

like progressive loss of gray matter volume as well as cognitive decline, even after the 

cessation of psychosis. The reduction of peripheral processes of both neurons and astrocytes 

(Fig. 3.2_2) would be in line both with the aforementioned argument and with the findings of 

atypical neurodegeneration. The novel technique of peroxisomal labeling with Pex14p 

additionally shows a reduction and redistribution of peroxisomes from the peripheral 

processes to the perikarya upon treatment with dopamine. It can therefore be argued that, 

albeit that dopamine does not lead to neuronal death, it probably leads to a reduction of 

dendritic arborization and synaptic density, thereby influencing the balance between 

neurotransmitter systems. As mesolimbic pathways project into various areas involved in 

functions that are attenuated in schizophrenia, like the NAcc, the hippocampus or the 

prefrontal cortex, and as these regions are known for their glutamate transmission, it is 

therefore safe to argue that a reduction of synaptic connectivity in these regions will also 

affect the glutamate system.  These results therefore suggest in vitro quite clearly that there 

probably is a link between “dopaminergic noise and glutamatergic silence” (Bernd Gallhofer, 

conference statement, 2010). Since both facets are discussed heavily in schizophrenia 

research, these findings support an integrative model, whereby frontal hyperdopaminergia 

causes hypoglutamatergia, rather than the idea of two separate concepts in which dopamine 

and glutamate are independent entities. 
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 Since the observed differences in Pex14p and even more so catalase content were 

most pronounced in astrocytes and since astrocytes are important cells for the regulation of 

NMDAR-linked glutamate transmission, the effects of dopamine incubation on pure primary 

murine astrocyte cultures were examined. This also links back to peroxisomal metabolisms, as 

two enzymes important for NMDAR-cofactor metabolism, namely DAAO and D-AspOx, are 

localized solely in peroxisomes and are both shown to be altered in activity and abundance in 

schizophrenia. The genes encoding these proteins are both considered candidate or risk 

genes in schizophrenia research. Figures 3.2_5 and 3.2_6 showed that astrocyte cultures were 

devoid of neurons and that increasing concentrations of dopamine lead to a dose-dependent 

discoloration of the medium. It can therefore be assumed that there was a chemical reaction 

caused by dopamine. This does not, however, influence levels of cell death, similar to 

neuronal cultures, even in markedly higher concentrations and over the course of 24, 48 or 72 

hrs of incubation. Since the cultured astrocytes were able to take up dopamine and react with 

dopamine through receptor binding, it can be assumed that the treatment not only leads to 

an increase of extracellular, but also intracellular dopamine concentrations as well as 

metabolic cAMP-dependent pathways. No differences were observed in the expression 

profiles of dopamine receptors, the dopamine active transporter or dopamine synthesizing 

enzymes. This can be explained through several possible arguments: Firstly, the reactions of 

neurons and astrocytes are heavily dependent on each other, whereby astrocytes react to 

neurotransmitter/cAMP-mediated intracellular increase in Ca2+-levels with a production of 

signal molecules for the regulation of synaptic transmission (Newman, 2003; Volterra & 

Meldolesi, 2005). It could therefore be assumed that the lack of cross talk between neurons 

and astrocytes in these cultures significantly alters the astrocytes’ metabolism. This argument 

is probably especially relevant for dopamine synthesizing enzymes. Since this is not primarily 

a function of astrocytes it is not surprising that expression levels of this group of enzymes are 

not altered in cultures without neurons. As is shown in figure 3.2_9 the basal expression 

levels of both enzymes are relatively low to begin with. Secondly, other experimental setups 

involving various stimulation or inhibition of different dopamine receptors generally show 

few to no differences in receptor expression levels, albeit that some studies report 

differences in receptor protein abundance (Maus et al., 1993; Horiuchi & Felder, 1996; 

Autelitano & van den Buuse, 1997; Lammers et al., 1999a; 1999b; Unger et al., 2008). It would 

therefore appear that short-term alterations of dopamine receptor density do not require 
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alterations of gene expression, but are regulated on the post-transcriptional level. Thirdly, the 

amount of time necessary for alterations in expression profiles for dopamine receptor genes 

might be longer than 72 hrs. Finally, Hirrlinger et al. (2002) showed that blocking of dopamine 

receptors in cultured astrocytes did not influence the oxidation of intracellular GSH to GSSG 

upon treatment with astrocytes. It could therefore be argued that the detoxification of excess 

dopamine by astrocytes in vitro is not necessarily dependent on dopamine receptor binding. 

   

 In general it has to be emphasized that RT-PCR, as performed in this thesis, is neither a 

quantitative method nor is it capable of reliably detecting subtle differences between 

expression levels. For the detection of finer alterations in a more reliable fashion quantitative 

PCRs or other methods of expression profiling, like microarrays or SAGE (serial analysis of 

gene expression) need to be performed. 

 The fact that the expression levels of the three dopamine degrading enzymes are 

barely changed can be interpreted in different ways. The slight increase shown in MAOB 

expression, but not in MAOA, taken in light with the initially higher basal expression rate of 

MAOA, allows for the hypothesis that enzymatic content of the cultured astrocytes is 

sufficient for the degradation of the increased levels of dopamine. Since detoxification of 

metabolites of neuronal activity is one of the primary functions of astrocytes it would be 

necessary for these cells to express all necessary enzymes regularly and in ample quantities. 

Due to the fact that dopamine is degraded by both MAOs equally, the high basal expression 

levels of MAOA would therefore only necessitate the observed slender increase in expression 

of MAOB and COMT. As described above, the chemical interaction between neurons and 

astrocytes in vivo is known to play an important role in the regulation of astrocytal function. 

Since these are missing in these in vitro cultures it could be argued that the cells have no 

reason for a further transcription of the genes in question. The increased dopamine levels 

obviously do not appear to be life threatening to the cultured cells as can be shown through 

the lack of increase in cell death even in highest concentrations after 73 hours, although 

these latter cultures do begin to show signs of reduced over-all metabolic function. 

 An alternative explanation to lack of necessity to increase numbers of mRNA copies 

could be again that major alterations to the dopamine degrading system occur on a post-

translational level. To examine this hypothesis it would be necessary to examine the stability 

of the mRNA copies, the enzyme content of the cells as well as the activity of the enzymes 
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and compare these values between groups. It could be possible that, regardless of relatively 

little change in gene expression, either or all of these values may still increase. 

 The effects of dopamine incubation on genes coding for selected peroxisomal proteins 

are also hardly visible. PEX14 is the only gene that appears to be induced in concentrations of 

1 M dopamine and higher after 72 hrs of incubation, albeit only slightly. Since Pex14p as an 

integral membrane protein is a part of every peroxisome, the elevation of the expression of 

the PEX14 gene can be considered as indicative of peroxisomal proliferation in these cultures. 

The lack of increase in ABCD3 expression shows that peroxisomal proliferation is a selective 

process, wherein new peroxisomes could cater adaptively to those functions required in a 

given cell or tissue. Since ABCD3 is a transporter for very long chain fatty acids (VLCFAs) into 

the peroxisomal matrix, it is not required in cells confronted with an increase in dopamine 

related ROS production. The expression of the enzyme more relevant in this context, catalase, 

is, however, also not induced in a detectable fashion. This could be due to the limitations of 

the method, but could also mean that the level of catalase present in the atrocytes as well as 

the basal level of catalase are already sufficient for the degradation of the increased levels of 

ROS expected to be induced by dopamine treatment. Due to the high efficiency of catalase, 

the latter argument does not appear unlikely. Furthermore, the argument of enzyme activity 

also needs to be considered, similar to the enzymes involved in degradation of dopamine. To 

answer this with any given amount of certainty additional enzyme activity assays would need 

to be performed. Since catalase activity is reduced by almost 75% in the developing mouse 

cortex between postpartum days 2 and 49 (Ahlemeyer, 2007) it would not be unlikely that 

initial demands regarding an increase in H2O2-degradation could be compensated for by 

activity increases of catalase rather than an immediate increase in the expression of new 

protein. Since dopamine was shown to increase the activity of Nrf2 (Shih, Erb & Murphy, 

2007), which in turn regulates a variety of antioxidant mechanisms, it would be interesting to 

compare the expression levels of the CAT-gene to those of other Nrf2-activated genes in 

order to address the question of selective and differential antioxidant activation. This would 

then also raise the question on molecular mechanisms of this differential activation, since 

H2O2 is not only an activator of Nrf2, but also the direct substrate of catalase. This differential 

activation mechanism is not only a possibility for interindividual regulation of various genes 

within the same cell, but also for intraindividual differences in expression patterns in or 

without the presence of neurons. This could possibly be regulated through the level of Keap1 
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(kelch-like ECH-associated protein 1), a major regulator of Nrf2 activity, within the different 

cultures. Since Nrf2 is expressed constitutively its activity is controlled through degradation 

by ubiquitylation, which is promoted by Keap1 (Nguyen, Nioi & Pickett, 2009). The increase in 

catalase as shown in figure 3.2_2 in astrocytes cultivated in the presence of neurons in 

comparison to pure astrocyte cultures (Fig. 3.2_8) suggests higher levels of H2O2 in the first 

cultivation condition. Whether this comes from neurons via passive diffusion or is produced in 

the astrocytes at higher levels due to neuronal signaling is unclear, but in any case the 

increase in H2O2 would lead to a higher level of degradation of Keap1, a protein high in 

cystein residues (Nguyen, Nioi & Pickett, 2009), the thiol moieties of which are prone to 

oxidation by hydrogen peroxide and other oxidizing agents. Since Keap1 is only expressed in 

moderate amounts in the brain to begin with, compared to other tissues (online expression 

pattern analysis performed with BioGPS), it could be assumed that the added degradation of 

Keap1 through an increase in H2O2 in intact neuron-astrocyte interaction would therefore 

lead to a potent activation of Nrf2. It is therefore a possibility that the differential regulation 

of catalase expression, or rather the relative lack of regulation in pure astrocyte cultures, 

could be lead back to reduced enzymatic dopamine degradation or to increased H2O2 

degradation or the added effects of both in comparison to cultures with neuron-astrocyte 

interactions. Therefore, interesting aspects would be to research the expression levels of 

Keap1 in schizophrenic patients and the therapeutic effects of Keap1-inhibitors or Nrf2-

agonists as potential palliatives. 

 In closing, albeit apparent that astrocytes are by far more robust to increased levels of 

dopamine compared to neurons, incubation with the highest concentrations of dopamine 

(200 M & 500 mM) for 72 hrs resulted not only in a decrease of general levels of 

transcription (data not shown here, see diploma thesis: Fischer, 2011), but also in a reduction 

of protein content not only for catalase, but also for GFAP (Fig. 3.2_8). Since cellular survival is 

not decreased in these cultures it could be assumed that the apparent reduction in overall 

cell activity is due to a kind of “cellular sickness behavior”. 
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4.2.2 Effects of treatment of male pubescent C57Bl/6J-mice with the NMDAR-antagonist 

MK-801 

 1 h after treatment of animals with MK-801 a clear increase in the expression of the 

gene for serine racemase could be observed (Fig. 3.2_16). This is considered as internal 

positive control for the effectivity of systemic (i.p.) MK-801 administration in the brain, in 

addition to the observations of expected phenotypical behavior in the animals by blind 

independent raters. It can therefore be assumed that MK-801-treatment managed to induce 

the desired pharmacological schizophrenia phenotype within this set of experiments. 

 Additional RT-PCRs showed increases in the expression of D-AspOx and to a lesser 

extent PEX14. Since MK-801 rapidly induces serine racemase expression, the elevated levels 

of D-serine are likely to lead to an increase in D-amino acid degrading enzymes. This was 

shown by Yoshikawa et al. (2004b) for D-amino acid oxidase and would also be expected in 

the case of D-aspartate oxidase, not only due to the fact that both enzymes have synergistic 

function, but are both also found exclusively in peroxisomes (Zaar et al., 2002). When 

comparing the time courses of the increases in expression of serine racemase (Yoshiakwa et 

al., 2004a) and D-amino acid oxidase (Yoshikawa et al., 2004b), the time delay in transcription 

induction between the two genes (maximum expression in serine racemase after 1 h vs. 4 hrs 

for D-amino acid oxidase) could also support the hypothesis that DAAO expression is not only 

induced directly by the increase in dopamine due to the CRE in the promoter and first intron 

of the DAAO gene (Fukui & Miyake, 1992), but also due to the secondary activation via the 

aforementioned increase in D-serine. It is therefore probable that similar mechanisms also 

lead to the increased expression of the D-AspOx gene. The most important aspect is, 

however, that MK-801 induced hyperdopaminergia leads to an increased expression not only 

of D-amino acid oxidase, but also of D-AspOx. It can therefore be assumed that the influences 

between the dopaminergic and glutamatergic systems are bidirectional: NMDAR blockade 

leads to an increase in mesolimbic dopamine, as is established in literature, while 

hyperactivity of the mesolimbic dopamine system in turn leads to an increase in enzymes 

degrading important cofactors of NMDAR-mediated glutamate transmission. This would give 

rise to a vicious circle in patients whose hyperdopaminergia is not caused by administration of 

a drug and is therefore not transient. It also gives rise to the question regarding the chicken 

and the egg: Is it the initial increase in dopamine transmission leading to frontal glutamate 

deficiency, which in turn exacerbates the underlying hyperdopaminergia? Or is the other way 
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around, meaning that initial frontal glutamate hypofunction disinhibits mesolimbic dopamine 

pathways thereby leading to a neurotoxic effect which not only reduces the density of 

synaptic spines on peripheral dendrites carrying NMDARs, but also reduces the availability of 

important NMDAR cofactors? More research is necessary to answer this question. It may also 

be possible that both possibilities could be found in patients, whereby the end-effect would 

be the same. 

 The slight increase in PEX14 expression could be due to a rise in dopamine-related ROS 

levels, but could also be linked to the aforementioned activation of transcription in the genes 

of the two peroxisomal enzymes D-AspOx and DAAO. As the difference in band size is only 

slight it should not be overinterpreted. Since neither the expression of Nrf2 nor CAT is 

induced it is unlikely that ROS levels will have risen substantially 1 h after treatment with MK-

801. The constitutive expression of Nrf2 and the primary regulation through Keab1 as 

described above as well as the high efficiency spectrum of catalase and lack of information 

regarding changes in the activity of the enzyme, however, do not exclude the possibility of 

dopamine-related ROS production after MK-801 treatment. It can therefore probably be 

ascertained that after 1 h there is no oxidative stress, in a sense of disequilibrium between 

ROS production and cellular ROS defense. Since the time is, however, sufficient to induce a 

schizophrenia phenotype in the treated animals, the hypothesis found in literature that 

oxidative stress is a primary cause of schizophrenia, comparable to Parkinson’s disease, 

becomes ever more doubtful. 

 The lack of markedly changed expression levels in the liver samples after 1h of MK-801 

treatment compared to vehicle-treated animals shows that the systemic administration of the 

drug has differential and specific effects in the brain and does not support a primary 

mechanism of ROS production of MK-801 itself. Since drugs blocking NMDAR channels are 

commonly shown to reduce oxidative stress caused by glutamate excitotoxicity it therefore 

becomes most likely that the proposed ROS production after administration of MK-801 is due 

to secondary mechanisms like dopamine neurotoxicity. 

 The inconsistencies in the expression patterns of serine racemase after 25, 49 and 73 

hrs in both groups (Fig. 3.2_18) are not easy to interpret. On the one hand Yoshikawa et al. 

(2004) showed that 8 hrs after MK-801 administration expression levels of the serine 

racemase genes had returned to baseline, but on the other hand Hashimoto et al. (2007) 

reported a significant increase in serine racemase expression after chronic treatment (14 
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days) with MK-801. Since the expression of serine racemase appeared to be highest after 49 

hrs in the vehicle-treated group it could be possible that other factors strongly influence the 

transcription of the gene and mask the effects of the MK-801 treatment. It has been 

suggested that the protein content of the diet fed to experimental animals could be one such 

factor with influence on the serine metabolism (Antflick, Baker & Hanson, 2010). Whether 

this could be relevant regarding the results presented in this paper cannot be excluded, but 

can also not be ascertained without further research. Another possibility could be an 

undetected inflammation in one or some of the control animals, as inflammation has also 

been shown to increase serine racemase expression (Wu & Barger, 2004). 

 The influences of MK-801 on the expression patterns of dopamine-degrading enzymes 

are surprising. It would be expected that increase in prosencephalic dopamine through MK-

801 would lead to a reactive increase in MAO and COMT transcription, as is found after 49 hrs 

of treatment (Fig. 3.2_19). After 25 hrs of treatment as well as after 73 hrs (with the 

exception of MAOA) the numbers of mRNA copies are, however, reduced in the MK-801 

treated animals compared to controls. A possible explanation herefore may be levels of 

plasma glucocorticoids, which have been shown to differentially regulate the expression 

patterns of all three dopamine degrading enzymes (Edelstein & Breakefield, 1986; Carlo et al., 

1996; Lindley, She & Schatzberg, 2005). Although these findings are more than ambiguous 

they all commonly show major influences of glucocorticoids on both expression and activity 

of MAOs and COMT and also show that MAOA and MAOB are differentially regulated and do 

not necessarily follow a parallel course. Since rodents are animals prone to flight it is 

commonly accepted that the act of catching and immobilizing them during injection will be 

perceived as extremely stressful and cause high releases of corticosterone, the primary 

glucocorticoid in rodents, from the adrenals. It is therefore possible that the reduction or lack 

of induction of dopamine degrading enzymes could be caused by increases in the activity of 

the hypothalamic-pituitary-adrenal axis. This can be seen especially in the reduction of MAOB 

expression over time in both the MK-801- as well as the vehicle-treated groups. The reduction 

in transcription levels in the MK-801 animals at all time points regarding MAOB and after 

25hrs in MAOA and COMT as well as after 73 hrs in COMT could therefore be caused by the 

increase in locomotion activity due to drug treatment, which in turn should raise the 

glucocorticoid production. Again, as previously mentioned, possible posttranscriptional 

modifications, e.g. increases in enzyme activity, might also play an important role in the 
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degradation of increased levels of dopamine. On the whole it would seem that the levels of 

dopamine are probably not too high after 73 hrs so that massive increases in the expression 

levels of MAOs and COMT are not (yet) necessary. This would seem to be supported by the 

fact that no morphological signs of increased neuronal death could be observed in any of the 

immunolabeling experiments (Figs. 32._22 through 3.2_24), thus one could argue that, 

although MK-801 leads to a sufficient increase in dopamine to cause a schizophreniform 

phenotype in the animals, after 73 hrs the levels are not yet high enough to cause marked 

neurodegeneration. This argument also supports the hypothesis, that neuronal damage 

caused by oxidative stress is not a primary cause of schizophrenia.  

 Both the expression patterns (Fig. 3.2_21) as well as the immunolabeling results (Fig. 

3.2_23) show little to no increase in PEX14 expression levels or Pex14p abundance. Since 

results from the differential distribution of Pex14p and catalase in various organs including 

the brain show that many peroxisomes are present in neuronal tissue which do not contain 

catalase, it would therefore not be surprising that the slight increases in catalase protein 

abundance and gene expression (Figs. 3.2_22 & 3.2_20) do not require a proliferation of 

peroxisomes, since obviously many peroxisomes exists that can be filled with newly 

synthesized catalase. This again shows the heterogeneity of the peroxisomal compartment. It 

could, however, be reasonable to assume that chronic elevation of prosencephalic dopamine 

levels would at some point lead to peroxisome proliferation. Since degradation of H2O2 

through catalase occurs in peroxisomes, a forced proliferation through treatment with 

peroxisome proliferators (like PPAR -agonists; Shintu et al., 2009) might still prove 

therapeutically relevant in schizophrenia. As catalase has an immense substrate turnover it 

would therefore be probable that an increase in peroxisomes, even if catalase levels were to 

remain unchanged, would therefore still lead to a more efficient ROS degradation, if only 

through an increased capability of sequestering the ROS inside the increased number of 

peroxisomes, thereby preventing damage to other intracellular proteins, fatty acids and 

nucleic acids. 

 The increased expression of GFAP after 25 hrs of MK-801 treatment is expected, since 

similar findings have been reported both for NMDAR-antagonists (O’Callaghan, 1994; Fix, 

Wightman & O’Callaghan, 1995) as well as for various substances increasing dopamine levels 

or dopamine transmission including (meth)amphetamine (Sheng, Cerruti & Cadet, 1994; 

Armstrong et al., 2004), D2-receptor agonists (Sands & Chronwall, 1996) and MAO-inhibitors 
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(Revuelta et al., 1997). Since GFAP is an intermediate filament in the astrocyte cytoskeleton 

and not a functional protein, it is not surprising that an initial increase in expression levels 

after 25 hrs is sufficient and further increases after 49 and 73 hrs are not required. This can 

also be seen in the immunolabeling results, where increased protein abundance can still be 

observed after 49 and 73 hrs, even though expression patterns have fallen back to baseline 

(Figs. 3.2_23 & 3.2_24). 

 Finally, the increases in both catalase and SOD2 protein levels (Figs. 3.2_22 & 3.2_24) 

as well as in the expression levels of the coding genes (Fig. 3.2_20) show that the apparently 

heightened ROS levels caused by dopamine neurotoxicity are compensated for by antioxidant 

defense mechanisms. Whether this increase is sufficient to attenuate ROS-mediated cell 

damage cannot be said, due to the fact that direct ROS measurements or evaluations of 

peroxidation (by)products could not be performed. It is, however, unlikely that the MK-801-

treated animals exhibit significant oxidative stress, since the tissue sections showed no signs 

of morphological differences that would suggest severe neurodegeneration. It can therefore 

be assumed that compensatory inductions of antioxidant enzymes are capable of making up 

for the increase in dopamine-related ROS. In any case, the antioxidant defense mechanisms 

include many more elements than catalase and SOD2 that have not been assessed within this 

thesis. It would therefore again appear that animals do not exhibit significant levels of 

oxidative stress, although they are confronted with increased ROS levels, since they are still 

capable of activating and increasing antioxidant defense pathways. Most studies on patients 

regarding oxidative stress and schizophrenia show the opposite findings, namely a decrease in 

cellular antioxidant defense and an increase in morphological as well as biochemical signs of 

oxidative damage compared to matched controls. 
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4.3 Summary, conclusions and implications for further research 

 

 It could be shown that Pex14p is the optimal novel marker protein for peroxisomes in 

comparative as well as experimental morphometry, as it appears to be present in every 

healthy peroxisome, independently of enzyme content, cell or tissue type. The Pex14p-

antibody is highly specific and selective and can be used in IHC, IF, IGL as well as in 

combination with Qdots®. The epitope also appears to be very well accessible and highly 

stable even in tissues with progressed autolysis. It can therefore be used not only in 

experiments performed with freshly perfused animal tissues, but also be used in human 

tissues with moderately preserved ultrastructure. This is, however limited through other 

factors specific to aged human tissue, such as the accumulation of lipofuscin granules in the 

human brain. 

 Using Pex14p as a marker it was therefore now possible to examine the effects of 

increased dopamine on the antioxidant defense mechanisms using the peroxisome as model 

and studying its reaction to dopamine neurotoxicity in more detail. Cell culture experiments 

showed that dopamine, although not leading to marked increase in cell death, leads to a 

reduction of peroxisomal abundance in peripheral neuronal and astrocyte processes in line 

with the concept of atypical neurodegeneration, combined with an increase in catalase 

content especially in astrocytes. It can therefore be hypothesized that mesolimbic 

hyperdopaminergia and frontal hypoglutamatergia are not separate entities, but rather 

causally linked, in that dopamine neurotoxicity caused reduction of dendritic arborization and 

thereby loss of glutamatergic synapses. 

 When cultivated in the absence of neurons, however, it was shown that dopamine in 

concentrations far higher than were used for neurons and over significantly longer time 

periods has little effect on the cultivated cells. It can therefore be concluded that astrocytes 

play a decisive role in the protection of neurons against dopamine neurotoxicity and are by 

far more robust than neurons. For the antioxidant reactions to be induced, however, intact 

neuron-astrocyte interaction is necessary. This interaction and possible impairments thereof 

are therefore potent fields of research regarding the antioxidant capacity of the brain as an 

organ. 

 Finally, animals treated with the non-competitive NMDAR-antagonist MK-801 for 1, 

25, 49 and 73 hrs showed a schizophrenia-like phenotype 10-15’ after systemic injection of 



4. Discussion, summary and conclusions  144 
 

 

the drug, but no marked differences in PEX14 or CAT expression 1 h after treatment. There 

was, however, an increase in D-AspOx expression, thereby showing in vivo that MK-801-

induced hyperdopaminergia may in turn lead to NMDAR-hypofunction. 

 Continued treatment with MK-801 over 25, 49 and 73 hrs showed differential effects 

on the expression on genes coding for dopamine degrading enzymes. A slight increase in gene 

expression was observed after 49 hrs in MAOA and COMT, while MAOB-levels continuously 

decreased. This could be interpreted in such a fashion that the increased levels of dopamine 

can still be degraded by the existing amount of enzymes, whereby increases in enzyme 

activities are a probable mechanism herefore. Both RT-PCRs and immunolabelings showed no 

conclusive evidence of peroxisomal proliferation within the aforementioned time frame, 

although levels of expression and protein abundance for the two antioxidant enzymes 

catalase and SOD2 increased in the MK-801-treated animals. It can therefore be concluded 

that antioxidant pathways of the brain are still active and can be adapted to increased ROS 

production caused by dopamine neurotoxicity, thereby questioning the proposition that 

oxidative stress is a primary cause of schizophrenia. 

 In conclusion the preliminary results of the exploratory experiments performed within 

this thesis suggest that that schizophrenia is a not disorder caused by oxidative stress, a 

condition in which antioxidant defense mechanisms are relatively hypofunctional, that 

dopamine hyperfunction and glutamate hypofunction are not separate entities, but may 

induce and increase each other in vivo and that dopamine induced neurotoxicity plays an 

important role in the upkeep and exacerbation of the core pathogenic mechanism of 

schizophrenia on the one hand and on the other via the induction of ROS-production leads to 

an increase in atypical neurodegeneration which could play an important role in the 

development and persistence of cognitive symptoms in schizophrenic patients. The results 

lead to the postulation of an integrative model regarding the etiopathogenesis and upkeep of 

schizophrenia based on dopamine neurotoxicity and dopamine-glutamate-interactions.  

 

 

Fig. 4_2: Schematic illustration of the proposed integrative “mesolimbic bottleneck model” of schizophrenia 
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4.3.1 Implications for further research 

In order to further examine the verisimilitude of the aforementioned hypothesis (q.v. 

Fig. 4_2) the results from this thesis need to be replicated in larger samples. Furthermore the 

effects of systemic treatment with MK-801 need to be evaluated over longer time spans in 

order to differentiate between acute and chronic effects of increased activity of the 

mesolimbic dopamine system. Especially regarding findings of decreased antioxidant defense 

in patients suffering from schizophrenia, it would be relevant to ascertain if and when the 

antioxidant defense systems of the brain (which appear to be functional during acute and 

short-term treatment with MK-801) become hypofunctional when confronted with 

chronically elevated dopamine levels. In this respect there is also a strong necessity for 

research into the confounding effects of neuroleptic treatment, since results from this thesis 

show that haloperidol has a markedly higher potential for (oxidative) damage than dopamine 

(q.v. section 3.2.2). It is therefore likely that oxidative stress as found in patients is partly 

caused or at the least exacerbated through treatment with antipsychotic medication, 

especially typical neuroleptics like haloperidol. 

The possibility of palliative treatment of schizophrenia with antioxidant medication is 

therefore another question worth examining based on the findings of this thesis. The animal 

research application for this thesis, approved by the regional board for animal protection, 

incorporates treatment of animals for up to 14 days as well as a second set of experiments in 

which animals are to be treated with a peroxisome proliferator (rosiglitazone) prior to 

injections with MK-801. It is therefore planned to expand upon the preliminary research as 

laid out in this thesis in order to answer some of the aforementioned questions regarding 

both acute vs. chronic MK-801-treatment as well as palliative treatment with drugs 

augmenting antioxidant capacity.  

Additionally a number of targeted experiments need to be performed using 

quantitative methods like real-time RT-PCR (qRT-PCR), microarrays, ELISA (enzyme-linked 

immunosorbent assay) and enzyme-activity assays in larger samples in vivo, in animals and in 

human patients.  

Finally it would be of great interest to examine possible effects of altered dopamine 

transmission in non-clinical samples. Since, on the genotype level, polymorphisms of 

candidate genes for schizophrenia that were also analyzed within this thesis, like DAAO 

(Stefanis et al., 2007) or COMT (Avramopoulos et al., 2002), have also been shown to be 
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associated with the trait of schizotypy, examinations of the genes’ expression patterns could 

show correlations with self-reported schizotypy levels, especially when other factors, like self-

reported life-events or gene methylation patterns would be taken into account additionally. 

Since Stefanis et al. (2004) report that variations in the COMT Val158Met polymorphism are 

associated with schizotypy, but not with cognition, the question arises, whether or not 

atypical neurodegeneration caused by dopamine neurotoxicity might play a role in the 

transition from subclinical schizotypy to clinical schizophrenia. There is an ongoing dispute on 

the question, if schizotypy and schizophrenia are represented by the same continuum or if 

there is a clear dichotomy between the two concepts (conference statement by Gordon 

Claridge, Oxford). It would therefore be interesting to examine the levels of antioxidant 

defense, neurotoxicity and atypical neurodegeneration in schizotypy in order to establish, 

whether these are also continuously distributed and correlated with schizoptypy or whether 

they make the difference between schizoptypy and schizophrenia in a sense that atypical 

neurodegeneration only presents in clinical schizophrenia, but is absent in persons with high 

schizotypy. This would mean that persons high in schizotypy may be prone to develop 

schizophrenia (e.g. through the experience of negative life-events), but that the latter 

condition would then involve additional processes leading to manifest damage to the brain. 

Should this be the case, the question would arise, what the nature of this discontinuity 

between schizotypy and clinical schizophrenia on the neurophysiological, neurochemical and 

neuropathological level would be. It is, however, in the opinion of the author more likely that 

schizotypy and schizophrenia are presented both phenotypically as well as a 

neuropsychologically on the same continuum, wherefore the research into the 

neurophysiological and -chemical correlates of schizoptypy could answer many of the open 

questions in schizophrenia research, but without the additional confounding influences of 

many of the variables (e.g. antipsychotic medication) commonly associated with clinical 

schizophrenia.  
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Appendix A – Materials and methods: Detailed descriptions 

 

A.1 Cell culture  

 

A.1.1 Mixed primary murine neuronal cultures 

Briefly, the cortices were digested for 20’ with 0.1% papain. Afterwards, the 

sedimented tissue sample was gently triturated three times with Pasteur pipettes of 

subsequently smaller opening sizes. The supernatants were removed, transferred to 

neurobasal medium containing 1% trypsin inhibitor and 1% BSA and then centrifuged at 200 

g for 10’ at room temperature (RT). Cell pellets were gently resuspended and the cells were 

seeded onto 35 mm poly-L-lysine-coated Petri dishes containing a coverslip at a density of 3 

x 105 cells. Neurons were cultured in neurobasal medium plus B27 supplement for 6 days 

before experiments. 

 

A.1.2 Primary astrocytes cultures 

Each culture was taken from an entire litter of newborn C57Bl/6J mice. Animals were 

sacrificed through decapitation, after which the brains were excised and the cerebella, bulbi 

olfactorii as well as all non-neuronal tissue was removed. Cortices were digested in a water 

bath for 20’ at 37°C in samples of two or three in 2 ml of 0.1% Papain (Sigma) in neurobasal 

medium (neuronal base medium, PAA) with 0.02% bovine serum albumin (BSA). After 20’ 

the papain solution was removed by pipetting and 1 ml warm medium was added to the 

pellet and the sedimented tissue sample was gently triturated eight times each with three 

Pasteur pipettes of subsequently smaller opening sizes. The supernatants were removed, 

transferred to neurobasal medium containing 1% trypsin inhibitor and 1% BSA and then 

centrifuged at 200 g for 10 min at room temperature (RT). The supernatant was removed 

through pipetting and 5ml warm medium were added. The samples were triturated several 

times and pipette into a glass beaker, mixed again by pipetting and decanted into an 

uncoated FalconTM-culture flask (75 cm2), which already contained 10 ml medium (final 

volume was 25 ml).   

 Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) Low Glucose 

(1g/l) with L-glutamine at 37°C in a Hera Cell 240 incubator (Heraeus) with 5% CO2. 10% 
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(vol/vol) fetal calf serum (FCS), 1% penicillin-streptomycin (100x, PAA) and 1% sodium 

pyruvate (100 mM, PAA) were added to the medium to achieve optimal concentrations of 

amino acids, vitamins and ATP-generation substrates and germicides for the astrocytes in 

the culture. This treatment along with the lack of coating of the culture flask did not allow 

other cells like neurons, oligodendrocytes, microglia, endothelial cells or smooth muscle cells 

from vessels to survive. This method of cultivation along with the length of cultivation did, 

however, allow for the common contamination (Schmitz, 2007) with fibroblasts.  

 The medium was changed on the first day after preparation. Between removal of old 

and addition of new medium (25 ml) cells were washed with 25 ml cold (4°C) PBS (pH 7.4). 

Hereafter cells were cultured for 8-11 days until reaching confluence with medium changes 

every 2-3 days, however, with the omission of the PBS-washing step. Upon reaching 

confluence cells were passaged into Petri dishes (20 cm2). Here for 3 ml of Hank’s Balanced 

Salt Solution (HBSS, PAA) containing 0.05% porcine trypsin were added for 30’’, removed by 

pipetting and another 1 ml 0.05% porcine trypsin in HBSS was added and incubated for 3’. 10 

ml warm medium were added and the entire contents were pipetted into a glass beaker and 

mixed by pipetting. Cells were seeded with 2x104 cells per cm2. To achieve this seeding 

density cells were counted in a Neubauer Improved Counting Chamber and the necessary 

amount of medium was added to allow for the intended seeding concentration. 6 ml were 

pipetted into each Petri dish and the remainder of the suspension in the beaker was mixed 

through pipetting prior to each seeding. Petri dishes intended for subsequent indirect 

immunofluorescence labeling contained an additional uncoated cover slip. Cells were 

cultivated for another 3 days after passaging with a medium change as described above 

(including a washing step in PBS) on the first day after passaging. After the third day medium 

was changed once again (without the PBS washing step) and a defined amount of dopamine 

was added (see section 2.2.2.2 on dopamine treatment). 

 

A.2 Morphological staining techniques 

 

A.2.1 Histological staining 

A.2.1.1 Modified Kluver-Barrera staining: Sections were incubated over night at 60°C 

followed by 3 changes of xylene (5’ each) to remove the paraffin. Afterwards sections were 

rehydrated through a descending series of ethanol (2 x 99%, 1 x 96°; 5’ each) and then 
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incubated in a sealed cuvette in luxol fast blue for 1.5-2 hrs at 60°C. After a brief wash in 

ethanol (96%) sections were hydrated in ultrapure water for 5’ and then differentiated in 

0.1% NaOH (aq) for 20-30’’. The differentiation was stopped by placing the sections in 

ultrapure water and controlled under the microscope. Nuclei and Nissl bodies (rough 

endoplasmic reticulum, rER) were counterstained with acidophilic cresyl violet at room 

temperature for 8-15’, followed by a short rinse in ultrapure water. Sections were then 

dehydrated in an ascending graded ethanol series (70 %, 99%, 1 x 3’ each) and then 

transferred to a 50:50 solution of 99% ethanol and xylene, followed by three changes of pure 

xylene (3 x 3’). Sections were then mounted in DePeX. Kluver-Barrera stains myelin sheaths 

blue, nuclei, nucleoli and Nissl bodies (rER) violet and neuropil cyan. 

 

A.2.2 Indirect Immunohistochemistry (IHC), Immunofluorescence (IF) and 

ImmunoGoldLabeling (IGL) 

A.2.2.1 Principle of indirect immunolabeling: Immunolabeling techniques are based on the 

binding of antibodies (immunoglobins, usually IgG) to specific protein sequences (epitopes) 

in situ within biological materials. Antibodies are raised by treating animals with specific 

antigens of interest. The variety of possible epitopes within an antigens protein sequence 

leads to the creation of multiple antibodies from different parent immunocytes with the 

capacity of recognizing the protein of interest (antiserum containing various polyclonal 

antibodies) within the host animal. These antisera can either be used directly for 

immunobeling procedures or can alternatively be purified further through various methods 

(mostly forms of chromatography and/or precipitation) to include only antibodies against a 

single epitope. Since these antibodies are made in the host animal by clones of one unique 

parent cell, they are referred to as monoclonal antibodies. These antibodies are then labeled 

with either enzymes that catalyze color producing reactions, organic fluorescent dyes 

(fluorochromes) or electron-dense metals (usually gold particles) and therefore be 

visualized. Since the antibody binding to the specific epitope of the target protein is directly 

labeled, this method is referred to as “direct immunolabeling”. 

 In indirect immunolabeling techniques a secondary antibody is introduced, which 

does not bind to the protein of interest, but to the Fc (fragment crystallizable) domain of the 

primary antibody. In this case not the primary, but the secondary antibody is labeled as 

described above. This method increases the sensitivity of labeling compared to direct 
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immunolabeling, since more than one secondary antibody can bind to each primary 

antibody, thereby intensifying the signal yield and ideally reducing the signal to noise ratio. 

For this method it is therefore important that the secondary antibody is raised against the 

species-specific Fc domain of the primary antibody. E.g.: If the primary antibody is raised in 

rabbit (the most commonly used species for these purposes), then the secondary antibody 

must firstly be raised in any species other than rabbit and must secondly be of anti-rabbit 

binding capacity. In some cases the secondary antibody is not a complete Ig-molecule, but 

consists only of labeled IgG-Fab (fragment antigen-binding)-domains. 

 

 

Fig. A.2_1: Principle of indirect immunolabeling (modified from www.di.uq.edu.au/indirectif) 

 

 The most commonly used methods of visualizing labeled antibodies as mentioned 

above shall be explained briefly, since they were all used within this thesis. 

Enzyme linked immunolabeling techniques (e.g. enzyme linked immunosorbent assays 

(ELISA) or immunohistochemistry) involve the catalyzation of a color reaction through an 

enzyme bound to the (secondary) antibody. The most commonly used enzymes are alkaline 

phosphatase or horseradish peroxidase. This method is often slightly modified for the 

purpose of additional signal amplification. Hereby the enzyme is not directly bound to the 

antibody, but rather both the secondary antibodies as well as the enzyme are biotinylated 

and bound to each other using (strept)avidin. The resulting avidin-biotin complex (ABC) is 

known for its high affinity interaction, thereby making it ideal for utilization in scientific 

research. In a final step a specific organic dye is introduced (e.g. 3,3’-diaminobenzidine, DAB), 

which is then converted by the enzyme resulting in a color reaction. In the case of DAB the 

color reaction is brown, but can be intensified by nickel ammonium sulfate to form a black 

product.  

http://www.di.uq.edu.au/indirectif
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Fig. A.2_2: Indirect immunohistochemistry principle using the ABC system with DAB or DAB with nickel (NiDAB) 

intensification as reaction substrates (modified from Hoffman, Le & Sita, 2008) 

 

 Immunofluorescence and immunogold staining both involve direct visualization of 

agents bound to the secondary antibody (or Fab-domains of secondary antibodies). 

Fluorescent agents (mostly organic fluorochromes or alternatively crystalline 

semiconductors/quantum dots) are excited by photons of a specific wavelength. These 

photons are absorbed by orbital electrons leading to an increase in quantum state of the 

excited electrons. When these fall back into their ground state another photon is released 

(usually of longer wavelength than the absorbed photon) leading to a fluorescent signal.  

 Using primary antibodies (against different proteins) raised in different species and 

secondary antibodies labeled with fluorescent markers of different emission spectra it is 

possible to perform multiplex immunostainings. 

 Finally, immunogold labeling works upon the same principle as in 

immunofluorescence with the difference of electron dense colloidal gold particles 

conjugated to secondary antibodies rather than fluorescent materials (quantum dots can be 

used both in both immunofluorescence a well as in immuno-electron microscopy). 
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Depending on the size of the gold particles they can either by visualized directly or be 

enhanced using silver or gold ions which are reduced to metallic silver/gold in a reaction 

catalyzed by the colloidal gold particles. This leads to an increase in size of the colloidal gold 

particles (q.v. Fig. A.2_2).  

 

 

Fig. A.2_3: Principle of gold enhancement. Using nanogold particles of different initial size allows for multiplex 

IGL-stainings (modified from nanoprobes.com) 

 

This technique is used in cases where larger colloidal gold particles infringe upon the 

ability of the labeled antibody to penetrate into the ultracut section (see Fig. A.2_4). Using 

smaller particles (nanogold), which can then be enlarged during gold/silver enhancement 

solves this problem. During examination under the electron microscope electron dense 

materials like gold, silver or heavy metals (osmium, uranium or lead) deflect the electron 

beam leading to lack of excitation of these areas of the electron-detecting membrane, which 

shows as black signals. 
 

 

Fig. A.2_4: Size comparison between conventional IgG-coupled colloidal gold particle (left) and a nanogold-

Fab’-probe (right) (modified from nanoprobes.com) 
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A.2.2.2 IHC on paraffin-embedded tissue sections: Paraffin was removed from the tissue by 

over-night incubation at 60°C followed by xylene (3x5’), after which the sections were 

rehydrated through a descending graded ethanol series (2x99%, 1x96%, 90%, 80%, 70%, 50% 

and ultrapure water for 5’ each). Stainings for Pex14p, catalase, ABCD3 as well as 

mitochondrial Mn-superoxide dismutase (SOD2) were carried out according to a 

standardized protocol for indirect immunofluorescence on formalin-fixed paraffin-

embedded (FFPE) tissues (based on Grabenbauer et al., 2001 and Baumgart et al., 2003). 

Antigen retrieval was carried out through digestion with freshly prepared 0.01% trypsin 

solution (10’ at 37°C) followed by microwave irradiation (3x5’) at 800W in 10mM citrate 

buffer (pH 6.0) and subsequent cooling back to room temperature (30’-40’). Hereafter the 

sections were incubated with freshly prepared 3% H2O2 (in ultrapure water; for quenching of 

endogenous peroxidases). Washing buffer was 1xPBS (pH 7.4). Non-specific binding sites 

were blocked with 4% bovine serum albumin in PBS (PBSA, pH7.4) with 0.05% Tween 20 

(Sigma) and additional avidin. Primary antibodies were all raised in rabbit and diluted 1:1000 

in 1% PBSA with 0.05% Tween 20 and additional biotin. Antibodies against catalase and 

Pex14p were self-created by Denis Crane (SBPS, Griffith University Brisbane, Australia). The 

antibody against ABCD3 was a kind gift from Alfred Völkl (Dept. of Anatomy and Cell Biology 

II, Ruprecht-Karls-University, Heidelberg). The SOD2- antibody was acquired from Biozol 

Diagnostica GmbH, Germany. 

The secondary antibody against rabbit was biotinylated and visualized through an 

ABC (avidin-biotin-complex)-protocol with the substrates being either Vector®NovaRED™ or 

DAB with nickel enhancement. Nuclei were counterstained with hematoxylin, after which 

slides were dehydrated through a graded series of ascending ethanols and mounted in 

DePeX. 

 

A.2.2.3 Multiplex IF on human and murine brain tissue sections: Main steps were the same 

as described above. During primary antibody incubation three antibodies were used, 

whereof one was raised in rabbit against either Pex14p, catalase or SOD2 (see above). The 

other were an antibody against microtubule associated protein 2 (MAP2, raised in chicken, 

Novus Biologials) and an antibody against glial fibrillary acidic protein (GFAP, raised in 

mouse, Chemicon). MAP2 is expressed in the perikarya and dendrites of most neurons, 

whereas GFAP is expressed exclusively in astrocytes. These antibodies therefore served as 



Appendix A - Materials and methods: Detailed descriptions VIII 
 

 

cell markers. Secondary antibodies were donkey anti-rabbit AlexaFlour 488 (green emission, 

Molecular Probes), horse anti-mouse Texas Red (orange-red emission, Vector) and anti-

chicken AlexaFlour 633 (deep red emission, Molecular Probes). Cells were only 

counterstained with Hoechst 33258/33342 solution, since TOTO-3 iodide has a similar 

emission wavelength to AlexaFlour 633. Antibodies against Pex14p and catalase were diluted 

1:2000, the antibody against SOD2 was diluted 1:1000. Secondary antibodies were all diluted 

1:300. 

 

A.2.2.4 Multiplex IF on murine primary neuronal and astrocyte cultures: Medium was 

removed from the Petri dishes by pipetting, whereupon cells were washed briefly with three 

changes of warm (37°C) PBS prior to fixing in 4% PFA in PBS for 20’. The fixing solution was 

then removed and cells were washed 3x5’ with PBS. After this cells were incubated for 10’ 

with 1% glycin (Roth) in PBS to assure quenching of unsaturated aldehydes through possibly 

repolymerized PFA. Cells were then permeabilized for 10’ with 0.3% Triton X-100 (Sigma) in 

PBS with 1% glycin, followed by washing 3x5’ in PBS. After removal of PBS the cover slips in 

the Petri dishes were encircled with a PAP-pen (Super PAP Pen IM 35800, Beckman-Coulter) 

to assure that following incubation solutions remain in place over the cells. Blocking solution 

(1% PBSA with 0.05% Tween 20) was added and Petri dishes were incubated at room 

temperature in a humind chamber for 30’, where after blocking solution was removed by 

pipetting and substituted with primary antibody incubation solution. Primary antibodies 

were against Pex14p or catalase, MAP2 and GFAP (see above) and incubated in a humid 

chamber at room temperature for 1h, followed by 3x5’ washing in PBS and subsequent 

incubation with secondary antibodies (see above) for 30’. Hereafter cells were washed again 

3x5’ prior to counterstaining of nuclei with Hoechst 33258/33342 solution (1:750 in PBS). 

After a final 3x5’ washing in PBS cover slips were removed from the Petri dishes with a 

tweezer and mounted onto SuperFrost Plus microscope slides using two parts Mowiol 4-88 

and one part n-propyl gallate.   

 

A.2.2.5 IF using QuantumDots® on mouse and human hepatoma cells: The steps up to and 

including the incubation with the primary antibody against Pex14p are identical to those 

described above in the IF protocol for cell cultures. QuantumDots (QDots, Invitrogen) 

fluorescence was, however, found to be highly dependent on pH of washing buffers and 
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mounting media. Therefore several different modifications of the IF protocol for cell cultures 

were performed and subsequently changed stepwise in order to achieve the final optimal 

protocol for IF using QDots (data not shown here). Since QDot fluorescence was strongest in 

a hydrophobic medium (DePeX) and relatively poor in most aqueous media (including 

Mowiol 4-88 and various buffered glycerol solutions of different pH, with the exception of 

carbonate buffered glycerol, pH > 10) these modifications included the addition of several  

dehydration steps in order to allow for mounting in a hydrophobic medium. The incubation 

with the primary antibody was therefore followed only by a single washing step with PBS, 

where after the pH had to be adjusted to that of the optimal QDot incubation buffer (see 

below). The cells were therefore washed twice in 50mM borate buffer (pH 8.3). QDots were 

diluted 1:500 in 1% bovine serum albumin in 50mM borate buffer with 0.05% Tween 20 

(final optimal QDot incubation buffer). After 30’ of incubation with QDots cells were washed 

several times in borate buffer and then dehydrated and washed (simple dehydration proved 

insufficient for removing unbound QDots) further in a graded ascending ethanol series and 

finally cleared in three changes of xylene prior to mounting onto object slides using DePeX 

mounting medium. QDots are optimally excited by UV-light, wherefore no nuclear 

counterstaining was performed, so as not to outshine the QDots’ signals. 

 

 

Fig. A.2_5: Size comparison between organic fluorophore (left) and Qdot ® (right) antibody conjugates (adapted 

from invitrogen.com)  

 

A.2.2.6 IGL for electron microscopy:  All washing and incubation steps were performed on 

drops pipetted onto a specially cast rubber panel. Grids with cryo-ultrathin section were 

washed 3 times in 1xPBS to remove the pick-up solution (2.3M sucrose and 2% methyl 

cellulose). After this all grids were washed in 1xPBS with 0.1% glycin to quench the 

aldehydes from the fixation. Blocking of non-specific binding sites as well as dilution of both 
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primary and secondary antibodies was achieved with 1% BSA-c (Aurion) in normal donkey 

serum without the addition of any detergents. Primary antibodies against Pex14p and 

catalase were diluted 1:2000 (twice as strongly as for light microscopy to reduce unspecific 

background). The secondary antibody against rabbit was coupled with AlexaFour 488 

fluorogold and diluted 1:200. The reaction was fixed after incubation with 1% 

glutardialdehyde (GDA) in PBS for 10mins and the aldehydes were again quenched with 

washes in PBS with 1% glycine. Fluorogold particles were intensified with a silver 

enhancement kits (Nanoprobes, NY, USA; Aurion, Netherlands) and grids were then washed 

thoroughly with deionized water. Resin grids were then contrasted with a saturated aqueous 

solution of uranyl acetate, washed in water and left to dry, whereas cryo-grids were 

conveyed onto two successive drops of nine parts 2% methyl cellulose and one part 

saturated aqueous uranyl acetate. On the second drop the grids were contrasted for 5’ and 

then looped out on a sheet of filter paper and left to dry. 

 

A.3 Reverse transcription polymerase chain reaction (RT-PCR) 

 

A.3.1 Pinciple of RT-PCR 

The basic principle of Polymerase Chain Reaction (PCR) is taken from in vivo DNA 

(deoxyribonucleic acid) duplication during mitotic division of a parent cell into two daughter 

cells. This process, however, depends not only on the activity of DNA-dependent 

polymerases, but also requires the involvement of primarily three other enzymes, namely 

helicase, primase and topoisomerase. Helicase is important for the unwinding of the DNA 

double helix, thereby leading to the formation of the replication fork. Primase is an RNA 

(ribonucleic acid) polymerase which builds short strands of RNA complementary to the origin 

sites of replication. In this context a fourth enzyme, DNA ligase, becomes important, since 

DNA replication, which always goes from 3’ to 5’, on the lagging strand leads to the 

formation of short amplicons (Okazaki fragments) which need to be spliced together to form 

a complete strand of daughter DNA. After replication topoisomerase cuts the parent DNA 

strand and “unwinds” physical stresses which evolve during denaturation of the parent DNA 

by helicase, so that both strands may reanneal to each other without breaking. 

In vitro two of these enzymes (primase and topoisomerase) are not necessary, since 

primers are designed specifically not to bind to origins, but rather to encompass a sequence 
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of the DNA of interest, which is to be amplified. These primers are therefore not synthesized 

during the amplification reaction, but in separate reactions (usually performed by service 

providers). Topoisomerase is also not necessary, since DNA breakage due to physical stress 

may still occur, but unlike in vivo does not pose any further risk to the host. The simplest in 

vitro method of DNA amplification is therefore called helicase dependent amplification 

(HDA), a process involving only parent DNA, site-specific primers and the two enzymes DNA-

polymerase and helicase. HDA is therefore, unlike PCR, an isothermal reaction. 

An alternative to enzyme-dependent separation of DNA strands was found in physical 

denaturation through elevation of the temperature to >90°C. This method was described in 

theory without any evidence of practical application by Kjell Kleppe in 1971, but the 

invention of the actual PCR-method is generally accredited to Kary Mullis in 1983 (described 

in Mullis, Ferré & Gibbs, 1994). First experiments did not, however, involve thermostable 

DNA polymerase, but the Klenow fragment of DNA polymerase I from Escherichia coli 

(lacking nuclease activity compared to the entire enzyme) (Klenow & Henningsen, 1970; 

Klenow & Overgaard-Hansen, 1970). Since the Klenow fragment is also inactivated through 

the temperature elevation necessary for denaturation of DNA, this method involved adding 

new polymerase in each cycle in order to achieve exponential amplification. This problem 

was also solved (and a patent was filed by Mullis and coworkers in 1987) by using a 

thermostable DNA polymerase which had been isolated just over a decade ago (Chien, Edgar 

& Trela, 1976) from the thermophile Thermus aquaticus (Brock & Freeze, 1969). The enzyme 

is therefore commonly known as Thermus aquaticus polymerase (Taq). 

PCR using Taq consists of repetitive cycling between three steps which occur at 

different temperatures. The first steps is the denaturing of the parental DNA strands and 

occurs at >90°C. In many PCR-designs (like in this thesis) an additional single denaturation 

step is included before the first cycle. Within the cycles, denaturation is followed by cooling 

of the reaction mix to optimal primer annealing temperature (depending on primer-melting 

temperature as a function of C/G vs. A/T content of the primer). The final step is the actual 

elongation and thereby duplication of the amplicon at optimal activity temperature of the 

Taq used. These cycles are repeated (usually between 30 and 45 times) and followed by a 

single final elongation step, after which the reaction is terminated by cooling the reaction 

mix to 4°C. 
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In each cycle the amount of amplicons is doubled, leading to fast exponential 

growths of the number of template copied. Due to this, the name polymerase chain reaction 

was chosen. Albeit that chain reaction normally involve the generation of reaction products 

which in turn lead to further reactions of themselves, as is not the case in PCR, each reaction 

product becomes an integral part of the next reaction cycle, wherefore the term chain 

reaction is applicable. Furthermore, due to the fact that amplicons of parental DNA lack 

sequences outside of the primer range (apart from the first amplicons, which are elongated 

beyond the 5’-end of the sequence complementary to the second primer binding region), 

the majority of PCR products have identical number of base pairs (bps) and can therefore be 

analyzed and compared to amplicons of different sizes by means of gel electrophoresis. 

Reverse transcription polymerase chain reaction (RT-PCR; not to be mistaken for Real 

Time PCR) is also taken from in vitro metabolic processes. Normal transcription involves the 

generation of a complementary strand of ribonucleic acid (in most cases messenger RNA, 

mRNA) by RNA polymerase. During this process the aforementioned enzyme binds to 

specific response elements (or promoters) of genomic DNA and transcribes it, this being the 

first (and in cases of non-coding RNAs also the last) step of gene expression. In retroviridae, 

however, this process also works in reverse, whereby the RNA-containing virus uses an RNA-

dependent polymerase (so-called reverse transcriptase) to synthesize a complementary 

single stranded DNA (cDNA) out of an RNA template. The most commonly known 

retroviridae are the human immunodeficiency virus (HIV), the hepatitis B virus (HBV) and 

several strands of leukaemia viridae or other oncoviridae.  

RT-PCR uses these enzymes (mostly mutations of reverse transcriptases isolated from 

Moloney murine leukaemia virus [MMLV] or avian myeloblastosis virus [AMV]) to analyze 

the number of mRNA copies of specific gene, thereby giving an indication of the amount of 

expression of the gene(s) in question. After extraction of RNA, the first step of RT-PCR is the 

incubation with reverse transcriptase to form complementary strands of cDNA (first strand 

synthesis, FSS), which can then be introduced into and amplified in standard PCR reactions. 

Many forms of reverse transcriptase have an additional RNase H-activity, which selectively 

degrades RNAs only in RNA/DNA-hybrids, thereby increasing the purity of the cDNA. 



Appendix A - Materials and methods: Detailed descriptions XIII 
 

 

 

Fig. A.3_1: Principle of RT-PCR (modified from Kendall & Riley; 2000)  

 

Apart from this, reverse transcriptases also differ regarding their optimal activity 

temperature. Generally, enzymes with a higher temperature optimum perform better during 

FSS, since RNAs (unlike DNA) possess complex secondary and tertiary structures, which may 

not be fully denatured at lower temperatures. A final point of differentiation between FSS-

reactions depends on the choice of priming. As in DNA polymerases, reverse transcriptase 

also requires a short nucleotide sequence complementary to the origins (primer). Commonly 

two varieties of primers are used during FSS: Olido(dT)-primers, which anneal selectively to 

poly(A)-tails of mRNAs, and random polymer (often hexa-, octa- or nonamers) primers, 

which bind to any complementary sequence of the RNA, thereby not only being limited to 

mRNAs. The enzyme used in this thesis, SuperScript® II Reverse Transcriptase (Invitrogen), is 

an in vitro mutation of MMLV and possesses reduced RNase H-activity, a temperature 

optimum of 42°C and was primed using oligo(dT)-primers. 

General remarks: Prior to RNA extraction all surfaces and gloves were treated with 

chaotropic agents (RNaseZap, Sigma) to avoid RNase contamination. Metal tools (scissors, 

tweezers and scalpels) were incubated for 60’ in 70% ethanol. RNA extraction were 

performed using appropriate kits from Qiagen (RNeasy Mini Kit for cells and tissues; RNeasy 
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Protect Animal Blood Kit for blood samples), wherefore buffer compositions cannot be 

described. Buffer names are those given by Qiagen. 

A.3.2 RNA extraction protocols 

A.3.2.1 RNA extraction from animal tissues: After animals were sacrificed through cervical 

dislocation livers and brains were excised. Brains were cut between mesencephalon and 

diencephalon resulting in two samples: Brain stem and forebrain. Samples were rapidly 

placed into a stabilizing agent (RNA later, Qiagen), quick frozen in liquid nitrogen and stored 

at -80°C. On the day of extraction tissues were thawed and the RNA later was removed by 

pipetting, where after tissues were incubated for 30’ at room temperature with 600 l 

buffer RLT + 6 l -mercaptoethanol ( -ME) in order to lyse the tissue and reduce protein 

disulfide bonds. The tissue was homogenizes in a two-step process. The first step was 

manual homogenization through a needle and syringe method, using 19 G needles for the 

livers and 21 G needles for the brain samples. For the second step 300 l of the pre-

homogenate were respectively mixed with 600 l buffer RLT + 6 l -ME and centrifuged in a 

QIAshredder homogenization column at max. speed for 2’. The lysate was centrifuged for 3’ 

at max. speed, where after the supernatant was removed carefully through pipetting and 

600 l ethanol (in RNase-free water) were added and mixed. 700 l of the sample were 

pipetted onto an RNeasy spin column and centrifuged for 15’’ at >8000 g. The flow-through 

was discarded and the remainder of the sample was pipetted onto the column and 

centrifuged for 15’’ at >8000 g. 700 l buffer RW 1 were added to wash the column and 

centrifuged for 15’’ at >8000 g. The flow-through and collection tube were discarded and the 

column was transferred into a new collection tube. 500 l buffer RPE were pipetted onto the 

column to wash it, followed by 15’’ centrifugation at >8000 g. The flow through was 

discarded and another 500 l of buffer RPE were added, where after the column was 

centrifuged for 2’ at >8000 g with open lid to dry the silica membrane. The RNA was eluted 

using 50 ml RNase-free water in the first and 30 ml RNase-free water in the second 

centrifugation step (each 1’ at >8000 G). RNA was stored at -80°C. 

 

A.3.2.2 RNA extraction from animal whole blood: Blood was collected from the animals 

after cervical dislocation by introducing a syringe into the aorta. 100 l of blood were 

pipetted into 300 l RNA Protect Animal Blood Reagent (Qiagen), inverted 10 times and 

incubated for 2 hrs at room temperature prior to quick freezing in liquid nitrogen. On the 
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day of the extraction samples were thawed and samples from the same animal were pooled 

into 1.5 ml RNase-free reaction tubes. Tubes were centrifuged at 5000 g for 3’, the 

supernatant was decanted and 1 ml RNase-free water was added. The tubes were vortexed 

until the pellet was clearly dissolved and centrifuged at 5000 g for another 3’. The 

supernatant was removed by decanting and 240 l buffer RSB were added and the tube was 

again vortexed until the pellet had dissolved. The sample was pipetted into a new tube along 

with 200 l buffer RBT and 20 l proteinase K, vortexed shortly and incubated on a thermo-

shaker (set at 600 rpm) at 55°C for 10’ to allow for proteinase digestion. The sample was 

then pipetted onto a QIAshredder spin column and centrifuged for 3’ at 19.999 g. The 

supernatant of the flow-through was mixed with 240 l ethanol (absolute) in a new tube, 

mixed by vortexing and then pipetted onto an RNeasy MinElute spin column and centrifuged 

for 1’ at >8000g. The flow-through was discarded and the column was washed with 350 l 

buffer RW1 by centrifugation at >8000 g for 15’’. For on column DNase digestion 80 l of 

DNase I incubation mix (prepared freshly from 10 l DNase I stock solution and 70 l buffer 

RDD) was pipetted onto the silica membrane and incubated at room temperature for 15’. 

Hereafter the column was washed again with 350 l buffer RW1 by centrifugation for 15’’ at 

> 8000 g. Membrane bound RNA was washed from residual guanidinium-isothiocyanate salts 

using 500 l buffer RPE (which had previously been diluted in ethanol as described by the 

provider) by centrifugation for 15’’ at > 8000 g, followed by adding 500 l ethanol (80% in 

RNase-free water) onto the membrane and centrifugation for 2’ at >8000 g. The silica 

membrane was dried by placing the column into a new collection tube and centrifugation for 

2’ at 19.900g with open lids. RNA was eluted with 30 l of elution buffer REB for 1’ at >8000 

g.   

 

A.3.3 RNA denaturation, quantification and quality control 

 All RNA eluates were denatured through incubation for 5’ at 65°C. RNA was 

quantified using a spectrophotometer (BioRad Smart SpecTM 3000). RNA was diluted in 

RNase-free water (1:50 for tissue RNA; 1:25 for whole blood RNA), which was also used for 

blanking the spectrophotometer. An appropriate volume of the RNA eluate (containing 1 mg 

of RNA) was mixed with 0.5 l RNA loading dye (see appendix B) and run through a 

denaturing agarose-MOPS/FA-gel electrophoresis. Here for 1 g agarose was dissolved in 100 

ml RNase-free MOPS-buffer (20 mM 3-(N-morpholino)propanesulfonic acid (MOPS), 5 mM 
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sodium acetate, 1 mM ethylenediaminetetraacetic acid (EDTA), pH 7.0) and boiled briefly 

twice in a microwave at max. power. 1 l ethidium bromide (EtBr) was added and the gel 

was allowed to polymerize in an RNase-free tray with an RNase-free 15-well spacer. The gel 

was run for 30-45’ at 80 V in an RNase-free electrophoresis chamber containing 1x RNase-

free FA/MOPS gel running buffer (2.5 M formaldehyde (FA), 20mM MOPS, 5 mM sodium 

acetate, 1 mM EDTA, pH 7.0). Gels were analyzed in a BioRad Gel Doc 2000 using the 

QuantityOne® (Version 4.3.0, BioRad) software. RNA-integrity was considered sufficient if 

both the 18S and 28S rRNA bands were clearly visible, the 28S rRNA band was roughly twice 

as strong as the 18S rRNA band and there was little smearing between the bands from other 

RNAs. 

 

A.3.3.1 DNase digestion: Since the RNeasy Protect Animal Blood System includes on column 

DNase digestion, post hoc DNase digestion was only carried out for RNA extracted from cells 

and tissue samples. 

 3 g RNA were mixed by pipetting in an RNase-free reaction tube with 3 l DNase I 

(Amp Grade, 1 U/ l, Qiagen), 3 l 10x DNase incubation buffer (Qiagen) and an appropriate 

volume of RNase-free water to reach a reaction volume of 30 l. The mixture was incubated 

at room temperature for 15’ and the reaction was terminated by adding of 3 l EDTA (25 

mM) and heating to 65°C for 10’.  

 

A.3.4 First Strand Synthesis (FSS) with SuperScriptTM II reverse transcriptase 

 30 ml of the DNase digested sample were mixed by pipetting in an RNase-free 

reaction tube with 3 l oligo(dT)12-18-primers (oligo thymidine, 500 g/ml; bind to poly(A) 

tails of mRNA) and 3 l dNTPs (deoxyribonucleotide triphosphates, 10 mM of each) and 

incubated for 5’ at 65°C. The reaction tubes were then chilled on crushed ice and 12 l 5x 

first strand buffer, 6 l DTT (dithiothreitol, Cleland’s reagent, 01 M) and 3 l RNaseOUTTM 

RNase-inhibitor (40 U/ l) were added and the reaction mix was incubated for 2’ at 42°C. 

Subsequently 3 l of the SuperScriptTM II reaction mix (Invitrogen) were added and the first 

strand synthesis was run for 50’ at 42°C. The reaction was terminated through heat 

inactivation of the enzyme at 70°C for 15’. The resulting single stranded cDNA was stored at -

80°C. 
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A.3.5 Polymerase Chain Reaction (PCR) 

 PCRs were pipetted and run in DNase-free PCR-softstrips (0.2 ml, Biozym). Pipetting 

steps were all carried out either on crushed ice or PCR cool blocks. PCRs were run in an 

iCycler thermal cycler (BioRad). 

 PCR single reaction volume was 25 l, consisting of 5.2 l master mix, 1 g (0.5 g for 

samples taken from whole blood) cDNA (X l) and an appropriate volume of AAI (19.8-X l). 

For each primer pair a control samples was run containing just 5.2 l master mix and 19.8 l 

of AAI with the omission of cDNA. 

 The reaction master mix consisted (per sample) of 2.5 l 10x PCR buffer (Taq Buffer 

advanced with Mg2+, 5-Prime), 0.5 l dNTPs (10 mM each, 5-Prime), 1 l forward and reverse 

primers respectively (see above) and 0.2 l Taq DNA-polymerase (5 U/ml, 5-Prime). 

 The PCR protocol began with a single denaturing step at 94°C for 1’ 30’’. Repetitive 

PCR cycles consisted of denaturing at 94°C for 30’’, annealing at optimal temperature (see 

appendix B) for 30’’ and elongation at 72°C for 2’. The protocol ended with a single extension 

step at 72°C for 7’. PCRs were run with optimal number of cycles regarding template and 

primer pair (see appendix B). 

 

A.3.5.1 Agarose-Gel Electrophoresis: PCR amplification products were mixed with 2ml DNA 

loading dye (Blue/Orange 6x loading dye, Promega) and analyzed through agarose-gel 

electrophoresis. 1 g of agarose (2 g for cell culture experiments) was dissolved in 100 ml 1x 

TAE (tris acetate EDTA) buffer and boiled twice briefly in a microwave at maximum power, 

where after 1ml EtBr was added and the gel was allowed to polymerize in a gel tray with an 

appropriate spacer. The gel was run for 30-60’ at 120 V in 1x TAE buffer. Each gel contained 

at least one lane filled with a 1kb DNA ladder (Promega).  
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Appendix B - Recipes and Primers 

 

B.1 Recipes 

 

Borate buffer, 50 mM 

 19.07 g sodium tetraborate (borax) 

 3,09 g boric acid 

 fill to 1 l with ultrapure water 

 adjust to pH 8.3 with boric acid 

 

Citrate buffer 

 stock solution A (1mM citric acid monohydrate; 2.1010 g/100 ml ultrapure water) 

 stock solution B (50mM trisodium citrate dehydrate; 14.705 g/500 ml ultrapure water)  

 15 ml stock solution A 

 85 ml stock solution B 

 fill to 1l with ultrapure water 

 adjust pH to 6.0 and store at 4°C 

 

Cresyl violet solution (0.1%) 

 dissolve 0.5 g cresyl violet in 500 ml acetic acid (1%) 

 

DAB stock solution 

 dissolve 1 g DAB (Sigma, D5637) in 44.4 ml PB (0.1M, pH 7.4) 

 filter and store in aliquots (1 ml, 22.5 ml DAB) in the dark at -20°C 

 

DNA ladder mix 

 40 l DNA ladder (1kb DNA Ladder, Invitrogen) 

 20 l Blue/Orange 6x Loading Dye (Invitrogen) 

 40 l aqua ad iniectabilia (Braun) 

 store in 10 l aliquots at -20°C 
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Formvar solution (for coating of grids) 

 rinse an Erlenmeyer flask with chloroform and add 1.2 g Formvar (Sigma F-6146) 

 slowly add 80 ml chloroform while stirring until Formvar is dissolved completely 

 fill to 100 ml with chloroform, seal and store in the dark 

 

Glycine solution (1%) 

 dissolve 0.5 g glycine (!) in 50 ml 1x PBS (pH 7.4) 

 prepare freshly 

 

Hematoxylin nuclear counterstaining solution 

 dissolve 1 g Mayer’s hemalaun in 1l ultrapure water 

 0.2 g sodium iodate 

 50 g potassium alum 

 50 g chloral hydrate 

 1 g citric acid 

 solution is ready to use 

 

Hoechst 33258/33342 (Sigma) nuclear counterstaining stock solution 

 dissolve 50 mg bis-benzimide (Hoechst 33258 or 33342) in 100 ml ultrapure water 

 store at -20°C 

 

Luxol fast blue solution (0.1%) 

 dissolve 1 g Luxol fast blue, MBS, in 1 l ethanol (96%) 

 add 5 ml acetic acid (10%)  

 

Methyl cellulose solution (for ultracryo microtomy) 

 heat 196 ml ultrapure water to 90°C 

 add 4 g methyl cellulose and stir 

chill on ice to 10°C 

seal container and stir over night at 4°C 

mature solution (without stirring) for 3 days at 4°C 

centrifuge at 100 000 x g for 95’ 
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Methyl cellulose/uranyl acetate solution (for ultracryo microtomy) 

 mix saturated, freshly filtered uranyl acetate solution with the methyl cellulose 

 solution (ratio 1:10)  

 always prepare uranyl acetate and final solution freshly 

 

10x MOPS (3-(N-morpholino)propanesulfonic acid) gel buffer 

 200mM MOPS (41.9 g/l) 

 50mM sodium acetate (6.8 g/l) 

 10mM EDTA (20 ml 0.5M EDTA/l, pH 8.0) 

 fill to 1 l with RNase-free H2O 

 pH titrated to 7.0 with NaOH (aq) 

 

1x MOPS gel buffer 

 100 ml 10x MOPS gel buffer 

 900 ml RNase-free H2O 

 

1x MOPS/FA running buffer 

 100 ml 10x MOPS gel buffer 

 20 ml formaldehyde (37%) 

 880 ml RNase-free H2O 

 

Mowiol 4-88 mounting medium 

 add 20 g Mowiol 4-88 (Polysciences) to 80 ml 1x PBS, pH 7.4 

 stir over night 

 add 40 ml glycerol and stir over night 

 centrifuge at 15 000 x g for 1 hour 

 withdraw supernatant and store at 4°C or -20°C 

 

NaOH solution (0.1%) for modified Kluver-Barrera differentiation  

 0.5 ml NaOH (50%) 

 fill to 250 ml with ultrapure water 

 always prepare freshly 
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Nickel/DAB solution 

 45 ml PB (0.1M, pH 7.4) 

 100 l freshly prepared ammonium chloride solution (18 mg/100 l PB) 

 900 l 0.05M nickel sulphate solution 

 900 l glucose solution (10%) 

 1 ml DAB stock solution 

 stir and filter 

 before use add 150 l freshly prepared glucose oxidase solution (0.18 mg/150 l PB) 

 

n-propyl gallate solution (anti-fading agent) 

 add 2.5 g n-propyl gallate (Sigma) to 50 ml PBS, pH 7.4 

 stir for 1 hour 

 add 50 ml glycerol and stir over night 

 store at 4°C  

 

1x PB (phosphate buffer), 0.2M 

 stock solution A (sodium dihydrogen phosphate, 27.6 g/l) 

 stock solution B (disodium hydrogen phosphate, 35.7 g/l) 

 mix 19.0 ml of solution A and 81.0 ml of solution B 

 store at 4°C 

 

10x PBS (phosphate buffered saline) 

 87.6 g sodium chloride 

 22.8 g dipotassium hydrogen phosphate 

 6.8 g potassium dihydrogen phosphate 

 fill to 1 l with ultrapure water 

 

1x PBS 

 dilute 10x PBS in ultrapure water, adjust pH to 7.4 with NaOH(aq)/NaCl(aq) and store at 4°C 

 

1% PBSA (for ICH/IF) 

 2 g (BSA) 

 100 l Tween 20  

 fill to 200 ml with 1x PBS (pH 7.4) 

 store at -20°C 
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1% PBSA (for IGL) 

 1 g BSA 

 fill to 100 ml with 1x PBS (pH 7.4) 

 store at -20°C 

 

4% PFA (paraformaldehyde) in PBS 

 dissolve 12 g PFA in 100 ml ultrapure water (ca. 60°C) and clear with NaOH(aq) 

 add 6 g sucrose and 30 ml 10x PBS 

 fill to 250 ml with ultrapure water and adjust pH to 7.4 with NaOH(aq)/NaCl(aq) 

 fill to 300 ml with ultrapure water 

store at -20°C 

 

QDot incubation buffer 

 1 g bovine serum albumin (BSA) 

 50 l Tween 20 

 fill to 100 ml with 50mM borate buffer (pH 8.3) 

store at -20°C 

 

RNA loading dye 

 16 l saturated aqueous bromophenol blue  

 80 l 0.5M EDTA, pH 8.0 

 720 l formaldehyde (37%) 

 3084 l 10x MOPS gel buffer 

 2 ml glycerol (100%) 

 fill to 10 ml with RNase-free H2O 

 

Rüdeberg staining for semithin sections 

 0.1 g methylene blue 

 0.1 g thionine (!) 

 1.78 g disodium hydrogen phosphate 

 fill to 70 ml ultrapure water and add 30 ml glycerol 

 pipette onto semithin section and stain on heating plate (70°C) for 1-10’ 
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Sucrose solution, 2.3M (infiltration solution for ultracryo microtomy) 

 80 g sucrose 

 fill to 100 ml with 0.1M PB 

 stir over night until all sucrose is dissolved 

 

Sudan Black B (0.1%) 

 1 g Sudan black B 

 add 100 ml ethanol (70%) and boil to dissolve Sudan black B 

 cool and filter 

 

50x TAE (Tris-acetate-EDTA) buffer 

 242 g tris(hydroxymethyl)aminomethane (Tris, Merck) 

 57.1 ml glacial acetic acid 

100 ml ethylenediaminetetraacetate (EDTA; 0.5M, pH 8.0; Fluka) 

fill to 1l with ultrapure water and adjust pH to 8.0 

 

1x TAE buffer 

 dilute stock solution 50:1 with ultrapure water 

 final concentrations: 40mM Tris, 20mM acetic acid, 1mM EDTA 

 store at 4°C 

 

Trypsin solution (0.01%) 

 add 0.01 g trypsin to 100 ml 1x PBS (pH 7.4) 

 prepare freshly before use 

 

Uranyl acetate solution (saturated, aqueous) 

 dissolve 4% uranyl acetate in ultrapure water 

 filter before use 

 always prepare freshly 

  

  



 

 

B.2 Primers 

Table B_1: Final selection of primer pairs and respective PCR conditions. Primers were chosen from a number of primers designed for each template and analysed regarding 

optimal temperature and number of cycles (q.v. section 2.5.4).  

Template Forward primer Reverse primer 
Annealing 

temperature 
Number of 

cycles 

28S (tissue samples) CGAAATGCAAGCACGGAGAGT CTGGGTCAGTGGAGAGTGTCTCA 61°C 35 

28S (astrocytes) AAAGCGGGTGGTAAACTCCA   GGTTTCACGCCCTCTTGAAC 62°C 43 

CAT ATGGTCTGGGACTTCTGGAGTCTTC GTTTCCTCTCCTCCTCGTTCAACAC 65°C 35 

COMT1t1 CATTCTGGCCCATAAATGCT GGGGGTCAGAGTGAGTGTGT 62°C 35 

COMT1t3 TTGGACCTGCCTCCTCTAAA CTCATCAGGCTGAGTGGTCA 52°C 35 

D-AspOx CGTTGGAGCTGGCGTGATAGG TCCAGCCACGGGAGGTAGGC 66°C 35 

DAT CATGCTGCTCACTCTGGGTA GACAGAGGCTTCTTTGTGGC 62°C 35 

DDC ATCATGGAAAAGCTGGTTGC TGTGCAAATTTCAAAGCGAG 54°C 43 

DRD1 AGAGGGACTTCTCCTTTCGC AATAATGGGGTTCAGGGAGG 62°C 35 

DRD1 nested AGAGGGACTTCTCCTTTCGCATCCT AGGGAGGAATTCGCCCAGCCA 68°C 30 

DRD2 GATGTGCACAGCAAGCATCT ACACACCAAGAACAATGGCA 62°C 35 

DRD2 nested TGCACAGCAAGCATCTTGAACCTGT ACACACCAAGAACAATGGCAAGCA 66°C 30 

DRD3 TCCCTCAGCAGTCTTCCTGT CGTGAGTCAAGAAGAAGGGC 52°C 35 

DRD3 nested CCCTCAGCAGTCTTCCTGTCTGC GTCAAGAAGAAGGGCAGCCAAC 66°C 30 

DRD4 TGTCGGACCCTACTCAGGGT AACTACCACCGGCAGGACTC 68°C 30 

DRD4 nested CCCTACTCAGGGTCCCTTCTTCCC ACCGGCAGGACTCTCATTGCCT 68°C 30 

DRD5 ACCAAGACACGGTCTTCCAC ATTTCCTCAAGGCCCTTTGT 52°C 35 

DRD5 nested CCAAGACACGGTCTTCCACAGGG GGCCCTTTGTTCTGCGAGTTCCC 66°C 30 

GFAP GAGGAGTGGTATCGGTCTAAGTTTG GCCGCTCTAGGGACTCGTT 61°C 35 

MAOA ACCAGAGCTTCCACCTGAGA TGAAAACTTCAGGACTGGGG 62°C 35 



 

 

Table B_1 (continued) 

MAOB GAGCAACAAAAGCGATGTGA AACTGAACCCAAAGGCACAC 61°C 35 

Nrf2 CCACTGGTTTAGCCATCTCTCC GTGGACATTAGCCCTTCCAAAC 66°C 35 

PEX14 CACTGGCCTCTGTCCAAGAGCTA CTGACAGGGGAGATGTCACTGCT 56°C 36 

SerRac1 TCAAATAGCAGGGCGCAATCT GGTAAGGAGCTGGCCGTTCA 56°C 35 

SerRac2 CCTGCAGTGATAGCTGGACA AAGCCAATGCTGGATTTGAC 56°C 35 

SOD2 ATGCAGCTGCACCACAGCAA ACTTCAGTGCAGGCTGAAGAG 62°C 35 

TH CCACGGTGTACTGGTTCACT GGCATAGTTCCTGAGCTTGT 62°C 43 
 

  



   
 

 

Ich erkläre: Ich habe die vorgelegte Dissertation selbständig und ohne unerlaubte fremde 

Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe. Alle 

Textstellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen sind, 

und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kenntlich 

gemacht. Bei den von mir durchgeführten und in der Dissertation erwähnten 

Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der 

„Satzung der Justus-Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis“ 

niedergelegt sind, eingehalten. 
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