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Material category of visual objects  
computed from specular image structure

Alexandra C. Schmid    1 , Pascal Barla    2 & Katja Doerschner    1

Recognizing materials and their properties visually is vital for successful 
interactions with our environment, from avoiding slippery floors to 
handling fragile objects. Yet there is no simple mapping of retinal image 
intensities to physical properties. Here, we investigated what image 
information drives material perception by collecting human psychophysical 
judgements about complex glossy objects. Variations in specular image 
structure—produced either by manipulating reflectance properties or 
visual features directly—caused categorical shifts in material appearance, 
suggesting that specular reflections provide diagnostic information about 
a wide range of material classes. Perceived material category appeared 
to mediate cues for surface gloss, providing evidence against a purely 
feedforward view of neural processing. Our results suggest that the image 
structure that triggers our perception of surface gloss plays a direct role 
in visual categorization, and that the perception and neural processing of 
stimulus properties should be studied in the context of recognition, not  
in isolation.

Our visual experience of the world arises from light that has been 
reflected, transmitted or scattered by surfaces. From this light we 
can tell whether a surface is light or dark, shiny or dull, translucent or 
opaque, made from platinum, plastic or pearl (Fig. 1a). The quick and 
accurate recognition of materials and their intrinsic properties is cen-
tral to our daily interactions with objects and surfaces, from inferring 
tactile information (is it smooth, heavy, soft?) to assessing function 
(is it edible, fragile, valuable?). Yet material perception is not trivial 
because the structure, spectral content and amount of light reach-
ing our eyes depend not only on surface reflectance, transmittance 
and scattering properties, but also on complex interactions with the 
three-dimensional (3D) shape, position and orientation of surfaces 
with respect to each other, light sources and the observer. Thus, our 
ability to effortlessly discern a wide variety of materials that each have 
a potentially unlimited optical appearance is remarkable, and serves 
as a compelling example of an important but unresolved challenge 
in visual neuroscience: how does the brain disentangle the conflated 
factors contributing to the retinal image to perceive our visual world?

Although there is a growing body of work investigating the 
visual perception of material properties such as colour, lightness, 
transparency, translucency and gloss1–6, there is comparatively little 

investigating the recognition of different material classes such as 
plastic, pearl, satin, steel and so on7–17. For example, previous research 
has discovered a limited set of image conditions (photogeometric con-
straints) that trigger the perception of a glossy versus a matte surface, 
involving the intensity, shape, position and the orientation of specular 
highlights (bright reflections18–24) and lowlights (dark reflections25) with 
respect to diffuse shading. However, it remains unknown what image 
information triggers our perception of different materials. A possible 
reason for the disparate focus on material properties versus classes is 
that studying properties like colour and gloss seems more tractable 
than discovering the necessary and sufficient conditions for recog-
nizing the many material classes in our environment. The challenge is 
that the perceptual space of materials is unspecified; there are many 
different optical ‘appearances’ that can look like steel (think polished, 
scratched, rusted), or plastic (smooth and glossy or rough and dull).

Furthermore, a traditional feedforward view of neural process-
ing is often assumed in which the recognition of objects and materi-
als proceeds from the processing of low-level sensory information 
(image features) to the estimation of shape and surface properties 
(often referred to as mid-level vision2,3) to the high-level recognition of 
object and material categories26 (feedforward hypothesis; Fig. 1b, top).  
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Fig. 1 | The relationship between reflectance properties, image structure 
and material appearance. a, Most objects that we see every day are made 
from materials whose specular reflectance properties produce a characteristic 
image structure. The appearance of these reflections is determined (and 
constrained) by the way in which these materials scatter light, in addition to 
other generative processes (Fig. 2). b, However, the extent and mechanism 
by which specular structure contributes to categorization remains unknown. 
A feedforward view of neural processing (top) assumes that categories are 
defined by combinations of estimated mid-level properties like gloss, colour 
and apparent shape, which the visual system tries to ‘recover’ from the image67. 
By contrast, the simultaneous hypothesis (bottom) assumes that the visual 
system learns naturally about statistical variations (regularities) in image 
structure, from which the identity or category of a material can be ‘read 
out’ simultaneously with surface qualities like gloss29. c, Some aspects of a 
surface’s appearance (such as perceived gloss) tend to correlate with physical 
properties (such as specular reflectance), all else being equal. Systematically 

manipulating the specular reflectance properties of otherwise identical objects 
causes salient visual differences in the appearance of highlights (Fig. 2), which 
affects perceived gloss in predictable ways. Specifically, increasing specular 
strength (bottom to top) increases the contrast of specular highlights, causing 
the dragon to appear more glossy; increasing specular roughness (from left to 
right) decreases the clarity (or sharpness) of the specular highlights, causing 
the dragon to appear less glossy. These manipulations also affect our qualitative 
(categorical) impressions: the surfaces resemble different materials like 
glazed ceramic, glossy plastic, dull plastic, rubber, polished metal and brushed 
metal. Because shape, surface colour and illumination conditions are held 
constant, all visual differences are caused by variations in specular reflectance 
properties, suggesting that specular structure may directly contain diagnostic 
information about material class, simultaneously with surface gloss (note that 
for some materials like gold, colour information also contributes to perceptual 
classification). d, Reflectance parameters manipulated in the experiments, and 
examples of how this affected the visual appearance of surfaces.
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Within this framework it would make sense to first study how the visual 
system computes mid-level material properties like surface gloss and 
colour from images, because material class is thought to be subse-
quently computed from the high-dimensional feature space defined 
by these component mid-level properties9–12,27,28.

An alternative view suggests that the visual system does not try 
to recover physical surface properties like diffuse reflectance (seen 
as surface colour) and specular reflectance (seen as gloss) per se, 
but rather learns about statistical variations or regularities in image 
structure from which both material properties like gloss and material 
categories like plastic can be ‘read out’ simultaneously5,6,29,30 (simulta-
neous hypothesis; Fig. 1b, bottom). For example, in Fig. 1c, systematic 
differences in the surface reflectance properties of otherwise identical 
objects produce variations in the appearance of specular highlights, 
such as their contrast, sharpness and coverage (Fig. 2). These varia-
tions in highlight appearance affect not only the quantitative level of 
surface gloss perceived (shiny to dull), but also the quality—or mate-
rial category—of the surface altogether (rubber, plastic, ceramic or 
metal), and it is possible that the same visual features, or cues, directly 
underlie both processes. At present, however, the relationship between 
image structure, perceptual properties like surface gloss and material 
recognition is unclear.

Here, we test the precise role of image structure produced by 
specular reflections in material recognition by rendering complex but 
carefully controlled stimuli in natural illumination fields, measuring 
and manipulating aspects of specular image structure, and collect-
ing human psychophysical judgements about surface appearance 
in a series of experiments. Our results show that the visual system is 
highly sensitive to specular structure for material recognition, even 
in the absence of information from other physical sources like surface 
texture, transmittance and subsurface scattering, suggesting that 
specular reflections play a more extensive role in visual recognition 
than previously appreciated. Furthermore, the data reveal that, rather 
than materials being derived via the estimation of material properties 
like gloss (feedforward hypothesis), it is more probable that visual 
cues for gloss perception are constrained by material class, implying 
that the perception and neural processing of gloss and other stimulus 
properties should be studied in the context of recognition rather than 
in isolation. Moreover, our results demonstrate that material category 
is directly computable from measurable visual features of specular 
structure, and that manipulating these features transforms perceived 
category, suggesting that specular structure provides direct diagnostic 
information about an object’s material. We discuss a simultaneous 
account of material perception (simultaneous hypothesis) in which 
stimulus properties like gloss are co-computed with (constrained by) 
our qualitative holistic impressions.

Results
Specular appearance yields a wide range of material classes
If the visual system is sensitive to specular reflections for material 
recognition beyond whether a surface is shiny or matte24, then alter-
ing the appearance of specular reflections should lead to changes in 
perceived material. To test this, we computer-rendered glossy objects 
with different surface reflectance properties under natural illumination  
(Fig. 1d). We parametrically manipulated base colour (lightness and 
saturation of the diffuse component) in addition to five specular reflec-
tion parameters (specular strength, specular tint, specular roughness, 
anisotropy and anisotropic rotation) to control the appearance of  
specular reflections with respect to diffuse shading, resulting in  
270 stimuli (Supplementary Fig. 1). We collected unbiased participant- 
generated category terms for each stimulus using a free-naming task 
(Experiment 1) in which participants (n = 15) judged what material each 
object was made from with no restrictions.

After processing for duplicates and similar terminology  
(Analyses), more than 200 terms were used to describe the materials, 

over half of which were category terms (nouns such as porcelain, gold, 
plastic, stone, ceramic, chocolate, pearl, soap, wax, metal, bronze, rub-
ber, fabric, velvet; Supplementary Figs. 2 and 3). Although the use of 
each term was well distributed among participants (that is, category 
labels did not come from the same few participants), semantic labels are 
only relevant to the extent that they capture qualitative perceptual dif-
ferences in visual material appearance. For example, dark brown stimuli 
with medium-clarity specular reflections might be labelled as ‘melted 
chocolate’ or ‘mud’ but would be qualitatively visually equivalent to one 
another. Such stimuli would have a different visual quality to those with 
low-clarity, dim reflections, which might be labelled as ‘latex’ or ‘rubber’ 
(Fig. 3a). Therefore, we sought to reveal the latent perceptual space of 
materials for our stimulus set, with the following steps.

First, we reduced the set of category labels generated from the 
free-naming task to those that were used by at least five participants, 
and merged visually or semantically similar terms, guided by correla-
tions between the categories (Analyses and Supplementary Fig. 4). The 
reduced set of 18 category terms is shown in Fig. 3b. We decided to not 
reduce the number of category terms further to offer a wide range of 
choices to subjects in the next experiment.

Second, a separate set of participants (n = 80) completed a 
multiple-alternative forced-choice task (18-AFC task; Experiment 2) 
in which they were asked to choose the material category that best 
applied to each stimulus (Supplementary Fig. 5). For this experiment, 
the stimulus set was extended to include a larger range of reflectance 
parameters, two shapes (dragon and bunny) and two lighting environ-
ments (kitchen and campus), resulting in 924 stimuli (Supplementary 
Fig. 1). Participants (n = 20 per stimulus) provided confidence ratings 
(converted to a score between 1 and 3), which allowed them to indicate 
their satisfaction with the category options presented. The confidence 
ratings for each category for each stimulus were summed across all 
participants, providing a distribution of category responses for each 
stimulus (category profiles) and a distribution of stimuli for each cat-
egory (stimulus profiles) (Fig. 3b). For many stimuli, more than one 
category term applied; for example, Stimulus 1 was almost equally clas-
sified as ‘glazed ceramic’ and ‘covered in wet paint’, whereas Stimulus 
6 was classified as both latex/rubber and plastic (Fig. 3b). This might 
be due to redundancies in the terminology and/or imperfect category 
membership driving different decision boundaries (for example, ‘it 
looks a bit like plastic but also a bit like rubber’). Indeed, we found that 
the stimulus profiles for some of the categories correlated with one 
another (Supplementary Fig. 6).

Third, the data were subjected to a factor analysis to extract the 
common variance between categories and reveal orthogonal percep-
tual dimensions for our stimulus set. Figure 4a shows that there was no 
clear plateau in shared variance explained with each additional factor, 
and 12 factors were needed to account for at least 80% of the shared 
variance between stimuli (the upper limit is based on degrees of free-
dom; Analyses). Figure 4b shows example stimuli from the emergent 
dimensions, which were highly interpretable (12 plus one dimension 
that emerged from the negative loadings; Fig. 4c). Retaining eight 
or ten factors accounted for only approximately 60% and 70% of the 
common variance between categories, respectively, demonstrating 
that changing the appearance of specular reflections yields a diverse 
range of perceived materials that cannot be reduced to a small number 
of perceptual dimensions.

Surprisingly, the materials that were perceived extended beyond 
those expected based on the reflectance function used to generate 
them. In the real world, materials like porcelain, pearl, soap, wax, velvet  
and many others produce an image structure that is caused by the 
extent and way in which they transmit, internally scatter and disperse 
light in addition to pigment variations and mesoscale details like fibres 
in fabrics or scratches in anisotropic metals. Yet, participants reported 
seeing these materials for surfaces that were only defined by (uniform) 
diffuse and specular reflectance properties, despite the absence of 
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these other potentially diagnostic sources of image structure. Thus, 
our results reveal that the human visual system is highly sensitive to 
the image structure produced by specular reflections for material 

recognition, even for complex materials. Note that some categories 
(like gold metals) occurred because of our arbitrary choice of yellow 
for the coloured stimuli, and the outcome would be different for other 
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Fig. 2 | Visual features linked with specular image structure. a–c, The 
surface appearance of glossy objects is constrained by generative processes, 
which determine the coverage (a), sharpness (b) and contrast (c) of specular 
highlights. Specifically, image structure is constrained by the way that surface 
reflectance properties interact with 3D surface geometry and the light field31. 
Microroughness: whereas matte surfaces scatter light in all directions, glossy 
surfaces reflect light directionally, preserving the structure of the illumination 
field. Highly smooth surfaces produce narrow specular lobes68 that increase the 
contrast and clarity (sharpness) of the reflected image relative to microscopically 
rougher surfaces, which produce broader specular lobes that blur this structure. 
Surfaces with higher microroughness also cause more spread-out specular 
highlights (higher coverage) owing to the larger range of surface normal 
orientations reflecting bright light sources towards the observer. Specular 
strength: whereas dielectric materials like plastic reflect only a proportion of 
light specularly, metals reflect all light specularly, increasing the contrast of 
the reflected image. Illumination sources: because of the structure-preserving 

properties of glossy objects, the contrast, sharpness and coverage of specular 
highlights depend on the incident light that is being reflected; that is, the 
intensity and structure of the illumination field. Three-dimensional shape: 
furthermore, 3D shape distorts this illumination structure. Specular reflections 
cling to points of high surface curvature and are elongated along (but slide 
rapidly across) directions of minimal surface curvature23,24,69,70. This means that 
3D shape and observer viewpoint affect the location and distortion of specular 
reflections and thus the proximal stimulus properties of coverage, sharpness and 
contrast of the highlights. d–f, The brightness (d) and colour saturation inside (e) 
and outside (f) the highlight region are also determined by interactions between 
a surface’s absorption/reflectance properties, 3D shape and the illumination 
field. For example, specular reflections from dielectric materials like plastic 
preserve the spectral content of incident light; hence they look tinted only if the 
prevailing illumination is itself coloured. By contrast, coloured metals affect the 
tint of reflected light. We refer to a–c as gloss cues and d–f as colour cues.
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colours. Nevertheless, as we show later, such materials are additionally 
defined by specular image structure, and colour information alone is 
not sufficient to discriminate between materials.

Material class is not determined by but may constrain gloss
Although manipulating surface reflectance properties changed image 
structure in a way that participants interpreted as different materi-
als, how this image structure relates to material recognition and the 
underlying mechanism is unclear. A feedforward approach assumes 
that the appearance of specular reflections determines surface glossi-
ness, which in turn combines with other estimated mid-level properties 
(such as object shape, colour, translucency) to define the material 
category (Fig. 1b, top). If this is true, then we should be able to identify 
visual features (cues) that predict gloss perception, and the material 
categories from Experiment 2 should be associated with a particular 
level of gloss. We tested this in Experiment 3 in which a separate group 
of participants (n = 22) rated the perceived glossiness (gloss level) 

of each of the 924 stimuli from Experiment 2. We directly measured 
visual features of the stimuli that describe the appearance of specular 
reflections and are based on generative constraints on how light is 
reflected and scattered by a surface’s reflectance properties (Fig. 2). 
Three of these features—coverage, sharpness and contrast—have previ-
ously been found to predict participants’ judgements of surface glossi-
ness31,32, so we refer to them as gloss cues. However, whereas Marlow 
and colleagues31,32 used perceptual judgements of each cue to predict 
gloss, here we operationalised the cues using objective, image-based 
measures computed from dedicated render outputs (Analyses and 
Supplementary Fig. 9). Intuitively, coverage is the extent to which an 
object’s surface is covered in specular highlights (bright reflections; 
Fig. 2a); sharpness refers to the rapidness of change between brighter 
and dimmer regions within and at the boundary of those highlights, and 
is usually related to the distinctness of the reflections (that is, the clar-
ity of the reflected environment; Fig. 2b); and contrast is the variance 
in bright and dim regions caused by specular reflections, and usually 
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Fig. 3 | Multiple semantic terms can describe the same qualitative visual 
appearance of a material. a, The object in the first panel has a dark brown, 
lumpy surface with medium-clarity specular reflections and could be labelled 
‘melted chocolate’ or ‘mud’. This surface has a different visual quality from the 
object in the middle panel, which has low-clarity, dim reflections that make it look 
like ‘latex’ or ‘rubber’. The object in the third panel has very rough, anisotropic 
specular reflections that rapidly change in brightness at the boundaries between 
highlights and lowlights, giving it the visual characteristics of ‘velvet’, ‘silk’ or 
‘fabric’. b, Sum of confidence ratings from the 18-AFC experiment (Experiment 
2) for each stimulus (Stim.) and each category for the first 15 stimuli (of 924). 

Category profiles are the distribution of category responses for each stimulus 
and reveal the extent to which multiple category terms apply to the same 
stimulus. Stimulus profiles are the distribution of stimuli that were allocated 
to each category and reveal the extent to which category terms are correlated 
with one another. Stimulus profiles were used to reveal the latent perceptual 
space of materials for our stimuli (factor analysis; Fig. 4), and category profiles 
were used to calculate material dissimilarity scores between each pair of 
stimuli (representational similarity analysis; Supplementary Analysis B and 
Supplementary Fig. 15).
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relates to how bright the specular highlights look in relation to the 
surrounding regions (Fig. 2c).

We found that intersubject agreement for gloss ratings was high 
(median r = 0.70), and overall a linear combination of the gloss cues 
(coverage, sharpness and contrast) accounted for 76% of the vari-
ance in participant’s gloss ratings (Fig. 5a); R2 = 0.76, F(3,916) = 973.74, 
P < 0.001. This links perceived gloss with objective image-based 

measures of specular reflection features for a wide range of reflec-
tance conditions. However, the material dimensions defined in Experi-
ment 2 were not associated with a particular level of gloss, contrary to 
what would be predicted by the feedforward hypothesis (Fig. 1b, top). 
Instead, stimuli from the same material class exhibited a wide distribu-
tion of gloss levels, and stimuli from very visually distinct classes like 
ceramic and (gold and uncoloured) metals had completely overlapping 
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Fig. 4 | Factor analysis performed on stimulus profiles obtained from the 
18-AFC task. a, Black circles indicate the cumulative total variance explained 
by each component from an initial PCA. Red squares are the cumulative shared 
variance explained by each factor from the 12-factor solution, which accounted 
for 80% of the shared variance between stimulus profiles. b, Example stimuli 
from the 13 emergent material dimensions from the factor analysis (FA). 
Supplementary Fig. 8 shows more example stimuli for each shape and light field. 
c, Heat plot of the factor loadings for each category from the 18-AFC task, with 
blue and red cells showing positive and negative loadings, respectively. The 

highlighted cells show the factor onto which each category loaded most strongly. 
Note that the 13th dimension emerged from the negative loadings onto factor 4. 
The emergent dimensions were highly interpretable from the category loadings 
onto the factors; for example, uncoloured metals like steel and silver all loaded 
strongly onto factor 1, forming a single dimension. We gave material category 
labels to each dimension (shown in b); however, note that these are arbitrary and 
are only included for interpretative convenience. Supplementary Fig. 7 shows 
the results of a PCA that retained all dimensions in addition to the results of other 
factor solutions, whose dimensions overlap with those here.
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gloss distributions (histograms in Fig. 5b). We investigated whether the 
wide gloss distributions could be caused by the continuous nature of 
the material dimensions (for example, perhaps more metallic-looking 
materials are glossier, more rubber-looking materials are less glossy, 
and so forth). If this is true, then gloss ratings should correlate with the 
loading of stimuli onto material dimensions (material factor scores). 
This was the case for only seven of the 13 material dimensions (scatter 

plots in Fig. 5b, correlation coefficients highlighted in red), with the 
other six showing no significant correlation between gloss ratings and 
material score (black coefficients), suggesting that gloss level is overall 
not a good indicator of how well stimuli load onto a material dimension.

The lack of a clear relationship between perceived gloss and mate-
rial raises the possibility of a direct link between visual features and 
perceived material. Indeed, we found that material (factor) scores 
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Fig. 5 | Material class is not determined by but may constrain gloss 
perception. a, Results of a linear regression model predicting perceived gloss 
from coverage, sharpness and contrast (gloss cues). The model accounts for 
76% of the variance in gloss ratings between stimuli and is comparable with a 
model that predicts participant’s gloss ratings from each other (leave one out; 
average R2 = 0.72). b, Histograms show that stimuli from the same material class 
exhibited a wide distribution of gloss levels, which persisted even when only the 
strongest loading stimuli on each dimension were considered (Supplementary 
Fig. 10). Although some dimensions have a narrower range of gloss levels than 
others, stimuli from very visually distinct material dimensions like ceramics 
and (gold and uncoloured) metals have completely overlapping distributions 
of gloss ratings. Subjacent scatter plots show correlations between perceived 
gloss and material score, for each material class. Red coefficients indicate 
statistically significant correlations (uncoloured metals: r = 0.58, P < 0.001; 

ceramics: r = 0.55, P < 0.001; rubber-like: r = −0.31, P = 0.001; gold metals: r = 0.47, 
P < 0.001; glazed porcelain: r = 0.61, P < 0.001; plastic: r = 0.31 P = 0.004; melted 
chocolate: r = 0.49, P < 0.001). Black coefficients indicate correlations are not 
statistically significant (all P > 0.05). The results hold for other factor solutions 
(Supplementary Fig. 11). c, The variance in gloss accounted for by the gloss 
cues differed within each material class (R2, black bars), and the strength and 
direction of each cue’s correlation with gloss ratings/material score differed 
across materials (Pearson correlation colour coded according to strength and 
direction; asterisked correlations indicate P < 0.05; see Supplementary Fig. 13 
for correlation between cues). d, The correlations between perceived gloss and 
material score (from b) are confounded with the material scores correlating 
with the gloss cues themselves. In d, z stands for Fisher-transformed correlation 
coefficients (Pearson correlation). Data points in a and d are colour coded by 
material category (see legend for details).
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correlated directly with one or more of the cues for gloss (that is, 
the visual features coverage, sharpness and contrast) for 11 of the 13 
material dimensions (Fig. 5c, left). This relationship between cues 
and material scores can explain the extent to which gloss ratings pre-
dicted material scores in Fig. 5b (shown in Fig. 5d, r = 0.50, P = 0.001), 
suggesting that an object’s material could be computed from features 
of specular image structure directly rather than via gloss estimation. 
Supplementary Analysis A supports this idea by showing that a model 
predicting material score from gloss level performed worse than a 
model predicting material score directly from a linear combination of 
the cues (Supplementary Fig. 12). Moreover, the predictiveness of cues 
to perceived gloss varied across different material classes (black bars in 
Fig. 5c), suggesting that, rather than gloss mediating cues to material, 
the visual cues used to estimate gloss could instead be constrained 
by perceived category. In the Discussion we explore the possibility 
that surface gloss and material could be co-computed and mutually 
constrained by the same image structure (Supplementary Analysis A). 
Collectively, these results do not support the idea that gloss mediates 
the perception of materials from specular reflection image features 
(feedforward hypothesis; Fig. 1b, top), but are in line with the idea that 
surface gloss and material class could be simultaneously ‘read out’ from 
these features (simultaneous hypothesis; Fig. 1b, bottom).

Features of specular image structure predict material class
If visual features directly determine the perceived material of an object, 
this probably includes colour information. Indeed, many material 
dimensions that emerged from our stimulus set seem to be defined by 
specific colour information produced by reflectance properties, includ-
ing gold, brown and uncoloured metals; melted and solid chocolate; 
glazed and unglazed porcelain; and waxy materials (Supplementary 
Fig. 8). We measured three visual features—highlight saturation, low-
light saturation and lowlight value—that capture colour information 
within and outside the specular highlight regions (Fig. 2d–f). These 
features, or colour cues, are linked to different aspects of a material’s 
colour appearance (for example, surface pigment, or specular ‘tint’ 
seen in coloured metals). Intuitively, highlight saturation is the colour 
saturation within the specular highlight regions (bright spots); low-
light saturation is the colour saturation outside the highlight regions 
(referred to as lowlight regions25); and lowlight value is the brightness 
of the colour within the lowlight regions.

To test the prediction that materials can be discriminated directly 
from features of specular image structure (simultaneous hypothesis; 
Fig. 1b, bottom), we sought to predict material class from the measured 
visual features (the three gloss cues and three colour cues) (Fig. 2) for 
the stimuli that loaded most strongly onto each material dimension 
(Fig. 4). Figure 6a plots the distribution of visual features for these 
stimuli (coloured violin plots) for each material. Visualized in this 
way, the features provide ‘material signatures’ for each class. The data 
were subjected to a linear discriminant analysis (LDA) that classified 
materials based on linear combinations of features. We used a leave 
one condition out approach, in which the classifier was trained on 
three of the four shape/lighting conditions (for example, dragon–
kitchen, bunny–kitchen, dragon–campus) and tested on the remaining 

condition (for example, bunny–campus). Figure 6b plots the accuracy 
of the model for each material, combined over the four training–test 
combinations. Overall accuracy was 65%, which is well above chance 
(7.7%, red dotted line). A further cross-validation test showed that 
the model generalized across shape and lighting conditions (Fig. 6c, 
mean accuracy 64%, s.d. = 5.2), demonstrating that features of specular 
structure can predict human material categorization behaviour for our 
stimulus set. Figure 6d,e illustrates that the discriminations made by 
the model are perceptually intuitive.

Interestingly, some materials were classified better than others  
(Fig. 6b). The materials with the highest classification accuracies  
(Fig. 6b) were those with the most distinct material signatures (Fig. 6a; 
waxy materials 100%, uncoloured metals 95%, unglazed porcelain 94%, 
solid chocolate 89%, gold metals 86%, glazed porcelain 72%, brown met-
als 69%, melted chocolate 61%). That is, there are at least a few features 
that seem to ‘characterize’ those materials (for example, uncoloured 
metals must have uncoloured highlights and lowlights; waxy materials 
must be light and coloured with low-contrast reflections). Materials 
with the lowest classification accuracies had a less distinct set of fea-
tures (ceramics 36%, pearlescent materials 31%, plastic 28%, velvety/
silky materials 28%). One possible reason for this is that there are, for 
example, many types of plastic or pearlescent material (Fig. 4b), and 
different specific (nonlinear) combinations of features define these 
subtypes—something that LDA does not capture. A second possibility 
is that the stimuli might not fall nicely into perceptually discrete classes 
and would be better represented as a smooth continuation from one 
material dimension to another. To investigate this second possibil-
ity, we tested whether variations in category profile between stimuli  
(Fig. 3b) could be predicted by variations in the measured visual fea-
tures (Fig. 2). Using representational similarity analysis33 we found 
that the six visual features predict perceived differences in material 
between stimuli and account for more variance than when other pre-
dictors (reflectance parameters, or gloss ratings combined with colour 
cues) are used (Supplementary Analysis B and Supplementary Fig. 15).

Manipulating specular structure transforms material class
Thus far, our analyses have been correlational in nature. If material 
class is computed from combinations of the visual features that we 
measured (Fig. 2), then directly manipulating these features should 
transform perceived category in predictable ways. This would better 
test whether the measured features are causally responsible for the 
perceived category shifts, or whether they merely correlate with other 
changes in image structure that are important for material perception 
that we did not measure.

To this end, we attempted to directly manipulate visual features 
to transform stimuli that were perceived as glazed ceramic in Experi-
ment 2 into each of the remaining materials, for each shape and light 
field (Fig. 7a). We created two stimulus sets to test the success of our 
feature manipulations. The first set contained ‘simple’ (linear) feature 
manipulations, which correspond closely to the previously measured 
visual features (Supplementary Fig. 16). The second set contained 
‘complex’ (nonlinear) feature manipulations, which accounted for par-
ticular types of contrast needed for some materials that we empirically 

Fig. 6 | LDA predicting material category from visual features. a, Radial violin 
plots show the distribution of measured visual features for each material. For 
each feature, solid lines correspond to the 50th percentile and dashed lines to  
the 25th and 75th percentiles of the distribution (n = 36 stimuli per plot). See  
text for details. Hi. satu., highlight saturation; Lo. satu., lowlight saturation;  
Lo. val., lowlight value; Sharp., sharpness. b, The results of a linear classifier with 
a leave one condition out validation procedure. The red dotted line indicates 
chance level (1/13). c, Classification accuracy generalizes across different 
illumination and shape conditions. See Supplementary Fig. 14 for similar results 
with other dimension reduction solutions. d, The stimuli are plotted in linear 
discriminant space (LD1 and LD2 are linear discriminant 1 and 2, respectively). 

Points are colour coded by either category (left), or visual features (right). e, The 
same stimuli are plotted for different linear discriminants (top, LD1 versus LD4; 
bottom, LD2 versus LD3). These plots illustrate that the discriminations made 
by the model are perceptually intuitive. For example, a combination of average 
saturation and brightness within the lowlight region can be used to discriminate 
materials like porcelain (bright, uncoloured body) and waxy materials (bright, 
coloured body) from other materials with darker body colours; saturation 
within the highlight region is useful for discriminating brown metals (coloured 
highlights) from solid chocolate (uncoloured highlights). See Supplementary 
Table 1 for LDA weights.
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noticed were not captured by the first set of manipulations (Supple-
mentary Fig. 16). For example, the velvety/silky stimuli from Experi-
ment 2 were defined exclusively by very rough, anisotropic specular 
reflections, which caused a high degree of directional blur. This gives 

the effect of elongated, low-clarity specular reflections that, despite 
this low clarity, have rapidly changing (sharp/high-contrast) bounda-
ries between highlights and lowlights relative to isotropic surfaces 
(Figs. 3a and 4b and Supplementary Fig. 8). On the other hand, the 
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Fig. 7 | Manipulating visual features transforms perceived material category. 
a, Manipulations were performed on specular and diffuse images separately 
before being recombined: as with the original feature measurements, the 
specular component was obtained by subtraction of the diffuse component 
from the full rendering (Supplementary Fig. 9). The sharpness of reflections 
was first modified by blurring pixels of the specular component that have 
sufficiently similar normals (Methods). The subsequent filters adjusted the 
colour and intensity of each component. For example, for materials like gold 
(top manipulated image), the specular component is first multiplied by a colour 
(the diffuse component is multiplied by 0), then its intensity and saturation are 
adjusted. For materials like pearl (bottom manipulated image), the intensity 
of the diffuse component is also adjusted. See the Methods for a detailed 

description of each filter, along with the special filter used for velvet, based on 
a non-monotonic remapping of the specular component. b, Example stimuli 
after simple manipulations (top) and complex manipulations (bottom). White 
bars show the stimulus factor scores after participant judgements (main text). 
After applying simple feature manipulations, materials sometimes resembled 
unintended categories (red arrows). The perceived materials align much 
better with the intended category (green arrows) after the complex feature 
manipulations. c,d, Heat maps showing average factor scores for stimuli from 
each intended category after simple (c) and complex (d) feature manipulations, 
respectively. The highlighted cells show the factor onto which each category 
most strongly loaded.
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perception of uncoloured metals appears to require the presence 
of high-contrast reflections that appear all over the surface (that is, 
there is a high-contrast image structure in the lowlights, not just the 
highlights; see also Norman et al.13). These particular types of contrast 
could not be achieved through a simple linear transformation of image 
intensities from the glazed ceramic stimuli but were accounted for after 
applying more complex additional filters to nonlinearly manipulate 
pixel intensities (Fig. 7b and Supplementary Fig. 17).

In Experiment 4, a new set of participants (n = 22) performed an 
18-AFC task identical to Experiment 2, but with the feature-transformed 
stimuli. The stimulus profiles were converted to factor scores to see 
which material dimensions best applied to the new stimuli. The average 
factor scores plotted in Fig. 7c,d show that participants agreed with 
our informal observations. For the first stimulus set (linear feature 
manipulations; Fig. 7c), stimuli that were intended to be uncoloured 
metals and velvety/silky materials actually had the quality of glazed 
ceramic and plastic, respectively. For the second stimulus set (non-
linear feature manipulations; Fig. 7d), the perceived materials align 
much better with the intended classes.

Discussion
In the present study we showed that the image structure produced 
by specular reflections not only affects how glossy a surface looks, it 
can also determine the quality, or category, of the material that is per-
ceived. Critically, specular reflections provide more information than 
just distinguishing between surfaces that are matte versus glossy24, or 
plastic versus metal16; we found that the perceptual dimensionality of 
glossy surfaces defined by a diffuse and specular component is much 
larger than has been suggested previously34–37. This is probably because 
previous studies on gloss perception have manipulated stimulus param-
eters within a narrow range and used restricted tasks; for example, 
stimuli are simple, smooth shapes and/or their reflectance properties 
encompass only the range of plastic- and ceramic-looking materials, 
and participants judge the level of gloss or relative similarity between 
surfaces. Here, we used complex shapes, manipulated reflectance 
parameters within a wider range and asked participants to judge each 
object’s qualitative material appearance. This greatly expanded the 
number of dimensions required to account for perceptual differences 
between glossy surfaces relative to previous studies. Note that we did 
not sample the whole perceptual space of glossy objects defined by a 
diffuse and specular component (for example, we manipulated colour 
saturation within only one hue). The dimensionality of gloss appearance 
is likely to expand further upon sampling a wider range of reflectance 
parameters, shapes, mesostructure detail and environment lighting 
conditions.

Importantly, we found that changes in specular structure—caused 
by either generative sources or direct feature manipulation—led to 
qualitative shifts in material appearance beyond those expected by the 
reflectance function used. This demonstrates that features of specular 
image structure can be diagnostic for recognizing a wide range of mate-
rials. A potential reason for this is that a material’s surface reflectance 
properties create some of its most salient optical characteristics, and, 
because most surfaces reflect some light specularly, relying on such 
characteristics could have ecological importance when other cues to 
material are not available. For instance, the visual effects of translu-
cency can be greatly diminished with frontal lighting38; in such cases, 
visual features caused by specular reflections might remain diagnostic 
of translucent materials (for example, porcelain). Similarly, mesoscale 
details like fibres on cloth or scratches on metal might not be visually 
resolvable when seen at a distance, yet such materials might still be 
recognized from specular image structure. Indeed, these additional 
sources of image structure (from mesostructure or translucency) are 
absent from the stimuli used in the present study, and although such 
details might render the materials more compelling (for example, when 
compared with a photograph), the stimuli nevertheless convincingly 

resemble silk-like, porcelain-like, wax-like, brushed metal-like materials 
and so on. Interestingly, these results are in line with findings from the 
computer graphics literature that show that visual effects from differ-
ent types of fabrics come predominantly from specular reflections, and 
diffuse reflection and shadowing-masking play a much less pronounced 
role even for relatively matte-looking fabrics39.

Our data do not support the notion of a feedforward path to rec-
ognition, whereby the visual system combines estimates of physical 
properties that are first ‘recovered’ from images; instead, our results are 
in line with the idea that vision assigns perceptual qualities to statisti-
cally varying image structure2,5,6,40,41. Specifically, we found that gloss 
was not a good indicator of a material’s class; instead, materials were 
differentiated directly based on measurable image-based specular 
reflection features, suggesting that material qualities like gloss are a 
perceptual outcome with—rather than a component dimension of—our 
holistic impressions. Indeed, the perception of material qualities like 
gloss might even be influenced by these holistic impressions, as sug-
gested by the fact that the contribution of different cues to gloss was 
not stable across different materials, but covaried with the cues that 
predicted material class. The regions of feature space occupied by 
different material classes (different qualitative appearances) seemed 
to mediate the processing of those same features when estimating 
surface glossiness.

One potential mechanism is that emergent categories from our 
stimulus set could reflect cognitive decisions, and this cognitive inter-
pretation has a ‘top-down’ influence on which features are used to 
judge surface gloss. For example, ‘chocolate’ and ‘plastic’ could have 
similar contrast and sharpness of specular highlights (similar ‘gloss 
types’) and the different labels might result from a cognitive decision 
by participants based on body colour (brown versus yellow). However, 
we cannot think of a principled reason why a feature’s influence on 
material category would affect how people choose to use that feature 
for gloss judgements.

Furthermore, we argue that such a clear perceptual scission of 
image structure into different layers (for example, a gloss layer and 
a body colour layer) and then subsequent ‘cognitive reassembly’ is 
unlikely, especially for the complex-shaped stimuli and wide sampling 
of reflectance parameters used in the present study. This type of layered 
appearance of gloss, which can be construed as a form of transparency 
perception, probably applies only to smooth surfaces with little vari-
ation in surface curvature, such as spheres25. For our stimuli, specular 
image structure seems to combine interactively with diffuse shading 
to create a gestalt-like quality for each material, such that we may 
not even have perceptual access to individual cues (Supplementary  
Fig. 1). As with object recognition, this material quality can be given a 
label like ‘gold’ or ‘pearl’, but nonetheless reflects a holistic impression, 
rather than a cognitive combination of cues (also see Okazawa et al.42). 
Such holistic impressions are probably why we could successfully 
manipulate visual features to transform one category into another 
(Experiment 4), but why linear models like LDA and representational 
similarity analysis (Experiment 2) did not better account for the data.

We propose an alternative mechanism to explain the covaria-
tion between cues for surface gloss and material class, inspired by 
converging evidence from independent lines of psychophysical and 
neuropsychological research that suggest computations of stimulus 
properties are inherently coupled3,43. Specifically, monkey physiology 
studies have found that neurons in primate area V4 respond only to 
specific combinations of texture and shape, and not to these proper-
ties separately, suggesting joint representations of shape and surface 
properties43. In line with this, a series of human psychophysics studies 
have demonstrated that percepts of 3D shape and surface properties 
(for example, gloss or translucency) are mutually constrained by spe-
cific image gradient–contour relationships (that is, the cues for each 
are not separate)3. Similarly, transparency impressions triggered by 
low-contrast centre–surround displays are mutually constrained with 
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the perception of surface lightness: a medium-grey patch surrounded 
by a slightly darker (homogenous) surface can appear whiteish with the 
quality of a flimsy transparent sheath, which occurs to the extent that 
luminance within the central patch is attributed to a foreground (patch) 
or background (surround) layer44. In the present study, the covariation 
between cues for gloss and material class could also reflect a mutual 
dependency (that is, their computations could be coupled). We sug-
gest that a surface’s qualitative (categorical) appearance constrains 
how specular image structure is perceptually allocated to different 
aspects of material appearance such as specular reflections (versus 
say bright pigment, or illumination, or 3D shape45,46), and thus which 
cues are perceptually available to make a surface look ‘glossy’ or ‘shiny’.

Interactions between categorical, or ‘holistic’, material impres-
sions and the perception of different stimulus properties warrants 
further investigation because the underlying mechanism will influence 
how we study perception in multiple domains. Recently, unsupervised 
deep neural networks have generated excitement as a potential tool 
to uncover purported mid-level visual processes; for example, by 
providing evidence that the brain could potentially spontaneously 
discover the existence of properties like gloss, illumination direction 
and shape without previous knowledge about the world, but by learn-
ing to efficiently represent variations in image structure produced by 
these properties47. However, here we showed that with more complex 
stimuli, image information cannot be neatly mapped onto perceptual 
properties like gloss; this mapping is constrained by the qualitative 
or categorical appearance of surfaces. Some material classes occupy 
relatively homogeneous feature spaces (for example, gold) compared 
with other, more diverse classes (for example, plastic), which probably 
emerges through behavioural relevance. Thus, for unsupervised learn-
ing to generate useful hypotheses about perceptual processes, future 
work needs to consider how the behavioural relevance of stimuli might 
influence spontaneous learning about statistical image variations.

Neuropsychological results should also be interpreted in the 
context of qualitative, categorical material perception. For example, 
neurons in the lower bank of the superior temporal sulcus in monkeys 
have been shown to respond preferentially to specific combinations 
of manipulated gloss parameters48. It is possible that different cate-
gorical or holistic material impressions are triggered by these specific 
combinations, driving this response. Moreover, research into object 
recognition49 often investigates how visual features like texture50 and 
form51 influence object category representations, but thus far have 
neglected the role of surface properties in recognition; for example, 
by not controlling for changes in surface properties51–53, or ‘scrambling’ 
the images in a way that breaks the perception of surfaces50. Our results 
suggest that the specific photogeometric constraints on image struc-
ture that trigger our perception of surface gloss play an important role 
in visual categorization and recognition, and that a fruitful direction 
for neuropsychological research could be to focus on identifying the 
neural mechanisms that represent objects holistically54.

However, we think that this role extends beyond object identifi-
cation. Just as surface gloss as a unitary concept is not a component 
dimension of material perception, we argue that material perception 
is not merely a component dimension of scene perception. A material’s 
qualitative appearance is useful for different aspects of navigation, 
such as identifying where we are (beaches have sand and water), choos-
ing which paths to take (icy versus muddy versus concrete) and decid-
ing which obstacles to avoid (solid rock versus flexible vegetation). We 
also need material perception for locating items among clutter (finding 
a metallic pot in the cupboard), evaluating an object’s function, useful-
ness or motor affordances (Can I eat it? Is it expensive or fake? How do I 
pick it up?) and predicting tactile properties and future states of objects 
(Is it heavy, sticky or wet? Will shatter, stretch or bounce?). Our results 
shed light on how image structure is transformed into our representa-
tions of surfaces with particular material ‘appearances’, thereby making 
an important contribution towards bridging the gap between the early 

stages of visual information processing and behavioural goals such as 
categorization, action and prediction55,56.

Methods
Participants
Volunteer participants were students at Justus Liebig University Giessen  
in Germany. Fifteen participants completed the free-naming experi-
ment (Experiment 1; mean age 23.7 years; 80% female, 20% male). 
Eighty participants took part in the 18-AFC experiment (Experiment 
2; mean age 24.9 years; 83.3% female, 16.7% male), 22 participants took 
part in the gloss rating experiment (Experiment 3; mean age 25.3 years; 
58.3% female, 41.7% male) and 22 participants took part in the feature 
manipulation experiment (Experiment 4; mean age 23.4 years; 81.8% 
female, 18.2% male). One participant was excluded from Experiment 3 
because they did not understand the task instructions, resulting in 21 
participants. Experiments 2 and 4 included German speaking partici-
pants, for which German was their first language. Experiments 1 and 
3 included both German and English speaking participants. Different 
participants were recruited for each experiment.

Stimuli
Stimulus generation in Experiment 1 (free-naming), Experiment 2 
(18-AFC) and Experiment 3 (gloss ratings). We generated our stim-
ulus set by computer rendering images of complex glossy objects 
under natural illumination fields. Each image depicted an object with 
the illumination field as the background, rendered at a resolution 
of 1,080 × 1,080 pixels. Object meshes were the Stanford Bunny and 
Dragon from the Stanford 3D Scanning Repository (Stanford Univer-
sity Computer Graphics Laboratory; http://graphics.stanford.edu/
data/3Dscanrep/). Wavefront.obj files of these models were imported 
into the open-source modelling software Blender (v.2.79) and rendered 
using the Cycles render engine, which is an unbiased, physically based 
path-tracing engine.

Stimuli were illuminated by the ‘kitchen’ and ‘campus’ light fields 
from the Debevec Light Probe Image Gallery57. Interactions between 
light and surfaces were modelled using the Principled Bidirectional 
Scattering Distribution Function (BSDF) shader, which is based on 
Disney’s principled model known as the ‘PBR’ shader58. The Principled 
BSDF shader approximates physical interactions between illuminants 
and surfaces with a diffuse and specular component (for dielectric 
materials), and a microroughness parameter that controls the amount 
of specular scatter. An advantage of the Principled BSDF shader over 
other models like the Ward model is that it accounts for the Fresnel 
effect. The microfacet distribution used is multiple-scattering GGX, 
which takes multiple bounce (scattering) events between microfacets 
into account, giving energy-conserving results. Although there are 
many parameters to adjust in the Principled BSDF shader, we manipu-
lated only the following (details can be found at https://docs.blender.
org/manual/en/dev/render/shader_nodes/shader/principled.html):

•	 Base colour: proportion of light reflected by the R, G and B  
diffuse components.

•	 Specular: amount of light reflected by the specular component. 
The normalized range of this parameter is remapped linearly to 
the incident specular range 0%–8%, which encompasses most 
common dielectric materials. Values above 1 (that is, above 8% 
specular reflectance) are also possible. A value of 5 (the maxi-
mum value used) translates to 40% specular reflectance.

•	 Specular tint: tints the facing specular reflection using the base 
colour, whereas the glancing reflection remains white.

•	 Roughness: specifies the microfacet roughness of the surface, 
controlling the amount of specular scatter.

•	 Anisotropic: amount of anisotropy for specular reflections. 
Higher values give elongated highlights along a surface tangent 
direction given by a tangent field. This field is obtained per 
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object using the spherical mapping functionality of Blender. 
Internally, it works in two steps. First, a radial pattern of direc-
tions is defined on a 3D sphere enclosing the object, by assign-
ing the direction of the meridian going through each spherical 
point. Such a pattern has singularities at sphere poles, where 
all directions converge. Second, each point p on the object is 
mapped to a point q on the enclosing sphere by tracing a ray 
from the object centre through p. The direction at q is then 
projected on the local tangent plane at p and renormalized  
to yield the local tangent. Note that singularities remain  
singularities after projection.

•	 Anisotropic rotation: rotates the direction of anisotropy in the local 
tangent plane, with a value of 1.0 indicating a rotation of 360°.

Rendering parameters in Experiment 1 (free-naming). A total of  
270 stimuli were generated for the free-naming experiment. Stimuli 
were generated by rendering combinations of the parameters for a 
dragon model embedded in the kitchen light field:

•	 Base colour: six diffuse base colours based on two levels of 
satu ration (greyscale, saturated yellow) and three levels of 
value (dark, medium and light). For the greyscale stimuli, the 
red, green and blue (RGB) values were equal for each lightness 
level (RGB = 0.01, 0.1 and 0.3 for dark, medium and light stimuli, 
respectively). The RGB values for saturated stimuli were  
[0.01, 0.007, 0.001] for dark stimuli, [0.1, 0.074, 0.01] for 
medium stimuli and [0.3, 0.221, 0.03] for light stimuli.

•	 Specular: three specular levels: 0.1, 0.3 and 1, which correspond 
to 0.8%, 2.4% and 8% specular reflectance, respectively.

•	 Specular tint: two specular tint levels for saturated stimuli:  
0 (no specular tint) and 1 (full specular tint).

•	 Roughness: four roughness levels: 0, 0.1, 0.3 and 0.6.
•	 Anisotropic: two anisotropic levels for stimuli with roughness 

levels greater than zero: 0 and 0.9.
•	 Anisotropic rotation: two anisotropic rotations for anisotropic 

stimuli: 0 (no rotation) and 0.25 (90° rotation).

Rendering parameters in Experiment 2 (18-AFC) and Experiment 3  
(gloss ratings). A total of 924 stimuli were generated for the 18-AFC 
and gloss ratings experiments. Stimuli were generated by rendering 
combinations of the parameters for two shapes (dragon, bunny) and 
two light fields (kitchen, campus):

•	 Base colour: six diffuse base colours based on two levels of satu-
ration (greyscale, saturated yellow) and three levels of value 
(dark, medium and light). For the greyscale stimuli, RGB values 
were equal for each lightness level (RGB = 0.01, 0.03 and 0.3 for 
dark, medium and light stimuli, respectively). The RGB values 
for saturated stimuli were [0.01, 0.007, 0.001] for dark stimuli, 
[0.03, 0.022, 0.003] for medium stimuli and [0.3, 0.221, 0.03] for 
light stimuli.

•	 Specular: four specular levels for the darkest four diffuse shading 
levels: 0.1, 0.3, 1 and 5, which correspond to 0.8%, 2.4%, 8% and 40% 
specular reflectance, respectively. The light-coloured stimuli were 
only rendered with the first three specular levels.

•	 Specular tint: two specular tint levels for saturated stimuli: 0 (no 
specular tint) and 1 (full specular tint).

•	 Roughness: three roughness levels: 0, 0.3 and 0.6.
•	 Anisotropic: two anisotropic levels for stimuli with roughness 

levels greater than zero: 0 and 0.9.
•	 Anisotropic rotation: two anisotropic rotations for anisotropic 

stimuli: 0 and 0.25.

Stimulus generation in Experiment 4 (feature manipulations). We 
generated the feature-manipulated stimulus set with an approach 
similar to the compositing techniques used in visual effects. For our 

manipulation we need several image components of an input scene: 
a full rendered image, an image of the object rendered with diffuse 
shading only (diffuse component), a binary mask image and an image 
of the surface normals. All of these components were rendered with 
the Cycles engine in Blender. A manipulated image is obtained via the 
sequence of steps depicted in Fig. 7a: a specular component is first 
obtained by subtracting the diffuse component from the full rendered 
image; the sharpness of this specular component is reduced via a 
normal-based blur operator; the diffuse and specular components are 
then optionally multiplied by a colour; finally, the intensity and satu-
ration of the resulting specular and diffuse components are adjusted  
and the final image is obtained by addition of these components  
(specular + diffuse). These steps are explained in more detail below.

The normal-based blur operator is implemented with a cross bilat-
eral filter59 on the specular component and takes into account the 
orientation of the surface normals. The cross bilateral filter consists of 
an image convolution with a modified blur kernel: it not only weights 
the contribution of neighbour pixel colours given their distance (the 
spatial weight), but also based on additional pixel-wise information (the 
range weight). The two weights are combined multiplicatively, and the 
blur kernel is systematically normalized so that the sum of combined 
weights is one. In our case, the space weight is given by a box kernel of 
a large static size (160 × 160 pixels), which merely serves to limit the set 
of pixels that are considered for blurring. The range weight is given by 
an exponentiated normal dot product: (n · n0)s, where n0 is the normal 
at the centre pixel in the kernel, n is the normal at a neighbour pixel 
and s is a shininess parameter. This simple range weighting formula 
is directly inspired by Phong shading: large shininess values result in 
a sharp angular filter, whereas small shininess values result in a broad 
angular filter, which has the effect of blurring specular reflections. In 
practice, we use a blur parameter b in the [0.1] range, which is empiri-
cally remapped to shininess using s = 1 + 1/((b/5)4 × 100 + ε), where ε is 
a small constant used to avoid division by 0.

Some particular categories of materials such as gold or chocolate 
require a colourized diffuse or specular component. This is obtained by 
simply multiplying the image component by a colour: sCol for specular, 
dCol for diffuse. In some cases (gold and silver), the diffuse component 
is discarded entirely, which is equivalent to having dCol = (0,0,0), as 
indicated in Fig. 7a. We chose to use bright and saturated colours in all 
other cases to make the parameters in the next step more easily com-
parable. For the last intensity and colour adjustment step, each image 
component is first converted to the hue, saturation and value (HSV) 
colour space. The following manipulations apply either to the specular 
or diffuse component, with the corresponding parameters prefixed by 
either ‘s’ or ‘d’. The value channel is manipulated by a combination of 
gamma exponentiation (controlled by dGamma and sGamma) and mul-
tiplication (by sBoost or dBoost) using the following simple formula: 
Boost × vGamma, where v is value in the HSV colour space. The saturation 
channel is also multiplied (by sSat or dSat). Both components are 
converted back to RGB and added together to yield the final image.

We use an additional filter for the specific case of velvet/satin. It 
is applied to the specular component right after normal-based blur-
ring. The specular component is multiplied by a first mask m1 that is 
computed via nonlinear mapping of the luminance l of the specular 
component. We use the following formula: m1 = f(0, lm/2, l) if l < lm/2, 
and m1 = 1 − f(lm/2, lm, l) otherwise, where lm is the maximum luminance 
in the specular component image and f(a,b,x) is the ‘smooth step’ func-
tion defined in the OpenGL Shading Language that maps a ≤ x ≤ b to the 
[0,1] range (see https://www.khronos.org/registry/OpenGL-Refpages/
gl4/html/smoothstep.xhtml for details). The effect of multiplication 
by m1 is to darken the core of the brightest highlights, hence produc-
ing elongated highlight loops as seen in Supplementary Figs. 17 and 
18. It is similar in spirit to the sinusoidal modulation of Sawayama and 
Nishida60 (Figure 11 in their paper), except that it is only applied to 
the specular component and with a different nonlinear remapping.  
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We have also found it necessary to multiply the specular component 
by a second mask m2 to slightly attenuate some of the elongated high-
lights. This mask is computed using a simple normal dot product: 
m2 = (n · nm), where n is the normal at a pixel and nm is a manually set 
direction that is chosen per scene, pointing to the direction of the 
main highlight. This has the effect of mimicking the unconventional 
darkening observed in images of velvet materials at locations where 
the main highlight should occur.

Manipulation parameters in Experiment 4 (feature manipulations). 
For each of the four scenes showing either of two objects (bunny and 
dragon) in either of two lighting environments (campus and kitchen), 
we have taken as input a material configuration previously classified 
as ‘glazed ceramic’, from which we have produced 12 manipulations for 
each of the other material categories. There were also two manipula-
tion conditions (below), yielding a total of 104 stimuli for the feature 
manipulation experiment.

The input material was systematically chosen to have a grayscale 
base colour of 0.1, a specular level of 0.3, a specular tint of 0, a rough-
ness of 0 and an anisotropic level of 0.

The manipulation parameters are listed in Supplementary  
Tables 2 and 3. In the ‘simple’ manipulation condition (Supplemen-
tary Table 2), all the Gamma (nonlinear) parameters were set to 1 and 
the special velvet filter was discarded. In the ‘complex’ manipulation 
condition (Supplementary Table 3), setting some of the sGamma and 
dGamma parameters away from 1 had an impact on the intensity of 
either the specular or diffuse component; as a result, we also had to 
adjust the sBoost and dBoost parameters. We applied the velvet filter 
only for the velvet manipulation in this condition, using the following 
nm directions: (0.57, −0.53, 0.63) for bunny/campus, (−0.22, −0.48, 0.85) 
for bunny/kitchen, (−0.62, 0.7, 0.35) for dragon/campus and (−0.72, 
0.57, 0.39) for dragon/kitchen.

Procedure
Stimulus presentation. Stimulus presentation and data collection 
were controlled by a MATLAB script (release 2018b, Mathworks) using 
the Psychophysics Toolbox v.3 (ref. 61). In the free-naming task, stimuli 
were projected onto a white wall in a classroom. Thick black cloth was 
used to block light from the windows, so that the only source of light 
came from the projected image. For all other experiments the stimuli 
were presented on a Sony OLED monitor running at a refresh rate of 
120 Hz with a resolution of 1,920 × 1,080 pixels controlled by a Dell 
computer running Windows 10. Stimuli were viewed in a dark room at 
a viewing distance of approximately 60 cm. The only source of light 
was the monitor that displayed the stimuli.

Task. Experiment 1 (free-naming) task. Fifteen participants gathered 
in a classroom and completed the task at the same time. Two authors, 
A.S.C. and K.D., were present in the room with the participants. This 
was a qualitative data collection session, and no specific hypothesis 
was considered at this stage. Participants viewed stimuli one at a 
time and were asked to classify the material of each stimulus, with 
no restrictions. They were provided with sheets of paper with space 
for each trial number to write down their answers. The experimenter 
controlled the stimulus presentation with a keyboard press. Each trial 
was presented for as long as it took for all participants to finish writing 
down their responses. A blank screen was shown for 1 second between 
each trial. The experiment took approximately 3 hours to complete, 
including breaks.

The instructions, written on a sheet of paper in both English and 
German, were as follows:

You will be shown 270 images, and your task is to write down your 
impressions of the material of each object; that is, what does it look like 
it is made of? Below are some suggestions of materials that might help 
prompt you. Your answers might not include, nor are they limited to, 

the suggestions below. There are no right or wrong answers and you 
can respond however you like. You can be as specific (for example, 
aluminium foil, polyethylene) or general (for example, metal, plastic) 
as you like. You can also write down more than one material (for exam-
ple, ‘looks most like glazed ceramic but could also be plastic’), or even 
say that it doesn’t look like anything you know. If you can’t remember 
the name of a material, you can write for example ‘the stuff that X is 
made out of’.

The following examples were provided below the instructions:

•	 Metal; for example, silver, gold, steel, iron, aluminium, chrome, 
foil

•	 Textiles; for example, velvet, silk, leather
•	 Plastic; for example, polyvinyl chloride (PVC), nylon, acrylic, 

polyethylene, Styrofoam
•	 Ceramic; for example, porcelain, china
•	 Minerals; for example, stone, concrete, rock
•	 Coatings; for example, glazed, painted, enamel, polytetra-

fluoro ethylene (PTFE)/Teflon
•	 Other; soap, wax, chalk, pearl, composite materials.

Experiment 2 (18-AFC) task. The 924 stimuli were randomly split into 
four sessions, so that each participant categorized a quarter of the 
stimuli (20 participants per stimulus). The experiment was self-paced 
with no time constraints, and for most participants the experiment 
lasted approximately 1–1.5 hours. Only experimenter and participant 
were present during the experiment.

In each trial, observers were presented with an object in the cen-
tre of the screen (29° visual angle) with 18 categories displayed along 
the sides of the stimulus (Supplementary Fig. 5). They were asked to 
choose the category that best applied to that stimulus. If they were 
unhappy with their choice, they could change the confidence rating 
at the bottom right of the screen. Before the experiment, participants 
were asked to read carefully through the list of materials and were 
shown several examples of the stimuli to be presented. The purpose 
of this was so observers got a sense of the range of materials in the 
experiment. Observers were restricted to choosing only one category 
for each stimulus, and were given the following instructions verbally 
by the experimenter:

Use the mouse to click on the category that best describes the 
material of each object. When you are satisfied with your choice press 
the space bar to proceed to the next trial. In the case of categories 
with multiple items (for example, velvet/silk/fabric), the perceived 
material only needs to apply to one, not all, the categories. There 
are no right or wrong answers, as the experiment is about the per-
ception of materials. Not all categories will have an equal number 
of stimuli—you may choose one category more or less than others 
(or not at all). If you are not satisfied or confident with your choice, 
change the confidence rating at the bottom of the screen. This should 
be used in the case you feel that none of the available categories fit; 
if you think more than one category applies then just choose the 
most suitable option.

Experiment 3 (gloss ratings) task. The experiment was self-paced 
with no time constraints, and for most participants the experiment 
lasted approximately 1 hour. Only experimenter and participant were 
present during the experiment.

Before the experiment, participants were shown real-world exam-
ples of glossy objects (some of which are shown in Fig. 1a). As they were 
shown these images, they were given the following instructions:

Many objects and materials in our environment are glossy or shiny. 
Glossy things have specular reflections, and different materials look 
glossier/shinier than others. You will be shown different objects and 
asked to rate how glossy each object looks. This experiment is about 
visual perception so there is no right or wrong answer—just rate how 
glossy each object looks to you.

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 7 | July 2023 | 1152–1169 1166

Article https://doi.org/10.1038/s41562-023-01601-0

Participants were shown many example trials before starting the 
experiment so that they could experience the full range of stimuli and 
calibrate their ratings to the range of gloss levels in the experiment. In 
each trial, observers were presented with an object in the centre of the 
screen (29° visual angle). The task was to rate how glossy the object was 
by moving the mouse vertically to adjust the level of a bar on the right 
side of the screen. They were told to look at many points on the object 
before making their decision. The starting level of the rating bar was 
randomly set on each trial.

Experiment 4 (feature manipulations) task. Each participant cate-
gorized all 104 stimuli, and the task was identical to the 18-AFC task 
in Experiment 2. The experiment was self-paced with no time con-
straints, and for most participants the experiment lasted approxi-
mately 45 minutes. Only experimenter and participant were present 
during the experiment.

Analyses
Reduced set of category terms. Terms retained in Experiment 1  
(free-naming). A student assistant went through participants’ res-
ponses for the free-naming task and extracted all category terms 
(nouns) and descriptors (for example, adjectives describing fillings,  
coatings, finishes and states), translating them into English. Each  
participant often used multiple terms per stimulus, all of which were  
recorded as separate entries. Similar terms (like foil/metal foil/alumi-
nium foil, or pearl/pearlescent/mother of pearl/bath pearl) were 
combined into a single category. Some terms like ‘Kunststoff’ and 
‘Plastik’ were considered duplicates because they translated to a 
single term (plastic) in English.

Terms retained in Experiment 2 (18-AFC). We decided to retain the cat-
egory terms from the free-naming task that at least 5 of 15 participants 
used. This was an arbitrary cut-off with the aim of being quite inclusive 
while at the same time maintaining some consensus among partici-
pants. Supplementary Fig. 2 shows the 29 category terms that survived 
this cut-off. Subsequently, two of the authors (A.C.S. and K.D.) worked 
together to reduce this set of category terms. For example, materials 
that were visually or semantically similar were combined (specifically, 
fabrics, including velvet and silk; unglazed porcelain, stone and chalk; 
latex and rubber; wax and soap; brass, bronze and copper; iron and 
chrome; and silver and aluminium). To have some numerical guidance 
for this reduction we computed the correlation between each pair of 
categories, calculated from the number of participants that used each 
term for each stimulus (Supplementary Fig. 4). That is, for each pair of 
categories, correlated vectors were indexed by stimulus number with 
the values being number of observer responses. The superordinate 
category ‘metal’ was not included separately. In the free-naming task, 
non-category terms were often required to distinguish particular coat-
ings (glazed/varnished), finishes (polished) or states (liquid/melting) 
(Supplementary Fig. 2). For the 18-AFC task, we separated categories 
where these terms applied; for example, we included both glazed 
porcelain and unglazed porcelain, both liquid and solid chocolate, and 
also included a ‘covered in wet paint’ category. Thus, the final set of  
18 category terms (Supplementary Fig. 5) that participants could 
choose from in the 18-AFC task was as inclusive as possible while not 
being too large to overwhelm participants.

Factor analysis in Experiment 2 (18-AFC). The correlations between 
different categories in terms of their stimulus profiles (Supplementary 
Fig. 6) indicate that some category terms were not independent. This 
suggests the existence of underlying common dimensions; that is, 
participants used the same underlying criteria for different category 
terms. An exploratory factor analysis was performed on the stimulus 
profiles from Fig. 3b, which allowed us to explain some of this covaria-
tion and reveal the underlying category space of our stimulus set. Fig. 4a  

(red squares) shows that there is a steady increase in the common vari-
ance explained by each additional factor. The amount of additional vari-
ance explained by each factor did not drop off after a certain number 
of factors, indicated by the absence of a plateau in this plot. Therefore, 
we extracted 12 factors (the upper limit based on degrees of freedom), 
which were interpretable and explained more than 80% of the common 
variance between stimulus profiles. This is similar to or greater than 
the amount of variance explained by the factors/components retained 
in other material perception studies that have used factor analysis or 
principal components analysis (PCA)62. The factors were interpretable 
(Fig. 4b) and were labelled based on the original categories that loaded 
most strongly onto each factor (Fig. 4c). Factor scores were calculated 
using a weighted least-squares estimate (also known as the ‘Bartlett’ 
method). For comparison, Supplementary Fig. 7 shows the results of 
a PCA that retained all dimensions in addition to the results of other 
factor solutions, whose dimensions overlap with those here.

Visual features. Visual feature measurements in Experiment 2 
(18-AFC) and Experiment 3 (gloss ratings). Calculations for most 
of the visual features relied on specular highlight coverage maps. For 
glossy surfaces with uniform reflectance properties (like the stimuli 
used in the present study), specular reflections cover the entire surface. 
However, for low-gloss objects we often only see specular highlights, or 
‘bright’ reflections, which are usually reflections of direct light sources 
like the sun, or a lamp. For very shiny surfaces (like metal) and in some 
lighting conditions we also see lowlights, or ‘dark’ reflections25, which 
are reflections of indirect light coming from other surfaces in the scene. 
We chose to define coverage as the amount of the surface covered 
in specular highlights, excluding lowlights, which is consistent with 
previous literature32,63. Marlow and colleagues measured the cover-
age, contrast and sharpness of specular highlights using perceptual 
judgements from participants, owing to the difficulty in segmenting the 
specular component of an image from other sources of image structure 
(such as diffuse reflectance and shading). An acknowledged concern 
of this approach is that it uses one perceptual output (perceived cove-
rage, contrast and sharpness) to match another (perceived gloss). It is 
unclear what image structure observers use to judge each feature, and 
participants might conflate their judgements of the visual features 
with each other and with perceived gloss31 (see also van Assen et al.64 
for a similar use of this method). Therefore, we wanted to develop 
objective measures of specular reflection features. Currently there is 
no established method for segmenting specular reflections and diffuse 
shading from a single image that is robust across different contexts 
(for example, changes in surface albedo, shape and illumination condi-
tions). To help with this segmentation we rendered additional images 
that isolated specular and diffuse components.

Specular reflection segmentation for visual feature measurements. 
For each stimulus, a purely specular image was rendered, which had 
the same specular reflectance as the original (full rendered) image 
but with the diffuse component turned off. Two purely diffuse images 
were rendered, which we call ‘diffuse image 1’ (used to calculate cover-
age) and ‘diffuse image 2’ (used to calculate sharpness and contrast; 
first column in Supplementary Fig. 9). Kim et al.25 separated specular 
highlights and lowlights by subtracting an image of a rendered glossy 
surface (with a specular and diffuse component) from an ‘equivalent’ 
fully diffuse image with the same total reflectance as the glossy surface 
(that is, the surfaces reflected the same amount of light in total; for the 
diffuse surface light was scattered equally in all directions, and for the 
glossy surface some light was reflected specularly with the rest scat-
tered diffusely). Kim et al. used the Ward model65 in which the total 
reflectance could be easily matched between glossy and diffuse ren-
derings because specular reflectivity is constant at all viewing angles. 
Because the Principled BSDF simulates the Fresnel effect (whereby 
specular reflectance increases at grazing viewing angles, depending 
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on the index of refraction), the diffuse (1) renderings were matched to 
the facing (along normal) reflectivity of the purely specular renderings. 
The second diffuse image (diffuse image 2) was created by rendering 
only the diffuse component of the original (full rendered) stimulus, 
with the specular component turned off.

Specular reflections were segmented into specular highlights 
and lowlights by subtracting diffuse image 1 from the purely specular 
image, which resulted in a subtracted image. This subtracted image 
was thresholded to serve as a coverage mask (second column in Sup-
plementary Fig. 9). To obtain the best results for our stimulus set, the 
threshold was set to one-third of the maximum diffuse shading for 
each stimulus. Pixels above this threshold were considered highlights, 
and the remaining pixels were considered lowlights. For calculations 
of sharpness and contrast, specular reflections were segmented from 
diffuse shading by subtracting diffuse image 2 from the original ‘full’ 
stimulus (second column in Supplementary Fig. 9).

Definition of cues for visual feature measurements. Visual features 
(cues) were calculated using RGB images. For gloss cues, coverage was 
defined as the proportion of object pixels that were calculated to be 
specular highlights (excluding lowlights); contrast was defined as the 
sum of root-mean-squared contrast of extracted specular reflections 
at different spatial frequency bandpasses; the sharpness of extracted 
specular reflections was calculated for each pixel within the highlight 
regions using a measure of local phase coherence (we used the MATLAB 
implementation of the method by Hassen et al.66, available at https://
ece.uwaterloo.ca/~z70wang/research/lpcsi/), and these values were 
then averaged. For colour cues, highlight saturation and lowlight satu-
ration were calculated as the average colour saturation of pixels within 
the highlight region, and outside the highlight region (which we call 
the lowlight region), respectively, as measured by the rgb2hsv function 
in MATLAB (release 2018b; Mathworks), which converts the red, green 
and blue values of an RGB image to the hue, saturation and value of an 
HSV image (https://www.mathworks.com/help/matlab/ref/rgb2hsv.
html); lowlight value was calculated as the average value of pixels in 
the lowlight region (also using the rgb2hsv MATLAB function). A root 
transformation on sharpness and contrast was applied to linearize the 
relationship of these cues to gloss ratings.

Visual feature measurements for Experiment 4 (feature manipula-
tion). The same visual feature measurements were used for the ren-
dered stimuli (from Experiments 2 and 3) and the manipulated images 
(from Experiment 4), so that the measurements would be comparable 
(Supplementary Fig. 16). However, slight modifications had to be 
made. For the rendered stimuli (Experiment 2), the segmentation 
between highlights and lowlights (described in the previous section) 
relied on two additional rendered images: a rendered specular image 
and a rendered diffuse image (1) with the same total reflectance (Sup-
plementary Fig. 9). For Experiment 4, the image manipulations are all 
applied to the same ‘glazed ceramic’ material (Methods). We reused 
the corresponding rendered specular and diffuse images from the 
stimulus set from Experiment 2, with one additional step: the specular 
image was further modified by the normal-based blur filter to account 
for the change in highlight coverage induced by a change in sharpness. 
Apart from this, the rest of the visual feature measurement routines 
remained unchanged.

Linear discriminant analysis (LDA) in Experiment 2 (18-AFC). 
Materials were classified based on linear combinations of visual fea-
tures using multiclass LDA in MATLAB (release 2018b; Mathworks), 
which finds a set of linear combinations that maximizes the ratio of 
between-class scattering to within-class scattering (https://www.
mathworks.com/help/stats/discriminant-analysis.html). The MAT-
LAB function fitdiscr was used to fit a discriminant analysis classifier 
to the training data (regularized LDA in which all classes have the same 

covariance matrix). To train a classifier, the fitting function estimates 
the parameters of a Gaussian distribution for each class (https://www.
mathworks.com/help/stats/creating-discriminant-analysis-model.
html). Test data labels were predicted using the MATLAB function 
predict, in which the trained classifier finds the class with the small-
est misclassification cost (https://www.mathworks.com/help/stats/
prediction-using-discriminant-analysis-models.html).

Correlations in Experiment 3 (gloss ratings). Intersubject correla-
tions for gloss ratings were calculated using Pearson’s correlation, 
and the median was taken. Pearson correlations used for analyses in  
Fig. 5d,f were Fisher-transformed.

Linear regression in Experiment 3 (gloss ratings). A linear regression 
was performed on 920 stimuli predicting mean gloss ratings from the 
three gloss cues (coverage, sharpness, contrast). Only stimuli that were 
allocated a dimension in the factor analysis (from Experiment 2) were 
included in this analysis (four stimuli loaded negatively onto dimen-
sions, but not enough to make a new dimension for our stimulus set).

Ethics
This study was approved by the local ethics review board of the Justus 
Liebig University Giessen (LEK FB 06) and strictly adhered to the ethical 
guidelines put forward by the Declaration of Helsinki (2013). All par-
ticipants gave written informed consent before the experiments and 
were told about the purpose of the experiments. All participants were 
compensated for their participation at a rate of €8 per hour.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Psychophysics data and stimuli used in the experiments are available 
on Zendo: https://doi.org/10.5281/zenodo.5080227. The 3D meshes 
of the bunny and dragon objects were obtained from the Stanford 3D 
Scanning Repository and can be found under the following link: http://
graphics.stanford.edu/data/3Dscanrep/. Source data are provided 
with this paper.

Code availability
Code for analyses (including image analyses) are available on Zendo: 
https://doi.org/10.5281/zenodo.5080227.
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Data collection Stimuli were rendered using the open-source modelling software Blender (v2.79). Stimulus presentation and data collection were 
controlled by a MATLAB script (release 2018b, Mathworks, Natick, MA) using the Psychophysics Toolbox (v3; Brainard, 1997). 
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Study description The study had a within-subject experimental design, with quantitative data for all experiments.

Research sample Participants were undergraduate students from the psychology programme at Justus Liebig University Giessen in Germany. Fifteen 
participants completed the free-naming experiment (Experiment 1, mean age: 23.7, female 80%, male 20% ). Eighty native-level German 
speakers participated in the 18-AFC experiment (Experiment 2, mean age 24.9, female: 83.3%, male: 16.7%), 22 participants took part in 
the gloss rating experiment (Experiment 3, mean age: 25.3, female: 58.3%, male: 41.7%), and 22 participants took part in the feature 
manipulation experiment (Experiment 4, mean age: 23.4 , female: 81.8%, male: 18.2%). Different participants were recruited for each 
experiment.

Sampling strategy The experiment was advertised to students at Justus Liebig Univerity through the university's experimental volunteer system and 
participants were chosen on a first come first served basis. Sample size was chosen based on standards in the field, i.e., psychophysical 
studies of mid-level perception, and was slightly higher than this standard (e.g., 20 participants per experiment in Storrs, Anderson, & 
Fleming, 2021; Nat. Hum. Behav.).

Data collection In the free naming task (Experiment 1), stimuli were projected onto a white wall in a classroom. Thick black cloth was used to block light 
from the windows, so that the only source of light came from the projected image. For all other experiments the stimuli were presented 
on a Sony OLED monitor running at a refresh rate of 120 Hz with a resolution of 1920 x 1080 pixels controlled by a Dell computer running 
Windows 10. Stimuli were viewed in a dark room at a viewing distance of approximately 60cm. The only source of light was the monitor 
that displayed the stimuli. Participants used mouse and keyboard presses to respond to stimuli presented on the screen. For Experiment 
1 participants recorded their responses using pen and paper. Only experimenter and participant were present during the experiment. 
 
In Experiment 1, two researchers were present in the same room as participants. In Experiments 2-4, a researcher was present in the 
same room as the participant. In all Experiments, researchers were not blinded to the study hypothesis, however our experiments did 
not involve assignment to groups (but within subject design).

Timing Experiment 1: 3rd May 2018 (one day only); Experiment 2: 11th March - 14th May 2019; Experiment 3: 14th-20th August 2019; 
Experiment 4: 11th-21st November 2019

Data exclusions One participant was excluded from Experiment 3 because they did not understand the task instructions. Not understanding the task was 
a pre-established reason for excluding participants from analysis.

Non-participation No participants dropped out/declinded participation.

Randomization Participants were not allocated into experimental groups (within subjects design).

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Participants volunteered via a university experimental volunteer system, and participants were chosen on a first come first 
served basis. Participants were chosen based on their availability at the time of data collection. Visual perception of materials 
likely varies somewhat with environmental and cultural exposure to different materials. We consider our sample of educated 
young adults to be representative of visual material perception within industrialised Western countries, but not necessarily 
representative of all humans. 
 
Any potential self selection biases such as financial pressure, or motivation to gain experience in a psychological experience are 
not likely to impact the generalisability of the results, since our investigation focuses on basic perceptual mechanisms.

Ethics oversight This study was approved by the local ethics review board of the Justus Liebig University Giessen (LEK FB 06) and strictly adhered 
to the ethical guidelines put forward by the declaration of Helsinki (2013). All participants gave written informed consent prior to 
the experiments and were told about the purpose of the experiments. All participants were compensated for their participation 
at a rate of 8 €/hour.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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