Aus dem Physiologischen Institut der Tierärztlichen Hochschule Hannover

Untersuchungen zur funktionellen und strukturellen Charakterisierung renaler Phosphattransportsysteme bei kleinen Wiederkäuern

Inaugural-Dissertation zur Erlangung des Doktorgrades im Fachbereich Agrarwissenschaften, Ökotrophologie und Umweltmanagement der Justus-Liebig-Universität Gießen

> Eingereicht von Christina Franziska Walter Hannover 1999

Dissertation im Fachbereich Agrarwissenschaften, Ökotrophologie und Umweltmanagement der Justus-Liebig-Universität Gießen 17. Dezember 1999

Vorsitzender:	Prof. Dr. P. M. Schmitz
1. Gutachter:	Prof. Dr. G. Breves
2. Gutachterin:	Prof. Dr. H. Daniel
Prüferin:	Prof. Dr. M. Neuhäuser-Berthold
Prüfer:	Prof. Dr. J. Pallauf

Meinen Eltern

Inhaltsverzeichnis

1.	Einleitung	1
2.	Literaturübersicht	2
2.1	Besonderheiten des Phosphathaushaltes von Wiederkäuern	2
2.1.1	Sekretion mit dem Speichel	2
2.1.2	P _i -Bewegungen im Magen-Darm-Trakt	4
2.1.3	Renale P _i -Ausscheidung	6
2.2	Pi-Resorption entlang des Nephrons	8
2.2.1	Zelluläre Mechanismen der proximalen tubulären Pi-Absorption	9
2.2.1.1	Apikale Transportmechanismen	9
2.2.1.2	Transzelluläre Mechanismen	12
2.2.1.3	Basolaterale Transportmechanismen	12
2.2.2	Besondere strukturelle Aspekte des Na ⁺ /P _i -Cotransporters Typ II	13
2.3	Hormonelle Regulation	15
2.4	Einfluß der alimentären P-Versorgung auf die Expression des	
	Na ⁺ /P _i -Cotransporters Typ II	17
3.	Material und Methoden	21
3.1	Versuchstiere, Fütterung und Gewebeentnahme	21
3.2	Präparation der Bürstensaummembranvesikel	23
3.3	Transportuntersuchungen	26
3.3.1	Schnellfiltrationstechnik	26
3.3.2	Bei den Messungen zur Phosphataufnahme verwendete	
	Inkubationsansätze	26
3.4	Protein- und Enzymbestimmungen	28
3.4.1	Proteinbestimmung	28
3.4.2	Aktivität der alkalischen Phosphatase	29
3.4.3	Aktivität der Na ⁺ -K ⁺ -ATPase	29
3.5	Plasmaanalytik	30

3.5.1	Calcium	30
3.5.2	Anorganisches Phosphat	30
3.6	Berechnungen	30
3.6.1	Aufnahmerate	30
3.6.2	Vesikelvolumen	31
3.7	Isolierung von RNA	32
3.8	Probenaufbereitung für die PCR	32
3.8.1	DNAse-Verdau	32
3.8.2	Erst-Strang-Synthese	33
3.9	PCR	34
3.9.1	Primer	34
3.9.2	Reaktionsansatz und Durchführung der PCR	34
3.9.3	Detektion und Analyse der PCR-Produkte	35
3.9.4	Extraktion der PCR-Produkte aus dem Agarosegel	36
3.10	Sequenzieren der PCR-Produkte	36
3.10.1	Transformation von Zellen	36
3.10.1.1	Ligation der PCR-Produkte in einen Vektor	36
3.10.1.2	Transformation von JM109-Zellen	38
3.10.2	Plasmidpräparation	39
3.10.3	Restriktionsverdau	39
3.10.4	Sequenzierung	39
3.11	Lösungszusammensetzung	39
3.12	Statistische Auswertung	41
4.	Ergebnisse	42
4.1	Charakterisierung des Tiermodells	42
4.2	Anreicherung der Bürstensaummembranvesikel	44
4.3	Vesikelintegrität	46
4.4	Charakterisierung der Pi-Aufnahme	47
4.4.1	Initiale P _i -Aufnahme	48
4.4.2	P _i -Aufnahme als Funktion der P _i -Konzentration	49
4.4.3	P _i -Aufnahme als Funktion der Na ⁺ -Konzentration	52

4.5	Molekulare Charakterisierung des Pi-Transportsystems	55
4.5.1	Amplifikation von Na ⁺ /P _i -Cotransporter Typ II spezifischen	
	Fragmenten	55
4.5.2	Sequenzierung der Na ⁺ /P _i -Cotransporter Typ II spezifischen	
	Fragmente	56
5.	Diskussion	60
5.1	Beurteilung der angewandten Methode	60
5.1.1	Anreicherung der Bürstensaummembranfraktion	61
5.1.2	Vesikelintegrität und -volumen	62
5.2	Auswirkungen einer unterschiedlichen P- oder Ca-Versorgung	
	auf die P- und Ca-Konzentration im Plasma	64
5.3	Kinetische Eigenschaften des Pi-Transporters	66
5.3.1	Einfluß von Pi auf den Pi-Transport	66
5.3.2	Einfluß von Na⁺	72
5.4	Strukturelle Charakterisierung des Na ⁺ /P _i -Cotransporter Typ II	75
6.	Zusammenfassung	78
7.	Literaturverzeichnis	81

Abkürzungsverzeichnis

Abb.	Abbildung
AP	alkalische Phosphatase
ATP	Adenosintriphosphat
BSMV	Bürstensaummembranvesikel
ca.	circa
cDNA	complementary DNA (komplementäre Desoxyribonukleinsäure)
Ci	Curie
cpm	counts per minute (Zerfallsrate pro Minute)
d	Tag
Da	Dalton
DNA	Desoxyribonucleic Acid (Desoxyribonukleinsäure)
dNTP	Desoxyribonucleotid
EDTA	Ethylendiamintetraacetat
Fa.	Firma
g	Gramm
g	Erdbeschleunigung
h	Stunde
HEPES	N-2-Hydroxyethylpiperazin-N'-ethansulfonsäure
kDa	Kilo-Dalton
kg	Kilogramm
K _m	Michaelis-Menten-Konstante
I	Liter
min	Minute
mm	Millimeter
mRNA	messenger Ribonucleic Acid (Messenger Ribonukleinsäure)
μΙ	Mikroliter
μm	Mikrometer
nm	Nanometer
Р	Phosphor

PCR	Polymerase Chain Reaction (Polymerasenkettenreaktion)
Pi	anorganisches Phosphat
PTH	Parathormon
rpm	rounds per minute (Umdrehungen pro Minute)
RT	Reverse Transcriptase
Таq	Thermophilus Aquaticus
Tris	Tris[hydroxymethyl]aminomethan
U	Units
V _{max}	maximale Reaktionsgeschwindigkeit in Michaelis-Menten-Beziehung

1. Einleitung

Phosphor (P) ist ein essentieller Bestandteil vieler organischer und anorganischer Verbindungen im Organismus. Ungefähr 85 % des Gesamtphosphats sind als Hydroxylapatit im Knochen lokalisiert, 15 % verteilen sich auf Weichgewebe (14 %) und intra- und extrazelluläre Flüssigkeiten (1 %). Neben seiner Bedeutung als wesentlicher Baustein bei der Mineralisierung der Knochen kommt ihm auch eine wichtige Rolle als Puffersubstanz im Säure-Basenhaushalt zu. Außerdem spielen organische Phosphate eine wichtige Rolle in der Regulation des Energiehaushaltes der Zelle und sind ein elementarer Bestandteil der Zellmembranen.

Der P-Haushalt von Wiederkäuern unterscheidet sich deutlich von dem monogastrischer Tiere. Über eine hohe P_i-Sekretion mit dem Speichel wird bei niedriger renaler P_i-Ausscheidung durch die P_i-Absorption im Darm ein effektiver endogener P_i-Kreislauf aufrechterhalten, der für eine ausreichende Effizienz des mikrobiellen Stoffwechsels im Pansen essentiell ist.

Die physiologischen Grundlagen dieser hohen renalen P_i-Resorptionskapazität bei Wiederkäuern im Vergleich mit monogastrischen Tieren sind noch nicht geklärt. Es ist denkbar, daß sie auf artspezifische Unterschiede in den kinetischen Eigenschaften des P_i-Transportsystems der Niere zurückzuführen sind.

Ziel dieser Arbeit war es, die kinetischen Parameter des renalen P_i-Transportsystems bei Ziegen und Schafen zu untersuchen und einen möglichen Einfluß der P- und Ca-Homöostase auf die Transporteigenschaften zu erfassen. Um methodisch vergleichbare Daten für eine monogastrische Spezies zu erhalten wurden Kontrollversuche an Schweinen durchgeführt.

Mit Hilfe von PCR und DNA-Sequenzierung sollte untersucht werden, ob es sich bei dem renalen Na⁺-abhängigen Phosphattransportsystem von Ziege, Schaf und Schwein auch um einen Na⁺/P_i-Cotransporter Typ II, der in der Rattenniere nachgewiesen wurde, handelt.

2. Literaturübersicht

2.1 Besonderheiten des Phosphathaushaltes von Wiederkäuern

Der Phosphathaushalt von Wiederkäuern zeichnet sich im Vergleich zum monogastrischen Tier durch mindestens zwei Besonderheiten aus, zum einen durch die hohe endogene P_i-Sekretion mit dem Speichel und zum anderen durch die niedrige renale P_i-Ausscheidung.

2.1.1 P_i-Sekretion mit dem Speichel

Die tägliche endogene Pi-Sekretion mit dem Speichel läßt sich aus der täglichen Speichelflußrate und der Pi-Konzentration im Mischspeichel bestimmen. Nach Untersuchungen von KAY (1960), BREVES et al. (1987) und JAQUES et al. (1989) liegt die tägliche Speichelproduktion von Schafen bei 10-19 I. Die P-Konzentration im Speichel variierte dabei zwischen 8 und 32 mmol'l¹ und wurde entscheidend durch die Höhe der Plasma-Pi-Konzentration beeinflußt (PRESTON und PFANDER 1964, FARRIES und KRASNODEBSKA 1972, POPPI und TERNOUTH 1979, FIELD et al. 1982, MANAS-ALMENDROS et al. 1982, SCOTT et al. 1984a und 1984b, BREVES et al. 1987). Das bedeutet, daß im Mittel 300 mmol Pi pro Tag mit dem Speichel sezerniert werden. Dabei besteht zwischen der Plasma-Pi-Konzentration, die bei Schafen mit bedarfsgerechter Phosphatversorgung 1,6-2,3 mmol⁻¹ beträgt, und der P_i-Konzentration im Speichel eine positive lineare Beziehung bis zu einer P_i-Konzentration von 3-5 mmoli⁻¹ im Plasma (CLARK et al. 1973, TOWNS et al. 1978, SCOTT und BEASTALL 1978, CHALLA und BRAITHWAITE 1988c, WIDIYONO et al. 1998). Das Verhältnis zwischen Speichel-Pi und Plasma-Pi liegt dabei bei 12:1 bis 16:1 (SCOTT und BEASTALL 1978, MANAS-ALMENDROS et al. 1982). Pi kann also in den Speicheldrüsen konzentriert werden. Dieser Mechanismus ist sättigbar, denn bei höheren Plasmakonzentrationen steigt die Speichel-P_i-Konzentration nur noch wenig an und stellt sich trotz weiterer Konzentrationserhöhungen im Plasma auf einen Maximalwert ein.

Die Hauptlokalisation Speicheldrüsen der P_i-Sekretion der liegt in den Über Drüsenendstücken al. 1980). "Bergauf"-(COMPTON et den Transportmechanismus liegen bislang nur wenige Untersuchungen vor. Untersuchungen an basolateralen Membranvesikeln von Zellen der Parotisdrüsenendstücke von Schafen erbrachten Hinweise auf die Beteiligung eines Na⁺-abhängigen, elektrogenen P_i-Transportsystems (SHIRAZI-BEECHEY et al. 1991, VAYRO et al. 1991).

Es ist ungeklärt auf welchem Weg P_i-Ionen die Zellen durch die apikale Membran in die Drüsengänge verlassen. Ebenso wenig ist bekannt, ob und wie die ansonsten an der P-Homöostase direkt oder indirekt beteiligten Hormone Calcitriol, PTH und Calcitonin die P_i-Sekretion beeinflussen. So bewirkte PTH sowohl einen Anstieg der P_i-Konzentration im Speichel (TOMAS und SOMERS 1974, CLARK et al. 1975, WADSWORTH und COHEN 1977, WRIGHT et al. 1984) als auch den gegenteiligen Effekt (MANAS-ALMENDROS et al. 1982). Calcitonin verursachte eine erhöhte P_i-Konzentration im Speichel (MATSUI et al. 1984), während Calcitriol den P_i-Gehalt erniedrigte (MANAS-ALMENDROS et al. 1982).

Die hohe endogene R-Sekretion mit dem Speichel führt dazu, daß die auf diesem Wege in die Vormägen gelangende P-Menge auch bei bedarfsdeckender alimentärer P-Versorgung immerhin zwischen 50% und 80% des täglich in den Pansen gelangenden Gesamt-P beträgt (BRAITHWAITE 1984, SCOTT et al. 1985, CHALLA et al. 1989, SCOTT und BUCHAN 1987). Besonders bei niedriger P-Versorgung übertrifft der Speichel-P die alimentäre P-Aufnahme um ein Vielfaches (TOMAS et al. 1967), da die Fähigkeit der Speicheldrüsen P, im Speichelsekret anzureichern, erhalten bleibt (TERNOUTH et al. 1985). Diese Besonderheit der Wiederkäuer dient vermutlich der Sicherstellung der Versorgung der Mikroorganismen mit P und damit der Sicherung mikrobieller Stoffwechsel- und Syntheseleistungen im Pansen. Es konnte im Experiment gezeigt werden, daß niedrige ruminale R-Konzentrationen zu Einschränkungen der Verdaulichkeit von organischer Substanz sowie zur Reduktion der mikrobiellen Proteinsynthese führten (FARRIES und KRASNODEBSKA 1972, FIELD et al. 1975, SEVILLA und TERNOUTH 1980 und 1982, MILTON und TERNOUTH 1984 und 1985, TERNOUTH et al. 1985, BREVES und HÖLLER 1987a und 1987b, PETRI et al. 1988).

2.1.2 P_i-Bewegungen im Magen-Darm-Trakt

Bei bedarfsdeckender alimentärer P-Versorgung und physiologischen P_i -Konzentrationen im Plasma und Speichel liegen die P_i -Gehalte in der Pansenflüssigkeit von Schafen zwischen 13 und 20 mmol'I⁻¹ (TOMAS et al. 1967, BONILLA 1976, BREVES et al. 1987).

Mit Hilfe der Technik des entleerten, gewaschenen, isolierten und mit einer künstlichen Pansenflüssigkeit gefüllten Pansens wurden Untersuchungen zur ruminalen P_i-Absorption bei Schafen durchgeführt. Dabei konnte eine positiv lineare Beziehung zwischen der P_i-Konzentration in der Pansenflüssigkeit und der P_i-Nettoabsorption bestimmt werden (BREVES et al. 1988, BEARDSWORTH et al. 1989). Dies läßt vermuten, daß der Nettoabsorption von P_i im Pansen passive Transportmechanismen zugrunde liegen. Auch die Befunde aus In-vitro-Untersuchungen am isolierten Pansenepithel von Schafen, die mit Hilfe der Ussingkammertechnik durchgeführt wurden, deuten auf eine einfache passive Diffusion hin (BREVES et al. 1988, DUA et al. 1994).

P_i-Bewegungen über die Wand des Blättermagens werden in der Literatur widersprüchlich diskutiert. Während ENGELHARDT und HAUFFE (1975) in In-vivo-Untersuchungen an Schafen eine nur geringe Nettoabsorption feststellten, lag bei Kälbern nach Untersuchungen von BANKS und SMITH (1984a,b) und ENDERISE und SMITH (1979, 1986) die Nettoabsorption zwischen 10 % und 40 % des P, welches das Omasum passierte.

Dem Labmagen wird keine große Bedeutung bei der P_i-Nettoabsorption beigemessen, aber In-vitro-Untersuchungen von MAHLER (1991) lassen eine P_i-Nettoabsorption aus dem Labmagen, wenn auch in geringen Mengen, möglich er-scheinen. Dabei wird wie beim Pansen ein passiver P_i-Transport auf parazellulärem Wege, diskutiert (MAHLER 1991).

Der quantitative Anteil der Vormägen an der gesamten gastrointestinalen P_i-Nettoabsorption kann als vergleichsweise gering angesehen werden. Damit wird die in das proximale Duodenum fließende P-Menge, wie vorher dargelegt, durch den Futterund Speichel-P bestimmt und nur geringfügig im oberen Dünndarm durch den über Galle und Pankreasflüssigkeit sezernierten P erhöht. SCOTT und McLEAN (1981) fanden eine tägliche P-Sekretion über die Gallen- und Pankreasflüssigkeit von nur 0,5-0,7 g, wovon 0,1 g als P_i und 0,4-0,6 g als Phospholipide sezerniert wurden. Bei Überlegungen bezüglich quantitativer Aspekte der intestinalen P-Bewegungen kann dieser Anteil deshalb vernachlässigt werden.

Viele Untersuchungen haben eindeutig gezeigt, daß der Dünndarm die Hauptlokalisation für die P-Absorption darstellt (BRUCE et al. 1966, GRACE et al. 1974, DILLON und SCOTT 1979, BEN-GHEDALIA et al. 1982, WILSON und FIELD 1983, BREVES et al. 1985, SKLAN und HURWITZ 1985, WYLIE et al. 1985). Quantitativ wird beim adulten Tier bis zum Ende des Dünndarms in etwa die Menge an Pi absorbiert, die vormals über die endogene Speichelsekretion in den Magen-Darm-Trakt gelangt ist (PFEFFER et al. 1970, GRACE et al. 1974, BEN-GHEDALIA et al. 1975). In das terminale lleum gelangen ca. 2 g P/d, wobei die Verteilung der verschiedenen P-Fraktionen nicht mehr der im proximalen Duodenum entspricht (BREVES et al. 1985). Dort sind zwischen 60 % und 80 % des Gesamt-P in der Darmflüssigkeit gelöst, wovon 90 % auf Pi entfallen. Im terminalen lleum beträgt dagegen der Anteil des löslichen P nur noch zwischen 19 % und 52 %, die nur zu etwa 30 % als Pi vorliegen (VAN`T KLOOSTER 1967, BEN-GHEDALIA et al. 1975, GRACE et al. 1977, BREVES et al. 1985). Diese In-vivo-Befunde unterstreichen die Absorptionskapazität des Dünndarms für Pi-lonen. Ussingkammerversuche mit Jejunum von Ziegen und Schafen (SCHRÖDER et al. 1995) und Transportuntersuchungen mit jejunalen Bürstensaummembranvesikeln (BSMV) der Ziege (SCHRÖDER und BREVES 1996) lieferten schließlich Hinweise auf aktive P_i-Transportmechanismen.

Über die Bedeutung des Dickdarms für die R-Absorption liegen widersprüchliche Ergebnisse vor. Während in einigen Untersuchungen keine P_i-Nettobewegungen über die Dickdarmwand nachgewiesen werden konnten, haben andere Versuche entweder eine Nettosekretion oder -absorption von P_i gezeigt. Die richtungsbestimmenden Faktoren des Transports sind dabei noch nicht bekannt. Aber es besteht keine eindeutige Abhängigkeit von der Höhe der täglichen P-Zufuhr (BRUCE et al. 1966, PFEFFER et al. 1970, GRACE 1972, GRACE et al. 1974, BEN-GHEDALIA et al. 1975 und 1982, POPPI und TERNOUTH 1979, GREENE et al. 1983, BREVES et al. 1985, SKLAN und HURWITZ 1985, THEWIS und FRANCOIS 1985, WYLIE et al. 1985, HÖLLER et al. 1988). In-vitro-Untersuchungen am proximalen Colon von Schafen lieferten ähnlich wie am Dünndarm Hinweise auf die Beteiligung aktiver Mechanismen an der P_i-Absorption (SCHRÖDER et al. 1995).

2.1.3 Renale P_i-Ausscheidung

Im Vergleich zu monogastrischen Tieren scheiden Wiederkäuer nur sehr geringe Mengen an P_i mit dem Harn aus. Zur Verdeutlichung sind die täglich P_i-Ausscheidungen bei verschiedenen Spezies in Tab. 1 vergleichend dargestellt.

Spezies	Tägliche P _i -Auscheidung im Harn		Autoren	
	(3, 4)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Ziege	0,04 - 0,22	1,3 - 6,3	Schöneseiffen (1993)	
Schaf	0,01 - 0,02	1,3 - 2,4	Preston und Pfander (1964)	
Schwein	2,0 - 2,8	23 - 33	Böntgen-Simonet (1993)	
Katze	0,05 - 0,23	16 - 71	Kienzle und Wilms-Eilers (1993)	
Hund	0,23 - 0,3	20 - 27	Zentek et al. (1994)	

Tab. 1 Tägliche P_i-Auscheidungen im Harn von verschiedenen Spezies (Beispiele).

Eine vergleichsweise hohe renale P_i-Exkretion wie bei monogastrischen Spezies wurde bei Wiederkäuern nur bei saugenden bzw. milchernährten Lämmern und Kälbern beobachtet (WALKER 1972, HODGE 1973, BOENCKE et al. 1976, 1981). Dies ist möglicherweise darauf zurückzuführen, daß die Tiere in diesem Alter funktionell noch als monogastrische Tiere angesehen werden können.

In anderen Untersuchungen fielen jedoch auch immer wieder einzelne adulte Wiederkäuer auf, deren renale P_i-Ausscheidung eher derjenigen der monogastrischen Tiere entsprach. In Bilanzuntersuchungen fand MEYER (1972) z.B. bei 3 von 8 Schafen eine erhöhte P_i-Ausscheidung mit dem Harn (1,9-2,3 g/d), die restlichen Tiere schieden dagegen nur etwa 0,02 g/d aus. Auch FIELD (1981) beschrieb, bei einer alimentären P-Aufnahme von 4,6 g/d, Schafe mit hoher (1,8-2,7 g/d) und andere mit extrem geringer P_i-Exkretion (0,03-0,05 g/d). SCOTT et al. (1984a) fanden bei 2 von 6 Schafen eine erhöhte P_i-Ausscheidung, nachdem die P-Aufnahme von basal 2,05 g/d (Grasfütterung) bzw. 1,51 g/d (Heufütterung) durch eine intraruminale P_i-Infusion auf 5,05 g/d bzw. 4,51 g/d erhöht wurde. Auch FIELD et al. (1983) konnten dieses Phänomen bestätigen. Dabei wurde eine lineare Beziehung zwischen der alimentären P-Versorgung und der

renalen P_i-Exkretion nachgewiesen. Über die Ursachen dieser renalen "P_i-Ausscheider" unter den Wiederkäuern ist bislang nichts Näheres bekannt.

Ähnlich wie bei monogastrischen Tieren wird die renale P_i-Ausscheidung beim Wiederkäuer durch die P_i-Konzentration des Plasmas beeinflußt. In Untersuchungen an Ziegen, Schafen und Kühen, in denen eine Steigerung der P_i-Konzentration im Plasma durch intravenöse bzw. intraabomasale P_i-Infusionen erzielt wurde, konnte eine Erhöhung der renalen P_i-Ausscheidung nachgewiesen werden. Dieser Effekt trat aber erst bei unphysiologisch hohen P_i-Plasmakonzentrationen >2-4 mmol⁻¹ auf, was den Schwellenwert der P_i-Ausscheidung darstellt (FIELD et al. 1983, SCOTT et al. 1984b, SCOTT und BUCHAN 1985, CHALLA und BRAITHWAITE 1988a,b, WIDIYONO 1995).

2.2 P_i-Absorption entlang des Nephrons

Die Hauptlokalisation der P_i-Nettoresorption liegt im proximalen Tubulus, beginnend mit der Pars convoluta. Unter bestimmten Bedingungen kann jedoch auch im distalen Tubulus und im Sammelrohr P_i resorbiert werden (AMIEL et al. 1970, BAUMANN et al. 1975, BONJOUR und CAVERZASIO 1984, BORLE 1974, DENNIS und BRAZY 1982, DENNIS et al. 1979, KNOX et al.1977, KNOX et al. 1982, LANG et al. 1981, McKEOWN et al. 1979, MIZGALA und QUAMME 1985) (siehe Abb. 1). Allerdings sind die Nettofluxraten in den einzelnen Tubulusabschnitten und ihr relatives Verhältnis zueinander nicht konstant, da die einzelnen Segmente in unterschiedlicher Weise auf modulierende Faktoren, wie z.B. PTH (siehe 2.5) oder P_i-Depletion, reagieren (DENNIS et al 1977, DENNIS und BRAZY 1982, MÜHLBAUER et al. 1977). Erhebliche Unterschiede in der P_i-Resorption konnten auch zwischen den superfiziellen und juxtamedullären Nephronen beobachtet werden, so wird in juxtamedullären Nephronen bis zu 80 % mehr P_i resorbiert als in superfiziellen Nephronen (GOLDFARB 1980, HAAS et al. 1978).

Abb.1 P_i-Resorption entlang des Nephrons (P_i-Konzentration im Tubulus als % der filtrierten Menge)

2.2.1 Zelluläre Mechanismen der proximalen tubulären P_i-Absorption

2.2.1.1 Apikale Transportmechanismen

Die P_i-Aufnahme durch die apikale Bürstensaummembran der Epithelzellen im proximalen Tubulus ist abhängig von der Höhe der Na⁺-Konzentration in der tubulären Flüssigkeit und kann durch Ouabain und andere Inhibitoren der basolateral lokalisierten Na⁺-K⁺-ATPase gehemmt werden (BAUMANN et al. 1975, BRAZY et al. 1980a, DENNIS und BRAZY 1978, DENNIS und BRAZY 1982, DENNIS et al. 1976, ULLRICH et al. 1977, ULLRICH und MURER 1982). D.h. die transepitheliale P_i-Absorption ist ein

sekundär aktiver Na⁺/P_i-Cotransport, der durch die Na⁺-K⁺-ATPase energetisiert wird (Abb. 2).

Bereits 1976 beschrieben HOFFMANN et al. eine Na⁺-abhängige P_i-Aufnahme in apikale Bürstensaummembranvesikel (BSMV) des proximalen Tubulus von Ratten. Sie beobachteten in Anwesenheit eines vesikeleinwärts gerichteten Na⁺-Gradienten eine rasche P_i-Aufnahme, und zwar über den Konzentrationsausgleich zwischen intra- und extravesikulärem Medium hinaus (sog. Overshoot, d.h. [P_i] _{intravesikulär} zeitweise > [P_i] _{extravesikulär}). In Anwesenheit eines K⁺-Gradienten konnte dagegen nur eine langsame, linear verlaufende P_i-Aufnahme in die Vesikel beobachtet werden. Umgekehrt war auch die Na⁺-Aufnahme in die BSMV in Anwesenheit von P_i-Ionen höher als in Abwesenheit (HOFFMANN et al. 1976).

Diese Beobachtungen konnten in der Folge auch von anderen Arbeitsgruppen durch zahlreiche Vesikelstudien an unterschiedlichen Spezies und unter verschiedenen Bedingungen bestätigt werden (BARRET et al. 1980, BRANDIS et al. 1987, BINDELS 1986, BRUNETTE 1984, CAVERZASIO et al. 1982 und 1987, CHENG und SACKTOR 1981, HAMMERMANN 1986, HELPS und MC GIVAN 1991, HRUSKA und HAMMERMANN 1981, MOLITORIS et al. 1985, STOLL et al. 1979, SHIRAZI-BEECHEY et al. 1996, TURNER und DOUSA 1985, YUSUFI et al. 1989).

Untersuchungen an BSMV zur Frage, ob P_i in Form von HPO₄²⁻ und/oder H₂PO₄⁻ (bei physiologischen pH-Werten von pH 7,4 liegen 80 % des P_i in divalenter Form vor) bevorzugt transportiert wird, kamen zu dem Ergebnis, daß nur ein Transportsystem für beide Anionenformen existiert, und daß die divalente möglicherweise gegenüber der monovalenten Form bevorzugt wird (BURCKHARDT et al. 1981, CHENG und SACKTOR 1983, HOFFMANN et al. 1976, QUAMME und WONG 1984, ULLRICH et al. 1978).

Weitere Studien zum Einfluß des pH-Wertes mit dem Ziel einer detaillierten funktionellen Charakterisierung des P_i-Transporters ergaben Hinweise, daß ein direkter Einfluß von H⁺-Ionen auf die Na⁺-Bindung des Transporters besteht, so daß seine Fähigkeit, P_i zu transportieren, in Anwesenheit saurer pH-Werte reduziert wird (BURCKHARDT et al. 1981, HOFFMANN et al. 1976, MURER et al. 1980). Eine Erhöhung der luminalen Na⁺-Konzentration verminderte den inhibitorischen Effekt einer erhöhten H⁺-Ionen-Konzentration auf den P_i-Transport. Dies wurde als mögliche Konkurrenz von H⁺- und Na⁺-Ionen um die Na⁺-Bindungsstelle des Transportsystems

interpretiert (BURCKHARDT et al. 1981). Diese Beobachtung konnte aber von anderen Arbeitsgruppen nicht bestätigt werden (CHENG und SACKTOR 1981).

Eine strukturelle Identifikation der am renalen P_i-Transport beteiligten Systeme gelang durch die Klonierung zweier Na⁺-gekoppelter P_i-Transporter Typ I und Typ II aus der Kaninchen- bzw. Rattenniere (WERNER et al. 1991, MAGAGNIN et al. 1993). Beide Transporter sind durch mehrere Transmembrandurchgänge (7 bei Typ I, 8 bei Typ II) gekennzeichnet und befinden sich in der apikalen Membran der proximalen Tubuluszelle (MURER und BIBER 1997). Eine funktionelle Charakterisierung der klonierten Transporter erfolgte nach Expression in Xenopus laevis Oozyten, in OK (oppossum kidney)- und in MDCK (madine dorby canine kidney)-Zellen über Tracer-Fluxmessungen und elektrophysiologische Untersuchungen.

Der Na⁺/P_i-Cotransporter Typ I ist ein bifunktionales Protein mit einer aufgrund der schwachen Na⁺-Abhängigkeit nur geringen P_i-Transportkapazität, die nicht über die alimentäre P-Versorgung beeinflußt ist. Außerdem weist das Protein eine ausgeprägte Anionen-Kanalfunktion auf (BUSCH et al. 1996 a,b).

Der Na⁺/P_i-Cotransporter Typ II dagegen ist für den Hauptteil der P_i-Resorption verantwortlich: Bei einer Stöchiometrie von Na⁺:P_i von 3:1 bindet zunächst das Na⁺, dann die P_i-Ionen, sowohl mono- als auch divalent, an den Transporter und führen über Konformationsänderung des Transportproteins zur Aufnahme des P_i in die Zelle (MURER und BIBER 1997).

Die bestehende pH-Abhängigkeit beruht auf einer Konkurrenz der H⁺-lonen um die Na⁺-Bindungsstellen, so daß eine Ansäuerung zur Hemmung des P_i-Transportes führt (MURER und BIBER 1997). Die Aktivität des Na⁺/P_i-Cotransporters Typ II wird sowohl durch lipophile (Thyroxin, Vit. D₃, Glukokortikoide, Östradiol) Hormone als auch durch Peptidhormone (Insulin, JGF-1, GH, Calcitonin, ANP, EGF, TGF, PTH, PTHrP) beeinflußt (BERNDT und KNOX 1992, DOUSA 1996, KEMPSON 1996).

Wachstum und Entwicklung wie auch alimentäre Schwankungen in der P-Versorgung führen zu adaptiven Veränderungen in der renalen tubulären P_i-Resorption. Hierüber wird weiter unten berichtet.

2.2.1.2 Transzelluläre Mechanismen

Es wird angenommen, daß P_i-Anionen, die über die apikale Membran in die Zelle gelangen, sich mit dem cytosolischen P_i-Pool mischen und dabei auch mit den Stoffwechselprozessen wie z.B. der oxidativen Metabolisierung und Glykolyse interagieren können (MURER und BIBER 1992). Aufgrund der P_i-Konzentration von ca. 1 mmoll⁻¹ (FREEMANN et al. 1983) ist die Annahme einer P_i-Diffusion durch die Zelle für den auftretenden P_i-Transport für sich allein ausreichend. So liegen auch keine Hinweise auf einen gesonderten Transportweg für P_i im Cytosol vor. Für intestinale Epithelzellen postulieren PETERLIK und WASSERMAN (1978) jedoch einen P_i-Transport durch die Zelle in sogenannten "Extrakompartimenten". Auch NEMERE (1996a,b) beschreibt eine Beteiligung von Lysosomen am gerichteten P_i-Transport im Hühnerdarm, der durch Calcitriol stimuliert werden konnte.

2.2.1.3 Basolaterale Transportmechanismen

Die basolaterale Ausschleusung von P_i kann theoretisch entlang seines elektrochemischen Gradienten stattfinden. Über die möglichen Transportmechanismen ist bislang nur wenig bekannt. Basierend auf Untersuchungen an basolateralen Membranvesikeln aus Tubulusepithelien wurde ein Na⁺-unabhängiger, DIDS-sensitiver Anionenaustauscher mit großer Kapazität postuliert (GRINSTEIN et al. 1980, HAGENBUCH und MURER 1986, SCHWAB und HAMMERMANN 1986, SCHWAB et al. 1984). Aber auch Hinweise auf ein Na⁺-abhängiges P_i-Transportsystem mit niedriger Kapazität wurden erhalten (SCHWAB und HAMMERMANN 1986, SCHWAB et al. 1984) (siehe Abb. 2). Beides steht in Übereinstimmung mit den Ergebnissen aus Experimenten an OK-Zellinien, die ebenfalls auf einen Na⁺-unabhängigen DIDSsensitiven und auf einen Na⁺-abhängigen Transportweg schließen lassen (RHESKIN et al. 1990a,b), der in diesem Fall aber eine große Transportkapazität bei niedriger Affinität aufwies. Nach den bisherigen Befunden ist anzunehmen, daß sich die basolateralen Transportsysteme für Pi von denen der apikalen Membran unterscheiden.

apikal

basolateral

Abb.2 Schematische Darstellung nachgewiesener und postulierter Mechanismen des P_i-Transportes im proximalen Tubulus. (PKC = Phospholipase-C/Pro-teinkinase-C-System, PAK = Phospholipase-Adenylatcyclase/Protein-kinase-A-System)

2.2.2 Besondere strukturelle Aspekte des Na⁺/P_i-Cotransporters Typ II

Der Na⁺/P_i-Cotransporter Typ II ist ein aus 637 Aminosäuren bestehendes Protein (≈ 69 kDa) (MAGAGNIN et al. 1993). Ein Modell für die Sekundärstruktur (Abb. 3) wurde von den Ergebnissen eines Hydrophobizitätsplottes abgeleitet, der Hinweise auf 8 Membrandurchgänge lieferte. Außerdem weist der Na⁺/P_i-Cotransporter einen hydrophilen N- sowie C-Terminus auf, die beide aus ungefähr 100 Aminosäuren bestehen (MURER und BIBER 1997). Untersuchungen mit Antikörpern, die gegen den N-Terminus gerichtet sind, deuten auf eine Lokalisation im Cytoplasma hin (LEVI et al. 1996). Die Lokalisation des C-Terminus wird ebenfalls im Cytoplasma vermutet. Eine große hydrophile N-glykosylierte Schleife mit ca. 150 Aminosäuren liegt zwischen den Transmembrandurchgängen 3 und 4 und ist wahrscheinlich nach außen gerichtet. Der Na⁺/P_i-Cotransporter Typ II besitzt 4 Stellen für eine mögliche N-Glykosylierung, allerdings konnte bisher nur für die Asparaginreste 298 und 328 diese Glykosylierung gezeigt werden (HAYES et al. 1994). Möglicherweise spielt diese Glykosylierung eine wichtige Rolle beim Einbau des Na⁺/P_i-Cotransporter in die Plasmamembran. Die Aminosäuresequenz Transporters des weist auch mehrere mögliche Phosphorylierungsstellen durch Proteinkinase C auf, allerdings führten Mutationen dieser Stellen zu keiner Aufhebung der von Proteinkinase C hervorgerufenen Inaktivierung des Transporters (HAYES et al. 1995).

Untersuchungen von DELISLE et al. (1992) zeigten, daß der funktionsfähige Transporter aus einem homomultimeren Komplex des Na⁺/P_i-Cotransporters Typ II besteht.

Abb.3 Modellvorstellung der Sekundärstruktur des Na⁺/P_i- Cotransporters Typ II der Rattenniere (LEVI et al. 1996).

2.3 Hormonelle Regulation

Verschiedene Untersuchungen an fetalen und neugeborenen Schafen zeigten, daß eine Infusion von PTH die renale P_i-Ausscheidung steigern konnte (ALEXANDER und NIXON 1969, SMITH et al. 1969, KOOH 1980, DAVICCO et al. 1992). Auch bei 2 Monate alten, mit Heu und Kraftfutter gefütterten Lämmern, führte eine 96-stündige PTH-Infusion (200 ng/h/Tier) zu einer signifikanten Erhöhung der P_i-Ausscheidung (BARLET und CARE 1972).

Im Gegensatz dazu konnten ALEXANDER und NIXON (1969) bei erwachsenen Schafen nach einer PTH-Infusion keine Veränderung der renalen P_i-Ausscheidung beobachten. Auch CLARK et al. (1975) konnten den bei monogastrischen Spezies gut bekannten PTH-Effekt (siehe Abb. 2 und 4) bei wachen, nichttragenden oder - laktierenden Schafen nicht beobachten. Aus diesen Untersuchungen geht jedoch nichts über eine mögliche PTH-Wirkung in den einzelnen Tubulusabschnitten hervor.

Untersuchungen an monogastrischen Tieren zeigten eine große Heterogenität der Tubulusabschnitte in Bezug auf eine PTH-Wirkung. Mikropunktionsund Mikroperfusionsstudien zeigten, daß sowohl der hintere Teil des proximalen Konvoluts sowie die Pars recta die wichtigsten Orte der PTH-Modulation der Pi-Resorption sind (DENNIS et al. 1977, AMIEL et al. 1970, BECK und GOLDBERG 1974, KNOX und LECHENE 1975). PTH bindet an einen basolateral gelegenen Rezeptor (MURER und BIBER, 1992). Diese Bindung aktiviert sowohl das Adenylatcyclase/Proteinkinase-A-System als auch das Phospholipase-C/Proteinkinase-C-System (siehe auch Abb. 2). Eine direkte Aktivierung einer der beiden Kinasen verursacht dann die Inhibierung des Na⁺/P_i-Cotransports, der die Pi-Aufnahme aus dem Tubuluslumen bewirkt (DUNLAY und HRUSKA, 1990). Dieser Mechanismus wird weiter unten näher erläutert. Bis jetzt ist noch unklar, ob unterschiedliche Subpopulationen von PTH-Rezeptoren mit den beiden intrazellulären Signalübertragungswegen gekoppelt sind. Untersuchungen von HAMMERMAN und HRUSKA (1982) und RHESHKIN et al. (1990a,b,c) zeigten, daß Phosphorylierungsvorgänge bei der Wirkung von PTH eine Rolle spielten. Bislang ist jedoch nicht geklärt, ob es zu einer direkten Phosphorylierung des Na⁺/Pi-Cotransporters kommt. Aber möglicherweise ist die Phosphorylierung ein Signal für

die als Folge der PTH-Wirkung stattfindende endozytotische Internalisierung. Das führt zu einer verminderten Präsenz des Transporters in der apikalen Membran der Tubulusepithelzellen (LEVI et al. 1996).

Untersuchungen alimentär P-depletierten Schafen zeigten, daß eine an Hypophosphatämie nicht zu einem Anstieg des Plasma-Calcitriol-Spiegels führte (ABDEL-HAFEEZ et al. 1982, BREVES et al. 1985, MAUNDER et al. 1986). Dies läßt darauf schließen, daß Calcitriol beim Wiederkäuer zumindest unter diesen Fütterungsbedingungen nicht die Rolle in der Regulation des Phosphathaushaltes spielt, wie unter vergleichbaren Voraussetzungen bei monogastrischen Tieren (siehe Abb. 4). Fällt beim monogastrischen Tier die Pi-Plasmakonzentration auf zu niedrige Werte ab, so wird die renale Biosynthese von Calcitriol stimuliert, was zu einer Erhöhung der Plasma-Calcitriol-Spiegel führt (HUGES et al. 1975, FOX und ROSS 1985, BREVES und SCHRÖDER 1991, SCHRÖDER und BREVES 1993). Calcitriol vermindert die P_i-Exkretion über die Niere (PUSCHETT et al. 1972, COSTANZO et al. 1974) und schwächt den phosphatdiuretischen Effekt von PTH und Calcitonin ab (BERNDT und KNOX 1992). In Untersuchungen an OK-Zellen konnte gezeigt werden, daß dieser antagonistische Effekt von Calcitriol gegenüber PTH auf einer Inhibierung des durch PTH aktivierten Adenylatcyclase/cAMP-Systems beruht (WALD et al. 1998).

Calcitonin-Mangel vermindert die renale P_i-Exkretion (MATSUI et al. 1983). Auch BARLET (1972) konnte einen Effekt von Calcitonin auf die renale P_i-Ausscheidung von Schafen beobachten. Er infundierte Schafe über 96 h mit Calcitonin und beobachtete eine signifikante Zunahme der renalen P_i-Exkretion.

Verschiedene Untersuchungen eines gleichzeitigen Mangels an Calcitonin und PTH auf die renale P_i-Exkretion führten zu unterschiedlichen Ergebnissen. SYMONDS (1970) beobachtete eine reduzierte renale P_i-Ausscheidung, MATSUI et al. (1983) konnten diese Beobachtungen jedoch nicht bestätigen.

Auch bei monogastrischen Tieren führte die Gabe von pharmakologischen Dosen Calcitonins zu einer gesteigerten Pi-Exkretion über die Niere. Dieser Effekt war zum Teil PTH-unabhängig (BERNDT und KNOX 1992).

In Untersuchungen an monogastrischen Tieren konnten für zahlreiche weitere Hormone Einflüsse auf die renale P_i-Exkretion gezeigt werden. Glucocorticoide, PTHrP, TGF, EGF und atriales natriuretisches Hormon steigerten die P_i-Exkretion, während Wachstumshormone, IGF1, die Schilddrüsenhormone T_3/T_4 und Insulin die P_i-Exkretion verminderten (BERNDT und KNOX 1992, KEMPSON 1996).

Die physiologische Bedeutung dieser Effekte ist bislang allerdings nicht klar.

2.4 Einfluß der alimentären P-Versorgung auf die Expression des Na⁺/P_i-Cotransporters Typ II

Es kann heute als gesichert angesehen werden, daß das Ausmaß der Na⁺/P_i-Cotransporter Typ II Expression in den Nierentubuli bei monogastrischen Spezies in direktem Zusammenhang mit der Höhe der alimentären P-Versorgung steht (BIBER et al. 1993, VERRI et al. 1995). Unklar ist bislang, wie dieser Anpassungsvorgang auf epithelialer Ebene reguliert wird.

Untersuchungen an P-depletierten, monogastrischen Tieren ergaben eine gesteigerte P_i-Resorption im proximalen Tubulus (BRAZY et al. 1980b, MULRONEY und HARAMATI 1990). Der gesteigerte Na⁺/P_i-Cotransport resultierte aus einer erhöhten maximalen Transportkapazität und beruht nicht auf einer veränderten Affinität des Transportsystems für Na⁺- oder P_i-Ionen. Bei hohen P_i-Gehalten im Futter kam es dagegen zum umgekehrten Effekt (KEMPSON und DOUSA 1979, BARRETT et al. 1980, HRUSKA und HAMMERMAN 1981, LEVINE et al. 1983, BRUNETTE et al. 1984, CHENG et al. 1983, CAVERZASIO et al. 1987, LEVI et al. 1990, SHIRAZI-BEECHEY et al. 1996).

Ein Teil dieses Phänomens ist unabhängig von extrarenalen Faktoren wie z.B. PTH, Vitamin D₃, Plasmacalcium oder Wachstumshormon (MURER und BIBER 1992) (siehe Abb. 4).

Auch in Zellkulturen, die auf einem Nährmedium mit niedrigem P-Gehalt wuchsen, war diese Adaptation zu beobachten (BIBER et al. 1988, CAVERZASIO et al. 1985, HELPS und McGIVAN 1991).

LÖTSCHER et al. (1996) konnten mit Hilfe von Transportuntersuchungen, Western- und Northern-Blot-Analysen zeigen, daß eine Adaptation an einen chronischen P-Mangel durch Anstieg der Na⁺/P_i-Cotransportaktivität und Zunahme der spezifischen mRNA und des korrespondierenden Proteins charakterisiert wird. Diese Ergebnisse weisen darauf hin, daß sowohl auf der Ebene der Transkription als auch der Translation lokalisierte Mechanismen für diese Adaptation eine Rolle spielen. So führt die Inhibierung von Transkriptionsvorgängen durch Actinomycin D oder die Inhibierung der Neusynthese Proteinen durch Cycloheximid dazu, daß ein Anstieg der Na⁺/P_ivon Cotransporteraktivität als Folge eines P-Mangels verhindert wurde (CAVERZASIO et al. 1985, BIBER und MURER 1985, SHAH et al. 1979).

Bei Ratten mit einem akuten (2stündigen) P-Mangel konnten LÖTSCHER et al. (1996) mit Hilfe von Western- und Northern-Blot-Analysen und immunohistochemischen Untersuchungen zeigen, daß dieser akute P-Mangel zu gesteigerter Na⁺/P_i-Cotransportaktivität führte, die mit einer erhöhten Na⁺/P_i-Cotransporter Typ II-Proteinmenge korreliert war. Jedoch konnte keine Veränderung der erhöhten Na⁺/P_i-Cotransporter Typ II-mRNA-Menge beobachtet werden. Das bedeutet, daß die schnelle Stimulation des Na⁺/P_i-Cotransportes durch posttranslationale Mechanismen vermittelt wird. Nach Zerstörung der Mikrotubuli des Zytoskeletts mit Colchicin konnte keine akute Adaptation mehr stattfinden (LÖTSCHER et al. 1996, MARKOVICH et al. 1995). Daraus läßt sich schließen, daß der Prozeß der Adaptation an akuten P-Mangel auf einer schnellen, mikrotubuliabhängigen Translokalisation des Na⁺/P_i-Cotransporter Typ II-Proteins von intrazellulären Kompartimenten in die apikale Membran basiert.

Eine akute Überversorgung von Ratten mit P, führte zu einer Abnahme der Na⁺/P_i-Cotransportaktivität und Na⁺/P_i-Cotransporter Typ II-Proteinmenge ohne Veränderung der Na⁺/P_i-Cotransporter Typ II-mRNA-Menge (LÖTSCHER et al. 1996). Dies legt die Vermutung nahe, daß die schnelle Abnahme der Transportaktivität durch posttranslationale Mechanismen, wie z.B. endozytotische Internalisation der Transporter aus der apikalen Membran in intrazelluläre Kompartimente, vermittelt wird. PTH scheint in dieser Reaktion auf eine akute P-Überversorgung keine Rolle zu spielen (LÖTSCHER et al. 1996). Experimente zur Rolle der Mikrotubuli zeigten, daß ihnen in diesem endozytotischen Prozeß im Gegensatz zum apikalen Einbau der Transporter keine bedeutende Rolle zukommt (LÖTSCHER et al. 1996).

Abb.4 Zusammenfassung der Anpassungsmechanismen monogastrischer Tiere zur Aufrechterhaltung der P-Homöostase bei Hypophosphatämie.

Während die P_i-Transportsysteme und ihre Regulation beim monogastrischen Tier bereits gut charakterisiert sind, liegen für Wiederkäuerspezies bislang nur wenige Untersuchungen vor. Daher gilt das Interesse der vorliegenden Arbeit den kinetischen Eigenschaften des renalen P_i-Transportsystems von Wiederkäuern, dem Einfluß einer P- oder Ca-Depletion auf dieses P_i-Transportsystem und den möglichen Unterschieden in der molekularen Struktur.

3. Material und Methoden

3.1 Versuchstiere, Fütterung und Gewebeentnahme

Zur Charakterisierung der R-Aufnahme in die renale Bürstensaummembran und zur Untersuchung der Auswirkungen einer experimentellen Ca- oder P-Depletion auf den Transportmechanismus, standen Nierencortces von 24 Ziegenböcken der Rasse "Weiße Deutsche Edelziege" zur Verfügung, die aus der Zucht des Instituts für Tierernährung der Universität Bonn stammten.

Die Tiere wurden nach dem Absetzen in 3 Fütterungsgruppen eingeteilt: eine Kontrollgruppe mit bedarfsgerechter Ca- und P-Versorgung (+Ca/+P) und je eine Gruppe mit reduzierter Ca- oder P-Versorgung (+Ca/-P und -Ca/+P). Die Fütterung mit Kraftfutter und Strohhäcksel erfolgte kontrolliert über 9-12 Wochen.

Bei der Schlachtung wogen die Ziegenböcke durchschnittlich 23 kg und waren 4-5 Monate alt.

Sie wurden durch Bolzenschuß betäubt und anschließend durch Öffnen der Arteriae carotides communes entblutet. Danach wurde die Bauchhöhle eröffnet, die Nieren entnommen, die Cortices sofort abgesetzt und in flüssigem Stickstoff schockgefroren. Die Nierenpräparate wurden bis zur Aufarbeitung bei -70°C aufbewahrt. Im Mittel betrug die Dauer zwischen Entbluten und Einfrieren des Gewebes 4 min.

Außerdem standen 6 Schaflämmer zur Verfügung, die in 2 Fütterungsgruppen eingeteilt wurden, eine Kontrollgruppe mit bedarfsgerechter P-Versorgung (+P) und eine Gruppe mit reduzierter P-Versorgung (P). Die Tiere wurden über 6 Wochen kontrolliert mit Kraftfutter und Strohhäcksel gefüttert. Die Schlachtung und Probenentnahme erfolgte wie bei den Ziegen.

Des weiteren wurden die Nieren von 3 mit handelsüblichem Ferkelfutter gefütterten, 6-8 Wochen alten Ferkeln auf die gleiche Weise entnommen und aufgearbeitet.

Tab.2 Zusammensetzung der Versuchsrationen (g/kgT)

(Weender Futtermittel-Analyse: Institut für Tierernährung, Tierärztliche Hochschule Hannover)

Komponente	+Ca/+P	+Ca/-P	-Ca/+P
Trockensubstanz	885,9	896,2	928,7
Rohasche	49,4	41,1	40,8
Rohprotein	163,7	158,6	165,6
Rohfett	17,3	15,9	17,5
Rohfaser	51,3	42,4	50,7
N-freie Extraktstoffe	604,2	638,2	654,1
Calcium	11,3	10,9	5,3
Phosphor	3,3	1,4	3,5

3.2 Präparation der Bürstensaummembranvesikel

Die Präparation der Bürstensaummembranvesikel wurde nach der von HILDEN et al. (1989) beschriebenen und von PENNY (1991) modifizierten Mg²⁺-EDTA-Präzipitationsmethode durchgeführt.

In Gegenwart der bivalenten Magnesiumionen werden die Membranfragmente in Abhängigkeit von ihren Oberflächenladungen in unterschiedlichem Maße aggregiert. Durch die sich anschließende Differentialzentrifugation kann die Bürstensaummembranfraktion von schwereren Zellorganellen separiert und gegenüber anderen Membranen wie z.B. vom Golgi-Apparat oder der basolateralen Zellseite angereichert werden.

Die gesamte Präparation erfolgte bei einer Temperatur von 4°C.

Zusammensetzung der bei der Vesikelpräparation verwendeten Puffer:

Homogenisierungspuffer 1: 300 mmol'i⁻¹ Mannit 1 mmol'i⁻¹ EDTA 0,1 mmol'i⁻¹ PMSF 20 mmol'i⁻¹ MES/Tris, pH 6.0

Homogenisierungspuffer 2:

300 mmol⁻¹ Mannit

- 1 mmol⁻¹ EDTA
- 0,1 mmol⁻¹ PMSF
- 20 mmoll⁻¹ HEPES/Tris, pH 7.5

Vesikelpuffer:

100 mmol⁻¹ Mannit

- 100 mmol⁻¹ KCl
- 20 mmol¹ HEPES/Tris, pH 7.4

Zu Beginn der Präparation wurden ca. 20 g des bei -70°C eingefrorenen Nierencortex eingewogen und in 100 ml Homogenisierungspuffer 1 aufgetaut. Anschließend wurde der Nierencortex zusammen mit dem Puffer (auf Eis) 3x10 s mit dem Ultraturrax (Heidolph DIAX 900, Stufe 5) zerkleinert (nach jedem Schritt 30 s Pause). Danach wurde der Schaum mit Hilfe einer Wasserstrahlpumpe abgesaugt. Aus dem entstandenen Homogenat wurden 4x250 µl entnommen und zur Enzym- und Proteinbestimmung bei -20°C eingefroren. Entsprechend dem Homogenatsvolumen soviel einer 2,5 molaren MgCl₂-Stammlösung zugegeben, daß wurde die Endkonzentration 10 mmol⁻¹ betrug und das Ganze 20 min langsam auf Eis gerührt. Anschließend wurde das Homogenat in GSA-Rotor-Gefäßen 10 min bei 1993 q (r_{max}; entspr. 3500 rpm) zentrifugiert (Sorvall RC-5B) und das entstandene Pellet verworfen. Mit dem Überstand wurde die Zentrifugation 6-7x wiederholt, bis sich kein sichtbares Pellet mehr bildete. Der Überstand wurde nun 30 min bei 34540 g (r_{max}; entspr.1700 rpm) im SS 34 Rotor (Sorvall RC-5B) zentrifugiert, das Pellet in 35 ml Homogenisierungspuffer 2 resuspendiert und mit einem Elvehjem-Potter (Braun, Melsungen) homogenisiert (10 Schübe, 1500 rpm). Es schloß sich eine 30-minütige Zentrifugation bei 34540 g (r_{max}; entspr.17000 rpm) im SS34 Rotor an. Das entstandene Pellet wurde in 1,5 ml Vesikelpuffer aufgenommen und durch eine 1 ml Spritze mit 0,45x12 mm Kanüle 10-15x aufgezogen bis eine Suspension entstand. Hieraus wurden 4x100 µl Proben für die Enzym- und Proteinbestimmungen entnommen und bei -20°C eingefroren. Die restliche Vesikelsuspension wurde portionsweise in flüssigem Stickstoff eingefroren und bis zu den Aufnahmestudien darin aufbewahrt.

3.3 Transportuntersuchungen

3.3.1 Schnellfiltrationstechnik

Die Transportuntersuchungen wurden allgemein nach folgendem Schema durchgeführt: Um die Substrataufnahme zu starten, wurden 20 µl der Vesikelsuspension zu 80 µl des Inkubationspuffers gegeben und die dem Versuchsansatz entsprechende Zeit inkubiert. Die Zusammensetzung der Inkubationspuffer ist unter 3.3.2 beschrieben.

Die Substrataufnahme wurde durch Zugabe von 4 ml einer 4°C kalten Stopplösung (150 mM KCl, 10 mM HEPES-Tris, 1 mM KH₂PO₄, pH 7,4) abgebrochen. Die Vesikel wurden mit Hilfe der Schnellfiltration von der Lösung getrennt und die auf dem Filter (Cellulose-Nitrat, Porengröße 0,65 µm, Sartorius, Göttingen) verbliebenen Vesikel mit 2 mal je 5 ml eiskalter Stopplösung nachgewaschen.

Der Filter wurde zusammen mit 4 ml Szintillationsflüssigkeit (Ultima Gold, Packard) in Minivials gegeben und die Aktivität 10 min in einem Flüssigkeitsszintillationszähler (2000 CA Tri-Carb Liquid Scintillation Analyzer, United Technologies Packard) mit einem Zählfehler von max. 2 % bestimmt.

Zur Bestimmung der Leerwerte wurden zu 80 µl Inkubationspuffer 4 ml Stopplösung gegeben, wie oben beschrieben, abfiltriert und die auf dem Filter verbliebene Radioaktivität gemessen.

Um die Gesamtaktivität im einzelnen Ansatz zu bestimmen, wurden jeweils 80 µl des Inkubationspuffers direkt in die Szintillatorflüssigkeit pipettiert und anschließend gezählt.

3.3.2 Bei den Messungen zur Phosphataufnahme verwendete Inkubationsansätze

Die Versuche zur Messung der Phosphataufnahme wurden als 3- oder 4-facher Ansatz durchgeführt. Die ³²P-Radioaktivität betrug jeweils 1µCi/100µl Ansatz. Es wurde ³²P als ortho-Phosphat der Firma Du Pont de Nemours, Dreieich verwendet. Vor jedem Versuch wurde die entsprechend mit unmarkiertem Phosphat gemischte

³²P[P_i]-Lösung durch Millex-GS-Filter (0.22 μm Porengröße) der Firma Millipore, Mosheim, sterilfiltriert, um die unspezifische Bindung an die Filter zu verringern. Die unspezifische Bindung lag stets unter 0,2 % der Gesamtaktivität im entsprechenden Ansatz.

a.) Zeitabhängige Phosphataufnahme

Die Versuche zur zeitabhängigen Phosphataufnahme wurden bei den langen Inkubationszeiten (5 s - 180 min) bei 37°C, die schnellen Aufnahmen mit 5 - 25 s Inkubationszeit wurden bei 25°C durchgeführt. Die Inkubationspuffer setzten sich aus 100 mmol'I¹ NaCl bzw. 100 mmol'I¹ KCl, 100 mmol'I¹ Mannit, 10 mmol'I¹ HEPES-Tris, pH7,4 und 0,1 mmol'I^{1 32}P[P_i] zusammen.

b.) Kinetik der Phosphataufnahme

Die Versuche zur Kinetik der Phosphataufnahme wurden bei einer Temperatur von 21°C und einer Inkubationszeit von 10 s durchgeführt. Die Inkubationspuffer bestanden aus 100 mmol⁻¹ NaCl bzw. 100 mmol⁻¹ KCl, 100 mmol⁻¹ Mannit, 10 mmol⁻¹ HEPES-Tris, pH7,4 und steigenden ³²P[P_i] Konzentrationen (0-3 mmol⁻¹).

c.) Einfluß von Na⁺ auf die P_i-Aufnahme

Der Einfluß von Na⁺ auf die P_i-Aufnahme wurde bei einer Temperatur von 21°C und einer Inkubationszeit von 10 s überprüft. Die Inkubationspuffer bestanden aus 100 mmol⁻¹ Mannit, 10 mmol⁻¹ HEPES-Tris, pH7,4 und einer steigenden Na⁺ Konzentration (0-100 mmol⁻¹), die jeweils mit entsprechender KCI-Zugabe auf die Gesamtkonzentration von 100 mmol⁻¹ für beide Salze eingestellt wurde, sowie 0,1 mmol^{-1 32}P[P_i].

d.) Glucoseaufnahme

Die Na⁺-abhängige Glucoseaufnahme wurde bei einer Temperatur von 21°C und einer Inkubationszeit von 30 s gemessen. Die Inkubationspuffer setzten sich aus 100 mmol/I¹ NaCl bzw. 100 mmol/I¹ KCl, 100 mmol/I¹ Mannit, 10 mmol/I¹ HEPES-Tris, pH 7,4 und 0,5 mmol/I¹ Glucose/³H-Glucose zusammen. Die ³H-Radioakivität betrug jeweils 1 μ Ci/100 ml Puffer. Es wurde D-[1-³H (N)]-Glucose der Firma Du Pont de Nemours, Dreieich verwendet. Die unspezifische Bindung lag stets unter 0,2 % der Gesamtaktivität im Puffer.

3.4 Protein- und Enzymbestimmungen

3.4.1 Proteinbestimmung

Die Bestimmung der Proteinkonzentration im Ausgangshomogenat und in der Vesikelsuspension erfolgte mit Hilfe eines Standardassays der Firma Bio Rad, München.

Das Meßprinzip beruht auf einer Änderung des Absorptionsmaximums einer sauren Lösung des Farbstoffes Coomassie Brilliant Blue G250 von 465 nm auf 595 nm nach Bindung an das Protein. Das als Kation vorliegende rote Farbmolekül wird durch die Bindung an das Protein als Anion stabilisiert und nimmt eine blaue Farbe an. Die Menge des gebildeten blauen Farbstoffs wird bei 595 nm photometrisch bestimmt. Die Eichkurve wurde mit bovinem γ -Globulin als Standard erstellt.

Um alle Proteinbindungsstellen für dasFarbreagenz zugänglich zu machen, wurden je 100 µl oberflächenaktive 1 %ige Saponinlösung zu 100 µl Probe bzw. Standard gegeben und bei Raumtemperatur 20 min vorinkubiert. Anschließend wurden 5 ml des entsprechend verdünnten Farbreagenz zugesetzt und vor der photometrischen Messung nochmals 20 min inkubiert.
3.4.2 Aktivität der alkalischen Phosphatase (AP)

Die Aktivität der alkalischen Phosphatase wurde photometrisch bestimmt. Hierzu wurden bei Raumtemperatur 50 µl Probe mit 3 ml Reagenz (1 mmol⁻¹ Diethanolamin, 0,5 mmol⁻¹ MgCl₂, pH 9,8 mit 10 mmol⁻¹ Natrium-p-Nitrophenolphosphat) versetzt und die Extinktionszunahme bei einer Wellenlänge von 405 nm nach 1, 2 und 3 min gemessen.

Das Testprinzip beruht auf der hydrolytischen Spaltung von p-Nitrophenol und Phosphat durch die alkalische Phosphatase. Die Menge an entstehendem p-Nitrophenol ist proportional zur Phosphatase-Aktivität.

3.4.3 Aktivität der Na⁺-K⁺-ATPase

Die Aktivität der Na⁺-K⁺-ATPase wurde mit einer von MIRCHEFF und WRIGHT 1971 beschriebenen Methode als Differenz der Na⁺-K⁺-ATPase-Aktivität mit und ohne Ouabainzusatz (5 mg Ouabain/ml Inkubationsmedium) photometrisch bestimmt. Das Prinzip dieser Methode beruht auf einer spezifischen Hemmung der Na⁺-K⁺-ATPase durch Ouabain.

Dafür wurden 20 µl Probe mit 0,5 ml Inkubationspuffer (5 mmoll⁻¹ MgCl, 100 mmoll⁻¹ NaCl, 10 mmoll⁻¹ KCl, 2 mmoll⁻¹ ATP, 3 mmoll⁻¹ EDTA, 100 mmoll⁻¹ Tris/HCl, pH 7,4) gegeben und bei 37°C für 30 min inkubiert. Die Reaktion wurde mit 0,5 ml 5% iger Trichloressigsäure gestoppt und die Meßansätze für 30 min mit je 1 ml Farbreagenz (40 mg $FeSO_4$, $7H_20/ml$ 1% igem Ammoniumheptamolybdat in 1,15 M H_2SO_4) bei Raumtemperatur inkubiert.

Das frei werdende anorganische Phosphat bildet mit Molybdat in saurer Lösung komplexe Phosphomolybdänsäure die zu Molybdänblau reduziert wird. Die Extinktion dieses blauen Farbkomplexes kann bei einer Wellenlänge von 690 nm photometrisch bestimmt werden.

3.5 Plasmaanalytik

Allen Versuchstieren wurde am Tag vor der Schlachtung Blut entnommen. Die Blutentnahme erfolgte aus der Vena jugularis externa mit Lithium-Heparin Monovetten (Sarstedt, Nümbrecht). Das Blut wurde sofort bei 1500xg für 20 min zentrifugiert und das gewonnene Plasma bis zur Analyse bei -20°C tiefgefroren.

3.5.1 Calcium

Die Ca-Konzentrationen im Plasma wurden mittels der o-Kresolphtalein-Komplex-Methode bestimmt (RAY SARKER und CHAUHAN 1967).

Calcium reagiert in alkalischer Lösung mit o-Kresolphtalein unter Bildung eines violetten Farbkomplexes der photometrisch bei 570 nm erfaßt wird, wobei die Farbintensität proportional zur Calciumkonzentration in der Plasmaprobe ist.

3.5.2 Anorganisches Phosphat

Die Bestimmung der P_i-Konzentration im Plasma erfolgte mittels der Molybdat/Vanadat-Reaktion (PETER 1982) photometrisch.

Ammonium-Molybdat und Ammonium-Vanadat bilden einen gelben Farbkomplex, der bei einer Wellenlänge von 405 nm photometrisch gemessen werden kann. Die Farbintensität verhält sich proportional zur P_i-Konzentration.

3.6 Berechnungen

3.6.1 Aufnahmeraten

Die Aufnahmeraten [nmol/mg Protein] für Phosphat und Glucose in die BSMV wurden nach folgender Formel berechnet:

<u>(cpmP - cpmL) · [s] (nmol/l)</u> = [s] (nmol) cpmT · [Protein] (mg/l) Protein (mg)

cpmP = cpm in der Probe

cpmL = cpm im Leerwert

cpmT = Gesamtaktivität (cpm) im Ansatz

[s] = Konzentration des Phospats

3.6.2 Vesikelvolumen

Das Vesikelvolumen wurde aus der Phosphataufnahme in die BSMV nach 180 min (Ausgleichswert, d.h. die intra- und extravesikuläre Phosphatkonzentrationen sind gleich) folgendermaßen berechnet:

I. Vesikelvolumen im entnommenen Aliquot

<u>(cpmP-cpmL)</u> · Aliquotvolumen(μl) = Vesikelvolumen (μl) cpmT

II. Proteinkonzentration im Ansatz

Proteinkonzentration in der Vesikelfraktion (mg/ml) · Vesikelmenge (ml) Gesamtvolumen des Ansatzes (ml)

= <u>Protein (mg)</u> Ansatz (ml)

III. Protein im entnommenen Aliquot

Proteinkonzentration im Ansatz (mg/ml) · Ansatz (ml) = Protein (mg)

IV. Vesikelvolumen je mg Protein

<u>Vesikelvolumen im Ansatz (μl)</u> = <u>Vesikelvolumen (μl)</u> Gesamtprotein im Ansatz (mg) Protein (mg)

3.7 Isolierung von RNA

Die Gewebeentnahme für die RNA-Isolierung erfolgte unmittelbar nach der Schlachtung. Das Gewebe wurde sofort in flüssigem Stickstoff schockgefroren und bis zur Aufarbeitung bei -80°C gelagert. Zur Isolierung von RNA wurde gefrorenes Nierengewebe in einem vorgekühlten Mörser unter Zugabe von flüssigem Stickstoff zu feinem Pulver gemahlen.

Die RNA-Isolierung erfolgte mit Hilfe des Micro-RNA-Isolations-Kit von Stratagene, Heidelberg nach Anleitung des Herstellers.

Die Zugabe von Guanidiniumisothiocyanat (GTC) führt zu einer Protein-Denaturierung, anschließend erfolgt eine Phenol/Chloroformextraktion. Proteine und DNA sammeln sich durch die gewählten Extraktionsbedingungen in der Schicht zwischen den Phasen und der unteren organischen Phase, während die RNA in der oberen wässrigen Phase zurückbleibt. Aus dieser Phase kann sie dann mit Hilfe von Isopropanol ausgefällt werden. Nach Waschen des Pellets mit 75 %igem eiskalten Ethanol wurde dieses getrocknet und in RNAse freiem Wasser aufgenommen.

Die RNA-Probe wurde photometrisch quantifiziert (260/280 nm) und die Qualität der RNA mittels Gelelektrophorese (Formamid/Agarose) überprüft.

3.8. Probenaufbereitung für die PCR

3.8.1. DNAse-Verdau

Um die isolierte RNA von möglichen Resten genomischer DNA zu befreien, wurde mit 100 µg RNA ein DNAse-Verdau durchgeführt. Hierzu wurde die Probe mit 0,5 µl

DNAse I (7,5 U/µl) der Firma Pharmacia Biotech Europe, Freiburg 10 min bei 37°C inkubiert. Daran schloß sich eine zweite Chloroform/Phenolfällung an.

3.8.2 Erststrang-Synthese

Die Erststrang-Synthese, bei der ein zur mRNA komplementärer cDNA-Strang synthetisiert wird, wurde nach dem "MMLV reverse transcriptase first strand cDNA synthesis protocol" von Amersham Life Sience, Buckinghamshire, UK durchgeführt.

Durchführung:

Das erzeugte RNA/DNA-Hybrid wurde bis zur weiteren Verarbeitung bei -20°C gelagert.

3.9 PCR (Polymerasen-Ketten-Reaktion)

Die PCR ist eine Methode, bei der spezifische DNA-Sequenzen in vitro mit einer hohen Ausbeute amplifiziert werden können. Das Orginalprotokoll wurde 1985 von SAIKI et al. beschrieben.

Für die Reaktion werden das DNA-Template, eine DNA-Polymerase, Desoxynucleotide, zwei spezifische Oligonucleotidprimer und geeignete Puffersysteme benötigt.

3.9.1 Primer

Zur Auswahl der Primer wurde ein Hydrophobizitätsplot mit der Aminosäure-Sequenz des renalen Na⁺/P_i-Cotransporters Typ II der Ratte durchgeführt. Für die beiden Primer wurden entsprechende Nukleinsäuresequenzen den mutmaßlichen aus Membrandurchgängen M3 und M6 gewählt, da die Wahrscheinlichkeit für Sequenzhomologien in transmembranalen Bereichen am höchsten ist. Die Spezifität der Primer wurde mit Hilfe des über die GenBank (National Center for Biotechnology Information [NCBI], Bethesda, MD, USA) nutzbaren Computerprogramms BLAST überprüft, die Primer wurden bei der Firma Roth, Karlsruhe hergestellt.

5'> CGGAGTGRTGGCTGAGGTGA <3' aus dem 6. Membrandurchgang 5'> ATGGTCTCCTCTGGCTTGTTG <3' aus dem 3. Membrandurchgang

Abb.6 Sequenz der verwendeten Oligonucleotidprimer

3.9.2 Reaktionsansatz und Durchführung der PCR

Die PCR wurde mit einer hitzestabilen Taq-DNA-Polymerase der Firma Gibco(BRL) Life Technologies, Eggenstein durchgeführt.

Pipettierschema:(Molaritäten beziehen sich auf den Ansatz)

3 μl Template (Produkt der Erststrangsynthese)	
5 µl PCR-Puffer	1x
1,5 μl MgCl₂ (50 mmol l⁻¹)	1,5mmol
1 µl eines dNTP-Mixes (je 10 mmol1 ⁻¹)	je 0,2 mmol
1 µl Primer(20 pmolµl ⁻¹)	0,4 pmol
1 μl Primer (20 pmol ^{·μl·1})	0,4 pmol
0,5 μl hitzestabile Taq DNA-Polymerase (5 U/μl)	2,5 Units
37 μl steriles Wasser	

Die Amplifizierung erfolgte nach folgendem Schema in einem Thermocycler (Mastercycler gradient Firma Eppendorf, Köln):

	94°C	4 min	
Denaturierung der Doppelstränge 94°C	1 mir	า	1
Annealing des Primers	60°C	1 min	— 30 Zyklen
Polymerisation	72°C	2 min	1
Reaktionsende	72°C	10 min	

Die PCR-Ansätze wurden bei -20°C bis zur weiteren Verwendung eingefroren.

3.9.3 Detektion und Analyse der PCR-Produkte

Die entstandenen PCR-Produkte wurden mit Hilfe eines 1%igen Agarosegels und TAE-Puffer (1-fache Konzentration) elektrophoretisch aufgetrennt, mit Ethidiumbromid angefärbt und unter UV-Licht sichtbar gemacht.

3.9.4 Extraktion der PCR-Produkte aus dem Agarosegel

Die PCR-Produkte wurden mit Hilfe des JETsorb-Kits (Genomed, Bad Oeynhausen) zur DNA-Extraktion aus dem Agarosegel wiedergewonnen.

Das Prinzip des Kits beruht auf der Anlagerung der DNA an die Glasteilchen der JETsorb-Suspension bei hohen Salzkonzentrationen. Durch niedrige Salzkonzentrationen kann die DNA wieder eluiert werden.

Der Überstand mit den eluierten PCR-Produkten wurde bis zur weiteren Verarbeitung bei -20°C gelagert. Die Mengenabschätzung und die Kontrolle der Reinheit der eluierten DNA-Fragmente erfolgte mit Hilfe eines analytischen Agarosegels.

3.10 Sequenzierung der PCR-Produkte

3.10.1 Transformation von Zellen

3.10.1.1 Ligation der PCR-Produkte in einen Vektor

Die PCR-Produkte wurden in den pGEM-T Vektor (Promega Corporation, Madison, USA) einkloniert. Der pGEM-Vektor besitzt an beiden Enden T-Überhänge, an die A-Überhänge der PCR-Produkte (Taq-Polymerase-spezifisch) ligiert werden können.

Abb.7 pGEM-T Vektor

Die einzusetzende Insertmenge wurde nach folgender Formel berechnet:

<u>Vektor ng x Größe des Inserts kb</u> x Gewüschtes Verhältnis Insert:Vektor = ng Insert Größe des Vektors kb

Zur Durchführung der Ligation wurden 38,4 ng (Verhältnis Insert:Vektor 3:1) bzw. 76,8 ng (6:1) PCR-Produkt mit 50 ng Vektor, 1 μ I T₄DNA-Ligase-Puffer (x10), 1,5 μ I T₄DNA-Ligase (3 Weiss Units / μ I) und 4,5 μ I Wasser über Nacht bei 4°C inkubiert. Der Ligationsansatz wurde zur Transformation von JM 109-Zellen verwendet. Da die zur Insertion benutzte multiple cloning site des Vektors die codierende Sequenz für die β -Galaktosidase bei Insertion unterbricht, können die Transformanten mit insertiertem Plasmid über eine Blau-Weiß-Selektion identifiziert werden.

3.10.1.2 Transformation von JM109-Zellen

50 μl kompetente JM109-Zellen (Promega Corporation, Nadison, USA) 10 μl Ligationsansatz

10 min auf Eis inkubieren, 45-50 sec in einem auf 42°C temperierten Wasserbad inkubieren, 2 min auf Eis abkühlen

900 µl eiskaltes LB-Medium

vermischen, im Schüttelinkubator inkubieren (1 h, 225 rpm, 37°C), zentrifugieren (4 min, 3000 rpm), Überstand absaugen

50 µl Wasser

Zellsuspension

Die Zellsuspension wurde auf mit 50 μ l Ampicillin (50 mg/ml), 100 μ l Isopropyl- β -D-Thiogalactopyranoside [IPTG] (1,2 g/50 ml) und 25 μ l 5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside [XGal] (100 mg/2 ml DMF) beschichteten Platten ausgestrichen und über Nacht bei 37°C im Brutschrank inkubiert.

Die weißen Kolonien wurden am nächsten Tag in je 5 ml LB-Medium und 10 µl Ampicilin (50 mg/ml) überimpft und 16 h bei 37°C und 200 rpm im Schüttelinkubator inkubiert.

3.10.2 Plasmidpräparation

Die Plasmidpräparation erfolgte mit Hilfe des Silica Spin Kits (Biometra, Göttingen). Nach Lyse des Bakterienpellets und anschließender Neutralisation folgt die Anheftung der DNA an einen mit Silica-Suspension beschichteten Filter, von dem sie nach mehreren Waschschritten wieder eluiert wird.

3.10.3 Restriktionsverdau

Zur Überprüfung der Plasmide wurde ein Restriktionsverdau durchgeführt. Das Plasmid wurde mit dem Enzym Eco 52 I (Fermentas) an den entsprechenden Schnittstellen geschnitten und die Größe des herausgeschnittenen Inserts mit Hilfe eines Agarosegels überprüft.

Für den Restriktionsverdau wurden 2 µl Plasmid, 6 µl Wasser, 1 µl Eco 52 I Enzym und 1 µl Eco 52 I Puffer für 1 h bei 37°C inkubiert.

3.10.4 Sequenzierung

Die Sequenzierung des Inserts erfolgte durch die Firma MWG-Biotech, Ebersberg.

3.11 Lösungszusammensetzungen:

GTC-Denaturierungslösung:	4 mol ^{1⁻¹ Guanidiniumisothiocyanat}			
	0,02 mol ⁻¹ Natriumcitrat			
	0,5 % Sarcosyl			
10x MOPS-Puffer:	0,2 mol ¹ MOPS			
	0,05 molil ¹ Na-Acetat			
	0,01 mol ¹ EDTA, pH 5,5-7,0 mit NaOH			

Farbmarker:	160 µl 10x MOPS-Puffer			
	100 µl steriles Wasser			
	80 µl steriles Glycerol			
	80 µl gesättigtes Bromphenol-Blau in sterilem			
	Wasser			
First strand buffer (5x):	250 mmol ⁻¹ Tris-HCI (pH 8,3)			
	375 mmol ¹ KCl			
	15 mmol ¹¹ MgCl ₂			
	50 mmol ⁻¹ Dithiothreitol (DTT)			
PCR-Puffer (10x):	200 mmol ¹¹ Tris-HCI (pH 8,0)			
	500 mmol ⁻¹ KCl			
Luria Bertrani (LB)-Agar:	10 g Bacto-Tryptone (Difco, Augsburg)			
	10 g Bacto-Yeast-Extract (Difco, Augsburg)			
	10 g NaCl			
in 900 ml Wasser (bidest.) lösen,	pH mit NaOH auf pH 7,5 einstellen, auf 1 I auffüllen 15			
g Agar (Difco) zugeben und autok	lavieren.			
LB-Flüssigmedium:	10 g Bacto-Tryptone (Difco, Augsburg)			
	10 g Bacto-Yeast-Extract (Difco, Augsburg)			
	10 g NaCl			
in 900 ml Wasser (bidest.) lösen, j	oH mit NaOH auf pH 7,5 einstellen, auf 1 I auffüllen.			
Ligase 10x Puffer:	300 mmol ⁻¹ Tris-HCl, pH 7,8			
	100 mmol ⁻¹ MgCl ₂			
	100 mmoli ⁻¹ DTT			
	10 mmol ¹¹ ATP			

Alle nicht gesondert aufgeführten Chemikalien wurden von der Firma Sigma-Aldrich, Deisenhofen, in ACS-Qualität bezogen.

3.12 Statistische Auswertung

Die Versuchsergebnisse werden als arithmetischer Mittelwert mit Standardabweichung angegeben, falls nicht ausdrücklich anders erwähnt. Der Stichprobenumfang "n" bezeichnet die jeweilige Anzahl der Versuchstiere.

Nicht normalverteilte Werte wurden mit dem Kruskal-Wallis Algorithmus mit anschließendem paarweisen Mittelwertsvergleich (Dunn`sTest) und die parametrisch verteilten Werte mit einer 1-Weg ANOVA mit Tukey`s Nachfolgetest aus den Statistikpaket der Graph Pad[™] Software (San Diego, USA) ausgewertet.

Die Berechnung der linearen Regression und die graphischen Darstellungen der Ergebnisse wurden mit Hilfe der Graph Pad[™] Software (San Diego, USA) ausgeführt.

4. ERGEBNISSE

4.1 Charakterisierung des Tiermodells

Zur Charakterisierung des Tiermodells mit alimentärer P- oder Ca-Depletion wurden wichtige Kenngrößen der P- und Ca-Homöostase im Plasma untersucht. Dazu wurden die P_i- und Ca-Konzentrationen sowie die Aktivität der alkalischen Phosphatase (AP) im Plasma bestimmt.

Tab.3a P_i - und Ca-Konzentrationen sowie die Aktivität der alkalischenPhosphatase (AP) im Plasma von Ziegen bei unterschiedlicherP- und Ca-Versorgung. (Mittelwerte ± SD, n = Anzahl der Tiere)

Gruppe		P _i [mmol ⁻¹] Ca [mmol ⁻¹]		AP [U 'I ¹]
Kontrolle	n = 12	2,87 ± 0,66	2,94 ± 0,21	743 ± 195
P-Depletion	n = 8	0,59 ± 0,16	$3,62 \pm 0,64$	1248 ± 704
Ca-Depletion	n = 8	$2,40 \pm 0,57$	2,85 ± 0,13	944 ± 24

Tab.3bP_i- und Ca-Konzentrationen sowie die Aktivität der alkalischenPhosphatase (AP) im Plasma von Schafen bei unterschiedlicherP- und Ca-Versorgung. (Mittelwerte ± SD, n = Anzahl der Tiere)

Gruppe		P _i [mmoll ¹] Ca [mmoll ¹]		AP [U⁺l⁻¹]
Kontrolle	n = 3	1,87 ± 0,49	$2,80 \pm 0,04$	205 ± 69
P-Depletion	n = 3	1,34 ± 0,17	$2,67 \pm 0,07$	220 ± 89

Die Ca- oder P-Depletion bei Ziegen sowie P-Depletion bei Schafen wirkte sich auf die untersuchten Kenngrößen signifikant aus. Die P-Plasmakonzentrationen der Ziegen waren bei alimentärem P-Mangel mit 0,6 mmol⁻¹ signifikant niedriger als bei der Kontrollgruppe (2,9 mmol⁻¹, p< 0,001) und der Ca-depletierten Gruppe (2,4 mmol⁻¹, p< 0,001).

Bei den Schafen nahm die P_i-Konzentration im Plasma von 1,9 auf 1,3 mmoll⁻¹ ab. Allerdings war dieser Effekt aufgrund der niedrigeren Anzahl der Versuchstiere nicht signifikant. Während die P-Depletion bei Ziegen mit einer ausgeprägten Hypercalciämie einherging (Ca: 3,6 mmoll⁻¹ gegenüber 2,9 mmoll⁻¹; p< 0,001), trat dieses Phänomen bei den Schafen nicht auf. Trotz Ca-Depletion veränderten sich die Ca-Plasma-Spiegel der Ziegen nur unwesentlich, während die P_i-Plasma-Spiegel von 2,9 mmoll⁻¹ auf 2,4 mmoll⁻¹ abnahmen. Allerdings war dieser Effekt nicht signifikant. Die Aktivität der AP war sowohl bei P-Depletion als auch bei Ca-Depletion der Ziegen erhöht. Bei den Schafen waren die AP-Werte insgesamt niedriger als bei den Ziegen und es war keine Beeinflussung durch P-Depletion zu erkennen.

4.2 Anreicherungen der Bürstensaummembranvesikel (BSMV)

Die Überprüfung der Anreicherungen der BSMV sowie der Anteile an basolateralen Membranen erfolgte bei jeder Präparation durch Vergleich charakteristischer Membranleitenzyme zwischen Ausgangshomogenat und Vesikelfraktion. Als Marker der BSMV wurde die jeweilige Aktivität der alkalischen Phosphatase bestimmt. Durch Messung der Aktivität der Na⁺/K⁺-ATPase wurde eine mögliche Verunreinigung der Vesikelfraktion mit basolateralen Membranen (BLM) überprüft.

Die Ergebnisse sind in Tab.4 zusammengefaßt. Die BSMV wurden bei Ziegen im Vergleich zum Ausgangshomogenat unabhängig von der P- bzw. Ca-Versorgung um das 6-8-fache angereichert. Bei Schweinen lag die Anreicherung in derselben Größenordnung, während sie bei den Schafen nur ca. 5-fach war. Der BLM-Anteil wurde nicht wesentlich angereichert.

Tab.4 Vergleich der Aktivitäten der Membranleitenzyme (BSM: Alkalische Phosphatase, BLM: Na^+/K^+ -ATPase) sowie der Anreicherungsfaktoren der Nierencortexpräparation unterschiedlicher Spezies und verschiedener Behandlungen (Mittelwert ± SD, n = Anzahl der Tiere, Anreicherungsfaktor = Verhältnis Enzymaktivität in der Vesikelfraktion zu Enzymaktivität im Homogenat).

Versuchstiere/ Behandlungen	Aktivität de	r alkalischen P	hosphatase	Aktivit	ät der Na⁺/K⁺-A	TPase
	Homogenat U/g Protein	Vesikel U/g Protein	Anreicherungs- faktoren	Homogenat U/g Protein	Vesikel U/g Protein	Anreicherungs- faktoren
Ziegen Kontrolle n=12	665 ± 181	4528 ± 2528	6,8±2,3	185 ± 37	195 ± 29	1,0±0,2
P-Depletion n=8	1377 ± 1224	11437 ± 10390	8,3 ± 4,3	168 ± 61	160 ± 51	1,0 ± 0,4
Ca-Depletion n=8	510 ± 183	3148 ± 1039	$\textbf{6,3} \pm \textbf{2,1}$	191 ±60	171 ± 39	0,9 ±0,2
Schafe Kontrolle n=3	694 ± 112	3237 ± 286	4,7 ± 0,5	154 ±22	174 ± 24	1,1 ± 0,1
P-Depletion n=3	658 ± 150	3357 ± 3156	5,1 ± 1,2	145 ± 32	169 ± 31	1,2±0,1
Schweine n=3	281 ± 65	2353 ± 567	$8,4\pm0,5$	182 ± 48	189 ± 25	1,1 ± 0,1

4.3 Vesikelintegrität

Als Nachweis der funktionellen Integrität der Vesikel diente die Na⁺-abhängige P_i-Aufnahme in die Vesikel als Funktion der Zeit. Nur bei intakten, geschlossenen Vesikeln ist der sogenannte Overshoot zu beobachten, d.h. eine P_i-Aufnahme in die Vesikel über den P_i-Konzentrationsausgleich zwischen intra- und extravesikulärem Medium hinaus. Die treibende Kraft hierfür ist der vesikeleinwärts gerichtete Na⁺-Gradient.

Wird Na⁺ im extravesikulären Medium durch K⁺ ersetzt, so steigt die P_i-Aufnahme linear mit der Zeit an, bis nach 180 min der Ausgleichswert, bei dem die P_i-Konzentrationen in intra- und extravesikulärem Medium gleich sind, erreicht ist.

Aus diesem Ausgleichswert ließ sich ein mittleres Vesikelvolumen von 1,07 \pm 0,4 μ lmg⁻¹ Protein (Mittelwert \pm SD, n=4) berechnen.

Abb.8 Zeitlicher Verlauf der P_i-Aufnahme in renale BSMV von Kontrollziegen bei 37°C in An- und Abwesenheit eines vesikeleinwärts gerichteten Na⁺-Gradienten (Mittelwerte ± SEM, n= 4 Tiere)

Bei jeder Präparation, von der eine ausreichende Menge an BSMV-Suspension zur Verfügung stand, wurde die Glucoseaufnahme über 30 s gemessen. Dieses diente ebenfalls zur Überprüfung der Vesikelintegrität und um prinzipielle Unterschiede der Transporteigenschaften der Membranen zwischen den Fütterungsgruppen auszuschließen.

Die mittlere Glucoseaufnahme lag zwischen 1,6 - 2,4 nmol⁻¹ Protein⁻³0s⁻¹; weder bei Schafen noch bei Ziegen konnten in Abhängigkeit vom P- bzw. Ca-Status gesicherte Unterschiede zu Kontrolltieren nachgewiesen werden. Tab.5 Na⁺-abhängige Glucoseaufnahme in renale BSMV von Ziegen,

Schafen und Schweinen bei 21°C.

(Mittelwerte \pm SD; Glucose 0,5 mmol⁻¹)

Spezies/ Gruppe			Glucoseaufnahme (nmol ⁻¹ Protein ⁻³ 0s ⁻¹)
Ziege	Kontrolle	n = 4	1,6±0,7
	P-Depl. n = 4		$2,1\pm0,5$
	Ca-Depl.	n = 4	1,8±0,3
Schaf	Kontrolle P-Depl.	n = 3 n = 3	$2,4 \pm 0,8$ $2,0 \pm 0,4$
Schwein	Kontrolle	n = 3	2,4 ± 0,3

4.4 Charakterisierung der P_i-Aufnahme

4.4.1 Initiale P_i-Aufnahme

Die Na⁺-abhängige P_i-Aufnahme in renale BSMV von Kontrollziegen verlief bei 21°C zwischen 5 s und 25 s linear. Aus diesem Grund wurde für die Versuche zur Charakterisierung der Kinetik der P_i-Aufnahme eine Inkubationsdauer von 10 s gewählt. Bei renalen BSMV von Schafen und Schweinen war die P_i-Aufnahme unter denselben Bedingungen prinzipiell gleich.

Abb.9 "Schnelle" Na⁺-abhängige P_i -Aufnahme in renale BSMV von Kontrollziegen bei 21°C. (Mittelwerte ± SD, n = 3 Tiere mit 3fach-Ansätzen pro Zeitpunkt)

4.4.2 P_i-Aufnahme als Funktion der P_i-Konzentration

In Abb.10 ist die Kinetik der P_i-Aufnahme in renale BSMV einer Kontrollziege dargestellt. Es handelt sich um eine repräsentative Verlaufskurve mehrerer gleichartiger Experimente.

Abb.10 Kinetik der P_i-Aufnahme in renale BSMV einer Kontrollziege als Funktion der P_i-Konzentration bei 21°C (Mittelwerte ± SD von 3 fachansätzen).
Kalkulierte Kinetik: Subtraktion der nicht Na⁺-abhängigen Komponente (K⁺) von der gesamt P_i-Aufnahme (Na⁺)

Durch Subtraktion der linear verlaufenden Na⁺-unabhängigen P_i-Aufnahme (K⁺) von der gesamt P_i-Aufnahme (Na⁺) ergibt sich die Na⁺-abhängige P_i-Aufnahme, deren Kurvenverlauf eine typische Michaelis-Menten-Kinetik mit Sättigungsphänomen zeigt. Aus dieser Kinetik lassen sich die Parameter K_m und V_{max} bestimmen. Die halbmaximale Sättigung (K_m) ist ein Maß für die P_i-Affinität des Transportsystems und die maximale Aufnahmerate (V_{max}) gibt einen Hinweis auf die Transportkapazität bzw. Anzahl der Transporter.

Diese Parameter aus jeweils mehreren Versuchen sind für die Fütterungsgruppen von Ziegen und Schafen im Vergleich mit entsprechenden Werten der Schweineniere in Tab.6 zusammengefaßt.

Tab.6 Maximale P_i-Aufnahmeraten und P_i-Affinitäten des Na⁺-abhängigen P_i-Transportsystems der renalen BSMV verschiedener Spezies mit adäquater oder reduzierter P- oder Ca-Versorgung (Mittelwerte ± SD, n = Anzahl der Tiere, 21°C).

	Spezies		V _{max} (nmol ⁻ mg ⁻¹ Protein ⁻ 10s ⁻¹)	K _m (mmoll⁻¹)
Ziege	Kontrolle	n = 8	1,98 ± 1,21	$0,34\pm0,14$
	P-Depl.	n = 8	$\textbf{2,99} \pm \textbf{2,20}$	$0,35\pm0,07$
	Ca-Depl.	n = 8	$1,93 \pm 0,99$	$0,\!28\pm0,\!17$
Schaf	Kontrolle	n = 3	$1,39 \pm 0,56$	$0,55 \pm 0,21$
	P-Depl.	n = 3	$1,03\pm0,\!6$	$0,33\pm0,29$
Schwein		n = 3	$0,95 \pm 0,07$	0,11 ± 0,002

Bei Ziegen waren die V_{max}-Werte unabhängig von der Ca-Versorgung. Sie stiegen aber als Folge der P-Depletion um ~ 50 % an. Allerdings war dieser Effekt aufgrund der hohen interindividuellen Streuung in dieser Gruppe nicht signifikant. In Abb.11 sind die V_{max}-Werte der einzelnen Tiere für die Kontroll- und die P-Mangelgruppe dargestellt. Die K_m-Werte wurden durch keine der Fütterungsvarianten signifikant beeinflußt.

Abb.11 V_{max}-Werte der Na⁺-abhängigen P_i-Aufnahme in renale BSMV von Ziegen mit adäquater oder reduzierter P-Versorgung (– = Mittelwert, 21°C)

Bei Schafen hatte die P-Depletion weder auf die V_{max}- noch auf die K_m-Werte einen signifikanten Einfluß. Während die V_{max}-Werte in vergleichbarer Größenordnung wie die an Schweinen ermittelten Werte lagen, waren sie um ~ 30-50 % niedriger als bei Ziegen. Bei beiden Wiederkäuerspezies war die Affinität des P_i-Transportsystems für P_i-Ionen um das 2,5- bis 5fache geringer als beim Schwein (p<0,01).

4.4.3 P_i-Aufnahme als Funktion der Na⁺-Konzentration

Abb.12 zeigt beispielhaft für 12 Kontrollziegen die P_i-Aufnahme in renale BSMV als Funktion der Na⁺-Konzentration. Aus osmotischen Gründen wurden keine Na⁺-

Konzentrationen >100 mmoll⁻¹ verwendet. Der Teil der Kurve mit [Na⁺] > 100 mmoll⁻¹ wurde extrapoliert. Die beste Kurvennäherung (r= 0,99) wurde mit dem Modell einer sigmoidalen Dosis/Wirkungsbeziehung erreicht. Aus dem Kurvenverlauf läßt sich die Na⁺-Konzentration bestimmen bei der die P_i-Aufnahme bei gegebener P_i-Konzentration von 0,1 mmoll⁻¹ halbmaximal war (K_{[0,5]Na}). K_{[0,5]Na} wird üblicherweise als Maß für die Na⁺-Affinität des P_i-Transportsystems verwendet.

Durch Umformung dieser Kurve nach HILL läßt sich der Hill-Koeffizient (n_{app}) berechnen, der einen Schätzwert für die Anzahl der pro transportiertem P_i-Ion beteiligten Na⁺-Ionen angibt.

Abb.12 Kinetik der P_i-Aufnahme in renale BSMV von Kontrollziegen als Funktion der Na⁺-Konzentration bei 21°C (Mittelwert ± SEM, n=12). Der zu den Na⁺-Konzentrationen >100 mmol⁻¹ gehörige Anteil des Graphen wurde extrapoliert.

Tab.7 zeigt eine Zusammenfassung der kinetischen Kenngrößen, wie Na⁺-Transportkapazitäten ($V_{max,app}$) sowie Na⁺-Affinitäten ($K_{[0,5]Na}$) mit den dazugehörigen Hill-Koeffizienten (n_{app}) für renale BSMV von Ziegen, Schafen und Schweinen mit unterschiedlicher P- oder Ca-Versorgung.

Tab.7 Kinetische Kenngrößen der Na⁺-Komponente des renalen P_i-Transportsystems von Ziegen, Schafen und Schweinen (21°C, Mittelwerte ± SD, n=Anzahl der Tiere).

	Spezies		V _{max,app} (nmolˈmg ⁻¹ Protein 10s ⁻¹)	K _{[0,5]Na} (mmol ⁻ 1)	n _{app}
Ziege	Kontrolle	n = 12	1,37 ± 0,57	95,9 ±16,3	3,01 ± 0,33
	P-Depl.	n = 8	$2,\!89\pm2,\!21$	128,1 ± 43,1	$2,75\pm0,79$
	Ca-Depl.	n = 8	1,30 ± 0,96	114,6 ± 35,4	$2,54\pm0,49$
Schaf	Kontrolle P-Depl.	n = 3 n = 3	0,43 ± 0,1 0,57 ±0,16	81,1 ± 10,0 93,8 ± 14,5	$2,35 \pm 0,10$ $2,27 \pm 0,28$
Schwein	Kontrolle	n = 3	0,58 ± 0,09	61,0±1,06	3,32 ± 0,19

Bei den Ziegen stieg die Na⁺-Transportkapazität unter P-Mangel um ~50% an, allerdings war dieser Effekt aufgrund der hohen Streuung innerhalb dieser Gruppe nicht signifikant. Die Ca-Versorgung übte keinen Einfluß auf die $V_{max,app}$ -Werte aus. Die K_{[0,5]Na}-Werte wurden durch keine der 3 Fütterungsvarianten beeinflußt.

Bei Schafen hatte die P-Depletion keinen nennenswerten Einfluß auf die $V_{max,app}$ - und auf die $K_{[0,5]Na}$ -Werte.

Im Speziesvergleich liegt die maximale P_i -Aufnahmerate der Ziegen (1,37 ± 0,57 nmolmg⁻¹ Protein 10s⁻¹) signifikant höher (p<0,05) als bei Schafen (0,43±0,1 nmolmg⁻¹ Protein 10s⁻¹) und Schweinen (0,58±0,09 nmolmg⁻¹ Protein 10s⁻¹). Die Affinität des P_i -Transportsystems für Na⁺-Ionen war bei beiden Wiederkäuerspezies geringer, unterschied sich jedoch nur zwischen Ziege und Schwein signifikant (p<0,05).

Für alle Spezies wurde ein Hill-Koeffizient >2 berechnet. Dies deutet auf einen elektrogenen P_i -Transport unter den gewählten Versuchsbedingungen hin. Im Speziesvergleich liegt der für die Schafe berechnete Hill-Koeffizient (2,35 ± 0,1) signifikant niedriger (p<0,01) als der von Ziegen (3,01 ± 0,33) und Schweinen (3,32 ± 0,19). Ein signifikanter Einfluß der Fütterung konnte weder bei Ziegen noch bei Schafen beobachtet werden.

4.5 Molekulare Charakterisierung des P_i-Transportsystems

4.5.1 Amplifikation von Na⁺/P_i-Cotransporter Typ II spezifischen Fragmenten

In der RT-PCR konnten mit Na⁺/P_i-Cotransporter Typ II spezifischen Primern sowohl in der Schweine- als auch in der Ziegen- und Schafniere entsprechende Fragmente amplifiziert werden.

In einem analytischen Gel zeigte sich, daß die Größe der Fragmente annäherend der des Rattenfragmentes mit 768 Basenpaaren entsprach.

Unspezifische Reaktionen konnten über negative Kontrollen ausgeschlossen werden.

Abb.13 Amplifikation von Na⁺/P_i-Cotransporter Typ II spezifischen Fragmenten in der Niere von Schwein, Ziege und Schaf. Negativkontrolle: PCR-Ansatz ohne Template; Positivkontrolle: Ratte Bei Ziege und Schaf wurde die Qualität des Templates über die Amplifikation eines GAPDH-Fragmentes von 820 Basenpaaren verifiziert.

4.5.2 Sequenzierung der Na⁺/P_i-Cotransporter Typ II spezifischen Fragmente

Die Na⁺/P_i-Cotransporter Typ II spezifischen Fragmente wurden in den pGEM-T Vektor einkloniert und JM109-Zellen damit transformiert. Die richtigen Klone wurden über eine Blau-Weiß-Selektion erkannt und isoliert.

Zur Überprüfung der Spezifität wurde eine Restriktionsanalyse der Plasmide mit Eco 52 I durchgeführt. Das in Abb.14 dargestellte analytische Gel zeigt die vorhandenen Inserts. Die Größe der Inserts bei Schwein und Schaf entsprach der Größe des spezifischen PCR-Fragmentes. Bei der Ziege wurde das Insert in zwei Fragmente geschnitten, da das Insert offensichtlich eine Eco 52 I Schnittstelle enthielt.

Abb.14 Überprüfung der Spezifität des klonierten PCR-Fragmentes mittels Restriktionsanalyse mit Eco 52 I. Die Ermittlung der Sequenz des klonierten PCR-Fragmentes erfolgte durch die Firma MWG-BIOTECH, Ebersberg. Es wurde eine Einstrangsequenzierungsreaktion mit dem im Vektor enthaltenen T7-Promotor durchgeführt. Ein Vergleich der Aminosäuresequenzen der Na⁺/P_i-Cotransporter Typ II Fragmente (Abb.14) ergab folgende Homologien: Ziege/Ratte 90 %, Schaf/Ratte 89 %, Schwein/Ratte 89 %, Ziege/Schaf 98 %, Ziege/Schwein 94 % und Schaf/Schwein 92 %.

Ergebnisse

		M3 10	2 0	3 0	4 0	5 0	
Ratte	1	MVSSGLLEVS	SAIPIIMGSN	IGTSVTNTIV	ALMQAGDRTD	FRRAFAGATV	50
Ziege	1	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	50
Schaf	1	* * * * * * * * * *	* * * * * V * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	50
Schwein	1	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	50
		60	7 0	8 0	90	100	
Ratte	51	HDCFNWLSVL	VLLPLEAATG	YLHHVTGLVV	ASFNIRGGRD	APDLLKVITE	100
Ziege	51	* * * * * * * * * *	* * * * * * * * * *	* * * * I * * * * *	* * * * * * * * * *	* * * * * * I * * *	100
Schaf	51	* * * * * * * * * *	* * * * * * * * * *	* * * * I * * * * *	* * * * * * * * * *	* * * * * * I * * *	100
Schwein	51	* * * * * * * * * V	* * * * * * * * * *	* * * Y * * * * * *	* * * * * * * * * *	T * * * * * I * * *	100
		110	120	130	140	150	
Ratte	101	PFTKLIIQLD	KSVITSIAVG	DESLRNHSLI	RIWCQPETKE	ASTSMSRVEA	150
Ziege	101	* * * * * * * * * *	*****L*S*	* * * * * * * * * *	*V**Y*DPT*	VP*P*P*A* *	150
Schaf	101	* * * * * * * * * *	*****L*S*	* * * * * * * * * *	*V**Y**PHR	G*Y**P*A**	150
Schwein	101	* * * * * * * * * *	* * * * * * * * T *	* * * * * * * * * *	* * * * H * D S M Q	* P * P V P * A Q *	150
		160	170	180	<i>M4</i> 190	200	
Ratte	151	IGSLANTT	MEKCNHIFVD	TGLPDLAVGL	ILLAGSLVVL	CTCLILLVKM	200
Ziege	151	N T * W - * R * A *	L******	* * * * * * * * * *	******AL*	* * * * * * * * * *	200
Schaf	151	N T * R M * R * A *	L******	* * * * * * * * * *	* * * * C * * AL *	* * * * * * * * * *	200
Schwein	151	N T * W M * G * A *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * L *	* * * * * * * * * *	200
		210	220	230	<i>M</i> 5 240	250	
Ratte	201	LNSLLKGQVA	NVIQKVINTD	FPAPFTWVTG	YFAMVVGASM	TFVVQSSSVF	250
Ziege	201	* * * * * * * * * *	K * * * * * * * * *	* * T * * * * A * *	* * * * * * * * * *	* * * * * * * * * *	250
Schaf	201	* * * * * * * * * *	K * * * * * * * * *	**T***A**	* * * * * * * * * *	* * * * * * * * * *	250
Schwein	201	* * * * * * * * * *	K * * * * * * * * *	*S****A**	* * * * * * * * G *	* * * * * * * * * *	250
		<i>M6</i> 260					
Ratte	251	TSAITP	-				300
Ziege	251	***L**					300
Schaf	251	* * * * * * • • • • •					300
Schwein	251	* * * * * * • • • • •					300

Abb.14 Aminosäuresequenzen der renalen Na⁺/P_i-Cotransporter Typ II Fragmente (*=identisch mit der Rattensequenz)

(M = hydrophobe Bereiche, die als transmembranale Regionen postuliert werden, VERRI et al. 1995)

5. Diskussion

5.1 Beurteilung der angewandten Methode

Vor einigen Jahren noch war das Wissen über den renalen P_i-Transport in erster Linie auf In-vivo- und In-vitro-Untersuchungen am intakten Gewebe gestützt. Es wurden Clearence-Studien (BRAZY et al. 1980a), Stop-flow-Untersuchungen (LAMBERT 1964) sowie Untersuchungen mit Hilfe verschiedener Micropunktions- und Microperfusionstechniken durchgeführt (STRICKLER et al. 1964, KUNTZINGER et al. 1972, WEN 1978, LE GRIMELLEC 1974, DENNIS et al. 1976, BRAZY et al. 1980b). Die Isolierung von Membranvesikeln eröffnete weitere Möglichkeitenmembranale Aufnahmemechanismen zu untersuchen.

Der Stofftransport durch Epithelien kann prinzipiell auf para- und/oder transzellulärem Weg stattfinden. Der parazelluläre Transport erfolgt passiv entlang eines chemischen und/oder elektrischen Gradienten. Der transzelluläre Stofftransport erfolgt entweder ebenfalls passiv entlang eines elektrochemischen Gradienten oder aktiv unter ATP-Verbrauch auch gegen einen vorhandenen Gradienten. Der Einsatz von Membranvesikeln ermöglicht eine Unterteilung des transepithelialen Transportes in Einzelschritte, die so unter definierten und kontrollierten Bedingungen untersucht werden können. Durch das Entfernen cytoplasmatischer Komponenten ist die Untersuchung der membranalen Transporteigenschaften unabhängig von intrazellulären Funktionen, wie dem Zellstoffwechsel, von intrazellulären Verteilungsprozessen und vom Einfluß der Second-messenger-Systeme möglich (MURER und KINNE 1980). Die isolierten Vesikel der apikalen oder basolateralen Zellmembran besitzen in der Regel eine ausreichende mechanische Stabilität, eine große Oberfläche für Flüssigkeits- oder Stofftransport und bilden eine effektive Barriere zwischen intra- und extravesikulärem Medium (HOPFER 1989). Das ermöglicht konzentrationsabhängige Aufnahmeversuche, die nach den Prinzipien von Michaelis-Menten ausgewertet werden können und somit eine genaue kinetische Charakterisierung membranständiger Transportsysteme erlauben. Durch Einsatz pharmakologisch wirksamer Substanzen kann auf chemische und/oder elektrische

Gradienten Einfluß genommen werden, um die Funktion der untersuchten Transportsysteme näher zu charakterisieren.

Bei der Interpretation, der durch Vesikelstudien erhaltenen Ergebnisse, ist zu berücksichtigen, daß es durch den Präparationsvorgang und die z.T. artifiziellen Pufferlösungen unter Umständen zu Veränderungen der Membranpermeabilität oder zur Inaktivierung von Transportsystemen kommen kann (MURER und KINNE 1980). Außerdem Fehlen Zellregulatoren ist durch das von und zellulären Stoffwechselprozessen die Aussagefähigkeit der Transportuntersuchungen eingeschränkt, da sie nicht die Transporteigenschaften des intakten Epithels widerspiegeln (MURER und KINNE 1980). Es ist daher wichtig die erhaltenen Ergebnisse in Zusammenhang mit Untersuchungen am intakten Epithel zu setzen.

Da es das Ziel der vorliegenden Arbeit war, den P_i-Transport über die renale Bürstensaummembran zu charakterisieren, war die Vesikeltechnik die Methode der Wahl.

5.1.1 Anreicherung der Bürstensaummembranfraktion

Die Bürstensaummembranen wurden aus einem Zellhomogenat mittels Mg²⁺-Präzipitation und Differentialzentrifugation isoliert. Für jede Präparation wurde sichergestellt, daß sich im abschließenden Pellet ausreichende Mengen an apikalen Membranen angereichert hatten und keine wesentliche Kontamination mit basolateralen Membranen vorlag, um so eine Verfälschung der erfaßten Transportkinetiken auszuschließen. Zur Überprüfung der Vesikelanreicherungen wird üblicherweise die Anreicherung sogenannter Marker- oder Leitenzyme bestimmt (MURER und KINNE 1980). In der vorliegenden Arbeit wurde die Aktivität der alkalischen Phosphatase (AP) als Marker der apikalen Membran gemessen sowie die Aktivität der Na⁺/K⁺-ATPase als Marker der basolateralen Membran (WRIGHT et al. 1979).

Die AP reicherte sich bei den Nierencortexpräparationen von Ziege und Schwein um das 6-8fache gegenüber dem Ausgangshomogenat an, während die Anreicherung bei den Schafen etwas geringer (5-fach) war (Tab.4). Dieser Unterschied zwischen

den Spezies läßt sich mit der relativ großen Streuung zwischen den einzelnen Präparationen erklären und wäre somit zufällig.

Insgesamt lagen die AP-Anreicherungen aber in vergleichbarer Größenordnung zu Werten aus der Literatur. HILDEN et al. (1989) fanden bei Nierencortexpräparationen von Hunden eine 9fache, PENNY (1991) bei vergleichbaren Untersuchungen an Schafen eine wenigstens 6fache und LEVINE et al. (1983) bei Ratten eine 9fache Anreicherung der AP.

Bei der Na⁺/K⁺-ATPase fand keine nennenswerte Anreicherung zwischen Ausgangshomogenat und Vesikelfraktion statt (Tab.4). Im Vergleich dazu fanden HILDEN et al. (1989) bei ihren Untersuchungen an Hunden sogar eine 2fache Anreicherung des basolateralen Membranleitenzyms.

Die Ergebnisse der enzymatischen Untersuchungen zeigen somit, daß eine selektive Anreicherung der apikalen Membranen erreicht wurde, ohne daß eine zu berücksichtigende Kontamination mit basolateralen Membranen stattfand.

5.1.2 Vesikelintegrität und -volumen

Zur Überprüfung der funktionellen Integrität der BSMV wurden die Na⁺-abhängigen und die Na⁺-unabhängigen P_i-Aufnahmen als Funktion der Zeit gemessen. Hier zeigte sich in Anwesenheit eines vesikeleinwärts gerichteten Na⁺-Gradienten ein sogenannter Overshoot der P_i-Aufnahme. D.h., P_i wurde über die außen vorliegende Substratkonzentration hinaus in das Vesikelkompartiment aufgenommen (Abb.8). Als treibende Kraft dieses Phänomens diente dazu der Na⁺-Gradient (BERTELOOT und SEMENZA 1990). Diese Fähigkeit der Vesikel zur transienten Substratanreicherung wird als sicherer Hinweis auf das Vorliegen geschlossener Kompartimente, also intakter Vesikel, gewertet.

Die Höhe und der Verlauf des hier beobachteten Overshoot-Phänomens ist mit dem von STOLL et al. (1979) für die Rattenniere und dem von HELPS und MC GIVAN. (1991) für die renale Rinderzellinie NBL-1 beschriebenen Overshoot zu vergleichen.

Nach einer 180minütigen Inkubation bei 37°C erreichten sowohl die Na⁺-abhängige als auch die Na⁺-unabhängige P_i-Aufnahme in die renalen BSMV von Kontrollziegen vergleichbare Werte. Die Menge des bis zu diesem Zeitpunkt pro mg Protein aufgenommenen P_i bezeichnet den sogenannten Ausgleichswert (Equilibrium). Zu diesem Zeitpunkt sind extravesikuläre und intravesikuläre Substratkonzentration gleich. Aus diesem Ausgleichswert läßt sich das mittlere Vesikelvolumen berechnen. Der Transport in die Vesikel wird durch ihre Größe beeinflußt.

Im vorliegenden Fall ergab der Ausgleichswert ein Vesikelvolumen von 1,1 µl·mg⁻¹ Protein. Dieser Wert liegt in vergleichbarer Größenordnung zu Werten aus der Literatur (RÜBELT 1995). Für BSMV der Rattenniere wurde dagegen ein mittleres Vesikelvolumen von 1,3-1,7 µl·mg Protein⁻¹ beschrieben (BURCKHARDT et al. 1981, CAVERZASIO et al. 1982). Ob dieser Unterschied auf speziesabhängigen Unterschieden beruht oder sich aufgrund der unterschiedlichen Präparationstechniken ergab, wurde nicht weiter untersucht, da dieses für die im Folgenden diskutierten Ergebnisse für nicht weiter relevant gehalten wird.

Überprüfung der Vesikelintegrität wurde der Na⁺-abhängige Zur weiteren Glucosetransport gemessen. Ein Na⁺-abhängiger Glucosetransport im proximalen Tubulus wurde bereits für viele Spezies beschrieben (BECK und SACKTOR 1975, SCHARRER 1975, STOLL et al. 1979, LIN et al. 1984, BLANK et al. 1985, PENNY 1991). Bei jeder Vesikelpräparation, von der eine ausreichende Menge an BSMV-Suspension zur Verfügung stand, wurde die Glucoseaufnahme innerhalb 30 s bestimmt. Die Na⁺-abhängige Glucoseaufnahme war ca. 10fach höher als die Na⁺-unabhängige Glucoseaufnahme. Dies spricht für die Existenz eines Overshoot-Phänomens und damit für intakte Vesikel. Dabei lagen die in der vorliegenden Studie gemessenen Glucoseaufnahmen nach 30 s sogar um das 3-10fache höher als von anderen Arbeitsgruppen bisher gefunden (BECK und SACKTOR 1975, STOLL et al. 1979, PENNY 1991). Dies läßt sich möglicherweise auf Unterschiede in der Präparation der BSMV, wie z.B. bei der Pufferzusammensetzung und den Zentrifugationsschritten, und unterschiedliche Bedingungen während der Aufnahmeversuche selbst zurückführen.

Zwischen den einzelnen Fütterungsgruppen waren keine Unterschiede in der Höhe der jeweiligen Glucoseaufnahmen zu beobachten, und so ist davon auszugehen, daß die einzelnen Fütterungsvarianten keinen prinzipiellen Einfluß auf die Vesikelintegrität hatten. Mögliche Unterschiede im zeitlichen oder kinetischen Verlauf der P_i-Aufnahmen können demnach auch im wesentlichen auf einen Einfluß der Fütterung auf das P_i-Transportsystem zurückgeführt werden.

Es läßt sich zusammenfassen, daß es sich bei den in der vorliegenden Arbeit verwendeten Vesikel um geschlossene Kompartimente, also intakte Vesikel, mit der Fähigkeit zur Glucoseaufnahme handelt und daß die Fütterungsvarianten keinen grunsätzlichen Einfluß darauf hatten.

5.2 Auswirkungen einer unterschiedlichen P- oder Ca-Versorgung auf die P- und Ca-Konzentrationen im Plasma

Die mehrwöchige P-Depletion der Ziegen und Schafen führte zu dem schon bekannten Abfall der P_i-Konzentration im Plasma (FIELD et al. 1975, BOXEBELD et al. 1983, BREVES et al. 1985, PENNY 1991, SCHRÖDER et al. 1990, KÄPPNER 1993, RÜBELT 1995) (Tab.3a). Gleichzeitig entwickelte sich bei den Ziegen eine ausgeprägte Hypercalcämie, die als häufige Begleiterscheinung der P-Depletion schon in anderen Studien gefunden wurde (FIELD et al. 1975, BREVES et al. 1985, MANAS-ALMENDROS et al. 1982, PENNY 1991, KÄPPNER 1993, RÜBELT 1995, SCHRÖDER et al. 1990).

Diese mit der P-Depletion assoziierte Hypercalcämie resultiert wahrscheinlich nicht aus einer ansteigenden intestinalen Calciumnettoabsorption (ABDEL-HAFEEZ et al. 1982), da P-Depletion bei Wiederkäuern im Gegensatz zu den Verhältnissen bei monogastrischen Spezies nicht mit einem Anstieg der Plasmacalcitriolspiegel einhergeht (TANAKA und DeLUCA 1973, BAXTER und DeLUCA 1976, FOX und CARE 1979, GRAY et al. 1983, HUGHES et al. 1975, RIBOVICH und DeLUCA 1978, RADER et al. 1979, BAR et al. 1983, BREVES und SCHRÖDER 1991, SCHRÖDER und BREVES 1993). Die beobachtete Hypercalcämie könnte auf eine verringerte
Mineralisierung und/oder eine erhöhte Mobilisation von Ca²⁺ aus dem Knochen zurückzuführen sein (BAYLINK et al. 1971, BREVES und SCHRÖDER 1991). Auf einen veränderten Knochenstoffwechsel deutet auch der Anstieg der AP im Plasma der P-depletierten Ziegen hin.

Bei den Schafen kam es dagegen zu keiner Veränderung der Ca-Plasmaspiegel und der AP-Werte bei P-Depletion. Möglicherweise war bei diesen Tieren trotz verminderter Plasma-P_i-Konzentrationen die P-Depletion nicht ausgeprägt genug, um zu einer vermehrten Mobilisation aus dem Knochen zu führen.

Bis heute ist noch nicht geklärt, durch welche hormonellen Mechanismen adaptative Vorgänge bei der Regulation der P-Homöostase der Wiederkäuer vermittelt werden.

Trotz der Ca-Depletion kam es bei den Ziegen zu keinem Abfall der Ca-Konzentration im Plasma. Dieser Befund deckt sich mit den Ergebnissen vorhergehender Untersuchungen (KÄPPNER 1993, RÜBELT 1995). In diesen Fällen wurde gezeigt, daß die Ca-Depletion zu einem Anstieg der PTH- und Calcitriol-Konzentrationen im Blut führte. Die Aktivierung dieser calciotrophischen Hormone kann als Ursache für die Aufrechterhaltung physiologischer Ca-Plasmaspiegel auch bei längerfristiger Ca-Depletion angesehen werden.

Die Ca-Depletion führte zu einem Absinken der P-Konzentration im Plasma der Ziegen von 2,9 auf 2,4 mmol^{-1⁻¹} was auf eine erhöhte P_i-Ausscheidung, hervorgerufen durch den angestiegenen PTH-Plasmaspiegel, hindeutet. Auch die Aktivität der alkalischen Phosphatase war tendenziell erhöht. Diese gilt als Marker eines veränderten Knochenstoffwechsels und deutet auf eine gesteigerte Ca-Mobilisation aus dem Knochen hin.

Es kann festgehalten werden, daß sowohl die Ziegen als auch die Schafe sich in einem P- bzw. Ca-Mangel befanden und damit für die Untersuchungen der vorliegenden Arbeit geeignet waren.

5.3 Kinetische Eigenschaften des P_i-Transporters

5.3.1 Einfluß von P_i auf den P_i-Transport

Zur Charakterisierung der kinetischen Eigenschaften des P_i -Transports durch die renale BSM wurde die P_i-Aufnahme bei konstanter Na⁺-Konzentration als Funktion der P_i-Konzentration gemessen. Aus dieser Beziehung wurden dann nach der Michaelis-Menten-Gleichung die maximale Aufnahmerate V_{max} für P_i, die ein Maß für die Transportkapazität bzw. die Anzahl der Transporter ist, bestimmt. Dabei ergab sich gleichzeitig die Michaelis-Menten-Konstante K_m, die ein Maß für die P_i-Affinität des Transportsystems darstellt.

Als Folge der P-Depletion kam es bei den Ziegen zu einer Steigerung der V_{max}-Werte um ca. 50 % (Tab.6). Allerdings konnte diese Erhöhung auf Grund der großen Streuung nicht statistisch abgesichert werden. Betrachtet man die Einzelwerte (Abb.11), so wird erkennbar, daß nur 25 % der P-depletierten Tiere eine gesteigerte Transportkapazität aufwiesen. Möglicherweise war die Transportkapazität des Na⁺-abhängigen P_i-Transporters bei den Tieren, die keine adaptative Regulation aufwiesen, schon bei adäquater P_i-Versorgung maximal. Einen Hinweis hierauf liefern die schon bei bedarfsgerechter P-Versorgung auffällig geringen renalen P_i-Ausscheidungsraten von Wiederkäuern im Vergleich zu Nichtwiederkäuern (siehe Tab.1). Es kann vermutet werden, daß die Tiere, die eine Adaptation aufwiesen, zu den in der Literatur immer wieder beschriebenen "P-Ausscheidern" gehört haben könnten (MEYER 1972, FIELD 1981, SCOTT et al. 1984a). Diese Einzeltiere fielen durch ihre hohe und monogastrischen Tieren entsprechende P_i-Ausscheidung auf. Um diese Hypothese zu überprüfen, sollte in zukünftigen Untersuchungen vor und während der P-Depletion die renale P_i-Exkretion bei entsprechenden Tieren bestimmt werden.

Die in Abhängigkeit von der P-Versorgung auftretenden Regulationsvorgänge des renalen Na⁺/P_i-Cotransportes wurden schon für Schwein (BARRET et al. 1980,

BRANDIS et al. 1987), Kaninchen (CHENG et al. 1983), Ratte (HOFFMANN et al. 1976, BURCKHARDT et al. 1981, STORELLI et al. 1980, LEVINE et al. 1983), Schaf (PENNY et al. 1991) und eine renale Rinderzellinie (HELPS et al. 1991) beschrieben und ist zur besseren Übersicht in Tab.8 zusammengefaßt. Wie aus Tab.8 hervorgeht, ist ein direkter Vergleich der Meßergebnisse verschiedener Arbeitsgruppen schwer möglich, da die angegebenen Werte unter sehr unterschiedlichen Bedingungen erhoben wurden. Zeit, Temperatur, Pufferzusammensetzung, intra- und extravesikulärer pH sowie die extravesikulären Pi-Konzentrationen variierten sehr stark und auch die Vesikel selbst wurden nach unterschiedlichen Methoden isoliert. Vergleicht man z.B. die für Ratten gemessenen V_{max}- und K_m- Werte von HOFFMANN et al. (1976) mit denen in der Arbeit von BURCKHARDT et al. (1981), so zeigt sich für die V_{max}-Werte eine Differenz von \approx 100 % und bei den K_m- Werten sogar eine Differenz von 1740 %. Wenn auch kein doch direkter Vergleich absoluter Werte möglich ist, so können die Regulationsvorgänge unter P-Depletion bei verschiedenen Spezies verglichen werden. So führte eine P-Depletion bei allen aufgeführten Spezies zu einem Anstieg der V_{max}-Werte, nicht aber zu signifikanten Veränderungen der K_m-Werte.

Bei monogastrischen Spezies wurde vielfach gezeigt, daß PTH das wichtigste Hormon der Regulation der renalen P_i-Ausscheidung ist. Die durch die P-Depletion hervorgerufene Hypercalcämie führt zu einem Absinken des PTH-Spiegels und dieses wiederum zu einer erhöhten Transporterdichte in der apikalen Membran des Tubulusepithels. Dadurch wird schließlich die renale P_i-Resorption erhöht (DENNIS et al. 1977, AMIEL et al. 1970, DUNLAY und HRUSKA 1990, LEVI et al. 1996). Beim Wiederkäuer hingegen ist die PTH-Wirkung umstritten. Konnte von einigen Arbeitsgruppen eine P_i-exkretionssteigernde Wirkung des PTH beobachtet werden (SMITH et al. 1969, KOOH 1980, DAVICCO et al. 1992), so wurde dies von anderen Arbeitsgruppen nicht berichtet (CLARK et al. 1975).

Calcitriol, das bei monogastrischen Tieren die P_i-Exkretion vermindert, (PUSCHETT et al. 1972, COSTANZO et al. 1974), scheint in der Regulation des P_i-Haushaltes von Wiederkäuern keine Rolle zu spielen (ABDEL-HAFEEZ et al. 1982, BREVES et al. 1985, MAUNDER et al. 1986).

Calcitonin bewirkt sowohl bei monogastrischen Tieren (BERNDT und KNOX 1992) als auch bei Wiederkäuern (MATSUI et al. 1983, BARLET et al. 1972) eine gesteigerte P_i -Exkretion über die Niere. Bei monogastrischen Tieren konnte eine Steigerung der P_i -Exkretion durch Glucocorticoide, PTHrP, TGF, EGF und atriales natriuretisches Hormon beobachtet werden, wohingegen Wachstumshormon, IGF1, T_3/T_4 und Insulin eine gegenteilige Wirkung zeigten (BERNDT und KNOX 1992, KEMPSON 1996).

Ein Teil des Einflusses der alimentären P-Zufuhr auf die maximale P_i-Transportkapazität der Niere scheint aber auch unabhängig von PTH, Vit. D₃, Plasmacalcium oder Wachstumshormon zu sein (MURER und BIBER 1992). Bislang ist jedoch nicht geklärt, über welche Mechanismen diese Adaptation vermittelt wird. Untersuchungen an Ratten mit chronischem P-Mangel konnten zeigen, daß transkriptionale und/oder translationale Mechanismen an dieser Adaptation beteiligt sind (LÖTSCHER et al. 1996).

Wie schon erwähnt, wurde die Pi-Affinität des Transportsystems durch die Fütterung nicht beeinflußt. Dies wurde auch von PENNY (1991) für Schafe und von STORELLI et al. (1980) für Ratten beschrieben. Es ergibt sich damit ein Hinweis darauf, daß die erhöhte Transportkapazität bei P-Depletion nicht auf einer Modifikation des Transportproteins selbst beruht, sondern auf einem vermehrten Einbau von Transporterprotein in die Membran.

Bei Schafen hatte die P-Depletion weder auf die V_{max}- noch auf die K_m-Werte einen nennenswerten Einfluß. Diese Ergebnisse stehen im Widerspruch zu den Befunden von PENNY (1991). Er fand bei P-depletierten Schafen eine deutliche Steigerung der V_{max}-Werte. Für die fehlende Regulation der P_i-Transportkapazität in der vorliegenden Untersuchung sind zumindest zwei Ursachen denkbar. Erstens könnte die P-Depletion der Schafe, wie schon vorher diskutiert, nicht ausreichend gewesen sein, um eine Erhöhung der V_{max} zu induzieren. Zweitens ist auch denkbar, daß wie bei den Ziegen, die Transportkapazität des Na⁺/P_i-Cotransporter Typ II schon unter adäquater P-Versorgung maximal war. Beim direkten Vergleich der V_{max}-Werte der vorliegenden Untersuchung (1,39 nmolmg Protein⁻¹ 10s⁻¹) und der von PENNY (1991) (0,141 nmolmg Protein⁻¹ 10s⁻¹) fällt auf, daß sie sich um ca. eine 10er Potenz unterscheiden. Allerdings gibt PENNY in derselben Arbeit an anderer Stelle eine initiale P_i-Aufnahme von 0,208 nmol mg⁻¹ Protein 10s⁻¹ an, die unter den gleichen Bedingungen gemessen wurde wie die Kinetik der Na⁺abhängigen Pi-Aufnahme. Da diese initiale Pi-Aufnahme in die Vesikel, die von ihm Transportkapazität des angegebene maximale P_i-Transportsystems deutlich überschreitet, läßt sich vermuten, daß es bei seiner Angabe der V_{max} zu einem Einheitenfehler kam. Falls diese Vermutung nicht richtig ist und die von SHIRAZI-BEECHEY et al. (1996) veröffentlichen V_{max}-Werte den tatsächlich gemessenen entsprechen, kann die erhebliche Differenz zu den V_{max}-Werten der vorliegenden Arbeit nur mit unterschiedlichen Bedingungen bei den Transportuntersuchungen, wie bereits diskutiert, erklärt werden.

Bei den Ziegen waren die V_{max}-Werte unabhängig von der Höhe der Ca-Versorgung und damit auch vom Plasmacalcitriolspiegel. Im Gegensatz dazu konnten BRANDIS et al. (1987) bei calcitriol-defizienten und hypocalcämischen Ferkeln im Vergleich mit normalen Ferkeln eine um die Hälfte erniedrigte V_{max} der P_i-Aufnahme messen. Dieser verminderte V_{max}Wert wurde auf den krankheitsbedingten Hyperparathyreoidismus zurückgeführt. Bei Ratten wurde mit Hilfe von spezifischen Antikörpern gegen den renalen Na⁺/P_i-Cotransporter Typ II in immunohistochemischen Untersuchungen eine Internalisierung unter PTH-Einfluß nachgewiesen (KEMPSON 1995, KEMPSON et al. 1996).

In der vorliegenden Arbeit wurden die PTH-Konzentrationen im Plasma der Cadepletierten Ziegen nicht untersucht, da schon in vorhergehenden Untersuchungen mit ähnlichen Fütterungsbedingungen eindeutig gezeigt wurde, daß es unter Ca-Mangel zu einem Anstieg der PTH-Konzentration im Plasma dieser Ziegen kommt (KÄPPNER 1993, RÜBELT 1995). Dies deutet auf eine PTH-unabhängige Regulation der renalen P-Ausscheidung bei Wiederkäuern hin. Diese Vermutung wird von Untersuchungen von ALEXANDER und NIXON (1969) und CLARK et al. (1975) gestützt. Trotz PTH-Infusion kam es bei den untersuchten Schafen zu keiner Veränderung der renalen P_i-Ausscheidung.

Daß es trotz der geringen renalen P_i-Ausscheidung unter Ca-Mangel zu keiner Hyperphosphatämie kam, könnte auf die hohe endogene P_i-Sekretion mit dem Speichel zurückzuführen sein. Untersuchungen von CLARK et al. (1973), TOWNS et al. (1978), SCOTT und BEASTALL (1978), CHALLA und BRAITHWAITE (1988c) und WIDIYONO et al.(1998) zeigen, daß eine positive lineare Beziehung zwischen der P_i-Konzentration im Plasma und der P_i-Konzentration im Speichel von Wiederkäuern besteht. Erst ab einer Plasma-P_i-Konzentration von 3-5 mmol⁻¹ steigt die Speichel-P_i-Konzentration nur noch wenig an und stellt sich trotz weiterer Konzentrationserhöhungen im Plasma auf einen Maximalwert ein.

Im Spezies-Vergleich weisen Schaf und Schwein im Vergleich zur Ziege eine um 30-50 % niedrigere maximale Transportkapazität auf. Diese unterschiedlichen Transportkapazitäten unter adäquater P-Versorgung spiegeln sich auch in den in Tab.1 aufgeführten renalen Ausscheidungsraten von P_i über die Niere wider.

Auch für die K_m-Werte lassen sich Speziesunterschiede beobachten. So liegt bei beiden Wiederkäuerspezies die P_i-Affinität des Transportsystems um 2,5-5-fach niedriger als die beim Schwein gemessene. Allerdings dürften diese Affinitäts-Unterschiede keine Rolle für die Gesamtkapazität des Transportsystems spielen. Aufgrund der freien Filtrierbarkeit von P_i-Anionen muß die P_i-Konzentration im Ultrafiltrat in der selben Größenordnung liegen wie im Blut, also \approx 2 mmol⁻¹ und damit weit oberhalb der halbmaximalen Sättigung der P_i-Transportsysteme aller drei Spezies. Tab.8 Kinetische Parameter der Na⁺-abhängigen P_i-Aufnahme in BSMV in Abhängigkeit von der P_i-Konzentration (21°C, pH 7,4).

Spezies	Inkubation [s]	V _{max} [nmolˈmg Protein ^{-1.} 10s ⁻¹]	K _m [mmolˈl ⁻¹]	Autor
bovine renal epithelial cell line NBL-1 ^a	180	Kontrolle: 0,16* P-Depletion: 0,35* ¹	Kontrolle: 0,036 ± 0,007 P-Depletion: 0,017 ± 0,003	HELPS et al. (1991)
Schwein ^a	15	Kontrolle: 0,73* P-Depletion: 1,87*	Kontrolle: 0,089 P-Depletion: 0,061	BARRETT et al. (1980)
Schwein ^c	2-4	Kontrolle: 2,14* Rachitis: 1,19*	Kontrolle: 0,239 Rachitis: 0,252	BRANDIS et al. (1987)
Kaninchen ^a	20	Kontrolle: 0,46* P-Depletion: 0,985*	Kontrolle: 0,063 P-Depletion: 0,072	CHENG et al. (1983)
Schaf ^{1,b}	5	Kontrolle: 0,141* P-Depletion: 0,242*	Kontrolle: $0,2 \pm 0,03$ P-Depletion: $0,23 \pm 0,05$	PENNY (1991)

Spezies	Inkubation [s]	V _{max} [nmolˈmɡ Protein ⁻¹]	K _m [mmolˈl ⁻¹]	Autor
Ratte ^d	15	7,2*	0,08	HOFFMANN et al. (1976)
Ratte [♭]	10	14,16 ⁻	1,392	BURCK- HARDT et al. (1981)
Ratte [♭]	10	Kontrolle: 1,31 ± 0,66 P-Depletion: 4,99 ± 1,68	Kontrolle: 0,86 ± 0,21 P-Depletion: 0,88 ± 0,1	STORELLI et al. (1980)
Ratte ^{a,+}		2,09*	0,036	LEVINE et al. (1983)

* V_{max} -Werte auf 10 s umgerechnet; ^a P_i-Konz. 0-1,0 mmol·l⁻¹; ^b P_i-Konz. 0-2,0 mmol·l⁻¹; ^c P_i-Konz. 0-3,0 mmol·l⁻¹; ^d P_i-Konz. 0-1,0 mmol·l⁻¹; ¹ 39°C; ⁺ pH 8,5

5.3.2 Einfluß von Na⁺

Da ein Cotransportsystem (wie der Na⁺/Pⁱ-Cotransporter Typ II) prinzipiell über Veränderungen der Transportkinetiken beider Substrate reguliert werden kann, wurde die Na⁺-Sensitivität des Systems ebenfalls näher untersucht. Dazu wurde bei konstanter P_i-Konzentration die P_i-Aufnahme als Funktion der Na⁺-Konzentration gemessen. Aus dieser Beziehung ergibt sich die Na⁺-Konzentration, bei der die P_i-Aufnahme halbmaximal ist (K_{[0,5]Na}). Damit ist der K_{[0,5]Na}-Wert ein Maß für die Na⁺-Sensitivität des P_i-Transportsystems.

Der aus der Kinetik der Na⁺-Bindungsstelle errechnete apparente V_{max} -Wert lag bei den P-depletierten Ziegen um ca. 50 % über dem für Kontroll- und Ca-depletierten Ziegen. Aufgrund der hohen Streuung konnte dieser Unterschied statistisch aber nicht abgesichert werden. Die Zunahme der $V_{max,app}$ von 1,37 ± 0,57 nmolmg⁻¹ Protein 10s⁻¹ auf 2.89 ± 2.21 nmolmg⁻¹Protein 10s⁻¹ bei alimentärem P-Mangel liegt in ähnlicher Größenordnung wie die von CAVERZASIO et al. (1987) bei Ratten beschriebenen Werte ($V_{max,app}$ Kontrolle: 1,794 ± 0,198 nmol mg⁻¹Protein 10s⁻¹, $V_{max,app}$ P-Depletion: 2,964 ± 0,362 nmol mg⁻¹ Protein 10s⁻¹). Die Zunahme der Na⁺-Transportkapazität bei P-Depletion entspricht damit dem Verhalten der V_{max}-Werte der P_i-Transportraten. Dies diskutierte Vermutung, unterstützt die schon vorher daß die gesteigerte Transportkapazität für P_i tatsächlich aus einem vermehrten Einbau von Na⁺/P_i-Cotransportern resultiert.

Die Ca-Depletion übte bei den Ziegen, wie schon auf die P_i-Transportkapazität (V_{max}) des Na⁺/P_i-Cotransporters, keinen nennenswerten Effekt auf die Na⁺-Transportkapazität ($V_{max, app}$) aus. Dieser Befund kann als ein weiterer Hinweis dafür gewertet werden, daß der renale P_i-Transport beim Wiederkäuer PTH-unabhängig reguliert wird. Im Gegensatz dazu konnten BRANDIS et al. (1987) bei rachitischen Ferkeln, wahrscheinlich als Folge des erhöhten PTH-Spiegels, eine Abnahme der V_{max,app} auf 0,27 nmol⁻¹Protein 10s⁻¹ gegenüber den Kontrollferkeln mit 0,74 nmol⁻¹Protein 10s⁻¹ verzeichnen.

Die Na⁺-Sensitivität des renalen Pi-Transporters von Schaf und Ziege wurde weder durch Ca- noch durch Pi-Mangel beeinflußt.

Bei Schafen hatte die P-Depletion keinen Einfluß auf die $V_{max,app}$ - und $K_{[0,5],app}$ -Werte. Dies steht in Übereinstimmung mit den V_{max} - und K_m -Werten der Kinetik der Na⁺abhängigen P_i-Aufnahme. Die möglichen Gründe für das Fehlen eines Fütterungseinflusses wurden bereits diskutiert.

Vergleicht man die Na⁺-Transportkapazität des renalen Na⁺/P_i-Cotransporters der einzelnen Spezies miteinander, so zeigt sich, daß die V_{max, app}-Werte der Ziegen si-

gnifikant höher liegen als die von Schafen und Schweinen. Dies spiegelt die schon unter adäquater P-Versorgung hohe renale P_i-Resorption und die damit verbundene geringe P_i-Exkretion von Wiederkäuern im Vergleich zu monogastrischen Tieren (siehe Tab.1) wider.

Die hohe renale P_i-Resorption bei Wiederkäuern macht auch bei eher teleologischer Betrachtung Sinn. Der Verdauungstrakt von Wiederkäuern reflektiert eine Adaptation an die phylogenetische Ausbreitung von Gräsern und den damit verbundenen Evolutionsdruck, dieses Pflanzenmaterial zu verdauen. Zur Aufrechterhaltung eines effizienten mikrobiellen Stoffwechsels im Pansen mußte eine ausreichende Versorgung der Mikroorganismen mit Phosphor gewährleistet sein. Da das aufgenommene Pflanzenmaterial arm an Phosphor ist, mußten die renalen P_i-Verluste möglichst gering gehalten werden, um in der Lage zu sein entsprechende Mengen an P_i mit dem Speichel in den Pansen zu sezernieren.

Die Affinität des Na/Pi-Cotransportsystems für Na⁺-Ionen war bei beiden Wiederkäuerspezies geringer als beim Schwein. Der Unterschied war jedoch nur zwischen Ziege (96 mmoll⁻¹) und Schwein (61 mmoll⁻¹) signifikant. Die Na⁺-Konzentration im proximalen Tubulus beträgt ca. 140 mmoll⁻¹. Das könnte bedeutet, daß sowohl bei der Ziege als auch beim Schwein unter physiologischen Bedingungen die Na⁺-Bindung schon maximal wäre.

Die in der vorliegenden Untersuchung für Schwein ermittelte $K_{[0,5], app}$ liegt deutlich unter dem von BRANDIS et al. (1987) für Ferkel angegebenen Wert (112,6 mmoll⁻¹), entspricht aber dem von HOFFMANN et al. (1976) für Ratten beschriebenen $K_{[0,5], app}$ -Wert von 60 mmoll⁻¹. CAVERZASIO et al. (1987) fanden dagegen bei Ratten einen $K_{[0,5], app}$ -Wert von 149,1 mmoll⁻¹. Diese Unterschiede zwischen den von verschiedenen Arbeitsgruppen beschriebenen $K_{[0,5], app}$ -Werten können mit den unterschiedlichen Präparationsbedingungen, wie bereits diskutiert, erkärt werden.

Der Kurvenverlauf der P_i-Aufnahme als Funktion der Na⁺-Konzentration (Abb.12) deutet auf eine sigmoidale Beziehung zwischen P_i-Aufnahme und Na⁺-Konzentration

hin. Dieses kann dadurch erklärt werden, daß mehr als ein Na⁺-Ion an dem Transport eines P_i-Anions beteiligt ist.

In der vorliegenden Studie konnte bei allen Tieren unabhängig von der Spezies und der Fütterung diese sigmoidale Beziehung beobachtet werden. Im Gegensatz dazu berichteten CHENG et al. (1983) eine Abhängigkeit dieser Beziehung von der P-Versorgung. Bei P-depletierten Kaninchen beobachteten sie einen sigmoidalen Verlauf der Na⁺-Kinetik und bei hoher P-Versorgung einen hyperbolischen Kurvenverlauf, was auf eine Modulation des Transporters selbst durch die P-Versorgung hindeuten würde. Dieser Fütterungseinfluß auf den Verlauf der P_i-Aufnahme als Funktion der Na⁺-Konzentration wurde allerdings von keiner anderen Arbeitsgruppe beschrieben.

Durch Umformung der Na⁺-Kinetik nach Hill läßt sich ein sogenannter Hill-Koeffizient (n_{app}) berechnen, der als Maß für die am Transport beteiligten Bindungstellen gilt. Die Ergebnisse der Hill-Plots (Tab.7) sprechen dafür, daß bei einem pH von 7,4 (innen und außen) mehr als zwei Na⁺-Ionen mit jeweils einem P_i in die BSMV aufgenommen werden. Dieses spricht für einen elektrogenen Transport unter In-vivo-Bedingungen, der durch die negative Ladung des Zellinneren unterstützt würde. Zu ähnlichen Annahmen kamen MURER und BIBER (1997) in Untersuchungen am in Oozyten von X. Laevis exprimierten Na⁺/P_i-Cotransporter Typ II.

5.4 Strukturelle Charakterisierung der Na⁺/P_i-Cotransporter von Ziege, Schaf und Schwein

Die funktionellen Daten, der untersuchten P_i-Transportsysteme in der renalen BSM von Ziege, Schaf und Schwein zeigen einen Na⁺/P_i-Cotransport. Allerdings lassen diese Daten keinerlei Rückschluß auf strukturelle Homologien zu. Die in der RT-PCR mit für den Na⁺/P_i-Cotransporter Typ II spezifischen Primern amplifizierten Fragmente lieferten die ersten Hinweise auf eine strukturelle Verwandschaft der P_i-Transportsysteme von Ziege, Schaf und Schwein mit dem Na⁺/P_i-Cotransporter Typ

II der Ratte. Die anschließende Sequenzierung dieser PCR-Fragmente ergab für die Aminosäuresequenz Homologien von 89%-98%.

Trotz einer Homologie von 89% zwischen Schaf bzw. Ziege und Ratte gibt es deutliche funktionelle Unterschiede. in einer die sich unterschiedlichen maximalen Transportkapazität und Affinität des Transportproteins zeigen. Auch die hormonelle Regulation des renalen Pi-Transportes weist deutliche Unterschiede zwischen Wiederkäuern und monogastrischen Tieren auf. Wärend bei Ratten gezeigt werden konnte, daß PTH zu einer endozytotischen Internalisierung und somit zu einer verminderten Präsenz von Na⁺/P_i-Cotransportern in der apikalen Membran der Tubulusepithelzelle führt (LEVI et al. 1996), scheint PTH beim Wiederkäuer nicht an der Regulation der P_i-Ausscheidung beteiligt zu sein (ALEXANDER und NIXON 1969, CLARK et al. 1975).

Die größte Anhäufung von Aminosäurenaustauschern befindet sich im Bereich eines postulierten cytosolischen Loops zwischen M3 und M4. Möglicherweise sind diese Unterschiede in der Aminosäurensequenz für die beobachteten Affinitätsunterschiede des Transporters bei den einzelnen Spezies verantwortlich. Diese Hypothese könnte allerdings nur durch gezielte Mutagenese der cDNA, Expression des mutierten Transporterproteins in einem geeigneten Expressionssystem und anschließenden Funktionsuntersuchungen verifiziert werden.

Die mutmaßliche Phosphorylierungsstelle für Proteinkinase C und die potentiellen N-Glycosylierungsstellen des Na⁺/P_i-Cotransporter Typ II der Ratte sind auch in der Aminosäurensequenz von Ziege, Schaf und Schwein zu finden, d.h. dieser Sequenzabschnitt liefert keinen Hinweis auf eine mögliche Ursache für die teilweise unterschiedliche hormonelle Regulation des P_i-Transportes bei Wiederkäuern und monogastrischen Tieren.

Um Hinweise zur Erklärung für die funktionellen und regulatorischen Unterschiede zwischen Wiederkäuern und monogastrischen Tieren zu erhalten, muß sicherlich die molekulare Struktur des gesamten Transportproteins identifiziert werden. Mit einem klonierten renalen Na⁺/P_i-Cotransporter von Ziege und Schaf könnten dann quantitative Untersuchungen zur Genexpression bei Ratte bzw. Schaf und Ziege durchgeführt werden. Durch gerichtete Mutagenese und Chimärenbildung könnten die strukturellen Unterschiede auf ihre Funktion hin untersucht werden. Schließlich

sollte nicht unerwähnt bleiben, daß Untersuchungen zur Modulation des renalen R-Transportes über akzessorische Proteine weitere Aufklärung der unterschiedlichen Regulationsprozesse liefern könnte.

6. Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurden die kinetischen Parameter des renalen P_i-Transportsystems bei Ziegen und Schafen und ein möglicher Einfluß der P- und Ca-Homöostase auf die Transporteigenschaften untersucht. Für die Transportuntersuchungen wurden Bürstensaummembranvesikel (BSMV) verwendet, die mittels Mg⁺-EGTA-Präzipitation und anschließender Differentialzentrifugation aus NierenCortices von 3-4 Monate alten Ziegen- und Schaflämmern isoliert wurden. Die Bestimmung der P_i-Aufnahme in die BSMV erfolgte mittels Schnellfiltration und ³²P als Tracer. Um methodisch vergleichbare Daten für eine monogastrische Spezies zu erhalten, wurden Kontrollversuche an Schweinen durchgeführt.

Mit Hilfe von RT-PCR und DNA-Sequenzierung wurde geprüft, ob es sich bei dem renalen, Na⁺-abhängigen Phosphattransportsystem von Ziege, Schaf und Schwein um den in der Rattenniere nachgewiesenen Na⁺/P_i-Cotransporter Typ II handelt.

Die Untersuchungen führten zu folgenden Ergebnissen:

1. Die maximale P_i -Aufnahmeraten (V_{max}) des renalen Na⁺-abhängigen P_i -Transportsystems von Ziegen war unabhängig von der Ca-Versorgung (Kontrolle : 1,98 \pm 1,21 nmolmg⁻¹ Protein 10 s⁻¹; Ca-Depl.: 1,93 \pm 0.99 nmolmg⁻¹ Protein 10 s⁻¹), stieg aber in Folge der P-Depletion um ca. 50 % an (P-Depl.: 2,99 \pm 2,2 nmolmg⁻¹ Protein 10 s⁻¹). Allerdings war dieser Effekt aufgrund der hohen interindividuellen Streuung in der P-depletierten Gruppe nicht signifikant.

Die P_i -Affinitäten (K_m) des P_i -Transportsystems wurden durch keine der Fütterungsvarianten signifikant beeinflußt (Kontrolle: 0,34 ±0,14 mmo'l⁻¹; P-Depl.: 0,35 ± 0,07 mmo'l⁻¹; Ca-Depl.: 0,28 ± 0,17 mmo'l⁻¹).

2. Bei Schafen hatte die P-Depletion weder auf die V_{max} -Werte (Kontrolle: 1,39 ± 0,56 nmolmg⁻¹ Protein 10 s⁻¹; P-Depl.: 1,03 ± 0,6 nmolmg⁻¹ Protein 10s⁻¹) noch auf die K_m-Werte (Kontrolle: 0,55 ± 0,21 mmoll⁻¹; P-Depl.: 0,33 ± 0,29 mmoll⁻¹) einen signifikanten Einfluß.

3. Die V_{max} -Werte der Ziegen lagen um 30-50 % höher als die für Schaf und Schwein ermittelten. Bei beiden Wiederkäuerspezies war die K_m um das 2,5-5-fache geringer als beim Schwein (p<0,01).

4. Bei alimentärem P-Mangel stieg die Na⁺-Transportkapazität (V_{max,app}) des renalen Na⁺-abhängigen P_i-Transportsystems der Ziegen um ca. 50 % an (Kontrolle 1,37 ± 0,57 nmol⁻¹ Protein 10 s⁻¹; P-Depl.: 2,89 ± 2,21 nmol⁻¹ Protein 10 s⁻¹), dieser Effekt war allerdings aufgrund der hohen Streuung innerhalb dieser Gruppe nicht signifikant. Die Ca-Versorgung übte keinen Einfluß auf die V_{max,app}-Werte aus (Ca-Depl.: 1,3 ± 0,96 nmol⁻¹ Protein 10 s⁻¹). Die Affinität des P_i-Transportsystems für Na⁺-Ionen (K_{[0,5]Na}) wurde durch keine der Fütterungsvarianten signifikant beeinflußt (Kontrolle: 95,9 ± 16,3 mmol⁻¹; P-Depl.: 128,1 ± 43,1 mmol⁻¹; Ca-Depl.: 114,6 ± 35,4 mmol⁻¹).

5. Bei Schafen hatte die P-Depletion weder auf die $V_{max,app}$ -Werte (Kontrolle: 0,43 ± 0,1 nmol⁻¹ Protein⁻¹0 s⁻¹; P-Depl.: 0,57 ± 0,16 nmol⁻¹ Protein⁻¹0 s⁻¹) noch auf die K_{[0,5]Na}-Werte (Kontrolle: 81,0 ± 10,0 mmol⁻¹; P-Depl.: 93,8 ± 14,5 mmol⁻¹) einen signifikanten Einfluß.

6. Die bei Ziegen ermittelte $V_{max,app}$ (1,37 ± 0,57 nmolmg⁻¹ Protein10s⁻¹) lag signifikant höher (p<0,05) als bei Schafen (0,43 ± 0,1 nmolmg⁻¹ Protein10s⁻¹) und Schweinen (0,58 ± 0,09 nmolmg⁻¹ Protein10s⁻¹). Die K_{[0,5]Na}-Werte waren bei beiden Wiederkäuerspezies geringer, unterschieden sich jedoch nur zwischen Ziege (95,9 ± 16,3 mmoll⁻¹) und Schwein (61,0±1,06 mmoll⁻¹) signifikant (p<0,05).

7. Für alle Spezies konnte ein Hill-Koeffizient >2 berechnet werden. Dies deutet auf einen elektrogenen, Na⁺-abhängigen P_i-Transport hin. Im Speziesvergleich lag der für die Schafe berechnete Hill-Koeffizient (2,35 \pm 0,1) signifikant niedriger (p<0,01) als der von Ziegen (3,01 \pm 0,33) und Schweinen (3,32 \pm 0,19). Ein signifikanter Einfluß der Fütterung auf die Stöchiometrie konnte weder bei Ziegen noch bei Schafen beobachtet werden.

8. Mit RT-PCR konnten mit für den Na⁺/P_i-Cotransporter Typ II spezifischen Primern sowohl in der Schweine- als auch in der Ziegen- und Schafniere entsprechende Fragmente von ca. 768 Basenpaaren amplifiziert werden.

9. Ein Vergleich der Aminosäuresequenzen des klonierten PCR-Fragmentes ergab folgende Homologien: Ziege/Ratte 90%, Schaf/Ratte 89%, Schwein/Ratte 89%, Ziege/Schaf 98%, Ziege/Schwein 94% und Schaf/Schwein 92 %.

Diese Ergebnisse zeigen eine strukturelle Verwandschaft der P_i-Transportsysteme von Ziege, Schaf und Schwein mit dem Na⁺/P_i-Cotransporter Typ II der Ratte, aber auch deutliche funktionelle Unterschiede des renalen P_i-Transportsystems von Wiederkäuern im Vergleich zu monogastrischen Tieren. In weiteren Untersuchungen sollte die molekulare Struktur des gesamten Transportproteins identifiziert werden, um durch gerichtete Mutagenese die strukturellen Unterschiede auf ihre Funktion hin überprüfen zu können.

7. Literaturverzeichnis

Abdel-Hafeez H.M., M. Manas-Almendros, R. Ross and A.D. Care (1982)

Effects of dietary phosphorus and calcium on the intestinal absorption of Ca in sheep. Br. J. Nutr. 47, 69-77

Alexander D.P. and D.A. Nixon (1969)

Effect of parathyroid extract in foetal sheep. Biol. Neonat. 14, 117-130

Amiel C., H. Kuntziger and G. Richet (1970)

Micropuncture study of handling of phosphate by proximal and distal nephron on normal and parathyroidectomized rat. Evidence for distal reabsorption. Pfluegers Arch. 317, 93-109

Banks J.N. and R.H Smith (1984a)

True and apparent absorption of phosphate between reticulum and duodenum of the ruminanting calf. Proc. Nutr. Soc. 43, 8A

Banks J.N. and R.H Smith (1984b)

Sites of absorption of magnesium and phosphate in the stomach of ruminanting calf. Proc. Nutr. Soc. 43, 9A

Bar A., J. Rosenberg and S. Hurwitz (1983)

Induced changes in the affinity of 1,25-dihydroxyvitamin D_3 receptors in chick intestine. FEBS Letters 163, 261-264

Barlet J.P. (1972)

The effect of porcine, salmon and human calcitonin on urinary excretion of some electrolytes in sheep. J. Endocr. 55, 153-161

Barlet J.P. and Care (1972)

The influence of parathyroid hormone on urinary excretion of calcium, magnesium and inorganic phosphorus in sheep. Horm. Metab. Res. 4, 315-316

Barret P.Q., J.M. Gertner and H. Rasmussen (1980)

Effect of dietary phosphate on transport properties of pig renal microvillus vesicles. Am. J. Physiol. 239, F 352-F359

Baumann K., C. De Rouffignac, N. Roinel, G. Rumrich and K.J. Ullrich (1975)

Renal phosphate transport: inhomogeneity of local proximal transport rates and sodium dependence.

Pfluegers Arch. 356, 287-297

Baxter L.A. and H.F. De Luca (1979)

Stimulation of 25-hydroxyvitamin D_3 -1 α -Hydroxylase by phosphat depletion. J. Biol. Chem. 251, 3158-3161

Baylink D., J. Wergedal and M. Stauffer (1971)

Formation, mineralization and resorption of bone in hypophosphatemic rats. J. Clin. Invest. 50, 2519-2530

Beardsworth L.J., P.M. Beardsworth and A.D. Care (1989)

The effect of ruminal phosphate concentration on the absorption of calcium, phosphorus and magnesium from the reticulo-rumen of sheep. Br. J. Nutr. 61, 715-723

Beck, L.H. and M. Goldberg (1974)

Mechanism of the blunted phosphaturia in saline-loaded thyroparathyroidectomized dogs. Kidney intern. 6, 18-23

Beck J.C. and B. Sacktor (1975)

Erergetics of the Na⁺-dependent transport of D-glucose in renal brush border membrane vesicles.

J. Biol. Chem. 250, 8674-8680

Ben-Ghedalia D., H. Tagari and A. Geva (1982)

Absorption by sheep of calcium, magnesium and phosphorus in digesta flowing along the gut of the sheep. Br. J. Nutr. 33, 87-94

Ben-Ghedalia D., H. Tagari, S. Zamwel and A. Bondi (1975)

Solubility and net exchange of calcium, magnesium and phosphorus in digesta flowing along the gut of the sheep. Br. J. Nutr. 33, 87-94

Berndt T.J. and F.G. Knox (1992)

Renal Regulation of Phosphate Excretion. In: Seldin D.W., Giebisch G., eds. The Kidney. Physiology and Pathophysiology. 2nd Ed. New York, Raven Press Ltd., 2511-2532

BertelootA. and G. Semenza (1990)

Advantages and limitations of vesicles for characterization and the kinetic analysis of transport systems. In: Methods of Enzymology (S. Eleischer und B. Eleischer, eds.) 192, 409-437

In: Methods of Enzymology (S. Fleischer und B. Fleischer, eds.) 192, 409-437, Academic Press, New York

Biber J., G. Caderas, G. Stange, A. Werner and H. Murer (1993)

Effect of low phosphate diet on sodium/phosphate cotransport mRNA and protein content and on oocyte expression of phosphate transport. Pediatr. Nephrol. 7, 823-26

Biber J, J. Forgo, and H. Murer (1988)

Modulation of Na^+-P_i cotransport in opossum kidney cells by extracellular phosphate. Am. J. Physiol. 22, C155-C161

Biber J. and H. Murer (1985)

Na-P_i cotransport in LLC-PK₁ cells: Fast adaptive response to P_i deprivation. Am. J. Physiol. 249, C430-C434

Bindels R.J.M., J.A.M. Geertsen and C.H. Van Os (1986)

Increased transport of inorganic phosphate in renal brush borders of spontaneously hypertensive rats. Am. J. Physiol. 250, F 470-F475

Blank M.E., F. Bode, E. Huland, D.F. Diedrich and K. Baumann (1985)

Kinetic studies of D-glucose transport in renal brush border membrane vesicles of streptozotocin- induced diabetic rats. Biochim. Biophys. Acta 844, 314-319

Boehncke E., J. Gropp und M. Wandl (1976)

Zur renalen Elektrolytausscheidung wachsender Mastkälber, 1. Mitteilung: Renale Phosphatausscheidung. Zbl. Vet. Med. A 23, 688-696

Boehncke E., A. Langner und F. Weissmann (1981)

Zum Phosphat- und Natriumstoffwechsel bei Aufzuchtkälbern. Zbl. Vet. Med. A. 28, 357-365

Böntgen-Simonet R. (1993)

Untersuchungen zur P-Verdaulichkeit und -Retention beim Mastschwein in Abhängigkeit von der P-Aufnahme. Inaug.-Diss. med. vet., Tieräztl. Hochsch. Hannover

Bonilla S.E (1976)

Phosphorus in nutrition of sheep: composition of body fluids, microbial fermentation and feed intake. Davis Univ., California, Thesis

Bonjour J.P. and J. Caverzasio (1984)

Phosphate transport in the kidney. Rev. Physiol. Biochem. Pharmacol. 100, 161-214

Borle A.B. (1974)

Calcium and phosphate metabolism. Annu. Rev. Physiol. 36, 361-390

Boxebeld A., L. Gueguen, G. Hannequart and M. Durand (1983)

Utilization of phosphorus and calcium and minimal maintance requirement for phosphorus in growing sheep fed a low-phosphorus diet. Reprod. Nutr. Devel. 23 (6), 1043-1053

Braithwaite G.D. (1984)

Some observations on phosphorus homeostasis and requirements of sheep. J. Agric. Sci., Camb., 102, 295-306

Brandis M., J. Harmeyer, R. Kaune, M. Mohrmann, H. Murer and Z. Zimolo (1987) Phosphate transport in brush-border membranes from control and rachitic pig kidney and small intestine. J. Physiol. 384, 479-490

Brazy P.C., R.S. Balaban, S.R. Gullans, L.J. Mandel and V.W. Dennis (1980a)

Inhibition of renal metabolism: Relative effects of arsenate on sodium, phosphate and glucose transport by the rabbit proximal tubule. J. Clin. Ivest. 66, 1211-1221

Brazy P.C., J.W. McKeown, R.H. Harris and V.W.Dennis (1980b)

Comparative effects of dietary, unilateral nephrectomy, and parathyroid hormone on phosphate transport by the rabbit proximal tubule. Kidney Int. 17, 788-800

Breves G. and H. Höller (1987a)

Effects of dietary phosphorus depletion in sheep on dry matter and organic matter digestibility.

J. Am. Physiol. Anim. Nutr. 58, 280-286

Breves G and H. Höller (1987b)

Gastrointestinal nitrogen turnover in sheep fed non-protein nitrogen and a phosphorusdeficient diet.

In: Isotope aided studies on non-protein-nitrogen and agroindustrial byproducts utilization by ruminants. International Atomic Energy Agency, pp. 19-29, IAEA Viena Proc. Series, STI/PUB/748

Breves G., H. Höller, P. Packheiser, G. Gäbel and H. Martens (1988)

Flux of inorganic phosphate across the sheep rumen wall in vivo and in vitro. Quart. J. Exp. Physiol. 73, 343-351

Breves G., C. Rosenhagen and H. Höller (1987)

Die Sekretion von anorganischem Phosphor mit dem Speichel bei P-depletierten Schafen (Salvia secretion of anorganic phosphorus in phosphorus-depleted sheep). J.Vet.Med. A 34, 42-47

Breves G., R. Ross and H. Höller (1985)

Dietary depletion in sheep: effects on plasma inorganic phosphorus, calcium, 1,25,- $(OH)_2$ -Vit-D₃ and alkaline phosphatase and on gastrointestinal P and Ca balances. J. Agric. Sci., Camb., 105, 623-629

Breves G. and B. Schröder (1991)

Comperative aspects of gastrointestinal phosphorus metabolism. Nutr. Res. Rev. 4, 125-140

Bruce J., E.D. Goodall, R.N.B. Kay, A.T. Phillipson and L.E. Vowles (1966)

The flow of organic and inorganic materials through the alimentary tract of the sheep. Proc. Roy. Soc. B 166, 46-62

Brunette M.G., M. Chan, U. Maag and R. Béliveau (1984)

Phosphate uptake by superficial and deep nephron brush border membranes. Effect of the dietary phosphate and parathyroid hormone. Pfluegers Arch. 400, 356-362

Burckhardt G., H. Stern and H. Murer (1981)

The influence of pH on phosphate transport in rat renal brush border membrane vesicles. Pfluegers Arch. 390, 191-197

Busch A.E., J. Biber, H. Murer and F. Lang (1996a)

Electrophysiological insights of type I and II Na/Pi transporters. Kidney Int. 49, 986-987

Busch A.E., A. Schuster, S. Waldegger, C.A. Wagner, G. Zempel, S. Broer, J. Biber, H. Murer and F. Lang (1996b)

Expression of a renal type I sodium/phosphate-transporter (NaPi-1) induces a conductance in *Xenopus* oocytes permeable for organic and inorganic anions. Proc. Natl. Acad. Sic. USA 93, 5347-5351

Caverzasio J., C.D.A. Brown, J. Biber, J. P. Bonjour and H. Murer (1985)

Adaptation of phosphate transport in phosphate-deprived LLC-PK₁ cells. Am. J. Physiol. 248, F122-F127

Carverzasio J., H. Murer, H. Fleisch and J.P. Bonjour (1982)

Phosphate transport in brush border membrane vesicles isolated from renal cortex of young growing and adult rats. Comparison with the whole kidney data. Pfluegers Arch. 394, 217-221

Carverzasio J., G. Danisi, R.W. Straub, H. Murer and J.P. Bonjour (1987)

Adaptation of phosphate transport to low phosphate diet in renal and intestinal brushborder vesicles: Influence of sodium and pH. Pfluegers Arch. 409, 333-336

Challa J. and G.D. Braithwaite (1988a)

Phosphorus and calcium metabolism in growing calves with special emphasis on phosphorus homeostasis. 1. Studies of the effect of changes in the dietary phosphorus intake on phosphorus and calcium metabolism.

J. Agric. Sci., Camb., 110, 573-581

Challa J. and G.D. Braithwaite (1988b)

Phosphorus and calcium metabolism in growing calves with special emphasis on phosphorus homeostasis. 2. Studies of the effect of different levels of phosphorus, infused abomasally, on phosphorus metabolism. J. Agric. Sci., Camb., 110, 583-589

Challa J. and G.D. Braithwaite (1988c)

Phosphorus and calcium metabolism in growing calves with special emphasis on phosphorus homeostasis. 3. Studies of the effect of continous intravenous infusion of different levels of phosphorus in ruminanting calves receiving adequate dietary phosphorus.

J. Agric. Sci., Camb., 110, 591-595

Challa J., G.D. Braithwaite and M.S. Dhanoa (1989)

Phosphorus homeostasis in growing calves. J. Agric. Sci., Camb., 112, 217-226

Cheng L., C.T. Liang and B. Sacktor (1983)

Phosphate uptake by renal membrane vesicles of rabbits adapted to high and low phosphorus diets.

Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14), F 175-F180

Cheng L. and B. Sacktor (1981)

Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles.

J. Biol. Chem. 256, 1556-1564

Clark R.C., O.E. Budtz-Olsen, R.B. Cross, P. Finnamore and P.A. Bauert (1973)

The importance of the salivary glands in the maintenance of phosphorus homeostasis in the sheep.

Aust. J. Agric. Res. 24, 913-919

Clark R.C., T.J. French, A.M. Beal, R.B. Cross and O.E. Budtz-Olsen (1975)

The acute effect of intravenous infusion of parathyroid hormone on urine, plasma and saliva in sheep.

Quart. J. Exp. Physiol. 60, 95-106

Compton J.S., S. Nelson, R.D. Wright and J.A. Young (1980)

A micropuncture investigation of electrolyte transport in the parotid glands of sodium-repleted and sodium-depleted sheep. J. Physiol. Lond. 309, 429-446

Costanzo L.S., P.R. Sheehe and I.M. Weiner (1974)

Renal actions of vitamin D in D-deficient rats. Am. J. Physiol. 226 (6), 1490-1495

Davicco M.-J., V. Coxam, J. Lefaivre and J.P. Barlet (1992)

Parathyroid hormone-related peptide increases urinary phosphate excretion in fetal lambs.

Exp. Physiol. 77, 377-383

Delisle M.C., V. Vacon, S. Giroux, M. Potier, R. Laprade and R. Beliveau (1992)

Molecular size of the renal sodium/phosphate symporter in native and reconstituted systems.

Biochim. Biophys. Acta 1104, 132-136

Dennis V.W. and P.C. Brazy (1978)

Sodium phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney. J. Clin. Invest. 62, 387-397

Dennis V.W. and P.C. Brazy (1982)

Divalent anion transport in isolated renal tubules. Kidney Int. 22, 498-506

Dennis V.W., E. Bello-Reuss and R.R. Robinson (1977)

Response of phosphate transport to parathyroid hormone in segments of rabbit nephron.

Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2) F29-F38

Dennis V.W, W.W. Stead and J.L. Meyers (1979)

Renal handling of phosphate and calcium. Annu. Rev. Physiol. 41, 257-271

Dennis V.W., P.B. Woodhall and R.R. Robinson (1976)

Characteristics of phosphate transport in isolated proximal tubule. Am. J. Physiol. 231, 979-985

Dillon J. and D. Scott (1979)

Digesta flow and mineral absorption in lambs before and after weaning. J. Agric. Sci., Camb., 92, 289-297

Dousa T.P. (1996)

Modulation of renal Na-Pi cotransport by hormones acting via genomic mechanism and by metabolic factors. Kidney Int. 49, 997-1004

Dua K, S. Leonhard, H. Martens, S.K. Abbas and A.D. Care (1994)

Effects of parathyroid hormone and parathyroid hormone-related protein on rates of absorption of magnesium, sodium, potassium and phosphate ions from the reticulorumen of sheep.

Exp. Physiol. 79, 408-409

Dunlay, R. and K.A. Hruska (1990)

PTH receptor coupling to phospholipase C is an alternative pathway of signal transduction in bone and kidney. Am. J. Physiol. 258, F223-F231

Durand M., B. Bertier, G. Hannequart and L. Gueguen (1982)

Influence d'une subcarence en phosphate et d'une excès de calcium alimentaire sur la phosphatémie et les teneurs en phosphore et calcium des contenus de rumen du mouton.

Reprod. Nutr. Dévelop. 22, 865-879

Enderise B.M. and R.H. Smith (1979)

Absorption and secretion in omasum of the young steer. Ann. Rech. Vet. 10, 354-355

Enderise B.M. and R.H. Smith (1986)

Exchanges of magnesium and phosphorus at different sites in the ruminant stomach. Archiv für Tierern. 36, 1019-1027 (Archiv Anim. Nutr. Berlin 36, 1019-1027)

Engelhardt W.v. and R. Hauffe (1975)

Funktionen des Blättermagens bei kleinen Hauswiederkäuern.IV. Resorption und Sekretion von Elektrolyten (Functions of the omasum in small domestic ruminants. IV. Absorption and secretion of electrolytes).J. Vet. Med. A 22, 363-375

Farries F.E. und J. Krasnodebska (1972)

Untersuchungen über die Verwertung von Harnstoff bei Wiederkäuern. C. Einsatz halbsynthetischer Rationen. 8. Mitteilung: Zum Einfluß unterschiedlicher P-Versorgung auf den N-Stoffwechsel bei ausschließlicher NPN-Zufuhr. Z. Tierphys. Tierernährg. Futtermittelk. 30, 33-47

Field A.C. (1981)

Some thoughts on dietary requirements of macro-elements for ruminants. Proc. Nutr. Soc. 40, 267-272

Field A.C., R.L. Coop, R.A. Dingwall and C.S. Munro (1982)

The phosphorus requirements for growth and maintenance of sheep. J. Agric. Sci., Camb., 101, 597-602

Field A.C., J. Kamphues and J.A. Woolliams (1983)

The effect of dietary intake of calcium and phosphorus on the absorption and excretion of phosphorus in chimaera-derived sheep. J. Agric. Sci., Camb. 101, 597-602

Field A.C., N.F. Suttle and D.I. Nisbet (1975)

Effects of diets low in calcium and phosphorus on the development of growing lambs. J. Agric. Sci., Camb., 85, 435-442

Fox J. and A.D. Care (1979)

The effect of hydroxylated derivates of vitamin D_3 and extracts of Solanum malacoxylon on the absorption of calcium, phosphate and water from the jejunum of pigs. Calcif. Tissue Res., 21 Suppl., 147-152

Fox J. and R. Ross (1985)

Effects of low phosphorus and low calcium diets on the production and metabolic clearance rates of 1,25-dihydroxycholechalciferol in pigs. J. Endocr. 105, 169-173

Freeman D., S. Bartlett, G.K. Radda and B. Ross (1983)

Energetics of sodium transport in the kidney. Saturation transfer ³¹P-NMR. Biochim. Biophys. Acta 762, 325-336

Goldfarb S. (1980)

Juxtamedullary and superficial nephron phosphate reabsorption in the cat. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8) F336-F342

Grace N.D. (1972)

Studies on the movement of magnesium, calcium, phosphorus, sodium and potassium across the gut wall of sheep fed fresh pasture. Proc. N. Z. Soc. Anim. Prod. 32, 77-84

Grace N.D., M.J. Ulyatt and J.C. Macrae (1974)

Quantitative digestion of fresh herbage by sheep. III. The movement of Mg, Ca, P, K und Na in the digestive tract. J. Agric. Sci., Camb., 82, 321-330

Grace N.D., E. Davies and J. Munroe (1977)

Association of Mg, Ca, P, and K with various fractions in the diet, digesta and faeces of sheep fed fresh pasture. N. Z. J. Agric. Res. 20, 441-448

Gray R.W., T.C. Garthwaite and L.S. Phillips (1983)

Growth hormone and triiodothyronine permit an increase in plasma $1,25-(OH)_2D_3$ concentrations in response to dietary phosphate deprivation in hypophysectomized rats. Calcif. Tissue Intern. 35, 100-106

Greene L.W., K.E. Webb Jr. and J.P. Fontenot (1983)

Effect of potassium level on site of absorption of magnesium and other macroelements in sheep.

J. Anim. Sci. 56, 1214-1221

Grinstein S., R.J. Turner, M. Silverman and A.Rothstein (1980)

Inorganic anion transport in kidney and intestinal brush border and basolateral membranes.

Am. J. Physiol. 238 (Renal Fluid Electrlyte Physiol.), F 452-F460

Haas J.A., T. Berndt and F.G. Knox (1978)

Nephron heterogeneity of phosphate reabsorption. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol.3) F 287-F290

Hagenbuch B. and H. Murer (1986)

Phosphate transport across the basolateral membrane from rat kidney cortex: sodiumdependence? Pflugers Arch. 407, S 149-155

Hammerman M.R. (1986)

Phosphate transport across renal proximal tubular cell membranes. Am. J. Physiol. 251, F385-F398

Hammerman M.R. and Hruska K.A. (1982)

Cyclic AMP-dependent protein phosphorylation in canine renal brush-border membrane vesicles is associated with decreased phosphate transport. J. Biol. Chem. 257, 992-999

Hayes G., A. Busch, M. Lötscher, S. Waldegger, F. Lang, F. Verrey, J. Biber and H. Murer (1994)

Role of N-linked glycosylation in rat renal Na/Pi-cotransport. J. Biol. Cem. 269, 24143-24149

Hayes G., A. Busch, F. Lang, J. Biber and H. Murer (1995)

Protein kinase C consensus sites and the regulation of renal Na/Pi-cotransport (Na/Pi) expressed in *Xenopus laevis* oozytes. Pfluegers Arch. 430, 819-824

Helps C.R. and J. McGivan (1991)

Adaptive regulation of Na⁺-dependent phosphate transport in the bovine renal epithelial cell line NBL-1.

Eur. J. Biochem. 200, 797-803

Hilden S.A., C.A. Johns, W.B. Guggino and N.E. Madias (1989)

Techniques for isolation of brush-border and basolateral membrane vesicles from dog kidney cortex.

Biochim. Biophys. Acta 983, 77-81

Hodge R.W. (1973)

The effect of level of calcium intake on utilization of phosphorus by the pre-ruminant lamb.

Aust. J. Agric. Res. 24, 921-926

Höller H., A. Figge, J. Richter and G. Breves (1988)

Nettoabsorption von Calcium und anorganischem Phosphat aus dem perfundierten Colon und Rectum von Schafen (Calcium and inorganic phosphate net absorption from the sheep colon and rectum perfused in viov). J. Anim. Physiol. Anim. Nutr. 58, 9-15

Hoffmann N.M., M. Thees and R. Kinne (1976)

Posphate transport by isolated renal brush border vesicles. Pfluegers Arch. 362, 147-156

Hopfer U. (1989)

Tracer studies with isolated membrane vesicles. In: Methods in Ezymology (S. Fleischer und B. Fleischer, eds.) 172, 313-331, Academic Press, New York

Hruska K.A. and M.R. Hammermann (1981)

Parathyroid hormone inhibition of phosphate transport in renal brush border vesicles from phosphate-depleted dogs. Biochim. Biophys. Acta 645, 351-356

Hughes M.R., P.F. Brumbaugh, M.R. Haussler, J.E. Wergedal and D.J. Baylink (1975)

Regulation of serum 1α ,25-dihydroxyvitamin D₃ by calcium und phosphate in the rat. Science 190, 578-580

Jaques K., D.L. Harmon, W.J. Croom and W.M. Hagler Jr. (1989)

Estimating salivary flow and ruminal water balance of intake, diet, feeding pattern and slaframine.

J. Dairy Sci. 72, 443-452

Käppner H. (1993)

In-vitro-Untersuchungen zum intestinalen Phosphat-Transport bei kleinen Wiederkäuern. Inaug.-Diss. med. vet., JLU Giessen

Kay R.N.B. (1960)

The rate of flow and composition of various salivary secretions in sheep and calves. J. Physiol. Lond. 150, 515-537

Kempson S.A. (1996)

Peptide hormone action on renal phosphate handling. Kidney Int. 49, 1005-1009

Kempson S.A. and T.D. Dousa (1979)

Phosphate transport across renal cortical brush border membrane vesicles from rats stabilized on a normal, high or low phosphate diet. Life Sic. 24, 881-888

Kempson S.S., M. Lötscher, B. Kaissling, J. Biber, H. Murer and M. Levi (1995)

Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules.

Am. J. Physiol. 268, F784-F791

Kienzle E. und S. Wilms-Eilers (1993)

Untersuchungen zur Struvitsteindiätetik: 2. Einfluß von Ammoniumchlorid und Carbonaten auf den Säure-Basen- und Mineralstoffhaushalt der Katze. DTW 100, 399-405

Knox, F.G. and C. Lechene (1975)

Distal site of action of parathyroid hormone on phosphate reabsorption. Am. J. Physiol. 229, 1556-1560

Knox F.G., H. Oswald, G.R. Marchand, W.S. Spielman, J.A. Haas, T. Berndt and S.P. Youngberg (1977)

Phosphate transport along the nephron (Editorial review). Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2) F 261-F268

Knox F.G., J.A. Haas and A. Haramati (1982)

Nephron sites of adaptation to changes in dietary phosphate. Adv. Exp. Med. Biol. 151, 13-19

Kooh S.W. (1980)

Parathyroid hormone responsiveness in the sheep fetus and newborn lamb. Can J. Physiol. Pharmacol. 58, 934-939

Kuntziger H., C. Amiel and C. Gaudebout (1972)

Phosphate handling by the rat nephron during saline diuresis. Kidney Int. 2, 318-323

Lambert P.P (1964)

Study of phosphate excretion by the stop-flow technique. Effect of parathyroid hormone. Nephron 1, 103-117

Lang F., R. Greyer, F.G. Knox and H. Oberteithner (1981)

Factors modulating renal handling of phosphate. Renal Physiol. 4, 1-16

Le Grimellec C., N. Roinel and F. Morel (1974)

Simultaneous Mg, Ca, P, K, Na and Cl analysis in rat tubular fluid. IV. During acute phosphate plasma loading. Pflugers Arch. 346, 189-204

Levi M., B.M. Baird and P.V. Wilson (1990)

Cholesterol modulates rat renal brush border membrane phosphate transport. J. Clin. Invest. 85, 231-237

Levi M., S.A. Kompson, M. Lötscher, J. Biber and H. Murer (1996)

Molecular regulation of renal phosphate transport. J. Membrane Biol. 154, 1-9

Levine B.S., K. Ho, J.A. Kraut, J.W. Coburn and K. Kurokawa (1983)

Effect of metabolic acidosis on phosphate transport by renal brush border membrane. Biochim. Biophys. Acta 727, 7-12

Lin J.T., K. Szwarc, R. Kinne and C.Y. Jung (1984)

Structural state of the Na⁺/D-glucose cotransporter in calf kidney brush border membranes. Target size analysis of Na⁺-dependent phlorizin binding and Na⁺-dependent D-glucose transport. Biochim. Biophys. Acta 777, 201-208

Lötscher M, P. Wilson, S. Nguyen, B. Kaissling, J. Biber, H. Murer and M. Levi (1996)

New aspects of adaptation of rat renal Na-P_i cotransporter to alterations in dietary phosphate.

Kidney Int. 49, 1012-1018

Magagnin S., A. Werner, D. Markovich, V. Sorribas, J. Biber and H. Murer (1993)

Expression cloning of human and rat renal cortex Na/P_i-cotransport. Proc. Natl. Acad. Sci. USA 90, 5979-5983

Mahler M. (1991)

Untersuchungen an der Labmagenwand von Schafen: Elektrophysiologische Eigenschaften, transepithelialer Transport von Calcium und Phosphat und Beeinflussung durch kurzkettige Fettsäuren.

Inaug.-Diss. med. vet., Tierärztl. Hochsch. Hannover

Manas-Almendros M., R. Ross and A.D. Care (1982)

Factors affecting the secretion of phosphate in parotid saliva in the sheep and goat. Quart. J. Exp. Physiol. 67, 269-280

Marcovich D., T. Verri, V. Sorribas, J. Forgo, J. Biber and H. Murer (1995)

Regulation of opossum kidney (OK) cell Na/P $_i$ cotransport by P $_i$ deprivation involves mRNA stability.

Pfluergers Arch.-Eur. J. Physiol. 430, 459-463

Matsui T., Y. Kanagawa, H. Yano and R. Kawashima (1984)

Effect of calcitonin on salivary phosphorus and calcium excretion in sheep. J. Endocrinol. 102, 365-368

Matsui T., H. Yano and R. Kwashima (1983)

Effect of extracellular volume expansion on renal phosphate reabsorption in the dog. J. Clin. Invest. 48, 1237-1245

Maunder, E.M.W., A.V. Pillay and A.D. Care (1986)

Hypophosphataemia and vitamin D metabolism in sheep. Quart. J. Exp. Physiol. 71, 391-399

Mc Keown J.W., P.C. Brazy and V.W. Dennis (1979)

Intrarenal heterogeneity for fluid, phosphate and glucose absorption in the rabbit. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6) F312-F318

Meyer H. (1972)

Über eine Anomalie der renalen Phosphor-Ausscheidung bei Schafen. Dtsch. Tierärztl. Wschr. 79, 426-427

Milton J.T.B. and J.H. Ternouth (1984)

The effects of phosphorus upon microbial digestion. Proc. Aust. Soc. Anim. Prod. 15, 472-475

Milton J.T.B. and J.H. Ternouth (1984)

Phosphorus metabolism in ruminants. II. Effects of inorganic phosphorus concentration upon food intake and digestibility. Aust. J. Agric. Res. 36, 647-654

Mircheff A.K. and E.M. Wright (1976)

Analytical isolation of plasma membranes of intestinal epithelial cells: Identification of Na⁺-K⁺-ATPase rich membranes and the distribution of enzyme activities. Membr. Biol. 28, 309-333

Mizgala C.L. and G.Q. Quamme (1985)

Renal handling of phosphate. Physiol. Rev. 64, 431-466

Molitoris B.A., A.C. Alfrey, R.A. Harris and F.R. Simon (1985)

Renal apical membrane cholesterol and fluidity in regulation of phosphate transport. Am. J. Physiol. 249, F12-F19

Mühlbauer R.C., J.P. Bonjour and H. Fleisch (1977)

Tubular localization of adaptation to dietary phosphate in rats. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2) F342-F348

Mulroney S.E. and A. Haramati (1990)

Renal adaption to changes in dietary phosphate during development. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27) F1650-F1656

Murer H. and J. Biber (1992)

Renal tubular phosphate transport: Cellular mechanisms. In: Seldin D.W., Giebisch G., eds. The Kidney. Physiology and Pathophysiology. 2nd Ed. New York, Raven Press Ltd., 2481-2509

Murer H. and J. Biber (1997)

A molecular view of proximal tubular inorganic phosphate (P_i) reabsorption and of its regulation. Pfluegers Arch. - Eur. J. Physiol. 433, 379-389

Murer H. and R. Kinne (1980)

The use of isolated membrane vesicles to study epithelial transport processes. J. Membrane Biol. 55, 81-95

Murer H., H. Stern, G. Burckhardt, C. Storelli and R. Kinne (1980)

Sodium-dependent transport of inorganic phosphate across the renal brush border membrane.

Adv. Exp. Med. Biol. 128, 11-23

Nemere I. (1996a)

Parathyroid hormone rapidly stimulates phosphate transport in perfused duodenal loops of chicks: Lack of modulation by vitamin D metabolites. Endocrinology 137, 3750-3755

Nemere I. (1996b)

Apparent nonnuclear regulation of intestinal phosphate transport: Effects of 1,25dihhydroxyvitamin D_3 , 24,25-dihydroxyvitamin D_3 and 25-hydroxyvitamin D_3 . Endocrinology 137, 2254-2261

Penny J.I. (1991)

Mechanisms of phosphate transport in sheep small intestine and kidney. PhD thesis, University of Wales

Peter R. (1982)

Klinische Chemie Basel, München: Karger Verlag

Peterlik M. and R. H. Wasserman (1978)

Effect of vitamin D on transepithelial phosphate transport in chick intestine. Am. J. Physiol. 234 (4), E379-E388

Petri A., H. Müschen, G. Breves, O. Richter and E. Pfeffer (1988)

Response of lactating goats to low phosphorus intake. 2. Nitrogen transfer from rumen ammonia to rumen microbes and proportion of milk protein derived from microbial amino acids.

J. Agric. Sci., Camb., 111, 265-271

Pfeffer E., A. Tompson and D.G. Armstrong (1970)

Studies on intestinal digestion in the sheep. 3. Net movement of certain inorganic elements in the digestive tract on rations containing different proportions of hay and rolled barley.

Br. J. Nutr. 24, 197-204

Poppi D.P. and J.H. Ternouth (1979)

Secretion and absorption of phosphorus in the gastrointestinal tract of sheep on four diets. Aust. J. Agric. Res. 30, 503-512

Preston R.L. and W.H. Pfander (1964)

Phosphorus metabolism in lambs fed varying phosphorus intakes. J. Nutr. 83, 369-378

Puschett J.B., P.C. Fernandez, I.T. Boyle, R.W. Gray, J.L. Omdahl and H.F. DeLuca (1972)

The acute renal tubular effects of 1,25-dihydroxycholecalciferol. Proc. Soc. Exptl. Biol. Med. 141, 379-384

Quamme G.A. and N.L.M. Wong (1984)

Phosphate transport in proximal convoluted tubule: effect of intraluminal pH. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15) F 323-F333

Rader J.I., D.J. Baylink, M.R. Hughes, E.F. Safilian and M.R. Haussler (1979)

Calcium and phosphorus deficiency in rats: effect on PTH and 1,25-dihydroxyvitamin D_3 . Am. J. Physiol. 236, E118-122

Ray Sarker B.C. and U.P.S. Chauhan (1967)

A new methode for determing microquantities of calcium in biological materials. Anal. Biochem. 20, 155

Reshkin S.J., J. Forgo and H. Murer (1990a)

Functional asymmetry of phosphate transport and its regulation in OK-cells: phosphate transport.

Pfluegers Arch. 416, 554-560

Reshkin S.J., J. Forgo and H. Murer (1990b)

Functional asymmetry of phosphate transport and its regulation in OK-cells: parathyroid hormone inhibition.

Pfluegers Arch. 416, 624-631

Reshkin, S.J., F. Wuarin, J. Biber and H. Murer (1990c)

Parathyroid hormone-induced alterations of protein content and phosphorylation in enriched apical membranes of opossum kidney cells. J. Biol. Chem. 256, 15261-15266

Ribovich M.C. and H.F. De Luca (1978)

Effect of dietary calcium and phosphorus on intestinal calciumabsorption and vitamin D metabolism. Arch. Biochem. Biophys. 188, 145-156

Rübelt A.C. (1995)

Untersuchungen zur Phosphat-Aufnahme durch die intestinale Bürstensaummembran von Ziegen. Inaug.-Diss. med. vet., JLU Giessen

Saiki, R., S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich and N. Arnheim (1985)

Enzymatic amplification of β -globulin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350-1354

Sansom B.F., K.J. Bunch and S.M. Dew (1982)

Changes in plasma calcium, magnesium, phosphorus and hydroxyproline concentrations in ewes from twelve weeks before until three weeks after lambing. Br. Vet. J. 138, 393-401

Scharrer E. (1975)

Developmental changes in sugar and amino acid transport in different tissues of ruminants.

In: McDonald I. und A.C.I. Warner, eds. Digestion and Metabolism in the Ruminant. A.C.I., University of New England, Australia, 49-59

Schöneseiffen R. (1993)

Untersuchungen über den Ansatz von Calcium und Phosphor bei wachsenden Ziegen in Abhängigkeit von der Versorgung mit diesen Elementen. Inaug.-Diss. agr., Rheinischen Friedrich-Wilhelms-Universität Bonn

Schröder B., G. Breves and E. Pfeffer (1990)

Binding properties of duodenal 1,25-dihydroxyvitamin D_3 receptors as affected by phosphorus depletion in lactating goats. Comp. Biochem. Physiol. 96A, 495-498

Schröder B., H. Käppner, K. Failing, E. Pfeffer and G. Breves (1995)

Mechanisms of intestinal phosphate transport in small ruminants. Br. J. Nutr. 74, 635-648

Schröder B. und G. Breves (1993)

Vergleichende Aspekte zum Mechanismus und zur Regulation der intestinalen Phosphat-Absorption.

Z. Gastroenterol. 31 (Suppl. 4), 58-60

Schröder B. and G. Breves (1996)

Mechanisms of phosphate uptake into brush-border membrane vesicles from goat jejunum. J. Comp. Physiol. B 166, 230-240

Schwab S.J. and M.R. Hammermann (1986)

Electrogenic Na⁺-independent P_i transport in canine renal basolateral membrane vesicles. Am. J. Physiol. 250, F 419-F424

Schwab S.J., S. Klahr and M.R. Hammermann (1984)

Na⁺ gradient dependent P_i uptake in basolateral membrane vesicles from dog kidney. Am. J. Physiol. 246, F 663-F669

Scott D. and G. Beastall (1978)

The effects of intravenous phosphate loading on salivary phosphate secretion and plasma parathyroid hormone levels in sheep. Quart. J. Exp. Physiol. 63, 147-156

Scott D. and W. Buchan (1985)

The effects of feeding either roughage or concentrate diets on salivary phosphorus secretion, net intestinal phosphorus absorption and urinary phosphorus excretion in the sheep.

Quart. J. Exp. Physiol. 70, 365-375

Scott D. and W. Buchan (1987)

The effect of feeding either hay or grass diets on salivary phosphorus secretion, net intestinal phosphorus absorption and on the partition of phosphorus excretion between urine and faces in the sheep.

Quart. J. Exp. Physiol. 72, 331-338

Scott D. and W. Buchan (1988)

The effects of feeding pelleted diets made from either coarsely or finely ground hay on phosphorus balance and on the partition of phosphorus excretion between urine and faeces in sheep.

Quart. J. Exp. Physiol. 73, 315-322

Scott D. and A.F. McLean (1981)

Control of mineral absorption in ruminants. Proc. Nutr. Soc. 40, 257-266

Scott D., A.F. McLean and W. Buchan (1984a)

The effect of variation in phosphorus intake on net intestinal phosphorus absorption, salivary phosphorus secretion and pathway of excretion in sheep fed roughage diets. Quart. J. Exp. Physiol. 69, 439-452

Scott D., A.F. McLean and W. Buchan (1984b)

The effect of intravenous phosphate loading on salivary phosphorus secretion, net intestinal phosphorus absorption and pathway of excretion in sheep fed roughage diets. Quart. J. Exp. Physiol. 69, 453-461

Scott D., F.G. Whitelaw, W. Buchan and L.A. Bruce (1985)

The effect of variation in phosphorus intale on salivary phosphorus secretion, net intestinal phosphorus absorption and faecal endogenous phosphorus excretion in sheep.

J. Agric. Sci., Camb., 105, 271-277

Sevilla C.C. and J.H.Ternouth (1980)

Effects of different levels of calcium and phosphorus in sheep. Proc. Aust. Soc. Anim. Prod. 13, 449

Sevilla C.C. and J.H.Ternouth (1982)

Effects of calcium and phosphorus depletion and repletion in lambs. Proc. Aust. Soc. Anim. Prod. 14, 633

Shah S.V., S.A. Kempson, T.E. Northrup and T.P-Dousa (1979)

Renal adaptation to a low phosphate diet in rats. Blockade by actinomycin D. J. Clin. Invest. 64, 955-966

Shirazi-Beechey S.P., R.B. Beechey, J.I. Penny, W. Buchan and D. Scott (1991)

Mechanisms of phosphate transport in sheep intestine and parotid gland: response to variation in dietary phosphate supply. Exp. Physiol. 76, 231-241

Shirazi-Beechey S.P., J.I. Penny, J. Dyer, I.S Wood, P.S. Tarpey, D. Scott and W. Buchan (1996)

Epithelial phosphate transport in ruminants, mechanisms and regulation. Kidney Int. 49, 992-996

Sklan D. and S. Hurwitz (1985)

Movement and absorption of major minerals and water in ovine gastrointestinal tract. J. Dairy Sci. 68, 1659-1666

Smith F.D. Jr., B.O. Tinglof, J. Meuli and M. Borden (1969)

Fetal response to parathyroid hormone in sheep. J. App. Physiol. 27 (2), 276-279

Stoll R., R. Kinne and H. Murer (1979)

Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush border vesicles. Biochem. J. 180, 465-470

Storelli C. and H. Murer (1980)

On the correlation between alkaline phosphatase and phosphate transport in rat renal brush border membranes vesicles. Pfluegers Arch. 384, 149-153

Strickler, J.C., D.D. Thompson, R.M. Lose and G. Giebisch (1964)

Micropuncture study of inorganic phosphate excretion in the rat. J. Clin. Invest. 43, 1596-1607

Symonds H.W. (1970)

The effect of thyroidectomy and thyroparathyroidectomy upon phosphorus hoemeostasis in the goat: a hypothesis for the cause of hypophosphataemia. Res. Vet. Sci. 11, 260-269

Tanaka J. and H.F. De Luca (1973)

The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch. Biochem. Biophys. 154, 566-574

Thewis A. and E. Francois (1985)

Intestinal absorption and secretion of total lipid phosphorus in adult sheep fed chopped meadow hay. Reprod. Nutr. Develop. 25, 389-397

Ternouth J.H., H.M.S. Davies, J.T.B. Milton, M.W. Simpson-Morgan and H.E. Sands (1985)

Phosphorus metabolism in ruminants. I. Techniques for phosphorus depletion. Aust. J. Agric. Res. 36, 637-645

Tomas F.M., R.T. Moir and M. Somers (1967)

Phosphorus turnover in sheep. Aust. J. Agric. Res. 18, 635-645

Tomas F.M. and M. Somers (1974)

Phosphorus homeostasis in sheep I. Effect of ligation of parotid salivary ducts. Aust. J. Agric. Res. 29, 587-593

Towns K.M., R.C. Boston and D.D. Leaver (1978)

The effect of intravenous administration of phosphorus and calcium metabolism in sheep. Aust. J. Agric. Res. 29, 587-593
Turner S.T. and T.P. Dousa (1985)

Phosphate transport by brush-border membranes from superficial and juxtamedullary cortex. Kidney Int. 27, 879-885

Ullrich K.J., G. Campasso, G. Rumrich, F. Papavassiliou and S. Kloess (1977)

Coupling between proximal tubular transport process. Pfluegers Arch. 368, 245-252

Ullrich K.J. and H. Murer (1982)

Sulphate and phosphate transport in the renal proximale tubule. Philos. Trans. R. Soc. Lond. [Bio.] 299, 549-558

Ullrich K.J., F. Papavassiliou, G. Rumrich and G. Fritsch (1985)

Contraluminal phosphate transport in the proximal tubule of rat kidney. Pfluegers Arch. 405, 106-109

Ullrich K.J., G. Rumrich and S. Kloess (1978)

Phosphate transport in in the proximal convolution of the rat kidney. III.Effect of extracellular and intracellular pH. Pfluegers Arch. 377, 33-42

Van't Klooster A.T (1967)

De toestand van calcium, magnesium en enzele andere mineralen in darminhond en mest van herkauwers in verband met hun resorptie. Meded. Landb. Hoogesch. Wageningen 5, 1-135

Vayro S, R. Kemp, R.B. Beechey and S. Shirazi-Beechey (1991)

Preparation and characterization of basolateral plasma-membrane vesicles from sheep parotid glands.

Biochem. J. 279, 843-848

Verri T., D. Marcovich, C. Perego, F. Norbis, F. Stange, V. Sorribas, J. Biber and H. Murer (1995)

Cloning of a rabbit renal Na-P_i cotransporter, which is regulated by dietary phosphate. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37), F626-F633

Wadsworth J.C. and R.D.H. Cohen (1977)

Phosphorus utilization by ruminants. Rev. Rural. Sci. 3, 143

Wald H., M. Dranitzki-Elhalel, R. Backenroth and M.M. Popovtzer (1998)

Evidence for interference of vitamin D with PTH/PTHrP receptor expression in opossum kidney cells.

Pflügers Ach.-Euro. J. Physiol. 436, 289-294

Walker, D.M. (1972)

Calcium and phosphorus retention by milk-feed lamb, with estimates of endogenous losses.

J. Agric., Camb. 79, 171-179

Wen S.F., J.W. Boyner Jr. and R.W. Stoll (1978)

Effect of phosphate deprivation on renal phosphate transport in the dog. Am. J. Physiol. 234, F199-F206

Werner A., M.L. Moore, N. Mantei, J. Biber, G. Semenza and H. Murer (1991)

Cloning and expression of cDNA for a Na/P_i-cotransport system of kidney cortex. Proc. Natl. Sic. USA 88, 9608-9612

Widiyono I., K. Huber, K. Failing and G. Breves (1998)

Renal phosphate excretion in goats. J. Vet. Med. A45, 145-153

Wilson W.D. and A.C. Field (1983)

Absorption and secretion of calcium and phosphorus in the alimentary tract of lambs infected with daily doses of Trichostrongylus colubriformis or Ostertagia circumcincta larvae.

J. Comp. Path. 93, 61-71

Wright E.M., A.K. Mircheff, S.D. Hanna, V. Harms, C.B. van Os, M.W. Walling and G. Sachs (1979)

The dark side of the intestinal epithelium: The isolation and characterization of basolateral membranes.

In: Mechanisms of intestinal secretion. Alan R., Inc., 150 Fifth Avenue, New York NY 10011, 117-130

Wright R.D., J.R. Blair-West, J.F. Nelson and G.W. Tregear (1984)

Handling of phosphate by a parotid gland (ovine). Am. J. Physiol. 246, F916-F926

Wylie M.J., J.P. Fontenot and L.W. Greene (1985)

Absorption of magnesium and other macro-minerals in the sheep infused with potassium in different parts of the digestive tract. J. Anim. Sci. 61, 1219-1229

Yusufi A.N.K., M. Szczepanska-Konkel, A. Hoppe and T.P. Dousa (1989)

Differential mechanisms of the increase in Na^+/P_i cotransport across the renal brush border membrane by thyreoid hormone and by dietary phosphate deprivation. Am. J. Physiol. 256, F 852-F861

Zentek J., H. Meyer und K. Behnsen (1994)

Einfluß der Fütterung auf die Mengenelementgehalte im Harn beim Hund. Kleintierpraxis 39, 12, 821-884

Herzlichen Dank!

Herrn Prof. Dr. G. Breves danke ich für die freundliche Aufnahme in seine Arbeitsgruppe und die fachliche Unterstützung beim Entstehen dieser Arbeit.

Herrn PD Dr. B. Schröder danke ich für die wissenschaftliche Betreuung und die stets gewährte freundschaftliche Unterstützung und Diskussionsbereitschaft.

Frau Dr. K. Huber danke ich für ihre freundschaftliche Unterstützung in allen fachlichen Fragen, ihre Diskussionsbereitschaft und die wissenschaftliche Betreuung im Bereich der Molekularbiologie.

S. Handstein und M. Haas in Gießen, sowie M. Rohde und F. Herkenrat in Hannover danke ich für die Betreuung der Versuchstiere.

G. Becker, M. Burmester und K. Hansen danke ich für die Einweisung in die Arbeitsabläufe in den Labors des Institutes für Physiologie der TiHo-Hannover.

Christoph, Korinna, Mike, Roland und Steffi danke ich für ihre Freundschaft die mich durch die Höhen und Tiefen beim Anfertigen dieser Arbeit begleitet hat und die Zeit im Institut für Veterinär-Physiologie in Gießen unvergeßlich macht.

Astrid, Conny, Eva, Helga, Hans-Dieter, Klaus und Sandra möchte ich danken, sie haben mir das Einleben in Hannover sehr erleichtert.

Ich danke allen nicht namentlich erwähnten Mitarbeiterinnen und Mitarbeitern des Instituts für Veterinär-Physiologie in Gießen und des Physiologischen Instituts der TiHo-Hannover für die angenehme Arbeitsatmosphäre.

Zu letzt möchte ich meiner Familie für ihre Unterstützung danken.