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Meanings and qualities are fundamental attributes of
visual awareness. We propose ‘‘eidolons’’ as a tool for
establishing equivalence classes of appearance along
meaningful dimensions. The ‘‘eidolon factory’’ is an
algorithm that generates stimuli in such a meaningful
and transparent way. The algorithm allows us to focus on
location, scale, and size of perceptually salient
structures, proto-objects, and perhaps even semantics
rather than global overall parameters, such as contrast
and spatial frequency. The eidolon factory is based on
models of the psychogenesis of visual awareness. It
affects the image in terms of the disruption of image
structure across space and spatial scales. This is a very
general method with many potential applications. We
illustrate a few instances. We present results for the
example of tarachopic amblyopia, showing that
scrambled vision is indeed an apt interpretation.

Introduction

Wouldn’t it be nice to experience what colorblind
people are seeing or what tarachopic amblyopes have
to cope with? Viénot, Brettel, Ott, M’Barek, and

Mollon (1995) told us about the former by simulating
the visual appearance of unilateral dichromats. Hess
(1982) informed us about the latter by requiring
patients to draw what they see. This is by no means
trivial. Unilateral dichromats are not all that clear in
their reports (Sloan & Wollach, 1948), whereas they
surely should be the first to know! It becomes clear that
such introspective reports are less easy to come up with
than it might seem if you try to describe—even to
yourself—what you experience as you see a book shelf
in the periphery of your visual field. You may somehow
be aware of the presence of books with titles written on
their spines, yet you cannot identify the books or read
the titles. The perceptual quality of peripheral vision
appears contradictory and defies your ability to
describe your sensations, yet surely you are the first to
know. Perhaps Titchener’s (1902) lab manual should be
consulted; he explains in detail how to use introspec-
tion.

Phenomena such as visual crowding have been
studied by measuring detection and discrimination
thresholds. The appearance of suprathreshold stimuli is
much harder to study. Exceptions are very specific
situations. One instance is direct contamination be-
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tween flanker and target objects (Greenwood, Bex, &
Dakin, 2010). One really needs first-person reports—
for instance, having observers draw what they see
(Metzger, 1936; Sayim & Wagemans, 2013). However,
the (in)ability of observers to reproduce their visual
experience limits this technique to relatively simple
stimuli. Another way is to use verbal descriptions (for
review, see Lettvin, 1976; Metzger, 1936; Pelli, 2008).
Of course, the use of first-person reports is beset with
difficulties.

Another approach might take its lead from methods
as proposed by Viénot et al. (1995), who transformed
color images to emulate dichromatic vision. Why not
preprocess a stimulus in ways that emulate peripheral
processing and present it foveally? Indeed, such
methods have been proposed and used to good
advantage by authors such as Rosenholtz and col-
leagues (e.g., Balas, Nakano, & Rosenholtz, 2009). In
such cases, one really needs to test various methods of
preprocessing to mimic the peripheral data. This might
(at least) serve to generate various hypotheses about
what goes on in peripheral vision as viable or perhaps
worth pursuing.

Such methods have considerable potential. However,
in order to wield them effectively, one needs to be able
to explore a reasonable environment of the original
stimulus. Because images can be transformed into other
images in infinite ways, whereas empirical research can
explore only limited ranges, there is a need for
controlled variation based on our present understand-
ing of visual processes. This is by no means an
understood issue and has remained more of an art
(Balas & Conlin, 2015). One really needs a much more
transparent and intuitive way of parameterizing and
perturbing stimuli.

Here we introduce a novel processing algorithm that
produces stimuli differing from a given image in ways
that are controlled by a limited number of clearly
understandable parameters. Within this parametric
space, we refer to the subset of stimuli that are
equivalent along a given perceptual domain as eidolons
(see Appendix D).1,2

Of course, one could use a very simple parameter
space. The variable contrast of sine-wave gratings used
in a modulation transfer (MTF; Schade, 1948, 1956)
measurement draws on a one-parameter space of
eidolons—the parameter being Michelson contrast. On
the other side one could use a very complex parameter
space to the point of parameterizing the luminance of
every pixel within an image. At the same time, one
could use a very strict criterion to establish perceptual
equivalence (e.g., defining two stimuli as equivalent
only when they are metameric) that is by all means
indistinguishable or a wider sense equivalence criterion
based, for instance, on semantics. In this wider sense,
all the well-known—even famous—instances of Leo-

nardo’s Mona Lisa by Marcel Duchamp, Fernando
Botero, and many other artists are eidolons.

In experimental phenomenology, one aims at pa-
rameterizations that naturally fit generic visual pre-
sentations rather than imposed physical ones. An
example of two physical parameters that do not map to
perception is contrast and sharpness in images. As
photographers know, a high-contrast print often serves
to save a slightly unsharp shot. Likewise, low-contrast
prints are often considered unsharp. In such cases a
natural space of eidolons may be a useful platform
from which to launch research.

Another potential use of eidolons is in the study of
visual anomalies and agnosias. Well-known examples
are renderings of color photographs that are intended
to suggest to the normal trichromat what the experi-
ences of various dichromats might be like. While this
use of eidolons might not directly answer scientific
questions, such examples are useful because they offer
the generic observer an opportunity to better under-
stand more or less singular ones and thus interact more
effectively with them. For instance, one might adapt
one’s printed or projected figures and text for more
universally effective communication. Thus, the topic
holds some genuine interest, even though mostly from
an applied science point of view.

The body of this article is structured in three
sections. Theory details the theoretical framework in
which we define our concept of eidolon. Implementa-
tion contains the general description of an eidolon
factory based on scale decomposition and spatial
disarray. Examples shows some examples of experi-
ments in which stimuli produced by the eidolon factory
could be used.

Theory

Formal description of eidolons

As anticipated, we define an eidolon of an image as
the equivalence class of images that evoke the same
visual awareness—given certain specified constraints—
in a given observer as the fiducial image.3 This implies
that the eidolon may formally represent that awareness
or aspect of awareness. An equivalence relation in
vision is commonly based on whether two images look
alike. In empirical science, this definition is unman-
ageable and needs to be converted to some operational
form. This involves two distinct aspects. One is the
operationalization of the equivalence. This boils down
to one or more formal psychophysical measures. The
other is the description of the equivalence set. This may
take the form of an algorithm that produces instances
on call or a set of parameters that allows attaching a
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unique formal label to an instance. The algorithm
might be deterministic or stochastic. Likewise, the
parameterization might be deterministic or stochastic.

A well-known example of an algorithm to produce
instances of equivalent images is the familiar JPEG file
format. Remember that JPEG (Pennebaker & Mitchell,
1993) uses lossy compression—that is, it literally
replaces the fiducial image with a phantom lookalike.
The user never notices losing the original except in
cases of extreme compression. The JPEG eidolons have
become of great economic importance and are in
common use.

Perhaps the best-known case of equivalence classes
in human vision is color. Infinitely many spectral
compositions look like the same baby blue. Even close
scrutiny in metameric lights does not reveal differences.
A color is in fact a huge class of physically distinct
radiations that are phenomenologically identical
(Koenderink, 2010). All metameric stimuli are trivially
eidolons in our definition. Conventional display units
present one with such chromatic eidolons.4 The space
of spectral compositions they offer has measure zero in
the space of physical spectra yet is sufficiently extended
given the bottleneck of human physiology.

An eidolon may have very high cardinality. Consider
the early Julesz patterns (Julesz, 1962; see Figure 1)—
100 3 100 pixel 1-bit images in which each pixel was
white or black with probability one half. Define
equivalence as the inability to keep two images apart at
cursory view. Then any such image, with probability
one, is part of the eidolon, for no two instances look
different.5 That is why you generically cannot describe
an eidolon by exhaustively listing its members. De-

scription by algorithm—the algorithm being controlled
by a few parameters—is the only operationally viable
solution.

Other parametric families of images can be generated
by manipulating physical aspects of the scene being
depicted, including geometrical transformations such as
translation and rotation of objects, size manipulations
(e.g., Biederman & Gerhardstein, 1993; Logothetis &
Sheinberg, 1996), and/or changes in the illumination in
terms of direction, intensity, and spectral composition
(e.g., Hurlbert, 2007; Kraft & Brainard, 1999). These
are of obvious ecological relevance, and fruitful lines of
research have shown that the visual system builds
neural representations that disentangle the information
relative to the objects being represented and to the
transformations themselves (e.g., DiCarlo & Cox, 2007;
Hong, Yamins, Majaj, & DiCarlo, 2016; Rust &
DiCarlo, 2012). Families of stimuli can also be
generated in order to contrast different models of the
visual system (see Wang & Simoncelli, 2008) and/or
their parameter values. One of many examples is the
manipulated scenes used by J. Freeman and Simoncelli
(2011), which were predicted to be perceptually
equivalent under the assumption of a given scaling of
receptive field size as a function of eccentricity.

Many eidolon factories are thus possible. The
eidolon factory we propose is a class of methods that
allows easy generation on demand using simple,
intuitive parameterization. In this article we also
describe how to set up one’s own eidolon factory for
vision research. In Examples we illustrate the use of
such methods to explore the topic of tarachopic
amblyopia (Hess, 1982). Of course, this is no more than
a proof of principle. We also provide a few examples of
possible experiments that might be conducted using
eidolons, although we can only scratch the surface of
possibilities.

We don’t claim to explain or model the brain with
these eidolons; we simply forge a phenomenological
model that we believe will prove useful in experimental
phenomenology (Albertazzi, 2013; Koenderink, 2015a).
However, we do consider the deep structure of the
visual field—that is, the structure that recognizes both
scale and spatial variation in the design. We use
methods of a geometrical nature that will be recognized
as having considerable similarity to structural descrip-
tions commonly encountered in the formal theories of
neural architecture. We develop this in the following
sections.

A model of psychogenesis

Objective psychophysics is concerned with threshold
measurements, ignoring visual qualities and meanings.
Modeling is primarily based on aspects of physics

Figure 1. Two Julesz patterns. Each has 100 3 100 square

patches randomly colored white or black with 50% probability.

The set of 2 3 103010 images contains such instances as a

rendering of the Mona Lisa, Jackson Pollock drawings, and so

forth, yet the overwhelming number of them all look the same.

The set is much more effectively described by a simple

algorithm than by listing all members. To most observers, at a

brief glance, both instances will look identical. There may be the

occasional eidetic (sometimes described as a savant skill among

individuals with autism spectrum disorder), but we know little

about their actual abilities.
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(mainly optics) and physiology. In the case of the
eidolon factory, one has to use a model of psychogen-
esis instead because we are dealing with visual
awareness in the experimental phenomenology of the
sense of sight.

Our model is based on the notion that awareness is a
mental construction. This idea was prominently put
forward by Hermann von Helmholtz (1892) in his
suggestion that perception is largely the result of
unconscious inferences about the world, and it is now
commonplace that perception is at least in part
constructive (Gregory, 1997; Hochstein & Ahissar,
2002; James, 1890).

In models of the brain the visual cortex is often
constructed as representing optical data, or even scene
data. In our model we regard the neural representation
as similar to the representation offered by the moist
sand of a beach. A depression might be said to
represent the impression of a bare human foot. But
notice that the sand—being inanimate—must be fully
oblivious of its representing anything. Likewise, the
cortical representation is meaningless as far as aware-
ness is involved (Koenderink, 2015b). It is very useful
as a structure that constructs a volatile (because
continually overwritten) file that records the available
optical structure. Like the file of a forensic investiga-
tion, most of what is in the file will never even be
consulted. Awareness is constructed and perhaps
originates from dreamlike states. In psychogenesis,
such states diversify and evolve, eventually attempting
to account for the activity in the primary visual areas.
This is how the hallucinations are constrained. Thus,
the cortex serves in sculpting imagery so to speak.

A full discussion of such a model would go too far
here. We refer to our recent article for a more detailed
description (Koenderink, van Doorn, & Pinna, 2015).
We merely give one example: the case of edges (Marr &
Hildreth, 1980; Savant, 2014). Suppose an input image
comprises two uniform areas of different intensities
meeting at a straight common boundary. Such a
configuration is considered an ideal edge. First-order
directional derivatives of any scale will represent the
edge as a straight, fuzzy (Zadeh, 1965) ribbon of
activity, its width being determined by the scale.
Psychogenesis will construct the appearance of an edge
by painting the visual field with a row of edgelets to
account for the representation. The edge would appear
light on one side and dark on the other side—a bit like
Pinna’s watercolor illusion (Pinna, 1987, 2008; Pinna,
Brelstaff, & Spillmann, 2001; Pinna, Werner, & Spill-
mann, 2003). This is very unlike the edginess repre-
sented in the neural structures. A formal analysis shows
that the edgelet presentation in visual awareness at a
given scale equals the Laplacian of the input pattern
(Koenderink et al., 2015; Koenderink, van Doorn,
Pinna, & Wagemans, 2016). Summing over all scales

yields the input pattern except for its average level.
Thus, we recognize two distinct levels: the meaningless
and qualityless neural representation (the analysis) and
the construction of visual awareness, which is a creative
imagery (the synthesis).

In the eidolon factory, we implement exactly such
analysis and synthesis stages. The variability in the
eidolon instances is due to the synthesis, the analysis
being a straightforward algorithm. This mimics psy-
chogenesis, which works well with lacunary data
(Kanizsa, 1997; Metzger, 1936), much like scientific
observation in many fields (Monmonier, 1999). Visual
awareness also easily deals with and even prefers local
disarray (Gombrich, 1963; Weegee & Speck, 1964) or
fuzziness (see Vasari, 2007).

The structure of the visual field

Evidently, eidolon algorithms should respect the
structure of the visual field, which is a mental entity.6 If
one desires to arrive at simple, intuitive designs, it
makes sense to rely more on basic, formal geometrical
principles than on our current understanding of the
neurophysiology of the primary visual cortex (Hubel &
Wiesel, 1968; Kandel, Schwartz, & Jessell, 2000). That
is where formal descriptions have to come from.
Moreover, we look primarily at the phenomenology of
visual awareness rather than neurophysiology.

A first principle might be that a not-too-large patch
of the visual field is approximately uniform and
isotropic in its properties. Here we ignore the global—
though major—effect of eccentricity; the remark
applies to local structure. The visual field has a
structure focused on rather local regions. It makes solid
ecological sense. Generically, what happens here is
quite distinct from what happens there. Local structure
tends to be statistically uniform.

This focus on locality rules out methods such as
global Fourier analysis (Papoulis, 1962), although this
method is widely used in vision research. This holds
equally for other global descriptions. What renders
Fourier analysis special is its translation invariance,
which is indeed a desirable property.

Fourier analysis is linear. This is another desirable
property. You may decompose any image in Fourier
components and synthesize it back again. Perhaps
unfortunately, this has led people, especially in vision
research, to infer that images comprise Fourier com-
ponents (Maffei & Fiorentini, 1973). This inference is
mistaken because linearity fully hides the nature of
composition after synthesis. You will never know
whether ‘‘4’’ was synthesized as ‘‘2þ 2’’ or ‘‘1þ 1þ 1þ
1.’’ Linear vector spaces of any dimension lack natural
parts.
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The natural parts issue is of fundamental importance.
Is a sausage composed of slices? Of course not! Yet you
can certainly decompose a sausage into slices. But that
such a decomposition is possible by no means implies
that the whole is composed of the (resulting) parts. A
sausage can be cut in many ways; thus, sausage slices are
by no means natural parts. Fourier methods—the basis
of the MTF method—imply parts (so-called sine-wave
gratings) that are just as arbitrary as the sausage slices.

Fourier methods are global. At the opposite side of
the range, one has purely local methods. Global versus
local is another fundamental distinction. The formal
method to describe local geometry is differential
geometry (Spivak, 1999). Here one encounters consid-
erable affinity with many familiar properties of the
visual field (Koenderink, 1984b, 1990; Koenderink &
van Doorn, 1992). The visual field is structured as a
hierarchy of localities.

Differential geometry exploits the structure of the
Euclidean plane in the immediate (so-called infinitesi-
mal) neighborhood of any of its points (Bell, 2005).
Because all such neighborhoods are considered mutu-
ally congruent, one has again a translationally invari-
ant, linear structure. However, this requires a
connection, or glue mechanism, that allows one to
compare points that are sufficiently close by. A
connection is a formal mechanism that allows transport
of geometrical structure from one location to another
(Levi-Civita & Ricci, 1900). The simplest geometrical
structures that need to be transported in order to
become fit to mutually compare are tangent vectors. A
vector is the derivative of a point, or, equivalently, a
bilocal object. It has a direction and a magnitude
(Koenderink, 1990; Koenderink & van Doorn, 1992;
Koenderink et al., 2015). All vectors at a point span the
tangent plane, which is a representation of the
infinitesimal neighborhood of the point. The connec-
tion relates close-by tangent planes to each other.

Notice how this has an obvious likeness to the
neurophysiological concept of a small set of receptive
fields overlapping at some point (Koenderink, 1984a).
All that is lacking is the notion of the size of a point.
According to one of Euclid’s definitions, a point is ‘‘that
which has no parts.’’ Euclid (ca. 300 BCE; see Burton,
1945) nowhere says points need to be small. Indeed, if
one considers size invariance of visual field properties
important, one should consider points of any size
(Kandinsky, 1959). Thus, the visual field should have a
self-similar structure (Koenderink, 1984b), lacking an
absolute measure of size.7 Technically, this implies linear
scale space, now a standard tool in image processing
(Burt & Adelson, 1983; Florack, 1997; Koenderink,
1984b; Lindeberg, 1994; Schmalzing, 1997; ter Haar
Romeny, 2008). The great advantage is its simplicity; it
is just differential geometry augmented with size.

Many operators in common use are much more
complex than their scale-space equivalents. But that
comes at a price: a loss of generality. For instance, there
are many edge detectors that find useful applications in
specific tasks. But edges are in the mind, not in the
image, and they come in great variety (Koenderink et al.,
2015), as painters well know (Cateura, 1995; Jacobs,
1986). No specific edge detector is optimal in all
circumstances because they have necessarily been
optimized under certain prior assumptions.8

In the final analysis, only differential geometry
makes general sense exactly because it is about nothing
in particular. We have explained the case of edges in
some detail elsewhere (Koenderink et al., 2015, in
press). In the differential geometric formalism, edges
are an alternative for points in that they provide a
complete, linear representation of the image. This is
categorically different from the mainstream view,
where edges are singular features that allow partial
reconstruction of an image due to smart sparse coding
(Elder & Zucker, 1998; Marr & Hildreth, 1980).

Something similar holds for receptive field profiles.
Would the eidolon factory be better off with Gabors
(Gabor, 1946)? Well, that would certainly complicate
the mathematics greatly without any actual gain.9

Maybe it makes one feel better (closer to the
physiology, maybe) that Gabors have numerous zero
crossings all the way to infinity? Who knows. From a
formal and algorithmic perspective, they are an
unnecessary headache. There are some indications that
the scale-space profiles are okay models of the
physiology too (Lindeberg, 2013; Young, 1987). If so
desired, an eidolon factory could be designed on a basis
of Gabor analysis/synthesis too.

Scale space is the model of the visual field we will use
(Koenderink, 1984b; ter Haar Romeny, 2008). It is
local, isotropic, translation invariant, and self-similar.
Its local structure is differential geometry with structure
up to some low order—at least two. This induces a
receptive field structure that is very reminiscent of what
is described for the primary visual cortex (Koenderink,
1990; Koenderink & van Doorn, 1992; ter Haar
Romeny, 2008). It is also a formal system that allows
geometrical operations in a transparent and exact
manner.

Local sign

The notion of ‘‘local sign’’ (meaning ‘‘positional
signature’’; Localzeichen in German10) is due to
Hermann Lotze (1852). Although it was considered of
major importance at the time (mid-19th century) and
frequently occupied people such as Helmholtz (1892), it
has largely been forgotten today. In order to appreciate
what the local sign problem is, consider the following.
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Axons carry spike trains, one action potential looking
much like the other. A recording from any given axon
will fail to reveal which location of the visual field the
neuron is serving, what the specific property the neuron
is messaging about might be, what its preferred direction
or orientation is, what the current gain factor of the
neuron is, and so forth. Of course, the brain scientist
knows. This is possible because the scientist knows the
current stimulus, has poked an electrode at a certain
location, can look at the anatomy, and might have
additional information concerning the neuron. But how
about the brain itself? It does not know the stimulus, it
cannot look at its own anatomy, and it is unlikely to
maintain databases on all of its neurons.

Modern brain scientists consider the discovery of
somatotopy to have rendered Lotze’s problem a
nonissue11 (Kaas, 1990). We hold a rather different
opinion on this and believe that the problem might be
even more pressing than it was felt to be at the time.

There are indications that an apparently physiolog-
ically intact visual brain might still lack local sign. We
refer to the condition of tarachopia (‘‘scrambled
vision’’) as reported by Hess (1982). In a case of
unilateral tarachopia, the tarachopic eye might have
acuity and contrast sensitivity just as good as that of
the normal eye, yet the amblyopia might be serious
enough to prevent the owner making out today’s
newspaper’s headlines. Apparently the tarachopia
involves lacking or disturbed local sign. The local
structures are there, but the differential geometric
connections are lacking. The physiological basis is (as
yet) unknown, so to this day tarachopia had to be
classified as an agnosia (Seelenblindheit, or ‘‘soul
blindness’’). This shows that local sign is an ill-
understood mechanism that lies at the basis of visual
awareness and is not a mere philosophical fiction, as is
sometimes suggested.

We will not enter into the possible mechanisms of
local sign here (see elsewhere—e.g., Koenderink,
1984a), but we suggest that scrambling local sign, or
local disarray of image elements, might be an apt model
of certain forms of visual equivalences. For instance,
the phenomenon of crowding in the peripheral visual
field (Bouma, 1970; Pelli, 2008) is phenomenologically
very similar to the tarachopic condition as it occurs in
the focal vision of certain patients (e.g., Hess, 1982;
Sayim & Wagemans, 2013).

From a phenomenological perspective, at least
some aspects of local sign appear to be implemented
on the fly in the psychogenesis of visual awareness. If
one cuts an image into pieces and displaces the pieces
randomly, the disarrayed image looks fairly normal
(Figure 2). Masking the seams between the pieces
(e.g., with gray stripes) results in the experience of an
undisturbed image, seen behind the mask (Koender-
ink, Richards, & van Doorn, 2012a). This also works
in space time (Koenderink, Richards, & van Doorn,
2012b). In such cases the optical data are incoherent,
whereas the visual awareness is coherent—a most
remarkable fact! Apparently, the perception con-
structs an orderly image where physically there is
chaos. These effects work over large distances and
time spans. They remain ill (euphemism for ‘‘not at
all’’) understood.

Such empirical facts suggest that the psychogenesis
of visual awareness imposes spatiotemporal coherence
in an active way. Possibly classical local sign might—at
least partly—depend on this. The crowding phenome-
non (Bouma, 1970; Pelli, 2008) further suggests that
such a mechanism is confined to focal vision. We expect
the eidolon factory to become an important tool in the
study of such phenomena.

Figure 2. Here are some fairly extreme independent translation–rotation offsets relative to each other of the quadrants of a square

image. When viewed briefly, these are just faces; they are somehow merged. A closer scrutiny can reveal the spatial disarray. In

peripheral vision, they are perceptually equivalent and are part of a single eidolon. Even in focal scrutiny, quite large disarrays are

easily missed. Even when they are noticed—as in these examples—one somehow experiences a fairly coherent impression. The

illusion of image coherence becomes even stronger at larger separation. Photograph of Albert Einstein reprinted from http://www.

loc.gov/pictures/item/2004671908/. Copyright Orren Jack Turner.
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Implementation

Methods

We use pseudocode to present our descriptions in an
algorithmic language (Appendix B). We also make
available a demolike implementation written in Pro-
cessing (Reas & Fry, 2010; Appendix A) that should
run without much ado on most common platforms. A
Matlab implementation is available at http://www.
allpsych.uni-giessen.de/EidolonFactories/index.htm. A
Python implementation is available at https://github.
com/gestaltrevision/Eidolon.

The basic deterministic structures

Every factory run necessarily starts with a fiducial
image. This image is the basis for a huge data structure
that is perhaps best thought of as a simulation of the
cortical activity induced by that image. This is the
structure that will eventually be used in the synthesis.
Once set up, the fiducial image itself has become
irrelevant. This is not so much an analysis as merely a
dumb formatting stage.

Consider an image as a discrete sample of a scalar
field (intensity say) defined over the Euclidean plane.
The first chore is to represent it at multiple levels of
resolution. This is the proper topic of scale space
(Florack, 1997; Koenderink, 1984b; Lindeberg, 1994;
ter Haar Romeny, 2008). It has long since become a de
facto standard in image processing. In practice, one
samples both the scale and the space domain discretely.

In order to understand the scale-space data structure
one needs a number of important insights. These are all
based on the basic scale-space structure. Although we
will not prove it here (textbooks quoted previously),
scale-space is based on the Gaussian kernel as point. A
convenient scale parameter is the half-width (standard

deviation) of the Gaussian blurring kernel. In Figure 3
we show the (sampled) scale space for an image.

Because the image at some scale can be computed
from any image at some finer scale, this representation
is inconveniently—and quite unbrainlike—redundant.
It is preferable to find the differences between adjacent
scale levels. A stack of such difference images will be
our basic data structure. It represents the simplest
possible nontrivial structure that has the desirable
properties listed above: local, isotropic, translation
invariant, and self-similar.

The difference layers are just the fiducial image as
represented in difference of Gaussian (DOG ) receptive
fields of various sizes (Figure 4). Another way to
understand these layers is as a stack of scale derivatives
of the image. This explains the use of DOG filters in
sharpening images (Margulis, 1998, 2005) in applica-
tions such as Adobe Photoshop (San Jose, CA).

The implication is that all layers added together
simply recompose the image. This is indeed obvious
from the differences definition. But although trivial, this
is a crucial point. The eidolon factory analyzes the image
and synthesizes it again. If done exactly like this, you
would construct the perfect doppelgänger—namely, the
picture itself! The desirable fuzziness of the eidolons
derives from perturbations applied to the parts before
the synthesis. This is the eidolon factory in a nutshell.

Yet another interpretation is important. The differ-
ences show local transition regions. This is different
from edge finder images in that the local transitions
have sides, whereas mere edginess—as yielded by
programs such as Photoshop—fails to represent that.
This is an important topic. It suggests that the
integration over DOG activity can also be understood
as a synthesis that combines all edgelet (or transition
area) samples. This can indeed be proven formally
(Koenderink et al., 2016). It is somewhat intricate
because the argument involves edge finders, line finders
(directionally and orientationally tuned ‘‘simple cells’’;
Figure 5; Hubel & Wiesel, 1968), and Laplacian

Figure 3. Some samples from a scale space. The scales are 1.2, 9.5, 20, and 59 compared with 5123512 for the full image. Notice that

blurring simplifies the image. The leftmost image might be taken for the fiducial; the difference would be invisible in print.

Photograph of angel statue reprinted from https://pixabay.com/en/bust-sculpture-statue-fig-art-1555688/.
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operators. It allows one to use the DOG responses as
summaries of the (far more numerous and involved!)
simple cell responses. For details we refer to earlier
work (Koenderink, 1990).

Local disarray

The notion of local disarray is vital to the eidolon
factory because it yields the slop or fuzziness that
renders the eidolons extensive.12 Integrating the scale-
space difference layers (or DOG activities) simply
reproduces the fiducial image. In that sense the
eidolon factory is like global Fourier analysis: It is
complete and linear. The crucial difference is that it is
local, so we can introduce local perturbations. Notice
that there are infinitely many local bases possible. We
stick to the simplest, which is just differential
geometry with scale.

A perturbation of local sign can conceptually work
out in many different ways. Consider two extreme
cases. In the first case, if you add an identical offset to

the local sign of every receptive field, you simply shift
the image. Such a fully coherent perturbation has no
visual effect. In the second case, if you add a
statistically independent offset to the local sign of every
receptive field, you destroy the image. Such a fully
incoherent perturbation has a visual effect that is
similar to—but by no means the same as—blurring.

It is important to understand that whereas disarray
and blurring both change the effective resolution, they
are nevertheless essentially different. The difference is
that disarray preserves the (perhaps local) histogram.
Thus, if you thoroughly blur a chessboard image you
obtain an average uniform gray image, but if you
thoroughly disarray a chessboard image you obtain a
random pixel array in which pixels are white or black
with probability one half. Whereas the blurred version
is uniformly gray, the disarrayed one is simultaneously
white and black. They are by no means visually
equivalent (Figure 6). In the disarrayed state, ‘‘white
and black’’ is a bona fide color.

Depending on the precise style of disarray, one
obtains very different results (Figure 7). One might
expect a parameterization to be really complicated.

Figure 5. At left edginess, that is r.m.s. first-order (edge finder) activity over directions. The three other images show second-order

(line finder) activity for orientations of 908, 1508, and 308. These three represent all orientations exactly. Adding all line finder activity

at some scale yields the DOG activity at that scale; adding all DOG activity reproduces the image. Notice how the barcode for vertical

variation (second image from the left) neatly represents the generic structure of a human face. It is a scheme used by draughtsmen

throughout the centuries (Koenderink et al., 2016). Photograph of Albert Einstein reprinted from http://www.loc.gov/pictures/item/

2004671908/. Copyright Orren Jack Turner.

Figure 4. Some layers from the DOG scale space. Each layer carries structure of a given scale; adding all layers together reproduces the

fiducial image. Photograph of angel statue reprinted from https://pixabay.com/en/bust-sculpture-statue-fig-art-1555688/.
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This is an important topic when eidolons are to be used
in vision research. A simple, intuitive parameterization
is a sine qua non for focused investigation to be possible
at all. An eidolon factory that is intuitively opaque and
depends on complicated parameterization would be
like a sledgehammer, whereas the desirable tools are
tweezers and a scalpel. We consider the important issue
of parameterization in the next section.

Eidolon parameterization

In perturbing local sign, we identify three concep-
tually different handles. These relate to the structure of
the disarray fields. We denote these reach, grain, and
coherence. We discuss each in sequence. All are based
on disarray generated by Gaussian random fields that
are statistically uniform and isotropic. Of course, it is

possible—and sometimes desirable—to consider non-
uniform and/or nonisotropic perturbations. This is
perfectly possible (we show an example later), but one
needs then to forge a suitable parameterization that
applies to such special cases.

Basic Gaussian random fields are easily obtained by
blurring Gaussian white noise. Generating two inde-
pendent instances at the same blur level and with the
same power yields Gaussian random displacement
vector fields. One simply treats the scalar fields as the
Cartesian coordinates of displacement vectors. Here we
use the fact that an isotropic normal distribution in the
plane is separable into two mutually independent scalar
normal distributions. This is an important, highly
remarkable property that renders the normal distribu-
tion unique. In Figure 8 we illustrate such random
displacement fields.

Figure 7. The effect of coherence over scales. In the image at left, all scales were independently disarrayed and equally large. In the

image at center the amplitudes of dislocations were scales with the resolution. In the image at right, again scaling was used,

moreover, large receptive fields dragged along smaller ones overlapped by them (on the average). In the incoherent, unscaled case

(left), the dislocations are relatively most severe for the small fields, so one obtains a blurring effect. In the incoherent, scaled case,

transitions (center) become diffuse and vague, whereas in the coherent case (right) they remain well defined but end up at

inappropriate locations and orientations. In the latter case the result is that of a deformation. Photograph of angel statue reprinted

from https://pixabay.com/en/bust-sculpture-statue-fig-art-1555688/.

Figure 6. Left: a Gaussian random two-dimensional vector field (hue indicates direction); center: an image that was locally disarrayed

by this field; right: an image blurred to about the same effective resolution. The effects of disarray and blur are very different. Disarray

conserves the histogram and blurring does not, so the blurred image has lost contrast. Fine details of the disarrayed image are

spurious, whereas the blurred image remains fully veridical, only less detailed. Photograph of angel statue reprinted from https://

pixabay.com/en/bust-sculpture-statue-fig-art-1555688/.
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The example of Figure 8 already introduces one

fundamental parameter, the grain. Another parameter,

one that is independent of grain, we call the reach. The

reach of the disarray (Figure 9) measures how much a

pixel will be displaced in some suitable statistical sense.
Thus, it is an amplitude, or intensity-like parameter. If
one scales all vectors of a random vector field by the
same factor, one changes the reach, whereas the grain is
not affected.

The grain and the reach suffice to parameterize many
disarrays of interest. A third parameter comes into play
when one regards details at different scales. We
illustrate this with Figure 10.

The coherence over scale of the disarray is the third
parameter. It defines the degree to which the displace-
ment fields are correlated across scales. It takes values
of zero (incoherent) if the random displacement field is
generated independently for each scale; it takes a value
of one (fully coherent) if the displacement fields at
every scale are constructed by filtering the same
Gaussian white noise samples. Coherence measures
how the displacements of overlapping receptive fields of
different sizes are mutually correlated. This is highly
important in many applications. Coherent disarray
retains the local image structure even when the global
image structure is destroyed. As a result, coherent
disarray appears like deformation, whereas incoherent
disarray appears like diffusion or shuffling.

Each of these parameters—the grain, the reach, and
the coherence—has a specific and characteristic effect.
Of course, apart from the disarray, there is also the blur
of the original image even before it is subjected to
disarray. One may consider the blur as a fourth
parameter, although it is one that is really distinct from
the local sign variation. Blur and disarray can be
combined in various ways.

The implementation of disarray

How does one implement disarray? Fortunately, this
turns out to be relatively simple. Methods in current
use were developed for Completely Automated Public

Figure 9. At left is a fiducial image—in this case, a regular hexagonal grid. If you would disarray it with a ‘‘reach’’ that is very small, it

would not change (irrespective the grain) because all dots would remain at almost the same place. For some finite reach on obtains

the eidolon shown at center. Notice that one can estimate the grain here. It is rather coarse; thus, the hexagonal structure remains

locally noticeable, although it is globally destroyed. At right the image is an eidolon at much larger reach. Here the hexagonal

structure is hardly retained; even neighbor relationships of the dots may have changed.

Figure 8. In the top row we show two scalar Gaussian noise

fields obtained by blurring Gaussian white noise. They have

different ‘‘grain,’’ which is parameterized by the width of the

blurring kernel. In the bottom row we show disarray vector

fields generated from pairs of such scalar fields. These vector

fields have been severely subsampled for illustration purposes;

there really resides a vector at each pixel. The columns show

instances of the same grain—fine at left, coarse at right. This

yields something not unlike a shuffling at left and something

more like a deformation at right. Of course, the ‘‘grain’’ is a
continuous parameter.
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Figure 10. In the top row we show the fates of seven blobs in a hexagonal configuration under various degrees of disarray. Here we

simply varied the value of the reach; the grain is such that each blob is essentially affected independently from all others. In the

second row we added 49 (73 7) small blobs, each large blob containing seven small ones. The grain is such that each blob, large or

small, is essentially affected independently from all others. We apply the same reach to all blobs. The effect can be seen in Figure 7

left. In the third row we treated the small blobs to a proportionally small reach compared with the large blobs. Notice how they stay

together but lose their relation to the large blobs. The effect can be seen in Figure 7 center. In the bottom row the large blobs drag

along the small blobs, although the latter are also individually displaced. In this case the inclusion relations are mostly retained; this is

‘‘coherent’’ disarray. The effect can be seen in Figure 7 right.
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Turing Test to Tell Computers and Humans Apart
(CAPTCHA; von Ahn, Maurer, McMillen, Abraham,
& Blum, 2008) or the automation of XKCD style
graphics (Torres-Manzanera, in press).

The eidolon factory applies disarray to all elements,
such as the DOG layers, that are summed over in the
synthesis stage. Thus, an important issue involves the
distribution of disarray over the layers and the possible
interlayer correlations.

How local sign might be uncertain depends on its
physiological causes, which are largely unknown. There
exist essentially four mutually distinct theories: (a)
Lotze’s original notion that local sign is due to the
experienced effects of eye movements; (b) Helmholtz’s
insight that local sign might be due to correlation
between neural signals, the mind interpreting correla-
tion as a sign of spatial overlap in the sensitive body
surface (Koenderink, 1984a); Platt’s (1960) notion that
retinal translation due to eye movements might reveal
sets of receptive fields in mutually collinear positions;
and (d) Ahissar and Arieli’s (2001) notion that ‘‘space
might be coded by time’’ in analogy to the vibrissae
systems present in most mammals (e.g., think of the
whiskers of cats, rats, and so on).

One would expect very different effects in these
cases. In the eidolon factory we keep an open mind and
consider all such propositions as possibly simulta-
neously effective. This implies that a variety of disarray
styles should be considered. This yields an important
handle on the potential results.

Important distinctions appear to be the following.
First, all receptive fields are disarrayed by the same
(statistical) amount regardless of size (Figure 10, row
2). One expects such a disarray style in case the Lotze
mechanism was dominant. Second, the reaches are
proportional to the receptive field sizes (Figure 10, row
3). One expects such a disarray style in case the
Helmholtz mechanism was dominant. Third, the

displacements of overlapping small and large receptive
fields are mutually independent (Figure 10, rows 2 and
3 are examples). This might conceivably occur—in
different ways—for any mechanism. Finally, when
large fields are displaced they drag the small fields they
overlap along with them (Figure 10, bottom row). One
expects this especially in case the Platt or Ahissar
mechanisms are in play.

In many cases, we need to build stacks of displace-
ment fields of various grain sizes. In some cases, these
need to be postprocessed in order to introduce
correlation. An important example would be the fractal
disarray, where the grains are proportional to receptive
field scale and large fields drag smaller ones with them
(Figure 11).

Of special interest is the layer at the finest scale.
(Notice that this also contains the contributions of all
coarser scales.) It is a fractal disarray field that might be
used to perturb the fiducial image. This is perhaps the
simplest eidolon; it simulates the tarachopic condition
described by Hess (1982).

The synthesis of eidolons

In this article we do not so much present a fixed
algorithm as a class of intimately related methods.
Instead of a single algorithm with several (perhaps
many) parameters, we suggest a toolbox in which one
selects the most appropriate method or combination of
methods for any problem to implement certain
desiderata in the simplest and most efficient way.

The toolbox method lets one zoom in in an intuitive
manner, with the nature of the remaining parameters
being immediately apparent. This allows you to focus
on the phenomena themselves. No doubt most eidolon
factory implementations will be ephemeral, constructed

Figure 11. These are results from fractal noise in which the fractal exponent, which controls the slope of the spatial power spectrum,

favors either the finer or the coarser scales. This parameter yields a convenient and intuitive handle on the style of the resulting

eidolons. From left to right one has a case of white noise (flat spectrum), of pink noise and of Brownian noise for the spatial power

spectrum of random displacements. Notice that far greater disarray is possible; we do not illustrate it because it soon yields fully

unrecognizable images. Such images are often interesting from an artistic perspective, though (Gombrich, 1963). Photograph of angel

statue reprinted from https://pixabay.com/en/bust-sculpture-statue-fig-art-1555688/.
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for a specific purpose. However, the toolbox will be
fixed; at most it will be added to, although only
sparingly.

Related to this is that we do not consider the eidolon
factory to be a straight emulation of the cortex at all.
What we try to provide is an interface to the
phenomenal complexity, whether in the mind, the
brain, or the world. Good interfaces hide irrelevant
complexity and are therefore very different from
emulations (Hoffman, 2009; Koenderink, 2011). The
toolbox preferably implements summary accounts
rather than simulations of complexities that are
irrelevant to the task at hand. Ideally, the eidolon
factory should be trivial and thus conceptually
transparent.

Here are some examples of this type of approach.
First-order directional simple cells are similar to edge
finders, or edge detectors. In our formalism, they are
tangent vectors at some specific scale. Because the
tangent space is two dimensional, a basis of just two of
these—most conveniently with orthogonal direction
preferences—suffices at each location.13 This is func-
tionally equivalent to the overdetermined continuous
basis in the cortical implementation, for any directional
sensitivity can be implemented on the fly (often known
as steerable filters; W. T. Freeman & Adelson, 1991).
This is a natural consequence of formal differential
geometry (Koenderink & van Doorn, 1992). Of course,
in real life one needs to consider the effects of
perturbations. For instance, removing one basis vector
hardly matters to the cortical overdetermined basis but
would render the simple formal system inoperative.

Something similar goes for the second-order struc-
ture. In the cortex this is the system of line finder simple
cells. In the formal treatment, one requires a basis of
three items: either components of the Hessian (a
symmetric tensor) or second-order directional deriva-
tives at 608 orientation increments. Thus, a cortical
column can be summarized by such a triple. Again, any
orientation can be implemented on the fly. There is no
loss of computational possibilities at the cost of being a
mere summary account.

Starting with these differential operators of order
less than three, there are a number of relations that are
of immediate importance to possible synthesis and thus
the eidolon factory. The addition of line finders at all
orientations at a given location yields the Laplacian
operator, which is the DOG profile for infinitesimal
(small) size difference. Indeed, the DOG layers give a
visually intuitive edge representation at a given scale.
This makes intuitive sense because the difference of
sharp and blurred instances of an image retains just the
boundary regions. The edges are drawn as the Pinna
watercolor illusion double lines (Pinna, 1987, 2008;
Pinna et al., 2001, 2003). Because all DOG layers add
up to the fiducial image, one sees that the image can be

regarded as synthesized from its edgelets. This is indeed
a formal theorem (Koenderink et al., 2015).

With such relations in mind, it is understandable that
perturbations in a complete cortexlike emulation can be
captured by summary methods at various levels, from
that of the simple cells all the way to the fiducial image.
When this is indeed possible, one should opt for it
because it allows one to ignore much detail that is
actually causally ineffective.

This is the very notion behind the proposal of the
eidolon factory as a toolbox. In psychophysical
experiments it would make good sense to start with the
simplest eidolons and progress to more complicated
instances—perhaps eventually going all the way to the
simple cells—when the empirical data cannot be
described in the simpler way. After all, understanding
vision means understanding it conceptually, not build-
ing an emulation of brain events that can itself hardly
be understood because of an overdose of causally
ineffective complexity.14

Single-scale disarray

There are infinitely many ways to define eidolons.
JPEG file formats and popular applications such as
Adobe’s Photoshop build on that. Any printer in
default mode will deliver another instance. And so
forth. However, we’ll let that be.

In the simplest case, we skip scale space and just stay
with the fiducial image. Of course, there is also an
eidolon that involves scale; all renderings that cannot
be distinguished because of your limited visual acuity
are instances of that. It depends on whether you can
find your spectacles. Here we consider only disarray at
a scale level that you can easily resolve.

The resulting image is both blurred and locally
scrambled (Figure 12). It will easily account for various
types of amblyopia and other visual defects. It should
probably be the rock-bottom start in most psycho-
physical investigations.

Notice that the scale is not really a parameter but
more like an initial choice. There are only two essential
parameters because these could be specified in terms of
scale as a unit. Also notice that, when applied to
unblurred images, the algorithm is effectively equiva-
lent to the band-pass noise image distortion used by
Bex (2010).

Scale-dependent disarray

The visual field is roughly scale invariant. Not being
dedicated to any specific scale rules out the single-scale
disarray discussed above. One needs to acknowledge
the existence of many scales. This cannot be done by
mere blurring. Fourier-based methods cannot deal with
this. The method somehow has to recognize the
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spectrum of scales. The simplest method that does this
is fractal disarray. It simply disorganizes the fiducial
image, but it does this in a scale-independent manner.

There are numerous ways in which one might
implement scale-dependent disarray. We implemented
a very simple parameterization for demonstration
purposes. One simply distributes the degree to which
large fields drag smaller ones with them monotonically
over the scale domain—that is, the degree to which the
random displacement at any given location is corre-
lated across scales. The efficaciousness of this relation
then becomes the control.

This control effectively controls the fractal dimen-
sion of the local sign displacement field. It has a huge
influence on pictorial structure. This is the coherence. It
is a parameter of considerable conceptual interest and,

in our view, a major aspect of human vision that is
hardly documented in the standard textbooks.

Selection at the basis levels

Instead of simply summing over scale-space layers
(or DOG activity), one might go a stratum deeper and
pool over line finders. When you apply local disarray to
simple cell activity, this has little effect beyond what
you obtain from the DOG activity when the reach is
not too large. You will mainly notice a loss of contrast.
For larger reaches you notice that edges split into
several mutually independently dislocated copies,
yielding an impression of superimposed ghost images
(Figure 13). When the reach is very large, you obtain a
mess that is hard to distinguish from what you get from
the DOG activity.

Figure 12. The combined effect of blur and disarray in various proportions. Each column is at a fixed scale of blurring; each row is a

fixed reach. Notice that the blurred versions are apparently improved by disarray, although the effective resolution actually gets

worse. It is simply more pleasant to look at. Blurred pictures look unsharp and are hard to focus on, which is probably why people

dislike them. It is why grainy photographs of the 1960s look sharper than modern electronic ones even when the effective resolution

is actually less. Photograph of angel statue reprinted from https://pixabay.com/en/bust-sculpture-statue-fig-art-1555688/.
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When you randomly leave out line finder activity,
you mainly lose contrast and gain some speckle noise
(Figure 14, left). Things are more complicated when
you select in a focused manner. For instance, you may
select line finder activity (which represents local
transitions) based on edge finder activities (which signal
where transitions are located). As perhaps to be
expected, you obtain a drawing of the main features
(Figure 14, right). Although resolution is good, some
structures are simply omitted. You also lose gradual
transitions.

By focusing on the basis of differential invariants
(curvatures or corners, say; Attneave, 1954), you may
implement many different styles of representation.
Again, using the toolbox approach will easily allow you
to zoom in on the structures of your choice.

Examples

The proof of the pudding is in the eating. In the next
section we present a few experiments that could be

conducted using stimuli produced with our eidolon
factory. In the first, dealing with the simulation of
tarachopic amblyopia symptoms in healthy observers,
we show preliminary data. For the other examples, we
just detail themethods and the stimuli that could be used.

Testing tarachopic vision

Here we illustrate the use of eidolons to simulate
deficits akin to the ones observed in the amblyopic
condition of tarachopia in generic observers. Taracho-
pia is a visual agnosia described by Hess in 1982. Hess
described a form of amblyopia in which an observer
had two perfectly good eyes according to standard
criteria. That is, the MTF functions for sine-wave
grating contrast thresholds were virtually identical for
both eyes, with good contrast detection threshold and
good high spatial frequency roll-off. Yet, in the visual
awareness of the observer, one eye was normal,
whereas the other was unfit to read the headlines a
newspaper. It was classified as amblyopic, which is why
the patient had sought treatment. So what was wrong?

Figure 13. These images are due to the coherent disarray of line finder activity. Here we use a representation with the minimum basis

of three orientations, mutually separated by 1208. This shows up in the medium reaches, where one distinguishes ghost images. The

primary visual cortex uses an overcomplete, continuous basis. In that case the image would merely grow diffuse as the superposition

of arbitrarily many ghost images (of course, the precise structure depends critically on the statistical nature of the disarray too!). For

these examples the reach was varied by a factor of two from instance to instance. The largest reach (bottom right) yields an image

that might as well have been obtained from the DOG representation. Photograph of angel statue reprinted from https://pixabay.com/

en/bust-sculpture-statue-fig-art-1555688/.
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Hess had the bold idea to let the patient report on the
nature of immediate visual awareness. Compared with
the ‘‘good’’ eye, the visual awareness of the ‘‘bad’’ eye
appeared spatially scrambled to the patient. Hence
Hess’ term tarachopia for this form of amblyopia,
which means ‘‘scrambled vision.’’

Tarachopia is a paradigmatic case because it shows
the categorical difference between psychophysics
proper and experimental phenomenology (Albertazzi,
2013; Koenderink, 2015a). In psychophysics proper,
one uses only objective methods. But awareness is
about subjective facts, a topic of phenomenology.
When Hess measured contrast detection thresholds for
sine-wave gratings, he was practicing psychophysics.
But when he asked the patients what they saw, he
switched over to experimental phenomenology, where
objectivity is replaced with intersubjectivity.

Thus, the topic is a conceptually highly interesting
one with important potential implications for neurosci-
ence, psychophysics, and phenomenology. This is why
we propose to study tarachopia in generic observers by
imposing controlled spatial disarray on the stimulus.

We attempt to create artificial tarachopia in normal
observers using eidolons. This yields a way to the
classification of possibly distinct forms of tarachopia
that can potentially be explored through variation of
parameterization of the eidolon factory. It thus opens
up a novel field of endeavor.

We depart from the standard MTF analysis of
spatial vision (Cornsweet, 1970; Van Nes & Bouman,
1967), the detection thresholds for sine-wave grating
modulations of an otherwise uniformly gray field.
Generic human observers fail to detect gratings at
spatial frequencies higher than about 50 cycles/degree
and detect a range of intermediate spatial frequencies at
Michelson modulations somewhat below 1%. Such
analysis was introduced in television engineering by
Otto Schade (1948, 1956), who measured the first MTF.

One typically records the detection of a grating as
compared to a uniform field. A more objective method
records the ability of observers to discriminate between
horizontal and vertical gratings. For generic observers,
these methods yield very similar results. However, in
the case of tarachopic amblyopes, the difference is
categorical. Such observers detect the presence of
gratings just as well as any other, yet they fail in the
ability to discriminate the orientation. They detect a
pattern but fail to identify it. Hess’ suggestion that this
might be due to their scrambled visual field makes
intuitive sense.

In order to study this suggestion in generic observers,
we produce eidolons of sine-wave gratings using a
coherent local sign disarray. Representative examples
of stimuli are shown in Figure 15.

The technical details of the experiment are pretty
standard. The field of view was 108 3 108, the average
luminance of the uniform surround (308 3 208) was 400
cd/m2, the viewing distance was 57 cm, and the

Figure 14. At left is a synthesis in which 85% of the simple cell

activity was randomly deleted. The result is mainly a loss of

contrast; details remain well preserved. At right, 15% of the line

finder activity was kept based on the magnitude of the local

r.m.s. edge finder activity. This yields an abstraction—a drawing

of the features. Resolution is good, but much is left out and

most smooth gradation is lost. This is the type of result that is

out of reach of global methods like Fourier-based filtering.

Photograph of angel statue reprinted from https://pixabay.com/

en/bust-sculpture-statue-fig-art-1555688/.

Figure 15. Examples of instances of eidolons of sine-wave gratings (here with vertical bars) of various spatial frequencies (quoted in

cycles per degree). Especially at the high spatial frequencies, they look rather different from generic sine-wave gratings.
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experiment was conducted in a dark room. We used a
smooth transition of the grating to the uniform field of
28 wide. The display was linearized. We used an 8-bit
digital analog converter, which is only marginally
suited to the usual MTF measurements but yields
ample resolution for the eidolons. Observers were the
authors. They have good spatial vision and fixated the
center of the screen. Notice that there is no need for
observers to be naı̈ve in threshold experiments.

We performed two measurements. In the first we
determined the MTF function for seeing ‘‘something’’
instead of ‘‘nothing.’’ In the second we determined the
threshold for discrimination between horizontal and
vertical gratings. In the first method we aimed at the
50% detection threshold, and in the second we aimed at
the 75% discrimination threshold. Thresholds were
determined by way of simple up–down methods.
Results are not different for the three observers; we
show the overall average in Figure 16.

For the detection of contrast, irrespective of pattern,
there is no appreciable difference between the sine-wave
gratings and the eidolons. Both contrast sensitivity and
high spatial frequency roll-off are normal. But the case
of recognition—in this case, of the pattern overall
impression of horizontal or vertical orientation—the
eidolons suffer badly.

In the case of the true gratings, observers are aware
of the orientation at threshold. But in the case of the
eidolons, observers may have a hard time making out

the orientation even if they see the contrast modula-
tions well enough. Of course, this is hardly a surprise
given the nature of the stimuli (Figure 16)! The
paradigm put the generic observer in a position that is
similar to that in which the tarachopic amblyope finds
herself when viewing pure grating patterns.

Notice that the eidolon paradigm neatly emulates
Hess’ findings for a tarachopic observer in generic
vision. To the extent that all psychophysical testing
yields the same results, the subjective report of the
amblyope can be replaced with the stimulus descrip-
tion (Figure 15). Thus, in a certain sense, the eidolon
paradigm yields an objective emulation of the subjec-
tive report. Of course, the direct proof of perceptual
equivalence could be achieved only when tarachopic
observers are confronted with intact images in the
affected eye and eidolons in the healthy eye. We
suggest this as an obvious development of this line of
research.

Matching peripheral vision in central vision

As we anticipated before, one way of measuring the
difference in appearance between central and periph-
eral vision is to have observers draw what they see in
the periphery (e.g., Metzger, 1936). Even proficient
artists, however, can be expected to be able to draw
reliably only relatively simple patterns; for more
complex stimuli this is not a viable technique. The other
option is to have observers judge the equivalence of
stimuli in the center and in the periphery while
changing them along some parameter. This is the
approach that has been used effectively by Galvin,
O’Shea, Squire, and Govan (1997) to show that
peripheral stimuli can appear sharper than they
actually are. We suggest that a similar approach could
be used varying stimuli along the parameters of our
eidolon factory and that this could provide insight into
the way our visual system constructs peripheral
appearance (Figure 17).

Perception of gloss

One important question in the domain of visual
perception of material properties is whether the
perception of gloss depends on the global configuration
of an image—for example, the congruency of highlights
with the three-dimensional (3D) interpretation of the
scene (Anderson & Kim, 2009; Kim, Marlow, &
Anderson, 2011). The eidolon factory allows for the
creation of stimuli in which the global properties of the
image are destroyed by applying a long-reach disarray.
At the same time, the local cross-scale structure of the
image can be retained by keeping the coherence value

Figure 16. At left are the MTFs for detection of intensity

modulations of any kind. The blue curve is for sine-wave

gratings; the red curve for the eidolons. At right is the MTF for

detection of eidolons in red (same as the red curve on the left)

compared with the MTF for recognition of the orientation of

the grating bars of the eidolons (black curve). For true sine-

wave gratings, observers are aware of the orientation of the

grating bars at threshold; thus, the curves for detection and

recognition coincide (blue curve at left). The spatial frequency

in cycles per degree, the ‘‘sensitivity’’ is defined as the

reciprocal of the Michelson threshold contrast; this is the

conventional plot.
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high. As can be seen in the images in Figure 18, it

appears that the perceptual quality of gloss is to a large

extent preserved when the scene structure is destroyed

to the point of not being recognizable. Of course,

proper psychophysical testing will have to be per-

formed before drawing any conclusions, but this seems

to suggest that local structure plays a large role in

determining the perceptual quality of gloss.

Matching touch and vision

Metzger (1936), in his laws of seeing, presented

results relative to the graphical reproduction of

patterns experienced haptically. Taking advantage of

today’s technological advances in 3D printing and

image rendering, one could use the eidolon factory to

test for possible distortions in the perception of

Figure 17. Examples of eidolons with different reach and coherence. Observers could be shown in peripheral viewing the central

pattern and asked to navigate through the eidolons space in order to find a perceptual match in central viewing. Possible results

include perfect constancy, which would be slightly boring, but finding coherence overconstancy and/or reach underconstancy could

show that our visual system constructs an appearance that is more orderly than the physical input.
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complex haptic patterns. By taking advantage of the
fact that differential geometry formalism can be
applied to the local change of any quantity, we can
use the eidolon factory to generate stimuli varying in
relief height rather than luminance (Figure 19).
Eidolons could be 3D printed for haptic exploration
and rendered, possibly in 3D for visual exploration.
Again, observers could be asked to navigate the
parametric space of rendered visual stimuli until they
find a satisfying match for the haptically experienced
stimulus.

Discussion and conclusions

There are infinitely many ways to generate eidolons.
The cloud of acceptable variations on any fiducial
image is huge, albeit nothing when compared with the
space of all possible images. We’re talking infinities
here. One has to make choices. Any such choice had
better be based on some fundamental considerations.

The most general methods assume nothing—neither
physiological nor phenomenological nor ecological

prior knowledge. Here is a simple example, but there
are numerous others. Most of the ones we can think of
have been used at one or other occasion. Given a
pixelated image, one simply interchanges two randomly
selected pixels and repeats this a number of times.
Replacing pixels with random values yields a similar
result. It is technically known as ‘‘salt-and-pepper
noise’’ (Jayaraman, Esakkirajan, & Veerakumar, 2009;
Figure 20). A good parameter would be the ratio of the
number of swaps to the total number of pixels. A
parameter zero will return the fiducial image; a value of
one will yield a totally random image. Such eidolons
may well be useful in certain psychophysical contexts.
From a phenomenological perspective they are trivial,
and from an esthetic perspective they are appalling.
They look exactly as they are—that is, alien to genesis
of visual awareness. No doubt one could quantify this
by computing various measures typical for cortical
representations.

Other well-known examples of this general class
involve adding some type of noise pattern to the image.
Such methods have frequently been used in vision
research. They work best with the abstract, nonsense
images commonly used in psychophysics. Recognizable

Figure 18. Eidolons of a fiducial image containing a scene with glossy objects. Notice that all figures in the bottom row (coherence¼
1) look relatively glossy even when the original scene is disarrayed to the point that it is not recognizable any more. The images in the

upper row (coherence ¼ 0) appear less glossy even when the image is still recognizable.
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images are remarkably resistant because psychogenesis
is expert at beating the ‘‘cocktail party effect’’
(Bronkhorst, 2000; Shinn-Cunningham, 2008), which is
why the familiar signal-noise methods from engineering
(Kailath, Sayed, & Hassibi, 2000; Kay, 1993; Scharf,
1991) are unlikely to apply.

Other methods base eidolon generation on the
essentially arbitrary way digital images are conven-
tionally stored. A case that has become famous in
vision research uses blocking (Harmon, 1973; Harmon
& Julesz, 1973). Such eidolons have nothing to do with
the intrinsic structure of images (e.g., why not have a

Figure 19. Renderings of possible stimuli for a haptic perception experiment. Notice that we simply mapped image intensity in the

eidolon image to relief height. One could 3D print the central stimulus, have observers explore it by touch, and have the observers

navigate the parametric space of rendered eidolon shapes until they find a perceptual match. We can expect that observers will tend

to regularize the haptic percept, thus preferring a lower value of reach, but we are agnostic about what they will do with coherence.

Figure 20. Examples of eidolons generated by randomly interchanging various fractions of the pixels. This is often called ‘‘salt-and-
pepper noise.’’ It looks indeed much like noise that can fairly easily be ignored, whereas the image shines through more or less intact.

Photograph of Albert Einstein reprinted from http://www.loc.gov/pictures/item/2004671908/. Copyright Orren Jack Turner.
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honeycomb array of hexagonal pixels instead of a
Cartesian checkerboard?), the known physiology, or
the phenomenology of the visual field (Figure 21).
They allow easy parameterization of structural com-
plexity and are inherently local—both desirable
properties.

Well-known instances are phase-scrambled images
(Oppenheim & Lim, 1981; Thomson, 1999; Vogels,
1999). Here, disarray is applied in the spectral domain.
The methods were perhaps inspired by the notion that
sine-wave gratings are natural parts of images or
somehow special to what the primary visual cortex is
up to. Both (mutually related) notions are false, but
that is not the point here. What makes Fourier analysis
special is that it is global. This has indeed some—
though not much—relation to what might be desirable
for a biologically viable optic sensor system. The
eidolons one obtains look somewhat better than those
from the previous example (Figure 22), yet they don’t
look natural. Apparently, the global nature of the parts
is problematic.

Engineers do what is possible and most economical,
science not being their first priority. Yet, historically,
engineers have produced eidolons of considerable
interest and importance. We simply mention a few—
there are many—of their achievements. Early television
engineering was much about bandwidth. Otto Schade
(1948) pioneered the MTF, enabling him to create
eidolons that were acceptable to the public for many
years. The development of color television yields a
similar story. Eidolons were based on opponent
channels, with the higher bandwidth devoted to the
luminance channel. When digital images became
common, the aforementioned JPEG eidolons became
of major importance. They are based on rather intricate
properties of spatial vision.

Of course, it is much more interesting to consider
eidolons that are somehow constrained by scientific
understanding of either the neurophysiology or the
phenomenology of visual awareness (Stojanoski &
Cusack, 2014). A well-known current model of eidolons
is due to the work at Eero Simoncelli’s lab at New York

Figure 21. Perhaps we should call these ‘‘Harmon and Julesz eidolons’’ (Harmon, 1973; Harmon & Julesz, 1973). These are interesting.

Notice that a huge amount of image information is discarded, yet the gist remains visible if you look through your eyelashes, as

painters do, or add some noise or apply blur to mask the sharp edges, as vision researchers do. The pixel subsampling is entirely

unrelated to image content, neurophysiology, or phenomenology. Photograph of Albert Einstein reprinted from http://www.loc.gov/

pictures/item/2004671908/. Copyright Orren Jack Turner.

Figure 22. These are phase-scrambled images. The (mainly) vertical linear artifacts are due to the edges of the image, the right side

being darker than the left side. (Simple Fourier analysis/synthesis treats the image as periodic in the horizontal and vertical

dimensions, thus the left and right side compose a sharp edge of considerable contrast.) Photograph of Albert Einstein reprinted from

http://www.loc.gov/pictures/item/2004671908/. Copyright Orren Jack Turner.
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University (Portilla & Simoncelli, 2000). Their idea is to
impose empirical knowledge of the structural com-
plexity of neural activity in V1 as a constraint on the
structure of the eidolons. Thus, an eidolon is an image
that would ideally evoke the statistically equivalent
neural activity as the fiducial image does. This is an
important notion, characterizing the bottleneck im-
posed by V1 (or anything up to V1), very similar to—
but hugely more complicated than—the notion of
metamerism in colorimetry.

Rather than just analyzing the fiducial image first
and then trying random images until you hit on one
that has the equivalent statistics, the actual implemen-
tation forces an initial noise image into complying with
the descriptor values established in the analysis stage.
Otherwise, it would be like waiting for the proverbial
monkey randomly hitting the keys of a typewriter to
finish a perfect transcript of Helmholtz’s Handbook of
Physiological Optics. It is a sculpting of essentially
random structures to be as equivalent to the fiducial
statistics as can be. We describe these methods in
Appendix C.

The Portilla-Simoncelli algorithm produces the
‘‘mongrels’’ that have been used in the highly interest-
ing research in Ruth Rosenholtz’s lab at Massachusetts
Institute of Technology (Rosenholtz, 2011; Rosenholtz,
Huang, & Ehinger, 2012; Rosenholtz, Huang, Raj,
Balas, & Ilie, 2012). They have pioneered the use of
mongrels as a novel and powerful tool in vision
research. That is exactly the intended use of the
eidolons proposed here.

The eidolons are based on the phenomenology of
vision rather than neurophysiology. However, on the
formal level there are obvious tangencies. Our inspira-
tion came also from the study of painting methods.
Visual artists, throughout the centuries, have been
involved in the production of eidolons. On the whole
they have been very successful, their clients sometimes

taking their eidolons for reality. However, they
explored the territory thoroughly and reached the dark
boundary regions where the eidolons fall apart, perhaps
taxing the visual competence of some observers but
leaving the majority of their public behind. We find
that technical painting methods are closely related to
the phenomenology of vision as studied academically
(e.g., Cateura, 1995; Jacobs, 1986). Our eidolon factory
is based on that.

The eidolon factory described here (technically in
Appendix B; a demonstration program is available—
see Appendix A) offers some desirable features for
vision research:

It is formally simple and transparent. It is essen-
tially just the mathematician’s toolbox of differential
geometry (Bell, 2005; Koenderink, 1990; Koenderink
& van Doorn, 1992; Spivak, 1999; ter Haar Romeny,
2008).

It is overall linear except for places where essential
nonlinearities come in a transparent manner.

It is algorithmically simple and transparent. No
magical numbers. No iterative procedures (Appendix
C). No partial differential equations to solve (Elder &
Zucker, 1998). All that happens is the accumulation of
mass activity—our synthesis stage.

It is a nice summary account of what the cortex
might be computing. Such summary accounts (actually
caricatures, of course) might be more useful than an
exhaustive description because they appeal to the
intuition. Phonebooks are useful but hardly appeal to
the understanding.

It is a powerful heuristic in that it is easily
expandable. There are only a limited number of crucial
elements to be understood.

Eidolons can be obtained in a straightforward
manner; only a few (intuitively obvious) parameters
need to be set.

Figure 23. In this example we used space-variant disarray to place emphasis on either the chimpanzee on the left or on the right. The

possibility to very easily modulate disarray spatially is a great advantage of the eidolons proposed by us, as opposed to most

contenders. Photograph of chimpanzees reprinted from https://pixabay.com/en/monkeys-chimpanzees-savages-group-1200216/.
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This may sound like eidolon factories are just for
squares—there being no surprises or challenges for the
cool kids! But that would be too limited a picture. Being
able to actually understand what is happening is really a
source of freedom. The parameters at your disposal are
meaningful, and their actions are largely independent of
each other. So, you have an interface to the factory that
is transparent. There will be no surprises once you
understand the basic (simple) structure. This makes it
possible to aim your investigation of visual awareness
much more precisely. It puts you in control as a scientific
investigator. When probing nature (including the human
mind!), the surprises should be due to nature rather than
the probing tool.

Because it is so simple and direct, the eidolon factory
is very easily extended in various directions. For
instance, one may apply disarray just as well to
opponent color channels as to the orientation of
edgelets and so forth. Disarray is also easy to apply in a
spatially nonuniform way, opening up many directions
of research. A simple example of such focused disarray
is shown in Figure 23.

In conclusion, we have proposed an eidolon factory
that is quite open ended in its potential applications
and capable of almost endless development. It is also
simple enough that one may adapt it for any specific
application. Because of its simplicity, it allows one to
tailor the nature of eidolons to specific problems.

Keywords: appearance, natural images, local sign
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Footnotes

1 Originally, an eidolon was a shade or phantom of a
person, either living or dead. Most surprisingly,

Euripides, in his work on the Trojan War, claims that
Helen of Troy was never physically present in the city
but rather that the Greeks fought over such an illusion
(Holmberg, 1995; Meltzer, 1994; Papi, 1987). The
literal translation is quoted as ‘‘image, idol, apparition,
phantom, ghost’’ from eidos (‘‘form’’). We use it to
denote a shape-shifted doppelgänger (Damas Mora,
Jenner, & Eacott, 1980; Poe, 1839) of the fiducial image
in a very precise sense.

2 The plural eidolons seems better suited to technical
jargon than the more proper eidola because North
Americans are likely to prefer it. Walt Whitman’s
(1891) famous poem ‘‘Eidolons’’ from his Leaves of
Grass inspired our term.

3 Our idea of the eidolon is also related to the
concept of ‘‘duck typing’’ in computer science. Ac-
cording to Wikipedia (2016), ‘‘Duck typing is con-
cerned with establishing the suitability of an object for
some purpose. With normal typing, suitability is
assumed to be determined by an object’s type only. In
duck typing, an object’s suitability is determined by the
presence of certain methods and properties (with
appropriate meaning), rather than the actual type of
the object.’’

4 Thus, it is useless to look for signs of the
chlorophyll absorption bands in the spectrum of the
radiation from the pixels that present you with a green
meadow on your monitor.

5 Thus, the cardinality of the set is about 210,000—
that is, about 2 3 103010. This is practically infinite,
given that estimates of the number of fundamental
particles in the observable universe go up to only 1085.

6 The field of view is something completely different!
That is simply physics, if you want.

7 Of course, this can be only approximately the case
because the total extent is limited (a half space in front
of the observer—about 1808) and so is the smallest size
(visual acuity, about 10). But it is a very meaningful
approximation. All fractal structure has to fail in the
very small and the very large.

8 The assumptions involve the subjective notion of
what an edge is.

9 The Gabor functions made good sense in Gabor’s
original application, which was not vision but acous-
tics.

10 The term was generally accepted and freely used
(e.g., by Helmholtz) and was a mainstream concept for
the first half of the 20th century. However, it dropped
out of the mainstream consciousness after (perhaps) the
1960s. A modern rendering might be something like
positional signature. However, we prefer to hold on to
the original term.

11 Lotze speculated on the existence of somatotopy
and cogently reasoned that it would in no way explain
local sign. Suppose you manage to spatially scramble
the cortex, leaving connections intact. Would that
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produce a tarachopic amblyope? In the final instance it
all boils down to the mind–brain issue, on which
psychology has to be agnostic.

12 On the concept of ‘‘extensive’’: The fiducial image
is one singular instance, whereas the eidolon is an
extensive cloud that surrounds it, containing (poten-
tially) infinitely many equivalent instances.

13 Thus, the formal model is rather more concise
than the cortex, which represents the first- and second-
order structures in terms of highly overdetermined,
continuous bases.

14 Here is a simple example that may serve to catch
the idea. No doubt the best emulation of meteorology
would be the weather itself, as you would obtain perfect
predictions. (Alas, its predictions would become
available at the latest moment only!) But this perfect
emulation would not go far in promoting the under-
standing of atmospheric processes. After all, it (i.e., the
global atmosphere as an analog computer) was already
available to Aristotle. Aerodynamics and thermody-
namics yield much more insight, although the predic-
tions are not necessarily all that great in practice.
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Appendix A: Demo on publisher’s
website

We prepared a demo application (for PC; for Mac)
that allows one to produce parameterized eidolons of
various types for given images and save the results. The
application also lets you conveniently look at the data
structures that play decisive roles behind the screen.
Thus, it shows more than is strictly necessary for
eidolon generation. On the other hand, it is by no
means a universal eidolon factory: There are things you
might want to try that the demo doesn’t allow. The
reason is simply that we needed to keep the interface
complexity—already complex—within reasonable
bounds. We concentrated on instances that might prove
of immediate interest to vision research.

Because the demo required an extensive interface, we
economized on its capabilities. It lets you process only
monochrome images that are 512 pixels square.
Anything else will be converted to that format. The
eidolon machine synthesizes the image on the basis of a
scale-space representation of edgelets that are bound-
ary representations that (different from the edginess
obtained from edge detectors) retain the polarity along
the boundary.

The demo will run on most platforms because it was
written in Processing. For the applications, we pack-
aged the java environment with the code so we can be
certain that they will run properly regardless of what
you may have installed on your machine.

The demo has an extensive interface that is
convenient but perhaps takes getting used to. Most of
the ins and outs are explained in the help that is always
available under the ‘‘H’’ (or ‘‘h’’) key.

Appendix B: Pseudocode

1. Pseudocode

We find ourselves somewhat in a quandary about how we should describe the algorithmic aspects of the eidolon
factory. Because proprietary aspects should not figure in a scientific journal, we cannot use a high-level formal
language such as Mathematica (which would be most appropriate and clear from a formal perspective) or an
environment such as Matlab (which might appeal more to engineering minds). Differences are substantial—for
instance, one line of Mathematica may correspond to a thousand lines of C. Obviously, the former is easier to read
than the latter. This is due to the hiding of details that are conceptually irrelevant.

Our implementation is in Processing, which is an open source Java-derived environment that was especially aimed
at creative minds. Modern artists and designers use it extensively. We use it all the time in our vision research
because it saves us so much time and effort, but we notice that few others in our field even know about it. Java runs
on all platforms and is a well-designed object-oriented language. Processing might be ‘‘Java without tears’’ (for
suckers), but it has retained these advantages. Almost any other language you might happen to be familiar with
would serve just fine. Simply implement our pseudocode in your favorite language. This might (if you are at all
familiar with your language) involve a few hours at most (as we actually checked!).

Unfortunately (or not; it depends on your perspective), there is no such a thing as a pseudocode standard. So we
roll our own. It is perhaps something like formal pseudocode (i.e., not Fortran, Pascal, C, Basic, and so on style
pseudocode). So you will see things like the following.

Notice that ignoring what is in between the COMMENT and END COMMENT braces is not going to hurt
you. It will have no consequences on the eventual algorithmic implementation. The idea is that the notation is self-
documenting, so perhaps occasionally taking notice of comments might be a good idea, as they may have been
inserted for some reason. But, in principle, COMMENT means that the lines until END COMMENT can be safely
skipped. On the other hand, the DO part ‘‘increment counter’’ is crucial. Failing to increment the counter—
whatever that may mean—is surely going to hurt you. A lead to what it might mean can often be gleaned from the
context or comments. DO is followed by something that has to be done. Other comments come also as pairs of
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braces, such as

or

and so forth. We use indentation to highlight the inclusion structure.
A structure like

is a function that encapsulates a computation. Notice that the parameter section might be empty, like for a function
COIN_FLIP() that returns head or tail. A program is a collection of functions. One of these is supposed to
deliver the final result.

Of course, there are numerous decisions in implementations that certainly may make a difference but can hardly
be counted to be our business. Here is a simple example. Images are represented in numerous ways in computer
memories. But how the bit planes are ordered, and so forth, is not our business. A monochrome point (‘‘pixel’’) can
be represented by a byte, integer, float, double, and so forth. This is not our business either, but it makes a
difference. We will need Fourier-based methods. Whether one uses the latest fast Fourier transform (FFT;
Heideman, Johnson, & Burrus, 1985) implementation, the old-fashioned Filon integration (Abramowitz & Stegun,
1972), or something rolled oneself is not our business. But, again, choices often make a difference! Often in
computation time, sometimes in precision. They may have distinct limits of applicability. As said before, such
technicalities will be skipped here.

2. The basic deterministic structures

The simplest representation is as a number of progressively blurred images at discrete scale levels separated by
factors of two (coarse) or square root of two (almost always good enough). The highly blurred images may be
subsampled spatially without significant loss, but this is usually inconvenient and memory is cheap.

For a 5123 512 image (for example), the range of scales would run from 1 (pixel size) to about 128 (one quarter
of the image size). With a square root of two factor, that implies more than a dozen levels.

Building scale space implies

One typically uses FFT methods to do this (the demo uses JTransforms 2015), but Mathematica enables you to
simply say ‘‘blur the image by so much,’’ which captures the conceptual content in a direct way. You may want to do
some additional housekeeping here—for instance, handle boundary effects in some preferred way, subsample the
highly blurred layers, and so forth. We put a few hints to such issues in the comments.
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Building the difference scale space implies

Notice that after constructing the difference scale space the scale space itself can be deleted because it can be
regained from the difference scale layers.

One catch to be aware of is the DC level because DOG receptive fields are not sensitive to that. In practice,
adding a constant suffices, so this is not a problem. You simply retain the coarsest scale-space layer. Thus:
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3. Local disarray

The basic ingredient is the Gaussian noise image:

The eidolon factory requires a great many of such images, all mutually independent. For instance, a displacement
vector field requires two:
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It is a simple matter to impose disarray on a given image:

Notice that the ‘‘image’’ here will usually be a difference scale-space layer. You will perturb many such layers
before combining them in the final synthesis. Notice also that there are many additional uses for noise fields. For
instance, instead of or in addition to spatial disarray, you may want to perturb the gain, orientation, and so forth of
a receptive field. Although we do not consider this in this article, here lies an important field of enquiry.

This is how you construct fractal disarray:
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4. Single-scale eidolons

It is easy enough to implement such eidolons. This is how (essentially just the regular CAPTCHA or XKCD-
emulation method):

Indeed, nothing more complicated than that. The resulting image is both blurred and locally scrambled. Such
eidolons are extremely simple to generate yet are already an interesting class for vision research—in fact, most likely
a good starting platform in many cases.

Appendix C: Relation to sparse
coding and mongrels

The eidolon factory bears partial resemblance to the
texture analysis/synthesis algorithm introduced by
Portilla and Simoncelli (2000), which has been exten-
sively used to produce ‘‘mongrel’’ pictures by Balas,
Rosenholtz, and colleagues (Balas, 2006; Balas et al.,
2009; Rosenholtz, 2011; Rosenholtz, Huang, &
Ehinger, 2012; Rosenholtz, Huang, Raj et al., 2012).

The first stage of the Portilla and Simoncelli
algorithm involves the decomposition of the original
image into a series of oriented subbands plus an
additional low-pass band—a so-called steerable pyra-
mid (Simoncelli, Freeman, Adelson, & Heeger, 1992).
From this decomposed representation, a set of de-
scriptors are extracted, which are subsequently used to
constrain the synthesis algorithm. The synthesis algo-
rithm itself starts off with a random field of the same
amplitude and variance as the source image and uses an
iterative process to impose the constraints to the initial
noise input. The constraints include marginal statistics
of the image picture plus skewness and kurtosis as
defined at a subband level, raw coefficient correlation,
coefficient magnitude statistics, and cross-scale phase
statistics.

This first striking difference between the eidolons
and mongrels is that although the first are fundamen-
tally characterized by two parameters, reach and
coherence (which have identifiable perceptual corre-
lates), the full description in the Portilla and Simoncelli
algorithm is stored in a relatively large number of
parameters (710 using the settings recommended in the
original publication; Portilla & Simoncelli, 2000).

Although each constraint class has a functional
meaning as a whole (e.g., the raw coefficient correlation
parameters characterize the presence of periodic or
globally oriented structures in the image), with the
exception of the marginal statistics parameters, the
meaning of the single predictors is not transparent.
This means that it is hard to modify the descriptors in
order to generate predictable perceptual effects unless
one excludes one class of predictors altogether. It is,
however, true that when considering constraints
computed from natural images one can exploit the
correlation patterns among predictors in order to make
them more manageable. It has recently been shown that
applying dimensionality reduction to the whole set of
parameters can be used to reveal texture selectivity in
V4 neurons (Okazawa, Tajima, & Komatsu, 2015).

The second important difference is that the eidolon
factory works by perturbing the original image to
create a new eidolon instance, whereas the Portilla and
Simoncelli algorithm works by constraining a noise
image to accommodate a given set of constraints. This
means that the difference between a fiducial image and
its eidolons can be reduced ad libitum by reducing the
reach of the disarray, whereas the difference between
the fiducial image and its mongrels is on average always
the same and is determined by how well the descriptors
capture the appearance of the specific texture. As a
means to obtain mongrels that are nearer to the fiducial
image, one can, however, seed the synthesis algorithm
with the fiducial image corrupted by a certain amount
of noise.

The third important difference between the eidolon
factory and the texture synthesis algorithm is that the
first does not use any iterative process. The Portilla and
Simoncelli algorithm is to a large extent optimized for
computing speed in particular as the pyramid repre-
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sentation of scale space is very economical (Burt, 1981).
The eidolon factory is bound to be faster, if anything
because the same disarray field can in principle be
applied to any number of fiducial images as long as
they have the same size. On the contrary, the texture
optimization procedure has to be repeated for each
fiducial image and random seed.

Figures 24 and 25 show examples of eidolons and
mongrels obtained with different parameter settings
and different types of seeds, respectively. A quick
glance at the different examples easily shows the
strengths and weaknesses of the two approaches when
it comes to generating images that are perceptually
equivalent to the fiducial image. The eidolon factory,
given a reasonable reach value, performs much better
at preserving the topology of the fiducial image, which
is very evident when comparing the eidolon generated
from the square image with full coherence and the
mongrel generated with a fully random seed. At the
same time, the Portilla and Simoncelli algorithm
performs very well at preserving the periodic fine-scale
patterns in the fabric image and the general vertical–
horizontal orientation of the sharp edges in the square
image, which are to a large extent altered by the eidolon
generation.

Certainly, an appropriate configuration of the
parameters in the two algorithms coupled with the
appropriate fiducial image can produce results that
look relatively similar in a nontrivial way—that is,
when the synthetic images are different from the
fiducial image but the overall image structure is
preserved (see Figure 26 for an example). We suspect,
however, that to a trained observer familiar with the
fiducial image the two classes of synthetic images would
still be distinguishable because the Portilla and
Simoncelli algorithm introduces perturbations at ran-
dom locations, as new edges and gradients appear
solely due to the initial random field. The features in
the eidolons instead remain identifiable in the vicinity
of their original location.

Appendix D: Glossary

Differential geometry: Local geometry. It is defined
by being applied to regions of interest that have the
same size as the operators (e.g., edge detectors).

Edgelet: Local component of an edge. In differential
geometry, edges are considered as a string of spatially
contiguous and aligned edgelets.

Figure 24. Examples of eidolons generated starting from a fabric texture image, a geometrical shape, and a face. Reach parameter was

set at 0.5 for all examples. See the main text for the details about the different coherence configurations. Photograph of Albert

Einstein reprinted from http://www.loc.gov/pictures/item/2004671908/. Copyright Orren Jack Turner.
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Eidolon: Class of stimuli that are equivalent to a
given fiducial stimulus along a given perceptual
continuum. Stimuli that are metameric are eidolons
too, but the definition extends to stimuli that are

perceptually equivalent along a given dimension while
still being distinguishable in other aspects. Notice that
equivalence is defined in a phenomenological sense, and
consequently it is subjective in nature.

Figure 25. Mongrels of the same three images generated with the Portilla and Simoncelli algorithm. The images have been generated

using either a phase-randomized version of the original image as a seed or an equal mixture of the original image and its pixel-

scrambled version (WhN) or its phase-scrambled version (PhR). Photograph of Albert Einstein reprinted from http://www.loc.gov/

pictures/item/2004671908/. Copyright Orren Jack Turner.

Figure 26. Comparison of an eidolon (obtained with fully coherent disarray and 0.5 reach) and a mongrel (seed corrupted with high-

passed noise). Even if the two instances look relatively similar, some qualitative differences are evident, such as the fact that features

(e.g., edges) can appear or be enhanced at random positions in the mongrel image, whereas each feature can be traced to the fiducial

image in the eidolon. Photograph of Albert Einstein reprinted from http://www.loc.gov/pictures/item/2004671908/. Copyright Orren

Jack Turner.
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Eidolon factory: Algorithm that can be used to
modify images. Its parameterization defines the phys-
ical space in which perceptual equivalence can be
established through psychophysical methods. Many
eidolon factories are possible beyond the one we
introduce in this work.

Local sign: Positional signature (German Lokalzei-
chen). Psychophysical bridge between neural represen-
tation and awareness of position.

Metamer: Class of stimuli that are perceptually
indistinguishable under some specific viewing condition.

Modulation transfer function (MTF): Being v a given
spatial frequency of a grating stimulus, C0 the physical
contrast of a stimulus, and Ci the transferred contrast
(i.e., the contrast resulting after the stimulus is

transferred through an optical device or the effective
contrast in a visual system), MTF(v) ¼ Ci/C0.

Psychogenesis: Process by means of which a mental
state comes to be. In the present study, we are primarily
referring to the process leading to visual awareness
when human observers view an image.

Tarachopia: Scrambled vision. Concept proposed by
Hess (1982) to characterize the phenomenology of
amblyopia as well as the observation that amblyopia
affects pattern discrimination to a larger extent than
simple visual detection.

Translation invariance: Indicates that the measure-
ment of a property is independent of the location at
which the measurement takes place. Specifically, in the
case of Fourier transform, it indicates that the
amplitude spectrum is identical if the image is shifted.
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