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Abstract

We investigate the structure of RGD-systems over Fo. For this purpose we introduce the notion
of commutator blueprints which prescribe the commutator relations between prenilpotent pairs
of positive roots. To each RGD-system one can associate a commutator blueprint and such
a commutator blueprint will be called integrable. We give necessary and sufficient conditions
of an integrable commutator blueprint. Moreover, we construct uncountably many different
integrable commutator blueprints of type (4,4,4).

The existence of these integrable commutator blueprints disproves the general validity of
the extension theorem for isometries of 2-spherical thick twin buildings. Additionally, we
obtain the first example of a 2-spherical Kac-Moody group over a finite field which is not
finitely presented. Furthermore, we construct the first example of a 2-spherical RGD-system
with finite root groups which does not have property (FPRS).

Deutsche Zusammenfassung

Wir untersuchen die Struktur von RGD-systemen iiber Fo. Aus diesem Grund fiithren wir den
Begriff von Kommutatorbauplinen ein, welche die Kommutatorrelationen zwischen prenilpo-
tenten Paaren von positiven Wurzeln vorschreiben. Zu jedem RGD-System kann man einen
Kommutatorbauplan assoziieren und solch einen Kommutatorbauplan nennen wir integrabel.
Wir geben notwendige und hinreichende Bedingungen eines integrablen Kommutatorbauplans
an. Auferdem konstruieren wir iiberabzéhlbar viele verschiedene integrable Kommutatorbau-
plane vom Typ (4,4, 4).

Die Existenz dieser integrablen Kommutatorbaupline widerlegt die Allgemeingiiltigkeit
des Erweiterungssatzes fiir Isometrien von 2-spéarischen dicken Zwillingsgebduden. Zusét-
zlich erhalten wir das erste Beispiel einer 2-sphéirischen Kac-Moody Gruppe iiber einem
endlichen Korper, welche nicht endlich prisentiert ist. Zudem konstruieren wir das erste
Beispiel eines 2-sphirischen RGD-Systems mit endlichen Wurzelgruppen, welches nicht die
Eigenschaft (FPRS) besitzt.
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Historical context

This is based on [25], [8] and [9].

Twin buildings

Buildings have been introduced by Tits in order to study semi-simple algebraic groups from
a combinatorial point of view. One of the most celebrated results in the theory of abstract
buildings is Tits’ classification result for irreducible spherical buildings of rank at least 3.
The decisive step in this classification is a local-to-global result for isometries of spherical
buildings.

Twin buildings were introduced by Ronan and Tits in the late 1980s in order to study groups
of Kac-Moody type. Their definition was motivated by the theory of Kac-Moody groups over
fields. Fach such group acts naturally on a pair of two buildings and the action preserves an
opposition relation between the chambers of the buildings. This opposition relation shares
many important information with the opposition relation of spherical buildings. Thus, twin
buildings appear to be natural generalizations of spherical buildings.

Extension problem

Ronan and Tits conjectured in the 1990s that there exists a similar local-to-global result for
isometries of twin buildings. To be more precise: let A = (A4, A_,0,), A" = (A A, 0))
be two twin buildings of the same type (W, S). An isometry is a bijection from X C A to
X’ C A’ which preserves the sign, the distance and the codistance. For ¢ € Ay we denote by
Es(c) the union of all residues of rank at most 2 containing c.

Extension theorem: Let A = (A, A_,d,) and A" = (A, A’ ,6}) be two twin buildings
of type (W, S). We say that the the extension theorem holds for A, if for all ¢ € Ay and
d € Al every isometry Es(c) — E(c’) extends to an isometry A — A’

If the extension theorem holds for a subclass of twin buildings, then the classification of twin
buildings contained in this subclass reduces to the classification of foundations, i.e. the local
structure Eo(c). First the extension theorem seems only be feasible under the additional
assumption that (W, S) is 2-spherical. Tits observed that a proof of the extension theorem
splits roughly into two parts:

Part 1 (first half): Any isometry Es(c) — E»(c’) extends to an isometry A, — A/
Tits proved part 1 in [34] under the additional assumption that each panel is sufficiently large.
Part 2 (second half): Any isometry A, — A/, extends to an isometry A — A’.

The first contribution to part 2 is a result of Miithlherr and Ronan from 1995 published in [25]
satisfying an additional condition (co).

Condition (co)

A twin building A = (A4, A_, §,) satisfies condition (co) if for every ¢ € C. the set {d € C_. |
0x(c,d) = 1y} of chambers opposite ¢ is connected. Miihlherr and Ronan have shown in [25]
the following condition on the rank 2 residues implies condition (co):

(Ico) No rank 2 residue of A is associated with one of the groups Ba(2), G2(2), Ga(3),? F4(2).
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Condition (lco) shows that difficulties arise only if the size of panels is too small. In particular,
they proved the following theorem:

Theorem (Miihlherr, Ronan, [25]): The second half of the extension theorem holds
for twin buildings

e in which every panel contains at least 5 chambers.

e of simply-laced type.

In [3I] Ronan generalized the first half of the extension theorem to twin buildings satisfying
(co). In particular, the extension theorem holds for twin buildings satisfying (co). Recently,
Chosson, Miihlherr and the author have shown in [8] that the first half of the extension
theorem is true for any two 2-spherical thick twin buildings. Thus, the extension theorem
holds if the second part of the extension theorem holds.

Condition (wc)

What is a bit unsatisfying about condition (co) is that not all affine twin buildings satisfy this
condition. In [9] Miihlherr and the author introduced condition (wc) in order to prove the
second half of the extension theorem for affine twin buildings. As a consequence, the second
half of the extension theorem is true for 3-spherical thick twin buildings. This rather technical
condition (wc) is a weaker condition than (co) and has a nice interpretation for RGD-systems.
We do not give the definition here, but we refer to [9] for details.

Counterexamples coming from RGD-systems

The main motivation of this thesis is to construct two thick twin buildings of 2-spherical
type for which the extension theorem does not hold. The twin buildings are associated with
RGD-systems. In particular, we have constructed RGD-systems over Fa (i.e. every root group
contains exactly two elements) with prescribed commutator relations.

Let (G, (Uy)acao) be an RGD-system of type (W, S) over Fy, where G is generated by the
groups U,. We let U, be the group generated by the set of root groups corresponding to
positive roots. For each s € S we let P; be the group generated by U; and U_,, and we
let 75 := u_susu_s, where ugs € Ugq,\{1}. Then we have the following two well-known
theorems:

Theorem 1: The group G is isomorphic to the direct limit of the inductive system formed
by the groups Uy, (Ps),cg,Z2, W together with the natural inclusions

Ty 225 W for all s € S.

U+ PS 1—=T7s

Theorem 2: The group U, is isomorphic to the direct limit of the inductive system formed
by the groups U, together with the canonical inclusions U,, — U, for every w € W,s € S
with £(ws) = £(w) + 1. Moreover, the group U, has cardinality 2¢*) for each w € W.

Construction of RGD-systems over F,

In this thesis we follow the ideas of Theorem 1 and 2. In the following will describe the main
strategy. In order to explain the main idea in a comprehensible way, we will not be formally
mathematically correct at the one or other point in this description.
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We first need to find a way of producing groups U, having cardinality 2/*) for w € W.
These groups should come equipped with canonical homomorphisms U,, — U,s, whenever
l(ws) = ¢(w)+1. Following Theorem 2, we define U, as the direct limit of the inductive system
formed by the groups U,,, together with the homomorphisms U,, — Uys. It is not clear at this
stage whether the homomorphisms U,, — U4 are injective, but for the moment we assume
that they are. Next we have to construct the groups Ps for each s € S. Therefore, we note
that Uy =2 Us X N; splits as a semi-direct product. We will construct another automorphism
Ts € Aut(Ny) with the property 75(uq) = tsq. Now we define Py := (usg, 75) X Ns. Moreover, we
can define the direct limit of the inductive system formed by the groups U, (Ps)ses, Za, W as
in Theorem 1. We will work out sufficient conditions in order to show that G can be endowed
with an RGD-system.

Overview

In Chapter 1 we introduce the basic definitions of the theory of buildings. Moreover, we state
known results and prove some auxiliary results which will be needed later. In the second chap-
ter we introduce the notion of commutator blueprints, the main objects of this thesis. They
can be seen as a prescription of commutator relations. Each commutator blueprint provides
the groups U, having cardinality 24%) for w € W. To each RGD-system one can associate
a commutator blueprint and such commutator blueprints are called integrable. Additionally,
we define faithful and Weyl-invariant commutator blueprint: Faithfulness implies that the
canonical homomorphisms U,, — Uy are injective. Moreover, we obtain the decomposition
Uy =2 Ugx Ng and hence ug € Aut(Ng). Weyl-invariance allows to construct an automorphism
Ts € Aut(Ng) such that 75(uq) = usq. Moreover, if G denotes the direct limit of the inductive
system formed by the groups Ui, (Ps)ses,Za, W as in Theorem 1, we prove the following
theorem:

Theorem (Theorem |(2.4.3)): If P; — G is injective for each s € S, then the commutator
blueprint is integrable.

In order to show the the group G can be endowed with an RGD-system, we have to show
that the homomorphisms P; — G are injective. We consider the chamber system C, where
each chamber is a coset contained in U, /U, for some w € W. We define an action of Py on
C and deduce that this action is faithful. We are done, if the braid relations (7s7¢)™s* act
trivially on the chamber system C for all s # t € S with mg < co. This is what we do in
Chapter 3. We restrict to the cases mg # 6, i.e. mg € {2,3,4}. As it is our main motivation
to construct RGD-systems of type (4,4, 4), this is an acceptable restriction. It turns out that
the braid relations act trivial in the case mg = 2. We introduce two further conditions of the
commutator blueprint (called (CR1) and (CR2)), and it turns out that if the groups U, are
of nilpotency class at most 2 and if (CR1) and (CR2) are satisfied, then the braid relations
act trivial in the cases mg € {3,4}. In Chapter 4 we show that if the commutator relations
are chosen in a way that they are somehow of nilpotency class 2 then the groups U, have
automatically cardinality 2¢(%).

In Part 3 we discuss faithful commutator blueprints of type (4,4,4). Therefore, we analyze
the geometry of the Coxeter system of type (4,4,4) and its set of roots. Moreover, we prove
that any RGD-system of type (4,4,4) over [y contains suitable tree products (called Vg ) as
subgroups. These groups will be needed in Chapter 6. The fact that Vg, is a subgroup is
obtained by considering the action of the group on its associated twin building. In Chapter
6 we introduce several tree products and prove many subgroup and isomorphism properties
of those. In Section and we construct the group Uy successively as a tree product.
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Here we need on the one hand the subgroups Vg s and, one the other hand the tree products
constructed in Chapter 6. We remark that this construction does only work because we
already have one example of an RGD-system of type (4,4,4) over Fy, namely the Kac-Moody
group. This implies that a Weyl-invariant commutator blueprint of type (4,4,4) is faithful.
The main result of this thesis will be the following:

Main result (Corollary |(6.10.7)): Any Weyl-invariant commutator blueprint of type
(4,4,4) satistying the conditions (CR1) and (CR2) and such that the groups U, are of nilpo-
tency class at most 2 is integrable.

We remark that Weyl-invariance, (CR1), (CR2) and the nilpotency class assumption can be
checked by only considering the commutator blueprint. In the last chapter we discuss several
applications of the main result, which we will explain below. In the appendix we reproduce
for convenience all figures from Chapter [6]

Applications of the Main result

First we construct uncountably many different Weyl-invariant commutator blueprints, which
are integrable. The existence of these has itself two applications. The first concerns an
answer of a 30 year-old question of Ronan and Tits about the extension problem. We obtain
the following result:

Extension problem (Theorem |(7.2.1)): The extension theorem does not hold for all
thick 2-spherical twin buildings.

The second application answers a question about finiteness properties of groups acting on twin
buildings. Abremenko and Miihlherr have shown in [3] that almost all 2-spherical Kac-Moody
groups over finite fields are finitely presented. As a consequence of our construction we obtain
the first 2-spherical, non-finitely presented Kac-Moody group over a finite field:

Theorem (Theorem [(7.3.3)): Let G be the Kac-Moody group (in the sense of [34]) of
type (4,4,4) over Fy. Then G is not finitely presented.

Moreover, Abramenko considered finiteness properties of the stabilizer of a chamber in a
Kac-Moody groups and he proved (unpublished, cf. [I, Counter-Example 1(2)|) the following
result, which is also a consequence of our construction:

Theorem (Theorem |(7.3.4), Lemma |(7.4.6)) Let D be an RGD-system of type (4,4,4)

over Fo. Then group U, is not finitely generated. In particular, the automorphism group of
the building associated with an RGD-system of type (4,4, 4) over Fo does not have property
(T).

The last application concerns property (FPRS), which makes a statement about fixed points
of the root groups on the associated building. Caprace and Rémy have shown in [16] that
(almost) split Kac-Moody groups satisfy this property. We have shown that many (but not
all) of the new examples satisfy this property (cf. Corollary [(7.5.4)). In particular, we obtain
the first example of a 2-spherical RGD-system which does not satisfy property (FPRS):

Theorem (Theorem [(7.5.5))): There exists an RGD-system of 2-spherical type which does
not satisfy property (FPRS).
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Part I.

Preliminaries







1. Basic definitions

In this chapter we introduce basic definitions of the theory of buildings. Moreover, we state
some known results and prove some auxiliary results which we will need later.

1.1. Coxeter systems

Let (W,S) be a Coxeter system and let ¢ denote the corresponding length function. For
s,t € S we denote the order of st in W by mg.. The Cozeter diagram corresponding to (W, .S)
is the labeled graph (S, E(S)), where E(S) = {{s,t} | mst > 2} and where each edge {s,t} is
labeled by myg for all s,t € S. The rank of the Coxeter system is the cardinality of the set
S. Let (W,S) be of rank 3 and let S = {r,s,t}. Sometimes we will also call (m,s, My, mst)
the type of (W, S). If (W S) is of type (Mmys, My, mst), then it is called cyclic hyperbolic if
Myps, My, Mgt > 3 and —— + —— + —— < 1.

If mg € {2,3,4,6, oo} for all s 7& t € S, we call the Coxeter system crystallographic. In
this case we define the crystallographic Dynkin diagram Dyn(W, S) corresponding to (W, .S)
as the Coxeter diagram, where each edge has a direction. We note that this is not exactly the
notion of a Dynkin diagram in the literature.

It is well-known that for each J C S the pair ((J),J) is a Coxeter system (cf. [10, Ch.
IV, §1 Theorem 2|). A subset J C S is called spherical if (J) is finite. The Coxeter system is
called spherical if S is spherical; it is called 2-spherical if (J) is finite for all J C S containing
at most 2 elements (i.e. mg < oo for all s,t € S). Given a spherical subset J of S, there
exists a unique element of maximal length in (J), which we denote by r; (cf. |2, Corollary
2.19]).

(1.1.1) Lemma. Lete € {+,—} and let (W, S) be a Cozeter system. Suppose s,t € S,w € W
with {(sw) = l(w)el = l(wt). Then either {(swt) = l(w)e2 or else swt = w.

Proof. The case ¢ = + is [2, Condition (F) on p. 79]. Thus we consider the case ¢ = —. We
put w’ := sw. Then {(sw’) = {(w) = £(w') + 1. We assume that ¢(swt) # ¢(w) — 2. Then
l(swt) = ¢(w) and hence ((w't) = l(swt) = L(w) = £(w') + 1. Using [2, Condition (F) on p.
79| we obtain either ¢(sw't) = (w') + 2 or sw't = w'. Since {(sw't) = L(wt) = L(sw) = L(w')
we have wt = sw't = w’ = sw and the claim follows. O

1.2. Buildings

Let (W,S) be a Coxeter system. A building of type (W,S) is a pair A = (C,d) where C is a
non-empty set and where § : C xC — W is a distance function satisfying the following axioms,
where z,y € C and w = §(z,y):

(Bul) w = 1y if and only if z = y;

(Bu2) if z € C satisfies s := d(y, z) € S, then d(z, z) € {w,ws}, and if, furthermore, ¢(ws) =
l(w) + 1, then 0(z, 2) = ws;

(Bu3) if s € S, there exists z € C such that §(y, z) = s and d(x, z) = ws.




1. Basic definitions

The rank of A is the rank of the underlying Coxeter system. The elements of C are called
chambers. Given s € S and x,y € C, then x is called s-adjacent to y, if é(x,y) = s. The
chambers x,y are called adjacent, if they are s-adjacent for some s € S. A gallery from x to
y is a sequence (r = xg,...,x = y) such that 2;_1 and x; are adjacent for all 1 <[ < k;
the number k is called the length of the gallery. Let (xo,...,x%) be a gallery and suppose
s; € S with 6(x;—1,2;) = s;. Then (sq1,...,sk) is called the type of the gallery. A gallery from
x to y of length k is called minimal if there is no gallery from x to y of length < k. In this
case we have ((0(z,y)) =k (cf. [2, Corollary 5.17(1)|). Let x,y, z € C be chambers such that
(6(x,y)) = £(d(z,2)) +£(6(%,y)). Then the concatenation of a minimal gallery from x to z
and a minimal gallery from z to y yields a minimal gallery from z to y.

Given a subset J C S and z € C, the J-residue of x is the set Rj(x) :={y € C | d(x,y) €
(J)}. Each J-residue is a building of type ((.J),.JJ) with the distance function induced by ¢
(cf. [2, Corollary 5.30]). A residue is a subset R of C such that there exist J C S and = € C
with R = Rj(x). Since the subset J is uniquely determined by R, the set J is called the type
of R and the rank of R is defined to be the cardinality of J. A residue is called spherical if
its type is a spherical subset of S. A building is called spherical if its type is spherical. Let R
be a spherical J-residue. Then x,y € R are called opposite in R if 6(x,y) = rj. Two residues
P,Q C R are called opposite in R if for each p € P there exists ¢ € @ such that p,q are
opposite in R and if for each ¢’ € Q there exists p’ € P such that ¢/,p’ are opposite in R. A
panel is a residue of rank 1. An s-panel is a panel of type {s} for s € S. The building A is
called thick, if each panel of A contains at least three chambers; it is called locally finite, if
each panel contains only finitely many chambers.

Given z € C and a J-residue R C C, then there exists a unique chamber z € R such that
(0(x,y)) = €(0(x, 2))+£(d(2,y)) holds for each y € R (cf. [2, Proposition 5.34]). The chamber
z is called the projection of x onto R and is denoted by projp x. Moreover, if z = projp x we
have §(z,y) = d(z,2)d(z,y) for each y € R. Let J C S, let R be a J-residue and suppose
c€C,d e R with £(6(c,d)j) = £(6(c,d)) + 1 for each j € J. Then we have d = projp c (cf.
[24] Lemma 21.6(iv)]). Let R C T be two residues of A. Then projp ¢ = projp projy ¢ holds
for every ¢ € C by [19, Proposition 2].

An (type-preserving) automorphism of a building A = (C, d) is a bijection ¢ : C — C such
that d(¢(c), ¢(d)) = d(c,d) holds for all chambers ¢,d € C. We remark that some authors
distinguish between automorphisms and type-preserving automorphisms. An automorphism
in our sense is type-preserving. We denote the set of all automorphisms of the building A
by Aut(A). It is a basic fact that the projection commutes with each automorphism. More
precisely, let ¢ € C, let R be a residue of A and let ¢ € Aut(A). It follows directly from the

uniqueness of projp ¢ that p(projp ¢) = proj,(g) ¢(c).

(1.2.1) Example. We define 6 : W x W — W, (z,y) — 2~ 'y. Then X(W,S) := (W,§) is
a building of type (W, S). The group W acts faithful on (W, S) via left-multiplication, i.e.
W < Aut(3(W, 9)).

A subset ¥ C C is called convex if for any two chambers ¢,d € ¥ and any minimal gallery
(co=c¢,...,c; =d), we have ¢; € ¥ for all 0 <1i < k. Note that by [2, Example 5.44(b)| any
residue of a building is convex. A subset 3 C C is called thin if P NY contains exactly two
chambers for every panel P C C which meets 3. An apartment is a non-empty subset 3 C C,
which is convex and thin.

For two residues R and T we define projp R := {projyr | » € R}. By [2| Lemma
5.36(2)] projp R is a residue contained in 7. Two residues R and 7' are called parallel if
projp R =T and projp T' = R. By [24 Proposition 21.8(i)| the residues projr R and projp T’
are parallel. If R and T are parallel, then it follows by [24, Proposition 21.8(i7), (¢i7)] that




1.3. Roots

projg : T — R,t — projpt and proj¥ : R — T,r — projpr are bijections inverse to each
other and that the element §(z, projrx) € W is independent of the choice of = € R.

(1.2.2) Lemma. Let R be a spherical residue of rank 2 and let P # Q C R be two parallel
panels. Then P and @ are opposite in R.

Proof. This is a consequence of [18, Lemma 18] and [2, Lemma 5.107]. O

(1.2.3) Theorem. Let A = (C,6) be a thick spherical building of type (W, S) and let ¢,d € C
be opposite chambers in C. Then the only automorphism of A, which fizes |J,cg Ry (c) U{d}
pointwise, is the identity.

Proof. This is [2, Theorem 5.205]. O

1.3. Roots

Let (W, S) be a Coxeter system. A reflection is an element of W that is conjugate to an element
of S. For s € S we let a5 := {w € W | {(sw) > {(w)} be the simple root corresponding to
s. A root is a subset o« € W such that o = va, for some v € W and s € S. We denote the
set of all roots by ®(W,S). The set ®(W,S); = {a € ®(W,5) | 1y € a} is the set of all
positive roots and ®(W,S)_ = {a € ®(W,S) | 1y ¢ a} is the set of all negatlive roots. For
each root a € ®(W, S) we denote the opposite root by —« and we denote the unique reflection
which interchanges these two roots by r,, € W < Aut(X(W, S)). Moreover, for each reflection
r there exist two roots £/, which are interchanged by r. A pair {«a, 8} of distinct roots is
called prenilpotent if both N B and (—a) N (—f) are non-empty sets. For such a pair we will
write [, 8] :={y € (W, S) |anp Cvand (—a)N(-B) € —v} and (o, B) := [, B] \{ev, B}
A pair {«, 5} C @ of two roots is called nested, if « C B or 5 C «.

(1.3.1) Convention. For the rest of this paper we let (W, S) be a Coxeter system of finite
rank and we define ¢ := ®(W, 5) (resp. &4, P_).

(1.3.2) Lemma. For s #t e S we have ay C (—as) U tas.

Proof. Let w € ay. If £(sw) < ¢(w), then w € (—as) and we are done. Thus we can assume
l(sw) > L(w). As w € oy, we have £(tw) > ¢(w) and hence {(stw) = {(w) + 2 > £(tw). Thus
tw € ag and hence w € tog. O

(1.3.3) Remark. Let s #t € S and let 8 € (s, ). Then we have asNay C B and hence
(—=8) C (—as) U (—ay). Moreover, we have (—ag) N (—ay) € (=) and hence 8 C ag U 4.

1.4. Coxeter buildings

In this section we consider the Coxeter building X (W, S). At first we note that roots are convex
(cf. |2, Lemma 3.44]). For a € ® we denote by da (resp. 9%a) the set of all panels (resp.
spherical residues of rank 2) stabilized by r,. Furthermore, we define C(da) := |Jpcg, P and
C(8%a) := Upepea B- The set Oa is called the wall associated with a. Let G = (co, ..., cx) be
a gallery. We say that G crosses the wall Oc if there exists 1 < i < k such that {¢;_1, ¢} € da.
It is a basic fact that a minimal gallery crosses a wall at most once (cf. [2) Lemma 3.69]).
Let (co,...,ck) and (dg = co,...,dr = c¢;) be two minimal galleries from ¢y to ¢ and let
a € ®. Then O« is crossed by the minimal gallery (co,...,c) if and only if it is crossed by
the minimal gallery (dp,...,dg). Moreover, a gallery which crosses each wall at most once
is already minimal. For a minimal gallery G = (co,...,ck),k > 1, we denote the unique
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root containing ci_1 but not ¢ by ag. For ap,...,ar € ® we say that a minimal gallery
G = (co,...,cr) crosses the sequence of roots (ai,...,ax), if ¢i-1 € a; and ¢ ¢ «; all
1< <k.

We denote the set of all minimal galleries G = (¢p = 1w, ..., cx) by Min. For w € W we
denote the set of all G € Min of type (s1,...,sx) with w = s1---s; by Min(w). For w € W
with ¢(sw) = f(w) — 1 we let Ming(w) be the set of all G € Min(w) of type (s, s2,...,Sk).

For a positive root a € ®, we define ky := min{k € N | 3G = (cp,...,c;) € Min :
ag = a}. We remark that k, = 1 if and only if « is a simple root. Furthermore, we define
O(k) :={a € @y | ko <k} for k € N. Let R be a residue and let o € ®. Then we call a a
simple root of R if there exists P € Oa such that P C R and projp 1y = projp ly. In this
case R is also stabilized by 7, and hence R € 0%a.

(1.4.1) Lemma. Let R be a spherical residue of (W, S) of rank 2 and let o« € ®. Then
exactly one of the following hold:

(a) R C «;
(b) RC (—a);
(¢c) R € d*a;

Proof. 1t is clear, that the three cases are exclusive. Suppose that R € a and R Z (—a).
Then there exist c € RN (—a) and d € RNa. Let (co =¢,...,c, = d) be a minimal gallery.
As residues are convex, we have ¢; € R for every 0 < i < k. As ¢ € (—a),d € «, there exists
1 <i <k with ¢;_1 € (—a),¢; € a. In particular, {¢;_1,¢;} € da and hence R € 9%a. O

(1.4.2) Lemma. Let R, T be two residues of X(W,S). Then the following are equivalent
(i) R,T are parallel;
(ii) a reflection of (W, S) stabilizes R if and only if it stabilizes T';

(iii) there exist two sequences Ry = R,...,R, =T and Th,...,T, of residues of spherical
type such that for each 1 < i < n the rank of T; is equal to 1 4+ rank(R), the residues
Ri—1, R; are contained and opposite in T; and moreover, we have projp, R = R;—1 and
projr, ' = R;.

Proof. This is [13], Proposition 2.7]. O

(1.4.3) Lemma. Let o € ® be a root and let x,y € a N C(Ja). Then there exists a minimal
gallery (co = x,...,cx = y) such that ¢; € C(0%a) for each 0 < i < k. Moreover, for every
1 <i <k there exists L; € 0?a with {c;_1,¢;} C L;.

Proof. This is a consequence of [12, Lemma 2.3| and its proof. O

(1.4.4) Remark. Let a € ® be a root and let R € §%a. Then there exist ¢ € a N R and
d € (—a) N R. By considering a minimal gallery from ¢ to d, there exist adjacent chambers
d €anRand d € (—a)N R. In particular, {¢,d'} € da. This shows that for all R € 0%«
there exists P € O« such that P C R.

(1.4.5) Lemma. Let a # 3 € ® be two non-opposite roots and let R # T € 0>and?B. Then
R and T are parallel.
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Proof. As R, T € 0%a N 0?f, there exist panels P;,Q; € da and P»,Qs € 9 such that
P, P> C R and QQ1,Q2 C T by the previous remark. By Lemma the panels P;, Q; are
parallel for each i« € {1,2}. [18, Lemma 17| yields that P;, proj P; are parallel and hence
projy P € Oa, projp Pe € 08 by Lemma As a # £, we deduce projp P; # projr P
and hence projy P; C projp R for each i € {1,2}. Since projp R is a residue contained in T
containing two different panels, we deduce that proj, R is not a panel and hence proj; R =T
Using similar arguments, we obtain projp 7' = R and R, T are parallel. Ul

(1.4.6) Lemma. Assume that (J) = oo for all J C S containing three elements and let
a # B € ® be two non-opposite roots. Then we have |0%a N 0?B| < 1.

Proof. Assume that there exist R # T € 0%a N dB. By the previous lemma, R and T are
parallel. But this is a contradiction to Lemma [(1.4.2)| as there exist no spherical residues of
rank 3 by assumption and the claim follows. O

(1.4.7) Lemma. Let o # 3 € ® be two non-opposite roots. Then the following are equivalent:
(i) {a, B} or {—a, B} is nested.
(i) We have o(rqrg) = oo.

(iii) We have 0’an 0?8 = 0.

Proof. The implication (i) = (ii) follows exactly as in [2, Proposition 3.165]. Now suppose
(i1) and assume that there exists R € 0%a N d?B. As R is finite, there exists k € N such
that (rarg)® fixes a chamber, ie. (ro7)*w = (r475)*(w) = w for some w € W. But
this implies (rarg)k = 1. As o(rqrg) = 00, we obtain a contradiction. Now suppose that
non of {«a,},{—a,B} is nested. In particular, we have a Z B,(—a) € (—5) as well as
(—a) € B,a Z (—p). This implies that non of a N (=75), (—a) NG, (—a) N (=F),a N B is the
empty set. By [37, Proposition 29.24] there exists R € 0%°a N 0?3 and we are done. O]

(1.4.8) Lemma. Let o, 3,7 € ® be three pairwise distinct and pairwise non-opposite 10ots.
Suppose that 02a N OB N 0%y # 0. Then the following hold:

(a) 2a N8 = 82N dy;
(b) (e, B)U (=, B)) N {7y, =7} #0.

Proof. Let R € 0%a N 8?8 N 0%y be a residue and let § € {B,~}. It suffices to show that for
each R # T € 0?°and?s we have T € 02and?BN0%y. Let R # T € 0*and?s. Using Lemma
we deduce that R and T are parallel. Then Lemma implies that a reflection of
X (W, S) stabilizes R if and only if it stabilizes T'. As rq, 73,1, stabilize R, they also stabilize
T and Assertion (a) follows.

Assume (o, ) N {v,—v} = 0 = (—a, B) N {7, —v}. This implies that non of a N # and
(—a) N B is contained in v or —, respectively. This implies that there exist x,2’ € a N g
with € (—v),2’ € v. As roots as convex, [2, Lemma 5.45] yields projpz € anN BN (—7)
and projp 2’ € aN B N+. Similarly, there exist v,y € (—a) N B with y € (—v),y’ € v and
projry € (—a) N BN (—7v),projry’ € (—a) N BN~. As residues and roots are convex, there
exist P,@Q € 0v such that P,Q C R,PCanfand @QC (—a)NB. As PC aand Q C (—a),
we have P # @ and Lemma implies that there exist p € P,q € () which are opposite
in R. Using [36], Proposition 5.4, every chamber in R lies on a minimal gallery from p to q.
As roots are convex and p,q € 3, we infer R C 3, which is a contradiction to R € 9?4. O
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1.5. Reflection and combinatorial triangles in (1, 5)

A reflection triangle is a set T of three reflections such that the order of ¢’ is finite for all
t,t' € T and such that (,cp 0?B; = (), where B; is one of the two roots associated with the
reflection ¢t. Note that 928, = 0%(—f3;). A set of three roots T is called combinatorial triangle
(or simply triangle) if the following hold:

(CT1) The set {r, | @« € T} is a reflection triangle.

(CT2) For each a € T, there exists o € 923N 0y such that o C «, where {3,7} = T\ {a}.

(1.5.1) Remark. Let R be a reflection triangle. Then there exist three roots (1, 82,83 € ®
such that R = {rg,,rp,,78,}. Let {i,j,k} = {1,2,3}. As o(rgrp,) < oo, there exists
o € 02B; N 9%B; by Lemma [(1.4.7)] Since R is a reflection triangle, we have o), ¢ 928 and

Lemma vields o C By or o C —fk. Define o := &0, where ¢ € {+,—} and
o C exfr. Then {a1, as, as} is a triangle, which induces the reflection triangle R.

(1.5.2) Lemma. Let a # € ® be two non-opposite roots such that o(rqrz) < oo and let
v € (o, B). Then 8?and*BN 0%y # 0 and o(rary), o(rgry) < 00.

Proof. By Lemma [(1.4.7)| there exists R € 0?a N d?B. We deduce ) # RNan B C v and
0 # RN (—a)N(=B) C (—v). If follows from Lemma |[(1.4.1)|that R € §%y. In particular,
R € 9*2an 8?8 N 8%y. We deduce o(rqry),0(rgry) < oo from Lemma |(1.4.7) O

(1.5.3) Lemma. Assume that (W, S) is 2-spherical and cyclic hyperbolic. Then any triangle
T is a chamber, i.e. |(\,epa| = 1. In particular, (—o, ) =0 for alla # € T.

Proof. Let T = {a, 3,7} and let R € 8?a N %3 be a residue such that R C . Suppose that
RNaNng contains more than one chamber. Let ¢, d be adjacent and contained in aNBN R and
let 6 € ® be a root with {¢,d} € 85. Then Lemma [(1.4.8)b) implies (—a, 8) N {8, —6} # 0
and {rq, 78,7}, {ra, 7,75}, {1, ry, 75} are reflection triangles. But this is a contradiction to
the classification in [20, Figure 8 in §5.1]. Thus RN a N 8 does only contain one chamber c.
Assume that [\ ep @ > 1. Then there exists 6 € ® which contains ¢ but not a neighbour
contained in (),cp . Again, this is a contradiction to the classification in [20, Figure 8 in
§5.1]. This implies |(,cpa| =1. Let ¢ € (yer @, let s #t € S, let o € T be the root which
does not contain the s-neighbour of ¢ and let 8 € T" be the root which does not contain the
t-neighbour of c¢. Then R := Ry, (c) € 0?and?B. As T = {a, 3,7} is a triangle, we have
R ¢ 9%y. We deduce from ¢ € RN+~ that R C 7. This shows (—a,8) =0 forall o, € T. O

(1.5.4) Proposition. Assume that (W,S) is 2-spherical and cyclic hyperbolic. Let R # T be
two residues of rank 2 such that P := RNT is a panel. If {(1y,projp 1) < £(1w,projr 1w ),
then projr lyy = projp L.

Proof. We let o € @ be the root with P € da. Let (co = lw,...,cp = Projpco,...,cp =

projpcp) be a minimal gallery from ¢y to projpcy with cg,...,cpr € R and we assume
projrco # projpco. Then we have k' > ((1y,projr lw) > ¢(lw,projplw) = k. Let
(do = co,...,dm = Projyco,...,dyn = projp co) be a minimal gallery from ¢y to projp ¢y with

dm, ..., dpy €T. We define H := (dy,...,dpny1) and B := ag. Then we have T € §%a N 0?3
and, as a minimal gallery crosses a wall at most once, we deduce a # 3. Note that the wall
0B is crossed by the minimal gallery (cg,...,cp). Since R # T,T € 0’a N 9B, R € 9%«
and o # £3, Lemma [(1.4.6)| implies R ¢ 9?8. We define v := Qeg,ersr)- As R ¢ 028,
we obtain that 9 is crossed by (co,...,ck). As k < k', we have projp 1y # projp 1y and
hence a # 7. As o,y € &, we have a # 7. Assume that o(rgry) = co. We deduce § C 7.
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But 0y has to be crossed by the gallery (do,...,d,). Since R € 8?an d%*y,T € 0%« and
a # 4, we have T ¢ 0+% by Lemma as before. This implies that (dp,...,dy,) crosses
the wall 98 and hence v C . This yields a contradiction and we have o(rgr,) < co. As
R € 9’2and?y, R ¢ 923, Lemma (a) implies 0?aNd*BNd*y = O and hence {rq, 75,7}
is a reflection triangle.

As T € ?and?*B,T ¢ 9*y and projplw € TN (—y), we have T C (—7). As R €
0?an d*y,R ¢ 0?8 and projplw € RN (—B), we have R C (—8). Let 1 < i < k be
such that {¢;—1,¢;} € 98. Note that {dm,dm+1} € 98,dmt+1 € (=8)NT Na C (—v) and
¢i € (=) Nvy. By Lemma there exists a minimal gallery (eg = dpy1,...,€2 = ¢;)
such that e; € C(0?B). As dpmi1 € (—7) and ¢; € 7, there exists 1 < p < z such that
ep—1 € (—7) and e, € 7. Again by Lemmathere exists L € 923 such that {e,_1,e,} €
L. Then L € 9?8 N 0%y and as a minimal gallery crosses a wall at most once, we have
ep—1 € LN a and, as {ra,rs,7,} is a reflection triangle and L ¢ 9?a, we obtain L C o
This implies that {«,—8,—~v} is a triangle and hence (a,y) = 0 by Lemma [(1.5.3)] In
particular, kK + 1 = k" and £(1y,projr lw) = (1w, projp lw) — 1 > ¢(1w, projy ly). Since
(1w, projr lw) < (1w, projy 1y ) holds by assumption, this yields a contradiction and we
have projr 1y = projp 1w . O

(1.5.5) Corollary. Assume that (W,S) is 2-spherical and cyclic hyperbolic. Let o € 4 be

a root and let P,Q) € Oa. Let Py = P,...,P, = Q and Ry,...,R, as in Lemma|(1.4.2) If
projp, lw = projp,_, lw for some 1 < i < n, then projg lw = projp, , lw.

Proof. We will show the hypothesis by induction on n — . If n — ¢ = 0 there is nothing to
show. Thus we suppose n —4 > 0. Let (do = lw,...,d = projg, do) be a minimal gallery
of type (t1,...,tm), let w :=t1 -1y, and let J; be the type of R;. Then w = projg, lw =
projp._, lw € Pi_1. As P, # P; are contained and opposite in R; by Lemma |(1.4.2)), there
exists w' € P; such that w € P,_j,w are opposite in R;, i.e. w' = wry,. Let s € Ji11\J;.
As w = projg, lw, we deduce {(wry,) = £(w) + £(ry;). Since W is not of spherical type,
we obtain f(wrys) = L(w) + £(ry,) + 1. Let t € S be such that J; N J;y1 = {t}. Then
RiNRiy1 = P, = Py(w') = Py(wry,). Assume that £((projp, lw)s) = £(projp, lw) — 1.
Let (co = w,...,c; = projp, lyy) be a minimal gallery contained in R;. We deduce that
l(cis) = U(c;) — 1 for each 0 <1i < k. Let r € S be such that §(c1, c2) = 7. As my, # 2 for all
u # v € 8, we deduce £(projg, 1w) > €(pr0jR{r’S}(cl) 1w). Applying the previous proposition
to R; and Ry, 4 (c1) we obtain a contradiction. Thus £((projp, 1w)s) = €(projp, 1w) + 1 and
hence £(1w, projg, 1w) < £(1w, projg,,, 1w). By Proposition we infer projp,,, 1w =
projp, ly. Using induction the claim follows.

(1.5.6) Lemma. Assume that (W, S) is of type (4,4,4). Let {1, a2, as} be a triangle and
let B € (a1,a2). Then o(rgra,) = oo. In particular, we have —3 C a3, —az C (3 and

(_57 053) =0= (_a?nﬁ)‘

Proof. Since {a1,as, a3} is a triangle, there exist Ry € 0%as N 0%a3 with Ry C a1, Ry €
0% N 0%a3 with Ry C ag and Rz € 0%a; N 0%ay with R3 C a3. Let B € (aq, o) be a root
and let {i,j} = {1,2}. Then Lemma|(1.5.2)|implies 0%a; N> Nd?B # 0 and o(rq,75) < oo.
Lemma [(1.4.8)|(a) yields 9%aq N dag = 0%c; N 0?8 and R; ¢ 9?B (note that R; € 9%a; but
R, ¢ 9%0,).

We assume that o(rgra,) < co. Then {rq,,73,7a;} is a reflection triangle. Since () #
aiNR; Ca;Naj C Band R; ¢ %8, we deduce Rj C 3. Thus {ay, a3, 8} or {—a;, a3, 8} is a
triangle. Assume that {a;, a3, 8} is a triangle. Then a1 NaeNaz € ayNBNag. Since f # «;,
Lemma yields a contradiction. Thus {—a;, as, 5} is a triangle, i.e. {—aq,as, 5} and
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{—a2,as, B} are triangles. But then (ai,8) = 0 = (8, az), which is a contradiction as the
type is (4,4,4).

Thus o(rgras) = 00. As ) # R3N (—F) C ag, we have (—=8)Nag # 0. As ) # Ry N
a1 N(—a3) € ag Nag € B, we have (—a3) N B # 0 and {—ag, B} is a prenilpotent pair.
As ﬂ?zl a; C ajNaz C S and ﬂ?zl a; € (—as), we deduce (—a3) € S and hence also
(=B) C as. Let {x,y} € daz be such that (2_, a; = {y} and let R € 8%a; N 9%ay be the
residue containing y. Let d € R be opposite to y in R and let (co = z,¢1 = y,...,c, =d) be
a minimal gallery. Then ¢; € R for each 1 <i <n. Let (f1,...,08,) be the sequence of roots

crossed by (co,...,cn). Then 81 = —a3 and o(rg,rg) < oo for each 2 < i < n by Lemma
Assume (—as, 8) # 0. |2, Lemma 3.69] implies that for each v € (—as, §) there exists
2 <i<nwith v= ;. As~ C £, this is a contradiction and hence (—as, 8) = 0. O

1.6. Twin buildings

Let Ay = (C4+,04),A_ = (C-,0-) be two buildings of the same type (W, S). A codistance
(or a twinning) between A and A_ is a mapping 0, : (C+ X C_)U(C— x C4+) — W satisfying
the following axioms, where € € {4+, —},z € C.,y € C_. and w = 0. (z, y):

(Twl) d(y,x) = w™h
(Tw2) if z € C_. is such that s := J_.(y, z) € S and {(ws) = ¢(w) — 1, then 0.(z, z) = ws;
(Tw3) if s € S, there exists z € C_. such that 0_.(y, 2) = s and d,(z,2) = ws.

A twin building of type (W,S) is a triple A = (A4, A_,d,) where Ay = (C4+,04),A_ =
(C_,6_) are buildings of type (W, S) and where J is a twinning between A, and A_.

We put C := C4+ UC_ and define the distance function 0 : C x C — W by setting d(x,y) :=
O+ (z,y) (resp. 0_(z,y),0:(x,y)) if x,y € Cy (resp. z,y € C_,(z,y) € C. x C_, for some
ee{+ —}).

Given z,y € C, we put l(z,y) := {(d(z,y)). If e € {+,—} and z,y € C., then we put
le(z,y) == £(0c(z,y)) and for (z,y) € Cc x C_c we put £ (z,y) = L(d.(x,y)).

Let e € {+,—}. For z € C. we put 2°? := {y € C_ | 0x(z,y) = lw}. It is a direct
consequence of (Twl) that y € x°P if and only if € y°P for any pair (z,y) € C. x C_.. If
y € x°P then we say that y is opposite to x or that (x,y) is a pair of opposite chambers.

A residue (resp. panel) of A is a residue (resp. panel) of Ay or A_; given a residue R C C
then we define its type and rank as before. The twin building A is called thick if Ay and A_
are thick.

Let € € {+,—}, let J be a spherical subset of S and let R be a J-residue of A.. For every
chamber © € C_. there exists a unique chamber z € R such that (. (x,y) = l(z, 2) — l(2,y)
holds for each chamber y € R (cf. [2, Lemma 5.149]). The chamber z is called the projection
of x onto R; it will be denoted by projpxz. Moreover, if z = projpx we have d.(x,y) =
0s(x,2)d:(z,y) for each y € R.

Let ¥4 C Cy and ¥_ C C_ be apartments of A, and A_, respectively. Then the set
Y=Y, UX_ is called twin apartment if |x°P NX| = 1 holds for each z € 3. If (z,y) is a pair
of opposite chambers, then there exists a unique twin apartment containing x and y. We will
denote it by A(z,y). It is a fact that A(x,y) = {z € C | §(z,2) = (y, 2)} (cf. [2, Proposition
5.179(1)]).

An automorphism of A is a bijection ¢ : C — C such that ¢ preserves the sign, the distance
functions d. and the codistance d.
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1.7. Root group data

An RGD-system of type (W,S) is a pair D = (G, (Ua),cq) consisting of a group G together
with a family of subgroups U, (called root groups) indexed by the set of roots ®, which satisfies
the following axioms, where H := [ ,cq Na(Ua) and Uz := (Uy | @ € @) for € € {+, -}

(RGDO) For each o € ®, we have U, # {1}.

(RGD1) For each prenilpotent pair {«, 8} C @, the commutator group [Uy, U] is contained
in the group Uy g) := (Uy | 7 € (a, B))-

(RGD2) For every s € S and each u € Uy, \{1}, there exist u/,u” € U_,, such that the
product m(u) := v'uu” conjugates Uz onto Usp for each 8 € ®.

(RGD3) For each s € S, the group U_,, is not contained in Uy.
(RGD4) G = H{U, | a € ®).

Let w € W,G = (co,...,c;) € Min(w) and let (aq,...,a;) be the sequence of roots crossed
by G. Then we define the group U, := Uq, ---U,,. We note that the group U, does not
depend on G € Min(w). Following [34] Remark (1) on p. 258] we have mg € {2,3,4,6,8,00}
for all s #t € S. An RGD-system D = (G, (U, )aca) is said to be over Fy if every root group
has cardinality 2.

Let D = (G, (Ua)aca) be an RGD-system of type (W, S) and let H := (,cq Na(Ua), B: =
H({U, | a € ®.) for ¢ € {+,—}. It follows from [2, Theorem 8.80] that there exists an
associated twin building A(D) = (A(D)4+,A(D)_,d,) of type (W,S) such that A(D), =
(G/Be, 6¢) for € € {+, —} and G acts on A(D) via left multiplication. There is a distinguished
pair of opposite chambers in A(D) corresponding to the subgroups B. for € € {+,—}. We
will denote this pair by (c4,c—).

(1.7.1) Example. Let (W, S) be spherical and of rank 2 and let D = (G, (Uy)aca) be an
RGD-system of type (W, S) over Fa. For S = {s,t} we deduce mg € {2,3,4,6}, since in an
octagon there exists a root group of cardinality at least 4 (cf. [35, (16.9) and (17.7)]). Let
G € Min(rg) and let (51,...,05m) be the sequence of roots crossed by G, where m = my.
Then ®, = {f1,...,Bm} and b1, By are the two simple roots. We let Ug, = (u;). For all
1 <i < j < m we will define subsets Mg, g,y © (Bi, B;) which correspond to the commutator
relations. If [u;,u;] = 1, we put Myg, 5.3 := (. We now state all non-trivial commutator
relations depending on the type (W, S) (cf. [35, Ch. 16,17]):

o Ay x Aq: There are no non-trivial commutator relations.

e Ay: There is only one non-trivial commutator relation, namely [ui,ug] = ug (cf. [35]
16.1, 17.2]). We define M{ﬁhﬁ?)} = {52}

e By = (5: Asin the case of A there is only one non-trivial commutator relation, namely
[u1, ua] = ugus (cf. [35, 16.2,17.4] and [27, 5.2.3]). We define Mg, 3,3 := {52, B3}

e G2: We have the following non-trivial commutator relations (cf. [35, 15.20,16.8,17.6]):
[ur,ug] = u2, [us,us] =us, [u1,us] =uous, [u2,ue] = w4, [u1,us] = uguzuqus

We define M{BLBB} — {52}’M{ﬂ3ﬁ5} = {64},M{51755} = {627ﬁ4}7M{527ﬂ6} = {64}
and Mg, go) = {B2, B3, Ba, B5}-
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1. Basic definitions

Note that for i < j we have [u;, u;] =[] U, where the order of the product is taken

YEMs;,5;1
via the order of the indices. For ¢ > j we have [u;, u;] = H'YGM{[?Z-,[R]-} U, where the order of
the product is taken in the inverse order. Thus Mg, 5.3 contains all information about the
commutators [u;, u;] and [uj, u;].

Property (FPRS)

Let (G, (Uy)aca) be an RGD-system and let A(D) = (A(D)4, A(D)_, ) be the associated
twin building. For I' < G we define r(I") to be the supremum of the set of all non-negative real
numbers r such that I' fixes pointwise the closed ball B(cy,r) = {d € Cy | l+(ct,d) < r},
where Cy is the set of chambers of A(D),. In [16], Caprace and Rémy have introduced the
following property, where ¢(1y, ) ;== min{k € N | 3d € a: (1, d) = k} for all roots o € &:

(FPRS) Given any sequence of roots (ay)n>0 of ® such that lim, o {(1yw, o) = 00, we
have lim;, 00 7(U—_q,,) = 0.

1.8. Graphs of groups

This subsection is based on [22] Section 2| and [32].

Following Serre, a graph I' consists of a vertex set VI, an edge set ET", the inverse function
~1 . ET — ET and two edge endpoint functions o : ET' — VTt : ET' — VT satisfying the
following axioms:

(i) The function ~! is a fixed-point free involution on ET;
(ii) For each e € ET we have o(e) = t(e™1).

For an edge e € ET we call e~! the inverse edge of e.

A tree of groups is a triple G = (T, (Gy)vevr, (Ge)ecrr) consisting of a finite tree T
(i.e. VT and ET are finite), a family of vertex groups (G, )veyr and a family of edge groups
(Ge)ecrr. Every edge e € ET comes equipped with two boundary monomorphisms c. : Ge —
Goe) and we : Ge — Gy). We assume that for each e € ET we have Go-1 = Ge, -1 = we
and w,-1 = a.. We let G = hgl@ be the direct limit of the inductive system formed by

the vertex groups, edge groups and boundary monomorphisms and call G a tree product. A
sequence of groups is a tree of groups where the underlying graph is a sequence. If the tree T’
is an edge, i.e. VT = {v,w} and ET = {e,e" '}, we will write Gr = G, xg, G.. We extend
this notation to arbitrary sequences T if VT = {vo,...,v,}, ET = {e;, ei_l |1 <i<n}and
o(ei) = vi—1,t(e;) = v;, then we will write G = G, *Ge, Goy %G, *** *G.,, Gu,-

(1.8.1) Proposition. Let G = (T, (Gy)vevr, (Ge)ecrT) be a tree of groups. If T is partitioned
into subtrees whose tree products are Gi,...,Gn and the subtrees are contracted to vertices,
then G is isomorphic to the tree product of the tree of groups whose vertex groups are the G;
and the edge groups are the G, where e is the unique edge which joins two subtrees. Moreover,
G; — Gr is injective.

Proof. This is [23, Theorem 1]. O

(1.8.2) Remark. The next proposition is a special case of a more general result (cf. [22
Proposition 4.3]). As we only need a special case, we have reformulated the claim and its
proof.
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1.8. Graphs of groups

(1.8.3) Proposition. Let T be a tree and let T' be a subtree of T. Moreover, we let
G = (T7 (Gv)vGVTv(Ge)eEET) and H = (T/7 (Hv)veVT’a(He)eeET’) be two trees Of groups
and suppose the following:

(i) For each v € VT' we have H, < G,.
i) For each e € ET' we have o ' (Hyoy) = w  (Hyey).
e () e (e)
i) For each e € ET" we have H, = o7 '(Hye)) = wZ (Hyey)-
e (e) e (e)

Then the canonical homomorphism v : Hpr — Gp between the tree product Hp: and the tree
product G is injective. In particular, we have v(Hp') N G, = H, for each v € VT'.

Proof. We use the notations from [22]. Let B be the G-graph (cf. [22], Definition 3.1|) defined
as follows: As graph-morphism choose the inclusion mapping T — T'. The associated groups
are given by H, and we let f, = 1 = f, for all f € ET’. By [22, Convention 3.2] each
edge f € ET' has label (1, f,1) and each vertex u € VT has label (H,,u). We show that
B is folded (cf. [22, Definition 4.1]). Since the inclusion mapping 77 — T is injective, [22]
Definition 4.1(i)] does not hold. Moreover, let f € ET’ be an edge. Then f has label
(1, £,1), o(f) has label (Hy(yy,0(f)) and t(f) has label (Hyf),t(f)). By assumption we have
a;l(Ho(f)) = w; ' (Hy(y)) and hence [22, Definition 4.1(ii)] does also not hold. In particular,
B is folded. Now [22, Lemma 4.2] implies that any H-reduced H-path is also G-reduced. Now
the claim follows from the normal form theorem [22] Proposition 2.4].

We should remark that in [22] they work with fundamental groups instead of tree products.
But the fundamental group m(A,vp) in [22] is equal to the group n(G, T, vp) in [32] and by
[32, Proposition 20| this group is isomorphic to the corresponding tree product. O]

(1.8.4) Corollary. Let G = (T, (Gy)vevr, (Ge)ecrT) be a tree of groups and let H, < G,
for each v € VT. Assume that H, := o' (Hye)) = w; ' (Hye)) for all e € ET and let
H = (T, (Hy)vevr, (He)ecrT) be the associated tree of groups. Let T be a subtree of T and
let L. = (T/, (G’U)'UGVTlv (Ge)eEET’)7 K= (T/, (HU)UEVT’7 (He)eeET’)- Then Hpr N L = K
mn Grp.

Proof. Using Propositionwe deduce that Ly < G and K7 < Hp. Using Proposition
we deduce Hy < Gp and K7+ < L7. Using Proposition again, we can contract
the tree T” to a vertex. Then Ly is a vertex group containing Kpv. Let e € ET be an edge
joining T" with a vertex of VI'\VT" and suppose o(e) € T'. As a.(G.) < G, the previous
proposition yields ae(Ge) N Kqv < Goey VK7 = Hy(ey. This implies ag N (Kpv) < ag ' (Hoe))-
As H, < a;Y(Kqr) < a7 (Hy(e)) = He, we deduce o '(Kpv) = He = o' (Hy (). We denote
the tree products of the trees of groups G and H, where 7" is contracted to a vertex, by G’
and H'. Using Proposition the canonical homomorphism ¢/ : H — G’ is injective
and we have v/(H') N Ly = Kqv (note that Ly is a vertex group of G). This finishes the
claim. O

(1.8.5) Corollary. Let A, B,C be groups and let C — A,C — B be two monomorphisms.
Then ANB =C in Axc B.

Proof. Using Proposition [(1.8.3)| we have a monomorphism A = A x¢ C — A ¢ B and
ANnB=C. O

(1.8.6) Remark. Let A'; A, B,C be groups, let o : C — A, : C — B and o : C — A’ be
monomorphisms and let ¢ : A — A’ be an isomorphism. If &/ = po«, then the amalgamated
products Axc B and A’ x¢ B are isomorphic. One can prove this by constructing two unique
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1. Basic definitions

homomorphisms A xc B — A’ x¢ B and A’ x¢ B — A x¢ B such that the concatenation is
the identity on A (resp. A’) and on B.

(1.8.7) Lemma. Let G = (T, (Gy)vevr, (Ge)ecer) be a tree of groups. Let e € ET and
Ge < Hyey < Gopey. Let VI' = VT U {a}, ET' = (ET\{e,e™'}) U{f, f~1, h,h"'} with
o(f) = ole),t(f) = = = o(h),t(h) = t(e), Gy := Hy)y = Gy,Gp := Ge. Then the two tree

products of the trees of groups are isomorphic.

Proof. Using Proposition we contract the edge f to a vertex. The claim follows now
from Remark |(1.8.6)[ and the fact that G, *Hoo) Ho(e) = Go(e)- O
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2. Commutator blueprints

We introduce the notion of commutator blueprints, the main objects of this thesis. These
objects will canonically provide the groups U,,. We first establish the decomposition U; =
Us X Ng and show the existence of the automorphism 74 € Aut(N,) with 75(uq) = Use. In
Definition [(2.2.11)| we define the group P, by using the automorphisms us, 75 € Aut(N;). The
main result of thls chapter is Theorem [(2.2.14)] where we give a sufficient condition in order
to show that a faithful and Weyl-invariant commutator blueprint is integrable.

2.1. Definition

(2.1.1) Convention. For the rest of this thesis we assume that (W, .S) is crystallographic.

We let P be the set of prenilpotent pairs of positive roots. For w € W we define ®(w) :=
{a € &, | w ¢ a}. Note that ®(G) = ®(w) holds for every G € Min(w). Let G =
(co,...,cr) € Min and let (a1, ...,ax) be the set of roots crossed by G. We define ®(G) :=
{a; | 1 <i < k}. Using the indices we obtain an ordering < on ®(G) and, in particular, on
[, 5] = [B,a] C ®(Q) for all a, f € ®(G). We abbreviate Z := {(G, a, ) € Min x &, x $4 |
a,f € ®(G),a <g B}

Given a family (MG )(G ser’ where Mgﬁ C (a, B) is ordered via <g. For w € W we
a, ’
define the group U, via the following presentation:

Uy = {uq | @ € ®(w)} | Riny, Rer)

where Ripy = {u2 = 1 | a@ € ®(w)} and Ry = {[ua,ug] = [] veMS , Uy | (G,a,pB) €
Z,G € Min(w)}. Here the product is understood to be ordered via the ordering <g, i.e.
if G € Min(w),a <g 8 € ®(G) and Mgﬁ ={n <¢ ... <¢ %} C (a, ) C ®(G), then
HWGM(% Uy = Uy, - - - Uy, . Note that there could be G, H € Min(w), o, 8 € ®(w) with a <¢g
and 8 <pg a. In this case we obtain two commutator relations, namely

(U, ug] = H Uny and [ug, ua) = H Uny
veME 4 veMl

From now on we will implicitly assume that each product ]_[7e MG, Uy is ordered via the
ordering <g. Note that ®(1y) = 0 and hence Uy, = (0 | 0) = {1}.
Let Dyn(W,S) be a crystallographic Dynkin diagram. A commutator blueprint of type
Dyn(W, S) is a family M = (MG )(G ser of subsets Mfﬁ C (a, B) ordered via <¢ satis-
a, ’
fying the following axioms:
(CB1) Let G = (co,...,cx) € Min and let H = (co,...,cn) for some 1 < m < k. Then we
have Mfﬂ = Mocjﬁ for all o, 8 € ®(H) with a <pg .
(CB2) Let s # t € S be with m := mg < oo and assume that (s,t) € E(Dyn(W,S)).
Let G € Ming(r¢4), let (a1, ..., ) be the sequence of roots crossed by G and let
1 <i<j<m. Then Mg;;ai = Mg, ;1 as sets, where Mg, 5.1 is given in Example

()]

17



2. Commutator blueprints

(CB3) For each w € W we have |Uy| = 2/"), where U, is defined as above.

(2.1.2) Remark. (a) In (CB1) we have ®(H) C ®(G) and the order <¢ restricted to el-
ements in ®(H) is precisely the order <py. Thus the expression MOC;:ﬁ is defined. In
(CB2) we have ®(G) = [as, o] and we only require that Mgﬁ = M, gy as sets. Note
that M g 5 Is an ordered set and the axiom only makes a statement about the under-
lying set. We also remark that it is a direct consequence of (CB3), that for all G =
(co,...,cx) € Min(w) and Zg = U,, = (uq,) < Uy, the product map Uy, X -+ X Uy, —
Uw, (U1, ... ,up) — uq -+ - ug is a bijection.

(b) Suppose mg # 6 for all s,t € S. As (W,S) is crystallographic, we have mg €
{2,3,4,00}. In this case (CR2) reduced to the following:

(CR2) Let s # t € S be with mg < oo, let G € Min(ry, ;) and let a # 8 € ®(G) =
[as, o] be such that o <g . Then

MaG:B _ {(aaﬁ) lf {aw@} = {Qsaat}
0 if 0.8} £ {omor)

Note that all the information needed from Dyn(W,S) are already contained in the
Coxeter system. Thus, if mg # 6 for all s,t € S, we will say for short commutator
blueprint of type (W, S).

(2.1.3) Convention. For the rest of Chapter 2| we let Dyn(W,S) be a crystallographic

Dynkin diagram and M = (MSB) be a commutator blueprint of type Dyn(W,.5).
7/ (G aB)eT

(2.1.4) Lemma. Let w € W,G = (co,...,ck) € Min(w) and let (aq,...,ox) be the se-

quence of roots crossed by G. Then ®(w) = {au,...,ar} and the group U, has the following

presentation:

Vi<i<k:u} =1,
UG = Uayqyee oy Uay, | V1 §i<j§k32 [ua“u%} :HWGMG Usy
Yj

[eF e

Proof. Clearly, we have an epimorphism Ug — U,,. Since each element in Ug is of the form
Hle ugi, where g; € {0,1}, Ug has cardinality at most 2k As U, has cardinality 2*, the
claim follows. O

Using the previous lemma, the axioms (CB1) and (CB3) imply that the canonical mapping
Uq — Uq induces a monomorphism from Uy, to Uy, for allw € W, s € S with ¢(ws) = £(w)+1.
We let Uy be the direct limit of the groups U,, with natural inclusions U, — Uy, if £(ws) =
l(w) 4+ 1. Then M is called faithful, if the canonical homomorphisms U,, — U, are injective.

We call the commutator blueprint M (locally) Weyl-invariant if for every 1 2w € W,s € S
and G = (co, . ..,cr) € Min(w) the following hold:

o If /(sw) = ¢(w) + 1, then sG := (1w, sco = s, sc1, ..., S¢) is a minimal gallery and we
have M3¢ , = stﬁ ={sy|v€ Mfﬂ} for all o« <g B € ®(G) (with o(rqrg) < 00).

sa,s8
e If {(sw) =f(w) —1 and G € Ming(w), then sG := (sc; = 1y, sca, ..., scx) is a minimal
gallery and we have M*¢ 5= sMsﬁ for all as # a <g B € ®(G) (with o(rarg) < 00).

sa,s

(2.1.5) Remark. Let M be Weyl-invariant and let 1 #w € W,s € S.

18



2.1. Definition

(a) Suppose {(sw) = l(w) +1,G € Min(w) and « # € ®(G). Then a < ( if and only if
sa <gq sB. Moreover, we have the following relation in Ug,,:

[tsar, tsp] = H Uy = H Uy = H Usy

VEMSSgsﬁ WGSMC‘EB 'yEMg

(b) Suppose {(sw) = (w) — 1,G € Ming(w) and « # € ®(G)\{as}. Then again a <¢g
if and only if sa <z sf and we have the following relation in Ug,,:

[Usas usg] = H Uy = H Uy = Usy

’YGM;?gs;a 'yEsMgﬂ 'YeMaG,/s
(2.1.6) Lemma. For w € W,s € S with {(sw) = {(w) — 1 we define the group Vi, s as the
subgroup of Uy, generated by {u, | @ € ®(w)\{as}t}. Then Vi s is a normal subgroup of U,
and a presentation of Vi, s is given by the presentation of U, by deleting the generator uq,
and all relations in which u,, appears.

Uarg

Proof. Using the commutator relations and the fact that [uq,, uq] = ua"* Uq, the subgroup V,,
is a normal subgroup of U,,. Let f/w7 s be the group given by the presentation in the statement.
Then we have a canonical homomorphism Vi, s — Uy,. Let G = (co, ..., cx) € Ming(w). Then
a1 = ag and each element of f/w,s can be written in the form Hf:z ugl., where ¢; € {0,1}.
Thus Vw,s is a group of cardinality at most 2k=1 " Since the image of \N/wys in Uy is V4 s and
this group has cardinality 2¥~!, the homomorphism is an isomorphism and we are done. [

(2.1.7) Lemma. Suppose w € W, s € S with {(sw) = l(w)—1, let G = (co, ..., cr) € Ming(w)

and let (a1 = ag, ..., ) be the sequence of roots crossed by G. Then we define the group
V2<i<k:u} =1,
VG = Uagy - ey Uay, | V2 < <j <k: {ua“uaj] = HWGM%’% Uy

and the canonical mapping uq,; — U, extends to an isomorphism from Vg to V,, s. Moreover,
if M is Weyl-invariant, the mapping uq — usq extends to an isomorphism from Vi, s to Ugy.

Proof. The first part follows similar as in Lemma For the second part we note that
sG € Min(sw). Using Lemma |(2.1.4)| and Remark |(2.1.5), we obtain that the mapping

U — Usq extends to an isomorphism. O

(2.1.8) Example. Let D = (G, (Uy)aca) be an RGD-system of type (W, S) over Fa, let H =
(coy...,ck) € Min and let (o, ..., ax) be the sequence of roots crossed by H. Then we have
O(H) ={a1 <pg -+ <g ai}. By [2, Corollary 8.34(1)| there exists for each 1 <m <i<n <

k a unique g; € {0,1} such that [ug,,, Ua,] = H?:_;LH ug’, and g; = 1 implies o; € (am, an)-
We define M(D)Y | = {o; € ®(H) | [ua,,,va,] = [[\ g uSi,ei = 1} C (m, ) and

. H
Mp = (M(D)aﬂ)(maﬁ)ez.

For s,t € S with mg = 6 we get a canonical direction of the edge {s,t} via the commu-
tator relations. For s,t € S with mg € {3,4,00} we choose any direction. This gives us a
crystallographic Dynkin diagram Dyn(W,.S). Clearly, (CB1) is satisfied. By Example [(1.7.1)
(CB2) holds and (CB3) is satisfies by [2 Corollary 8.34(1)]. Thus Mp is a commutator
blueprint of type Dyn(W,.S), which is faithful (cf. |2, Theorem 8.85|) and Weyl-invariant.

The commutator blueprint M is called integrable if there exists an RGD-gystem D of type
(W, S) over Fg such that Mgﬁ = M(D)gﬁ holds for every (G, «, 3) € .
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2. Commutator blueprints

2.2. Integrability of certain commutator blueprints

(2.2.1) Convention. For the rest of Chapter [2| we assume that the commutator blueprint
M is faithful and Weyl-invariant. Moreover, we fix s € S in this section, unless it is stated.

As we have seen in the previous example, an integrable commutator blueprint is necessarily
faithful and Weyl-invariant. We will work out sufficient conditions in order to show that M

is integrable. We will see (cf. Definition |(2.2.12)| and Theorem [(2.2.14)) that under some

conditions, there exists an RGD-system containing U, . As a first step we construct the group
Ps (mentioned in Theorem , which contains Uy as a subgroup.

Since M is faithful, we can identify U, with its image in U;. In particular, we have
uq € Uy for all o € &. We will write for short us 1= uq,.

We define the subgroup Ny := (z tuax | @ € &1 \{as},z € Us) < Uy (the idea of the
definition of N is obtained from [29, 6.2.1]). Next, we will construct two automorphisms of
N;. Clearly, Uy is generated by Us and Ng, and Ny is a normal subgroup of U,..

(2.2.2) Lemma. We have Uy = Ug X N;.

Proof. Tt suffices to show that Us N Ng = 1. At first we will show that the assignment u,, — 1
for ay # a € & and us — us will extend to a homomorphism U, — U,. In view of
the definition of U, it suffices to consider the relations u? = 1 and [ua, ug] = Uy, * - Usy,.
Since ag ¢ («, ) for every {a,8} € P, these relations are mapped to 1 and we obtain
homomorphisms U,, — U for every w € W. Since these homomorphisms respect the natural
inclusions Uy, — Uy, the universal property of direct limits yields a homomorphism ¢ : Uy —
Us with p(uq) = 1 for as # a € &4 and p(us) = us. Since Ny < ker ¢ and Us Nkerp = 1,
the claim follows. O

(2.2.3) Remark. The next step is to construct an automorphism 75 on Ns which maps u, to
Usq- The rough idea is that Ps should look like (ug, 75) X Nj.

In the next lemma we will show that N, has a suitable presentation. The elements v, will
play the role of the elements usuq,us for all as # o € P

(2.2.4) Lemma. We define the group My via the following presentation:

Vas#a € @y :u? =1=102

Vw € W, l(sw) = (w) + 1, g € Min(w),a <g g € ®(G) :
[Ua, ug] = H’yeMOCiﬁ Uy, [Va,v8] = Hyerﬁ Uy
<{Ua,va las £ a ey} Vw € W, l(sw) = b(w) — 1,G € Ming(w),as # a <g B € ®(G) :>
[Ua, Uﬁ] = H'yEMS,ﬁ Urys [Ua’vﬁ} = Hyer’[3 Vrys
Vw € W, l(sw) = f(w) — 1,G € Ming(w), as # a € ®(G) :

Vo = <Hry€]%§s N “v) Ua
Then we have ug € Aut(Ms) such that us(ug) = vo and us(vy) = ug. In particular, Mg —

Ug F Uy . . .
Ng, 1S an isomorphism.
Vg > Uslhg s

Proof. We show that the assignments uy — v,y and v, — U, extend to an endomorphism
of M. Therefore we have to show that every relation is mapped to a relation. For that it

suffices to consider the relations of the form v, = (HyeMG uAY) Ug. Suppose w € W with
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2.2. Integrability of certain commutator blueprints

that {(sw) = ¢(w) — 1 and let G € Ming(w). Let Vs be the normal subgroup of U, as
in Lemma [(2.1.6)] Using Lemma we deduce that the canonical assignment g — Uq
extends to a homomorphism from V,, = Vg to M. Moreover, for o # o € ®(G) we have
the following relation in U,, and, since both sides of the equation are contained in V,, s, this
yields also a relation in M; (note that a € ®(G) implies v € ®(G) for all vy € (as, a)):

H H ug | uy H Uy | Uq = H [ty Uny Uy | [, Ua)Ua

~yeME seMS, ., ~yeME yeME

g, g, g,

= Ug H Uy | UaUs

~eEME

ag,a
= Us [u87 ua]uaus

:Ua

Note that by definition we also have the relation vy = (ngMc 5 u€> ug for every ag # 6§ €

®(G). Now we consider the discussed relation:

H Uy | Vo = H H ug | u, H Uy | Ua = Uq

~yeME ~yeME BeEMS ~veME

Qag,x Qg,0 s, g,

Thus every relation is mapped to a relation and we have an endomorphism wus of My inter-
changing u, and v,. Since uz = id, it is an automorphism of M. Consider U := Zy X Mj,
where Zo acts on M, via us. Moreover, we denote the generator of Zs by us. Then the
assignment

Ug F> Usg
Ug M Ug

Va F> UsUqUs

extends to a homomorphism U — U,, since all relations in U do also hold in Uy. Now we
will show that there does also exist a homomorphism U, — U mapping us onto us and u,
onto u,. For this we consider w € W. If {(sw) = ¢(w) + 1, then every relation in U, is
also a relation in My and hence in U. Thus we obtain a homomorphism U,, — U mapping
Uq 0nto Uq. Assume that ((sw) = f(w) — 1 and let G € Min,(w). By Lemma [(2.1.4)| U,, is
isomorphic to Ug and we have to show that [us, us] = HWGM@GS _uy is a relation in U. Note

that this is a relation if and only if ususus = (HWEMQGS . u7> Uy 18 a relation in U. But in
U we have usuqus = v, and hence it is a relation by definition. In particular, the mappings
Uy, — U preserve the inclusion mappings U,, — Uy and by the universal property of direct
limits there exists a homomorphism U, — U. Since both concatenations are the identity on
the generating sets, both homomorphisms are isomorphisms. In particular, M; is isomorphic
to Ng. O

(2.2.5) Lemma. Let w,w’ € W be such that {(sw) = {(w) — 1 and {(sw’) = L(w') — 1. Let
G € Ming(w), H € Ming(w') and let as # o € ®(G) N ®(H). Then the following hold in Ms:

(@) (Teng,, usn) wse = (Tenrs, sy tsas
(o) (I,earg

as,o

Usv) Vsa = (HVEM&ZIS,Q ’US'y) Vsa -
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Proof. Assertion (b) is a direct consequence of Assertion (a) and the fact that us is an auto-
morphism of M, interchanging u, and v,. Thus it suffices to show Assertion (a).
By definition we have the following two equations in Mj:

H Uy | Ua = Vo = H Uy | Ua

~yeEME ~yeMH

Qg, g,

Using Lemma |(2.2.4)| we infer that (H%Mc “v) Uy = (H’yEMH u7> Uq 18 a relation in
N < Uy. We remark that [as,a] € ®(G) N ®(H). Using the fact that U, — UL is injective
and both sides of the relation are contained in U,,, we deduce that it is also a relation in U,,,.

Moreover, both sides are contained in the subgroup V,, s < U,,. Now we can apply Lemma
(2.1.7)| and the fact that U, — M is a homomorphism to show that

H Usy | Usa = H Usy | Usa

yeEME, ., yeMA
is a relation in M. This finishes the claim. O

(2.2.6) Remark. Let R € 0%as and let ®(R) = {a € @, | R € 8?°a}. Then [a, 3] C ®(R) for
all o, 3 € B(R).

(2.2.7) Lemma. Let R € 0% and let ®(R) = {a € . | R € 9%a}. We define the group
Upg via the following presentation

Va € ®(R) :u2 =1,

Yw € W l(sw) = 4(w) + 1,G € Min(w),«, 8 € (G) NP(R),a <g [ :

Ugr:= <{ua |ae ®(R)} | [ty ug] = nyEMﬁB Uy, >
Yw € W, l(sw) = l(w) — 1,G € Ming(w), e, 8 € ®(G) N P(R), v < B :

| [weusl =1lewms,

For N := (uq | as # a € ®(R)) < Ur we have Ur = Us X Ng and a presentation of Nr
s given by the presentation of Ur by deleting the generator uqa, and all relations in which

Uq, appears. Furthermore, there exists 75 € Aut(NRg) such that T4(u) = usq holds for all
as # a € ®(R), and we have 72 = 1 = (us7s)> in Aut(Ng).

Proof. Similarly as in Lemma we deduce Urp =2 Ug X Ni. Suppose w € W with
l(sw) = l(w) — 1 and let G € Ming(w) be such that ®(R) C ®(G). Then each element of
Ur can be written in the form J[72, UZJJ, where €; € {0,1} and {1 = as <¢ -+ <¢ Bm} =
®(R) C ®(G). Since we have a homomorphism Ur — U, and the image of Ug is contained
in Uy, (CB3) implies that Ur — U is a monomorphism. Let N be the group given by the
presentation in the statement. Then again each element in Np can be written in the form
H;”ZQ uZJ] . Since we have a homomorphism Np — Ug with image Npg, the cardinality of N
implies that this homomorphism must be an isomorphism.

Now we will see that the assignment u,, +— usq extends to an endomorphism of Ng. First
of all we note that for as; # o € ®(R) we have a; # sa € ®(R). We consider all three
types of relations, where u2 = 1 is obvious. Suppose w € W with ¢(sw) = £(w) + 1 and let
G € Min(w), o, f € ®(G) N ®(R) with a < 5. Using the Weyl-invariance and the fact that

[Usas usg] = [ enrse 5 U is a relation, we deduce similar as in Remark [(2.1.5)| that

{usaa usﬁ] = H Uy = H Uy = H Usy

veM:S g vesM§ 5 veMg ,

Ury
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2.2. Integrability of certain commutator blueprints

is a relation in Np. Vice versa, we assume £(sw) = ¢(w) — 1 and we let G € Ming(w), a #
as # B € (G)NP(R) with a <g B. Using the Weyl-invariance and the fact that [usa, usg] =
[T enrse s U is a relation, we deduce similar as in Remark [(2.1.5)| that

[usouusﬁ]: H Uy = H Uy = H Usgy

sG G G
yeEM? ’7€SMQ7B 'VGMa,B

sa,sB

is a relation in Ng. Thus 75 : Ng — Npg, uq — Use is an endomorphism. Since 7'32 =1, we
infer 75 € Aut(Ng).

To show the claim it suffices to show that (usrs)?’ = 1. We do a case by case distinction
on the type of the residue R (we will write for short f.ug := f(ug)):

o A x Ay: Let ®(R) = {c,8}. Then sf = . Since ug, ug commute by (CB2), Example
and the Weyl-invariance, we obtain

(uSTS)S.u5 = (uSTS)Q.[’LLS,Ug]U5 = (uSTS)Q.ug = ug

e As: Let ®(R) = {as,d,e}. Then se = ¢ and we assume that {as,e} is a set of simple
roots of R. Using (CB2), Example and the Weyl-invariance, we obtain the
following:

(USTS)S.UE = (USTS)Q.Ug = (UsTs) Usle = Ue

(uSTS)?’.u(; = UeTs.Us = Ug

e By = (Cy: Let ®(R) = {as,0,7,e} and assume that {ag, e} is a set of simple roots of R.
Furthermore, we assume that sy = v and se = §. Using (CB2), Example [(1.7.1) and
the Weyl-invariance, we obtain that only us and u. do not commute. We compute the
following:

(USTS)B.U'Y = (usTs)Q.ufy = Uy
(usTS)S

(uSTS)S.m = UgTs.Us = Ug

2
Ue = (UsTs)“ Us = UsTs UsUAUs = Usg

e Go: Let ®(R) = {f1,...,06} and we assume that {31, s} is a set of simple roots of
R and that the roots are ordered via their indices. Assume first that o = 1. Then
sP2 = P, B3 = PBs and sBs = Pa. Let u; := up, € Uj.. Using (CB2), Example [(1.7.1)
and the Weyl-invariance, we obtain

Uy = (u875)2.U4 = Uy
(usTs)” ug = (uSTS)Q.uQ = UgTs.[UT, Ug|UG = UsTs U2U3ULUS UG
= [u1, ug)ue[u1, us|usur, usug[ug, uslusur, ugjus

= U2U3U4AU5UUUAUFU4LU2UZU2 — U2U3U4LUEUIU2 — Ug

(usTs)3 ug = usTs.ug = Uy
(usTs)3 us = (usTs)? [ur, uglus = (usTs)* ugus
= UsTs.[Uu1, ugluglul, us|us
= UsTs UUIUAUFUGULUAUS = UgT5. UUAUG

= [ul,u5]U5[u1,U4]U4[u1, u2]u2 = U2U4AUSU4LU2 = US
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2. Commutator blueprints

(USTS)3.U3 = (u575)2.[u1, us|us = (USTS)Q.UQ’LL4U5 = UgUAUIULUG = U3

It is also possible that as = Bg. In this case sf1 = [5, 5082 = B4 and sf83 = B3 and we
compute the following:
(usTs)>us = (ugts)?uz = us
(usTs)Pur = (usTs)?us = ugTs.u1[U, Ug) = UsTs U U U3U4Us
= us[us, uglualus, ugluslus, ueluz[uz, uglu[u, ug)
= UpUAU3UUAU UDUZUAUS = UsULUIUU5 = UgU1 [U1, Us|Uug = U1
(usTs)® us = usTs.uy = us
(USTS)S.UQ = (uSTS)2.U4[U4,u6] = (usTS)Q.U4
= UgTs Uz U2, U] = UsTs Uy
= uglug, usluzlug, ug] = uquguy = ug

(usrs)?’.w; = UgTs.Ug = UglUyg, U] = Uy

e I5(8): This type does not occur since (W, S) is crystallographic.

e [5(00): Since R is a spherical rank 2 residue, R cannot be of type Iz(c0). O

(2.2.8) Remark. Let —as C § € &, let w,w’ € W such that {(sw) = ¢(w) — 1 and {(sw’) =
l(w') — 1, let G € Ming(w), H € Ming(w’) such that s8 € ®(G) N ®(H). Note that oy €
®(G)N®(H) as well. Then we have

H Usy | Ug = H Usy | UB

~eEME ~eMH

as,sB as,sf

in M by Lemma [(2.2.5)l Using the isomorphism My — N; from Lemma |(2.2.4)] this is also

a relation in V.

(2.2.9) Proposition. There exists an endomorphism 75 : Ng — Ny such that 75(uq) = Usa
for each as # o € ©p and Ts(usugus) = us (HWEMSS,SB uw) ugus for each —ay, C B € O,
where w € W is such that {(sw) = l(w) — 1 and G € Ming(w) with sf € ®(G).

Proof. We will construct an endomorphism 7, : My — M, and show that the induced endo-
morphism on Ny is as required. At first we will show that the following assignments (call it
7s) extend to an endomorphism of M, where in the second case G € Ming(w) is such that
{as,a} € ®(G) for some w € W with ¢(sw) = ¢(w) — 1, and in the third case G € Ming(w)
is such that {as, sa} C ®(G) for some w € W with ¢(sw) = ¢(w) — 1 (note that by Lemma
[(2.2.5)] the assignments do neither depend on w € W with £(sw) = £(w) — 1 nor on the gallery
G € Ming(w)):

Vas # a € Py Uy — Usq

V{as,a} € P: vy — H Usy | Usa

—0s C vy H Vsy | Va
yeME

ag,sa

We distinguish all relations:
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2.2. Integrability of certain commutator blueprints

(i) w
(i) vg
(a) {as,a} € P: Suppose w € W with ¢(sw) = f(w) — 1 and G € Ming(w) with

2
as,a € ®(G). Then we have ((H%Mc u,y> ua) = ([us, a]ua)® = 1 in U, and

Qg,Q

2 = 1: There is nothing to show.
2

= 1: We distinguish the following cases:

hence in V,, ;. This implies that

2

H Usy | Usa

yeME

is a relation in Uy, by Lemma and, using the homomorphism Uy, — Mj,
hence also in M. But this is exactly the image of v, under the assignment 7.

(b) —as C a: Suppose w € W with {(sw) = f(w) — 1 and G € Ming(w) with ag, sa €
®(G). We have to show that

2

[ o]

~yeEME

ag,sa

is a relation. Clearly, as # sa € @, and v2, is a relation by definition. Using Case
(a), we already know that
2

[ e |ua

vyeME

ag,sa

is a relation in M. Since ug is an automorphism of M, interchanging u, and v,
by Lemma |(2.2.4)] we obtain the relation

2 2

T e )u] | = TI o]

YEME, oo YEME, o0

—_
I
IS
»

(iii) [wa,ug] = H"/EMGB uy: Suppose w € W,G € Min(w) and o <g f € ®(G)\{as}. If
l(sw) = l(w) + 1 (resp. l(sw) = l(w) — 1 and if G € Ming(w)), the Weyl-invariance

yields that
[Usas usg] = H Uy = H Uy = H Usy

G G G
yeEM? 'yEstB ’yeMa’ﬁ

sa,spB

is a relation (cf. Remark [(2.1.5)]).
(iv) [va,v8] = H'yEMGﬁ vy Suppose w € W,G € Min(w) and o <g 8 € ®(G)\{as}. We
distinguish the following cases:

(aa) L(sw) = £(w) — 1: Suppose G € Mins(w) and note that {as,d} € P for each
as # 0 € ®(G). We have to show that

H Usy | Usa, H Ugy | Usp | = H H Uss | Usry

yeM$, ~eME yeMS , \6eM§

ag,f s s,y
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2. Commutator blueprints

is a relation in M. Note that [ua,ug] = H"/EMGB u, is a relation in U, and V,, s

and hence also the ug-conjugate, which is given by

H Uy | Uq, H Uy | ug| = [UstiaUs, Usupiy]
VEME, o yeEMS

as,B

= us[Uq, ugls

= Ug H Uy | Us

G
yEM

= 11 II w)w
'yEMfw,j seMg,
Using Lemma [(2.1.7)| and the homomorphism Us,, — M; the claim follows.

(bb) l(sw) = l(w) + 1: Then as ¢ ®(G). Let § € ®(G). Then either —ay C § or
0(ra,rs) < oo. At first we observe the following: Suppose o(rq,7s5) < o0, let
R € 9?a,n 0% and let H € Min,(sw) be such that ®(R) C ®(H). Then a, <y 3
for each a; # B € ®(H). Using Lemma [(2.2.7)] we deduce the following relation in
Ng:

H Usry Ugy — TsUg.U§
H
’YeMasﬁ

= UsTsUsTs.-U§

= Usg. H Ugy | Us

H
’yeMas,sts
(o) T
H H H
’yeMas,sé WEMQSvS’Y weMas,é

Since we have a canonical homomorphism Nr — My, this is also a relation in M.
In particular, we have the following relation in M (using Lemma ((2.2.5)| (b) and

the fact that v, = (HwGMH uw> u, for both p € {s7v,0}):
Qs,p

oo o= | T [ T ) o) | TT e )w
H H H H
’YeMas,é ’YEMas,sé we]\/[aSvS’Y we]\/fas,é
= II va]os
H
'YeMozs,sé
= H Usy | Vs
G
’YEMZS,SE
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2.2. Integrability of certain commutator blueprints

This shows that vs is mapped onto (H,YGMSG S vsv) vs for each § € ®(G). In

particular, this assignment does not depend on o(r,,7s) for § € ®(G). We have to
verify that

[T o )oe| T v fos|= T0 [ TT vl

YEMES sa veMC 4 veMS 5 \OEMSS

is a relation in M,. For that we observe the following:

® [Usa,Vsg] = HVeMﬁfsﬁ vy is a relation in M.

. [(nyeMgg{w usv) Uers (HyeM;g{Sﬁ “w) Uﬁ} = HWGMSG (HéeMggW “85) Usy 18

sa,sf
a relation in My by (aa).

e Since ug is an automorphism of M, we deduce that the following is also a
relation in Mj:

[[ vofeaf II wefos)= 11 | 11 vs)vs

VEMES sa VEMES i VEMLS 5 \SEMET
. . . . SG _ G . . .
e Since M is Weyl-invariant, we have M7 5 = sM ;. Using substitution, we

deduce that

[T o )ow| T0 v o|= T0 (T vl

VEMES oo veMSC 4 veMS ; \9eMS .,

is also a relation in M.
(V) vq = (H%MG u7> tq: This holds by definition.

This shows the existence of the endomorphism 75 : Mg — M. Using the isomorphism

—1
¢ : My — N from Lemma |(2.2.4), we obtain an endomorphism 75 : Ny — N via N 2
M, 3 M, 5 N, Moreover, this endomorphism is as required. O

(2.2.10) Corollary. We have 72 =1 = (us7s)3. In particular, 75 € Aut(N;).

Proof. For short we will not specify a gallery G. If Mfs o appears, we will implicitly assume
that G € Ming(w) for some w € W with £(sw) = ¢(w) — 1 such that a € ®(G).
By the previous proposition we have 75(uq) = usq for each ay # o € ¢4 and 75(usugus) =

Ug (H%MG ; usw) ugus for each —as C € ®,. Using this we establish the claim. At first

we will show 72 = 1. Therefore, let as # o € ®,. Then oy # sa € ®, and we have
rf(ua) = T5(Usq) = Uy. Now let —ag C € &,. Note that for v € Mo(i 55 We have —ags C s7.

This implies

Tg(usuﬁus) =Ts (us H usfy U5us)

G
WEMQSM
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2. Commutator blueprints

= H To(Ustigyus) | 7s(usugus)
G
’YEMas,SB
= H Us H Uss | UsyUs Ug H Usy | ugUs
G G G
VEMas,s/B deME, 'YEMQS,S,@'
T R T i g P
VEMZ, 5 \IEME, , VEMT, o5

Note that we have the following relation in U,, and hence in V}, q:

H H Us | Uy H Uy = H [ts, uyJuy | [us, usp]

yeM§& seMg, yeM& veM&

5,808 ag,sf as,sf
= Us [Us> usﬁ]us [USa usﬂ]

= (usﬂususg)Q =1

Using Lemma [(2.1.7)| the following is a relation in Us,, and hence in Nj:

H H Ugs | Usr H Usy | =1

veMS, 5 \SEME, veMS, 5

This shows Tf(usu5us) = usugus and hence 732 = 1. In particular, 7, is an automorphism.
To show that (us7s)® = 1, we distinguish the following cases. Let as # « € ® . Assume that
0(re,7a) < 0o and let R € 0%asNd%a. Note that we have a homomorphism Np — M, — Nj.

Lemma yields

WG P U 0 (0 G I § e

VEMG ’yEM(%;,Oé ’Y/GMCE:S,SW ’Ye]\/[g%sa

ag,sq

and hence (us7s)?(Ua) = tq. Thus we assume as C a. Then we have the following:

=

(usTs)3(ua) = (usTs)2(Ususaus)

= (usTs us) Us H Usy | Usals
yeMS

g,

= (usTs ) H Usy | Usa

yeEMS,
= Ug H Uy | Uq
’yEMOCjSaO‘
:Ua

28



2.2. Integrability of certain commutator blueprints

Now we assume —as C «. Using the previous case, we deduce the following:

(U’STS)?’(USUOCUS) = (USTS)(usa) = us(ua) = UgUUs

(usTs)S(ua) = (usTs)z([u&usa]usa) = (usTs)_l([usausa]usa) = Uq O

(1 2)— u

(2 3) =
epimorphism. Thus we define the group Ps := Sym(3) x, Ny. For short we will denote
the elements in Sym(3) by their images in Aut(Ng). Note that 73ns7s = 75(ns) € Ng. In
particular, we have TsuqTs = Usq for each ay # a € 4. Note that Uy = (us) X Ny < Ps.

(2.2.12) Definition. We let G be the direct limit of the groups Ui, (Ps)scs, ((7s))ses, W
with canonical inclusions Uy — Py, (1) < Py, (75) < W, 75 — s.

(2.2.11) Definition. Note that ¢ : Sym(3) — (us,7s) < Aut(Ng), is an

(2.2.13) Lemma. Let s1,...,5p,t1,...,tm,S,t € S be such that sy ---spas = t1-- - tpmay.

7] T
Then Un~™ = Uy ', where 7; = 75, and T]{ =Ty

Proof. The claim follows if Uy """V = U,,. Suppose fi,...,fx € S with £(f1--- fx) =k
and f1- - fx =tm---t151--Sp. Then fr--- f1 = s, ---s1t1 - t,, and since every relation in
W is a relation in G, we obtain

Tfk...»rfl :Tsn...Tsthl...Tt

m

Now let ¢ = max{1,...,k | Ir € S: fi-- fras = a,}. For g :== f1--- fr, we have gas = oy
and hence g~! € as. This implies ¢(gs) = £((gs)™1) = £(sg™!) > £(g~') = £(g). This implies

fr # s and hence fras, € ®,. Thus the roots as, fras, ..., fi- - fras = «, are all positive
T, Tf,

roots and we obtain U, /i = Uf,...fpas = Uq, in G. If © = 1 we are done. Otherwise we

repeat the argument with g := fy--- fi_1. After finitely many steps we are done. O

(2.2.14) Theorem. Assume that Py — G is injective for every s € S. Then M is integrable.

Proof. Let a € ® be a root. Then there exist w € W and s € S with a = wa,. Let
51,...,8, € S be such that w = s1---s; and let 7; := 7,,. Then we define

R
Uy i= Ul

In view of the previous lemma, the group U, is well-defined. We will show that D =
(G, (Uy)aca) is an RGD-system of type (W, S).

(RGDO) The mappings Ps — G are injective and hence the groups U, are non-trivial.

(RGD1) Let {«,8} € ® be a prenilpotent pair. Then there exists w € W such that
{wa,wp} € P. By definition of the root groups and the commutator blueprint
we deduce (1, is a product of suitable )

[Ua, Ul = [Uwas Uup]™ < (Uy | 7 € (wer,wB))™
= <Uw*1v | v € (wa, wp))
= (Uy |7 € (0, 0))

(RGD2) For s € S we have (us7s)® = 1 and hence 75 = 74(us7s)® = u_susu_g by Corollary
Let o € ® be a root. Then there exist w € W,t € S such that a = way.
Let s1,...,s, € S besuch that w = s1--- s and let 7; := 75,. Then sav = s51--- s
and we deduce
UF = (U5 = U5 = U
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2. Commutator blueprints

(RGD3) Since P; — G is injective, we have 7, ¢ Uy. As UY* = Uy and (us7s) = 1, we infer
U—s = TsUsTs = UsTsUs ¢ Ul = Uy

(RGD4) Since G is generated by U, and s, it is generated by all root groups.

Note that Myp is a commutator blueprint of type Dyn(W, S). By definition we have Mocfﬁ =
M(D)S’B for each (G, «, 8) € Z. We deduce that M is integrable. O

(2.2.15) Corollary. Assume that mg = oo for all s #t € S. Then every Weyl-invariant
commutator blueprint is integrable.

Proof. Let M be a commutator blueprint which is Weyl-invariant. Since mg = oo for all
s #t € S we deduce that (W, S) is a tree and hence the canonical homomorphisms U,, — Uy
are injective (cf. [32, Ch. 4.4]). In particular, M is faithful. Since G is (isomorphic to) the
direct limit of the groups U; and (Ps)seg, i.e. the free amalgamated product of the (Ps)secs
along the common subgroup Uy, the claim follows from the previous theorem. O

2.3. An action of the P,

In this section we will show that the groups Ps act faithfully on a chamber system C over S for
every s € S. Moreover, we will give sufficient conditions in order to show that W = (75 | s € S)
acts on C. In particular, the action of the groups P extend to an action of G on C. This
will imply that the mappings Ps — G are injective. The sufficient conditions are rather mild
and only depend on the commutator blueprint.

We start by defining the chamber system C over S. We let Uy, := {1} < U,. The set of
chambers is given by C := {gU,, | g € Uy, w € W}, and s-adjacency is defined as follows:

gUw ~s WUy & w' € {w,ws} and g7 h € Uy U Uy

Then C = (C,(~s)ses) is a chamber system over S. The idea of considering this chamber
system is not new (cf. [2, Section 8.7]). Before we define an action of Ps on the chamber
system C we note that every element of Uy can be written uniquely as nu with n € Ng
and u € Us by Lemma |(2.2.2)l Thus it suffices to define the action on cosets nul,, with
n € Ng,u € Us and w € W. To show that our assignment will actually be an action we need
the following auxiliary result.

(2.3.1) Lemma. For n € Ny the following hold:
(a) If n € Uy, then n™ € Ng N Usy;
(b) If b(sw) = L(w) + 1 and n*s € Uy, then n™"s € NgNU,.

Proof. Let w € W and G = (co,...,cx) € Min(w) and let (ai,...,ax) be the sequence
of roots crossed by G. Since n € U,, there exists u; € U,, such that n = wuy---ug. If
l(sw) = L(w) + 1, then u]* € Usa; < Ugyp and hence n™ € Uy,. Thus we assume that
{(sw) = ¢(w) — 1. Using Lemma we can assume G € Ming(w) and hence ay = as.
Since U,, < N; for each 2 < i < k, we have u; = n(ug---uy)~' € NyNUs = {1}. Thus
n’ € Usy, and Assertion (a) follows. Now we assume that ¢(sw) = £(w)+1 and that n*s € U,,.
Note that n"s € Ns. Then (a) provides n"s™ € Ny N Usy,. Since {(ssw) = f(w) = {(sw) — 1,
we have ug € Uy, and hence n%s7s%s € Ny N Us,. Using Corollary and Assertion (a)
we obtain n7s%s = nUsTsUsTs ¢ N, N U,,. O
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2.3. An action of the P

(2.3.2) Remark. Let (G5 | Rs) be a presentation of N,. Then a presentation of Py is given by
(ug, s, Gs | U2, 72, (usTs)3, Rs, usnus = n', 7snts = n™ for every n € Gy).

(2.3.3) Proposition. For s € S the group Ps acts on C as follows:

gnuly, geUs
gnulUy := { n"Us, g=1sLl(sw)=0w)—1o0oru=1
nusUy g =Ts, l(sw) = L(w) + 1,u = us

Moreover, this action is faithful.

Proof. For g € Uy U {7} we let ¢4 :C = C,nuly — g.nul,.

The mapping ¢, is well-defined: We note that us.nulU, = usnul, = n“susul,. At first
we will show that the assignment is well-defined. Since the assignment of U, is via left
multiplication, it suffices to consider the assignment of 75. Let w € W and n,n’ € Ns,u,u’ €
U, such that nulU,, = n'v'U,. Then v *n~tn/v’ € U,.

(Case I) £(sw) = £(w) — 1: Then us € U, and hence n~'n’ € U,. Using Lemma [(2.3.1)[a), we
obtain (n~1n’)™ € Ug,. This implies 75.nuly, = n"Ug, = (0/)*Ugy = 75.0'u'U,.

(Case II) {(sw) = £(w) + 1: We distinguish the following three cases:

e uw=1=1: Then the claim follows as in Case L.

o {u,u'} = {1,us}: Assume u # 1 = «/. Then we have u~'n~!n’ € U,. Since
{(sw) = {(w) + 1, we have U, < N, and hence us = u~' € N,. This is a
contradiction. The case u = 1 # o/ is similar.

e u#1%#u": Then u=us; = and (n"1n')% € NyNU,. Using Lemma [(2.3.1)(),
we obtain (n~1n/)™% € N, N U, and hence 7s.nul, = n™uU, = (n')=usU, =
Te.n'u'Uy.

Thus ¢, is well-defined.

(g is bijective for every g € Uy U {75}: We will show that ¢ -1 0 9, =id. If g € Uy there is
nothing to show. Thus we consider g = 75. By construction and Corollary [(2.2.10)| we have
o7, © oy, = id and ¢, is bijective for every g € Uy U {7}

g € Aut(C): As ¢, is bijective, it suffices to show that ¢, preserves t-adjacency for each
t € S. Let n,n € Ng,u,v/ € Ug and w,w’ € W such that nulU, ~; n'v'U,. Then we
have w' € {w,wt} and u~'n"In'v/ € U, U Uy Since for g € Uy the bijection ¢, is left
multiplication by g, it preserves t-adjacency. Thus it suffices to consider ¢, .. We distinguish
the following cases:

(Case I) w = 1 = u: Then 74.nU, = n™Us, and 75.0'U,y = (n')*Ug,. Because of the t-
adjacency we have n~!n € U, U Uy and Lemma |(2.3.1)[(a) implies (n=1)™(n/)™ =

(n7In')™ € Ugypy U Uge. Since sw' € {sw, swt}, we deduce o, (nUy) ~t or, (0 Uy ).
(Case II) {(sw) = ¢(w) — 1 and ¢(sw’) = {(w’) — 1: Then nul,, = nU,, and n'v'U,s = n'U,, and
the claim follows from Case 1.

(Case III) 4(sw) = f(w) 4+ 1 and £(sw') = ¢(w') + 1: Recall that v’ € {w,wt}. Iif u=1=1u the
claim follows from Case L. If u = us = u/ we have (n='n/)% € U, UU, and 7s.nusU, =
N usUy, Ts. W usUpy = (0')usUyy. If £(swt) = £(wt) + 1, then we have (n=1n/)7s%s €

NsN (Uyp U Uyt) by Lemma|(2.3.1)(b) and we deduce o, (nulUy,) ~t or, (W'1u'Uyy). Thus
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2. Commutator blueprints

we assume {(swt) = £(wt) — 1. Then us € Uyy. Since (wt) — 1 = L(swt) > l(sw) — 1 =
{(w), we have {(wt) = £(w) + 1 and thus (n~tn’)% € Uy, U Uy = Uy This implies
n~in’ € Uy. By Lemma [(1.1.1)| we infer swt = w. Now Lemma [(2.3.1)(a) yields
(nIn)™ € NyNUgut = Ny N Uy < NsN Uy and, as ug € Uy, (n7In)% € Uy =
Uy U Uy In particular, o, (nuUy) ~¢ ©r,(W't/Uyy).

If u =1 4# « we have (n " )n'us; € Uy U Uy and 75.0U, = n™Ugy, Te.n'usUyy =
(n") s usUy. If £(swt) = £(wt) + 1, we would have Uy, Uyt < Ny and hence us € Nj.
Thus we have ¢(swt) = £(wt) — 1. Since £(sw’) = {(w')+1 and w’ € {w, wt}, we deduce
w=w'. As l(sw) = (w) + 1, we obtain £(wt) — 1 = ¢(swt) > l(sw) — 1 = (w). This
yields ¢(wt) = ¢(w) + 1 and hence swt = w as before. This implies w’ = w = swt €
{sw,swt} and U, < Uy Thus we obtain (n™1)n'us € Uy and hence (n=1)n' € Uy
Using Lemma [(2.3.1)(a) we obtain (n™'n')™ € Ugyt < Uy, (since £(swt) = £(sw) — 1).
This implies (n ™ 'n')us € Ugy = Uy UUsur and hence ¢, (nUy) ~¢ @r, (n'u'Uyy). The
case v # 1 = ' is similar.

(Case TV) Without loss of generality we assume £(sw) = {(w) — 1 and £(sw’) = £(w’) + 1. This
implies w # w’ and hence w’ = wt. Thus ¢(wt) = (') = L(sw') —1 < l(sw) = l(w) —1
and hence ¢(wt) = ¢(w) — 1. Since {(swt) = {(w), Lemma implies w = swt.
Now we have nulU,, = nU, and 75.nU, = n™Us,. If v = 1, the claim follows from
Case 1. Thus we assume v = ug. Then 75.n'usUy = (/)™ usUy. Since w' = wt =
sw € {sw, swt} it suffices to show that (n™1n')™us € Uy U Ugyy. As L(wt) = £(w) — 1,
we have Uy < Uy,. Because £(sw) = {(w) — 1 and n~'n'us € Uy U Uy = U, we have
us € U, and hence n~'n’ € U,,. Using Lemma (a) we deduce (n='n/)™ € Usy.
Since ((swt) = {(w) = £(sw) + 1, we obtain Us, < Ugye. This implies (n~1n')Tsu, €
Uswt € Usyy U Usyyr and we obtain @, (nUy) ~¢ @r, (n'u'Uyy).

The assignment g — ¢, for g € Uy U{7,} extends to a homomorphism Py — Aut(C): For this
we need to consider a presentation of Ps (cf. Remark and show that every relation of
P acts trivial on the chamber system C. Since the action of U < Ps is via left multiplication
it suffices to consider relations concerning 75. As we have already seen before, 72 acts trivial.
Let m,m’ € Ny be such that 7gm7s = 75(m) = (m/)~1. Then

TemTsm’ . nuly, = 7sm.(m'n)™ (1s.uUy) = (m(m'n)™) " ul, = m™m'nuly, = nul,

Thus it suffices to show that (us7s)? acts trivial on C. As (us7s)>.nul, = n(TS“S)S-(uSTS)3.uUw,
we can assume that n = 1, since (us7s)3 acts trivial on Ny by Corollary [(2.2.10)| If /(sw) =
l(w) — 1, then uU,, = Uy = usU,, and we obtain the following:

(us7s)> uUp = (usTs) 2 sUsy = UsTs.-Usry = usUp = Uy
Thus we can assume that ¢(sw) = ¢(w) + 1. We distinguish the cases v = 1 and u = us:
(us76)3. Uy = (u575) 2 Usy = usTs s Upy = Uy

(USTS)S.USUw = (usTs)z.Uw = UgTs.Ugyy = usUy

The homomorphism Py — Aut(C) is injective: We have to show that each 1 # g € P, induces
a non-trivial automorphism of the chamber system. We first consider 1 # g € Sym(3) =
{1, ug, usTs, UsTsUs, TsUs, Ts }. Then we have the following:

uS.Ulw = usUlw
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2.4. Braid relations act trivially on suitable subset

usTs. Uty = Us
UsTsUs. UsUtyy, = Us
Tsus'Ulw = U5U1W

7s.Ury, = Us

Thus each 1 # g € Sym(3) acts non-trivial. Now we consider the general case. Let 1 # g € Ps.
Then there exist z € Sym(3),n € N; such that g = zn. If z = 1, we have g.n"1Uy,, = Uy,, #
n~tU;, . Otherwise the let ¢ € C be as above such that z.c # c¢. Then g.n~!c # n~lc and
the claim follows. O

2.4. Braid relations act trivially on suitable subset

For J C S we define ®/ := {wa, | s € Jw € (J)} and &/ := &/ N ®, for ¢ € {+,-}.
Moreover, we define for all s # ¢t € S the subgroup Us; = (U, | a € @f’t}> and Ng; =

(7 W | 2 € Ust,a € <I>+\<I>f’t}>. It is not hard to see that Ny is a normal subgroup of
Uy and that N;; is stabilized by 7, and by 7.

(2.4.1) Lemma. Let s #t € S be with mg < 0o and let J := {s,t}. Then the sub-chamber
system Cj = (Cy, (~j)jes) with C; = {uUy | u € Usy,w € (J)} is a spherical building of rank
2.

Proof. Since M is faithful, the mapping U,., — U is injective. Considering the sub-chamber
system C; as in the statement, this is exactly the chamber system which we get from the
RGD-system over Fa of type Io(mg). This chamber system is a building by [2, Exercise
8.36(b)]. O

(2.4.2) Lemma. Let s #t € S be with mg < 0o. Then we have (741)"" us Uy = us Uy
forallw e W and usy € Ugy.

Proof. We put J := {s,t}. For w € W we let w' € W,wy; € (J) be such that w = wyw’
and £(sw') = f(w') + 1 = (tw’). Then the action of 75 on ul,, only depends on u and wy
and is independent on v’ i.e. for u,u’ € U, and w'; € (J) with 75.uU,, = u’Uw&, we have
Ts.uly = u’Uwf]w/. Thus it suffices to show the claim for w € (J). We restrict the action of
(Ts7)™** to the chambers of the form uwU,, with u € Uy and w € (J).

Restricting 75, 7+ to the sub-chamber system, we infer that (757¢)™s* is an automorphism
of this sub-chamber system. By the previous lemma this chamber system is a building of type
((J), J). Since this automorphism fixes all chambers U,, with w € (J), it fixes the two opposite
chambers Uy, and U,,. Since every panel contains exactly three chambers, the automorphism
fixes R4y (Ury,) for all s € S. Using Theorem , we obtain (7s7¢)™st.ulU,, = ul,, for all
u € Usy and w € (J). This finishes the claim. O

(2.4.3) Theorem. Assume that [(757)™*,n] = 1 in Pyxy, P for all s #t € S with mg < 0o
and n € Ngy. Then the natural mapping Ps — G is injective for all s € S.

Proof. Suppose s # t € S with mg < oo. By assumption n("™)™" = n for all n € Nyt
Together with the previous lemma we deduce (7,7)"¢.nul,, = nul,, for all u € Us; and
hence (757¢)™t acts trivial on the chamber system. Thus G acts on C and since Ps acts
faithfully on C by Proposition the claim follows. O
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3. Braid relations

In Chapter [3| we assume that mg # 6 for all s,t € S. Moreover, we let M be a faithful and
Weyl-invariant commutator blueprint of type (W, S). We will compute the automorphisms
(1s7t)™st € Aut(C) for mg < oo and give sufficient conditions of the commutator blueprint
in order to achieve that this automorphisms is trivial. This is done by a case distinction on
Mgt.

3.1. Notations

In this chapter we will work out sufficient conditions of the commutator blueprint such that
[(Te7e)™st,n] = 1 in Pyxy, P; for all s # ¢ € S with my < oo and all n € Ny ;. It suffices to

consider a generating set of N, i.e. n € {uiluau |ueUst,a€ <IJ+\<I>iS’t}}. We abbreviate
Uws = Uwa, € Uy, 1.6 Uts = Uga,. We will always assume that —3 C «, if ug appears in u.
Otherwise we can reduce u as we see in the next example.

(3.1.1) Example. Suppose a € <I>+\<I>:{f’t} with —as € a. Then {as,a} € P by definition

and we have usu,us = (H%MG u7> uq for some G € Min with as, a0 € (G).

For short we will write ugs.n := usnus and 74.n := 73n75 = 75(n). Let as # B € &4 be
a root such that {as, 8} ¢ P. Then —as C B. Let w € W with {(sw) = {(w) — 1 and let
G € Ming(w) with sg € ®(G). By Proposition [(2.2.9)| we have the following in Pj:

Ts(Usugts) = us H Usy | upts

G
’YGMQSYSB

Ts

= Uy H Us UBU

~eME

as,sp

= Us[Us, Usp] T UBU

= usuglusg, us) " us
Moreover, if —as C f1,..., 0k € @4, then we have

Ts (USUBl T Ugy uS) = Us (usﬁl [us,Bl ’ US] T UsBy [usﬁkﬂ us])Ts Us

_ Ts _ T
= s (UsUsp, *+ Usp Us) ™ Us = Ustg, -+~ U, [Uspy =+~ Uspy,, Us] " Us

Note that [(757¢)™st,n] = 1 implies [(1475)™*,n] = 1. We remark that for each o €
¢+\(I>f’t}, we have (7,7)"" ug = Uq,.
(3.1.2) Remark. Let s # t € S be such that 6 # mg < oo. In order to show that

[(1¢75)™st,n] = 1, we use the fact m,, # 6 for all r,t € S only in a few cases. If we do,
we will explicitly state it in the hypothesis.
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3. Braid relations

3.2. The case my = 2
(3.2.1) Lemma. We have [(7s7)%,n] =1 for all n € Ny, in the group P; *u, Py
Proof. Let a € <I>+\<I>f’t}. Assume —as C a. Then the following hold:

2
(TsTe)" UsUpUs = TsTiTs UsUto s
_ Ts
= TsTt - UsUtey [ustom us] *Ug

TsTt

= Ts5.UsUq, [ustaa us} Us

= Ts.UsUq [Ustaa us}Tth

Us
J— /TA

= Ts.UsUq, [usaa us] *Us
_ 2

= TS UsUn Us

= UsUaUs

Interchanging s and ¢, we deduce (TtTS)Q.UtU,aUt = wuquy for each —ay C o € @4 and, in
particular, (Ts7¢)2 Ul = Usta .
Now we assume —ag, —ay € . Then the following hold:

(ToTt) 2 U UsUaustsy = (TeTt)? Uslyla st
= TeTiTs UsUplo [Ute, Ug] " Ut
= TeTiTs Utlslo [Ute, Ut] " UsUy
= ToT- Ut Ts (UsUa [Upe, Ue) P s )1y

= To Ty UUsTs (UsTs (Ug [Uter, Ut ™ ) Us ) UsUy
= ToT Ul Ts (UsUse [Upar, U)o Us ) UsUL
= ToTp UpUsTs (UsUsa [Usta, Ut] " Us ) Us U
= ToTpUpUs Ts (Tt (UsUtUstaUpUs ) ) Us U
= TsT Ut Ts (Tt (Ut Usta [Usta, Us)Ut) ) Ust
= ToTp g (Usta [Ustars Ut) [Ustas Us][[Wstas Us], we] )7 usty
= ToTpUpls (Usta [Ustas Ut) [Usta Us][[Ustas Us], we] )T wsty
= TsT Ut Ty (Ts (Ut Usta [Usta, Us) Ut ) ) Ust
= ToTe UsUs Tt (Uglhpa [Ustar, Us) ™ Up ) UpUs
= Ty Us Tt (Ue Tt (UpUpa [Usta, Us] ™ Ug ) Ut ) Us

T\
= Ts.UsUtTt (Uta [Usta’ us] ’ )utus
T
= T UtUgUgq [Usaa uS] SUsUg
= Tf.utusuausut

= UpUsUe,Us Ut O

3.3. The case my =3

In this case we assume that the groups U, are of nilpotency class at most 2 and that the
commutator blueprint M satisfies (CR1) and (CR2) (cf. Theorem [(3.5.1)). We note that
the root 8 in (CR1) and (CR2) is not necessarily a positive root. Later if we refer to one of
these conditions, we will not go into detail. E.g. if o(ry,74) < 00, Condition (CR2) implies
Mgs’a = (). In particular, we will not state w and G.
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3.3. The case mgy = 3

(3.3.1) Lemma. Let G = (g1,...,9n) be a group of nilpotency class at most 2 such that
g? =1 for alli. Then [g,h]*> =1 for all g,h € G.

Proof. Let f1,..., fryh1,--. him € {g1,...,9n} be such that g = f1--- fr,h = hy -+ hy,. We
show the claim via induction on r +m. If  +m € {0,1} the claim follows directly. Thus
we assume 7 +m > 2. Again, for 0 € {r,m} the claim follows directly. Thus we can assume
r,m > 1. Using the nilpotency class we obtain

9.1 = (9. hodlg, i)'’

= (lo " bl ol B
= 07 bl Lo, Bon] g, iy 1

Using the nilpotency class and the fact that [f,, hm|? = [fr, [fr, hm]], the claim follows by
induction. O

3.3.2 Lemma. LL(Z ha/U(Z 757t ,U uau — 1 01 all a € @ ¢{ } and U € us,ust —
+ —+
utg,ut} m th(z 97 ()UP } S *U ] t-

Proof. At first we consider the case u = us. If {as, @} € P the claim clearly holds. Thus we
assume —ay; C a. Then we compute

(Ts78)> Ustaus = (Te7t) 2 Uptspats
= TsTtTs - UtUsto [Utstou ut]n Ut
= Ts. UsUq [utstay ut]TtTSTt

= Ts. UsUq [Usom us]TS Us

Us

2
=TI UslUaUs
= UsUaUs
Interchanging s and ¢, we deduce (7;7s)%. usuqus = usuqus and, in particular, (747¢)3 . uptaus =

uruq . Now we consider the case u = wys. Again, if {tas, a} € P, the claim is trivial. Thus
we assume —ta; C a. Using the case u = ug, we deduce

3 _ 2 _ 3 _ _
(TsTt) UstUqUst = (TsTt) Ts UsUtqUs = Tt(Tth) UsUtqUs = Tt UsUtaUs = UstUaqUst O

(3.3.3) Lemma. We have [(1s7:)3, utuqu] = 1 for all o € &, with —a,, —ay C a and all
U € {UsUy, UsUssUy, Ustist ) in the group Ps*y, Py

Proof. We deduce from the nilpotency class of the U, the following (note that s and ¢ are
interchangeable in the following equations):

[wta, we] ™™ us] = [[uga, we] ™™ we] ™™ = [[wssta, us], ue] "™ =1
[usm" Us Utstas uts] ‘ [utsta7 [u57 Ut“ =1
[[USCHUS]TS’RTS = usa,us] ) t]TsTt = [[Utscwuts],ut] STt — 1

[[utOm Ut] y Us

I

I=

=
yug) = [

] = [[usta, ust), us] = 1

I=1l

Ustsas ut} [utstaa USHTST”—S =1

[[USO” us] [utou Ut

Case 1: u = ugus: Note that by (CR1) there exist w € W with £(tw) = ¢(w)—1 and G € Min;(w)
with ta € ®(G) such that —ta, C v and, in particular, —a, C ¢y for all y € M .
Using (CR1) again, we deduce —ay C v and hence —a C tsy for all v € Mocj;sa and
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3. Braid relations

—ag Cyforall v e Mat tor
we compute the following:

(cf. also Remark [(1.3.3)]). Using the previous computations

3 3
(TsT)” UptsUaUstt = (TsTe)” UsUgt Ut U Ut UstUg
2

Tt
TsTt) Ts- Utsusutua[utouut] UtUsUts

(757¢)"u
(7571)

= (TsTt)QTs UgUs U [Uta, Ut] ™ Ust
(757)
(

= (757¢)* UstUsUa [Usa, Ws] ™ [thrars ] ™ [[Utar, we] ™7, us] st
= (Ts71)® UstUs U [Usar, Us) ™ [thgar, Ue) st

= TsTtTs UsUtsUta [Usa, Us| ™" [Uter, U] UtsUs

= TsTtTs-UtsUsUta [Usa, Us|™* ™" [Uter, Ue|UsUts

= TsTt-UtlsUpe [Usta, Us] ™ [Usa, Us] ™™ [[Usa, us] ™77 ug]™

Nt wt] [ty we] ™ s ws]] ™ usrg

177 (Ut Ut Up U s U

= TsTt-UsUtsUt Ut [USOM Us
_ TsTt

= TsTt- UsUtsUtUte [utou ut]ut [Usou us] UtsUs
= TsTt UsUtsUtey [uscw us] “UpsUs

= Ts.-UtsUsUgq, [usaa us] SUsUts

= 72 s U Ut

= UtUsUaUsUt

Case 2: u = usugus: Interchanging s and ¢, we deduce the following:

3 3
(TeTs)” UpUst UsUUsUs Uy = (TyTs)” UsUpllaUpls = UgUpUaqUplhs = UplspUsUaUsUst Ut

Case 3: u = usug: Using (CR1) we deduce —tas C v and hence —as C ty for all v € M o ta
Moreover, we deduce —ay C sv,t0 for all v € M, so and all 6 € My, 1o by (CR1). We
compute the following:

3 _
(TsTt) UstUsUaqUsUst = ) Ts UsUtsUtaUtsUs
TsTt)QTs-utsusutausuts
-
) U Uge [Ustr, Us) ™ UsUy
2
TsTt)” UsUst Ut [Uta, Ut UstUs

_ Tt
= TsTtTs UtsUsUgy [utaa ut] UsUts

= TeTp UplsUo [User, Us]™ [Wary W] ™ [[ttas we] 78, us| ™ usty
= TsTt-UsUstUtUgy [usom us] § {uta’ ut] “Uplst s
= Ts.-UtsUsUtUgy [uta’ ut] [Usa) us] [[Usa’ us]TSTt7 ut]Tt
[uta, ] [[Uta, we], we] " ugusugs

(3.3.1)] s

= T U UsUg [Usq, Us| ™ Uy
= Tsz.ustusuausust
= UgtUgUoUslst O

(3.3.4) Lemma. Let o € ®4 be a root such that —as,—say C « hold. Then we have
[(757)3, ustusuqusus] = 1 in the group Ps *xu, Pi, if myy #6 forallr € S.

Proof. We distinguish the following cases:
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3.3. The case mgy = 3

(a) —ay C a: Then the claim follows from the previous lemma.
(b) a4 € az Then —ag, —ay C ta and the previous lemma implies:

(T572)% Ustustaustisy = (TsTe)? Ts - UsUpsUpaUpstls = Ty UsUpsUioUtstls = UspUsUnsUsy
(¢c) o(re,ra) < oco: Using (CR2) we deduce:

[ustaa us] =1
[Usaa us] =1
We compute the following:

2

3
(TsTt> UstUsUqUsUst = \TsTt) Ts - UsUtsUtaUtsUs

2

Te
TsTt -Utusuta[ustavus} *UsUt

(7s7t)

= (TTe)* T Ut s Uga Us s
(7s7t)
(Ts7t)? UsUstUsa [Uga, U Usps

— Tt
= TsTtTs - UtsUsUq [ut()éa ut] UsUts

Note that ug Ui, ut]™ = T Ua = WeTeUsUg = Uplia [Ua, U] Hug. Since myy # 6 for all
r €S, we have 1 € {[utq, ut), [Ua, u]} (because of the Weyl-invariance). We distinguish
the following cases:

(1) [ta,ut] = 1: Then we have the following:

Tt _
TsTtTs - UtsUsUg [utou ut] UsUts = TsTtTs UtsUsUtUtqUtUsUts
= TsTtTs - UtUsUtaUsUt
_ .
= TsTt UstUsUtey [uston us] SUsUsgt

_ T
= TeTUsUst Ut [Ua, Ut]) " UstUs

(i) [uta,ut] = 1: Then we have the following:

Tt _
TsTtTs - UtsUsUg [utay Ut] UsUts = TsTtTs - UtsUsUaqUsUts
_ .
= TsTt-UtUsU [usa’ us] SUgUt
_ Tt
= TsTt-UsUstUtUgy [utou ut] UtUstUs

_ Tt
= TsTt UsUstUta, [ua; ut} UstUs

In both cases we obtain the same result. This implies:

T _ T+
ToTiTs - UtsUsUa [Ute, Ut] " Uslhps = TsTe UsUstUta [Ua, U] UstUs
= To.UtsUs U [Uqy, Ut UsUts
= Ts. UtUsUxUsUt
_ Ts
= UstUsUq {usau Us] UsUst

= UstUsUqUsUst O

(3.3.5) Remark. We note that in almost all cases we have 1 € {[usq, ue], [ua, ue]} if 0(7a,ra) <
oo. But in a hexagon, we have [uq, us] # 1 # [u1,us]. This is the only example of commuta-
tors, where none of these two commutators is trivial.
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3. Braid relations

(3.3.6) Lemma. We have [(757:)3,n] = 1 for alln € N, in the group Pyxy, Py, if the groups
Uy are of nilpotency class at most 2, my, # 6 for all r,u € S and M satisfies (CR1) and
(CR2).

Proof. Using the previous lemmas in this subsection, it suffices to consider n = ustsptaUst Uz
Let o € @ be a root such that —ay, —say = —tas; C «. Interchanging s and ¢ in the previous
lemma we deduce

3 3
(T7s)” UpUstUaUstty = (TeTs)” UpsUpUq Uplps = UpsUpUUplps = UpllstUn UstUs

In particular, we have (TSTt)?’.utustuaustut = UpUgt U UstUt- O

3.4. The case my =4

In this case we again assume that the groups U, are of nilpotency class at most 2 and that
the commutator blueprint M satisfies the additional Conditions (CR1) and (CR2).

(3.4.1) Lemma. For a € &, we have [(7s7)*, v uqu] = 1 for u € {us, us, us, ws} in the
group Psxy, B.
Proof. Let u = us. We can assume that —as C . Otherwise the claim is obvious. Using the
nilpotency class of the groups U,, we obtain:
4 _ 2
(TsTt) UsUqUs = (TsTt) Ts - UsUtstaUs
2 s

= (TsTt) UsUtsto [ustston usr Us

= Ts.UsUq [Usa; us]Tsus

= Tf.usuaus

= Ul Us

This also implies [(7¢75)*, ustuaus] = 1. Interchanging s and ¢ we deduce the claim for u;. Now
let u = ug and assume —say C . Then —a; C sta and the case v = u; implies

4 3 -1
(TsTt) UstUqUst = (TsTt) UtUstaUt = (TsTt) UtUstaUt = UstUaUst
Interchanging s and ¢ the claim does also hold for u = uys. O

(3.4.2) Lemma. Let o € &, be such that —ag, —tas C o Then [(Tom)*, Usstsuaustgs] = 1
in the group Psxy, P;.

Proof. Let 8 € {sta,sa}. Then we have as C  as well as ag,tas C tstS. Using the
nilpotency class of the groups U,, we deduce:

[[u67u8]7‘57't757u5} = [[utstﬂausLuts]TSTt — 1
[[ustcw us]"'s, ['Uason uS:ITsTt} = [[ustcw uS]TthTt7 [usa; uS]TtTS]TthTth
= [[ustsa,us], [ustsa, uts]]TthTt’Ts =1

The last equation follows from the fact that wus, tssq commute with the first commutator.
Note that —tas; C sta and hence by (CR1) we obtain —tas; C « for all v € Mé’;sm. In

particular, —ay, C tsy for all v € MS Using (CR1) again, we have —tas C « and hence

s,sta”

—ag Ctsy for all v € Mfs,sa. We compute the following:

4 3
(TSTt) AUpsUsUqUsUts = (TsTt) Ts - UsUtsUtaqUtsUs
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3.4. The case mgy = 4

3
Ts-UtsUsUtoUsUts

3
JUt usuta[ustayus} fUgUts

2

= (7s7t)
= (7s7t)
= (Ts72) T UstpsUa [Usta, Us) ™ Utsts
= (TsTt) T UtsUsUa [Ustar, Us) ™ UsUys
= (7s7t)

ToTe)? s st [Usars s] ™ [Ustar, Us) ™™ [Ustars ws] 77, ws] ™ Ustuys
= (TsTy)? UtsUs o [Usar, Us) ™ [hsta, Us] ™ T sty
= TeTyTs-UsUtsUta [Usars Us] " [Uster, s UgsUss
= TeTiTs UtsUsUta[Usa, Us] ™" [Usta, Us] ™ Ustts
= TsTt-UtsUsUta [Ustar Us) ™ [Usas Us] ™ [[Usars Us) T, us] ™

< Usta Us]™ [[Usta, Us), Us] ™ Ustps

TsTp UtsUsUte[Usas Us) ™ UsUys
= T UsUtsUo [Usa, Us] *Utsls
= T UpsUslUo [Usey, Us| ™ Uslts
= Tg.UtSUSUO/U,sUtS
= UtsUsUaUslUts ]

(3.4.3) Lemma. Let « € & be such that —ay, —say C «. Then [(TsTt)A‘,utustuaustut] =1
in the group Ps xy, Py.

Proof. Interchanging s and ¢ in the previous lemma, it follows that (737¢)%.ustusiuqustiy =
(74T ) Ut Ul Usllsy = UstUpUaUsllsy = UplispUaUsgty. This finishes the claim. O

(3.4.4) Lemma. Let o € & be such that —as, —ay C . Then we have [(1s7)*, v uqu] = 1
foru € {usustuta UsUstUtsUt, UsUt, UsUtsUt, UsUstUts, UsUst, UtsUt, ustuts} in the group Ps *Uy P

Proof. Note that ag, oy C ststa. Using the nilpotency class of the groups Uy, we obtain the
following (note that s and ¢ are interchangeable in the following equations; cf. also Remark
(1.3.3)):

(fater we] ™™ 5] = [[tsestar ue] " ] = [[uststa, wel, us] ™7 = 1
([t w)™ s [tsa us]™] = [[uststa t],[utstsa,usﬂTthTth _1
[[tta, ue] ™7 us] = [[Uststas ut], uts] ™ =1
[[wta, we] 7™ ug] = [[Uststar Ue], use] "™ =1
[[Ustsar us])™, ut] = [[Utstsar Uas], use] ™™ =1

[Utstsaa Ust] [utstson uts])Tth

[Utstsaa ust] [utstsaa [u37 ut]ust])

[utson ut] [ustsaa us]
TtTs

ust)TtTS [] 1

[utstsaa Ust] Us]TtTSTt =1
[[usta, us]’r tTs [usa, us]TthTt])TsTth

[[wststar ues], [utstsas USH)TST”—S =1

Hutsaa ut] “u ]

[[Ustou us]Tsa [usav US]TSTt]

[
[
[
[
[
(
(
([Utstsa, ust] [Utstsa, Ust] [utstsaa [Us, Ut]]
[
(
(
(
[
[
[

[Usta, US]TS [utsow ut]TtTSTt = [ustsaa us]TS [utsay ut])TtTSTt =1
[wtsar, we] ™77 us] = [[uststa, ws], ues] ™™ =1
[[Uta; ut} ) U ] = [utav ut]TSTthvuts]TSTt = [[uststaa Ut]a Uts]TSTt =1
[[usta, ws] ™7 us] = [[usta, us]™ ™, us| " ™™ = [[uststa uts], us] "™ =1
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3. Braid relations

Case 1: u = wusugu: We note that —tas C ta and hence —tag C v for all v € Ma
(CR1). This implies —a, C ty for all v € MS

ag,ta

M¢ ., by (CR1). We obtain the following:

t,ta b
Moreover, we have —ay C sv for all

2 2
(TsTt)” UtUstUsUUsUstUp = (ToTt) " UsltsUpla Ut UtsUs
. T+
= TeTTs - UtslsUtUn [Ute,, U] Uptisis

. T+
= TeTTs - UstUtUsUe [Uta,, U] UstpUgt

=TTy UpUstUsUe [Usas Us| ™ [Uters U] ™ [[Uger, we] ™7, ws] ™ ustsguy
= TsTt UtsUsUtUq [U5a7 us] s [utou Ut] LU U Ut
= Ts- UsUtsUtUgy [utou Ut] [usou Us] [[Usou us]TSTt s ut]Tt

e, we] ™ [[Wras e, ) M up s

-

Ts-UstUtUsUey [usou us] SUsUtUst
2

= Tg UtUstUsUqUsUgt Ut

= UtUstUsUaqUsUstUt

Case 2: u = ugugugsur: We note that we have —ag C tsty for all ~ E G o by (CR1).

Moreover, we have —a; C sv,t0 for all v € MS . and all § € M by (CR1). We

5,5 ozt ta
compute the following:

4

4
(ToTt) ™ UpUs Ut Us U UsUgp UpsUp = (TsTe) ™ UsUpUa Ugll

3

.
T UtsUtle [Uter, Ut] ™ Upllps
3

t T,
CUtsUstUsa [utou Ut] SUstUts
2

TeTsTt
Ts-UsUstUts [utouut] s

o
=

UstUs

TtTsTt

Ts-UstUsUtsa [uta 5 ut]

3

UsUst
2

TtTsTt [[ t]TthTth

UtUsUtso [Ustsa, us] s [utou ut] , US]TS UgUt
UsUstUtsUt Ut s [ustsom US]TS [utom Ut

UsUstUtsUtsa [Utsay ut] [ustsom us] [Uton ut]

TsTt Uty U

2

] TtTsTt

TsTt UtUtsUstUs

2 tTsTt

(7s72)" 0
(7s71)
(7571)
(7s72)
(7s )2
(7s71)
(7571)
(TsTt)

UtsUstUs

= (TT1) % UsUstUpsUtsa [Uger, )T

_ Tt T,
= TsTtTs - UtsUstUsUs [Utaa ut] SUsUstUts

UtsUstUs

tTs

= TsTtTs UtsUstUsey [usaa Us] {utav ut] UstUts

= TsTt - UtsUt Uy [Usom US]TS [Utom ut] ‘ugugs
]TsTt

= Ts-UsUtUq, [utou ut] [usou Us] Husou Us ]Tt

[utomut] [[uta,ut] ut] T Upls

, Ut

) T
= Ts.UtUtsUstUsUgy [usom ’U‘S} SUsUst Uts Ut
2
= Tg UstUtsUtUsUoUsUtUtsUst
= UstUtsUtUsUaqUsUtUtsUst

= UtUtsUstUsUaqUsUstUtsUt

Case 3: v = usuy: Interchanging s and t in the previous case, we deduce the following:

4 4
(Tth) AUUsUQUsUE = (Tth) UsUstUtsUt UqUiUtsUstUg

= UsUstUtsUtUqUtUtsUstUs
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3.4. The case mgy = 4

= UWtUsUqUsUL
In particular, this yields (7s7)* ustsuausts = UststaUst;.

Case 4: u = ugugsug: Note that we have —ay C sty for all v € M by (CR1). Similarly, we
have —a; C tsvyy,tstys, s for all v € Ma s V2 € MS aptsar V3 € ME apta- We compute

the following:

at ta

4

4
(TsTt) UtUEsUsUqUsUtsUg UsUstUtUaq Ut UstUs

3

T UtsWst Ut U [Uter, Ug) T Ut Uts

o)
3

3
UtsUtUst Usey [Utaa Ut] SUgtUtUts

o
=

27 UsUstUtUse [utsay Ut] [Utom Ut] Hutm Ut]TtTSTt ) ut]n UtUstUs

2

ol
=

Tt T,
T UtsUtUsUsa [Utsa, Ut] ™ (Ut U] T T UsUp Ut
2

) u
)
)
)? s sty Usa [ta, we] T UL UL
)
)
) tTs

~ Y~ o~
o
&

Ts-UtsUtUse [Usa’ us] [Utsou Ut} [Utom ut]

o
=

UtUts

= (TsTt)2 UtsUstUey [usa; us]TS [utsom ut]TtTS [utoca ut]n UstUts

TTt[

— TtTsTt
= TsTth-usustuta[usayus] s ° [

Utsoy Ut Uty ut]ustus

THTsTE [utcw ut] UsUst

] TsTtTs

]
= TsTtTs - UstUsUty [Uscw us]TSTt [Utscxa ]
[ T

= TsTt-UtUsUtey [Ustaa usrs [usaa us]T STt [Uscw Us ) us]
Ntsors we) T [Ursa, we] TS U™ [Uters W) [, ] T U] us s

= TsTt UsUstUtsUtUta [Usas Us| ™7 [Uta, Ue|Utips st s

= TsTt - UsUstUtsUt Uty [utav ut]ut [usaa US]TSTt UtsUstUs

= TsTt - UsUstUtsUta [Usou us] "UpsUstUs

= Ts. UtsUstUsUg [usom US]TS UsUstUts

= T2 U U U Uy U Ut Ut

= UtsUtUsUaUsUtUt s

= UtUtsUsUaUsUtsUt

Case 5: u = usugurs: Note that —ay C styy, stsys for all v € M oy s V2 6 a sta DY (CR1).
As before, we deduce —ay C s, td for all v € Moci and all § € M, by (CR1). We
obtain the following:

,SQ at ta

3
Ts-UsUstUtsUtaUtsUstUs

3
Ts UstUtsUsUtoUsUtsUst

4
(TsTt) UtsUstUsUqUsUstUts

.
UpUpsUs Ut [Ustars Us| ™ UsUp Ut

3-ustusuta [utou ut] [usta’ US]TS UsUst

27—3 UstUtsUe [utaa Ut] [uston us] P Ups Ut

] TsTtTs

)

)

)

TsTt)3-UstUsututa [Ustar, Us] ™ Uptists
)

)

)2

Tt T,
AUpUtsUsa [Uta, Ut) ™ [Ustas Us UgsUg

TsTt)Q-utsutusoz [utou ut]TtTS [usta’ us]TSTtTS
= TsTtTs- UsUtUsey [utsom ut] [Uta ut] [[Utaa ut]
: [ustom US]TSTtTS [[

= TsTtTs- ututsustususa[utsa7 ut] [ut ut]TtTS [ustom Us

UtUts

TtTsTt Tt
) Ut}
] TsTtTsTt

Tt
Ustoy Us ) ut] UtUs

TsTt T,
| TR TR T
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3. Braid relations

= TsTtTs - UtUtsUstUsa [usou Us] [utsaa ut]Tt [Uta7 ut]Tth [uston uS]TSTtTS UstUtsUt

_ THTs
= TsTtTs - UtUtsUstUsq [usou us] [uta’ ut] *Ust Ut sUt

i T Tt
= TsTt-UstUtsUt U [usay us} ¢ [Utou ut] UtUtsUst

= Ts-UstUsUt Uy [Utom ut]Tt [usom US]TS Huson US]TSTt , ut]Tt

Tt Tt
‘[utaaut] [[utauut]vut] UtUsUst
(EER) .
— Ts‘utsutusua[usavus] UsUtUts
2
= Tg UtsUstUsUqUsUstUts

= UtsUstUsUaqUsUstUts
Case 6: u = usug: Note that —ag, —ay C tyg, sy for all y; € Mo?tm,’yQ € Mgsysa by (CR1).
We compute the following:

3

4
(TsTt) UstUsgUqUsUgt = Ts UgtUtsUtaUtsUst

CUtUtsUstoUtsUt

3
SUtsUtUsto Ut Uts

2 T
Ts-UsUtUsta [Utsta7 Ut] fupg

.
T UpUtsUst UsUsto [Utsta, Ut] ™ UsUgt Ut sUt

2 Tt
Ts- UtUtsUstUsta [ustay us] [Utstom Ut] UstUtsUt

2
Ts UtUtsUstUstaUst UtsUt

)
)
)
)
)2
)
)
)2-ustut5ututautut5ust

= (TsTt)2-ustutsuta [Wter, Ut Ugs st

= TsTiTs-UstUsUo [Uta, Ut] " UsUst

= TeTt UplsUo [User, Us|™ [Utas U] ™ [[Utar, ] 78, us) TS ustuy

_ T. Tt
= TsTt-UsUstUtsUtUq [usom us] # [utom Ut] UtUtsUstUs

TsTt Tt

= Ts-UtsUstUsUt Uy [uton Ut]Tt [uson usrs [[uson Us] , ut]
. [utom ut]n [[utota ut] ) ut]Tt UtUsUstUts

G3T) -
— 7—5~utu5uo¢[usaaus] UsUt

2
= T§ UstUsUaUsUst

= UstUsUqUsUst

Case 7: u = wugsuy: Interchanging s and ¢ in the previous case we deduce
4 4
(7e7s) " U UpsUaUisty = (TeTs) " UgsUpUaUiUps = UgsUploUlys = UglhgsUaUgsty
In particular, this yields (7s7¢)* wsthsstaUssths = Ut sttt sty

Case 8: u = ugus: We obtain the following:

3

4 _
(TsTt) UtsUstUaqUstUts = Ts - UsUstUtaUstUs

Ts UstUsUtaUsUst

3 T,
UsUstUtsUt Uty [ustom us] SULULsUst Us

(757¢)
(7s72)
= (157)> wusua[Usia, us| S usuy
(757¢)
(r57)°

UsUstUts Ut [uton Ut] [ustou us]Ts UtsUstUs
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3.4. The case mgy = 4

= (TsTt)2Ts-ut5ustusua [utaa Ut]ﬁ [Ustou US]TSTt UsUstUts

Note that —ag, —ay C to,tsy for all § € MOth,tﬂé and v € MS ., by (CR1). Using Case

s,sta
5 we deduce the following:

(TsTt)4‘utsustuozustuts = (TsTt)QTs-utsustusua [utay ut]Tt [ustou us]TSTt UsUstUts
= TtTsTt (Tth)4-ut5ustusua [utom ut]n [uston US]TSTt UsUstUts
= TTsTt - UtsUstUsUg, [utou ut]n [ustou us]TSTt UsUstUts
= TTsTt. (TthTt-UtsustuaUstuts)

= UtsUstUaqUstUts O

(3.4.5) Lemma. Let « € ¢4 be a root such that —as, —say, —tas C «. Then we have
[(Tsm)*, UpsUsttsuUstsitiss] = 1 in the group P *u, P

Proof. If {ay, a} ¢ P, then {—ay, a} is a prenilpotent pair by [2| Lemma 8.42(3)]. As (—ay) ¢
1w € a, we deduce (—ay) C « and the claim follows from Lemmal(3.4.4)] Thus we can assume
that {ay, a} € P. We distinguish the following cases:

(a) o € a: Then we have —ay, —as C ta. Using Lemma |(3.4.4)| again we obtain that

4 o - . . .
(T4Ts)* UtsUstUsUpo UsUstUts = UpsUstUsUpoUsUstUts. This implies:

4 2 3
(TsTt) AUtsUstUsUqUsUstUts = Ty (TsTt) Ts UsUstUtsUtoUtsUstUs
4
= Ty(TeTs) " UpsUst UsUpa UsUst Ut
= Tt UtsUstUsUtqUsUst Uts
= UsUstUtsUaqUtsUstUs

= UtsUstUsUaqUsUstUts

(b) o(rq,ra) < co: Using the nilpotency class of the groups U, and (CR2), we deduce the

following:
[ustun us] =1
([wta, we] ™™ wg] = [[wta, we) ™™, w) ™™ = [[Utsta, Ust], we] =77 =1
T Ut [Uger, e) ™ Uy = Ty (U, U]

_ Tt T,
= WeTp U Ty [Upey, Ug] T T*

= wyTy (U, we] T U, we] T g
= Ut.[Uter, ut] "7

= U [Upe, ) Uy
[utsaaut] =

1
[[wtas we] ™™ us] = [[Uta, ue e =

TETsTE —

]TSTth y Uststas ut] s us]

U]
[Usavus] =1

Ut [ty we) g = ()% U = Ty U, = Ugo [Ue, )™

We compute the following:

4 _ 3
(TsTt) ™ UtsUst UsUaUs Ut Uts = (TsTr) T UsUstUtsUpa UtsUst Us
_ 3
= (TsTt) Ts UstUtsUsUtaUsUtsUst

= (Ts Tt)3 UtUtsUs Uty [usta s us] Ts UsUtsUt
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3. Braid relations

) UstUsUtq, [utou Ut]usust
TsTt)QTs-ustutsuoz [utou ut]Tt UtsUst
) AUtUtsUsey [utow ut]TtTS UtsUt

ToTe)? UpsUtUs [t ur) ™

UtUts

Tt TeT
TsTtTs - UsUtUsq [utsaa ut] [Utou ut] SUtUs

TsTiTs - UtUtsUstUsey [usou Us] {utav ut]TtTS UstUtsUt
= TsTtTs - UtUtsUstUsa [uta’ ut]TtTS UstUtsUt

= TsTt-UstUtsUgUa Uta, Ur] " Uptystst

= TsTt-UstUtsUte [uou ut]n UtsUst

= Ts.-UstUsUgq, [uom ut]usust

= Ts-UtsUtUsUaUsUtUt s

= UtsUstUsUg, [uscw us]TS UsUstUts

= UtsUstUsUaqUsUstUts O

(3.4.6) Lemma. Let « € &, be a root such that —say, —tas,—ay C a. Then we have
[(Tsm) %, wptpsusiuqustussug]) = 1 in the group Py *u, Py

Proof. Interchanging s and t in the previous lemma we deduce

4 4
(Tth) UtUtsUstUqUstUtsUt = (Tth) UstUtsUtUaq Ut UtsUst
= UstUtsUtUaqUtUtsUst

= UtUtsUstUaUst UtsUt
This implies (Ts7¢)% UglsUstUaUsiUpstp = UplhysUstUa Uit UpsUs- O

(3.4.7) Lemma. Let a € &, be a root such that —as, —soy C « holds. Then we have
[(T57)*, ustusuqususs] = 1 in the group Py *u, Py, if myg # 6 # mg, for allr € 5.

Proof. We distinguish the following cases:

(A) —ay C «a: This is covered by Lemma

(B) o(ra,ra) < co: By definition we have —a; C sta. Assume that ta; C . Then Lemma
would imply ay C (—as) Utas € o, which is a contradiction. Now assume that
{as, sta} ¢ P. Then [2, Lemma 8.42(3)] would imply that {—as, sta} is a pair of nested
roots and, as (—as) ¢ 1w € sta, we obtain —as C sta. But then tas C «, which is a
contradiction. Thus we have {as, sta} € P. Using the nilpotency class of the groups
Uy and (CR2), we have the following:

[Upsta, ue) = 1

[usom us] =1

Ul [Uter, W) T Ut = Upe [Uy, Ue]™

Usta [Utaa us]TS

[[usta, US]TS ) ut] = [[Ustou USL Ust]TS =1

UsUtey [usta s us] e Us

We compute the following:

4 3
(TsTt) AUstUsUqUsUgt = (TsTt) Ts - UstUtsUtaUtsUst
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3.4. The case mgy = 4

3
UtUtsUstaUtsUt

3
“UtsUtUstaUtUts

2 T
Ts- UsUtUsto, [utston ut] fugug

Ts-UtUtsUstUsUstaUsUst UtsUt

2
Ts- UtUtsUstUsto [Usta s Us] UstUtsUt

o
3

2

)
)
)
)2
)
)7 Ut UrsUtUta [Ustar, Us) ™ UgUpsUst

Later we will do a case distinction and two cases are similar. Thus we will assume for
the moment that [usq, us] = 1. Then we compute

(TsTt)z-UstUtsutUta [usta, us]Tsututsust - (TsTt)2-Ustut5Uta [Uta, ut]utsust

-
= TsTtTs - UstUsUq, [utou ut] ‘UsUst
If, furthermore, [uq,u] = 1, we deduce the following:

Tt _
TsTtTs - UstUsUq [utou ut] UsUst = TsTtTs - UstUsUaqUsUst
-
= TsTt- UtUsUx [usou us] SUsUt
-
= ToTp UslUstUts Ut Uy [Uper, Ut] " UglhsUstUs

_ T
= TsTt UsUgstUtsUtey [uaa ut} "UpsUstUs
Now we distinguish the following cases:
(a) —tas C a: Then [ustq,us] =1 by (CR2) and the previous computation yields
2 Ts _ Tt
(TsTt) UstUtsUt Uty [ustou us] UtUtsUst = TsTtTs- UstUsUey [utom ut] UsUst

Since my¢ # 6, we deduce 1 € {[utq, ut], [Ua,ut]}. We distinguish these two cases:

(I) [uta,ut] = 1: Then again the previous computations yield:

T T
TsTtTs UstUsUq, [utaa ut] "UsUgt = TsTt-UsWstUts Ut [ucw ut] “UpsUstUs

(II) [uq,ut] = 1: Then we have the following:

Tt — Tt
TsTtTs - UstUsUq, [utou ut] UsUst = TsTtTs - UstUsUt Ut [Uom ut] UtUsUst
= TsTtTs - UtUtsUsUtaUsUtsUt
-
= TsTt-UstUtsUs Ut [ustom us] SUsUtsUst

_ Tt
= TsTt - UsUstUtsUtey [uou ut] UtsUstUs

(b) {tas,a} € P: Astas € a, we have o(7¢q,7o) < 00 and hence o(r,, mq) < 00. Since
msr # 6 for all r € S, we have 1 € {[ustqa, Us], [Uta, us]}. We distinguish these two
cases:

(aa) [usta,us] = 1: Then the previous computations yield:

2 - B -
(TsTt) UstUtsUt Uty [Ustou us} FULULsUst = TsTtTs-UstUsla [Utou Ut] UsUst

Since myy # 6, we deduce 1 € {[utq, ut], [Ua,ut]}. We distinguish these two
cases:
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3. Braid relations

(i) [tta,u¢] = 1: Then again the previous computations yield:

Tt _ Tt
TsTtTs - UstUsUq [Utay ut] UsUst = TsTt-UsUstUtsUta [uou ut] UtsUstUs

(i) [wa,ut] = 1: Then we have the following:

TsTtTs - UstUsUg, [utou ut]Tt UsUst = TsTtTs - UstUsUtUto, [uou ut]Tt UtUsUst
= TsTtTs - UtUtsUsUtaUsUtsUt
= TsTtTs UtUtsUtq [utou us]utsut
= TsTt UstUtsUsta [Utom us]Ts UtsUst
= TsTt - UstUtsUsUtey [uston US]TS UsUtsUst

_ Tt
= TsTt - UsUstUtsUtey [uon ut] UtsUstUs

(bb) [tta,us] = 1: Then we compute the following:

(TsTt)2-ustutsututa [ustaa US]TS UtUtsUst = (TSTt)2-ustutsutususta [utou Us]Tsusututsust
= (TsTt)z-usutustautus
= TsTyTs UtsUtUsto [Utsto, U] Uplips
= TsTtTs - UtsUtUstaUtUts
= TsTt-UtsUstUtaUstUts
= TsTt-UtsUstUsUtaUsUstUts

= TsTt UsUstUtsUtoUtsUstUs
Since 0(7q,Tta) < 00 and —as C «, we have a # ta. Clearly, we have
—as = (—as)NW = ((—as) N (—sa))U((—as) N say) C (—say)U((—as) N say)

Note that there exists R € 0%ay N 0% N d*ta. Lemma now implies (as
—ta ¢ (o, @) U (—ay, ) a € (o, tar) or tae € (oy, ). Assume ta € (o, ).
Then ayNa C ta by definition. Since say € (o, ay), we deduce oy € (—as, say)
and hence (—ag) N say C ap. But then we would have the following;:

—os C (—=say) U ((—as) Nsay) CtaU (g Na) Cta

This is a contradiction as o(r,rta) < 0o and hence we deduce a € (o4, ta).
Since my; # 6 for all » € S, the commutator relations imply [uq, u¢] # 1 and
hence [uq,us] = 1 because 1 € {[usq, ut], [uq, ut]} as before. We infer:

_ T
TsTt - UsUstUtsUtaUtsUstUs = TsTt - UsUstUtsUte [uom ut] " UpsUstUs

We see that in both cases (a) and (b) we have the same result. Thus we compute further:

2 . _ -
(TsTt) UstUtsUt Uty [Ustou Us] SUtULsUst = TsTt UsUstUtsUte [Uaa Ut] UtsUstUs
= Ts.-UtsUstUsUqy [Uou Ut}usustuts
= Ts-UtsUstUsUtUaqUtUsUst Ut s
= Ts.UtUsgUUsUt
_ Ts
= UstUsUg, [uson us] UsUst

= UstUsUaqUsUst
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3.4. The case mgy = 4

(C) ay C a: We distinguish the following cases:
(aaa) —tas € a: Then —ay, —ap C ta and we can apply again Lemma with

u = ugugs to deduce the following:

(TsTt)4-ustusuausust = 7—152(TsTt)STs-ustutsutautsust
= Tt(Tth)4-utsustutaustuts
= Tt UtsUst Ut UstUts
= Tt UstUtsUtaUtsUst

= UstUsUqUsUst

(bbb) tas C a: Then —a,, —ay C sta and we deduce from Lemma [(3.4.4)}
(TsTt)4-u5tusuausust = (TsTt)il(TsTt)(TsTt)g-ututsustautsut
= (7572) L upUssustaus s
= UstUsUaqUsUst
(cce) o(ria,ra) < oo: Note that —tag, —ay C st and o(7q,7sta) < 00. Interchanging s
and ¢ in Case (B) yields (7475 )% tssUsUstaUsUss = UpsUsUsiaUstizs and hence
(Ts7) L usttstqusug = (TsTe)> UplysUsta st
= (1s7) 1+ (7o) L s Ut Usta st
= TiTs-UtsUtUstaUtUts
= TtTs - UtUtsUstaUtsUt

= UstUsUUsUst O

(3.4.8) Lemma. Assume that m,y # 6 # mg, for all v € S. Then for a € <b+\<I>£f’t} and
u € Usy we have [(TsTt)4,u_1uau] =1 un the group Psxy, P, if one of the following hold:

(a) u = ugus and —say, —tas C a,
(b) u=wusur and —tas, —ay C a;
Proof. Assume that (a) holds. Then we have —say, —as C ta and the previous lemma yields
(TsTt)4~utsustuozustuts = Tt2(TSTt>3TS'uSuStutO£uStuS
= 11(7e7s)  UstUsUa istist
= Tt UstUsUtqUsUst
= UstUtsUaqUtsUst
= UtsUstUaqUstUts
Now assume that (b) holds. Then we have —soy, —tas C sa and we infer the following from
Assertion (a):
(TSTt)4'Ututsuautsut = (TSTt)4Ts-ustutsusautsust = Ts UstUtsUsaqUtsUst = UtUtsUaUtsUt O
(3.4.9) Lemma. We have [(7s7:)*,n] = 1 for alln € N, in the group Pyxy, P, if the groups

Uy are of nilpotency class at most 2, my, # 6 for all r,u € S and M satisfies (CR1) and
(CR2).

Proof. Since N, is generated by the elements ulugu with u € Ust and o € <I>+\<I>{+s’t} it
suffices to show the claim for n = uw lugu. Since Ust is a group of order 16, we have to
distinguish these 16 cases. The claim is trivial for « = 1. The other cases follow from the
Lemmas ((3.4.1)|-(3.4.8)] O
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3. Braid relations

3.5. First main result

(3.5.1) Theorem. Suppose mg # 6 for all s,t € S. Let M = <M§B>(G et be a commu-
N ,o,0)€E
tator blueprint of type (W, S), which is faithful and Weyl-invariant. Suppose s #t € S with

mg < 00 and let n € Ngy. Then [(1s7¢)™*,n] = 1 in Psxy, Py if the following hold:
(a) Mgy = 2;
(b) mg € {3,4}, the groups U, are of nilpotency class at most 2 and M satisfies the

following two additional conditions, where o € ® s such that as C «.

(CR1) If B € &5t} is such that B C «, then there exist w € W with {(sw) = f(w) — 1
and G € Ming(w) with a € ®(G) such that B C v for all v € Mg;’a

(CR2) If B € ®{5t satisfies o(rpra) < oo, then there ewist w € W with £(sw) = £(w)—1
and G € Ming(w) with o € ®(G) such that MS , = 0.

In particular, M is integrable.

Proof. The first part is a consequence of Lemma |(3.2.1)] Lemma|(3.3.6)| and Lemma |(3.4.9)
Now we deduce from Theorem |(2.2.14)[ and Theorem that M is integrable. O

(3.5.2) Remark. We remark that (CR2) is not always satisfied. To see this one may consider
(W, S) to be of affine type and an RGD-system of type (W, S) with non-abelian root groups at
infinity. We do not know whether (CR1) and the nilpotency class assumption are necessary.

50



4. Construction of the groups U,

In this chapter we assume mg # 6 for all s # ¢t € S. We will discuss the nilpotency class
assumption of the last chapter. We show that each family M = (M ch )(G - of subsets
a,p)e

Mgg C (a, B) ordered via < which induces (roughly speaking) nilpotency class 2 groups
U, and satisfies (CB1) and (CB2) satisfies automatically (CB3). Hence such a family is a
commutator blueprint of type (W, S).

4.1. Auxiliary results

(4.1.1) Lemma. Let G = (g1,...,9n) be a group such that [g;,[9;,9x]] = 1 for all i,j,k €
{1,...,n}. Then G is of nilpotency class at most 2.

Proof. Let xz,y,z € G and let x1,..., Tk, Y1, Yl, 21, -+ 2m € {91, ., gn} be such that z =
Tl X, Y =Y1- Y, 2 = 21 Zm. We will show that [z, [y, 2]] = 1. Assume first [ =1=m
Induction on k yields [z, [y, 2] = [vx; ', [y, 2]]"* [z, [y, 2]] = 1. Now we assume [ = 1. Induc-
tion on m implies [z, [y, 2]] = [, [y, zm]ly, 22,1 1] =[2G, [y, 22,12 [, [y, 2n]Jl02m 1" =
1. Now induction on [ yields

[, [y, 2]) = [y 2 s ) = [ [, 2], g ) = 1 .

(4.1.2) Proposition. Let N be a group and let g,h € Aut(N) be two involutions with [g, h] =
idy. Assume that there exists u € Z(N) such that u®> = 1 and g(u) = u = h(u). Let
G =ZyxyN (ie. Zy acts on N via g) and H = Zy xp, N. Moreover, we let x4 (resp. ) be
the generator of Zo < G (resp. Zo < H) and we let ¢ : Gxy H — G %y H/(([xg,mh]u*1)>.
Then

ker o = {[xg,zp)fu! | k,1 € Z,k+1=0 mod 2}
In particular, the product map (x4) X N x (xp) = G *n H/{{[zg, zp)u™)), (¢',n, W) — g'nk/

1S a bijection.

Proof. Let n € N. By assumption we have [g,h](n) = n. We note that in G (resp. H)
we have ng_lna:g = g(n) (resp. a:,:lnxh = h(n)) for all n € N. We consider a conjugate of
[y, zp]u™" in Gxy H. For n € N we obtain:

! ([zg,xplu ™) no=n"ag, zpln[g, 2] g, wplut = 07 g, B (n)[zg, 2plut = [z, 2pluT?
Since g, h € Aut(N), we have g(u™!) = g(u)™' = v~ and h(u~!) = u~!. Thus we obtain:
m;l ([zg, znlu 1) Ty = TglyThTgTpU 1xg = 2pTgrnteryu ey = [h, vlg(ut) = [vg, xp) tu!

zy, ([xg,ffh]u ) ap = apzgapzgepu oy = [wh, agh(ut) = [zg,2p] tu

We also note that [[zg, x5!, utt] = [g, A]FH(uF)u®! = 1. Thus we conclude that ker p =
{[zg,zplu™1)) = ([zg,zp)fut | € € {1,-1}) = {[zg,zp)*u! | k1 € Z,k +1 = 0 mod 2}.
For the second assertion we note at first that the mapping is surjective. We denote the
product map by p. Let a € (z4),b € (z3,) and n € N be such that p((a,n,b)) = anb = 1.
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4. Construction of the groups U,

Then anb = abn’ € kery, where n/ = b~'nb = b(n) € N. Considering normal forms in
amalgamated products we obtain a = 1 = b and n/ = u?. Since u? = 1, we obtain n’ = 1 and
hence n = 1. Now we show that p is injective. Let a,a’ € (x,),b,V € (z) and n,n’ € N be
such that anb = p((a,n,b)) = p((a’,n’,b")) = a’n'b'. Then

l=atan b 'n~t =a ta'n' (Vb tn~to(b) ) bb!
and hence p((a~'a’,n/ (b’b In=to(v')~1) 0’6 1)) = 1. We have already shown that this implies
a=d,b=" and 1 =n' (b 'n"1b(t/) ") = n'n~'. This finishes the claim. O

(4.1.3) Corollary. Let N be a group and let g,h € Aut(N) be two involutions. Assume
that G = Zy x4 N and H = Zo X3, N are of nilpotency class at most 2 and that h(n)n=! €
Staby(g),g(n)n=! € Staby(h) for alln € N. Let u € N be such that u € Z(G),u € Z(H)
and u* = 1. Let xy (resp. zp) be the generator of Zo in G (resp. H). Then the mapping

(2g) X N x (z1) = G xn H/{([zg,xpJu™"))
15 a bijection. Furthermore, the latter group is of nilpotency class at most 2.

Proof. Since u € Z(G),u € Z(H), we have 1 = [z4,u™!] = g(u)u™! and hence g(u) =
w. Similarly, we have h(u) = u. Moreover, we have u € Z(N). In view of the previous
proposition it suffices to show that [g,h] = idy. As G is of nilpotency class at most 2, we

have [g(n)n~t,n'] = [[zg,n71],n] =1 for all n,n’ € N. We compute the following:
g, h)(n) = ghg (h(n)n""n)
= gh (g (h(n)n™") g(n) 1n) = gh (h(n)g(n)n™")
=g (nh (g(n)n™")) = g (ng(n)n™") = g (g(n))
=n
Thus [g,h] = idy. For the nilpotency class it suffices to show [a,[b,c]] = 1 for a,b,c €

{zg, 21} UN by Lemma [4.1.1)] If x4 ¢ {a,b,c} the claim follows by the nilpotency class
of H. Using similar arguments we obtain the result if z;, ¢ {a,b,c}. Thus we can assume
zg,xp € {a,b,c}. If {xy,xp} # {b, c}, the claim follows from the fact that [x5,n~!] € Staby/(g)
and [z4,n71] € Staby (k) for all n € N. Thus we assume {b, c} = {xg, x5 }. Since [b, c] = u*!
is contained in Z(G) and in Z(H) the claim follows. O

4.2. Pre-commutator blueprints

A pre-commutator blueprint of type (W, S) is a family M = (Mfﬁ) Gap)er of subsets Mgﬁ C
(a, B) ordered via <g satisfying (CB1), (CB2) and the following axiom:

(PCB) For every G € Min(w) the canonical homomorphism Ug — U,, is an isomorphism.

Let G = (do,...,dn = c0y...,Ck = €0,...,6p) € Min and let (aq,...,Qp1k+rm) be the
sequence of roots crossed by G. We define the group U, .. .,) ¢ Via the presentation

Vi<i<k: uan“:l,
U, =(u 7} ) .
(co,-sck),G Q41 y Yoy, 4 g | V1<i< j < k- [UanH’UanH] = HWEM Uny
Fntir¥ntj

(4.2.1) Remark. In Axiom (PCB) we do not require that |U,| = 24*). We will see in
Lemma [(4.2.2)| that under some mild conditions, a pre-commutator blueprint is a commu-
tator blueprint. Moreover, we remark that Ug ¢ = Ug (cf. Lemma |(2.1.4)).
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4.2. Pre-commutator blueprints

For every an+1 <g a <g f < aptir € ®(G) we have Mgﬂ C(a,B) C{ant2,---sQntk—1}-
We call a pre-commutator blueprint 2-nilpotent, if for all G = (dy,...,d, = coy...,ck =
€0, -+ s em) € Min, api2 <g a <g apyx—1 the following hold in U, ¢ 1).6:

(2-nl) H”/EMgan+k (1_[561\45”“77 UE) Uy = HWEJ\/IE%H_IC Uqys
2-n2 (u U > = Uny;
( ) HweMgn+1ch g H5€M§fan+k 4 HyeMgmeW v
’ d Z (U
2-n3 < U ) =1 an U~y € ;
( ) HvGMgLH’anJrk 0l HyeMgnH,%H Y ( (01,---7Ck—1)7G)7
2-n4 < U >u = U~
( ) HWGMQHL%M HaeMgMM 6 ) Uy HyeMgnH,anJrk v
2-n <u U ) = Uny.
(2-n5) HyeMgnH@Hk ’YH6EM$an+k 4 HWGM&H,%M g

Condition (2-n1) will imply that [ua,.,, [Ua, Ua,,,,]] = 1 holds and Condition (2-n2) that
(Y i15> Uals Ua, ] = 1 holds. Conditions (2-n4) and (2-n5) imply that [uq,,,Uq, ] com-
mutes with ug, , and ug, . Let M be a commutator blueprint of type (W,S). Then
M is a pre-commutator blueprint of type (W,S) by Lemma It is not hard to see
that if the groups U, of a commutator blueprint are of nilpotency class at most 2, then the
pre-commutator blueprint is 2-nilpotent (cf. Lemma .

(4.2.2) Lemma. Let M be a 2-nilpotent pre-commutator blueprint of type (W, S). Then M
is a commutator blueprint of type (W, S) and the groups U,, are of nilpotency class at most 2.

Proof. Let w € W,G = (do,...,dy, = co,...,c;) € Min(w) and H = (cg,...,cx). We show
by induction on k > 0, that Uy ¢| = 2F and Un,c is of nilpotency class at most 2. This will
finish the claim as Ug ¢ = Ug = U, by (PCB). We remark that the induction is on the length
of the gallery H and not on the length of the gallery G.

{1} k=0
If £ < 2, the claim follows as Ug,g =  Zo k = 1. Thus we assume k > 2. Let G’ =
ZQ X ZQ k=2

(do,...,dn = Co,...,Ck_l),Gl = (CO,...,Ck_l),GQ = (Cl,...,ck) and K = (Cl,...,ck_l).
Using induction, the groups Ug, ¢/, Ug,,q are of nilpotency class at most 2 and we have

Ucyer| =281, Uk,cr| =272, Uyl =287

Because of (CB1) we have Ug, v = Ug, ¢ as well as Ux o = Ukg. Clearly, Uxg —

Uc,,c;Ug,,c are injective and Ug, ¢ = (Ua,, 1) X Uk,G,Ugy,¢ = (Ua, ) XUk . In particular,
Ugyy 15 Yoy, act on Uk ¢ via conjugation. Using (2-n2) and (2-n1) we deduce

Uty +1 (ua)uoz = H Uy € StabUK,G (uOanrk)
’YGMaGnH,a
—1
—1
Ugy i (Ue) U = (ua Uy iy (ua)) = H Un € StabUK,G(UanH)
FYEMOC":O‘7L+I€

for all @ = a4 with 2 <4 < k—1. Since Uk ¢ is generated by these u, and since Ug, ¢, Ug,
are of nilpotency class at most 2, it follows by induction that for n, n’, uq € Uk, ¢ with n = n'u,
we have

-1 -1

Uory 41 (n)n™" = Uery 41 (n/)uan+1 (Ua)Ua (n/)
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4. Construction of the groups U,

= uan+1 (TL/) [uan+1 ) ua] (n/)_l

= Uani1 (n/) (n/)iluan+1 (ua)ua € StabUK,G (uan_%)
nuan+k (n_l) = n,uauan+k (ua)uan+k ((n,) _1)
= n/ [’LLO“ uan+k]uan+k ((n/)il)

- uauan+k (uoé)n/uan+k ((n,>_1) € StabUK,G (uan+k)

In particular, uq, , ,(n)n~! = (nua,,, (n_l))_1 € Stabyy, ¢ (Uay,,,)- Using (2-n3), (2-n4) and
(2-n5), Corollary implies that the mapping

Lo x Ug,g X Ly = Ugy 6 *Uk.c UGa, ¢/ ({[Uan i1 Y] = H Uy))

’ye]v[giH»l Otk

is a bijection and the latter group is of nilpotency class at most 2. Moreover, the latter group

is isomorphic to U, .. ¢,),¢ and we are done. O

(4.2.3) Theorem. Let (W,S) be right-angled (i.e. mg € {2,00} for all s #t € S) such
that every connected component of the Coxeter diagram of (W, S) is the complete graph. Then
each Weyl-invariant 2-nilpotent pre-commutator blueprint of type (W, S) is integrable.

Proof. The previous lemma implies that M is a commutator blueprint of type (W, S). Let k be
the number of connected components of the Coxeter diagram of (W, S) and let Jy,...,Jxy C S
be the vertex sets of the connected components. Then W = (J;) x --- x (Ji). Let {a, 5} € P.
If @ = was, B = vay and mg = 2, then (a,8) = 0. Consider the commutator blueprint

M; = <M3ﬁ>(a,a,mezi’ where T; = {(G, . 8) € T | G € Uye(s,y Min(w)} of type ({J;), J;).

Then M,; is integrable by Corollary |(2.2.15)| Let D; = (G, (U}) 4eq: ) be an RGD-system of
type ((Ji), Ji) over Fy such that Mp, = M;. Then Gy x --- x G}, yields an RGD-system D
such that M = Mp and hence M is integrable. O

(4.2.4) Theorem. Let (W, S) be a union of Ay diagrams. Let M be a Weyl-invariant pre-
commutator blueprint of type (W, S). Then the following are equivalent:

(i) M is integrable.
(1) M is 2-nilpotent.

Proof. Let M be a Weyl-invariant pre-commutator blueprint of type (W, S). Assume that
M is integrable. Then there exists an RGD-system D = (G, (Uy)acs) of type (W, S) over
Fy such that M = Mp. Let k be the number of connected components of the Coxeter
diagram of (W, S) and let Jy,...,Jr € S be the vertex sets of the connected components.
Then W = (J;) x --- (Jg) and we can write every w € W as a product vy - - - vg, where each
v; is contained in (J;). In particular, Uy, = U,, X --- x U,,. It is a direct consequence of |21,
Theorem A] that each U,, and hence U, is of nilpotency class at most 2. In particular, Mp
is 2-nilpotent. The other implication follows from the previous theorem. O

(4.2.5) Definition. Suppose that mg = oo for all s #t € S. Let s At € S.

(a) Let 1 < k € NJJ C {1,...,k}, let « # B € &, and let G € Min be such that
a,f € ®(G). Assume that there exists a minimal gallery H = (cg,...,c) of type
(s,t,...,s,t,8) such that {co,c1} € O, € o, {cg_1,c} € 0B, cxk—1 € f and s appears
k+ 1 times and ¢ appears k times in the type of H. Let (aq,...,ax) be the sequence of
roots crossed by H. Then we define

Mk, J, (s,1))S 5 == {az; | j € J}
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4.2. Pre-commutator blueprints

(b) Let 0 # K C N and let J = (Ji),cx be a family of subsets Jp C {1,...,k}. For
a# B € &y and G € Min with a, 8 € &(G) we define

MK, T, (s,))5 5 = | Mk, Ji, (s,£)S 5

keK
Moreover, we define M (K, J,(s,t)) = (M(K, J, (s, t))g’ﬁ)(G et

(4.2.6) Theorem. Let s #t € S, let ) # K C N and let J = (Jy),cx be a family of subsets
Jp C{1,...,k}. Then M(K, T, (s,t)) is an integrable commutator blueprint.

Proof. We abbreviate M := M(K, 7, (s,t)). By definition, M satisfies (CB1) and (CB2). As
[Min(w)| = 1 for every w € W, (PCB) is also satisfied and M is a pre-commutator blueprint.
Let @ € ® be a root. Because of the type of (W, S) we deduce that |[0a| = 1 (cf. Lemma
[(1.4.2)), and we call 6(c,d) € S the type of o, where {c,d} € da. Now let a # 8 € D be
such that MG # (). Then «, 3 are roots of type s and every v € MGB is a root of type t.
Now it is stralght forward to verify that M is 2-nilpotent. Moreover, M is Weyl-invariant, as
Mg does only depend on the existence of a suitable gallery H and not on G. Now Theorem
yields the claim. O

(4.2.7) Remark. 1t is mentioned in [I6, Remark before Lemma 5] that Abramenko and
Miihlherr constructed an example of an RGD-system of right-angled type and of rank 3 which
does not satisfy property (FPRS). The author of this thesis is not aware of any publication
that provides the existence of RGD-systems of rank at least 3 which do not satisfy property
(FPRS). We have defined this property in Section [L.7

(4.2.8) Corollary. Let s #t € S and for every n € N we let J, C {1,...,n} with 1 € J,.
Let D = (G, (Un)aco) be the RGD-system associated with M (N, (Jn),cn, (s,t)). Then D
does not satisfy property (FPRS).

Proof. Assume D would have property (FPRS). Let G,, = (co, ..., ¢,) € Min(w) be of type
(s,t,s,t,...) with £(w) = n (i.e. Gp has type (s) and G2 has type (s,t)) and we define
an = ag,. Then lim; o £(1y, 9;—1) = oo. As D has property (FPRS), there exists
no € N such that for all i > ng the root group U,,, , fixes the ball B(c,2) pointwise. But
then [ua,, tay, ] = []jc, Uas, would also fix B(c,2) pointwise, which is a contradiction, as
1€ J;. O
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Part III.

Faithful commutator blueprints of
type (4,4,4)
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5. Buildings of type (4,4,4)

In Chapter [5| we assume that (W,.5) is of type (4,4,4) and that S = {r,s,¢}. This chap-
ter contains many auxiliary results and proofs about roots in the Coxeter buildings of type
(4,4, 4). Moreover, we prove that any RGD-system of type (4,4, 4) over F5 contains a suitable
subgroup, which is a sequence of groups.

5.1. Coxeter buildings of type (4,4,4)

(5.1.1) Lemma. Suppose w € W with {(ws) = l(w) +1 = E(wt) Then l(w) + 2 €
{l(wsr), L(wtr)}. Moreover, if L(wsr) = l(w), then ((wsrt) = L(w) +

Proof. Let (co = 1lw,...,ck—20 = w,cx,_1 = wS,c = wst) be a minimal gallery of type
($1,.-+,Sk—2,8,t). Then we have sy_o = r. We assume that ¢(sj---sp_osr) = k — 2 =

O(sy - Sg—otr). Then l(sy---sg_35) =k —4 = £(s1---sk_3t). Let R be the {s,t} residue
containing cy_s, let T" be the {t, r}-residue containing c;_3 and let P be the t-panel containing
cx—3. Then P = RN T and Proposition yields projr 1y = projp ly, which is a
contradiction to the type (4,4,4). Thus the first claim follows.

Now suppose that £(wsr) = f(w). Assume that ¢(wsrt) = f(w) — 1. Then Pi(cr—1) =
R{s,t} (ck—1) N R{r,t}(ckfl) and g(lw’projR{m}(Ck—ﬂ ly) < l(w) = 5(1w,prOjR{Syt}(Ck_1) 1w ).
Again Proposition yields a contradiction and we have £(wsrt) = f(w) + 1. O

(5.1.2) Lemma. Suppose w € W such that {(ws) = ¢(w)+1 = {(wt) and suppose w' € (s,t)
with £(w') > 2. Then L(ww'rf) = L(w) +L(w") + 1+ L(f) for each f € {1w,s,t}.

Proof. At first we show the claim for w’ = st. If {(wsr) = ¢(ws)+1, then £(wstrt) = L(wst)+2,
as l(wst) = L(ws) + 1. As l(wstr) = l(wsts) = l(wst) + 1, we deduce L(wstrf) = {(w) +
3+ U(f) for f € {1lw,s,t}. Thus we can assume ¢(wsr) = f(w). By Lemma we
have (wsrt) = £(w) + 1 = £((wsr)r). This implies (wstrt) = ¢(w) + 4. Moreover, we have
l(wstr) = (wsts) = f(w) + 3 and hence ¢(wstrs) = ¢(w) + 4. Using similar arguments, the
claim follows for all w’ € (s,t) with ¢(w’) > 2. O

(5.1.3) Lemma. We have tstras N stsray N (W\{rgs1yr}) C rispon

Proof. Let 11,y # w € tstras N stsray be an element. We have to show that r, yw € ay,
ie. l(rrisnw) = l(rgnw) + 1. We distinguish the following cases:
(1) L(w™t) +2 € {L(wts), l(w st)}: Then l(w trypn) > K(projR{ -

we deduce £(rrs nw) = L(w g nr) = Lw try ) + 1 = L(rgs yw) + 1 from Lemma
(5.1.2)

w) + 2 and

(i) f(w=ts) = L(w™!) +1 and f(wtst) = £(w™!): By assumption, we have w € tstras and
hence £ (s(rtstw)) = {(rtstw) + 1. This implies £(w~'tstrs) = £(w~'tstr) + 1 and, in
particular, K(w_lr{&t}r) = E(w_lr{s’t}) + 1.

(iii) (w™'t) = L(w™') + 1 and £(w™'ts) = £(w™'): This follows similar as in the previous
case.
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(iv) L(w™ls) = L(w™ ) =1 =L(w 1) If U(rrisnw) = L(rsnw)+1 there is nothing to show.
Thus we suppose £(rr(, yw) = £(rg; yw) — 1. Assume that £(w ™ stsr) = ((w ™ sts) — 1.
Then we would have f(w™!stsrt) = f(w~'sts) — 2, which is a contradiction to the
assumption £(trstsw) = f(rstsw) + 1. Thus we have f(w™lstsr) = f(w tsts) + 1
and {(w™tstsrt) = L(w~sts) + 2. Similarly, we deduce ¢(w™tstrs) = L(w™tst) + 2.
This yields K(wflr{&t}ru) = ﬁ(wflr{sﬂg}r) + 1 for each u € S = {r,s,t} and hence
w_lr{s’t}r = 1. Since w # 1y, by assumption, we have a contradiction and we are

done. O

(5.1.4) Lemma. Let H = (do,...,d4) be a minimal gallery of type (r,s,t,r) and let € @
with {do,d1} € 9B and do € B. Then B Sy for each v € {aqy,....d3)» Udo,....ds) } -

Proof. We use the canonical linear representation of (W, S) (cf. [2, §2.5]). Let V := R be
the vector space over R with standard basis (es)scs and let (-,-) be the symmetric bilinear

form on V given by
. 1 if s=t,
(es,€t) := —cos < ) =
Mt —5=  else.

Then W acts on V via o : W — GL(V),s — (05: V = V,x — z —2(z,e5)es) and (-,-) is
invariant under this action. Let § and v be as in the statement. Without loss of generality
we can assume (3 = o, and 7 € {rsay,rsta,}. At first, we consider the case v = gy, .ds)-
Then v = rsaz. We compute:

S

(€T7U(TS)(6t)) = (GT,O'T(US(Gt))) = (O'r(er),as(et)) = (—er,et + \/563) = \éﬁ +1>1

Now we assume v = oy,

(er,o(rst)(er))

dy)- Then v =rsta, and we compute:

-----

= (er,0r(0s(0t(er))))
= (0'5(—€r)70t(€r))

(_ _ 2(_67”) 65)63, €r — 2(61”7 et)et)
= —(er,er) +2(er,er)(er, ) + 2(er, e5)(es, €r) — 4(er, e5)(er, er)(es, er)
V2 _\/§+2- V2 _‘/5_4. V2 V2 V2

2 2 22 222
=—1+1+1+V2>1

€r

=—1+2.

Using [2, Lemma 2.77| we obtain that o(rgr,) = co. As {#,7} € P, Lemma and [2]
Lemma 8.42(3)] yield that {,~} is a pair of nested roots and hence 5 C . O

(5.1.5) Lemma. Let s #t € S, let P := {lw,s} # Q € das and let Py := P,..., P, =
Q,R1,..., Ry, be as in Lemma |(1.4.2). If n > 1, then there exists ¢ € {+,—} such that for
every root B € {eay,esay, etas} there exists a non-simple root v of Ry, with  C ~.

Proof. We prove the hypothesis by induction on n. Suppose first n = 2. At first we observe by
Lemma [(5.1.4)| that for each root s # 8 € ®, with Ry € 0?83 there exists a non-simple root
g of Ry such that § C v3. If R = Ry, the claim follows with € := +. If R # Ry, we apply
our observation twice and the claim follows with € := —. Thus we can assume n > 2. Using
our observation there exists ¢ € {4+, —} such that for every root as # 3 € ®, with R € §*3
there exists a non-simple root ’y’ﬁ of R,—1 such that ¢4 C fy’ﬁ. Using induction again, there
exists a non-simple root g of R, such that 7’6 C vp. In particular, we have e8 C y’ﬁ C s
and the claim follows. O
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5.2. Roots in Coxeter systems of type (4,4,4)

Let a € ®, be a root such that k, > 1, i.e. « is not a simple root. Let R € 0%«a be a
residue such that « is not a simple root of R (for the existence of such a residue see the next
remark). Let P # P’ € Oa be contained in R. Then (1w, projp lw) # £(1w,projp lw)
and we can assume that ¢(1y,projp lw) < ¢(lw,projp lw). Let G = (co,...,ck) € Min
be of type (s1,...,Sk) such that cx_o = projp lw, cx—1 = projp 1y and ¢ € P\{cr_1}. For
P#Q :={z,y} €0awithx € aandy ¢ a welet Py =P,...,P, =Q and Ry,..., R, be
as in Lemma[(1.4.2)] We assume that r ¢ {s;_1, s;}.

(5.2.1) Remark. Let a € ® be a positive root such that k, > 1. Let G = (co, ..., ck,) € Min
be a minimal gallery with {cg,_1,ck, } € Oc. Then « is not a simple root of the rank 2 residue
containing cg, 2, Ck,—1,Ck,. In particular, there exists R € 0%a such that o is not a simple
root of R.

(5.2.2) Lemma. Assume that one of the following hold:
(a) Ri # R and {(s1---sp—17r) = k;
(b) n>1.

Then projgr, lw = projp,_, lw.

Proof. Suppose Ry # R and {(sy---sg_17) = k. Then projg co = projp, co and the claim
follows from Corollary . Now suppose that n > 1. Assume that By = R. Then Lemma
implies projg, lw = projp, 1w and the claim follows from Corollary . Now
we suppose Ry # R. If {(sy---sp_1r) = k, the claim follows by Assertion (a). Thus we
can assume that ¢(sy---sp_1r) = k — 2. Let d := projR{Sk’T}(Ck) co be and replace G by a
minimal gallery (dyp = co,...,d,ck—1,ck). Now we are in the situation of R; = R and the
claim follows. O

(5.2.3) Lemma. We have k = ko and the panel P, := P is the unique panel in Oa with the
property that {(1y,projp, lw) = ko — 1.

Proof. We have £(1y,projp lyy) = k — 1. Thus it suffices to show that £(1y, projg lw) >
k —1. For n = 1 we obtain /(1y,projy lw) € {k,k +2}. Now we assume n > 1. Us-
ing the previous lemma we obtain projp lw = projp , lw. Since @ C R, we obtain
{(lw,projg lw) > (1w, projg, 1w) = £(1w,projp, , lw). Now the claim follows by induc-
tion. O

(5.2.4) Lemma. Let v € @, be the simple root of R containing P, and let 6 € ® be the
simple root of R which does not contain P,. Then the following hold:

(a) If R # Ry and {(s1---sp—1r) = k, then « is a simple root of Ry and — is contained in
all roots a # p € &, with R,, € %p.

(b) If R # Ry and (s1---sp_17) = k — 2, then « is a non-simple root of Ry and —v is
contained in the non-simple root of Ry different from a and in the simple root of Ry
which contains P,. If in addition n > 1, then —v is contained in all roots o # p € O
with R, € 9%p.

(¢) If R = Ry and n > 1, then —J is contained in the simple root of Ry different from «
and in the non-simple root € of Ro, where P-. and P, have the same type. If in addition
n > 2, then —0 is contained in all roots o # p € ® with R, € 0°p.
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In particular, if R # Ry or if n > 1, then there exists a simple root of R, say w, and a
non-simple root of R,, say wy, such that —w C w,.

Proof. Suppose we are in situation of Assertion (a). Tt follows from Lemma that —v
is contained in all roots a # p € ®, with Ry € 9%p. Now it follows by induction, that for
every root o # p € ®, with R,, € 9°p, there exists a root a # p’ € ®, with Ry € 0?p’ with
p' C p. Thus (a) follows.

The first part of the Assertions (b) and (c¢) follows from Lemma The second part
follows similarly as in the proof of Assertion (a) by induction. O

(5.2.5) Lemma. We define R, g to be the residue Ry if R # Ry and {(sy - sp_17r) =k — 2.
In all other cases, we define Roq := R. Then there exists a minimal gallery H = (dy =
€0, - - - dm = Projq co,y) with the following properties:

e ay = q;
o There exists 0 < i < m such that d; = projRa’Q 1w .
o For each i+ 1 < j < m there exists L; € 0% with {¢j—1,¢;} C L;. In particular, we
have d; € C(9*a).
Proof. We define

g projp, co if R# Ry and £(sy---sp_17) =k,
projp, co else.

We first show that £(co, projg co) = £(co, projp,, o co) + £(projg, o co,d) + £(d, projg co). By
definition we have R, g = R, p, for all 1 <i < n. We prove the hypothesis by induction on
n. Suppose first n = 1 and that one of the following hold:

e R = Ry;
e R# Ry and {(s1---Sp_17) =k — 2;

Then @ = P C R, @,d = projg co and the claim follows. We prove the case £(s1 -+ sx_17) =
k and R # R; together with the case n > 1 simultaneously. Lemma provides in
both cases projp co = projp, _, co. If n > 1, we have Ry = Ra,p, ;; if n = 1 we have
P,1 = P C Ry and d = projp, , Co- This is used in the third equation below. We
compute the following:

U(co, projp, co) + £(projg, co, projg o)
{(co,projp, , co) + £(projp, , co, Projg co)
f(co projg, , co) + £(proj,, ,, co, d) + £(d, projp, , co)

{(co, projg co) =

+ £(projp,__, co, Projg co)
> {(co, projg,, , co) + {(projg, , co,d) + £(d, projg co)
> {(co, projg co)

Thus concatenating a minimal gallery from ¢g to proj Ra.q C0» @ minimal gallery from proj Ra.q €0
to d and a minimal gallery from d to projg co yields a minimal gallery from ¢g to projg co-
Using Lemma there exists a minimal gallery from d to projg co such that every cham-
ber of this gallery is contained in C(8%«) and for two adjacent chambers there exists a residue
in 9%« containing both. Since R, € {R, R1} C 9%« and, as R, ¢ is convex, each chamber
of a minimal gallery from proj Ra.q €0 tO d is contained in R, ¢ the claim follows. O
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(5.2.6) Lemma. Let 8 € ®(k)\{a; | s € S} be a root such that o(rars) < 0o and R ¢ 0°8.
Moreover, we assume that £(sy ---sx—17) = k. Then one of the following hold:

(a) B = ap, where F is the minimal gallery of type (s1,...,Sk-1,7);

(b) B = ap, where F is the minimal gallery of type (s1,...,Sk—2, Sk, Sk—1,7), and we have
0(sy -+ Sg_asgr) =k — 2.

Proof. Recall that & = ag. As R € 0%, we have a # +£3. By Lemma [(1.4.7)| there exists
C € 0’a N 0?B. By Remark there exists a panel @ € da which is contained in C.
We let projg co # y € Q'. Let P, R; as before (with P, = Q’), let G’ := (co,...,cx—1)
and let G” := (cg,...,ck,ckr1) be the minimal gallery of type (s1,..., 8k, Sk—1). Let E be
a minimal gallery from ¢ to y as in Lemma We can extend this minimal gallery (if
necessary) to a minimal gallery from cg to e € C, where £(e) = {(projo co) + 4. Let Q" € 95
be a panel contained in C' and let projg.co # y' € Q". Let H = (do = co,...,dpm—2 =
projRBYQ” 0y -+ dq = Projgr do, dgt1 := y') be a minimal gallery as in Lemma . Then
m = kg < k. As before, we can extend H (if necessary) to a minimal gallery from d to e. Note
that R # C by assumption, and since R € 0?aq Nd?agr, R ¢ 0?5 we have ag # £8 # agr.

(i) Assume that R = R;: Since R € d%agr N0%a, C € 0?a and agr # +3, Lemma [(1.4.6)
implies C' ¢ 0?agr and hence the gallery H has to cross the wall dagr. Assume that
(do, . ..,dm—2) crosses the wall dagr. Let 1 < j < m—2be such that {d;_1,d;} € dagn.
Then k = ka,, < j < m—2 < k— 2 which is a contradiction. Thus the gallery
(do,...,dm—2) does not cross the wall dagr and hence (dp—1,...,dg+1) has to cross
the wall dagr. Let m < j < ¢+ 1 be such that {d;j_1,d;} € dagr. By Lemma [(5.2.5)]
there exists L € 928 such that {d;j_1,d;} € L. Then L € 8?8 N d%agr and hence
0(rag,rg) < co. As 8%a N dagr = {R} # {C} = 9*aN d?B (cf. Lemma ,
Lemma |(1.4.8)(a) yields 8?a N 9?8 N d0*agr = 0 and hence {rq, ra,,,r3} is a reflection
triangle. Asprojgco € RNB # Pand R ¢ 0%8, wededuce R C 8. Ase € CN(—agr) # 0
and C ¢ 820éG//, we deduce C C (—agr). As L € 82aGu N 82ﬂ, {dj_l,dj} C LNaand
L ¢ 9%a, we deduce L C a. Thus T := {a, —agn, 3} is a triangle. For d € W with
6(ck—2,d) = sgsg—1 we have d € (), v and Lemma ((1.5.3)| implies (| cpv = {d}. If
U(s1---sp—2skr) =k, then kg =k + 1. Thus €(s1 - sp_25,7) = k — 2 and (b) follows.

(ii) Assume that R # R;: Since R € 0%?ag Nd?a and R # C € d%a, Lemmaimplies
C ¢ 0%ag and hence H has to cross the wall dagr. Suppose that (do,...,dy,_2) does
not cross the wall 9?a¢r. Replacing agr by agr in (i) we obtain that T := {a, —ag, 3}
is a triangle. Using Lemma , we have (), o7 = {ck—1} and hence (a) follows.
Now we suppose that (do,...,dn—2) crosses the wall dag and let 1 < j < m — 2 be
such that P’ := {d;_1,d;} € Oagr. Note that 1 <m—2 < k—2 and hence k > 3. Let Z
be the {sx_1,7}-residue containing cx_s. Then g is not a simple root of Z and hence
kag € {k —2,k —1}. This implies k —2 < ko, <j<m—-2<k—2. Lemma
implies P’ = P,_, and hence P’ is contained in Z. Moreover, we have j = m — 2 and
Rpqr = Ryys,3(dj). Both non-simple roots of Rg gr contain —a by Lemma |(5.1.4)} As
one of them is equal to 8, we have a contradiction. O

(5.2.7) Remark. Let v € ®(k)\{as | s € S} be a root such that {«,~} is prenilpotent. If
o(rary) = 00, we have v C a, since ky, < k = ko. This implies v = o, for some
1 <i<k. If o(rqry) < oo, then ~ is known by the previous theorem.
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5.3. RGD-systems of type (4,4,4) over [y

In this section we let D = (G, (Ua)aca) be an RGD- system of type (W, S) over Fy (e.g. the
one in Example . Furthermore, we let V. = (UsUUy) < U, , foralls#teS.
By Example and |2, Corollary 8.34(1)] thls subgroup has index 2 1n U, Moreover,
we let A(D) = (A(D)4+,A(D)—, d«) be the twin building associated with D and Tet (cy,c_) be
the distinguished pair of opposite chambers. We denote for every s € S the unique chamber
contained in A(c4,c_) which is s-adjacent to c_ by ¢s. Then Uy acts on A_ := A(D)_. We
abbreviate ¢ := c_ (for more information we refer to Section [L.7| and [2, Section 8.9]).

(5.3.1) Example. Let D = (G, (Ua)acad) be the RGD-system associated with the split
Kac-Moody group of type (4,4,4) over Fy (for the definition of Kac-Moody groups we re-
fer to [33]). Then D is over Fy. Let {a, 3} be a prenilpotent pair. We will determine
the commutator relations [uq,ug] < (U, | v € (a, B)). For o(rarg) < oo, the commutator
relations follow from Example For o(rqrg) = oo we use the functoriality of Kac-
Moody groups: Let (G, (p;)icr,n) be the system as in [33, Ch. 2]|. For every field K we let

U, (K) = @1 <{ (3 ’f) ke K}) and U_p. (K) = o ({( ! 1) ke K}) be the root

groups corresponding to the simple roots. For every ¢ and any two fields F and K with a
homomorphism f : F — K the following diagram commutes:

SLy(F) 222U s, (k)
l% l%‘

g(F) —Y) ., g(K)

In particular, we have G(f)(Uy, (F)) < Uy, (K) and hence G(f)(Uy(F)) < Uy (K) for each root
a € ® by using (RGD2). Moreover, if f is injective, then G(f) is injective by the axiom
(KMG4) (cf. [33]). Let f: Fo — Fy4 be the canonical inclusion. We have [Uy(F4), Ug(F4)] =1
by [T, Theorem A]. This implies G(f) ([Ua(F2),Us(F2)]) < [Ua(F4),Ug(F4)] =1 and, as G(f)
is injective, we deduce [Uy(F2),Up(F2)] = 1. All in all we have the following commutator
relations, where U, = (uq) for all o € ®:

[Uay ug] = [Lep vy ifo(rars) < oo, [(a, B)] =2
1 else.

5.3.2) Lemma. The following hold:

(5.3.2) g
(a) U(cs,cs.h) > 3 for all h € Vy  \{1,us};
(b) l(cs,ce.h) > 2 for all h €V,

(c) ¢

( {s,t};
(ct

(d) l(cs.h,p) >2 or §(cs.h,p) = s for all p € Pi(c) and h €'V,
(

h,p) > 2 for all p € Py(c) and h € V;  \ {1, ue};

T{gf}’

(e) L(p,q) >2 ord(p,q) = s for all p € Py(c.h),q € Pi(c) and h € V,.{S’t}\{l,ut}.

(f) £p,cs) =2 or 6(p,cs) = s for all p € Py(c.h) and h € Vy ..

Proof. Before we prove the claim, we consider the following picture, where the lower chambers
are all opposite to By and the upper chambers d satisfy ¢,(B4,d) = 1 and the letter in the
triangles denotes the type of the panels:
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Ct. UsUtUg Cg.UtUg Ct.Ug Cg Ct Cg. Ut Ct. UsUt Cg.UtUsUt

CUUsU U5 C.UGULUg  C.Uplg C.lUg c c.ut CUglUt  CUUGUE CUSULUUE

We first show Assertion (a). As ¢ = ¢s.us and upusupis = usupligly, we can assume h €
{ug, upug, ugusug . Now we deduce the following:

(i) £(cs, csup) = 3;
(11) g(csv cs'utus) - E(Cs, Cs,ut) = 3’
(ili) £(cs, cs-urusur) > 3.

To show Assertion (b) we can similarly assume that h € {1, ug, usus, usurus}. We deduce the
following;:

(i) Lles, ) =
(ii) l(cs,cr.us) = L(cs,cr) = 2;
(iii) £(cs,cr-usu) = 4;
(iv) L(cs, crusupug) = (cs, cpusug) =4
For Assertion (c) we can again assume h € {ug, usus, ususus }. We deduce the following:
(i) €(ct-us,p) € {2, 3}
(ii) l(cp.usug, p) = (cpus, poug) € {2,3};
(ili) £(ct.usupus,p) € {3,4};

For Assertion (d) we can again assume that h € {1, u;, ugus, wpusu, }. We deduce the following:

Cs Uptsuy, p) = L(cs upug, pouy) > 3.

For Assertion (e) we can assume that h € {us, usus, usurus}, as Pe(cur) = Pi(c). We deduce
the following:

(i) h = us: We have d(p,q) = s or £(p,q) € {2,3}.
(ii) h = usuy: This follows similar as in the case h = us.
(iii) h = usurus: Then we have ¢(p,q) > 3.

For Assertion (f) we can assume h € {1, us, usus, usurus}, as Pr(c.uy) = P(c). We deduce
the following:
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(i) h =1: Then 6(p,cs) = s or £(p,cs) = 2.

(ii) h = us: We have 6(p,cs) = 6(p.us,cs). As p € Pi(c.ug) if and only if p.us € Pe(c), the
claim follows from (7).

(iii) h = usus: In this case we have £(p,cs) > 3.

(iv) h = usurus: We have 6(p,cs) = d(p-us,cs). As p € P(e.h) if and only if p.ug €
Pi(c.usuz), the claim follows from (7i). O

(5.8.3) Remark. For each root a € @ there exist w € W, s € S with a = wa,. For short we
will write u,s to be the generator of Uyq,.

(5.3.4) Lemma. Let n > 0, let g1,...,9n € {Usr, Uiy, Urt, Upitiyy } and let by, ... hy € VT{s’t}
be such that h; ¢ {l,us} if gi = gi+1 = us and such that hy ¢ {1,w} if gi,g9i+1 €
{tr, Ure, Upptr y. Then gihy -+ - gnhy # 1 holds in G.

Proof. Note that h; € Vien = {1, Us, U, UstUp, Uplls, UsUpls, UplsUp, UsUplsUy = UplsUslls ) AS
well as g, ! = gn. For the proof we consider the action of U; on A_ as in Lemma We
abbreviate § :=d_,c:= B_, Ry := Ry, p1(c) for any e # f € S and we let g := g1hy - - gnhi.
We show the following via induction on n > 1:

o If g, = uy, for some f € {s,t}, then the following hold:
(a) projg,,(c.g) = cf.hn;
(b) £(c.g,projg,,(c.g)) > 0.

o If g, € {up, urius }, then the following hold:
(a) projg,,(c.9) = Projp,(c.h,)(c-9);
(b) £(6(c.g,projg,,(c.g))srs) = {(c.g, projg,,(c.9)) + 3;
(c) £(c.g,projg,,(c.g)) > 0.

Once this is shown, the claim follows, since g = 1 would imply {(c.g,projg_,(c.g)) = 0.
Let n = 1 and suppose g1 € {us,us}. Then we have projg ,(c.up) = ¢y and, in par-
ticular, projg_, (c.g) = (projg,,(c.91)) .h1 = ¢g.hi. Moreover, we have {(c.g,projg_,(c.9)) =
l(c.g,cr.h1) = L(c.g1,cr) > 0. Now we suppose g1 € {Urt, uritier }. Note that 6(c, c.upy) =
d(c, cupugupug) = gy and 0(c, c.upg) = rir. In particular, we have d(c.g1,c) € {rtr,rq. 4}
Let ¢ = projp,()(c.g1). Then, by [2, Lemma 2.15], £(5(c.g1,q)s) = £(5(c.g1,9)) + 1 and hence
q = projp,,(c.g1). This implies projp_ (c.g) = q.h1 = Projp,(.4,)(c.g). Since 6(c.g1,q) € (r,1),
we infer (again by [2 Lemma 2.15]) projp o (c.g1) = projR{Syr}(q)(c.gl). Thus we have
(5(projR{T’s}(q) (c.q1),q) € (r) and hence £(d(c.g,q.h1)srs) = £(d(c.g1,q)srs) = £(c.g1,q9) + 3 =
{(c.g,q.h1). Moreover, £(c.g,projg_, (c.g)) = £(c.g1,q) > 0.

Now we assume that n > 1. We define h := gi1h1- - gn—1hn_1. In both cases we
will show that {(c.h,projg,, 4 (c.h)) > {(c.h,projg  (c.h)). Once this is done it follows
{(c.g,projg,,(c.g)) = L(c.h,projg,, 4 (c.h)) > £(c.h,projg ,(c.h)) > 0 by induction. We dis-
tinguish the following cases, where the first case is a special case which we will use in the
other cases:

(@) gn € {urt, urtuy} and projp, () (c.h) = projg,,(c.h): As above, we deduce d(c,c.gn) €
{rtr,r(n ). We define p := projp, () (c.h) = projg ,(c.h). As p € Pi(c), we deduce
6(p,c.gn) € {rtr,r( 1} We define g := projp,(.4,)(c.h) and note that ¢ € Ry;. Then
qg = projpt(c.gn)projRT‘t(c.h),é(p, q) = rtr and Lemma implies £(6(c.h,q)s) =
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l(c.h,q)+1. Thus ¢ = projR{Syt}(c.gn)(c.h) = projg,, g, (c.h) and hence projp, (.4, (c.g) =
q-9nhn = projg_, (c.g). Since §(p,q) = rtr and p € Py(c) € Ry, we deduce

R
{(c.h,projg,, 4.(c.h)) = £(c.h,q) actine l(c.h,p) +3 P {(c.h,projg_, (c.h))

Moreover, as {(p,projp, (4(c.h)) = 2, Lemma implies that projp (4 (c.h) =
projR{”}(q)(c.h) and hence £(6(c.g,q.gnhyn)srs) = £(d(c.h,q)srs) = L(c.h,q) + 3 =
U(c.g,q.gnhn) + 3.

(b) gn—1 = uy, for some f € {s,t}: Then we have projg ,(c.h) = cs.h,_1 by induction. We
distinguish the following two cases:

(1) gn ¢ {wrs, urrugr}: Then there exists e € {s,t} with g, = ue,. If e = f, we have
hn-1 ¢ {1,uz} by assumption and ¢(c.hn_1,¢c) > 3 by Lemma [(5.3.2)(a). If
e # f, we have {(cf.hp_1,cc) > 2 by Lemma [(5.3.2)[b). Note that in both cases
we have §(cf.hp—1,c.) € (s,t). Using Lemma we obtain £(6(c.h, co)ru) =
0(6(c.hycp.hp—1)d(cfhp_1,ce)ru) = L(c.h,cp.hp_1)+Ll(cf.hp_1,ce)+2 = L(c.h, ce)+
2 for each u € {s,t}. Since §(ce, Ce.Uer) = 7, the previous computations imply that
Celler = projR{Syt}(Ce.uW)(c.h) = Projg.,u..(c.h) and hence c..h, = projg_,(c.g).
In particular, we have {(c.h,projg,, , (c.h)) = l(c.h,ceuer) = (ch,ce) +1 >
U(c.h,cp.hn—1) = L(c.h,projg_, (c.h)).

(i1) gn € {ure, upgug}: We define p := projpt(c)(c.h). If f =1t, we have h,—1 ¢
{1,u;} and hence ¢(c;.hp—1,p) > 2 by Lemma c). By Lemma, we
obtain that ¢(6(c.h,p)r) = {(c.h,p) + 1 and hence p = projg ,(c.h). The claim
follows now from Case @} If f=s, Lemma (d) yields £(cs.hp—1,p) > 2 or
d(cs-hn-1,p) = 5. If £(cs.hpn_1,p) > 2, we obtain p = projg , (c.h) as before and the
claim follows again from Case Thus we suppose that d(cs.h,—1,p) = s. Note
that we have d(c, c.upuiy) = 74y and (e, cupg) = rtr. In particular, we have
0(p,c.gn) € {rtr,r ). I L(0(c.h,p)r) = L(c.h,p) + 1, we have p = projg,,(c.h)
and the claim follows as before. Thus we assume ¢(6(c.h,p)r) = £(c.h,p) — 1.
Then £(§(c.h, p)rt) = £(c.h,p) by Lemma and hence ¢(wu) = ¢(w) + 1 for
w = d(c.h,p)r and each u € {r,t}. Since p € P¢(c) C R,¢ and hence P,.(p) C Ry,
we infer projp (,(c.h) = projp,,(c.h). By definition we have p € Py(c). We define
q = PIOjp,(c.g,)(c.h). Since (p,c.gn) € {rtr,r(, 3} we have £(projg ,(c.h),q) =2
and hence {(c.h,q) = £(c.h,projg ,(c.h)) +2 > £(c.h,projg ,(c.h)) + 1 = £(c.h,p).
Lemma implies ¢ = projg,,(c.g.)(¢:h) = projp,, 4. (c.h) and hence, as p €
Ry, we deduce

{(c.h,projg,, 4. (c.h)) = €(c.h,q) > €(c.h,p) > £(c.h,projg_ (c.h)).

Moreover, we have projp, .4, (¢-9) = ¢-gnhn = projg_ (c.g). We have already men-
tioned that £(projg ,(c.h),q) = 2. Using Lemma |(5.1.1)| Lemma |(5.1.2)| and the
fact that £(6(c.h, projg, ,(c.h))rs) = £(c.h,projg ,(c.h)), we deduce £(6(c.h, z)s) =
((c.h,z) + 1 for all z € R4\ P-(p). Note that P,(projg_,(c.h)) = Pr(p). In partic-
ular, as 6(projg,,(c.h), projp, (g)(c.h)) = t, we deduce projp, (4 (c.h) € R \Pr(p).
Thus we have projg, . (g (c.h) = projp, (4)(c.h) and hence £(5(c.g, q.gnhn)srs) =
0(0(c.h,q)srs) = U(c.h,q) + 3 = L(c.g,qgnhn) + 3.

(€) gn-1 € {urt,urtugr}: We define p := projp_,(c.h). Using induction, we have p =
PIOjp,(c.h,_y)(c-h) and £(6(c.h, p)srs) = £(c.h, p) + 3. We distinguish the following three
cases:
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(i) gn = wy: Then we have h,_1 ¢ {1,u;} by assumption. As h ', & {1,u;} and
p-ht, € Pi(c), Lemma (c) yields £(p,c;) = L(p-h, by b b)) > 2. Us-
ing Lemma we obtain £(d(c.h,ct)ru) = l(c.h,c) + 2 for each u € {s,t}
and hence ci.uy = projg,, ., (c.h), as 6(cs,crugy) = r. This implies ¢;.h, =
projg,, (c.g). Moreover, we have £(c.h,projg,, 4 (c.h)) = £(c.h,ci.gn) > £(c.h,p) =
{(c.h,projg_,(c.h)).

(ii) gn € {urt, uptug }: Then we have hy,—1 ¢ {1,u;} by assumption. We define g :=
Projp, () (c.h). Using Lemma ((5.3.2)(e) we have either £(p,q) > 2 or 6(p,q) = s. If
U(p,q) > 2, we obtain ¢ = projg_,(c.h) by Lemma . If 6(p,q) = s, we have
0(6(c.h,p)srs) = l(c.h,p) + 3 by induction and hence ¢(5(c.h, q)r) = £(c.h,q) + 1.
In particular, ¢ = projg, ,(c.h). Both cases yield ¢ = projg ,(c.h) and the claim
follows from Case [(a)

(iii) gn = usr: Using Lemma |(5.3.2)|(f) we have either ¢(p,cs) > 2 or §(p,cs) = s. If
£(p,cs) > 2, we obtain £(6(c.h, cs)ru) = {(c.h, cs) + 2 for each u € {s,t} by Lemma

(5.1.2)| and hence cs.us, = projg, . (c.h). This implies ¢s.h, = projg_(c.g) as
well as £(c.h, projg,, 4. (c.h)) = l(c.h, cs.gn) > £(c.h,p) = L(c.h,projg_, (c.h)).

Suppose now that §(p, cs) = s. By induction we have £(§(c.h, p)srs) = (c.h,p)+3.
Since d(p, cs) = s, we have p € R;s and hence projg (c.h) € P(p). By Lemma
[(5.1.2)] we obtain £(8(c.h, p)srt) = £(c.h, p)+3. Since §(p, ¢s) = s and §(cs, Cs.us) =
r, we have 0(p, cs.usr) = sr and cs.usy = Projg,, ., (c.h). This implies cs.h, =
projg,,(c.g) and, in particular, £(c.h,projg,, 4. (c.-h)) = l(c.h, cs.gn) > £(c.h,p) =
{(c.h,projg,,(c.h)). O

5.3.5) Theorem. The canonical homomorphism o : Ug xy, Vi 7, Ut — G is injective.
g s Vrisay XUt

Proof. We abbreviate H := Us, x, ‘/:"{s,t} *17, Ugre. We note that any g € I can be written in
the form hogihy - - gnhn, where g; € {ugy, U, Upg, Upgtigy }, hy €V, and n > 0. We reduce
the product as follows:

{s:t}

(a) Suppose that g; = gi+1 = us and h; € {1, us} for some 1 < i <n—1. Then g;h;gi+1 =
hi, as [gi,hi} = 1. Thus

g = hogih1 - gi—1(hi—1hihiy1)giv2hhy2 - - gnhn

(b) Suppose that g;, gi+1 € {usr, Ure, uprugy } and by € {1,us} for some 1 <i <n —1. Then
gihigiv1 = higigi+1, as [gi, h;) = 1. We distinguish the following two cases:

(i) ¢i = gi+1: Then we can write g as before as
g =hogihi---gi-1(hi—1hihiy1)giv2hiva - gnhn

(ii) gi # giv1: Then gigit1 € {wsr, Upe, urgugy } and we can write g as follows:
g = hogihi--- gi—1(hi—1hi)(gigi+1)hiv1 - -~ gnhn

In each step we reduce the number of generators n and hence we can only reduce finitely many
times. At some point we can not apply (a) or (b). In particular, any g € H can be written as
hogihi -« - gnhy, where g; € {usp, U, Up, Upgtisy }, hy € Viiny and if gi = giv1 = us for some
1<i<n-—1,then h; ¢ {1,us} and if g;, gi+1 € {utr, Upt, uppugy } for some 1 < i < n—1, then

hi & {1,u:}.
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Now we assume that there exists 1 # g € ker(¢). Then there exist g;, h; as before such
that g = hogihi---gnhn. As V; , Nker(p) = {1}, we have n > 0. Since ker(p) is a
normal subgroup of H, we have also g1h1 - - - gn (hnho) = hg 'gho € ker(p). But the previous
lemma says that gi1h1 -+ - gn (hnho) is non-trivial in G, which yields a contradiction. Thus ¢

is injective. O
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6. Commutator blueprints of type (4,4,4)

In this chapter we let M = <M g 5) (Cop)eT be a locally Weyl-invariant commutator blueprint
’ ,o,0)€e

of type (4,4,4). Moreover, we let S = {r,s,t}. We will show that M is faithful. For this
purpose we introduce several tree products.

For a residue R of (W, S) we put wgr := projply. Let s # ¢t € S and let R be a
residue of type {s,t}. Then we have {(wgs) = {(wr) + 1 = ¢(wgt). We define the group
Ver{s,t} = (UwpsUUppt) < Uer{s,t}- Using (CB3) and fact that M is locally Weyl-invariant,
the group VwRT{s,t} is an index 2 subgroup of me{s,t} (cf. Remark|(2.1.2))). For each i € N we
let R; be the set of all rank 2 residues R with £(wg) =i (e.g. Ro = {Risy(1w) | s #t € S}).
We let T; 1 be the set of all residues R € R; with {(wgsr) = {(wgr)+2 = l(wgrtr), where {s,t}
is the type of R. Let R € R;\T;1 be of type {s,t}. Then we have {(wgr) € {¢(wrsr), {(wrtr)}.
By Lemma [(5.1.1)| we have {¢(wg), {(wr) + 2} = {{(wrsr),{(wgtr)}. Let u # v € {s,t} be
such that £(wrur) = L(wg). Then Tk := Ry, ;y(wru) # R and Tr € R; by Lemma In
particular, T € R;\7;,1 and we have T,y = R. We define T2 := {{R,Tr} | R € Ri\Ti1}
Moreover, we let 7; := T; 1 U T; 2.

In order to prove that M is faithful, we need to introduce several sequences of groups.
The groups in the sequences of groups will always be generated by elements u, for suitable
a € &y Let &4, 05 C &4 be such that A = (uy | @ € ®y4) and B = (uq | @ € Pp).
Let C = (uq | @ € &4 N ®p) and assume that C — A,C — B are injective. Then we
define A*B := A xc B. We note that in all cases the group C will be such that C' — A and
C — B are injective by definition. Furthermore, we implicitly assume that every edge group
C between two vertex groups A = (uy | @ € ®4) and B = (u, | @ € ®p) in a sequence of
groups is given by C' = (uq | € &4 N Pp).

6.1. The groups Vr and Op

For a residue R € T;; of type {s,t} we define the group Vi to be the tree product of the
sequence of groups with vertex groups

Uszra V”LURT{S,t} ) Uthr

Furthermore, we define the group Og to be the tree product of the sequence of groups with
vertex groups

Vi

WRST {71}

U.

WRT{s,t} >

VthT{nS}

(6.1.1) Remark. For Vi we consider a := wgsa,. Using Lemma we see that —wray C
a. As wpt € (—wray), we deduce wgtr, WRT{sy € @ and hence u, is neither a generator of
Viogr(s,y DOT of Uyptr. Now we consider wras. As —wprta, C wras by Lemma we
deduce that ., ,a, is not a generator of Uyy,r. Using similar methods we infer that Vg is

generated by {uy | Jv € {wrsr,wrs, wrt, wrtr} : v ¢ a}. A similar result holds for Og.

(6.1.2) Lemma. Let R € T;1. Then the canonical homomorphism Vg — OR is injective.
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Figure 6.1.: lustration of the group Vi Figure 6.2.: lustration of the group Og

Proof. Let R be of type {s,t}. We will apply Proposition [(1.8.3)] Therefore we first see
that each vertex group of Vg is contained in the corresponding vertex group of Opg, e.g.
Uwpsr < Vigsr (i} Next we have to show that the preimages of the boundary monomorphisms
are equal and coincide with the edge groups of Vg. For this we compute ae(Ge) N H,(.) and
we(Ge) N Hyey, as ag ' (Hoge)) = ag ' ((Ge) N Hyey) and wy ' (Hyey) = wy M (w(Ge) N Hyey)-
We compute the following:

Uszr N Uszt = Usz = Vwgrsgy N Uszt

Ver{S,t} N Uths = Uth = Uthr N Uths

Now the claim follows from Proposition |(1.8.3) O

6.2. The groups Vi, and Og,

Let R € T;1 be a residue of type {s,t} such that {(wgrsrs) = {(wr) + 3. Then we define the
group Vg s to be the tree product of the sequence of groups with vertex groups

Uszr37 Ver{S’t}a U’thT‘

Moreover, we define the group Ogr s to be the tree product of the sequence of groups with
vertex groups

Uszrs> Vszr{nt}a Uer{SJ} ) Vthr{r’S}
Using similar arguments as in Remark [(6.1.1)| it follows that Vg s and Op ¢ are generated by
suitable u,.

(6.2.1) Lemma. Let R € T;1 be a residue of type {s,t} such that {(wrsrs) = {(wgr) + 3.
Then the canonical homomorphisms Vg — Vg s,Or — ORrs and Vg s — Opr s are injective.
Moreover, we have Vi s xv, Or = Uypsrs *Usy s ORr = ORs-

Proof. Note that Vg s = Uyppsrs *Usy v Vi and Ors = Uwgsrs *U, . Or by Proposition

(1.8.1)| and Lemma |(1.8.7)l Using Proposition [(1.8.3)| and Lemma [(6.1.2)| the claim follows.
In particular, using Remark we deduce

VR,S *VR OR = (Uszrs *Uszr VR) *VR OR = Uszrs *Uszr OR = OR,s O
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Figure 6.3.: Illustration of the group Vg s Figure 6.4.: Illustration of the group Og s

6.3. The groups Hy, G and Jg;,

Let R € T;1 be of type J = {s,t}. We define the group Hp to be the tree product of the
sequence of groups with vertex groups

U,

WRST{r ¢} Vsztr{T,s} ) UwRT{S,t}a VthST{T’t}; UthT{T’S}
We define the group Jr; to be the tree product of the sequence of groups with vertex groups

U.

WRST{y ¢} VwRStT’{nS} ) VthStT{TYS} ) UthST{T’t} ) V’thS’rT{S’t} ) U’th’r‘{T’S}

Furthermore, we define the group G to be the tree product of the sequence of groups with
vertex groups

Uszr{nt} ) Vsztrr{SJ} ) Usztr{r,S} ) Vsztsrr{Syt} )
UwRStS’I‘{T’t} ) VwRT{s,t}TT{s,t} ) U’thSt’l‘{r’s} )
Vthstrr{sﬁt} ) UthST{r,t} ) VthST‘T‘{S’t} ) UthT{r,s}

Using similar arguments as in Remark it follows that Hg, Jr: and Gg are generated
by suitable ug.

(6.3.1) Lemma. Let R € T;1 be of type {s,t}. Then the canonical homomorphisms Hr —
Jrt and Jry — GRr are injective. In particular, the canonical homomorphism Hp — GR is
injective.

Proof. At first we show that Hp — Jg; is injective. Using Proposition [(1.8.1)| the group Jr+
is isomorphic to the tree product of the sequence of groups with vertex groups

UwRST’{T_’t} ) Vsztr{ns} ) V’thStr{ns} ) U'thST{ht} ) VthSTT{s,t}%Uthr{r,s}

We will apply Proposition [(1.8.3) Therefore we first see that each vertex group of Hp is

contained in the corresponding vertex group of the previous tree product, e.g. Uthr{,-,s} <
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Y
¥

I

Figure 6.5.: lustration of the group Hpr

V:
b

e

I

Figure 6.6.: Illustration of the group Jg;
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¥

I

Figure 6.7.: Illustration of the group G

Vthsrr{s, t}%Uth,n (ra}- Next we have to show that the preimages of the boundary monomor-
phisms are equal and coincide with the edge groups of Hgr. As before, we compute a.(G.) N
H,ey and we(Ge) N Hy). Note that if the vertex groups H, and G, coincide, we do not have
to compute the intersection. We compute the following:

Vsztr{r’s} N Uszts = Vwpgsts — WRT{s,t} N Uszts
UwRT{s,t} N Uthstr = Uthst = Vthsr{T’t} N Uthstr

Vthsr{r’t} N Uthsrt = Uthsr = Uthr{ns} N Uthsrt

We determine two preimages in detail. The others will follow similarly. It is easy to see that
Uwptsr C Vthsr{r,t} N Uwptsrt- For the other inclusion we note that VthS,ﬂ{m} N Uwptsrt ©
Uwptsr, as this inclusion holds in Uthsr{”}- Again, it is easy to see that Uy ptsr C UthT{M} N
Uwptsrt- For the other inclusion we have to compute the intersection in VthSTT{S t}%Uthr{r e
Using Lemma [(1.8.5), we deduce Uy ptsrt N Uwptr(,..y © VthSM{S’t}%UthT{M} = Upptsrs- This
yields Uthsrt N Uthr{hs} = Uthsrt N Uthr{r’S} N Uthsrs = Uthsr N Uthr{hS} = Uthsr- We
deduce that Hr — Jp, is injective by Proposition |(1.8.3)

Now we will show that Jr; — GRr is injective. Using Proposition |(1.8.1)| the group G is

isomorphic to the tree product of the following sequence of groups with vertex groups
UwRST{,,.Yt};VwRSt’r’T{Syt} ’ UwRSt’I‘{,,.YS};V’wRStSTT{Syt} ’ U’wRStST’{,,»yt} ;VwRT{s,t}r"’{syt}%UthSt"”{r,s} )
V’LURtStTT‘{Syt};UthST{Tyt} ’ VthS'I‘T{Syt} ) Uthr{hs}

One easily sees that each vertex group of Jg; is contained in the corresponding vertex group
of the previous tree product. Considering the preimage of the boundary monomorphisms the
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following hold:

Uszr{nt} N Usztrs = Usztr = Vsztr{nS} N Usztrs
Vsztr N Usztsrt = Uszts — Vawpgtstr N Usztsrt
{r,s} {r,s}

Vthstr{nS} N Uthstrs = Uthstr = Uthsr{T’t} N Uthstrs

We comment on the equation Uypsts = VthstT{m} N Uwgstsrt- The inclusion C is clear.
Now we consider D. Using Proposition |(1.8.1)| and Corollary [(1.8.5)| twice it follows that
Vthstr{T,S} N Usztsrt C Uer{Syt}Tt N Uer{S’t}rs = Uer{Syt}r- Thus we obtain

Vthstr{Tys} N Usztsrt = Vthstr{Tys} N Usztsrt N Uer{Syt}r = Vthstr{rﬁs} N Uszts = Uszts

As before, Jr — Gp is injective by Proposition [(1.8.3) O

(6.3.2) Lemma. Let R € T;1 be a residue of type {s,t} and let T = Ry, y(wgts). Then
T € Tit2.1, the canonical homomorphism Vi — Hp is injective and we have Jp s = Hprxy, Or.

Proof. Note that T' € T;421. By Proposition |(1.8.1) Uer{s,f,};Vthsr{r,t};Uthr{r,s} — Hp is
injective. Using Proposition |(1.8.3) we deduce that

VT = Uthsts;Vthsr{ht};Uthsrs — Uer{Syt};Vthsr{r’t};Uthr{hs}

is injective and hence also the concatenation Vp — Hp. Using Proposition |(1.8.1), Propo-

sition Remark Lemma and Lemma we obtain the following

isomorphisms (we abbreviate K := Vr *u,, ... Uwgtr,.., )t

JR,t = Uszr{r’t};Vsztr{ms} *Uszts (OT *Uthsrs Uth’r{r,s}>
= Uszr{nt};Vsztr{r’s} *Uszts K xk (OT *Uthsrs Uthr{hS})

= Hp *k (OT *Uy ptsrs UthT{r,s}>

= HR *K (Uth”'{r,s} *Uthsrs VT *Vp OT)

= HR *K (UthT{T,s} *Uthsrs VT) *Vp OT

gHR*VTOT O

6.4. The group Kp

For a residue R € T;1 of type {s,t} we define the group Kp s to be the tree product of the
sequence of groups with vertex groups

Uszr{nt} ) Vsztr{nsp Uer{Syt} ) Vthr{nS}

Using similar arguments as in Remark it follows that K s is generated by suitable u.

(6.4.1) Lemma. Let R € T;1 be of type {s,t}. Then the canonical homomorphisms Or —
Krs, Kry are injective and we have Hgr = Kg s %0, Kr.

Proof. Using Proposition ((1.8.1) the group Kpg, is isomorphic to the tree product of the
sequence of groups with vertex groups

Uszr{nt} ) VsztT{T’S}*Uer{S’t} ’ Vthr{T,S}
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6.4. The group Kpr s

¥

I

Figure 6.8.: Illustration of the group Kpg s

One easily sees that each vertex group of Op is contained in the corresponding vertex group
of the previous tree product. Considering the preimage of the boundary monomorphisms the
following holds:

v

wRST{r,t}

N Usztr = Vwpgrst — U N Uszt’r

WRT{s,t}

As before, Proposition yields that the canonical homomorphism Or — Kp is in-
jective. Using similar arguments, we obtain that Or — Kpg; is injective. We define Cp :=
V. *U, and note that Uyt — Co and Cp — Op are injective. Moreover, the

WRST{r t} WRT{s,t}
computations above imply that Cy — Uszr{rt *Vsztr{T S}*Uw ., is injective. Now the

RT{s
following isomorphisms follow from Proposition [(1.8.1)} Remark [(1.8.6)| and Lemma |(1.8.7)

Hp = (U

szr{ht};Vsztr{ns};Uer{s,t}) *Uthst (Vthsr{ht};Uth'r{hs}>

= (Uszr{'r,t};VwRStr{r,s};Uer{s,t}) *cy Co *Uy st (VthST{r,t};Uthr{r,s})
= (Uszr{nt};Vsztr{T,S}’t’Uer{syt}) *Co KR,t

= (UwRST{r,t};VwRStT{r,s};Uer{s,t}) *c, OR *op KRyt
(Uszr{nt}QVsztr{T’s};Uer{s,t}) *Cy OR) *Og KR,t

<Uszr{r7t}*Vsztr{r’s}*Uer{s’t}> *Co Co *Uwpts VthT{r,s}> *Or KRﬂf

= ( UwRST{r,t};VwRStT{T,s};Uer{s,t}) *Uths Vth’F{T’S}> *OR KR,t
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6. Commutator blueprints of type (4,4,4)

(6.4.2) Remark. Let R € T;1 be of type {s,t} such that {(wgrsrs) = ¢(wr) + 3 and let
T = R{M}(sz). In the next lemma we consider Og s xy;, Or. Similar as in Remark
we will show that if z, is a generator of Or s and y, is a generator of Or, then
To = Yo holds in Ogs *v;, Or. It suffices to consider wray and wgta,. As —wgas C
wprta, and —wgrsa,, —wgrsta, C wgra, we deduce that x, is not a generator of Or for
a € {wra, wrta, }.

(6.4.3) Lemma. Let R € T;1 be of type {s,t} such that {(wgrsrs) = {(wgr) + 3 and let
T = Ry (wrs). Then the canonical homomorphisms Vi — Or s and Kgrs — ORr s xv; Or
are injective and we have Kr s N Or s = ORr in Ogs *vy, Or.

Proof. We have Ogrs = Vr *y, ., UwRT{s’t}%Vth,«{m} by Lemma and Proposition

(1.8.1)l Now Proposition |(1.8.1)| yields that the mapping V7 — Opg is injective. This,

together with Proposition |(1.8.1)] Remark [(1.8.6), Lemma and Lemma yields

the following isomorphisms:

OR75 *Vp Or = (VT *Uszts UwRT{S,t};VthT{T’S}> Vo Or
= thr{r,s};UwRT{S,t} AU psts VT ¥V Or
= “’R"{r,s};UwRT{s,t} KU gsts (VsztT{T,S};UwRST{r,t};VwRSTT{S,t})
= KR,S *Uszrt Vszrr{svt}

For the second claim we note that Or s = Op *Upy psr Uwpsrs by Lemma By Lemma
mwe have that Or — Kp s is injective and, moreover, Uy psrs < Vszrr{ o Considering
the preimage of the boundary monomorphisms the following hold:

OR N Uszrt = Uszr = Uwpgsrs N Uszrt

Note that the first equation follows from the following: Proposition [(1.8.3)| implies Og N
Uszr{r 0= Vszv{ £} and hence ORﬂUszrt = ORmUwRST‘thwRST{ )y ORmUszr = Uszr
As before, Proposmon (1.8.3)|implies that Op ¢ = OR*UwRST Uwprsrs = Kr - Vszrr{s,t}
is injective and that Or s N Kg s = Ogr. This finishes the claim. O

6.5. The groups Er and Up

Let R € T be of type {s,t} and assume that {(wrrs) = £(wgr) — 2. We put R = Ry, ) (wr)
and v’ = wr. We define the group Egr s to be the tree product of the sequence of groups
with vertex groups

Uw/rsr{ht} ) Vw’rsrtr{hs} ) Uw’rsrr{syt} ) Vszrtr{Tﬁs} ) Uszr{Tyt} )
Vsztr{nS} ) Uer{SJ} 9 Vthsr{nt}a Uthr{T,s}

Furthermore, we define the group Ug s to be the tree product of the sequence of groups with
vertex groups
Uw’rsr{r,t} ) Vw/rsrtr{rys} 5 Uw/rsrr{s,t} s Vszrtr{r,S} ) Uszr{nt} ) Vsztrr{&t} 5 Usztr{r’S} ) Vsztsrr{S,t} )
Usztsr{r’t}v Ver{s’t}r'r{&t}’ Uthstr{,,’s} ) Vthstrr{sﬂt}a UthST{,,\’t}v Vthsrr{syt} ) Uthr{ns}

Using similar arguments as in Remark |(6.1.1)| it follows that Er s and Ug s are generated by
suitable u,,.
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6.5. The groups Er , and Ug s
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Figure 6.9.: Illustration of the group Eg s
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Figure 6.10.: Illustration of the group Ug s
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6. Commutator blueprints of type (4,4,4)

(6.5.1) Lemma. Let R € T;1 be of type {s,t} such that {(wgrrs) = {(wg) — 2. Then the
canonical homomorphisms Hr — Er s and Egrs — Urs are injective and we have ER s xp,
Gpr = UR,s-

Proof. The first four vertex groups of the underlying sequences of groups of Er s and Ug s
coincide. Thus we denote the tree product of these first four vertex groups by Fjy. Using
Propositionwe deduce Ep s = Fi*u, .. Hr and Ug s = Fyxy,, ..., Gr. In particular,
Hp — ERs is injective. Using Lemma Proposition , Remarkand Lemma
we infer

UR,S = F4 *UUJRST‘tT GR = F4 *Uszrt'r HR *HR GR = ER’S *HR GR
Proposition |(1.8.1)| yields that Er s — Ugs is injective and the claim follows. O

6.6. The group X3

Let R € T;1 be a residue of type {s,t} and assume that ¢(wpgrs) = ¢{(wr) — 2 and l(wgrt) =
l(wr). Let R' = Ry, o(wg) and let w’ = wpr. Let Xg be the tree product of the sequence of
groups with vertex groups

Uw/rsr{ht} ) Vw/rsrtr{r,s} ) Uw/rsrr{sﬁt} ) Vszrtr{nS} ) Uszr{T,t} )
VwRStT‘{,ﬂ’s}a U Vw Uw

WRT{s,t} )

Using similar arguments as in Remark it follows that Xz is generated by suitable u,,.
(6.6.1) Remark. Let R € T;1 be a residue of type {s,t} such that {(wgrs) = {(wgr) — 2
and {(wgrt) = (wg) and let T':= Ry, o1 (wgt). In the next lemma we consider Xg %y, Or-.
Similar as in Remark we have to show that if z, is a generator of Xp and y, is
a generator of Or, then x, = Yy, holds in Xg xy,, Or. It suffices to consider wgrtras and
wrtsa,. As —wpas C wrtras, wrtsa,, we deduce that x, is not a generator of Xp for
a € {wprtras, wrtsay }.

(6.6.2) Lemma. Let R € T;1 be a residue of type {s,t} such that {(wgrrs) = {(wgr) — 2 and
l(wgrt) = L(wr) and let T := Ry, o (wrt). Then the canonical homomorphisms Vr — Xg
and Er s — Xg *v, Or are injective.

Proof. The first part follows from Proposition and Proposition Let Fg be
the tree product of the first six vertex groups of the underlying sequence of groups of Xpg.

Using Proposition |(1.8.1), Remark |(1.8.6), Lemma [(1.8.7)| and Lemma [(6.1.2)| we obtain the

following isomorphisms:

RtT{r,s} ) IST{r,t}

XR XV OT = <F6 *Uszts Uer{s,t}*Vthr{ns}*Uw’sr{r’t}> *Vr OT
= <F6 *Uszts UwRT{s,t} *Uthst UthSt*VthT{r,s}*lesr{r,t}) *VT OT
=TI *Uw psts UwRT{S,t} * U ptst Vr *Vp Or
= F6 *Uszts UwRT{sJ} *Uthst OT

Y
- ER,S *Uth'rs Vthrr{s’t} O

(6.6.3) Lemma. Let R € T;1 be a residue of type {s,t} such that {(wgrrs) = {(wgr) — 2 and
l(wgrt) = l(wgr). Let Z := Ry, ;1 (wr) be and suppose that Z € Ti—11. Then Xr — Gz is
injective.

Proof. As the last nine vertex groups of the underlying sequence of groups of Gz coincide
with the vertex groups of the underlying sequence of groups of Xp, the claim follows from

Proposition |(1.8.1)] O
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6.6. The group Xg

o

Figure 6.11.: lllustration of the group Xp
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6. Commutator blueprints of type (4,4,4)

6.7. The groups Hg ry,Grry and Jg g,

Let {R,R'} € Ti2. Let w = wg,w = wr and let {r, s} (resp. {r,t}) be the type of R (resp.
R'). Let T = Ry, 4y (w) and T" = Ry, 3 (w'). Then we define the group H{p gy to be the tree
product of the sequence of groups with vertex groups

UwT’I‘tT’T{S’t} ’ VwTT{r,t}ST{r,t} ) Uth"”tr{r,s} ) VthT‘tST{TYt} ) U’th’I‘T{S’t} )
Vwrsr{nt} ’ Uwr{ns} ’ szrr{sﬁt} ’ ler{ht} ’ lertr{hs} ’
UwT/ STTIs ) VwT/ STSUriy 539 UwT/ STST (1} VwT/r{nS}tr{r,s} ’ UwT/ TSTT {5t}
We define the group J(g gy to be the tree product of the sequence of groups with vertex
groups
U’wT’FtT"I‘{SYt} ) VwTT{r,t}sr{r,t} 9 UthTtT{T’S} ) V’th'r‘tS’I‘{Tyt} )
Uthrr{Syt} ) Vwrstr{,«’s} ) Uwrsr{nt} ) Vwrsrr{s’t} 3 szrr{sﬂt} 3 Uw’r{nt} ) Vw’rtr{r’s} 3
U”LUT/ Srr{s,t} I VwT/ STStT'{T.’S} 9 UwT/ STS’I'{T’t} bl VwT’T{T,s}tr{r,s} 9 U'LUT/T'STT‘{S’]‘/}

Furthermore, we define the group G r;y to be the tree product of the sequence of groups
with vertex groups

UwTrtrr{Syt} ) VwTT{r,t}ST{r,t} ’ Uthrtr{Tys} ) Vthrtsr{Tyt} )

Uthrr{Syt} ’ Vwrstv‘{r’s} ; Uwv‘sr{nt} ’ va‘srtr{ns} ; Uwrsm*{&t} ) Vwr{r’s}tr{ns} ) Uwsrsr{T,t} )
szrstr{rys} ) Uwsrr{syt} ) Vw’trtsr{r,t} )

Uw’trtr{hs} ) Vw’r{ht}sr{ht} ) Uw’rtrr{syt} ) Vw”rtrsr{r,t} ) Uw’rt’/‘{hs} ) Vw’rtsr{nt} ) UwT/srT{Syt} )
VwT/ STSUT{y 5} UwT/ STST (1 ¢} VwT/r{ns}tr{T’S} ) U'wT/rsrr{S?t}

Using similar arguments as in Remark [(6.1.1)| it follows that H{g ry, Gr,ry and J(g g are
generated by suitable ug.

(6.7.1) Lemma. Let {R,R'} € T, 2, let {r, s} be the type of R and let {r,t} be the type of R'.
Then the canonical homomorphisms H(gr pry — J(gr ) and J g py — G(r gy are injeclive.
In particular, the canonical homomorphism H(g gy — G{g rr} 15 injective.

Proof. We first show that the homomorphism H(g gy — J(g rr) 18 injective. Using Proposi-
tion |(1.8.1)| the group J(g gy is isomorphic to the tree product of the following sequence of
groups with vertex groups

UwTrtrr{S7t} ) VwTr{Tyt}sr{nt} ) U’thrtr{T’S} ) Vthrtsr{T’t} )
Uthrr{S,t};Vwrstr{ns} ) Uwrsr{r,t} ) Vwrsrr{syt} ) szrr{syt} ’ Uw’r{r’t} ) Vw’rtr{ns} )
UwT/ STTLs ¢} VwT/srstr{T’S} ) UwT/srsr{r,t} ) VwT/T{TYS}tr{T_’S} ) UwT/rsrr{syt}
One easily sees that each vertex groups of H n is contained in the corresponding vertex
y group {R,R"} p g
group of the previous tree product. Note that the first five and the last eight vertex groups

of the underlying sequence of groups of H(g ry and J(g gy coincide. Thus we only have to
consider the preimage of the other boundary monomorphisms. We compute the following:

Uthrr{s,t} N Uthrstr = Uwrptrst = Versr{nt} N Uthrstr

Versr{nt} N Uersrt - Uersr = Uer{T,,S} N UwRTsrt
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6.7. The groups H{R7R/},G{R,R/} and J(Rﬁ/)

=

Figure 6.12.: lllustration of the group Hg gy
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Figure 6.13.: [llustration of the group J(g g

M
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6.7. The groups H{R7R/},G{R,R/} and J(Rﬁ/)

=

Figure 6.14.: lllustration of the group Gyg g/}
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U’er{T’S} N Uszrs = Uszrs = Vszrr{Syt} N Uszrs

As before, Hyp rry — J(r,r) is injective by Proposition [(1.8.3)

Now we show that Jig r/y — G{g,r} is injective. Using Proposition the group
G(g,ry 18 isomorphic to the tree product of the following sequence of groups with vertex
groups

UwTrtrr{S,t} 5 VwTr{Tyt}sr{T’t} ) Uthrtr{ns} ) Vthrtsr{T,t} ) Uthrr{S’t} ) Vwrstr{hs} )
Uwrsr{r’t}‘;(vwv'srtr{ns} ) Uwrsrr{s’t} ;Vwr{ns}tr{,,,s} ;Uwsrsr{,,’t} )
szrstr{rys};\’Uwsrr{s,t};\’Vw’trtsr{,.’t} )
Uw/trtr{r’s};Vw’r{nt}sr{r,t};Uw’rtrr{syt} ) Vw’rtrsr{rﬁt};Uw/rtr{r,s} ) Vw’rtsr{ht} ;UwT/ STT(s,t}?
VwT/ STSUriy 539 UwT/ STST {1 4} VwT/r{Tys}tr{T,s} ) UwT/ TSTT {5t}
One easily sees that each vertex group of J(g gy is contained in the corresponding vertex
group of the previous tree product. Note that the first seven and the last five vertex groups of

the underlying sequence of groups of J g r/y and G(g gy coincide. Thus it suffices to consider
the following preimages of the boundary monomorphisms:

Uwrsr{nt} N Uwrsrts = Uwrsrt = Vwrsrr{sﬁt} N Uwrsris
Vwrsrr{syt} N Uwsrstr = Uwsrs = szrr{syt} N Uwsrstr
Vw’trr‘{s,t} N Uwrrtsr = Uwrgrt = Uw’r{nt} N Uwrtrtsr
Uy N Uwirtrst = Uwrrtr = Vw’rtr{r,s} N Uwrrtrst

Tty

Vw’rtr{r’s} N Uw’rtsr = Uw'rts = Uw’rr{_m} N Uw’rtsr

We should say something to the equation Vwrsrr{s,t N Uypsrstr = Uysrs- Clearly, O holds. For
the other inclusion we obtain similar as in Lemma|(6.3.1)| that

Vwrsrr{syt} N Uwsrstr g Uwr{,,.7s}ts N Uwr{r,s}tr = wrip s}t
and hence Vwrsrv"{syt} N Usrstr = WrSTT {5 1} N Uwsrstr N Uy rart = Vwrsrr{syt} N Uywsrs = Uwsrs-
As before, Jig gy — G{g g is injective by Proposition |(1.8.3) O

(6.7.2) Lemma. Let R € T;1 be of type {s,t} and assume that {(wgrs) = l(wgr) — 2 =
lwrrt). Let T = Ry g (wr) and T" = Ry, 3 (wr). Then {T,T'} € Ti—22 and the canonical
homomorphism Er s — Gr 1y 1s injective.

Proof. Since R € T; 1, we have {T,T'} € T;_22. The second assertion follows directly from
Proposition |(1.8.1), as the vertex groups of Eg s and the vertex groups 7 — 15 of Gr )
coincide. O

(6.7.3) Lemma. Let {R,R'} € T;2, let {r,s} be the type of R, let {r,t} be the type of R,
and let 7 = R{M}(ers). Then Z € Tiy1,1, the canonical homomorphism Vz — Hp riy s
injective and we have Jp py = H(g gy *xv, Oz.

Proof. Note that Z € Tiy1,1. By Proposition|(1.8.1)| Uerr{s,t};Versr{r,t}’A*mesrs — H{r r1y
is injective. Using Proposition [(1.8.3)| we deduce that

~ ~

VZ = UwRT’StS*VwRT’ST{T’t}*UU)RT'STS — U”LURT'T{S’t}*V'LURT‘S'I’{nt}*UwRTS’I'S

is injective and hence also the concatenation Vp — Hyp py. Let F; be the tree product
of the first ¢ vertex groups and let L; be the tree product of the last j vertex groups of
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6.8. The groups C' and C(g g

the underlying sequence of groups of Jr ). Note that by Proposition |(1.8.3)] and Lemma
6.1.2)| the homomorphism F5 *u, . Vz — 5 *U, . Oz i8 injective. We deduce from
Proposition ((1.8.1) and Lemma ((1.8.7)| that F5 *u,, ,,..; VZ *U, s Ls = H{g rry. Note also,

that Uy ,srs — Vz 1s injective. Using Proposition Remark |(1.8.6), Lemma and
Lemma |(6.1.2)| we obtain the following isomorphisms:

J(R,R/) = F5 *Uva-sts VwRTstr{r,s};Uersr{r,t}*VersrT{Sﬁt} *Ugsrs L8

= F5 *UwR'rsts OZ 7‘([Jsz'rs L8

= <F5 *UwR'rsts OZ) *(FE)*U VZ) <F5 *Uersts VZ) *Uszr's L8

wpRrsts

12

(Fs KU prsts VZ *Vy OZ) *(F5*UmesVZ) <F5 KU prsts VZ *Uspsrs L8)

12

(OZ *VZ (F5 *Uersts VZ)) *( H{RvR/}

Fs*Uersts VZ)
%Oz*vz H{R,R’} ]
(6.7.4) Lemma. Let R € T; 1 be a residue of type {s,t} and assume that {(wgrrs) = {(wgr)—2

and {(wrrt) = L(wg). Let Z := Ry, o (wg) be and suppose that Z ¢ T;—11. Let Pz € Ti—22
be the unique element with Z € Py. Then Xr — Gp, is injective.

Proof. As the vertex groups 13 — 21 of the underlying sequence of groups of Gp, coincide
with the vertex groups of the underlying sequence of groups of Xpg, the claim follows from

Proposition |(1.8.1)] O

6.8. The groups C and C(p g

Let {R, R’} € Tia. Let R be of type {r, s} and let R’ be of type {r,t}. Welet T' = Ry, 1 (wg)
and T" = Ry, 3 (wrs). We define the group C to be the tree product of the following sequence
of groups with vertex groups

UwTT{r,t} ’ VthTT‘{S,t} ’ UwR"‘{r,s} ’ VwRST"I‘{Syt} ) UwR/T{T’t} ’ VwT/STT’{S_’t} ’ UwT/T{r,s}

We let C(g gy be the tree product of the following sequence of groups with vertex groups

UwTTtTT{Syt} 9 VwTT{r,t}ST{r,t} ) UwRTtT{r,s} ) VwRTtST{T,t} ) U'wRT’"{s,t} ) V’u}R’I’ST{ht} )

U, Vi U Vi U

wRT{r,s}7 wRSTT‘{Sﬁt}a ’LUR/T‘{T’”J wR/TT{s,t}’ wT/T{r,s}

For completeness, the group C(g/ g) is the tree product of the following sequence of groups
with vertex groups

U’LUTT{T’t} M V'LURTT{S’t} M U’LURT{,,.’S} ) VWRSTT{Syt} ) U'LUR/ T{T’t} 9
VwR/Ttr{r,s}’ UwR/TT{s,t} s VwR/TStT{r,s} 5 UwR’TST{r,t} ) V’LUT/T{r,s}tT{r,s} 9 UwT/rsrr{S’t}

Using similar arguments as in Remark [(6.1.1)| it follows that Cg,C(g /) are generated by
suitable u,.

(6.8.1) Remark. We note that the vertex groups of C(p gy can be obtained from Cg gr/) by
interchanging s and ¢ and starting with the last vertex group of C(g g). Interchanging s and
t and the order of the vertex groups of C' does not change the group C.

(6.8.2) Lemma. Let {R,R'} € Ti2. Then the canonical homomorphisms C — C(g rry, C(r Rr)
are injective and we have Hig pry = C(p ry *¢ C(p/,R)-
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7/

Figure 6.15.: llustration of the group C

Ay
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6.8. The groups C' and C(g g

=

Figure 6.16.: Tllustration of the group Cg g
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Proof. We first show that C' — C(g g/ is injective. Let {r, s} be the type of R and let {r,¢} be
the type of R'. Using Proposition [(1.8.1)| the group C(r,rr) 18 isomorphic to the tree product
of the following sequence of groups with vertex groups

UwTrtrr{S’t} ;VwTT{r,t}sr{r,t} ;U’LURT‘U"{TYS} ) VwRTtST‘{Tyt};Uu)RTT‘{S’t} )

*U. |4 U, |4 U,

’LURT{,"S}7 wRSTT{S,t}7 wR’r{Tﬂf}’ wR/Tr{s,t}’ wT’T{T,S}

|4

WRTST (1 ¢}

One easily sees that each vertex group of C' is contained in the corresponding vertex group
of the previous tree product. Considering the preimage of the boundary monomorphismns the
following hold:

U’LUTT‘{T’t} ﬂ Uu}RTtST = U’LURTt = Vthrr{s,t} m U’LURTtST

Vth'rr{s’t} N Uerst = Uers = Uer{T’S} N Uerst

As before, the claim follows from Proposition [(1.8.3)] Interchanging s and ¢ and the order of
the vertex groups of C(g gy and C', we obtain that C' — C(pr g) 1s injective. Let F7 be the tree
product of the first seven vertex groups of the underlying sequence of groups of H{pr gy and let
L7 be the tree product of the last seven vertex groups of the underlying sequence of groups of
H(g gy Tt follows from the computations above that Ut := U, %V, *U. —

WTT{rt} WRTT{s,t} WRT {r,s}
F7 and Uyignt = UwR,T{ *Vi *UwT/T{T-_s} — L7 are injective. Moreover, Uyigns — C is

rot R/TT{s,t} ,
injective by Proposition|(1.8.1)l Using Proposition|(1.8.1)| Lemmal(1.8.7)land Remark|(1.8.6)

we obtain the following isomorphisms:
H{R7R’} = Iy KUy g srs VwRSTT{S,t} *UwR,trt Ly
= Iy *Uszm Vszrr{Syt} *UwR,trt U’right *Upight L
= C(R,R’) *Upight Lq
= C(r,ry *x¢ C*u,ig, L1
= C(r,r) %0 (C *Upigne L7)

= C(R,R/) *C (Ul(;‘ft *Uszrs VwRSTT{Syt} *UwR/trt UTight *Uright L7>

& C(R,R/) *C (Uleft *Uw gars Vszrr{s,t} *UwR,m L7>

= C(R,R’) *C C(R’,R) O

(6.8.3) Lemma. Let {R,R'} € T2. Let R be of type {r,s}, let R' be of type {r,t} and let
T":= Ry sy (wprr). ThenT' € Ti_11, the canonical homomorphism C (g gy — Ut s is injective
and we have C(p gy N E1r s = C in Upr 5. In particular, for T := Ry n(wr) we have T' €
Ti-1,1, the canonical homomorphism C(g gy — Ur 1s injective and we have C(g pyNETt = C
mn UT#/.

Proof. The claim T,T" € T;_; 1 follows from Lemma (5.1.1)}, as for Z := Ry, 1y (wr) we have
U wgtrs), L(wgzsrt) > l(wz) + 1. We note that (wpts) = l(wp) — 2. We let w' = wy. For
completeness we recall that Urv ¢ is the tree product of the underlying sequence of groups
with vertex groups

Uw’tsr{y.J} ) Vw’tstrr{s’t} ) Uw’tst’r{r’s} ) VwastT’r{S,t} ) UwT/sr{Tyt} ’ VwT/ STUT (1 5}
U’wT/ST‘T{S’t} ) VwT/ STStT{TYS} ) U’U)T/ STST (1 1} VwT/T{r,s}tT{r,s} ) U’wT/’I"ST’T’{S,t} Y

VwT/rsrtr{ns} ) UwT/rsr{T’t} ) VwT/rstr{ns} ) UwT/ TT{s,t}
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As the first eleven vertex groups of Uz s coincide with the vertex groups of C g gy, Proposition
implies that C (g gy — Urv s is injective. Before we show the claim, we have to analyse
the embedding Er/ ¢ — Ups ¢ from Lemma in more detail. Using Proposition [(1.8.1)
the group Uz ¢ is isomorphic to the tree product of the following sequence of groups with
vertex groups

Uw’tsr{ht} ) Vw’tstrr{s,t} ) Uw’tstr{ns} ) VwT/stTT{sﬁt} ) UwT/sr{Tyt} *VwT/srtr{Tys} )
UwT/ STTLs t} *VwT/ STSUT {4 519 UwT/ STST {1 1} *VwT/ T{rs} U {r s} *UwT/ TSTT {51}
VwT/ ST {1 5} *UwT/ TST{rt}) VwT/ ST s} *UwT/ TT{s,t}
One easily sees that each vertex group of E7v 4 is contained in the corresponding vertex group
)

of the previous tree product. As the first four vertex groups of E7v ¢ and U s coincide, it
suffices to consider the following preimages of the boundary monomorphisms:

U.

Wpr Sr{r,t}

N UwT/srts = UwT/srt =V,

Wr STT (5 ¢} N UwT/srts

VwT/srr{Syt} N UwT/srstr = UwT/srs = UwT/r{TYS} N UwT/srstr

UwT/r{T,S} N UwT/rsrts = UwT/rsr = VwT/rsr{T,t} N UwT/rsrts

VwT/rsr{ht} N UwT/rstr = UwT/rst = UwT”"T{s,t} N UwT/T’str
As before, Eqv s — Urps s is injective by Proposition |(1.8.3)l We have known this already
before, but this time we know how the embedding looks like and we can apply Corollary
We deduce from it that in U, the intersection C(p gy N E7v s is equal to the tree
product of the first seven vertex groups of the underlying sequence of groups of E7v ,, which
is isomorphic to C. O

6.9. Faithful commutator blueprints

For two elements wy, we € W we define wy < wy if £(w) +€(w;1w2) = {(w3). For any w € W
we put C(w) := {w' € W | v’ < w}. We now define for every i € N a subset C; C W as
follows:

Co="J (Clrun)UClriy)
S={r,s,t}

For every R € R; of type J = {s,t} we let
C(R) := C(wgstryys)) U C(wgryrtr) U C(wgr rsr) U C(wrtsry. ).

For every {R,R'} € T2 we let C{R, R'}) := C(R) UC(R’). We note that this union is not
disjoint. For ¢ > 1 we define

Ci=Cau |J crm=ciau |J cmyu | CHRRY).

RER;—1 ReTi—1,1 {R,R'}eTi—1,2
Moreover, we define D; := {wrrs4y | R is of type {s,t}, wgs,wrt € Cy}.

(6.9.1) Definition. We denote by G; the direct limit of the inductive system formed by the
groups U, and V,, for w € C;,w’ € D;, together with the natural inclusions U, — Us if
lws) =l(w)+ 1 and Uyps — Vi

RT{s,t}"
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(6.9.2) Remark. Let i € N. Then G; is generated by elements xq , and yq . for w € Cj, w' €
D;, xqw is a generator of Uy, and y, . is a generator of V,,. We first note that for every
w = wWRT{s and every a € @, with wrs ¢ «a, we have Towgps = Yau in Gi. Thus
Gi= (Taw|ac®y,Fweli:wéa).

Suppose s € S and w € W with w ¢ as. Then ¢(sw) = £(w) — 1. Let k := ¢(w) and let
82,...,8; € S be such that w = ssy---s;. Then, as Uss,...s,, — Ussy..os,,, are the canonical
inclusions for any 1 <m < k—1, we deduce x4, s = Tqa, w in G;. Let o € @ be a non-simple
root and let projp 1w # d € P,. It is a consequence of Lemma that 44 = Taw for
every w € W with w ¢ «. Thus G; is generated by {z, | o € &4, Fw € C; : w ¢ a}.

By the definition of the direct limit we have canonical homomorphisms G; — G;11 ex-
tending the identities U, — U, and V,y» — V.. Let G be the direct limit of the inductive
system formed by the groups (G;);cy with the canonical homomorphisms G; — Gy 1. Then
the following diagram commutes for every ¢ € N by definition:

Uw—Uy

G, —= @G

G

i+1

Furthermore, the universal property of direct limits yields a unique homomorphism f; :
G; — Uy extending the identities U, — U, and V,y — Vv < U,. Thus the following
diagram commutes:

Uw— Uy
Gi B Gi+1

& lfi+1
Uy

Again, the universal property of direct limits yields a unique homomorphism f : G — Uy
such that the following diagram commutes for every ¢ € N:

(6.9.3) Remark. By Remark the group G, is generated by the set {z, | @ € 4, Jw €
C;:w ¢ a}. We let z,; be the elements in G under the homomorphism G; — G. Then G is
generated by {zq; |1 € Nya € &4, 3w € C; : w ¢ a}. By construction we have z4,; = Zq,i+1
in G for every i € N. Thus G is generated by {z, | @ € ®}.

(6.9.4) Lemma. The homomorphism f: G — Uy is an isomorphism.

Proof. By Remark [(6.9.3)| we have G = (v, | @ € ®4). We will construct a homomorphism
U, — G which extends U, — U,. For every w € W we have a canonical homomorphism

Uy — G. Suppose w € W and s € S with ¢(ws) = ¢(w) + 1. Then the following diagram
commutes:

Uy —— Ups

N
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The universal property of direct limits yields a homomorphism h : Uy — G extending the
identities on U, — U,. As both concatenations f o h and h o f are the identities on each
generator I, the uniqueness of such a homomorphism implies that foh =idy, and ho f =
idg. In particular, f is an isomorphism. O

(6.9.5) Lemma. For any P € T; we have a canonical homomorphism Hp — G;.
Proof. Suppose S = {r, s,t}. We distinguish the following cases:

P € T;1: Let {s,t} be the type of P. By Remark it suffices to show that C; contains
the elements prT{T,t},wp’l”{s,t},wptT‘{ns}. Note that f(wp) = 4. If i« = 0, the
claim follows. Thus we can assume ¢ > 0 and hence {(wpr) = i — 1. But then
WPST {1} € C(R{ns}(wp)) C C; and wptr{ns} S C(R{r,t}(wP)) C G Ifi =
1, we have wpr(,;3 € Co € Cy and we are done. If @ > 1, we have i — 2 €
{l(wprs), (wprt)}. Without loss of generality we assume ¢(wprs) =i — 2. Then
WpT{s s € C’(R{Tvs}(wp)) C C;—1 C C; and the claim follows.

P € T;o: Suppose P = {R, R'}, where R is of type {r, s} and R’ is of type {r,t}. Moreover,
we define T':= Ry, (wg) and T" := Ry, ) (wpr). Again, and using symmetry, it
suffices to show that wprtrry, sy, wrtrtry, o, wrtrr iy, wrri.s € C;. We define
Z = Ry (wr). Note that ¢(wz) =i — 3 and hence wrrs 4y € C(Z) € Ci—2 C C;.
Moreover, we have {(wr) = i — 1 and hence WrTtrT (g ¢, Wtrtr . oy, Wrtrr{sy €
C(T) C C;. This finishes the claim.

(6.9.6) Definition. (a) The group G; is called natural if the following axioms are satisfied:
(N1) For all w € C;,w’ € D; the canonical homomorphisms Uy, V,,y — G; are injective.
(N2) For every P € 7; the homomorphism Hp — G; from Lemma [(6.9.5)|is injective.

(b) If G; is natural, then we define the tree product Bp := G; xp, Gp for every P € T; (cf.

(N2), Lemma |(6.3.1)| and Lemma |(6.7.1)]).

(6.9.7) Lemma. For i€ {0,1} the group G; satisfies (N1). Moreover, for all s #t € S the
canonical homomorphism VR{S.t}(IW),s — G 1s injective.

Proof. We abbreviate R := Ry, (1w ). Before we prove the claim we show that we have a
canonical homomorphism Vg ¢ — G;. By Remark it suffices to show that srs,tr € C;.
But this is true, as srs,tr € Cy C C.

Now we prove the claim. Let D = (G, (Uqy)aca) be the RGD-system associated with the
split Kac-Moody group of type (4,4,4) over Fy as in Example We first show that we
have canonical homomorphisms U,, — G for each w € C;. Suppose a € &, with w ¢ a. We
show that the canonical mappings x4 — x4 € U, extend to homomorphisms U, — G. Let
{a, B} be a pair of prenilpotent positive roots, let w € C; and let G € Min(w) be such that
a <g f € ®(G). Suppose o(rarg) < co. As M is locally Weyl-invariant, we have

) .f Y :27
M, {éa 8) 11<a B)|
else.

We have seen in Example |(5.3.1)| that [z, 23] = H%Mc:ﬂ u, is also a relation in G. Suppose

now o(rarg) = oo and hence a ¢ 8. As w € C; and i € {0,1}, we deduce (a,3) = 0 and
hence [z, 28] = HvEMG[; uy = 1 does also hold in G by Example((5.3.1)} This implies that the

mappings x, — T4 extend to a homomorphism U,, — G. To show that the mappings x, —
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6. Commutator blueprints of type (4,4,4)

do also extend to a homomorphism Vrr ey = G, we have to show that the subgroup in G
generated by Typays Twgra, has at most 8 elements. As this is true, x, — z, extend to a

homomorphism V,, — G. By definition the following diagrams commute:

RT {u,v}

Uw —— Upu Uwru — Vwgrp.,
g g

The universal property of direct limits yields a unique homomorphism G; — G extending
Uw, Vi — G. Note that Vg s — G is an injective homomorphism by Theorem |(5.3.5) The

following diagram commutes:

VR,s E— GZ'
g
As Vg s — G, the homomorphism Vg, — G; is also injective and we are done. O

(6.9.8) Definition. (a) We let

Cy= U C(risyy) and Dy :={wprry | Ris of type {s,t}, wrs,wrt € C_1}
s#teS

and define G_1 to be the direct limit of the groups Uy, V,y with w € C_1,w’ € D_; as
in Definition |(6.9.1)

(b) For S = {r,s,t} we let
Cr:=C(rys) UC(ryyy) and Dy :={wrrysyy | R is of type {s,t}, wrs,wgrt € C;}

and define G, 4 to be the direct limit of the groups Uy, V,y with w € C,,w" € D, as

in Definition

(6.9.9) Remark. We note that there are nine roots @ € &4 with the property that there
exists w € C_1 such that w ¢ a. Moreover, G_1 is generated by 7, (s, where a € @ and
Tis4y & @ Thus G_; is generated by twelve elements. As . (.4 = Tq, (s in G-1 for
S ={r,s,t}, we deduce that G_1 is generated by nine elements. In particular, the generator
T does not depend on w. A similar result holds for Gy, sy, which is generated by seven
elements.

6.9.10) Lemma. Let s #t € S and let R := Rysn(lw). Then Vrs — G 18 injective
{s:t} , {s;t}
and G_l = G{Sﬂg} *VR,s OR,s-

Proof. As before, the assignments z, — o extend to homomorphisms 7 : Gy, 3 — Go and
Gisry — G-1. Note that srs,tr € C; C Cp and hence we have canonical homomorphisms
¢ Vrs = Gy and ¥ @ Vs = Go. As ¢ = mo o, Lem implies that ¢ is
injective. We abbreviate H := G4} *vy, Ors (cf. Lemma [(6.2.1)). Note that for each
w € C(srs) UC(tr) the following diagram commutes:

Uy — ORps

! |

G{s,t} > G
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The universal property of direct limits implies that there exists a unique homomorphism H —
G_1. Now we want to construct a homomorphism G_; — H. Suppose that S = {r,s,t}. At
first we recall that Gy, 4y is generated by the seven elements {z4¢ | € ®1,3w € C; : w ¢ a}
and OR_s is generated by the seven elements {zq 0 | @ € @4, 3w € {srs,7(, 1y, tr} :w ¢ a}. In
H we have o, = 24,0 for a € {ag, ay, sa, srag, to,. }. Thus H is generated by nine elements
and we have a bijection between the set of generators of H and the set of roots contained
in{ae®, |3JwelC_:w¢a}. Forwe C,,w € D, we have canonical homomorphisms
Uw, Vw — Gy — H. For w € C_1\Cy,w" € D_1\D, we have canonical homomorphisms
Uw, Vi — Og,s — H. The universal property of direct limits yields a unique homomorphism
G_1 — H extending the identities Uy, — Uy < H and V,y — V,y < H.

Note that the concatenations of H — G_1 and G_; — H fix all generators and hence
they must be the identities. In particular, H — G_; is an isomorphism. OJ

(6.9.11) Lemma. For R := Ry, (r) the canonical homomorphisms Vg,Vrs — G_1 are

injective. For Dp := G_1 xy, Or we obtain Dr = G_1 xy, , Ors. Moreover, we have
Go = *xg_, D, where T runs over Rq.

Proof. To show that we have canonical homomorphisms Vg, Vg s — G_1 it suffices to check
that rsrs,rtr € C_;. But this holds by definition.

Let T := Ry, o1 (1w ). By definition we have Or, = VST{M}%UT{T,S}QWT{M}%UNT and Vg s =
Ur{m};VM . 2w *Urtr. Using Proposition m we obtain that Vi ¢ — O, is injective. Using
Lemma and Lemma |(6.9.10), we obtain that each of the canonical homomorphisms
Vik — Vrs = Or, — G_1 is injective. Using Proposition [(1.8.1)} Remark [(1.8.6)] Lemma

Lemma and Lemma we obtain the following isomorphisms:

G_1%vy OR =2 G_1xv,, VRs*vy OrR = G_1 %y, (VR s *vy OR) =2 Go1xv,, ORs

It remains to show that Gg = *¢_,D7. Let R € Ry be of type {s,t}. To see that we
have a canonical homomorphism O — Gy, it suffices to show that rsr,rr,y,rtr € Co. But
this holds by definition. Using Remark and Remark we obtain a canonical
homomorphism *g_,Dr — Go, where T' runs over Ri. Note that xg_, Dr is generated by
the elements 7,251, where C_1 € o € ®; and T € Ry is such that T' = Ry, (r) and
{rsryrrign,rtry € B € ®4. Note that if {rsr,rtr} ¢ B € @4, then 25 = 27 holds in
*q_,Dr. Thus xg_, Dr is generated by the elements z,,x3 7, where C_; € a € ®, and
T € R is such that g is a non-simple root of T'.

Let T := Ry, o (t) and T' := Ry, 43 (r). Then —a, is contained in both non-simple roots
of T by Lemma and, moreover, c, is contained in both non-simple roots of 7”. In
particular, let T # T" € Rq, let a be a non-simple root of T and let 3 be a non-simple
root of 7', then —a C (. This implies that the group *¢_, Dy, where T runs over Ry, is
generated by 15 elements and there is a bijection between the generators of xg , Dy and
the set {a € &4 | Cp € a}. Hence the mappings x, — =, extend to homomorphisms
U, Vo = *xG_, Dy for w € Cy and w’ € Dy. Note that the following diagrams commute:

Uw E— U’LUS U’LURS I VwRT{s,t}
*G_, Dr *xG_, Dr

The universal property of direct limits yields a unique homomorphism Gy — xg_, Dr ex-
tending Uy, Vi — *xg_, Dr. As the concatenations of xg_, Dr — Gy and Gy — *¢_, Dr fix
Zq, both concatenations are the identities and hence both homomorphisms are isomorphisms
inverse to each other. O
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(6.9.12) Lemma. Foralli € N andw € Ci11\C; there exists a unique P € T; withw € C(P).

Proof. The existence follows by definition of C;;1. Before we prove the uniqueness, suppose
P e T; with w € C(P)\C;. We distinguish the following two cases:

P € T;1: Let P be of type {s,t} and let 7, be the non-simple roots of P. As C(P) =
C(wpstry, 1) U C(wprys nrir) U C(wprg, yrsr) U C(wptsry,. ;1) and wprgg ;€ C;
by induction, we infer C(w) N {wpst, wpts} # (. But this implies w € (—v) U (—9).
Moreover, for € € {v,d} we have a unique rank 2 residue R, containing P-.

P € T;o: Suppose P = {R, R'}, where R is of type {r,s} and R’ is of type {r,t}, and we let
v,€ (resp. d,¢) be the non-simple roots of R (resp. R'). As C(P) = C(R)UC(R')
and wRr . sy, WrT ey € C; by induction, it follows similarly as in (i) that C'(w) N
{wgrrs,wgsr = writr,wrrt} # (. Again, this implies w € (—v) U (—¢) N (—0).
Since v = wrras, § = wrray = wrstraz and € = wgrsa,, it follows

yNo N (W\{wpgsr}) Ce < rasNstrag N (W\{sr}) C sa,
& tstras N stsray NV (W\{rgnr}) C resnar

Now Lemmal(5.1.3)|implies W\ ((—v) U (=8) U {wgsr}) = yNdN(W\{wgsr}) C e.
But this implies (—¢) C (—y)U(—0)U{wpgsr} and, as wgrsr € C;, we have w # wrsr
and hence w € (—v)U(—0). Moreover, for ¢ € {7, d} we have a unique rank 2 residue
R. containing P..

In both cases we have w € (—v)U(—0) and hence w ¢ yN¢§. Now we will show that P is unique
with the required property. Assume that P # @ € 7T; does also satisfy the property. Let dp, yp
and 0, vg be the non-simple roots as before. We note that for each € € {0p,yp,dg, g} there
is a unique residue rank 2 residue R, such that € is a non-simple root of R..

Assume 0p = dg. Then we have Rs, = Rs,. If P € 71, then P = Rs,, = R;,. Moreover,
Q € T2 would imply Rs, € Q, which is a contradiction to Rs, € Tin. Thus Q € Tiq
and P = R;, = (. But this is a contradiction. If P € 7;2, then R;, = Rs, € P. In
particular, we have Rs, ¢ Ti1. As Q € T;1 would imply @ = Rs,, we deduce Q € T;2 and
Rs, € Q. But Rs, € PNQ # () implies P = (Q, which is again a contradiction. We infer that
[{p. 7P, 0Q; ’YQ}| =4

We have w € (—d0p) U (—yp) and w € (—dg) U (—v¢g). Assume that non of {dg,dp},
{00,vp}, {70,0r}, {71Q,vp} is prenilpotent. Then [2 Lemma 8.42(3)] yields that each
of {(=dq),dpr}, {(=dq).vr}, {(—9).0r}, {(—@Q),yp} is a pair of nested roots. Since
o(T5pTyp); 0(T55T~g) < 00, we deduce either (=dg) C dp,vp, or else 6p,7p C (—dq) (resp.
(—vq) € ép,yp or op,vp C (—7@)). As 1y € dp Nyp Ndg N g, we cannot have dp,vp C
(—6g), (—yq) and hence (—6q),(—vg) C dp,yp. But this implies w € (—dg) U (—yq) C
dp Nyp, which is a contradiction. Thus one of the previous pairs of roots must be prenilpo-
tent. Without loss of generality we can assume that {dp,dg} is prenilpotent. Note that
P,Q € 7T; and hence k. = i + 2 for every € € {dg,dp,7Q,vp} and {0p,d¢} is not nested. If
{=dp,dq} would be nested, [2, Lemma 8.42(3)] implies that {dp,dg} is not prenilpotent which
is a contradiction. Thus {—dp,dq} is not nested and Lemma |(1.4.7)| yields o(rs,7s,) < oo.

Assume that R, € §%dg. We recall ks, = kso. If Rs, € T, then 6g € {dp,vp}, which
is a contradiction. If Rs, ¢ T;1, then we have dg = dp by definition of the roots dg, v,
which is again a contradiction. Thus we have Rs, ¢ 0%0¢.

Recall that g is a non-simple root by definition. Now we can apply Lemma |(5.2.6)
Assertion (b) would imply dg = yp, which is a contradiction. Thus we are in Case (a). Then
ks, = ks, implies i = 0. Let {s,t} be the type of P and let {r,s} be the type of Q. Then
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we have P = Ry, (lw) and Q = Ry, o (1w) as well we 6 = sa,,7qg = ras. It follows
from Lemma [(5.1.4)] that (—a,) € 6p Nyp and hence w € (—dp) U (—yp) C a,. Note that
C(P) C (—tag) UC(strsr) U{t} C 6g. Lemma[(1.3.2) yields oy € (—0) U sa, and as (W, S)
is of type (4,4,4), we deduce (—ras) C (—sa,) U (—a,). This implies o, N s, € rag. But
then w € o, N dg C 7, which is a contradiction to w ¢ dg N ~yg. Thus P is unique with the
required property. O

(6.9.13) Lemma. Leti € N, P € T; andw € C(P). Then there is a canonical homomorphism
Uw — Gp. In particular, this homomorphism is injective.

Proof. We distinguish the following two cases:

P € Tix Suppose that P is of type {s,t}. Then C(P) = C(wpstry, ) U C(wprggyrtr) U
C(wpryspyrsr) U C(wptsry.y). As Uy, — Uy is injective, we can assume w €
{wpstriy oy, WpT (s Tt WPT (s yTST, WPtsTy. 1} By definition of Gp and Proposi-
tion we see that U, — Gp is injective.

P € T Suppose P = {R, R'}, where R is of type {r, s} and R’ is of type {r,t}. Asin the pre-
vious case we can assume that w € {ersr{Tyt}, WRT {7 s}tSL, WRT {1 53111, WRSTTs 4} U
{WRATT (5 4y, WRIT {111 STS, WRIT (7 4y SES, WRTET gy oy} Again, the claim follows from
the definition of Gp together with Proposition [(1.8.1) O

(6.9.14) Definition. For i € N and P € 7; we let C'(P) C W be the set of all w € W such
that U, is a vertex group of Gp.

(6.9.15) Lemma. For i€ N and P € T;, we have C'(P) C Cj41.
Proof. We distinguish the following two cases:

P € T;1: Suppose that P is of type {s,t}. Then C'(P) C C(P)U{wpsr{. s, wptry, o). By
definition, we have C(P) C (41 and (using symmetry) it suffices to show that
wpsriryy € Ciy1. For i = 0 we have wpsrg,. ;3 € Cp C Cy and we are done. For
i >0 we have wpsry, 3 € C(Ry 5 (wp)) € C; C Cipq and the claim follows.

P € T;2: Suppose P = {R, R'}, where R is of type {r,s} and R’ is of type {r,t}. As in the
previous case it suffices to show that {ertrsts,ertrsrs,err{&t}} C Ci+1. As
Ry (wr) € Ri-1, it follows that {wgrtrsts, wrrtrsrs,wrrrisn} € C; C Cip
and the claim follows. O

(6.9.16) Lemma. For P € T; we let dp,yp be the roots as in Lemma|(6.9.12) Moreover, we
let R, be the unique residue of rank 2 containing P. for e € {6p,vp,0Q,7q}. Then following
hold:

(a) Fori>0 and P # Q € T;, we have (—0p), (—yp) C 69,70Q-

(b) Suppose P € T; and Q € Ti—1. Fore € {6g,vq},¢’ € {dp,yp} we have (—¢) C &' or
R. N R is a panel containing wgy, .

Proof. To prove (a) it suffices to show (—dp) C dg. We see as in Lemma that
[{op, 7P, 00,7Q} = 4. Assume (—0p) € dg. Then {0p,dq} € P. As ks, = ks,, we
have o(rs,rs,) < co. As R, ¢ 8?0p, Lemma M(b) would imply dg = 7p, which is
a contradiction. Lemma (a) implies ¢ = 0 because of ks, = ks,, which is also a
contradiction.

To show (b) we argue similar as in (a). Assume that (—dg) € dp. Then {dg,dp} € P
and as ks, = ks, — 1, we deduce o(rs,7s,) < o0. If R, € 0%5¢, then (as kso = ksp — 1)
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Ps, = Rsp N Rs, 1s a panel. Thus we can assume Ry, ¢ 825Q. Then we can apply Lemma
As (b) does not apply, we obtain again (using ks, = ks, — 1) that Rs, N Rs, is a
panel. O

(6.9.17) Definition. Let i € N and let R € R; be a residue of type {s,t}. We let g be
the set of all non-simple roots of R{r,s} (wgst), R{r,t} (er{&t}), R{r,s}(wRT{s,t}), R{r,t} (wgts).
If P:={R,R'} €T;, then we define p := dr U dp.

(6.9.18) Lemma. Letie€ N,R € R; and let o € dp be a root. Then we have C; C a.

Proof. Let R be of type {s,t} and suppose S = {r, s,t}. We note that C(P) C C; U (—=dp)U
(—vp) for P € T;, where dp,yp are as in Lemma For a residue T' € R; we denote by
Pr € T; the unique element with Pr =T or T' € Pp. We prove the hypothesis by induction
on ¢. For ¢ = 0 it is not hard to see that

Co = U Clrisy) UC(rrisy) Ca
S={r,s,t}

Thus we can assume ¢ > 0 and hence £(wgr) = {(wg)—1. We have C; = C;—1UUpcr,_, C(P).
We denote by ag, Br the two non-simple roots of R and note that agr C « or g C « holds.
We distinguish the following two cases:

(a) L(wrrs) = L(wr) —2 = L(wgrt): Let P:={T,T'} € T;_22, where T := Ry, 5 (wr) and
T = Ry .y (wr). As ag, Br € dp, the induction hypothesis yields C;_s € arNfBr C a.
We observe the following:

C;i=Ciau |J coy=ciu | c)u |J c@cau | €2
Z€eTi—1 ZeTi—2 ZeTi—1 ZeTi—1UTi—2

o 7 € Ti—o: If Z # P, then Lemma [(6.9.16){a) and Lemma |(5.1.3) imply that
C(Z) C Ci—2U(dp Nvp) C aUwprra, UC(wr) C a. Now we consider Z = P. Note
that wras, wpay, (—wrsrtas), (—wrtrsay) C ag, fr and it suffices to show that
WRST 1}, WRT{s,t}, WRIT {5} € Q. As —wpgstrta,, —wgtsrsa, C O, WRT{s1} € &
and roots are convex, we deduce C(P) C a.

e Z € Ti—1: Then Lemma|(6.9.16)(b) implies C(Z) C C;—1 U (agr N Br) C Ci—1 Ua.

We conclude the following:

Ci=C;_1 U U C(Z)gCl-,lLJa:CZ-,QU U C(Z)Uaga
ZeTi—1 Z€Ti—2

(b) l(wr) € {l(wgrs),l(wgrrt)}: Without loss of generality we can assume l(wprt) =
¢(wg). We distinguish the following two cases:

(i) l(wgrs) = l(wr) = €(wgrt): Then L(wgr) =1 and R = Ry 4 (r). Clearly, rri, 4y €

«. Using Lemma we see that a,, —as, —ay C ap,Bgr and, as roots are

convex, we deduce Cy C a. For T := Ry, (lw) and 8 € dr we have —8 C
(=07)U(—y71) € o € @ and hence C(T') C «. Using symmetry it suffices to show

that C(Ryy ) (1w)) € . As srryg 4y, 87874y, 781751y € (—as) C a, it suffices to

show that 7sr,. 4y € a. It follows from Lemma that rsry.y € (—sa;) C a.

(ii) L(wgrs) = L(wg) — 2: Define T := Ry, ,y(wr) and T" := Ry, o (wg). Lemma

6.9.16)((b) implies for P € T,_1\{Pr}:

C(P)C Ci—1U(=0p)U(—yp) CCim1U(arNPr) C CimiUa
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Note that —wrat, C ag,Br and C(wgtry, ) € . As roots are convex and
ar N Br C a, this yields C(Pr) C a. We deduce

C;CCi1Ua=C;_9U U C(P)UO[
PeTi—2

We distinguish the following cases:

(1) l(wgrsr) = l(wg) — 1. If i —2 = 0, then C(P) C « for all P € 7 and
Cy € ar N Br € a by induction. Thus we assume ¢ — 2 > 0 and Lemma

6.9.16)(a) implies for P € T;_o\{Pr} (as wrra, € {07,y }):

C(P)CCi—2U(=0p)U(—yp) C Ci—g Uwgra, C C;—a U«

As ap,Br € @T/, we deduce C;_9 C ar N Br C a by induction. Moreover, we
have wpra, (—wT/r{m}tas) C ag,Br as well as wrsT(, ), WRT {51 € a. As
roots are convex, we conclude C(Pr/) C (agr N Br) U a C «a. This yields the
following:

C; CC;_oU U C(P)Uaga
PeTi—2

(2) L(wprsr) = L(wg) — 3: We let X := Ry, y(wyrs) and YV := Ry, (wpir).
e Suppose that ¢(wprst) = £(wyr) + 2. We will show that C(Px) C «. Note

that wpras C ag, Sr. This yields C(Px) C wpras C ag N Pr C a.

e Suppose that £(wprt) = £(wr) + 2. Again we will show that C(Py) C a.

Note that wprsa, C ag, fr. This yields C(Py) C wprsa, € agpNpPr C a.

Note that Py € T;_3 and ag, Or € @T/. Thus the induction hypothesis implies
Ci—3 Car N pBr C a. We distinguish the following cases:

(aa)

(bb)

T' € Ti—31: Lemma|(6.9.16)(b) implies C'(Z) C C;—_2U(d07» Nygr) C Ci_oU
a for all Z € Ti_o\{Px, Py}. We conclude

U C(P) C(Ci 92U
PeTi—2

We show now that C(T") C a. First note that wgsrryg sy, wrrsryy C

@R, Br and wrrsrsry. n, WRT(sy S «. This yields C(T") C (agrNPr) U

a C a. Now Lemma [(6.9.16)(a) yields the following for P € T;_3\{T"}:
C(P) g Ci—?) U (5T’ ﬂ'yT/) g (0%

C;CCioUaC(C;_3U U C(P)UaCa
PeTi—3

l(wgrst) = L(wg) — 3: Define Z := Ry, y(wgrsts) and note that X, Z €
Ti—2,1. We have already shown that C'(X) C a. Note that —wprtas C

ap,Br. As roots are convex, this implies C'(Z) C . Lemma [(6.9.16)(a)
implies for P € T;_3\{Pr }:

C(P) CCi—sUwgrra, CCi_3U(arNPr) C«
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Now we consider P = Pps. Note that wgra,, (—wgrray), (—wgsrtas) C
aR, Br- Moreover, wrstrt,wgr{s;; € a. As roots are convex, we obtain
C(PT/) C a.

Lemma [(6.9.16)|(b) implies for P € T;_2\{X, Z}:

C(P) CCi—aUwgra, CCi_oU(arNPr) CCiaUa

C; CCi_9U U C(P)UO(QCZ;;«;U U C(P)Uago&
PeT;_» PcTi_3

(cc) l(wprrsrst) = L(wg) — 3: Define Z := Ry, n(wrrsrstr) and note that
Y,Z € Ti—21. We have already shown that C(Y) C a. As before, we note
that —wyprsta, C wpras C ag, fr. This yields as before C(Z) C a, as
roots are convex. Lemma [(6.9.16){ @) implies for P € T;_3\{Pp }:

C(P) C Ci_sUwpgrsas C Ci—3U(agNPr) C «

Now we consider P = Pp/. Note that wgrrsas, (—wgsrtas), (—wpgtrag) C
aR, fr and wrstrt € « as before. As roots are convex, we obtain C'(Pp/) C
a.

Moreover, Lemma |(6.9.16)(b) implies for P € T;,_2\{Y, Z}:

C(P) CCi—aUwpgrsas C Ci—oU(arNPr) C Ci—aUa

C; CC;_9U U C(P)UagCi_gu U C(P)UO&QO& O
PeTi—2 PeTi—3

(6.9.19) Lemma. Let i € N and v’ = wRrr{syy € Diy1\D;. Then there exists a unique
P € T; with wrs,wrt € C'(P) and the canonical homomorphism V,y — Gp is injective.

Proof. We use in the proof a different notation than in the statement. We let w’ = WTT {0} -
Asw' € D;y1\D;, we have {wpu, wpv} € C;. Without loss of generality we assume wypu ¢ C;.
Using Lemma [(6.9.12)] we obtain a unique P € 7; with wpu € C(P)\Cj. Let B € ® be the
root with {wp, wrv} € 0F. Assume that there exists ¢ < j € Nand Z € R; with § € dy.
Then the previous lemma implies C; 1 € Cj C 3, which is a contradiction to our assumption,
as wpv € Cijp1 ¢ 5. We distinguish the following cases:

P € T;1 Suppose that P is of type {s,t}. It suffices to consider the following cases:
wru € {WRSLTsT, WRSLT(; oy, WRStSTIT, WRT {5 /717 }

The symmetric case (interchanging s and ¢) follows similarly. The other cases follow
from Proposition as Vs is either a vertex group of q p, or else is contained in
the vertex group Uy of Gp. If wru = wgstry, 5, then € @ for Z = Ry, 4 (wgst).
If wru = wgrygyrtr, then B € &z for Z = Ry (wrsts). If wru = wgstsrtr,
then 8 € @y for Z = Ry, o (wgst). If wru = wgstrsr, then § € &z, where
Z = Ry (wrs).

P e T2 Suppose P = {R, R'}, where R is of type {r, s} and R’ is of type {r,t}. Using exactly
the same arguments, the claim follows as in the case P € T; 1. O

(6.9.20) Proposition. Assume that G; is natural for some i € N. Then Giy1 = *g,Bp,

where P runs over T;. In particular, the mappings G; — Gi11 and Bp — G;11 are injective
for each P € T;.

100



6.10. Second main result

Proof. Recall from Definition that Bp = G; xg, Gp for every P € 7; and note that
Gi, Gp are subgroups of Bp by Proposition[(1.8.1)] The second part follows from Proposition
and the first part. We let z, be the generators of G;, where C; € o € ., and we let
T, p be the generators of Gp, where C'(P) € o € . We define H; := %, Bp, where P runs
over 7;. Since we have canonical homomorphisms G;,Gp — G;11 extending z, — z, and
Za,p — To (cf. Lemma which agree on Hp (cf. Remark , we obtain a unique
homomorphism Bp — Gj41. Moreover, we obtain a (surjective) homomorphism H; — Gjt1.
Now we will construct a homomorphism G;y1 — H;. Before we do that, we consider the
generators of H;.

Let o € @, and suppose P € T; with C'(P) € a and C; € o. Then z,, is a generator of
G; and z, p is a generator of Gp. Lemma implies that o ¢ <i>p and by definition of
Hp we have x4 = zo,p in Gp. Thus H; is generated by the set {zq,25p |C; L v € 4, P €
Ti,8 € ®p}. Note that if P,Q € T; and a € ® are such that C'(P) Z o, C'(Q) € «, then
P = @. This can be seen by using Lemma [(6.9.16) m )| for i > 0. In the case i = 0 it follows from
Lemma, that if P # @, then —3 C « for all 5 € = CDQ

We need to construct for each w € W a homomorphism U,, — H;. We start by defining a
mapping from the generators x4, of Uy, to H;. Let o € @ be a root and let w € Cjy; with
w ¢ a If C; € a, we define 24, — zo. If C; C o, then w ¢ C; and there exists a unique
P € T; with w € C(P) by Lemma We define x4, — o, p-

If w € C;, then we have a canonical homomorphism U, — G; — H;. Thus we assume
w ¢ C;. As before, there exists a unique P € 7; such that w € C(P). We have already shown
that for each a € ® with w ¢ a and C; € a, we have 2, = x4 p in Bp. Thus these mappings
extend to homomorphisms U, — Gp — H;. Now suppose w' = wRT{s € Dit1 for some
R of type {s,t}. We have to show that the homomorphisms Uy, s, Uyt — H; extend to a
homomorphism V,, — H;. If w" € D;, this holds by definition of G;. If w’ ¢ D;, then Lemma
implies that there exists a unique P € 7T; with {wgs, wrt} C C'(P) and V,y — Gp
is injective. In particular, V,» — H; is an injective homomorphism. Moreover, following
diagrams commute, where R is a residue of type {s,t}:

Uw — Uws sz er{s t}

N \l

7

The universal property of direct limits yields a homomorphism G;11 — H;. It is clear that the
concatenations of the two homomorphisms G;11 — H; and H; — G;41 take x, to itself. Thus

both concatenations are equal to the identities and both homomorphisms are isomorphisms.
O

6.10. Second main result

(6.10.1) Remark. (a) In the next lemma we use the following basic fact about intersections
of subgroups and monomorphisms. Let G, H be groups, let U,V < G be subgroups of
G and let ¢ : G — H be a monomorphism. Then (U NV) = o(U) Nep(V).

(b) In the next lemma we consider D = G_1%v, OR for R := Ry, 11(s) (cf. Lemma/|(6.9.11)).
Similar as in Remark we have to show that if z, is a generator of G_; and y, is
a generator of O, then z, = y, holds in Dg. It suffices to consider o € {sta,, sray}.
We deduce from Lemma that —ay, —a, € a and hence C_1 C a. Thus z, is not
a generator of G_1.
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(6.10.2) Lemma. Let R € Ty be a residue of type J. For s € J the canonical homomorphism
Kps — DR{M}(S) is injective and we have KrsNG_1 = OR in DR{M}(S).

Proof. We suppose J = {s,t}. Note that R = R;(1w). Since Or s = Ugrs*u,, Or by Lemma
(6.2.1)|, we obtain that both homomorphisms Or — Ogrs — G_1 are injective by Lemma
(6.9.10)|and Proposition|(1.8.1)} For T':= Ry, ;y(s) we have that X := Ug, ,*Vstr(, ., = Or
is injective by Proposition Using Corollary |(1.8.4)| we obtain X N Vp = VST{M}%UStS
in O7. Note that Vr — Opg s is injective by Lemma |(6.4.3)l Recall that

OR,S = Usrs;‘/sr{nt} *U,

T‘{s,t};‘/tr{w,s} and Vi = Ugyp %V

T{rt} *Usts

As Op corresponds to the last three vertex groups and Vp is a subgroup of the first three
vertex groups of Og s, Corollary implies that Or NV = Vi, %Usts in Op . We
define Y := V., *Uss. Applying Proposition and Remark , the canonical
homomorphism X xy Or — Or xy,, G_1 = Dr is injective. In particular, Proposition |(1.8.1)

Remark and Lemma yield

*‘/t?“{r’s} ) = Usr{r,t} *‘/str{r,s} *U

X%y Op =2 X xy (Y *Uare U (st}

T{s,t} ;‘/tr{r,s} = KR s

)

This implies that Kr s = X xy Or — Or xy,, G_1 = Dr is injective. Applying Proposition
we obtain Kp ;N G_1 = Opg in Dp. This finishes the claim. O]

(6.10.3) Theorem. The groups Gy and G are natural.

Proof. Suppose j € {0,1}. Then G; satisfies (N1) by Lemma [(6.9.7)] Note that Tj2 = 0 and
hence 7; = 7;1. Thus G; is natural, if Hg — G is injective for each R € 7;1. Let R € T;1
be of type {s,t}. Then Lemma[(6.4.1)] implies that Hr = Kp s 0, Kpr,. Thus it suffices to
show that Kgr s xo, Krt — G is injective. We distinguish the cases j =0 and j = 1.

j=0:Then R = Ry, (lw). By Proposition 1.8.1)| and Lemma @6.9.11 it follows that
Dg, (s)*G_1 DRy, (1) = Go is injective. Using Lemma (6.10.2)|we obtain that Kr s —

DR{M}(S) and Kp; — DR{T (1) are injective and that Kp s NG_1 = ORr (resp. Kp:N
G_1 = Op) in Dpi, () (resp. DR{T s}(t))' Now Proposition [(1.8.3)| implies that the
following homomorphism is injective:

Kprs*op Krt = Dry, ,(s) *a-1 Dry, 1) = Go

j=1: Then R = Ry, (r). We abbreviate T' = Ry, ;1 (rs) and Z = Ry, o (1w). Since Gy is
natural, the mapping Hy — Gy is injective. Using Proposition |(1.8.1)l Remark [(1.8.6)
Lemma Lemma and Lemma we infer
By =Goxu, Gz
= Go*uy Jzr*iy, Gz
(Go*ty Jzr) %0y, Gz
(Goxmy, Hz *vy Or) %4,, Gz
(Go*vy Or) %75, Gz
Thus the homomorphism Goxy, Or — By is injective. By Lemma|(6.4.3)[the mappings
Vr — OR,s and, in particular, Kr s — Op s*v, O are injective. Lemma/|(6.9.11)|implies

that the canonical homomorphisms Vr — Ogr s — Go are injective. Using Proposition
the homomorphisms Og s v, Or — Go xy, Or — Bz are injective. Using

e

1
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Proposition again, we deduce (Opg s *v,, O7) NGy = OR s in Goxy,, Or and hence
Krs NGy < Op, in Go xy;, Or. By Lemma we have Krs N Ogr,s = O in
ORg,s *v; Or and by Remark a) all the previous intersections do also hold in
Bz. Thus we obtain the following in By:

KrsNGo=KrsNGoyNORrs=KgrsNORrs=OR

Let 7" = Ry, o (rt). Replacing s and ¢, we deduce that the homomorphisms Kg; —
ORryt *v,, O — BR{rt}(1W) are injective and Kr; N Go = Krt N Ory = Or. Now
Proposition [(1.8.3)| yields that Krs 0, Krt — BRy, . (w) *Go Br, ,(1w) is injec-
tive. Since Gy is natural, Proposition |(1.8.1)] and Proposition [(6.9.20)| imply that
BR{T,S}(lw) *Go BR{r,t}(l‘/V) — (1 is injective and the claim follows. O

(6.10.4) Lemma. Suppose 2 < i € N is such that G;_o and G;_1 are natural. Then for each
R € Ti1 of type {s,t} with {(wrrs) = {(wr) — 2 the canonical homomorphism Ep s — G; is
injective.

Proof. Let R € Ti1 be of type {s,t} with {(wgrrs) = l(wg) — 2, let T' = Ry, ;;(wg) and
T" = Ry 53 (wr). Suppose l(wgrt) = {(wg) — 2. Using Lemma m, we have {T,7T"} €
Ti—22 and Egrs — Gpqrvy is injective. As G2 is natural, the homomorphism Gr71y —
Gi72*H{T,T/} Gyrry = Byr,rv} is injective by Proposition ((1.8.1)} Moreover, as G; 2 and G
are natural, the homomorphisms Byr 7y — Gi—1 and G;—1 — G; are injective by Proposition
(6.9.20)| This finishes the claim. Thus we can assume that {(wgrt) = {(wr). We abbreviate
Z = Ry, 3 (wgt) and distinguish the following two cases:

(i) T € Ti—11: As G, is natural, we deduce from Proposition [(6.9.20)| that By — G;

is injective. Using Proposition , Remark Lemma @ Lemma
and Lemma [(6.3.2)| infer
Br = Gi-1*py Gr
= Gi-1 %y JTr %7, GT
(Gi-1*Hy JT70) %01, GT
(Gi—1 %1y Hr *v, Oz) gy, G

(Gi1%v, Oz) xgp., Gr

e 1R

I

In particular, each of the mappings G;_1 xv, Oz — Br — G is injective.

(ii) T ¢ Ti—1,1: Then there exists a unique Pr € T;_12 with T' € Pr. Suppose Pr = {T,T"}.

As G;—1 is natural, we deduce from Proposition |(6.9.20)| that Bp, — G; is injective.

Then Proposition [(1.8.1)} Remark |(1.8.6), Lemma |(1.8.7), Lemma [(6.7.1)] and Lemma
imply that

Bpy = Gie1 *H 4, Girr}y

= Gi1 *Hyp oy J (007 %3y Gy}

2

= (Gi—l *H g gy J(T,T”)) *Jop gy GLT, T}

I

(Gz’q *H ooy, B mmy *v OZ) *Jop oy GRT T}

12

(Gic1xv, Oz) %30 oy Gy

and hence each of the mappings G;_1 v, Oz — Bp, — G is injective.
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We conclude that G;_1 xy, Oz — G; is injective. We will show now that Xp — G;_; is
injective. We distinguish the following two cases:

(i) T" € Ti—21: As G;_2 is natural by assumption, the mapping Gp» — Bp — G;_1 is
injective by Proposition [(6.9.20)| and by Lemma |(6.6.3)| the homomorphism Xr — G~

is injective.

(ii) T" ¢ Ti—2,1: Then there exists a unique Py € T;_o9 with 77 € Prr. As G;_2 is natural

by assumption, the mapping Gp,, — Bp,, — G;-1 is injective by Proposition |(6.9.20
and by Lemma [(6.7.4)| the homomorphism Xp — Gp,, is injective.

We conclude that X — G;_1 is injective. Moreover, V; — Xp is injective by Lemma |(6.6.2)
and hence Xp+y, Oz — Gi—1 %y, Oz — G is injective by Proposition [(1.8.3)l Using Lemma
(6.6.2)| again, we infer that Er s = Xg v, Oz and, in particular, Er ¢ — Gj is injective. [

(6.10.5) Theorem. For each i > 0 the group G; is natural.

Proof. We show the claim via induction on ¢ > 0. If ¢ < 1, claim follows from Theorem
(6.10.3)l Thus we can assume that ¢ > 2 and that G}, is natural for all 0 < k < i. We have
to show that G; satisfies (N1) and (N2).

(N1) Let w € C;. If w € C;_1, then each of the homomorphisms U,, — G;—1 — G is injective
by induction and Proposition . If w¢ C;_1, then there exists P € T;_1 with
w € C(P) by definition of C;. Using Lemma and Proposition [(6.9.20)] each
of the homomorphisms U, — Gp — Gj is injective. Now we consider w’ € D;. If
w' € D;_1, induction and Proposition [(6.9.20)| imply that each of the homomorphisms
Vi — Gi—1 — G is injective. Thus we can assume that w’ ¢ D;_1. Asw’ = wrry,yy for
some residue R of type {s,t} with wgrs, wrt € C;, we deduce {wgs, wrt} N (C;\Ci—1) #
(). By definition of C; there exists P € T;_1 such that {wgs, wgt} N (C(P)\Ci—1) # 0.
But then Lemma |[(6.9.19) induction and Proposition imply that each of the
homomorphisms V,, — Gp — G; is injective and (N1) is satisfied.

(N2) To prove that (N2) holds we have to show that Hp — Gj is injective for every P € T;.
Suppose P € T;1 is of type {s,t}. Asi > 2, we can assume that {(wprs) = {(wp) — 2.
Since Hp — Ep is injective by Lemma and Ep, — G is injective by Lemma
the claim follows. Now suppose that P € T; 2. Let P = {R, R'}, where R is of
type {r,s} and R’ is of type {r,t}. Let T be the {r,t}-residue containing wg and let
T’ be the {r, s}-residue containing wr. By Lemma we have T, T" € Ti_11. As
G;_1 is natural, Proposition and Proposition imply that the mapping
Brxg, , By — G is injective. By Lemmawe have H(r riy = C(r.ry*c C(r' R)-
Thus it suffices to show that C(g r) ¢ C(r/,r) = Br *G,_, Br is injective and we will
prove it by using Proposition |(1.8.3)

Using Lemma [(6.10.4)} the mappings Ery, B ¢ — G- are injective. Then Lemma
(6.5.1), Proposition [(1.8.1)] Remark and Lemma yield

Br =Gi-1*ay Gr = Gi1 %gr, Ert *xpy Gr = Gic1 %6y, Urye
By = Gi—1 %1y, G = Gicy %6y E1rs %0, G = Gici xEp, Urs
Lemma |(6.8.3) shows that C(g gy — Ury,C(rr,r) — Ut s are injective and, in par-

ticular, C(g gy = Br,C(g,r) — Br are injective. Moreover, Lemma |(6.8.3)| implies
that C(g ry N E7t = C holds in Ur; and C(g g) N E7v s = C holds in Uz 5. Remark
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(6.10.1){@) implies that these intersections do also hold in Bp and By, respectively.

Corollary now yields:

C(R,R/) N Gi—l = C(R,R’) N G_1 N ETJ = C(R,R’) N ETJ = C in BT
C(RI7R) NGi_1 = C(R’,R) NG_1N Err g = C(RI7R) NEp g = C in By

Now Proposition implies that the canonical homomorphism C( py*c C(r/,r) —
Br xg, , By is injective. This finishes the proof. O

(6.10.6) Corollary. M is a faithful commutator blueprint of type (4,4,4).

Proof. By Lemma we have G = Uy. We have to show that for each w € W the
canonical homomorphism U,, — G = Uy is injective. Note that the following diagram

commutes for every i € N with w € C; (cf. Remark and Remark [(6.9.3)):

Uy, — G;
\l
G

By Theorem |(6.10.5) the group G; is natural for each ¢ > 0. Proposition |(6.9.20)|implies that

the canonical homomorphisms G; — G,11 are injective. It follows from [30], 1.4.9(iii)| that
the canonical homomorphisms G; — G are injective. Since for each w € W there exists ¢ € N
such that w € C, we infer that U,, — G is injective. This finishes the proof. O

(6.10.7) Corollary. Let M be a 2-nilpotent pre-commutator blueprint of type (4,4,4), which
is Weyl-invariant and satisfies (CR1) and (CR2). Then M is integrable.

Proof. By Lemma |(4.2.2)} M is a commutator blueprint and the groups U,, are of nilpotency

class at most 2. By Corollary|(6.10.6), M is faithful and by Theorem |(3.5.1)] M is integrable.
O
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7. Applications

We first construct new examples of integrable commutator blueprints of type (4,4,4). Then
we discuss several applications.

7.1. New RGD-systems

Let D = (G, (Uy)aca) be the RGD-system associated with the split Kac-Moody group of type
(4,4,4) over Fy as in Example |(5.3.1)] Then Mp is an integrable commutator blueprint of
type (4,4,4) by Example In this section we will construct new examples of integrable
commutator blueprints of type (4,4,4).

(7.1.1) Proposition. Let M = (Mo?ﬁ) be a pre-commutator blueprint of type
"/ (G, B)ET

(4,4,4), which is locally Weyl-invariant. Let G € Min and let o, € ®(G) be two roots
such that o # B and o <g B. Assume that the following hold:

(a) Suppose that o(rorg) < oo and let ¢ € ®(G).
(i) If for each ~ € Mo(j,b’ we have € C vy, then ng = Mgé holds for all v,6 € MaGﬂ,
(ii) If for each v € Mgﬁ we have v C g, then Mfs = Mgs holds for all v,6 € Mgﬁ,

(b) Suppose that o(rarg) = oo and suppose G = (do,...,dn = Co,...,Ck = €0,...,€m) such
that {cp,c1} € O and {cx—1,ck} € OB. Then the following hold:

(i) We have H,YeMGB Uy € Z(Ulg,,....dn=co,....c=c0,e;),G) Jor each 0 < i < n and each
0 < j <m. Moreover, we have HveMﬁﬁ Uy € Z(Utey,en1),G)-

2
(i) We have (HVEMS,B u,y) =1inUgc,.cr )G
Then M is 2-nilpotent (cf. Section [{.3).

Proof. Let G = (do,...,dn = co,...,cx) € Min and let (af,...,a] ;) be the sequence of

roots crossed by G. We abbreviate «; := a;z—',-i as well as u; 1= u,, for all 1 <i <k.

(2-n1) Let 1 <14 < k— 1. We have to show that [uq, [u;, us]] = 1. If R € 0201 N 0%y N %y,
then the claim follows. Thus we can assume that 9%aq N 9%a; N 0%y, = (). Moreover,
we can assume that M%ak # 0. If o(re,ra,) = oo, then [u;,uy] commutes with
by Condition (b)(7) and the claim follows. Thus we assume o(rq,rq,) < 0o and hence
|(ai, ax)| = 2. We let M%ak = {4,7} be with § <g 7. Suppose that o(rq,7,) = 00
for each p € (aj,a1). Then oy C p and we have MOCL’VMS = Mo?l’7 by Condition (a)(i)
and we infer

(I w]w=| I ow]w( I wle-

eeME ., \weMZ . weMg"M weMg
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(2-n2)

2
o 11
=" ug Uy | Uy
weMg
(b) (i)
= UsUy = H Ug
eeM&

a;,ap

Now we suppose that there exists p € (o4, ai) with o(rq,7,) < co. Since o; Ny, C p,
we deduce that a1 € «; or oy € o and hence o(rq,7q;) < 00 0r 0(rq,Tqa,) < 0.
Let ¢ € {a;, o} be a root such that o(rq,7:) < 0o. Then o(r.r,) < co by Lemma
. As 0%p N 0% = 9%*a; N 0%y, by Lemma and Lemma (a) and
O*ay N 0%a; N 0%ay = 0, we infer that {ra,,7e,7,} is a reflection triangle. Using
Remark there exist 81 € {ou,—a1},B: € {e,—¢} and 5, € {p, —p} such that
{B1,B:, By} is a triangle. Note that 9%c; N 8%ax N &?p # 0 by Lemma . We let
e € {a;,ap}\{e}. By Lemma [(1.4.8)b) we have ((Bc, 8,) U (=B, B8,)) N{e’, —'} # 0.
As (=B, Bp) = 0 by Lemmal[(1.5.3)] there exists 8 € {¢/, —¢'} such that 8 € (B, B,).
By Lemma [(1.5.6)] we have o(rq,7) = 0o and hence (as {a1,e'} € P) aq C &’. Recall
that 92p N 9% N 9%’ = 9%p N 0%c; N %ay, # (). For R € 0%¢' N 9%p = 9%a; N 0y,
(cf. Lemma[(1.4.8)(a)), we deduce § # RN (—¢') C (—a1) and, as R ¢ 0%aq, we have
R C (—a1). This yields 31 = —ay. For R € 9%a1 N 0% we have ) #a; N R C &', As
0?a1 N % N %' = 0201 N O%a; N %y, = B, we deduce R ¢ 0%’ and hence R C €.
In particular, we have 0 # N R Cene =a;Nag C p. As R ¢ 8%p ({ra,,re,7p}
is a reflection triangle), we infer R C p and hence 8, = p. Lemma implies
(a1,p) = 0. Now let p # o € (a, ). Using Lemma and Lemma [(1.4.8)(b),
we deduce ((Bz, Bp) U (—Be, By)) N {o,—c} # 0. Using Lemma |[(1.5.3)] there exists
B € {o,—0} such that 8, € (B, 5,) as before. Using Lemma we deduce
0(ra,7s) = oo and hence (as {a1,0} € P) a1 C 0. Applying Lemma again,
we deduce oy = —f1 C B, and (aq,8,) = (. In particular, as a3 C 8, N o, we have
B = 0. Since (a1,0) = (a1,v) = 0, we compute

M| I wl|w= ] =

e€EME weMSE eeEME

a;,ap ay,e a;,ap
Let 2 < ¢ < k—1. We have to show that [[u1,u;],ux] = 1. Asin (2-nl) we can assume
?ay N Pa; N %, = 0 and MS . # 0. If o(ra,ra,) = 00, then [u1,u;] commutes
with ug by Condition (b)(i) and the claim follows. Thus we assume o(ry,7q,) < 00
and hence |(a1,05)] = 2. We let MS = {6,7} be with § <g 7. Suppose that

1,04
o(rpra,) = oo for each p € (a1,;). Then p C o) and we have M(SG% = MY, by
Condition (a)(i) and we infer

[ v T ow)=w| I w|w| 1T w
ceMS weME,, weM§ weMS

a1,

2

weM,ﬁak
(b) (i)
=" Usuy = H Ue
eeME
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(2-n3)

Now we suppose that there exists p € (a1, ;) with o(r,ra,) < co. Since (—aq) N
(—a;) € (—p), we deduce o(rq,Ta,) < 00 O 0(Ta,;Ta,) < 00, as otherwise we would
have (—ay) C (—a1) N (—ay) C (—p). Let € € {a1,a;} be a root with o(r.rq,) < 0.
Then o(rer,) < oo by Lemma |(1.5.2)l As 8%p N 9% = §%ay N 9*; by Lemma |(1.5.2)
and Lemma [(1.4.8)(a), and 9%aq N 0%q; N 0%ay, = 0, we infer that {re,rp,rq,} is
a reflection triangle. Using Remark there exist 8. € {e,—¢}, B, € {p,—p}
and B € {ag, —ag} such that {B., Bk, B,} is a triangle. Note that 0%a; N O%a; N
9%p # 0 by Lemma [(1.5.2)] We let ¢’ € {a1,a;}\{e}. By Lemma [(1.4.8)|(b) we have
((Bp, Be) U (=B, Be)) N{e', ="} # 0. As (=B,, B-) = 0 by Lemma [(1.5.3)] there exists
Ber € {€',—€'} such that B € (B,,5:). By Lemma we have o(rur,,) = 00
and hence (as {¢/,ax} € P) &/ C ap. For R € 8% N ?%p = 0%a; N 9%y (cf. Lemma
(1.4.8)[(a)), we have (as ¢’ € {a1,;}) 0 # RNe' C ag. As R ¢ 0%ay, we infer R C oy,
and hence B = ai. For R € 0%¢ N 0%ay we have R ¢ 0% and ) # RN (—ay) C
(—¢’). This implies R C (—¢’) and hence ) # (—e) N R C (—¢) N (=€) C (—p).
As R ¢ 9%p, we deduce 8, = —p and Lemma implies (p, ) = 0. Now let
p # o € (a1,04). Again by Lemma Lemma |(1.4.8)(b) and Lemma [(1.5.3)
there exists f, € {0, —0c} such that B, € (8,, ). Using Lemma we deduce
0(roTa,) = 0o and hence (as {6, o} € P) o C oy Applying Lemma [(1.5.6)] again, we
deduce —ag = — B C By and (—ay, B,) = 0. In particular, as —ay C 8, N (—0), we
have B, = —o. Since (0, ax) = (p, ax) = 0, we compute

II (v II w)= II w
€M o, WEME% eeEME o,
At first we assume 0(rq,7q,) = 00. Then [uy,u;] commutes with u; by Condition
(b)(3) and [u1,ux]? = 1 by Condition (b)(i7). Thus we can assume 0(Tq,7q,) < 00. If
|(a1,ax)| < 2, then Mo(i,ak = () and the claim follows directly. Thus we can assume
(a1, ar) = {6,7} and 0 < ~y. The first claim is obvious, as ]\/Ig*v7 = (). For the second
claim we let 2 < ¢ < k—1. If o € (a1, ), the claim follows directly. Thus we can

assume «a; & (aq, ). In particular, Lemma |(1.4.6)| implies 9%a1 N 9%a; N 9%ay, = 0.

At first we suppose o(r,,re) = 0o for both € € {§,7}. As {6, i}, {v,;} € P, we infer
that {0, ;} and {7, a;} are pairs of nested roots. The fact that o(rsr,) < oo implies
that either a; C 9,7 or else §,7 C «;. If oy C 6,7, then we have Mg’a = Mccv;m by
Condition (a)(i) and we deduce

[ui, us] = H Uy = H Uy = (U, Uy)

weMS weMg
In particular, we obtain [u;, usuy] = [ui, uy][ui, us]™r = [wi, uy][us, uy]" = [ug, uZ] = 1.
Similarly, if 0,7 C «;, we obtain [us, u;] = [u, w;] and [usu., ;] = [us, us]" [ty u;) =

[ty wi] [ty ] = [, ui] = 1.

Now we can assume that o(r:rq,) < oo for some ¢ € {§,7}. We deduce from a3 € ay
that we have oy € «o; or a; € oy, i.e. we have o(rq,7q,) < 00 0r 0(Tq,Ta,) < 00. Let
w € {a1, a1} be a root such that o(ra,r,) < co. Note that 92a; N 8%a; N 0%y, = 0
and by Lemma [(1.4.8)(a) and Lemma we have 9%a; N 0%ap = 0%w N O%.
This implies that {ry,r,,, 7} is a reflection triangle. By Remark there exist
Buw € {w,—w}, Bi € {ay, —a;}, B € {e,—¢} such that {B,, 5, e} is a triangle. By
Lemma [(1.5.3)] we have (—f,, 8:) = 0. Let w # ' € {a1, a4} and let e # & € {5,~}.
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Using Lemma [(1.4.8)(b) there exists 8, € {w',—w'} and B € {&/,—¢'} such that
By Ber € (Buw, Be). Tt follows from Lemma that o(ryra,) = 00,0(rq,rer) =
00, —3; C Bz and (—f;, fer) = 0. Now we distinguish the following cases:

(a) w = a1: Then ' = a; and (as {a;,ax} € P) oy C a. Assume that ¢’ C a;.
Then we would have ¢/ C «; C «aj which is a contradiction. As {«;, &'} € P,
we deduce a; C €’. For R € 9%2aq N 0% = 9%aq N %oy, (cf. Lemma and
Lemma [(1.4.8)[a)) we deduce § # RN (—ax) C (—«;) and hence, as R ¢ 8%,
because {ra,,Ta;, 7} is a reflection triangle, that R C (—a;) and 8; = —a;. As
a; = —f; C B Ne, we deduce B = &’ and hence (a;,e’) = (—f;, Br) = 0. For
R € 9%a1Nd%a; we have R ¢ 02¢'U0%, as 0%a1N0%e = 0%a1Nd%ay = 0%a1NO?e’
and 9%a1 N O%a; N O%ay, = 0. Assume that R C (—¢). As (g,¢') = 0, Lemma
(1.4.8)(b) yields (—e,¢’) N {1, —a1} # 0. In particular, we have (—¢)Ne’ C By
for some 31 € {a1, —a1}. We deduce from R € §%a;, R C (—¢), that R Z &' and
hence R C (—¢’). But this would imply @ # «a; N R C «; N (—¢’) = 0, which is a
contradiction. As R ¢ 0%¢, we deduce R C ¢ and hence 3. = . In particular, we
have («j,e) = (=04, fe) = 0. Thus u; commutes with u. and u. and hence with

H’yEMaGl,ak Usy-

(b) w = aj: Then o' = a3 and (as {a1,;} € P) a1 C «;. Assume that a; C &',
Then we would have ay C «; C €’ which is a contradiction. As {¢/,a;} € P,
we deduce ¢’ C a;. For R € 9%a; N 9% = 9%a; N &2y, (cf. Lemma[(1.5.2)] and
Lemma (a)) we deduce ) # RN ay C «; and hence, as R ¢ 9°«; because
{ra;,ra,,7e} is a reflection triangle, that R C o; and §; = a;. As —ay = —f3; C
Ber N (—€"), we deduce B = —¢’ and hence (¢, ;) = (=B, i) = (Ber, — i) = 0.
For R € 0%a;, N 0%q; we have R ¢ 0%c U 0%¢', as 0% N 0%y, = %1 N Dy =
0%¢'Nd%ay, and 0?1 NO?;NO%y, = 0. Assume that R C . As (g,¢') = (), Lemma
(1.4.8)|(b) yields (e, —¢") N {ag, —ar} # 0. In particular, we have (—&’) Ne C S
for some By € {ag, —ai}. We deduce from R € 0%ay, R C ¢, that R € (—¢’) and
hence R C ¢’. But this would imply that § # (—a;) N R C (—«;) N’ = (), which
is a contradiction. As R ¢ 0%, we deduce R C (—¢) and hence 5. = —¢. In
particular, we have (a;,e) = (8;,—B:) = 0. Thus u; commutes with u. and u.
and hence with [ cye  us.

ap,op

(2-n4) The claim is obvious if 0(rq, 70, ) < 00. If 0(ra,7a,) = 00, then [u, ux] commutes with

w1 by Condition (b)(7).

(2-n5) This follows similar as in (2-n4). O

(7.1.2) Definition. Let H = (co,...,c) be a gallery in (W, 5).

(a)

H is said to be of type (n,r) € N* x S, if S = {r,s,t} and the gallery H is of type
(Uy 7y s gys - -5 T3 T s}, v) for some u, v € {1w, s,t}, where 7, appears n times in the
type of H. We note that (1w, cgc1,..., ¢y ex) is a minimal gallery by Lemma |(5.1.2)
and |2, Lemma 2.15] and so is H.

Let H be of type (n,r) € N* x S and let o, 8 € ®. We say that H is between a and
B, if cp € a,ck—1 € B and {cp,c1} € da, {ck—1,ck} € IB. In this case we let for each
1 <i < n the roots w; # w, € ® be the two roots with {c,+1, ¢k, 42} € Ow;, cg,41 € Wi
and {ck, 42, Cr,43} € 0w, ek, 42 € w,, where k; = ¢ (ur(r{s,t}r)i_l). Note that if R; is
the {s,t}-reside containing cy,, then ¢, = projg, co. Using Lemma , we deduce
aCwp,w) € Cwp,w), € B. We should remark that if a, § € @, then not all of the
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roots crossed by H are necessarily positive roots. But the roots w;,w, are. Consider for
example the case co = trt and H is of type (r,7(s43,7, -+, (s}, 7)-

In the next definition we will define subsets M (n, r, L)gﬁ C(a,p),where3<neN,res
and L C {2,...,n—1}. To have an intuition in mind, we will describe these symbols here: n
and 7 mean that there exists a minimal gallery of type (n,r) between o and . The subset L
indicates, which of the w;,w, are contained in the set M(n,r, L)aGﬁ.

(7.1.3) Definition. (a) Let S = {r,s,t},let 3 <n e Nandlet L C {2,...,n—1}. Let
G € Min and suppose a, f € ®(G) with a <g . If o(ror3) < 00, then we define

(@, 8) if (o, B)] =2

M(TL,’I‘, L)S,,B = {@ else

Now we consider the case o(rqrg) = co. Suppose that there exists a minimal gallery
H = (co,...,cx) of type (n,r) between o and 3. Let w; # w, be as in Definition
(7.1.2)(b). As o, € ®(GQ) and o C w;,w; C B, we also have w;,w; € ®(G) and we
define

M(n,r, L)gﬁ = {w;,w, | i€ L}
Note that w;,w; C wiy1,w;,; and hence w;, w; <g wit1,wj, 1, but the order on {w;,w;}
depends on G. For all other prenilpotent pairs of positive roots we put M (n,r, L)Sﬁ =

0.

(b) Let ) # K C Nx3, let J = (Ji)kex be a family of subsets ) # Jp C S and let
L= <L?€>k ~ be a family of subsets Li C{2,...,k—1}. Let G € Min and suppose
eK,jedy

a, B € ®(G) with a <g . Then we define

N\ G
MK, J.0)5s:= | M (kj L;)a ,
kEK, jET, ’

Moreover, we let M(K,J,L) := (M(K, J, E)gg>(G ser
’ ,a,p)e

(7.1.4) Remark. In Definition|(7.1.3)|we have defined the sets M (n, r, L)Sﬂ. Note that this set
does actually not depend on G: in the case o(rarg) < 0o, the subset M(n,r, L)Sﬁ depends

only on |(a,B)|; in the case o(rqrg) = oo, the subset M(n,r, L)aGﬁ depends only on the
existence of a suitable minimal gallery which crosses da and 08.

(7.1.5) Lemma. Let o, € ®4 be two roots, let n € N>y and S = {r,s,t}. Suppose that
there exists a minimal gallery H = (co,...,cr) of type (n,r) between o and B. Then the
following hold:

(a) We can extend (ce, ..., ck) to a minimal gallery contained in Min.
(b) We have Ry py(c7) € U Ti-

(c) Let R € &*a be a residue such that o is a non-simple root of R. If {co,c1} € R, then
there exists a simple root of R, say v € @, such that —y C .

Proof. We prove (a) and (b) simultaneously. We define T':= Ry, 4y (c7) and j := £(proj 1y ).
Recall that the type of H is given by (u, 7,754y, -+, 7,75}, 7, 0), where u,v € {1y, s,t} and
T(s,t} appears n times. Suppose u = lyy. Then {(cor) = £(co) + 1. If £(cors) = £(cor) + 1 =
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L(cort), we can extend H to a gallery contained in Min. Moreover, Lemma implies
T e Tja1. If b(cors) = £(cp), we deduce from Lemma that ((corst) = £(cp) + 1. Hence
we can extend (cs,...,cx) to a gallery contained in Min. Moreover, Lemma implies
T € Tj1. The same holds if ¢(cort) = ¢(co). Now we suppose u = s (the case u = ¢ is
symmetric). Again we note that ¢(cos) = £(co) + 1. If ¢(cosr) = £(cp), Lemma yields
l(cosrt) = £(cp)+ 1. Thus we can extend (cg, . .., ) to a gallery contained in Min. Moreover,
Lemma implies T' € T;1. Suppose that £(cosr) = ¢(co) + 2. Note that Lemma |(5.1.2)
implies that ¢(cosrt) = €(co) + 3. If s increases the length of cosr, then we can extend H to
a gallery contained in Min. Moreover, Lemma implies T € T;1. Otherwise, Lemma
[(5.1.2)] again implies £(cosrst) = £(co)+2 and we can extend (cg, ..., ¢x) to a gallery contained
in Min. Moreover, Lemma implies T' € 7;1. In any case we can extend (cs, ..., ck) to
a gallery I" € Min and we have T € 7 1. This proves the Assertions (a) and (b).

To prove Assertion (c), we suppose {cg,c1} € R. As P, C R, we have P, # {cp,c1}. Let
Py=P,,...,P, ={co,c1} and Ry,..., R, be as in Lemma For every 1 < i < n we
define w; := projg, 1w, we let {z,y} be the type of R,, we let {x} be the type of {cp,c1} and
we let S = {z,y,z}. We note the following:

(i) projg, 1w = projp . lw: Depending on H one of the following roots is contained in
B by Lemma [(5.1.4); ag, where K = (wy,...,w) is of type (z,y,z,z), (x,y,z,2,y) or
(z,y,z,y,z). Note that if K is of type (z,y), then it is contained in the three previous

roots by Lemma |(5.1.4)]

(ii) projg, lw # projp, , lw: Depending on H one of the following roots is contained in

B by Lemma, ag, where K = (wy, ..., w) is of type (x,y,z,y, 2), (z,y,x, z) or
(y,z,y,2,z). Note that if K is of type (x,y), then is is contained in the previous three

roots by Lemma

Thus it suffices to show that there exists a simple root v of R such that —y C ag, where
K = (wy,...,w) is of type (z,y). We distinguish the following cases:

(a) R = Ry: Then we have n > 2 (as P, € R) and projg_ lw = projp _, ly by Lemma
Let v € &, be the simple root of R which does not contain P,. We first
suppose n = 2. Using Lemma we deduce that —v is contained in all three roots
ak mentioned in [(i)} Moreover, —y C ak holds, where K = (wa, -+ ,w) is of type
(y,x). Now we assume n > 3. Using induction, —v is contained in a non-simple root of
R,,—1. As such a root is contained in both non-simple roots of R,, by Lemma , it
follows that —y C ax holds, where K = (wy,,...,w) is of type (z,y).

(b) R # Ry: Let v € @4 be the simple root of R containing P,. We prove by induction on
n, that —y C ak, where K = (wy,...,w) is of type (z,y). We first suppose n = 1. If
projg, lw # projp, 1w, then —v is contained in ax, where K = (w1, ...,w) is of type
(7,), by Lemma |(5.1.4), Thus we can assume that projg, 1w = projp, lyv. We see
again, that —y C ax holds, where K = (wq,...,w) is of type (z,y). Now we suppose
n > 1. Using induction, —v is contained in a non-simple root of R,_;. As such a root
is contained both non-simple roots of R,, by Lemma |(5.1.4)| it follows that —y C ag

holds, where K = (wy,, ..., w) is of type (z,y). O
(7.1.6) Lemma. Let ) # K C Nx3, let J = (Ji)ker be a family of subsets O # J, C S
and let L = (Li) be a family of subsets L{; c{2,....,k—1}. Then M(K,J,L) is a

keK,jeJy

Weyl-invariant, 2-nilpotent pre-commutator blueprint of type (4,4,4).
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Proof. We abbreviate Mgﬂ = M(K,J, E)G for all (G,a, ) € Z. By definition, we have
Mocjﬁ C (a, p). Clearly, (CB1) and (CB2) hold. To show that (PCB) holds, we let w € W
and G € Min(w). Then we have a homomorphism Ug — U,,. It suffices to show that we have
a homomorphism U,, — Ug extending u, — uq. Let F' € Min(w) and let a <p f € ®(F).
At first we assume o(ro73) < co. We distinguish the following two cases:

(i) a <G B: Then we have Mfﬁ = MSB by definition and we are done.

(ii) B <g a: If |(a, B)| < 2, then MFB =0 = Ba and we are done. Thus we assume
(o, B) = {0,7} and 6 <p . Then v < ¢ and we have the following relation in Ug:

[ta, ug] = [ug, ua] ™ = (uyus) ™" = uguy
Thus we can consider the case o(rqr3) = 00. Then we have o <¢g . If there is no gallery

H of type (n,r) between « and S with n € K and r € J,, then MFE =0 = aﬁ Suppose
that there exists a gallery H of type (n,r) between « and S for some n E K and r € J,.

Then MFﬁ ={w,wi|i1e Ly} = 5 as sets. Note that w;,w; <g wit1,wj | >F wi,w;. As
ME o = =0, we deduce that [ua,ug] = H,YGMGB Uy = H%MF[B uy is a relation in Ug. Thus

we obtain a homomorphism U,, — Ug and the universal property implies that (PCB) holds.
In particular, M(K, J, L) is a pre-commutator blueprint of type (4,4, 4).

Now we show that M(K,J, L) is Weyl-invariant. Let 1 #w € W,s € S,G € Min(w) and
let a <g B € ®(G). We distinguish the following cases:

o ((sw) = L(w) + 1: If o(rarlg) < 00, then o(rsarsg) < oo and, as (s, s8) = {s7 |
v € (a, B)}, we infer Ms¢ ' = sM . Thus we can assume o(r,rg) = 0o. Suppose
that there exists a gallery H = (co, ...,cx) of type (n,r) between o and S for some
n € K,r € J,. Then (scy,...,sct) is a gallery of type (n,r) between the roots sa, sp.
This implies that a gallery of type (n,r) exists between the roots « and 3 if and only if

a gallery of type (n,r) exists between the roots sa and sf. This finishes the claim.

e /(sw) = f(w) — 1 and G € Ming(w). Moreover, we assume oy # a < (. Using the
same arguments as above, the claim follows.

We will apply Proposition to show that M(K,J, L) is 2-nilpotent. Let G € Min
and let a, f € ®(G) be two roots such that o # 3,a <g f and o(r,r3) < 0o hold. Without
loss of generality we can assume MS:B # (). Suppose that ¢ € ®(G) is such that € C « holds
for all v € Mgﬂ. It M\f_}"7 =( for all v € Mfﬂ, we are done. Thus we can assume that there
exists vy € MaGﬁ with Mgf # (). Then there exists a minimal gallery H = (co, . ..,ck) of type
(n,r) between the roots € and  for some n € K and r € J,,, i.e. the type of H is given by
(U, 7,75 43, T+ -+ 5 T (s}, T> V), Where u, v € {1y, s,t} and 7,4, appears n times. Using Lemma
[(7.1.5)(a), we can extend (cs,...,cx) to a gallery I' € Min. Let R be the residue of rank 2
containing cg_o,cr—1 and cx. Using Lemma we deduce that v = ar is a non-simple
root of R. We distinguish the following cases:

(a) v = 1: Then we have P, = {cy_1,¢x} and Py, C R. Let R’ # R be the other residue
of rank 2 containing P,. If T is a rank 2 residue such that 7 is a non-simple root
of T, then T € {R,R'} (cf. Lemma [(5.2.3)). Let I'; be the gallery I' extended by
an z-adjacent chamber for z € {s,t}. Then (a, ) N {ar,,ar,} # 0 and we have
MaGﬂ € {{v,ar.}, {v,ar,}}. As I';,I'; are galleries of type (n,r) as well, we deduce
MS, = ME,  , where z € {s,t} is such that ar, € ®(G).

g,ar,?
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(b) v # 1: Using Lemma and Lemma we deduce that R is the only residue
such that v is a non-simple root of R. For K := (cg,...,ck_1) the root ax is also a
non-simple root of R and K is a gallery of type (n,r). This implies (o, 8) = {7, ax}
and hence ME% = ME

E,K "

Now we assume that € € ®(G) is such that v C ¢ holds for all v € Mgﬁ. If Mfs =
holds for all v € Mgﬁ, we are done. Thus we can assume that there exists v € Mgﬁ with
Mgg # (). Then there exists a minimal gallery H = (cg, ..., cx) of type (n,r) between v and
for some n € K and r € Jy, i.e. the type of H is given by (u,7,7(s4},7, ..., 7{s4},7,v), Where
u,v € {lw, s, t} and T({st) appears n times. Let R be the unique rank 2 residue contained in
9?an 0?3 (cf. Lemma . Then ~ is a non-simple root of R. Note that o, ,e € ®(G)
and hence {a,e},{8,e} € P. Then Lemma ((7.1.5)(c) yields {cp,c1} C R and we distinguish
the following two cases:

(a) u = ly: Assume that ¢(projg lw,co) = 1. Then Lemma would imply that one
of —a, —f is contained in one non-simple root of the {s,t}-residue containing ¢y (i.e.
wy or wy) and hence one of —«a, —f is contained in €. As this is a contradiction, we
deduce {(projp 1w, co) = 2. Let d be the chamber in R adjacent to both projg 1y and
cp. Then the gallery (d,co,...,ck) is of type (n,r) and we have MSKE = M,ﬁs, where
K = (d,cp) (note that ax € (o, 5) and hence ax € ®(G)).

(b) w # lw: Assume ¢(projp lw,co) = 2. In both cases (c2 € R and ¢2 ¢ R) Lemma
implies that one of —a, — would be contained in ws,w) and hence in e, which
is a contradiction. Thus ¢(projp lw,co) = 1. Again, if ¢ ¢ R, then Lemma [(5.1.4)
would imply that one of —a, — is contained in wy,w], which is a contradiction. Note
that ax with K = (c¢1,c¢2) is also a non-simple root of R and hence (o, 8) = {7, ax}.
As (c1,...,¢p) is gallery of type (n,r) and ag is the first root which is crossed by this
gallery, we deduce Mgkﬁ = Mvcfs and the claim follows.

Thus Condition (a) holds. Now we will show that Condition (b)(7) holds. Let G € Min and let
a # B € ®(G) be two roots with o(rqrg) = oo, let G = (do,...,dp =co,...,c, =€0,...,€m)
and suppose that {co,c1} € do and {cx_1,c} € 05. If Mo(jﬁ = (), we are done. Thus we
assume can assume that MOC]:B # (). Then there exists a gallery of type (n,r) between a and
B for some n € K and r € J,. In particular, we have Mgﬁ = {wj,w, | i € L],}. Note that
{wi,wi} = M’fﬂé for some v; <g v € ®(G) with « Cv; <g v, C B, as L, C {2,...,n— 1}.
We show that ww,uw € Z(U,,.. dy=co,...cr=co,..e;)) for all 0 < i < n,0 < j < m and
Uy U, € Z(Uley ... ep,_y),c) Tor all p € L. This will imply that H,YGMQGB Uy = [Ipepr tw, Uy
is contained in the center and we are done. Note that the order on {wp’, wy,} depends on G.

Let (B1,. .., Bnik+m) be the sequence of roots crossed by G and let ¢ € ®(G). Then it
suffices to show that Uy, et commutes with u. in

e Uy, G, if € = Bpyq forsome 1 < g <n—1;

~~7ck71)

(a0 if0<q<ne=4g,
° U(dz'7~-~7dn=007~~~7Ck=60:--~7€j)’ where (i, j) = {(n n+k+q) if0<qg<m,e=Pniktq

If e € {wp,w)}, then clearly uy,u,, commutes with u. and we can assume ¢ ¢ {wp,w,}. We
distinguish the following cases:
(a) {e,wp} and {e,w,} are nested: At first we assume & C wj. As 0(ry, 1) < 00, we deduce
e C wy,. Now Condition (a)(i) implies Mgwp = MEGM;] and hence

[u57 Ugyy, de = [U57 Uw;,] [U.e, Uwp]uwé
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“p
= II = II »
veMZ VEME,,
’U,w;)
= I = II »
veMZ, vEME
u, 1
= [u6>uw;,”U67uw’] P
2
= [u57uw ] =

If w, C ¢, we infer w;, C ¢ similarly. Condition (a)(ii) implies Moi . = MS _ and hence
' p7

[uwpuwzga us] = [Uwp’ ua]uw;’ [Uw;’ ua] = {uw;a us]uwé [uw;a UE] =L

(b) Omne of {¢,wp} and {e,w,} is not nested: As {e,wp},{c,w,} € P, Lemma m and
[2 Lemma 8.42(3)] yield R € (8% N 0%w,) U (0% N d%w),). Let T be the residue of
rank 2 with T € 9%w, N 0*w). If T € 9%, then € € {v;,7,} and the claim follows.
Thus we can assume T ¢ 0% and hence T # R. Recall that {e,7;},{e,7} € P,
as €,%,7, € ®(G). Without loss of generality we can assume that R € 9% N 9%w,.
Using Remark there exists Q' € 0w, with @' C R. Using Lemma and
the fact that @ = projg P, = projg projg P.,, [18, Lemma 13] yields that P,,
and projp P, are parallel. Lemma implies projp P, € Owpy. Let Q@ C R
be opposite to projg P, in R and let Py := P,,,..., P, = projp Py and Ry,..., Ry
be as in Lemma @ Note that projg P, and @ are parallel by [2, Proposition
5.114] and, in particular, P,, and @ are parallel. It follows from [18, Lemma 17| that

Py,...,P,,Q and Ry,...,R,, R is as in Lemma If T'# Ry, Lemma |(5.2.4)(a)

yields a contradiction, as T € Tj; for some j. If T = Ry, we have n > 1. If n > 2,

Lemma |(5.2.4){(c) yields a contradiction. For n = 2 Lemma |(5.2.4)(c) either yields

directly a contradiction, or else yields that (e, w,) = 0 = (¢,w,) and hence u. commutes
L,p (one can show that even this case does not occur).

with g, u

We have seen that ww,u,; € Z(Ue,,.. ¢, ,)c) for every i € Ly In particular, ug,u,, and
U Uy do commute for 4,5 € L;,. We infer the following in U, . )"

2 2

H uy | = H Up iy | = H (uwiuw;)2 =1. O

veMS, ieLr, ieLr,

(7.1.7) Theorem. Let ) # K C N>3, let J = (Ji)pei be a family of subsets O # J, € S

and let L = (Li)k ey be a family of subsets LZ: C{2,...,k—1}. Then M(K,J,L) is
€, yed
an integrable commutator blueprint of type (4,4,4) and the groups Uy, are of nilpotency class

at most 2.

Proof. By Lemma M(K, T, L) is a Weyl-invariant and 2-nilpotent pre-commutator
blueprint of type (4,4,4). By Lemmal[(4.2.2)] M(K, 7, L) is a commutator blueprint of type
(4,4,4) and the groups U, are of nilpotency class at most 2. By Corollary it is
faithful. By Theorem it suffices to show that M(K, J, K) satisfies (CR1) and (CR2).

Let s#£teS,fed®U a, Cacdy,we W with £(sw) = £(w) — 1, let G € Ming(w)
with o € ®(G) and assume Mo(ia # (). Then there exists a minimal gallery H = (cg, ..., ck)
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of type (k,r) between as and o« for some k € K and r € Ji (note that r

s is possible).

Let w;,w! be the roots as in Definition |(7.1.2)(b). We show that either 5 C wq,w) or else
—B C wo,wh. We distinguish the following cases:

(i) Hisoftype (s,7(4},8,- - T{rs}, S, v): Using Lemma|(5.1.4)|we deduce ap,, apy, apg C

wa, wh. If ¢g = 1y, then —tas, —ay C sy € {am,, am, } and hence they are all contained
in wo,w). Moreover, we have say € {ap,, v, } and hence the claim follows, as pistt =
{xas, oy, £say, £tas}. Now we suppose ¢g # 1. Let P = {1y, s} and Q = {co, c1}.
Then P,QQ € Oas. Let Py = P,...,P, = Q and Ry,...,R, be two sequences as in
Lemma Asprojg, lw = lw = projp, lw, Corollaryimplies projp, lw =
projp _ lw. As ly,co € a and roots are convex, we deduce cg = projp 1w € a. It
follows from Lemma that P, 1 and P, are opposite in R,. Thus there exists
d € P, such that projp 1lw,d are opposite in R,,. As projp 1w and cy = projp 1y =
projp, projg lw are not opposite in R, we deduce d = ¢; and hence £(c1s) = {(c1) —
1 = l(c1z), where s # x € S is such that {s,x} is the type of R,. Let i € {3,4}
be such that ¢;_1,¢; are contained in an z-panel. Using Lemma we see that
both non-simple roots of R := R,, = Ry, (c1) are contained in ap,. Applying Lemma
again we deduce that oy, is contained in ap, and this root is already known to
be contained in wy and wh. Thus the non-simple roots of R are contained in wy,wf. If
n = 1, two things can happen. If R; has type {s,t}, then we have —a; = oy, and the
claim follows. If Ry does not have type {s,t}, then R; has type {r, s} and each root in
{—ay, —say, —tag} is contained in a non-simple root of R;. This finishes the claim. If
n > 1 it follows from Lemma that there exists ¢ € {4, —} such that for every
root § € {eay,esay,eta,} there exists a non-simple root v of R,, with § C 7. As those
are contained in we,w}, the claim follows.

H is of type (8,2, 75y}, 75 - - T{s,y}: 7> V), Where S = {s,z,y}: Using Lemma we
deduce that ap,, oy, g, ag, C wa,wh. Without loss of generality we assume that
co,c3 are contained in an s-panel and cs,cg are contained in a y-panel. At first we
suppose ¢g = lw. If (z,y) = (r,t), it follows from Lemma that —ayx C agp,
and —say, —tas C ap,. If (z,y) = (t,r), it follows from Lemma that —ay C
apg, Sar = ap, and tas = ap,. Thus we can assume c¢g # ly. Let P = {1y, s} and
let @ = {co,c1}- As in the previous case we let Py = P,..., P, = Q and Ry,..., R, be
as in Lemma Let ¢ € S be such that {s, ¢} is the type of R,. We distinguish
the following cases:

(a) ¢ # x = r and n = 1: Then we have ¢ = y = t. We deduce from Lemma
that oy, tas C ap, and saq C apy,.

(b) ¢ # x =t and n = 1: Then we have ¢ = y = r. We deduce from Lemma |(5.1.4)
that every root § € {—ay, —say, —tas} is contained in gas and hence in ayy,.

(¢c) g=2=tand n=1: Then —ay = apm,, —tas = ay, and soy C apg, by Lemma
This finishes the claim.

(d) ¢ =2 =r and n = 1: Then —say is contained in ay, by applying Lemma |(5.1.4)
and —oy, —ta, are contained in ay, by applying Lemma |(5.1.4)| twice.

(e) ¢ # x and n = 2: Tt follows from Lemma that there exists € € {+, —} such

that for every root § € {eay,esay, etas} there exists a non-simple root v of R,
with § C 7. As + is contained in ap,, the claim follows.

(f) ¢ = = r and n = 2: Then it follows from Lemma |[(5.1.4)| that 4, say, tas are
contained in ap, and the claim follows.
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(g) ¢ =x =t and n = 2: Using similar arguments as in the case ¢ # x =t and n = 1,
we deduce that —ay, —say, —toys are contained in agg and the claim follows.

(h) n > 2: Tt follows from Lemma that there exists ¢ € {+, —} such that for
every root § € {eay,esay,etas} there exists a non-simple root v of R,—; with
d C v. As v is contained in both non-simple roots of R, by Lemma |(5.1.4) the

claim follows.

As wy C a, we infer o(rgr,) = oo and hence (CR2) is satisfied. Moreover, we have wy C w;, w),
for all 3 < i < k. Suppose that § C . Then we have shown that either 8 C wa,w) or else
—B C wo,wh. But the latter one would imply W = U (=) C «, which is a contradiction.
Thus 8 C wy,wh and by the above we have 8 C wy C wj,w) for every 3 <7 < k. In particular,
we have 3 C v for each v € Moi’a and (CR1) is satisfied. This finishes the proof. O

(7.1.8) Remark. Let § # K C N3, let J = (Ji),cx be a family of subsets 0 # J € S

and let £ — (Li) be a family with L = () for all k € K,j € J;. Then we have
keEK,feJy

M(K,j,ﬁ)gﬂ = for all (G,a, ) € T with o(rqrg) = co. Hence this is the commutator

blueprint associated with the split Kac-Moody group of type (4,4,4) over Fy (cf. Example

G310

(7.1.9) Corollary. For each n € N there exists an RGD-system D,, = (Gn, < én)) <I)) of
(¢S
type (4,4,4) over Fy with the following properties:

(i) If w € W is such that {(w) < n and if a, 5 € @4 are such that w € (—a) N (—f) and
a C 3, then [Uc(yn), (n)} =1.

(1) There exist a, B € @4 such that « C B and [U&”% Ué”)} 41,

Proof. Note that it suffices to show the claim for n € N>3. We fix n € N>3. Let 0#£J,CS
and L7, C {2,...,n — 1} for each j € J,,. Moreover, we assume that Li, # () for some j € J,,.

We define J = (Ji)ren) and L := <Li)k€{n} en Then M({n},J,L) is an integrable

commutator blueprint by Theorem . Let D = (G, (Ua>ae<1>) be its associated RGD-
system. We claim that D is as required. As L} # () for some j € J,, it suffices to show that
(7) holds. Let w € W and let o, 8 € &4 be such that w € (—a) N (=) and a« C B. This
means that U, Ug < U,. Suppose that [U,,Ug] # 1 and that r € J,,. Then there exists a
minimal gallery H = (co,...,cx) of type (n,r) between o and 3. By Lemma [(7.1.5)|(a) we
can extend (cs, ..., c;) to a gallery E = (¢, ...,c,,) € Min. In particular, we have ¥’ > k —6.

Let (eg,...,em) € Min(w) be a minimal gallery. As eg = 1y € S and e, = w € (—f),
there exists 0 < j < m —1 with {e;,e;;1} € 3. Using Lemma[(5.2.5)] there exists a minimal
gallery (dy = eq,...,dq = €j41) such that d; = projRB’{ej&jH} 1y for some 0 < i < ¢ — 1.
As {cx-1,¢k} € Rp (c;.e;,1}, We deduce that £(d;) > k' —3 > (k — 6) — 3 and hence £(w) >
0(d;) > k —9. By definition, we have k > 5n. But then {(w) >k —9 > 5n —9 > n. Thus D
satisfies (i) and we are done. O

(7.1.10) Remark. Let D = (G, (Us)acad) be an RGD-system of type (4,4,4). It is shown in
[T, Theorem A] that if every root group contains at least 3 elements, then [U,,Ug] = 1 for
all pairs {«, 8} of nested roots. The previous corollary shows that the assumption on the
cardinality of the root groups is necessary in order to prove that root groups corresponding
to nested roots do commute.
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7.2. Extension theorem for twin buildings

The extension problem for twin buildings asks whether a given local isometry can be extended
to the whole twin building. For more details we refer to the introduction and to [25].

(7.2.1) Theorem. The extension theorem does not hold for arbitrary thick 2-spherical twin
buildings.

Proof. Let M, M’ be two different integrable commutator blueprints as constructed in The-
orem [(7.1.7)|and let D = (G, (Uy)aca), D’ = (G, (U)aca) be their associated RGD-systems.
We let A = A(D) and A" = A(D’) be the corresponding twin buildings and let ¥ = (¢4, c_)
and ¥’ = 3(c, c_) be the distinguished twin apartments in A and A’. Let {«, f} € P and
H € Min be such that o, 5 € ®(H), o <p f and M(D) ; # M (D) ;.

Every residue R of A or of A’ of rank 2 is isomorphic to the generalized quadrangle of
order (2,2), i.e. to the building which is associated with the group C3(2). For each s € S
we fix an order on Ps(cy) = {co := ¢4, c1,¢c2} and on Py(d,) = {¢f, := ¢, ¢}, &4} Note that
the mapping @5 : Ps(cy) = Ps(c), ¢ — ¢} is a bijection and hence an isometry. We will
show that for all s # ¢t € S there exists an isometry @y @ Rysyp(cy) — Rysp(cy) with
PLst1|Pa(es) = Ps-

Let s #t € S and define J := {s,t}. Using the fact that the automorphism group of the
generalized quadrangle of order (2,2) acts transitive on the chambers, we obtain an isometry
Rj(cy) = Ry(c!) mapping c4 onto ¢/,. Using the root automorphisms (if necessary), we
obtain an isometry ¢ : Rj(cy) — Ry(c) with ¢ lp (c,) = ps. Thus we obtain a bijection
¢ : Ea(cy) — Ea(cy) such that for all s # ¢ € S and x € Ry, y(cy) we have p(z) = o, (2).
Note that ¢ is an isometry by [38, Proposition 4.2.4]. Using [38, Proposition 7.1.6] there
exist d € ¢, d" € (/,)°P such that ¢ extends to an isometry Es(cq) U {d} — Ea(d,) U{d'}.
Assume that the extension theorem would hold for A. Then we can extend this isometry to an
isometry ® : A — A’. Moreover, ¥ : Aut(A) — Aut(A’), f +— ®o f o ®~! is an isomorphism.
Let g € G be such that g(X) = A(cy,d) and let ¢’ € G’ be such that ¢'(X) = A(c/,,d’). Then
the isomorphism Wy : Aut(A) — Aut(A'), f = )1 o ¥ o7, maps U, onto U, for every
a € &. We deduce

H ’Ll,fY = Uy H Uy | = \IJO([ua7u,3]> = [u/oﬁulﬁ] = H uiY

veM(D)H , veM(D)H yeM(DNH

As M(D)fﬁ # M(D’)iﬁ, [2, Corollary 8.34(1)] yields a contradiction. Thus, such an isometry
can not exist and the extension theorem does not hold for these two twin buildings. O

7.3. Finiteness properties

Let D = (G, (Ua)ace) be an RGD-system of irreducible 2-spherical type (W, S) and of rank at
least 2. The Steinberg group associated with D is the group G which is the direct limit of the
inductive system formed by the groups U, and Uy, g := (Uy | v € [, 8]) for all prenilpotent

pairs {«, 5} C ®. For each « € ® we denote the canonical image of Uy in G by ﬁa. It follows
from |11, Theorem 3.10] that D = (G, (Ua)aea) is an RGD-system and the kernel of G — G
is contained in the center of G.

(7.3.1) Lemma. Let D = (G, (Uy)aca) be an RGD-system of irreducible 2-spherical type and
rank at least 2 over Fy such that G is generated by the root groups. Then () cqp Na(Ua) = 1.

In particular, the homomorphism GG from the Steinberg group associated with D to G is
an isomorphism.
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Proof. As D is an RGD-system such that G is generated by the root groups it follows
from [2, Corollary 8.79 and remark thereafter| that (,ce Na(Ua) = (m(u) tm(v) | u,v €
Ua \{1},5 € S). As D is over Fo, we have Uy \{1} = {us}. Moreover, m(us) = u_susu_s,
where U_, \{1} = {u_s}. This implies m(us)  m(us) = (u_sust_s) " u_susu_s = 1 and
hence (e Na(Ua) = 1. As Z(G) < (,eo Na(Ua) = 1, the claim follows. O

(7.3.2) Lemma. Let G = (X | R) be a finitely presented group with | X| < co. Then there
exists a finite subset F C R with G = (X | F).

Proof. Since G 1is finitely presented, there exist finite sets Y, E such that G = (Y | E).
Since G = (Y'), we have z = [[y; in G for each z € X. Thus G = (X UY | E'), where
E'=FU{z =[Jyi| x € X} and X UY is finite. Since G = (X), we have y = [[z; and
G = (XUY | E"), where " = E'U{y = [[z; | y € Y}. Then we can replace in every
relation y by the corresponding product [[z; (if y = [[ ;) and we can remove the generators
y € Y together with the relations y = [[z;. We denote this set of relations by E” and we
have G = (X | E"). Note that E" is finite.

Now for each e € E” there exists a finite subset F, C R such that e € ((F¢.)). For
F = Ugepn Fe € R we have E" C ((F. | e € E")). Clearly, we have the following
epimorphisms:

(X |R) S (X |E") —» (X | F) » (X | R)

Since the concatenation maps each z € X to itself, all epimorphisms must be isomorphisms
and the claim follows. O

(7.3.3) Theorem. The split Kac-Moody group over Fa of type (4,4,4) is not finitely pre-
sented.

Proof. Let G be the split Kac-Moody group of type (4,4,4) over Fy. Using Lemma
we deduce that G = (X | R), where X = {uy | @ € @} and R = {{u2 | o € ®} U {[ua, uglv |
{a, B} prenilpotent pair,v € U(aﬂ)}}. We apply Tietze-transformations to slightly modify
the given presentation. We add 75 to the set of generators and 74 = u_q, Uq,U—q, tO the
set of relations. Note that G = (ua,,7s | s € S). Since 72 = 1 in G, we add this relation
to the set of relations. For @ € ® there exist w € W,s € § with a« = wa,. For w € W

there exist si,...,s;, € S with w = s1---5,. Note that uq = uZ™™ is a relation in G,
where 7, = 7,,. Thus we can add these relations to the set of relations. We modify the
relations further and delete all commutator relations [uq,ug] = v, where {a, 3} ¢ P (for

every prenilpotent pair {«, 5} there exists w € W such that {wo,wfB} € P). This is possible
because the commutator relations are Weyl-invariant. We replace in each relation every u, by
the corresponding element w7 Now we delete all generators u, with o € ®\{cs | s € S}
and the corresponding relations uq, = ugl ™. We note that we have the same relations as
before plus the relations 75 = ug uq, ug and 72 = 1. But the former relation is equivalent to
the relation (uq,75)% = 1.

Now we assume that G is finitely presented. Then, by the previous lemma, there exists
a finite set F' of the set of relations such that G = ({ua,,7s | s € S} | F). Now we let
k := max{k, | uo appears in some f € F'} (u, seen as conjugate of u,, by a product of 7y, for
suitable s, s; € S). We consider the RGD-systems Dy, = (G, (Ua)aca) obtained from Corollary
Then [U,, Ug] = 1, where a C /3 are such that there exists w € W of length < k with
w € (—a)N(—p) and [Us, U] # 1 for some 6 C v € ®,. It is not hard to see that we obtain a
homomorphism ¢ : G — Dy, from the finite presentation to Dy such that ug, — ua,, Ts — Ts
(note that for o C B we have [Uy,Ug] = 1 in G by Example [(5.3.1)). The commutator
relations of G and Dy, yields us 1 = ¢(1) = ¢([Us,U,]) = [¢(Us), ¢(U,)] = [Us,U,] # 1. This
yields a contradiction and hence the Kac-Moody group is not finitely presented. O
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(7.3.4) Theorem. Let D = (G, (Uy)aca) be an RGD-system of type (4,4,4) over Fy. Then
the group U, is not finitely generated.

Proof. The group U, is isomorphic to the direct limit of its subgroups U, for all w € W
by [2, Theorem 8.85]. We have shown in Lemma that U, is isomorphic to the direct
limit G of the inductive system formed by the groups G;. By definition the following diagram
commutes:

G; — Gip1
\ l
G

Moreover, the homomorphisms G; — G are injective by Proposition and Theorem
and hence the homomorphisms G; — G are injective by [30, 1.4.9(¢i7)]. By con-
struction, the canonical homomorphism G; — G;41 is not surjective and hence G; — G are
not surjective as well. Assume that U, is finitely generated, i.e. Uy = (g1,...,9n). Since
Uy = (uq | a@ € @), there exists ¢ € N such that Uy = (Uy, | w € C;). This implies
that G is also finitely generated and we have G = (U, | w € C;) = G, i.e. the canonical
homomorphism G; — G is surjective. This is a contradiction and hence Uy is not finitely
generated. O

7.4. Locally compact groups

Haar measure and modular function

Let G be a locally compact group. Then there exists a (left) Haar measure p on G. For
every measurable U C G and g € G we have u(gU) = p(U) and p(Ug) = pw(U)A(g), where
A : G — R* is the modular function of G. The group G is called unimodular, if A = 1. For
details we refer to [I7, Chapter 9].

Lattices

Let G be a locally compact group which is unimodular, and let X be a left G-set such that
the stabilisers G, are compact and open for each € X and such that G\ X is finite. Then a
subgroup I' < G is called a lattice, if it is discrete and if

1

VolT\\X) = )

zel\ X

< 00.
Tz

We note that as I' is discrete, the stabilisers ', are compact and discrete and hence finite. In
the literature this is not the definition of a general lattice in a locally compact group. But
using [4] Ch. 1] and, in particular, [4, Corollary 1.6], it follows that a discrete subgroup of
the group G is a lattice in the general sense if and only if it is a lattice in our sense.

Permutation topology

Let A = (C,0) be a building of type (W,S). Then we endow the automorphism group
Aut(A) of A with the permutation topology (i.e. fixators of finitely many chambers form a
basis of neighbourhoods of the identity). It is well-known that Aut(A) is locally compact and
totally disconnected, if A is locally finite. For details we refer to [39, Theorem 1.24] or [40].
In particular, stabilizers of chambers are compact open subgroups. Let D = (G, (Uy)acs)
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be an RGD-system of type (W,S) such that every root group is finite, and let A(D) =
(A(D)4, A(D)_, d,) be its associated twin building. Then for ¢ € {4, —} the building A(D).

is locally finite and Aut(A¢) is a totally disconnected locally compact group. If G < Aut(A.),

then we call G < Aut(A.) the geometric completion of G in Aut(A.). Moreover, any closed
subgroup K < Aut(A;.) containing G is unimodular (cf. |5, Corollary 5|).

(Twin building) lattices and property (T)

(7.4.1) Definition. Let (G, (Uy)aca) be an RGD-system of type (W, S) such that all root
groups are finite and (W, S) is not spherical. Let W (t) = 322 ¢;t’ be the growth series of W
(le. ¢ ={w € W | (w) = i}|) and let gmin = min{|Uy| | @ € ®}. If W(1/gmin) < oo and
Za((Uy | € ®@)) is finite, then G is called a twin building lattice. For more details about
twin building lattices we refer to [16].

(7.4.2) Remark. Let D = (G, (Uy)acad) be an RGD-system of type (W,S) such that G is
generated by the root groups, all root groups are finite, W is infinite and Z(G) is finite. By
[15] Theorem 6.8] the condition |S| < gmin implies that D is a twin building lattice. We will
show that if D is of type (4,4,4) then D is a twin building lattice. In particular, we enlarge
the result to RGD-systems of type (4,4,4) with gmin € {2,3}. We note that the arguments
in [I5, Theorem 6.8] can be enlarged to the case |S| = gmin-

(7.4.3) Proposition. Let (W, S) be of type (4,4,4). For 2 < q &€ N we have W(1/q) < oc.

Proof. We will apply the quotient criterion in order to show the claim. For this we need a
few (in-)equalities. For i € Nwe put C; :={w e W | l(w) =i}, D; :={w e C; |Is#t € S:
l(ws) =l(w)+1=4L(wt)} and d; := |D;|. For i > 5 we establish the following (in-)equalities:

Claim 1: ¢; — d; = d;j—4: Let w € C;\D;. Then there exist s # t € S such that ¢(ws) =
f(w) — 1 = £(wt). This implies that the mapping C;\D; > w — projp 1y € D;_4
is a bijection, where R = Ry, ;y(w). Here we use the fact that projp 1w # 1w and
hence that there exist unique s # ¢t € S with £((projg lw)s) = ¢(projp lw) +1 =

£((projp 1w)t).

Claim 2: d; < d;y1: Let w € D;. Then there exist s # t € S with l(ws) = l(w) + 1 = (wt).
Lemma, implies {ws,wt} N Djy1 # 0. Let w,w’ € D; and let s,t € S
with ws = w't € D;y1. If s # ¢, then there would be only one r € S with
L(wsr) = £(ws) + 1, which is a contradiction. Thus s =t and hence w = w’. This
finishes the claim.

Claim 3: di < 1: As D; C C}, it follows directly that d; < ¢; and hence CZ < 1. For the

1
= <
2 _—
ot her mequahty we use Claim 1 and 2 and compute
¢ —d; +d; di—4 + d; d;

1= 2 - <o%
& C; &

Claim 4: ¢j41 < ¢; +d; — di—3: Let M; = {(w,s) e C; xS ‘ ws € Ci+1}. Then ’Mz’ =
2d; + (¢; — d;). We consider the mapping f : M; — Cit1,(w,s) — ws. Then

f is surjective and ¢; + d; = |M;| = ZweCZH |f~H(w)|. We define Cil+1 ={w €

Ciy1 | [f7H(w)| = 1} and let C+1 ={w € Ci;1 | ]f Lw)| > 1}. We show that

C7Y = Ciy1\Diy1. Let w € C7Y and let (w, s) # (w',s') € f~'(w) be. Then s # s’

and hence w # w’. This imphes w € Cit1\Diy1- Similarly, for each w € Ci11\Djt+1
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there exist s # t € S with ws,wt € C; and hence (ws, s) # (wt,t) € f~!(w). Thus
C’»>+11 = Ciy1\Dit1, C}H = D;;1 and we compute the following:

)

Z |f~Hw)| = Z If~H(w)] + Z |f M w)] > dig1 + 2(cipr — diga)

welit1 weD; 11 weCi1\Diy1
This implies ¢; + d; > ¢j41 + (Ci—i-l — di+1) = ¢;4+1 + d;—3 and the claim follows.

Claim 5: ¢j4+1 < 2¢;: This readily follows from Claim 3 and 4, as ¢;41 < ¢; +d; — di—3 < 2¢;.

Now we are in the position to apply the quotient criterion. For ¢ > 6 and t = ql‘ < % we
compute
cimittt ¢ ci+d; —d;— di— di— 31,31
1+1' _ l+1t§ i+ d; ZStS(Q— 13)t§(2_ 13)t§7t§7<1 0
Citl C; C; C; 861‘,3 16 32

(7.4.4) Corollary. Let (G, (Uy)aca) be an RGD-system of type (4,4, 4) with finite root groups
and G = (U, | a € @) such that Z(Q) is finite. Then the following hold:

(a) G is a twin building lattice.

(b) Let A = (A4, A_,0,) be the associated twin building and let K be a closed subgroup of
Aut(A_) containing G. Then Uy is a lattice in K.

Proof. For Assertion (a) it suffices to show that W (1/gmin) < co. For Assertion (b) we note
that Uy is discrete in Aut(A_), as Uy N Stab(c—) = {1}. Thus it is discrete in K. Recall
that stabilizers of chambers are compact and open and K is unimodular. By definition it
suffices to show that Vol(U;\\A_) < co. As explained in [I5, Proof of Theorem 6.8|, we
have Vol(U;\\A_) < W(1/gmin) and it also suffices to show W(1/gmin) < oo (cf. also [28
Théoréme 1]). But this follows from the previous proposition. O]

(7.4.5) Remark. For the definition and more details about property (T) we refer to [6].

(7.4.6) Lemma. Let D = (G, (Uy)aca) be an RGD-system of type (4,4,4) over Fy and let
A = A(D)_. Then Aut(A) does not satisfy property (T).

Proof. By Theorem and Corollary b), the subgroup Uy is a lattice in Aut(A)
which is not finitely generated. By [6, Theorem 1.7.1] the group Aut(A) has property (T) if

and only if U, has property (T). As discrete groups with property (T) are finitely generated by

[6] Theorem 1.3.1], U; can not have property (T) and hence Aut(A) does not have property
(T). O

(7.4.7) Remark. Let D = (G, (Uy)aca) be an RGD-system of type (4,4,4) with finite root
groups and let A := A(D)_. For s € S we let ¢s + 1 be the order of the s-panels. Using
|26, Theorem 1 and 4.1(3)], a sufficient condition for Aut(A) to have property (T) is that for
every s # t € S the following inequality is satisfied:

qs + q 1 1 qs + q

— > - - >

\/(qs+1)(Qt+1) 2 747 (g +1)(g+1)

S+ e+ a+1=(+1)(q+1)>4(gs + @)

< qgsq+ 1> 3((13 + Qt)

If 7 < gmin and if g < gu, we have 3(gs +q¢) < 3(q + @) = 6@ < ¢sq < gsq¢ + 1 and Aut(A)
satisfies property (T).
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7.5. Property (FPRS)

Although we have defined property (FPRS) in Section we recall the definition here. Let
(G, (Ua)aca) be an RGD-system and let A(D) = (A(D)4, A(D)_, d) be the associated twin
building. For I' < G we define 7(I") to be the supremum of the set of all non-negative real
numbers 7 such that I' fixes pointwise the closed ball B(cy,r) := {d € C4 | {1 (c+,d) < 1},
where C, is the set of chambers of A(D);. Then D has property (FPRS), if the following
holds, where ¢(1y, ) := min{k € N | 3d € o : (1, d) = k} for all roots o € :

(FPRS) Given any sequence of roots (ay)n>0 of ® such that lim, o {(1yw, o) = 00, we
have lim;, 00 7(U_4,,) = 0.

(7.5.1) Lemma. Let (W,S) be irreducible and non-spherical. Let (G, (Uy)acs) be an RGD-
system of type (W, S) with finite and solvable root groups such that G is generated by the root
groups and satisfies (FPRS). We endow Aut(Ay) with the permutation topology. We define
Gt := (U, | a € ®) < Aut(A(D)y). Then Gt < Aut(A(D),) is topologically simple, i.e. if

N < Gt is a dense normal subgroup, then N = G.
Proof. This is a consequence of [16, Lemma 9 and Proposition 11]. O

(7.5.2) Remark. Let M be a commutator blueprint of type (4,4,4) which is integrable. If
the corresponding RGD-system satisfies (FPRS), then G < Aut(A.) is a topologically sim-
ple, non-discrete, compactly generated t.d.l.c. group. Caprace, Reid and Willis initiated a
systematic study of such groups in [14].

Next we generalize [16, Lemma 5|. Recall that for every RGD-system D we have a dis-
tinguished pair (cy,c_) of opposite chambers in A(D). We define ¥ := A(cy,c-) NCy and
lc,a) :=min{k € N|3d € a: {(c,d) = k} for any c € 3.

(7.5.3) Proposition. Let D = (G, (Uy)aca) be an RGD-system of type (W, S) over Fy such
that for every w € W the group U, is of nilpotency class at most 2. Suppose 4 < k € N such
that for all o C 5 € &4 there exists H € Min with o, € ®(H) such that for each v € Mgﬁ
we have L(ly,—v) > l(lw,—B) — (k —1). Then for each m € N, each root o € ® and each
ce€ Xy, ifdle,a) > %, then U_,, fizes B(c,m) pointwise. In particular, D satisfies
property (FPRS).

Proof. In this proof we use more or less the same arguments as in [16, Lemma 5|. Thus large
parts of the proof are just copied from the proof of [16, Lemma 5].

We prove the claim by induction on m. If ¢(¢, a)) > % > 1, then ¢ ¢ a whence ¢ € —a.
In particular, ¢ is fixed by U_,. Thus the desired property holds for m = 0.

m—+1__
Assume now m > 0 and let a be a root such that ¢(c, o) > Wfl. Note that

m+1 m __ m __
(4k:)3 N (C1) : 1)+3_1>(4k)3 1

The induction hypothesis implies that the group U_, fixes the ball B(c, m — 1) pointwise.
Furthermore, if ¢ is a chamber contained in ¥ and adjacent to ¢, then £(¢/, a) > £(c,a) —1 >

(4]@# and the induction hypothesis also implies that U_,, fixes B(c¢/,m — 1) pointwise.
Let now x be a chamber at distance m from ¢. Let (¢o = ¢,...,¢n = ) be a minimal

gallery from ¢ to . We must prove that U_, fixes . If ¢; is contained in ¥, then we are
done by the above. Thus we may assume that ¢ is not in X ;. Let ¢’ be the unique chamber of
Y, such that ¢, ¢1, ¢ share a panel. Let 3 € ® be one of the two roots such that 93 separates
c from ¢. Upon replacing 3 by its opposite if necessary, we may - and shall - assume that the
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pair {—a, 8} is prenilpotent (cf. [2, Lemma 8.42(3)]). Let u := ug € U} be the unique element
such that u(c1) belongs to ¥ ; thus we have u(cy) € {¢,'}. Since u(er), u(ca), ..., u(cy,) is a
minimal gallery, it follows that u(z) is contained in B(¢,m —1)UB(c, m —1). We distinguish
the following three cases:

(i) Suppose first that [U_,,Us] = 1. For any g € U_, we have g = u~!gu whence g(x) =
u~tgu(r) = z because g € U_,, fixes B(e,m — 1)U B(c’,m — 1) pointwise by the above.

(ii) Suppose now that [U_n,Ug] # 1 and that (rq,7s) is infinite. Let {d,d’'} = {c¢,¢'} and
assume that d € 8. Then, as {—a, 8} is a pair of prenilpotent roots and d' € (—a)\ 3, we
have 8 C (—a). Moreover, d € 8N (—a) and hence {d~!,—d 'a} € P. Suppose H €
Min with d=18,—d 'a € ®(H). By assumption, we have £(1y, —y) > (1, d ta) —
(k—1) for all v € Mi{lﬁ,—dfla' In particular, we have ¢(d, —dvy) > ¢(d,a) — (k — 1).
Note that ¢(d', —dv) > ¢(d,a) — k and hence ¢(c, —dv),4(c, —dvy) > £(d,a) — k. Note

that

Akt —1 Ak(4k)™ — 4k _ (4k)™ —1
E(d,oz)—k‘>€(c,a)—(k+1)>()3—(k+1)> ( )3 Z( )3
Using induction we deduce that Uy, fixes B(c,m — 1) U B(¢,m — 1) for all v €
Mglﬁ,—dfla' Note that [ug,u_o] = H’YE]\/[zf—lﬁ,—d—la ugy and g(z) = [g7! ul(z) as

before for any g € U_,. Using the nilpotency class assumption, we know that [g~1, u]

commutes with u and, using the fact that Uy, fixes B(c,m —1)UB(c’,m — 1) pointwise,

we compute

culu(z) = u tu(z) = =

(iii) Suppose finally that [U_, Ug] # 1 and that (rq,7g) is finite. The first part goes through
unchanged until the inequality, which has to be modified to the following:

_ @R)mHi-1 m_ m_
le,a) — 1 - 3 1 4k(4k) 4 S (4k) 1

E(Cv _Bl) > E(C, _Bl) > 4 = 4 = 12 = 3
By the induction hypothesis, it follows that for each v € (—c, §), the root subgroup U,
fixes B(c,m — 1) pointwise. As before, we obtain g(x) = [¢g,u~!](z) for any g € U, and
[g,u~"] fixes u(x) pointwise. Using the nilpotency class assumption of the groups Uy,

we infer [g,u™!](z) = v g, u" Hu(z) = =. O
(7.5.4) Corollary. Let ) # K C N3 be a finite set, let J = (Ji)kex be a family of subsets
0#J, C8 and let i C{2,... k—1}. We define £ := (Li) M= M(K,T,L)

keK,jeJy

and let DIM) = (G, (Uas)aca) be the RGD-system associated with the commutator blueprint
M. Then D(M) satisfies property (FPRS).

Proof. Recall from Theorem [(7.1.7)] that M is integrable and the groups U,, are of nilpotency
class at most 2. We will apply the previous proposition. Let a C 5 € @ be two positive roots,
let G € Min such that «, 8 € ®(G) and Mg’:ﬁ # (). Then there exists a gallery H = (cg, ..., k)
of type (n,r) between a and S for some n € K and r € J,,. Using Lemma |(7.1.5)(a) we can
extend (cg,...,cx) to a gallery (dp,...,dy) contained in Min. Let v € MOC;:B be a root. Then
v =i € {wj,w;} for some i € L], and w;,w] are non-simple roots of the corresponding residue
R;. Using Lemma we deduce that £(1y,projg, 1w) < £(1w,—7). In particular, we
have £(1y, —3) < m < £(lw,projg, lw) +k < £(lw,—v)+k. Let n := max K. By definition
of H we see that in the type of H there appear r, 7, at most n times plus u,v € {1w, s, t}
and an additional . Thus we deduce k£ < 5n + 3. For K :=5n+4 € N we have 4 < K and
we infer

((lw, =) > (1w, —B) — (K — 1) O
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(7.5.5) Theorem. Let J = (Jn)nens, be a family of subsets O # J, C S and let Ll = {2}
for every n € N>3 and j € J,. We define L = (L%) . Then the RGD-system
B neNzg,jGJn

associated with the commutator blueprint M(N>3, T, L) does not satisfy condition (FPRS).
In particular, there exists an RGD-system of 2-spherical type, which does not satisfy Condition
(FPRS).

Proof. We abbreviate MSB = M(N>3, 7, /J)Siﬁ. We let G, € Min be a minimal gallery of
type (7, 7{s,6}> T+ - s T{s,t}>T), Where 7¢, 4y appears n times in the type and we let o, 1= ag,, -
We recall that «, is the last root which is crossed by G,. We note that «,, is a non-simple root
of the {r,s} residue R containing (rry,s)"r. Using Lemma we have (1w, —ay) >
{(1y,projp 1) = bn — 2. In particular, we have lim,,_,o ¢(1y, —a,) = o0.

Let D = (G, (Uy)aca) be the RGD-system associated with M(N>3, 7, £) and assume that
D satisfies property (FPRS). Then there would exist ng € N such that for every n > ng we
have (U, ) > 10. In particular, Uy, fixes B(cy,10) pointwise. We deduce that ug) ta, Uag
and hence also [uq, Ua,| fixes B(cy,10) pointwise. But [uq,, Ua,| = tw,t,y, which does not
fix B(c4,10). Thus D does not have property (FPRS). O
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For the sake of clarity, we have decided to reproduce all the figures from Chapter [6}

Figure 7.1.: Illustration of the group Vg Figure 7.2.: lllustration of the group Ogr

Figure 7.3.: Illustration of the group Vg s Figure 7.4.: Illustration of the group Og s
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Figure 7.5.: MMustration of the group Hpr
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Figure 7.6.: Illustration of the group Jg;
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Figure 7.7.: llustration of the group Gr
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Figure 7.8.: Illustration of the group Kg s
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Figure 7.9.: Illustration of the group Eg s
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Figure 7.10.: Illustration of the group Ug s
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Figure 7.11.: lllustration of the group Xpr
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