Mathematisches Institut
Fachbereich 07
Justus-Liebig-Universität Gießen

Dissertation

Construction of RGD-systems of type $(4,4,4)$ over \mathbb{F}_{2}

Eine Thesis zur Erlangung des akademischen Grades
"doctor rerum naturalium" (Dr. rer. nat.)

SEBASTiAN Bischof

Abstract

We investigate the structure of RGD-systems over \mathbb{F}_{2}. For this purpose we introduce the notion of commutator blueprints which prescribe the commutator relations between prenilpotent pairs of positive roots. To each RGD-system one can associate a commutator blueprint and such a commutator blueprint will be called integrable. We give necessary and sufficient conditions of an integrable commutator blueprint. Moreover, we construct uncountably many different integrable commutator blueprints of type $(4,4,4)$.

The existence of these integrable commutator blueprints disproves the general validity of the extension theorem for isometries of 2 -spherical thick twin buildings. Additionally, we obtain the first example of a 2-spherical Kac-Moody group over a finite field which is not finitely presented. Furthermore, we construct the first example of a 2 -spherical RGD-system with finite root groups which does not have property (FPRS).

Deutsche Zusammenfassung

Wir untersuchen die Struktur von RGD-systemen über \mathbb{F}_{2}. Aus diesem Grund führen wir den Begriff von Kommutatorbauplänen ein, welche die Kommutatorrelationen zwischen prenilpotenten Paaren von positiven Wurzeln vorschreiben. Zu jedem RGD-System kann man einen Kommutatorbauplan assoziieren und solch einen Kommutatorbauplan nennen wir integrabel. Wir geben notwendige und hinreichende Bedingungen eines integrablen Kommutatorbauplans an. Außerdem konstruieren wir überabzählbar viele verschiedene integrable Kommutatorbaupläne vom Typ $(4,4,4)$.

Die Existenz dieser integrablen Kommutatorbaupläne widerlegt die Allgemeingültigkeit des Erweiterungssatzes für Isometrien von 2-spärischen dicken Zwillingsgebäuden. Zusätzlich erhalten wir das erste Beispiel einer 2-sphärischen Kac-Moody Gruppe über einem endlichen Körper, welche nicht endlich präsentiert ist. Zudem konstruieren wir das erste Beispiel eines 2-sphärischen RGD-Systems mit endlichen Wurzelgruppen, welches nicht die Eigenschaft (FPRS) besitzt.

Contents

Introduction v
I. Preliminaries 1

1. Basic definitions 3
1.1. Coxeter systems 3
1.2. Buildings 3
1.3. Roots 5
1.4. Coxeter buildings 5
1.5. Reflection and combinatorial triangles in $\Sigma(W, S)$ 8
1.6. Twin buildings 10
1.7. Root group data 11
1.8. Graphs of groups 12
II. RGD-systems over \mathbb{F}_{2} 15
2. Commutator blueprints 17
2.1. Definition 17
2.2. Integrability of certain commutator blueprints 20
2.3. An action of the P_{s} 30
2.4. Braid relations act trivially on suitable subset 33
3. Braid relations 35
3.1. Notations 35
3.2. The case $m_{s t}=2$ 36
3.3. The case $m_{s t}=3$ 36
3.4. The case $m_{s t}=4$ 40
3.5. First main result 50
4. Construction of the groups U_{w} 51
4.1. Auxiliary results 51
4.2. Pre-commutator blueprints 52
III. Faithful commutator blueprints of type ($4,4,4$) 57
5. Buildings of type ($4,4,4$) 59
5.1. Coxeter buildings of type $(4,4,4)$ 59
5.2. Roots in Coxeter systems of type $(4,4,4)$ 61
5.3. RGD-systems of type $(4,4,4)$ over \mathbb{F}_{2} 64
6. Commutator blueprints of type $(4,4,4)$ 71
6.1. The groups V_{R} and O_{R}. 71
6.2. The groups $V_{R, s}$ and $O_{R, s}$ 72
6.3. The groups H_{R}, G_{R} and $J_{R, t}$ 73
6.4. The group $K_{R, s}$, 76
6.5. The groups $E_{R, s}$ and $U_{R, s}$ 78
6.6. The group X_{R} 80
6.7. The groups $H_{\left\{R, R^{\prime}\right\}}, G_{\left\{R, R^{\prime}\right\}}$ and $J_{\left(R, R^{\prime}\right)}$ 82
6.8. The groups C and $C_{\left(R, R^{\prime}\right)}$ 87
6.9. Faithful commutator blueprints 91
6.10. Second main result 101
7. Applications 107
7.1. New RGD-systems 107
7.2. Extension theorem for twin buildings 118
7.3. Finiteness properties 118
7.4. Locally compact groups 120
7.5. Property (FPRS) 123
IV. Appendix 127
Bibliography 139
Selbstständigkeitserklärung 143

Introduction

Historical context

This is based on [25, [8] and [9].

Twin buildings

Buildings have been introduced by Tits in order to study semi-simple algebraic groups from a combinatorial point of view. One of the most celebrated results in the theory of abstract buildings is Tits' classification result for irreducible spherical buildings of rank at least 3. The decisive step in this classification is a local-to-global result for isometries of spherical buildings.

Twin buildings were introduced by Ronan and Tits in the late 1980s in order to study groups of Kac-Moody type. Their definition was motivated by the theory of Kac-Moody groups over fields. Each such group acts naturally on a pair of two buildings and the action preserves an opposition relation between the chambers of the buildings. This opposition relation shares many important information with the opposition relation of spherical buildings. Thus, twin buildings appear to be natural generalizations of spherical buildings.

Extension problem

Ronan and Tits conjectured in the 1990s that there exists a similar local-to-global result for isometries of twin buildings. To be more precise: let $\Delta=\left(\Delta_{+}, \Delta_{-}, \delta_{*}\right), \Delta^{\prime}=\left(\Delta_{+}^{\prime}, \Delta_{-}^{\prime}, \delta_{*}^{\prime}\right)$ be two twin buildings of the same type (W, S). An isometry is a bijection from $\mathcal{X} \subseteq \Delta$ to $\mathcal{X}^{\prime} \subseteq \Delta^{\prime}$ which preserves the sign, the distance and the codistance. For $c \in \Delta_{+}$we denote by $E_{2}(c)$ the union of all residues of rank at most 2 containing c.

Extension theorem: Let $\Delta=\left(\Delta_{+}, \Delta_{-}, \delta_{*}\right)$ and $\Delta^{\prime}=\left(\Delta_{+}^{\prime}, \Delta_{-}^{\prime}, \delta_{*}^{\prime}\right)$ be two twin buildings of type (W, S). We say that the the extension theorem holds for Δ, if for all $c \in \Delta_{+}$and $c^{\prime} \in \Delta_{+}^{\prime}$, every isometry $E_{2}(c) \rightarrow E_{2}\left(c^{\prime}\right)$ extends to an isometry $\Delta \rightarrow \Delta^{\prime}$.

If the extension theorem holds for a subclass of twin buildings, then the classification of twin buildings contained in this subclass reduces to the classification of foundations, i.e. the local structure $E_{2}(c)$. First the extension theorem seems only be feasible under the additional assumption that (W, S) is 2-spherical. Tits observed that a proof of the extension theorem splits roughly into two parts:

Part 1 (first half): Any isometry $E_{2}(c) \rightarrow E_{2}\left(c^{\prime}\right)$ extends to an isometry $\Delta_{+} \rightarrow \Delta_{+}^{\prime}$.
Tits proved part 1 in [34] under the additional assumption that each panel is sufficiently large.
Part 2 (second half): Any isometry $\Delta_{+} \rightarrow \Delta_{+}^{\prime}$ extends to an isometry $\Delta \rightarrow \Delta^{\prime}$.
The first contribution to part 2 is a result of Mühlherr and Ronan from 1995 published in [25] satisfying an additional condition (co).

Condition (co)

A twin building $\Delta=\left(\Delta_{+}, \Delta_{-}, \delta_{*}\right)$ satisfies condition (co) if for every $c \in \mathcal{C}_{\varepsilon}$ the set $\left\{d \in \mathcal{C}_{-\varepsilon} \mid\right.$ $\left.\delta_{*}(c, d)=1_{W}\right\}$ of chambers opposite c is connected. Mühlherr and Ronan have shown in [25] the following condition on the rank 2 residues implies condition (co):
(lco) No rank 2 residue of Δ is associated with one of the groups $B_{2}(2), G_{2}(2), G_{2}(3),{ }^{2} F_{4}(2)$.

Condition (lco) shows that difficulties arise only if the size of panels is too small. In particular, they proved the following theorem:

Theorem (Mühlherr, Ronan, [25]): The second half of the extension theorem holds for twin buildings

- in which every panel contains at least 5 chambers.
- of simply-laced type.

In 31 Ronan generalized the first half of the extension theorem to twin buildings satisfying (co). In particular, the extension theorem holds for twin buildings satisfying (co). Recently, Chosson, Mühlherr and the author have shown in [8] that the first half of the extension theorem is true for any two 2-spherical thick twin buildings. Thus, the extension theorem holds if the second part of the extension theorem holds.

Condition (wc)

What is a bit unsatisfying about condition (co) is that not all affine twin buildings satisfy this condition. In [9] Mühlherr and the author introduced condition (wc) in order to prove the second half of the extension theorem for affine twin buildings. As a consequence, the second half of the extension theorem is true for 3 -spherical thick twin buildings. This rather technical condition (wc) is a weaker condition than (co) and has a nice interpretation for RGD-systems. We do not give the definition here, but we refer to [9] for details.

Counterexamples coming from RGD-systems

The main motivation of this thesis is to construct two thick twin buildings of 2 -spherical type for which the extension theorem does not hold. The twin buildings are associated with RGD-systems. In particular, we have constructed RGD-systems over \mathbb{F}_{2} (i.e. every root group contains exactly two elements) with prescribed commutator relations.

Let $\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system of type (W, S) over \mathbb{F}_{2}, where G is generated by the groups U_{α}. We let U_{+}be the group generated by the set of root groups corresponding to positive roots. For each $s \in S$ we let P_{s} be the group generated by U_{+}and $U_{-\alpha_{s}}$ and we let $\tau_{s}:=u_{-s} u_{s} u_{-s}$, where $u_{ \pm s} \in U_{ \pm \alpha_{s}} \backslash\{1\}$. Then we have the following two well-known theorems:

Theorem 1: The group G is isomorphic to the direct limit of the inductive system formed by the groups $U_{+},\left(P_{s}\right)_{s \in S}, \mathbb{Z}_{2}, W$ together with the natural inclusions

$$
U_{+} \longrightarrow P_{s} \overleftrightarrow{1 \mapsto \tau_{s}} \mathbb{Z}_{2} \xrightarrow{1 \mapsto s} W \quad \text { for all } s \in S
$$

Theorem 2: The group U_{+}is isomorphic to the direct limit of the inductive system formed by the groups U_{w}, together with the canonical inclusions $U_{w} \rightarrow U_{w s}$ for every $w \in W, s \in S$ with $\ell(w s)=\ell(w)+1$. Moreover, the group U_{w} has cardinality $2^{\ell(w)}$ for each $w \in W$.

Construction of RGD-systems over \mathbb{F}_{2}

In this thesis we follow the ideas of Theorem 1 and 2 . In the following will describe the main strategy. In order to explain the main idea in a comprehensible way, we will not be formally mathematically correct at the one or other point in this description.

We first need to find a way of producing groups U_{w} having cardinality $2^{\ell(w)}$ for $w \in W$. These groups should come equipped with canonical homomorphisms $U_{w} \rightarrow U_{w s}$, whenever $\ell(w s)=\ell(w)+1$. Following Theorem 2 , we define U_{+}as the direct limit of the inductive system formed by the groups U_{w}, together with the homomorphisms $U_{w} \rightarrow U_{w s}$. It is not clear at this stage whether the homomorphisms $U_{w} \rightarrow U_{+}$are injective, but for the moment we assume that they are. Next we have to construct the groups P_{s} for each $s \in S$. Therefore, we note that $U_{+} \cong U_{s} \ltimes N_{s}$ splits as a semi-direct product. We will construct another automorphism $\tau_{s} \in \operatorname{Aut}\left(N_{s}\right)$ with the property $\tau_{s}\left(u_{\alpha}\right)=u_{s \alpha}$. Now we define $P_{s}:=\left\langle u_{s}, \tau_{s}\right\rangle \ltimes N_{s}$. Moreover, we can define the direct limit of the inductive system formed by the groups $U_{+},\left(P_{s}\right)_{s \in S}, \mathbb{Z}_{2}, W$ as in Theorem 1. We will work out sufficient conditions in order to show that G can be endowed with an RGD-system.

Overview

In Chapter 1 we introduce the basic definitions of the theory of buildings. Moreover, we state known results and prove some auxiliary results which will be needed later. In the second chapter we introduce the notion of commutator blueprints, the main objects of this thesis. They can be seen as a prescription of commutator relations. Each commutator blueprint provides the groups U_{w} having cardinality $2^{\ell(w)}$ for $w \in W$. To each RGD-system one can associate a commutator blueprint and such commutator blueprints are called integrable. Additionally, we define faithful and Weyl-invariant commutator blueprint: Faithfulness implies that the canonical homomorphisms $U_{w} \rightarrow U_{+}$are injective. Moreover, we obtain the decomposition $U_{+} \cong U_{s} \ltimes N_{s}$ and hence $u_{s} \in \operatorname{Aut}\left(N_{s}\right)$. Weyl-invariance allows to construct an automorphism $\tau_{s} \in \operatorname{Aut}\left(N_{s}\right)$ such that $\tau_{s}\left(u_{\alpha}\right)=u_{s \alpha}$. Moreover, if G denotes the direct limit of the inductive system formed by the groups $U_{+},\left(P_{s}\right)_{s \in S}, \mathbb{Z}_{2}, W$ as in Theorem 1 , we prove the following theorem:

Theorem (Theorem (2.4.3)): If $P_{s} \rightarrow G$ is injective for each $s \in S$, then the commutator blueprint is integrable.
In order to show the the group G can be endowed with an RGD-system, we have to show that the homomorphisms $P_{s} \rightarrow G$ are injective. We consider the chamber system \mathbf{C}, where each chamber is a coset contained in U_{+} / U_{w} for some $w \in W$. We define an action of P_{s} on \mathbf{C} and deduce that this action is faithful. We are done, if the braid relations $\left(\tau_{s} \tau_{t}\right)^{m_{s t}}$ act trivially on the chamber system \mathbf{C} for all $s \neq t \in S$ with $m_{s t}<\infty$. This is what we do in Chapter 3. We restrict to the cases $m_{s t} \neq 6$, i.e. $m_{s t} \in\{2,3,4\}$. As it is our main motivation to construct RGD-systems of type $(4,4,4)$, this is an acceptable restriction. It turns out that the braid relations act trivial in the case $m_{s t}=2$. We introduce two further conditions of the commutator blueprint (called (CR1) and (CR2)), and it turns out that if the groups U_{w} are of nilpotency class at most 2 and if (CR1) and (CR2) are satisfied, then the braid relations act trivial in the cases $m_{s t} \in\{3,4\}$. In Chapter 4 we show that if the commutator relations are chosen in a way that they are somehow of nilpotency class 2 then the groups U_{w} have automatically cardinality $2^{\ell(w)}$.
In Part 3 we discuss faithful commutator blueprints of type ($4,4,4$). Therefore, we analyze the geometry of the Coxeter system of type $(4,4,4)$ and its set of roots. Moreover, we prove that any RGD-system of type $(4,4,4)$ over \mathbb{F}_{2} contains suitable tree products (called $V_{R, s}$) as subgroups. These groups will be needed in Chapter 6 . The fact that $V_{R, s}$ is a subgroup is obtained by considering the action of the group on its associated twin building. In Chapter 6 we introduce several tree products and prove many subgroup and isomorphism properties of those. In Section 6.9 and 6.10 we construct the group U_{+}successively as a tree product.

Here we need on the one hand the subgroups $V_{R, s}$ and, one the other hand the tree products constructed in Chapter 6. We remark that this construction does only work because we already have one example of an RGD-system of type $(4,4,4)$ over \mathbb{F}_{2}, namely the Kac-Moody group. This implies that a Weyl-invariant commutator blueprint of type $(4,4,4)$ is faithful. The main result of this thesis will be the following:

Main result (Corollary (6.10.7)): Any Weyl-invariant commutator blueprint of type $(4,4,4)$ satisfying the conditions (CR1) and (CR2) and such that the groups U_{w} are of nilpotency class at most 2 is integrable.
We remark that Weyl-invariance, (CR1), (CR2) and the nilpotency class assumption can be checked by only considering the commutator blueprint. In the last chapter we discuss several applications of the main result, which we will explain below. In the appendix we reproduce for convenience all figures from Chapter 6

Applications of the Main result

First we construct uncountably many different Weyl-invariant commutator blueprints, which are integrable. The existence of these has itself two applications. The first concerns an answer of a 30 year-old question of Ronan and Tits about the extension problem. We obtain the following result:

Extension problem (Theorem (7.2.1)]: The extension theorem does not hold for all thick 2 -spherical twin buildings.

The second application answers a question about finiteness properties of groups acting on twin buildings. Abremenko and Mühlherr have shown in [3] that almost all 2-spherical Kac-Moody groups over finite fields are finitely presented. As a consequence of our construction we obtain the first 2 -spherical, non-finitely presented Kac-Moody group over a finite field:

Theorem (Theorem (7.3.3)): Let G be the Kac-Moody group (in the sense of [34]) of type $(4,4,4)$ over \mathbb{F}_{2}. Then G is not finitely presented.
Moreover, Abramenko considered finiteness properties of the stabilizer of a chamber in a Kac-Moody groups and he proved (unpublished, cf. [1] Counter-Example 1(2)]) the following result, which is also a consequence of our construction:

Theorem (Theorem (7.3.4), Lemma (7.4.6)] Let \mathcal{D} be an RGD-system of type (4,4,4) over \mathbb{F}_{2}. Then group U_{+}is not finitely generated. In particular, the automorphism group of the building associated with an RGD-system of type $(4,4,4)$ over \mathbb{F}_{2} does not have property (T).

The last application concerns property (FPRS), which makes a statement about fixed points of the root groups on the associated building. Caprace and Remy have shown in [16] that (almost) split Kac-Moody groups satisfy this property. We have shown that many (but not all) of the new examples satisfy this property (cf. Corollary (7.5.4)). In particular, we obtain the first example of a 2 -spherical RGD-system which does not satisfy property (FPRS):

Theorem (Theorem (7.5.5)): There exists an RGD-system of 2-spherical type which does not satisfy property (FPRS).

Acknowledgement

First of all, I would like to thank my advisor Bernhard Mühlherr for drawing my attention to the beautiful theory about buildings. I am infinitely grateful for his constant support and for many fruitful discussions about (and not limited to) mathematics. He also put George Willis in touch with me and gave me the freedom to do research in Australia during a semester off.

I also wish to thank George Willis for hosting me and for the opportunity to work with him. It was a great pleasure to be part of his research group and to learn from him about the structure theory of totally disconnected, locally compact groups. We had many inspiring discussions which excited my curiosity. I also would like to thank his Zero-Dimensional research group for making my stay in Australia as comfortable as possible. At this point I would like to thank the DAAD for funding this six-months stay in Australia, which (due to COVID) I had to undertake online.

I would like to thank the following people: Richard Weidmann, who answered my easy questions about trees of groups. Stefan Witzel, for numerous discussions on groups acting on buildings. Timothee Marquis and Stefan Tornier for many interesting discussions about math and academia. All the colleagues of the mathematical institute. I really enjoyed our daily coffee break, which always brightened my mood.

Finally, I would like to thank my family and friends believing in me and supporting me during my PhD studies. In particular, I would like to express my gratitude to my girlfriend Katharina for her support. She always had to listen to me, when I had a new mathematical idea and wanted to tell someone about.

Part 1.

Preliminaries

1. Basic definitions

In this chapter we introduce basic definitions of the theory of buildings. Moreover, we state some known results and prove some auxiliary results which we will need later.

1.1. Coxeter systems

Let (W, S) be a Coxeter system and let ℓ denote the corresponding length function. For $s, t \in S$ we denote the order of $s t$ in W by $m_{s t}$. The Coxeter diagram corresponding to (W, S) is the labeled graph $\left(S, E(S)\right.$), where $E(S)=\left\{\{s, t\} \mid m_{s t}>2\right\}$ and where each edge $\{s, t\}$ is labeled by $m_{s t}$ for all $s, t \in S$. The rank of the Coxeter system is the cardinality of the set S. Let (W, S) be of rank 3 and let $S=\{r, s, t\}$. Sometimes we will also call ($m_{r s}, m_{r t}, m_{s t}$) the type of (W, S). If (W, S) is of type ($m_{r s}, m_{r t}, m_{s t}$), then it is called cyclic hyperbolic if $m_{r s}, m_{r t}, m_{s t} \geq 3$ and $\frac{1}{m_{r s}}+\frac{1}{m_{r t}}+\frac{1}{m_{s t}}<1$.

If $m_{s t} \in\{2,3,4,6, \infty\}$ for all $s \neq t \in S$, we call the Coxeter system crystallographic. In this case we define the crystallographic Dynkin diagram Dyn (W, S) corresponding to (W, S) as the Coxeter diagram, where each edge has a direction. We note that this is not exactly the notion of a Dynkin diagram in the literature.

It is well-known that for each $J \subseteq S$ the pair $(\langle J\rangle, J)$ is a Coxeter system (cf. [10, Ch. IV, $\S 1$ Theorem 2]). A subset $J \subseteq S$ is called spherical if $\langle J\rangle$ is finite. The Coxeter system is called spherical if S is spherical; it is called 2-spherical if $\langle J\rangle$ is finite for all $J \subseteq S$ containing at most 2 elements (i.e. $m_{s t}<\infty$ for all $s, t \in S$). Given a spherical subset J of S, there exists a unique element of maximal length in $\langle J\rangle$, which we denote by r_{J} (cf. [2, Corollary 2.19]).
(1.1.1) Lemma. Let $\varepsilon \in\{+,-\}$ and let (W, S) be a Coxeter system. Suppose $s, t \in S, w \in W$ with $\ell(s w)=\ell(w) \varepsilon 1=\ell(w t)$. Then either $\ell(s w t)=\ell(w) \varepsilon 2$ or else $s w t=w$.

Proof. The case $\varepsilon=+$ is [2, Condition (F) on p. 79]. Thus we consider the case $\varepsilon=-$. We put $w^{\prime}:=s w$. Then $\ell\left(s w^{\prime}\right)=\ell(w)=\ell\left(w^{\prime}\right)+1$. We assume that $\ell(s w t) \neq \ell(w)-2$. Then $\ell(s w t)=\ell(w)$ and hence $\ell\left(w^{\prime} t\right)=\ell(s w t)=\ell(w)=\ell\left(w^{\prime}\right)+1$. Using [2, Condition (\mathbf{F}) on p. 79] we obtain either $\ell\left(s w^{\prime} t\right)=\ell\left(w^{\prime}\right)+2$ or $s w^{\prime} t=w^{\prime}$. Since $\ell\left(s w^{\prime} t\right)=\ell(w t)=\ell(s w)=\ell\left(w^{\prime}\right)$ we have $w t=s w^{\prime} t=w^{\prime}=s w$ and the claim follows.

1.2. Buildings

Let (W, S) be a Coxeter system. A building of type (W, S) is a pair $\Delta=(\mathcal{C}, \delta)$ where \mathcal{C} is a non-empty set and where $\delta: \mathcal{C} \times \mathcal{C} \rightarrow W$ is a distance function satisfying the following axioms, where $x, y \in \mathcal{C}$ and $w=\delta(x, y)$:
(Bu1) $w=1_{W}$ if and only if $x=y$;
(Bu2) if $z \in \mathcal{C}$ satisfies $s:=\delta(y, z) \in S$, then $\delta(x, z) \in\{w, w s\}$, and if, furthermore, $\ell(w s)=$ $\ell(w)+1$, then $\delta(x, z)=w s ;$
(Bu3) if $s \in S$, there exists $z \in \mathcal{C}$ such that $\delta(y, z)=s$ and $\delta(x, z)=w s$.

The rank of Δ is the rank of the underlying Coxeter system. The elements of \mathcal{C} are called chambers. Given $s \in S$ and $x, y \in \mathcal{C}$, then x is called s-adjacent to y, if $\delta(x, y)=s$. The chambers x, y are called adjacent, if they are s-adjacent for some $s \in S$. A gallery from x to y is a sequence $\left(x=x_{0}, \ldots, x_{k}=y\right)$ such that x_{l-1} and x_{l} are adjacent for all $1 \leq l \leq k$; the number k is called the length of the gallery. Let $\left(x_{0}, \ldots, x_{k}\right)$ be a gallery and suppose $s_{i} \in S$ with $\delta\left(x_{i-1}, x_{i}\right)=s_{i}$. Then $\left(s_{1}, \ldots, s_{k}\right)$ is called the type of the gallery. A gallery from x to y of length k is called minimal if there is no gallery from x to y of length $<k$. In this case we have $\ell(\delta(x, y))=k$ (cf. [2, Corollary $5.17(1)])$. Let $x, y, z \in \mathcal{C}$ be chambers such that $\ell(\delta(x, y))=\ell(\delta(x, z))+\ell(\delta(z, y))$. Then the concatenation of a minimal gallery from x to z and a minimal gallery from z to y yields a minimal gallery from x to y.

Given a subset $J \subseteq S$ and $x \in \mathcal{C}$, the J-residue of x is the set $R_{J}(x):=\{y \in \mathcal{C} \mid \delta(x, y) \in$ $\langle J\rangle\}$. Each J-residue is a building of type $(\langle J\rangle, J)$ with the distance function induced by δ (cf. [2, Corollary 5.30]). A residue is a subset R of \mathcal{C} such that there exist $J \subseteq S$ and $x \in \mathcal{C}$ with $R=R_{J}(x)$. Since the subset J is uniquely determined by R, the set J is called the type of R and the rank of R is defined to be the cardinality of J. A residue is called spherical if its type is a spherical subset of S. A building is called spherical if its type is spherical. Let R be a spherical J-residue. Then $x, y \in R$ are called opposite in R if $\delta(x, y)=r_{J}$. Two residues $P, Q \subseteq R$ are called opposite in R if for each $p \in P$ there exists $q \in Q$ such that p, q are opposite in R and if for each $q^{\prime} \in Q$ there exists $p^{\prime} \in P$ such that q^{\prime}, p^{\prime} are opposite in R. A panel is a residue of rank 1 . An s-panel is a panel of type $\{s\}$ for $s \in S$. The building Δ is called thick, if each panel of Δ contains at least three chambers; it is called locally finite, if each panel contains only finitely many chambers.

Given $x \in \mathcal{C}$ and a J-residue $R \subseteq \mathcal{C}$, then there exists a unique chamber $z \in R$ such that $\ell(\delta(x, y))=\ell(\delta(x, z))+\ell(\delta(z, y))$ holds for each $y \in R$ (cf. [2, Proposition 5.34]). The chamber z is called the projection of x onto R and is denoted by $\operatorname{proj}_{R} x$. Moreover, if $z=\operatorname{proj}_{R} x$ we have $\delta(x, y)=\delta(x, z) \delta(z, y)$ for each $y \in R$. Let $J \subseteq S$, let R be a J-residue and suppose $c \in \mathcal{C}, d \in R$ with $\ell(\delta(c, d) j)=\ell(\delta(c, d))+1$ for each $j \in J$. Then we have $d=\operatorname{proj}_{R} c$ (cf. [24, Lemma 21.6(iv)]). Let $R \subseteq T$ be two residues of Δ. Then $\operatorname{proj}_{R} c=\operatorname{proj}_{R} \operatorname{proj}_{T} c$ holds for every $c \in \mathcal{C}$ by [19, Proposition 2].

An (type-preserving) automorphism of a building $\Delta=(\mathcal{C}, \delta)$ is a bijection $\varphi: \mathcal{C} \rightarrow \mathcal{C}$ such that $\delta(\varphi(c), \varphi(d))=\delta(c, d)$ holds for all chambers $c, d \in \mathcal{C}$. We remark that some authors distinguish between automorphisms and type-preserving automorphisms. An automorphism in our sense is type-preserving. We denote the set of all automorphisms of the building Δ by $\operatorname{Aut}(\Delta)$. It is a basic fact that the projection commutes with each automorphism. More precisely, let $c \in \mathcal{C}$, let R be a residue of Δ and let $\varphi \in \operatorname{Aut}(\Delta)$. It follows directly from the uniqueness of $\operatorname{proj}_{R} c$ that $\varphi\left(\operatorname{proj}_{R} c\right)=\operatorname{proj}_{\varphi(R)} \varphi(c)$.
(1.2.1) Example. We define $\delta: W \times W \rightarrow W,(x, y) \mapsto x^{-1} y$. Then $\Sigma(W, S):=(W, \delta)$ is a building of type (W, S). The group W acts faithful on $\Sigma(W, S)$ via left-multiplication, i.e. $W \leq \operatorname{Aut}(\Sigma(W, S))$.

A subset $\Sigma \subseteq \mathcal{C}$ is called convex if for any two chambers $c, d \in \Sigma$ and any minimal gallery $\left(c_{0}=c, \ldots, c_{k}=d\right)$, we have $c_{i} \in \Sigma$ for all $0 \leq i \leq k$. Note that by [2, Example 5.44(b)] any residue of a building is convex. A subset $\Sigma \subseteq \mathcal{C}$ is called thin if $P \cap \Sigma$ contains exactly two chambers for every panel $P \subseteq \mathcal{C}$ which meets Σ. An apartment is a non-empty subset $\Sigma \subseteq \mathcal{C}$, which is convex and thin.

For two residues R and T we define $\operatorname{proj}_{T} R:=\left\{\operatorname{proj}_{T} r \mid r \in R\right\}$. By [2, Lemma 5.36(2)] $\operatorname{proj}_{T} R$ is a residue contained in T. Two residues R and T are called parallel if $\operatorname{proj}_{T} R=T$ and $\operatorname{proj}_{R} T=R$. By [24, Proposition 21.8(i)] the residues $\operatorname{proj}_{T} R$ and $\operatorname{proj}_{R} T$ are parallel. If R and T are parallel, then it follows by [24, Proposition 21.8(ii), (iii)] that
$\operatorname{proj}_{R}^{T}: T \rightarrow R, t \rightarrow \operatorname{proj}_{R} t$ and $\operatorname{proj}_{T}^{R}: R \rightarrow T, r \mapsto \operatorname{proj}_{T} r$ are bijections inverse to each other and that the element $\delta\left(x, \operatorname{proj}_{T} x\right) \in W$ is independent of the choice of $x \in R$.
(1.2.2) Lemma. Let R be a spherical residue of rank 2 and let $P \neq Q \subseteq R$ be two parallel panels. Then P and Q are opposite in R.

Proof. This is a consequence of [18, Lemma 18] and [2, Lemma 5.107].
(1.2.3) Theorem. Let $\Delta=(\mathcal{C}, \delta)$ be a thick spherical building of type (W, S) and let $c, d \in \mathcal{C}$ be opposite chambers in \mathcal{C}. Then the only automorphism of Δ, which fixes $\bigcup_{s \in S} R_{\{s\}}(c) \cup\{d\}$ pointwise, is the identity.

Proof. This is [2, Theorem 5.205].

1.3. Roots

Let (W, S) be a Coxeter system. A reflection is an element of W that is conjugate to an element of S. For $s \in S$ we let $\alpha_{s}:=\{w \in W \mid \ell(s w)>\ell(w)\}$ be the simple root corresponding to s. A root is a subset $\alpha \subseteq W$ such that $\alpha=v \alpha_{s}$ for some $v \in W$ and $s \in S$. We denote the set of all roots by $\Phi(W, S)$. The set $\Phi(W, S)_{+}=\left\{\alpha \in \Phi(W, S) \mid 1_{W} \in \alpha\right\}$ is the set of all positive roots and $\Phi(W, S)_{-}=\left\{\alpha \in \Phi(W, S) \mid 1_{W} \notin \alpha\right\}$ is the set of all negative roots. For each root $\alpha \in \Phi(W, S)$ we denote the opposite root by $-\alpha$ and we denote the unique reflection which interchanges these two roots by $r_{\alpha} \in W \leq \operatorname{Aut}(\Sigma(W, S))$. Moreover, for each reflection r there exist two roots $\pm \beta_{r}$ which are interchanged by r. A pair $\{\alpha, \beta\}$ of distinct roots is called prenilpotent if both $\alpha \cap \beta$ and $(-\alpha) \cap(-\beta)$ are non-empty sets. For such a pair we will write $[\alpha, \beta]:=\{\gamma \in \Phi(W, S) \mid \alpha \cap \beta \subseteq \gamma$ and $(-\alpha) \cap(-\beta) \subseteq-\gamma\}$ and $(\alpha, \beta):=[\alpha, \beta] \backslash\{\alpha, \beta\}$. A pair $\{\alpha, \beta\} \subseteq \Phi$ of two roots is called nested, if $\alpha \subsetneq \beta$ or $\beta \subsetneq \alpha$.
(1.3.1) Convention. For the rest of this paper we let (W, S) be a Coxeter system of finite rank and we define $\Phi:=\Phi(W, S)\left(\right.$ resp. $\left.\Phi_{+}, \Phi_{-}\right)$.
(1.3.2) Lemma. For $s \neq t \in S$ we have $\alpha_{t} \subseteq\left(-\alpha_{s}\right) \cup t \alpha_{s}$.

Proof. Let $w \in \alpha_{t}$. If $\ell(s w)<\ell(w)$, then $w \in\left(-\alpha_{s}\right)$ and we are done. Thus we can assume $\ell(s w)>\ell(w)$. As $w \in \alpha_{t}$, we have $\ell(t w)>\ell(w)$ and hence $\ell(s t w)=\ell(w)+2>\ell(t w)$. Thus $t w \in \alpha_{s}$ and hence $w \in t \alpha_{s}$.
(1.3.3) Remark. Let $s \neq t \in S$ and let $\beta \in\left(\alpha_{s}, \alpha_{t}\right)$. Then we have $\alpha_{s} \cap \alpha_{t} \subseteq \beta$ and hence $(-\beta) \subseteq\left(-\alpha_{s}\right) \cup\left(-\alpha_{t}\right)$. Moreover, we have $\left(-\alpha_{s}\right) \cap\left(-\alpha_{t}\right) \subseteq(-\beta)$ and hence $\beta \subseteq \alpha_{s} \cup \alpha_{t}$.

1.4. Coxeter buildings

In this section we consider the Coxeter building $\Sigma(W, S)$. At first we note that roots are convex (cf. [2, Lemma 3.44]). For $\alpha \in \Phi$ we denote by $\partial \alpha$ (resp. $\partial^{2} \alpha$) the set of all panels (resp. spherical residues of rank 2) stabilized by r_{α}. Furthermore, we define $\mathcal{C}(\partial \alpha):=\bigcup_{P \in \partial \alpha} P$ and $\mathcal{C}\left(\partial^{2} \alpha\right):=\bigcup_{R \in \partial^{2} \alpha} R$. The set $\partial \alpha$ is called the wall associated with α. Let $G=\left(c_{0}, \ldots, c_{k}\right)$ be a gallery. We say that G crosses the wall $\partial \alpha$ if there exists $1 \leq i \leq k$ such that $\left\{c_{i-1}, c_{i}\right\} \in \partial \alpha$. It is a basic fact that a minimal gallery crosses a wall at most once (cf. [2, Lemma 3.69]). Let $\left(c_{0}, \ldots, c_{k}\right)$ and $\left(d_{0}=c_{0}, \ldots, d_{k}=c_{k}\right)$ be two minimal galleries from c_{0} to c_{k} and let $\alpha \in \Phi$. Then $\partial \alpha$ is crossed by the minimal gallery $\left(c_{0}, \ldots, c_{k}\right)$ if and only if it is crossed by the minimal gallery $\left(d_{0}, \ldots, d_{k}\right)$. Moreover, a gallery which crosses each wall at most once is already minimal. For a minimal gallery $G=\left(c_{0}, \ldots, c_{k}\right), k \geq 1$, we denote the unique
root containing c_{k-1} but not c_{k} by α_{G}. For $\alpha_{1}, \ldots, \alpha_{k} \in \Phi$ we say that a minimal gallery $G=\left(c_{0}, \ldots, c_{k}\right)$ crosses the sequence of roots $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, if $c_{i-1} \in \alpha_{i}$ and $c_{i} \notin \alpha_{i}$ all $1 \leq i \leq k$.

We denote the set of all minimal galleries $G=\left(c_{0}=1_{W}, \ldots, c_{k}\right)$ by Min. For $w \in W$ we denote the set of all $G \in \operatorname{Min}$ of type $\left(s_{1}, \ldots, s_{k}\right)$ with $w=s_{1} \cdots s_{k}$ by $\operatorname{Min}(w)$. For $w \in W$ with $\ell(s w)=\ell(w)-1$ we let $\operatorname{Min}_{s}(w)$ be the set of all $G \in \operatorname{Min}(w)$ of type $\left(s, s_{2}, \ldots, s_{k}\right)$.

For a positive root $\alpha \in \Phi_{+}$we define $k_{\alpha}:=\min \left\{k \in \mathbb{N} \mid \exists G=\left(c_{0}, \ldots, c_{k}\right) \in\right.$ Min : $\left.\alpha_{G}=\alpha\right\}$. We remark that $k_{\alpha}=1$ if and only if α is a simple root. Furthermore, we define $\Phi(k):=\left\{\alpha \in \Phi_{+} \mid k_{\alpha} \leq k\right\}$ for $k \in \mathbb{N}$. Let R be a residue and let $\alpha \in \Phi_{+}$. Then we call α a simple root of R if there exists $P \in \partial \alpha$ such that $P \subseteq R$ and $\operatorname{proj}_{R} 1_{W}=\operatorname{proj}_{P} 1_{W}$. In this case R is also stabilized by r_{α} and hence $R \in \partial^{2} \alpha$.
(1.4.1) Lemma. Let R be a spherical residue of $\Sigma(W, S)$ of rank 2 and let $\alpha \in \Phi$. Then exactly one of the following hold:
(a) $R \subseteq \alpha$;
(b) $R \subseteq(-\alpha)$;
(c) $R \in \partial^{2} \alpha$;

Proof. It is clear, that the three cases are exclusive. Suppose that $R \nsubseteq \alpha$ and $R \nsubseteq(-\alpha)$. Then there exist $c \in R \cap(-\alpha)$ and $d \in R \cap \alpha$. Let ($c_{0}=c, \ldots, c_{k}=d$) be a minimal gallery. As residues are convex, we have $c_{i} \in R$ for every $0 \leq i \leq k$. As $c \in(-\alpha), d \in \alpha$, there exists $1 \leq i \leq k$ with $c_{i-1} \in(-\alpha), c_{i} \in \alpha$. In particular, $\left\{c_{i-1}, c_{i}\right\} \in \partial \alpha$ and hence $R \in \partial^{2} \alpha$.
(1.4.2) Lemma. Let R, T be two residues of $\Sigma(W, S)$. Then the following are equivalent
(i) R, T are parallel;
(ii) a reflection of $\Sigma(W, S)$ stabilizes R if and only if it stabilizes T;
(iii) there exist two sequences $R_{0}=R, \ldots, R_{n}=T$ and T_{1}, \ldots, T_{n} of residues of spherical type such that for each $1 \leq i \leq n$ the rank of T_{i} is equal to $1+\operatorname{rank}(R)$, the residues R_{i-1}, R_{i} are contained and opposite in T_{i} and moreover, we have $\operatorname{proj}_{T_{i}} R=R_{i-1}$ and $\operatorname{proj}_{T_{i}} T=R_{i}$.

Proof. This is [13, Proposition 2.7].
(1.4.3) Lemma. Let $\alpha \in \Phi$ be a root and let $x, y \in \alpha \cap \mathcal{C}(\partial \alpha)$. Then there exists a minimal gallery $\left(c_{0}=x, \ldots, c_{k}=y\right)$ such that $c_{i} \in \mathcal{C}\left(\partial^{2} \alpha\right)$ for each $0 \leq i \leq k$. Moreover, for every $1 \leq i \leq k$ there exists $L_{i} \in \partial^{2} \alpha$ with $\left\{c_{i-1}, c_{i}\right\} \subseteq L_{i}$.

Proof. This is a consequence of [12, Lemma 2.3] and its proof.
(1.4.4) Remark. Let $\alpha \in \Phi$ be a root and let $R \in \partial^{2} \alpha$. Then there exist $c \in \alpha \cap R$ and $d \in(-\alpha) \cap R$. By considering a minimal gallery from c to d, there exist adjacent chambers $c^{\prime} \in \alpha \cap R$ and $d^{\prime} \in(-\alpha) \cap R$. In particular, $\left\{c^{\prime}, d^{\prime}\right\} \in \partial \alpha$. This shows that for all $R \in \partial^{2} \alpha$ there exists $P \in \partial \alpha$ such that $P \subseteq R$.
(1.4.5) Lemma. Let $\alpha \neq \beta \in \Phi$ be two non-opposite roots and let $R \neq T \in \partial^{2} \alpha \cap \partial^{2} \beta$. Then R and T are parallel.

Proof. As $R, T \in \partial^{2} \alpha \cap \partial^{2} \beta$, there exist panels $P_{1}, Q_{1} \in \partial \alpha$ and $P_{2}, Q_{2} \in \partial \beta$ such that $P_{1}, P_{2} \subseteq R$ and $Q_{1}, Q_{2} \subseteq T$ by the previous remark. By Lemma (1.4.2) the panels P_{i}, Q_{i} are parallel for each $i \in\{1,2\}$. [18, Lemma 17] yields that $P_{i}, \operatorname{proj}_{T} P_{i}$ are parallel and hence $\operatorname{proj}_{T} P_{1} \in \partial \alpha, \operatorname{proj}_{T} P_{2} \in \partial \beta$ by Lemma (1.4.2). As $\alpha \neq \pm \beta$, we deduce $\operatorname{proj}_{T} P_{1} \neq \operatorname{proj}_{T} P_{2}$ and hence $\operatorname{proj}_{T} P_{i} \subseteq \operatorname{proj}_{T} R$ for each $i \in\{1,2\}$. Since $\operatorname{proj}_{T} R$ is a residue contained in T containing two different panels, we deduce that $\operatorname{proj}_{T} R$ is not a panel and hence $\operatorname{proj}_{T} R=T$. Using similar arguments, we obtain $\operatorname{proj}_{R} T=R$ and R, T are parallel.
(1.4.6) Lemma. Assume that $\langle J\rangle=\infty$ for all $J \subseteq S$ containing three elements and let $\alpha \neq \beta \in \Phi$ be two non-opposite roots. Then we have $\left|\partial^{2} \alpha \cap \partial^{2} \beta\right| \leq 1$.

Proof. Assume that there exist $R \neq T \in \partial^{2} \alpha \cap \partial \beta$. By the previous lemma, R and T are parallel. But this is a contradiction to Lemma (1.4.2), as there exist no spherical residues of rank 3 by assumption and the claim follows.
(1.4.7) Lemma. Let $\alpha \neq \beta \in \Phi$ be two non-opposite roots. Then the following are equivalent:
(i) $\{\alpha, \beta\}$ or $\{-\alpha, \beta\}$ is nested.
(ii) We have $o\left(r_{\alpha} r_{\beta}\right)=\infty$.
(iii) We have $\partial^{2} \alpha \cap \partial^{2} \beta=\emptyset$.

Proof. The implication $(i) \Rightarrow(i i)$ follows exactly as in [2, Proposition 3.165]. Now suppose (ii) and assume that there exists $R \in \partial^{2} \alpha \cap \partial^{2} \beta$. As R is finite, there exists $k \in \mathbb{N}$ such that $\left(r_{\alpha} r_{\beta}\right)^{k}$ fixes a chamber, i.e. $\left(r_{\alpha} r_{\beta}\right)^{k} w=\left(r_{\alpha} r_{\beta}\right)^{k}(w)=w$ for some $w \in W$. But this implies $\left(r_{\alpha} r_{\beta}\right)^{k}=1$. As $o\left(r_{\alpha} r_{\beta}\right)=\infty$, we obtain a contradiction. Now suppose that non of $\{\alpha, \beta\},\{-\alpha, \beta\}$ is nested. In particular, we have $\alpha \nsubseteq \beta,(-\alpha) \nsubseteq(-\beta)$ as well as $(-\alpha) \nsubseteq \beta, \alpha \nsubseteq(-\beta)$. This implies that non of $\alpha \cap(-\beta),(-\alpha) \cap \beta,(-\alpha) \cap(-\beta), \alpha \cap \beta$ is the empty set. By [37, Proposition 29.24] there exists $R \in \partial^{2} \alpha \cap \partial^{2} \beta$ and we are done.
(1.4.8) Lemma. Let $\alpha, \beta, \gamma \in \Phi$ be three pairwise distinct and pairwise non-opposite roots. Suppose that $\partial^{2} \alpha \cap \partial^{2} \beta \cap \partial^{2} \gamma \neq \emptyset$. Then the following hold:
(a) $\partial^{2} \alpha \cap \partial^{2} \beta=\partial^{2} \alpha \cap \partial^{2} \gamma ;$
(b) $((\alpha, \beta) \cup(-\alpha, \beta)) \cap\{\gamma,-\gamma\} \neq \emptyset$.

Proof. Let $R \in \partial^{2} \alpha \cap \partial^{2} \beta \cap \partial^{2} \gamma$ be a residue and let $\delta \in\{\beta, \gamma\}$. It suffices to show that for each $R \neq T \in \partial^{2} \alpha \cap \partial^{2} \delta$ we have $T \in \partial^{2} \alpha \cap \partial^{2} \beta \cap \partial^{2} \gamma$. Let $R \neq T \in \partial^{2} \alpha \cap \partial^{2} \delta$. Using Lemma (1.4.5), we deduce that R and T are parallel. Then Lemma (1.4.2) implies that a reflection of $\Sigma(W, S)$ stabilizes R if and only if it stabilizes T. As $r_{\alpha}, r_{\beta}, r_{\gamma}$ stabilize R, they also stabilize T and Assertion (a) follows.

Assume $(\alpha, \beta) \cap\{\gamma,-\gamma\}=\emptyset=(-\alpha, \beta) \cap\{\gamma,-\gamma\}$. This implies that non of $\alpha \cap \beta$ and $(-\alpha) \cap \beta$ is contained in γ or $-\gamma$, respectively. This implies that there exist $x, x^{\prime} \in \alpha \cap \beta$ with $x \in(-\gamma), x^{\prime} \in \gamma$. As roots as convex, [2, Lemma 5.45] yields $\operatorname{proj}_{R} x \in \alpha \cap \beta \cap(-\gamma)$ and $\operatorname{proj}_{R} x^{\prime} \in \alpha \cap \beta \cap \gamma$. Similarly, there exist $y, y^{\prime} \in(-\alpha) \cap \beta$ with $y \in(-\gamma), y^{\prime} \in \gamma$ and $\operatorname{proj}_{R} y \in(-\alpha) \cap \beta \cap(-\gamma), \operatorname{proj}_{R} y^{\prime} \in(-\alpha) \cap \beta \cap \gamma$. As residues and roots are convex, there exist $P, Q \in \partial \gamma$ such that $P, Q \subseteq R, P \subseteq \alpha \cap \beta$ and $Q \subseteq(-\alpha) \cap \beta$. As $P \subseteq \alpha$ and $Q \subseteq(-\alpha)$, we have $P \neq Q$ and Lemma (1.2.2) implies that there exist $p \in P, q \in Q$ which are opposite in R. Using [36, Proposition 5.4], every chamber in R lies on a minimal gallery from p to q. As roots are convex and $p, q \in \beta$, we infer $R \subseteq \beta$, which is a contradiction to $R \in \partial^{2} \beta$.

1.5. Reflection and combinatorial triangles in $\Sigma(W, S)$

A reflection triangle is a set T of three reflections such that the order of $t t^{\prime}$ is finite for all $t, t^{\prime} \in T$ and such that $\bigcap_{t \in T} \partial^{2} \beta_{t}=\emptyset$, where β_{t} is one of the two roots associated with the reflection t. Note that $\partial^{2} \beta_{t}=\partial^{2}\left(-\beta_{t}\right)$. A set of three roots T is called combinatorial triangle (or simply triangle) if the following hold:
(CT1) The set $\left\{r_{\alpha} \mid \alpha \in T\right\}$ is a reflection triangle.
(CT2) For each $\alpha \in T$, there exists $\sigma \in \partial^{2} \beta \cap \partial^{2} \gamma$ such that $\sigma \subseteq \alpha$, where $\{\beta, \gamma\}=T \backslash\{\alpha\}$.
(1.5.1) Remark. Let R be a reflection triangle. Then there exist three roots $\beta_{1}, \beta_{2}, \beta_{3} \in \Phi$ such that $R=\left\{r_{\beta_{1}}, r_{\beta_{2}}, r_{\beta_{3}}\right\}$. Let $\{i, j, k\}=\{1,2,3\}$. As $o\left(r_{\beta_{i}} r_{\beta_{j}}\right)<\infty$, there exists $\sigma_{k} \in \partial^{2} \beta_{i} \cap \partial^{2} \beta_{j}$ by Lemma (1.4.7). Since R is a reflection triangle, we have $\sigma_{k} \notin \partial^{2} \beta_{k}$ and Lemma (1.4.1) yields $\sigma_{k} \subseteq \beta_{k}$ or $\sigma_{k} \subseteq-\beta_{k}$. Define $\alpha_{k}:=\varepsilon_{k} \beta_{k}$, where $\varepsilon_{k} \in\{+,-\}$ and $\sigma_{k} \subseteq \varepsilon_{k} \beta_{k}$. Then $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ is a triangle, which induces the reflection triangle R.
(1.5.2) Lemma. Let $\alpha \neq \beta \in \Phi$ be two non-opposite roots such that $o\left(r_{\alpha} r_{\beta}\right)<\infty$ and let $\gamma \in(\alpha, \beta)$. Then $\partial^{2} \alpha \cap \partial^{2} \beta \cap \partial^{2} \gamma \neq \emptyset$ and $o\left(r_{\alpha} r_{\gamma}\right), o\left(r_{\beta} r_{\gamma}\right)<\infty$.
Proof. By Lemma (1.4.7) there exists $R \in \partial^{2} \alpha \cap \partial^{2} \beta$. We deduce $\emptyset \neq R \cap \alpha \cap \beta \subseteq \gamma$ and $\emptyset \neq R \cap(-\alpha) \cap(-\beta) \subseteq(-\gamma)$. If follows from Lemma (1.4.1) that $R \in \partial^{2} \gamma$. In particular, $R \in \partial^{2} \alpha \cap \partial^{2} \beta \cap \partial^{2} \gamma$. We deduce $o\left(r_{\alpha} r_{\gamma}\right), o\left(r_{\beta} r_{\gamma}\right)<\infty$ from Lemma (1.4.7).
(1.5.3) Lemma. Assume that (W, S) is 2 -spherical and cyclic hyperbolic. Then any triangle T is a chamber, i.e. $\left|\bigcap_{\alpha \in T} \alpha\right|=1$. In particular, $(-\alpha, \beta)=\emptyset$ for all $\alpha \neq \beta \in T$.
Proof. Let $T=\{\alpha, \beta, \gamma\}$ and let $R \in \partial^{2} \alpha \cap \partial^{2} \beta$ be a residue such that $R \subseteq \gamma$. Suppose that $R \cap \alpha \cap \beta$ contains more than one chamber. Let c, d be adjacent and contained in $\alpha \cap \beta \cap R$ and let $\delta \in \Phi$ be a root with $\{c, d\} \in \partial \delta$. Then Lemma (1.4.8) (b) implies $(-\alpha, \beta) \cap\{\delta,-\delta\} \neq \emptyset$ and $\left\{r_{\alpha}, r_{\beta}, r_{\gamma}\right\},\left\{r_{\alpha}, r_{\gamma}, r_{\delta}\right\},\left\{r_{\beta}, r_{\gamma}, r_{\delta}\right\}$ are reflection triangles. But this is a contradiction to the classification in [20, Figure 8 in $\S 5.1$]. Thus $R \cap \alpha \cap \beta$ does only contain one chamber c. Assume that $\left|\bigcap_{\alpha \in T} \alpha\right|>1$. Then there exists $\delta \in \Phi$ which contains c but not a neighbour contained in $\bigcap_{\alpha \in T} \alpha$. Again, this is a contradiction to the classification in [20, Figure 8 in §5.1]. This implies $\left|\bigcap_{\alpha \in T} \alpha\right|=1$. Let $c \in \bigcap_{\alpha \in T} \alpha$, let $s \neq t \in S$, let $\alpha \in T$ be the root which does not contain the s-neighbour of c and let $\beta \in T$ be the root which does not contain the t-neighbour of c. Then $R:=R_{\{s, t\}}(c) \in \partial^{2} \alpha \cap \partial^{2} \beta$. As $T=\{\alpha, \beta, \gamma\}$ is a triangle, we have $R \notin \partial^{2} \gamma$. We deduce from $c \in R \cap \gamma$ that $R \subseteq \gamma$. This shows $(-\alpha, \beta)=\emptyset$ for all $\alpha, \beta \in T$.
(1.5.4) Proposition. Assume that (W, S) is 2 -spherical and cyclic hyperbolic. Let $R \neq T$ be two residues of rank 2 such that $P:=R \cap T$ is a panel. If $\ell\left(1_{W}, \operatorname{proj}_{R} 1_{W}\right)<\ell\left(1_{W}, \operatorname{proj}_{T} 1_{W}\right)$, then $\operatorname{proj}_{T} 1_{W}=\operatorname{proj}_{P} 1_{W}$.

Proof. We let $\alpha \in \Phi_{+}$be the root with $P \in \partial \alpha$. Let $\left(c_{0}=1_{W}, \ldots, c_{k}=\operatorname{proj}_{R} c_{0}, \ldots, c_{k^{\prime}}=\right.$ $\operatorname{proj}_{P} c_{0}$) be a minimal gallery from c_{0} to $\operatorname{proj}_{P} c_{0}$ with $c_{k}, \ldots, c_{k^{\prime}} \in R$ and we assume $\operatorname{proj}_{T} c_{0} \neq \operatorname{proj}_{P} c_{0}$. Then we have $k^{\prime}>\ell\left(1_{W}, \operatorname{proj}_{T} 1_{W}\right)>\ell\left(1_{W}, \operatorname{proj}_{R} 1_{W}\right)=k$. Let $\left(d_{0}=c_{0}, \ldots, d_{m}=\operatorname{proj}_{T} c_{0}, \ldots, d_{m^{\prime}}=\operatorname{proj}_{P} c_{0}\right)$ be a minimal gallery from c_{0} to $\operatorname{proj}_{P} c_{0}$ with $d_{m}, \ldots, d_{m^{\prime}} \in T$. We define $H:=\left(d_{0}, \ldots, d_{m+1}\right)$ and $\beta:=\alpha_{H}$. Then we have $T \in \partial^{2} \alpha \cap \partial^{2} \beta$ and, as a minimal gallery crosses a wall at most once, we deduce $\alpha \neq \beta$. Note that the wall $\partial \beta$ is crossed by the minimal gallery $\left(c_{0}, \ldots, c_{k^{\prime}}\right)$. Since $R \neq T, T \in \partial^{2} \alpha \cap \partial^{2} \beta, R \in \partial^{2} \alpha$ and $\alpha \neq \pm \beta$, Lemma (1.4.6) implies $R \notin \partial^{2} \beta$. We define $\gamma:=\alpha_{\left(c_{0}, \ldots, c_{k+1}\right)}$. As $R \notin \partial^{2} \beta$, we obtain that $\partial \beta$ is crossed by $\left(c_{0}, \ldots, c_{k}\right)$. As $k<k^{\prime}$, we have $\operatorname{proj}_{R} 1_{W} \neq \operatorname{proj}_{P} 1_{W}$ and hence $\alpha \neq \gamma$. As $\alpha, \gamma \in \Phi_{+}$, we have $\alpha \neq \pm \gamma$. Assume that $o\left(r_{\beta} r_{\gamma}\right)=\infty$. We deduce $\beta \subseteq \gamma$.

But $\partial \gamma$ has to be crossed by the gallery $\left(d_{0}, \ldots, d_{m^{\prime}}\right)$. Since $R \in \partial^{2} \alpha \cap \partial^{2} \gamma, T \in \partial^{2} \alpha$ and $\alpha \neq \pm \gamma$, we have $T \notin \partial \gamma^{2}$ by Lemma (1.4.6) as before. This implies that $\left(d_{0}, \ldots, d_{m}\right)$ crosses the wall $\partial \beta$ and hence $\gamma \subseteq \beta$. This yields a contradiction and we have $o\left(r_{\beta} r_{\gamma}\right)<\infty$. As $R \in \partial^{2} \alpha \cap \partial^{2} \gamma, R \notin \partial^{2} \beta$, Lemma (1.4.8)(a) implies $\partial^{2} \alpha \cap \partial^{2} \beta \cap \partial^{2} \gamma=\emptyset$ and hence $\left\{r_{\alpha}, r_{\beta}, r_{\gamma}\right\}$ is a reflection triangle.

As $T \in \partial^{2} \alpha \cap \partial^{2} \beta, T \notin \partial^{2} \gamma$ and $\operatorname{proj}_{P} 1_{W} \in T \cap(-\gamma)$, we have $T \subseteq(-\gamma)$. As $R \in$ $\partial^{2} \alpha \cap \partial^{2} \gamma, R \notin \partial^{2} \beta$ and $\operatorname{proj}_{P} 1_{W} \in R \cap(-\beta)$, we have $R \subseteq(-\beta)$. Let $1 \leq i \leq k$ be such that $\left\{c_{i-1}, c_{i}\right\} \in \partial \beta$. Note that $\left\{d_{m}, d_{m+1}\right\} \in \partial \beta, d_{m+1} \in(-\beta) \cap T \cap \alpha \subseteq(-\gamma)$ and $c_{i} \in(-\beta) \cap \gamma$. By Lemma (1.4.3) there exists a minimal gallery $\left(e_{0}=d_{m+1}, \ldots, e_{z}=c_{i}\right)$ such that $e_{j} \in \mathcal{C}\left(\partial^{2} \beta\right)$. As $d_{m+1} \in(-\gamma)$ and $c_{i} \in \gamma$, there exists $1 \leq p \leq z$ such that $e_{p-1} \in(-\gamma)$ and $e_{p} \in \gamma$. Again by Lemma (1.4.3) there exists $L \in \partial^{2} \beta$ such that $\left\{e_{p-1}, e_{p}\right\} \in$ L. Then $L \in \partial^{2} \beta \cap \partial^{2} \gamma$ and as a minimal gallery crosses a wall at most once, we have $e_{p-1} \in L \cap \alpha$ and, as $\left\{r_{\alpha}, r_{\beta}, r_{\gamma}\right\}$ is a reflection triangle and $L \notin \partial^{2} \alpha$, we obtain $L \subseteq \alpha$. This implies that $\{\alpha,-\beta,-\gamma\}$ is a triangle and hence $(\alpha, \gamma)=\emptyset$ by Lemma (1.5.3) In particular, $k+1=k^{\prime}$ and $\ell\left(1_{W}, \operatorname{proj}_{R} 1_{W}\right)=\ell\left(1_{W}, \operatorname{proj}_{P} 1_{W}\right)-1 \geq \ell\left(1_{W}, \operatorname{proj}_{T} 1_{W}\right)$. Since $\ell\left(1_{W}, \operatorname{proj}_{R} 1_{W}\right)<\ell\left(1_{W}, \operatorname{proj}_{T} 1_{W}\right)$ holds by assumption, this yields a contradiction and we have $\operatorname{proj}_{T} 1_{W}=\operatorname{proj}_{P} 1_{W}$.
(1.5.5) Corollary. Assume that (W, S) is 2 -spherical and cyclic hyperbolic. Let $\alpha \in \Phi_{+}$be a root and let $P, Q \in \partial \alpha$. Let $P_{0}=P, \ldots, P_{n}=Q$ and R_{1}, \ldots, R_{n} as in Lemma (1.4.2). If $\operatorname{proj}_{R_{i}} 1_{W}=\operatorname{proj}_{P_{i-1}} 1_{W}$ for some $1 \leq i \leq n$, then $\operatorname{proj}_{R_{n}} 1_{W}=\operatorname{proj}_{P_{n-1}} 1_{W}$.

Proof. We will show the hypothesis by induction on $n-i$. If $n-i=0$ there is nothing to show. Thus we suppose $n-i>0$. Let ($d_{0}=1_{W}, \ldots, d_{m}=\operatorname{proj}_{R_{i}} d_{0}$) be a minimal gallery of type $\left(t_{1}, \ldots, t_{m}\right)$, let $w:=t_{1} \cdots t_{m}$ and let J_{i} be the type of R_{i}. Then $w=\operatorname{proj}_{R_{i}} 1_{W}=$ $\operatorname{proj}_{P_{i-1}} 1_{W} \in P_{i-1}$. As $P_{i-1} \neq P_{i}$ are contained and opposite in R_{i} by Lemma (1.4.2), there exists $w^{\prime} \in P_{i}$ such that $w \in P_{i-1}, w^{\prime}$ are opposite in R_{i}, i.e. $w^{\prime}=w r_{J_{i}}$. Let $s \in J_{i+1} \backslash J_{i}$. As $w=\operatorname{proj}_{R_{i}} 1_{W}$, we deduce $\ell\left(w r_{J_{i}}\right)=\ell(w)+\ell\left(r_{J_{i}}\right)$. Since W is not of spherical type, we obtain $\ell\left(w r_{J_{i}} s\right)=\ell(w)+\ell\left(r_{J_{i}}\right)+1$. Let $t \in S$ be such that $J_{i} \cap J_{i+1}=\{t\}$. Then $R_{i} \cap R_{i+1}=P_{i}=\mathcal{P}_{t}\left(w^{\prime}\right)=\mathcal{P}_{t}\left(w r_{J_{i}}\right)$. Assume that $\ell\left(\left(\operatorname{proj}_{P_{i}} 1_{W}\right) s\right)=\ell\left(\operatorname{proj}_{P_{i}} 1_{W}\right)-1$. Let $\left(c_{0}=w, \ldots, c_{k}=\operatorname{proj}_{P_{i}} 1_{W}\right)$ be a minimal gallery contained in R_{i}. We deduce that $\ell\left(c_{i} s\right)=\ell\left(c_{i}\right)-1$ for each $0 \leq i \leq k$. Let $r \in S$ be such that $\delta\left(c_{1}, c_{2}\right)=r$. As $m_{u v} \neq 2$ for all $u \neq v \in S$, we deduce $\ell\left(\operatorname{proj}_{R_{i}} 1_{W}\right)>\ell\left(\operatorname{proj}_{R_{\{r, s\}}\left(c_{1}\right)} 1_{W}\right)$. Applying the previous proposition to R_{i} and $R_{\{r, s\}}\left(c_{1}\right)$ we obtain a contradiction. Thus $\ell\left(\left(\operatorname{proj}_{P_{i}} 1_{W}\right) s\right)=\ell\left(\operatorname{proj}_{P_{i}} 1_{W}\right)+1$ and hence $\ell\left(1_{W}, \operatorname{proj}_{R_{i}} 1_{W}\right)<\ell\left(1_{W}, \operatorname{proj}_{R_{i+1}} 1_{W}\right)$. By Proposition (1.5.4) we infer $\operatorname{proj}_{R_{i+1}} 1_{W}=$ $\operatorname{proj}_{P_{i}} 1_{W}$. Using induction the claim follows.
(1.5.6) Lemma. Assume that (W, S) is of type $(4,4,4)$. Let $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ be a triangle and let $\beta \in\left(\alpha_{1}, \alpha_{2}\right)$. Then $o\left(r_{\beta} r_{\alpha_{3}}\right)=\infty$. In particular, we have $-\beta \subseteq \alpha_{3},-\alpha_{3} \subseteq \beta$ and $\left(-\beta, \alpha_{3}\right)=\emptyset=\left(-\alpha_{3}, \beta\right)$.

Proof. Since $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ is a triangle, there exist $R_{1} \in \partial^{2} \alpha_{2} \cap \partial^{2} \alpha_{3}$ with $R_{1} \subseteq \alpha_{1}, R_{2} \in$ $\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{3}$ with $R_{2} \subseteq \alpha_{2}$ and $R_{3} \in \partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{2}$ with $R_{3} \subseteq \alpha_{3}$. Let $\beta \in\left(\alpha_{1}, \alpha_{2}\right)$ be a root and let $\{i, j\}=\{1,2\}$. Then Lemma (1.5.2) implies $\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{2} \cap \partial^{2} \beta \neq \emptyset$ and $o\left(r_{\alpha_{i}} r_{\beta}\right)<\infty$. Lemma (1.4.8) (a) yields $\partial^{2} \alpha_{1} \cap \partial \alpha_{2}=\partial^{2} \alpha_{i} \cap \partial^{2} \beta$ and $R_{j} \notin \partial^{2} \beta$ (note that $R_{j} \in \partial^{2} \alpha_{i}$ but $R_{j} \notin \partial^{2} \alpha_{j}$).

We assume that $o\left(r_{\beta} r_{\alpha_{3}}\right)<\infty$. Then $\left\{r_{\alpha_{i}}, r_{\beta}, r_{\alpha_{3}}\right\}$ is a reflection triangle. Since $\emptyset \neq$ $\alpha_{i} \cap R_{j} \subseteq \alpha_{i} \cap \alpha_{j} \subseteq \beta$ and $R_{j} \notin \partial^{2} \beta$, we deduce $R_{j} \subseteq \beta$. Thus $\left\{\alpha_{i}, \alpha_{3}, \beta\right\}$ or $\left\{-\alpha_{i}, \alpha_{3}, \beta\right\}$ is a triangle. Assume that $\left\{\alpha_{i}, \alpha_{3}, \beta\right\}$ is a triangle. Then $\alpha_{1} \cap \alpha_{2} \cap \alpha_{3} \subseteq \alpha_{i} \cap \beta \cap \alpha_{3}$. Since $\beta \neq \alpha_{j}$, Lemma (1.5.3) yields a contradiction. Thus $\left\{-\alpha_{i}, \alpha_{3}, \beta\right\}$ is a triangle, i.e. $\left\{-\alpha_{1}, \alpha_{3}, \beta\right\}$ and
$\left\{-\alpha_{2}, \alpha_{3}, \beta\right\}$ are triangles. But then $\left(\alpha_{1}, \beta\right)=\emptyset=\left(\beta, \alpha_{2}\right)$, which is a contradiction as the type is $(4,4,4)$.

Thus $o\left(r_{\beta} r_{\alpha_{3}}\right)=\infty$. As $\emptyset \neq R_{3} \cap(-\beta) \subseteq \alpha_{3}$, we have $(-\beta) \cap \alpha_{3} \neq \emptyset$. As $\emptyset \neq R_{2} \cap$ $\alpha_{1} \cap\left(-\alpha_{3}\right) \subseteq \alpha_{1} \cap \alpha_{2} \subseteq \beta$, we have $\left(-\alpha_{3}\right) \cap \beta \neq \emptyset$ and $\left\{-\alpha_{3}, \beta\right\}$ is a prenilpotent pair. As $\bigcap_{i=1}^{3} \alpha_{i} \subseteq \alpha_{1} \cap \alpha_{2} \subseteq \beta$ and $\bigcap_{i=1}^{3} \alpha_{i} \nsubseteq\left(-\alpha_{3}\right)$, we deduce $\left(-\alpha_{3}\right) \subseteq \beta$ and hence also $(-\beta) \subseteq \alpha_{3}$. Let $\{x, y\} \in \partial \alpha_{3}$ be such that $\bigcap_{i=1}^{3} \alpha_{i}=\{y\}$ and let $R \in \partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{2}$ be the residue containing y. Let $d \in R$ be opposite to y in R and let $\left(c_{0}=x, c_{1}=y, \ldots, c_{n}=d\right)$ be a minimal gallery. Then $c_{i} \in R$ for each $1 \leq i \leq n$. Let $\left(\beta_{1}, \ldots, \beta_{n}\right)$ be the sequence of roots crossed by $\left(c_{0}, \ldots, c_{n}\right)$. Then $\beta_{1}=-\alpha_{3}$ and $o\left(r_{\beta_{i}} r_{\beta}\right)<\infty$ for each $2 \leq i \leq n$ by Lemma (1.4.7) Assume $\left(-\alpha_{3}, \beta\right) \neq \emptyset$. [2, Lemma 3.69] implies that for each $\gamma \in\left(-\alpha_{3}, \beta\right)$ there exists $2 \leq i \leq n$ with $\gamma=\beta_{i}$. As $\gamma \subsetneq \beta$, this is a contradiction and hence $\left(-\alpha_{3}, \beta\right)=\emptyset$.

1.6. Twin buildings

Let $\Delta_{+}=\left(\mathcal{C}_{+}, \delta_{+}\right), \Delta_{-}=\left(\mathcal{C}_{-}, \delta_{-}\right)$be two buildings of the same type (W, S). A codistance (or a twinning) between Δ_{+}and Δ_{-}is a mapping $\delta_{*}:\left(\mathcal{C}_{+} \times \mathcal{C}_{-}\right) \cup\left(\mathcal{C}_{-} \times \mathcal{C}_{+}\right) \rightarrow W$ satisfying the following axioms, where $\varepsilon \in\{+,-\}, x \in \mathcal{C}_{\varepsilon}, y \in \mathcal{C}_{-\varepsilon}$ and $w=\delta_{*}(x, y)$:
$(\mathrm{Tw} 1) \delta_{*}(y, x)=w^{-1} ;$
(Tw2) if $z \in \mathcal{C}_{-\varepsilon}$ is such that $s:=\delta_{-\varepsilon}(y, z) \in S$ and $\ell(w s)=\ell(w)-1$, then $\delta_{*}(x, z)=w s$;
(Tw3) if $s \in S$, there exists $z \in \mathcal{C}_{-\varepsilon}$ such that $\delta_{-\varepsilon}(y, z)=s$ and $\delta_{*}(x, z)=w s$.
A twin building of type (W, S) is a triple $\Delta=\left(\Delta_{+}, \Delta_{-}, \delta_{*}\right)$ where $\Delta_{+}=\left(\mathcal{C}_{+}, \delta_{+}\right), \Delta_{-}=$ $\left(\mathcal{C}_{-}, \delta_{-}\right)$are buildings of type (W, S) and where δ_{*} is a twinning between Δ_{+}and Δ_{-}.

We put $\mathcal{C}:=\mathcal{C}_{+} \cup \mathcal{C}_{-}$and define the distance function $\delta: \mathcal{C} \times \mathcal{C} \rightarrow W$ by setting $\delta(x, y):=$ $\delta_{+}(x, y)$ (resp. $\left.\delta_{-}(x, y), \delta_{*}(x, y)\right)$ if $x, y \in \mathcal{C}_{+}$(resp. $x, y \in \mathcal{C}_{-},(x, y) \in \mathcal{C}_{\varepsilon} \times \mathcal{C}_{-\varepsilon}$ for some $\varepsilon \in\{+,-\})$.

Given $x, y \in \mathcal{C}$, we put $\ell(x, y):=\ell(\delta(x, y))$. If $\varepsilon \in\{+,-\}$ and $x, y \in \mathcal{C}_{\varepsilon}$, then we put $\ell_{\varepsilon}(x, y):=\ell\left(\delta_{\varepsilon}(x, y)\right)$ and for $(x, y) \in \mathcal{C}_{\varepsilon} \times \mathcal{C}_{-\varepsilon}$ we put $\ell_{\star}(x, y):=\ell\left(\delta_{*}(x, y)\right)$.

Let $\varepsilon \in\{+,-\}$. For $x \in \mathcal{C}_{\varepsilon}$ we put $x^{\text {op }}:=\left\{y \in \mathcal{C}_{-\varepsilon} \mid \delta_{*}(x, y)=1_{W}\right\}$. It is a direct consequence of (Tw1) that $y \in x^{\mathrm{op}}$ if and only if $x \in y^{\mathrm{op}}$ for any pair $(x, y) \in \mathcal{C}_{\varepsilon} \times \mathcal{C}_{-\varepsilon}$. If $y \in x^{\mathrm{op}}$ then we say that y is opposite to x or that (x, y) is a pair of opposite chambers.

A residue (resp. panel) of Δ is a residue (resp. panel) of Δ_{+}or Δ_{-}; given a residue $R \subseteq \mathcal{C}$ then we define its type and rank as before. The twin building Δ is called thick if Δ_{+}and Δ_{-} are thick.

Let $\varepsilon \in\{+,-\}$, let J be a spherical subset of S and let R be a J-residue of Δ_{ε}. For every chamber $x \in \mathcal{C}_{-\varepsilon}$ there exists a unique chamber $z \in R$ such that $\ell_{\star}(x, y)=\ell_{\star}(x, z)-\ell_{\varepsilon}(z, y)$ holds for each chamber $y \in R$ (cf. [2, Lemma 5.149]). The chamber z is called the projection of x onto R; it will be denoted by $\operatorname{proj}_{R} x$. Moreover, if $z=\operatorname{proj}_{R} x$ we have $\delta_{*}(x, y)=$ $\delta_{*}(x, z) \delta_{\varepsilon}(z, y)$ for each $y \in R$.

Let $\Sigma_{+} \subseteq \mathcal{C}_{+}$and $\Sigma_{-} \subseteq \mathcal{C}_{-}$be apartments of Δ_{+}and Δ_{-}, respectively. Then the set $\Sigma:=\Sigma_{+} \cup \Sigma_{-}$is called twin apartment if $\left|x^{\mathrm{op}} \cap \Sigma\right|=1$ holds for each $x \in \Sigma$. If (x, y) is a pair of opposite chambers, then there exists a unique twin apartment containing x and y. We will denote it by $A(x, y)$. It is a fact that $A(x, y)=\{z \in \mathcal{C} \mid \delta(x, z)=\delta(y, z)\}$ (cf. [2, Proposition 5.179(1)]).

An automorphism of Δ is a bijection $\varphi: \mathcal{C} \rightarrow \mathcal{C}$ such that φ preserves the sign, the distance functions δ_{ε} and the codistance δ_{*}.

1.7. Root group data

An RGD-system of type (W, S) is a pair $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ consisting of a group G together with a family of subgroups U_{α} (called root groups) indexed by the set of roots Φ, which satisfies the following axioms, where $H:=\bigcap_{\alpha \in \Phi} N_{G}\left(U_{\alpha}\right)$ and $U_{\varepsilon}:=\left\langle U_{\alpha} \mid \alpha \in \Phi_{\varepsilon}\right\rangle$ for $\varepsilon \in\{+,-\}$:
(RGD0) For each $\alpha \in \Phi$, we have $U_{\alpha} \neq\{1\}$.
(RGD1) For each prenilpotent pair $\{\alpha, \beta\} \subseteq \Phi$, the commutator group $\left[U_{\alpha}, U_{\beta}\right]$ is contained in the group $U_{(\alpha, \beta)}:=\left\langle U_{\gamma} \mid \gamma \in(\alpha, \beta)\right\rangle$.
(RGD2) For every $s \in S$ and each $u \in U_{\alpha_{s}} \backslash\{1\}$, there exist $u^{\prime}, u^{\prime \prime} \in U_{-\alpha_{s}}$ such that the product $m(u):=u^{\prime} u u^{\prime \prime}$ conjugates U_{β} onto $U_{s \beta}$ for each $\beta \in \Phi$.
(RGD3) For each $s \in S$, the group $U_{-\alpha_{s}}$ is not contained in U_{+}.
(RGD4) $G=H\left\langle U_{\alpha} \mid \alpha \in \Phi\right\rangle$.
Let $w \in W, G=\left(c_{0}, \ldots, c_{k}\right) \in \operatorname{Min}(w)$ and let $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be the sequence of roots crossed by G. Then we define the group $U_{w}:=U_{\alpha_{1}} \cdots U_{\alpha_{k}}$. We note that the group U_{w} does not depend on $G \in \operatorname{Min}(w)$. Following [34, Remark (1) on p. 258] we have $m_{s t} \in\{2,3,4,6,8, \infty\}$ for all $s \neq t \in S$. An RGD-system $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ is said to be over \mathbb{F}_{2} if every root group has cardinality 2.

Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system of type (W, S) and let $H:=\bigcap_{\alpha \in \Phi} N_{G}\left(U_{\alpha}\right), B_{\varepsilon}=$ $H\left\langle U_{\alpha} \mid \alpha \in \Phi_{\varepsilon}\right\rangle$ for $\varepsilon \in\{+,-\}$. It follows from [2, Theorem 8.80] that there exists an associated twin building $\Delta(\mathcal{D})=\left(\Delta(\mathcal{D})_{+}, \Delta(\mathcal{D})_{-}, \delta_{*}\right)$ of type (W, S) such that $\Delta(\mathcal{D})_{\varepsilon}=$ $\left(G / B_{\varepsilon}, \delta_{\varepsilon}\right)$ for $\varepsilon \in\{+,-\}$ and G acts on $\Delta(\mathcal{D})$ via left multiplication. There is a distinguished pair of opposite chambers in $\Delta(\mathcal{D})$ corresponding to the subgroups B_{ε} for $\varepsilon \in\{+,-\}$. We will denote this pair by $\left(c_{+}, c_{-}\right)$.
(1.7.1) Example. Let (W, S) be spherical and of rank 2 and let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system of type (W, S) over \mathbb{F}_{2}. For $S=\{s, t\}$ we deduce $m_{s t} \in\{2,3,4,6\}$, since in an octagon there exists a root group of cardinality at least 4 (cf. [35, (16.9) and (17.7)]). Let $G \in \operatorname{Min}\left(r_{S}\right)$ and let $\left(\beta_{1}, \ldots, \beta_{m}\right)$ be the sequence of roots crossed by G, where $m=m_{s t}$. Then $\Phi_{+}=\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ and β_{1}, β_{m} are the two simple roots. We let $U_{\beta_{i}}=\left\langle u_{i}\right\rangle$. For all $1 \leq i<j \leq m$ we will define subsets $M_{\left\{\beta_{i}, \beta_{j}\right\}} \subseteq\left(\beta_{i}, \beta_{j}\right)$ which correspond to the commutator relations. If $\left[u_{i}, u_{j}\right]=1$, we put $M_{\left\{\beta_{i}, \beta_{j}\right\}}:=\emptyset$. We now state all non-trivial commutator relations depending on the type (W, S) (cf. [35, Ch. 16, 17]):

- $A_{1} \times A_{1}$: There are no non-trivial commutator relations.
- A_{2} : There is only one non-trivial commutator relation, namely $\left[u_{1}, u_{3}\right]=u_{2}$ (cf. [35, 16.1, 17.2]). We define $M_{\left\{\beta_{1}, \beta_{3}\right\}}=\left\{\beta_{2}\right\}$.
- $B_{2}=C_{2}$: As in the case of A_{2} there is only one non-trivial commutator relation, namely [$\left.u_{1}, u_{4}\right]=u_{2} u_{3}$ (cf. [35, 16.2,17.4] and [27, 5.2.3]). We define $M_{\left\{\beta_{1}, \beta_{4}\right\}}:=\left\{\beta_{2}, \beta_{3}\right\}$.
- G_{2} : We have the following non-trivial commutator relations (cf. [35, 15.20, 16.8, 17.6]):

$$
\left[u_{1}, u_{3}\right]=u_{2}, \quad\left[u_{3}, u_{5}\right]=u_{4}, \quad\left[u_{1}, u_{5}\right]=u_{2} u_{4}, \quad\left[u_{2}, u_{6}\right]=u_{4}, \quad\left[u_{1}, u_{6}\right]=u_{2} u_{3} u_{4} u_{5}
$$

We define $M_{\left\{\beta_{1}, \beta_{3}\right\}}:=\left\{\beta_{2}\right\}, M_{\left\{\beta_{3}, \beta_{5}\right\}}:=\left\{\beta_{4}\right\}, M_{\left\{\beta_{1}, \beta_{5}\right\}}:=\left\{\beta_{2}, \beta_{4}\right\}, M_{\left\{\beta_{2}, \beta_{6}\right\}}:=\left\{\beta_{4}\right\}$ and $M_{\left\{\beta_{1}, \beta_{6}\right\}}:=\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right\}$.

Note that for $i<j$ we have $\left[u_{i}, u_{j}\right]=\prod_{\gamma \in M_{\left\{\beta_{i}, \beta_{j}\right\}}} u_{\gamma}$, where the order of the product is taken via the order of the indices. For $i>j$ we have $\left[u_{i}, u_{j}\right]=\prod_{\gamma \in M_{\left\{\beta_{i}, \beta_{j}\right\}}} u_{\gamma}$, where the order of the product is taken in the inverse order. Thus $M_{\left\{\beta_{i}, \beta_{j}\right\}}$ contains all information about the commutators $\left[u_{i}, u_{j}\right]$ and $\left[u_{j}, u_{i}\right]$.

Property (FPRS)

Let $\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system and let $\Delta(\mathcal{D})=\left(\Delta(\mathcal{D})_{+}, \Delta(\mathcal{D})_{-}, \delta_{*}\right)$ be the associated twin building. For $\Gamma \leq G$ we define $r(\Gamma)$ to be the supremum of the set of all non-negative real numbers r such that Γ fixes pointwise the closed ball $B\left(c_{+}, r\right):=\left\{d \in \mathcal{C}_{+} \mid \ell_{+}\left(c_{+}, d\right) \leq r\right\}$, where \mathcal{C}_{+}is the set of chambers of $\Delta(\mathcal{D})_{+}$. In [16], Caprace and Rémy have introduced the following property, where $\ell\left(1_{W}, \alpha\right):=\min \left\{k \in \mathbb{N} \mid \exists d \in \alpha: \ell\left(1_{W}, d\right)=k\right\}$ for all roots $\alpha \in \Phi$:
(FPRS) Given any sequence of roots $\left(\alpha_{n}\right)_{n \geq 0}$ of Φ such that $\lim _{n \rightarrow \infty} \ell\left(1_{W}, \alpha_{n}\right)=\infty$, we have $\lim _{n \rightarrow \infty} r\left(U_{-\alpha_{n}}\right)=\infty$.

1.8. Graphs of groups

This subsection is based on [22, Section 2] and [32].
Following Serre, a graph Γ consists of a vertex set $V \Gamma$, an edge set $E \Gamma$, the inverse function ${ }^{-1}: E \Gamma \rightarrow E \Gamma$ and two edge endpoint functions $o: E \Gamma \rightarrow V \Gamma, t: E \Gamma \rightarrow V \Gamma$ satisfying the following axioms:
(i) The function ${ }^{-1}$ is a fixed-point free involution on $E \Gamma$;
(ii) For each $e \in E \Gamma$ we have $o(e)=t\left(e^{-1}\right)$.

For an edge $e \in E \Gamma$ we call e^{-1} the inverse edge of e.
A tree of groups is a triple $\mathbb{G}=\left(T,\left(G_{v}\right)_{v \in V \Gamma},\left(G_{e}\right)_{e \in E \Gamma}\right)$ consisting of a finite tree T (i.e. $V T$ and $E T$ are finite), a family of vertex groups $\left(G_{v}\right)_{v \in V T}$ and a family of edge groups $\left(G_{e}\right)_{e \in E T}$. Every edge $e \in E T$ comes equipped with two boundary monomorphisms $\alpha_{e}: G_{e} \rightarrow$ $G_{o(e)}$ and $\omega_{e}: G_{e} \rightarrow G_{t(e)}$. We assume that for each $e \in E T$ we have $G_{e^{-1}}=G_{e}, \alpha_{e^{-1}}=\omega_{e}$ and $\omega_{e^{-1}}=\alpha_{e}$. We let $G_{T}:=\lim \mathbb{G}$ be the direct limit of the inductive system formed by the vertex groups, edge groups and boundary monomorphisms and call G_{T} a tree product. A sequence of groups is a tree of groups where the underlying graph is a sequence. If the tree T is an edge, i.e. $V T=\{v, w\}$ and $E T=\left\{e, e^{-1}\right\}$, we will write $G_{T}=G_{v} \star_{G_{e}} G_{w}$. We extend this notation to arbitrary sequences T : if $V T=\left\{v_{0}, \ldots, v_{n}\right\}, E T=\left\{e_{i}, e_{i}^{-1} \mid 1 \leq i \leq n\right\}$ and $o\left(e_{i}\right)=v_{i-1}, t\left(e_{i}\right)=v_{i}$, then we will write $G_{T}=G_{v_{0}} \star_{G_{e_{1}}} G_{v_{1}} \star_{G_{e_{2}}} \cdots \star_{G_{e_{n}}} G_{v_{n}}$.
(1.8.1) Proposition. Let $\mathbb{G}=\left(T,\left(G_{v}\right)_{v \in V T},\left(G_{e}\right)_{e \in E T}\right)$ be a tree of groups. If T is partitioned into subtrees whose tree products are G_{1}, \ldots, G_{n} and the subtrees are contracted to vertices, then G_{T} is isomorphic to the tree product of the tree of groups whose vertex groups are the G_{i} and the edge groups are the G_{e}, where e is the unique edge which joins two subtrees. Moreover, $G_{i} \rightarrow G_{T}$ is injective.

Proof. This is [23, Theorem 1].
(1.8.2) Remark. The next proposition is a special case of a more general result (cf. [22, Proposition 4.3]). As we only need a special case, we have reformulated the claim and its proof.
(1.8.3) Proposition. Let T be a tree and let T^{\prime} be a subtree of T. Moreover, we let $\mathbb{G}=\left(T,\left(G_{v}\right)_{v \in V T},\left(G_{e}\right)_{e \in E T}\right)$ and $\mathbb{H}=\left(T^{\prime},\left(H_{v}\right)_{v \in V T^{\prime}},\left(H_{e}\right)_{e \in E T^{\prime}}\right)$ be two trees of groups and suppose the following:
(i) For each $v \in V T^{\prime}$ we have $H_{v} \leq G_{v}$.
(ii) For each $e \in E T^{\prime}$ we have $\alpha_{e}^{-1}\left(H_{o(e)}\right)=\omega_{e}^{-1}\left(H_{t(e)}\right)$.
(iii) For each $e \in E T^{\prime}$ we have $H_{e}=\alpha_{e}^{-1}\left(H_{o(e)}\right)=\omega_{e}^{-1}\left(H_{t(e)}\right)$.

Then the canonical homomorphism $\nu: H_{T^{\prime}} \rightarrow G_{T}$ between the tree product $H_{T^{\prime}}$ and the tree product G_{T} is injective. In particular, we have $\nu\left(H_{T^{\prime}}\right) \cap G_{v}=H_{v}$ for each $v \in V T^{\prime}$.

Proof. We use the notations from [22]. Let \mathcal{B} be the \mathbb{G}-graph (cf. [22, Definition 3.1]) defined as follows: As graph-morphism choose the inclusion mapping $T^{\prime} \rightarrow T$. The associated groups are given by H_{v} and we let $f_{\alpha}=1=f_{\omega}$ for all $f \in E T^{\prime}$. By [22, Convention 3.2] each edge $f \in E T^{\prime}$ has label $(1, f, 1)$ and each vertex $u \in V T^{\prime}$ has label $\left(H_{u}, u\right)$. We show that \mathcal{B} is folded (cf. [22, Definition 4.1]). Since the inclusion mapping $T^{\prime} \rightarrow T$ is injective, [22, Definition 4.1(i)] does not hold. Moreover, let $f \in E T^{\prime}$ be an edge. Then f has label $(1, f, 1), o(f)$ has label $\left(H_{o(f)}, o(f)\right)$ and $t(f)$ has label $\left(H_{t(f)}, t(f)\right)$. By assumption we have $\alpha_{f}^{-1}\left(H_{o(f)}\right)=\omega_{e}^{-1}\left(H_{t(f)}\right)$ and hence [22, Definition 4.1(ii)] does also not hold. In particular, \mathcal{B} is folded. Now [22, Lemma 4.2] implies that any \mathbb{H}-reduced \mathbb{H}-path is also \mathbb{G}-reduced. Now the claim follows from the normal form theorem [22, Proposition 2.4].

We should remark that in [22] they work with fundamental groups instead of tree products. But the fundamental group $\pi\left(\mathbb{A}, v_{0}\right)$ in [22] is equal to the group $\pi\left(G, T, v_{0}\right)$ in 32 and by [32, Proposition 20] this group is isomorphic to the corresponding tree product.
(1.8.4) Corollary. Let $\mathbb{G}=\left(T,\left(G_{v}\right)_{v \in V T},\left(G_{e}\right)_{e \in E T}\right)$ be a tree of groups and let $H_{v} \leq G_{v}$ for each $v \in V T$. Assume that $H_{e}:=\alpha_{e}^{-1}\left(H_{o(e)}\right)=\omega_{e}^{-1}\left(H_{t(e)}\right)$ for all $e \in E T$ and let $\mathbb{H}=\left(T,\left(H_{v}\right)_{v \in V T},\left(H_{e}\right)_{e \in E T}\right)$ be the associated tree of groups. Let T^{\prime} be a subtree of T and let $\mathbb{L}=\left(T^{\prime},\left(G_{v}\right)_{v \in V T^{\prime}},\left(G_{e}\right)_{e \in E T^{\prime}}\right), \mathbb{K}=\left(T^{\prime},\left(H_{v}\right)_{v \in V T^{\prime}},\left(H_{e}\right)_{e \in E T^{\prime}}\right)$. Then $H_{T} \cap L_{T^{\prime}}=K_{T^{\prime}}$ in G_{T}.

Proof. Using Proposition (1.8.1) we deduce that $L_{T^{\prime}} \leq G_{T}$ and $K_{T^{\prime}} \leq H_{T}$. Using Proposition (1.8.3) we deduce $H_{T} \leq G_{T}$ and $K_{T^{\prime}} \leq L_{T^{\prime}}$. Using Proposition (1.8.1) again, we can contract the tree T^{\prime} to a vertex. Then $L_{T^{\prime}}$ is a vertex group containing $K_{T^{\prime}}$. Let $e \in E T$ be an edge joining T^{\prime} with a vertex of $V T \backslash V T^{\prime}$ and suppose $o(e) \in T^{\prime}$. As $\alpha_{e}\left(G_{e}\right) \leq G_{o(e)}$, the previous proposition yields $\alpha_{e}\left(G_{e}\right) \cap K_{T^{\prime}} \leq G_{o(e)} \cap K_{T^{\prime}}=H_{o(e)}$. This implies $\alpha_{e}^{-1}\left(K_{T^{\prime}}\right) \leq \alpha_{e}^{-1}\left(H_{o(e)}\right)$. As $H_{e} \leq \alpha_{e}^{-1}\left(K_{T^{\prime}}\right) \leq \alpha_{e}^{-1}\left(H_{o(e)}\right)=H_{e}$, we deduce $\alpha_{e}^{-1}\left(K_{T^{\prime}}\right)=H_{e}=\alpha_{e}^{-1}\left(H_{o(e)}\right)$. We denote the tree products of the trees of groups \mathbb{G} and \mathbb{H}, where T^{\prime} is contracted to a vertex, by G^{\prime} and H^{\prime}. Using Proposition (1.8.3) the canonical homomorphism $\nu^{\prime}: H^{\prime} \rightarrow G^{\prime}$ is injective and we have $\nu^{\prime}\left(H^{\prime}\right) \cap L_{T^{\prime}}=K_{T^{\prime}}$ (note that $L_{T^{\prime}}$ is a vertex group of G^{\prime}). This finishes the claim.
(1.8.5) Corollary. Let A, B, C be groups and let $C \rightarrow A, C \rightarrow B$ be two monomorphisms. Then $A \cap B=C$ in $A \star_{C} B$.

Proof. Using Proposition (1.8.3) we have a monomorphism $A \cong A \star_{C} C \rightarrow A \star_{C} B$ and $A \cap B=C$.
(1.8.6) Remark. Let A^{\prime}, A, B, C be groups, let $\alpha: C \rightarrow A, \beta: C \rightarrow B$ and $\alpha^{\prime}: C \rightarrow A^{\prime}$ be monomorphisms and let $\varphi: A \rightarrow A^{\prime}$ be an isomorphism. If $\alpha^{\prime}=\varphi \circ \alpha$, then the amalgamated products $A \star_{C} B$ and $A^{\prime} \star_{C} B$ are isomorphic. One can prove this by constructing two unique
homomorphisms $A \star_{C} B \rightarrow A^{\prime} \star_{C} B$ and $A^{\prime} \star_{C} B \rightarrow A \star_{C} B$ such that the concatenation is the identity on A (resp. A^{\prime}) and on B.
(1.8.7) Lemma. Let $\mathbb{G}=\left(T,\left(G_{v}\right)_{v \in V T},\left(G_{e}\right)_{e \in E T}\right)$ be a tree of groups. Let $e \in E T$ and $G_{e} \leq H_{o(e)} \leq G_{o(e)}$. Let $V T^{\prime}=V T \cup\{x\}, E T^{\prime}=\left(E T \backslash\left\{e, e^{-1}\right\}\right) \cup\left\{f, f^{-1}, h, h^{-1}\right\}$ with $o(f)=o(e), t(f)=x=o(h), t(h)=t(e), G_{x}:=H_{o(e)}=: G_{f}, G_{h}:=G_{e}$. Then the two tree products of the trees of groups are isomorphic.

Proof. Using Proposition (1.8.1), we contract the edge f to a vertex. The claim follows now from Remark (1.8.6) and the fact that $G_{o(e)} \star_{H_{o(e)}} H_{o(e)} \cong G_{o(e)}$.

Part II.

RGD-systems over \mathbb{F}_{2}

2. Commutator blueprints

We introduce the notion of commutator blueprints, the main objects of this thesis. These objects will canonically provide the groups U_{w}. We first establish the decomposition $U_{+} \cong$ $U_{s} \ltimes N_{s}$ and show the existence of the automorphism $\tau_{s} \in \operatorname{Aut}\left(N_{s}\right)$ with $\tau_{s}\left(u_{\alpha}\right)=u_{s \alpha}$. In Definition (2.2.11) we define the group P_{s} by using the automorphisms $u_{s}, \tau_{s} \in \operatorname{Aut}\left(N_{s}\right)$. The main result of this chapter is Theorem (2.2.14), where we give a sufficient condition in order to show that a faithful and Weyl-invariant commutator blueprint is integrable.

2.1. Definition

(2.1.1) Convention. For the rest of this thesis we assume that (W, S) is crystallographic.

We let \mathcal{P} be the set of prenilpotent pairs of positive roots. For $w \in W$ we define $\Phi(w):=$ $\left\{\alpha \in \Phi_{+} \mid w \notin \alpha\right\}$. Note that $\Phi(G)=\Phi(w)$ holds for every $G \in \operatorname{Min}(w)$. Let $G=$ $\left(c_{0}, \ldots, c_{k}\right) \in$ Min and let $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be the set of roots crossed by G. We define $\Phi(G):=$ $\left\{\alpha_{i} \mid 1 \leq i \leq k\right\}$. Using the indices we obtain an ordering \leq_{G} on $\Phi(G)$ and, in particular, on $[\alpha, \beta]=[\beta, \alpha] \subseteq \Phi(G)$ for all $\alpha, \beta \in \Phi(G)$. We abbreviate $\mathcal{I}:=\left\{(G, \alpha, \beta) \in \operatorname{Min} \times \Phi_{+} \times \Phi_{+} \mid\right.$ $\left.\alpha, \beta \in \Phi(G), \alpha \leq_{G} \beta\right\}$.

Given a family $\left(M_{\alpha, \beta}^{G}\right)_{(G, \alpha, \beta) \in \mathcal{I}}$, where $M_{\alpha, \beta}^{G} \subseteq(\alpha, \beta)$ is ordered via \leq_{G}. For $w \in W$ we define the group U_{w} via the following presentation:

$$
U_{w}:=\left\langle\left\{u_{\alpha} \mid \alpha \in \Phi(w)\right\} \mid R_{\mathrm{inv}}, R_{\text {cr }}\right\rangle,
$$

where $R_{\text {inv }}=\left\{u_{\alpha}^{2}=1 \mid \alpha \in \Phi(w)\right\}$ and $R_{\text {cr }}=\left\{\left[u_{\alpha}, u_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma} \mid(G, \alpha, \beta) \in\right.$ $\mathcal{I}, G \in \operatorname{Min}(w)\}$. Here the product is understood to be ordered via the ordering \leq_{G}, i.e. if $G \in \operatorname{Min}(w), \alpha \leq_{G} \beta \in \Phi(G)$ and $M_{\alpha, \beta}^{G}=\left\{\gamma_{1} \leq_{G} \ldots \leq_{G} \gamma_{k}\right\} \subseteq(\alpha, \beta) \subseteq \Phi(G)$, then $\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}=u_{\gamma_{1}} \cdots u_{\gamma_{k}}$. Note that there could be $G, H \in \operatorname{Min}(w), \alpha, \beta \in \Phi(w)$ with $\alpha \leq_{G} \beta$ and $\beta \leq_{H} \alpha$. In this case we obtain two commutator relations, namely

$$
\left[u_{\alpha}, u_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma} \quad \text { and } \quad\left[u_{\beta}, u_{\alpha}\right]=\prod_{\gamma \in M_{\beta, \alpha}^{H}} u_{\gamma}
$$

From now on we will implicitly assume that each product $\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}$ is ordered via the ordering \leq_{G}. Note that $\Phi\left(1_{W}\right)=\emptyset$ and hence $U_{1_{W}}=\langle\emptyset \mid \emptyset\rangle=\{1\}$.

Let $\operatorname{Dyn}(W, S)$ be a crystallographic Dynkin diagram. A commutator blueprint of type $\operatorname{Dyn}(W, S)$ is a family $\mathcal{M}=\left(M_{\alpha, \beta}^{G}\right)_{(G, \alpha, \beta) \in \mathcal{I}}$ of subsets $M_{\alpha, \beta}^{G} \subseteq(\alpha, \beta)$ ordered via \leq_{G} satisfying the following axioms:
(CB1) Let $G=\left(c_{0}, \ldots, c_{k}\right) \in \operatorname{Min}$ and let $H=\left(c_{0}, \ldots, c_{m}\right)$ for some $1 \leq m \leq k$. Then we have $M_{\alpha, \beta}^{H}=M_{\alpha, \beta}^{G}$ for all $\alpha, \beta \in \Phi(H)$ with $\alpha \leq_{H} \beta$.
(CB2) Let $s \neq t \in S$ be with $m:=m_{s t}<\infty$ and assume that $(s, t) \in E(\operatorname{Dyn}(W, S))$. Let $G \in \operatorname{Min}_{s}\left(r_{\{s, t\}}\right)$, let $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ be the sequence of roots crossed by G and let $1 \leq i<j \leq m$. Then $M_{\alpha_{i}, \alpha_{j}}^{G}=M_{\left\{\beta_{i}, \beta_{j}\right\}}$ as sets, where $M_{\left\{\beta_{i}, \beta_{j}\right\}}$ is given in Example (1.7.1)
(CB3) For each $w \in W$ we have $\left|U_{w}\right|=2^{\ell(w)}$, where U_{w} is defined as above.
(2.1.2) Remark. (a) In (CB1) we have $\Phi(H) \subseteq \Phi(G)$ and the order \leq_{G} restricted to elements in $\Phi(H)$ is precisely the order \leq_{H}. Thus the expression $M_{\alpha, \beta}^{G}$ is defined. In (CB2) we have $\Phi(G)=\left[\alpha_{s}, \alpha_{t}\right]$ and we only require that $M_{\alpha, \beta}^{G}=M_{\{\alpha, \beta\}}$ as sets. Note that $M_{\alpha, \beta}^{G}$ is an ordered set and the axiom only makes a statement about the underlying set. We also remark that it is a direct consequence of (CB3), that for all $G=$ $\left(c_{0}, \ldots, c_{k}\right) \in \operatorname{Min}(w)$ and $\mathbb{Z}_{2} \cong U_{\alpha_{i}}=\left\langle u_{\alpha_{i}}\right\rangle \leq U_{w}$ the product map $U_{\alpha_{1}} \times \cdots \times U_{\alpha_{k}} \rightarrow$ $U_{w},\left(u_{1}, \ldots, u_{k}\right) \mapsto u_{1} \cdots u_{k}$ is a bijection.
(b) Suppose $m_{s t} \neq 6$ for all $s, t \in S$. As (W, S) is crystallographic, we have $m_{s t} \in$ $\{2,3,4, \infty\}$. In this case (CR2) reduced to the following:
(CR2) Let $s \neq t \in S$ be with $m_{s t}<\infty$, let $G \in \operatorname{Min}\left(r_{\{s, t\}}\right)$ and let $\alpha \neq \beta \in \Phi(G)=$ [α_{s}, α_{t}] be such that $\alpha \leq_{G} \beta$. Then

$$
M_{\alpha, \beta}^{G}= \begin{cases}(\alpha, \beta) & \text { if }\{\alpha, \beta\}=\left\{\alpha_{s}, \alpha_{t}\right\} \\ \emptyset & \text { if }\{\alpha, \beta\} \neq\left\{\alpha_{s}, \alpha_{t}\right\}\end{cases}
$$

Note that all the information needed from $\operatorname{Dyn}(W, S)$ are already contained in the Coxeter system. Thus, if $m_{s t} \neq 6$ for all $s, t \in S$, we will say for short commutator blueprint of type (W, S).
(2.1.3) Convention. For the rest of Chapter 2 we let $\operatorname{Dyn}(W, S)$ be a crystallographic Dynkin diagram and $\mathcal{M}=\left(M_{\alpha, \beta}^{G}\right)_{(G, \alpha, \beta) \in \mathcal{I}}$ be a commutator blueprint of type $\operatorname{Dyn}(W, S)$.
(2.1.4) Lemma. Let $w \in W, G=\left(c_{0}, \ldots, c_{k}\right) \in \operatorname{Min}(w)$ and let $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be the sequence of roots crossed by G. Then $\Phi(w)=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ and the group U_{w} has the following presentation:

$$
U_{G}:=\left\langle u_{\alpha_{1}}, \ldots, u_{\alpha_{k}}\right|\left\{\begin{array}{l}
\forall 1 \leq i \leq k: u_{\alpha_{i}}^{2}=1, \\
\forall 1 \leq i<j \leq k:\left[u_{\alpha_{i}}, u_{\alpha_{j}}\right]=\prod_{\gamma \in M_{\alpha_{i}, \alpha_{j}}^{G}} u_{\gamma}
\end{array}\right\rangle
$$

Proof. Clearly, we have an epimorphism $U_{G} \rightarrow U_{w}$. Since each element in U_{G} is of the form $\prod_{i=1}^{k} u_{\alpha_{i}}^{\varepsilon_{i}}$, where $\varepsilon_{i} \in\{0,1\}, U_{G}$ has cardinality at most 2^{k}. As U_{w} has cardinality 2^{k}, the claim follows.

Using the previous lemma, the axioms (CB1) and (CB3) imply that the canonical mapping $u_{\alpha} \mapsto u_{\alpha}$ induces a monomorphism from U_{w} to $U_{w s}$ for all $w \in W, s \in S$ with $\ell(w s)=\ell(w)+1$. We let U_{+}be the direct limit of the groups U_{w} with natural inclusions $U_{w} \rightarrow U_{w s}$ if $\ell(w s)=$ $\ell(w)+1$. Then \mathcal{M} is called faithful, if the canonical homomorphisms $U_{w} \rightarrow U_{+}$are injective.

We call the commutator blueprint \mathcal{M} (locally) Weyl-invariant if for every $1 \neq w \in W, s \in S$ and $G=\left(c_{0}, \ldots, c_{k}\right) \in \operatorname{Min}(w)$ the following hold:

- If $\ell(s w)=\ell(w)+1$, then $s G:=\left(1_{W}, s c_{0}=s, s c_{1}, \ldots, s c_{k}\right)$ is a minimal gallery and we have $M_{s \alpha, s \beta}^{s G}=s M_{\alpha, \beta}^{G}:=\left\{s \gamma \mid \gamma \in M_{\alpha, \beta}^{G}\right\}$ for all $\alpha \leq_{G} \beta \in \Phi(G)$ (with $o\left(r_{\alpha} r_{\beta}\right)<\infty$).
- If $\ell(s w)=\ell(w)-1$ and $G \in \operatorname{Min}_{s}(w)$, then $s G:=\left(s c_{1}=1_{W}, s c_{2}, \ldots, s c_{k}\right)$ is a minimal gallery and we have $M_{s \alpha, s \beta}^{s G}=s M_{\alpha, \beta}^{G}$ for all $\alpha_{s} \neq \alpha \leq_{G} \beta \in \Phi(G)\left(\right.$ with $\left.o\left(r_{\alpha} r_{\beta}\right)<\infty\right)$.
(2.1.5) Remark. Let \mathcal{M} be Weyl-invariant and let $1 \neq w \in W, s \in S$.
(a) Suppose $\ell(s w)=\ell(w)+1, G \in \operatorname{Min}(w)$ and $\alpha \neq \beta \in \Phi(G)$. Then $\alpha \leq_{G} \beta$ if and only if $s \alpha \leq_{s G} s \beta$. Moreover, we have the following relation in $U_{s w}$:

$$
\left[u_{s \alpha}, u_{s \beta}\right]=\prod_{\gamma \in M_{s \alpha, s \beta}^{s G}} u_{\gamma}=\prod_{\gamma \in s M_{\alpha, \beta}^{G}} u_{\gamma}=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{s \gamma}
$$

(b) Suppose $\ell(s w)=\ell(w)-1, G \in \operatorname{Min}_{s}(w)$ and $\alpha \neq \beta \in \Phi(G) \backslash\left\{\alpha_{s}\right\}$. Then again $\alpha \leq_{G} \beta$ if and only if $s \alpha \leq_{s G} s \beta$ and we have the following relation in $U_{s w}$:

$$
\left[u_{s \alpha}, u_{s \beta}\right]=\prod_{\gamma \in M_{s \alpha, s \beta}^{s G}} u_{\gamma}=\prod_{\gamma \in s M_{\alpha, \beta}^{G}} u_{\gamma}=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{s \gamma}
$$

(2.1.6) Lemma. For $w \in W, s \in S$ with $\ell(s w)=\ell(w)-1$ we define the group $V_{w, s}$ as the subgroup of U_{w} generated by $\left\{u_{\alpha} \mid \alpha \in \Phi(w) \backslash\left\{\alpha_{s}\right\}\right\}$. Then $V_{w, s}$ is a normal subgroup of U_{w} and a presentation of $V_{w, s}$ is given by the presentation of U_{w} by deleting the generator $u_{\alpha_{s}}$ and all relations in which $u_{\alpha_{s}}$ appears.

Proof. Using the commutator relations and the fact that $\left[u_{\alpha_{s}}, u_{\alpha}\right]=u_{\alpha}^{u_{\alpha_{s}}} u_{\alpha}$, the subgroup $V_{w, s}$ is a normal subgroup of U_{w}. Let $\tilde{V}_{w, s}$ be the group given by the presentation in the statement. Then we have a canonical homomorphism $\tilde{V}_{w, s} \rightarrow U_{w}$. Let $G=\left(c_{0}, \ldots, c_{k}\right) \in \operatorname{Min}_{s}(w)$. Then $\alpha_{1}=\alpha_{s}$ and each element of $\tilde{V}_{w, s}$ can be written in the form $\prod_{i=2}^{k} u_{\alpha_{i}}^{\varepsilon_{i}}$, where $\varepsilon_{i} \in\{0,1\}$. Thus $\tilde{V}_{w, s}$ is a group of cardinality at most 2^{k-1}. Since the image of $\tilde{V}_{w, s}$ in U_{w} is $V_{w, s}$ and this group has cardinality 2^{k-1}, the homomorphism is an isomorphism and we are done.
(2.1.7) Lemma. Suppose $w \in W, s \in S$ with $\ell(s w)=\ell(w)-1$, let $G=\left(c_{0}, \ldots, c_{k}\right) \in \operatorname{Min}_{s}(w)$ and let $\left(\alpha_{1}=\alpha_{s}, \ldots, \alpha_{k}\right)$ be the sequence of roots crossed by G. Then we define the group

$$
V_{G}:=\left\langle u_{\alpha_{2}}, \ldots, u_{\alpha_{k}}\right|\left\{\begin{array}{l}
\forall 2 \leq i \leq k: u_{\alpha_{i}}^{2}=1, \\
\forall 2 \leq i<j \leq k:\left[u_{\alpha_{i}}, u_{\alpha_{j}}\right]=\prod_{\gamma \in M_{\alpha_{i}, \alpha_{j}}^{G}} u_{\gamma}
\end{array}\right\rangle
$$

and the canonical mapping $u_{\alpha_{i}} \mapsto u_{\alpha_{i}}$ extends to an isomorphism from V_{G} to $V_{w, s}$. Moreover, if \mathcal{M} is Weyl-invariant, the mapping $u_{\alpha} \mapsto u_{s \alpha}$ extends to an isomorphism from $V_{w, s}$ to $U_{s w}$.

Proof. The first part follows similar as in Lemma (2.1.4). For the second part we note that $s G \in \operatorname{Min}(s w)$. Using Lemma (2.1.4) and Remark (2.1.5), we obtain that the mapping $u_{\alpha} \rightarrow u_{s \alpha}$ extends to an isomorphism.
(2.1.8) Example. Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system of type (W, S) over \mathbb{F}_{2}, let $H=$ $\left(c_{0}, \ldots, c_{k}\right) \in \operatorname{Min}$ and let $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be the sequence of roots crossed by H. Then we have $\Phi(H)=\left\{\alpha_{1} \leq_{H} \cdots \leq_{H} \alpha_{k}\right\}$. By [2, Corollary 8.34(1)] there exists for each $1 \leq m<i<n \leq$ k a unique $\varepsilon_{i} \in\{0,1\}$ such that $\left[u_{\alpha_{m}}, u_{\alpha_{n}}\right]=\prod_{i=m+1}^{n-1} u_{\alpha_{i}}^{\varepsilon_{i}}$, and $\varepsilon_{i}=1$ implies $\alpha_{i} \in\left(\alpha_{m}, \alpha_{n}\right)$. We define $M(\mathcal{D})_{\alpha_{m}, \alpha_{n}}^{H}:=\left\{\alpha_{i} \in \Phi(H) \mid\left[u_{\alpha_{m}}, u_{\alpha_{n}}\right]=\prod_{i=m+1}^{n-1} u_{\alpha_{i}}^{\varepsilon_{i}}, \varepsilon_{i}=1\right\} \subseteq\left(\alpha_{m}, \alpha_{n}\right)$ and $\mathcal{M}_{\mathcal{D}}:=\left(M(\mathcal{D})_{\alpha, \beta}^{H}\right)_{(H, \alpha, \beta) \in \mathcal{I}}$.

For $s, t \in S$ with $m_{s t}=6$ we get a canonical direction of the edge $\{s, t\}$ via the commutator relations. For $s, t \in S$ with $m_{s t} \in\{3,4, \infty\}$ we choose any direction. This gives us a crystallographic Dynkin diagram $\operatorname{Dyn}(W, S)$. Clearly, (CB1) is satisfied. By Example (1.7.1) (CB2) holds and (CB3) is satisfies by [2, Corollary $8.34(1)]$. Thus $\mathcal{M}_{\mathcal{D}}$ is a commutator blueprint of type $\operatorname{Dyn}(W, S)$, which is faithful (cf. [2, Theorem 8.85]) and Weyl-invariant.

The commutator blueprint \mathcal{M} is called integrable if there exists an RGD-system \mathcal{D} of type (W, S) over \mathbb{F}_{2} such that $M_{\alpha, \beta}^{G}=M(\mathcal{D})_{\alpha, \beta}^{G}$ holds for every $(G, \alpha, \beta) \in \mathcal{I}$.

2.2. Integrability of certain commutator blueprints

(2.2.1) Convention. For the rest of Chapter 2 we assume that the commutator blueprint \mathcal{M} is faithful and Weyl-invariant. Moreover, we fix $s \in S$ in this section, unless it is stated.

As we have seen in the previous example, an integrable commutator blueprint is necessarily faithful and Weyl-invariant. We will work out sufficient conditions in order to show that \mathcal{M} is integrable. We will see (cf. Definition (2.2.12) and Theorem (2.2.14) that under some conditions, there exists an RGD-system containing U_{+}. As a first step we construct the group P_{s} (mentioned in Theorem (2.2.14), which contains U_{+}as a subgroup.

Since \mathcal{M} is faithful, we can identify U_{w} with its image in U_{+}. In particular, we have $u_{\alpha} \in U_{+}$for all $\alpha \in \Phi_{+}$. We will write for short $u_{s}:=u_{\alpha_{s}}$.

We define the subgroup $N_{s}:=\left\langle x^{-1} u_{\alpha} x \mid \alpha \in \Phi_{+} \backslash\left\{\alpha_{s}\right\}, x \in U_{s}\right\rangle \leq U_{+}$(the idea of the definition of N_{s} is obtained from [29, 6.2.1]). Next, we will construct two automorphisms of N_{s}. Clearly, U_{+}is generated by U_{s} and N_{s}, and N_{s} is a normal subgroup of U_{+}.
(2.2.2) Lemma. We have $U_{+}=U_{s} \ltimes N_{s}$.

Proof. It suffices to show that $U_{s} \cap N_{s}=1$. At first we will show that the assignment $u_{\alpha} \mapsto 1$ for $\alpha_{s} \neq \alpha \in \Phi_{+}$and $u_{s} \mapsto u_{s}$ will extend to a homomorphism $U_{w} \rightarrow U_{s}$. In view of the definition of U_{w} it suffices to consider the relations $u_{\alpha}^{2}=1$ and $\left[u_{\alpha}, u_{\beta}\right]=u_{\gamma_{1}} \cdots u_{\gamma_{k}}$. Since $\alpha_{s} \notin(\alpha, \beta)$ for every $\{\alpha, \beta\} \in \mathcal{P}$, these relations are mapped to 1 and we obtain homomorphisms $U_{w} \rightarrow U_{s}$ for every $w \in W$. Since these homomorphisms respect the natural inclusions $U_{w} \rightarrow U_{w t}$, the universal property of direct limits yields a homomorphism $\varphi: U_{+} \rightarrow$ U_{s} with $\varphi\left(u_{\alpha}\right)=1$ for $\alpha_{s} \neq \alpha \in \Phi_{+}$and $\varphi\left(u_{s}\right)=u_{s}$. Since $N_{s} \leq \operatorname{ker} \varphi$ and $U_{s} \cap \operatorname{ker} \varphi=1$, the claim follows.
(2.2.3) Remark. The next step is to construct an automorphism τ_{s} on N_{s} which maps u_{α} to $u_{s \alpha}$. The rough idea is that P_{s} should look like $\left\langle u_{s}, \tau_{s}\right\rangle \ltimes N_{s}$.

In the next lemma we will show that N_{s} has a suitable presentation. The elements v_{α} will play the role of the elements $u_{s} u_{\alpha} u_{s}$ for all $\alpha_{s} \neq \alpha \in \Phi_{+}$.
(2.2.4) Lemma. We define the group M_{s} via the following presentation:

$$
\left\langle\left\{u_{\alpha}, v_{\alpha} \mid \alpha_{s} \neq \alpha \in \Phi_{+}\right\}\right|\left\{\begin{array}{l}
\forall \alpha_{s} \neq \alpha \in \Phi_{+}: u_{\alpha}^{2}=1=v_{\alpha}^{2} \\
\forall w \in W, \ell(s w)=\ell(w)+1, G \in \operatorname{Min}(w), \alpha \leq_{G} \beta \in \Phi(G): \\
\quad\left[u_{\alpha}, u_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}, \quad\left[v_{\alpha}, v_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} v_{\gamma}, \\
\left.\forall w \in W, \ell(s w)=\ell(w)-1, G \in \operatorname{Min}_{s}(w), \alpha_{s} \neq \alpha \leq_{G} \beta \in \Phi(G):\right\rangle \\
{\left[u_{\alpha}, u_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}, \quad\left[v_{\alpha}, v_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} v_{\gamma},} \\
\forall w \in W, \ell(s w)=\ell(w)-1, G \in \operatorname{Min}_{s}(w), \alpha_{s} \neq \alpha \in \Phi(G): \\
v_{\alpha}=\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{\gamma}\right) u_{\alpha}
\end{array}\right.
$$

Then we have $u_{s} \in \operatorname{Aut}\left(M_{s}\right)$ such that $u_{s}\left(u_{\alpha}\right)=v_{\alpha}$ and $u_{s}\left(v_{\alpha}\right)=u_{\alpha}$. In particular, $M_{s} \rightarrow$ $N_{s},\left\{\begin{array}{l}u_{\alpha} \mapsto u_{\alpha} \\ v_{\alpha} \mapsto u_{s} u_{\alpha} u_{s}\end{array}\right.$ is an isomorphism.
Proof. We show that the assignments $u_{\alpha} \mapsto v_{\alpha}$ and $v_{\alpha} \mapsto u_{\alpha}$ extend to an endomorphism of M_{s}. Therefore we have to show that every relation is mapped to a relation. For that it suffices to consider the relations of the form $v_{\alpha}=\left(\prod_{\gamma \in M_{\alpha s, \alpha}^{G}} u_{\gamma}\right) u_{\alpha}$. Suppose $w \in W$ with
that $\ell(s w)=\ell(w)-1$ and let $G \in \operatorname{Min}_{s}(w)$. Let $V_{w, s}$ be the normal subgroup of U_{w} as in Lemma (2.1.6), Using Lemma (2.1.7) we deduce that the canonical assignment $u_{\alpha} \mapsto u_{\alpha}$ extends to a homomorphism from $V_{w, s} \cong V_{G}$ to M_{s}. Moreover, for $\alpha_{s} \neq \alpha \in \Phi(G)$ we have the following relation in U_{w} and, since both sides of the equation are contained in $V_{w, s}$, this yields also a relation in M_{s} (note that $\alpha \in \Phi(G)$ implies $\gamma \in \Phi(G)$ for all $\gamma \in\left(\alpha_{s}, \alpha\right)$):

$$
\begin{aligned}
\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}}\left(\prod_{\beta \in M_{\alpha_{s}, \gamma}^{G}} u_{\beta}\right) u_{\gamma}\right)\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{\gamma}\right) u_{\alpha} & =\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}}\left[u_{s}, u_{\gamma}\right] u_{\gamma}\right)\left[u_{s}, u_{\alpha}\right] u_{\alpha} \\
& =u_{s}\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{\gamma}\right) u_{\alpha} u_{s} \\
& =u_{s}\left[u_{s}, u_{\alpha}\right] u_{\alpha} u_{s} \\
& =u_{\alpha}
\end{aligned}
$$

Note that by definition we also have the relation $v_{\delta}=\left(\prod_{\varepsilon \in M_{\alpha_{s}, \delta}^{G}} u_{\varepsilon}\right) u_{\delta}$ for every $\alpha_{s} \neq \delta \in$ $\Phi(G)$. Now we consider the discussed relation:

$$
\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} v_{\gamma}\right) v_{\alpha}=\left(\prod_{\gamma \in M_{\alpha s, \alpha}^{G}}\left(\prod_{\beta \in M_{\alpha s, \gamma}^{G}} u_{\beta}\right) u_{\gamma}\right)\left(\prod_{\gamma \in M_{\alpha s, \alpha}^{G}} u_{\gamma}\right) u_{\alpha}=u_{\alpha}
$$

Thus every relation is mapped to a relation and we have an endomorphism u_{s} of M_{s} interchanging u_{α} and v_{α}. Since $u_{s}^{2}=\mathrm{id}$, it is an automorphism of M_{s}. Consider $U:=\mathbb{Z}_{2} \ltimes M_{s}$, where \mathbb{Z}_{2} acts on M_{s} via u_{s}. Moreover, we denote the generator of \mathbb{Z}_{2} by u_{s}. Then the assignment

$$
\begin{aligned}
u_{s} & \mapsto u_{s} \\
u_{\alpha} & \mapsto u_{\alpha} \\
v_{\alpha} & \mapsto u_{s} u_{\alpha} u_{s}
\end{aligned}
$$

extends to a homomorphism $U \rightarrow U_{+}$, since all relations in U do also hold in U_{+}. Now we will show that there does also exist a homomorphism $U_{+} \rightarrow U$ mapping u_{s} onto u_{s} and u_{α} onto u_{α}. For this we consider $w \in W$. If $\ell(s w)=\ell(w)+1$, then every relation in U_{w} is also a relation in M_{s} and hence in U. Thus we obtain a homomorphism $U_{w} \rightarrow U$ mapping u_{α} onto u_{α}. Assume that $\ell(s w)=\ell(w)-1$ and let $G \in \operatorname{Min}_{s}(w)$. By Lemma (2.1.4) U_{w} is isomorphic to U_{G} and we have to show that $\left[u_{s}, u_{\alpha}\right]=\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{\gamma}$ is a relation in U. Note that this is a relation if and only if $u_{s} u_{\alpha} u_{s}=\left(\prod_{\gamma \in M_{\alpha, \alpha}^{G}} u_{\gamma}\right) u_{\alpha}$ is a relation in U. But in U we have $u_{s} u_{\alpha} u_{s}=v_{\alpha}$ and hence it is a relation by definition. In particular, the mappings $U_{w} \rightarrow U$ preserve the inclusion mappings $U_{w} \rightarrow U_{w t}$ and by the universal property of direct limits there exists a homomorphism $U_{+} \rightarrow U$. Since both concatenations are the identity on the generating sets, both homomorphisms are isomorphisms. In particular, M_{s} is isomorphic to N_{s}.
(2.2.5) Lemma. Let $w, w^{\prime} \in W$ be such that $\ell(s w)=\ell(w)-1$ and $\ell\left(s w^{\prime}\right)=\ell\left(w^{\prime}\right)-1$. Let $G \in \operatorname{Min}_{s}(w), H \in \operatorname{Min}_{s}\left(w^{\prime}\right)$ and let $\alpha_{s} \neq \alpha \in \Phi(G) \cap \Phi(H)$. Then the following hold in M_{s} :
(a) $\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{s \gamma}\right) u_{s \alpha}=\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{H}} u_{s \gamma}\right) u_{s \alpha}$;
(b) $\left(\prod_{\gamma \in M_{\alpha, \alpha}^{G}} v_{s \gamma}\right) v_{s \alpha}=\left(\prod_{\gamma \in M_{\alpha, \alpha}^{H}, \alpha} v_{s \gamma}\right) v_{s \alpha}$.

Proof. Assertion (b) is a direct consequence of Assertion (a) and the fact that u_{s} is an automorphism of M_{s} interchanging u_{α} and v_{α}. Thus it suffices to show Assertion (a).

By definition we have the following two equations in M_{s} :

$$
\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{\gamma}\right) u_{\alpha}=v_{\alpha}=\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{H}} u_{\gamma}\right) u_{\alpha}
$$

Using Lemma (2.2.4) we infer that $\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{\gamma}\right) u_{\alpha}=\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{H}} u_{\gamma}\right) u_{\alpha}$ is a relation in $N_{s} \leq U_{+}$. We remark that $\left[\alpha_{s}, \alpha\right] \subseteq \Phi(G) \cap \Phi(H)$. Using the fact that $U_{w} \rightarrow U_{+}$is injective and both sides of the relation are contained in U_{w}, we deduce that it is also a relation in U_{w}. Moreover, both sides are contained in the subgroup $V_{w, s} \leq U_{w}$. Now we can apply Lemma (2.1.7) and the fact that $U_{s w} \rightarrow M_{s}$ is a homomorphism to show that

$$
\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{s \gamma}\right) u_{s \alpha}=\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{H}} u_{s \gamma}\right) u_{s \alpha}
$$

is a relation in M_{s}. This finishes the claim.
(2.2.6) Remark. Let $R \in \partial^{2} \alpha_{s}$ and let $\Phi(R)=\left\{\alpha \in \Phi_{+} \mid R \in \partial^{2} \alpha\right\}$. Then $[\alpha, \beta] \subseteq \Phi(R)$ for all $\alpha, \beta \in \Phi(R)$.
(2.2.7) Lemma. Let $R \in \partial^{2} \alpha_{s}$ and let $\Phi(R)=\left\{\alpha \in \Phi_{+} \mid R \in \partial^{2} \alpha\right\}$. We define the group U_{R} via the following presentation
$U_{R}:=\left\langle\left\{u_{\alpha} \mid \alpha \in \Phi(R)\right\}\right|\left\{\begin{array}{l}\forall \alpha \in \Phi(R): u_{\alpha}^{2}=1, \\ \forall w \in W, \ell(s w)=\ell(w)+1, G \in \operatorname{Min}(w), \alpha, \beta \in \Phi(G) \cap \Phi(R), \alpha \leq_{G} \beta: \\ \quad\left[u_{\alpha}, u_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}, \\ \forall w \in W, \ell(s w)=\ell(w)-1, G \in \operatorname{Min}_{s}(w), \alpha, \beta \in \Phi(G) \cap \Phi(R), \alpha \leq_{G} \beta: \\ \quad\left[u_{\alpha}, u_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}\end{array}\right\rangle$
For $N_{R}:=\left\langle u_{\alpha} \mid \alpha_{s} \neq \alpha \in \Phi(R)\right\rangle \leq U_{R}$ we have $U_{R} \cong U_{s} \ltimes N_{R}$ and a presentation of N_{R} is given by the presentation of U_{R} by deleting the generator $u_{\alpha_{s}}$ and all relations in which $u_{\alpha_{s}}$ appears. Furthermore, there exists $\tau_{s} \in \operatorname{Aut}\left(N_{R}\right)$ such that $\tau_{s}\left(u_{\alpha}\right)=u_{s \alpha}$ holds for all $\alpha_{s} \neq \alpha \in \Phi(R)$, and we have $\tau_{s}^{2}=1=\left(u_{s} \tau_{s}\right)^{3}$ in $\operatorname{Aut}\left(N_{R}\right)$.
Proof. Similarly as in Lemma (2.2.2) we deduce $U_{R} \cong U_{s} \ltimes N_{R}$. Suppose $w \in W$ with $\ell(s w)=\ell(w)-1$ and let $G \in \operatorname{Min}_{s}(w)$ be such that $\Phi(R) \subseteq \Phi(G)$. Then each element of U_{R} can be written in the form $\prod_{j=1}^{m} u_{\beta_{j}}^{\varepsilon_{j}}$, where $\varepsilon_{j} \in\{0,1\}$ and $\left\{\beta_{1}=\alpha_{s} \leq_{G} \cdots \leq_{G} \beta_{m}\right\}=$ $\Phi(R) \subseteq \Phi(G)$. Since we have a homomorphism $U_{R} \rightarrow U_{+}$and the image of U_{R} is contained in U_{w}, (CB3) implies that $U_{R} \rightarrow U_{+}$is a monomorphism. Let \tilde{N}_{R} be the group given by the presentation in the statement. Then again each element in \tilde{N}_{R} can be written in the form $\prod_{j=2}^{m} u_{\beta_{j}}^{\varepsilon_{j}}$. Since we have a homomorphism $\tilde{N}_{R} \rightarrow U_{R}$ with image N_{R}, the cardinality of N_{R} implies that this homomorphism must be an isomorphism.

Now we will see that the assignment $u_{\alpha} \mapsto u_{s \alpha}$ extends to an endomorphism of N_{R}. First of all we note that for $\alpha_{s} \neq \alpha \in \Phi(R)$ we have $\alpha_{s} \neq s \alpha \in \Phi(R)$. We consider all three types of relations, where $u_{\alpha}^{2}=1$ is obvious. Suppose $w \in W$ with $\ell(s w)=\ell(w)+1$ and let $G \in \operatorname{Min}(w), \alpha, \beta \in \Phi(G) \cap \Phi(R)$ with $\alpha \leq_{G} \beta$. Using the Weyl-invariance and the fact that $\left[u_{s \alpha}, u_{s \beta}\right]=\prod_{\gamma \in M_{s \alpha, s \beta}^{s G}} u_{\gamma}$ is a relation, we deduce similar as in Remark (2.1.5) that

$$
\left[u_{s \alpha}, u_{s \beta}\right]=\prod_{\gamma \in M_{s \alpha, s \beta}^{s G}} u_{\gamma}=\prod_{\gamma \in s M_{\alpha, \beta}^{G}} u_{\gamma}=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{s \gamma}
$$

is a relation in N_{R}. Vice versa, we assume $\ell(s w)=\ell(w)-1$ and we let $G \in \operatorname{Min}_{s}(w), \alpha \neq$ $\alpha_{s} \neq \beta \in \Phi(G) \cap \Phi(R)$ with $\alpha \leq_{G} \beta$. Using the Weyl-invariance and the fact that $\left[u_{s \alpha}, u_{s \beta}\right]=$ $\prod_{\gamma \in M_{s \alpha, s \beta}^{s G}} u_{\gamma}$ is a relation, we deduce similar as in Remark (2.1.5) that

$$
\left[u_{s \alpha}, u_{s \beta}\right]=\prod_{\gamma \in M_{s \alpha, s \beta}^{s G}} u_{\gamma}=\prod_{\gamma \in s M_{\alpha, \beta}^{G}} u_{\gamma}=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{s \gamma}
$$

is a relation in N_{R}. Thus $\tau_{s}: N_{R} \rightarrow N_{R}, u_{\alpha} \mapsto u_{s \alpha}$ is an endomorphism. Since $\tau_{s}^{2}=1$, we $\operatorname{infer} \tau_{s} \in \operatorname{Aut}\left(N_{R}\right)$.

To show the claim it suffices to show that $\left(u_{s} \tau_{s}\right)^{3}=1$. We do a case by case distinction on the type of the residue R (we will write for short $f . u_{\beta}:=f\left(u_{\beta}\right)$):

- $A_{1} \times A_{1}$: Let $\Phi(R)=\left\{\alpha_{s}, \beta\right\}$. Then $s \beta=\beta$. Since u_{s}, u_{β} commute by (CB2), Example (1.7.1) and the Weyl-invariance, we obtain

$$
\left(u_{s} \tau_{s}\right)^{3} \cdot u_{\beta}=\left(u_{s} \tau_{s}\right)^{2} \cdot\left[u_{s}, u_{\beta}\right] u_{\beta}=\left(u_{s} \tau_{s}\right)^{2} \cdot u_{\beta}=u_{\beta}
$$

- A_{2} : Let $\Phi(R)=\left\{\alpha_{s}, \delta, \varepsilon\right\}$. Then $s \varepsilon=\delta$ and we assume that $\left\{\alpha_{s}, \varepsilon\right\}$ is a set of simple roots of R. Using (CB2), Example (1.7.1) and the Weyl-invariance, we obtain the following:

$$
\begin{aligned}
& \left(u_{s} \tau_{s}\right)^{3} \cdot u_{\varepsilon}=\left(u_{s} \tau_{s}\right)^{2} \cdot u_{\delta}=\left(u_{s} \tau_{s}\right) \cdot u_{\delta} u_{\varepsilon}=u_{\varepsilon} \\
& \left(u_{s} \tau_{s}\right)^{3} \cdot u_{\delta}=u_{s} \tau_{s} \cdot u_{\varepsilon}=u_{\delta}
\end{aligned}
$$

- $B_{2}=C_{2}$: Let $\Phi(R)=\left\{\alpha_{s}, \delta, \gamma, \varepsilon\right\}$ and assume that $\left\{\alpha_{s}, \varepsilon\right\}$ is a set of simple roots of R. Furthermore, we assume that $s \gamma=\gamma$ and $s \varepsilon=\delta$. Using (CB2), Example (1.7.1) and the Weyl-invariance, we obtain that only u_{s} and u_{ε} do not commute. We compute the following:

$$
\begin{aligned}
& \left(u_{s} \tau_{s}\right)^{3} \cdot u_{\gamma}=\left(u_{s} \tau_{s}\right)^{2} \cdot u_{\gamma}=u_{\gamma} \\
& \left(u_{s} \tau_{s}\right)^{3} \cdot u_{\varepsilon}=\left(u_{s} \tau_{s}\right)^{2} \cdot u_{\delta}=u_{s} \tau_{s} \cdot u_{\delta} u_{\gamma} u_{\varepsilon}=u_{\varepsilon} \\
& \left(u_{s} \tau_{s}\right)^{3} \cdot u_{\delta}=u_{s} \tau_{s} \cdot u_{\varepsilon}=u_{\delta}
\end{aligned}
$$

- G_{2} : Let $\Phi(R)=\left\{\beta_{1}, \ldots, \beta_{6}\right\}$ and we assume that $\left\{\beta_{1}, \beta_{6}\right\}$ is a set of simple roots of R and that the roots are ordered via their indices. Assume first that $\alpha_{s}=\beta_{1}$. Then $s \beta_{2}=\beta_{6}, s \beta_{3}=\beta_{5}$ and $s \beta_{4}=\beta_{4}$. Let $u_{i}:=u_{\beta_{i}} \in U_{\beta_{i}}^{\star}$. Using (CB2), Example (1.7.1) and the Weyl-invariance, we obtain

$$
\begin{aligned}
\left(u_{s} \tau_{s}\right)^{3} \cdot u_{4} & =\left(u_{s} \tau_{s}\right)^{2} \cdot u_{4}=u_{4} \\
\left(u_{s} \tau_{s}\right)^{3} \cdot u_{6} & =\left(u_{s} \tau_{s}\right)^{2} \cdot u_{2}=u_{s} \tau_{s} \cdot\left[u_{1}, u_{6}\right] u_{6}=u_{s} \tau_{s} \cdot u_{2} u_{3} u_{4} u_{5} u_{6} \\
& =\left[u_{1}, u_{6}\right] u_{6}\left[u_{1}, u_{5}\right] u_{5}\left[u_{1}, u_{4}\right] u_{4}\left[u_{1}, u_{3}\right] u_{3}\left[u_{1}, u_{2}\right] u_{2} \\
& =u_{2} u_{3} u_{4} u_{5} u_{6} u_{2} u_{4} u_{5} u_{4} u_{2} u_{3} u_{2}=u_{2} u_{3} u_{4} u_{6} u_{3} u_{2}=u_{6} \\
\left(u_{s} \tau_{s}\right)^{3} \cdot u_{2} & =u_{s} \tau_{s} \cdot u_{6}=u_{2} \\
\left(u_{s} \tau_{s}\right)^{3} \cdot u_{5} & =\left(u_{s} \tau_{s}\right)^{2} \cdot\left[u_{1}, u_{3}\right] u_{3}=\left(u_{s} \tau_{s}\right)^{2} \cdot u_{2} u_{3} \\
& =u_{s} \tau_{s} \cdot\left[u_{1}, u_{6}\right] u_{6}\left[u_{1}, u_{5}\right] u_{5} \\
& =u_{s} \tau_{s} \cdot u_{2} u_{3} u_{4} u_{5} u_{6} u_{2} u_{4} u_{5}=u_{s} \tau_{s} \cdot u_{3} u_{4} u_{6} \\
& =\left[u_{1}, u_{5}\right] u_{5}\left[u_{1}, u_{4}\right] u_{4}\left[u_{1}, u_{2}\right] u_{2}=u_{2} u_{4} u_{5} u_{4} u_{2}=u_{5}
\end{aligned}
$$

$$
\left(u_{s} \tau_{s}\right)^{3} \cdot u_{3}=\left(u_{s} \tau_{s}\right)^{2} \cdot\left[u_{1}, u_{5}\right] u_{5}=\left(u_{s} \tau_{s}\right)^{2} \cdot u_{2} u_{4} u_{5}=u_{6} u_{4} u_{3} u_{4} u_{6}=u_{3}
$$

It is also possible that $\alpha_{s}=\beta_{6}$. In this case $s \beta_{1}=\beta_{5}, s \beta_{2}=\beta_{4}$ and $s \beta_{3}=\beta_{3}$ and we compute the following:

$$
\begin{aligned}
\left(u_{s} \tau_{s}\right)^{3} \cdot u_{3} & =\left(u_{s} \tau_{s}\right)^{2} \cdot u_{3}=u_{3} \\
\left(u_{s} \tau_{s}\right)^{3} \cdot u_{1} & =\left(u_{s} \tau_{s}\right)^{2} \cdot u_{5}=u_{s} \tau_{s} \cdot u_{1}\left[u_{1}, u_{6}\right]=u_{s} \tau_{s} \cdot u_{1} u_{2} u_{3} u_{4} u_{5} \\
& =u_{5}\left[u_{5}, u_{6}\right] u_{4}\left[u_{4}, u_{6}\right] u_{3}\left[u_{3}, u_{6}\right] u_{2}\left[u_{2}, u_{6}\right] u_{1}\left[u_{1}, u_{6}\right] \\
& =u_{5} u_{4} u_{3} u_{2} u_{4} u_{1} u_{2} u_{3} u_{4} u_{5}=u_{5} u_{4} u_{1} u_{2} u_{5}=u_{4} u_{1}\left[u_{1}, u_{5}\right] u_{2}=u_{1} \\
\left(u_{s} \tau_{s}\right)^{3} \cdot u_{5} & =u_{s} \tau_{s} \cdot u_{1}=u_{5} \\
\left(u_{s} \tau_{s}\right)^{3} \cdot u_{2} & =\left(u_{s} \tau_{s}\right)^{2} \cdot u_{4}\left[u_{4}, u_{6}\right]=\left(u_{s} \tau_{s}\right)^{2} \cdot u_{4} \\
& =u_{s} \tau_{s} \cdot u_{2}\left[u_{2}, u_{6}\right]=u_{s} \tau_{s} \cdot u_{2} u_{4} \\
& =u_{4}\left[u_{4}, u_{6}\right] u_{2}\left[u_{2}, u_{6}\right]=u_{4} u_{2} u_{4}=u_{2} \\
\left(u_{s} \tau_{s}\right)^{3} \cdot u_{4} & =u_{s} \tau_{s} \cdot u_{2}=u_{4}\left[u_{4}, u_{6}\right]=u_{4}
\end{aligned}
$$

- $I_{2}(8)$: This type does not occur since (W, S) is crystallographic.
- $I_{2}(\infty)$: Since R is a spherical rank 2 residue, R cannot be of type $I_{2}(\infty)$.
(2.2.8) Remark. Let $-\alpha_{s} \subseteq \beta \in \Phi_{+}$, let $w, w^{\prime} \in W$ such that $\ell(s w)=\ell(w)-1$ and $\ell\left(s w^{\prime}\right)=$ $\ell\left(w^{\prime}\right)-1$, let $G \in \operatorname{Min}_{s}(w), H \in \operatorname{Min}_{s}\left(w^{\prime}\right)$ such that $s \beta \in \Phi(G) \cap \Phi(H)$. Note that $\alpha_{s} \in$ $\Phi(G) \cap \Phi(H)$ as well. Then we have

$$
\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}} u_{s \gamma}\right) u_{\beta}=\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{H}} u_{s \gamma}\right) u_{\beta}
$$

in M_{s} by Lemma (2.2.5) Using the isomorphism $M_{s} \rightarrow N_{s}$ from Lemma (2.2.4), this is also a relation in N_{s}.
(2.2.9) Proposition. There exists an endomorphism $\tau_{s}: N_{s} \rightarrow N_{s}$ such that $\tau_{s}\left(u_{\alpha}\right)=u_{s \alpha}$ for each $\alpha_{s} \neq \alpha \in \Phi_{+}$and $\tau_{s}\left(u_{s} u_{\beta} u_{s}\right)=u_{s}\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}} u_{s \gamma}\right) u_{\beta} u_{s}$ for each $-\alpha_{s} \subseteq \beta \in \Phi_{+}$, where $w \in W$ is such that $\ell(s w)=\ell(w)-1$ and $G \in \operatorname{Min}_{s}(w)$ with $s \beta \in \Phi(G)$.

Proof. We will construct an endomorphism $\tau_{s}: M_{s} \rightarrow M_{s}$ and show that the induced endomorphism on N_{s} is as required. At first we will show that the following assignments (call it $\left.\tau_{s}\right)$ extend to an endomorphism of M_{s}, where in the second case $G \in \operatorname{Min}_{s}(w)$ is such that $\left\{\alpha_{s}, \alpha\right\} \subseteq \Phi(G)$ for some $w \in W$ with $\ell(s w)=\ell(w)-1$, and in the third case $G \in \operatorname{Min}_{s}(w)$ is such that $\left\{\alpha_{s}, s \alpha\right\} \subseteq \Phi(G)$ for some $w \in W$ with $\ell(s w)=\ell(w)-1$ (note that by Lemma $(2.2 .5)$ the assignments do neither depend on $w \in W$ with $\ell(s w)=\ell(w)-1$ nor on the gallery $\left.G \in \operatorname{Min}_{s}(w)\right)$:

$$
\begin{aligned}
& \forall \alpha_{s} \neq \alpha \in \Phi_{+}: u_{\alpha} \mapsto u_{s \alpha} \\
& \forall\left\{\alpha_{s}, \alpha\right\} \in \mathcal{P}: v_{\alpha} \mapsto\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{s \gamma}\right) u_{s \alpha} \\
& -\alpha_{s} \subseteq \alpha: v_{\alpha} \mapsto\left(\prod_{\gamma \in M_{\alpha_{s}, s \alpha}^{G}} v_{s \gamma}\right) v_{\alpha}
\end{aligned}
$$

We distinguish all relations:
(i) $u_{\alpha}^{2}=1$: There is nothing to show.
(ii) $v_{\alpha}^{2}=1$: We distinguish the following cases:
(a) $\left\{\alpha_{s}, \alpha\right\} \in \mathcal{P}$: Suppose $w \in W$ with $\ell(s w)=\ell(w)-1$ and $G \in \operatorname{Min}_{s}(w)$ with $\alpha_{s}, \alpha \in \Phi(G)$. Then we have $\left(\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{\gamma}\right) u_{\alpha}\right)^{2}=\left(\left[u_{s}, u_{\alpha}\right] u_{\alpha}\right)^{2}=1$ in U_{w} and hence in $V_{w, s}$. This implies that

$$
\left(\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{s \gamma}\right) u_{s \alpha}\right)^{2}
$$

is a relation in $U_{s w}$ by Lemma (2.1.7) and, using the homomorphism $U_{s w} \rightarrow M_{s}$, hence also in M_{s}. But this is exactly the image of v_{α} under the assignment τ_{s}.
(b) $-\alpha_{s} \subseteq \alpha$: Suppose $w \in W$ with $\ell(s w)=\ell(w)-1$ and $G \in \operatorname{Min}_{s}(w)$ with $\alpha_{s}, s \alpha \in$ $\Phi(G)$. We have to show that

$$
\left(\left(\prod_{\gamma \in M_{\alpha_{s}, s \alpha}^{G}} v_{s \gamma}\right) v_{\alpha}\right)^{2}
$$

is a relation. Clearly, $\alpha_{s} \neq s \alpha \in \Phi_{+}$and $v_{s \alpha}^{2}$ is a relation by definition. Using Case (a), we already know that

$$
\left(\left(\prod_{\gamma \in M_{a s, s \alpha}^{G}} u_{s \gamma}\right) u_{\alpha}\right)^{2}
$$

is a relation in M_{s}. Since u_{s} is an automorphism of M_{s} interchanging u_{α} and v_{α} by Lemma (2.2.4), we obtain the relation

$$
1=u_{s}\left(\left(\left(\prod_{\gamma \in M_{\alpha_{s}, s \alpha}^{G}} u_{s \gamma}\right) u_{\alpha}\right)^{2}\right)=\left(\left(\prod_{\gamma \in M_{\alpha_{s}, s \alpha}^{G}} v_{s \gamma}\right) v_{\alpha}\right)^{2}
$$

(iii) $\left[u_{\alpha}, u_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}$: Suppose $w \in W, G \in \operatorname{Min}(w)$ and $\alpha \leq_{G} \beta \in \Phi(G) \backslash\left\{\alpha_{s}\right\}$. If $\ell(s w)=\ell(w)+1\left(\right.$ resp. $\ell(s w)=\ell(w)-1$ and if $\left.G \in \operatorname{Min}_{s}(w)\right)$, the Weyl-invariance yields that

$$
\left[u_{s \alpha}, u_{s \beta}\right]=\prod_{\gamma \in M_{s \alpha, s \beta}^{s G}} u_{\gamma}=\prod_{\gamma \in s M_{\alpha, \beta}^{G}} u_{\gamma}=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{s \gamma}
$$

is a relation (cf. Remark (2.1.5)].
(iv) $\left[v_{\alpha}, v_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} v_{\gamma}$: Suppose $w \in W, G \in \operatorname{Min}(w)$ and $\alpha \leq_{G} \beta \in \Phi(G) \backslash\left\{\alpha_{s}\right\}$. We distinguish the following cases:
(aa) $\ell(s w)=\ell(w)-1$: Suppose $G \in \operatorname{Min}_{s}(w)$ and note that $\left\{\alpha_{s}, \delta\right\} \in \mathcal{P}$ for each $\alpha_{s} \neq \delta \in \Phi(G)$. We have to show that

$$
\left[\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{s \gamma}\right) u_{s \alpha}\left(\prod_{\gamma \in M_{\alpha_{s}, \beta}^{G}} u_{s \gamma}\right) u_{s \beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}}\left(\prod_{\delta \in M_{\alpha, \gamma}^{G}} u_{s \delta}\right) u_{s \gamma}
$$

is a relation in M_{s}. Note that $\left[u_{\alpha}, u_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}$ is a relation in U_{w} and $V_{w, s}$ and hence also the u_{s}-conjugate, which is given by

$$
\begin{aligned}
{\left[\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{\gamma}\right) u_{\alpha},\left(\prod_{\gamma \in M_{\alpha_{s}, \beta}^{G}} u_{\gamma}\right) u_{\beta}\right] } & =\left[u_{s} u_{\alpha} u_{s}, u_{s} u_{\beta} u_{s}\right] \\
& =u_{s}\left[u_{\alpha}, u_{\beta}\right] u_{s} \\
& =u_{s}\left(\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}\right) u_{s} \\
& =\prod_{\gamma \in M_{\alpha, \beta}^{G}}\left(\prod_{\delta \in M_{\alpha_{s}, \gamma}^{G}} u_{\delta}\right) u_{\gamma}
\end{aligned}
$$

Using Lemma (2.1.7) and the homomorphism $U_{s w} \rightarrow M_{s}$ the claim follows.
(bb) $\ell(s w)=\ell(w)+1$: Then $\alpha_{s} \notin \Phi(G)$. Let $\delta \in \Phi(G)$. Then either $-\alpha_{s} \subseteq \delta$ or $o\left(r_{\alpha_{s}} r_{\delta}\right)<\infty$. At first we observe the following: Suppose $o\left(r_{\alpha_{s}} r_{\delta}\right)<\infty$, let $R \in \partial^{2} \alpha_{s} \cap \partial^{2} \delta$ and let $H \in \operatorname{Min}_{s}(s w)$ be such that $\Phi(R) \subseteq \Phi(H)$. Then $\alpha_{s} \leq_{H} \beta$ for each $\alpha_{s} \neq \beta \in \Phi(H)$. Using Lemma (2.2.7) we deduce the following relation in N_{R} :

$$
\begin{aligned}
\left(\prod_{\gamma \in M_{\alpha_{s}, \delta}^{H}} u_{s \gamma}\right) u_{s \delta} & =\tau_{s} u_{s} \cdot u_{\delta} \\
& =u_{s} \tau_{s} u_{s} \tau_{s} . u_{\delta} \\
& =u_{s} \cdot\left(\prod_{\gamma \in M_{\alpha_{s}, s \delta}^{H}} u_{s \gamma}\right) u_{\delta} \\
& =\left(\prod_{\gamma \in M_{\alpha_{s}, s \delta}^{H}}\left(\prod_{\omega \in M_{\alpha_{s}, s \gamma}^{H}}^{H} u_{\omega}\right) u_{s \gamma}\right)\left(\prod_{\omega \in M_{\alpha_{s}, \delta}^{H}} u_{\omega}\right) u_{\delta}
\end{aligned}
$$

Since we have a canonical homomorphism $N_{R} \rightarrow M_{s}$, this is also a relation in M_{s}. In particular, we have the following relation in M_{s} (using Lemma (2.2.5) (b) and the fact that $v_{\rho}=\left(\prod_{\omega \in M_{\alpha_{s}, \rho}^{H}} u_{\omega}\right) u_{\rho}$ for both $\left.\rho \in\{s \gamma, \delta\}\right)$:

$$
\begin{aligned}
\left(\prod_{\gamma \in M_{\alpha_{s}, \delta}^{H}} u_{s \gamma}\right) u_{s \delta} & =\left(\prod_{\gamma \in M_{\alpha_{s}, s \delta}^{H}}\left(\prod_{\omega \in M_{\alpha_{s}, s \gamma}^{H}} u_{\omega}\right) u_{s \gamma}\left(\prod_{\omega \in M_{\alpha_{s}, \delta}^{H}} u_{\omega}\right) u_{\delta}\right. \\
& =\left(\prod_{\substack{ \\
\gamma \in M_{\alpha_{s}, s \delta}^{H}}} v_{s \gamma}\right) v_{\delta} \\
& =\left(\prod_{\substack{ \\
\gamma \in M_{\alpha_{s}, s \delta}^{s G}}} v_{s \gamma}\right) v_{\delta}
\end{aligned}
$$

This shows that v_{δ} is mapped onto $\left(\prod_{\gamma \in M_{\alpha_{s}, s \delta}^{s G}} v_{s \gamma}\right) v_{\delta}$ for each $\delta \in \Phi(G)$. In particular, this assignment does not depend on $o\left(r_{\alpha_{s}} r_{\delta}\right)$ for $\delta \in \Phi(G)$. We have to verify that

$$
\left[\left(\prod_{\gamma \in M_{\alpha_{s}, s \alpha}^{G G}} v_{s \gamma}\right) v_{\alpha},\left(\prod_{\gamma \in M_{\alpha, s \beta}^{s G}} v_{s \gamma}\right) v_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}}\left(\prod_{\delta \in M_{\alpha_{s}, s \gamma}^{G G}} v_{s \delta}\right) v_{\gamma}
$$

is a relation in M_{s}. For that we observe the following:

- $\left[v_{s \alpha}, v_{s \beta}\right]=\prod_{\gamma \in M_{s \alpha, s \beta}^{s G}} v_{\gamma}$ is a relation in M_{s}.
- $\left[\left(\prod_{\gamma \in M_{\alpha_{s}, s \alpha}^{s G}} u_{s \gamma}\right) u_{\alpha},\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{s G}} u_{s \gamma}\right) u_{\beta}\right]=\prod_{\gamma \in M_{s \alpha, s \beta}^{s G}}\left(\prod_{\delta \in M_{\alpha_{s}, \gamma}^{s G}} u_{s \delta}\right) u_{s \gamma}$ is a relation in M_{s} by (aa).
- Since u_{s} is an automorphism of M_{s} we deduce that the following is also a relation in M_{s} :

$$
\left[\left(\prod_{\gamma \in M_{\alpha_{s}, s \alpha}^{s G}} v_{s \gamma}\right) v_{\alpha},\left(\prod_{\gamma \in M_{\alpha s, s \beta}^{s G}} v_{s \gamma}\right) v_{\beta}\right]=\prod_{\gamma \in M_{s \alpha, s \beta}^{s G}}\left(\prod_{\delta \in M_{\alpha s, \gamma}^{s G}} v_{s \delta}\right) v_{s \gamma}
$$

- Since \mathcal{M} is Weyl-invariant, we have $M_{s \alpha, s \beta}^{s G}=s M_{\alpha, \beta}^{G}$. Using substitution, we deduce that

$$
\left[\left(\prod_{\gamma \in M_{\alpha s, s \alpha}^{s G}} v_{s \gamma}\right) v_{\alpha},\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{s G}} v_{s \gamma}\right) v_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}}\left(\prod_{\delta \in M_{\alpha_{s}, s \gamma}^{s G}} v_{s \delta}\right) v_{\gamma}
$$

is also a relation in M_{s}.
(v) $v_{\alpha}=\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{\gamma}\right) u_{\alpha}$: This holds by definition.

This shows the existence of the endomorphism $\tau_{s}: M_{s} \rightarrow M_{s}$. Using the isomorphism $\varphi: M_{s} \rightarrow N_{s}$ from Lemma (2.2.4), we obtain an endomorphism $\tau_{s}: N_{s} \rightarrow N_{s}$ via $N_{s} \xrightarrow{\varphi^{-1}}$ $M_{s} \xrightarrow{\tau_{s}} M_{s} \xrightarrow{\varphi} N_{s}$. Moreover, this endomorphism is as required.
(2.2.10) Corollary. We have $\tau_{s}^{2}=1=\left(u_{s} \tau_{s}\right)^{3}$. In particular, $\tau_{s} \in \operatorname{Aut}\left(N_{s}\right)$.

Proof. For short we will not specify a gallery G. If $M_{\alpha_{s}, \alpha}^{G}$ appears, we will implicitly assume that $G \in \operatorname{Min}_{s}(w)$ for some $w \in W$ with $\ell(s w)=\ell(w)-1$ such that $\alpha \in \Phi(G)$.

By the previous proposition we have $\tau_{s}\left(u_{\alpha}\right)=u_{s \alpha}$ for each $\alpha_{s} \neq \alpha \in \Phi_{+}$and $\tau_{s}\left(u_{s} u_{\beta} u_{s}\right)=$ $u_{s}\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}} u_{s \gamma}\right) u_{\beta} u_{s}$ for each $-\alpha_{s} \subseteq \beta \in \Phi_{+}$. Using this we establish the claim. At first we will show $\tau_{s}^{2}=1$. Therefore, let $\alpha_{s} \neq \alpha \in \Phi_{+}$. Then $\alpha_{s} \neq s \alpha \in \Phi_{+}$and we have $\tau_{s}^{2}\left(u_{\alpha}\right)=\tau_{s}\left(u_{s \alpha}\right)=u_{\alpha}$. Now let $-\alpha_{s} \subseteq \beta \in \Phi_{+}$. Note that for $\gamma \in M_{\alpha_{s}, s \beta}^{G}$ we have $-\alpha_{s} \subseteq s \gamma$. This implies

$$
\tau_{s}^{2}\left(u_{s} u_{\beta} u_{s}\right)=\tau_{s}\left(u_{s}\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}} u_{s \gamma}\right) u_{\beta} u_{s}\right)
$$

$$
\begin{aligned}
& =\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}} \tau_{s}\left(u_{s} u_{s \gamma} u_{s}\right)\right) \tau_{s}\left(u_{s} u_{\beta} u_{s}\right) \\
& \left.=\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}} u_{s}\left(\prod_{\delta \in M_{\alpha_{s}, \gamma}^{G}} u_{s \delta}\right) u_{s \gamma} u_{s}\right)\left(u_{s} \prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}} u_{s \gamma}\right) u_{\beta} u_{s}\right) \\
& \left.=u_{s} \prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}}\left(\prod_{\substack{\text { M } \\
\prod_{\alpha_{s}, \gamma}^{G}}} u_{s \delta}\right) u_{s \gamma}\right)\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}} u_{s \gamma} u_{\beta} u_{s}\right)
\end{aligned}
$$

Note that we have the following relation in U_{w} and hence in $V_{w, s}$:

$$
\begin{aligned}
\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}}\left(\prod_{\delta \in M_{\alpha_{s}, \gamma}^{G}} u_{\delta}\right) u_{\gamma}\right) \prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}} u_{\gamma} & =\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}}\left[u_{s}, u_{\gamma}\right] u_{\gamma}\right)\left[u_{s}, u_{s \beta}\right] \\
& =u_{s}\left[u_{s}, u_{s \beta}\right] u_{s}\left[u_{s}, u_{s \beta}\right] \\
& =\left(u_{s \beta} u_{s} u_{s \beta}\right)^{2}=1
\end{aligned}
$$

Using Lemma (2.1.7), the following is a relation in $U_{s w}$ and hence in N_{s} :

$$
\left(\pi\left(\pi^{n}\right)^{n}\right)\left(\pi^{n}\right)=1
$$

This shows $\tau_{s}^{2}\left(u_{s} u_{\beta} u_{s}\right)=u_{s} u_{\beta} u_{s}$ and hence $\tau_{s}^{2}=1$. In particular, τ_{s} is an automorphism. To show that $\left(u_{s} \tau_{s}\right)^{3}=1$, we distinguish the following cases. Let $\alpha_{s} \neq \alpha \in \Phi_{+}$. Assume that $o\left(r_{\alpha_{s}} r_{\alpha}\right)<\infty$ and let $R \in \partial^{2} \alpha_{s} \cap \partial^{2} \alpha$. Note that we have a homomorphism $N_{R} \rightarrow M_{s} \rightarrow N_{s}$. Lemma (2.2.7) yields

$$
\left(\prod_{\gamma \in M_{\alpha_{s}, s \alpha}^{G}} u_{s \gamma}\right) u_{\alpha}=\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}}\left(\prod_{\gamma^{\prime} \in M_{\alpha_{s}, s \gamma}^{G}} u_{\gamma^{\prime}}\right) u_{s \gamma}\right)\left(\prod_{\gamma \in M_{\alpha_{s}, s \alpha}^{G}} u_{\gamma} u_{s \alpha}\right.
$$

and hence $\left(u_{s} \tau_{s}\right)^{3}\left(u_{\alpha}\right)=u_{\alpha}$. Thus we assume $\alpha_{s} \subsetneq \alpha$. Then we have the following:

$$
\begin{aligned}
\left(u_{s} \tau_{s}\right)^{3}\left(u_{\alpha}\right) & =\left(u_{s} \tau_{s}\right)^{2}\left(u_{s} u_{s \alpha} u_{s}\right) \\
& =\left(u_{s} \tau_{s} u_{s}\right)\left(u_{s}\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{s \gamma}\right) u_{s \alpha} u_{s}\right) \\
& =\left(u_{s} \tau_{s}\right)\left(\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{s \gamma}\right) u_{s \alpha}\right) \\
& =u_{s}\left(\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{\gamma}\right) u_{\alpha}\right) \\
& =u_{\alpha}
\end{aligned}
$$

Now we assume $-\alpha_{s} \subseteq \alpha$. Using the previous case, we deduce the following:

$$
\begin{aligned}
\left(u_{s} \tau_{s}\right)^{3}\left(u_{s} u_{\alpha} u_{s}\right) & =\left(u_{s} \tau_{s}\right)\left(u_{s \alpha}\right)=u_{s}\left(u_{\alpha}\right)=u_{s} u_{\alpha} u_{s} \\
\left(u_{s} \tau_{s}\right)^{3}\left(u_{\alpha}\right) & =\left(u_{s} \tau_{s}\right)^{2}\left(\left[u_{s}, u_{s \alpha}\right] u_{s \alpha}\right)=\left(u_{s} \tau_{s}\right)^{-1}\left(\left[u_{s}, u_{s \alpha}\right] u_{s \alpha}\right)=u_{\alpha}
\end{aligned}
$$

(2.2.11) Definition. Note that $\varphi: \operatorname{Sym}(3) \rightarrow\left\langle u_{s}, \tau_{s}\right\rangle \leq \operatorname{Aut}\left(N_{s}\right),\left\{\begin{array}{l}(1 \\ 1 \\ 2\end{array}\right) \mapsto u_{s}$ is an epimorphism. Thus we define the group $P_{s}:=\operatorname{Sym}(3) \ltimes_{\varphi} N_{s}$. For short we will denote the elements in $\operatorname{Sym}(3)$ by their images in $\operatorname{Aut}\left(N_{s}\right)$. Note that $\tau_{s} n_{s} \tau_{s}=\tau_{s}\left(n_{s}\right) \in N_{s}$. In particular, we have $\tau_{s} u_{\alpha} \tau_{s}=u_{s \alpha}$ for each $\alpha_{s} \neq \alpha \in \Phi_{+}$. Note that $U_{+} \cong\left\langle u_{s}\right\rangle \ltimes N_{s} \leq P_{s}$.
(2.2.12) Definition. We let G be the direct limit of the groups $U_{+},\left(P_{s}\right)_{s \in S},\left(\left\langle\tau_{s}\right\rangle\right)_{s \in S}, W$ with canonical inclusions $U_{+} \hookrightarrow P_{s},\left\langle\tau_{s}\right\rangle \hookrightarrow P_{s},\left\langle\tau_{s}\right\rangle \hookrightarrow W, \tau_{s} \mapsto s$.
(2.2.13) Lemma. Let $s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{m}, s, t \in S$ be such that $s_{1} \cdots s_{n} \alpha_{s}=t_{1} \cdots t_{m} \alpha_{t}$. Then $U_{\alpha_{s}}^{\tau_{n} \cdots \tau_{1}}=U_{\alpha_{t}}^{\tau_{m}^{\prime} \cdots \tau_{1}^{\prime}}$, where $\tau_{i}=\tau_{s_{i}}$ and $\tau_{j}^{\prime}=\tau_{t_{j}}$.
Proof. The claim follows if $U_{\alpha_{s}}^{\tau_{n} \cdots \tau_{1} \tau_{1}^{\prime} \cdots \tau_{m}^{\prime}}=U_{\alpha_{t}}$. Suppose $f_{1}, \ldots, f_{k} \in S$ with $\ell\left(f_{1} \cdots f_{k}\right)=k$ and $f_{1} \cdots f_{k}=t_{m} \cdots t_{1} s_{1} \cdots s_{n}$. Then $f_{k} \cdots f_{1}=s_{n} \cdots s_{1} t_{1} \cdots t_{m}$ and since every relation in W is a relation in G, we obtain

$$
\tau_{f_{k}} \cdots \tau_{f_{1}}=\tau_{s_{n}} \cdots \tau_{s_{1}} \tau_{t_{1}} \cdots \tau_{t_{m}}
$$

Now let $i=\max \left\{1, \ldots, k \mid \exists r \in S: f_{i} \cdots f_{k} \alpha_{s}=\alpha_{r}\right\}$. For $g:=f_{1} \cdots f_{k}$ we have $g \alpha_{s}=\alpha_{t}$ and hence $g^{-1} \in \alpha_{s}$. This implies $\ell(g s)=\ell\left((g s)^{-1}\right)=\ell\left(s g^{-1}\right)>\ell\left(g^{-1}\right)=\ell(g)$. This implies $f_{k} \neq s$ and hence $f_{k} \alpha_{s_{\tau}} \in \Phi_{+}$. Thus the roots $\alpha_{s}, f_{k} \alpha_{s}, \ldots, f_{i} \cdots f_{k} \alpha_{s}=\alpha_{r}$ are all positive roots and we obtain $U_{\alpha_{s}}^{\tau f_{k} \cdots \tau_{f_{i}}}=U_{f_{i} \cdots f_{k} \alpha_{s}}=U_{\alpha_{r}}$ in G. If $i=1$ we are done. Otherwise we repeat the argument with $g:=f_{1} \cdots f_{i-1}$. After finitely many steps we are done.
(2.2.14) Theorem. Assume that $P_{s} \rightarrow G$ is injective for every $s \in S$. Then \mathcal{M} is integrable.

Proof. Let $\alpha \in \Phi$ be a root. Then there exist $w \in W$ and $s \in S$ with $\alpha=w \alpha_{s}$. Let $s_{1}, \ldots, s_{k} \in S$ be such that $w=s_{1} \cdots s_{k}$ and let $\tau_{i}:=\tau_{s_{i}}$. Then we define

$$
U_{\alpha}:=U_{\alpha_{s}}^{\tau_{k} \cdots \tau_{1}}
$$

In view of the previous lemma, the group U_{α} is well-defined. We will show that $\mathcal{D}=$ $\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ is an RGD-system of type (W, S).
(RGD0) The mappings $P_{s} \rightarrow G$ are injective and hence the groups U_{α} are non-trivial.
(RGD1) Let $\{\alpha, \beta\} \subseteq \Phi$ be a prenilpotent pair. Then there exists $w \in W$ such that $\{w \alpha, w \beta\} \in \mathcal{P}$. By definition of the root groups and the commutator blueprint we deduce (τ_{w} is a product of suitable τ_{s})

$$
\begin{aligned}
{\left[U_{\alpha}, U_{\beta}\right]=\left[U_{w \alpha}, U_{w \beta}\right]^{\tau_{w}} } & \leq\left\langle U_{\gamma} \mid \gamma \in(w \alpha, w \beta)\right\rangle^{\tau_{w}} \\
& =\left\langle U_{w^{-1} \gamma} \mid \gamma \in(w \alpha, w \beta)\right\rangle \\
& =\left\langle U_{\gamma} \mid \gamma \in(\alpha, \beta)\right\rangle
\end{aligned}
$$

(RGD2) For $s \in S$ we have $\left(u_{s} \tau_{s}\right)^{3}=1$ and hence $\tau_{s}=\tau_{s}\left(u_{s} \tau_{s}\right)^{3}=u_{-s} u_{s} u_{-s}$ by Corollary (2.2.10) Let $\alpha \in \Phi$ be a root. Then there exist $w \in W, t \in S$ such that $\alpha=w \alpha_{t}$. Let $s_{1}, \ldots, s_{k} \in S$ be such that $w=s_{1} \cdots s_{k}$ and let $\tau_{i}:=\tau_{s_{i}}$. Then $s \alpha=s s_{1} \cdots s_{k} \alpha_{t}$ and we deduce

$$
U_{\alpha}^{\tau_{s}}=\left(U_{\alpha_{t}}^{\tau_{k} \cdots \tau_{1}}\right)^{\tau_{s}}=U_{\alpha t}^{\tau_{k} \cdots \tau_{1} \tau_{s}}=U_{s \alpha}
$$

(RGD3) Since $P_{s} \rightarrow G$ is injective, we have $\tau_{s} \notin U_{+}$. As $U_{+}^{u_{s}}=U_{+}$and $\left(u_{s} \tau_{s}\right)^{3}=1$, we infer $u_{-s}=\tau_{s} u_{s} \tau_{s}=u_{s} \tau_{s} u_{s} \notin U_{+}^{u_{s}}=U_{+}$
(RGD4) Since G is generated by U_{α} and τ_{s}, it is generated by all root groups.
Note that $\mathcal{M}_{\mathcal{D}}$ is a commutator blueprint of type $\operatorname{Dyn}(W, S)$. By definition we have $M_{\alpha, \beta}^{G}=$ $M(\mathcal{D})_{\alpha, \beta}^{G}$ for each $(G, \alpha, \beta) \in \mathcal{I}$. We deduce that \mathcal{M} is integrable.
(2.2.15) Corollary. Assume that $m_{s t}=\infty$ for all $s \neq t \in S$. Then every Weyl-invariant commutator blueprint is integrable.

Proof. Let \mathcal{M} be a commutator blueprint which is Weyl-invariant. Since $m_{s t}=\infty$ for all $s \neq t \in S$ we deduce that $\Sigma(W, S)$ is a tree and hence the canonical homomorphisms $U_{w} \rightarrow U_{+}$ are injective (cf. [32, Ch. 4.4]). In particular, \mathcal{M} is faithful. Since G is (isomorphic to) the direct limit of the groups U_{+}and $\left(P_{s}\right)_{s \in S}$, i.e. the free amalgamated product of the $\left(P_{s}\right)_{s \in S}$ along the common subgroup U_{+}, the claim follows from the previous theorem.

2.3. An action of the P_{s}

In this section we will show that the groups P_{s} act faithfully on a chamber system \mathbf{C} over S for every $s \in S$. Moreover, we will give sufficient conditions in order to show that $W \cong\left\langle\tau_{s} \mid s \in S\right\rangle$ acts on \mathbf{C}. In particular, the action of the groups P_{s} extend to an action of G on \mathbf{C}. This will imply that the mappings $P_{s} \rightarrow G$ are injective. The sufficient conditions are rather mild and only depend on the commutator blueprint.

We start by defining the chamber system \mathbf{C} over S. We let $U_{1_{W}}:=\{1\} \leq U_{+}$. The set of chambers is given by $\mathcal{C}:=\left\{g U_{w} \mid g \in U_{+}, w \in W\right\}$, and s-adjacency is defined as follows:

$$
g U_{w} \sim_{s} h U_{w^{\prime}}: \Leftrightarrow w^{\prime} \in\{w, w s\} \text { and } g^{-1} h \in U_{w} \cup U_{w s}
$$

Then $\mathbf{C}=\left(\mathcal{C},\left(\sim_{s}\right)_{s \in S}\right)$ is a chamber system over S. The idea of considering this chamber system is not new (cf. [2, Section 8.7]). Before we define an action of P_{s} on the chamber system \mathbf{C} we note that every element of U_{+}can be written uniquely as $n u$ with $n \in N_{s}$ and $u \in U_{s}$ by Lemma (2.2.2) Thus it suffices to define the action on cosets $n u U_{w}$ with $n \in N_{s}, u \in U_{s}$ and $w \in W$. To show that our assignment will actually be an action we need the following auxiliary result.
(2.3.1) Lemma. For $n \in N_{s}$ the following hold:
(a) If $n \in U_{w}$, then $n^{\tau_{s}} \in N_{s} \cap U_{s w}$;
(b) If $\ell(s w)=\ell(w)+1$ and $n^{u_{s}} \in U_{w}$, then $n^{\tau_{s} u_{s}} \in N_{s} \cap U_{w}$.

Proof. Let $w \in W$ and $G=\left(c_{0}, \ldots, c_{k}\right) \in \operatorname{Min}(w)$ and let $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be the sequence of roots crossed by G. Since $n \in U_{w}$, there exists $u_{i} \in U_{\alpha_{i}}$ such that $n=u_{1} \cdots u_{k}$. If $\ell(s w)=\ell(w)+1$, then $u_{i}^{\tau_{s}} \in U_{s \alpha_{i}} \leq U_{s w}$ and hence $n^{\tau_{s}} \in U_{s w}$. Thus we assume that $\ell(s w)=\ell(w)-1$. Using Lemma (2.1.4) we can assume $G \in \operatorname{Min}_{s}(w)$ and hence $\alpha_{1}=\alpha_{s}$. Since $U_{\alpha_{i}} \leq N_{s}$ for each $2 \leq i \leq k$, we have $u_{1}=n\left(u_{2} \cdots u_{k}\right)^{-1} \in N_{s} \cap U_{s}=\{1\}$. Thus $n^{\tau_{s}} \in U_{s w}$ and Assertion (a) follows. Now we assume that $\ell(s w)=\ell(w)+1$ and that $n^{u_{s}} \in U_{w}$. Note that $n^{u_{s}} \in N_{s}$. Then (a) provides $n^{u_{s} \tau_{s}} \in N_{s} \cap U_{s w}$. Since $\ell(s s w)=\ell(w)=\ell(s w)-1$, we have $u_{s} \in U_{s w}$ and hence $n^{u_{s} \tau_{s} u_{s}} \in N_{s} \cap U_{s w}$. Using Corollary (2.2.10) and Assertion (a) we obtain $n^{\tau_{s} u_{s}}=n^{u_{s} \tau_{s} u_{s} \tau_{s}} \in N_{s} \cap U_{w}$.
(2.3.2) Remark. Let $\left\langle G_{s} \mid R_{s}\right\rangle$ be a presentation of N_{s}. Then a presentation of P_{s} is given by $\left\langle u_{s}, \tau_{s}, G_{s}\right| u_{s}^{2}, \tau_{s}^{2},\left(u_{s} \tau_{s}\right)^{3}, R_{s}, u_{s} n u_{s}=n^{u_{s}}, \tau_{s} n \tau_{s}=n^{\tau_{s}}$ for every $\left.n \in G_{s}\right\rangle$.
(2.3.3) Proposition. For $s \in S$ the group P_{s} acts on \mathbf{C} as follows:

$$
g . n u U_{w}:= \begin{cases}g n u U_{w} & g \in U_{+} \\ n^{\tau_{s}} U_{s w} & g=\tau_{s}, \ell(s w)=\ell(w)-1 \text { or } u=1 \\ n^{\tau_{s}} u_{s} U_{w} & g=\tau_{s}, \ell(s w)=\ell(w)+1, u=u_{s}\end{cases}
$$

Moreover, this action is faithful.
Proof. For $g \in U_{+} \cup\left\{\tau_{s}\right\}$ we let $\varphi_{g}: \mathcal{C} \rightarrow \mathcal{C}, n u U_{w} \mapsto g . n u U_{w}$.
The mapping φ_{g} is well-defined: We note that $u_{s} . n u U_{w}=u_{s} n u U_{w}=n^{u_{s}} u_{s} u U_{w}$. At first we will show that the assignment is well-defined. Since the assignment of U_{+}is via left multiplication, it suffices to consider the assignment of τ_{s}. Let $w \in W$ and $n, n^{\prime} \in N_{s}, u, u^{\prime} \in$ U_{s} such that $n u U_{w}=n^{\prime} u^{\prime} U_{w}$. Then $u^{-1} n^{-1} n^{\prime} u^{\prime} \in U_{w}$.
(Case I) $\ell(s w)=\ell(w)-1$: Then $u_{s} \in U_{w}$ and hence $n^{-1} n^{\prime} \in U_{w}$. Using Lemma (2.3.1) (a), we obtain $\left(n^{-1} n^{\prime}\right)^{\tau_{s}} \in U_{s w}$. This implies $\tau_{s} . n u U_{w}=n^{\tau_{s}} U_{s w}=\left(n^{\prime}\right)^{\tau_{s}} U_{s w}=\tau_{s} . n^{\prime} u^{\prime} U_{w}$.
(Case II) $\ell(s w)=\ell(w)+1$: We distinguish the following three cases:

- $u=1=u^{\prime}$: Then the claim follows as in Case I.
- $\left\{u, u^{\prime}\right\}=\left\{1, u_{s}\right\}$: Assume $u \neq 1=u^{\prime}$. Then we have $u^{-1} n^{-1} n^{\prime} \in U_{w}$. Since $\ell(s w)=\ell(w)+1$, we have $U_{w} \leq N_{s}$ and hence $u_{s}=u^{-1} \in N_{s}$. This is a contradiction. The case $u=1 \neq u^{\prime}$ is similar.
- $u \neq 1 \neq u^{\prime}$: Then $u=u_{s}=u^{\prime}$ and $\left(n^{-1} n^{\prime}\right)^{u_{s}} \in N_{s} \cap U_{w}$. Using Lemma (2.3.1) (b), we obtain $\left(n^{-1} n^{\prime}\right)^{\tau_{s} u_{s}} \in N_{s} \cap U_{w}$ and hence $\tau_{s} . n u U_{w}=n^{\tau_{s}} u_{s} U_{w}=\left(n^{\prime}\right)^{\tau_{s}} u_{s} U_{w}=$ $\tau_{s} \cdot n^{\prime} u^{\prime} U_{w}$.

Thus φ_{g} is well-defined.
φ_{g} is bijective for every $g \in U_{+} \cup\left\{\tau_{s}\right\}$: We will show that $\varphi_{g^{-1}} \circ \varphi_{g}=$ id. If $g \in U_{+}$there is nothing to show. Thus we consider $g=\tau_{s}$. By construction and Corollary (2.2.10) we have $\varphi_{\tau_{s}} \circ \varphi_{\tau_{s}}=$ id and φ_{g} is bijective for every $g \in U_{+} \cup\left\{\tau_{s}\right\}$.
$\varphi_{g} \in \operatorname{Aut}(\mathbf{C}):$ As φ_{g} is bijective, it suffices to show that φ_{g} preserves t-adjacency for each $t \in S$. Let $n, n^{\prime} \in N_{s}, u, u^{\prime} \in U_{s}$ and $w, w^{\prime} \in W$ such that $n u U_{w} \sim_{t} n^{\prime} u^{\prime} U_{w^{\prime}}$. Then we have $w^{\prime} \in\{w, w t\}$ and $u^{-1} n^{-1} n^{\prime} u^{\prime} \in U_{w} \cup U_{w t}$. Since for $g \in U_{+}$the bijection φ_{g} is left multiplication by g, it preserves t-adjacency. Thus it suffices to consider $\varphi_{\tau_{s}}$. We distinguish the following cases:
(Case I) $u=1=u^{\prime}$: Then $\tau_{s} . n U_{w}=n^{\tau_{s}} U_{s w}$ and $\tau_{s} . n^{\prime} U_{w^{\prime}}=\left(n^{\prime}\right)^{\tau_{s}} U_{s w^{\prime}}$. Because of the t adjacency we have $n^{-1} n \in U_{w} \cup U_{w t}$ and Lemma (2.3.1) (a) implies $\left(n^{-1}\right)^{\tau_{s}}\left(n^{\prime}\right)^{\tau_{s}}=$ $\left(n^{-1} n^{\prime}\right)^{\tau_{s}} \in U_{s w} \cup U_{s w t}$. Since $s w^{\prime} \in\{s w, s w t\}$, we deduce $\varphi_{\tau_{s}}\left(n U_{w}\right) \sim_{t} \varphi_{\tau_{s}}\left(n^{\prime} U_{w^{\prime}}\right)$.
(Case II) $\ell(s w)=\ell(w)-1$ and $\ell\left(s w^{\prime}\right)=\ell\left(w^{\prime}\right)-1$: Then $n u U_{w}=n U_{w}$ and $n^{\prime} u^{\prime} U_{w^{\prime}}=n^{\prime} U_{w^{\prime}}$ and the claim follows from Case I.
(Case III) $\ell(s w)=\ell(w)+1$ and $\ell\left(s w^{\prime}\right)=\ell\left(w^{\prime}\right)+1$: Recall that $w^{\prime} \in\{w, w t\}$. If $u=1=u^{\prime}$ the claim follows from Case I. If $u=u_{s}=u^{\prime}$ we have $\left(n^{-1} n^{\prime}\right)^{u_{s}} \in U_{w} \cup U_{w t}$ and $\tau_{s} . n u_{s} U_{w}=$ $n^{\tau_{s}} u_{s} U_{w}, \tau_{s} . n^{\prime} u_{s} U_{w^{\prime}}=\left(n^{\prime}\right)^{\tau_{s}} u_{s} U_{w^{\prime}}$. If $\ell(s w t)=\ell(w t)+1$, then we have $\left(n^{-1} n^{\prime}\right)^{\tau_{s} u_{s}} \in$ $N_{s} \cap\left(U_{w} \cup U_{w t}\right)$ by Lemma (2.3.1) (b) and we deduce $\varphi_{\tau_{s}}\left(n u U_{w}\right) \sim_{t} \varphi_{\tau_{s}}\left(n^{\prime} u^{\prime} U_{w^{\prime}}\right)$. Thus
we assume $\ell(s w t)=\ell(w t)-1$. Then $u_{s} \in U_{w t}$. Since $\ell(w t)-1=\ell(s w t) \geq \ell(s w)-1=$ $\ell(w)$, we have $\ell(w t)=\ell(w)+1$ and thus $\left(n^{-1} n^{\prime}\right)^{u_{s}} \in U_{w} \cup U_{w t}=U_{w t}$. This implies $n^{-1} n^{\prime} \in U_{w t}$. By Lemma (1.1.1) we infer $s w t=w$. Now Lemma (2.3.1) a) yields $\left(n^{-1} n^{\prime}\right)^{\tau_{s}} \in N_{s} \cap U_{s w t}=N_{s} \cap U_{w} \leq N_{s} \cap U_{w t}$ and, as $u_{s} \in U_{w t},\left(n^{-1} n^{\prime}\right)^{\tau_{s} u_{s}} \in U_{w t}=$ $U_{w} \cup U_{w t}$. In particular, $\varphi_{\tau_{s}}\left(n u U_{w}\right) \sim_{t} \varphi_{\tau_{s}}\left(n^{\prime} u^{\prime} U_{w^{\prime}}\right)$.
If $u=1 \neq u^{\prime}$ we have $\left(n^{-1}\right) n^{\prime} u_{s} \in U_{w} \cup U_{w t}$ and $\tau_{s} . n U_{w}=n^{\tau_{s}} U_{s w}, \tau_{s} . n^{\prime} u_{s} U_{w^{\prime}}=$ $\left(n^{\prime}\right)^{\tau_{s}} u_{s} U_{w^{\prime}}$. If $\ell(s w t)=\ell(w t)+1$, we would have $U_{w}, U_{w t} \leq N_{s}$ and hence $u_{s} \in N_{s}$. Thus we have $\ell(s w t)=\ell(w t)-1$. Since $\ell\left(s w^{\prime}\right)=\ell\left(w^{\prime}\right)+1$ and $w^{\prime} \in\{w, w t\}$, we deduce $w=w^{\prime}$. As $\ell(s w)=\ell(w)+1$, we obtain $\ell(w t)-1=\ell(s w t) \geq \ell(s w)-1=\ell(w)$. This yields $\ell(w t)=\ell(w)+1$ and hence $s w t=w$ as before. This implies $w^{\prime}=w=s w t \in$ $\{s w, s w t\}$ and $U_{w} \leq U_{w t}$. Thus we obtain $\left(n^{-1}\right) n^{\prime} u_{s} \in U_{w t}$ and hence $\left(n^{-1}\right) n^{\prime} \in U_{w t}$. Using Lemma (2.3.1) a a we obtain $\left(n^{-1} n^{\prime}\right)^{\tau_{s}} \in U_{s w t} \leq U_{s w}$ (since $\left.\ell(s w t)=\ell(s w)-1\right)$. This implies $\left(n^{-1} n^{\prime}\right)^{\tau_{s}} u_{s} \in U_{s w}=U_{s w} \cup U_{s w t}$ and hence $\varphi_{\tau_{s}}\left(n U_{w}\right) \sim_{t} \varphi_{\tau_{s}}\left(n^{\prime} u^{\prime} U_{w^{\prime}}\right)$. The case $u \neq 1=u^{\prime}$ is similar.
(Case IV) Without loss of generality we assume $\ell(s w)=\ell(w)-1$ and $\ell\left(s w^{\prime}\right)=\ell\left(w^{\prime}\right)+1$. This implies $w \neq w^{\prime}$ and hence $w^{\prime}=w t$. Thus $\ell(w t)=\ell\left(w^{\prime}\right)=\ell\left(s w^{\prime}\right)-1 \leq \ell(s w)=\ell(w)-1$ and hence $\ell(w t)=\ell(w)-1$. Since $\ell(s w t)=\ell(w)$, Lemma (1.1.1) implies $w=s w t$.
Now we have $n u U_{w}=n U_{w}$ and $\tau_{s} . n U_{w}=n^{\tau_{s}} U_{s w}$. If $u^{\prime}=1$, the claim follows from Case I. Thus we assume $u^{\prime}=u_{s}$. Then $\tau_{s} . n^{\prime} u_{s} U_{w^{\prime}}=\left(n^{\prime}\right)^{\tau_{s}} u_{s} U_{w^{\prime}}$. Since $w^{\prime}=w t=$ $s w \in\{s w, s w t\}$ it suffices to show that $\left(n^{-1} n^{\prime}\right)^{\tau_{s}} u_{s} \in U_{s w} \cup U_{s w t}$. As $\ell(w t)=\ell(w)-1$, we have $U_{w t} \leq U_{w}$. Because $\ell(s w)=\ell(w)-1$ and $n^{-1} n^{\prime} u_{s} \in U_{w} \cup U_{w t}=U_{w}$ we have $u_{s} \in U_{w}$ and hence $n^{-1} n^{\prime} \in U_{w}$. Using Lemma (2.3.1) (a) we deduce $\left(n^{-1} n^{\prime}\right)^{\tau_{s}} \in U_{s w}$. Since $\ell(s w t)=\ell(w)=\ell(s w)+1$, we obtain $U_{s w} \leq U_{s w t}$. This implies $\left(n^{-1} n^{\prime}\right)^{\tau_{s}} u_{s} \in$ $U_{s w t} \subseteq U_{s w} \cup U_{s w t}$ and we obtain $\varphi_{\tau_{s}}\left(n U_{w}\right) \sim_{t} \varphi_{\tau_{s}}\left(n^{\prime} u^{\prime} U_{w^{\prime}}\right)$.

The assignment $g \mapsto \varphi_{g}$ for $g \in U_{+} \cup\left\{\tau_{s}\right\}$ extends to a homomorphism $P_{s} \rightarrow \operatorname{Aut}(\mathbf{C})$: For this we need to consider a presentation of P_{s} (cf. Remark (2.3.2)) and show that every relation of P_{s} acts trivial on the chamber system \mathbf{C}. Since the action of $U_{+} \leq P_{s}$ is via left multiplication it suffices to consider relations concerning τ_{s}. As we have already seen before, τ_{s}^{2} acts trivial. Let $m, m^{\prime} \in N_{s}$ be such that $\tau_{s} m \tau_{s}=\tau_{s}(m)=\left(m^{\prime}\right)^{-1}$. Then

$$
\tau_{s} m \tau_{s} m^{\prime} \cdot n u U_{w}=\tau_{s} m \cdot\left(m^{\prime} n\right)^{\tau_{s}}\left(\tau_{s} \cdot u U_{w}\right)=\left(m\left(m^{\prime} n\right)^{\tau_{s}}\right)^{\tau_{s}} u U_{w}=m^{\tau_{s}} m^{\prime} n u U_{w}=n u U_{w}
$$

Thus it suffices to show that $\left(u_{s} \tau_{s}\right)^{3}$ acts trivial on \mathbf{C}. As $\left(u_{s} \tau_{s}\right)^{3} \cdot n u U_{w}=n^{\left(\tau_{s} u_{s}\right)^{3}} \cdot\left(u_{s} \tau_{s}\right)^{3} \cdot u U_{w}$, we can assume that $n=1$, since $\left(u_{s} \tau_{s}\right)^{3}$ acts trivial on N_{s} by Corollary (2.2.10). If $\ell(s w)=$ $\ell(w)-1$, then $u U_{w}=U_{w}=u_{s} U_{w}$ and we obtain the following:

$$
\left(u_{s} \tau_{s}\right)^{3} \cdot u U_{w}=\left(u_{s} \tau_{s}\right)^{2} \cdot u_{s} U_{s w}=u_{s} \tau_{s} \cdot U_{s w}=u_{s} U_{w}=U_{w}
$$

Thus we can assume that $\ell(s w)=\ell(w)+1$. We distinguish the cases $u=1$ and $u=u_{s}$:

$$
\begin{aligned}
\left(u_{s} \tau_{s}\right)^{3} \cdot U_{w} & =\left(u_{s} \tau_{s}\right)^{2} \cdot U_{s w}=u_{s} \tau_{s} \cdot u_{s} U_{w}=U_{w} \\
\left(u_{s} \tau_{s}\right)^{3} \cdot u_{s} U_{w} & =\left(u_{s} \tau_{s}\right)^{2} \cdot U_{w}=u_{s} \tau_{s} \cdot U_{s w}=u_{s} U_{w}
\end{aligned}
$$

The homomorphism $P_{s} \rightarrow \operatorname{Aut}(\mathbf{C})$ is injective: We have to show that each $1 \neq g \in P_{s}$ induces a non-trivial automorphism of the chamber system. We first consider $1 \neq g \in \operatorname{Sym}(3)=$ $\left\{1, u_{s}, u_{s} \tau_{s}, u_{s} \tau_{s} u_{s}, \tau_{s} u_{s}, \tau_{s}\right\}$. Then we have the following:

$$
u_{s} \cdot U_{1_{W}}=u_{s} U_{1_{W}}
$$

$$
\begin{aligned}
u_{s} \tau_{s} \cdot U_{1_{W}} & =U_{s} \\
u_{s} \tau_{s} u_{s} \cdot u_{s} U_{1_{W}} & =U_{s} \\
\tau_{s} u_{s} \cdot U_{1_{W}} & =u_{s} U_{1_{W}} \\
\tau_{s} \cdot U_{1_{W}} & =U_{s}
\end{aligned}
$$

Thus each $1 \neq g \in \operatorname{Sym}(3)$ acts non-trivial. Now we consider the general case. Let $1 \neq g \in P_{s}$. Then there exist $x \in \operatorname{Sym}(3), n \in N_{s}$ such that $g=x n$. If $x=1$, we have $g \cdot n^{-1} U_{1_{W}}=U_{1_{W}} \neq$ $n^{-1} U_{1_{W}}$. Otherwise the let $c \in \mathcal{C}$ be as above such that $x . c \neq c$. Then $g . n^{-1} c \neq n^{-1} c$ and the claim follows.

2.4. Braid relations act trivially on suitable subset

For $J \subseteq S$ we define $\Phi^{J}:=\left\{w \alpha_{s} \mid s \in J, w \in\langle J\rangle\right\}$ and $\Phi_{\varepsilon}^{J}:=\Phi^{J} \cap \Phi_{\varepsilon}$ for $\varepsilon \in\{+,-\}$. Moreover, we define for all $s \neq t \in S$ the subgroup $U_{s, t}:=\left\langle U_{\alpha} \mid \alpha \in \Phi_{+}^{\{s, t\}}\right\rangle$ and $N_{s, t}:=$ $\left\langle x^{-1} U_{\alpha} x \mid x \in U_{s, t}, \alpha \in \Phi_{+} \backslash \Phi_{+}^{\{s, t\}}\right\rangle$. It is not hard to see that $N_{s, t}$ is a normal subgroup of U_{+}and that $N_{s, t}$ is stabilized by τ_{s} and by τ_{t}.
(2.4.1) Lemma. Let $s \neq t \in S$ be with $m_{s t}<\infty$ and let $J:=\{s, t\}$. Then the sub-chamber system $\mathbf{C}_{J}=\left(\mathcal{C}_{J},\left(\sim_{j}\right)_{j \in J}\right)$ with $\mathcal{C}_{J}=\left\{u U_{w} \mid u \in U_{s, t}, w \in\langle J\rangle\right\}$ is a spherical building of rank 2.

Proof. Since \mathcal{M} is faithful, the mapping $U_{r_{J}} \rightarrow U_{+}$is injective. Considering the sub-chamber system \mathbf{C}_{J} as in the statement, this is exactly the chamber system which we get from the RGD-system over \mathbb{F}_{2} of type $I_{2}\left(m_{s t}\right)$. This chamber system is a building by [2, Exercise $8.36(b)]$.
(2.4.2) Lemma. Let $s \neq t \in S$ be with $m_{s t}<\infty$. Then we have $\left(\tau_{s} \tau_{t}\right)^{m_{s t}} . u_{s, t} U_{w}=u_{s, t} U_{w}$ for all $w \in W$ and $u_{s, t} \in U_{s, t}$.

Proof. We put $J:=\{s, t\}$. For $w \in W$ we let $w^{\prime} \in W, w_{J} \in\langle J\rangle$ be such that $w=w_{J} w^{\prime}$ and $\ell\left(s w^{\prime}\right)=\ell\left(w^{\prime}\right)+1=\ell\left(t w^{\prime}\right)$. Then the action of τ_{s} on $u U_{w}$ only depends on u and w_{J} and is independent on w^{\prime}, i.e. for $u, u^{\prime} \in U_{s, t}$ and $w_{J}^{\prime} \in\langle J\rangle$ with $\tau_{s} . u U_{w_{J}}=u^{\prime} U_{w_{J}^{\prime}}$, we have $\tau_{s} . u U_{w}=u^{\prime} U_{w_{J}^{\prime} w^{\prime}}$. Thus it suffices to show the claim for $w \in\langle J\rangle$. We restrict the action of $\left(\tau_{s} \tau_{t}\right)^{m_{s t}}$ to the chambers of the form $u U_{w}$ with $u \in U_{s, t}$ and $w \in\langle J\rangle$.

Restricting τ_{s}, τ_{t} to the sub-chamber system, we infer that $\left(\tau_{s} \tau_{t}\right)^{m_{s t}}$ is an automorphism of this sub-chamber system. By the previous lemma this chamber system is a building of type $(\langle J\rangle, J)$. Since this automorphism fixes all chambers U_{w} with $w \in\langle J\rangle$, it fixes the two opposite chambers $U_{1_{W}}$ and $U_{r_{J}}$. Since every panel contains exactly three chambers, the automorphism fixes $R_{\{s\}}\left(U_{1 W}\right)$ for all $s \in S$. Using Theorem (1.2.3), we obtain $\left(\tau_{s} \tau_{t}\right)^{m_{s t}} . u U_{w}=u U_{w}$ for all $u \in U_{s, t}$ and $w \in\langle J\rangle$. This finishes the claim.
(2.4.3) Theorem. Assume that $\left[\left(\tau_{s} \tau_{t}\right)^{m_{s t}}, n\right]=1$ in $P_{s} \star_{U_{+}} P_{t}$ for all $s \neq t \in S$ with $m_{s t}<\infty$ and $n \in N_{s, t}$. Then the natural mapping $P_{s} \rightarrow G$ is injective for all $s \in S$.
Proof. Suppose $s \neq t \in S$ with $m_{s t}<\infty$. By assumption $n^{\left(\tau_{\tau} \tau_{s}\right)^{m_{s t}}}=n$ for all $n \in N_{s, t}$. Together with the previous lemma we deduce $\left(\tau_{s} \tau_{t}\right)^{m_{s t}} . n u U_{w}=n u U_{w}$ for all $u \in U_{s, t}$ and hence $\left(\tau_{s} \tau_{t}\right)^{m_{s t}}$ acts trivial on the chamber system. Thus G acts on \mathbf{C} and since P_{s} acts faithfully on \mathbf{C} by Proposition (2.3.3), the claim follows.

3. Braid relations

In Chapter 3 we assume that $m_{s t} \neq 6$ for all $s, t \in S$. Moreover, we let \mathcal{M} be a faithful and Weyl-invariant commutator blueprint of type (W, S). We will compute the automorphisms $\left(\tau_{s} \tau_{t}\right)^{m_{s t}} \in \operatorname{Aut}(\mathbf{C})$ for $m_{s t}<\infty$ and give sufficient conditions of the commutator blueprint in order to achieve that this automorphisms is trivial. This is done by a case distinction on $m_{s t}$.

3.1. Notations

In this chapter we will work out sufficient conditions of the commutator blueprint such that $\left[\left(\tau_{s} \tau_{t}\right)^{m_{s t}}, n\right]=1$ in $P_{s} \star_{U_{+}} P_{t}$ for all $s \neq t \in S$ with $m_{s t}<\infty$ and all $n \in N_{s, t}$. It suffices to consider a generating set of $N_{s, t}$, i.e. $n \in\left\{u^{-1} u_{\alpha} u \mid u \in U_{s, t}, \alpha \in \Phi_{+} \backslash \Phi_{+}^{\{s, t\}}\right\}$. We abbreviate $u_{w s}:=u_{w \alpha_{s}} \in U_{w s}^{\star}$, i.e. $u_{t s}=u_{t \alpha_{s}}$. We will always assume that $-\beta \subseteq \alpha$, if u_{β} appears in u. Otherwise we can reduce u as we see in the next example.
(3.1.1) Example. Suppose $\alpha \in \Phi_{+} \backslash \Phi_{+}^{\{s, t\}}$ with $-\alpha_{s} \nsubseteq \alpha$. Then $\left\{\alpha_{s}, \alpha\right\} \in \mathcal{P}$ by definition and we have $u_{s} u_{\alpha} u_{s}=\left(\prod_{\gamma \in M_{\alpha_{s}, \alpha}^{G}} u_{\gamma}\right) u_{\alpha}$ for some $G \in \operatorname{Min}$ with $\alpha_{s}, \alpha \in \Phi(G)$.

For short we will write $u_{s} . n:=u_{s} n u_{s}$ and $\tau_{s} . n:=\tau_{s} n \tau_{s}=\tau_{s}(n)$. Let $\alpha_{s} \neq \beta \in \Phi_{+}$be a root such that $\left\{\alpha_{s}, \beta\right\} \notin \mathcal{P}$. Then $-\alpha_{s} \subseteq \beta$. Let $w \in W$ with $\ell(s w)=\ell(w)-1$ and let $G \in \operatorname{Min}_{s}(w)$ with $s \beta \in \Phi(G)$. By Proposition (2.2.9) we have the following in P_{s} :

$$
\begin{aligned}
\tau_{s}\left(u_{s} u_{\beta} u_{s}\right) & =u_{s}\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}} u_{s \gamma}\right) u_{\beta} u_{s} \\
& =u_{s}\left(\prod_{\gamma \in M_{\alpha_{s}, s \beta}^{G}} u_{\gamma}\right)^{\tau_{s}} u_{\beta} u_{s} \\
& =u_{s}\left[u_{s}, u_{s \beta}\right]^{\tau_{s}} u_{\beta} u_{s} \\
& =u_{s} u_{\beta}\left[u_{s \beta}, u_{s}\right]^{\tau_{s}} u_{s}
\end{aligned}
$$

Moreover, if $-\alpha_{s} \subseteq \beta_{1}, \ldots, \beta_{k} \in \Phi_{+}$, then we have

$$
\begin{aligned}
\tau_{s}\left(u_{s} u_{\beta_{1}} \cdots u_{\beta_{k}} u_{s}\right) & =u_{s}\left(u_{s \beta_{1}}\left[u_{s \beta_{1}}, u_{s}\right] \cdots u_{s \beta_{k}}\left[u_{s \beta_{k}}, u_{s}\right]\right)^{\tau_{s}} u_{s} \\
& =u_{s}\left(u_{s} u_{s \beta_{1}} \cdots u_{s \beta_{k}} u_{s}\right)^{\tau_{s}} u_{s}=u_{s} u_{\beta_{1}} \cdots u_{\beta_{k}}\left[u_{s \beta_{1}} \cdots u_{s \beta_{k}}, u_{s}\right]^{\tau_{s}} u_{s}
\end{aligned}
$$

Note that $\left[\left(\tau_{s} \tau_{t}\right)^{m_{s t}}, n\right]=1$ implies $\left[\left(\tau_{t} \tau_{s}\right)^{m_{s t}}, n\right]=1$. We remark that for each $\alpha \in$ $\Phi_{+} \backslash \Phi_{+}^{\{s, t\}}$, we have $\left(\tau_{s} \tau_{t}\right)^{m_{s t}} \cdot u_{\alpha}=u_{\alpha}$.
(3.1.2) Remark. Let $s \neq t \in S$ be such that $6 \neq m_{s t}<\infty$. In order to show that $\left[\left(\tau_{t} \tau_{s}\right)^{m_{s t}}, n\right]=1$, we use the fact $m_{r u} \neq 6$ for all $r, t \in S$ only in a few cases. If we do, we will explicitly state it in the hypothesis.

3.2. The case $m_{s t}=2$

(3.2.1) Lemma. We have $\left[\left(\tau_{s} \tau_{t}\right)^{2}, n\right]=1$ for all $n \in N_{s, t}$ in the group $P_{s} \star_{U_{+}} P_{t}$.

Proof. Let $\alpha \in \Phi_{+} \backslash \Phi_{+}^{\{s, t\}}$. Assume $-\alpha_{s} \subseteq \alpha$. Then the following hold:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s} u_{\alpha} u_{s} & =\tau_{s} \tau_{t} \tau_{s} \cdot u_{s} u_{t \alpha} u_{s} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} \\
& =\tau_{s} \cdot u_{s} u_{\alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{s} \\
& =\tau_{s} \cdot u_{s} u_{\alpha}\left[u_{s t \alpha}, u_{s}\right]_{t}^{\tau_{t} \tau_{s}} u_{s} \\
& =\tau_{s} \cdot u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} \\
& =\tau_{s}^{2} \cdot u_{s} u_{\alpha} u_{s} \\
& =u_{s} u_{\alpha} u_{s}
\end{aligned}
$$

Interchanging s and t, we deduce $\left(\tau_{t} \tau_{s}\right)^{2} \cdot u_{t} u_{\alpha} u_{t}=u_{t} u_{\alpha} u_{t}$ for each $-\alpha_{t} \subseteq \alpha \in \Phi_{+}$and, in particular, $\left(\tau_{s} \tau_{t}\right)^{2} . u_{t} u_{\alpha} u_{t}=u_{t} u_{\alpha} u_{t}$.

Now we assume $-\alpha_{s},-\alpha_{t} \subseteq \alpha$. Then the following hold:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{t} u_{s} u_{\alpha} u_{s} u_{t} & =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s} u_{t} u_{\alpha} u_{t} u_{s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{s} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{t} \tau_{s}\left(u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s}\right) u_{t} \\
& \stackrel{(2.2 .10)}{=} \tau_{s} \tau_{t} \cdot u_{t} u_{s} \tau_{s}\left(u_{s} \tau_{s}\left(u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\right) u_{s}\right) u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{t} u_{s} \tau_{s}\left(u_{s} u_{s \alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{s}\right) u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{t} u_{s} \tau_{s}\left(u_{s} u_{s \alpha}\left[u_{s t \alpha}, u_{t}\right]^{\tau_{t}} u_{s}\right) u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{t} u_{s} \tau_{s}\left(\tau_{t}\left(u_{s} u_{t} u_{s t \alpha} u_{t} u_{s}\right)\right) u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{t} u_{s} \tau_{s}\left(\tau_{t}\left(u_{t} u_{s t \alpha}\left[u_{s t \alpha}, u_{s}\right] u_{t}\right)\right) u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{t} u_{s}\left(u_{s t \alpha}\left[u_{s t \alpha}, u_{t}\right]\left[u_{s t \alpha}, u_{s}\right]\left[\left[u_{s t \alpha}, u_{s}\right], u_{t}\right]\right)^{\tau_{t} \tau_{s}} u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{t} u_{s}\left(u_{s t \alpha}\left[u_{s t \alpha}, u_{t}\right]\left[u_{s t \alpha}, u_{s}\right]\left[\left[u_{s t \alpha}, u_{s}\right], u_{t}\right]\right)^{\tau_{s} \tau_{t}} u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{t} u_{s} \tau_{t}\left(\tau_{s}\left(u_{t} u_{s t \alpha}\left[u_{s t \alpha}, u_{s}\right] u_{t}\right)\right) u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{t} \tau_{t}\left(u_{t} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{t}\right) u_{t} u_{s} \\
& =\tau_{s} \cdot u_{s} \tau_{t}\left(u_{t} \tau_{t}\left(u_{t} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{t}\right) u_{t}\right) u_{s} \\
& \stackrel{(2.2 .10)}{-} \tau_{s} \cdot u_{s} u_{t} \tau_{t}\left(u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}}\right) u_{t} u_{s} \\
& =\tau_{s} \cdot u_{t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} \\
& =\tau_{s}^{2} \cdot u_{t} u_{s} u_{\alpha} u_{s} u_{t} \\
& =u_{t} u_{s} u_{\alpha} u_{s} u_{t}
\end{aligned}
$$

3.3. The case $m_{s t}=3$

In this case we assume that the groups U_{w} are of nilpotency class at most 2 and that the commutator blueprint \mathcal{M} satisfies (CR1) and (CR2) (cf. Theorem (3.5.1)). We note that the root β in (CR1) and (CR2) is not necessarily a positive root. Later if we refer to one of these conditions, we will not go into detail. E.g. if $o\left(r_{\alpha_{t}} r_{\alpha}\right)<\infty$, Condition (CR2) implies $M_{\alpha_{s}, \alpha}^{G}=\emptyset$. In particular, we will not state w and G.
(3.3.1) Lemma. Let $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ be a group of nilpotency class at most 2 such that $g_{i}^{2}=1$ for all i. Then $[g, h]^{2}=1$ for all $g, h \in G$.

Proof. Let $f_{1}, \ldots, f_{r}, h_{1}, \ldots, h_{m} \in\left\{g_{1}, \ldots, g_{n}\right\}$ be such that $g=f_{1} \cdots f_{r}, h=h_{1} \cdots h_{m}$. We show the claim via induction on $r+m$. If $r+m \in\{0,1\}$ the claim follows directly. Thus we assume $r+m \geq 2$. Again, for $0 \in\{r, m\}$ the claim follows directly. Thus we can assume $r, m \geq 1$. Using the nilpotency class we obtain

$$
\begin{aligned}
{[g, h]^{2} } & =\left(\left[g, h_{m}\right]\left[g, h h_{m}^{-1}\right]^{h_{m}}\right)^{2} \\
& =\left(\left[g f_{r}^{-1}, h_{m}\right]^{f_{r}}\left[f_{r}, h_{m}\right]\left[g, h h_{m}^{-1}\right]\right)^{2} \\
& =\left[g f_{r}^{-1}, h_{m}\right]^{2}\left[f_{r}, h_{m}\right]^{2}\left[g, h h_{m}^{-1}\right]^{2}
\end{aligned}
$$

Using the nilpotency class and the fact that $\left[f_{r}, h_{m}\right]^{2}=\left[f_{r},\left[f_{r}, h_{m}\right]\right]$, the claim follows by induction.
(3.3.2) Lemma. We have $\left[\left(\tau_{s} \tau_{t}\right)^{3}, u^{-1} u_{\alpha} u\right]=1$ for all $\alpha \in \Phi_{+} \backslash \Phi_{+}^{\{s, t\}}$ and $u \in\left\{u_{s}, u_{s t}=\right.$ $\left.u_{t s}, u_{t}\right\}$ in the group $P_{s} \star_{U_{+}} P_{t}$.
Proof. At first we consider the case $u=u_{s}$. If $\left\{\alpha_{s}, \alpha\right\} \in \mathcal{P}$ the claim clearly holds. Thus we assume $-\alpha_{s} \subseteq \alpha$. Then we compute

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{s} u_{\alpha} u_{s} & =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{t} u_{s t \alpha} u_{t} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t} u_{s t \alpha}\left[u_{t s t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} \\
& =\tau_{s} \cdot u_{s} u_{\alpha}\left[u_{t s t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}} u_{s} \\
& =\tau_{s} \cdot u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} \\
& =\tau_{s}^{2} \cdot u_{s} u_{\alpha} u_{s} \\
& =u_{s} u_{\alpha} u_{s}
\end{aligned}
$$

Interchanging s and t, we deduce $\left(\tau_{t} \tau_{s}\right)^{3} \cdot u_{t} u_{\alpha} u_{t}=u_{t} u_{\alpha} u_{t}$ and, in particular, $\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t} u_{\alpha} u_{t}=$ $u_{t} u_{\alpha} u_{t}$. Now we consider the case $u=u_{t s}$. Again, if $\left\{t \alpha_{s}, \alpha\right\} \in \mathcal{P}$, the claim is trivial. Thus we assume $-t \alpha_{s} \subseteq \alpha$. Using the case $u=u_{s}$, we deduce

$$
\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{s t} u_{\alpha} u_{s t}=\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{s} u_{t \alpha} u_{s}=\tau_{t}\left(\tau_{t} \tau_{s}\right)^{3} \cdot u_{s} u_{t \alpha} u_{s}=\tau_{t} \cdot u_{s} u_{t \alpha} u_{s}=u_{s t} u_{\alpha} u_{s t}
$$

(3.3.3) Lemma. We have $\left[\left(\tau_{s} \tau_{t}\right)^{3}, u^{-1} u_{\alpha} u\right]=1$ for all $\alpha \in \Phi_{+}$with $-\alpha_{s},-\alpha_{t} \subseteq \alpha$ and all $u \in\left\{u_{s} u_{t}, u_{s} u_{s t} u_{t}, u_{s} u_{s t}\right\}$ in the group $P_{s} \star_{U_{+}} P_{t}$.
Proof. We deduce from the nilpotency class of the U_{w} the following (note that s and t are interchangeable in the following equations):

$$
\begin{aligned}
{\left[\left[u_{t \alpha}, u_{t}\right]_{t}^{\tau_{t} \tau_{s}}, u_{s}\right] } & =\left[\left[u_{t \alpha}, u_{t}\right]_{s}^{\tau_{s} \tau_{t}}, u_{t}\right]_{s}^{\tau_{s} \tau_{t}}=\left[\left[u_{t s t \alpha}, u_{s}\right], u_{t}\right]^{\tau_{s} \tau_{t}}=1 \\
{\left[u_{s t \alpha}, u_{s}\right] } & =\left[u_{t s t \alpha}, u_{t s}\right]^{\tau_{t}}=\left[u_{t s t \alpha},\left[u_{s}, u_{t}\right]\right]^{\tau_{t}}=1 \\
{\left[\left[u_{s \alpha}, u_{s}\right]_{s}^{\tau_{s} \tau_{t} \tau_{s}}, u_{s}\right] } & =\left[\left[u_{s \alpha}, u_{s}\right]^{\tau_{t}}, u_{t} t_{s}^{\tau_{s} \tau_{t}}=\left[\left[u_{t s \alpha}, u_{t s}\right], u_{t}\right]^{\tau_{s} \tau_{t}}=\right. \\
{\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{s}}, u_{s}\right] } & =\left[\left[u_{s t \alpha}, u_{s t}\right], u_{s}\right]=1 \\
{\left[\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}},\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\right] } & =\left[\left[u_{s t s \alpha}, u_{t}\right],\left[u_{t s t \alpha}, u_{s}\right]\right]^{\tau_{s} \tau_{t} \tau_{s}}=1
\end{aligned}
$$

Case 1: $u=u_{s} u_{t}$: Note that by (CR1) there exist $w \in W$ with $\ell(t w)=\ell(w)-1$ and $G \in \operatorname{Min}_{t}(w)$ with $t \alpha \in \Phi(G)$ such that $-t \alpha_{s} \subseteq \gamma$ and, in particular, $-\alpha_{s} \subseteq t \gamma$ for all $\gamma \in M_{\alpha_{t}, t \alpha}^{G}$. Using (CR1) again, we deduce $-\alpha_{t} \subseteq \gamma$ and hence $-\alpha_{s} \subseteq t s \gamma$ for all $\gamma \in M_{\alpha_{s}, s \alpha}^{G}$ and
$-\alpha_{s} \subseteq \gamma$ for all $\gamma \in M_{\alpha_{t}, t \alpha}^{G}$ (cf. also Remark (1.3.3)). Using the previous computations we compute the following:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t} u_{s} u_{\alpha} u_{s} u_{t}= & \left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{s} u_{s t} u_{t} u_{\alpha} u_{t} u_{s t} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{t s} u_{s} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{s} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{t} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}}, u_{s}\right]^{\tau_{s}} u_{s} u_{s t} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]_{s}^{\tau_{s}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{s t} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{s} u_{s s} u_{t \alpha}\left[u_{s \alpha}, u_{s}\right]_{s}^{\tau_{s} \tau_{t}}\left[u_{t \alpha}, u_{t}\right] u_{t_{s}} u_{s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t s} u_{s} u_{t \alpha}\left[u_{s \alpha}, u_{s}\right]_{s}^{\tau_{s} \tau_{t}}\left[u_{t \alpha}, u_{t}\right] u_{s} u_{t s} \\
& =\tau_{s} \tau_{t} \cdot u_{t} u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]_{s}^{\tau_{s}}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}\left[\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t} \tau_{s}}, u_{s}\right]^{\tau_{s}} \\
& \left.\cdot\left[u_{t \alpha}, u_{t}\right]\left[u_{t \alpha}, u_{t} \tau_{s}^{\tau_{s}}, u_{s}\right]\right]_{s} u_{s} u_{t} \\
= & \tau_{s} \tau_{t} \cdot u_{s} u_{t s} u_{t} u_{t \alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}\left[u_{t \alpha}, u_{t}\right] u_{t} u_{t s} u_{s} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{t s} u_{t} u_{t \alpha}\left[u_{t \alpha}, u_{t}\right] u_{t}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{t s} u_{s} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{t s} u_{t \alpha}\left[u_{s \alpha}, u_{s} \tau_{s}^{\tau_{s} \tau_{t}} u_{t s} u_{s}\right. \\
& =\tau_{s} \cdot u_{t s} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]_{s} u_{s} u_{t s} \\
& =\tau_{s}^{2} \cdot u_{t} u_{s} u_{\alpha} u_{s} u_{t} \\
& =u_{t} u_{s} u_{\alpha} u_{s} u_{t}
\end{aligned}
$$

Case 2: $u=u_{s} u_{s t} u_{t}$: Interchanging s and t, we deduce the following:

$$
\left(\tau_{t} \tau_{s}\right)^{3} \cdot u_{t} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t}=\left(\tau_{t} \tau_{s}\right)^{3} . u_{s} u_{t} u_{\alpha} u_{t} u_{s}=u_{s} u_{t} u_{\alpha} u_{t} u_{s}=u_{t} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t}
$$

Case 3: $u=u_{s} u_{s t}$: Using (CR1) we deduce $-t \alpha_{s} \subseteq \gamma$ and hence $-\alpha_{s} \subseteq t \gamma$ for all $\gamma \in M_{\alpha_{t}, t \alpha}^{G}$. Moreover, we deduce $-\alpha_{t} \subseteq s \gamma, t \delta$ for all $\gamma \in M_{\alpha_{s}, s \alpha}$ and all $\delta \in M_{\alpha_{t}, t \alpha}$ by (CR1). We compute the following:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} & =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{s} u_{t s} u_{t \alpha} u_{t s} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{t s} u_{s} u_{t \alpha} u_{s} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{t} u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s} u_{s t} u_{t \alpha}\left[u_{t \alpha}, u_{t} u_{s t} u_{s}\right. \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t s} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t} \tau_{t}^{\tau_{t}} u_{s} u_{t s}\right. \\
& =\tau_{s} \tau_{t} \cdot u_{t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s} \tau_{s}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}}, u_{s}\right]^{\tau_{s}} u_{s} u_{t}\right. \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t \alpha}, u_{t} \tau_{t}^{\tau_{t}} u_{t} u_{s t} u_{s}\right. \\
& =\tau_{s} \cdot u_{t s} u_{s} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[\left[u_{s \alpha}, u_{s}\right]_{s}^{\tau_{s} \tau_{t}}, u_{t}\right]^{\tau_{t}} \\
& \cdot\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[\left[u_{t \alpha}, u_{t}\right], u_{t}\right]^{\tau_{t}} u_{t} u_{s} u_{t s} \\
& \stackrel{[(3.3 .1)}{=} \tau_{s} \cdot u_{t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} \\
& =\tau_{s}^{2} \cdot u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} \\
& =u_{s t} u_{s} u_{\alpha} u_{s} u_{s t}
\end{aligned}
$$

(3.3.4) Lemma. Let $\alpha \in \Phi_{+}$be a root such that $-\alpha_{s},-s \alpha_{t} \subseteq \alpha$ hold. Then we have $\left[\left(\tau_{s} \tau_{t}\right)^{3}, u_{s t} u_{s} u_{\alpha} u_{s} u_{s t}\right]=1$ in the group $P_{s} \star_{U_{+}} P_{t}$, if $m_{r t} \neq 6$ for all $r \in S$.

Proof. We distinguish the following cases:
(a) $-\alpha_{t} \subseteq \alpha$: Then the claim follows from the previous lemma.
(b) $\alpha_{t} \subseteq \alpha$: Then $-\alpha_{s},-\alpha_{t} \subseteq t \alpha$ and the previous lemma implies:

$$
\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{s t} u_{s} u_{\alpha} u_{s} u_{s t}=\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} . u_{s} u_{t s} u_{t \alpha} u_{t s} u_{s}=\tau_{t} \cdot u_{s} u_{t s} u_{t \alpha} u_{t s} u_{s}=u_{s t} u_{s} u_{\alpha} u_{s} u_{s t}
$$

(c) $o\left(r_{\alpha_{t}} r_{\alpha}\right)<\infty$: Using (CR2) we deduce:

$$
\begin{aligned}
{\left[u_{s t \alpha}, u_{s}\right] } & =1 \\
{\left[u_{s \alpha}, u_{s}\right] } & =1
\end{aligned}
$$

We compute the following:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} & =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{s} u_{t s} u_{t \alpha} u_{t s} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{t s} u_{s} u_{t \alpha} u_{s} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{t} u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s} u_{s t} u_{t \alpha}\left[u_{t \alpha}, u_{t}\right] u_{s t} u_{s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t s} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{t s}
\end{aligned}
$$

Note that $u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}=\tau_{t} u_{t} \tau_{t} \cdot u_{\alpha}=u_{t} \tau_{t} u_{t} \cdot u_{\alpha}=u_{t} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{t}$. Since $m_{r t} \neq 6$ for all $r \in S$, we have $1 \in\left\{\left[u_{t \alpha}, u_{t}\right],\left[u_{\alpha}, u_{t}\right]\right\}$ (because of the Weyl-invariance). We distinguish the following cases:
(i) $\left[u_{\alpha}, u_{t}\right]=1$: Then we have the following:

$$
\begin{aligned}
\tau_{s} \tau_{t} \tau_{s} \cdot u_{t s} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{t s} & =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t s} u_{s} u_{t} u_{t \alpha} u_{t} u_{s} u_{t s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t} u_{s} u_{t \alpha} u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{s t} u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{s t} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{s t} u_{s}
\end{aligned}
$$

(ii) $\left[u_{t \alpha}, u_{t}\right]=1$: Then we have the following:

$$
\begin{aligned}
\tau_{s} \tau_{t} \tau_{s} . u_{t s} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{t s} & =\tau_{s} \tau_{t} \tau_{s} . u_{t s} u_{s} u_{\alpha} u_{s} u_{t s} \\
& =\tau_{s} \tau_{t} \cdot u_{t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{s t} u_{s} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{s t} u_{s}
\end{aligned}
$$

In both cases we obtain the same result. This implies:

$$
\begin{aligned}
\tau_{s} \tau_{t} \tau_{s} \cdot u_{t s} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{t s} & =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{s t} u_{s} \\
& =\tau_{s} \cdot u_{t s} u_{s} u_{\alpha}\left[u_{\alpha}, u_{t}\right] u_{s} u_{t s} \\
& =\tau_{s} \cdot u_{t} u_{s} u_{\alpha} u_{s} u_{t} \\
& =u_{s t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{s t} \\
& =u_{s t} u_{s} u_{\alpha} u_{s} u_{s t}
\end{aligned}
$$

(3.3.5) Remark. We note that in almost all cases we have $1 \in\left\{\left[u_{t \alpha}, u_{t}\right],\left[u_{\alpha}, u_{t}\right]\right\}$ if $o\left(r_{\alpha_{t}} r_{\alpha}\right)<$ ∞. But in a hexagon, we have $\left[u_{1}, u_{3}\right] \neq 1 \neq\left[u_{1}, u_{5}\right]$. This is the only example of commutators, where none of these two commutators is trivial.
(3.3.6) Lemma. We have $\left[\left(\tau_{s} \tau_{t}\right)^{3}, n\right]=1$ for all $n \in N_{s, t}$ in the group $P_{s} \star_{U_{+}} P_{t}$, if the groups U_{w} are of nilpotency class at most $2, m_{r u} \neq 6$ for all $r, u \in S$ and \mathcal{M} satisfies (CR1) and (CR2).

Proof. Using the previous lemmas in this subsection, it suffices to consider $n=u_{t} u_{s t} u_{\alpha} u_{s t} u_{t}$. Let $\alpha \in \Phi_{+}$be a root such that $-\alpha_{t},-s \alpha_{t}=-t \alpha_{s} \subseteq \alpha$. Interchanging s and t in the previous lemma we deduce

$$
\left(\tau_{t} \tau_{s}\right)^{3} \cdot u_{t} u_{s t} u_{\alpha} u_{s t} u_{t}=\left(\tau_{t} \tau_{s}\right)^{3} \cdot u_{t s} u_{t} u_{\alpha} u_{t} u_{t s}=u_{t s} u_{t} u_{\alpha} u_{t} u_{t s}=u_{t} u_{s t} u_{\alpha} u_{s t} u_{t}
$$

In particular, we have $\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t} u_{s t} u_{\alpha} u_{s t} u_{t}=u_{t} u_{s t} u_{\alpha} u_{s t} u_{t}$.

3.4. The case $m_{s t}=4$

In this case we again assume that the groups U_{w} are of nilpotency class at most 2 and that the commutator blueprint \mathcal{M} satisfies the additional Conditions (CR1) and (CR2).
(3.4.1) Lemma. For $\alpha \in \Phi_{+}$we have $\left[\left(\tau_{s} \tau_{t}\right)^{4}, u^{-1} u_{\alpha} u\right]=1$ for $u \in\left\{u_{s}, u_{t}, u_{s t}, u_{t s}\right\}$ in the group $P_{s} \star_{U_{+}} P_{t}$.

Proof. Let $u=u_{s}$. We can assume that $-\alpha_{s} \subseteq \alpha$. Otherwise the claim is obvious. Using the nilpotency class of the groups U_{w} we obtain:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{s} u_{\alpha} u_{s} & =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{s} u_{t s t \alpha} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s} u_{t s t \alpha}\left[u_{s t s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} \\
& =\tau_{s} \cdot u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} \\
& =\tau_{s}^{2} \cdot u_{s} u_{\alpha} u_{s} \\
& =u_{s} u_{\alpha} u_{s}
\end{aligned}
$$

This also implies $\left[\left(\tau_{t} \tau_{s}\right)^{4}, u_{s} u_{\alpha} u_{s}\right]=1$. Interchanging s and t we deduce the claim for u_{t}. Now let $u=u_{s t}$ and assume $-s \alpha_{t} \subseteq \alpha$. Then $-\alpha_{t} \subseteq s t \alpha$ and the case $u=u_{t}$ implies

$$
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{s t} u_{\alpha} u_{s t}=\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t} u_{s t \alpha} u_{t}=\left(\tau_{s} \tau_{t}\right)^{-1} \cdot u_{t} u_{s t \alpha} u_{t}=u_{s t} u_{\alpha} u_{s t}
$$

Interchanging s and t the claim does also hold for $u=u_{t s}$.
(3.4.2) Lemma. Let $\alpha \in \Phi_{+}$be such that $-\alpha_{s},-t \alpha_{s} \subseteq \alpha$. Then $\left[\left(\tau_{s} \tau_{t}\right)^{4}, u_{t s} u_{s} u_{\alpha} u_{s} u_{t s}\right]=1$ in the group $P_{s} \star_{U_{+}} P_{t}$.

Proof. Let $\beta \in\{s t \alpha, s \alpha\}$. Then we have $\alpha_{s} \subseteq \beta$ as well as $\alpha_{s}, t \alpha_{s} \subseteq t s t \beta$. Using the nilpotency class of the groups U_{w} we deduce:

$$
\begin{aligned}
{\left[\left[u_{\beta}, u_{s}\right]^{\tau_{s} \tau_{t} \tau_{s}}, u_{s}\right] } & =\left[\left[u_{t s t \beta}, u_{s}\right], u_{t s}\right]^{\tau_{s} \tau_{t}}=1 \\
{\left[\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}},\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}\right] } & =\left[\left[u_{s t \alpha}, u_{s}\right]^{\tau_{t} \tau_{s} \tau_{t}},\left[u_{s \alpha}, u_{s}\right]^{\tau_{t} \tau_{s}}\right]^{\tau_{t} \tau_{s} \tau_{t} \tau_{s}} \\
& =\left[\left[u_{s t s \alpha}, u_{s}\right],\left[u_{s t s \alpha}, u_{t s}\right]\right]^{\tau_{t} \tau_{s} \tau_{t} \tau_{s}}=1
\end{aligned}
$$

The last equation follows from the fact that $u_{t s}, u_{s t s \alpha}$ commute with the first commutator. Note that $-t \alpha_{s} \subseteq s t \alpha$ and hence by (CR1) we obtain $-t \alpha_{s} \subseteq \gamma$ for all $\gamma \in M_{\alpha_{s}, s t \alpha}^{G}$. In particular, $-\alpha_{s} \subseteq t s \gamma$ for all $\gamma \in M_{\alpha_{s}, s t \alpha}^{G}$. Using (CR1) again, we have $-t \alpha_{s} \subseteq \gamma$ and hence $-\alpha_{s} \subseteq t s \gamma$ for all $\gamma \in M_{\alpha_{s}, s \alpha}^{G}$. We compute the following:

$$
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{t s} u_{s} u_{\alpha} u_{s} u_{t s}=\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{s} u_{t s} u_{t \alpha} u_{t s} u_{s}
$$

$$
\begin{aligned}
& =\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} . u_{t s} u_{s} u_{t \alpha} u_{s} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t s} u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} . u_{s} u_{t s} u_{\alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{t s} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} . u_{t s} u_{s} u_{\alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{s} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{t s} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}\left[\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t} \tau_{s}}, u_{s}\right]^{\tau_{s}} u_{s} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{t s} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{s} u_{t s} \\
& =\tau_{s} \tau_{t} \tau_{s} . u_{s} u_{t s} u_{t \alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{t s} u_{s} \\
& =\tau_{s} \tau_{t} \tau_{s} . u_{t s} u_{s} u_{t \alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t s} \\
& =\tau_{s} \tau_{t} \cdot u_{t s} u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}\left[\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t} \tau_{s}}, u_{s}\right]^{\tau_{s}} \\
& \quad \cdot\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}}\left[\left[u_{s t \alpha}, u_{s}\right], u_{s}\right]^{\tau_{s}} u_{s} u_{t s} \\
& (3.3 .1) \\
& =-\tau_{s} \tau_{t} . u_{t s} u_{s} u_{t \alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{s} u_{t s} \\
& =\tau_{s} \cdot u_{s} u_{t s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{t s} u_{s} \\
& =\tau_{s} . u_{t s} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t s} \\
& =\tau_{s}^{2} . u_{t s} u_{s} u_{\alpha} u_{s} u_{t s} \\
& = \\
& u_{t s} u_{s} u_{\alpha} u_{s} u_{t s}
\end{aligned}
$$

(3.4.3) Lemma. Let $\alpha \in \Phi_{+}$be such that $-\alpha_{t},-s \alpha_{t} \subseteq \alpha$. Then $\left[\left(\tau_{s} \tau_{t}\right)^{4}, u_{t} u_{s t} u_{\alpha} u_{s t} u_{t}\right]=1$ in the group $P_{s} \star_{U_{+}} P_{t}$.

Proof. Interchanging s and t in the previous lemma, it follows that $\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{t} u_{s t} u_{\alpha} u_{s t} u_{t}=$ $\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{s t} u_{t} u_{\alpha} u_{t} u_{s t}=u_{s t} u_{t} u_{\alpha} u_{t} u_{s t}=u_{t} u_{s t} u_{\alpha} u_{s t} u_{t}$. This finishes the claim.
(3.4.4) Lemma. Let $\alpha \in \Phi_{+}$be such that $-\alpha_{s},-\alpha_{t} \subseteq \alpha$. Then we have $\left[\left(\tau_{s} \tau_{t}\right)^{4}, u^{-1} u_{\alpha} u\right]=1$ for $u \in\left\{u_{s} u_{s t} u_{t}, u_{s} u_{s t} u_{t s} u_{t}, u_{s} u_{t}, u_{s} u_{t s} u_{t}, u_{s} u_{s t} u_{t s}, u_{s} u_{s t}, u_{t s} u_{t}, u_{s t} u_{t s}\right\}$ in the group $P_{s} \star_{U_{+}} P_{t}$.

Proof. Note that $\alpha_{s}, \alpha_{t} \subseteq$ stst α. Using the nilpotency class of the groups U_{w}, we obtain the following (note that s and t are interchangeable in the following equations; cf. also Remark (1.3.3)):

$$
\begin{aligned}
{\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}}, u_{s}\right] } & =\left[\left[u_{s t s t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}}, u_{s}\right]=\left[\left[u_{s t s t \alpha}, u_{t}\right], u_{s}\right]^{\tau_{t} \tau_{s} \tau_{t}}=1 \\
{\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}},\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\right] } & =\left[\left[u_{s t s t \alpha}, u_{t}\right],\left[u_{t s t s \alpha}, u_{s}\right]\right]^{\tau_{t} \tau_{s} \tau_{t} \tau_{s}}=1 \\
{\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t} \tau_{s}}, u_{s}\right] } & =\left[\left[u_{s t s t \alpha}, u_{t}\right], u_{t s}\right]^{\tau_{t}}=1 \\
{\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}}, u_{t}\right] } & =\left[\left[u_{s t s t \alpha}, u_{t}\right], u_{s t}\right]^{\tau_{t} \tau_{s}}=1 \\
{\left[\left[u_{s t s \alpha}, u_{s}\right]^{\tau_{s}}, u_{t}\right] } & =\left[\left[u_{t s t s \alpha}, u_{t s}\right], u_{s t}\right]^{\tau_{t} \tau_{s}}=1 \\
{\left[u_{t s \alpha}, u_{t}\right]\left[u_{s t s \alpha}, u_{s}\right]^{\tau_{s}} } & =\left(\left[u_{t s t s \alpha}, u_{s t}\right]\left[u_{t s t s \alpha}, u_{t s}\right]\right)^{\tau_{t} \tau_{s}} \\
& =\left(\left[u_{t s t s \alpha}, u_{s t}\right]\left[u_{t s t s \alpha},\left[u_{s}, u_{t}\right] u_{s t}\right]\right)^{\tau_{t} \tau_{s}} \\
& =\left(\left[u_{t s t s \alpha}, u_{s t}\right]\left[u_{t s t s \alpha}, u_{s t}\right]\left[u_{t s t s \alpha},\left[u_{s}, u_{t}\right]\right]^{u_{s t}}\right)^{\tau_{t} \tau_{s} \stackrel{[(3.3 .1)}{-}} 1 \\
{\left[\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t}}, u_{s}\right] } & =\left[\left[u_{t s t s \alpha}, u_{s t}\right], u_{s}\right]^{\tau_{t} \tau_{s} \tau_{t}}=1 \\
{\left[\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}},\left[u_{s \alpha}, u_{s}\right]_{s}^{\tau_{s} \tau_{t}}\right] } & =\left(\left[\left[u_{s t \alpha}, u_{s}\right]^{\tau_{t} \tau_{s}},\left[u_{s \alpha}, u_{s}\right]_{t}^{\tau_{t} \tau_{s} \tau_{t}}\right]\right)^{\tau_{s} \tau_{t} \tau_{s}} \\
& =\left(\left[\left[u_{s t s t \alpha}, u_{t s}\right],\left[u_{t s t s \alpha}, u_{s}\right]\right]\right)^{\tau_{s} \tau_{t} \tau_{s}}=1 \\
{\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}} } & =\left(\left[u_{s t s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t s \alpha}, u_{t}\right]\right)^{\tau_{t} \tau_{s} \tau_{t}}=1 \\
{\left[\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t} \tau_{s}}, u_{s}\right] } & =\left[\left[u_{s t s t \alpha}, u_{s t}\right], u_{t s}\right]^{\tau_{s} \tau_{t}}=1 \\
{\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{s}}, u_{s}\right] } & =\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{s} \tau_{t} \tau_{s}}, u_{t s}\right]^{\tau_{s} \tau_{t}}=\left[\left[u_{s t s t \alpha}, u_{t}\right], u_{t s}\right]^{\tau_{s} \tau_{t}}=1 \\
{\left[\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t} \tau_{s}}, u_{s}\right] } & =\left[\left[u_{s t \alpha}, u_{s}\right]^{\tau_{t} \tau_{s}}, u_{s}\right]^{\tau_{t} \tau_{s} \tau_{t}}=\left[\left[u_{s t s t \alpha}, u_{t s}\right], u_{s}\right]^{\tau_{t} \tau_{s} \tau_{t}}=1
\end{aligned}
$$

Case 1: $u=u_{s} u_{s t} u_{t}$: We note that $-t \alpha_{s} \subseteq t \alpha$ and hence $-t \alpha_{s} \subseteq \gamma$ for all $\gamma \in M_{\alpha_{t}, t \alpha}^{G}$ by (CR1). This implies $-\alpha_{s} \subseteq t \gamma$ for all $\gamma \in M_{\alpha_{t}, t \alpha}^{G}$. Moreover, we have $-\alpha_{t} \subseteq s \gamma$ for all $\gamma \in M_{\alpha_{s}, s \alpha}^{G}$ by (CR1). We obtain the following:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{t} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t} & =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s} u_{t s} u_{t} u_{\alpha} u_{t} u_{t s} u_{s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t s} u_{s} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{s} u_{t s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}{ }^{\tau_{t}} u_{s} u_{t} u_{s t}\right. \\
& =\tau_{s} \tau_{t} \cdot u_{t} u_{s t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}}, u_{s}\right]^{\tau_{s}} u_{s} u_{s t} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{t s} u_{s} u_{t} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]_{s}^{\tau_{s}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{s} u_{t s} \\
& =\tau_{s} \cdot u_{s} u_{t s} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{s \alpha}, u_{s} \tau^{\tau_{s}}\left[\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}, u_{t}\right]^{\tau_{t}}\right. \\
& \cdot\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[\left[u_{t \alpha}, u_{t}\right], u_{t}\right]^{\tau_{t}} u_{t} u_{t s} u_{s} \\
& \stackrel{[(3.3 .1)]}{=} \tau_{s} \cdot u_{s t} u_{t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} u_{s t} \\
& =\tau_{s}^{2} \cdot u_{t} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t} \\
& =u_{t} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t}
\end{aligned}
$$

Case 2: $u=u_{s} u_{s t} u_{t s} u_{t}$: We note that we have $-\alpha_{s} \subseteq t s t \gamma$ for all $\gamma \in M_{\alpha_{t}, t \alpha}^{G}$ by (CR1). Moreover, we have $-\alpha_{t} \subseteq s \gamma, t \delta$ for all $\gamma \in M_{\alpha_{s}, s \alpha}^{G}$ and all $\delta \in M_{\alpha_{t}, t \alpha}^{G}$ by (CR1). We compute the following:

$$
\begin{aligned}
& \left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{t} u_{t s} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t s} u_{t}=\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{s} u_{t} u_{\alpha} u_{t} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{t s} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t s} u_{s t} u_{s \alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{s t} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{s} u_{s t} u_{t s \alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}} u_{s t} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{s t} u_{s} u_{t s \alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}} u_{s} u_{s t} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} . u_{t} u_{s} u_{t s \alpha}\left[u_{s t s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}}\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t} \tau_{s}}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s} u_{s t} u_{t s} u_{t} u_{t s \alpha}\left[u_{s t s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}} u_{t} u_{t s} u_{s t} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s} u_{s t} u_{t s} u_{t s \alpha}\left[u_{t s \alpha}, u_{t}\right]\left[u_{s t s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}} u_{t s} u_{s t} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s} u_{s t} u_{t s} u_{t s \alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}} u_{t s} u_{s t} u_{s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t s} u_{s t} u_{s} u_{s \alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{s} u_{s t} u_{t s} \\
& =\tau_{s} \tau_{t} \tau_{s} . u_{t s} u_{s t} u_{s \alpha}\left[u_{s \alpha}, u_{s}\right]\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{s t} u_{t s} \\
& =\tau_{s} \tau_{t} \cdot u_{t s} u_{t} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{t s} \\
& =\tau_{s} \cdot u_{s} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}, u_{t}\right]^{\tau_{t}} \\
& \cdot\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[\left[u_{t \alpha}, u_{t}\right], u_{t}\right]^{\tau_{t}} u_{t} u_{s} \\
& { }^{[3.3 .1]} \tau_{s} . u_{t} u_{t s} u_{s t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{s t} u_{t s} u_{t} \\
& =\tau_{s}^{2} \cdot u_{s t} u_{t s} u_{t} u_{s} u_{\alpha} u_{s} u_{t} u_{t s} u_{s t} \\
& =u_{s t} u_{t s} u_{t} u_{s} u_{\alpha} u_{s} u_{t} u_{t s} u_{s t} \\
& =u_{t} u_{t s} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t s} u_{t}
\end{aligned}
$$

Case 3: $u=u_{s} u_{t}$: Interchanging s and t in the previous case, we deduce the following:

$$
\begin{aligned}
\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{t} u_{s} u_{\alpha} u_{s} u_{t} & =\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{s} u_{s t} u_{t s} u_{t} u_{\alpha} u_{t} u_{t s} u_{s t} u_{s} \\
& =u_{s} u_{s t} u_{t s} u_{t} u_{\alpha} u_{t} u_{t s} u_{s t} u_{s}
\end{aligned}
$$

$$
=u_{t} u_{s} u_{\alpha} u_{s} u_{t}
$$

In particular, this yields $\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{t} u_{s} u_{\alpha} u_{s} u_{t}=u_{t} u_{s} u_{\alpha} u_{s} u_{t}$.
Case 4: $u=u_{s} u_{t s} u_{t}$: Note that we have $-\alpha_{t} \subseteq$ st γ for all $\gamma \in M_{\alpha_{t}, t \alpha}^{G}$ by (CR1). Similarly, we have $-\alpha_{s} \subseteq t s \gamma_{1}, t s t \gamma_{2}, \gamma_{3}$ for all $\gamma_{1} \in M_{\alpha_{s}, s \alpha}^{G}, \gamma_{2} \in M_{\alpha_{t}, t s \alpha}^{G}, \gamma_{3} \in M_{\alpha_{t}, t \alpha}^{G}$. We compute the following:

$$
\begin{aligned}
& \left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{t} u_{t s} u_{s} u_{\alpha} u_{s} u_{t s} u_{t}=\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{s} u_{s t} u_{t} u_{\alpha} u_{t} u_{s t} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{t s} u_{s t} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{s t} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t s} u_{t} u_{s t} u_{s \alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{s t} u_{t} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t s} u_{s t} u_{t} u_{s \alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{t} u_{s t} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{s} u_{s t} u_{t} u_{s \alpha}\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}}\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}}, u_{t}\right]^{\tau_{t}} u_{t} u_{s t} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{t s} u_{t} u_{s} u_{s \alpha}\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{s} u_{t} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{t s} u_{t} u_{s \alpha}\left[u_{s \alpha}, u_{s}\right]\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{t} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{t s} u_{s t} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s t} u_{t s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{s} u_{s t} u_{t \alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}}\left[u_{t \alpha}, u_{t}\right] u_{s t} u_{s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{t \alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}}\left[u_{t \alpha}, u_{t}\right] u_{s} u_{s t} \\
& =\tau_{s} \tau_{t} . u_{t} u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}\left[\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t} \tau_{s}}, u_{s}\right]^{\tau_{s}} \\
& \cdot\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}}\left[\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t} \tau_{s}}, u_{s}\right]^{\tau_{s}}\left[u_{t \alpha}, u_{t}\right]\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{s}}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t} u_{t \alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}\left[u_{t \alpha}, u_{t}\right] u_{t} u_{t s} u_{s t} u_{s} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t} u_{t \alpha}\left[u_{t \alpha}, u_{t}\right] u_{t}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{t s} u_{s t} u_{s} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{t s} u_{s t} u_{s} \\
& =\tau_{s} . u_{t s} u_{s t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{s t} u_{t s} \\
& =\tau_{s}^{2} \cdot u_{t s} u_{t} u_{s} u_{\alpha} u_{s} u_{t} u_{t s} \\
& =u_{t s} u_{t} u_{s} u_{\alpha} u_{s} u_{t} u_{t s} \\
& =u_{t} u_{t s} u_{s} u_{\alpha} u_{s} u_{t s} u_{t}
\end{aligned}
$$

Case 5: $u=u_{s} u_{s t} u_{t s}$: Note that $-\alpha_{t} \subseteq s t \gamma_{1}, s t s \gamma_{2}$ for all $\gamma_{1} \in M_{\alpha_{t}, t \alpha}^{G}, \gamma_{2} \in M_{\alpha_{s}, s t \alpha}^{G}$ by (CR1). As before, we deduce $-\alpha_{t} \subseteq s \gamma, t \delta$ for all $\gamma \in M_{\alpha_{s}, s \alpha}^{G}$ and all $\delta \in M_{\alpha t, t \alpha}^{G}$ by (CR1). We obtain the following:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{t s} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t s}= & \left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha} u_{t s} u_{s t} u_{s} \\
= & \left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{s t} u_{t s} u_{s} u_{t \alpha} u_{s} u_{t s} u_{s t} \\
= & \left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t} u_{t s} u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t s} u_{t} \\
= & \left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{s t} u_{s} u_{t} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{t} u_{s} u_{s t} \\
= & \left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{s t} u_{s} u_{t \alpha}\left[u_{t \alpha}, u_{t}\right]\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{s t} \\
= & \left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{s t} u_{t s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{t s} u_{s t} \\
= & \left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{t} u_{t s} u_{s \alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t} \tau_{s}} u_{t s} u_{t} \\
= & \left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{t s} u_{t} u_{s \alpha}\left[u_{t \alpha}, u_{t}\right]_{t}^{\tau_{t} \tau_{s}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t} \tau_{s}} u_{t} u_{t s} \\
= & \tau_{s} \tau_{t} \tau_{s} \cdot u_{s} u_{t} u_{s \alpha}\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}}\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}}, u_{t}\right]^{\tau_{t}} \\
& \quad \cdot\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t} \tau_{s}}\left[\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t} \tau_{s} \tau_{t}}, u_{t}\right]^{\tau_{t}} u_{t} u_{s} \\
= & \tau_{s} \tau_{t} \tau_{s} \cdot u_{t} u_{t s} u_{s t} u_{s} u_{s \alpha}\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t} \tau_{s}} u_{s} u_{s t} u_{t s} u_{t}
\end{aligned}
$$

$$
\begin{aligned}
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t} u_{t s} u_{s t} u_{s \alpha}\left[u_{s \alpha}, u_{s}\right]\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t} \tau_{s}} u_{s t} u_{t s} u_{t} \\
& =\tau_{s} \tau_{t} \tau_{s} . u_{t} u_{t s} u_{s t} u_{s \alpha}\left[u_{s \alpha}, u_{s}\right]\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{s t} u_{t s} u_{t} \\
& =\tau_{s} \tau_{t} . u_{s t} u_{t s} u_{t} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{t s} u_{s t} \\
& =\tau_{s} . u_{s t} u_{s} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}, u_{t}\right]^{\tau_{t}} \\
& \quad \cdot\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[\left[u_{t \alpha}, u_{t}\right], u_{t}\right]^{\tau_{t}} u_{t} u_{s} u_{s t} \\
& \stackrel{(3.3 .1)}{=} \tau_{s} . u_{t s} u_{t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} u_{t s} \\
& = \\
& =\tau_{s}^{2} \cdot u_{t s} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t s} \\
& =u_{t s} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t s}
\end{aligned}
$$

Case 6: $u=u_{s} u_{s t}$: Note that $-\alpha_{s},-\alpha_{t} \subseteq t \gamma_{1}, s \gamma_{2}$ for all $\gamma_{1} \in M_{\alpha_{t}, t \alpha}^{G}, \gamma_{2} \in M_{\alpha_{s}, s \alpha}^{G}$ by (CR1). We compute the following:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} & =\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{s t} u_{t s} u_{t \alpha} u_{t s} u_{s t} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t} u_{t s} u_{s t \alpha} u_{t s} u_{t} \\
= & \left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t s} u_{t} u_{s t \alpha} u_{t} u_{t s} \\
= & \left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{s} u_{t} u_{s t \alpha}\left[u_{t s t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{s} \\
= & \left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{t} u_{t s} u_{s t} u_{s} u_{s t \alpha}\left[u_{t s t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{s t} u_{t s} u_{t} \\
= & \left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{t} u_{t s} u_{s t} u_{s t \alpha}\left[u_{s t \alpha}, u_{s}\right]\left[u_{t s t \alpha}, u_{t}\right]^{\tau_{t}} u_{s t} u_{t s} u_{t} \\
= & \left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{t} u_{t s} u_{s t} u_{s t \alpha} u_{s t} u_{t s} u_{t} \\
= & \left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s t} u_{t s} u_{t} u_{t \alpha} u_{t} u_{t s} u_{s t} \\
= & \left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s t} u_{t s} u_{t \alpha}\left[u_{t \alpha}, u_{t}\right] u_{t s} u_{s t} \\
= & \tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{s t} \\
= & \tau_{s} \tau_{t} \cdot u_{t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}}, u_{s}\right]^{\tau_{s}} u_{s} u_{t}} \\
= & \tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{t s} u_{s t} u_{s} \\
= & \tau_{s} \cdot u_{t s} u_{s t} u_{s} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}}\left[\left[u_{s \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}}, u_{t}\right]^{\tau_{t}} \\
& \cdot\left[u_{t \alpha}, u_{t}\right]_{t}^{\tau_{t}}\left[\left[u_{t \alpha}, u_{t}\right], u_{t}\right]^{\tau_{t}} u_{t} u_{s} u_{s t} u_{t s} \\
& \frac{(3.3 .1)}{} \quad \tau_{s} \cdot u_{t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} \\
= & \tau_{s}^{2} \cdot u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} \\
= & u_{s t} u_{s} u_{\alpha} u_{s} u_{s t}
\end{aligned}
$$

Case 7: $u=u_{t s} u_{t}$: Interchanging s and t in the previous case we deduce

$$
\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{t} u_{t s} u_{\alpha} u_{t s} u_{t}=\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{t s} u_{t} u_{\alpha} u_{t} u_{t s}=u_{t s} u_{t} u_{\alpha} u_{t} u_{t s}=u_{t} u_{t s} u_{\alpha} u_{t s} u_{t}
$$

In particular, this yields $\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{t} u_{t s} u_{\alpha} u_{t s} u_{t}=u_{t} u_{t s} u_{\alpha} u_{t s} u_{t}$.
Case 8: $u=u_{s t} u_{t s}$: We obtain the following:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{4} . u_{t s} u_{s t} u_{\alpha} u_{s t} u_{t s} & =\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{s} u_{s t} u_{t \alpha} u_{s t} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{s t} u_{s} u_{t \alpha} u_{s} u_{s t} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t} u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{s} u_{s t} u_{t s} u_{t} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{t} u_{t s} u_{s t} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha}\left[u_{t \alpha}, u_{t}\right]\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{t s} u_{s t} u_{s}
\end{aligned}
$$

$$
=\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} . u_{t s} u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{s} u_{s t} u_{t s}
$$

Note that $-\alpha_{s},-\alpha_{t} \subseteq t \delta, t s \gamma$ for all $\delta \in M_{\alpha_{t}, t \alpha}^{G}$ and $\gamma \in M_{\alpha_{s}, s t \alpha}^{G}$ by (CR1). Using Case 5 we deduce the following:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{t s} u_{s t} u_{\alpha} u_{s t} u_{t s} & =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{t s} u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{s} u_{s t} u_{t s} \\
& =\tau_{t} \tau_{s} \tau_{t}\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{t s} u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{s} u_{s t} u_{t s} \\
& =\tau_{t} \tau_{s} \tau_{t} \cdot u_{t s} u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s} \tau_{t}} u_{s} u_{s t} u_{t s} \\
& =\tau_{t} \tau_{s} \tau_{t} \cdot\left(\tau_{t} \tau_{s} \tau_{t} \cdot u_{t s} u_{s t} u_{\alpha} u_{s t} u_{t s}\right) \\
& =u_{t s} u_{s t} u_{\alpha} u_{s t} u_{t s}
\end{aligned}
$$

(3.4.5) Lemma. Let $\alpha \in \Phi_{+}$be a root such that $-\alpha_{s},-s \alpha_{t},-t \alpha_{s} \subseteq \alpha$. Then we have $\left[\left(\tau_{s} \tau_{t}\right)^{4}, u_{t s} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t s}\right]=1$ in the group $P_{s} \star_{U_{+}} P_{t}$.

Proof. If $\left\{\alpha_{t}, \alpha\right\} \notin \mathcal{P}$, then $\left\{-\alpha_{t}, \alpha\right\}$ is a prenilpotent pair by [2, Lemma 8.42(3)]. As $\left(-\alpha_{t}\right) \notin$ $1_{W} \in \alpha$, we deduce $\left(-\alpha_{t}\right) \subseteq \alpha$ and the claim follows from Lemma (3.4.4) Thus we can assume that $\left\{\alpha_{t}, \alpha\right\} \in \mathcal{P}$. We distinguish the following cases:
(a) $\alpha_{t} \subseteq \alpha$: Then we have $-\alpha_{t},-\alpha_{s} \subseteq t \alpha$. Using Lemma (3.4.4) again we obtain that $\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{t s} u_{s t} u_{s} u_{t \alpha} u_{s} u_{s t} u_{t s}=u_{t s} u_{s t} u_{s} u_{t \alpha} u_{s} u_{s t} u_{t s}$. This implies:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{4} . u_{t s} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t s} & =\tau_{t}^{2}\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha} u_{t s} u_{s t} u_{s} \\
& =\tau_{t}\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{t s} u_{s t} u_{s} u_{t \alpha} u_{s} u_{s t} u_{t s} \\
& =\tau_{t} \cdot u_{t s} u_{s t} u_{s} u_{t \alpha} u_{s} u_{s t} u_{t s} \\
& =u_{s} u_{s t} u_{t s} u_{\alpha} u_{t s} u_{s t} u_{s} \\
& =u_{t s} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t s}
\end{aligned}
$$

(b) $o\left(r_{\alpha_{t}} r_{\alpha}\right)<\infty$: Using the nilpotency class of the groups U_{w} and (CR2), we deduce the following:

$$
\begin{aligned}
{\left[u_{s t \alpha}, u_{s}\right] } & =1 \\
{\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}}, u_{t}\right] } & =\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{s} \tau_{t}}, u_{t}\right]^{\tau_{s} \tau_{t} \tau_{s}}=\left[\left[u_{t s t \alpha}, u_{s t}\right], u_{t}\right]^{\tau_{s} \tau_{t} \tau_{s}}=1 \\
\tau_{t} \cdot u_{t}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{t} & =\tau_{t} u_{t} \cdot\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} \\
& =u_{t} \tau_{t} u_{t} \tau_{t} \cdot\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} \\
& =u_{t} \tau_{t} \cdot\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}}\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s} \tau_{t}}, u_{t}\right] \\
& =u_{t} \cdot\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} \\
& =u_{t}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{t} \\
{\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}}, u_{s}\right] } & =\left[\left[u_{t \alpha}, u_{t}\right]^{\tau_{s} \tau_{t} \tau_{s}}, u_{s}\right]^{\tau_{t} \tau_{s} \tau_{t}}=\left[\left[u_{s t s t \alpha}, u_{t}\right], u_{s}\right]^{\tau_{t} \tau_{s} \tau_{t}}=1 \\
{\left[u_{s \alpha}, u_{s}\right] } & =1 \\
u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} & =\left(u_{t} \tau_{t}\right)^{2} \cdot u_{\alpha}=\tau_{t} u_{t} \cdot u_{\alpha}=u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}}
\end{aligned}
$$

We compute the following:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{t s} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t s} & =\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha} u_{t s} u_{s t} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{s t} u_{t s} u_{s} u_{t \alpha} u_{s} u_{t s} u_{s t} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t} u_{t s} u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t s} u_{t}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{s t} u_{s} u_{t \alpha}\left[u_{t \alpha}, u_{t}\right] u_{s} u_{s t} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{s t} u_{t s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t s} u_{s t} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{t} u_{t s} u_{s \alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{t s} u_{t} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{t s} u_{t} u_{s \alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{t} u_{t s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{s} u_{t} u_{s \alpha}\left[u_{t s \alpha}, u_{t}\right]^{\tau_{t}}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{t} u_{s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t} u_{t s} u_{s t} u_{s \alpha}\left[u_{s \alpha}, u_{s}\right]\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{s t} u_{t s} u_{t} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t} u_{t s} u_{s t} u_{s \alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t} \tau_{s}} u_{s t} u_{t s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{s t} u_{t s} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{t s} u_{s t} \\
& =\tau_{s} \tau_{t} \cdot u_{s t} u_{t s} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{t s} u_{s t} \\
& =\tau_{s} \cdot u_{s t} u_{s} u_{\alpha}\left[u_{\alpha}, u_{t}\right] u_{s} u_{s t} \\
& =\tau_{s} \cdot u_{t s} u_{t} u_{s} u_{\alpha} u_{s} u_{t} u_{t s} \\
& =u_{t s} u_{s t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{s t} u_{t s} \\
& =u_{t s} u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} u_{t s}
\end{aligned}
$$

(3.4.6) Lemma. Let $\alpha \in \Phi_{+}$be a root such that $-s \alpha_{t},-t \alpha_{s},-\alpha_{t} \subseteq \alpha$. Then we have $\left[\left(\tau_{s} \tau_{t}\right)^{4}, u_{t} u_{t s} u_{s t} u_{\alpha} u_{s t} u_{t s} u_{t}\right]=1$ in the group $P_{s} \star_{U_{+}} P_{t}$.

Proof. Interchanging s and t in the previous lemma we deduce

$$
\begin{aligned}
\left(\tau_{t} \tau_{s}\right)^{4} . u_{t} u_{t s} u_{s t} u_{\alpha} u_{s t} u_{t s} u_{t} & =\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{s t} u_{t s} u_{t} u_{\alpha} u_{t} u_{t s} u_{s t} \\
& =u_{s t} u_{t s} u_{t} u_{\alpha} u_{t} u_{t s} u_{s t} \\
& =u_{t} u_{t s} u_{s t} u_{\alpha} u_{s t} u_{t s} u_{t}
\end{aligned}
$$

This implies $\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{t} u_{t s} u_{s t} u_{\alpha} u_{s t} u_{t s} u_{t}=u_{t} u_{t s} u_{s t} u_{\alpha} u_{s t} u_{t s} u_{t}$.
(3.4.7) Lemma. Let $\alpha \in \Phi_{+}$be a root such that $-\alpha_{s},-s \alpha_{t} \subseteq \alpha$ holds. Then we have $\left[\left(\tau_{s} \tau_{t}\right)^{4}, u_{s t} u_{s} u_{\alpha} u_{s} u_{s t}\right]=1$ in the group $P_{s} \star_{U_{+}} P_{t}$, if $m_{r t} \neq 6 \neq m_{s r}$ for all $r \in S$.

Proof. We distinguish the following cases:
(A) $-\alpha_{t} \subseteq \alpha$: This is covered by Lemma (3.4.4).
(B) $o\left(r_{\alpha_{t}} r_{\alpha}\right)<\infty$: By definition we have $-\alpha_{t} \subseteq s t \alpha$. Assume that $t \alpha_{s} \subseteq \alpha$. Then Lemma (1.3.2) would imply $\alpha_{t} \subseteq\left(-\alpha_{s}\right) \cup t \alpha_{s} \subseteq \alpha$, which is a contradiction. Now assume that $\left\{\alpha_{s}, s t \alpha\right\} \notin \mathcal{P}$. Then [2, Lemma $\left.8.42(3)\right]$ would imply that $\left\{-\alpha_{s}, s t \alpha\right\}$ is a pair of nested roots and, as $\left(-\alpha_{s}\right) \notin 1_{W} \in s t \alpha$, we obtain $-\alpha_{s} \subseteq$ st α. But then $t \alpha_{s} \subseteq \alpha$, which is a contradiction. Thus we have $\left\{\alpha_{s}, s t \alpha\right\} \in \mathcal{P}$. Using the nilpotency class of the groups U_{w} and (CR2), we have the following:

$$
\begin{aligned}
{\left[u_{t s t \alpha}, u_{t}\right] } & =1 \\
{\left[u_{s \alpha}, u_{s}\right] } & =1 \\
u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} & =u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} \\
u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} & =u_{s t \alpha}\left[u_{t \alpha}, u_{s}\right]^{\tau_{s}} \\
{\left[\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}}, u_{t}\right] } & =\left[\left[u_{s t \alpha}, u_{s}\right], u_{s t}\right]^{\tau_{s}}=1
\end{aligned}
$$

We compute the following:

$$
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{s t} u_{s} u_{\alpha} u_{s} u_{s t}=\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{s t} u_{t s} u_{t \alpha} u_{t s} u_{s t}
$$

$$
\begin{aligned}
& =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t} u_{t s} u_{s t \alpha} u_{t s} u_{t} \\
& =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t s} u_{t} u_{s t \alpha} u_{t} u_{t s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{s} u_{t} u_{s t \alpha}\left[u_{t s t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{s} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{t} u_{t s} u_{s t} u_{s} u_{s t \alpha} u_{s} u_{s t} u_{t s} u_{t} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \tau_{s} \cdot u_{t} u_{t s} u_{s t} u_{s t \alpha}\left[u_{s t \alpha}, u_{s}\right] u_{s t} u_{t s} u_{t} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s t} u_{t s} u_{t} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{t} u_{t s} u_{s t}
\end{aligned}
$$

Later we will do a case distinction and two cases are similar. Thus we will assume for the moment that $\left[u_{s t \alpha}, u_{s}\right]=1$. Then we compute

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s t} u_{t s} u_{t} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{t} u_{t s} u_{s t} & =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s t} u_{t s} u_{t \alpha}\left[u_{t \alpha}, u_{t}\right] u_{t s} u_{s t} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{s t}
\end{aligned}
$$

If, furthermore, $\left[u_{t \alpha}, u_{t}\right]=1$, we deduce the following:

$$
\begin{aligned}
\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{s t} & =\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} \\
& =\tau_{s} \tau_{t} \cdot u_{t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{t s} u_{s t} u_{s} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{t s} u_{s t} u_{s}
\end{aligned}
$$

Now we distinguish the following cases:
(a) $-t \alpha_{s} \subseteq \alpha$: Then $\left[u_{s t \alpha}, u_{s}\right]=1$ by (CR2) and the previous computation yields

$$
\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s t} u_{t s} u_{t} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{t} u_{t s} u_{s t}=\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{s t}
$$

Since $m_{r t} \neq 6$, we deduce $1 \in\left\{\left[u_{t \alpha}, u_{t}\right],\left[u_{\alpha}, u_{t}\right]\right\}$. We distinguish these two cases:
(I) $\left[u_{t \alpha}, u_{t}\right]=1$: Then again the previous computations yield:

$$
\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{s t}=\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{t s} u_{s t} u_{s}
$$

(II) $\left[u_{\alpha}, u_{t}\right]=1$: Then we have the following:

$$
\begin{aligned}
\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{s t} & =\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{t} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{s} u_{s t} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t} u_{t s} u_{s} u_{t \alpha} u_{s} u_{t s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{s t} u_{t s} u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t s} u_{s t} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{t s} u_{s t} u_{s}
\end{aligned}
$$

(b) $\left\{t \alpha_{s}, \alpha\right\} \in \mathcal{P}$: As $t \alpha_{s} \nsubseteq \alpha$, we have $o\left(r_{t \alpha_{s}} r_{\alpha}\right)<\infty$ and hence $o\left(r_{\alpha_{s}} r_{t \alpha}\right)<\infty$. Since $m_{s r} \neq 6$ for all $r \in S$, we have $1 \in\left\{\left[u_{s t \alpha}, u_{s}\right],\left[u_{t \alpha}, u_{s}\right]\right\}$. We distinguish these two cases:
(aa) $\left[u_{s t \alpha}, u_{s}\right]=1$: Then the previous computations yield:

$$
\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s t} u_{t s} u_{t} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{t} u_{t s} u_{s t}=\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{s t}
$$

Since $m_{r t} \neq 6$, we deduce $1 \in\left\{\left[u_{t \alpha}, u_{t}\right],\left[u_{\alpha}, u_{t}\right]\right\}$. We distinguish these two cases:
(i) $\left[u_{t \alpha}, u_{t}\right]=1$: Then again the previous computations yield:

$$
\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{s t}=\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{t s} u_{s t} u_{s}
$$

(ii) $\left[u_{\alpha}, u_{t}\right]=1$: Then we have the following:

$$
\begin{aligned}
\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{\alpha}\left[u_{t \alpha}, u_{t}\right]^{\tau_{t}} u_{s} u_{s t} & =\tau_{s} \tau_{t} \tau_{s} \cdot u_{s t} u_{s} u_{t} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{s} u_{s t} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t} u_{t s} u_{s} u_{t \alpha} u_{s} u_{t s} u_{t} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t} u_{t s} u_{t \alpha}\left[u_{t \alpha}, u_{s}\right] u_{t s} u_{t} \\
& =\tau_{s} \tau_{t} \cdot u_{s t} u_{t s} u_{s t \alpha}\left[u_{t \alpha}, u_{s}\right]^{\tau_{s}} u_{t s} u_{s t} \\
& =\tau_{s} \tau_{t} \cdot u_{s t} u_{t s} u_{s} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t s} u_{s t} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{t s} u_{s t} u_{s}
\end{aligned}
$$

(bb) $\left[u_{t \alpha}, u_{s}\right]=1$: Then we compute the following:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{2} . u_{s t} u_{t s} u_{t} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{t} u_{t s} u_{s t} & =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s t} u_{t s} u_{t} u_{s} u_{s t \alpha}\left[u_{t \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{t} u_{t s} u_{s t} \\
& =\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s} u_{t} u_{s t \alpha} u_{t} u_{s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t s} u_{t} u_{s t \alpha}\left[u_{t s t \alpha}, u_{t}\right]^{\tau_{t}} u_{t} u_{t s} \\
& =\tau_{s} \tau_{t} \tau_{s} \cdot u_{t s} u_{t} u_{s t \alpha} u_{t} u_{t s} \\
& =\tau_{s} \tau_{t} \cdot u_{t s} u_{s t} u_{t \alpha} u_{s t} u_{t s} \\
& =\tau_{s} \tau_{t} \cdot u_{t s} u_{s t} u_{s} u_{t \alpha} u_{s} u_{s t} u_{t s} \\
& =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha} u_{t s} u_{s t} u_{s}
\end{aligned}
$$

Since $o\left(r_{\alpha_{s}} r_{t \alpha}\right)<\infty$ and $-\alpha_{s} \subseteq \alpha$, we have $\alpha \neq t \alpha$. Clearly, we have
$-\alpha_{s}=\left(-\alpha_{s}\right) \cap W=\left(\left(-\alpha_{s}\right) \cap\left(-s \alpha_{t}\right)\right) \cup\left(\left(-\alpha_{s}\right) \cap s \alpha_{t}\right) \subseteq\left(-s \alpha_{t}\right) \cup\left(\left(-\alpha_{s}\right) \cap s \alpha_{t}\right)$
Note that there exists $R \in \partial^{2} \alpha_{t} \cap \partial^{2} \alpha \cap \partial^{2}$ t α. Lemma (1.4.8) now implies (as $\left.-t \alpha \notin\left(\alpha_{t}, \alpha\right) \cup\left(-\alpha_{t}, \alpha\right)\right) \alpha \in\left(\alpha_{t}, t \alpha\right)$ or $t \alpha \in\left(\alpha_{t}, \alpha\right)$. Assume $t \alpha \in\left(\alpha_{t}, \alpha\right)$. Then $\alpha_{t} \cap \alpha \subseteq t \alpha$ by definition. Since $s \alpha_{t} \in\left(\alpha_{s}, \alpha_{t}\right)$, we deduce $\alpha_{t} \in\left(-\alpha_{s}, s \alpha_{t}\right)$ and hence $\left(-\alpha_{s}\right) \cap s \alpha_{t} \subseteq \alpha_{t}$. But then we would have the following:

$$
-\alpha_{s} \subseteq\left(-s \alpha_{t}\right) \cup\left(\left(-\alpha_{s}\right) \cap s \alpha_{t}\right) \subseteq t \alpha \cup\left(\alpha_{t} \cap \alpha\right) \subseteq t \alpha
$$

This is a contradiction as $o\left(r_{\alpha_{s}} r_{t \alpha}\right)<\infty$ and hence we deduce $\alpha \in\left(\alpha_{t}, t \alpha\right)$. Since $m_{r t} \neq 6$ for all $r \in S$, the commutator relations imply $\left[u_{t \alpha}, u_{t}\right] \neq 1$ and hence $\left[u_{\alpha}, u_{t}\right]=1$ because $1 \in\left\{\left[u_{t \alpha}, u_{t}\right],\left[u_{\alpha}, u_{t}\right]\right\}$ as before. We infer:

$$
\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha} u_{t s} u_{s t} u_{s}=\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{t s} u_{s t} u_{s}
$$

We see that in both cases (a) and (b) we have the same result. Thus we compute further:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{2} \cdot u_{s t} u_{t s} u_{t} u_{t \alpha}\left[u_{s t \alpha}, u_{s}\right]^{\tau_{s}} u_{t} u_{t s} u_{s t} & =\tau_{s} \tau_{t} \cdot u_{s} u_{s t} u_{t s} u_{t \alpha}\left[u_{\alpha}, u_{t}\right]^{\tau_{t}} u_{t s} u_{s t} u_{s} \\
& =\tau_{s} \cdot u_{t s} u_{s t} u_{s} u_{\alpha}\left[u_{\alpha}, u_{t}\right] u_{s} u_{s t} u_{t s} \\
& =\tau_{s} \cdot u_{t s} u_{s t} u_{s} u_{t} u_{\alpha} u_{t} u_{s} u_{s t} u_{t s} \\
& =\tau_{s} \cdot u_{t} u_{s} u_{\alpha} u_{s} u_{t} \\
& =u_{s t} u_{s} u_{\alpha}\left[u_{s \alpha}, u_{s}\right]^{\tau_{s}} u_{s} u_{s t} \\
& =u_{s t} u_{s} u_{\alpha} u_{s} u_{s t}
\end{aligned}
$$

(C) $\alpha_{t} \subseteq \alpha$: We distinguish the following cases:
(aaa) $-t \alpha_{s} \subseteq \alpha$: Then $-\alpha_{s},-\alpha_{t} \subseteq t \alpha$ and we can apply again Lemma (3.4.4) with $u=u_{s t} u_{t s}$ to deduce the following:

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} & =\tau_{t}^{2}\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{s t} u_{t s} u_{t \alpha} u_{t s} u_{s t} \\
& =\tau_{t}\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{t s} u_{s t} u_{t \alpha} u_{s t} u_{t s} \\
& =\tau_{t} \cdot u_{t s} u_{s t} u_{t \alpha} u_{s t} u_{t s} \\
& =\tau_{t} \cdot u_{s t} u_{t s} u_{t \alpha} u_{t s} u_{s t} \\
& =u_{s t} u_{s} u_{\alpha} u_{s} u_{s t}
\end{aligned}
$$

(bbb) $t \alpha_{s} \subseteq \alpha$: Then $-\alpha_{s},-\alpha_{t} \subseteq s t \alpha$ and we deduce from Lemma (3.4.4):

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} & =\left(\tau_{s} \tau_{t}\right)^{-1}\left(\tau_{s} \tau_{t}\right)\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t} u_{t s} u_{s t \alpha} u_{t s} u_{t} \\
& =\left(\tau_{s} \tau_{t}\right)^{-1} \cdot u_{t} u_{t s} u_{s t \alpha} u_{t s} u_{t} \\
& =u_{s t} u_{s} u_{\alpha} u_{s} u_{s t}
\end{aligned}
$$

(ccc) $o\left(r_{t \alpha_{s}} r_{\alpha}\right)<\infty$: Note that $-t \alpha_{s},-\alpha_{t} \subseteq s t \alpha$ and $o\left(r_{\alpha_{s}} r_{s t \alpha}\right)<\infty$. Interchanging s and t in Case (B) yields $\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{t s} u_{t} u_{s t \alpha} u_{t} u_{t s}=u_{t s} u_{t} u_{s t \alpha} u_{t} u_{t s}$ and hence

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{s t} u_{s} u_{\alpha} u_{s} u_{s t} & =\left(\tau_{s} \tau_{t}\right)^{3} \cdot u_{t} u_{t s} u_{s t \alpha} u_{t s} u_{t} \\
& =\left(\tau_{s} \tau_{t}\right)^{-1} \cdot\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{t s} u_{t} u_{s t \alpha} u_{t} u_{t s} \\
& =\tau_{t} \tau_{s} \cdot u_{t s} u_{t} u_{s t \alpha} u_{t} u_{t s} \\
& =\tau_{t} \tau_{s} \cdot u_{t} u_{t s} u_{s t \alpha} u_{t s} u_{t} \\
& =u_{s t} u_{s} u_{\alpha} u_{s} u_{s t}
\end{aligned}
$$

(3.4.8) Lemma. Assume that $m_{r t} \neq 6 \neq m_{\text {sr }}$ for all $r \in S$. Then for $\alpha \in \Phi_{+} \backslash \Phi_{+}^{\{s, t\}}$ and $u \in U_{s, t}$ we have $\left[\left(\tau_{s} \tau_{t}\right)^{4}, u^{-1} u_{\alpha} u\right]=1$ in the group $P_{s} \star_{U_{+}} P_{t}$, if one of the following hold:
(a) $u=u_{s t} u_{t s}$ and $-s \alpha_{t},-t \alpha_{s} \subseteq \alpha$,
(b) $u=u_{t s} u_{t}$ and $-t \alpha_{s},-\alpha_{t} \subseteq \alpha$;

Proof. Assume that (a) holds. Then we have $-s \alpha_{t},-\alpha_{s} \subseteq t \alpha$ and the previous lemma yields

$$
\begin{aligned}
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{t s} u_{s t} u_{\alpha} u_{s t} u_{t s} & =\tau_{t}^{2}\left(\tau_{s} \tau_{t}\right)^{3} \tau_{s} \cdot u_{s} u_{s t} u_{t \alpha} u_{s t} u_{s} \\
& =\tau_{t}\left(\tau_{t} \tau_{s}\right)^{4} \cdot u_{s t} u_{s} u_{t \alpha} u_{s} u_{s t} \\
& =\tau_{t} \cdot u_{s t} u_{s} u_{t \alpha} u_{s} u_{s t} \\
& =u_{s t} u_{t s} u_{\alpha} u_{t s} u_{s t} \\
& =u_{t s} u_{s t} u_{\alpha} u_{s t} u_{t s}
\end{aligned}
$$

Now assume that (b) holds. Then we have $-s \alpha_{t},-t \alpha_{s} \subseteq s \alpha$ and we infer the following from Assertion (a):

$$
\left(\tau_{s} \tau_{t}\right)^{4} \cdot u_{t} u_{t s} u_{\alpha} u_{t s} u_{t}=\left(\tau_{s} \tau_{t}\right)^{4} \tau_{s} \cdot u_{s t} u_{t s} u_{s \alpha} u_{t s} u_{s t}=\tau_{s} . u_{s t} u_{t s} u_{s \alpha} u_{t s} u_{s t}=u_{t} u_{t s} u_{\alpha} u_{t s} u_{t}
$$

(3.4.9) Lemma. We have $\left[\left(\tau_{s} \tau_{t}\right)^{4}, n\right]=1$ for all $n \in N_{s, t}$ in the group $P_{s} \star_{U_{+}} P_{t}$, if the groups U_{w} are of nilpotency class at most $2, m_{r u} \neq 6$ for all $r, u \in S$ and \mathcal{M} satisfies (CR1) and (CR2).
Proof. Since $N_{s, t}$ is generated by the elements $u^{-1} u_{\alpha} u$ with $u \in U_{s, t}$ and $\alpha \in \Phi_{+} \backslash \Phi_{+}^{\{s, t\}}$ it suffices to show the claim for $n=u^{-1} u_{\alpha} u$. Since $U_{s, t}$ is a group of order 16, we have to distinguish these 16 cases. The claim is trivial for $u=1$. The other cases follow from the Lemmas (3.4.1)-(3.4.8)

3.5. First main result

(3.5.1) Theorem. Suppose $m_{s t} \neq 6$ for all $s, t \in S$. Let $\mathcal{M}=\left(M_{\alpha, \beta}^{G}\right)_{(G, \alpha, \beta) \in \mathcal{I}}$ be a commutator blueprint of type (W, S), which is faithful and Weyl-invariant. Suppose $s \neq t \in S$ with $m_{s t}<\infty$ and let $n \in N_{s, t}$. Then $\left[\left(\tau_{s} \tau_{t}\right)^{m_{s t}}, n\right]=1$ in $P_{s} \star_{U_{+}} P_{t}$ if the following hold:
(a) $m_{s t}=2$;
(b) $m_{s t} \in\{3,4\}$, the groups U_{w} are of nilpotency class at most 2 and \mathcal{M} satisfies the following two additional conditions, where $\alpha \in \Phi_{+}$is such that $\alpha_{s} \subseteq \alpha$.
(CR1) If $\beta \in \Phi^{\{s, t\}}$ is such that $\beta \subseteq \alpha$, then there exist $w \in W$ with $\ell(s w)=\ell(w)-1$ and $G \in \operatorname{Min}_{s}(w)$ with $\alpha \in \Phi(G)$ such that $\beta \subseteq \gamma$ for all $\gamma \in M_{\alpha_{s}, \alpha}^{G}$.
(CR2) If $\beta \in \Phi^{\{s, t\}}$ satisfies o $\left(r_{\beta} r_{\alpha}\right)<\infty$, then there exist $w \in W$ with $\ell(s w)=\ell(w)-1$ and $G \in \operatorname{Min}_{s}(w)$ with $\alpha \in \Phi(G)$ such that $M_{\alpha_{s}, \alpha}^{G}=\emptyset$.

In particular, \mathcal{M} is integrable.
Proof. The first part is a consequence of Lemma (3.2.1) Lemma (3.3.6) and Lemma (3.4.9). Now we deduce from Theorem (2.2.14) and Theorem (2.4.3) that \mathcal{M} is integrable.
(3.5.2) Remark. We remark that (CR2) is not always satisfied. To see this one may consider (W, S) to be of affine type and an RGD-system of type (W, S) with non-abelian root groups at infinity. We do not know whether (CR1) and the nilpotency class assumption are necessary.

4. Construction of the groups U_{w}

In this chapter we assume $m_{s t} \neq 6$ for all $s \neq t \in S$. We will discuss the nilpotency class assumption of the last chapter. We show that each family $\mathcal{M}=\left(M_{\alpha, \beta}^{G}\right)_{(G, \alpha, \beta) \in \mathcal{I}}$ of subsets $M_{\alpha, \beta}^{G} \subseteq(\alpha, \beta)$ ordered via \leq_{G} which induces (roughly speaking) nilpotency class 2 groups U_{w} and satisfies (CB1) and (CB2) satisfies automatically (CB3). Hence such a family is a commutator blueprint of type (W, S).

4.1. Auxiliary results

(4.1.1) Lemma. Let $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ be a group such that $\left[g_{i},\left[g_{j}, g_{k}\right]\right]=1$ for all $i, j, k \in$ $\{1, \ldots, n\}$. Then G is of nilpotency class at most 2 .

Proof. Let $x, y, z \in G$ and let $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}, z_{1}, \ldots, z_{m} \in\left\{g_{1}, \ldots, g_{n}\right\}$ be such that $x=$ $x_{1} \cdots x_{k}, y=y_{1} \cdots y_{l}, z=z_{1} \cdots z_{m}$. We will show that $[x,[y, z]]=1$. Assume first $l=1=m$. Induction on k yields $[x,[y, z]]=\left[x x_{k}^{-1},[y, z]\right]^{x_{k}}\left[x_{k},[y, z]\right]=1$. Now we assume $l=1$. Induction on m implies $[x,[y, z]]=\left[x,\left[y, z_{m}\right]\left[y, z z_{m}^{-1}\right]^{z_{m}}\right]=\left[x^{\left(z_{m}^{-1}\right)},\left[y, z z_{m}^{-1}\right]\right]^{z_{m}}\left[x,\left[y, z_{m}\right]\right]^{\left[y, z z_{m}^{-1}\right]^{z_{m}}}=$ 1. Now induction on l yields

$$
[x,[y, z]]=\left[x,\left[y y_{l}^{-1}, z\right]^{y_{l}}\left[y_{l}, z\right]\right]=\left[x,\left[y_{l}, z\right]\right]\left[x^{\left(y_{l}^{-1}\right)},\left[y y_{l}^{-1}, z\right]\right]^{y_{l}\left[y_{l}, z\right]}=1
$$

(4.1.2) Proposition. Let N be a group and let $g, h \in \operatorname{Aut}(N)$ be two involutions with $[g, h]=$ id_{N}. Assume that there exists $u \in Z(N)$ such that $u^{2}=1$ and $g(u)=u=h(u)$. Let $G=\mathbb{Z}_{2} \ltimes_{g} N$ (i.e. \mathbb{Z}_{2} acts on N via g) and $H=\mathbb{Z}_{2} \ltimes_{h} N$. Moreover, we let x_{g} (resp. x_{h}) be the generator of $\mathbb{Z}_{2} \leq G$ (resp. $\mathbb{Z}_{2} \leq H$) and we let $\varphi: G \star_{N} H \rightarrow G \star_{N} H /\left\langle\left\langle\left[x_{g}, x_{h}\right] u^{-1}\right\rangle\right\rangle$. Then

$$
\operatorname{ker} \varphi=\left\{\left[x_{g}, x_{h}\right]^{k} u^{l} \mid k, l \in \mathbb{Z}, k+l \equiv 0 \quad \bmod 2\right\}
$$

In particular, the product map $\left\langle x_{g}\right\rangle \times N \times\left\langle x_{h}\right\rangle \rightarrow G \star_{N} H /\left\langle\left\langle\left[x_{g}, x_{h}\right] u^{-1}\right\rangle\right\rangle,\left(g^{\prime}, n, h^{\prime}\right) \mapsto g^{\prime} n h^{\prime}$ is a bijection.

Proof. Let $n \in N$. By assumption we have $[g, h](n)=n$. We note that in G (resp. H) we have $x_{g}^{-1} n x_{g}=g(n)\left(\right.$ resp. $\left.x_{h}^{-1} n x_{h}=h(n)\right)$ for all $n \in N$. We consider a conjugate of $\left[x_{g}, x_{h}\right] u^{-1}$ in $G \star_{N} H$. For $n \in N$ we obtain:
$n^{-1}\left(\left[x_{g}, x_{h}\right] u^{-1}\right) n=n^{-1}\left[x_{g}, x_{h}\right] n\left[x_{g}, x_{h}\right]^{-1}\left[x_{g}, x_{h}\right] u^{-1}=n^{-1}[g, h](n)\left[x_{g}, x_{h}\right] u^{-1}=\left[x_{g}, x_{h}\right] u^{-1}$
Since $g, h \in \operatorname{Aut}(N)$, we have $g\left(u^{-1}\right)=g(u)^{-1}=u^{-1}$ and $h\left(u^{-1}\right)=u^{-1}$. Thus we obtain:
$x_{g}^{-1}\left(\left[x_{g}, x_{h}\right] u^{-1}\right) x_{g}=x_{g} x_{g} x_{h} x_{g} x_{h} u^{-1} x_{g}=x_{h} x_{g} x_{h} x_{g} x_{g} u^{-1} x_{g}=\left[x_{h}, x_{g}\right] g\left(u^{-1}\right)=\left[x_{g}, x_{h}\right]^{-1} u^{-1}$
$x_{h}^{-1}\left(\left[x_{g}, x_{h}\right] u^{-1}\right) x_{h}=x_{h} x_{g} x_{h} x_{g} x_{h} u^{-1} x_{h}=\left[x_{h}, x_{g}\right] h\left(u^{-1}\right)=\left[x_{g}, x_{h}\right]^{-1} u^{-1}$
We also note that $\left[\left[x_{g}, x_{h}\right]^{ \pm 1}, u^{ \pm 1}\right]=[g, h]^{\mp 1}\left(u^{\mp 1}\right) u^{ \pm 1}=1$. Thus we conclude that $\operatorname{ker} \varphi=$ $\left\langle\left\langle\left[x_{g}, x_{h}\right] u^{-1}\right\rangle\right\rangle=\left\langle\left[x_{g}, x_{h}\right]^{\varepsilon} u^{-1} \mid \varepsilon \in\{1,-1\}\right\rangle=\left\{\left[x_{g}, x_{h}\right]^{k} u^{l} \mid k, l \in \mathbb{Z}, k+l \equiv 0 \bmod 2\right\}$. For the second assertion we note at first that the mapping is surjective. We denote the product map by p. Let $a \in\left\langle x_{g}\right\rangle, b \in\left\langle x_{h}\right\rangle$ and $n \in N$ be such that $p((a, n, b))=a n b=1$.

Then $a n b=a b n^{\prime} \in \operatorname{ker} \varphi$, where $n^{\prime}=b^{-1} n b=b(n) \in N$. Considering normal forms in amalgamated products we obtain $a=1=b$ and $n^{\prime}=u^{2 l}$. Since $u^{2}=1$, we obtain $n^{\prime}=1$ and hence $n=1$. Now we show that p is injective. Let $a, a^{\prime} \in\left\langle x_{g}\right\rangle, b, b^{\prime} \in\left\langle x_{h}\right\rangle$ and $n, n^{\prime} \in N$ be such that $a n b=p((a, n, b))=p\left(\left(a^{\prime}, n^{\prime}, b^{\prime}\right)\right)=a^{\prime} n^{\prime} b^{\prime}$. Then

$$
1=a^{-1} a^{\prime} n^{\prime} b^{\prime} b^{-1} n^{-1}=a^{-1} a^{\prime} n^{\prime}\left(b^{\prime} b^{-1} n^{-1} b\left(b^{\prime}\right)^{-1}\right) b^{\prime} b^{-1}
$$

and hence $p\left(\left(a^{-1} a^{\prime}, n^{\prime}\left(b^{\prime} b^{-1} n^{-1} b\left(b^{\prime}\right)^{-1}\right), b^{\prime} b^{-1}\right)\right)=1$. We have already shown that this implies $a=a^{\prime}, b=b^{\prime}$ and $1=n^{\prime}\left(b^{\prime} b^{-1} n^{-1} b\left(b^{\prime}\right)^{-1}\right)=n^{\prime} n^{-1}$. This finishes the claim.
(4.1.3) Corollary. Let N be a group and let $g, h \in \operatorname{Aut}(N)$ be two involutions. Assume that $G=\mathbb{Z}_{2} \ltimes_{g} N$ and $H=\mathbb{Z}_{2} \ltimes_{h} N$ are of nilpotency class at most 2 and that $h(n) n^{-1} \in$ $\operatorname{Stab}_{N}(g), g(n) n^{-1} \in \operatorname{Stab}_{N}(h)$ for all $n \in N$. Let $u \in N$ be such that $u \in Z(G), u \in Z(H)$ and $u^{2}=1$. Let x_{g} (resp. x_{h}) be the generator of \mathbb{Z}_{2} in G (resp. H). Then the mapping

$$
\left\langle x_{g}\right\rangle \times N \times\left\langle x_{h}\right\rangle \rightarrow G \star_{N} H /\left\langle\left\langle\left[x_{g}, x_{h}\right] u^{-1}\right\rangle\right\rangle
$$

is a bijection. Furthermore, the latter group is of nilpotency class at most 2.
Proof. Since $u \in Z(G), u \in Z(H)$, we have $1=\left[x_{g}, u^{-1}\right]=g(u) u^{-1}$ and hence $g(u)=$ u. Similarly, we have $h(u)=u$. Moreover, we have $u \in Z(N)$. In view of the previous proposition it suffices to show that $[g, h]=\operatorname{id}_{N}$. As G is of nilpotency class at most 2 , we have $\left[g(n) n^{-1}, n^{\prime}\right]=\left[\left[x_{g}, n^{-1}\right], n^{\prime}\right]=1$ for all $n, n^{\prime} \in N$. We compute the following:

$$
\begin{aligned}
{[g, h](n) } & =g h g\left(h(n) n^{-1} n\right) \\
& =g h\left(g\left(h(n) n^{-1}\right) g(n) n^{-1} n\right)=g h\left(h(n) g(n) n^{-1}\right) \\
& =g\left(n h\left(g(n) n^{-1}\right)\right)=g\left(n g(n) n^{-1}\right)=g(g(n)) \\
& =n
\end{aligned}
$$

Thus $[g, h]=\operatorname{id}_{N}$. For the nilpotency class it suffices to show $[a,[b, c]]=1$ for $a, b, c \in$ $\left\{x_{g}, x_{h}\right\} \cup N$ by Lemma (4.1.1). If $x_{g} \notin\{a, b, c\}$ the claim follows by the nilpotency class of H. Using similar arguments we obtain the result if $x_{h} \notin\{a, b, c\}$. Thus we can assume $x_{g}, x_{h} \in\{a, b, c\}$. If $\left\{x_{g}, x_{h}\right\} \neq\{b, c\}$, the claim follows from the fact that $\left[x_{h}, n^{-1}\right] \in \operatorname{Stab}_{N}(g)$ and $\left[x_{g}, n^{-1}\right] \in \operatorname{Stab}_{N}(h)$ for all $n \in N$. Thus we assume $\{b, c\}=\left\{x_{g}, x_{h}\right\}$. Since $[b, c]=u^{ \pm 1}$ is contained in $Z(G)$ and in $Z(H)$ the claim follows.

4.2. Pre-commutator blueprints

A pre-commutator blueprint of type (W, S) is a family $\mathcal{M}=\left(M_{\alpha, \beta}^{G}\right)_{(G, \alpha, \beta) \in \mathcal{I}}$ of subsets $M_{\alpha, \beta}^{G} \subseteq$ (α, β) ordered via \leq_{G} satisfying (CB1), (CB2) and the following axiom:
(PCB) For every $G \in \operatorname{Min}(w)$ the canonical homomorphism $U_{G} \rightarrow U_{w}$ is an isomorphism.
Let $G=\left(d_{0}, \ldots, d_{n}=c_{0}, \ldots, c_{k}=e_{0}, \ldots, e_{m}\right) \in \operatorname{Min}$ and let $\left(\alpha_{1}, \ldots, \alpha_{n+k+m}\right)$ be the sequence of roots crossed by G. We define the group $U_{\left(c_{0}, \ldots, c_{k}\right), G}$ via the presentation

$$
U_{\left(c_{0}, \ldots, c_{k}\right), G}:=\left\langle u_{\alpha_{n+1}}, \ldots, u_{\alpha_{n+k}}\right|\left\{\begin{array}{l}
\forall 1 \leq i \leq k: u_{\alpha_{n+i}}^{2}=1 \\
\left.\forall 1 \leq i<j \leq k:\left[u_{\alpha_{n+i}}, u_{\alpha_{n+j}}\right]=\prod_{\gamma \in M_{\alpha_{n+i}, \alpha_{n+j}}^{G}} u_{\gamma}\right\rangle
\end{array}\right\rangle
$$

(4.2.1) Remark. In Axiom (PCB) we do not require that $\left|U_{w}\right|=2^{\ell(w)}$. We will see in Lemma (4.2.2) that under some mild conditions, a pre-commutator blueprint is a commutator blueprint. Moreover, we remark that $U_{G, G}=U_{G}$ (cf. Lemma (2.1.4)).

For every $\alpha_{n+1} \leq_{G} \alpha \leq_{G} \beta \leq \alpha_{n+k} \in \Phi(G)$ we have $M_{\alpha, \beta}^{G} \subseteq(\alpha, \beta) \subseteq\left\{\alpha_{n+2}, \ldots, \alpha_{n+k-1}\right\}$. We call a pre-commutator blueprint 2-nilpotent, if for all $G=\left(d_{0}, \ldots, d_{n}=c_{0}, \ldots, c_{k}=\right.$ $\left.e_{0}, \ldots, e_{m}\right) \in \operatorname{Min}, \alpha_{n+2} \leq_{G} \alpha \leq_{G} \alpha_{n+(k-1)}$ the following hold in $U_{\left(c_{1}, \ldots, c_{k-1}\right), G}$:
(2-n1) $\prod_{\gamma \in M_{\alpha, \alpha_{n+k}}^{G}}\left(\prod_{\delta \in M_{\alpha_{n+1}, \gamma}^{G}} u_{\delta}\right) u_{\gamma}=\prod_{\gamma \in M_{\alpha, \alpha_{n+k}}} u_{\gamma} ;$
(2-n2) $\prod_{\gamma \in M_{\alpha_{n+1}, \alpha}^{G}}\left(u_{\gamma} \prod_{\delta \in M_{\gamma, \alpha_{n+k}}^{G}} u_{\delta}\right)=\prod_{\gamma \in M_{\alpha_{n+1}, \alpha}^{G}} u_{\gamma} ;$
(2-n3) $\left(\prod_{\gamma \in M_{\alpha_{n+1}, \alpha_{n+k}}^{G}} u_{\gamma}\right)^{2}=1$ and $\prod_{\gamma \in M_{\alpha_{n+1}, \alpha_{n+k}}^{G}} u_{\gamma} \in Z\left(U_{\left(c_{1}, \ldots, c_{k-1}\right), G}\right)$;
(2-n4) $\prod_{\gamma \in M_{\alpha_{n+1}, \alpha_{n+k}}^{G}}\left(\prod_{\delta \in M_{\alpha_{n+1}, \gamma}^{G}} u_{\delta}\right) u_{\gamma}=\prod_{\gamma \in M_{\alpha_{n+1}, \alpha_{n+k}}} u_{\gamma}$;
(2-n5) $\prod_{\gamma \in M_{\alpha_{n+1}, \alpha_{n+k}}}\left(u_{\gamma} \prod_{\delta \in M_{\gamma, \alpha_{n+k}}^{G}} u_{\delta}\right)=\prod_{\gamma \in M_{\alpha_{n+1}, \alpha_{n+k}}} u_{\gamma}$.
Condition (2-n1) will imply that $\left[u_{\alpha_{n+1}},\left[u_{\alpha}, u_{\alpha_{n+k}}\right]\right]=1$ holds and Condition (2-n2) that $\left[\left[u_{\alpha_{n+1}}, u_{\alpha}\right], u_{\alpha_{n+k}}\right]=1$ holds. Conditions (2-n4) and (2-n5) imply that $\left[u_{\alpha_{n+1}}, u_{\alpha_{n+k}}\right]$ commutes with $u_{\alpha_{n+1}}$ and $u_{\alpha_{n+k}}$. Let \mathcal{M} be a commutator blueprint of type (W, S). Then \mathcal{M} is a pre-commutator blueprint of type (W, S) by Lemma (2.1.4) It is not hard to see that if the groups U_{w} of a commutator blueprint are of nilpotency class at most 2, then the pre-commutator blueprint is 2-nilpotent (cf. Lemma (3.3.1)] .
(4.2.2) Lemma. Let \mathcal{M} be a 2-nilpotent pre-commutator blueprint of type (W, S). Then \mathcal{M} is a commutator blueprint of type (W, S) and the groups U_{w} are of nilpotency class at most 2 .

Proof. Let $w \in W, G=\left(d_{0}, \ldots, d_{n}=c_{0}, \ldots, c_{k}\right) \in \operatorname{Min}(w)$ and $H=\left(c_{0}, \ldots, c_{k}\right)$. We show by induction on $k \geq 0$, that $\left|U_{H, G}\right|=2^{k}$ and $U_{H, G}$ is of nilpotency class at most 2. This will finish the claim as $U_{G, G} \cong U_{G} \cong U_{w}$ by (PCB). We remark that the induction is on the length of the gallery H and not on the length of the gallery G.

If $k \leq 2$, the claim follows as $U_{H, G} \cong\left\{\begin{array}{ll}\{1\} & k=0 \\ \mathbb{Z}_{2} & k=1 . \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} & k=2\end{array}\right.$ Thus we assume $k>2$. Let $G^{\prime}=$ $\left(d_{0}, \ldots, d_{n}=c_{0}, \ldots, c_{k-1}\right), G_{1}=\left(c_{0}, \ldots, c_{k-1}\right), G_{2}=\left(c_{1}, \ldots, c_{k}\right)$ and $K=\left(c_{1}, \ldots, c_{k-1}\right)$. Using induction, the groups $U_{G_{1}, G^{\prime}}, U_{G_{2}, G}$ are of nilpotency class at most 2 and we have

$$
\left|U_{G_{1}, G^{\prime}}\right|=2^{k-1}, \quad\left|U_{K, G^{\prime}}\right|=2^{k-2}, \quad\left|U_{G_{2}, G}\right|=2^{k-1}
$$

Because of (CB1) we have $U_{G_{1}, G^{\prime}}=U_{G_{1}, G}$ as well as $U_{K, G^{\prime}}=U_{K, G}$. Clearly, $U_{K, G} \rightarrow$ $U_{G_{1}, G}, U_{G_{2}, G}$ are injective and $U_{G_{1}, G} \cong\left\langle u_{\alpha_{n+1}}\right\rangle \ltimes U_{K, G}, U_{G_{2}, G} \cong\left\langle u_{\alpha_{n+k}}\right\rangle \ltimes U_{K, G}$. In particular, $u_{\alpha_{n+1}}, u_{\alpha_{n+k}}$ act on $U_{K, G}$ via conjugation. Using (2-n2) and (2-n1) we deduce

$$
\begin{array}{r}
u_{\alpha_{n+1}}\left(u_{\alpha}\right) u_{\alpha}=\prod_{\gamma \in M_{\alpha_{n+1}^{G}, \alpha}^{G}} u_{\gamma} \in \operatorname{Stab}_{U_{K, G}}\left(u_{\alpha_{n+k}}\right) \\
u_{\alpha_{n+k}}\left(u_{\alpha}\right) u_{\alpha}=\left(u_{\alpha} \cdot u_{\alpha_{n+k}}\left(u_{\alpha}\right)\right)^{-1}=\left(\prod_{\gamma \in M_{\alpha, \alpha_{n+k}}^{G}} u_{\gamma}\right)^{-1} \in \operatorname{Stab}_{U_{K, G}}\left(u_{\alpha_{n+1}}\right)
\end{array}
$$

for all $\alpha=\alpha_{n+i}$ with $2 \leq i \leq k-1$. Since $U_{K, G}$ is generated by these u_{α} and since $U_{G_{1}, G}, U_{G_{2}, G}$ are of nilpotency class at most 2 , it follows by induction that for $n, n^{\prime}, u_{\alpha} \in U_{K, G}$ with $n=n^{\prime} u_{\alpha}$ we have

$$
u_{\alpha_{n+1}}(n) n^{-1}=u_{\alpha_{n+1}}\left(n^{\prime}\right) u_{\alpha_{n+1}}\left(u_{\alpha}\right) u_{\alpha}\left(n^{\prime}\right)^{-1}
$$

$$
\begin{aligned}
& =u_{\alpha_{n+1}}\left(n^{\prime}\right)\left[u_{\alpha_{n+1}}, u_{\alpha}\right]\left(n^{\prime}\right)^{-1} \\
& =u_{\alpha_{n+1}}\left(n^{\prime}\right)\left(n^{\prime}\right)^{-1} u_{\alpha_{n+1}}\left(u_{\alpha}\right) u_{\alpha} \in \operatorname{Stab}_{U_{K, G}}\left(u_{\alpha_{n+k}}\right) \\
n u_{\alpha_{n+k}}\left(n^{-1}\right) & =n^{\prime} u_{\alpha} u_{\alpha_{n+k}}\left(u_{\alpha}\right) u_{\alpha_{n+k}}\left(\left(n^{\prime}\right)^{-1}\right) \\
& =n^{\prime}\left[u_{\alpha}, u_{\alpha_{n+k}}\right] u_{\alpha_{n+k}}\left(\left(n^{\prime}\right)^{-1}\right) \\
& =u_{\alpha} u_{\alpha_{n+k}}\left(u_{\alpha}\right) n^{\prime} u_{\alpha_{n+k}}\left(\left(n^{\prime}\right)^{-1}\right) \in \operatorname{Stab}_{U_{K, G}}\left(u_{\alpha_{n+k}}\right)
\end{aligned}
$$

In particular, $u_{\alpha_{n+k}}(n) n^{-1}=\left(n u_{\alpha_{n+k}}\left(n^{-1}\right)\right)^{-1} \in \operatorname{Stab}_{U_{K, G}}\left(u_{\alpha_{n+k}}\right)$. Using (2-n3), (2-n4) and (2-n5), Corollary (4.1.3) implies that the mapping

$$
\mathbb{Z}_{2} \times U_{K, G} \times \mathbb{Z}_{2} \rightarrow U_{G_{1}, G} \star_{U_{K, G}} U_{G_{2}, G} /\left\langle\left\langle\left[u_{\alpha_{n+1}}, u_{\alpha_{n+k}}\right]=\prod_{\gamma \in M_{\alpha_{n+1}, \alpha_{n+k}}} u_{\gamma}\right\rangle\right\rangle
$$

is a bijection and the latter group is of nilpotency class at most 2 . Moreover, the latter group is isomorphic to $U_{\left(c_{0}, \ldots, c_{k}\right), G}$ and we are done.
(4.2.3) Theorem. Let (W, S) be right-angled (i.e. $m_{s t} \in\{2, \infty\}$ for all $s \neq t \in S$) such that every connected component of the Coxeter diagram of (W, S) is the complete graph. Then each Weyl-invariant 2-nilpotent pre-commutator blueprint of type (W, S) is integrable.
Proof. The previous lemma implies that \mathcal{M} is a commutator blueprint of type (W, S). Let k be the number of connected components of the Coxeter diagram of (W, S) and let $J_{1}, \ldots, J_{k} \subseteq S$ be the vertex sets of the connected components. Then $W \cong\left\langle J_{1}\right\rangle \times \cdots \times\left\langle J_{k}\right\rangle$. Let $\{\alpha, \beta\} \in \mathcal{P}$. If $\alpha=w \alpha_{s}, \beta=v \alpha_{t}$ and $m_{s t}=2$, then $(\alpha, \beta)=\emptyset$. Consider the commutator blueprint $\mathcal{M}_{i}=\left(M_{\alpha, \beta}^{G}\right)_{(G, \alpha, \beta) \in \mathcal{I}_{i}}$, where $\mathcal{I}_{i}=\left\{(G, \alpha, \beta) \in \mathcal{I} \mid G \in \bigcup_{w \in\left\langle J_{i}\right\rangle} \operatorname{Min}(w)\right\}$ of type $\left(\left\langle J_{i}\right\rangle, J_{i}\right)$. Then \mathcal{M}_{i} is integrable by Corollary (2.2.15) Let $\mathcal{D}_{i}=\left(G_{i},\left(U_{\alpha}^{i}\right)_{\alpha \in \Phi^{J_{i}}}\right)$ be an RGD-system of type $\left(\left\langle J_{i}\right\rangle, J_{i}\right)$ over \mathbb{F}_{2} such that $\mathcal{M}_{\mathcal{D}_{i}}=\mathcal{M}_{i}$. Then $G_{1} \times \cdots \times G_{k}$ yields an RGD-system \mathcal{D} such that $\mathcal{M}=\mathcal{M}_{\mathcal{D}}$ and hence \mathcal{M} is integrable.
(4.2.4) Theorem. Let (W, S) be a union of \tilde{A}_{1} diagrams. Let \mathcal{M} be a Weyl-invariant precommutator blueprint of type (W, S). Then the following are equivalent:
(i) \mathcal{M} is integrable.
(ii) \mathcal{M} is 2-nilpotent.

Proof. Let \mathcal{M} be a Weyl-invariant pre-commutator blueprint of type (W, S). Assume that \mathcal{M} is integrable. Then there exists an RGD-system $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ of type (W, S) over \mathbb{F}_{2} such that $\mathcal{M}=\mathcal{M}_{\mathcal{D}}$. Let k be the number of connected components of the Coxeter diagram of (W, S) and let $J_{1}, \ldots, J_{k} \subseteq S$ be the vertex sets of the connected components. Then $W \cong\left\langle J_{1}\right\rangle \times \cdots\left\langle J_{k}\right\rangle$ and we can write every $w \in W$ as a product $v_{1} \cdots v_{k}$, where each v_{i} is contained in $\left\langle J_{i}\right\rangle$. In particular, $U_{w} \cong U_{v_{1}} \times \cdots \times U_{v_{k}}$. It is a direct consequence of [21, Theorem A] that each $U_{v_{i}}$ and hence U_{w} is of nilpotency class at most 2. In particular, $\mathcal{M}_{\mathcal{D}}$ is 2 -nilpotent. The other implication follows from the previous theorem.
(4.2.5) Definition. Suppose that $m_{s t}=\infty$ for all $s \neq t \in S$. Let $s \neq t \in S$.
(a) Let $1 \leq k \in \mathbb{N}, J \subseteq\{1, \ldots, k\}$, let $\alpha \neq \beta \in \Phi_{+}$and let $G \in$ Min be such that $\alpha, \beta \in \Phi(G)$. Assume that there exists a minimal gallery $H=\left(c_{0}, \ldots, c_{k}\right)$ of type (s, t, \ldots, s, t, s) such that $\left\{c_{0}, c_{1}\right\} \in \partial \alpha, c_{0} \in \alpha,\left\{c_{k-1}, c_{k}\right\} \in \partial \beta, c_{k-1} \in \beta$ and s appears $k+1$ times and t appears k times in the type of H. Let $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be the sequence of roots crossed by H. Then we define

$$
M(k, J,(s, t))_{\alpha, \beta}^{G}:=\left\{\alpha_{2 j} \mid j \in J\right\}
$$

(b) Let $\emptyset \neq K \subseteq \mathbb{N}$ and let $\mathcal{J}=\left(J_{k}\right)_{k \in K}$ be a family of subsets $J_{k} \subseteq\{1, \ldots, k\}$. For $\alpha \neq \beta \in \Phi_{+}$and $G \in$ Min with $\alpha, \beta \in \Phi(G)$ we define

$$
M(K, \mathcal{J},(s, t))_{\alpha, \beta}^{G}:=\bigcup_{k \in K} M\left(k, J_{k},(s, t)\right)_{\alpha, \beta}^{G}
$$

Moreover, we define $\mathcal{M}(K, \mathcal{J},(s, t)):=\left(M(K, \mathcal{J},(s, t))_{\alpha, \beta}^{G}\right)_{(G, \alpha, \beta) \in \mathcal{I}}$.
(4.2.6) Theorem. Let $s \neq t \in S$, let $\emptyset \neq K \subseteq \mathbb{N}$ and let $\mathcal{J}=\left(J_{k}\right)_{k \in K}$ be a family of subsets $J_{k} \subseteq\{1, \ldots, k\}$. Then $\mathcal{M}(K, \mathcal{J},(s, t))$ is an integrable commutator blueprint.

Proof. We abbreviate $\mathcal{M}:=\mathcal{M}(K, \mathcal{J},(s, t))$. By definition, \mathcal{M} satisfies (CB1) and (CB2). As $|\operatorname{Min}(w)|=1$ for every $w \in W,(\mathrm{PCB})$ is also satisfied and \mathcal{M} is a pre-commutator blueprint. Let $\alpha \in \Phi$ be a root. Because of the type of (W, S) we deduce that $|\partial \alpha|=1$ (cf. Lemma $(1.4 .2)$, and we call $\delta(c, d) \in S$ the type of α, where $\{c, d\} \in \partial \alpha$. Now let $\alpha \neq \beta \in \Phi_{+}$be such that $M_{\alpha, \beta}^{G} \neq \emptyset$. Then α, β are roots of type s and every $\gamma \in M_{\alpha, \beta}^{G}$ is a root of type t. Now it is straight forward to verify that \mathcal{M} is 2-nilpotent. Moreover, \mathcal{M} is Weyl-invariant, as $M_{\alpha, \beta}^{G}$ does only depend on the existence of a suitable gallery H and not on G. Now Theorem (4.2.3) yields the claim.
(4.2.7) Remark. It is mentioned in [16, Remark before Lemma 5] that Abramenko and Mühlherr constructed an example of an RGD-system of right-angled type and of rank 3 which does not satisfy property (FPRS). The author of this thesis is not aware of any publication that provides the existence of RGD-systems of rank at least 3 which do not satisfy property (FPRS). We have defined this property in Section 1.7.
(4.2.8) Corollary. Let $s \neq t \in S$ and for every $n \in \mathbb{N}$ we let $J_{n} \subseteq\{1, \ldots, n\}$ with $1 \in J_{n}$. Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be the RGD-system associated with $\mathcal{M}\left(\mathbb{N},\left(J_{n}\right)_{n \in \mathbb{N}},(s, t)\right)$. Then \mathcal{D} does not satisfy property (FPRS).

Proof. Assume \mathcal{D} would have property (FPRS). Let $G_{n}=\left(c_{0}, \ldots, c_{n}\right) \in \operatorname{Min}(w)$ be of type (s, t, s, t, \ldots) with $\ell(w)=n$ (i.e. G_{1} has type (s) and G_{2} has type (s, t)) and we define $\alpha_{n}:=\alpha_{G_{n}}$. Then $\lim _{i \rightarrow \infty} \ell\left(1_{W}, \alpha_{2 i-1}\right)=\infty$. As \mathcal{D} has property (FPRS), there exists $n_{0} \in \mathbb{N}$ such that for all $i \geq n_{0}$ the root group $U_{\alpha_{2 i-1}}$ fixes the ball $B(c, 2)$ pointwise. But then $\left[u_{\alpha_{1}}, u_{\alpha_{2 i-1}}\right]=\prod_{j \in J_{i}} u_{\alpha_{2 j}}$ would also fix $B(c, 2)$ pointwise, which is a contradiction, as $1 \in J_{i}$.

Part III.

Faithful commutator blueprints of type (4, 4, 4)

5. Buildings of type $(4,4,4)$

In Chapter 5 we assume that (W, S) is of type $(4,4,4)$ and that $S=\{r, s, t\}$. This chapter contains many auxiliary results and proofs about roots in the Coxeter buildings of type $(4,4,4)$. Moreover, we prove that any RGD-system of type $(4,4,4)$ over \mathbb{F}_{2} contains a suitable subgroup, which is a sequence of groups.

5.1. Coxeter buildings of type $(4,4,4)$

(5.1.1) Lemma. Suppose $w \in W$ with $\ell(w s)=\ell(w)+1=\ell(w t)$. Then $\ell(w)+2 \in$ $\{\ell(w s r), \ell(w t r)\}$. Moreover, if $\ell(w s r)=\ell(w)$, then $\ell(w s r t)=\ell(w)+1$.

Proof. Let $\left(c_{0}=1_{W}, \ldots, c_{k-2}=w, c_{k-1}=w s, c_{k}=w s t\right)$ be a minimal gallery of type $\left(s_{1}, \ldots, s_{k-2}, s, t\right)$. Then we have $s_{k-2}=r$. We assume that $\ell\left(s_{1} \cdots s_{k-2} s r\right)=k-2=$ $\ell\left(s_{1} \cdots s_{k-2} t r\right)$. Then $\ell\left(s_{1} \cdots s_{k-3} s\right)=k-4=\ell\left(s_{1} \cdots s_{k-3} t\right)$. Let R be the $\{s, t\}$ residue containing c_{k-3}, let T be the $\{t, r\}$-residue containing c_{k-3} and let P be the t-panel containing c_{k-3}. Then $P=R \cap T$ and Proposition (1.5.4) yields $\operatorname{proj}_{T} 1_{W}=\operatorname{proj}_{P} 1_{W}$, which is a contradiction to the type $(4,4,4)$. Thus the first claim follows.

Now suppose that $\ell(w s r)=\ell(w)$. Assume that $\ell(w s r t)=\ell(w)-1$. Then $\mathcal{P}_{t}\left(c_{k-1}\right)=$ $R_{\{s, t\}}\left(c_{k-1}\right) \cap R_{\{r, t\}}\left(c_{k-1}\right)$ and $\ell\left(1_{W}, \operatorname{proj}_{R_{\{r, t\}}\left(c_{k-1}\right)} 1_{W}\right)<\ell(w)=\ell\left(1_{W}, \operatorname{proj}_{R_{\{s, t\}}\left(c_{k-1}\right)} 1_{W}\right)$. Again Proposition (1.5.4) yields a contradiction and we have $\ell(w s r t)=\ell(w)+1$.
(5.1.2) Lemma. Suppose $w \in W$ such that $\ell(w s)=\ell(w)+1=\ell(w t)$ and suppose $w^{\prime} \in\langle s, t\rangle$ with $\ell\left(w^{\prime}\right) \geq 2$. Then $\ell\left(w w^{\prime} r f\right)=\ell(w)+\ell\left(w^{\prime}\right)+1+\ell(f)$ for each $f \in\left\{1_{W}, s, t\right\}$.

Proof. At first we show the claim for $w^{\prime}=s t$. If $\ell(w s r)=\ell(w s)+1$, then $\ell(w s t r t)=\ell(w s t)+2$, as $\ell(w s t)=\ell(w s)+1$. As $\ell(w s t r)=\ell(w s t s)=\ell(w s t)+1$, we deduce $\ell(w s t r f)=\ell(w)+$ $3+\ell(f)$ for $f \in\left\{1_{W}, s, t\right\}$. Thus we can assume $\ell(w s r)=\ell(w)$. By Lemma (5.1.1) we have $\ell(w s r t)=\ell(w)+1=\ell((w s r) r)$. This implies $\ell(w s t r t)=\ell(w)+4$. Moreover, we have $\ell(w s t r)=\ell(w s t s)=\ell(w)+3$ and hence $\ell(w s t r s)=\ell(w)+4$. Using similar arguments, the claim follows for all $w^{\prime} \in\langle s, t\rangle$ with $\ell\left(w^{\prime}\right) \geq 2$.
(5.1.3) Lemma. We have tstr $\alpha_{s} \cap s t s r \alpha_{t} \cap\left(W \backslash\left\{r_{\{s, t\}} r\right\}\right) \subseteq r_{\{s, t\}} \alpha_{r}$.

Proof. Let $r_{\{s, t\}} r \neq w \in t s t r \alpha_{s} \cap s t s r \alpha_{t}$ be an element. We have to show that $r_{\{s, t\}} w \in \alpha_{r}$, i.e. $\ell\left(r r_{\{s, t\}} w\right)=\ell\left(r_{\{s, t\}} w\right)+1$. We distinguish the following cases:
(i) $\ell\left(w^{-1}\right)+2 \in\left\{\ell\left(w^{-1} t s\right), \ell\left(w^{-1} s t\right)\right\}$: Then $\ell\left(w^{-1} r_{\{s, t\}}\right) \geq \ell\left(\operatorname{proj}_{R_{\{s, t\}\left(w^{-1}\right)}} 1_{W}\right)+2$ and we deduce $\ell\left(r r_{\{s, t\}} w\right)=\ell\left(w^{-1} r_{\{s, t\}} r\right)=\ell\left(w^{-1} r_{\{s, t\}}\right)+1=\ell\left(r_{\{s, t\}} w\right)+1$ from Lemma (5.1.2)
(ii) $\ell\left(w^{-1} s\right)=\ell\left(w^{-1}\right)+1$ and $\ell\left(w^{-1} s t\right)=\ell\left(w^{-1}\right)$: By assumption, we have $w \in t s t r \alpha_{s}$ and hence $\ell(s(r t s t w))=\ell(r t s t w)+1$. This implies $\ell\left(w^{-1} t s t r s\right)=\ell\left(w^{-1} t s t r\right)+1$ and, in particular, $\ell\left(w^{-1} r_{\{s, t\}} r\right)=\ell\left(w^{-1} r_{\{s, t\}}\right)+1$.
(iii) $\ell\left(w^{-1} t\right)=\ell\left(w^{-1}\right)+1$ and $\ell\left(w^{-1} t s\right)=\ell\left(w^{-1}\right)$: This follows similar as in the previous case.
(iv) $\ell\left(w^{-1} s\right)=\ell\left(w^{-1}\right)-1=\ell\left(w^{-1} t\right)$: If $\ell\left(r r_{\{s, t\}} w\right)=\ell\left(r_{\{s, t\}} w\right)+1$ there is nothing to show. Thus we suppose $\ell\left(r r_{\{s, t\}} w\right)=\ell\left(r_{\{s, t\}} w\right)-1$. Assume that $\ell\left(w^{-1} s t s r\right)=\ell\left(w^{-1} s t s\right)-1$. Then we would have $\ell\left(w^{-1} s t s r t\right)=\ell\left(w^{-1} s t s\right)-2$, which is a contradiction to the assumption $\ell(t r s t s w)=\ell(r s t s w)+1$. Thus we have $\ell\left(w^{-1} s t s r\right)=\ell\left(w^{-1} s t s\right)+1$ and $\ell\left(w^{-1}\right.$ stsrt $)=\ell\left(w^{-1}\right.$ sts $)+2$. Similarly, we deduce $\ell\left(w^{-1} t s t r s\right)=\ell\left(w^{-1} t s t\right)+2$. This yields $\ell\left(w^{-1} r_{\{s, t\}} r u\right)=\ell\left(w^{-1} r_{\{s, t\}} r\right)+1$ for each $u \in S=\{r, s, t\}$ and hence $w^{-1} r_{\{s, t\}} r=1$. Since $w \neq r_{\{s, t\}} r$ by assumption, we have a contradiction and we are done.
(5.1.4) Lemma. Let $H=\left(d_{0}, \ldots, d_{4}\right)$ be a minimal gallery of type (r, s, t, r) and let $\beta \in \Phi$ with $\left\{d_{0}, d_{1}\right\} \in \partial \beta$ and $d_{0} \in \beta$. Then $\beta \subsetneq \gamma$ for each $\gamma \in\left\{\alpha_{\left(d_{0}, \ldots, d_{3}\right)}, \alpha_{\left(d_{0}, \ldots, d_{4}\right)}\right\}$.
Proof. We use the canonical linear representation of (W, S) (cf. [2, §2.5]). Let $V:=\mathbb{R}^{S}$ be the vector space over \mathbb{R} with standard basis $\left(e_{s}\right)_{s \in S}$ and let (\cdot, \cdot) be the symmetric bilinear form on V given by

$$
\left(e_{s}, e_{t}\right):=-\cos \left(\frac{\pi}{m_{s t}}\right)= \begin{cases}1 & \text { if } \mathrm{s}=\mathrm{t} \\ -\frac{\sqrt{2}}{2} & \text { else }\end{cases}
$$

Then W acts on V via $\sigma: W \rightarrow \mathrm{GL}(V), s \mapsto\left(\sigma_{s}: V \rightarrow V, x \mapsto x-2\left(x, e_{s}\right) e_{s}\right)$ and (\cdot, \cdot) is invariant under this action. Let β and γ be as in the statement. Without loss of generality we can assume $\beta=\alpha_{r}$ and $\gamma \in\left\{r s \alpha_{t}, r s t \alpha_{r}\right\}$. At first, we consider the case $\gamma=\alpha_{\left(d_{0}, \ldots, d_{3}\right)}$. Then $\gamma=r s \alpha_{t}$. We compute:

$$
\left(e_{r}, \sigma(r s)\left(e_{t}\right)\right)=\left(e_{r}, \sigma_{r}\left(\sigma_{s}\left(e_{t}\right)\right)\right)=\left(\sigma_{r}\left(e_{r}\right), \sigma_{s}\left(e_{t}\right)\right)=\left(-e_{r}, e_{t}+\sqrt{2} e_{s}\right)=\frac{\sqrt{2}}{2}+1>1
$$

Now we assume $\gamma=\alpha_{\left(d_{0}, \ldots, d_{4}\right)}$. Then $\gamma=r s t \alpha_{r}$ and we compute:

$$
\begin{aligned}
\left(e_{r}, \sigma(r s t)\left(e_{r}\right)\right) & =\left(e_{r}, \sigma_{r}\left(\sigma_{s}\left(\sigma_{t}\left(e_{r}\right)\right)\right)\right) \\
& =\left(\sigma_{s}\left(-e_{r}\right), \sigma_{t}\left(e_{r}\right)\right) \\
& =\left(-e_{r}-2\left(-e_{r}, e_{s}\right) e_{s}, e_{r}-2\left(e_{r}, e_{t}\right) e_{t}\right) \\
& =-\left(e_{r}, e_{r}\right)+2\left(e_{r}, e_{t}\right)\left(e_{r}, e_{t}\right)+2\left(e_{r}, e_{s}\right)\left(e_{s}, e_{r}\right)-4\left(e_{r}, e_{s}\right)\left(e_{r}, e_{t}\right)\left(e_{s}, e_{t}\right) \\
& =-1+2 \cdot \frac{-\sqrt{2}}{2} \cdot \frac{-\sqrt{2}}{2}+2 \cdot \frac{-\sqrt{2}}{2} \cdot \frac{-\sqrt{2}}{2}-4 \cdot \frac{-\sqrt{2}}{2} \cdot \frac{-\sqrt{2}}{2} \cdot \frac{-\sqrt{2}}{2} \\
& =-1+1+1+\sqrt{2}>1
\end{aligned}
$$

Using [2, Lemma 2.77] we obtain that $o\left(r_{\beta} r_{\gamma}\right)=\infty$. As $\{\beta, \gamma\} \in \mathcal{P}$, Lemma (1.4.7) and [2, Lemma $8.42(3)]$ yield that $\{\beta, \gamma\}$ is a pair of nested roots and hence $\beta \subsetneq \gamma$.
(5.1.5) Lemma. Let $s \neq t \in S$, let $P:=\left\{1_{W}, s\right\} \neq Q \in \partial \alpha_{s}$ and let $P_{0}:=P, \ldots, P_{n}=$ Q, R_{1}, \ldots, R_{n} be as in Lemma (1.4.2). If $n>1$, then there exists $\varepsilon \in\{+,-\}$ such that for every $\operatorname{root} \beta \in\left\{\varepsilon \alpha_{t}, \varepsilon s \alpha_{t}, \varepsilon t \alpha_{s}\right\}$ there exists a non-simple root γ of R_{n} with $\beta \subseteq \gamma$.

Proof. We prove the hypothesis by induction on n. Suppose first $n=2$. At first we observe by Lemma (5.1.4) that for each root $\alpha_{s} \neq \beta \in \Phi_{+}$with $R_{1} \in \partial^{2} \beta$ there exists a non-simple root γ_{β} of R_{2} such that $\beta \subseteq \gamma_{\beta}$. If $R=R_{1}$, the claim follows with $\varepsilon:=+$. If $R \neq R_{1}$, we apply our observation twice and the claim follows with $\varepsilon:=-$. Thus we can assume $n>2$. Using our observation there exists $\varepsilon \in\{+,-\}$ such that for every root $\alpha_{s} \neq \beta \in \Phi_{+}$with $R \in \partial^{2} \beta$ there exists a non-simple root γ_{β}^{\prime} of R_{n-1} such that $\varepsilon \beta \subseteq \gamma_{\beta}^{\prime}$. Using induction again, there exists a non-simple root γ_{β} of R_{n} such that $\gamma_{\beta}^{\prime} \subseteq \gamma_{\beta}$. In particular, we have $\varepsilon \beta \subseteq \gamma_{\beta}^{\prime} \subseteq \gamma_{\beta}$ and the claim follows.

5.2. Roots in Coxeter systems of type (4, 4, 4)

Let $\alpha \in \Phi_{+}$be a root such that $k_{\alpha}>$ 1, i.e. α is not a simple root. Let $R \in \partial^{2} \alpha$ be a residue such that α is not a simple root of R (for the existence of such a residue see the next remark). Let $P \neq P^{\prime} \in \partial \alpha$ be contained in R. Then $\ell\left(1_{W}, \operatorname{proj}_{P} 1_{W}\right) \neq \ell\left(1_{W}, \operatorname{proj}_{P^{\prime}} 1_{W}\right)$ and we can assume that $\ell\left(1_{W}, \operatorname{proj}_{P} 1_{W}\right)<\ell\left(1_{W}, \operatorname{proj}_{P^{\prime}} 1_{W}\right)$. Let $G=\left(c_{0}, \ldots, c_{k}\right) \in$ Min be of type $\left(s_{1}, \ldots, s_{k}\right)$ such that $c_{k-2}=\operatorname{proj}_{R} 1_{W}, c_{k-1}=\operatorname{proj}_{P} 1_{W}$ and $c_{k} \in P \backslash\left\{c_{k-1}\right\}$. For $P \neq Q:=\{x, y\} \in \partial \alpha$ with $x \in \alpha$ and $y \notin \alpha$ we let $P_{0}=P, \ldots, P_{n}=Q$ and R_{1}, \ldots, R_{n} be as in Lemma (1.4.2). We assume that $r \notin\left\{s_{k-1}, s_{k}\right\}$.
(5.2.1) Remark. Let $\alpha \in \Phi_{+}$be a positive root such that $k_{\alpha}>1$. Let $G=\left(c_{0}, \ldots, c_{k_{\alpha}}\right) \in$ Min be a minimal gallery with $\left\{c_{k_{\alpha}-1}, c_{k_{\alpha}}\right\} \in \partial \alpha$. Then α is not a simple root of the rank 2 residue containing $c_{k_{\alpha}-2}, c_{k_{\alpha}-1}, c_{k_{\alpha}}$. In particular, there exists $R \in \partial^{2} \alpha$ such that α is not a simple root of R.
(5.2.2) Lemma. Assume that one of the following hold:
(a) $R_{1} \neq R$ and $\ell\left(s_{1} \cdots s_{k-1} r\right)=k$;
(b) $n>1$.

Then $\operatorname{proj}_{R_{n}} 1_{W}=\operatorname{proj}_{P_{n-1}} 1_{W}$.
Proof. Suppose $R_{1} \neq R$ and $\ell\left(s_{1} \cdots s_{k-1} r\right)=k$. Then $\operatorname{proj}_{R_{1}} c_{0}=\operatorname{proj}_{P_{0}} c_{0}$ and the claim follows from Corollary (1.5.5). Now suppose that $n>1$. Assume that $R_{1}=R$. Then Lemma (5.1.2) implies $\operatorname{proj}_{R_{2}} 1_{W}=\operatorname{proj}_{P_{1}} 1_{W}$ and the claim follows from Corollary (1.5.5). Now we suppose $R_{1} \neq R$. If $\ell\left(s_{1} \cdots s_{k-1} r\right)=k$, the claim follows by Assertion (a). Thus we can assume that $\ell\left(s_{1} \cdots s_{k-1} r\right)=k-2$. Let $d:=\operatorname{proj}_{R_{\left\{s_{k}, r\right\}}\left(c_{k}\right)} c_{0}$ be and replace G by a minimal gallery $\left(d_{0}=c_{0}, \ldots, d, c_{k-1}, c_{k}\right)$. Now we are in the situation of $R_{1}=R$ and the claim follows.
(5.2.3) Lemma. We have $k=k_{\alpha}$ and the panel $P_{\alpha}:=P$ is the unique panel in $\partial \alpha$ with the property that $\ell\left(1_{W}, \operatorname{proj}_{P_{\alpha}} 1_{W}\right)=k_{\alpha}-1$.

Proof. We have $\ell\left(1_{W}, \operatorname{proj}_{P} 1_{W}\right)=k-1$. Thus it suffices to show that $\ell\left(1_{W}, \operatorname{proj}_{Q} 1_{W}\right)>$ $k-1$. For $n=1$ we obtain $\ell\left(1_{W}, \operatorname{proj}_{Q} 1_{W}\right) \in\{k, k+2\}$. Now we assume $n>1$. Using the previous lemma we obtain $\operatorname{proj}_{R_{n}} 1_{W}=\operatorname{proj}_{P_{n-1}} 1_{W}$. Since $Q \subseteq R_{n}$ we obtain $\ell\left(1_{W}, \operatorname{proj}_{Q} 1_{W}\right) \geq \ell\left(1_{W}, \operatorname{proj}_{R_{n}} 1_{W}\right)=\ell\left(1_{W}, \operatorname{proj}_{P_{n-1}} 1_{W}\right)$. Now the claim follows by induction.
(5.2.4) Lemma. Let $\gamma \in \Phi_{+}$be the simple root of R containing P_{α} and let $\delta \in \Phi_{+}$be the simple root of R which does not contain P_{α}. Then the following hold:
(a) If $R \neq R_{1}$ and $\ell\left(s_{1} \cdots s_{k-1} r\right)=k$, then α is a simple root of R_{1} and $-\gamma$ is contained in all roots $\alpha \neq \rho \in \Phi_{+}$with $R_{n} \in \partial^{2} \rho$.
(b) If $R \neq R_{1}$ and $\ell\left(s_{1} \cdots s_{k-1} r\right)=k-2$, then α is a non-simple root of R_{1} and $-\gamma$ is contained in the non-simple root of R_{1} different from α and in the simple root of R_{1} which contains P_{α}. If in addition $n>1$, then $-\gamma$ is contained in all roots $\alpha \neq \rho \in \Phi_{+}$ with $R_{n} \in \partial^{2} \rho$.
(c) If $R=R_{1}$ and $n>1$, then $-\delta$ is contained in the simple root of R_{2} different from α and in the non-simple root ε of R_{2}, where P_{ε} and P_{α} have the same type. If in addition $n>2$, then $-\delta$ is contained in all roots $\alpha \neq \rho \in \Phi_{+}$with $R_{n} \in \partial^{2} \rho$.

In particular, if $R \neq R_{1}$ or if $n>1$, then there exists a simple root of R, say ω, and a non-simple root of R_{n}, say ω_{n}, such that $-\omega \subseteq \omega_{n}$.

Proof. Suppose we are in situation of Assertion (a). It follows from Lemma (5.1.4) that $-\gamma$ is contained in all roots $\alpha \neq \rho \in \Phi_{+}$with $R_{1} \in \partial^{2} \rho$. Now it follows by induction, that for every root $\alpha \neq \rho \in \Phi_{+}$with $R_{n} \in \partial^{2} \rho$, there exists a root $\alpha \neq \rho^{\prime} \in \Phi_{+}$with $R_{1} \in \partial^{2} \rho^{\prime}$ with $\rho^{\prime} \subseteq \rho$. Thus (a) follows.

The first part of the Assertions (b) and (c) follows from Lemma (5.1.4). The second part follows similarly as in the proof of Assertion (a) by induction.
(5.2.5) Lemma. We define $R_{\alpha, Q}$ to be the residue R_{1} if $R \neq R_{1}$ and $\ell\left(s_{1} \cdots s_{k-1} r\right)=k-2$. In all other cases, we define $R_{\alpha, Q}:=R$. Then there exists a minimal gallery $H=\left(d_{0}=\right.$ $\left.c_{0}, \ldots, d_{m}=\operatorname{proj}_{Q} c_{0}, y\right)$ with the following properties:

- $\alpha_{H}=\alpha$;
- There exists $0 \leq i \leq m$ such that $d_{i}=\operatorname{proj}_{R_{\alpha, Q}} 1_{W}$.
- For each $i+1 \leq j \leq m$ there exists $L_{j} \in \partial^{2} \alpha$ with $\left\{c_{j-1}, c_{j}\right\} \subseteq L_{j}$. In particular, we have $d_{j} \in \mathcal{C}\left(\partial^{2} \alpha\right)$.

Proof. We define

$$
d:= \begin{cases}\operatorname{proj}_{P_{0}} c_{0} & \text { if } R \neq R_{1} \text { and } \ell\left(s_{1} \cdots s_{k-1} r\right)=k \\ \operatorname{proj}_{P_{1}} c_{0} & \text { else }\end{cases}
$$

We first show that $\ell\left(c_{0}, \operatorname{proj}_{Q} c_{0}\right)=\ell\left(c_{0}, \operatorname{proj}_{R_{\alpha, Q}} c_{0}\right)+\ell\left(\operatorname{proj}_{R_{\alpha, Q}} c_{0}, d\right)+\ell\left(d, \operatorname{proj}_{Q} c_{0}\right)$. By definition we have $R_{\alpha, Q}=R_{\alpha, P_{i}}$ for all $1 \leq i \leq n$. We prove the hypothesis by induction on n. Suppose first $n=1$ and that one of the following hold:

- $R=R_{1}$;
- $R \neq R_{1}$ and $\ell\left(s_{1} \cdots s_{k-1} r\right)=k-2 ;$

Then $Q=P_{1} \subseteq R_{\alpha, Q}, d=\operatorname{proj}_{Q} c_{0}$ and the claim follows. We prove the case $\ell\left(s_{1} \cdots s_{k-1} r\right)=$ k and $R \neq R_{1}$ together with the case $n>1$ simultaneously. Lemma (5.2.2) provides in both cases $\operatorname{proj}_{R_{n}} c_{0}=\operatorname{proj}_{P_{n-1}} c_{0}$. If $n>1$, we have $R_{\alpha, Q}=R_{\alpha, P_{n-1}}$; if $n=1$ we have $P_{n-1}=P_{0} \subseteq R_{\alpha, Q}$ and $d=\operatorname{proj}_{P_{n-1}} c_{0}$. This is used in the third equation below. We compute the following:

$$
\begin{aligned}
\ell\left(c_{0}, \operatorname{proj}_{Q} c_{0}\right)= & \ell\left(c_{0}, \operatorname{proj}_{R_{n}} c_{0}\right)+\ell\left(\operatorname{proj}_{R_{n}} c_{0}, \operatorname{proj}_{Q} c_{0}\right) \\
= & \ell\left(c_{0}, \operatorname{proj}_{P_{n-1}} c_{0}\right)+\ell\left(\operatorname{proj}_{P_{n-1}} c_{0}, \operatorname{proj}_{Q} c_{0}\right) \\
= & \ell\left(c_{0}, \operatorname{proj}_{R_{\alpha, Q}} c_{0}\right)+\ell\left(\operatorname{proj}_{R_{\alpha, Q}} c_{0}, d\right)+\ell\left(d, \operatorname{proj}_{P_{n-1}} c_{0}\right) \\
& \quad+\ell\left(\operatorname{proj}_{P_{n-1}} c_{0}, \operatorname{proj}_{Q} c_{0}\right) \\
\geq & \ell\left(c_{0}, \operatorname{proj}_{R_{\alpha, Q}} c_{0}\right)+\ell\left(\operatorname{proj}_{R_{\alpha, Q}} c_{0}, d\right)+\ell\left(d, \operatorname{proj}_{Q} c_{0}\right) \\
\geq & \ell\left(c_{0}, \operatorname{proj}_{Q} c_{0}\right)
\end{aligned}
$$

Thus concatenating a minimal gallery from c_{0} to $\operatorname{proj}_{R_{\alpha, Q}} c_{0}$, a minimal gallery from $\operatorname{proj}_{R_{\alpha, Q}} c_{0}$ to d and a minimal gallery from d to $\operatorname{proj}_{Q} c_{0}$ yields a minimal gallery from c_{0} to $\operatorname{proj}_{Q} c_{0}$. Using Lemma (1.4.3) there exists a minimal gallery from d to $\operatorname{proj}_{Q} c_{0}$ such that every chamber of this gallery is contained in $\mathcal{C}\left(\partial^{2} \alpha\right)$ and for two adjacent chambers there exists a residue in $\partial^{2} \alpha$ containing both. Since $R_{\alpha, Q} \in\left\{R, R_{1}\right\} \subseteq \partial^{2} \alpha$ and, as $R_{\alpha, Q}$ is convex, each chamber of a minimal gallery from $\operatorname{proj}_{R_{\alpha, Q}} c_{0}$ to d is contained in $R_{\alpha, Q}$ the claim follows.
(5.2.6) Lemma. Let $\beta \in \Phi(k) \backslash\left\{\alpha_{s} \mid s \in S\right\}$ be a root such that o $\left(r_{\alpha} r_{\beta}\right)<\infty$ and $R \notin \partial^{2} \beta$. Moreover, we assume that $\ell\left(s_{1} \cdots s_{k-1} r\right)=k$. Then one of the following hold:
(a) $\beta=\alpha_{F}$, where F is the minimal gallery of type $\left(s_{1}, \ldots, s_{k-1}, r\right)$;
(b) $\beta=\alpha_{F}$, where F is the minimal gallery of type $\left(s_{1}, \ldots, s_{k-2}, s_{k}, s_{k-1}, r\right)$, and we have $\ell\left(s_{1} \cdots s_{k-2} s_{k} r\right)=k-2$.

Proof. Recall that $\alpha=\alpha_{G}$. As $R \in \partial^{2} \alpha$, we have $\alpha \neq \pm \beta$. By Lemma (1.4.7) there exists $C \in \partial^{2} \alpha \cap \partial^{2} \beta$. By Remark (1.4.4) there exists a panel $Q^{\prime} \in \partial \alpha$ which is contained in C. We let $\operatorname{proj}_{Q^{\prime}} c_{0} \neq y \in Q^{\prime}$. Let P_{i}, R_{i} as before (with $\left.P_{n}=Q^{\prime}\right)$, let $G^{\prime}:=\left(c_{0}, \ldots, c_{k-1}\right)$ and let $G^{\prime \prime}:=\left(c_{0}, \ldots, c_{k}, c_{k+1}\right)$ be the minimal gallery of type $\left(s_{1}, \ldots, s_{k}, s_{k-1}\right)$. Let E be a minimal gallery from c_{0} to y as in Lemma (5.2.5). We can extend this minimal gallery (if necessary) to a minimal gallery from c_{0} to $e \in C$, where $\ell(e)=\ell\left(\operatorname{proj}_{C} c_{0}\right)+4$. Let $Q^{\prime \prime} \in \partial \beta$ be a panel contained in C and let $\operatorname{proj}_{Q^{\prime \prime}} c_{0} \neq y^{\prime} \in Q^{\prime \prime}$. Let $H=\left(d_{0}=c_{0}, \ldots, d_{m-2}=\right.$ $\operatorname{proj}_{R_{\beta, Q^{\prime \prime}}} c_{0}, \ldots, d_{q}:=\operatorname{proj}_{Q^{\prime \prime}} d_{0}, d_{q+1}:=y^{\prime}$) be a minimal gallery as in Lemma (5.2.5). Then $m=k_{\beta} \leq k$. As before, we can extend H (if necessary) to a minimal gallery from d_{0} to e. Note that $R \neq C$ by assumption, and since $R \in \partial^{2} \alpha_{G^{\prime}} \cap \partial^{2} \alpha_{G^{\prime \prime}}, R \notin \partial^{2} \beta$ we have $\alpha_{G^{\prime}} \neq \pm \beta \neq \alpha_{G^{\prime \prime}}$.
(i) Assume that $R=R_{1}$: Since $R \in \partial^{2} \alpha_{G^{\prime \prime}} \cap \partial^{2} \alpha, C \in \partial^{2} \alpha$ and $\alpha_{G^{\prime \prime}} \neq \pm \beta$, Lemma (1.4.6) implies $C \notin \partial^{2} \alpha_{G^{\prime \prime}}$ and hence the gallery H has to cross the wall $\partial \alpha_{G^{\prime \prime}}$. Assume that $\left(d_{0}, \ldots, d_{m-2}\right)$ crosses the wall $\partial \alpha_{G^{\prime \prime}}$. Let $1 \leq j \leq m-2$ be such that $\left\{d_{j-1}, d_{j}\right\} \in \partial \alpha_{G^{\prime \prime}}$. Then $k=k_{\alpha_{G^{\prime \prime}}} \leq j \leq m-2 \leq k-2$ which is a contradiction. Thus the gallery $\left(d_{0}, \ldots, d_{m-2}\right)$ does not cross the wall $\partial \alpha_{G^{\prime \prime}}$ and hence $\left(d_{m-1}, \ldots, d_{q+1}\right)$ has to cross the wall $\partial \alpha_{G^{\prime \prime}}$. Let $m \leq j \leq q+1$ be such that $\left\{d_{j-1}, d_{j}\right\} \in \partial \alpha_{G^{\prime \prime}}$. By Lemma (5.2.5) there exists $L \in \partial^{2} \beta$ such that $\left\{d_{j-1}, d_{j}\right\} \subseteq L$. Then $L \in \partial^{2} \beta \cap \partial^{2} \alpha_{G^{\prime \prime}}$ and hence $o\left(r_{\alpha_{G^{\prime \prime}}} r_{\beta}\right)<\infty$. As $\partial^{2} \alpha \cap \partial^{2} \alpha_{G^{\prime \prime}}=\{R\} \neq\{C\}=\partial^{2} \alpha \cap \partial^{2} \beta$ (cf. Lemma (1.4.6), Lemma (1.4.8)(a) yields $\partial^{2} \alpha \cap \partial^{2} \beta \cap \partial^{2} \alpha_{G^{\prime \prime}}=\emptyset$ and hence $\left\{r_{\alpha}, r_{\alpha_{G^{\prime \prime}}}, r_{\beta}\right\}$ is a reflection triangle. As $\operatorname{proj}_{R} c_{0} \in R \cap \beta \neq \emptyset$ and $R \notin \partial^{2} \beta$, we deduce $R \subseteq \beta$. As $e \in C \cap\left(-\alpha_{G^{\prime \prime}}\right) \neq \emptyset$ and $C \notin \partial^{2} \alpha_{G^{\prime \prime}}$, we deduce $C \subseteq\left(-\alpha_{G^{\prime \prime}}\right)$. As $L \in \partial^{2} \alpha_{G^{\prime \prime}} \cap \partial^{2} \beta,\left\{d_{j-1}, d_{j}\right\} \subseteq L \cap \alpha$ and $L \notin \partial^{2} \alpha$, we deduce $L \subseteq \alpha$. Thus $T:=\left\{\alpha,-\alpha_{G^{\prime \prime}}, \beta\right\}$ is a triangle. For $d \in W$ with $\delta\left(c_{k-2}, d\right)=s_{k} s_{k-1}$ we have $d \in \bigcap_{\gamma \in T} \gamma$ and Lemma (1.5.3) implies $\bigcap_{\gamma \in T} \gamma=\{d\}$. If $\ell\left(s_{1} \cdots s_{k-2} s_{k} r\right)=k$, then $k_{\beta}=k+1$. Thus $\ell\left(s_{1} \cdots s_{k-2} s_{k} r\right)=k-2$ and (b) follows.
(ii) Assume that $R \neq R_{1}$: Since $R \in \partial^{2} \alpha_{G^{\prime}} \cap \partial^{2} \alpha$ and $R \neq C \in \partial^{2} \alpha$, Lemma (1.4.6) implies $C \notin \partial^{2} \alpha_{G^{\prime}}$ and hence H has to cross the wall $\partial \alpha_{G^{\prime}}$. Suppose that $\left(d_{0}, \ldots, d_{m-2}\right)$ does not cross the wall $\partial^{2} \alpha_{G^{\prime}}$. Replacing $\alpha_{G^{\prime \prime}}$ by $\alpha_{G^{\prime}}$ in (i) we obtain that $T:=\left\{\alpha,-\alpha_{G^{\prime}}, \beta\right\}$ is a triangle. Using Lemma (1.5.3), we have $\bigcap_{\gamma \in T} \gamma=\left\{c_{k-1}\right\}$ and hence (a) follows. Now we suppose that $\left(d_{0}, \ldots, d_{m-2}\right)$ crosses the wall $\partial \alpha_{G^{\prime}}$ and let $1 \leq j \leq m-2$ be such that $P^{\prime}:=\left\{d_{j-1}, d_{j}\right\} \in \partial \alpha_{G^{\prime}}$. Note that $1 \leq m-2 \leq k-2$ and hence $k \geq 3$. Let Z be the $\left\{s_{k-1}, r\right\}$-residue containing c_{k-2}. Then $\alpha_{G^{\prime}}$ is not a simple root of Z and hence $k_{\alpha_{G^{\prime}}} \in\{k-2, k-1\}$. This implies $k-2 \leq k_{\alpha_{G^{\prime}}} \leq j \leq m-2 \leq k-2$. Lemma (5.2.3) implies $P^{\prime}=P_{\alpha_{G^{\prime}}}$ and hence P^{\prime} is contained in Z. Moreover, we have $j=m-2$ and $R_{\beta, Q^{\prime \prime}}=R_{\left\{r, s_{k}\right\}}\left(d_{j}\right)$. Both non-simple roots of $R_{\beta, Q^{\prime \prime}}$ contain $-\alpha$ by Lemma (5.1.4) As one of them is equal to β, we have a contradiction.
(5.2.7) Remark. Let $\gamma \in \Phi(k) \backslash\left\{\alpha_{s} \mid s \in S\right\}$ be a root such that $\{\alpha, \gamma\}$ is prenilpotent. If $o\left(r_{\alpha} r_{\gamma}\right)=\infty$, we have $\gamma \subseteq \alpha$, since $k_{\gamma} \leq k=k_{\alpha}$. This implies $\gamma=\alpha_{\left(c_{0}, \ldots, c_{i}\right)}$ for some $1 \leq i \leq k$. If $o\left(r_{\alpha} r_{\gamma}\right)<\infty$, then γ is known by the previous theorem.

5.3. RGD-systems of type $(4,4,4)$ over \mathbb{F}_{2}

In this section we let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system of type (W, S) over \mathbb{F}_{2} (e.g. the one in Example (5.3.1). Furthermore, we let $V_{r_{\{s, t\}}}:=\left\langle U_{s} \cup U_{t}\right\rangle \leq U_{r_{\{s, t\}}}$ for all $s \neq t \in S$. By Example (1.7.1) and [2, Corollary 8.34(1)] this subgroup has index 2 in $U_{r_{\{s, t\}}}$. Moreover, we let $\Delta(\mathcal{D})=\left(\Delta(\mathcal{D})_{+}, \Delta(\mathcal{D})_{-}, \delta_{*}\right)$ be the twin building associated with \mathcal{D} and let $\left(c_{+}, c_{-}\right)$be the distinguished pair of opposite chambers. We denote for every $s \in S$ the unique chamber contained in $A\left(c_{+}, c_{-}\right)$which is s-adjacent to c_{-}by c_{s}. Then U_{+}acts on $\Delta_{-}:=\Delta(\mathcal{D})_{-}$. We abbreviate $c:=c_{-}$(for more information we refer to Section 1.7 and [2, Section 8.9]).
(5.3.1) Example. Let $\mathcal{D}=\left(\mathcal{G},\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be the RGD-system associated with the split Kac-Moody group of type $(4,4,4)$ over \mathbb{F}_{2} (for the definition of Kac-Moody groups we refer to [33]). Then \mathcal{D} is over \mathbb{F}_{2}. Let $\{\alpha, \beta\}$ be a prenilpotent pair. We will determine the commutator relations $\left[u_{\alpha}, u_{\beta}\right] \leq\left\langle U_{\gamma} \mid \gamma \in(\alpha, \beta)\right\rangle$. For $o\left(r_{\alpha} r_{\beta}\right)<\infty$, the commutator relations follow from Example (1.7.1). For $o\left(r_{\alpha} r_{\beta}\right)=\infty$ we use the functoriality of KacMoody groups: Let $\left(\mathcal{G},\left(\varphi_{i}\right)_{i \in I}, \eta\right)$ be the system as in [33, Ch. 2]. For every field \mathbb{K} we let $U_{\alpha_{i}}(\mathbb{K}):=\varphi_{i}\left(\left\{\left.\left(\begin{array}{cc}1 & k \\ 0 & 1\end{array}\right) \right\rvert\, k \in \mathbb{K}\right\}\right)$ and $U_{-\alpha_{i}}(\mathbb{K}):=\varphi_{i}\left(\left\{\left.\left(\begin{array}{cc}1 & 0 \\ -k & 1\end{array}\right) \right\rvert\, k \in \mathbb{K}\right\}\right)$ be the root groups corresponding to the simple roots. For every i and any two fields \mathbb{F} and \mathbb{K} with a homomorphism $f: \mathbb{F} \rightarrow \mathbb{K}$ the following diagram commutes:

In particular, we have $\mathcal{G}(f)\left(U_{\alpha_{i}}(\mathbb{F})\right) \leq U_{\alpha_{i}}(\mathbb{K})$ and hence $\mathcal{G}(f)\left(U_{\alpha}(\mathbb{F})\right) \leq U_{\alpha}(\mathbb{K})$ for each root $\alpha \in \Phi$ by using (RGD2). Moreover, if f is injective, then $\mathcal{G}(f)$ is injective by the axiom (KMG4) (cf. [33]). Let $f: \mathbb{F}_{2} \rightarrow \mathbb{F}_{4}$ be the canonical inclusion. We have $\left[U_{\alpha}\left(\mathbb{F}_{4}\right), U_{\beta}\left(\mathbb{F}_{4}\right)\right]=1$ by [7, Theorem A]. This implies $\mathcal{G}(f)\left(\left[U_{\alpha}\left(\mathbb{F}_{2}\right), U_{\beta}\left(\mathbb{F}_{2}\right)\right]\right) \leq\left[U_{\alpha}\left(\mathbb{F}_{4}\right), U_{\beta}\left(\mathbb{F}_{4}\right)\right]=1$ and, as $\mathcal{G}(f)$ is injective, we deduce $\left[U_{\alpha}\left(\mathbb{F}_{2}\right), U_{\beta}\left(\mathbb{F}_{2}\right)\right]=1$. All in all we have the following commutator relations, where $U_{\alpha}=\left\langle u_{\alpha}\right\rangle$ for all $\alpha \in \Phi$:

$$
\left[u_{\alpha}, u_{\beta}\right]= \begin{cases}\prod_{\gamma \in(\alpha, \beta)} u_{\gamma} & \text { if } o\left(r_{\alpha} r_{\beta}\right)<\infty,|(\alpha, \beta)|=2 \\ 1 & \text { else. }\end{cases}
$$

(5.3.2) Lemma. The following hold:
(a) $\ell\left(c_{s}, c_{s} . h\right) \geq 3$ for all $h \in V_{r_{\{s, t\}}} \backslash\left\{1, u_{s}\right\}$;
(b) $\ell\left(c_{s}, c_{t} . h\right) \geq 2$ for all $h \in V_{r_{\{s, t\}}}$;
(c) $\ell\left(c_{t} . h, p\right) \geq 2$ for all $p \in \mathcal{P}_{t}(c)$ and $h \in V_{r_{\{s, t\}}} \backslash\left\{1, u_{t}\right\}$;
(d) $\ell\left(c_{s} . h, p\right) \geq 2$ or $\delta\left(c_{s} . h, p\right)=s$ for all $p \in \mathcal{P}_{t}(c)$ and $h \in V_{r_{\{s, t\}}}$;
(e) $\ell(p, q) \geq 2$ or $\delta(p, q)=s$ for all $p \in \mathcal{P}_{t}(c . h), q \in \mathcal{P}_{t}(c)$ and $h \in V_{\left.r_{\{s, t}\right\}} \backslash\left\{1, u_{t}\right\}$.
(f) $\ell\left(p, c_{s}\right) \geq 2$ or $\delta\left(p, c_{s}\right)=s$ for all $p \in \mathcal{P}_{t}(c . h)$ and $h \in V_{r_{\{s, t\}}}$.

Proof. Before we prove the claim, we consider the following picture, where the lower chambers are all opposite to B_{+}and the upper chambers d satisfy $\ell_{\star}\left(B_{+}, d\right)=1$ and the letter in the triangles denotes the type of the panels:

We first show Assertion (a). As $c_{s}=c_{s} \cdot u_{s}$ and $u_{t} u_{s} u_{t} u_{s}=u_{s} u_{t} u_{s} u_{t}$, we can assume $h \in$ $\left\{u_{t}, u_{t} u_{s}, u_{t} u_{s} u_{t}\right\}$. Now we deduce the following:
(i) $\ell\left(c_{s}, c_{s} \cdot u_{t}\right)=3$;
(ii) $\ell\left(c_{s}, c_{s} \cdot u_{t} u_{s}\right)=\ell\left(c_{s}, c_{s} . u_{t}\right)=3$;
(iii) $\ell\left(c_{s}, c_{s} . u_{t} u_{s} u_{t}\right) \geq 3$.

To show Assertion (b) we can similarly assume that $h \in\left\{1, u_{s}, u_{s} u_{t}, u_{s} u_{t} u_{s}\right\}$. We deduce the following:
(i) $\ell\left(c_{s}, c_{t}\right)=2$;
(ii) $\ell\left(c_{s}, c_{t} \cdot u_{s}\right)=\ell\left(c_{s}, c_{t}\right)=2$;
(iii) $\ell\left(c_{s}, c_{t} \cdot u_{s} u_{t}\right)=4$;
(iv) $\ell\left(c_{s}, c_{t} \cdot u_{s} u_{t} u_{s}\right)=\ell\left(c_{s}, c_{t} \cdot u_{s} u_{t}\right)=4$

For Assertion (c) we can again assume $h \in\left\{u_{s}, u_{s} u_{t}, u_{s} u_{t} u_{s}\right\}$. We deduce the following:
(i) $\ell\left(c_{t} \cdot u_{s}, p\right) \in\{2,3\}$;
(ii) $\ell\left(c_{t} \cdot u_{s} u_{t}, p\right)=\ell\left(c_{t} \cdot u_{s}, p \cdot u_{t}\right) \in\{2,3\}$;
(iii) $\ell\left(c_{t} \cdot u_{s} u_{t} u_{s}, p\right) \in\{3,4\}$;

For Assertion (d) we can again assume that $h \in\left\{1, u_{t}, u_{t} u_{s}, u_{t} u_{s} u_{t}\right\}$. We deduce the following:
(i) $\delta\left(c_{s}, p\right) \in\{s, s t\}$;
(ii) $\delta\left(c_{s} \cdot u_{t}, p\right)=\delta\left(c_{s}, p \cdot u_{t}\right) \in\{s, s t\}$;
(iii) $\ell\left(c_{s} \cdot u_{t} u_{s}, p\right) \geq 3$;
(iv) $\ell\left(c_{s} \cdot u_{t} u_{s} u_{t}, p\right)=\ell\left(c_{s} \cdot u_{t} u_{s}, p \cdot u_{t}\right) \geq 3$.

For Assertion (e) we can assume that $h \in\left\{u_{s}, u_{s} u_{t}, u_{s} u_{t} u_{s}\right\}$, as $\mathcal{P}_{t}\left(c . u_{t}\right)=\mathcal{P}_{t}(c)$. We deduce the following:
(i) $h=u_{s}$: We have $\delta(p, q)=s$ or $\ell(p, q) \in\{2,3\}$.
(ii) $h=u_{s} u_{t}$: This follows similar as in the case $h=u_{s}$.
(iii) $h=u_{s} u_{t} u_{s}$: Then we have $\ell(p, q) \geq 3$.

For Assertion (f) we can assume $h \in\left\{1, u_{s}, u_{s} u_{t}, u_{s} u_{t} u_{s}\right\}$, as $\mathcal{P}_{t}\left(c . u_{t}\right)=\mathcal{P}_{t}(c)$. We deduce the following:
(i) $h=1$: Then $\delta\left(p, c_{s}\right)=s$ or $\ell\left(p, c_{s}\right)=2$.
(ii) $h=u_{s}$: We have $\delta\left(p, c_{s}\right)=\delta\left(p . u_{s}, c_{s}\right)$. As $p \in \mathcal{P}_{t}\left(c . u_{s}\right)$ if and only if $p . u_{s} \in \mathcal{P}_{t}(c)$, the claim follows from (i).
(iii) $h=u_{s} u_{t}$: In this case we have $\ell\left(p, c_{s}\right) \geq 3$.
(iv) $h=u_{s} u_{t} u_{s}$: We have $\delta\left(p, c_{s}\right)=\delta\left(p . u_{s}, c_{s}\right)$. As $p \in \mathcal{P}_{t}(c . h)$ if and only if $p . u_{s} \in$ $\mathcal{P}_{t}\left(c . u_{s} u_{t}\right)$, the claim follows from (iii).
(5.3.3) Remark. For each root $\alpha \in \Phi_{+}$there exist $w \in W, s \in S$ with $\alpha=w \alpha_{s}$. For short we will write $u_{w s}$ to be the generator of $U_{w \alpha_{s}}$.
(5.3.4) Lemma. Let $n>0$, let $g_{1}, \ldots, g_{n} \in\left\{u_{s r}, u_{t r}, u_{r t}, u_{r t} u_{t r}\right\}$ and let $h_{1}, \ldots, h_{n} \in V_{r_{\{s, t\}}}$ be such that $h_{i} \notin\left\{1, u_{s}\right\}$ if $g_{i}=g_{i+1}=u_{s r}$ and such that $h_{i} \notin\left\{1, u_{t}\right\}$ if $g_{i}, g_{i+1} \in$ $\left\{u_{t r}, u_{r t}, u_{r t} u_{t r}\right\}$. Then $g_{1} h_{1} \cdots g_{n} h_{n} \neq 1$ holds in G.

Proof. Note that $h_{i} \in V_{r_{\{s, t\}}}=\left\{1, u_{s}, u_{t}, u_{s} u_{t}, u_{t} u_{s}, u_{s} u_{t} u_{s}, u_{t} u_{s} u_{t}, u_{s} u_{t} u_{s} u_{t}=u_{t} u_{s} u_{t} u_{s}\right\}$ as well as $g_{n}^{-1}=g_{n}$. For the proof we consider the action of U_{+}on Δ_{-}as in Lemma (5.3.2). We abbreviate $\delta:=\delta_{-}, c:=B_{-}, R_{e f}:=R_{\{e, f\}}(c)$ for any $e \neq f \in S$ and we let $g:=g_{1} h_{1} \cdots g_{n} h_{n}$. We show the following via induction on $n \geq 1$:

- If $g_{n}=u_{f r}$ for some $f \in\{s, t\}$, then the following hold:
(a) $\operatorname{proj}_{R_{s t}}(c . g)=c_{f} . h_{n}$;
(b) $\ell\left(c . g, \operatorname{proj}_{R_{s t}}(c . g)\right)>0$.
- If $g_{n} \in\left\{u_{r t}, u_{r t} u_{t r}\right\}$, then the following hold:
(a) $\operatorname{proj}_{R_{s t}}(c . g)=\operatorname{proj}_{\mathcal{P}_{t}\left(c . h_{n}\right)}(c . g)$;
(b) $\ell\left(\delta\left(c . g, \operatorname{proj}_{R_{s t}}(c . g)\right) s r s\right)=\ell\left(c . g, \operatorname{proj}_{R_{s t}}(c . g)\right)+3$;
(c) $\ell\left(c . g, \operatorname{proj}_{R_{s t}}(c . g)\right)>0$.

Once this is shown, the claim follows, since $g=1$ would imply $\ell\left(c . g, \operatorname{proj}_{R_{s t}}(c . g)\right)=0$. Let $n=1$ and suppose $g_{1} \in\left\{u_{s r}, u_{t r}\right\}$. Then we have $\operatorname{proj}_{R_{s t}}\left(c . u_{f r}\right)=c_{f}$ and, in particular, $\operatorname{proj}_{R_{s t}}(c . g)=\left(\operatorname{proj}_{R_{s t}}\left(c . g_{1}\right)\right) . h_{1}=c_{f} . h_{1}$. Moreover, we have $\ell\left(c . g, \operatorname{proj}_{R_{s t}}(c . g)\right)=$ $\ell\left(c . g, c_{f} . h_{1}\right)=\ell\left(c . g_{1}, c_{f}\right)>0$. Now we suppose $g_{1} \in\left\{u_{r t}, u_{r t} u_{t r}\right\}$. Note that $\delta\left(c, c . u_{r t} u_{t r}\right)=$ $\delta\left(c, c . u_{r} u_{t} u_{r} u_{t}\right)=r_{\{r, t\}}$ and $\delta\left(c, c . u_{r t}\right)=r t r$. In particular, we have $\delta\left(c . g_{1}, c\right) \in\left\{r t r, r_{\{r, t\}}\right\}$. Let $q=\operatorname{proj}_{\mathcal{P}_{t}(c)}\left(c . g_{1}\right)$. Then, by [2, Lemma 2.15], $\ell\left(\delta\left(c . g_{1}, q\right) s\right)=\ell\left(\delta\left(c . g_{1}, q\right)\right)+1$ and hence $q=\operatorname{proj}_{R_{s t}}\left(c . g_{1}\right)$. This implies $\operatorname{proj}_{R_{s t}}(c . g)=q . h_{1}=\operatorname{proj}_{\mathcal{P}_{t}\left(c . h_{1}\right)}(c . g)$. Since $\delta\left(c . g_{1}, q\right) \in\langle r, t\rangle$, we infer (again by [2, Lemma 2.15]) $\operatorname{proj}_{\mathcal{P}_{r}(q)}\left(c . g_{1}\right)=\operatorname{proj}_{R_{\{s, r\}}(q)}\left(c . g_{1}\right)$. Thus we have $\delta\left(\operatorname{proj}_{R_{\{r, s\}}(q)}\left(c . g_{1}\right), q\right) \in\langle r\rangle$ and hence $\ell\left(\delta\left(c . g, q . h_{1}\right) s r s\right)=\ell\left(\delta\left(c . g_{1}, q\right) s r s\right)=\ell\left(c . g_{1}, q\right)+3=$ $\ell\left(c . g, q . h_{1}\right)$. Moreover, $\ell\left(c . g, \operatorname{proj}_{R_{s t}}(c . g)\right)=\ell\left(c . g_{1}, q\right)>0$.

Now we assume that $n>1$. We define $h:=g_{1} h_{1} \cdots g_{n-1} h_{n-1}$. In both cases we will show that $\ell\left(c . h, \operatorname{proj}_{R_{s t} . g_{n}}(c . h)\right)>\ell\left(c . h, \operatorname{proj}_{R_{s t}}(c . h)\right)$. Once this is done it follows $\ell\left(c . g, \operatorname{proj}_{R_{s t}}(c . g)\right)=\ell\left(c . h, \operatorname{proj}_{R_{s t} . g_{n}}(c . h)\right)>\ell\left(c . h, \operatorname{proj}_{R_{s t}}(c . h)\right)>0$ by induction. We distinguish the following cases, where the first case is a special case which we will use in the other cases:
(a) $g_{n} \in\left\{u_{r t}, u_{r t} u_{t r}\right\}$ and $\operatorname{proj}_{\mathcal{P}_{t}(c)}(c . h)=\operatorname{proj}_{R_{r t}}(c . h)$: As above, we deduce $\delta\left(c, c . g_{n}\right) \in$ $\left\{r t r, r_{\{r, t\}}\right\}$. We define $p:=\operatorname{proj}_{\mathcal{P}_{t}(c)}(c . h)=\operatorname{proj}_{R_{r t}}(c . h)$. As $p \in \mathcal{P}_{t}(c)$, we deduce $\delta\left(p, c . g_{n}\right) \in\left\{r t r, r_{\{r, t\}}\right\}$. We define $q:=\operatorname{proj}_{\mathcal{P}_{t}\left(c . g_{n}\right)}(c . h)$ and note that $q \in R_{r t}$. Then $q=\operatorname{proj}_{\mathcal{P}_{t}\left(c . g_{n}\right)} \operatorname{proj}_{R_{r t}}(c . h), \delta(p, q)=r t r$ and Lemma $(5.1 .2)$ implies $\ell(\delta(c . h, q) s)=$
$\ell(c . h, q)+1$. Thus $q=\operatorname{proj}_{R_{\{s, t\}}\left(c . g_{n}\right)}(c . h)=\operatorname{proj}_{R_{s t} . g_{n}}(c . h)$ and hence $\operatorname{proj}_{\mathcal{P}_{t}\left(c . h_{n}\right)}(c . g)=$ $q . g_{n} h_{n}=\operatorname{proj}_{R_{s t}}(c . g)$. Since $\delta(p, q)=r t r$ and $p \in \mathcal{P}_{t}(c) \subseteq R_{s t}$, we deduce

$$
\ell\left(c . h, \operatorname{proj}_{R_{s t} . g_{n}}(c . h)\right)=\ell(c . h, q) \stackrel{q \in R_{r t}}{=} \ell(c . h, p)+3 \stackrel{p \in R_{s t}}{>} \ell\left(c . h, \operatorname{proj}_{R_{s t}}(c . h)\right)
$$

Moreover, as $\ell\left(p, \operatorname{proj}_{\mathcal{P}_{r}(q)}(c . h)\right)=2$, Lemma $(5.1 .2)$ implies that $\operatorname{proj}_{\mathcal{P}_{r}(q)}(c . h)=$ $\operatorname{proj}_{R_{\{r, s\}}(q)}(c . h)$ and hence $\ell\left(\delta\left(c . g, q . g_{n} h_{n}\right) s r s\right)=\ell(\delta(c . h, q) s r s)=\ell(c . h, q)+3=$ $\ell\left(c . g, q . g_{n} h_{n}\right)+3$.
(b) $g_{n-1}=u_{f r}$ for some $f \in\{s, t\}$: Then we have $\operatorname{proj}_{R_{s t}}(c . h)=c_{f} . h_{n-1}$ by induction. We distinguish the following two cases:
(i) $g_{n} \notin\left\{u_{r t}, u_{r t} u_{t r}\right\}$: Then there exists $e \in\{s, t\}$ with $g_{n}=u_{e r}$. If $e=f$, we have $h_{n-1} \notin\left\{1, u_{f}\right\}$ by assumption and $\ell\left(c_{f} . h_{n-1}, c_{e}\right) \geq 3$ by Lemma (5.3.2) (a). If $e \neq f$, we have $\ell\left(c_{f} . h_{n-1}, c_{e}\right) \geq 2$ by Lemma (5.3.2)(b). Note that in both cases we have $\delta\left(c_{f} . h_{n-1}, c_{e}\right) \in\langle s, t\rangle$. Using Lemma (5.1.2) we obtain $\ell\left(\delta\left(c . h, c_{e}\right) r u\right)=$ $\ell\left(\delta\left(c . h, c_{f} . h_{n-1}\right) \delta\left(c_{f} . h_{n-1}, c_{e}\right) r u\right)=\ell\left(c . h, c_{f} . h_{n-1}\right)+\ell\left(c_{f} . h_{n-1}, c_{e}\right)+2=\ell\left(c . h, c_{e}\right)+$ 2 for each $u \in\{s, t\}$. Since $\delta\left(c_{e}, c_{e} \cdot u_{e r}\right)=r$, the previous computations imply that $c_{e} \cdot u_{e r}=\operatorname{proj}_{R_{\{s, t\}}\left(c_{e}, u_{e r}\right)}(c . h)=\operatorname{proj}_{R_{s t} . u_{e r}}(c . h)$ and hence $c_{e} \cdot h_{n}=\operatorname{proj}_{R_{s t}}(c . g)$. In particular, we have $\ell\left(c . h, \operatorname{proj}_{R_{s t} . g_{n}}(c . h)\right)=\ell\left(c . h, c_{e} \cdot u_{e r}\right)=\ell\left(c . h, c_{e}\right)+1>$ $\ell\left(c . h, c_{f} . h_{n-1}\right)=\ell\left(c . h, \operatorname{proj}_{R_{s t}}(c . h)\right)$.
(ii) $g_{n} \in\left\{u_{r t}, u_{r t} u_{t r}\right\}$: We define $p:=\operatorname{proj}_{\mathcal{P}_{t}(c)}(c . h)$. If $f=t$, we have $h_{n-1} \notin$ $\left\{1, u_{t}\right\}$ and hence $\ell\left(c_{t} . h_{n-1}, p\right) \geq 2$ by Lemma (5.3.2) (c). By Lemma (5.1.2) we obtain that $\ell(\delta(c . h, p) r)=\ell(c . h, p)+1$ and hence $p=\operatorname{proj}_{R_{r t}}(c . h)$. The claim follows now from Case (a), If $f=s$, Lemma (5.3.2) (d) yields $\ell\left(c_{s} \cdot h_{n-1}, p\right) \geq 2$ or $\delta\left(c_{s} . h_{n-1}, p\right)=s$. If $\ell\left(c_{s} . h_{n-1}, p\right) \geq 2$, we obtain $p=\operatorname{proj}_{R_{r t}}(c . h)$ as before and the claim follows again from Case (a) Thus we suppose that $\delta\left(c_{s} \cdot h_{n-1}, p\right)=s$. Note that we have $\delta\left(c, c . u_{r t} u_{t r}\right)=r_{\{r, t\}}$ and $\delta\left(c, c . u_{r t}\right)=r t r$. In particular, we have $\delta\left(p, c . g_{n}\right) \in\left\{r t r, r_{\{r, t\}}\right\}$. If $\ell(\delta(c . h, p) r)=\ell(c . h, p)+1$, we have $p=\operatorname{proj}_{R_{r t}}(c . h)$ and the claim follows as before. Thus we assume $\ell(\delta(c . h, p) r)=\ell(c . h, p)-1$. Then $\ell(\delta(c . h, p) r t)=\ell(c . h, p)$ by Lemma (5.1.1) and hence $\ell(w u)=\ell(w)+1$ for $w=\delta(c . h, p) r$ and each $u \in\{r, t\}$. Since $p \in \mathcal{P}_{t}(c) \subseteq R_{r t}$ and hence $\mathcal{P}_{r}(p) \subseteq R_{r t}$, we infer $\operatorname{proj}_{\mathcal{P}_{r}(p)}(c . h)=\operatorname{proj}_{R_{r t}}(c . h)$. By definition we have $p \in \mathcal{P}_{t}(c)$. We define $q:=\operatorname{proj}_{\mathcal{P}_{t}\left(c . g_{n}\right)}(c . h)$. Since $\delta\left(p, c . g_{n}\right) \in\left\{r t r, r_{\{r, t\}}\right\}$ we have $\ell\left(\operatorname{proj}_{R_{r t}}(c . h), q\right)=2$ and hence $\ell(c . h, q)=\ell\left(c . h, \operatorname{proj}_{R_{r t}}(c . h)\right)+2>\ell\left(c . h, \operatorname{proj}_{R_{r t}}(c . h)\right)+1=\ell(c . h, p)$. Lemma (5.1.2) implies $q=\operatorname{proj}_{R_{s t}\left(c . g_{n}\right)}(c . h)=\operatorname{proj}_{R_{s t} . g_{n}}(c . h)$ and hence, as $p \in$ $R_{s t}$, we deduce

$$
\ell\left(c . h, \operatorname{proj}_{R_{s t} . g_{n}}(c . h)\right)=\ell(c . h, q)>\ell(c . h, p)>\ell\left(c . h, \operatorname{proj}_{R_{s t}}(c . h)\right) .
$$

Moreover, we have $\operatorname{proj}_{\mathcal{P}_{t}\left(c . h_{n}\right)}(c . g)=q . g_{n} h_{n}=\operatorname{proj}_{R_{s t}}(c . g)$. We have already mentioned that $\ell\left(\operatorname{proj}_{R_{r t}}(c . h), q\right)=2$. Using Lemma (5.1.1), Lemma (5.1.2) and the fact that $\ell\left(\delta\left(c . h, \operatorname{proj}_{R_{r t}}(c . h)\right) r s\right)=\ell\left(c . h, \operatorname{proj}_{R_{r t}}(c . h)\right)$, we deduce $\ell(\delta(c . h, z) s)=$ $\ell(c . h, z)+1$ for all $z \in R_{r t} \backslash \mathcal{P}_{r}(p)$. Note that $\mathcal{P}_{r}\left(\operatorname{proj}_{R_{r t}}(c . h)\right)=\mathcal{P}_{r}(p)$. In particular, as $\delta\left(\operatorname{proj}_{R_{r t}}(c . h), \operatorname{proj}_{\mathcal{P}_{r}(q)}(c . h)\right)=t$, we deduce $\operatorname{proj}_{\mathcal{P}_{r}(q)}(c . h) \in R_{r t} \backslash \mathcal{P}_{r}(p)$. Thus we have $\operatorname{proj}_{R_{\{r, s\}}(q)}(c . h)=\operatorname{proj}_{\mathcal{P}_{r}(q)}(c . h)$ and hence $\ell\left(\delta\left(c . g, q . g_{n} h_{n}\right) s r s\right)=$ $\ell(\delta(c . h, q) s r s)=\ell(c . h, q)+3=\ell\left(c . g, q g_{n} h_{n}\right)+3$.
(c) $g_{n-1} \in\left\{u_{r t}, u_{r t} u_{t r}\right\}$: We define $p:=\operatorname{proj}_{R_{s t}}(c . h)$. Using induction, we have $p=$ $\operatorname{proj}_{\mathcal{P}_{t}\left(c . h_{n-1}\right)}(c . h)$ and $\ell(\delta(c . h, p) s r s)=\ell(c . h, p)+3$. We distinguish the following three cases:
(i) $g_{n}=u_{t r}$: Then we have $h_{n-1} \notin\left\{1, u_{t}\right\}$ by assumption. As $h_{n-1}^{-1} \notin\left\{1, u_{t}\right\}$ and $p . h_{n-1}^{-1} \in \mathcal{P}_{t}(c)$, Lemma (5.3.2)(c) yields $\ell\left(p, c_{t}\right)=\ell\left(p \cdot h_{n-1}^{-1}, c_{t} \cdot h_{n-1}^{-1}\right) \geq 2$. Using Lemma (5.1.2) we obtain $\ell\left(\delta\left(c . h, c_{t}\right) r u\right)=\ell\left(c . h, c_{t}\right)+2$ for each $u \in\{s, t\}$ and hence $c_{t} \cdot u_{t r}=\operatorname{proj}_{R_{s t} \cdot u_{t r}}(c . h)$, as $\delta\left(c_{t}, c_{t} \cdot u_{t r}\right)=r$. This implies $c_{t} \cdot h_{n}=$ $\operatorname{proj}_{R_{s t}}(c . g)$. Moreover, we have $\ell\left(c . h, \operatorname{proj}_{R_{s t} . g_{n}}(c . h)\right)=\ell\left(c . h, c_{t} . g_{n}\right)>\ell(c . h, p)=$ $\ell\left(c . h, \operatorname{proj}_{R_{s t}}(c . h)\right)$.
(ii) $g_{n} \in\left\{u_{r t}, u_{r t} u_{t r}\right\}$: Then we have $h_{n-1} \notin\left\{1, u_{t}\right\}$ by assumption. We define $q:=$ $\operatorname{proj}_{\mathcal{P}_{t}(c)}(c . h)$. Using Lemma $(5.3 .2)(e)$ we have either $\ell(p, q) \geq 2$ or $\delta(p, q)=s$. If $\ell(p, q) \geq 2$, we obtain $q=\operatorname{proj}_{R_{r t}}(c . h)$ by Lemma (5.1.2). If $\delta(p, q)=s$, we have $\ell(\delta(c . h, p) s r s)=\ell(c . h, p)+3$ by induction and hence $\ell(\delta(c . h, q) r)=\ell(c . h, q)+1$. In particular, $q=\operatorname{proj}_{R_{r t}}(c . h)$. Both cases yield $q=\operatorname{proj}_{R_{r t}}(c . h)$ and the claim follows from Case (a).
(iii) $g_{n}=u_{s r}$: Using Lemma (5.3.2) (f) we have either $\ell\left(p, c_{s}\right) \geq 2$ or $\delta\left(p, c_{s}\right)=s$. If $\ell\left(p, c_{s}\right) \geq 2$, we obtain $\ell\left(\delta\left(c . h, c_{s}\right) r u\right)=\ell\left(c . h, c_{s}\right)+2$ for each $u \in\{s, t\}$ by Lemma (5.1.2) and hence $c_{s} . u_{s r}=\operatorname{proj}_{R_{s t} . u_{s r}}(c . h)$. This implies $c_{s} . h_{n}=\operatorname{proj}_{R_{s t}}(c . g)$ as well as $\ell\left(c . h, \operatorname{proj}_{R_{s t} . g_{n}}(c . h)\right)=\ell\left(c . h, c_{s} . g_{n}\right)>\ell(c . h, p)=\ell\left(c . h, \operatorname{proj}_{R_{s t}}(c . h)\right)$.
Suppose now that $\delta\left(p, c_{s}\right)=s$. By induction we have $\ell(\delta(c . h, p) s r s)=\ell(c . h, p)+3$. Since $\delta\left(p, c_{s}\right)=s$, we have $p \in R_{r s}$ and hence $\operatorname{proj}_{R_{r s}}(c . h) \in \mathcal{P}_{r}(p)$. By Lemma (5.1.2) we obtain $\ell(\delta(c . h, p) s r t)=\ell(c . h, p)+3$. Since $\delta\left(p, c_{s}\right)=s$ and $\delta\left(c_{s}, c_{s} . u_{s r}\right)=$ r, we have $\delta\left(p, c_{s} . u_{s r}\right)=s r$ and $c_{s} . u_{s r}=\operatorname{proj}_{R_{s t} . u_{s r}}(c . h)$. This implies $c_{s} . h_{n}=$ $\operatorname{proj}_{R_{s t}}(c . g)$ and, in particular, $\ell\left(c . h, \operatorname{proj}_{R_{s t} . g_{n}}(c . h)\right)=\ell\left(c . h, c_{s} . g_{n}\right)>\ell(c . h, p)=$ $\ell\left(c . h, \operatorname{proj}_{R_{s t}}(c . h)\right)$.
(5.3.5) Theorem. The canonical homomorphism $\varphi: U_{s r} \star_{U_{s}} V_{r_{\{s, t\}}} \star_{U_{t}} U_{t r t} \rightarrow G$ is injective.

Proof. We abbreviate $H:=U_{s r} \star_{U_{s}} V_{r_{\{s, t\}}} \star_{U_{t}} U_{t r t}$. We note that any $g \in H$ can be written in the form $h_{0} g_{1} h_{1} \cdots g_{n} h_{n}$, where $g_{i} \in\left\{u_{s r}, u_{t r}, u_{r t}, u_{r t} u_{t r}\right\}, h_{i} \in V_{r_{\{s, t\}}}$ and $n \geq 0$. We reduce the product as follows:
(a) Suppose that $g_{i}=g_{i+1}=u_{s r}$ and $h_{i} \in\left\{1, u_{s}\right\}$ for some $1 \leq i \leq n-1$. Then $g_{i} h_{i} g_{i+1}=$ h_{i}, as $\left[g_{i}, h_{i}\right]=1$. Thus

$$
g=h_{0} g_{1} h_{1} \cdots g_{i-1}\left(h_{i-1} h_{i} h_{i+1}\right) g_{i+2} h_{h+2} \cdots g_{n} h_{n}
$$

(b) Suppose that $g_{i}, g_{i+1} \in\left\{u_{t r}, u_{r t}, u_{r t} u_{t r}\right\}$ and $h_{i} \in\left\{1, u_{t}\right\}$ for some $1 \leq i \leq n-1$. Then $g_{i} h_{i} g_{i+1}=h_{i} g_{i} g_{i+1}$, as $\left[g_{i}, h_{i}\right]=1$. We distinguish the following two cases:
(i) $g_{i}=g_{i+1}$: Then we can write g as before as

$$
g=h_{0} g_{1} h_{1} \cdots g_{i-1}\left(h_{i-1} h_{i} h_{i+1}\right) g_{i+2} h_{i+2} \cdots g_{n} h_{n}
$$

(ii) $g_{i} \neq g_{i+1}$: Then $g_{i} g_{i+1} \in\left\{u_{t r}, u_{r t}, u_{r t} u_{t r}\right\}$ and we can write g as follows:

$$
g=h_{0} g_{1} h_{1} \cdots g_{i-1}\left(h_{i-1} h_{i}\right)\left(g_{i} g_{i+1}\right) h_{i+1} \cdots g_{n} h_{n}
$$

In each step we reduce the number of generators n and hence we can only reduce finitely many times. At some point we can not apply (a) or (b). In particular, any $g \in H$ can be written as $h_{0} g_{1} h_{1} \cdots g_{n} h_{n}$, where $g_{i} \in\left\{u_{s r}, u_{t r}, u_{r t}, u_{r t} u_{t r}\right\}, h_{i} \in V_{r_{\{s, t\}}}$ and if $g_{i}=g_{i+1}=u_{s r}$ for some $1 \leq i \leq n-1$, then $h_{i} \notin\left\{1, u_{s}\right\}$ and if $g_{i}, g_{i+1} \in\left\{u_{t r}, u_{r t}, u_{r t} u_{t r}\right\}$ for some $1 \leq i \leq n-1$, then $h_{i} \notin\left\{1, u_{t}\right\}$.

Now we assume that there exists $1 \neq g \in \operatorname{ker}(\varphi)$. Then there exist g_{i}, h_{i} as before such that $g=h_{0} g_{1} h_{1} \cdots g_{n} h_{n}$. As $V_{r_{\{s, t\}}} \cap \operatorname{ker}(\varphi)=\{1\}$, we have $n>0$. Since $\operatorname{ker}(\varphi)$ is a normal subgroup of H, we have also $g_{1} h_{1} \cdots g_{n}\left(h_{n} h_{0}\right)=h_{0}^{-1} g h_{0} \in \operatorname{ker}(\varphi)$. But the previous lemma says that $g_{1} h_{1} \cdots g_{n}\left(h_{n} h_{0}\right)$ is non-trivial in G, which yields a contradiction. Thus φ is injective.

6. Commutator blueprints of type $(4,4,4)$

In this chapter we let $\mathcal{M}=\left(M_{\alpha, \beta}^{G}\right)_{(G, \alpha, \beta) \in \mathcal{I}}$ be a locally Weyl-invariant commutator blueprint of type (4,4,4). Moreover, we let $S=\{r, s, t\}$. We will show that \mathcal{M} is faithful. For this purpose we introduce several tree products.

For a residue R of $\Sigma(W, S)$ we put $w_{R}:=\operatorname{proj}_{R} 1_{W}$. Let $s \neq t \in S$ and let R be a residue of type $\{s, t\}$. Then we have $\ell\left(w_{R} s\right)=\ell\left(w_{R}\right)+1=\ell\left(w_{R} t\right)$. We define the group $V_{w_{R} r_{\{s, t\}}}:=\left\langle U_{w_{R} s} \cup U_{w_{R} t}\right\rangle \leq U_{w_{R} r_{\{s, t\}}}$. Using (CB3) and fact that \mathcal{M} is locally Weyl-invariant, the group $V_{w_{R} r_{\{s, t\}}}$ is an index 2 subgroup of $U_{w_{R} r_{\{s, t\}}}$ (cf. Remark (2.1.2). For each $i \in \mathbb{N}$ we let \mathcal{R}_{i} be the set of all rank 2 residues R with $\ell\left(w_{R}\right)=i$ (e.g. $\mathcal{R}_{0}=\left\{R_{\{s, t\}}\left(1_{W}\right) \mid s \neq t \in S\right\}$). We let $\mathcal{T}_{i, 1}$ be the set of all residues $R \in \mathcal{R}_{i}$ with $\ell\left(w_{R} s r\right)=\ell\left(w_{R}\right)+2=\ell\left(w_{R} t r\right)$, where $\{s, t\}$ is the type of R. Let $R \in \mathcal{R}_{i} \backslash \mathcal{T}_{i, 1}$ be of type $\{s, t\}$. Then we have $\ell\left(w_{R}\right) \in\left\{\ell\left(w_{R} s r\right), \ell\left(w_{R} t r\right)\right\}$. By Lemma (5.1.1) we have $\left\{\ell\left(w_{R}\right), \ell\left(w_{R}\right)+2\right\}=\left\{\ell\left(w_{R} s r\right), \ell\left(w_{R} t r\right)\right\}$. Let $u \neq v \in\{s, t\}$ be such that $\ell\left(w_{R} u r\right)=\ell\left(w_{R}\right)$. Then $T_{R}:=R_{\{v, r\}}\left(w_{R} u\right) \neq R$ and $T_{R} \in \mathcal{R}_{i}$ by Lemma (5.1.1). In particular, $T_{R} \in \mathcal{R}_{i} \backslash \mathcal{T}_{i, 1}$ and we have $T_{\left(T_{R}\right)}=R$. We define $\mathcal{T}_{i, 2}:=\left\{\left\{R, T_{R}\right\} \mid R \in \mathcal{R}_{i} \backslash \mathcal{T}_{i, 1}\right\}$. Moreover, we let $\mathcal{T}_{i}:=\mathcal{T}_{i, 1} \cup \mathcal{T}_{i, 2}$.

In order to prove that \mathcal{M} is faithful, we need to introduce several sequences of groups. The groups in the sequences of groups will always be generated by elements u_{α} for suitable $\alpha \in \Phi_{+}$. Let $\Phi_{A}, \Phi_{B} \subseteq \Phi_{+}$be such that $A=\left\langle u_{\alpha} \mid \alpha \in \Phi_{A}\right\rangle$ and $B=\left\langle u_{\alpha} \mid \alpha \in \Phi_{B}\right\rangle$. Let $C=\left\langle u_{\alpha} \mid \alpha \in \Phi_{A} \cap \Phi_{B}\right\rangle$ and assume that $C \rightarrow A, C \rightarrow B$ are injective. Then we define $A \hat{\star} B:=A \star_{C} B$. We note that in all cases the group C will be such that $C \rightarrow A$ and $C \rightarrow B$ are injective by definition. Furthermore, we implicitly assume that every edge group C between two vertex groups $A=\left\langle u_{\alpha} \mid \alpha \in \Phi_{A}\right\rangle$ and $B=\left\langle u_{\alpha} \mid \alpha \in \Phi_{B}\right\rangle$ in a sequence of groups is given by $C=\left\langle u_{\alpha} \mid \alpha \in \Phi_{A} \cap \Phi_{B}\right\rangle$.

6.1. The groups V_{R} and O_{R}

For a residue $R \in \mathcal{T}_{i, 1}$ of type $\{s, t\}$ we define the group V_{R} to be the tree product of the sequence of groups with vertex groups

$$
U_{w_{R} s r}, V_{w_{R} r_{\{s, t\}}}, U_{w_{R} t r}
$$

Furthermore, we define the group O_{R} to be the tree product of the sequence of groups with vertex groups

$$
V_{w_{R} s r_{\{r, t\}}}, U_{w_{R} r_{\{s, t\}}}, V_{w_{R} t_{\{r, s\}}}
$$

(6.1.1) Remark. For V_{R} we consider $\alpha:=w_{R} s \alpha_{r}$. Using Lemma (5.1.4) we see that $-w_{R} \alpha_{t} \subseteq$ α. As $w_{R} t \in\left(-w_{R} \alpha_{t}\right)$, we deduce $w_{R} t r, w_{R} r_{\{s, t\}} \in \alpha$ and hence u_{α} is neither a generator of $V_{w_{R} r_{\{s, t\}}}$ nor of $U_{w_{R} t r}$. Now we consider $w_{R} \alpha_{s}$. As $-w_{R} t \alpha_{r} \subseteq w_{R} \alpha_{s}$ by Lemma (5.1.4) we deduce that $u_{w_{R} \alpha_{s}}$ is not a generator of $U_{w_{R} t r}$. Using similar methods we infer that V_{R} is generated by $\left\{u_{\alpha} \mid \exists v \in\left\{w_{R} s r, w_{R} s, w_{R} t, w_{R} t r\right\}: v \notin \alpha\right\}$. A similar result holds for O_{R}.
(6.1.2) Lemma. Let $R \in \mathcal{T}_{i, 1}$. Then the canonical homomorphism $V_{R} \rightarrow O_{R}$ is injective.

Figure 6.1.: Illustration of the group V_{R}

Figure 6.2.: Illustration of the group O_{R}

Proof. Let R be of type $\{s, t\}$. We will apply Proposition (1.8.3). Therefore we first see that each vertex group of V_{R} is contained in the corresponding vertex group of O_{R}, e.g. $U_{w_{R} s r} \leq V_{w_{R} s r_{\{r, t\}}}$. Next we have to show that the preimages of the boundary monomorphisms are equal and coincide with the edge groups of V_{R}. For this we compute $\alpha_{e}\left(G_{e}\right) \cap H_{o(e)}$ and $\omega_{e}\left(G_{e}\right) \cap H_{t(e)}$, as $\alpha_{e}^{-1}\left(H_{o(e)}\right)=\alpha_{e}^{-1}\left(\alpha\left(G_{e}\right) \cap H_{o(e)}\right)$ and $\omega_{e}^{-1}\left(H_{t(e)}\right)=\omega_{e}^{-1}\left(\omega\left(G_{e}\right) \cap H_{t(e)}\right)$. We compute the following:

$$
\begin{aligned}
& U_{w_{R} s r} \cap U_{w_{R} s t}=U_{w_{R} s}=V_{w_{R} r_{\{s, t\}}} \cap U_{w_{R} s t} \\
& V_{w_{R} r_{\{s, t\}}} \cap U_{w_{R} t s}=U_{w_{R} t}=U_{w_{R} t r} \cap U_{w_{R} t s}
\end{aligned}
$$

Now the claim follows from Proposition (1.8.3).

6.2. The groups $V_{R, s}$ and $O_{R, s}$

Let $R \in \mathcal{T}_{i, 1}$ be a residue of type $\{s, t\}$ such that $\ell\left(w_{R} s r s\right)=\ell\left(w_{R}\right)+3$. Then we define the group $V_{R, s}$ to be the tree product of the sequence of groups with vertex groups

$$
U_{w_{R} s r s}, V_{w_{R} r_{\{s, t\}}}, U_{w_{R} t r}
$$

Moreover, we define the group $O_{R, s}$ to be the tree product of the sequence of groups with vertex groups

$$
U_{w_{R} s r s}, V_{w_{R} s r_{\{r, t\}}}, U_{w_{R} r_{\{s, t\}}}, V_{w_{R} t r_{\{r, s\}}}
$$

Using similar arguments as in Remark (6.1.1) it follows that $V_{R, s}$ and $O_{R, s}$ are generated by suitable u_{α}.
(6.2.1) Lemma. Let $R \in \mathcal{T}_{i, 1}$ be a residue of type $\{s, t\}$ such that $\ell\left(w_{R} s r s\right)=\ell\left(w_{R}\right)+3$. Then the canonical homomorphisms $V_{R} \rightarrow V_{R, s}, O_{R} \rightarrow O_{R, s}$ and $V_{R, s} \rightarrow O_{R, s}$ are injective. Moreover, we have $V_{R, s} \star_{V_{R}} O_{R} \cong U_{w_{R} s r s} \star_{U_{w_{R} s r}} O_{R} \cong O_{R, s}$.
Proof. Note that $V_{R, s} \cong U_{w_{R} s r s} \star_{U_{w_{R} s r}} V_{R}$ and $O_{R, s} \cong U_{w_{R} s r s} \star_{U_{w_{R} s r}} O_{R}$ by Proposition (1.8.1) and Lemma (1.8.7). Using Proposition (1.8.3) and Lemma (6.1.2) the claim follows. In particular, using Remark (1.8.6) we deduce

$$
V_{R, s} \star_{V_{R}} O_{R} \cong\left(U_{w_{R} s r s} \star_{U_{w_{R}} s r} V_{R}\right) \star_{V_{R}} O_{R} \cong U_{w_{R} s r s} \star_{U_{w_{R} s r}} O_{R} \cong O_{R, s}
$$

Figure 6.3.: Illustration of the group $V_{R, s}$

Figure 6.4.: Illustration of the group $O_{R, s}$

6.3. The groups H_{R}, G_{R} and $J_{R, t}$

Let $R \in \mathcal{T}_{i, 1}$ be of type $J=\{s, t\}$. We define the group H_{R} to be the tree product of the sequence of groups with vertex groups

$$
U_{w_{R} s r_{\{r, t\}}}, V_{w_{R} s t r_{\{r, s\}}}, U_{w_{R} r_{\{s, t\}}}, V_{w_{R} t s r_{\{r, t\}}}, U_{w_{R} \operatorname{tr}_{\{r, s\}}}
$$

We define the group $J_{R, t}$ to be the tree product of the sequence of groups with vertex groups

$$
U_{w_{R} s r_{\{r, t\}}}, V_{w_{R} s \operatorname{tr}_{\{r, s\}}}, V_{w_{R} t s t r_{\{r, s\}}}, U_{w_{R} t s r_{\{r, t\}}}, V_{w_{R} t s r r_{\{s, t\}}}, U_{w_{R} t_{\{r, s\}}}
$$

Furthermore, we define the group G_{R} to be the tree product of the sequence of groups with vertex groups

$$
\begin{array}{r}
U_{w_{R} s r_{\{r, t\}}}, V_{w_{R} s t r_{\{s, t\}}}, U_{w_{R} s t r_{\{r, s\}}}, V_{w_{R} s t s t r_{\{s, t\}}}, \\
U_{w_{R} s t s r_{\{r, t\}}}, V_{w_{R} r_{\{s, t\}} r_{\{s, t\}}}, U_{w_{R} t s t r_{\{r, s\}}}, \\
V_{w_{R} t s t r_{\{s, t\}}}, U_{w_{R} t r_{r} r_{\{r, t\}}}, V_{w_{R} t s r_{\{s, t\}}}, U_{w_{R} t r_{\{r, s\}}},
\end{array}
$$

Using similar arguments as in Remark (6.1.1) it follows that $H_{R}, J_{R, t}$ and G_{R} are generated by suitable u_{α}.
(6.3.1) Lemma. Let $R \in \mathcal{T}_{i, 1}$ be of type $\{s, t\}$. Then the canonical homomorphisms $H_{R} \rightarrow$ $J_{R, t}$ and $J_{R, t} \rightarrow G_{R}$ are injective. In particular, the canonical homomorphism $H_{R} \rightarrow G_{R}$ is injective.

Proof. At first we show that $H_{R} \rightarrow J_{R, t}$ is injective. Using Proposition (1.8.1) the group $J_{R, t}$ is isomorphic to the tree product of the sequence of groups with vertex groups

$$
U_{w_{R} s r_{\{r, t\}}}, V_{w_{R} s r_{\{r, s\}}}, V_{w_{R} t s t r_{\{r, s\}}}, U_{w_{R} t s r_{\{r, t\}}}, V_{w_{R} t s r r_{\{s, t\}}} \hat{\star} U_{w_{R} t r_{\{r, s\}}}
$$

We will apply Proposition (1.8.3). Therefore we first see that each vertex group of H_{R} is contained in the corresponding vertex group of the previous tree product, e.g. $U_{w_{R} t r_{\{r, s\}}} \leq$

Figure 6.5.: Illustration of the group H_{R}

Figure 6.6.: Illustration of the group $J_{R, t}$

Figure 6.7.: Illustration of the group G_{R}
$V_{w_{R} t s r_{\{s, t\}}} \hat{\star} U_{w_{R} t_{\{r, s\}}}$. Next we have to show that the preimages of the boundary monomorphisms are equal and coincide with the edge groups of H_{R}. As before, we compute $\alpha_{e}\left(G_{e}\right) \cap$ $H_{o(e)}$ and $\omega_{e}\left(G_{e}\right) \cap H_{t(e)}$. Note that if the vertex groups H_{v} and G_{v} coincide, we do not have to compute the intersection. We compute the following:

$$
\begin{array}{r}
V_{w_{R} s r_{\{r, s\}}} \cap U_{w_{R} s t s}=U_{w_{R} s t s}=U_{w_{R} r_{\{s, t\}}} \cap U_{w_{R} s t s} \\
U_{w_{R} r_{\{s, t\}}} \cap U_{w_{R} t s t r}=U_{w_{R} t s t}=V_{w_{R} t r_{\{r, t\}}} \cap U_{w_{R} t s t r} \\
V_{w_{R} t s r_{\{r, t\}}} \cap U_{w_{R} t s r t}=U_{w_{R} t s r}=U_{w_{R} t_{\{r, s\}}} \cap U_{w_{R} t s r t}
\end{array}
$$

We determine two preimages in detail. The others will follow similarly. It is easy to see that $U_{w_{R} t s r} \subseteq V_{w_{R} t r_{\{r, t\}}} \cap U_{w_{R} t s r t}$. For the other inclusion we note that $V_{w_{R} t s r_{\{r, t\}}} \cap U_{w_{R} t s r t} \subseteq$ $U_{w_{R} t s r}$, as this inclusion holds in $U_{w_{R} t s r_{\{r, t\}}}$. Again, it is easy to see that $U_{w_{R} t s r} \subseteq U_{w_{R} t r_{\{r, s\}}} \cap$ $U_{w_{R} t s r t}$. For the other inclusion we have to compute the intersection in $V_{w_{R} t s r r_{\{s, t\}}} \hat{\star} U_{w_{R}} \operatorname{tr}_{\{r, s\}}$. Using Lemma (1.8.5), we deduce $U_{w_{R} t s t t} \cap U_{w_{R} t_{\{r, s\}}} \subseteq V_{w_{R} t s r_{\{s, t\}}} \hat{\star} U_{w_{R} t_{\{r, s\}}}=U_{w_{R} t s r s}$. This yields $U_{w_{R} t s r t} \cap U_{w_{R} t r_{\{r, s\}}}=U_{w_{R} t s t t} \cap U_{w_{R} t_{\{r, s\}}} \cap U_{w_{R} t s r s}=U_{w_{R} t s r} \cap U_{w_{R} t r_{\{r, s\}}}=U_{w_{R} t s r}$. We deduce that $H_{R} \rightarrow J_{R, t}$ is injective by Proposition (1.8.3).

Now we will show that $J_{R, t} \rightarrow G_{R}$ is injective. Using Proposition (1.8.1) the group G_{R} is isomorphic to the tree product of the following sequence of groups with vertex groups

$$
\begin{array}{r}
U_{w_{R} s r_{\{r, t\}}} \hat{*} V_{w_{R} s t r r_{\{s, t\}}}, U_{w_{R} s t_{\{r, s\}}} \hat{\star} V_{w_{R} s t s r_{\{s, t\}},}, U_{\left.w_{R} s t s r_{\{r, t}\right\}} \hat{\}} V_{w_{R} r_{\{s, t\}} r r_{\{s, t\}}} \hat{\star} U_{w_{R} t s t r_{\{r, s\}},}, \\
V_{w_{R} t s t r r_{\{s, t\}}} \hat{\star} U_{w_{R} t s r_{\{r, t\}},}, V_{\left.w_{R} t s r_{\{s, t\}}\right\}}, U_{\left.w_{R} t r_{\{r, s\}}\right\}}
\end{array}
$$

One easily sees that each vertex group of $J_{R, t}$ is contained in the corresponding vertex group of the previous tree product. Considering the preimage of the boundary monomorphisms the
following hold:

$$
\begin{array}{r}
U_{w_{R} s r_{\{r, t\}}} \cap U_{w_{R} s t r s}=U_{w_{R} s t r}=V_{w_{R} s t r_{\{r, s\}}} \cap U_{w_{R} s t r s} \\
V_{w_{R} s r_{\{r, s\}}} \cap U_{w_{R} s t s r t}=U_{w_{R} s t s}=V_{w_{R} t s t r_{\{r, s\}}} \cap U_{w_{R} s t s r t} \\
V_{w_{R} t s t r_{\{r, s\}}} \cap U_{w_{R} t s t r s}=U_{w_{R} t s t r}=U_{w_{R} t s r_{\{r, t\}}} \cap U_{w_{R} t s t r s}
\end{array}
$$

We comment on the equation $U_{w_{R} s t s}=V_{w_{R} t s t r_{\{r, s\}}} \cap U_{w_{R} s t s r t}$. The inclusion \subseteq is clear. Now we consider \supseteq. Using Proposition (1.8.1) and Corollary (1.8.5) twice it follows that $V_{w_{R} t s t r_{\{r, s\}}} \cap U_{w_{R} s t s r t} \subseteq U_{w_{R} r_{\{s, t\} r t}} \cap U_{w_{R} r_{\{s, t\}} r s}=U_{w_{R} r_{\{s, t\}} r}$. Thus we obtain

$$
V_{w_{R} t s t r_{\{r, s\}}} \cap U_{w_{R} s t s r t}=V_{w_{R} t s t r_{\{r, s\}}} \cap U_{w_{R} s t s r t} \cap U_{w_{R} r_{\{s, t\}} r}=V_{w_{R} t s t r_{\{r, s\}}} \cap U_{w_{R} s t s}=U_{w_{R} s t s}
$$

As before, $J_{R, t} \rightarrow G_{R}$ is injective by Proposition (1.8.3)
(6.3.2) Lemma. Let $R \in \mathcal{T}_{i, 1}$ be a residue of type $\{s, t\}$ and let $T=R_{\{r, t\}}\left(w_{R} t s\right)$. Then $T \in \mathcal{T}_{i+2,1}$, the canonical homomorphism $V_{T} \rightarrow H_{R}$ is injective and we have $J_{R, t} \cong H_{R} V_{T} O_{T}$.
Proof. Note that $T \in \mathcal{T}_{i+2,1}$. By Proposition (1.8.1), $U_{w_{R} r_{\{s, t\}}} \hat{\star} V_{w_{R} t s r_{\{r, t\}}} \hat{\star} U_{w_{R} \operatorname{tr}\{r, s\}} \rightarrow H_{R}$ is injective. Using Proposition (1.8.3), we deduce that

$$
V_{T}=U_{w_{R} t s t s} \hat{\star} V_{w_{R} t s r_{\{r, t\}}} \hat{\star} U_{w_{R} t s r s} \rightarrow U_{w_{R} r_{\{s, t\}}} \hat{\star} V_{w_{R} t s r_{\{r, t\}}} \hat{\star} U_{w_{R} t r_{\{r, s\}}}
$$

is injective and hence also the concatenation $V_{T} \rightarrow H_{R}$. Using Proposition (1.8.1), Proposition (1.8.3), Remark (1.8.6), Lemma (1.8.7) and Lemma (6.1.2) we obtain the following isomorphisms (we abbreviate $K:=V_{T} \star_{U_{w_{R} t s r s}} U_{w_{R} t r_{\{r, s\}}}$):

$$
\begin{aligned}
J_{R, t} & \cong U_{w_{R} s r_{\{r, t\}}} \hat{\star} V_{w_{R} s t r_{\{r, s\}}} \star_{U_{w_{R} s t s}}\left(O_{T} \star_{U_{w_{R} t s r s}} U_{w_{R} t_{\{r, s\}}}\right) \\
& \cong U_{w_{R} s r_{\{r, t\}}} \not \star_{w_{R} s t r_{\{r, s\}}} \star_{U_{w_{R} s t s}} K \star_{K}\left(O_{T} \star_{U_{w_{R} t s r s}} U_{w_{R} t r_{\{r, s\}}}\right) \\
& \cong H_{R} \star_{K}\left(O_{T} \star_{U_{w_{R} t s r s}} U_{w_{R} t r_{\{r, s\}}}\right) \\
& \cong H_{R} \star_{K}\left(U_{w_{R} t_{\{r, s\}}} \star_{U_{w_{R} t s r s}} V_{T} \star_{V_{T}} O_{T}\right) \\
& \cong H_{R} \star_{K}\left(U_{w_{R} t r_{\{r, s\}}} \star_{U_{w_{R} t s r s}} V_{T}\right) \star_{V_{T}} O_{T} \\
& \cong H_{R} \star_{T} O_{T}
\end{aligned}
$$

6.4. The group $K_{R, s}$

For a residue $R \in \mathcal{T}_{i, 1}$ of type $\{s, t\}$ we define the group $K_{R, s}$ to be the tree product of the sequence of groups with vertex groups

$$
U_{w_{R} s r_{\{r, t\}}}, V_{w_{R} s t_{\{r, s\}}}, U_{w_{R} r_{\{s, t\}}}, V_{w_{R} \operatorname{tr}_{\{r, s\}}}
$$

Using similar arguments as in Remark (6.1.1) it follows that $K_{R, s}$ is generated by suitable u_{α}.
(6.4.1) Lemma. Let $R \in \mathcal{T}_{i, 1}$ be of type $\{s, t\}$. Then the canonical homomorphisms $O_{R} \rightarrow$ $K_{R, s}, K_{R, t}$ are injective and we have $H_{R} \cong K_{R, s} \star_{O_{R}} K_{R, t}$.

Proof. Using Proposition (1.8.1) the group $K_{R, s}$ is isomorphic to the tree product of the sequence of groups with vertex groups

$$
U_{w_{R} s r_{\{r, t\}}}, V_{w_{R} s r_{\{r, s\}}} \hat{\star} U_{w_{R} r_{\{s, t\}}}, V_{w_{R} \operatorname{tr}_{\{r, s\}}}
$$

Figure 6.8.: Illustration of the group $K_{R, s}$

One easily sees that each vertex group of O_{R} is contained in the corresponding vertex group of the previous tree product. Considering the preimage of the boundary monomorphisms the following holds:

$$
V_{w_{R} s r_{\{r, t\}}} \cap U_{w_{R} s t r}=U_{w_{R} s t}=U_{w_{R} r_{\{s, t\}}} \cap U_{w_{R} s t r}
$$

As before, Proposition (1.8.3) yields that the canonical homomorphism $O_{R} \rightarrow K_{R, s}$ is injective. Using similar arguments, we obtain that $O_{R} \rightarrow K_{R, t}$ is injective. We define $C_{0}:=$ $V_{w_{R} s r_{\{r, t\}}} \hat{\star} U_{w_{R} r_{\{s, t\}}}$ and note that $U_{w_{R} t s t} \rightarrow C_{0}$ and $C_{0} \rightarrow O_{R}$ are injective. Moreover, the computations above imply that $C_{0} \rightarrow U_{\left.w_{R} s r_{\{r, t}\right\}} \hat{\star} V_{w_{R} s t r_{\{r, s\}}} \hat{\star} U_{w_{R} r_{\{s, t\}}}$ is injective. Now the following isomorphisms follow from Proposition (1.8.1), Remark (1.8.6) and Lemma (1.8.7)

$$
\begin{aligned}
& H_{R} \cong\left(U_{w_{R} s r_{\{r, t\}}} \hat{\star} V_{w_{R} s t r_{\{r, s\}}} \hat{\star} U_{w_{R} r_{\{s, t\}}}\right) \star_{U_{w_{R} t s t}}\left(V_{w_{R} t s r_{\{r, t\}}} \hat{\star} U_{w_{R} t r_{\{r, s\}}}\right) \\
& \cong\left(U_{w_{R} s r_{\{r, t\}}} \hat{\star} V_{w_{R} s t r_{\{r, s\}}} \hat{\star} U_{w_{R} r_{\{s, t\}}}\right) \star C_{0} C_{0} \star_{U_{w^{t s t}}}\left(V_{w_{R} t s r_{\{r, t\}}} \hat{\star} U_{w_{R} t^{2}\{r, s\}}\right) \\
& \cong\left(U_{w_{R} s r_{\{r, t\}}} \hat{\star} V_{w_{R} s t r_{\{r, s\}}} \hat{\star} U_{w_{R} r_{\{s, t\}}}\right) \star_{C_{0}} K_{R, t} \\
& \cong\left(U_{w_{R} s r_{\{r, t\}}} \hat{\star} V_{w_{R} s t r_{\{r, s\}}} \hat{\star} U_{w_{R} r_{\{s, t\}}}\right) \star{ }_{C} O_{R} \star_{O_{R}} K_{R, t} \\
& \cong\left(\left(U_{w_{R} s r_{\{r, t\}}} \hat{\star} V_{w_{R} s r_{\{r, s\}}} \hat{\star} U_{w_{R} r_{\{s, t\}}}\right) \star{ }_{0} O_{R}\right) \star{ }_{O_{R}} K_{R, t} \\
& \cong\left(\left(U_{w_{R} s r_{\{r, t\}}} \hat{\star} V_{w_{R} s t r_{\{r, s\}}} \hat{\star} U_{w_{R} r_{\{s, t\}}}\right) \star{ }_{C} C_{0} \star_{U_{w_{R} t s}} V_{w_{R} t^{2 r}\{r, s\}}\right) \star{ }_{O_{R}} K_{R, t} \\
& \cong\left(\left(U_{w_{R} s r_{\{r, t\}}} \hat{\star} V_{w_{R} s t r_{\{r, s\}}} \hat{\star} U_{w_{R} r_{\{s, t\}}}\right) \star{ }_{U_{w_{R} t s}} V_{w_{R} \operatorname{tr}_{\{r, s\}}}\right) \star_{O_{R}} K_{R, t} \\
& \cong K_{R, s} \star_{O_{R}} K_{R, t}
\end{aligned}
$$

(6.4.2) Remark. Let $R \in \mathcal{T}_{i, 1}$ be of type $\{s, t\}$ such that $\ell\left(w_{R} s r s\right)=\ell\left(w_{R}\right)+3$ and let $T=R_{\{r, t\}}\left(w_{R} s\right)$. In the next lemma we consider $O_{R, s} \star_{V_{T}} O_{T}$. Similar as in Remark (6.1.1) we will show that if x_{α} is a generator of $O_{R, s}$ and y_{α} is a generator of O_{T}, then $x_{\alpha}=y_{\alpha}$ holds in $O_{R, s} \star_{V_{T}} O_{T}$. It suffices to consider $w_{R} \alpha_{t}$ and $w_{R} t \alpha_{r}$. As $-w_{R} \alpha_{s} \subseteq$ $w_{R} t \alpha_{r}$ and $-w_{R} s \alpha_{r},-w_{R} s t \alpha_{r} \subseteq w_{R} \alpha_{t}$, we deduce that x_{α} is not a generator of O_{T} for $\alpha \in\left\{w_{R} \alpha_{t}, w_{R} t \alpha_{r}\right\}$.
(6.4.3) Lemma. Let $R \in \mathcal{T}_{i, 1}$ be of type $\{s, t\}$ such that $\ell\left(w_{R} s r s\right)=\ell\left(w_{R}\right)+3$ and let $T=R_{\{r, t\}}\left(w_{R} s\right)$. Then the canonical homomorphisms $V_{T} \rightarrow O_{R, s}$ and $K_{R, s} \rightarrow O_{R, s} \star_{V_{T}} O_{T}$ are injective and we have $K_{R, s} \cap O_{R, s}=O_{R}$ in $O_{R, s} \star_{V_{T}} O_{T}$.

Proof. We have $O_{R, s} \cong V_{T} \star_{U_{w_{R} s t s}} U_{w_{R} r_{\{s, t\}}} \hat{\star} V_{\left.w_{R} t_{\{r, s\}}\right\}}$ by Lemma (1.8.7) and Proposition (1.8.1) Now Proposition (1.8.1) yields that the mapping $V_{T} \rightarrow O_{R, s}$ is injective. This, together with Proposition (1.8.1), Remark (1.8.6), Lemma (1.8.7) and Lemma (6.1.2) yields the following isomorphisms:

$$
\begin{aligned}
O_{R, s} \star_{V_{T}} O_{T} & \cong\left(V_{T} \star_{U_{w_{R}} s t s} U_{w_{R} r_{\{s, t\}}} \not{\star} V_{w_{R} t r_{\{r, s\}}}\right) \star_{V_{T}} O_{T} \\
& \cong V_{w_{R} t r_{\{r, s\}}} \hat{\star} U_{w_{R} r_{\{s, t\}}} \star U_{w_{R} s t s} V_{T} \star_{T} O_{T} \\
& \cong V_{w_{R} t r_{\{r, s\}}} \hat{\star} U_{w_{R} r_{\{s, t\}}} \star U_{w_{R} s t s}\left(V_{w_{R} s r_{\{r, s\}}} \hat{\star} U_{w_{R} s r_{\{r, t\}}} \hat{\star} V_{w_{R} s r_{\{s, t\}}}\right) \\
& \cong K_{R, s} \star U_{w_{R} s t t} V_{w_{R} s r_{\{s, t\}}}
\end{aligned}
$$

For the second claim we note that $O_{R, s} \cong O_{R} \star_{U_{w_{R} s r}} U_{w_{R} s r s}$ by Lemma (6.2.1) By Lemma (6.4.1) we have that $O_{R} \rightarrow K_{R, s}$ is injective and, moreover, $U_{w_{R} s r s} \leq V_{w_{R} s r_{\{, t\}}}$. Considering the preimage of the boundary monomorphisms the following hold:

$$
O_{R} \cap U_{w_{R} s r t}=U_{w_{R} s r}=U_{w_{R} s r s} \cap U_{w_{R} s r t}
$$

Note that the first equation follows from the following: Proposition (1.8.3) implies $O_{R} \cap$ $U_{w_{R} s r_{\{r, t\}}}=V_{w_{R} s r_{\{r, t\}}}$ and hence $O_{R} \cap U_{w_{R} s r t}=O_{R} \cap U_{w_{R} s r t} \cap V_{w_{R} s r_{\{r, t\}}}=O_{R} \cap U_{w_{R} s r}=U_{w_{R} s r}$. As before, Proposition (1.8.3) implies that $O_{R, s} \cong O_{R^{*} \star_{U_{w_{R}} s r}} U_{w_{R} s r s} \rightarrow K_{R, s} \star_{U_{w_{R}} s r t} V_{w_{R} s r r_{\{s, t\}}}$ is injective and that $O_{R, s} \cap K_{R, s}=O_{R}$. This finishes the claim.

6.5. The groups $E_{R, s}$ and $U_{R, s}$

Let $R \in \mathcal{T}_{i, 1}$ be of type $\{s, t\}$ and assume that $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)-2$. We put $R^{\prime}=R_{\{r, s\}}\left(w_{R}\right)$ and $w^{\prime}=w_{R^{\prime}}$. We define the group $E_{R, s}$ to be the tree product of the sequence of groups with vertex groups

$$
\begin{array}{r}
U_{w^{\prime} r s r_{\{r, t\}}}, V_{w^{\prime} r s s t t_{\{r, s\}},}, U_{w^{\prime} r s r_{\{s, t\}}}, V_{w_{R} s s t r_{\{r, s\}},}, U_{w_{R} s r_{\{r, t\}},}, \\
V_{w_{R} s t_{\{r, s\}},}, U_{w_{R} r_{\{s, t\}}}, V_{\left.w_{R} t s r_{\{r, t\}}\right\}}, U_{\left.w_{R} t r_{\{r, s\}}\right\}}
\end{array}
$$

Furthermore, we define the group $U_{R, s}$ to be the tree product of the sequence of groups with vertex groups

$$
\begin{array}{r}
U_{w^{\prime} r s r_{\{r, t\}}}, V_{w^{\prime} r s t r_{\{r, s\}}}, U_{w^{\prime} r s r_{\{s, t\}}}, V_{w_{R} s t t_{\{r, s\}},}, U_{w_{R} s r_{\{r, t\}}}, V_{w_{R} s t r r_{\{s, t\}},}, U_{w_{R} s t r_{\{r, s\}},}, V_{w_{R} s t s r_{\{s, t\}}}, \\
U_{w_{R} s t s r_{\{r, t\}},}, V_{w_{R} r_{\{s, t\}} r_{\{s, t\}}}, U_{w_{R} t s t r_{\{r, s\}},}, V_{w_{R} t s t r_{\{s, t\}},}, U_{w_{R} t s r_{\{r, t\}},}, V_{w_{R} t s r_{\{s, t\}},}, U_{w_{R} t r_{\{r, s\}}}
\end{array}
$$

Using similar arguments as in Remark (6.1.1) it follows that $E_{R, s}$ and $U_{R, s}$ are generated by suitable u_{α}.

Figure 6.9.: Illustration of the group $E_{R, s}$

Figure 6.10.: Illustration of the group $U_{R, s}$
(6.5.1) Lemma. Let $R \in \mathcal{T}_{i, 1}$ be of type $\{s, t\}$ such that $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)-2$. Then the canonical homomorphisms $H_{R} \rightarrow E_{R, s}$ and $E_{R, s} \rightarrow U_{R, s}$ are injective and we have $E_{R, s} \star_{H_{R}}$ $G_{R} \cong U_{R, s}$.

Proof. The first four vertex groups of the underlying sequences of groups of $E_{R, s}$ and $U_{R, s}$ coincide. Thus we denote the tree product of these first four vertex groups by F_{4}. Using Proposition (1.8.1) we deduce $E_{R, s} \cong F_{4} \star_{U_{w_{R}} s r t r} H_{R}$ and $U_{R, s} \cong F_{4} \star_{U_{w_{R}} s r t r} G_{R}$. In particular, $H_{R} \rightarrow E_{R, s}$ is injective. Using Lemma (6.3.1), Proposition (1.8.1), Remark (1.8.6) and Lemma (1.8.7) we infer

$$
U_{R, s} \cong F_{4} \star_{U_{w_{R} s r t r}} G_{R} \cong F_{4} \star_{U_{w_{R} s r t r}} H_{R} \star_{H_{R}} G_{R} \cong E_{R, s} \star_{H_{R}} G_{R}
$$

Proposition (1.8.1) yields that $E_{R, s} \rightarrow U_{R, s}$ is injective and the claim follows.

6.6. The group X_{R}

Let $R \in \mathcal{T}_{i, 1}$ be a residue of type $\{s, t\}$ and assume that $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)-2$ and $\ell\left(w_{R} r t\right)=$ $\ell\left(w_{R}\right)$. Let $R^{\prime}=R_{\{r, s\}}\left(w_{R}\right)$ and let $w^{\prime}=w_{R^{\prime}}$. Let X_{R} be the tree product of the sequence of groups with vertex groups

$$
\begin{array}{r}
U_{w^{\prime} r s r_{\{r, t\}}}, V_{w^{\prime} r s r t r_{\{r, s\}}}, U_{w^{\prime} r s t r_{\{s, t\}}}, V_{w_{R} s r t r_{\{r, s\}}}, U_{w_{R} s r_{\{r, t\}}}, \\
V_{w_{R} s t r_{\{r, s\}}}, U_{w_{R} r_{\{s, t\}}}, V_{w_{R} t_{\{r, s\}}}, U_{w^{\prime} s r_{\{r, t\}}}
\end{array}
$$

Using similar arguments as in Remark (6.1.1) it follows that X_{R} is generated by suitable u_{α}. (6.6.1) Remark. Let $R \in \mathcal{T}_{i, 1}$ be a residue of type $\{s, t\}$ such that $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)-2$ and $\ell\left(w_{R} r t\right)=\ell\left(w_{R}\right)$ and let $T:=R_{\{r, s\}}\left(w_{R} t\right)$. In the next lemma we consider $X_{R} \star_{V_{T}} O_{T}$. Similar as in Remark (6.1.1) we have to show that if x_{α} is a generator of X_{R} and y_{α} is a generator of O_{T}, then $x_{\alpha}=y_{\alpha}$ holds in $X_{R} \star_{V_{T}} O_{T}$. It suffices to consider $w_{R} \operatorname{tr} \alpha_{s}$ and $w_{R} t s \alpha_{r}$. As $-w_{R} \alpha_{s} \subseteq w_{R} t r \alpha_{s}, w_{R} t s \alpha_{r}$, we deduce that x_{α} is not a generator of X_{R} for $\alpha \in\left\{w_{R} \operatorname{tr} \alpha_{s}, w_{R} t s \alpha_{r}\right\}$.
(6.6.2) Lemma. Let $R \in \mathcal{T}_{i, 1}$ be a residue of type $\{s, t\}$ such that $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)-2$ and $\ell\left(w_{R} r t\right)=\ell\left(w_{R}\right)$ and let $T:=R_{\{r, s\}}\left(w_{R} t\right)$. Then the canonical homomorphisms $V_{T} \rightarrow X_{R}$ and $E_{R, s} \rightarrow X_{R} \star_{V_{T}} O_{T}$ are injective.
Proof. The first part follows from Proposition (1.8.1) and Proposition (1.8.3) Let F_{6} be the tree product of the first six vertex groups of the underlying sequence of groups of X_{R}. Using Proposition (1.8.1), Remark (1.8.6), Lemma (1.8.7) and Lemma (6.1.2) we obtain the following isomorphisms:

$$
\begin{aligned}
X_{R} \star V_{T} O_{T} & \cong\left(F_{6} \star_{U_{w_{R} s t s}} U_{w_{R} r_{\{s, t\}}} \hat{\star} V_{w_{R} t r_{\{r, s\}}} \hat{\star} U_{w^{\prime} s r_{\{r, t\}}}\right) \star_{V_{T}} O_{T} \\
& \cong\left(F_{6} \star_{U_{w_{R} s t s}} U_{w_{R} r_{\{s, t\}}} \star_{U_{w_{R}} t s} U_{w_{R} t s t} \hat{\star} V_{w_{R} t r_{\{r, s\}}} \hat{\star} U_{w^{\prime} s r_{\{r, t\}}}\right) \star{V_{T}} O_{T} \\
& \cong F_{6} \star_{U_{w_{R} s t}} U_{w_{R^{2}} r_{\{s, t\}}} \star_{U_{w_{R}} t s t} V_{T} \star_{T} O_{T} \\
& \cong F_{6} \star_{U_{w^{R}} s t} U_{w_{R} r_{\{s, t\}}} \star_{U_{w_{R}} t s t} O_{T} \\
& \cong E_{R, s} \star_{U_{w_{R}} t r s} V_{w_{R} t r r_{\{s, t\}}}
\end{aligned}
$$

(6.6.3) Lemma. Let $R \in \mathcal{T}_{i, 1}$ be a residue of type $\{s, t\}$ such that $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)-2$ and $\ell\left(w_{R} r t\right)=\ell\left(w_{R}\right)$. Let $Z:=R_{\{r, s\}}\left(w_{R}\right)$ be and suppose that $Z \in \mathcal{T}_{i-1,1}$. Then $X_{R} \rightarrow G_{Z}$ is injective.
Proof. As the last nine vertex groups of the underlying sequence of groups of G_{Z} coincide with the vertex groups of the underlying sequence of groups of X_{R}, the claim follows from Proposition (1.8.1).

Figure 6.11.: Illustration of the group X_{R}

6.7. The groups $H_{\left\{R, R^{\prime}\right\}}, G_{\left\{R, R^{\prime}\right\}}$ and $J_{\left(R, R^{\prime}\right)}$

Let $\left\{R, R^{\prime}\right\} \in \mathcal{T}_{i, 2}$. Let $w=w_{R}, w^{\prime}=w_{R^{\prime}}$ and let $\{r, s\}$ (resp. $\{r, t\}$) be the type of R (resp. $\left.R^{\prime}\right)$. Let $T=R_{\{r, t\}}(w)$ and $T^{\prime}=R_{\{r, s\}}\left(w^{\prime}\right)$. Then we define the group $H_{\left\{R, R^{\prime}\right\}}$ to be the tree product of the sequence of groups with vertex groups

$$
\begin{aligned}
& U_{w_{T} r \operatorname{trr}}^{\{s, t\}}, V_{w_{T} r_{\{r, t\}} s r_{\{r, t\}}}, U_{w_{T} \operatorname{trtr}_{\{r, s\}},}, V_{w_{T} \operatorname{trtss}_{\{r, t\}},}, U_{\left.w_{T} \operatorname{tr}_{\{s, t\}}\right\}}, \\
& V_{w r s r_{\{r, t\}}}, U_{w r_{\{r, s\}}}, V_{w s r r_{\{s, t\}}}, U_{w^{\prime} r_{\{r, t\}}}, V_{\left.w^{\prime} r t r_{\{r, s\}}\right\}}, \\
& U_{w_{T^{\prime}} s r_{\{s, t\}}}, V_{w_{T^{\prime}} s r s t r_{\{r, s\}}}, U_{w_{T^{\prime}} s r s r_{\{r, t\}}}, V_{w_{T^{\prime}} r_{\{r, s\}} \operatorname{tr}_{\{r, s\}}}, U_{w_{T^{\prime}} r s r r_{\{s, t\}}}
\end{aligned}
$$

We define the group $J_{\left(R, R^{\prime}\right)}$ to be the tree product of the sequence of groups with vertex groups

$$
\begin{aligned}
& U_{w_{T} r \operatorname{trr} r_{\{s, t\}}}, V_{w_{T} r_{\{r, t\}} s r_{\{r, t\}}}, U_{w_{T} \operatorname{trtr}_{\{r, s\}},}, V_{\left.w_{T} \operatorname{trtstr}_{\{r, t\}}\right\}},
\end{aligned}
$$

$$
\begin{aligned}
& U_{w_{T^{\prime}} s r r_{\{s, t\}}}, V_{w_{T^{\prime}} s r s t r_{\{r, s\}}}, U_{w_{T^{\prime}} s r s r_{\{r, t\}}}, V_{w_{T^{\prime}} r_{\{r, s\}} t_{\{r, s\}}}, U_{w_{T^{\prime}} r s r_{\{s, t\}}}
\end{aligned}
$$

Furthermore, we define the group $G_{\left\{R, R^{\prime}\right\}}$ to be the tree product of the sequence of groups with vertex groups

$$
\begin{aligned}
& U_{w_{T} r t r_{\{s, t\}}}, V_{w_{T} r_{\{r, t\}} s r_{\{r, t\}}}, U_{w_{T} \operatorname{trtr}_{\{r, s\}},}, V_{\left.w_{T} \operatorname{trtsr}_{\{r, t\}}\right\}}, \\
& U_{w_{T} \operatorname{tr}_{\{s, t\}}}, V_{w r s t r_{\{r, s\}}}, U_{w r s r_{\{r, t\}}}, V_{w r s t r t r_{\{r, s\}}}, U_{w r s r r_{\{s, t\}}}, V_{w_{\{r, s\}} \operatorname{tr}_{\{r, s\}}}, U_{\left.w s r s r_{\{r, t\}}\right\}}, \\
& V_{w_{s r s t t_{\{r, s\}}},} U_{w s r_{\{s, t\}}}, V_{w^{\prime} t r t s r_{\{r, t\}}}, \\
& U_{w^{\prime} t r t^{\prime} r_{\{r, s\}}}, V_{w^{\prime} r_{\{r, t\}} s r_{\{r, t\}}}, U_{w^{\prime} r \operatorname{trr}_{\{s, t\}}}, V_{\left.w^{\prime} r t r s r_{\{r, t\}}\right\}}, U_{w^{\prime} r t_{\{r, s\}}}, V_{w^{\prime} r t s r_{\{r, t\}}}, U_{\left.w_{T^{\prime}} s r_{\{s, t\}}\right\}}, \\
& V_{w_{T^{\prime}} s r s t r_{\{r, s\}}}, U_{w_{T^{\prime}} s r s r_{\{r, t\}}}, V_{w_{T^{\prime}} r_{\{r, s\}} \operatorname{tr}_{\{r, s\}}}, U_{w_{T^{\prime}} r s r_{\{s, t\}}}
\end{aligned}
$$

Using similar arguments as in Remark (6.1.1) it follows that $H_{\left\{R, R^{\prime}\right\}}, G_{\left\{R, R^{\prime}\right\}}$ and $J_{\left(R, R^{\prime}\right)}$ are generated by suitable u_{α}.
(6.7.1) Lemma. Let $\left\{R, R^{\prime}\right\} \in \mathcal{T}_{i, 2}$, let $\{r, s\}$ be the type of R and let $\{r, t\}$ be the type of R^{\prime}. Then the canonical homomorphisms $H_{\left\{R, R^{\prime}\right\}} \rightarrow J_{\left(R, R^{\prime}\right)}$ and $J_{\left(R, R^{\prime}\right)} \rightarrow G_{\left\{R, R^{\prime}\right\}}$ are injective. In particular, the canonical homomorphism $H_{\left\{R, R^{\prime}\right\}} \rightarrow G_{\left\{R, R^{\prime}\right\}}$ is injective.
Proof. We first show that the homomorphism $H_{\left\{R, R^{\prime}\right\}} \rightarrow J_{\left(R, R^{\prime}\right)}$ is injective. Using Proposition (1.8.1) the group $J_{\left(R, R^{\prime}\right)}$ is isomorphic to the tree product of the following sequence of groups with vertex groups

$$
\begin{aligned}
& U_{w_{T} r t r r_{\{s, t\}}}, V_{w_{T} r_{\{r, t\}} s r_{\{r, t\}}}, U_{\left.w_{T} \operatorname{trtr}_{\{r, s\}}\right\}}, V_{\left.w_{T} \operatorname{trtst}_{\{r, t\}}\right\}},
\end{aligned}
$$

$$
\begin{aligned}
& U_{w_{T^{\prime}} s r_{\{s, t\}}}, V_{w_{T^{\prime}} s r s t r_{\{r, s\}},}, U_{w_{T^{\prime}} s r s r_{\{r, t\}}}, V_{w_{T^{\prime}} r_{\{r, s\}} \operatorname{tr}_{\{r, s\}}}, U_{w_{T^{\prime}} \prime s r r_{\{s, t\}}}
\end{aligned}
$$

One easily sees that each vertex groups of $H_{\left\{R, R^{\prime}\right\}}$ is contained in the corresponding vertex group of the previous tree product. Note that the first five and the last eight vertex groups of the underlying sequence of groups of $H_{\left\{R, R^{\prime}\right\}}$ and $J_{\left(R, R^{\prime}\right)}$ coincide. Thus we only have to consider the preimage of the other boundary monomorphisms. We compute the following:

$$
\begin{array}{r}
U_{w_{T} t r r_{\{s, t\}}} \cap U_{w_{T} t r s t r}=U_{w_{T} t r s t}=V_{w_{R} r s r_{\{r, t\}}} \cap U_{w_{T} t r s t r} \\
\quad V_{w_{R} r s r_{\{r, t\}}} \cap U_{w_{R} r s r t}=U_{w_{R} r s r}=U_{w_{R} r_{\{r, s\}}} \cap U_{w_{R} r s r t}
\end{array}
$$

Figure 6.12.: Illustration of the group $H_{\left\{R, R^{\prime}\right\}}$

Figure 6.13.: Illustration of the group $J_{\left(R, R^{\prime}\right)}$

Figure 6.14.: Illustration of the group $G_{\left\{R, R^{\prime}\right\}}$

$$
U_{w_{R} r_{\{r, s\}}} \cap U_{w_{R} s r s}=U_{w_{R} s r s}=V_{w_{R} s r r_{\{s, t\}}} \cap U_{w_{R} s r s}
$$

As before, $H_{\left\{R, R^{\prime}\right\}} \rightarrow J_{\left(R, R^{\prime}\right)}$ is injective by Proposition (1.8.3).
Now we show that $J_{\left(R, R^{\prime}\right)} \rightarrow G_{\left\{R, R^{\prime}\right\}}$ is injective. Using Proposition (1.8.1) the group $G_{\left\{R, R^{\prime}\right\}}$ is isomorphic to the tree product of the following sequence of groups with vertex groups

$$
\begin{aligned}
& U_{w_{T} r \operatorname{trr}}^{\{s, t\}}, ~, ~ V_{w_{T} r_{\{r, t\}} s r_{\{r, t\}}}, U_{w_{T} \operatorname{trtr}_{\{r, s\}}}, V_{w_{T} t r t s r_{\{r, t\}}}, U_{w_{T} \operatorname{trr}_{\{s, t\}}}, V_{w r s t r_{\{r, s\}}}, \\
& U_{w r s r_{\{r, t\}}} \hat{\star} V_{w r s r t r_{\{r, s\}}}, U_{w r s r r_{\{s, t\}}} \hat{\star} V_{w r_{\{r, s\}}} \operatorname{tr}_{\{r, s\}} \hat{\star} U_{w s r s r_{\{r, t\}}}, \\
& V_{w s r s t r_{\{r, s\}}} \hat{\star} U_{w s r r_{\{s, t\}}} \hat{\star} V_{w^{\prime} \operatorname{trtsr}_{\{r, t\}}}, \\
& U_{w^{\prime} \operatorname{trtr}_{\{r, s\}}} \hat{\star} V_{w^{\prime} r_{\{r, t\}} s r_{\{r, t\}}} \hat{\star} U_{w^{\prime} r \operatorname{trr}}^{\{s, t\}}, ~ V_{w^{\prime} r t r s r_{\{r, t\}}} \hat{\star} U_{w^{\prime} r t r_{\{r, s\}}}, V_{w^{\prime} r t s r_{\{r, t\}}} \hat{\star} U_{w_{T^{\prime}} s r r_{\{s, t\}}},
\end{aligned}
$$

One easily sees that each vertex group of $J_{\left(R, R^{\prime}\right)}$ is contained in the corresponding vertex group of the previous tree product. Note that the first seven and the last five vertex groups of the underlying sequence of groups of $J_{\left(R, R^{\prime}\right)}$ and $G_{\left\{R, R^{\prime}\right\}}$ coincide. Thus it suffices to consider the following preimages of the boundary monomorphisms:

$$
\begin{aligned}
& U_{w r s r_{\{r, t\}}} \cap U_{w r s r t s}=U_{w r s r t}=V_{w r s r r_{\{s, t\}}} \cap U_{w r s r t s} \\
& V_{w r s r r_{\{s, t\}}} \cap U_{w s r s t r}=U_{w s r s}=V_{w s r r_{\{s, t\}}} \cap U_{w s r s t r} \\
& V_{w^{\prime} t r r_{\{s, t\}}} \cap U_{w^{\prime} t r t s r}=U_{w^{\prime} t r t}=U_{w^{\prime} r_{\{r, t\}}} \cap U_{w^{\prime} t r t s r} \\
& U_{w^{\prime} r_{\{r, t\}}} \cap U_{w^{\prime} r t r s t}=U_{w^{\prime} r t r}=V_{w^{\prime} r t_{\{r, s\}}} \cap U_{w^{\prime} r t r s t} \\
& V_{w^{\prime} r t r_{\{r, s\}}} \cap U_{w^{\prime} r t s r}=U_{w^{\prime} r t s}=U_{w^{\prime} r r_{\{s, t\}}} \cap U_{w^{\prime} r t s r}
\end{aligned}
$$

We should say something to the equation $V_{w r s r r_{\{s, t\}} \cap U_{w s r s t r}}=U_{w s r s}$. Clearly, \supseteq holds. For the other inclusion we obtain similar as in Lemma (6.3.1) that

$$
V_{w r s r r_{\{s, t\}}} \cap U_{w s r s t r} \subseteq U_{w r_{\{r, s\}} t s} \cap U_{w r_{\{r, s\}} t r}=U_{w r_{\{r, s\}} t}
$$

and hence $V_{w r s r r_{\{s, t\}}} \cap U_{w s r s t r}=V_{w r s r r_{\{s, t\}}} \cap U_{w s r s t r} \cap U_{w r_{\{r, s\}} t}=V_{w r s r r_{\{s, t\}}} \cap U_{w s r s}=U_{w s r s}$. As before, $J_{\left(R, R^{\prime}\right)} \rightarrow G_{\left\{R, R^{\prime}\right\}}$ is injective by Proposition (1.8.3).
(6.7.2) Lemma. Let $R \in \mathcal{T}_{i, 1}$ be of type $\{s, t\}$ and assume that $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)-2=$ $\ell\left(w_{R} r t\right)$. Let $T=R_{\{r, s\}}\left(w_{R}\right)$ and $T^{\prime}=R_{\{r, t\}}\left(w_{R}\right)$. Then $\left\{T, T^{\prime}\right\} \in \mathcal{T}_{i-2,2}$ and the canonical homomorphism $E_{R, s} \rightarrow G_{\left\{T, T^{\prime}\right\}}$ is injective.

Proof. Since $R \in \mathcal{T}_{i, 1}$, we have $\left\{T, T^{\prime}\right\} \in \mathcal{T}_{i-2,2}$. The second assertion follows directly from Proposition (1.8.1), as the vertex groups of $E_{R, s}$ and the vertex groups $7-15$ of $G_{\left\{T, T^{\prime}\right\}}$ coincide.
(6.7.3) Lemma. Let $\left\{R, R^{\prime}\right\} \in \mathcal{T}_{i, 2}$, let $\{r, s\}$ be the type of R, let $\{r, t\}$ be the type of R^{\prime}, and let $Z=R_{\{r, t\}}\left(w_{R} r s\right)$. Then $Z \in \mathcal{T}_{i+1,1}$, the canonical homomorphism $V_{Z} \rightarrow H_{\left\{R, R^{\prime}\right\}}$ is injective and we have $J_{\left(R, R^{\prime}\right)} \cong H_{\left\{R, R^{\prime}\right\}} \star_{V_{Z}} O_{Z}$.

Proof. Note that $Z \in \mathcal{T}_{i+1,1}$. By Proposition (1.8.1), $U_{w_{R} r r_{\{s, t\}}} \hat{\star} V_{w_{R} r s r_{\{r, t\}}} \hat{\star} U_{w_{R} r s r s} \rightarrow H_{\left\{R, R^{\prime}\right\}}$ is injective. Using Proposition (1.8.3), we deduce that

$$
V_{Z}=U_{w_{R} r s t s} \hat{\star} V_{w_{R} r s r_{\{r, t\}}} \hat{\star} U_{w_{R} r s r s} \rightarrow U_{w_{R} r r_{\{s, t\}}} \hat{\star} V_{w_{R} r s r_{\{r, t\}}} \hat{\star} U_{w_{R} r s r s}
$$

is injective and hence also the concatenation $V_{T} \rightarrow H_{\left\{R, R^{\prime}\right\}}$. Let F_{i} be the tree product of the first i vertex groups and let L_{j} be the tree product of the last j vertex groups of
the underlying sequence of groups of $J_{\left(R, R^{\prime}\right)}$. Note that by Proposition (1.8.3) and Lemma (6.1.2) the homomorphism $F_{5} \star_{U_{w_{R} r s t s}} V_{Z} \rightarrow F_{5} \star_{U_{w_{R} r s t s}} O_{Z}$ is injective. We deduce from Proposition (1.8.1) and Lemma (1.8.7) that $F_{5} \star_{U_{w_{R} r s t s}} V_{Z} \star_{U_{w_{R} s r s}} L_{8} \cong H_{\left\{R, R^{\prime}\right\}}$. Note also, that $U_{w_{R} s r s} \rightarrow V_{Z}$ is injective. Using Proposition (1.8.1), Remark (1.8.6), Lemma (1.8.7) and Lemma (6.1.2) we obtain the following isomorphisms:

$$
\begin{aligned}
& J_{\left(R, R^{\prime}\right)} \cong F_{5} \star_{U_{w_{R} r s t s}} V_{w_{R} r s t r_{\{r, s\}}} \hat{\star} U_{w_{R} r s r_{\{r, t\}}} \hat{\star} V_{w_{R} r s r r_{\{s, t\}}} \star_{U_{R} s r s} L_{8} \\
& \cong F_{5} \star_{U_{w_{R} r s t s}} O_{Z} \star_{U_{w_{R}} s r s} L_{8} \\
& \cong\left(F_{5} \star_{U_{w_{R} r s t s}} O_{Z}\right) \star_{\left(F_{5} \star U_{w_{R} r s t s} V_{Z}\right)}\left(F_{5} \star_{U_{w_{R} r s t s}} V_{Z}\right) \star_{U_{w_{R} s r s}} L_{8} \\
& \cong\left(F_{5} \star_{U_{w_{R} r s t s}} V_{Z} \star_{V_{Z}} O_{Z}\right) \star{ }_{\left(F_{5} \star U_{w_{R} r s t s} V_{Z}\right)}\left(F_{5} \star_{U_{w_{R} r s t s}} V_{Z} \star_{U_{w_{R} s r s}} L_{8}\right) \\
& \cong\left(O_{Z} \star_{Z}\left(F_{5} \star_{U_{w_{R} r s t s}} V_{Z}\right)\right) \star{ }_{\left(F_{5} \star U_{w_{W_{R}} r s t s} V_{Z}\right)} H_{\left\{R, R^{\prime}\right\}} \\
& \cong O_{Z} \star_{V_{Z}} H_{\left\{R, R^{\prime}\right\}}
\end{aligned}
$$

(6.7.4) Lemma. Let $R \in \mathcal{T}_{i, 1}$ be a residue of type $\{s, t\}$ and assume that $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)-2$ and $\ell\left(w_{R} r t\right)=\ell\left(w_{R}\right)$. Let $Z:=R_{\{r, s\}}\left(w_{R}\right)$ be and suppose that $Z \notin \mathcal{T}_{i-1,1}$. Let $P_{Z} \in \mathcal{T}_{i-2,2}$ be the unique element with $Z \in P_{Z}$. Then $X_{R} \rightarrow G_{P_{Z}}$ is injective.
Proof. As the vertex groups $13-21$ of the underlying sequence of groups of $G_{P_{Z}}$ coincide with the vertex groups of the underlying sequence of groups of X_{R}, the claim follows from Proposition (1.8.1).

6.8. The groups C and $C_{\left(R, R^{\prime}\right)}$

Let $\left\{R, R^{\prime}\right\} \in \mathcal{T}_{i, 2}$. Let R be of type $\{r, s\}$ and let R^{\prime} be of type $\{r, t\}$. We let $T=R_{\{r, t\}}\left(w_{R}\right)$ and $T^{\prime}=R_{\{r, s\}}\left(w_{R^{\prime}}\right)$. We define the group C to be the tree product of the following sequence of groups with vertex groups

$$
U_{w_{T} r_{\{r, t\}}}, V_{w_{T} t r r_{\{s, t\}}}, U_{w_{R} r_{\{r, s\}}}, V_{w_{R} s r r_{\{s, t\}}}, U_{w_{R^{\prime}} r_{\{r, t\}}}, V_{w_{T^{\prime}} s r r_{\{s, t\}}}, U_{w_{T^{\prime}} r_{\{r, s\}}}
$$

We let $C_{\left(R, R^{\prime}\right)}$ be the tree product of the following sequence of groups with vertex groups

$$
\begin{array}{r}
U_{w_{T} r t r r_{\{s, t\}}}, V_{w_{T} r_{\{r, t\}} s r_{\{r, t\}},}, U_{w_{R} r t r_{\{r, s\}}}, V_{w_{R} r t s r_{\{r, t\}},}, U_{w_{R} r r_{\{s, t\}}}, V_{w_{R} r s r_{\{r, t\}}}, \\
U_{w_{R} r_{\{r, s\}}}, V_{w_{R} s r_{\{s, t\}},}, U_{w_{R^{\prime}} r_{\{r, t\}},}, V_{w_{R^{\prime}} r r_{\{s, t\}}}, U_{w_{T^{\prime}} r_{\{r, s\}}}
\end{array}
$$

For completeness, the group $C_{\left(R^{\prime}, R\right)}$ is the tree product of the following sequence of groups with vertex groups

$$
\begin{array}{r}
U_{w_{T} r_{\{r, t\}},}, V_{w_{R} r r_{\{s, t\}},}, U_{w_{R} r_{\{r, s\}},}, V_{w_{R} s r_{\{s, t\}},}, U_{w_{R^{\prime}} r_{\{r, t\}}}, \\
V_{w_{R^{\prime}} r \operatorname{tr}_{\{r, s\}},}, U_{w_{R^{\prime}} r r_{\{s, t\}}}, V_{w_{R^{\prime}} r s t_{\{r, s\}}}, U_{w_{R^{\prime}} r r_{\{r, t\}}}, V_{\left.w_{T^{\prime}} r_{\{r, s\}}\right\} r_{\{r, s\}}}, U_{w_{T^{\prime}} r \operatorname{sr} r_{\{s, t\}}}
\end{array}
$$

Using similar arguments as in Remark (6.1.1) it follows that $C_{R}, C_{\left(R, R^{\prime}\right)}$ are generated by suitable u_{α}.
(6.8.1) Remark. We note that the vertex groups of $C_{\left(R^{\prime}, R\right)}$ can be obtained from $C_{\left(R, R^{\prime}\right)}$ by interchanging s and t and starting with the last vertex group of $C_{\left(R, R^{\prime}\right)}$. Interchanging s and t and the order of the vertex groups of C does not change the group C.
(6.8.2) Lemma. Let $\left\{R, R^{\prime}\right\} \in \mathcal{T}_{i, 2}$. Then the canonical homomorphisms $C \rightarrow C_{\left(R, R^{\prime}\right)}, C_{\left(R^{\prime}, R\right)}$ are injective and we have $H_{\left\{R, R^{\prime}\right\}} \cong C_{\left(R, R^{\prime}\right)} \star_{C} C_{\left(R^{\prime}, R\right)}$.

Figure 6.15.: Illustration of the group C

Figure 6.16.: Illustration of the group $C_{\left(R^{\prime}, R\right)}$

Proof. We first show that $C \rightarrow C_{\left(R, R^{\prime}\right)}$ is injective. Let $\{r, s\}$ be the type of R and let $\{r, t\}$ be the type of R^{\prime}. Using Proposition (1.8.1) the group $C_{\left(R, R^{\prime}\right)}$ is isomorphic to the tree product of the following sequence of groups with vertex groups

$$
\begin{gathered}
U_{w_{T} r t r r_{\{s, t\}}} \hat{\star} V_{w_{T} r_{\{r, t\}} s r_{\{r, t\}}} \hat{\star} U_{w_{R} r t r_{\{r, s\}}}, V_{w_{R} r t s r_{\{r, t\}}} \hat{\star} U_{w_{R} r r_{\{s, t\}}}, \\
V_{w_{R} r s r_{\{r, t\}}} \hat{\star} U_{w_{R} r_{\{r, s\}}}, V_{w_{R} s r r_{\{s, t\}}}, U_{w_{R^{\prime}} r_{\{r, t\}}}, V_{w_{R^{\prime}} r r_{\{s, t\}}}, U_{w_{T^{\prime}} r_{\{r, s\}}}
\end{gathered}
$$

One easily sees that each vertex group of C is contained in the corresponding vertex group of the previous tree product. Considering the preimage of the boundary monomorphisms the following hold:

$$
\begin{array}{r}
U_{w_{T} r_{\{r, t\}}} \cap U_{w_{R} r t s r}=U_{w_{R} r t}=V_{w_{T} \operatorname{trr}_{\{s, t\}}} \cap U_{w_{R} r t s r} \\
V_{w_{T} t r r r_{\{s, t\}}} \cap U_{w_{R} r s t}=U_{w_{R} r s}=U_{w_{R} r_{\{r, s\}}} \cap U_{w_{R} r s t}
\end{array}
$$

As before, the claim follows from Proposition (1.8.3). Interchanging s and t and the order of the vertex groups of $C_{\left(R, R^{\prime}\right)}$ and C, we obtain that $C \rightarrow C_{\left(R^{\prime}, R\right)}$ is injective. Let F_{7} be the tree product of the first seven vertex groups of the underlying sequence of groups of $H_{\left\{R, R^{\prime}\right\}}$ and let L_{7} be the tree product of the last seven vertex groups of the underlying sequence of groups of $H_{\left\{R, R^{\prime}\right\}}$. It follows from the computations above that $U_{l e f t}:=U_{w_{T} r_{\{r, t\}}} \hat{\star} V_{w_{R} r r_{\{s, t\}}} \hat{\star} U_{w_{R} r_{\{r, s\}}} \rightarrow$ F_{7} and $U_{r i g h t}:=U_{w_{R^{\prime}} r_{\{r, t\}}} \hat{\star} V_{w_{R^{\prime}}} r r_{\{s, t\}} \hat{\star} U_{w_{T^{\prime}} r_{\{r, s\}}} \rightarrow L_{7}$ are injective. Moreover, $U_{\text {right }} \rightarrow C$ is injective by Proposition (1.8.1) Using Proposition (1.8.1), Lemma (1.8.7) and Remark (1.8.6) we obtain the following isomorphisms:

$$
\begin{aligned}
H_{\left\{R, R^{\prime}\right\}} & \cong F_{7} \star_{U_{w_{R}} s r s} V_{w_{R} s r r_{\{s, t\}}} \star_{U_{w_{R^{\prime}} t r t}} L_{7} \\
& \cong F_{7} \star_{U_{w_{R}} s r s} V_{w_{R} s r r_{\{s, t\}}} \star_{U_{w_{R^{\prime}} t r t}} U_{r i g h t} \star_{U_{r i g h t}} L_{7} \\
& \cong C_{\left(R, R^{\prime}\right)} \star_{U_{r i g h t}} L_{7} \\
& \cong C_{\left(R, R^{\prime}\right)} \star_{C} C \star_{U_{r i g h t}} L_{7} \\
& \cong C_{\left(R, R^{\prime}\right)} \star_{C}\left(C \star_{U_{r i g h t}} L_{7}\right) \\
& \cong C_{\left(R, R^{\prime}\right)} \star_{C}\left(U_{l e f t} \star_{U_{w_{R}} s r s} V_{w_{R} s r r_{\{s, t\}}} \star_{U_{w_{R^{\prime}} t r t}} U_{r i g h t} \star U_{\text {right }} L_{7}\right) \\
& \cong C_{\left(R, R^{\prime}\right)} \star_{C}\left(U_{l e f t} \star_{U_{w_{R} s r s}} V_{w_{R} s r r_{\{s, t\}}} \star_{U_{w_{R^{\prime}} t r t}} L_{7}\right) \\
& \cong C_{\left(R, R^{\prime}\right)} \star_{C} C_{\left(R^{\prime}, R\right)}
\end{aligned}
$$

(6.8.3) Lemma. Let $\left\{R, R^{\prime}\right\} \in \mathcal{T}_{i, 2}$. Let R be of type $\{r, s\}$, let R^{\prime} be of type $\{r, t\}$ and let $T^{\prime}:=R_{\{r, s\}}\left(w_{R^{\prime}}\right)$. Then $T^{\prime} \in \mathcal{T}_{i-1,1}$, the canonical homomorphism $C_{\left(R^{\prime}, R\right)} \rightarrow U_{T^{\prime}, s}$ is injective and we have $C_{\left(R^{\prime}, R\right)} \cap E_{T^{\prime}, s}=C$ in $U_{T^{\prime}, s}$. In particular, for $T:=R_{\{r, t\}}\left(w_{R}\right)$ we have $T \in$ $\mathcal{T}_{i-1,1}$, the canonical homomorphism $C_{\left(R, R^{\prime}\right)} \rightarrow U_{T, t}$ is injective and we have $C_{\left(R, R^{\prime}\right)} \cap E_{T, t}=C$ in $U_{T, t}$.

Proof. The claim $T, T^{\prime} \in \mathcal{T}_{i-1,1}$ follows from Lemma (5.1.1), as for $Z:=R_{\{s, t\}}\left(w_{R}\right)$ we have $\ell\left(w_{Z} \operatorname{tr} s\right), \ell\left(w_{Z} s r t\right) \geq \ell\left(w_{Z}\right)+1$. We note that $\ell\left(w_{T^{\prime}} t s\right)=\ell\left(w_{T^{\prime}}\right)-2$. We let $w^{\prime}=w_{Z}$. For completeness we recall that $U_{T^{\prime}, s}$ is the tree product of the underlying sequence of groups with vertex groups

$$
\begin{array}{r}
U_{w^{\prime} t s r_{\{r, t\}}}, V_{w^{\prime} t s t r r_{\{s, t\}}}, U_{w^{\prime} t s t r_{\{r, s\}}}, V_{w_{T^{\prime}} s t r r_{\{s, t\}}}, U_{w_{T^{\prime}} s r_{\{r, t\}}}, V_{w_{T^{\prime}} s t r_{\{r, s\}}}, \\
U_{w_{T^{\prime}} s r r_{\{s, t\}}}, V_{w_{T^{\prime}} s r s t r_{\{r, s\}}}, U_{w_{T^{\prime}} s r s r_{\{r, t\}}}, V_{w_{T^{\prime}} r_{\{r, s\}} t r_{\{r, s\}}}, U_{w_{T^{\prime}} r s r r_{\{s, t\}}} \\
V_{w_{T^{\prime}} r s r t r_{\{r, s\}}}, U_{w_{T^{\prime}} r s r_{\{r, t\}}}, V_{w_{T^{\prime}} r s t r_{\{r, s\}}}, U_{w_{T^{\prime}} r r_{\{s, t\}}}
\end{array}
$$

As the first eleven vertex groups of $U_{T^{\prime}, s}$ coincide with the vertex groups of $C_{\left(R^{\prime}, R\right)}$, Proposition (1.8.1) implies that $C_{\left(R^{\prime}, R\right)} \rightarrow U_{T^{\prime}, s}$ is injective. Before we show the claim, we have to analyse the embedding $E_{T^{\prime}, s} \rightarrow U_{T^{\prime}, s}$ from Lemma (6.5.1) in more detail. Using Proposition (1.8.1) the group $U_{T^{\prime}, s}$ is isomorphic to the tree product of the following sequence of groups with vertex groups

$$
\begin{aligned}
& U_{w^{\prime} t s_{\{r, t\}}}, V_{\left.w^{\prime} s \operatorname{str}_{\{s, t\}}\right\}}, U_{\left.w^{\prime} t \operatorname{str}_{\{r, s\}}\right\}}, V_{w_{T^{\prime}} \operatorname{str}_{\{s, t\}}}, U_{w_{T^{\prime}} s r_{\{r, t\}}} \not V_{w_{T^{\prime}} s \operatorname{str} r_{\{r, s\}},}, \\
& U_{w_{T^{\prime}} s r_{\{s, t\}}} \hat{\star} V_{w_{T^{\prime}} s r s \operatorname{sr}_{\{r, s\}}}, U_{w_{T^{\prime}} s r s r_{\{r, t\}}} \hat{\star} V_{\left.w_{T^{\prime}} r_{\{r, s\}} \operatorname{tr}_{\{r, s\}}\right\}} \hat{\star} U_{w_{T^{\prime}} r s r_{\{s, t\}}}, \\
& V_{w_{T^{\prime}} r s s t r_{\{r, s\}}} \hat{\star} U_{w_{T^{\prime}} r s r_{\{r, t\}},}, V_{w_{T^{\prime}} r s t r_{\{r, s\}}} \hat{\star} U_{w_{T^{\prime}} r r_{\{s, t\}}}
\end{aligned}
$$

One easily sees that each vertex group of $E_{T^{\prime}, s}$ is contained in the corresponding vertex group of the previous tree product. As the first four vertex groups of $E_{T^{\prime}, s}$ and $U_{T^{\prime}, s}$ coincide, it suffices to consider the following preimages of the boundary monomorphisms:

$$
\begin{array}{r}
U_{w_{T^{\prime}} s r_{\{r, t\}}} \cap U_{w_{T^{\prime}} s r t s}=U_{w_{T^{\prime}} s r t}=V_{w_{T^{\prime}} s r r_{\{s, t\}}} \cap U_{w_{T^{\prime}} s r t s} \\
V_{w_{T^{\prime}} s r_{\{s, t\}}} \cap U_{w_{T^{\prime}} s r s t r}=U_{w_{T^{\prime}} s r s}=U_{w_{T^{\prime}} r_{\{r, s\}}} \cap U_{w_{T^{\prime}} s r s t r} \\
U_{w_{T^{\prime}} r_{\{r, s\}}} \cap U_{w_{T^{\prime}} r r r t s}=U_{w_{T^{\prime}} r s r}=V_{w_{T^{\prime}} s s r_{\{r, t\}}} \cap U_{w_{T^{\prime}} r s r t s} \\
V_{w_{T^{\prime}} r s r_{\{r, t\}}} \cap U_{w_{T^{\prime}} r s t r}=U_{w_{T^{\prime}} r s t}=U_{w_{T^{\prime}} r r_{\{s, t\}}} \cap U_{w_{T^{\prime}} r s t r}
\end{array}
$$

As before, $E_{T^{\prime}, s} \rightarrow U_{T^{\prime}, s}$ is injective by Proposition (1.8.3) We have known this already before, but this time we know how the embedding looks like and we can apply Corollary (1.8.4). We deduce from it that in $U_{T^{\prime}, s}$ the intersection $C_{\left(R^{\prime}, R\right)} \cap E_{T^{\prime}, s}$ is equal to the tree product of the first seven vertex groups of the underlying sequence of groups of $E_{T^{\prime}, s}$, which is isomorphic to C.

6.9. Faithful commutator blueprints

For two elements $w_{1}, w_{2} \in W$ we define $w_{1} \prec w_{2}$ if $\ell\left(w_{1}\right)+\ell\left(w_{1}^{-1} w_{2}\right)=\ell\left(w_{2}\right)$. For any $w \in W$ we put $C(w):=\left\{w^{\prime} \in W \mid w^{\prime} \prec w\right\}$. We now define for every $i \in \mathbb{N}$ a subset $C_{i} \subseteq W$ as follows:

$$
C_{0}:=\bigcup_{S=\{r, s, t\}}\left(C\left(r_{\{s, t\}}\right) \cup C\left(r r_{\{s, t\}}\right)\right)
$$

For every $R \in \mathcal{R}_{i}$ of type $J=\{s, t\}$ we let

$$
C(R):=C\left(w_{R} s t r_{\{r, s\}}\right) \cup C\left(w_{R} r_{J} r t r\right) \cup C\left(w_{R} r_{J} r s r\right) \cup C\left(w_{R} t s r_{\{r, t\}}\right)
$$

For every $\left\{R, R^{\prime}\right\} \in \mathcal{T}_{i, 2}$ we let $C\left(\left\{R, R^{\prime}\right\}\right):=C(R) \cup C\left(R^{\prime}\right)$. We note that this union is not disjoint. For $i \geq 1$ we define

$$
C_{i}:=C_{i-1} \cup \bigcup_{R \in \mathcal{R}_{i-1}} C(R)=C_{i-1} \cup \bigcup_{R \in \mathcal{T}_{i-1,1}} C(R) \cup \bigcup_{\left\{R, R^{\prime}\right\} \in \mathcal{T}_{i-1,2}} C\left(\left\{R, R^{\prime}\right\}\right) .
$$

Moreover, we define $D_{i}:=\left\{w_{R} r_{\{s, t\}} \mid R\right.$ is of type $\left.\{s, t\}, w_{R} s, w_{R} t \in C_{i}\right\}$.
(6.9.1) Definition. We denote by G_{i} the direct limit of the inductive system formed by the groups U_{w} and $V_{w^{\prime}}$ for $w \in C_{i}, w^{\prime} \in D_{i}$, together with the natural inclusions $U_{w} \rightarrow U_{w s}$ if $\ell(w s)=\ell(w)+1$ and $U_{w_{R} s} \rightarrow V_{w_{R^{r}\{s, t\}}}$.
(6.9.2) Remark. Let $i \in \mathbb{N}$. Then G_{i} is generated by elements $x_{\alpha, w}$ and $y_{\alpha, w^{\prime}}$ for $w \in C_{i}, w^{\prime} \in$ $D_{i}, x_{\alpha, w}$ is a generator of U_{w} and $y_{\alpha, w^{\prime}}$ is a generator of $V_{w^{\prime}}$. We first note that for every $w^{\prime}=w_{R} r_{\{s, t\}}$ and every $\alpha \in \Phi_{+}$with $w_{R} s \notin \alpha$, we have $x_{\alpha, w_{R} s}=y_{\alpha, w^{\prime}}$ in G_{i}. Thus $G_{i}=\left\langle x_{\alpha, w} \mid \alpha \in \Phi_{+}, \exists w \in C_{i}: w \notin \alpha\right\rangle$.

Suppose $s \in S$ and $w \in W$ with $w \notin \alpha_{s}$. Then $\ell(s w)=\ell(w)-1$. Let $k:=\ell(w)$ and let $s_{2}, \ldots, s_{k} \in S$ be such that $w=s s_{2} \cdots s_{k}$. Then, as $U_{s s_{2} \ldots s_{m}} \rightarrow U_{s s_{2} \cdots s_{m+1}}$ are the canonical inclusions for any $1 \leq m \leq k-1$, we deduce $x_{\alpha_{s}, s}=x_{\alpha_{s}, w}$ in G_{i}. Let $\alpha \in \Phi_{+}$be a non-simple root and let $\operatorname{proj}_{P_{\alpha}} 1_{W} \neq d \in P_{\alpha}$. It is a consequence of Lemma (5.2.5) that $x_{\alpha, d}=x_{\alpha, w}$ for every $w \in W$ with $w \notin \alpha$. Thus G_{i} is generated by $\left\{x_{\alpha} \mid \alpha \in \Phi_{+}, \exists w \in C_{i}: w \notin \alpha\right\}$.

By the definition of the direct limit we have canonical homomorphisms $G_{i} \rightarrow G_{i+1}$ extending the identities $U_{w} \rightarrow U_{w}$ and $V_{w^{\prime}} \rightarrow V_{w^{\prime}}$. Let G be the direct limit of the inductive system formed by the groups $\left(G_{i}\right)_{i \in \mathbb{N}}$ with the canonical homomorphisms $G_{i} \rightarrow G_{i+1}$. Then the following diagram commutes for every $i \in \mathbb{N}$ by definition:

Furthermore, the universal property of direct limits yields a unique homomorphism f_{i} : $G_{i} \rightarrow U_{+}$extending the identities $U_{w} \rightarrow U_{w}$ and $V_{w^{\prime}} \rightarrow V_{w^{\prime}} \leq U_{w^{\prime}}$. Thus the following diagram commutes:

Again, the universal property of direct limits yields a unique homomorphism $f: G \rightarrow U_{+}$ such that the following diagram commutes for every $i \in \mathbb{N}$:

(6.9.3) Remark. By Remark (6.9.2), the group G_{i} is generated by the set $\left\{x_{\alpha} \mid \alpha \in \Phi_{+}, \exists w \in\right.$ $\left.C_{i}: w \notin \alpha\right\}$. We let $x_{\alpha, i}$ be the elements in G under the homomorphism $G_{i} \rightarrow G$. Then G is generated by $\left\{x_{\alpha, i} \mid i \in \mathbb{N}, \alpha \in \Phi_{+}, \exists w \in C_{i}: w \notin \alpha\right\}$. By construction we have $x_{\alpha, i}=x_{\alpha, i+1}$ in G for every $i \in \mathbb{N}$. Thus G is generated by $\left\{x_{\alpha} \mid \alpha \in \Phi_{+}\right\}$.
(6.9.4) Lemma. The homomorphism $f: G \rightarrow U_{+}$is an isomorphism.

Proof. By Remark (6.9.3) we have $G=\left\langle x_{\alpha} \mid \alpha \in \Phi_{+}\right\rangle$. We will construct a homomorphism $U_{+} \rightarrow G$ which extends $U_{w} \rightarrow U_{w}$. For every $w \in W$ we have a canonical homomorphism $U_{w} \rightarrow G$. Suppose $w \in W$ and $s \in S$ with $\ell(w s)=\ell(w)+1$. Then the following diagram commutes:

The universal property of direct limits yields a homomorphism $h: U_{+} \rightarrow G$ extending the identities on $U_{w} \rightarrow U_{w}$. As both concatenations $f \circ h$ and $h \circ f$ are the identities on each generator x_{α}, the uniqueness of such a homomorphism implies that $f \circ h=\mathrm{id}_{U_{+}}$and $h \circ f=$ id_{G}. In particular, f is an isomorphism.
(6.9.5) Lemma. For any $P \in \mathcal{T}_{i}$ we have a canonical homomorphism $H_{P} \rightarrow G_{i}$.

Proof. Suppose $S=\{r, s, t\}$. We distinguish the following cases:
$P \in \mathcal{T}_{i, 1}$: Let $\{s, t\}$ be the type of P. By Remark (6.9.2) it suffices to show that C_{i} contains the elements $w_{P} s r_{\{r, t\}}, w_{P} r_{\{s, t\}}, w_{P} \operatorname{tr}_{\{r, s\}}$. Note that $\ell\left(w_{P}\right)=i$. If $i=0$, the claim follows. Thus we can assume $i>0$ and hence $\ell\left(w_{P} r\right)=i-1$. But then $w_{P} s r_{\{r, t\}} \in C\left(R_{\{r, s\}}\left(w_{P}\right)\right) \subseteq C_{i}$ and $w_{P} \operatorname{tr} r_{\{r, s\}} \in C\left(R_{\{r, t\}}\left(w_{P}\right)\right) \subseteq C_{i}$. If $i=$ 1, we have $w_{P} r_{\{s, t\}} \in C_{0} \subseteq C_{1}$ and we are done. If $i>1$, we have $i-2 \in$ $\left\{\ell\left(w_{P} r s\right), \ell\left(w_{P} r t\right)\right\}$. Without loss of generality we assume $\ell\left(w_{P} r s\right)=i-2$. Then $w_{P} r_{\{s, t\}} \in C\left(R_{\{r, s\}}\left(w_{P}\right)\right) \subseteq C_{i-1} \subseteq C_{i}$ and the claim follows.
$P \in \mathcal{T}_{i, 2}$: Suppose $P=\left\{R, R^{\prime}\right\}$, where R is of type $\{r, s\}$ and R^{\prime} is of type $\{r, t\}$. Moreover, we define $T:=R_{\{r, t\}}\left(w_{R}\right)$ and $T^{\prime}:=R_{\{r, s\}}\left(w_{R^{\prime}}\right)$. Again, and using symmetry, it suffices to show that $w_{T} r \operatorname{trr}\{s, t\}, w_{T} \operatorname{trtr}_{\{r, s\}}, w_{T} \operatorname{trr}_{\{s, t\}}, w_{R} r_{\{r, s\}} \in C_{i}$. We define $Z:=R_{\{s, t\}}\left(w_{R}\right)$. Note that $\ell\left(w_{Z}\right)=i-3$ and hence $w_{R} r_{\{s, t\}} \in C(Z) \subseteq C_{i-2} \subseteq C_{i}$. Moreover, we have $\ell\left(w_{T}\right)=i-1$ and hence $w_{T} r \operatorname{trr} r_{\{s, t\}}, w_{T} \operatorname{trtr} r_{\{r, s\}}, w_{T} \operatorname{tr} r_{\{s, t\}} \in$ $C(T) \subseteq C_{i}$. This finishes the claim.
(6.9.6) Definition. (a) The group G_{i} is called natural if the following axioms are satisfied:
(N1) For all $w \in C_{i}, w^{\prime} \in D_{i}$ the canonical homomorphisms $U_{w}, V_{w^{\prime}} \rightarrow G_{i}$ are injective.
(N2) For every $P \in \mathcal{T}_{i}$ the homomorphism $H_{P} \rightarrow G_{i}$ from Lemma (6.9.5) is injective.
(b) If G_{i} is natural, then we define the tree product $B_{P}:=G_{i} \star_{H_{P}} G_{P}$ for every $P \in \mathcal{T}_{i}$ (cf. (N2), Lemma (6.3.1) and Lemma (6.7.1).
(6.9.7) Lemma. For $i \in\{0,1\}$ the group G_{i} satisfies (N1). Moreover, for all $s \neq t \in S$ the canonical homomorphism $V_{R_{\{s, t\}}\left(1_{W}\right), s} \rightarrow G_{i}$ is injective.

Proof. We abbreviate $R:=R_{\{s, t\}}\left(1_{W}\right)$. Before we prove the claim we show that we have a canonical homomorphism $V_{R, s} \rightarrow G_{i}$. By Remark (6.9.2) it suffices to show that $s r s, t r \in C_{i}$. But this is true, as srs, tr $\in C_{0} \subseteq C_{i}$.

Now we prove the claim. Let $\mathcal{D}=\left(\mathcal{G},\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be the RGD-system associated with the split Kac-Moody group of type $(4,4,4)$ over \mathbb{F}_{2} as in Example (5.3.1). We first show that we have canonical homomorphisms $U_{w} \rightarrow \mathcal{G}$ for each $w \in C_{i}$. Suppose $\alpha \in \Phi_{+}$with $w \notin \alpha$. We show that the canonical mappings $x_{\alpha} \mapsto x_{\alpha} \in U_{\alpha}$ extend to homomorphisms $U_{w} \rightarrow \mathcal{G}$. Let $\{\alpha, \beta\}$ be a pair of prenilpotent positive roots, let $w \in C_{i}$ and let $G \in \operatorname{Min}(w)$ be such that $\alpha \leq_{G} \beta \in \Phi(G)$. Suppose $o\left(r_{\alpha} r_{\beta}\right)<\infty$. As \mathcal{M} is locally Weyl-invariant, we have

$$
M_{\alpha, \beta}^{G}= \begin{cases}(\alpha, \beta) & \text { if }|(\alpha, \beta)|=2 \\ \emptyset & \text { else }\end{cases}
$$

We have seen in Example (5.3.1) that $\left[x_{\alpha}, x_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}$ is also a relation in \mathcal{G}. Suppose now $o\left(r_{\alpha} r_{\beta}\right)=\infty$ and hence $\alpha \subsetneq \beta$. As $w \in C_{i}$ and $i \in\{0,1\}$, we deduce $(\alpha, \beta)=\emptyset$ and hence $\left[x_{\alpha}, x_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}=1$ does also hold in \mathcal{G} by Example (5.3.1). This implies that the mappings $x_{\alpha} \mapsto x_{\alpha}$ extend to a homomorphism $U_{w} \rightarrow \mathcal{G}$. To show that the mappings $x_{\alpha} \mapsto x_{\alpha}$
do also extend to a homomorphism $V_{w_{R} r_{\{u, v\}}} \rightarrow \mathcal{G}$, we have to show that the subgroup in \mathcal{G} generated by $x_{w_{R} \alpha_{u}}, x_{w_{R} \alpha_{v}}$ has at most 8 elements. As this is true, $x_{\alpha} \mapsto x_{\alpha}$ extend to a homomorphism $V_{w_{R} r_{\{u, v\}}} \rightarrow \mathcal{G}$. By definition the following diagrams commute:

The universal property of direct limits yields a unique homomorphism $G_{i} \rightarrow \mathcal{G}$ extending $U_{w}, V_{w^{\prime}} \rightarrow \mathcal{G}$. Note that $V_{R, s} \rightarrow \mathcal{G}$ is an injective homomorphism by Theorem (5.3.5). The following diagram commutes:

As $V_{R, s} \rightarrow \mathcal{G}$, the homomorphism $V_{R, s} \rightarrow G_{i}$ is also injective and we are done.
(6.9.8) Definition. (a) We let

$$
C_{-1}=\bigcup_{s \neq t \in S} C\left(r_{\{s, t\}}\right) \quad \text { and } \quad D_{-1}:=\left\{w_{R} r_{\{s, t\}} \mid R \text { is of type }\{s, t\}, w_{R} s, w_{R} t \in C_{-1}\right\}
$$

and define G_{-1} to be the direct limit of the groups $U_{w}, V_{w^{\prime}}$ with $w \in C_{-1}, w^{\prime} \in D_{-1}$ as in Definition (6.9.1).
(b) For $S=\{r, s, t\}$ we let
$C_{r}:=C\left(r_{\{r, s\}}\right) \cup C\left(r_{\{r, t\}}\right) \quad$ and $\quad D_{r}:=\left\{w_{R} r_{\{s, t\}} \mid R\right.$ is of type $\left.\{s, t\}, w_{R} s, w_{R} t \in C_{r}\right\}$
and define $G_{\{s, t\}}$ to be the direct limit of the groups $U_{w}, V_{w^{\prime}}$ with $w \in C_{r}, w^{\prime} \in D_{r}$ as in Definition (6.9.1),
(6.9.9) Remark. We note that there are nine roots $\alpha \in \Phi_{+}$with the property that there exists $w \in C_{-1}$ such that $w \notin \alpha$. Moreover, G_{-1} is generated by $x_{\alpha,\{s, t\}}$ where $\alpha \in \Phi_{+}$and $r_{\{s, t\}} \notin \alpha$. Thus G_{-1} is generated by twelve elements. As $x_{\alpha_{s},\{r, s\}}=x_{\alpha_{s},\{s, t\}}$ in G_{-1} for $S=\{r, s, t\}$, we deduce that G_{-1} is generated by nine elements. In particular, the generator $x_{\alpha, w}$ does not depend on w. A similar result holds for $G_{\{s, t\}}$, which is generated by seven elements.
(6.9.10) Lemma. Let $s \neq t \in S$ and let $R:=R_{\{s, t\}}\left(1_{W}\right)$. Then $V_{R, s} \rightarrow G_{\{s, t\}}$ is injective and $G_{-1} \cong G_{\{s, t\}} \star_{R, s} O_{R, s}$.
Proof. As before, the assignments $x_{\alpha} \mapsto x_{\alpha}$ extend to homomorphisms $\pi: G_{\{s, t\}} \rightarrow G_{0}$ and $G_{\{s, t\}} \rightarrow G_{-1}$. Note that $s r s, \operatorname{tr} \in C_{r} \subseteq C_{0}$ and hence we have canonical homomorphisms $\varphi: V_{R, s} \rightarrow G_{\{s, t\}}$ and $\psi: V_{R, s} \rightarrow G_{0}$. As $\psi=\pi \circ \varphi$, Lemma (6.9.7) implies that φ is injective. We abbreviate $H:=G_{\{s, t\}} \star_{V_{R, s}} O_{R, s}$ (cf. Lemma (6.2.1)). Note that for each $w \in C(s r s) \cup C(t r)$ the following diagram commutes:

The universal property of direct limits implies that there exists a unique homomorphism $H \rightarrow$ G_{-1}. Now we want to construct a homomorphism $G_{-1} \rightarrow H$. Suppose that $S=\{r, s, t\}$. At first we recall that $G_{\{s, t\}}$ is generated by the seven elements $\left\{x_{\alpha, G} \mid \alpha \in \Phi_{+}, \exists w \in C_{r}: w \notin \alpha\right\}$ and $O_{R, s}$ is generated by the seven elements $\left\{x_{\alpha, O} \mid \alpha \in \Phi_{+}, \exists w \in\left\{s r s, r_{\{s, t\}}, t r\right\}: w \notin \alpha\right\}$. In H we have $x_{\alpha, G}=x_{\alpha, O}$ for $\alpha \in\left\{\alpha_{s}, \alpha_{t}, s \alpha_{r}, s r \alpha_{s}, t \alpha_{r}\right\}$. Thus H is generated by nine elements and we have a bijection between the set of generators of H and the set of roots contained in $\left\{\alpha \in \Phi_{+} \mid \exists w \in C_{-1}: w \notin \alpha\right\}$. For $w \in C_{r}, w^{\prime} \in D_{r}$ we have canonical homomorphisms $U_{w}, V_{w^{\prime}} \rightarrow G_{\{s, t\}} \rightarrow H$. For $w \in C_{-1} \backslash C_{r}, w^{\prime} \in D_{-1} \backslash D_{r}$ we have canonical homomorphisms $U_{w}, V_{w^{\prime}} \rightarrow O_{R, s} \rightarrow H$. The universal property of direct limits yields a unique homomorphism $G_{-1} \rightarrow H$ extending the identities $U_{w} \rightarrow U_{w} \leq H$ and $V_{w^{\prime}} \rightarrow V_{w^{\prime}} \leq H$.

Note that the concatenations of $H \rightarrow G_{-1}$ and $G_{-1} \rightarrow H$ fix all generators and hence they must be the identities. In particular, $H \rightarrow G_{-1}$ is an isomorphism.
(6.9.11) Lemma. For $R:=R_{\{s, t\}}(r)$ the canonical homomorphisms $V_{R}, V_{R, s} \rightarrow G_{-1}$ are injective. For $D_{R}:=G_{-1} \star_{V_{R}} O_{R}$ we obtain $D_{R} \cong G_{-1} \star_{R, s} O_{R, s}$. Moreover, we have $G_{0} \cong \star_{G_{-1}} D_{T}$, where T runs over \mathcal{R}_{1}.

Proof. To show that we have canonical homomorphisms $V_{R}, V_{R, s} \rightarrow G_{-1}$ it suffices to check that $r s r s, r t r \in C_{-1}$. But this holds by definition.

Let $T:=R_{\{r, s\}}\left(1_{W}\right)$. By definition we have $O_{T, r}=V_{s r_{\{r, t\}}} \hat{\star} U_{r_{\{r, s\}}} \hat{\star} V_{r r_{\{s, t\}}} \hat{\star} U_{r t r}$ and $V_{R, s}=$ $U_{r_{\{r, s\}}} \hat{\star} V_{\left.r r_{\{s, t\}}\right\}} \hat{\star}_{r t r}$. Using Proposition (1.8.1) we obtain that $V_{R, s} \rightarrow O_{T, r}^{\{s, t}$ is injective. Using Lemma (6.2.1) and Lemma (6.9.10), we obtain that each of the canonical homomorphisms $V_{R} \rightarrow V_{R, s} \rightarrow O_{T, r} \rightarrow G_{-1}$ is injective. Using Proposition (1.8.1), Remark (1.8.6), Lemma (1.8.7), Lemma (6.1.2) and Lemma (6.2.1) we obtain the following isomorphisms:

$$
G_{-1} \star_{V_{R}} O_{R} \cong G_{-1} \star_{V_{R, s}} V_{R, s} \star_{V_{R}} O_{R} \cong G_{-1} \star_{V_{R, s}}\left(V_{R, s} \star_{V_{R}} O_{R}\right) \cong G_{-1} \star_{V_{R, s}} O_{R, s}
$$

It remains to show that $G_{0} \cong \star_{G_{-1}} D_{T}$. Let $R \in \mathcal{R}_{1}$ be of type $\{s, t\}$. To see that we have a canonical homomorphism $O_{R} \rightarrow G_{0}$, it suffices to show that $r s r, r r_{\{s, t\}}, r t r \in C_{0}$. But this holds by definition. Using Remark (6.9.2) and Remark (6.9.9), we obtain a canonical homomorphism ${ }^{{ }_{G-1}} D_{T} \rightarrow G_{0}$, where T runs over \mathcal{R}_{1}. Note that ${ }_{G_{-1}} D_{T}$ is generated by the elements $x_{\alpha}, x_{\beta, T}$, where $C_{-1} \nsubseteq \alpha \in \Phi_{+}$and $T \in \mathcal{R}_{1}$ is such that $T=R_{\{s, t\}}(r)$ and $\left\{r s r, r r_{\{s, t\}}, r t r\right\} \nsubseteq \beta \in \Phi_{+}$. Note that if $\{r s r, r t r\} \nsubseteq \beta \in \Phi_{+}$, then $x_{\beta}=x_{\beta, T}$ holds in $\star_{G_{-1}} D_{T}$. Thus $\star_{G_{-1}} D_{T}$ is generated by the elements $x_{\alpha}, x_{\beta . T}$, where $C_{-1} \nsubseteq \alpha \in \Phi_{+}$and $T \in \mathcal{R}_{1}$ is such that β is a non-simple root of T.

Let $T:=R_{\{r, s\}}(t)$ and $T^{\prime}:=R_{\{s, t\}}(r)$. Then $-\alpha_{r}$ is contained in both non-simple roots of T by Lemma (5.1.4) and, moreover, α_{r} is contained in both non-simple roots of T^{\prime}. In particular, let $T \neq T^{\prime} \in \mathcal{R}_{1}$, let α be a non-simple root of T and let β be a non-simple root of T^{\prime}, then $-\alpha \subsetneq \beta$. This implies that the group $\star_{G_{-1}} D_{T}$, where T runs over \mathcal{R}_{1}, is generated by 15 elements and there is a bijection between the generators of $\star_{G_{-1}} D_{T}$ and the set $\left\{\alpha \in \Phi_{+} \mid C_{0} \nsubseteq \alpha\right\}$. Hence the mappings $x_{\alpha} \mapsto x_{\alpha}$ extend to homomorphisms $U_{w}, V_{w^{\prime}} \rightarrow \star_{G_{-1}} D_{T}$ for $w \in C_{0}$ and $w^{\prime} \in D_{0}$. Note that the following diagrams commute:

The universal property of direct limits yields a unique homomorphism $G_{0} \rightarrow \star_{G_{-1}} D_{T}$ extending $U_{w}, V_{w^{\prime}} \rightarrow \star_{G_{-1}} D_{T}$. As the concatenations of $\star_{G_{-1}} D_{T} \rightarrow G_{0}$ and $G_{0} \rightarrow \star_{G_{-1}} D_{T}$ fix x_{α}, both concatenations are the identities and hence both homomorphisms are isomorphisms inverse to each other.
(6.9.12) Lemma. For all $i \in \mathbb{N}$ and $w \in C_{i+1} \backslash C_{i}$ there exists a unique $P \in \mathcal{T}_{i}$ with $w \in C(P)$.

Proof. The existence follows by definition of C_{i+1}. Before we prove the uniqueness, suppose $P \in \mathcal{T}_{i}$ with $w \in C(P) \backslash C_{i}$. We distinguish the following two cases:
$P \in \mathcal{T}_{i, 1}$: Let P be of type $\{s, t\}$ and let γ, δ be the non-simple roots of P. As $C(P)=$ $C\left(w_{P} s t r_{\{r, s\}}\right) \cup C\left(w_{P} r_{\{s, t\}} r t r\right) \cup C\left(w_{P} r_{\{s, t\}} r s r\right) \cup C\left(w_{P} t s r_{\{r, t\}}\right)$ and $w_{P} r_{\{s, t\}} \in C_{i}$ by induction, we infer $C(w) \cap\left\{w_{P} s t, w_{P} t s\right\} \neq \emptyset$. But this implies $w \in(-\gamma) \cup(-\delta)$. Moreover, for $\varepsilon \in\{\gamma, \delta\}$ we have a unique rank 2 residue R_{ε} containing P_{ε}.
$P \in \mathcal{T}_{i, 2}$: Suppose $P=\left\{R, R^{\prime}\right\}$, where R is of type $\{r, s\}$ and R^{\prime} is of type $\{r, t\}$, and we let $\gamma, \varepsilon($ resp. $\delta, \varepsilon)$ be the non-simple roots of R (resp. R^{\prime}). As $C(P)=C(R) \cup C\left(R^{\prime}\right)$ and $w_{R} r_{\{r, s\}}, w_{R^{\prime}} r_{\{r, t\}} \in C_{i}$ by induction, it follows similarly as in (i) that $C(w) \cap$ $\left\{w_{R} r s, w_{R} s r=w_{R^{\prime}} t r, w_{R^{\prime}} r t\right\} \neq \emptyset$. Again, this implies $w \in(-\gamma) \cup(-\varepsilon) \cap(-\delta)$. Since $\gamma=w_{R} r \alpha_{s}, \delta=w_{R^{\prime}} r \alpha_{t}=w_{R} s t r \alpha_{t}$ and $\varepsilon=w_{R} s \alpha_{r}$, it follows

$$
\begin{aligned}
\gamma \cap \delta \cap\left(W \backslash\left\{w_{R} s r\right\}\right) \subseteq \varepsilon & \Leftrightarrow r \alpha_{s} \cap s t r \alpha_{t} \cap(W \backslash\{s r\}) \subseteq s \alpha_{r} \\
& \Leftrightarrow t s t r \alpha_{s} \cap \operatorname{stsr} \alpha_{t} \cap\left(W \backslash\left\{r_{\{s, t\}} r\right\}\right) \subseteq r_{\{s, t\}} \alpha_{r}
\end{aligned}
$$

Now Lemma (5.1.3) implies $W \backslash\left((-\gamma) \cup(-\delta) \cup\left\{w_{R} s r\right\}\right)=\gamma \cap \delta \cap\left(W \backslash\left\{w_{R} s r\right\}\right) \subseteq \varepsilon$. But this implies $(-\varepsilon) \subseteq(-\gamma) \cup(-\delta) \cup\left\{w_{R} s r\right\}$ and, as $w_{R} s r \in C_{i}$, we have $w \neq w_{R} s r$ and hence $w \in(-\gamma) \cup(-\delta)$. Moreover, for $\varepsilon \in\{\gamma, \delta\}$ we have a unique rank 2 residue R_{ε} containing P_{ε}.

In both cases we have $w \in(-\gamma) \cup(-\delta)$ and hence $w \notin \gamma \cap \delta$. Now we will show that P is unique with the required property. Assume that $P \neq Q \in \mathcal{T}_{i}$ does also satisfy the property. Let δ_{P}, γ_{P} and δ_{Q}, γ_{Q} be the non-simple roots as before. We note that for each $\varepsilon \in\left\{\delta_{P}, \gamma_{P}, \delta_{Q}, \gamma_{Q}\right\}$ there is a unique residue rank 2 residue R_{ε} such that ε is a non-simple root of R_{ε}.

Assume $\delta_{P}=\delta_{Q}$. Then we have $R_{\delta_{P}}=R_{\delta_{Q}}$. If $P \in \mathcal{T}_{i, 1}$, then $P=R_{\delta_{P}}=R_{\delta_{Q}}$. Moreover, $Q \in \mathcal{T}_{i, 2}$ would imply $R_{\delta_{Q}} \in Q$, which is a contradiction to $R_{\delta_{Q}} \in \mathcal{T}_{i, 1}$. Thus $Q \in \mathcal{T}_{i, 1}$ and $P=R_{\delta_{Q}}=Q$. But this is a contradiction. If $P \in \mathcal{T}_{i, 2}$, then $R_{\delta_{P}}=R_{\delta_{Q}} \in P$. In particular, we have $R_{\delta_{Q}} \notin \mathcal{T}_{i, 1}$. As $Q \in \mathcal{T}_{i, 1}$ would imply $Q=R_{\delta_{Q}}$, we deduce $Q \in \mathcal{T}_{i, 2}$ and $R_{\delta_{Q}} \in Q$. But $R_{\delta_{Q}} \in P \cap Q \neq \emptyset$ implies $P=Q$, which is again a contradiction. We infer that $\left|\left\{\delta_{P}, \gamma_{P}, \delta_{Q}, \gamma_{Q}\right\}\right|=4$.

We have $w \in\left(-\delta_{P}\right) \cup\left(-\gamma_{P}\right)$ and $w \in\left(-\delta_{Q}\right) \cup\left(-\gamma_{Q}\right)$. Assume that non of $\left\{\delta_{Q}, \delta_{P}\right\}$, $\left\{\delta_{Q}, \gamma_{P}\right\},\left\{\gamma_{Q}, \delta_{P}\right\},\left\{\gamma_{Q}, \gamma_{P}\right\}$ is prenilpotent. Then [2, Lemma 8.42(3)] yields that each of $\left\{\left(-\delta_{Q}\right), \delta_{P}\right\},\left\{\left(-\delta_{Q}\right), \gamma_{P}\right\},\left\{\left(-\gamma_{Q}\right), \delta_{P}\right\},\left\{\left(-\gamma_{Q}\right), \gamma_{P}\right\}$ is a pair of nested roots. Since $o\left(r_{\delta_{P}} r_{\gamma_{P}}\right), o\left(r_{\delta_{Q}} r_{\gamma_{Q}}\right)<\infty$, we deduce either $\left(-\delta_{Q}\right) \subseteq \delta_{P}, \gamma_{P}$, or else $\delta_{P}, \gamma_{P} \subseteq\left(-\delta_{Q}\right)$ (resp. $\left(-\gamma_{Q}\right) \subseteq \delta_{P}, \gamma_{P}$ or $\left.\delta_{P}, \gamma_{P} \subseteq\left(-\gamma_{Q}\right)\right)$. As $1_{W} \in \delta_{P} \cap \gamma_{P} \cap \delta_{Q} \cap \gamma_{Q}$, we cannot have $\delta_{P}, \gamma_{P} \subseteq$ $\left(-\delta_{Q}\right),\left(-\gamma_{Q}\right)$ and hence $\left(-\delta_{Q}\right),\left(-\gamma_{Q}\right) \subseteq \delta_{P}, \gamma_{P}$. But this implies $w \in\left(-\delta_{Q}\right) \cup\left(-\gamma_{Q}\right) \subseteq$ $\delta_{P} \cap \gamma_{P}$, which is a contradiction. Thus one of the previous pairs of roots must be prenilpotent. Without loss of generality we can assume that $\left\{\delta_{P}, \delta_{Q}\right\}$ is prenilpotent. Note that $P, Q \in \mathcal{T}_{i}$ and hence $k_{\varepsilon}=i+2$ for every $\varepsilon \in\left\{\delta_{Q}, \delta_{P}, \gamma_{Q}, \gamma_{P}\right\}$ and $\left\{\delta_{P}, \delta_{Q}\right\}$ is not nested. If $\left\{-\delta_{P}, \delta_{Q}\right\}$ would be nested, [2, Lemma $\left.8.42(3)\right]$ implies that $\left\{\delta_{P}, \delta_{Q}\right\}$ is not prenilpotent which is a contradiction. Thus $\left\{-\delta_{P}, \delta_{Q}\right\}$ is not nested and Lemma (1.4.7) yields $o\left(r_{\delta_{P}} r_{\delta_{Q}}\right)<\infty$.

Assume that $R_{\delta_{P}} \in \partial^{2} \delta_{Q}$. We recall $k_{\delta_{P}}=k_{\delta_{Q}}$. If $R_{\delta_{P}} \in \mathcal{T}_{i, 1}$, then $\delta_{Q} \in\left\{\delta_{P}, \gamma_{P}\right\}$, which is a contradiction. If $R_{\delta_{P}} \notin \mathcal{T}_{i, 1}$, then we have $\delta_{Q}=\delta_{P}$ by definition of the roots δ_{Q}, γ_{Q}, which is again a contradiction. Thus we have $R_{\delta_{P}} \notin \partial^{2} \delta_{Q}$.

Recall that δ_{Q} is a non-simple root by definition. Now we can apply Lemma (5.2.6). Assertion (b) would imply $\delta_{Q}=\gamma_{P}$, which is a contradiction. Thus we are in Case (a). Then $k_{\delta_{P}}=k_{\delta_{Q}}$ implies $i=0$. Let $\{s, t\}$ be the type of P and let $\{r, s\}$ be the type of Q. Then
we have $P=R_{\{s, t\}}\left(1_{W}\right)$ and $Q=R_{\{r, s\}}\left(1_{W}\right)$ as well we $\delta_{Q}=s \alpha_{r}, \gamma_{Q}=r \alpha_{s}$. It follows from Lemma (5.1.4) that $\left(-\alpha_{r}\right) \subseteq \delta_{P} \cap \gamma_{P}$ and hence $w \in\left(-\delta_{P}\right) \cup\left(-\gamma_{P}\right) \subseteq \alpha_{r}$. Note that $C(P) \subseteq\left(-t \alpha_{s}\right) \cup C($ strsr $) \cup\{t\} \subseteq \delta_{Q}$. Lemma (1.3.2) yields $\alpha_{s} \subseteq\left(-\alpha_{r}\right) \cup s \alpha_{r}$ and as (W, S) is of type $(4,4,4)$, we deduce $\left(-r \alpha_{s}\right) \subseteq\left(-s \alpha_{r}\right) \cup\left(-\alpha_{r}\right)$. This implies $\alpha_{r} \cap s \alpha_{r} \subseteq r \alpha_{s}$. But then $w \in \alpha_{r} \cap \delta_{Q} \subseteq \gamma_{Q}$, which is a contradiction to $w \notin \delta_{Q} \cap \gamma_{Q}$. Thus P is unique with the required property.
(6.9.13) Lemma. Let $i \in \mathbb{N}, P \in \mathcal{T}_{i}$ and $w \in C(P)$. Then there is a canonical homomorphism $U_{w} \rightarrow G_{P}$. In particular, this homomorphism is injective.

Proof. We distinguish the following two cases:
$P \in \mathcal{T}_{i, 1}$ Suppose that P is of type $\{s, t\}$. Then $C(P)=C\left(w_{P} s t r_{\{r, s\}}\right) \cup C\left(w_{P} r_{\{s, t\}} r t r\right) \cup$ $C\left(w_{P} r_{\{s, t\}} r s r\right) \cup C\left(w_{P} t s r_{\{r, t\}}\right)$. As $U_{v} \rightarrow U_{v s}$ is injective, we can assume $w \in$ $\left\{w_{P} s t r_{\{r, s\}}, w_{P} r_{\{s, t\}} r t r, w_{P} r_{\{s, t\}} r s r, w_{P} t s r_{\{r, t\}}\right\}$. By definition of G_{P} and Proposition (1.8.1) we see that $U_{w} \rightarrow G_{P}$ is injective.
$P \in \mathcal{T}_{i, 2}$ Suppose $P=\left\{R, R^{\prime}\right\}$, where R is of type $\{r, s\}$ and R^{\prime} is of type $\{r, t\}$. As in the previous case we can assume that $\left.w \in\left\{w_{R} r s r_{\{r, t\}}, w_{R} r_{\{r, s\}}\right\} t, w_{R} r_{\{r, s\}} t r t, w_{R} s r r_{s, t}\right\} \cup$ $\left\{w_{R^{\prime}} \operatorname{tr} r_{\{s, t\}}, w_{R^{\prime}} r_{\{r, t\}} s r s, w_{R^{\prime}} r_{\{r, t\}} s t s, w_{R^{\prime}} r r_{\{r, s\}}\right\}$. Again, the claim follows from the definition of G_{P} together with Proposition (1.8.1).
(6.9.14) Definition. For $i \in \mathbb{N}$ and $P \in \mathcal{T}_{i}$ we let $C^{\prime}(P) \subseteq W$ be the set of all $w \in W$ such that U_{w} is a vertex group of G_{P}.
(6.9.15) Lemma. For $i \in \mathbb{N}$ and $P \in \mathcal{T}_{i}$, we have $C^{\prime}(P) \subseteq C_{i+1}$.

Proof. We distinguish the following two cases:
$P \in \mathcal{T}_{i, 1}$: Suppose that P is of type $\{s, t\}$. Then $C^{\prime}(P) \subseteq C(P) \cup\left\{w_{P} s r_{\{r, t\}}, w_{P} t r_{\{r, s\}}\right\}$. By definition, we have $C(P) \subseteq C_{i+1}$ and (using symmetry) it suffices to show that $w_{P} s r_{\{r, t\}} \in C_{i+1}$. For $i=0$ we have $w_{P} s r_{\{r, t\}} \in C_{0} \subseteq C_{1}$ and we are done. For $i>0$ we have $w_{P} s r_{\{r, t\}} \in C\left(R_{\{r, s\}}\left(w_{P}\right)\right) \subseteq C_{i} \subseteq C_{i+1}$ and the claim follows.
$P \in \mathcal{T}_{i, 2}$: Suppose $P=\left\{R, R^{\prime}\right\}$, where R is of type $\{r, s\}$ and R^{\prime} is of type $\{r, t\}$. As in the previous case it suffices to show that $\left\{w_{R} r\right.$ trsts, $w_{R} r$ trsrs, $\left.w_{R} r r_{\{s, t\}}\right\} \subseteq C_{i+1}$. As $R_{\{r, t\}}\left(w_{R}\right) \in \mathcal{R}_{i-1}$, it follows that $\left\{w_{R} r\right.$ rrsts, $w_{R} r$ rrsrs, $\left.w_{R} r r_{\{s, t\}}\right\} \subseteq C_{i} \subseteq C_{i+1}$ and the claim follows.
(6.9.16) Lemma. For $P \in \mathcal{T}_{i}$ we let δ_{P}, γ_{P} be the roots as in Lemma (6.9.12), Moreover, we let R_{ε} be the unique residue of rank 2 containing P_{ε} for $\varepsilon \in\left\{\delta_{P}, \gamma_{P}, \delta_{Q}, \gamma_{Q}\right\}$. Then following hold:
(a) For $i>0$ and $P \neq Q \in \mathcal{T}_{i}$, we have $\left(-\delta_{P}\right),\left(-\gamma_{P}\right) \subseteq \delta_{Q}, \gamma_{Q}$.
(b) Suppose $P \in \mathcal{T}_{i}$ and $Q \in \mathcal{T}_{i-1}$. For $\varepsilon \in\left\{\delta_{Q}, \gamma_{Q}\right\}, \varepsilon^{\prime} \in\left\{\delta_{P}, \gamma_{P}\right\}$ we have $(-\varepsilon) \subseteq \varepsilon^{\prime}$ or $R_{\varepsilon} \cap R_{\varepsilon^{\prime}}$ is a panel containing $w_{R_{\varepsilon}}$.

Proof. To prove (a) it suffices to show $\left(-\delta_{P}\right) \subseteq \delta_{Q}$. We see as in Lemma (6.9.12) that $\left|\left\{\delta_{P}, \gamma_{P}, \delta_{Q}, \gamma_{Q}\right\}\right|=4$. Assume $\left(-\delta_{P}\right) \nsubseteq \delta_{Q}$. Then $\left\{\delta_{P}, \delta_{Q}\right\} \in \mathcal{P}$. As $k_{\delta_{P}}=k_{\delta_{Q}}$, we have $o\left(r_{\delta_{P}} r_{\delta_{Q}}\right)<\infty$. As $R_{\delta_{P}} \notin \partial^{2} \delta_{Q}$, Lemma (5.2.6) b) would imply $\delta_{Q}=\gamma_{P}$, which is a contradiction. Lemma (5.2.6) (a) implies $i=0$ because of $k_{\delta_{P}}=k_{\delta_{Q}}$, which is also a contradiction.

To show (b) we argue similar as in (a). Assume that $\left(-\delta_{Q}\right) \nsubseteq \delta_{P}$. Then $\left\{\delta_{Q}, \delta_{P}\right\} \in \mathcal{P}$ and as $k_{\delta_{Q}}=k_{\delta_{P}}-1$, we deduce $o\left(r_{\delta_{Q}} r_{\delta_{P}}\right)<\infty$. If $R_{\delta_{P}} \in \partial^{2} \delta_{Q}$, then (as $k_{\delta_{Q}}=k_{\delta_{P}}-1$)
$P_{\delta_{Q}}=R_{\delta_{P}} \cap R_{\delta_{Q}}$ is a panel. Thus we can assume $R_{\delta_{P}} \notin \partial^{2} \delta_{Q}$. Then we can apply Lemma (5.2.6) As (b) does not apply, we obtain again (using $k_{\delta_{Q}}=k_{\delta_{P}}-1$) that $R_{\delta_{P}} \cap R_{\delta_{Q}}$ is a panel.
(6.9.17) Definition. Let $i \in \mathbb{N}$ and let $R \in \mathcal{R}_{i}$ be a residue of type $\{s, t\}$. We let $\hat{\Phi}_{R}$ be the set of all non-simple roots of $R_{\{r, s\}}\left(w_{R} s t\right), R_{\{r, t\}}\left(w_{R} r_{\{s, t\}}\right), R_{\{r, s\}}\left(w_{R} r_{\{s, t\}}\right), R_{\{r, t\}}\left(w_{R} t s\right)$. If $P:=\left\{R, R^{\prime}\right\} \in \mathcal{T}_{i}$, then we define $\hat{\Phi}_{P}:=\hat{\Phi}_{R} \cup \hat{\Phi}_{R^{\prime}}$.
(6.9.18) Lemma. Let $i \in \mathbb{N}, R \in \mathcal{R}_{i}$ and let $\alpha \in \hat{\Phi}_{R}$ be a root. Then we have $C_{i} \subseteq \alpha$.

Proof. Let R be of type $\{s, t\}$ and suppose $S=\{r, s, t\}$. We note that $C(P) \subseteq C_{i} \cup\left(-\delta_{P}\right) \cup$ $\left(-\gamma_{P}\right)$ for $P \in \mathcal{T}_{i}$, where δ_{P}, γ_{P} are as in Lemma (6.9.12). For a residue $T \in \mathcal{R}_{i}$ we denote by $P_{T} \in \mathcal{T}_{i}$ the unique element with $P_{T}=T$ or $T \in P_{T}$. We prove the hypothesis by induction on i. For $i=0$ it is not hard to see that

$$
C_{0}=\bigcup_{S=\{r, s, t\}} C\left(r_{\{s, t\}}\right) \cup C\left(r r_{\{s, t\}}\right) \subseteq \alpha
$$

Thus we can assume $i>0$ and hence $\ell\left(w_{R} r\right)=\ell\left(w_{R}\right)-1$. We have $C_{i}=C_{i-1} \cup \bigcup_{P \in \mathcal{T}_{i-1}} C(P)$. We denote by α_{R}, β_{R} the two non-simple roots of R and note that $\alpha_{R} \subseteq \alpha$ or $\beta_{R} \subseteq \alpha$ holds. We distinguish the following two cases:
(a) $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)-2=\ell\left(w_{R} r t\right)$: Let $P:=\left\{T, T^{\prime}\right\} \in \mathcal{T}_{i-2,2}$, where $T:=R_{\{r, s\}}\left(w_{R}\right)$ and $T^{\prime}:=R_{\{r, t\}}\left(w_{R}\right)$. As $\alpha_{R}, \beta_{R} \in \hat{\Phi}_{T}$, the induction hypothesis yields $C_{i-2} \subseteq \alpha_{R} \cap \beta_{R} \subseteq \alpha$. We observe the following:

$$
C_{i}=C_{i-1} \cup \bigcup_{Z \in \mathcal{T}_{i-1}} C(Z)=C_{i-2} \cup \bigcup_{Z \in \mathcal{T}_{i-2}} C(Z) \cup \bigcup_{Z \in \mathcal{T}_{i-1}} C(Z) \subseteq \alpha \cup \bigcup_{Z \in \mathcal{T}_{i-1} \cup \mathcal{T}_{i-2}} C(Z)
$$

- $Z \in \mathcal{T}_{i-2}$: If $Z \neq P$, then Lemma (6.9.16) (a) and Lemma (5.1.3) imply that $C(Z) \subseteq C_{i-2} \cup\left(\delta_{P} \cap \gamma_{P}\right) \subseteq \alpha \cup w_{R} r \alpha_{r} \cup C\left(w_{R}\right) \subseteq \alpha$. Now we consider $Z=P$. Note that $w_{T} \alpha_{s}, w_{T^{\prime}} \alpha_{t},\left(-w_{R} s r t \alpha_{s}\right),\left(-w_{R} \operatorname{tr} s \alpha_{t}\right) \subseteq \alpha_{R}, \beta_{R}$ and it suffices to show that $w_{R} s r_{\{r, t\}}, w_{R} r_{\{s, t\}}, w_{R} \operatorname{tr} r_{\{r, s\}} \in \alpha$. As $-w_{R} s t r t \alpha_{r},-w_{R} t s r s \alpha_{r} \subseteq \alpha, w_{R} r_{\{s, t\}} \in \alpha$ and roots are convex, we deduce $C(P) \subseteq \alpha$.
- $Z \in \mathcal{T}_{i-1}$: Then Lemma (6.9.16) (b) implies $C(Z) \subseteq C_{i-1} \cup\left(\alpha_{R} \cap \beta_{R}\right) \subseteq C_{i-1} \cup \alpha$.

We conclude the following:

$$
C_{i}=C_{i-1} \cup \bigcup_{Z \in \mathcal{T}_{i-1}} C(Z) \subseteq C_{i-1} \cup \alpha=C_{i-2} \cup \bigcup_{Z \in \mathcal{T}_{i-2}} C(Z) \cup \alpha \subseteq \alpha
$$

(b) $\ell\left(w_{R}\right) \in\left\{\ell\left(w_{R} r s\right), \ell\left(w_{R} r t\right)\right\}$: Without loss of generality we can assume $\ell\left(w_{R} r t\right)=$ $\ell\left(w_{R}\right)$. We distinguish the following two cases:
(i) $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)=\ell\left(w_{R} r t\right)$: Then $\ell\left(w_{R}\right)=1$ and $R=R_{\{s, t\}}(r)$. Clearly, $r r_{\{s, t\}} \in$ α. Using Lemma (5.1.4) we see that $\alpha_{r},-\alpha_{s},-\alpha_{t} \subseteq \alpha_{R}, \beta_{R}$ and, as roots are convex, we deduce $C_{0} \subseteq \alpha$. For $T:=R_{\{s, t\}}\left(1_{W}\right)$ and $\beta \in \hat{\Phi}_{T}$ we have $-\beta \subseteq$ $\left(-\delta_{T}\right) \cup\left(-\gamma_{T}\right) \subseteq \alpha_{r} \subseteq \alpha$ and hence $C(T) \subseteq \alpha$. Using symmetry it suffices to show that $C\left(R_{\{r, s\}}\left(1_{W}\right)\right) \subseteq \alpha$. As $\operatorname{srr}_{\{s, t\}}, \operatorname{srsr}_{\{r, t\}}, \operatorname{rsrr}_{\{s, t\}} \in\left(-\alpha_{s}\right) \subseteq \alpha$, it suffices to show that $r s r_{\{r, t\}} \in \alpha$. It follows from Lemma (5.1.4) that $r s r_{\{r, t\}} \in\left(-s \alpha_{r}\right) \subseteq \alpha$.
(ii) $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)-2$: Define $T:=R_{\{r, t\}}\left(w_{R}\right)$ and $T^{\prime}:=R_{\{r, s\}}\left(w_{R}\right)$. Lemma $(6.9 .16)(b)$ implies for $P \in \mathcal{T}_{i-1} \backslash\left\{P_{T}\right\}$:

$$
C(P) \subseteq C_{i-1} \cup\left(-\delta_{P}\right) \cup\left(-\gamma_{P}\right) \subseteq C_{i-1} \cup\left(\alpha_{R} \cap \beta_{R}\right) \subseteq C_{i-1} \cup \alpha
$$

Note that $-w_{T} \alpha_{t}, \subseteq \alpha_{R}, \beta_{R}$ and $C\left(w_{R} \operatorname{tr}_{\{r, s\}}\right) \subseteq \alpha$. As roots are convex and $\alpha_{R} \cap \beta_{R} \subseteq \alpha$, this yields $C\left(P_{T}\right) \subseteq \alpha$. We deduce

$$
C_{i} \subseteq C_{i-1} \cup \alpha=C_{i-2} \cup \bigcup_{P \in \mathcal{T}_{i-2}} C(P) \cup \alpha
$$

We distinguish the following cases:
(1) $\ell\left(w_{R} r s r\right)=\ell\left(w_{R}\right)-1:$ If $i-2=0$, then $C(P) \subseteq \alpha$ for all $P \in \mathcal{T}_{0}$ and $C_{0} \subseteq \alpha_{R} \cap \beta_{R} \subseteq \alpha$ by induction. Thus we assume $i-2>0$ and Lemma (6.9.16) (a) implies for $P \in \mathcal{T}_{i-2} \backslash\left\{P_{T^{\prime}}\right\}$ (as $w_{R} r \alpha_{r} \in\left\{\delta_{T^{\prime}}, \gamma_{T^{\prime}}\right\}$):

$$
C(P) \subseteq C_{i-2} \cup\left(-\delta_{P}\right) \cup\left(-\gamma_{P}\right) \subseteq C_{i-2} \cup w_{R} r \alpha_{r} \subseteq C_{i-2} \cup \alpha
$$

As $\alpha_{R}, \beta_{R} \in \hat{\Phi}_{T^{\prime}}$, we deduce $C_{i-2} \subseteq \alpha_{R} \cap \beta_{R} \subseteq \alpha$ by induction. Moreover, we have $\left.w_{T^{\prime}} \alpha_{s},\left(-w_{T^{\prime}} r_{\{r, s\}}\right\} \alpha_{s}\right) \subseteq \alpha_{R}, \beta_{R}$ as well as $w_{R} s r_{\{r, t\}}, w_{R} r_{\{s, t\}} \in \alpha$. As roots are convex, we conclude $C\left(P_{T^{\prime}}\right) \subseteq\left(\alpha_{R} \cap \beta_{R}\right) \cup \alpha \subseteq \alpha$. This yields the following:

$$
C_{i} \subseteq C_{i-2} \cup \bigcup_{P \in \mathcal{T}_{i-2}} C(P) \cup \alpha \subseteq \alpha
$$

(2) $\ell\left(w_{R} r s r\right)=\ell\left(w_{R}\right)-3$. We let $X:=R_{\{r, t\}}\left(w_{T^{\prime}} s\right)$ and $Y:=R_{\{s, t\}}\left(w_{T^{\prime}} r\right)$.

- Suppose that $\ell\left(w_{T^{\prime}} s t\right)=\ell\left(w_{T^{\prime}}\right)+2$. We will show that $C\left(P_{X}\right) \subseteq \alpha$. Note that $w_{T^{\prime}} r \alpha_{s} \subseteq \alpha_{R}, \beta_{R}$. This yields $C\left(P_{X}\right) \subseteq w_{T^{\prime}} r \alpha_{s} \subseteq \alpha_{R} \cap \beta_{R} \subseteq \alpha$.
- Suppose that $\ell\left(w_{T^{\prime}} r t\right)=\ell\left(w_{T^{\prime}}\right)+2$. Again we will show that $C\left(P_{Y}\right) \subseteq \alpha$. Note that $w_{T^{\prime}} s \alpha_{r} \subseteq \alpha_{R}, \beta_{R}$. This yields $C\left(P_{Y}\right) \subseteq w_{T^{\prime}} s \alpha_{r} \subseteq \alpha_{R} \cap \beta_{R} \subseteq \alpha$.
Note that $P_{T^{\prime}} \in \mathcal{T}_{i-3}$ and $\alpha_{R}, \beta_{R} \in \hat{\Phi}_{T^{\prime}}$. Thus the induction hypothesis implies $C_{i-3} \subseteq \alpha_{R} \cap \beta_{R} \subseteq \alpha$. We distinguish the following cases:
(aa) $T^{\prime} \in \mathcal{T}_{i-3,1}$: Lemma (6.9.16) (b) implies $C(Z) \subseteq C_{i-2} \cup\left(\delta_{T^{\prime}} \cap \gamma_{T^{\prime}}\right) \subseteq C_{i-2} \cup$ α for all $Z \in \mathcal{T}_{i-2} \backslash\left\{\overline{\left.P_{X}, P_{Y}\right\}}\right.$. We conclude

$$
\bigcup_{P \in \mathcal{T}_{i-2}} C(P) \subseteq C_{i-2} \cup \alpha
$$

We show now that $C\left(T^{\prime}\right) \subseteq \alpha$. First note that $w_{T^{\prime}} s r r_{\{s, t\}}, w_{T^{\prime}} r s r_{\{r, t\}} \subseteq$ α_{R}, β_{R} and $w_{T^{\prime}} s r s r_{\{r, t\}}, w_{R} r_{\{s, t\}} \subseteq \alpha$. This yields $C\left(T^{\prime}\right) \subseteq\left(\alpha_{R} \cap \beta_{R}\right) \cup$ $\alpha \subseteq \alpha$. Now Lemma (6.9.16) (a) yields the following for $P \in \mathcal{T}_{i-3} \backslash\left\{T^{\prime}\right\}$:

$$
\begin{aligned}
C(P) & \subseteq C_{i-3} \cup\left(\delta_{T^{\prime}} \cap \gamma_{T^{\prime}}\right) \subseteq \alpha \\
C_{i} & \subseteq C_{i-2} \cup \alpha \subseteq C_{i-3} \cup \bigcup_{P \in \mathcal{T}_{i-3}} C(P) \cup \alpha \subseteq \alpha
\end{aligned}
$$

(bb) $\ell\left(w_{R} r s t\right)=\ell\left(w_{R}\right)-3:$ Define $Z:=R_{\{r, t\}}\left(w_{R} r s t s\right)$ and note that $X, Z \in$ $\mathcal{T}_{i-2,1}$. We have already shown that $C(X) \subseteq \alpha$. Note that $-w_{T^{\prime}} r t \alpha_{s} \subseteq$ α_{R}, β_{R}. As roots are convex, this implies $C(Z) \subseteq \alpha$. Lemma (6.9.16) a) implies for $P \in \mathcal{T}_{i-3} \backslash\left\{P_{T^{\prime}}\right\}$:

$$
C(P) \subseteq C_{i-3} \cup w_{R} r \alpha_{r} \subseteq C_{i-3} \cup\left(\alpha_{R} \cap \beta_{R}\right) \subseteq \alpha
$$

Now we consider $P=P_{T^{\prime}}$. Note that $w_{R} r \alpha_{r},\left(-w_{R} r \alpha_{t}\right),\left(-w_{R} s r t \alpha_{s}\right) \subseteq$ α_{R}, β_{R}. Moreover, $w_{R} s t r t, w_{R} r_{\{s, t\}} \in \alpha$. As roots are convex, we obtain $C\left(P_{T^{\prime}}\right) \subseteq \alpha$.
Lemma (6.9.16)(b) implies for $P \in \mathcal{T}_{i-2} \backslash\{X, Z\}$:

$$
\begin{aligned}
C(P) & \subseteq C_{i-2} \cup w_{R} r \alpha_{r} \subseteq C_{i-2} \cup\left(\alpha_{R} \cap \beta_{R}\right) \subseteq C_{i-2} \cup \alpha \\
C_{i} & \subseteq C_{i-2} \cup \bigcup_{P \in \mathcal{T}_{i-2}} C(P) \cup \alpha \subseteq C_{i-3} \cup \bigcup_{P \in \mathcal{T}_{i-3}} C(P) \cup \alpha \subseteq \alpha
\end{aligned}
$$

(cc) $\ell\left(w_{R} r s r s t\right)=\ell\left(w_{R}\right)-3$: Define $Z:=R_{\{s, t\}}\left(w_{R} r s r s t r\right)$ and note that $Y, Z \in \mathcal{T}_{i-2,1}$. We have already shown that $C(Y) \subseteq \alpha$. As before, we note that $-w_{T^{\prime}} s t \alpha_{r} \subseteq w_{T^{\prime}} r \alpha_{s} \subseteq \alpha_{R}, \beta_{R}$. This yields as before $C(Z) \subseteq \alpha$, as roots are convex. Lemma (6.9.16) (a) implies for $P \in \mathcal{T}_{i-3} \backslash\left\{P_{T^{\prime}}\right\}$:

$$
C(P) \subseteq C_{i-3} \cup w_{R} r s \alpha_{s} \subseteq C_{i-3} \cup\left(\alpha_{R} \cap \beta_{R}\right) \subseteq \alpha
$$

Now we consider $P=P_{T^{\prime}}$. Note that $w_{R} r s \alpha_{s},\left(-w_{R} \operatorname{srt} \alpha_{s}\right),\left(-w_{R} \operatorname{tr} \alpha_{t}\right) \subseteq$ α_{R}, β_{R} and w_{R} strt $\in \alpha$ as before. As roots are convex, we obtain $C\left(P_{T^{\prime}}\right) \subseteq$ α.

Moreover, Lemma (6.9.16) (b) implies for $P \in \mathcal{T}_{i-2} \backslash\{Y, Z\}$:

$$
\begin{aligned}
C(P) & \subseteq C_{i-2} \cup w_{R} r s \alpha_{s} \subseteq C_{i-2} \cup\left(\alpha_{R} \cap \beta_{R}\right) \subseteq C_{i-2} \cup \alpha \\
C_{i} & \subseteq C_{i-2} \cup \bigcup_{P \in \mathcal{T}_{i-2}} C(P) \cup \alpha \subseteq C_{i-3} \cup \bigcup_{P \in \mathcal{T}_{i-3}} C(P) \cup \alpha \subseteq \alpha
\end{aligned}
$$

(6.9.19) Lemma. Let $i \in \mathbb{N}$ and $w^{\prime}=w_{R} r_{\{s, t\}} \in D_{i+1} \backslash D_{i}$. Then there exists a unique $P \in \mathcal{T}_{i}$ with $w_{R} s, w_{R} t \in C^{\prime}(P)$ and the canonical homomorphism $V_{w^{\prime}} \rightarrow G_{P}$ is injective.

Proof. We use in the proof a different notation than in the statement. We let $w^{\prime}=w_{T} r_{\{u, v\}}$. As $w^{\prime} \in D_{i+1} \backslash D_{i}$, we have $\left\{w_{T} u, w_{T} v\right\} \nsubseteq C_{i}$. Without loss of generality we assume $w_{T} u \notin C_{i}$. Using Lemma (6.9.12), we obtain a unique $P \in \mathcal{T}_{i}$ with $w_{T} u \in C(P) \backslash C_{i}$. Let $\beta \in \Phi_{+}$be the root with $\left\{w_{T}, w_{T} v\right\} \in \partial \beta$. Assume that there exists $i<j \in \mathbb{N}$ and $Z \in \mathcal{R}_{j}$ with $\beta \in \hat{\Phi}_{Z}$. Then the previous lemma implies $C_{i+1} \subseteq C_{j} \subseteq \beta$, which is a contradiction to our assumption, as $w_{T} v \in C_{i+1} \notin \beta$. We distinguish the following cases:
$P \in \mathcal{T}_{i, 1}$ Suppose that P is of type $\{s, t\}$. It suffices to consider the following cases:

$$
w_{T} u \in\left\{w_{R} \operatorname{strsr}, w_{R} \operatorname{str} r_{\{r, s\}}, w_{R} s t s r t r, w_{R} r_{\{s, t\}} r \operatorname{tr}\right\}
$$

The symmetric case (interchanging s and t) follows similarly. The other cases follow from Proposition (1.8.1), as $V_{w^{\prime}}$ is either a vertex group of G_{P}, or else is contained in the vertex group $U_{w^{\prime}}$ of G_{P}. If $w_{T} u=w_{R} s t r_{\{r, s\}}$, then $\beta \in \hat{\Phi}_{Z}$ for $Z=R_{\{r, s\}}\left(w_{R} s t\right)$. If $w_{T} u=w_{R} r_{\{s, t\}} r t r$, then $\beta \in \hat{\Phi}_{Z}$ for $Z=R_{\{r, t\}}\left(w_{R} s t s\right)$. If $w_{T} u=w_{R} s t s r t r$, then $\beta \in \hat{\Phi}_{Z}$ for $Z=R_{\{r, s\}}\left(w_{R} s t\right)$. If $w_{T} u=w_{R}$ strst, then $\beta \in \hat{\Phi}_{Z}$, where $Z=R_{\{r, t\}}\left(w_{R} s\right)$.
$P \in \mathcal{T}_{i, 2}$ Suppose $P=\left\{R, R^{\prime}\right\}$, where R is of type $\{r, s\}$ and R^{\prime} is of type $\{r, t\}$. Using exactly the same arguments, the claim follows as in the case $P \in \mathcal{T}_{i, 1}$.
(6.9.20) Proposition. Assume that G_{i} is natural for some $i \in \mathbb{N}$. Then $G_{i+1} \cong \star_{G_{i}} B_{P}$, where P runs over \mathcal{T}_{i}. In particular, the mappings $G_{i} \rightarrow G_{i+1}$ and $B_{P} \rightarrow G_{i+1}$ are injective for each $P \in \mathcal{T}_{i}$.

Proof. Recall from Definition (6.9.6) that $B_{P}=G_{i} \star_{H_{P}} G_{P}$ for every $P \in \mathcal{T}_{i}$ and note that G_{i}, G_{P} are subgroups of B_{P} by Proposition (1.8.1). The second part follows from Proposition (1.8.1) and the first part. We let x_{α} be the generators of G_{i}, where $C_{i} \nsubseteq \alpha \in \Phi_{+}$, and we let $x_{\alpha, P}$ be the generators of G_{P}, where $C^{\prime}(P) \nsubseteq \alpha \in \Phi_{+}$. We define $H_{i}:=\star_{G_{i}} B_{P}$, where P runs over \mathcal{T}_{i}. Since we have canonical homomorphisms $G_{i}, G_{P} \rightarrow G_{i+1}$ extending $x_{\alpha} \mapsto x_{\alpha}$ and $x_{\alpha, P} \rightarrow x_{\alpha}$ (cf. Lemma (6.9.15) which agree on H_{P} (cf. Remark (6.9.2) , we obtain a unique homomorphism $B_{P} \rightarrow \overline{G_{i+1}}$. Moreover, we obtain a (surjective) homomorphism $H_{i} \rightarrow G_{i+1}$. Now we will construct a homomorphism $G_{i+1} \rightarrow H_{i}$. Before we do that, we consider the generators of H_{i}.

Let $\alpha \in \Phi_{+}$and suppose $P \in \mathcal{T}_{i}$ with $C^{\prime}(P) \nsubseteq \alpha$ and $C_{i} \nsubseteq \alpha$. Then x_{α} is a generator of G_{i} and $x_{\alpha, P}$ is a generator of G_{P}. Lemma (6.9.18) implies that $\alpha \notin \hat{\Phi}_{P}$ and by definition of H_{P} we have $x_{\alpha}=x_{\alpha, P}$ in G_{P}. Thus H_{i} is generated by the set $\left\{x_{\alpha}, x_{\beta, P} \mid C_{i} \nsubseteq \alpha \in \Phi_{+}, P \in\right.$ $\left.\mathcal{T}_{i}, \beta \in \hat{\Phi}_{P}\right\}$. Note that if $P, Q \in \mathcal{T}_{i}$ and $\alpha \in \Phi_{+}$are such that $C^{\prime}(P) \nsubseteq \alpha, C^{\prime}(Q) \nsubseteq \alpha$, then $P=Q$. This can be seen by using Lemma (6.9.16) for $i>0$. In the case $i=0$ it follows from Lemma (5.1.4) that if $P \neq Q$, then $-\beta \subsetneq \alpha$ for all $\beta \in \hat{\Phi}_{P}, \alpha \in \hat{\Phi}_{Q}$.

We need to construct for each $w \in W$ a homomorphism $U_{w} \rightarrow H_{i}$. We start by defining a mapping from the generators $x_{\alpha, w}$ of U_{w} to H_{i}. Let $\alpha \in \Phi_{+}$be a root and let $w \in C_{i+1}$ with $w \notin \alpha$. If $C_{i} \nsubseteq \alpha$, we define $x_{\alpha, w} \mapsto x_{\alpha}$. If $C_{i} \subseteq \alpha$, then $w \notin C_{i}$ and there exists a unique $P \in \mathcal{T}_{i}$ with $w \in C(P)$ by Lemma (6.9.12). We define $x_{\alpha, w} \mapsto x_{\alpha, P}$.

If $w \in C_{i}$, then we have a canonical homomorphism $U_{w} \rightarrow G_{i} \rightarrow H_{i}$. Thus we assume $w \notin C_{i}$. As before, there exists a unique $P \in \mathcal{T}_{i}$ such that $w \in C(P)$. We have already shown that for each $\alpha \in \Phi_{+}$with $w \notin \alpha$ and $C_{i} \nsubseteq \alpha$, we have $x_{\alpha}=x_{\alpha, P}$ in B_{P}. Thus these mappings extend to homomorphisms $U_{w} \rightarrow G_{P} \rightarrow H_{i}$. Now suppose $w^{\prime}=w_{R} r_{\{s, t\}} \in D_{i+1}$ for some R of type $\{s, t\}$. We have to show that the homomorphisms $U_{w_{R} s}, U_{w_{R} t} \rightarrow H_{i}$ extend to a homomorphism $V_{w^{\prime}} \rightarrow H_{i}$. If $w^{\prime} \in D_{i}$, this holds by definition of G_{i}. If $w^{\prime} \notin D_{i}$, then Lemma (6.9.19) implies that there exists a unique $P \in \mathcal{T}_{i}$ with $\left\{w_{R} s, w_{T} t\right\} \subseteq C^{\prime}(P)$ and $V_{w^{\prime}} \rightarrow G_{P}$ is injective. In particular, $V_{w^{\prime}} \rightarrow H_{i}$ is an injective homomorphism. Moreover, following diagrams commute, where R is a residue of type $\{s, t\}$:

The universal property of direct limits yields a homomorphism $G_{i+1} \rightarrow H_{i}$. It is clear that the concatenations of the two homomorphisms $G_{i+1} \rightarrow H_{i}$ and $H_{i} \rightarrow G_{i+1}$ take x_{α} to itself. Thus both concatenations are equal to the identities and both homomorphisms are isomorphisms.

6.10. Second main result

(6.10.1) Remark. (a) In the next lemma we use the following basic fact about intersections of subgroups and monomorphisms. Let G, H be groups, let $U, V \leq G$ be subgroups of G and let $\varphi: G \rightarrow H$ be a monomorphism. Then $\varphi(U \cap V)=\varphi(U) \cap \varphi(V)$.
(b) In the next lemma we consider $D_{R}=G_{-1 \star V_{R}} O_{R}$ for $R:=R_{\{r, t\}}(s)$ (cf. Lemma (6.9.11)). Similar as in Remark (6.1.1) we have to show that if x_{α} is a generator of G_{-1} and y_{α} is a generator of O_{R}, then $x_{\alpha}=y_{\alpha}$ holds in D_{R}. It suffices to consider $\alpha \in\left\{s t \alpha_{r}, s r \alpha_{t}\right\}$. We deduce from Lemma (5.1.4) that $-\alpha_{t},-\alpha_{r} \subseteq \alpha$ and hence $C_{-1} \subseteq \alpha$. Thus x_{α} is not a generator of G_{-1}.
(6.10.2) Lemma. Let $R \in \mathcal{T}_{0,1}$ be a residue of type J. For $s \in J$ the canonical homomorphism $K_{R, s} \rightarrow D_{R_{\{r, t\}}(s)}$ is injective and we have $K_{R, s} \cap G_{-1}=O_{R}$ in $D_{R_{\{r, t\}}(s)}$.
Proof. We suppose $J=\{s, t\}$. Note that $R=R_{J}\left(1_{W}\right)$. Since $O_{R, s} \cong U_{s r s} \star_{U_{s r}} O_{R}$ by Lemma (6.2.1) we obtain that both homomorphisms $O_{R} \rightarrow O_{R, s} \rightarrow G_{-1}$ are injective by Lemma (6.9.10) and Proposition (1.8.1) For $T:=R_{\{r, t\}}(s)$ we have that $X:=U_{s r_{\{r, t\}}} \hat{\star} V_{s t r_{\{r, s\}}} \rightarrow O_{T}$ is injective by Proposition (1.8.1). Using Corollary (1.8.4) we obtain $X \cap V_{T}=V_{s r_{\{r, t\}}} \hat{\star} U_{s t s}$ in O_{T}. Note that $V_{T} \rightarrow O_{R, s}$ is injective by Lemma (6.4.3). Recall that

$$
O_{R, s}=U_{s r s} \hat{\star} V_{s r_{\{r, t\}}} \hat{\star} U_{r_{\{s, t\}}} \hat{\star} V_{t r_{\{r, s\}}} \quad \text { and } \quad V_{T}=U_{s r s} \hat{\star} V_{s r_{\{r, t\}}} \hat{\star} U_{s t s}
$$

As O_{R} corresponds to the last three vertex groups and V_{T} is a subgroup of the first three vertex groups of $O_{R, s}$, Corollary (1.8.4) implies that $O_{R} \cap V_{T}=V_{s r_{\{r . t\}}} \hat{\star} U_{s t s}$ in $O_{R, s}$. We define $Y:=V_{s r_{\{r, t\}}} \hat{\star} U_{s t s}$. Applying Proposition (1.8.3) and Remark (6.10.1), the canonical homomorphism $X \star_{Y} O_{R} \rightarrow O_{T} \star_{V_{T}} G_{-1}=D_{T}$ is injective. In particular, Proposition (1.8.1), Remark (1.8.6) and Lemma (1.8.7) yield

$$
X \star_{Y} O_{R} \cong X \star_{Y}\left(Y \star_{U_{s t s}} U_{r_{\{s, t\}}} \hat{\star} V_{\left.t r_{\{r, s\}}\right\}}\right) \cong U_{s r_{\{r, t\}}} \hat{\star} V_{s t r_{\{r, s\}}} \hat{\star} U_{r_{\{s, t\}}} \hat{\star} V_{t r_{\{r, s\}}}=K_{R, s}
$$

This implies that $K_{R, s} \cong X \star_{Y} O_{R} \rightarrow O_{T} \star_{V_{T}} G_{-1}=D_{T}$ is injective. Applying Proposition (1.8.3), we obtain $K_{R, s} \cap G_{-1}=O_{R}$ in D_{T}. This finishes the claim.
(6.10.3) Theorem. The groups G_{0} and G_{1} are natural.

Proof. Suppose $j \in\{0,1\}$. Then G_{j} satisfies (N1) by Lemma (6.9.7). Note that $\mathcal{T}_{j, 2}=\emptyset$ and hence $\mathcal{T}_{j}=\mathcal{T}_{j, 1}$. Thus G_{j} is natural, if $H_{R} \rightarrow G_{j}$ is injective for each $R \in \mathcal{T}_{j, 1}$. Let $R \in \mathcal{T}_{j, 1}$ be of type $\{s, t\}$. Then Lemma (6.4.1) implies that $H_{R} \cong K_{R, s} \star_{O_{R}} K_{R, t}$. Thus it suffices to show that $K_{R, s} \star_{O_{R}} K_{R, t} \rightarrow G_{j}$ is injective. We distinguish the cases $j=0$ and $j=1$.
$j=0$: Then $R=R_{\{s, t\}}\left(1_{W}\right)$. By Proposition (1.8.1) and Lemma (6.9.11) it follows that $D_{R_{\{r, t\}}(s){ }^{\star} G_{-1}} D_{R_{\{r, s\}}(t)} \rightarrow G_{0}$ is injective. Using Lemma (6.10.2) we obtain that $K_{R, s} \rightarrow$ $D_{R_{\{r, t\}}(s)}$ and $K_{R, t} \rightarrow D_{R_{\{r, s\}}(t)}$ are injective and that $K_{R, s} \cap G_{-1}=O_{R}$ (resp. $K_{R, t} \cap$ $G_{-1}=O_{R}$) in $D_{R_{\{r, t\}}(s)}$ (resp. $D_{R_{\{r, s\}}(t)}$). Now Proposition (1.8.3) implies that the following homomorphism is injective:

$$
K_{R, s} \star_{O_{R}} K_{R, t} \rightarrow D_{R_{\{r, t\}}(s)} \star_{G_{-1}} D_{R_{\{r, s\}}(t)} \rightarrow G_{0}
$$

$j=1$: Then $R=R_{\{s, t\}}(r)$. We abbreviate $T=R_{\{r, t\}}(r s)$ and $Z=R_{\{r, s\}}\left(1_{W}\right)$. Since G_{0} is natural, the mapping $H_{Z} \rightarrow G_{0}$ is injective. Using Proposition (1.8.1), Remark (1.8.6), Lemma (1.8.7), Lemma (6.3.1) and Lemma (6.3.2) we infer

$$
\begin{aligned}
B_{Z} & =G_{0} \star_{H_{Z}} G_{Z} \\
& \cong G_{0} \star_{H_{Z}} J_{Z, r} \star_{J_{Z, r}} G_{Z} \\
& \cong\left(G_{0} \star_{H_{Z}} J_{Z, r}\right) \star_{J_{Z, r}} G_{Z} \\
& \cong\left(G_{0} \star_{H_{Z}} H_{Z} \star_{V_{T}} O_{T}\right) \star_{J_{Z, r}} G_{Z} \\
& \cong\left(G_{0} \star_{V_{T}} O_{T}\right) \star_{J_{Z, r}} G_{Z}
\end{aligned}
$$

Thus the homomorphism $G_{0} \star_{V_{T}} O_{T} \rightarrow B_{Z}$ is injective. By Lemma (6.4.3) the mappings $V_{T} \rightarrow O_{R, s}$ and, in particular, $K_{R, s} \rightarrow O_{R, s} \star_{T} O_{T}$ are injective. Lemma (6.9.11) implies that the canonical homomorphisms $V_{T} \rightarrow O_{R, s} \rightarrow G_{0}$ are injective. Using Proposition (1.8.3) the homomorphisms $O_{R, s} \star_{V_{T}} O_{T} \rightarrow G_{0} \star_{V_{T}} O_{T} \rightarrow B_{Z}$ are injective. Using

Proposition (1.8.3) again, we deduce $\left(O_{R, s} \star V_{T} O_{T}\right) \cap G_{0}=O_{R, s}$ in $G_{0} \star V_{T} O_{T}$ and hence $K_{R, s} \cap G_{0} \leq O_{R, s}$ in $G_{0} \star_{V_{T}} O_{T}$. By Lemma (6.4.3) we have $K_{R, s} \cap O_{R, s}=O_{R}$ in $O_{R, s} \star_{T} O_{T}$ and by Remark (6.10.1)(a) all the previous intersections do also hold in B_{Z}. Thus we obtain the following in B_{Z} :

$$
K_{R, s} \cap G_{0}=K_{R, s} \cap G_{0} \cap O_{R, s}=K_{R, s} \cap O_{R, s}=O_{R}
$$

Let $T^{\prime}=R_{\{r, s\}}(r t)$. Replacing s and t, we deduce that the homomorphisms $K_{R, t} \rightarrow$ $O_{R, t} \star V_{T^{\prime}} O_{T^{\prime}} \rightarrow B_{R_{\{r, t\}}\left(1_{W}\right)}$ are injective and $K_{R, t} \cap G_{0}=K_{R, t} \cap O_{R, t}=O_{R}$. Now Proposition (1.8.3) yields that $K_{R, s} \star_{O_{R}} K_{R, t} \rightarrow B_{R_{\{r, s\}}\left(1_{W}\right)} \star_{G_{0}} B_{R_{\{r, t\}}\left(1_{W}\right)}$ is injective. Since G_{0} is natural, Proposition (1.8.1) and Proposition (6.9.20) imply that $B_{R_{\{r, s\}}\left(1_{W}\right)} \star_{G_{0}} B_{R_{\{r, t\}}\left(1_{W}\right)} \rightarrow G_{1}$ is injective and the claim follows.
(6.10.4) Lemma. Suppose $2 \leq i \in \mathbb{N}$ is such that G_{i-2} and G_{i-1} are natural. Then for each $R \in \mathcal{T}_{i, 1}$ of type $\{s, t\}$ with $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)-2$ the canonical homomorphism $E_{R, s} \rightarrow G_{i}$ is injective.

Proof. Let $R \in \mathcal{T}_{i, 1}$ be of type $\{s, t\}$ with $\ell\left(w_{R} r s\right)=\ell\left(w_{R}\right)-2$, let $T=R_{\{r, t\}}\left(w_{R}\right)$ and $T^{\prime}=R_{\{r, s\}}\left(w_{R}\right)$. Suppose $\ell\left(w_{R} r t\right)=\ell\left(w_{R}\right)-2$. Using Lemma (6.7.2), we have $\left\{T, T^{\prime}\right\} \in$ $\mathcal{T}_{i-2,2}$ and $E_{R, s} \rightarrow G_{\left\{T, T^{\prime}\right\}}$ is injective. As G_{i-2} is natural, the homomorphism $G_{\left\{T, T^{\prime}\right\}} \rightarrow$ $G_{i-2 \star H_{\left\{T, T^{\prime}\right\}}} G_{\left\{T, T^{\prime}\right\}}=B_{\left\{T, T^{\prime}\right\}}$ is injective by Proposition (1.8.1) Moreover, as G_{i-2} and G_{i-1} are natural, the homomorphisms $B_{\left\{T, T^{\prime}\right\}} \rightarrow G_{i-1}$ and $G_{i-1} \rightarrow G_{i}$ are injective by Proposition (6.9.20). This finishes the claim. Thus we can assume that $\ell\left(w_{R} r t\right)=\ell\left(w_{R}\right)$. We abbreviate $Z:=R_{\{r, s\}}\left(w_{R} t\right)$ and distinguish the following two cases:
(i) $T \in \mathcal{T}_{i-1,1}:$ As G_{i-1} is natural, we deduce from Proposition (6.9.20) that $B_{T} \rightarrow G_{i}$ is injective. Using Proposition (1.8.1), Remark (1.8.6), Lemma (1.8.7), Lemma (6.3.1) and Lemma (6.3.2) infer

$$
\begin{aligned}
B_{T} & =G_{i-1} \star_{H_{T}} G_{T} \\
& \cong G_{i-1} \star_{H_{T}} J_{T, r} \star_{J_{T, r}} G_{T} \\
& \cong\left(G_{i-1} \star_{H_{T}} J_{T, r}\right) \star_{J_{T, r}} G_{T} \\
& \cong\left(G_{i-1} \star_{H_{T}} H_{T} \star_{V_{Z}} O_{Z}\right) \star_{J_{T, r}} G_{T} \\
& \cong\left(G_{i-1} \star_{V_{Z}} O_{Z}\right) \star_{J_{T, r}} G_{T}
\end{aligned}
$$

In particular, each of the mappings $G_{i-1} \star_{V_{Z}} O_{Z} \rightarrow B_{T} \rightarrow G_{i}$ is injective.
(ii) $T \notin \mathcal{T}_{i-1,1}$: Then there exists a unique $P_{T} \in \mathcal{T}_{i-1,2}$ with $T \in P_{T}$. Suppose $P_{T}=\left\{T, T^{\prime \prime}\right\}$. As G_{i-1} is natural, we deduce from Proposition (6.9.20) that $B_{P_{T}} \rightarrow G_{i}$ is injective. Then Proposition (1.8.1), Remark (1.8.6), Lemma (1.8.7), Lemma (6.7.1) and Lemma (6.7.3) imply that

$$
\begin{aligned}
B_{P_{T}} & =G_{i-1} \star_{H_{\left\{T, T^{\prime \prime}\right\}}} G_{\left\{T, T^{\prime \prime}\right\}} \\
& \cong G_{i-1} \star_{\left.H_{\left\{T, T^{\prime \prime}\right.}\right\}} J_{\left(T, T^{\prime \prime}\right)} \star_{\left.J_{\left(T, T^{\prime \prime}\right)}\right)} G_{\left\{T, T^{\prime \prime}\right\}} \\
& \cong\left(G_{i-1} \star_{\left.H_{\left\{T, T^{\prime \prime}\right\}}\right\}} J_{\left(T, T^{\prime \prime}\right)}\right) \star_{J_{\left(T, T^{\prime \prime}\right)}} G_{\left\{T, T^{\prime \prime}\right\}} \\
& \cong\left(G_{i-1} \star_{H_{\left\{T, T^{\prime \prime}\right\}}} H_{\left\{T, T^{\prime \prime}\right\}} \star_{V_{Z}} O_{Z}\right) \star_{J_{\left(T, T^{\prime \prime}\right)}} G_{\left\{T, T^{\prime \prime}\right\}} \\
& \cong\left(G_{i-1} \star_{V_{Z}} O_{Z}\right) \star_{J_{\left(T, T^{\prime \prime}\right)}} G_{\left\{T, T^{\prime \prime}\right\}}
\end{aligned}
$$

and hence each of the mappings $G_{i-1} \star_{Z} O_{Z} \rightarrow B_{P_{T}} \rightarrow G_{i}$ is injective.

We conclude that $G_{i-1} \star_{V_{Z}} O_{Z} \rightarrow G_{i}$ is injective. We will show now that $X_{R} \rightarrow G_{i-1}$ is injective. We distinguish the following two cases:
(i) $T^{\prime} \in \mathcal{T}_{i-2,1}$: As G_{i-2} is natural by assumption, the mapping $G_{T^{\prime}} \rightarrow B_{T^{\prime}} \rightarrow G_{i-1}$ is injective by Proposition (6.9.20) and by Lemma (6.6.3) the homomorphism $X_{R} \rightarrow G_{T^{\prime}}$ is injective.
(ii) $T^{\prime} \notin \mathcal{T}_{i-2,1}$: Then there exists a unique $P_{T^{\prime}} \in \mathcal{T}_{i-2,2}$ with $T^{\prime} \in P_{T^{\prime}}$. As G_{i-2} is natural by assumption, the mapping $G_{P_{T^{\prime}}} \rightarrow B_{P_{T^{\prime}}} \rightarrow G_{i-1}$ is injective by Proposition (6.9.20) and by Lemma (6.7.4) the homomorphism $X_{R} \rightarrow G_{P_{T^{\prime}}}$ is injective.

We conclude that $X_{R} \rightarrow G_{i-1}$ is injective. Moreover, $V_{Z} \rightarrow X_{R}$ is injective by Lemma (6.6.2) and hence $X_{R}{ }^{\star} V_{Z} O_{Z} \rightarrow G_{i-1} \star_{V_{Z}} O_{Z} \rightarrow G_{i}$ is injective by Proposition (1.8.3). Using Lemma (6.6.2) again, we infer that $E_{R, s} \rightarrow X_{R} \star_{Z} O_{Z}$ and, in particular, $E_{R, s} \rightarrow G_{i}$ is injective.
(6.10.5) Theorem. For each $i \geq 0$ the group G_{i} is natural.

Proof. We show the claim via induction on $i \geq 0$. If $i \leq 1$, claim follows from Theorem (6.10.3). Thus we can assume that $i \geq 2$ and that G_{k} is natural for all $0 \leq k<i$. We have to show that G_{i} satisfies (N1) and (N2).
(N1) Let $w \in C_{i}$. If $w \in C_{i-1}$, then each of the homomorphisms $U_{w} \rightarrow G_{i-1} \rightarrow G_{i}$ is injective by induction and Proposition (6.9.20). If $w \notin C_{i-1}$, then there exists $P \in \mathcal{T}_{i-1}$ with $w \in C(P)$ by definition of C_{i}. Using Lemma (6.9.13) and Proposition (6.9.20), each of the homomorphisms $U_{w} \rightarrow G_{P} \rightarrow G_{i}$ is injective. Now we consider $w^{\prime} \in D_{i}$. If $w^{\prime} \in D_{i-1}$, induction and Proposition (6.9.20) imply that each of the homomorphisms $V_{w^{\prime}} \rightarrow G_{i-1} \rightarrow G_{i}$ is injective. Thus we can assume that $w^{\prime} \notin D_{i-1}$. As $w^{\prime}=w_{R} r_{\{s, t\}}$ for some residue R of type $\{s, t\}$ with $w_{R} s, w_{R} t \in C_{i}$, we deduce $\left\{w_{R} s, w_{R} t\right\} \cap\left(C_{i} \backslash C_{i-1}\right) \neq$ \emptyset. By definition of C_{i} there exists $P \in \mathcal{T}_{i-1}$ such that $\left\{w_{R} s, w_{R} t\right\} \cap\left(C(P) \backslash C_{i-1}\right) \neq \emptyset$. But then Lemma (6.9.19), induction and Proposition (6.9.20) imply that each of the homomorphisms $V_{w^{\prime}} \rightarrow G_{P} \rightarrow G_{i}$ is injective and (N1) is satisfied.
(N2) To prove that (N2) holds we have to show that $H_{P} \rightarrow G_{i}$ is injective for every $P \in \mathcal{T}_{i}$. Suppose $P \in \mathcal{T}_{i, 1}$ is of type $\{s, t\}$. As $i \geq 2$, we can assume that $\ell\left(w_{P} r s\right)=\ell\left(w_{P}\right)-2$. Since $H_{P} \rightarrow E_{P, s}$ is injective by Lemma (6.5.1) and $E_{P, s} \rightarrow G_{i}$ is injective by Lemma (6.10.4), the claim follows. Now suppose that $P \in \mathcal{T}_{i, 2}$. Let $P=\left\{R, R^{\prime}\right\}$, where R is of type $\{r, s\}$ and R^{\prime} is of type $\{r, t\}$. Let T be the $\{r, t\}$-residue containing w_{R} and let T^{\prime} be the $\{r, s\}$-residue containing $w_{R^{\prime}}$. By Lemma (6.8.3) we have $T, T^{\prime} \in \mathcal{T}_{i-1,1}$. As G_{i-1} is natural, Proposition (6.9.20) and Proposition (1.8.1) imply that the mapping $B_{T} \star_{G_{i-1}} B_{T^{\prime}} \rightarrow G_{i}$ is injective. By Lemma (6.8.2) we have $H_{\left\{R, R^{\prime}\right\}} \cong C_{\left(R, R^{\prime}\right)} \star_{C} C_{\left(R^{\prime}, R\right)}$. Thus it suffices to show that $C_{\left(R, R^{\prime}\right)} \star_{C} C_{\left(R^{\prime}, R\right)} \rightarrow B_{T} \star_{G_{i-1}} B_{T^{\prime}}$ is injective and we will prove it by using Proposition (1.8.3).
Using Lemma (6.10.4), the mappings $E_{T, t}, E_{T^{\prime}, s} \rightarrow G_{i-1}$ are injective. Then Lemma (6.5.1), Proposition (1.8.1), Remark (1.8.6) and Lemma (1.8.7) yield

$$
\begin{aligned}
& B_{T}=G_{i-1} \star_{H_{T}} G_{T} \cong G_{i-1} \star_{E_{T, t}} E_{T, t} \star_{H_{T}} G_{T} \cong G_{i-1} \star_{E_{T, t}} U_{T, t} \\
& B_{T^{\prime}}=G_{i-1} \star_{H_{T^{\prime}}} G_{T^{\prime}} \cong G_{i-1} \star_{E_{T^{\prime}, s}} E_{T^{\prime}, s} \star_{H_{T^{\prime}}} G_{T^{\prime}} \cong G_{i-1} \star_{E_{T^{\prime}, s}} U_{T^{\prime}, s}
\end{aligned}
$$

Lemma (6.8.3) shows that $C_{\left(R, R^{\prime}\right)} \rightarrow U_{T, t}, C_{\left(R^{\prime}, R\right)} \rightarrow U_{T^{\prime}, s}$ are injective and, in particular, $C_{\left(R, R^{\prime}\right)} \rightarrow B_{T}, C_{\left(R^{\prime}, R\right)} \rightarrow B_{T^{\prime}}$ are injective. Moreover, Lemma (6.8.3) implies that $C_{\left(R, R^{\prime}\right)} \cap E_{T, t}=C$ holds in $U_{T, t}$ and $C_{\left(R^{\prime}, R\right)} \cap E_{T^{\prime}, s}=C$ holds in $U_{T^{\prime}, s}$. Remark
(6.10.1) (a) implies that these intersections do also hold in B_{T} and $B_{T^{\prime}}$, respectively. Corollary (1.8.5) now yields:

$$
\begin{array}{ll}
C_{\left(R, R^{\prime}\right)} \cap G_{i-1}=C_{\left(R, R^{\prime}\right)} \cap G_{-1} \cap E_{T, t}=C_{\left(R, R^{\prime}\right)} \cap E_{T, t}=C & \text { in } B_{T} \\
C_{\left(R^{\prime}, R\right)} \cap G_{i-1}=C_{\left(R^{\prime}, R\right)} \cap G_{-1} \cap E_{T^{\prime}, s}=C_{\left(R^{\prime}, R\right)} \cap E_{T^{\prime}, s}=C & \text { in } B_{T^{\prime}}
\end{array}
$$

Now Proposition (1.8.3) implies that the canonical homomorphism $C_{\left(R, R^{\prime}\right)} \star_{C} C_{\left(R^{\prime}, R\right)} \rightarrow$ $B_{T}{ }^{\star} G_{i-1} B_{T^{\prime}}$ is injective. This finishes the proof.
(6.10.6) Corollary. \mathcal{M} is a faithful commutator blueprint of type (4, 4, 4).

Proof. By Lemma (6.9.4) we have $G \cong U_{+}$. We have to show that for each $w \in W$ the canonical homomorphism $U_{w} \rightarrow G \cong U_{+}$is injective. Note that the following diagram commutes for every $i \in \mathbb{N}$ with $w \in C_{i}$ (cf. Remark (6.9.2) and Remark (6.9.3)):

By Theorem (6.10.5) the group G_{i} is natural for each $i \geq 0$. Proposition (6.9.20) implies that the canonical homomorphisms $G_{i} \rightarrow G_{i+1}$ are injective. It follows from [30, 1.4.9(iii)] that the canonical homomorphisms $G_{i} \rightarrow G$ are injective. Since for each $w \in W$ there exists $i \in \mathbb{N}$ such that $w \in C_{i}$, we infer that $U_{w} \rightarrow G$ is injective. This finishes the proof.
(6.10.7) Corollary. Let \mathcal{M} be a 2-nilpotent pre-commutator blueprint of type (4, 4, 4), which is Weyl-invariant and satisfies (CR1) and (CR2). Then \mathcal{M} is integrable.

Proof. By Lemma (4.2.2), \mathcal{M} is a commutator blueprint and the groups U_{w} are of nilpotency class at most 2. By Corollary (6.10.6), \mathcal{M} is faithful and by Theorem (3.5.1), \mathcal{M} is integrable.

7. Applications

We first construct new examples of integrable commutator blueprints of type $(4,4,4)$. Then we discuss several applications.

7.1. New RGD-systems

Let $\mathcal{D}=\left(\mathcal{G},\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be the RGD-system associated with the split Kac-Moody group of type $(4,4,4)$ over \mathbb{F}_{2} as in Example (5.3.1). Then $\mathcal{M}_{\mathcal{D}}$ is an integrable commutator blueprint of type $(4,4,4)$ by Example (2.1.8) In this section we will construct new examples of integrable commutator blueprints of type $(4,4,4)$.
(7.1.1) Proposition. Let $\mathcal{M}=\left(M_{\alpha, \beta}^{G}\right)_{(G, \alpha, \beta) \in \mathcal{I}}$ be a pre-commutator blueprint of type $(4,4,4)$, which is locally Weyl-invariant. Let $G \in \operatorname{Min}$ and let $\alpha, \beta \in \Phi(G)$ be two roots such that $\alpha \neq \beta$ and $\alpha \leq_{G} \beta$. Assume that the following hold:
(a) Suppose that $o\left(r_{\alpha} r_{\beta}\right)<\infty$ and let $\varepsilon \in \Phi(G)$.
(i) If for each $\gamma \in M_{\alpha, \beta}^{G}$ we have $\varepsilon \subsetneq \gamma$, then $M_{\varepsilon, \gamma}^{G}=M_{\varepsilon, \delta}^{G}$ holds for all $\gamma, \delta \in M_{\alpha, \beta}^{G}$.
(ii) If for each $\gamma \in M_{\alpha, \beta}^{G}$ we have $\gamma \subsetneq \varepsilon$, then $M_{\gamma, \varepsilon}^{G}=M_{\delta, \varepsilon}^{G}$ holds for all $\gamma, \delta \in M_{\alpha, \beta}^{G}$.
(b) Suppose that o $\left(r_{\alpha} r_{\beta}\right)=\infty$ and suppose $G=\left(d_{0}, \ldots, d_{n}=c_{0}, \ldots, c_{k}=e_{0}, \ldots, e_{m}\right)$ such that $\left\{c_{0}, c_{1}\right\} \in \partial \alpha$ and $\left\{c_{k-1}, c_{k}\right\} \in \partial \beta$. Then the following hold:
(i) We have $\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma} \in Z\left(U_{\left(d_{i}, \ldots, d_{n}=c_{0}, \ldots, c_{k}=e_{0}, \ldots, e_{j}\right), G}\right)$ for each $0 \leq i \leq n$ and each $0 \leq j \leq m$. Moreover, we have $\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma} \in Z\left(U_{\left(c_{1}, \ldots, c_{k-1}\right), G}\right)$.
(ii) We have $\left(\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}\right)^{2}=1$ in $U_{\left(c_{1}, \ldots, c_{k-1}\right), G}$.

Then \mathcal{M} is 2-nilpotent (cf. Section 4.2).
Proof. Let $G=\left(d_{0}, \ldots, d_{n}=c_{0}, \ldots, c_{k}\right) \in \operatorname{Min}$ and let $\left(\alpha_{1}^{\prime}, \ldots, \alpha_{n+k}^{\prime}\right)$ be the sequence of roots crossed by G. We abbreviate $\alpha_{i}:=\alpha_{n+i}^{\prime}$ as well as $u_{i}:=u_{\alpha_{i}}$ for all $1 \leq i \leq k$.
(2-n1) Let $1 \leq i \leq k-1$. We have to show that $\left[u_{1},\left[u_{i}, u_{k}\right]\right]=1$. If $R \in \partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k}$, then the claim follows. Thus we can assume that $\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k}=\emptyset$. Moreover, we can assume that $M_{\alpha_{i}, \alpha_{k}}^{G} \neq \emptyset$. If $o\left(r_{\alpha_{i}} r_{\alpha_{k}}\right)=\infty$, then $\left[u_{i}, u_{k}\right]$ commutes with u_{1} by Condition $(b)(i)$ and the claim follows. Thus we assume $o\left(r_{\alpha_{i}} r_{\alpha_{k}}\right)<\infty$ and hence $\left|\left(\alpha_{i}, \alpha_{k}\right)\right|=2$. We let $M_{\alpha_{i}, \alpha_{k}}^{G}=\{\delta, \gamma\}$ be with $\delta \leq_{G} \gamma$. Suppose that $o\left(r_{\alpha_{1}} r_{\rho}\right)=\infty$ for each $\rho \in\left(\alpha_{i}, \alpha_{k}\right)$. Then $\alpha_{1} \subseteq \rho$ and we have $M_{\alpha_{1}, \delta}^{G}=M_{\alpha_{1}, \gamma}^{G}$ by Condition $(a)(i)$ and we infer

$$
\prod_{\varepsilon \in M_{\alpha_{i}, \alpha_{k}}^{G}}\left(\prod_{\omega \in M_{\alpha_{1}, \varepsilon}^{G}} u_{\omega}\right) u_{\varepsilon}=\left(\prod_{\omega \in M_{\alpha_{1}, \delta}^{G}} u_{\omega}\right) u_{\delta}\left(\prod_{\omega \in M_{\alpha_{1}, \gamma}^{G}} u_{\omega}\right) u_{\gamma}
$$

$$
\begin{aligned}
& \stackrel{(b)(i)}{=} u_{\delta}\left(\prod_{\omega \in M_{\alpha_{1}, \gamma}^{G}} u_{\omega}\right)^{2} u_{\gamma} \\
& \stackrel{(b)(i i)}{=} u_{\delta} u_{\gamma}=\prod_{\varepsilon \in M_{\alpha_{i}, \alpha_{k}}^{G}} u_{\varepsilon}
\end{aligned}
$$

Now we suppose that there exists $\rho \in\left(\alpha_{i}, \alpha_{k}\right)$ with $o\left(r_{\alpha_{1}} r_{\rho}\right)<\infty$. Since $\alpha_{i} \cap \alpha_{k} \subseteq \rho$, we deduce that $\alpha_{1} \nsubseteq \alpha_{i}$ or $\alpha_{1} \nsubseteq \alpha_{k}$ and hence $o\left(r_{\alpha_{1}} r_{\alpha_{i}}\right)<\infty$ or $o\left(r_{\alpha_{1}} r_{\alpha_{k}}\right)<\infty$. Let $\varepsilon \in\left\{\alpha_{i}, \alpha_{k}\right\}$ be a root such that $o\left(r_{\alpha_{1}} r_{\varepsilon}\right)<\infty$. Then $o\left(r_{\varepsilon} r_{\rho}\right)<\infty$ by Lemma (1.5.2). As $\partial^{2} \rho \cap \partial^{2} \varepsilon=\partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k}$ by Lemma (1.5.2) and Lemma (1.4.8) (a) and $\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k}=\emptyset$, we infer that $\left\{r_{\alpha_{1}}, r_{\varepsilon}, r_{\rho}\right\}$ is a reflection triangle. Using Remark (1.5.1) there exist $\beta_{1} \in\left\{\alpha_{1},-\alpha_{1}\right\}, \beta_{\varepsilon} \in\{\varepsilon,-\varepsilon\}$ and $\beta_{\rho} \in\{\rho,-\rho\}$ such that $\left\{\beta_{1}, \beta_{\varepsilon}, \beta_{\rho}\right\}$ is a triangle. Note that $\partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k} \cap \partial^{2} \rho \neq \emptyset$ by Lemma (1.5.2). We let $\varepsilon^{\prime} \in\left\{\alpha_{i}, \alpha_{k}\right\} \backslash\{\varepsilon\}$. By Lemma (1.4.8)(b) we have $\left(\left(\beta_{\varepsilon}, \beta_{\rho}\right) \cup\left(-\beta_{\varepsilon}, \beta_{\rho}\right)\right) \cap\left\{\varepsilon^{\prime},-\varepsilon^{\prime}\right\} \neq \emptyset$. As $\left(-\beta_{\varepsilon}, \beta_{\rho}\right)=\emptyset$ by Lemma (1.5.3), there exists $\beta_{\varepsilon^{\prime}} \in\left\{\varepsilon^{\prime},-\varepsilon^{\prime}\right\}$ such that $\beta_{\varepsilon^{\prime}} \in\left(\beta_{\varepsilon}, \beta_{\rho}\right)$. By Lemma (1.5.6) we have $o\left(r_{\alpha_{1}} r_{\varepsilon^{\prime}}\right)=\infty$ and hence (as $\left.\left\{\alpha_{1}, \varepsilon^{\prime}\right\} \in \mathcal{P}\right) \alpha_{1} \subseteq \varepsilon^{\prime}$. Recall that $\partial^{2} \rho \cap \partial^{2} \varepsilon \cap \partial^{2} \varepsilon^{\prime}=\partial^{2} \rho \cap \partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k} \neq \emptyset$. For $R \in \partial^{2} \varepsilon^{\prime} \cap \partial^{2} \rho=\partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k}$ (cf. Lemma (1.4.8) (a)), we deduce $\emptyset \neq R \cap\left(-\varepsilon^{\prime}\right) \subseteq\left(-\alpha_{1}\right)$ and, as $R \notin \partial^{2} \alpha_{1}$, we have $R \subseteq\left(-\alpha_{1}\right)$. This yields $\beta_{1}=-\alpha_{1}$. For $R \in \partial^{2} \alpha_{1} \cap \partial^{2} \varepsilon$ we have $\emptyset \neq \alpha_{1} \cap R \subseteq \varepsilon^{\prime}$. As $\partial^{2} \alpha_{1} \cap \partial^{2} \varepsilon \cap \partial^{2} \varepsilon^{\prime}=\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k}=\emptyset$, we deduce $R \notin \partial^{2} \varepsilon^{\prime}$ and hence $R \subseteq \varepsilon^{\prime}$. In particular, we have $\emptyset \neq \varepsilon \cap R \subseteq \varepsilon \cap \varepsilon^{\prime}=\alpha_{i} \cap \alpha_{k} \subseteq \rho$. As $R \notin \partial^{2} \rho\left(\left\{r_{\alpha_{1}}, r_{\varepsilon}, r_{\rho}\right\}\right.$ is a reflection triangle), we infer $R \subseteq \rho$ and hence $\beta_{\rho}=\rho$. Lemma (1.5.3) implies $\left(\alpha_{1}, \rho\right)=\emptyset$. Now let $\rho \neq \sigma \in\left(\alpha_{i}, \alpha_{k}\right)$. Using Lemma (1.5.2) and Lemma (1.4.8) (b), we deduce $\left(\left(\beta_{\varepsilon}, \beta_{\rho}\right) \cup\left(-\beta_{\varepsilon}, \beta_{\rho}\right)\right) \cap\{\sigma,-\sigma\} \neq \emptyset$. Using Lemma (1.5.3), there exists $\beta_{\sigma} \in\{\sigma,-\sigma\}$ such that $\beta_{\sigma} \in\left(\beta_{\varepsilon}, \beta_{\rho}\right)$ as before. Using Lemma (1.5.6), we deduce $o\left(r_{\alpha_{1}} r_{\sigma}\right)=\infty$ and hence (as $\left.\left\{\alpha_{1}, \sigma\right\} \in \mathcal{P}\right) \alpha_{1} \subseteq \sigma$. Applying Lemma (1.5.6) again, we deduce $\alpha_{1}=-\beta_{1} \subseteq \beta_{\sigma}$ and $\left(\alpha_{1}, \beta_{\sigma}\right)=\emptyset$. In particular, as $\alpha_{1} \subseteq \beta_{\sigma} \cap \sigma$, we have $\beta_{\sigma}=\sigma$. Since $\left(\alpha_{1}, \delta\right)=\left(\alpha_{1}, \gamma\right)=\emptyset$, we compute

$$
\prod_{\varepsilon \in M_{\alpha_{i}, \alpha_{k}}^{G}}\left(\prod_{\omega \in M_{\alpha_{1}, \varepsilon}^{G}} u_{\omega}\right) u_{\varepsilon}=\prod_{\varepsilon \in M_{\alpha_{i}, \alpha_{k}}^{G}} u_{\varepsilon}
$$

(2-n2) Let $2 \leq i \leq k-1$. We have to show that $\left[\left[u_{1}, u_{i}\right], u_{k}\right]=1$. As in (2-n1) we can assume $\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k}=\emptyset$ and $M_{\alpha_{1}, \alpha_{i}}^{G} \neq \emptyset$. If $o\left(r_{\alpha_{1}} r_{\alpha_{i}}\right)=\infty$, then $\left[u_{1}, u_{i}\right]$ commutes with u_{k} by Condition $(b)(i)$ and the claim follows. Thus we assume $o\left(r_{\alpha_{1}} r_{\alpha_{i}}\right)<\infty$ and hence $\left|\left(\alpha_{1}, \alpha_{i}\right)\right|=2$. We let $M_{\alpha_{1}, \alpha_{i}}^{G}=\{\delta, \gamma\}$ be with $\delta \leq_{G} \gamma$. Suppose that $o\left(r_{\rho} r_{\alpha_{k}}\right)=\infty$ for each $\rho \in\left(\alpha_{1}, \alpha_{i}\right)$. Then $\rho \subseteq \alpha_{k}$ and we have $M_{\delta, \alpha_{k}}^{G}=M_{\gamma, \alpha_{k}}^{G}$ by Condition (a)(ii) and we infer

$$
\begin{aligned}
& \prod_{\varepsilon \in M_{\alpha_{1}, \alpha_{i}}^{G}}\left(u_{\varepsilon} \prod_{\omega \in M_{\varepsilon, \alpha_{k}}^{G}} u_{\omega}\right)=u_{\delta}\left(\prod_{\omega \in M_{\delta, \alpha_{k}}^{G}} u_{\omega} u_{\gamma} \prod_{\omega \in M_{\gamma, \alpha_{k}}^{G}} u_{\omega}\right) \\
& \stackrel{(b)(i)}{=} u_{\delta}\left(\prod_{\omega \in M_{\gamma, \alpha_{k}}^{G}} u_{\omega}\right)^{2} u_{\gamma} \\
& \stackrel{(b)(i i)}{=} u_{\delta} u_{\gamma}=\prod_{\varepsilon \in M_{\alpha_{1}, \alpha_{i}}^{G}} u_{\varepsilon}
\end{aligned}
$$

Now we suppose that there exists $\rho \in\left(\alpha_{1}, \alpha_{i}\right)$ with $o\left(r_{\rho} r_{\alpha_{k}}\right)<\infty$. Since $\left(-\alpha_{1}\right) \cap$ $\left(-\alpha_{i}\right) \subseteq(-\rho)$, we deduce $o\left(r_{\alpha_{1}} r_{\alpha_{k}}\right)<\infty$ or $o\left(r_{\alpha_{i}} r_{\alpha_{k}}\right)<\infty$, as otherwise we would have $\left(-\alpha_{k}\right) \subseteq\left(-\alpha_{1}\right) \cap\left(-\alpha_{i}\right) \subseteq(-\rho)$. Let $\varepsilon \in\left\{\alpha_{1}, \alpha_{i}\right\}$ be a root with $o\left(r_{\varepsilon} r_{\alpha_{k}}\right)<\infty$. Then $o\left(r_{\varepsilon} r_{\rho}\right)<\infty$ by Lemma (1.5.2), As $\partial^{2} \rho \cap \partial^{2} \varepsilon=\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i}$ by Lemma (1.5.2) and Lemma (1.4.8) (a), and $\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k}=\emptyset$, we infer that $\left\{r_{\varepsilon}, r_{\rho}, r_{\alpha_{k}}\right\}$ is a reflection triangle. Using Remark (1.5.1) there exist $\beta_{\varepsilon} \in\{\varepsilon,-\varepsilon\}, \beta_{\rho} \in\{\rho,-\rho\}$ and $\beta_{k} \in\left\{\alpha_{k},-\alpha_{k}\right\}$ such that $\left\{\beta_{\varepsilon}, \widehat{\left.\beta_{k}, \beta_{\rho}\right\}}\right.$ is a triangle. Note that $\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i} \cap$ $\partial^{2} \rho \neq \emptyset$ by Lemma (1.5.2). We let $\varepsilon^{\prime} \in\left\{\alpha_{1}, \alpha_{i}\right\} \backslash\{\varepsilon\}$. By Lemma (1.4.8) (b) we have $\left(\left(\beta_{\rho}, \beta_{\varepsilon}\right) \cup\left(-\beta_{\rho}, \beta_{\varepsilon}\right)\right) \cap\left\{\varepsilon^{\prime},-\varepsilon^{\prime}\right\} \neq \emptyset$. As $\left(-\beta_{\rho}, \beta_{\varepsilon}\right)=\emptyset$ by Lemma (1.5.3), there exists $\beta_{\varepsilon^{\prime}} \in\left\{\varepsilon^{\prime},-\varepsilon^{\prime}\right\}$ such that $\beta_{\varepsilon^{\prime}} \in\left(\beta_{\rho}, \beta_{\varepsilon}\right)$. By Lemma (1.5.6) we have $o\left(r_{\varepsilon^{\prime}} r_{\alpha_{k}}\right)=\infty$ and hence (as $\left.\left\{\varepsilon^{\prime}, \alpha_{k}\right\} \in \mathcal{P}\right) \varepsilon^{\prime} \subseteq \alpha_{k}$. For $R \in \partial^{2} \varepsilon \cap \partial^{2} \rho=\partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{1}$ (cf. Lemma (1.4.8)(a)), we have (as $\left.\varepsilon^{\prime} \in\left\{\alpha_{1}, \alpha_{i}\right\}\right) \emptyset \neq R \cap \varepsilon^{\prime} \subseteq \alpha_{k}$. As $R \notin \partial^{2} \alpha_{k}$, we infer $R \subseteq \alpha_{k}$ and hence $\beta_{k}=\alpha_{k}$. For $R \in \partial^{2} \varepsilon \cap \partial^{2} \alpha_{k}$ we have $R \notin \partial^{2} \varepsilon^{\prime}$ and $\emptyset \neq R \cap\left(-\alpha_{k}\right) \subseteq$ $\left(-\varepsilon^{\prime}\right)$. This implies $R \subseteq\left(-\varepsilon^{\prime}\right)$ and hence $\emptyset \neq(-\varepsilon) \cap R \subseteq(-\varepsilon) \cap\left(-\varepsilon^{\prime}\right) \subseteq(-\rho)$. As $R \notin \partial^{2} \rho$, we deduce $\beta_{\rho}=-\rho$ and Lemma (1.5.3) implies $\left(\rho, \alpha_{k}\right)=\emptyset$. Now let $\rho \neq \sigma \in\left(\alpha_{1}, \alpha_{i}\right)$. Again by Lemma (1.5.2), Lemma (1.4.8), b) and Lemma (1.5.3) there exists $\beta_{\sigma} \in\{\sigma,-\sigma\}$ such that $\beta_{\sigma} \in\left(\beta_{\rho}, \beta_{\varepsilon}\right)$. Using Lemma (1.5.6) we deduce $o\left(r_{\sigma} r_{\alpha_{k}}\right)=\infty$ and hence (as $\left.\left\{\delta, \alpha_{k}\right\} \in \mathcal{P}\right) \sigma \subseteq \alpha_{k}$. Applying Lemma (1.5.6) again, we deduce $-\alpha_{k}=-\beta_{k} \subseteq \beta_{\sigma}$ and $\left(-\alpha_{k}, \beta_{\sigma}\right)=\emptyset$. In particular, as $-\alpha_{k} \subseteq \beta_{\sigma} \cap(-\sigma)$, we have $\beta_{\sigma}=-\sigma$. Since $\left(\sigma, \alpha_{k}\right)=\left(\rho, \alpha_{k}\right)=\emptyset$, we compute

$$
\prod_{\varepsilon \in M_{\alpha_{1}, \alpha_{i}}^{G}}\left(u_{\varepsilon} \prod_{\omega \in M_{,, \alpha_{k}}^{G}} u_{\omega}\right)=\prod_{\varepsilon \in M_{\alpha_{1}, \alpha_{i}}^{G}} u_{\varepsilon}
$$

(2-n3) At first we assume $o\left(r_{\alpha_{1}} r_{\alpha_{k}}\right)=\infty$. Then $\left[u_{1}, u_{k}\right]$ commutes with u_{i} by Condition $(b)(i)$ and $\left[u_{1}, u_{k}\right]^{2}=1$ by Condition (b)(ii). Thus we can assume $o\left(r_{\alpha_{1}} r_{\alpha_{k}}\right)<\infty$. If $\left|\left(\alpha_{1}, \alpha_{k}\right)\right|<2$, then $M_{\alpha_{1}, \alpha_{k}}^{G}=\emptyset$ and the claim follows directly. Thus we can assume $\left(\alpha_{1}, \alpha_{k}\right)=\{\delta, \gamma\}$ and $\delta \leq_{G} \gamma$. The first claim is obvious, as $M_{\delta, \gamma}^{G}=\emptyset$. For the second claim we let $2 \leq i \leq k-1$. If $\alpha_{i} \in\left(\alpha_{1}, \alpha_{k}\right)$, the claim follows directly. Thus we can assume $\alpha_{i} \notin\left(\alpha_{1}, \alpha_{k}\right)$. In particular, Lemma (1.4.6) implies $\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k}=\emptyset$.
At first we suppose $o\left(r_{\alpha_{i}} r_{\varepsilon}\right)=\infty$ for both $\varepsilon \in\{\delta, \gamma\}$. As $\left\{\delta, \alpha_{i}\right\},\left\{\gamma, \alpha_{i}\right\} \in \mathcal{P}$, we infer that $\left\{\delta, \alpha_{i}\right\}$ and $\left\{\gamma, \alpha_{i}\right\}$ are pairs of nested roots. The fact that $o\left(r_{\delta} r_{\gamma}\right)<\infty$ implies that either $\alpha_{i} \subseteq \delta, \gamma$ or else $\delta, \gamma \subseteq \alpha_{i}$. If $\alpha_{i} \subseteq \delta, \gamma$, then we have $M_{\alpha_{i}, \delta}^{G}=M_{\alpha_{i}, \gamma}^{G}$ by Condition (a)(i) and we deduce

$$
\left[u_{i}, u_{\delta}\right]=\prod_{\omega \in M_{\alpha_{i}, \delta}^{G}} u_{\omega}=\prod_{\omega \in M_{\alpha_{i}, \gamma}^{G}} u_{\omega}=\left[u_{i}, u_{\gamma}\right]
$$

In particular, we obtain $\left[u_{i}, u_{\delta} u_{\gamma}\right]=\left[u_{i}, u_{\gamma}\right]\left[u_{i}, u_{\delta}\right]^{u_{\gamma}}=\left[u_{i}, u_{\gamma}\right]\left[u_{i}, u_{\gamma}\right]^{u_{\gamma}}=\left[u_{i}, u_{\gamma}^{2}\right]=1$. Similarly, if $\delta, \gamma \subseteq \alpha_{i}$, we obtain $\left[u_{\delta}, u_{i}\right]=\left[u_{\gamma}, u_{i}\right]$ and $\left[u_{\delta} u_{\gamma}, u_{i}\right]=\left[u_{\delta}, u_{i}\right]^{u_{\gamma}}\left[u_{\gamma}, u_{i}\right]=$ $\left[u_{\gamma}, u_{i}\right]^{u_{\gamma}}\left[u_{\gamma}, u_{i}\right]=\left[u_{\gamma}^{2}, u_{i}\right]=1$.
Now we can assume that $o\left(r_{\varepsilon} r_{\alpha_{i}}\right)<\infty$ for some $\varepsilon \in\{\delta, \gamma\}$. We deduce from $\alpha_{1} \nsubseteq \alpha_{k}$ that we have $\alpha_{1} \nsubseteq \alpha_{i}$ or $\alpha_{i} \nsubseteq \alpha_{k}$, i.e. we have $o\left(r_{\alpha_{1}} r_{\alpha_{i}}\right)<\infty$ or $o\left(r_{\alpha_{i}} r_{\alpha_{k}}\right)<\infty$. Let $\omega \in\left\{\alpha_{1}, \alpha_{k}\right\}$ be a root such that $o\left(r_{\alpha_{i}} r_{\omega}\right)<\infty$. Note that $\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k}=\emptyset$ and by Lemma (1.4.8) (a) and Lemma (1.5.2) we have $\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{k}=\partial^{2} \omega \cap \partial^{2} \varepsilon$. This implies that $\left\{r_{\omega}, r_{\alpha_{i}}, r_{\varepsilon}\right\}$ is a reflection triangle. By Remark (1.5.1) there exist $\beta_{\omega} \in\{\omega,-\omega\}, \beta_{i} \in\left\{\alpha_{i},-\alpha_{i}\right\}, \beta_{\varepsilon} \in\{\varepsilon,-\varepsilon\}$ such that $\left\{\beta_{\omega}, \beta_{i}, \beta_{\varepsilon}\right\}$ is a triangle. By Lemma (1.5.3) we have $\left(-\beta_{\omega}, \beta_{\varepsilon}\right)=\emptyset$. Let $\omega \neq \omega^{\prime} \in\left\{\alpha_{1}, \alpha_{k}\right\}$ and let $\varepsilon \neq \varepsilon^{\prime} \in\{\delta, \gamma\}$.

Using Lemma (1.4.8) (b) there exists $\beta_{\omega^{\prime}} \in\left\{\omega^{\prime},-\omega^{\prime}\right\}$ and $\beta_{\varepsilon^{\prime}} \in\left\{\varepsilon^{\prime},-\varepsilon^{\prime}\right\}$ such that $\beta_{\omega^{\prime}}, \beta_{\varepsilon^{\prime}} \in\left(\beta_{\omega}, \beta_{\varepsilon}\right)$. It follows from Lemma (1.5.6) that $o\left(r_{\omega^{\prime}} r_{\alpha_{i}}\right)=\infty, o\left(r_{\alpha_{i}} r_{\varepsilon^{\prime}}\right)=$ $\infty,-\beta_{i} \subseteq \beta_{\varepsilon^{\prime}}$ and $\left(-\beta_{i}, \beta_{\varepsilon^{\prime}}\right)=\emptyset$. Now we distinguish the following cases:
(a) $\omega=\alpha_{1}$: Then $\omega^{\prime}=\alpha_{k}$ and (as $\left.\left\{\alpha_{i}, \alpha_{k}\right\} \in \mathcal{P}\right) \alpha_{i} \subseteq \alpha_{k}$. Assume that $\varepsilon^{\prime} \subseteq \alpha_{i}$. Then we would have $\varepsilon^{\prime} \subseteq \alpha_{i} \subseteq \alpha_{k}$ which is a contradiction. As $\left\{\alpha_{i}, \varepsilon^{\prime}\right\} \in \mathcal{P}$, we deduce $\alpha_{i} \subseteq \varepsilon^{\prime}$. For $R \in \partial^{2} \alpha_{1} \cap \partial^{2} \varepsilon=\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{k}$ (cf. Lemma (1.5.2) and Lemma (1.4.8) (a)) we deduce $\emptyset \neq R \cap\left(-\alpha_{k}\right) \subseteq\left(-\alpha_{i}\right)$ and hence, as $R \notin \partial^{2} \alpha_{i}$ because $\left\{r_{\alpha_{1}}, r_{\alpha_{i}}, r_{\varepsilon}\right\}$ is a reflection triangle, that $R \subseteq\left(-\alpha_{i}\right)$ and $\beta_{i}=-\alpha_{i}$. As $\alpha_{i}=-\beta_{i} \subseteq \beta_{\varepsilon^{\prime}} \cap \varepsilon^{\prime}$, we deduce $\beta_{\varepsilon^{\prime}}=\varepsilon^{\prime}$ and hence $\left(\alpha_{i}, \varepsilon^{\prime}\right)=\left(-\beta_{i}, \beta_{\varepsilon^{\prime}}\right)=\emptyset$. For $R \in \partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i}$ we have $R \notin \partial^{2} \varepsilon^{\prime} \cup \partial^{2} \varepsilon$, as $\partial^{2} \alpha_{1} \cap \partial^{2} \varepsilon=\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{k}=\partial^{2} \alpha_{1} \cap \partial^{2} \varepsilon^{\prime}$ and $\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k}=\emptyset$. Assume that $R \subseteq(-\varepsilon)$. As $\left(\varepsilon, \varepsilon^{\prime}\right)=\emptyset$, Lemma $(1.4 .8)(b)$ yields $\left(-\varepsilon, \varepsilon^{\prime}\right) \cap\left\{\alpha_{1},-\alpha_{1}\right\} \neq \emptyset$. In particular, we have $(-\varepsilon) \cap \varepsilon^{\prime} \subseteq \beta_{1}$ for some $\beta_{1} \in\left\{\alpha_{1},-\alpha_{1}\right\}$. We deduce from $R \in \partial^{2} \alpha_{1}, R \subseteq(-\varepsilon)$, that $R \nsubseteq \varepsilon^{\prime}$ and hence $R \subseteq\left(-\varepsilon^{\prime}\right)$. But this would imply $\emptyset \neq \alpha_{i} \cap R \subseteq \alpha_{i} \cap\left(-\varepsilon^{\prime}\right)=\emptyset$, which is a contradiction. As $R \notin \partial^{2} \varepsilon$, we deduce $R \subseteq \varepsilon$ and hence $\beta_{\varepsilon}=\varepsilon$. In particular, we have $\left(\alpha_{i}, \varepsilon\right)=\left(-\beta_{i}, \beta_{\varepsilon}\right)=\emptyset$. Thus u_{i} commutes with u_{ε} and $u_{\varepsilon^{\prime}}$ and hence with $\prod_{\gamma \in M_{\alpha_{1}, \alpha_{k}}^{G}} u_{\gamma}$.
(b) $\omega=\alpha_{k}$: Then $\omega^{\prime}=\alpha_{1}$ and $\left(\right.$ as $\left.\left\{\alpha_{1}, \alpha_{i}\right\} \in \mathcal{P}\right) \alpha_{1} \subseteq \alpha_{i}$. Assume that $\alpha_{i} \subseteq \varepsilon^{\prime}$. Then we would have $\alpha_{1} \subseteq \alpha_{i} \subseteq \varepsilon^{\prime}$ which is a contradiction. As $\left\{\varepsilon^{\prime}, \alpha_{i}\right\} \in \mathcal{P}$, we deduce $\varepsilon^{\prime} \subseteq \alpha_{i}$. For $R \in \partial^{2} \alpha_{k} \cap \partial^{2} \varepsilon=\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{k}$ (cf. Lemma (1.5.2) and Lemma (1.4.8) (a)) we deduce $\emptyset \neq R \cap \alpha_{1} \subseteq \alpha_{i}$ and hence, as $R \notin \partial^{2} \alpha_{i}$ because $\left\{r_{\alpha_{i}}, r_{\alpha_{k}}, r_{\varepsilon}\right\}$ is a reflection triangle, that $R \subseteq \alpha_{i}$ and $\beta_{i}=\alpha_{i}$. As $-\alpha_{i}=-\beta_{i} \subseteq$ $\beta_{\varepsilon^{\prime}} \cap\left(-\varepsilon^{\prime}\right)$, we deduce $\beta_{\varepsilon^{\prime}}=-\varepsilon^{\prime}$ and hence $\left(\varepsilon^{\prime}, \alpha_{i}\right)=\left(-\beta_{\varepsilon^{\prime}}, \beta_{i}\right)=\left(\beta_{\varepsilon^{\prime}},-\beta_{i}\right)=\emptyset$. For $R \in \partial^{2} \alpha_{k} \cap \partial^{2} \alpha_{i}$ we have $R \notin \partial^{2} \varepsilon \cup \partial^{2} \varepsilon^{\prime}$, as $\partial^{2} \varepsilon \cap \partial^{2} \alpha_{k}=\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{k}=$ $\partial^{2} \varepsilon^{\prime} \cap \partial^{2} \alpha_{k}$ and $\partial^{2} \alpha_{1} \cap \partial^{2} \alpha_{i} \cap \partial^{2} \alpha_{k}=\emptyset$. Assume that $R \subseteq \varepsilon$. As $\left(\varepsilon, \varepsilon^{\prime}\right)=\emptyset$, Lemma $(1.4 .8)(b)$ yields $\left(\varepsilon,-\varepsilon^{\prime}\right) \cap\left\{\alpha_{k},-\alpha_{k}\right\} \neq \emptyset$. In particular, we have $\left(-\varepsilon^{\prime}\right) \cap \varepsilon \subseteq \beta_{k}$ for some $\beta_{k} \in\left\{\alpha_{k},-\alpha_{k}\right\}$. We deduce from $R \in \partial^{2} \alpha_{k}, R \subseteq \varepsilon$, that $R \nsubseteq\left(-\varepsilon^{\prime}\right)$ and hence $R \subseteq \varepsilon^{\prime}$. But this would imply that $\emptyset \neq\left(-\alpha_{i}\right) \cap R \subseteq\left(-\alpha_{i}\right) \cap \varepsilon^{\prime}=\emptyset$, which is a contradiction. As $R \notin \partial^{2} \varepsilon$, we deduce $R \subseteq(-\varepsilon)$ and hence $\beta_{\varepsilon}=-\varepsilon$. In particular, we have $\left(\alpha_{i}, \varepsilon\right)=\left(\beta_{i},-\beta_{\varepsilon}\right)=\emptyset$. Thus u_{i} commutes with u_{ε} and $u_{\varepsilon^{\prime}}$ and hence with $\prod_{\gamma \in M_{\alpha_{1}, \alpha_{k}}^{G}} u_{\gamma}$.
(2-n4) The claim is obvious if $o\left(r_{\alpha_{1}} r_{\alpha_{k}}\right)<\infty$. If $o\left(r_{\alpha_{1}} r_{\alpha_{k}}\right)=\infty$, then $\left[u_{1}, u_{k}\right]$ commutes with u_{1} by Condition (b) (i).
(2-n5) This follows similar as in (2-n4).
(7.1.2) Definition. Let $H=\left(c_{0}, \ldots, c_{k}\right)$ be a gallery in $\Sigma(W, S)$.
(a) H is said to be of type $(n, r) \in \mathbb{N}^{\star} \times S$, if $S=\{r, s, t\}$ and the gallery H is of type $\left(u, r, r_{\{s, t\}}, \ldots, r, r_{\{s, t\}}, v\right)$ for some $u, v \in\left\{1_{W}, s, t\right\}$, where $r_{\{s, t\}}$ appears n times in the type of H. We note that $\left(1_{W}, c_{0}^{-1} c_{1}, \ldots, c_{0}^{-1} c_{k}\right)$ is a minimal gallery by Lemma (5.1.2) and [2, Lemma 2.15] and so is H.
(b) Let H be of type $(n, r) \in \mathbb{N}^{\star} \times S$ and let $\alpha, \beta \in \Phi$. We say that H is between α and β, if $c_{0} \in \alpha, c_{k-1} \in \beta$ and $\left\{c_{0}, c_{1}\right\} \in \partial \alpha,\left\{c_{k-1}, c_{k}\right\} \in \partial \beta$. In this case we let for each $1 \leq i \leq n$ the roots $\omega_{i} \neq \omega_{i}^{\prime} \in \Phi$ be the two roots with $\left\{c_{k_{i}+1}, c_{k_{i}+2}\right\} \in \partial \omega_{i}, c_{k_{i}+1} \in \omega_{i}$ and $\left\{c_{k_{i}+2}, c_{k_{i}+3}\right\} \in \partial \omega_{i}^{\prime}, c_{k_{i}+2} \in \omega_{i}^{\prime}$, where $k_{i}=\ell\left(\operatorname{ur}\left(r_{\{s, t\}} r\right)^{i-1}\right)$. Note that if R_{i} is the $\{s, t\}$-reside containing $c_{k_{i}}$, then $c_{k_{i}}=\operatorname{proj}_{R_{i}} c_{0}$. Using Lemma (5.1.4), we deduce $\alpha \subsetneq \omega_{1}, \omega_{1}^{\prime} \subsetneq \cdots \subsetneq \omega_{n}, \omega_{n}^{\prime} \subsetneq \beta$. We should remark that if $\alpha, \beta \in \Phi_{+}$, then not all of the
roots crossed by H are necessarily positive roots. But the roots $\omega_{i}, \omega_{i}^{\prime}$ are. Consider for example the case $c_{0}=t r t$ and H is of type $\left(r, r_{\{s, t\}}, r, \ldots, r_{\{s, t\}}, r\right)$.

In the next definition we will define subsets $M(n, r, L)_{\alpha, \beta}^{G} \subseteq(\alpha, \beta)$, where $3 \leq n \in \mathbb{N}, r \in S$ and $L \subseteq\{2, \ldots, n-1\}$. To have an intuition in mind, we will describe these symbols here: n and r mean that there exists a minimal gallery of type (n, r) between α and β. The subset L indicates, which of the $\omega_{i}, \omega_{i}^{\prime}$ are contained in the set $M(n, r, L)_{\alpha, \beta}^{G}$.
(7.1.3) Definition. (a) Let $S=\{r, s, t\}$, let $3 \leq n \in \mathbb{N}$ and let $L \subseteq\{2, \ldots, n-1\}$. Let $G \in$ Min and suppose $\alpha, \beta \in \Phi(G)$ with $\alpha \leq_{G} \beta$. If $o\left(r_{\alpha} r_{\beta}\right)<\infty$, then we define

$$
M(n, r, L)_{\alpha, \beta}^{G}:= \begin{cases}(\alpha, \beta) & \text { if }|(\alpha, \beta)|=2 \\ \emptyset & \text { else }\end{cases}
$$

Now we consider the case $o\left(r_{\alpha} r_{\beta}\right)=\infty$. Suppose that there exists a minimal gallery $H=\left(c_{0}, \ldots, c_{k}\right)$ of type (n, r) between α and β. Let $\omega_{i} \neq \omega_{i}^{\prime}$ be as in Definition (7.1.2) (b). As $\alpha, \beta \in \Phi(G)$ and $\alpha \subseteq \omega_{i}, \omega_{i}^{\prime} \subseteq \beta$, we also have $\omega_{i}, \omega_{i}^{\prime} \in \Phi(G)$ and we define

$$
M(n, r, L)_{\alpha, \beta}^{G}:=\left\{\omega_{i}, \omega_{i}^{\prime} \mid i \in L\right\}
$$

Note that $\omega_{i}, \omega_{i}^{\prime} \subsetneq \omega_{i+1}, \omega_{i+1}^{\prime}$ and hence $\omega_{i}, \omega_{i}^{\prime} \leq_{G} \omega_{i+1}, \omega_{i+1}^{\prime}$, but the order on $\left\{\omega_{i}, \omega_{i}^{\prime}\right\}$ depends on G. For all other prenilpotent pairs of positive roots we put $M(n, r, L)_{\alpha, \beta}^{G}:=$ \emptyset.
(b) Let $\emptyset \neq K \subseteq \mathbb{N}_{\geq 3}$, let $\mathcal{J}=\left(J_{k}\right)_{k \in K}$ be a family of subsets $\emptyset \neq J_{k} \subseteq S$ and let $\mathcal{L}=\left(L_{k}^{j}\right)_{k \in K, j \in J_{k}}$ be a family of subsets $L_{k}^{j} \subseteq\{2, \ldots, k-1\}$. Let $G \in$ Min and suppose $\alpha, \beta \in \Phi(G)$ with $\alpha \leq_{G} \beta$. Then we define

$$
M(K, \mathcal{J}, \mathcal{L})_{\alpha, \beta}^{G}:=\bigcup_{k \in K, j \in J_{k}} M\left(k, j, L_{k}^{j}\right)_{\alpha, \beta}^{G}
$$

Moreover, we let $\mathcal{M}(K, \mathcal{J}, \mathcal{L}):=\left(M(K, \mathcal{J}, \mathcal{L})_{\alpha, \beta}^{G}\right)_{(G, \alpha, \beta) \in \mathcal{I}}$.
(7.1.4) Remark. In Definition (7.1.3) we have defined the sets $M(n, r, L)_{\alpha, \beta}^{G}$. Note that this set does actually not depend on G : in the case $o\left(r_{\alpha} r_{\beta}\right)<\infty$, the subset $M(n, r, L)_{\alpha, \beta}^{G}$ depends only on $|(\alpha, \beta)|$; in the case $o\left(r_{\alpha} r_{\beta}\right)=\infty$, the subset $M(n, r, L)_{\alpha, \beta}^{G}$ depends only on the existence of a suitable minimal gallery which crosses $\partial \alpha$ and $\partial \beta$.
(7.1.5) Lemma. Let $\alpha, \beta \in \Phi_{+}$be two roots, let $n \in \mathbb{N}_{\geq 2}$ and $S=\{r, s, t\}$. Suppose that there exists a minimal gallery $H=\left(c_{0}, \ldots, c_{k}\right)$ of type (n, r) between α and β. Then the following hold:
(a) We can extend $\left(c_{6}, \ldots, c_{k}\right)$ to a minimal gallery contained in Min.
(b) We have $R_{\{s, t\}}\left(c_{7}\right) \in \bigcup_{i \in \mathbb{N}} \mathcal{T}_{i, 1}$.
(c) Let $R \in \partial^{2} \alpha$ be a residue such that α is a non-simple root of R. If $\left\{c_{0}, c_{1}\right\} \nsubseteq R$, then there exists a simple root of R, say $\gamma \in \Phi_{+}$, such that $-\gamma \subseteq \beta$.

Proof. We prove (a) and (b) simultaneously. We define $T:=R_{\{s, t\}}\left(c_{7}\right)$ and $j:=\ell\left(\operatorname{proj}_{T} 1_{W}\right)$. Recall that the type of H is given by $\left(u, r, r_{\{s, t\}}, \ldots, r, r_{\{s, t\}}, r, v\right)$, where $u, v \in\left\{1_{W}, s, t\right\}$ and $r_{\{s, t\}}$ appears n times. Suppose $u=1_{W}$. Then $\ell\left(c_{0} r\right)=\ell\left(c_{0}\right)+1$. If $\ell\left(c_{0} r s\right)=\ell\left(c_{0} r\right)+1=$
$\ell\left(c_{0} r t\right)$, we can extend H to a gallery contained in Min. Moreover, Lemma (5.1.2) implies $T \in \mathcal{T}_{j, 1}$. If $\ell\left(c_{0} r s\right)=\ell\left(c_{0}\right)$, we deduce from Lemma (5.1.2) that $\ell\left(c_{0} r s t\right)=\ell\left(c_{0}\right)+1$. Hence we can extend $\left(c_{5}, \ldots, c_{k}\right)$ to a gallery contained in Min. Moreover, Lemma (5.1.2) implies $T \in \mathcal{T}_{j, 1}$. The same holds if $\ell\left(c_{0} r t\right)=\ell\left(c_{0}\right)$. Now we suppose $u=s$ (the case $u=t$ is symmetric). Again we note that $\ell\left(c_{0} s\right)=\ell\left(c_{0}\right)+1$. If $\ell\left(c_{0} s r\right)=\ell\left(c_{0}\right)$, Lemma (5.1.2) yields $\ell\left(c_{0} s r t\right)=\ell\left(c_{0}\right)+1$. Thus we can extend $\left(c_{6}, \ldots, c_{k}\right)$ to a gallery contained in Min. Moreover, Lemma (5.1.2) implies $T \in \mathcal{T}_{j, 1}$. Suppose that $\ell\left(c_{0} s r\right)=\ell\left(c_{0}\right)+2$. Note that Lemma (5.1.2) implies that $\ell\left(c_{0} s r t\right)=\ell\left(c_{0}\right)+3$. If s increases the length of $c_{0} s r$, then we can extend H to a gallery contained in Min. Moreover, Lemma (5.1.2) implies $T \in \mathcal{T}_{j, 1}$. Otherwise, Lemma (5.1.2) again implies $\ell\left(c_{0} s r s t\right)=\ell\left(c_{0}\right)+2$ and we can extend $\left(c_{6}, \ldots, c_{k}\right)$ to a gallery contained in Min. Moreover, Lemma (5.1.2) implies $T \in \mathcal{T}_{j, 1}$. In any case we can extend (c_{6}, \ldots, c_{k}) to a gallery $\Gamma \in$ Min and we have $T \in \mathcal{T}_{j, 1}$. This proves the Assertions (a) and (b).

To prove Assertion (c), we suppose $\left\{c_{0}, c_{1}\right\} \nsubseteq R$. As $P_{\alpha} \subseteq R$, we have $P_{\alpha} \neq\left\{c_{0}, c_{1}\right\}$. Let $P_{0}=P_{\alpha}, \ldots, P_{n}=\left\{c_{0}, c_{1}\right\}$ and R_{1}, \ldots, R_{n} be as in Lemma (1.4.2). For every $1 \leq i \leq n$ we define $w_{i}:=\operatorname{proj}_{R_{i}} 1_{W}$, we let $\{x, y\}$ be the type of R_{n}, we let $\{x\}$ be the type of $\left\{c_{0}, c_{1}\right\}$ and we let $S=\{x, y, z\}$. We note the following:
(i) $\operatorname{proj}_{R_{n}} 1_{W}=\operatorname{proj}_{P_{n-1}} 1_{W}$: Depending on H one of the following roots is contained in β by Lemma (5.1.4) α_{K}, where $K=\left(w_{n}, \ldots, w\right)$ is of type $(x, y, z, x),(x, y, x, z, y)$ or (x, y, x, y, z). Note that if K is of type (x, y), then it is contained in the three previous roots by Lemma (5.1.4).
(ii) $\operatorname{proj}_{R_{n}} 1_{W} \neq \operatorname{proj}_{P_{n-1}} 1_{W}$: Depending on H one of the following roots is contained in β by Lemma (5.1.4) α_{K}, where $K=\left(w_{n}, \ldots, w\right)$ is of type $(x, y, x, y, z),(x, y, x, z)$ or (y, x, y, z, x). Note that if K is of type (x, y), then is is contained in the previous three roots by Lemma (5.1.4)

Thus it suffices to show that there exists a simple root γ of R such that $-\gamma \subseteq \alpha_{K}$, where $K=\left(w_{n}, \ldots, w\right)$ is of type (x, y). We distinguish the following cases:
(a) $R=R_{1}$: Then we have $n \geq 2$ (as $\left.P_{n} \nsubseteq R\right)$ and $\operatorname{proj}_{R_{n}} 1_{W}=\operatorname{proj}_{P_{n-1}} 1_{W}$ by Lemma (5.2.2) Let $\gamma \in \Phi_{+}$be the simple root of R which does not contain P_{α}. We first suppose $n=2$. Using Lemma (5.1.4) we deduce that $-\gamma$ is contained in all three roots α_{K} mentioned in (i), Moreover, $-\gamma \subseteq \alpha_{K}$ holds, where $K=\left(w_{2}, \cdots, w\right)$ is of type (y, x). Now we assume $n \geq 3$. Using induction, $-\gamma$ is contained in a non-simple root of R_{n-1}. As such a root is contained in both non-simple roots of R_{n} by Lemma (5.1.4), it follows that $-\gamma \subseteq \alpha_{K}$ holds, where $K=\left(w_{n}, \ldots, w\right)$ is of type (x, y).
(b) $R \neq R_{1}$: Let $\gamma \in \Phi_{+}$be the simple root of R containing P_{α}. We prove by induction on n, that $-\gamma \subseteq \alpha_{K}$, where $K=\left(w_{n}, \ldots, w\right)$ is of type (x, y). We first suppose $n=1$. If $\operatorname{proj}_{R_{1}} 1_{W} \neq \operatorname{proj}_{P_{0}} 1_{W}$, then $-\gamma$ is contained in α_{K}, where $K=\left(w_{1}, \ldots, w\right)$ is of type (x, y), by Lemma (5.1.4) Thus we can assume that $\operatorname{proj}_{R_{1}} 1_{W}=\operatorname{proj}_{P_{0}} 1_{W}$. We see again, that $-\gamma \subseteq \alpha_{K}$ holds, where $K=\left(w_{1}, \ldots, w\right)$ is of type (x, y). Now we suppose $n>1$. Using induction, $-\gamma$ is contained in a non-simple root of R_{n-1}. As such a root is contained both non-simple roots of R_{n} by Lemma (5.1.4), it follows that $-\gamma \subseteq \alpha_{K}$ holds, where $K=\left(w_{n}, \ldots, w\right)$ is of type (x, y).
(7.1.6) Lemma. Let $\emptyset \neq K \subseteq \mathbb{N}_{\geq 3}$, let $\mathcal{J}=\left(J_{k}\right)_{k \in K}$ be a family of subsets $\emptyset \neq J_{k} \subseteq S$ and let $\mathcal{L}=\left(L_{k}^{j}\right)_{k \in K, j \in J_{k}}$ be a family of subsets $L_{k}^{j} \subseteq\{2, \ldots, k-1\}$. Then $\mathcal{M}(K, \mathcal{J}, \mathcal{L})$ is a Weyl-invariant, 2 -nilpotent pre-commutator blueprint of type $(4,4,4)$.

Proof. We abbreviate $M_{\alpha, \beta}^{G}:=M(K, \mathcal{J}, \mathcal{L})_{\alpha, \beta}^{G}$ for all $(G, \alpha, \beta) \in \mathcal{I}$. By definition, we have $M_{\alpha, \beta}^{G} \subseteq(\alpha, \beta)$. Clearly, (CB1) and (CB2) hold. To show that (PCB) holds, we let $w \in W$ and $G \in \operatorname{Min}(w)$. Then we have a homomorphism $U_{G} \rightarrow U_{w}$. It suffices to show that we have a homomorphism $U_{w} \rightarrow U_{G}$ extending $u_{\alpha} \mapsto u_{\alpha}$. Let $F \in \operatorname{Min}(w)$ and let $\alpha \leq_{F} \beta \in \Phi(F)$. At first we assume $o\left(r_{\alpha} r_{\beta}\right)<\infty$. We distinguish the following two cases:
(i) $\alpha \leq_{G} \beta$: Then we have $M_{\alpha, \beta}^{F}=M_{\alpha, \beta}^{G}$ by definition and we are done.
(ii) $\beta \leq_{G} \alpha$: If $|(\alpha, \beta)|<2$, then $M_{\alpha, \beta}^{F}=\emptyset=M_{\beta, \alpha}^{G}$ and we are done. Thus we assume $(\alpha, \beta)=\{\delta, \gamma\}$ and $\delta \leq_{F} \gamma$. Then $\gamma \leq_{G} \delta$ and we have the following relation in U_{G} :

$$
\left[u_{\alpha}, u_{\beta}\right]=\left[u_{\beta}, u_{\alpha}\right]^{-1}=\left(u_{\gamma} u_{\delta}\right)^{-1}=u_{\delta} u_{\gamma}
$$

Thus we can consider the case $o\left(r_{\alpha} r_{\beta}\right)=\infty$. Then we have $\alpha \leq_{G} \beta$. If there is no gallery H of type (n, r) between α and β with $n \in K$ and $r \in J_{n}$, then $M_{\alpha, \beta}^{F}=\emptyset=M_{\alpha, \beta}^{G}$. Suppose that there exists a gallery H of type (n, r) between α and β for some $n \in K$ and $r \in J_{n}$. Then $M_{\alpha, \beta}^{F}=\left\{\omega_{i}, \omega_{i}^{\prime} \mid i \in L_{n}^{r}\right\}=M_{\alpha, \beta}^{G}$ as sets. Note that $\omega_{i}, \omega_{i}^{\prime} \leq_{G} \omega_{i+1}, \omega_{i+1}^{\prime} \geq{ }_{F} \omega_{i}, \omega_{i}^{\prime}$. As $M_{\omega_{i}, \omega_{i}^{\prime}}^{G}=\emptyset$, we deduce that $\left[u_{\alpha}, u_{\beta}\right]=\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}=\prod_{\gamma \in M_{\alpha, \beta}^{F}} u_{\gamma}$ is a relation in U_{G}. Thus we obtain a homomorphism $U_{w} \rightarrow U_{G}$ and the universal property implies that (PCB) holds. In particular, $\mathcal{M}(K, \mathcal{J}, \mathcal{L})$ is a pre-commutator blueprint of type (4, 4, 4).

Now we show that $\mathcal{M}(K, \mathcal{J}, \mathcal{L})$ is Weyl-invariant. Let $1 \neq w \in W, s \in S, G \in \operatorname{Min}(w)$ and let $\alpha \leq_{G} \beta \in \Phi(G)$. We distinguish the following cases:

- $\ell(s w)=\ell(w)+1$: If $o\left(r_{\alpha} r_{\beta}\right)<\infty$, then $o\left(r_{s \alpha} r_{s \beta}\right)<\infty$ and, as $(s \alpha, s \beta)=\{s \gamma \mid$ $\gamma \in(\alpha, \beta)\}$, we infer $M_{s \alpha, s \beta}^{s G}=s M_{\alpha, \beta}^{G}$. Thus we can assume $o\left(r_{\alpha} r_{\beta}\right)=\infty$. Suppose that there exists a gallery $H=\left(c_{0}, \ldots, c_{k}\right)$ of type (n, r) between α and β for some $n \in K, r \in J_{n}$. Then $\left(s c_{0}, \ldots, s c_{k}\right)$ is a gallery of type (n, r) between the roots $s \alpha, s \beta$. This implies that a gallery of type (n, r) exists between the roots α and β if and only if a gallery of type (n, r) exists between the roots $s \alpha$ and $s \beta$. This finishes the claim.
- $\ell(s w)=\ell(w)-1$ and $G \in \operatorname{Min}_{s}(w)$. Moreover, we assume $\alpha_{s} \neq \alpha \leq_{G} \beta$. Using the same arguments as above, the claim follows.

We will apply Proposition (7.1.1) to show that $\mathcal{M}(K, \mathcal{J}, \mathcal{L})$ is 2-nilpotent. Let $G \in \operatorname{Min}$ and let $\alpha, \beta \in \Phi(G)$ be two roots such that $\alpha \neq \beta, \alpha \leq_{G} \beta$ and $o\left(r_{\alpha} r_{\beta}\right)<\infty$ hold. Without loss of generality we can assume $M_{\alpha, \beta}^{G} \neq \emptyset$. Suppose that $\varepsilon \in \Phi(G)$ is such that $\varepsilon \subsetneq \gamma$ holds for all $\gamma \in M_{\alpha, \beta}^{G}$. If $M_{\varepsilon, \gamma}^{G}=\emptyset$ for all $\gamma \in M_{\alpha, \beta}^{G}$, we are done. Thus we can assume that there exists $\gamma \in M_{\alpha, \beta}^{G}$ with $M_{\varepsilon, \gamma}^{G} \neq \emptyset$. Then there exists a minimal gallery $H=\left(c_{0}, \ldots, c_{k}\right)$ of type (n, r) between the roots ε and γ for some $n \in K$ and $r \in J_{n}$, i.e. the type of H is given by $\left(u, r, r_{\{s, t\}}, r, \ldots, r_{\{s, t\}}, r, v\right)$, where $u, v \in\left\{1_{W}, s, t\right\}$ and $r_{\{s, t\}}$ appears n times. Using Lemma $(7.1 .5)(a)$, we can extend $\left(c_{6}, \ldots, c_{k}\right)$ to a gallery $\Gamma \in \operatorname{Min}$. Let R be the residue of rank 2 containing c_{k-2}, c_{k-1} and c_{k}. Using Lemma (5.1.2) we deduce that $\gamma=\alpha_{\Gamma}$ is a non-simple root of R. We distinguish the following cases:
(a) $v=1$: Then we have $P_{\gamma}=\left\{c_{k-1}, c_{k}\right\}$ and $P_{\gamma} \subseteq R$. Let $R^{\prime} \neq R$ be the other residue of rank 2 containing P_{γ}. If T is a rank 2 residue such that γ is a non-simple root of T, then $T \in\left\{R, R^{\prime}\right\}$ (cf. Lemma (5.2.3). Let Γ_{x} be the gallery Γ extended by an x-adjacent chamber for $x \in\{s, t\}$. Then $(\alpha, \beta) \cap\left\{\alpha_{\Gamma_{s}}, \alpha_{\Gamma_{t}}\right\} \neq \emptyset$ and we have $M_{\alpha, \beta}^{G} \in\left\{\left\{\gamma, \alpha_{\Gamma_{s}}\right\},\left\{\gamma, \alpha_{\Gamma_{t}}\right\}\right\}$. As Γ_{s}, Γ_{t} are galleries of type (n, r) as well, we deduce $M_{\varepsilon, \gamma}^{G}=M_{\varepsilon, \alpha_{\Gamma_{x}}}^{G}$, where $x \in\{s, t\}$ is such that $\alpha_{\Gamma_{x}} \in \Phi(G)$.
(b) $v \neq 1$: Using Lemma (5.1.1) and Lemma (5.1.2) we deduce that R is the only residue such that γ is a non-simple root of R. For $K:=\left(c_{0}, \ldots, c_{k-1}\right)$ the root α_{K} is also a non-simple root of R and K is a gallery of type (n, r). This implies $(\alpha, \beta)=\left\{\gamma, \alpha_{K}\right\}$ and hence $M_{\varepsilon, \gamma}^{G}=M_{\varepsilon, \alpha_{K}}^{G}$.
Now we assume that $\varepsilon \in \Phi(G)$ is such that $\gamma \subsetneq \varepsilon$ holds for all $\gamma \in M_{\alpha, \beta}^{G}$. If $M_{\gamma, \varepsilon}^{G}=\emptyset$ holds for all $\gamma \in M_{\alpha, \beta}^{G}$, we are done. Thus we can assume that there exists $\gamma \in M_{\alpha, \beta}^{G}$ with $M_{\gamma, \varepsilon}^{G} \neq \emptyset$. Then there exists a minimal gallery $H=\left(c_{0}, \ldots, c_{k}\right)$ of type (n, r) between γ and ε for some $n \in K$ and $r \in J_{n}$, i.e. the type of H is given by ($u, r, r_{\{s, t\}}, r, \ldots, r_{\{s, t\}}, r, v$), where $u, v \in\left\{1_{W}, s, t\right\}$ and $r_{\{s, t\}}$ appears n times. Let R be the unique rank 2 residue contained in $\partial^{2} \alpha \cap \partial^{2} \beta$ (cf. Lemma (1.4.6)). Then γ is a non-simple root of R. Note that $\alpha, \beta, \varepsilon \in \Phi(G)$ and hence $\{\alpha, \varepsilon\},\{\beta, \varepsilon\} \in \mathcal{P}$. Then Lemma (7.1.5) (c) yields $\left\{c_{0}, c_{1}\right\} \subseteq R$ and we distinguish the following two cases:
(a) $u=1_{W}$: Assume that $\ell\left(\operatorname{proj}_{R} 1_{W}, c_{0}\right)=1$. Then Lemma (5.1.4) would imply that one of $-\alpha,-\beta$ is contained in one non-simple root of the $\{s, t\}$-residue containing c_{1} (i.e. ω_{1} or ω_{1}^{\prime}) and hence one of $-\alpha,-\beta$ is contained in ε. As this is a contradiction, we deduce $\ell\left(\operatorname{proj}_{R} 1_{W}, c_{0}\right)=2$. Let d be the chamber in R adjacent to both $\operatorname{proj}_{R} 1_{W}$ and c_{0}. Then the gallery $\left(d, c_{0}, \ldots, c_{k}\right)$ is of type (n, r) and we have $M_{\alpha_{K}, \varepsilon}^{G}=M_{\gamma, \varepsilon}^{G}$, where $K=\left(d, c_{0}\right)$ (note that $\alpha_{K} \in(\alpha, \beta)$ and hence $\alpha_{K} \in \Phi(G)$).
(b) $u \neq 1_{W}$: Assume $\ell\left(\operatorname{proj}_{R} 1_{W}, c_{0}\right)=2$. In both cases $\left(c_{2} \in R\right.$ and $c_{2} \notin R$) Lemma (5.1.4) implies that one of $-\alpha,-\beta$ would be contained in $\omega_{2}, \omega_{2}^{\prime}$ and hence in ε, which is a contradiction. Thus $\ell\left(\operatorname{proj}_{R} 1_{W}, c_{0}\right)=1$. Again, if $c_{2} \notin R$, then Lemma (5.1.4) would imply that one of $-\alpha,-\beta$ is contained in $\omega_{1}, \omega_{1}^{\prime}$, which is a contradiction. Note that α_{K} with $K=\left(c_{1}, c_{2}\right)$ is also a non-simple root of R and hence $(\alpha, \beta)=\left\{\gamma, \alpha_{K}\right\}$. As $\left(c_{1}, \ldots, c_{k}\right)$ is gallery of type (n, r) and α_{K} is the first root which is crossed by this gallery, we deduce $M_{\alpha_{K}, \varepsilon}^{G}=M_{\gamma, \varepsilon}^{G}$ and the claim follows.
Thus Condition (a) holds. Now we will show that Condition $(b)(i)$ holds. Let $G \in \operatorname{Min}$ and let $\alpha \neq \beta \in \Phi(G)$ be two roots with $o\left(r_{\alpha} r_{\beta}\right)=\infty$, let $G=\left(d_{0}, \ldots, d_{n}=c_{0}, \ldots, c_{k}=e_{0}, \ldots, e_{m}\right)$ and suppose that $\left\{c_{0}, c_{1}\right\} \in \partial \alpha$ and $\left\{c_{k-1}, c_{k}\right\} \in \partial \beta$. If $M_{\alpha, \beta}^{G}=\emptyset$, we are done. Thus we assume can assume that $M_{\alpha, \beta}^{G} \neq \emptyset$. Then there exists a gallery of type (n, r) between α and β for some $n \in K$ and $r \in J_{n}$. In particular, we have $M_{\alpha, \beta}^{G}=\left\{\omega_{i}, \omega_{i}^{\prime} \mid i \in L_{n}^{r}\right\}$. Note that $\left\{\omega_{i}, \omega_{i}^{\prime}\right\}=M_{\gamma_{i}, \gamma_{i}^{\prime}}^{G}$ for some $\gamma_{i} \leq{ }_{G} \gamma_{i}^{\prime} \in \Phi(G)$ with $\alpha \subseteq \gamma_{i} \leq_{G} \gamma_{i}^{\prime} \subseteq \beta$, as $L_{n}^{r} \subseteq\{2, \ldots, n-1\}$. We show that $u_{\omega_{p}} u_{\omega_{p}^{\prime}} \in Z\left(U_{\left(d_{i}, \ldots, d_{n}=c_{0}, \ldots, c_{k}=e_{0}, \ldots, e_{j}\right)}\right)$ for all $0 \leq i \leq n, 0 \leq j \leq m$ and $u_{\omega_{p}} u_{\omega_{p}^{\prime}} \in Z\left(U_{\left(c_{1}, \ldots, c_{k-1}\right), G}\right)$ for all $p \in L_{n}^{r}$. This will imply that $\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}=\prod_{p \in L_{n}^{r}} u_{\omega_{p}} u_{\omega_{p}^{\prime}}$ is contained in the center and we are done. Note that the order on $\left\{\omega_{p}, \omega_{p}^{\prime}\right\}$ depends on G.

Let $\left(\beta_{1}, \ldots, \beta_{n+k+m}\right)$ be the sequence of roots crossed by G and let $\varepsilon \in \Phi(G)$. Then it suffices to show that $u_{\omega_{p}} u_{\omega_{p}^{\prime}}$ commutes with u_{ε} in

- $U_{\left(c_{1}, \ldots, c_{k-1}\right), G}$, if $\varepsilon=\beta_{n+q}$ for some $1 \leq q \leq n-1$;
- $U_{\left(d_{i}, \ldots, d_{n}=c_{0}, \ldots, c_{k}=e_{0}, \ldots, e_{j}\right)}$, where $(i, j)= \begin{cases}(q, 0) & \text { if } 0 \leq q \leq n, \varepsilon=\beta_{q} \\ (n, n+k+q) & \text { if } 0 \leq q \leq m, \varepsilon=\beta_{n+k+q}\end{cases}$

If $\varepsilon \in\left\{\omega_{p}, \omega_{p}^{\prime}\right\}$, then clearly $u_{\omega_{p}} u_{\omega_{p}^{\prime}}$ commutes with u_{ε} and we can assume $\varepsilon \notin\left\{\omega_{p}, \omega_{p}^{\prime}\right\}$. We distinguish the following cases:
(a) $\left\{\varepsilon, \omega_{p}\right\}$ and $\left\{\varepsilon, \omega_{p}^{\prime}\right\}$ are nested: At first we assume $\varepsilon \subseteq \omega_{p}$. As $o\left(r_{\omega_{p}} r_{\omega_{p}^{\prime}}\right)<\infty$, we deduce $\varepsilon \subseteq \omega_{p}^{\prime}$. Now Condition (a)(i) implies $M_{\varepsilon, \omega_{p}}^{G}=M_{\varepsilon, \omega_{p}^{\prime}}^{G}$ and hence

$$
\left[u_{\varepsilon}, u_{\omega_{p}} u_{\omega_{p}^{\prime}}\right]=\left[u_{\varepsilon}, u_{\omega_{p}^{\prime}}\right]\left[u_{\varepsilon}, u_{\omega_{p}}\right]^{u_{\omega_{p}^{\prime}}^{\prime}}
$$

$$
\begin{aligned}
& =\left(\prod_{\gamma \in M_{\varepsilon, \omega_{p}^{\prime}}^{G}} u_{\gamma}\right)\left(\prod_{\gamma \in M_{\varepsilon, \omega_{p}}^{G}} u_{\gamma}\right)^{u_{\omega_{p}^{\prime}}} \\
& =\left(\prod_{\gamma \in M_{\varepsilon, \omega_{p}^{\prime}}^{G}} u_{\gamma}\right)\left(\prod_{\gamma \in M_{\varepsilon, \omega_{p}^{\prime}}^{G}} u_{\gamma}\right)^{u_{\omega_{p}^{\prime}}} \\
& =\left[u_{\varepsilon}, u_{\omega_{p}^{\prime}}\right]\left[u_{\varepsilon}, u_{\omega_{p}^{\prime}}^{u_{\omega_{p}^{\prime}}}\right. \\
& =\left[u_{\varepsilon}, u_{\omega_{p}^{\prime}}^{2}\right]=1
\end{aligned}
$$

If $\omega_{p} \subseteq \varepsilon$, we infer $\omega_{p}^{\prime} \subseteq \varepsilon$ similarly. Condition $(a)(i i) \operatorname{implies} M_{\omega_{p}, \varepsilon}^{G}=M_{\omega_{p}^{\prime}, \varepsilon}^{G}$ and hence $\left[u_{\omega_{p}} u_{\omega_{p}^{\prime}}, u_{\varepsilon}\right]=\left[u_{\omega_{p}}, u_{\varepsilon}\right]^{u_{\omega_{p}^{\prime}}}\left[u_{\omega_{p}^{\prime}}, u_{\varepsilon}\right]=\left[u_{\omega_{p}^{\prime}}, u_{\varepsilon}\right]^{u_{\omega_{p}^{\prime}}}\left[u_{\omega_{p}^{\prime}}, u_{\varepsilon}\right]=1$.
(b) One of $\left\{\varepsilon, \omega_{p}\right\}$ and $\left\{\varepsilon, \omega_{p}^{\prime}\right\}$ is not nested: As $\left\{\varepsilon, \omega_{p}\right\},\left\{\varepsilon, \omega_{p}^{\prime}\right\} \in \mathcal{P}$, Lemma (1.4.7) and [2, Lemma $8.42(3)$] yield $R \in\left(\partial^{2} \varepsilon \cap \partial^{2} \omega_{p}\right) \cup\left(\partial^{2} \varepsilon \cap \partial^{2} \omega_{p}^{\prime}\right)$. Let T be the residue of rank 2 with $T \in \partial^{2} \omega_{p} \cap \partial^{2} \omega_{p}^{\prime}$. If $T \in \partial^{2} \varepsilon$, then $\varepsilon \in\left\{\gamma_{i}, \gamma_{i}^{\prime}\right\}$ and the claim follows. Thus we can assume $T \notin \partial^{2} \varepsilon$ and hence $T \neq R$. Recall that $\left\{\varepsilon, \gamma_{i}\right\},\left\{\varepsilon, \gamma_{i}^{\prime}\right\} \in \mathcal{P}$, as $\varepsilon, \gamma_{i}, \gamma_{i}^{\prime} \in \Phi(G)$. Without loss of generality we can assume that $R \in \partial^{2} \varepsilon \cap \partial^{2} \omega_{p}$. Using Remark (1.4.4) there exists $Q^{\prime} \in \partial \omega_{p}$ with $Q^{\prime} \subseteq R$. Using Lemma (1.4.2) and the fact that $Q^{\prime}=\operatorname{proj}_{Q^{\prime}} P_{\omega_{p}}=\operatorname{proj}_{Q^{\prime}} \operatorname{proj}_{R} P_{\omega_{p}},\left[18\right.$, Lemma 13] yields that $P_{\omega_{p}}$ and $\operatorname{proj}_{R} P_{\omega_{p}}$ are parallel. Lemma (1.4.2) implies $\operatorname{proj}_{R} P_{\omega_{p}} \in \partial \omega_{p}$. Let $Q \subseteq R$ be opposite to $\operatorname{proj}_{R} P_{\omega_{p}}$ in R and let $P_{0}:=P_{\omega_{p}}, \ldots, P_{n}:=\operatorname{proj}_{R} P_{0}$ and R_{1}, \ldots, R_{n} be as in Lemma (1.4.2) Note that $\operatorname{proj}_{R} P_{\omega_{p}}$ and Q are parallel by [2, Proposition 5.114] and, in particular, $P_{\omega_{p}}$ and Q are parallel. It follows from [18, Lemma 17] that P_{0}, \ldots, P_{n}, Q and R_{1}, \ldots, R_{n}, R is as in Lemma (1.4.2). If $T \neq R_{1}$, Lemma (5.2.4) a) yields a contradiction, as $T \in \mathcal{T}_{j, 1}$ for some j. If $T=R_{1}$, we have $n>1$. If $n>2$, Lemma (5.2.4) (c) yields a contradiction. For $n=2$ Lemma (5.2.4)(c) either yields directly a contradiction, or else yields that $\left(\varepsilon, \omega_{p}\right)=\emptyset=\left(\varepsilon, \omega_{p}^{\prime}\right)$ and hence u_{ε} commutes with $u_{\omega_{p}} u_{\omega_{p}}^{\prime}$ (one can show that even this case does not occur).

We have seen that $u_{\omega_{i}} u_{\omega_{i}^{\prime}} \in Z\left(U_{\left(c_{1}, \ldots, c_{k-1}\right), G}\right)$ for every $i \in L_{n}^{r}$. In particular, $u_{\omega_{i}} u_{\omega_{i}^{\prime}}$ and $u_{\omega_{j}} u_{\omega_{j}^{\prime}}$ do commute for $i, j \in L_{n}^{r}$. We infer the following in $U_{\left(c_{1}, \ldots, c_{k-1}\right), G}$:

$$
\left(\prod_{\gamma \in M_{\alpha, \beta}^{G}} u_{\gamma}\right)^{2}=\left(\prod_{i \in L_{n}^{r}} u_{\omega_{i}} u_{\omega_{i}^{\prime}}\right)^{2}=\prod_{i \in L_{n}^{r}}\left(u_{\omega_{i}} u_{\omega_{i}^{\prime}}\right)^{2}=1
$$

(7.1.7) Theorem. Let $\emptyset \neq K \subseteq \mathbb{N}_{\geq 3}$, let $\mathcal{J}=\left(J_{k}\right)_{k \in K}$ be a family of subsets $\emptyset \neq J_{k} \subseteq S$ and let $\mathcal{L}=\left(L_{k}^{j}\right)_{k \in K, j \in J_{k}}$ be a family of subsets $L_{k}^{j} \subseteq\{2, \ldots, k-1\}$. Then $\mathcal{M}(K, \mathcal{J}, \mathcal{L})$ is an integrable commutator blueprint of type $(4,4,4)$ and the groups U_{w} are of nilpotency class at most 2.

Proof. By Lemma (7.1.6), $\mathcal{M}(K, \mathcal{J}, \mathcal{L})$ is a Weyl-invariant and 2-nilpotent pre-commutator blueprint of type $(4,4,4)$. By Lemma $(4.2 .2), \mathcal{M}(K, \mathcal{J}, \mathcal{L})$ is a commutator blueprint of type $(4,4,4)$ and the groups U_{w} are of nilpotency class at most 2. By Corollary (6.10.6) it is faithful. By Theorem (3.5.1) it suffices to show that $\mathcal{M}(K, \mathcal{J}, \mathcal{K})$ satisfies (CR1) and (CR2).

Let $s \neq t \in S, \beta \in \Phi^{\{s, t\}}, \alpha_{s} \subsetneq \alpha \in \Phi_{+}, w \in W$ with $\ell(s w)=\ell(w)-1$, let $G \in \operatorname{Min}_{s}(w)$ with $\alpha \in \Phi(G)$ and assume $M_{\alpha_{s}, \alpha}^{G} \neq \emptyset$. Then there exists a minimal gallery $H=\left(c_{0}, \ldots, c_{k}\right)$
of type (k, r) between α_{s} and α for some $k \in K$ and $r \in J_{k}$ (note that $r=s$ is possible). Let $\omega_{i}, \omega_{i}^{\prime}$ be the roots as in Definition (7.1.2) (b). We show that either $\beta \subseteq \omega_{2}, \omega_{2}^{\prime}$ or else $-\beta \subseteq \omega_{2}, \omega_{2}^{\prime}$. We distinguish the following cases:
(i) H is of type $\left(s, r_{\{r, t\}}, s, \ldots, r_{\{r, t\}}, s, v\right)$: Using Lemma (5.1.4) we deduce $\alpha_{H_{2}}, \alpha_{H_{5}}, \alpha_{H_{6}} \subseteq$ $\omega_{2}, \omega_{2}^{\prime}$. If $c_{0}=1_{W}$, then $-t \alpha_{s},-\alpha_{t} \subseteq s \alpha_{r} \in\left\{\alpha_{H_{2}}, \alpha_{H_{5}}\right\}$ and hence they are all contained in $\omega_{2}, \omega_{2}^{\prime}$. Moreover, we have $s \alpha_{t} \in\left\{\alpha_{H_{2}}, \alpha_{H_{5}}\right\}$ and hence the claim follows, as $\Phi^{\{s, t\}}=$ $\left\{ \pm \alpha_{s}, \pm \alpha_{t}, \pm s \alpha_{t}, \pm t \alpha_{s}\right\}$. Now we suppose $c_{0} \neq 1_{W}$. Let $P=\left\{1_{W}, s\right\}$ and $Q=\left\{c_{0}, c_{1}\right\}$. Then $P, Q \in \partial \alpha_{s}$. Let $P_{0}=P, \ldots, P_{n}=Q$ and R_{1}, \ldots, R_{n} be two sequences as in Lemma (1.4.2) As proj$R_{1} 1_{W}=1_{W}=\operatorname{proj}_{P_{0}} 1_{W}$, Corollary (1.5.5) implies proj${ }_{R_{n}} 1_{W}=$ $\operatorname{proj}_{P_{n-1}} 1_{W}$. As $1_{W}, c_{0} \in \alpha$ and roots are convex, we deduce $c_{0}=\operatorname{proj}_{P_{n}} 1_{W} \in \alpha$. It follows from Lemma (1.4.2) that P_{n-1} and P_{n} are opposite in R_{n}. Thus there exists $d \in P_{n}$ such that $\operatorname{proj}_{R_{n}} 1_{W}, d$ are opposite in R_{n}. As $\operatorname{proj}_{R_{n}} 1_{W}$ and $c_{0}=\operatorname{proj}_{P_{n}} 1_{W}=$ $\operatorname{proj}_{P_{n}} \operatorname{proj}_{R_{n}} 1_{W}$ are not opposite in R_{n}, we deduce $d=c_{1}$ and hence $\ell\left(c_{1} s\right)=\ell\left(c_{1}\right)-$ $1=\ell\left(c_{1} x\right)$, where $s \neq x \in S$ is such that $\{s, x\}$ is the type of R_{n}. Let $i \in\{3,4\}$ be such that c_{i-1}, c_{i} are contained in an x-panel. Using Lemma (5.1.4) we see that both non-simple roots of $R:=R_{n}=R_{\{s, x\}}\left(c_{1}\right)$ are contained in $\alpha_{H_{i}}$. Applying Lemma (5.1.4) again we deduce that $\alpha_{H_{i}}$ is contained in $\alpha_{H_{6}}$ and this root is already known to be contained in ω_{2} and ω_{2}^{\prime}. Thus the non-simple roots of R are contained in $\omega_{2}, \omega_{2}^{\prime}$. If $n=1$, two things can happen. If R_{1} has type $\{s, t\}$, then we have $-\alpha_{t}=\alpha_{H_{5}}$ and the claim follows. If R_{1} does not have type $\{s, t\}$, then R_{1} has type $\{r, s\}$ and each root in $\left\{-\alpha_{t},-s \alpha_{t},-t \alpha_{s}\right\}$ is contained in a non-simple root of R_{1}. This finishes the claim. If $n>1$ it follows from Lemma (5.1.5) that there exists $\varepsilon \in\{+,-\}$ such that for every root $\delta \in\left\{\varepsilon \alpha_{t}, \varepsilon s \alpha_{t}, \varepsilon t \alpha_{s}\right\}$ there exists a non-simple root γ of R_{n} with $\delta \subseteq \gamma$. As those are contained in $\omega_{2}, \omega_{2}^{\prime}$, the claim follows.
(ii) H is of type $\left(s, x, r_{\{s, y\}}, r, \ldots, r_{\{s, y\}}, r, v\right)$, where $S=\{s, x, y\}$: Using Lemma (5.1.4) we deduce that $\alpha_{H_{2}}, \alpha_{H_{3}}, \alpha_{H_{6}}, \alpha_{H_{7}} \subseteq \omega_{2}, \omega_{2}^{\prime}$. Without loss of generality we assume that c_{2}, c_{3} are contained in an s-panel and c_{5}, c_{6} are contained in a y-panel. At first we suppose $c_{0}=1_{W}$. If $(x, y)=(r, t)$, it follows from Lemma (5.1.4) that $-\alpha_{t} \subseteq \alpha_{H_{6}}$ and $-s \alpha_{t},-t \alpha_{s} \subseteq \alpha_{H_{3}}$. If $(x, y)=(t, r)$, it follows from Lemma (5.1.4) that $-\alpha_{t} \subseteq$ $\alpha_{H_{6}}, s \alpha_{t}=\alpha_{H_{2}}$ and $t \alpha_{s}=\alpha_{H_{3}}$. Thus we can assume $c_{0} \neq 1_{W}$. Let $P=\left\{1_{W}, s\right\}$ and let $Q=\left\{c_{0}, c_{1}\right\}$. As in the previous case we let $P_{0}=P, \ldots, P_{n}=Q$ and R_{1}, \ldots, R_{n} be as in Lemma (1.4.2). Let $q \in S$ be such that $\{s, q\}$ is the type of R_{n}. We distinguish the following cases:
(a) $q \neq x=r$ and $n=1$: Then we have $q=y=t$. We deduce from Lemma (5.1.4) that $\alpha_{t}, t \alpha_{s} \subseteq \alpha_{H_{3}}$ and $s \alpha_{t} \subseteq \alpha_{H_{6}}$.
(b) $q \neq x=t$ and $n=1$: Then we have $q=y=r$. We deduce from Lemma (5.1.4) that every root $\delta \in\left\{-\alpha_{t},-s \alpha_{t},-t \alpha_{s}\right\}$ is contained in $q \alpha_{s}$ and hence in $\alpha_{H_{2}}$.
(c) $q=x=t$ and $n=1$: Then $-\alpha_{t}=\alpha_{H_{2}},-t \alpha_{s}=\alpha_{H_{3}}$ and $s \alpha_{t} \subseteq \alpha_{H_{6}}$ by Lemma (5.1.4) This finishes the claim.
(d) $q=x=r$ and $n=1$: Then $-s \alpha_{t}$ is contained in $\alpha_{H_{6}}$ by applying Lemma (5.1.4) and $-\alpha_{t},-t \alpha_{s}$ are contained in $\alpha_{H_{6}}$ by applying Lemma (5.1.4) twice.
(e) $q \neq x$ and $n=2$: It follows from Lemma (5.1.5) that there exists $\varepsilon \in\{+,-\}$ such that for every root $\delta \in\left\{\varepsilon \alpha_{t}, \varepsilon s \alpha_{t}, \varepsilon t \alpha_{s}\right\}$ there exists a non-simple root γ of R_{n} with $\delta \subseteq \gamma$. As γ is contained in $\alpha_{H_{2}}$, the claim follows.
(f) $q=x=r$ and $n=2$: Then it follows from Lemma (5.1.4) that $\alpha_{t}, s \alpha_{t}$, t α_{s} are contained in $\alpha_{H_{6}}$ and the claim follows.
(g) $q=x=t$ and $n=2$: Using similar arguments as in the case $q \neq x=t$ and $n=1$, we deduce that $-\alpha_{t},-s \alpha_{t},-t \alpha_{s}$ are contained in $\alpha_{H_{6}}$ and the claim follows.
(h) $n>2$: It follows from Lemma (5.1.5) that there exists $\varepsilon \in\{+,-\}$ such that for every root $\delta \in\left\{\varepsilon \alpha_{t}, \varepsilon s \alpha_{t}, \varepsilon t \alpha_{s}\right\}$ there exists a non-simple root γ of R_{n-1} with $\delta \subseteq \gamma$. As γ is contained in both non-simple roots of R_{n} by Lemma (5.1.4), the claim follows.

As $\omega_{2} \subseteq \alpha$, we infer $o\left(r_{\beta} r_{\alpha}\right)=\infty$ and hence (CR2) is satisfied. Moreover, we have $\omega_{2} \subseteq \omega_{i}, \omega_{i}^{\prime}$ for all $3 \leq i \leq k$. Suppose that $\beta \subseteq \alpha$. Then we have shown that either $\beta \subseteq \omega_{2}, \omega_{2}^{\prime}$ or else $-\beta \subseteq \omega_{2}, \omega_{2}^{\prime}$. But the latter one would imply $W=\beta \cup(-\beta) \subseteq \alpha$, which is a contradiction. Thus $\beta \subseteq \omega_{2}, \omega_{2}^{\prime}$ and by the above we have $\beta \subseteq \omega_{2} \subseteq \omega_{i}, \omega_{i}^{\prime}$ for every $3 \leq i \leq k$. In particular, we have $\beta \subseteq \gamma$ for each $\gamma \in M_{\alpha_{s}, \alpha}^{G}$ and (CR1) is satisfied. This finishes the proof.
(7.1.8) Remark. Let $\emptyset \neq K \subseteq \mathbb{N} \geq 3$, let $\mathcal{J}=\left(J_{k}\right)_{k \in K}$ be a family of subsets $\emptyset \neq J_{k} \subseteq S$ and let $\mathcal{L}=\left(L_{k}^{j}\right)_{k \in K, f \in J_{k}}$ be a family with $L_{k}^{j}=\emptyset$ for all $k \in K, j \in J_{k}$. Then we have $M(K, \mathcal{J}, \mathcal{L})_{\alpha, \beta}^{G}=\emptyset$ for all $(G, \alpha, \beta) \in \mathcal{I}$ with $o\left(r_{\alpha} r_{\beta}\right)=\infty$. Hence this is the commutator blueprint associated with the split Kac-Moody group of type $(4,4,4)$ over \mathbb{F}_{2} (cf. Example (5.3.1)).
(7.1.9) Corollary. For each $n \in \mathbb{N}$ there exists an RGD-system $\mathcal{D}_{n}=\left(G_{n},\left(U_{\alpha}^{(n)}\right)_{\alpha \in \Phi}\right)$ of type $(4,4,4)$ over \mathbb{F}_{2} with the following properties:
(i) If $w \in W$ is such that $\ell(w) \leq n$ and if $\alpha, \beta \in \Phi_{+}$are such that $w \in(-\alpha) \cap(-\beta)$ and $\alpha \subseteq \beta$, then $\left[U_{\alpha}^{(n)}, U_{\beta}^{(n)}\right]=1$.
(ii) There exist $\alpha, \beta \in \Phi_{+}$such that $\alpha \subsetneq \beta$ and $\left[U_{\alpha}^{(n)}, U_{\beta}^{(n)}\right] \neq 1$.

Proof. Note that it suffices to show the claim for $n \in \mathbb{N}_{\geq 3}$. We fix $n \in \mathbb{N}_{\geq 3}$. Let $\emptyset \neq J_{n} \subseteq S$ and $L_{n}^{j} \subseteq\{2, \ldots, n-1\}$ for each $j \in J_{n}$. Moreover, we assume that $L_{n}^{j} \neq \emptyset$ for some $j \in J_{n}$. We define $\mathcal{J}=\left(J_{k}\right)_{k \in\{n\}}$ and $\mathcal{L}:=\left(L_{k}^{j}\right)_{k \in\{n\}, j \in J_{k}}$. Then $\mathcal{M}(\{n\}, \mathcal{J}, \mathcal{L})$ is an integrable commutator blueprint by Theorem (7.1.7) Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be its associated RGDsystem. We claim that \mathcal{D} is as required. As $L_{n}^{j} \neq \emptyset$ for some $j \in J_{n}$, it suffices to show that (i) holds. Let $w \in W$ and let $\alpha, \beta \in \Phi_{+}$be such that $w \in(-\alpha) \cap(-\beta)$ and $\alpha \subseteq \beta$. This means that $U_{\alpha}, U_{\beta} \leq U_{w}$. Suppose that $\left[U_{\alpha}, U_{\beta}\right] \neq 1$ and that $r \in J_{n}$. Then there exists a minimal gallery $H=\left(c_{0}, \ldots, c_{k}\right)$ of type (n, r) between α and β. By Lemma (7.1.5) (a) we can extend $\left(c_{6}, \ldots, c_{k}\right)$ to a gallery $E=\left(c_{0}^{\prime}, \ldots, c_{k^{\prime}}^{\prime}\right) \in$ Min. In particular, we have $k^{\prime} \geq k-6$.

Let $\left(e_{0}, \ldots, e_{m}\right) \in \operatorname{Min}(w)$ be a minimal gallery. As $e_{0}=1_{W} \in \beta$ and $e_{m}=w \in(-\beta)$, there exists $0 \leq j \leq m-1$ with $\left\{e_{j}, e_{j+1}\right\} \in \partial \beta$. Using Lemma (5.2.5) there exists a minimal gallery $\left(d_{0}=e_{0}, \ldots, d_{q}=e_{j+1}\right)$ such that $d_{i}=\operatorname{proj}_{R_{\beta,\left\{e_{j}, e_{j+1}\right\}}} 1_{W}$ for some $0 \leq i \leq q-1$. As $\left\{c_{k-1}, c_{k}\right\} \subseteq R_{\beta,\left\{e_{j}, e_{j+1}\right\}}$, we deduce that $\ell\left(d_{i}\right) \geq k^{\prime}-3 \geq(k-6)-3$ and hence $\ell(w) \geq$ $\ell\left(d_{i}\right) \geq k-9$. By definition, we have $k \geq 5 n$. But then $\ell(w) \geq k-9 \geq 5 n-9>n$. Thus \mathcal{D} satisfies (i) and we are done.
(7.1.10) Remark. Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system of type (4,4,4). It is shown in [7. Theorem A] that if every root group contains at least 3 elements, then $\left[U_{\alpha}, U_{\beta}\right]=1$ for all pairs $\{\alpha, \beta\}$ of nested roots. The previous corollary shows that the assumption on the cardinality of the root groups is necessary in order to prove that root groups corresponding to nested roots do commute.

7.2. Extension theorem for twin buildings

The extension problem for twin buildings asks whether a given local isometry can be extended to the whole twin building. For more details we refer to the introduction and to [25].
(7.2.1) Theorem. The extension theorem does not hold for arbitrary thick 2-spherical twin buildings.
Proof. Let $\mathcal{M}, \mathcal{M}^{\prime}$ be two different integrable commutator blueprints as constructed in Theorem (7.1.7) and let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right), \mathcal{D}^{\prime}=\left(G^{\prime},\left(U_{\alpha}^{\prime}\right)_{\alpha \in \Phi}\right)$ be their associated RGD-systems. We let $\Delta=\Delta(\mathcal{D})$ and $\Delta^{\prime}=\Delta\left(\mathcal{D}^{\prime}\right)$ be the corresponding twin buildings and let $\Sigma=\Sigma\left(c_{+}, c_{-}\right)$ and $\Sigma^{\prime}=\Sigma\left(c_{+}^{\prime}, c_{-}^{\prime}\right)$ be the distinguished twin apartments in Δ and Δ^{\prime}. Let $\{\alpha, \beta\} \in \mathcal{P}$ and $H \in$ Min be such that $\alpha, \beta \in \Phi(H), \alpha \leq_{H} \beta$ and $M(\mathcal{D})_{\alpha, \beta}^{H} \neq M\left(\mathcal{D}^{\prime}\right)_{\alpha, \beta}^{H}$.

Every residue R of Δ or of Δ^{\prime} of rank 2 is isomorphic to the generalized quadrangle of order $(2,2)$, i.e. to the building which is associated with the group $C_{2}(2)$. For each $s \in S$ we fix an order on $\mathcal{P}_{s}\left(c_{+}\right)=\left\{c_{0}:=c_{+}, c_{1}, c_{2}\right\}$ and on $\mathcal{P}_{s}\left(c_{+}^{\prime}\right)=\left\{c_{0}^{\prime}:=c_{+}^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}\right\}$. Note that the mapping $\varphi_{s}: \mathcal{P}_{s}\left(c_{+}\right) \rightarrow \mathcal{P}_{s}\left(c_{+}^{\prime}\right), c_{i} \mapsto c_{i}^{\prime}$ is a bijection and hence an isometry. We will show that for all $s \neq t \in S$ there exists an isometry $\varphi_{\{s, t\}}: R_{\{s, t\}}\left(c_{+}\right) \rightarrow R_{\{s, t\}}\left(c_{+}^{\prime}\right)$ with $\left.\varphi_{\{s, t\}}\right|_{\mathcal{P}_{s}\left(c_{+}\right)}=\varphi_{s}$.

Let $s \neq t \in S$ and define $J:=\{s, t\}$. Using the fact that the automorphism group of the generalized quadrangle of order $(2,2)$ acts transitive on the chambers, we obtain an isometry $R_{J}\left(c_{+}\right) \rightarrow R_{J}\left(c_{+}^{\prime}\right)$ mapping c_{+}onto c_{+}^{\prime}. Using the root automorphisms (if necessary), we obtain an isometry $\varphi_{J}: R_{J}\left(c_{+}\right) \rightarrow R_{J}\left(c_{+}^{\prime}\right)$ with $\left.\varphi_{J}\right|_{\mathcal{P}_{s}\left(c_{+}\right)}=\varphi_{s}$. Thus we obtain a bijection $\varphi: E_{2}\left(c_{+}\right) \rightarrow E_{2}\left(c_{+}^{\prime}\right)$ such that for all $s \neq t \in S$ and $x \in R_{\{s, t\}}\left(c_{+}\right)$we have $\varphi(x)=\varphi_{\{s, t\}}(x)$. Note that φ is an isometry by [38, Proposition 4.2.4]. Using [38, Proposition 7.1.6] there exist $d \in c_{+}^{\mathrm{op}}, d^{\prime} \in\left(c_{+}^{\prime}\right)^{\mathrm{op}}$ such that φ extends to an isometry $E_{2}\left(c_{+}\right) \cup\{d\} \rightarrow E_{2}\left(c_{+}^{\prime}\right) \cup\left\{d^{\prime}\right\}$. Assume that the extension theorem would hold for Δ. Then we can extend this isometry to an isometry $\Phi: \Delta \rightarrow \Delta^{\prime}$. Moreover, $\Psi: \operatorname{Aut}(\Delta) \rightarrow \operatorname{Aut}\left(\Delta^{\prime}\right), f \mapsto \Phi \circ f \circ \Phi^{-1}$ is an isomorphism. Let $g \in G$ be such that $g(\Sigma)=A\left(c_{+}, d\right)$ and let $g^{\prime} \in G^{\prime}$ be such that $g^{\prime}\left(\Sigma^{\prime}\right)=A\left(c_{+}^{\prime}, d^{\prime}\right)$. Then the isomorphism $\Psi_{0}: \operatorname{Aut}(\Delta) \rightarrow \operatorname{Aut}\left(\Delta^{\prime}\right), f \mapsto \gamma_{\left(g^{\prime}\right)^{-1}} \circ \Psi \circ \gamma_{g}$ maps U_{α} onto U_{α}^{\prime} for every $\alpha \in \Phi$. We deduce

$$
\prod_{\gamma \in M(\mathcal{D})_{\alpha, \beta}^{H}} u_{\gamma}^{\prime}=\Psi_{0}\left(\prod_{\gamma \in M(\mathcal{D})_{\alpha, \beta}^{H}} u_{\gamma}\right)=\Psi_{0}\left(\left[u_{\alpha}, u_{\beta}\right]\right)=\left[u_{\alpha}^{\prime}, u_{\beta}^{\prime}\right]=\prod_{\gamma \in M\left(\mathcal{D}^{\prime}\right)_{\alpha, \beta}^{H}} u_{\gamma}^{\prime}
$$

As $M(\mathcal{D})_{\alpha, \beta}^{H} \neq M\left(\mathcal{D}^{\prime}\right)_{\alpha, \beta}^{H},[2$, Corollary $8.34(1)]$ yields a contradiction. Thus, such an isometry can not exist and the extension theorem does not hold for these two twin buildings.

7.3. Finiteness properties

Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system of irreducible 2-spherical type (W, S) and of rank at least 2. The Steinberg group associated with \mathcal{D} is the group \widehat{G} which is the direct limit of the inductive system formed by the groups U_{α} and $U_{[\alpha, \beta]}:=\left\langle U_{\gamma} \mid \gamma \in[\alpha, \beta]\right\rangle$ for all prenilpotent pairs $\{\alpha, \beta\} \subseteq \Phi$. For each $\alpha \in \Phi$ we denote the canonical image of U_{α} in \widehat{G} by \widehat{U}_{α}. It follows from [11, Theorem 3.10] that $\widehat{D}=\left(\widehat{G},\left(\widehat{U}_{\alpha}\right)_{\alpha \in \Phi}\right)$ is an RGD-system and the kernel of $\widehat{G} \rightarrow G$ is contained in the center of \widehat{G}.
(7.3.1) Lemma. Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system of irreducible 2-spherical type and rank at least 2 over \mathbb{F}_{2} such that G is generated by the root groups. Then $\bigcap_{\alpha \in \Phi} N_{G}\left(U_{\alpha}\right)=1$. In particular, the homomorphism $\widehat{G} \rightarrow G$ from the Steinberg group associated with \mathcal{D} to G is an isomorphism.

Proof. As \mathcal{D} is an RGD-system such that G is generated by the root groups it follows from [2, Corollary 8.79 and remark thereafter] that $\bigcap_{\alpha \in \Phi} N_{G}\left(U_{\alpha}\right)=\left\langle m(u)^{-1} m(v)\right| u, v \in$ $\left.U_{\alpha_{s}} \backslash\{1\}, s \in S\right\rangle$. As \mathcal{D} is over \mathbb{F}_{2}, we have $U_{\alpha_{s}} \backslash\{1\}=\left\{u_{s}\right\}$. Moreover, $m\left(u_{s}\right)=u_{-s} u_{s} u_{-s}$, where $U_{-\alpha_{s}} \backslash\{1\}=\left\{u_{-s}\right\}$. This implies $m\left(u_{s}\right)^{-1} m\left(u_{s}\right)=\left(u_{-s} u_{s} u_{-s}\right)^{-1} u_{-s} u_{s} u_{-s}=1$ and hence $\bigcap_{\alpha \in \Phi} N_{G}\left(U_{\alpha}\right)=1$. As $Z(G) \leq \bigcap_{\alpha \in \Phi} N_{G}\left(U_{\alpha}\right)=1$, the claim follows.
(7.3.2) Lemma. Let $G=\langle X \mid R\rangle$ be a finitely presented group with $|X|<\infty$. Then there exists a finite subset $F \subseteq R$ with $G=\langle X \mid F\rangle$.
Proof. Since G is finitely presented, there exist finite sets Y, E such that $G=\langle Y \mid E\rangle$. Since $G=\langle Y\rangle$, we have $x=\prod y_{i}$ in G for each $x \in X$. Thus $G=\left\langle X \cup Y \mid E^{\prime}\right\rangle$, where $E^{\prime}=E \cup\left\{x=\prod y_{i} \mid x \in X\right\}$ and $X \cup Y$ is finite. Since $G=\langle X\rangle$, we have $y=\prod x_{j}$ and $G=\left\langle X \cup Y \mid E^{\prime \prime}\right\rangle$, where $E^{\prime \prime}=E^{\prime} \cup\left\{y=\prod x_{j} \mid y \in Y\right\}$. Then we can replace in every relation y by the corresponding product $\prod x_{j}$ (if $y=\prod x_{j}$) and we can remove the generators $y \in Y$ together with the relations $y=\prod x_{j}$. We denote this set of relations by $E^{\prime \prime \prime}$ and we have $G=\left\langle X \mid E^{\prime \prime \prime}\right\rangle$. Note that $E^{\prime \prime \prime}$ is finite.

Now for each $e \in E^{\prime \prime \prime}$ there exists a finite subset $F_{e} \subseteq R$ such that $e \in\left\langle\left\langle F_{e}\right\rangle\right\rangle$. For $F:=\bigcup_{e \in E^{\prime \prime \prime}} F_{e} \subseteq R$ we have $E^{\prime \prime \prime} \subseteq\left\langle\left\langle F_{e} \mid e \in E^{\prime \prime \prime}\right\rangle\right\rangle$. Clearly, we have the following epimorphisms:

$$
\langle X \mid R\rangle \stackrel{\cong}{\leftrightarrows}\left\langle X \mid E^{\prime \prime \prime}\right\rangle \rightarrow\langle X \mid F\rangle \rightarrow\langle X \mid R\rangle
$$

Since the concatenation maps each $x \in X$ to itself, all epimorphisms must be isomorphisms and the claim follows.
(7.3.3) Theorem. The split Kac-Moody group over \mathbb{F}_{2} of type $(4,4,4)$ is not finitely presented.

Proof. Let \mathcal{G} be the split Kac-Moody group of type $(4,4,4)$ over \mathbb{F}_{2}. Using Lemma (7.3.1), we deduce that $\mathcal{G}=\langle X \mid R\rangle$, where $X=\left\{u_{\alpha} \mid \alpha \in \Phi\right\}$ and $R=\left\{\left\{u_{\alpha}^{2} \mid \alpha \in \Phi\right\} \cup\left\{\left[u_{\alpha}, u_{\beta}\right] v \mid\right.\right.$ $\{\alpha, \beta\}$ prenilpotent pair, $\left.\left.v \in U_{(\alpha, \beta)}\right\}\right\}$. We apply Tietze-transformations to slightly modify the given presentation. We add τ_{s} to the set of generators and $\tau_{s}=u_{-\alpha_{s}} u_{\alpha_{s}} u_{-\alpha_{s}}$ to the set of relations. Note that $\mathcal{G}=\left\langle u_{\alpha_{s}}, \tau_{s} \mid s \in S\right\rangle$. Since $\tau_{s}^{2}=1$ in \mathcal{G}, we add this relation to the set of relations. For $\alpha \in \Phi$ there exist $w \in W, s \in S$ with $\alpha=w \alpha_{s}$. For $w \in W$ there exist $s_{1}, \ldots, s_{k} \in S$ with $w=s_{1} \cdots s_{k}$. Note that $u_{\alpha}=u_{\alpha_{s}}^{\tau_{k} \cdots \tau_{1}}$ is a relation in \mathcal{G}, where $\tau_{i}=\tau_{s_{i}}$. Thus we can add these relations to the set of relations. We modify the relations further and delete all commutator relations $\left[u_{\alpha}, u_{\beta}\right]=v$, where $\{\alpha, \beta\} \notin \mathcal{P}$ (for every prenilpotent pair $\{\alpha, \beta\}$ there exists $w \in W$ such that $\{w \alpha, w \beta\} \in \mathcal{P})$. This is possible because the commutator relations are Weyl-invariant. We replace in each relation every u_{α} by the corresponding element $u_{\alpha_{s}}^{\tau_{k} \cdots \tau_{1}}$. Now we delete all generators u_{α} with $\alpha \in \Phi \backslash\left\{\alpha_{s} \mid s \in S\right\}$ and the corresponding relations $u_{\alpha}=u_{\alpha_{s}}^{\tau_{k} \cdots \tau_{1}}$. We note that we have the same relations as before plus the relations $\tau_{s}=u_{\alpha_{s}}^{\tau_{s}} u_{\alpha_{s}} u_{\alpha_{s}}^{\tau_{s}}$ and $\tau_{s}^{2}=1$. But the former relation is equivalent to the relation $\left(u_{\alpha_{s}} \tau_{s}\right)^{3}=1$.

Now we assume that \mathcal{G} is finitely presented. Then, by the previous lemma, there exists a finite set F of the set of relations such that $\mathcal{G}=\left\langle\left\{u_{\alpha_{s}}, \tau_{s} \mid s \in S\right\} \mid F\right\rangle$. Now we let $k:=\max \left\{k_{\alpha} \mid u_{\alpha}\right.$ appears in some $\left.f \in F\right\}\left(u_{\alpha}\right.$ seen as conjugate of $u_{\alpha_{s}}$ by a product of $\tau_{s_{i}}$ for suitable $\left.s, s_{i} \in S\right)$. We consider the RGD-systems $\mathcal{D}_{k}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ obtained from Corollary (7.1.9). Then $\left[U_{\alpha}, U_{\beta}\right]=1$, where $\alpha \subseteq \beta$ are such that there exists $w \in W$ of length $\leq k$ with $w \in(-\alpha) \cap(-\beta)$ and $\left[U_{\delta}, U_{\gamma}\right] \neq 1$ for some $\delta \subsetneq \gamma \in \Phi_{+}$. It is not hard to see that we obtain a homomorphism $\varphi: \mathcal{G} \rightarrow \mathcal{D}_{k}$ from the finite presentation to \mathcal{D}_{k} such that $u_{\alpha_{s}} \mapsto u_{\alpha_{s}}, \tau_{s} \mapsto \tau_{s}$ (note that for $\alpha \subsetneq \beta$ we have $\left[U_{\alpha}, U_{\beta}\right]=1$ in \mathcal{G} by Example (5.3.1)). The commutator relations of \mathcal{G} and \mathcal{D}_{k} yields us $1=\varphi(1)=\varphi\left(\left[U_{\delta}, U_{\gamma}\right]\right)=\left[\varphi\left(U_{\delta}\right), \varphi\left(U_{\gamma}\right)\right]=\left[U_{\delta}, U_{\gamma}\right] \neq 1$. This yields a contradiction and hence the Kac-Moody group is not finitely presented.
(7.3.4) Theorem. Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system of type $(4,4,4)$ over \mathbb{F}_{2}. Then the group U_{+}is not finitely generated.

Proof. The group U_{+}is isomorphic to the direct limit of its subgroups U_{w} for all $w \in W$ by [2, Theorem 8.85]. We have shown in Lemma (6.9.4) that U_{+}is isomorphic to the direct limit G of the inductive system formed by the groups G_{i}. By definition the following diagram commutes:

Moreover, the homomorphisms $G_{i} \rightarrow G_{i+1}$ are injective by Proposition (6.9.20) and Theorem (6.10.5), and hence the homomorphisms $G_{i} \rightarrow G$ are injective by [30, 1.4.9(iii)]. By construction, the canonical homomorphism $G_{i} \rightarrow G_{i+1}$ is not surjective and hence $G_{i} \rightarrow G$ are not surjective as well. Assume that U_{+}is finitely generated, i.e. $U_{+}=\left\langle g_{1}, \ldots, g_{n}\right\rangle$. Since $U_{+}=\left\langle u_{\alpha} \mid \alpha \in \Phi_{+}\right\rangle$, there exists $i \in \mathbb{N}$ such that $U_{+}=\left\langle U_{w} \mid w \in C_{i}\right\rangle$. This implies that G is also finitely generated and we have $G=\left\langle U_{w} \mid w \in C_{i}\right\rangle=G_{i}$, i.e. the canonical homomorphism $G_{i} \rightarrow G$ is surjective. This is a contradiction and hence U_{+}is not finitely generated.

7.4. Locally compact groups

Haar measure and modular function

Let G be a locally compact group. Then there exists a (left) Haar measure μ on G. For every measurable $U \subseteq G$ and $g \in G$ we have $\mu(g U)=\mu(U)$ and $\mu(U g)=\mu(U) \Delta(g)$, where $\Delta: G \rightarrow \mathbb{R}^{\star}$ is the modular function of G. The group G is called unimodular, if $\Delta \equiv 1$. For details we refer to [17, Chapter 9].

Lattices

Let G be a locally compact group which is unimodular, and let X be a left G-set such that the stabilisers G_{x} are compact and open for each $x \in X$ and such that $G \backslash X$ is finite. Then a subgroup $\Gamma \leq G$ is called a lattice, if it is discrete and if

$$
\operatorname{Vol}(\Gamma \backslash \backslash X):=\sum_{x \in \Gamma \backslash X} \frac{1}{\left|\Gamma_{x}\right|}<\infty
$$

We note that as Γ is discrete, the stabilisers Γ_{x} are compact and discrete and hence finite. In the literature this is not the definition of a general lattice in a locally compact group. But using [4, Ch. 1] and, in particular, [4, Corollary 1.6], it follows that a discrete subgroup of the group G is a lattice in the general sense if and only if it is a lattice in our sense.

Permutation topology

Let $\Delta=(\mathcal{C}, \delta)$ be a building of type (W, S). Then we endow the automorphism group $\operatorname{Aut}(\Delta)$ of Δ with the permutation topology (i.e. fixators of finitely many chambers form a basis of neighbourhoods of the identity). It is well-known that $\operatorname{Aut}(\Delta)$ is locally compact and totally disconnected, if Δ is locally finite. For details we refer to [39, Theorem 1.24] or [40]. In particular, stabilizers of chambers are compact open subgroups. Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$
be an RGD-system of type (W, S) such that every root group is finite, and let $\Delta(\mathcal{D})=$ $\left(\Delta(\mathcal{D})_{+}, \Delta(\mathcal{D})_{-}, \delta_{*}\right)$ be its associated twin building. Then for $\varepsilon \in\{+,-\}$ the building $\Delta(\mathcal{D})_{\varepsilon}$ is locally finite and $\operatorname{Aut}\left(\Delta_{\varepsilon}\right)$ is a totally disconnected locally compact group. If $G \leq \operatorname{Aut}\left(\Delta_{\varepsilon}\right)$, then we call $\bar{G} \leq \operatorname{Aut}\left(\Delta_{\varepsilon}\right)$ the geometric completion of G in $\operatorname{Aut}\left(\Delta_{\varepsilon}\right)$. Moreover, any closed subgroup $K \leq \operatorname{Aut}\left(\Delta_{\varepsilon}\right)$ containing G is unimodular (cf. [5, Corollary 5]).

(Twin building) lattices and property (T)

(7.4.1) Definition. Let $\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system of type (W, S) such that all root groups are finite and (W, S) is not spherical. Let $W(t)=\sum_{i=0}^{\infty} c_{i} t^{i}$ be the growth series of W (i.e. $\left.c_{i}=|\{w \in W \mid \ell(w)=i\}|\right)$ and let $q_{\min }=\min \left\{\left|U_{\alpha}\right| \mid \alpha \in \Phi\right\}$. If $W\left(1 / q_{\min }\right)<\infty$ and $Z_{G}\left(\left\langle U_{\alpha} \mid \alpha \in \Phi\right\rangle\right)$ is finite, then G is called a twin building lattice. For more details about twin building lattices we refer to [16].
(7.4.2) Remark. Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system of type (W, S) such that G is generated by the root groups, all root groups are finite, W is infinite and $Z(G)$ is finite. By [15, Theorem 6.8] the condition $|S|<q_{\text {min }}$ implies that \mathcal{D} is a twin building lattice. We will show that if \mathcal{D} is of type $(4,4,4)$ then \mathcal{D} is a twin building lattice. In particular, we enlarge the result to RGD-systems of type $(4,4,4)$ with $q_{\text {min }} \in\{2,3\}$. We note that the arguments in [15, Theorem 6.8] can be enlarged to the case $|S|=q_{\text {min }}$.
(7.4.3) Proposition. Let (W, S) be of type $(4,4,4)$. For $2 \leq q \in \mathbb{N}$ we have $W(1 / q)<\infty$.

Proof. We will apply the quotient criterion in order to show the claim. For this we need a few (in-)equalities. For $i \in \mathbb{N}$ we put $C_{i}:=\{w \in W \mid \ell(w)=i\}, D_{i}:=\left\{w \in C_{i} \mid \exists s \neq t \in S\right.$: $\ell(w s)=\ell(w)+1=\ell(w t)\}$ and $d_{i}:=\left|D_{i}\right|$. For $i \geq 5$ we establish the following (in-) equalities:

Claim 1: $c_{i}-d_{i}=d_{i-4}$: Let $w \in C_{i} \backslash D_{i}$. Then there exist $s \neq t \in S$ such that $\ell(w s)=$ $\ell(w)-1=\ell(w t)$. This implies that the mapping $C_{i} \backslash D_{i} \ni w \mapsto \operatorname{proj}_{R} 1_{W} \in D_{i-4}$ is a bijection, where $R=R_{\{s, t\}}(w)$. Here we use the fact that $\operatorname{proj}_{R} 1_{W} \neq 1_{W}$ and hence that there exist unique $s \neq t \in S$ with $\ell\left(\left(\operatorname{proj}_{R} 1_{W}\right) s\right)=\ell\left(\operatorname{proj}_{R} 1_{W}\right)+1=$ $\ell\left(\left(\operatorname{proj}_{R} 1_{W}\right) t\right)$.

Claim 2: $d_{i} \leq d_{i+1}$: Let $w \in D_{i}$. Then there exist $s \neq t \in S$ with $\ell(w s)=\ell(w)+1=\ell(w t)$. Lemma (5.1.1) implies $\{w s, w t\} \cap D_{i+1} \neq \emptyset$. Let $w, w^{\prime} \in D_{i}$ and let $s, t \in S$ with $w s=w^{\prime} t \in D_{i+1}$. If $s \neq t$, then there would be only one $r \in S$ with $\ell(w s r)=\ell(w s)+1$, which is a contradiction. Thus $s=t$ and hence $w=w^{\prime}$. This finishes the claim.

Claim 3: $\frac{1}{2} \leq \frac{d_{i}}{c_{i}} \leq 1$: As $D_{i} \subseteq C_{i}$, it follows directly that $d_{i} \leq c_{i}$ and hence $\frac{d_{i}}{c_{i}} \leq 1$. For the other inequality we use Claim 1 and 2 and compute

$$
1=\frac{c_{i}-d_{i}+d_{i}}{c_{i}}=\frac{d_{i-4}+d_{i}}{c_{i}} \leq 2 \frac{d_{i}}{c_{i}}
$$

Claim 4: $c_{i+1} \leq c_{i}+d_{i}-d_{i-3}$: Let $M_{i}:=\left\{(w, s) \in C_{i} \times S \mid w s \in C_{i+1}\right\}$. Then $\left|M_{i}\right|=$ $2 d_{i}+\left(c_{i}-d_{i}\right)$. We consider the mapping $f: M_{i} \rightarrow C_{i+1},(w, s) \mapsto w s$. Then f is surjective and $c_{i}+d_{i}=\left|M_{i}\right|=\sum_{w \in C_{i+1}}\left|f^{-1}(w)\right|$. We define $C_{i+1}^{1}=\{w \in$ $\left.C_{i+1}| | f^{-1}(w) \mid=1\right\}$ and let $C_{i+1}^{>1}=\left\{w \in C_{i+1}| | f^{-1}(w) \mid>1\right\}$. We show that $C_{i+1}^{>1}=C_{i+1} \backslash D_{i+1}$. Let $\bar{w} \in C_{i+1}^{>1}$ and let $(w, s) \neq\left(w^{\prime}, s^{\prime}\right) \in f^{-1}(\bar{w})$ be. Then $s \neq s^{\prime}$ and hence $w \neq w^{\prime}$. This implies $\bar{w} \in C_{i+1} \backslash D_{i+1}$. Similarly, for each $w \in C_{i+1} \backslash D_{i+1}$
there exist $s \neq t \in S$ with $w s, w t \in C_{i}$ and hence $(w s, s) \neq(w t, t) \in f^{-1}(w)$. Thus $C_{i+1}^{>1}=C_{i+1} \backslash D_{i+1}, C_{i+1}^{1}=D_{i+1}$ and we compute the following:

$$
\sum_{w \in C_{i+1}}\left|f^{-1}(w)\right|=\sum_{w \in D_{i+1}}\left|f^{-1}(w)\right|+\sum_{w \in C_{i+1} \backslash D_{i+1}}\left|f^{-1}(w)\right| \geq d_{i+1}+2\left(c_{i+1}-d_{i+1}\right)
$$

This implies $c_{i}+d_{i} \geq c_{i+1}+\left(c_{i+1}-d_{i+1}\right)=c_{i+1}+d_{i-3}$ and the claim follows.
Claim 5: $c_{i+1} \leq 2 c_{i}$: This readily follows from Claim 3 and 4 , as $c_{i+1} \leq c_{i}+d_{i}-d_{i-3} \leq 2 c_{i}$. Now we are in the position to apply the quotient criterion. For $i \geq 6$ and $t=\frac{1}{q_{\text {min }}} \leq \frac{1}{2}$ we compute

$$
\frac{c_{i+1} t^{i+1}}{c_{i} t^{i}}=\frac{c_{i+1}}{c_{i}} t \leq \frac{c_{i}+d_{i}-d_{i-3}}{c_{i}} t \leq\left(2-\frac{d_{i-3}}{c_{i}}\right) t \leq\left(2-\frac{d_{i-3}}{8 c_{i-3}}\right) t \leq \frac{31}{16} t \leq \frac{31}{32}<1
$$

(7.4.4) Corollary. Let $\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an $R G D$-system of type $(4,4,4)$ with finite root groups and $G=\left\langle U_{\alpha} \mid \alpha \in \Phi\right\rangle$ such that $Z(G)$ is finite. Then the following hold:
(a) G is a twin building lattice.
(b) Let $\Delta=\left(\Delta_{+}, \Delta_{-}, \delta_{*}\right)$ be the associated twin building and let K be a closed subgroup of $\operatorname{Aut}\left(\Delta_{-}\right)$containing G. Then U_{+}is a lattice in K.

Proof. For Assertion (a) it suffices to show that $W\left(1 / q_{\text {min }}\right)<\infty$. For Assertion (b) we note that U_{+}is discrete in $\operatorname{Aut}\left(\Delta_{-}\right)$, as $U_{+} \cap \operatorname{Stab}\left(c_{-}\right)=\{1\}$. Thus it is discrete in K. Recall that stabilizers of chambers are compact and open and K is unimodular. By definition it suffices to show that $\operatorname{Vol}\left(U_{+} \backslash \backslash \Delta_{-}\right)<\infty$. As explained in [15, Proof of Theorem 6.8], we have $\operatorname{Vol}\left(U_{+} \backslash \backslash \Delta_{-}\right) \leq W\left(1 / q_{\min }\right)$ and it also suffices to show $W\left(1 / q_{\min }\right)<\infty$ (cf. also [28, Théorème 1]). But this follows from the previous proposition.
(7.4.5) Remark. For the definition and more details about property (T) we refer to [6].
(7.4.6) Lemma. Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an $R G D$-system of type $(4,4,4)$ over \mathbb{F}_{2} and let $\Delta:=\Delta(\mathcal{D})_{-}$. Then $\operatorname{Aut}(\Delta)$ does not satisfy property (T).

Proof. By Theorem (7.3.4) and Corollary (7.4.4) (b), the subgroup U_{+}is a lattice in Aut (Δ) which is not finitely generated. By [6, Theorem 1.7.1] the group $\operatorname{Aut}(\Delta)$ has property (T) if and only if U_{+}has property (T). As discrete groups with property (T) are finitely generated by [6, Theorem 1.3.1], U_{+}can not have property (T) and hence $\operatorname{Aut}(\Delta)$ does not have property (T).
(7.4.7) Remark. Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system of type $(4,4,4)$ with finite root groups and let $\Delta:=\Delta(\mathcal{D})_{-}$. For $s \in S$ we let $q_{s}+1$ be the order of the s-panels. Using [26, Theorem 1 and $4.1(3)$], a sufficient condition for $\operatorname{Aut}(\Delta)$ to have property (T) is that for every $s \neq t \in S$ the following inequality is satisfied:

$$
\begin{aligned}
1-\sqrt{\frac{q_{s}+q_{t}}{\left(q_{s}+1\right)\left(q_{t}+1\right)}}>\frac{1}{2} & \Leftrightarrow \frac{1}{4}>\frac{q_{s}+q_{t}}{\left(q_{s}+1\right)\left(q_{t}+1\right)} \\
& \Leftrightarrow q_{s} q_{t}+q_{s}+q_{t}+1=\left(q_{s}+1\right)\left(q_{t}+1\right)>4\left(q_{s}+q_{t}\right) \\
& \Leftrightarrow q_{s} q_{t}+1>3\left(q_{s}+q_{t}\right)
\end{aligned}
$$

If $7 \leq q_{\text {min }}$ and if $q_{s} \leq q_{t}$, we have $3\left(q_{s}+q_{t}\right) \leq 3\left(q_{t}+q_{t}\right)=6 q_{t} \leq q_{s} q_{t}<q_{s} q_{t}+1$ and $\operatorname{Aut}(\Delta)$ satisfies property (T).

7.5. Property (FPRS)

Although we have defined property (FPRS) in Section 1.7, we recall the definition here. Let $\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGD-system and let $\Delta(\mathcal{D})=\left(\Delta(\mathcal{D})_{+}, \Delta(\mathcal{D})_{-}, \delta_{*}\right)$ be the associated twin building. For $\Gamma \leq G$ we define $r(\Gamma)$ to be the supremum of the set of all non-negative real numbers r such that Γ fixes pointwise the closed ball $B\left(c_{+}, r\right):=\left\{d \in \mathcal{C}_{+} \mid \ell_{+}\left(c_{+}, d\right) \leq r\right\}$, where \mathcal{C}_{+}is the set of chambers of $\Delta(\mathcal{D})_{+}$. Then \mathcal{D} has property (FPRS), if the following holds, where $\ell\left(1_{W}, \alpha\right):=\min \left\{k \in \mathbb{N} \mid \exists d \in \alpha: \ell\left(1_{W}, d\right)=k\right\}$ for all roots $\alpha \in \Phi$:
(FPRS) Given any sequence of roots $\left(\alpha_{n}\right)_{n \geq 0}$ of Φ such that $\lim _{n \rightarrow \infty} \ell\left(1_{W}, \alpha_{n}\right)=\infty$, we have $\lim _{n \rightarrow \infty} r\left(U_{-\alpha_{n}}\right)=\infty$.
(7.5.1) Lemma. Let (W, S) be irreducible and non-spherical. Let $\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an RGDsystem of type (W, S) with finite and solvable root groups such that G is generated by the root groups and satisfies (FPRS). We endow $\operatorname{Aut}\left(\Delta_{+}\right)$with the permutation topology. We define $G^{\dagger}:=\left\langle U_{\alpha} \mid \alpha \in \Phi\right\rangle \leq \operatorname{Aut}\left(\Delta(\mathcal{D})_{+}\right)$. Then $\overline{G^{\dagger}} \leq \operatorname{Aut}\left(\Delta(\mathcal{D})_{+}\right)$is topologically simple, i.e. if $N \unlhd \overline{G^{\dagger}}$ is a dense normal subgroup, then $\bar{N}=G$.

Proof. This is a consequence of [16, Lemma 9 and Proposition 11].
(7.5.2) Remark. Let \mathcal{M} be a commutator blueprint of type ($4,4,4$) which is integrable. If the corresponding RGD-system satisfies (FPRS), then $\bar{G} \leq \operatorname{Aut}\left(\Delta_{+}\right)$is a topologically simple, non-discrete, compactly generated t.d.l.c. group. Caprace, Reid and Willis initiated a systematic study of such groups in [14].

Next we generalize [16, Lemma 5]. Recall that for every RGD-system \mathcal{D} we have a distinguished pair $\left(c_{+}, c_{-}\right)$of opposite chambers in $\Delta(\mathcal{D})$. We define $\Sigma_{+}:=A\left(c_{+}, c_{-}\right) \cap \mathcal{C}_{+}$and $\ell(c, \alpha):=\min \{k \in \mathbb{N} \mid \exists d \in \alpha: \ell(c, d)=k\}$ for any $c \in \Sigma_{+}$.
(7.5.3) Proposition. Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be an $R G D$-system of type (W, S) over \mathbb{F}_{2} such that for every $w \in W$ the group U_{w} is of nilpotency class at most 2 . Suppose $4 \leq k \in \mathbb{N}$ such that for all $\alpha \subsetneq \beta \in \Phi_{+}$there exists $H \in$ Min with $\alpha, \beta \in \Phi(H)$ such that for each $\gamma \in M_{\alpha, \beta}^{H}$ we have $\ell\left(1_{W},-\gamma\right) \geq \ell\left(1_{W},-\beta\right)-(k-1)$. Then for each $m \in \mathbb{N}$, each root $\alpha \in \Phi$ and each $c \in \Sigma_{+}$, if $d(c, \alpha) \geq \frac{(4 k)^{m+1}-1}{3}$, then $U_{-\alpha}$ fixes $B(c, m)$ pointwise. In particular, \mathcal{D} satisfies property (FPRS).

Proof. In this proof we use more or less the same arguments as in [16, Lemma 5]. Thus large parts of the proof are just copied from the proof of [16, Lemma 5].

We prove the claim by induction on m. If $\ell(c, \alpha) \geq \frac{4 k-1}{3} \geq 1$, then $c \notin \alpha$ whence $c \in-\alpha$. In particular, c is fixed by $U_{-\alpha}$. Thus the desired property holds for $m=0$.

Assume now $m>0$ and let α be a root such that $\ell(c, \alpha) \geq \frac{(4 k)^{m+1}-1}{3}$. Note that

$$
\frac{(4 k)^{m+1}-1}{3}-1>\frac{4\left((4 k)^{m}-1\right)+3}{3}-1>\frac{(4 k)^{m}-1}{3}
$$

The induction hypothesis implies that the group $U_{-\alpha}$ fixes the ball $B(c, m-1)$ pointwise. Furthermore, if c^{\prime} is a chamber contained in Σ_{+}and adjacent to c, then $\ell\left(c^{\prime}, \alpha\right) \geq \ell(c, \alpha)-1 \geq$ $\frac{(4 k)^{m}-1}{3}$ and the induction hypothesis also implies that $U_{-\alpha}$ fixes $B\left(c^{\prime}, m-1\right)$ pointwise.

Let now x be a chamber at distance m from c. Let $\left(c_{0}=c, \ldots, c_{m}=x\right)$ be a minimal gallery from c to x. We must prove that $U_{-\alpha}$ fixes x. If c_{1} is contained in Σ_{+}, then we are done by the above. Thus we may assume that c_{1} is not in Σ_{+}. Let c^{\prime} be the unique chamber of Σ_{+}such that c, c_{1}, c^{\prime} share a panel. Let $\beta \in \Phi$ be one of the two roots such that $\partial \beta$ separates c from c^{\prime}. Upon replacing β by its opposite if necessary, we may - and shall - assume that the
pair $\{-\alpha, \beta\}$ is prenilpotent (cf. [2, Lemma 8.42(3)]). Let $u:=u_{\beta} \in U_{\beta}^{\star}$ be the unique element such that $u\left(c_{1}\right)$ belongs to Σ_{+}; thus we have $u\left(c_{1}\right) \in\left\{c, c^{\prime}\right\}$. Since $u\left(c_{1}\right), u\left(c_{2}\right), \ldots, u\left(c_{m}\right)$ is a minimal gallery, it follows that $u(x)$ is contained in $B(c, m-1) \cup B\left(c^{\prime}, m-1\right)$. We distinguish the following three cases:
(i) Suppose first that $\left[U_{-\alpha}, U_{\beta}\right]=1$. For any $g \in U_{-\alpha}$ we have $g=u^{-1} g u$ whence $g(x)=$ $u^{-1} g u(x)=x$ because $g \in U_{-\alpha}$ fixes $B(c, m-1) \cup B\left(c^{\prime}, m-1\right)$ pointwise by the above.
(ii) Suppose now that $\left[U_{-\alpha}, U_{\beta}\right] \neq 1$ and that $\left\langle r_{\alpha}, r_{\beta}\right\rangle$ is infinite. Let $\left\{d, d^{\prime}\right\}=\left\{c, c^{\prime}\right\}$ and assume that $d \in \beta$. Then, as $\{-\alpha, \beta\}$ is a pair of prenilpotent roots and $d^{\prime} \in(-\alpha) \backslash \beta$, we have $\beta \subseteq(-\alpha)$. Moreover, $d \in \beta \cap(-\alpha)$ and hence $\left\{d^{-1} \beta,-d^{-1} \alpha\right\} \in \mathcal{P}$. Suppose $H \in$ Min with $d^{-1} \beta,-d^{-1} \alpha \in \Phi(H)$. By assumption, we have $\ell\left(1_{W},-\gamma\right) \geq \ell\left(1_{W}, d^{-1} \alpha\right)-$ $(k-1)$ for all $\gamma \in M_{d^{-1} \beta,-d^{-1} \alpha}^{H}$. In particular, we have $\ell(d,-d \gamma) \geq \ell(d, \alpha)-(k-1)$. Note that $\ell\left(d^{\prime},-d \gamma\right) \geq \ell(d, \alpha)-k$ and hence $\ell(c,-d \gamma), \ell\left(c^{\prime},-d \gamma\right) \geq \ell(d, \alpha)-k$. Note that

$$
\ell(d, \alpha)-k \geq \ell(c, \alpha)-(k+1) \geq \frac{(4 k)^{m+1}-1}{3}-(k+1) \geq \frac{4 k(4 k)^{m}-4 k}{3} \geq \frac{(4 k)^{m}-1}{3}
$$

Using induction we deduce that $U_{d \gamma}$ fixes $B(c, m-1) \cup B\left(c^{\prime}, m-1\right)$ for all $\gamma \in$ $M_{d^{-1} \beta,-d^{-1} \alpha}^{H}$. Note that $\left[u_{\beta}, u_{-\alpha}\right]=\prod_{\gamma \in M_{d^{-1} \beta_{\beta,-d^{-1} \alpha}^{H}}} u_{d \gamma}$ and $g(x)=\left[g^{-1}, u\right](x)$ as before for any $g \in U_{-\alpha}$. Using the nilpotency class assumption, we know that $\left[g^{-1}, u\right]$ commutes with u and, using the fact that $U_{d \gamma}$ fixes $B(c, m-1) \cup B\left(c^{\prime}, m-1\right)$ pointwise, we compute

$$
g(x)=\left[g^{-1}, u\right](x)=u^{-1}\left[g^{-1}, u\right] u(x)=u^{-1} u(x)=x
$$

(iii) Suppose finally that $\left[U_{-\alpha}, U_{\beta}\right] \neq 1$ and that $\left\langle r_{\alpha}, r_{\beta}\right\rangle$ is finite. The first part goes through unchanged until the inequality, which has to be modified to the following:

$$
\ell\left(c,-\beta_{i}\right) \geq \ell\left(c,-\beta_{1}\right) \geq \frac{\ell(c, \alpha)-1}{4} \geq \frac{\frac{(4 k)^{m+1}-1}{3}-1}{4}=\frac{4 k(4 k)^{m}-4}{12} \geq \frac{(4 k)^{m}-1}{3}
$$

By the induction hypothesis, it follows that for each $\gamma \in(-\alpha, \beta)$, the root subgroup U_{γ} fixes $B(c, m-1)$ pointwise. As before, we obtain $g(x)=\left[g, u^{-1}\right](x)$ for any $g \in U_{\alpha}$ and $\left[g, u^{-1}\right]$ fixes $u(x)$ pointwise. Using the nilpotency class assumption of the groups U_{w}, we infer $\left[g, u^{-1}\right](x)=u^{-1}\left[g, u^{-1}\right] u(x)=x$.
(7.5.4) Corollary. Let $\emptyset \neq K \subseteq \mathbb{N}_{\geq 3}$ be a finite set, let $\mathcal{J}=\left(J_{k}\right)_{k \in K}$ be a family of subsets $\emptyset \neq J_{k} \subseteq S$ and let $L_{k}^{j} \subseteq\{2, \ldots, k-1\}$. We define $\mathcal{L}:=\left(L_{k}^{j}\right)_{k \in K, j \in J_{k}}, \mathcal{M}:=\mathcal{M}(K, \mathcal{J}, \mathcal{L})$ and let $\mathcal{D}(\mathcal{M})=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be the $R G D$-system associated with the commutator blueprint \mathcal{M}. Then $\mathcal{D}(\mathcal{M})$ satisfies property (FPRS).

Proof. Recall from Theorem (7.1.7) that \mathcal{M} is integrable and the groups U_{w} are of nilpotency class at most 2. We will apply the previous proposition. Let $\alpha \subsetneq \beta \in \Phi_{+}$be two positive roots, let $G \in$ Min such that $\alpha, \beta \in \Phi(G)$ and $M_{\alpha, \beta}^{G} \neq \emptyset$. Then there exists a gallery $H=\left(c_{0}, \ldots, c_{k}\right)$ of type (n, r) between α and β for some $n \in K$ and $r \in J_{n}$. Using Lemma (7.1.5) (a) we can extend $\left(c_{6}, \ldots, c_{k}\right)$ to a gallery $\left(d_{0}, \ldots, d_{m}\right)$ contained in Min. Let $\gamma \in M_{\alpha, \beta}^{G}$ be a root. Then $\gamma=\gamma_{i} \in\left\{\omega_{i}, \omega_{i}^{\prime}\right\}$ for some $i \in L_{n}^{r}$ and $\omega_{i}, \omega_{i}^{\prime}$ are non-simple roots of the corresponding residue R_{i}. Using Lemma (5.2.3) we deduce that $\ell\left(1_{W}, \operatorname{proj}_{R_{i}} 1_{W}\right) \leq \ell\left(1_{W},-\gamma\right)$. In particular, we have $\ell\left(1_{W},-\beta\right) \leq m \leq \ell\left(1_{W}, \operatorname{proj}_{R_{i}} 1_{W}\right)+k \leq \ell\left(1_{W},-\gamma\right)+k$. Let $n:=\max K$. By definition of H we see that in the type of H there appear $r, r_{\{s, t\}}$ at most n times plus $u, v \in\left\{1_{W}, s, t\right\}$ and an additional r. Thus we deduce $k \leq 5 n+3$. For $K:=5 n+4 \in \mathbb{N}$ we have $4 \leq K$ and we infer

$$
\ell\left(1_{W},-\gamma\right) \geq \ell\left(1_{W},-\beta\right)-(K-1)
$$

(7.5.5) Theorem. Let $\mathcal{J}=\left(J_{n}\right)_{n \in \mathbb{N} \geq 3}$ be a family of subsets $\emptyset \neq J_{n} \subseteq S$ and let $L_{n}^{j}:=\{2\}$ for every $n \in \mathbb{N}_{\geq 3}$ and $j \in J_{n}$. We define $\mathcal{L}:=\left(L_{n}^{j}\right)_{n \in \mathbb{N} \geq 3, j \in J_{n}}$. Then the RGD-system associated with the commutator blueprint $\mathcal{M}\left(\mathbb{N}_{\geq 3}, \mathcal{J}, \mathcal{L}\right)$ does not satisfy condition (FPRS). In particular, there exists an RGD-system of 2-spherical type, which does not satisfy Condition (FPRS).

Proof. We abbreviate $M_{\alpha, \beta}^{G}:=M\left(\mathbb{N}_{\geq 3}, \mathcal{J}, \mathcal{L}\right)_{\alpha, \beta}^{G}$. We let $G_{n} \in$ Min be a minimal gallery of type $\left(r, r_{\{s, t\}}, r, \ldots, r_{\{s, t\}}, r\right)$, where $r_{\{s, t\}}$ appears n times in the type and we let $\alpha_{n}:=\alpha_{G_{n}}$. We recall that α_{n} is the last root which is crossed by G_{n}. We note that α_{n} is a non-simple root of the $\{r, s\}$ residue R containing $\left(r r_{\{s, t\}}\right)^{n} r$. Using Lemma (5.2.3) we have $\ell\left(1_{W},-\alpha_{n}\right) \geq$ $\ell\left(1_{W}, \operatorname{proj}_{R} 1_{W}\right)=5 n-2$. In particular, we have $\lim _{n \rightarrow \infty} \ell\left(1_{W},-\alpha_{n}\right)=\infty$.

Let $\mathcal{D}=\left(G,\left(U_{\alpha}\right)_{\alpha \in \Phi}\right)$ be the RGD-system associated with $\mathcal{M}\left(\mathbb{N}_{\geq 3}, \mathcal{J}, \mathcal{L}\right)$ and assume that \mathcal{D} satisfies property (FPRS). Then there would exist $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$ we have $r\left(U_{\alpha_{n}}\right) \geq 10$. In particular, $U_{\alpha_{n}}$ fixes $B\left(c_{+}, 10\right)$ pointwise. We deduce that $u_{\alpha_{0}}^{-1} u_{\alpha_{n}} u_{\alpha_{0}}$ and hence also $\left[u_{\alpha_{0}}, u_{\alpha_{n}}\right]$ fixes $B\left(c_{+}, 10\right)$ pointwise. But $\left[u_{\alpha_{0}}, u_{\alpha_{n}}\right]=u_{\omega_{2}} u_{\omega_{2}^{\prime}}$, which does not fix $B\left(c_{+}, 10\right)$. Thus \mathcal{D} does not have property (FPRS).

Part IV.

Appendix

For the sake of clarity, we have decided to reproduce all the figures from Chapter 6

Figure 7.1.: Illustration of the group V_{R}

Figure 7.2.: Illustration of the group O_{R}

Figure 7.3.: Illustration of the group $V_{R, s}$

Figure 7.4.: Illustration of the group $O_{R, s}$

Figure 7.5.: Illustration of the group H_{R}

Figure 7.6.: Illustration of the group $J_{R, t}$

Figure 7.7.: Illustration of the group G_{R}

Figure 7.8.: Illustration of the group $K_{R, s}$

Figure 7.9.: Illustration of the group $E_{R, s}$

Figure 7.10.: Illustration of the group $U_{R, s}$

Figure 7.11.: Illustration of the group X_{R}

Figure 7.12.: Illustration of the group $H_{\left\{R, R^{\prime}\right\}}$

Figure 7.13.: Illustration of the group $J_{\left(R, R^{\prime}\right)}$

Figure 7.14.: Illustration of the group $G_{\left\{R, R^{\prime}\right\}}$

Figure 7.15.: Illustration of the group C

Figure 7.16.: Illustration of the group $C_{\left(R^{\prime}, R\right)}$

Bibliography

[1] P. Abramenko. Finiteness properties of groups acting on twin buildings. In Groups: topological, combinatorial and arithmetic aspects, volume 311 of London Math. Soc. Lecture Note Ser., pages 21-26. Cambridge Univ. Press, Cambridge, 2004.
[2] P. Abramenko and K. S. Brown. Buildings, volume 248 of Graduate Texts in Mathematics. Springer, New York, 2008. Theory and applications.
[3] P. Abramenko and B. Mühlherr. Présentations de certaines $B N$-paires jumelées comme sommes amalgamées. C. R. Acad. Sci. Paris Sér. I Math., 325(7):701-706, 1997.
[4] H. Bass and A. Lubotzky. Tree lattices, volume 176 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2001. With appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits.
[5] U. Baumgartner, B. Rémy, and G. A. Willis. Flat rank of automorphism groups of buildings. Transform. Groups, 12(3):413-436, 2007.
[6] B. Bekka, P. de la Harpe, and A. Valette. Kazhdan's property (T), volume 11 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2008.
[7] S. Bischof. On commutator relations in 2-spherical RGD-systems. Comm. Algebra, 50(2):751-769, 2022.
[8] S. Bischof, A. Chosson, and B. Mühlherr. On isometries of twin buildings. Beitr. Algebra Geom., 62(2):441-456, 2021.
[9] S. Bischof and B. Mühlherr. Isometries of wall-connected twin buildings. to appear in Advances in Geometry, 21pp.
[10] N. Bourbaki. Lie groups and Lie algebras. Chapters 4-6. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley.
[11] P.-E. Caprace. On 2-spherical Kac-Moody groups and their central extensions. Forum Math., 19(5):763-781, 2007.
[12] P.-E. Caprace and B. Mühlherr. Reflection triangles in Coxeter groups and biautomaticity. J. Group Theory, 8(4):467-489, 2005.
[13] P.-E. Caprace and B. Mühlherr. Isomorphisms of Kac-Moody groups which preserve bounded subgroups. Adv. Math., 206(1):250-278, 2006.
[14] P.-E. Caprace, C. D. Reid, and G. A. Willis. Locally normal subgroups of totally disconnected groups. Part II: Compactly generated simple groups. Forum Math. Sigma, 5:Paper No. e12, 89, 2017.
[15] P.-E. Caprace and B. Rémy. Groups with a root group datum. Innov. Incidence Geom., 9:5-77, 2009.
[16] P.-E. Caprace and B. Rémy. Simplicity and superrigidity of twin building lattices. Invent. Math., 176(1):169-221, 2009.
[17] D. L. Cohn. Measure theory. Birkhäuser Boston, Inc., Boston, MA, 1993. Reprint of the 1980 original.
[18] A. Devillers, B. Mühlherr, and H. Van Maldeghem. Codistances of 3-spherical buildings. Math. Ann., 354(1):297-329, 2012.
[19] A. W. M. Dress and R. Scharlau. Gated sets in metric spaces. Aequationes Math., $34(1): 112-120,1987$.
[20] A. A. Felikson. Coxeter decompositions of hyperbolic polygons. European J. Combin., 19(7):801-817, 1998.
[21] M. Grüninger, M. Horn, and B. Mühlherr. Moufang twin trees of prime order. Adv. Math., 302:1-24, 2016.
[22] I. Kapovich, R. Weidmann, and A. Miasnikov. Foldings, graphs of groups and the membership problem. Internat. J. Algebra Comput., 15(1):95-128, 2005.
[23] A. Karrass and D. Solitar. The subgroups of a free product of two groups with an amalgamated subgroup. Trans. Amer. Math. Soc., 150:227-255, 1970.
[24] B. Mühlherr, H. P. Petersson, and R. M. Weiss. Descent in buildings, volume 190 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2015.
[25] B. Mühlherr and M. Ronan. Local to global structure in twin buildings. Invent. Math., 122(1):71-81, 1995.
[26] I. Oppenheim. Property (T) for groups acting on simplicial complexes through taking an "average" of Laplacian eigenvalues. Groups Geom. Dyn., 9(4):1131-1152, 2015.
[27] S. E. Payne and J. A. Thas. Finite generalized quadrangles, volume 110 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1984.
[28] B. Rémy. Construction de réseaux en théorie de Kac-Moody. C. R. Acad. Sci. Paris Sér. I Math., 329(6):475-478, 1999.
[29] B. Rémy. Groupes de Kac-Moody déployés et presque déployés. Astérisque, (277):viii $+348,2002$.
[30] D. J. S. Robinson. A course in the theory of groups, volume 80 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1996.
[31] M. A. Ronan. Local isometries of twin buildings. Math. Z., 234(3):435-455, 2000.
[32] J.-P. Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation.
[33] J. Tits. Uniqueness and presentation of Kac-Moody groups over fields. J. Algebra, 105(2):542-573, 1987.
[34] J. Tits. Twin buildings and groups of Kac-Moody type. In Groups, combinatorics 6 geometry (Durham, 1990), volume 165 of edited by M. Liebeck and J. Saxl, London Math. Soc. Lecture Note Ser., pages 249-286. Cambridge Univ. Press, Cambridge, 1992.
[35] J. Tits and R. M. Weiss. Moufang polygons. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002.
[36] R. M. Weiss. The structure of spherical buildings. Princeton University Press, Princeton, NJ, 2003.
[37] R. M. Weiss. The structure of affine buildings, volume 168 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009.
[38] K. Wendlandt. Exceptional twin buildings of type \tilde{C}_{2}. PhD thesis, Justus-LiebigUniversität Giessen, 2021.
[39] P. Wesolek. An introduction to totally disconnected locally compact groups. https://zerodimensional.group/reading_group/190227_michal_ferov.pdf, 2019.
[40] W. Woess. Topological groups and infinite graphs. Discrete Math., 95(1-3):373-384, 1991.

Selbstständigkeitserklärung

Ich erkläre: Ich habe die vorgelegte Dissertation selbstständig und ohne unerlaubte fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht. Ich stimme einer evtl. Überprüfung meiner Dissertation durch eine Antiplagiat-Software zu. Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der „Satzung der Justus-Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis" niedergelegt sind, eingehalten.

Gießen, Juni 2023

