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Abstract

We investigate the structure of RGD-systems over F2. For this purpose we introduce the notion
of commutator blueprints which prescribe the commutator relations between prenilpotent pairs
of positive roots. To each RGD-system one can associate a commutator blueprint and such
a commutator blueprint will be called integrable. We give necessary and su�cient conditions
of an integrable commutator blueprint. Moreover, we construct uncountably many di�erent
integrable commutator blueprints of type (4, 4, 4).

The existence of these integrable commutator blueprints disproves the general validity of
the extension theorem for isometries of 2-spherical thick twin buildings. Additionally, we
obtain the �rst example of a 2-spherical Kac-Moody group over a �nite �eld which is not
�nitely presented. Furthermore, we construct the �rst example of a 2-spherical RGD-system
with �nite root groups which does not have property (FPRS).

Deutsche Zusammenfassung

Wir untersuchen die Struktur von RGD-systemen über F2. Aus diesem Grund führen wir den
Begri� von Kommutatorbauplänen ein, welche die Kommutatorrelationen zwischen prenilpo-
tenten Paaren von positiven Wurzeln vorschreiben. Zu jedem RGD-System kann man einen
Kommutatorbauplan assoziieren und solch einen Kommutatorbauplan nennen wir integrabel.
Wir geben notwendige und hinreichende Bedingungen eines integrablen Kommutatorbauplans
an. Auÿerdem konstruieren wir überabzählbar viele verschiedene integrable Kommutatorbau-
pläne vom Typ (4, 4, 4).

Die Existenz dieser integrablen Kommutatorbaupläne widerlegt die Allgemeingültigkeit
des Erweiterungssatzes für Isometrien von 2-spärischen dicken Zwillingsgebäuden. Zusät-
zlich erhalten wir das erste Beispiel einer 2-sphärischen Kac-Moody Gruppe über einem
endlichen Körper, welche nicht endlich präsentiert ist. Zudem konstruieren wir das erste
Beispiel eines 2-sphärischen RGD-Systems mit endlichen Wurzelgruppen, welches nicht die
Eigenschaft (FPRS) besitzt.





Contents

Introduction v

I. Preliminaries 1

1. Basic de�nitions 3

1.1. Coxeter systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4. Coxeter buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5. Re�ection and combinatorial triangles in Σ(W,S) . . . . . . . . . . . . . . . . 8
1.6. Twin buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7. Root group data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8. Graphs of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II. RGD-systems over F2 15

2. Commutator blueprints 17

2.1. De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2. Integrability of certain commutator blueprints . . . . . . . . . . . . . . . . . . 20
2.3. An action of the Ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4. Braid relations act trivially on suitable subset . . . . . . . . . . . . . . . . . . 33

3. Braid relations 35

3.1. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2. The case mst = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3. The case mst = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4. The case mst = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5. First main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4. Construction of the groups Uw 51

4.1. Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2. Pre-commutator blueprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III. Faithful commutator blueprints of type (4, 4, 4) 57

5. Buildings of type (4, 4, 4) 59

5.1. Coxeter buildings of type (4, 4, 4) . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2. Roots in Coxeter systems of type (4, 4, 4) . . . . . . . . . . . . . . . . . . . . . 61
5.3. RGD-systems of type (4, 4, 4) over F2 . . . . . . . . . . . . . . . . . . . . . . . 64

iii



Contents

6. Commutator blueprints of type (4, 4, 4) 71

6.1. The groups VR and OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2. The groups VR,s and OR,s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3. The groups HR, GR and JR,t . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4. The group KR,s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5. The groups ER,s and UR,s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6. The group XR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.7. The groups H{R,R′}, G{R,R′} and J(R,R′) . . . . . . . . . . . . . . . . . . . . . 82
6.8. The groups C and C(R,R′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.9. Faithful commutator blueprints . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.10. Second main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7. Applications 107

7.1. New RGD-systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2. Extension theorem for twin buildings . . . . . . . . . . . . . . . . . . . . . . . 118
7.3. Finiteness properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4. Locally compact groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.5. Property (FPRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

IV. Appendix 127

Bibliography 139

Selbstständigkeitserklärung 143

iv



Introduction

v





Historical context

This is based on [25], [8] and [9].

Twin buildings

Buildings have been introduced by Tits in order to study semi-simple algebraic groups from
a combinatorial point of view. One of the most celebrated results in the theory of abstract
buildings is Tits' classi�cation result for irreducible spherical buildings of rank at least 3.
The decisive step in this classi�cation is a local-to-global result for isometries of spherical
buildings.

Twin buildings were introduced by Ronan and Tits in the late 1980s in order to study groups
of Kac-Moody type. Their de�nition was motivated by the theory of Kac-Moody groups over
�elds. Each such group acts naturally on a pair of two buildings and the action preserves an
opposition relation between the chambers of the buildings. This opposition relation shares
many important information with the opposition relation of spherical buildings. Thus, twin
buildings appear to be natural generalizations of spherical buildings.

Extension problem

Ronan and Tits conjectured in the 1990s that there exists a similar local-to-global result for
isometries of twin buildings. To be more precise: let ∆ = (∆+,∆−, δ∗),∆

′ = (∆′
+,∆

′
−, δ

′
∗)

be two twin buildings of the same type (W,S). An isometry is a bijection from X ⊆ ∆ to
X ′ ⊆ ∆′ which preserves the sign, the distance and the codistance. For c ∈ ∆+ we denote by
E2(c) the union of all residues of rank at most 2 containing c.

Extension theorem: Let∆ = (∆+,∆−, δ∗) and∆′ = (∆′
+,∆

′
−, δ

′
∗) be two twin buildings

of type (W,S). We say that the the extension theorem holds for ∆, if for all c ∈ ∆+ and
c′ ∈ ∆′

+, every isometry E2(c) → E2(c
′) extends to an isometry ∆ → ∆′.

If the extension theorem holds for a subclass of twin buildings, then the classi�cation of twin
buildings contained in this subclass reduces to the classi�cation of foundations, i.e. the local
structure E2(c). First the extension theorem seems only be feasible under the additional
assumption that (W,S) is 2-spherical. Tits observed that a proof of the extension theorem
splits roughly into two parts:

Part 1 (�rst half): Any isometry E2(c) → E2(c
′) extends to an isometry ∆+ → ∆′

+.

Tits proved part 1 in [34] under the additional assumption that each panel is su�ciently large.

Part 2 (second half): Any isometry ∆+ → ∆′
+ extends to an isometry ∆ → ∆′.

The �rst contribution to part 2 is a result of Mühlherr and Ronan from 1995 published in [25]
satisfying an additional condition (co).

Condition (co)

A twin building ∆ = (∆+,∆−, δ∗) satis�es condition (co) if for every c ∈ Cε the set {d ∈ C−ε |
δ∗(c, d) = 1W } of chambers opposite c is connected. Mühlherr and Ronan have shown in [25]
the following condition on the rank 2 residues implies condition (co):

(lco) No rank 2 residue of ∆ is associated with one of the groups B2(2), G2(2), G2(3),
2 F4(2).
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Condition (lco) shows that di�culties arise only if the size of panels is too small. In particular,
they proved the following theorem:

Theorem (Mühlherr, Ronan, [25]): The second half of the extension theorem holds
for twin buildings

� in which every panel contains at least 5 chambers.

� of simply-laced type.

In [31] Ronan generalized the �rst half of the extension theorem to twin buildings satisfying
(co). In particular, the extension theorem holds for twin buildings satisfying (co). Recently,
Chosson, Mühlherr and the author have shown in [8] that the �rst half of the extension
theorem is true for any two 2-spherical thick twin buildings. Thus, the extension theorem
holds if the second part of the extension theorem holds.

Condition (wc)

What is a bit unsatisfying about condition (co) is that not all a�ne twin buildings satisfy this
condition. In [9] Mühlherr and the author introduced condition (wc) in order to prove the
second half of the extension theorem for a�ne twin buildings. As a consequence, the second
half of the extension theorem is true for 3-spherical thick twin buildings. This rather technical
condition (wc) is a weaker condition than (co) and has a nice interpretation for RGD-systems.
We do not give the de�nition here, but we refer to [9] for details.

Counterexamples coming from RGD-systems

The main motivation of this thesis is to construct two thick twin buildings of 2-spherical
type for which the extension theorem does not hold. The twin buildings are associated with
RGD-systems. In particular, we have constructed RGD-systems over F2 (i.e. every root group
contains exactly two elements) with prescribed commutator relations.

Let (G, (Uα)α∈Φ) be an RGD-system of type (W,S) over F2, where G is generated by the
groups Uα. We let U+ be the group generated by the set of root groups corresponding to
positive roots. For each s ∈ S we let Ps be the group generated by U+ and U−αs and we
let τs := u−susu−s, where u±s ∈ U±αs\{1}. Then we have the following two well-known
theorems:

Theorem 1: The group G is isomorphic to the direct limit of the inductive system formed
by the groups U+, (Ps)s∈S ,Z2,W together with the natural inclusions

U+ Ps Z2 W for all s ∈ S.
17→τs

17→s

Theorem 2: The group U+ is isomorphic to the direct limit of the inductive system formed
by the groups Uw, together with the canonical inclusions Uw → Uws for every w ∈ W, s ∈ S
with ℓ(ws) = ℓ(w) + 1. Moreover, the group Uw has cardinality 2ℓ(w) for each w ∈W .

Construction of RGD-systems over F2

In this thesis we follow the ideas of Theorem 1 and 2. In the following will describe the main
strategy. In order to explain the main idea in a comprehensible way, we will not be formally
mathematically correct at the one or other point in this description.
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We �rst need to �nd a way of producing groups Uw having cardinality 2ℓ(w) for w ∈ W .
These groups should come equipped with canonical homomorphisms Uw → Uws, whenever
ℓ(ws) = ℓ(w)+1. Following Theorem 2, we de�ne U+ as the direct limit of the inductive system
formed by the groups Uw, together with the homomorphisms Uw → Uws. It is not clear at this
stage whether the homomorphisms Uw → U+ are injective, but for the moment we assume
that they are. Next we have to construct the groups Ps for each s ∈ S. Therefore, we note
that U+

∼= Us ⋉Ns splits as a semi-direct product. We will construct another automorphism
τs ∈ Aut(Ns) with the property τs(uα) = usα. Now we de�ne Ps := ⟨us, τs⟩⋉Ns. Moreover, we
can de�ne the direct limit of the inductive system formed by the groups U+, (Ps)s∈S ,Z2,W as
in Theorem 1. We will work out su�cient conditions in order to show that G can be endowed
with an RGD-system.

Overview

In Chapter 1 we introduce the basic de�nitions of the theory of buildings. Moreover, we state
known results and prove some auxiliary results which will be needed later. In the second chap-
ter we introduce the notion of commutator blueprints, the main objects of this thesis. They
can be seen as a prescription of commutator relations. Each commutator blueprint provides
the groups Uw having cardinality 2ℓ(w) for w ∈ W . To each RGD-system one can associate
a commutator blueprint and such commutator blueprints are called integrable. Additionally,
we de�ne faithful and Weyl-invariant commutator blueprint: Faithfulness implies that the
canonical homomorphisms Uw → U+ are injective. Moreover, we obtain the decomposition
U+

∼= Us⋉Ns and hence us ∈ Aut(Ns). Weyl-invariance allows to construct an automorphism
τs ∈ Aut(Ns) such that τs(uα) = usα. Moreover, if G denotes the direct limit of the inductive
system formed by the groups U+, (Ps)s∈S ,Z2,W as in Theorem 1, we prove the following
theorem:

Theorem (Theorem (2.4.3)): If Ps → G is injective for each s ∈ S, then the commutator
blueprint is integrable.

In order to show the the group G can be endowed with an RGD-system, we have to show
that the homomorphisms Ps → G are injective. We consider the chamber system C, where
each chamber is a coset contained in U+/Uw for some w ∈ W . We de�ne an action of Ps on
C and deduce that this action is faithful. We are done, if the braid relations (τsτt)

mst act
trivially on the chamber system C for all s ̸= t ∈ S with mst < ∞. This is what we do in
Chapter 3. We restrict to the cases mst ̸= 6, i.e. mst ∈ {2, 3, 4}. As it is our main motivation
to construct RGD-systems of type (4, 4, 4), this is an acceptable restriction. It turns out that
the braid relations act trivial in the case mst = 2. We introduce two further conditions of the
commutator blueprint (called (CR1) and (CR2)), and it turns out that if the groups Uw are
of nilpotency class at most 2 and if (CR1) and (CR2) are satis�ed, then the braid relations
act trivial in the cases mst ∈ {3, 4}. In Chapter 4 we show that if the commutator relations
are chosen in a way that they are somehow of nilpotency class 2 then the groups Uw have
automatically cardinality 2ℓ(w).

In Part 3 we discuss faithful commutator blueprints of type (4, 4, 4). Therefore, we analyze
the geometry of the Coxeter system of type (4, 4, 4) and its set of roots. Moreover, we prove
that any RGD-system of type (4, 4, 4) over F2 contains suitable tree products (called VR,s) as
subgroups. These groups will be needed in Chapter 6. The fact that VR,s is a subgroup is
obtained by considering the action of the group on its associated twin building. In Chapter
6 we introduce several tree products and prove many subgroup and isomorphism properties
of those. In Section 6.9 and 6.10 we construct the group U+ successively as a tree product.
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Here we need on the one hand the subgroups VR,s and, one the other hand the tree products
constructed in Chapter 6. We remark that this construction does only work because we
already have one example of an RGD-system of type (4, 4, 4) over F2, namely the Kac-Moody
group. This implies that a Weyl-invariant commutator blueprint of type (4, 4, 4) is faithful.
The main result of this thesis will be the following:

Main result (Corollary (6.10.7)): Any Weyl-invariant commutator blueprint of type
(4, 4, 4) satisfying the conditions (CR1) and (CR2) and such that the groups Uw are of nilpo-
tency class at most 2 is integrable.

We remark that Weyl-invariance, (CR1), (CR2) and the nilpotency class assumption can be
checked by only considering the commutator blueprint. In the last chapter we discuss several
applications of the main result, which we will explain below. In the appendix we reproduce
for convenience all �gures from Chapter 6.

Applications of the Main result

First we construct uncountably many di�erent Weyl-invariant commutator blueprints, which
are integrable. The existence of these has itself two applications. The �rst concerns an
answer of a 30 year-old question of Ronan and Tits about the extension problem. We obtain
the following result:

Extension problem (Theorem (7.2.1)): The extension theorem does not hold for all
thick 2-spherical twin buildings.

The second application answers a question about �niteness properties of groups acting on twin
buildings. Abremenko and Mühlherr have shown in [3] that almost all 2-spherical Kac-Moody
groups over �nite �elds are �nitely presented. As a consequence of our construction we obtain
the �rst 2-spherical, non-�nitely presented Kac-Moody group over a �nite �eld:

Theorem (Theorem (7.3.3)): Let G be the Kac-Moody group (in the sense of [34]) of
type (4, 4, 4) over F2. Then G is not �nitely presented.

Moreover, Abramenko considered �niteness properties of the stabilizer of a chamber in a
Kac-Moody groups and he proved (unpublished, cf. [1, Counter-Example 1(2)]) the following
result, which is also a consequence of our construction:

Theorem (Theorem (7.3.4), Lemma (7.4.6)) Let D be an RGD-system of type (4, 4, 4)
over F2. Then group U+ is not �nitely generated. In particular, the automorphism group of
the building associated with an RGD-system of type (4, 4, 4) over F2 does not have property
(T).

The last application concerns property (FPRS), which makes a statement about �xed points
of the root groups on the associated building. Caprace and Rémy have shown in [16] that
(almost) split Kac-Moody groups satisfy this property. We have shown that many (but not
all) of the new examples satisfy this property (cf. Corollary (7.5.4)). In particular, we obtain
the �rst example of a 2-spherical RGD-system which does not satisfy property (FPRS):

Theorem (Theorem (7.5.5)): There exists an RGD-system of 2-spherical type which does
not satisfy property (FPRS).
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Preliminaries
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1. Basic de�nitions

In this chapter we introduce basic de�nitions of the theory of buildings. Moreover, we state
some known results and prove some auxiliary results which we will need later.

1.1. Coxeter systems

Let (W,S) be a Coxeter system and let ℓ denote the corresponding length function. For
s, t ∈ S we denote the order of st inW by mst. The Coxeter diagram corresponding to (W,S)
is the labeled graph (S,E(S)), where E(S) = {{s, t} | mst > 2} and where each edge {s, t} is
labeled by mst for all s, t ∈ S. The rank of the Coxeter system is the cardinality of the set
S. Let (W,S) be of rank 3 and let S = {r, s, t}. Sometimes we will also call (mrs,mrt,mst)
the type of (W,S). If (W,S) is of type (mrs,mrt,mst), then it is called cyclic hyperbolic if
mrs,mrt,mst ≥ 3 and 1

mrs
+ 1

mrt
+ 1

mst
< 1.

If mst ∈ {2, 3, 4, 6,∞} for all s ̸= t ∈ S, we call the Coxeter system crystallographic. In
this case we de�ne the crystallographic Dynkin diagram Dyn(W,S) corresponding to (W,S)
as the Coxeter diagram, where each edge has a direction. We note that this is not exactly the
notion of a Dynkin diagram in the literature.

It is well-known that for each J ⊆ S the pair (⟨J⟩, J) is a Coxeter system (cf. [10, Ch.
IV, �1 Theorem 2]). A subset J ⊆ S is called spherical if ⟨J⟩ is �nite. The Coxeter system is
called spherical if S is spherical; it is called 2-spherical if ⟨J⟩ is �nite for all J ⊆ S containing
at most 2 elements (i.e. mst < ∞ for all s, t ∈ S). Given a spherical subset J of S, there
exists a unique element of maximal length in ⟨J⟩, which we denote by rJ (cf. [2, Corollary
2.19]).

(1.1.1) Lemma. Let ε ∈ {+,−} and let (W,S) be a Coxeter system. Suppose s, t ∈ S,w ∈W
with ℓ(sw) = ℓ(w)ε1 = ℓ(wt). Then either ℓ(swt) = ℓ(w)ε2 or else swt = w.

Proof. The case ε = + is [2, Condition (F) on p. 79]. Thus we consider the case ε = −. We
put w′ := sw. Then ℓ(sw′) = ℓ(w) = ℓ(w′) + 1. We assume that ℓ(swt) ̸= ℓ(w) − 2. Then
ℓ(swt) = ℓ(w) and hence ℓ(w′t) = ℓ(swt) = ℓ(w) = ℓ(w′) + 1. Using [2, Condition (F) on p.
79] we obtain either ℓ(sw′t) = ℓ(w′) + 2 or sw′t = w′. Since ℓ(sw′t) = ℓ(wt) = ℓ(sw) = ℓ(w′)
we have wt = sw′t = w′ = sw and the claim follows.

1.2. Buildings

Let (W,S) be a Coxeter system. A building of type (W,S) is a pair ∆ = (C, δ) where C is a
non-empty set and where δ : C×C →W is a distance function satisfying the following axioms,
where x, y ∈ C and w = δ(x, y):

(Bu1) w = 1W if and only if x = y;

(Bu2) if z ∈ C satis�es s := δ(y, z) ∈ S, then δ(x, z) ∈ {w,ws}, and if, furthermore, ℓ(ws) =
ℓ(w) + 1, then δ(x, z) = ws;

(Bu3) if s ∈ S, there exists z ∈ C such that δ(y, z) = s and δ(x, z) = ws.

3



1. Basic de�nitions

The rank of ∆ is the rank of the underlying Coxeter system. The elements of C are called
chambers. Given s ∈ S and x, y ∈ C, then x is called s-adjacent to y, if δ(x, y) = s. The
chambers x, y are called adjacent, if they are s-adjacent for some s ∈ S. A gallery from x to
y is a sequence (x = x0, . . . , xk = y) such that xl−1 and xl are adjacent for all 1 ≤ l ≤ k;
the number k is called the length of the gallery. Let (x0, . . . , xk) be a gallery and suppose
si ∈ S with δ(xi−1, xi) = si. Then (s1, . . . , sk) is called the type of the gallery. A gallery from
x to y of length k is called minimal if there is no gallery from x to y of length < k. In this
case we have ℓ(δ(x, y)) = k (cf. [2, Corollary 5.17(1)]). Let x, y, z ∈ C be chambers such that
ℓ(δ(x, y)) = ℓ(δ(x, z)) + ℓ(δ(z, y)). Then the concatenation of a minimal gallery from x to z
and a minimal gallery from z to y yields a minimal gallery from x to y.

Given a subset J ⊆ S and x ∈ C, the J-residue of x is the set RJ(x) := {y ∈ C | δ(x, y) ∈
⟨J⟩}. Each J-residue is a building of type (⟨J⟩, J) with the distance function induced by δ
(cf. [2, Corollary 5.30]). A residue is a subset R of C such that there exist J ⊆ S and x ∈ C
with R = RJ(x). Since the subset J is uniquely determined by R, the set J is called the type
of R and the rank of R is de�ned to be the cardinality of J . A residue is called spherical if
its type is a spherical subset of S. A building is called spherical if its type is spherical. Let R
be a spherical J-residue. Then x, y ∈ R are called opposite in R if δ(x, y) = rJ . Two residues
P,Q ⊆ R are called opposite in R if for each p ∈ P there exists q ∈ Q such that p, q are
opposite in R and if for each q′ ∈ Q there exists p′ ∈ P such that q′, p′ are opposite in R. A
panel is a residue of rank 1. An s-panel is a panel of type {s} for s ∈ S. The building ∆ is
called thick, if each panel of ∆ contains at least three chambers; it is called locally �nite, if
each panel contains only �nitely many chambers.

Given x ∈ C and a J-residue R ⊆ C, then there exists a unique chamber z ∈ R such that
ℓ(δ(x, y)) = ℓ(δ(x, z))+ℓ(δ(z, y)) holds for each y ∈ R (cf. [2, Proposition 5.34]). The chamber
z is called the projection of x onto R and is denoted by projR x. Moreover, if z = projR x we
have δ(x, y) = δ(x, z)δ(z, y) for each y ∈ R. Let J ⊆ S, let R be a J-residue and suppose
c ∈ C, d ∈ R with ℓ(δ(c, d)j) = ℓ(δ(c, d)) + 1 for each j ∈ J . Then we have d = projR c (cf.
[24, Lemma 21.6(iv)]). Let R ⊆ T be two residues of ∆. Then projR c = projR projT c holds
for every c ∈ C by [19, Proposition 2].

An (type-preserving) automorphism of a building ∆ = (C, δ) is a bijection φ : C → C such
that δ(φ(c), φ(d)) = δ(c, d) holds for all chambers c, d ∈ C. We remark that some authors
distinguish between automorphisms and type-preserving automorphisms. An automorphism
in our sense is type-preserving. We denote the set of all automorphisms of the building ∆
by Aut(∆). It is a basic fact that the projection commutes with each automorphism. More
precisely, let c ∈ C, let R be a residue of ∆ and let φ ∈ Aut(∆). It follows directly from the
uniqueness of projR c that φ(projR c) = projφ(R) φ(c).

(1.2.1) Example. We de�ne δ : W ×W → W, (x, y) 7→ x−1y. Then Σ(W,S) := (W, δ) is
a building of type (W,S). The group W acts faithful on Σ(W,S) via left-multiplication, i.e.
W ≤ Aut(Σ(W,S)).

A subset Σ ⊆ C is called convex if for any two chambers c, d ∈ Σ and any minimal gallery
(c0 = c, . . . , ck = d), we have ci ∈ Σ for all 0 ≤ i ≤ k. Note that by [2, Example 5.44(b)] any
residue of a building is convex. A subset Σ ⊆ C is called thin if P ∩ Σ contains exactly two
chambers for every panel P ⊆ C which meets Σ. An apartment is a non-empty subset Σ ⊆ C,
which is convex and thin.

For two residues R and T we de�ne projT R := {projT r | r ∈ R}. By [2, Lemma
5.36(2)] projT R is a residue contained in T . Two residues R and T are called parallel if
projT R = T and projR T = R. By [24, Proposition 21.8(i)] the residues projT R and projR T
are parallel. If R and T are parallel, then it follows by [24, Proposition 21.8(ii), (iii)] that
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projTR : T → R, t → projR t and projRT : R → T, r 7→ projT r are bijections inverse to each
other and that the element δ(x, projT x) ∈W is independent of the choice of x ∈ R.

(1.2.2) Lemma. Let R be a spherical residue of rank 2 and let P ̸= Q ⊆ R be two parallel
panels. Then P and Q are opposite in R.

Proof. This is a consequence of [18, Lemma 18] and [2, Lemma 5.107].

(1.2.3) Theorem. Let ∆ = (C, δ) be a thick spherical building of type (W,S) and let c, d ∈ C
be opposite chambers in C. Then the only automorphism of ∆, which �xes

⋃
s∈S R{s}(c)∪{d}

pointwise, is the identity.

Proof. This is [2, Theorem 5.205].

1.3. Roots

Let (W,S) be a Coxeter system. A re�ection is an element ofW that is conjugate to an element
of S. For s ∈ S we let αs := {w ∈ W | ℓ(sw) > ℓ(w)} be the simple root corresponding to
s. A root is a subset α ⊆ W such that α = vαs for some v ∈ W and s ∈ S. We denote the
set of all roots by Φ(W,S). The set Φ(W,S)+ = {α ∈ Φ(W,S) | 1W ∈ α} is the set of all
positive roots and Φ(W,S)− = {α ∈ Φ(W,S) | 1W /∈ α} is the set of all negative roots. For
each root α ∈ Φ(W,S) we denote the opposite root by −α and we denote the unique re�ection
which interchanges these two roots by rα ∈W ≤ Aut(Σ(W,S)). Moreover, for each re�ection
r there exist two roots ±βr which are interchanged by r. A pair {α, β} of distinct roots is
called prenilpotent if both α∩β and (−α)∩ (−β) are non-empty sets. For such a pair we will
write [α, β] := {γ ∈ Φ(W,S) | α∩ β ⊆ γ and (−α)∩ (−β) ⊆ −γ} and (α, β) := [α, β] \{α, β}.
A pair {α, β} ⊆ Φ of two roots is called nested, if α ⊊ β or β ⊊ α.

(1.3.1) Convention. For the rest of this paper we let (W,S) be a Coxeter system of �nite
rank and we de�ne Φ := Φ(W,S) (resp. Φ+,Φ−).

(1.3.2) Lemma. For s ̸= t ∈ S we have αt ⊆ (−αs) ∪ tαs.

Proof. Let w ∈ αt. If ℓ(sw) < ℓ(w), then w ∈ (−αs) and we are done. Thus we can assume
ℓ(sw) > ℓ(w). As w ∈ αt, we have ℓ(tw) > ℓ(w) and hence ℓ(stw) = ℓ(w) + 2 > ℓ(tw). Thus
tw ∈ αs and hence w ∈ tαs.

(1.3.3) Remark. Let s ̸= t ∈ S and let β ∈ (αs, αt). Then we have αs ∩ αt ⊆ β and hence
(−β) ⊆ (−αs) ∪ (−αt). Moreover, we have (−αs) ∩ (−αt) ⊆ (−β) and hence β ⊆ αs ∪ αt.

1.4. Coxeter buildings

In this section we consider the Coxeter building Σ(W,S). At �rst we note that roots are convex
(cf. [2, Lemma 3.44]). For α ∈ Φ we denote by ∂α (resp. ∂2α) the set of all panels (resp.
spherical residues of rank 2) stabilized by rα. Furthermore, we de�ne C(∂α) :=

⋃
P∈∂α P and

C(∂2α) :=
⋃

R∈∂2αR. The set ∂α is called the wall associated with α. Let G = (c0, . . . , ck) be
a gallery. We say that G crosses the wall ∂α if there exists 1 ≤ i ≤ k such that {ci−1, ci} ∈ ∂α.
It is a basic fact that a minimal gallery crosses a wall at most once (cf. [2, Lemma 3.69]).
Let (c0, . . . , ck) and (d0 = c0, . . . , dk = ck) be two minimal galleries from c0 to ck and let
α ∈ Φ. Then ∂α is crossed by the minimal gallery (c0, . . . , ck) if and only if it is crossed by
the minimal gallery (d0, . . . , dk). Moreover, a gallery which crosses each wall at most once
is already minimal. For a minimal gallery G = (c0, . . . , ck), k ≥ 1, we denote the unique
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1. Basic de�nitions

root containing ck−1 but not ck by αG. For α1, . . . , αk ∈ Φ we say that a minimal gallery
G = (c0, . . . , ck) crosses the sequence of roots (α1, . . . , αk), if ci−1 ∈ αi and ci /∈ αi all
1 ≤ i ≤ k.

We denote the set of all minimal galleries G = (c0 = 1W , . . . , ck) by Min. For w ∈ W we
denote the set of all G ∈ Min of type (s1, . . . , sk) with w = s1 · · · sk by Min(w). For w ∈ W
with ℓ(sw) = ℓ(w)− 1 we let Mins(w) be the set of all G ∈ Min(w) of type (s, s2, . . . , sk).

For a positive root α ∈ Φ+ we de�ne kα := min{k ∈ N | ∃G = (c0, . . . , ck) ∈ Min :
αG = α}. We remark that kα = 1 if and only if α is a simple root. Furthermore, we de�ne
Φ(k) := {α ∈ Φ+ | kα ≤ k} for k ∈ N. Let R be a residue and let α ∈ Φ+. Then we call α a
simple root of R if there exists P ∈ ∂α such that P ⊆ R and projR 1W = projP 1W . In this
case R is also stabilized by rα and hence R ∈ ∂2α.

(1.4.1) Lemma. Let R be a spherical residue of Σ(W,S) of rank 2 and let α ∈ Φ. Then
exactly one of the following hold:

(a) R ⊆ α;

(b) R ⊆ (−α);

(c) R ∈ ∂2α;

Proof. It is clear, that the three cases are exclusive. Suppose that R ̸⊆ α and R ̸⊆ (−α).
Then there exist c ∈ R ∩ (−α) and d ∈ R ∩ α. Let (c0 = c, . . . , ck = d) be a minimal gallery.
As residues are convex, we have ci ∈ R for every 0 ≤ i ≤ k. As c ∈ (−α), d ∈ α, there exists
1 ≤ i ≤ k with ci−1 ∈ (−α), ci ∈ α. In particular, {ci−1, ci} ∈ ∂α and hence R ∈ ∂2α.

(1.4.2) Lemma. Let R, T be two residues of Σ(W,S). Then the following are equivalent

(i) R, T are parallel;

(ii) a re�ection of Σ(W,S) stabilizes R if and only if it stabilizes T ;

(iii) there exist two sequences R0 = R, . . . , Rn = T and T1, . . . , Tn of residues of spherical
type such that for each 1 ≤ i ≤ n the rank of Ti is equal to 1 + rank(R), the residues
Ri−1, Ri are contained and opposite in Ti and moreover, we have projTi

R = Ri−1 and
projTi

T = Ri.

Proof. This is [13, Proposition 2.7].

(1.4.3) Lemma. Let α ∈ Φ be a root and let x, y ∈ α ∩ C(∂α). Then there exists a minimal
gallery (c0 = x, . . . , ck = y) such that ci ∈ C(∂2α) for each 0 ≤ i ≤ k. Moreover, for every
1 ≤ i ≤ k there exists Li ∈ ∂2α with {ci−1, ci} ⊆ Li.

Proof. This is a consequence of [12, Lemma 2.3] and its proof.

(1.4.4) Remark. Let α ∈ Φ be a root and let R ∈ ∂2α. Then there exist c ∈ α ∩ R and
d ∈ (−α) ∩ R. By considering a minimal gallery from c to d, there exist adjacent chambers
c′ ∈ α ∩ R and d′ ∈ (−α) ∩ R. In particular, {c′, d′} ∈ ∂α. This shows that for all R ∈ ∂2α
there exists P ∈ ∂α such that P ⊆ R.

(1.4.5) Lemma. Let α ̸= β ∈ Φ be two non-opposite roots and let R ̸= T ∈ ∂2α∩∂2β. Then
R and T are parallel.
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Proof. As R, T ∈ ∂2α ∩ ∂2β, there exist panels P1, Q1 ∈ ∂α and P2, Q2 ∈ ∂β such that
P1, P2 ⊆ R and Q1, Q2 ⊆ T by the previous remark. By Lemma (1.4.2) the panels Pi, Qi are
parallel for each i ∈ {1, 2}. [18, Lemma 17] yields that Pi, projT Pi are parallel and hence
projT P1 ∈ ∂α, projT P2 ∈ ∂β by Lemma (1.4.2). As α ̸= ±β, we deduce projT P1 ̸= projT P2

and hence projT Pi ⊆ projT R for each i ∈ {1, 2}. Since projT R is a residue contained in T
containing two di�erent panels, we deduce that projT R is not a panel and hence projT R = T .
Using similar arguments, we obtain projR T = R and R, T are parallel.

(1.4.6) Lemma. Assume that ⟨J⟩ = ∞ for all J ⊆ S containing three elements and let
α ̸= β ∈ Φ be two non-opposite roots. Then we have |∂2α ∩ ∂2β| ≤ 1.

Proof. Assume that there exist R ̸= T ∈ ∂2α ∩ ∂β. By the previous lemma, R and T are
parallel. But this is a contradiction to Lemma (1.4.2), as there exist no spherical residues of
rank 3 by assumption and the claim follows.

(1.4.7) Lemma. Let α ̸= β ∈ Φ be two non-opposite roots. Then the following are equivalent:

(i) {α, β} or {−α, β} is nested.

(ii) We have o(rαrβ) = ∞.

(iii) We have ∂2α ∩ ∂2β = ∅.

Proof. The implication (i) ⇒ (ii) follows exactly as in [2, Proposition 3.165]. Now suppose
(ii) and assume that there exists R ∈ ∂2α ∩ ∂2β. As R is �nite, there exists k ∈ N such
that (rαrβ)

k �xes a chamber, i.e. (rαrβ)
kw = (rαrβ)

k(w) = w for some w ∈ W . But
this implies (rαrβ)

k = 1. As o(rαrβ) = ∞, we obtain a contradiction. Now suppose that
non of {α, β}, {−α, β} is nested. In particular, we have α ̸⊆ β, (−α) ̸⊆ (−β) as well as
(−α) ̸⊆ β, α ̸⊆ (−β). This implies that non of α ∩ (−β), (−α) ∩ β, (−α) ∩ (−β), α ∩ β is the
empty set. By [37, Proposition 29.24] there exists R ∈ ∂2α ∩ ∂2β and we are done.

(1.4.8) Lemma. Let α, β, γ ∈ Φ be three pairwise distinct and pairwise non-opposite roots.
Suppose that ∂2α ∩ ∂2β ∩ ∂2γ ̸= ∅. Then the following hold:

(a) ∂2α ∩ ∂2β = ∂2α ∩ ∂2γ;

(b) ((α, β) ∪ (−α, β)) ∩ {γ,−γ} ≠ ∅.

Proof. Let R ∈ ∂2α ∩ ∂2β ∩ ∂2γ be a residue and let δ ∈ {β, γ}. It su�ces to show that for
each R ̸= T ∈ ∂2α∩∂2δ we have T ∈ ∂2α∩∂2β∩∂2γ. Let R ̸= T ∈ ∂2α∩∂2δ. Using Lemma
(1.4.5), we deduce that R and T are parallel. Then Lemma (1.4.2) implies that a re�ection of
Σ(W,S) stabilizes R if and only if it stabilizes T . As rα, rβ, rγ stabilize R, they also stabilize
T and Assertion (a) follows.

Assume (α, β) ∩ {γ,−γ} = ∅ = (−α, β) ∩ {γ,−γ}. This implies that non of α ∩ β and
(−α) ∩ β is contained in γ or −γ, respectively. This implies that there exist x, x′ ∈ α ∩ β
with x ∈ (−γ), x′ ∈ γ. As roots as convex, [2, Lemma 5.45] yields projR x ∈ α ∩ β ∩ (−γ)
and projR x

′ ∈ α ∩ β ∩ γ. Similarly, there exist y, y′ ∈ (−α) ∩ β with y ∈ (−γ), y′ ∈ γ and
projR y ∈ (−α) ∩ β ∩ (−γ),projR y′ ∈ (−α) ∩ β ∩ γ. As residues and roots are convex, there
exist P,Q ∈ ∂γ such that P,Q ⊆ R,P ⊆ α ∩ β and Q ⊆ (−α) ∩ β. As P ⊆ α and Q ⊆ (−α),
we have P ̸= Q and Lemma (1.2.2) implies that there exist p ∈ P, q ∈ Q which are opposite
in R. Using [36, Proposition 5.4], every chamber in R lies on a minimal gallery from p to q.
As roots are convex and p, q ∈ β, we infer R ⊆ β, which is a contradiction to R ∈ ∂2β.
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1.5. Re�ection and combinatorial triangles in Σ(W,S)

A re�ection triangle is a set T of three re�ections such that the order of tt′ is �nite for all
t, t′ ∈ T and such that

⋂
t∈T ∂

2βt = ∅, where βt is one of the two roots associated with the
re�ection t. Note that ∂2βt = ∂2(−βt). A set of three roots T is called combinatorial triangle
(or simply triangle) if the following hold:

(CT1) The set {rα | α ∈ T} is a re�ection triangle.

(CT2) For each α ∈ T , there exists σ ∈ ∂2β ∩ ∂2γ such that σ ⊆ α, where {β, γ} = T\{α}.

(1.5.1) Remark. Let R be a re�ection triangle. Then there exist three roots β1, β2, β3 ∈ Φ
such that R = {rβ1 , rβ2 , rβ3}. Let {i, j, k} = {1, 2, 3}. As o(rβi

rβj
) < ∞, there exists

σk ∈ ∂2βi ∩ ∂2βj by Lemma (1.4.7). Since R is a re�ection triangle, we have σk /∈ ∂2βk and
Lemma (1.4.1) yields σk ⊆ βk or σk ⊆ −βk. De�ne αk := εkβk, where εk ∈ {+,−} and
σk ⊆ εkβk. Then {α1, α2, α3} is a triangle, which induces the re�ection triangle R.

(1.5.2) Lemma. Let α ̸= β ∈ Φ be two non-opposite roots such that o(rαrβ) < ∞ and let
γ ∈ (α, β). Then ∂2α ∩ ∂2β ∩ ∂2γ ̸= ∅ and o(rαrγ), o(rβrγ) <∞.

Proof. By Lemma (1.4.7) there exists R ∈ ∂2α ∩ ∂2β. We deduce ∅ ̸= R ∩ α ∩ β ⊆ γ and
∅ ≠ R ∩ (−α) ∩ (−β) ⊆ (−γ). If follows from Lemma (1.4.1) that R ∈ ∂2γ. In particular,
R ∈ ∂2α ∩ ∂2β ∩ ∂2γ. We deduce o(rαrγ), o(rβrγ) <∞ from Lemma (1.4.7).

(1.5.3) Lemma. Assume that (W,S) is 2-spherical and cyclic hyperbolic. Then any triangle
T is a chamber, i.e. |

⋂
α∈T α| = 1. In particular, (−α, β) = ∅ for all α ̸= β ∈ T .

Proof. Let T = {α, β, γ} and let R ∈ ∂2α ∩ ∂2β be a residue such that R ⊆ γ. Suppose that
R∩α∩β contains more than one chamber. Let c, d be adjacent and contained in α∩β∩R and
let δ ∈ Φ be a root with {c, d} ∈ ∂δ. Then Lemma (1.4.8)(b) implies (−α, β) ∩ {δ,−δ} ≠ ∅
and {rα, rβ, rγ}, {rα, rγ , rδ}, {rβ, rγ , rδ} are re�ection triangles. But this is a contradiction to
the classi�cation in [20, Figure 8 in §5.1]. Thus R ∩ α ∩ β does only contain one chamber c.
Assume that |

⋂
α∈T α| > 1. Then there exists δ ∈ Φ which contains c but not a neighbour

contained in
⋂

α∈T α. Again, this is a contradiction to the classi�cation in [20, Figure 8 in
§5.1]. This implies |

⋂
α∈T α| = 1. Let c ∈

⋂
α∈T α, let s ̸= t ∈ S, let α ∈ T be the root which

does not contain the s-neighbour of c and let β ∈ T be the root which does not contain the
t-neighbour of c. Then R := R{s,t}(c) ∈ ∂2α ∩ ∂2β. As T = {α, β, γ} is a triangle, we have
R /∈ ∂2γ. We deduce from c ∈ R∩γ that R ⊆ γ. This shows (−α, β) = ∅ for all α, β ∈ T .

(1.5.4) Proposition. Assume that (W,S) is 2-spherical and cyclic hyperbolic. Let R ̸= T be
two residues of rank 2 such that P := R∩T is a panel. If ℓ(1W ,projR 1W ) < ℓ(1W ,projT 1W ),
then projT 1W = projP 1W .

Proof. We let α ∈ Φ+ be the root with P ∈ ∂α. Let (c0 = 1W , . . . , ck = projR c0, . . . , ck′ =
projP c0) be a minimal gallery from c0 to projP c0 with ck, . . . , ck′ ∈ R and we assume
projT c0 ̸= projP c0. Then we have k′ > ℓ(1W , projT 1W ) > ℓ(1W ,projR 1W ) = k. Let
(d0 = c0, . . . , dm = projT c0, . . . , dm′ = projP c0) be a minimal gallery from c0 to projP c0 with
dm, . . . , dm′ ∈ T . We de�ne H := (d0, . . . , dm+1) and β := αH . Then we have T ∈ ∂2α ∩ ∂2β
and, as a minimal gallery crosses a wall at most once, we deduce α ̸= β. Note that the wall
∂β is crossed by the minimal gallery (c0, . . . , ck′). Since R ̸= T, T ∈ ∂2α ∩ ∂2β,R ∈ ∂2α
and α ̸= ±β, Lemma (1.4.6) implies R /∈ ∂2β. We de�ne γ := α(c0,...,ck+1). As R /∈ ∂2β,
we obtain that ∂β is crossed by (c0, . . . , ck). As k < k′, we have projR 1W ̸= projP 1W and
hence α ̸= γ. As α, γ ∈ Φ+, we have α ̸= ±γ. Assume that o(rβrγ) = ∞. We deduce β ⊆ γ.
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But ∂γ has to be crossed by the gallery (d0, . . . , dm′). Since R ∈ ∂2α ∩ ∂2γ, T ∈ ∂2α and
α ̸= ±γ, we have T /∈ ∂γ2 by Lemma (1.4.6) as before. This implies that (d0, . . . , dm) crosses
the wall ∂β and hence γ ⊆ β. This yields a contradiction and we have o(rβrγ) < ∞. As
R ∈ ∂2α∩∂2γ,R /∈ ∂2β, Lemma (1.4.8)(a) implies ∂2α∩∂2β∩∂2γ = ∅ and hence {rα, rβ, rγ}
is a re�ection triangle.

As T ∈ ∂2α ∩ ∂2β, T /∈ ∂2γ and projP 1W ∈ T ∩ (−γ), we have T ⊆ (−γ). As R ∈
∂2α ∩ ∂2γ,R /∈ ∂2β and projP 1W ∈ R ∩ (−β), we have R ⊆ (−β). Let 1 ≤ i ≤ k be
such that {ci−1, ci} ∈ ∂β. Note that {dm, dm+1} ∈ ∂β, dm+1 ∈ (−β) ∩ T ∩ α ⊆ (−γ) and
ci ∈ (−β) ∩ γ. By Lemma (1.4.3) there exists a minimal gallery (e0 = dm+1, . . . , ez = ci)
such that ej ∈ C(∂2β). As dm+1 ∈ (−γ) and ci ∈ γ, there exists 1 ≤ p ≤ z such that
ep−1 ∈ (−γ) and ep ∈ γ. Again by Lemma (1.4.3) there exists L ∈ ∂2β such that {ep−1, ep} ∈
L. Then L ∈ ∂2β ∩ ∂2γ and as a minimal gallery crosses a wall at most once, we have
ep−1 ∈ L ∩ α and, as {rα, rβ, rγ} is a re�ection triangle and L /∈ ∂2α, we obtain L ⊆ α.
This implies that {α,−β,−γ} is a triangle and hence (α, γ) = ∅ by Lemma (1.5.3). In
particular, k + 1 = k′ and ℓ(1W ,projR 1W ) = ℓ(1W , projP 1W ) − 1 ≥ ℓ(1W ,projT 1W ). Since
ℓ(1W , projR 1W ) < ℓ(1W , projT 1W ) holds by assumption, this yields a contradiction and we
have projT 1W = projP 1W .

(1.5.5) Corollary. Assume that (W,S) is 2-spherical and cyclic hyperbolic. Let α ∈ Φ+ be
a root and let P,Q ∈ ∂α. Let P0 = P, . . . , Pn = Q and R1, . . . , Rn as in Lemma (1.4.2). If
projRi

1W = projPi−1
1W for some 1 ≤ i ≤ n, then projRn

1W = projPn−1
1W .

Proof. We will show the hypothesis by induction on n − i. If n − i = 0 there is nothing to
show. Thus we suppose n − i > 0. Let (d0 = 1W , . . . , dm = projRi

d0) be a minimal gallery
of type (t1, . . . , tm), let w := t1 · · · tm and let Ji be the type of Ri. Then w = projRi

1W =
projPi−1

1W ∈ Pi−1. As Pi−1 ̸= Pi are contained and opposite in Ri by Lemma (1.4.2), there
exists w′ ∈ Pi such that w ∈ Pi−1, w

′ are opposite in Ri, i.e. w′ = wrJi . Let s ∈ Ji+1\Ji.
As w = projRi

1W , we deduce ℓ(wrJi) = ℓ(w) + ℓ(rJi). Since W is not of spherical type,
we obtain ℓ(wrJis) = ℓ(w) + ℓ(rJi) + 1. Let t ∈ S be such that Ji ∩ Ji+1 = {t}. Then
Ri ∩ Ri+1 = Pi = Pt(w

′) = Pt(wrJi). Assume that ℓ((projPi
1W )s) = ℓ(projPi

1W ) − 1.
Let (c0 = w, . . . , ck = projPi

1W ) be a minimal gallery contained in Ri. We deduce that
ℓ(cis) = ℓ(ci)− 1 for each 0 ≤ i ≤ k. Let r ∈ S be such that δ(c1, c2) = r. As muv ̸= 2 for all
u ̸= v ∈ S, we deduce ℓ(projRi

1W ) > ℓ(projR{r,s}(c1)
1W ). Applying the previous proposition

to Ri and R{r,s}(c1) we obtain a contradiction. Thus ℓ((projPi
1W )s) = ℓ(projPi

1W ) + 1 and
hence ℓ(1W , projRi

1W ) < ℓ(1W ,projRi+1
1W ). By Proposition (1.5.4) we infer projRi+1

1W =
projPi

1W . Using induction the claim follows.

(1.5.6) Lemma. Assume that (W,S) is of type (4, 4, 4). Let {α1, α2, α3} be a triangle and
let β ∈ (α1, α2). Then o(rβrα3) = ∞. In particular, we have −β ⊆ α3,−α3 ⊆ β and
(−β, α3) = ∅ = (−α3, β).

Proof. Since {α1, α2, α3} is a triangle, there exist R1 ∈ ∂2α2 ∩ ∂2α3 with R1 ⊆ α1, R2 ∈
∂2α1 ∩ ∂2α3 with R2 ⊆ α2 and R3 ∈ ∂2α1 ∩ ∂2α2 with R3 ⊆ α3. Let β ∈ (α1, α2) be a root
and let {i, j} = {1, 2}. Then Lemma (1.5.2) implies ∂2α1∩∂2α2∩∂2β ̸= ∅ and o(rαirβ) <∞.
Lemma (1.4.8)(a) yields ∂2α1 ∩ ∂α2 = ∂2αi ∩ ∂2β and Rj /∈ ∂2β (note that Rj ∈ ∂2αi but
Rj /∈ ∂2αj).

We assume that o(rβrα3) < ∞. Then {rαi , rβ, rα3} is a re�ection triangle. Since ∅ ̸=
αi ∩Rj ⊆ αi ∩αj ⊆ β and Rj /∈ ∂2β, we deduce Rj ⊆ β. Thus {αi, α3, β} or {−αi, α3, β} is a
triangle. Assume that {αi, α3, β} is a triangle. Then α1∩α2∩α3 ⊆ αi∩β∩α3. Since β ̸= αj ,
Lemma (1.5.3) yields a contradiction. Thus {−αi, α3, β} is a triangle, i.e. {−α1, α3, β} and
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1. Basic de�nitions

{−α2, α3, β} are triangles. But then (α1, β) = ∅ = (β, α2), which is a contradiction as the
type is (4, 4, 4).

Thus o(rβrα3) = ∞. As ∅ ≠ R3 ∩ (−β) ⊆ α3, we have (−β) ∩ α3 ̸= ∅. As ∅ ≠ R2 ∩
α1 ∩ (−α3) ⊆ α1 ∩ α2 ⊆ β, we have (−α3) ∩ β ̸= ∅ and {−α3, β} is a prenilpotent pair.
As

⋂3
i=1 αi ⊆ α1 ∩ α2 ⊆ β and

⋂3
i=1 αi ̸⊆ (−α3), we deduce (−α3) ⊆ β and hence also

(−β) ⊆ α3. Let {x, y} ∈ ∂α3 be such that
⋂3

i=1 αi = {y} and let R ∈ ∂2α1 ∩ ∂2α2 be the
residue containing y. Let d ∈ R be opposite to y in R and let (c0 = x, c1 = y, . . . , cn = d) be
a minimal gallery. Then ci ∈ R for each 1 ≤ i ≤ n. Let (β1, . . . , βn) be the sequence of roots
crossed by (c0, . . . , cn). Then β1 = −α3 and o(rβi

rβ) < ∞ for each 2 ≤ i ≤ n by Lemma
(1.4.7). Assume (−α3, β) ̸= ∅. [2, Lemma 3.69] implies that for each γ ∈ (−α3, β) there exists
2 ≤ i ≤ n with γ = βi. As γ ⊊ β, this is a contradiction and hence (−α3, β) = ∅.

1.6. Twin buildings

Let ∆+ = (C+, δ+),∆− = (C−, δ−) be two buildings of the same type (W,S). A codistance
(or a twinning) between ∆+ and ∆− is a mapping δ∗ : (C+ × C−)∪ (C− × C+) →W satisfying
the following axioms, where ε ∈ {+,−}, x ∈ Cε, y ∈ C−ε and w = δ∗(x, y):

(Tw1) δ∗(y, x) = w−1;

(Tw2) if z ∈ C−ε is such that s := δ−ε(y, z) ∈ S and ℓ(ws) = ℓ(w)− 1, then δ∗(x, z) = ws;

(Tw3) if s ∈ S, there exists z ∈ C−ε such that δ−ε(y, z) = s and δ∗(x, z) = ws.

A twin building of type (W,S) is a triple ∆ = (∆+,∆−, δ∗) where ∆+ = (C+, δ+),∆− =
(C−, δ−) are buildings of type (W,S) and where δ∗ is a twinning between ∆+ and ∆−.

We put C := C+ ∪C− and de�ne the distance function δ : C ×C →W by setting δ(x, y) :=
δ+(x, y) (resp. δ−(x, y), δ∗(x, y)) if x, y ∈ C+ (resp. x, y ∈ C−, (x, y) ∈ Cε × C−ε for some
ε ∈ {+,−}).

Given x, y ∈ C, we put ℓ(x, y) := ℓ(δ(x, y)). If ε ∈ {+,−} and x, y ∈ Cε, then we put
ℓε(x, y) := ℓ(δε(x, y)) and for (x, y) ∈ Cε × C−ε we put ℓ⋆(x, y) := ℓ(δ∗(x, y)).

Let ε ∈ {+,−}. For x ∈ Cε we put xop := {y ∈ C−ε | δ∗(x, y) = 1W }. It is a direct
consequence of (Tw1) that y ∈ xop if and only if x ∈ yop for any pair (x, y) ∈ Cε × C−ε. If
y ∈ xop then we say that y is opposite to x or that (x, y) is a pair of opposite chambers.

A residue (resp. panel) of ∆ is a residue (resp. panel) of ∆+ or ∆−; given a residue R ⊆ C
then we de�ne its type and rank as before. The twin building ∆ is called thick if ∆+ and ∆−
are thick.

Let ε ∈ {+,−}, let J be a spherical subset of S and let R be a J-residue of ∆ε. For every
chamber x ∈ C−ε there exists a unique chamber z ∈ R such that ℓ⋆(x, y) = ℓ⋆(x, z)− ℓε(z, y)
holds for each chamber y ∈ R (cf. [2, Lemma 5.149]). The chamber z is called the projection
of x onto R; it will be denoted by projR x. Moreover, if z = projR x we have δ∗(x, y) =
δ∗(x, z)δε(z, y) for each y ∈ R.

Let Σ+ ⊆ C+ and Σ− ⊆ C− be apartments of ∆+ and ∆−, respectively. Then the set
Σ := Σ+ ∪Σ− is called twin apartment if |xop ∩Σ| = 1 holds for each x ∈ Σ. If (x, y) is a pair
of opposite chambers, then there exists a unique twin apartment containing x and y. We will
denote it by A(x, y). It is a fact that A(x, y) = {z ∈ C | δ(x, z) = δ(y, z)} (cf. [2, Proposition
5.179(1)]).

An automorphism of ∆ is a bijection φ : C → C such that φ preserves the sign, the distance
functions δε and the codistance δ∗.
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1.7. Root group data

An RGD-system of type (W,S) is a pair D =
(
G, (Uα)α∈Φ

)
consisting of a group G together

with a family of subgroups Uα (called root groups) indexed by the set of roots Φ, which satis�es
the following axioms, where H :=

⋂
α∈ΦNG(Uα) and Uε := ⟨Uα | α ∈ Φε⟩ for ε ∈ {+,−}:

(RGD0) For each α ∈ Φ, we have Uα ̸= {1}.

(RGD1) For each prenilpotent pair {α, β} ⊆ Φ, the commutator group [Uα, Uβ] is contained
in the group U(α,β) := ⟨Uγ | γ ∈ (α, β)⟩.

(RGD2) For every s ∈ S and each u ∈ Uαs\{1}, there exist u′, u′′ ∈ U−αs such that the
product m(u) := u′uu′′ conjugates Uβ onto Usβ for each β ∈ Φ.

(RGD3) For each s ∈ S, the group U−αs is not contained in U+.

(RGD4) G = H⟨Uα | α ∈ Φ⟩.

Let w ∈ W,G = (c0, . . . , ck) ∈ Min(w) and let (α1, . . . , αk) be the sequence of roots crossed
by G. Then we de�ne the group Uw := Uα1 · · ·Uαk

. We note that the group Uw does not
depend on G ∈ Min(w). Following [34, Remark (1) on p. 258] we have mst ∈ {2, 3, 4, 6, 8,∞}
for all s ̸= t ∈ S. An RGD-system D = (G, (Uα)α∈Φ) is said to be over F2 if every root group
has cardinality 2.

Let D = (G, (Uα)α∈Φ) be an RGD-system of type (W,S) and letH :=
⋂

α∈ΦNG(Uα), Bε =
H⟨Uα | α ∈ Φε⟩ for ε ∈ {+,−}. It follows from [2, Theorem 8.80] that there exists an
associated twin building ∆(D) = (∆(D)+,∆(D)−, δ∗) of type (W,S) such that ∆(D)ε =
(G/Bε, δε) for ε ∈ {+,−} and G acts on ∆(D) via left multiplication. There is a distinguished
pair of opposite chambers in ∆(D) corresponding to the subgroups Bε for ε ∈ {+,−}. We
will denote this pair by (c+, c−).

(1.7.1) Example. Let (W,S) be spherical and of rank 2 and let D = (G, (Uα)α∈Φ) be an
RGD-system of type (W,S) over F2. For S = {s, t} we deduce mst ∈ {2, 3, 4, 6}, since in an
octagon there exists a root group of cardinality at least 4 (cf. [35, (16.9) and (17.7)]). Let
G ∈ Min(rS) and let (β1, . . . , βm) be the sequence of roots crossed by G, where m = mst.
Then Φ+ = {β1, . . . , βm} and β1, βm are the two simple roots. We let Uβi

= ⟨ui⟩. For all
1 ≤ i < j ≤ m we will de�ne subsets M{βi,βj} ⊆ (βi, βj) which correspond to the commutator
relations. If [ui, uj ] = 1, we put M{βi,βj} := ∅. We now state all non-trivial commutator
relations depending on the type (W,S) (cf. [35, Ch. 16, 17]):

� A1 ×A1: There are no non-trivial commutator relations.

� A2: There is only one non-trivial commutator relation, namely [u1, u3] = u2 (cf. [35,
16.1, 17.2]). We de�ne M{β1,β3} = {β2}.

� B2 = C2: As in the case of A2 there is only one non-trivial commutator relation, namely
[u1, u4] = u2u3 (cf. [35, 16.2, 17.4] and [27, 5.2.3]). We de�ne M{β1,β4} := {β2, β3}.

� G2: We have the following non-trivial commutator relations (cf. [35, 15.20, 16.8, 17.6]):

[u1, u3] = u2, [u3, u5] = u4, [u1, u5] = u2u4, [u2, u6] = u4, [u1, u6] = u2u3u4u5

We de�ne M{β1,β3} := {β2},M{β3,β5} := {β4},M{β1,β5} := {β2, β4},M{β2,β6} := {β4}
and M{β1,β6} := {β2, β3, β4, β5}.
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Note that for i < j we have [ui, uj ] =
∏

γ∈M{βi,βj}
uγ , where the order of the product is taken

via the order of the indices. For i > j we have [ui, uj ] =
∏

γ∈M{βi,βj}
uγ , where the order of

the product is taken in the inverse order. Thus M{βi,βj} contains all information about the
commutators [ui, uj ] and [uj , ui].

Property (FPRS)

Let (G, (Uα)α∈Φ) be an RGD-system and let ∆(D) = (∆(D)+,∆(D)−, δ∗) be the associated
twin building. For Γ ≤ G we de�ne r(Γ) to be the supremum of the set of all non-negative real
numbers r such that Γ �xes pointwise the closed ball B(c+, r) := {d ∈ C+ | ℓ+(c+, d) ≤ r},
where C+ is the set of chambers of ∆(D)+. In [16], Caprace and Rémy have introduced the
following property, where ℓ(1W , α) := min{k ∈ N | ∃d ∈ α : ℓ(1W , d) = k} for all roots α ∈ Φ:

(FPRS) Given any sequence of roots (αn)n≥0 of Φ such that limn→∞ ℓ(1W , αn) = ∞, we
have limn→∞ r(U−αn) = ∞.

1.8. Graphs of groups

This subsection is based on [22, Section 2] and [32].
Following Serre, a graph Γ consists of a vertex set V Γ, an edge set EΓ, the inverse function

−1 : EΓ → EΓ and two edge endpoint functions o : EΓ → V Γ, t : EΓ → V Γ satisfying the
following axioms:

(i) The function −1 is a �xed-point free involution on EΓ;

(ii) For each e ∈ EΓ we have o(e) = t(e−1).

For an edge e ∈ EΓ we call e−1 the inverse edge of e.
A tree of groups is a triple G = (T, (Gv)v∈V Γ, (Ge)e∈EΓ) consisting of a �nite tree T

(i.e. V T and ET are �nite), a family of vertex groups (Gv)v∈V T and a family of edge groups
(Ge)e∈ET . Every edge e ∈ ET comes equipped with two boundary monomorphisms αe : Ge →
Go(e) and ωe : Ge → Gt(e). We assume that for each e ∈ ET we have Ge−1 = Ge, αe−1 = ωe

and ωe−1 = αe. We let GT := lim
−→

G be the direct limit of the inductive system formed by

the vertex groups, edge groups and boundary monomorphisms and call GT a tree product. A
sequence of groups is a tree of groups where the underlying graph is a sequence. If the tree T
is an edge, i.e. V T = {v, w} and ET = {e, e−1}, we will write GT = Gv ⋆Ge Gw. We extend
this notation to arbitrary sequences T : if V T = {v0, . . . , vn}, ET = {ei, e−1

i | 1 ≤ i ≤ n} and
o(ei) = vi−1, t(ei) = vi, then we will write GT = Gv0 ⋆Ge1

Gv1 ⋆Ge2
· · · ⋆Gen

Gvn .

(1.8.1) Proposition. Let G = (T, (Gv)v∈V T , (Ge)e∈ET ) be a tree of groups. If T is partitioned
into subtrees whose tree products are G1, . . . , Gn and the subtrees are contracted to vertices,
then GT is isomorphic to the tree product of the tree of groups whose vertex groups are the Gi

and the edge groups are the Ge, where e is the unique edge which joins two subtrees. Moreover,
Gi → GT is injective.

Proof. This is [23, Theorem 1].

(1.8.2) Remark. The next proposition is a special case of a more general result (cf. [22,
Proposition 4.3]). As we only need a special case, we have reformulated the claim and its
proof.
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(1.8.3) Proposition. Let T be a tree and let T ′ be a subtree of T . Moreover, we let
G = (T, (Gv)v∈V T , (Ge)e∈ET ) and H = (T ′, (Hv)v∈V T ′ , (He)e∈ET ′) be two trees of groups
and suppose the following:

(i) For each v ∈ V T ′ we have Hv ≤ Gv.

(ii) For each e ∈ ET ′ we have α−1
e (Ho(e)) = ω−1

e (Ht(e)).

(iii) For each e ∈ ET ′ we have He = α−1
e (Ho(e)) = ω−1

e (Ht(e)).

Then the canonical homomorphism ν : HT ′ → GT between the tree product HT ′ and the tree
product GT is injective. In particular, we have ν(HT ′) ∩Gv = Hv for each v ∈ V T ′.

Proof. We use the notations from [22]. Let B be the G-graph (cf. [22, De�nition 3.1]) de�ned
as follows: As graph-morphism choose the inclusion mapping T ′ → T . The associated groups
are given by Hv and we let fα = 1 = fω for all f ∈ ET ′. By [22, Convention 3.2] each
edge f ∈ ET ′ has label (1, f, 1) and each vertex u ∈ V T ′ has label (Hu, u). We show that
B is folded (cf. [22, De�nition 4.1]). Since the inclusion mapping T ′ → T is injective, [22,
De�nition 4.1(i)] does not hold. Moreover, let f ∈ ET ′ be an edge. Then f has label
(1, f, 1), o(f) has label (Ho(f), o(f)) and t(f) has label (Ht(f), t(f)). By assumption we have
α−1
f (Ho(f)) = ω−1

e (Ht(f)) and hence [22, De�nition 4.1(ii)] does also not hold. In particular,
B is folded. Now [22, Lemma 4.2] implies that any H-reduced H-path is also G-reduced. Now
the claim follows from the normal form theorem [22, Proposition 2.4].

We should remark that in [22] they work with fundamental groups instead of tree products.
But the fundamental group π(A, v0) in [22] is equal to the group π(G,T, v0) in [32] and by
[32, Proposition 20] this group is isomorphic to the corresponding tree product.

(1.8.4) Corollary. Let G = (T, (Gv)v∈V T , (Ge)e∈ET ) be a tree of groups and let Hv ≤ Gv

for each v ∈ V T . Assume that He := α−1
e (Ho(e)) = ω−1

e (Ht(e)) for all e ∈ ET and let
H = (T, (Hv)v∈V T , (He)e∈ET ) be the associated tree of groups. Let T ′ be a subtree of T and
let L = (T ′, (Gv)v∈V T ′ , (Ge)e∈ET ′), K = (T ′, (Hv)v∈V T ′ , (He)e∈ET ′). Then HT ∩ LT ′ = KT ′

in GT .

Proof. Using Proposition (1.8.1) we deduce that LT ′ ≤ GT and KT ′ ≤ HT . Using Proposition
(1.8.3) we deduce HT ≤ GT and KT ′ ≤ LT ′ . Using Proposition (1.8.1) again, we can contract
the tree T ′ to a vertex. Then LT ′ is a vertex group containing KT ′ . Let e ∈ ET be an edge
joining T ′ with a vertex of V T\V T ′ and suppose o(e) ∈ T ′. As αe(Ge) ≤ Go(e), the previous
proposition yields αe(Ge)∩KT ′ ≤ Go(e) ∩KT ′ = Ho(e). This implies α−1

e (KT ′) ≤ α−1
e (Ho(e)).

As He ≤ α−1
e (KT ′) ≤ α−1

e (Ho(e)) = He, we deduce α−1
e (KT ′) = He = α−1

e (Ho(e)). We denote
the tree products of the trees of groups G and H, where T ′ is contracted to a vertex, by G′

and H ′. Using Proposition (1.8.3) the canonical homomorphism ν ′ : H ′ → G′ is injective
and we have ν ′(H ′) ∩ LT ′ = KT ′ (note that LT ′ is a vertex group of G′). This �nishes the
claim.

(1.8.5) Corollary. Let A,B,C be groups and let C → A,C → B be two monomorphisms.
Then A ∩B = C in A ⋆C B.

Proof. Using Proposition (1.8.3) we have a monomorphism A ∼= A ⋆C C → A ⋆C B and
A ∩B = C.

(1.8.6) Remark. Let A′, A,B,C be groups, let α : C → A, β : C → B and α′ : C → A′ be
monomorphisms and let φ : A→ A′ be an isomorphism. If α′ = φ ◦α, then the amalgamated
products A⋆C B and A′ ⋆C B are isomorphic. One can prove this by constructing two unique
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homomorphisms A ⋆C B → A′ ⋆C B and A′ ⋆C B → A ⋆C B such that the concatenation is
the identity on A (resp. A′) and on B.

(1.8.7) Lemma. Let G = (T, (Gv)v∈V T , (Ge)e∈ET ) be a tree of groups. Let e ∈ ET and
Ge ≤ Ho(e) ≤ Go(e). Let V T ′ = V T ∪ {x}, ET ′ =

(
ET\{e, e−1}

)
∪ {f, f−1, h, h−1} with

o(f) = o(e), t(f) = x = o(h), t(h) = t(e), Gx := Ho(e) =: Gf , Gh := Ge. Then the two tree
products of the trees of groups are isomorphic.

Proof. Using Proposition (1.8.1), we contract the edge f to a vertex. The claim follows now
from Remark (1.8.6) and the fact that Go(e) ⋆Ho(e)

Ho(e)
∼= Go(e).
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2. Commutator blueprints

We introduce the notion of commutator blueprints, the main objects of this thesis. These
objects will canonically provide the groups Uw. We �rst establish the decomposition U+

∼=
Us ⋉ Ns and show the existence of the automorphism τs ∈ Aut(Ns) with τs(uα) = usα. In
De�nition (2.2.11) we de�ne the group Ps by using the automorphisms us, τs ∈ Aut(Ns). The
main result of this chapter is Theorem (2.2.14), where we give a su�cient condition in order
to show that a faithful and Weyl-invariant commutator blueprint is integrable.

2.1. De�nition

(2.1.1) Convention. For the rest of this thesis we assume that (W,S) is crystallographic.

We let P be the set of prenilpotent pairs of positive roots. For w ∈W we de�ne Φ(w) :=
{α ∈ Φ+ | w /∈ α}. Note that Φ(G) = Φ(w) holds for every G ∈ Min(w). Let G =
(c0, . . . , ck) ∈ Min and let (α1, . . . , αk) be the set of roots crossed by G. We de�ne Φ(G) :=
{αi | 1 ≤ i ≤ k}. Using the indices we obtain an ordering ≤G on Φ(G) and, in particular, on
[α, β] = [β, α] ⊆ Φ(G) for all α, β ∈ Φ(G). We abbreviate I := {(G,α, β) ∈ Min×Φ+ ×Φ+ |
α, β ∈ Φ(G), α ≤G β}.

Given a family
(
MG

α,β

)
(G,α,β)∈I

, where MG
α,β ⊆ (α, β) is ordered via ≤G. For w ∈ W we

de�ne the group Uw via the following presentation:

Uw := ⟨{uα | α ∈ Φ(w)} | Rinv, Rcr⟩ ,

where Rinv = {u2α = 1 | α ∈ Φ(w)} and Rcr = {[uα, uβ] =
∏

γ∈MG
α,β

uγ | (G,α, β) ∈
I, G ∈ Min(w)}. Here the product is understood to be ordered via the ordering ≤G, i.e.
if G ∈ Min(w), α ≤G β ∈ Φ(G) and MG

α,β = {γ1 ≤G . . . ≤G γk} ⊆ (α, β) ⊆ Φ(G), then∏
γ∈MG

α,β
uγ = uγ1 · · ·uγk . Note that there could be G,H ∈ Min(w), α, β ∈ Φ(w) with α ≤G β

and β ≤H α. In this case we obtain two commutator relations, namely

[uα, uβ] =
∏

γ∈MG
α,β

uγ and [uβ, uα] =
∏

γ∈MH
β,α

uγ

From now on we will implicitly assume that each product
∏

γ∈MG
α,β

uγ is ordered via the

ordering ≤G. Note that Φ(1W ) = ∅ and hence U1W = ⟨∅ | ∅⟩ = {1}.
Let Dyn(W,S) be a crystallographic Dynkin diagram. A commutator blueprint of type

Dyn(W,S) is a family M =
(
MG

α,β

)
(G,α,β)∈I

of subsets MG
α,β ⊆ (α, β) ordered via ≤G satis-

fying the following axioms:

(CB1) Let G = (c0, . . . , ck) ∈ Min and let H = (c0, . . . , cm) for some 1 ≤ m ≤ k. Then we
have MH

α,β =MG
α,β for all α, β ∈ Φ(H) with α ≤H β.

(CB2) Let s ̸= t ∈ S be with m := mst < ∞ and assume that (s, t) ∈ E(Dyn(W,S)).
Let G ∈ Mins(r{s,t}), let (α1, . . . , αm) be the sequence of roots crossed by G and let
1 ≤ i < j ≤ m. Then MG

αi,αj
= M{βi,βj} as sets, where M{βi,βj} is given in Example

(1.7.1).
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(CB3) For each w ∈W we have |Uw| = 2ℓ(w), where Uw is de�ned as above.

(2.1.2) Remark. (a) In (CB1) we have Φ(H) ⊆ Φ(G) and the order ≤G restricted to el-
ements in Φ(H) is precisely the order ≤H . Thus the expression MG

α,β is de�ned. In

(CB2) we have Φ(G) = [αs, αt] and we only require that MG
α,β = M{α,β} as sets. Note

that MG
α,β is an ordered set and the axiom only makes a statement about the under-

lying set. We also remark that it is a direct consequence of (CB3), that for all G =
(c0, . . . , ck) ∈ Min(w) and Z2

∼= Uαi = ⟨uαi⟩ ≤ Uw the product map Uα1 × · · · × Uαk
→

Uw, (u1, . . . , uk) 7→ u1 · · ·uk is a bijection.

(b) Suppose mst ̸= 6 for all s, t ∈ S. As (W,S) is crystallographic, we have mst ∈
{2, 3, 4,∞}. In this case (CR2) reduced to the following:

(CR2) Let s ̸= t ∈ S be with mst < ∞, let G ∈ Min(r{s,t}) and let α ̸= β ∈ Φ(G) =
[αs, αt] be such that α ≤G β. Then

MG
α,β =

{
(α, β) if {α, β} = {αs, αt}
∅ if {α, β} ≠ {αs, αt}

Note that all the information needed from Dyn(W,S) are already contained in the
Coxeter system. Thus, if mst ̸= 6 for all s, t ∈ S, we will say for short commutator
blueprint of type (W,S).

(2.1.3) Convention. For the rest of Chapter 2 we let Dyn(W,S) be a crystallographic

Dynkin diagram and M =
(
MG

α,β

)
(G,α,β)∈I

be a commutator blueprint of type Dyn(W,S).

(2.1.4) Lemma. Let w ∈ W,G = (c0, . . . , ck) ∈ Min(w) and let (α1, . . . , αk) be the se-
quence of roots crossed by G. Then Φ(w) = {α1, . . . , αk} and the group Uw has the following
presentation:

UG :=

〈
uα1 , . . . , uαk

|

{
∀1 ≤ i ≤ k : u2αi

= 1,

∀1 ≤ i < j ≤ k : [uαi , uαj ] =
∏

γ∈MG
αi,αj

uγ

〉

Proof. Clearly, we have an epimorphism UG → Uw. Since each element in UG is of the form∏k
i=1 u

εi
αi
, where εi ∈ {0, 1}, UG has cardinality at most 2k. As Uw has cardinality 2k, the

claim follows.

Using the previous lemma, the axioms (CB1) and (CB3) imply that the canonical mapping
uα 7→ uα induces a monomorphism from Uw to Uws for all w ∈W, s ∈ S with ℓ(ws) = ℓ(w)+1.
We let U+ be the direct limit of the groups Uw with natural inclusions Uw → Uws if ℓ(ws) =
ℓ(w) + 1. Then M is called faithful, if the canonical homomorphisms Uw → U+ are injective.

We call the commutator blueprintM (locally) Weyl-invariant if for every 1 ̸= w ∈W, s ∈ S
and G = (c0, . . . , ck) ∈ Min(w) the following hold:

� If ℓ(sw) = ℓ(w) + 1, then sG := (1W , sc0 = s, sc1, . . . , sck) is a minimal gallery and we
have M sG

sα,sβ = sMG
α,β := {sγ | γ ∈MG

α,β} for all α ≤G β ∈ Φ(G) (with o(rαrβ) <∞).

� If ℓ(sw) = ℓ(w)− 1 and G ∈ Mins(w), then sG := (sc1 = 1W , sc2, . . . , sck) is a minimal
gallery and we have M sG

sα,sβ = sMG
α,β for all αs ̸= α ≤G β ∈ Φ(G) (with o(rαrβ) <∞).

(2.1.5) Remark. Let M be Weyl-invariant and let 1 ̸= w ∈W, s ∈ S.
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2.1. De�nition

(a) Suppose ℓ(sw) = ℓ(w) + 1, G ∈ Min(w) and α ̸= β ∈ Φ(G). Then α ≤G β if and only if
sα ≤sG sβ. Moreover, we have the following relation in Usw:

[usα, usβ] =
∏

γ∈MsG
sα,sβ

uγ =
∏

γ∈sMG
α,β

uγ =
∏

γ∈MG
α,β

usγ

(b) Suppose ℓ(sw) = ℓ(w)− 1, G ∈ Mins(w) and α ̸= β ∈ Φ(G)\{αs}. Then again α ≤G β
if and only if sα ≤sG sβ and we have the following relation in Usw:

[usα, usβ] =
∏

γ∈MsG
sα,sβ

uγ =
∏

γ∈sMG
α,β

uγ =
∏

γ∈MG
α,β

usγ

(2.1.6) Lemma. For w ∈ W, s ∈ S with ℓ(sw) = ℓ(w) − 1 we de�ne the group Vw,s as the
subgroup of Uw generated by {uα | α ∈ Φ(w)\{αs}}. Then Vw,s is a normal subgroup of Uw

and a presentation of Vw,s is given by the presentation of Uw by deleting the generator uαs

and all relations in which uαs appears.

Proof. Using the commutator relations and the fact that [uαs , uα] = u
uαs
α uα, the subgroup Vw,s

is a normal subgroup of Uw. Let Ṽw,s be the group given by the presentation in the statement.
Then we have a canonical homomorphism Ṽw,s → Uw. Let G = (c0, . . . , ck) ∈ Mins(w). Then
α1 = αs and each element of Ṽw,s can be written in the form

∏k
i=2 u

εi
αi
, where εi ∈ {0, 1}.

Thus Ṽw,s is a group of cardinality at most 2k−1. Since the image of Ṽw,s in Uw is Vw,s and
this group has cardinality 2k−1, the homomorphism is an isomorphism and we are done.

(2.1.7) Lemma. Suppose w ∈W, s ∈ S with ℓ(sw) = ℓ(w)−1, let G = (c0, . . . , ck) ∈ Mins(w)
and let (α1 = αs, . . . , αk) be the sequence of roots crossed by G. Then we de�ne the group

VG :=

〈
uα2 , . . . , uαk

|

{
∀2 ≤ i ≤ k : u2αi

= 1,

∀2 ≤ i < j ≤ k : [uαi , uαj ] =
∏

γ∈MG
αi,αj

uγ

〉

and the canonical mapping uαi 7→ uαi extends to an isomorphism from VG to Vw,s. Moreover,
if M is Weyl-invariant, the mapping uα 7→ usα extends to an isomorphism from Vw,s to Usw.

Proof. The �rst part follows similar as in Lemma (2.1.4). For the second part we note that
sG ∈ Min(sw). Using Lemma (2.1.4) and Remark (2.1.5), we obtain that the mapping
uα → usα extends to an isomorphism.

(2.1.8) Example. Let D = (G, (Uα)α∈Φ) be an RGD-system of type (W,S) over F2, let H =
(c0, . . . , ck) ∈ Min and let (α1, . . . , αk) be the sequence of roots crossed by H. Then we have
Φ(H) = {α1 ≤H · · · ≤H αk}. By [2, Corollary 8.34(1)] there exists for each 1 ≤ m < i < n ≤
k a unique εi ∈ {0, 1} such that [uαm , uαn ] =

∏n−1
i=m+1 u

εi
αi
, and εi = 1 implies αi ∈ (αm, αn).

We de�ne M(D)Hαm,αn
:= {αi ∈ Φ(H) | [uαm , uαn ] =

∏n−1
i=m+1 u

εi
αi
, εi = 1} ⊆ (αm, αn) and

MD :=
(
M(D)Hα,β

)
(H,α,β)∈I

.

For s, t ∈ S with mst = 6 we get a canonical direction of the edge {s, t} via the commu-
tator relations. For s, t ∈ S with mst ∈ {3, 4,∞} we choose any direction. This gives us a
crystallographic Dynkin diagram Dyn(W,S). Clearly, (CB1) is satis�ed. By Example (1.7.1)
(CB2) holds and (CB3) is satis�es by [2, Corollary 8.34(1)]. Thus MD is a commutator
blueprint of type Dyn(W,S), which is faithful (cf. [2, Theorem 8.85]) and Weyl-invariant.

The commutator blueprint M is called integrable if there exists an RGD-system D of type
(W,S) over F2 such that MG

α,β =M(D)Gα,β holds for every (G,α, β) ∈ I.
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2. Commutator blueprints

2.2. Integrability of certain commutator blueprints

(2.2.1) Convention. For the rest of Chapter 2 we assume that the commutator blueprint
M is faithful and Weyl-invariant. Moreover, we �x s ∈ S in this section, unless it is stated.

As we have seen in the previous example, an integrable commutator blueprint is necessarily
faithful and Weyl-invariant. We will work out su�cient conditions in order to show that M
is integrable. We will see (cf. De�nition (2.2.12) and Theorem (2.2.14)) that under some
conditions, there exists an RGD-system containing U+. As a �rst step we construct the group
Ps (mentioned in Theorem (2.2.14)), which contains U+ as a subgroup.

Since M is faithful, we can identify Uw with its image in U+. In particular, we have
uα ∈ U+ for all α ∈ Φ+. We will write for short us := uαs .

We de�ne the subgroup Ns := ⟨x−1uαx | α ∈ Φ+\{αs}, x ∈ Us⟩ ≤ U+ (the idea of the
de�nition of Ns is obtained from [29, 6.2.1]). Next, we will construct two automorphisms of
Ns. Clearly, U+ is generated by Us and Ns, and Ns is a normal subgroup of U+.

(2.2.2) Lemma. We have U+ = Us ⋉Ns.

Proof. It su�ces to show that Us ∩Ns = 1. At �rst we will show that the assignment uα 7→ 1
for αs ̸= α ∈ Φ+ and us 7→ us will extend to a homomorphism Uw → Us. In view of
the de�nition of Uw it su�ces to consider the relations u2α = 1 and [uα, uβ] = uγ1 · · ·uγk .
Since αs /∈ (α, β) for every {α, β} ∈ P, these relations are mapped to 1 and we obtain
homomorphisms Uw → Us for every w ∈W . Since these homomorphisms respect the natural
inclusions Uw → Uwt, the universal property of direct limits yields a homomorphism φ : U+ →
Us with φ(uα) = 1 for αs ̸= α ∈ Φ+ and φ(us) = us. Since Ns ≤ kerφ and Us ∩ kerφ = 1,
the claim follows.

(2.2.3) Remark. The next step is to construct an automorphism τs on Ns which maps uα to
usα. The rough idea is that Ps should look like ⟨us, τs⟩⋉Ns.

In the next lemma we will show that Ns has a suitable presentation. The elements vα will
play the role of the elements usuαus for all αs ̸= α ∈ Φ+.

(2.2.4) Lemma. We de�ne the group Ms via the following presentation:

〈
{uα, vα | αs ̸= α ∈ Φ+} |



∀αs ̸= α ∈ Φ+ : u2α = 1 = v2α,

∀w ∈W, ℓ(sw) = ℓ(w) + 1, G ∈ Min(w), α ≤G β ∈ Φ(G) :

[uα, uβ] =
∏

γ∈MG
α,β

uγ , [vα, vβ] =
∏

γ∈MG
α,β

vγ ,

∀w ∈W, ℓ(sw) = ℓ(w)− 1, G ∈ Mins(w), αs ̸= α ≤G β ∈ Φ(G) :

[uα, uβ] =
∏

γ∈MG
α,β

uγ , [vα, vβ] =
∏

γ∈MG
α,β

vγ ,

∀w ∈W, ℓ(sw) = ℓ(w)− 1, G ∈ Mins(w), αs ̸= α ∈ Φ(G) :

vα =
(∏

γ∈MG
αs,α

uγ

)
uα

〉

Then we have us ∈ Aut(Ms) such that us(uα) = vα and us(vα) = uα. In particular, Ms →

Ns,

{
uα 7→ uα

vα 7→ usuαus
is an isomorphism.

Proof. We show that the assignments uα 7→ vα and vα 7→ uα extend to an endomorphism
of Ms. Therefore we have to show that every relation is mapped to a relation. For that it

su�ces to consider the relations of the form vα =
(∏

γ∈MG
αs,α

uγ

)
uα. Suppose w ∈ W with
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2.2. Integrability of certain commutator blueprints

that ℓ(sw) = ℓ(w) − 1 and let G ∈ Mins(w). Let Vw,s be the normal subgroup of Uw as
in Lemma (2.1.6). Using Lemma (2.1.7) we deduce that the canonical assignment uα 7→ uα
extends to a homomorphism from Vw,s

∼= VG to Ms. Moreover, for αs ̸= α ∈ Φ(G) we have
the following relation in Uw and, since both sides of the equation are contained in Vw,s, this
yields also a relation in Ms (note that α ∈ Φ(G) implies γ ∈ Φ(G) for all γ ∈ (αs, α)): ∏

γ∈MG
αs,α

 ∏
β∈MG

αs,γ

uβ

uγ

 ∏
γ∈MG

αs,α

uγ

uα =

 ∏
γ∈MG

αs,α

[us, uγ ]uγ

 [us, uα]uα

= us

 ∏
γ∈MG

αs,α

uγ

uαus

= us[us, uα]uαus

= uα

Note that by de�nition we also have the relation vδ =
(∏

ε∈MG
αs,δ

uε

)
uδ for every αs ̸= δ ∈

Φ(G). Now we consider the discussed relation: ∏
γ∈MG

αs,α

vγ

 vα =

 ∏
γ∈MG

αs,α

 ∏
β∈MG

αs,γ

uβ

uγ

 ∏
γ∈MG

αs,α

uγ

uα = uα

Thus every relation is mapped to a relation and we have an endomorphism us of Ms inter-
changing uα and vα. Since u2s = id, it is an automorphism of Ms. Consider U := Z2 ⋉Ms,
where Z2 acts on Ms via us. Moreover, we denote the generator of Z2 by us. Then the
assignment

us 7→ us

uα 7→ uα

vα 7→ usuαus

extends to a homomorphism U → U+, since all relations in U do also hold in U+. Now we
will show that there does also exist a homomorphism U+ → U mapping us onto us and uα
onto uα. For this we consider w ∈ W . If ℓ(sw) = ℓ(w) + 1, then every relation in Uw is
also a relation in Ms and hence in U . Thus we obtain a homomorphism Uw → U mapping
uα onto uα. Assume that ℓ(sw) = ℓ(w) − 1 and let G ∈ Mins(w). By Lemma (2.1.4) Uw is
isomorphic to UG and we have to show that [us, uα] =

∏
γ∈MG

αs,α
uγ is a relation in U . Note

that this is a relation if and only if usuαus =
(∏

γ∈MG
αs,α

uγ

)
uα is a relation in U . But in

U we have usuαus = vα and hence it is a relation by de�nition. In particular, the mappings
Uw → U preserve the inclusion mappings Uw → Uwt and by the universal property of direct
limits there exists a homomorphism U+ → U . Since both concatenations are the identity on
the generating sets, both homomorphisms are isomorphisms. In particular, Ms is isomorphic
to Ns.

(2.2.5) Lemma. Let w,w′ ∈ W be such that ℓ(sw) = ℓ(w) − 1 and ℓ(sw′) = ℓ(w′) − 1. Let
G ∈ Mins(w), H ∈ Mins(w

′) and let αs ̸= α ∈ Φ(G) ∩ Φ(H). Then the following hold in Ms:

(a)
(∏

γ∈MG
αs,α

usγ

)
usα =

(∏
γ∈MH

αs,α
usγ

)
usα;

(b)
(∏

γ∈MG
αs,α

vsγ

)
vsα =

(∏
γ∈MH

αs,α
vsγ

)
vsα.
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2. Commutator blueprints

Proof. Assertion (b) is a direct consequence of Assertion (a) and the fact that us is an auto-
morphism of Ms interchanging uα and vα. Thus it su�ces to show Assertion (a).

By de�nition we have the following two equations in Ms: ∏
γ∈MG

αs,α

uγ

uα = vα =

 ∏
γ∈MH

αs,α

uγ

uα

Using Lemma (2.2.4) we infer that
(∏

γ∈MG
αs,α

uγ

)
uα =

(∏
γ∈MH

αs,α
uγ

)
uα is a relation in

Ns ≤ U+. We remark that [αs, α] ⊆ Φ(G) ∩ Φ(H). Using the fact that Uw → U+ is injective
and both sides of the relation are contained in Uw, we deduce that it is also a relation in Uw.
Moreover, both sides are contained in the subgroup Vw,s ≤ Uw. Now we can apply Lemma
(2.1.7) and the fact that Usw →Ms is a homomorphism to show that ∏

γ∈MG
αs,α

usγ

usα =

 ∏
γ∈MH

αs,α

usγ

usα

is a relation in Ms. This �nishes the claim.

(2.2.6) Remark. Let R ∈ ∂2αs and let Φ(R) = {α ∈ Φ+ | R ∈ ∂2α}. Then [α, β] ⊆ Φ(R) for
all α, β ∈ Φ(R).

(2.2.7) Lemma. Let R ∈ ∂2αs and let Φ(R) = {α ∈ Φ+ | R ∈ ∂2α}. We de�ne the group
UR via the following presentation

UR :=

〈
{uα | α ∈ Φ(R)} |



∀α ∈ Φ(R) : u2α = 1,

∀w ∈W, ℓ(sw) = ℓ(w) + 1, G ∈ Min(w), α, β ∈ Φ(G) ∩ Φ(R), α ≤G β :

[uα, uβ] =
∏

γ∈MG
α,β

uγ ,

∀w ∈W, ℓ(sw) = ℓ(w)− 1, G ∈ Mins(w), α, β ∈ Φ(G) ∩ Φ(R), α ≤G β :

[uα, uβ] =
∏

γ∈MG
α,β

uγ

〉

For NR := ⟨uα | αs ̸= α ∈ Φ(R)⟩ ≤ UR we have UR
∼= Us ⋉ NR and a presentation of NR

is given by the presentation of UR by deleting the generator uαs and all relations in which
uαs appears. Furthermore, there exists τs ∈ Aut(NR) such that τs(uα) = usα holds for all
αs ̸= α ∈ Φ(R), and we have τ2s = 1 = (usτs)

3 in Aut(NR).

Proof. Similarly as in Lemma (2.2.2) we deduce UR
∼= Us ⋉ NR. Suppose w ∈ W with

ℓ(sw) = ℓ(w) − 1 and let G ∈ Mins(w) be such that Φ(R) ⊆ Φ(G). Then each element of
UR can be written in the form

∏m
j=1 u

εj
βj
, where εj ∈ {0, 1} and {β1 = αs ≤G · · · ≤G βm} =

Φ(R) ⊆ Φ(G). Since we have a homomorphism UR → U+ and the image of UR is contained
in Uw, (CB3) implies that UR → U+ is a monomorphism. Let ÑR be the group given by the
presentation in the statement. Then again each element in ÑR can be written in the form∏m

j=2 u
εj
βj
. Since we have a homomorphism ÑR → UR with image NR, the cardinality of NR

implies that this homomorphism must be an isomorphism.
Now we will see that the assignment uα 7→ usα extends to an endomorphism of NR. First

of all we note that for αs ̸= α ∈ Φ(R) we have αs ̸= sα ∈ Φ(R). We consider all three
types of relations, where u2α = 1 is obvious. Suppose w ∈ W with ℓ(sw) = ℓ(w) + 1 and let
G ∈ Min(w), α, β ∈ Φ(G) ∩ Φ(R) with α ≤G β. Using the Weyl-invariance and the fact that
[usα, usβ] =

∏
γ∈MsG

sα,sβ
uγ is a relation, we deduce similar as in Remark (2.1.5) that

[usα, usβ] =
∏

γ∈MsG
sα,sβ

uγ =
∏

γ∈sMG
α,β

uγ =
∏

γ∈MG
α,β

usγ
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2.2. Integrability of certain commutator blueprints

is a relation in NR. Vice versa, we assume ℓ(sw) = ℓ(w) − 1 and we let G ∈ Mins(w), α ̸=
αs ̸= β ∈ Φ(G)∩Φ(R) with α ≤G β. Using the Weyl-invariance and the fact that [usα, usβ] =∏

γ∈MsG
sα,sβ

uγ is a relation, we deduce similar as in Remark (2.1.5) that

[usα, usβ] =
∏

γ∈MsG
sα,sβ

uγ =
∏

γ∈sMG
α,β

uγ =
∏

γ∈MG
α,β

usγ

is a relation in NR. Thus τs : NR → NR, uα 7→ usα is an endomorphism. Since τ2s = 1, we
infer τs ∈ Aut(NR).

To show the claim it su�ces to show that (usτs)
3 = 1. We do a case by case distinction

on the type of the residue R (we will write for short f.uβ := f(uβ)):

� A1 ×A1: Let Φ(R) = {αs, β}. Then sβ = β. Since us, uβ commute by (CB2), Example
(1.7.1) and the Weyl-invariance, we obtain

(usτs)
3.uβ = (usτs)

2.[us, uβ]uβ = (usτs)
2.uβ = uβ

� A2: Let Φ(R) = {αs, δ, ε}. Then sε = δ and we assume that {αs, ε} is a set of simple
roots of R. Using (CB2), Example (1.7.1) and the Weyl-invariance, we obtain the
following:

(usτs)
3.uε = (usτs)

2.uδ = (usτs).uδuε = uε

(usτs)
3.uδ = usτs.uε = uδ

� B2 = C2: Let Φ(R) = {αs, δ, γ, ε} and assume that {αs, ε} is a set of simple roots of R.
Furthermore, we assume that sγ = γ and sε = δ. Using (CB2), Example (1.7.1) and
the Weyl-invariance, we obtain that only us and uε do not commute. We compute the
following:

(usτs)
3.uγ = (usτs)

2.uγ = uγ

(usτs)
3.uε = (usτs)

2.uδ = usτs.uδuγuε = uε

(usτs)
3.uδ = usτs.uε = uδ

� G2: Let Φ(R) = {β1, . . . , β6} and we assume that {β1, β6} is a set of simple roots of
R and that the roots are ordered via their indices. Assume �rst that αs = β1. Then
sβ2 = β6, sβ3 = β5 and sβ4 = β4. Let ui := uβi

∈ U⋆
βi
. Using (CB2), Example (1.7.1)

and the Weyl-invariance, we obtain

(usτs)
3.u4 = (usτs)

2.u4 = u4

(usτs)
3.u6 = (usτs)

2.u2 = usτs.[u1, u6]u6 = usτs.u2u3u4u5u6

= [u1, u6]u6[u1, u5]u5[u1, u4]u4[u1, u3]u3[u1, u2]u2

= u2u3u4u5u6u2u4u5u4u2u3u2 = u2u3u4u6u3u2 = u6

(usτs)
3.u2 = usτs.u6 = u2

(usτs)
3.u5 = (usτs)

2.[u1, u3]u3 = (usτs)
2.u2u3

= usτs.[u1, u6]u6[u1, u5]u5

= usτs.u2u3u4u5u6u2u4u5 = usτs.u3u4u6

= [u1, u5]u5[u1, u4]u4[u1, u2]u2 = u2u4u5u4u2 = u5
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2. Commutator blueprints

(usτs)
3.u3 = (usτs)

2.[u1, u5]u5 = (usτs)
2.u2u4u5 = u6u4u3u4u6 = u3

It is also possible that αs = β6. In this case sβ1 = β5, sβ2 = β4 and sβ3 = β3 and we
compute the following:

(usτs)
3.u3 = (usτs)

2.u3 = u3

(usτs)
3.u1 = (usτs)

2.u5 = usτs.u1[u1, u6] = usτs.u1u2u3u4u5

= u5[u5, u6]u4[u4, u6]u3[u3, u6]u2[u2, u6]u1[u1, u6]

= u5u4u3u2u4u1u2u3u4u5 = u5u4u1u2u5 = u4u1[u1, u5]u2 = u1

(usτs)
3.u5 = usτs.u1 = u5

(usτs)
3.u2 = (usτs)

2.u4[u4, u6] = (usτs)
2.u4

= usτs.u2[u2, u6] = usτs.u2u4

= u4[u4, u6]u2[u2, u6] = u4u2u4 = u2

(usτs)
3.u4 = usτs.u2 = u4[u4, u6] = u4

� I2(8): This type does not occur since (W,S) is crystallographic.

� I2(∞): Since R is a spherical rank 2 residue, R cannot be of type I2(∞).

(2.2.8) Remark. Let −αs ⊆ β ∈ Φ+, let w,w′ ∈ W such that ℓ(sw) = ℓ(w)− 1 and ℓ(sw′) =
ℓ(w′) − 1, let G ∈ Mins(w), H ∈ Mins(w

′) such that sβ ∈ Φ(G) ∩ Φ(H). Note that αs ∈
Φ(G) ∩ Φ(H) as well. Then we have ∏

γ∈MG
αs,sβ

usγ

uβ =

 ∏
γ∈MH

αs,sβ

usγ

uβ

in Ms by Lemma (2.2.5). Using the isomorphism Ms → Ns from Lemma (2.2.4), this is also
a relation in Ns.

(2.2.9) Proposition. There exists an endomorphism τs : Ns → Ns such that τs(uα) = usα

for each αs ̸= α ∈ Φ+ and τs(usuβus) = us

(∏
γ∈MG

αs,sβ
usγ

)
uβus for each −αs ⊆ β ∈ Φ+,

where w ∈W is such that ℓ(sw) = ℓ(w)− 1 and G ∈ Mins(w) with sβ ∈ Φ(G).

Proof. We will construct an endomorphism τs : Ms → Ms and show that the induced endo-
morphism on Ns is as required. At �rst we will show that the following assignments (call it
τs) extend to an endomorphism of Ms, where in the second case G ∈ Mins(w) is such that
{αs, α} ⊆ Φ(G) for some w ∈ W with ℓ(sw) = ℓ(w) − 1, and in the third case G ∈ Mins(w)
is such that {αs, sα} ⊆ Φ(G) for some w ∈ W with ℓ(sw) = ℓ(w) − 1 (note that by Lemma
(2.2.5) the assignments do neither depend on w ∈W with ℓ(sw) = ℓ(w)−1 nor on the gallery
G ∈ Mins(w)):

∀αs ̸= α ∈ Φ+ : uα 7→ usα

∀{αs, α} ∈ P : vα 7→

 ∏
γ∈MG

αs,α

usγ

usα

−αs ⊆ α : vα 7→

 ∏
γ∈MG

αs,sα

vsγ

 vα

We distinguish all relations:
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2.2. Integrability of certain commutator blueprints

(i) u2α = 1: There is nothing to show.

(ii) v2α = 1: We distinguish the following cases:

(a) {αs, α} ∈ P: Suppose w ∈ W with ℓ(sw) = ℓ(w) − 1 and G ∈ Mins(w) with

αs, α ∈ Φ(G). Then we have
((∏

γ∈MG
αs,α

uγ

)
uα

)2
= ([us, uα]uα)

2 = 1 in Uw and

hence in Vw,s. This implies that ∏
γ∈MG

αs,α

usγ

usα

2

is a relation in Usw by Lemma (2.1.7) and, using the homomorphism Usw → Ms,
hence also in Ms. But this is exactly the image of vα under the assignment τs.

(b) −αs ⊆ α: Suppose w ∈W with ℓ(sw) = ℓ(w)− 1 and G ∈ Mins(w) with αs, sα ∈
Φ(G). We have to show that ∏

γ∈MG
αs,sα

vsγ

 vα

2

is a relation. Clearly, αs ̸= sα ∈ Φ+ and v2sα is a relation by de�nition. Using Case
(a), we already know that  ∏

γ∈MG
αs,sα

usγ

uα

2

is a relation in Ms. Since us is an automorphism of Ms interchanging uα and vα
by Lemma (2.2.4), we obtain the relation

1 = us

 ∏
γ∈MG

αs,sα

usγ

uα

2 =

 ∏
γ∈MG

αs,sα

vsγ

 vα

2

(iii) [uα, uβ] =
∏

γ∈MG
α,β

uγ : Suppose w ∈ W,G ∈ Min(w) and α ≤G β ∈ Φ(G)\{αs}. If

ℓ(sw) = ℓ(w) + 1 (resp. ℓ(sw) = ℓ(w) − 1 and if G ∈ Mins(w)), the Weyl-invariance
yields that

[usα, usβ] =
∏

γ∈MsG
sα,sβ

uγ =
∏

γ∈sMG
α,β

uγ =
∏

γ∈MG
α,β

usγ

is a relation (cf. Remark (2.1.5)).

(iv) [vα, vβ] =
∏

γ∈MG
α,β

vγ : Suppose w ∈ W,G ∈ Min(w) and α ≤G β ∈ Φ(G)\{αs}. We

distinguish the following cases:

(aa) ℓ(sw) = ℓ(w) − 1: Suppose G ∈ Mins(w) and note that {αs, δ} ∈ P for each
αs ̸= δ ∈ Φ(G). We have to show that

 ∏
γ∈MG

αs,α

usγ

usα,

 ∏
γ∈MG

αs,β

usγ

usβ

 =
∏

γ∈MG
α,β

 ∏
δ∈MG

αs,γ

usδ

usγ
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2. Commutator blueprints

is a relation in Ms. Note that [uα, uβ] =
∏

γ∈MG
α,β

uγ is a relation in Uw and Vw,s

and hence also the us-conjugate, which is given by
 ∏

γ∈MG
αs,α

uγ

uα,

 ∏
γ∈MG

αs,β

uγ

uβ

 = [usuαus, usuβus]

= us[uα, uβ]us

= us

 ∏
γ∈MG

α,β

uγ

us

=
∏

γ∈MG
α,β

 ∏
δ∈MG

αs,γ

uδ

uγ

Using Lemma (2.1.7) and the homomorphism Usw →Ms the claim follows.

(bb) ℓ(sw) = ℓ(w) + 1: Then αs /∈ Φ(G). Let δ ∈ Φ(G). Then either −αs ⊆ δ or
o(rαsrδ) < ∞. At �rst we observe the following: Suppose o(rαsrδ) < ∞, let
R ∈ ∂2αs ∩ ∂2δ and let H ∈ Mins(sw) be such that Φ(R) ⊆ Φ(H). Then αs ≤H β
for each αs ̸= β ∈ Φ(H). Using Lemma (2.2.7) we deduce the following relation in
NR:  ∏

γ∈MH
αs,δ

usγ

usδ = τsus.uδ

= usτsusτs.uδ

= us.

 ∏
γ∈MH

αs,sδ

usγ

uδ

=

 ∏
γ∈MH

αs,sδ

 ∏
ω∈MH

αs,sγ

uω

usγ


 ∏

ω∈MH
αs,δ

uω

uδ

Since we have a canonical homomorphism NR →Ms, this is also a relation in Ms.
In particular, we have the following relation in Ms (using Lemma (2.2.5) (b) and

the fact that vρ =
(∏

ω∈MH
αs,ρ

uω

)
uρ for both ρ ∈ {sγ, δ}): ∏

γ∈MH
αs,δ

usγ

usδ =

 ∏
γ∈MH

αs,sδ

 ∏
ω∈MH

αs,sγ

uω

usγ


 ∏

ω∈MH
αs,δ

uω

uδ

=

 ∏
γ∈MH

αs,sδ

vsγ

 vδ

=

 ∏
γ∈MsG

αs,sδ

vsγ

 vδ

26



2.2. Integrability of certain commutator blueprints

This shows that vδ is mapped onto
(∏

γ∈MsG
αs,sδ

vsγ

)
vδ for each δ ∈ Φ(G). In

particular, this assignment does not depend on o(rαsrδ) for δ ∈ Φ(G). We have to
verify that

 ∏
γ∈MsG

αs,sα

vsγ

 vα,

 ∏
γ∈MsG

αs,sβ

vsγ

 vβ

 =
∏

γ∈MG
α,β

 ∏
δ∈MsG

αs,sγ

vsδ

 vγ

is a relation in Ms. For that we observe the following:

� [vsα, vsβ] =
∏

γ∈MsG
sα,sβ

vγ is a relation in Ms.

�

[(∏
γ∈MsG

αs,sα
usγ

)
uα,

(∏
γ∈MsG

αs,sβ
usγ

)
uβ

]
=

∏
γ∈MsG

sα,sβ

(∏
δ∈MsG

αs,γ
usδ

)
usγ is

a relation in Ms by (aa).

� Since us is an automorphism of Ms we deduce that the following is also a
relation in Ms:

 ∏
γ∈MsG

αs,sα

vsγ

 vα,

 ∏
γ∈MsG

αs,sβ

vsγ

 vβ

 =
∏

γ∈MsG
sα,sβ

 ∏
δ∈MsG

αs,γ

vsδ

 vsγ

� Since M is Weyl-invariant, we have M sG
sα,sβ = sMG

α,β . Using substitution, we
deduce that

 ∏
γ∈MsG

αs,sα

vsγ

 vα,

 ∏
γ∈MsG

αs,sβ

vsγ

 vβ

 =
∏

γ∈MG
α,β

 ∏
δ∈MsG

αs,sγ

vsδ

 vγ

is also a relation in Ms.

(v) vα =
(∏

γ∈MG
αs,α

uγ

)
uα: This holds by de�nition.

This shows the existence of the endomorphism τs : Ms → Ms. Using the isomorphism

φ : Ms → Ns from Lemma (2.2.4), we obtain an endomorphism τs : Ns → Ns via Ns
φ−1

→
Ms

τs→Ms
φ→ Ns. Moreover, this endomorphism is as required.

(2.2.10) Corollary. We have τ2s = 1 = (usτs)
3. In particular, τs ∈ Aut(Ns).

Proof. For short we will not specify a gallery G. If MG
αs,α appears, we will implicitly assume

that G ∈ Mins(w) for some w ∈W with ℓ(sw) = ℓ(w)− 1 such that α ∈ Φ(G).
By the previous proposition we have τs(uα) = usα for each αs ̸= α ∈ Φ+ and τs(usuβus) =

us

(∏
γ∈MG

αs,sβ
usγ

)
uβus for each −αs ⊆ β ∈ Φ+. Using this we establish the claim. At �rst

we will show τ2s = 1. Therefore, let αs ̸= α ∈ Φ+. Then αs ̸= sα ∈ Φ+ and we have
τ2s (uα) = τs(usα) = uα. Now let −αs ⊆ β ∈ Φ+. Note that for γ ∈MG

αs,sβ
we have −αs ⊆ sγ.

This implies

τ2s (usuβus) = τs(us

 ∏
γ∈MG

αs,sβ

usγ

uβus)
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2. Commutator blueprints

=

 ∏
γ∈MG

αs,sβ

τs(ususγus)

 τs(usuβus)

=

 ∏
γ∈MG

αs,sβ

us

 ∏
δ∈MG

αs,γ

usδ

usγus


us

 ∏
γ∈MG

αs,sβ

usγ

uβus


= us

 ∏
γ∈MG

αs,sβ

 ∏
δ∈MG

αs,γ

usδ

usγ


 ∏

γ∈MG
αs,sβ

usγ

uβus

Note that we have the following relation in Uw and hence in Vw,s: ∏
γ∈MG

αs,sβ

 ∏
δ∈MG

αs,γ

uδ

uγ

 ∏
γ∈MG

αs,sβ

uγ =

 ∏
γ∈MG

αs,sβ

[us, uγ ]uγ

 [us, usβ]

= us[us, usβ]us[us, usβ]

= (usβususβ)
2 = 1

Using Lemma (2.1.7), the following is a relation in Usw and hence in Ns: ∏
γ∈MG

αs,sβ

 ∏
δ∈MG

αs,γ

usδ

usγ


 ∏

γ∈MG
αs,sβ

usγ

 = 1

This shows τ2s (usuβus) = usuβus and hence τ2s = 1. In particular, τs is an automorphism.
To show that (usτs)3 = 1, we distinguish the following cases. Let αs ̸= α ∈ Φ+. Assume that
o(rαsrα) <∞ and let R ∈ ∂2αs∩∂2α. Note that we have a homomorphism NR →Ms → Ns.
Lemma (2.2.7) yields ∏

γ∈MG
αs,sα

usγ

uα =

 ∏
γ∈MG

αs,α

 ∏
γ′∈MG

αs,sγ

uγ′

usγ

 ∏
γ∈MG

αs,sα

uγ

usα

and hence (usτs)
3(uα) = uα. Thus we assume αs ⊊ α. Then we have the following:

(usτs)
3(uα) = (usτs)

2(ususαus)

= (usτsus)

us
 ∏

γ∈MG
αs,α

usγ

usαus


= (usτs)

 ∏
γ∈MG

αs,α

usγ

usα


= us

 ∏
γ∈MG

αs,α

uγ

uα


= uα
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2.2. Integrability of certain commutator blueprints

Now we assume −αs ⊆ α. Using the previous case, we deduce the following:

(usτs)
3(usuαus) = (usτs)(usα) = us(uα) = usuαus

(usτs)
3(uα) = (usτs)

2([us, usα]usα) = (usτs)
−1([us, usα]usα) = uα

(2.2.11) De�nition. Note that φ : Sym(3) → ⟨us, τs⟩ ≤ Aut(Ns),

{(
1 2

)
7→ us(

2 3
)
7→ τs

is an

epimorphism. Thus we de�ne the group Ps := Sym(3) ⋉φ Ns. For short we will denote
the elements in Sym(3) by their images in Aut(Ns). Note that τsnsτs = τs(ns) ∈ Ns. In
particular, we have τsuατs = usα for each αs ̸= α ∈ Φ+. Note that U+

∼= ⟨us⟩⋉Ns ≤ Ps.

(2.2.12) De�nition. We let G be the direct limit of the groups U+, (Ps)s∈S , (⟨τs⟩)s∈S ,W
with canonical inclusions U+ ↪→ Ps, ⟨τs⟩ ↪→ Ps, ⟨τs⟩ ↪→W, τs 7→ s.

(2.2.13) Lemma. Let s1, . . . , sn, t1, . . . , tm, s, t ∈ S be such that s1 · · · snαs = t1 · · · tmαt.

Then U τn···τ1
αs

= U
τ ′m···τ ′1
αt , where τi = τsi and τ

′
j = τtj .

Proof. The claim follows if U
τn···τ1τ ′1···τ ′m
αs = Uαt . Suppose f1, . . . , fk ∈ S with ℓ(f1 · · · fk) = k

and f1 · · · fk = tm · · · t1s1 · · · sn. Then fk · · · f1 = sn · · · s1t1 · · · tm and since every relation in
W is a relation in G, we obtain

τfk · · · τf1 = τsn · · · τs1τt1 · · · τtm

Now let i = max{1, . . . , k | ∃r ∈ S : fi · · · fkαs = αr}. For g := f1 · · · fk we have gαs = αt

and hence g−1 ∈ αs. This implies ℓ(gs) = ℓ((gs)−1) = ℓ(sg−1) > ℓ(g−1) = ℓ(g). This implies
fk ̸= s and hence fkαs ∈ Φ+. Thus the roots αs, fkαs, . . . , fi · · · fkαs = αr are all positive
roots and we obtain U

τfk ···τfi
αs = Ufi···fkαs = Uαr in G. If i = 1 we are done. Otherwise we

repeat the argument with g := f1 · · · fi−1. After �nitely many steps we are done.

(2.2.14) Theorem. Assume that Ps → G is injective for every s ∈ S. Then M is integrable.

Proof. Let α ∈ Φ be a root. Then there exist w ∈ W and s ∈ S with α = wαs. Let
s1, . . . , sk ∈ S be such that w = s1 · · · sk and let τi := τsi . Then we de�ne

Uα := U τk···τ1
αs

In view of the previous lemma, the group Uα is well-de�ned. We will show that D =
(G, (Uα)α∈Φ) is an RGD-system of type (W,S).

(RGD0) The mappings Ps → G are injective and hence the groups Uα are non-trivial.

(RGD1) Let {α, β} ⊆ Φ be a prenilpotent pair. Then there exists w ∈ W such that
{wα,wβ} ∈ P. By de�nition of the root groups and the commutator blueprint
we deduce (τw is a product of suitable τs)

[Uα, Uβ] = [Uwα, Uwβ]
τw ≤ ⟨Uγ | γ ∈ (wα,wβ)⟩τw

= ⟨Uw−1γ | γ ∈ (wα,wβ)⟩
= ⟨Uγ | γ ∈ (α, β)⟩

(RGD2) For s ∈ S we have (usτs)
3 = 1 and hence τs = τs(usτs)

3 = u−susu−s by Corollary
(2.2.10). Let α ∈ Φ be a root. Then there exist w ∈ W, t ∈ S such that α = wαt.
Let s1, . . . , sk ∈ S be such that w = s1 · · · sk and let τi := τsi . Then sα = ss1 · · · skαt

and we deduce
U τs
α =

(
U τk···τ1
αt

)τs = U τk···τ1τs
αt

= Usα
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2. Commutator blueprints

(RGD3) Since Ps → G is injective, we have τs /∈ U+. As U
us
+ = U+ and (usτs)

3 = 1, we infer
u−s = τsusτs = usτsus /∈ Uus

+ = U+

(RGD4) Since G is generated by Uα and τs, it is generated by all root groups.

Note that MD is a commutator blueprint of type Dyn(W,S). By de�nition we have MG
α,β =

M(D)Gα,β for each (G,α, β) ∈ I. We deduce that M is integrable.

(2.2.15) Corollary. Assume that mst = ∞ for all s ̸= t ∈ S. Then every Weyl-invariant
commutator blueprint is integrable.

Proof. Let M be a commutator blueprint which is Weyl-invariant. Since mst = ∞ for all
s ̸= t ∈ S we deduce that Σ(W,S) is a tree and hence the canonical homomorphisms Uw → U+

are injective (cf. [32, Ch. 4.4]). In particular, M is faithful. Since G is (isomorphic to) the
direct limit of the groups U+ and (Ps)s∈S , i.e. the free amalgamated product of the (Ps)s∈S
along the common subgroup U+, the claim follows from the previous theorem.

2.3. An action of the Ps

In this section we will show that the groups Ps act faithfully on a chamber system C over S for
every s ∈ S. Moreover, we will give su�cient conditions in order to show thatW ∼= ⟨τs | s ∈ S⟩
acts on C. In particular, the action of the groups Ps extend to an action of G on C. This
will imply that the mappings Ps → G are injective. The su�cient conditions are rather mild
and only depend on the commutator blueprint.

We start by de�ning the chamber system C over S. We let U1W := {1} ≤ U+. The set of
chambers is given by C := {gUw | g ∈ U+, w ∈W}, and s-adjacency is de�ned as follows:

gUw ∼s hUw′ :⇔ w′ ∈ {w,ws} and g−1h ∈ Uw ∪ Uws

Then C = (C, (∼s)s∈S) is a chamber system over S. The idea of considering this chamber
system is not new (cf. [2, Section 8.7]). Before we de�ne an action of Ps on the chamber
system C we note that every element of U+ can be written uniquely as nu with n ∈ Ns

and u ∈ Us by Lemma (2.2.2). Thus it su�ces to de�ne the action on cosets nuUw with
n ∈ Ns, u ∈ Us and w ∈W . To show that our assignment will actually be an action we need
the following auxiliary result.

(2.3.1) Lemma. For n ∈ Ns the following hold:

(a) If n ∈ Uw, then n
τs ∈ Ns ∩ Usw;

(b) If ℓ(sw) = ℓ(w) + 1 and nus ∈ Uw, then n
τsus ∈ Ns ∩ Uw.

Proof. Let w ∈ W and G = (c0, . . . , ck) ∈ Min(w) and let (α1, . . . , αk) be the sequence
of roots crossed by G. Since n ∈ Uw, there exists ui ∈ Uαi such that n = u1 · · ·uk. If
ℓ(sw) = ℓ(w) + 1, then uτsi ∈ Usαi ≤ Usw and hence nτs ∈ Usw. Thus we assume that
ℓ(sw) = ℓ(w) − 1. Using Lemma (2.1.4) we can assume G ∈ Mins(w) and hence α1 = αs.
Since Uαi ≤ Ns for each 2 ≤ i ≤ k, we have u1 = n(u2 · · ·uk)−1 ∈ Ns ∩ Us = {1}. Thus
nτs ∈ Usw and Assertion (a) follows. Now we assume that ℓ(sw) = ℓ(w)+1 and that nus ∈ Uw.
Note that nus ∈ Ns. Then (a) provides nusτs ∈ Ns ∩ Usw. Since ℓ(ssw) = ℓ(w) = ℓ(sw)− 1,
we have us ∈ Usw and hence nusτsus ∈ Ns ∩ Usw. Using Corollary (2.2.10) and Assertion (a)
we obtain nτsus = nusτsusτs ∈ Ns ∩ Uw.
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2.3. An action of the Ps

(2.3.2) Remark. Let ⟨Gs | Rs⟩ be a presentation of Ns. Then a presentation of Ps is given by
⟨us, τs, Gs | u2s, τ2s , (usτs)3, Rs, usnus = nus , τsnτs = nτs for every n ∈ Gs⟩.

(2.3.3) Proposition. For s ∈ S the group Ps acts on C as follows:

g.nuUw :=


gnuUw g ∈ U+

nτsUsw g = τs, ℓ(sw) = ℓ(w)− 1 or u = 1

nτsusUw g = τs, ℓ(sw) = ℓ(w) + 1, u = us

Moreover, this action is faithful.

Proof. For g ∈ U+ ∪ {τs} we let φg : C → C, nuUw 7→ g.nuUw.

The mapping φg is well-de�ned: We note that us.nuUw = usnuUw = nususuUw. At �rst
we will show that the assignment is well-de�ned. Since the assignment of U+ is via left
multiplication, it su�ces to consider the assignment of τs. Let w ∈W and n, n′ ∈ Ns, u, u

′ ∈
Us such that nuUw = n′u′Uw. Then u−1n−1n′u′ ∈ Uw.

(Case I) ℓ(sw) = ℓ(w) − 1: Then us ∈ Uw and hence n−1n′ ∈ Uw. Using Lemma (2.3.1)(a), we
obtain (n−1n′)τs ∈ Usw. This implies τs.nuUw = nτsUsw = (n′)τsUsw = τs.n

′u′Uw.

(Case II) ℓ(sw) = ℓ(w) + 1: We distinguish the following three cases:

� u = 1 = u′: Then the claim follows as in Case I.

� {u, u′} = {1, us}: Assume u ̸= 1 = u′. Then we have u−1n−1n′ ∈ Uw. Since
ℓ(sw) = ℓ(w) + 1, we have Uw ≤ Ns and hence us = u−1 ∈ Ns. This is a
contradiction. The case u = 1 ̸= u′ is similar.

� u ̸= 1 ̸= u′: Then u = us = u′ and (n−1n′)us ∈ Ns ∩ Uw. Using Lemma (2.3.1)(b),
we obtain (n−1n′)τsus ∈ Ns ∩ Uw and hence τs.nuUw = nτsusUw = (n′)τsusUw =
τs.n

′u′Uw.

Thus φg is well-de�ned.

φg is bijective for every g ∈ U+ ∪ {τs}: We will show that φg−1 ◦ φg = id. If g ∈ U+ there is
nothing to show. Thus we consider g = τs. By construction and Corollary (2.2.10) we have
φτs ◦ φτs = id and φg is bijective for every g ∈ U+ ∪ {τs}.

φg ∈ Aut(C): As φg is bijective, it su�ces to show that φg preserves t-adjacency for each
t ∈ S. Let n, n′ ∈ Ns, u, u

′ ∈ Us and w,w′ ∈ W such that nuUw ∼t n
′u′Uw′ . Then we

have w′ ∈ {w,wt} and u−1n−1n′u′ ∈ Uw ∪ Uwt. Since for g ∈ U+ the bijection φg is left
multiplication by g, it preserves t-adjacency. Thus it su�ces to consider φτs . We distinguish
the following cases:

(Case I) u = 1 = u′: Then τs.nUw = nτsUsw and τs.n
′Uw′ = (n′)τsUsw′ . Because of the t-

adjacency we have n−1n ∈ Uw ∪ Uwt and Lemma (2.3.1)(a) implies (n−1)τs(n′)τs =
(n−1n′)τs ∈ Usw ∪ Uswt. Since sw′ ∈ {sw, swt}, we deduce φτs(nUw) ∼t φτs(n

′Uw′).

(Case II) ℓ(sw) = ℓ(w)− 1 and ℓ(sw′) = ℓ(w′)− 1: Then nuUw = nUw and n′u′Uw′ = n′Uw′ and
the claim follows from Case I.

(Case III) ℓ(sw) = ℓ(w) + 1 and ℓ(sw′) = ℓ(w′) + 1: Recall that w′ ∈ {w,wt}. If u = 1 = u′ the
claim follows from Case I. If u = us = u′ we have (n−1n′)us ∈ Uw ∪Uwt and τs.nusUw =
nτsusUw, τs.n

′usUw′ = (n′)τsusUw′ . If ℓ(swt) = ℓ(wt) + 1, then we have (n−1n′)τsus ∈
Ns ∩ (Uw ∪ Uwt) by Lemma (2.3.1)(b) and we deduce φτs(nuUw) ∼t φτs(n

′u′Uw′). Thus
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2. Commutator blueprints

we assume ℓ(swt) = ℓ(wt)− 1. Then us ∈ Uwt. Since ℓ(wt)− 1 = ℓ(swt) ≥ ℓ(sw)− 1 =
ℓ(w), we have ℓ(wt) = ℓ(w) + 1 and thus (n−1n′)us ∈ Uw ∪ Uwt = Uwt. This implies
n−1n′ ∈ Uwt. By Lemma (1.1.1) we infer swt = w. Now Lemma (2.3.1)(a) yields
(n−1n′)τs ∈ Ns ∩ Uswt = Ns ∩ Uw ≤ Ns ∩ Uwt and, as us ∈ Uwt, (n−1n′)τsus ∈ Uwt =
Uw ∪ Uwt. In particular, φτs(nuUw) ∼t φτs(n

′u′Uw′).

If u = 1 ̸= u′ we have (n−1)n′us ∈ Uw ∪ Uwt and τs.nUw = nτsUsw, τs.n
′usUw′ =

(n′)τsusUw′ . If ℓ(swt) = ℓ(wt) + 1, we would have Uw, Uwt ≤ Ns and hence us ∈ Ns.
Thus we have ℓ(swt) = ℓ(wt)−1. Since ℓ(sw′) = ℓ(w′)+1 and w′ ∈ {w,wt}, we deduce
w = w′. As ℓ(sw) = ℓ(w) + 1, we obtain ℓ(wt)− 1 = ℓ(swt) ≥ ℓ(sw)− 1 = ℓ(w). This
yields ℓ(wt) = ℓ(w) + 1 and hence swt = w as before. This implies w′ = w = swt ∈
{sw, swt} and Uw ≤ Uwt. Thus we obtain (n−1)n′us ∈ Uwt and hence (n−1)n′ ∈ Uwt.
Using Lemma (2.3.1)(a) we obtain (n−1n′)τs ∈ Uswt ≤ Usw (since ℓ(swt) = ℓ(sw)− 1).
This implies (n−1n′)τsus ∈ Usw = Usw∪Uswt and hence φτs(nUw) ∼t φτs(n

′u′Uw′). The
case u ̸= 1 = u′ is similar.

(Case IV) Without loss of generality we assume ℓ(sw) = ℓ(w) − 1 and ℓ(sw′) = ℓ(w′) + 1. This
implies w ̸= w′ and hence w′ = wt. Thus ℓ(wt) = ℓ(w′) = ℓ(sw′)−1 ≤ ℓ(sw) = ℓ(w)−1
and hence ℓ(wt) = ℓ(w)− 1. Since ℓ(swt) = ℓ(w), Lemma (1.1.1) implies w = swt.

Now we have nuUw = nUw and τs.nUw = nτsUsw. If u′ = 1, the claim follows from
Case I. Thus we assume u′ = us. Then τs.n

′usUw′ = (n′)τsusUw′ . Since w′ = wt =
sw ∈ {sw, swt} it su�ces to show that (n−1n′)τsus ∈ Usw ∪ Uswt. As ℓ(wt) = ℓ(w)− 1,
we have Uwt ≤ Uw. Because ℓ(sw) = ℓ(w) − 1 and n−1n′us ∈ Uw ∪ Uwt = Uw we have
us ∈ Uw and hence n−1n′ ∈ Uw. Using Lemma (2.3.1)(a) we deduce (n−1n′)τs ∈ Usw.
Since ℓ(swt) = ℓ(w) = ℓ(sw) + 1, we obtain Usw ≤ Uswt. This implies (n−1n′)τsus ∈
Uswt ⊆ Usw ∪ Uswt and we obtain φτs(nUw) ∼t φτs(n

′u′Uw′).

The assignment g 7→ φg for g ∈ U+∪{τs} extends to a homomorphism Ps → Aut(C): For this
we need to consider a presentation of Ps (cf. Remark (2.3.2)) and show that every relation of
Ps acts trivial on the chamber system C. Since the action of U+ ≤ Ps is via left multiplication
it su�ces to consider relations concerning τs. As we have already seen before, τ2s acts trivial.
Let m,m′ ∈ Ns be such that τsmτs = τs(m) = (m′)−1. Then

τsmτsm
′.nuUw = τsm.(m

′n)τs(τs.uUw) = (m(m′n)τs)τsuUw = mτsm′nuUw = nuUw

Thus it su�ces to show that (usτs)3 acts trivial onC. As (usτs)3.nuUw = n(τsus)3 ·(usτs)3.uUw,
we can assume that n = 1, since (usτs)

3 acts trivial on Ns by Corollary (2.2.10). If ℓ(sw) =
ℓ(w)− 1, then uUw = Uw = usUw and we obtain the following:

(usτs)
3.uUw = (usτs)

2.usUsw = usτs.Usw = usUw = Uw

Thus we can assume that ℓ(sw) = ℓ(w) + 1. We distinguish the cases u = 1 and u = us:

(usτs)
3.Uw = (usτs)

2.Usw = usτs.usUw = Uw

(usτs)
3.usUw = (usτs)

2.Uw = usτs.Usw = usUw

The homomorphism Ps → Aut(C) is injective: We have to show that each 1 ̸= g ∈ Ps induces
a non-trivial automorphism of the chamber system. We �rst consider 1 ̸= g ∈ Sym(3) =
{1, us, usτs, usτsus, τsus, τs}. Then we have the following:

us.U1W = usU1W
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2.4. Braid relations act trivially on suitable subset

usτs.U1W = Us

usτsus.usU1W = Us

τsus.U1W = usU1W

τs.U1W = Us

Thus each 1 ̸= g ∈ Sym(3) acts non-trivial. Now we consider the general case. Let 1 ̸= g ∈ Ps.
Then there exist x ∈ Sym(3), n ∈ Ns such that g = xn. If x = 1, we have g.n−1U1W = U1W ̸=
n−1U1W . Otherwise the let c ∈ C be as above such that x.c ̸= c. Then g.n−1c ̸= n−1c and
the claim follows.

2.4. Braid relations act trivially on suitable subset

For J ⊆ S we de�ne ΦJ := {wαs | s ∈ J,w ∈ ⟨J⟩} and ΦJ
ε := ΦJ ∩ Φε for ε ∈ {+,−}.

Moreover, we de�ne for all s ̸= t ∈ S the subgroup Us,t := ⟨Uα | α ∈ Φ
{s,t}
+ ⟩ and Ns,t :=

⟨x−1Uαx | x ∈ Us,t, α ∈ Φ+\Φ{s,t}
+ ⟩. It is not hard to see that Ns,t is a normal subgroup of

U+ and that Ns,t is stabilized by τs and by τt.

(2.4.1) Lemma. Let s ̸= t ∈ S be with mst < ∞ and let J := {s, t}. Then the sub-chamber
system CJ = (CJ , (∼j)j∈J) with CJ = {uUw | u ∈ Us,t, w ∈ ⟨J⟩} is a spherical building of rank
2.

Proof. Since M is faithful, the mapping UrJ → U+ is injective. Considering the sub-chamber
system CJ as in the statement, this is exactly the chamber system which we get from the
RGD-system over F2 of type I2(mst). This chamber system is a building by [2, Exercise
8.36(b)].

(2.4.2) Lemma. Let s ̸= t ∈ S be with mst < ∞. Then we have (τsτt)
mst .us,tUw = us,tUw

for all w ∈W and us,t ∈ Us,t.

Proof. We put J := {s, t}. For w ∈ W we let w′ ∈ W,wJ ∈ ⟨J⟩ be such that w = wJw
′

and ℓ(sw′) = ℓ(w′) + 1 = ℓ(tw′). Then the action of τs on uUw only depends on u and wJ

and is independent on w′, i.e. for u, u′ ∈ Us,t and w′
J ∈ ⟨J⟩ with τs.uUwJ = u′Uw′

J
, we have

τs.uUw = u′Uw′
Jw

′ . Thus it su�ces to show the claim for w ∈ ⟨J⟩. We restrict the action of
(τsτt)

mst to the chambers of the form uUw with u ∈ Us,t and w ∈ ⟨J⟩.
Restricting τs, τt to the sub-chamber system, we infer that (τsτt)mst is an automorphism

of this sub-chamber system. By the previous lemma this chamber system is a building of type
(⟨J⟩, J). Since this automorphism �xes all chambers Uw with w ∈ ⟨J⟩, it �xes the two opposite
chambers U1W and UrJ . Since every panel contains exactly three chambers, the automorphism
�xes R{s}(U1W ) for all s ∈ S. Using Theorem (1.2.3), we obtain (τsτt)

mst .uUw = uUw for all
u ∈ Us,t and w ∈ ⟨J⟩. This �nishes the claim.

(2.4.3) Theorem. Assume that [(τsτt)
mst , n] = 1 in Ps⋆U+Pt for all s ̸= t ∈ S with mst <∞

and n ∈ Ns,t. Then the natural mapping Ps → G is injective for all s ∈ S.

Proof. Suppose s ̸= t ∈ S with mst < ∞. By assumption n(τtτs)
mst = n for all n ∈ Ns,t.

Together with the previous lemma we deduce (τsτt)
mst .nuUw = nuUw for all u ∈ Us,t and

hence (τsτt)
mst acts trivial on the chamber system. Thus G acts on C and since Ps acts

faithfully on C by Proposition (2.3.3), the claim follows.
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3. Braid relations

In Chapter 3 we assume that mst ̸= 6 for all s, t ∈ S. Moreover, we let M be a faithful and
Weyl-invariant commutator blueprint of type (W,S). We will compute the automorphisms
(τsτt)

mst ∈ Aut(C) for mst < ∞ and give su�cient conditions of the commutator blueprint
in order to achieve that this automorphisms is trivial. This is done by a case distinction on
mst.

3.1. Notations

In this chapter we will work out su�cient conditions of the commutator blueprint such that
[(τsτt)

mst , n] = 1 in Ps ⋆U+ Pt for all s ̸= t ∈ S with mst < ∞ and all n ∈ Ns,t. It su�ces to

consider a generating set of Ns,t, i.e. n ∈ {u−1uαu | u ∈ Us,t, α ∈ Φ+\Φ{s,t}
+ }. We abbreviate

uws := uwαs ∈ U⋆
ws, i.e. uts = utαs . We will always assume that −β ⊆ α, if uβ appears in u.

Otherwise we can reduce u as we see in the next example.

(3.1.1) Example. Suppose α ∈ Φ+\Φ{s,t}
+ with −αs ̸⊆ α. Then {αs, α} ∈ P by de�nition

and we have usuαus =
(∏

γ∈MG
αs,α

uγ

)
uα for some G ∈ Min with αs, α ∈ Φ(G).

For short we will write us.n := usnus and τs.n := τsnτs = τs(n). Let αs ̸= β ∈ Φ+ be
a root such that {αs, β} /∈ P. Then −αs ⊆ β. Let w ∈ W with ℓ(sw) = ℓ(w) − 1 and let
G ∈ Mins(w) with sβ ∈ Φ(G). By Proposition (2.2.9) we have the following in Ps:

τs(usuβus) = us

 ∏
γ∈MG

αs,sβ

usγ

uβus

= us

 ∏
γ∈MG

αs,sβ

uγ


τs

uβus

= us[us, usβ]
τsuβus

= usuβ[usβ, us]
τsus

Moreover, if −αs ⊆ β1, . . . , βk ∈ Φ+, then we have

τs(usuβ1 · · ·uβk
us) = us (usβ1 [usβ1 , us] · · ·usβk

[usβk
, us])

τs us

= us (ususβ1 · · ·usβk
us)

τs us = usuβ1 · · ·uβk
[usβ1 · · ·usβk

, us]
τsus

Note that [(τsτt)
mst , n] = 1 implies [(τtτs)

mst , n] = 1. We remark that for each α ∈
Φ+\Φ{s,t}

+ , we have (τsτt)
mst .uα = uα.

(3.1.2) Remark. Let s ̸= t ∈ S be such that 6 ̸= mst < ∞. In order to show that
[(τtτs)

mst , n] = 1, we use the fact mru ̸= 6 for all r, t ∈ S only in a few cases. If we do,
we will explicitly state it in the hypothesis.
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3. Braid relations

3.2. The case mst = 2

(3.2.1) Lemma. We have [(τsτt)
2, n] = 1 for all n ∈ Ns,t in the group Ps ⋆U+ Pt.

Proof. Let α ∈ Φ+\Φ{s,t}
+ . Assume −αs ⊆ α. Then the following hold:

(τsτt)
2.usuαus = τsτtτs.usutαus

= τsτt.usutα[ustα, us]
τsus

= τs.usuα[ustα, us]
τsτtus

= τs.usuα[ustα, us]
τtτsus

= τs.usuα[usα, us]
τsus

= τ2s .usuαus

= usuαus

Interchanging s and t, we deduce (τtτs)
2.utuαut = utuαut for each −αt ⊆ α ∈ Φ+ and, in

particular, (τsτt)2.utuαut = utuαut.
Now we assume −αs,−αt ⊆ α. Then the following hold:

(τsτt)
2.utusuαusut = (τsτt)

2.usutuαutus

= τsτtτs.usutuα[utα, ut]
τtutus

= τsτtτs.utusuα[utα, ut]
τtusut

= τsτt.utτs(usuα[utα, ut]
τtus)ut

(2.2.10)
= τsτt.utusτs(usτs(uα[utα, ut]

τt)us)usut

= τsτt.utusτs(ususα[utα, ut]
τtτsus)usut

= τsτt.utusτs(ususα[ustα, ut]
τtus)usut

= τsτt.utusτs(τt(usutustαutus))usut

= τsτt.utusτs(τt(utustα[ustα, us]ut))usut

= τsτt.utus (ustα[ustα, ut][ustα, us][[ustα, us], ut])
τtτs usut

= τsτt.utus (ustα[ustα, ut][ustα, us][[ustα, us], ut])
τsτt usut

= τsτt.utusτt(τs(utustα[ustα, us]ut))usut

= τsτt.usutτt(ututα[ustα, us]
τsut)utus

= τs.usτt(utτt(ututα[ustα, us]
τsut)ut)us

(2.2.10)
= τs.usutτt(utα[ustα, us]

τs)utus

= τs.utusuα[usα, us]
τsusut

= τ2s .utusuαusut

= utusuαusut

3.3. The case mst = 3

In this case we assume that the groups Uw are of nilpotency class at most 2 and that the
commutator blueprint M satis�es (CR1) and (CR2) (cf. Theorem (3.5.1)). We note that
the root β in (CR1) and (CR2) is not necessarily a positive root. Later if we refer to one of
these conditions, we will not go into detail. E.g. if o(rαtrα) < ∞, Condition (CR2) implies
MG

αs,α = ∅. In particular, we will not state w and G.
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3.3. The case mst = 3

(3.3.1) Lemma. Let G = ⟨g1, . . . , gn⟩ be a group of nilpotency class at most 2 such that
g2i = 1 for all i. Then [g, h]2 = 1 for all g, h ∈ G.

Proof. Let f1, . . . , fr, h1, . . . , hm ∈ {g1, . . . , gn} be such that g = f1 · · · fr, h = h1 · · ·hm. We
show the claim via induction on r +m. If r +m ∈ {0, 1} the claim follows directly. Thus
we assume r +m ≥ 2. Again, for 0 ∈ {r,m} the claim follows directly. Thus we can assume
r,m ≥ 1. Using the nilpotency class we obtain

[g, h]2 =
(
[g, hm][g, hh−1

m ]hm

)2

=
(
[gf−1

r , hm]fr [fr, hm][g, hh−1
m ]

)2

= [gf−1
r , hm]2[fr, hm]2[g, hh−1

m ]2

Using the nilpotency class and the fact that [fr, hm]2 = [fr, [fr, hm]], the claim follows by
induction.

(3.3.2) Lemma. We have [(τsτt)
3, u−1uαu] = 1 for all α ∈ Φ+\Φ{s,t}

+ and u ∈ {us, ust =
uts, ut} in the group Ps ⋆U+ Pt.

Proof. At �rst we consider the case u = us. If {αs, α} ∈ P the claim clearly holds. Thus we
assume −αs ⊆ α. Then we compute

(τsτt)
3.usuαus = (τsτt)

2.utustαut

= τsτtτs.utustα[utstα, ut]
τtut

= τs.usuα[utstα, ut]
τtτsτtus

= τs.usuα[usα, us]
τsus

= τ2s .usuαus

= usuαus

Interchanging s and t, we deduce (τtτs)3.utuαut = utuαut and, in particular, (τsτt)3.utuαut =
utuαut. Now we consider the case u = uts. Again, if {tαs, α} ∈ P, the claim is trivial. Thus
we assume −tαs ⊆ α. Using the case u = us, we deduce

(τsτt)
3.ustuαust = (τsτt)

2τs.usutαus = τt(τtτs)
3.usutαus = τt.usutαus = ustuαust

(3.3.3) Lemma. We have [(τsτt)
3, u−1uαu] = 1 for all α ∈ Φ+ with −αs,−αt ⊆ α and all

u ∈ {usut, usustut, usust} in the group Ps ⋆U+ Pt.

Proof. We deduce from the nilpotency class of the Uw the following (note that s and t are
interchangeable in the following equations):

[[utα, ut]
τtτs , us] = [[utα, ut]

τsτt , ut]
τsτt = [[utstα, us], ut]

τsτt = 1

[ustα, us] = [utstα, uts]
τt = [utstα, [us, ut]]

τt = 1

[[usα, us]
τsτtτs , us] = [[usα, us]

τt , ut]
τsτt = [[utsα, uts], ut]

τsτt = 1

[[utα, ut]
τs , us] = [[ustα, ust], us] = 1

[[usα, us]
τs , [utα, ut]

τt ] = [[ustsα, ut], [utstα, us]]
τsτtτs = 1

Case 1: u = usut: Note that by (CR1) there exist w ∈W with ℓ(tw) = ℓ(w)−1 andG ∈ Mint(w)
with tα ∈ Φ(G) such that −tαs ⊆ γ and, in particular, −αs ⊆ tγ for all γ ∈ MG

αt,tα.
Using (CR1) again, we deduce −αt ⊆ γ and hence −αs ⊆ tsγ for all γ ∈ MG

αs,sα and
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3. Braid relations

−αs ⊆ γ for all γ ∈MG
αt,tα (cf. also Remark (1.3.3)). Using the previous computations

we compute the following:

(τsτt)
3.utusuαusut = (τsτt)

3.usustutuαutustus

= (τsτt)
2τs.utsusutuα[utα, ut]

τtutusuts

= (τsτt)
2τs.utusuα[utα, ut]

τtusut

= (τsτt)
2.ustusuα[usα, us]

τs [utα, ut]
τt [[utα, ut]

τtτs , us]
τsusust

= (τsτt)
2.ustusuα[usα, us]

τs [utα, ut]
τtusust

= τsτtτs.usutsutα[usα, us]
τsτt [utα, ut]utsus

= τsτtτs.utsusutα[usα, us]
τsτt [utα, ut]usuts

= τsτt.utusutα[ustα, us]
τs [usα, us]

τsτt [[usα, us]
τsτtτs , us]

τs

· [utα, ut][[utα, ut]τs , us]]τsusut
= τsτt.usutsututα[usα, us]

τsτt [utα, ut]ututsus

= τsτt.usutsututα[utα, ut]ut[usα, us]
τsτtutsus

= τsτt.usutsutα[usα, us]
τsτtutsus

= τs.utsusuα[usα, us]
τsusuts

= τ2s .utusuαusut

= utusuαusut

Case 2: u = usustut: Interchanging s and t, we deduce the following:

(τtτs)
3.utustusuαusustut = (τtτs)

3.usutuαutus = usutuαutus = utustusuαusustut

Case 3: u = usust: Using (CR1) we deduce −tαs ⊆ γ and hence −αs ⊆ tγ for all γ ∈ MG
αt,tα.

Moreover, we deduce −αt ⊆ sγ, tδ for all γ ∈ Mαs,sα and all δ ∈ Mαt,tα by (CR1). We
compute the following:

(τsτt)
3.ustusuαusust = (τsτt)

2τs.usutsutαutsus

= (τsτt)
2τs.utsusutαusuts

= (τsτt)
2.utusutα[ustα, us]

τsusut

= (τsτt)
2.usustutα[utα, ut]ustus

= τsτtτs.utsusuα[utα, ut]
τtusuts

= τsτt.utusuα[usα, us]
τs [utα, ut]

τt [[utα, ut]
τtτs , us]

τsusut

= τsτt.usustutuα[usα, us]
τs [utα, ut]

τtutustus

= τs.utsusutuα[utα, ut]
τt [usα, us]

τs [[usα, us]
τsτt , ut]

τt

· [utα, ut]τt [[utα, ut], ut]τtutusuts
(3.3.1)
= τs.utusuα[usα, us]

τsusut

= τ2s .ustusuαusust

= ustusuαusust

(3.3.4) Lemma. Let α ∈ Φ+ be a root such that −αs,−sαt ⊆ α hold. Then we have
[(τsτt)

3, ustusuαusust] = 1 in the group Ps ⋆U+ Pt, if mrt ̸= 6 for all r ∈ S.

Proof. We distinguish the following cases:
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3.3. The case mst = 3

(a) −αt ⊆ α: Then the claim follows from the previous lemma.

(b) αt ⊆ α: Then −αs,−αt ⊆ tα and the previous lemma implies:

(τsτt)
3.ustusuαusust = (τsτt)

2τs.usutsutαutsus = τt.usutsutαutsus = ustusuαusust

(c) o(rαtrα) <∞: Using (CR2) we deduce:

[ustα, us] = 1

[usα, us] = 1

We compute the following:

(τsτt)
3.ustusuαusust = (τsτt)

2τs.usutsutαutsus

= (τsτt)
2τs.utsusutαusuts

= (τsτt)
2.utusutα[ustα, us]

τsusut

= (τsτt)
2.usustutα[utα, ut]ustus

= τsτtτs.utsusuα[utα, ut]
τtusuts

Note that uα[utα, ut]τt = τtutτt.uα = utτtut.uα = ututα[uα, ut]
τtut. Since mrt ̸= 6 for all

r ∈ S, we have 1 ∈ {[utα, ut], [uα, ut]} (because of the Weyl-invariance). We distinguish
the following cases:

(i) [uα, ut] = 1: Then we have the following:

τsτtτs.utsusuα[utα, ut]
τtusuts = τsτtτs.utsusututαutusuts

= τsτtτs.utusutαusut

= τsτt.ustusutα[ustα, us]
τsusust

= τsτt.usustutα[uα, ut]
τtustus

(ii) [utα, ut] = 1: Then we have the following:

τsτtτs.utsusuα[utα, ut]
τtusuts = τsτtτs.utsusuαusuts

= τsτt.utusuα[usα, us]
τsusut

= τsτt.usustutuα[utα, ut]
τtutustus

= τsτt.usustutα[uα, ut]
τtustus

In both cases we obtain the same result. This implies:

τsτtτs.utsusuα[utα, ut]
τtusuts = τsτt.usustutα[uα, ut]

τtustus

= τs.utsusuα[uα, ut]usuts

= τs.utusuαusut

= ustusuα[usα, us]
τsusust

= ustusuαusust

(3.3.5) Remark. We note that in almost all cases we have 1 ∈ {[utα, ut], [uα, ut]} if o(rαtrα) <
∞. But in a hexagon, we have [u1, u3] ̸= 1 ̸= [u1, u5]. This is the only example of commuta-
tors, where none of these two commutators is trivial.
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(3.3.6) Lemma. We have [(τsτt)
3, n] = 1 for all n ∈ Ns,t in the group Ps⋆U+ Pt, if the groups

Uw are of nilpotency class at most 2, mru ̸= 6 for all r, u ∈ S and M satis�es (CR1) and
(CR2).

Proof. Using the previous lemmas in this subsection, it su�ces to consider n = utustuαustut.
Let α ∈ Φ+ be a root such that −αt,−sαt = −tαs ⊆ α. Interchanging s and t in the previous
lemma we deduce

(τtτs)
3.utustuαustut = (τtτs)

3.utsutuαututs = utsutuαututs = utustuαustut

In particular, we have (τsτt)
3.utustuαustut = utustuαustut.

3.4. The case mst = 4

In this case we again assume that the groups Uw are of nilpotency class at most 2 and that
the commutator blueprint M satis�es the additional Conditions (CR1) and (CR2).

(3.4.1) Lemma. For α ∈ Φ+ we have [(τsτt)
4, u−1uαu] = 1 for u ∈ {us, ut, ust, uts} in the

group Ps ⋆U+ Pt.

Proof. Let u = us. We can assume that −αs ⊆ α. Otherwise the claim is obvious. Using the
nilpotency class of the groups Uw we obtain:

(τsτt)
4.usuαus = (τsτt)

2τs.usutstαus

= (τsτt)
2.usutstα[uststα, us]

τsus

= τs.usuα[usα, us]
τsus

= τ2s .usuαus

= usuαus

This also implies [(τtτs)4, usuαus] = 1. Interchanging s and t we deduce the claim for ut. Now
let u = ust and assume −sαt ⊆ α. Then −αt ⊆ stα and the case u = ut implies

(τsτt)
4.ustuαust = (τsτt)

3.utustαut = (τsτt)
−1.utustαut = ustuαust

Interchanging s and t the claim does also hold for u = uts.

(3.4.2) Lemma. Let α ∈ Φ+ be such that −αs,−tαs ⊆ α. Then [(τsτt)
4, utsusuαusuts] = 1

in the group Ps ⋆U+ Pt.

Proof. Let β ∈ {stα, sα}. Then we have αs ⊆ β as well as αs, tαs ⊆ tstβ. Using the
nilpotency class of the groups Uw we deduce:

[[uβ, us]
τsτtτs , us] = [[utstβ, us], uts]

τsτt = 1

[[ustα, us]
τs , [usα, us]

τsτt ] = [[ustα, us]
τtτsτt , [usα, us]

τtτs ]τtτsτtτs

= [[ustsα, us], [ustsα, uts]]
τtτsτtτs = 1

The last equation follows from the fact that uts, ustsα commute with the �rst commutator.
Note that −tαs ⊆ stα and hence by (CR1) we obtain −tαs ⊆ γ for all γ ∈ MG

αs,stα. In
particular, −αs ⊆ tsγ for all γ ∈ MG

αs,stα. Using (CR1) again, we have −tαs ⊆ γ and hence
−αs ⊆ tsγ for all γ ∈MG

αs,sα. We compute the following:

(τsτt)
4.utsusuαusuts = (τsτt)

3τs.usutsutαutsus
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= (τsτt)
3τs.utsusutαusuts

= (τsτt)
3.utsusutα[ustα, us]

τsusuts

= (τsτt)
2τs.usutsuα[ustα, us]

τsτtutsus

= (τsτt)
2τs.utsusuα[ustα, us]

τsτtusuts

= (τsτt)
2.utsusuα[usα, us]

τs [ustα, us]
τsτt [[ustα, us]

τsτtτs , us]
τsusuts

= (τsτt)
2.utsusuα[usα, us]

τs [ustα, us]
τsτtusuts

= τsτtτs.usutsutα[usα, us]
τsτt [ustα, us]

τsutsus

= τsτtτs.utsusutα[usα, us]
τsτt [ustα, us]

τsusuts

= τsτt.utsusutα[ustα, us]
τs [usα, us]

τsτt [[usα, us]
τsτtτs , us]

τs

· [ustα, us]τs [[ustα, us], us]τsusuts
(3.3.1)
= τsτt.utsusutα[usα, us]

τsτtusuts

= τs.usutsuα[usα, us]
τsutsus

= τs.utsusuα[usα, us]
τsusuts

= τ2s .utsusuαusuts

= utsusuαusuts

(3.4.3) Lemma. Let α ∈ Φ+ be such that −αt,−sαt ⊆ α. Then [(τsτt)
4, utustuαustut] = 1

in the group Ps ⋆U+ Pt.

Proof. Interchanging s and t in the previous lemma, it follows that (τtτs)
4.utustuαustut =

(τtτs)
4.ustutuαutust = ustutuαutust = utustuαustut. This �nishes the claim.

(3.4.4) Lemma. Let α ∈ Φ+ be such that −αs,−αt ⊆ α. Then we have [(τsτt)
4, u−1uαu] = 1

for u ∈ {usustut, usustutsut, usut, usutsut, usustuts, usust, utsut, ustuts} in the group Ps ⋆U+ Pt.

Proof. Note that αs, αt ⊆ ststα. Using the nilpotency class of the groups Uw, we obtain the
following (note that s and t are interchangeable in the following equations; cf. also Remark
(1.3.3)):

[[utα, ut]
τtτs , us] = [[uststα, ut]

τtτsτt , us] = [[uststα, ut], us]
τtτsτt = 1

[[utα, ut]
τt , [usα, us]

τs ] = [[uststα, ut], [utstsα, us]]
τtτsτtτs = 1

[[utα, ut]
τtτsτtτs , us] = [[uststα, ut], uts]

τt = 1

[[utα, ut]
τtτsτt , ut] = [[uststα, ut], ust]

τtτs = 1

[[ustsα, us]
τs , ut] = [[utstsα, uts], ust]

τtτs = 1

[utsα, ut][ustsα, us]
τs = ([utstsα, ust][utstsα, uts])

τtτs

= ([utstsα, ust][utstsα, [us, ut]ust])
τtτs

= ([utstsα, ust][utstsα, ust][utstsα, [us, ut]]
ust)τtτs

(3.3.1)
= 1

[[utsα, ut]
τt , us] = [[utstsα, ust], us]

τtτsτt = 1

[[ustα, us]
τs , [usα, us]

τsτt ] = ([[ustα, us]
τtτs , [usα, us]

τtτsτt ])τsτtτs

= ([[uststα, uts], [utstsα, us]])
τsτtτs = 1

[ustα, us]
τs [utsα, ut]

τtτsτt = ([ustsα, us]
τs [utsα, ut])

τtτsτt = 1

[[utsα, ut]
τtτsτtτs , us] = [[uststα, ust], uts]

τsτt = 1

[[utα, ut]
τs , us] = [[utα, ut]

τsτtτs , uts]
τsτt = [[uststα, ut], uts]

τsτt = 1

[[ustα, us]
τsτtτs , us] = [[ustα, us]

τtτs , us]
τtτsτt = [[uststα, uts], us]

τtτsτt = 1
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Case 1: u = usustut: We note that −tαs ⊆ tα and hence −tαs ⊆ γ for all γ ∈ MG
αt,tα by

(CR1). This implies −αs ⊆ tγ for all γ ∈ MG
αt,tα. Moreover, we have −αt ⊆ sγ for all

γ ∈MG
αs,sα by (CR1). We obtain the following:

(τsτt)
2.utustusuαusustut = (τsτt)

2.usutsutuαututsus

= τsτtτs.utsusutuα[utα, ut]
τtutusuts

= τsτtτs.ustutusuα[utα, ut]
τtusutust

= τsτt.utustusuα[usα, us]
τs [utα, ut]

τt [[utα, ut]
τtτs , us]

τsusustut

= τsτt.utsusutuα[usα, us]
τs [utα, ut]

τtutusuts

= τs.usutsutuα[utα, ut]
τt [usα, us]

τs [[usα, us]
τsτt , ut]

τt

· [utα, ut]τt [[utα, ut], ut]τtututsus
(3.3.1)
= τs.ustutusuα[usα, us]

τsusutust

= τ2s .utustusuαusustut

= utustusuαusustut

Case 2: u = usustutsut: We note that we have −αs ⊆ tstγ for all γ ∈ MG
αt,tα by (CR1).

Moreover, we have −αt ⊆ sγ, tδ for all γ ∈ MG
αs,sα and all δ ∈ MG

αt,tα by (CR1). We
compute the following:

(τsτt)
4.ututsustusuαusustutsut = (τsτt)

4.usutuαutus

= (τsτt)
3τs.utsutuα[utα, ut]

τtututs

= (τsτt)
3.utsustusα[utα, ut]

τtτsustuts

= (τsτt)
2τs.usustutsα[utα, ut]

τtτsτtustus

= (τsτt)
2τs.ustusutsα[utα, ut]

τtτsτtusust

= (τsτt)
2.utusutsα[ustsα, us]

τs [utα, ut]
τtτsτt [[utα, ut]

τtτsτtτs , us]
τsusut

= (τsτt)
2.usustutsututsα[ustsα, us]

τs [utα, ut]
τtτsτtututsustus

= (τsτt)
2.usustutsutsα[utsα, ut][ustsα, us]

τs [utα, ut]
τtτsτtutsustus

= (τsτt)
2.usustutsutsα[utα, ut]

τtτsτtutsustus

= τsτtτs.utsustususα[utα, ut]
τtτsusustuts

= τsτtτs.utsustusα[usα, us][utα, ut]
τtτsustuts

= τsτt.utsutuα[usα, us]
τs [utα, ut]

τtututs

= τs.usutuα[utα, ut]
τt [usα, us]

τs [[usα, us]
τsτt , ut]

τt

· [utα, ut]τt [[utα, ut], ut]τtutus
(3.3.1)
= τs.ututsustusuα[usα, us]

τsusustutsut

= τ2s .ustutsutusuαusututsust

= ustutsutusuαusututsust

= ututsustusuαusustutsut

Case 3: u = usut: Interchanging s and t in the previous case, we deduce the following:

(τtτs)
4.utusuαusut = (τtτs)

4.usustutsutuαututsustus

= usustutsutuαututsustus
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= utusuαusut

In particular, this yields (τsτt)4.utusuαusut = utusuαusut.

Case 4: u = usutsut: Note that we have −αt ⊆ stγ for all γ ∈ MG
αt,tα by (CR1). Similarly, we

have −αs ⊆ tsγ1, tstγ2, γ3 for all γ1 ∈ MG
αs,sα, γ2 ∈ MG

αt,tsα, γ3 ∈ MG
αt,tα. We compute

the following:

(τsτt)
4.ututsusuαusutsut = (τsτt)

4.usustutuαutustus

= (τsτt)
3τs.utsustutuα[utα, ut]

τtutustuts

= (τsτt)
3.utsutustusα[utα, ut]

τtτsustututs

= (τsτt)
3.utsustutusα[utα, ut]

τtτsutustuts

= (τsτt)
2τs.usustutusα[utsα, ut]

τt [utα, ut]
τtτs [[utα, ut]

τtτsτt , ut]
τtutustus

= (τsτt)
2τs.utsutususα[utsα, ut]

τt [utα, ut]
τtτsusututs

= (τsτt)
2τs.utsutusα[usα, us][utsα, ut]

τt [utα, ut]
τtτsututs

= (τsτt)
2.utsustuα[usα, us]

τs [utsα, ut]
τtτs [utα, ut]

τtustuts

= τsτtτs.usustutα[usα, us]
τsτt [utsα, ut]

τtτsτt [utα, ut]ustus

= τsτtτs.ustusutα[usα, us]
τsτt [utsα, ut]

τtτsτt [utα, ut]usust

= τsτt.utusutα[ustα, us]
τs [usα, us]

τsτt [[usα, us]
τsτtτs , us]

τs

· [utsα, ut]τtτsτt [[utsα, ut]τtτsτtτs , us]τs [utα, ut][[utα, ut]τs , us]τsusut
= τsτt.usustutsututα[usα, us]

τsτt [utα, ut]ututsustus

= τsτt.usustutsututα[utα, ut]ut[usα, us]
τsτtutsustus

= τsτt.usustutsutα[usα, us]
τsτtutsustus

= τs.utsustusuα[usα, us]
τsusustuts

= τ2s .utsutusuαusututs

= utsutusuαusututs

= ututsusuαusutsut

Case 5: u = usustuts: Note that −αt ⊆ stγ1, stsγ2 for all γ1 ∈ MG
αt,tα, γ2 ∈ MG

αs,stα by (CR1).
As before, we deduce −αt ⊆ sγ, tδ for all γ ∈ MG

αs,sα and all δ ∈ MG
αt,tα by (CR1). We

obtain the following:

(τsτt)
4.utsustusuαusustuts = (τsτt)

3τs.usustutsutαutsustus

= (τsτt)
3τs.ustutsusutαusutsust

= (τsτt)
3.ututsusutα[ustα, us]

τsusutsut

= (τsτt)
3.ustusututα[ustα, us]

τsutusust

= (τsτt)
3.ustusutα[utα, ut][ustα, us]

τsusust

= (τsτt)
2τs.ustutsuα[utα, ut]

τt [ustα, us]
τsτtutsust

= (τsτt)
2.ututsusα[utα, ut]

τtτs [ustα, us]
τsτtτsutsut

= (τsτt)
2.utsutusα[utα, ut]

τtτs [ustα, us]
τsτtτsututs

= τsτtτs.usutusα[utsα, ut]
τt [utα, ut]

τtτs [[utα, ut]
τtτsτt , ut]

τt

· [ustα, us]τsτtτs [[ustα, us]τsτtτsτt , ut]τtutus
= τsτtτs.ututsustususα[utsα, ut]

τt [utα, ut]
τtτs [ustα, us]

τsτtτsusustutsut
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= τsτtτs.ututsustusα[usα, us][utsα, ut]
τt [utα, ut]

τtτs [ustα, us]
τsτtτsustutsut

= τsτtτs.ututsustusα[usα, us][utα, ut]
τtτsustutsut

= τsτt.ustutsutuα[usα, us]
τs [utα, ut]

τtututsust

= τs.ustusutuα[utα, ut]
τt [usα, us]

τs [[usα, us]
τsτt , ut]

τt

· [utα, ut]τt [[utα, ut], ut]τtutusust
(3.3.1)
= τs.utsutusuα[usα, us]

τsusututs

= τ2s .utsustusuαusustuts

= utsustusuαusustuts

Case 6: u = usust: Note that −αs,−αt ⊆ tγ1, sγ2 for all γ1 ∈ MG
αt,tα, γ2 ∈ MG

αs,sα by (CR1).
We compute the following:

(τsτt)
4.ustusuαusust = (τsτt)

3τs.ustutsutαutsust

= (τsτt)
3.ututsustαutsut

= (τsτt)
3.utsutustαututs

= (τsτt)
2τs.usutustα[utstα, ut]

τtutus

= (τsτt)
2τs.ututsustusustα[utstα, ut]

τtusustutsut

= (τsτt)
2τs.ututsustustα[ustα, us][utstα, ut]

τtustutsut

= (τsτt)
2τs.ututsustustαustutsut

= (τsτt)
2.ustutsututαututsust

= (τsτt)
2.ustutsutα[utα, ut]utsust

= τsτtτs.ustusuα[utα, ut]
τtusust

= τsτt.utusuα[usα, us]
τs [utα, ut]

τt [[utα, ut]
τtτs , us]

τsusut

= τsτt.usustutsutuα[usα, us]
τs [utα, ut]

τtututsustus

= τs.utsustusutuα[utα, ut]
τt [usα, us]

τs [[usα, us]
τsτt , ut]

τt

· [utα, ut]τt [[utα, ut], ut]τtutusustuts
(3.3.1)
= τs.utusuα[usα, us]

τsusut

= τ2s .ustusuαusust

= ustusuαusust

Case 7: u = utsut: Interchanging s and t in the previous case we deduce

(τtτs)
4.ututsuαutsut = (τtτs)

4.utsutuαututs = utsutuαututs = ututsuαutsut

In particular, this yields (τsτt)4.ututsuαutsut = ututsuαutsut.

Case 8: u = ustuts: We obtain the following:

(τsτt)
4.utsustuαustuts = (τsτt)

3τs.usustutαustus

= (τsτt)
3τs.ustusutαusust

= (τsτt)
3.utusutα[ustα, us]

τsusut

= (τsτt)
3.usustutsututα[ustα, us]

τsututsustus

= (τsτt)
3.usustutsutα[utα, ut][ustα, us]

τsutsustus
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= (τsτt)
2τs.utsustusuα[utα, ut]

τt [ustα, us]
τsτtusustuts

Note that −αs,−αt ⊆ tδ, tsγ for all δ ∈ MG
αt,tα and γ ∈ MG

αs,stα by (CR1). Using Case
5 we deduce the following:

(τsτt)
4.utsustuαustuts = (τsτt)

2τs.utsustusuα[utα, ut]
τt [ustα, us]

τsτtusustuts

= τtτsτt(τtτs)
4.utsustusuα[utα, ut]

τt [ustα, us]
τsτtusustuts

= τtτsτt.utsustusuα[utα, ut]
τt [ustα, us]

τsτtusustuts

= τtτsτt. (τtτsτt.utsustuαustuts)

= utsustuαustuts

(3.4.5) Lemma. Let α ∈ Φ+ be a root such that −αs,−sαt,−tαs ⊆ α. Then we have
[(τsτt)

4, utsustusuαusustuts] = 1 in the group Ps ⋆U+ Pt.

Proof. If {αt, α} /∈ P, then {−αt, α} is a prenilpotent pair by [2, Lemma 8.42(3)]. As (−αt) /∈
1W ∈ α, we deduce (−αt) ⊆ α and the claim follows from Lemma (3.4.4). Thus we can assume
that {αt, α} ∈ P. We distinguish the following cases:

(a) αt ⊆ α: Then we have −αt,−αs ⊆ tα. Using Lemma (3.4.4) again we obtain that
(τtτs)

4.utsustusutαusustuts = utsustusutαusustuts. This implies:

(τsτt)
4.utsustusuαusustuts = τ2t (τsτt)

3τs.usustutsutαutsustus

= τt(τtτs)
4.utsustusutαusustuts

= τt.utsustusutαusustuts

= usustutsuαutsustus

= utsustusuαusustuts

(b) o(rαtrα) < ∞: Using the nilpotency class of the groups Uw and (CR2), we deduce the
following:

[ustα, us] = 1

[[utα, ut]
τtτsτt , ut] = [[utα, ut]

τsτt , ut]
τsτtτs = [[utstα, ust], ut]

τsτtτs = 1

τt.ut[utα, ut]
τtτsut = τtut.[utα, ut]

τtτs

= utτtutτt.[utα, ut]
τtτs

= utτt.[utα, ut]
τtτsτt [[utα, ut]

τtτsτt , ut]

= ut.[utα, ut]
τtτs

= ut[utα, ut]
τtτsut

[utsα, ut] = 1

[[utα, ut]
τtτs , us] = [[utα, ut]

τsτtτs , us]
τtτsτt = [[uststα, ut], us]

τtτsτt = 1

[usα, us] = 1

utuα[utα, ut]
τtut = (utτt)

2.uα = τtut.uα = utα[uα, ut]
τt

We compute the following:

(τsτt)
4.utsustusuαusustuts = (τsτt)

3τs.usustutsutαutsustus

= (τsτt)
3τs.ustutsusutαusutsust

= (τsτt)
3.ututsusutα[ustα, us]

τsusutsut
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= (τsτt)
3.ustusutα[utα, ut]usust

= (τsτt)
2τs.ustutsuα[utα, ut]

τtutsust

= (τsτt)
2.ututsusα[utα, ut]

τtτsutsut

= (τsτt)
2.utsutusα[utα, ut]

τtτsututs

= τsτtτs.usutusα[utsα, ut]
τt [utα, ut]

τtτsutus

= τsτtτs.ututsustusα[usα, us][utα, ut]
τtτsustutsut

= τsτtτs.ututsustusα[utα, ut]
τtτsustutsut

= τsτt.ustutsutuα[utα, ut]
τtututsust

= τsτt.ustutsutα[uα, ut]
τtutsust

= τs.ustusuα[uα, ut]usust

= τs.utsutusuαusututs

= utsustusuα[usα, us]
τsusustuts

= utsustusuαusustuts

(3.4.6) Lemma. Let α ∈ Φ+ be a root such that −sαt,−tαs,−αt ⊆ α. Then we have
[(τsτt)

4, ututsustuαustutsut] = 1 in the group Ps ⋆U+ Pt.

Proof. Interchanging s and t in the previous lemma we deduce

(τtτs)
4.ututsustuαustutsut = (τtτs)

4.ustutsutuαututsust

= ustutsutuαututsust

= ututsustuαustutsut

This implies (τsτt)4.ututsustuαustutsut = ututsustuαustutsut.

(3.4.7) Lemma. Let α ∈ Φ+ be a root such that −αs,−sαt ⊆ α holds. Then we have
[(τsτt)

4, ustusuαusust] = 1 in the group Ps ⋆U+ Pt, if mrt ̸= 6 ̸= msr for all r ∈ S.

Proof. We distinguish the following cases:

(A) −αt ⊆ α: This is covered by Lemma (3.4.4).

(B) o(rαtrα) < ∞: By de�nition we have −αt ⊆ stα. Assume that tαs ⊆ α. Then Lemma
(1.3.2) would imply αt ⊆ (−αs) ∪ tαs ⊆ α, which is a contradiction. Now assume that
{αs, stα} /∈ P. Then [2, Lemma 8.42(3)] would imply that {−αs, stα} is a pair of nested
roots and, as (−αs) /∈ 1W ∈ stα, we obtain −αs ⊆ stα. But then tαs ⊆ α, which is a
contradiction. Thus we have {αs, stα} ∈ P. Using the nilpotency class of the groups
Uw and (CR2), we have the following:

[utstα, ut] = 1

[usα, us] = 1

utuα[utα, ut]
τtut = utα[uα, ut]

τt

usutα[ustα, us]
τsus = ustα[utα, us]

τs

[[ustα, us]
τs , ut] = [[ustα, us], ust]

τs = 1

We compute the following:

(τsτt)
4.ustusuαusust = (τsτt)

3τs.ustutsutαutsust

46



3.4. The case mst = 4

= (τsτt)
3.ututsustαutsut

= (τsτt)
3.utsutustαututs

= (τsτt)
2τs.usutustα[utstα, ut]

τtutus

= (τsτt)
2τs.ututsustusustαusustutsut

= (τsτt)
2τs.ututsustustα[ustα, us]ustutsut

= (τsτt)
2.ustutsututα[ustα, us]

τsututsust

Later we will do a case distinction and two cases are similar. Thus we will assume for
the moment that [ustα, us] = 1. Then we compute

(τsτt)
2.ustutsututα[ustα, us]

τsututsust = (τsτt)
2.ustutsutα[utα, ut]utsust

= τsτtτs.ustusuα[utα, ut]
τtusust

If, furthermore, [utα, ut] = 1, we deduce the following:

τsτtτs.ustusuα[utα, ut]
τtusust = τsτtτs.ustusuαusust

= τsτt.utusuα[usα, us]
τsusut

= τsτt.usustutsutuα[utα, ut]
τtututsustus

= τsτt.usustutsutα[uα, ut]
τtutsustus

Now we distinguish the following cases:

(a) −tαs ⊆ α: Then [ustα, us] = 1 by (CR2) and the previous computation yields

(τsτt)
2.ustutsututα[ustα, us]

τsututsust = τsτtτs.ustusuα[utα, ut]
τtusust

Since mrt ̸= 6, we deduce 1 ∈ {[utα, ut], [uα, ut]}. We distinguish these two cases:

(I) [utα, ut] = 1: Then again the previous computations yield:

τsτtτs.ustusuα[utα, ut]
τtusust = τsτt.usustutsutα[uα, ut]

τtutsustus

(II) [uα, ut] = 1: Then we have the following:

τsτtτs.ustusuα[utα, ut]
τtusust = τsτtτs.ustusututα[uα, ut]

τtutusust

= τsτtτs.ututsusutαusutsut

= τsτt.ustutsusutα[ustα, us]
τsusutsust

= τsτt.usustutsutα[uα, ut]
τtutsustus

(b) {tαs, α} ∈ P: As tαs ̸⊆ α, we have o(rtαsrα) <∞ and hence o(rαsrtα) <∞. Since
msr ̸= 6 for all r ∈ S, we have 1 ∈ {[ustα, us], [utα, us]}. We distinguish these two
cases:

(aa) [ustα, us] = 1: Then the previous computations yield:

(τsτt)
2.ustutsututα[ustα, us]

τsututsust = τsτtτs.ustusuα[utα, ut]
τtusust

Since mrt ̸= 6, we deduce 1 ∈ {[utα, ut], [uα, ut]}. We distinguish these two
cases:

47



3. Braid relations

(i) [utα, ut] = 1: Then again the previous computations yield:

τsτtτs.ustusuα[utα, ut]
τtusust = τsτt.usustutsutα[uα, ut]

τtutsustus

(ii) [uα, ut] = 1: Then we have the following:

τsτtτs.ustusuα[utα, ut]
τtusust = τsτtτs.ustusututα[uα, ut]

τtutusust

= τsτtτs.ututsusutαusutsut

= τsτtτs.ututsutα[utα, us]utsut

= τsτt.ustutsustα[utα, us]
τsutsust

= τsτt.ustutsusutα[ustα, us]
τsusutsust

= τsτt.usustutsutα[uα, ut]
τtutsustus

(bb) [utα, us] = 1: Then we compute the following:

(τsτt)
2.ustutsututα[ustα, us]

τsututsust = (τsτt)
2.ustutsutusustα[utα, us]

τsusututsust

= (τsτt)
2.usutustαutus

= τsτtτs.utsutustα[utstα, ut]
τtututs

= τsτtτs.utsutustαututs

= τsτt.utsustutαustuts

= τsτt.utsustusutαusustuts

= τsτt.usustutsutαutsustus

Since o(rαsrtα) <∞ and −αs ⊆ α, we have α ̸= tα. Clearly, we have

−αs = (−αs)∩W = ((−αs) ∩ (−sαt))∪((−αs) ∩ sαt) ⊆ (−sαt)∪((−αs) ∩ sαt)

Note that there exists R ∈ ∂2αt ∩ ∂2α ∩ ∂2tα. Lemma (1.4.8) now implies (as
−tα /∈ (αt, α) ∪ (−αt, α)) α ∈ (αt, tα) or tα ∈ (αt, α). Assume tα ∈ (αt, α).
Then αt∩α ⊆ tα by de�nition. Since sαt ∈ (αs, αt), we deduce αt ∈ (−αs, sαt)
and hence (−αs) ∩ sαt ⊆ αt. But then we would have the following:

−αs ⊆ (−sαt) ∪ ((−αs) ∩ sαt) ⊆ tα ∪ (αt ∩ α) ⊆ tα

This is a contradiction as o(rαsrtα) < ∞ and hence we deduce α ∈ (αt, tα).
Since mrt ̸= 6 for all r ∈ S, the commutator relations imply [utα, ut] ̸= 1 and
hence [uα, ut] = 1 because 1 ∈ {[utα, ut], [uα, ut]} as before. We infer:

τsτt.usustutsutαutsustus = τsτt.usustutsutα[uα, ut]
τtutsustus

We see that in both cases (a) and (b) we have the same result. Thus we compute further:

(τsτt)
2.ustutsututα[ustα, us]

τsututsust = τsτt.usustutsutα[uα, ut]
τtutsustus

= τs.utsustusuα[uα, ut]usustuts

= τs.utsustusutuαutusustuts

= τs.utusuαusut

= ustusuα[usα, us]
τsusust

= ustusuαusust
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(C) αt ⊆ α: We distinguish the following cases:

(aaa) −tαs ⊆ α: Then −αs,−αt ⊆ tα and we can apply again Lemma (3.4.4) with
u = ustuts to deduce the following:

(τsτt)
4.ustusuαusust = τ2t (τsτt)

3τs.ustutsutαutsust

= τt(τtτs)
4.utsustutαustuts

= τt.utsustutαustuts

= τt.ustutsutαutsust

= ustusuαusust

(bbb) tαs ⊆ α: Then −αs,−αt ⊆ stα and we deduce from Lemma (3.4.4):

(τsτt)
4.ustusuαusust = (τsτt)

−1(τsτt)(τsτt)
3.ututsustαutsut

= (τsτt)
−1.ututsustαutsut

= ustusuαusust

(ccc) o(rtαsrα) < ∞: Note that −tαs,−αt ⊆ stα and o(rαsrstα) < ∞. Interchanging s
and t in Case (B) yields (τtτs)4.utsutustαututs = utsutustαututs and hence

(τsτt)
4.ustusuαusust = (τsτt)

3.ututsustαutsut

= (τsτt)
−1 · (τsτt)4.utsutustαututs

= τtτs.utsutustαututs

= τtτs.ututsustαutsut

= ustusuαusust

(3.4.8) Lemma. Assume that mrt ̸= 6 ̸= msr for all r ∈ S. Then for α ∈ Φ+\Φ{s,t}
+ and

u ∈ Us,t we have [(τsτt)
4, u−1uαu] = 1 in the group Ps ⋆U+ Pt, if one of the following hold:

(a) u = ustuts and −sαt,−tαs ⊆ α,

(b) u = utsut and −tαs,−αt ⊆ α;

Proof. Assume that (a) holds. Then we have −sαt,−αs ⊆ tα and the previous lemma yields

(τsτt)
4.utsustuαustuts = τ2t (τsτt)

3τs.usustutαustus

= τt(τtτs)
4.ustusutαusust

= τt.ustusutαusust

= ustutsuαutsust

= utsustuαustuts

Now assume that (b) holds. Then we have −sαt,−tαs ⊆ sα and we infer the following from
Assertion (a):

(τsτt)
4.ututsuαutsut = (τsτt)

4τs.ustutsusαutsust = τs.ustutsusαutsust = ututsuαutsut

(3.4.9) Lemma. We have [(τsτt)
4, n] = 1 for all n ∈ Ns,t in the group Ps⋆U+ Pt, if the groups

Uw are of nilpotency class at most 2, mru ̸= 6 for all r, u ∈ S and M satis�es (CR1) and
(CR2).

Proof. Since Ns,t is generated by the elements u−1uαu with u ∈ Us,t and α ∈ Φ+\Φ{s,t}
+ it

su�ces to show the claim for n = u−1uαu. Since Us,t is a group of order 16, we have to
distinguish these 16 cases. The claim is trivial for u = 1. The other cases follow from the
Lemmas (3.4.1) - (3.4.8).
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3.5. First main result

(3.5.1) Theorem. Suppose mst ̸= 6 for all s, t ∈ S. Let M =
(
MG

α,β

)
(G,α,β)∈I

be a commu-

tator blueprint of type (W,S), which is faithful and Weyl-invariant. Suppose s ̸= t ∈ S with
mst <∞ and let n ∈ Ns,t. Then [(τsτt)

mst , n] = 1 in Ps ⋆U+ Pt if the following hold:

(a) mst = 2;

(b) mst ∈ {3, 4}, the groups Uw are of nilpotency class at most 2 and M satis�es the
following two additional conditions, where α ∈ Φ+ is such that αs ⊆ α.

(CR1) If β ∈ Φ{s,t} is such that β ⊆ α, then there exist w ∈ W with ℓ(sw) = ℓ(w)− 1
and G ∈ Mins(w) with α ∈ Φ(G) such that β ⊆ γ for all γ ∈MG

αs,α.

(CR2) If β ∈ Φ{s,t} satis�es o(rβrα) <∞, then there exist w ∈W with ℓ(sw) = ℓ(w)−1
and G ∈ Mins(w) with α ∈ Φ(G) such that MG

αs,α = ∅.

In particular, M is integrable.

Proof. The �rst part is a consequence of Lemma (3.2.1), Lemma (3.3.6) and Lemma (3.4.9).
Now we deduce from Theorem (2.2.14) and Theorem (2.4.3) that M is integrable.

(3.5.2) Remark. We remark that (CR2) is not always satis�ed. To see this one may consider
(W,S) to be of a�ne type and an RGD-system of type (W,S) with non-abelian root groups at
in�nity. We do not know whether (CR1) and the nilpotency class assumption are necessary.
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In this chapter we assume mst ̸= 6 for all s ̸= t ∈ S. We will discuss the nilpotency class

assumption of the last chapter. We show that each family M =
(
MG

α,β

)
(G,α,β)∈I

of subsets

MG
α,β ⊆ (α, β) ordered via ≤G which induces (roughly speaking) nilpotency class 2 groups

Uw and satis�es (CB1) and (CB2) satis�es automatically (CB3). Hence such a family is a
commutator blueprint of type (W,S).

4.1. Auxiliary results

(4.1.1) Lemma. Let G = ⟨g1, . . . , gn⟩ be a group such that [gi, [gj , gk]] = 1 for all i, j, k ∈
{1, . . . , n}. Then G is of nilpotency class at most 2.

Proof. Let x, y, z ∈ G and let x1, . . . , xk, y1, . . . , yl, z1, . . . , zm ∈ {g1, . . . , gn} be such that x =
x1 · · ·xk, y = y1 · · · yl, z = z1 · · · zm. We will show that [x, [y, z]] = 1. Assume �rst l = 1 = m.
Induction on k yields [x, [y, z]] = [xx−1

k , [y, z]]xk [xk, [y, z]] = 1. Now we assume l = 1. Induc-

tion on m implies [x, [y, z]] = [x, [y, zm][y, zz−1
m ]zm ] = [x(z

−1
m ), [y, zz−1

m ]]zm [x, [y, zm]][y,zz
−1
m ]zm =

1. Now induction on l yields

[x, [y, z]] = [x, [yy−1
l , z]yl [yl, z]] = [x, [yl, z]][x

(y−1
l ), [yy−1

l , z]]yl[yl,z] = 1

(4.1.2) Proposition. Let N be a group and let g, h ∈ Aut(N) be two involutions with [g, h] =
idN . Assume that there exists u ∈ Z(N) such that u2 = 1 and g(u) = u = h(u). Let
G = Z2 ⋉g N (i.e. Z2 acts on N via g) and H = Z2 ⋉hN . Moreover, we let xg (resp. xh) be
the generator of Z2 ≤ G (resp. Z2 ≤ H) and we let φ : G ⋆N H → G ⋆N H/⟨⟨[xg, xh]u−1⟩⟩.
Then

kerφ = {[xg, xh]kul | k, l ∈ Z, k + l ≡ 0 mod 2}

In particular, the product map ⟨xg⟩ ×N × ⟨xh⟩ → G ⋆N H/⟨⟨[xg, xh]u−1⟩⟩, (g′, n, h′) 7→ g′nh′

is a bijection.

Proof. Let n ∈ N . By assumption we have [g, h](n) = n. We note that in G (resp. H)
we have x−1

g nxg = g(n) (resp. x−1
h nxh = h(n)) for all n ∈ N . We consider a conjugate of

[xg, xh]u
−1 in G ⋆N H. For n ∈ N we obtain:

n−1
(
[xg, xh]u

−1
)
n = n−1[xg, xh]n[xg, xh]

−1[xg, xh]u
−1 = n−1[g, h](n)[xg, xh]u

−1 = [xg, xh]u
−1

Since g, h ∈ Aut(N), we have g(u−1) = g(u)−1 = u−1 and h(u−1) = u−1. Thus we obtain:

x−1
g

(
[xg, xh]u

−1
)
xg = xgxgxhxgxhu

−1xg = xhxgxhxgxgu
−1xg = [xh, xg]g(u

−1) = [xg, xh]
−1u−1

x−1
h

(
[xg, xh]u

−1
)
xh = xhxgxhxgxhu

−1xh = [xh, xg]h(u
−1) = [xg, xh]

−1u−1

We also note that [[xg, xh]
±1, u±1] = [g, h]∓1(u∓1)u±1 = 1. Thus we conclude that kerφ =

⟨⟨[xg, xh]u−1⟩⟩ = ⟨[xg, xh]εu−1 | ε ∈ {1,−1}⟩ = {[xg, xh]kul | k, l ∈ Z, k + l ≡ 0 mod 2}.
For the second assertion we note at �rst that the mapping is surjective. We denote the
product map by p. Let a ∈ ⟨xg⟩, b ∈ ⟨xh⟩ and n ∈ N be such that p((a, n, b)) = anb = 1.
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4. Construction of the groups Uw

Then anb = abn′ ∈ kerφ, where n′ = b−1nb = b(n) ∈ N . Considering normal forms in
amalgamated products we obtain a = 1 = b and n′ = u2l. Since u2 = 1, we obtain n′ = 1 and
hence n = 1. Now we show that p is injective. Let a, a′ ∈ ⟨xg⟩, b, b′ ∈ ⟨xh⟩ and n, n′ ∈ N be
such that anb = p((a, n, b)) = p((a′, n′, b′)) = a′n′b′. Then

1 = a−1a′n′b′b−1n−1 = a−1a′n′
(
b′b−1n−1b(b′)−1

)
b′b−1

and hence p((a−1a′, n′
(
b′b−1n−1b(b′)−1

)
, b′b−1)) = 1. We have already shown that this implies

a = a′, b = b′ and 1 = n′
(
b′b−1n−1b(b′)−1

)
= n′n−1. This �nishes the claim.

(4.1.3) Corollary. Let N be a group and let g, h ∈ Aut(N) be two involutions. Assume
that G = Z2 ⋉g N and H = Z2 ⋉h N are of nilpotency class at most 2 and that h(n)n−1 ∈
StabN (g), g(n)n−1 ∈ StabN (h) for all n ∈ N . Let u ∈ N be such that u ∈ Z(G), u ∈ Z(H)
and u2 = 1. Let xg (resp. xh) be the generator of Z2 in G (resp. H). Then the mapping

⟨xg⟩ ×N × ⟨xh⟩ → G ⋆N H/⟨⟨[xg, xh]u−1⟩⟩

is a bijection. Furthermore, the latter group is of nilpotency class at most 2.

Proof. Since u ∈ Z(G), u ∈ Z(H), we have 1 = [xg, u
−1] = g(u)u−1 and hence g(u) =

u. Similarly, we have h(u) = u. Moreover, we have u ∈ Z(N). In view of the previous
proposition it su�ces to show that [g, h] = idN . As G is of nilpotency class at most 2, we
have [g(n)n−1, n′] = [[xg, n

−1], n′] = 1 for all n, n′ ∈ N . We compute the following:

[g, h](n) = ghg
(
h(n)n−1n

)
= gh

(
g
(
h(n)n−1

)
g(n)n−1n

)
= gh

(
h(n)g(n)n−1

)
= g

(
nh

(
g(n)n−1

))
= g

(
ng(n)n−1

)
= g (g(n))

= n

Thus [g, h] = idN . For the nilpotency class it su�ces to show [a, [b, c]] = 1 for a, b, c ∈
{xg, xh} ∪ N by Lemma (4.1.1). If xg /∈ {a, b, c} the claim follows by the nilpotency class
of H. Using similar arguments we obtain the result if xh /∈ {a, b, c}. Thus we can assume
xg, xh ∈ {a, b, c}. If {xg, xh} ≠ {b, c}, the claim follows from the fact that [xh, n−1] ∈ StabN (g)
and [xg, n

−1] ∈ StabN (h) for all n ∈ N . Thus we assume {b, c} = {xg, xh}. Since [b, c] = u±1

is contained in Z(G) and in Z(H) the claim follows.

4.2. Pre-commutator blueprints

A pre-commutator blueprint of type (W,S) is a familyM =
(
MG

α,β

)
(G,α,β)∈I

of subsetsMG
α,β ⊆

(α, β) ordered via ≤G satisfying (CB1), (CB2) and the following axiom:

(PCB) For every G ∈ Min(w) the canonical homomorphism UG → Uw is an isomorphism.

Let G = (d0, . . . , dn = c0, . . . , ck = e0, . . . , em) ∈ Min and let (α1, . . . , αn+k+m) be the
sequence of roots crossed by G. We de�ne the group U(c0,...,ck),G via the presentation

U(c0,...,ck),G :=

〈
uαn+1 , . . . , uαn+k

|

{∀1 ≤ i ≤ k : u2αn+i
= 1,

∀1 ≤ i < j ≤ k : [uαn+i , uαn+j ] =
∏

γ∈MG
αn+i,αn+j

uγ

〉

(4.2.1) Remark. In Axiom (PCB) we do not require that |Uw| = 2ℓ(w). We will see in
Lemma (4.2.2) that under some mild conditions, a pre-commutator blueprint is a commu-
tator blueprint. Moreover, we remark that UG,G = UG (cf. Lemma (2.1.4)).
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For every αn+1 ≤G α ≤G β ≤ αn+k ∈ Φ(G) we haveMG
α,β ⊆ (α, β) ⊆ {αn+2, . . . , αn+k−1}.

We call a pre-commutator blueprint 2-nilpotent, if for all G = (d0, . . . , dn = c0, . . . , ck =
e0, . . . , em) ∈ Min, αn+2 ≤G α ≤G αn+(k−1) the following hold in U(c1,...,ck−1),G:

(2-n1)
∏

γ∈MG
α,αn+k

(∏
δ∈MG

αn+1,γ
uδ

)
uγ =

∏
γ∈MG

α,αn+k
uγ ;

(2-n2)
∏

γ∈MG
αn+1,α

(
uγ

∏
δ∈MG

γ,αn+k
uδ

)
=

∏
γ∈MG

αn+1,α
uγ ;

(2-n3)
(∏

γ∈MG
αn+1,αn+k

uγ

)2
= 1 and

∏
γ∈MG

αn+1,αn+k
uγ ∈ Z(U(c1,...,ck−1),G);

(2-n4)
∏

γ∈MG
αn+1,αn+k

(∏
δ∈MG

αn+1,γ
uδ

)
uγ =

∏
γ∈MG

αn+1,αn+k
uγ ;

(2-n5)
∏

γ∈MG
αn+1,αn+k

(
uγ

∏
δ∈MG

γ,αn+k
uδ

)
=

∏
γ∈MG

αn+1,αn+k
uγ .

Condition (2-n1) will imply that [uαn+1 , [uα, uαn+k
]] = 1 holds and Condition (2-n2) that

[[uαn+1 , uα], uαn+k
] = 1 holds. Conditions (2-n4) and (2-n5) imply that [uαn+1 , uαn+k

] com-
mutes with uαn+1 and uαn+k

. Let M be a commutator blueprint of type (W,S). Then
M is a pre-commutator blueprint of type (W,S) by Lemma (2.1.4). It is not hard to see
that if the groups Uw of a commutator blueprint are of nilpotency class at most 2, then the
pre-commutator blueprint is 2-nilpotent (cf. Lemma (3.3.1)).

(4.2.2) Lemma. Let M be a 2-nilpotent pre-commutator blueprint of type (W,S). Then M
is a commutator blueprint of type (W,S) and the groups Uw are of nilpotency class at most 2.

Proof. Let w ∈ W,G = (d0, . . . , dn = c0, . . . , ck) ∈ Min(w) and H = (c0, . . . , ck). We show
by induction on k ≥ 0, that |UH,G| = 2k and UH,G is of nilpotency class at most 2. This will
�nish the claim as UG,G

∼= UG
∼= Uw by (PCB). We remark that the induction is on the length

of the gallery H and not on the length of the gallery G.

If k ≤ 2, the claim follows as UH,G
∼=


{1} k = 0

Z2 k = 1

Z2 × Z2 k = 2

. Thus we assume k > 2. Let G′ =

(d0, . . . , dn = c0, . . . , ck−1), G1 = (c0, . . . , ck−1), G2 = (c1, . . . , ck) and K = (c1, . . . , ck−1).
Using induction, the groups UG1,G′ , UG2,G are of nilpotency class at most 2 and we have

|UG1,G′ | = 2k−1, |UK,G′ | = 2k−2, |UG2,G| = 2k−1.

Because of (CB1) we have UG1,G′ = UG1,G as well as UK,G′ = UK,G. Clearly, UK,G →
UG1,G, UG2,G are injective and UG1,G

∼= ⟨uαn+1⟩⋉UK,G, UG2,G
∼= ⟨uαn+k

⟩⋉UK,G. In particular,
uαn+1 , uαn+k

act on UK,G via conjugation. Using (2-n2) and (2-n1) we deduce

uαn+1(uα)uα =
∏

γ∈MG
αn+1,α

uγ ∈ StabUK,G
(uαn+k

)

uαn+k
(uα)uα =

(
uα · uαn+k

(uα)
)−1

=

 ∏
γ∈MG

α,αn+k

uγ


−1

∈ StabUK,G
(uαn+1)

for all α = αn+i with 2 ≤ i ≤ k−1. Since UK,G is generated by these uα and since UG1,G, UG2,G

are of nilpotency class at most 2, it follows by induction that for n, n′, uα ∈ UK,G with n = n′uα
we have

uαn+1(n)n
−1 = uαn+1(n

′)uαn+1(uα)uα(n
′)−1
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= uαn+1(n
′)[uαn+1 , uα](n

′)−1

= uαn+1(n
′)(n′)−1uαn+1(uα)uα ∈ StabUK,G

(uαn+k
)

nuαn+k
(n−1) = n′uαuαn+k

(uα)uαn+k
((n′)−1)

= n′[uα, uαn+k
]uαn+k

((n′)−1)

= uαuαn+k
(uα)n

′uαn+k
((n′)−1) ∈ StabUK,G

(uαn+k
)

In particular, uαn+k
(n)n−1 =

(
nuαn+k

(n−1)
)−1 ∈ StabUK,G

(uαn+k
). Using (2-n3), (2-n4) and

(2-n5), Corollary (4.1.3) implies that the mapping

Z2 × UK,G × Z2 → UG1,G ⋆UK,G
UG2,G/⟨⟨[uαn+1 , uαn+k

] =
∏

γ∈MG
αn+1,αn+k

uγ⟩⟩

is a bijection and the latter group is of nilpotency class at most 2. Moreover, the latter group
is isomorphic to U(c0,...,ck),G and we are done.

(4.2.3) Theorem. Let (W,S) be right-angled (i.e. mst ∈ {2,∞} for all s ̸= t ∈ S) such
that every connected component of the Coxeter diagram of (W,S) is the complete graph. Then
each Weyl-invariant 2-nilpotent pre-commutator blueprint of type (W,S) is integrable.

Proof. The previous lemma implies thatM is a commutator blueprint of type (W,S). Let k be
the number of connected components of the Coxeter diagram of (W,S) and let J1, . . . , Jk ⊆ S
be the vertex sets of the connected components. Then W ∼= ⟨J1⟩× · · ·×⟨Jk⟩. Let {α, β} ∈ P.
If α = wαs, β = vαt and mst = 2, then (α, β) = ∅. Consider the commutator blueprint

Mi =
(
MG

α,β

)
(G,α,β)∈Ii

, where Ii = {(G,α, β) ∈ I | G ∈
⋃

w∈⟨Ji⟩Min(w)} of type (⟨Ji⟩, Ji).

Then Mi is integrable by Corollary (2.2.15). Let Di =
(
Gi, (U

i
α)α∈ΦJi

)
be an RGD-system of

type (⟨Ji⟩, Ji) over F2 such that MDi = Mi. Then G1 × · · · × Gk yields an RGD-system D
such that M = MD and hence M is integrable.

(4.2.4) Theorem. Let (W,S) be a union of Ã1 diagrams. Let M be a Weyl-invariant pre-
commutator blueprint of type (W,S). Then the following are equivalent:

(i) M is integrable.

(ii) M is 2-nilpotent.

Proof. Let M be a Weyl-invariant pre-commutator blueprint of type (W,S). Assume that
M is integrable. Then there exists an RGD-system D = (G, (Uα)α∈Φ) of type (W,S) over
F2 such that M = MD. Let k be the number of connected components of the Coxeter
diagram of (W,S) and let J1, . . . , Jk ⊆ S be the vertex sets of the connected components.
Then W ∼= ⟨J1⟩ × · · · ⟨Jk⟩ and we can write every w ∈ W as a product v1 · · · vk, where each
vi is contained in ⟨Ji⟩. In particular, Uw

∼= Uv1 × · · · × Uvk . It is a direct consequence of [21,
Theorem A] that each Uvi and hence Uw is of nilpotency class at most 2. In particular, MD
is 2-nilpotent. The other implication follows from the previous theorem.

(4.2.5) De�nition. Suppose that mst = ∞ for all s ̸= t ∈ S. Let s ̸= t ∈ S.

(a) Let 1 ≤ k ∈ N, J ⊆ {1, . . . , k}, let α ̸= β ∈ Φ+ and let G ∈ Min be such that
α, β ∈ Φ(G). Assume that there exists a minimal gallery H = (c0, . . . , ck) of type
(s, t, . . . , s, t, s) such that {c0, c1} ∈ ∂α, c0 ∈ α, {ck−1, ck} ∈ ∂β, ck−1 ∈ β and s appears
k+1 times and t appears k times in the type of H. Let (α1, . . . , αk) be the sequence of
roots crossed by H. Then we de�ne

M(k, J, (s, t))Gα,β := {α2j | j ∈ J}
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4.2. Pre-commutator blueprints

(b) Let ∅ ≠ K ⊆ N and let J = (Jk)k∈K be a family of subsets Jk ⊆ {1, . . . , k}. For
α ̸= β ∈ Φ+ and G ∈ Min with α, β ∈ Φ(G) we de�ne

M(K,J , (s, t))Gα,β :=
⋃
k∈K

M(k, Jk, (s, t))
G
α,β

Moreover, we de�ne M(K,J , (s, t)) :=
(
M(K,J , (s, t))Gα,β

)
(G,α,β)∈I

.

(4.2.6) Theorem. Let s ̸= t ∈ S, let ∅ ≠ K ⊆ N and let J = (Jk)k∈K be a family of subsets
Jk ⊆ {1, . . . , k}. Then M(K,J , (s, t)) is an integrable commutator blueprint.

Proof. We abbreviate M := M(K,J , (s, t)). By de�nition, M satis�es (CB1) and (CB2). As
|Min(w)| = 1 for every w ∈W , (PCB) is also satis�ed and M is a pre-commutator blueprint.
Let α ∈ Φ be a root. Because of the type of (W,S) we deduce that |∂α| = 1 (cf. Lemma
(1.4.2)), and we call δ(c, d) ∈ S the type of α, where {c, d} ∈ ∂α. Now let α ̸= β ∈ Φ+ be
such that MG

α,β ̸= ∅. Then α, β are roots of type s and every γ ∈ MG
α,β is a root of type t.

Now it is straight forward to verify that M is 2-nilpotent. Moreover, M is Weyl-invariant, as
MG

α,β does only depend on the existence of a suitable gallery H and not on G. Now Theorem
(4.2.3) yields the claim.

(4.2.7) Remark. It is mentioned in [16, Remark before Lemma 5] that Abramenko and
Mühlherr constructed an example of an RGD-system of right-angled type and of rank 3 which
does not satisfy property (FPRS). The author of this thesis is not aware of any publication
that provides the existence of RGD-systems of rank at least 3 which do not satisfy property
(FPRS). We have de�ned this property in Section 1.7.

(4.2.8) Corollary. Let s ̸= t ∈ S and for every n ∈ N we let Jn ⊆ {1, . . . , n} with 1 ∈ Jn.
Let D = (G, (Uα)α∈Φ) be the RGD-system associated with M

(
N, (Jn)n∈N , (s, t)

)
. Then D

does not satisfy property (FPRS).

Proof. Assume D would have property (FPRS). Let Gn = (c0, . . . , cn) ∈ Min(w) be of type
(s, t, s, t, . . .) with ℓ(w) = n (i.e. G1 has type (s) and G2 has type (s, t)) and we de�ne
αn := αGn . Then limi→∞ ℓ(1W , α2i−1) = ∞. As D has property (FPRS), there exists
n0 ∈ N such that for all i ≥ n0 the root group Uα2i−1 �xes the ball B(c, 2) pointwise. But
then [uα1 , uα2i−1 ] =

∏
j∈Ji uα2j would also �x B(c, 2) pointwise, which is a contradiction, as

1 ∈ Ji.
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5. Buildings of type (4, 4, 4)

In Chapter 5 we assume that (W,S) is of type (4, 4, 4) and that S = {r, s, t}. This chap-
ter contains many auxiliary results and proofs about roots in the Coxeter buildings of type
(4, 4, 4). Moreover, we prove that any RGD-system of type (4, 4, 4) over F2 contains a suitable
subgroup, which is a sequence of groups.

5.1. Coxeter buildings of type (4, 4, 4)

(5.1.1) Lemma. Suppose w ∈ W with ℓ(ws) = ℓ(w) + 1 = ℓ(wt). Then ℓ(w) + 2 ∈
{ℓ(wsr), ℓ(wtr)}. Moreover, if ℓ(wsr) = ℓ(w), then ℓ(wsrt) = ℓ(w) + 1.

Proof. Let (c0 = 1W , . . . , ck−2 = w, ck−1 = ws, ck = wst) be a minimal gallery of type
(s1, . . . , sk−2, s, t). Then we have sk−2 = r. We assume that ℓ(s1 · · · sk−2sr) = k − 2 =
ℓ(s1 · · · sk−2tr). Then ℓ(s1 · · · sk−3s) = k − 4 = ℓ(s1 · · · sk−3t). Let R be the {s, t} residue
containing ck−3, let T be the {t, r}-residue containing ck−3 and let P be the t-panel containing
ck−3. Then P = R ∩ T and Proposition (1.5.4) yields projT 1W = projP 1W , which is a
contradiction to the type (4, 4, 4). Thus the �rst claim follows.

Now suppose that ℓ(wsr) = ℓ(w). Assume that ℓ(wsrt) = ℓ(w) − 1. Then Pt(ck−1) =
R{s,t}(ck−1) ∩ R{r,t}(ck−1) and ℓ(1W ,projR{r,t}(ck−1)

1W ) < ℓ(w) = ℓ(1W ,projR{s,t}(ck−1)
1W ).

Again Proposition (1.5.4) yields a contradiction and we have ℓ(wsrt) = ℓ(w) + 1.

(5.1.2) Lemma. Suppose w ∈W such that ℓ(ws) = ℓ(w)+1 = ℓ(wt) and suppose w′ ∈ ⟨s, t⟩
with ℓ(w′) ≥ 2. Then ℓ(ww′rf) = ℓ(w) + ℓ(w′) + 1 + ℓ(f) for each f ∈ {1W , s, t}.

Proof. At �rst we show the claim for w′ = st. If ℓ(wsr) = ℓ(ws)+1, then ℓ(wstrt) = ℓ(wst)+2,
as ℓ(wst) = ℓ(ws) + 1. As ℓ(wstr) = ℓ(wsts) = ℓ(wst) + 1, we deduce ℓ(wstrf) = ℓ(w) +
3 + ℓ(f) for f ∈ {1W , s, t}. Thus we can assume ℓ(wsr) = ℓ(w). By Lemma (5.1.1) we
have ℓ(wsrt) = ℓ(w) + 1 = ℓ((wsr)r). This implies ℓ(wstrt) = ℓ(w) + 4. Moreover, we have
ℓ(wstr) = ℓ(wsts) = ℓ(w) + 3 and hence ℓ(wstrs) = ℓ(w) + 4. Using similar arguments, the
claim follows for all w′ ∈ ⟨s, t⟩ with ℓ(w′) ≥ 2.

(5.1.3) Lemma. We have tstrαs ∩ stsrαt ∩ (W\{r{s,t}r}) ⊆ r{s,t}αr.

Proof. Let r{s,t}r ̸= w ∈ tstrαs ∩ stsrαt be an element. We have to show that r{s,t}w ∈ αr,
i.e. ℓ(rr{s,t}w) = ℓ(r{s,t}w) + 1. We distinguish the following cases:

(i) ℓ(w−1) + 2 ∈ {ℓ(w−1ts), ℓ(w−1st)}: Then ℓ(w−1r{s,t}) ≥ ℓ(projR{s,t}(w−1)
1W ) + 2 and

we deduce ℓ(rr{s,t}w) = ℓ(w−1r{s,t}r) = ℓ(w−1r{s,t}) + 1 = ℓ(r{s,t}w) + 1 from Lemma
(5.1.2).

(ii) ℓ(w−1s) = ℓ(w−1) + 1 and ℓ(w−1st) = ℓ(w−1): By assumption, we have w ∈ tstrαs and
hence ℓ (s(rtstw)) = ℓ(rtstw) + 1. This implies ℓ(w−1tstrs) = ℓ(w−1tstr) + 1 and, in
particular, ℓ(w−1r{s,t}r) = ℓ(w−1r{s,t}) + 1.

(iii) ℓ(w−1t) = ℓ(w−1) + 1 and ℓ(w−1ts) = ℓ(w−1): This follows similar as in the previous
case.
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5. Buildings of type (4, 4, 4)

(iv) ℓ(w−1s) = ℓ(w−1)−1 = ℓ(w−1t): If ℓ(rr{s,t}w) = ℓ(r{s,t}w)+1 there is nothing to show.
Thus we suppose ℓ(rr{s,t}w) = ℓ(r{s,t}w)−1. Assume that ℓ(w−1stsr) = ℓ(w−1sts)−1.
Then we would have ℓ(w−1stsrt) = ℓ(w−1sts) − 2, which is a contradiction to the
assumption ℓ(trstsw) = ℓ(rstsw) + 1. Thus we have ℓ(w−1stsr) = ℓ(w−1sts) + 1
and ℓ(w−1stsrt) = ℓ(w−1sts) + 2. Similarly, we deduce ℓ(w−1tstrs) = ℓ(w−1tst) + 2.
This yields ℓ(w−1r{s,t}ru) = ℓ(w−1r{s,t}r) + 1 for each u ∈ S = {r, s, t} and hence
w−1r{s,t}r = 1. Since w ̸= r{s,t}r by assumption, we have a contradiction and we are
done.

(5.1.4) Lemma. Let H = (d0, . . . , d4) be a minimal gallery of type (r, s, t, r) and let β ∈ Φ
with {d0, d1} ∈ ∂β and d0 ∈ β. Then β ⊊ γ for each γ ∈ {α(d0,...,d3), α(d0,...,d4)}.

Proof. We use the canonical linear representation of (W,S) (cf. [2, §2.5]). Let V := RS be
the vector space over R with standard basis (es)s∈S and let (·, ·) be the symmetric bilinear
form on V given by

(es, et) := − cos

(
π

mst

)
=

{
1 if s=t,

−
√
2
2 else.

Then W acts on V via σ : W → GL(V ), s 7→ (σs : V → V, x 7→ x− 2(x, es)es) and (·, ·) is
invariant under this action. Let β and γ be as in the statement. Without loss of generality
we can assume β = αr and γ ∈ {rsαt, rstαr}. At �rst, we consider the case γ = α(d0,...,d3).
Then γ = rsαt. We compute:

(er, σ(rs)(et)) = (er, σr(σs(et))) = (σr(er), σs(et)) = (−er, et +
√
2es) =

√
2

2
+ 1 > 1

Now we assume γ = α(d0,...,d4). Then γ = rstαr and we compute:

(er, σ(rst)(er)) = (er, σr(σs(σt(er))))

= (σs(−er), σt(er))
= (−er − 2(−er, es)es, er − 2(er, et)et)

= −(er, er) + 2(er, et)(er, et) + 2(er, es)(es, er)− 4(er, es)(er, et)(es, et)

= −1 + 2 · −
√
2

2
· −

√
2

2
+ 2 · −

√
2

2
· −

√
2

2
− 4 · −

√
2

2
· −

√
2

2
· −

√
2

2

= −1 + 1 + 1 +
√
2 > 1

Using [2, Lemma 2.77] we obtain that o(rβrγ) = ∞. As {β, γ} ∈ P, Lemma (1.4.7) and [2,
Lemma 8.42(3)] yield that {β, γ} is a pair of nested roots and hence β ⊊ γ.

(5.1.5) Lemma. Let s ̸= t ∈ S, let P := {1W , s} ̸= Q ∈ ∂αs and let P0 := P, . . . , Pn =
Q,R1, . . . , Rn be as in Lemma (1.4.2). If n > 1, then there exists ε ∈ {+,−} such that for
every root β ∈ {εαt, εsαt, εtαs} there exists a non-simple root γ of Rn with β ⊆ γ.

Proof. We prove the hypothesis by induction on n. Suppose �rst n = 2. At �rst we observe by
Lemma (5.1.4) that for each root αs ̸= β ∈ Φ+ with R1 ∈ ∂2β there exists a non-simple root
γβ of R2 such that β ⊆ γβ . If R = R1, the claim follows with ε := +. If R ̸= R1, we apply
our observation twice and the claim follows with ε := −. Thus we can assume n > 2. Using
our observation there exists ε ∈ {+,−} such that for every root αs ̸= β ∈ Φ+ with R ∈ ∂2β
there exists a non-simple root γ′β of Rn−1 such that εβ ⊆ γ′β . Using induction again, there
exists a non-simple root γβ of Rn such that γ′β ⊆ γβ . In particular, we have εβ ⊆ γ′β ⊆ γβ
and the claim follows.

60



5.2. Roots in Coxeter systems of type (4, 4, 4)

5.2. Roots in Coxeter systems of type (4, 4, 4)

Let α ∈ Φ+ be a root such that kα > 1, i.e. α is not a simple root. Let R ∈ ∂2α be a
residue such that α is not a simple root of R (for the existence of such a residue see the next
remark). Let P ̸= P ′ ∈ ∂α be contained in R. Then ℓ(1W ,projP 1W ) ̸= ℓ(1W , projP ′ 1W )
and we can assume that ℓ(1W , projP 1W ) < ℓ(1W , projP ′ 1W ). Let G = (c0, . . . , ck) ∈ Min
be of type (s1, . . . , sk) such that ck−2 = projR 1W , ck−1 = projP 1W and ck ∈ P\{ck−1}. For
P ̸= Q := {x, y} ∈ ∂α with x ∈ α and y /∈ α we let P0 = P, . . . , Pn = Q and R1, . . . , Rn be
as in Lemma (1.4.2). We assume that r /∈ {sk−1, sk}.
(5.2.1) Remark. Let α ∈ Φ+ be a positive root such that kα > 1. Let G = (c0, . . . , ckα) ∈ Min
be a minimal gallery with {ckα−1, ckα} ∈ ∂α. Then α is not a simple root of the rank 2 residue
containing ckα−2, ckα−1, ckα . In particular, there exists R ∈ ∂2α such that α is not a simple
root of R.

(5.2.2) Lemma. Assume that one of the following hold:

(a) R1 ̸= R and ℓ(s1 · · · sk−1r) = k;

(b) n > 1.

Then projRn
1W = projPn−1

1W .

Proof. Suppose R1 ̸= R and ℓ(s1 · · · sk−1r) = k. Then projR1
c0 = projP0

c0 and the claim
follows from Corollary (1.5.5). Now suppose that n > 1. Assume that R1 = R. Then Lemma
(5.1.2) implies projR2

1W = projP1
1W and the claim follows from Corollary (1.5.5). Now

we suppose R1 ̸= R. If ℓ(s1 · · · sk−1r) = k, the claim follows by Assertion (a). Thus we
can assume that ℓ(s1 · · · sk−1r) = k − 2. Let d := projR{sk,r}(ck)

c0 be and replace G by a

minimal gallery (d0 = c0, . . . , d, ck−1, ck). Now we are in the situation of R1 = R and the
claim follows.

(5.2.3) Lemma. We have k = kα and the panel Pα := P is the unique panel in ∂α with the
property that ℓ(1W ,projPα

1W ) = kα − 1.

Proof. We have ℓ(1W , projP 1W ) = k − 1. Thus it su�ces to show that ℓ(1W ,projQ 1W ) >
k − 1. For n = 1 we obtain ℓ(1W ,projQ 1W ) ∈ {k, k + 2}. Now we assume n > 1. Us-
ing the previous lemma we obtain projRn

1W = projPn−1
1W . Since Q ⊆ Rn we obtain

ℓ(1W ,projQ 1W ) ≥ ℓ(1W ,projRn
1W ) = ℓ(1W , projPn−1

1W ). Now the claim follows by induc-
tion.

(5.2.4) Lemma. Let γ ∈ Φ+ be the simple root of R containing Pα and let δ ∈ Φ+ be the
simple root of R which does not contain Pα. Then the following hold:

(a) If R ̸= R1 and ℓ(s1 · · · sk−1r) = k, then α is a simple root of R1 and −γ is contained in
all roots α ̸= ρ ∈ Φ+ with Rn ∈ ∂2ρ.

(b) If R ̸= R1 and ℓ(s1 · · · sk−1r) = k − 2, then α is a non-simple root of R1 and −γ is
contained in the non-simple root of R1 di�erent from α and in the simple root of R1

which contains Pα. If in addition n > 1, then −γ is contained in all roots α ̸= ρ ∈ Φ+

with Rn ∈ ∂2ρ.

(c) If R = R1 and n > 1, then −δ is contained in the simple root of R2 di�erent from α
and in the non-simple root ε of R2, where Pε and Pα have the same type. If in addition
n > 2, then −δ is contained in all roots α ̸= ρ ∈ Φ+ with Rn ∈ ∂2ρ.
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In particular, if R ̸= R1 or if n > 1, then there exists a simple root of R, say ω, and a
non-simple root of Rn, say ωn, such that −ω ⊆ ωn.

Proof. Suppose we are in situation of Assertion (a). It follows from Lemma (5.1.4) that −γ
is contained in all roots α ̸= ρ ∈ Φ+ with R1 ∈ ∂2ρ. Now it follows by induction, that for
every root α ̸= ρ ∈ Φ+ with Rn ∈ ∂2ρ, there exists a root α ̸= ρ′ ∈ Φ+ with R1 ∈ ∂2ρ′ with
ρ′ ⊆ ρ. Thus (a) follows.

The �rst part of the Assertions (b) and (c) follows from Lemma (5.1.4). The second part
follows similarly as in the proof of Assertion (a) by induction.

(5.2.5) Lemma. We de�ne Rα,Q to be the residue R1 if R ̸= R1 and ℓ(s1 · · · sk−1r) = k− 2.
In all other cases, we de�ne Rα,Q := R. Then there exists a minimal gallery H = (d0 =
c0, . . . , dm = projQ c0, y) with the following properties:

� αH = α;

� There exists 0 ≤ i ≤ m such that di = projRα,Q
1W .

� For each i + 1 ≤ j ≤ m there exists Lj ∈ ∂2α with {cj−1, cj} ⊆ Lj. In particular, we
have dj ∈ C(∂2α).

Proof. We de�ne

d :=

{
projP0

c0 if R ̸= R1 and ℓ(s1 · · · sk−1r) = k,

projP1
c0 else.

We �rst show that ℓ(c0, projQ c0) = ℓ(c0, projRα,Q
c0) + ℓ(projRα,Q

c0, d) + ℓ(d,projQ c0). By
de�nition we have Rα,Q = Rα,Pi for all 1 ≤ i ≤ n. We prove the hypothesis by induction on
n. Suppose �rst n = 1 and that one of the following hold:

� R = R1;

� R ̸= R1 and ℓ(s1 · · · sk−1r) = k − 2;

Then Q = P1 ⊆ Rα,Q, d = projQ c0 and the claim follows. We prove the case ℓ(s1 · · · sk−1r) =
k and R ̸= R1 together with the case n > 1 simultaneously. Lemma (5.2.2) provides in
both cases projRn

c0 = projPn−1
c0. If n > 1, we have Rα,Q = Rα,Pn−1 ; if n = 1 we have

Pn−1 = P0 ⊆ Rα,Q and d = projPn−1
c0. This is used in the third equation below. We

compute the following:

ℓ(c0,projQ c0) = ℓ(c0,projRn
c0) + ℓ(projRn

c0, projQ c0)

= ℓ(c0,projPn−1
c0) + ℓ(projPn−1

c0, projQ c0)

= ℓ(c0,projRα,Q
c0) + ℓ(projRα,Q

c0, d) + ℓ(d,projPn−1
c0)

+ ℓ(projPn−1
c0, projQ c0)

≥ ℓ(c0,projRα,Q
c0) + ℓ(projRα,Q

c0, d) + ℓ(d,projQ c0)

≥ ℓ(c0,projQ c0)

Thus concatenating a minimal gallery from c0 to projRα,Q
c0, a minimal gallery from projRα,Q

c0
to d and a minimal gallery from d to projQ c0 yields a minimal gallery from c0 to projQ c0.
Using Lemma (1.4.3) there exists a minimal gallery from d to projQ c0 such that every cham-
ber of this gallery is contained in C(∂2α) and for two adjacent chambers there exists a residue
in ∂2α containing both. Since Rα,Q ∈ {R,R1} ⊆ ∂2α and, as Rα,Q is convex, each chamber
of a minimal gallery from projRα,Q

c0 to d is contained in Rα,Q the claim follows.
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(5.2.6) Lemma. Let β ∈ Φ(k)\{αs | s ∈ S} be a root such that o(rαrβ) < ∞ and R /∈ ∂2β.
Moreover, we assume that ℓ(s1 · · · sk−1r) = k. Then one of the following hold:

(a) β = αF , where F is the minimal gallery of type (s1, . . . , sk−1, r);

(b) β = αF , where F is the minimal gallery of type (s1, . . . , sk−2, sk, sk−1, r), and we have
ℓ(s1 · · · sk−2skr) = k − 2.

Proof. Recall that α = αG. As R ∈ ∂2α, we have α ̸= ±β. By Lemma (1.4.7) there exists
C ∈ ∂2α ∩ ∂2β. By Remark (1.4.4) there exists a panel Q′ ∈ ∂α which is contained in C.
We let projQ′ c0 ̸= y ∈ Q′. Let Pi, Ri as before (with Pn = Q′), let G′ := (c0, . . . , ck−1)
and let G′′ := (c0, . . . , ck, ck+1) be the minimal gallery of type (s1, . . . , sk, sk−1). Let E be
a minimal gallery from c0 to y as in Lemma (5.2.5). We can extend this minimal gallery (if
necessary) to a minimal gallery from c0 to e ∈ C, where ℓ(e) = ℓ(projC c0) + 4. Let Q′′ ∈ ∂β
be a panel contained in C and let projQ′′ c0 ̸= y′ ∈ Q′′. Let H = (d0 = c0, . . . , dm−2 =
projRβ,Q′′ c0, . . . , dq := projQ′′ d0, dq+1 := y′) be a minimal gallery as in Lemma (5.2.5). Then

m = kβ ≤ k. As before, we can extendH (if necessary) to a minimal gallery from d0 to e. Note
that R ̸= C by assumption, and since R ∈ ∂2αG′ ∩∂2αG′′ , R /∈ ∂2β we have αG′ ̸= ±β ̸= αG′′ .

(i) Assume that R = R1: Since R ∈ ∂2αG′′ ∩ ∂2α,C ∈ ∂2α and αG′′ ̸= ±β, Lemma (1.4.6)
implies C /∈ ∂2αG′′ and hence the gallery H has to cross the wall ∂αG′′ . Assume that
(d0, . . . , dm−2) crosses the wall ∂αG′′ . Let 1 ≤ j ≤ m−2 be such that {dj−1, dj} ∈ ∂αG′′ .
Then k = kαG′′ ≤ j ≤ m − 2 ≤ k − 2 which is a contradiction. Thus the gallery
(d0, . . . , dm−2) does not cross the wall ∂αG′′ and hence (dm−1, . . . , dq+1) has to cross
the wall ∂αG′′ . Let m ≤ j ≤ q + 1 be such that {dj−1, dj} ∈ ∂αG′′ . By Lemma (5.2.5)
there exists L ∈ ∂2β such that {dj−1, dj} ⊆ L. Then L ∈ ∂2β ∩ ∂2αG′′ and hence
o(rαG′′ rβ) < ∞. As ∂2α ∩ ∂2αG′′ = {R} ≠ {C} = ∂2α ∩ ∂2β (cf. Lemma (1.4.6)),
Lemma (1.4.8)(a) yields ∂2α ∩ ∂2β ∩ ∂2αG′′ = ∅ and hence {rα, rαG′′ , rβ} is a re�ection
triangle. As projR c0 ∈ R∩β ̸= ∅ andR /∈ ∂2β, we deduceR ⊆ β. As e ∈ C∩(−αG′′) ̸= ∅
and C /∈ ∂2αG′′ , we deduce C ⊆ (−αG′′). As L ∈ ∂2αG′′ ∩ ∂2β, {dj−1, dj} ⊆ L ∩ α and
L /∈ ∂2α, we deduce L ⊆ α. Thus T := {α,−αG′′ , β} is a triangle. For d ∈ W with
δ(ck−2, d) = sksk−1 we have d ∈

⋂
γ∈T γ and Lemma (1.5.3) implies

⋂
γ∈T γ = {d}. If

ℓ(s1 · · · sk−2skr) = k, then kβ = k + 1. Thus ℓ(s1 · · · sk−2skr) = k − 2 and (b) follows.

(ii) Assume that R ̸= R1: Since R ∈ ∂2αG′ ∩ ∂2α and R ̸= C ∈ ∂2α, Lemma (1.4.6) implies
C /∈ ∂2αG′ and hence H has to cross the wall ∂αG′ . Suppose that (d0, . . . , dm−2) does
not cross the wall ∂2αG′ . Replacing αG′′ by αG′ in (i) we obtain that T := {α,−αG′ , β}
is a triangle. Using Lemma (1.5.3), we have

⋂
γ∈T γ = {ck−1} and hence (a) follows.

Now we suppose that (d0, . . . , dm−2) crosses the wall ∂αG′ and let 1 ≤ j ≤ m − 2 be
such that P ′ := {dj−1, dj} ∈ ∂αG′ . Note that 1 ≤ m−2 ≤ k−2 and hence k ≥ 3. Let Z
be the {sk−1, r}-residue containing ck−2. Then αG′ is not a simple root of Z and hence
kαG′ ∈ {k − 2, k − 1}. This implies k − 2 ≤ kαG′ ≤ j ≤ m− 2 ≤ k − 2. Lemma (5.2.3)
implies P ′ = PαG′ and hence P ′ is contained in Z. Moreover, we have j = m − 2 and
Rβ,Q′′ = R{r,sk}(dj). Both non-simple roots of Rβ,Q′′ contain −α by Lemma (5.1.4). As
one of them is equal to β, we have a contradiction.

(5.2.7) Remark. Let γ ∈ Φ(k)\{αs | s ∈ S} be a root such that {α, γ} is prenilpotent. If
o(rαrγ) = ∞, we have γ ⊆ α, since kγ ≤ k = kα. This implies γ = α(c0,...,ci) for some
1 ≤ i ≤ k. If o(rαrγ) <∞, then γ is known by the previous theorem.
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5.3. RGD-systems of type (4, 4, 4) over F2

In this section we let D = (G, (Uα)α∈Φ) be an RGD-system of type (W,S) over F2 (e.g. the
one in Example (5.3.1)). Furthermore, we let Vr{s,t} := ⟨Us ∪ Ut⟩ ≤ Ur{s,t} for all s ̸= t ∈ S.
By Example (1.7.1) and [2, Corollary 8.34(1)] this subgroup has index 2 in Ur{s,t} . Moreover,
we let ∆(D) = (∆(D)+,∆(D)−, δ∗) be the twin building associated with D and let (c+, c−) be
the distinguished pair of opposite chambers. We denote for every s ∈ S the unique chamber
contained in A(c+, c−) which is s-adjacent to c− by cs. Then U+ acts on ∆− := ∆(D)−. We
abbreviate c := c− (for more information we refer to Section 1.7 and [2, Section 8.9]).

(5.3.1) Example. Let D = (G, (Uα)α∈Φ) be the RGD-system associated with the split
Kac-Moody group of type (4, 4, 4) over F2 (for the de�nition of Kac-Moody groups we re-
fer to [33]). Then D is over F2. Let {α, β} be a prenilpotent pair. We will determine
the commutator relations [uα, uβ] ≤ ⟨Uγ | γ ∈ (α, β)⟩. For o(rαrβ) < ∞, the commutator
relations follow from Example (1.7.1). For o(rαrβ) = ∞ we use the functoriality of Kac-
Moody groups: Let (G, (φi)i∈I , η) be the system as in [33, Ch. 2]. For every �eld K we let

Uαi(K) := φi

({(
1 k
0 1

)
| k ∈ K

})
and U−αi(K) := φi

({(
1 0
−k 1

)
| k ∈ K

})
be the root

groups corresponding to the simple roots. For every i and any two �elds F and K with a
homomorphism f : F → K the following diagram commutes:

SL2(F) SL2(K)

G(F) G(K)

SL2(f)

φi φi

G(f)

In particular, we have G(f)(Uαi(F)) ≤ Uαi(K) and hence G(f)(Uα(F)) ≤ Uα(K) for each root
α ∈ Φ by using (RGD2). Moreover, if f is injective, then G(f) is injective by the axiom
(KMG4) (cf. [33]). Let f : F2 → F4 be the canonical inclusion. We have [Uα(F4), Uβ(F4)] = 1
by [7, Theorem A]. This implies G(f) ([Uα(F2), Uβ(F2)]) ≤ [Uα(F4), Uβ(F4)] = 1 and, as G(f)
is injective, we deduce [Uα(F2), Uβ(F2)] = 1. All in all we have the following commutator
relations, where Uα = ⟨uα⟩ for all α ∈ Φ:

[uα, uβ] =

{∏
γ∈(α,β) uγ if o(rαrβ) <∞, |(α, β)| = 2

1 else.

(5.3.2) Lemma. The following hold:

(a) ℓ(cs, cs.h) ≥ 3 for all h ∈ Vr{s,t}\{1, us};

(b) ℓ(cs, ct.h) ≥ 2 for all h ∈ Vr{s,t};

(c) ℓ(ct.h, p) ≥ 2 for all p ∈ Pt(c) and h ∈ Vr{s,t}\{1, ut};

(d) ℓ(cs.h, p) ≥ 2 or δ(cs.h, p) = s for all p ∈ Pt(c) and h ∈ Vr{s,t} ;

(e) ℓ(p, q) ≥ 2 or δ(p, q) = s for all p ∈ Pt(c.h), q ∈ Pt(c) and h ∈ Vr{s,t}\{1, ut}.

(f) ℓ(p, cs) ≥ 2 or δ(p, cs) = s for all p ∈ Pt(c.h) and h ∈ Vr{s,t}.

Proof. Before we prove the claim, we consider the following picture, where the lower chambers
are all opposite to B+ and the upper chambers d satisfy ℓ⋆(B+, d) = 1 and the letter in the
triangles denotes the type of the panels:
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ct.usutus

c.utusutus c.usutus

cs.utus

c.utus

ct.us

c.us

cs

c

ct

c.ut

cs.ut

c.usut

ct.usut

c.utusut

cs.utusut

c.usutusut

t s t s t s t s

We �rst show Assertion (a). As cs = cs.us and utusutus = usutusut, we can assume h ∈
{ut, utus, utusut}. Now we deduce the following:

(i) ℓ(cs, cs.ut) = 3;

(ii) ℓ(cs, cs.utus) = ℓ(cs, cs.ut) = 3;

(iii) ℓ(cs, cs.utusut) ≥ 3.

To show Assertion (b) we can similarly assume that h ∈ {1, us, usut, usutus}. We deduce the
following:

(i) ℓ(cs, ct) = 2;

(ii) ℓ(cs, ct.us) = ℓ(cs, ct) = 2;

(iii) ℓ(cs, ct.usut) = 4;

(iv) ℓ(cs, ct.usutus) = ℓ(cs, ct.usut) = 4

For Assertion (c) we can again assume h ∈ {us, usut, usutus}. We deduce the following:

(i) ℓ(ct.us, p) ∈ {2, 3};

(ii) ℓ(ct.usut, p) = ℓ(ct.us, p.ut) ∈ {2, 3};

(iii) ℓ(ct.usutus, p) ∈ {3, 4};

For Assertion (d) we can again assume that h ∈ {1, ut, utus, utusut}. We deduce the following:

(i) δ(cs, p) ∈ {s, st};

(ii) δ(cs.ut, p) = δ(cs, p.ut) ∈ {s, st};

(iii) ℓ(cs.utus, p) ≥ 3;

(iv) ℓ(cs.utusut, p) = ℓ(cs.utus, p.ut) ≥ 3.

For Assertion (e) we can assume that h ∈ {us, usut, usutus}, as Pt(c.ut) = Pt(c). We deduce
the following:

(i) h = us: We have δ(p, q) = s or ℓ(p, q) ∈ {2, 3}.

(ii) h = usut: This follows similar as in the case h = us.

(iii) h = usutus: Then we have ℓ(p, q) ≥ 3.

For Assertion (f) we can assume h ∈ {1, us, usut, usutus}, as Pt(c.ut) = Pt(c). We deduce
the following:
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(i) h = 1: Then δ(p, cs) = s or ℓ(p, cs) = 2.

(ii) h = us: We have δ(p, cs) = δ(p.us, cs). As p ∈ Pt(c.us) if and only if p.us ∈ Pt(c), the
claim follows from (i).

(iii) h = usut: In this case we have ℓ(p, cs) ≥ 3.

(iv) h = usutus: We have δ(p, cs) = δ(p.us, cs). As p ∈ Pt(c.h) if and only if p.us ∈
Pt(c.usut), the claim follows from (iii).

(5.3.3) Remark. For each root α ∈ Φ+ there exist w ∈W, s ∈ S with α = wαs. For short we
will write uws to be the generator of Uwαs .

(5.3.4) Lemma. Let n > 0, let g1, . . . , gn ∈ {usr, utr, urt, urtutr} and let h1, . . . , hn ∈ Vr{s,t}
be such that hi /∈ {1, us} if gi = gi+1 = usr and such that hi /∈ {1, ut} if gi, gi+1 ∈
{utr, urt, urtutr}. Then g1h1 · · · gnhn ̸= 1 holds in G.

Proof. Note that hi ∈ Vr{s,t} = {1, us, ut, usut, utus, usutus, utusut, usutusut = utusutus} as
well as g−1

n = gn. For the proof we consider the action of U+ on ∆− as in Lemma (5.3.2). We
abbreviate δ := δ−, c := B−, Ref := R{e,f}(c) for any e ̸= f ∈ S and we let g := g1h1 · · · gnhn.
We show the following via induction on n ≥ 1:

� If gn = ufr for some f ∈ {s, t}, then the following hold:

(a) projRst
(c.g) = cf .hn;

(b) ℓ(c.g,projRst
(c.g)) > 0.

� If gn ∈ {urt, urtutr}, then the following hold:

(a) projRst
(c.g) = projPt(c.hn)(c.g);

(b) ℓ(δ(c.g,projRst
(c.g))srs) = ℓ(c.g,projRst

(c.g)) + 3;

(c) ℓ(c.g,projRst
(c.g)) > 0.

Once this is shown, the claim follows, since g = 1 would imply ℓ(c.g,projRst
(c.g)) = 0.

Let n = 1 and suppose g1 ∈ {usr, utr}. Then we have projRst
(c.ufr) = cf and, in par-

ticular, projRst
(c.g) =

(
projRst

(c.g1)
)
.h1 = cf .h1. Moreover, we have ℓ(c.g,projRst

(c.g)) =
ℓ(c.g, cf .h1) = ℓ(c.g1, cf ) > 0. Now we suppose g1 ∈ {urt, urtutr}. Note that δ(c, c.urtutr) =
δ(c, c.uruturut) = r{r,t} and δ(c, c.urt) = rtr. In particular, we have δ(c.g1, c) ∈ {rtr, r{r,t}}.
Let q = projPt(c)(c.g1). Then, by [2, Lemma 2.15], ℓ(δ(c.g1, q)s) = ℓ(δ(c.g1, q)) + 1 and hence
q = projRst

(c.g1). This implies projRst
(c.g) = q.h1 = projPt(c.h1)(c.g). Since δ(c.g1, q) ∈ ⟨r, t⟩,

we infer (again by [2, Lemma 2.15]) projPr(q)(c.g1) = projR{s,r}(q)
(c.g1). Thus we have

δ(projR{r,s}(q)
(c.g1), q) ∈ ⟨r⟩ and hence ℓ(δ(c.g, q.h1)srs) = ℓ(δ(c.g1, q)srs) = ℓ(c.g1, q) + 3 =

ℓ(c.g, q.h1). Moreover, ℓ(c.g,projRst
(c.g)) = ℓ(c.g1, q) > 0.

Now we assume that n > 1. We de�ne h := g1h1 · · · gn−1hn−1. In both cases we
will show that ℓ(c.h,projRst.gn(c.h)) > ℓ(c.h,projRst

(c.h)). Once this is done it follows
ℓ(c.g,projRst

(c.g)) = ℓ(c.h,projRst.gn(c.h)) > ℓ(c.h,projRst
(c.h)) > 0 by induction. We dis-

tinguish the following cases, where the �rst case is a special case which we will use in the
other cases:

(a) gn ∈ {urt, urtutr} and projPt(c)(c.h) = projRrt
(c.h): As above, we deduce δ(c, c.gn) ∈

{rtr, r{r,t}}. We de�ne p := projPt(c)(c.h) = projRrt
(c.h). As p ∈ Pt(c), we deduce

δ(p, c.gn) ∈ {rtr, r{r,t}}. We de�ne q := projPt(c.gn)(c.h) and note that q ∈ Rrt. Then
q = projPt(c.gn) projRrt

(c.h), δ(p, q) = rtr and Lemma (5.1.2) implies ℓ(δ(c.h, q)s) =
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ℓ(c.h, q)+1. Thus q = projR{s,t}(c.gn)
(c.h) = projRst.gn(c.h) and hence projPt(c.hn)(c.g) =

q.gnhn = projRst
(c.g). Since δ(p, q) = rtr and p ∈ Pt(c) ⊆ Rst, we deduce

ℓ(c.h,projRst.gn(c.h)) = ℓ(c.h, q)
q∈Rrt
= ℓ(c.h, p) + 3

p∈Rst

> ℓ(c.h,projRst
(c.h))

Moreover, as ℓ(p,projPr(q)(c.h)) = 2, Lemma (5.1.2) implies that projPr(q)(c.h) =
projR{r,s}(q)

(c.h) and hence ℓ(δ(c.g, q.gnhn)srs) = ℓ(δ(c.h, q)srs) = ℓ(c.h, q) + 3 =

ℓ(c.g, q.gnhn) + 3.

(b) gn−1 = ufr for some f ∈ {s, t}: Then we have projRst
(c.h) = cf .hn−1 by induction. We

distinguish the following two cases:

(i) gn /∈ {urt, urtutr}: Then there exists e ∈ {s, t} with gn = uer. If e = f , we have
hn−1 /∈ {1, uf} by assumption and ℓ(cf .hn−1, ce) ≥ 3 by Lemma (5.3.2)(a). If
e ̸= f , we have ℓ(cf .hn−1, ce) ≥ 2 by Lemma (5.3.2)(b). Note that in both cases
we have δ(cf .hn−1, ce) ∈ ⟨s, t⟩. Using Lemma (5.1.2) we obtain ℓ(δ(c.h, ce)ru) =
ℓ(δ(c.h, cf .hn−1)δ(cf .hn−1, ce)ru) = ℓ(c.h, cf .hn−1)+ℓ(cf .hn−1, ce)+2 = ℓ(c.h, ce)+
2 for each u ∈ {s, t}. Since δ(ce, ce.uer) = r, the previous computations imply that
ce.uer = projR{s,t}(ce.uer)(c.h) = projRst.uer

(c.h) and hence ce.hn = projRst
(c.g).

In particular, we have ℓ(c.h,projRst.gn(c.h)) = ℓ(c.h, ce.uer) = ℓ(c.h, ce) + 1 >
ℓ(c.h, cf .hn−1) = ℓ(c.h,projRst

(c.h)).

(ii) gn ∈ {urt, urtutr}: We de�ne p := projPt(c)(c.h). If f = t, we have hn−1 /∈
{1, ut} and hence ℓ(ct.hn−1, p) ≥ 2 by Lemma (5.3.2)(c). By Lemma (5.1.2) we
obtain that ℓ(δ(c.h, p)r) = ℓ(c.h, p) + 1 and hence p = projRrt

(c.h). The claim
follows now from Case (a). If f = s, Lemma (5.3.2)(d) yields ℓ(cs.hn−1, p) ≥ 2 or
δ(cs.hn−1, p) = s. If ℓ(cs.hn−1, p) ≥ 2, we obtain p = projRrt

(c.h) as before and the
claim follows again from Case (a). Thus we suppose that δ(cs.hn−1, p) = s. Note
that we have δ(c, c.urtutr) = r{r,t} and δ(c, c.urt) = rtr. In particular, we have
δ(p, c.gn) ∈ {rtr, r{r,t}}. If ℓ(δ(c.h, p)r) = ℓ(c.h, p) + 1, we have p = projRrt

(c.h)
and the claim follows as before. Thus we assume ℓ(δ(c.h, p)r) = ℓ(c.h, p) − 1.
Then ℓ(δ(c.h, p)rt) = ℓ(c.h, p) by Lemma (5.1.1) and hence ℓ(wu) = ℓ(w) + 1 for
w = δ(c.h, p)r and each u ∈ {r, t}. Since p ∈ Pt(c) ⊆ Rrt and hence Pr(p) ⊆ Rrt,
we infer projPr(p)(c.h) = projRrt

(c.h). By de�nition we have p ∈ Pt(c). We de�ne
q := projPt(c.gn)(c.h). Since δ(p, c.gn) ∈ {rtr, r{r,t}} we have ℓ(projRrt

(c.h), q) = 2
and hence ℓ(c.h, q) = ℓ(c.h,projRrt

(c.h)) + 2 > ℓ(c.h,projRrt
(c.h)) + 1 = ℓ(c.h, p).

Lemma (5.1.2) implies q = projRst(c.gn)(c.h) = projRst.gn(c.h) and hence, as p ∈
Rst, we deduce

ℓ(c.h,projRst.gn(c.h)) = ℓ(c.h, q) > ℓ(c.h, p) > ℓ(c.h,projRst
(c.h)).

Moreover, we have projPt(c.hn)(c.g) = q.gnhn = projRst
(c.g). We have already men-

tioned that ℓ(projRrt
(c.h), q) = 2. Using Lemma (5.1.1), Lemma (5.1.2) and the

fact that ℓ(δ(c.h,projRrt
(c.h))rs) = ℓ(c.h,projRrt

(c.h)), we deduce ℓ(δ(c.h, z)s) =
ℓ(c.h, z) + 1 for all z ∈ Rrt\Pr(p). Note that Pr(projRrt

(c.h)) = Pr(p). In partic-
ular, as δ(projRrt

(c.h), projPr(q)(c.h)) = t, we deduce projPr(q)(c.h) ∈ Rrt\Pr(p).
Thus we have projR{r,s}(q)

(c.h) = projPr(q)(c.h) and hence ℓ(δ(c.g, q.gnhn)srs) =

ℓ(δ(c.h, q)srs) = ℓ(c.h, q) + 3 = ℓ(c.g, qgnhn) + 3.

(c) gn−1 ∈ {urt, urtutr}: We de�ne p := projRst
(c.h). Using induction, we have p =

projPt(c.hn−1)(c.h) and ℓ(δ(c.h, p)srs) = ℓ(c.h, p)+3. We distinguish the following three
cases:
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(i) gn = utr: Then we have hn−1 /∈ {1, ut} by assumption. As h−1
n−1 /∈ {1, ut} and

p.h−1
n−1 ∈ Pt(c), Lemma (5.3.2)(c) yields ℓ(p, ct) = ℓ(p.h−1

n−1, ct.h
−1
n−1) ≥ 2. Us-

ing Lemma (5.1.2) we obtain ℓ(δ(c.h, ct)ru) = ℓ(c.h, ct) + 2 for each u ∈ {s, t}
and hence ct.utr = projRst.utr

(c.h), as δ(ct, ct.utr) = r. This implies ct.hn =
projRst

(c.g). Moreover, we have ℓ(c.h,projRst.gn(c.h)) = ℓ(c.h, ct.gn) > ℓ(c.h, p) =
ℓ(c.h,projRst

(c.h)).

(ii) gn ∈ {urt, urtutr}: Then we have hn−1 /∈ {1, ut} by assumption. We de�ne q :=
projPt(c)(c.h). Using Lemma (5.3.2)(e) we have either ℓ(p, q) ≥ 2 or δ(p, q) = s. If
ℓ(p, q) ≥ 2, we obtain q = projRrt

(c.h) by Lemma (5.1.2). If δ(p, q) = s, we have
ℓ(δ(c.h, p)srs) = ℓ(c.h, p) + 3 by induction and hence ℓ(δ(c.h, q)r) = ℓ(c.h, q) + 1.
In particular, q = projRrt

(c.h). Both cases yield q = projRrt
(c.h) and the claim

follows from Case (a).

(iii) gn = usr: Using Lemma (5.3.2)(f) we have either ℓ(p, cs) ≥ 2 or δ(p, cs) = s. If
ℓ(p, cs) ≥ 2, we obtain ℓ(δ(c.h, cs)ru) = ℓ(c.h, cs)+2 for each u ∈ {s, t} by Lemma
(5.1.2) and hence cs.usr = projRst.usr

(c.h). This implies cs.hn = projRst
(c.g) as

well as ℓ(c.h,projRst.gn(c.h)) = ℓ(c.h, cs.gn) > ℓ(c.h, p) = ℓ(c.h,projRst
(c.h)).

Suppose now that δ(p, cs) = s. By induction we have ℓ(δ(c.h, p)srs) = ℓ(c.h, p)+3.
Since δ(p, cs) = s, we have p ∈ Rrs and hence projRrs

(c.h) ∈ Pr(p). By Lemma
(5.1.2) we obtain ℓ(δ(c.h, p)srt) = ℓ(c.h, p)+3. Since δ(p, cs) = s and δ(cs, cs.usr) =
r, we have δ(p, cs.usr) = sr and cs.usr = projRst.usr

(c.h). This implies cs.hn =
projRst

(c.g) and, in particular, ℓ(c.h,projRst.gn(c.h)) = ℓ(c.h, cs.gn) > ℓ(c.h, p) =
ℓ(c.h,projRst

(c.h)).

(5.3.5) Theorem. The canonical homomorphism φ : Usr ⋆Us Vr{s,t} ⋆Ut Utrt → G is injective.

Proof. We abbreviate H := Usr ⋆Us Vr{s,t} ⋆Ut Utrt. We note that any g ∈ H can be written in
the form h0g1h1 · · · gnhn, where gi ∈ {usr, utr, urt, urtutr}, hi ∈ Vr{s,t} and n ≥ 0. We reduce
the product as follows:

(a) Suppose that gi = gi+1 = usr and hi ∈ {1, us} for some 1 ≤ i ≤ n− 1. Then gihigi+1 =
hi, as [gi, hi] = 1. Thus

g = h0g1h1 · · · gi−1(hi−1hihi+1)gi+2hh+2 · · · gnhn

(b) Suppose that gi, gi+1 ∈ {utr, urt, urtutr} and hi ∈ {1, ut} for some 1 ≤ i ≤ n− 1. Then
gihigi+1 = higigi+1, as [gi, hi] = 1. We distinguish the following two cases:

(i) gi = gi+1: Then we can write g as before as

g = h0g1h1 · · · gi−1(hi−1hihi+1)gi+2hi+2 · · · gnhn

(ii) gi ̸= gi+1: Then gigi+1 ∈ {utr, urt, urtutr} and we can write g as follows:

g = h0g1h1 · · · gi−1(hi−1hi)(gigi+1)hi+1 · · · gnhn

In each step we reduce the number of generators n and hence we can only reduce �nitely many
times. At some point we can not apply (a) or (b). In particular, any g ∈ H can be written as
h0g1h1 · · · gnhn, where gi ∈ {usr, utr, urt, urtutr}, hi ∈ Vr{s,t} and if gi = gi+1 = usr for some
1 ≤ i ≤ n− 1, then hi /∈ {1, us} and if gi, gi+1 ∈ {utr, urt, urtutr} for some 1 ≤ i ≤ n− 1, then
hi /∈ {1, ut}.
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Now we assume that there exists 1 ̸= g ∈ ker(φ). Then there exist gi, hi as before such
that g = h0g1h1 · · · gnhn. As Vr{s,t} ∩ ker(φ) = {1}, we have n > 0. Since ker(φ) is a

normal subgroup of H, we have also g1h1 · · · gn (hnh0) = h−1
0 gh0 ∈ ker(φ). But the previous

lemma says that g1h1 · · · gn (hnh0) is non-trivial in G, which yields a contradiction. Thus φ
is injective.
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6. Commutator blueprints of type (4, 4, 4)

In this chapter we letM =
(
MG

α,β

)
(G,α,β)∈I

be a locally Weyl-invariant commutator blueprint

of type (4, 4, 4). Moreover, we let S = {r, s, t}. We will show that M is faithful. For this
purpose we introduce several tree products.

For a residue R of Σ(W,S) we put wR := projR 1W . Let s ̸= t ∈ S and let R be a
residue of type {s, t}. Then we have ℓ(wRs) = ℓ(wR) + 1 = ℓ(wRt). We de�ne the group
VwRr{s,t} := ⟨UwRs∪UwRt⟩ ≤ UwRr{s,t} . Using (CB3) and fact thatM is locally Weyl-invariant,
the group VwRr{s,t} is an index 2 subgroup of UwRr{s,t} (cf. Remark (2.1.2)). For each i ∈ N we
let Ri be the set of all rank 2 residues R with ℓ(wR) = i (e.g. R0 = {R{s,t}(1W ) | s ̸= t ∈ S}).
We let Ti,1 be the set of all residues R ∈ Ri with ℓ(wRsr) = ℓ(wR)+2 = ℓ(wRtr), where {s, t}
is the type of R. Let R ∈ Ri\Ti,1 be of type {s, t}. Then we have ℓ(wR) ∈ {ℓ(wRsr), ℓ(wRtr)}.
By Lemma (5.1.1) we have {ℓ(wR), ℓ(wR) + 2} = {ℓ(wRsr), ℓ(wRtr)}. Let u ̸= v ∈ {s, t} be
such that ℓ(wRur) = ℓ(wR). Then TR := R{v,r}(wRu) ̸= R and TR ∈ Ri by Lemma (5.1.1). In
particular, TR ∈ Ri\Ti,1 and we have T(TR) = R. We de�ne Ti,2 := {{R, TR} | R ∈ Ri\Ti,1}.
Moreover, we let Ti := Ti,1 ∪ Ti,2.

In order to prove that M is faithful, we need to introduce several sequences of groups.
The groups in the sequences of groups will always be generated by elements uα for suitable
α ∈ Φ+. Let ΦA,ΦB ⊆ Φ+ be such that A = ⟨uα | α ∈ ΦA⟩ and B = ⟨uα | α ∈ ΦB⟩.
Let C = ⟨uα | α ∈ ΦA ∩ ΦB⟩ and assume that C → A,C → B are injective. Then we
de�ne A⋆̂B := A ⋆C B. We note that in all cases the group C will be such that C → A and
C → B are injective by de�nition. Furthermore, we implicitly assume that every edge group
C between two vertex groups A = ⟨uα | α ∈ ΦA⟩ and B = ⟨uα | α ∈ ΦB⟩ in a sequence of
groups is given by C = ⟨uα | α ∈ ΦA ∩ ΦB⟩.

6.1. The groups VR and OR

For a residue R ∈ Ti,1 of type {s, t} we de�ne the group VR to be the tree product of the
sequence of groups with vertex groups

UwRsr, VwRr{s,t} , UwRtr

Furthermore, we de�ne the group OR to be the tree product of the sequence of groups with
vertex groups

VwRsr{r,t} , UwRr{s,t} , VwRtr{r,s}

(6.1.1) Remark. For VR we consider α := wRsαr. Using Lemma (5.1.4) we see that −wRαt ⊆
α. As wRt ∈ (−wRαt), we deduce wRtr, wRr{s,t} ∈ α and hence uα is neither a generator of
VwRr{s,t} nor of UwRtr. Now we consider wRαs. As −wRtαr ⊆ wRαs by Lemma (5.1.4) we
deduce that uwRαs is not a generator of UwRtr. Using similar methods we infer that VR is
generated by {uα | ∃v ∈ {wRsr, wRs, wRt, wRtr} : v /∈ α}. A similar result holds for OR.

(6.1.2) Lemma. Let R ∈ Ti,1. Then the canonical homomorphism VR → OR is injective.
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Figure 6.1.: Illustration of the group VR Figure 6.2.: Illustration of the group OR

Proof. Let R be of type {s, t}. We will apply Proposition (1.8.3). Therefore we �rst see
that each vertex group of VR is contained in the corresponding vertex group of OR, e.g.
UwRsr ≤ VwRsr{r,t} . Next we have to show that the preimages of the boundary monomorphisms
are equal and coincide with the edge groups of VR. For this we compute αe(Ge) ∩Ho(e) and
ωe(Ge) ∩ Ht(e), as α

−1
e (Ho(e)) = α−1

e (α(Ge) ∩ Ho(e)) and ω−1
e (Ht(e)) = ω−1

e (ω(Ge) ∩ Ht(e)).
We compute the following:

UwRsr ∩ UwRst = UwRs = VwRr{s,t} ∩ UwRst

VwRr{s,t} ∩ UwRts = UwRt = UwRtr ∩ UwRts

Now the claim follows from Proposition (1.8.3).

6.2. The groups VR,s and OR,s

Let R ∈ Ti,1 be a residue of type {s, t} such that ℓ(wRsrs) = ℓ(wR) + 3. Then we de�ne the
group VR,s to be the tree product of the sequence of groups with vertex groups

UwRsrs, VwRr{s,t} , UwRtr

Moreover, we de�ne the group OR,s to be the tree product of the sequence of groups with
vertex groups

UwRsrs, VwRsr{r,t} , UwRr{s,t} , VwRtr{r,s}

Using similar arguments as in Remark (6.1.1) it follows that VR,s and OR,s are generated by
suitable uα.

(6.2.1) Lemma. Let R ∈ Ti,1 be a residue of type {s, t} such that ℓ(wRsrs) = ℓ(wR) + 3.
Then the canonical homomorphisms VR → VR,s, OR → OR,s and VR,s → OR,s are injective.
Moreover, we have VR,s ⋆VR

OR
∼= UwRsrs ⋆UwRsr OR

∼= OR,s.

Proof. Note that VR,s
∼= UwRsrs ⋆UwRsr VR and OR,s

∼= UwRsrs ⋆UwRsr OR by Proposition
(1.8.1) and Lemma (1.8.7). Using Proposition (1.8.3) and Lemma (6.1.2) the claim follows.
In particular, using Remark (1.8.6) we deduce

VR,s ⋆VR
OR

∼= (UwRsrs ⋆UwRsr VR) ⋆VR
OR

∼= UwRsrs ⋆UwRsr OR
∼= OR,s
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6.3. The groups HR, GR and JR,t

Figure 6.3.: Illustration of the group VR,s Figure 6.4.: Illustration of the group OR,s

6.3. The groups HR, GR and JR,t

Let R ∈ Ti,1 be of type J = {s, t}. We de�ne the group HR to be the tree product of the
sequence of groups with vertex groups

UwRsr{r,t} , VwRstr{r,s} , UwRr{s,t} , VwRtsr{r,t} , UwRtr{r,s}

We de�ne the group JR,t to be the tree product of the sequence of groups with vertex groups

UwRsr{r,t} , VwRstr{r,s} , VwRtstr{r,s} , UwRtsr{r,t} , VwRtsrr{s,t} , UwRtr{r,s}

Furthermore, we de�ne the group GR to be the tree product of the sequence of groups with
vertex groups

UwRsr{r,t} , VwRstrr{s,t} , UwRstr{r,s} , VwRstsrr{s,t} ,

UwRstsr{r,t} , VwRr{s,t}rr{s,t} , UwRtstr{r,s} ,

VwRtstrr{s,t} , UwRtsr{r,t} , VwRtsrr{s,t} , UwRtr{r,s}

Using similar arguments as in Remark (6.1.1) it follows that HR, JR,t and GR are generated
by suitable uα.

(6.3.1) Lemma. Let R ∈ Ti,1 be of type {s, t}. Then the canonical homomorphisms HR →
JR,t and JR,t → GR are injective. In particular, the canonical homomorphism HR → GR is
injective.

Proof. At �rst we show that HR → JR,t is injective. Using Proposition (1.8.1) the group JR,t

is isomorphic to the tree product of the sequence of groups with vertex groups

UwRsr{r,t} , VwRstr{r,s} , VwRtstr{r,s} , UwRtsr{r,t} , VwRtsrr{s,t} ⋆̂UwRtr{r,s}

We will apply Proposition (1.8.3). Therefore we �rst see that each vertex group of HR is
contained in the corresponding vertex group of the previous tree product, e.g. UwRtr{r,s} ≤
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Figure 6.5.: Illustration of the group HR

Figure 6.6.: Illustration of the group JR,t
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Figure 6.7.: Illustration of the group GR

VwRtsrr{s,t} ⋆̂UwRtr{r,s} . Next we have to show that the preimages of the boundary monomor-
phisms are equal and coincide with the edge groups of HR. As before, we compute αe(Ge) ∩
Ho(e) and ωe(Ge)∩Ht(e). Note that if the vertex groups Hv and Gv coincide, we do not have
to compute the intersection. We compute the following:

VwRstr{r,s} ∩ UwRsts = UwRsts = UwRr{s,t} ∩ UwRsts

UwRr{s,t} ∩ UwRtstr = UwRtst = VwRtsr{r,t} ∩ UwRtstr

VwRtsr{r,t} ∩ UwRtsrt = UwRtsr = UwRtr{r,s} ∩ UwRtsrt

We determine two preimages in detail. The others will follow similarly. It is easy to see that
UwRtsr ⊆ VwRtsr{r,t} ∩ UwRtsrt. For the other inclusion we note that VwRtsr{r,t} ∩ UwRtsrt ⊆
UwRtsr, as this inclusion holds in UwRtsr{r,t} . Again, it is easy to see that UwRtsr ⊆ UwRtr{r,s} ∩
UwRtsrt. For the other inclusion we have to compute the intersection in VwRtsrr{s,t} ⋆̂UwRtr{r,s} .
Using Lemma (1.8.5), we deduce UwRtsrt ∩UwRtr{r,s} ⊆ VwRtsrr{s,t} ⋆̂UwRtr{r,s} = UwRtsrs. This
yields UwRtsrt ∩UwRtr{r,s} = UwRtsrt ∩UwRtr{r,s} ∩UwRtsrs = UwRtsr ∩UwRtr{r,s} = UwRtsr. We
deduce that HR → JR,t is injective by Proposition (1.8.3).

Now we will show that JR,t → GR is injective. Using Proposition (1.8.1) the group GR is
isomorphic to the tree product of the following sequence of groups with vertex groups

UwRsr{r,t} ⋆̂VwRstrr{s,t} , UwRstr{r,s} ⋆̂VwRstsrr{s,t} , UwRstsr{r,t} ⋆̂VwRr{s,t}rr{s,t} ⋆̂UwRtstr{r,s} ,

VwRtstrr{s,t} ⋆̂UwRtsr{r,t} , VwRtsrr{s,t} , UwRtr{r,s}

One easily sees that each vertex group of JR,t is contained in the corresponding vertex group
of the previous tree product. Considering the preimage of the boundary monomorphisms the
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following hold:

UwRsr{r,t} ∩ UwRstrs = UwRstr = VwRstr{r,s} ∩ UwRstrs

VwRstr{r,s} ∩ UwRstsrt = UwRsts = VwRtstr{r,s} ∩ UwRstsrt

VwRtstr{r,s} ∩ UwRtstrs = UwRtstr = UwRtsr{r,t} ∩ UwRtstrs

We comment on the equation UwRsts = VwRtstr{r,s} ∩ UwRstsrt. The inclusion ⊆ is clear.
Now we consider ⊇. Using Proposition (1.8.1) and Corollary (1.8.5) twice it follows that
VwRtstr{r,s} ∩ UwRstsrt ⊆ UwRr{s,t}rt ∩ UwRr{s,t}rs = UwRr{s,t}r. Thus we obtain

VwRtstr{r,s} ∩ UwRstsrt = VwRtstr{r,s} ∩ UwRstsrt ∩ UwRr{s,t}r = VwRtstr{r,s} ∩ UwRsts = UwRsts

As before, JR,t → GR is injective by Proposition (1.8.3).

(6.3.2) Lemma. Let R ∈ Ti,1 be a residue of type {s, t} and let T = R{r,t}(wRts). Then
T ∈ Ti+2,1, the canonical homomorphism VT → HR is injective and we have JR,t

∼= HR⋆VT
OT .

Proof. Note that T ∈ Ti+2,1. By Proposition (1.8.1), UwRr{s,t} ⋆̂VwRtsr{r,t} ⋆̂UwRtr{r,s} → HR is
injective. Using Proposition (1.8.3), we deduce that

VT = UwRtsts⋆̂VwRtsr{r,t} ⋆̂UwRtsrs → UwRr{s,t} ⋆̂VwRtsr{r,t} ⋆̂UwRtr{r,s}

is injective and hence also the concatenation VT → HR. Using Proposition (1.8.1), Propo-
sition (1.8.3), Remark (1.8.6), Lemma (1.8.7) and Lemma (6.1.2) we obtain the following
isomorphisms (we abbreviate K := VT ⋆UwRtsrs UwRtr{r,s} ):

JR,t
∼= UwRsr{r,t} ⋆̂VwRstr{r,s} ⋆UwRsts

(
OT ⋆UwRtsrs UwRtr{r,s}

)
∼= UwRsr{r,t} ⋆̂VwRstr{r,s} ⋆UwRsts K ⋆K

(
OT ⋆UwRtsrs UwRtr{r,s}

)
∼= HR ⋆K

(
OT ⋆UwRtsrs UwRtr{r,s}

)
∼= HR ⋆K

(
UwRtr{r,s} ⋆UwRtsrs VT ⋆VT

OT

)
∼= HR ⋆K

(
UwRtr{r,s} ⋆UwRtsrs VT

)
⋆VT

OT

∼= HR ⋆VT
OT

6.4. The group KR,s

For a residue R ∈ Ti,1 of type {s, t} we de�ne the group KR,s to be the tree product of the
sequence of groups with vertex groups

UwRsr{r,t} , VwRstr{r,s} , UwRr{s,t} , VwRtr{r,s}

Using similar arguments as in Remark (6.1.1) it follows that KR,s is generated by suitable uα.

(6.4.1) Lemma. Let R ∈ Ti,1 be of type {s, t}. Then the canonical homomorphisms OR →
KR,s,KR,t are injective and we have HR

∼= KR,s ⋆OR
KR,t.

Proof. Using Proposition (1.8.1) the group KR,s is isomorphic to the tree product of the
sequence of groups with vertex groups

UwRsr{r,t} , VwRstr{r,s} ⋆̂UwRr{s,t} , VwRtr{r,s}
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Figure 6.8.: Illustration of the group KR,s

One easily sees that each vertex group of OR is contained in the corresponding vertex group
of the previous tree product. Considering the preimage of the boundary monomorphisms the
following holds:

VwRsr{r,t} ∩ UwRstr = UwRst = UwRr{s,t} ∩ UwRstr

As before, Proposition (1.8.3) yields that the canonical homomorphism OR → KR,s is in-
jective. Using similar arguments, we obtain that OR → KR,t is injective. We de�ne C0 :=
VwRsr{r,t} ⋆̂UwRr{s,t} and note that UwRtst → C0 and C0 → OR are injective. Moreover, the
computations above imply that C0 → UwRsr{r,t} ⋆̂VwRstr{r,s} ⋆̂UwRr{s,t} is injective. Now the
following isomorphisms follow from Proposition (1.8.1), Remark (1.8.6) and Lemma (1.8.7):

HR
∼=

(
UwRsr{r,t} ⋆̂VwRstr{r,s} ⋆̂UwRr{s,t}

)
⋆UwRtst

(
VwRtsr{r,t} ⋆̂UwRtr{r,s}

)
∼=

(
UwRsr{r,t} ⋆̂VwRstr{r,s} ⋆̂UwRr{s,t}

)
⋆C0 C0 ⋆UwRtst

(
VwRtsr{r,t} ⋆̂UwRtr{r,s}

)
∼=

(
UwRsr{r,t} ⋆̂VwRstr{r,s} ⋆̂UwRr{s,t}

)
⋆C0 KR,t

∼=
(
UwRsr{r,t} ⋆̂VwRstr{r,s} ⋆̂UwRr{s,t}

)
⋆C0 OR ⋆OR

KR,t

∼=
((
UwRsr{r,t} ⋆̂VwRstr{r,s} ⋆̂UwRr{s,t}

)
⋆C0 OR

)
⋆OR

KR,t

∼=
((
UwRsr{r,t} ⋆̂VwRstr{r,s} ⋆̂UwRr{s,t}

)
⋆C0 C0 ⋆UwRts VwRtr{r,s}

)
⋆OR

KR,t

∼=
((
UwRsr{r,t} ⋆̂VwRstr{r,s} ⋆̂UwRr{s,t}

)
⋆UwRts VwRtr{r,s}

)
⋆OR

KR,t

∼= KR,s ⋆OR
KR,t
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(6.4.2) Remark. Let R ∈ Ti,1 be of type {s, t} such that ℓ(wRsrs) = ℓ(wR) + 3 and let
T = R{r,t}(wRs). In the next lemma we consider OR,s ⋆VT

OT . Similar as in Remark
(6.1.1) we will show that if xα is a generator of OR,s and yα is a generator of OT , then
xα = yα holds in OR,s ⋆VT

OT . It su�ces to consider wRαt and wRtαr. As −wRαs ⊆
wRtαr and −wRsαr,−wRstαr ⊆ wRαt, we deduce that xα is not a generator of OT for
α ∈ {wRαt, wRtαr}.

(6.4.3) Lemma. Let R ∈ Ti,1 be of type {s, t} such that ℓ(wRsrs) = ℓ(wR) + 3 and let
T = R{r,t}(wRs). Then the canonical homomorphisms VT → OR,s and KR,s → OR,s ⋆VT

OT

are injective and we have KR,s ∩OR,s = OR in OR,s ⋆VT
OT .

Proof. We have OR,s
∼= VT ⋆UwRsts UwRr{s,t} ⋆̂VwRtr{r,s} by Lemma (1.8.7) and Proposition

(1.8.1). Now Proposition (1.8.1) yields that the mapping VT → OR,s is injective. This,
together with Proposition (1.8.1), Remark (1.8.6), Lemma (1.8.7) and Lemma (6.1.2) yields
the following isomorphisms:

OR,s ⋆VT
OT

∼=
(
VT ⋆UwRsts UwRr{s,t} ⋆̂VwRtr{r,s}

)
⋆VT

OT

∼= VwRtr{r,s} ⋆̂UwRr{s,t} ⋆UwRsts VT ⋆VT
OT

∼= VwRtr{r,s} ⋆̂UwRr{s,t} ⋆UwRsts

(
VwRstr{r,s} ⋆̂UwRsr{r,t} ⋆̂VwRsrr{s,t}

)
∼= KR,s ⋆UwRsrt VwRsrr{s,t}

For the second claim we note that OR,s
∼= OR ⋆UwRsr UwRsrs by Lemma (6.2.1). By Lemma

(6.4.1) we have that OR → KR,s is injective and, moreover, UwRsrs ≤ VwRsrr{s,t} . Considering
the preimage of the boundary monomorphisms the following hold:

OR ∩ UwRsrt = UwRsr = UwRsrs ∩ UwRsrt

Note that the �rst equation follows from the following: Proposition (1.8.3) implies OR ∩
UwRsr{r,t} = VwRsr{r,t} and hence OR∩UwRsrt = OR∩UwRsrt∩VwRsr{r,t} = OR∩UwRsr = UwRsr.
As before, Proposition (1.8.3) implies that OR,s

∼= OR⋆UwRsr UwRsrs → KR,s⋆UwRsrt VwRsrr{s,t}
is injective and that OR,s ∩KR,s = OR. This �nishes the claim.

6.5. The groups ER,s and UR,s

Let R ∈ Ti,1 be of type {s, t} and assume that ℓ(wRrs) = ℓ(wR)− 2. We put R′ = R{r,s}(wR)
and w′ = wR′ . We de�ne the group ER,s to be the tree product of the sequence of groups
with vertex groups

Uw′rsr{r,t} , Vw′rsrtr{r,s} , Uw′rsrr{s,t} , VwRsrtr{r,s} , UwRsr{r,t} ,

VwRstr{r,s} , UwRr{s,t} , VwRtsr{r,t} , UwRtr{r,s}

Furthermore, we de�ne the group UR,s to be the tree product of the sequence of groups with
vertex groups

Uw′rsr{r,t} , Vw′rsrtr{r,s} , Uw′rsrr{s,t} , VwRsrtr{r,s} , UwRsr{r,t} , VwRstrr{s,t} , UwRstr{r,s} , VwRstsrr{s,t} ,

UwRstsr{r,t} , VwRr{s,t}rr{s,t} , UwRtstr{r,s} , VwRtstrr{s,t} , UwRtsr{r,t} , VwRtsrr{s,t} , UwRtr{r,s}

Using similar arguments as in Remark (6.1.1) it follows that ER,s and UR,s are generated by
suitable uα.
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6.5. The groups ER,s and UR,s

Figure 6.9.: Illustration of the group ER,s

Figure 6.10.: Illustration of the group UR,s
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(6.5.1) Lemma. Let R ∈ Ti,1 be of type {s, t} such that ℓ(wRrs) = ℓ(wR) − 2. Then the
canonical homomorphisms HR → ER,s and ER,s → UR,s are injective and we have ER,s ⋆HR

GR
∼= UR,s.

Proof. The �rst four vertex groups of the underlying sequences of groups of ER,s and UR,s

coincide. Thus we denote the tree product of these �rst four vertex groups by F4. Using
Proposition (1.8.1) we deduce ER,s

∼= F4⋆UwRsrtrHR and UR,s
∼= F4⋆UwRsrtrGR. In particular,

HR → ER,s is injective. Using Lemma (6.3.1), Proposition (1.8.1), Remark (1.8.6) and Lemma
(1.8.7) we infer

UR,s
∼= F4 ⋆UwRsrtr GR

∼= F4 ⋆UwRsrtr HR ⋆HR
GR

∼= ER,s ⋆HR
GR

Proposition (1.8.1) yields that ER,s → UR,s is injective and the claim follows.

6.6. The group XR

Let R ∈ Ti,1 be a residue of type {s, t} and assume that ℓ(wRrs) = ℓ(wR)− 2 and ℓ(wRrt) =
ℓ(wR). Let R′ = R{r,s}(wR) and let w′ = wR′ . Let XR be the tree product of the sequence of
groups with vertex groups

Uw′rsr{r,t} , Vw′rsrtr{r,s} , Uw′rsrr{s,t} , VwRsrtr{r,s} , UwRsr{r,t} ,

VwRstr{r,s} , UwRr{s,t} , VwRtr{r,s} , Uw′sr{r,t}

Using similar arguments as in Remark (6.1.1) it follows that XR is generated by suitable uα.

(6.6.1) Remark. Let R ∈ Ti,1 be a residue of type {s, t} such that ℓ(wRrs) = ℓ(wR) − 2
and ℓ(wRrt) = ℓ(wR) and let T := R{r,s}(wRt). In the next lemma we consider XR ⋆VT

OT .
Similar as in Remark (6.1.1) we have to show that if xα is a generator of XR and yα is
a generator of OT , then xα = yα holds in XR ⋆VT

OT . It su�ces to consider wRtrαs and
wRtsαr. As −wRαs ⊆ wRtrαs, wRtsαr, we deduce that xα is not a generator of XR for
α ∈ {wRtrαs, wRtsαr}.
(6.6.2) Lemma. Let R ∈ Ti,1 be a residue of type {s, t} such that ℓ(wRrs) = ℓ(wR)− 2 and
ℓ(wRrt) = ℓ(wR) and let T := R{r,s}(wRt). Then the canonical homomorphisms VT → XR

and ER,s → XR ⋆VT
OT are injective.

Proof. The �rst part follows from Proposition (1.8.1) and Proposition (1.8.3). Let F6 be
the tree product of the �rst six vertex groups of the underlying sequence of groups of XR.
Using Proposition (1.8.1), Remark (1.8.6), Lemma (1.8.7) and Lemma (6.1.2) we obtain the
following isomorphisms:

XR ⋆VT
OT

∼=
(
F6 ⋆UwRsts UwRr{s,t} ⋆̂VwRtr{r,s} ⋆̂Uw′sr{r,t}

)
⋆VT

OT

∼=
(
F6 ⋆UwRsts UwRr{s,t} ⋆UwRtst UwRtst⋆̂VwRtr{r,s} ⋆̂Uw′sr{r,t}

)
⋆VT

OT

∼= F6 ⋆UwRsts UwRr{s,t} ⋆UwRtst VT ⋆VT
OT

∼= F6 ⋆UwRsts UwRr{s,t} ⋆UwRtst OT

∼= ER,s ⋆UwRtrs VwRtrr{s,t}

(6.6.3) Lemma. Let R ∈ Ti,1 be a residue of type {s, t} such that ℓ(wRrs) = ℓ(wR)− 2 and
ℓ(wRrt) = ℓ(wR). Let Z := R{r,s}(wR) be and suppose that Z ∈ Ti−1,1. Then XR → GZ is
injective.

Proof. As the last nine vertex groups of the underlying sequence of groups of GZ coincide
with the vertex groups of the underlying sequence of groups of XR, the claim follows from
Proposition (1.8.1).
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6.6. The group XR

Figure 6.11.: Illustration of the group XR
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6.7. The groups H{R,R′}, G{R,R′} and J(R,R′)

Let {R,R′} ∈ Ti,2. Let w = wR, w
′ = wR′ and let {r, s} (resp. {r, t}) be the type of R (resp.

R′). Let T = R{r,t}(w) and T
′ = R{r,s}(w

′). Then we de�ne the group H{R,R′} to be the tree
product of the sequence of groups with vertex groups

UwT rtrr{s,t} , VwT r{r,t}sr{r,t} , UwT trtr{r,s} , VwT trtsr{r,t} , UwT trr{s,t} ,

Vwrsr{r,t} , Uwr{r,s} , Vwsrr{s,t} , Uw′r{r,t} , Vw′rtr{r,s} ,

UwT ′srr{s,t} , VwT ′srstr{r,s} , UwT ′srsr{r,t} , VwT ′r{r,s}tr{r,s} , UwT ′rsrr{s,t}

We de�ne the group J(R,R′) to be the tree product of the sequence of groups with vertex
groups

UwT rtrr{s,t} , VwT r{r,t}sr{r,t} , UwT trtr{r,s} , VwT trtsr{r,t} ,

UwT trr{s,t} , Vwrstr{r,s} , Uwrsr{r,t} , Vwrsrr{s,t} , Vwsrr{s,t} , Uw′r{r,t} , Vw′rtr{r,s} ,

UwT ′srr{s,t} , VwT ′srstr{r,s} , UwT ′srsr{r,t} , VwT ′r{r,s}tr{r,s} , UwT ′rsrr{s,t}

Furthermore, we de�ne the group G{R,R′} to be the tree product of the sequence of groups
with vertex groups

UwT rtrr{s,t} , VwT r{r,t}sr{r,t} , UwT trtr{r,s} , VwT trtsr{r,t} ,

UwT trr{s,t} , Vwrstr{r,s} , Uwrsr{r,t} , Vwrsrtr{r,s} , Uwrsrr{s,t} , Vwr{r,s}tr{r,s} , Uwsrsr{r,t} ,

Vwsrstr{r,s} , Uwsrr{s,t} , Vw′trtsr{r,t} ,

Uw′trtr{r,s} , Vw′r{r,t}sr{r,t} , Uw′rtrr{s,t} , Vw′rtrsr{r,t} , Uw′rtr{r,s} , Vw′rtsr{r,t} , UwT ′srr{s,t} ,

VwT ′srstr{r,s} , UwT ′srsr{r,t} , VwT ′r{r,s}tr{r,s} , UwT ′rsrr{s,t}

Using similar arguments as in Remark (6.1.1) it follows that H{R,R′}, G{R,R′} and J(R,R′) are
generated by suitable uα.

(6.7.1) Lemma. Let {R,R′} ∈ Ti,2, let {r, s} be the type of R and let {r, t} be the type of R′.
Then the canonical homomorphisms H{R,R′} → J(R,R′) and J(R,R′) → G{R,R′} are injective.
In particular, the canonical homomorphism H{R,R′} → G{R,R′} is injective.

Proof. We �rst show that the homomorphism H{R,R′} → J(R,R′) is injective. Using Proposi-
tion (1.8.1) the group J(R,R′) is isomorphic to the tree product of the following sequence of
groups with vertex groups

UwT rtrr{s,t} , VwT r{r,t}sr{r,t} , UwT trtr{r,s} , VwT trtsr{r,t} ,

UwT trr{s,t} ⋆̂Vwrstr{r,s} , Uwrsr{r,t} , Vwrsrr{s,t} , Vwsrr{s,t} , Uw′r{r,t} , Vw′rtr{r,s} ,

UwT ′srr{s,t} , VwT ′srstr{r,s} , UwT ′srsr{r,t} , VwT ′r{r,s}tr{r,s} , UwT ′rsrr{s,t}

One easily sees that each vertex groups of H{R,R′} is contained in the corresponding vertex
group of the previous tree product. Note that the �rst �ve and the last eight vertex groups
of the underlying sequence of groups of H{R,R′} and J(R,R′) coincide. Thus we only have to
consider the preimage of the other boundary monomorphisms. We compute the following:

UwT trr{s,t} ∩ UwT trstr = UwT trst = VwRrsr{r,t} ∩ UwT trstr

VwRrsr{r,t} ∩ UwRrsrt = UwRrsr = UwRr{r,s} ∩ UwRrsrt
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6.7. The groups H{R,R′}, G{R,R′} and J(R,R′)

Figure 6.12.: Illustration of the group H{R,R′}
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Figure 6.13.: Illustration of the group J(R,R′)
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6.7. The groups H{R,R′}, G{R,R′} and J(R,R′)

Figure 6.14.: Illustration of the group G{R,R′}
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UwRr{r,s} ∩ UwRsrs = UwRsrs = VwRsrr{s,t} ∩ UwRsrs

As before, H{R,R′} → J(R,R′) is injective by Proposition (1.8.3).
Now we show that J(R,R′) → G{R,R′} is injective. Using Proposition (1.8.1) the group

G{R,R′} is isomorphic to the tree product of the following sequence of groups with vertex
groups

UwT rtrr{s,t} , VwT r{r,t}sr{r,t} , UwT trtr{r,s} , VwT trtsr{r,t} , UwT trr{s,t} , Vwrstr{r,s} ,

Uwrsr{r,t} ⋆̂Vwrsrtr{r,s} , Uwrsrr{s,t} ⋆̂Vwr{r,s}tr{r,s} ⋆̂Uwsrsr{r,t} ,

Vwsrstr{r,s} ⋆̂Uwsrr{s,t} ⋆̂Vw′trtsr{r,t} ,

Uw′trtr{r,s} ⋆̂Vw′r{r,t}sr{r,t} ⋆̂Uw′rtrr{s,t} , Vw′rtrsr{r,t} ⋆̂Uw′rtr{r,s} , Vw′rtsr{r,t} ⋆̂UwT ′srr{s,t} ,

VwT ′srstr{r,s} , UwT ′srsr{r,t} , VwT ′r{r,s}tr{r,s} , UwT ′rsrr{s,t}

One easily sees that each vertex group of J(R,R′) is contained in the corresponding vertex
group of the previous tree product. Note that the �rst seven and the last �ve vertex groups of
the underlying sequence of groups of J(R,R′) and G{R,R′} coincide. Thus it su�ces to consider
the following preimages of the boundary monomorphisms:

Uwrsr{r,t} ∩ Uwrsrts = Uwrsrt = Vwrsrr{s,t} ∩ Uwrsrts

Vwrsrr{s,t} ∩ Uwsrstr = Uwsrs = Vwsrr{s,t} ∩ Uwsrstr

Vw′trr{s,t} ∩ Uw′trtsr = Uw′trt = Uw′r{r,t} ∩ Uw′trtsr

Uw′r{r,t} ∩ Uw′rtrst = Uw′rtr = Vw′rtr{r,s} ∩ Uw′rtrst

Vw′rtr{r,s} ∩ Uw′rtsr = Uw′rts = Uw′rr{s,t} ∩ Uw′rtsr

We should say something to the equation Vwrsrr{s,t} ∩ Uwsrstr = Uwsrs. Clearly, ⊇ holds. For
the other inclusion we obtain similar as in Lemma (6.3.1) that

Vwrsrr{s,t} ∩ Uwsrstr ⊆ Uwr{r,s}ts ∩ Uwr{r,s}tr = Uwr{r,s}t

and hence Vwrsrr{s,t} ∩ Uwsrstr = Vwrsrr{s,t} ∩ Uwsrstr ∩ Uwr{r,s}t = Vwrsrr{s,t} ∩ Uwsrs = Uwsrs.
As before, J(R,R′) → G{R,R′} is injective by Proposition (1.8.3).

(6.7.2) Lemma. Let R ∈ Ti,1 be of type {s, t} and assume that ℓ(wRrs) = ℓ(wR) − 2 =
ℓ(wRrt). Let T = R{r,s}(wR) and T

′ = R{r,t}(wR). Then {T, T ′} ∈ Ti−2,2 and the canonical
homomorphism ER,s → G{T,T ′} is injective.

Proof. Since R ∈ Ti,1, we have {T, T ′} ∈ Ti−2,2. The second assertion follows directly from
Proposition (1.8.1), as the vertex groups of ER,s and the vertex groups 7 − 15 of G{T,T ′}
coincide.

(6.7.3) Lemma. Let {R,R′} ∈ Ti,2, let {r, s} be the type of R, let {r, t} be the type of R′,
and let Z = R{r,t}(wRrs). Then Z ∈ Ti+1,1, the canonical homomorphism VZ → H{R,R′} is
injective and we have J(R,R′)

∼= H{R,R′} ⋆VZ
OZ .

Proof. Note that Z ∈ Ti+1,1. By Proposition (1.8.1), UwRrr{s,t} ⋆̂VwRrsr{r,t} ⋆̂UwRrsrs → H{R,R′}
is injective. Using Proposition (1.8.3), we deduce that

VZ = UwRrsts⋆̂VwRrsr{r,t} ⋆̂UwRrsrs → UwRrr{s,t} ⋆̂VwRrsr{r,t} ⋆̂UwRrsrs

is injective and hence also the concatenation VT → H{R,R′}. Let Fi be the tree product
of the �rst i vertex groups and let Lj be the tree product of the last j vertex groups of
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the underlying sequence of groups of J(R,R′). Note that by Proposition (1.8.3) and Lemma
(6.1.2) the homomorphism F5 ⋆UwRrsts VZ → F5 ⋆UwRrsts OZ is injective. We deduce from
Proposition (1.8.1) and Lemma (1.8.7) that F5 ⋆UwRrsts VZ ⋆UwRsrs L8

∼= H{R,R′}. Note also,
that UwRsrs → VZ is injective. Using Proposition (1.8.1), Remark (1.8.6), Lemma (1.8.7) and
Lemma (6.1.2) we obtain the following isomorphisms:

J(R,R′)
∼= F5 ⋆UwRrsts VwRrstr{r,s} ⋆̂UwRrsr{r,t} ⋆̂VwRrsrr{s,t} ⋆URsrs L8

∼= F5 ⋆UwRrsts OZ ⋆UwRsrs L8

∼=
(
F5 ⋆UwRrsts OZ

)
⋆(

F5⋆UwRrstsVZ

) (
F5 ⋆UwRrsts VZ

)
⋆UwRsrs L8

∼=
(
F5 ⋆UwRrsts VZ ⋆VZ

OZ

)
⋆(

F5⋆UwRrstsVZ

) (
F5 ⋆UwRrsts VZ ⋆UwRsrs L8

)
∼=

(
OZ ⋆VZ

(F5 ⋆UwRrsts VZ)
)
⋆(

F5⋆UwRrstsVZ

) H{R,R′}

∼= OZ ⋆VZ
H{R,R′}

(6.7.4) Lemma. Let R ∈ Ti,1 be a residue of type {s, t} and assume that ℓ(wRrs) = ℓ(wR)−2
and ℓ(wRrt) = ℓ(wR). Let Z := R{r,s}(wR) be and suppose that Z /∈ Ti−1,1. Let PZ ∈ Ti−2,2

be the unique element with Z ∈ PZ . Then XR → GPZ
is injective.

Proof. As the vertex groups 13 − 21 of the underlying sequence of groups of GPZ
coincide

with the vertex groups of the underlying sequence of groups of XR, the claim follows from
Proposition (1.8.1).

6.8. The groups C and C(R,R′)

Let {R,R′} ∈ Ti,2. Let R be of type {r, s} and let R′ be of type {r, t}. We let T = R{r,t}(wR)
and T ′ = R{r,s}(wR′). We de�ne the group C to be the tree product of the following sequence
of groups with vertex groups

UwT r{r,t} , VwT trr{s,t} , UwRr{r,s} , VwRsrr{s,t} , UwR′r{r,t} , VwT ′srr{s,t} , UwT ′r{r,s}

We let C(R,R′) be the tree product of the following sequence of groups with vertex groups

UwT rtrr{s,t} , VwT r{r,t}sr{r,t} , UwRrtr{r,s} , VwRrtsr{r,t} , UwRrr{s,t} , VwRrsr{r,t} ,

UwRr{r,s} , VwRsrr{s,t} , UwR′r{r,t} , VwR′rr{s,t} , UwT ′r{r,s}

For completeness, the group C(R′,R) is the tree product of the following sequence of groups
with vertex groups

UwT r{r,t} , VwRrr{s,t} , UwRr{r,s} , VwRsrr{s,t} , UwR′r{r,t} ,

VwR′rtr{r,s} , UwR′rr{s,t} , VwR′rstr{r,s} , UwR′rsr{r,t} , VwT ′r{r,s}tr{r,s} , UwT ′rsrr{s,t}

Using similar arguments as in Remark (6.1.1) it follows that CR, C(R,R′) are generated by
suitable uα.

(6.8.1) Remark. We note that the vertex groups of C(R′,R) can be obtained from C(R,R′) by
interchanging s and t and starting with the last vertex group of C(R,R′). Interchanging s and
t and the order of the vertex groups of C does not change the group C.

(6.8.2) Lemma. Let {R,R′} ∈ Ti,2. Then the canonical homomorphisms C → C(R,R′), C(R′,R)

are injective and we have H{R,R′} ∼= C(R,R′) ⋆C C(R′,R).
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Figure 6.15.: Illustration of the group C
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6.8. The groups C and C(R,R′)

Figure 6.16.: Illustration of the group C(R′,R)
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Proof. We �rst show that C → C(R,R′) is injective. Let {r, s} be the type of R and let {r, t} be
the type of R′. Using Proposition (1.8.1) the group C(R,R′) is isomorphic to the tree product
of the following sequence of groups with vertex groups

UwT rtrr{s,t} ⋆̂VwT r{r,t}sr{r,t} ⋆̂UwRrtr{r,s} , VwRrtsr{r,t} ⋆̂UwRrr{s,t} ,

VwRrsr{r,t} ⋆̂UwRr{r,s} , VwRsrr{s,t} , UwR′r{r,t} , VwR′rr{s,t} , UwT ′r{r,s}

One easily sees that each vertex group of C is contained in the corresponding vertex group
of the previous tree product. Considering the preimage of the boundary monomorphisms the
following hold:

UwT r{r,t} ∩ UwRrtsr = UwRrt = VwT trr{s,t} ∩ UwRrtsr

VwT trr{s,t} ∩ UwRrst = UwRrs = UwRr{r,s} ∩ UwRrst

As before, the claim follows from Proposition (1.8.3). Interchanging s and t and the order of
the vertex groups of C(R,R′) and C, we obtain that C → C(R′,R) is injective. Let F7 be the tree
product of the �rst seven vertex groups of the underlying sequence of groups of H{R,R′} and let
L7 be the tree product of the last seven vertex groups of the underlying sequence of groups of
H{R,R′}. It follows from the computations above that Uleft := UwT r{r,t} ⋆̂VwRrr{s,t} ⋆̂UwRr{r,s} →
F7 and Uright := UwR′r{r,t} ⋆̂VwR′rr{s,t} ⋆̂UwT ′r{r,s} → L7 are injective. Moreover, Uright → C is
injective by Proposition (1.8.1). Using Proposition (1.8.1), Lemma (1.8.7) and Remark (1.8.6)
we obtain the following isomorphisms:

H{R,R′} ∼= F7 ⋆UwRsrs VwRsrr{s,t} ⋆UwR′ trt L7

∼= F7 ⋆UwRsrs VwRsrr{s,t} ⋆UwR′ trt Uright ⋆Uright
L7

∼= C(R,R′) ⋆Uright
L7

∼= C(R,R′) ⋆C C ⋆Uright
L7

∼= C(R,R′) ⋆C
(
C ⋆Uright

L7

)
∼= C(R,R′) ⋆C

(
Uleft ⋆UwRsrs VwRsrr{s,t} ⋆UwR′ trt Uright ⋆Uright

L7

)
∼= C(R,R′) ⋆C

(
Uleft ⋆UwRsrs VwRsrr{s,t} ⋆UwR′ trt L7

)
∼= C(R,R′) ⋆C C(R′,R)

(6.8.3) Lemma. Let {R,R′} ∈ Ti,2. Let R be of type {r, s}, let R′ be of type {r, t} and let
T ′ := R{r,s}(wR′). Then T ′ ∈ Ti−1,1, the canonical homomorphism C(R′,R) → UT ′,s is injective
and we have C(R′,R) ∩ ET ′,s = C in UT ′,s. In particular, for T := R{r,t}(wR) we have T ∈
Ti−1,1, the canonical homomorphism C(R,R′) → UT,t is injective and we have C(R,R′)∩ET,t = C
in UT,t.

Proof. The claim T, T ′ ∈ Ti−1,1 follows from Lemma (5.1.1), as for Z := R{s,t}(wR) we have
ℓ(wZtrs), ℓ(wZsrt) ≥ ℓ(wZ) + 1. We note that ℓ(wT ′ts) = ℓ(wT ′) − 2. We let w′ = wZ . For
completeness we recall that UT ′,s is the tree product of the underlying sequence of groups
with vertex groups

Uw′tsr{r,t} , Vw′tstrr{s,t} , Uw′tstr{r,s} , VwT ′strr{s,t} , UwT ′sr{r,t} , VwT ′srtr{r,s} ,

UwT ′srr{s,t} , VwT ′srstr{r,s} , UwT ′srsr{r,t} , VwT ′r{r,s}tr{r,s} , UwT ′rsrr{s,t} ,

VwT ′rsrtr{r,s} , UwT ′rsr{r,t} , VwT ′rstr{r,s} , UwT ′rr{s,t}
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As the �rst eleven vertex groups of UT ′,s coincide with the vertex groups of C(R′,R), Proposition
(1.8.1) implies that C(R′,R) → UT ′,s is injective. Before we show the claim, we have to analyse
the embedding ET ′,s → UT ′,s from Lemma (6.5.1) in more detail. Using Proposition (1.8.1)
the group UT ′,s is isomorphic to the tree product of the following sequence of groups with
vertex groups

Uw′tsr{r,t} , Vw′tstrr{s,t} , Uw′tstr{r,s} , VwT ′strr{s,t} , UwT ′sr{r,t} ⋆̂VwT ′srtr{r,s} ,

UwT ′srr{s,t} ⋆̂VwT ′srstr{r,s} , UwT ′srsr{r,t} ⋆̂VwT ′r{r,s}tr{r,s} ⋆̂UwT ′rsrr{s,t} ,

VwT ′rsrtr{r,s} ⋆̂UwT ′rsr{r,t} , VwT ′rstr{r,s} ⋆̂UwT ′rr{s,t}

One easily sees that each vertex group of ET ′,s is contained in the corresponding vertex group
of the previous tree product. As the �rst four vertex groups of ET ′,s and UT ′,s coincide, it
su�ces to consider the following preimages of the boundary monomorphisms:

UwT ′sr{r,t} ∩ UwT ′srts = UwT ′srt = VwT ′srr{s,t} ∩ UwT ′srts

VwT ′srr{s,t} ∩ UwT ′srstr = UwT ′srs = UwT ′r{r,s} ∩ UwT ′srstr

UwT ′r{r,s} ∩ UwT ′rsrts = UwT ′rsr = VwT ′rsr{r,t} ∩ UwT ′rsrts

VwT ′rsr{r,t} ∩ UwT ′rstr = UwT ′rst = UwT ′rr{s,t} ∩ UwT ′rstr

As before, ET ′,s → UT ′,s is injective by Proposition (1.8.3). We have known this already
before, but this time we know how the embedding looks like and we can apply Corollary
(1.8.4). We deduce from it that in UT ′,s the intersection C(R′,R) ∩ ET ′,s is equal to the tree
product of the �rst seven vertex groups of the underlying sequence of groups of ET ′,s, which
is isomorphic to C.

6.9. Faithful commutator blueprints

For two elements w1, w2 ∈W we de�ne w1 ≺ w2 if ℓ(w1)+ℓ(w
−1
1 w2) = ℓ(w2). For any w ∈W

we put C(w) := {w′ ∈ W | w′ ≺ w}. We now de�ne for every i ∈ N a subset Ci ⊆ W as
follows:

C0 :=
⋃

S={r,s,t}

(
C(r{s,t}) ∪ C(rr{s,t})

)
For every R ∈ Ri of type J = {s, t} we let

C(R) := C(wRstr{r,s}) ∪ C(wRrJrtr) ∪ C(wRrJrsr) ∪ C(wRtsr{r,t}).

For every {R,R′} ∈ Ti,2 we let C({R,R′}) := C(R) ∪ C(R′). We note that this union is not
disjoint. For i ≥ 1 we de�ne

Ci := Ci−1 ∪
⋃

R∈Ri−1

C(R) = Ci−1 ∪
⋃

R∈Ti−1,1

C(R) ∪
⋃

{R,R′}∈Ti−1,2

C({R,R′}).

Moreover, we de�ne Di := {wRr{s,t} | R is of type {s, t}, wRs, wRt ∈ Ci}.

(6.9.1) De�nition. We denote by Gi the direct limit of the inductive system formed by the
groups Uw and Vw′ for w ∈ Ci, w

′ ∈ Di, together with the natural inclusions Uw → Uws if
ℓ(ws) = ℓ(w) + 1 and UwRs → VwRr{s,t} .
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(6.9.2) Remark. Let i ∈ N. Then Gi is generated by elements xα,w and yα,w′ for w ∈ Ci, w
′ ∈

Di, xα,w is a generator of Uw and yα,w′ is a generator of Vw′ . We �rst note that for every
w′ = wRr{s,t} and every α ∈ Φ+ with wRs /∈ α, we have xα,wRs = yα,w′ in Gi. Thus
Gi = ⟨xα,w | α ∈ Φ+, ∃w ∈ Ci : w /∈ α⟩.

Suppose s ∈ S and w ∈ W with w /∈ αs. Then ℓ(sw) = ℓ(w) − 1. Let k := ℓ(w) and let
s2, . . . , sk ∈ S be such that w = ss2 · · · sk. Then, as Uss2...sm → Uss2···sm+1 are the canonical
inclusions for any 1 ≤ m ≤ k− 1, we deduce xαs,s = xαs,w in Gi. Let α ∈ Φ+ be a non-simple
root and let projPα

1W ̸= d ∈ Pα. It is a consequence of Lemma (5.2.5) that xα,d = xα,w for
every w ∈W with w /∈ α. Thus Gi is generated by {xα | α ∈ Φ+,∃w ∈ Ci : w /∈ α}.

By the de�nition of the direct limit we have canonical homomorphisms Gi → Gi+1 ex-
tending the identities Uw → Uw and Vw′ → Vw′ . Let G be the direct limit of the inductive
system formed by the groups (Gi)i∈N with the canonical homomorphisms Gi → Gi+1. Then
the following diagram commutes for every i ∈ N by de�nition:

Gi Gi+1

G

Uw→Uw

Furthermore, the universal property of direct limits yields a unique homomorphism fi :
Gi → U+ extending the identities Uw → Uw and Vw′ → Vw′ ≤ Uw′ . Thus the following
diagram commutes:

Gi Gi+1

U+

fi

Uw→Uw

fi+1

Again, the universal property of direct limits yields a unique homomorphism f : G → U+

such that the following diagram commutes for every i ∈ N:

Gi G

U+

fi
f

(6.9.3) Remark. By Remark (6.9.2), the group Gi is generated by the set {xα | α ∈ Φ+, ∃w ∈
Ci : w /∈ α}. We let xα,i be the elements in G under the homomorphism Gi → G. Then G is
generated by {xα,i | i ∈ N, α ∈ Φ+,∃w ∈ Ci : w /∈ α}. By construction we have xα,i = xα,i+1

in G for every i ∈ N. Thus G is generated by {xα | α ∈ Φ+}.

(6.9.4) Lemma. The homomorphism f : G→ U+ is an isomorphism.

Proof. By Remark (6.9.3) we have G = ⟨xα | α ∈ Φ+⟩. We will construct a homomorphism
U+ → G which extends Uw → Uw. For every w ∈ W we have a canonical homomorphism
Uw → G. Suppose w ∈ W and s ∈ S with ℓ(ws) = ℓ(w) + 1. Then the following diagram
commutes:

Uw Uws

G
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The universal property of direct limits yields a homomorphism h : U+ → G extending the
identities on Uw → Uw. As both concatenations f ◦ h and h ◦ f are the identities on each
generator xα, the uniqueness of such a homomorphism implies that f ◦ h = idU+ and h ◦ f =
idG. In particular, f is an isomorphism.

(6.9.5) Lemma. For any P ∈ Ti we have a canonical homomorphism HP → Gi.

Proof. Suppose S = {r, s, t}. We distinguish the following cases:

P ∈ Ti,1: Let {s, t} be the type of P . By Remark (6.9.2) it su�ces to show that Ci contains
the elements wP sr{r,t}, wP r{s,t}, wP tr{r,s}. Note that ℓ(wP ) = i. If i = 0, the
claim follows. Thus we can assume i > 0 and hence ℓ(wP r) = i − 1. But then
wP sr{r,t} ∈ C(R{r,s}(wP )) ⊆ Ci and wP tr{r,s} ∈ C(R{r,t}(wP )) ⊆ Ci. If i =
1, we have wP r{s,t} ∈ C0 ⊆ C1 and we are done. If i > 1, we have i − 2 ∈
{ℓ(wP rs), ℓ(wP rt)}. Without loss of generality we assume ℓ(wP rs) = i − 2. Then
wP r{s,t} ∈ C(R{r,s}(wP )) ⊆ Ci−1 ⊆ Ci and the claim follows.

P ∈ Ti,2: Suppose P = {R,R′}, where R is of type {r, s} and R′ is of type {r, t}. Moreover,
we de�ne T := R{r,t}(wR) and T ′ := R{r,s}(wR′). Again, and using symmetry, it
su�ces to show that wT rtrr{s,t}, wT trtr{r,s}, wT trr{s,t}, wRr{r,s} ∈ Ci. We de�ne
Z := R{s,t}(wR). Note that ℓ(wZ) = i− 3 and hence wRr{s,t} ∈ C(Z) ⊆ Ci−2 ⊆ Ci.
Moreover, we have ℓ(wT ) = i − 1 and hence wT rtrr{s,t}, wT trtr{r,s}, wT trr{s,t} ∈
C(T ) ⊆ Ci. This �nishes the claim.

(6.9.6) De�nition. (a) The group Gi is called natural if the following axioms are satis�ed:

(N1) For all w ∈ Ci, w
′ ∈ Di the canonical homomorphisms Uw, Vw′ → Gi are injective.

(N2) For every P ∈ Ti the homomorphism HP → Gi from Lemma (6.9.5) is injective.

(b) If Gi is natural, then we de�ne the tree product BP := Gi ⋆HP
GP for every P ∈ Ti (cf.

(N2), Lemma (6.3.1) and Lemma (6.7.1)).

(6.9.7) Lemma. For i ∈ {0, 1} the group Gi satis�es (N1). Moreover, for all s ̸= t ∈ S the
canonical homomorphism VR{s,t}(1W ),s → Gi is injective.

Proof. We abbreviate R := R{s,t}(1W ). Before we prove the claim we show that we have a
canonical homomorphism VR,s → Gi. By Remark (6.9.2) it su�ces to show that srs, tr ∈ Ci.
But this is true, as srs, tr ∈ C0 ⊆ Ci.

Now we prove the claim. Let D = (G, (Uα)α∈Φ) be the RGD-system associated with the
split Kac-Moody group of type (4, 4, 4) over F2 as in Example (5.3.1). We �rst show that we
have canonical homomorphisms Uw → G for each w ∈ Ci. Suppose α ∈ Φ+ with w /∈ α. We
show that the canonical mappings xα 7→ xα ∈ Uα extend to homomorphisms Uw → G. Let
{α, β} be a pair of prenilpotent positive roots, let w ∈ Ci and let G ∈ Min(w) be such that
α ≤G β ∈ Φ(G). Suppose o(rαrβ) <∞. As M is locally Weyl-invariant, we have

MG
α,β =

{
(α, β) if |(α, β)| = 2,

∅ else.

We have seen in Example (5.3.1) that [xα, xβ] =
∏

γ∈MG
α,β

uγ is also a relation in G. Suppose
now o(rαrβ) = ∞ and hence α ⊊ β. As w ∈ Ci and i ∈ {0, 1}, we deduce (α, β) = ∅ and
hence [xα, xβ] =

∏
γ∈MG

α,β
uγ = 1 does also hold in G by Example (5.3.1). This implies that the

mappings xα 7→ xα extend to a homomorphism Uw → G. To show that the mappings xα 7→ xα
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do also extend to a homomorphism VwRr{u,v} → G, we have to show that the subgroup in G
generated by xwRαu , xwRαv has at most 8 elements. As this is true, xα 7→ xα extend to a
homomorphism VwRr{u,v} → G. By de�nition the following diagrams commute:

Uw Uwu

G

UwRu VwRr{u,v}

G

The universal property of direct limits yields a unique homomorphism Gi → G extending
Uw, Vw′ → G. Note that VR,s → G is an injective homomorphism by Theorem (5.3.5). The
following diagram commutes:

VR,s Gi

G

As VR,s → G, the homomorphism VR,s → Gi is also injective and we are done.

(6.9.8) De�nition. (a) We let

C−1 =
⋃

s ̸=t∈S
C(r{s,t}) and D−1 := {wRr{s,t} | R is of type {s, t}, wRs, wRt ∈ C−1}

and de�ne G−1 to be the direct limit of the groups Uw, Vw′ with w ∈ C−1, w
′ ∈ D−1 as

in De�nition (6.9.1).

(b) For S = {r, s, t} we let

Cr := C(r{r,s}) ∪ C(r{r,t}) and Dr := {wRr{s,t} | R is of type {s, t}, wRs, wRt ∈ Cr}

and de�ne G{s,t} to be the direct limit of the groups Uw, Vw′ with w ∈ Cr, w
′ ∈ Dr as

in De�nition (6.9.1).

(6.9.9) Remark. We note that there are nine roots α ∈ Φ+ with the property that there
exists w ∈ C−1 such that w /∈ α. Moreover, G−1 is generated by xα,{s,t} where α ∈ Φ+ and
r{s,t} /∈ α. Thus G−1 is generated by twelve elements. As xαs,{r,s} = xαs,{s,t} in G−1 for
S = {r, s, t}, we deduce that G−1 is generated by nine elements. In particular, the generator
xα,w does not depend on w. A similar result holds for G{s,t}, which is generated by seven
elements.

(6.9.10) Lemma. Let s ̸= t ∈ S and let R := R{s,t}(1W ). Then VR,s → G{s,t} is injective
and G−1

∼= G{s,t} ⋆VR,s
OR,s.

Proof. As before, the assignments xα 7→ xα extend to homomorphisms π : G{s,t} → G0 and
G{s,t} → G−1. Note that srs, tr ∈ Cr ⊆ C0 and hence we have canonical homomorphisms
φ : VR,s → G{s,t} and ψ : VR,s → G0. As ψ = π ◦ φ, Lemma (6.9.7) implies that φ is
injective. We abbreviate H := G{s,t} ⋆VR,s

OR,s (cf. Lemma (6.2.1)). Note that for each
w ∈ C(srs) ∪ C(tr) the following diagram commutes:

Uw OR,s

G{s,t} G−1
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The universal property of direct limits implies that there exists a unique homomorphism H →
G−1. Now we want to construct a homomorphism G−1 → H. Suppose that S = {r, s, t}. At
�rst we recall that G{s,t} is generated by the seven elements {xα,G | α ∈ Φ+,∃w ∈ Cr : w /∈ α}
and OR,s is generated by the seven elements {xα,O | α ∈ Φ+, ∃w ∈ {srs, r{s,t}, tr} : w /∈ α}. In
H we have xα,G = xα,O for α ∈ {αs, αt, sαr, srαs, tαr}. Thus H is generated by nine elements
and we have a bijection between the set of generators of H and the set of roots contained
in {α ∈ Φ+ | ∃w ∈ C−1 : w /∈ α}. For w ∈ Cr, w

′ ∈ Dr we have canonical homomorphisms
Uw, Vw′ → G{s,t} → H. For w ∈ C−1\Cr, w

′ ∈ D−1\Dr we have canonical homomorphisms
Uw, Vw′ → OR,s → H. The universal property of direct limits yields a unique homomorphism
G−1 → H extending the identities Uw → Uw ≤ H and Vw′ → Vw′ ≤ H.

Note that the concatenations of H → G−1 and G−1 → H �x all generators and hence
they must be the identities. In particular, H → G−1 is an isomorphism.

(6.9.11) Lemma. For R := R{s,t}(r) the canonical homomorphisms VR, VR,s → G−1 are
injective. For DR := G−1 ⋆VR

OR we obtain DR
∼= G−1 ⋆VR,s

OR,s. Moreover, we have
G0

∼= ⋆G−1DT , where T runs over R1.

Proof. To show that we have canonical homomorphisms VR, VR,s → G−1 it su�ces to check
that rsrs, rtr ∈ C−1. But this holds by de�nition.

Let T := R{r,s}(1W ). By de�nition we have OT,r = Vsr{r,t} ⋆̂Ur{r,s} ⋆̂Vrr{s,t} ⋆̂Urtr and VR,s =
Ur{r,s} ⋆̂Vrr{s,t} ⋆̂Urtr. Using Proposition (1.8.1) we obtain that VR,s → OT,r is injective. Using
Lemma (6.2.1) and Lemma (6.9.10), we obtain that each of the canonical homomorphisms
VR → VR,s → OT,r → G−1 is injective. Using Proposition (1.8.1), Remark (1.8.6), Lemma
(1.8.7), Lemma (6.1.2) and Lemma (6.2.1) we obtain the following isomorphisms:

G−1 ⋆VR
OR

∼= G−1 ⋆VR,s
VR,s ⋆VR

OR
∼= G−1 ⋆VR,s

(VR,s ⋆VR
OR) ∼= G−1 ⋆VR,s

OR,s

It remains to show that G0
∼= ⋆G−1DT . Let R ∈ R1 be of type {s, t}. To see that we

have a canonical homomorphism OR → G0, it su�ces to show that rsr, rr{s,t}, rtr ∈ C0. But
this holds by de�nition. Using Remark (6.9.2) and Remark (6.9.9), we obtain a canonical
homomorphism ⋆G−1DT → G0, where T runs over R1. Note that ⋆G−1DT is generated by
the elements xα, xβ,T , where C−1 ̸⊆ α ∈ Φ+ and T ∈ R1 is such that T = R{s,t}(r) and
{rsr, rr{s,t}, rtr} ̸⊆ β ∈ Φ+. Note that if {rsr, rtr} ̸⊆ β ∈ Φ+, then xβ = xβ,T holds in
⋆G−1DT . Thus ⋆G−1DT is generated by the elements xα, xβ.T , where C−1 ̸⊆ α ∈ Φ+ and
T ∈ R1 is such that β is a non-simple root of T .

Let T := R{r,s}(t) and T
′ := R{s,t}(r). Then −αr is contained in both non-simple roots

of T by Lemma (5.1.4) and, moreover, αr is contained in both non-simple roots of T ′. In
particular, let T ̸= T ′ ∈ R1, let α be a non-simple root of T and let β be a non-simple
root of T ′, then −α ⊊ β. This implies that the group ⋆G−1DT , where T runs over R1, is
generated by 15 elements and there is a bijection between the generators of ⋆G−1DT and
the set {α ∈ Φ+ | C0 ̸⊆ α}. Hence the mappings xα 7→ xα extend to homomorphisms
Uw, Vw′ → ⋆G−1DT for w ∈ C0 and w′ ∈ D0. Note that the following diagrams commute:

Uw Uws

⋆G−1DT

UwRs VwRr{s,t}

⋆G−1DT

The universal property of direct limits yields a unique homomorphism G0 → ⋆G−1DT ex-
tending Uw, Vw′ → ⋆G−1DT . As the concatenations of ⋆G−1DT → G0 and G0 → ⋆G−1DT �x
xα, both concatenations are the identities and hence both homomorphisms are isomorphisms
inverse to each other.
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(6.9.12) Lemma. For all i ∈ N and w ∈ Ci+1\Ci there exists a unique P ∈ Ti with w ∈ C(P ).

Proof. The existence follows by de�nition of Ci+1. Before we prove the uniqueness, suppose
P ∈ Ti with w ∈ C(P )\Ci. We distinguish the following two cases:

P ∈ Ti,1: Let P be of type {s, t} and let γ, δ be the non-simple roots of P . As C(P ) =
C(wP str{r,s}) ∪ C(wP r{s,t}rtr) ∪ C(wP r{s,t}rsr) ∪ C(wP tsr{r,t}) and wP r{s,t} ∈ Ci

by induction, we infer C(w)∩{wP st, wP ts} ≠ ∅. But this implies w ∈ (−γ)∪ (−δ).
Moreover, for ε ∈ {γ, δ} we have a unique rank 2 residue Rε containing Pε.

P ∈ Ti,2: Suppose P = {R,R′}, where R is of type {r, s} and R′ is of type {r, t}, and we let
γ, ε (resp. δ, ε) be the non-simple roots of R (resp. R′). As C(P ) = C(R) ∪ C(R′)
and wRr{r,s}, wR′r{r,t} ∈ Ci by induction, it follows similarly as in (i) that C(w) ∩
{wRrs, wRsr = wR′tr, wR′rt} ̸= ∅. Again, this implies w ∈ (−γ) ∪ (−ε) ∩ (−δ).
Since γ = wRrαs, δ = wR′rαt = wRstrαt and ε = wRsαr, it follows

γ ∩ δ ∩ (W\{wRsr}) ⊆ ε⇔ rαs ∩ strαt ∩ (W\{sr}) ⊆ sαr

⇔ tstrαs ∩ stsrαt ∩ (W\{r{s,t}r}) ⊆ r{s,t}αr

Now Lemma (5.1.3) impliesW\ ((−γ) ∪ (−δ) ∪ {wRsr}) = γ∩δ∩(W\{wRsr}) ⊆ ε.
But this implies (−ε) ⊆ (−γ)∪(−δ)∪{wRsr} and, as wRsr ∈ Ci, we have w ̸= wRsr
and hence w ∈ (−γ)∪(−δ). Moreover, for ε ∈ {γ, δ} we have a unique rank 2 residue
Rε containing Pε.

In both cases we have w ∈ (−γ)∪(−δ) and hence w /∈ γ∩δ. Now we will show that P is unique
with the required property. Assume that P ̸= Q ∈ Ti does also satisfy the property. Let δP , γP
and δQ, γQ be the non-simple roots as before. We note that for each ε ∈ {δP , γP , δQ, γQ} there
is a unique residue rank 2 residue Rε such that ε is a non-simple root of Rε.

Assume δP = δQ. Then we have RδP = RδQ . If P ∈ Ti,1, then P = RδP = RδQ . Moreover,
Q ∈ Ti,2 would imply RδQ ∈ Q, which is a contradiction to RδQ ∈ Ti,1. Thus Q ∈ Ti,1
and P = RδQ = Q. But this is a contradiction. If P ∈ Ti,2, then RδP = RδQ ∈ P . In
particular, we have RδQ /∈ Ti,1. As Q ∈ Ti,1 would imply Q = RδQ , we deduce Q ∈ Ti,2 and
RδQ ∈ Q. But RδQ ∈ P ∩Q ̸= ∅ implies P = Q, which is again a contradiction. We infer that
|{δP , γP , δQ, γQ}| = 4.

We have w ∈ (−δP ) ∪ (−γP ) and w ∈ (−δQ) ∪ (−γQ). Assume that non of {δQ, δP },
{δQ, γP }, {γQ, δP }, {γQ, γP } is prenilpotent. Then [2, Lemma 8.42(3)] yields that each
of {(−δQ), δP }, {(−δQ), γP }, {(−γQ), δP }, {(−γQ), γP } is a pair of nested roots. Since
o(rδP rγP ), o(rδQrγQ) < ∞, we deduce either (−δQ) ⊆ δP , γP , or else δP , γP ⊆ (−δQ) (resp.
(−γQ) ⊆ δP , γP or δP , γP ⊆ (−γQ)). As 1W ∈ δP ∩ γP ∩ δQ ∩ γQ, we cannot have δP , γP ⊆
(−δQ), (−γQ) and hence (−δQ), (−γQ) ⊆ δP , γP . But this implies w ∈ (−δQ) ∪ (−γQ) ⊆
δP ∩ γP , which is a contradiction. Thus one of the previous pairs of roots must be prenilpo-
tent. Without loss of generality we can assume that {δP , δQ} is prenilpotent. Note that
P,Q ∈ Ti and hence kε = i + 2 for every ε ∈ {δQ, δP , γQ, γP } and {δP , δQ} is not nested. If
{−δP , δQ} would be nested, [2, Lemma 8.42(3)] implies that {δP , δQ} is not prenilpotent which
is a contradiction. Thus {−δP , δQ} is not nested and Lemma (1.4.7) yields o(rδP rδQ) <∞.

Assume that RδP ∈ ∂2δQ. We recall kδP = kδQ . If RδP ∈ Ti,1, then δQ ∈ {δP , γP }, which
is a contradiction. If RδP /∈ Ti,1, then we have δQ = δP by de�nition of the roots δQ, γQ,
which is again a contradiction. Thus we have RδP /∈ ∂2δQ.

Recall that δQ is a non-simple root by de�nition. Now we can apply Lemma (5.2.6).
Assertion (b) would imply δQ = γP , which is a contradiction. Thus we are in Case (a). Then
kδP = kδQ implies i = 0. Let {s, t} be the type of P and let {r, s} be the type of Q. Then
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we have P = R{s,t}(1W ) and Q = R{r,s}(1W ) as well we δQ = sαr, γQ = rαs. It follows
from Lemma (5.1.4) that (−αr) ⊆ δP ∩ γP and hence w ∈ (−δP ) ∪ (−γP ) ⊆ αr. Note that
C(P ) ⊆ (−tαs)∪C(strsr)∪ {t} ⊆ δQ. Lemma (1.3.2) yields αs ⊆ (−αr)∪ sαr and as (W,S)
is of type (4, 4, 4), we deduce (−rαs) ⊆ (−sαr) ∪ (−αr). This implies αr ∩ sαr ⊆ rαs. But
then w ∈ αr ∩ δQ ⊆ γQ, which is a contradiction to w /∈ δQ ∩ γQ. Thus P is unique with the
required property.

(6.9.13) Lemma. Let i ∈ N, P ∈ Ti and w ∈ C(P ). Then there is a canonical homomorphism
Uw → GP . In particular, this homomorphism is injective.

Proof. We distinguish the following two cases:

P ∈ Ti,1 Suppose that P is of type {s, t}. Then C(P ) = C(wP str{r,s}) ∪ C(wP r{s,t}rtr) ∪
C(wP r{s,t}rsr) ∪ C(wP tsr{r,t}). As Uv → Uvs is injective, we can assume w ∈
{wP str{r,s}, wP r{s,t}rtr, wP r{s,t}rsr, wP tsr{r,t}}. By de�nition of GP and Proposi-
tion (1.8.1) we see that Uw → GP is injective.

P ∈ Ti,2 Suppose P = {R,R′}, where R is of type {r, s} and R′ is of type {r, t}. As in the pre-
vious case we can assume that w ∈ {wRrsr{r,t}, wRr{r,s}tst, wRr{r,s}trt, wRsrrs,t} ∪
{wR′trr{s,t}, wR′r{r,t}srs, wR′r{r,t}sts, wR′rtr{r,s}}. Again, the claim follows from
the de�nition of GP together with Proposition (1.8.1).

(6.9.14) De�nition. For i ∈ N and P ∈ Ti we let C ′(P ) ⊆ W be the set of all w ∈ W such
that Uw is a vertex group of GP .

(6.9.15) Lemma. For i ∈ N and P ∈ Ti, we have C ′(P ) ⊆ Ci+1.

Proof. We distinguish the following two cases:

P ∈ Ti,1: Suppose that P is of type {s, t}. Then C ′(P ) ⊆ C(P ) ∪ {wP sr{r,t}, wP tr{r,s}}. By
de�nition, we have C(P ) ⊆ Ci+1 and (using symmetry) it su�ces to show that
wP sr{r,t} ∈ Ci+1. For i = 0 we have wP sr{r,t} ∈ C0 ⊆ C1 and we are done. For
i > 0 we have wP sr{r,t} ∈ C(R{r,s}(wP )) ⊆ Ci ⊆ Ci+1 and the claim follows.

P ∈ Ti,2: Suppose P = {R,R′}, where R is of type {r, s} and R′ is of type {r, t}. As in the
previous case it su�ces to show that {wRrtrsts, wRrtrsrs, wRrr{s,t}} ⊆ Ci+1. As
R{r,t}(wR) ∈ Ri−1, it follows that {wRrtrsts, wRrtrsrs, wRrr{s,t}} ⊆ Ci ⊆ Ci+1

and the claim follows.

(6.9.16) Lemma. For P ∈ Ti we let δP , γP be the roots as in Lemma (6.9.12). Moreover, we
let Rε be the unique residue of rank 2 containing Pε for ε ∈ {δP , γP , δQ, γQ}. Then following
hold:

(a) For i > 0 and P ̸= Q ∈ Ti, we have (−δP ), (−γP ) ⊆ δQ, γQ.

(b) Suppose P ∈ Ti and Q ∈ Ti−1. For ε ∈ {δQ, γQ}, ε′ ∈ {δP , γP } we have (−ε) ⊆ ε′ or
Rε ∩Rε′ is a panel containing wRε.

Proof. To prove (a) it su�ces to show (−δP ) ⊆ δQ. We see as in Lemma (6.9.12) that
|{δP , γP , δQ, γQ}| = 4. Assume (−δP ) ̸⊆ δQ. Then {δP , δQ} ∈ P. As kδP = kδQ , we
have o(rδP rδQ) < ∞. As RδP /∈ ∂2δQ, Lemma (5.2.6)(b) would imply δQ = γP , which is
a contradiction. Lemma (5.2.6)(a) implies i = 0 because of kδP = kδQ , which is also a
contradiction.

To show (b) we argue similar as in (a). Assume that (−δQ) ̸⊆ δP . Then {δQ, δP } ∈ P
and as kδQ = kδP − 1, we deduce o(rδQrδP ) < ∞. If RδP ∈ ∂2δQ, then (as kδQ = kδP − 1)
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PδQ = RδP ∩ RδQ is a panel. Thus we can assume RδP /∈ ∂2δQ. Then we can apply Lemma
(5.2.6). As (b) does not apply, we obtain again (using kδQ = kδP − 1) that RδP ∩ RδQ is a
panel.

(6.9.17) De�nition. Let i ∈ N and let R ∈ Ri be a residue of type {s, t}. We let Φ̂R be
the set of all non-simple roots of R{r,s}(wRst), R{r,t}(wRr{s,t}), R{r,s}(wRr{s,t}), R{r,t}(wRts).

If P := {R,R′} ∈ Ti, then we de�ne Φ̂P := Φ̂R ∪ Φ̂R′ .

(6.9.18) Lemma. Let i ∈ N, R ∈ Ri and let α ∈ Φ̂R be a root. Then we have Ci ⊆ α.

Proof. Let R be of type {s, t} and suppose S = {r, s, t}. We note that C(P ) ⊆ Ci ∪ (−δP ) ∪
(−γP ) for P ∈ Ti, where δP , γP are as in Lemma (6.9.12). For a residue T ∈ Ri we denote by
PT ∈ Ti the unique element with PT = T or T ∈ PT . We prove the hypothesis by induction
on i. For i = 0 it is not hard to see that

C0 =
⋃

S={r,s,t}

C(r{s,t}) ∪ C(rr{s,t}) ⊆ α

Thus we can assume i > 0 and hence ℓ(wRr) = ℓ(wR)−1. We have Ci = Ci−1∪
⋃

P∈Ti−1
C(P ).

We denote by αR, βR the two non-simple roots of R and note that αR ⊆ α or βR ⊆ α holds.
We distinguish the following two cases:

(a) ℓ(wRrs) = ℓ(wR)− 2 = ℓ(wRrt): Let P := {T, T ′} ∈ Ti−2,2, where T := R{r,s}(wR) and

T ′ := R{r,t}(wR). As αR, βR ∈ Φ̂T , the induction hypothesis yields Ci−2 ⊆ αR∩βR ⊆ α.
We observe the following:

Ci = Ci−1 ∪
⋃

Z∈Ti−1

C(Z) = Ci−2 ∪
⋃

Z∈Ti−2

C(Z) ∪
⋃

Z∈Ti−1

C(Z) ⊆ α ∪
⋃

Z∈Ti−1∪Ti−2

C(Z)

� Z ∈ Ti−2: If Z ̸= P , then Lemma (6.9.16)(a) and Lemma (5.1.3) imply that
C(Z) ⊆ Ci−2∪(δP ∩ γP ) ⊆ α∪wRrαr∪C(wR) ⊆ α. Now we consider Z = P . Note
that wTαs, wT ′αt, (−wRsrtαs), (−wRtrsαt) ⊆ αR, βR and it su�ces to show that
wRsr{r,t}, wRr{s,t}, wRtr{r,s} ∈ α. As −wRstrtαr,−wRtsrsαr ⊆ α,wRr{s,t} ∈ α
and roots are convex, we deduce C(P ) ⊆ α.

� Z ∈ Ti−1: Then Lemma (6.9.16)(b) implies C(Z) ⊆ Ci−1 ∪ (αR ∩ βR) ⊆ Ci−1 ∪ α.
We conclude the following:

Ci = Ci−1 ∪
⋃

Z∈Ti−1

C(Z) ⊆ Ci−1 ∪ α = Ci−2 ∪
⋃

Z∈Ti−2

C(Z) ∪ α ⊆ α

(b) ℓ(wR) ∈ {ℓ(wRrs), ℓ(wRrt)}: Without loss of generality we can assume ℓ(wRrt) =
ℓ(wR). We distinguish the following two cases:

(i) ℓ(wRrs) = ℓ(wR) = ℓ(wRrt): Then ℓ(wR) = 1 and R = R{s,t}(r). Clearly, rr{s,t} ∈
α. Using Lemma (5.1.4) we see that αr,−αs,−αt ⊆ αR, βR and, as roots are
convex, we deduce C0 ⊆ α. For T := R{s,t}(1W ) and β ∈ Φ̂T we have −β ⊆
(−δT )∪ (−γT ) ⊆ αr ⊆ α and hence C(T ) ⊆ α. Using symmetry it su�ces to show
that C(R{r,s}(1W )) ⊆ α. As srr{s,t}, srsr{r,t}, rsrr{s,t} ∈ (−αs) ⊆ α, it su�ces to
show that rsr{r,t} ∈ α. It follows from Lemma (5.1.4) that rsr{r,t} ∈ (−sαr) ⊆ α.

(ii) ℓ(wRrs) = ℓ(wR) − 2: De�ne T := R{r,t}(wR) and T ′ := R{r,s}(wR). Lemma
(6.9.16)(b) implies for P ∈ Ti−1\{PT }:

C(P ) ⊆ Ci−1 ∪ (−δP ) ∪ (−γP ) ⊆ Ci−1 ∪ (αR ∩ βR) ⊆ Ci−1 ∪ α
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Note that −wTαt,⊆ αR, βR and C(wRtr{r,s}) ⊆ α. As roots are convex and
αR ∩ βR ⊆ α, this yields C(PT ) ⊆ α. We deduce

Ci ⊆ Ci−1 ∪ α = Ci−2 ∪
⋃

P∈Ti−2

C(P ) ∪ α

We distinguish the following cases:

(1) ℓ(wRrsr) = ℓ(wR) − 1: If i − 2 = 0, then C(P ) ⊆ α for all P ∈ T0 and
C0 ⊆ αR ∩ βR ⊆ α by induction. Thus we assume i − 2 > 0 and Lemma
(6.9.16)(a) implies for P ∈ Ti−2\{PT ′} (as wRrαr ∈ {δT ′ , γT ′}):

C(P ) ⊆ Ci−2 ∪ (−δP ) ∪ (−γP ) ⊆ Ci−2 ∪ wRrαr ⊆ Ci−2 ∪ α

As αR, βR ∈ Φ̂T ′ , we deduce Ci−2 ⊆ αR ∩ βR ⊆ α by induction. Moreover, we
have wT ′αs,

(
−wT ′r{r,s}tαs

)
⊆ αR, βR as well as wRsr{r,t}, wRr{s,t} ∈ α. As

roots are convex, we conclude C(PT ′) ⊆ (αR ∩ βR) ∪ α ⊆ α. This yields the
following:

Ci ⊆ Ci−2 ∪
⋃

P∈Ti−2

C(P ) ∪ α ⊆ α

(2) ℓ(wRrsr) = ℓ(wR)− 3: We let X := R{r,t}(wT ′s) and Y := R{s,t}(wT ′r).

� Suppose that ℓ(wT ′st) = ℓ(wT ′) + 2. We will show that C(PX) ⊆ α. Note
that wT ′rαs ⊆ αR, βR. This yields C(PX) ⊆ wT ′rαs ⊆ αR ∩ βR ⊆ α.

� Suppose that ℓ(wT ′rt) = ℓ(wT ′) + 2. Again we will show that C(PY ) ⊆ α.
Note that wT ′sαr ⊆ αR, βR. This yields C(PY ) ⊆ wT ′sαr ⊆ αR ∩ βR ⊆ α.

Note that PT ′ ∈ Ti−3 and αR, βR ∈ Φ̂T ′ . Thus the induction hypothesis implies
Ci−3 ⊆ αR ∩ βR ⊆ α. We distinguish the following cases:

(aa) T ′ ∈ Ti−3,1: Lemma (6.9.16)(b) implies C(Z) ⊆ Ci−2∪(δT ′ ∩ γT ′) ⊆ Ci−2∪
α for all Z ∈ Ti−2\{PX , PY }. We conclude⋃

P∈Ti−2

C(P ) ⊆ Ci−2 ∪ α

We show now that C(T ′) ⊆ α. First note that wT ′srr{s,t}, wT ′rsr{r,t} ⊆
αR, βR and wT ′srsr{r,t}, wRr{s,t} ⊆ α. This yields C(T ′) ⊆ (αR ∩ βR) ∪
α ⊆ α. Now Lemma (6.9.16)(a) yields the following for P ∈ Ti−3\{T ′}:

C(P ) ⊆ Ci−3 ∪ (δT ′ ∩ γT ′) ⊆ α

Ci ⊆ Ci−2 ∪ α ⊆ Ci−3 ∪
⋃

P∈Ti−3

C(P ) ∪ α ⊆ α

(bb) ℓ(wRrst) = ℓ(wR) − 3: De�ne Z := R{r,t}(wRrsts) and note that X,Z ∈
Ti−2,1. We have already shown that C(X) ⊆ α. Note that −wT ′rtαs ⊆
αR, βR. As roots are convex, this implies C(Z) ⊆ α. Lemma (6.9.16)(a)
implies for P ∈ Ti−3\{PT ′}:

C(P ) ⊆ Ci−3 ∪ wRrαr ⊆ Ci−3 ∪ (αR ∩ βR) ⊆ α
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Now we consider P = PT ′ . Note that wRrαr, (−wRrαt), (−wRsrtαs) ⊆
αR, βR. Moreover, wRstrt, wRr{s,t} ∈ α. As roots are convex, we obtain
C(PT ′) ⊆ α.

Lemma (6.9.16)(b) implies for P ∈ Ti−2\{X,Z}:

C(P ) ⊆ Ci−2 ∪ wRrαr ⊆ Ci−2 ∪ (αR ∩ βR) ⊆ Ci−2 ∪ α

Ci ⊆ Ci−2 ∪
⋃

P∈Ti−2

C(P ) ∪ α ⊆ Ci−3 ∪
⋃

P∈Ti−3

C(P ) ∪ α ⊆ α

(cc) ℓ(wRrsrst) = ℓ(wR) − 3: De�ne Z := R{s,t}(wRrsrstr) and note that
Y,Z ∈ Ti−2,1. We have already shown that C(Y ) ⊆ α. As before, we note
that −wT ′stαr ⊆ wT ′rαs ⊆ αR, βR. This yields as before C(Z) ⊆ α, as
roots are convex. Lemma (6.9.16)(a) implies for P ∈ Ti−3\{PT ′}:

C(P ) ⊆ Ci−3 ∪ wRrsαs ⊆ Ci−3 ∪ (αR ∩ βR) ⊆ α

Now we consider P = PT ′ . Note that wRrsαs, (−wRsrtαs), (−wRtrαt) ⊆
αR, βR and wRstrt ∈ α as before. As roots are convex, we obtain C(PT ′) ⊆
α.

Moreover, Lemma (6.9.16)(b) implies for P ∈ Ti−2\{Y,Z}:

C(P ) ⊆ Ci−2 ∪ wRrsαs ⊆ Ci−2 ∪ (αR ∩ βR) ⊆ Ci−2 ∪ α

Ci ⊆ Ci−2 ∪
⋃

P∈Ti−2

C(P ) ∪ α ⊆ Ci−3 ∪
⋃

P∈Ti−3

C(P ) ∪ α ⊆ α

(6.9.19) Lemma. Let i ∈ N and w′ = wRr{s,t} ∈ Di+1\Di. Then there exists a unique
P ∈ Ti with wRs, wRt ∈ C ′(P ) and the canonical homomorphism Vw′ → GP is injective.

Proof. We use in the proof a di�erent notation than in the statement. We let w′ = wT r{u,v}.
As w′ ∈ Di+1\Di, we have {wTu,wT v} ̸⊆ Ci. Without loss of generality we assume wTu /∈ Ci.
Using Lemma (6.9.12), we obtain a unique P ∈ Ti with wTu ∈ C(P )\Ci. Let β ∈ Φ+ be the
root with {wT , wT v} ∈ ∂β. Assume that there exists i < j ∈ N and Z ∈ Rj with β ∈ Φ̂Z .
Then the previous lemma implies Ci+1 ⊆ Cj ⊆ β, which is a contradiction to our assumption,
as wT v ∈ Ci+1 /∈ β. We distinguish the following cases:

P ∈ Ti,1 Suppose that P is of type {s, t}. It su�ces to consider the following cases:

wTu ∈ {wRstrsr, wRstr{r,s}, wRstsrtr, wRr{s,t}rtr}

The symmetric case (interchanging s and t) follows similarly. The other cases follow
from Proposition (1.8.1), as Vw′ is either a vertex group of GP , or else is contained in
the vertex group Uw′ of GP . If wTu = wRstr{r,s}, then β ∈ Φ̂Z for Z = R{r,s}(wRst).

If wTu = wRr{s,t}rtr, then β ∈ Φ̂Z for Z = R{r,t}(wRsts). If wTu = wRstsrtr,

then β ∈ Φ̂Z for Z = R{r,s}(wRst). If wTu = wRstrsr, then β ∈ Φ̂Z , where
Z = R{r,t}(wRs).

P ∈ Ti,2 Suppose P = {R,R′}, where R is of type {r, s} and R′ is of type {r, t}. Using exactly
the same arguments, the claim follows as in the case P ∈ Ti,1.

(6.9.20) Proposition. Assume that Gi is natural for some i ∈ N. Then Gi+1
∼= ⋆GiBP ,

where P runs over Ti. In particular, the mappings Gi → Gi+1 and BP → Gi+1 are injective
for each P ∈ Ti.
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Proof. Recall from De�nition (6.9.6) that BP = Gi ⋆HP
GP for every P ∈ Ti and note that

Gi, GP are subgroups of BP by Proposition (1.8.1). The second part follows from Proposition
(1.8.1) and the �rst part. We let xα be the generators of Gi, where Ci ̸⊆ α ∈ Φ+, and we let
xα,P be the generators of GP , where C ′(P ) ̸⊆ α ∈ Φ+. We de�ne Hi := ⋆GiBP , where P runs
over Ti. Since we have canonical homomorphisms Gi, GP → Gi+1 extending xα 7→ xα and
xα,P → xα (cf. Lemma (6.9.15)) which agree on HP (cf. Remark (6.9.2)), we obtain a unique
homomorphism BP → Gi+1. Moreover, we obtain a (surjective) homomorphism Hi → Gi+1.
Now we will construct a homomorphism Gi+1 → Hi. Before we do that, we consider the
generators of Hi.

Let α ∈ Φ+ and suppose P ∈ Ti with C ′(P ) ̸⊆ α and Ci ̸⊆ α. Then xα is a generator of
Gi and xα,P is a generator of GP . Lemma (6.9.18) implies that α /∈ Φ̂P and by de�nition of
HP we have xα = xα,P in GP . Thus Hi is generated by the set {xα, xβ,P | Ci ̸⊆ α ∈ Φ+, P ∈
Ti, β ∈ Φ̂P }. Note that if P,Q ∈ Ti and α ∈ Φ+ are such that C ′(P ) ̸⊆ α,C ′(Q) ̸⊆ α, then
P = Q. This can be seen by using Lemma (6.9.16) for i > 0. In the case i = 0 it follows from
Lemma (5.1.4) that if P ̸= Q, then −β ⊊ α for all β ∈ Φ̂P , α ∈ Φ̂Q.

We need to construct for each w ∈W a homomorphism Uw → Hi. We start by de�ning a
mapping from the generators xα,w of Uw to Hi. Let α ∈ Φ+ be a root and let w ∈ Ci+1 with
w /∈ α. If Ci ̸⊆ α, we de�ne xα,w 7→ xα. If Ci ⊆ α, then w /∈ Ci and there exists a unique
P ∈ Ti with w ∈ C(P ) by Lemma (6.9.12). We de�ne xα,w 7→ xα,P .

If w ∈ Ci, then we have a canonical homomorphism Uw → Gi → Hi. Thus we assume
w /∈ Ci. As before, there exists a unique P ∈ Ti such that w ∈ C(P ). We have already shown
that for each α ∈ Φ+ with w /∈ α and Ci ̸⊆ α, we have xα = xα,P in BP . Thus these mappings
extend to homomorphisms Uw → GP → Hi. Now suppose w′ = wRr{s,t} ∈ Di+1 for some
R of type {s, t}. We have to show that the homomorphisms UwRs, UwRt → Hi extend to a
homomorphism Vw′ → Hi. If w′ ∈ Di, this holds by de�nition of Gi. If w′ /∈ Di, then Lemma
(6.9.19) implies that there exists a unique P ∈ Ti with {wRs, wT t} ⊆ C ′(P ) and Vw′ → GP

is injective. In particular, Vw′ → Hi is an injective homomorphism. Moreover, following
diagrams commute, where R is a residue of type {s, t}:

Uw Uws UwRs VwRr{s,t}

Hi Hi

The universal property of direct limits yields a homomorphism Gi+1 → Hi. It is clear that the
concatenations of the two homomorphisms Gi+1 → Hi and Hi → Gi+1 take xα to itself. Thus
both concatenations are equal to the identities and both homomorphisms are isomorphisms.

6.10. Second main result

(6.10.1) Remark. (a) In the next lemma we use the following basic fact about intersections
of subgroups and monomorphisms. Let G,H be groups, let U, V ≤ G be subgroups of
G and let φ : G→ H be a monomorphism. Then φ(U ∩ V ) = φ(U) ∩ φ(V ).

(b) In the next lemma we considerDR = G−1⋆VR
OR forR := R{r,t}(s) (cf. Lemma (6.9.11)).

Similar as in Remark (6.1.1) we have to show that if xα is a generator of G−1 and yα is
a generator of OR, then xα = yα holds in DR. It su�ces to consider α ∈ {stαr, srαt}.
We deduce from Lemma (5.1.4) that −αt,−αr ⊆ α and hence C−1 ⊆ α. Thus xα is not
a generator of G−1.
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(6.10.2) Lemma. Let R ∈ T0,1 be a residue of type J . For s ∈ J the canonical homomorphism
KR,s → DR{r,t}(s) is injective and we have KR,s ∩G−1 = OR in DR{r,t}(s).

Proof. We suppose J = {s, t}. Note that R = RJ(1W ). Since OR,s
∼= Usrs ⋆Usr OR by Lemma

(6.2.1), we obtain that both homomorphisms OR → OR,s → G−1 are injective by Lemma
(6.9.10) and Proposition (1.8.1). For T := R{r,t}(s) we have that X := Usr{r,t} ⋆̂Vstr{r,s} → OT

is injective by Proposition (1.8.1). Using Corollary (1.8.4) we obtain X ∩ VT = Vsr{r,t} ⋆̂Usts

in OT . Note that VT → OR,s is injective by Lemma (6.4.3). Recall that

OR,s = Usrs⋆̂Vsr{r,t} ⋆̂Ur{s,t} ⋆̂Vtr{r,s} and VT = Usrs⋆̂Vsr{r,t} ⋆̂Usts

As OR corresponds to the last three vertex groups and VT is a subgroup of the �rst three
vertex groups of OR,s, Corollary (1.8.4) implies that OR ∩ VT = Vsr{r,t} ⋆̂Usts in OR,s. We
de�ne Y := Vsr{r,t} ⋆̂Usts. Applying Proposition (1.8.3) and Remark (6.10.1), the canonical
homomorphism X ⋆Y OR → OT ⋆VT

G−1 = DT is injective. In particular, Proposition (1.8.1),
Remark (1.8.6) and Lemma (1.8.7) yield

X ⋆Y OR
∼= X ⋆Y

(
Y ⋆Usts Ur{s,t} ⋆̂Vtr{r,s}

)
∼= Usr{r,t} ⋆̂Vstr{r,s} ⋆̂Ur{s,t} ⋆̂Vtr{r,s} = KR,s

This implies that KR,s
∼= X ⋆Y OR → OT ⋆VT

G−1 = DT is injective. Applying Proposition
(1.8.3), we obtain KR,s ∩G−1 = OR in DT . This �nishes the claim.

(6.10.3) Theorem. The groups G0 and G1 are natural.

Proof. Suppose j ∈ {0, 1}. Then Gj satis�es (N1) by Lemma (6.9.7). Note that Tj,2 = ∅ and
hence Tj = Tj,1. Thus Gj is natural, if HR → Gj is injective for each R ∈ Tj,1. Let R ∈ Tj,1
be of type {s, t}. Then Lemma (6.4.1) implies that HR

∼= KR,s ⋆OR
KR,t. Thus it su�ces to

show that KR,s ⋆OR
KR,t → Gj is injective. We distinguish the cases j = 0 and j = 1.

j = 0 : Then R = R{s,t}(1W ). By Proposition (1.8.1) and Lemma (6.9.11) it follows that
DR{r,t}(s)⋆G−1DR{r,s}(t) → G0 is injective. Using Lemma (6.10.2) we obtain thatKR,s →
DR{r,t}(s) and KR,t → DR{r,s}(t) are injective and that KR,s ∩G−1 = OR (resp. KR,t ∩
G−1 = OR) in DR{r,t}(s) (resp. DR{r,s}(t)). Now Proposition (1.8.3) implies that the
following homomorphism is injective:

KR,s ⋆OR
KR,t → DR{r,t}(s) ⋆G−1 DR{r,s}(t) → G0

j = 1 : Then R = R{s,t}(r). We abbreviate T = R{r,t}(rs) and Z = R{r,s}(1W ). Since G0 is
natural, the mapping HZ → G0 is injective. Using Proposition (1.8.1), Remark (1.8.6),
Lemma (1.8.7), Lemma (6.3.1) and Lemma (6.3.2) we infer

BZ = G0 ⋆HZ
GZ

∼= G0 ⋆HZ
JZ,r ⋆JZ,r

GZ

∼= (G0 ⋆HZ
JZ,r) ⋆JZ,r

GZ

∼= (G0 ⋆HZ
HZ ⋆VT

OT ) ⋆JZ,r
GZ

∼= (G0 ⋆VT
OT ) ⋆JZ,r

GZ

Thus the homomorphism G0 ⋆VT
OT → BZ is injective. By Lemma (6.4.3) the mappings

VT → OR,s and, in particular, KR,s → OR,s⋆VT
OT are injective. Lemma (6.9.11) implies

that the canonical homomorphisms VT → OR,s → G0 are injective. Using Proposition
(1.8.3) the homomorphisms OR,s ⋆VT

OT → G0 ⋆VT
OT → BZ are injective. Using
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Proposition (1.8.3) again, we deduce (OR,s ⋆VT
OT )∩G0 = OR,s in G0 ⋆VT

OT and hence
KR,s ∩ G0 ≤ OR,s in G0 ⋆VT

OT . By Lemma (6.4.3) we have KR,s ∩ OR,s = OR in
OR,s ⋆VT

OT and by Remark (6.10.1)(a) all the previous intersections do also hold in
BZ . Thus we obtain the following in BZ :

KR,s ∩G0 = KR,s ∩G0 ∩OR,s = KR,s ∩OR,s = OR

Let T ′ = R{r,s}(rt). Replacing s and t, we deduce that the homomorphisms KR,t →
OR,t ⋆VT ′ OT ′ → BR{r,t}(1W ) are injective and KR,t ∩ G0 = KR,t ∩ OR,t = OR. Now
Proposition (1.8.3) yields that KR,s ⋆OR

KR,t → BR{r,s}(1W ) ⋆G0 BR{r,t}(1W ) is injec-
tive. Since G0 is natural, Proposition (1.8.1) and Proposition (6.9.20) imply that
BR{r,s}(1W ) ⋆G0 BR{r,t}(1W ) → G1 is injective and the claim follows.

(6.10.4) Lemma. Suppose 2 ≤ i ∈ N is such that Gi−2 and Gi−1 are natural. Then for each
R ∈ Ti,1 of type {s, t} with ℓ(wRrs) = ℓ(wR) − 2 the canonical homomorphism ER,s → Gi is
injective.

Proof. Let R ∈ Ti,1 be of type {s, t} with ℓ(wRrs) = ℓ(wR) − 2, let T = R{r,t}(wR) and
T ′ = R{r,s}(wR). Suppose ℓ(wRrt) = ℓ(wR) − 2. Using Lemma (6.7.2), we have {T, T ′} ∈
Ti−2,2 and ER,s → G{T,T ′} is injective. As Gi−2 is natural, the homomorphism G{T,T ′} →
Gi−2⋆H{T,T ′}G{T,T ′} = B{T,T ′} is injective by Proposition (1.8.1). Moreover, as Gi−2 and Gi−1

are natural, the homomorphisms B{T,T ′} → Gi−1 and Gi−1 → Gi are injective by Proposition
(6.9.20). This �nishes the claim. Thus we can assume that ℓ(wRrt) = ℓ(wR). We abbreviate
Z := R{r,s}(wRt) and distinguish the following two cases:

(i) T ∈ Ti−1,1: As Gi−1 is natural, we deduce from Proposition (6.9.20) that BT → Gi

is injective. Using Proposition (1.8.1), Remark (1.8.6), Lemma (1.8.7), Lemma (6.3.1)
and Lemma (6.3.2) infer

BT = Gi−1 ⋆HT
GT

∼= Gi−1 ⋆HT
JT,r ⋆JT,r

GT

∼= (Gi−1 ⋆HT
JT,r) ⋆JT,r

GT

∼= (Gi−1 ⋆HT
HT ⋆VZ

OZ) ⋆JT,r
GT

∼= (Gi−1 ⋆VZ
OZ) ⋆JT,r

GT

In particular, each of the mappings Gi−1 ⋆VZ
OZ → BT → Gi is injective.

(ii) T /∈ Ti−1,1: Then there exists a unique PT ∈ Ti−1,2 with T ∈ PT . Suppose PT = {T, T ′′}.
As Gi−1 is natural, we deduce from Proposition (6.9.20) that BPT

→ Gi is injective.
Then Proposition (1.8.1), Remark (1.8.6), Lemma (1.8.7), Lemma (6.7.1) and Lemma
(6.7.3) imply that

BPT
= Gi−1 ⋆H{T,T ′′} G{T,T ′′}

∼= Gi−1 ⋆H{T,T ′′} J(T,T ′′) ⋆J(T,T ′′) G{T,T ′′}

∼=
(
Gi−1 ⋆H{T,T ′′} J(T,T ′′)

)
⋆J(T,T ′′) G{T,T ′′}

∼=
(
Gi−1 ⋆H{T,T ′′} H{T,T ′′} ⋆VZ

OZ

)
⋆J(T,T ′′) G{T,T ′′}

∼= (Gi−1 ⋆VZ
OZ) ⋆J(T,T ′′) G{T,T ′′}

and hence each of the mappings Gi−1 ⋆VZ
OZ → BPT

→ Gi is injective.
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We conclude that Gi−1 ⋆VZ
OZ → Gi is injective. We will show now that XR → Gi−1 is

injective. We distinguish the following two cases:

(i) T ′ ∈ Ti−2,1: As Gi−2 is natural by assumption, the mapping GT ′ → BT ′ → Gi−1 is
injective by Proposition (6.9.20) and by Lemma (6.6.3) the homomorphism XR → GT ′

is injective.

(ii) T ′ /∈ Ti−2,1: Then there exists a unique PT ′ ∈ Ti−2,2 with T ′ ∈ PT ′ . As Gi−2 is natural
by assumption, the mapping GPT ′ → BPT ′ → Gi−1 is injective by Proposition (6.9.20)
and by Lemma (6.7.4) the homomorphism XR → GPT ′ is injective.

We conclude that XR → Gi−1 is injective. Moreover, VZ → XR is injective by Lemma (6.6.2)
and hence XR ⋆VZ

OZ → Gi−1 ⋆VZ
OZ → Gi is injective by Proposition (1.8.3). Using Lemma

(6.6.2) again, we infer that ER,s → XR ⋆VZ
OZ and, in particular, ER,s → Gi is injective.

(6.10.5) Theorem. For each i ≥ 0 the group Gi is natural.

Proof. We show the claim via induction on i ≥ 0. If i ≤ 1, claim follows from Theorem
(6.10.3). Thus we can assume that i ≥ 2 and that Gk is natural for all 0 ≤ k < i. We have
to show that Gi satis�es (N1) and (N2).

(N1) Let w ∈ Ci. If w ∈ Ci−1, then each of the homomorphisms Uw → Gi−1 → Gi is injective
by induction and Proposition (6.9.20). If w /∈ Ci−1, then there exists P ∈ Ti−1 with
w ∈ C(P ) by de�nition of Ci. Using Lemma (6.9.13) and Proposition (6.9.20), each
of the homomorphisms Uw → GP → Gi is injective. Now we consider w′ ∈ Di. If
w′ ∈ Di−1, induction and Proposition (6.9.20) imply that each of the homomorphisms
Vw′ → Gi−1 → Gi is injective. Thus we can assume that w′ /∈ Di−1. As w′ = wRr{s,t} for
some residue R of type {s, t} with wRs, wRt ∈ Ci, we deduce {wRs, wRt}∩ (Ci\Ci−1) ̸=
∅. By de�nition of Ci there exists P ∈ Ti−1 such that {wRs, wRt} ∩ (C(P )\Ci−1) ̸= ∅.
But then Lemma (6.9.19), induction and Proposition (6.9.20) imply that each of the
homomorphisms Vw′ → GP → Gi is injective and (N1) is satis�ed.

(N2) To prove that (N2) holds we have to show that HP → Gi is injective for every P ∈ Ti.
Suppose P ∈ Ti,1 is of type {s, t}. As i ≥ 2, we can assume that ℓ(wP rs) = ℓ(wP )− 2.
Since HP → EP,s is injective by Lemma (6.5.1) and EP,s → Gi is injective by Lemma
(6.10.4), the claim follows. Now suppose that P ∈ Ti,2. Let P = {R,R′}, where R is of
type {r, s} and R′ is of type {r, t}. Let T be the {r, t}-residue containing wR and let
T ′ be the {r, s}-residue containing wR′ . By Lemma (6.8.3) we have T, T ′ ∈ Ti−1,1. As
Gi−1 is natural, Proposition (6.9.20) and Proposition (1.8.1) imply that the mapping
BT ⋆Gi−1BT ′ → Gi is injective. By Lemma (6.8.2) we have H{R,R′} ∼= C(R,R′) ⋆CC(R′,R).
Thus it su�ces to show that C(R,R′) ⋆C C(R′,R) → BT ⋆Gi−1 BT ′ is injective and we will
prove it by using Proposition (1.8.3).

Using Lemma (6.10.4), the mappings ET,t, ET ′,s → Gi−1 are injective. Then Lemma
(6.5.1), Proposition (1.8.1), Remark (1.8.6) and Lemma (1.8.7) yield

BT = Gi−1 ⋆HT
GT

∼= Gi−1 ⋆ET,t
ET,t ⋆HT

GT
∼= Gi−1 ⋆ET,t

UT,t

BT ′ = Gi−1 ⋆HT ′ GT ′ ∼= Gi−1 ⋆ET ′,s ET ′,s ⋆HT ′ GT ′ ∼= Gi−1 ⋆ET ′,s UT ′,s

Lemma (6.8.3) shows that C(R,R′) → UT,t, C(R′,R) → UT ′,s are injective and, in par-
ticular, C(R,R′) → BT , C(R′,R) → BT ′ are injective. Moreover, Lemma (6.8.3) implies
that C(R,R′) ∩ ET,t = C holds in UT,t and C(R′,R) ∩ ET ′,s = C holds in UT ′,s. Remark
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(6.10.1)(a) implies that these intersections do also hold in BT and BT ′ , respectively.
Corollary (1.8.5) now yields:

C(R,R′) ∩Gi−1 = C(R,R′) ∩G−1 ∩ ET,t = C(R,R′) ∩ ET,t = C in BT

C(R′,R) ∩Gi−1 = C(R′,R) ∩G−1 ∩ ET ′,s = C(R′,R) ∩ ET ′,s = C in BT ′

Now Proposition (1.8.3) implies that the canonical homomorphism C(R,R′) ⋆C C(R′,R) →
BT ⋆Gi−1 BT ′ is injective. This �nishes the proof.

(6.10.6) Corollary. M is a faithful commutator blueprint of type (4, 4, 4).

Proof. By Lemma (6.9.4) we have G ∼= U+. We have to show that for each w ∈ W the
canonical homomorphism Uw → G ∼= U+ is injective. Note that the following diagram
commutes for every i ∈ N with w ∈ Ci (cf. Remark (6.9.2) and Remark (6.9.3)):

Uw Gi

G

By Theorem (6.10.5) the group Gi is natural for each i ≥ 0. Proposition (6.9.20) implies that
the canonical homomorphisms Gi → Gi+1 are injective. It follows from [30, 1.4.9(iii)] that
the canonical homomorphisms Gi → G are injective. Since for each w ∈W there exists i ∈ N
such that w ∈ Ci, we infer that Uw → G is injective. This �nishes the proof.

(6.10.7) Corollary. Let M be a 2-nilpotent pre-commutator blueprint of type (4, 4, 4), which
is Weyl-invariant and satis�es (CR1) and (CR2). Then M is integrable.

Proof. By Lemma (4.2.2), M is a commutator blueprint and the groups Uw are of nilpotency
class at most 2. By Corollary (6.10.6), M is faithful and by Theorem (3.5.1), M is integrable.
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7. Applications

We �rst construct new examples of integrable commutator blueprints of type (4, 4, 4). Then
we discuss several applications.

7.1. New RGD-systems

Let D = (G, (Uα)α∈Φ) be the RGD-system associated with the split Kac-Moody group of type
(4, 4, 4) over F2 as in Example (5.3.1). Then MD is an integrable commutator blueprint of
type (4, 4, 4) by Example (2.1.8). In this section we will construct new examples of integrable
commutator blueprints of type (4, 4, 4).

(7.1.1) Proposition. Let M =
(
MG

α,β

)
(G,α,β)∈I

be a pre-commutator blueprint of type

(4, 4, 4), which is locally Weyl-invariant. Let G ∈ Min and let α, β ∈ Φ(G) be two roots
such that α ̸= β and α ≤G β. Assume that the following hold:

(a) Suppose that o(rαrβ) <∞ and let ε ∈ Φ(G).

(i) If for each γ ∈MG
α,β we have ε ⊊ γ, then MG

ε,γ =MG
ε,δ holds for all γ, δ ∈MG

α,β.

(ii) If for each γ ∈MG
α,β we have γ ⊊ ε, then MG

γ,ε =MG
δ,ε holds for all γ, δ ∈MG

α,β.

(b) Suppose that o(rαrβ) = ∞ and suppose G = (d0, . . . , dn = c0, . . . , ck = e0, . . . , em) such
that {c0, c1} ∈ ∂α and {ck−1, ck} ∈ ∂β. Then the following hold:

(i) We have
∏

γ∈MG
α,β

uγ ∈ Z(U(di,...,dn=c0,...,ck=e0,...,ej),G) for each 0 ≤ i ≤ n and each

0 ≤ j ≤ m. Moreover, we have
∏

γ∈MG
α,β

uγ ∈ Z(U(c1,...,ck−1),G).

(ii) We have
(∏

γ∈MG
α,β

uγ

)2
= 1 in U(c1,...,ck−1),G.

Then M is 2-nilpotent (cf. Section 4.2).

Proof. Let G = (d0, . . . , dn = c0, . . . , ck) ∈ Min and let (α′
1, . . . , α

′
n+k) be the sequence of

roots crossed by G. We abbreviate αi := α′
n+i as well as ui := uαi for all 1 ≤ i ≤ k.

(2-n1) Let 1 ≤ i ≤ k − 1. We have to show that [u1, [ui, uk]] = 1. If R ∈ ∂2α1 ∩ ∂2αi ∩ ∂2αk,
then the claim follows. Thus we can assume that ∂2α1 ∩ ∂2αi ∩ ∂2αk = ∅. Moreover,
we can assume that MG

αi,αk
̸= ∅. If o(rαirαk

) = ∞, then [ui, uk] commutes with u1
by Condition (b)(i) and the claim follows. Thus we assume o(rαirαk

) <∞ and hence
|(αi, αk)| = 2. We let MG

αi,αk
= {δ, γ} be with δ ≤G γ. Suppose that o(rα1rρ) = ∞

for each ρ ∈ (αi, αk). Then α1 ⊆ ρ and we have MG
α1,δ

= MG
α1,γ by Condition (a)(i)

and we infer

∏
ε∈MG

αi,αk

 ∏
ω∈MG

α1,ε

uω

uε =

 ∏
ω∈MG

α1,δ

uω

uδ

 ∏
ω∈MG

α1,γ

uω

uγ
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(b)(i)
= uδ

 ∏
ω∈MG

α1,γ

uω

2

uγ

(b)(ii)
= uδuγ =

∏
ε∈MG

αi,αk

uε

Now we suppose that there exists ρ ∈ (αi, αk) with o(rα1rρ) <∞. Since αi ∩ αk ⊆ ρ,
we deduce that α1 ̸⊆ αi or α1 ̸⊆ αk and hence o(rα1rαi) < ∞ or o(rα1rαk

) < ∞.
Let ε ∈ {αi, αk} be a root such that o(rα1rε) < ∞. Then o(rεrρ) < ∞ by Lemma
(1.5.2). As ∂2ρ ∩ ∂2ε = ∂2αi ∩ ∂2αk by Lemma (1.5.2) and Lemma (1.4.8)(a) and
∂2α1 ∩ ∂2αi ∩ ∂2αk = ∅, we infer that {rα1 , rε, rρ} is a re�ection triangle. Using
Remark (1.5.1) there exist β1 ∈ {α1,−α1}, βε ∈ {ε,−ε} and βρ ∈ {ρ,−ρ} such that
{β1, βε, βρ} is a triangle. Note that ∂2αi ∩ ∂2αk ∩ ∂2ρ ̸= ∅ by Lemma (1.5.2). We let
ε′ ∈ {αi, αk}\{ε}. By Lemma (1.4.8)(b) we have ((βε, βρ) ∪ (−βε, βρ))∩ {ε′,−ε′} ≠ ∅.
As (−βε, βρ) = ∅ by Lemma (1.5.3), there exists βε′ ∈ {ε′,−ε′} such that βε′ ∈ (βε, βρ).
By Lemma (1.5.6) we have o(rα1rε′) = ∞ and hence (as {α1, ε

′} ∈ P) α1 ⊆ ε′. Recall
that ∂2ρ ∩ ∂2ε ∩ ∂2ε′ = ∂2ρ ∩ ∂2αi ∩ ∂2αk ̸= ∅. For R ∈ ∂2ε′ ∩ ∂2ρ = ∂2αi ∩ ∂2αk

(cf. Lemma (1.4.8)(a)), we deduce ∅ ≠ R ∩ (−ε′) ⊆ (−α1) and, as R /∈ ∂2α1, we have
R ⊆ (−α1). This yields β1 = −α1. For R ∈ ∂2α1 ∩ ∂2ε we have ∅ ≠ α1 ∩ R ⊆ ε′. As
∂2α1 ∩ ∂2ε ∩ ∂2ε′ = ∂2α1 ∩ ∂2αi ∩ ∂2αk = ∅, we deduce R /∈ ∂2ε′ and hence R ⊆ ε′.
In particular, we have ∅ ≠ ε ∩ R ⊆ ε ∩ ε′ = αi ∩ αk ⊆ ρ. As R /∈ ∂2ρ ({rα1 , rε, rρ}
is a re�ection triangle), we infer R ⊆ ρ and hence βρ = ρ. Lemma (1.5.3) implies
(α1, ρ) = ∅. Now let ρ ̸= σ ∈ (αi, αk). Using Lemma (1.5.2) and Lemma (1.4.8)(b),
we deduce ((βε, βρ) ∪ (−βε, βρ)) ∩ {σ,−σ} ̸= ∅. Using Lemma (1.5.3), there exists
βσ ∈ {σ,−σ} such that βσ ∈ (βε, βρ) as before. Using Lemma (1.5.6), we deduce
o(rα1rσ) = ∞ and hence (as {α1, σ} ∈ P) α1 ⊆ σ. Applying Lemma (1.5.6) again,
we deduce α1 = −β1 ⊆ βσ and (α1, βσ) = ∅. In particular, as α1 ⊆ βσ ∩ σ, we have
βσ = σ. Since (α1, δ) = (α1, γ) = ∅, we compute

∏
ε∈MG

αi,αk

 ∏
ω∈MG

α1,ε

uω

uε =
∏

ε∈MG
αi,αk

uε

(2-n2) Let 2 ≤ i ≤ k− 1. We have to show that [[u1, ui], uk] = 1. As in (2-n1) we can assume
∂2α1 ∩ ∂2αi ∩ ∂2αk = ∅ and MG

α1,αi
̸= ∅. If o(rα1rαi) = ∞, then [u1, ui] commutes

with uk by Condition (b)(i) and the claim follows. Thus we assume o(rα1rαi) < ∞
and hence |(α1, αi)| = 2. We let MG

α1,αi
= {δ, γ} be with δ ≤G γ. Suppose that

o(rρrαk
) = ∞ for each ρ ∈ (α1, αi). Then ρ ⊆ αk and we have MG

δ,αk
= MG

γ,αk
by

Condition (a)(ii) and we infer

∏
ε∈MG

α1,αi

uε ∏
ω∈MG

ε,αk

uω

 = uδ

 ∏
ω∈MG

δ,αk

uω

uγ

 ∏
ω∈MG

γ,αk

uω


(b)(i)
= uδ

 ∏
ω∈MG

γ,αk

uω


2

uγ

(b)(ii)
= uδuγ =

∏
ε∈MG

α1,αi

uε
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Now we suppose that there exists ρ ∈ (α1, αi) with o(rρrαk
) < ∞. Since (−α1) ∩

(−αi) ⊆ (−ρ), we deduce o(rα1rαk
) < ∞ or o(rαirαk

) < ∞, as otherwise we would
have (−αk) ⊆ (−α1) ∩ (−αi) ⊆ (−ρ). Let ε ∈ {α1, αi} be a root with o(rεrαk

) < ∞.
Then o(rεrρ) < ∞ by Lemma (1.5.2). As ∂2ρ ∩ ∂2ε = ∂2α1 ∩ ∂2αi by Lemma (1.5.2)
and Lemma (1.4.8)(a), and ∂2α1 ∩ ∂2αi ∩ ∂2αk = ∅, we infer that {rε, rρ, rαk

} is
a re�ection triangle. Using Remark (1.5.1) there exist βε ∈ {ε,−ε}, βρ ∈ {ρ,−ρ}
and βk ∈ {αk,−αk} such that {βε, βk, βρ} is a triangle. Note that ∂2α1 ∩ ∂2αi ∩
∂2ρ ̸= ∅ by Lemma (1.5.2). We let ε′ ∈ {α1, αi}\{ε}. By Lemma (1.4.8)(b) we have
((βρ, βε) ∪ (−βρ, βε))∩ {ε′,−ε′} ≠ ∅. As (−βρ, βε) = ∅ by Lemma (1.5.3), there exists
βε′ ∈ {ε′,−ε′} such that βε′ ∈ (βρ, βε). By Lemma (1.5.6) we have o(rε′rαk

) = ∞
and hence (as {ε′, αk} ∈ P) ε′ ⊆ αk. For R ∈ ∂2ε ∩ ∂2ρ = ∂2αi ∩ ∂2α1 (cf. Lemma
(1.4.8)(a)), we have (as ε′ ∈ {α1, αi}) ∅ ≠ R∩ ε′ ⊆ αk. As R /∈ ∂2αk, we infer R ⊆ αk

and hence βk = αk. For R ∈ ∂2ε ∩ ∂2αk we have R /∈ ∂2ε′ and ∅ ≠ R ∩ (−αk) ⊆
(−ε′). This implies R ⊆ (−ε′) and hence ∅ ̸= (−ε) ∩ R ⊆ (−ε) ∩ (−ε′) ⊆ (−ρ).
As R /∈ ∂2ρ, we deduce βρ = −ρ and Lemma (1.5.3) implies (ρ, αk) = ∅. Now let
ρ ̸= σ ∈ (α1, αi). Again by Lemma (1.5.2), Lemma (1.4.8)(b) and Lemma (1.5.3)
there exists βσ ∈ {σ,−σ} such that βσ ∈ (βρ, βε). Using Lemma (1.5.6) we deduce
o(rσrαk

) = ∞ and hence (as {δ, αk} ∈ P) σ ⊆ αk. Applying Lemma (1.5.6) again, we
deduce −αk = −βk ⊆ βσ and (−αk, βσ) = ∅. In particular, as −αk ⊆ βσ ∩ (−σ), we
have βσ = −σ. Since (σ, αk) = (ρ, αk) = ∅, we compute

∏
ε∈MG

α1,αi

uε ∏
ω∈MG

ε,αk

uω

 =
∏

ε∈MG
α1,αi

uε

(2-n3) At �rst we assume o(rα1rαk
) = ∞. Then [u1, uk] commutes with ui by Condition

(b)(i) and [u1, uk]
2 = 1 by Condition (b)(ii). Thus we can assume o(rα1rαk

) < ∞. If
|(α1, αk)| < 2, then MG

α1,αk
= ∅ and the claim follows directly. Thus we can assume

(α1, αk) = {δ, γ} and δ ≤G γ. The �rst claim is obvious, as MG
δ,γ = ∅. For the second

claim we let 2 ≤ i ≤ k − 1. If αi ∈ (α1, αk), the claim follows directly. Thus we can
assume αi /∈ (α1, αk). In particular, Lemma (1.4.6) implies ∂2α1 ∩ ∂2αi ∩ ∂2αk = ∅.
At �rst we suppose o(rαirε) = ∞ for both ε ∈ {δ, γ}. As {δ, αi}, {γ, αi} ∈ P, we infer
that {δ, αi} and {γ, αi} are pairs of nested roots. The fact that o(rδrγ) < ∞ implies
that either αi ⊆ δ, γ or else δ, γ ⊆ αi. If αi ⊆ δ, γ, then we have MG

αi,δ
= MG

αi,γ by
Condition (a)(i) and we deduce

[ui, uδ] =
∏

ω∈MG
αi,δ

uω =
∏

ω∈MG
αi,γ

uω = [ui, uγ ]

In particular, we obtain [ui, uδuγ ] = [ui, uγ ][ui, uδ]
uγ = [ui, uγ ][ui, uγ ]

uγ = [ui, u
2
γ ] = 1.

Similarly, if δ, γ ⊆ αi, we obtain [uδ, ui] = [uγ , ui] and [uδuγ , ui] = [uδ, ui]
uγ [uγ , ui] =

[uγ , ui]
uγ [uγ , ui] = [u2γ , ui] = 1.

Now we can assume that o(rεrαi) < ∞ for some ε ∈ {δ, γ}. We deduce from α1 ̸⊆ αk

that we have α1 ̸⊆ αi or αi ̸⊆ αk, i.e. we have o(rα1rαi) < ∞ or o(rαirαk
) < ∞. Let

ω ∈ {α1, αk} be a root such that o(rαirω) < ∞. Note that ∂2α1 ∩ ∂2αi ∩ ∂2αk = ∅
and by Lemma (1.4.8)(a) and Lemma (1.5.2) we have ∂2α1 ∩ ∂2αk = ∂2ω ∩ ∂2ε.
This implies that {rω, rαi , rε} is a re�ection triangle. By Remark (1.5.1) there exist
βω ∈ {ω,−ω}, βi ∈ {αi,−αi}, βε ∈ {ε,−ε} such that {βω, βi, βε} is a triangle. By
Lemma (1.5.3) we have (−βω, βε) = ∅. Let ω ̸= ω′ ∈ {α1, αk} and let ε ̸= ε′ ∈ {δ, γ}.
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Using Lemma (1.4.8)(b) there exists βω′ ∈ {ω′,−ω′} and βε′ ∈ {ε′,−ε′} such that
βω′ , βε′ ∈ (βω, βε). It follows from Lemma (1.5.6) that o(rω′rαi) = ∞, o(rαirε′) =
∞,−βi ⊆ βε′ and (−βi, βε′) = ∅. Now we distinguish the following cases:

(a) ω = α1: Then ω′ = αk and (as {αi, αk} ∈ P) αi ⊆ αk. Assume that ε′ ⊆ αi.
Then we would have ε′ ⊆ αi ⊆ αk which is a contradiction. As {αi, ε

′} ∈ P,
we deduce αi ⊆ ε′. For R ∈ ∂2α1 ∩ ∂2ε = ∂2α1 ∩ ∂2αk (cf. Lemma (1.5.2) and
Lemma (1.4.8)(a)) we deduce ∅ ̸= R ∩ (−αk) ⊆ (−αi) and hence, as R /∈ ∂2αi

because {rα1 , rαi , rε} is a re�ection triangle, that R ⊆ (−αi) and βi = −αi. As
αi = −βi ⊆ βε′ ∩ ε′, we deduce βε′ = ε′ and hence (αi, ε

′) = (−βi, βε′) = ∅. For
R ∈ ∂2α1∩∂2αi we have R /∈ ∂2ε′∪∂2ε, as ∂2α1∩∂2ε = ∂2α1∩∂2αk = ∂2α1∩∂2ε′
and ∂2α1 ∩ ∂2αi ∩ ∂2αk = ∅. Assume that R ⊆ (−ε). As (ε, ε′) = ∅, Lemma
(1.4.8)(b) yields (−ε, ε′) ∩ {α1,−α1} ̸= ∅. In particular, we have (−ε) ∩ ε′ ⊆ β1
for some β1 ∈ {α1,−α1}. We deduce from R ∈ ∂2α1, R ⊆ (−ε), that R ̸⊆ ε′ and
hence R ⊆ (−ε′). But this would imply ∅ ≠ αi ∩ R ⊆ αi ∩ (−ε′) = ∅, which is a
contradiction. As R /∈ ∂2ε, we deduce R ⊆ ε and hence βε = ε. In particular, we
have (αi, ε) = (−βi, βε) = ∅. Thus ui commutes with uε and uε′ and hence with∏

γ∈MG
α1,αk

uγ .

(b) ω = αk: Then ω′ = α1 and (as {α1, αi} ∈ P) α1 ⊆ αi. Assume that αi ⊆ ε′.
Then we would have α1 ⊆ αi ⊆ ε′ which is a contradiction. As {ε′, αi} ∈ P,
we deduce ε′ ⊆ αi. For R ∈ ∂2αk ∩ ∂2ε = ∂2α1 ∩ ∂2αk (cf. Lemma (1.5.2) and
Lemma (1.4.8)(a)) we deduce ∅ ≠ R ∩ α1 ⊆ αi and hence, as R /∈ ∂2αi because
{rαi , rαk

, rε} is a re�ection triangle, that R ⊆ αi and βi = αi. As −αi = −βi ⊆
βε′ ∩ (−ε′), we deduce βε′ = −ε′ and hence (ε′, αi) = (−βε′ , βi) = (βε′ ,−βi) = ∅.
For R ∈ ∂2αk ∩ ∂2αi we have R /∈ ∂2ε ∪ ∂2ε′, as ∂2ε ∩ ∂2αk = ∂2α1 ∩ ∂2αk =
∂2ε′∩∂2αk and ∂2α1∩∂2αi∩∂2αk = ∅. Assume thatR ⊆ ε. As (ε, ε′) = ∅, Lemma
(1.4.8)(b) yields (ε,−ε′) ∩ {αk,−αk} ≠ ∅. In particular, we have (−ε′) ∩ ε ⊆ βk
for some βk ∈ {αk,−αk}. We deduce from R ∈ ∂2αk, R ⊆ ε, that R ̸⊆ (−ε′) and
hence R ⊆ ε′. But this would imply that ∅ ≠ (−αi) ∩R ⊆ (−αi) ∩ ε′ = ∅, which
is a contradiction. As R /∈ ∂2ε, we deduce R ⊆ (−ε) and hence βε = −ε. In
particular, we have (αi, ε) = (βi,−βε) = ∅. Thus ui commutes with uε and uε′
and hence with

∏
γ∈MG

α1,αk
uγ .

(2-n4) The claim is obvious if o(rα1rαk
) <∞. If o(rα1rαk

) = ∞, then [u1, uk] commutes with
u1 by Condition (b)(i).

(2-n5) This follows similar as in (2-n4).

(7.1.2) De�nition. Let H = (c0, . . . , ck) be a gallery in Σ(W,S).

(a) H is said to be of type (n, r) ∈ N⋆ × S, if S = {r, s, t} and the gallery H is of type
(u, r, r{s,t}, . . . , r, r{s,t}, v) for some u, v ∈ {1W , s, t}, where r{s,t} appears n times in the
type of H. We note that (1W , c

−1
0 c1, . . . , c

−1
0 ck) is a minimal gallery by Lemma (5.1.2)

and [2, Lemma 2.15] and so is H.

(b) Let H be of type (n, r) ∈ N⋆ × S and let α, β ∈ Φ. We say that H is between α and
β, if c0 ∈ α, ck−1 ∈ β and {c0, c1} ∈ ∂α, {ck−1, ck} ∈ ∂β. In this case we let for each
1 ≤ i ≤ n the roots ωi ̸= ω′

i ∈ Φ be the two roots with {cki+1, cki+2} ∈ ∂ωi, cki+1 ∈ ωi

and {cki+2, cki+3} ∈ ∂ω′
i, cki+2 ∈ ω′

i, where ki = ℓ
(
ur(r{s,t}r)

i−1
)
. Note that if Ri is

the {s, t}-reside containing cki , then cki = projRi
c0. Using Lemma (5.1.4), we deduce

α ⊊ ω1, ω
′
1 ⊊ · · · ⊊ ωn, ω

′
n ⊊ β. We should remark that if α, β ∈ Φ+, then not all of the
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roots crossed by H are necessarily positive roots. But the roots ωi, ω
′
i are. Consider for

example the case c0 = trt and H is of type (r, r{s,t}, r, . . . , r{s,t}, r).

In the next de�nition we will de�ne subsetsM(n, r, L)Gα,β ⊆ (α, β), where 3 ≤ n ∈ N, r ∈ S
and L ⊆ {2, . . . , n− 1}. To have an intuition in mind, we will describe these symbols here: n
and r mean that there exists a minimal gallery of type (n, r) between α and β. The subset L
indicates, which of the ωi, ω

′
i are contained in the set M(n, r, L)Gα,β .

(7.1.3) De�nition. (a) Let S = {r, s, t}, let 3 ≤ n ∈ N and let L ⊆ {2, . . . , n − 1}. Let
G ∈ Min and suppose α, β ∈ Φ(G) with α ≤G β. If o(rαrβ) <∞, then we de�ne

M(n, r, L)Gα,β :=

{
(α, β) if |(α, β)| = 2;

∅ else.

Now we consider the case o(rαrβ) = ∞. Suppose that there exists a minimal gallery
H = (c0, . . . , ck) of type (n, r) between α and β. Let ωi ̸= ω′

i be as in De�nition
(7.1.2)(b). As α, β ∈ Φ(G) and α ⊆ ωi, ω

′
i ⊆ β, we also have ωi, ω

′
i ∈ Φ(G) and we

de�ne
M(n, r, L)Gα,β := {ωi, ω

′
i | i ∈ L}

Note that ωi, ω
′
i ⊊ ωi+1, ω

′
i+1 and hence ωi, ω

′
i ≤G ωi+1, ω

′
i+1, but the order on {ωi, ω

′
i}

depends on G. For all other prenilpotent pairs of positive roots we put M(n, r, L)Gα,β :=
∅.

(b) Let ∅ ̸= K ⊆ N≥3, let J = (Jk)k∈K be a family of subsets ∅ ̸= Jk ⊆ S and let

L =
(
Lj
k

)
k∈K,j∈Jk

be a family of subsets Lj
k ⊆ {2, . . . , k−1}. Let G ∈ Min and suppose

α, β ∈ Φ(G) with α ≤G β. Then we de�ne

M(K,J ,L)Gα,β :=
⋃

k∈K,j∈Jk

M
(
k, j, Lj

k

)G

α,β
.

Moreover, we let M(K,J ,L) :=
(
M(K,J ,L)Gα,β

)
(G,α,β)∈I

.

(7.1.4) Remark. In De�nition (7.1.3) we have de�ned the setsM(n, r, L)Gα,β . Note that this set

does actually not depend on G: in the case o(rαrβ) < ∞, the subset M(n, r, L)Gα,β depends

only on |(α, β)|; in the case o(rαrβ) = ∞, the subset M(n, r, L)Gα,β depends only on the
existence of a suitable minimal gallery which crosses ∂α and ∂β.

(7.1.5) Lemma. Let α, β ∈ Φ+ be two roots, let n ∈ N≥2 and S = {r, s, t}. Suppose that
there exists a minimal gallery H = (c0, . . . , ck) of type (n, r) between α and β. Then the
following hold:

(a) We can extend (c6, . . . , ck) to a minimal gallery contained in Min.

(b) We have R{s,t}(c7) ∈
⋃

i∈N Ti,1.

(c) Let R ∈ ∂2α be a residue such that α is a non-simple root of R. If {c0, c1} ̸⊆ R, then
there exists a simple root of R, say γ ∈ Φ+, such that −γ ⊆ β.

Proof. We prove (a) and (b) simultaneously. We de�ne T := R{s,t}(c7) and j := ℓ(projT 1W ).
Recall that the type of H is given by (u, r, r{s,t}, . . . , r, r{s,t}, r, v), where u, v ∈ {1W , s, t} and
r{s,t} appears n times. Suppose u = 1W . Then ℓ(c0r) = ℓ(c0) + 1. If ℓ(c0rs) = ℓ(c0r) + 1 =
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ℓ(c0rt), we can extend H to a gallery contained in Min. Moreover, Lemma (5.1.2) implies
T ∈ Tj,1. If ℓ(c0rs) = ℓ(c0), we deduce from Lemma (5.1.2) that ℓ(c0rst) = ℓ(c0) + 1. Hence
we can extend (c5, . . . , ck) to a gallery contained in Min. Moreover, Lemma (5.1.2) implies
T ∈ Tj,1. The same holds if ℓ(c0rt) = ℓ(c0). Now we suppose u = s (the case u = t is
symmetric). Again we note that ℓ(c0s) = ℓ(c0) + 1. If ℓ(c0sr) = ℓ(c0), Lemma (5.1.2) yields
ℓ(c0srt) = ℓ(c0)+1. Thus we can extend (c6, . . . , ck) to a gallery contained in Min. Moreover,
Lemma (5.1.2) implies T ∈ Tj,1. Suppose that ℓ(c0sr) = ℓ(c0) + 2. Note that Lemma (5.1.2)
implies that ℓ(c0srt) = ℓ(c0) + 3. If s increases the length of c0sr, then we can extend H to
a gallery contained in Min. Moreover, Lemma (5.1.2) implies T ∈ Tj,1. Otherwise, Lemma
(5.1.2) again implies ℓ(c0srst) = ℓ(c0)+2 and we can extend (c6, . . . , ck) to a gallery contained
in Min. Moreover, Lemma (5.1.2) implies T ∈ Tj,1. In any case we can extend (c6, . . . , ck) to
a gallery Γ ∈ Min and we have T ∈ Tj,1. This proves the Assertions (a) and (b).

To prove Assertion (c), we suppose {c0, c1} ̸⊆ R. As Pα ⊆ R, we have Pα ̸= {c0, c1}. Let
P0 = Pα, . . . , Pn = {c0, c1} and R1, . . . , Rn be as in Lemma (1.4.2). For every 1 ≤ i ≤ n we
de�ne wi := projRi

1W , we let {x, y} be the type of Rn, we let {x} be the type of {c0, c1} and
we let S = {x, y, z}. We note the following:

(i) projRn
1W = projPn−1

1W : Depending on H one of the following roots is contained in
β by Lemma (5.1.4): αK , where K = (wn, . . . , w) is of type (x, y, z, x), (x, y, x, z, y) or
(x, y, x, y, z). Note that if K is of type (x, y), then it is contained in the three previous
roots by Lemma (5.1.4).

(ii) projRn
1W ̸= projPn−1

1W : Depending on H one of the following roots is contained in
β by Lemma (5.1.4): αK , where K = (wn, . . . , w) is of type (x, y, x, y, z), (x, y, x, z) or
(y, x, y, z, x). Note that if K is of type (x, y), then is is contained in the previous three
roots by Lemma (5.1.4)

Thus it su�ces to show that there exists a simple root γ of R such that −γ ⊆ αK , where
K = (wn, . . . , w) is of type (x, y). We distinguish the following cases:

(a) R = R1: Then we have n ≥ 2 (as Pn ̸⊆ R) and projRn
1W = projPn−1

1W by Lemma
(5.2.2). Let γ ∈ Φ+ be the simple root of R which does not contain Pα. We �rst
suppose n = 2. Using Lemma (5.1.4) we deduce that −γ is contained in all three roots
αK mentioned in (i). Moreover, −γ ⊆ αK holds, where K = (w2, · · · , w) is of type
(y, x). Now we assume n ≥ 3. Using induction, −γ is contained in a non-simple root of
Rn−1. As such a root is contained in both non-simple roots of Rn by Lemma (5.1.4), it
follows that −γ ⊆ αK holds, where K = (wn, . . . , w) is of type (x, y).

(b) R ̸= R1: Let γ ∈ Φ+ be the simple root of R containing Pα. We prove by induction on
n, that −γ ⊆ αK , where K = (wn, . . . , w) is of type (x, y). We �rst suppose n = 1. If
projR1

1W ̸= projP0
1W , then −γ is contained in αK , where K = (w1, . . . , w) is of type

(x, y), by Lemma (5.1.4). Thus we can assume that projR1
1W = projP0

1W . We see
again, that −γ ⊆ αK holds, where K = (w1, . . . , w) is of type (x, y). Now we suppose
n > 1. Using induction, −γ is contained in a non-simple root of Rn−1. As such a root
is contained both non-simple roots of Rn by Lemma (5.1.4), it follows that −γ ⊆ αK

holds, where K = (wn, . . . , w) is of type (x, y).

(7.1.6) Lemma. Let ∅ ̸= K ⊆ N≥3, let J = (Jk)k∈K be a family of subsets ∅ ̸= Jk ⊆ S

and let L =
(
Lj
k

)
k∈K,j∈Jk

be a family of subsets Lj
k ⊆ {2, . . . , k − 1}. Then M(K,J ,L) is a

Weyl-invariant, 2-nilpotent pre-commutator blueprint of type (4, 4, 4).
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Proof. We abbreviate MG
α,β := M(K,J ,L)Gα,β for all (G,α, β) ∈ I. By de�nition, we have

MG
α,β ⊆ (α, β). Clearly, (CB1) and (CB2) hold. To show that (PCB) holds, we let w ∈ W

and G ∈ Min(w). Then we have a homomorphism UG → Uw. It su�ces to show that we have
a homomorphism Uw → UG extending uα 7→ uα. Let F ∈ Min(w) and let α ≤F β ∈ Φ(F ).
At �rst we assume o(rαrβ) <∞. We distinguish the following two cases:

(i) α ≤G β: Then we have MF
α,β =MG

α,β by de�nition and we are done.

(ii) β ≤G α: If |(α, β)| < 2, then MF
α,β = ∅ = MG

β,α and we are done. Thus we assume
(α, β) = {δ, γ} and δ ≤F γ. Then γ ≤G δ and we have the following relation in UG:

[uα, uβ] = [uβ, uα]
−1 = (uγuδ)

−1 = uδuγ

Thus we can consider the case o(rαrβ) = ∞. Then we have α ≤G β. If there is no gallery
H of type (n, r) between α and β with n ∈ K and r ∈ Jn, then MF

α,β = ∅ = MG
α,β . Suppose

that there exists a gallery H of type (n, r) between α and β for some n ∈ K and r ∈ Jn.
Then MF

α,β = {ωi, ω
′
i | i ∈ Lr

n} = MG
α,β as sets. Note that ωi, ω

′
i ≤G ωi+1, ω

′
i+1 ≥F ωi, ω

′
i. As

MG
ωi,ω′

i
= ∅, we deduce that [uα, uβ] =

∏
γ∈MG

α,β
uγ =

∏
γ∈MF

α,β
uγ is a relation in UG. Thus

we obtain a homomorphism Uw → UG and the universal property implies that (PCB) holds.
In particular, M(K,J ,L) is a pre-commutator blueprint of type (4, 4, 4).

Now we show that M(K,J ,L) is Weyl-invariant. Let 1 ̸= w ∈W, s ∈ S,G ∈ Min(w) and
let α ≤G β ∈ Φ(G). We distinguish the following cases:

� ℓ(sw) = ℓ(w) + 1: If o(rαrβ) < ∞, then o(rsαrsβ) < ∞ and, as (sα, sβ) = {sγ |
γ ∈ (α, β)}, we infer M sG

sα,sβ = sMG
α,β . Thus we can assume o(rαrβ) = ∞. Suppose

that there exists a gallery H = (c0, . . . , ck) of type (n, r) between α and β for some
n ∈ K, r ∈ Jn. Then (sc0, . . . , sck) is a gallery of type (n, r) between the roots sα, sβ.
This implies that a gallery of type (n, r) exists between the roots α and β if and only if
a gallery of type (n, r) exists between the roots sα and sβ. This �nishes the claim.

� ℓ(sw) = ℓ(w) − 1 and G ∈ Mins(w). Moreover, we assume αs ̸= α ≤G β. Using the
same arguments as above, the claim follows.

We will apply Proposition (7.1.1) to show that M(K,J ,L) is 2-nilpotent. Let G ∈ Min
and let α, β ∈ Φ(G) be two roots such that α ̸= β, α ≤G β and o(rαrβ) < ∞ hold. Without
loss of generality we can assume MG

α,β ̸= ∅. Suppose that ε ∈ Φ(G) is such that ε ⊊ γ holds

for all γ ∈ MG
α,β . If M

G
ε,γ = ∅ for all γ ∈ MG

α,β , we are done. Thus we can assume that there

exists γ ∈ MG
α,β with MG

ε,γ ̸= ∅. Then there exists a minimal gallery H = (c0, . . . , ck) of type
(n, r) between the roots ε and γ for some n ∈ K and r ∈ Jn, i.e. the type of H is given by
(u, r, r{s,t}, r, . . . , r{s,t}, r, v), where u, v ∈ {1W , s, t} and r{s,t} appears n times. Using Lemma
(7.1.5)(a), we can extend (c6, . . . , ck) to a gallery Γ ∈ Min. Let R be the residue of rank 2
containing ck−2, ck−1 and ck. Using Lemma (5.1.2) we deduce that γ = αΓ is a non-simple
root of R. We distinguish the following cases:

(a) v = 1: Then we have Pγ = {ck−1, ck} and Pγ ⊆ R. Let R′ ̸= R be the other residue
of rank 2 containing Pγ . If T is a rank 2 residue such that γ is a non-simple root
of T , then T ∈ {R,R′} (cf. Lemma (5.2.3)). Let Γx be the gallery Γ extended by
an x-adjacent chamber for x ∈ {s, t}. Then (α, β) ∩ {αΓs , αΓt} ≠ ∅ and we have
MG

α,β ∈ {{γ, αΓs}, {γ, αΓt}}. As Γs,Γt are galleries of type (n, r) as well, we deduce

MG
ε,γ =MG

ε,αΓx
, where x ∈ {s, t} is such that αΓx ∈ Φ(G).
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(b) v ̸= 1: Using Lemma (5.1.1) and Lemma (5.1.2) we deduce that R is the only residue
such that γ is a non-simple root of R. For K := (c0, . . . , ck−1) the root αK is also a
non-simple root of R and K is a gallery of type (n, r). This implies (α, β) = {γ, αK}
and hence MG

ε,γ =MG
ε,αK

.

Now we assume that ε ∈ Φ(G) is such that γ ⊊ ε holds for all γ ∈ MG
α,β . If MG

γ,ε = ∅
holds for all γ ∈ MG

α,β , we are done. Thus we can assume that there exists γ ∈ MG
α,β with

MG
γ,ε ̸= ∅. Then there exists a minimal gallery H = (c0, . . . , ck) of type (n, r) between γ and ε

for some n ∈ K and r ∈ Jn, i.e. the type of H is given by (u, r, r{s,t}, r, . . . , r{s,t}, r, v), where
u, v ∈ {1W , s, t} and r{s,t} appears n times. Let R be the unique rank 2 residue contained in
∂2α ∩ ∂2β (cf. Lemma (1.4.6)). Then γ is a non-simple root of R. Note that α, β, ε ∈ Φ(G)
and hence {α, ε}, {β, ε} ∈ P. Then Lemma (7.1.5)(c) yields {c0, c1} ⊆ R and we distinguish
the following two cases:

(a) u = 1W : Assume that ℓ(projR 1W , c0) = 1. Then Lemma (5.1.4) would imply that one
of −α,−β is contained in one non-simple root of the {s, t}-residue containing c1 (i.e.
ω1 or ω′

1) and hence one of −α,−β is contained in ε. As this is a contradiction, we
deduce ℓ(projR 1W , c0) = 2. Let d be the chamber in R adjacent to both projR 1W and
c0. Then the gallery (d, c0, . . . , ck) is of type (n, r) and we have MG

αK ,ε = MG
γ,ε, where

K = (d, c0) (note that αK ∈ (α, β) and hence αK ∈ Φ(G)).

(b) u ̸= 1W : Assume ℓ(projR 1W , c0) = 2. In both cases (c2 ∈ R and c2 /∈ R) Lemma
(5.1.4) implies that one of −α,−β would be contained in ω2, ω

′
2 and hence in ε, which

is a contradiction. Thus ℓ(projR 1W , c0) = 1. Again, if c2 /∈ R, then Lemma (5.1.4)
would imply that one of −α,−β is contained in ω1, ω

′
1, which is a contradiction. Note

that αK with K = (c1, c2) is also a non-simple root of R and hence (α, β) = {γ, αK}.
As (c1, . . . , ck) is gallery of type (n, r) and αK is the �rst root which is crossed by this
gallery, we deduce MG

αK ,ε =MG
γ,ε and the claim follows.

Thus Condition (a) holds. Now we will show that Condition (b)(i) holds. Let G ∈ Min and let
α ̸= β ∈ Φ(G) be two roots with o(rαrβ) = ∞, let G = (d0, . . . , dn = c0, . . . , ck = e0, . . . , em)
and suppose that {c0, c1} ∈ ∂α and {ck−1, ck} ∈ ∂β. If MG

α,β = ∅, we are done. Thus we

assume can assume that MG
α,β ̸= ∅. Then there exists a gallery of type (n, r) between α and

β for some n ∈ K and r ∈ Jn. In particular, we have MG
α,β = {ωi, ω

′
i | i ∈ Lr

n}. Note that

{ωi, ω
′
i} = MG

γi,γ′
i
for some γi ≤G γ′i ∈ Φ(G) with α ⊆ γi ≤G γ′i ⊆ β, as Lr

n ⊆ {2, . . . , n − 1}.
We show that uωpuω′

p
∈ Z(U(di,...,dn=c0,...,ck=e0,...,ej)) for all 0 ≤ i ≤ n, 0 ≤ j ≤ m and

uωpuω′
p
∈ Z(U(c1,...,ck−1),G) for all p ∈ Lr

n. This will imply that
∏

γ∈MG
α,β

uγ =
∏

p∈Lr
n
uωpuω′

p

is contained in the center and we are done. Note that the order on {ωp, ω
′
p} depends on G.

Let (β1, . . . , βn+k+m) be the sequence of roots crossed by G and let ε ∈ Φ(G). Then it
su�ces to show that uωpuω′

p
commutes with uε in

� U(c1,...,ck−1),G, if ε = βn+q for some 1 ≤ q ≤ n− 1;

� U(di,...,dn=c0,...,ck=e0,...,ej), where (i, j) =

{
(q, 0) if 0 ≤ q ≤ n, ε = βq

(n, n+ k + q) if 0 ≤ q ≤ m, ε = βn+k+q

If ε ∈ {ωp, ω
′
p}, then clearly uωpuω′

p
commutes with uε and we can assume ε /∈ {ωp, ω

′
p}. We

distinguish the following cases:

(a) {ε, ωp} and {ε, ω′
p} are nested: At �rst we assume ε ⊆ ωp. As o(rωprω′

p
) <∞, we deduce

ε ⊆ ω′
p. Now Condition (a)(i) implies MG

ε,ωp
=MG

ε,ω′
p
and hence

[uε, uωpuω′
p
] = [uε, uω′

p
][uε, uωp ]

uω′
p
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=

 ∏
γ∈MG

ε,ω′
p

uγ


 ∏

γ∈MG
ε,ωp

uγ


uω′

p

=

 ∏
γ∈MG

ε,ω′
p

uγ


 ∏

γ∈MG
ε,ω′

p

uγ


uω′

p

= [uε, uω′
p
][uε, uω′

p
]
uω′

p

= [uε, u
2
ω′
p
] = 1

If ωp ⊆ ε, we infer ω′
p ⊆ ε similarly. Condition (a)(ii) implies MG

ωp,ε =MG
ω′
p,ε

and hence

[uωpuω′
p
, uε] = [uωp , uε]

uω′
p [uω′

p
, uε] = [uω′

p
, uε]

uω′
p [uω′

p
, uε] = 1.

(b) One of {ε, ωp} and {ε, ω′
p} is not nested: As {ε, ωp}, {ε, ω′

p} ∈ P, Lemma (1.4.7) and
[2, Lemma 8.42(3)] yield R ∈

(
∂2ε ∩ ∂2ωp

)
∪
(
∂2ε ∩ ∂2ω′

p

)
. Let T be the residue of

rank 2 with T ∈ ∂2ωp ∩ ∂2ω′
p. If T ∈ ∂2ε, then ε ∈ {γi, γ′i} and the claim follows.

Thus we can assume T /∈ ∂2ε and hence T ̸= R. Recall that {ε, γi}, {ε, γ′i} ∈ P,
as ε, γi, γ′i ∈ Φ(G). Without loss of generality we can assume that R ∈ ∂2ε ∩ ∂2ωp.
Using Remark (1.4.4) there exists Q′ ∈ ∂ωp with Q′ ⊆ R. Using Lemma (1.4.2) and
the fact that Q′ = projQ′ Pωp = projQ′ projR Pωp , [18, Lemma 13] yields that Pωp

and projR Pωp are parallel. Lemma (1.4.2) implies projR Pωp ∈ ∂ωp. Let Q ⊆ R
be opposite to projR Pωp in R and let P0 := Pωp , . . . , Pn := projR P0 and R1, . . . , Rn

be as in Lemma (1.4.2). Note that projR Pωp and Q are parallel by [2, Proposition
5.114] and, in particular, Pωp and Q are parallel. It follows from [18, Lemma 17] that
P0, . . . , Pn, Q and R1, . . . , Rn, R is as in Lemma (1.4.2). If T ̸= R1, Lemma (5.2.4)(a)
yields a contradiction, as T ∈ Tj,1 for some j. If T = R1, we have n > 1. If n > 2,
Lemma (5.2.4)(c) yields a contradiction. For n = 2 Lemma (5.2.4)(c) either yields
directly a contradiction, or else yields that (ε, ωp) = ∅ = (ε, ω′

p) and hence uε commutes
with uωpu

′
ωp

(one can show that even this case does not occur).

We have seen that uωiuω′
i
∈ Z(U(c1,...,ck−1),G) for every i ∈ Lr

n. In particular, uωiuω′
i
and

uωjuω′
j
do commute for i, j ∈ Lr

n. We infer the following in U(c1,...,ck−1),G: ∏
γ∈MG

α,β

uγ


2

=

∏
i∈Lr

n

uωiuω′
i

2

=
∏
i∈Lr

n

(uωiuω′
i
)2 = 1.

(7.1.7) Theorem. Let ∅ ≠ K ⊆ N≥3, let J = (Jk)k∈K be a family of subsets ∅ ≠ Jk ⊆ S

and let L =
(
Lj
k

)
k∈K,j∈Jk

be a family of subsets Lj
k ⊆ {2, . . . , k − 1}. Then M(K,J ,L) is

an integrable commutator blueprint of type (4, 4, 4) and the groups Uw are of nilpotency class
at most 2.

Proof. By Lemma (7.1.6), M(K,J ,L) is a Weyl-invariant and 2-nilpotent pre-commutator
blueprint of type (4, 4, 4). By Lemma (4.2.2), M(K,J ,L) is a commutator blueprint of type
(4, 4, 4) and the groups Uw are of nilpotency class at most 2. By Corollary (6.10.6) it is
faithful. By Theorem (3.5.1) it su�ces to show that M(K,J ,K) satis�es (CR1) and (CR2).

Let s ̸= t ∈ S, β ∈ Φ{s,t}, αs ⊊ α ∈ Φ+, w ∈ W with ℓ(sw) = ℓ(w) − 1, let G ∈ Mins(w)
with α ∈ Φ(G) and assume MG

αs,α ̸= ∅. Then there exists a minimal gallery H = (c0, . . . , ck)
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of type (k, r) between αs and α for some k ∈ K and r ∈ Jk (note that r = s is possible).
Let ωi, ω

′
i be the roots as in De�nition (7.1.2)(b). We show that either β ⊆ ω2, ω

′
2 or else

−β ⊆ ω2, ω
′
2. We distinguish the following cases:

(i) H is of type (s, r{r,t}, s, . . . , r{r,t}, s, v): Using Lemma (5.1.4) we deduce αH2 , αH5 , αH6 ⊆
ω2, ω

′
2. If c0 = 1W , then −tαs,−αt ⊆ sαr ∈ {αH2 , αH5} and hence they are all contained

in ω2, ω
′
2. Moreover, we have sαt ∈ {αH2 , αH5} and hence the claim follows, as Φ{s,t} =

{±αs,±αt,±sαt,±tαs}. Now we suppose c0 ̸= 1W . Let P = {1W , s} and Q = {c0, c1}.
Then P,Q ∈ ∂αs. Let P0 = P, . . . , Pn = Q and R1, . . . , Rn be two sequences as in
Lemma (1.4.2). As projR1

1W = 1W = projP0
1W , Corollary (1.5.5) implies projRn

1W =
projPn−1

1W . As 1W , c0 ∈ α and roots are convex, we deduce c0 = projPn
1W ∈ α. It

follows from Lemma (1.4.2) that Pn−1 and Pn are opposite in Rn. Thus there exists
d ∈ Pn such that projRn

1W , d are opposite in Rn. As projRn
1W and c0 = projPn

1W =
projPn

projRn
1W are not opposite in Rn, we deduce d = c1 and hence ℓ(c1s) = ℓ(c1)−

1 = ℓ(c1x), where s ̸= x ∈ S is such that {s, x} is the type of Rn. Let i ∈ {3, 4}
be such that ci−1, ci are contained in an x-panel. Using Lemma (5.1.4) we see that
both non-simple roots of R := Rn = R{s,x}(c1) are contained in αHi . Applying Lemma
(5.1.4) again we deduce that αHi is contained in αH6 and this root is already known to
be contained in ω2 and ω′

2. Thus the non-simple roots of R are contained in ω2, ω
′
2. If

n = 1, two things can happen. If R1 has type {s, t}, then we have −αt = αH5 and the
claim follows. If R1 does not have type {s, t}, then R1 has type {r, s} and each root in
{−αt,−sαt,−tαs} is contained in a non-simple root of R1. This �nishes the claim. If
n > 1 it follows from Lemma (5.1.5) that there exists ε ∈ {+,−} such that for every
root δ ∈ {εαt, εsαt, εtαs} there exists a non-simple root γ of Rn with δ ⊆ γ. As those
are contained in ω2, ω

′
2, the claim follows.

(ii) H is of type (s, x, r{s,y}, r, . . . , r{s,y}, r, v), where S = {s, x, y}: Using Lemma (5.1.4) we
deduce that αH2 , αH3 , αH6 , αH7 ⊆ ω2, ω

′
2. Without loss of generality we assume that

c2, c3 are contained in an s-panel and c5, c6 are contained in a y-panel. At �rst we
suppose c0 = 1W . If (x, y) = (r, t), it follows from Lemma (5.1.4) that −αt ⊆ αH6

and −sαt,−tαs ⊆ αH3 . If (x, y) = (t, r), it follows from Lemma (5.1.4) that −αt ⊆
αH6 , sαt = αH2 and tαs = αH3 . Thus we can assume c0 ̸= 1W . Let P = {1W , s} and
let Q = {c0, c1}. As in the previous case we let P0 = P, . . . , Pn = Q and R1, . . . , Rn be
as in Lemma (1.4.2). Let q ∈ S be such that {s, q} is the type of Rn. We distinguish
the following cases:

(a) q ̸= x = r and n = 1: Then we have q = y = t. We deduce from Lemma (5.1.4)
that αt, tαs ⊆ αH3 and sαt ⊆ αH6 .

(b) q ̸= x = t and n = 1: Then we have q = y = r. We deduce from Lemma (5.1.4)
that every root δ ∈ {−αt,−sαt,−tαs} is contained in qαs and hence in αH2 .

(c) q = x = t and n = 1: Then −αt = αH2 ,−tαs = αH3 and sαt ⊆ αH6 by Lemma
(5.1.4). This �nishes the claim.

(d) q = x = r and n = 1: Then −sαt is contained in αH6 by applying Lemma (5.1.4)
and −αt,−tαs are contained in αH6 by applying Lemma (5.1.4) twice.

(e) q ̸= x and n = 2: It follows from Lemma (5.1.5) that there exists ε ∈ {+,−} such
that for every root δ ∈ {εαt, εsαt, εtαs} there exists a non-simple root γ of Rn

with δ ⊆ γ. As γ is contained in αH2 , the claim follows.

(f) q = x = r and n = 2: Then it follows from Lemma (5.1.4) that αt, sαt, tαs are
contained in αH6 and the claim follows.
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(g) q = x = t and n = 2: Using similar arguments as in the case q ̸= x = t and n = 1,
we deduce that −αt,−sαt,−tαs are contained in αH6 and the claim follows.

(h) n > 2: It follows from Lemma (5.1.5) that there exists ε ∈ {+,−} such that for
every root δ ∈ {εαt, εsαt, εtαs} there exists a non-simple root γ of Rn−1 with
δ ⊆ γ. As γ is contained in both non-simple roots of Rn by Lemma (5.1.4), the
claim follows.

As ω2 ⊆ α, we infer o(rβrα) = ∞ and hence (CR2) is satis�ed. Moreover, we have ω2 ⊆ ωi, ω
′
i

for all 3 ≤ i ≤ k. Suppose that β ⊆ α. Then we have shown that either β ⊆ ω2, ω
′
2 or else

−β ⊆ ω2, ω
′
2. But the latter one would imply W = β ∪ (−β) ⊆ α, which is a contradiction.

Thus β ⊆ ω2, ω
′
2 and by the above we have β ⊆ ω2 ⊆ ωi, ω

′
i for every 3 ≤ i ≤ k. In particular,

we have β ⊆ γ for each γ ∈MG
αs,α and (CR1) is satis�ed. This �nishes the proof.

(7.1.8) Remark. Let ∅ ≠ K ⊆ N≥3, let J = (Jk)k∈K be a family of subsets ∅ ≠ Jk ⊆ S

and let L =
(
Lj
k

)
k∈K,f∈Jk

be a family with Lj
k = ∅ for all k ∈ K, j ∈ Jk. Then we have

M(K,J ,L)Gα,β = ∅ for all (G,α, β) ∈ I with o(rαrβ) = ∞. Hence this is the commutator
blueprint associated with the split Kac-Moody group of type (4, 4, 4) over F2 (cf. Example
(5.3.1)).

(7.1.9) Corollary. For each n ∈ N there exists an RGD-system Dn =
(
Gn,

(
U

(n)
α

)
α∈Φ

)
of

type (4, 4, 4) over F2 with the following properties:

(i) If w ∈ W is such that ℓ(w) ≤ n and if α, β ∈ Φ+ are such that w ∈ (−α) ∩ (−β) and
α ⊆ β, then

[
U

(n)
α , U

(n)
β

]
= 1.

(ii) There exist α, β ∈ Φ+ such that α ⊊ β and
[
U

(n)
α , U

(n)
β

]
̸= 1.

Proof. Note that it su�ces to show the claim for n ∈ N≥3. We �x n ∈ N≥3. Let ∅ ̸= Jn ⊆ S

and Lj
n ⊆ {2, . . . , n− 1} for each j ∈ Jn. Moreover, we assume that Lj

n ̸= ∅ for some j ∈ Jn.

We de�ne J = (Jk)k∈{n} and L :=
(
Lj
k

)
k∈{n},j∈Jk

. Then M({n},J ,L) is an integrable

commutator blueprint by Theorem (7.1.7). Let D =
(
G, (Uα)α∈Φ

)
be its associated RGD-

system. We claim that D is as required. As Lj
n ̸= ∅ for some j ∈ Jn, it su�ces to show that

(i) holds. Let w ∈ W and let α, β ∈ Φ+ be such that w ∈ (−α) ∩ (−β) and α ⊆ β. This
means that Uα, Uβ ≤ Uw. Suppose that [Uα, Uβ] ̸= 1 and that r ∈ Jn. Then there exists a
minimal gallery H = (c0, . . . , ck) of type (n, r) between α and β. By Lemma (7.1.5)(a) we
can extend (c6, . . . , ck) to a gallery E = (c′0, . . . , c

′
k′) ∈ Min. In particular, we have k′ ≥ k−6.

Let (e0, . . . , em) ∈ Min(w) be a minimal gallery. As e0 = 1W ∈ β and em = w ∈ (−β),
there exists 0 ≤ j ≤ m− 1 with {ej , ej+1} ∈ ∂β. Using Lemma (5.2.5) there exists a minimal
gallery (d0 = e0, . . . , dq = ej+1) such that di = projRβ,{ej ,ej+1}

1W for some 0 ≤ i ≤ q − 1.

As {ck−1, ck} ⊆ Rβ,{ej ,ej+1}, we deduce that ℓ(di) ≥ k′ − 3 ≥ (k − 6) − 3 and hence ℓ(w) ≥
ℓ(di) ≥ k − 9. By de�nition, we have k ≥ 5n. But then ℓ(w) ≥ k − 9 ≥ 5n− 9 > n. Thus D
satis�es (i) and we are done.

(7.1.10) Remark. Let D = (G, (Uα)α∈Φ) be an RGD-system of type (4, 4, 4). It is shown in
[7, Theorem A] that if every root group contains at least 3 elements, then [Uα, Uβ] = 1 for
all pairs {α, β} of nested roots. The previous corollary shows that the assumption on the
cardinality of the root groups is necessary in order to prove that root groups corresponding
to nested roots do commute.
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7.2. Extension theorem for twin buildings

The extension problem for twin buildings asks whether a given local isometry can be extended
to the whole twin building. For more details we refer to the introduction and to [25].

(7.2.1) Theorem. The extension theorem does not hold for arbitrary thick 2-spherical twin
buildings.

Proof. Let M,M′ be two di�erent integrable commutator blueprints as constructed in The-
orem (7.1.7) and let D = (G, (Uα)α∈Φ),D′ = (G′, (U ′

α)α∈Φ) be their associated RGD-systems.
We let ∆ = ∆(D) and ∆′ = ∆(D′) be the corresponding twin buildings and let Σ = Σ(c+, c−)
and Σ′ = Σ(c′+, c

′
−) be the distinguished twin apartments in ∆ and ∆′. Let {α, β} ∈ P and

H ∈ Min be such that α, β ∈ Φ(H), α ≤H β and M(D)Hα,β ̸=M(D′)Hα,β .
Every residue R of ∆ or of ∆′ of rank 2 is isomorphic to the generalized quadrangle of

order (2, 2), i.e. to the building which is associated with the group C2(2). For each s ∈ S
we �x an order on Ps(c+) = {c0 := c+, c1, c2} and on Ps(c

′
+) = {c′0 := c′+, c

′
1, c

′
2}. Note that

the mapping φs : Ps(c+) → Ps(c
′
+), ci 7→ c′i is a bijection and hence an isometry. We will

show that for all s ̸= t ∈ S there exists an isometry φ{s,t} : R{s,t}(c+) → R{s,t}(c
′
+) with

φ{s,t}|Ps(c+) = φs.
Let s ̸= t ∈ S and de�ne J := {s, t}. Using the fact that the automorphism group of the

generalized quadrangle of order (2, 2) acts transitive on the chambers, we obtain an isometry
RJ(c+) → RJ(c

′
+) mapping c+ onto c′+. Using the root automorphisms (if necessary), we

obtain an isometry φJ : RJ(c+) → RJ(c
′
+) with φJ |Ps(c+) = φs. Thus we obtain a bijection

φ : E2(c+) → E2(c
′
+) such that for all s ̸= t ∈ S and x ∈ R{s,t}(c+) we have φ(x) = φ{s,t}(x).

Note that φ is an isometry by [38, Proposition 4.2.4]. Using [38, Proposition 7.1.6] there
exist d ∈ cop+ , d

′ ∈ (c′+)
op such that φ extends to an isometry E2(c+) ∪ {d} → E2(c

′
+) ∪ {d′}.

Assume that the extension theorem would hold for ∆. Then we can extend this isometry to an
isometry Φ : ∆ → ∆′. Moreover, Ψ : Aut(∆) → Aut(∆′), f 7→ Φ ◦ f ◦Φ−1 is an isomorphism.
Let g ∈ G be such that g(Σ) = A(c+, d) and let g′ ∈ G′ be such that g′(Σ′) = A(c′+, d

′). Then
the isomorphism Ψ0 : Aut(∆) → Aut(∆′), f 7→ γ(g′)−1 ◦ Ψ ◦ γg maps Uα onto U ′

α for every
α ∈ Φ. We deduce

∏
γ∈M(D)Hα,β

u′γ = Ψ0

 ∏
γ∈M(D)Hα,β

uγ

 = Ψ0([uα, uβ]) = [u′α, u
′
β] =

∏
γ∈M(D′)Hα,β

u′γ

AsM(D)Hα,β ̸=M(D′)Hα,β , [2, Corollary 8.34(1)] yields a contradiction. Thus, such an isometry
can not exist and the extension theorem does not hold for these two twin buildings.

7.3. Finiteness properties

Let D = (G, (Uα)α∈Φ) be an RGD-system of irreducible 2-spherical type (W,S) and of rank at
least 2. The Steinberg group associated with D is the group Ĝ which is the direct limit of the
inductive system formed by the groups Uα and U[α,β] := ⟨Uγ | γ ∈ [α, β]⟩ for all prenilpotent
pairs {α, β} ⊆ Φ. For each α ∈ Φ we denote the canonical image of Uα in Ĝ by Ûα. It follows
from [11, Theorem 3.10] that D̂ = (Ĝ, (Ûα)α∈Φ) is an RGD-system and the kernel of Ĝ→ G
is contained in the center of Ĝ.

(7.3.1) Lemma. Let D = (G, (Uα)α∈Φ) be an RGD-system of irreducible 2-spherical type and
rank at least 2 over F2 such that G is generated by the root groups. Then

⋂
α∈ΦNG(Uα) = 1.

In particular, the homomorphism Ĝ→ G from the Steinberg group associated with D to G is
an isomorphism.
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Proof. As D is an RGD-system such that G is generated by the root groups it follows
from [2, Corollary 8.79 and remark thereafter] that

⋂
α∈ΦNG(Uα) = ⟨m(u)−1m(v) | u, v ∈

Uαs\{1}, s ∈ S⟩. As D is over F2, we have Uαs\{1} = {us}. Moreover, m(us) = u−susu−s,
where U−αs\{1} = {u−s}. This implies m(us)

−1m(us) = (u−susu−s)
−1 u−susu−s = 1 and

hence
⋂

α∈ΦNG(Uα) = 1. As Z(G) ≤
⋂

α∈ΦNG(Uα) = 1, the claim follows.

(7.3.2) Lemma. Let G = ⟨X | R⟩ be a �nitely presented group with |X| < ∞. Then there
exists a �nite subset F ⊆ R with G = ⟨X | F ⟩.

Proof. Since G is �nitely presented, there exist �nite sets Y,E such that G = ⟨Y | E⟩.
Since G = ⟨Y ⟩, we have x =

∏
yi in G for each x ∈ X. Thus G = ⟨X ∪ Y | E′⟩, where

E′ = E ∪ {x =
∏
yi | x ∈ X} and X ∪ Y is �nite. Since G = ⟨X⟩, we have y =

∏
xj and

G = ⟨X ∪ Y | E′′⟩, where E′′ = E′ ∪ {y =
∏
xj | y ∈ Y }. Then we can replace in every

relation y by the corresponding product
∏
xj (if y =

∏
xj) and we can remove the generators

y ∈ Y together with the relations y =
∏
xj . We denote this set of relations by E′′′ and we

have G = ⟨X | E′′′⟩. Note that E′′′ is �nite.
Now for each e ∈ E′′′ there exists a �nite subset Fe ⊆ R such that e ∈ ⟨⟨Fe⟩⟩. For

F :=
⋃

e∈E′′′ Fe ⊆ R we have E′′′ ⊆ ⟨⟨Fe | e ∈ E′′′⟩⟩. Clearly, we have the following
epimorphisms:

⟨X | R⟩
∼=→ ⟨X | E′′′⟩ ↠ ⟨X | F ⟩ ↠ ⟨X | R⟩

Since the concatenation maps each x ∈ X to itself, all epimorphisms must be isomorphisms
and the claim follows.

(7.3.3) Theorem. The split Kac-Moody group over F2 of type (4, 4, 4) is not �nitely pre-
sented.

Proof. Let G be the split Kac-Moody group of type (4, 4, 4) over F2. Using Lemma (7.3.1),
we deduce that G = ⟨X | R⟩, where X = {uα | α ∈ Φ} and R = {{u2α | α ∈ Φ} ∪ {[uα, uβ]v |
{α, β} prenilpotent pair, v ∈ U(α,β)}}. We apply Tietze-transformations to slightly modify
the given presentation. We add τs to the set of generators and τs = u−αsuαsu−αs to the
set of relations. Note that G = ⟨uαs , τs | s ∈ S⟩. Since τ2s = 1 in G, we add this relation
to the set of relations. For α ∈ Φ there exist w ∈ W, s ∈ S with α = wαs. For w ∈ W
there exist s1, . . . , sk ∈ S with w = s1 · · · sk. Note that uα = uτk···τ1αs

is a relation in G,
where τi = τsi . Thus we can add these relations to the set of relations. We modify the
relations further and delete all commutator relations [uα, uβ] = v, where {α, β} /∈ P (for
every prenilpotent pair {α, β} there exists w ∈W such that {wα,wβ} ∈ P). This is possible
because the commutator relations are Weyl-invariant. We replace in each relation every uα by
the corresponding element uτk···τ1αs

. Now we delete all generators uα with α ∈ Φ\{αs | s ∈ S}
and the corresponding relations uα = uτk···τ1αs

. We note that we have the same relations as
before plus the relations τs = uτsαs

uαsu
τs
αs

and τ2s = 1. But the former relation is equivalent to
the relation (uαsτs)

3 = 1.
Now we assume that G is �nitely presented. Then, by the previous lemma, there exists

a �nite set F of the set of relations such that G = ⟨{uαs , τs | s ∈ S} | F ⟩. Now we let
k := max{kα | uα appears in some f ∈ F} (uα seen as conjugate of uαs by a product of τsi for
suitable s, si ∈ S). We consider the RGD-systems Dk = (G, (Uα)α∈Φ) obtained from Corollary
(7.1.9). Then [Uα, Uβ] = 1, where α ⊆ β are such that there exists w ∈W of length ≤ k with
w ∈ (−α)∩ (−β) and [Uδ, Uγ ] ̸= 1 for some δ ⊊ γ ∈ Φ+. It is not hard to see that we obtain a
homomorphism φ : G → Dk from the �nite presentation to Dk such that uαs 7→ uαs , τs 7→ τs
(note that for α ⊊ β we have [Uα, Uβ] = 1 in G by Example (5.3.1)). The commutator
relations of G and Dk yields us 1 = φ(1) = φ([Uδ, Uγ ]) = [φ(Uδ), φ(Uγ)] = [Uδ, Uγ ] ̸= 1. This
yields a contradiction and hence the Kac-Moody group is not �nitely presented.

119



7. Applications

(7.3.4) Theorem. Let D = (G, (Uα)α∈Φ) be an RGD-system of type (4, 4, 4) over F2. Then
the group U+ is not �nitely generated.

Proof. The group U+ is isomorphic to the direct limit of its subgroups Uw for all w ∈ W
by [2, Theorem 8.85]. We have shown in Lemma (6.9.4) that U+ is isomorphic to the direct
limit G of the inductive system formed by the groups Gi. By de�nition the following diagram
commutes:

Gi Gi+1

G

Moreover, the homomorphisms Gi → Gi+1 are injective by Proposition (6.9.20) and Theorem
(6.10.5), and hence the homomorphisms Gi → G are injective by [30, 1.4.9(iii)]. By con-
struction, the canonical homomorphism Gi → Gi+1 is not surjective and hence Gi → G are
not surjective as well. Assume that U+ is �nitely generated, i.e. U+ = ⟨g1, . . . , gn⟩. Since
U+ = ⟨uα | α ∈ Φ+⟩, there exists i ∈ N such that U+ = ⟨Uw | w ∈ Ci⟩. This implies
that G is also �nitely generated and we have G = ⟨Uw | w ∈ Ci⟩ = Gi, i.e. the canonical
homomorphism Gi → G is surjective. This is a contradiction and hence U+ is not �nitely
generated.

7.4. Locally compact groups

Haar measure and modular function

Let G be a locally compact group. Then there exists a (left) Haar measure µ on G. For
every measurable U ⊆ G and g ∈ G we have µ(gU) = µ(U) and µ(Ug) = µ(U)∆(g), where
∆ : G → R⋆ is the modular function of G. The group G is called unimodular, if ∆ ≡ 1. For
details we refer to [17, Chapter 9].

Lattices

Let G be a locally compact group which is unimodular, and let X be a left G-set such that
the stabilisers Gx are compact and open for each x ∈ X and such that G\X is �nite. Then a
subgroup Γ ≤ G is called a lattice, if it is discrete and if

Vol(Γ\\X) :=
∑

x∈Γ\X

1

|Γx|
<∞.

We note that as Γ is discrete, the stabilisers Γx are compact and discrete and hence �nite. In
the literature this is not the de�nition of a general lattice in a locally compact group. But
using [4, Ch. 1] and, in particular, [4, Corollary 1.6], it follows that a discrete subgroup of
the group G is a lattice in the general sense if and only if it is a lattice in our sense.

Permutation topology

Let ∆ = (C, δ) be a building of type (W,S). Then we endow the automorphism group
Aut(∆) of ∆ with the permutation topology (i.e. �xators of �nitely many chambers form a
basis of neighbourhoods of the identity). It is well-known that Aut(∆) is locally compact and
totally disconnected, if ∆ is locally �nite. For details we refer to [39, Theorem 1.24] or [40].
In particular, stabilizers of chambers are compact open subgroups. Let D = (G, (Uα)α∈Φ)
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7.4. Locally compact groups

be an RGD-system of type (W,S) such that every root group is �nite, and let ∆(D) =
(∆(D)+,∆(D)−, δ∗) be its associated twin building. Then for ε ∈ {+,−} the building ∆(D)ε
is locally �nite and Aut(∆ε) is a totally disconnected locally compact group. If G ≤ Aut(∆ε),
then we call G ≤ Aut(∆ε) the geometric completion of G in Aut(∆ε). Moreover, any closed
subgroup K ≤ Aut(∆ε) containing G is unimodular (cf. [5, Corollary 5]).

(Twin building) lattices and property (T)

(7.4.1) De�nition. Let (G, (Uα)α∈Φ) be an RGD-system of type (W,S) such that all root
groups are �nite and (W,S) is not spherical. Let W (t) =

∑∞
i=0 cit

i be the growth series of W
(i.e. ci = |{w ∈ W | ℓ(w) = i}|) and let qmin = min{|Uα| | α ∈ Φ}. If W (1/qmin) < ∞ and
ZG(⟨Uα | α ∈ Φ⟩) is �nite, then G is called a twin building lattice. For more details about
twin building lattices we refer to [16].

(7.4.2) Remark. Let D = (G, (Uα)α∈Φ) be an RGD-system of type (W,S) such that G is
generated by the root groups, all root groups are �nite, W is in�nite and Z(G) is �nite. By
[15, Theorem 6.8] the condition |S| < qmin implies that D is a twin building lattice. We will
show that if D is of type (4, 4, 4) then D is a twin building lattice. In particular, we enlarge
the result to RGD-systems of type (4, 4, 4) with qmin ∈ {2, 3}. We note that the arguments
in [15, Theorem 6.8] can be enlarged to the case |S| = qmin.

(7.4.3) Proposition. Let (W,S) be of type (4, 4, 4). For 2 ≤ q ∈ N we have W (1/q) <∞.

Proof. We will apply the quotient criterion in order to show the claim. For this we need a
few (in-)equalities. For i ∈ N we put Ci := {w ∈ W | ℓ(w) = i}, Di := {w ∈ Ci | ∃s ̸= t ∈ S :
ℓ(ws) = ℓ(w)+1 = ℓ(wt)} and di := |Di|. For i ≥ 5 we establish the following (in-)equalities:

Claim 1: ci − di = di−4: Let w ∈ Ci\Di. Then there exist s ̸= t ∈ S such that ℓ(ws) =
ℓ(w) − 1 = ℓ(wt). This implies that the mapping Ci\Di ∋ w 7→ projR 1W ∈ Di−4

is a bijection, where R = R{s,t}(w). Here we use the fact that projR 1W ̸= 1W and
hence that there exist unique s ̸= t ∈ S with ℓ((projR 1W )s) = ℓ(projR 1W ) + 1 =
ℓ((projR 1W )t).

Claim 2: di ≤ di+1: Let w ∈ Di. Then there exist s ̸= t ∈ S with ℓ(ws) = ℓ(w) + 1 = ℓ(wt).
Lemma (5.1.1) implies {ws,wt} ∩ Di+1 ̸= ∅. Let w,w′ ∈ Di and let s, t ∈ S
with ws = w′t ∈ Di+1. If s ̸= t, then there would be only one r ∈ S with
ℓ(wsr) = ℓ(ws) + 1, which is a contradiction. Thus s = t and hence w = w′. This
�nishes the claim.

Claim 3: 1
2 ≤ di

ci
≤ 1: As Di ⊆ Ci, it follows directly that di ≤ ci and hence di

ci
≤ 1. For the

other inequality we use Claim 1 and 2 and compute

1 =
ci − di + di

ci
=
di−4 + di

ci
≤ 2

di
ci

Claim 4: ci+1 ≤ ci + di − di−3: Let Mi := {(w, s) ∈ Ci × S | ws ∈ Ci+1}. Then |Mi| =
2di + (ci − di). We consider the mapping f : Mi → Ci+1, (w, s) 7→ ws. Then
f is surjective and ci + di = |Mi| =

∑
w∈Ci+1

|f−1(w)|. We de�ne C1
i+1 = {w ∈

Ci+1 | |f−1(w)| = 1} and let C>1
i+1 = {w ∈ Ci+1 | |f−1(w)| > 1}. We show that

C>1
i+1 = Ci+1\Di+1. Let w ∈ C>1

i+1 and let (w, s) ̸= (w′, s′) ∈ f−1(w) be. Then s ̸= s′

and hence w ̸= w′. This implies w ∈ Ci+1\Di+1. Similarly, for each w ∈ Ci+1\Di+1
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there exist s ̸= t ∈ S with ws,wt ∈ Ci and hence (ws, s) ̸= (wt, t) ∈ f−1(w). Thus
C>1
i+1 = Ci+1\Di+1, C

1
i+1 = Di+1 and we compute the following:∑

w∈Ci+1

|f−1(w)| =
∑

w∈Di+1

|f−1(w)|+
∑

w∈Ci+1\Di+1

|f−1(w)| ≥ di+1 + 2(ci+1 − di+1)

This implies ci + di ≥ ci+1 + (ci+1 − di+1) = ci+1 + di−3 and the claim follows.

Claim 5: ci+1 ≤ 2ci: This readily follows from Claim 3 and 4, as ci+1 ≤ ci + di − di−3 ≤ 2ci.

Now we are in the position to apply the quotient criterion. For i ≥ 6 and t = 1
qmin

≤ 1
2 we

compute

ci+1t
i+1

citi
=
ci+1

ci
t ≤ ci + di − di−3

ci
t ≤ (2− di−3

ci
)t ≤ (2− di−3

8ci−3
)t ≤ 31

16
t ≤ 31

32
< 1

(7.4.4) Corollary. Let (G, (Uα)α∈Φ) be an RGD-system of type (4, 4, 4) with �nite root groups
and G = ⟨Uα | α ∈ Φ⟩ such that Z(G) is �nite. Then the following hold:

(a) G is a twin building lattice.

(b) Let ∆ = (∆+,∆−, δ∗) be the associated twin building and let K be a closed subgroup of
Aut(∆−) containing G. Then U+ is a lattice in K.

Proof. For Assertion (a) it su�ces to show that W (1/qmin) < ∞. For Assertion (b) we note
that U+ is discrete in Aut(∆−), as U+ ∩ Stab(c−) = {1}. Thus it is discrete in K. Recall
that stabilizers of chambers are compact and open and K is unimodular. By de�nition it
su�ces to show that Vol(U+\\∆−) < ∞. As explained in [15, Proof of Theorem 6.8], we
have Vol(U+\\∆−) ≤ W (1/qmin) and it also su�ces to show W (1/qmin) < ∞ (cf. also [28,
Théorème 1]). But this follows from the previous proposition.

(7.4.5) Remark. For the de�nition and more details about property (T) we refer to [6].

(7.4.6) Lemma. Let D = (G, (Uα)α∈Φ) be an RGD-system of type (4, 4, 4) over F2 and let
∆ := ∆(D)−. Then Aut(∆) does not satisfy property (T).

Proof. By Theorem (7.3.4) and Corollary (7.4.4)(b), the subgroup U+ is a lattice in Aut(∆)
which is not �nitely generated. By [6, Theorem 1.7.1] the group Aut(∆) has property (T) if
and only if U+ has property (T). As discrete groups with property (T) are �nitely generated by
[6, Theorem 1.3.1], U+ can not have property (T) and hence Aut(∆) does not have property
(T).

(7.4.7) Remark. Let D = (G, (Uα)α∈Φ) be an RGD-system of type (4, 4, 4) with �nite root
groups and let ∆ := ∆(D)−. For s ∈ S we let qs + 1 be the order of the s-panels. Using
[26, Theorem 1 and 4.1(3)], a su�cient condition for Aut(∆) to have property (T) is that for
every s ̸= t ∈ S the following inequality is satis�ed:

1−
√

qs + qt
(qs + 1)(qt + 1)

>
1

2
⇔ 1

4
>

qs + qt
(qs + 1)(qt + 1)

⇔ qsqt + qs + qt + 1 = (qs + 1)(qt + 1) > 4(qs + qt)

⇔ qsqt + 1 > 3(qs + qt)

If 7 ≤ qmin and if qs ≤ qt, we have 3(qs + qt) ≤ 3(qt + qt) = 6qt ≤ qsqt < qsqt + 1 and Aut(∆)
satis�es property (T).
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7.5. Property (FPRS)

Although we have de�ned property (FPRS) in Section 1.7, we recall the de�nition here. Let
(G, (Uα)α∈Φ) be an RGD-system and let ∆(D) = (∆(D)+,∆(D)−, δ∗) be the associated twin
building. For Γ ≤ G we de�ne r(Γ) to be the supremum of the set of all non-negative real
numbers r such that Γ �xes pointwise the closed ball B(c+, r) := {d ∈ C+ | ℓ+(c+, d) ≤ r},
where C+ is the set of chambers of ∆(D)+. Then D has property (FPRS), if the following
holds, where ℓ(1W , α) := min{k ∈ N | ∃d ∈ α : ℓ(1W , d) = k} for all roots α ∈ Φ:

(FPRS) Given any sequence of roots (αn)n≥0 of Φ such that limn→∞ ℓ(1W , αn) = ∞, we
have limn→∞ r(U−αn) = ∞.

(7.5.1) Lemma. Let (W,S) be irreducible and non-spherical. Let (G, (Uα)α∈Φ) be an RGD-
system of type (W,S) with �nite and solvable root groups such that G is generated by the root
groups and satis�es (FPRS). We endow Aut(∆+) with the permutation topology. We de�ne

G† := ⟨Uα | α ∈ Φ⟩ ≤ Aut(∆(D)+). Then G† ≤ Aut(∆(D)+) is topologically simple, i.e. if

N ⊴ G† is a dense normal subgroup, then N = G.

Proof. This is a consequence of [16, Lemma 9 and Proposition 11].

(7.5.2) Remark. Let M be a commutator blueprint of type (4, 4, 4) which is integrable. If
the corresponding RGD-system satis�es (FPRS), then G ≤ Aut(∆+) is a topologically sim-
ple, non-discrete, compactly generated t.d.l.c. group. Caprace, Reid and Willis initiated a
systematic study of such groups in [14].

Next we generalize [16, Lemma 5]. Recall that for every RGD-system D we have a dis-
tinguished pair (c+, c−) of opposite chambers in ∆(D). We de�ne Σ+ := A(c+, c−) ∩ C+ and
ℓ(c, α) := min{k ∈ N | ∃d ∈ α : ℓ(c, d) = k} for any c ∈ Σ+.

(7.5.3) Proposition. Let D = (G, (Uα)α∈Φ) be an RGD-system of type (W,S) over F2 such
that for every w ∈W the group Uw is of nilpotency class at most 2. Suppose 4 ≤ k ∈ N such
that for all α ⊊ β ∈ Φ+ there exists H ∈ Min with α, β ∈ Φ(H) such that for each γ ∈ MH

α,β

we have ℓ(1W ,−γ) ≥ ℓ(1W ,−β) − (k − 1). Then for each m ∈ N, each root α ∈ Φ and each

c ∈ Σ+, if d(c, α) ≥ (4k)m+1−1
3 , then U−α �xes B(c,m) pointwise. In particular, D satis�es

property (FPRS).

Proof. In this proof we use more or less the same arguments as in [16, Lemma 5]. Thus large
parts of the proof are just copied from the proof of [16, Lemma 5].

We prove the claim by induction on m. If ℓ(c, α) ≥ 4k−1
3 ≥ 1, then c /∈ α whence c ∈ −α.

In particular, c is �xed by U−α. Thus the desired property holds for m = 0.

Assume now m > 0 and let α be a root such that ℓ(c, α) ≥ (4k)m+1−1
3 . Note that

(4k)m+1 − 1

3
− 1 >

4((4k)m − 1) + 3

3
− 1 >

(4k)m − 1

3

The induction hypothesis implies that the group U−α �xes the ball B(c,m − 1) pointwise.
Furthermore, if c′ is a chamber contained in Σ+ and adjacent to c, then ℓ(c′, α) ≥ ℓ(c, α)−1 ≥
(4k)m−1

3 and the induction hypothesis also implies that U−α �xes B(c′,m− 1) pointwise.
Let now x be a chamber at distance m from c. Let (c0 = c, . . . , cm = x) be a minimal

gallery from c to x. We must prove that U−α �xes x. If c1 is contained in Σ+, then we are
done by the above. Thus we may assume that c1 is not in Σ+. Let c′ be the unique chamber of
Σ+ such that c, c1, c′ share a panel. Let β ∈ Φ be one of the two roots such that ∂β separates
c from c′. Upon replacing β by its opposite if necessary, we may - and shall - assume that the
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pair {−α, β} is prenilpotent (cf. [2, Lemma 8.42(3)]). Let u := uβ ∈ U⋆
β be the unique element

such that u(c1) belongs to Σ+; thus we have u(c1) ∈ {c, c′}. Since u(c1), u(c2), . . . , u(cm) is a
minimal gallery, it follows that u(x) is contained in B(c,m−1)∪B(c′,m−1). We distinguish
the following three cases:

(i) Suppose �rst that [U−α, Uβ] = 1. For any g ∈ U−α we have g = u−1gu whence g(x) =
u−1gu(x) = x because g ∈ U−α �xes B(c,m− 1)∪B(c′,m− 1) pointwise by the above.

(ii) Suppose now that [U−α, Uβ] ̸= 1 and that ⟨rα, rβ⟩ is in�nite. Let {d, d′} = {c, c′} and
assume that d ∈ β. Then, as {−α, β} is a pair of prenilpotent roots and d′ ∈ (−α)\β, we
have β ⊆ (−α). Moreover, d ∈ β ∩ (−α) and hence {d−1β,−d−1α} ∈ P. Suppose H ∈
Min with d−1β,−d−1α ∈ Φ(H). By assumption, we have ℓ(1W ,−γ) ≥ ℓ(1W , d

−1α) −
(k − 1) for all γ ∈ MH

d−1β,−d−1α. In particular, we have ℓ(d,−dγ) ≥ ℓ(d, α) − (k − 1).
Note that ℓ(d′,−dγ) ≥ ℓ(d, α) − k and hence ℓ(c,−dγ), ℓ(c′,−dγ) ≥ ℓ(d, α) − k. Note
that

ℓ(d, α)− k ≥ ℓ(c, α)− (k + 1) ≥ (4k)m+1 − 1

3
− (k + 1) ≥ 4k(4k)m − 4k

3
≥ (4k)m − 1

3

Using induction we deduce that Udγ �xes B(c,m − 1) ∪ B(c′,m − 1) for all γ ∈
MH

d−1β,−d−1α. Note that [uβ, u−α] =
∏

γ∈MH
d−1β,−d−1α

udγ and g(x) = [g−1, u](x) as

before for any g ∈ U−α. Using the nilpotency class assumption, we know that [g−1, u]
commutes with u and, using the fact that Udγ �xes B(c,m−1)∪B(c′,m−1) pointwise,
we compute

g(x) = [g−1, u](x) = u−1[g−1, u]u(x) = u−1u(x) = x

(iii) Suppose �nally that [U−α, Uβ] ̸= 1 and that ⟨rα, rβ⟩ is �nite. The �rst part goes through
unchanged until the inequality, which has to be modi�ed to the following:

ℓ(c,−βi) ≥ ℓ(c,−β1) ≥
ℓ(c, α)− 1

4
≥

(4k)m+1−1
3 − 1

4
=

4k(4k)m − 4

12
≥ (4k)m − 1

3

By the induction hypothesis, it follows that for each γ ∈ (−α, β), the root subgroup Uγ

�xes B(c,m− 1) pointwise. As before, we obtain g(x) = [g, u−1](x) for any g ∈ Uα and
[g, u−1] �xes u(x) pointwise. Using the nilpotency class assumption of the groups Uw,
we infer [g, u−1](x) = u−1[g, u−1]u(x) = x.

(7.5.4) Corollary. Let ∅ ≠ K ⊆ N≥3 be a �nite set, let J = (Jk)k∈K be a family of subsets

∅ ̸= Jk ⊆ S and let Lj
k ⊆ {2, . . . , k − 1}. We de�ne L :=

(
Lj
k

)
k∈K,j∈Jk

,M := M(K,J ,L)
and let D(M) = (G, (Uα)α∈Φ) be the RGD-system associated with the commutator blueprint
M. Then D(M) satis�es property (FPRS).

Proof. Recall from Theorem (7.1.7) that M is integrable and the groups Uw are of nilpotency
class at most 2. We will apply the previous proposition. Let α ⊊ β ∈ Φ+ be two positive roots,
let G ∈ Min such that α, β ∈ Φ(G) andMG

α,β ̸= ∅. Then there exists a gallery H = (c0, . . . , ck)
of type (n, r) between α and β for some n ∈ K and r ∈ Jn. Using Lemma (7.1.5)(a) we can
extend (c6, . . . , ck) to a gallery (d0, . . . , dm) contained in Min. Let γ ∈MG

α,β be a root. Then
γ = γi ∈ {ωi, ω

′
i} for some i ∈ Lr

n and ωi, ω
′
i are non-simple roots of the corresponding residue

Ri. Using Lemma (5.2.3) we deduce that ℓ(1W ,projRi
1W ) ≤ ℓ(1W ,−γ). In particular, we

have ℓ(1W ,−β) ≤ m ≤ ℓ(1W ,projRi
1W )+k ≤ ℓ(1W ,−γ)+k. Let n := maxK. By de�nition

of H we see that in the type of H there appear r, r{s,t} at most n times plus u, v ∈ {1W , s, t}
and an additional r. Thus we deduce k ≤ 5n+ 3. For K := 5n+ 4 ∈ N we have 4 ≤ K and
we infer

ℓ(1W ,−γ) ≥ ℓ(1W ,−β)− (K − 1)
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7.5. Property (FPRS)

(7.5.5) Theorem. Let J = (Jn)n∈N≥3
be a family of subsets ∅ ≠ Jn ⊆ S and let Lj

n := {2}
for every n ∈ N≥3 and j ∈ Jn. We de�ne L :=

(
Lj
n

)
n∈N≥3,j∈Jn

. Then the RGD-system

associated with the commutator blueprint M(N≥3,J ,L) does not satisfy condition (FPRS).
In particular, there exists an RGD-system of 2-spherical type, which does not satisfy Condition
(FPRS).

Proof. We abbreviate MG
α,β := M(N≥3,J ,L)Gα,β . We let Gn ∈ Min be a minimal gallery of

type (r, r{s,t}, r, . . . , r{s,t}, r), where r{s,t} appears n times in the type and we let αn := αGn .
We recall that αn is the last root which is crossed by Gn. We note that αn is a non-simple root
of the {r, s} residue R containing (rr{s,t})

nr. Using Lemma (5.2.3) we have ℓ(1W ,−αn) ≥
ℓ(1W ,projR 1W ) = 5n− 2. In particular, we have limn→∞ ℓ(1W ,−αn) = ∞.

Let D = (G, (Uα)α∈Φ) be the RGD-system associated withM(N≥3,J ,L) and assume that
D satis�es property (FPRS). Then there would exist n0 ∈ N such that for every n ≥ n0 we
have r(Uαn) ≥ 10. In particular, Uαn �xes B(c+, 10) pointwise. We deduce that u−1

α0
uαnuα0

and hence also [uα0 , uαn ] �xes B(c+, 10) pointwise. But [uα0 , uαn ] = uω2uω′
2
, which does not

�x B(c+, 10). Thus D does not have property (FPRS).
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Part IV.

Appendix
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For the sake of clarity, we have decided to reproduce all the �gures from Chapter 6:

Figure 7.1.: Illustration of the group VR Figure 7.2.: Illustration of the group OR

Figure 7.3.: Illustration of the group VR,s Figure 7.4.: Illustration of the group OR,s
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Figure 7.5.: Illustration of the group HR

Figure 7.6.: Illustration of the group JR,t
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Figure 7.7.: Illustration of the group GR

Figure 7.8.: Illustration of the group KR,s
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Figure 7.9.: Illustration of the group ER,s

Figure 7.10.: Illustration of the group UR,s
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Figure 7.11.: Illustration of the group XR
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Figure 7.12.: Illustration of the group H{R,R′}
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Figure 7.13.: Illustration of the group J(R,R′)
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Figure 7.14.: Illustration of the group G{R,R′}

136



Figure 7.15.: Illustration of the group C
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Figure 7.16.: Illustration of the group C(R′,R)
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