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31.4 M(K,K0, σ) ∼= M(Ã) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
31.5 M(L0,K, q) ∼= M(L̃0, K̃, q̃) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Part VII An Inventory of Moufang Polygons

32 Parametrized Moufang Polygons 159

33 Parametrized Quadrangles 163
33.1 Quadrangles of Involutory Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
33.2 Quadrangles of Pseudo-Quadratic Form Type . . . . . . . . . . . . . . . . . . . . . 164
33.3 Quadrangles of Quadratic Form Type . . . . . . . . . . . . . . . . . . . . . . . . . 165
33.4 Quadrangles of Indifferent Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
33.5 Quadrangles of Type En, F4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

34 The Moufang Sets of Moufang Polygons 167

Part VIII Foundations

35 Definition 171

36 Root Group Systems 172

37 Foundations and Root Group Systems 173

38 Reparametrizations and Isomorphisms 175

- III -



Contents

Part IX 443-Foundations

39 Definition 179

40 The Quadrangles Are Not of Type En 179

41 The Quadrangles Are Not of Type F4 180

42 The Quadrangles Are Not of Indifferent Type 180

43 Unitary Quadrangles 181
43.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
43.2 Quadrangles of Pseudo-Quadratic Form Type . . . . . . . . . . . . . . . . . . . . . 183
43.3 Quadrangles of Involutory Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

44 Quadrangles of Quadratic Form Type 187

45 Conclusion 190

Appendix
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Introduction

Historical and Theoretical Context

The description below closely follows those given in [MLoc] and [AB].

Twin Buildings

Buildings have been introduced by J. Tits in order to study semi-simple algebraic groups from a
geometrical point of view. One of the most important results in the theory of buildings is the
classification of irreducible spherical buildings of rank at least 3 in [T74]. Meanwhile, there is a
simplified proof in [TW] which makes use of the classification of Moufang polygons.

About 25 years ago, M. Ronan and J. Tits defined a new class of buildings, which generalize
spherical buildings in a natural way, namely the class of twin buildings. The motivation of their
definition is provided by the theory of Kac-Moody groups, and we refer to [T92] for further general
information about twin buildings.

The sense in which twin buildings generalize spherical buildings is the following: Given a
building of spherical type, there is a natural opposition relation on the set of its chambers. This
relation restricts the structure of spherical buildings essentially. The classification of irreducible
spherical buildings of rank at least 3 mentioned above is in fact based on this opposition relation.
The idea of a twin building is to introduce a symmetric relation between the chambers of two
different buildings of the same type which has properties similar to the opposition relation of a
spherical building. Thus a twin building is a triple consisting of two buildings of the same type
and an opposition relation between the chambers of the two “halves” of the twin building.

The Classification Program for 2-Spherical Twin Buildings

In view of the classification of spherical buildings, it is natural to ask whether it is possible to
classify higher rank twin buildings. A large part of [T92] deals with this question. As a first
observation, it turns out that such a classification seems only to be feasible under the additional
assumption that the entries in the corresponding Coxeter matrices are all finite. We call these
buildings 2-spherical. The classification program described in [T92] is based on the conjecture
that there is a bijective correspondence between twin buildings of type M and certain Moufang
foundations of type M for each 2-spherical Coxeter diagram of type M .

Foundations have been introduced by M. Ronan and J. Tits in [RT] in order to describe
chamber systems which are candidates for being the local structure of a building. Roughly
speaking, foundations can be seen as amalgams of rank 2 buildings which are glued along certain
rank 1 residues. Given a chamber c of a building B of type M , the union E2(c) of the rank 2
residues which contain this chamber constitutes a foundation of type M , the foundation of B at c.
Thus the term “local structure” above has to be understood as a kind of 2-neighbourhood of a
given chamber of a building.

It is a (not completely trivial) fact that if two chambers are contained in the same half of
a twin building, the foundations at these chamber are isomorphic. Moreover, if one knows the
isomorphism class of the foundation of one half of a twin building, then the isomorphism class
of the foundations of the other half is uniquely determined. Conversely, a generalization of Tits’
extension theorem by B. Mühlherr and M. Ronan in [MR] states that a twin building is uniquely
determined by the foundation of one of its halves in almost all cases, cf. (5.10), (*5.11), (*9.11)
and (*9.12) of [AB] for a summary. Thus the foundation at a chamber of a twin building is a
classifying invariant of the corresponding twin building if the following condition is satisfied:

(CO) No rank 2 residue is isomorphic to one of the buildings which are associated with the
groups B2(2), G2(2), G2(3) and 2F4(2).

This condition guarantees that for every chamber c ∈ Bε (ε ∈ {±}), the set co of chambers opposite
c is a gallery-connected subset of B−ε.

In view of what has been mentioned so far, the classification of 2-spherical twin buildings
reduces to the classification of all foundations which can be realized as the local structures of
a twin building. We call such a foundation integrable. In order to determine the integrable
foundations, one proceeds in two steps.
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Step 1: Exclude Non-Integrable Foundations

It is proved in [T92] that an integrable foundation is Moufang, which means that the rank 2
buildings in the foundation are Moufang, i.e., they are Moufang polygons, and that the glueings
are compatible with the Moufang structures induced on the rank 1 residues. Thus a first necessary
condition for the integrability of a foundation is that it is Moufang.

As a consequence, the classification of Moufang polygons in [TW] and the solution of the iso-
morphism problem for Moufang sets are essential to work out which Moufang polygons fit together
in order to form a foundation. Moreover, one can reduce the list of possibly integrable foundations
by considering certain automorphisms of the twin building, the so-called Hua automorphisms,
which are closely related to the double µ-maps of the appearing Moufang sets.

Step 2: Existence / Integrability Proof

Finally, one has to prove that each of the remaining candidates is in fact integrable, i.e., realized
by a twin building, which is then unique up to isomorphism. In [MLoc] and his Habilitationsschrift
[MHab], B. Mühlherr developed techniques which produce certain twin buildings as fixed point
structures in twin buildings coming from Kac-Moody groups. He, H. Petersson and R. Weiss
actually prepare a book which provides further well-founded background.

Goals and Main Results

The present thesis contributes to establish complete lists of integrable foundations for certain
types of diagrams. We closely follow the approach for the classification of spherical buildings
in [TW]. However, we have to refine the techniques, since in general, foundations don’t only
depend on the diagram and the defining field. For example, there may be several non-isomorphic
foundations of type Ãn with respect to a given skew-field A: Automorphisms of A are involved as
well, which represents the fact that there are several possibilities for glueing Moufang polygons
along a rank 1 residue.

The main question is how to parametrize sequences of Moufang polygons with respect to
the usual commutator relations in order to make the glueings visible. The crucial subtlety is
the following: Each Moufang polygon is parametrized twice, once for each direction in which
the underlying root group sequence can be read. As a consequence, we obtain glueings between
directed Moufang polygons, and it’s a difference whether we look at idA : A→ A or idoA : A→ Ao,
where Ao is the opposite with respect to A: The former is an isomorphism, while the latter is an
anti-isomorphism of skew-fields.

As mentioned above, excluding non-integrable foundations is closely related to the investigation
of Moufang sets and their isomorphisms. Therefore, a large part deals with the introduction of
underlying parameter systems and, in the sequel, with the solution of the isomorphism problem
for Moufang sets. Many questions have already been answered, cf. [K], but we need to refine and
extend the existing results for our purposes and translate their proofs into our setup.

Simply Laced Foundations

The main result of this thesis is the complete classification of simply laced twin buildings via
their foundations. Of course, the basic requirement for a foundation to be integrable is that it is
Moufang: Its glueings are Jordan isomorphisms, i.e., they preserve the Jordan product xyx.

A powerful tool is Hua’s theorem, cf. [H] for a reference, which answers the isomorphism
problem for Moufang sets of skew-fields: Each Jordan isomorphism is in fact an iso- or anti-
isomorphism of skew-fields. However, the class of parameter systems for Moufang triangles
additionally includes octonion division algebras, which cause a lot of trouble due to the lack
of associativity. A byproduct is the existence of Jordan isomorphisms which are neither iso-
nor anti-isomorphisms of alternative rings. The most sophisticated part is the handling of the
exceptional cases where octonions occur.

We give an overview of the restriction process and point out the main ideas.

- 4 -



Introduction

The following observations yield the first restriction of possibilities:
(1) Each Moufang triangle is defined over the same alternative division ring A.

(2) An integrable foundation of type A3 is necessarily defined over a skew-field, and the glueing
is necessarily an isomorphism of skew-fields.

Thus the crucial step is the classification of integrable foundations of type Ã2 since these are
the smallest ones which allow weird “non-standard” things to appear. The theory of affine and
Bruhat-Tits buildings and the theory of composition algebras which are complete with respect to
a discrete valuation enable us to get further restrictions:
(3) Given an octonion division algebra O, there is only one twin building of type Ã2 with respect

to O.

(4) An integrable foundation of type Ã2 whose glueings are anti-isomorphisms is necessarily
defined over a quaternion division algebra, and given a quaternion division algebra H, there
is only one such “positive” twin building of type Ã2 with respect to H.

A closer look at the group of Jordan automorphisms of octonion division algebras completes the
classification of integrable foundations which are defined over octonions:

(5) There are no integrable foundations over octonions such that the corresponding graph is a
tetrahedron. In particular, up to isomorphism, the only integrable foundations with respect
to an octonion division algebra O are A2(O) = T (O) and Ã2(O).

Finally, in connection with (4), the following observation heavily restricts the list of integrable
foundations over non-commutative skew-fields which are not quaternion division algebras:
(6) An integrable foundation of type D4 is necessarily defined over a field.

Kac-Moody theory provides the integrability proofs as the corresponding Coxeter diagram is a
tree. The remaining integrability proofs rely on techniques developed by B. Mühlherr.

Jordan Automorphisms of Alternative Division Rings

In view of Hua’s theorem
AutJ(D) = Aut(D) ∪Auto(D)

for any skew-field D, its group AutJ(D) of Jordan automorphisms, its subgroup Aut(D) of
automorphisms and its set Auto(D) of anti-automorphisms, the question arises whether it is
possible to get a similar result for octonion division algebras.

In the proof that integrable tetrahedron-foundations over an octonion division algebra O do
not exist, we define a subset Γ ⊆ AutJ (O) which turns out to not contain the standard involution
σs. The elements of Γ are automorphisms of O multiplied with one of the “exceptional” Jordan
automorphisms as defined in [TW], which fix a quaternion subalgebra H pointwise and which act
on the orthogonal complement of H as conjugation.

The fact that Γ is a subgroup of AutJ(O) can be deduced from the knowledge about the
automorphism group of the corresponding Moufang triangle T (O). This subgroup Γ corresponds
to the subgroup Aut(D) in Hua’s theorem, i.e., we obtain

AutJ(O) = 〈σs,Γ〉 = Γ ∪ σsΓ .

The strategy for the proof is as follows:
(1) Jordan automorphisms restricted to subfields are monomorphisms of rings, i.e., the image of

a subfield is again a subfield.

(2) As an immediate consequence, Jordan automorphisms of octonions are norm similarities.

(3) The results of [Sp] allow us to restrict to isometries which fix a quaternion subalgebra
pointwise.

(4) Hua’s theorem and the Skolem-Noether theorem allow us to show that any Jordan automor-
phism is indeed a product in 〈σs,Γ〉.
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443-Foundations

The second result in connection with the classification of twin buildings is the completion of step 1
for 443-foundations whose diagram is a triangle and whose Moufang polygons are two quadrangles
and one triangle. Although we only deal with a single diagram in this case, there is a rich variety
of integrable 443-foundations as there are six families of Moufang quadrangles which often fit
together in this configuration. Nevertheless, quadrangles of type En, of type F4 and of indifferent
type don’t appear since their Moufang sets are not of linear type, i.e., they aren’t projective lines.

The same holds for Moufang sets of pseudo-quadratic form and involutory type, but the
second panel of the corresponding unitary quadrangle is of linear type so that there is exactly
one possibility for the orientation of the quadrangles. The solution of the isomorphism problem
for the appearing Moufang sets and the knowledge about the automorphism group of a unitary
quadrangle allow us to show the following:

(1) The appearing pseudo-quadratic spaces are defined over a quaternion division algebra H or
over a separable quadratic extension E.

(2) In the former case, there is exactly one possibly integrable 443-foundation with respect to
such a pseudo-quadratic space Ξ.

(3) In the latter case, the isomorphism class of a possibly integrable 443-foundations additionally
depends on an automorphism γ ∈ Aut(E).

(4) The appearing involutory sets are defined over a quaternion division algebra H, and there is
exactly one possibly integrable 443-foundation with respect to such an involutory set Ξ.

Finally, quadrangles of quadratic form type are the most flexible ones since there are Moufang
sets which are both of quadratic form type and of linear type so that they can glued together in
any orientation. Furthermore, there is one point where we need to restrict to proper quadratic
spaces as parametrizing structures to exclude characteristic 2 phenomenons in order to obtain a
satisfying description.

In contrast to the classification of integrable simply laced foundations however, we omit step
2 in the classification program as the proofs require different kinds of techniques, established
by B. Mühlherr, H. Petersson and R. Weiss. As before, there are two possibilities how to show
the integrability of a given foundation: Either the universal cover is isomorphic to a canonical
foundation, which is a foundation such that each glueing is the identity map and thus integrable if
it the corresponding diagram is a tree, or the foundation can be obtained as a fixed point structure
via a Tits index. The former method applies to 443-foundations with quadrangles of quadratic
form type, while the latter applies to 443-foundations with unitary quadrangles.

Jordan Isomorphisms of Pseudo-Quadratic Spaces

Hua’s theorem is essential for the classification of integrable simply laced foundations. In the
same spirit, the solution of the isomorphism problem for the appearing Moufang sets is essential
for the classification of integrable 443-foundations. As mentioned above, R. Knop handles a lot of
cases in his PhD thesis [K]. However, he only deals with commutative Moufang sets. Thus we
need to establish the corresponding results for Moufang sets of pseudo-quadratic form type.

We obtain that Jordan isomorphism between two Moufang sets of pseudo-quadratic form type
are induced by isomorphisms of the corresponding pseudo-quadratic spaces in almost all cases, i.e.,
whenever the dimension is at least 3 or the involved involutory set is proper. As a consequence,
exceptions necessarily involve pseudo-quadratic spaces of small dimensions which are defined over
a quaternion division algebra or over a separable quadratic extension. Luckily, these exceptional
cases don’t occur in the classification of integrable 443-foundations. As a consequence, both the
quadrangles are defined over the same pseudo-quadratic space Ξ.
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Outlook and Open Problems

Jordan Isomorphisms

In the theory of Moufang sets, the µ-maps and the Hua maps play a central role as they carry a
lot of information. As a consequence, Jordan isomorphisms – which are additive isomorphisms
preserving the Hua maps – are closely related to isomorphisms of Moufang sets. In fact, each
isomorphism of Moufang sets is a Jordan isomorphism since the Hua maps can be expressed in
terms of sums and the permutation τ .

In this context, the following question naturally arises: Is each Jordan isomorphism an
isomorphism of Moufang sets? Of course, the Hua maps of sharply 2-transitive Moufang sets are
trivial. Therefore, the question has to be answered negatively for these “non-proper” Moufang
sets. But experts in the area such as R. Weiss and T. De Medts are optimistic that both the
definitions are equivalent if we restrict to proper Moufang sets.

The Classification Program

The main conjecture in connection with the classification program is the following, cf. page 5 in
[MHab]:

A Moufang foundation of 2-spherical type is integrable if and only if each of its rank 3
residues is integrable.

In his Habilitationsschrift [MHab], B. Mühlherr indicates that one could prove the conjecture
under the additional assumption that all rank 3 residues are spherical, which is of course a severe
restriction. However, there isn’t any written proof yet.

Once one has proved the conjecture, the classification program reduces to the classification
of integrable Moufang foundations of rank 3. Most of them can be handled with the methods
established in [MHab] and [MLoc]. However, there are some exceptions, the most complicated of
which are foundations of type C̃2, Ã2 and 443-foundations. The Ã2- and the 443-case are solved
in the present thesis, while there are (unpublished) partial results for the C̃2-case by T. De Medts,
B. Mühlherr, H. Van Maldeghem and R. Weiss.

The Classification of Simply Laced Twin Buildings

Although the classification of integrable simply laced foundations is complete, we don’t make
any statement whether two given foundations in our list are isomorphic. By taking classifying
invariants into account and introducing suitable parameters, one could create a list with pairwise
non-isomorphic foundations.

If the underlying Coxeter diagram GF is a tree, the foundations F depends only on the defining
field. Circles in the diagram cause an additional dependence on “twists", i.e., on automorphisms
of the defining field A. More precisely:

• If A is a field, an integrable foundation F is uniquely determined by GF and a homomorphism
ϕ : Π1(GF )→ Aut(A)/Inn(A) ∼= Aut(A), where Π1(GF ) is the fundamental group of GF .

• If A is a skew-field distinct from a quaternion division algebra and F is an integrable
foundation of type Ãn, the foundation is uniquely determined by n and an element of
Aut(A)/Inn(A).

• If the defining field is a quaternion division algebra, then a similar result as in the field case
holds.

Moreover, the integrability proofs might be improved at some points as soon as the applied theory
is developed properly by B. Mühlherr, H. Petersson and R. Weiss.
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Finite Moufang Foundations

The introduced terminology and the methods of [MHab] can be used to show that each locally
finite twin building of 2-spherical type is the fixed point building of a Galois action in the sense of
B. Rémy, which means that it is of algebraic origin.

Acknowledgments

I would like to express my gratitude towards my primary advisor Bernhard Mühlherr for drawing
my attention to the interesting field of Moufang foundations and their Moufang sets: It was a
pleasure to contribute to the classification program for twin buildings. Many fruitful discussions
showed me the right direction, i.e., the assertions that one should be able to prove and the way
how to achieve it. His intuition is tremendous.

Furthermore, I would like to thank Richard Weiss, who raised the question for the generalization
of Hua’s theorem and who laid the foundation for this thesis with his wonderful and detailed work
on Moufang polygons, spherical and affine buildings as well as their classification. Many little
questions could be answered with the aid of [TW], and if not, he always had the right idea where
to look for the solution.

Ralf Köhl enhanced the work group with many nice people and gave me the opportunity to
take part in a research project about compact subgroups of Kac-Moody groups. His enthusiasm
and his dedication are impressive and build the basis for our prospering group.

Thanks go also to the following people: Tom De Medts who provided me a pleasant stay in
Ghent during which we worked on the isomorphism problem for Moufang sets of pseudo-quadratic
form type. And besides my family finally, there are so many friends who enriched my life with
time, conversations and activities that were an essential contrast to the “abstract nonsense” called
mathematics.

The most important factor which made the last five years a wonderful time of my life is the
following: Bernhard and Ralf both endowed me with maximal flexibility in my academic work. In
particular, this allowed me and two old friends of mine, Steffen Presse and Joram Gornowitz, to
realize our ambitious cinema project.

- 8 -



Part I

Preliminaries

- 9 -





Chapter 1 Notations

As we will have to reconstruct structure out of some given identities and as we will make use of
several structures at the same time, it is important to have exact definitions and notations and to
make precise statements, e.g., it is important to know whether we talk about an isomorphism as
an isomorphism of algebras or as an isomorphism of vector spaces, and we avoid “identification”.

We start with giving the definitions of elementary structures such as vector spaces, algebras
and graphs, then we proceed by introducing Coxeter matrices and Coxeter diagrams before we
turn to twin buildings themselves.

Chapter 1 Notations
We fix some notations.

(1.1) Definition (Vector Spaces)
• A (right) vector space is a pair (V,K) consisting of a commutative group V and a skew-field
K together with a scalar multiplication · : V ×K→ V satisfying

∀ v ∈ V : v · 1K = v , ∀ v ∈ V, s, t ∈ K : (v · s) · t = v · (st)

and

∀ v, w ∈ V, s, t ∈ K : (v + w) · s = v · s+ w · s , v · (s+ t) = v · s+ v · t .

• If (V,K) is a vector space, we say that V is a K-vector space or that V is a vector space
over K.

• Two vector spaces (V,K) and (Ṽ , K̃) are isomorphic if there is a pair (ϕ, φ) of isomorphisms
ϕ : V → Ṽ and φ : K→ K̃ of groups and skew-fields, resp., satisfying

∀ s ∈ K, v ∈ V : ϕ(v · s) = ϕ(v) · φ(s) .

• If (ϕ, φ) : (V,K) → (Ṽ , K̃) is an isomorphism of vector spaces, we say that ϕ is a φ-
isomorphism.

• Let (V,K) be a vector space.

◦ An automorphism (ϕ, φ) of (V,K) with φ = idK is linear .
◦ We denote the group of (semi-linear) automorphisms of (V ,K) by ΓL(V,K).
◦ We denote the group of linear automorphisms of (V ,K) by GL(V,K).

(1.2) Definition (Algebras)
• An algebra is a pair (A,K) such that A is a vector space over a field K together with a

K-bilinear map · : A×A→ A.

• If (A,K) is an algebra, we say that A is a K-algebra or that A is an algebra over K.

• An algebra (A,K) is associative if the map · : A×A→ A is associative.

• Two algebras (A,K) and (Ã, K̃) are isomorphic if there is an isomorphism (ϕ, φ) of vector
spaces satisfying

∀ x, y ∈ A : ϕ(x · y) = ϕ(x) · ϕ(y) .

• If (ϕ, φ) : (A,K)→ (Ã, K̃) is an isomorphism of algebras, we say that ϕ is a φ-isomorphism.

• Let (A,K) be an algebra.

◦ An automorphism (ϕ, φ) of (A,K) with φ = idK is linear .
◦ We denote the group of (semi-linear) automorphisms of (A,K) by Aut(A,K).
◦ We denote the group of linear automorphisms of (A,K) by AutK(A,K).
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Part I Preliminaries

(1.3) Definition (Graphs)
• A graph is a pair G = (V,E) =

(
V (G), E(G)

)
consisting of a set of vertices V and a set of

edges

E ⊆
(
V

2

)
:= {X ⊆ V | |X| = 2} .

• Given two graphs G = (V,E), G̃ = (Ṽ , Ẽ), a morphism ϕ : G → G̃ of graphs is a map
ϕ : V → Ṽ such that

∀ v, w ∈ V : {v, w} ∈ E ⇒ {ϕ(v), ϕ(w)} ∈ Ẽ .

• Given a graph G = (V,E), we set

A(G) := {(i, j) ∈ V 2 | {i, j} ∈ E} ,

which is the set of directed edges, and

G(G) := {(i, j, k) ∈ V 3 | (i, j) 6= (k, j) ∈ A(G)} .

• Given a graph G = (V,E) and a vertex v ∈ V , the set of neighbours of v is

B1(v) := {w ∈ V | {v, w} ∈ E} .

• Given a graph G = (V,E), a cover of G is a pair (G̃, ϕ) consisting of a graph G̃ = (Ṽ , Ẽ) and
an epimorphism ϕ : Ṽ → V of graphs such that for each v ∈ Ṽ , the map

ϕ|B1(v) : B1(v)→ B1
(
ϕ(v)

)
is a bijection.

(1.4) Example Given the graph
3̄

1̄ 2̄

,

the graphs

3

1 2

45

6

and

0−2 −1 1 2

are covers, where
ϕ : Z→ Z/3Z, z 7→ z̄

is the natural homomorphism in both cases.

- 12 -



Chapter 1 Notations

(1.5) Remark We only deal with Coxeter matrices such that mij 6=∞ for all i, j ∈ I.

(1.6) Definition (Coxeter Matrices)

• A (2-spherical) Coxeter matrix over (an index set) I is a map M : I × I → N∗ such that

∀ i ∈ I : mii = 1 , ∀ i 6= j ∈ I : mji = mij > 1 ,

where mij := M(i, j) for all i, j ∈ I.

• Given two Coxeter matrices M over I and M̃ over Ĩ, a morphism ϕ : M → M̃ of Coxeter
matrices is a map ϕ : I → Ĩ such that

∀ i, j ∈ I : m̃ϕ(i)ϕ(j) = mij .

• Given a Coxeter matrix M over I and a subset J ⊆ I, we set MJ := M|J×J .

(1.7) Definition (Coxeter Diagrams)

• A (2-spherical) Coxeter diagram is a pair (G, ν) consisting of a graph G and a map ν :
E(G)→ N≥3.

• Given two Coxeter diagrams (G, ν) and (G̃, ν̃), a morphism ϕ : (G, ν)→ (G̃, ν̃) of Coxeter
diagrams is a morphism ϕ : G → G̃ of graphs such that

∀ {i, j} ∈ E(G) : ν̃({ϕ(i), ϕ(j)}) = ν({i, j}) .

(1.8) Remark

(a) Given a Coxeter diagram (G, ν), we indicate an edge such that ν({i, j}) = 3 by a single edge,
an edge {i, j} such that ν({i, j}) = 4 by a double edge, an edge {i, j} such that ν({i, j}) = 6
by a triple edge and an edge {i, j} such that ν({i, j}) = 8 by a quadruple edge.

(b) Given a Coxeter matrix M over I, the corresponding Coxeter diagram is ΠM :=
(
GM , νM

)
with V (GM ) := I and

∀ i, j ∈ I : {i, j} ∈ E(GM ) :⇔ mij ≥ 3 , ∀ {i, j} ∈ E(GM ) : νM ({i, j}) := mij .

We set

V (G) := V (GM ) , E(G) := E(GM ) , A(G) := A(GM ) , G(G) := G(GM ) .

(c) Let CM be the set of Coxeter matrices and let CD be the set of Coxeter diagrams. Then
the map

Π : CM → CD, M 7→ ΠM

is a bijection such that M ∼= M̃ ⇔ ΠM
∼= ΠM̃ .

(1.9) Definition (Coxeter Systems) Let M be a Coxeter matrix over I.

• The Coxeter group of type M is the group

WM := 〈{ri | i ∈ I} | {(rirj)mij = 1 | i, j ∈ J}〉 .

• The Coxeter system of type M is the pair (WM , r), where

r : Mon(I)→WM , f 7→ rf

is the unique extension of the map r : I →WM , i 7→ ri to a homomorphism from the free
monoid Mon(I) on I to WM .
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Chapter 2 Twin Buildings
As the main issue of this thesis is the classification of twin buildings, we give a rough overview of
the main concepts and the main results which allow us to pass from the whole building to its
local structure without loss of information. By theorem (2.26) and (2.27) below, each irreducible
residue of rank 2 of an irreducible twin building of rank at least 3 is a Moufang polygon. As a
consequence, we may exploit the classification of Moufang polygons in [TW].

(2.1) Definition (Chamber Systems)

• A chamber system over an index set I is a set ∆ (whose elements are called chambers)
together with an equivalence relation ∼i on ∆ (called i-equivalence) for each i ∈ I.

• Given a chamber system ∆ over I and i ∈ I, an i-panel is an i-equivalence class, and a
panel is an i-panel for some i ∈ I.

• Given a chamber system ∆ over I and i ∈ I, two distinct chambers x, y ∈ ∆ such that
x ∼i y are called i-adjacent, and they are adjacent if they are i-adjacent for some i ∈ I.

• Given a chamber system ∆ over I, chambers x, y ∈ ∆ and J ⊆ I, a J-gallery of length k
from x to y is a sequence γ = (x0, . . . , xk) ⊆ ∆k+1 for some k ∈ N such that

x0 = x , xk = y , ∀ j ∈ {1, . . . , k} ∃ ij ∈ J : xj−1 ∼ij xj ∧ xj−1 6= xj ,

a gallery from x to y is an I-gallery from x to y, and we write x ∼J y if there is a J-gallery
from x to y.

• Given a chamber system ∆ and chambers x, y ∈ ∆, the distance dist(x, y) from x to y is
the length of a shortest gallery from x to y if there is one and ∞ otherwise.

• Given a chamber system ∆ over I, chambers x, y ∈ ∆ and a gallery γ = (x0, . . . , xk) from x
to y, the type of γ is the word i1 · · · ik ∈ Mon(I).

• Given a chamber system ∆ over I, a chamber x ∈ ∆ and J ⊆ I, the J-residue of x is

∆J(x) := {y ∈ ∆ | x ∼J y} .

A residue is a J-residue ∆J(x) for some chamber x ∈ ∆ and some J ⊂ I.

(2.2) Definition (Buildings) Let M be a Coxeter diagram over I and let (WM , r) be the
corresponding Coxeter system. A building of type M is pair B = (∆, δ), where ∆ is a chamber
system over I endowed with a function δ : ∆×∆→WM such that the following holds:

(B1) Each panel contains at least two chambers.

(B2) For each reduced word f ∈ Mon(I) and for each ordered pair (x, y) of chambers, we have
δ(x, y) = rf if and only if there is a gallery of type f from x to y.

(2.3) Remark Cf. definition (39.10) of [TW] for the definition of a reduced word.

(2.4) Definition (Standard Thin Buildings) Let M be a Coxeter Matrix. Then the
building Σ(M) := (WM , δWM

) with

δWM
: WM ×WM →WM , (w1, w2) 7→ w−1

1 w2

is the standard thin building of type M .

(2.5) Remark Cf. example (5.7) of [AB] that Σ(M) is a building of type M .
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(2.6) Definition (Apartments) Let B = (∆, δ) be a building of type M and let X ⊆WM .

• An isometry from X to B is a map π : X → ∆ such that

∀ x, y ∈ X : δ(xπ, yπ) = x−1y .

• An apartment of B is the image Σ of some isometry π : WM → ∆.

(2.7) Theorem (J-Residues) LetM be a Coxeter matrix over I, let B = (∆, δ) be a building
of type M , let x ∈ ∆ and let J ⊆ I. Then the following holds:

(a) The J-residue
BJ(x) :=

(
∆J(x), δ|∆J (x)×∆J (x)

)
is a building of type MJ .

(b) If Σ is an apartment of B such that Σ ∩ BJ(x) 6= ∅, then ΣJ := BJ(x) ∩ Σ is an apartment
of BJ(x).

(c) If ΣJ is an apartment of BJ(x), then we have ΣJ = BJ(x) ∩ Σ for some apartment Σ of B.

Proof
This results from (39.52) of [TW].

(2.8) Definition (Roots) Let B be a building of type M , let Σ be an apartment of B and
let c be a chamber of Σ.

• A root of Σ is a subset α ⊂ Σ such that

α = {w ∈ Σ | dist(w, x) < dist(w, y)}

for some ordered pair (x, y) of adjacent chambers. We denote the set of roots of Σ by
Φ(B,Σ).

• A root of B is a root of some apartment Σ ⊆ B.

• Given i ∈ I, the simple root αi with respect to (Σ, c) is the root

αi := {w ∈ Σ | dist(w, c) < dist(w, ci)} ,

where ci is the unique chamber of Σ which is i-adjacent to c. We write Φ(B,Σ, c) instead of
Φ(B,Σ) if we additionally take the simple roots with respect to (Σ, c) into account.

(2.9) Definition (Standard Root Systems) Let M be a Coxeter Matrix.

• The set Φ(M) := Φ
(
Σ(M),Σ(M), 1WM

)
of roots of Σ(M) is the standard root system of

type M .

• Given α, β ∈ Φ(M), the pair {α, β} is prenilpotent if we have

α ∩ β 6= ∅ 6= (−α) ∩ (−β) .

In this case, we set

[α, β] := {γ ∈ Φ(M) | α ∩ β ⊆ γ, (−α) ∩ (−β) ⊆ −γ} , (α, β) := [α, β] \ {α, β} .

(2.10) Remark Let M be a Coxeter matrix over I, let Φ(M) be the standard root system of
type M and let α ∈ Φ(M). Then we have

α = vαi = {v · w | w ∈ αi}

for some i ∈ I and some v ∈WM , cf. proposition (5.81) of [AB].
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(2.11) Definition (Twin Buildings) Let M be a Coxeter diagram over I. A twin building
of type M is a triple B = (B+,B−, δ∗), where each half Bε = (∆ε, δε) with ε ∈ {±} is a building of
type M and

δ∗ : (∆+ ×∆−) ∪ (∆− ×∆+)→WM

is a codistance, i.e., given ε ∈ {±}, x ∈ ∆ε, y ∈ ∆−ε and w := δ∗(x, y), the following holds:

(C1) We have δ∗(y, x) = w−1.

(C2) Given z ∈ ∆−ε, i ∈ I such that δ−ε(y, z) = ri and l(wri) = l(w)−1, we have δ∗(x, z) = wri .

(C3) Given i ∈ I, there exists a chamber z ∈ ∆−ε such that δ−ε(y, z) = ri and δ∗(x, z) = wri.

Here l : W → N∗ is the length function with respect to the set {ri | i ∈ I} of generators.

(2.12) Definition (Opposite Chambers) Let M be a Coxeter diagram over I, let B be a
twin building of type M , let J ⊆ I and let ε ∈ {±}.

• Two chambers x ∈ Bε and y ∈ B−ε such that δ∗(x, y) = 1 are called opposite. We set

OB := {(x, y) ∈ B+ × B− | δ∗(x, y) = 1} .

• Two residues R+ ⊆ B+ and R− ⊆ B− such that

R+ ×R−ε ∩ OB 6= ∅

are called opposite.

(2.13) Lemma Let B be a twin building, let ε ∈ {±} and let x ∈ Bε. Then there exists a
chamber y ∈ B−ε such that δ∗(x, y) = 1.

Proof
This results from corollary (5.141) of [AB].

(2.14) Theorem (J-Residues) Let M be a Coxeter diagram over I, let B be a twin building
of type M , let J ⊆ I, let (x, y) ∈ OB and let BJ(x) := (B+)J(x), BJ(y) := (B−)J(y). Then the
J-residue

BJ(x, y) :=
(
BJ(x),BJ(y), δ∗|(BJ (x)×BJ (y))∪(BJ (y)×BJ (y))

)
is a twin building of type MJ .

Proof
By lemma (5.148) of [AB], we have

δ(x̄, ȳ) ∈WMJ
δ∗(x, y)WMj = WMJ

· 1 ·WMJ
= WMJ

for all x̄ ∈ BJ(x), ȳ ∈ BJ(y).

(2.15) Corollary Let M be a Coxeter diagram over I, let B be a twin building of type M ,
let ε ∈ {±}, let x ∈ Bε and let J ⊆ I. Then (Bε)J(x) is the half of a twin building.

Proof
By lemma (2.13), there is a chamber y ∈ B−ε such that δ∗(x, y) = 1, thus (Bε)J (x) is the half of a
twin building by theorem (2.14).

(2.16) Notation Let M be a Coxeter matrix over I and let B be a building of type M . Given
a chamber c ∈ B, we define

E2(c) := {B{i,j}(c) | i 6= j ∈ I} .
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(2.17) Definition (Twin Apartments) Let B be a twin building.

• A twin apartment of B is a pair Σ = (Σ+,Σi) of apartments Σε of Bε such that each chamber
of Σ+ ∪ Σ− is opposite precisely one other chamber opΣ(c) ∈ Σ+ ∪ Σ−.

• Given a twin apartment Σ, the map

opΣ : Σ+ ∪ Σ− → Σ+ ∪ Σ−, c 7→ opΣ(c)

is the opposition involution with respect to Σ.

(2.18) Definition (Twin Roots) Let B be a twin building and let Σ be a twin apartment of
B.

• A twin root of Σ is a pair α = (α+, α−) of roots αε of Σε such that

opΣ(α) = −α .

• We denote the set of twin roots of Σ by Φ(B,Σ).

(2.19) Remark Let B be a twin building. Given a twin apartment Σ of B and a root α+ of
Σ+, then α− := −opΣ(α+) is the unique root of Σ− such that α := (α+, α−) is a twin root of Σ.
As a consequence, the map

f : Φ(B,Σ)→ Φ(B+,Σ+), (α+, α−)→ α+

is a bijection.

(2.20) Definition (Isometries and Automorphisms) Let B = (B+,B−, δ∗) be a twin
building of type M and let B̃ = (B̃+, B̃−, δ̃∗) be a twin building of type M̃ .

• An isometry of twin buildings is a triple φ = (σ, φ+, φ−) consisting of an isomorphism
σ : M → M̃ of Coxeter diagrams and maps φε : Bε → Bε such that

∀ cε, dε ∈ Bε : δ̃ε
(
φε(cε), φε(dε)

)
= σ

(
δε(cε, dε)

)
and

∀ cε ∈ Bε, c−ε ∈ B−ε : δ̃∗
(
φε(cε), φ−ε(c−ε)

)
= σ

(
δ∗(cε, c−ε)

)
• An isomorphism of twin buildings is a surjective isometry φ : B → B̃.

• An automorphism of B is an isomorphism φ : B → B. We denote the group of automorphisms
of B by Aut(B).

• An automorphism φ ∈ Aut(B) is special if we have σ = idM . We denote the group of special
automorphisms of B by Aut0(B).

(2.21) Definition (Strongly Transitive Actions) Let B be a twin building and let G be
a group.

• An action of G on B is a homomorphism

ϕ : G→ Aut(B) .

• An action ϕ : G→ Aut(B) is strongly transitive if the action is transitive on the set

{(Σ, c) | Σ is a twin apartment of B, c ∈ OΣ} .
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(2.22) Theorem Let B be a Moufang twin building. Then Aut0(B) acts strongly transitively
on B.

Proof
This results from proposition (8.19) of [AB].

(2.23) Theorem (Extension Theorem) Let B, B̃ be thick (2-spherical) twin buildings of
the same type. Assume that B and B̃ satisfy condition (CO). Given c ∈ OB and c̃ ∈ OB̃ and a
surjective isometry

φ : E2(c+) ∪ {c−} → E2(c̃+) ∪ {c̃−} ,

there is a unique extension of φ to an isomorphism φ : B → B̃ of twin buildings. (A building is
thick if each panel contains at least three chambers.)

Proof
Cf. theorem (5.213) of [AB]. Notice that our buildings are 2-spherical by definition.

(2.24) Definition (Root Groups and the Moufang Property) Let B be a twin building
of rank at least 2, where the rank of a building of type M is just |V (M)|.

• Given a twin root α, the corresponding root group is

Uα := {g ∈ Aut(B) | g acts trivially on each panel of αo} ,

where αo is the set of all panels of B which contain at least two chambers in α.

• The building B is Moufang if it is thick and if for each root α of B, the root group Uα acts
transitively on the set of twin apartments containing α.

• The building B is strictly Moufang if the actions of the root groups are simply transitive.

(2.25) Remark A Moufang twin building whose Coxeter diagram has no isolated nodes is
strictly Moufang, cf. p. 455 of [AB].

(2.26) Theorem Every thick, irreducible twin building of rank at least 3 that satisfies
condition (CO) is Moufang.

Proof
This is theorem (8.27) of [AB]. Notice that our buildings are 2-spherical by definition.

(2.27) Theorem Let B be a Moufang twin building. Then every spherical residue of B is
Moufang.

Proof
This is proposition (8.21) of [AB].

(2.28) Corollary Let B be a thick, irreducible twin building of rank at least 3. Then each
residue of rank 2 is also Moufang. In particular, the irreducible residues of rank 2 are Moufang
polygons.

Proof
This results from remark (8.30)(a) of [AB]. Notice that our buildings are 2-spherical by definition.
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(2.29) Definition (RGD System) Let M be a Coxeter matrix, let Φ := Φ(M), let G be a
group, let (Uα)α∈Φ be a family of non-trivial subgroups of G and let

T :=
⋂
α∈Φ

NG(Uα) .

Then the pair
(
G, (Uα)α∈Φ

)
is an RGD system of type M if the following holds:

(RGD1) We have
[Uα, Uβ ] ≤ U(α,β)

for all α 6= β such that {α, β} is prenilpotent.

(RGD2) Given i ∈ I, there is a function µ : U∗αi → G such that we have

∀ u ∈ U∗αi : µ(u) ∈ U−αiuU−αi , ∀ u ∈ U∗αi , α ∈ Φ : µ(u)Uαiµ(u)−1 = Uriαi .

(RGD3) Given i ∈ I, we have
U−αi 6≤ U+ ,

where

Uε := 〈Uα | α ∈ Φε〉 , Φ+ := {α ∈ Φ | 1 ∈ α} , Φ− := {α ∈ Φ | 1 /∈ α} .

(RGD4) We have
G = T 〈Uα | α ∈ Φ〉 .

(2.30) Theorem The following holds:

(a) Each RGD system
(
G, (Uα)α∈Φ

)
gives rise to a twin building B

(
G, (Uα)α∈Φ

)
.

(b) Let B be a twin building of type M , let Σ be a twin apartment of B, let c ∈ OΣ, let
G := Aut(B), let Φ := Φ(B,Σ, c) and let (Uα)α∈Φ be the family of root groups with respect
to (Σ, c). Then the pair

(
G, (Uα)α∈Φ

)
is an RGD system of type M , and B is uniquely

determined by this RGD system, i.e., we have

B ∼= B
(
G, (Uα)α∈Φ

)
.

Proof

(a) This is theorem (8.81) of [AB].

(b) The first statement is example (8.47)(a) of [AB] while the second one results from theorem
(8.9) of [AB].

(2.31) Proposition Let M be a Coxeter matrix over I, let B be a strictly Moufang twin
building of type M , let Σ be a twin apartment of B and let c ∈ OΣ. Let J ⊆ I be such that MJ

has no isolated nodes, let BJ := BJ(c) and let αJ be a root of ΣJ = Σ ∩ BJ . Then there is a
unique root α of Σ such that αJ = α ∩ ΣJ , and the restriction map

ρ : Uα → UαJ

is an isomorphism of groups.

Proof
For spherical buildings this is proposition (7.32) of [AB], and the arguments given in its proof go
through in the twin case without much change.
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(2.32) Theorem Let M be an irreducible Coxeter matrix over I such that |I| ≥ 3, let B be
a thick Moufang twin building of type M , let Σ be a twin apartment of B, let c ∈ OΣ and let
Φ := Φ(B,Σ, c). Let (i, j) ∈ A(M), Bij := B{i,j}(c) and n := mij . Then the following holds:

(a) The residue Bij is a Moufang n-gon.

(b) The intersection Σij := Σ ∩ Bij is an apartment of Bij , and the roots αi ∩ Bij and αj ∩ Bij
form a root basis of Bij .

(c) Let
(ω̄1 = αi ∩ Bij , ω̄2, . . . , ω̄n−1, ω̄n = αj ∩ Bij)

be the root sequence of Bij from αi ∩ Bij to αj ∩ Bij . Then there are exactly n roots
ω1 = αi, ω2, . . . , ωn = αj of Σ such that

∀ 1 ≤ i ≤ n : ω̄i = ωi ∩ Bij .

(d) For i = 1, . . . , n let Ui := Uωi , let U[αi,αj ] := U1 · · ·Un and let

Θ(i,j) :=
(
U[αi,αj ], U1, . . . , Un

)
.

Then Θ(i,j) is isomorphic to the root group sequence of Bij from αi ∩ Bij to αj ∩ Bij .

Proof

(a) This is corollary (2.28).

(b) The first assertion results from theorem (2.7) (b), and by definition, the roots αi ∩ Bij and
αj ∩ Bij are simple roots of Σij .

(c) This results from proposition (2.31).

(d) This results from proposition (2.31).

(2.33) Definition (Double µ-Maps) LetM be a Coxeter matrix over I, let B be a Moufang
twin building of type M , let Σ be a twin apartment of B, let c ∈ OΣ and let Φ := Φ(B,Σ, c). Let
i ∈ I, let a, b ∈ U∗αi and let µ(a), µ(b) be as in (RGD2). Then the map

ha,b : 〈Uα | α ∈ Φ〉 → 〈Uα | α ∈ Φ〉, u 7→ µ(a)−1µ(b)uµ(b)−1µ(a)

is the double µ-map with respect to a, b.

(2.34) Remark

(a) We have ha,b ∈ T for all a, b ∈ U∗αi .

(b) By (3) in section (7.8.2) of [AB], the µ-maps in (RGD2) are uniquely determined.

(2.35) Theorem Let M be an irreducible Coxeter matrix over I such that |I| ≥ 3, let
B be a thick Moufang twin building of type M , let Σ be a twin apartment of B, let c ∈ OΣ
and let Φ := Φ(B,Σ, c). Let (i, j) ∈ A(M), let Bij := B{i,j}(c), let Σij := Σ ∩ Bij and let
Φij := Φ(Bij ,Σij , c). Then we have

∀ a ∈ U∗αi : µBij
(
ρ(a)

)
= ρ
(
µB(a)

)
,

where ρ : U[αi,αj ] → Aut(Bij) is the restriction homomorphism. In particular, we have

∀ a, b ∈ U∗αi : h
Bij
ρ(a),ρ(b) = ρ ◦ hBa,b ◦ ρ−1 .
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Proof
Given a root ᾱ ∈ Φij , let α ∈ Φ be the unique root of Σ such that ᾱ = α ∩ Σij . By proposition
(2.31), the map ρ : Uα → Uᾱ is an isomorphism of groups for each root ᾱ ∈ Φij . Given a ∈ U∗αi ,
we have

ρ
(
µB(a)

)
∈ ρ(U−αiaU−αi) = U−ᾱiρ(a)U−ᾱi

and

∀ α ∈ Φij : ρ
(
µB(a)

)
Uᾱρ

(
µB(a)

)−1 = ρ
(
µB(a)UαµB(a)−1) = ρ(Uriα) = Uriᾱ .

and thus
µBij

(
ρ(a)

)
= ρ
(
µB(a)

)
by remark (2.34) (b).
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Chapter 3 Alternative Rings

In this part, we introduce the parameter systems which arise in the description of Moufang
triangles and the six families of Moufang quadrangles. Moreover, we collect the basic results
which will be needed for the classification of twin buildings, and, closely related, the solution of
the isomorphism problem for Moufang sets.

For a detailed reference on these subjects, see [TW]. Concerning alternative rings, we addi-
tionally refer to [RSch].

Chapter 3 Alternative Rings
Alternative division rings are the parametrizing structures for Moufang triangles, the building
bricks for simply laced twin buildings.

§ 3.1 Basic Definitions and Basic Properties

(3.1) Definition An alternative ring is a triple (A,+, ·) such that the following holds:

(A1) The pair (A,+) is a commutative group.

(A2) The multiplication · : A× A→ A is biadditive.

(A3) The multiplication · : A× A→ A is alternative, i.e., it satisfies

∀ x, y ∈ A : [x, x, y] = 0A = [y, x, x] .

where [x, y, z] := (xy)z − x(yz) is the associator of x, y, z ∈ A

(A4) There is an identity element 1A.

(3.2) Lemma An alternative ring A is flexible, i.e., given x, y ∈ A, we have

[x, y, x] = 0A .

Proof
Cf. page 27 of [RSch].

(3.3) Lemma (Moufang Identities) An alternative ring A satisfies the Moufang identities,
i.e., given x, y, z ∈ A, we have

(xyx)z = x
(
y(xz)

)
, z(xyx) =

(
(zx)y

)
x , (xy)(zx) = x(yz)x .

Proof
Cf. page 28 of [RSch].

(3.4) Definition An alternative ring A is an alternative division ring if the maps

ρw : A→ A, x 7→ xw , λw : A→ A, x 7→ wx

are bijective for each w ∈ A∗.

(3.5) Remark Let A be an alternative division ring. Given x ∈ A∗, there are unique elements
x−l, x−r ∈ A∗ such that

x−l · x = 1A = x · x−r .

By lemma (3.2), we have

λx−l(xx−l) = x−l · xx−l = x−lx · x−l = 1A · x−l = x−l = λx−l(1A) , xx−l = 1A

and therefore x−1 := x−l = x−r.
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(3.6) Lemma An alternative division ring A has the inverse properties, i.e., given x, y ∈ A∗,
we have

x−1(xy) = y , (yx)x−1 = y , (xy)−1 = y−1x−1 .

Proof
This results from the Moufang identities.

(3.7) Definition Let (A,+, ·) be an alternative ring. Then (A,+, ◦) with the multiplication

◦ : A× A→ A, x ◦ y := y · x

is the opposite alternative ring.

(3.8) Definition Let A, Ã be alternative rings.

• An (anti-)isomorphism of alternative rings is an additive isomorphism γ : A→ Ã such that

∀ x, y ∈ A : γ(xy) = γ(x)γ(y)
(
γ(xy) = γ(y)γ(x)

)
.

• A Jordan homomorphism is an additive monomorphism γ : A→ Ã such that

γ(1A) = 1Ã , ∀ x, y ∈ A : γ(xyx) = γ(x)γ(y)γ(x) .

(3.9) Notation Let A be an alternative division ring.

• We denote the group of automorphisms of A by Aut(A).

• We denote the set of anti-automorphisms of A by Auto(A).

• Given w ∈ A, we set

λw : A→ A, x 7→ wx , ρw : A→ A, x 7→ xw , γw : A→ A, x 7→ w−1xw .

Notice that the conjugation map γw is well-defined by (9.23)(ii) of [TW] with c := a.

• We denote the opposite alternative division ring by Ao.

• We denote the group of Jordan automorphisms of A by AutJ(A).

(3.10) Definition The center of an alternative ring A is

Z(A) := {x ∈ A | [x,A,A] = [x,A] = 0A} ,

where [x, y] := xy − yx is the commutator of x, y ∈ A.

(3.11) Lemma Let A be an alternative division ring. Then K := Z(A) is a field and A is an
algebra over K.

Proof
This results from (9.18) and (9.23) of [TW].

§ 3.2 Octonion Division Algebras

The Bruck-Kleinfeld theorem states that a non-associative alternative division ring is an octonion
division algebra. First of all we give the exact definition of such an algebra before we collect some
basic concepts, including the doubling process.
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(3.12) Remark The construction here is taken from [TW].

(3.13) Definition Let E/K be a separable quadratic extension and let σ be the non-trivial
element of Gal(E/K).

• Given x ∈ E, we write x̄ := σ(x).

• We denote the norm map and the trace map of E/K by N and T , respectively.

• Given β ∈ K∗, we set

(E/K, β) :=
{(

x βȳ
y x̄

)
| x, y ∈ E

}
⊆M2(E) , e :=

(
0E β
1E 0E

)
∈ (E/K, β) .

(3.14) Lemma Let E/K be a separable quadratic extension and let β ∈ K∗ \N(E). Then
the following holds:

(a) The set
H := (E/K, β) ⊆M2(E)

is an associative division ring.

(b) We have
H = 1E · E + e · E .

(c) The map
σs : H→ H, x+ e · y 7→ x̄− e · y

is an involution of H extending σ.

(d) The maps

N : H→ K, x+ e · y 7→ N(x)− β ·N(y) , T : H→ K, x+ e · y 7→ T (x)

are extensions of N and T .

Proof
Cf. (9.2), (9.3) and (9.4) of [TW].

(3.15) Definition A quaternion division algebra is an algebra H isomorphic to (E/K, β) for
some separable quadratic extension E/K and some β ∈ K∗ \N(E). The map σs is the standard
involution of H.

(3.16) Definition Let H be a quaternion division algebra.

• Given x ∈ H, we write x̄ := σs(x).

• Given β ∈ K∗, we set

(H, β) :=
{(

x βȳ
y x̄

)
| x, y ∈ H

}
⊆M2(H) , e :=

(
0H β
1H 0H

)
∈ (H, β) .

• We define a multiplication on (H, β) by(
x βȳ
y x̄

)
·
(
u βv̄
v ū

)
:=
(
xu+ βvȳ β(v̄x+ ȳū)
x̄v + uy ūx̄+ βyv̄

)
,

which is non-associative.
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(3.17) Lemma Let H be a quaternion division algebra and let β ∈ K∗ \ N(H). Then the
following holds:

(a) With the ordinary matrix addition and the above multiplication, the set

O := (H, β) ⊆M2(H)

is an alternative division ring.

(b) We have
O = 1H ·H + e ·H .

(c) The map
σs : O→ O, x+ e · y 7→ x̄− e · y

is an involution of O extending σs.

(d) The maps

N : O→ K, x+ e · y 7→ N(x)− β ·N(y) , T : O→ K, x+ e · y 7→ T (x)

are extensions of N and T .

Proof
Cf. (9.8) of [TW].

(3.18) Definition An octonion division algebra is an algebra O isomorphic to (H, β) for some
quaternion division algebra H and some β ∈ K∗ \N(H). The map σs is the standard involution
of O.

(3.19) Remark In the following, we list the basic properties of an octonion division algebra
O which will be needed in the sequel. Since each subalgebra of O is a division algebra by (20.8)
of [TW], we will omit the term “division” whenever we deal with an octonion division algebra
and its subalgebras.

(3.20) Notation Throughout the rest of this paragraph, O denotes an octonion division
algebra.

(3.21) Remark The norm N : O→ K is a quadratic form with associated bilinear form

〈·, ·〉 : O×O→ K, (x, y) 7→ xȳ + yx̄ = T (xȳ) .

(3.22) Definition Let V be a vector space overK. A quadratic form q : V → K is non-defective
if the associated bilinear form

fq : V → K, (x, y) 7→ q(x+ y)− q(x)− q(y)

is non-degenerate, i.e., we have V ⊥ = {0V }, cf. definition (4.30). Otherwise, it is defective.

(3.23) Lemma There exists an element x ∈ O such that x̄ 6= x.

Proof
Cf. (20.15) of [TW].

(3.24) Corollary We have
〈·, ·〉 6≡ 0K .

As a consequence, 〈·, ·〉 is non-degenerate, hence N is non-defective.
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Proof

• Char O 6= 2: In this case, we have

〈1O, 1O〉 = 2 ·N(1O) = 2 · 1O 6= 0O .

• CharO = 2: By lemma (3.23), there is an element x ∈ O such that x 6= x̄. We obtain

〈x, 1O〉 = x+ x̄ 6= 0O .

Now the map 〈·, ·〉 = T̄ is non-degenerate by (20.16) of [TW], cf. definition (20.12) of [TW].

(3.25) Lemma Let x, y ∈ O. Then the following holds:

(a) There is an associative subalgebra A containing both x and y.

(b) If we have x̄ 6= x, then A can be chosen to be a quaternion subalgebra H.

(c) There exists a quaternion subalgebra H containing x.

Proof
Parts (a) and (b) result from the proof of (20.22) in [TW]. Part (c) is (20.23) of [TW].

(3.26) Lemma (Doubling Process) Let A be a subalgebra such that A⊥ * A, let e ∈ A⊥\A
and let u := −N(e). Then the following holds:

(a) The set Ã := A + e · A is a subalgebra.

(b) We have

ē = −e , e · A ⊆ A⊥ , A ∩ e · A = {0O} .

(c) Given x, y ∈ A, we have

(e · x)(e · y) = u(yx̄) , (e · x)y = e · yx , x(e · y) = e · x̄y .

Proof
This is (20.17) of [TW].

(3.27) Remark Let A be an alternative division ring. By definition, we have

Z(A) = {x ∈ A | [x,A] = [x,A,A] = 0A} .

(3.28) Lemma Let A be an alternative division ring. Then we have

Z(A) = {x ∈ A | [x,A] = 0A} .

Proof
The assertion is clearly true if A is a skew-field, thus we may suppose O := A to be an octonion
division algebra. By proposition (1.9.2) of [Sp], we have

{x ∈ O | [x,O,O] = 0O} ⊆ {x ∈ O | [x,O] = 0O}

and therefore

Z(O) = {x ∈ O | [x,O] = [x,O,O] = 0O}
⊆ {x ∈ O | [x,O,O] = 0O} ⊆ {x ∈ O | [x,O] = [x,O,O] = 0O} = Z(O) .

- 29 -



Part II Parameter Systems

§ 3.3 The Bruck-Kleinfeld Theorem

On the one hand, we will need the minimum equation in §28.2, and on the other hand, we will
need the classification of alternative division rings which are quadratic over a subfield of its center
in §21.5. The main steps in the proof of the Bruck-Kleinfeld theorem in [TW] involve those
algebras and the corresponding classification result, thus we mention them at this point and
dedicate a short paragraph to this fundamental theorem.

(3.29) Definition Let A be an alternative division ring, let K := Z(A) and let F be a subfield
of K. Then A is quadratic over F if there are maps T = TA

F , N = NA
F : A→ F such that

∀ a ∈ A : a2 − T (a)a+N(a) = 0A , ∀ a ∈ F : T (a) = 2a, N(a) = a2 . (3.1)

The maps T and N are the trace and the norm, respectively.

(3.30) Remark Trace and norm are uniquely determined by the minimum equation (3.1).

(3.31) Proposition A non-associative alternative division ring A is quadratic over its center.
In particular, an octonion division algebra O is quadratic over its center.

Proof
This is theorem (20.2) of [TW].

(3.32) Proposition Let A be an alternative division ring which is quadratic over some subfield
F of its center K := Z(A), let T and N be the trace and the norm, respectively, and let

σ : A→ A, x 7→ T (x)− x .

Then exactly one of the following holds:

(i) A = K, CharK = 2, K2 ⊆ F 6= K and σ = idA.

(ii) A = K = F and σ = idA.

(iii) A = K, K/F is a separable quadratic extension and 〈σ〉 = Gal(K/F).

(iv) A is a quaternion division algebra over K, F = K and σ = σs.

(v) A is an octonion division algebra over K, F = K and σ = σs.

In each case, we have
N(x) = xxσ = xσx

for each x ∈ A.

Proof
This is theorem (20.3) of [TW].

(3.33) Theorem (Bruck-Kleinfeld-Theorem) A non-associative alternative division ring
is an octonion division algebra.

Proof
This is a consequence of proposition (3.31) and proposition (3.32).
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§ 3.4 Discrete Valuations and Composition Algebras

Given a Bruhat-Tits building, the defining field for the building at infinity is complete with respect
to a discrete valuation. In particular, we will have to deal with octonions and thus composition
algebras which are complete with respect to a discrete valuation.

(3.34) Definition Let A be an alternative division ring. A discrete valuation of A is a map
ν : A∗ → Z such that

ν(xy) = ν(x) + ν(y) , ν(x+ y) ≥ min{ν(x), ν(y)}

for all x, y ∈ A∗. A ν-uniformizer is an element π ∈ A∗ such that 〈ν(π)〉 = ν(A∗).

(3.35) Lemma Let A be an alternative division ring with discrete valuation ν. Then the map

δν : A× A→ R, (x, y) 7→
{

2−ν(x−y) , x 6= y

0 , x = y

is a metric.

Proof
This is lemma (9.18) of [W].

(3.36) Definition Let A be an alternative division ring with discrete valuation ν. Then A is
complete with respect to ν if (A, δν) is a complete metric space.

(3.37) Definition A composition algebra over a field K is a unital algebra A over K together
with a non-defective quadratic form N : A→ K which permits composition, i.e., we have

∀ x, y ∈ A : N(xy) = N(x)N(y) .

(3.38) Lemma An octonion division algebra O is a composition algebra over K := Z(O).

Proof
The norm N is non-defective by corollary (3.24) and multiplicative by (9.9)(iii) of [TW].

(3.39) Lemma Let A be an alternative division ring with discrete valuation ν. Then the
following holds:

(a) The algebra A is complete with respect to ν if and only if the center Z(A) is complete with
respect to ν|Z(A).

(b) If A is a composition algebra which is complete with respect to ν, we have

∀ x ∈ A : ν(x) =
ν
(
N(x)

)
2

(
=
ν
(
N(−x)

)
2 = ν(−x)

)
.

Proof

(a) This is proposition (23.14) of [W].

(b) This results from proposition 1 of [P].

(3.40) Definition Let A be a composition division algebra over K which is complete with
respect to a discrete valuation ν and such that its residue field Ā is a composition algebra over
the residue field K̄. Then A is unramified if we have ν(A) = ν(K), and ramified otherwise.
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Chapter 4 Quadratic Spaces
Quadrangles of quadratic form type are parametrized by quadratic spaces.

§ 4.1 Basic Definitions and Basic Properties

(4.1) Definition

• An (anisotropic) quadratic space is a triple (L0,K, q) such that K is a field, L0 is a right
vector space over K and q is an (anisotropic) quadratic form on L0 , i.e., q : L0 → K is a
map such that the following holds:

(Q1) ∀ a ∈ L0, t ∈ K : q(at) = q(a)t2.
(Q2) The map

fq : L0 × L0 → K, (a, b) 7→ q(a+ b)− q(a)− q(b)
is bilinear.

(Q3) ∀ a ∈ L0 : q(a) = 0K ⇔ a = 0L0 .

• A quadratic space (L0,K, q) is proper if we have fq 6≡ 0K.

• Two quadratic spaces (L0,K, q) and (L̃0, K̃, q̃) are isomorphic if there is an isomorphism

Φ = (ϕ, φ) : (L0,K)→ (L̃0, K̃)

of vector spaces such that
q̃ ◦ ϕ = φ ◦ q .

• A quadratic space (L0,K, q) is unital if there is a basepoint ε ∈ L0 such that q(ε) = 1K.

• Given a quadratic space (L0,K, q) with basepoint ε, we set

T : L0 → K, x 7→ fq(ε, x) = fq(x, ε) , σ : L0 → L0, x 7→ x̄ := ε · T (x)− x .

Given a ∈ L∗0, we set

πa : L0 → L0, v 7→ v − a · fq(a, v)/q(a) , ha : L0 → L0, v 7→ πaπε(v) · q(a) .

(4.2) Lemma Let (L0,K, q) and (L̃0, K̃, q̃) be quadratic spaces with basepoints ε and ε̃,
respectively, and let (ϕ, φ) : (L0,K, q)→ (L̃0, K̃, q̃) be an isomorphism of quadratic spaces such
that ϕ(ε) = ε̃. Then we have

T̃ ◦ ϕ = φ ◦ T , σ̃ ◦ ϕ = ϕ ◦ σ .

Proof
Given x, y ∈ L0, we have

fq̃
(
ϕ(x), ϕ(y)

)
= q̃
(
ϕ(x) + ϕ(y)

)
− q̃
(
ϕ(x)

)
− q̃
(
ϕ(y)

)
= φ

(
q(x+ y)− q(x)− q(y)

)
= φ

(
fq(x, y)

)
.

In particular, we have

T̃
(
ϕ(x)

)
= fq̃

(
ϕ(x), ε̃

)
= φ

(
fq(x, ε)

)
= φ

(
T (x)

)
and thus

ϕ(x)σ̃ = ε̃ · T̃
(
ϕ(x)

)
− ϕ(x) = ε̃ · φ

(
T (x)

)
− ϕ(x) = ϕ

(
ε · T (x)− x

)
= ϕ(xσ)

for each x ∈ L0.
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(4.3) Notation Throughout this paragraph, (L0,K, q) is a quadratic space with basepoint ε.

(4.4) Lemma The maps T : L0 → K and σ : L0 → L0 are K-linear.

Proof
Given x ∈ L0 and s ∈ K, we have

T (x · s) = fq(ε, x · s) = fq(ε, x)s = T (x)s

and thus

(x · s)σ = ε · T (x · s)− x · s = ε · T (x)s− x · s =
(
ε · T (x)− x

)
· s = xσ · s .

Given x, y ∈ L0, we have

T (x+ y) = fq(ε, x+ y) = fq(ε, x) + fq(ε, y) = T (x) + T (y)

and thus

(x+ y)σ = ε · T (x+ y)− (x+ y) = ε · T (x)− x+ ε · T (y)− y = xσ + yσ .

(4.5) Lemma Given x ∈ L0, a ∈ L∗0, we have

ha(x) = a · fq(a, xσ)− xσ · q(a) .

Proof
Given x ∈ L0, a ∈ L∗0, we have

ha(x) = πaπε(x) · q(a) = πa
(
x− ε · fq(ε, x)

)
· q(a)

= −πa(xσ) · q(a) = −
(
xσ − a · fq(a, xσ)/q(a)

)
q(a) = a · fq(a, xσ)− xσ · q(a) .

(4.6) Corollary Given a ∈ L∗0, the corresponding Hua map ha is K-linear.

Proof
Let a ∈ L∗0, x, y ∈ L0 and s ∈ K. By lemma (4.5) and lemma (4.4), we have

ha(x · s) = a · fq(a, xσ · s)− xσ · sq(a) =
(
a · fq(a, xσ)− xσ · q(a)

)
· s = ha(x) · s

and

ha(x+ y) = a · fq
(
a, (x+ y)σ

)
− (x+ y)σ · q(a)

= a ·
(
fq(a, xσ) + fq(a, yσ)

)
− xσ · q(a)− yσ · q(a) = ha(x) + ha(y) .

(4.7) Lemma Given x ∈ L0, a ∈ L∗0 and s ∈ K, we have

ha·s(x) = ha(x · s2) = ha(x) · s2 , ha·s = s2 · ha .

Proof
Let x ∈ L0, a ∈ L∗0 and s ∈ K. By lemma (4.5), lemma (4.4) and corollary (4.6), we have

ha·s(x) = a · sfq(a · s, xσ)− xσ · q(a · s) = a · fq(a, xσ)s2 − xσ · q(a)s2

= a · fq
(
a, (xs2)σ

)
− (xs2)σ · q(a) = ha(x · s2) = ha(x) · s2 .
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(4.8) Lemma Given x, y ∈ L0, we have

fq(xσ, y) = fq(yσ, x) = fq(x, yσ) .

Proof
Given x, y ∈ L0, we have

fq(xσ, y) = fq
(
ε · T (x)− x, y

)
= −fq(x, y) + fq(ε, y)T (x) = −fq(x, y) + T (x)T (y) ,

which is symmetric in x and y.

(4.9) Remark

(a) Given x ∈ L0, we have

fq(x, x) = q(2x)− q(x)− q(x) = 4q(x)− 2q(x) = 2q(x) .

(b) We have
εσ = ε · fq(ε, ε)− ε = ε · 2− ε = ε .

(4.10) Corollary Given x ∈ L0, we have

T (xσ) = T (x) .

Proof
Let x ∈ L0. By remark (4.9) (b) and lemma (4.8), we have

T (x) = fq(ε, xσ) = fq(εσ, xσ) = fq
(
ε, (xσ)σ

)
= T (xσ) .

(4.11) Corollary We have σ2 = idL0 .

Proof
Given x ∈ L0, we have

(xσ)σ = ε · T (xσ)− xσ = ε · T (x)−
(
ε · T (x)− x

)
= x .

§ 4.2 Small Dimensions

Quadratic spaces of small dimension are in fact quadratic spaces corresponding to fields.

(4.12) Theorem Let (L0,K, q) be a quadratic space with basepoint ε such that dimK L0 ≤ 2.
Then there is a unique multiplication ∗ : L0 × L0 → L0 such that the following holds:

(i) The triple F̃ := (L0,+, ∗) is a field.

(ii) The subspace K̃ := 〈ε〉K is a subfield of F̃.

(iii) The map φ : K→ K̃, s 7→ ε · s is an isomorphism of fields.

(iv) Given x ∈ L0, we have
φ
(
q(x)

)
= x ∗ xσ .
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Proof
Condition (iii) forces

∀ s, t ∈ K : (ε · s) ∗ (ε · t) = φ(s) ∗ φ(t) = φ(st) = ε · st ,

which makes K̃ really into a field, hence (ii) and (iii) hold.
• If we have dimK L0 = 1, then F̃ = K̃ is a field. By lemma (4.4) and remark (4.9) (b), we

have
∀ s ∈ K : (ε · s)σ = εσ · s = ε · s

and thus

∀ s ∈ K : φ
(
q(ε · s)

)
= φ(s2) = ε · s2 = (ε · s) ∗ (ε · s) = (ε · s) ∗ (ε · s)σ .

• If we have dimK L0 = 2, there is an element x̃ ∈ L0 \ K̃. Conditions (i) and (ii) force
x̃ ∗ ε := x̃ =: ε ∗ x̃, and condition (iv) forces

x̃ · T (x̃)− x̃ ∗ x̃ = x̃ ∗ (ε · T (x̃)− x̃) = x̃ ∗ x̃σ = φ
(
q(x̃)

)
= ε · q(x̃)

and thus x̃ ∗ x̃ := x̃ · T (x̃)− ε · q(x̃). Given s, t, s̃, t̃ ∈ K, we set

(ε · s+ x̃ · t) ∗ (ε · s̃+ x̃ · t̃) := ε · (ss̃− q(x̃)tt̃) + x̃ ·
(
st̃+ s̃t+ T (x̃)tt̃

)
.

Let f := y2 − yT (x̃) + q(x̃) ∈ K[y]. Given s ∈ K, we have

s2−sT (x̃)+q(x̃) = q
(
ε·(s)

)
−sfq(ε, x̃)+q(x̃) = q

(
ε·(s)

)
+q(x̃)−fq(ε·s, x̃) = q(ε·s+x̃) 6= 0K .

Therefore, the polynomial f ∈ K[y] is irreducible. Let x be an element in the algebraic
closure of K such that f(x) = 0K. Then F := K(x) is a field with dimK F = deg(f) = 2 and
multiplication given by

x2 = xT (x̃)− q(x̃) .
Therefore, the map

Φ : F→ F̃, s+ xt 7→ ε · s+ x̃ · t
is an isomorphism of fields, hence (i) holds. Given s, t ∈ K, we finally have

φ
(
q(ε · s+ x̃ · t)

)
= ε ·

(
s2 + q(x̃)t2 + fq(ε · s, x̃ · t)

)
= ε ·

(
s2 + fq(ε, x̃)st+ q(x̃)t2

)
= ε · (s2 + T (x̃)st+ q(x̃)t2) + x̃ · (−st+ st+ T (x̃)t2 − T (x̃)t2

)
=
(
ε · s+ x̃ · t

)
∗
(
ε · s+ ε · T (x̃ · t)− x̃ · t

)
= (ε · s+ x̃ · t) ∗ (ε · s+ x̃ · t)σ ,

hence (iv) holds.

(4.13) Definition Given a quadratic space (L0,K, q) with basepoint ε and dimK L0 ≤ 2, we
set

F(L0,K, q) := F̃ ,

where F̃ is as in theorem (4.12).

(4.14) Corollary Let (L0,K, q) be a quadratic space with basepoint ε and dimK L0 ≤ 2, let
F̃ := F(L0,K, q), let K̃ := 〈ε〉K and let φ : K→ K̃, s 7→ ε · s. Then F̃ is quadratic over K̃, we have
N F̃

K̃ = φ ◦ q, the map (idL0 , φ) : (L0,K, q) → (F̃, K̃, N F̃
K̃) is an isomorphism of quadratic spaces,

and exactly one of the following holds:
(i) Char F̃ = 2, F̃2 ⊆ K̃ 6= F̃ and σ = idF̃, which means that F̃/K̃ is inseparable.

(ii) K̃ = F̃ and σ = idF̃.

(iii) F̃/K̃ is a separable quadratic extension and 〈σ〉 = Gal(F̃/K̃).
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Proof
By construction, we have

∀ x ∈ F̃ : x ∗ x− x ∗
(
ε · T (x)

)
+ ε · q(x) = 0F̃ ,

thus F̃ is quadratic over K̃ = 〈ε〉K with N F̃
K̃ = φ ◦ q, T F̃

K̃ = φ ◦ T and

∀ x ∈ L0, s ∈ K : idL0(x · s) = x · s = x ∗ (ε · s) = idL0(x) ∗ φ(s)

(which shows that (idL0 , φ) is an isomorphism of quadratic spaces), and we have

∀ x ∈ F̃ : σ(x) = ε · T (x)− x = T F̃
K̃(x)− x ,

which is just the map σ in proposition (3.32) (which we apply). We have dimK̃ F̃ ≤ 2, thus
(F̃, K̃, σ) is neither of type (iv) nor of type (v).

(4.15) Lemma Let A be an alternative division ring which is quadratic over a subfield F of
its center. Then (A,F, N) with N := NA

F is a quadratic space.

Proof
By proposition (3.32), we have N(x) = xxσ for each x ∈ A.

(Q1) Given s ∈ F, we have
N(x · s) = N(x)N(s) = N(x)s2 .

(Q2) Given x, y ∈ A, we have

fq(x, y) = N(x+ y)−N(x)−N(y)
= (x+ y)(x+ y)σ − xxσ − yyσ = xyσ + yxσ = xyσ + (xyσ)σ = T (xyσ) ,

which is K-linear in x and y by lemma (4.4).

(Q3) Given x ∈ A, we have
N(x) 6= 0A ⇔ x ∈ UA = A∗ .

(4.16) Definition A quadratic space (L0,K, q) with basepoint ε is (linear) of type (m) if we
have (L0,K, q) ∼= (A,F, NA

F ) as in (m) of proposition (3.32), i.e., the quadratic space (L0,K, q) is
of type

(i) if F := L0 is a field with CharF = 2, F2 ⊆ K 6= F, σ = idF and q = NF
K,

(ii) if we have L0 = K, σ = idK and q = NK
K ,

(iii) if E := L0 is a field, E/K is a separable quadratic extension, 〈σ〉 = Gal(E/K) and q = NE
K,

(iv) if H := L0 is a quaternion division algebra over K, σ = σs and q = NH
K ,

(v) if O := L0 is an octonion division algebra over K, σ = σs and q = NO
K .

(4.17) Remark These are exactly the quadratic spaces such that the corresponding Moufang
set of quadratic form type is isomorphic to a Moufang set of linear type, cf. theorem (31.7) and
lemma (31.23). This explains the terminology.
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§ 4.3 Clifford Algebras and the Clifford Invariant

(4.18) Definition
• A central simple algebra is a finite-dimensional associative algebra (A,K) which is simple as

a ring and such that Z(A) ∼= K as fields.

• Two central simple algebras (A,K) and (Ã, K̃) are isomorphic if there is an isomorphism
(γ, φ) : (A,K)→ (Ã, K̃) of vector spaces such that γ is an isomorphism of rings.

• Let (L0,K, q) be a quadratic space, let T (L0) be the tensor algebra of L0 and let
I(q) := 〈u⊗ u− 1K · q(u) | u ∈ L0〉 .

Then C(q) := T (L0)/I(q) is the Clifford algebra of q.

(4.19) Lemma Let (L0,K, q) be a non-defective quadratic space such that dimK L0 is even.
Then

(
C(q),K

)
is a central simple algebra.

Proof
This results from proposition (11.6) of [EKM].

(4.20) Theorem (Wedderburn) Given a central simple algebra (A,K), there are a unique
natural number n ∈ N∗ and an associative division algebra (D,K) such that (A,K) ∼=

(
Mn(D),K

)
as algebras. The algebra (D,K) is unique up to isomorphism of algebras.

Proof
Cf. theorem (1.1) of [KMRT].

(4.21) Definition
• Given a central simple algebra (A,K), we set S(A,K) := [(D,K)], where (D,K) is a division
algebra as in theorem (4.20) and [(D,K)] denotes its isomorphism class.

• Let (L0,K, q) be a non-defective quadratic space such that dimK L0 is even. Then
Clif(q) := S

(
C(q),K

)
is the Clifford invariant of q.

(4.22) Lemma Given two isomorphic central simple algebras (A,K) and (Ã, K̃), we have
S(A,K) = S(Ã, K̃) .

Proof
Let n, ñ and (D,K), (D̃, K̃) be as in theorem (4.20). Then we have(

Mn(D),K
) ∼= (A,K) ∼= (Ã, K̃) ∼=

(
Mñ(D̃), K̃

)
as algebras and thus (D,K) ∼= (D̃, K̃) by theorem (4.20).

(4.23) Lemma Let (L0,K, q), (L̃0, K̃, q̃) be isomorphic quadratic spaces. Then we have(
C(q),K

) ∼= (C(q̃), K̃
)

as algebras. In particular, we have Clif(q) = Clif(q̃) if the dimensions are even and at least one
(and thus both) quadratic spaces are non-defective.

Proof
This results from (12.23) of [TW]. In particular, we may apply lemma (4.22).
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§ 4.4 Norm Splittings

(4.24) Definition Let (L0,K, q) be a quadratic space. A norm splitting of q is a triple
(E, ·, {v1, . . . , vd}) such that the following holds:

(N1) E/K is a separable quadratic extension,

(N2) · : L0×E→ L0 is a scalar multiplication extending the scalar multiplication · : L0×K→ L0,

(N3) {v1, . . . , vd} is an E-Basis of L0 with

∀ t1, . . . , td ∈ E : q
( d∑
i=1

viti
)

=
d∑
i=1

siN(ti) ,

where si = q(vi) for each i ∈ {1, . . . , n} and N = NE
K.

The elements s1, . . . , sd ∈ K are called the constants of the norm splitting.

(4.25) Lemma Let O be an octonion division algebra with center K := Z(O) and let E be
a subfield such that E/K is a separable quadratic extension (which exists by lemma (3.23) and
(20.19) of [TW]). Then there are v1, . . . , v4 ∈ O such that (E, ·, {v1, . . . , v4}) is a norm splitting
of (O,K, N), satisfying s1 · · · s4 ∈ N(E).

Proof
Let v1 := 1O. By (20.20) of [TW], there is an element v2 ∈ E⊥ \ E, and H2 := E + v2 · E is a
quaternion division algebra. By (20.21) of [TW], there is an element v3 ∈ H⊥2 \H2. Finally, let
v4 := v2v3 ∈ H⊥2 \H2. Then {v1, . . . , v4} is an E-Basis of O. By construction and (20.20) of [TW]
again,

Hi := E + vi · E

is a quaternion division algebra for each i ∈ {2, 3, 4}, satisfying vj ∈ H⊥i \Hi for all i 6= j ∈ {2, 3, 4}.
By lemma (3.26), we have

N
( 4∑
i=1

tivi
)

= (t1v1 + t2v2 + t3v3 + t4v4) · (v̄1t̄1 + v̄2t̄2 + v̄3t̄3 + v̄4t̄4)

=
4∑
i=1

tiviv̄it̄i +
∑
i6=j

(
(tivi)(v̄j t̄j) + (tjvj)(v̄it̄i)

)
=

4∑
i=1

N(vi)N(ti) +
∑
i 6=j

(
v̄j(v̄it̄it̄j) + (vj t̄j)(v̄it̄i)

)
=

4∑
i=1

N(vi)N(ti) +
∑
i 6=j

(
v̄j(v̄it̄it̄j) + vj(v̄it̄it̄j)

)
=

4∑
i=1

N(vi)N(ti) +
∑
i 6=j

(
(v̄j + vj)(v̄it̄it̄j)

)
=

4∑
i=1

N(vi)N(ti) +
∑
i 6=j

(
(−vj + vj)(v̄it̄it̄j)

)
=

4∑
i=1

N(vi)N(ti) .

In particular, we have si = N(vi) for each i ∈ {1, . . . , 4}, and thus, by lemma (3.26) again,

s1 · · · s4 = N(v1) · · ·N(v4) = N(v1 · · · v4) = N(v2v3v2v3) = N(−v2
2v

2
3) ∈ N(K) ⊆ N(E) .
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(4.26) Definition A quadratic space (L0,K, q) is

• of type E6 if dimK L0 = 6 and q has a norm splitting,

• of type E7 if dimK L0 = 8 and q has a norm splitting (E, ·, {v1, . . . , v4}) such that

s1 · · · s4 /∈ N(E) ,

• of type E8 if dimK L0 = 12 and q has a norm splitting (E, ·, {v1, . . . , v6}) such that

−s1 · · · s6 ∈ N(E) .

(4.27) Remark As we only deal with anisotropic quadratic spaces and since each anisotropic
space having a norm splitting is automatically non-defective by remark (12.12) of [TW] (and thus
proper), we may reformulate remark (12.30) of [TW] as follows:

(4.28) Lemma Let (L0,K, q) be a quadratic space having a norm splitting (E, ·, {v1, . . . , vd})
with constants s1, . . . , sd and let

γ := (−1)[d/2]s1 · · · sd .

Then the following holds:

(a) We have C(q) ∼= M2d(K) if γ ∈ N(E) and thus Clif(q) = [(K,K)].

(b) We have C(q) ∼= M2d−1(H) if γ /∈ N(E) and thus Clif(q) = [(H,K)], where H = (E/K, γ).

Proof
This is remark (12.30) of [TW].

(4.29) Corollary Let O be an octonion division algebra with norm N and center K := Z(O)
and let (L̃0, K̃, q̃) be a quadratic space of type E7. Then the following holds:

(a) We have Clif(N) = [(K,K)].

(b) We have Clif(q̃) = [(H̃, K̃)] for some quaternion division algebra H̃ with center K̃.

(c) We have (O,K, N) 6∼= (L̃0, K̃, q̃) as quadratic spaces.

Proof

(a) By lemma (4.25), N has a norm splitting (E, ·, {v1, . . . , v4}) such that

γ = s1 · · · s4 ∈ N(E) ,

hence Clif(N) = [(K,K)] by lemma (4.28) (a).

(b) By definition, q has a norm splitting (Ẽ, ·, {v1, . . . , v4}) such that

γ = s1 · · · s4 /∈ N(Ẽ) ,

hence we may apply lemma (4.28) (b).

(c) Since K is a field and H̃ is non-commutative, we have (K,K) 6∼= (H̃, K̃) as algebras and thus

Clif(N) 6= Clif(q) .

Now the quadratic spaces can’t be isomorphic by lemma (4.23).
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§ 4.5 Quadratic Spaces of Type F4

(4.30) Definition Let (L0,K, q) be a quadratic space.

• Given a subset W ⊆ L0, we set

W⊥ := {v ∈ L0 | fq(v,W ) = 0K} .

• The subspace Def(q) := L⊥0 is the defect of q.

• The quadratic space (L0,K, q) is non-defective if Def(q) = {0L0}, and defective otherwise.

(4.31) Remark Let (L0,K, q) be a non-proper quadratic space, i.e., we have fq ≡ 0K. Then
we have Def(q) = L0, and (L0,K, q) is defective. In particular, a quadratic space is proper if it is
non-defective.

(4.32) Definition Let (L0,K, q) be a quadratic space and let R0 := Def(q). Then (L0,K, q)
is a quadratic space of type F4 if we have CharK = 2 and the following holds:

• q(R0)/q(ρ) is a subfield of K for some ρ ∈ R∗0.

• For some complement S0 of R0 in L0, the restriction of q to S0 has a norm splitting
(E, ·, {v1, v2}) with constants s1, s2 such that s1s2 ∈ q(R0)/q(ρ).

(4.33) Remark By (14.2) of [TW], the field q(R0)/q(ρ) is independent of the choice of ρ ∈ R∗0.
In particular, we have

F := g(R0)/q(ε) = q(R0)

if (L0,K, q) is a quadratic space with basepoint ε ∈ R∗0.

(4.34) Notation Let (L0,K, q) be a quadratic space of type F4 and let ρ ∈ R∗0. We set

F := q(R0)/q(ρ) .

(4.35) Lemma A quadratic space (L0,K, q) of type F4 is proper.

Proof
By definition, there is a complement S0 of R0 in L0 such that the restriction of q to S0 has a norm
splitting (E, ·, {v1, v2}) with constants s1, s2 such that s1s2 ∈ F. Moreover, q is anisotropic, hence
(S0,K, q|S0) is non-defective by (12.12) of [TW]. In particular, (S0,K, q|S0) and thus (L0,K, q) is
proper.

(4.36) Lemma Let (L0,K, q) be a quadratic space of type F4 and let (Ã, F̃, Ñ) be a quadratic
space of type (m). Then we have

(L0,K, q) 6∼= (Ã, F̃, Ñ)

as quadratic spaces.

Proof
Assume (L0,K, q) ∼= (Ã, F̃, Ñ). Since (L0,K, q) is proper by lemma (4.35), (F̃, Ã, Ñ) is proper
as well and thus (m)/∈ {(i),(ii)} since we have CharK = 2. But a quadratic space of type
(m)∈ {(iii),. . . ,(v)} is non-defective by (20.15) of [TW] and the proof of corollary (3.24), while a
quadratic space of type F4 is defective by definition since F = q(R0)/q(ρ) is a field.
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Chapter 5 Involutory Sets
Quadrangles of purely involutory type are parametrized by proper involutory sets.

§ 5.1 Basic Definitions

(5.1) Definition

• An involutory set is a triple (K,K0, σ), where K is a skew-field, σ is an involution of K and
K0 is an additive subgroup of K such that

1K ∈ K0 , {a+ aσ | a ∈ K} =: Kσ ⊆ K0 ⊆ Fix(σ) , ∀ a ∈ K : aσK0a ⊆ K0 .

• An involutory set (K,K0, σ) is proper if we have σ 6= idK and 〈K0〉 = K as rings.

• Two involutory sets (K,K0, σ) and (K̃, K̃0, σ̃) are isomorphic if there is an isomorphism
φ : K→ K̃ of skew-fields such that

φ(K0) = K̃0 , φ ◦ σ = σ̃ ◦ φ .

• Let (K,K0, σ), (K̃, K̃0, σ̃) be two involutory sets. A Jordan homomorphism is an additive
monomorphism γ : K0 → K̃0 such that

γ(1K) = 1K̃ , ∀ x, y ∈ K0 : γ(xyx) = γ(x)γ(y)γ(x) .

(5.2) Lemma Let (K,K0, σ) be an involutory set. If K0 is commutative, then (K,K0, σ) is
non-proper. In particular, K is non-commutative if (K,K0, σ) is proper.

Proof
Suppose that we have 〈K0〉 = K and σ 6= idK. Then K is commutative and K0 = Fix(σ) ( K is a
field, cf. remark (11.3) of [TW]. But then we have

K = 〈K0〉 = K0 6= K  .

§ 5.2 Jordan Isomorphisms of Involutory Sets

The following result is essential for the classification of Jordan isomorphisms of pseudo-quadratic
spaces on the one hand, and on the other hand, it is essential for the classification of a certain
class of 443-foundations.

Parts of the solution can be deduced from paragraph 4.10 of [K]. However, there are still some
details which have to be worked out. But for reasons of brevity, we don’t try to complete the
proof at this point and suppose the result to be true.

(5.3) Theorem Let (K,K0, σ) be a proper involutory set, let (K̃, K̃0, σ̃) be an involutory set
and let γ : K0 → K̃0 be a Jordan isomorphism such that γ(1K) = 1K̃. Then γ is induced by an
isomorphism

φ : (K,K0, σ)→ (K̃, K̃0, σ̃) .

In particular, (K̃, K̃0, σ̃) is proper as well.
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§ 5.3 Involutory Sets of Quadratic Type

Quadrangles parametrized by non-proper involutory sets can equally described by quadratic
spaces, cf. chapter 38 of [TW]. Although they don’t appear explicitly in the description of the
six families, they occur as substructures of proper pseudo-quadratic spaces, the parametrizing
structures for quadrangles of purely pseudo-quadratic form type.

(5.4) Definition Let (A,F, σ) be an involutory set (with A possibly an alternative division
ring) and K := Z(A). Then the involutory set is quadratic of type
(i) if we have A = K, CharK = 2, K2 ⊆ F 6= K and σ = idA,

(ii) if we have A = K = F and σ = idA,

(iii) if we have A = K, K/F is a separable quadratic extension and 〈σ〉 = Gal(K/F),

(iv) if A is a quaternion division algebra over K, F = K and σ = σs,

(v) if A is an octonion division algebra over K, F = K and σ = σs,
where σs denotes the standard involution, cf. proposition (3.32). We denote the corresponding
norm by N and the corresponding trace by T .

(5.5) Remark The following lemma gives a criterion when an involutory set is of quadratic
type. We will need it for the classification of a certain class of 443-foundations.

(5.6) Lemma Let (K,K0, σ) be an involutory set, let F be a subfield of the center Z(K) and
let γ ∈ Aut(K,+) such that

γ(1K) = 1K , ∀ x ∈ K : γ(x)x ∈ F .

Then the following holds:
(a) K is quadratic over F.

(b) If K is non-commutative, then K is a quaternion division algebra and we have

F = Z(K) , γ = σs .

Proof
(a) Given x ∈ K, we have

γ(x) + x = 1K + γ(x) + x+ γ(x)x− 1K − γ(x)x
=
(
1K + γ(x)

)
(1K + x)− 1K − γ(x)x

= γ(1K + x)(1K + x)− 1K − γ(x)x ∈ F .

If we set
mx := t2 −

(
γ(x) + x

)
· t+ γ(x)x ∈ F[t] ,

we have
mx(x) = x2 − γ(x)x− x2 + γ(x)x = 0K ,

thus K is quadratic over F.

(b) If K is non-commutative, proposition (3.32) implies that K is a quaternion division algebra
with F = Z(K). Moreover, we have

∀ x ∈ K : σs(x) = T (x)− x = γ(x) + x− x = γ(x)

and therefore
γ = σs .
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(5.7) Remark The following results will be needed for the solution of the isomorphism
problem for Moufang sets of pseudo-quadratic form type in §11.

(5.8) Lemma Let D be a skew-field and let E be a maximal subfield of D. Then we have

CD(E) = E .

Proof
This results from corollary (4.9) in chapter 8 of [WSch].

(5.9) Notation Let H be a quaternion division algebra with center K. Given x ∈ H \K, let
Ex := 〈1H, x〉K be the quadratic subfield of H generated by 1H and x, cf. (20.9) of [TW].

(5.10) Corollary Let H be a quaternion division algebra and let x, y ∈ H \ Z(H). Then we
have

xy = yx ⇒ Ex = Ey .

Proof
By lemma (5.8), we have

Ex = 〈1, x〉Z(H) ⊆ CH(Ey) = Ey .

(5.11) Lemma For i = 1, 2, let (Ai,Fi, σi) be quadratic of type (iii), (iv) or (v) with
corresponding norms and traces Ni and Ti, respectively, and let φ : A1 → A2 be an isomorphism
of alternative rings such that φ(F1) = F2. Then we have

∀ x ∈ A : φ
(
N1(x)

)
= N2

(
φ(x)

)
, φ

(
T1(x)

)
= T2

(
φ(x)

)
.

Proof
Given x ∈ Ai, we have

x2 − T1(x)x+N1(x) = 0A1 , φ(x)2 − T2
(
φ(x)

)
φ(x) +N2

(
φ(x)

)
= 0A2

and hence

0A1 = φ−1(φ(x)2 − T2(φ(x))φ(x) +N2(φ(x))
)

= φ−1φ
(
x2 − φ−1(T2(φ(x)))x+ φ−1(N2(φ(x)))

)
= x2 − φ−1(T2(φ(x))

)
x+ φ−1(N2(φ(x))

)
.

As the maps T1 and N1 are uniquely determined by the minimum equation, we obtain

N1(x) = φ−1(N2(φ(x))
)
, φ

(
N1(x)

)
= N2

(
φ(x)

)
,

T1(x) = φ−1(T2(φ(x))
)
, φ

(
T1(x)

)
= T2

(
φ(x)

)
.

(5.12) Corollary For i = 1, 2, let (Ai,Fi, σi) be quadratic of type (iii), (iv) or (v) with
corresponding norms and traces Ni and Ti, respectively, and let φ : A1 → A2 be an isomorphism
of alternative rings such that φ(F1) = F2. Then we have

φ ◦ σ1 = σ2 ◦ φ .

Proof
Given x ∈ A1, we have

φσ1(x) = φ(x̄) = φ
(
N1(x) · x−1) = φ

(
N1(x)

)
· φ(x−1) = N2

(
φ(x)

)
· φ(x)−1 = φ(x) = σ2φ(x) .
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(5.13) Lemma Let H be a quaternion division algebra, let E be a separable quadratic subfield
and let y ∈ H \ E. Then we have

y ∈ E⊥ ⇔ ∀ x ∈ E : xy = yx̄ .

Proof

“⇒” This holds by lemma (3.26) (c).

“⇐” Let e ∈ E⊥ and y1, y2 ∈ E such that y = y1 + ey2. Given x ∈ E \ Z(H), we have

y1x+ ey2x̄ = y1x+ ex̄y2 = x(y1 + e · y2) = xy = yx̄ = y1x̄+ ey2x̄ ,

hence

y1x = y1x̄ , y1(x− x̄) = 0H , y1 = 0H , y = ey2 ∈ E⊥ .

Notice that we use lemma (3.26) several times.

(5.14) Remark The following results give a description for some extensions of isomorphisms
between subfields of two given composition algebras.

(5.15) Lemma For i = 1, 2, let Ei/Ki be a separable quadratic extension and let ti ∈ Ei \Ki.
Let φ : K1 → K2 be an isomorphism of fields. Then the map

φ̃ : E1 → E2, x+ t1 · y 7→ φ(x) + t2 · φ(y)

is an isomorphism of fields if and only if we have

φ
(
N1(t1)

)
= N2(t2) , φ

(
T1(t1)

)
= T2(t2) .

Proof

“⇒” This holds by lemma (5.11).

“⇐” This is a direct calculation using the minimum equation.

(5.16) Lemma For i = 1, 2, let Hi = (Ei/Ki, βi) be a quaternion division algebra and let
ti ∈ E⊥i . Let φ : E1 → E2 be an isomorphism of fields. Then the map

φ̃ : H1 → H2, x+ t1 · y 7→ φ(x) + t2 · φ(y)

is an isomorphism of skew-fields if and only if we have

φ
(
N1(t1)

)
= N2(t2) .

Proof

“⇒” This holds by lemma (5.11).

“⇐” This is a direct calculation using the minimum equation and lemma (5.13).

(5.17) Remark We finally recall the list of quadratic spaces corresponding to involutory sets
of quadratic type.
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(5.18) Definition A quadratic space (L0,K, q) is of type

(i) if F := L0 is a field with CharF = 2, F2 ⊆ K 6= F, σ = idF and q = NF
K,

(ii) if we have L0 = K, σ = idK and q = NK
K ,

(iii) if E := L0 is a field, E/K is a separable quadratic extension, 〈σ〉 = Gal(E/K) and q = NE
K,

(iv) if H := L0 is a quaternion division algebra over K, σ = σs and q = NH
K ,

(v) if O := L0 is an octonion division algebra over K, σ = σs and q = NO
K .

(5.19) Remark

(a) By corollary (4.14), a quadratic space (L0,K, q) with dimK L0 ≤ 2 is of type (i)-(iii).

(b) We will see that the Moufang sets of a quadratic space (A,F, NA
F ) of type (m) and of the

corresponding alternative division ring A coincide, cf. lemma (31.23).

Chapter 6 Indifferent Sets
Quadrangles of purely indifferent type are parametrized by proper indifferent sets.

(6.1) Definition

• An indifferent set is a triple (K,K0,L0), where K is a field with CharK = 2 and K0 and L0
are additive subgroups of K containing 1K such that

K2
0L0 ⊆ L0 , L0K0 ⊆ K0 , 〈K0〉 = K as rings .

• An indifferent set is proper if we have K0 6= K and L0 6= L := 〈L0〉.

• Two indifferent sets (K,K0,L0) and (K̃, K̃0, L̃0) are isomorphic if there is an isomorphism
φ : K→ K̃ of fields such that

φ(K0) = K̃0 , φ(L0) = L̃0 .

(6.2) Lemma Let (K,K0,L0) be an indifferent set. Then (L,L0,K2
0) is an indifferent set.

Proof
This is (10.2) of [TW].

(6.3) Definition The opposite of an indifferent set (K,K0 ,L0 ) is the indifferent set (L,L0,K2
0).

(6.4) Lemma Given a proper indifferent set (K,K0,L0), its opposite (L,L0,K2
0) is proper.

Proof
Since (K,K0,L0) is proper, we have L0 6= L. We have to show K2

0 6= 〈K2
0〉. By remark (10.8) of

[TW], the opposite of (L,L0,K2
0) is (K2,K2

0,L2
0), and we have

(K2,K2
0,L2

0) ∼= (K,K0,L0)

as indifferent sets. In particular, we have 〈K2
0〉 = K2. Moreover, we have K2

0 6= K2 since the map
Fr : K→ K, x 7→ x2 is injective and K0 6= K by assumption. We finally obtain

K2
0 6= K2 = 〈K2

0〉 .
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Chapter 7 Pseudo-Quadratic Spaces
Quadrangles of purely pseudo-quadratic form type are parametrized by proper pseudo-quadratic
spaces.

§ 7.1 Basic Definitions and Basic Properties

First of all we give the basic definitions and introduce the Moufang set of pseudo-quadratic form
type, more precisely, its associated group, corresponding to a pseudo-quadratic space.

(7.1) Definition

• An (anisotropic) right (resp. left) pseudo-quadratic space is a quintuple Ξ = (K,K0, σ, L0, q)
such that (K,K0, σ) is an involutory set, L0 is a right (resp. left) vector space over K
and q is an (anisotropic) pseudo-quadratic form on L0 with respect to σ, i.e., there is a
skew-hermitian form f on L0 such that the following holds:

(P1) ∀ a, b ∈ L0 : q(a+ b) ≡ q(a) + q(b) + f(a, b) mod K0,
(P2) ∀ a ∈ L0, t ∈ K : q(at) ≡ tσq(a)t mod K0 (resp. q(ta) ≡ tq(a)tσ mod K0),
(P3) q(a) ≡ 0K mod K0 ⇔ a = 0L0 .

• A pseudo-quadratic space (K,K0, σ, L0, q) is proper if we have σ 6= idK, L0 6= {0} and if the
associated skew-hermitian form f is non-degenerate.

• Two pseudo-quadratic space Ξ and Ξ̃ are isomorphic if there is an isomorphism

Φ = (ϕ, φ) : (L0,K)→ (L̃0, K̃)

of vector spaces such that φ : (K,K0, σ)→ (K̃, K̃0, σ̃) is an isomorphism of involutory sets
and such that

φ ◦ q ≡ q̃ ◦ ϕ mod K̃0 .

(7.2) Lemma The skew-hermitian form f is uniquely determined by (7.1) (P1) and satisfies

∀ a ∈ L0 : f(a, a) = q(a)− q(a)σ .

Proof
This is (11.19) of [TW]. Notice that we have K0 6= K since Ξ is proper.

(7.3) Corollary Given an isomorphism Φ = (ϕ, φ) : Ξ→ Ξ̃ of pseudo-quadratic spaces, we
have

∀ a, b ∈ L0 : f̃
(
ϕ(a), ϕ(b)

)
= φ

(
f(a, b)

)
.

Proof
We have to show that

∀ a, b ∈ L0 : φ−1(f̃(ϕ(a), ϕ(b))
)
≡ q(a+ b)− q(a)− q(b) mod K0 .

Given a, b ∈ L0, we have

φ−1(f̃(ϕ(a), ϕ(b))
)
∈ φ−1(q̃(ϕ(a+ b))− q̃(ϕ(a))− q̃(ϕ(b)) + K̃0

)
= φ−1(φ(q(a+ b))− φ(q(a))− φ(q(b)) + K̃0

)
= q(a+ b)− q(a)− q(b) + K0 .
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(7.4) Remark Let Ξ be a pseudo-quadratic space and let a ∈ L0.

• Assume CharK 6= 2. Then we have

4q(a) ≡ q(2a) ≡ 2q(a) + f(a, a) mod K0 , q(a) ≡ f(a, a)
2 mod K0 .

• Assume CharK = 2. Then we have f(a, a) = q(a) + q(a)σ ∈ K0.

(7.5) Definition Given a pseudo-quadratic space Ξ, we set

T := T (Ξ) := {(a, t) ∈ L0 ×K | q(a)− t ∈ K0} .

(7.6) Notation Throughout the rest of this chapter, let Ξ be a proper pseudo-quadratic space
and let T be the corresponding set as in definition (7.5).

(7.7) Lemma Given (a, t) ∈ T, k ∈ K, we have

(a, t+ k) ∈ T ⇔ k ∈ K0 .

Proof
Given (a, t) ∈ T and k ∈ K, we have

(a, t+ k) ∈ T ⇔ q(a)− t− k ∈ K0 ⇔ k ∈ q(a)− t+ K0 = K0 .

(7.8) Corollary Given (a, t) ∈ T , we have f(a, a) = t− tσ.

Proof
Let (a, t) ∈ T . By lemma (7.7), there is an element k ∈ K0 such that t = q(a) + k, hence

t− tσ = q(a) + k − q(a)σ − kσ = q(a)− q(a)σ = f(a, a)

by lemma (7.2).

(7.9) Corollary Let

· : T × T → T, (a, t) · (b, v) :=
(
a+ b, t+ v + f(b, a)

)
.

Then (T, ·) is a group with Z(T ) = {(0L0 , t) | t ∈ K0} ∼= K0 and (a, t)−1 = (−a,−tσ) for each
(a, t) ∈ T .

Proof
This results from (11.24) and (38.10) of [TW]. Notice that Ξ is proper.

(7.10) Remark In the following, we don’t distinguish between Z(T ) and K0, i.e., we consider
K0 to be a subset of T via the above identification.

(7.11) Lemma Given (a, t), (b, v) ∈ T , we have

(a, t) · (b, v) ∈ K0 ⇔ a = −b .

Proof
Given (a, t), (b, v) ∈ T , we have

(a, t) · (b, v) ∈ K0 ⇔
(
a+ b, t+ v + f(b, a)

)
∈ K0 ⇔ a+ b = 0L0 ⇔ a = −b .
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§ 7.2 Jordan Isomorphisms

We collect some first results about isomorphisms preserving the Moufang set structure.

(7.12) Notation Throughout this paragraph, let Ξ̃ be an additional pseudo-quadratic space,
let T̃ be the corresponding group as in definition (7.5) and let γ : T → T̃ be an isomorphism of
groups.

(7.13) Remark As T is non-abelian and γ is an isomorphism of groups, we have σ̃ 6= idK̃,
L̃0 6= {0}, and the associated skew-hermitian form is not identically zero, i.e., Ξ̃ is pre-proper.
Moreover, it is proper if we have Char K̃ 6= 2, and, if Char K̃ = 2, we may replace Ξ̃ by a proper
pseudo-quadratic space, cf. definition (35.5) of [TW].

Thus we get a satisfying solution of the isomorphism problem for Moufang sets of pseudo-
quadratic form type if we restrict to the case of two proper pseudo-quadratic spaces.

(7.14) Corollary We have γ(K0) = K̃0.

Proof
We have γ(K0) = γ

(
Z(T )

)
= Z(T̃ ) = K̃0.

(7.15) Lemma Let ϕ1 : T → L̃0, ϕ2 : T → K̃ defined by

γ(a, t) =
(
ϕ1(a, t), ϕ2(a, t)

)
.

Then we have
∀ (a, t) ∈ T : ϕ1(a, t) = ϕ1(a) .

Moreover, the ϕ1 : L0 → L̃0 is an isomorphism of groups.

Proof

• Given (a, t), (a, u) ∈ T , we have

(a, t) · (a, u)−1 = (a, t) · (−a,−uσ) ∈ K0 = Z(T )

by lemma (7.11); therefore,(
ϕ1(a, t), ϕ2(a, t)

)
·
(
− ϕ1(a, u),−ϕ2(a, u)σ̃

)
= γ2(a, t) · γ2(a, u)−1

= γ2
(
(a, t) · (a, u)−1) ∈ Z(T̃ ) = K̃0

and thus ϕ1(a, t) = ϕ1(a, u) by lemma (7.11) again.

• We have
(
a, q(a)

)
∈ T for each a ∈ L0, hence ϕ1 is well-defined.

• As the multiplication in T is additive in the first component, ϕ1 is additive.

• Let (a, t) ∈ T such that a ∈ Kerϕ1. Then we have

γ(a, t) =
(
0L0 , ϕ2(a, t)

)
∈ K̃0 ⊆ Z(T̃ ) ,

hence (a, t) ∈ Z(T ) = K0 by corollary (7.9) and thus a = 0L0 .

• We have
(
a, q̃(a)

)
∈ T̃ for each a ∈ L̃0. As γ is surjective, ϕ1 is surjective as well.
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(7.16) Definition A Jordan isomorphism is an isomorphism of groups γ : T → T̃ with
γ(0, 1K) = (0, 1K̃) such that the maps ϕ1 : T → L̃0, ϕ2 : T → K̃ defined by

γ(a, t) =
(
ϕ1(a, t) = ϕ1(a), ϕ2(a, t)

)
satisfy

ϕ1
(
btσ − at−1f(a, b)tσ

)
= ϕ1(b)ϕ2(a, t)σ̃ − ϕ1(a)ϕ2(a, t)−1f̃

(
ϕ1(a), ϕ1(b)

)
ϕ2(a, t)σ̃ , (7.1)

ϕ2
(
btσ − at−1f(a, b)tσ, tvtσ

)
= ϕ2(a, t)ϕ2(b, v)ϕ2(a, t)σ̃ (7.2)

for all (a, t), (b, v) ∈ T .

(7.17) Definition Given (a, t) ∈ T ∗, the Hua-map with respect to (a, t) is

h(a,t) : T → T, (b, v) 7→
(
btσ − at−1f(a, b)tσ, tvtσ

)
.

(7.18) Remark A Jordan isomorphism could equally be defined as an isomorphism of groups
γ : T → T̃ satisfying γ(0, 1K) = (0, 1K̃) and preserving the Hua-maps, i.e, given (a, t), (b, v) ∈ T ∗,
we have

γ
(
h(a,t)(b, v)

)
= h̃γ(a,t)

(
γ(b, v)

)
.

(7.19) Lemma We have h(a,t) ∈ Aut(T ) for each (a, t) ∈ T ∗.

Proof
This is theorem 2 of [DW].

(7.20) Notation Since the first component in h(a,t)(b, v) is independent of v, we may restrict
h(a,t) to the first component, i.e., given b ∈ L0, we set

h(a,t)(b) := btσ − at−1f(a, b)tσ .

(7.21) Lemma Let γ : T → T̃ be a Jordan isomorphism. Then the following holds:

(a) Given b ∈ L0, (0L0 , t) ∈ K0, we have ϕ1(b · t) = ϕ1(b) · ϕ2(0L0 , t).

(b) Given (a, t) ∈ T, (0L0 , v) ∈ K0, we have ϕ2(0L0 , tvt
σ) = ϕ2(a, t) · ϕ2(0L0 , v) · ϕ2(a, t)σ̃.

(c) The map φ : K0 → K̃0, t 7→ ϕ2(0L0 , t) is a Jordan isomorphism as in definition (5.1).

(d) Given (a, t) ∈ T and s ∈ K0, we have ϕ2(a, t+ s) = ϕ2(a, t) + φ(s).

Proof
(a) This results from identity (7.1) with a = 0L0 . Notice that we have

K0 ⊆ Fix(σ) , γ(K0) = K̃0 ⊆ Fix(σ̃) .

(b) This results from identity (7.2) with b = 0L0 .

(c) By corollary (7.14), φ is an isomorphism of groups. Given (0L0 , t), (0L0 , v) ∈ K0, we have

ϕ2(0, tvt) = ϕ2(0, tvtσ) = ϕ2(0, t) · ϕ2(0, v) · ϕ2(0, t)σ̃ = ϕ2(0, t) · ϕ2(0, v) · ϕ2(0, t) .

(d) Given (a, t) ∈ T and s ∈ K0, we have(
ϕ1(a), ϕ2(a, t+ s)

)
= γ(a, t+ s) = γ(a, t) · γ(0, s)
=
(
ϕ1(a), ϕ2(a, t)

)
·
(
0, φ(s)

)
=
(
ϕ1(a), ϕ2(a, t) + φ(s)

)
.
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Chapter 8 A Partial Result

For the classification of 443-foundations in part IX, we will need a part of the solution of the
isomorphism problem for Moufang sets of pseudo-quadratic form type. We state a version of the
result at this point and break up the proof into several steps. The main point is that under certain
conditions, a Jordan isomorphism of pseudo-quadratic spaces is induced by an isomorphism of the
corresponding pseudo-quadratic spaces, and we handle the possible cases one by one.

Then we have a closer look at the exceptions, which only occur in small dimensions, before we
finally show that each of the appearing maps really induces a Jordan isomorphism.

Chapter 8 A Partial Result
(8.1) Theorem Let Ξ and Ξ̃ be proper pseudo-quadratic spaces, let γ : T → T̃ be a Jordan
isomorphism and suppose that one of the following holds:

(i) The involutory set (K,K0, σ) is proper.

(ii) The involutory set (K,K0, σ) is quadratic of type (iii) or (iv) and dimK L0 ≥ 3.

(iii) The involutory set (K,K0, σ) is quadratic of type (iii) or (iv), dimK L0 ≤ 2 and K̃ ∼= K 6∼= F4.

Then γ is induced by an isomorphism Φ : Ξ→ Ξ̃ of pseudo-quadratic spaces.

Proof
This results from theorem (9.8), theorem (10.38), theorem (11.11) and theorem (12.18).

(8.2) Notation Throughout this part, let Ξ and Ξ̃ be proper pseudo-quadratic spaces, let
γ : T → T̃ be a Jordan isomorphism and let φ : K0 → K̃0, t 7→ ϕ2(0L0 , t).

Chapter 9 The Involutory Set Is Proper
The first case is that of a proper involutory set (K,K0, σ). The solution of the isomorphism
problem for proper involutory sets yields an isomorphism φ : K→ K̃. From identity (7.1) and the
fact that K0 generates K as a ring, we deduce that (ϕ1, φ) : (L0,K)→ (L̃0, K̃) is an isomorphism
of vector spaces.

Finally, we show that the second component of γ is induced by φ, using identity (7.2) and the
fact that the dimension of 〈K0〉Z(K) over Z(K) is at least 2.

(9.1) Notation Throughout this chapter, let (K,K0, σ) be proper.

(9.2) Lemma Let (K̂, K̂0, σ̂) be a proper involutory set and let s, t ∈ K̂ be such that

∀ u ∈ K̂0 : susσ̂ = tutσ̂ .

Then we have t−1s ∈ Z(K̂).

Proof
First of all we notice that

ssσ̂ = s · 1K̂ · s
σ̂ = t · 1K̂ · t

σ̂ = ttσ̂

and thus
∀ u ∈ K̂0 : sus−1 = susσ̂(ssσ̂)−1 = tutσ̂(ttσ̂)−1 = tut−1 .

It follows that
∀ u ∈ 〈K̂0〉 = K̂ : t−1su(t−1s) = u ,

hence t−1s ∈ Z(K̂).
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(9.3) Remark As (K,K0, σ) is proper, the map φ : K0 → K̃0 as defined in notation (8.2) is
induced by an isomorphism φ : (K,K0, σ)→ (K̃, K̃0, σ̃) of involutory sets, and (K̃, K̃0, σ̃) is proper,
cf. theorem (5.3).

(9.4) Corollary Let (a, t) ∈ T . Then there is an element λ ∈ Z(K̃) such that

ϕ2(a, t) = λ · φ(t) .

Proof
By lemma (7.21) (b), we have

φ(t)φ(v)φ(t)σ̃ = φ(tvtσ) = ϕ2(0, tvtσ) = ϕ2(a, t)ϕ2(0, v)ϕ2(a, t)σ̃ = ϕ2(a, t)φ(v)ϕ2(a, t)σ̃

for all (a, t) ∈ T , v ∈ K0 and thus

φ(t) · ṽ · φ(t)σ̃ = ϕ2(a, t) · ṽ · ϕ2(a, t)σ̃

for all (a, t) ∈ T , ṽ ∈ K̃0. Now the assertion results from lemma (9.2).

(9.5) Lemma We have
dimZ(K)〈K0〉Z(K) ≥ 2 .

Proof
As (K,K0, σ) is proper, there is an element x ∈ K0 \ Z(K) by lemma (5.2).

(9.6) Corollary Let (a, s) ∈ T . Then there is an element t ∈ K such that

(a, t) ∈ T , s /∈ 〈tσ〉Z(K) .

Proof
We have (a,−sσ) ∈ T . By lemma (9.5), there is an element u ∈ K0 such that s /∈ 〈u〉Z(K), thus

s /∈ 〈−s+ u〉Z(K) = 〈(−s+ u)σ
2
〉Z(K) = 〈(−sσ + u)σ〉Z(K) ,

and by lemma (7.7), we have (a,−sσ + u) ∈ T .

(9.7) Lemma Given (a, s) ∈ T , we have

ϕ2(a, s) = φ(s) .

Proof
Let (a, s) ∈ T and let t ∈ K be as in corollary (9.6). Notice that s+ tσ ∈ K0. By corollary (9.4),
there are λ1, λ2 ∈ Z(K̃) such that

ϕ2(a, s) = λ1 · φ(s) , ϕ2(−a, t) = λ2 · φ(t) .

Observing corollary (7.8), we obtain(
0, φ(s) + φ(tσ)

)
= γ(0, s+ tσ) = γ

(
0, s+ t− f(a, a)

)
= γ(a, s) · γ(−a, t) =

(
ϕ1(a), ϕ2(a, s)

)
·
(
ϕ1(−a), ϕ2(−a, t)

)
=
(
0, ϕ2(a, s) + ϕ2(−a, t)− f̃(ϕ1(−a), ϕ1(−a))

)
=
(
0, ϕ2(a, s) + ϕ2(−a, t)σ̃

)
=
(
0, λ1 · φ(s) + λ2 · φ(tσ)

)
and thus λ1 = 1K̃ by the linear independence of φ(s) and φ(tσ), cf. remark (9.3).
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(9.8) Theorem If (K,K0, σ) is proper, the map Φ : Ξ→ Ξ̃ defined by

Φ := (ϕ1, φ) : (L0,K)→ (L̃, K̃), (a, t) 7→
(
ϕ1(a), φ(t)

)
is an isomorphism of pseudo-quadratic spaces satisfying

∀ (a, t) ∈ T : Φ(a, t) = γ(a, t) .

Proof

• By remark (9.3), the map φ : (K,K0, σ)→ (K̃, K̃0, σ̃) is an isomorphism of involutory sets.

• By lemma (7.15), the map ϕ1 : L0 → L̃0 is an isomorphism of groups. Given a ∈ L0 and
t1, . . . , tn ∈ K0, we have

ϕ1
(
a · t1 · · · tn

)
= ϕ1(a) · φ(t1) · · ·φ(tn) = ϕ1(a) · φ(t1 · · · tn)

by lemma (7.21) (a), thus (ϕ1, φ) is an isomorphism of vector spaces as we have 〈K0〉 = K.

• Given (a, t) ∈ T , we have

q̃
(
ϕ1(a)

)
∈ ϕ2(a, t) + K̃0 = φ(t) + K̃0 = φ

(
t+ K0

)
= φ

(
q(a) + K0

)
= φ

(
q(a)

)
+ K̃0

by lemma (9.7).

• Given (a, t) ∈ T , we have

Φ(a, t) =
(
ϕ1(a), φ(t)

)
=
(
ϕ1(a), ϕ2(a, t)

)
= γ(a, t) .

(9.9) Remark If (K,K0, σ) is non-proper, then (A,F, σ) := (K,K0, σ) is quadratic of type
(iii) or (iv), cf. (38.14) of [TW]. It would be nice to have the same result in this case. However,
this is false in general, thus we will need some additional assumptions.

Chapter 10 The Involutory Set Is of Quadratic Type
The second case is that of an involutory set which is of quadratic type and dimK L0 ≥ 3. The
crucial step is to show that ϕ1 maps orthogonal vectors to orthogonal vectors and hence subspaces
to subspaces. In particular, we may apply the fundamental theorem of projective geometry to get
an isomorphism (ϕ1, φ) : (L0,K)→ (L̃0,K0) of vector spaces.

In order to prove this, we introduce a technical condition concerning orthogonality which is
preserved by the Hua-maps. However, this condition is only enough to handle separable elements
which results in a separate treatment of inseparable elements.

Finally, we show that the second component of γ is induced by φ, using identity (7.1) and
the fact that the dimension of L0 over K is at least 3, which ensures the existence of enough
orthogonal vectors.

(10.1) Notation Throughout this chapter, we suppose (A,F, σ) := (K,K0, σ)
(
and therefore

(Ã, F̃, σ̃) := (K̃, K̃0, σ̃)
)
to be quadratic of type (iii) or (iv).

(10.2) Definition

• An element a ∈ L0 with f(a, a) = 0A is called inseparable.

• Otherwise, it is called separable.
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(10.3) Remark

(a) If a ∈ L0 is separable, we have

q(a)− q(a)σ = f(a, a) 6= 0A , q(a)σ 6= q(a) .

(b) If a ∈ L∗0 is inseparable, we have

q(a)σ = q(a) , q(a) ∈ Fix(σ) \ F ,

which implies CharA = 2. Moreover, (A,F, σ) is quadratic of type (iv) in this case.

(10.4) Lemma An element a ∈ L∗0 is inseparable iff we have (a, t)2 = 0T for each (a, t) ∈ T .

Proof
Notice that we have CharA = 2 by remark (10.3) (b). Given (a, t) ∈ T , we have

0T = (a, t)2 =
(
a+ a, t+ t+ f(a, a)

)
=
(
0L0 , f(a, a)

)
⇔ f(a, a) = 0A .

(10.5) Corollary An element a ∈ L∗0 is inseparable if and only if ϕ1(a) ∈ L̃∗0 is inseparable.

Proof
Given (a, t) ∈ T , we have

(a, t)2 = 0T ⇔ γ(a, t)2 = 0T̃ .

(10.6) Notation

• We set
g : L0 × L0 → F, (a, b) 7→ f(b, a)− q(a+ b) + q(a) + q(b) . (10.1)

• Given x ∈ A \ F, let Ex be the quadratic subfield of A generated by 1A and x.

• Given a ∈ L∗0, we set Ea := Eq(a). It is a separable quadratic subfield iff a is separable.

• Given a ∈ L∗0, we set
Ra := 〈a, a · q(a)〉F = a · Ea ,

so that Ra is a 2-dimensional F-subspace of L0.

• Suppose (A,F, σ) to be quadratic of type (iv). Given a separable element a ∈ L0, let ea be
an element of A orthogonal to Ea (with respect to the standard trace of A). For each x ∈ A,
let αa(x) and βa(x) be the unique elements of Ea such that

x = αa(x) + eaβa(x) .1

• Given a ∈ L∗0, we set

Xa := {t ∈ K | (a, t) ∈ T} = {s+ q(a) | s ∈ F} ⊆ Ea .

(10.7) Remark Given a ∈ L∗0, we have Xa ⊆ Ea \ F which implies

∀ t ∈ Xa : Et = Ea .

In particular, we have Ea = Et for each (a, t) ∈ T such that a 6= 0L0 .
1We assume ea′ = ea for each a′ ∈ Ra, hence αa′ = αa and βa′ = βa for each a′ ∈ Ra
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(10.8) Lemma Let a ∈ L∗0 be such that N(t) = T (t)2 for each t ∈ Xa. Then we have |F| = 2.

Proof
Let t ∈ Xa. Given s ∈ F, we have

0A = T (t)2 −N(t) = T (t+ s)2 −N(t) = N(t+ s)−N(t) = sT (t) +N(s) = s
(
T (t) + s

)
and therefore

∀ s ∈ F∗ : s = −T (t) ,

which implies |F| = 2.

(10.9) Lemma Let a ∈ L∗0 and |F| ≥ 3. Then we have

{tσ − t−1f(a, a)tσ | t ∈ Xa} 6⊆ F .

Proof
Notice that we have

{tσ − t−1f(a, a)tσ | t ∈ Xa} = {
(
1A − t−1(t− tσ)

)
tσ | t ∈ Xa} = {t−1(tσ)2 | t ∈ Xa} . (10.2)

Assume {t−1(tσ)2 | t ∈ Xa} ⊆ F. Then we have

∀ t ∈ Xa : (tσ)3 = t−1(tσ)2 ·N(t) ∈ F , t3 ∈ F .

Therefore, we have(
T (t)2 −N(t)

)
· t− T (t)N(t) =

(
T (t)t−N(t)

)
· t = t3 ∈ F (10.3)

and thus T (t)2 = N(t) for each t ∈ Xa. Now lemma (10.8) yields |F| = 2.

(10.10) Remark

(a) The map
φ : F→ F̃, t 7→ ϕ2(0, t)

is a Jordan isomorphism by lemma (7.21) (c), hence an isomorphism of fields by Hua’s
theorem, cf. theorem (19.31). Therefore, the map ϕ1 : L0 → L̃0 is an isomorphism of vector
spaces over F by lemma (7.21) (a).

(b) Given (a, t) ∈ T , we have
(
ϕ1(a), ϕ2(a, t)

)
∈ T̃ , hence Ẽϕ2(a,t) = Ẽϕ1(a) by remark (10.7).

(10.11) Corollary Given a ∈ L∗0, we have

ϕ1(Ra) = R̃ϕ1(a) .

Proof

• Assume |F| ≥ 3. By lemma (10.9), we have

〈1A, {tσ − t−1f(a, a)tσ | t ∈ Xa}〉F = Ea ,

hence
ϕ1(Ra) = ϕ1(a · Ea) ⊆ ϕ1(a) · Ẽϕ1(a) = R̃ϕ1(a)

by remark (10.10) (a), identity (7.1) with (b, v) := (a, t), corollary (7.8) and remark
(10.10) (b).
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• It remains to consider the case |F| = 2 which implies A = Ea ∼= F4 ∼= Ẽϕ1(a) = Ã. Given
a ∈ L∗0 and t ∈ Xa, we have

N(t) = 1A = T (t) = f(a, a) ,

hence
(at, t) = (at, tσtt) ∈ T .

Substituting (a, t) by (at, t) and (b, v) by (a, t) in identity (7.1) yields

ϕ1(a) = ϕ1
(
a · (tσ + t)

)
= ϕ1

(
a · tσ + (at) · t−1f(at, a)tσ

)
= ϕ1(a) · ϕ2(at, t)σ̃ + ϕ1(at) · ϕ2(at, t)−1f̃

(
ϕ1(at), ϕ1(a)

)
ϕ2(at, t)σ̃ .

Because of ϕ2(at, t) /∈ F̃ we have

ϕ2(at, t)−1f̃
(
ϕ1(at), ϕ1(a)

)
ϕ2(at, t)σ̃ 6= 0Ã

and thus

ϕ1(at) =
(
ϕ1(a) + ϕ1(a) · ϕ2(at, t)σ

)
·
(
ϕ2(at, t)−1f̃(ϕ1(at), ϕ1(a))ϕ2(at, t)σ̃

)−1 ∈ R̃ϕ1(a) .

(10.12) Remark The following lemma is due to Tom De Medts.

(10.13) Lemma Let x ∈ A with xσ 6= x. Then the set

S :=
{

(s+ x)−1(s+ x)σ | s ∈ F
}

cannot be completely contained in a one-dimensional F-subspace of A.

Proof
Suppose that |F| = 2. Then we have A ∼= F4, hence

S = {x, x+ 1A} ,

and the assertion is true. So assume |F| ≥ 3 and S ⊆ y · F for some y ∈ A∗. Then for each s ∈ F,
there is an element ts ∈ F such that (s+ x)σ = (s+ x)yts. In particular, xσ = xyt0, and hence we
also have (s+x)σ = s+xσ = s+xyt0. Therefore, (s+x)yts = s+xyt0 for all s ∈ F. Multiplying
on the right by s−1y−1 yields

s−1((s+ x)ts − xt0
)

= y−1 (10.4)

for all s ∈ F∗. It follows that

r−1((r + x)tr − xt0
)

= s−1((s+ x)ts − xt0
)

for all r, s ∈ F∗. This can be rearranged to get

rs(ts − tr) = x(str − st0 − rts + rt0)

for all r, s ∈ F∗. Since x 6∈ F, this can only happen if both sides are zero. Hence ts = tr for all
r, s ∈ F∗, and substituting this in the right hand side gives (s−r)(tr− t0) = 0A for all r, s ∈ F∗ and
hence tr = t0 for all r ∈ F, where we use the fact that F∗ has at least two elements. Substituting
this in equation (10.4) yields t0 = y−1, but then xσ = xyt0 = x. This contradiction finishes the
proof.
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(10.14) Remark Let d ∈ L∗0 be separable. Then for all s ∈ F and x ∈ A, we have(
s+ q(d)

)−1
x
(
s+ q(d)

)σ = αd(x)
(
s+ q(d)

)−1(
s+ q(d)

)σ + edβd(x) ,

and by lemma (10.13), the set

S :=
{(
s+ q(d)

)−1(
s+ q(d)

)σ | s ∈ F
}

cannot be completely contained in a one-dimensional F-subspace of A.

(10.15) Lemma Let A be a quaternion division algebra and let a, b ∈ L0 be separable. Then
there are a′ ∈ Ra and b′ ∈ Rb such that a′ + b′ and a′ · q(a′) + b′ are separable.

Proof

• Let CharA 6= 2. By remark (10.3) (b), it is enough to choose a′ := a and s ∈ F such that

b′ := b · s /∈ {−a,−a · q(a)} .

• Let CharA = 2. Given x ∈ L, we have

f(x, x) = q(x) + q(x)σ ∈ F

and thus

Fx(s) := f(x+ b · s, x+ b · s) = s2 · f(b, b) + s ·
(
f(x, b) + f(b, x)

)
+ f(x, x)

= s2 · f(b, b) + s ·
(
f(x, b) + f(x, b)σ

)
+ f(x, x) ∈ F[s] .

Since A is non-commutative, we have |F| =∞. As a consequence, there is an element s ∈ F
not contained in the set of zeroes of Fa(s) and Fa·q(a)(s). Then a′ := a and b′ = b · s satisfy
the required conditions.

(10.16) Notation Given a, b ∈ L∗0, c ∈ L0 and r, s, t ∈ F, we set

M(a,s),(b,t),r(c) := h(a,s+q(a))·(b,t+q(b))·(0,r)(c)− h(a,s+q(a))(c)− h(b,t+q(b))(c) .

(10.17) Remark Given a, b, c ∈ L∗0, r, s, t ∈ F and r′ := r + s+ t+ g(a, b), we have(
a, s+ q(a)

)
· (b, t+ q(b)

)
· (0, r) =

(
a+ b, r′ + q(a+ b)

)
.

Now it follows from equation (10.1) and definition (7.17) that we have

M(a,s),(b,t),r(c) = c ·
(
r − f(a, b)

)
+ a ·

((
s+ q(a)

)−1
f(a, c)

(
s+ q(a)

)σ
−
(
r′ + q(a+ b)

)−1
f(a+ b, c)

(
r′ + q(a+ b)

)σ)
+ b ·

((
t+ q(b)

)−1
f(b, c)

(
t+ q(b)

)σ
−
(
r′ + q(a+ b)

)−1
f(a+ b, c)

(
r′ + q(a+ b)

)σ)
.

(10.18) Remark The following lemma shows that orthogonality can be encoded in a condition
that is preserved by Jordan isomorphisms. Notice that we need three pairwise orthogonal vectors.
This is the point where the assumption about the dimension will come in.
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(10.19) Lemma Let x, y, z ∈ L∗0. Suppose that f(x, y) = f(x, z) = f(y, z) = 0A. Then we
have

∀ r, s, t ∈ F, a ∈ Ra′ , b ∈ Rb′ , c ∈ Rc′ : M(a,s),(b,t),r(c) = c · r (10.5)

for each permutation (a′, b′, c′) of (x, y, z).

Proof
For each permutation (a′, b′, c′) of (x, y, z) and for all a ∈ Ra′ , b ∈ Rb′ and c ∈ Rc′ , we have

f(a, b) = f(a, c) = f(b, c) = 0A

as well, and hence M(a,s),(b,t),r(c) = c · r for all r, s, t ∈ F, which shows (10.5).

(10.20) Remark Let a ∈ L∗0. Then we have

∀ t ∈ Xa : ϕ2(a, t) ∈ q̃
(
ϕ1(a)

)
+ F̃ = X̃ϕ1(a) .

Since γ is surjective, it follows that

{ϕ2(a, t) | t ∈ Xa} = X̃ϕ1(a) .

(10.21) Corollary Let x, y, z ∈ L∗0. Suppose that

f(x, y) = f(x, z) = f(y, z) = 0A .

Then (10.5) holds for each permutation (a′, b′, c′) of
(
ϕ1(x), ϕ1(y), ϕ1(z)

)
.

Proof
By lemma (10.19), (10.5) holds for each permutation (a′, b′, c′) of (x, y, z). Since γ preserves the
Hua-maps and ϕ1 : L0 → L̃0 is an isomorphism of vector spaces over F by remark (10.10) (a), we
have

M̃(ϕ1(a),ϕ2(a,s)),(ϕ1(b),ϕ2(b,t)),φ(r)(ϕ1(c)) = ϕ1
(
M(a,s),(b,t),r(c)

)
= ϕ1(c · r) = ϕ1(c) · φ(r)

for all a ∈ Ra′ , b ∈ Rb′ , c ∈ Rc′ , r, s, t ∈ F and for each permutation (a′, b′, c′) of (x, y, z). Corollary
(10.11) and remark (10.20) yield

∀ a ∈ R̃a′ , b ∈ R̃b′ , c ∈ R̃c′ , r, s, t ∈ F̃ : M̃(a,s),(b,t),r(c) = c · r

for each permutation (a′, b′, c′) of
(
ϕ1(x), ϕ1(y), ϕ1(z)

)
.

(10.22) Remark The following lemma is essentially due to Tom De Medts. It shows that we
can reconstruct the orthogonality from the above condition if we suppose all appearing elements to
be separable. In this situation, we know that we have a one-dimensional F-subspace on the right
side of (10.5), but on the left side we have terms which are not contained in a one-dimensional
F-subspace if we vary the coefficients. As a consequence, the occurring scalar products necessarily
vanish.

Afterwards we will have a closer look at inseparable elements. In order to obtain the same result
in this case, we need to establish a connection between the corresponding quadratic extensions.
For this purpose, it is convenient to use an inseparable element in (10.5) twice so that we can
deduce more information about the occurring terms.

(10.23) Lemma Let x, y, z ∈ L∗0. Suppose that (10.5) holds for each permutation (a′, b′, c′)
of (x, y, z). If x, y, z are separable, we have

f(x, y) = f(x, z) = f(y, z) = 0A .
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Proof
Assume that (10.5) holds for each permutation (a′, b′, c′) of (x, y, z). In particular, for all a ∈ Ra′ ,
b ∈ Rb′ and c ∈ Rc′ , the set {

M(a,s),(b,t),r(c) | r, s, t ∈ F
}

is a one-dimensional F-subspace of L0.

• Suppose that A is a quaternion division algebra. By lemma (10.15), there are a ∈ Ra′ , b ∈ Rb′
such that a + b and a · q(a) + b are separable. By varying s over F in M(a,s),(b,t),r(c) but
keeping r′ := r + s+ t+ g(a, b) and t invariant (by the right choice for r), remark (10.14)
yields2 αa

(
f(a, c)

)
= 0A. Similarly,

αb
(
f(b, c)

)
= 0A = αa+b

(
f(a+ b, c)

)
.

Now the expression for M(a,s),(b,t),r(c) can be simplified3 to

M(a,s),(b,t),r(c) = c ·
(
r − f(a, b)

)
− a · f(b, c)− b · f(a, c)

for all c ∈ Rc′ , r, s, t ∈ F. By assumption, we have

c · f(a, b) + a · f(b, c) + b · f(a, c) = 0A (10.6)

for each c ∈ Rc′ .
Now suppose that f(a, b) 6= 0A; we will derive a contradiction. If we interchange a and
b in equation (10.6), we get f(a, b) = f(b, a), and if we replace a by a · q(a) ∈ Ra′ , then
f
(
a · q(a), b

)
= f

(
b, a · q(a)

)
and hence

q(a)σf(a, b) = f(a, b)q(a) . (10.7)

Now let t be an arbitrary element of Ec. On the one hand, we can multiply equation (10.6)
by t; on the other hand, we can replace c by ct ∈ Rc. Comparing these two resulting
equations yields tf(a, b) = f(a, b)t for all t ∈ Ec, which implies f(a, b) ∈ CA(Ec) = Ec. If we
now replace a by a · q(a) ∈ Ra = a · Ea, we get Eaf(a, b) ⊆ Ec, which implies Ea = Ec and
hence f(a, b) ∈ Ea. But then q(a)f(a, b) = f(a, b)q(a), and comparing this with equation
(10.7) yields q(a) = q(a)σ, which gives us the required contradiction and hence

f(a′, b′) = f(a, b) = 0A .

Permuting a′, b′ and c′ now yields

f(x, y) = f(x, z) = f(y, z) = 0A .

• If A is commutative, we immediately obtain

f(a, c) = 0A = f(b, c)

by the same arguments, followed by

f(a+ b, c) = f(a, c) + f(b, c) = 0A

and finally f(a, b) = 0A.

2Notice that we need a, b and a+ b to be separable so that we can apply Lemma (10.13) at this point. This
follows from the assumption that x, y, z are separable and from the choice of a, b. As we will replace a by a · q(a),
we additionally need a · q(a) + b to be separable.

3Notice that we have eaβa

(
f(a, c)

)
= αa

(
f(a, c)

)
+ eaβa

(
f(a, c)

)
= f(a, c) etc.
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(10.24) Remark Lemma (10.23) is enough to handle the cases where CharA 6= 2 or where
(A,F, σ) is quadratic of type (iii) since there are no inseparable elements in this situation. But
with some technical effort, we can handle the remaining case as well.

(10.25) Notation Until proposition (10.30), we suppose (A,F, σ) to be quadratic of type (iv)
with CharA = 2.

(10.26) Remark Let x ∈ L0 be inseparable and let y ∈ L0 be such that f(x, y) = f(x, y)σ.
Then we have

f(x+ y, x+ y) = 0A ⇔ f(x, x) + f(x, y) + f(y, x) + f(y, y) = 0A ⇔ f(y, y) = 0A .

(10.27) Lemma Let x, y, z ∈ L∗0 be such that (10.5) holds for each permutation (a′, b′, c′)
of (x, y, z). If x = y is inseparable and f(x, z) 6= 0A, we have f(x, z) ∈ Ex = Ex+z, and z is
inseparable.

Proof
Since x is inseparable and f(x, z) 6= 0A, we have z /∈ 〈x〉A. Putting a′ = c′ = x, b′ = z and a = c
in (10.5) and comparing the coefficients of a = c yield

f(a, b) =
(
r′ + q(a+ b)

)−1
f(b, a)

(
r′ + q(a+ b)

)σ
for all a ∈ Rx, b ∈ Rz, and putting a′ = z, b′ = c′ = x and b = c in (10.5) and comparing the
coefficients of b = c yield

f(a, b) =
(
r′ + q(a+ b)

)−1
f(a, b)

(
r′ + q(a+ b)

)σ (10.8)

for all a ∈ Rz, b ∈ Rx, hence

∀ a ∈ Rx, b ∈ Rz : f(a, b) = f(b, a) = f(a, b)σ .

In particular, we have

f(x, z) = f(z, x) , q(x)f(x, z) = f(x, z)q(x) , f(x, z) ∈ CA
(
q(x)

)
= Ex

Putting a′ = z, b′ = c′ = x, a = z, b = x and c = x · q(x) in (10.5) and comparing the coefficients
of x yield

q(x)f(z, x) = q(x+ z)−1f(z, x)q(x)q(x+ z)σ = q(x+ z)−1q(x)f(z, x)q(x+ z)σ .

Using equation (10.8) with a = z and b = c = x and multiplying by q(x) yield

q(x)f(z, x) = q(x)q(x+ z)−1f(z, x)q(x+ z)σ .

As a consequence, we have

q(x) ∈ CA
(
q(x+ z)

)
= Ex+z , Ex = Ex+z .

Since x is inseparable, x+ z has to be inseparable as well. Finally, z is inseparable by remark
(10.26).

(10.28) Corollary Let x ∈ L∗0 be inseparable and let y ∈ x⊥ be separable. Then we have

ϕ1(x) ∈ ϕ1(y)⊥ .

Proof
By corollary (10.21), identity (10.5) holds for each permutation (a′, b′, c′) of

(
ϕ1(x), ϕ1(x), ϕ1(y)

)
.

By corollary (10.5), ϕ1(x) is inseparable and ϕ1(y) is separable, thus lemma (10.27) yields(
ϕ1(x), ϕ1(y)

)
= 0Ã .
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(10.29) Lemma Let x ∈ L∗0 and y ∈ x⊥ \ 〈x〉A both be inseparable. Then we have

ϕ1(x) ∈ ϕ1(y)⊥ .

Proof
By corollary (10.21), identity (10.5) holds for each permutation (a′, b′, c′) of

(
ϕ1(x), ϕ1(x), ϕ1(y)

)
and

(
ϕ1(x), ϕ1(y), ϕ1(y)

)
, respectively. Suppose that f̃

(
ϕ1(x), ϕ1(y)

)
6= 0Ã. By corollary (10.5),

ϕ1(x) and ϕ1(y) are inseparable, hence lemma (10.27) yields

f̃
(
ϕ1(x), ϕ1(y)

)
∈ Ẽϕ1(x) = Ẽϕ1(x+y) = Ẽϕ1(y) .

By identity (7.1) with b := y and (a, t) :=
(
x, q(x)

)
, we have

ϕ1
(
y · q(x)σ

)
= ϕ1(y)ϕ2

(
x, q(x)

)σ̃ − ϕ1(x) · ϕ2
(
x, q(x)

)−1
f̃
(
ϕ1(x), ϕ1(y)

)
ϕ2
(
x, q(x)

)σ̃
with

ϕ2
(
x, q(x)

)σ̃ ∈ Ẽϕ1(x) = Ẽϕ1(y) , ϕ2
(
x, q(x)

)−1
f̃
(
ϕ1(x), ϕ1(y)

)
ϕ2
(
x, q(x)

)σ̃ ∈ Ẽϕ1(x) .

By corollary (10.11), there are elements s, t ∈ A such that

ϕ1(y · s) = ϕ1(y)ϕ2
(
x, q(x)

)σ̃
, ϕ1(x · t) = ϕ1(x) · ϕ2

(
x, q(x)

)−1
f̃
(
ϕ1(x), ϕ1(y)

)
ϕ2
(
x, q(x)

)σ̃
,

which yields

y · q(x)σ + y · s+ x · t = 0L0 , s = q(x)σ, t = 0A
and finally

0L0 = ϕ1(x · t) = ϕ1(x) · ϕ2
(
x, q(x)

)−1
f̃
(
ϕ1(x), ϕ1(y)

)
ϕ2
(
x, q(x)

)σ̃
, f̃

(
ϕ1(x), ϕ1(y)

)
= 0Ã .

(10.30) Proposition Let x ∈ L∗0 be inseparable and let y ∈ x⊥. If dimA L0 ≥ 3, we have

ϕ1(x) ∈ ϕ1(y)⊥ .

Proof
If y is separable, we may apply lemma (10.28), and if x and y are linearly independent over A, we
may apply lemma (10.29) so that we may assume y ∈ 〈x〉A. By assumption, there is an element
z ∈ x⊥ \ 〈x〉A. As a consequence, we have

y + z ∈ x⊥ \ 〈x〉A .

Now corollary (10.28) and lemma (10.29), respectively, yield

f̃
(
ϕ1(x), ϕ1(y)

)
= f̃

(
ϕ1(x), ϕ1(y + z)

)
+ f̃

(
ϕ1(x), ϕ1(z)

)
= 0Ã + 0Ã = 0Ã .

(10.31) Lemma Assume dimA L0 ≥ 3 and let a, b ∈ L∗0. Then f(a, b) = 0A if and only if
there is an element c ∈ L∗0 such that

f(a, b) = f(a, c) = f(b, c) = 0A .

Proof
If a or b is inseparable, we may choose c := a or c := b, respectively. So assume that a and b
are separable and f(a, b) = 0A. Since dimA L0 ≥ 3 and dimA〈a, b〉A ≤ 2, there is some element
d ∈ X \ 〈a, b〉A. Then

c := d− a · f(a, a)−1f(a, d)− b · f(b, b)−1f(b, d) 6= 0A
satisfies the required conditions.
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(10.32) Remark We return to the general case.

(10.33) Proposition Let x ∈ L0 be separable and let y ∈ x⊥. If dimA L0 ≥ 3, we have

ϕ1(x) ∈ ϕ1(y)⊥ .

Proof

• If y is inseparable, we may apply proposition (10.30).

• If y is separable, lemma (10.31) yields an element z ∈ L∗0 such that

f(x, z) = 0A = f(y, z) ,

thus (10.5) holds for each permutation (a′, b′, c′) of
(
ϕ1(x), ϕ1(y), ϕ1(z)

)
by corollary (10.21).

◦ If z is inseparable, proposition (10.30) yields

f̃
(
ϕ1(x), ϕ1(z)

)
= 0Ã = f̃

(
ϕ1(y), ϕ1(z)

)
,

followed by
f̃
(
ϕ1(x+ y), ϕ1(z)

)
= 0Ã

and finally f̃
(
ϕ1(x), ϕ1(y)

)
= 0Ã by (10.5).

◦ If z is separable, then ϕ1(x), ϕ1(y), ϕ1(z) are separable by corollary (10.5), thus we
may apply lemma (10.23) to obtain

f̃
(
ϕ1(x), ϕ1(y)

)
= 0Ã .

(10.34) Corollary If we have dimA L0 ≥ 3, the map ϕ1 : L0 → L̃0 is an isomorphism of
vector spaces.

Proof
By proposition (10.30) and proposition (10.33), we have

∀ a ∈ L0 : ϕ1(a⊥) = ϕ1(a)⊥ .

Since f is non-degenerate, this implies that we have

∀ a ∈ L0 : ϕ1(〈a〉A) = ϕ1(a⊥⊥) = ϕ1(a)⊥⊥ = 〈ϕ1(a)〉Ã .

Now the assertion results from the fundamental theorem of projective geometry.

(10.35) Notation Let φ : A→ Ã be the isomorphism of skew-fields defined by

∀ a ∈ L0, t ∈ A : ϕ1(a · t) = ϕ1(a) · φ(t) .

(10.36) Remark Notice that φ is an extension of the isomorphism φ : F→ F̃ of fields.

(10.37) Remark We state the theorem using the general notation.

(10.38) Theorem Let (K,K0, σ) be quadratic of type (iii) or (iv) and let dimK L0 ≥ 3. Then
the map Φ : Ξ→ Ξ̃ defined by

Φ := (ϕ1, φ) : (L0,K)→ (L̃0, K̃), (a, t) 7→
(
ϕ1(a), φ(t)

)
is an isomorphism of pseudo-quadratic spaces satisfying

∀ (a, t) ∈ T : Φ(a, t) = γ(a, t) .
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Proof
• By corollary (10.34) and notation (10.35), the map (ϕ1, φ) : (L0,K) → (L̃0, K̃) is an
isomorphism of vector spaces.

• By remark (10.36), we have φ(K0) = K̃0.

• By corollary (5.12), we have

∀ x ∈ K : φ(xσ) = φ(x)σ̃ .

• Let (a, t) ∈ T and 0L0 6= b ∈ a⊥. Then we have

ϕ1(b) · φ(t)σ̃ = ϕ1(b) · φ(tσ) = ϕ1(b · tσ) = ϕ1(b) · ϕ2(a, t)σ̃

by identity (7.1), proposition (10.30) and proposition (10.33), thus

ϕ2(a, t) = φ(t)

and therefore

q̃
(
ϕ1(a)

)
∈ ϕ2(a, t) + K̃0 = φ(t) + φ(K0) = φ

(
t+ K0

)
= φ

(
q(a) + K0

)
= φ

(
q(a)

)
+ K̃0

as well as
Φ(a, t) =

(
ϕ1(a), φ(t)

)
=
(
ϕ1(a), ϕ2(a, t)

)
= γ(a, t) .

Chapter 11 Small Dimensions I
First we refine some results of the previous chapter, without assuming additional assumptions.
The first step is to show that the map ϕ1 : Ra → Rϕ1(a) is an isomorphism of vector spaces for
each a ∈ L0. We manage to do this by proving that the map ϕ2 : Xa → Xϕ1(a), t 7→ ϕ2(a, t) is
induced by an isomorphism between the associated separable extensions.

Once we have done this, it is easy to prove theorem (8.1) (iii) if the involutory sets are quadratic
of type (iii). Afterwards we will need some more considerations to handle the case of involutory
sets which are quadratic of type (iv), cf. chapter 12.

(11.1) Notation Throughout this chapter, the involutory sets (A,F, σ) and (Ã, F̃, σ̃) are still
quadratic of type (iii) or (iv).

(11.2) Lemma Let a ∈ L0. Then the following holds:
(a) ∀ t ∈ Xa : φ

(
N(t)

)
= Ñ

(
ϕ2(a, t)

)
.

(b) ∀ t ∈ Xa : φ
(
T (t)

)
= T̃

(
ϕ2(a, t)

)
.

Proof
(a) By lemma (7.21) (b) with (b, v) := (0L0 , 1A), we have

φ(ttσ) = ϕ2(0L0 , t · 1A · tσ) = ϕ2(a, t) · ϕ2(0L0 , 1A) · ϕ2(a, t)σ̃ = Ñ
(
ϕ2(a, t)

)
.

(b) By part (a) and lemma (7.21) (d), we have

φ
(
N(t)

)
+ φ

(
T (t)

)
+ 1Ã = φ

(
(t+ 1A)(t+ 1A)σ

)
= φ

(
N(t+ 1A)

)
= Ñ

(
ϕ2(a, t+ 1A)

)
= Ñ

(
ϕ2(a, t) + φ(1A)

)
= Ñ

(
ϕ2(a, t)

)
+ T̃

(
ϕ2(a, t)

)
+ 1Ã ,

hence
φ
(
T (t)

)
= T̃

(
ϕ2(a, t)

)
by part (a) again.
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(11.3) Lemma Let a ∈ L∗0 and t ∈ Xa. Then the map

φ(a,t) : Ea → Ẽϕ1(a), x+ t · y 7→ φ(x) + ϕ2(a, t) · φ(y) (x, y ∈ F)

is an isomorphism of fields such that

∀ u ∈ Xa : ϕ2(a, u) = φ(a,t)(u) .

Proof
By lemma (11.2), we have

φ
(
N(t)

)
= Ñ

(
ϕ2(a, t)

)
, φ

(
T (t)

)
= T̃

(
ϕ2(a, t)

)
so that we may apply lemma (5.15). By lemma (7.21) (d), we have

∀ s ∈ F : ϕ2(a, t+ s) = ϕ2(a, t) + φ(s) = φ(a,t)(t) + φ(a,t)(s) = φ(a,t)(t+ s) .

(11.4) Corollary Let a ∈ L∗0. Given t, u ∈ Xa, we have

φa := φ(a,t) = φ(a,u) .

Proof
We have φ(a,u)(u) = ϕ2(a, u) = φ(a,t)(u) and u /∈ F.

(11.5) Remark Let a ∈ L∗0.
(a) Notice that φa is an extension of the isomorphism φ : F→ F̃ of fields.

(b) We have φa(Ea) = Ẽϕ1(a).

(c) Given t ∈ A, we have

t−1(tσ)2 = (tσ)3

N(t)
(10.3)=

(
T (t)2 −N(t)

)
· tσ − T (t)N(t)

N(t)

=
(
T (t)2 −N(t)

)(
T (t)− t

)
− T (t)N(t)

N(t) = T (t)3 − 2T (t)N(t)
N(t) + N(t)− T (t)2

N(t) · t .

(d) Assume |F| ≥ 3. By lemma (10.8), there is an element t ∈ Xa such that T (t)2 6= N(t).

(11.6) Lemma Assume |F| ≥ 3. Let a ∈ L∗0 and t ∈ Xa be as in remark (11.5) (d), i.e., we
have N(t) 6= T (t)2 and thus φ

(
N(t)

)
6= φ

(
T (t)

)2. Then we have

ϕ1(a · t) = ϕ1(a) · ϕ2(a, t) .

Proof
By remark (11.5) (c), equation (10.2) and identity (7.1) with b = a, we have

ϕ1(a) ·
φ
(
T (t)

)3 − 2φ
(
T (t)

)
φ
(
N(t)

)
φ
(
N(t)

) + ϕ1(a · t) ·
φ
(
N(t)

)
− φ

(
T (t)

)2
φ
(
N(t)

)
(10.10) (a)= ϕ1

(
a ·
(
T (t)3 − 2T (t)N(t)

N(t) + N(t)− T (t)2

N(t) · t
))

(11.5) (c)=
(10.2),(7.1)

ϕ1(a) ·
(
T̃
(
ϕ2(a, t)

)3 − 2T̃
(
ϕ2(a, t)

)
Ñ
(
ϕ2(a, t)

)
Ñ
(
ϕ2(a, t)

) +
Ñ
(
ϕ2(a, t)

)
− T̃

(
ϕ2(a, t)

)2
Ñ
(
ϕ2(a, t)

) · ϕ2(a, t)
)

(11.2)= ϕ1(a) ·
φ
(
T (t)

)3 − 2φ
(
T (t)

)
φ
(
N(t)

)
φ
(
N(t)

) + ϕ1(a) · ϕ2(a, t) ·
φ
(
N(t)

)
− φ

(
T (t)

)2
φ
(
N(t)

)
Notice that we may cancel scalars by assumption.
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(11.7) Remark By corollary (10.11), we have ϕ1(Ra) = R̃ϕ1(a) even in the case |F| = 2.
Notice that we have

A = Ea ∼= F4 ∼= Ẽϕ1(a) = Ã
in this situation which shows that we have ϕ1(〈a〉A) = 〈ϕ1(a)〉Ã. As a consequence, the map
φa : A→ Ã defined by

∀ t ∈ A : ϕ1(a · t) = ϕ1(a) · φa(t)
is an isomorphism of skew-fields. However, it doesn’t necessarily satisfy φa(t) = ϕ2(a, t) for each
t ∈ Xa. We will discuss this case later and go on with assuming |F| ≥ 3.

(11.8) Proposition Given a ∈ L∗0, the map

(ϕ1, φa) : (Ra,Ea)→ (R̃ϕ1(a), Ẽϕ1(a))

is an isomorphism of vector spaces such that φa(t) = ϕ2(a, t) for each t ∈ Xa.

Proof
Let t ∈ Xa be as in remark (11.5) (d). By remark (10.10) (a), lemma (11.6) and lemma (11.3),
we have

∀ x, y ∈ F : ϕ1
(
a · (x+ ty)

)
= ϕ1(a) ·

(
φ(x) + ϕ2(a, t)φ(y)

)
= ϕ1(a) · φa(x+ ty) .

The second assertion results from lemma (11.3).

(11.9) Lemma Let (A,F, σ) and (Ã, F̃, σ̃) both be quadratic of type (iii). Then we have

∀ a, b ∈ L∗0 : φ := φa = φb .

Proof
By assumption, we have A = Ea = Eb and Ã = Ẽϕ1(a) = Ẽϕ1(b) for all a, b ∈ L∗0.

• Let b = a · s for some s ∈ A∗. Given t ∈ A, we have

ϕ1(a) · φa(t) = ϕ1(a · t) = ϕ1(as · s−1t)
= ϕ1(b) · φb(s−1t) = ϕ1(b) · φb(s−1) · φb(t) = ϕ1(a) · φb(t) .

• Let b /∈ 〈a〉A = Ra, hence ϕ1(b) /∈ R̃ϕ1(a) = 〈ϕ1(a)〉Ã by proposition (11.8). Given t ∈ A, we
have

ϕ1(a) · φa(t) + ϕ1(b) · φb(t) = ϕ1(a · t) + ϕ1(b · t) = ϕ1
(
(a+ b) · t

)
= ϕ1(a+ b) · φa+b(t) = ϕ1(a) · φa+b(t) + ϕ1(b) · φa+b(t) ,

thus
φa(t) = φa+b(t) = φb(t)

(11.10) Remark

(a) The proof shows that we have

∀ t ∈ Ea : φa = φat ,

independent of the type of (A,F, σ).

(b) Notice that φ is an extension of the (Jordan) isomorphism φ : F→ F̃.

(c) We state the theorem using the general notation.
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(11.11) Theorem Let (K,K0, σ) and (K̃, K̃0, σ̃) both be quadratic of type (iii) such that
|K0| ≥ 3. Then the map Φ : Ξ→ Ξ̃ defined by

Φ := (ϕ1, φ) : (L0,K)→ (L̃, K̃), (a, t) 7→
(
ϕ1(a), φ(t)

)
is an isomorphism of pseudo-quadratic spaces satisfying

∀ (a, t) ∈ T : Φ(a, t) = γ(a, t) .

In particular, we have K ∼= K̃.

Proof

• By proposition (11.8) and lemma (11.9), the map (ϕ1, φ) : (L0,K)→ (L̃0, K̃) is an isomor-
phism of vector spaces.

• By remark (11.10) (b), we have φ(K0) = K̃0.

• By corollary (5.12), we have φ ◦ σ = σ̃ ◦ φ.

• Let a ∈ L∗0 and t ∈ Xa. By proposition (11.8), we have

ϕ2(a, t) = φa(t) = φ(t) ,

hence

q̃
(
ϕ1(a)

)
∈ ϕ2(a, t) + K̃0 = φ(t) + φ(K0) = φ

(
t+ K0

)
= φ

(
q(a) + K0

)
= φ

(
q(a)

)
+ K̃0 .

• Given (a, t) ∈ T , we have

Φ(a, t) =
(
ϕ1(a), φ(t)

)
=
(
ϕ1(a), ϕ2(a, t)

)
= γ(a, t) .

Chapter 12 Small Dimensions II
Now we prove theorem (8.1) (iii) for the case that (A,F, σ) is quadratic of type (iv). As in the
previous paragraph, we exploit the identities (7.1) and (7.2) to show that φa : Ea → Ẽϕ1(a) is
induced by an isomorphism φa,e : A→ Ā of skew-fields, where a ∈ L∗0 is a separable element and
e ∈ E⊥a .

Notice that we restrict to a separable element a ∈ L∗0 because of the helpful decomposition
A = Ea⊕ eEa with eEa = E⊥a . If we assume ϕ1(a · e) = ϕ1(a) · ẽ for some ẽ ∈ Ã, the isomorphisms
φa and φae of fields induce a map

φa,e : A→ Ã, s+ et 7→ φa(s) + ẽφae(t) (s, t ∈ Ea)

which turns out to be an isomorphism of skew-fields. As a consequence, the two isomorphisms
ϕ1 : Ra → R̃ϕ1(a) and ϕ1 : Rae → R̃ϕ1(ae) of vector spaces over Ea are induced by an isomorphism
ϕ1 : 〈a〉A → 〈ϕ1(a)〉Ã of vector spaces over A.

(12.1) Notation Throughout this chapter, let (A,F, σ) be quadratic of type (iv), and let
(Ã, F̃, σ̃) be quadratic of type (iii) or (iv). Until corollary (12.12), let a ∈ L∗0 be separable and let
e ∈ E⊥a .

(12.2) Lemma Given t ∈ Xa ⊆ Ea, we have

ae · t = ae · tσ − a · t−1f(a, ae)tσ .
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Proof
We have

ae · tσ − a · t−1f(a, ae)tσ = ae · tσ − a · t−1f(a, a)etσ

= ae · tσ − a · t−1(t− tσ)etσ = ae · tσ − ae · (tσ − t)t−σtσ = ae · t .

(12.3) Lemma We have
Xae = −N(e) ·Xa .

Proof
We have

q(ae) ≡ eσq(a)e = N(e)q(a)σ mod F ,

hence

−N(e) ·Xa = −N(e) · {s+ q(a) | s ∈ F} = −N(e) · {s− q(a)σ | s ∈ F}
= {−N(e)s+N(e)q(a)σ | s ∈ F} = {s+ q(ae) | s ∈ F} = Xae .

(12.4) Lemma We have
Eae = Ea .

Proof
We have

q(ae) ∈ N(e)q(a)σ + F ⊆ Ea .

(12.5) Lemma The isomorphisms φae and φa of fields as in remark (11.4) satisfy

φae(Ea) = φa(Ea) .

Proof
Let t ∈ Xa ⊆ Ea = Eae. Then we have −N(e)t ∈ Xae by lemma (12.3), hence

(a, t) ∈ T ,
(
ae,−N(e)t

)
∈ T .

Notice that we have

φa(t)φa(t)σ̃ = Ñ
(
φa(t)

)
= Ñ

(
ϕ2(a, t)

)
= φ

(
N(t)

)
by lemma (11.2) (a). Remarks (11.5) (a), (11.10) (a) and identity (7.2) with (b, v) :=

(
ae,−N(e)t

)
yield

φae(t)φa(t)φa(t)σ̃φ
(
−N(e)

)
= φae(t)φ

(
N(t)

)
φ
(
−N(e)

)
= φae(t)φae

(
−N(e)

)
φae
(
N(t)

)
= φae

(
t(−N(e))N(t)

)
= φaet

(
t · (−N(e)t) · tσ

)
= ϕ2

(
ae · t, t · (−N(e)t) · tσ

)
= ϕ2

(
ae · tσ − a · t−1f(a, ae)tσ, t · (−N(e)t) · tσ

)
= ϕ2(a, t)ϕ2

(
ae,−N(e)t

)
ϕ2(a, t)σ̃ = φa(t)φae

(
−N(e)t

)
φa(t)σ̃

= φa(t)φae(t)φae
(
−N(e)

)
φa(t)σ̃ = φa(t)φae(t)φa(t)σ̃φ

(
−N(e)

)
,

which implies φae(t)φa(t) = φa(t)φae(t) and thus

φae(Ea) = φae(Eae) = Ẽϕ1(ae) = Ẽφae(t) = Ẽφa(t) = Ẽϕ1(a) = φa(Ea) ,

cf. lemma (12.4), remark (11.5) (b), lemma (12.3), remark (10.10) (b) and corollary (5.10).
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(12.6) Corollary We have
φae ∈ {φa, σ̃ ◦ φa} .

Proof
The field Ẽ := φae(Ea) = φa(Ea) is a quadratic separable extension with Aut(Ẽ : F̃) = 〈σ̃〉, and
by remark (11.5) (a), we have

φae ◦ φ−1
a ∈ Aut(Ẽ : F̃) .

(12.7) Remark The following lemma provides the assumptions which are necessary to show
that we can extend the isomorphism φa : Ea → Ẽϕ1(a) of fields to an isomorphism φ : A→ Ã of
skew-fields which induces φae. As a consequence, the map ϕ1 : 〈a〉A → 〈ϕ1(a)〉Ã is an isomorphism
of vector spaces.

(12.8) Lemma Suppose that we have ϕ1(ae) = ϕ1(a)ẽ for some ẽ ∈ Ã and let t ∈ Xa. Then
the following holds:

(a) We have φ := φae = φa.

(b) We have

f̃
(
ϕ1(ae), ϕ1(ae)

)
= −φ

(
N(e)

)
f̃
(
ϕ1(a), ϕ1(a)

)
.

(c) We have
f̃
(
ϕ1(a), ϕ1(a)

)
ẽ = −ẽf̃

(
ϕ1(a), ϕ1(a)

)
.

(d) We have Ñ(ẽ) = φ
(
N(e)

)
.

(e) We have ẽ ∈ Ẽ⊥ϕ1(a).

Proof

(a) By corollary (10.5), ϕ1(a) is separable, hence

f̃
(
ϕ1(a), ϕ1(ae)

)
= f̃

(
ϕ1(a), ϕ1(a)

)
ẽ 6= 0Ã .

By identity (7.1) with (b, v) :=
(
ae,−N(e)t

)
and lemma (12.2), we have

ϕ1(ae)φae(t) = ϕ1(ae · t) = ϕ1
(
ae · tσ − a · t−1f(a, ae)tσ

)
= ϕ1(ae) · ϕ2(a, t)σ̃ − ϕ1(a) · ϕ2(a, t)−1f̃

(
ϕ1(a), ϕ1(ae)

)
ϕ2(a, t)σ̃ (12.1)

= ϕ1(ae) · φa(t)σ̃ − ϕ1(a) · φa(t)−1f̃
(
ϕ1(a), ϕ1(ae)

)
φa(t)σ̃︸ ︷︷ ︸

6=0

,

hence
φae(t) 6= φa(t)σ̃

for each t ∈ Xa and thus φae 6= σ̃ ◦ φa. Now corollary (12.6) yields

φae = φa .

(b) By lemma (12.3), we have −N(e)t ∈ Xae, hence

f̃
(
ϕ1(ae), ϕ1(ae)

)
= φae

(
−N(e)t

)
− φae

(
−N(e)t

)σ̃
= −φ

(
N(e)

)(
φa(t)− φa(t)σ̃

)
= −φ

(
N(e)

)
f̃
(
ϕ1(a), ϕ1(a)

)
,

cf. remark (10.20) and proposition (11.8).
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(c) By (a), we have

ϕ1(a)ẽ · φ(t) = ϕ1(ae) · φ(t)(12.1)= ϕ1(ae) · φ(t)σ̃ − ϕ1(a) · φ(t)−1f̃
(
ϕ1(a), ϕ1(ae)

)
φ(t)σ̃

= ϕ1(ae) · φ(t)σ̃ − ϕ1(a) · φ(t)−1f̃
(
ϕ1(a), ϕ1(a)

)
ẽφ(t)σ̃

= ϕ1(a)ẽ · φ(t)σ̃ − ϕ1(a) · φ(t)−1(φ(t)− φ(t)σ̃
)
ẽφ(t)σ̃

= ϕ1(a) · φ(t)−1φ(t)σ̃ ẽφ(t)σ̃ ,
(12.2)

hence

ẽφ(t) = φ(t)−1φ(t)σ̃ ẽφ(t)σ̃ , φ(t)ẽφ(t) = φ(t)σ̃ ẽφ(t)σ̃

Since t ∈ Xa is arbitrary, we may replace t by t+ 1A to obtain

ẽφ(t) + φ(t)ẽ = ẽφ(t)σ̃ + φ(t)σ̃ ẽ , ẽ
(
φ(t)− φ(t)σ̃

)
= −

(
φ(t)− φ(t)σ̃

)
ẽ .

(d) We have

−ẽÑ(ẽ)−1φ
(
N(e)

)
f̃
(
ϕ1(a), ϕ1(a)

) (b)= ẽ−σ̃ f̃
(
ϕ1(ae), ϕ1(ae)

)
= f̃(ϕ1(ae)ẽ−1, ϕ1(ae)

)
= f̃

(
ϕ1(a), ϕ1(ae)

)
= f̃

(
ϕ1(a), ϕ1(a)

)
ẽ

(c)= −ẽf̃
(
ϕ1(a), ϕ1(a)

)
,

hence

Ñ(ẽ)−1φ
(
N(e)

)
= 1Ã , Ñ(ẽ) = φ

(
N(e)

)
.

(e) We have

ϕ1(a) · ẽφ(t) (12.2)= ϕ1(a) · ẽφ(t)σ̃ − ϕ1(a) · φ(t)−1f̃
(
ϕ1(a), ϕ1(a)

)
ẽφ(t)σ̃ ,

hence

ϕ1(a) · ẽf̃
(
ϕ1(a), ϕ1(a)

)
= −ϕ1(a) · φ(t)−1f̃

(
ϕ1(a), ϕ1(a)

)
ẽφ(t)σ̃

(c)= ϕ1(a) · φ(t)−1ẽφ(t)σ̃ f̃
(
ϕ1(a), ϕ1(a)

)
which yields

ẽ = φ(t)−1ẽφ(t)σ̃ , φ(t)ẽ = ẽφ(t)σ̃ .

Because of φ(t) ∈ Ẽϕ1(a) \ F̃, we have ẽ ∈ Ẽ⊥ϕ1(a) by lemma (5.13).

(12.9) Remark Suppose that we have ϕ1(ae) = ϕ1(a)ẽ for some ẽ ∈ Ã. Since we have
ϕ1(Ra) = R̃ϕ1(a) and a · e /∈ Ra, the skew-field Ã is necessarily a quaternion division algebra since
(Ã, F̃, σ̃) is quadratic of type (iii) or (iv). Moreover, we have ϕ1(〈a〉A) = 〈ϕ1(a)〉Ã.

(12.10) Lemma Suppose that we have ϕ1(ae) = ϕ1(a)ẽ for some ẽ ∈ Ã. Then the map

φa,e : A→ Ã, x+ ey 7→ φ(x) + ẽφ(y) (x, y ∈ Ea)

is an isomorphism of skew-fields such that

∀ t ∈ Xa : ϕ2(a, t) = φa,e(t) .
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Proof
By lemma (12.8), we have

φ
(
N(e)

)
= Ñ(ẽ) , ẽ ∈ Ẽ⊥ϕ1(a)

so that we may apply lemma (5.16). By lemma (11.3), we have

∀ t ∈ Xa ⊆ Ea : ϕ2(a, t) = φa(t) = φa,e(t) .

(12.11) Proposition Suppose that we have ϕ1(ae) = ϕ1(a)ẽ for some ẽ ∈ Ã. Then the map

(ϕ1, φa,e) : (〈a〉A,A)→ (〈ϕ1(a)〉Ã, Ã)

is an isomorphism of vector spaces.

Proof
By lemma (12.4) and lemma (12.8) (a), we have

∀ x, y ∈ Ea : ϕ1
(
a · (x+ ey)

)
= ϕ1(a) ·

(
φ(x) + ẽφ(y)

)
= ϕ1(a) · φa,e(x+ ey) .

(12.12) Corollary Suppose that we have ϕ1(ae) = ϕ1(a)ẽ for some ẽ ∈ Ã and let f ∈ E⊥a .
Then we have ϕ1(af) = ϕ1(a)f̃ for some f̃ ∈ Ã and φa := φa,e = φa,f .

Proof
By remark (12.9), the first assertion holds, hence φa,f is well-defined. Given x ∈ A, we have

ϕ1(a) · φa,f (x) = ϕ1(a · x) = ϕ1(a) · φa,e(x) .

(12.13) Lemma Suppose that we have ϕ1(〈a〉A) = 〈ϕ1(a)〉Ã for each separable element a ∈ L∗0
and let a, b ∈ L∗0 be separable. Then we have

φ := φa = φb .

Proof

• Let b = a · s for some s ∈ A∗. Given t ∈ A, we have

ϕ1(a) · φa(t) = ϕ1(a · t) = ϕ1(as · s−1t)
= ϕ1(b) · φb(s−1t) = ϕ1(b) · φb(s−1) · φb(t) = ϕ1(a) · φb(t) .

• Let b /∈ 〈a〉A, hence ϕ1(b) /∈ 〈ϕ1(a)〉Ã. By lemma (10.15), there are a′ ∈ Ra and b′ ∈ Rb
such that a′ + b′ is separable. Given t ∈ A, we have

ϕ1(a′) · φa(t) + ϕ1(b′) · φb(t) = ϕ1(a′) · φa′(t) + ϕ1(b′) · φb′(t) = ϕ1(a′ · t) + ϕ1(b′ · t)
= ϕ1

(
(a′ + b′) · t

)
= ϕ1(a′ + b′) · φa′+b′(t)

= ϕ1(a′) · φa′+b′(t) + ϕ1(b′) · φa′+b′(t) ,

thus
φa(t) = φa′+b′(t) = φb(t) .
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(12.14) Proposition Suppose that we have ϕ1(〈a〉A) = 〈ϕ1(a)〉Ã for each separable element
a ∈ L∗0 and that L0 has a basis {ai | i ∈ I} of separable elements. Then the map

(ϕ1, φ) : (L0,A)→ (L̃0, Ã)

is an isomorphism of vector spaces.

Proof
Let a =

∑
i∈I aiλi ∈ L0 and t ∈ A. By lemma (12.13), we have

ϕ1(a · t) = ϕ1

((∑
i∈I

aiλi · t
))

=
∑
i∈I

ϕ1(aiλi · t)

=
∑
i∈I

ϕ1(aiλi) · φaiλi(t) =
∑
i∈I

ϕ1(aiλi) · φ(t) =
(∑
i∈I

ϕ1(aiλi)
)
· φ(t) = ϕ1(a) · φ(t) .

(12.15) Remark Let dimA L0 = 2 and a ∈ L∗0. Then 〈a〉A is of the form La,b = 〈Ra, Rb〉F
for some element b ∈ L0, and for each c ∈ La,b, we have Rc ⊆ La,b. Conversely, if we have a
subspace La,b = 〈Ra, Rb〉F such that Rc ⊆ La,b for each c ∈ La,b, we have La,b = 〈a〉Ai for one of
the three pairwise non-isomorphic quaternion division algebras A =: A1,A2,A3 mentioned in [D],
cf. proposition (3.2) in [D].

(12.16) Lemma Let dimA L0 = 2, let a ∈ L∗0 be separable and let Ã be a quaternion division
algebra. Then we have

ϕ1(〈a〉A) = 〈ϕ1(a)〉Ãi
for one of the three pairwise non-isomorphic quaternion division algebras Ã =: Ã1, Ã2, Ã3 men-
tioned in [D], and the map (ϕ1, φa) : (〈a〉A,A) → (〈ϕ1(a)〉Ãi , Ãi) is an isomorphism of vector
spaces. In particular, we have Ãi = Ã if we assume Ã ∼= A.

Proof
By remark (12.15), the subspace 〈a〉A is of the form La,b = 〈Ra, Rb〉F for some element b ∈ L0,
and for each c ∈ La,b, we have Rc ⊆ La,b. As ϕ1 : L0 → L̃0 is F-linear, we have

ϕ1(La,b) = ϕ1(〈Ra, Rb〉F) = 〈R̃ϕ1(a), R̃ϕ1(b)〉F̃ = L̃ϕ1(a),ϕ1(b)

by corollary (10.11). Now let c̃ ∈ L̃ϕ1(a),ϕ1(b). Because of c := ϕ−1
1 (c̃) ∈ La,b we have Rc ⊆ La,b,

hence
R̃c̃ = ϕ1(Rc) ⊆ ϕ1(La,b) = L̃ϕ1(a),ϕ1(b) ,

which shows that the first assertion holds. The second assertion holds by proposition (12.11). In
particular, we have Ãi ∼= A. As A1,A2,A3 are pairwise non-isomorphic, we must have Ãi = Ã if
we assume Ã ∼= A.

(12.17) Remark Once again we switch to the general notation.

(12.18) Theorem Let (K,K0, σ) be quadratic of type (iv), let dimK L0 ≤ 2 and K̃ ∼= K. Then
the map Φ : Ξ→ Ξ̃ defined by

Φ := (ϕ1, φ) : (L0,K)→ (L̃, K̃), (a, t) 7→
(
ϕ1(a), φ(t)

)
is an isomorphism of pseudo-quadratic spaces satisfying

∀ (a, t) ∈ T : Φ(a, t) = γ(a, t) .
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Proof

• In the case dimK L0 = 1, each a ∈ L∗0 is separable, and by assumption, we have

ϕ1(〈a〉K) = ϕ1(L0) = L̃0 = 〈ϕ1(a)〉K̃
so that we may apply proposition (12.14). Now assume dimK L0 = 2. By theorem (6.3) in
chapter 7 of [WSch], L0 has an orthogonal basis, and lemma (12.16) implies that we have
ϕ1(〈a〉K) = 〈ϕ1(a)〉K̃ for each separable element a ∈ L∗0 so that we may apply proposition
(12.14). In both cases, the map (ϕ1, φ) : (L0,K) → (L̃0, K̃) is an isomorphism of vector
spaces.

• By remark (11.10) (b), we have φ(K0) = K̃0.

• By corollary (5.12), we have φ ◦ σ = σ̃ ◦ φ.

• Let a ∈ L∗0 and let t ∈ Xa be as in remark (11.5) (d). By proposition (11.8), we have

φ(t) = φa(t) = ϕ2(a, t) ,

hence

q̃
(
ϕ1(a)

)
∈ ϕ2(a, t) + K̃0 = φ(t) + φ(K0) = φ

(
t+ K0

)
= φ

(
q(a) + K0

)
= φ

(
q(a)

)
+ K̃0

• Given (a, t) ∈ T , we have1

Φ(a, t) =
(
ϕ1(a), φ(t)

)
=
(
ϕ1(a), ϕ2(a, t)

)
= γ(a, t) .

Chapter 13 Exceptonial Isomorphisms I
Now we drop the condition Ã ∼= A, i.e., we assume Ã 6∼= A. By theorem (10.38), this can only
occur in small dimensions. As a consequence, there aren’t many possibilities for those exceptional
isomorphisms which are, of course, not induced by an isomorphism of pseudo-quadratic spaces.

(13.1) Lemma Suppose that Ã 6∼= A. Then exactly one of the following holds:

(i) The involutory sets (A,F, σ) and (Ã, F̃, σ̃) both are quadratic of type (iv) and we have

dimA L0 = 2 = dimÃ L̃0 .

(ii) The involutory sets (A,F, σ) and (Ã, F̃, σ̃) are quadratic of type (iv) and (iii), respectively,
and we we have

dimA L0 = 1 , dimÃ L̃0 = 2 .

Proof
By theorem (11.11) and remark (11.7), we have A ∼= Ã if (A,F, σ) and (Ã, F̃, σ̃) both are quadratic
of type (iii). Thus we may suppose (A,F, σ) to be quadratic of type (iv). By theorem (10.38), we
have dimA L0 ≤ 2 and dimÃ L̃0 ≤ 2. Notice that we have

dimF L0 = dimF̃ L̃0 .

(i) In the case dimA L0 = 1 = dimÃ L̃0, we may apply proposition (12.14) so that there is an
isomorphism φ : A→ Ã of skew-fields  .

(ii) As we have dimF L0 ≥ 4 and dimF̃ L̃0 ≤ 4, the assertion follows immediately.

1Although we obtained φ only by taking separable elements into account, φ of course extends the isomorphism
associated with inseparable elements as well since ϕ1 : L0 → L̃0 is an extension of ϕ1 : Ra → R̃ϕ1(a).
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(13.2) Notation Throughout this chapter, let (A,F, σ) be quadratic of type (iv).

(13.3) Remark By lemma (13.1), there are two cases left. First of all, we deal with the
case where both the involutory sets are quadratic of type (iv). We do this by using lemma
(12.16) in a suitable way. The appearing isomorphisms turn out to be almost isomorphisms of
pseudo-quadratic spaces, but modified by switching the parametrizing space.

(13.4) Notation Let (A,F, σ) be quadratic of type (iv) and suppose that dimA L0 = 2. By
[D], there are exactly three pseudo-quadratic spaces

(A,F, σ, L0, q) = (A1,F, σ, L0, q1) = Ξ1 , (A2,F, σ, L0, q2) = Ξ2 , (A3,F, σ, L0, q3) = Ξ3

with pairwise non-isomorphic quaternion division algebras A1,A2,A3 which define the group T .
When we switch between the parametrizing pseudo-quadratic spaces, we indicate this by the map

idiT : T → T, (a, t) 7→ (a, t) ,

i.e., after applying idiT , we consider T to be defined by Ξi.

(13.5) Proposition Let Ã be quadratic of type (iv) and suppose that dimA L0 = 2. Then
there are an i ∈ {1, 2, 3} and an isomorphism Φ : Ξ→ Ξ̃i of pseudo-quadratic spaces such that γ
is induced by (idiT̃ )−1 ◦ Φ.

Proof
Let a ∈ L∗0 be separable. By lemma (12.16), there is an i ∈ {1, 2, 3} such that

ϕ1(〈a〉A) = 〈ϕ1(a)〉Ãi ,

and the map (ϕ1, φa) : (〈a〉A,A) → (〈ϕ1(a)〉Ãi , Ãi) is an isomorphism of vector spaces. In
particular, we have Ãi ∼= A, thus i ∈ {1, 2, 3} is independent of the choice of a. Now the Jordan
isomorphism

idiT̃ ◦ γ : T → T̃

is induced by an isomorphism Φ : Ξ→ Ξ̃i of pseudo-quadratic spaces by theorem (12.18).

(13.6) Remark Now we consider the last case, where a quaternion division algebra “splits”
into two separable quadratic extensions.

(13.7) Lemma Let a ∈ L∗0 be separable and let e ∈ E⊥a . Suppose that ϕ1(ae) /∈ 〈ϕ1(a)〉Ã.
Then we have

f̃
(
ϕ1(ae), ϕ1(a)

)
= 0Ã , φae = σ̃ ◦ φa .

Proof
By equation (12.1), we have

ϕ1(ae) · φae(t) = ϕ1(ae) · ϕ2(a, t)σ̃ − ϕ1(a) · ϕ2(a, t)−1f̃
(
ϕ1(a), ϕ1(ae)

)
ϕ2(a, t)σ̃

for each t ∈ Xa, hence

ϕ2(a, t)−1f̃
(
ϕ1(a), ϕ1(ae)

)
ϕ2(a, t)σ̃ = 0Ã , ∀ t ∈ Xa : φae(t) = ϕ2(a, t)σ̃ = φa(t)σ̃ .

(13.8) Notation Throughout the rest of this chapter, we suppose Ã to be quadratic of type
(iii).
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(13.9) Remark By lemma (13.1), we have dimA L0 = 1 and dimÃ L̃0 = 2. As a consequence,
each element a ∈ L∗0 is separable. Moreover, we have

ϕ1(ae) /∈ R̃ϕ1(a) = 〈ϕ1(a)〉Ã

for each element e ∈ E⊥a . As a consequence, lemma (13.7) applies.

(13.10) Notation

• Throughout the rest of this chapter, let a ∈ L∗0 (which is separable) and let e ∈ E⊥a .

• We set

ã := ϕ1(a) , b̃ := ϕ1(ae) ∈ ã⊥ , φ := φa .

(13.11) Remark Given x ∈ A, we have

q(a · x) ≡ xσq(a)x mod F ,

cf. definition (7.1) (P2), hence (
a · x, xσq(a)x

)
∈ T .

(13.12) Lemma Given x = s+ et ∈ A, we have

γ
(
a · x, xσq(a)x

)
=
(
ã · φ(s) + b̃ · φ(t)σ̃, φ

(
N(x)q(a)

))
.

Proof

• We have

ϕ1(a · x) = ϕ1(a · s+ ae · t) = ϕ1(a) · φ(s) + ϕ1(ae) · φ(t)σ̃ = ã · φ(s) + b̃ · φ(t)σ̃

by lemma (13.7).

• By Proposition (11.8), we have

ϕ1
(
ax · xσq(x)x

)
= ϕ1(ax) · ϕ2(ax, xσq(a)x) .

On the other hand, we have

ϕ1
(
a · xxσq(a)x

)
= ϕ1

(
a ·N(x)q(a)(s+ et)

)
= ϕ1

(
as ·N(x)q(a) + aet ·N(x)q(a)σ

)
= ϕ1(as) · φ

(
N(x)q(a)

)
+ ϕ1(aet) · φ

(
N(x)q(a)σ

)σ̃
= ϕ1(as+ aet) · φ

(
N(x)q(a)

)
= ϕ1(ax) · φ

(
N(x)q(a)

)
.

(13.13) Proposition Given x = s+ et ∈ A and u ∈ F, we have

γ(a · x, xσq(a)x+ u) =
(
ã · φ(s) + b̃ · φ(t)σ̃, φ

(
N(x)q(a) + u

))
.

Proof
This results from lemma (13.12) and lemma (7.21) (d).

(13.14) Remark This describes γ completely.
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(13.15) Theorem Suppose that K̃ 6∼= K. Then exactly one of the following holds:

(i) The involutory sets (K,K0, σ) and (K̃, K̃0, σ̃) both are quadratic of type (iv), we have
dimK L0 = 2 = dimK̃ L̃0 and there are an i ∈ {2, 3} and an isomorphism Φ : Ξ → Ξ̃i of
pseudo-quadratic spaces such that γ is induced by (idiT̃ )−1◦Φ, where idiT̃ and Ξ̃ =: Ξ̃1, Ξ̃2, Ξ̃3
are as in notation (13.4).

(ii) The involutory sets (K,K0, σ) and (K̃, K̃0, σ̃) are quadratic of type (iv) and (iii), respectively,
we have dimK L0 = 1, dimK̃ L̃0 = 2 and γ can be described by

∀ x = s+et ∈ K, u ∈ K0 : γ
(
ax, xσq(a)x+u

)
=
(
ϕ1(a)φ(s)+ϕ1(ae)φ(t)σ̃, φ

(
N(x)q(a)+u

))
,

where a ∈ L∗0 is arbitrary, φ = φa, e ∈ E⊥a and ϕ1(ae) ∈ ϕ1(a)⊥.

Proof
This results from lemma (13.1), proposition (13.5), lemma (13.7) and proposition (13.13). Notice
that we have i 6= 1 in (i) as we have K 6∼= K̃.

Chapter 14 The Reverse Direction
Now we consider the reverse direction, i.e., we prove that each map as above is a Jordan
isomorphism.

(14.1) Remark Notice that we don’t assume γ to be a Jordan isomorphism any longer.

(14.2) Theorem Let Ξ and Ξ̃ be proper pseudo-quadratic spaces and let γ : T → T̃ be a
map that is induced by an isomorphism Φ = (ϕ, φ) : Ξ→ Ξ̃ of pseudo-quadratic spaces. Then γ
is a Jordan isomorphism.

Proof

• We have
γ(0L0 , 1K) =

(
ϕ(0L0), φ(1K)

)
= (0L̃0

, 1K̃) .

• Given (a, t), (b, v) ∈ T , we have

γ
(
(a, t) · (b, v)

)
= γ

(
a+ b, t+ v + f(b, a)

)
=
(
ϕ(a+ b), φ(t+ v + f(b, a))

)
=
(
ϕ(a) + ϕ(b), φ(t) + φ(v) + φ(f(a, b))

)
=
(
ϕ(a) + ϕ(b), φ(t) + φ(v) + f̃

(
ϕ(a), ϕ(b)

))
=
(
ϕ(a), φ(t)

)
·
(
ϕ(b), φ(v)

)
= γ

(
(a, t)

)
· γ
(
(b, v)

)
.

• Let (a, t), (b, v) ∈ T . By corollary (7.3), we have

γ
(
h(a,t)(b, v)

)
= γ

(
b · tσ − a · t−1f(a, b)tσ, tvtσ

)
=
(
ϕ(b · tσ − a · t−1f(a, b)tσ), φ(tvtσ)

)
=
(
ϕ(b) · φ(tσ)− ϕ(a) · φ(t)−1φ

(
f(a, b)

)
φ(tσ), φ(t)φ(v)φ(tσ)

)
=
(
ϕ(b) · φ(t)σ̃ − ϕ(a) · φ(t−1)f̃

(
ϕ(a), ϕ(b)

)
φ(t)σ̃, φ(t)φ(v)φ(t)σ̃

)
= h̃(ϕ(a),φ(t))

(
(ϕ(b), φ(v))

)
= h̃γ(a,t)

(
γ(b, v)

)
.

(14.3) Remark This shows that each map as in proposition (13.5) is a Jordan isomorphism
since idiT is a Jordan isomorphism for each i ∈ {1, 2, 3}.
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(14.4) Notation

• Throughout the rest of this chapter, let Ξ and Ξ̃ be proper pseudo-quadratic spaces, let
(A,F, σ) and (Ã, F̃, σ̃) be quadratic of type (iv) and (iii), respectively, let

dimA L0 = 1 , dimÃ L̃0 = 2 ,

let a ∈ L∗0 and e ∈ E⊥a , and let φ : Ea → Ã be an isomorphism of fields.

• Moreover, let γ : T → T̃ be a map such that

∀ x = s+ et ∈ A, u ∈ F : γ(ax, xσq(a)x+ u) =
(
ãφ(s) + b̃φ(t)σ̃, φ

(
N(x)q(a) + u

))
for some ã, b̃ ∈ L̃0 such that f̃(ã, b̃) = 0Ã.

• We set b := ae and

A := {(a · x, t) | x ∈ Ea, t ∈ Xax} ≤ T , B := {(b · x, t) | x ∈ Ea, t ∈ Xbx} ≤ T ,

Ã := {(ã · x, t) | x ∈ Ã, t ∈ X̃ãx} ≤ T̃ , B̃ := {(b̃ · x, t) | x ∈ Ã, t ∈ X̃b̃x} ≤ T̃ .

(14.5) Lemma Given x, y ∈ Ea, we have

f(a · x, b · y) = f(b · y, a · x) .

Proof
Given x, y ∈ Ea, we have

f(a · x, b · y) = f(a · x, ae · y) = xσf(a, a)ey = eyxf(a, a)σ

= −yσef(a, a)x = (ey)σf(a, a)x = f(ae · y, a · x) = f(b · y, a · x) .

(14.6) Lemma Given (a, t), (b, v) ∈ T , we have

(a, t) ∈ CT
(
(b, v)

)
⇔ f(a, b) = f(b, a) .

Proof
We have

(a, t)(b, v) = (b, v)(a, t) ⇔
(
a+ b, t+ v + f(b, a)

)
=
(
b+ a, v + t+ f(a, b)

)
⇔ f(b, a) = f(a, b) .

(14.7) Corollary We have

A ⊆ CT (B) , Ã ⊆ CT̃ (B̃) .

Proof
The first assertion results from lemma (14.5), and given x, y ∈ Ã, we have

f(ã · x, b̃ · y) = 0Ã = f(b̃ · y, ã · x) .

(14.8) Lemma We have

T = AB , T̃ = ÃB̃ .
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Proof
Let (a · x+ b · y, t) ∈ T where x, y ∈ Ea. Then we have

t ≡ q(a · x+ b · y) ≡ q(a · x) + q(b · y) + f(a · x, b · y) mod F ,

hence
t̃ := t− q(a · x)− q(b · y)− f(a · x, b · y) ∈ F .

Observe that we have f(a · x, b · y) = f(b · y, a · x) by lemma (14.5), thus

(a · x+ b · y, t) = (a · x+ b · y, q(a · x) + q(b · y) + f(a · x, b · y) + t̃)
= (a · x+ b · y, q(a · x) + q(b · y) + f(b · y, a · x) + t̃)
=
(
a · x, q(a · x)

)
·
(
b · y, q(b · y) + t̃

)
∈ AB .

The second assertion follows analogously.

(14.9) Lemma The maps

Φ1 : (Ea,F, σ, Ra, q)→ (Ã, F̃, σ̃, 〈ã〉Ã, q̃), (ax, t) 7→
(
ãφ(x), φ(t)

)
,

Φ2 : (Ea,F, σ, Rb, q)→ (Ã, F̃, σ̃, 〈b̃〉Ã, q̃), (bx, t) 7→
(
b̃φ(x)σ̃, φ(t)σ̃

)
are isomorphisms of pseudo-quadratic spaces inducing γA := γ|A : A→ Ã and γB := γ|B : B → B̃,
respectively.

Proof
We consider Φ2, the first assertion follows analogously.

• Given x = et ∈ E⊥a and u ∈ F, we have

γB
(
a · x, xσq(a)x+ u

)
=
(
b̃ · φ(t)σ̃, φ(N(x)q(a) + u)

)
=
(
b̃ · φ(t)σ̃, φ

(
(xσxq(a)σ̃ + u

)σ̃))
=
(
b̃ · φ(t)σ̃, φ(xσq(a)x+ u)σ̃

)
= Φ2(a · x, xσq(a)x+ u) .

• Given x ∈ Ea, we have
ϕ1(b · x) = b̃ · φ(x)σ̃ ,

thus (ϕ1|Rb , σ̃ ◦ φ) : (Rb,Ea)→ (〈b̃〉Ã, Ã) is an isomorphism of vector spaces.

• The map σ̃ ◦ φ : Ea → Ã is clearly an isomorphism of involutory sets, cf. corollary (5.12).

• Given x = et ∈ E⊥a , we have
(
ϕ1(a · x), q̃(ϕ1(a · x))

)
∈ B̃ and

(
ϕ1(a · x), φ

(
N(x)q(a)

))
∈ B̃,

thus

q̃
(
ϕ1(x)

)
∈ φ
(
N(x)q(a)

)
+ F̃ = φ

(
xσq(a)σx+ F

)
= φ

(
(xσq(a)x)σ + F

)
= φ

(
q(a · x) + F

)σ̃ = φ
(
q(a · x)

)σ̃ + F̃ .

(14.10) Proposition The map γ : T → T̃ is an isomorphism of groups.

Proof
By corollary (14.7), it is enough to consider the following two cases:

• By lemma (14.9) and theorem (14.2), γA : A→ Ã and γB : B → B̃ are Jordan isomorphisms.
In particular, they are isomorphisms of groups.
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• Given x ∈ Ea, y = et ∈ E⊥a and u, v ∈ F, we have

γ
(
(a · x, xσq(a)x+ u) · (a · y, yσq(a)y + v)

)
= γ

(
a · (x+ y), xσq(a)x+ yσq(a)y + f(ax, ay) + u+ v

)
= γ

(
a · (x+ y), xσq(a)x+ yσq(a)y + xσf(a, a)y + u+ v

)
= γ

(
a · (x+ y), xσq(a)x+ yσq(a)y + xσq(a)y − xσq(a)σy + u+ v

)
= γ

(
a · (x+ y), xσq(a)x+ yσq(a)y + xσq(a)y + yσq(a)x+ u+ v

)
= γ

(
a · (x+ y), (x+ y)σq(a)(x+ y) + u+ v

)
=
(
ã · φ(x) + b̃ · φ(t)σ̃, φ(N(x+ y)q(a) + u+ v)

)
=
(
ã · φ(x) + b̃ · φ(t)σ̃, φ(N(x)q(a) +N(y)q(a) + u+ v)

)
=
(
ã · φ(x), φ(N(x)q(a) + u)

)
·
(
b̃ · φ(t)σ̃, φ(N(y)q(a) + v)

)
= γ

(
(a · x, xσq(a)x+ u)

)
· γ
(
(a · y, yσay + v)

)
.

(14.11) Lemma Given x ∈ A, t := xσq(a)x+ s ∈ Xax and t̃ := N(x)q(a) + s ∈ Ea, we have

N(t̃) = N(t) .

Proof
We have

N
(
t̃
)
−N(t) = N

(
N(x)q(a) + s

)
−N

(
xσq(a)x+ s

)
= N

(
N(x)q(a)

)
+N(s) + T

(
N(x)q(a)s

)
−N

(
xσq(a)x

)
−N(s)− T

(
xσq(a)xs

)
= N(x)2N

(
q(a)

)
−N(x)N

(
q(a)

)
N(x) + s

(
T (N(x)q(a))− T (xσq(a)x)

)
= s
(
xσx(q(a) + q(a)σ)− xσ(q(a) + q(a)σ)x

)
= sxσ

(
xT (q(a))− T (q(a))x

)
= 0A .

(14.12) Lemma Given x ∈ A, t := xσq(a)x+ s ∈ Xax and t̃ := N(x)q(a) + s ∈ Ea, we have

xt−1tσx−1 = t̃−1t̃σ ∈ Ea .

Proof
By lemma (14.11), we have

xt−1tσx−1 = (xtσx−1)2 ·N(t)−1 = (t̃σ)2 ·N(t̃)−1 = t̃−1t̃σ ∈ Ea .

(14.13) Corollary Given x ∈ A and t := xσq(a)x+ s ∈ Xax, we have

(x−σtt−σxσ)q(a)(xt−1tσx−1) = q(a) .

Proof
First of all observe that we have

x−σtt−σxσ = N(x)−1xt−σtx−1N(x) = (xt−1tσx−1)−1 .

Now we have xt−1tσx−1 ∈ Ea = CA(Ea) by lemma (14.12).
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(14.14) Lemma Given x, y ∈ A, t := xσq(a)x+ s ∈ Xax and u ∈ F, we have

γ
(
h(ax,t)

(
a · y, yσq(a)y + u

))
=
(
ϕ1(a · z), φ

(
N(t)N(y)q(a) +N(t)u

))
,

where z = xt−1tσx−1ytσ.

Proof
The first component of h(ax,t)

(
a · y, yσq(a)y + u

)
is

aytσ − axt−1f(ax, ay)tσ = aytσ − axt−1f(ax, ax)x−1ytσ = aytσ − axt−1(t− tσ)x−1ytσ

= aytσ − axt−1tx−1ytσ + axt−1tσx−1ytσ = axt−1tσx−1ytσ ,

and the second component of h(ax,t)
(
ay, yσq(a)y + u

)
is

t(yσq(a)y + u)tσ = tyσq(a)ytσ +N(t)u .

By corollary (14.13), we have

zσq(a)z =
(
xt−1tσx−1ytσ

)σ
q(a)

(
xt−1tσx−1ytσ

)
= tyσ(x−σtt−σxσ)q(a)(xt−1tσx−1)ytσ = tyσq(a)ytσ .

Therefore, we have

γ
(
h(ax,t)

(
a · y, yσq(a)y + u

))
= γ

(
(a · z, zσq(a)z +N(t)u)

)
=
(
ϕ1(a · z), φ

(
N(z)q(a) +N(t)u

))
=
(
ϕ1(a · z), φ

(
N(t)N(y)q(a) +N(t)u

))

(14.15) Proposition The map γ preserves the second component of the Hua-maps.

Proof
Let x, y ∈ A, t := xσq(a)x+ s ∈ Xax, t̃ := N(x)q(a) + s ∈ Ea and u ∈ F. The second component
of

h̃γ(ax,t)
(
γ((a · y, yσq(a)y + u))

)
= h̃(ϕ1(ax),φ(t̃))

(
ϕ1(a · y), φ(N(y)q(a) + u)

)
is

φ(t̃)φ
(
N(y)q(a) + u

)
φ(t̃)σ̃ = φ

(
N(t̃) · (N(y)q(a) + u)

)
= φ

(
N(t) · (N(y)q(a) + u)

)
= φ

(
N(t)N(y)q(a) +N(t)u

)
by lemma (14.11). Now the assertion results from Lemma (14.14).

(14.16) Proposition Let x = λ+eµ ∈ A, t := xσq(a)x+s ∈ Aax and t̃ := N(x)q(a)+s ∈ Ea.
Then the following holds:

(a) Given (a · y, u) ∈ A, we have

γ
(
h(ax,t)(a · y, u)

)
= h̃γ(ax,t)

(
γ(a · y, u)

)
.

(b) Given (b · y, u) ∈ B, we have

γ
(
h(ax,t)(b · y, u)

)
= h̃γ(ax,t)

(
γ(b · y, u)

)
.
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Proof
By proposition (14.15), it remains to check the first component.

(a) By lemma (14.14) and lemma (14.12), the first component of h(ax,t)(a · y, u) is

a · t̃−1t̃σytσ = a · yt̃−1t̃σ ·
(
N(λ)q(a)σ +N(e)N(µ)q(a) + f(a · λ, ae · µ)σ + s

)
.

Therefore, the first component of γ
(
h(ax,t)(a · y, u)

)
is

ã · φ
(
yt̃−1t̃σ ·

(
N(λ)q(a)σ +N(e)N(µ)q(a) + s

))
+ b̃ · φ

(
yσ t̃−σ t̃f(a, a)λµ

)σ̃
.

On the other hand, the first component of

h̃(ãφ(λ)+b̃φ(µ)σ̃,φ(t̃))
(
ã · φ(y), ϕ2(a · y, u)

)
is

ãφ(y)φ(t̃)σ̃ −
(
ãφ(λ) + b̃φ(µ)σ̃

)
· φ(t̃)−1f̃

(
ãφ(λ) + b̃φ(µ)σ̃, ãφ(y)

)
φ(t̃)σ̃

= ãφ(yt̃−1t̃σ)φ(t̃)− ãφ(λt̃−1λσ f̃(ã, ã)yt̃σ)− b̃φ
(
µσ t̃−1λσφ−1(f̃(ã, ã)

)
yt̃σ
)

= ãφ(yt̃−1t̃σ)φ(t̃)− ãφ(yt̃−1t̃σ)φ
(
N(λ)(φ(q(a))− φ(q(a))σ)

)
− b̃φ

(
yt̃−1t̃σf(a, a)λσµσ

)
= ãφ

(
yt̃−1t̃σ ·

(
N(x)q(a) + s−N(λ)q(a) +N(λ)q(a)σ

))
− b̃φ

(
yσ t̃−σ t̃f(a, a)σλµ

)σ̃
= ãφ

(
yt̃−1t̃σ ·

(
N(e)N(µ)q(a) +N(λ)q(a)σ + s

))
+ b̃φ

(
yσ t̃−σ t̃f(a, a)λµ

)σ̃
.

(b) This follows analogously.

(14.17) Theorem Let Ξ and Ξ̃ be proper pseudo-quadratic spaces, let (A,F, σ) and (Ã, F̃, σ̃)
be quadratic of type (iv) and (iii), respectively, let

dimA L0 = 1 , dimÃ L̃0 = 2 ,

let a ∈ L∗0 and e ∈ E⊥a , and let φ : Ea → Ã be an isomorphism of fields. Moreover, let γ : T → T̃
be a map such that

∀ x = s+ et ∈ A, u ∈ F : γ
(
a · x, xσq(a)x+ u

)
=
(
ã · φ(s) + b̃ · φ(t)σ̃, φ

(
N(x)q(a) + u

))
for some ã, b̃ ∈ L̃0 such that f̃(ã, b̃) = 0Ã. Then γ is a Jordan isomorphism.

Proof

• Putting x := 0A and u := 1A yields

γ(0L0 , 1A) =
(
0L̃0

, φ(1A)
)

= (0L̃0
, 1Ã) .

• By proposition (14.10), γ is an isomorphism of groups.

• Let x, y ∈ T . By lemma (14.8), there are â ∈ A and b̂ ∈ B such that y = â · b̂. By lemma
(7.19) and proposition (14.16), we have

γ
(
hx(y)

)
= γ

(
hx(â · b̂)

)
= γ

(
hx(â) · hx(b̂)

)
= γ

(
hx(â)

)
· γ
(
hx(b̂)

)
= h̃γ(x)

(
γ(â)

)
· h̃γ(x)

(
γ(b̂)

)
= h̃γ(x)

(
γ(â) · γ(b̂)

)
= h̃γ(x)

(
γ(â · b̂)

)
= h̃γ(x)

(
γ(y)

)
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Chapter 15 Exceptional Isomorphisms II
We show that a Moufang set T defined by a one-dimensional pseudo-quadratic space over a
quaternion division algebra could equally defined by a 2-dimensional pseudo-quadratic space over
a separable quadratic extension and vice versa.

(15.1) Lemma Let (A,F, σ) be quadratic of type (iii) and assume dimL0 A = 2. Let f be a
skew-hermitian form on L0 and let {a, b} be an orthogonal basis of L0. Then f is anisotropic if
and only if we have

f(b, b)f(a, a)−1 /∈ −N(A) .

Proof
Given s, t ∈ A, we have

f(as+ bt, as+ bt) = 0A ⇔ N(s)f(a, a) +N(t)f(b, b) = 0A
⇔ f(b, b)f(a, a)−1 = −N(st−1) ∈ −N(A) .

(15.2) Lemma Let Ξ be a pseudo-quadratic space such that dim dimA L0 = 1 and such
that (A,F, σ) is quadratic of type (iv). Let a ∈ L∗0, e ∈ E⊥a , β := −N(e) and b := ae. Then the
following holds:
(a) The set {a, b} is an Ea-basis of L0.

(b) The skew-hermitian form f̃ : L0 × L0 → Ea defined by

f̃(a, a) := f(a, a) , f̃(b, b) := N(e)f(a, a) , f̃(a, b) := 0A
is anisotropic.

(c) There is a pseudo-quadratic form q̃ on L0 with respect to F, σ and f̃ such that

Ξ̃ := (Ea,F, σ, L0, q̃)

is a pseudo-quadratic space, satisfying q̃(a) ≡ q(a) mod F and q̃(b) ≡ N(e)q(a) mod F.

(d) The map γ : T → T̃ defined by

∀ x = s+ et ∈ A, u ∈ F :
(
a · x, xσq(a)x+ u

)
7→
(
a · s+ b · tσ, N(x)q(a) + u

)
is a Jordan isomorphism.

Proof
(a) We have L0 = a · (Ea + eEa) = a · Ea + b · Ea.

(b) Since we have A ∼= (Ea/F, β), we have f̃(b, b)f̃(a, a)−1 = N(e) = −β /∈ −N(Ea).

(c) This results from (11.28) and (11.30) of [TW], respectively, and remark (7.4). Notice that f̃
is trace-valued with

f̃(a, a) = f(a, a) = q(a) + q(a)σ , f̃(b, b) = N(e)f(a, a) = N(e)q(a) +
(
N(e)q(a)

)σ
if we have CharA = 2, so that we choose β̃a := q(a), β̃b := N(e)q(a) in this case.

(d) By theorem (14.17), it suffices to show that γ is well-defined. Given s, t ∈ Ea, we have

q̃(a · s+ b · tσ) ≡ sσ q̃(a)s+ tσ q̃(b)t+ f̃(a · s, b · tσ)
≡ N(s)q(a) +N(e)N(t)q(a) = N(x)q(a) ≡ N(x)q(a) + u mod F .
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(15.3) Lemma Let Ξ be a pseudo-quadratic space such that dim dimA L0 = 2 and such that
(A,F, σ) is quadratic of type (iii). Let {a, b} be an orthogonal basis of L0 (which exists by theorem
(6.3) in chapter 7 of [WSch]) and let

β := −f(b, b)f(a, a)−1 .

Then the following holds:

(a) We have β ∈ F \N(A). In particular, H̃ := (A/F, β) is a quaternion division algebra.

(b) Let e ∈ A⊥ such that N(e) = −β. We extend the scalar multiplication on L0 to H̃ by
ae := b. Then the skew-hermitian form f̃ : L0 × L0 → H̃ defined by f̃(a, a) := f(a, a) is
anisotropic, satisfying

f̃(b, b) = −N(e)f(a, a) , f̃(a, b) = −ef(a, b) .

(c) There is a pseudo-quadratic form q̃ on L0 with respect to F, σ and f̃ such that

Ξ̃ := (H̃,F, σ, L0, q̃)

is a pseudo-quadratic space, satisfying q(a) ≡ q̃(a) mod F and q(b) ≡ N(e)q̃(a) mod F.

(d) The map γ : T̃ → T defined by

∀ x = s+ et ∈ H̃, u ∈ F :
(
a · x, xσ q̃(a)x+ u

)
7→
(
a · s+ b · tσ, N(x)q̃(a) + u

)
is a Jordan isomorphism.

Proof
Notice that we have Fix(σ) = F since (A,F, σ) is quadratic of type (iii).

(a) We have

βσ = −f(b, b)σf(a, a)−σ = −f(b, b)f(a, a)−1 = β , β ∈ Fix(σ) = F .

By lemma (15.1), we have β = −f(b, b)f(a, a)−1 /∈ N(A).

(b) We have

f̃(a, a) = f(a, a)A 6= 0A , f̃(b, b) = f̃(ae, ae) = eσf(a, a)e = −N(e)f(a, a) .

(c) This results from (11.28) and (11.30) of [TW], respectively, and remark (7.4). Notice that

q(b) + q(b)σ = N(e)
(
q(a) + q(a)σ

)
, q(b) +N(e)q(a) =

(
q(b) +N(e)q(a)

)σ ∈ Fix(σ) = F

and that f̃ is trace-valued with f̃(a, a) = f(a, a) = q(a) + q(a)σ if we have CharA = 2, so
that we choose β̃a := q(a) in this case to obtain

q(b) = f(b, b) + q(b)σ = N(e)f(a, a) + q(b)σ

= N(e)q(a) +N(e)q(a)σ + q(b)σ ≡ N(e)q(a) ≡ N(e)q̃(a) mod F .

(d) By theorem (14.17), it suffices to show that γ is well-defined. Given s, t ∈ A, we have

q(a · s+ b · tσ) ≡ sσq(a)s+ tσq(b)t+ f(a · s, b · tσ)
≡ N(s)q̃(a) +N(e)N(t)q̃(a) = N(x)q̃(a) ≡ N(x)q̃(a) + u mod F .
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We return to the case A ∼= F4 which we excluded in chapter 11.

(16.1) Notation Throughout this chapter, let a ∈ L∗0 and A ∼= F4, which implies Ã ∼= F4 and
thus F ∼= F2 ∼= F̃, and let γ : T → T̃ be a Jordan isomorphism.

(16.2) Remark By remark (11.7), the map (ϕ1, φa) : (〈a〉A,A)→ (〈ϕ1(a)〉Ã, Ã) is an isomor-
phism of vector spaces, where φa : A→ Ã is defined by

∀ t ∈ A : ϕ1(a · t) = ϕ1(a) · φa(t) .

Moreover, we have X̃ϕ1(a) = {ϕ2(a, t), ϕ2(a, t)σ̃} and thus either φa(t) = ϕ2(a, t) for each t ∈ Xa

or φa(t) = ϕ2(a, t)σ̃ for each t ∈ Xa.

(16.3) Lemma Assume dimA L0 ≥ 2. Then we have

∀ t ∈ Xa : φa(t) = ϕ2(a, t) .

Proof
Notice that (A,F, σ) is quadratic of type (iii), hence there are no inseparable elements. Let b ∈ a⊥
and t ∈ Xa. By identity (7.1), we have

ϕ1(a) · φa(tσ) = ϕ1(a · tσ) = ϕ1(a · tσ − b · t−1f(a, b)tσ)
= ϕ1(a) · ϕ2(a, t)σ̃ − ϕ1(b) · ϕ2(a, t)−1f̃

(
ϕ1(a), ϕ1(b)

)
ϕ2(a, t)σ̃ .

The linear independence of ϕ1(a) and ϕ1(b) yields φa(t)σ̃ = φa(tσ) = ϕ2(a, t)σ̃.

(16.4) Remark Now we can go on as in chapter 11 and we obtain that γ is induced by
an isomorphism Φ : Ξ → Ξ̃ of pseudo-quadratic spaces. In the case dimA L0 = 1 however,
each isomorphism of groups turns out to be a Jordan isomorphism. At this point, we drop the
assumption that γ is a Jordan isomorphism.

(16.5) Lemma Assume dimA L0 = 1. Then we have ha = idT for each a ∈ L∗0.

Proof
Let a ∈ L∗0. Given x, y ∈ A and s ∈ Xax, t ∈ Xay, we have

h(ax,s)(a · y, t) =
(
a · ysσ − a · xs−1f(ax, ay)sσ, stsσ

)
=
(
a · ysσ − a · yN(x)f(a, a)s,N(s)t

)
=
(
a · y(sσ + s), t

)
= (a · y, t) .

(16.6) Corollary Assume dimA L0 = 1 and let γ : T → T̃ be an isomorphism of groups. Then
γ is a Jordan isomorphism.

Proof
Because of |Z(T̃ )| = 2, we have γ(0L0 , 1A) = (0L̃0

, 1Ã), and because of |T̃ | = |T | = 8, we have
dimÃ L̃0 = 1. By lemma (16.5), we have

∀ a ∈ L∗0 : ha = idT , h̃γ(a) = idT̃
and thus

∀ a ∈ L∗0, x ∈ L0 : γ
(
ha(x)

)
= γ(x) = h̃γ(a)

(
γ(x)

)
.
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(16.7) Remark As a consequence, it is convenient to determine the isomorphism class of the
group T and hence the structure of Aut(T ).

(16.8) Lemma We have T ∼= Q8, where Q8 denotes the quaternion group.

Proof
We have |T | = 8, and given (a, t) ∈ T \ Z(T ), we have

(a, t)2 =
(
a+ a, t+ t+ f(a, a)

)
= (0L0 , 1A) 6= (0L0 , 0A) .

(16.9) Remark The outer automorphisms of T are represented by the restrictions of isomor-
phisms of pseudo-quadratic spaces, i.e., by the group

〈γσ, ρs | γσ : T → T̃ , (a · x, t) 7→ (a · xσ, tσ), ρs : T → T̃ , (a · x, t) 7→ (a · xs, t)〉 ∼= Σ3 ,

where s ∈ A \ F. The three non-trivial inner automorphisms yield some exceptional Jordan
automorphisms:

γa : T → T : (a, t) 7→ (a, t) , (as, t) 7→ (as, tσ) , (asσ, t) 7→ (asσ, tσ) ,
γas : T → T : (a, t) 7→ (a, tσ) , (as, t) 7→ (as, t) , (asσ, t) 7→ (asσ, tσ) ,
γasσ : T → T : (a, t) 7→ (a, tσ) , (as, t) 7→ (as, tσ) , (asσ, t) 7→ (asσ, t) .

(16.10) Lemma Suppose that dimA L0 = 1 and let γ : T → T̃ be a Jordan isomorphism.
Then there are an isomorphism Φ : Ξ→ Ξ̃ of pseudo-quadratic spaces and an inner automorphism
γ̃ ∈ Aut(T̃ ) such that γ is induced by γ̃ ◦ Φ.

Proof
By remark (11.7), the map

(ϕ1, φa) : (〈a〉A,A)→ (〈ϕ1(a)〉Ã, Ã)

is an isomorphism of vector spaces. Let Φ : Ξ→ Ξ̃ be defined by

Φ := (ϕ1, φa) : (L0,A)→ (L̃0, Ã), (a, t) 7→
(
ϕ1(a), φa(t)

)
.

Then the map γ̃ := γ ◦ Φ−1
|T̃

: T̃ → T̃ is an automorphism of T̃ such that ϕ̃1 = idL̃0
, hence γ̃ is

inner.

(16.11) Theorem Assume K ∼= F4. A map γ : T → T̃ is a Jordan isomorphism if and only if
one of the following holds:

(i) There is an isomorphism Φ : Ξ→ Ξ̃ that induces γ.

(ii) We have dimK L = 1 and there are an isomorphism Φ : Ξ→ Ξ̃ of pseudo-quadratic spaces
and a non-trivial inner automorphism γ̃ ∈ Aut(T̃ ) such that γ is induced by γ̃ ◦ Φ.

Proof

“⇒” This results from remark (16.4) and lemma (16.10).

“⇐” This result from theorem (14.2) and corollary (16.6).
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Chapter 17 Conclusion
The complete description of the Jordan isomorphisms between the Moufang sets of two proper
pseudo-quadratic spaces is as follows:

(17.1) Theorem (Jordan Isomorphisms of Moufang Sets of Pseudo-Quadratic Form
Type) Let Ξ and Ξ̃ be proper pseudo-quadratic spaces. A map γ : T → T̃ is a Jordan
isomorphism if and only if one of the following holds:

(i) There is an isomorphism Φ : Ξ→ Ξ̃ of pseudo-quadratic spaces that induces γ.

(ii) The involutory sets (K,K0, σ) and (K̃, K̃0, σ̃) both are quadratic of type (iv), we have

K 6∼= K̃ , dimK L0 = 2 = dimK̃ L̃0

and there are an i ∈ {2, 3} and an isomorphism Φ : Ξ→ Ξ̃i of pseudo-quadratic spaces such
that γ is induced by (idiT̃ )−1 ◦ Φ, where idiT̃ and Ξ̃ =: Ξ̃1, Ξ̃2, Ξ̃3 are as in notation (13.4).

(iii) The involutory sets (K,K0, σ) and (K̃, K̃0, σ̃) are quadratic of type (iv) and (iii), respectively,
we have dimK L0 = 1, dimK̃ L̃0 = 2 and γ can be described by

∀ x = s+ et ∈ K, u ∈ K0 : γ(ax, xσq(a)x+ u) =
(
ãφ(s) + b̃φ(t)σ̃, φ

(
N(x)q(a) + u

))
,

where a ∈ L∗0 is arbitrary, φ : Ea → K̃ is an isomorphism of fields, e ∈ E⊥a , ã ∈ L̃0 and
b̃ ∈ ã⊥.

(iv) We have K ∼= F4 ∼= K̃, dimK L = 1 and there are an isomorphism Φ : Ξ → Ξ̃ of pseudo-
quadratic spaces and a non-trivial inner automorphism γ̃ ∈ Aut(T̃ ) such that γ is induced
by γ̃ ◦ Φ.

Proof

“⇒” If (i) or (iv) holds, we have K ∼= K̃, thus neither (ii) nor (iii) holds. If (iv) holds, (i) can’t
hold since γ̃ is not induced by an isomorphism of pseudo-quadratic spaces by remark (16.9).
Suppose that neither (i) nor (iv) holds. By theorem (8.1), (K,K0, σ) and (K̃, K̃0, σ̃) are
non-proper, hence they are of quadratic type by remark (9.9), and by theorem (16.11), we
have K 6∼= F4. But then we have K 6∼= K̃ by theorem (8.1). Finally, either (ii) or (iii) holds
by theorem (13.15).

“⇐” This results from theorem (14.2), theorem (14.17) and theorem (16.11).
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Chapter 18 Parametrized Moufang Triangles

The subject of this part is the classification of simply laced twin buildings via foundations, which
are amalgams of parametrized Moufang triangles. Given a simply laced twin building, we obtain a
foundation by taking the set of rank 2 residues, which are Moufang triangles, and by parametrizing
the corresponding root group sequences. These parametrizations make the glueings visible, and
they turn out to be Jordan isomorphisms.

By looking at foundations of rank 3, we can deduce more information about the appearing
glueings, e.g., the glueing of a foundation of type A3 is an isomorphism of skew-fields, which is
quite restrictive, e.g., concerning foundations involving octonions or residues of type D4.

Chapter 18 Parametrized Moufang Triangles
(18.1) Definition Let A be an alternative division ring.
• The root group sequence

T (A) :=
(
U[1,3], x1(A), x2(A), x3(A)

)
with commutator relations

∀ s, t ∈ A : [x1(s), x3(t)] := x2(st)
is the parametrized standard triangle with respect to A.

• The root group sequence
T o(A) :=

(
U[1,3], x1(A), x2(A), x3(A)

)
with commutator relations

∀ s, t ∈ A : [x1(s), x3(t)] := x2(−st)
is the parametrized opposite triangle with respect to A.

(18.2) Remark For reasons of brevity, we will write
T (o)(A) =

(
x1(A), . . . , x3(A)

)
instead of T (o)(A) =

(
U[1,3], x1(A), . . . , x3(A)

)
.

(18.3) Lemma Given an alternative division ring A, we have
T o(A) ∼= T (A) .

Proof
Let

T o(A) =
(
x1(A), x2(A), x3(A)

)
, T (A) =

(
x̃1(A), x̃2(A), x̃3(A)

)
.

Then α = (α1, α2, α3) with
α1 : x1(A)→ x̃1(A), x1(t) 7→ x̃1(t) ,
α2 : x2(A)→ x̃2(A), x2(t) 7→ x̃2(−t) ,
α3 : x3(A)→ x̃3(A), x3(t) 7→ x̃3(t)

preserves the commutator relations: Given s, t ∈ A, we have
α
(
[x1(s), x3(t)]

)
= α

(
x2(−st)

)
= x̃2(st) = [x̃1(s), x̃3(t)] = [α

(
x1(s)

)
, α
(
x3(t)

)
] .

(18.4) Lemma Let T (A) =
(
x1(A), x2(A), x3(A)

)
be a parametrized standard triangle. Then

we have (
x3(Ao), x2(Ao), x1(Ao)

)
= T o(Ao) .
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Proof
Given s, t ∈ Ao, we have

[x3(s), x1(t)] = [x1(t), x3(s)]−1 = x2(ts)−1 = x2(−s ◦ t) .

(18.5) Notation In the following, a (parametrized) Moufang triangle always denotes a
parametrized standard Moufang triangle.

(18.6) Definition Let T (A), T (Ã) be parametrized Moufang triangles.

• An isomorphism α : T (A)→ T (Ã) is a triple (α1, α2, α3) such that α1, α2, α3 : A→ Ã are
isomorphisms of additive groups satisfying

∀ s, t ∈ A : α2(st) = α1(s)α3(t) .

• A reparametrization for T (A) is an ordered set α = (Ã, α1, α2, α3) such that Ã is an
alternative division ring and α1, α2, α3 : Ã → A are isomorphisms of additive groups
satisfying

∀ s, t ∈ Ã : α2(st) = α1(s)α3(t) .

(18.7) Lemma Let T (A) be a parametrized Moufang triangle and let α = (Ã, α1, α2, α3) be
a reparametrization for T (A). Then we have(

x̃1(Ã), x̃2(Ã), x̃3(Ã)
)

= T (Ã) , ∀ i = 1, 2, 3 : x̃i := xi ◦ αi .

Proof
Given s, t ∈ Ã, we have

[x̃1(s), x̃3(t)] = [x1
(
α1(s)

)
, x3
(
α3(t)

)
] = x2

(
α1(s)α3(t)

)
= x2

(
α2(st)

)
= x̃2(st) .

(18.8) Lemma Let T (A) be a parametrized Moufang triangle and let a, b ∈ A∗. Then there
are reparametrizations α = (A, α1, α2, α3) and β = (A, β1, β2, β3) for T (A) such that

x1
(
α1(1A)

)
= x1(1A) , x3

(
α3(1A)

)
= x3(a) , x1

(
β1(1A)

)
= x1(b) , x3

(
β3(1A)

)
= x3(1A) .

Proof
Set α := (A, φ, ρaφ, ρaφ) with φ as in (20.25) of [TW]. For the second statement, apply the first
result to T (Ao).

(18.9) Lemma Let T (A) =
(
x1(A), x2(A), x3(A)

)
be a parametrized Moufang triangle. Then

the action of the Hua automorphism h1(s) := µ
(
x1(1A)

)−1
µ
(
x1(s)

)
on x1(A)×x3(A) corresponds

to the map
(t, u) 7→ (sts, s−1u) ,

and the action of the Hua automorphism h3(s) := µ
(
x3(1A)

)−1
µ
(
x3(s)

)
on x1(A)× x3(A) corre-

sponds to the map
(t, u) 7→ (ts−1, sus) .

Proof
This is (33.10) of [TW].
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Chapter 19 Foundations
In this chapter, we introduce the objects we will mainly deal with and which turn out to be a
classifying invariant for simply laced twin buildings.

§ 19.1 Definition

The definition given here combines ideas and concepts of B. Mühlherr and R. Weiss. In this part,
we only consider simply laced foundations, cf. part VIII for a general definition.

(19.1) Definition
• Let M be a simply laced Coxeter matrix, i.e., we have mij ∈ {2, 3} for all i, j ∈ I. A
foundation of type M is a set

F := {T (A(i,j)), γ(i,j,k) | (i, j) ∈ A(M), (i, j, k) ∈ G(M)}

such that:

(F1) Given (i, j) ∈ A(M), then T (A(i,j)) is a Moufang triangle over A(i,j).
(F2) Given (i, j) ∈ A(M), we have A(i,j) = Ao(j,i).
(F3) Given (i, j, k) ∈ G(M), then γ(i,j,k) : A(i,j) → A(j,k) is an isomorphism of additive

groups satisfying

γ(i,j,k)(1) = 1 , γ(i,j,k) = ido ◦ γ−1
(k,j,i) ◦ ido .

(F4) Given (i, j, k), (i, j, l), (l, j, k) ∈ G(M), we have

γ(i,j,k) = γ(l,j,k) ◦ ido ◦ γ(i,j,l) .

• Given a foundation F , we denote the corresponding Coxeter Matrix by F .

• A foundation F is a Moufang foundation if each glueing γ := γ(i,j,k) is a Jordan isomorphism,
i.e., we have

∀ s, t ∈ A(i,j) : γ(sts) = γ(s)γ(t)γ(s) .

(19.2) Definition Let F be a foundation over I = V (F ) and let J ⊆ I. The J-residue of F
is the foundation

FJ := {T (A(i,j)), γ(i,j,k) | (i, j) ∈ J2 ∩A(F ), (i, j, k) ∈ J3 ∩G(F )} .

(19.3) Remark Since a foundation is, in fact, an amalgam of Moufang triangles, an isomor-
phism of foundations is a system of isomorphism of Moufang triangles preserving the glueings.

(19.4) Definition Let F , F̃ be foundations.
• An isomorphism α : F → F̃ is a system α = {π, α(i,j) | (i, j) ∈ A(F )} of isomorphisms

π : F → F̃ , α(i,j) = (αi(i,j), α
ij
(i,j), α

j
(i,j)) : T (A(i,j))→ T (Ã(π(i),π(j)))

such that

∀ (i, j, k) ∈ G(F ) : γ̃(π(i),π(j),π(k)) ◦ αj(i,j) = αj(j,k) ◦ γ(i,j,k)

and α(i,j) = αo(j,i) for each (i, j) ∈ A(F ).

• An isomorphism α : F → F̃ is special if F = F̃ and π = idF .

• An automorphism of F is an isomorphism α : F → F .
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§ 19.2 Visualizing Foundations

Given a foundation F of type M , we can extend the corresponding Coxeter diagram ΠM in such
a way that it contains all the information of the given foundation F :

• Given an edge {i, j} ∈ E(M), we label it by either T (A(i,j)) or T (A(j,i)) and add an arrow
to indicate in which direction we have the given standard root group sequence.

• Given (i, j, k) ∈ G(M), we choose either (i, j, k) or (k, j, i), we add a directed arc from {i, j}
to {j, k} or vice versa, and label it by γ(i,j,k), resp. γ(k,j,i).

The remaining information can be deduced from the given ones. Notice that the constructed
diagram is not uniquely determined by F as there is a choice in the directions.

(19.5) Example An arbitrary foundation of type A3 is given by

1 2 3

γ(1,2,3)

T (A(1,2)) T (A(2,3))
,

a concrete example is

1 2 3

idoA

T (A) T (Ao)

,

where A is an arbitrary alternative division ring. We will see that an integrable foundation of
type A3 is isomorphic to the foundation

1 2 3

idD

T (D) T (D)

A3(D)

for some skew-field D, i.e., the previous example is not integrable.

(19.6) Remark

(a) Concerning a given problem, we sometimes don’t need the whole visualization to get a feeling
for the crucial step in the solution. In this case, we restrict to a diagram with the essential
information, e.g., we just indicate whether some glueings are iso- or anti-isomorphisms of
skew-fields.

(b) Notice that in the above construction, the resulting diagram possibly carries redundant
information: Given (i, j, k), (i, j, l) ∈ G(M) (and thus (l, j, k) ∈ G(M)), we have

γ(i,j,k) = γ(l,j,k) ◦ ido ◦ γ(i,j,l) ,

which means that

γ1

γ2γ3
and

γ1

γ2

carry the same information, where γ1 = γ(i,j,l), γ2 = γ(l,j,k) and γ3 = γ(i,j,k).
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§ 19.3 Root Group Systems

The fact that a root group systems is a classifying invariant of the corresponding twin building is
a fundamental result in twin building theory.

(19.7) Definition Let B be a simply laced twin building of typeM , let Σ be a twin apartment
of B and let c ∈ OΣ.

• Given (i, j) ∈ A(M), let αi, αj be the simple roots with respect to (Σ, c) and let Θ(i,j) be
as in theorem (2.32) (d). Then

U(i,j) := (U[i,j], U
i
(i,j), U

ij
(i,j), U

j
(i,j)) := Θ(i,j)

denotes the root group sequence of B from αi to αj , which is isomorphic to the root group
sequence of Bij from αi ∩ Bij to αj ∩ Bij .

• The resulting set
U(B,M,Σ, c) := {U(i,j) | (i, j) ∈ A(M)}

is the root group system of B based at (Σ , c).

(19.8) Lemma Given (i, j, k) ∈ G(F ), we have U j(i,j) = U j(j,k).

Proof
This holds by definition.

(19.9) Definition Let U := U(B,M,Σ, c) and Ũ := U(B̃, M̃ , Σ̃, c̃) be root group systems.

• An isomorphism α : U → Ũ is a system

α = {π, α(i,j) | (i, j) ∈ A(M)}

of isomorphisms

π : M → M̃ , α(i,j) : U(i,j) → Ũ(π(i),π(j))

such that

∀ (i, j, k) ∈ G(M) : α(i,j)|Uj(i,j)
= α(j,k)|Uj(j,k)

, ∀ (i, j) ∈ A(M) : α(i,j) = αo(j,i) .

• An isomorphism α : U → Ũ is special if M = M̃ and π = idM .

• An automorphism of U is an isomorphism α : U → U .

(19.10) Theorem Two root group systems U(B,M,Σ, c) and U(B,M, Σ̃, c̃) of of a twin
building B are specially isomorphic.

Proof
This is a consequence of theorem (2.22).

(19.11) Theorem Let U := U(B,M,Σ, c) be a root group system of a twin building B. Then
the isomorphism class of U is a classifying invariant of the isomorphism class of B.

Proof
This is a consequence of the extension theorem (2.23).
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§ 19.4 Foundations and Root Group Systems

Given a root group system, there is a natural way to attach a foundation to it.

(19.12) Definition Let U(B,M,Σ, c) be a root group system.

• Given (i, j) ∈ A(M), there is an alternative division ring A(i,j) such that U(i,j) ∼= T (A(i,j)).
In particular, there is a system of parametrizations

x∗(i,j) : A(i,j) → U∗(i,j) , t 7→ x∗(i,j)(t) , ∗ ∈ {i, ij, j}

extending to the defining relations for T (A(i,j)), i.e., we have

∀ s, t ∈ A(i,j) : [xi(i,j)(s), x
j
(i,j)(t)] = xij(i,j)(st) .

By lemma (18.4) and lemma (18.3), such a parametrization yields an opposite system of
parametrizations

xj(j,i) : Ao(i,j) → U j(j,i), t 7→ xj(i,j)
(
ido(t)

)
,

xji(j,i) : Ao(i,j) → U ji(j,i), t 7→ xij(i,j)
(
ido(−t)

)
,

xi(j,i) : Ao(i,j) → U i(j,i), t 7→ xi(i,j)
(
ido(t)

)
.

The resulting set Λ := {T (A(i,j)) | (i, j) ∈ A(M)} is a parameter system for U .

• Given (i, j, k) ∈ G(M) and parametrizations T (A(i,j)) and T (A(j,k)), we define the glueing
γ(i,j,k) : A(i,j) → A(j,k) by

xj(i,j)(t) = xj(j,k)
(
γ(i,j,k)(t)

)
which is justified by lemma (19.8). Then γ(i,j,k) is an isomorphism of additive groups
satisfying γ(i,j,k) = ido◦γ−1

(k,j,i)◦id
o. By lemma (18.8), we may adjust all the parametrizations

such that
∀ (i, j, k) ∈ G(F ) : γ(i,j,k)(1) = 1 .

Notice that for this purpose we need the following fact: The adjustment of a glueing γ(i,j,k)
can be realized by a reparametrization for T (A(i,j)) which fixes xi(i,j)(1). Thus we can make
sure that we don’t alter glueings which have already been adjusted before.

(19.13) Lemma Given a root group system U := U(B,M,Σ, c), a parameter system Λ as in
definition (19.12) induces a foundation

F(U,Λ) := {T (A(i,j)), γ(i,j,k) | (i, j) ∈ A(M), (i, j, k) ∈ G(M)} .

Proof
We emphasize that the glueings in definition (19.12) are identifications with respect to directed
edges. Given (i, j, k), (i, j, l), (l, j, k) ∈ G(M) and t ∈ A(i,j), we have

xj(j,k)
(
γ(i,j,k)(t)

)
= xj(i,j)(t) = xj(j,l)

(
γ(i,j,l)(t)

)
= xj(l,j)

(
ido ◦ γ(i,j,l)(t)

)
= xj(j,k)

(
γ(l,j,k) ◦ ido ◦ γ(i,j,l)(t)

)
and thus γ(i,j,k) = γ(l,j,k) ◦ ido ◦ γ(i,j,l).

(19.14) Definition A foundation F is integrable if it is the foundation of a twin building B,
i.e., if there are a root group system U := U(B,M,Σ, c) and a parameter system Λ for U such that

F = F(U ,Λ) .
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(19.15) Remark

(a) We will see in lemma (19.27) (a) that an integrable foundation is necessarily a Moufang
foundation.

(b) The next step is to show that the foundation attached to a root group system is unique
up to isomorphism. Moreover, we want to prove that the building corresponding to an
integrable foundation is unique up to isomorphism.

(19.16) Proposition Let U := U(B,M,Σ, c) and Ũ := U(B̃, M̃ , Σ̃, c̃) be root group systems
and let Λ and Λ̃ be parameter systems for U and Ũ , respectively. Then the following holds:

(a) An isomorphism α̃ : F(U ,Λ)→ F(Ũ , Λ̃) induces an isomorphism α : U → Ũ .

(b) An isomorphism α : U → Ũ induces an isomorphism α̃ : F(U ,Λ)→ F(Ũ , Λ̃).

Proof
Each isomorphism

α(i,j) : U(i,j) → Ũ(π(i),π(j))

induces an isomorphism
α̃(i,j) : T (A(i,j))→ T (Ã(π(i),π(j)))

and vice versa. Given (i, j) ∈ A(M), we have

α(i,j) = αo(j,i) ⇔ α̃(i,j) = α̃o(j,i) .

(a) We show that
α := {π, α(i,j) | (i, j) ∈ A(M)} : U → Ũ

is an isomorphism.
Given (i, j, k) ∈ G(M) and t ∈ A(i,j), we have(

xj(i,j)(t)
)α(i,j) = x̃

π(j)
(π(i),π(j))

(
α̃j(i,j)(t)

)
= x̃

π(j)
(π(j),π(k))

(
γ̃(π(i),π(j),π(k)) ◦ α̃ji,j(t)

)
= x̃

π(j)
(π(j),π(k))

(
α̃j(j,k) ◦ γ(i,j,k)(t)

)
=
(
xj(j,k)(γ(i,j,k)(t))

)α(j,k)

and therefore
α(i,j)|Uj(i,j)

= α(j,k)|Uj(j,k)
.

(b) We show that
α̃ := {π, α̃(i,j) | (i, j) ∈ A(M)} : F(U ,Λ)→ F(Ũ , Λ̃)

is an isomorphism.
Given (i, j, k) ∈ G(M) and t ∈ A(i,j), we have

U j(i,j) 3 x
j
(i,j)(t) = xj(j,k)

(
γ(i,j,k)(t)

)
∈ U j(j,k) .

As we have

α(i,j)|Uj(i,j)
= α(j,k)|Uj(j,k)

, (19.1)

it follows that

x̃
π(j)
(π(j),π(k))

(
γ̃(π(i),π(j),π(k)) ◦ α̃ji,j(t)

)
= x̃

π(j)
(π(i),π(j))

(
α̃j(i,j)(t)

)
(19.1)= x̃

π(j)
(π(j),π(k))

(
α̃j(j,k) ◦ γ(i,j,k)(t)

)
and therefore

γ̃(π(i),π(j),π(k)) ◦ α̃j(i,j) = α̃j(j,k) ◦ γ(i,j,k) .
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§ 19.5 Reparametrizations and Isomorphisms

The concept of reparametrizations is quite similar to that of isomorphisms. However, we deal with
a single foundation and produce (in fact, all the) foundations which are isomorphic to a given one.
Moreover, this concept allows us to complete the proof that a foundation is a classifying invariant
of the corresponding twin building.

(19.17) Definition Let F be a foundation.
• A system of reparametrizations

α := {α(i,j) | (i, j) ∈ A(F )}

satisfying α(i,j) = αo(j,i) for each (i, j) ∈ A(F ) and

γ(i,j,k) ◦ αj(i,j)(1) = αj(j,k)(1)

for each (i, j, k) ∈ G(F ) is a reparametrization for F .

• Given a reparametrization α for F , we set

Fα := {T (Ã(i,j)), γ̃(i,j,k) | (i, j) ∈ A(F ), (i, j, k) ∈ G(F )}

with
γ̃(i,j,k) := (αj(j,k))

−1 ◦ γ(i,j,k) ◦ αj(i,j)
for each (i, j, k) ∈ G(F ).

(19.18) Example Given the foundation

F
1 2 3T (A) T (A)

γ

with γ ∈ Aut(A) and α := {α(1,2) := (A, idA, idA, idA), α(2,3) := (A, γ, γ, γ)}, we have

Fα
1 2 3T (A) T (A)

idA
.

(19.19) Lemma Let U := U(B,M,Σ, c) be a root group system, let F := F(U ,Λ) for some
parameter system Λ for U , let α be a reparametrization for F and let Λ̃ be the parameter system
induced by α. Then we have F̃ := F(U , Λ̃) = Fα.

Proof
We have

x̃j(j,k)
(
γ̃(i,j,k)(t)

)
= x̃j(i,j)(t) = xj(i,j)

(
αj(i,j)(t)

)
= xj(j,k)

(
γ(i,j,k) ◦ αj(i,j)(t)

)
= x̃j(j,k)

(
(αj(j,k))

−1 ◦ γ(i,j,k) ◦ αj(i,j)(t)
)

for each t ∈ Ã(i,j).

(19.20) Corollary Let U := U(B,M,Σ, c) be a root group system, let F := F(U ,Λ) for some
parameter system Λ for U and let

α = {π, α(i,j) | (i, j) ∈ A(F )} : F → F̃

be an isomorphism. Then F̃ is integrable.
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Proof
Take

(
Ã(i,j) := Ã(π(i),π(j)), (αi(i,j))−1, (αij(i,j))

−1, (αj(i,j))
−1) as reparametrization for T (A(i,j)), then

replace i ∈ I by π(i) ∈ Ĩ. The resulting parameter system Λ̃ satisfies

F(U , Λ̃) = Fα = F̃ .

(19.21) Theorem The isomorphism class of an integrable foundations F = F(U ,Λ) is a
classifying invariant of the isomorphism class of the corresponding building.

Proof
This results from corollary (19.20), proposition (19.16) and theorem (19.11).

(19.22) Remark The following theorem shows that the concept of reparametrization is useful
if we want to determine all the foundations isomorphic to a given foundation F .

(19.23) Theorem Let F , F̃ be foundations with F = F̃ . Then the following holds:

(a) Let α̃ = {α̃(i,j) | (i, j) ∈ A(F )} : F → F̃ be a special isomorphism. Then there is a
reparametrization α of F such that Fα = F̃ .

(b) Let α = {α(i,j) | (i, j) ∈ A(F ) be a reparametrization for F such that Fα = F̃ . Then there
is a special isomorphism α̃ : F → F̃ .

Proof

(a) If we take α := {α(i,j) | (i, j) ∈ A(F )} with

α(i,j) := {Ã(i,j), (α̃i(i,j))−1, (α̃ij(i,j))
−1, (α̃j(i,j))

−1}

as reparametrization for F , then Fα = F̃ .

(b) We have
α(i,j) = (Ã(i,j), α

i
(i,j), α

ij
(i,j), α

j
(i,j))

for each (i, j) ∈ A(F ), thus α̃ := {idF , α̃(i,j) | (i, j) ∈ A(F )} : F → F̃ with

α̃(i,j) :=
(
(αi(i,j))−1, (αij(i,j))

−1, (αj(i,j))
−1)

is an isomorphism.

(19.24) Remark

(a) Let F and F̃ be foundations and let

α = {π, α(i,j) | (i, j) ∈ A(F )} : F → F̃

be an isomorphism. As we may replace i ∈ V (F ) by π(i) ∈ V (F̃ ), we may consider α as
special. Thus it suffices to determine all foundations which are specially isomorphic to F .
The remaining foundations isomorphic to F are obtained by relabelings of the vertex set.

(b) The theorem is useful if we want to show that two given foundations F and F̃ with isomorphic
residues R and R̃ are isomorphic. In this case we may replace R by R̃, observing that there
is a relabeling of the corresponding vertices involved.
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§ 19.6 Glueings

At this point we collect some first results about glueings of integrable foundations.

(19.25) Notation Throughout the rest of this part, F denotes an integrable foundation.

(19.26) Theorem Let (i, j) ∈ A(F ). Then a Hua automorphism of T (A(i,j)) is induced by
an automorphism of F .

Proof
This results from theorem (2.35).

(19.27) Lemma Let (i, j, k) ∈ G(F ) and let A := A(i,j), Ã := A(j,k). Then the following
holds:
(a) The glueing γ := γ(i,j,k) is a Jordan isomorphism. In particular, F is a Moufang foundation.

(b) If γ(i,j,k) is an isomorphism of alternative rings, then T (Ã) ∼= T (A).

(c) If γ(i,j,k) is an anti-isomorphism of alternative rings, then T (Ã) ∼= T (Ao).

Proof
(a) If we set

h(t) := µ
(
xj(i,j)(1A)

)−1
µ
(
xj(i,j)(t)

)
, t ∈ A , h̃(t̃) := µ

(
xj(j,k)(1Ã)

)−1
µ
(
xj(j,k)(t̃)

)
, t̃ ∈ Ã ,

we have
h̃
(
γ(t)

)
= µ

(
xj(j,k)(1Ã)

)−1
µ
(
xj(j,k)(γ(t))

)
= µ

(
xj(i,j)(1A)

)−1
µ
(
xj(i,j)(t)

)
= h(t)

for each t ∈ A. Moreover, we have

xj(i,j)(t)
h(s) = xj(i,j)(sts) , xj(j,k)(t̃)

h̃(s̃) = xj(j,k)(s̃t̃s̃)

for all s, t ∈ A, s̃, t̃ ∈ Ã, cf. lemma (18.9). Combining these two facts yields

xj(j,k)
(
γ(s)γ(t)γ(s)

)
= xj(j,k)

(
γ(t)

)h̃(γ(s)) = xj(i,j)(t)
h(s) = xj(i,j)(sts) = xj(j,k)

(
γ(sts)

)
and therefore

γ(sts) = γ(s)γ(t)γ(s)
for all s, t ∈ A, thus γ is a Jordan isomorphism.

(b) If γ is an isomorphism, then (A, γ, γ, γ) is a reparametrization for T (Ã), thus T (Ã) ∼= T (A).

(c) If γ is an anti-isomorphism, then (Ao, γo, γo, γo) is a reparametrization for T (Ã), thus
T (Ã) ∼= T (Ao).

(19.28) Definition
• A glueing is negative if it is an isomorphism of alternative rings.

• A glueing is positive if it is an anti-isomorphism of alternative rings.

• A glueing is exceptional if it is neither positive nor negative.

• A foundation is negative if each glueing is negative.

• A foundation is positive if each glueing is positive.

• A foundation is mixed if there are both positive and negative glueings.
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(19.29) Proposition A foundation

F = {T (A(1,2)), T (A(2,3)), γ := γ(1,2,3)}

of type A3 is negative. Moreover, A (and thus Ã) is associative.

Proof
If we set A := A(1,2), Ã := A(2,3),

x1 := x1
(1,2) , x2 := x2

(1,2) , x̃2 := x2
(2,3) , x̃3 := x̃3

(2,3)

and

h1(t) := µ
(
x1(1A)

)−1
µ
(
x1(t−1)

)
∈ U1

(1,2), t ∈ A ,

h3(t̃) := µ
(
x̃3(1Ã)

)−1
µ
(
x̃3(t̃−1)

)
∈ U3

(2,3), t̃ ∈ Ã ,

lemma (18.9) yields

x2(s)h1(t) = x2(t · s) , x̃2(s̃)h3(t̃) = x̃2(s̃ ∗ t̃)

for all s, t ∈ A, s̃, t̃ ∈ Ã. Combining these two facts and observing [U1
(1,2), U

3
(2,3)] = 1 yield

x̃2
(
γ(t) ∗ γ(s)

)
= x̃2

(
γ(t)

)h3(γ(s)) = x2(t)h3(γ(s)) = x2(1A)h1(t)h3(γ(s))

= x̃2(1Ã)h3(γ(s))h1(t) = x̄2
(
γ(s)

)h1(t) = x2(s)h1(t) = x2(t · s) = x̃2
(
γ(t · s)

)
and thus γ(t · s) = γ(t) ∗ γ(s) for all s, t ∈ A. As a consequence, we obtain

x2(s · t) = x̃2
(
γ(s · t)

)
= x̃2

(
γ(s) ∗ γ(t)

)
= x̃2

(
γ(s)

)h3(γ(t)) = x2(s)h3(γ(t))

for all s, t ∈ A. This implies

x2
(
(s · t) · u

)
= x2(s · t)h3(γ(u)) = x2(t)h1(s)h3(γ(u))

= x2(t)h3(γ(u))h1(s) = x2(t · u)h1(s) = x2
(
s · (t · u)

)
and therefore (s · t) · u = s · (t · u) for all s, t, u ∈ A.

(19.30) Corollary Let F be a positive foundation. Then GF is a complete graph.

(19.31) Theorem (Hua’s Theorem) Let A and Ã be alternative division rings and let
γ : A → Ã be a Jordan homomorphism. If Ã is associative, then γ : A → γ(A) is an iso- or
anti-isomorphism of alternative rings. In particular, A and γ(A) are also skew-fields, and, if A or
γ(A) is a field, the map γ is an isomorphism of fields.

Proof

(i) We show: Given s, t ∈ A, we have γ(st) = γ(s)γ(t) or γ(st) = γ(t)γ(s).
The assertion is clearly true for s = 0A or t = 0A, so assume s 6= 0A 6= t. As we have

γ(u2) = γ(u · 1A · u) = γ(u)γ(1A)γ(u) = γ(u) · 1Ã · γ(u) = γ(u)2

for each u ∈ A, it follows that

γ
(
(s+ t)2) = γ(s2 + st+ ts+ t2) = γ(s)2 + γ(st) + γ(ts) + γ(t)2 ,

γ
(
(s+ t)2) = γ(s+ t)2 =

(
γ(s) + γ(t)

)2 = γ(s)2 + γ(s)γ(t) + γ(t)γ(s) + γ(t)2

and thus

γ(st) + γ(ts) = γ(s)γ(t) + γ(t)γ(s) . (19.2)
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On the other hand, we have

s
(
t(st)−1t

)
s = s([t(t−1s−1)]t)s = [s(s−1t)]s = ts

by the Moufang identities and the inverse properties and, by lemma (27.3), therefore,

γ(ts) = γ
(
s(t(st)−1t)s

)
= γ(s)

(
γ(t)γ(st)−1γ(t)

)
γ(s) . (19.3)

Observing the associativity of Ã, we obtain

[1Ã − γ(s)γ(t)γ(st)−1][γ(st)− γ(t)γ(s)]
= γ(st)− γ(s)γ(t)− γ(t)γ(s) + γ(s)γ(t)γ(st)−1γ(t)γ(s)

(19.3)= γ(st)− γ(s)γ(t)− γ(t)γ(s) + γ(ts)(19.2)= 0Ã .

Since Ã has no zero divisors, it finally follows that

1Ã − γ(s)γ(t)γ(st)−1 = 0Ã ∨ γ(st)− γ(t)γ(s) = 0Ã .

(ii) Given s ∈ A, let

Ns := {t ∈ A | γ(st) = γ(s)γ(t)} , Ps := {t ∈ A | γ(st) = γ(t)γ(s)} .

By step (i), the subgroups Ns and Ps of (A,+) satisfy A = Ns ∪ Ps. As no group is the
union of two proper subgroups, we obtain

Ns = A ∨ Ps = A .

(iii) If we set

N := {s ∈ A | Ns = A} , P := {s ∈ A | Ps = A} ,

step (ii) shows that N and P are subgroups of (A,+) satisfying A = N ∪ P , hence

N = A ∨ P = A .

(19.32) Remark If we suppose A instead of Ã to be associative and if γ(A) is an alternative
division ring, the theorem remains true as we may apply it to γ−1 : γ(A)→ A.

(19.33) Corollary Let F be a foundation such that there exists an edge (a, b) ∈ A(F ) with
A := A(a,b) associative. Then we have

∀ (i, j) ∈ A(F ) : A(i,j) ∼= A ∨ A(i,j) ∼= Ao , T (A(i,j)) ∼= T (A) ∨ T (A(i,j)) ∼= T (Ao) .

In particular, the alternative division ring A(i,j) is associative for each (i, j) ∈ A(F ). Moreover,
the assumption is satisfied if F has a residue of type A3.

Proof
This results from lemma (19.27) (a), Hua’s theorem and lemma (19.27) (b), (c), using an easy
induction. The final assertion results from proposition (19.29).

(19.34) Corollary Let F be a foundation such that there exists an edge (a, b) ∈ A(F ) with
A := A(a,b) non-associative, i.e., A is an octonion division algebra. Then GF is a complete graph.

Proof
By proposition (19.29), F satisfies the assumption of corollary (19.33) if it has a residue of type
A3.
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Chapter 20 Integrability of Certain Foundations
In this chapter, we prove the integrability of certain foundations which are not negative or whose
defining field is an octonion division algebra. Afterwards we will prove that these foundations are
the only integrable foundations of this type, all of them defined over an octonion or quaternion
division algebra. For this purpose, we need the theory of fixed point structures developed in
[MHab].

The idea is as follows: Given an integrable foundation F and an automorphism α of the
corresponding twin building B, the foundation F̃ corresponding to the twin building B̃ := Fix(α)
can be constructed out of F and is, in fact, the fixed point structure of the automorphism
induced on the group generated by all the root groups. Conversely, all such fixed point structures
arise in this way, i.e., if we can realize a given foundation F̃ as the fixed point structure of an
automorphism α of an integrable foundation F , then F̃ itself is integrable.

We apply the so called theory of Tits indices without introducing it in detail since this would
involve a lot of technical considerations. We just follow the recipes, hopefully in a natural and
intuitive way, except for the canonical triangle over an octonion division algebra, where we just
indicate the main idea.

But first of all we start with some general integrability criterions. In combination with
Kac-Moody theory, they allow us to handle all the foundations that are defined over skew-fields
distinct from a quaternion division algebra (which includes fields).

§ 20.1 Integrability Criterions

The first one is a straight forward result as each residue of a twin building is again a twin building,
the second one is taken from [MLoc], and the third relies on Kac-Moody theory.

(20.1) Theorem LetM be a Coxeter matrix over I = V (M), let F be an integrable foundation
of type M and let J ⊆ I such that |J | ≥ 2. Then FJ is integrable.

Proof
By assumption, we have F = F(U ,Λ) for some root group system U = U(B,M,Σ, c) and some
parameter system Λ. By theorem (2.14), BJ := BJ (c) is a twin building, and by theorem (2.7) (b),
ΣJ := ΣJ(c) is a twin apartment of BJ containing c. Since we have

∀ i, j ∈ A(MJ) : Σ ∩ B{i,j}(c) = ΣJ ∩ (BJ){i,j}(c) ,

we have
UJ := U(BJ ,MJ ,ΣJ , c) = {U(i,j) | i, j ∈ A(MJ)}

and thus FJ = F(UJ ,ΛJ), where ΛJ is the parameter system induced by Λ.

(20.2) Definition Let F be a foundation.

• Let (F̃ , ϕ) be a cover of F . Then the foundation

F(F̃ , ϕ) := {T (Ã(i,j)), γ̃(i,j,k) | (i, j) ∈ A(F̃ ), (i, j, k) ∈ G(F̃ )}

with

∀ (i, j) ∈ A(F̃ ) : Ã(i,j) = A(ϕ(i),ϕ(j)) , ∀ (i, j, k) ∈ G(F̃ ) : γ̃(i,j,k) = γ(ϕ(i),ϕ(j),ϕ(k))

is the cover corresponding to (F̃ , ϕ).

• A foundation F̃ is a cover of F if there is a cover (F̃ , ϕ) of F such that

F̃ ∼= F(F̃ , ϕ) .
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(20.3) Example Given the foundation

γ1 γ2

γ3

1̄ 2̄

3̄

T (A(1,2))

T (A(2,3))T (A(3,1)) ,

a cover is given by

0 1 2 3 4

γ3 γ1 γ2 γ3 γ1

T (A(3,1)) T (A(1,2)) T (A(2,3)) T (A(3,1))
,

where ϕ : Z→ Z/3Z, z 7→ z̄ is the natural homomorphism.

(20.4) Theorem Let F be a foundation and let F̃ be a cover of F . Then F is integrable if
F̃ is integrable.

Proof
This is a consequence of theorem C in [MLoc].

(20.5) Definition A foundation F such that

∀ (i, j, k) ∈ G(F ) : γ(i,j,k) = id

is a canonical foundation.

(20.6) Lemma Let F be a negative foundation such that GF is a tree. Then F is isomorphic
to the corresponding canonical foundation.

Proof
Since GF is a tree, it suffices to show the following: Given (i, j, k) ∈ G(F ), there is a reparametriza-
tion

α(j,k) = (A(i,j), α
j
(j,k), α

jk
(j,k), α

k
(j,k))

such that (αj(j,k))
−1 ◦ γ(i,j,k) = idA(i,j) . This holds for α(j,k) := (A(i,j), γ(i,j,k), γ(i,j,k), γ(i,j,k)).

(20.7) Theorem Let F be a canonical foundation such that one of the following holds:

(a) The defining field A (cf. definition (21.7)) is a field, and F is a tree.

(b) The defining field is a non-commutative skew-field, and F is a string, a ray or a chain.

Then F is integrable.

Proof

(a) Kac-Moody theory provides the existence of an integrable foundation F̃ over A such that
F̃ = F , cf. [T92]. Since F̃ is negative by proposition (19.29), we have F̃ ∼= F by lemma
(20.6). Therefore, F is integrable by corollary (19.20).

(b) The corresponding twin building is the limit of a sequence of twin buildings An(A).
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§ 20.2 The Canonical Triangle over an Octonion Division Algebra

(20.8) Definition Let O be an octonion division algebra. The foundation

Ã2(O) := {T (A(1,2)) := T (A(2,3)) := T (A(3,1)) := T (O), γ(1,2,3) := γ(2,3,1) := γ(3,1,2) := idO}

is the canonical triangle over O.

(20.9) Theorem The foundation Ã2(O) is integrable.

Proof (Sketch)
Let K := Z(O) and let E ⊆ O be such that E/K is a quadratic separable extension. The foundation
Ã2(O) is the fixed point structure of the Tits index

E/K

.

0

3

6

5

2

4

1

Let B be the twin building associated with the diagram, let R := R{3,4,5,6} and let τ be the
triality associated with R. Given k ∈ {0, 1, 2}, let k̄ := {0, . . . , 6} \ {k} and k̃ := {0, 1, 2} \ {k}.
By similar arguments as in [MGeo], there are automorphisms ϕk ∈ Aut(Rk̄) such that

Fix(ϕk) ∼= T (O) , ϕk(Rk̃) = Rk̃ , ϕk|R ◦ τ = τ ◦ ϕk|R ,

and ϕ0 can be extended to an automorphism ϕ ∈ Aut(B) such that ϕ|Rk̄ = ϕk. By a generalization
of the arguments in chapter 3 of [MPhD], the fixed point set of ϕ is a twin building of type Ã2
whose foundation is Ã2(O).

§ 20.3 Positive and Mixed Foundations over Quaternions

(20.10) Notation Throughout this paragraph, H := (E/K, β) is a quaternion division algebra
with standard involution σs.

(20.11) Notation Let B := ( 0 β
1 0 ) ∈ GL2(E) and let

σ : M2(E)→M2(E), X 7→ BX̄B−1 .

(20.12) Lemma We have

Fix(σ) =
{(

s βt̄
t s̄

)
| s, t ∈ E

}
∼= H .

Proof
Given X := ( s ut v ) ∈M2(E), we have

X ∈ Fix(σ) ⇔
(

v̄ βt̄
β−1ū s̄

)
=
(
s u
t v

)
⇔ v = s̄ ∧ u = βt̄ ⇔ X ∈ H .
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(20.13) Corollary If we extend σ to an involution

σ : M6(E)→M6(E), X 7→

B B
B

 X̄

B−1

B−1

B−1

 ,

we have

Ū+ := Fix(σ) ∩ U+ =
{I2 s t

I2 u
I2

 | s, t, u ∈ H
}
.

(20.14) Remark

(a) We translate the map σ to root groups:

On the group 〈U1,2, U2,3, U3,4, U2,1, U3,2, U4,3〉, the map σ is given by

x1,2(t) 7→ x2,1(β−1t̄) , x1,3(t) 7→ x2,4(t̄) ,
x2,3(t) 7→ x1,4(βt̄) , x2,4(t) 7→ x1,3(t̄) ,
x3,4(t) 7→ x4,3(β−1t̄) , x1,4(t) 7→ x2,3(β−1t̄) .

Moreover, the fixed point set in 〈U1,2, U2,3, U3,4〉 is

{ya(s, t) := x1,3(s)x1,4(βt̄)x2,3(t)x2,4(s̄) | (s, t) ∈ H} .

On the group 〈U3,4, U4,5, U5,6, U4,3, U5,4, U6,5〉, the map σ is given by

x3,4(t) 7→ x4,3(β−1t̄) , x3,5(t) 7→ x4,6(t̄) ,
x4,5(t) 7→ x3,6(βt̄) , x4,6(t) 7→ x3,5(t̄) ,
x5,6(t) 7→ x6,5(β−1t̄) , x3,6(t) 7→ x4,5(β−1t̄) .

Moreover, the fixed point set in 〈U3,4, U4,5, U5,6〉 is

{yb(s, t) := x3,5(s)x3,6(βt̄)x4,5(t)x4,6(s̄) | (s, t) ∈ H} .

If we set
{yab(s, t) := x1,5(s)x1,6(βt̄)x2,5(t)x2,6(s̄) | (s, t) ∈ H} ⊆ Ū+ ,

we have
[ya(s1, t1), yb(s2, t2)] = yab

(
(s1, t1) · (s2, t2)

)
for all (s1, t1), (s2, t2) ∈ H, hence(

Ū+, y
a(H), yab(H), yb(H)

) ∼= T (H) .

(b) The corresponding Tits index is

E/K

.

(20.15) Theorem Let G be a complete graph over I := {1, . . . , n}. Then there exists an
integrable positive foundation F := P+

n (H) over H such that GF = G.
More precisely: For each i ∈ I, let Bi be a a copy of B̃, and for all 1 ≤ i < j ≤ n let B{i,j} be

a copy of B. We identify Bi with B{i,j} as in the first case and Bj with B{i,j} as in the second
case. Then the fixed point foundation F := P+

n (H) is a positive foundation with defining field H
(cf. definition (21.7)) and GF = G. Moreover, we have γ(i,j,k) ∈ {σs, ido} for each (i, j, k) ∈ G(F ).
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Proof
Let

B :=
(
A5(E) = (U+, U1,2, U2,3, U3,4, U4,5, U5,6), σ

)
, B̃ :=

(
A3(E) = (Ũ+, Ũ1,2, Ũ2,3, Ũ3,4), σ̃

)
with the usual parametrizations.

(i) We identify Ũ+ and U1,2U2,3U3,4 via

x̃1,2(t) 7→ x1,2(t) , x̃2,3(t) 7→ x2,3(t) , x̃3,4(t) 7→ x3,4(t) ,
x̃1,3(t) 7→ x1,3(t) , x̃2,4(t) 7→ x2,4(t) , x̃1,4(t) 7→ x1,4(t) .

(ii) We identify Ũ+ and U3,4U4,5U5,6 via

x̃1,2(t) 7→ x5,6(t) , x̃2,3(t) 7→ x4,5(−t) , x̃3,4(t) 7→ x3,4(t) ,
x̃1,3(t) 7→ x4,6(t) , x̃2,4(t) 7→ x3,5(t) , x̃1,4(t) 7→ x3,6(−t) .

We have

∀ t ∈ E : α
(
x̃i,j(t)

)σ = α
(
x̃i,j(t)σ̃

)
for all 1 ≤ i < j ≤ 3 and therefore

α
(
Fix(σ̄)

)
= FixUaUbUc(σ) .

Thus we may identify Fix(σ̄) and FixUaUbUc(σ) via

(i) ỹ(s, t) := x̃1,3(s)x̃1,4(βt̄)x̃2,3(t)x̃2,4(s̄) 7→ x1,3(s)x1,4(βt̄)x2,3(t)x2,4(s̄) = ya(s, t).

(ii) ỹ(s, t) := x̃1,3(s)x̃1,4(βt̄)x̃2,3(t)x̃2,4(s̄) 7→ x4,6(s)x3,6(−βt̄)x4,5(−t)x3,5(s̄) = yb(s̄,−t).

So if we have two copies B1,B2 of B and if we identify B̃ with subgroups of B1,B2 as above, we
have:

• ya1 (s, t) = ya2 (s, t) if both the identifications are of type (i). Moreover, we have(
yb2(Ho), yab2 (Ho), ya2 (Ho)

) ∼= T (Ho) ,
(
ya1 (H), yab1 (H), yb1(H)

) ∼= T (H)

and therefore γ(2,1) = ido : Ho → H.

• yb1(s, t) = yb2(s, t) if both the identifications are of type (ii). Moreover, we have(
ya1 (H), yab1 (H), yb1(H)

) ∼= T (H) ,
(
yb2(Ho), yab2 (Ho), ya2 (Ho)

) ∼= T (Ho)

and therefore γ(1,2) = ido : H→ Ho.

• ya1 (s, t) = yb2(s̄,−t) if the identifications are of different type. Moreover, we have(
ya2 (H), yab2 (H), yb2(H)

) ∼= T (H) ∼=
(
ya1 (H), yab1 (H), yb1(H)

)
and therefore γ(2,1) = σs : H→ H.

(20.16) Remark We obtain integrable mixed foundations over quaternions by glueing inte-
grable positive foundations in a suitable way.
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(20.17) Theorem Let G be a graph over I and let P be a collection of finite complete
subgraphs such that⋃
P∈P
P = G , ∀ P1 6= P2 ∈ P : |V (P1) ∩ V (P2)| ≤ 1 , ∀ i ∈ I : |{P ∈ P | i ∈ V (P)}| ≤ 2

and such that the graph GP with vertex set P and

{P1,P2} ∈ E(GP ) :⇔ |V (P1) ∩ V (P2)| = 1

is a tree. Then there exists an integrable mixed foundation F := F(GP ,H) over H such that:

• GF = G,

• The V (P)-residue is isomorphic to P+
|V (P)|(H) for each P ∈ P .

• Given P1,P2 ∈ P such that P1 ∩ P2 = {j}, we have

∀ (i, k) ∈
(
V (P1) \ {j}

)
×
(
V (P2) \ {j}

)
: γ(i,j,k) ∈ {id, σos} ,

i.e., these glueings are negative.

Proof
Given a graph P ∈ P , there is an integrable positive foundation

P+
|V (P)|(H)

which can be realized as fix foundation of a foundation BP . We likewise want to realize the desired
foundation F as a fixed point foundation. For this purpose, we will connect the foundations BP in
a suitable way. Since GP is a tree and |{P ∈ P | i ∈ V (P)}| ≤ 2 for each vertex i ∈ I, it suffices
to prove the assertion for |P | = 2.

Let P = {P1,P2}, let V (P1) ∩ V (P2) = {j}, for λ = 1, 2 let nλ := |V (Pλ)|, let jλ be the copy
of j in Pλ and let B̃jλ be the corresponding copy of B̃ in the construction of BPλ in theorem
(20.15). We identify B̃j1 and B̃j2 via

x̃j11,2(t) 7→ x̃j23,4(t) , x̃j12,3(t) 7→ x̃j22,3(−t) , x̃j13,4(t) 7→ x̃j21,2(t) .

If B{i,j1} and B{j2,k} are copies of B in the construction of BP1 and BP2 , respectively, we have the
following possibilities:

• yaj1(s, t) = yaj2(s̄,−t) if both the identifications are of type (i). Moreover, we have(
ybj1(Ho), yabj1 (Ho), yaj1(Ho)

) ∼= T (Ho) ,
(
yaj2(H), yabj2 (H), ybj2(H)

) ∼= T (H)

and therefore γ(i,j,k) = σos : Ho → H.

• ybj1(s, t) = ybj2(s̄,−t) if both the identifications are of type (ii). Moreover, we have(
yaj1(H), yabj1 (H), ybj1(H)

) ∼= T (H) ,
(
ybj2(Ho), yabj2 (Ho), yaj2(Ho)

) ∼= T (Ho)

and therefore γ(i,j,k) = σos : H→ Ho.

• ybj1(s, t) = yaj2(s, t) if both the identifications are of different type. Moreover, we have(
yaj1(H), yabj1 (H), ybj1(H)

) ∼= T (H) ∼=
(
yaj2(H), yabj2 (H), ybj2(H)

)
and therefore γ(i,j,k) = id : H→ H.

By construction, we have

GF = P1 ∪ P2 = G .
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Chapter 21 Triangle Foundations
The smallest building bricks of foundations involving glueings are A3- and Ã2-residues. Since there
are Ã2-foundations which do not have an integrable cover, it is not enough to consider A3-residues.
We will show that the only Ã2-residues without an integrable cover are those constructed in
chapter 20.

(21.1) Notation Throughout this chapter, B is of type Ã2 with foundation

F = {T (A(1,2)), T (A(2,3)), T (A(3,1)), γ2 := γ(1,2,3), γ3 := γ(2,3,1), γ1 := γ(3,1,2)} .

We denote its building at infinity by B∞.

(21.2) Remark Since B is a Moufang twin building, it is a Bruhat-Tits building by [VV], i.e.,
B∞ is a Moufang triangle T (A∞) for some alternative division ring A∞. As a consequence, we
may apply the results of [W].

§ 21.1 The Defining Field

First of all we show that each A2-residue is isomorphic to the same Moufang triangle T (A), up to
opposition. Then we prove that there is an embedding A ↪→ A∞.

(21.3) Proposition There is an automorphism α ∈ Aut(B) inducing 1 7→ 2 7→ 3 7→ 1 on GF .

Proof
By corollary (18.15) of [W], Aut(B) acts transitively on the set of gems, hence on the vertices and
thus on I. As |I| = 3 we are done.

(21.4) Corollary There is a (1 2 3)-automorphism of F .

Proof
Let U := U(B, F,Σ, c) be a root group system such that F = F(U ,Λ) for some parameter system Λ
for U and let α ∈ Aut(B) be as in proposition (21.3). Then α induces a (1 2 3)-isomorphism from
U to U

(
B, F, α(Σ), α(c)

)
which is specially isomorphic to U by theorem (19.10). By proposition

(19.16), there is a (1 2 3)-automorphism of U which induces a (1 2 3)-automorphism of F .

(21.5) Corollary We have A := A(1,2) ∼= A(2,3) ∼= A(3,1).

Proof
By corollary (21.4), we have

T (A(1,2)) ∼= T (A(2,3)) ∼= T (A(3,1)) ,

thus the claim results from (35.6) of [TW].

(21.6) Theorem Let F̃ be an integrable foundation. Then there is an alternative division
ring A such that

∀ (i, j) ∈ A(F̃ ) : Ã(i,j) ∼= A ∨ Ã(i,j) ∼= Ao .

Proof
By corollary (19.33) and corollary (21.5), this is true for each irr. rank 3 residue. The assertion
results from an easy induction, starting with A := Ã(a,b) for an arbitrary edge (a, b) ∈ A(F̃ ).

- 109 -



Part IV Simply Laced Foundations

(21.7) Definition Given an integrable foundation F̃ , we call the alternative division ring Ã
of theorem (21.6) the defining field for F̃ , and we say that F̃ is defined over Ã. By (35.6) of [TW],
it is unique up to (anti-)isomorphism.

(21.8) Notation Throughout the rest of this part, given an arbitrary integrable foundation
F̃ , the alternative division ring Ã always denotes its defining field.

(21.9) Theorem There is an embedding σ : A ↪→ A∞.

Proof
Let

R0 ∼= T (A) = {x1(A), x2(A), x3(A)}
be the gem as in (18.1) of [W]. As R0 is a special residue, it is a subbuilding of

B∞ ∼= T (A∞) = {x̃1(A∞), x̃2(A∞), x̃3(A∞)}

by theorem (6.3) of [MV]. Given t ∈ A and i ∈ {1, 2, 3}, there is a unique element x̃i
(
σi(t)

)
inducing xi(t), cf. proposition (29.61) of [W]. By lemma (18.8), we may reparametrize T (A∞)
such that

σ1(1A) = 1A∞ , σ3(1A) = 1A∞ .

Given s, t ∈ A and i ∈ {1, 2, 3}, we have1

x̃i
(
σi(s+ t)

)
= xi(s+ t) = xi(s)xi(t) = x̃i

(
σi(s)

)
x̃i
(
σi(t)

)
= x̃i

(
σi(s) + σi(t)

)
(21.1)

and

x̃2
(
σ2(st)

)
= x2(st) = [x1(s), x3(t)] =

[
x̃1
(
σ1(s)

)
, x̃3
(
σ3(t)

)]
= x̃2

(
σ1(s)σ3(t)

)
. (21.2)

Putting s := 1A and t := 1A in equation (21.2) shows that

σ := σ3 = σ2 = σ1 ,

hence

∀ s, t ∈ A : σ(s+ t) (21.1)= σ(s) + σ(t) , σ(st) (21.2)= σ(s)σ(t) .

(21.10) Remark
(a) The root group valuation φ := φR0 with respect to R0 as in definition (13.8) of [W] induces

a discrete valuation ν of A∞. As a consequence, we have

σ(A) ⊆ {k ∈ A∞ | ν(k) = 0} .

Moreover, σ(A) is a set of representatives for the residue field Ā∞ := O/m, where O is the
valuation ring of A∞ and m is its unique maximal ideal.
In particular, x̃i

(
σ(A)

)
⊆ Ui,0 is a set of representatives for Ūi,0 and, given a uniformizer

π ∈ A∞, x̃i(σ(A)π) ⊆ Ui,1 and x̃i
(
πσ(A)

)
⊆ Ui,1 are sets of representatives for Ūi,1, where

Ui,k is defined as in definition (3.21) of [W] and Ūi,k is defined as in (18.21) of [W].

(b) By the results of [W], we may suppose A∞ to be complete with respect to the valuation
ν and ν(A∞) = Z. By lemma (3.39) (a), Z(A∞) is complete with respect to the induced
valuation. As a consequence, we may apply the results of [P] if A∞ is an octonion division
algebra.

(c) For brevity, we will write x̃i(t) instead of x̃i
(
σ(t)

)
in the following.

1We replace x̃i(σi(t))|R0 = xi(t) by x̃i(σi(t)) = xi(t).

- 110 -



Chapter 21 Triangle Foundations

§ 21.2 Triangles over Octonions

At this point, as well as in §21.4 and §21.6, we heavily make use of the theory of affine buildings
developed in [W]. The main point is the fact that a parametrization for the building at infinity
induces a parametrization for a given root group system. As uniformizers play a central role, we
need some results of [P].

(21.11) Notation Throughout this paragraph, O := A is an octonion division algebra. As a
consequence, O∞ is an octonion division algebra.

(21.12) Proposition We have ν
(
Z(O∞)

)
= Z. As a consequence, there is a uniformizer

π ∈ Z(O∞).

Proof
As we have O = Ō∞ by remark (21.10), this is a consequence of proposition 2 in [P].

(21.13) Theorem The foundation F is specially isomorphic to the foundation Ã2(O).

Proof
Let (x1, x2, x3) be a parametrization for T (O∞). Then the maps

xi(i,j) : O→ x1(O∞) , t 7→ x1(t) ∈ U1,0 ,

xij(i,j) : O→ x2(O∞) , t 7→ x2(t) ∈ U2,0 ,

xj(i,j) : O→ x3(O∞) , t 7→ x3(t) ∈ U3,0

yield a parametrization for the gem R0 = R{i,j}, cf. remark (21.10). Moreover, the maps

xj(j,k) : O→ x3(O∞) , t 7→ x3(t) ∈ U3,0 ,

xjk(j,k) : O→ x−1(O∞) , t 7→ x−1(tπ) ∈ U−1,1 ,

xk(j,k) : O→ x−2(O∞) , t 7→ x−2(tπ) ∈ U−2,1

and

xk(k,i) : O→ x−2(O∞) , t 7→ x−2(πt) ∈ U−2,1 ,

xki(k,i) : O→ x−3(O∞) , t 7→ x−3(πt) ∈ U−3,1 ,

xi(k,i) : O→ x1(O∞) , t 7→ x1(t) ∈ U1,0

yield parametrizations for two gems R{j,k} and R(k,i) at distance one to each other and to R{i,j}.
By construction, this parameter system Λ parametrizes a root group system U := U(B, F,Σ, c).
As

xj(i,j)(t) = x3(t) = xj(j,k)(t) ,

xk(j,k)(t) = x−2(tπ) = x−2(πt) = xk(k,i)(t) ,

xi(k,i)(t) = x1(t) = xi(i,j)(t)

it follows that
γ(i,j,k) = γ(j,k,i) = γ(k,i,j) = idO .

Therefore, the resulting foundation
F̃ := F(U ,Λ)

is the canonical foundation Ã2(O). Finally we have F ∼= F̃ = Ã2(O) by theorem (19.10).
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§ 21.3 Non-Existence of Tetrahedrons over Octonions

Before we continue the examination of triangle foundations, we use the results of §21.2 to prove
that there are no further integrable foundations over octonions. To apply them, we have to
investigate the structure of AutJ (O). In particular, we construct a certain subgroup Γ ≤ AutJ (O).

(21.14) Notation

• Given a quaternion subalgebra H, e ∈ H⊥ and w, p ∈ H, we set

ψ(H,e,w) : O→ O, x+ e · y 7→ x+ e · w−1yw ,

φ(H,e,w,p) : O→ O, x+ e · y 7→ w−1xw + e · w−1ywp .

• We set

Ψ := {ψ(H,e,w) | H a quaternion subalgebra, e ∈ H⊥, w ∈ H} ,
Φ := {φ(H,e,w,p) | H a quaternion subalgebra, e ∈ H⊥, w, p ∈ H, N(p) = 1O} .

• Given ψ(H,e,w) ∈ Ψ, we set

ψo(H,e,w) : Oo → Oo, x+ e ◦ y 7→ x+ e ◦ w−1yw .

• We set

Γ := {ψφ | ψ ∈ Ψ, φ ∈ Aut(O)} , Γo := {ψoφ | ψ ∈ Ψ, φ ∈ Aut(Oo)} .

(21.15) Lemma Let ψ := ψ(H,e,w) ∈ Ψ. Then the following holds:

(a) Given s, t ∈ O, we have

ψ(st) =
(
ψ(s) · ψ(t)w

)
w−1 .

(b) ψ ∈ AutJ(O).

Proof

(a) This is (20.24) of [TW].

(b) By the Moufang identities and the inverse properties, We have

ψ(sts) (a)=
(
ψ(s) · ψ(ts)w

)
w−1 (a)=

(
ψ(s) ·

[
(ψ(t) · ψ(s)w)w−1]w)w−1

=
[
ψ(s)

(
ψ(t) · ψ(s)w

)]
w−1 =

[(
ψ(s)ψ(t) · ψ(s)

)
w
]
w−1 = ψ(s)ψ(t)ψ(s) .

for all s, t ∈ O.

(21.16) Lemma We have Φ ⊆ AutZ(O)(O). Given an element φ̃ ∈ AutZ(O)(O) leaving a
quaternion subalgebra H invariant, there is an element φ ∈ Φ such that φ̃ = φ.

Proof
This is section (2.1) of [Sp]. Notice that our point of view is that of the opposite multiplication.
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(21.17) Lemma Given γ = ψ(H,e,w)φ ∈ Γ and v ∈ O∗, let αv,γ : T (O)→ T (O),

x1(t) 7→ x1(v · γ(t)
)
, x12(t) 7→ x12(v · γ(t)w · v

)
, x2(t) 7→ x2(γ(t)w · v

)
and given γo = ψo(H,e,w)φ ∈ Γ and v ∈ O∗, let αov,γo : T (Oo)→ T (Oo),

x2(t) 7→ x2(v ◦ γo(t)) , x12(t) 7→ x12(v ◦ γo(t)w ◦ v) , x1(t) 7→ x1(γo(t)w ◦ v) .
Then we have

{αv,γ | v ∈ O∗, γ ∈ Γ} = Aut
(
T (O)

)
= Aut

(
T (Oo)

)
= {αov,γo | v ∈ O∗, γo ∈ Γo} .

Proof
This holds by the proof of (37.12) in [TW].

(21.18) Lemma We have Γ = Γo.

Proof
Given ψ := ψ(H,e,w) ∈ Ψ, we have

ψo(x+ e · y) = ψo(x+ ȳ · e) = ψo(x+ e ◦ ȳ)
= x+ e ◦ w−1ȳw = x+ wȳw−1 · e = x+ e · wȳw−1 = x+ e · wyw−1

for all x, y ∈ H and therefore
ψo(H,e,w) = ψ(H,e,w−1) .

(21.19) Lemma The set Γ is a subgroup of AutJ(O).

Proof
Given αv,γ ∈ Aut

(
T (O)

)
, we have

α1
v,γ(1O) = v · γ(1O) = v . (21.3)

• We have
idO = ψ(H,e,1O) ◦ idO ∈ Γ .

• Let γ ∈ Γ. By equation (21.3) and lemma (21.17), there is an element ρ ∈ Γ such that

α−1
1O,γ

= α1O,ρ .

We obtain
γ−1 = (α1

1O,γ
)−1 = α1

1O,ρ
= ρ ∈ Γ .

• Let γ1, γ2 ∈ Γ. By equation (21.3) and lemma (21.17), there is an element ρ ∈ Γ such that

α1O,γ1 ◦ α1O,γ2 = α1O,ρ .

We obtain
γ1γ2 = α1

1O,γ1
α1

1O,γ2
= α1

1O,ρ
= ρ ∈ Γ .

(21.20) Lemma We have Ψ ∪ Φ ⊆ Γ.
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Proof
Given a quaternion subalgebra H and e ∈ H⊥, we have

idO ∈ Aut(O) , idO = ψ(H,e,1O) ∈ Ψ .

(21.21) Lemma We have γw ∈ Γ for each w ∈ O.

Proof
By lemma (3.25) (c), there is a quaternion subalgebra H containing w. Let e ∈ H⊥. Then we have

γw(x+ e · y) = w−1xw + w−1(e · y)w = w−1xw + e · w̄−1wy

for all x, y ∈ H. Notice that

N(w̄−1w) = N(w̄)−1N(w) = N(w)−1N(w) = 1O ,

thus we obtain

γw = φ(H,e,w,w̄−1w) ◦ ψ(H,e,w−2w̄) ∈ Γ .

(21.22) Lemma We have σs /∈ Γ.

Proof
Let ψ = ψ(H,e,w) ∈ Ψ and φ ∈ Aut(O) such that σs = ψφ. Then

idH = ψ|H = σsφ
−1
|H

is both negative and positive  .

(21.23) Lemma Let

F = {T (A(1,2)) := T (A(2,3)) := T (A(3,1)) := T (O), γ2 := γ(1,2,3), γ3 := γ(2,3,1), γ1 := γ(3,1,2)}

be an integrable triangle foundation over O. Then we have γi ∈ Γ for i = 1, 2, 3.

Proof
We have F ∼= Ã2(O) by theorem (21.13), thus theorem (19.23) (a) yields a reparametrization α
for Ã2(O) such that

Ã2(O)α = F .

From definition (19.17) it follows that

γ(i,j,k) = (αj(j,k))
−1 ◦ idO ◦ αj(i,j) .

By lemma (21.17) and lemma (21.18), there are γ(i,j), γ(j,k) ∈ Γ and w ∈ O such that

αj(i,j)(t) = w · γ(i,j)(t) , αj(j,k)(t) = γ(j,k)(t) · w

and thus

(αj(j,k))
−1(t) = γ−1

(j,k)(t · w
−1) , (αj(j,k))

−1 ◦ αj(i,j)(t) = (γj(j,k))
−1(w · γ(i,j)(t) · w−1)

for each t ∈ O. We finally obtain

γ(i,j,k) = (γj(j,k))
−1 ◦ γw−1 ◦ γ(i,j) ∈ Γ

by lemma (21.21).
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(21.24) Proposition Let F̃ be a foundation over O such that GF̃ is a tetrahedron. Then F̃
is not integrable.

Proof
Assume that F̃ is integrable. Then each rank 3 residue is integrable, hence specially isomorphic
to Ã2(O) by theorem (21.13). By remark (19.24) (b), we may assume that the {1, 2, 3}-residue is
Ã2(O). Moreover, we may assume

T (Ã(3,4)) = T (Ã(4,1)) = T (Ã(2,4)) = T (O) .

Now we are in the situation of lemma (21.23), thus we have γ̃(1,2,4) ∈ Γ and

γ̃(4,2,3) = ido ◦ ido ◦ γ̃−1
(1,2,4) ◦ ido = γ̃−1

(1,2,4) ◦ ido .

We extend the reparametrization

α(4,2) := {O, σos , σos , σos}

to a reparametrization α for F̃ and obtain an integrable foundation

F := F̃α

satisfying
γ(4,2,3) = idO ◦ γ̃(4,2,3) ◦ σos = γ̃−1

(1,2,4) ◦ σs .

As we have
T (A(4,2)) = T (A(2,3)) = T (A(3,4)) = T (O) ,

it follows that

γ̃−1
(1,2,4) ◦ σs = γ(4,2,3) ∈ Γ , σs ∈ Γ  .

(21.25) Theorem A foundation F over an octonion division algebra O is integrable if and
only if we have F ∼= A2(O) or F ∼= Ã2(O).

Proof
As GF is complete and as each residue is integrable, proposition (21.24) implies |V (F )| ≤ 3. If
|V (F )| = 2, we have F ∼= T (O), and if |V (F )| = 3, we have F ∼= Ã2(O) by theorem (21.13).
Finally, Ã2(O) is integrable by theorem (20.9).

§ 21.4 Triangles over Skew-Fields

As we are done with the octonion case, we next deal with positive foundations over skew-fields.
The first step is to show that a triangle foundation F over a skew-field A is negative if A∞ is a
skew-field. Thus A∞ is necessarily an octonion division algebra if F is positive. Then we prove
that A is a quaternion division algebra, using the fact that A embeds into A∞. At last we obtain
a parametrization for a root group sequence via the building at infinity.

(21.26) Notation Throughout this paragraph, A is a skew-field.

(21.27) Lemma Let T (Ã) and T (Â) be isomorphic Moufang triangles over skew-fields and let
α = (α1, α2, α3) : T (Ã)→ T (Â) be an isomorphism. Then there are a, b ∈ Â and an isomorphism
φ : Ã→ Â of skew-fields such that

α = (λaφ, λaρbφ, ρbφ) .

- 115 -



Part IV Simply Laced Foundations

Proof
Let

a := α1(1Ã) , b := α3(1Ã) .

Since Â is associative, the map

α̃ :=
(
λa−1α1, λa−1ρb−1α2, ρb−1

)
: T (Ã)→ T (Â)

is an isomorphism. Moreover, we have

λa−1α1(1Ã) = a−1a = 1Â , ρb−1α3(1Ã) = bb−1 = 1Â .

By (35.23) of [TW] therefore, there is an isomorphism φ : Ã→ Â of skew-fields such that

α̃ = (φ, φ, φ) .

Thus we have
α = (λaφ, λaρbφ, ρbφ) .

(21.28) Lemma Let F̃ , F̂ be isomorphic foundations over a skew-field, let α : F̃ → F̂ be an
isomorphism and let (i, j, k) ∈ G(F ). If γ̃(i,j,k) is negative, then γ̂ := γ̂(π(1),π(2),π(3)) is negative.

Proof
By lemma (21.27), there are isomorphisms φi : Ã(i,j) → Â(π(i),π(j)) and φk : Ã(j,k) → Â(π(j),π(k))

of skew-fields and elements ai ∈ Â(π(i),π(j)) and ak ∈ Â(π(j),π(k)k) such that

αj(i,j) = ρai ◦ φi , αj(j,k) = λak ◦ φk .

By the definition of an isomorphism, we have

γ̂ = αj(j,k) ◦ γ̃(i,j,k) ◦ (αj(i,j))
−1 .

Combining these two facts implies that there are elements a, b ∈ Â(π(j),π(k)) such that

γ̂ = λa ◦ ρb ◦ φk ◦ γ̃(i,j,k) ◦ φ−1
i .

Moreover, we have
ab = γ̂(1) = 1

and therefore b = a−1. It finally follows that

γ̂ = γb ◦ φk ◦ γ̃(i,j,k) ◦ φ−1
i

is negative.

(21.29) Corollary The following holds:
(a) The foundation F is either negative or positive.

(b) If a foundation isomorphic to F is negative, then F is negative.

Proof
(a) This results from lemma (21.28) and corollary (21.4).

(b) This is an immediate consequence of lemma (21.28).

(21.30) Theorem Let A∞ be a skew-field. Then F is negative.
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Proof
Let (x1, x2, x3) be a parametrization for T (A∞) and let π ∈ A∞ be a uniformizer. Then the maps

xi(i,j) : A→ x1(A∞) , t 7→ x1(t) ∈ U1,0 ,

xij(i,j) : A→ x2(A∞) , t 7→ x2(t) ∈ U2,0 ,

xj(i,j) : A→ x3(A∞) , t 7→ x3(t) ∈ U3,0

yield a parametrization for the gem R0 = R{i,j}, cf. remark (21.10). Moreover, the maps

xj(j,k) : A→ x3(A∞) , t 7→ x3(t) ∈ U3,0 ,

xjk(j,k) : A→ x−1(A∞) , t 7→ x−1(tπ) ∈ U−1,1 ,

xk(j,k) : A→ x−2(A∞) , t 7→ x−2(tπ) ∈ U−2,1

yield a parametrization for a gem R{j,k} at distance one to R{i,j}. By construction, these two
parametrizations are part of a parameter system Λ for a root group system U := U(B, F,Σ, c). As
we have

xj(i,j)(t) = x3(t) = xj(j,k)(t) ,

it follows that γ(i,j,k) = idA is negative. Therefore, the resulting foundation

F̃ := F(U ,Λ)

is negative, cf. corollary (21.29) (a) with F̃ in place of F . As we have F ∼= F̃ by theorem (19.10),
corollary (21.29) (b) finally shows that F is negative.

§ 21.5 Skew-Fields inside Octonions

As we want to show that A is a quaternion division algebra if F is positive, we prove that each
non-commutative division subring of an octonion division algebra is a quaternion division algebra.
Then the claim results from the fact that A embeds into A∞.

In §21.6, we will need once again the results of [P] to find a suitable uniformizer for a
parametrization. In fact, we can choose a uniformizer π ∈ A⊥, thus conjugating elements of A by
π is equal to applying the standard involution.

(21.31) Lemma Let O be an octonion algebra and let D be a non-commutative division
subring. Then we have

Z(D) ⊆ Z(O) =: K .

Proof
The octonion division algebra O quadratic over K. Then D̃ := 〈D〉K is non-commutative and
quadratic over K ⊆ Z(D̃), thus we have K = Z(D̃) by proposition (3.32) and therefore

Z(D) ⊆ Z(D̃) = K .

(21.32) Lemma Let D be a skew-field such that dimZ(D) D < ∞. Then there is an n ∈ N∗
such that

dimZ(D) D = n2 .

Proof
This results from the fact that D is central simple over Z(D).
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(21.33) Theorem Let O be an octonion division algebra, let K := Z(O) and let D be a
non-commutative alternative division subring. Then the following holds:
(a) D⊗Z(D) K is isomorphic to a division subalgebra of O.

(b) D is a quaternion division algebra or an octonion division algebra.

Proof
The non-commutative division subalgebra D̃ := 〈D〉K ⊆ O is quadratic over K ⊆ Z(D̃) and
therefore a quaternion division algebra or an octonion division algebra by proposition (3.32).
(a) By lemma (21.31), we have Z(D) ⊆ K, hence

D⊗Z(D) K

is a central simple algebra over K. By the universal property, there is an epimorphism
π : D⊗Z(D) K→ D̃

which is injective due to simplicity.

(b) Part (a) yields
dimZ(D) D = dimK(D⊗Z(D) K) = dimK D̃ ∈ {4, 8} .

In particular, each Z(D)-basis of D is a K-basis of D̃.

• If D is non-associative, then D is an octonion division algebra and thus dimZ(D) D = 8.
• If D is associative, then we have

dimZ(D) D ∈ {4, 8} ∩ {n2 | n ∈ N∗} = 4
by lemma (21.32). Let x ∈ D \ Z(D) and let {1O, x, y, z} be a Z(D)-basis of D. Then
there are λ1, . . . , λ4 ∈ Z(D) ⊆ K such that

x−1 = λ1 · 1O + λ2 · x+ λ3 · y + λ4 · z .

Since {1O, x, y, z} is a K-basis of D̃, it follows that
λ1 = N(x)−1T (x) , λ2 = −N(x)−1 , λ3 = 0O = λ4

and therefore
N(x) = −λ−1

2 ∈ Z(D) , T (x) = λ1 ·N(x) ∈ Z(D) .
As a consequence, D is quadratic over Z(D) and therefore a quaternion division algebra
by proposition (3.32).

§ 21.6 Positive Triangles over Skew-Fields

(21.34) Notation Throughout this paragraph, A is a skew-field and F is positive.

(21.35) Remark By theorem (21.30), A∞ is an octonion division algebra.

(21.36) Lemma The defining field A is a quaternion division algebra.

Proof
We have A ⊆ A∞ by theorem (21.9), thus the claim results from theorem (21.33).

(21.37) Notation We set H := A, O := A∞ and K := Z(O).

(21.38) Proposition There is a uniformizer π ∈ H⊥.
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Proof
As we have H = Ō by remark (21.10), proposition 2 of [P] implies ν(K) = 2Z. As a consequence,
O is ramified and the quaternion division algebra H′ := 〈H〉K is an unramified composition algebra
such that H̄′ = H. Theorem 2 of [P] shows that

O ∼= (H′, π′)

for some ν|K-uniformizer π′ of K, i.e., we have ν(π′) = 2. As a consequence, there is an element
π ∈ H′⊥ ⊆ H⊥ satisfying N(π) = −π′ and, therefore,

ν(π) =
ν
(
N(π)

)
2 = ν(−π′)

2 = ν(π′)
2 = 1 .

(21.39) Theorem The foundation F is specially isomorphic to the standard positive founda-
tion

P+
3 (H) := {T (A+

(1,2)) := T (A+
(2,3)) := T (A+

(3,1)) := T (H), γ+
1 := γ+

2 := γ+
3 := σs} .

Proof
By proposition (21.38), there is a uniformizer π ∈ H⊥. Let (x1, x2, x3) be a parametrization for
T (O). Then the maps

xi(i,j) : H→ x1(O) , t 7→ x1(t) ∈ U1,0 ,

xij(i,j) : H→ x2(O) , t 7→ x2(t) ∈ U2,0 ,

xj(i,j) : H→ x3(O) , t 7→ x3(t) ∈ U3,0

yield a parametrization for the gem R0 = R{i,j}, cf. remark (21.10). Moreover, the maps

xj(j,k) : H→ x3(O) , t 7→ x3(t̄) ∈ U3,0 ,

xjk(j,k) : H→ x−1(O) , t 7→ x−1(t̄π) ∈ U−1,1 ,

xk(j,k) : H→ x−2(O) , t 7→ x−2(t̄π) ∈ U−2,1

and

xk(k,i) : H→ x−2(O) , t 7→ x−2(πt̄) ∈ U−2,1 ,

xki(k,i) : H→ x−3(O) , t 7→ x−3(πt̄) ∈ U−3,1 ,

xi(k,i) : H→ x1(O) , t 7→ x1(t̄) ∈ U1,0

yield parametrizations for two gems R{j,k} and R(k,i) at distance one to each other and to R{i,j},
e.g., we have

[xj(j,k)(s), x
k
(j,k)(t)] = [x3(s̄), x−2(t̄π)] = x−1

(
s̄(t̄π)

)
= x−1

(
(t̄s̄)π

)
= x−1

(
(st)π

)
= xjk(j,k)(st)

for all s, t ∈ H. By construction, this parameter system Λ parametrizes a root group system
U := U(B, F,Σ, c). As we have

xj(i,j)(t) = x3(t) = xj(j,k)(t̄) ,

xk(j,k)(t) = x−2(t̄π) = x−2
(
π(π−1t̄π)

)
= x−2(πt) = xk(k,i)(t̄) ,

xi(k,i)(t) = x1(t̄) = xi(i,j)(t̄) ,

it follows that
γ(i,j,k) = γ(j,k,i) = γ(k,i,j) = σs .

Therefore, the resulting foundation
F̃ := F(U ,Λ)

is P+
3 (H). Finally F ∼= F̃ = P+

3 (H) by theorem (19.10).
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Chapter 22 Positive Foundations over Skew-Fields
Since each residue of an integrable foundation is itself integrable, a positive foundation is built up
of positive triangle foundations. Their uniqueness enables us to show the uniqueness of positive
foundations for a given quaternion division algebra H and a given value of |I|.

(22.1) Notation Throughout this chapter, F is a positive foundation over I := {1, . . . , n}.
Since each rank 3 residue is a positive triangle, H := A is a quaternion division algebra by lemma
(21.36). Moreover, GF is complete by corollary (19.30).

(22.2) Lemma Let F̃ , F̂ be isomorphic positive foundations over a skew-field, let α : F̃ → F̂
be an isomorphism and let (i, j, k) ∈ G(F ). By lemma (21.27), there are isomorphisms

φi : Ã(i,j) → Â(π(i),π(j)) , φk : Ã(j,k) → Â(π(j),π(k))

of skew-fields and elements ai ∈ Â(π(i),π(j)) and ak ∈ Â(π(j),π(k)k) such that

αj(i,j) = ρai ◦ φi , αj(j,k) = λak ◦ φk .

Then we have
γ̂ := γ̂(π(i),π(j),π(k)) = φk ◦ γ̃(i,j,k) ◦ φ−1

i .

Proof
By the definition of an isomorphism, we have

γ̂ = αj(j,k) ◦ γ̃(i,j,k) ◦ (αj(i,j))
−1 = λak ◦ φk ◦ γ̃(i,j,k) ◦ ◦φ−1

i ◦ ρ
−1
ai .

As γ̃(i,j,k) is positive, it follows that there are elements a, b ∈ Â(π(j),π(k)) such that

γ̂ = λa ◦ λb ◦ φk ◦ γ̃(i,j,k) ◦ φ−1
i .

Moreover, we have
ab = γ̂(1) = 1

and therefore a = b−1. It finally follows that

γ̂ = φk ◦ γ̃(i,j,k) ◦ φ−1
i .

(22.3) Remark The standard involution σs satisfies

σs ◦ φ = φ ◦ σs

for all φ ∈ Aut(H), cf corollary (28.6).

(22.4) Lemma Let

F̃ := (T (Ã(1,2)) := T (Ã(2,3)) := T (Ã(3,1)) := T (H), γ̃2 := γ̃(1,2,3), γ̃3 := γ̃(2,3,1), γ̃1 := γ̃(3,1,2))

be a positive triangle foundation over H. Then we have

γ̃3γ̃2γ̃1 = σs .
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Proof
The reparametrizations

α̃(1,2) := (H, γ̃−1
2 γ̃−1

3 , γ̃−1
2 γ̃−1

3 , γ̃−1
2 γ̃−1

3 ) , α̃(2,3) := (H, γ̃−1
3 σs, γ̃

−1
3 σs, γ̃

−1
3 σs)

show that F̃ is isomorphic to the foundation

F̂ := {T (Â(1,2)) := T (Â(2,3)) := T (Â(3,1)) := T (H), γ̂2 := γ̂3 := σs, γ̂1 := γ̃3γ̃2γ̃1} .

Since we have F̂ ∼= P+
3 (H) by theorem (21.39), there are isomorphisms

α(i,j) = (λaiφ(i,j), λaiρbjφ(i,j), ρbjφ(i,j)) : T (Ã(i,j))→ T (Â(i,j))

satisfying

γ̂1 = φ(1,2)σsφ
−1
(3,1) , σs = φ(2,3)σsφ

−1
(1,2) , σs = φ(3,1)σsφ

−1
(2,3)

by the definition of an isomorphism and lemma (22.2). Now remark (22.3) implies

φ(1,2) = φ(2,3) = φ(3,1) , γ̃3γ̃2γ̃1 = γ̂1 = σs .

(22.5) Theorem The foundation F is specially isomorphic to F̃ := P+
n (H).

Proof
Induction on n:
• n = 3: This is theorem (21.39).

• n→ n+ 1: By induction assumption, we may assume F̃[1,n] = F[1,n], where F̃[1,n] and F[1,n]
are the [1, n]-residues of F̃ and F , respectively. If we reparametrize the rank 2 residues of
F \ F[1,n] and F̃ \ F̃[1,n] in such a way that

γ̃(j,j+1,n+1) = γ(j,j+1,n+1) = ido = γ(n+1,1,2) = γ̃(n+1,1,2) , j = 1, . . . , n− 1 ,

the remaining glueings are uniquely determined by lemma (22.4), thus corresponding glueings
are equal.

T (H) 13

4

+
+

+
+

++

++
+

(i)

T (H) 13

4

σs

+
σs

+

++

++
σs

(ii)

T (H) 13

4

σs
ido

σs

ido

++

ido+
σs

(iii)

T (H) 13

4

σs
ido

σs

ido

σsido

idoσs

σs

(iv)
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Chapter 23 Mixed Foundations over Skew-Fields
In order to determine the integrable mixed foundations, we attach a graph to each of them. If
this graph is a tree, it turns out that the corresponding foundation is isomorphic to one of the
foundations constructed in §20.3. If it is not a tree, then the corresponding foundation is covered
by a foundation of §20.3.

(23.1) Notation Throughout this chapter, F is a mixed foundation over a skew-field, i.e.,
there are positive and negative glueings.

(23.2) Remark Since F has positive residues, H := A is a quaternion division algebra by
lemma (21.36).

(23.3) Definition Let F be a foundation over I = V (F ). Given i ∈ I, the set of neighbours
of i is

B1(i) := {j ∈ I | {i, j} ∈ E(F )} .

(23.4) Lemma Let F̃ be a foundation over I = {1, 2, 3, 4} such that its defining field is a
skew-field and such that |B1(1)| = 3. Let

Γ̃ := {γ̃(2,1,3), γ̃(3,1,4), γ̃(2,1,4)} .

Then we have
n := |{γ̃ ∈ Γ̃ | γ̃ positive}| ∈ {1, 3} .

Proof
Notice that a glueing is either negative or positive.
(i) Suppose that γ̃(2,1,3) and γ̃(3,1,4) are negative. Then

γ̃(2,1,4) = γ̃(3,1,4) ◦ ido ◦ γ̃(2,1,3)

is positive, thus n ≥ 1.

(ii) Suppose that γ̃(2,1,3) is positive and that γ̃(3,1,3) is negative. Then

γ̃(2,1,4) = γ̃(3,1,4) ◦ ido ◦ γ̃(2,1,3)

is negative, thus n 6= 2.

23

4

−−

(i)

23

4

−−
+

23

4

−+

(ii)

23

4

−+
−

Notice that there could be more edges than the drawn ones.

(23.5) Notation Given a mixed foundation F̃ over H, we denote the collection of all maximal
positive residues of F̃ byM(F̃). We set

P (F̃) := {GP̃ | P̃ ∈ M(F̃)} .

(23.6) Remark Rank 2 two residues are considered to be positive, thus⋃
P∈M(F)

GP = GF .
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(23.7) Theorem The setM(F) satisfies the following conditions:

(i) Each P ∈M(F) is integrable, in particular, GP is complete.

(ii) We have ⋃
P∈M(F)

GP = GF .

(iii) Given P1 6= P2 ∈M(F), we have |V (P1) ∩ V (P2)| ≤ 1.

(iv) Given i ∈ I, we have |{P ∈ M(F) | i ∈ V (P )}| ≤ 2.

Proof
(i) Each P ∈M(F) is integrable because F itself is integrable.

(ii) This holds by remark (23.6).

(iii) Since the elements ofM(F) are maximal and GP is complete for each P ∈M(F), lemma
(23.4) implies that

∀ P1 6= P2 ∈M(F) : |V (P1) ∩ V (P2)| ≤ 1 .

Otherwise P1 ∪ P2 would be positive with P1 ( P1 ∪ P2.

(iv) By step (ii), the glueings connecting two elements P1 6= P2 ∈M(F) are necessarily negative.
From lemma (23.4) again it follows that

∀ i ∈ I : |{P ∈ M(F) | i ∈ V (P )}| ≤ 2 .

(23.8) Proposition Let F̃ be a mixed foundation over H such that M(F̃) satisfies the
conditions (i)-(iv) of theorem (23.7). If the graph G := GP (F̃)

F̃
is a tree, we have F̃ ∼= F(G,H) =: F̂ .

In particular, F̃ is integrable.

Proof
First of all we observe that F̂ is well-defined the conditions (i)-(iv). By construction, we have
P (F̃) = P (F̂), and by theorem (22.5), we have

P̃ ∼= P+
|V (P̃ )|(H) =: P̂ ∈ M(F̂)

for each P̃ ∈ M(F̃). Since the isomorphisms are special, we may assume P̃ = P̂ for each
P̃ ∈ M(F̃). It remains to adjust the glueings connecting two elements ofM(F̃). Since G is a
tree and

|{P̃ ∈ M(F̃) | i ∈ V (P̃ )}| ≤ 2
for each vertex i ∈ I, it suffices to show the following:
Given P̃1, P̃2 ∈ M(F̃ ) with {GP̃1

,GP̃2
} ∈ E(G), there is an isomorphism α : P̃1 ∪ P̃2 → P̂1 ∪ P̂2

fixing P̃1.
Let V (P̃1) ∩ V (P̃2) = {b}, let a ∈ V (P̃1) \ {b}, let c ∈ V (P̃2) \ {b} and let γ := γ̂(a,b,c) ◦ γ̃−1

(a,b,c).
Then

α := {idF , α(i,j) | (i, j) ∈ A(P̃1 ∪ P̃2)}
with

∀ (i, j) ∈ A(P̃1) : α(i,j) := (id, id, id) , ∀ (i, j) ∈ A(P̃2) : α(i,j) = (γ, γ, γ)

satisfies the required condition.
Finally F̃ is integrable by corollary (19.20) and theorem (20.17).
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(23.9) Example

(i)

+
−−

+
−

+
−

+
−

+
−

(ii)

+
−−

+
−

+
−

+
−

+
−

(iii)

+
−−

+
−

+
−

+
−

+
−

(iv)

+
−−

+
−

+
−

+
−

+
−

The red triangles represent the elements ofM(F̃), the blue glueings represent the corresponding
glueings of F̃ , while the black ones represent those of F̂ .

(23.10) Corollary If G := GP (F)
F is a tree, then we have

F ∼= F(G,H) .

Proof
This results immediately from theorem (23.7) and proposition (23.8).

(23.11) Theorem Let F̃ be a mixed foundation over H such thatM(F̃) satisfies the conditions
(i)-(iv) of theorem (23.7). Then F̃ is integrable.

Proof
Let U be the the universal cover of GP (F̃)

F̃
and let F̂ be the cover corresponding to the induced

cover of GF̃ . By theorem (20.4), F̃ is integrable if F̂ is integrable. ButM(F̂) equally satisfies the
conditions (i)-(iii) of proposition (23.8) and, moreover,

GP (F̂)
F̂

∼= U

is a tree. Therefore, F̂ is integrable by proposition (23.8).

(23.12) Example

− −

−

−

−

−

+ +

+

P3 P1

P2

F̃

+
−− P1

+
−− P2

+
−− P3

+
−− P3

+
−− P2

F̂
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Chapter 24 Negative Foundations
Negative foundations are quite easy to handle as we may apply theorems (20.4) and (20.7). If A
is a field, there are no restrictions; each foundation is integrable. If A is non-commutative, then
lemma (24.2) is very restrictive; the structure of an integrable foundation is very simple.

(24.1) Notation Throughout this chapter, F is a negative foundation over a skew-field.

(24.2) Lemma If F has a residue R of type D4, then A is a field. In particular, F is negative.

Proof
We label the vertices of R such that {1, 2}, {1, 3}, {1, 4} ∈ E(R). By lemma (19.29), each glueing
is negative, and by lemma (23.4), at least one is positive.

23

4

−−

−

(19.29)

&

23

4

−−

(23.4)

23

4

−−

+

23

4

−−

±

(24.3) Theorem If A is a non-commutative skew-field, then GF is a string, a ray, a chain or
a circle.

Proof
By lemma (24.2), GF has no branches.

(24.4) Theorem Let F̃ be a negative foundation. Then the following holds:

(a) If Ã is a field, then F̃ is integrable.

(b) If Ã is a non-commutative skew-field and GF̃ is a string, a ray, a chain or a circle, then F̃ is
integrable.

Proof
By theorem (20.4), F̃ is integrable if its universal cover U is integrable. But since GU is a tree, U
is isomorphic to the corresponding canonical foundation by lemma (20.6), which is integrable by
theorem (20.7).
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Chapter 25 Conclusion
(25.1) Theorem (Classification of Simply Laced Twin Buildings) Let F be an irr.
simply laced foundation. Then F is integrable if and only if one of the following holds:

• The defining field is an octonion division algebra O, and F is isomorphic to one of the
following foundations:

T (O)

A2(O):

idO idO

idO

T (O)

T (O)T (O)

Ã2(O):

.

• The defining field is a quaternion division algebra H, and M(F) satisfies the conditions
(i)-(iv) of theorem (23.7).

• The defining field is a non-commutative skew-field D different from a quaternion algebra,
and F is isomorphic to one of the following foundations (where γ1, . . . , γn+1 ∈ Aut(D)):

T (D)T (D)

An(D):

1 2 n− 1 n

idD idD

T (D)T (D)

Al∞(D):

−3 −2 −1 0

idD idD idD

T (D)T (D)

Ar∞(D):

0 1 2 3

idDidD idD

T (D)T (D)

A∞(D):

−1 0 1 2

idDidD idDidD

Ãn(D, γi):
n+ 1 1

2

3n− 1

n

T (D)

T (D)

T (D)

T (D)

T (D)

γ1

γ2

γ3γn−1

γn

γn+1

• The defining field is a field, and there are no further restrictions on the foundation F .
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Proof
This results from theorems (21.25), (23.7), (23.11), (24.3) and (24.4).

(25.2) Remark

(a) Given a non-commutative skew-field D, we have

Al∞(D) ∼= Ar∞(D) ⇔ D ∼= Do .

(b) The theorem can be stated in a more precise way by using classifying invariants. For
example, given a skew-field D, the foundation Ãn(D, γ1, . . . , γn+1) only depends on the coset(

n+1∏
i=1

γi

)
· Inn(D) ∈ Aut(D)/Inn(D) .

(c) Each integrable mixed foundation over a quaternion division algebra H arises in the following
way: Start with some integrable positive foundations, then add some negative chains or
strings of arbitrary length with the rule that each vertex of a positive foundation is part of
at most one negative chain or string, e.g.,

+

+

+

(i)

+

+

+

(ii)
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Chapter 26 Composition Algebras and Norm Similarities

In this part, we determine the structure of the group AutJ(A) of Jordan automorphisms for an
alternative division ring A. If A is a skew-field, we know the answer by Hua’s theorem. Since a
non-associative alternative division ring is an octonion division algebra by the Bruck-Kleinfeld
theorem (3.33), it remains to consider the octonion case. It turns out that we just have to add a
certain class of Jordan automorphisms, each of them fixing a quaternion subalgebra.

One basic tool is the possibility to extend isomorphisms between subalgebras to an auto-
morphism of the whole algebra, see [Sp] for a detailed reference. Moreover, the crucial thing is
the fact that nothing can go wrong with Jordan homomorphisms on fields, i.e., they are just
monomorphisms of rings. This is not true for skew-fields, cf. §132.

Chapter 26 Composition Algebras and Norm Similarities
The theorems of this chapter provide the existence of automorphisms which we will need in §28.3.

(26.1) Definition A composition algebra over a field K is a unital algebra A over K together
with a non-defective quadratic form N : A→ K which permits composition, i.e., we have

∀ x, y ∈ A : N(xy) = N(x)N(y) .

(26.2) Lemma An octonion division algebra O is a composition algebra over K := Z(O).

Proof
The norm N is non-defective by corollary (3.24) and multiplicative by (9.9)(iii) of [TW].

(26.3) Definition For i = 1, 2, let Vi be a vector space over Ki with non-defective quadratic
form Ni, and let σ : K1 → K2 be an isomorphism of fields.

• A σ-similarity is an isomorphism (ϕ, σ) : (V1,K1)→ (V2,K2) of vector spaces such that

∀ v ∈ V1 : N2
(
ϕ(v)

)
= ρϕ · σ

(
N1(v)

)
for some element ρϕ ∈ K∗2, which is the multiplier of ϕ.

• A similarity is a σ-similarity such that K2 = K1 and σ = idK1 .

• A σ-isometry is a σ-similarity such that ρϕ = 1K2 .

• An isometry is a σ-isometry such that K2 = K1 and σ = idK1 .

(26.4) Lemma For i = 1, 2, let Vi be a vector space over Ki with non-defective quadratic
form Ni and associated bilinear form 〈·, ·〉i, and let ϕ : V1 → V2 be a σ-similarity. Then ϕ satisfies

∀ x, y ∈ V1 : 〈ϕ(x), ϕ(y)〉2 = ρϕ · σϕ(〈x, y〉1) .

In particular, we have ϕ(M⊥) = ϕ(M)⊥ for each subset M ⊆ V1.

Proof
Given x ∈M and y ∈M⊥, we have

〈ϕ(x), ϕ(y)〉2 = N2
(
ϕ(x) + ϕ(y)

)
−N2

(
ϕ(x)

)
−N2

(
ϕ(y)

)
= ρϕ · σϕ

(
N1(x+ y)−N1(x)−N1(y)

)
= ρϕ · σϕ(〈x, y〉1) = 0K2 .

(26.5) Notation Let V be a vector space over K with non-defective quadratic form N . We
denote the group of σ-isometries of V by

ΓLN (V,K) :=
{

(ϕ, σ) ∈ ΓL(V ) | ∀ v ∈ V : N
(
ϕ(v)

)
= σ

(
N(v)

)}
.
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(26.6) Theorem Let A be a composition algebra over K and let σ ∈ Aut(K). Then there
exists a σ-automorphism φ ∈ Aut(A,K) if and only if there exists a σ-isometry ϕ ∈ ΓLN (A,K).

Proof
This is corollary (1.7.2) of [S].

(26.7) Theorem Let A be a composition algebra over K, let σ ∈ Aut(K) and let B1,B2
be subalgebras of the same dimension. If there exists a σ-isometry ϕ ∈ ΓLN (A,K), then each
σ-isomorphism φ : B1 → B2 of algebras can be extended to a σ-automorphism φ̃ ∈ Aut(A,K).
In particular, each linear isomorphism ψ : B1 → B2 of algebras can be extended to a linear
automorphism ψ̃ ∈ AutK(A,K).

Proof
This is corollary (1.7.3) of [Sp].

Chapter 27 Jordan Homomorphisms
At this point we recall the definition of Jordan homomorphisms which play a central role in the
classification of simply laced twin buildings. As the classification involves some detailed calculations
concerning Jordan homomorphisms, it is natural to use this knowledge for a generalization of
Hua’s theorem to octonions.

§ 27.1 Basic Definitions and Basic Properties

(27.1) Definition

• Let A, Ã be alternative division rings. A Jordan homomorphism is an additive monomorphism
γ : A→ Ã such that

γ(1A) = 1Ã , ∀ x, y ∈ A : γ(xyx) = γ(x)γ(y)γ(x) .

• Given an alternative division ring A, we denote the group of Jordan automorphisms of A by

AutJ(A) := {γ : A→ A | γ Jordan automorphism} .

(27.2) Lemma Let A, Ã be alternative division rings. A Jordan homomorphism γ : A→ Ã
satisfies

∀ x, y ∈ A : γ(xy) + γ(yx) = γ(x)γ(y) + γ(y)γ(x) .

Proof
The assertion is clearly true for x = 0A or y = 0A, so assume x 6= 0A 6= y. As we have

γ(z2) = γ(z · 1A · z) = γ(z)γ(1A)γ(z) = γ(z) · 1Ã · γ(z) = γ(z)2

for each z ∈ A, it follows that

γ
(
(x+ y)2) = γ(x2 + xy + yx+ y2) = γ(x)2 + γ(xy) + γ(yx) + γ(y)2 ,

γ
(
(x+ y)2) = γ(x+ y)2 =

(
γ(x) + γ(y)

)2 = γ(x)2 + γ(x)γ(y) + γ(y)γ(x) + γ(y)2

and thus
γ(xy) + γ(yx) = γ(x)γ(y) + γ(y)γ(x) .
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(27.3) Lemma Let A, Ã be alternative division rings. A Jordan homomorphism γ : A→ Ã
satisfies

∀ x ∈ A∗ : γ(x−1) = γ(x)−1 .

Proof
Given x ∈ A∗, we have

γ(x−1) = γ(x−1xx−1) = γ(x−1)γ(x)γ(x−1)

and thus γ(x−1) = γ(x)−1 by lemma (3.6).

§ 27.2 Jordan Homomorphisms on Fields

A Jordan homomorphism from a field F to an alternative division ring A is a monomorphism of
rings. In particular, the image of A is a subfield of A.

(27.4) Lemma Let F be a field, let A be an alternative division ring and let γ : F→ A be a
Jordan homomorphism. Then γ : F→ γ(F) is an isomorphism of fields.

Proof
By Hua’s theorem, we may assume that A is an octonion division algebra. By lemma (27.2), we
have

2γ(xy) = γ(x)γ(y) + γ(y)γ(x) (27.1)

for all x, y ∈ F.

• CharF 6= 2: Given x, y ∈ F∗, we have

γ(xy)γ(x−1y−1) (3.6)= γ(xy)γ
(
(xy)−1) (27.3)= γ(xy)γ(xy)−1 = 1A

and thus by equation (27.1) and lemma (3.25) (a)

4 = 2γ(xy)2γ(x−1y−1) = [γ(x)γ(y) + γ(y)γ(x)][γ(x−1)γ(y−1) + γ(y−1)γ(x−1)]
= γ(x)γ(y)γ(x)−1γ(y)−1 + 1A + 1A + γ(y)γ(x)γ(y)−1γ(x)−1 .

We set z := γ(x)γ(y)γ(x)−1γ(y)−1 and obtain

2 = z + z−1 , (z − 1A)2 = z2 − 2z + 1A = 0A

and therefore

γ(x)γ(y)γ(x)−1γ(y)−1 = z = 1A , γ(x)γ(y) = γ(y)γ(x) .

From equation (27.1) it follows that γ(xy) = γ(x)γ(y) .

• CharF = 2: In this case, equation (27.1) implies

γ(x)γ(y) = γ(y)γ(x)

for all x, y ∈ F. As a consequence,

F̃ := 〈γ(F)〉Z(A)

is a commutative subalgebra of A, hence a field. Since γ : F→ F̃ is a Jordan homomorphism,
Hua’s theorem implies that γ : F→ γ(F) is an iso- or anti-isomorphism of skew-fields, and
thus, in fact, an isomorphism of fields.
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Chapter 28 Jordan Automorphisms
In this chapter, we determine the structure of AutJ (A) for an alternative division ring A. If A is
a skew-field, then Hua’s theorem gives the answer:

(28.1) Theorem Let A be skew-field. Then we have
AutJ(A) = Aut(A) ∪Auto(A) .

Thus it remains to consider the Jordan automorphisms of an octonion division algebra O.

(28.2) Notation Throughout the rest of this chapter, O is an octonion division algebra and
K := Z(O) is its center.

§ 28.1 Jordan Automorphisms on Subfields

As a consequence of the last paragraph, a Jordan automorphism restricted to a subfield is a
monomorphism of rings. In particular, the image of a subfield is again a subfield.

This is not true for skew-subfields. Otherwise, a Jordan automorphism would be, in fact,
an auto- or anti-automorphism by the proof of Hua’s theorem. But there are indeed Jordan
automorphism neither of the first nor of the second kind, cf. lemma (28.13) and remark (28.12).

(28.3) Lemma Let γ ∈ AutJ(O) and let F be a subfield of O. Then γ|F : F → γ(F) is an
isomorphism of fields.

Proof
This results from Lemma (27.4).

(28.4) Corollary An element γ ∈ AutJ(O) satisfies
γ(λ) · γ(x) = γ(x) · γ(λ)

for all λ ∈ K, x ∈ O.

Proof
Since each element x ∈ O is contained in a subfield F of O with K ⊆ F by (20.9) of [TW], we may
apply lemma (28.3) to obtain

γ(λ) · γ(x) = γ(λ · x) = γ(x · λ) = γ(x) · γ(λ)
for all λ ∈ K, x ∈ O.

§ 28.2 Jordan Automorphisms and Norm Similarities

The results of §28.1 enable us to show that Jordan automorphisms are norm similarities. As a
consequence, we may apply the results of chapter 26. Moreover, the results of [J] show the reverse
inclusion for CharO 6= 2.

(28.5) Proposition Let γ ∈ AutJ(O) and σ := γ|K. Then the following holds:
(a) σ ∈ Aut(K).

(b) (γ, σ) ∈ ΓL(O,K).

(c) (γ, σ) ∈ ΓLN (O,K).
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Proof

(a) By corollary (28.4) and lemma (3.28), we have γ(K) = K and therefore σ ∈ Aut(K) by
lemma (27.4).

(b) This is a consequence of (a) and corollary (28.4).

(c) By (a), the assertion is true for x ∈ K. Given x ∈ O \K, we have

x2 − T (x)x+N(x) = 0O , γ(x)2 − T
(
γ(x)

)
γ(x) +N

(
γ(x)

)
= 0O

and hence

0O = γ−1(γ(x)2 − T (γ(x))γ(x) +N(γ(x))
)

= γ−1γ
(
x2 − γ−1(T (γ(x))

)
x+ γ−1(N(γ(x)))

)
= x2 − γ−1(T (γ(x))

)
x+ γ−1(N(γ(x))

)
.

As the maps T and N are uniquely determined by the minimum equation, we obtain

γ−1(N(γ(x))
)

= N(x) , N
(
γ(x)

)
= γ

(
N(x)

)
= σ

(
N(x)

)
for all x ∈ O \K.

(28.6) Corollary We have
σs ∈ Z

(
AutJ(O)

)
.

Proof
Given γ ∈ AutJ(O) and x ∈ O, we have

γσs(x) = γ(x̄) = γ
(
N(x) · x−1) = σ

(
N(x)

)
· γ(x−1) = N

(
γ(x)

)
· γ(x)−1 = γ(x) = σsγ(x) .

(28.7) Remark The results of [J] are valid for Jordan algebras with characteristic different
from 2, cf. definition (1.3) of [J].

(28.8) Lemma If CharO 6= 2, the Jordan algebra O is separable

Proof
By corollary (3.24), the bilinear form 〈·, ·〉 and thus the trace form

T̄ : O×O→ K, (x, y) 7→ T (xy) = xy + ȳx̄ = 〈x, ȳ〉

is non-degenerate. Now the assertion results from theorem (6.5) of [J].

(28.9) Proposition If CharO 6= 2, we have

O(O,K) = GLN (O,K) ⊆ AutJ(O) .

Proof
Let ϕ = (ϕ, idK) ∈ GLN (O,K). As we have ϕ(1O) = ϕ(1O · 1O) = 1O · ϕ(1O), the isometry ϕ
satisfies ϕ(1O) = 1O, and because of |K| > 2 = degO, the assertion results from lemma (28.8) and
theorem (6.7)(a) of [J].

(28.10) Theorem If CharO 6= 2, we have

ΓLN (O,K) = AutJ(O) .
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Proof

“⊆” Let (ϕ, σ) ∈ ΓLN (O,K). By theorem (26.6), there is a σ-automorphism (φ, σ) ∈ Aut(O,K).
By proposition (28.9), we have

(φ−1, σ−1) · (ϕ, σ) ∈ GLN (O,K) ⊆ AutJ(O)

and thus
(ϕ, σ) ∈ (φ, σ) ·AutJ(O) = AutJ(O) .

“⊇” This is proposition (28.5) (c).

§ 28.3 The Structure of AutJ(O)

Now we are ready to tackle the main problem which we split up into three steps. First of all we
construct a subgroup Γ ≤ AutJ (O). The second step shows that we may suppose γ ∈ AutJ (O) to
fix a quaternion subalgebra pointwise. Then we finally prove that γ is the product of elements of
the given group Γ.

(28.11) Notation

• Given a quaternion subalgebra H, e ∈ H⊥ and w, p ∈ H, we set

ψ(H,e,w) : O→ O, x+ e · y 7→ x+ e · w−1yw ,

φ(H,e,w,p) : O→ O, x+ e · y 7→ w−1xw + e · w−1ywp .

• We set

Ψ := {ψ(H,e,w) | H a quaternion subalgebra, e ∈ H⊥, w ∈ H} ,
Φ := {φ(H,e,w,p) | H a quaternion subalgebra, e ∈ H⊥, w, p ∈ H, N(p) = 1K} .

• We set

Γ := {ψφ | ψ ∈ Ψ, φ ∈ Aut(O)} .

(28.12) Remark By remark (20.29) of [TW], a map ψ ∈ Ψ is neither an auto- nor an
anti-automorphism.

(28.13) Lemma We have
Ψ ∪ Φ ⊆ Γ ≤ AutJ(O) .

Proof
This results from lemma (21.20) and lemma (21.19).

(28.14) Lemma Let A be a subalgebra of O such that A⊥ * A and let e ∈ A⊥ \A. Then we
have

(e · x)(e · y)(e · x) = −N(e)e · xȳx

for all x, y ∈ A.

Proof
This results from lemma (3.26) (c).
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(28.15) Remark The following lemma is helpful since we know that Jordan homomorphisms
on subfields are in fact isomorphisms between subfields and that Jordan automorphisms of
skew-fields are iso- or anti-isomorphisms.

(28.16) Lemma Let A be a subalgebra of O such that A⊥ * A, let e ∈ A⊥ \ A and let
γ ∈ AutJ(O) ∩GLN (O,K) such that γ(e) = e. Then the map γ̃ : A→ O defined by

γ(e · x) = e · γ̃(x)

is a linear Jordan homomorphism.

Proof
Notice that we have

∀ x ∈ A :
(
e, γ̃(a)

)
=
(
e,−N(e)−1e · γ(e · a)

)
= −

(
1K, γ(e · a)

)
= 0K

by lemma (3.26) and lemma (26.4), hence e ∈ γ̃(A)⊥ \ γ̃(A).

• We have
e · γ̃(1O) = γ(e · 1O) = γ(e) = e · 1O .

• Given λ ∈ K, x ∈ A, we have

e · γ̃(λx) = γ(e · λx) = λγ(e · x) = λ
(
e · γ̃(x)

)
= e · λγ̃(x) .

• Given x, y ∈ A, we have

e · γ̃(x+ y) = γ
(
e · (x+ y)

)
= γ(e · x) + γ(e · y) = e ·

(
γ̃(x) + γ̃(y)

)
.

• Given x, y ∈ A, we have

e · γ̃(xyx) = γ(e · xyx) = −N(e)−1 · γ
(
(e · x)(e · ȳ)(e · y)

)
= −N(e)−1 ·

(
e · γ̃(x)

)(
e · γ̃(ȳ)

)(
e · γ̃(x)

)
= e · γ̃(x)γ̃(ȳ)γ̃(x)

by lemma (28.14). We set x := 1O to obtain

γ̃(y) = γ̃(ȳ)

for each y ∈ A and thus
γ̃(xyx) = γ̃(x)γ̃(y)γ̃(x)

for all x, y ∈ A.

(28.17) Definition Let e1, e2 ∈ O∗ such that λ := N(e1) 6= 0K, µ := N(e2) 6= 0K. Then
(e1, e2) is a special (λ, µ)-pair if

• we have
〈e1, 1O〉 = 〈e2, 1O〉 = 〈e1, e2〉 = 0K

for CharO 6= 2;

• we have

〈e1, 1O〉 = 1K , 〈e2, 1O〉 = 〈e1, e2〉 = 0K

for CharO = 2.

(28.18) Remark We will need special (λ, µ)-pairs to extend isomorphisms between quaternion
subalgebras to the whole octonion division algebra.
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(28.19) Lemma Let (e1, e2) be a special (λ, µ)-pair and E := 〈1O, e1〉K. Then we have

ē1 6= e1 , e2 ∈ E⊥ \ E .

Proof
• CharO 6= 2: We have

e1 + ē1 = 〈e1, 1O〉 = 0K , ē1 = −e1 6= e1 .

Let x = s+ te1 ∈ E∗. If s 6= 0K, we have

〈x, 1O〉 = 〈s+ te1, 1O〉 = s · 〈e1, e1〉 = 2s ·N(e1) 6= 0K
and thus x /∈ E⊥. If s = 0K (and thus t 6= 0K), we have

〈x, e1〉 = 〈te1, e1〉 = t · 〈e1, e1〉 = 2t ·N(e1) 6= 0K
and thus x /∈ E⊥.

• CharO = 2: We have

e1 + ē1 = 〈e1, 1O〉 = 1K , ē1 = e1 + 1K 6= e1 .

Let x = s+ te1 ∈ E∗. If t 6= 0K, we have

〈x, 1O〉 = 〈s+ te1, 1O〉 = s · 〈1O, 1O〉+ t · 〈e1, 1O〉 = 2s ·N(1O) + t = t 6= 0K
and thus x /∈ E⊥. If t = 0K (and thus s 6= 0K), we have

〈e1, x〉 = 〈e1, s〉 = s · 〈e1, 1O〉 = s 6= 0K
and thus x /∈ E⊥.

(28.20) Remark The following lemma allows us to choose a suitable K-basis for a quaternion
division algebra containing two elements x, y ∈ O.

(28.21) Lemma Let x ∈ O \K, let E := 〈1O, x〉K and let y ∈ O \ E. Then

{1O, x, y, xy}

is linearly independent over K.

Proof
Notice that E is a field. Let a, b, c, d ∈ K such that

a · 1O + b · x+ c · y + d · xy = 0O .

Then we have
(c · 1O + d · x) · y = −a · 1O − b · x .

• c · 1O + d · x 6= 0O: In this case, we have

y = (c · 1O + d · x)−1 · (−a · 1O − b · x) ∈ E  .

• c · 1O + d · x = 0O: In this case, we have

c · 1O + d · x = 0O = a · 1O + b · x , c = d = 0K = a = b .

(28.22) Proposition Given an element γ ∈ AutJ(O), there is an element γ̃ ∈ 〈σs,Γ〉 such
that γ̃γ fixes a quaternion subalgebra H pointwise.
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Proof
(i) Let σ := γ|K ∈ Aut(K). Then γ is a σ-isometry by proposition (28.5) (c), thus γ−1 is

a σ−1-isometry. By theorem (26.6), there is a σ−1-automorphism γ̄ ∈ Aut(O,K). As a
consequence, we have γ̄γ ∈ AutJ(O) ∩GLN (O,K).

(ii) By lemma (3.23), there is an element e1 ∈ O such that ē1 6= e1. Let E := 〈1, e1〉K and
e2 ∈ E⊥ \ E. By lemma (3.25) (b), e1 and e2 are contained in a quaternion subalgebra
H̃ which contains a (λ, µ)-special pair (ẽ1, ẽ2) by definition (1.7.4) of [Sp]. Thus we may
assume that (e1, e2) is (λ, µ)-special by lemma (28.19).

(iii) As we may suppose γ to be an isometry by (i), the pairs (e1, e2) and
(
γ(e1), γ(e2)

)
are

(λ, µ)-special. By corollary (1.7.5) of [Sp], there is a linear automorphism γ̄ ∈ AutK(O,K)
extending

γ(e1) 7→ e1 , γ(e2) 7→ e2 .

As a consequence, γ := γ̄γ fixes 〈E, e2〉K pointwise.

(iv) By lemma (28.16), the map γ̃ : E→ γ̃(E) defined by

γ(e2 · x) = e2 · γ̃(x)

is a linear Jordan isomorphism and thus an isomorphism of fields by lemma (27.4).

(v) If γ̃(E) = E, we have
γ(E + e2 · E) = E + e2 · E =: H .

In this case, γ|H is an auto- or anti-automorphism by Hua’s theorem.

• If γ|H is an automorphism, we have

γ(e2 · e1) = γ(e2) · γ(e1) = e2 · e1 , γ|H = idH .

• If γ|H is an anti-automorphism, then φ := σsγ|H is a linear automorphism. By theorem
(26.7), we may extend φ to a linear automorphism φ̃ ∈ AutK(O,K). Then

φ̃−1σsγ

fixes H pointwise.

Thus we may assume γ̃(e1) /∈ E.

(vi) By lemma (3.25) (b), e1 and γ̃(e1) are contained in a quaternion subalgebra H̃, and by (v)
and lemma (28.21), we have

H̃ = 〈1O, e1, γ̃(e1), e1γ̃(e1)〉K ,

thus we may extend γ̃ : E → γ̃(E) to a linear automorphism φ ∈ AutK(H̃,K) by theorem
(26.7). By the Skolem-Noether theorem, there is an element w ∈ H̃ such that

φ = γw .

(vii) We have e2 · E ⊆ E⊥ and therefore

〈e2, 1O〉 = 〈e2, e1〉 = 0K .

Moreover, we have

e2 · φ(E) = γ(e2 · E) ⊆ γ(E⊥) = γ(E)⊥ = E⊥

by corollary (26.4) and therefore

〈e2, e1φ(e1)〉 = 〈e2φ(e1)−1φ(e1), e1φ(e1)〉 = 〈e2φ(e1)−1, e1〉 ·N
(
φ(e1)

)
= 0K ,

〈e2, φ(e1)〉 = 〈e2,−N(e2)−1e2 · e2φ(e1)〉 = −N(e2)−1N(e2) · 〈1O, e2φ(e1)〉 = 0K ,

hence e2 ∈ H̃⊥, and γ(H̃,e2,w−1)γ fixes H := E + e2 · E pointwise, cf. notation (28.11).
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(28.23) Proposition Let γ ∈ AutJ(O) be a Jordan automorphism fixing a quaternion
subalgebra H pointwise. Then we have γ ∈ 〈σs,Γ〉.

Proof
Let e ∈ H⊥ \H.

(i) As we have
γ(e ·H) = γ(H⊥) = γ(H)⊥ = H⊥ = e ·H ,

by corollary (26.4), we may define a map γ̃ : H→ H via

γ(e · x) = e · γ̃(x) .

(ii) We have
N(e) = N

(
γ(e · 1O)

)
= N

(
e · γ̃(1O)

)
= N(e) ·N

(
γ̃(1O)

)
and thus N

(
γ̃(1O)

)
= 1K. Therefore, the map

φ(H,e,1O,γ̃(1O)−1)γ

fixes 〈H, e〉K pointwise.

(iii) By lemma (28.16), the map γ̃ is a linear Jordan automorphism and thus an auto- or an
anti-automorphism by Hua’s theorem.

(iv) • γ̃ is an automorphism: As γ̃ is linear, the Skolem-Noether theorem yields an element
w ∈ H such that γ̃ = γw, hence

γ = γ(H,e,w) ∈ Γ .

• γ̃ is an anti-automorphism: Then there is an element w ∈ H such that

γ(x+ e · y) = x+ e · w−1ȳw

for all x, y ∈ H, hence

γeγ(x+ e · y) = e−1xe+ w−1ȳw · e = x̄+ e · w−1yw

for all x, y ∈ H and therefore

σsφ(H,e,1,−1)γeγ = γ(H,e,w) ∈ Γ , γ ∈ 〈σs,Γ〉 .

§ 28.4 Conclusion

(28.24) Theorem (Jordan Automorphisms of Octonion Division Algebras) Given
an octonion division algebra O, we have

AutJ(O) = 〈σs,Γ〉 ∼= 〈σs〉 × Γ .

Proof
The first equality results from proposition (28.22) and proposition (28.23), the second assertion
from corollary (28.6).
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Chapter 29 Basic Definitions

Now we turn to the general description of the root groups of Moufang Polygons. In fact, all
of them are parametrized by Moufang sets, more precisely, by their associated groups. As the
glueings of integrable foundations turn out to be Jordan isomorphisms, the classification of twin
buildings is closely related to the solution of the isomorphism problem for Moufang sets.

We list the examples of Moufang sets which will appear in the sequel, then we give a complete
overview of the Jordan isomorphisms between these Moufang sets before we give the missing proofs.

Chapter 29 Basic Definitions
(29.1) Definition A Moufang set is a pair M =

(
X, {Ux}x∈X

)
consisting of a set X with

|X| ≥ 3 and a set of root groups {Ux}x∈X satisfying the following conditions:

(M1) For each x ∈ X, the group Ux ≤ Sym(X) fixes x and acts regularly on X \ {x}.

(M2) For each x ∈ X and for each ϕ ∈ 〈Uy | y ∈ X〉, we have Uϕx = Uϕ(x).

(29.2) Remark Let (U,+) be a not necessarily commutative group, let X := U ∪ {∞} be
the disjoint union of U and {∞} and let τ ∈ Sym(X) be a permutation interchanging 0 and ∞,
which means that we have τ|U∗ ∈ Sym(U∗). By theorem 2 of [DW], the pair (U, τ) gives rise
to a Moufang set M(U, τ) if and only if we have ha ∈ Aut(U) for each a ∈ U∗, where ha is the
Hua map with respect to a as in definition 2 of [DW], more precisely, we consider ha to be the
restriction to U of that map given there. Conversely, each Moufang set M arises in such a way, cf
page 5 of [DW], or lemma 1.3.4 of [DS] for a more precise statement,.

As both the descriptions are equivalent, we consider a Moufang set to be a pair M = (U, τ)
consisting of a not necessarily commutative group U = (U,+) and an element τ ∈ Sym(U∗) such
that ha ∈ Aut(U) for each a ∈ U∗.

(29.3) Definition

• A Moufang set M = (U, τ) is commutative if the group U is commutative.

• A Moufang set M = (U, τ) is unital if there is an element 1M ∈ U∗ such that h1M = idU .

(29.4) Remark If a Moufang set is unital, the element 1M is not necessarily uniquely
determined by the defining property. However, we will distinguish a canonical element for the
examples we mainly deal with, cf. the next paragraph.

(29.5) Definition Let M = (U, τ), M̃ = (Ũ , τ̃) be Moufang sets.

• An isomorphism ϕ : M→ M̃ is an isomorphism of groups ϕ : U → Ũ such that

∀ x ∈ U : ϕ
(
τ(x)

)
= τ̃

(
ϕ(x)

)
.

• An automorphism of M is an isomorphism ϕ : M→M.

• A Jordan isomorphism γ : M→ M̃ is an isomorphism of groups γ : U → Ũ such that

∀ x ∈ U, a ∈ U∗ : γ
(
ha(x)

)
= h̃γ(a)

(
γ(x)

)
,

and, moreover, such that γ(1M) = 1M̃ if M and M̃ both are unital.

• A Jordan automorphism of M is a Jordan isomorphism γ : M→M.

(29.6) Remark The list in the following chapter is not complete, we only list those Moufang
sets appearing in triangles and quadrangles since we only classify foundations involving polygons
of this type. Moreover, we exclude the non-commutative Moufang sets appearing in quadrangles
of type En.
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Chapter 30 Examples
(30.1) Example (Moufang Sets of Linear Type) Given an alternative division ring A,
the corresponding Moufang set of linear type is

M(A) := (A, τ) , τ : A∗ → A∗, x 7→ −x−1 .

Given a ∈ A∗, the Hua map with respect to a is

ha : A→ A, x 7→ axa .

As a consequence, M(A) is unital with 1M = 1A.

(30.2) Example (Moufang Sets of Involutory Type) Given an involutory set (K,K0, σ),
the corresponding Moufang set of involutory type is

M(K,K0, σ) := (K0, τ) , τ : K∗0 → K∗0, x 7→ −x−1 .

Given a ∈ K∗0, the Hua map with respect to a is

ha : K0 → K0, x 7→ axa .

As a consequence, M(K,K0, σ) is unital with 1M = 1K ∈ K0.

(30.3) Example (Moufang Sets of Indifferent Type) Given an indifferent set (K,K0,L0),
the corresponding Moufang set of indifferent type is

M(K,K0,L0) := (K0, τ) , τ : K∗0 → K∗0, x 7→ −x−1 .

Given a ∈ K∗0, the Hua map with respect to a is

ha : K0 → K0, x 7→ axa .

As a consequence, M(K,K0,L0) is unital with 1M = 1K ∈ K0.

(30.4) Example (Moufang Sets of Quadratic Form Type) Given a quadratic space
(L0,K, q) with basepoint ε, the corresponding Moufang set of quadratic form type with basepoint ε
is

M(L0,K, q) := (L0, τ) , τ : L∗0 → L∗0, a 7→ −aσ · q(a)−1 .

Given a ∈ L∗0, the Hua map with respect to a is

ha : L0 → L0, v 7→ πaπε(v) · q(a) .

As a consequence, M(L0,K, q) is unital with 1M = ε.

(30.5) Example (Moufang Sets of Pseudo-Quadratic Form Type)
Let Ξ = (K,K0, σ, L0, q) be a pseudo-quadratic space and let T = T (Ξ) be the group as in
definition (7.5) and corollary (7.9). The corresponding Moufang set of pseudo-quadratic form type
is

M(Ξ) := (T, τ) , τ : T ∗ → T ∗, (a, t) 7→ (at−1,−t−1) .

Given (a, t) ∈ T ∗, the Hua map with respect to (a, t) is

h(a,t) : T → T, (b, v) 7→
(
btσ − at−1f(a, b)tσ, tvtσ

)
.

As a consequence, M(Ξ) is unital with 1M = (0, 1K).
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Chapter 31 The Isomorphism Problem for Moufang Sets
Since the glueings appearing in a foundation are in fact Jordan isomorphisms, it is natural to
solve the isomorphism problem for the appearing Moufang sets before we tackle the classification
of foundations.

As mentioned, we consider Jordan isomorphisms, not isomorphisms of Moufang sets in the
proper sense, which are a subset of the Jordan isomorphisms. It would be interesting in which
cases both the definitions coincide, which should be correct in almost all the cases.

First of all we give an overview of the results, some of them already proved in the previous
parts, then we give the missing proofs.

§ 31.1 Results

(31.1) Definition Let O be an octonion division algebra.
• Given a quaternion subalgebra H, e ∈ H⊥ and w, p ∈ H, we set

ψ(H,e,w) : O→ O, x+ e · y 7→ x+ e · w−1yw .

• We set

Ψ := {ψ(H,e,w) | H a quaternion subalgebra, e ∈ H⊥, w ∈ H} .

and Γ := {ψφ | ψ ∈ Ψ, φ ∈ Aut(O)}, which is a subgroup of AutJ(O) by lemma (21.19).

(31.2) Theorem (Moufang Sets of Linear Type) Let M := M(A), M̃ := M(Ã) be
Moufang sets of linear type. A map γ : M→ M̃ is a Jordan isomorphism such that γ(1M) = γ(1M̃)
if and only if one of the following holds:
(i) The alternative division rings A and Ã are skew-fields and γ is an iso- or anti-isomorphism

of skew-fields.

(ii) The alternative division rings A and Ã are isomorphic octonion division algebras and we
have

φ−1γ ∈ 〈σs,Γ〉 ∼= 〈σs〉 × Γ ,

where φ : A→ Ã is an isomorphism of alternative rings, σs is the standard involution of A
and Γ is the group defined in (31.1).

Proof
“⇒” If A is a skew-field, then (i) holds by Hua’s theorem. If A (and thus Ã) is an octonion

division algebra, we may adapt proposition (28.5) to obtain that γ : A→ Ã is a σ-isometry.
By theorem (1.7.1) of [Sp], there is a σ-isomorphism φ : A → Ã, hence φ−1γ ∈ AutJ(A),
and we may apply theorem (28.24).

“⇐” X

Notice that definition (3.8) and definition (27.1) include the condition γ(1A) = 1Ã.

(31.3) Theorem (Moufang Sets of Involutory Type) Let (K,K0, σ) be a proper involu-
tory set, let (K̃, K̃0, σ̃) be an involutory set and let M := M(K,K0, σ), M̃ := M(K̃, K̃0, σ̃) be the
corresponding Moufang sets of involutory type. A map γ : M→ M̃ is a Jordan isomorphism such
that γ(1M) = 1M̃ if and only if there is an isomorphism φ : (K,K0, σ)→ (K̃, K̃0, σ̃) of involutory
sets such that γ = φ|K0 .

Proof
This is theorem (5.3). Notice that the proof is not complete yet.
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(31.4) Definition Let (A,F, σ) be quadratic of type (iv) and suppose that dimA L0 = 2. By
[D], there are exactly three pseudo-quadratic spaces

(A,F, σ, L0, q) = (A1,F, σ, L0, q1) = Ξ1 , (A2,F, σ, L0, q2) = Ξ2 , (A3,F, σ, L0, q3) = Ξ3

with pairwise non-isomorphic quaternion division algebras A1,A2,A3 which define the group T .
When we switch between the parametrizing pseudo-quadratic spaces, we indicate this by the map

idiT : T → T, (a, t) 7→ (a, t) ,

i.e., after applying idiT , we consider T to be defined by Ξi.

(31.5) Theorem (Moufang Sets of Pseudo-Quadratic Form Type) Let Ξ and Ξ̃ be
proper pseudo-quadratic spaces and let M := M(Ξ), M̃ := M(Ξ̃) be the corresponding Moufang
sets of pseudo-quadratic form type. A map γ : M → M̃ is a Jordan isomorphism such that
γ(1M) = 1M̃ if and only if one of the following holds:

(i) There is an isomorphism Φ : Ξ→ Ξ̃ of pseudo-quadratic spaces that induces γ.

(ii) The involutory sets (K,K0, σ) and (K̃, K̃0, σ̃) both are quadratic of type (iv), we have

K 6∼= K̃ , dimK L0 = 2 = dimK̃ L̃0

and there are an i ∈ {2, 3} and an isomorphism Φ : Ξ→ Ξ̃i of pseudo-quadratic spaces such
that γ is induced by (idiT̃ )−1 ◦ Φ, where idiT̃ and Ξ̃ =: Ξ̃1, Ξ̃2, Ξ̃3 are as in definition (31.4).

(iii) The involutory sets (K,K0, σ) and (K̃, K̃0, σ̃) are quadratic of type (iv) and (iii), respectively,
we have dimK L0 = 1, dimK̃ L̃0 = 2 and γ can be described by

∀ x = s+ et ∈ K, u ∈ K0 : γ(ax, xσq(a)x+ u) =
(
ãφ(s) + b̃φ(t)σ̃, φ

(
N(x)q(a) + u

))
,

where a ∈ L∗0 is arbitrary, φ : Ea → K̃ is an isomorphism of fields, e ∈ E⊥a , ã ∈ L̃0 and
b̃ ∈ ã⊥.

(iv) We have K ∼= F4 ∼= K̃, dimK L = 1 and there are an isomorphism Φ : Ξ → Ξ̃ of pseudo-
quadratic spaces and a non-trivial inner automorphism γ̃ ∈ Aut(T̃ ) such that γ is induced
by γ̃ ◦ Φ.

Proof
This is theorem (17.1). Notice that definition (7.16) includes the condition γ(0, 1K) = (0, 1K̃).

(31.6) Theorem (Moufang Sets of Quadratic Form Type) Let Ξ be a quadratic space
with basepoint ε, let Ξ̃ be a proper quadratic space with basepoint ε̃ and letM := M(Ξ), M̃ := M(Ξ̃)
be the corresponding Moufang sets of quadratic form type. A map γ : M → M̃ is a Jordan
isomorphism such that γ(1M) = 1M̃ if and only if one of the following holds:

(i) We have dimK̃ L̃0 ≥ 3 and there is an isomorphism φ : K→ K̃ of fields such that the map

(γ, φ) : (L0,K, q)→ (L̃0, K̃, q̃)

is an isomorphism of quadratic spaces. In particular, we have dimK L0 = dimK̃ L̃0.

(ii) We have dimK̃ L̃0 ≤ 2, the map

φ : K→ K̂ := γ(〈ε〉K) ⊆ F̂ := F(L̃0, K̃, q̃), s 7→ γ(ε · s)

is an isomorphism of fields, the field F̂ is quadratic over K̂, and the map

(γ, φ) : (L0,K, q)→ (F̂, K̂, N F̂
K̂)

is an isomorphism of quadratic spaces. This is true even if Ξ̃ is non-proper.
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Proof
This is theorem (31.41).

(31.7) Theorem (Moufang Sets of Quadratic Form and Linear Type) Let M :=
M(L0,K, q) be a Moufang set of quadratic form type with basepoint ε and let M̃ := M(Ã) be a
Moufang set of linear type. A map γ : M→ M̃ is a Jordan isomorphism such that γ(1M) = 1M̃ if
and only if the map

φ : K→ K̃ := γ(〈ε〉K) ⊆ Ã, s 7→ γ(ε · s)

is an isomorphism of fields, Ã is quadratic over K̃ and the map (γ, φ) : (L0,K, q)→ (Ã, K̃, N Ã
K̃ ) is

an isomorphism of quadratic spaces.

Proof
This is theorem (31.21).

(31.8) Theorem (Moufang Sets of Indifferent and Linear Type) LetM := M(K,K0,L0)
be a Moufang set of indifferent type and let M̃ := M(Ã) be a Moufang set of linear type. A map
γ : M̃→M is a Jordan isomorphism such that γ(1M̃) = 1M if and only if K0 = K, Ã is a field and
the map γ : Ã→ K0 is an isomorphism of fields. In particular, the indifferent set (K,K0,L0) is
non-proper if we have M ∼= M̃.

Proof
This is theorem (31.24).

(31.9) Theorem (Moufang Sets of Involutory and Linear Type) Let M̃ := M(Ã) be a
Moufang set of linear type and let M := M(K,K0, σ) be a Moufang set of involutory type. A map
γ : M̃→M is a Jordan isomorphism such that γ(1M̃) = 1M if and only if (K,K0, σ) is of quadratic
type, Ã and K0 are fields and the map γ : Ã→ K0 is an isomorphism of fields. In particular, the
involutory set (K,K0, σ) is non-proper if we have M ∼= M̃.

Proof
This is theorem (31.26).

(31.10) Remark Most of the following proofs or different versions can also be found in [K].
Notice, however, that some of them only give the idea for the proof so that we had to work out
some details, especially in the following paragraph.

§ 31.2 M(L0,K, q) ∼= M(Ã)

If a Moufang set M(L0,K, q) of quadratic form type with basepoint ε is isomorphic to a Moufang
set M(Ã) of linear type, then Ã is quadratic over the field K̃ := γ(〈εK〉) and γ is induced by an
isomorphism (γ, φ) : (L0,K, q)→ (Ã, K̃, N Ã

K̃ ) of quadratic spaces.

(31.11) Lemma Given a quadratic space (L0,K, q) such that dimK L0 ≤ 2, we have

M := M(L0,K, q) = M
(
F(L0,K, q)

)
=: M̃ .

In particular, the corresponding Hua maps coincide.

Proof
We have

∀ x ∈ L0 : τ(x) = −xσ · q(x)−1 = −xσ ∗ ε · q(x)−1 = −xσ ∗N F̃
K̃(x)−1 = −x−1 = τ̃(x) .
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(31.12) Notation Until proposition (31.20), M := M(L0,K, q) is a Moufang set of quadratic
form type with basepoint ε, M̃ := M(Ã) is a Moufang set of linear type and γ : M → M̃ is a
Jordan isomorphism such that γ(1M) = 1M̃.

(31.13) Lemma The map

φ : K→ K̃ := γ(〈ε〉K) ⊆ Ã, s 7→ γ(ε · s)

is an isomorphism of fields.

Proof
By lemma (4.7), we have

∀ s, t ∈ K : φ(sts) = γ(ε · sts) = γ
(
hε·s(ε · t)

)
= h̃γ(ε·s)

(
γ(ε · t)

)
= φ(s)φ(t)φ(s) .

As a consequence, φ : K → Ã is a Jordan homomorphism, hence φ : K → φ(K) = γ(〈ε〉K) is an
isomorphism of fields by lemma (27.4).

(31.14) Notation Given x ∈ L0 \ 〈ε〉K, we set Rx := 〈ε, x〉K.

(31.15) Remark Given x ∈ L0 \ 〈ε〉K, the triple (Rx,K, q) is a quadratic space such that
dimKRx = 2.

(31.16) Notation Given x ∈ L0 \ 〈ε〉K, we set Fx := F(Rx,K, q).

(31.17) Lemma Given x ∈ L0 \ 〈ε〉K, the map

γ|Fx : Fx → γ(Fx) ⊆ Ã, y 7→ γ(y)

is an isomorphism of fields.

Proof
By lemma (31.11), the Hua maps of M(Rx,K, q) and M(Fx) coincide, hence γ|Fx : Fx → Ã is a
Jordan homomorphism so that we may apply lemma (27.4).

(31.18) Proposition Let x ∈ L0. Then the following holds:
(a) We have

∀ s ∈ K : γ(x · s) = γ(x) · φ(s) .
In particular, the map (γ, φ) : (L0,K)→ (Ã, K̃) is an isomorphism of vector spaces.

(b) We have
∀ s ∈ K : γ(x) · φ(s) = φ(s) · γ(x) .

In particular, we have K̃ ⊆ Z(Ã).

Proof
If x ∈ 〈ε〉K, the assertions result from lemma (31.13), so assume x ∈ L0 \ 〈ε〉K.
(a) Given s ∈ K, we have

γ(x · s) = γ
(
x ∗ (ε · s)

)
= γ(x) · γ(ε · s) = γ(x) · φ(s) .

(b) Given s ∈ K, we have

γ(x) · φ(s) = γ(x · s) = γ
(
(ε · s) ∗ x

)
= γ(ε · s) · γ(x) = φ(s) · γ(x) .
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(31.19) Lemma Given x ∈ L0, we have

hx(ε)− x · T (x) + ε · q(x) = 0L0 .

Proof
Let x ∈ L0. By remark (4.9) (b), we have

hx(ε)− x · T (x) + ε · q(x) = x · fq(x, ε̄)− ε̄ · q(x)− x · T (x) + ε · q(x)
= x · T (x)− x · T (x)− ε · q(x) + ε · q(x) = 0L0 .

(31.20) Proposition Given x ∈ L∗0, we have

γ(x)2 − γ(x) · φ
(
T (x)

)
+ φ

(
q(x)

)
= 0Ã .

In particular, the alternative division ring Ã is quadratic over K̃ with norm Ñ := N Ã
K̃ , satisfying

Ñ ◦ γ = φ ◦ q .

Proof
Given x ∈ L∗0, we have

0Ã = γ(0L0) = γ
(
hx(ε)− x · T (x) + ε · q(x)

)
= γ

(
hx(ε)

)
− γ
(
x · T (x)

)
+ γ
(
ε · q(x)

)
= h̃γ(x)

(
γ(ε)

)
− γ(x) · φ

(
T (x)

)
+ φ

(
q(x)

)
= γ(x)2 − γ(x) · φ

(
T (x)

)
+ φ

(
q(x)

)
by lemma (31.19) and proposition (31.18) (a), which shows that Ã is quadratic over K̃. Given
x ∈ L0 \ 〈ε〉K, we have γ(x) ∈ Ã \ K̃ and thus

Ñ
(
γ(x)

)
= φ

(
q(x)

)
since the minimum equation is unique. Finally, given s ∈ K, we have

Ñ
(
γ(ε · s)

)
= Ñ

(
φ(s)

)
= φ(s)2 = φ(s2) = φ

(
q(ε · s)

)
by lemma (31.13).

(31.21) Theorem Let M := M(L0,K, q) be a Moufang set of quadratic form type with
basepoint ε and let M̃ := M(Ã) be a Moufang set of linear type. A map γ : M→ M̃ is a Jordan
isomorphism such that γ(1M) = 1M̃ if and only if the map

φ : K→ K̃ := γ(〈ε〉K) ⊆ Ã, s 7→ γ(ε · s)

is an isomorphism of fields, Ã is quadratic over K̃ with norm Ñ := N Ã
K̃ and the map

(γ, φ) : (L0,K, q)→ (Ã, K̃, Ñ)

is an isomorphism of quadratic spaces.

Proof

“⇒” By lemma (31.13), the map φ : K→ K̃ is an isomorphism of fields. By proposition (31.20) and
proposition (31.18) (a), Ã is quadratic over K̃, and the map (γ, φ) : (L0,K, q)→ (Ã, K̃, Ñ)
is an isomorphism of quadratic spaces.
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“⇐” We have γ(1M) = γ(ε) = φ(ε) = 1Ã = 1M̃. By lemma (4.2), we have

γ
(
ha(x)

)
= γ

(
a · fq(a, xσ)− xσ · q(a)

)
= γ(a) · φ

(
fq(a, xσ)

)
− γ(xσ) · φ

(
q(a)

)
= γ(a) · φ

(
q(a+ xσ)− q(a)− q(xσ)

)
− γ(x)σ̃ · Ñ

(
γ(a)

)
= γ(a) ·

(
Ñ
(
γ(a) + γ(xσ)

)
− Ñ

(
γ(a)

)
− Ñ

(
γ(xσ)

))
− γ(x)σ̃ · Ñ

(
γ(a)

)
= γ(a) ·

(
γ(a)σ̃γ(xσ) + γ(xσ)σ̃γ(a)

)
− γ(x)σ̃ · Ñ

(
γ(a)

)
= Ñ

(
γ(a)

)
· γ(x)σ̃ + γ(a)(γ(x)σ̃)σ̃γ(a)− γ(x)σ̃ · Ñ

(
γ(a)

)
= γ(a)γ(x)γ(a) = h̃γ(a)

(
γ(x)

)
for all a ∈ L∗0, x ∈ L0.

(31.22) Corollary Let (A,K, NA
K ) be a quadratic space of type (m). Then we have

M(A,K, NA
K ) ∼= M(A) .

Proof
Let γ := idA. Then the map φ = idK : K → K = γ(〈1A〉K) is an isomorphism of fields, and the
map

(γ, φ) = (idA, idK) : (A,K, NA
K )→ (A,K, NA

K )
is an isomorphism of quadratic spaces so that we may apply theorem (31.21).

(31.23) Lemma More precisely: Let (A,K, NA
K ) be a quadratic space of type (m). Then we

have
M := M

(
A,K, NA

K
)

= M(A) =: M̃ .

Proof
We have

∀ x ∈ A : τ(x) = −xσ ·NA
K (x)−1 = −x−1 = τ̃(x) .

§ 31.3 M(K,K0,L0) ∼= M(Ã)

(31.24) Theorem Let M := M(K,K0,L0) be a Moufang set of indifferent type and let
M̃ := M(Ã) be a Moufang set of linear type. A map γ : M̃→ M is a Jordan isomorphism such
that γ(1M̃) = 1M if and only if K0 = K, Ã is a field and the map γ : Ã→ K0 is an isomorphism of
fields. In particular, the indifferent set (K,K0,L0) is non-proper if we have M ∼= M̃.

Proof

“⇒” The map γ : Ã→ K0 ⊆ K is a Jordan homomorphism. Since K is associative, Hua’s theorem
implies that K0 = γ(Ã) is a skew-field, which is thus, in fact, a subfield of K. By Hua’s
theorem again, the map γ is an isomorphism of fields. In particular, Ã = γ−1(K0) is a field.
Moreover, we have

K0 = 〈K0〉 = K ,

hence (K,K0,L0) = (K,K,L0) is non-proper.

“⇐” We have γ(1M̃) = γ(1Ã) = 1K̃0
= 1K = 1M. Given a ∈ Ã∗ and x ∈ Ã, we have

γ
(
h̃a(x)

)
= γ(axa) = γ(a)γ(x)γ(a) = hγ(a)

(
γ(x)

)
.
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§ 31.4 M(K,K0, σ) ∼= M(Ã)

(31.25) Lemma Let (K,K0, σ) be a non-proper involutory set with the additional assumption
that K0 is a field if σ = idK and CharK = 2. Then (K,K0, σ) is of quadratic type.

Proof
Assume that (K,K0, σ) is not quadratic of type (v), i.e., K is a skew-field.

• σ = idK, CharK 6= 2: Then K is a field and Kσ = K0 = Fix(σ) = K, hence (K,K0, σ) is
quadratic of type (ii).

• σ = idK, CharK = 2: Then K is a field and K2 ⊆ K0 ⊆ K, hence (K,K0, σ) is quadratic of
type (m)∈ {(i), (ii)}.

• σ 6= idK: By (23.23) of [TW], (K,K0, σ) is quadratic of type (m)∈ {(iii), (iv)}.

(31.26) Theorem Let M̃ := M(Ã) be a Moufang set of linear type and let M := M(K,K0, σ)
be a Moufang set of involutory type. A map γ : M̃ → M is a Jordan isomorphism such that
γ(1M̃) = 1M if and only if (K,K0, σ) is of quadratic type, Ã and K0 are fields and the map
γ : Ã→ K0 is an isomorphism of fields. In particular, the involutory set (K,K0, σ) is non-proper
if we have M ∼= M̃.

Proof

“⇒” If (K,K0, σ) is quadratic of type (v), K0 is a field and the map γ : M(Ã) → M(K0) is a
Jordan isomorphism, hence an isomorphism of fields by theorem (31.2) since K0 is associative
and commutative. In particual, Ã is a field. In the sequel we suppose K to be associative.
The map γ : Ã→ K0 ⊆ K is a Jordan homomorphism. Since K is associative, Hua’s theorem
implies that K0 = γ(Ã) is a skew-subfield, which is thus, in fact, a subfield of K since we
have K0 ⊆ Fix(σ) and, therefore,

∀ x, y ∈ K0 : xy = (xy)σ = yσxσ = yx .

By Hua’s theorem again, γ is an isomorphism of fields. In particular, Ã = γ−1(K0) is
a field. Moreover, (K,K0, σ) is non-proper by lemma (5.2) and thus quadratic of type
(m)∈ {(i),. . . ,(iv)} by lemma (31.25).

“⇐” We have
γ(1M̃) = γ(1Ã) = 1K̃0

= 1K = 1M .

Given a ∈ Ã∗ and x ∈ Ã, we have

γ
(
h̃a(x)

)
= γ(axa) = γ(a)γ(xa) = γ(a)γ(x)γ(a) = hγ(a)

(
γ(x)

)
.

§ 31.5 M(L0,K, q) ∼= M(L̃0, K̃, q̃)

(31.27) Remark Cf. chapter 4.6 in [K] for another proof of the main result of this paragraph.

(31.28) Notation Until theorem (31.41), M := M(L0,K, q) is a Moufang set of quadratic
form type with basepoint ε, M̃ := M(L̃0, K̃, q̃) is a Moufang set of proper quadratic form type with
basepoint ε̃ and dimK̃ L̃0 ≥ 3, and γ : M→ M̃ is a Jordan isomorphism such that γ(1M) = 1M̃.
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(31.29) Lemma If we have

∀ x ∈ L∗0 : γ(〈x〉K) ⊆ 〈γ(x)〉K̃ ,

we have
∀ x ∈ L∗0 : γ(〈x〉K) = 〈γ(x)〉K̃ .

Proof
Notice that we have dimK̃ L̃0 ≥ 3. First of all, assume dimK L ≤ 2. Then γ(L0) is contained in a
two-dimensial K̃-subspace of L̃0 and hence in a proper subspace of L̃0, which contradicts the fact
that γ : L0 → L̃0 is a bijection. We obtain dimK ≥ 3, ans thus, by symmetry,

∀ x ∈ L∗0 : γ−1(〈γ(x)〉K̃) ⊆ 〈γ−1(γ(x)
)
〉K = 〈x〉K ,

hence

∀ x ∈ L∗0 : γ(〈x〉K) ⊇ 〈γ(x)〉K̃ .

(31.30) Notation Given x ∈ L∗0, y ∈ L0 and s ∈ K, we set

ψ1(x, y, s) := γ(x · s) · fq̃
(
γ(x · s), γ(y)σ̃

)
− γ(y)σ̃ · q̃

(
γ(x · s)

)
,

ψ2(x, y, s) := γ(x) · fq̃
(
γ(x), γ(y · s2)σ̃

)
− γ(y · s2)σ̃ · q̃

(
γ(x)

)
,

ψ3(x, y, s) := γ(x) · fq̃
(
γ(x · s), γ(y)σ̃

)
+ γ(x · s) · fq̃

(
γ(x), γ(y)σ̃

)
− γ(y)σ̃ · fq̃

(
γ(x · s), γ(x)

)
,

ψ4(x, y, s) := γ(x) · fq̃
(
γ(x), 2γ(y · s)σ̃

)
− 2γ(y · s)σ̃ · q̃

(
γ(x)

)
.

(31.31) Lemma Let x ∈ L∗0, y ∈ L0 and s ∈ K. Then the following holds:
(a) We have

ψ1(x, y, s+ 1K) = ψ1(x, y, s) + ψ1(x, y, 1K) + ψ3(x, y, s) .

(b) We have
ψ2(x, y, s+ 1K) = ψ2(x, y, s) + ψ2(x, y, 1K) + ψ4(x, y, s) .

(c) We have ψ1(x, y, s) = ψ2(x, y, s).

(d) We have ψ3(x, y, s) = ψ4(x, y, s).

Proof
(a) This is a direct calculation using the facts that γ is additive and that we have

∀ x ∈ L0, s ∈ K : q̃
(
γ(x · s) + γ(x)

)
= q̃
(
γ(x · s)

)
+ q̃
(
γ(x)

)
+ fq̃

(
γ(x · s), γ(x)

)
.

(b) This a direct calculation using the fact that γ is additive.

(c) By lemma (4.5) and lemma (4.7), we have

ψ1(x, y, s) = γ(x · s) · fq̃
(
γ(x · s), γ(y)σ̃

)
− γ(y)σ̃ · q̃

(
γ(x · s)

)
= h̃γ(x·s)

(
γ(y)

)
= γ

(
hx·s(y)

)
= γ

(
hx(y · s2)

)
= h̃γ(x)

(
γ(y · s2)

)
= γ(x) · fq̃

(
γ(x), γ(y · s2)σ̃

)
− γ(y · s2)σ̃ · q̃

(
γ(x)

)
= ψ2(x, y, s) .

(d) By (a), (b) and (c), we have

γ1(x, y, s) + γ1(x, y, 1K) + γ3(x, y, s) = γ1(x, y, s+ 1K) = γ2(x, y, s+ 1K)
= γ2(x, y, s) + γ2(x, y, 1K) + γ4(x, y, s) ,

hence γ3(x, y, s) = γ4(x, y, s) by (c) again.
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(31.32) Lemma Assume CharK = 2. Given x ∈ L0 such that γ(x) /∈ L̃⊥0 , we have

∀ s ∈ K : γ(x · s) ∈ 〈γ(x)〉K̃ .

Proof
Lemma (31.31) (d) simplifies to

γ(x) · fq̃
(
γ(x · s), γ(y)σ̃

)
+ γ(x · s) · fq̃

(
γ(x), γ(y)σ̃

)
+ γ(y)σ̃ · fq̃

(
γ(x · s), γ(x)

)
= 0L̃0

(31.1)

for all x ∈ L∗0, y ∈ L0, s ∈ K. Since we have dimK̃ L̃0 ≥ 3, there is an element y ∈ L0 such that
γ(y)σ̃ ∈ γ(x)⊥ ∩ γ(x · s)⊥. Therefore, we have

∀ s ∈ K : fq̃
(
γ(x · s), γ(x)

)
= 0K̃ ,

and equation (31.1) simplifies to

γ(x) · fq̃
(
γ(x · s), γ(y)σ̃

)
= γ(x · s) · fq̃

(
γ(x), γ(y)σ̃

)
for all x ∈ L⊥0 , y ∈ L0, s ∈ K. By assumption, there is an element y ∈ L0 such that
fq̃
(
γ(x), γ(y)σ̃

)
6= 0K̃, hence

γ(x · s) = γ(x) · fq̃
(
γ(x · s), γ(y)σ̃

)
fq̃
(
γ(x), γ(y)σ̃

)−1 ∈ 〈γ(x)〉K̃ .

(31.33) Notation

• Until proposition (31.37), we assume CharK = 2.

• Given x ∈ L0 such that γ(x) /∈ L⊥0 , let φx : K→ K̃ defined by

∀ s ∈ K : γ(x · s) = γ(x) · φx(s) .

(31.34) Lemma Let x ∈ L0 be such that γ(x) /∈ L̃⊥0 and let y ∈ L0 be such that γ(y) ∈ L̃⊥0 .
Then we have

γ(x+ y) /∈ L̃⊥0 .

Proof
Given z ∈ L0, we have

fq̃
(
γ(x+ y), γ(z)

)
= fq̃

(
γ(x), γ(z)

)
,

hence γ(x+ y) /∈ L⊥0 .

(31.35) Corollary Let x ∈ L0 be such that γ(x) /∈ L̃⊥0 and let y ∈ L0 be such that γ(y) ∈ L̃⊥0 .
Then we have

∀ t ∈ K∗ : γ
(
x · t+ y

)
/∈ L̃⊥0 .

Proof
By lemma (31.32), we have

∀ t ∈ K∗ : γ(x · t) = γ(x) · φx(t) /∈ L̃⊥0

so that we may apply lemma (31.34).

(31.36) Lemma Let x, y ∈ L0 be such that γ(y) /∈ 〈γ(x)〉K̃ and γ(x), γ(y) /∈ L̃⊥0 . Then we
have

φx = φy .
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Proof
The assertion is clearly true for K = F2 so that we may assume |K| ≥ 4.

(i) γ(y) /∈ 〈γ(x)〉K̃, γ(x+ y) /∈ L⊥0 : Given s ∈ K, we have

γ(x) · φx+y(s) + γ(y) · φx+y(s) = γ
(
(x+ y) · s

)
= γ(x · s) + γ(y · s)

= γ(x) · φx(s) + γ(y) · φy(s) ,

hence
φx(s) = φx+y(s) = φy(s) .

The condition in this step is always fulfilled if we have L̃⊥0 = {0} so that we may assume
L̃⊥0 6= {0} in the following.

(ii) y ∈ 〈x〉K, which means that we allow γ(y) ∈ 〈γ(x)〉K̃ in this case, cf. lemma (31.32): Since
we have |K| ≥ 4, there is an element t ∈ K∗ such that

x · t /∈ {x, y} .

Let z ∈ L∗0 be such that γ(z) ∈ L̃⊥0 , which implies γ(z) /∈ 〈γ(x)〉K̃. Then we have

γ(x · t+ z) /∈ L̃⊥0 , γ(x+ x · t+ z) /∈ L̃⊥0 , γ(y + x · t+ z) /∈ L̃⊥0

by corollary (31.35) and thus φx = φx·t+z = φy by (i).

(iii) γ(y) /∈ 〈γ(x)〉K̃, γ(x + y) ∈ L⊥0 : Let t ∈ K \ {0K, 1K}. By lemma (31.32) and corollary
(31.35), we have

γ(x · t) /∈ L̃⊥0 , γ(x · t+ y) = γ
(
x · (t+ 1K) + (x+ y)

)
/∈ L̃⊥0 ,

hence φx
(i)= φx·t

(ii)= φy by the previous steps.

(31.37) Proposition If we have CharK = 2, the map γ : L0 → L̃0 is an isomorphism of
vector spaces.

Proof
We show that we have

∀ x ∈ L∗0, s ∈ K : γ(x · s) ∈ 〈γ(x)〉K̃
so that we may apply the fundamental theorem of projective geometry by lemma (31.29).

Let x ∈ L∗0. By lemma (31.32), we may assume γ(x) ∈ L⊥0 . Since (L̃0, K̃, q̃) is proper, there is
an element y ∈ L0 such that γ(y) /∈ L⊥0 . Moreover, we have γ(y) /∈ 〈γ(x+ y)〉K̃, and, by lemma
(31.34), γ(x+ y) /∈ L̃0. By lemma (31.36) therefore, we have

φy = φx+y

and thus

γ(x · s) + γ(y) · φy(s) = γ(x · s) + γ(y · s) = γ
(
(x+ y) · s

)
= γ(x+ y) · φx+y(s) = γ(x) · φy(s) + γ(y) · φy(s)

for each s ∈ K, hence

∀ s ∈ K : γ(x · s) = γ(x) · φy(s) ∈ 〈γ(x)〉K̃ .
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(31.38) Remark We drop the condition CharK = 2.

(31.39) Lemma Assume CharK 6= 2. Let y ∈ L∗0 and s ∈ K. Given x ∈ L∗0 such that

fq̃
(
γ(x), γ(y)σ̃

)
= 0K̃ = fq̃

(
γ(x), γ(y · s)

)
,

we have
fq̃
(
γ(x · s), γ(y)σ̃

)
= 0K̃ .

Proof
By lemma (31.31) (d), we have

γ(x) · fq̃
(
γ(x · s), γ(y)σ̃

)
= γ(y)σ̃ · fq̃

(
γ(x · s), γ(x)

)
− 2γ(y · s)σ̃ · q̃

(
γ(x)

)
.

Assume fq̃
(
γ(x · s), γ(y)σ̃

)
6= 0K̃. Then we have

γ(x) ∈ 〈γ(y)σ̃, γ(y · s)σ̃〉K̃ ⊆ γ(x)⊥  .

(31.40) Proposition If we have CharK 6= 2, the map γ : L0 → L̃0 is an isomorphism of
vector spaces.

Proof
We show that we have

∀ y ∈ L∗0, s ∈ K : γ(y · s) ∈ 〈γ(y)〉K̃
so that we may apply the fundamental theorem of projective geometry by lemma (31.29).

Let y ∈ L∗0. By assumption, there is an element x ∈ L∗0 such that

fq̃
(
γ(x), γ(y)σ̃

)
= 0K̃ = fq̃

(
γ(x), γ(y · s)

)
.

By lemma (31.31) (d) and lemma (31.39), we have

γ(y)σ̃ · fq̃
(
γ(x · s), γ(x)

)
= 2γ(y · s)σ̃ · q̃

(
γ(x)

)
,

hence
γ(y · s) = 1

2γ(y) · fq̃
(
γ(x · s), γ(x)

)
q̃
(
γ(x)

)−1 ∈ 〈γ(y)〉K̃ .

(31.41) Theorem Let Ξ be a quadratic space with basepoint ε, let Ξ̃ be a proper quadratic
space with basepoint ε̃ and let M := M(Ξ), M̃ := M(Ξ̃) be the corresponding Moufang sets of
quadratic form type. A map γ : M→ M̃ is a Jordan isomorphism such that γ(1M) = 1M̃ if and
only if one of the following holds:

(i) We have dimK̃ L̃0 ≥ 3 and there is an isomorphism φ : K→ K̃ of fields such that the map

(γ, φ) : (L0,K, q)→ (L̃0, K̃, q̃)

is an isomorphism of quadratic spaces. In particular, we have dimK L0 = dimK̃ L̃0.

(ii) We have dimK̃ L̃0 ≤ 2, the map

φ : K→ K̂ := γ(〈ε〉K) ⊆ F̂ := F(L̃0, K̃, q̃), s 7→ γ(ε · s)

is an isomorphism of fields, the field F̂ is quadratic over K̂, and the map

(γ, φ) : (L0,K, q)→ (F̂, K̂, N F̂
K̂)

is an isomorphism of quadratic spaces. This is true even if Ξ̃ is non-proper.
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Proof

“⇒” • dimK̃ L̃0 ≥ 3: By proposition (31.37) and proposition (31.40), there is an isomorphism
φ : K→ K̃ of fields such that the map (γ, φ) : (L0,K)→ (L̃0, K̃) is an isomorphism of
vector spaces. By lemma (31.19), we have

h̃γ(x)(ε̃)− γ(x) · φ
(
T (x)

)
+ ε̃ · φ

(
q(x)

)
= γ

(
hx(ε)− x · T (x) + ε · q(x)

)
= 0L̃0

and

h̃γ(x)(ε̃)− γ(x) · T̃
(
γ(x)

)
+ ε̃ · q̃

(
γ(x)

)
= 0L̃0

for each x ∈ L∗0, hence

∀ x ∈ L∗0 : −γ(x) · φ
(
T (x)

)
+ ε̃ · φ

(
q(x)

)
= −γ(x) · T̃

(
γ(y)

)
+ ε̃ · q̃

(
γ(x)

)
,

which implies
∀ x ∈ L0 \ 〈ε〉K : q̃

(
γ(x)

)
= φ

(
q(x)

)
.

Given s ∈ K, we have

q̃
(
γ(ε · s)

)
= q̃
(
ε̃ · φ(s)

)
= φ(s)2 = φ(s2) = φ

(
q(ε · s)

)
.

• dimK̃ L̃0 ≤ 2: By lemma (31.11), we have

M(L0,K, q) ∼= M(L̃0, K̃, q̃) = M
(
F(L̃0, K̃, q̃)

)
.

Now we apply theorem (31.7).

“⇐” Let (γ, φ) be an isomorphism of quadratic spaces
(
independent of the target space (L̃0, K̃, q̃)

or (F̂, K̂, N F̂
K̂)
)
. By lemma (4.2), we have

γ
(
hx(y)

)
= γ

(
x · fq(x, yσ)− yσ · q(x)

)
= γ(x) · φ

(
fq(x, yσ)

)
− γ(yσ) · φ

(
q(x)

)
= γ(x) · fq̃

(
γ(x), γ(y)σ̃

)
− γ(y)σ̃ · q̃

(
γ(y)

)
= h̃γ(x)

(
γ(y)

)
for all x ∈ L∗0, y ∈ L0 which completes the case dimK̃ L̃0 ≥ 3. In the case dimK̃ L̃0 ≤ 2
moreover, we have

M(L̃0, K̃, q̃) = M(F̂) = M(K̂, F̂, N F̂
K̂)

by lemma (31.11) and lemma (31.23) so that

γ : M(L0,K, q)→M(K̂, F̂, N F̂
K̂) = M(L̃0, K̃, q̃)

is a Jordan isomorphism.
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Chapter 32 Parametrized Moufang Polygons

As in the simply laced case, the parametrization for the appearing Moufang polygons in root
group sequences of a given twin building is an important technical tool for the classification of
twin buildings: We can make use of the knowledge about the parametrizing Moufang sets and
Jordan isomorphisms between them, i.e., we may apply the results of chapter 31.

Chapter 32 Parametrized Moufang Polygons
Before we give the appearing examples, we have to establish the concept of standard and opposite
parametrized Moufang polygons as we can read a root group sequence in two directions.

(32.1) Definition

• The symbol T is standard of type 3 .

• The symbols QI ,QQ,QD,QP ,QE and QF are standard of type 4 .

• The symbol H is standard of type 6 .

• The symbol O is standard of type 8 .

(32.2) Definition

• A parameter system of type T is an alternative division ring A.

• A parameter system of type QI is a proper involutory set (K,K0, σ).

• A parameter system of type QQ is a quadratic space (L0,K, q) with basepoint ε.

• A parameter system of type QD is a proper indifferent set (K,K0,L0).

• A parameter system of type QP is a proper right pseudo-quadratic space (K,K0, σ, L0, q).

• A parameter system of type QE is a quadratic space (L0,K, q) of type E6, E7, E8.

• A parameter system of type QF is a quadratic space (L0,K, q) of type F4.

• A parameter system of type H is a hexagonal system (J,F,#).

• A parameter system of type O is an octagonal set (K, σ).

(32.3) Definition A parametrized standard Moufang n-gon is a standard root group sequence

X (Ξ) =
(
U[1,n], x1(M1), . . . , xn(Mn)

)
,

where X is a standard symbol of type n ∈ {3, 4, 6, 8}, Ξ is a parameter system of type X and
M1, . . . ,Mn are the parameter groups with respect to the parametrizations x1, . . . , xn and the
corresponding commutator relations, cf. chapter 16 of [TW].

(32.4) Remark

(a) Given a parametrized standard Moufang n-gon X (Ξ), the parameter groups M1, . . . ,Mn

are Moufang sets.

(b) For reasons of brevity, we will write

X (Ξ) =
(
x1(M1), . . . , xn(Mn)

)
instead of X (Ξ) =

(
U[1,n], x1(M1), . . . , xn(Mn)

)
.
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(32.5) Definition Let X be a standard symbol of type n ∈ {3, 4, 6, 8}.

• The symbol X o is the corresponding opposite symbol of type n. We set (X o)o := X .

• A parameter system of type X o is just a parameter system of type X , except for the following
standard symbols:

◦ A parameter system of type QoP is a proper left pseudo-quadratic space.
◦ Hexagonal systems and octagonal sets are not taken into account yet.

(32.6) Notation

• In the following, a symbol X denotes either a standard or an opposite symbol of type n for
some n ∈ {3, 4, 6, 8}.

• In the following, a parameter system Ξ denotes a parameter system of type X for some
symbol X .

(32.7) Remark The following list is not complete since we restrict to parameter systems for
n-gons with n ∈ {3, 4}. The list can be extended easily.

(32.8) Definition Given a parameter system Ξ, there is a natural way to define an opposite
parameter system Ξ o:

• Given an alternative division ring A, the corresponding opposite parameter system Ao is
just the opposite alternative division ring Ao as in definition (3.7).

• Given an involutory set (K,K0, σ), the corresponding opposite parameter system is

(K,K0, σ)o := (Ko,K0, σ) ,

which is an involutory set.

• Given an indifferent set (K,K0,L0), the corresponding opposite parameter system is

(K,K0,L0)o := (K,K0,L0) ,

which is the indifferent set itself.

• Given a right (resp. left) pseudo-quadratic space (K,K0, σ, L0, q), the corresponding opposite
parameter system is

(K,K0, σ, L0, q)o := (Ko,K0, σ, L0, q) ,

which is a left (resp. right) pseudo-quadratic space.

• Given a quadratic space (L0,K, q), the corresponding opposite parameter system is

(L0,K, q)o := (L0,K, q) ,

which is the quadratic space itself.

(32.9) Remark Let Ξ be a parameter system. If Ξ is of type X , then Ξo is of type X o.

(32.10) Definition An parametrized opposite Moufang n-gon is a root group sequence

X o(Ξ) =
(
x1(M1), . . . , xn(Mn)

)
such that (

xn(Mo
n), . . . , x1(Mo

1)
)

= X (Ξo) ,

where X is a standard symbol of type n ∈ {3, 4, 6, 8} and Ξ is a parameter system of type X o.
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(32.11) Remark
(a) Parametrized opposite Moufang n-gons can be obtained as follows: Take the opposite

root group sequence
(
xn(Mn), . . . , x1(M1)

)
of some parametrized standard Moufang n-gon

X (Ξ) =
(
x1(M1), . . . , xn(Mn)

)
, calculate the commutator relations and interpret them in

the opposite parameter system Ξo.

(b) By definition, each parametrized opposite Moufang n-gon arises in this way.

(c) We will make this more explicit in the next chapter.

(32.12) Definition A parametrized Moufang polygon of type X is a parametrized standard or
opposite Moufang n-gon X (Ξ) for some symbol X of type n and some parameter system of type
X .

(32.13) Remark Two isomorphic Moufang polygons are necessarily n-gons for the same value
n ∈ {3, 4, 6, 8}, cf. p. 419 of [TW]. However, there are six families of Moufang quadrangles, and
there are indeed quadrangles belonging to different families, cf. chapter 38 of [TW]. But the six
families of parametrized Moufang quadrangles are disjoint if we use the above list of parameter
systems, i.e., two isomorphic parametrized quadrangles are necessarily of the same type X , cf.
(38.9) of [TW].

(32.14) Definition Let X (Ξ), X (Ξ̃) be parametrized Moufang polygons of the same type X .
• An isomorphism α : X (Ξ)→ X (Ξ̃) is an ordered set (α1, . . . , αn) such that αi : Mi → M̃i is
an isomorphism of groups for each i ∈ {1, . . . , n} and such that(

x1α1(M1), . . . , xnαn(Mn)
)

= X (Ξ) .

• A reparametrization for X (Ξ) is an ordered set α = (Ξ̃, α1, . . . , αn) such that Ξ̃ is a parameter
system of type X and αi : M̃i →Mi is an isomorphism of groups for each i ∈ {1, . . . , n} and
such that (

x1α1(M̃1), . . . , xnαn(M̃n)
)

= X (Ξ̃) .

(32.15) Remark The following results enable us to define parametrizations for root group
sequences such that we have γ(1M) = 1M for each appearing glueing γ.

(32.16) Lemma Given a parametrized Moufang n-gon X (Ξ), we have
1M1 ∈ Z(M1) , 1Mn ∈ Z(Mn) .

Proof
This results from the fact that M1 and Mn are commutative except for the symbols QP , QE , O.
In these cases, the assertion results from definition (10.15) and (38.10) of [TW], cf. Fig. 5 on
page 354 of [TW].

(32.17) Lemma Let X (Ξ) be a parametrized Moufang n-gon and let a ∈ Z(M1), b ∈ Z(Mn).
Then the following holds:
(a) If X is of type T , QI , QD, QP , H, O, there is a reparametrization α = (Ξ̃, α1, . . . , αn) s.t.

x1
(
α1(1M̃1

)
)

= x1(a) , xn
(
αn(1M̃n)

)
= xn(b) .

(b) If X is of type QQ, there is a reparametrization α = (Ξ̃, α1, . . . , αn−1, idMn) such that
x1
(
α1(1M̃1

)
)

= x1(a) , q̃
(
b
)

= 1K̃ .

In particular, we have 1M̃n = b.
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Proof
(a) T : This results from lemma (18.8).
QI : This results from (35.16) and (22.39) in [TW].
QD: This results from (35.18) in [TW].
QP : This results from (35.19) and (25.20) in [TW].
H: This results from (29.40) and (29.42) in [TW].
O: This results from (31.35) in [TW].

(b) QQ: This results from (35.17) and (23.25) in [TW].

(32.18) Lemma Given a parametrized quadrangle QE(L0,K, q) and a ∈ Z(M1), b ∈ Z(Mn),
there is a reparametrization α = (Ξ̃, α1, . . . , αn−1, idMn) such that

x1
(
α1(1M̃1

)
)

= x1(a) , q̃
(
b
)

= 1K̃ .

In particular, we have 1M̃n = b.

Proof
By remark (21.17) of [TW], QE(L0,K, q) is an extension of QQ(L0,K, q), and by proposition
(21.4) and (38.10) of [TW], the first root group is Y1 = Z(U1). We apply lemma (32.17) (b) to the
quadrangle QQ(L0,K, q) and extend the reparametrization for QQ(L0,K, q) to a parametrization
for QE(L0,K, q), which is possible by theorem (21.12) of [TW], more precisely, by its proof.

(32.19) Lemma Let QF (L0,K, q) be a parametrized quadrangle, let (F, L̂0, q̂) be as in
definition (14.12) of [TW] and let a ∈ Def(q̂)∗, b ∈ Def(q)∗. Then there is a reparametrization
α = (Ξ̃, α1, . . . , αn−1, idMn) such that

x1
(
α1(1M̃1

)
)

= x1(a) , q̃
(
b
)

= 1K̃ .

In particular, we have 1M̃n = b.

Proof
By remark (21.18) of [TW], QE(L0,K, q) is an extension of QQ(L0,K, q), and by proposition
(21.4), remark (21.18) and the proof of (14.13) of [TW], the first root group is

Y1 = {x1(0, t) | t ∈ K} = x1
(
Def(q̂)

)
. (32.1)

We apply lemma (32.17) (b) to the quadrangle QQ(L0,K, q) and extend the reparametrization for
QQ(L0,K, q) to a parametrization for QE(L0,K, q) which is possible by theorem (21.12) of [TW],
more precisely, by its proof.

(32.20) Notation Let I be an index set, let i 6= j ∈ I and let

B(i,j) = X (Ξ) = (U[1,n], x1(M1), . . . , xn(Mn)
)

be a parametrized Moufang n-gon. Then Mi
(i,j) := M1 denotes the parameter group of the

first root group and Mj
(i,j) := Mn denotes the parameter group of the last root group with

corresponding parametrizations xi(i,j) := x1 and xj(i,j) := xn. Moreover, we set

Bo(i,j) := X o(Ξo) .

(32.21) Remark Let B(1,2) := QF (L0,K, q) and B(2,3) := QF (L̃0, K̃, q̃) be quadrangles of
type F4, and let γ : M2

(1,2) →M2
(2,3) be a Jordan isomorphism. Then we have γ(0,F) = (0, K̃), cf.

theorem (31.6) and equation (32.1).
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Chapter 33 Parametrized Quadrangles
§ 33.1 Quadrangles of Involutory Type

(33.1) Definition Let (K,K0, σ) be a (proper) involutory set.

• The root group sequence

QI(K,K0, σ) :=
(
x1(K0), x2(K), x3(K0), x4(K)

)
with commutator relations

∀ s, t ∈ K : [x2(s), x4(t)−1] := x3(sσt+ tσs) ,
∀ s ∈ K, u ∈ K0 : [x1(u), x4(s)−1] := x2(us)x3(sσus)

is the parametrized standard quadrangle of involutory type with respect to (K,K0 , σ).

• The root group sequence

QoI(K,K0, σ) :=
(
x1(K), x2(K0), x3(K), x4(K0)

)
with commutator relations

∀ s, t ∈ K : [x1(s)−1, x3(t)] := x2(−stσ − tsσ) ,
∀ s ∈ K, u ∈ K0 : [x1(s)−1, x4(u)] := x2(−susσ)x3(−su)

is the parametrized opposite quadrangle of involutory type with respect to (K,K0 , σ).

(33.2) Lemma Let (K,K0, σ) be a (proper) involutory set and let

QoI(K,K0, σ) =
(
x1(K), x2(K0), x3(K), x4(K0)

)
be the corresponding opposite quadrangle. Then the action of the Hua automorphism

h1(s) := µ
(
x1(1K)

)−1
µ
(
x1(s)

)
on x1(K)× x4(K0) corresponds to the map

(t, u) 7→ (sts, s−1us−σ) ,

and the action of the Hua automorphism

h4(s) := µ
(
x4(1K)

)−1
µ
(
x4(s)

)
on x1(K)× x4(K0) corresponds to the map

(t, u) 7→ (ts−1, sσus) .

Proof
If we consider the quadrangleQI(Ko,Ko0, σ), then the action of h1(s) on x4(K0)×x1(K) corresponds
to the map

(u, t) 7→ (s−σ ◦ u ◦ s−1, s ◦ t ◦ s) = (s−1us−σ, sts) ,

and the action of h4(s) on x4(K0)× x1(K) corresponds to the map

(u, t) 7→ (s ◦ u ◦ sσ, s−1 ◦ t) = (sσus, ts−1) ,

cf. (33.13) of [TW].
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§ 33.2 Quadrangles of Pseudo-Quadratic Form Type

(33.3) Definition

• Let (K,K0, σ, L0, q) be a (proper) right pseudo-quadratic space. Then the root group
sequence

QP (K,K0, σ, L0, q) :=
(
x1(T ), x2(K), x3(T ), x4(K)

)
with commutator relations

[x1(a, t), x4(b, u)−1] := x2
(
f(a, b)

)
,

[x2(v), x4(w)−1] := x3(0, vσw + wσv) ,
[x1(a, t), x4(v)−1] := x2(tv)x3(av, vσtv)

for all v, w ∈ K, (a, t), (b, u) ∈ T is the parametrized standard quadrangle of pseudo-quadratic
form type with respect to (K,K0, σ, L0, q).

• Let (K,K0, σ, L0, q) be a (proper) left pseudo-quadratic space. Then the root group sequence

QoP (K,K0, σ, L0, q) :=
(
x1(K), x2(T ), x3(K), x4(T )

)
with commutator relations

[x2(b, u)−1, x4(a, t)] := x3
(
− f(a, b)

)
,

[x1(w)−1, x3(v)] := x2(0,−wvσ − vwσ) ,
[x1(v)−1, x4(a, t)] := x2(−va,−vσtσv)x3(−vt)

for all v, w ∈ K, (a, t), (b, u) ∈ T is the parametrized opposite quadrangle of pseudo-quadratic
form type with respect to (K,K0, σ, L0, q).

(33.4) Lemma Let (K,K0, σ, L0, q) be a (proper) left pseudo-quadratic space and let

QoP (K,K0, σ, L0, q) =
(
x1(K), x2(T ), x3(K), x4(T )

)
be the corresponding opposite quadrangle. Then the action of the Hua automorphism

h1(s) := µ
(
x1(1K)

)−1
µ
(
x1(s)

)
on x1(K)× x4(T ) corresponds to the map(

u, (b, v)
)
7→
(
sus, (s−1b, s−1vs−σ)

)
,

and the action of the Hua automorphism

h4(a, t) := µ
(
x4(0, 1K)

)−1
µ
(
x4(a, t)

)
on x1(K)× x4(T ) corresponds to the map(

u, (b, v)
)
7→
(
ut−σ, (tσb− tσf(a, b)t−1a, tσvt)

)
.

Proof
If we consider the quadrangle QP (Ko,Ko0, σ, L0, q), then the action of h1(s) on x4(T ) × x1(K)
corresponds to the map(

(b, v), u
)
7→
(
(b ◦ s−1, s−σ ◦ v ◦ s−1), s ◦ u ◦ s

)
=
(
(s−1b, s−1vs−σ), sus

)
,

and the action of h4(a, t) on x4(T )× x1(K) corresponds to the map(
(b, v), u

)
7→
(
(b◦ tσ−a◦ t−1 ◦f(a, b)◦ tσ, t◦v ◦ tσ), t−σ ◦u

)
=
(
(tσb− tσf(a, b)t−1a, tσvt), ut−σ

)
,

cf. (33.13) of [TW].
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§ 33.3 Quadrangles of Quadratic Form Type

(33.5) Definition Let (L0,K, q) be a quadratic space with basepoint ε.

• The root group sequence

QQ(L0,K, q) :=
(
x1(K), x2(L0), x3(K), x4(L0)

)
with commutator relations

[x2(a), x4(b)−1] := x3
(
f(a, b)

)
,

[x1(t), x4(a)−1] := x2(at)x3
(
tq(a)

)
for all a, b ∈ L0, t ∈ K is the parametrized standard quadrangle of quadratic form type with
respect to (L0,K, q).

• The root group sequence

QoQ(L0,K, q) :=
(
x1(L0), x2(K), x3(L0), x4(K)

)
with commutator relations

[x1(b)−1, x1(a)] := x2
(
− f(a, b)

)
,

[x4(a)−1, x1(t)] := x2
(
− tq(a)

)
x3(−at)

for all a, b ∈ L0, t ∈ K is the parametrized opposite quadrangle of quadratic form type with
respect to (L0,K, q).

(33.6) Lemma Let (L0,K, q) be a quadratic space with basepoint ε and let

QoQ(L0,K, q) =
(
x1(L0), x2(K), x3(L0), x4(K)

)
be the corresponding opposite quadrangle. Then the action of the Hua automorphism

h1(a) := µ
(
x1(ε)

)−1
µ
(
x1(a)

)
on x1(L0)× x4(K) corresponds to the map

(v, u) 7→
(
πaπε(v) · q(a), u/q(a)

)
,

and the action of the Hua automorphism

h4(s) := µ
(
x4(1K)

)−1
µ
(
x4(s)

)
on x1(L0)× x4(K) corresponds to the map

(b, u) 7→ (b · t−1, t2u) .

Proof
If we consider the quadrangle QP (L0,K, q), then the action of h1(a) on x4(K)×x1(L0) corresponds
to the map

(u, v) 7→
(
u/q(a), πaπε(v) · q(a)

)
,

and the action of h4(s) on x4(K)× x1(L0) corresponds to the map

(u, b) 7→ (t2u, b · t−1) ,

cf. (33.11) of [TW].

- 165 -



Part VII An Inventory of Moufang Polygons

§ 33.4 Quadrangles of Indifferent Type

(33.7) Definition Let (K,K0,L0) be a (proper) indifferent set.

• The root group sequence

QD(K,K0,L0) :=
(
x1(K0), x2(L0), x3(K0), x4(L0)

)
with commutator relations

∀ t ∈ K0, a ∈ L0 : [x1(t), x4(a)] = x2(t2a)x3(ta)

is the parametrized standard quadrangle of indifferent type with respect to (K,K0,L0).

• The root group sequence

QoD(K,K0,L0) :=
(
x1(L0), x2(K0), x3(L0), x4(K0)

)
with commutator relations

∀ t ∈ K0, a ∈ L0 : [x1(a), x4(t)] = x2(−ta)x3(−t2a) = x2(ta)x3(t2a)

is the parametrized opposite quadrangle of indifferent type with respect to (K,K0,L0).

(33.8) Lemma Let (K,K0,L0) be a (proper) indifferent set and let

QoD(K,K0,L0) =
(
x1(L0), x2(K0), x3(L0), x4(K0)

)
be the corresponding opposite quadrangle. Then the action of the Hua automorphism

h1(a) := µ
(
x1(1K)

)−1
µ
(
x1(a)

)
on x1(L0)× x4(K0) corresponds to the map

(b, u) 7→ (ba2, ua−1) ,

and the action of the Hua automorphism

h4(t) := µ
(
x4(1K)

)−1
µ
(
x4(t)

)
on x1(L0)× x4(K0) corresponds to the map

(b, u) 7→ (bt−2, ut2) .

Proof
If we consider the quadrangle QD(K,K0,L0), then the action of h1(a) on x4(K0) × x1(L0)
corresponds to the map

(u, b) 7→ (ua−1, ba2) ,

and the action of h4(s) on x4(K0)× x1(L0) corresponds to the map

(u, b) 7→ (ut2, bt−2) ,

cf. (33.12) of [TW].

§ 33.5 Quadrangles of Type En, F4

For an overview of those quadrangles, we refer to (16.6), (33.14), (16.7) and (33.15) of [TW].
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Chapter 34 The Moufang Sets of Moufang Polygons
We give an overview of the Moufang sets appearing as root groups of Moufang triangles and
quadrangles.

(34.1) Remark Let B(1,2) := X (Ξ) be a parametrized standard Moufang polygon. Then one
of the following holds:
(i) We have

M1
(1,2) = M(A) = M2

(1,2)

if B(1,2) = T (A) for some alternative division ring A.

(ii) We have

M1
(1,2) = M(K,K0, σ) , M2

(1,2) = M(K)

if B(1,2) = QI(K,K0, σ) for some (proper) involutory set (K,K0, σ).

(iii) We have

M1
(1,2) = M(K,K0, σ, L0, q) , M2

(1,2) = M(K)

if B(1,2) = QP (K,K0, σ, L0, q) for some (proper) pseudo-quadratic space (K,K0, σ, L0, q).

(iv) We have

M1
(1,2) = M(K) , M2

(1,2) = M(L0,K, q)

if B(1,2) = QQ(L0,K, q) for some quadratic space (L0,K, q) with basepoint ε.

(v) We have

M1
(1,2) = M(K,K0,L0) , M2

(1,2) = M(L,L0,K2
0)

if B(1,2) = QI(K,K0,L0) for some (proper) indifferent set (K,K0,L0).

(vi) We have

M1
(1,2) = M(S) , M2

(1,2) = M(L0,K, q)

if B(1,2) = QE(L0,K, q) for some quadratic space (L0,K, q) of type En.

(vii) We have

M1
(1,2) = M(F, L̂0, q̂) , M2

(1,2) = M(L0,K, q)

if B(1,2) = Q4(L0,K, q) for some quadratic space (L0,K, q) of type F4.

(viii) We have

M1
(1,2) = M(J,F,#) , M2

(1,2) = M(F)

if B(1,2) = H(J,F,#) for some hexagonal system (J,F,#).

(ix) We have

M1
(1,2) = M(K) , M2

(1,2) = M(K, σ)

if B(1,2) = O(K, σ) for some octagonal system (K, σ).

(34.2) Remark The Hua automorphisms of lemma (18.9) and chapter 33, which can be
defined for each polygon, cf. chapter 33 of [TW], induce the Hua maps on the corresponding
Moufang sets. Each Hua automorphism of a polygon which is part of an integrable foundation is
induced by an automorphism of the whole building, cf. theorem (2.35).
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Chapter 35 Definition

We generalize the definitions and results of chapter 19, i.e., we give the definition of a foundation
involving arbitrary Moufang polygons and show that we can attach a foundation to each twin
building. Once again, this foundation turns out to be a classifying invariant of the corresponding
twin building, and the integrability criterions of chapter 19 hold as well.

Chapter 35 Definition
(35.1) Definition

• Let M be a Coxeter matrix. A foundation of type M is a set

F := {B(i,j), γ(i,j,k) | (i, j) ∈ A(M), (i, j, k) ∈ G(M)}

such that:

(F1) Given (i, j) ∈ A(M), then B(i,j) = X(i,j)(Ξ(i,j)) for some symbol X(i,j) of type mij as
in notation (32.6) and some parameter system Ξ(i,j) of type X(i,j).

(F2) Given (i, j) ∈ A(M), we have B(i,j) = Bo(j,i).

(F3) Given (i, j, k) ∈ G(M), then γ(i,j,k) : Mj
(i,j) → Mj

(j,k) is an isomorphism of groups
satisfying

γ(i,j,k)(1M) = 1M , γ(i,j,k) = ido ◦ γ−1
(k,j,i) ◦ ido .

(F4) Given (i, j, k), (i, j, l), (l, j, k) ∈ G(M), we have

γ(i,j,k) = γ(l,j,k) ◦ ido ◦ γ(i,j,l) .

• Given a foundation F , we denote the corresponding Coxeter Matrix by F .

• A foundation F is a Moufang foundation if each glueing γ := γ(i,j,k) is a Jordan isomorphism,
i.e., we have

∀ a ∈M∗(i,j), x ∈M(i,j) : γ
(
ha(x)

)
= hγ(a)

(
γ(x)

)
.

(35.2) Definition Let F be a foundation over I = V (F ) and let J ⊆ I. The J-residue of F
is the foundation

FJ := {B(i,j), γ(i,j,k) | (i, j) ∈ J2 ∩A(F ), (i, j, k) ∈ J3 ∩G(F )} .

(35.3) Remark Since a foundation is, in fact, an amalgam of Moufang polygons, an isomor-
phism of foundations is a system of isomorphism of Moufang polygons preserving the glueings.

(35.4) Definition Let F , F̃ be foundations.

• An isomorphism α : F → F̃ is a system α = {π, α(i,j) | (i, j) ∈ A(F )} of isomorphisms

π : F → F̃ , α(i,j) = (αi(i,j), . . . , α
j
(i,j)) : B(i,j) → B̃(π(i),π(j))

such that

∀ (i, j, k) ∈ G(F ) : γ̃(π(i),π(j),π(k)) ◦ αj(i,j) = αj(j,k) ◦ γ(i,j,k)

and
∀ (i, j) ∈ A(F ) : α(i,j) = αo(j,i) .

• An isomorphism α : F → F̃ is special if F = F̃ and π = idF .

• An automorphism of F is an isomorphism α : F → F .
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Chapter 36 Root Group Systems
The fact that a root group systems is a classifying invariant of the corresponding twin building is
a fundamental result in twin building theory.

(36.1) Definition Let B be a twin building of type M , let Σ be a twin apartment of B and
let c ∈ OΣ.

• Given (i, j) ∈ A(M), let αi, αj be the simple roots with respect to (Σ, c) and let Θ(i,j) be
as in theorem (2.32) (d). Then

U(i,j) := (U[i,j], U
i
(i,j), . . . , U

j
(i,j)) := Θ(i,j)

denotes the root group sequence of B from αi to αj , which is isomorphic to the root group
sequence of Bij from αi ∩ Bij to αj ∩ Bij .

• The resulting set
U(B,M,Σ, c) := {U(i,j) | (i, j) ∈ A(M)}

is the root group system of B based at (Σ , c).

(36.2) Lemma Given (i, j, k) ∈ G(F ), we have U j(i,j) = U j(j,k).

Proof
This holds by definition.

(36.3) Definition Let U := U(B,M,Σ, c) and Ũ := U(B̃, M̃ , Σ̃, c̃) be root group systems.

• An isomorphism α : U → Ũ is a system

α = {π, α(i,j) | (i, j) ∈ A(M)}

of isomorphisms

π : M → M̃ , α(i,j) : U(i,j) → Ũ(π(i),π(j))

of root group sequences such that

∀ (i, j, k) ∈ G(M) : α(i,j)|Uj(i,j)
= α(j,k)|Uj(j,k)

, ∀ (i, j) ∈ A(M) : α(i,j) = αo(j,i) .

• An isomorphism α : U → Ũ is special if M = M̃ and π = idM .

• An automorphism of U is an isomorphism α : U → U .

(36.4) Theorem Two root group systems U(B,M,Σ, c) and U(B,M, Σ̃, c̃) of a twin building
B are specially isomorphic.

Proof
This is a consequence of theorem (2.22).

(36.5) Theorem Let U := U(B,M,Σ, c) be a root group system of a twin building B
which satisfies condition (CO). Then the isomorphism class of U is a classifying invariant of the
isomorphism class of B.

Proof
This is a consequence of the extension theorem (2.23).

- 172 -



Chapter 37 Foundations and Root Group Systems

Chapter 37 Foundations and Root Group Systems
Given a root group system, there is a natural way to attach a foundation to it.

(37.1) Definition Let U(B,M,Σ, c) be a root group system.

• Given (i, j) ∈ A(M), there is a symbol X(i,j) and a parameter system Ξ(i,j) such that
U(i,j) ∼= X(i,j)(Ξ(i,j)). In particular, there is a system of parametrizations

x∗(i,j) : M∗(i,j) → U∗(i,j) , t 7→ x∗(i,j)(t) , ∗ ∈ {i, j}

extending to the defining relations for X(i,j)(Ξ(i,j)). Such a parametrization yields an
opposite system of parametrizations

x∗(j,i) : (M∗(i,j))o → U∗(j,i) , t 7→ x∗(i,j)
(
ido(t)

)
, ∗ ∈ {j, i} .

The resulting set
Λ := {X(i,j)(Ξ(i,j)) | (i, j) ∈ A(M)}

is a parameter system for U .

• Given (i, j, k) ∈ G(M) and parametrizations X(i,j)(Ξ(i,j)) and X(j,k)(Ξ(j,k)), we define the
glueing γ(i,j,k) : Mj

(i,j) →Mj
(j,k) by

xj(i,j)(t) = xj(j,k)
(
γ(i,j,k)(t)

)
which is justified by lemma (36.2). Then γ(i,j,k) is an isomorphism of groups satisfying
γ(i,j,k) = ido ◦ γ−1

(k,j,i) ◦ ido. By lemma (32.16), (32.17), (32.18) and (32.19), we may adjust
all the parametrizations such that

∀ (i, j, k) ∈ G(F ) : γ(i,j,k)(1M) = 1M .

In the first instance, we have to adjust the glueings connecting quadrangles of type F4 (for
which we need remark (32.21)) since we have the least flexibility in this case: The element
1M is an element in the corresponding defect.

(37.2) Lemma Given a root group system U := U(B,M,Σ, c), a parameter system Λ as in
definition (37.1) induces a foundation

F(U,Λ) = {X(i,j)(Ξ(i,j)), γ(i,j,k) | (i, j) ∈ A(M), (i, j, k) ∈ G(M)} .

Proof
We emphasize that the glueings in definition (37.1) are identifications with respect to directed
edges. Given (i, j, k), (i, j, l), (l, j, k) ∈ G(M) and t ∈Mj

(i,j), we have

xj(j,k)
(
γ(i,j,k)(t)

)
= xj(i,j)(t) = xj(j,l)

(
γ(i,j,l)(t)

)
= xj(l,j)

(
ido ◦ γ(i,j,l)(t)

)
= xj(j,k)

(
γ(l,j,k) ◦ ido ◦ γ(i,j,l)(t)

)
and thus γ(i,j,k) = γ(l,j,k) ◦ ido ◦ γ(i,j,l).

(37.3) Definition A foundation F is integrable if it is the foundation of a twin building B,
i.e., if there are a root group system U := U(B,M,Σ, c) and a parameter system Λ for U such
that F = F(U ,Λ).

(37.4) Theorem Let F be an integrable foundation. Then F is a Moufang foundation.
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Proof
Let (i, j, k) ∈ G(F ) and γ := γ(i,j,k). If we set

h(a) := µ
(
xj(i,j)(1M)

)−1
µ
(
xj(i,j)(a)

)
, a ∈ (M j

(i,j))
∗ ,

h̃(a) := µ
(
xj(j,k)(1M)

)−1
µ
(
xj(j,k)(a)

)
, a ∈ (M j

(j,k))
∗ ,

we have

h̃
(
γ(a)

)
= µ

(
xj(j,k)(1M)

)−1
µ
(
xj(j,k)(γ(a))

)
= µ

(
xj(i,j)(1M)

)−1
µ
(
xj(i,j)(a)

)
= h(a)

for each a ∈Mj
(i,j). Moreover, we have

xj(i,j)(x)h(a) = xj(i,j)
(
ha(x)

)
, xj(j,k)(y)h̃(b) = xj(j,k)

(
h̃b(y)

)
for all a ∈ (Mj

(i,j))
∗, x ∈Mj

(i,j), b ∈ (Mj
(j,k))

∗, y ∈Mj
(j,k). Combining these two facts yields

xj(j,k)
(
γ(ha(x))

)
= xj(i,j)

(
ha(x)

)
= xj(i,j)(x)h(a) = xj(j,k)

(
γ(x)

)h̃(γ(x)) = xj(j,k)
(
h̃γ(a)(γ(x))

)
and thus γ

(
ha(x)

)
= h̃γ(a)

(
γ(x)

)
for all a ∈ (Mj

(i,j))
∗, x ∈Mj

(i,j).

(37.5) Remark The following result provides an integrability criterion.

(37.6) Definition Let F be a foundation.

• Let (F̃ , ϕ) be a cover of F . Then the foundation

F(F̃ , ϕ) := {B̃(i,j), γ̃(i,j,k) | (i, j) ∈ A(F̃ ), (i, j, k) ∈ G(F̃ )}

with

∀ (i, j) ∈ A(F̃ ) : B̃(i,j) = B(ϕ(i),ϕ(j)) , ∀ (i, j, k) ∈ G(F̃ ) : γ̃(i,j,k) = γ(ϕ(i),ϕ(j),ϕ(k))

is the cover corresponding to (F̃ , ϕ).

• A foundation F̃ is a cover of F if there is a cover (F̃ , ϕ) of F such that

F̃ ∼= F(F̃ , ϕ) .

(37.7) Theorem Let F be a foundation and let F̃ be a cover of F . Then F is integrable if
F̃ is integrable.

Proof
This is a consequence of theorem C in [MLoc].

(37.8) Remark The next step is to show that the foundation attached to a root group system
is unique up to isomorphism. Moreover, we want to prove that the building corresponding to an
integrable foundation is unique up to isomorphism.

(37.9) Proposition Let U := U(B,M,Σ, c) and Ũ := U(B̃, M̃ , Σ̃, c̃) be root group systems
and let Λ and Λ̃ be parameter systems for U and Ũ , respectively. Then the following holds:

(a) An isomorphism α̃ : F(U ,Λ)→ F(Ũ , Λ̃) induces an isomorphism α : U → Ũ .

(b) An isomorphism α : U → Ũ induces an isomorphism α̃ : F(U ,Λ)→ F(Ũ , Λ̃).
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Proof
Each isomorphism

α(i,j) : U(i,j) → Ũ(π(i),π(j))

induces an isomorphism

α̃(i,j) : X(i,j)(Ξ(i,j))→ X(i,j)(Ξ̃(π(i),π(j)))

and vice versa. Given (i, j) ∈ A(M), we have

α(i,j) = αo(j,i) ⇔ α̃(i,j) = α̃o(j,i) .

Now we may go on as in the proof of proposition (19.16).

Chapter 38 Reparametrizations and Isomorphisms
The concept of reparametrizations is quite similar to that of isomorphisms. However, we deal with
a single foundation and produce (in fact, all the) foundations which are isomorphic to a given one.
Moreover, this concept allows us to complete the proof that a foundation is a classifying invariant
of the corresponding twin building.

(38.1) Definition Let F be a foundation.

• A system of reparametrizations

α := {α(i,j) | (i, j) ∈ A(F )}

satisfying α(i,j) = αo(j,i) for each (i, j) ∈ A(F ) and

γ(i,j,k) ◦ αj(i,j)(1) = αj(j,k)(1)

for each (i, j, k) ∈ G(F ) is a reparametrization for F .

• Given a reparametrization α for F , we set

Fα := {X(i,j)(Ξ̃(i,j)), γ̃(i,j,k) | (i, j) ∈ A(F ), (i, j, k) ∈ G(F )}

with
γ̃(i,j,k) := (αj(j,k))

−1 ◦ γ(i,j,k) ◦ αj(i,j)
for each (i, j, k) ∈ G(F ).

(38.2) Lemma Let U := U(B,M,Σ, c) be a root group system, let F := F(U ,Λ) for some
parameter system Λ for U , let α be a reparametrization for F and let Λ̃ be the parameter system
induced by α. Then we have F̃ := F(U , Λ̃) = Fα.

Proof
We have

x̃j(j,k)
(
γ̃(i,j,k)(t)

)
= x̃j(i,j)(t) = xj(i,j)

(
αj(i,j)(t)

)
= xj(j,k)

(
γ(i,j,k) ◦ αj(i,j)(t)

)
= x̃j(j,k)

(
(αj(j,k))

−1 ◦ γ(i,j,k) ◦ αj(i,j)(t)
)

for each t ∈ M̃j
(i,j).

(38.3) Corollary Let U := U(B,M,Σ, c) be a root group system, let F := F(U ,Λ) for some
parameter system Λ for U and let

α = {π, α(i,j) | (i, j) ∈ A(F )} : F → F̃

be an isomorphism. Then F̃ is integrable.
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Proof
Take

(
Ξ̃(i,j) := Ξ̃(π(i),π(j)), (αi(i,j))−1, . . . , (αj(i,j))

−1) as reparametrization for X(i,j)(Ξ(i,j)), then
replace i ∈ I by π(i) ∈ Ĩ. The resulting parameter system Λ̃ satisfies

F(U , Λ̃) = Fα = F̃ .

(38.4) Theorem The isomorphism class of an integrable foundations F = F(U ,Λ) is a
classifying invariant of the isomorphism class of the corresponding building.

Proof
This results from corollary (38.3), proposition (37.9) and theorem (36.5).

(38.5) Remark The following theorem shows that the concept of reparametrization is useful
if we want to determine all the foundations isomorphic to a given foundation F .

(38.6) Theorem Let F , F̃ be foundations with F = F̃ . Then the following holds:

(a) Let α̃ = {α̃(i,j) | (i, j) ∈ A(F )} : F → F̃ be a special isomorphism. Then there is a
reparametrization α of F such that Fα = F̃ .

(b) Let α = {α(i,j) | (i, j) ∈ A(F ) be a reparametrization for F such that Fα = F̃ . Then there
is a special isomorphism α̃ : F → F̃ .

Proof

(a) If we take α := {α(i,j) | (i, j) ∈ A(F )} with

α(i,j) := {Ξ̃(i,j), (α̃i(i,j))−1, . . . , (α̃j(i,j))
−1}

as reparametrization for F , then Fα = F̃ .

(b) We have
α(i,j) = (Ξ̃(i,j), α

i
(i,j), . . . , α

j
(i,j))

for each (i, j) ∈ A(F ), thus α̃ := {idF , α̃(i,j) | (i, j) ∈ A(F )} : F → F̃ with

α̃(i,j) :=
(
(αi(i,j))−1, . . . , (αj(i,j))

−1)
is an isomorphism.

(38.7) Remark

(a) Let F and F̃ be foundations and let

α = {π, α(i,j) | (i, j) ∈ A(F )} : F → F̃

be an isomorphism. As we may replace i ∈ V (F ) by π(i) ∈ V (F̃ ), we may consider α as
special. Thus it suffices to determine all foundations which are specially isomorphic to F .
The remaining foundations isomorphic to F are obtained by relabelings of the vertex set.

(b) The theorem is useful if we want to show that two given foundations F and F̃ with isomorphic
residues R and R̃ are isomorphic. In this case, we may replace R by R̃, observing that
there is a relabeling of the corresponding vertices involved.
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Chapter 39 Definition

Now we are ready to turn to the classification of integrable 443-foundations, whose Moufang
polygons are two quadrangles and one triangle and whose Coxeter diagrams are complete graphs.

The first step is to exclude quadrangles of type En, of type F4 and of indifferent type. Then
we turn to unitary quadrangles, i.e., quadrangles of pseudo-quadratic form or involutory type. As
we restrict to proper parameter systems, there are not many possibilities to glue these polygons
together.

The final class is that of quadrangles of quadratic form type, which is rich in integrable
foundations. In order to avoid characteristic 2 trouble, there is one point where we restrict to
proper quadratic spaces although a small gap is the consequence.

Chapter 39 Definition
(39.1) Definition A 443-foundation is a foundation

F := {B(1,2),B(2,3),B(3,1), γ(1,2,3), γ(2,3,1), γ(3,1,2)}

such that B(1,2) and B(2,3) are quadrangles and B(3,1) is a triangle.

(39.2) Notation

• Given a 443-foundation F , we set

γ1 := γ(3,1,2) , γ2 := γ(1,2,3) , γ3 := γ(2,3,1) .

• Throughout the rest of this part, F is an integrable 443-foundation.

Chapter 40 The Quadrangles Are Not of Type En
(40.1) Lemma Let B =

(
x1(M1), . . . , x4(M4)

)
be a parametrized standard quadrangle of

type En. Then the following holds:

(a) The Moufang set M1 is non-commutative.

(b) We have M4 = M(L0,K, q) for some quadratic space (L0,K, q) of type En.

Proof
(a) This results from (38.10) of [TW].

(b) This holds by definition, cf. remark (34.1) (vi) or example (16.6) of [TW].

(40.2) Theorem The quadrangles are not of type En.

Proof
Suppose that B(1,2) or B(2,1) is a parametrized standard quadrangle of type En. The glueing
γ1 : M1

(3,1) → M1
(1,2) is a Jordan isomorphism. We have M1

(3,1) = M(A) for some alternative
division ring A, thus M1

(3,1) is commutative. Hence we have M1
(1,2) = M(L̃0, K̃, q̃) for some

quadratic space (L̃0, K̃, q̃) of type En by lemma (40.1).
Notice that (L̃0, K̃, q̃) is proper by remark (4.27). By theorem (31.7), the alternative division

ring A is quadratic over a subfield F of its center K := Z(A) with N := NA
F , and (L̃0, K̃, q̃) and

(A,F, N) are isomorphic as quadratic spaces. In particular, we have K̃ ∼= F and

dimK̃ L̃0 = dimF A ∈ {1, 2, 4, 8} ∩ {6, 8, 12} = {8} .

As a consequence, (O,K, N) = (A,F, N) is of type (v) and (L̃0, K̃, q̃) is of type E7. But by
corollary (4.29) (c), we have (L̃0, K̃, q̃) 6∼= (O,K, N) as quadratic spaces  .
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Chapter 41 The Quadrangles Are Not of Type F4

(41.1) Remark Let QF (L0,K, q) =
(
x1(M1), x2(M2), x3(M3), x4(M4)

)
be a quadrangle of

type F4, where (L0,K, q) is a quadratic space of type F4.

(a) By remark (21.18) of [TW], the quadrangle QF (L0,K, q) is an extension of the quadrangle
QQ(L0,K, q), thus we have M4 = M(L0,K, q).

(b) By remark (21.18) of [TW] again, the quadrangle QoF (L0,K, q)o is an extension of the
quadrangle QQ(L̂0,F, q̂), thus we have M1 = M(L̂0,F, q̂), where (L̂0,F, q̂) is the quadratic
space of type F4 as defined in (14.12) of [TW], cf. (14.13) of [TW].

(41.2) Theorem The quadrangles are not of type F4.

Proof
Suppose that B(1,2) or B(2,1) is a parametrized standard quadrangle of type F4. The glueing
γ1 : M1

(3,1) → M1
(1,2) is a Jordan isomorphism. We have M1

(3,1) = M(Ã) for some alternative
division ring Ã. By remark (41.1), we have

M1
(1,2) = M(L0,K, q)

for some quadratic space (L0,K, q) of type F4. By theorem (31.7), the alternative division ring Ã
is quadratic over a subfield F̃ of its center K̃ := Z(Ã), and (L0,K, q) and (Ã, F̃, N Ã

F̃ ) are isomorphic
as quadratic spaces, which contradicts lemma (4.36).

Chapter 42 The Quadrangles Are Not of Indifferent Type
(42.1) Remark Let B := QD(K,K0,L0) =

(
x1(M1), x2(M2), x3(M3), x4(M4)

)
be a quadran-

gle of indifferent type, where (K,K0,L0) is a proper indifferent set.

(a) By definition, the Moufang set M1 = M(K,K0,L0) is of indifferent type.

(b) By remark (35.9) of [TW], we have Bo = QD(L,L0,K2
0), thus we have M4 = M(L,L0,K2

0),
where (L,L0,K2

0) is the opposite of (K,K0,L0), which is proper by lemma (6.4).

(42.2) Theorem The quadrangles are not of indifferent type.

Proof
Suppose that B(1,2) or B(2,1) is a parametrized standard quadrangle of indifferent type. By remark
(42.1), we have

M1
(1,2) = M(K,K0,L0)

for some proper indifferent set (K,K0,L0), we have M1
(3,1) = M(A) for some alternative division

ring A, and the glueing γ1 : M1
(3,1) →M1

(1,2) is a Jordan isomorphism, which contradicts theorem
(31.24).

(42.3) Remark Now we are done with the exclusion of certain families of quadrangles. Next
we pass to unitary 443-foundations, which can not be obtained as fixed point foundations of covers.
As in the Ã2-case with positive glueings, the parametrizing structures are quaternion division
algebras, and the existence can be shown via Tits indices.

Then we finally come to 443-foundations involving quadrangles of quadratic form type, which
can be constructed as fixed point foundations of covers.

In both cases however, we leave off the existence proofs which require different kinds of
techniques.
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Chapter 43 Unitary Quadrangles
As quadrangles of pseudo-quadratic form type are extensions of quadrangles of involutory type
(which are not necessarily of purely involutory type) and as quadrangles of involutory type can
be considered as quadrangles of pseudo-quadratic form type of a non-proper pseudo-quadratic
space, it is natural to treat them in a common setup. As a consequence, we sometimes omit the
assumption of a proper parameter system to obtain a general statement for both the families.

§ 43.1 Definitions

(43.1) Definition

• A foundation

F := {B(1,2) = QoI(Ξ̂),B(2,3) = QI(Ξ),B(3,1) = T (K̃), γ(1,2,3), γ(2,3,1), γ(3,1,2)}

for some proper involutory sets Ξ and Ξ̂ is a 443-foundation of involutory type.

• A foundation

F := {B(1,2) = QoP (Ξ̂),B(2,3) = QP (Ξ),B(3,1) = T (K̃), γ(1,2,3), γ(2,3,1), γ(3,1,2)}

for some proper pseudo-quadratic spaces Ξ and Ξ̂ is a 443-foundation of pseudo-quadratic
form type.

• A 443-foundation is of unitary type if it is either of involutory type or of pseudo-quadratic
form type.

(43.2) Notation Given a 443-foundation F , we set

γ1 := γ(3,1,2) , γ2 := γ(1,2,3) , γ3 := γ(2,3,1) .

(43.3) Lemma Let F be an integrable 443-foundation of unitary type. Then K̃ is associative.

Proof
The glueings γ3 = γ(1,3,2) and γ1 = γ(3,1,2) are positive or negative by Hua’s theorem. In particular,
K̃ is associative.

(43.4) Lemma Let K be a skew-field, let M ⊆ K and let a, b, c ∈ K such that

1K ∈M , ∀ x ∈M : axb = cx .

Then we have

b ∈ CK(M) , M ⊆ CK(b) .

Proof
We have

c = c · 1K = a · 1K · b = ab

and therefore

∀ x ∈M : xb = a−1(axb) = a−1(abx) = bx .
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(43.5) Theorem Let F be an integrable 443-foundation of pseudo-quadratic form type with
Ξ̂ = Ξo and γ2 = idoT and let

πK : T → K, (a, t) 7→ t .

If one of the glueings is negative, we have

πK(T ) ⊆ Z(K) .

In particular, we have K0 ⊆ Z(K).

Proof
Assume that γ3 = γ(2,3,1) is negative (otherwise, we consider the opposite buildings and glueings).
By taking (K, γ3, γ3, γ3) as reparametrization for T (K̃), we may assume

K̃ = K , γ3 = idK .

If we set

h(s) := µ
(
x1

(3,1)(1K)
)−1

µ
(
x1

(3,1)(s−1)
)
, s ∈ K∗ ,

h̃(s) := µ
(
x1

(1,2)(1K)
)−1

µ
(
x1

(1,2)(s−1)
)
, s ∈ K∗ ,

we have

h(s) = µ
(
x1

(3,1)(1K)
)−1

µ
(
x1

(3,1)(s−1)
)

= µ
(
x1

(1,2)(1K)
)−1

µ
(
x1

(1,2)(γ1(s)−1)
)

= h̃
(
γ1(s)

)
for each s ∈ K∗,

x3
(2,3)(t)h(s) = x3

(3,1)(t)h(s) = x3
(3,1)(ts) = x3

(2,3)(ts)

for all s ∈ K∗, t ∈ K by lemma (18.9) and

x2
(2,3)(a, t)h(s) = x2

(1,2)(a, t)h̃(γ1(s))

= x2
(1,2)

(
γ1(s) ◦ a, γ1(s) ◦ t ◦ γ1(s)σ

)
= x2

(2,3)
(
a · γ(s), γ1(s)σ · t · γ1(s)

)
for all s ∈ K∗, (a, t) ∈ T by lemma (33.4). Given s ∈ K∗, the Hua automorphism h

(
γ−1

1 (s)
)

induces an automorphism αs ∈ Aut(B(2,3)) which satisfies

x2
(2,3)(a, t) 7→ x2

(2,3)(a · s, sσ · t · s) , x3
(2,3)(t) 7→ x3

(2,3)(t · γ
−1
1 (s)) .

If we set α̃ := α(γ−1
1 (s),1K,(idL0 ,idK)) as in (37.33) of [TW], then α̃αs satisfies

x2
(2,3)(a, t) 7→ x2

(2,3)(a · s, sσ · t · s) , x3
(2,3)(t) 7→ x3

(2,3)(t) .

By (37.33) of [TW], there is an element c ∈ K∗0 such that

∀ t ∈ πK(T ) : sσts = ct .

Lemma (43.4) implies that we have

πK(T ) ⊆ CK(s) .

Since s ∈ K∗ is arbitrary, it follows that

πK(T ) ⊆ Z(K) .

(43.6) Remark Notice that we don’t need the fact that Ξ is proper by definition of our
parameter systems, i.e., if we allow Ξ to be non-proper, the theorem remains true. As a consequence,
we get a similar result for 443-foundations of involutory type which can be considered as 443-
foundations of pseudo-quadratic form type for some non-proper pseudo-quadratic spaces, cf.
lemma (43.19).
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§ 43.2 Quadrangles of Pseudo-Quadratic Form Type

(43.7) Notation Throughout this paragraph, F is an integrable 443-foundation such that at
least one quadrangle is of pseudo-quadratic form type.

(43.8) Lemma The foundation F is of pseudo-quadratic form type.

Proof
We may assume that B(1,2) or B(2,1) is a standard quadrangle QP (K̂, K̂0, σ̂, L̂0, q̂) of pseudo-
quadratic form type and thus M1

(1,2) = M(K̂) or M1
(1,2) = M(K̂, K̂0, σ̂, L̂0, q̂). But since the

map γ1 : M(K̃) = M1
(3,1) →M1

(1,2) is a Jordan isomorphism and Moufang sets of linear type are
commutative while Moufang sets of pseudo-quadratic form type are not, we obtain that

B(1,2) = QoP
(
(K̂, K̂0, σ̂, L̂0, q̂)o

)
.

Now B(2,3) is a Moufang quadrangle such that M2
(2,3) is non-commutative, and since we excluded

quadrangles of type En in chapter 40, we have

B(2,3) = QP (Ξ)

for some proper pseudo-quadratic space Ξ.

(43.9) Notation Until proposition (43.12), F is an integrable 443-foundation of pseudo-
quadratic form type such that K is non-commutative.

(43.10) Remark By theorem (8.1), the Jordan isomorphism γ2 = γ(1,2,3) : T̂ → T is induced
by an isomorphism Φ : Ξ̂o → Ξ of pseudo-quadratic spaces. By taking (Ξo, φ−1,Φ−1, φ−1,Φ−1) as
reparametrization for QoP (Ξ̂), we may assume

Ξ̂ = Ξo , γ2 = idoT .

(43.11) Lemma Both the glueings γ1 and γ3 are positive.

Proof
If one of the glueings is negative, then we have

K0 ⊆ πK(T ) ⊆ Z(K)

by theorem (43.5), thus (K,K0, σ) is non-proper by lemma (5.2). By remark (9.9), we have

(K,K0, σ) = (H, Z(H), σs)

for some quaternion division algebra H. Given a ∈ L0, we have

q(a) ∈ πH(T ) ⊆ Z(H) , a = 0L0

and thus L0 = {0L0}. But then Ξ is non-proper  .

(43.12) Proposition The skew-field K is a quaternion division algebra and F is isomorphic
to the foundation

F443(Ξ) := {B̃(1,2) = QoP (Ξo), B̃(2,3) = QP (Ξ), B̃(3,1) = T (Ko), γ̃1 = σs, γ̃2 = idoT , γ̃3 = idoK} .
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Proof
As γ3 = γ(2,3,1) is positive, we may take (Ko, γo3 , γo3 , γo3) as reparametrization for T (K̃). Therefore,
we may assume

K̃ = Ko , γ3 = idoK .

Let s ∈ Ko. As in the proof of proposition (43.20), we obtain an automorphism αs ∈ Aut(B(2,3))
satisfying

x2
(2,3)(a, t) 7→ x2

(2,3)
(
a · γo1(s) · idoK(s), idoK(s)σ · γo1(s)σ · t · γo1(s) · idoK(s)

)
, x3

(2,3)(t) 7→ x3
(2,3)(t) .

By (37.33) of [TW], the map

ϕ1 : L0 → L0, a 7→ a · γo1(s) · idoK(s)

is an isomorphism of vector spaces satisfying

∀ a ∈ L0, t ∈ K : ϕ1(a · t) = ϕ1(a) · t.

As Ξ is proper, we have L0 6= {0L0} and thus

∀ t ∈ K : t · γo1(s) · idoK(s) = γo1(s) · idoK(s) · t , γo1(s) · idoK(s) ∈ Z(K) .

Since K is non-commutative by assumption, lemma (5.6) (b) shows that K is a quaternion division
algebra and that we have

γ1 = σs : Ko → Ko .

(43.13) Remark Let F be an integrable 443-foundation of pseudo-quadratic form type such
that K is a field, but K 6∼= F4 if dimK L0 = 1. Then (K,K0, σ) is non-proper by lemma (5.2)
and thus quadratic of type (iii) by remark (9.9). Moreover, we may reparametrize as in the
non-commutative case, but we cannot get more information concerning the glueing γ1, i.e., we
have

F ∼= F443(Ξ, γ) := {B̃(1,2) = QoP (Ξo), B̃(2,3) = QP (Ξ), B̃(3,1) = T (K), γ̃1 = γ, γ̃2 = idoT , γ̃3 = idK}

for some pseudo-quadratic space Ξ such that (K,K0, σ) is quadratic of type (iii) and for some
γ ∈ Aut(K).

(43.14) Theorem Let F be an integrable 443-foundation such that at least one quadrangle is
of pseudo-quadratic form type and such that K̃ 6∼= F4 if dimK L0 = 1, where B(3,1) = T (K̃). Then
one of the following holds:

(i) We have

F ∼= F443(Ξ) = {B̃(2,1) = B̃(2,3) = QP (Ξ), B̃(3,1) = T (Ko), γ̃1 = σs, γ̃2 = idoT , γ̃3 = idoK}

for some proper pseudo-quadratic space Ξ = (K,K0, σ, L0, q) such that K is a quaternion
division algebra and σs is its standard involution.

(ii) We have

F ∼= F443(Ξ, γ) = {B̃(2,1) = B̃(2,3) = QP (Ξ), B̃(3,1) = T (K), γ̃1 = γ, γ̃2 = idoT , γ̃3 = idK}

for some proper pseudo-quadratic space Ξ = (K,K0, σ, L0, q) such that (K,K0, σ) is quadratic
of type (iii) and for some γ ∈ Aut(K).

Proof
This results from lemma (43.8), proposition (43.12) and remark (43.13).
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§ 43.3 Quadrangles of Involutory Type

(43.15) Notation Throughout this paragraph, F is an integrable 443-foundation such that
at least one quadrangle is of involutory type.

(43.16) Lemma The foundation F is of involutory type.

Proof
We may assume that B(1,2) or B(2,1) is a standard quadrangle QI(K̂, K̂0, σ̂) of involutory type and
thus M1

(1,2) = M(K̂) or M1
(1,2) = M(K̂, K̂0, σ̂). Since (K̂, K̂0, σ̂) is proper, we have

M(K̃) = M1
(3,1)
∼= M1

(1,2) 6= M(K̂, K̂0, σ̂)

by theorem (31.26) and thus
B(1,2) = QoI

(
(K̂, K̂0, σ̂)o

)
.

Since we excluded quadrangles of type En, F4, of indifferent type and of pseudo-quadratic form
type in the previous paragraphs, the quadrangle B(2,3) is either of quadratic form type or of
involutory type.

Assume that B(2,3) is of quadratic form type. Then we have M2
(2,3) = M(K) or M3

(2,3) = M(K)
for some field K. But we have

M3
(2,3)
∼= M3

(3,1) = M(K̃) = M1
(3,1)
∼= M1

(1,2) = M(K̂) ,

where K̂ is a non-commutative skew-field since (K̂, K̂0, q̂) is proper, and thus M3
(2,3) 6∼= M(K).

Moreover, we have
M2

(2,3)
∼= M2

(1,2) = M(K̂, K̂0, σ̂)

and thus M2
(2,3) 6= M(K) by theorem (31.26)  .

Therefore, the quadrangle B(2,3) = is of involutory type, i.e., B(2,3) or B(3,2) is a standard
quadrangle QI(K,K0, σ). Since we have

M3
(2,3)
∼= M3

(3,1) = M(K̃)

and (K,K0, σ) is proper, we have M3
(2,3) 6∼= M(K,K0, σ) by theorem (31.26) again and thus

B(2,3) = QI(K,K0, σ) .

(43.17) Notation Throughout the rest of this paragraph, F is an integrable 443-foundation
of involutory type.

(43.18) Remark
By theorem (5.3), the Jordan isomorphism

γ2 = γ(1,2,3) : K̂0 → K0

is induced by an isomorphism

φ : (K̂, K̂0, σ̂)→ (K,K0, σ) =: Ξ

of involutory sets. As a consequence, the map

φ̃ := φ ◦ σo : (K̂o, K̂o0, σ̂)→ (K,K0, σ)

is an isomorphism of involutory sets that induces γ2 as well. By taking (Ξo, φ̃−1, φ̃−1, φ̃−1, φ̃−1)
as reparametrization for QoI(K̂, K̂0, σ̂), we may assume

(K̂, K̂0, σ̂) = (Ko,Ko0, σ) , γ2 = idoK0
.
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(43.19) Lemma Both the glueings γ1 and γ3 are positive.

Proof
Notice that we have

QI(K,K0, σ) = QP (K,K0, σ, L0, q)
for L0 := {0}, q := 0. If one of the glueings is negative, we have

K0 = πK(T ) ⊆ Z(K)
by theorem (43.5), where we did not use the fact that (K,K0, σ, L0, q) is proper in the given setup.
But then (K,K0, σ) is non-proper by lemma (5.2)  .

(43.20) Proposition The skew-field K is a quaternion division algebra and F is isomorphic
to the foundation
F443(Ξ) := {B̃(1,2) = QoI(Ξo), B̃(2,3) = QI(Ξ), B̃(3,1) = T (Ko), γ̃1 = σs, γ̃2 = idoK0

, γ̃3 = idoK} .

Proof
As γ3 = γ(2,3,1) is positive, we may take (Ko, γo3 , γo3 , γo3) as reparametrization for T (K̃). Therefore,
we may assume

K̃ = Ko , γ3 = idoK .

• If we set
h1(s) := µ

(
x1

(3,1)(1Ko)
)−1

µ
(
x1

(3,1)(s−1)
)
, s ∈ Ko ,

h̃1(s) := µ
(
x1

(1,2)(1oK)
)−1

µ
(
x1

(1,2)(s−1)
)
, s ∈ Ko ,

we have
h1(s) = µ

(
x1

(3,1)(1Ko)
)−1

µ
(
x1

(3,1)(s−1)
)

= µ
(
x1

(1,2)(1oK)
)−1

µ
(
x1

(1,2)(γ1(s)−1)
)

= h̃1
(
γ1(s)

)
for each s ∈ Ko,

x3
(2,3)(t)h1(s) = x3

(3,1)
(
idoK(t)

)h1(s) = x3
(3,1)

(
idoK(t) ◦ s

)
= x3

(2,3)
(
idoK(s) · t

)
for all s ∈ Ko, t ∈ K by lemma (18.9) and

x2
(2,3)(t)h1(s) = x2

(1,2)
(
idoK0

(t)
)h̃1(γ1(s))

= x2
(1,2)

(
γ1(s) ◦ idoK0

(t) ◦ γ1(s)σ
)

= x2
(2,3)

(
γo1(s)σ · t · γo1(s)

)
for all s ∈ Ko, t ∈ K0 by lemma (33.2).

• If we set
h3(s) := µ

(
x3

(3,1)(1Ko)
)−1

µ
(
x3

(3,1)(s)
)
, s ∈ Ko ,

h̃3(s) := µ
(
x3

(2,3)(1K)
)−1

µ
(
x3

(2,3)(s)
)
, s ∈ K ,

we have
h3(s) = µ

(
x1

(3,1)(1Ko)
)−1

µ
(
x1

(3,1)(s−1)
)

= µ
(
x1

(1,2)(1K)
)−1

µ
(
x1

(1,2)(id
o
K(s−1))

)
= h̃3

(
idoK(s)

)
for each s ∈ Ko,

x3
(2,3)(t)h3(s) = x3

(3,1)
(
idoK(t)

)h3(s)

= x3
(3,1)

(
s−1 ◦ idoK(t) ◦ s−1) = x3

(2,3)
(
idoK(s)−1 · t · idoK(s)−1)

for all s ∈ Ko, t ∈ K by lemma (18.9) and

x2
(2,3)(t)h3(s) = x2

(2,3)(t)h̃3(idoK(s)) = x2
(2,3)

(
idoK(s)σ · t · idoK(s)

)
for all s ∈ Ko, t ∈ K0 by (33.13) of [TW].
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Therefore, given s ∈ Ko, h3(s)h1(s) induces an automorphism αs ∈ Aut(B(2,3)) which satisfies

x2
(2,3)(t) 7→ x2

(2,3)
(
idoK(s)σ · γo1(s)σ · t · γo1(s) · idoK(s)

)
, x3

(2,3)(t) 7→ x3
(2,3)

(
t · idoK(s)−1) .

If we set α̃ := α(idoK(s),1K,(idL0 ,idK)) as in (37.33) of [TW], then α̃αs ∈ Aut(B(2,3)) satisfies

x2
(2,3)(t) 7→ x2

(2,3)
(
idoK(s)σ · γo1(s)σ · t · γo1(s) · idoK(s)

)
, x3

(2,3)(t) 7→ x3
(2,3)(t) .

By (37.33) of [TW], there is an element c ∈ K∗0 such that

∀ t ∈ K0 : idoK(s)σ · γo1(s)σ · t · γo1(s) · idoK(s) = c · t .

Lemma (43.4) implies that we have

γo1(s) · idoK(s) ∈ CK(K0) = CK(〈K0〉) = Z(K) .

Since K is non-commutative by lemma (5.2), lemma (5.6) (b) shows that K is a quaternion division
algebra and that we have

γ1 = σs : Ko → Ko .

(43.21) Theorem Let F be an integrable 443-foundation such that at least one quadrangle
is of involutory type. Then we have

F ∼= F443(Ξ) = {B̃(1,2) = QoI(Ξo), B̃(2,3) = QI(Ξ), B̃(3,1) = T (Ko), γ̃1 = σs, γ̃2 = idoK0
, γ̃3 = idoK}

for some proper involutory set Ξ = (K,K0, σ) such that K is a quaternion division algebra.

Proof
This results from lemma (43.16) and proposition (43.20).

(43.22) Remark

(a) By remark (11.2) of [TW], the pair (K, σ) uniquely determines K0 if we have CharK 6= 2.

(b) By lemma (3.1.6) of [K] and (35.7) of [TW], we may assume σ = γs if we have CharK = 2
and σ is an involution of the first kind.

Chapter 44 Quadrangles of Quadratic Form Type
By the previous chapters, there is only one case left: Both the quadrangles are of quadratic form
type.

(44.1) Notation

• Throughout this chapter, F is an integrable 443-foundation such that both the quadrangles
are of quadratic form type.

• Given a foundation, if neither γ(i,j,k) nor γ(k,j,i) is specified, these glueings are supposed to
be the identity map.

(44.2) Proposition If we have

F = {B(2,1) = QQ(L̃0, K̃, q̃),B(2,3) = QQ(L̂0, K̂, q̂),B(3,1) = T (A), γ1, γ2, γ3} ,

then A is quadratic over subfields F1,F2 of its center, and F is isomorphic to the foundation

F443
(
A, (F1,F2), γ2

)
:= {B(2,1) = QQ(A,F1, N

A
F1

),B(2,3) = QQ(A,F2, N
A
F2

),B(3,1) = T (A), γ2}

for some isomorphism γ2 : F1 → F2 of fields.
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Proof
We have

M(L̃0, K̃, q̃) = M1
(2,1)
∼= M1

(3,1) = M(A) = M3
(3,1)
∼= M3

(2,3) = M(L̂0, K̂, q̂) .

By theorem (31.7), the alternative division ring A is quadratic over subfields F1,F2 of its center,
and the maps

γ1 : A→ L̃0 , γ−1
3 : A→ L̂0

are induced by isomorphisms

(γ1, φ1) : (A,F1, N
A
F1

)→ (L̃0, K̃, q̃) , (γ−1
3 , φ−1

3 ) : (A,F2, N
A
F2

)→ (L̂0, K̂, q̂)

of quadratic spaces. Now we take

α(2,1) := (Ξ1, φ1, γ1, φ1, γ1) , α(2,3) := (Ξ2, φ
−1
3 , γ−1

3 , φ−1
3 , γ−1

3 )

as reparametrizations for B(2,1) and B(2,3), respectively, where Ξi := (A,Fi, NA
Fi).

(44.3) Proposition If we have

F = {B(1,2) = QQ(L̃0, K̃, q̃),B(2,3) = QQ(L̂0, K̂, q̂),B(3,1) = T (K), γ1, γ2, γ3} ,

then K is a field which is quadratic over some subfield F of its center, F is quadratic over some
subfield E of its center, and we have

F ∼= F443(K,F,E, γ1) := {B(1,2) = QQ(F,E, NF
E ),B(2,3) = QQ(K,F, NK

F ),B(3,1) = T (K), γ1}

for some isomorphism γ1 : K→ E of fields.

Proof
Since we have

M(K) = M1
(3,1)
∼= M1

(1,2) = M(K̃) ,

the alternative division ring K ∼= K̃ is a field by Hua’s theorem. We have

M(L̂0, K̂, q̂) = M3
(2,3)
∼= M3

(3,1) = M(K) ,

therefore, K is quadratic over some subfield F of its center by theorem (31.7), and the map
γ−1

3 : K → L̂0 is induced by an isomorphism (γ−1
3 , φ−1

3 ) : (K,F, NK
F ) → (L̂0, K̂, q̂) of quadratic

spaces. By taking
α(2,3) :=

(
(K,F, NK

F ), φ−1
3 , γ−1

3 , φ−1
3 , γ−1

3
)

as reparametrization for B(2,3), we may assume B(2,3) = QQ(K,F, NK
F ) and γ3 = idK. Moreover,

we have
M(F) = M2

(2,3)
∼= M2

(1,2) = M(L̃0, K̃, q̃) ,
therefore, F is quadratic over some subfield E of its center by theorem (31.7) again, and the map
γ−1

2 : F → L̃0 is induced by an isomorphism (γ−1
2 , φ−1

2 ) : (F,E, NF
E ) → (L̃0, K̃, q̂) of quadratic

spaces. By taking
α(1,2) :=

(
(F,E, NF

E ), φ−1
2 , γ−1

2 , φ−1
2 , γ−1

2
)

as reparametrization for B(1,2), we may assume B(1,2) = QQ(F,E, NF
E ) and γ2 = idF. Finally, the

map γ1 : K→ E is an isomorphism of fields by Hua’s theorem.

(44.4) Proposition If we have

F = {B(1,2) = QQ(L̃0, K̃, q̃),B(3,2) = QQ(L̂0, K̂, q̂),B(3,1) = T (A), γ1, γ2, γ3} ,

such that (L̂0, K̂, q̂) is proper with dimK̂ L̂0 ≥ 3, we have

F ∼= F443
(
(L̃0, K̃, q̃), γ3

)
:= {B(1,2) = B(3,2) = QQ(L̃0, K̃, q̃),B(3,1) = T (K̃), γ3}

for some γ3 ∈ Aut(K̃).
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Proof
By Hua’s theorem, the map γ−1

1 : K̃→ A is an isomorphism of fields. By taking

α(3,1) :=
(
K̃, γ−1

1 , γ−1
1 , γ−1

1 ,
)

as reparametrization for B(3,1), we may assume B(3,1) = T (K̃) and γ3 = idK̃. Moreover, by theorem
(31.6), the map γ2 : L̃0 → L̂0 is induced by an isomorphism (γ2, φ2) : (L̃0, K̃, q̃) → (L̂0, K̂, q̂) of
quadratic spaces. By taking

α(3,2) :=
(
(L̃0, K̃, q̃), φ2, γ2, φ2, γ2

)
as reparametrization for B(3,2), we may assume B(3,2) = QQ(L̃0, K̃, q̃) and γ2 = idL̃0

. Now the
map γ3 : K̃→ K̃ is an isomorphism of fields by Hua’s theorem.

(44.5) Proposition If we have

F = {B(1,2) = QQ(L̃0, K̃, q̃),B(3,2) = QQ(L̂0, K̂, q̂),B(3,1) = T (A), γ1, γ2, γ3} ,

such that dimK̂ L̂0 ≤ 2, we have

F ∼= F443(Ξ̃, Ξ̂, γ2) := {B(1,2) = QQ(K, L̂0, q),B(3,2) = QQ(L̂0, K̂, q̂),B(3,1) = T (K), γ3} ,

for the quadratic space Ξ̂ := (L̂0, K̂, q̂) with dimK̂ L̂0 ≤ 2 (and thus of type (m)∈ {(ii),(iii)}), some
quadratic space Ξ̃ := (L̂0,K, q) of type (m)∈ {(i),(ii),(iii)} and some isomorphism γ3 : K̂→ K of
fields.

Proof
By theorem (31.6), there is a quadratic space (L̂0,K, q) of type (m)∈ {(i),(ii),(iii)} such that the
map γ2 : L̃0 → L̂0 is induced by an isomorphism (γ2, φ2) : (L̃0, K̃, q̃) → (L̂0,K, q) of quadratic
spaces. Notice that we don’t need (L̂0, K̂, q̂) to be proper to establish case (ii) of theorem (31.6).
By taking

α(1,2) :=
(
(L̂0,K, q), φ−1

2 , γ−1
2 , φ−1

2 , γ−1
2
)

as reparametrization for B(1,2), we may assume B(1,2) = QQ(L̂0,K, q) and γ2 = idL̂0
. By Hua’s

theorem, the map γ−1
1 : K→ A is an isomorphism of fields. By taking

α(3,1) :=
(
K, γ−1

1 , γ−1
1 , γ−1

1 ,
)

as reparametrization for B(3,1), we may assume B(3,1) = T (K) and γ1 = idK. Now the map
γ3 : K̂→ K is an isomorphism of fields by Hua’s theorem.

(44.6) Theorem Let F be an integrable 443-foundation such that both the quadrangles are
of quadratic form type and such that (L̂0, K̂, q̂) is proper. Then F is isomorphic to one of the
following foundations:
(i) F443

(
A, (F1,F2), γ2

)
as in proposition (44.2)

(ii) F443(K,F,E, γ1) as in proposition (44.3)

(iii) F443
(
(L̃0, K̃, q̃), γ3

)
as in proposition (44.4)

(iv) F443(Ξ̃, Ξ̂, γ3) as in proposition (44.5)

Proof
This results from propositions (44.2), (44.3), (44.4), and (44.5).

(44.7) Remark Notice that we supposed (L̂0, K̂, q̂) to be proper only in proposition (44.4).
The remaining results are valid even if both the parametrizing quadratic spaces are non-proper.
In particular, case (ii) of theorem (31.6) doesn’t require (L̂0, K̂, q̂) to be proper.
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Chapter 45 Conclusion
We summarize the previous results to have a complete list of integrable 443-Foundations. By
remark (44.7), the theorem can be extended to non-proper quadratic spaces by adding quadratic
spaces of type (i) except for case (vi). However, we don’t give the existence proofs.

(45.1) Theorem (Classification of 443 Twin Buildings) An integrable 443-foundation
F with proper parameter systems is isomorphic to one of the following foundations:

(i) F443(Ξ) for some proper pseudo-quadratic space Ξ = (H,H0, σ, L0, q) such that H is a
quaternion division algebra:

idoH σs

idoT

3 1

2

T (H)

QP (Ξ)QP (Ξ)

(ii) F443(Ξ, γ) for some proper pseudo-quadratic space Ξ = (K,K0, σ, L0, q) such that (K,K0, σ)
is quadratic of type (iii) and for some automorphism γ ∈ Aut(K):

idK γ

idoT

3 1

2

T (K)

QP (Ξ)QP (Ξ)

(iii) F443(Ξ) for some proper involutory set Ξ = (H,H0, σ) such that H is a quaternion division
algebra:

idoH σs

idoH0

3 1

2

T (H)

QI(Ξ)QI(Ξ)

(iv) F443
(
A, (F1,F2), γ

)
for some proper quadratic spaces Ξi := (A,Fi, NA

Fi), i = 1, 2, of type
(ii)-(v) and some isomorphism γ : F1 → F2 of fields:

idA idA

γ

3 1

2

T (A)

QQ(Ξ1)QQ(Ξ2)
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(v) F443(K,F,E, γ) for some proper quadratic spaces (K,F, NK
F ), (F,E, NF

E ) of type (ii)-(iii) and
some isomorphism γ : K→ E of fields:

idK γ

idF

3 1

2

T (K)

QQ(F,E, NF
E )QQ(K, F, NK

F )

(vi) F443(Ξ, γ) for some proper quadratic space Ξ = (L0,K, q) such that dimK L0 ≥ 3 and some
automorphism γ ∈ Aut(K):

γ idK

idL0

3 1

2

T (K)

QQ(Ξ)QQ(Ξ)

(vii) F443(Ξ, Ξ̃, γ) for some proper quadratic space Ξ = (L0,K, q) such that dimK L0 ≤ 2, some
proper quadratic space Ξ̃ = (L0, K̃, q̃) of type (ii)-(iii) and some isomorphism γ : K̃→ K of
fields:

γ idK

idL0

3 1

2

T (K)

QQ(Ξ)QQ(Ξ̃)

Proof
This holds by theorems (40.2), (41.2), (42.2), (43.14), (43.21) and (44.6).

(45.2) Remark

(a) Notice the restriction in theorem (43.14) which we did not mention in the above formulation.

(b) Let (A,K, NA
K ) be a quadratic space of type (m). Then we have

M := M
(
A,K, NA

K
)

= M(A) =: M̃

by lemma (31.23).

(45.3) Corollary If we have dimF1 A ≥ 3 in case (iv) of theorem (45.1), we have

Ξ2 = Ξ1 .

Proof
This results from theorem (31.6) as we have M(Ξ1) = M(A) = M(Ξ2).
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Chapter 46 Ã2-Buildings Revisited
We prove theorem (21.39) without using the building at infinity.

(46.1) Proposition Let

F := {B(1,2) = T (Â),B(2,3) = T (A),B(3,1) = T (Ã), γ(1,2,3), γ(2,3,1), γ(3,1,2)}

be an integrable foundation of type Ã2 such that the defining field is a non-commutative skew-field
and such that at least one glueing is positive. Then each glueing is positive.

Proof
Assume that γ2 = γ(1,2,3) is positive. Without loss of generality we may assume that γ3 = γ(2,3,1)
is negative (otherwise, we consider the opposite buildings and glueings). By taking (A, γ3, γ3, γ3)
as reparametrization for T (Ã), we may assume

Ã = A , γ3 = idA ,

and by taking (Ao, γ−1
2 , γ−1

2 , γ−1
2 ) as reparametrization for T (Â), we may assume

Â = Ao , γ2 = idoA .

If we set

h(s) := µ
(
x1

(3,1)(1K)
)−1

µ
(
x1

(3,1)(s−1)
)
, s ∈ A∗ ,

h̃(s) := µ
(
x1

(1,2)(1K)
)−1

µ
(
x1

(1,2)(s−1)
)
, s ∈ A∗ ,

we have

h(s) = µ
(
x1

(3,1)(1A)
)−1

µ
(
x1

(3,1)(s−1)
)

= µ
(
x1

(1,2)(1A)
)−1

µ
(
x1

(1,2)(γ1(s)−1)
)

= h̃
(
γ1(s)

)
for each s ∈ A∗,

x3
(2,3)(t)h(s) = x3

(3,1)(t)h(s) = x3
(3,1)(t) = x3

(2,3)(t · s)

and

x2
(2,3)(t)h(s) = x2

(1,2)(t)h̃(γ1(s))

= x2
(1,2)

(
γ1(s) ◦ t ◦ γ1(s)

)
= x2

(2,3)
(
γ1(s) · t · γ1(s)

)
for all s ∈ A∗, t ∈ A by lemma (18.9). Given s ∈ K, the Hua automorphism h(γ−1

1
(
s)
)
induces

an automorphism αs ∈ Aut(B(2,3)) which satisfies

x2
(2,3)(t) 7→ x2

(2,3)(s · t · s) , x3
(2,3)(t) 7→ x3

(2,3)
(
t · γ−1

1 (s)
)
.

If we set α̃ := (idA, ργ1(s), ργ1(s)), then α̃αs satisfies

x2
(2,3)(t) 7→ x2

(2,3)(s · t · s) , x3
(2,3)(t) 7→ x3

(2,3)(t) .

By lemma (21.27), there is an element c ∈ A∗ such that

∀ t ∈ A : sts = ct .

Lemma (43.4) implies that we have
s ∈ Z(A) .

Since s ∈ A is arbitrary, it follows that

A ⊆ Z(A)  .
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(46.2) Proposition Let

F := {B(1,2) = T (Â),B(2,3) = T (A),B(3,1) = T (Ã), γ(1,2,3), γ(2,3,1), γ(3,1,2)}

be an integrable foundation of type Ã2 such that the defining field is a non-commutative skew-field
and such that each glueing is positive. Then the skew-field A is a quaternion division algebra and
F is isomorphic to the foundation

P+
3 (A) := {B̃(1,2) = T (Ao), B̃(2,3) = T (A), B̃(3,1) = T (Ao), γ̃1 = σs, γ̃2 = idoA, γ̃3 = idoA} .

Proof
As γ2 = γ(2,3,1) is positive, we may take (Ao, γ−1

2 , γ−1
2 , γ−1

2 ) as reparametrization for T (Â).
Therefore, we may assume

Â = Ao , γ2 = idoA0
.

As γ3 = γ(2,3,1) is positive, we may take (Ao, γo3 , γo3 , γo3) as reparametrization for T (Ã). Therefore,
we may assume

Ã = Ao , γ3 = idoA .

• If we set

h1(s) := µ
(
x1

(3,1)(1K)
)−1

µ
(
x1

(3,1)(s−1)
)
, s ∈ Ao ,

h̃1(s) := µ
(
x1

(1,2)(1K)
)−1

µ
(
x1

(1,2)(s−1)
)
, s ∈ Ao ,

we have

h1(s) = µ
(
x1

(3,1)(1Ao)
)−1

µ
(
x1

(3,1)(s−1)
)

= µ
(
x1

(1,2)(1A)
)−1

µ
(
x1

(1,2)(γ1(s)−1)
)

= h̃1
(
γ1(s)

)
for each s ∈ Ao,

x3
(2,3)(t)h1(s) = x3

(3,1)
(
idoA(t)

)h1(s) = x3
(3,1)

(
idoA(t) ◦ s

)
= x3

(2,3)
(
idoA(s) · t

)
for all s ∈ Ao, t ∈ A by lemma (18.9) and

x2
(2,3)(t)h1(s) = x2

(1,2)
(
idoA(t)

)h̃1(γ1(s))

= x2
(1,2)

(
γ1(s) ◦ idoA(t) ◦ γ1(s)

)
= x2

(2,3)
(
γo1(s) · t · γo1(s)

)
for all s ∈ Ao, t ∈ A by lemma (18.9).

• If we set

h3(s) := µ
(
x3

(3,1)(1A)
)−1

µ
(
x3

(3,1)(s)
)
, s ∈ Ao ,

h̃3(s) := µ
(
x3

(2,3)(1A)
)−1

µ
(
x3

(2,3)(s)
)
, s ∈ A ,

we have

h3(s) = µ
(
x1

(3,1)(1Ao)
)−1

µ
(
x1

(3,1)(s−1)
)

= µ
(
x1

(1,2)(1A)
)−1

µ
(
x1

(1,2)(id
o
A(s−1))

)
= h̃3

(
idoA(s)

)
for each s ∈ Ao,

x3
(2,3)(t)h3(s) = x3

(3,1)
(
idoA(t)

)h3(s)

= x3
(3,1)

(
s−1 ◦ idoA(t) ◦ s−1) = x3

(2,3)
(
idoA(s)−1 · t · idoA(s)−1)

for all s ∈ Ao, t ∈ A by lemma (18.9) and

x2
(2,3)(t)h3(s) = x2

(2,3)(t)h̃3(idoA(s)) = x2
(2,3)

(
idoA(s)σ · t · idoA(s)

)
for all s ∈ Ao, t ∈ A0 by lemma (18.9).

- 196 -



Chapter 47 Jordan Automorphisms of Octonion Division Algebras Revisited

Given s ∈ Ao, then h3(s)h1(s) induces an automorphism αs ∈ Aut(B(2,3)) which satisfies

x2
(2,3)(t) 7→ x2

(2,3)(id
o
A(s) · γo1(s) · t · γo1(s) · idoA(s)) , x3

(2,3)(t) 7→ x3
(2,3)(t · id

o
A(s)−1) .

If we set α̃ := (idAo , ρidAo (s), ρidAo (s)), then α̃αs ∈ Aut(B(2,3)) satisfies

x2
(2,3)(t) 7→ x2

(2,3)(id
o
A(s) · γo1(s) · t · γo1(s) · idoA(s)) , x3

(2,3)(t) 7→ x3
(2,3)(t) .

By lemma (21.27), there is an element c ∈ A∗ such that

∀ t ∈ A : idoA(s) · γo1(s) · t · γo1(s) · idoA(s) = c · t .

Lemma (43.4) implies that we have

γo1(s) · idoA(s) ∈ CA(A) = Z(A) .

Since A is non-commutative, lemma (5.6) (b) shows that A is a quaternion division algebra and
that we have

γ1 = σs : Ao → Ao .

(46.3) Theorem Let F be an integrable foundation of type Ã2 such that the defining field is
a non-commutative skew-field and such that at least one glueing is positive. Then there is is a
quaternion H such that

F ∼= P+
3 (H) = {B̃(1,2) = T (Ho), B̃(2,3) = T (H), B̃(3,1) = T (Ho), γ̃1 = σs, γ̃2 = idoH, γ̃3 = idoH} .

Proof
This results from proposition (46.1) and proposition (46.2).

(46.4) Remark As we did not use the fact that the residues embed into the building at
infinity, which is a result in twin building theory, the above theorem is true for any foundation
of an arbitrary affine building of type Ã2 in which each Hua automorphism is induced by an
automorphism of the whole building.

Chapter 47 Jordan Automorphisms of Octonion Division
Algebras Revisited

We give a direct proof for proposition (28.9), independent of the characteristic.

(47.1) Theorem Let O be an octonion division algebra with center K := Z(O) and norm
N := NO

K . Then we have
AutJ(O) = ΓLN (O,K) .

Proof
Let (ϕ, σ) ∈ ΓLN (O,K). Then we have

ϕ(1O) = ϕ(1O · 1O) = σ(1O) · ϕ(1O) = 1O · ϕ(1O)

and thus ϕ(1O) = 1O. By definition, lemma (31.23) and theorem (31.41), we have

AutJ(O) = AutJ
(
M(O)

)
= AutJ

(
M(O,K, N)

)
= {(ϕ, σ) ∈ ΓLN (O,K) | ϕ(1O) = 1O} = ΓLN (O,K) .
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Chapter 48 The Defining Field Revisited
With theorem (47.1), we can prove theorem (21.6) without using proposition (21.3).

(48.1) Lemma Let F be a foundation such that there exists an edge (a, b) ∈ A(F ) with
A := A(a,b) an octonion division algebra. Then we have

∀ (i, j) ∈ A(F ) : A(i,j) ∼= A ∨ A(i,j) ∼= Ao , T (A(i,j)) ∼= T (A) ∨ T (A(i,j)) ∼= T (Ao) .

Proof
By theorem (47.1), each glueing γ(i,j,k) is a norm similarity. Therefore, we have

∀ (i, j, k) ∈ G(F ) : A(i,j) ∼= A(j,k)

by theorem (1.7.1) of [Sp].

(48.2) Theorem Let F̃ be an integrable foundation. Then there is an alternative division
ring A such that

∀ (i, j) ∈ A(F̃ ) : Ã(i,j) ∼= A ∨ Ã(i,j) ∼= Ao .

Proof
This is an immediate consequence of corollary (19.33) and lemma (48.1).

Chapter 49 Introduction in German
Historischer und theoretischer Hintergrund

Bei der folgenden Darstellung orientieren wir uns stark an den Ausführungen in [MLoc] und [AB].

Zwillingsgebäude

Gebäude wurden von J. Tits eingeführt, um halbeinfache algebraische Gruppen von einem
geometrischen Standpunkt aus zu untersuchen. Eines der wichtigsten Resultate in der Gebäude-
Theorie ist die Klassifikation der irreduziblen sphärischen Gebäuden vom Rang mindestens 3
in [T74]. Mittlerweile gibt es einen vereinfachten Beweis in [TW], der auf der Klassifikation der
Moufang-Polygone beruht.

Vor über 25 Jahren definierten M. Ronan und J. Tits die Klasse der Zwillingsgebäude, eine
natürliche Verallgemeinerung der sphärischen Gebäude. Motiviert wurde diese Definition durch
die Theorie der Kac-Moody-Gruppen. Wir verweisen an diesem Punkt auf [T92] für allgemeine,
weitergehende Informationen über Zwillingsgebäude.

Zwillingsgebäude verallgemeinern sphärische Gebäude in folgender Hinsicht: Bei sphärischen
Gebäuden gibt es eine natürliche Oppositions-Relation auf der Menge der Kammern, die die
Struktur des Gebäudes wesentlich einschränkt. Die oben erwähnte Klassifikation der irreduziblen
sphärischen Gebäuden vom Rang mindestens 3 basiert letzten Endes genau auf dieser Oppositions-
Relation. Ein Zwillingsgebäude besteht nun aus zwei verschieden Gebäuden gleichen Typs, auf
deren Kammern eine symmetrische Relation eingeführt wird, die ähnliche Eigenschaften wie die
Oppositions-Relation von sphärischen Gebäuden besitzt. Ein Zwillingsgebäude ist also ein Tripel
bestehend aus zwei Gebäuden gleichen Typs und einer Oppositions-Relation auf den zwei „Hälften“
des Zwillingsgebäudes.
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Das Klassifikations-Programm für 2-sphärische Zwillingsgebäude

Im Hinblick auf die Klassifikation der sphärischen Gebäude ergibt sich ganz natürlich die Frage, ob
es auch möglich ist, Zwillingsgebäude höheren Ranges zu klassifizieren. Ein großer Teil von [T92]
beschäftigt sich mit genau dieser Problemstellung. Zunächst stellt sich heraus, dass eine solche
Klassifikation nur unter der zusätzlichen Annahme möglich ist, dass die Einträge der zugehörigen
Coxeter-Matrizen endlich sind. Wir nennen diese Gebäude 2-sphärisch. Das in [T92] beschriebene
Klassifikations-Programm basiert auf der Vermutung, dass es für jede 2-sphärische Coxeter-
Matrix vom Typ M eine Bijektion zwischen Zwillingsgebäuden vom Typ M und bestimmten
Moufang-Fundamenten vom Typ M gibt.

Fundamente wurden von M. Ronan und J. Tits in [RT] eingeführt, um Kammer-Systeme
zu beschreiben, die Kandidaten für die lokale Struktur eines Gebäudes sind. Grob gesagt sind
Fundamente Amalgame von Rang-2-Gebäuden, die entlang bestimmter Rang-1-Residuen verklebt
sind. Ist c eine Kammer eines Gebäudes B vom Typ M , so bildet die Vereinigung E2(c) der
Rang-2-Residuen, die diese Kammer c enthalten, ein Fundament vom Typ M , das Fundament
von B in c. Der Ausdruck „lokale Struktur“ ist also als eine Art 2-Umgebung einer Kammer c des
Gebäudes zu verstehen.

Es ist eine (nicht triviale) Tatsache, dass die Fundamente zweier Kammern in derselben Hälfte
eines Zwillingsgebäudes isomorph sind. Darüber hinaus ist der Isomorphie-Typ des Fundamentes
der einen Hälfte durch den Isomorphie-Typ des Fundaments der anderen Hälfte eindeutig bestimmt.
Umgekehrt besagt eine Verallgemeinerung von Tits’ Erweiterungs-Satz durch B. Mühlherr und
M. Ronan in [MR], dass ein Zwillingsgebäude in fast allen Fällen durch das Fundament einer
seiner Hälften eindeutig bestimmt ist, siehe (5.10), (*5.11), (*9.11) und (*9.12) in [AB] für eine
Zusammenfassung. Somit ist das Fundament in einer Kammer eine klassifizierende Invariante des
zugehörigen Zwillingsgebäudes, falls die folgende Bedingung erfüllt ist:

(CO) Kein Rang-2-Residuum ist isomorph zu einem Gebäude, das zu einer der Gruppen B2(2),
G2(2), G2(3) und 2F4(2) gehört.

Diese Bedingung garantiert, dass die Menge co der einer Kammer c ∈ Bε (ε ∈ {±}) gegenüber
liegenden Kammern stets eine Galerie-zusammenhängende Teilmenge von B−ε ist.

In Anbetracht der bisherigen Überlegungen reduziert sich die Klassifikation der 2-sphärischen
Zwillingsgebäude also auf die Klassifikation aller Fundamente, die als lokale Struktur eines Zwil-
lingsgebäudes realisiert werden können. Wir nennen ein solches Fundament integrierbar. Bei der
Bestimmung der integrierbaren Fundamente verfährt man in zwei Schritten.

Schritt 1: Herausfiltern der nicht integrierbaren Fundamente

In [T92] wird bewiesen, dass ein integrierbares Fundament Moufang ist, die Rang-2-Gebäude
also Moufang-Polygone sind, deren Verklebungen mit den induzierten Moufang-Mengen auf den
Rang-1-Residuen kompatibel sind. Eine erste notwendige Bedingung für die Integrierbarkeit eines
Fundaments ist also die Moufang-Eigenschaft.

Als Folge dessen sind die Klassifikation der Moufang-Polygone in [TW] und die Lösung des
Isomorphie-Problems für Moufang-Mengen grundlegend bei der Untersuchung, welche Moufang-
Polygone zu einem Fundament zusammengefügt werden können. Zudem kann man die Liste der
möglicherweise integrierbaren Fundamente weiter einschränken, indem man bestimmte Automor-
phismen des Zwillingsgebäudes betrachtet, die sogenannten Hua-Automorphismen, die in einem
engen Zusammenhang mit den Doppel-µ-Maps der auftauchenden Moufang-Mengen stehen.

Schritt 2: Existenz- / Integrierbarkeits-Beweis

Schließlich muss man beweisen, dass jeder der verbleibenden Kandidaten auch wirklich integrierbar
ist. Das zugehörige Zwillingsgebäude ist dann bis auf Isomorphie eindeutig. In [MLoc] und seiner
Habilitationsschrift [MHab] entwickelte B. Mühlherr Techniken, die bestimmte Zwillingsgebäude
als Fixpunktmenge in zu Kac-Moody-Gruppen gehörenden Zwillingsgebäuden realisieren. Er,
H. Petersson und R. Weiss bereiten momentan ein Buch vor, das weitergehende, substanzielle
Hintergründe liefert.
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Ziele und Ergebnisse

Diese Arbeit widmet sich der Erstellung vollständiger Listen integrierbarer Fundamente für
bestimmte Diagramm-Typen. Wir folgen hierbei dem Ansatz für die Klassifikation sphärischer
Gebäude in [TW], wobei wir jedoch die dort verwendeten Techniken verfeinern müssen, da
Fundamente im Allgemeinen nicht nur vom zugehörigen Diagramm und dem definierenden
(Alternativ-) Körper abhängen. Zum Beispiel gibt es für einen festen Schiefkörper A in der Regel
mehrere nicht isomorphe Fundamente vom Typ Ãn: Automorphismen von A spielen ebenfalls eine
Rolle, was der Tatsache Rechnung trägt, dass es mehrere Möglichkeiten gibt, Moufang Polygone
entlang eines Rang-1-Residuums zu verkleben.

Ein wesentlicher Aspekt ist die passende Parametrisierung von Sequenzen von Moufang-
Polygonen bzw. deren Wurzelgruppen-Sequenzen mit den zugehörigen Kommutator-Relationen,
um die verschiedenen Verklebungen sichtbar zu machen. Die entscheidende Subtilität ist die
folgende: Jedes Moufang-Polygon wird zweimal parametrisiert, einmal für jede Richtung, in der
die zugehörige Wurzelgruppen-Sequenz gelesen werden kann. Folglich erhalten wir Verklebungen
zwischen gerichteten Moufang-Polygonen, und es macht einen Unterschied, ob wir idA : A→ A
oder idoA : A→ Ao betrachten, wobei Ao der zu A entgegengesetzte Schiefkörper ist: Ersteres ist
ein Isomorphismus, während Letzteres ein Anti-Isomorphismus von Schiefkörpern ist.

Wie bereits erwähnt, ist das Herausfiltern nicht integrierbarer Fundamente eng verknüpft mit
der Betrachtung von Moufang-Mengen und deren Isomorphismen. Deshalb beschäftigt sich ein
großer Teil dieser Arbeit mit der Einführung der zugrundeliegenden Parameter-Systeme und der
Lösung des Isomorphie-Problems für Moufang-Mengen. Viele Probleme wurden bereits gelöst,
siehe [K], aber wir müssen die existierenden Ergebnisse für unsere Anforderungen sowohl verfeinern
als auch erweitern und übersetzen deren Beweise in unser Setup.

Fundamente mit einfachen Kanten (Simply Laced Foundations)

Das Hauptergebnis dieser Arbeit ist die vollständige Klassifikation der Zwillingsgebäude mit
einfachen Kanten via ihrer Fundamente. Natürlich ist die Hauptvoraussetzung für ein integrierbares
Fundament die Moufang-Eigenschaft: Die Verklebungen sind Jordan-Isomorphismen, d.h., sie sind
mit dem Jordan-Produkt xyx verträglich.

Ein mächtiges Werkzeug ist der Satz von Hua, siehe [H] für eine Referenz, der das Isomorphie-
Problem für Moufang-Mengen von Schiefkörpern löst: Jeder Jordan-Isomorphismus ist letztlich
ein Iso- oder Anti-Isomorphismus von Schiefkörpern. Leider beinhaltet die Klasse von Parameter-
Systemen für Moufang-Dreiecke zusätzlich Oktaven-Divisionsalgebren, was wegen der fehlenden
Assoziativität zu einem gewissen Mehraufwand führt. Ein Nebenprodukt ist die Existenz von
Jordan-Isomorphismen, die weder Iso- noch Anti-Isomorphismen von alternativen Ringen sind.
Der aufwändigste Teil handelt von den Ausnahmefällen, in denen Oktaven auftauchen.

Wir geben an dieser Stelle einen Überblick über den Klassifikations-Prozess und streichen die
Hauptideen heraus. Die folgenden Beobachtungen liefern die erste Einschränkung an Möglichkeiten:

(1) Jedes Moufang-Dreieck ist über demselben alternativen Divisionsring A definiert.

(2) Ein integrierbares Fundament vom Typ A3 ist notwendigerweise über einem Schiefkörper
definiert, und die Verklebung ist notwendigerweise ein Isomorphismus von Schiefkörpern.

Folglich ist der entscheidende Schritt die Klassifikation der integrierbaren Fundamente vom Typ
Ã2, da dies die kleinsten sind, bei denen „Nicht-Standard“-Phänomene auftreten können. Die
Theorie affiner Gebäude, von Bruhat-Tits-Gebäuden sowie die Theorie von Kompositions-Algebren,
die bzgl. einer diskreten Bewertung komplett sind, ermöglichen uns weitere Einschränkungen:

(3) Zu einer Oktaven-Divisionsalgebra O gibt es genau ein Zwillingsgebäude vom Typ Ã2.

(4) Ein integrierbares Fundament vom Typ Ã2, dessen Verklebungen Anti-Isomorphismen sind,
ist notwendigerweise über einer Quaternionen-Divisionsalgebra definiert, und zu einem
Quaternionen-Schiefkörper H gibt es genau ein solches „positives“ Zwillingsgebäude vom
Typ Ã2.
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Eine genauere Betrachtung der Gruppe der Jordan-Automorphismen einer Oktaven-Divisions-
algebra hilft dabei, die Klassifikation der über Oktaven definierten Zwillingsgebäude abzuschließen:

(5) Es gibt keine integrierbaren Fundamente über Oktaven, deren zugehöriger Graph ein
Tetraeder ist. Insbesondere sind A2(O) = T (O) und Ã2(O) die einzigen integrierbaren
Fundamente über einer Oktaven-Divisionsalgebra O.

Schließlich liefert die folgende Beobachtung in Verbindung mit (4) eine wesentliche Einschränkung
der Liste integrierbarer Fundamente über echten Schiefkörpern, die keine Quaternionen-Schiefkör-
per sind:

(6) Ein integrierbares Fundament vom Typ D4 ist notwendigerweise über einem Körper definiert.

Als Konsequenz sind über echten Schiefkörpern, die keine Quaternionen-Schiefkörper sind, nur
Fundamente integrierbar, deren Diagramm ein Kreis, ein String, ein Strahl oder eine Kette ist
und deren Verklebungen Isomorphismen von Schiefkörpern sind.

Schließlich stellt die Kac-Moody-Theorie die Integrierbarkeit sicher, solange das zugehörige
Coxeter-Diagramm ein Baum ist. Die restlichen Integrierbarkeits-Beweise basieren auf Techniken,
die von B. Mühlherr entwickelt wurden.

Jordan-Automorphismen von alternativen Divisionsringen

In Hinblick auf den Satz von Hua, nach dem

AutJ(D) = Aut(D) ∪Auto(D)

für jeden Schiefkörper D, seine Gruppe AutJ (D) von Jordan-Automorphismen, seine Untergruppe
Aut(D) von Automorphismen und seine Menge Auto(D) von Anti-Automorphismen gilt, stellt
sich die Frage nach einem ähnlichen Ergebnis für Oktaven-Divisionsalgebren.

Im Beweis, dass integrierbare Tetraeder-Fundamente über Oktaven nicht existieren, definieren
wir eine Teilmenge Γ ⊆ AutJ (O), für die sich herausstellt, dass sie nicht die Standard-Involution
σs enthält. Die Elemente von Γ sind Automorphismen von O, die zusätzlich mit einem der in
[TW] definierten „Ausnahme“-Jordan-Automorphismen multipliziert werden. Diese fixieren eine
Quaternionen-Unteralgebra H punktweise und wirken auf dem orthogonalen Komplement von H
als Konjugation.

Dass Γ eine Untergruppe von AutJ (O) ist, kann man aus der Kenntnis der Automorphismen-
Gruppe des zugehörigen Moufang-Dreiecks T (O) ableiten. Diese Untergruppe Γ entspricht der
Untergruppe Aut(D) im Satz von Hua, d.h., wir erhalten

AutJ(O) = 〈σs,Γ〉 = Γ ∪ σsΓ .

Die Strategie beim Beweis ist wie folgt:

(1) Jordan-Automorphismen eingeschränkt auf Unterkörper sind Ring-Monomorphismen, d.h.,
das Bild eines Unterkörpers ist wieder ein Unterkörper.

(2) Als unmittelbare Konsequenz ergibt sich, dass Jordan-Automorphismen von Oktaven Norm-
Ähnlichkeiten sind.

(3) Die Ergebnisse aus [Sp] erlauben uns, die Problemstellung auf Isometrien zurückzuführen,
die eine Quaternionen-Unteralgebra punktweise fixieren.

(4) Der Satz von Hua und das Skolem-Noether-Theorem erlauben uns zu zeigen, dass jeder
Jordan-Automorphismus wirklich ein Produkt in 〈σs,Γ〉 ist.
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443-Fundamente

Das zweite Ergebnis im Zusammenhang mit der Klassifikation der Zwillingsgebäude ist die
Durchführung von Schritt 1 für 443-Fundamente. Dies sind Fundamente, deren Diagramm ein
Dreieck ist und deren Moufang-Polygone zwei Vierecke und ein Dreieck sind. Obwohl wir uns
in diesem Fall mit nur einem einzigen Diagramm beschäftigen, gibt es dennoch eine Vielzahl
verschiedener integrierbarer 443-Fundamente, da es sechs Familien von Moufang-Vierecken gibt,
die in dieser Konfiguration zudem auch noch oft zusammenpassen. Allerdings treten keine Vierecke
vom Typ En, vom Typ F4 und vom indifferenten Typ auf, weil ihre Moufang-Mengen nicht vom
linearen Typ, also keine projektiven Geraden sind.

Das Gleiche gilt zwar für Moufang-Mengen vom pseudo-quadratischen und involutorischen
Typ, allerdings ist das zweite Panel des zugehörigen unitären Vierecks vom linearen Typ, sodass es
genau eine Möglichkeit für die Orientierung des Vierecks gibt. Die Lösung des Isomorphie-Problems
für die auftauchenden Moufang-Mengen und die Kenntnis der Automorphismen-Gruppe eines
unitären Vierecks führen zu folgendem Ergebnis:
(1) Die auftauchenden pseudo-quadratischen Räume sind über einem Quaternionen-Schiefkörper

H oder einer separablen quadratischen Erweiterung E definiert. Im ersten Fall gibt es genau
ein integrierbares 443-Fundament über einem solchen pseudo-quadratischen Raum Ξ; im
zweiten Fall hängt die Isomorphie-Klasse eines integrierbaren Fundaments zusätzlich von
einem Automorphismus γ ∈ Aut(E) ab.

(2) Die auftauchenden involutorischen Mengen sind über einem Quaternionen-Schiefkörper H de-
finiert, und es gibt genau ein integrierbares 443-Fundament über einer solchen involutorischen
Menge Ξ.

Schließlich bilden Vierecke vom quadratischen Typ die flexibelste Familie, da es Moufang-Mengen
gibt, die sowohl vom quadratischen als auch vom linearen Typ sind, sodass diese Vierecke in jeder
Orientierung verklebbar sind. Des Weiteren gibt es eine Stelle, an der wir uns auf echte quadratische
Räume als parametrisierende Strukturen beschränken müssen, um für eine zufriedenstellende
Darstellung Charakteristik-2-Phänomene ausschließen zu können.

Im Gegensatz zur Klassifikation der integrierbaren Fundamente mit einfachen Kanten ver-
zichten wir im Rahmen dieser Arbeit jedoch auf Schritt 2 des Klassifikations-Programms, da
die Integrierbarkeits-Beweise andersartige, von B. Mühlherr, H. Petersson und R. Weiss einge-
führte Techniken verwenden. Wie zuvor gibt es zwei Möglichkeiten, die Integrierbarkeit eines
gegebenen Fundamentes zu beweisen: Entweder ist die universelle Überlagerung isomorph zu
einem kanonischen Fundament, also einem Fundament, dessen Verklebungen alle die Identität
sind und das integrierbar ist, falls das zugehörige Diagramm ein Baum ist, oder das Fundament
kann als Fixpunkt-Struktur eines Tits-Index realisiert werden. Die erste Methode funktioniert bei
443-Fundamenten mit Vierecken vom quadratischen Typ, während die zweite bei 443-Fundamenten
mit unitären Vierecken angewendet wird.

Jordan-Isomorphismen von pseudo-quadratischen Räumen

Genauso, wie der Satz von Hua bei der Klassifikation der integrierbaren Fundamente mit einfachen
Kanten entscheidend ist, ist die Lösung des Isomorphie-Problems für die auftauchenden Moufang-
Mengen ein wesentlicher Bestandteil bei der Klassifikation der integrierbaren 443-Fundamente. Wie
bereits erwähnt, wurden viele Fälle von R. Knop in seiner Dissertation [K] abgehandelt. Allerdings
beschäftigt er sich nur mit kommutativen Moufang-Mengen, sodass wir die entsprechenden
Resultate für Moufang-Mengen vom pseudo-quadratischen Typ ergänzen müssen.

Wir erhalten, dass Jordan-Isomorphismen zwischen zwei Moufang-Mengen vom pseudo-
quadratischen Typ in der Regel von Isomorphismen zwischen den zugehörigen pseudo-quadrati-
schen Räumen induziert werden. Genauer ist dies immer der Fall, wenn die Dimension mindestens
3 ist oder die beteiligte involutorische Menge echt ist. Folglich tauchen Ausnahmen nur bei
pseudo-quadratischen Räumen kleiner Dimension auf, die über einem Quaternionen-Schiefkörper
oder einer separablen quadratischen Erweiterung definiert sind. Glücklicherweise tauchen diese
Ausnahme-Fälle nicht bei der Klassifikation integrierbarer 443-Fundamente auf, sodass beide
Vierecke über demselben pseudo-quadratischen Raum Ξ definiert sind.
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Ausblick und offene Probleme

Jordan-Isomorphismen

In der Theorie der Moufang-Mengen spielen die µ-Maps und die Hua-Maps eine entscheidende
Rolle, da sie viele Informationen enthalten. Folglich stehen Jordan-Isomorphismen – dies sind
additive Isomorphismen, die mit den Hua-Maps verträglich sind – in engem Zusammenhang
mit Isomorphismen von Moufang-Mengen. Da die Hua-Maps in Summen und der Permutation
τ dargestellt werden können, ist jeder Isomorphismus von Moufang-Mengen letztlich auch ein
Jordan-Isomorphismus.

In diesem Zusammenhang stellt sich ganz natürlich die Frage, ob jeder Jordan-Isomorphismus
auch ein Isomorphismus von Moufang-Mengen ist. Die Hua-Maps von scharf 2-fach transitiven
Moufang-Mengen sind trivial, sodass die Frage in diesem Fall natürlich negativ beantwortet werden
muss. Experten auf diesem Gebiet wie R. Weiss und T. De Medts gehen aber davon aus, dass
beide Definitionen äquivalent sind, solange man sich auf „echte“ Moufang-Mengen beschränkt.

Das Klassifikations-Programm

Die Hauptvermutung im Zusammenhang mit dem Klassifikations-Programm ist die folgende, siehe
Seite 5 in [MHab]:

Ein Moufang-Fundament vom 2-sphärischen Typ ist genau dann integrierbar, falls jedes
Rang-3-Residuum integrierbar ist.

In seiner Habilitationsschrift [MHab] deutet B. Mühlherr an, dass die Vermutung unter der
zusätzlichen Annahme beweisbar wäre, dass alle Rang-3-Residuen sphärisch sind, was natürlich
eine starke Einschränkung ist. Allerdings gibt es bislang noch keinen veröffentlichten Beweis.

Sobald die Vermutung bewiesen ist, reduziert sich das Klassifikations-Programm auf die
Klassifikation der integrierbaren Moufang-Fundamente vom Rang 3. Die meisten Fälle können mit
den in [MHab] und [MLoc] eingeführten Methoden abgehandelt werden. Allerdings gibt es ein
paar Ausnahmen, von denen die kompliziertesten vom Typ C̃2, Ã2 und 443-Fundamente sind. Der
Ã2- und der 443-Fall werden in dieser Arbeit gelöst, während es für den C̃2-Fall (unveröffentlichte)
Teilergebnisse von T. De Medts, B. Mühlherr, H. Van Maldeghem und R. Weiss gibt.

Die Klassifikation der Zwillingsgebäude mit einfachen Kanten

Obwohl die Klassifikation der integrierbaren Fundamente mit einfachen Kanten abgeschlossen ist,
machen wir keine Aussage darüber, ob zwei Fundamente unserer Liste isomorph sind. Verwendet
man klassifizierende Invarianten und führt passende Parameter ein, kann man eine Liste paarweise
nicht isomorpher Fundamente erstellen.

Ist das zugehörige Coxeter-Diagramm GF ein Baum, so hängt das Fundament F nur vom
definierenden Körper ab. Kreise im Diagramm sorgen für eine zusätzliche Abhängigkeit von
„Twists“, also von Automorphismen des definierenden Körpers A. Genauer:

• Ist A ein Körper, so ist ein integrierbares Fundament F durch GF und einen Homomor-
phismus ϕ : Π1(GF ) → Aut(A)/Inn(A) ∼= Aut(A) eindeutig bestimmt, wobei Π1(GF ) die
Fundamentalgruppe von GF ist.

• Ist A ein Schiefkörper, aber kein Quaternionen-Schiefkörper, und F ein integrierbares
Fundament vom Typ Ãn, so ist das Fundament durch n und ein Element von Aut(A)/Inn(A)
eindeutig bestimmt.

• Ist der definierende Körper ein Quaternionen-Schiefkörper, so gilt ein ähnliches Resultat wie
für einen Körper.

Zudem könnte man die Integrierbarkeits-Beweise in einigen Punkten überarbeiten, sobald die
angewandte Theorie von B. Mühlherr, H. Petersson und R. Weiss vollständig entwickelt wurde.
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Endliche Moufang-Fundamente

Die eingeführte Terminologie und die Methoden von [MHab] können verwendet werden, um zu
zeigen, dass jedes lokal endliche Zwillingsgebäude vom 2-sphärischen Typ das Fixpunkt-Gebäude
einer Galois-Wirkung im Sinne von B. Rémy ist, was bedeutet, dass es algebraischen Ursprungs
ist.
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dimK L0 ≤ 2, the quadratic space Ξ̃ = (L0, K̃, q̃) of type (i)-(iii)
and the isomorphism γ : K̃→ K

191

QoD(K,K0,L0) parametrized opposite Moufang quadrangle with respect to the
indifferent set (K,K0,L0)

166

QD(K,K0,L0) parametrized standard Moufang quadrangle with respect to the
indifferent set (K,K0,L0)

166

QoI(K,K0, σ) parametrized opposite Moufang quadrangle with respect to the
involutory set (K,K0, σ)

163

QI(K,K0, σ) parametrized standard Moufang quadrangle with respect to the
involutory set (K,K0, σ)

163

QoP (K,K0, σ, L0, q) parametrized opposite Moufang quadrangle with respect to the
pseudo-quadratic space (K,K0, σ, L0, q)

164

QP (K,K0, σ, L0, q) parametrized standard Moufang quadrangle with respect to the
pseudo-quadratic space (K,K0, σ, L0, q)

164

QoQ(L0,K, q) parametrized opposite Moufang quadrangle with respect to the
quadratic space (L0,K, q)

165

QQ(L0,K, q) parametrized standard Moufang quadrangle with respect to the
quadratic space (L0,K, q)

165

T o(A) parametrized opposite Moufang triangle with respect to the
alternative division ring A

91

T (A) parametrized standard Moufang triangle with respect to the
alternative division ring A

91

A∞(D) chain foundation with respect to the skew-field D 126
Al∞(D) ray foundation with respect to the skew-field D 126
Ãn(D, γi) foundation of type Ãn with respect to the skew-field D and the

automorphisms γ1, . . . , γn ∈ Aut(D)
126

An(D) foundation of type An with respect to the skew-field D 126
Ar∞(D) ray foundation with respect to the skew-field D 126
Ã2(O) canonical triangle with respect to the octonion division algebra

O
105

F(GP ,H) mixed foundation with respect to the graph GP and the quater-
nion division algebra H

108

P+
3 (H) positive triangle with respect to the quaternion division algebra

H
119

P+
n (H) positive foundation with respect to the quaternion division

algebra H
106
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µ-map, 20
ν-uniformizer, 31
σ-isometry, 131
σ-similarity, 131
i-adjacent, 14
i-equivalence, 14
i-panel, 14
443-foundation, 179

of involutory type, 181
of pseudo-quadratic form type, 181
of unitary type, 181

action, 17
strongly transitive, 17

adjacent, 14
algebra, 11

associative, 11
central simple, 37

alternative division ring, 25
alternative ring, 25

opposite, 26
anti-isomorphism

of alternative rings, 26
apartment, 15
associator, 25
automorphism

linear, 11
of a foundation, 93, 171
of a Moufang set, 143
of a root group system, 95, 172
of twin buildings, 17

basepoint, 32
building, 14

standard thin, 14

canonical, 104
center, 26
central simple, 37
chamber, 14

opposite, 16
system, 14

Clifford algebra, 37
Clifford invariant, 37
codistance, 16
commutator, 26
complete w.r.t. a discrete valuation, 31
composition algebra, 31, 131

(un)ramified, 31
constants of a norm splitting, 38
cover, 12

of a foundation, 103, 174
Coxeter

diagram, 13
diagram (2-spherical), 13
group, 13
matrix (2-spherical), 13
system, 13

defect, 40
defective, 28, 40
defining field, 110
discrete valuation, 31
distance, 14
double µ-map, 20

edge, 12
exceptional, 100

flexible, 25
foundation, 93, 171

canonical, 104
integrable, 96, 173
mixed, 100
Moufang, 93, 171
negative, 100
positive, 100

gallery, 14
glueing

exceptional, 100
negative, 100
positive, 100

graph, 12

half of a twin building, 16
Hua automorphism, 163–166

of a Moufang triangle, 92
Hua map, 33, 49

indifferent set, 45
opposite, 45
proper, 45

inseparable, 55
integrable, 96, 173
inverse properties, 26
involutory set, 41

of quadratic type, 42
proper, 41

isometry, 15, 131
of twin buildings, 17

isomorphism
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special, 93, 95, 171, 172

Jordan homomorphism, 41
Jordan isomorphism, 49

of Moufang sets, 143

mixed, 100
morphism

of Coxeter diagrams, 13
of Coxeter matrices, 13
of graphs, 12

Moufang foundation, 93, 171
Moufang property, 18

strict, 18
Moufang set, 143

commutative, 143
of indifferent type, 144
of involutory type, 144
of linear type, 144
of pseudo-quadratic form type, 144
of quadratic form type, 144
unital, 143

Moufang triangle, 92
parametrized opposite, 91
parametrized standard, 91

multiplier, 131

negative, 100
non-defective, 28, 40
norm, 30
norm splitting, 38

octonion division algebra, 28
opposite

alternative ring, 26
chambers, 16
indifferent set, 45
parameter system, 160

opposite symbol, 160
opposition involution, 17

panel, 14
of type i, 14

parameter system, 96, 159, 160, 173
opposite, 160

parametrized Moufang polygon, 161
opposite, 160
standard, 159

parametrized quadrangle
of indifferent type, 166
of involutory type, 163
of pseudo-quadratic form type, 164
of quadratic form type, 165

positive, 100
prenilpotent, 15
proper

indifferent set, 45
involutory set, 41
pseudo-quadratic space, 46
quadratic space, 32

pseudo-quadratic form (anisotropic), 46
pseudo-quadratic space (anisotropic), 46

proper, 46

quadratic form (anisotropic), 32
(non-)defective, 28

quadratic over a subfield of the center, 30
quadratic space (anisotropic), 32

(linear) of type (m), 36
(non-)defective, 40
of type En, 39
of type F4, 40
of type (m), 45
proper, 32
unital, 32

quaternion division algebra, 27

ramified, 31
rank, 18
reparametrization, 161, 175

for a Moufang triangle, 92
residue

of a building, 15
of a chamber system, 14
of a foundation, 93, 171
of a twin building, 16
opposite, 16

RGD system, 19
root

simple, 15
root group, 18, 143
root group system, 95, 172
root system

standard, 15

scalar multiplication, 11
separable, 55
set of neighbours, 12, 122
similarity, 131
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special (λ, µ)-pair, 137
standard involution, 27, 28
standard root system, 15
standard thin building, 14
symbol, 160

opposite, 160
standard, 159

thick, 18
trace, 30
twin apartment, 17
twin building, 16
twin root, 17
type of a gallery, 14

uniformizer, 31
unital

Moufang set, 143
quadratic space, 32

unramified, 31

vector space, 11
vertex, 12
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