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Introduction

Historical and Theoretical Context

The description below closely follows those given in [ ] and [AB].

Twin Buildings

Buildings have been introduced by J. Tits in order to study semi-simple algebraic groups from a
geometrical point of view. One of the most important results in the theory of buildings is the
classification of irreducible spherical buildings of rank at least 3 in [T74]. Meanwhile, there is a
simplified proof in [T'W] which makes use of the classification of Moufang polygons.

About 25 years ago, M. Ronan and J. Tits defined a new class of buildings, which generalize
spherical buildings in a natural way, namely the class of twin buildings. The motivation of their
definition is provided by the theory of Kac-Moody groups, and we refer to [T92] for further general
information about twin buildings.

The sense in which twin buildings generalize spherical buildings is the following: Given a
building of spherical type, there is a natural opposition relation on the set of its chambers. This
relation restricts the structure of spherical buildings essentially. The classification of irreducible
spherical buildings of rank at least 3 mentioned above is in fact based on this opposition relation.
The idea of a twin building is to introduce a symmetric relation between the chambers of two
different buildings of the same type which has properties similar to the opposition relation of a
spherical building. Thus a twin building is a triple consisting of two buildings of the same type
and an opposition relation between the chambers of the two “halves” of the twin building.

The Classification Program for 2-Spherical Twin Buildings

In view of the classification of spherical buildings, it is natural to ask whether it is possible to
classify higher rank twin buildings. A large part of [T92] deals with this question. As a first
observation, it turns out that such a classification seems only to be feasible under the additional
assumption that the entries in the corresponding Coxeter matrices are all finite. We call these
buildings 2-spherical. The classification program described in [T92] is based on the conjecture
that there is a bijective correspondence between twin buildings of type M and certain Moufang
foundations of type M for each 2-spherical Coxeter diagram of type M.

Foundations have been introduced by M. Ronan and J. Tits in [RT] in order to describe
chamber systems which are candidates for being the local structure of a building. Roughly
speaking, foundations can be seen as amalgams of rank 2 buildings which are glued along certain
rank 1 residues. Given a chamber ¢ of a building B of type M, the union Fs(c) of the rank 2
residues which contain this chamber constitutes a foundation of type M, the foundation of B at c.
Thus the term “local structure” above has to be understood as a kind of 2-neighbourhood of a
given chamber of a building.

It is a (not completely trivial) fact that if two chambers are contained in the same half of
a twin building, the foundations at these chamber are isomorphic. Moreover, if one knows the
isomorphism class of the foundation of one half of a twin building, then the isomorphism class
of the foundations of the other half is uniquely determined. Conversely, a generalization of Tits’
extension theorem by B. Miihlherr and M. Ronan in [MR] states that a twin building is uniquely
determined by the foundation of one of its halves in almost all cases, cf. (5.10), (*5.11), (*9.11)
and (*9.12) of [AB] for a summary. Thus the foundation at a chamber of a twin building is a
classifying invariant of the corresponding twin building if the following condition is satisfied:

(CO) No rank 2 residue is isomorphic to one of the buildings which are associated with the
groups Ba(2), G2(2), G2(3) and 2Fy(2).

This condition guarantees that for every chamber ¢ € B, (e € {+}), the set ¢° of chambers opposite
c is a gallery-connected subset of B_..

In view of what has been mentioned so far, the classification of 2-spherical twin buildings
reduces to the classification of all foundations which can be realized as the local structures of
a twin building. We call such a foundation integrable. In order to determine the integrable
foundations, one proceeds in two steps.
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Step 1: Exclude Non-Integrable Foundations

It is proved in [T92] that an integrable foundation is Moufang, which means that the rank 2
buildings in the foundation are Moufang, i.e., they are Moufang polygons, and that the glueings
are compatible with the Moufang structures induced on the rank 1 residues. Thus a first necessary
condition for the integrability of a foundation is that it is Moufang.

As a consequence, the classification of Moufang polygons in [TW] and the solution of the iso-
morphism problem for Moufang sets are essential to work out which Moufang polygons fit together
in order to form a foundation. Moreover, one can reduce the list of possibly integrable foundations
by considering certain automorphisms of the twin building, the so-called Hua automorphisms,
which are closely related to the double p-maps of the appearing Moufang sets.

Step 2: Existence / Integrability Proof

Finally, one has to prove that each of the remaining candidates is in fact integrable, i.e., realized
by a twin building, which is then unique up to isomorphism. In | ] and his Habilitationsschrift
[ ], B. Miihlherr developed techniques which produce certain twin buildings as fixed point
structures in twin buildings coming from Kac-Moody groups. He, H. Petersson and R. Weiss
actually prepare a book which provides further well-founded background.

Goals and Main Results

The present thesis contributes to establish complete lists of integrable foundations for certain
types of diagrams. We closely follow the approach for the classification of spherical buildings
in [TW]. However, we have to refine the techniques, since in general, foundations don’t only
depend on the diagram and the defining field. For example, there may be several non-isomorphic
foundations of type A,, with respect to a given skew-field A: Automorphisms of A are involved as
well, which represents the fact that there are several possibilities for glueing Moufang polygons
along a rank 1 residue.

The main question is how to parametrize sequences of Moufang polygons with respect to
the usual commutator relations in order to make the glueings visible. The crucial subtlety is
the following: Each Moufang polygon is parametrized twice, once for each direction in which
the underlying root group sequence can be read. As a consequence, we obtain glueings between
directed Moufang polygons, and it’s a difference whether we look at idy : A — A or id} : A — A°,
where A° is the opposite with respect to A: The former is an isomorphism, while the latter is an
anti-isomorphism of skew-fields.

As mentioned above, excluding non-integrable foundations is closely related to the investigation
of Moufang sets and their isomorphisms. Therefore, a large part deals with the introduction of
underlying parameter systems and, in the sequel, with the solution of the isomorphism problem
for Moufang sets. Many questions have already been answered, cf. [I], but we need to refine and
extend the existing results for our purposes and translate their proofs into our setup.

Simply Laced Foundations

The main result of this thesis is the complete classification of simply laced twin buildings via
their foundations. Of course, the basic requirement for a foundation to be integrable is that it is
Moufang: Its glueings are Jordan isomorphisms, i.e., they preserve the Jordan product zyz.

A powerful tool is Hua’s theorem, cf. [I1] for a reference, which answers the isomorphism
problem for Moufang sets of skew-fields: Each Jordan isomorphism is in fact an iso- or anti-
isomorphism of skew-fields. However, the class of parameter systems for Moufang triangles
additionally includes octonion division algebras, which cause a lot of trouble due to the lack
of associativity. A byproduct is the existence of Jordan isomorphisms which are neither iso-
nor anti-isomorphisms of alternative rings. The most sophisticated part is the handling of the
exceptional cases where octonions occur.

We give an overview of the restriction process and point out the main ideas.
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The following observations yield the first restriction of possibilities:
(1) Each Moufang triangle is defined over the same alternative division ring A.

(2) An integrable foundation of type Aj is necessarily defined over a skew-field, and the glueing
is necessarily an isomorphism of skew-fields.

Thus the crucial step is the classification of integrable foundations of type A, since these are
the smallest ones which allow weird “non-standard” things to appear. The theory of affine and
Bruhat-Tits buildings and the theory of composition algebras which are complete with respect to
a discrete valuation enable us to get further restrictions:

(3) Given an octonion division algebra @, there is only one twin building of type Ay with respect
to O.

(4) An integrable foundation of type Ay whose glueings are anti-isomorphisms is necessarily
defined over a quaternion division algebra, and given a quaternion division algebra H, there
is only one such “positive” twin building of type As with respect to H.

A closer look at the group of Jordan automorphisms of octonion division algebras completes the
classification of integrable foundations which are defined over octonions:

(5) There are no integrable foundations over octonions such that the corresponding graph is a
tetrahedron. In particular, up to isomorphism, the only integrable foundations with respect
to an octonion division algebra O are A3(Q) = T(0) and A2(0).

Finally, in connection with (4), the following observation heavily restricts the list of integrable
foundations over non-commutative skew-fields which are not quaternion division algebras:

(6) An integrable foundation of type Dy is necessarily defined over a field.

Kac-Moody theory provides the integrability proofs as the corresponding Coxeter diagram is a
tree. The remaining integrability proofs rely on techniques developed by B. Miihlherr.

Jordan Automorphisms of Alternative Division Rings

In view of Hua’s theorem

Aut (D) = Aut(D) U Aut®(D)
for any skew-field D, its group Aut;(D) of Jordan automorphisms, its subgroup Aut(D) of
automorphisms and its set Aut®(D) of anti-automorphisms, the question arises whether it is
possible to get a similar result for octonion division algebras.

In the proof that integrable tetrahedron-foundations over an octonion division algebra O do
not exist, we define a subset I' C Aut;(Q) which turns out to not contain the standard involution
0s. The elements of I' are automorphisms of @ multiplied with one of the “exceptional” Jordan
automorphisms as defined in [TW], which fix a quaternion subalgebra H pointwise and which act
on the orthogonal complement of H as conjugation.

The fact that T' is a subgroup of Aut;(0Q) can be deduced from the knowledge about the
automorphism group of the corresponding Moufang triangle 7(Q). This subgroup I' corresponds
to the subgroup Aut(D) in Hua’s theorem, i.e., we obtain

Aut;(0) = (05, T) =T U0, .
The strategy for the proof is as follows:

(1) Jordan automorphisms restricted to subfields are monomorphisms of rings, i.e., the image of
a subfield is again a subfield.

(2) As an immediate consequence, Jordan automorphisms of octonions are norm similarities.

(3) The results of [Sp] allow us to restrict to isometries which fix a quaternion subalgebra
pointwise.

(4) Hua’s theorem and the Skolem-Noether theorem allow us to show that any Jordan automor-
phism is indeed a product in (o, T').
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443-Foundations

The second result in connection with the classification of twin buildings is the completion of step 1
for 443-foundations whose diagram is a triangle and whose Moufang polygons are two quadrangles
and one triangle. Although we only deal with a single diagram in this case, there is a rich variety
of integrable 443-foundations as there are six families of Moufang quadrangles which often fit
together in this configuration. Nevertheless, quadrangles of type E,,, of type Fy and of indifferent
type don’t appear since their Moufang sets are not of linear type, i.e., they aren’t projective lines.

The same holds for Moufang sets of pseudo-quadratic form and involutory type, but the
second panel of the corresponding unitary quadrangle is of linear type so that there is exactly
one possibility for the orientation of the quadrangles. The solution of the isomorphism problem
for the appearing Moufang sets and the knowledge about the automorphism group of a unitary
quadrangle allow us to show the following:

(1) The appearing pseudo-quadratic spaces are defined over a quaternion division algebra H or
over a separable quadratic extension [E.

(2) In the former case, there is exactly one possibly integrable 443-foundation with respect to
such a pseudo-quadratic space Z.

(3) In the latter case, the isomorphism class of a possibly integrable 443-foundations additionally
depends on an automorphism v € Aut(E).

(4) The appearing involutory sets are defined over a quaternion division algebra H, and there is
exactly one possibly integrable 443-foundation with respect to such an involutory set =.

Finally, quadrangles of quadratic form type are the most flexible ones since there are Moufang
sets which are both of quadratic form type and of linear type so that they can glued together in
any orientation. Furthermore, there is one point where we need to restrict to proper quadratic
spaces as parametrizing structures to exclude characteristic 2 phenomenons in order to obtain a
satisfying description.

In contrast to the classification of integrable simply laced foundations however, we omit step
2 in the classification program as the proofs require different kinds of techniques, established
by B. Miihlherr, H. Petersson and R. Weiss. As before, there are two possibilities how to show
the integrability of a given foundation: Either the universal cover is isomorphic to a canonical
foundation, which is a foundation such that each glueing is the identity map and thus integrable if
it the corresponding diagram is a tree, or the foundation can be obtained as a fixed point structure
via a Tits index. The former method applies to 443-foundations with quadrangles of quadratic
form type, while the latter applies to 443-foundations with unitary quadrangles.

Jordan Isomorphisms of Pseudo-Quadratic Spaces

Hua’s theorem is essential for the classification of integrable simply laced foundations. In the
same spirit, the solution of the isomorphism problem for the appearing Moufang sets is essential
for the classification of integrable 443-foundations. As mentioned above, R. Knop handles a lot of
cases in his PhD thesis [K]. However, he only deals with commutative Moufang sets. Thus we
need to establish the corresponding results for Moufang sets of pseudo-quadratic form type.

We obtain that Jordan isomorphism between two Moufang sets of pseudo-quadratic form type
are induced by isomorphisms of the corresponding pseudo-quadratic spaces in almost all cases, i.e.,
whenever the dimension is at least 3 or the involved involutory set is proper. As a consequence,
exceptions necessarily involve pseudo-quadratic spaces of small dimensions which are defined over
a quaternion division algebra or over a separable quadratic extension. Luckily, these exceptional
cases don’t occur in the classification of integrable 443-foundations. As a consequence, both the
quadrangles are defined over the same pseudo-quadratic space =.
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Outlook and Open Problems

Jordan Isomorphisms

In the theory of Moufang sets, the y-maps and the Hua maps play a central role as they carry a
lot of information. As a consequence, Jordan isomorphisms — which are additive isomorphisms
preserving the Hua maps — are closely related to isomorphisms of Moufang sets. In fact, each
isomorphism of Moufang sets is a Jordan isomorphism since the Hua maps can be expressed in
terms of sums and the permutation 7.

In this context, the following question naturally arises: Is each Jordan isomorphism an
isomorphism of Moufang sets? Of course, the Hua maps of sharply 2-transitive Moufang sets are
trivial. Therefore, the question has to be answered negatively for these “non-proper” Moufang
sets. But experts in the area such as R. Weiss and T. De Medts are optimistic that both the
definitions are equivalent if we restrict to proper Moufang sets.

The Classification Program

The main conjecture in connection with the classification program is the following, cf. page 5 in

[ I

A Moufang foundation of 2-spherical type is integrable if and only if each of its rank 3
residues is integrable.

In his Habilitationsschrift | ], B. Mithlherr indicates that one could prove the conjecture
under the additional assumption that all rank 3 residues are spherical, which is of course a severe
restriction. However, there isn’t any written proof yet.

Once one has proved the conjecture, the classification program reduces to the classification
of integrable Moufang foundations of rank 3. Most of them can be handled with the methods
established in | | and | |. However, there are some exceptions, the most complicated of
which are foundations of type Cs, A and 443-foundations. The A,- and the 443-case are solved
in the present thesis, while there are (unpublished) partial results for the Cy-case by T. De Medts,
B. Miihlherr, H. Van Maldeghem and R. Weiss.

The Classification of Simply Laced Twin Buildings

Although the classification of integrable simply laced foundations is complete, we don’t make
any statement whether two given foundations in our list are isomorphic. By taking classifying
invariants into account and introducing suitable parameters, one could create a list with pairwise
non-isomorphic foundations.

If the underlying Coxeter diagram G is a tree, the foundations F depends only on the defining
field. Circles in the diagram cause an additional dependence on “twists", i.e., on automorphisms
of the defining field A. More precisely:

e If A is a field, an integrable foundation F is uniquely determined by Gz and a homomorphism
¢ : 11 (Gr) — Aut(A)/Inn(A) = Aut(A), where II; (Gr) is the fundamental group of Gp.

o If A is a skew-field distinct from a quaternion division algebra and F is an integrable

foundation of type A,, the foundation is uniquely determined by n and an element of

Aut(A)/Inn(A).

e If the defining field is a quaternion division algebra, then a similar result as in the field case
holds.

Moreover, the integrability proofs might be improved at some points as soon as the applied theory
is developed properly by B. Miihlherr, H. Petersson and R. Weiss.
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Finite Moufang Foundations

The introduced terminology and the methods of | ] can be used to show that each locally
finite twin building of 2-spherical type is the fixed point building of a Galois action in the sense of
B. Rémy, which means that it is of algebraic origin.
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Chapter 1 Notations

As we will have to reconstruct structure out of some given identities and as we will make use of
several structures at the same time, it is important to have exact definitions and notations and to
make precise statements, e.g., it is important to know whether we talk about an isomorphism as
an isomorphism of algebras or as an isomorphism of vector spaces, and we avoid “identification”.

We start with giving the definitions of elementary structures such as vector spaces, algebras
and graphs, then we proceed by introducing Coxeter matrices and Coxeter diagrams before we
turn to twin buildings themselves.

Chapter 1 Notations

We fix some notations.

(1.1) Definition (Vector Spaces)

o A (right) vector space is a pair (V,K) consisting of a commutative group V and a skew-field
K together with a scalar multiplication - : V x K — V satisfying

YVoeV:v-lg=v, VoeV, s,teK: (v-s)-t=uv-(st)
and

VoweV, s,teK: (wtw)-s=v-s+w-s, v-(s+t)=v-s+uv-t.

o If (V,K) is a vector space, we say that V is a K-vector space or that V is a vector space
over K.

e Two vector spaces (V,K) and (V,K) are isomorphic if there is a pair (g, ¢) of isomorphisms
w:V = Vand ¢ : K — K of groups and skew-fields, resp., satisfying

VseK, veV: w(v-s) =) o(s) .
o If (p,¢) : (V,K) — (V,K) is an isomorphism of vector spaces, we say that ¢ is a ¢-
isomorphism.
e Let (V,K) be a vector space.
o An automorphism (¢, ¢) of (V,K) with ¢ = idk is linear.

o We denote the group of (semi-linear) automorphisms of (V,K) by I'L(V,K).
o We denote the group of linear automorphisms of (V,K) by GL(V,K).

(1.2) Definition (Algebras)

e An algebra is a pair (A,K) such that A is a vector space over a field K together with a
K-bilinear map -: A x A — A.

o If (A K) is an algebra, we say that A is a K-algebra or that A is an algebra over K.
e An algebra (A, K) is associative if the map - : A x A — A is associative.

e Two algebras (A,K) and (A, K) are isomorphic if there is an isomorphism (g, ¢) of vector
spaces satisfying
VayeA:  plz-y) =) o) -

o If (p,9) : (4,K) — (A, ]f{) is an isomorphism of algebras, we say that ¢ is a ¢-isomorphism.
e Let (A,K) be an algebra.

o An automorphism (¢, ¢) of (A,K) with ¢ = idk is linear.

o We denote the group of (semi-linear) automorphisms of (A,K) by Aut(A4,K).

o We denote the group of linear automorphisms of (A,K) by Autk (4, K).

-11 -
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(1.3) Definition (Graphs)

o A graph is a pair G = (V, E) = (V(G), E(G)) consisting of a set of vertices V and a set of
edges

Eg(Z) ={XCV||X|=2}.

e Given two graphs G = (V, E), G = (V,E), a morphism ¢ : G — G of graphs is a map
¢ : V= V such that

Vo,weV: {v,w} € E = {p(),p(w)} € E .
o Given a graph G = (V, E), we set
A(G) ={(i,5) e V? [ {i,j} € B},
which is the set of directed edges, and
G(G) = {(i,5,k) € V* | (i,) # (k,j) € A(G)} .
e Given a graph G = (V, E) and a vertex v € V, the set of neighbours of v is
Bi(v) ={weV|{v,w}eE}.

e Given a graph G = (V, E), a cover of G is a pair (G, ¢) consisting of a graph G = (V,FE) and
an epimorphism ¢ : V' — V of graphs such that for each v € V, the map

@By (v) * B1(v) = Bi(p(v))

is a bijection.

(1.4) Example Given the graph

3
7

1 2
the graphs

5 4

6 3

1 2

and
-2 -1 0 1 2

are covers, where
0:Z—1LJ37, zv %

is the natural homomorphism in both cases.
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Chapter 1 Notations

(1.5) Remark We only deal with Coxeter matrices such that m;; # oo for all 4,j € I.

(1.6) Definition (Coxeter Matrices)
o A (2-spherical) Coxeter matriz over (an index set) I is a map M : I x I — N* such that
Viel: my=1, ViZjel: mj=my > 1,
where my;; := M(i,j) for all 4,5 € I.

e Given two Coxeter matrices M over I and M over I, a morphism ¢ : M — M of Cozeter
matrices is a map ¢ : I — I such that

Vijel:  Meip) =mij -
e Given a Coxeter matrix M over I and a subset J C I, we set My := M| ;.

(1.7) Definition (Coxeter Diagrams)

o A (2-spherical) Coxeter diagram is a pair (G,v) consisting of a graph G and a map v :
E(g) — Nzg.

e Given two Coxeter diagrams (G,v) and (G, D), a morphism ¢ : (G,v) = (G,7) of Cozeter
diagrams is a morphism ¢ : G — G of graphs such that

vi{i,jt e E@G):  v({e(@),»()}) = v{i,j}) -

(1.8) Remark

(a) Given a Coxeter diagram (G, v), we indicate an edge such that v({4, j}) = 3 by a single edge,
an edge {i,j} such that v({¢,j}) = 4 by a double edge, an edge {i,j} such that v({i,j}) =6
by a triple edge and an edge {i,j} such that v({%,j}) = 8 by a quadruple edge.

(b) Given a Coxeter matrix M over I, the corresponding Cozeter diagram is I := (QM, VM)
with V(Gpr) := I and

Vijel: {i,j} € E(Gu) & mi; >3, V{i,j} € E(Gm): var({i,7}) =myj .
We set
V(G) =V (Gum) , E(G):=EGum) , A(G) .= A(Gnm) , G(G) :==G(Gwm) .

(¢) Let CM be the set of Coxeter matrices and let C'D be the set of Coxeter diagrams. Then
the map
I:CM — CD, M — Il

is a bijection such that M = M < Il & IT,;.
(1.9) Definition (Coxeter Systems) Let M be a Coxeter matrix over I.
e The Cozeter group of type M is the group
Wy i={riliel} | {(mr)" =1]4,5€J}).
e The Cozeter system of type M is the pair (Wyys,r), where
r:Mon(I) = W, f— 1y

is the unique extension of the map r : I — Wy, i — r; to a homomorphism from the free
monoid Mon(I) on I to Wyy.
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Chapter 2 Twin Buildings

As the main issue of this thesis is the classification of twin buildings, we give a rough overview of
the main concepts and the main results which allow us to pass from the whole building to its
local structure without loss of information. By theorem (2.26) and (2.27) below, each irreducible
residue of rank 2 of an irreducible twin building of rank at least 3 is a Moufang polygon. As a
consequence, we may exploit the classification of Moufang polygons in [TW].

(2.1) Definition (Chamber Systems)

e A chamber system over an index set I is a set A (whose elements are called chambers)
together with an equivalence relation ~; on A (called i-equivalence) for each i € I.

e Given a chamber system A over I and ¢ € I, an i-panel is an i-equivalence class, and a
panel is an i-panel for some 7 € I.

e Given a chamber system A over I and ¢ € I, two distinct chambers z,y € A such that
x ~; y are called i-adjacent, and they are adjacent if they are i-adjacent for some i € I.

e Given a chamber system A over I, chambers z,y € A and J C I, a J-gallery of length k
from x to y is a sequence vy = (zo,...,7;) C AF*! for some k € N such that

o=, T =1, VjG{l,...,k}HijGJﬁxjleijl'j/\£L'j717éfl,'j,

a gallery from x to y is an I-gallery from z to y, and we write x ~; y if there is a J-gallery
from x to y.

e Given a chamber system A and chambers z,y € A, the distance dist(z,y) from = to y is
the length of a shortest gallery from x to y if there is one and oo otherwise.

e Given a chamber system A over I, chambers z,y € A and a gallery v = (zo, ..., z)) from z
to y, the type of v is the word iy - - - i, € Mon([).

e Given a chamber system A over I, a chamber € A and J C I, the J-residue of x is
Aj(x)={yeAlz~;y}.

A residue is a J-residue A ;(x) for some chamber z € A and some J C I.

(2.2) Definition (Buildings)  Let M be a Coxeter diagram over I and let (Wi, r) be the
corresponding Coxeter system. A building of type M is pair B = (A, ), where A is a chamber
system over I endowed with a function § : A x A — W), such that the following holds:

(B1) Each panel contains at least two chambers.

(B2) For each reduced word f € Mon(I) and for each ordered pair (x,y) of chambers, we have
d(x,y) = ry if and only if there is a gallery of type f from x to y.

(2.3) Remark  Cf. definition (39.10) of [T'W] for the definition of a reduced word.

(2.4) Definition (Standard Thin Buildings) Let M be a Coxeter Matrix. Then the
building X(M) := (W, dw,,) with

-1
Owyy = War X War — Wy, (w1, w2) = wy ws

is the standard thin building of type M.

(2.5) Remark  Cf. example (5.7) of [AB] that X(M) is a building of type M.
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Chapter 2 Twin Buildings

(2.6) Definition (Apartments) Let B = (A,d) be a building of type M and let X C W,.

e An isometry from X to B is a map w: X — A such that
VaroyeX: S(x™ y") =ax "ty .

e An apartment of B is the image ¥ of some isometry 7 : Wy — A.
(2.7) Theorem (J-Residues)  Let M be a Coxeter matrix over I, let B = (A, §) be a building
of type M, let x € A and let J C I. Then the following holds:

(a) The J-residue
By(z) i= (As(2),01a, () %A, ()
is a building of type M.

(b) If ¥ is an apartment of B such that X N By(x) # 0, then X := B;(x) N X is an apartment
of By(z).

(¢) If 3 is an apartment of B;(x), then we have ¥ ; = B;(z) N X for some apartment X of B.

Proof
This results from (39.52) of [TW]. O

(2.8) Definition (Roots) Let B be a building of type M, let ¥ be an apartment of B and
let ¢ be a chamber of 3.
e A root of X is a subset @ C ¥ such that
a={weX|dist(w,z) < dist(w,y)}

for some ordered pair (z,y) of adjacent chambers. We denote the set of roots of ¥ by
D(B,%).

e A root of B is a root of some apartment 3 C B.
e Given i € I, the simple root a; with respect to (X, ¢) is the root
a; = {w e X | dist(w, ¢) < dist(w, ¢;)}
where ¢; is the unique chamber of ¥ which is i-adjacent to ¢. We write ®(B,3, ¢) instead of
®(B,Y) if we additionally take the simple roots with respect to (X, ¢) into account.
(2.9) Definition (Standard Root Systems) Let M be a Coxeter Matrix.

e The set ®(M) := ®(X(M),S(M), 1w,,) of roots of X(M) is the standard root system of
type M.

e Given «, 8 € ®(M), the pair {«, 8} is prenilpotent if we have
anB#0#(—a)n (=) .
In this case, we set

[, p]:=={ye®M)|anfCy, ()N (=P) S =}, (p):=[ap]\{a,b}.

(2.10) Remark  Let M be a Coxeter matrix over I, let ®(M) be the standard root system of
type M and let o € ®(M). Then we have

a=voy;={v-w|we a;}

for some i € I and some v € W)y, cf. proposition (5.81) of [AB].
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(2.11) Definition (Twin Buildings) Let M be a Coxeter diagram over I. A twin building
of type M is a triple B = (B, B_,6*), where each half B = (A, d.) with e € {£} is a building of
type M and

(AL X ALYU(AZ X AL) —» Wiy

is a codistance, i.e., given € € {+}, x € A, y € A_. and w := §*(x,y), the following holds:

(C1) We have 6*(y,z) = w1,

(C2) Given z € A_., i € I such that 6_.(y, 2) = r; and l(wr;) = l(w) — 1, we have §*(z, z) = wr; .
(C3) Given i € I, there exists a chamber z € A_, such that 0_(y,z) = r; and 6*(z, z) = wr,.
Here [ : W — N* is the length function with respect to the set {r; | i € I'} of generators.

(2.12) Definition (Opposite Chambers)  Let M be a Coxeter diagram over I, let B be a
twin building of type M, let J C I and let ¢ € {+}.

e Two chambers x € B, and y € B_, such that 6*(z,y) = 1 are called opposite. We set
Op :={(z,y) € By x B_ | §*(x,y) =1} .
e Two residues Ry C By and R_ C B_ such that
RixR_.NOp#0

are called opposite.

(2.13) Lemma  Let B be a twin building, let € € {£} and let « € B.. Then there exists a
chamber y € B_, such that §*(x,y) = 1.

Proof
This results from corollary (5.141) of [AB]. O

(2.14) Theorem (J-Residues)  Let M be a Coxeter diagram over I, let B be a twin building
of type M, let J C I, let (z,y) € Op and let By(z) := (B4)s(z), Bs(y) := (B-)s(y). Then the
J-residue

By(z,y) = (BJ(CC)aBJ(y)’5R3J(w)xBJ(y))U(BJ(y)XBJ(y)))
is a twin building of type M.

Proof
By lemma (5.148) of [AB], we have
6(z,y) € War, 6" (2, y) Wy = War, - 1- W, = Wy,
for all z € By(z), y € Bs(y). O

(2.15) Corollary Let M be a Coxeter diagram over I, let B be a twin building of type M,
let e € {£}, let « € B, and let J C I. Then (B.) () is the half of a twin building.

Proof
By lemma (2.13), there is a chamber y € B_, such that 6*(z,y) = 1, thus (B) () is the half of a
twin building by theorem (2.14). O

(2.16) Notation  Let M be a Coxeter matrix over I and let B be a building of type M. Given
a chamber ¢ € B, we define

Es(e) == {Bpijy(c) |i#jel}.
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(2.17) Definition (Twin Apartments) Let B be a twin building.

o A twin apartment of B is a pair ¥ = (X4, %;) of apartments 3, of B, such that each chamber
of ¥4 UX_ is opposite precisely one other chamber opy,(c) € ¥4 UX_.

e Given a twin apartment X, the map
opy 1B+ UX_ =2 X, UX_, ¢— opx(e)

is the opposition involution with respect to X.

(2.18) Definition (Twin Roots)  Let B be a twin building and let ¥ be a twin apartment of
B.

o A twin root of X is a pair a = (a4, a_) of roots a. of ¥, such that
opy (@) = —« .

e We denote the set of twin roots of ¥ by ®(B,X).

(2.19) Remark  Let B be a twin building. Given a twin apartment ¥ of B and a root a4 of
Y4, then a_ := —opy (a4 ) is the unique root of X_ such that « := (a4, @_) is a twin root of X.
As a consequence, the map

f:9(B,X) = (B, X)), (ay,a ) = ay

is a bijection.

(2.20) Definition (Isometries and Automorphisms) Let B = (B4,B_,6*) be a twin

building of type M and let B = (B4, B_,0*) be a twin building of type M.

e An isometry of twin buildings is a triple ¢ = (0,¢+,¢—) consisting of an isomorphism
o : M — M of Coxeter diagrams and maps ¢, : B, — B, such that

Vee,de € Be: Oc(gelce), delde)) = o (Je(ce, de))

and
Ve € Be,e_e € B_.: 5" (d)e(ce),(é_ﬁ(c_g)) = 0(5*(c€,c_6))

e An isomorphism of twin buildings is a surjective isometry ¢ : B — B.

e An automorphism of BB is an isomorphism ¢ : B — B. We denote the group of automorphisms
of B by Aut(B).

e An automorphism ¢ € Aut(B) is special if we have o = idp;. We denote the group of special
automorphisms of B by Auty(5).

(2.21) Definition (Strongly Transitive Actions)  Let B be a twin building and let G be
a group.

e An action of G on B is a homomorphism
¢ : G — Aut(B) .
e An action ¢ : G — Aut(B) is strongly transitive if the action is transitive on the set

{(%,¢) | £ is a twin apartment of B, ¢ € Os} .
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(2.22) Theorem Let B be a Moufang twin building. Then Auty(B) acts strongly transitively
on B.

Proof
This results from proposition (8.19) of [AB]. O

(2.23) Theorem (Extension Theorem)  Let B, B be thick (2-spherical) twin buildings of
the same type. Assume that B and B satisfy condition (CO). Given ¢ € O and ¢ € O and a
surjective isometry

¢ Ea(cy) U{c—} = Eq(éy) U{c-},

there is a unique extension of ¢ to an isomorphism ¢ : B — B of twin buildings. (A building is
thick if each panel contains at least three chambers.)

Proof
Cf. theorem (5.213) of [AB]. Notice that our buildings are 2-spherical by definition. O

(2.24) Definition (Root Groups and the Moufang Property)  Let B be a twin building
of rank at least 2, where the rank of a building of type M is just |V (M)].

e Given a twin root «, the corresponding root group is
U, = {9 € Aut(B) | g acts trivially on each panel of a°} |
where a° is the set of all panels of B which contain at least two chambers in «.

e The building B is Moufang if it is thick and if for each root a of B, the root group U, acts
transitively on the set of twin apartments containing «.

e The building B is strictly Moufang if the actions of the root groups are simply transitive.

(2.25) Remark A Moufang twin building whose Coxeter diagram has no isolated nodes is
strictly Moufang, cf. p. 455 of [AB].

(2.26) Theorem Every thick, irreducible twin building of rank at least 3 that satisfies
condition (CO) is Moufang.

Proof
This is theorem (8.27) of [AB]. Notice that our buildings are 2-spherical by definition. O

(2.27) Theorem Let B be a Moufang twin building. Then every spherical residue of B is
Moufang.

Proof
This is proposition (8.21) of [AB].

(2.28) Corollary Let B be a thick, irreducible twin building of rank at least 3. Then each
residue of rank 2 is also Moufang. In particular, the irreducible residues of rank 2 are Moufang
polygons.

Proof
This results from remark (8.30)(a) of [AB]. Notice that our buildings are 2-spherical by definition.
O
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(2.29) Definition (RGD System)  Let M be a Coxeter matrix, let ® := ®(M), let G be a
group, let (Uy)aca be a family of non-trivial subgroups of G and let

T:=(\Na(Ua) -
acd
Then the pair (G, (Ua)ae.{)) is an RGD system of type M if the following holds:

(RGD1) We have
[Ua, Us] < U(a,p)

for all o # B such that {«, 8} is prenilpotent.

(RGD2) Given i € I, there is a function p : U} — G such that we have

VueU; : plu) e U_qulU_o, , VuecU;

(e 7l

a€®: p(w)lop(u)™" = Upa, -

(RGD3) Given i € I, we have
U*ai % U+ )

where
U= (Us|a€®), @,:={ac®|lea}, o ={acd|lg¢a}.

(RGD4) We have
G=T{U,|aecd).
(2.30) Theorem The following holds:
(a) Each RGD system (G7 (Ua)aecp) gives rise to a twin building l’)’(G7 (Ua)a€q>).

(b) Let B be a twin building of type M, let ¥ be a twin apartment of B, let ¢ € Osx, let
G := Aut(B), let ® := &(B,%,¢) and let (U, )aca be the family of root groups with respect
to (X,¢). Then the pair (G, (Ua)a€q>) is an RGD system of type M, and B is uniquely
determined by this RGD system, i.e., we have

B = B(Ga (Ua)a€¢) .

Proof
(a) This is theorem (8.81) of [AB].

(b) The first statement is example (8.47)(a) of [AB] while the second one results from theorem
(8.9) of [AB].

O

(2.31) Proposition Let M be a Coxeter matrix over I, let B be a strictly Moufang twin
building of type M, let ¥ be a twin apartment of B and let ¢ € Ox. Let J C I be such that M
has no isolated nodes, let B; := Bs(c) and let oy be a root of ¥; = ¥ N B;. Then there is a
unique root « of ¥ such that ay = aN Xy, and the restriction map

p:Us = Uy,
is an isomorphism of groups.
Proof
For spherical buildings this is proposition (7.32) of [AB], and the arguments given in its proof go
through in the twin case without much change. O
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(2.32) Theorem  Let M be an irreducible Coxeter matrix over I such that |I| > 3, let B be
a thick Moufang twin building of type M, let X be a twin apartment of B, let ¢ € Ox, and let
= ®(B,%,c). Let (i,7) € A(M), Bij := By; j1(c) and n := m;;. Then the following holds:

(a) The residue B;; is a Moufang n-gon.

(b) The intersection X;; := 3 N B;; is an apartment of B;;, and the roots a; N B;; and «; N By,
form a root basis of B;;.

(c¢) Let
(&)1 = Oy N Bij,aJQ, e 7(:)71_1,(,:)" = aj N BZJ)

be the root sequence of B;; from «; N B;; to a; N B;;. Then there are exactly n roots
w1 = o, wa,...,wy = o of ¥ such that

v1§i§’n2 (Zli:wiﬁBij.
(d) Fori=1,...,nlet U; :==U,,, let Uy, ., = U1 Uy and let
Oy = (U[aiyaijl’ ) Un) :

Then ©; ;) is isomorphic to the root group sequence of B;; from a; N B;; to a; N Byj.

Proof
(a) This is corollary (2.28).

(b) The first assertion results from theorem (2.7) (b), and by definition, the roots o; N B;; and
aj N By; are simple roots of ¥;;.

(c¢) This results from proposition (2.31).

(d) This results from proposition (2.31).
O

(2.33) Definition (Double py-Maps)  Let M be a Coxeter matrix over I, let B be a Moufang
twin building of type M, let ¥ be a twin apartment of B, let ¢ € Oy, and let @ := ®(B,%, ¢). Let
i€, let a,bec U and let pu(a), u(b) be as in (RGD2). Then the map

hap: (Ua | @ € ®) = (Us | @ € ®),u— p(a)” p(b)up(b) ™ pu(a)

is the double p-map with respect to a, b.

(2.34) Remark

(a) We have hyp € T for all a,b € U}, .

(b) By (3) in section (7.8.2) of [AB], the p-maps in (RGD2) are uniquely determined.
(2.35) Theorem Let M be an irreducible Coxeter matrix over I such that |[I| > 3, let
B be a thick Moufang twin building of type M, let ¥ be a twin apartment of B, let ¢ € Ox

and let ® := ®(B,%,c). Let (i,7) € A(M), let By; := By j1(c), let X5 == ¥ N B;; and let
;i := ®(B;j,%;j,¢). Then we have

VaeUs :  pP(pla)) = p(u®(a))
where p : Uly, o,) — Aut(B;;) is the restriction homomorphism. In particular, we have

. Bij _ B -1
VabelUs s Ty pw = PoRapor
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Proof

Given a root a € @5, let a € ® be the unique root of X such that & = a N 3;;. By proposition
(2.31), the map p : Uy — Us is an isomorphism of groups for each root & € ®;;. Given a € U} ,
we have

p(/U'B(a)) € p(U—aiaU—ai) = U—@q‘,p(a)U—&i

and
Vaedy:  p(pf(@)Uap(p®(@) " = p(B(@Uapt®(a)7") = p(Uria) = Una -
and thus
1P (p(a)) = p(u®(a))
by remark (2.34) (b). O
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Chapter 3 Alternative Rings

In this part, we introduce the parameter systems which arise in the description of Moufang
triangles and the six families of Moufang quadrangles. Moreover, we collect the basic results
which will be needed for the classification of twin buildings, and, closely related, the solution of
the isomorphism problem for Moufang sets.

For a detailed reference on these subjects, see [T'W]. Concerning alternative rings, we addi-
tionally refer to | ].

Chapter 3 Alternative Rings
Alternative division rings are the parametrizing structures for Moufang triangles, the building
bricks for simply laced twin buildings.
§ 3.1 Basic Definitions and Basic Properties
(3.1) Definition  An alternative ring is a triple (A, +,-) such that the following holds:
(A1) The pair (A, +) is a commutative group.
(A2) The multiplication - : A x A — A is biadditive.
(A3) The multiplication - : A x A — A is alternative, i.e., it satisfies
Va,yeA: [z,2,y] =04 = [y, x, 2] .
where [z,vy, 2] := (zy)z — z(yz) is the associator of z,y,z € A

(A4) There is an identity element 14.

(3.2) Lemma An alternative ring A is flezible, i.e., given z,y € A, we have

[xay7x] = OA .

Proof
Cf. page 27 of | ]. O

(3.3) Lemma (Moufang Identities) An alternative ring A satisfies the Moufang identities,
ie., given x,y, 2z € A, we have

(aye)z = o (y(a2)) | S(aya) = ((z0)y)a | (2y)(22) = 2(y2)a
Proof
Cf. page 28 of | ] O
(3.4) Definition  An alternative ring A is an alternative division ring if the maps
pw A=A z—aw, Ao A= A, x— wx

are bijective for each w € A*.

(3.5) Remark  Let A be an alternative division ring. Given x € A*, there are unique elements
z~! ™" € A* such that

—1

zx=1y =2 -2 "

By lemma (3.2), we have

Ntz ™Y =abae =27l a7 =1, a7 =27 = 0,0 (1), xxT =1y

and therefore 7! ==z~ =z,
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(3.6) Lemma An alternative division ring A has the inverse properties, i.e., given x,y € A*,
we have
e Hzy) =y, (yx)x’l =Y, (xy)71 =y lgt .

Proof
This results from the Moufang identities. O

(3.7) Definition  Let (A, +,) be an alternative ring. Then (A, +, o) with the multiplication
0! AXA—A zoy:=y- -z

is the opposite alternative ring.

(3.8) Definition  Let A, A be alternative rings.

e An (anti- Jisomorphism of alternative rings is an additive isomorphism v : A — A such that
Voyeh: gy =v0@nhl) (@) =1ur@)) -
e A Jordan homomorphism is an additive monomorphism 7 : A — A such that
7(1a) =1z, Va,yeh: y(ryr) =y(@)y(y)y(e) -

(3.9) Notation  Let A be an alternative division ring.
e We denote the group of automorphisms of A by Aut(A).
e We denote the set of anti-automorphisms of A by Aut®(A).

e Given w € A, we set
Ao A=A 2 wx, pw A=Az aw, Yo i A=A, = wlzw .
Notice that the conjugation map 7, is well-defined by (9.23)(ii) of [TW] with ¢ := a.

e We denote the opposite alternative division ring by A°.

e We denote the group of Jordan automorphisms of A by Aut;(A).

(3.10) Definition  The center of an alternative ring A is
Z(A) = {z € A | [r, A A] = [r,A] = 0,} |

where [z,y] :== 2y — yz is the commutator of z,y € A.

(3.11) Lemma  Let A be an alternative division ring. Then K := Z(A) is a field and A is an
algebra over K.

Proof
This results from (9.18) and (9.23) of [TW]. O

§ 3.2 Octonion Division Algebras

The Bruck-Kleinfeld theorem states that a non-associative alternative division ring is an octonion
division algebra. First of all we give the exact definition of such an algebra before we collect some
basic concepts, including the doubling process.
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(3.12) Remark  The construction here is taken from [TW].

(3.13) Definition Let E/K be a separable quadratic extension and let o be the non-trivial
element of Gal(E/K).

o Given z € E, we write 2 := o(x).
e We denote the norm map and the trace map of E/K by N and T, respectively.

e Given € K*, we set

Yy x

@)= {(0 Dinverfornm, o= (¥ J)emrs.
(3.14) Lemma  Let E/K be a separable quadratic extension and let 8 € K* \ N(E). Then
the following holds:

(a) The set
H = (E/K, ) C My (E)

is an associative division ring.

(b) We have
H=1g-E+e-E.

(¢) The map
ocs H—-H, z+e-y—Txr—€-y

is an involution of H extending o.
(d) The maps
N:H—->K, z4+e-y— N(z)—8-N(y), T H-oK z+e-y— T(x)

are extensions of N and T

Proof
Cf. (9.2), (9.3) and (9.4) of [TW]. O

(3.15) Definition A quaternion division algebra is an algebra H isomorphic to (E/K, ) for
some separable quadratic extension E/K and some § € K*\ N(E). The map oy is the standard
involution of H.

(3.16) Definition  Let H be a quaternion division algebra.
o Given z € H, we write T := o4(x).

e Given € K*, we set

wo={() PYevenbcrmm,  e=(P Jemp.

e We define a multiplication on (H, ) by

r By u Bu\ _ (zu+Buy B(vz + Yu)
y ) \v a) \Zv4uy uax+pyv )’

which is non-associative.
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(3.17) Lemma  Let H be a quaternion division algebra and let 8 € K*\ N(H). Then the
following holds:

(a) With the ordinary matrix addition and the above multiplication, the set
0 := (H,8) C Mp(H)
is an alternative division ring.

(b) We have
O=1yg-H+e -H.

(¢) The map
0s:0—-0, 2+e-y—x—€-y

is an involution of O extending os.
(d) The maps
N:O—-K, z+e-y— N(x)—5-N(y) , T:0-K, 2+e-y—T(z)
are extensions of NV and 7'

Proof
Cf. (9.8) of [TW]. O

(3.18) Definition  An octonion division algebra is an algebra Q isomorphic to (H, 3) for some
quaternion division algebra H and some 8 € K*\ N(H). The map o, is the standard involution

of Q.

(3.19) Remark  In the following, we list the basic properties of an octonion division algebra
O which will be needed in the sequel. Since each subalgebra of O is a division algebra by (20.8)
of [T'W], we will omit the term “division” whenever we deal with an octonion division algebra
and its subalgebras.

(3.20) Notation Throughout the rest of this paragraph, @ denotes an octonion division
algebra.

(3.21) Remark The norm N : O — K is a quadratic form with associated bilinear form

(,):0x0=K, (z,y) = 2y +yx = T(zy) .

(3.22) Definition Let V be a vector space over K. A quadratic form q : V' — K is non-defective
if the associated bilinear form

fo: V=K, (z,9) = q(z+y) —q(x) —q(y)

is non-degenerate, i.e., we have V+ = {0y}, cf. definition (4.30). Otherwise, it is defective.
(3.23) Lemma  There exists an element « € O such that z # z.

Proof
Cf. (20.15) of [TW]. O

(3.24) Corollary =~ We have
<'7 > $é Ok -

As a consequence, (-, -) is non-degenerate, hence N is non-defective.
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Proof
e Char O # 2: In this case, we have
(1g,10) =2-N(1g) =219 # 0g .
e Char O = 2: By lemma (3.23), there is an element x € @ such that x # Z. We obtain
(z,lp) =+ #0p .

Now the map (-,-) = T is non-degenerate by (20.16) of [T'W], cf. definition (20.12) of [TW]. O

(3.25) Lemma Let 2,y € O@. Then the following holds:
(a) There is an associative subalgebra A containing both x and y.
(b) If we have T # z, then A can be chosen to be a quaternion subalgebra H.

(¢) There exists a quaternion subalgebra H containing x.

Proof
Parts (a) and (b) result from the proof of (20.22) in [TW]. Part (c) is (20.23) of [TW]. O

(3.26) Lemma (Doubling Process)  Let A be a subalgebra such that A+ ¢ A, let e € A+\ A
and let u := —N(e). Then the following holds:

(a) The set A := A + e - A is a subalgebra.
(b) We have
e=—e, e-ACAT, Ane-A={0g}.
(c) Given z,y € A, we have
(e-z)(e-y) = ulyz) (e-z)y=e-yx, zle-y)=e-Ty.

Proof
This is (20.17) of [TW]. O

(3.27) Remark Let A be an alternative division ring. By definition, we have

ZA)={zeA|[zx,Al =[z,AA] =04} .

(3.28) Lemma Let A be an alternative division ring. Then we have

Z(A) ={z € A|[z,A] =04} .

Proof
The assertion is clearly true if A is a skew-field, thus we may suppose O := A to be an octonion
division algebra. By proposition (1.9.2) of [Sp], we have

{x€eO]|[z,0,0]=0p} C{zcO|[z,0] =00}
and therefore

Z(0) = {z € 0| [2,0] = [z, 0,0] = 0}
c {.’EE@| [x7@a©] :0@} - {1’6@ | [1'7@] = [l’,@,@] :0@}22((0)) :
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§ 3.3 The Bruck-Kleinfeld Theorem

On the one hand, we will need the minimum equation in §28.2, and on the other hand, we will
need the classification of alternative division rings which are quadratic over a subfield of its center
in §21.5. The main steps in the proof of the Bruck-Kleinfeld theorem in [T'W] involve those

algebras and the corresponding classification result, thus we mention them at this point and
dedicate a short paragraph to this fundamental theorem.

(3.29) Definition  Let A be an alternative division ring, let K := Z(A) and let F be a subfield
of K. Then A is quadratic over IF if there are maps T = Tf\ N = Nﬂf} : A — T such that

VacA: a®>—T(a)a+ N(a) =04 , VacF: T(a) =2a, N(a)=a*. (3.1

The maps T and N are the trace and the norm, respectively.
(3.30) Remark Trace and norm are uniquely determined by the minimum equation (3.1).

(3.31) Proposition A non-associative alternative division ring A is quadratic over its center.
In particular, an octonion division algebra @ is quadratic over its center.

Proof
This is theorem (20.2) of [TW]. O

(3.32) Proposition  Let A be an alternative division ring which is quadratic over some subfield
F of its center K := Z(A), let T and N be the trace and the norm, respectively, and let

c:A—=A z—T(z)—x.
Then exactly one of the following holds:
(i) A=K, CharK=2, K2 CF #K and o = id,.
(iil) A=K =F and 0 = id,.
(iii) A =K, K/F is a separable quadratic extension and (o) = Gal(K/F).
(iv) A is a quaternion division algebra over K, F = K and o = 0.
(v) A is an octonion division algebra over K, F = K and ¢ = 0.

In each case, we have

N(z) =z2° = 2%z

for each x € A.

Proof
This is theorem (20.3) of [TW]. O
(3.33) Theorem (Bruck-Kleinfeld-Theorem) A non-associative alternative division ring

is an octonion division algebra.

Proof
This is a consequence of proposition (3.31) and proposition (3.32). O
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§ 3.4 Discrete Valuations and Composition Algebras

Given a Bruhat-Tits building, the defining field for the building at infinity is complete with respect
to a discrete valuation. In particular, we will have to deal with octonions and thus composition
algebras which are complete with respect to a discrete valuation.

(3.34) Definition  Let A be an alternative division ring. A discrete valuation of A is a map
v : A* — Z such that

v(zy) =v(z) +v(y) , v(z +y) > min{v(z),v(y)}

for all z,y € A*. A v-uniformizer is an element m € A* such that (v(m)) = v(A*).

(3.35) Lemma Let A be an alternative division ring with discrete valuation v. Then the map

27V gty

0, A xA—R, (x,y)b—>{
0 ,T=y

is a metric.

Proof
This is lemma (9.18) of [W]. O

(3.36) Definition  Let A be an alternative division ring with discrete valuation v. Then A is
complete with respect to v if (A, d,) is a complete metric space.

(3.37) Definition A composition algebra over a field K is a unital algebra A over K together
with a non-defective quadratic form N : A — K which permits composition, i.e., we have

Va,yeh: N(zy) = N(z)N(y) .

(3.38) Lemma  An octonion division algebra O is a composition algebra over K := Z(Q).

Proof
The norm N is non-defective by corollary (3.24) and multiplicative by (9.9)(iii) of [TW]. O
(3.39) Lemma Let A be an alternative division ring with discrete valuation v. Then the

following holds:

(a) The algebra A is complete with respect to v if and only if the center Z(A) is complete with
respect to v|z(a)-

(b) If A is a composition algebra which is complete with respect to v, we have

VeeA: v(z) = V(N(x)) (: V(N(_x)) = V(—.T)) .

Proof

(a) This is proposition (23.14) of [W].

(b) This results from proposition 1 of [P]. O
(3.40) Definition Let A be a composition division algebra over K which is complete with

respect to a discrete valuation v and such that its residue field A is a composition algebra over
the residue field K. Then A is unramified if we have v(A) = v(K), and ramified otherwise.
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Chapter 4 Quadratic Spaces

Quadrangles of quadratic form type are parametrized by quadratic spaces.

§ 4.1 Basic Definitions and Basic Properties

(4.1) Definition

e An (anisotropic) quadratic space is a triple (Lo, K, ¢) such that K is a field, Lg is a right
vector space over K and ¢ is an (anisotropic) quadratic form on Ly, ie., q: Ly — Kisa
map such that the following holds:

(Ql) Vae Ly, teK: g(at) = q(a)t?.
(Q2) The map
fa i Lo x Lo = K, (a,b) = q(a+b) —q(a) — q(b)
is bilinear.
(Q3) Ya€ Lyp: ¢q(a) =0k & a=0g,.

A quadratic space (Lo, K, ¢) is proper if we have f, # Ok.

Two quadratic spaces (Lo, K, q) and (Lo, K, §) are isomorphic if there is an isomorphism

¢ = (Soa(ﬁ) : (LOaK) - (EOvK)

of vector spaces such that
qop=¢ogq.

A quadratic space (Lo, K, q) is unital if there is a basepoint € € Ly such that ¢(e) = 1x.

e Given a quadratic space (Lo, K, g) with basepoint €, we set
T:Lo— K, o+ fyle,z) = fo(z,¢€), c:Lo— Lo, z—x:=¢-T(x)—x.
Given a € L, we set
7ot Lo = Lo, v —=v—a- fela,v)/q(a), ha : Lo — Lo, v — mame(v) - q(a) .
(4.2) Lemma Let (Lo,K,q) and (fLO,NK, q) be quadratic spaces with basepoints e and €,

respectively, and let (¢, @) : (Lo, K, q) — (Lo, K, §) be an isomorphism of quadratic spaces such
that ¢(e) = €. Then we have

Top=¢oT, Gop=ypoo.

Proof
Given z,y € Ly, we have

fi(e(@), 0(y))

q(e(@) +o(y) — d(e(2) — d(e(y))
oz +y) —a(z) —q(y)) = ¢(fq(,y)) -

In particular, we have

T(p(x)) = fa(o(x),6) = (fe(w,€)) = ¢(T(x))
and thus

for each x € Lg. O
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(4.3) Notation Throughout this paragraph, (Lo, K, g) is a quadratic space with basepoint .
(4.4) Lemma The maps T : Ly — K and o : Ly — Lo are K-linear.

Proof
Given z € Ly and s € K, we have

T(z-s) = fole,x-s) = fy(e,x)s = T(x)s
and thus
(z-5)7=€eT(x-s)—x-s=eT(x)s—w-s=(e-T(x)—z) -s=a""5.
Given z,y € Ly, we have
T(z+y) = folex+y) = fole,x) + fole,y) = T(x) + T(y)
and thus

(@+y)=eTl@+y —(z+y)=eT(@)—v+eT(y) —y=a"+y°

O

(4.5) Lemma  Given x € Ly, a € L§, we have

he(z) = a- fgla,27) — 27 - q(a) .
Proof
Given x € Ly, a € L, we have
ha(x) = mame(z) - q(a) = 74 (m —€- fqle, ) ) q(a)
= —7a(27) - q(a) = —(27 — a- fy(a,27)/q(a))q(a) = a- fo(a,27) — 27 - q(a) .

O

(4.6) Corollary Given a € Lj, the corresponding Hua map h, is K-linear.

Proof

Let a € Lf, z,y € Lo and s € K. By lemma (4.5) and lemma (4.4), we have

ho(z-s)=a- fyla,z% - s) —x7 - sq(a) = (a - fola,z7) — 27 - q(a)) -8 =hg(x) s
and
ha(z +y) = a- foa, (x +y)7) — (& +y)7 - q(a)
=a- (fola,27) + fola,y7)) — 27 - q(a) —y7 - q(a) = ha(x) + ha(y) -

[

(4.7) Lemma  Given x € Ly, a € L and s € K, we have

ha.s(z) = he(x - 8%) = he(x) - 5%, has = 8% hg .
Proof
Let x € Ly, a € L and s € K. By lemma (4.5), lemma (4.4) and corollary (4.6), we have
has(®) =a-sf,(a-s,27) — 27 -qla-s) =a- f,(a,27)s* — 27 - q(a)s
— - fy(a (@52)7) — (152)7 - 4(a) = hale - 5%) = haa) - 52 |

O
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(4.8) Lemma  Given z,y € Lg, we have
fa(@7,y) = fo(y7, 2) = folz,y7) .

Proof
Given z,y € Lo, we have

fo@?,y) = fole- T(x) = 2,y) = —fo(,y) + foley)T(x) = = fy(2,y) + T(2)T(y) ,

which is symmetric in x and y. O

(4.9) Remark

(a) Given x € Ly, we have
fa(z,2) = q(22) — q(x) = ¢(z) = 49(z) — 29(z) = 2g(z) .

(b) We have
€ =€ fole,e) —e=€-2—e=c¢.

(4.10) Corollary  Given x € Ly, we have

Proof
Let © € Ly. By remark (4.9) (b) and lemma (4.8), we have

T(z) = fole;27) = fo(€”,27) = fy(e, (27)7) = T(27) .

O
(4.11) Corollary We have o2 = idp,.
Proof
Given x € Lg, we have
(Z‘a’)ﬂ' :€~T($U)—x‘7 :€T($)— (€T(Z‘) —Jj) =r.
O

§ 4.2 Small Dimensions

Quadratic spaces of small dimension are in fact quadratic spaces corresponding to fields.

(4.12) Theorem Let (Lo, K, g) be a quadratic space with basepoint € such that dimg Lo < 2.
Then there is a unique multiplication * : Ly X Ly — Lg such that the following holds:

(i) The triple F := (Lo, +, *) is a field.
(ii) The subspace K := (e)x is a subfield of F.
(iii) The map ¢ : K — K, s — €- s is an isomorphism of fields.
)

(iv) Given x € Lo, we have

d)(q(z)) =zxx .
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Proof
Condition (iii) forces

Vs, teK: (e-s)x(e-t) = @(s) xP(t) = Pp(st) =€ st ,
which makes K really into a field, hence (i) and (iii) hold.

e If we have dimg Lo = 1, then F = K is a field. By lemma (4.4) and remark (4.9) (b), we
have
VseK: (e-5)7 =€ -s=¢€-s

and thus
VseK: d(gle-s)) =d(s*) =e s> =(e-s)x(e-5) = (e-5)x(e-5)7 .

e If we have dimg Ly = 2, there is an element Z € Ly \ K. Conditions (i) and (ii) force
T xe:=72 =:ex T, and condition (iv) forces

FT(F) —Exi=Fx(e-T(F)—7) =3+ = ¢(q(#)) = e- q(3)

S

() —e-q(7). Given s,t, 5, € K, we set
+Z-1) =€ (s5—q(@)t) + & - (st + 5t + T(T)t) .
Let f:=y? —yT(Z) + q(7) € Kly]. Given s € K, we have
52 =sT(2)+q(Z) = q(e(s)) —sfy(e, 2)+a(Z) = q(e(5)) +4(&) — fo (€5, %) = qle-s+T) # O -

Therefore, the polynomial f € K[y] is irreducible. Let x be an element in the algebraic
closure of K such that f(z) = Og. Then F := K(z) is a field with dimg F = deg(f) = 2 and
multiplication given by

and thus T+« % := 7 -

(e-s+T-t)x(e-3

r? = 2T(%) — q(2) .

Therefore, the map R
P:F—F s+at—e-s+T-t

i) holds. Given s,t € K, we finally have
i)t2 4 fy(es,@-1)) =€ (s* + fyle, @)st + q(2)t?)

is an isomorphism of fields, hence
dgle-s+i-t)=e€-(s°+gq
=¢ (s + T(2)st + q(@)t*) + & - (—st + st + T(3)t* — T(2)t?)
=(e-s+i-t)x(e-s+eT(T-t)—2-1)
=(e-s+T-t)x(e-s+T-1)7,

(
(

hence (iv) holds.
O

(4.13) Definition Given a quadratic space (Lo, K, ¢) with basepoint € and dimg Ly < 2, we
set
F(Lo,K,q) :=F,

where F is as in theorem (4.12).

(4.14) Corollary Let (Lo, K, g) be a quadratic space with basepoint ¢ and dimg Lo < 2, let
F:= F(Lo,K,q), let K := () and let ¢ : K — K, s — e-s. Then F is quadratic over K, we have
Nﬂg = ¢ oq, the map (idg,, ) : (Lo, K,q) — (F,K, Nﬂg) is an isomorphism of quadratic spaces,
and exactly one of the following holds:

(i) CharF =2, F?2 C K # F and ¢ = ids, which means that /K is inseparable.
(i) K=F and o = idz.
(iii) F/K is a separable quadratic extension and (o) = Gal(F/K).
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Proof
By construction, we have

VeelF: zxx—xx(e-T(z))+ e q(x) =0z,
thus F is quadratic over K = (€)g with Nﬁlz =¢ogq, T]g = ¢oT and
Vel seK: idry(x-s)=z-s=ax*(e-s) =1idg,(z) * ¢(s)
(which shows that (idz,, ¢) is an isomorphism of quadratic spaces), and we have
Vrel: U(.%‘)ZG-T(.CL’)—.’L‘:T]IE(LB)—QT,

which is just the map o in proposition (3.32) (which we apply). We have dimz F < 2, thus
(F,K, o) is neither of type (iv) nor of type (v). O

(4.15) Lemma  Let A be an alternative division ring which is quadratic over a subfield F of
its center. Then (A,F, N) with NV := N& is a quadratic space.

Proof
By proposition (3.32), we have N(x) = zx° for each z € A.

(Q1l) Given s € F, we have

(Q2) Given z,y € A, we have

fo(x,y) = N(z +y) — N(z) — N(y)
=(@+y)(r+y) -2 —yy® =ay’ +yz = xy’ + (xy”)’ = T(xy’) ,

which is K-linear in z and y by lemma (4.4).

(Q3) Given = € A, we have
N(J})#OA S relUy=A".

O

(4.16) Definition A quadratic space (Lg, K, ¢) with basepoint € is (linear) of type (m) if we
have (Lo, K, q) = (A,F, N#) as in (m) of proposition (3.32), i.e., the quadratic space (Lo, K, g) is
of type
(i) if F:= Lo is a field with CharF =2, F2 CK #F, 0 = idg and ¢ = NE,
(ii) if we have Ly = K, 0 = idg and ¢ = Ng,
(iii) if E := Ly is a field, E/K is a separable quadratic extension, (¢) = Gal(E/K) and ¢ = NE,

(iv) if H := Ly is a quaternion division algebra over K, o = o5 and ¢ = N,
(v) if O := Ly is an octonion division algebra over K, ¢ = o5 and ¢ = N]g.
(4.17) Remark These are exactly the quadratic spaces such that the corresponding Moufang

set of quadratic form type is isomorphic to a Moufang set of linear type, cf. theorem (31.7) and
lemma (31.23). This explains the terminology.
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§ 4.3 Clifford Algebras and the Clifford Invariant

(4.18) Definition

o A central simple algebra is a finite-dimensional associative algebra (A, K) which is simple as
a ring and such that Z(A) 2 K as fields.

e Two central simple algebras (4,K) and (A, K) are isomorphic if there is an isomorphism
(7, 9) : (A, K) — (A, K) of vector spaces such that 7 is an isomorphism of rings.

e Let (Lo, K, q) be a quadratic space, let T(Lg) be the tensor algebra of Ly and let
I(q) = (u®u—1g - q(u) | u € Lp) .
Then C(q) :=T(Lo)/I(q) is the Clifford algebra of q.

(4.19) Lemma Let (Lo, K, g) be a non-defective quadratic space such that dimg Lg is even.
Then (C(q), K) is a central simple algebra.

Proof
This results from proposition (11.6) of | ]. O

(4.20) Theorem (Wedderburn) Given a central simple algebra (A, K), there are a unique
natural number n € N* and an associative division algebra (D, K) such that (A,K) = (M,(D),K)
as algebras. The algebra (D, K) is unique up to isomorphism of algebras.

Proof
Cf. theorem (1.1) of | ] O

(4.21) Definition

o Given a central simple algebra (4, K), we set S(4,K) := [(D, K)], where (D, K) is a division
algebra as in theorem (4.20) and [(D,K)] denotes its isomorphism class.

e Let (Lo, K, g) be a non-defective quadratic space such that dimg Lo is even. Then
Clif(¢) :==S(C(q),K)
is the Clifford invariant of q.

(4.22) Lemma Given two isomorphic central simple algebras (A4, K) and (A4, K), we have
S(A,K) = S(A4,K) .

Proof o
Let n,n and (D, K), (D, K) be as in theorem (4.20). Then we have
(Mn(D),K) = (4,K) = (4,K) = (M;(D), K)

as algebras and thus (D, K) 2 (D, K) by theorem (4.20). O

(4.23) Lemma Let (Lo, K, q), (Lo, K, §) be isomorphic quadratic spaces. Then we have
(C(9),K) = (C(9),K)

as algebras. In particular, we have Clif(¢) = Clif(q) if the dimensions are even and at least one
(and thus both) quadratic spaces are non-defective.

Proof
This results from (12.23) of [TW]. In particular, we may apply lemma (4.22). O
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§ 4.4 Norm Splittings

(4.24) Definition Let (Lo,K,q) be a quadratic space. A norm splitting of q is a triple
(E,-,{v1,...,vq}) such that the following holds:

(N1) E/K is a separable quadratic extension,
(N2) - : Ly xE — Ly is a scalar multiplication extending the scalar multiplication - : Lo x K — Ly,

(N3) {v1,...,v4} is an E-Basis of Ly with

d d
th,...7td€El q(zvztz):ZSzN(tz)a
i=1 =1

where s; = q(v;) for each i € {1,...,n} and N = NE.

The elements s1,...,sq € K are called the constants of the norm splitting.

(4.25) Lemma  Let O be an octonion division algebra with center K := Z(Q0) and let E be
a subfield such that E/K is a separable quadratic extension (which exists by lemma (3.23) and
(20.19) of [TW]). Then there are vy,...,vs € O such that (E,-,{v1,...,v4}) is a norm splitting
of (O, K, N), satisfying s1 ---s4 € N(E).

Proof
Let v1 := 1g. By (20.20) of [T\V], there is an element vy € E+ \ E, and Hy := E + vy - E is a
quaternion division algebra. By (20.21) of [T'W], there is an element vz € Hy \ Hy. Finally, let

vy 1= vov3 € Hy \ Hy. Then {vy,...,vs} is an E-Basis of Q. By construction and (20.20) of [TW]
again,
H;, :=E+wv;-E

is a quaternion division algebra for each i € {2, 3,4}, satisfying v; € H;-\Hj for all i # j € {2,3,4}.
By lemma (3.26), we have

4
N( thvz) = (tl'l)l -+ tQ’UQ + tg’l)g + t4’U4) . (ljlt_l + 172{2 -+ 173{3 + @4{4)
i=1

In particular, we have s; = N(v;) for each ¢ € {1,...,4}, and thus, by lemma (3.26) again,

s1-84=N(v1)---N(vg) = N(vy---vy4) = N(vov3vavz) = N(—v3v3) € N(K) C N(E) .
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(4.26) Definition A quadratic space (Lo, K, q) is
e of type Fg if dimg Ly = 6 and ¢ has a norm splitting,
e of type Ey if dimg Ly = 8 and ¢ has a norm splitting (E, -, {v1,...,v4}) such that

s1---s4 ¢ NE) ,

e of type Fg if dimg Ly = 12 and ¢ has a norm splitting (E, -, {v1,...,vs}) such that
—s1--:86 € NE) .
(4.27) Remark As we only deal with anisotropic quadratic spaces and since each anisotropic

space having a norm splitting is automatically non-defective by remark (12.12) of [T'W] (and thus
proper), we may reformulate remark (12.30) of [T'W] as follows:

(4.28) Lemma Let (Lo, K, ¢) be a quadratic space having a norm splitting (E, -, {v1,...,va})
with constants si,...,sq and let

yoi= (=) gy gy
Then the following holds:
(a) We have C(q) = M,a(K) if v € N(E) and thus Clif(q) = [(K, K)].
(b) We have C(q) = Maa—1(H) if v ¢ N(E) and thus Clif(¢) = [(H, K)], where H = (E/K, 7).

Proof
This is remark (12.30) of [TW]. O

(4.29) Corollary  Let O be an octonion division algebra with norm N and center K := Z(0)
and let (Lo, K, §) be a quadratic space of type E7. Then the following holds:

(a) We have Clif(N) = [(K, K)].
(b) We have Clif(§) = [(H, K)] for some quaternion division algebra H with center K.
(¢) We have (0,K, N) 2 (Lo, K, §) as quadratic spaces.

Proof
(a) By lemma (4.25), N has a norm splitting (E, -, {v1,...,v4}) such that
vy=s1---54 € NE),
hence Clif(N) = [(K,K)] by lemma (4.28) (a).
(b) By definition, ¢ has a norm splitting (E, -, {v1, ..., vs}) such that
v=s1---51¢ N(E),
hence we may apply lemma (4.28) (b).
(c) Since K is a field and H is non-commutative, we have (K, K) 2 (H,K) as algebras and thus
Clif(N) # Clif(q) .

Now the quadratic spaces can’t be isomorphic by lemma (4.23).
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§ 4.5 Quadratic Spaces of Type F}

(4.30) Definition  Let (Lo, K, q) be a quadratic space.

e Given a subset W C L, we set

Whi={veLy| f(v,IW) =0xg} .

e The subspace Def(q) := Lg is the defect of q.

e The quadratic space (Lo, K, q) is non-defective if Def(q) = {0, }, and defective otherwise.

(4.31) Remark Let (Lo, K, ¢) be a non-proper quadratic space, i.e., we have f; = Ox. Then
we have Def(q) = Lo, and (Lo, K, q) is defective. In particular, a quadratic space is proper if it is
non-defective.

(4.32) Definition  Let (Lo, K, ¢) be a quadratic space and let Ry := Def(q). Then (Lo, K, q)
is a quadratic space of type F, if we have Char K = 2 and the following holds:

e ¢(Ro)/q(p) is a subfield of K for some p € Rj.

e For some complement Sy of Ry in Lg, the restriction of ¢ to Sy has a norm splitting
(E, -, {v1,v2}) with constants s1, s2 such that sys2 € g(Rg)/q(p).

(4.33) Remark By (14.2) of [T'W], the field ¢(Rp)/q(p) is independent of the choice of p € Ry.
In particular, we have

F:=g(Ro)/a(e) = q(Ro)
if (Lo, K, ¢) is a quadratic space with basepoint € € R{.

(4.34) Notation Let (Lo, K, ¢) be a quadratic space of type Fy and let p € Rj. We set

F:=q(Ro)/q(p) -

(4.35) Lemma A quadratic space (Lo, K, q) of type Fy is proper.

Proof

By definition, there is a complement Sy of Ry in Ly such that the restriction of ¢ to Sy has a norm
splitting (E, -, {v1,v2}) with constants s1, so such that s;so € F. Moreover, ¢ is anisotropic, hence
(S0,K, q/s,) is non-defective by (12.12) of [TW]. In particular, (So,K, qg,) and thus (Lo, K, g) is
proper. O

(4.36) Lemma  Let (Lo, K, q) be a quadratic space of type Fy and let (A, F, N) be a quadratic
space of type (m). Then we have

(LOaKv Q) "7:" (Avﬁ‘v N)

as quadratic spaces.

Proof

Assume (Lo, K, q) = (A,F,N). Since (Lg,K,q) is proper by lemma (4.35), (F, A, N) is proper
as well and thus (m)¢ {(i),(ii)} since we have CharK = 2. But a quadratic space of type
(m)e {(iii),. ..,(v)} is non-defective by (20.15) of [T'W] and the proof of corollary (3.24), while a
quadratic space of type Fy is defective by definition since F = ¢(Ry)/q(p) is a field. O
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Chapter 5 Involutory Sets

Quadrangles of purely involutory type are parametrized by proper involutory sets.

§ 5.1 Basic Definitions
(5.1) Definition

e An involutory set is a triple (K, Ko, o), where K is a skew-field, o is an involution of K and
Ky is an additive subgroup of K such that

1k € Ko , {a+a’ |aeK} =K, CK,C Fix(o) , VacK: a°Koa CKp .

e An involutory set (K, Ky, o) is proper if we have o # idkx and (Kg) = K as rings.

e Two involutory sets (K, Ko, o) and (K, Ko, &) are isomorphic if there is an isomorphism
¢ : K — K of skew-fields such that

?(Ko) =Ko , poo=0G0¢.

o Let (K, Ko,0), (K,Ko,5) be two involutory sets. A Jordan homomorphism is an additive
monomorphism v : Ky — Ky such that

v(1k) = 1g , Va,yeKo: y(zyr) = y(x)y(y)y(z) .

(5.2) Lemma  Let (K,Ky, o) be an involutory set. If Ky is commutative, then (K, Kg, o) is
non-proper. In particular, K is non-commutative if (K, Ko, o) is proper.

Proof
Suppose that we have (Kg) = K and ¢ # idg. Then K is commutative and Ky = Fix(¢) C K is a
field, cf. remark (11.3) of [T'W]. But then we have

K=(Ko)=Ko#K ¢.

§ 5.2 Jordan Isomorphisms of Involutory Sets

The following result is essential for the classification of Jordan isomorphisms of pseudo-quadratic
spaces on the one hand, and on the other hand, it is essential for the classification of a certain
class of 443-foundations.

Parts of the solution can be deduced from paragraph 4.10 of [I]. However, there are still some
details which have to be worked out. But for reasons of brevity, we don’t try to complete the
proof at this point and suppose the result to be true.

(5.3) Theorem  Let (K, Ky, o) be a proper involutory set, let (K, Ko, ) be an involutory set
and let v : Ky — Kq be a Jordan isomorphism such that «v(1x) = 1z. Then v is induced by an
isomorphism

¢: (Ka K07U) — (Kv K()v&) .

In particular, (K, Ko, &) is proper as well.

- 41 -



Part II Parameter Systems

§ 5.3 Involutory Sets of Quadratic Type

Quadrangles parametrized by non-proper involutory sets can equally described by quadratic
spaces, cf. chapter 38 of | ]. Although they don’t appear explicitly in the description of the
six families, they occur as substructures of proper pseudo-quadratic spaces, the parametrizing
structures for quadrangles of purely pseudo-quadratic form type.

(5.4) Definition  Let (A,F,0) be an involutory set (with A possibly an alternative division
ring) and K := Z(A). Then the involutory set is quadratic of type

(i) if we have A = K, CharK =2, K2 CF # K and o = id,
(ii) if we have A = K =F and o = id,,
(iii) if we have A = K, K/F is a separable quadratic extension and (o) = Gal(K/F),

—_ e =

(iv) if A is a quaternion division algebra over K, F = K and o = oy,
(v) if A is an octonion division algebra over K, F = K and ¢ = o,

where o, denotes the standard involution, cf. proposition (3.32). We denote the corresponding
norm by N and the corresponding trace by T'.

(5.5) Remark The following lemma gives a criterion when an involutory set is of quadratic
type. We will need it for the classification of a certain class of 443-foundations.

(5.6) Lemma  Let (K,Kp, o) be an involutory set, let F be a subfield of the center Z(K) and
let v € Aut(K, +) such that

(k) = 1k , VeeK: v(z)z eF.
Then the following holds:
(a) K is quadratic over F.
(b) If K is non-commutative, then K is a quaternion division algebra and we have

F=Z(K), v=o0,.

Proof
(a) Given x € K, we have
V(@) + 2 =1k +7(2) + o +y(2)r - Ig —(2)z
= (lx +7(2)) (I + ) — 1 — y(2)z
=7k +z)(lx +z) - lxk —y(@)z €F .
If we set
my :=t* — (y(z) + z) - t +v(z)z € F[t] ,
we have
mg(r) = 2% — y(z)z — 2 + y(z)z = O ,
thus K is quadratic over F.
(b) If K is non-commutative, proposition (3.32) implies that K is a quaternion division algebra
with F = Z(K). Moreover, we have
VzekK: os(x) =T(z) —x=v(x) +z—z="v(x)

and therefore
v=0s.
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(5.7) Remark The following results will be needed for the solution of the isomorphism
problem for Moufang sets of pseudo-quadratic form type in §11.

(5.8) Lemma  Let D be a skew-field and let E be a maximal subfield of D. Then we have
Con(E) =E.

Proof
This results from corollary (4.9) in chapter 8 of | ] O

(5.9) Notation  Let H be a quaternion division algebra with center K. Given x € H\ K, let
E, := (1g, x)x be the quadratic subfield of H generated by 1y and z, cf. (20.9) of [TW].

(5.10) Corollary  Let H be a quaternion division algebra and let z,y € H\ Z(H). Then we
have
xy=yr = E, =E, .

Proof
By lemma (5.8), we have
Er = <17517>Z(H) Q CH(Ey) = Ey .

O

(5.11) Lemma For i = 1,2, let (A;,F;,0;) be quadratic of type (iii), (iv) or (v) with
corresponding norms and traces N; and T;, respectively, and let ¢ : A; — As be an isomorphism
of alternative rings such that ¢(F;) = Fo. Then we have

VeeA: ¢(Ni(x)) = No(8(2)) , o(Ti(z)) = Ta(o(x)) -
Proof
Given z € A;, we have
® = Ti(z)x + Ni(z) = O, , ¢(x)* = Tz (¢(x)) $(w) + Na($()) = O,
and hence

0a, = ¢~ (d(2)? — Ta(d(2))p(x) + Na(¢(x)))
= ¢ 10(a® — o7 (Ta(o(@)))a + ¢~ (Na(6(@)))) = 2° — ¢~ (Ta(b(2)))x + ¢~ (Na(6())) -
As the maps T and Nj are uniquely determined by the minimum equation, we obtain
Nl(x) = ¢_1(N2(¢(x))) ) ¢(N1(x)) = N2 (d)(x)) )
Ti(z) = ¢~ (Ta(8(2))) , o(T1(x)) = Ta(o(x)) -
O

(5.12) Corollary For ¢ = 1,2, let (A;,F;,0;) be quadratic of type (iii), (iv) or (v) with
corresponding norms and traces N; and Tj;, respectively, and let ¢ : A; — As be an isomorphism
of alternative rings such that ¢(F;) = Fo. Then we have

¢pooy =0200¢.

Proof
Given z € A;, we have

¢o1(z) = ¢(7) = ¢(N1(z) - 27") = ¢(N1(2)) - d(z™") = N2(6(2)) - ¢(2) ™' = p(2) = 029(2) -
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(5.13) Lemma Let H be a quaternion division algebra, let E be a separable quadratic subfield
and let y € H\ E. Then we have

yeEt © VzeE: zy=vyz .

Proof
“=" This holds by lemma (3.26) (c).
“e=" Let e € E* and y1,ys € E such that y = y; + eyo. Given z € E\ Z(H), we have
YT+ eyoT = Y17 + eTys = (Y1 + - y2) = TY = YT = 1T + eyaT
hence
T =Y T y1(x —x) =0y , y1 = Om , y=ey, € EL .
Notice that we use lemma (3.26) several times.

O

(5.14) Remark The following results give a description for some extensions of isomorphisms
between subfields of two given composition algebras.

(5.15) Lemma For i = 1,2, let E;/K; be a separable quadratic extension and let t; € E; \ K;.
Let ¢ : K; — K5 be an isomorphism of fields. Then the map

By =By, x4ty -y— ¢x)+ts-d(y)
is an isomorphism of fields if and only if we have

¢(N1(t1)) = Na(t2) , o(T1(t1)) = Ta(ta) -

Proof
“=" This holds by lemma (5.11).
“«=" This is a direct calculation using the minimum equation.

O

(5.16) Lemma  For i = 1,2, let H; = (E;/K,;, 8;) be a quaternion division algebra and let
t; € Eif. Let ¢ : E; — Ey be an isomorphism of fields. Then the map

¢ Hi = Ha, x+t1-y = ¢(x) +t2- d(y)
is an isomorphism of skew-fields if and only if we have

¢(N1(t1)) = Na(ta) .

Proof
“=" This holds by lemma (5.11).
“«<” This is a direct calculation using the minimum equation and lemma (5.13).

O

(5.17) Remark We finally recall the list of quadratic spaces corresponding to involutory sets
of quadratic type.
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(5.18) Definition A quadratic space (Lo, K, q) is of type
(i) if F:= Lo is a field with CharF =2, F2 C K # F, 0 = idp and ¢ = Ng,
(ii) if we have Lo = K, o = idg and ¢ = NE,

)
(iii) if E := Lo is a field, E/K is a separable quadratic extension, (¢) = Gal(E/K) and ¢ = NE,
(iv) if H := Lo is a quaternion division algebra over K, 0 = o and ¢ = Ng,

)

(v) if O := Ly is an octonion division algebra over K, ¢ = o5 and ¢ = N]g.

(5.19) Remark
(a) By corollary (4.14), a quadratic space (Lo, K, ¢) with dimg Ly < 2 is of type (i)-(iii).

(b) We will see that the Moufang sets of a quadratic space (A, F, N&) of type (m) and of the
corresponding alternative division ring A coincide, cf. lemma (31.23).

Chapter 6 Indifferent Sets

Quadrangles of purely indifferent type are parametrized by proper indifferent sets.

(6.1) Definition

e An indifferent set is a triple (K, Ko, Ly), where K is a field with Char K = 2 and Ky and Lg
are additive subgroups of K containing 1x such that

K2Lo C Lo , LoKo C Ko , (Ko) = K as rings .

e An indifferent set is proper if we have Ko # K and Lo # L := (Lo).

e Two indifferent sets (K, Ko, Lo) and (K, Ko, Lo) are isomorphic if there is an isomorphism
¢ : K — K of fields such that

?(Ko) =Ko , ¢(Lo) = Lo
(6.2) Lemma  Let (K,Kg,Lg) be an indifferent set. Then (L, Lo, K2) is an indifferent set.

Proof
This is (10.2) of [TW]. O

(6.3) Definition  The opposite of an indifferent set (K, Ky, L) is the indifferent set (IL, Lo, K2).
(6.4) Lemma  Given a proper indifferent set (K, Ko, L), its opposite (L, Lg,K3) is proper.

Proof
Since (K, Ky, Lg) is proper, we have Lo # L. We have to show K2 # (K2). By remark (10.8) of
[T'W], the opposite of (L, Lo, K2) is (K2, K3,L2), and we have

(K2a K?), Lg) = (Ka KO» LO)

as indifferent sets. In particular, we have (K2) = K?. Moreover, we have K3 # K? since the map
Fr: K — K, 2+ 22 is injective and Ky # K by assumption. We finally obtain

Kj # K* = (Kg) -
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Chapter 7 Pseudo-Quadratic Spaces

Quadrangles of purely pseudo-quadratic form type are parametrized by proper pseudo-quadratic
spaces.

§ 7.1 Basic Definitions and Basic Properties

First of all we give the basic definitions and introduce the Moufang set of pseudo-quadratic form
type, more precisely, its associated group, corresponding to a pseudo-quadratic space.

(7.1) Definition

e An (anisotropic) right (resp. left) pseudo-quadratic space is a quintuple = = (K, Ky, o, Lo, q)
such that (K,Kg, o) is an involutory set, Lo is a right (resp. left) vector space over K
and ¢ is an (anisotropic) pseudo-quadratic form on Ly with respect to o, i.e., there is a
skew-hermitian form f on Ly such that the following holds:

(P1) Ya,be Ly: qla+b) =qa)+ q(b) + f(a,b) mod Ko,
(P2) Vae€ Ly, t e K: g(at) =t7q(a)t mod Ky (resp. ¢(ta) = tq(a)t® mod Kyp),
(P3) ¢q(a) =0x mod Ky & a=0g,.

e A pseudo-quadratic space (K, Ky, o, Lo, q) is proper if we have o # idg, Lo # {0} and if the
associated skew-hermitian form f is non-degenerate.

e Two pseudo-quadratic space = and Z are isomorphic if there is an isomorphism
® = (¢,¢) : (Lo, K) = (Lo, K)

of vector spaces such that ¢ : (K, Ky, o) — (K, Ko, ) is an isomorphism of involutory sets
and such that ~
pog=Goyp modK .

(7.2) Lemma  The skew-hermitian form f is uniquely determined by (7.1) (P1) and satisfies

VYaeLy: fla,a) = q(a) — q(a)? .

Proof
This is (11.19) of [TW]. Notice that we have K # K since E is proper. O

(7.3) Corollary Given an isomorphism ® = (¢, ¢) : ZE — = of pseudo-quadratic spaces, we
have

Va,be Lg: JE(SD(a)aSO(b)) = (b(f(avb)) .

Proof
We have to show that

Va,beLg: ¢_1(f(cp(a), ©(b)) = qla+b) —qla) — q(b) mod K .
Given a,b € Lg, we have

¢~ (f(p(a), (b)) €

- 46 -



Chapter 7 Pseudo-Quadratic Spaces

(7.4) Remark Let = be a pseudo-quadratic space and let a € L.
e Assume CharK # 2. Then we have

4g(a) = q(2a) = 2q(a) + f(a,a) mod Ko , q(a) =
e Assume Char K = 2. Then we have f(a,a) = gq(a) + q(a)? € Ko.

(7.5) Definition Given a pseudo-quadratic space Z, we set

T:=T(=) = {(a,t) € Ly x K | qa) — t € Ko} .

(7.6) Notation Throughout the rest of this chapter, let = be a proper pseudo-quadratic space
and let T be the corresponding set as in definition (7.5).
(7.7) Lemma  Given (a,t) € T, k € K, we have
(a,t+k)eT & keK,.
Proof
Given (a,t) € T and k € K, we have

(a,t+k)eT & qla)—t—keKyg & keqgla)—t+Ky=K,p .

O
(7.8) Corollary  Given (a,t) € T, we have f(a,a) =t —t°.
Proof
Let (a,t) € T. By lemma (7.7), there is an element k € Kq such that ¢t = g(a) + &, hence
t—t7 =q(a) + k —q(a)” — k% = q(a) — q(a)” = f(a,a)
by lemma (7.2). O

(7.9) Corollary  Let

T xT =T, (a,t)- (bv) = (a+bt+v+ f(ba)) .
Then (T),-) is a group with Z(T) = {(0,,t) | t € Ko} = Ky and (a,t)"! = (—a, —t°) for each
(a,t) € T.

Proof
This results from (11.24) and (38.10) of [TW]. Notice that = is proper. O

(7.10) Remark  In the following, we don’t distinguish between Z(T) and Ko, i.e., we consider
Ko to be a subset of T' via the above identification.
(7.11) Lemma Given (a,t), (b,v) € T, we have
(a,t) - (byv) €Ky & a=-b.
Proof
Given (a,t), (b,v) € T, we have
(a,t)- (bv) €Ko & (a+bt+v+ f(ba)) €Ky & a+b=0g, & a=-b.
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§ 7.2 Jordan Isomorphisms

We collect some first results about isomorphisms preserving the Moufang set structure.

(7. 12) Notation Throughout this paragraph, let = be an additional pseudo-quadratic space,
let T be the corresponding group as in definition (7.5) and let v : T — T be an isomorphism of
groups.

(7 13) Remark As T' is non-abelian and v is an isomorphism of groups, we have & # idg,
Lo # {0}, and the associated skew-hermitian form is not identically zero, i.e., E is pre-proper.
Moreover, it is proper if we have Char K # 2, and, if Char K = 2, we may replace = by a proper
pseudo-quadratic space, cf. definition (35.5) of [TW].

Thus we get a satisfying solution of the isomorphism problem for Moufang sets of pseudo-
quadratic form type if we restrict to the case of two proper pseudo-quadratic spaces.

(7.14) Corollary ~ We have v(Ky) = Ko.

Proof
We have v(Ko) = v(Z(T)) = Z(T) = Ko. O

(7.15) Lemma Let @1 : T — Lo, 2 : T — K defined by

’Y(Qa t) = (901 (a7 t)v P2 (a7 t)) .
Then we have
vV (a,t) €T p1(a,t) = pi(a) .
Moreover, the ¢ : Ly — Lo is an isomorphism of groups.
Proof
e Given (a,t), (a,u) € T, we have
(a,t) - (a,u)~ " = (a,t) - (—a, —u") € Ky = Z(T)

by lemma (7.11); therefore,

(501(0'7 t)a QDZ(aa t)) ’ ( - Spl(av u)a _502(0'7 u)&) = ’72(0'7 t) : 72(047 u)il
= 'yg((a,t) . (a,u)fl) € Z(T) =K,

and thus ¢1(a,t) = ¢1(a,u) by lemma (7.11) again.

We have (a, q(a)) € T for each a € Lg, hence ¢ is well-defined.

As the multiplication in T is additive in the first component, ¢; is additive.

Let (a,t) € T such that a € Ker ;. Then we have
7(a7t) = (OLU7@2(a7t)) € KO - Z(T) )

hence (a,t) € Z(T) = Ky by corollary (7.9) and thus a = 0p,.

We have (a,§(a)) € T for each a € L. As 7 is surjective, ¢y is surjective as well.
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(7.16) Definition A Jordan isomorphism is an isomorphism of groups v : T" — T with
7(0,1x) = (0, 1) such that the maps @1 : T — Lo, @2 : T — K defined by

7(‘17 t) = ((pl(a7 t) = 4,01((1)7 P2 (a’ t))
satisfy
01 (bt‘7 —at™ f(a, b)t”) = p1(b)pa(a,t)? — p1(a)es(a, t)_lf(gol(a), apl(b))gpg(a, H?,  (7.1)
v (bt" — atilf(a, b)t?, tvt") = @a(a, t)pa(b,v)pa(a, t)‘}
for all (a,t), (b,v) € T.

(7.17) Definition  Given (a,t) € T*, the Hua-map with respect to (a,t) is
hiapy : T =T, (bv)— (bt‘7 —at™ ' f(a, b)t”,tvt”) )
(7.18) Remark A Jordan isomorphism could equally be defined as an isomorphism of groups

v : T — T satisfying v(0, 1x) = (0, 1z) and preserving the Hua-maps, i.e, given (a,t), (b,v) € T*,
we have

’Y(h(a,t)(ba U)) = B'y(a,t) (V(b’ U)) :

(7.19) Lemma  We have h, ) € Aut(T) for each (a,t) € T*.

Proof
This is theorem 2 of [DW]. O
(7.20) Notation Since the first component in A, +)(b,v) is independent of v, we may restrict

h(a,+) to the first component, i.e., given b € Lo, we set

B(ap) (D) :=bt” —at ™' f(a,b)t" .

(7.21) Lemma  Let v:T — T be a Jordan isomorphism. Then the following holds:
(a) Given b € Ly, (0r,,t) € Ko, we have p1(b-t) = p1(b) - 02(0r,, t).
(b

(c
(d) Given (a,t) € T and s € Ko, we have @a(a,t + s) = ¢a(a,t) + ¢(s).

Given (a,t) € T, (0r,,v) € Ko, we have p2(0r,, tvt?) = @a(a,t) - ¢2(0r,,v) - p2(a,t)’.
The map ¢ : Ko — Ko, t — 2(0z,,t) is a Jordan isomorphism as in definition (5.1).

)
)
)
)

Proof
(a) This results from identity (7.1) with a = 0p,. Notice that we have
Ko C Fix(o) 7(Ko) = Ko C Fix(5) .
(b) This results from identity (7.2) with b = 0.
(¢) By corollary (7.14), ¢ is an isomorphism of groups. Given (0r,,t), (0r,,v) € Ko, we have
2(0,tvt) = 2(0,t0t7) = 2(0, 1) - p2(0,v) - 92(0,8)7 = 2(0,) - p2(0,v) - 2(0, ) -
(d) Given (a,t) € T and s € Kg, we have

(901 (CL), 902(047 i+ 5)) = 7(0‘7 i+ 5) = 7(0‘7 t) ’ ’Y(Oa 5)
= (301(0’)7902(0'7”) : (07¢(8)) = (301(0‘)7902(0'7” + ¢(8)) .
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Chapter 8 A Partial Result

For the classification of 443-foundations in part IX, we will need a part of the solution of the
isomorphism problem for Moufang sets of pseudo-quadratic form type. We state a version of the
result at this point and break up the proof into several steps. The main point is that under certain
conditions, a Jordan isomorphism of pseudo-quadratic spaces is induced by an isomorphism of the
corresponding pseudo-quadratic spaces, and we handle the possible cases one by one.

Then we have a closer look at the exceptions, which only occur in small dimensions, before we
finally show that each of the appearing maps really induces a Jordan isomorphism.

Chapter 8 A Partial Result

(8.1) Theorem Let = and = be proper pseudo-quadratic spaces, let v : T — T be a Jordan
isomorphism and suppose that one of the following holds:

(i) The involutory set (K, Ky, o) is proper.
(ii) The involutory set (K, Ky, o) is quadratic of type (iii) or (iv) and dimg Lo > 3.
(iii) The involutory set (K, Ko, o) is quadratic of type (iii) or (iv), dimg Lo < 2 and K 2 K 2 F,.

Then ~ is induced by an isomorphism ® : & — = of pseudo-quadratic spaces.

Proof
This results from theorem (9.8), theorem (10.38), theorem (11.11) and theorem (12.18). O

[1]:

(8.2) Notation Throughout this part, let = and = be proper pseudo-quadratic spaces, let
v :T — T be a Jordan isomorphism and let ¢ : Ko — Ko, t — ¢2(0,,1).

Chapter 9 The Involutory Set Is Proper

The first case is that of a proper involutory set (K,Kp,o). The solution of the isomorphism
problem for proper involutory sets yields an isomorphism ¢ : K — K. From identity (7.1) and the
fact that K, generates K as a ring, we deduce that (@1, ¢) : (Lo, K) = (Lo, K) is an isomorphism
of vector spaces.

Finally, we show that the second component of v is induced by ¢, using identity (7.2) and the
fact that the dimension of (Ko)zk) over Z(K) is at least 2.

(9.1) Notation Throughout this chapter, let (K, K, o) be proper.
(9.2) Lemma Let (K, Ko, &) be a proper involutory set and let s,t € K be such that
VueK: sus® = tut? .

Then we have t~'s € Z(K).

Proof
First of all we notice that

ss&:s~1K~s&:t~1K~t&:tt‘}

and thus . o o
VuekKg: sus™t = sus?(ss7) "t = tut? (tt7) " = tut ™t .
It follows that . A
Vue (Kg)=K: tisu(t's) =u ,
hence t~'s € Z(K). O
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(9-3) Remark  As (K, Ky, o) is proper, the map ¢ : Ko — Ko as defined in notation (8.2) is
induced by an isomorphism ¢ : (K, Ky, o) — (K, Ky, d) of involutory sets, and (K, Ky, &) is proper,
cf. theorem (5.3).

(9.4) Corollary  Let (a,t) € T. Then there is an element A € Z(K) such that
wa(a,t) = A o(t) .

Proof
By lemma (7.21) (b), we have

P(t)p(v)p(t)7 = P(tvt”) = ©2(0,t0t7) = pa(a, t)pa2(0,v)pa(a, )7 = @a(a, t)p(v)ea(a,t)”
for all (a,t) € T, v € Ky and thus
¢(t) 0K qj)(t)a = 902(% t) U 902<a= t)&

for all (a,t) € T, © € Ko. Now the assertion results from lemma (9.2). O

(9.5) Lemma  We have
dimz(K) <K0>Z(K) > 2.

Proof
As (K, Ky, o) is proper, there is an element = € Ko \ Z(K) by lemma (5.2). O

(9.6) Corollary  Let (a,s) € T. Then there is an element ¢ € K such that
(a,t) eT s S ¢ <tU>Z(K) .

Proof
We have (a, —s?) € T. By lemma (9.5), there is an element u € Kq such that s ¢ (u) z(k), thus
2
sE(=stu)zm) = ((=s+u)" )zm) = (=57 +u)") zx) ,

and by lemma (7.7), we have (a,—s +u) € T. O

(9.7) Lemma  Given (a,s) € T, we have
pa2(a,s) = o(s) .

Proof
Let (a,s) € T and let t € K be as in corollary (9.6). Notice that s +t7 € Ky. By corollary (9.4),

there are A, A2 € Z(K) such that

pa(a,s) = A - @(s) , pa(=a,t) = A2 - (1) .

Observing corollary (7.8), we obtain

(0,0(s) + ¢(t7)) =7(0,s +t7) = (0, s + t — f(a,a))
(a’v 8) ' ’}/(—(Z, t) = ((,01((1), 902(a7 5)) : ((pl(_a)’ 902(_0‘7 t))
(0, ¢2(a, 8) + p2(—a,t) = f(p1(—a),p1(~a)))

= (O, pa(a, s) + pa(—a, t)&) = (O, A1 d(s)+ Aa - qzﬁ(ta))

and thus A\ = 1 by the linear independence of ¢(s) and ¢(t7), cf. remark (9.3). O

v
v
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(9.8) Theorem  If (K, Ko, o) is proper, the map ® : = — = defined by

b= (9017¢) : (LOvK) — (IN/,K), (avt) = (Qol(a)vqb(t))
is an isomorphism of pseudo-quadratic spaces satisfying

v (a7t) S A (I)(a7t) = 7(0’3 t) :

Proof
e By remark (9.3), the map ¢ : (K, Ko, o) — (K,Kg,5) is an isomorphism of involutory sets.

e By lemma (7.15), the map o7 : Ly — Ly is an isomorphism of groups. Given a € Ly and
t1,...,t, € Ky, we have

eir(a -ty tn) = @i(a) - o(t1) - ¢(tn) = p1(a) - Gty - ty)
by lemma (7.21) (a), thus (¢1, ¢) is an isomorphism of vector spaces as we have (Ky) = K.

e Given (a,t) € T, we have

d(p1(a)) € pa(a,t) + Ko = ¢(t) + Ko = ¢(t + Ko) = ¢(q(a) + Ko) = ¢(q(a)) + Ko
by lemma (9.7).

e Given (a,t) € T, we have
®(a,t) = (p1(a), 6(t)) = (p1(a), p2(a,t)) = 1(a,1) .

O

(9.9) Remark  If (K,Ky, o) is non-proper, then (A,F,0) := (K, Ko, o) is quadratic of type
(iii) or (iv), cf. (38.14) of [T'W]. It would be nice to have the same result in this case. However,
this is false in general, thus we will need some additional assumptions.

Chapter 10 The Involutory Set Is of Quadratic Type

The second case is that of an involutory set which is of quadratic type and dimg Ly > 3. The
crucial step is to show that ¢, maps orthogonal vectors to orthogonal vectors and hence subspaces
to subspaces. In particular, we may apply the fundamental theorem of projective geometry to get
an isomorphism (@1, ¢) : (Lo, K) — (Lo, Kg) of vector spaces.

In order to prove this, we introduce a technical condition concerning orthogonality which is
preserved by the Hua-maps. However, this condition is only enough to handle separable elements
which results in a separate treatment of inseparable elements.

Finally, we show that the second component of v is induced by ¢, using identity (7.1) and
the fact that the dimension of Ly over K is at least 3, which ensures the existence of enough
orthogonal vectors.

(10.1) Notation Throughout this chapter, we suppose (A, F, o) := (K, Ky, o) (and therefore
(A,F,5) = (K, ]Km&)) to be quadratic of type (iii) or (iv).
(10.2) Definition

e An element a € Lo with f(a,a) = 04 is called inseparable.

e Otherwise, it is called separable.
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(10.3) Remark

(a) If a € Ly is separable, we have
q(a) — q(a)” = f(a,a) # Op , q(a)” # q(a) .
(b) If a € L§ is inseparable, we have

q(a)” = q(a) , q(a) € Fix(o) \ F ,

which implies Char A = 2. Moreover, (A, F, o) is quadratic of type (iv) in this case.
(10.4) Lemma  An element a € L} is inseparable iff we have (a,t)? = Or for each (a,t) € T.

Proof
Notice that we have Char A = 2 by remark (10.3) (b). Given (a,t) € T, we have

07 = (a,t)* = (a+a,t+t+f(a,a)) = (OLO,f(a,a)) < f(a,a) =04 .

U
(10.5) Corollary  An element a € L is inseparable if and only if ¢ (a) € L is inseparable.

Proof
Given (a,t) € T, we have
(a,0)> =07 < ~v(a,t)* =04 .

(10.6) Notation

o We set
g:Lox Lo—TF, (a,b) — f(b,a) — qla+b)+ q(a) + q(b) . (10.1)

e Given z € A\ F, let E, be the quadratic subfield of A generated by 14 and z.
e Given a € L, we set E, := Ey(,). It is a separable quadratic subfield iff a is separable.

e Given a € L), we set
R, :={a,a-q(a))r=a-E, ,

so that R, is a 2-dimensional F-subspace of L.

e Suppose (A,TF, o) to be quadratic of type (iv). Given a separable element a € Ly, let e, be
an element of A orthogonal to E, (with respect to the standard trace of A). For each x € A,
let ay(x) and B, (x) be the unique elements of E, such that

r = aa(gj) + eaﬂa(x) A
e Given a € L{, we set
Xy ={teK|(a,t) €T} ={s+qla) | s€eF} CE, .
(10.7) Remark  Given a € L{, we have X, C E, \ F which implies
Vie X,: E:=E, .

In particular, we have E, = E, for each (a,t) € T such that a # 0r,.

1We assume €4’ = €q for each a’ € Rg, hence agr = aq and B, = B4 for each a’ € R,
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(10.8) Lemma  Let a € L§ be such that N(¢) = T(¢)? for each t € X,,. Then we have |F| = 2.

Proof
Let t € X,. Given s € F, we have

0h =Tt —N(@t)=T(t+s)? — N(t) = N(t+s) — N(t) = sT(t) + N(s) = s(T(t) + s)

and therefore
Vsel*: s=-T(t),

which implies |F| = 2. O

(10.9) Lemma  Let a € L§ and |F| > 3. Then we have

{t7 =t f(a,a)t” |t e X} CF .

Proof
Notice that we have

{t7 =t fla,a)t7 [t € X} ={(la —t "t —t))t7 |t € X} ={t7T'(t°)* |t € X,} . (10.2)
Assume {t7(t7)? |t € X,} CF. Then we have
ViteX,: (") =t"*t°)* N(t) eF, t3eF.
Therefore, we have
(T(t)> = N(@t)) -t —T@H)N(t)= (T(t)t —N(t)) -t =t €F (10.3)

and thus T'(t)? = N(t) for each t € X,,. Now lemma (10.8) yields |F| = 2. O

(10.10) Remark

(a) The map
¢ :F—=TF, t— p2(0,t)

is a Jordan isomorphism by lemma (7.21) (c), hence an isomorphism of fields by Hua’s
theorem, cf. theorem (19.31). Therefore, the map ¢ : Ly — Lo is an isomorphism of vector
spaces over F by lemma (7.21) (a).

(b) Given (a,t) € T, we have (¢1(a), ¢2(a,t)) € T, hence E y = Eg, (a) by remark (10.7).

p2(a,t »1(a

(10.11) Corollary  Given a € L§, we have

@I(Ra) = Rzpl(a) .

Proof

e Assume |F| > 3. By lemma (10.9), we have
<1A7 {ta - tilf(aﬁa)ta ‘ te Xa}>]F = Ea 5

hence

1(Ra) = p1(a-Ea) Cpi1(a)  Ey,a) = Ry, (a)

by remark (10.10) (a), identity (7.1) with (b,v) := (a,t), corollary (7.8) and remark
(10.10) (b).
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e It remains to consider the case |F| = 2 which implies A = E, 2 F, & INEW(G) = A. Given
a € Lj and t € X,, we have

hence
(at,t) = (at,ttt) € T .

Substituting (a,t) by (at,t) and (b,v) by (a,t) in identity (7.1) yields

p1(a) =pi(a- 7 +1) =¢i(a-t° + (at) -t~ f(at,a)t?)
= ¢1(a) - a(at, 1) + @ (at) - pa(at, )~ f(a(at), g1 (a)) palat,t)” .

Because of @y (at,t) ¢ F we have

pa(at, t) ™" f(e1(at), ¢1(a))pa(at, t) # 0y

and thus
pr1(at) = (p1(a) + ¢1(a) - 9a(at, 1)7) - (alat, 1)~ Flor(at), @1(a))pa(at, 1)7) " € Ry,a) -
O
(10.12) Remark The following lemma is due to Tom De Medts.

(10.13) Lemma  Let z € A with 27 # z. Then the set
S:={(s+2) (s+2)7|seF}

cannot be completely contained in a one-dimensional F-subspace of A.

Proof
Suppose that |F| = 2. Then we have A = Fy, hence

S={z,z+ 14},

and the assertion is true. So assume |F| > 3 and S C y - F for some y € A*. Then for each s € F,
there is an element t5 € F such that (s+ )7 = (s + x)yts. In particular, 27 = zyto, and hence we
also have (s+ )7 = s+ 27 = s+ xyto. Therefore, (s+ x)yts = s+ zytp for all s € F. Multiplying
on the right by s~y ~! yields

sTH(s+a)ts —atg) =y~ (10.4)
for all s € F*. It follows that
! ((T + x)t, — :zzto) =5t ((s + a)ts — xto)
for all r, s € F*. This can be rearranged to get
rs(ts — t,) = x(st, — sto — rts + rtp)

for all r,s € F*. Since x ¢ F, this can only happen if both sides are zero. Hence t5 = ¢, for all
r,s € F*, and substituting this in the right hand side gives (s —7)(t, —tg) = 04 for all 7, s € F* and
hence t,. =ty for all » € F, where we use the fact that F* has at least two elements. Substituting
this in equation (10.4) yields to = y~!, but then 2° = xyty = 2. This contradiction finishes the
proof. O
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(10.14) Remark  Let d € L{ be separable. Then for all s € F and x € A, we have

o

(s+ q(d))_lx(s +q(d))” = aq(z)(s+ q(cl))_1 (s+ q(d))o + eqBa(z) ,
and by lemma (10.13), the set
$:={(s+a(@) " (s +a(@)" | s€F}

cannot be completely contained in a one-dimensional F-subspace of A.

(10.15) Lemma Let A be a quaternion division algebra and let a,b € Ly be separable. Then
there are a’ € R, and V' € R}, such that o/ + b and o’ - g(a’) + b’ are separable.

Proof
e Let Char A # 2. By remark (10.3) (b), it is enough to choose a’ := a and s € F such that
b :=b-s¢{—a,—a-qla)} .
e Let Char A = 2. Given z € L, we have
f(z,2) = q(z) + q(2)” € F
and thus

F:C(S) ZZf(CC-Fwa,ZE-Fb‘S)282'f(b,b)—|-8' (f(l‘,b)—Ff(b,l‘))—Ff(iL’,iZ?)
=52 f(b,b) +s- (f(z,b) + f(z,b)7) + f(z,2) € F[s] .

Since A is non-commutative, we have |F| = co. As a consequence, there is an element s € F
not contained in the set of zeroes of Fy,(s) and F,.4(q)(s). Then a’ := a and b’ = b - s satisfy
the required conditions.

O

(10.16) Notation Given a,b € Lj,c € Lo and r,s,t € IF, we set
Mia,s),0.0),7(€) 1= hia,srq(@)-(t+a()0,0)(€) = Pa,s4(0)) (€) = Po o (€) -
(10.17) Remark Given a,b,c € L§, r,s,t € F and ' :=r + s+t + g(a,b), we have
(a,s+q(a)) - (b,t+q(b)) - (0,7) = (a+b,7" +q(a+D)) .
Now it follows from equation (10.1) and definition (7.17) that we have
Ma,s5),(b,0),r(€) = ¢+ (r = f(a,b))
+a- ((s + q(a))_lf(a7 ¢)(s+q(a)”
—(r"+qa+ b))flf(a +b,¢)(r" + q(a+ b))g>
b ((t+a®) St + ab)”
— (" +qla+ b))_lf(a +b,0)(r' + qa+ b))0> .
(10.18) Remark The following lemma shows that orthogonality can be encoded in a condition

that is preserved by Jordan isomorphisms. Notice that we need three pairwise orthogonal vectors.
This is the point where the assumption about the dimension will come in.
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(10.19) Lemma  Let z,y,z € L§. Suppose that f(z,y) = f(x,2) = f(y,2) = 0a. Then we
have
Vr,s,teF, a€ Ry,b€ Ry,c€ Ry : Ma,s),b,6),r(C) =cC-7 (10.5)

for each permutation (a',V', ") of (z,y, 2).

Proof
For each permutation (a’, b, ¢’) of (x,y,2) and for all a € R,/, b € Ry and ¢ € R/, we have

f(a7b):f(a7c):f(b7c):0A

as well, and hence M, 4) 5,1),r(c) = c¢-r for all r,s,t € F, which shows (10.5). O

(10.20) Remark  Let a € L. Then we have

Vie X,: pa(a,t) E(j(gol(a))+fF:X%(a) )
Since 7 is surjective, it follows that
{pa(a,t) |t € X} = )N(W(a) .
(10.21) Corollary Let z,y,z € L. Suppose that

f(xay):f(x7z):f(y7z):OA .

Then (10.5) holds for each permutation (a’,b’, ) of (¢1(z), v1(y), ¢1(2)).

Proof

By lemma (10.19), (10.5) holds for each permutation (a’,b’,c’) of (x,y, 2). Since v preserves the
Hua-maps and ¢1 : Lo — Lo is an isomorphism of vector spaces over F by remark (10.10) (a), we
have

M(vl(a),wz(a,s)%(wl(b),saz(b,t)),qs(r)(801(6)) =¥ (M(a,s),(b,t),r(c)) =pi1(c 1) =pi(c) - o(r)

foralla € Ryr,b € Ryr,c € Rer,y 1y 8,t € F and for each permutation (a’, ¥, ¢') of (z,y, z). Corollary
(10.11) and remark (10.20) yield

Vae Ra/,b € Rb/,c € Rcl, r,s,t e F: M(a,3)7(b7t),7w(c) =c-r

for each permutation (a’,t’,c') of (¢1(z), ¢1(y), p1(2)). O

(10.22) Remark  The following lemma is essentially due to Tom De Medts. It shows that we
can reconstruct the orthogonality from the above condition if we suppose all appearing elements to
be separable. In this situation, we know that we have a one-dimensional F-subspace on the right
side of (10.5), but on the left side we have terms which are not contained in a one-dimensional
F-subspace if we vary the coefficients. As a consequence, the occurring scalar products necessarily
vanish.

Afterwards we will have a closer look at inseparable elements. In order to obtain the same result
in this case, we need to establish a connection between the corresponding quadratic extensions.
For this purpose, it is convenient to use an inseparable element in (10.5) twice so that we can
deduce more information about the occurring terms.

(10.23) Lemma Let x,y,z € L§. Suppose that (10.5) holds for each permutation (a’,b’, ')
of (z,y,2). If z,y, z are separable, we have

f(x,y)Zf(%Z):f(y,z):OA .
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Proof
Assume that (10.5) holds for each permutation (a’,b’,¢’) of (x,y, z). In particular, for all a € R/,
b€ Ry and ¢ € R, the set

{Ma,5),6,6),0(c) | 75,6 €F}

is a one-dimensional F-subspace of L.

e Suppose that A is a quaternion division algebra. By lemma (10.15), there are a € R,/,b € Ry
such that a + b and a - g(a) + b are separable. By varying s over IF in M, & (5.+),»(c) but
keeping r’ :==r 4+ s+t + g(a,b) and ¢t invariant (by the right choice for r), remark (10.14)
yields? aq (f(a,c)) = 04. Similarly,

ab(f(b7 C)) =04 = anrb(f(a + b,c)) .

Now the expression for M, s, b.4),r(c) can be simplified? to

Mq,s),b,),r(c) = - (r — f(a,b)) —a- f(bye)—b- f(a,c)
for all c € Ry, 7, s,t € F. By assumption, we have
c- fla,b)+a- f(b,e)+b- fla,c) =04 (10.6)

for each ¢ € R,.

Now suppose that f(a,b) # 04; we will derive a contradiction. If we interchange a and
b in equation (10.6), we get f(a,b) = f(b,a), and if we replace a by a - g(a) € R,/, then
f(a-q(a),b) = f(b,a-q(a)) and hence

q(a)? f(a,b) = f(a,b)q(a) - (10.7)

Now let ¢ be an arbitrary element of E.. On the one hand, we can multiply equation (10.6)
by t; on the other hand, we can replace ¢ by ct € R.. Comparing these two resulting
equations yields tf(a,b) = f(a,b)t for all t € E., which implies f(a,b) € Co(E.) = E.. If we
now replace a by a - q(a) € R, = a - E,, we get E, f(a,b) C E., which implies E, = E. and
hence f(a,b) € E,. But then g(a)f(a,b) = f(a,b)q(a), and comparing this with equation
(10.7) yields g(a) = g(a)?, which gives us the required contradiction and hence

f(a' )= f(a,b) =04 .

Permuting a’, b" and ¢ now yields

fla,y) = fz,2) = f(y,2) = Oa .

e If A is commutative, we immediately obtain
fla,c) =04 = f(b,c)

by the same arguments, followed by

fla+b,¢) = fa,c) + f(b,c) = 04
and finally f(a,b) = 04.

O

2Notice that we need a,b and a + b to be separable so that we can apply Lemma (10.13) at this point. This
follows from the assumption that z,y, z are separable and from the choice of a,b. As we will replace a by a - q(a),
we additionally need a - g(a) + b to be separable.

3Notice that we have eq 84 (f(a, c)) = aq (f(a7 c)) + eafBa (f(a7 C)) = f(a,c) etc.
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(10.24) Remark Lemma (10.23) is enough to handle the cases where Char A # 2 or where
(A,F,0) is quadratic of type (iii) since there are no inseparable elements in this situation. But
with some technical effort, we can handle the remaining case as well.

(10.25) Notation Until proposition (10.30), we suppose (A, F, o) to be quadratic of type (iv)
with Char A = 2.

(10.26) Remark  Let 2 € Ly be inseparable and let y € Ly be such that f(z,y) = f(z,y)°.
Then we have

fxt+y,z+y) =04 & flo,2)+ f(z,y)+ fy,2) + fy,y) =04 & fly,y) =04 .

(10.27) Lemma  Let z,y,z € L§ be such that (10.5) holds for each permutation (a’,¥’,¢)
of (z,y,2z). If x = y is inseparable and f(z,z) # 04, we have f(z,2) € E, = E,4,, and z is
inseparable.

Proof
Since z is inseparable and f(z,z) # 04, we have z ¢ (z)4. Puttinga’ =¢ =2, VY =zand a=c
in (10.5) and comparing the coefficients of a = ¢ yield

fla,b) = (' +qla+1b)) " f(b,a) (r' +qla +b))°

for all a € R;,b € R., and putting o' = 2z, ¥’ = ¢ = 2 and b = ¢ in (10.5) and comparing the
coefficients of b = ¢ yield

fla,b) = (' +qa+ b))_lf(a, b)(r' +qla+0b))” (10.8)
for all @ € R.,b € Ry, hence
VacRobeR.:  flab) = f(boa) = fa,b) .
In particular, we have
[z, 2) = f(z,2) q(x)f(z,2) = f(z,2)q(x) , f(z,2) € Calq(x)) = E,

Puttingad' =2, ¥ =¢ =2, a=2, b=x and ¢ = x-¢(x) in (10.5) and comparing the coefficients
of x yield

q(x)f(z,2) = qlz + 2) 7 f(z,2)q(@)a(x + 2)7 = gz + 2) " q(2) f(z,2)a(z + 2)7 .
Using equation (10.8) with a = z and b = ¢ = z and multiplying by ¢(x) yield
q(x)f(z,2) = q(z)q(z + 2) 7 f(z,2)q(x + 2)7 .
As a consequence, we have
q(z) € CA(q(a: + z)) =Ez1s, E,=FE... .

Since x is inseparable, x 4+ z has to be inseparable as well. Finally, z is inseparable by remark
(10.26). O

(10.28) Corollary  Let x € L} be inseparable and let y € 1 be separable. Then we have
p1(z) € pr(y)™ .

Proof
By corollary (10.21), identity (10.5) holds for each permutation (a’,t’,¢’) of (¢1(z), p1(x), p1(y)).
By corollary (10.5), ¢1(x) is inseparable and ¢;(y) is separable, thus lemma (10.27) yields

(p1(2),1(y)) =0z .
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(10.29) Lemma  Let x € L and y € 2 \ ()4 both be inseparable. Then we have

o1(z) € e1(y)* .

Proof
By corollary (10.21), identity (10.5) holds for each permutation (a’,t’,c’) of (¢1(x), p1(z), ¢1(y))

and (¢1(2), ¢1(y), ¢1(y)), respectively. Suppose that f(gol(x),cpl(y)) # 0;. By corollary (10.5),
¢1(x) and ¢1(y) are inseparable, hence lemma (10.27) yields

F(e1(2),01(%)) € By (o) = By (oty) = B -
By identity (7.1) with b :=y and (a,t) := (z,q(x)), we have

01(y-a(@)7) = erW)p2(z,a(@))” = o1(2) - (2, q(x) " Fler(x), 01(9)) 02 (2, q(x))”
with

o ~ —1 % & ~
02(2,9(2))" €Bpyy =By w2(2,0(2)) Fe1(2), 01(9))p2(2,4(2))” € Eg, (o) -
By corollary (10.11), there are elements s,t € A such that

P1(y-5) = 1 W)e2(r.0(2)” . prla 1) = e1(2) - @a(wq(@) T Fpr(@) 01(9)) 2 (2, a(@))”
which yields

y-qx)’ +y-s+x-t=0p,, s=q(x)7, t =04
and finally

@) o1®) e (z,a(@)”, Fer(@), e1(y) = 05 -

0L, = ¢1(z - t) = ¢1(x) - @2 (z, q(x))

(10.30) Proposition  Let 2 € L} be inseparable and let y € x-. If dimy Lo > 3, we have

p1(z) € e1(y)* .

Proof

If y is separable, we may apply lemma (10.28), and if z and y are linearly independent over A, we
may apply lemma (10.29) so that we may assume y € (x),. By assumption, there is an element
z €zt \ (z)5. As a consequence, we have

y+zeat\ (x), .
Now corollary (10.28) and lemma (10.29), respectively, yield
Fle1(@), 01(9) = f(e1(@), 01y + 2)) + f(e1(2), 01(2)) = 05 + 05 = 05 -
O

(10.31) Lemma  Assume dimy Ly > 3 and let a,b € L§. Then f(a,b) = 04 if and only if
there is an element ¢ € L{j such that

f(a,b):f(a,c):f(b,c) =04 .

Proof
If a or b is inseparable, we may choose ¢ := a or ¢ := b, respectively. So assume that a and b
are separable and f(a,b) = 04. Since dimy Lo > 3 and dimg{a, b)s < 2, there is some element
de X\ {a,b)s. Then

ci=d—a- f(a?a’)_lf(a?d) —b- f(ba b)_lf(b7d) 7é 0a

satisfies the required conditions. O
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(10.32) Remark  We return to the general case.

(10.33) Proposition Let © € Ly be separable and let y € 1. If dimy Lo > 3, we have

p1(z) € 1(y)* .

Proof
e If y is inseparable, we may apply proposition (10.30).
e If y is separable, lemma (10.31) yields an element z € L§ such that
f(z,2) =04 = f(y,2)
thus (10.5) holds for each permutation (a’, ', ') of (¢1(z), ¢1(y), ¢1(2)) by corollary (10.21).
o If z is inseparable, proposition (10.30) yields
Fler(@), 1(2) = 0z = Fe1(y), 1(2))
followed by }
fler(x +y),vi(2)) =0z

and finally f(gol(a:),gpl(y)) = 03 by (10.5).

o If z is separable, then ¢1(x), ¢1(y), ¢1(2) are separable by corollary (10.5), thus we
may apply lemma (10.23) to obtain

f(sﬂl(x)v@l(y)) =0z -
O

(10.34) Corollary If we have dimy Ly > 3, the map ¢; : Lo — Ly is an isomorphism of
vector spaces.

Proof
By proposition (10.30) and proposition (10.33), we have

VaecLy: o1(at) = @1(a)t
Since f is non-degenerate, this implies that we have
VaeLo:  ¢gi{a)s) = pi(a™h) = pi(a)™ = {p1(a)); -
Now the assertion results from the fundamental theorem of projective geometry. O

(10.35) Notation  Let ¢ : A — A be the isomorphism of skew-fields defined by
Vae Ly teA: p1(a-t) =pi(a) - o(t) .

(10.36) Remark Notice that ¢ is an extension of the isomorphism ¢ : F — F of fields.
(10.37) Remark  We state the theorem using the general notation.

(10.38) Theorem  Let (K, Ko, o) be quadratic of type (iii) or (iv) and let dimg Lo > 3. Then
the map ® : = — = defined by

¢ = (Wla(b) : (LO7K) — (i’OaK)7 (a/vt) = (Qpl(a’)7¢(t))
is an isomorphism of pseudo-quadratic spaces satisfying

Y (a,t) €T d(a,t) =~(a,t) .
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Proof

e By corollary (10.34) and notation (10.35), the map (¢1,¢) : (Lo, K) — (Lo, K) is an
isomorphism of vector spaces.

e By remark (10.36), we have ¢(Kq) = K.
e By corollary (5.12), we have
VeeK: o) = ¢(2)° .
e Let (a,t) € T and Or, # b € a*. Then we have
p1(b) - o(t)7 = @1(b) - ¢(t7) = 1(b-17) = 1(b) - pa(a,t)”
by identity (7.1), proposition (10.30) and proposition (10.33), thus
pa2(a,t) = o(t)

and therefore

q(p1(a)) € pa(a,t) + Ko = ¢(t) + ¢(Ko) = o(t +Ko) = ¢(q(a) + Ko) = ¢(q(a)) + Ko

as well as
D(a,t) = (p1(a),o(t)) = (#1(a),pa2(a,t)) = y(a,t) .

Chapter 11 Small Dimensions 1

First we refine some results of the previous chapter, without assuming additional assumptions.
The first step is to show that the map ¢; : Ry — R, (o) is an isomorphism of vector spaces for
each a € Ly. We manage to do this by proving that the map o2 : Xo — Xy, (a), t > @2(a,t) is
induced by an isomorphism between the associated separable extensions.

Once we have done this, it is easy to prove theorem (8.1) (iii) if the involutory sets are quadratic
of type (iii). Afterwards we will need some more considerations to handle the case of involutory
sets which are quadratic of type (iv), cf. chapter 12.

(11.1) Notation  Throughout this chapter, the involutory sets (A, F,o) and (A, F,&) are still
quadratic of type (iii) or (iv).

(11.2) Lemma  Let a € Lo. Then the following holds:
(a) Vte X,: ¢(N(t)) = N(paa,t)).
(b) VteX,: ¢(T(t) =T(p2(a,t)).
Proof
(a) By lemma (7.21) (b) with (b, v) := (0,,14), we have
P(tt7) = 201y, t - 1a - 17) = pa(a,t) - pa(0r,, 1a) - 2(a, t)” = N(pa(a,t)) .
(b) By part (a) and lemma (7.21) (d), we have
S(N() +¢(T(t) + 15 = ¢((t + 1a)(t +14)7) = (N (t + 14))

= N(¢2(a7t+ 1A)) = N(@2(aat) + ¢(1A))
= N(pa(a,t)) +T(p2(at)) +1; ,
hence
o(T (1)) = T(p2(a,t))
by part (a) again. -
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(11.3) Lemma  Let a € L and t € X,,. Then the map
gb(a,t) tEy — Egpl(a)v x+t-y— (]5(1') + @2(aat) : (b(y) (.’L’, (B F)

is an isomorphism of fields such that

VueXe:  @a(a,u) = dan(u) .

Proof
By lemma (11.2), we have

$(N(t)) = N(p2(a1)) , O(T(1)) = T (p2(a, 1))
so that we may apply lemma (5.15). By lemma (7.21) (d), we have

Vsel: pa(a,t + ) = pa(a,t) + ¢(s) = Gran) (t) + Ga,t)(8) = P(ap)(t +5) .

(11.4) Corollary Let a € L. Given t,u € X,, we have
Ga = ¢(a,t) = (b(a,u) .

Proof
We have ¢ ) (u) = p2(a,u) = ¢q,(uw) and u ¢ F. O

(11.5) Remark  Let a € L.

(a) Notice that ¢, is an extension of the isomorphism ¢ : F — F of fields.

(b) We have ¢q(Eq) = Eq, (a)-

(c) Given t € A, we have
1y 070 009 (T = N(©) -+ ~ T(ON ()
N(t) N(t)
(T)* = N@®))(T()—t) —TEN(E) T(t)* - 2T()N({t) = N(t)—T(t)?

- N (1) - N (1) TNy

(d) Assume |F| > 3. By lemma (10.8), there is an element ¢ € X, such that T'(¢)? # N(t).
(11.6) Lemma  Assume |F| > 3. Let a € Lj and ¢t € X,, be as in remark (11.5) (d), i.e., we
have N (t) # T(t)* and thus ¢(N (1)) # (/)(T(t))2. Then we have

p1(a-t) = pi(a) - pa(at) .

Proof
By remark (11.5) (c), equation (10.2) and identity (7.1) with b = a, we have

O(T(1)” — 26(T(H) $(N (1)) $(N (1) — #(T(1))

2

p1(a) - S(N®) +pi(a-t)- SN (D)

(10.10) (a) T(t)3—2T(#)N() N(t)—T(t)?

- @ ( ' ( N No t))
(11.5) (o) ([ T(ea(at)” = 2T (pa(a, D) N (¢a2(a,t) | N(pa(a,t)) = T(ga(a, 1) .
(10.2),(7.1) wila) ( N (pa(a,t)) + N(pa(a,t)) pa(a, )

(112) o(1(1)" — 26(T(1)) (N (1)) (N (1) - 6(T(1)*
G SN() @ enla ) T )
Notice that we may cancel scalars by assumption. O
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(11.7) Remark By corollary (10.11), we have ¢1(R,) = Ry, (4) even in the case |[F| = 2.
Notice that we have

A=E,2F, 2K, ) =A

in this situation which shows that we have ¢;({(a)a) = (p1(a));z. As a consequence, the map
0o * A — A defined by
VteA: p1(a-t) = pi(a) - Pa(t)

is an isomorphism of skew-fields. However, it doesn’t necessarily satisfy ¢,(t) = p2(a,t) for each
t € X,. We will discuss this case later and go on with assuming |F| > 3.

(11.8) Proposition  Given a € L§, the map

(‘p17¢a> : (RayEa) — (Rgpl(a)vELpl(a))
is an isomorphism of vector spaces such that ¢, (t) = ¢2(a,t) for each t € X,.
Proof

Let t € X, be as in remark (11.5) (d). By remark (10.10) (a), lemma (11.6) and lemma (11.3),
we have

Ve,yeF:  oi(a-(z+ty) = ¢i(a) - (¢(z) + v2(a, )¢ (y)) = p1(a) - pa(x +ty) .

The second assertion results from lemma (11.3). O

(11.9) Lemma  Let (A,F,0) and (A,F, &) both be quadratic of type (iii). Then we have
VabelLj: O =g = Op .
Proof o R
By assumption, we have A = E, =K, and A =E,, (o) = E,, 3 for all a,b € Lg.
o Let b=a-s for some s € A*. Given t € A, we have

p1(a) - ¢a(t) = p1(a-t) = pi(as - s~ 't)
=1(b) - du(s™t) = @1(b) - Pu(s™") - Pu(t) = @1(a) - Pu(t) -

e Let b ¢ (a)a = Ra, hence ¢1(b) ¢ R, (a) = (1(a)); by proposition (11.8). Given t € A, we
have

o1(a) - ¢a(t) +p1(b) - du(t) = pr(a-t) + 1(b-t) = o1 ((a+b) - t)
=p1(a+0) - parp(t) = p1(a) - Pays(t) + 1(b) - Pars(t) ,

thus
Pa(t) = darb(t) = do(t)

(11.10) Remark
(a) The proof shows that we have
Vtek,: b0 = Pat ,
independent of the type of (A,F, o).
(b) Notice that ¢ is an extension of the (Jordan) isomorphism ¢ : F — F.

(c) We state the theorem using the general notation.
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(11.11) Theorem  Let (K, Ko, o) and (K, Ko, &) both be quadratic of type (iii) such that
|Ko| > 3. Then the map ® : = — = defined by

¢ = (9013925) : (LOaK) — (EaK)v (a’a t) = (901(0’)7926(15))
is an isomorphism of pseudo-quadratic spaces satisfying
v (a,t) € T: O(a,t) =v(a,t) .

In particular, we have K 2 K.

Proof

e By proposition (11.8) and lemma (11.9), the map (¢1,¢) : (Lo, K) = (Lo, K) is an isomor-
phism of vector spaces.

By remark (11.10) (b), we have ¢(Ko) = K.

By corollary (5.12), we have ¢ oo = G o ¢.

Let a € L§ and t € X,. By proposition (11.8), we have

@2(a7t) = (ZSa(t) = (b(t) )

hence

i(p1(a)) € pa(a,t) + Ko = ¢(t) + ¢(Ko) = ¢ (t + Ko) = ¢(q(a) + Ko) = ¢(q(a)) + Ko .
e Given (a,t) € T, we have

®(a,t) = (p1(a),o(t)) = (¢1(a), pa2(a,t)) = y(a,t) .

Chapter 12 Small Dimensions 11

Now we prove theorem (8.1) (iii) for the case that (A,F, o) is quadratic of type (iv). As in the
previous paragraph, we exploit the identities (7.1) and (7.2) to show that ¢, : E, — Ewl(a) is
induced by an isomorphism ¢g ¢ : A — A of skew-fields, where a € L§ is a separable element and
e € EL.

Notice that we restrict to a separable element a € L§ because of the helpful decomposition
A =E, ® ek, with eE, = EL. If we assume ¢y (a-e) = @1 (a) - é for some é € A, the isomorphisms
¢q and ¢g. of fields induce a map

Pa,e : A — A7 s+ et = ¢o(s) + Edac(t) (s,t € Eq)

which turns out to be an isomorphism of skew-fields. As a consequence, the two isomorphisms
011 Ry — Ry, (o) and @1 1 Ree — Ry, (ae) of vector spaces over E, are induced by an isomorphism
@1 1 (aya — (p1(a))z of vector spaces over A.

(12.1) Notation Throughout this chapter, let (A,F, o) be quadratic of type (iv), and let
(AT, ) be quadratic of type (iii) or (iv). Until corollary (12.12), let a € L{ be separable and let
e € EL.

(12.2) Lemma Given t € X, C E,, we have

ae-t=ae-t° —a-t"'f(a,ae)t’ .
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Proof
‘We have

ae-t7 —a-t 1 f(a,ae)t” =ae-t7 —a-t"'f(a,a)et’

=ae-t7" —a-t7 " (t—1%)et” =ae-t° —ae- (t° —t)t 7t =ae-t.

O

(12.3) Lemma  We have

Xae = —N(e) - X,
Proof
We have
q(ae) = e’q(a)e = N(e)g(a)° mod F ,
hence
—N(e) - Xo,=—N(e)-{s+qla) | s€F} =—-N(e) - {s—q(a)° | s € F}
={-N(e)s+ N(e)g(a)? | s e F} = {s+q(ae) | s e F} = X, .

O

(12.4) Lemma  We have

Eoe = Eq
Proof
We have
q(ae) € N(e)q(a)” +F C Eq

O

(12.5) Lemma  The isomorphisms ¢,. and ¢, of fields as in remark (11.4) satisfy
bae(Ea) = ¢a(Eq) .
Proof
Let t € X, CE, = E4e. Then we have —N(e)t € X, by lemma (12.3), hence
(a,t) €T, (ae,—N(e)t) €T .
Notice that we have

¢a(t)¢a(t) (¢a( )) (@2(0’ t)) ¢(N(t>)
by lemma (11.2) (a). Remarks (11.5) (a), (11.10) (a) and identity (7.2) with (b,v) := (ae, —N(e)t)
yield
Pac(t)9a(t)da(t)d( = N(e)) = dac(t)d(N(t))( — N(e))
= Gt <z>ae( N(©)fac (N(1) = bue (H-N(@)N()
= et (t- (=N (e)t) - 17) = 3 (ae t,t- ( N(e)t) - t7)

= po(ae 17 —a -t f(a,ae)t” ( (e)t) - %)
= pa(a, )2 (ac, —N(e) t)w (a,8)7 = ¢a(t)dac (— N(e)t)Pa(t)”
= ¢a(t)¢ae(t)¢ae( - 6 )(ba t ( )¢ae(t>¢a(t)&¢( - N(e)) )

which implies @ge(t)Pa(t) = ¢da(t)Pac(t) and thus

(bae(Ea) = ¢ae(Eae) = Egal(ae) = IE(bae(t) = IE“‘qﬁa(t) 4,01 (a) — (ba( a) ’
cf. lemma (12.4), remark (11.5) (b), lemma (12.3), remark (10.10) (b) and corollary (5.10). O
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(12.6) Corollary =~ We have
¢ae S {¢a75 © (ba} .

Proof
The field E := ¢4 (Eq) = ¢a(Eq) is a quadratic separable extension with Aut(E : F) = (5), and
by remark (11.5) (a), we have

Bue © Pa ' € Aut(E : F) .
O

(12.7) Remark The following lemma provides the assumptions which are necessary to show
that we can extend the isomorphism ¢, : E, — Ewl(a) of fields to an isomorphism ¢ : A — A of
skew-fields which induces ¢q.. As a consequence, the map ¢ : (a)s — (¢1(a)); is an isomorphism
of vector spaces.

(12.8) Lemma  Suppose that we have ¢;(ae) = ¢ (a)é for some & € A and let t € X,. Then
the following holds:

(a) We have ¢ := ¢ge = ¢q.
(b) We have
f(e1(ae), p1(ae)) = =¢(N(e)) f(¢1(a), pr(a)) -

(¢) We have R y
f(e1(a), pi(a))é = —ef (pi(a), p1(a)) -

(d) We have N(&) = ¢(N(e)).

5 el
(e) We have é € E (o)

Proof
(a) By corollary (10.5), ¢1(a) is separable, hence
JE(%(@), ¢1(ae)) = f(@l (a), p1(a))é # 05 .
By identity (7.1) with (b,v) := (ae, —N(e)t) and lemma (12.2), we have

©1(ae)Pac(t) = p1(ae-t) = ¢1(ae-t° —a-t~" f(a,ae)t?)
a,t)” — p1(a) - p2(a, ) f(pr(a), p1(ae))p2(a,t)”  (12.1)

= p1(ae) - o
= p1(ae) - 6a ()7 = p1(a) - a(t) ' F(w1(a), 1 (ae)) ga(t)”
#£0
hence
Pac(t) # ba(t)”
for each ¢t € X, and thus ¢4, # & o ¢,. Now corollary (12.6) yields
Pae = ba -

(b) By lemma (12.3), we have —N(e)t € X, hence

F(pr(ae). p1(ae)) = due (= N(€)t) = duc (~ N(e)t)”
= =0(N(€)) (¢a(t) = ¢a(1)7) = —0(N(€)) [ (#1(a), 1(a)) ,
cf. remark (10.20) and proposition (11.8).
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(¢) By (a), we have

21(a)e - 6(t) = 1 (ae) - B(t) = b1 (ae) - 6(1)° — w1 (a) - 6(8) 7 (91 (a), 1 (a€) ) o(1)7
= pi(ae) - 6(t)” — p1(a) - $(t)” lf(sol 1(a))ée(t)”
= p1(a)e- o(t)7 — pi(a) - ¢(t) " (o(t) — ( )7)éa(t)”
= pi(a) - (1) o(t)7Ed(t)"
(12.2)
hence
ép(t) = o(t) o) Ep(1)” o(t)ep(t) = (t)7ep(t)”
Since t € X, is arbitrary, we may replace t by ¢t + 1, to obtain
Ep(t) + ¢(t)e = ep(t)” + o(t)7e e(e(t) — o(t)7) = —(o(t) — o(t)7)e .
(d) We have

hence
N 'o(N(e)) =1z , N(&) = ¢(N(e))
(e) We have
1(a) - é6(t) "ZY o1(a) - E6(8)7 — 1(a) - ()~ F(1(a), p1(a))éd(t)”
hence

p1(a) - &f (p1(a), p1(a)) = —p1(a) - &(8) " F(1(a), 1 (a))é6(t)°
< 61(a) - ()26 (1)7 (1 (a). 1 (a)
which yields
é=o(t) ep(t)” p(t)e = ép(t)” .
Because of ¢(t) € Ey, (q) \ F, we have & € E ) by lemma (5.13).
O]

(12.9) Remark Suppose that we have pi(ae) = p1(a)é for some é € A. Since we have
v1(R R, (q) and a-e ¢ R, the skew-field A is necessarily a quaternion division algebra since

a) =
(A, T, ) is quadratic of type (iii) or (iv). Moreover, we have ¢1({a)s) = (¢1(a));.

(12.10) Lemma  Suppose that we have ¢, (ae) = ¢1(a)é for some é € A. Then the map
Gae: A — A, x4 ey d(x) + E(y) (r,y € Eq)
is an isomorphism of skew-fields such that

Vte Xa : @2(a7t) = ¢a,e(t) .

-71 -



Part III Jordan Isomorphisms of Pseudo-Quadratic Spaces

Proof
By lemma (12.8), we have

¢(N(e)) = N(e) kL

so that we may apply lemma (5.16). By lemma (11.3), we have
Vite X, CE,: w2(a,t) = Pa(t) = dae(t) -

O

(12.11) Proposition  Suppose that we have o1 (ae) = @1 (a)é for some é € A. Then the map

(01, Gae) + ((a)a, A) = ({e1(a))z, A)
is an isomorphism of vector spaces.

Proof
By lemma (12.4) and lemma (12.8) (a), we have

Vo,yeBe:  pi(a-(x+ey) = wi(a) (6(x) +éd(y)) = ¢1(a) - da.e(x +ey) .
0

(12.12) Corollary Suppose that we have ¢1(ae) = ¢1(a)é for some € € A and let f € EL.
Then we have pq(af) = ¢1(a)f for some f € A and ¢q ‘= Pg,c = Pa 5.

Proof
By remark (12.9), the first assertion holds, hence ¢, ¢ is well-defined. Given z € A, we have

¢1(a) - @a,j () = p1(a-x) = p1(a) - Pae(x) -
0

(12.13) Lemma  Suppose that we have ¢1({a)a) = (¢1(a)); for each separable element a € L
and let a,b € L§ be separable. Then we have

=g =y .

Proof
e Let b=a-s for some s € A*. Given t € A, we have

e1(a) - ga(t) = p1(a-t) = pi(as - s~ ')
= 1(b) - du(s™'t) = @1(b) - B (s~ 1) - Pu(t) = pa(a) - Pu(t) -
o Let b ¢ (a)a, hence 1(b) ¢ (p1(a));. By lemma (10.15), there are a’ € R, and V' € Ry
such that a’ + b’ is separable. Given ¢t € A, we have
@1(a’) - a(t) +p1(b) - u(t) = @1(a’) - Gar (t) + @1(V') - Gur (t) = p1(a’ - ) + 1 (b - 1)
=o1((a + V) t) = p1(d +V) - paripr (t)
= ¢1(a’) - darsp () + 01(V) - bartwr (2)

thus
ba (t) = ¢a’+b’ (t) = ¢b(t) :

72



Chapter 12 Small Dimensions 11

(12.14) Proposition  Suppose that we have ¢1({a)s) = (p1(a)); for each separable element
a € L and that Lo has a basis {a; | i € I'} of separable elements. Then the map

(9017(775) : (L07A) - (EO’A)

is an isomorphism of vector spaces.

Proof
Let a =) ;. ai\ € Lo and t € A. By lemma (12.13), we have
pi(a-t) = ¢ ((Zai/\i t)) = Ztﬂl(a#\i )
i€l il
=3 eran) - dan () = 3 er(aid) - 6t) = (Y wi(ain) - 6(t) = ea(a) - 6(8)
il il il

O

(12.15) Remark Let dimy Lo = 2 and a € L§. Then (a)a is of the form L, = (Rq, Ru)¥
for some element b € Lo, and for each ¢ € Lqp, we have R, C Lgp. Conversely, if we have a
subspace Lqp = (Rq, Rp)r such that R, C L for each ¢ € Lq p, we have Ly, = (a)a, for one of
the three pairwise non-isomorphic quaternion division algebras A =: A1, Ay, A3 mentioned in [D],
cf. proposition (3.2) in [D].

(12.16) Lemma  Let dimy Lo = 2, let a € L, be separable and let A be a quaternion division
algebra. Then we have

p1({a)a) = {p1(a))g,

for one of the three pairwise non-isomorphic quaternion division algebras A=A, Ay, As men-
tioned in [D], and the map (¢1,¢4) : ((a)a,A) — ((¢1(a))z,,A) is an isomorphism of vector
spaces. In particular, we have A; = A if we assume A 2 A.

Proof
By remark (12.15), the subspace (a)4 is of the form L, p = (R4, Rp)r for some element b € Ly,
and for each ¢ € L, we have R, C Lgp. As 1 : Ly — Lo is F-linear, we have

¢1(Lap) = 01((Ray Ru)F) = (R (a)s Bor ()5 = Loor (a) o0 ()

by corollary (10.11). Now let & € Ly, ()., (n)- Because of ¢ := o1 '(é) € L, we have R, C Lg,
hence

Rz = ¢1(Re) € 01(Lap) = Ly, ()00 (1) »

which shows that the first assertion holds. The second assertion holds by proposition (12 11). In
particular, we have A, 2 A As Ay, Ay, As are pairwise non-isomorphic, we must have A, =Aif
we assume A 2 A. ]

(12.17) Remark  Once again we switch to the general notation.

(12.18) Theorem  Let (K, Ko, o) be quadratic of type (iv), let dimg Lo < 2 and K = K. Then
the map ® : Z — = defined by

¢ = (@17¢) : (LO7K) — (£7K)7 (avt) = (@1(a)a¢(t))
is an isomorphism of pseudo-quadratic spaces satisfying

Y (a,t) €T D(a,t) =~(a,t) .
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Proof
o In the case dimg Lo = 1, each a € Lj is separable, and by assumption, we have
p1({a)k) = p1(Lo) = Lo = (p1(a))g

so that we may apply proposition (12.14). Now assume dimg Ly = 2. By theorem (6.3) in
chapter 7 of | |, Lo has an orthogonal basis, and lemma (12.16) implies that we have
¢1({a)x) = (p1(a))g for each separable element a € Lg so that we may apply proposition
(12.14). In both cases, the map (¢1,¢) : (Lo, K) — (Lo, K) is an isomorphism of vector
spaces.

e By remark (11.10) (b), we have ¢(Kp) = Ko.

e By corollary (5.12), we have ¢ o0 = & 0 ¢.

o Let a € L and let t € X, be as in remark (11.5) (d). By proposition (11.8), we have
$(t) = ¢a(t) = p2(a ) ,

hence

(e1(a)) € pa(a,t) + Ko = ¢(t) + ¢(Ko) = ¢(t + Ko) = ¢(q(a) + Ko) = ¢(q(a)) + Ko
e Given (a,t) € T, we have!

(I)(a7t) = (‘pl(a)v(b(t)) = (4/71(@)7302(a7t)) = 7(a7t) .

Chapter 13 Exceptonial Isomorphisms I

Now we drop the condition A = A, i.e., we assume A 2 A. By theorem (10.38), this can only
occur in small dimensions. As a consequence, there aren’t many possibilities for those exceptional
isomorphisms which are, of course, not induced by an isomorphism of pseudo-quadratic spaces.

(13.1) Lemma Suppose that A 2 A. Then exactly one of the following holds:

(i) The involutory sets (A, F,o) and (A,F, &) both are quadratic of type (iv) and we have

dimy Ly = 2 = dimj Lo .
(ii) The involutory sets (A,F, o) and (A, F,&) are quadratic of type (iv) and (iii), respectively,
and we we have
dimp Lo =1, dimz Lo =2 .

Proof } o
By theorem (11.11) and remark (11.7), we have A = A if (A, F, o) and (A,F, &) both are quadratic

of type (iii). Thus we may suppose (A,F, o) to be quadratic of type (iv). By theorem (10.38), we
have dimy Lo < 2 and dimj Ly < 2. Notice that we have

dimp Ly = dimg [:0 .

(i) In the case dimy Lo = 1 = dimy Ly, we may apply proposition (12.14) so that there is an
isomorphism ¢ : A — A of skew-fields 4.

(ii) As we have dimp Lo > 4 and dimg Lo < 4, the assertion follows immediately.

O

L Although we obtained ¢ only by taking separable elements into account, ¢ of course extends the isomorphism
associated with inseparable elements as well since 1 : Lo — Lo is an extension of ¢1 : Rg — Ry, (a)-
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(13.2) Notation  Throughout this chapter, let (A, F, o) be quadratic of type (iv).

(13.3) Remark By lemma (13.1), there are two cases left. First of all, we deal with the
case where both the involutory sets are quadratic of type (iv). We do this by using lemma
(12.16) in a suitable way. The appearing isomorphisms turn out to be almost isomorphisms of
pseudo-quadratic spaces, but modified by switching the parametrizing space.

(13.4) Notation  Let (A,F,0) be quadratic of type (iv) and suppose that dimy Ly = 2. By
[D], there are exactly three pseudo-quadratic spaces

(AaFa ag, L07q) = (A17F507 Lanl) = El 3 (A27F507 Lan2) = E2 3 (A37F707 Lan?)) = E3

with pairwise non-isomorphic quaternion division algebras Aj, Ay, Az which define the group T.
When we switch between the parametrizing pseudo-quadratic spaces, we indicate this by the map

idy: T =T, (a,t) — (a,t) ,
i.e., after applying idiT, we consider T' to be defined by =;.
(13.5) Proposition Let A be quadratic of type (iy) and suppose that dimy Lo = 2. Then

there are an ¢ € {1,2,3} and an isomorphism ® : = — =; of pseudo-quadratic spaces such that v
is induced by (id%) ™! o ®.

Proof
Let a € L§ be separable. By lemma (12.16), there is an 4 € {1, 2, 3} such that

p1({a)a) = (p1(a))g, »

and the map (¢1,¢4) @ ((a)a,A) = ((¢1(a))z,,A:) is an isomorphism of vector spaces. In

particular, we have A; = A, thus i € {1,2,3} is independent of the choice of a. Now the Jordan
isomorphism 4 y
idzoy:T =T

is induced by an isomorphism ® : Z — Z; of pseudo-quadratic spaces by theorem (12.18). O

(13.6) Remark Now we consider the last case, where a quaternion division algebra “splits”
into two separable quadratic extensions.

(13.7) Lemma  Let a € L{ be separable and let e € EL. Suppose that ¢ (ae) & (p1(a));.
Then we have

f(%ﬁl(ae)’%(a)) =0z, $ac =G0 Pq .

Proof
By equation (12.1), we have

p1(ae) - Pac(t) = p1(ac) - pa(a,t)” — @1(a) - pa(a,t) " f1(a), 1(ae))g2(a, )’
for each t € X, hence
pa(a, ) fpr(a), pr(ae))p2(a,t)” =0z, V€ Xot dac(t) = p2(a,t)” = da(t)” .

O

(13.8) Notation Throughout the rest of this chapter, we suppose A to be quadratic of type

(iii).
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(13.9) Remark By lemma (13.1), we have dimy Lo = 1 and dimj Lo = 2. As a consequence,
each element a € L is separable. Moreover, we have

p1(ae) ¢ Ry, (a) = (p1(a))z

for each element e € E-. As a consequence, lemma (13.7) applies.

(13.10) Notation
e Throughout the rest of this chapter, let @ € L} (which is separable) and let e € EL.

o We set
a:=i(a), b= i(ae) €at, ¢ =, -

(13.11) Remark  Given z € A, we have
g(a-z) =2%¢g(a)r modF,

cf. definition (7.1) (P2), hence
(a-z,27q(a)z) €T .

(13.12) Lemma  Given z = s + ef € A, we have
v(a-z,a7q(a)z) = (a-é(s) +b- d(1)7, (N(x)q(a))) -

Proof

e We have

pr(a-z) = pi(a-s+ae-t) = pi(a)-o(s) +pi(ae) - $(t)” = a- ¢(s) +b- o(t)”
by lemma (13.7).
e By Proposition (11.8), we have
¢1 (az - :L'Uq(x)x) = ¢1(ax) - pa(azx,x7q(a)x) .

On the other hand, we have

= p1(az) - ¢(N(2)q(a))
O
(13.13) Proposition  Given x = s+ et € A and u € F, we have
Ya-z,a7q(a)e +u) = (@ ¢(s) +b-o(t)7, o(N(x)a(a) +u)) -
Proof
This results from lemma (13.12) and lemma (7.21) (d). O

(13.14) Remark This describes v completely.
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(13.15) Theorem Suppose that K 22 K. Then exactly one of the following holds:

(i) The involutory sets (K,Ko,o) and (K,Kg,&) both are quadratic of type (iv), we have
dimg Ly = 2 = dimg I~/0 and there are an i € {2,3} and an isomorphism ® : = — =; of
pseudo-quadratic spaces such that v is induced by (id%)_ o®, where id% and = =: 21, 2,, 25
are as in notation (13.4).

(ii) The involutory sets (K, Ko, o) and (K, Ky, &) are quadratic of type (iv) and (iii), respectively,
we have dimg Lo = 1, dimg Lo = 2 and y can be described by

Ve=stet e K, ueky: fy(ax,x"q(a)x—ku) = ((pl(a)¢(s)+<p1 (ae)p(t)?, qi)(N(x)q(a)—i—u)) ,

where a € L} is arbitrary, ¢ = ¢4, e € EX and o1 (ae) € ¢1(a)t.

Proof
This results from lemma (13.1), proposition (13.5), lemma (13.7) and proposition (13.13). Notice
that we have i # 1 in (i) as we have K 2 K. O

Chapter 14 The Reverse Direction

Now we consider the reverse direction, i.e., we prove that each map as above is a Jordan
isomorphism.

(14.1) Remark Notice that we don’t assume v to be a Jordan isomorphism any longer.

(14.2) Theorem Let = and = be proper pseudo-quadratic spaces and let v : T" — T be a
map that is induced by an isomorphism ® = (¢, ¢) : £ — = of pseudo-quadratic spaces. Then ~y
is a Jordan isomorphism.

Proof

o We have
V(OLm 1K) = (@(OLo)vd)(lK)) = (0E05 IK) .

e Given (a,t),(b,v) € T, we have

v((a,t) - (b,v)) = v(a +b,t+ v+ f(b,a)) = (p(a+0b), ¢t + v+ f(b,a)))

= (pla) + ¢(b), d(t) + (v) + d(f(a,b)))
= (p(a) b), 8(t) + d(v) + f(p(a), o (b))
= (p(a) ) (p(b),0(v)) = 7((a,1)) - ¥((b,v))
e Let (a,t),(b,v) € T. By corollary (7.3), we have
’y(h(aﬂf)(b, v)) = ’y(b -t —a- tilf(a b)t?, tvt”)
= (p (b " —a- t_lf(a,b) 7), ¢(tvt?))
(p(® p(a) - o(t)"'o(f(a ) (t7), p(t)p(v) (7))
:g pla) - ot f( (0)8(1)7, ¢(t)p(v)(t)7)
= h(p(a), ¢<t>>( b), $(v))) = ( (bvv)) :

O

(14.3) Remark This shows that each map as in proposition (13.5) is a Jordan isomorphism
since id7 is a Jordan isomorphism for each ¢ € {1,2,3}.
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(14.4) Notation

e Throughout the rest of this chapter, let = and = be proper pseudo-quadratic spaces, let
(A,F,0) and (A,F,5) be quadratic of type (iv) and (iii), respectively, let

dimy Lo =1, dimz Lo =2,
let a € L and e € EL, and let ¢ : E, — A be an isomorphism of fields.
e Moreover, let 7 : T — T be a map such that
Ve=s+etcA uel: v(az, z%q(a)z + u) = (ad(s) + bo(t)?, ¢(N(x)g(a) + u))
for some @, b € Ly such that f(&, b) = 0;.
e We set b := ae and

{(a-z,t) |z €By,t € Xou} <T, B:={(b-z,t) |z €Eg,t € Xp} <T,
{(@ z,t) v eAte X} <T, B:={(b-zt)|zchteX;}<T.

A
A
(14.5) Lemma  Given z,y € E,, we have

fla-z,b-y)=f(b-y,a-x).

Proof
Given z,y € E,, we have
fla-x,b-y) = fla-z,ae-y) =27 f(a,a)ey = eyzx f(a,a)’
=—y’ef(a,a)x = (ey)’ f(a,a)z = f(ae-y,a-z) = f(b-y,a-x).

O

(14.6) Lemma  Given (a,t), (b,v) € T, we have

(a,t) € O ((b,v)) & f(a,b) = f(b,a) .
Proof
We have
(a,t)(b,v) = (b,v)(a,t) & (a+bt+v+f(ba))=(b+av+t+ f(a,Db))
< f(b,a) = f(a,b) .

O

(14.7) Corollary ~ We have

ACCr(B), ACCzB) .
Proof .
The first assertion results from lemma (14.5), and given x,y € A, we have
fa-wb-y) =0z = fb-y,a-x) .

O

(14.8) Lemma  We have
T = AB, T—AB.
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Proof
Let (a-z+b-y,t) € T where z,y € E,. Then we have

t=qa-z+b-y)=qla-z)+qb-y)+ fla-2,b-y) modF,

hence
t:=t—qla-z)—qb-y)— fla-z,b-y) €F.

Observe that we have f(a-x,b-y) = f(b-y,a-x) by lemma (14.5), thus

(a-z+b-yt)=(a-z+b-y.qla-z)+q0b-y)+ fla 2,b-y) +1)
=(a@ 2+byqa ) +qb-y) +fb y.a z)+1)
The second assertion follows analogously. O

(14.9) Lemma  The maps

Oy 1 (Eq,F,0,Re,q) = (A, F,5,(a)z,q), (az,t) — (a¢($),¢(t)) :
Dy : (EaaF70'7Rb7Q) — (AJR& <l~7> C]) (bxvt) ( ) ’¢t )

are isomorphisms of pseudo-quadratic spaces inducing v4 1= y4 : 4 — A and yp := VBB — B,
respectively.

Proof
We consider @9, the first assertion follows analogously.

e Given v = et € E and u € F, we have

ve(a-z,2%q(a)z + u) = (b o(t)7, ¢(N(z)q(a) + u))

e Given z € E,, we have ~ i
p1(b-z) =b-o(x)”,
thus (¢1g,,00¢) : (R, Eq) — ((b)z,A) is an isomorphism of vector spaces.

e The map 6 o¢ : E, — A is clearly an isomorphism of involutory sets, cf. corollary (5.1 )

e Given z = et € EL, we have (p1(a-2),d(¢1(a-2))) € B and (¢1(a- ), ¢(N(2)q(a))) € B,
thus

i(p1(2)) € ¢(N(2)g(a)) +F = ¢(a7g(a)”a + F) = ¢((="q(a)2)” +F)
= ¢(gla-2)+F) = ¢(qla-z))" +F .

(14.10) Proposition The map v: 7T — T is an isomorphism of groups.
Proof
By corollary (14.7), it is enough to consider the following two cases:

e By lemma (14.9) and theorem (14.2), v4 : A — A and v : B — B are Jordan isomorphisms.
In particular, they are isomorphisms of groups.
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e Given x € E,, y:etE]Ef; and u,v € F, we have

q(a)r +u) - (a-y,y7q(a)y +v))
a-(z+y),27q(a)z +y q(a)y+f(afc,ay)+U+v)
(z+y),x7q(a)r +y7q(a)y + 27 f(a,a)y +u +v)
x+y) 7q(a)z +y7q(a)y + 27q(a)y — 27q(a)7y + u +v)
7q(a)z +y7q(a)y + 27q(a)y + y7q(a)r + u +v)
(z+y)7q(a)(z +y) +u+v)
()7, d(N( +y)a(a) +u+v))
1), ( (z)q(a) + ()()+U+v))
)q(a ) (b-6(t)7, 6(N(y)g(a) +v))
(a z,2%q(a x+u))~'y((a~y,y”ay+v)).

ty)
),
b
b

Q
A/—\AA/—\/—\/—\

+b-9¢
+b-¢
,¢(N (z
O

(14.11) Lemma  Given x € A, t :=2¢(a)z + s € X4, and ¢ := N(z)q(a) + s € E,, we have

N(t) = N(¥)
Proof
We have
N(t) = N(t) = N(N(z)q(a) + s) — N(z7¢(a)x + s)
= N(N(z)q(a)) + N(s) + T(N(x)q(a)s) — N(z7q(a)x) — N(s) — T'(z7q(a)xs)
= N(z)*N (q(a) )N () (a) 7

(14.12) Lemma  Given x € A, t :=2¢(a)z + s € X4, and ¢ := N(z)q(a) + s € E,, we have

ot =17 e, .

Proof
By lemma (14.11), we have

ot = (2t )2 N() T = (9)2 - N{) ' =17 €E, .

O
(14.13) Corollary  Given z € A and t := z9¢(a)x + s € X4z, we have
(x77tt2%)q(a)(xt 72 ™) = gq(a) .
Proof
First of all observe that we have
r7 %t 2% = N(z)tot 7t ' N(z) = (at 172717 .
Now we have 2t 1t2~! € E, = Cy(E,) by lemma (14.12). O
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(14.14) Lemma  Given z,y € A, t :=2°¢(a)z + s € X4 and u € F, we have

Y Pz (@ -y, 97 q(@)y +u)) = (p1(a- 2), p(N ()N (y)g(a) + N(t)u)) ,

where z = zt~ 1721yt

Proof
The first component of hgz.1) (a - y,y7q(a)y + u) is

ayt’ — axt™ ' f(ax, ay)t® = ayt® — axt™' f(ax, ax)z " yt® = ayt® — axt™ (t —t7)x " yt®

= ayt® — axt te "yt + axt 2 yt® = axt™HTx Iyt
and the second component of A (g 1) (ay7 y2q(a)y + u) is
t(yq(a)y +u)t” = ty”q(a)yt” + N(t)u .
By corollary (14.13), we have

z27q(a)z = (xt_lt"x_lyt”)aq(a) (zt™ 172 yt7)
=ty (=t 27 q(a) (xt ™72 yt” =ty q(a)yt® .

Therefore, we have

Y(hazry (@ y,97q(a)y +u)) =((a- 2,27q(a)z + N(t)u)) = (¢1(a- 2), 6(N(2)q(a) + N(t)u))
= (p1(a-2), (NN (y)a(a) + N(t)u))

(14.15) Proposition The map v preserves the second component of the Hua-maps.

Proof
Let z,y € A, t:=2°q(a)r + 5 € Xaz, t := N(x)q(a) + s € E, and u € F. The second component
of

h'y(aw,t) (’Y((a Y, yU(J(a)y + U))) = il((pl (az),p(F)) (501(0’ : y)7 ¢(N(y)Q(a) + U))

is

by lemma (14.11). Now the assertion results from Lemma (14.14). O

(14.16) Proposition  Let x = A+eu € A, t:=27q(a)r+5 € Ayp and  := N(x)q(a)+s € E,.
Then the following holds:

(a) Given (a-y,u) € A, we have
’Y(h(aw,t) ((1 Y, U)) = B'\/(aw,t) (’Y(CL Y, u)) :
(b) Given (b-y,u) € B, we have

’y(h(ax,t) (b Y, U)) = Ny(a:r,t) (7(b Y, u)) .
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Proof
By proposition (14.15), it remains to check the first component.

(a) By lemma (14.14) and lemma (14.12), the first component of A4, ¢)(a -y, u) is
a -t 'yt” =a-yt 't - (N(N)g(a)” + N(e)N(n)g(a) + f(a- A ae- p)” +s) .

Therefore, the first component of ’y(h(am) (a-y, u)) is

i oyt - (N(Wa(a)” + N(e)N(u)g(a) + ) +b- ¢ (y7TEf (a, a)ip)”

On the other hand, the first component of

iL(&¢(A)+E¢(#)5,¢(E)) (d oY), pa2(a -y, U))

ad(y)d(f)7 — (ad(N) + bs(1)7) - o(&) "' f(ad(N) + bo(u)7, ad(y))b(f)”
= ag(yt ') ¢(t) — ag(AE '\ f(a, a)yt”) — b (ut "N (f(a, ))yf")
= ap(yt '17)p(f) — ad(yt~'17)d(N (A

(b) This follows analogously.

O

(14.17) Theorem Let Z and = be proper pseudo-quadratic spaces, let (A,F, o) and (A,F, )
be quadratic of type (iv) and (iii), respectively, let

dimg Lo =1, dimz Lo =2,

let @ € L} and e € EL, and let ¢ : E, — A be an isomorphism of fields. Moreover, let v: T — T'
be a map such that

Ve=s+etecA uvelF: Y(a-z,27q(a)z +u) = (a- ¢(s) + b- o(t)7, (N (z)q(a) + u))
for some @, b € Ly such that f(d, 5) = 0z. Then v is a Jordan isomorphism.
Proof
e Putting z := 04 and u := 1, yields
Y(0Lo,1a) = (0z,,0(1a)) = (0z,,1z) -
e By proposition (14.10), « is an isomorphism of groups.

e Let 2,y € T. By lemma (14.8), there are ¢ € A and b € B such that y=2a- b. By lemma
(7.19) and proposition (14.16), we have
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Chapter 15 Exceptional Isomorphisms 11

We show that a Moufang set T defined by a one-dimensional pseudo-quadratic space over a
quaternion division algebra could equally defined by a 2-dimensional pseudo-quadratic space over
a separable quadratic extension and vice versa.

(15.1) Lemma  Let (A,F,0) be quadratic of type (iii) and assume dimy, A = 2. Let f be a
skew-hermitian form on L and let {a,b} be an orthogonal basis of Ly. Then f is anisotropic if
and only if we have

f(b7 b)f(av a)il ¢ 7N(A) .

Proof
Given s,t € A, we have

flas+bt,as +bt) =04 < N(s)f(a,a)+ N(t)f(b,b) =04
& f(b,b)f(a,a)"t = =N(st™1) € =N(A) .
O

(15.2) Lemma Let = be a pseudo-quadratic space such that dim dimyg Ly = 1 and such
that (A,F,0) is quadratic of type (iv). Let a € L}, e € E-, 3:= —N(e) and b := ae. Then the
following holds:

(a) The set {a,b} is an E,-basis of L.

(b) The skew-hermitian form f : Ly x Ly — E, defined by

.f(aa a) == f(a,a) , f(b,b) := N(e)f(a,a) , f(av b) := 04
is anisotropic.
(¢) There is a pseudo-quadratic form ¢ on Lo with respect to F, o and f such that

= (EaaFa g, LO? (j)

[1]:

is a pseudo-quadratic space, satisfying ¢(a) = ¢(a) mod F and ¢(b) = N(e)g(a) mod F.
(d) The map ~: T — T defined by
Ve=s+etchA ueF: (a-z,27q(a)z +u) — (a-s+b-t7, N(z)q(a) + u)

is a Jordan isomorphism.

Proof
(a) We have Lo =a - (E, + ¢E,) =a-E, +b- E,.
(b) Since we have A = (E,/F, 8), we have f(b,b)f(a,a)™' = N(e) = =3 ¢ —N(E,).

(¢) This results from (11.28) and (11.30) of [1'W], respectively, and remark (7.4). Notice that f
is trace-valued with

fla,a) = f(a,a) = q(a) +q(a)” ,  f(b,b) = N(e)f(a,a) = N(e)g(a) + (N(e)q(a))”
if we have Char A = 2, so that we choose 3, := q(a), By = N(e)q(a) in this case.
(d) By theorem (14.17), it suffices to show that + is well-defined. Given s,t € E,, we have
Gla-s+b-1°) = s7G(a)s + t°G(b)t + f(a-s,b-1%)
= N(s)g(a) + N(e)N(t)q(a) = N(z)q(a) = N(z)q(a) + © mod F .
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(15.3) Lemma Let = be a pseudo-quadratic space such that dim dimy Lo = 2 and such that
(A, T, o) is quadratic of type (iii). Let {a, b} be an orthogonal basis of Ly (which exists by theorem
(6.3) in chapter 7 of | ]) and let

B = 7f(ba b)f(a7a)71 :
Then the following holds:
(a) We have § € F\ N(A). In particular, H := (A/F, 3) is a quaternion division algebra.

(b) Let e € A* such that N(e) = —3. We extend the scalar multiplication on Ly to H by
ae :=b. Then the skew-hermitian form f : Ly x Ly — H defined by f(a,a) := f(a,a) is
anisotropic, satisfying

f(b’ b) = _N(e)f(ava) ) f(av b) = —ef(a, b) .

(¢) There is a pseudo-quadratic form G on Lo with respect to F, o and f such that

[1]:

= (H,F, 0, Lo, )
is a pseudo-quadratic space, satisfying ¢(a) = g(a) mod F and ¢(b) = N(e)G(a) mod F.
(d) The map ~: T — T defined by
Ve=s+etcH uck: (a-z,27¢(a)z +u) — (a-s+b-t7, N(z)j(a) + u)

is a Jordan isomorphism.

Proof
Notice that we have Fix(c) = F since (A, F, o) is quadratic of type (iii).
(a) We have
B7 = ~f(b,0)7f(a,a)"7 = —f(b,b) f(a,a) "' =5, p € Fix(o) =F .

By lemma (15.1), we have 8 = —f(b,b)f(a,a)"! ¢ N(A).
(b) We have

fla,a) = f(a,a)n # Oa , f(b,b) = flae,ae) = ¢’ f(a,a)e = —=N(e) f(a,a) .
(¢) This results from (11.28) and (11.30) of [TW], respectively, and remark (7.4). Notice that
q(b) +q(0)” = N(e)(a(a) + q(a)?) , q(b) + N(e)g(a) = (a(b) + N(e)q(a))” € Fix(o) =F

and that f is trace-valued with f(a,a) = f(a,a) = q(a) + q(a)? if we have Char A = 2, so
that we choose 5, := ¢(a) in this case to obtain

q(b) = f(b,b) +q(b)7 = N(e)f(a,a) + q(b)”
= N(e)g(a) + N(e)g(a)” + q(b)” = N(e)g(a) = N(e)g(a) mod F .

(d) By theorem (14.17), it suffices to show that v is well-defined. Given s,t € A, we have

gla-s+b-t7)=5q(a)s+t7q(b)t + f(a-s,b-t7)
N(s)d(a) + N(e)N(H)i(e) = N(2)d(a) = N()q(a) +u mod F .
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Chapter 16 The Field [Fy

We return to the case A = F4 which we excluded in chapter 11.

(16.1) Notation Throughout this chapter, let a € Lj and A = Fy, which implies A~TF, and
thus F =2 Fy, =T, and let v : T — T be a Jordan isomorphism.

(16.2) Remark By remark (11.7), the map (41, ¢a) : ((¢)a,A) = ({¢1(a))z,A) is an isomor-
phism of vector spaces, where ¢, : A — A is defined by

VieA: pi1(a-t) =pi(a) - da(t) .

Moreover, we have le(a) = {pa(a,t),p2(a,t)?} and thus either ¢,(t) = 2(a,t) for each t € X,
or ¢q(t) = ¢a(a,t)? for each t € X,.

(16.3) Lemma  Assume dimy Ly > 2. Then we have

Vte X, : oo (t) = pala,t) .

Proof
Notice that (A, F, o) is quadratic of type (iii), hence there are no inseparable elements. Let b € a*
and t € X,. By identity (7.1), we have

p1(a) - a(t”) = p1(a-t7) = pi(a-t7 —b-t7" f(a,b)t7)
= ¢1(a) - 2(a,1)7 = @1(b) - pa(a, )~ f(p1(a), p1(b)) 2(as )7 .
The linear independence of 1 (a) and 1 (b) yields ¢, (t)7 = ¢4 (t7) = pa(a,t)°. O

(16.4) Remark Now we can go on as in chapter 11 and we obtain that v is induced by
an isomorphism ® : = — = of pseudo-quadratic spaces. In the case dimy Ly = 1 however,
each isomorphism of groups turns out to be a Jordan isomorphism. At this point, we drop the

assumption that « is a Jordan isomorphism.
(16.5) Lemma Assume dimp Lo = 1. Then we have h, = idp for each a € Lj.

Proof
Let a € L. Given z,y € A and s € X, t € Xy, we have

Plaz,s)(a-y,t) = (a cys® —a-xs” ' f(ax,ay)s’, sts”)
= (a ~ys? —a-yN(x)f(a,a)s, N(s)t)

(a-y(s” +s),t) = (a-y,t) .

O

(16.6) Corollary Assume dimy Lo = 1 and let v : T'— T be an isomorphism of groups. Then
v is a Jordan isomorphism.

Proof
Because of |Z(T)| = 2, we have v(0r,,14) = (07,,1%), and because of IT| = |T| = 8, we have
dimj Ly = 1. By lemma (16.5), we have

Vae LS : hy, =idp , h’y(a) = idT
and thus

VaelLy, xe€ly: Y (ha(x)) = v(@) = hoya) (v(2)) -
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(16.7) Remark As a consequence, it is convenient to determine the isomorphism class of the
group T and hence the structure of Aut(T).

(16.8) Lemma We have T' = Qg, where Qs denotes the quaternion group.

Proof
We have |T| = 8, and given (a,t) € T'\ Z(T), we have

(a’t)Z = (a+aat+t+f(a’a)) = (OLole) # (OLmOA) :

O

(16.9) Remark  The outer automorphisms of T' are represented by the restrictions of isomor-
phisms of pseudo-quadratic spaces, i.e., by the group

(*yg,ps|’yng—>T, (a-z,t) = (a-27,t%), ps T =T, (a-z,t) = (a-xs,t)) = X3,

where s € A\ F. The three non-trivial inner automorphisms yield some exceptional Jordan
automorphisms:

Yo:T —T: (a,t) — (a,t), (as,t) — (as,t?) , (as?,t) — (as?,t%) ,
Yas : T — T : (a,t) — (a,t%) (as,t) — (as,t) (as?,t) — (as?,t7) ,
Yaso T — T : (a,t) = (a,t7) , (as,t) — (as,t7) , (as?,t) — (as?,t) .

(16.10) Lemma Suppose that dimy Lo = 1 and let v : T' — T be a Jordan isomorphism.
Then there are an isomorphism ¢ : = — E of pseudo-quadratic spaces and an inner automorphism
7 € Aut(T) such that + is induced by 7 o ®.

Proof
By remark (11.7), the map

(p1,0a) : ({a)a, A) = ((1(a))z, A)
is an isomorphism of vector spaces. Let ® : £ — = be defined by

® := (@1, 0q) : (Lo, A) = (Lo, A), (a,t) ((pl(a),qba(t)) .

Then the map 7 :=~o (I)\_Tl : T — T is an automorphism of T such that ¢1 = idg , hence 7 is

inner. O

(16.11) Theorem  Assume K = F4. A map v : T — T is a Jordan isomorphism if and only if
one of the following holds:

(i) There is an isomorphism ® : = — = that induces ~.

(ii) We have dimg L = 1 and there are an isomorphism ¢ : = — 2 of pseudo-quadratic spaces
and a non-trivial inner automorphism 4 € Aut(7) such that v is induced by 4 o ®.

Proof
“=" This results from remark (16.4) and lemma (16.10).

“«<” This result from theorem (14.2) and corollary (16.6).
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The complete description of the Jordan isomorphisms between the Moufang sets of two proper
pseudo-quadratic spaces is as follows:

(17.1) Theorem (Jordan Isomorphisms of Moufang Sets of Pseudo-Quadratic Form
Type) Let = and = be proper pseudo-quadratic spaces. A map v : T — T is a Jordan
isomorphism if and only if one of the following holds:

(1)
(i)

(iii)

There is an isomorphism ® : E — = of pseudo-quadratic spaces that induces .

The involutory sets (K, Ko, o) and (K, Ky, 5) both are quadratic of type (iv), we have
K2K, dimg Ly = 2 = dimg Lo

and there are an i € {2,3} and an isomorphism ¢ : = — §i~of pseudo-quadratic spaces such

that ~ is induced by (id’z)~! o ®, where id’= and = =: 2, =, =3 are as in notation (13.4).

The involutory sets (K, Ko, ) and (K, Ko, &) are quadratic of type (iv) and (iii), respectively,

we have dimg Lo = 1, dimg Lo = 2 and y can be described by

Ve=s+etekK, uekKy: v(az,27q(a)z + u) = (ag(s) + bo(t)°, o(N(z)g(a) +u)) ,

where a € Lg is arbitrary, ¢ : E, — K is an isomorphism of fields, e € El, a € Lo and

beat.

[1]:

We have K = F, = K, dimg L = 1 and there are an isomorphism ¢ : = — = of pseudo-
quadratic spaces and a non-trivial inner automorphism 4 € Aut(T") such that v is induced
by 4 o ®.

Proof

“=” If (i) or (iv) holds, we have K 2 K, thus neither (i) nor (iii) holds. If (iv) holds, (i) can’t

hold since ¥ is not induced by an isomorphism of pseudo-quadratic spaces by remark (16.9).
Suppose that neither (i) nor (iv) holds. By theorem (8.1), (K, Ko, o) and (K, Kg,5) are
non-proper, hence they are of quadratic type by remark (9.9), and by theorem (16.11), we
have K 2 . But then we have K 2 K by theorem (8.1). Finally, either (ii) or (iii) holds
by theorem (13.15).

“«<” This results from theorem (14.2), theorem (14.17) and theorem (16.11).
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Chapter 18 Parametrized Moufang Triangles

The subject of this part is the classification of simply laced twin buildings via foundations, which
are amalgams of parametrized Moufang triangles. Given a simply laced twin building, we obtain a
foundation by taking the set of rank 2 residues, which are Moufang triangles, and by parametrizing
the corresponding root group sequences. These parametrizations make the glueings visible, and
they turn out to be Jordan isomorphisms.

By looking at foundations of rank 3, we can deduce more information about the appearing
glueings, e.g., the glueing of a foundation of type As is an isomorphism of skew-fields, which is
quite restrictive, e.g., concerning foundations involving octonions or residues of type Dj.

Chapter 18 Parametrized Moufang Triangles

(18.1) Definition  Let A be an alternative division ring.

e The root group sequence
T(A) = (U[1,3],fEl(A)»xz(A)»xs(A))
with commutator relations
Vs teA: [z1(s), z3(t)] := x2(st)
is the parametrized standard triangle with respect to A.
e The root group sequence
To(A) = (Up,a, x1(A), 22(A), 23(A))
with commutator relations
Vs teA: [z1(s),x23(t)] := z2(—st)

is the parametrized opposite triangle with respect to A.

(18.2) Remark  For reasons of brevity, we will write
TO(A) = (z1(A), ..., 73(A))
instead of 7 (A) = (Up g, z1(A),..., 23(A)).

(18.3) Lemma  Given an alternative division ring A, we have

TO(A) = T(A).

Proof
Let
T°(A) = (z1(A), z2(A), z3(A)) T(A) = (21(A), 72(A), T3(4)) .

Then a = (at, a?, a3) with

(%1 xl(A) — .i‘l (A), T (t) — i‘l(t) s

(6%} .TQ(A) — i‘Q(A), xg(t) — fg(—t) s

ozt w3(A) = T3(A), zs(t) — T3(t)

have

(18.4) Lemma  Let 7(A) = (21(A), z2(A), z3(A)) be a parametrized standard triangle. Then
we have

(l'g(Ao),CEQ(AO),Z'l(AO)) = TO(AO) .
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Proof
Given s,t € A°, we have

[23(s), 21(8)] = [w1 (1), 23(5)] ™" = @2 (ts) ™ = wa(—s01) .

O

(18.5) Notation In the following, a (parametrized) Moufang triangle always denotes a
parametrized standard Moufang triangle.
(18.6) Definition  Let T(A), T(A) be parametrized Moufang triangles.

e An isomorphism a : T(A) — T(A) is a triple (a1, oz, asz) such that oy, a9, az 1 A — A are
isomorphisms of additive groups satisfying

Vs, teA: as(st) = a1(s)as(t) .
e A reparametrization for T(A) is an ordered set o = (A, a1, a9, a3) such that A is an
alternative division ring and ai,as,a3 : A — A are isomorphisms of additive groups

satisfying 3
Vs, teA: as(st) = a(s)as(t) .

(18.7) Lemma  Let 7(A) be a parametrized Moufang triangle and let o = (A, oy, az, a3) be
a reparametrization for 7 (A). Then we have

(#1(A), 22(A), 25(A)) = T(A) , Vi=1,2,3: & =xi00q; .

Proof R
Given s,t € A, we have

[#1(s), Z3(t)] = [z1(a1(s)), z3(3(t))] = 22 (a1(s)az(t)) = 2 (az(st)) = Za(st) .
O

(18.8) Lemma  Let 7(A) be a parametrized Moufang triangle and let a,b € A*. Then there
are reparametrizations a = (A, a1, a2, a3) and 8 = (A, f1, B2, 83) for T(A) such that

z1(0n(1p)) = 21(1a) , 23(as(la)) =zs(a) , 21(B1(1a)) = 21(b) , 3(Bs(1a)) = 23(1a) .

Proof
Set a:= (A, ¢, pad, pa®) With ¢ as in (20.25) of [T'W]. For the second statement, apply the first
result to T (A°). O

(18.9) Lemma  Let 7(A) = (z1(A), z2(A), z3(A)) be a parametrized Moufang triangle. Then

the action of the Hua automorphism hi(s) := ,u(xl(lA))fllu(xl(s)) on z1(A) x z3(A) corresponds
to the map
1

(t,u) — (sts,s " u) ,

and the action of the Hua automorphism hs(s) := u(a:g,(lA))_lu(a:g(s)) on z1(A) x z3(A) corre-
sponds to the map
(t,u) = (ts™ ', sus) .

Proof
This is (33.10) of [TW]. O
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In this chapter, we introduce the objects we will mainly deal with and which turn out to be a
classifying invariant for simply laced twin buildings.

§ 19.1 Definition

The definition given here combines ideas and concepts of B. Miihlherr and R. Weiss. In this part,
we only consider simply laced foundations, cf. part VIII for a general definition.

(19.1) Definition

o Let M be a simply laced Coxeter matrix, i.e., we have m;; € {2,3} for all 4,5 € I. A
foundation of type M is a set

Fi=AT A ) Vagm | (6:5) € AM), (i, 5, k) € G(M)}
such that:
(F1) Given (i,j) € A(M), then T(A(; ;) is a Moufang triangle over A j).

(F2) Given (i,5) € A(M), we have A ;) = A, .

(F3) Given (i,j,k) € G(M), then v r) : Aujy — Ag k) is an isomorphism of additive
groups satisfying
Y1) =1, Vi, gk = id% 0 7@2@) 0id° .
(F4) Given (4,7, k), (¢,4,1),(,4,k) € G(M), we have
Vgk) = Vegk) €147 0 Vg -
e Given a foundation F, we denote the corresponding Coxeter Matrix by F.

o A foundation F is a Moufang foundation if each glueing v := 7(; jx) is a Jordan isomorphism,
i.e., we have

Vs, te Ay e ~v(sts) = y(s)v(t)y(s) .

(19.2) Definition Let F be a foundation over I = V(F') and let J C I. The J-residue of F
is the foundation

Fr=A{TAwn) g | @5) € TPNAF), (i,5,k) € PN G(F)} .

(19.3) Remark Since a foundation is, in fact, an amalgam of Moufang triangles, an isomor-
phism of foundations is a system of isomorphism of Moufang triangles preserving the glueings.

(19.4) Definition  Let F, F be foundations.
e An isomorphism o : F — F is a system a = {m, ag,jy | (i,5) € A(F)} of isomorphisms
T F—F, i) = (5 @ ) P TG g) = TR x())
such that
v (i,5,k) € G(F) : Vr(@)om () m (k) © Oy 3y = O 1) © Vg
and a; ) = af; ;) for each (i, j) € A(F).
e An isomorphism a : F — F is special if F = F and 7 = idp.

e An automorphism of F is an isomorphism « : F — F.
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§ 19.2 Visualizing Foundations

Given a foundation F of type M, we can extend the corresponding Coxeter diagram Il,; in such
a way that it contains all the information of the given foundation F:

e Given an edge {7,j} € E(M), we label it by either T (A ;) or T(A;,)) and add an arrow
to indicate in which direction we have the given standard root group sequence.

e Given (4, j,k) € G(M), we choose either (4, j, k) or (k,j,4), we add a directed arc from {4, j}
to {7, k} or vice versa, and label it by v j &), T€SP. Y(k.j,q)-

The remaining information can be deduced from the given ones. Notice that the constructed
diagram is not uniquely determined by F as there is a choice in the directions.

(19.5) Example An arbitrary foundation of type Az is given by

a concrete example is

1 T(A) 2 T(A?) 3

where A is an arbitrary alternative division ring. We will see that an integrable foundation of
type Ajs is isomorphic to the foundation

MU AN

1 T (D) 2 T (D) 3

for some skew-field D, i.e., the previous example is not integrable.

(19.6) Remark

(a) Concerning a given problem, we sometimes don’t need the whole visualization to get a feeling
for the crucial step in the solution. In this case, we restrict to a diagram with the essential
information, e.g., we just indicate whether some glueings are iso- or anti-isomorphisms of

skew-fields.

(b) Notice that in the above construction, the resulting diagram possibly carries redundant
information: Given (4, j, k), (i,4,1) € G(M) (and thus (1,5, k) € G(M)), we have

Viirgok) = Vtgk) ©1d° 0G50y

which means that

SR

carry the same information, where v1 = v(; j1), 72 = Ya,j,k) and ¥3 = V(i j k)

- 94 -



Chapter 19 Foundations

§ 19.3 Root Group Systems

The fact that a root group systems is a classifying invariant of the corresponding twin building is
a fundamental result in twin building theory.

(19.7) Definition Let B be a simply laced twin building of type M, let X be a twin apartment
of B and let ¢ € Os.

e Given (i,7) € A(M), let a;, o be the simple roots with respect to (¥, c) and let O, ;) be
as in theorem (2.32) (d). Then

Utij) = g, Uls gy, U

J
i,5)’

U(Ji,j)) =0,

denotes the root group sequence of B from o; to a;, which is isomorphic to the root group
sequence of B;; from a; N B;; to a; N Byj.

e The resulting set
U(Ba J\/I7 E,C) = {U(Zj) | (13]) € A(M)}

is the root group system of B based at (X, c).

(19.8) Lemma Given (¢, 7, k) € G(F), we have U(ji,j) = U(JJ k)

Proof
This holds by definition. O

(19.9) Definition Let U :=U(B, M,%,¢) and U := U(B, M, %, ) be root group systems.
e An isomorphism a : U — U is a system
o= {Waa(i,j) | (Zaj) € A(M)}
of isomorphisms
T MM, g Ug) = Utn(),n )
such that

A4 (i,j,k) S G(M) : Oé(i’j)lUij‘ | = O[(j’k)”]ij‘ o s v (’L,j) S A(M) Q) = a?j,i) .
e An isomorphism « : U — U is special if M = M and m = id ;.
e An automorphism of U is an isomorphism « : U — U.

(19.10) Theorem Two root group systems U(B, M, %, c) and U(B, M,%,&) of of a twin
building B are specially isomorphic.

Proof
This is a consequence of theorem (2.22). O

(19.11) Theorem Let U :==U(B, M, %, c) be a root group system of a twin building B. Then
the isomorphism class of U is a classifying invariant of the isomorphism class of B.

Proof
This is a consequence of the extension theorem (2.23). O
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§ 19.4 Foundations and Root Group Systems

Given a root group system, there is a natural way to attach a foundation to it.

(19.12) Definition Let U(B, M, %, ¢) be a root group system.

e Given (4,j) € A(M), there is an alternative division ring A(; ;) such that U ;) = T (A ;))-
In particular, there is a system of parametrizations

(g Aag) = UGy teai @), x € {i,47,7}

extending to the defining relations for 7(A; ;)), i.e., we have
Vst €Ay [xfi7j)(s),x%i7j)(t)} = xaj)(st) :

By lemma (18.4) and lemma (18.3), such a parametrization yields an opposite system of
parametrizations

v )—>U(ﬂ) t»—>ac(”)(d"(t))

(J,z) (, ’
oy = UL e ald | (id(—1)) |

(J i) -G, 3 (4,1)°
iy Al gy = Uyt a5 (1d°(1)) -

The resulting set A := {T(Aq ;) | (¢,5) € A(M)} is a parameter system for U.

e Given (i, 4, k) € G(M) and parametrizations 7 (A(; ;)) and T (A(;x)), we define the glueing
Vigk) * Ag) = AGk by , _
x%i,j)(t) = z%j,k) (Vi) (1))
which is justified by lemma (19.8). Then ~( ;) is an isomorphism of additive groups
satisfying v(; j,x) = idoov(k}j,i) 0id’. By lemma (18.8), we may adjust all the parametrizations
such that
Y (i,5,k) € G(F) : Yk (1) =1.
Notice that for this purpose we need the following fact: The adjustment of a glueing ~(; j »)

can be realized by a reparametrization for 7(A; j)) which fixes z; . (1). Thus we can make
sure that we don’t alter glueings which have already been adjusted before.

(19.13) Lemma Given a root group system U := U(B, M, %, ¢), a parameter system A as in
definition (19.12) induces a foundation

‘F(Uv A) = {T(A(i,j))ar)/(i,j,k) ‘ (Zvj) € A(M)7 (7'7.7’]{5) € G(M)} .

Proof
We emphasize that the glueings in definition (19.12) are identifications with respect to directed
edges' Given (iajv k)’ (Z‘ajv l)a (l7j7 k) € G(M) and ¢ € A(i,j)a we have

i (Vigiy @) = ;5 () = 2 ) (Vg (8)
) (1% 0 %5 (1) = @0, 4y (Va0 ©1d% 0 (3,5 (8))

and thus ¢ j.x) = Va5 ©1d° © Vi 50)- O

(19.14) Definition A foundation F is integrable if it is the foundation of a twin building B,
i.e., if there are a root group system U := U (B, M, 3, ¢) and a parameter system A for U/ such that

F=FU,AN).
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(19.15) Remark

(a) We will see in lemma (19.27) (a) that an integrable foundation is necessarily a Moufang

foundation.

(b) The next step is to show that the foundation attached to a root group system is unique
up to isomorphism. Moreover, we want to prove that the building corresponding to an

integrable foundation is unique up to isomorphism.

(19.16) Proposition  Let U :=U(B, M, %, c) and U :=U(B, M,¥, &) be root group systems
and let A and A be parameter systems for & and U, respectively. Then the following holds:

(a) An isomorphism & : F(U,A) — F(U, A) induces an isomorphism o : U — U.
(b) An isomorphism a : U — U induces an isomorphism & : F(U, A) — F(U,A).

Proof
Each isomorphism 5
i) Ulig) = Uy m(i)

induces an isomorphism ~
gyt T(Bg) = TA ) xi)

and vice versa. Given (i,j) € A(M), we have

(a) We show that 3
a:={mag; | (,j) e AM)}:U—=U
is an isomorphism.

Given (i, j,k) € G(M) and t € A(; j), we have

j gy _ ~m(J) 770)
(xfi7j)(t)) ) = x(w?i) 7(j ))( fw)(t)) (wzj) Tr(k))( V(w (@), (5),7(K)) 0%(0)

_ x=m(J) j _ ag,
= x(w( )w(k))( z k) V(i) (1) = (f”(j,k)(V(i,Lk)(t))) o

and therefore

s, = X

(b) We show that L
a:={magy) | (i,5) € AM)}: FU,A) — FU,A)
is an isomorphism.

Given (i, j,k) € G(M) and t € A(; j), we have
Uti.gy @ iy ®) = 250 (Va0 (8) € Uiy -
As we have
a(i’j)‘U{i.m - a(j’k)‘U(jj K

it follows that

~7(4)

() 3 . .
z(w%j),r(k))(’Y(W(i)aﬂ(j)vﬂ'(k)) ° O‘g,j(t)) x(‘n’(z) w(;))(o‘f”)( ))

19. 1L7r( i) -
ety e @y © Vg (1)

and therefore A A
Vim (i) (G)m(k)) © Oy iy = O 1y © Vg -

(19.1)
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§ 19.5 Reparametrizations and Isomorphisms

The concept of reparametrizations is quite similar to that of isomorphisms. However, we deal with
a single foundation and produce (in fact, all the) foundations which are isomorphic to a given one.
Moreover, this concept allows us to complete the proof that a foundation is a classifying invariant
of the corresponding twin building.

(19.17) Definition  Let F be a foundation.
e A system of reparametrizations
a:={aqy | (i,j) € A(F)}
satisfying ov;, ;) = af; ;) for each (i, ) € A(F) and
V(ijg,k) © agi,j)(l) = O‘gj7k)(1)
for each (4, j, k) € G(F) is a reparametrization for F.
e Given a reparametrization « for F, we set
]:a = {T(A(i,j))ai(i,j,k) | (Zaj) € A(F)a (7”]7k) € G(F)}
with ) )
Figk) = (1) 0 Vigik) © Oy
for each (3, j, k) € G(F).

(19.18) Example  Given the foundation

(19.19) Lemma  Let U :=U(B, M, X, c) be a root group system, let F := F (U, A) for some
parameter system A for U, let a be a reparametrization for F and let A be the parameter system
induced by a. Then we have F := F(U,A) = F,.

Proof
We have
Fim (i () = ;.5 (0) = 7, 5 (af; (D)
= x%j,k) (V(i,ayk) °© a{i,j)(t)) = j%j,k) ((azj,k))il © V(i,j,k) © O‘fi,j)(t))
for each t € A(i,j). O

(19.20) Corollary Let U :=U(B, M, %, c) be a root group system, let F := F(U, A) for some
parameter system A for U and let

a={mau; | (ij)€AF)}:F—F

be an isomorphism. Then F is integrable.
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Proof
Take (A(m-) = A(w(i)_’w(]))’ (O‘Ei,j))_la (aajﬂ—l’ (azi)j))—l) ai reparametrization for 7 (A, ;)), then
replace i € I by m(i) € I. The resulting parameter system A satisfies

FUAN)=F,=F.
O

(19.21) Theorem The isomorphism class of an integrable foundations F = F(U,A) is a
classifying invariant of the isomorphism class of the corresponding building.

Proof
This results from corollary (19.20), proposition (19.16) and theorem (19.11). O

(19.22) Remark The following theorem shows that the concept of reparametrization is useful
if we want to determine all the foundations isomorphic to a given foundation F.

(19.23) Theorem  Let F,F be foundations with F = F. Then the following holds:

(a) Let & = {au;) | (i,j) € A(F)} : F — F be a special isomorphism. Then there is a
reparametrization a of F such that F, = F.

(b) Let a = {ag, | (i,5) € A(F) be a reparametrization for F such that F, = F. Then there
is a special isomorphism & : F — F.
Proof
(a) If we take o := {a(; j) | (4,7) € A(F)} with

i) = (A (@65) 7 @)™ (67,) 71
as reparametrization for F, then F, = F.
(b) We have _ ) g .
i) = (Alig) Uiy Ui gy Ui g)
for each (i, j) € A(F), thus & := {idp, & ;) | (4,7) € A(F)}: F — F with
GG = (@)™ (0 )7 (e )7

is an isomorphism.

(19.24) Remark
(a) Let F and F be foundations and let

a={mauy | (ij)€AF)}:F—F

be an isomorphism. As we may replace i € V(F) by n(i) € V(F), we may consider « as
special. Thus it suffices to determine all foundations which are specially isomorphic to F.
The remaining foundations isomorphic to F are obtained by relabelings of the vertex set.

(b) The theorem is useful if we want to show that two given foundations F and F with isomorphic
residues R and R are isomorphic. In this case we may replace R by R, observing that there
is a relabeling of the corresponding vertices involved.

-99 -



Part IV Simply Laced Foundations

§ 19.6 Glueings

At this point we collect some first results about glueings of integrable foundations.
(19.25) Notation Throughout the rest of this part, F denotes an integrable foundation.

(19.26) Theorem  Let (i,5) € A(F). Then a Hua automorphism of 7 (A; ;) is induced by
an automorphism of F.

Proof
This results from theorem (2.35). O

(19.27) Lemma Let (i,4,k) € G(F) and let A := A j), A= A k). Then the following
holds:

(a) The glueing v := 7(; j k) is a Jordan isomorphism. In particular, 7 is a Moufang foundation.
b) If v(; ; & is an isomorphism of alternative rings, then 7(A) = T(A).
(4,4,k)

(c) If v( jx) is an anti-isomorphism of alternative rings, then 7 (A) = T(A°).

Proof
(a) If we set
h(t) = (el ;) (10) " (e, (), t€ AL () = p(a], ) (15)) " ulal, (D), T€ A,
we have
h(v(1) = w1y (12)) " (@l 1 (1(8)) = w(a; ;) (1))

for each t € A. Moreover, we have

-1 —1

(el 5(0) = At

2 O = af, ;) (sts) 2y D" = 2, 4, (585)

for all s,t € A, 5,1 € A, cf. lemma (18.9). Combining these two facts yields
j j h(x(s)) j s j j
x{ch) (V(S)V(t)')/(s)) = x%ng) (V(t)) = Z‘Zid)(t)h( = xi@j)(StS) = J?Zj,k) (V(Sts))
and therefore

V(sts) = y(s)v(t)v(s)
for all s,t € A, thus « is a Jordan isomorphism.

(b) If 7 is an isomorphism, then (A,~,7,7) is a reparametrization for 7(A), thus 7(A) = T(A).

(c) If 7 is an anti-isomorphism, then (A% ~°,v°,7°) is a reparametrization for T(A), thus
T(A) = T(A°).
O

(19.28) Definition

e A glueing is negative if it is an isomorphism of alternative rings.

A glueing is positive if it is an anti-isomorphism of alternative rings.

A glueing is exceptional if it is neither positive nor negative.

A foundation is negative if each glueing is negative.
e A foundation is positive if each glueing is positive.

e A foundation is mized if there are both positive and negative glueings.
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(19.29) Proposition A foundation
F = {T(A(I,Q))a T(A(zs))ﬁ = 7(1,2,3)}

of type Az is negative. Moreover, A (and thus A) is associative.

Proof ~
If we set A := A 2), A := A 3),

a1 . 2 2 P
=20 o T2 =T2) T2 = T(23) T8 = T(23)

and

lemma (18.9) yields
2o(s)M W =25t - s) | F9(5)" 0 = 75 (5 % 1)
for all s,t € A, 3, € A. Combining these two facts and observing [U(ILQ), U(?’2 3)] =1 yield

)hs(’Y( ® = 7, (7(3)>h1(t) = xg(s)hl(t) =x5(t - 8) = Ta (7(t : 5))

*~y(s) for all s,t € A. As a consequence, we obtain

|
Rz

iy (’y(t) ) ( )hs(’Y(s . xz(t)hg("/(s)) _ Iz(lA)hl(t)hg(w(s))
2(1

I
Hz

and thus (¢ - s) = ~(t
- - - h
ra(s 1) = B2 (s 1) = B2(3(5) +1(D)) = Fa(1())* T = a(5) o0
for all s,¢ € A. This implies
;CQ((S . t) . u) — LL‘Q(S . t)hs(’Y(u)) _ xQ(t)hl(S)hs("/(u))
— ()OO gyt u) ) = (s (¢ w)

and therefore (s-t)-u=s-(t-u) for all s,t,u € A. O

~—

(19.30) Corollary Let F be a positive foundation. Then Gr is a complete graph.

(19.31) Theorem (Hua’s Theorem) Let A and A be alternative division rings and let
v : A — A be a Jordan homomorphism. If A is associative, then v : A — (A) is an iso- or
anti-isomorphism of alternative rings. In particular, A and v(A) are also skew-fields, and, if A or
~v(A) is a field, the map ~ is an isomorphism of fields.

Proof
(i) We show: Given s,t € A, we have ~y(st) = v(s)7y(t) or y(st) = vy(t)y(s).
The assertion is clearly true for s = 0y or t = 04, so assume s # 0y # t. As we have
v(W?) = y(u-1a - u) = y(w)y(La)y(u) = y(u) - 1z - y(w) = y(w)?

for each u € A, it follows that
Y((s4+1)?) = (s* + st +ts + %) = v(s)> + y(st) +y(ts) + ~(t)?
Y((s+6)?2) =75+ 82 = (7() +7(8)” = 1(5)? + Y()(®) + ()7 (s) +7(1)?

and thus

v(st) +(ts) = v(s)v(t) + () (s) - (19.2)
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On the other hand, we have
s(t(st)"Mt)s = s([tt™'s™H]t)s = [s(s 't)]s = ts
by the Moufang identities and the inverse properties and, by lemma (27.3), therefore,
A (t5) = 7 (3((s8)"10)8) = 2() (x()(st) (1)) (s) - (19.3)
Observing the associativity of A, we obtain
(17 = ()7 (st) [y (st) = v ()v(s)]
= (st) = v()7(t) = 7()(5) +(s)v()v(st) " v ()v(s)
= (st) —A()9(8) — 7(B)1(5) + (8 =
Since A has no zero divisors, it finally follows that
L =y(s)yy(s)™ =05 v A(st) =y(t)v(s) = 0z .
(ii) Given s € A, let
Noi={tEA (st =1}, Poi={t€ A | 1(st) = 1(H)(s)} -

By step (i), the subgroups N, and Ps of (A, +) satisfy A = Ny U P;. As no group is the
union of two proper subgroups, we obtain

Ny, =A \Y P, =A.
(iii) If we set
N:={seA|N,=A}, P:={seA|P,=A},
step (ii) shows that N and P are subgroups of (A, +) satisfying A = N U P, hence
N=A \Y P=A.

O

(19.32) Remark  If we suppose A instead of A to be associative and if y(A) is an alternative
division ring, the theorem remains true as we may apply it to v~ : y(A) — A.

(19.33) Corollary  Let F be a foundation such that there exists an edge (a,b) € A(F) with
A := A, associative. Then we have
A (’L,j) S A(F) : A(l §) = ~AV A(l i) = Ao T(A(i’j)) = T(A) vV T(A(i’j)) = T(Ao) .

In particular, the alternative division ring A(; ;) is associative for each (i,j) € A(F). Moreover,
the assumption is satisfied if F has a residue of type As.

Proof
This results from lemma (19.27) (a), Hua’s theorem and lemma (19.27) (b), (c), using an easy
induction. The final assertion results from proposition (19.29). O

(19.34) Corollary  Let F be a foundation such that there exists an edge (a,b) € A(F) with
A := A(, ) non-associative, i.e., A is an octonion division algebra. Then Gr is a complete graph.

Proof
By proposition (19.29), F satisfies the assumption of corollary (19.33) if it has a residue of type
As. O
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Chapter 20 Integrability of Certain Foundations

In this chapter, we prove the integrability of certain foundations which are not negative or whose
defining field is an octonion division algebra. Afterwards we will prove that these foundations are
the only integrable foundations of this type, all of them defined over an octonion or quaternion
division algebra. For this purpose, we need the theory of fixed point structures developed in

[ .

The idea is as follows: Given an integrable foundation F and an automorphism « of the
corresponding twin building B, the foundation F corresponding to the twin building B := Fix(«)
can be constructed out of F and is, in fact, the fixed point structure of the automorphism
induced on the group generated by all the root groups. Conversely, all such fixed point structures
arise in this way, i.e., if we can realize a given foundation F as the fixed point structure of an
automorphism « of an integrable foundation F, then F itself is integrable.

We apply the so called theory of Tits indices without introducing it in detail since this would
involve a lot of technical considerations. We just follow the recipes, hopefully in a natural and
intuitive way, except for the canonical triangle over an octonion division algebra, where we just
indicate the main idea.

But first of all we start with some general integrability criterions. In combination with
Kac-Moody theory, they allow us to handle all the foundations that are defined over skew-fields
distinct from a quaternion division algebra (which includes fields).

§ 20.1 Integrability Criterions

The first one is a straight forward result as each residue of a twin building is again a twin building,
the second one is taken from [ ], and the third relies on Kac-Moody theory.

(20.1) Theorem  Let M be a Coxeter matrix over I = V (M), let F be an integrable foundation
of type M and let J C I such that |J| > 2. Then F; is integrable.

Proof

By assumption, we have F = F(U, A) for some root group system U = U(B, M, X, ¢) and some
parameter system A. By theorem (2.14), B; := B;(c) is a twin building, and by theorem (2.7) (b),
Y7 :=X,(c) is a twin apartment of B; containing c. Since we have

Vi, jeAMy): YN Byijy(c) =25 N (Br)i(c),
we have
Uy :=UBs, M, 35,¢) ={Uq; | i,j € A(My)}
and thus F; = F(Uy,Ay), where A is the parameter system induced by A. O

(20.2) Definition  Let F be a foundation.
e Let (F, ) be a cover of F. Then the foundation

F(F7<p) = {T(A('L,]))7’7(Z,Jl€) | (27.7) € A(F)7 (/Lu% k) € G(F)}
with
YV (i,5) € A(F) : Agy = Boiely » ¥ 65,F) € GIE) : Aijik) = V) e6)ek)

is the cover corresponding to (F,p).

e A foundation F is a cover of F if there is a cover (F, ) of F such that

FEF(F, ).
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(20.3) Example  Given the foundation

T(A(s,l))T(A@,s)) )
ANAN

1 T(Au2) 2

il

a cover is given by

0 TAEy) 1 T(Aa2) T(Aes) 3 T(Agsr) 4

-—- )

where ¢ : Z — Z/3Z, z — Zz is the natural homomorphism.

(20.4) Theorem Let F be a foundation and let F be a cover of F. Then F is integrable if
F is integrable.

Proof
This is a consequence of theorem C in | ] O

(20.5) Definition A foundation F such that
V(i) k) € GE)+ yaym =1d

is a canonical foundation.

(20.6) Lemma Let F be a negative foundation such that G is a tree. Then F is isomorphic
to the corresponding canonical foundation.

Proof
Since G is a tree, it suffices to show the following: Given (i, j, k) € G(F'), there is a reparametriza-
tion
. . N
(k) = (Bi.g) iy oy Ao )

such that (o oy ,@))_1 °Y(ijk) = ida,, ;- This holds for a; ry 1= (Ag ), Yigik)» Vigik)> Vigk)): O

(20.7) Theorem Let F be a canonical foundation such that one of the following holds:
(a) The defining field A (cf. definition (21.7)) is a field, and F is a tree.
(b) The defining field is a non-commutative skew-field, and F is a string, a ray or a chain.

Then F is integrable.

Proof

(a) Kac-Moody theory provides the existence of an integrable foundation F over A such that
F = F, cf. [T92]. Since F is negative by proposition (19.29), we have F = F by lemma
(20.6). Therefore, F is integrable by corollary (19.20).

(b) The corresponding twin building is the limit of a sequence of twin buildings A,,(A).
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§ 20.2 The Canonical Triangle over an Octonion Division Algebra
(20.8) Definition Let O be an octonion division algebra. The foundation

Az(@) = {T(A(m)) = T(A(Q,S)) = T(A(S,l)) = T(@)7’7(1,2,3) =72,3,1) = Y(3,1,2) = id@)}
is the canonical triangle over Q.

(20.9) Theorem  The foundation A,(Q) is integrable.

Proof (Sketch)
Let K := Z(0) and let E C O be such that E/K is a quadratic separable extension. The foundation
A2(0) is the fixed point structure of the Tits index

Let B be the twin building associated with the diagram, let R := Ry345¢) and let 7 be the
triality associated with R. Given k € {0,1,2}, let k := {0,...,6}\ {k} and k := {0,1,2} \ {k}.

By similar arguments as in | ], there are automorphisms ¢, € Aut(Rz) such that

Fix(pr) = T(0) , er(Rg) = Ry, , PR OT =T O Pk|R
and o can be extended to an automorphism ¢ € Aut(B) such that p|z, = ¢i. By a generalization
of the arguments in chapter 3 of [ ], the fixed point set of ¢ is a twin building of type A,
whose foundation is A5(0). O

§ 20.3 Positive and Mixed Foundations over Quaternions

(20.10) Notation  Throughout this paragraph, H := (E/K, () is a quaternion division algebra
with standard involution o.

(20.11) Notation  Let B :=(9%) € GLy(E) and let

o : My(E) = My(E), X — BXB™'.

(20.12) Lemma  We have
Fix(o) = {(‘; 5; |s,teE} ~H .

Proof
Given X := (7 4) € My(E), we have

X e Fix(o) & (Bvlu ?A):(i Z) S v=35ANu=pt & XecH.
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(20.13) Corollary  If we extend o to an involution

B B!
o: Mg(E) = Mg(E), X B X B! ,
B B!
we have
IQ S t
Uy :=Fix(o)NU, = { I, u |S,t7u€H} .
I

(20.14) Remark

(a) We translate the map o to root groups:

On the group <U172, U273, U3747 U2717 U372, U4,3>, the map o is given by

$172(t) — $271(ﬁ71t) s .131,3(t) — I274(7?) s
332)3(15) — $174(BE) s $2,4(t) — .2?1’3(1?) s
w3.4(t) = 2 3(B871) w1a(t) = 223(871)

Moreover, the fixed point set in (Ui 2,Us 3, Us 4) is

{y(s,t) := 1,3(8)71,4(Bt)T2,3(t)T2,4(5) | (5,1) € H} .

On the group (Us 4,Us5,Us6,Us3,Us 4,Us5), the map o is given by

333)4(15) — 1‘473(5_115) s x3,5(t) — 374,6( ) s
245(t) = 23,6(B1) 246(t) = 235() ,
z56(t) — z6,5(67'1) z36(t) = 2a5(87') .

Moreover, the fixed point set in (Us 4,Uss,Us6) is

{4 (s.1) = w3,5(s)a3,6(BD)za,5(t)a(5) | (s5,8) € H} .

If we set
{y™ (s, 1) == w15(s)a1,6(B) 22,5 (H)a2,6(5) | (s,t) € H} C Uy,
we have
[y (s1,t1), 4" (s2, t2)] = y** ((s1,t1) - (2, t2))
for all (s1,t1), (s2,t2) € H, hence

(U, y*(H), y** (H), 4" (H)) = T(H) .

(b) The corresponding Tits index is

E/K

(20.15) Theorem Let G be a complete graph over I := {1,...,n}. Then there exists an
integrable positive foundation F := P,/ (H) over H such that Gr = G.

More precisely: For each i € I, let B; be a a copy of B, and for all 1 <i < j < n let Byi ;) be
a copy of B. We identify B; with By; ;1 as in the first case and B; with By; ;1 as in the second
case. Then the fixed point foundation F := P, (H) is a positive foundation with defining field H
(cf. definition (21.7)) and Gr = G. Moreover, we have (; ; 1) € {0s,id”} for each (i, ], k) € G(F).
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Proof
Let

B:= (A5(E) = (Uy,U1,2,Uz,3,Us 4, Uss, Usg),0) , B:= (A3(E) = (U+701,2,[72,3,U3,4),5)
with the usual parametrizations.
(i) We identify (~f+ and Uj oUsz 3U3 4 via

12'1’2(15) — "Elyg(t) s "22,3(15) — 1’2’3(15) s i’3)4(t) — (E374(t) s
f173(t) — 17173(15) s 53274(15) — I274(t) s 1‘174(25) — .T1,4(t) .

(ii) We identify U+ and Us 4Us 5Us ¢ via

5?1’2(15) — $5,6(t> s 5]2)3“) — .’L‘475(—t) s .%374(75) — .%‘3)4(t) s
i’l’g(t) — $4’6(t) s f2’4(t) — 1’375(0 s {Z'174(t) — .’E3,6(—t) .
We have
VteE: Oé(.f?i,j(t))g = a(fci’j(t)&)

for all 1 <14 < j < 3 and therefore
a(FiX(&)) = Fixy,u,v.(0) .
Thus we may identify Fix(¢) and Fixy,y,v, (o) via

(i) g(S, t) = 5?1’3(8).’]’?‘1,4(ﬁt):i‘g’g(t).’fflzl(g) — .’1?173(S)$1’4(ﬂt)$2’3(t)$2,4(§) = ya(&t).

(ll) ’Ij(S,t) = 52‘173(5)53174(ﬂt)i’273(t)1~7274(§> —> 1‘476(S)Ig,ﬁ(7&5)584,5(715)1'375(5) = yb(g, 7t)

So if we have two copies By, By of B and if we identify B with subgroups of By, By as above, we
have:

o yi(s,t) = y4(s,t) if both the identifications are of type (i). Moreover, we have
() 5 (HY). 3 (B)) = T(H) . (D). " (B0, o} (D)) = T ()
and therefore (3,1) = id” : H® — H.
o y¥(s,t) = y5(s,t) if both the identifications are of type (ii). Moreover, we have
(yi (H), yi® (H), y7 (H)) = T (H) , (y2(H°), 5" (H°), y5 (H)) = T (H°)
and therefore (; ) = id? : H — HC.
o y§(s,t) = y5(5, —t) if the identifications are of different type. Moreover, we have
(y5 (H), y5® (H), y3 (H)) 2 7 (H) = (y7 (H), 57" (H), y; (H))
and therefore v(3 1) = o5 : H — H.

O

(20.16) Remark We obtain integrable mixed foundations over quaternions by glueing inte-
grable positive foundations in a suitable way.

- 107 -



Part IV Simply Laced Foundations

(20.17) Theorem Let G be a graph over I and let P be a collection of finite complete
subgraphs such that

UP=6, VPi#gEPeP:[V(P)NV(Py)| <1, Viel:{PePlicV(P)}| <2
PeP

and such that the graph G with vertex set P and
{P1, P2} € E(GP) & [V(P1)NV(P)| =1
is a tree. Then there exists an integrable mixed foundation F := F(G¥ H) over H such that:
e Gr =0,
e The V(P)-residue is isomorphic to PK/(P)I(H) for each P € P.
e Given P, Py € P such that Py NPy = {j}, we have

vV (i,k) € (V(PO\{5}) x (V(P)\{5}) 5 v € {id, o2},
i.e., these glueings are negative.

Proof
Given a graph P € P, there is an integrable positive foundation

Py ey (H)

which can be realized as fix foundation of a foundation Bp. We likewise want to realize the desired
foundation F as a fixed point foundation. For this purpose, we will connect the foundations Bp in
a suitable way. Since G¥ is a tree and |{P € P |i € V(P)}| < 2 for each vertex i € I, it suffices
to prove the assertion for |P| = 2.

Let P = {P1,P2}, let V(P1) NV (Py) = {j}, for A = 1,2 let ny := |[V(P,)], let j be the copy
of j in Py and let l’;’jA be the corresponding copy of B in the construction of Bp, in theorem
(20.15). We identify B;, and B;, via

57{12@) = 55%2,4@) ) 55;13(75) — 55%?3(_75) ) 55%14(t) = 55]122@) -

If Byi j,y and By, k) are copies of B in the construction of Bp, and Bp,, respectively, we have the
following possibilities:

e y? (s,t) = y§, (5, —1) if both the identifications are of type (i). Moreover, we have

(s, (HO), y2b (B°), o, (HO)) = T(HO) , (g2 (), 52 (ED), o, (HD)) == T(H)
and therefore 7(; j 1) = o : H> — H.

° y?l (s,t) = y?z (s, —t) if both the identifications are of type (ii). Moreover, we have

(y5, (H), 57 (H), v, (H)) = T (H) , (3, (H), y§? (H°), y§, (H)) = T (H)

and therefore 7(; j 1) = o : H — H°.

° y?l (s,t) = y5,(s,1) if both the identifications are of different type. Moreover, we have

(y5, (H), v, (HD), 3, (H)) = T (H) = (y5, (H), y5, (H), y;, (H))

and therefore «; ;) = id : H — H.

By construction, we have

Ggr=P1UP, =G .
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Chapter 21 Triangle Foundations

The smallest building bricks of foundations involving glueings are As- and A-residues. Since there
are Ap-foundations which do not have an integrable cover, it is not enough to consider As-residues.
We will show that the only As-residues without an integrable cover are those constructed in
chapter 20.

(21.1) Notation Throughout this chapter, B is of type A; with foundation
F= {T(A(1,2))7T(A(z,s)),T(A(a,n),’m =701,2,3), 73 = Y(2,3,1): V1 = 7(3,1,2)} :

We denote its building at infinity by B>°.

(21.2) Remark  Since B is a Moufang twin building, it is a Bruhat-Tits building by [VV], i.e.,
B> is a Moufang triangle 7 (A®) for some alternative division ring A®. As a consequence, we
may apply the results of [W].

§ 21.1 The Defining Field

First of all we show that each As-residue is isomorphic to the same Moufang triangle 7 (A), up to
opposition. Then we prove that there is an embedding A — A™>.

(21.3) Proposition  There is an automorphism « € Aut(B) inducing 1 — 2+ 3 — 1 on Gp.

Proof
By corollary (18.15) of [W], Aut(B) acts transitively on the set of gems, hence on the vertices and
thus on I. As |I| = 3 we are done. O

(21.4) Corollary  There is a (1 2 3)-automorphism of F.

Proof

Let U :=U(B, F, %, ¢) be a root group system such that 7 = F (U, A) for some parameter system A
for U and let o € Aut(B) be as in proposition (21.3). Then « induces a (1 2 3)-isomorphism from
U to U(B, F,a(X), a(c)) which is specially isomorphic to U by theorem (19.10). By proposition
(19.16), there is a (1 2 3)-automorphism of &/ which induces a (1 2 3)-automorphism of F. O

(21.5) Corollary We have A := A19) = A 3) = A ).
Proof
By corollary (21.4), we have
T(Aq2) =T(Aws) =TAG)

thus the claim results from (35.6) of [TW]. O
(21.6) Theorem  Let F be an integrable foundation. Then there is an alternative division
ring A such that

V (Z,]) e A(F) . A(’L,j) at A V A(Z,J) = AO .
Proof

By corollary (19.33) and corollary (21.5), this is true for each irr. rank 3 residue. The assertion
results from an easy induction, starting with A := A, ) for an arbitrary edge (a,b) € A(F). O
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(21.7) Definition Given an integrable foundation F, we call the alternative division ring A
of theorem (21.6) the defining field for F, and we say that F is defined over A. By (35.6) of [TW],
it is unique up to (anti-)isomorphism.

(21.8) Notation Throughout the rest of this part, given an arbitrary integrable foundation
F, the alternative division ring A always denotes its defining field.

(21.9) Theorem  There is an embedding o : A < A*.

Proof
Let
Ro =T(A) = {z1(A), 22(A), 23(A)}
be the gem as in (18.1) of [W]. As Ry is a special residue, it is a subbuilding of
B = T(A%) = {2:(A%), 72(A%), 3(A™)}
by theorem (6.3) of [MV]. Given ¢t € A and i € {1,2,3}, there is a unique element #;(0;(t))
inducing z;(t), cf. proposition (29.61) of [W]. By lemma (18.8), we may reparametrize 7 (A>)
such that
01(1A):1A°° 5 Og(lA):leo .

Given s,t € A and i € {1,2,3}, we have!

Zi(oi(s + 1) = zi(s +t) = zi(s)ai(t) = T (03(5)) & (03 (t)) = Ti(03(s) + 04(t)) (21.1)
and

ff;g(O’z(St)) = (EQ(St) = [xl(s),xg(t)} = [fl (Ul(s))7i'3(03(t))] = jg(ol(s)og(t)) . (212)
Putting s := 14 and ¢ := 1, in equation (21.2) shows that
g =03 =02 =01,

hence

(21.1)

Vs,teA: o(s+t) o(s)+o(t), o(st)

(21.10) Remark

(a) The root group valuation ¢ := ¢g, with respect to Ry as in definition (13.8) of [W] induces
a discrete valuation v of A>°. As a consequence, we have

o(A) C{ke A* |v(k) =0} .
Moreover, o(A) is a set of representatives for the residue field A := O/m, where O is the
valuation ring of A®° and m is its unique maximal ideal.
In particular, &; (J(A)) C Ui is a set of representatives for U; o and, given a uniformizer
m €A™, Z;(c(A)r) CU;; and & (WO(A)) C U;,1 are sets of representatives for Ui,l, where
Ui i is defined as in definition (3.21) of [W] and U; i is defined as in (18.21) of [W].

(b) By the results of [W], we may suppose A> to be complete with respect to the valuation
v and v(A®) = Z. By lemma (3.39) (a), Z(A>) is complete with respect to the induced
valuation. As a consequence, we may apply the results of [P] if A is an octonion division
algebra.

(c) For brevity, we will write Z;(¢) instead of Z; (o (t)) in the following.

1We replace %i(0:(t)) Ry = zi(t) by Zi(0i(t)) = zi(2).
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§ 21.2 Triangles over Octonions

At this point, as well as in §21.4 and §21.6, we heavily make use of the theory of affine buildings
developed in [W]. The main point is the fact that a parametrization for the building at infinity
induces a parametrization for a given root group system. As uniformizers play a central role, we
need some results of [I].

(21.11) Notation Throughout this paragraph, @ := A is an octonion division algebra. As a
consequence, Q> is an octonion division algebra.

(21.12) Proposition We have v(Z(0>)) = Z. As a consequence, there is a uniformizer
m € Z(0>).

Proof
As we have O = Q> by remark (21.10), this is a consequence of proposition 2 in [P]. O

(21.13) Theorem  The foundation F is specially isomorphic to the foundation Az (0).

Proof

Let (z1,22,x3) be a parametrization for 7(0°). Then the maps
xfi,j) 10— 2:(0%) , t— x1(t) € U,
CL‘EZJ) 0 — .’)32(@00) s t— Qig(t) S Ug,o R
x{i’j) 10— 23(0%) t—x3(t) € Usp

yield a parametrization for the gem Ro = Ry; j3, cf. remark (21.10). Moreover, the maps

x{jyk) 10 — 23(0%) , t x3(t) € Usp

x%ik) 10— I_l(@oo) ’ t— ‘I—l(tﬂ-) € U—l,l s

wlfj,k) 10— 22(0%), t—x_o(tm) € U_g;
and

x](“k’i) 10— 2 5(0%), t—x_o(nt) €U_a1 ,

x?]z,z) 00— ‘T—3(©OO) ) t— I_3(7Tt) S U_371 s

T, 2 O = 21(0%) t— x1(t) € Urp

yield parametrizations for two gems Ry; xy and Ry ;) at distance one to each other and to Ry; ;3.
By construction, this parameter system A parametrizes a root group system U := U (B, F, X, ¢).
As

x{i,j)(t) =ux3(t) = x{j,k) (t),
() (1) = z_2(tm) = w_o(mt) = afy ;) (2) .
xzk,i) (t) =z1(t) = mzi,j)(t)

it follows that
V(irgk) = Vksi) = V(kiigj) = do -
Therefore, the resulting foundation }
F:=FU,AN)

is the canonical foundation Ay(0Q). Finally we have F = F = Ay(0) by theorem (19.10). O
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§ 21.3 Non-Existence of Tetrahedrons over Octonions
Before we continue the examination of triangle foundations, we use the results of §21.2 to prove

that there are no further integrable foundations over octonions. To apply them, we have to
investigate the structure of Aut;(0). In particular, we construct a certain subgroup I' < Aut ;(0).

(21.14) Notation

e Given a quaternion subalgebra H, e € H* and w,p € H, we set

YH,ew) O — O, r+e-y—=rte w tyw,
¢(H,e,w,p) 0 — 0, x+e-yn—>w‘1xw+e-w_1ywp.

o We set

U = {(m,e,0) | H a quaternion subalgebra, e € HY, we H} ,
® = {PH,e,w,p) | H a quaternion subalgebra, e € H*, w,p e H, N(p) =10} .

e Given ¥y ) € ¥, we set

w(O]HI,e,w):@O_>©Oa rz4+eoy—sz+eow tyw .

o We set
Ii={yo |y eV, ¢cAut(0)}, [:={y°¢ |y ¥, ¢c Aut(0%)} .

(21.15) Lemma Let ¥ := ¥ .ew) € Y. Then the following holds:

(a) Given s,¢ € O, we have
U(st) = (V(s) - p(B)w)w™ .
(b) ¥ € Aut,(0).
Proof
(a) This is (20.24) of [TW].

(b) By the Moufang identities and the inverse properties, We have

(sts) 2 (v(s) - p(ts)w)w 2 (w(s) - [((t) - B(s)w)w ™ w)w ™!
— [(s) ((8) - (s)w)]w ™ = [((s)0(t) - (s))w]w ™ = b(s)eb(t)ib(s) -

for all s,t € Q.

(21.16) Lemma We have ® C Autz(g)(0). Given an element b€ Autz(0)(O) leaving a
quaternion subalgebra H invariant, there is an element ¢ € ® such that ¢ = ¢.

Proof
This is section (2.1) of [Sp]. Notice that our point of view is that of the opposite multiplication. O
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(21.17) Lemma  Given v = Yy € I and v € 0%, let = T(0) — T(0),
z'(t) = 2t (v (1) , 22 (t) = 2 (v y(Hw - v) 2?(t) = 2 (y(t)w - v)

and given 7° = ¢f; . ¢ € I'and v € 0%, let af . : T(0%) — T(0?),

v,Y°
z*(t) = 2 (vo°(t)) , 22 (t) = 2 (voy’(Hwov) ' (t) = 2t (v ()wow) .
Then we have

{@uy | v € D", v €T} = Aut(T(0)) = Aut(T(0°) = {al,. | v € O, 4° €T°} .

Proof
This holds by the proof of (37.12) in [TW]. O

(21.18) Lemma  We have I' = T"°.

Proof
Given ¢ 1= Yy e,0) € ¥, we have

Pete-y)=v°(x+y-e)=y°(z+ecy)

1 1

:J:—i-eow_lgjw:x—i—wgw_ ce=zv+e-wyw l=zx+e - wyw”

for all z,y € H and therefore
’(/}E)H,e,w) = 1p(ﬂ-ﬂ,e,w*ﬂ .

O
(21.19) Lemma  The set I' is a subgroup of Aut;(O).
Proof
Given a, , € Aut(7(0)), we have
ol (1g) = v-7(lo) = v . (21.3)

o We have
idg = 1/)(H7e71@) oidg € T".

e Let v € I'. By equation (21.3) and lemma (21.17), there is an element p € T" such that

-1
al@,"/ = Qg,p -

‘We obtain

’y_l = (a%@ﬁ)_l = a%c,ﬂ =pE L.

e Let 71,72 € I'. By equation (21.3) and lemma (21.17), there is an element p € I" such that

Ao,y © X,y = Qlg,p -

We obtain

T 1 1
V172 = X1,y Xgye = Ygp = P el

(21.20) Lemma  We have YU ® CT.
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Proof
Given a quaternion subalgebra H and e € H*, we have

idp € Aut(0) , ido = YP(e10) €V -

(21.21) Lemma  We have v, € T" for each w € Q.
Proof
By lemma (3.25) (c), there is a quaternion subalgebra H containing w. Let e € H*. Then we have
Yol +e-y) =w tzw+w e y)w=wtow+e- v  wy
for all z,y € H. Notice that
N(w 'w) = N(w) ' N(w) = N(w) *N(w) = 1g ,
thus we obtain

Yw = d)(H,e,w,w*lw) © Z/}(H,e,w*?'i)) el.

O
(21.22) Lemma  We have o5 ¢ T
Proof
Let ¥ = Y(m,e,u) € ¥ and ¢ € Aut(0) such that oy = 1p¢. Then
idg = Y = 0s¢‘£ﬂ1
is both negative and positive 4. O

(21.23) Lemma  Let
F= {T(A(u)) = T(A(2,3)) = T(A(3,1)) = T((D))a Y2 = Y(1,2,3) Y3 = Y(2,3,1), V1 = 7(3,1,2)}

be an integrable triangle foundation over Q. Then we have v; € I for : = 1,2, 3.

Proof
We have JF = A5(0) by theorem (21.13), thus theorem (19.23) (a) yields a reparametrization o
for A2(0) such that

A3(0Q)y = F .
From definition (19.17) it follows that
’y(i,j,k) = (azj’k))_l ] ld@ o a?i,j) .
By lemma (21.17) and lemma (21.18), there are v(; ;), 7k € I' and w € O such that
agi,j)(t) =w- 'V(i,j)(t) , a{j’k)(t) = V(j,k)(t) sw
and thus
(o) T =Gy Ew™) s (af )T oag ) () = (o) T (W v (@) 0T
for each t € 0. We finally obtain
Y(i,g5.k) = (’Y(jj’k))_l O Yy—1 0 Y(4,5) €T
by lemma (21.21). O
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(21.24) Proposition Let F be a foundation over O such that Gz is a tetrahedron. Then F
is not integrable.

Proof

Assume that F is integrable. Then each rank 3 residue is integrable, hence specially isomorphic
to A2(0) by theorem (21.13). By remark (19.24) (b), we may assume that the {1, 2, 3}-residue is
A3(0). Moreover, we may assume

T(A(3,4)) = 7—(*&(4,1)) = 7—(A(2,4)) =T(0).
Now we are in the situation of lemma (21.23), thus we have 7(1,24) € I' and
23 =1d°0id® 0}, 4y 0id® =5, 4 0id” .
We extend the reparametrization

o— o o o
a2 =1{0,07,07,09

to a reparametrization « for F and obtain an integrable foundation
Fi=Fa
satisfying
Y(4,2,3) = ido 0 Y(4,2,3) 0 0g = 7(71712,4) 00, .

As we have

T(Au2) =T(Aw3) =T(Ap) =T(0),
it follows that

'7(71)12’4) 005 = Y(4,2,3) € r, os €l VA

O

(21.25) Theorem A foundation F over an octonion division algebra O is integrable if and
only if we have F = A5(0) or F = A5(0).

Proof

As Gr is complete and as each residue is integrable, proposition (21.24) implies [V (F)| < 3. If
[V(F)| = 2, we have F = T(0), and if [V(F)| = 3, we have F = A3(0) by theorem (21.13).
Finally, A2(QO) is integrable by theorem (20.9). O

§ 21.4 Triangles over Skew-Fields

As we are done with the octonion case, we next deal with positive foundations over skew-fields.
The first step is to show that a triangle foundation F over a skew-field A is negative if A is a
skew-field. Thus A is necessarily an octonion division algebra if F is positive. Then we prove
that A is a quaternion division algebra, using the fact that A embeds into A>. At last we obtain
a parametrization for a root group sequence via the building at infinity.

(21.26) Notation Throughout this paragraph, A is a skew-field.

(21.27) Lemma  Let T(A)A and T (A) be isomorphic Moufang triangles over skew-fields and let
a = (a1,az2,a3) : T(A) — T(A) be an isomorphism. Then there are a,b € A and an isomorphism
¢ : A — A of skew-fields such that

o = (Aa()ba /\an¢7 pb(b) .
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Proof
Let

a:=a1(1;), b:=as(l;) .
Since A is associative, the map

&= (Ag-1a1, Ag-1pp-102, pp-1) : T(A) — T(A)
is an isomorphism. Moreover, we have

1

A-rai(lz) =a " a=1; , pp-raz(lp) =bb~t =1, .

By (35.23) of [T'W] therefore, there is an isomorphism ¢ : A — A of skew-fields such that
a=(0,9,9) .

Thus we have

o = ()\a¢7 Aapb(b7 pb¢) .
O

(21.28) Lemma  Let F, F be isomorphic foundations over a skew-field, let a : F — F be an
isomorphism and let (4,7, k) € G(F). If (; jx) is negative, then 4 := §(x(1),x(2),x(3)) is negative.

Proof
By lemma, (2127), there are iSOHlOI‘phiSmS gf)i : A(i,j) — A(ﬂ'(i),ﬂ'(j)) and ¢k : A(j,k:) — A(ﬂ’(j)ﬂr(k))
of skew-fields and elements a; € A(W(i)’ﬂ(j)) and ay € A(W(j)m(k)k) such that
iy = Pai © Bi sy = Aai © P
By the definition of an isomorphism, we have

A j ~/ / 71
= oy © V630 © (s, )

Combining these two facts implies that there are elements a,b € A(W(j)m(k)) such that

A =Xa0pp0 Pk 0Fijh) 0P -

Moreover, we have

ab=4(1) =1
and therefore b = ¢~ '. It finally follows that
4 =70 Kk 0 V(i jk) © P;

is negative. O

(21.29) Corollary  The following holds:
(a) The foundation F is either negative or positive.

(b) If a foundation isomorphic to F is negative, then F is negative.

Proof
(a) This results from lemma (21.28) and corollary (21.4).

(b) This is an immediate consequence of lemma (21.28).

(21.30) Theorem  Let A™ be a skew-field. Then F is negative.
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Proof

Let (21,2, 23) be a parametrization for 7 (A>) and let 7 € A*> be a uniformizer. Then the maps
xéi,j) tA =z (A7), tx(t) € Urp
xzz,j) CA— x2(AOO) s t— .’1?2(75) S U270 R
gy A a3(A) t > z3(t) € Uso

yield a parametrization for the gem Ro = Ry; j3, cf. remark (21.10). Moreover, the maps

xzjyk) tA = 23(A®) tr x3(t) € Usp

xfjk) A= 21 (A%, t—xz_1(tr) €U 11,

J;’(“j’k) A >z 9 (A% t—x_o(tw) € U_a;

yield a parametrization for a gem Ry; ;) at distance one to Ry; ;3. By construction, these two
parametrizations are part of a parameter system A for a root group system U :=U (B, F, X, c). As

we have ‘ 4
xzi,j)(t) = $3(t) = w%y}k) (t> )

it follows that v(; jx) = ida is negative. Therefore, the resulting foundation
F:=FU,AN)

is negative, cf. corollary (21.29) (a) with F in place of F. As we have F = F by theorem (19.10),
corollary (21.29) (b) finally shows that F is negative. O

§ 21.5 Skew-Fields inside Octonions

As we want to show that A is a quaternion division algebra if F is positive, we prove that each
non-commutative division subring of an octonion division algebra is a quaternion division algebra.
Then the claim results from the fact that A embeds into A>.

In §21.6, we will need once again the results of [P] to find a suitable uniformizer for a
parametrization. In fact, we can choose a uniformizer 7 € A*, thus conjugating elements of A by
7 is equal to applying the standard involution.

(21.31) Lemma Let O be an octonion algebra and let D be a non-commutative division
subring. Then we have
Z(D)C Z(0) =K.

Proof
The octonion division algebra @ quadratic over K. Then D := (D)g is non-commutative and

quadratic over K C Z (D), thus we have K = Z (D) by proposition (3.32) and therefore

Z(D) C Z(D) =K .

O

(21.32) Lemma  Let D be a skew-field such that dimzp) D < co. Then there is an n € N*
such that

dimZ(D) D= n2

Proof
This results from the fact that D is central simple over Z(DD). O
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(21.33) Theorem Let O be an octonion division algebra, let K := Z(0) and let D be a
non-commutative alternative division subring. Then the following holds:

(a) D ®zm) K is isomorphic to a division subalgebra of O.

(b) D is a quaternion division algebra or an octonion division algebra.

Proof
The non-commutative division subalgebra D := (D)g C O is quadratic over K C Z(D) and
therefore a quaternion division algebra or an octonion division algebra by proposition (3.32).

(a) By lemma (21.31), we have Z(D) C K, hence
DRzm K
is a central simple algebra over K. By the universal property, there is an epimorphism
T:DRzm K — D
which is injective due to simplicity.

(b) Part (a) yields }
dimZ(D) D= dimK(]D) X z(D) K) =dimg D € {4, 8} .

In particular, each Z(ID)-basis of I is a K-basis of D.

e If D is non-associative, then D is an octonion division algebra and thus dimzp) D = 8.
e If D is associative, then we have

dimypyD € {4,8} N {n* |n e N*} =4

by lemma (21.32). Let z € D\ Z(D) and let {1g,z,y, 2} be a Z(ID)-basis of D. Then
there are A\1,...,\y € Z(D) C K such that

x71=/\1~1@+/\2~a:+)\3-y—|—/\4-z.
Since {1g,x,y, 2} is a K-basis of D, it follows that
M = N(z)"'T(z), Ao = —N(x)™", A3 =00 =\
and therefore
N(z)=-)\'€ Z(D), T(z) =\ -N(z) € Z(D) .

As a consequence, D is quadratic over Z (D) and therefore a quaternion division algebra
by proposition (3.32).

O
§ 21.6 Positive Triangles over Skew-Fields
(21.34) Notation Throughout this paragraph, A is a skew-field and F is positive.
(21.35) Remark By theorem (21.30), A* is an octonion division algebra.
(21.36) Lemma The defining field A is a quaternion division algebra.
Proof
We have A C A* by theorem (21.9), thus the claim results from theorem (21.33). O

(21.37) Notation = We set H:= A, O := A* and K := Z(0).

(21.38) Proposition  There is a uniformizer 7 € H*.
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Proof

As we have H = O by remark (21.10), proposition 2 of [P] implies v(K) = 2Z. As a consequence,
O is ramified and the quaternion division algebra H' := (H)k is an unramified composition algebra
such that H' = H. Theorem 2 of [P] shows that

O (H,r')
for some v|g-uniformizer 7’ of K, i.e., we have v(n) = 2. As a consequence, there is an element
7w € H't C H* satisfying N(7w) = —7' and, therefore,

_v(N(m) _v(=r) _wv() _
v(m) = 5 = 3 =—5"= 1.

O

(21.39) Theorem The foundation F is specially isomorphic to the standard positive founda-
tion

PH(H) = {T(Af, ) = T(hhy) = T(AG) = TE) A =7 =7 =04} .

Proof
By proposition (21.38), there is a uniformizer 7 € H*. Let (x1,z2,23) be a parametrization for
T(0). Then the maps

‘/I"Zz])H_)xl(@) > t’—>.’II1(t)€U170 R
(7,,]) H— (ﬁg(@) ) t— I'Q(t) S Ugy() R
(’Lj) HH‘TZS(@) ’ t'—)xg(t) S U370

yield a parametrization for the gem Ro = Ry; j3, cf. remark (21.10). Moreover, the maps

'rgjk) H_>z3(@) ) t'—>$3(f) €U370 s
‘Z;‘k):H_)-T—l(@), t—x_ 1(7T)€U_11,
Tl H = 2(0) s 2ofim) € Uoay
and
xéck,z) TH— x72(@) ) t— $72(7T{) S U,Q,l R
xéﬂlz,z) ‘H— x—3(©) ) t— .T,_3(7TZ?) € U_371 R
2,5t H = 21(0) ts xy(t) € Uy

yield parametrizations for two gems Ry; xy and Ry ;) at distance one to each other and to Ry; jy,
e.g., we have

(@7, (5), 28,0 (O] = [wa(3), 22 ()] = 21 (5(0)) = w1 (F5)) = 21 (D)) = 2, (st)
for all s,t € H. By construction, this parameter system A parametrizes a root group system
U:=U(B,F,3,c). As we have

s y(8) = w3(t) = af; ) (0)
l(cj,k)(t) z_o(tm) = z_y(w(n'tm)) = w_s(mt) = x?k,i)(t) )

x%k i(t) = 21(t) = 2(; (1) ,

T

it follows that
Vg.k) = V(G,k,i) = V(k,i,g) = Os
Therefore, the resulting foundation }
F:=FU,AN)
is P3 (H). Finally F = F = P (H) by theorem (19.10). O
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Chapter 22 Positive Foundations over Skew-Fields

Since each residue of an integrable foundation is itself integrable, a positive foundation is built up
of positive triangle foundations. Their uniqueness enables us to show the uniqueness of positive
foundations for a given quaternion division algebra H and a given value of |I|.

(22.1) Notation Throughout this chapter, F is a positive foundation over I := {1,...,n}.
Since each rank 3 residue is a positive triangle, H := A is a quaternion division algebra by lemma
(21.36). Moreover, G is complete by corollary (19.30).

(22.2) Lemma Let F, F be isomorphic positive foundations over a skew-field, let o : F — F
be an isomorphism and let (4,7, k) € G(F'). By lemma (21.27), there are isomorphisms

0i By = Ay n() » Pk 2 AGR) = D) k)
of skew-fields and elements a; € A(w(i)m(j)) and ag € A(W(j)ﬂ(k)k.) such that
a€i7]‘) = Pa; © @i s a€j7k) = )\ak o P -

Then we have

PN - -1
¥ = Yr(i)m (), m(k)) = Pk © V(ijik) © s

Proof
By the definition of an isomorphism, we have

A=l gy 0wk © (s 1)) 71 = Aax 0 B 0 (i) © 005 0 g
As (i j,x) is positive, it follows that there are elements a,b € A(W(j)),r(k)) such that
7= X0 © A 0 b1 0 Fi gk © b7 -

Moreover, we have
ab=4(1)=1

and therefore a = b~'. It finally follows that

4=k oAujmod; -

(22.3) Remark  The standard involution o, satisfies
0500 =¢ooy

for all ¢ € Aut(H), cf corollary (28.6).

(22.4) Lemma  Let

Fi=(TAuz) =TAga) =TAag1) = TMH), 52 = F1.23), 73 = Y23.1), 71 = Y3.1,2))

be a positive triangle foundation over H. Then we have

Y3271 = 05 -
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Proof
The reparametrizations

G2 = (0,5 55 % %5 92 A5 ) G23) = (0,55 0575 ' 00 F5 ' 05)
show that F is isomorphic to the foundation

Fi={T(Ang) =T Apz) =TAg1) = TH), 52 =93 = 05,51 = T35} -
Since we have F 2 P (H) by theorem (21.39), there are isomorphisms

A(i.g) = Mo B(i.g): Mac, D) 0, 0.0)  T(A i) = T(Ae)
satisfying
Y= ¢(1,2)0's¢(_3%1) ; o5 = ¢(2,3)05¢(_1}2) ; o5 = ¢(3,1)0's¢(_2}3)

by the definition of an isomorphism and lemma (22.2). Now remark (22.3) implies

b2 = b@2,3) = P3.1) > Y3¥21 =1 =05 -

(22.5) Theorem  The foundation F is specially isomorphic to F := P (H).

Proof
Induction on n:

e n = 3: This is theorem (21.39).

e n — n+ 1: By induction assumption, we may assume ]:"[1,”} = Fl1,n]> Where .7}[1,”] and Fq ]
are the [1, n]—re§idugs of F and F, respectively. If we reparametrize the rank 2 residues of
F\ Fii,n) and F \ Fj1 ) in such a way that

YGgr1nt1) = Vogrimel) =1d° =Ymr112) = Y1120, J=1,...,n—=1,

the remaining glueings are uniquely determined by lemma (22.4), thus corresponding glueings
are equal.

(i) . (i) .
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Chapter 23 Mixed Foundations over Skew-Fields

In order to determine the integrable mixed foundations, we attach a graph to each of them. If
this graph is a tree, it turns out that the corresponding foundation is isomorphic to one of the
foundations constructed in §20.3. If it is not a tree, then the corresponding foundation is covered
by a foundation of §20.3.

(23.1) Notation Throughout this chapter, F is a mixed foundation over a skew-field, i.e.,
there are positive and negative glueings.

(23.2) Remark Since F has positive residues, H := A is a quaternion division algebra by
lemma (21.36).

(23.3) Definition  Let F be a foundation over I = V(F'). Given i € I, the set of neighbours
of iis
Bi(i):={j e I[{i,j} € BE(F)}.

(23.4) Lemma Let F be a foundation over I = {1,2,3,4} such that its defining field is a
skew-field and such that |By(1)| = 3. Let

I = {52,1,3): Y3,1,4), V(2,1,4) } -
Then we have 3
n:=|{¥ €' | ¥ positive}| € {1,3} .

Proof
Notice that a glueing is either negative or positive.

(i) Suppose that 7(21,3) and ¥(3,1,4) are negative. Then
’7(2,1,4) = ’7(3,1,4) 0id’o 5(2,1,3)
is positive, thus n > 1.
ii) Suppose that 79 13y is positive and that 731 3y is negative. Then
(2,1,3) (3,1,3)
Y21.4) = V.10 ©1d° 0 F2,1,9)

is negative, thus n # 2.
(i) H 4 (if) 4 4
3 2 3 2 3 2 3 2
Notice that there could be more edges than the drawn ones. O

(23.5) Notation  Given a mixed foundation F over H, we denote the collection of all maximal
positive residues of F by M(F). We set

P(F)={Gp | P e M(F)}.

(23.6) Remark Rank 2 two residues are considered to be positive, thus
U gr=06r.
PEM(F)
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. eorem e set satisfies the following conditions:
(23 7) Th Th M(F) isfi he following diti
(i) Each P € M(F) is integrable, in particular, Gp is complete.
(ii) We have
U Gp=GrF .
PEM(F)

(iii) Given Py # P2 € M(F), we have |V(P) NV (P2)| < 1.
(iv) Given ¢ € I, we have {P € M(F) |i e V(P)}| < 2.

Proof
(i) Each P € M(F) is integrable because F itself is integrable.
(ii) This holds by remark (23.6).
(iii) Since the elements of M(F) are maximal and Gp is complete for each P € M(F), lemma
(23.4) implies that
VPi#Pae M(F):  [V(P)NV(R)[<1.
Otherwise P; U P, would be positive with P; C Py U Pa.

(iv) By step (ii), the glueings connecting two elements P; # P2 € M(F) are necessarily negative.
From lemma (23.4) again it follows that

Viel: HPeM(F)|ieV(P)} <2.
O

(23.8) Proposition Let F be a mixed foundation over H such that M(F) satisfies the
conditions (i)-(iv) of theorem (23.7). If the graph G := gf;(f) is a tree, we have F = F(G,H) =: F.
In particular, F is integrable.

Proof
First of all we observe that F is well-defined the conditions (i)-(iv). By construction, we have

A

P(F) = P(F), and by theorem (22.5), we have

o . R
PP ) (H) =P € M(F)

for each NP € M(]:') Since the isomorphisms are special, we may assume ’ﬁN = P for each
P € M(F). Tt remains to adjust the glueings connecting two elements of M(F). Since G is a
tree and } 3 B

HPe M(F)|ieV(P)} <2
for each vertex i € I, it suffices to show the following:
Given Py, Py € M(F) with {G5,,Gp,} € E(G), there is an isomorphism « : PLUP, = PLUP,
fixing P;.
Let V(P1) NV(Py) = {b}, let a € V(P1) \ {b}, let ¢ € V(Po) \ {b} and let 7 := Y(ab.¢) © Vap)-
Then ~ }

a:={idp,agy) | (i,j) € A(PLU )}

with
V (i,§) € A(P) : ag ) = (id,id,id) Y (i,§) € A(Py) : i gy = (1,7,7)
satisfies the required condition.
Finally F is integrable by corollary (19.20) and theorem (20.17). O
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(23.9) Example

The red triangles represent the elements of M(F), the blue glueings represent the corresponding
glueings of F, while the black ones represent those of F.

(23.10) Corollary Ifg:= gl{f(f) is a tree, then we have

F=FGH).

Proof
This results immediately from theorem (23.7) and proposition (23.8). O

(23.11) Theorem  Let F be a mixed foundation over H such that M (F) satisfies the conditions
(i)-(iv) of theorem (23.7). Then F is integrable.

Proof
Let U be the the universal cover of QII;(]:) and let F be the cover corresponding to the induced

cover of Gz. By theorem (20.4), F is integrable if F is integrable. But /\/l(]:' ) equally satisfies the
conditions (i)-(iii) of proposition (23.8) and, moreover,

g;(]})gu

is a tree. Therefore, Fis integrable by proposition (23.8). O

(23.12) Example

T <,

F

— TACAL A A A

BSACACYACYAC/ACAC/AC A/
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Chapter 24 Negative Foundations

Negative foundations are quite easy to handle as we may apply theorems (20.4) and (20.7). If A
is a field, there are no restrictions; each foundation is integrable. If A is non-commutative, then
lemma (24.2) is very restrictive; the structure of an integrable foundation is very simple.

(24.1) Notation Throughout this chapter, F is a negative foundation over a skew-field.
(24.2) Lemma  If F has a residue R of type Dy, then A is a field. In particular, F is negative.

Proof
We label the vertices of R such that {1,2},{1,3},{1,4} € E(R). By lemma (19.29), each glueing
is negative, and by lemma (23.4), at least one is positive.

4 4 4
(23.4)
& _
2 3 2 3 2
4
. A i

(24.3) Theorem If A is a non-commutative skew-field, then Gg is a string, a ray, a chain or
a circle.

(19.29)

3

O

Proof
By lemma (24.2), G has no branches. O

(24.4) Theorem  Let F be a negative foundation. Then the following holds:
(a) If A is a field, then F is integrable.
b) If A is a non-commutative skew-field and Gz is a string, a ray, a chain or a circle, then F is
F g

integrable.

Proof

By theorem (20.4), F is integrable if its universal cover I is integrable. But since Gy is a tree, U
is isomorphic to the corresponding canonical foundation by lemma (20.6), which is integrable by
theorem (20.7). O
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Chapter 25 Conclusion

(25.1) Theorem (Classification of Simply Laced Twin Buildings) Let F be an irr.
simply laced foundation. Then F is integrable if and only if one of the following holds:

e The defining field is an octonion division algebra O, and F is isomorphic to one of the
following foundations:

Ay (@) Ao (@) A

T(0) T(0)

e The defining field is a quaternion division algebra H, and M (F) satisfies the conditions
(i)-(iv) of theorem (23.7).

e The defining field is a non-commutative skew-field D different from a quaternion algebra,

and F is isomorphic to one of the following foundations (where v1,...,yn4+1 € Aut(D)):
An(D)
1dD ld]D
1 T (D) 2 n—1 T(D) n
AL (D)
-3 TD) -2 -1 TM® o
AL (D):
A WA WA
0 T(D) 1 2 T (D) 3
Ao (D)

e The defining field is a field, and there are no further restrictions on the foundation F.
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Proof
This results from theorems (21.25), (23.7), (23.11), (24.3) and (24.4). O

(25.2) Remark

(a) Given a non-commutative skew-field D, we have
A (D)= A" (D) & D=D°.

(b) The theorem can be stated in a more precise way by using classifying invariants. For
example, given a skew-field D, the foundation A, (D, 71, ..., Vn+1) only depends on the coset

n+1
(H %’) -Inn(D) € Aut(D)/Inn(D) .

(¢) Each integrable mixed foundation over a quaternion division algebra H arises in the following
way: Start with some integrable positive foundations, then add some negative chains or
strings of arbitrary length with the rule that each vertex of a positive foundation is part of
at most one negative chain or string, e.g.,

()

(i)

®
®
]
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Chapter 26 Composition Algebras and Norm Similarities

In this part, we determine the structure of the group Aut;(A) of Jordan automorphisms for an
alternative division ring A. If A is a skew-field, we know the answer by Hua’s theorem. Since a
non-associative alternative division ring is an octonion division algebra by the Bruck-Kleinfeld
theorem (3.33), it remains to consider the octonion case. It turns out that we just have to add a
certain class of Jordan automorphisms, each of them fixing a quaternion subalgebra.

One basic tool is the possibility to extend isomorphisms between subalgebras to an auto-
morphism of the whole algebra, see [Sp] for a detailed reference. Moreover, the crucial thing is
the fact that nothing can go wrong with Jordan homomorphisms on fields, i.e., they are just
monomorphisms of rings. This is not true for skew-fields, cf. §132.

Chapter 26 Composition Algebras and Norm Similarities

The theorems of this chapter provide the existence of automorphisms which we will need in §28.3.

(26.1) Definition A composition algebra over a field K is a unital algebra A over K together
with a non-defective quadratic form N : A — K which permits composition, i.e., we have

Vaz,ycA: N(zy) = N(z)N(y) .
(26.2) Lemma  An octonion division algebra O is a composition algebra over K := Z(0).

Proof
The norm N is non-defective by corollary (3.24) and multiplicative by (9.9)(iii) of [TW]. O

(26.3) Definition For i = 1,2, let V; be a vector space over K; with non-defective quadratic
form N;, and let o : K; — Ky be an isomorphism of fields.

o A o-similarity is an isomorphism (¢, o) : (V1,K;) — (Va,Ks) of vector spaces such that

Voel: N2 (p(v)) = py - 0 (N1 (v))
for some element p, € K3, which is the multiplier of ¢.

o A similarity is a o-similarity such that Ky = K; and ¢ = idk, -

o A o-isometry is a o-similarity such that p, = 1k,.

e An isometry is a o-isometry such that Ko = K; and o = idk, .

(26.4) Lemma For i = 1,2, let V; be a vector space over K; with non-defective quadratic
form N; and associated bilinear form (-, );, and let ¢ : V; — V5 be a o-similarity. Then ¢ satisfies

Va,yeVi: (p(@), 0(y))2 = py - 0o ({2, 9)1) -
In particular, we have (M=) = p(M)* for each subset M C V;.

Proof
Given € M and y € M+, we have

(o(2), o(y))2 = Na(p(2) + ¢(y)) — N2(p(2)) — N2((y))
= Py - 0o (Ni(z +y) = Ni(z) = N1(y)) = py - 0, ({x,y)1) = Ox, -
O

(26.5) Notation Let V be a vector space over K with non-defective quadratic form N. We
denote the group of o-isometries of V by

I'Ly(V,K) :={(p,0) € TL(V)|[VveEV: N(p()) =c(N(v))} .
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(26.6) Theorem Let A be a composition algebra over K and let ¢ € Aut(K). Then there
exists a o-automorphism ¢ € Aut(A, K) if and only if there exists a o-isometry ¢ € I'Ly (A, K).

Proof
This is corollary (1.7.2) of [S]. O

(26.7) Theorem Let A be a composition algebra over K, let o € Aut(K) and let By, B
be subalgebras of the same dimension. If there exists a o-isometry ¢ € I'Ly (A, K), then each
o-isomorphism ¢ : B; — B, of algebras can be extended to a g-automorphism ¢ € Aut(A, K).
In particular, each linear isomorphism ¢ : By — By of algebras can be extended to a linear
automorphism v € Autg (A, K).

Proof
This is corollary (1.7.3) of [Sp]. O
Chapter 27 Jordan Homomorphisms

At this point we recall the definition of Jordan homomorphisms which play a central role in the
classification of simply laced twin buildings. As the classification involves some detailed calculations
concerning Jordan homomorphisms, it is natural to use this knowledge for a generalization of
Hua’s theorem to octonions.

§ 27.1 Basic Definitions and Basic Properties
(27.1) Definition

o Let A, A be alternative division rings. A Jordan homomorphism is an additive monomorphism
v : A — A such that

v(a) =1z, Va,yeh: y(ayr) =y(@)v(y)(z) -
e Given an alternative division ring A, we denote the group of Jordan automorphisms of A by

Aut;(A) :=={v: A — A |~ Jordan automorphism} .

(27.2) Lemma  Let A, A be alternative division rings. A Jordan homomorphism 7 : A — A
satisfies

Vaoyeh: Y(xy) +v(yx) = v(@)v(y) +v(Y)v(2) -

Proof
The assertion is clearly true for £ = 0p or y = 04, so assume = # 04 # y. As we have

V(%) =7(z - 1a - 2) = Y(2)v(1a)v(2) = ¥(2) - 17 - ¥(2) = (2)*
for each z € A, it follows that
V(@ +1)?) =v@® +ay+yr +y7) = v(@)* + y(zy) + v(yz) + 7 (y)*
(@ +9)?) =@ +9)? = (v(2) +7(1)” = 2(@)? + (@)1 () + 1Y) (@) + 7 (y)?

and thus
Y(zy) +v(yz) = v(2)v(y) +v(Y)v(2) .
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(27.3) Lemma Let A, A be alternative division rings. A Jordan homomorphism 7 : A — A
satisfies
VaoeA: Yz = y(x)7 .

Proof
Given x € A*, we have

Yo™h) =@ ea™h) = @ (@)

and thus y(z71) = v(z)~! by lemma (3.6). O

§ 27.2 Jordan Homomorphisms on Fields

A Jordan homomorphism from a field F to an alternative division ring A is a monomorphism of
rings. In particular, the image of A is a subfield of A.

(27.4) Lemma  Let F be a field, let A be an alternative division ring and let v : F — A be a
Jordan homomorphism. Then 7 : F — () is an isomorphism of fields.

Proof
By Hua’s theorem, we may assume that A is an octonion division algebra. By lemma (27.2), we
have

2v(zy) = v(@)y(y) +v(y)v(2) (27.1)
for all z,y € F.
e CharF # 2: Given x,y € F*, we have

Yayhy(e 'y ™) E @y (@) ™) " @y (o) = 1
and thus by equation (27.1) and lemma (3.25) (a)
4= 27(wy)2'v( N =@y @) + @y @] v )]

@)y (e ) YY)+ s+ e ()@ (y) () T

We set 2 := y(x)y(y)y(z) " 1v(y)~! and obtain
2=z+z2 1, (z=14)2 =22 =22+ 1, =0y

and therefore

Y@y (v(e) )t =2 =1a, (@) (y) = (Y () -

From equation (27.1) it follows that vy(zy) = v(x)y(y) -

e CharF = 2: In this case, equation (27.1) implies

for all z,y € F. As a consequence,
F = (y(F)) z(a)

is a commutative subalgebra of A, hence a field. Since v : F — F is a Jordan homomorphism,
Hua’s theorem implies that v : F — ~(FF) is an iso- or anti-isomorphism of skew-fields, and
thus, in fact, an isomorphism of fields.

O
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Chapter 28 Jordan Automorphisms

In this chapter, we determine the structure of Aut;(A) for an alternative division ring A. If A is
a skew-field, then Hua’s theorem gives the answer:

(28.1) Theorem  Let A be skew-field. Then we have
Aut;(A) = Aut(A) U Aut®(A) .

Thus it remains to consider the Jordan automorphisms of an octonion division algebra O.

(28.2) Notation  Throughout the rest of this chapter, O is an octonion division algebra and
K := Z(0) is its center.

§ 28.1 Jordan Automorphisms on Subfields

As a consequence of the last paragraph, a Jordan automorphism restricted to a subfield is a
monomorphism of rings. In particular, the image of a subfield is again a subfield.

This is not true for skew-subfields. Otherwise, a Jordan automorphism would be, in fact,
an auto- or anti-automorphism by the proof of Hua’s theorem. But there are indeed Jordan
automorphism neither of the first nor of the second kind, cf. lemma (28.13) and remark (28.12).

(28.3) Lemma  Let v € Aut;(O) and let F be a subfield of @. Then v : F — «(F) is an
isomorphism of fields.

Proof
This results from Lemma (27.4). O

(28.4) Corollary  An element v € Aut;(Q) satisfies

YA) - v(z) = v(x) - v(A)
forall A € K, z € O.

Proof
Since each element = € O is contained in a subfield F of O with K C F by (20.9) of [T'W], we may
apply lemma (28.3) to obtain

YA) - v(@) =v(A-z) = (- A) =(2) - v(A)
forall A €K, z € O. O

§ 28.2 Jordan Automorphisms and Norm Similarities

The results of §28.1 enable us to show that Jordan automorphisms are norm similarities. As a
consequence, we may apply the results of chapter 26. Moreover, the results of [J] show the reverse
inclusion for Char Q # 2.

(28.5) Proposition  Let v € Aut;(O) and o := yg. Then the following holds:
(a) o € Aut(K).
(b) (v,0) € I'L(0,K).
(¢) (v,0) € I'Ln(O,K).
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Proof

(a) By corollary (28.4) and lemma (3.28), we have v(K) = K and therefore o € Aut(K) by
lemma (27.4).

(b) This is a consequence of (a) and corollary (28.4).
(¢) By (a), the assertion is true for x € K. Given z € O\ K, we have
22 — T(w)z + N(z) = 0o, A(2)? = T(3(@)(@) + N (4(2)) = 0o
and hence
0p =7 (v(2)* = T(y(2))v(z) + N(y(x))) = 7 v (2® =y H(T(v(2))z + 7 (N (v(2))))
=% =7 (T(v(@))z +77 (N(y(2)) -
As the maps T and N are uniquely determined by the minimum equation, we obtain
7 HN(y(@))) = N(2) N(y(x)) =v(N(z)) = o(N(x))
for all x € O\ K.

O
(28.6) Corollary =~ We have
o5 € Z(Autj(@)) .
Proof
Given v € Aut;(0) and xz € O, we have
vos(a) = 7(@) =7(N(2) -a™") = o(N(2)) -v(z™!) = N(v(2)) -7(2) " =(2) = 057(2) .
O

(28.7) Remark  The results of [J] are valid for Jordan algebras with characteristic different
from 2, cf. definition (1.3) of [J].

(28.8) Lemma  If Char O # 2, the Jordan algebra O is separable

Proof

By corollary (3.24), the bilinear form (-,-) and thus the trace form
T:0x0 =K, (z,y) = T(zy) = 2y + §z = (2, 7)

is non-degenerate. Now the assertion results from theorem (6.5) of [J]. O

(28.9) Proposition  If Char O # 2, we have

0(0,K) = GLy(0,K) C Aut;(0) .
Proof
Let ¢ = (p,idx) € GLN(0,K). As we have ¢(1lg) = ¢(lo - lo) = 1o - ¢(1g), the isometry ¢
satisfies p(1g) = lp, and because of |K| > 2 = deg O, the assertion results from lemma (28.8) and
theorem (6.7)(a) of [J]. O
(28.10) Theorem  If Char O # 2, we have

FLN((O),K) = Aut’g(@) .
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Proof

“C” Let (p,0) € I'Ln(0,K). By theorem (26.6), there is a g-automorphism (¢, o) € Aut(0Q, K).
By proposition (28.9), we have

((b_lva-_l) ’ (90) U) € GLN(©7K) C AUtJ((O))

and thus
(p,0) € (¢,0) - Aut ;(0) = Aut;(0) .

“D” This is proposition (28.5) (c).

§ 28.3 The Structure of Aut;(0)

Now we are ready to tackle the main problem which we split up into three steps. First of all we
construct a subgroup I' < Aut ;(0). The second step shows that we may suppose v € Aut;(Q) to
fix a quaternion subalgebra pointwise. Then we finally prove that - is the product of elements of
the given group I'.

(28.11) Notation
e Given a quaternion subalgebra H, e € H+ and w,p € H, we set
VHew) : 0= 0, z+e-y—ate w 'yw,
¢(H,e,w,p) 0—-0, x+e-y— wlzw +e- wilywp .

e We set

U = {(m,e,0) | H a quaternion subalgebra, e € HY, weH},

O = {¢(H,e,w,p) | H a quaternion subalgebra, e € HL, w,p € H, N(p) =1k} .
e We set

F:={yo| e, ¢cAut(0)} .

(28.12) Remark By remark (20.29) of [TW], a map ¢ € ¥ is neither an auto- nor an
anti-automorphism.

(28.13) Lemma  We have
YUPCTI <Aut;(0) .

Proof
This results from lemma (21.20) and lemma (21.19). O

(28.14) Lemma  Let A be a subalgebra of O such that A+ ¢ A and let e € AL\ A. Then we
have
(e 2)(e-y)(e 2) = ~N(e)e -z

for all z,y € A.

Proof
This results from lemma (3.26) (c). O
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(28.15) Remark The following lemma is helpful since we know that Jordan homomorphisms
on subfields are in fact isomorphisms between subfields and that Jordan automorphisms of
skew-fields are iso- or anti-isomorphisms.

(28.16) Lemma  Let A be a subalgebra of O such that AL ¢ A, let e € AL\ A and let
v € Aut;(0) N GLN (0, K) such that v(e) = e. Then the map 7 : A — O defined by

V(e x)=e-3(x)

is a linear Jordan homomorphism.

Proof
Notice that we have
VeeA: (e,9(a)) = (e,—N(e) e -v(e-a)) = —(1k,y(e- a)) = Ok
by lemma (3.26) and lemma (26.4), hence e € F(A)L \ F(A).
e We have

e-3(lp) =7(e-1lo) =7(e) =e- 1o .
e Given A € K, z € A, we have
e F(Ax) = v(e- Az) = Mle - z) = Ae - () = e A\i(x) .

o Given 7,y € A, we have

ez +y)=q(e-(z+y) = 2) +y(e-y) =e- (5(z) +7()) -
e Given x,y € A, we have

e-Y(zyzr) = (e zyz) = =N(e)™' - y((e-x)(e-F)(e-y))

= —N(e)™! - (e-7(2)) (e 7)) (e - () = e H(@)7(9)7(x)
by lemma (28.14). We set z := 1g to obtain

for each y € A and thus

for all z,y € A.
O

(28.17) Definition  Let ej,ea € OF such that A := N(e1) # Og,p := N(ez) # Og. Then
(e1,e2) is a special (A, p)-pair if

e we have
(e1,10) = (e2,1o) = (e1,e2) = Ox
for Char O # 2;

e we have

(e1,10) = 1k , (e2, 1) = (e1,e2) = Og

for CharO = 2.

(28.18) Remark  We will need special (A, p)-pairs to extend isomorphisms between quaternion
subalgebras to the whole octonion division algebra.
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(28.19) Lemma  Let (e1,e2) be a special (A, pu)-pair and E := (1g, e1)x. Then we have
él#el, GQEEL\E.

Proof
e Char O # 2: We have
e1+ e = (e1,1lo) =0k , e =—e £eyp.
Let x = s+ te; € E*. If s # Ok, we have
(x,1g) = (s +te1,1lg) = s {e1,e1) = 2s- N(e1) # O
and thus x ¢ E+. If s = Og (and thus t # Og), we have
(x,e1) = (ter,e1) =1t - (e1,e1) =2t - N(ey) # Og

and thus = ¢ E+.

e Char O = 2: We have
e1+é1 = (e1,1lo) = Ik , er=e+1lg#er.
Let © = s+ te; € E*. If t # Ok, we have
(x,1g) = (s +te1,1o) = s- (lo,lo) +t-{e1,10) =25- N(lg) +t =t # Ok
and thus = ¢ E+. If t = Og (and thus s # Og), we have
(e1,2) = {e1,8) = s-(e1,1p) = s # Ok
and thus = ¢ E+.
O

(28.20) Remark The following lemma allows us to choose a suitable K-basis for a quaternion
division algebra containing two elements z,y € Q.

(28.21) Lemma  Let 2z € O\ K, let E := (1g,z)k and let y € O\ E. Then

{1@7x7y,xy}

is linearly independent over K.

Proof
Notice that E is a field. Let a, b, ¢,d € K such that

a-lg+b-z4+c-y+d-zy=_0p .

Then we have
(c-lo+d-2)-y=—-a-lp—b-x.

e ¢c-lg+d-x # 0g: In this case, we have
y=(c-lo+d-z) - (~a-lg—b-z)€R 5.
e ¢c-lgp+d-x=0g: In this case, we have
c-lo+d-z=0=a-1g+b-x, c=d=0g=a=b.
O

(28.22) Proposition  Given an element v € Aut;(Q), there is an element 5 € (o4, T') such
that 3+ fixes a quaternion subalgebra H pointwise.
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Proof

(i) Let o := yx € Aut(K). Then v is a o-isometry by proposition (28.5) (c), thus v~ ! is
a o~ l-isometry. By theorem (26.6), there is a o~ !-automorphism 7 € Aut(Q,K). As a
consequence, we have ¥y € Aut;(0) N GLy (0, K).

(ii) By lemma (3.23), there is an element e; € O such that é; # e;. Let E := (1,e1)k and
ez € EY\ E. By lemma (3.25) (b), e; and es are contained in a quaternion subalgebra
H which contains a (X, p)-special pair (¢1,¢&) by definition (1.7.4) of [Sp]. Thus we may
assume that (eq, ez) is (A, u)-special by lemma (28.19).

(iii) As we may suppose v to be an isometry by (i), the pairs (e1,e2) and (vy(e1),v(e2)) are
(A, pu)-special. By corollary (1.7.5) of [Sp], there is a linear automorphism 4 € Autg (O, K)
extending

v(e1) = er v(e2) ez .

As a consequence, v := 7y fixes (E, eo)x pointwise.

(iv) By lemma (28.16), the map 4 : E — F(E) defined by
Yes @) = 3+ ()

is a linear Jordan isomorphism and thus an isomorphism of fields by lemma (27.4).

(v) If (E) = E, we have
YE+ey - E)y=E+ey-E=H.
In this case, vy is an auto- or anti-automorphism by Hua’s theorem.
e If v is an automorphism, we have
Y(ez-e1) =v(e2) -y(er) =ez-er, Vi = idm -

o If g is an anti-automorphism, then ¢ := o,y is a linear automorphism. By theorem
(26.7), we may extend ¢ to a linear automorphism ¢ € Autg(Q,K). Then

¢ losy
fixes H pointwise.
Thus we may assume J(eq) ¢ E.

(vi) By lemma (3.25) (b), e; and 7(e;) are contained in a quaternion subalgebra H, and by (v)
and lemma (28.21), we have

H == <1@7 617’?(61)761’7(61)%1( )

thus we may extend 4 : E — #(E) to a linear automorphism ¢ €~AutK(H, K) by theorem
(26.7). By the Skolem-Noether theorem, there is an element w € H such that

¢ =Yw -
(vii) We have e; - E C E+ and therefore
(e2,1p) = (ea,e1) = Ok .
Moreover, we have
e+ ¢(E) = y(ez - E) C y(E") = 4(B)" = E*
by corollary (26.4) and therefore
(e2,e10(e1)) = (eadp(e1) " pler), exdpler)) = (ead(er) ' e1) - N(op(er)) = Ok ,
(e2,9(e1)) = (e2, =N(e2) "lea - ead(er)) = —N(e2) ' N(ea) - (1o, e2¢(er)) = O ,

hence e, € HE, and V(f,en,0-1)7 fixes H :=E + €3 - E pointwise, ¢f. notation (28.11).

)
)
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(28.23) Proposition Let v € Aut;(Q) be a Jordan automorphism fixing a quaternion
subalgebra H pointwise. Then we have v € (0, T').

Proof
Let e € Ht \ H.

(i) As we have
v(e -H) =y(H") =y(H)" =H" =e-H,

by corollary (26.4), we may define a map 4 : H — H via
V(e x)=e-F(z).

(ii) We have
N(e) = N(v(e-10)) = N(e-5(lo)) = N(e) - N(7(10))
and thus N(’y(l@)) = 1g. Therefore, the map
P(H.e,10,3(10)1)Y
fixes (H, e)x pointwise.

(iii) By lemma (28.16), the map 7 is a linear Jordan automorphism and thus an auto- or an
anti-automorphism by Hua’s theorem.

(iv) e #is an automorphism: As 7 is linear, the Skolem-Noether theorem yields an element
w € H such that 4 = ~,,, hence

Y=Y Mew) €T -
e 7 is an anti-automorphism: Then there is an element w € H such that
Y +e-y)=z+e wtjw
for all z,y € H, hence
Yy +e-y)=etretw gw-e =z +e-w lyw
for all z,y € H and therefore

Jsﬁb(H,e,l,—l)'Ye’V = YMH,e,w) € r,ve <Usa F> .

§ 28.4 Conclusion

(28.24) Theorem (Jordan Automorphisms of Octonion Division Algebras) Given
an octonion division algebra O, we have

Aut;(0) = (0, T) = (0,) x T .

Proof
The first equality results from proposition (28.22) and proposition (28.23), the second assertion
from corollary (28.6). O
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Now we turn to the general description of the root groups of Moufang Polygons. In fact, all
of them are parametrized by Moufang sets, more precisely, by their associated groups. As the
glueings of integrable foundations turn out to be Jordan isomorphisms, the classification of twin
buildings is closely related to the solution of the isomorphism problem for Moufang sets.

We list the examples of Moufang sets which will appear in the sequel, then we give a complete
overview of the Jordan isomorphisms between these Moufang sets before we give the missing proofs.

Chapter 29 Basic Definitions

(29.1) Definition A Moufang set is a pair M = (X, {U,}zex) consisting of a set X with
|X| > 3 and a set of root groups {U, }.cx satisfying the following conditions:

(M1) For each z € X, the group U, < Sym(X) fixes x and acts regularly on X \ {z}.

(M2) For each z € X and for each ¢ € (U, | y € X), we have UY = Uy

(29.2) Remark Let (U, +) be a not necessarily commutative group, let X := U U {oo} be
the disjoint union of U and {cc} and let 7 € Sym(X) be a permutation interchanging 0 and oo,
which means that we have 7;- € Sym(U*). By theorem 2 of [DW], the pair (U, 7) gives rise
to a Moufang set M(U, 7) if and only if we have h, € Aut(U) for each a € U*, where h, is the
Hua map with respect to a as in definition 2 of | ], more precisely, we consider h, to be the
restriction to U of that map given there. Conversely, each Moufang set M arises in such a way, cf
page 5 of [DW], or lemma 1.3.4 of [DS] for a more precise statement,.

As both the descriptions are equivalent, we consider a Moufang set to be a pair M = (U, 1)
consisting of a not necessarily commutative group U = (U, +) and an element 7 € Sym(U™*) such
that h, € Aut(U) for each a € U*.

(29.3) Definition

e A Moufang set M = (U, 1) is commutative if the group U is commutative.

e A Moufang set M = (U, 7) is unital if there is an element 1y € U* such that by, = idy.
(29.4) Remark If a Moufang set is unital, the element 1p; is not necessarily uniquely
determined by the defining property. However, we will distinguish a canonical element for the
examples we mainly deal with, cf. the next paragraph.

(29.5) Definition  Let M = (U, 7), M = (U, %) be Moufang sets.

e An isomorphism ¢ : M — M is an isomorphism of groups ¢ : U — U such that
VeeU: o(7(x)) = 7(e(2)) .
o An automorphism of M is an isomorphism ¢ : M — M.

o A Jordan isomorphism ~ : M — M is an isomorphism of groups v : U — U such that
VeeU aceU": Y(ha(z)) = Nv(a) (v(z)) ,

and, moreover, such that v(1y) = 1 if M and M both are unital.

e A Jordan automorphism of M is a Jordan isomorphism ~ : Ml — M.

(29.6) Remark The list in the following chapter is not complete, we only list those Moufang
sets appearing in triangles and quadrangles since we only classify foundations involving polygons
of this type. Moreover, we exclude the non-commutative Moufang sets appearing in quadrangles
of type E,.
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Chapter 30 Examples

(30.1) Example (Moufang Sets of Linear Type) Given an alternative division ring A,
the corresponding Moufang set of linear type is

M(A) := (A,7), TiA* 5 AY ze —2l
Given a € A*, the Hua map with respect to a is
he A=A, z— azxa .

As a consequence, M(A) is unital with 1y = 14.

(30.2) Example (Moufang Sets of Involutory Type) Given an involutory set (K, Ky, o),
the corresponding Moufang set of involutory type is

M(K, Ko, o) := (Ko, 7) , 7Ky =K, o —a
Given a € K§, the Hua map with respect to a is
he 1 Ko = Ko, x+— aza .
As a consequence, M(K, Ko, o) is unital with 1y = 1x € K.
(30.3) Example (Moufang Sets of Indifferent Type)  Given an indifferent set (K, Kg, L),
the corresponding Moufang set of indifferent type is
M(K, Ko, Lo) := (Ko, 7) , 7Ky = KS, ze —xt
Given a € K§, the Hua map with respect to a is
he 1 Ko = Ko, +— aza .
As a consequence, M(K, Ko, Ly) is unital with 1y = 1 € Ko.

(30.4) Example (Moufang Sets of Quadratic Form Type) Given a quadratic space
(Lo, K, ¢) with basepoint €, the corresponding Moufang set of quadratic form type with basepoint €

is
M(Lo, K, q) := (Lo, 7) , T Ly — L, avr —a” -qa)”t .
Given a € L{j, the Hua map with respect to a is
ha : Lo = Lo, v+ mame(v) - g(a) .
As a consequence, M(Lg, K, ¢) is unital with 1y = e.
(30.5) Example (Moufang Sets of Pseudo-Quadratic Form Type)
Let £ = (K,Ky, 0, Lo, q) be a pseudo-quadratic space and let T = T(Z) be the group as in

definition (7.5) and corollary (7.9). The corresponding Moufang set of pseudo-quadratic form type
is

M(E) := (T, 1) , T =T (a,t) — (at™ !, —t71) .
Given (a,t) € T*, the Hua map with respect to (a,t) is
By : T — T, (b,v) — (bt7 —at™' f(a,b)t7, tvt?) .

As a consequence, M(Z) is unital with 1y = (0, 1g).
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Chapter 31 The Isomorphism Problem for Moufang Sets

Since the glueings appearing in a foundation are in fact Jordan isomorphisms, it is natural to
solve the isomorphism problem for the appearing Moufang sets before we tackle the classification
of foundations.

As mentioned, we consider Jordan isomorphisms, not isomorphisms of Moufang sets in the
proper sense, which are a subset of the Jordan isomorphisms. It would be interesting in which
cases both the definitions coincide, which should be correct in almost all the cases.

First of all we give an overview of the results, some of them already proved in the previous
parts, then we give the missing proofs.

§ 31.1 Results

(31.1) Definition  Let O be an octonion division algebra.
e Given a quaternion subalgebra H, e € H- and w,p € H, we set

YHE,ew) : O — O, t4e-y—ar+e - wlyw.

e We set
W = {t(H,e,0) | H a quaternion subalgebra, e € HY, we H} .
and I':= {Y¢ | € U, ¢ € Aut(0)}, which is a subgroup of Aut;(Q) by lemma (21.19).

(31.2) Theorem (Moufang Sets of Linear Type) Let M := M(A), M := M(A) be
Moufang sets of linear type. A map v : M — M is a Jordan isomorphism such that y(1y) = (1)
if and only if one of the following holds:

(i) The alternative division rings A and A are skew-fields and ~ is an iso- or anti-isomorphism
of skew-fields.

(ii) The alternative division rings A and A are isomorphic octonion division algebras and we
have
¢~'v € (05, I) = (o) x T,
where ¢ : A — A is an isomorphism of alternative rings, o, is the standard involution of A
and T is the group defined in (31.1).

Proof
“=7 If A is a skew-field, then (i) holds by Hua’s theorem. If A (and thus A) is an octonion

division algebra, we may adapt proposition (28.5) to obtain that v: A — Aisa o-isometry.
By theorem (1.7.1) of [Sp], there is a o-isomorphism ¢ : A — A, hence ¢!y € Aut;(A),

and we may apply theorem (28.24).
44¢77 /
Notice that definition (3.8) and definition (27.1) include the condition v(14) = 1;. O

(31.3) Theorem (Moufang Sets of Involutory Type) Let (K, Ky, o) be a proper involu-
tory set, let (K, Ko, ) be an involutory set and let M := M(K, Ko, ), M := M(K, Ko, ) be the
corresponding Moufang sets of involutory type. A map ~ : M — M is a Jordan isomorphism such
that (1) = 1y if and only if there is an isomorphism ¢ : (K, Ko, o) — (K, Ky, ) of involutory
sets such that v = ¢k, -

Proof
This is theorem (5.3). Notice that the proof is not complete yet. O
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(31.4) Definition  Let (A,F, o) be quadratic of type (iv) and suppose that dimy Ly = 2. By
[D], there are exactly three pseudo-quadratic spaces

(A7F707 LOaQ) = (A17F7Ua LO)Ql) = E1 P (A27F7Ua LO7Q2) = EQ P (A3aF7Ua L07q3) = E3

with pairwise non-isomorphic quaternion division algebras A;, As, Az which define the group T
When we switch between the parametrizing pseudo-quadratic spaces, we indicate this by the map

idy i T =T, (a,t) — (a,t) ,
i.e., after applying idf;,«, we consider T' to be defined by =;.
(31.5) Theorem (Moufang Sets of Pseudo-Quadratic Form Type) Let 2 and = be
proper pseudo-quadratic spaces and let M := M(Z), M := M(Z) be the corresponding Moufang

sets of pseudo-quadratic form type. A map v : M — M is a Jordan isomorphism such that
~v(1m) = 1y if and only if one of the following holds:

(i) There is an isomorphism ® : = — = of pseudo-quadratic spaces that induces ~.
(ii) The involutory sets (K, Ko, o) and (K, Ky, &) both are quadratic of type (iv), we have
K#K, dimg Lo = 2 = dimg Lo
and there are an 7 € {2,3} and an isomorphism ® tE— étof pseudo-quadratic spaces such
that v is induced by (id%) ! o @, where id’: and = =: 2y, 5, Z3 are as in definition (31.4).

(iii) The involutory sets (K, Ko, o) and (K, K, &) are quadratic of type (iv) and (iii), respectively,

we have dimg Lo = 1, dimg Lo = 2 and vy can be described by
Ve=s+eteK, ueky: v(az,27q(a)z +u) = (ad(s) + bp(t)7, (N (z)q(a) + u)) ,

where a € L{ is arbitrary, ¢ : E, — K is an isomorphism of fields, e € El a e Lo and
beat.

(iv) We have K = F, = K, dimg L = 1 and there are an isomorphism ® : = — = of pseudo-
quadratic spaces and a non-trivial inner automorphism 4 € Aut(7") such that v is induced
by 4 o ®.

Proof
This is theorem (17.1). Notice that definition (7.16) includes the condition v(0,1x) = (0,1z). O

(31.6) Theorem (Moufang Sets of Quadratic Form Type) Let = be a quadratic space
with basepoint ¢, let = be a proper quadratic space with basepoint € and let M := M(E), M := M(é)
be the corresponding Moufang sets of quadratic form type. A map v : M — M is a Jordan
isomorphism such that v(1m) = 1y if and only if one of the following holds:

(i) We have dimg Lo > 3 and there is an isomorphism ¢ : K — K of fields such that the map
(7:0) : (Lo, K, q) = (Lo, K, q)
is an isomorphism of quadratic spaces. In particular, we have dimg Ly = dimg L.
(ii) We have dimg Ly < 2, the map
¢: K = K:=7(()x) CF:=F(Lo,K,§), s (e s)
is an isomorphism of fields, the field [ is quadratic over K, and the map
(1.9) : (Lo, K, q) = (F. K, N)

is an isomorphism of quadratic spaces. This is true even if = is non-proper.
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Proof
This is theorem (31.41). O

(31.7) Theorem (Moufang Sets of Quadratic Form and Linear Type) Let M :=
M(Lo, K, q) be a Moufang set of quadratic form type with basepoint € and let M := M(A) be a
Moufang set of linear type. A map ~: M — M is a Jordan isomorphism such that ~(1y) = 1g if
and only if the map

p:K—K:=~(e)g) CA, s— (e s)

is an isomorphism of fields, A is quadratic over K and the map (v,9) : (Lo, K, q) — (A, K, Ni&) is
an isomorphism of quadratic spaces.

Proof
This is theorem (31.21). O

(31.8) Theorem (Moufang Sets of Indifferent and Linear Type)  Let M := M(K, Ky, Lo)
be a Moufang set of indifferent type and let M := M(A) be a Moufang set of linear type. A map
4 : M — M is a Jordan isomorphism such that v(1g) = 1u if and only if Ky = K, A is a field and
the map 7 : A — Kq is an isomorphism of fields. In particular, the indifferent set (K, Ko, Lg) is
non-proper if we have M = M.

Proof
This is theorem (31.24). O

(31.9) Theorem (Moufang Sets of Involutory and Linear Type)  Let M := M(A) be a
Moufang set of linear type and let M := M(K, Ky, o) be a Moufang set of involutory type. A map
v : M — M is a Jordan isomorphism such that (1) = 1m if and only if (K, Ko, o) is of quadratic
type, A and K are fields and the map v : A — K is an isomorphism of fields. In particular, the
involutory set (K, Ky, o) is non-proper if we have M = M.

Proof
This is theorem (31.26). O

(31.10) Remark  Most of the following proofs or different versions can also be found in [K].
Notice, however, that some of them only give the idea for the proof so that we had to work out
some details, especially in the following paragraph.

§ 31.2 M(Ly,K,q) = M(A)

If a Moufang set M(Lo, K, q) of quadratic form type with basepoint € is isomorphic to a Moufang
set M(A) of linear type, then A is quadratic over the field K := v((ek)) and + is induced by an

isomorphism (7, ¢) : (Lo, K, q) — (A, K, Né) of quadratic spaces.
(31.11) Lemma Given a quadratic space (Lo, K, ¢) such that dimg Ly < 2, we have
M := M(Lo, K, ¢) = M(F(Lo,K,q)) =M .

In particular, the corresponding Hua maps coincide.

Proof
‘We have

VaelLly: 7(z) = —2% -q(z) ' = —2 xe-q(x) " = —27 % Nﬂl:z(x)_1 =2t =7(z).
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(31.12) Notation  Until proposition (31.20), M := M(Lo, K, ¢) is a Moufang set of quadratic
form type with basepoint e, Ml := M(A) is a Moufang set of linear type and v : M — M is a
Jordan isomorphism such that (1) =1

(31.13) Lemma  The map
¢:K—=K:=~((eg) CA, s— y(c-s)
is an isomorphism of fields.

Proof
By lemma (4.7), we have

Vs,teK: P(sts) = (e sts) = y(hes(e-1)) = N,Y(E,s) (v(e- 1) = d(s)p(t)p(s) .

As a consequence, ¢ : K — A is a Jordan homomorphism, hence ¢ : K — ¢(K) = y((€)k) is an
isomorphism of fields by lemma (27.4). O

(31.14) Notation  Given x € Lo \ (€)k, we set R, := (€, z)k.

(31.15) Remark Given = € Lg \ (€)k, the triple (R,,K,q) is a quadratic space such that
dimK Rx = 2.

(31.16) Notation  Given x € Lg \ {(€)k, we set F,, :=F(R,,K,q).

(31.17) Lemma  Given z € Lo \ {€)k, the map
Ve, e = 7(Fe) CA, yy(y)

is an isomorphism of fields.

Proof
By lemma (31.11), the Hua maps of M(R,, K, q) and M(F,) coincide, hence v, : F, — A is a
Jordan homomorphism so that we may apply lemma (27.4). O

(31.18) Proposition  Let x € Lg. Then the following holds:

(a) We have
VsekK: v(x-8) =v(x) - P(s) .
In particular, the map (7, ¢) : (Lo, K) — (A, K) is an isomorphism of vector spaces.

(b) We have
VseK: (@) d(s) = o(s) - v(x) -
In particular, we have K C Z(A).

Proof
If z € (€)k, the assertions result from lemma (31.13), so assume = € Lo \ (€)k.

(a) Given s € K, we have
V(@ s)=7(x*(e-s)) = (@) -v(e-s) =(x) d(s) .
(b) Given s € K, we have
(@) - (s) =v(w - s) = y((e- s) xx) = (e s) - y(x) = d(s) - (z) -
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(31.19) Lemma  Given x € Ly, we have
hy(e) —x-T(z)+e€-q(x) =0, .

Proof
Let x € Ly. By remark (4.9) (b), we have

h(6) = T(@) + e alz) = 2 fyl,6) — - a(2) — - T(@) + ¢ - (z)
=z -T(x)—x -T(x)—e-q(x)+e-q(xr) =0r, -

(31.20) Proposition  Given z € L§, we have
Y(@)? = (z) - ¢(T(2)) + ¢(q(x)) = 0z -
In particular, the alternative division ring A is quadratic over K with norm N := NH%, satisfying
No Yy=¢oq.

Proof
Given x € L§, we have

07 =7(0L,) = ¥(ha(e) =2 T(2) + € q(x)) = 7(ha(e)) = y(z - T(x)) + (e (=)
= Dy (1(6) = (@) - (T(2)) + ¢(a(2)) = 7(2)? = 7(2) - $(T(x)) + 6 (a(x))

by lemma (31.19) and proposition (31.18) (a), which shows that A is quadratic over K. Given
x € Lo\ (€)k, we have y(z) € A\ K and thus

since the minimum equation is unique. Finally, given s € K, we have

N(y(e-5)) = N(g(s)) = 6(s)* = ¢(5%) = ¢(ale - 5))

by lemma (31.13). O

(31.21) Theorem  Let M := M(Lo, K, q) be a Moufang set of quadratic form type with
basepoint € and let M := M(A) be a Moufang set of linear type. A map v : M — M is a Jordan
isomorphism such that v(1m) = 1 if and only if the map

¢:K—K:i=7((e)x) CA, s—(e-s)
is an isomorphism of fields, A is quadratic over K with norm N := NH‘% and the map

(7,9) : (Lo,K,q) = (A, K, N)

is an isomorphism of quadratic spaces.

Proof

“=" By lemma (31.13), the map ¢ : K — K is an isomorphism of fields. By proposition (31.20) an
proposition (31.18) (a), A is quadratic over K, and the map (7, ¢) : (Lo, K, q) — (A, K, )
is an isomorphism of quadratic spaces.
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(31.22) Corollary  Let (A, K, N#) be a quadratic space of type (m). Then we have
M(A, K, Ng) = M(A) .

Proof
Let v :=ids. Then the map ¢ = idg : K = K = ~({14)k) is an isomorphism of fields, and the
map

(7,¢) = (ida,idx) : (A, K, N£) = (A, K, Ng)

is an isomorphism of quadratic spaces so that we may apply theorem (31.21). O

(31.23) Lemma  More precisely: Let (A, K, N£) be a quadratic space of type (m). Then we
have

M :=M(A, K, Ng) = M(A) =: M .

Proof
We have
VezcA: 7(z) = —2° - Nb(z) ' = -2~ ' = 7(z) .

§ 31.3 M(K, Ko, L) = M(A)

(31.24) Theorem Let M := M(K, Ko, Lo) be a Moufang set of indifferent type and let
M := M(A) be a Moufang set of linear type. A map v:M — M is a Jordan isomorphism such
that (1) = 1y if and only if Ko = K, A is a field and the map v : A — Ky is an isomorphism of

fields. In particular, the indifferent set (K, Kg,Lg) is non-proper if we have M = M.

Proof

“="” The map 7 : A — K, C K is a Jordan homomorphism. Since K is associative, Hua’s theorem
implies that Ko = v(A) is a skew-field, which is thus, in fact, a subfield of K. By Hua’s
theorem again, the map -y is an isomorphism of fields. In particular, A= 77 1(Kp) is a field.
Moreover, we have

Ko = (Ko) =K,
hence (K, Ko, Lg) = (K, K, Lg) is non-proper.

“«=" We have y(1y) =v(13) = 1g, = lx = 1. Given a € A* and z € A, we have

Y(ha(2)) = y(aza) = y(a)y(x)y(a) = hy@) (v(z)) -
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§ 31.4 M(K, Ko, o) = M(A)

(31.25) Lemma Let (K, Ko, o) be a non-proper involutory set with the additional assumption
that Kq is a field if ¢ = idg and Char K = 2. Then (K, Kg, o) is of quadratic type.

Proof
Assume that (K, Ky, o) is not quadratic of type (v), i.e., K is a skew-field.

e o = idg, Char K # 2: Then K is a field and K, = Ky = Fix(c) = K, hence (K,Kg, o) is
quadratic of type (ii).

e 0 = idg, Char K = 2: Then K is a field and K? C Ky C K, hence (K, Ko, ) is quadratic of
type (m)e {(i), (ii)}.

e o #idg: By (23.23) of [TW], (K, Ky, o) is quadratic of type (m)e {(iii), (iv)}.

O

(31.26) Theorem  Let M := M(A) be a Moufang set of linear type and let M := M(K, Ko, o)
be a Moufang set of involutory type. A map v : M — M is a Jordan isomorphism such that
(1) = 1y if and only if (K, Ko, o) is of quadratic type, A and K, are fields and the map
v : A — Ky is an isomorphism of fields. In particular, the involutory set (K, Kg, o) is non-proper
if we have M = M.

Proof

“=7 If (K, Ko, 0) is quadratic of type (v), Ko is a field and the map v : M(A) — M(Ky) is a
Jordan isomorphism, hence an isomorphism of fields by theorem (31.2) since K is associative
and commutative. In particual, A is a field. In the sequel we suppose K to be associative.

The map 7 : A - Ky C K is a Jordan homomorphism. Since K is associative, Hua’s theorem
implies that Ky = y(A) is a skew-subfield, which is thus, in fact, a subfield of K since we
have Ky C Fix(c) and, therefore,

o .0

Va,yeK: zy = (zy)° = y’z7 = yx .

By Hua’s theorem again, v is an isomorphism of fields. In particular, A = v~ (Kg) is
a field. Moreover, (K,Kg, o) is non-proper by lemma (5.2) and thus quadratic of type
(m)e {(i),...,(iv)} by lemma (31.25).

“<” We have
V(1) =v(15) = 1g, = Ik = 1m

Given a € A* and z € A, we have

V(ha(2)) = y(aza) = y(a)y(za) = v(a)y(x)y(a) = hy@) (v(z)) -

§ 31.5 M(Lo, K, q) & M(Lo, K, §)

(31.27) Remark  Cf. chapter 4.6 in [K] for another proof of the main result of this paragraph.

(31.28) Notation Until theorem (31.41), M := M(Lo, K, ¢) is a Moufang set of quadratic
form type with basepoint e, Ml := M(Lg, K, §) is a Moufang set of proper quadratic form type with

basepoint € and dimg Lo >3, and v: M — M is a Jordan isomorphism such that v(Im) = 1.
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(31.29) Lemma

we have

Proof

If we have
Vazel): Y((2)x) € (V(@))k
Vaoell: Y((2)k) = (v(@))g -

Notice that we have dimg Lo > 3. First of all, assume dimg L < 2. Then v(Lo) is contained in a
two-dimensial K-subspace of Lo and hence in a proper subspace of Lg, which contradicts the fact
that v : Ly — Lo is a bijection. We obtain dimg > 3, ans thus, by symmetry,

hence

(31.30) Notation
¢1($7 Y, S) = (
¢2(xa Y, 8)
¢3($, Y, 8)
1/}4(.’1,', Y, S)

v(z) -
y(z) -
V() -

(31.31) Lemma
(a) We have

(b) We have

(¢) We have ¢ (z,
(d) We have ¥s(z,

Proof

Veeli: v (v(@))g) €O (v(@))x = (o)

VaelL:: Y({2)k) 2 (v(@))k -

Given x € L, y € Lo and s € K, we set

s)- f. ( ( ) TW)?) =) - q(v(z - s))
fa(y(a )7) =y 2)6 i(v(@)) ,
fa(y(@ &)+W s) - fa(v(2),7(W)7) =) - f1(v(@ - 8),7(x)) |
) fa(v(@) QW 8&)—2v(y~8) -q(y(@)) -

Qe

Let x € L§, y € Lo and s € K. Then the following holds:
?/Jl(% Y,s+ I]K) = 7/}1(‘733 Y, S) + ?/Jl(% Y, 1K) + ’l,Z)g(IE, Y, S) .

Yo(z,y, 8 + 1g) = ¥a(z,y, 8) + Ya(z,y, 1x) + Ya(r,y,s) .

y,S) = 1#2(13’%3)-
yas) = ¢4($7%3)-

(a) This is a direct calculation using the facts that + is additive and that we have
VeeLo, seK:  d(y(z-s)+1(@) =d(v(x-s) +a(v(@) + fa(v(z - 5),7(2)) -

(b) This a direct calculation using the fact that - is additive.

(¢) By lemma (4.5) and lemma (4.7), we have
Yi(z,y,8) = (@ 8) fa(v(x - 5).9(®)7) =) - d(v(z - 9))

7(w(v(y)) ( s) =~(h (y~52)
Ji(v(@),y(y - s*)7) —(y - :

(d) By (a), (b) and (c), we have
1 (2, y,8) +71(2, 9, 1x) +73(2, 9, 8) = 112, 9,5 + 1x) = 12(2, ¥, s + 1k)

- 72(5571/; S) + ’72(1.711/7 1K) + ’74(1;7:1/78) )

hence v3(z,y, s) = va(x,y, s) by (c) again.
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(31.32) Lemma  Assume CharK = 2. Given x € Ly such that y(z) ¢ Lg, we have
VseK: v(z-s) e {(y(x))g -

Proof
Lemma (31.31) (d) simplifies to

(@) fa(y(z - 8), 7)) + (- 5) - fa(v(@),7®)7) + )7 - fa(v(z - 5),v(x)) =0z, (31.1)

for all z € L§, y € Ly, s € K. Since we have dimg Lo > 3, there is an element y € Lo such that
v(y)? € y(z)*t Ny(x - s)*. Therefore, we have

VseK: fa(v(x - 8),v(x)) = 0g ,

and equation (31.1) simplifies to

(@) fa(v(z - 8),7(®)7) = (- s) - fa(v(@),7(v)7)

for all z € Ly, y € Lo, s € K. By assumption, there is an element y € Lo such that
fi(v(2),7(y)?) # Og, hence

Y@ -5) =7(@) - f1(v(@-9),7@)%) fa((@), 7)) " € (v(@))z -

(31.33) Notation
e Until proposition (31.37), we assume Char K = 2.
e Given = € Lo such that v(z) ¢ Lg, let ¢, : K — K defined by

VseK:  Alz-s)= (@) buls) -

(31.34) Lemma  Let z € Lo be such that v(z) ¢ Lg and let y € Lo be such that v(y) € L.
Then we have

Yz +y) ¢ Ly .

Proof
Given z € Ly, we have

fa(y(@ +9),7(2) = fa(v(2),7(2))
hence v(z +y) ¢ Lg. O

(31.35) Corollary  Let x € Lg be such that v(x) ¢ Lg and let y € Lo be such that v(y) € L.
Then we have

VteK": Y(z-t+y) ¢ Ly .
Proof
By lemma (31.32), we have
VieK s y(z-t) =) ¢.(t) ¢ Ly
so that we may apply lemma (31.34). O

(31.36) Lemma  Let 2,y € Lo be such that y(y) ¢ (y(z))z and v(z),v(y) ¢ Lg. Then we
have

(bz::d)y'
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Proof
The assertion is clearly true for K = Fy so that we may assume |[K| > 4.

(1) v() ¢ (v(2))g, v(z +y) & Lg: Given s € K, we have

V(@) - Poiy () +7(Y) - Pugy(s) = 7((x+y s) =~(x-5)+7(y-s)
V(@) - da(s) + ( ) by(s)

hence
Gz (8) = uty(s) = ¢y(s) -

The condition in this step is always fulfilled if we have Lg = {0} so that we may assume
Lg # {0} in the following.

(i) y € (2)x, which means that we allow 7(y) € (y(z)g in this case, cf. lemma (31.32): Since
we have |K| > 4, there is an element ¢ € K* such that

x-t ¢ {x,y}.
Let z € L be such that y(z) € Lg, which implies y(2) ¢ (y(2))z. Then we have
Yw-t+2) ¢ Ly, Y@+ t+ea) ¢ Ly, Yyt t+z2)¢Ly
by corollary (31.35) and thus ¢ = @z.44- = ¢y by (i).

(iii) v(y) ¢ (v(@))g, v(x +y) € Lg: Let t € K\ {0k, 1x}. By lemma (31.32) and corollary
(31.35), we have

v(z-t) ¢ Ly Y@ t+y) =v(z - (t+1g)+(z+y) ¢ Ly ,

hence gi)r = gbr ¢ w ¢y by the previous steps.

O

(31.37) Proposition If we have CharK = 2, the map v : Ly — Lo is an isomorphism of
vector spaces.

Proof
We show that we have
VaelLi sekK: v(z-s) € (v(z))g

so that we may apply the fundamental theorem of projective geometry by lemma (31.29).

Let 2 € L. By lemma (31.32), we may assume () € Lg. Since (Lo, K, §) is proper, there is
an element y € Lg such that y(y) ¢ Lg. Moreover, we have v(y) ¢ (v(z + y))z, and, by lemma
(31.34), y(z 4+ y) ¢ Lo. By lemma (31.36) therefore, we have

¢y = ¢a:+y

and thus

Y- s) + () - dy(s) =7z -5)+9(y-s) =v((z +y) - s)
=T +y) - Pary(s) =7(x) - dy(s) +7(y) - Py(s)

for each s € K, hence

VseK: V(- s)=(x) ¢y(s) € (v(z))g -
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(31.38) Remark We drop the condition CharK = 2.

(31.39) Lemma  Assume CharK # 2. Let y € L§ and s € K. Given x € L{ such that
fi(v(@),7()7) = 0g = f3(v(2).7(y - 5)) .

we have

Proof
By lemma (31.31) (d), we have

(@) fa(v(@ - 8),7®)7) =vW)7 - fa(v(@ - 8),v(2) = 2v(y - 5)7 - G(v(x)) -

Assume f;(v(z - s),7(y)?) # Og. Then we have

(@) € (VW) (Y- 9)7)g Sy 4.

(31.40) Proposition If we have CharK # 2, the map v : Ly — Lg is an isomorphism of
vector spaces.

Proof
We show that we have

Vye Ly sek: Yy - s) € (v(W)x

so that we may apply the fundamental theorem of projective geometry by lemma (31.29).
Let y € L§. By assumption, there is an element x € L§ such that

fa(r(@), (1)) = 0z = fa(v(2),7(y - 9)) -
By lemma (31.31) (d) and lemma (31.39), we have
1) fa(v(z - 8), () = 29(y - 5)7 - G(v(@))
hence
1) = 57) - fa(o(w - 5) 9@ (@) € e
=

(31.41) Theorem Let = be a quadratic space with basepoint €, let = be a proper quadratic
space with basepoint € and let M := M(Z), M := M(Z) be the corresponding Moufang sets of

quadratic form type. A map ~: M — M is a Jordan isomorphism such that ~(1y) = 15 if and
only if one of the following holds:
(i) We have dimg Lo > 3 and there is an isomorphism ¢ : K — K of fields such that the map
(7, 0) : (Lo, K, q) = (Lo, K, )
is an isomorphism of quadratic spaces. In particular, we have dimg Ly = dimg L.
(ii) We have dimg Ly < 2, the map
6K = K= ((ehx) C F:=F(Lo,K,q), 5+ 7(e-s)
is an isomorphism of fields, the field F is quadratic over K, and the map

(7,9) : (Lo, K,q) — (B, K, NE)

is an isomorphism of quadratic spaces. This is true even if = is non-proper.
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Proof

‘=7 e dimg Lo > 3: By proposition (31.37) and proposition (31.40), there is an isomorphism
¢ : K — K of fields such that the map (v, @) : (Lo, K) = (Lo, K) is an isomorphism of
vector spaces. By lemma (31.19), we have

hoy (@) (&) = (@) - (T(2)) +&- d(q(2)) = 7(hale) = 2 - T(2) + € q(x)) = 0z,

and

hy@) (&) —=v(@) - T(v(z)) + & §(v(x)) = 0,
for each = € L, hence
Vaely:  —y(2) ¢(T(2) +& ¢(a(x)) = () T(v(y) +&-d(v(2)) |

which implies
VeeLo\(gx: (@) =¢(a)) -

Given s € K, we have
(v(e-s5)) = G(€- d(s)) = ¢(5)* = d(s*) = o(ale - 9)) -
e dimg Lo < 2: By lemma (31.11), we have
M(Lo, K, q) = M(Lo, K, §) = M(F(Lo, K, q)) .
Now we apply theorem (31.7).

“<” Let (v, ¢) be an isomorphism of quadratic spaces (independent of the target space (Lo, K, q)
or (I, K, NHIAE)). By lemma (4.2), we have

v(ha(y))

V(- folz,y”) —y7 - q(x)) = v(2) - d(fo(z,47)) — (") - 6(q(2))
v(@) - f1(7(@), v ®)7) = @) - d(V(Y)) = Py (V1))

for all z € L§, y € Lo which completes the case dimg l~/0 > 3. In the case dimg io <2
moreover, we have

M(Lo, K, §) = M(F) = M(K, F, N7)
by lemma (31.11) and lemma (31.23) so that
v M(Lo,K, ) — M(K,F, NZ) = M(Lo, K, §)

is a Jordan isomorphism.

- 156 -



Part VII

An Inventory of Moufang
Polygons

- 157 -






Chapter 32 Parametrized Moufang Polygons

As in the simply laced case, the parametrization for the appearing Moufang polygons in root
group sequences of a given twin building is an important technical tool for the classification of
twin buildings: We can make use of the knowledge about the parametrizing Moufang sets and
Jordan isomorphisms between them, i.e., we may apply the results of chapter 31.

Chapter 32 Parametrized Moufang Polygons

Before we give the appearing examples, we have to establish the concept of standard and opposite
parametrized Moufang polygons as we can read a root group sequence in two directions.

(32.1) Definition
e The symbol T is standard of type 3.
e The symbols Q;, Qg,9p, Qp, Qr and QF are standard of type 4.
e The symbol H is standard of type 6.

e The symbol O is standard of type 8.

(32.2) Definition
o A parameter system of type T is an alternative division ring A.
o A parameter system of type Qy is a proper involutory set (K, Ko, o).
o A parameter system of type Qg is a quadratic space (Lo, K, ¢) with basepoint e.
o A parameter system of type Qp is a proper indifferent set (K, Kq,Lo).
o A parameter system of type Qp is a proper right pseudo-quadratic space (K, Ky, o, Lo, q).
o A parameter system of type Qg is a quadratic space (Lo, K, q) of type Eg, E7, Es.
o A parameter system of type Qp is a quadratic space (Lo, K, q) of type Fj.
o A parameter system of type H is a hexagonal system (J,F,#).

o A parameter system of type O is an octagonal set (K, o).

(32.3) Definition A parametrized standard Moufang n-gon is a standard root group sequence
X(2) = (U[Ln],xl(Ml),...,azn(Mn)) ,

where X is a standard symbol of type n € {3,4,6,8}, E is a parameter system of type X and
My, ..., M, are the parameter groups with respect to the parametrizations x1,...,x, and the
corresponding commutator relations, cf. chapter 16 of | ].

(32.4) Remark

(a) Given a parametrized standard Moufang n-gon X (=), the parameter groups My, ..., M,
are Moufang sets.

(b) For reasons of brevity, we will write
X(E) = (z1(My), ..., 2, (M,))

instead of X(2) = (Up,np, #1(My), ..., 2, (My)).
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(32.5) Definition  Let X be a standard symbol of type n € {3,4,6,8}.
e The symbol X is the corresponding opposite symbol of type n. We set (X°)° := X.

o A parameter system of type X ° is just a parameter system of type X, except for the following
standard symbols:

o A parameter system of type Q% is a proper left pseudo-quadratic space.

o Hexagonal systems and octagonal sets are not taken into account yet.

(32.6) Notation

e In the following, a symbol X denotes either a standard or an opposite symbol of type n for
some n € {3,4,6,8}.

e In the following, a parameter system = denotes a parameter system of type X for some

symbol X.

(32.7) Remark The following list is not complete since we restrict to parameter systems for
n-gons with n € {3,4}. The list can be extended easily.

(32.8) Definition Given a parameter system =, there is a natural way to define an opposite
parameter system Z°:

e Given an alternative division ring A, the corresponding opposite parameter system A° is
just the opposite alternative division ring A° as in definition (3.7).

e Given an involutory set (K, Ky, o), the corresponding opposite parameter system is
(K, Ko, 0)? := (K’ Ko, 0) ,
which is an involutory set.
e Given an indifferent set (K, Ko, Lg), the corresponding opposite parameter system is
(K, Ko, Lo)? := (K, Ko, Lo) ,
which is the indifferent set itself.

e Given a right (resp. left) pseudo-quadratic space (K, Kog, o, Lo, g), the corresponding opposite
parameter system is
(K7 KOa g, L07 Q)O = (K07 KOa g, L07 Q) )

which is a left (resp. right) pseudo-quadratic space.
e Given a quadratic space (Lo, K, q), the corresponding opposite parameter system is
(Lo, Ka q)O = (LOa Kv Q) )

which is the quadratic space itself.
(32.9) Remark Let Z be a parameter system. If Z is of type X, then Z° is of type X°.

(32.10) Definition An parametrized opposite Moufang n-gon is a root group sequence
X°(E) = (z1(My), ..., zn(My,))

such that
(xn(M;’L), . ,,’E1(M(1))) = X(E%),

where X is a standard symbol of type n € {3,4,6,8} and E is a parameter system of type X°.
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(32.11) Remark

(a) Parametrized opposite Moufang n-gons can be obtained as follows: Take the opposite
root group sequence (,(My),...,z1(M;)) of some parametrized standard Moufang n-gon
X(E) = (z1(My),...,2,(M,)), calculate the commutator relations and interpret them in
the opposite parameter system =°.

(b) By definition, each parametrized opposite Moufang n-gon arises in this way.

(¢) We will make this more explicit in the next chapter.

(32.12) Definition A parametrized Moufang polygon of type X is a parametrized standard or
opposite Moufang n-gon X' (Z) for some symbol X" of type n and some parameter system of type
X.

(32.13) Remark Two isomorphic Moufang polygons are necessarily n-gons for the same value
n € {3,4,6,8}, cf. p. 419 of [T'W]. However, there are six families of Moufang quadrangles, and
there are indeed quadrangles belonging to different families, cf. chapter 38 of [TW]. But the six
families of parametrized Moufang quadrangles are disjoint if we use the above list of parameter
systems, i.e., two isomorphic parametrized quadrangles are necessarily of the same type X, cf.
(38.9) of [TW].

(32.14) Definition  Let X'(Z), X(Z) be parametrized Moufang polygons of the same type X.

e An isomorphism o : X(Z) — X(Z) is an ordered set (o, ..., a,) such that o; : M; — M is
an isomorphism of groups for each i € {1,...,n} and such that

(:vlal(Ml), ce xnan(Mn)) =X(2).

e A reparamelrization for X (Z) is an ordered set o = (2,04, ...,ay,)such that = is a parameter
system of type X and «; : Ml; — M is an isomorphism of groups for each i € {1,...,n} and
such that

[1]:

(zlal(M1)7 .- axnan(Mn)) = X( ) .

(32.15) Remark The following results enable us to define parametrizations for root group
sequences such that we have v(1y) = 1y for each appearing glueing ~.

(32.16) Lemma  Given a parametrized Moufang n-gon X' (=), we have

1M1 € Z(Ml) s 1Mn S Z(Mn) .
Proof
This results from the fact that My and M,, are commutative except for the symbols Qp, Qp, O.
In these cases, the assertion results from definition (10.15) and (38.10) of [T'W], cf. Fig. 5 on
page 354 of [TW]. O

(32.17) Lemma  Let X'(E) be a parametrized Moufang n-gon and let a € Z(M;), b € Z(M,,).
Then the following holds:

(a) If X is of type T, Qr, Qp, Qp, H, O, there is a reparametrization o = (Z, oy, ..., ay) s.t.

1 (0‘1(11\7111)) =z1(a) , xn(an(lmn)) =x,(b) .
(b) If X is of type Qgq, there is a reparametrization o = (é, a1,...,0n_1,idy, ) such that

1 (a1 (lgy,)) = 1(a) , q(b) =1 .

In particular, we have 1y .

n
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Proof
(a) T: This results from lemma (18.8).
Qr: This results from (35.16) and (22.39) in [TW].
Qp: This results from (35.18) in [TW].
Qp: This results from (35.19 (25.20) in [TW].

(35.18) in
( ) and
H: This results from (29.40) and (29.42) in [TW].
(31.35)
(35.17)

i
a
a
O: This results from (31.35) in [TW].

(b) Qg: This results from (35.17) and (23.25) in [TW].
O

(32.18) Lemma  Given a parametrized quadrangle Qg(Lo, K, ¢) and a € Z(M,), b € Z(M,,),
there is a reparametrization o = (E,aq,...,a,_1,1idy,, ) such that

xl(o‘l(lml)) =x1(a), q(b) =1z .

In particular, we have 1y =b.

Proof

By remark (21.17) of [TW], Qr(Lo,K,q) is an extension of Qg(Lo, K, ¢), and by proposition
(21.4) and (38.10) of [T'W], the first root group is Y1 = Z(U;). We apply lemma (32.17) (b) to the
quadrangle Qo (Lo, K, ¢) and extend the reparametrization for Qg (Lo, K, g) to a parametrization
for Qp(Lo, K, q), which is possible by theorem (21.12) of [T'W], more precisely, by its proof. O

(32.19) Lemma Let Qp(Lo,K,q) be a parametrized quadrangle, let (F,Lg,d) be as in

definition (14.12) of [T'W] and let a € Def(§)*, b € Def(q)". Then there is a reparametrization
a=(Z,a1,...,a,-1,idy,, ) such that
z1(a1(lyy,)) = 21(a) , q(b) =1z .

In particular, we have 1 =b.

Proof
By remark (21.18) of [TW], Qr(Lo,K,q) is an extension of Qg(Lo, K, ¢), and by proposition
(21.4), remark (21.18) and the proof of (14.13) of [T'W], the first root group is

Vi = {21(0,t) | t € K} = 21 (Def(q)) . (32.1)

We apply lemma (32.17) (b) to the quadrangle Qg(Lo, K, ¢) and extend the reparametrization for
Qo (Lo, K, ¢) to a parametrization for Qg (Lo, K, ¢) which is possible by theorem (21.12) of [TW],
more precisely, by its proof. O

(32.20) Notation  Let I be an index set, let ¢ # j € I and let

By = X(E) = (Uppp, 21 (My), . .. ,xn(Mn))
be a parametrized Moufang n-gon. Then Mfi‘j) := M denotes the parameter group of the
first root group and M{ij) := M, denotes the parameter group of the last root group with
corresponding parametrizations xz('i 5= and x{i‘j) = x,. Moreover, we set

BY, ) = X°(2°) .

(32.21) Remark Let B(12) := Qr(Lo,K,q) and B3y = Qr(Lo,K,§) be quadrangles of
type Fy, and let ~ : M%l 2y M(22 3) be a Jordan isomorphism. Then we have 7(0,F) = (0, K), cf.
theorem (31.6) and equation (32.1).
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§ 33.1 Quadrangles of Involutory Type
(33.1) Definition  Let (K, Ky, o) be a (proper) involutory set.
e The root group sequence
Q1(K, Ko, 0) := (21(Ko), z2(K), 23(Ko), z4(K))
with commutator relations
Vs, teK: [22(8), 24 (t) 7] i= 23(st +175) ,
VseK, uekKy: [21(w), 24(5) 7] := w2 (us)23(s us)
is the parametrized standard quadrangle of involutory type with respect to (K, Ky, o).
e The root group sequence
Q9(K,Kg,0) := (xl(K),mz(Ko),xg(K),x4(Ko))
with commutator relations

Vs,teK: [1(s) 71, 23(t)] i= wo(—st" —ts7) ,
VseK, uckKy: [21(s) 7", wa(u))]

xo(—sus?)xs(—su)

is the parametrized opposite quadrangle of involutory type with respect to (K, Ky, o).

(33.2) Lemma  Let (K,Ky, o) be a (proper) involutory set and let
Q7(K, Ko, 0) = (21(K), z2(Ko), z3(K), 24(Ko))

be the corresponding opposite quadrangle. Then the action of the Hua automorphism

ha(s) = p(w1 (1)~ (@1 (s))
on z1(K) x x4(Kg) corresponds to the map

1

(t,u) — (sts,s "us™ ),

and the action of the Hua automorphism

ha(s) = u(xa(1x)) " p(a(s)
on z1(K) x x4(Kg) corresponds to the map

(t,u) — (ts71, 5%us) .

Proof
If we consider the quadrangle Q;(K°,Kg, o), then the action of h; (s) on 24(Kg) xz1 (K) corresponds

to the map

Lsotos)=(stus"7,sts),

(u,t) = (s 7 ouos™
and the action of hy(s) on x4(Kp) x z1(K) corresponds to the map
(u,t) — (souos®, s ot) = (s"us, ts" '),

cf. (33.13) of [TW]. O
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§ 33.2 Quadrangles of Pseudo-Quadratic Form Type

(33.3) Definition

o Let (K,Kg,0,Lo,q) be a (proper) right pseudo-quadratic space. Then the root group
sequence
QP(Ka KO; a, LOv Q) = (xl(T)a ‘TQ(K)7 $3(T)7 :L’4(K))

with commutator relations
[.%‘1 (a> t)7 CL‘4(b, u)_l]

[22(v), 24(w) "] :

[z1(a,t), 24(v) "] = za(tv)2s(av, v tv)

2 (f(a’ b)) ’

x
23(0,v7w + wv) ,

for all v,w € K, (a,t), (b,u) € T is the parametrized standard quadrangle of pseudo-quadratic
form type with respect to (K, Ko, o, Lo, q).

e Let (K, Ky, 0, Lo, q) be a (proper) left pseudo-quadratic space. Then the root group sequence
Q(}-’(Ka KOa a, LOv Q) = (xl(]K)? :L'Q(T)a $3(K)7 x4(T))

with commutator relations

[xQ(b7 u)ila x4(a, t)] = ZES( - f(aa b)) )
[z1(w) ™, 23(v)] i= 22(0, —wv” —vw?)
[21(v) 7Y, 24(a, t)] = z2(—va, —v7t7v)as(—vt)

for all v,w € K, (a,t), (b,u) € T is the parametrized opposite quadrangle of pseudo-quadratic
form type with respect to (K, Ko, o, Lo, q).
(33.4) Lemma Let (K, Ko, o, Lo, q) be a (proper) left pseudo-quadratic space and let
Q(])D(Ka KOa g, LO? q) = (fEl(K), .I‘Q(T), J’.S(K)’ C13‘4(7—‘))
be the corresponding opposite quadrangle. Then the action of the Hua automorphism
—1
hi(s) = p(z1(1x))  p(ai(s))
on x1(K) x x4(T) corresponds to the map
(u, (b7v)) — (sus, (s_lb,s_lvs_”)) ,
and the action of the Hua automorphism
~1
ha(a,t) == p(z4(0,1x))  p(za(a,t))
on z1(K) x x4(T) corresponds to the map
(u, (b,v)) = (ut™7, (t7b — 7 f(a,b)t " a, t70t)) .
Proof

If we consider the quadrangle Qp (K, K§, 0, Lo, ¢), then the action of hy(s) on z4(T) x x1(K)
corresponds to the map

((b,v),u) = ((bos !, s770vos '), so0uos) = ((s'b,s 'vs7),sus) ,
and the action of hy(a,t) on x4(T) x x1(K) corresponds to the map
((b,v),u) = ((bot” —aot "o f(a,b)ot” , tovot?), t 7 ou) = ((t7b—1t7 f(a,b)t  a,t7vt), ut"7) ,

cf. (33.13) of [TW]. O
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§ 33.3 Quadrangles of Quadratic Form Type

(33.5) Definition Let (Lo, K, q) be a quadratic space with basepoint e.

e The root group sequence

QQ(L(), K, q) = (1‘1(K), Z‘Q(Lo), l‘g(K), {,134(L0))
with commutator relations
[22(a), 24(b) '] := 23(f(a,b)) ,
[x1(t), m(a)fl] = xo(at)xs (tq(a))

for all a,b € Ly, t € K is the parametrized standard quadrangle of quadratic form type with
respect to (Lo, K, q).

e The root group sequence
Q% (Lo, K, q) := (21(Lo), 22(K), 23(Lo), 24(K))
with commutator relations

[21(0) ™", 21 (a)] = z2( — f(a,b))
[z4(a) ™", z1(t)] == 22( — tq(a))zs(—at)

for all a,b € Ly, t € K is the parametrized opposite quadrangle of quadratic form type with
respect to (Lo, K, q).

(33.6) Lemma Let (Lo, K, g) be a quadratic space with basepoint ¢ and let
QZ) (L07 K7 q) = (xl(LO)a ZQ(]K>7 1‘3(.[/0), :L'4(K))
be the corresponding opposite quadrangle. Then the action of the Hua automorphism
-1
hi(a) == p(z1(e)) p(z1(a))
on z1(Lo) x 24(K) corresponds to the map
(v,u) = (Tame(v) - q(a), u/q(a))
and the action of the Hua automorphism
-1
ha(s) = p(ra(lx))  p(za(s))
on z1(Lg) X 24(K) corresponds to the map

(bu) — (b-t7 1 t%u) .

Proof
If we consider the quadrangle Qp (Lo, K, ¢), then the action of hy(a) on z4(K) x 21 (Lg) corresponds
to the map

(u, U) = (U/Q(a)v Waﬂe(v) : Q(a)) y
and the action of hy(s) on x4(K) X x1(Lg) corresponds to the map

(uvb) = (tZU,b- til) 5

cf. (33.11) of [TW]. O
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§ 33.4 Quadrangles of Indifferent Type
(33.7) Definition  Let (K,Kg,Lg) be a (proper) indifferent set.
e The root group sequence
Qp (K, Ko, Lo) := (21(Ko), 22(Lo), 23(Ko), z4(Lo))
with commutator relations
VteKp,aely: [21(1), 4(a)] = z2(t?a)z3(ta)
is the parametrized standard quadrangle of indifferent type with respect to (K, Kq,Lo).

e The root group sequence
9% (K, Ko, Lo) = (21(Lo), 22(Ko), 23(Lo), 24 (Ko))
with commutator relations
ViteKp,acly: [z1(a), 24(t)] = z2(—ta)zz(—t2a) = zo(ta)zs(t*a)

is the parametrized opposite quadrangle of indifferent type with respect to (K, Kq,Lo).

(33.8) Lemma  Let (K,Kg,Lg) be a (proper) indifferent set and let
9% (K, Ko, Lo) = (z1(Lo), z2(Ko), z3(Lo), z4(Ko))
be the corresponding opposite quadrangle. Then the action of the Hua automorphism
-1
hi(a) = p(x1(1x))  p(z1(a))
on z1(Lg) x 24(Kp) corresponds to the map
(b,u) = (ba*,ua™t)
and the action of the Hua automorphism
-1
ha(t) = p(a(lx))  p(za(t))
on z1(Lg) x 24(Kp) corresponds to the map

(b,u) — (bt™2 ut?) .

Proof
If we consider the quadrangle Qp(K,Kg,Lg), then the action of hi(a) on x4(Kg) x z1(ILo)
corresponds to the map

(u,b) = (ua™",ba?)

and the action of hy(s) on x4(Kp) x 21(Lg) corresponds to the map
(u,b) > (ut? bt~2)

cf. (33.12) of [TW]. O

§ 33.5 Quadrangles of Type E,, F,

For an overview of those quadrangles, we refer to (16.6), (33.14), (16.7) and (33.15) of [TW].
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Chapter 34 The Moufang Sets of Moufang Polygons

We give an overview of the Moufang sets appearing as root groups of Moufang triangles and
quadrangles.

(34.1) Remark Let B(1,2) := X(E) be a parametrized standard Moufang polygon. Then one
of the following holds:

(i) We have
M%m) = M(A) = M%m)

if B(1,2) = T(A) for some alternative division ring A.
(ii) We have
M%l,Q) = M(K’ KO’ U) ) M(21’2) == M(K)
if B(1,2) = Q1(K, Ky, o) for some (proper) involutory set (K, Ko, o).
(iii) We have
M%l,Q) = M(Kv Ko, o, LO? q) ) M%LQ) = M(K)
if B(1,2) = Qp(K, Ko, 0, Lo, q) for some (proper) pseudo-quadratic space (K, Ko, o, Lo, q).
(iv) We have
M%LQ) =M(K) , M%lz) = M(Lo, K, q)
if B(1,2) = Qq(Lo, K, q) for some quadratic space (Lo, K, ¢) with basepoint e.
(v) We have
M, 5y = M(K, Ko, L) , ML) 5y = M(LL, Lo, K3)
if B(1,2) = Q1(K, Ky, Lg) for some (proper) indifferent set (K, Ko, Lo).
(vi) We have
I\/H(ll,Q) =M(S) , M%l,z) = M(Lo,K, q)
if B(1,2) = Qr(Lo, K, q) for some quadratic space (Lo, K, q) of type E,.
(vii) We have
M%Lz) = M(Fv IA/O? (/j) y M%LQ) = M(L()v Ka (I)
if B(1,2) = Qa(Lo, K, q) for some quadratic space (Lo, K, q) of type Fj.
(viii) We have
M%LQ) - M(‘]’ Fv #) ) M%LQ) = M(]F)
if B(1,2) = H(J,F,#) for some hexagonal system (J,F, #).
(ix) We have
M, 5y = M(K) , M, 5y = M(K, 0)
if B1,2) = O(K, o) for some octagonal system (K, o).
(34.2) Remark  The Hua automorphisms of lemma (18.9) and chapter 33, which can be
defined for each polygon, cf. chapter 33 of [T'W], induce the Hua maps on the corresponding

Moufang sets. Each Hua automorphism of a polygon which is part of an integrable foundation is
induced by an automorphism of the whole building, cf. theorem (2.35).
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Chapter 35 Definition

We generalize the definitions and results of chapter 19, i.e., we give the definition of a foundation
involving arbitrary Moufang polygons and show that we can attach a foundation to each twin
building. Once again, this foundation turns out to be a classifying invariant of the corresponding
twin building, and the integrability criterions of chapter 19 hold as well.

Chapter 35 Definition
(35.1) Definition
e Let M be a Coxeter matrix. A foundation of type M is a set

Fi= {B(i,j)a’}/(i,j,k) | (27.]) € A(M)7 (i7j7 k) € G(M)}
such that:

(F1) Given (i,5) € A(M), then B; jy = X(; j)(E(,;)) for some symbol A(; ;) of type m;; as
in notation (32.6) and some parameter system Z(; ;) of type X{; ;).

(F2) Given (i, j) € A(M), we have B(; j) = Bf, ;.
(F3) Given (i,j,k) € G(M), then 7 ;) : M{i,j) — ngﬁk) is an isomorphism of groups
satisfying
Yok () = Int Vi gy = 1d% o 7(—];].,2,) 0id? .
(F4) Given (i,4,k), (i,7,1),(l,4,k) € G(M), we have
Vgk) = Vg 1470 Vi) -
e Given a foundation F, we denote the corresponding Coxeter Matrix by F.

o A foundation F is a Moufang foundation if each glueing v := 7(; j 1) is a Jordan isomorphism,
i.e., we have

VaeM;, v€Mg;: Y (ha(x)) = hoya) (v(2)) -

(35.2) Definition  Let F be a foundation over I = V(F') and let J C I. The J-residue of F
is the foundation

Fy= {B(i,j)afy(i,j,k) | (27.7) € J2 mA(F)v (i,j, k) € J3 N G(F)} :

(35.3) Remark Since a foundation is, in fact, an amalgam of Moufang polygons, an isomor-
phism of foundations is a system of isomorphism of Moufang polygons preserving the glueings.

(35.4) Definition Let F, F be foundations.

e An isomorphism o : F — F is a system o = {m, a(; ;) | (4,4) € A(F)} of isomorphisms

T F—F, agg) = (i) 5))  Bag) = Beriym())
such that
Y (i,4,k) € G(F): V(@) ()m (k) © Oy 3y = O 1y © Vg
and
V(i,j) €AF):  aqg =ak, -

e An isomorphism o : F — F is special if F = F and © = idp.

e An automorphism of F is an isomorphism « : F — F.
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Chapter 36 Root Group Systems

The fact that a root group systems is a classifying invariant of the corresponding twin building is
a fundamental result in twin building theory.

(36.1) Definition Let B be a twin building of type M, let ¥ be a twin apartment of B and
let c € Ox.

e Given (4,7) € A(M), let ay, a; be the simple roots with respect to (3, c) and let ©(; ;) be
as in theorem (2.32) (d). Then

Uij) = (Ui Ui jys -+ Ul jy) 7= Oy

denotes the root group sequence of B from «; to o, which is isomorphic to the root group
sequence of B;; from oy N B;; to a; N By

e The resulting set

is the root group system of B based at (X, c).

(36.2) Lemma  Given (i, j, k) € G(F), we have U(ji P = U(JJ B
Proof
This holds by definition. O

(36.3) Definition Let U :=U(B, M,%,¢) and U := U(B, M, ¥, &) be root group systems.
e An isomorphism o : U — U is a system
a={maqu; | (7)€ AM)}

of isomorphisms

M= M, i) Utig) = Utn(i),m())
of root group sequences such that
V (Z',j, k) S G(M) : a(Z’J)\U(Jz N = a(j’k)‘U(jj o 3 V (Z7j) S A(M) . a(iJ) = a?j,i) .

e An isomorphism a : U — U is special if M = M and 7 = id ;.
e An automorphism of U is an isomorphism « : U — U.

(36.4) Theorem  Two root group systems U(B, M, %, c) and U(B, M, ¥, é) of a twin building
B are specially isomorphic.

Proof
This is a consequence of theorem (2.22). O

(36.5) Theorem Let U = U(B,M,%,c) be a root group system of a twin building B
which satisfies condition (CO). Then the isomorphism class of U is a classifying invariant of the
isomorphism class of B.

Proof
This is a consequence of the extension theorem (2.23). O
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Chapter 37 Foundations and Root Group Systems

Given a root group system, there is a natural way to attach a foundation to it.

(37.1) Definition  Let U(B, M,X, c¢) be a root group system.

e Given (i,j) € A(M), there is a symbol A{; ;) and a parameter system Z(; ;) such that
Ugi,j) = X 5)(E.y))- In particular, there is a system of parametrizations

xz‘i’j) : Mz‘i’j) — U(*i’j) , t x’(ki’j)(t) , x € {i,j}

extending to the defining relations for &(; ;(E(; ). Such a parametrization yields an
opposite system of parametrizations

it MG ) = Uy s te xz‘i7j)(ido(t)) ) * € {j,i} .
The resulting set
A =A{Xi ;) (Equj) | (6,7) € AM)}
is a parameter system for U.
e Given (4,7,k) € G(M) and parametrizations X(; jy(E(; ;) and X(; 1) (E¢j.x)), we define the

glueing v(; ;) iMf - ng,k) by

i.4)
x?i,j)(t) = xzj,k) ('Y(z}j,k) (t))

which is justified by lemma (36.2). Then 7(; ;) is an isomorphism of groups satisfying

Vii,jk) = id° 0 ’y(_klj i © id°. By lemma (32.16), (32.17), (32.18) and (32.19), we may adjust

all the parametrizations such that

Y (i,5,k) € G(F): Vi ge) (Iva) = na -

In the first instance, we have to adjust the glueings connecting quadrangles of type Fy (for
which we need remark (32.21)) since we have the least flexibility in this case: The element
1y is an element in the corresponding defect.

(37.2) Lemma Given a root group system U :=U(B, M, X, ¢), a parameter system A as in
definition (37.1) induces a foundation

FUN) ={ X5 (Ea.5) Vgk | (4,5) € AM), (4,5, k) € G(M)} .

Proof
We emphasize that the glueings in definition (37.1) are identifications with respect to directed
edges. Given (i,7,k), (¢,7,0), (1,5, k) € G(M) and ¢ € Mzij), we have
‘ij,k) (Vi (1) = x%i,j)(t) = x%j,l) (Vg (1)
=2, 5 (17 0 Y50 (8) = 2{; 4y (Vg0 ©14° 0 V(a5 (1))
and thus v(; k) = Y@,k ©1d 0 Vi 50 O
(37.3) Definition A foundation F is integrable if it is the foundation of a twin building B,

i.e., if there are a root group system U := U(B, M, 3, c) and a parameter system A for U such
that F = F(U, N).

(37.4) Theorem Let F be an integrable foundation. Then F is a Moufang foundation.
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Proof
Let (i,7,k) € G(F) and v := 7(; j 1)- If we set
. 4 . o
h(a) == M(xzi,j)(lM)) M(‘rzi,j)(a)) J ac (M(jw')) )
~ . . . .
h(a) == N(xgj,k)(lM)) N($%j7k) (a)) ) a € (M(jjvk)> )

we have

h(v(a)) = (a4 (1)~

-1

(@l (@) = il (1)~ (a5 (@) = hla)

for each a € M{i i) Moreover, we have

af; (@M =2l (ha(2)) | ;W) =l (h(y))

forall a € (M7, )", x € M

(i) be (MZJ k))*, y e M )- Combining these two facts yields

J
(4,4) (4,k

00 (1a(2))) = 2y (a(2)) = (@) = 1 (1(0)) "7 = ] (o (12))

and thus v (hq(z)) = Bw(a) (v(z)) for all a € (M

MR =

(4,9)°
(37.5) Remark The following result provides an integrability criterion.

(37.6) Definition  Let F be a foundation.

e Let (F, ) be a cover of F. Then the foundation

F(E,0) = {Bg ) Ausn | (i,5) € AF), (i,5,k) € G(F)}
with
V (i,§) € A(F) : Biij) = Bioyoty » Y (i3 k) € GE) ik = V(i) o) (k)

is the cover corresponding to (F, ).

e A foundation F is a cover of F if there is a cover (F, ) of F such that

FEF(F, o).

(37.7) Theorem Let F be a foundation and let F be a cover of F. Then F is integrable if
F is integrable.

Proof
This is a consequence of theorem C in | ]. O

(37.8) Remark The next step is to show that the foundation attached to a root group system
is unique up to isomorphism. Moreover, we want to prove that the building corresponding to an
integrable foundation is unique up to isomorphism.

(37.9) Proposition Let U := U(B, M, ¥, c) and U = U(B,M,%, ) be root group systems
and let A and A be parameter systems for & and U, respectively. Then the following holds:
(a) An isomorphism & : F(U,A) — F(U, A) induces an isomorphism o : U — U.

(b) An isomorphism « : U — U induces an isomorphism & : F(U, A) — F(U, A).
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Proof
Each isomorphism

G,j) * Uty = Ur(i),r(5))
induces an isomorphism
a5y * Xag) (Eai) = Xag) Emi)m()))
and vice versa. Given (i,5) € A(M), we have

o

agg) = i & Qg = a0, -

Now we may go on as in the proof of proposition (19.16). O

Chapter 38 Reparametrizations and Isomorphisms

The concept of reparametrizations is quite similar to that of isomorphisms. However, we deal with
a single foundation and produce (in fact, all the) foundations which are isomorphic to a given one.
Moreover, this concept allows us to complete the proof that a foundation is a classifying invariant
of the corresponding twin building.

(38.1) Definition  Let F be a foundation.
e A system of reparametrizations

a:={aqy ) | (4,7) € A(F)}

satisfying a; j) = e for each (i,j) € A(F) and

Vi) © s 5y (1) = af; 1y (1)
for each (4, j, k) € G(F) is a reparametrization for F.
e Given a reparametrization « for F, we set
Fo :=A{X6.5) i) Vg | (155) € A(F), (i, 4, k) € G(F)}
with _ _
Ak = (0 40) 7 0V © )

for each (7,4, k) € G(F).

(38.2) Lemma Let U := U(B, M, %, c) be a root group system, let F := F (U, A) for some

parameter system A for U, let a be a reparametrization for 7 and let A be the parameter system
induced by a. Then we have F := F(U,A) = F,.

Proof
‘We have

iy (1) = 20 5 (s 5 (1)
7.k (7(i,j7k) © O‘?i,j)(t)) = j{j,k) <(a€j,k))71 O V(ig,k) © a%i,j)(t))

i (gm () = &

=z

T
for each t € M(i’j).

O

(38.3) Corollary Let U :=U(B, M,%, ¢) be a root group system, let F := F(U, A) for some
parameter system A for U and let

a={mau;l|(ij)€AF)}:F—F

be an isomorphism. Then F is integrable.
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Proof

Take (Z(; ;) == é(,r(i)’,r({)), (afi’j))_l, ey (agm))_l) as repaﬁrametrization for X(; (), then
replace @ € I by (i) € I. The resulting parameter system A satisfies
FUAN) =F,=F.
O

(38.4) Theorem The isomorphism class of an integrable foundations F = F(U,A) is a
classifying invariant of the isomorphism class of the corresponding building.

Proof
This results from corollary (38.3), proposition (37.9) and theorem (36.5). O
(38.5) Remark The following theorem shows that the concept of reparametrization is useful

if we want to determine all the foundations isomorphic to a given foundation F.

(38.6) Theorem  Let F, F be foundations with F' = F. Then the following holds:

(a) Let & = {aq,;) | (4,4) € A(F)} + F — F be a special isomorphism. Then there is a
reparametrization o of F such that F, = F.

(b) Let a = {a( ) | (i,5) € A(F) be a reparametrization for F such that F, = F. Then there
is a special isomorphism @& : F — F.

Proof
(a) If we take o := {a(; jy | (4,7) € A(F)} with

= ~ ~ -1
irg) = A=, (@)™ (G )7
as reparametrization for F, then F, = F.

(b) We have ~ ] ,
gy = (Egig) gy gy

for each (i,7) € A(F), thus & := {idp, & | (i,5) € A(F)} : F — F with

G = (i)™ (agi )7

is an isomorphism.

(38.7) Remark
(a) Let F and F be foundations and let

a={mau, | (i,j) € A(F)}:F = F
be an isomorphism. As we may replace i € V(F) by (i) € V(F), we may consider a as
special. Thus it suffices to determine all foundations which are specially isomorphic to F.
The remaining foundations isomorphic to F are obtained by relabelings of the vertex set.

(b) The theorem is useful if we want to show that two given foundations F and ]E' with isomorphic
residues R and R are isomorphic. In this case, we may replace R by R, observing that
there is a relabeling of the corresponding vertices involved.
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Chapter 39 Definition

Now we are ready to turn to the classification of integrable 443-foundations, whose Moufang
polygons are two quadrangles and one triangle and whose Coxeter diagrams are complete graphs.

The first step is to exclude quadrangles of type E,, of type Fj and of indifferent type. Then
we turn to unitary quadrangles, i.e., quadrangles of pseudo-quadratic form or involutory type. As
we restrict to proper parameter systems, there are not many possibilities to glue these polygons
together.

The final class is that of quadrangles of quadratic form type, which is rich in integrable
foundations. In order to avoid characteristic 2 trouble, there is one point where we restrict to
proper quadratic spaces although a small gap is the consequence.

Chapter 39 Definition

(39.1) Definition A 443-foundation is a foundation

Fi= {8(1,2)73(2,3)76(3,1)77(1,2,3)»7(2,3,1)77(3,1,2)}

such that B(; 2y and By 3y are quadrangles and B3 1 is a triangle.

(39.2) Notation

e Given a 443-foundation F, we set
Y1 = (3,1,2) » Y2 = 7Y(1,2,3) » V3= Y(2,3,1) -

e Throughout the rest of this part, F is an integrable 443-foundation.

Chapter 40 The Quadrangles Are Not of Type E,,
(40.1) Lemma  Let B = (x1(My),...,z4(My)) be a parametrized standard quadrangle of
type E,. Then the following holds:

(a) The Moufang set M; is non-commutative.

(b) We have My = M(Lg, K, ¢) for some quadratic space (Lo, K, q) of type E,.

Proof
(a) This results from (38.10) of [T'W].
(b) This holds by definition, cf. remark (34.1) (vi) or example (16.6) of [TW].

(40.2) Theorem The quadrangles are not of type E,,.

Proof
Suppose that B(; ) or B2 is a parametrized standard quadrangle of type E,. The glueing

10 M%g )~ M(ll 5) is a Jordan isomorphism. We have M%S ) = M(A) for some alternative
division ring A, ‘Ehus~ M%&l) is commutative. Hence we have M%M) = M(EO,K, G) for some
quadratic space (Lo, K, §) of type E,, by lemma (40.1).

Notice that (Lo, K, §) is proper by remark (4.27). By theorem (31.7), the alternative division

ring A is quadratic over a subfield F of its center K := Z(A) with N := Nf, and (Lo, K, §) and
(A,F, N) are isomorphic as quadratic spaces. In particular, we have K = F and

dimg Ly = dimp A € {1,2,4,8} N {6,8,12} = {8} .

As a consequence, (O,K,N) = (A,F,N) is of type (v) and (Lo, K, §) is of type E;. But by
corollary (4.29) (c), we have (Lo, K, §) % (0,K, N) as quadratic spaces 4. O
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Chapter 41 The Quadrangles Are Not of Type F}

(41.1) Remark  Let Qp(Lo,K,q) = (z1(My), z2(Ms), 23(M3), z4(M4)) be a quadrangle of
type Fy, where (Lo, K, q) is a quadratic space of type Fy.

(a) By remark (21.18) of [T'W], the quadrangle Qp (Lo, K, q) is an extension of the quadrangle
Qo (Lo, K, ¢), thus we have My = M(Ly, K, g).

(b) By remark (21.18) of [TW] again, the quadrangle Q%(Lo,K,¢q)° is an extension of the
quadrangle QQ(ﬁO,IF, §), thus we have M; = M(ﬁo,F, ), where (ﬁo,]F‘,(j) is the quadratic
space of type Fy as defined in (14.12) of [TW], cf. (14.13) of [TW].

(41.2) Theorem  The quadrangles are not of type Fy.

Proof
Suppose that B 2) or By 1) is a parametrized standard quadrangle of type Fy. The glueing

m o M - M{, ,) is a Jordan isomorphism. We have M, ;) = M(A) for some alternative

division ring A. By remark (41.1), we have
M:(L172) = M(L07 K7 q)

for some quadratic space (Lo, K, q) of type Fy. By theorem (31.7), the alternative division ring A
is quadratic over a subfield F of its center K := Z(A), and (Lo, K, ¢) and (A, T, NE‘,&) are isomorphic
as quadratic spaces, which contradicts lemma (4.36). O

Chapter 42 The Quadrangles Are Not of Indifferent Type

(42.1) Remark  Let B:= Qp(K,Ko,Lo) = (21(M;), z2(Mz), z5(M3), z4(My4)) be a quadran-
gle of indifferent type, where (K, Ko, Lg) is a proper indifferent set.

(a) By definition, the Moufang set M; = M(K, Ko, Lg) is of indifferent type.

(b) By remark (35.9) of [T'W], we have B® = Qp(L, Lo, K3), thus we have My = M(L, Lo, K3),
where (I, Lo, K2) is the opposite of (K, Kg,Lg), which is proper by lemma (6.4).

(42.2) Theorem The quadrangles are not of indifferent type.

Proof
Suppose that B(; 2) or B2 1) is a parametrized standard quadrangle of indifferent type. By remark
(42.1), we have

M, 5y = M(K, Ko, Lo)

for some proper indifferent set (K, Kg, L), we have M%B )= M(A) for some alternative division
ring A, and the glueing 71 : Mé H M%m) is a Jordan isomorphism, which contradicts theorem
(31.24). O

(42.3) Remark Now we are done with the exclusion of certain families of quadrangles. Next
we pass to unitary 443-foundations, which can not be obtained as fixed point foundations of covers.
As in the As-case with positive glueings, the parametrizing structures are quaternion division
algebras, and the existence can be shown via Tits indices.

Then we finally come to 443-foundations involving quadrangles of quadratic form type, which
can be constructed as fixed point foundations of covers.

In both cases however, we leave off the existence proofs which require different kinds of
techniques.
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Chapter 43 Unitary Quadrangles

As quadrangles of pseudo-quadratic form type are extensions of quadrangles of involutory type
(which are not necessarily of purely involutory type) and as quadrangles of involutory type can
be considered as quadrangles of pseudo-quadratic form type of a non-proper pseudo-quadratic
space, it is natural to treat them in a common setup. As a consequence, we sometimes omit the
assumption of a proper parameter system to obtain a general statement for both the families.

§ 43.1 Definitions

(43.1) Definition

e A foundation

F= {8(1,2) = Q?(é)78(2,3) = QI(E)aB(S,l) = T(K)77(1,2,3)77(2,3,1)»7(3,1,2)}
for some proper involutory sets = and Eisa 44.3-foundation of involutory type.

o A foundation
Fi={B2) = Q5(2), B3y = Qpr(E), Biz,1) = T(K), Y(1,23): Y(2.3.1): V3,1.2)

for some proper pseudo-quadratic spaces = and Zisa 443-foundation of pseudo-quadratic
form type.

e A 443-foundation is of unitary type if it is either of involutory type or of pseudo-quadratic
form type.

(43.2) Notation  Given a 443-foundation F, we set
Y= Y3,1,2) V2 1= (1,2,8) T3 =28
(43.3) Lemma  Let F be an integrable 443-foundation of unitary type. Then K is associative.

Proof
The glueings v3 = v(1,3,2) and y1 = 7(3,1,2) are positive or negative by Hua’s theorem. In particular,
K is associative. O

(43.4) Lemma Let K be a skew-field, let M C K and let a, b, c € K such that

lx e M, VeeM: axb = cx .
Then we have
Proof
We have

c=c-lg=a-1g-b=ab

and therefore

VeeM: zb = a"(azxb) = a~ ! (abx) = bx .
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(43.5) Theorem Let F be an integrable 443-foundation of pseudo-quadratic form type with
= =Z° and 7y, = id7 and let

[1]

kT — K, (a,t) —t.
If one of the glueings is negative, we have

m%(T) C Z(K) .

In particular, we have Ko C Z(K).

Proof
Assume that 3 = v(2,3,1) is negative (otherwise, we consider the opposite buildings and glueings).

By taking (K, 73, 7s,73) as reparametrization for 7 (K), we may assume

K=K, v3 = idk -
If we set
h(s) := u(m(g 1)(1K))71M(x%371)(s_1)) , s e K*,
h(s) = e (10) nlaho(s™)) . €K,
we have

1

h(s) = ﬂ(x%&l)(lK))i H(xéz),,l)(sil)) = l‘(z(ll,g)(lK))71!‘(1:(11,2)(%(5)71)) = iL(Vl(S))

for each s € K*,
m?z,s)(t)h(s) = 33?3,1)(75)}1(3) = a3 1) (ts) = xy 3 (t5)
for all s € K*, t € K by lemma (18.9) and

)r(s) (a, )P (=)

= x%w)

= 2(1.9)(11(8) 0@, 71(s) 0t 0 71(5)7) = a5 (- ¥(5), 71 (5)7 - £ (5))

x(22,3)(a, t

for all s € K*, (a,t) € T by lemma (33.4). Given s € K*, the Hua automorphism h(’yfl(s))
induces an automorphism a, € Aut(B(,3)) which satisfies

(a3 (a,t) = 2y 5 (a- 5,87 - 5) 2o,z () = a5 (771 (s)) -
If we set & := Q41 () 1 (id g idg)) &5 11 (37.33) of [T'W], then &, satisfies
x(22’3)(a, t) — x(22,3)(a 8,87 - t-s), :17"(3273)(15) — x?z,s) (t) .
By (37.33) of [T'W], there is an element ¢ € K§ such that
Viteng(T): s%ts =ct .

Lemma (43.4) implies that we have

mx(T) C Ck(s) .
Since s € K* is arbitrary, it follows that

m(T) C Z(K) .

O

(43.6) Remark Notice that we don’t need the fact that = is proper by definition of our
parameter systems, i.e., if we allow = to be non-proper, the theorem remains true. As a consequence,
we get a similar result for 443-foundations of involutory type which can be considered as 443-
foundations of pseudo-quadratic form type for some non-proper pseudo-quadratic spaces, cf.
lemma (43.19).
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§ 43.2 Quadrangles of Pseudo-Quadratic Form Type

(43.7) Notation Throughout this paragraph, F is an integrable 443-foundation such that at
least one quadrangle is of pseudo-quadratic form type.

(43.8) Lemma The foundation F is of pseudo-quadratic form type.

Proo

We n'lfay assume that B2y or By 1) is a standard quadrangle QP(K, Ko,&,ﬁo,cj) of pseudo-
quadratic form type and thus M%M) = M(K) or M(lu) = M(K, Ko, 6, Lo,§). But since the
map v : M(K) = M%B,l) — M%L?) is a Jordan isomorphism and Moufang sets of linear type are
commutative while Moufang sets of pseudo-quadratic form type are not, we obtain that

6(1,2) = Q%‘((Ka K0767£07Q)0) .

Now B(3,3) is a Moufang quadrangle such that Mé 3) is non-commutative, and since we excluded
quadrangles of type FE,, in chapter 40, we have

B3 = Qp(=)
for some proper pseudo-quadratic space =. O

(43.9) Notation Until proposition (43.12), F is an integrable 443-foundation of pseudo-
quadratic form type such that K is non-commutative.

(43.10) Remark By theorem (8.1), the Jordan isomorphism vo = 7(1,2,3) T — T is induced
by an isomorphism ® : 2° — = of pseudo-quadratic spaces. By taking (2%, ¢, &1, ¢~ &~ 1) as
reparametrization for Q% (Z), we may assume

o o

) 'YQZidT.

[
[1]

(43.11) Lemma Both the glueings v; and 73 are positive.

Proof
If one of the glueings is negative, then we have

Ko € mx(T) € Z(K)
by theorem (43.5), thus (K, Ky, o) is non-proper by lemma (5.2). By remark (9.9), we have
(K, Ko, o) = (H, Z(H), 05)
for some quaternion division algebra H. Given a € Lg, we have
q(a) e mg(T) C Z(H) , a=0g,

and thus Ly = {0z, }. But then Z is non-proper 4. O

(43.12) Proposition The skew-field K is a quaternion division algebra and F is isomorphic
to the foundation

Fua3(Z) = {B1,2) = Q3 (2°), Bazy = Qp(E), Bz 1) = T(K®), %1 = 04,72 = i}, 73 = idg} .
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Proof
As 3 = 7(2,3,1) is positive, we may take (K°,v5,75,75) as reparametrization for T (K). Therefore,
we may assume

K=K, 'ygzidﬁ%,

Let s € K°. As in the proof of proposition (43.20), we obtain an automorphism ay € Aut(B(s 3))
satisfying

iy 3)(a,t) = 2y 3 (a7 (5) - idg (), idR (s)7 - A7 (5)7 - £-97(s) - 1d%(5)) | alag) (1) = 2o (t) -
By (37.33) of [T'W], the map
1 Lo — Lo, a— a-~7(s)-idg(s)
is an isomorphism of vector spaces satisfying
VaceglLy, teK: w1(a-t) = p1(a) - t.
As E is proper, we have Ly # {0, } and thus
VEEK:  toai(s) %) =A%) idG(s) £, 29(s) - idi(s) € Z(K) .

Since K is non-commutative by assumption, lemma (5.6) (b) shows that K is a quaternion division
algebra and that we have

v =0s:K°—=K°.
O

(43.13) Remark Let F be an integrable 443-foundation of pseudo-quadratic form type such
that K is a field, but K 2 Fy if dimg Ly = 1. Then (K, Ky, o) is non-proper by lemma (5.2)
and thus quadratic of type (iii) by remark (9.9). Moreover, we may reparametrize as in the
non-commutative case, but we cannot get more information concerning the glueing v, i.e., we
have

F = Fuz(E,7) = {3(1,2) = Q%(E"),B@)?’) = QP(E)aB(&l) =T(K), %1 = 7,92 = id7, ¥3 = idk }
for some pseudo-quadratic space Z such that (K, Ko, o) is quadratic of type (iii) and for some

v € Aut(K).

(43.14) Theorem  Let F be an integrable 443-foundation such that at least one quadrangle is
of pseudo-quadratic form type and such that K 2 Fy if dimg Lo = 1, where B3 ;) = T (K). Then
one of the following holds:

(i) We have
F 2 Fus(E) = {Bz) = Bas) = Qr(E), Bz = T(K%), 41 = 05,92 = id, 75 = idg}

for some proper pseudo-quadratic space = = (K, Kg, 0, Lo, ¢) such that K is a quaternion
division algebra and o is its standard involution.

(ii) We have
F = Fus(E,7) = {Bp1) = B = Qp(E),Biay) = T(K), 51 = 7,72 = id}, 93 = idk}
for some proper pseudo-quadratic space = = (K, Ko, o, Lo, ¢) such that (K, Kg, o) is quadratic
of type (iii) and for some v € Aut(K).

Proof
This results from lemma (43.8), proposition (43.12) and remark (43.13). O
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§ 43.3 Quadrangles of Involutory Type

(43.15) Notation Throughout this paragraph, F is an integrable 443-foundation such that
at least one quadrangle is of involutory type.

(43.16) Lemma The foundation F is of involutory type.

Proof
We may assume that By 2y or By,1) is a standard quadrangle Q I(K, Ko, &) of involutory type and

~

thus M%Lz) = M(K) or M%Lz) = M(K, Ko, 6). Since (K,Kg,5) is proper, we have

M(K) = M%&l) = M%l,Q) # M(K Ko,&)
by theorem (31.26) and thus o
B1,2) = Q7((K, Ko, 5)°) .

Since we excluded quadrangles of type E,, Fy, of indifferent type and of pseudo-quadratic form
type in the previous paragraphs, the quadrangle B, 3) is either of quadratic form type or of
involutory type.

Assume that Bz 3) is of quadratic form type. Then we have M, ;) = M(K) or M{, 5 = M(K)
for some field K. But we have

M?Q,S) = M?:m) = M(K) = M%3,1) = I\/11(11,2) = M(K) )
where K is a non-commutative skew-field since (K, Ko, 4) is proper, and thus M?ZS) 2 M(K).
Moreover, we have L
M%zs) = M?Lz) = M(K, Ko, &)
and thus M?

(2,3 7 M(K) by theorem (31.26) .
Therefore, the quadrangle B(2,3) = is of involutory type, i.e., Bz 3y or B ) is a standard
quadrangle Q;(K, Ko, o). Since we have

M?2,3) = M?&l) - M(K)
and (K, Ko, o) is proper, we have M?2,3) 2 M(K, Ko, o) by theorem (31.26) again and thus
B2,3) = Q1(K,Ko,0) .
[

(43.17) Notation Throughout the rest of this paragraph, F is an integrable 443-foundation
of involutory type.

(43.18) Remark
By theorem (5.3), the Jordan isomorphism
Y2 =71,2,3) ¢ Ko — Ko
is induced by an isomorphism
¢: (K, Ko, 6) = (K,Ko,0) = Z
of involutory sets. As a consequence, the map
¢:=¢oo: (K° K3, 6)— (K ,Ko, o)

is an isomorphism of involutory sets that induces v2 as well. By taking (Z°, 61, o Lo o
as reparametrization for Q9(K, Ky, §), we may assume

(K, Ko,6) = (K°, K3, 0) , v2 = idg, .
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(43.19) Lemma  Both the glueings 7, and -3 are positive.

Proof
Notice that we have
QI(Ka K07 U) = QP(K7 K07 ag, L07 q)
for Lo := {0}, ¢ := 0. If one of the glueings is negative, we have
KO = 7T]K(T) g Z(K)

by theorem (43.5), where we did not use the fact that (K, Ky, o, Lo, ¢) is proper in the given setup.
But then (K, Ky, o) is non-proper by lemma (5.2) 4. O

(43.20) Proposition The skew-field K is a quaternion division algebra and F is isomorphic
to the foundation

Faa3(Z) := {B12) = Q5(E°), Bazy = Qr(E), Bz.1y = T(K), 51 = 05,72 = idg,, 53 = idg} .

Proof
As 3 = 7(2,3,1) is positive, we may take (K°,v5,75,75) as reparametrization for T (K). Therefore,
we may assume

K=K, vg = idf .
o If we set
hi(s) := ,u(x(g’l)(I]Ko))_lu(x%&l)(s*l)) ) seK?,
ha(s) = p(ah (12)) " el (7)) s €K,
we have

for each s € K,

s . 10 hi(s) . j0 - 10
x?2,3)(t)hl( ) = x?3,1) (ldK(t)) V= x?3,1) (ldK(t) ° 5) = x?z,s) (1dK(5) 't)
for all s € K°, ¢t € K by lemma (18.9) and
s : 10 h (11(s))
x%z,:s)(t)hl( ) = 17%1,2) (ldJKo (t)) o

= a1 9y (n1(s) 0 idi, (t) 0 11(8)7) = 2o 3 (V7 (8)7 - -7 (s))
for all s € K°, t € Kq by lemma (33.2).

o If we set
—1 o
hs(s) = M($?3,1)(1K°)) /L(xz()’&l)(s)) ; s € K7,
= -1
hs(s) := M($?2,3)(1K)) M(w?z:s)(s)) ’ sek,
we have

-1

ha(s) = p(wly (o))~ p(@ls,y (7)) = n(ati ) (16) ~ p(el ) (% (7)) = hs (idg(s))

for each s € K°,
13?2,3)(t)h3(5) = x:())3,1) (idg(t))
= sci(”&l) (571 oidg(t) o 571) = :c?z,g) (id]‘f((s)*l -t idﬂ"g(s)*l)
for all s € K°, ¢t € K by lemma (18.9) and
x%z,s) (t)hg(s) = $%2,3)(t)h3(id“%(s)) = x%z,s) (idl‘[’((s)” T id]%(s))
for all s € K°, ¢t € Kq by (33.13) of [TW].

h3 (S)
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Therefore, given s € K°, h3(s)h;(s) induces an automorphism a, € Aut(B(z 3)) which satisfies
x%Q,B)(t) = x%Q,B) (idﬁog(s)g Y7 (8)7 - t-7(s) - id]%(s)) ) x?2,3)(t) = x?Q,g) (t ’ idﬁ%(s)il) .

If we set & := (idg (s), 1k, (id 1 idg)) 88 I (37.33) of [T'W], then aas € Aut(B(g,3)) satisfies

5”(22,3) (t) — I%z,g) (idﬂ"g(s)" A7 (8)7 -7 (s) - id]%(s)) ) 55?2,3) (t) — x?z,?,) (t) .
By (37.33) of [T'W], there is an element ¢ € K such that

VitekKo: idg(s)7 -7 (8)7 -t -~{(s) -idg(s) =c-t.
Lemma (43.4) implies that we have
71(8) - idg(s) € Cx(Ko) = Cx((Ko)) = Z(K) -

Since K is non-commutative by lemma (5.2), lemma (5.6) (b) shows that K is a quaternion division
algebra and that we have

y1=0,:K°—=K°.
O

(43.21) Theorem Let F be an integrable 443-foundation such that at least one quadrangle
is of involutory type. Then we have

F 2 Faus(8) = {Bp,a) = QHE"), Ba) = Qi1(5), By = T(K®), 1 = 05,52 = idg,, 73 = idi}
for some proper involutory set = = (K, Ko, o) such that K is a quaternion division algebra.

Proof
This results from lemma (43.16) and proposition (43.20). O

(43.22) Remark
(a) By remark (11.2) of [TW], the pair (K, o) uniquely determines K if we have Char K # 2.

(b) By lemma (3.1.6) of [K] and (35.7) of [T'W], we may assume o = 7, if we have Char K = 2
and o is an involution of the first kind.

Chapter 44 Quadrangles of Quadratic Form Type
By the previous chapters, there is only one case left: Both the quadrangles are of quadratic form
type.

(44.1) Notation

e Throughout this chapter, F is an integrable 443-foundation such that both the quadrangles
are of quadratic form type.

e Given a foundation, if neither ~(; ;) nor v ;) is specified, these glueings are supposed to
be the identity map.
(44.2) Proposition  If we have
F ={Bp1) = Qq(Lo, K, §), Bz = Qq(Lo, K, ), Biz.1y = T(A), 71,72,73}
then A is quadratic over subfields [y, Fy of its center, and F is isomorphic to the foundation
Faaz (A, (F1,F2),72) := {B1) = Qo(A,F1, Ni. ), B2,3) = Qo(A,Fa, Nit), Bz.1) = T(A), 72}

for some isomorphism sy : F; — Fy of fields.
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Proof
We have

M(f)o,K, q) = Mé,l) = M%S,l) =M(A) = M:(33,1) = M?2,3) = M(ﬁo,K, q) -

By theorem (31.7), the alternative division ring A is quadratic over subfields Fy,Fs of its center,
and the maps

y1:A— Lo, 73_1:&—>I:0
are induced by isomorphisms
(71, 61) + (A F1, Niy) = (Lo K, §) (751 057) : (A, F2, Ni,) = (Lo, K, 9)
of quadratic spaces. Now we take
a2,1) = (E1, 01,71, 01,71) a@s) = (E2, 0575 L35 )

as reparametrizations for By 1) and By 3), respectively, where =Z; := (A, Ty, Nﬁ_). O

(44.3) Proposition  If we have
F = {6(1,2) = QQ(IN@?K, 4)38(2,3) = QQ(I’OaKa 6)78(3,1) = T(K)771372a73} ;

then K is a field which is quadratic over some subfield [F of its center, F is quadratic over some
subfield [E of its center, and we have

F = Fuz(K F,E,m) := {Bpu o) = Qq(F,E, NJIEF)»B(2,3) = QQ(K’ENI]?)’B(&U =T(K), 1}

for some isomorphism v, : K — E of fields.

Proof
Since we have B
M(K) = M}BJ) o M}m) =M(K) ,

the alternative division ring K 2 K is a field by Hua’s theorem. We have
M(Lo, K, §) = M, 3y = M 1) = M(K) ,

therefore, K is quadratic over some subfield F of its center by theorem (31.7), and the map
73—1 : K — Ly is induced by an isomorphism (73_1, ¢§1) D (K, F,NY) — (ﬁO,K, 4) of quadratic
spaces. By taking

a(2,3) = ((KvFa N]E]E()v ¢3_1373_1a ¢‘3T17’>/3_1)

as reparametrization for By 3), we may assume By 3y = Qq (K, F, NE) and 3 = idg. Moreover,
we have

M(F) = M%2,3) = M%m) =M(Lo,K,q) ,
therefore, F is quadratic over some subfield E of its center by theorem (31.7) again, and the map
51+ F — Lo is induced by an isomorphism (75 ', ¢5 ') : (F,E,N%) — (Lo, K, §) of quadratic
spaces. By taking

Q(1,2) = ((Fa E7 N]g), ¢2_17 72_1’ ¢2_1’ 72_1)
as reparametrization for B(; 2y, we may assume B(; 5y = Qq(F, E, NE) and v, = idy. Finally, the
map ¥, : K — E is an isomorphism of fields by Hua’s theorem. O

(44.4) Proposition  If we have

F={Bua = Q(Lo,K,4), Bzay = Qo(Lo, K, ), Bz.1y = T(A), 71,72, 73} »
such that (ﬁo, K, ) is proper with dimy Lo > 3, we have

F = Fus((Lo, K, §),73) = {B2) = Ba.2) = Qq(Lo. K, §), Bz,1) = T(K), 73}

for some 3 € Aut(K).
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Proof
By Hua’s theorem, the map v, 1. K — A is an isomorphism of fields. By taking
Q(3.1) = (K7 71_17 71_15 ’Yl_la )
as reparametrization for B3 1), we may assume B3 1) = T(K) and 3 = idg. Moreover, by theorem
(31.6), the map 72 : Ly — Lo is induced by an isomorphism (72, ¢2) : (iO,K, q) — (fLO,K, q) of
quadratic spaces. By taking
a@o) = ((Lo, K, q), ¢2,72, ¢2,72)

as reparametrization for Bz 2y, we may assume Bz 2) = Qg (LO,K ¢) and v2 = id; i,- Now the
map 73 : K — K is an isomorphism of fields by Hua’s theorem. O

(44.5) Proposition  If we have
F={Bus = (Lo, K,q). B2 = Qo(Lo,K,4), Biz.1y = T(A), 1,72, 73} »
such that dimg ﬁo < 2, we have
F =2 Fus(E,5,72) = {Ba,2) = Qo(K, ﬁo,Q)aB(s,z) = Qq(Lo, K, q), B, = T(K),v3} ,

for the quadratic space 2 := (Lo, K, §) with dimg Lo < 2 (and thus of type (m)e {(ii),(iii)}), some

quadratic space = := (Lo, K, q) of type (m)e {(i),(ii),(iii)} and some isomorphism 73 : K — K of
fields.

Proof

By theorem (31.6), there is a quadratic space (Lo, K, q) of type (m)e {(i),( i), (ili) } such that the
map 72 : Lo — Lo is induced by an isomorphism (72, ¢2) : (Lo, K, §) — (Lo, K, q) of quadratic
spaces. Notice that we don’t need (Lo, K, §) to be proper to establish case (i) of theorem (31.6).
By taking

an = (Lo, K.0), 05" 7t éa ')
as reparametrization for B(1,2), we may assume B 9) = QQ(LO, K, q) and v, = 1d . By Hua’s
theorem, the map '71 : K — A is an isomorphism of fields. By taking

a(3,1) = (K7 7;17’Yf11 /71717 )

as reparametrization for B(s 1), we may assume Bz 1) = T(K) and 7; = idgx. Now the map
Y3 K — K is an isomorphism of fields by Hua’s theorem. O

(44.6) Theorem Let F be an integrable 443-foundation such that both the quadrangles are
of quadratic form type and such that (Lo, K, §) is proper. Then F is isomorphic to one of the
following foundations:

(i) Faas(A, (F1,F2),72) as in proposition (44.2)
(i

i) Faa3(K,F,E,~1) as in proposition (44.3)
(iii) Faas((Lo,K,§),73) as in proposition (44.4)
) (

(iv) Fuas = = ,73) as in proposition (44.5)

Proof
This results from propositions (44.2), (44.3), (44.4), and (44.5). O

(44.7) Remark Notice that we supposed (ﬁo, K, 4) to be proper only in proposition (44.4).
The remaining results are valid even if both the parametrizing quadratic spaces are non-proper.
In particular, case (ii) of theorem (31.6) doesn’t require (Lo, K, §) to be proper.
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Chapter 45 Conclusion

We summarize the previous results to have a complete list of integrable 443-Foundations. By
remark (44.7), the theorem can be extended to non-proper quadratic spaces by adding quadratic
spaces of type (i) except for case (vi). However, we don’t give the existence proofs.

(45.1) Theorem (Classification of 443 Twin Buildings) An integrable 443-foundation
F with proper parameter systems is isomorphic to one of the following foundations:

(i) Fu43(Z2) for some proper pseudo-quadratic space = = (H, Hy, o, Lo, q) such that H is a
quaternion division algebra:

(ii) Fua3(E,7) for some proper pseudo-quadratic space = = (K, Ky, o, Ly, ¢) such that (K, Ko, o)
is quadratic of type (iii) and for some automorphism v € Aut(K):

(iii) Faa3(E) for some proper involutory set = = (H, Hy, o) such that H is a quaternion division
algebra:

(iv) Fuaas (A, (Fl,Fg),'y) for some proper quadratic spaces Z; := (A, ]Fz-,Nﬁ), i = 1,2, of type
(ii)-(v) and some isomorphism v : F; — Fy of fields:

Qa(=2) /A\\ Q0 (1)
£ N

3 T(A) 1
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(v) Fu3(K,F,E,~) for some proper quadratic spaces (K,F, NX), (F,E, N ) of type (ii)-(iii) and
some isomorphism v : K — E of fields:

(vi) Fua3(E,7) for some proper quadratic space = = (Lo, K, ¢) such that dimg Ly > 3 and some
automorphism v € Aut(K):

Qe (®) A\ 20(®)
/
AN

1

(vil) Fuas(Z,Z,7) for some proper quadratic space = = (Lo, K, ¢) such that dimg Lo < 2, some
proper quadratic space = = (Lo, K, §) of type (ii)-(iii) and some isomorphism ~ : K — K of
fields:

Proof
This holds by theorems (40.2), (41.2), (42.2), (43.14), (43.21) and (44.6). O

(45.2) Remark
(a) Notice the restriction in theorem (43.14) which we did not mention in the above formulation.
(b) Let (A, K, N£) be a quadratic space of type (m). Then we have
M := M(A,K,Ng) = M(A) = M
by lemma (31.23).

(45.3) Corollary  If we have dimp, A > 3 in case (iv) of theorem (45.1), we have

[1]
[1]

2 — =1 -

Proof
This results from theorem (31.6) as we have M(Z;) = M (A) = M(Zz). O
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Chapter 46 A,-Buildings Revisited

We prove theorem (21.39) without using the building at infinity.

(46.1) Proposition  Let
Fi={Bagz =TA),Bag =T(A),Bz1) = TA), Y123 V231, V3.1,2)
be an integrable foundation of type A, such that the defining field is a non-commutative skew-field

and such that at least one glueing is positive. Then each glueing is positive.

Proof

Assume that vo = 7(1 2,3) is positive. Without loss of generality we may assume that v3 = y(2,3.1)
is negative (otherwise, we consider the opposite buildings and glueings). By taking (A, 3,73, 73)
as reparametrization for 7 (A), we may assume

A=A, Y3 =idy ,

and by taking (A% 5", 75 ', 75 ') as reparametrization for T(A), we may assume

A=ac, o =id} .

If we set
h(s) = p(zly 1) (k) (el (s7h)) . se A,
h(s) = p(al o) (1)) " p(ad o (s7h) . s € A",

we have

h(s) = ety 1y (1) " p(ats 1) (s7) = u(zt 0y (14) " a(ah o (n(s) ™) = h(n(s))
for each s € A*,

h(s) h(s)

37?2,3)@) = JT/’??,J)(t) = $?3,1)(t) = J'3%2,3) (t-s)

and
33%2,3) (") = x?1,2)(t)h(%(s))
— 2 .2
= T(1,2) (71(3) oto 71(5» = T(2,3) (’YI(S) “t- 71(3))

for all s € A*, t € A by lemma (18.9). Given s € K, the Hua automorphism h(v; ' (s)) induces
an automorphism a, € Aut(B(2 3)) which satisfies

x%273)(t) = x?z,s)(s tes), 37:()’2,3) (t) — J52(1’2,3) (t- ’71_1(3)) .
If we set & := (ida, Py, (s); Py (s)), then @as satisfies
33%2,3)@) = 5‘7%2,3)(5 tes), 37?2,3)@) = 33?2,3) (t) .

By lemma (21.27), there is an element ¢ € A* such that

VteA: sts=ct .
Lemma (43.4) implies that we have
se€Z(A).
Since s € A is arbitrary, it follows that
ACZ(A) 5.
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(46.2) Proposition  Let
Fi={Bua =T(A),Busz =TA), Bz =TA),v1.23),7231) Y312}

be an integrable foundation of type A, such that the defining field is a non-commutative skew-field
and such that each glueing is positive. Then the skew-field A is a quaternion division algebra and
F is isomorphic to the foundation

Py (A) = {5(1,2) = T(AO),I’S’(M) =T(A), 5(3,1) =T(A%), 51 = 05,92 = id}, 53 = id} } .

Proof
As 72 = 7v(2,3,1) is positive, we may take (A% v 75t 95 Y) as reparametrization for T(A).
Therefore, we may assume

A=A, v =idg, .

As 3 = (2,3,1) is positive, we may take (A% ~$,75,75) as reparametrization for T (A). Therefore,
we may assume

A=A°, 3 =1idg .
o If we set
hi(s) = p(ads 1) (16)) " pelaly gy (s7Y) s €A,
ha(s) = (1)) (7)) sEA”,
we have

hi(s) = p(x(s (1 ) (30 (s7h)
= M(x%l,m(m)“ (2h9y(11(5)™) = b1 (1(s))
for each s € A°,
55?2,3)( ) o) = x(3 1)(1d10§(t))h1(5) = ‘T?B,l) (idg(t) o 3) = x?2,3) (idg(s) : t)
for all s € A°, t € A by lemma (18.9) and

x%z’ )( h (s) _ x%m)(ldo )hl(vl( s))
x%m) (v1(8) 01dZ (t) o mi(s)) = 93%273) (77 (s) - t-17(s))
for all s € A%, t € A by lemma (18.9).
o If we set
ha(s) = pu(ads 1)(10)) " (s 1) () sEA,
hia(s) = pu(ady ) (10)) " () (5)) sEA,
we have

1 _ ~1 o — o
ha(s) = p(zs0)(Lae)) mle(sn(s7) = plate(1a)) (el (di(s™)) = hs(id3(s))
for each s € A°,

m?z,s)()}LS(é) $?5,1)(idf§(t))

x?&l) (s_1 oid}(¢) o s_l) = x:())2,3) (idf&(s)_1 -t idX(s)_l)
for all s € A° t € A by lemma (18.9) and
x?z,s)(t)hS(s) = x%z,?,) (t)hs(idx(s)) = x?z,s) (idX(S)U 1 'idX(S))

for all s € A°, t € Ag by lemma (18.9).

hg(s)
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Given s € A, then h3(s)hi(s) induces an automorphism a, € Aut(B(2,3)) which satisfies

33%2,3)(75) — x?2,3)(idg(5) A7 (s) -t 7 (s) - idE(s)) $?2,3)(t) — 33?2,3) (t-idg(s)~") .
If we set & := (idae, Pid,o (s)s Pidso (s)), then aa, € Aut(B(as)) satisfies

x%2,3) (t) — x%z,a)(idf\x(s) 7(s) -7 (s) - 1d3(s)) x:()’2,3) (t) — x?z,:a) (t) -

By lemma (21.27), there is an element ¢ € A* such that
VteA: idR(s) -~7(s) - t-~7(s) -idR(s) =c-t .
Lemma (43.4) implies that we have
71(s) - 1d}(s) € Ca(A) = Z(A) .

Since A is non-commutative, lemma (5.6) (b) shows that A is a quaternion division algebra and
that we have

1 =0s: A — A° .
O
(46.3) Theorem Let F be an integrable foundation of type Ay such that the defining field is

a non-commutative skew-field and such that at least one glueing is positive. Then there is is a
quaternion H such that

F =P (H) = {3(1,2) = T(HO)>B(2,3) = T(H),B(:m) =T (M%), 51 = 04,92 = idg, 43 = idg} .

Proof
This results from proposition (46.1) and proposition (46.2). O

(46.4) Remark As we did not use the fact that the residues embed into the building at
infinity, which is a result in twin building theory, the above theorem is true for any foundation
of an arbitrary affine building of type A; in which each Hua automorphism is induced by an
automorphism of the whole building.

Chapter 47 Jordan Automorphisms of Octonion Division
Algebras Revisited

We give a direct proof for proposition (28.9), independent of the characteristic.

(47.1) Theorem  Let O be an octonion division algebra with center K := Z(0) and norm
N := Nﬁg. Then we have
Autj(@) = FLN(@,K) .

Proof
Let (p,0) € T'Ly(0,K). Then we have

¢(lg) = ¢(lo - 1lo) = o(lo) - ¢(lo) = 1o - ¢(lo)
and thus ¢(lp) = 1lp. By definition, lemma (31.23) and theorem (31.41), we have

AutJ((D)) = AutJ(M(@)) = AutJ (M(@7 K, N))
={(¢,0) €eT'LN(0,K) | p(1lo) = 1o} =T'Ly(0,K) .
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Chapter 48 The Defining Field Revisited

With theorem (47.1), we can prove theorem (21.6) without using proposition (21.3).

(48.1) Lemma Let F be a foundation such that there exists an edge (a,b) € A(F) with
A := A(, ) an octonion division algebra. Then we have

Proof
By theorem (47.1), each glueing v(; ; ») is a norm similarity. Therefore, we have
V(i5,k) € GIF): Aug) = Age
by theorem (1.7.1) of [Sp]. O

(48.2) Theorem  Let F be an integrable foundation. Then there is an alternative division
ring A such that

Y (i,j) € A(F) : Apjy=A VA,

Proof
This is an immediate consequence of corollary (19.33) and lemma (48.1). O

Chapter 49 Introduction in German

Historischer und theoretischer Hintergrund

Bei der folgenden Darstellung orientieren wir uns stark an den Ausfithrungen in | ] und [AB].

Zwillingsgebaude

Gebdude wurden von J. Tits eingefithrt, um halbeinfache algebraische Gruppen von einem
geometrischen Standpunkt aus zu untersuchen. Eines der wichtigsten Resultate in der Gebaude-
Theorie ist die Klassifikation der irreduziblen sphérischen Gebduden vom Rang mindestens 3
in [T74]. Mittlerweile gibt es einen vereinfachten Beweis in [TW], der auf der Klassifikation der
Moufang-Polygone beruht.

Vor iiber 25 Jahren definierten M. Ronan und J. Tits die Klasse der Zwillingsgebédude, eine
natiirliche Verallgemeinerung der sphérischen Gebdude. Motiviert wurde diese Definition durch
die Theorie der Kac-Moody-Gruppen. Wir verweisen an diesem Punkt auf [T92] fiir allgemeine,
weitergehende Informationen iiber Zwillingsgebaude.

Zwillingsgebédude verallgemeinern sphérische Gebaude in folgender Hinsicht: Bei sphérischen
Gebéduden gibt es eine natiirliche Oppositions-Relation auf der Menge der Kammern, die die
Struktur des Gebaudes wesentlich einschriankt. Die oben erwéhnte Klassifikation der irreduziblen
sphérischen Gebauden vom Rang mindestens 3 basiert letzten Endes genau auf dieser Oppositions-
Relation. Ein Zwillingsgebdude besteht nun aus zwei verschieden Gebduden gleichen Typs, auf
deren Kammern eine symmetrische Relation eingefithrt wird, die dhnliche Eigenschaften wie die
Oppositions-Relation von sphérischen Gebaduden besitzt. Ein Zwillingsgebdude ist also ein Tripel
bestehend aus zwei Gebduden gleichen Typs und einer Oppositions-Relation auf den zwei ,,Halften“
des Zwillingsgebédudes.
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Das Klassifikations-Programm fiir 2-spharische Zwillingsgebaude

Im Hinblick auf die Klassifikation der sphérischen Gebdude ergibt sich ganz natiirlich die Frage, ob
es auch moglich ist, Zwillingsgebdude hoheren Ranges zu klassifizieren. Ein grofier Teil von [T92]
beschéftigt sich mit genau dieser Problemstellung. Zunéchst stellt sich heraus, dass eine solche
Klassifikation nur unter der zusétzlichen Annahme moglich ist, dass die Eintrdge der zugehorigen
Coxeter-Matrizen endlich sind. Wir nennen diese Gebdude 2-spharisch. Das in [T92] beschriebene
Klassifikations-Programm basiert auf der Vermutung, dass es fiir jede 2-sphérische Coxeter-
Matrix vom Typ M eine Bijektion zwischen Zwillingsgebduden vom Typ M und bestimmten
Moufang-Fundamenten vom Typ M gibt.

Fundamente wurden von M. Ronan und J. Tits in [R1] eingefiihrt, um Kammer-Systeme
zu beschreiben, die Kandidaten fir die lokale Struktur eines Gebaudes sind. Grob gesagt sind
Fundamente Amalgame von Rang-2-Gebduden, die entlang bestimmter Rang-1-Residuen verklebt
sind. Ist ¢ eine Kammer eines Gebidudes B vom Typ M, so bildet die Vereinigung FE2(c) der
Rang-2-Residuen, die diese Kammer c¢ enthalten, ein Fundament vom Typ M, das Fundament
von B in c. Der Ausdruck ,lokale Struktur® ist also als eine Art 2-Umgebung einer Kammer ¢ des
Gebéaudes zu verstehen.

Es ist eine (nicht triviale) Tatsache, dass die Fundamente zweier Kammern in derselben Hélfte
eines Zwillingsgebdudes isomorph sind. Dariiber hinaus ist der Isomorphie-Typ des Fundamentes
der einen Hélfte durch den Isomorphie-Typ des Fundaments der anderen Hélfte eindeutig bestimmt.
Umgekehrt besagt eine Verallgemeinerung von Tits’ Erweiterungs-Satz durch B. Miihlherr und
M. Ronan in [MR], dass ein Zwillingsgebdude in fast allen Féllen durch das Fundament einer
seiner Hélften eindeutig bestimmt ist, siehe (5.10), (*5.11), (*9.11) und (*9.12) in [AB] fiir eine
Zusammenfassung. Somit ist das Fundament in einer Kammer eine klassifizierende Invariante des
zugehorigen Zwillingsgebdudes, falls die folgende Bedingung erfiillt ist:

(CO) Kein Rang-2-Residuum ist isomorph zu einem Gebédude, das zu einer der Gruppen By(2),
G2(2), G2(3) und 2Fy(2) gehort.

Diese Bedingung garantiert, dass die Menge ¢° der einer Kammer ¢ € B, (¢ € {£}) gegeniiber
liegenden Kammern stets eine Galerie-zusammenhéngende Teilmenge von B_. ist.

In Anbetracht der bisherigen Uberlegungen reduziert sich die Klassifikation der 2-sphérischen
Zwillingsgebéaude also auf die Klassifikation aller Fundamente, die als lokale Struktur eines Zwil-
lingsgebédudes realisiert werden kénnen. Wir nennen ein solches Fundament integrierbar. Bei der
Bestimmung der integrierbaren Fundamente verfahrt man in zwei Schritten.

Schritt 1: Herausfiltern der nicht integrierbaren Fundamente

In [T92] wird bewiesen, dass ein integrierbares Fundament Moufang ist, die Rang-2-Gebdude
also Moufang-Polygone sind, deren Verklebungen mit den induzierten Moufang-Mengen auf den
Rang-1-Residuen kompatibel sind. Eine erste notwendige Bedingung fiir die Integrierbarkeit eines
Fundaments ist also die Moufang-Eigenschaft.

Als Folge dessen sind die Klassifikation der Moufang-Polygone in | ] und die Losung des
Isomorphie-Problems fiir Moufang-Mengen grundlegend bei der Untersuchung, welche Moufang-
Polygone zu einem Fundament zusammengefiigt werden kénnen. Zudem kann man die Liste der
moglicherweise integrierbaren Fundamente weiter einschrinken, indem man bestimmte Automor-
phismen des Zwillingsgebdudes betrachtet, die sogenannten Hua-Automorphismen, die in einem
engen Zusammenhang mit den Doppel-pu-Maps der auftauchenden Moufang-Mengen stehen.

Schritt 2: Existenz- / Integrierbarkeits-Beweis

Schlieflich muss man beweisen, dass jeder der verbleibenden Kandidaten auch wirklich integrierbar
ist. Das zugehorige Zwillingsgebdude ist dann bis auf Isomorphie eindeutig. In | ] und seiner
Habilitationsschrift | | entwickelte B. Miihlherr Techniken, die bestimmte Zwillingsgebdude
als Fixpunktmenge in zu Kac-Moody-Gruppen gehoérenden Zwillingsgebduden realisieren. Er,
H. Petersson und R. Weiss bereiten momentan ein Buch vor, das weitergehende, substanzielle
Hintergriinde liefert.
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Ziele und Ergebnisse

Diese Arbeit widmet sich der Erstellung vollstdndiger Listen integrierbarer Fundamente fir
bestimmte Diagramm-Typen. Wir folgen hierbei dem Ansatz fiir die Klassifikation sphérischer
Gebaude in [T'W], wobei wir jedoch die dort verwendeten Techniken verfeinern miissen, da
Fundamente im Allgemeinen nicht nur vom zugehérigen Diagramm und dem definierenden
(Alternativ-) Korper abhéingen. Zum Beispiel gibt es fiir einen festen Schiefkorper A in der Regel
mehrere nicht isomorphe Fundamente vom Typ A,,: Automorphismen von A spielen ebenfalls eine
Rolle, was der Tatsache Rechnung triagt, dass es mehrere Moglichkeiten gibt, Moufang Polygone
entlang eines Rang-1-Residuums zu verkleben.

Ein wesentlicher Aspekt ist die passende Parametrisierung von Sequenzen von Moufang-
Polygonen bzw. deren Wurzelgruppen-Sequenzen mit den zugehdrigen Kommutator-Relationen,
um die verschiedenen Verklebungen sichtbar zu machen. Die entscheidende Subtilitdt ist die
folgende: Jedes Moufang-Polygon wird zweimal parametrisiert, einmal fiir jede Richtung, in der
die zugehorige Wurzelgruppen-Sequenz gelesen werden kann. Folglich erhalten wir Verklebungen
zwischen gerichteten Moufang-Polygonen, und es macht einen Unterschied, ob wir idy : A — A
oder id} : A — A° betrachten, wobei A° der zu A entgegengesetzte Schiefkorper ist: Ersteres ist
ein Isomorphismus, wihrend Letzteres ein Anti-Isomorphismus von Schiefkérpern ist.

Wie bereits erwéhnt, ist das Herausfiltern nicht integrierbarer Fundamente eng verkniipft mit
der Betrachtung von Moufang-Mengen und deren Isomorphismen. Deshalb beschéftigt sich ein
grofler Teil dieser Arbeit mit der Einfiihrung der zugrundeliegenden Parameter-Systeme und der
Losung des Isomorphie-Problems fiir Moufang-Mengen. Viele Probleme wurden bereits gelost,
siehe [I{], aber wir miissen die existierenden Ergebnisse fiir unsere Anforderungen sowohl verfeinern
als auch erweitern und iibersetzen deren Beweise in unser Setup.

Fundamente mit einfachen Kanten (Simply Laced Foundations)

Das Hauptergebnis dieser Arbeit ist die vollstindige Klassifikation der Zwillingsgebdude mit
einfachen Kanten via ihrer Fundamente. Natiirlich ist die Hauptvoraussetzung fiir ein integrierbares
Fundament die Moufang-Eigenschaft: Die Verklebungen sind Jordan-Isomorphismen, d.h., sie sind
mit dem Jordan-Produkt xyx vertraglich.

Ein méachtiges Werkzeug ist der Satz von Hua, siehe [H] fiir eine Referenz, der das Isomorphie-
Problem fiir Moufang-Mengen von Schiefkérpern 16st: Jeder Jordan-Isomorphismus ist letztlich
ein Iso- oder Anti-Isomorphismus von Schiefkérpern. Leider beinhaltet die Klasse von Parameter-
Systemen fiir Moufang-Dreiecke zusétzlich Oktaven-Divisionsalgebren, was wegen der fehlenden
Assoziativitdt zu einem gewissen Mehraufwand fiihrt. Ein Nebenprodukt ist die Existenz von
Jordan-Isomorphismen, die weder Iso- noch Anti-Isomorphismen von alternativen Ringen sind.
Der aufwéndigste Teil handelt von den Ausnahmefillen, in denen Oktaven auftauchen.

Wir geben an dieser Stelle einen Uberblick iiber den Klassifikations-Prozess und streichen die
Hauptideen heraus. Die folgenden Beobachtungen liefern die erste Einschrénkung an Mdoglichkeiten:

(1) Jedes Moufang-Dreieck ist iiber demselben alternativen Divisionsring A definiert.

(2) Ein integrierbares Fundament vom Typ As ist notwendigerweise iiber einem Schiefkorper
definiert, und die Verklebung ist notwendigerweise ein Isomorphismus von Schiefkérpern.

Folglich ist der entscheidende Schritt die Klassifikation der integrierbaren Fundamente vom Typ
Ay, da dies die kleinsten sind, bei denen ,Nicht-Standard“-Phénomene auftreten kénnen. Die
Theorie affiner Gebédude, von Bruhat-Tits-Gebéduden sowie die Theorie von Kompositions-Algebren,
die bzgl. einer diskreten Bewertung komplett sind, ermdglichen uns weitere Einschrankungen:

(3) Zu einer Oktaven-Divisionsalgebra O gibt es genau ein Zwillingsgebéude vom Typ As.

(4) Ein integrierbares Fundament vom Typ Aj, dessen Verklebungen Anti-Isomorphismen sind,
ist notwendigerweise iiber einer Quaternionen-Divisionsalgebra definiert, und zu einem
Quaternionen-Schiefkorper H gibt es genau ein solches ,positives* Zwillingsgebdude vom
Typ AQ.
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Eine genauere Betrachtung der Gruppe der Jordan-Automorphismen einer Oktaven-Divisions-
algebra hilft dabei, die Klassifikation der {iber Oktaven definierten Zwillingsgebdude abzuschlieen:

(5) Es gibt keine integrierbaren Fundamente iiber Oktaven, deren zugehdriger Graph ein
Tetraeder ist. Insbesondere sind A2(0) = T(0) und A(0) die einzigen integrierbaren
Fundamente iiber einer Oktaven-Divisionsalgebra O.

Schliefllich liefert die folgende Beobachtung in Verbindung mit (4) eine wesentliche Einschriankung
der Liste integrierbarer Fundamente iiber echten Schiefkdrpern, die keine Quaternionen-Schiefkor-
per sind:

(6) Ein integrierbares Fundament vom Typ Dy ist notwendigerweise tiber einem Kérper definiert.

Als Konsequenz sind iiber echten Schiefkérpern, die keine Quaternionen-Schiefkérper sind, nur
Fundamente integrierbar, deren Diagramm ein Kreis, ein String, ein Strahl oder eine Kette ist
und deren Verklebungen Isomorphismen von Schiefkérpern sind.

SchlieBlich stellt die Kac-Moody-Theorie die Integrierbarkeit sicher, solange das zugehorige
Coxeter-Diagramm ein Baum ist. Die restlichen Integrierbarkeits-Beweise basieren auf Techniken,
die von B. Miihlherr entwickelt wurden.

Jordan- Automorphismen von alternativen Divisionsringen

In Hinblick auf den Satz von Hua, nach dem
Aut;(D) = Aut(D) U Aut’(D)

fiir jeden Schiefkorper D, seine Gruppe Aut ;(ID) von Jordan-Automorphismen, seine Untergruppe
Aut(D) von Automorphismen und seine Menge Aut’(D) von Anti-Automorphismen gilt, stellt
sich die Frage nach einem &dhnlichen Ergebnis fiir Oktaven-Divisionsalgebren.

Im Beweis, dass integrierbare Tetraeder-Fundamente iiber Oktaven nicht existieren, definieren
wir eine Teilmenge I' C Aut ;(0), fiir die sich herausstellt, dass sie nicht die Standard-Involution
os enthélt. Die Elemente von I' sind Automorphismen von O, die zusétzlich mit einem der in
[TW] definierten ,,Ausnahme®-Jordan-Automorphismen multipliziert werden. Diese fixieren eine
Quaternionen-Unteralgebra H punktweise und wirken auf dem orthogonalen Komplement von H
als Konjugation.

Dass I' eine Untergruppe von Aut;(Q) ist, kann man aus der Kenntnis der Automorphismen-
Gruppe des zugehorigen Moufang-Dreiecks 7 (Q0) ableiten. Diese Untergruppe I' entspricht der
Untergruppe Aut(ID) im Satz von Hua, d.h., wir erhalten

Aut;(0) = (o,,I') =T U oI .
Die Strategie beim Beweis ist wie folgt:

(1) Jordan-Automorphismen eingeschréankt auf Unterkorper sind Ring-Monomorphismen, d.h.,
das Bild eines Unterkorpers ist wieder ein Unterkorper.

(2) Als unmittelbare Konsequenz ergibt sich, dass Jordan-Automorphismen von Oktaven Norm-
Ahnlichkeiten sind.

(3) Die Ergebnisse aus [Sp| erlauben uns, die Problemstellung auf Isometrien zuriickzufithren,
die eine Quaternionen-Unteralgebra punktweise fixieren.

(4) Der Satz von Hua und das Skolem-Noether-Theorem erlauben uns zu zeigen, dass jeder
Jordan-Automorphismus wirklich ein Produkt in (o, I") ist.
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443-Fundamente

Das zweite Ergebnis im Zusammenhang mit der Klassifikation der Zwillingsgebdude ist die
Durchfithrung von Schritt 1 fiir 443-Fundamente. Dies sind Fundamente, deren Diagramm ein
Dreieck ist und deren Moufang-Polygone zwei Vierecke und ein Dreieck sind. Obwohl wir uns
in diesem Fall mit nur einem einzigen Diagramm beschéftigen, gibt es dennoch eine Vielzahl
verschiedener integrierbarer 443-Fundamente, da es sechs Familien von Moufang-Vierecken gibt,
die in dieser Konfiguration zudem auch noch oft zusammenpassen. Allerdings treten keine Vierecke
vom Typ E,, vom Typ Fj und vom indifferenten Typ auf, weil ihre Moufang-Mengen nicht vom
linearen Typ, also keine projektiven Geraden sind.

Das Gleiche gilt zwar fiir Moufang-Mengen vom pseudo-quadratischen und involutorischen
Typ, allerdings ist das zweite Panel des zugehorigen unitdren Vierecks vom linearen Typ, sodass es
genau eine Moglichkeit fiir die Orientierung des Vierecks gibt. Die Losung des Isomorphie-Problems
fir die auftauchenden Moufang-Mengen und die Kenntnis der Automorphismen-Gruppe eines
unitdren Vierecks fithren zu folgendem Ergebnis:

(1) Die auftauchenden pseudo-quadratischen Réume sind iiber einem Quaternionen-Schiefkérper
H oder einer separablen quadratischen Erweiterung E definiert. Im ersten Fall gibt es genau
ein integrierbares 443-Fundament iiber einem solchen pseudo-quadratischen Raum Z; im
zweiten Fall hangt die Isomorphie-Klasse eines integrierbaren Fundaments zusétzlich von
einem Automorphismus v € Aut(E) ab.

(2) Die auftauchenden involutorischen Mengen sind iiber einem Quaternionen-Schiefkérper H de-
finiert, und es gibt genau ein integrierbares 443-Fundament iiber einer solchen involutorischen
Menge =.

Schlieflich bilden Vierecke vom quadratischen Typ die flexibelste Familie, da es Moufang-Mengen
gibt, die sowohl vom quadratischen als auch vom linearen Typ sind, sodass diese Vierecke in jeder
Orientierung verklebbar sind. Des Weiteren gibt es eine Stelle, an der wir uns auf echte quadratische
Rédume als parametrisierende Strukturen beschrédnken miissen, um fiir eine zufriedenstellende
Darstellung Charakteristik-2-Phédnomene ausschlieflen zu kénnen.

Im Gegensatz zur Klassifikation der integrierbaren Fundamente mit einfachen Kanten ver-
zichten wir im Rahmen dieser Arbeit jedoch auf Schritt 2 des Klassifikations-Programms, da
die Integrierbarkeits-Beweise andersartige, von B. Miihlherr, H. Petersson und R. Weiss einge-
fiihrte Techniken verwenden. Wie zuvor gibt es zwei Moglichkeiten, die Integrierbarkeit eines
gegebenen Fundamentes zu beweisen: Entweder ist die universelle Uberlagerung isomorph zu
einem kanonischen Fundament, also einem Fundament, dessen Verklebungen alle die Identitét
sind und das integrierbar ist, falls das zugehorige Diagramm ein Baum ist, oder das Fundament
kann als Fixpunkt-Struktur eines Tits-Index realisiert werden. Die erste Methode funktioniert bei
443-Fundamenten mit Vierecken vom quadratischen Typ, widhrend die zweite bei 443-Fundamenten
mit unitdren Vierecken angewendet wird.

Jordan-Isomorphismen von pseudo-quadratischen Raumen

Genauso, wie der Satz von Hua bei der Klassifikation der integrierbaren Fundamente mit einfachen
Kanten entscheidend ist, ist die Losung des Isomorphie-Problems fir die auftauchenden Moufang-
Mengen ein wesentlicher Bestandteil bei der Klassifikation der integrierbaren 443-Fundamente. Wie
bereits erwédhnt, wurden viele Félle von R. Knop in seiner Dissertation [K] abgehandelt. Allerdings
beschéftigt er sich nur mit kommutativen Moufang-Mengen, sodass wir die entsprechenden
Resultate fiir Moufang-Mengen vom pseudo-quadratischen Typ ergénzen miissen.

Wir erhalten, dass Jordan-Isomorphismen zwischen zwei Moufang-Mengen vom pseudo-
quadratischen Typ in der Regel von Isomorphismen zwischen den zugehodrigen pseudo-quadrati-
schen Rdumen induziert werden. Genauer ist dies immer der Fall, wenn die Dimension mindestens
3 ist oder die beteiligte involutorische Menge echt ist. Folglich tauchen Ausnahmen nur bei
pseudo-quadratischen Rdumen kleiner Dimension auf, die iiber einem Quaternionen-Schiefkérper
oder einer separablen quadratischen Erweiterung definiert sind. Gliicklicherweise tauchen diese
Ausnahme-Fille nicht bei der Klassifikation integrierbarer 443-Fundamente auf, sodass beide
Vierecke tiber demselben pseudo-quadratischen Raum Z definiert sind.
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Ausblick und offene Probleme

Jordan-Isomorphismen

In der Theorie der Moufang-Mengen spielen die p-Maps und die Hua-Maps eine entscheidende
Rolle, da sie viele Informationen enthalten. Folglich stehen Jordan-Isomorphismen — dies sind
additive Isomorphismen, die mit den Hua-Maps vertriglich sind — in engem Zusammenhang
mit Isomorphismen von Moufang-Mengen. Da die Hua-Maps in Summen und der Permutation
7 dargestellt werden konnen, ist jeder Isomorphismus von Moufang-Mengen letztlich auch ein
Jordan-Isomorphismus.

In diesem Zusammenhang stellt sich ganz natiirlich die Frage, ob jeder Jordan-Isomorphismus
auch ein Isomorphismus von Moufang-Mengen ist. Die Hua-Maps von scharf 2-fach transitiven
Moufang-Mengen sind trivial, sodass die Frage in diesem Fall natiirlich negativ beantwortet werden
muss. Experten auf diesem Gebiet wie R. Weiss und T. De Medts gehen aber davon aus, dass
beide Definitionen dquivalent sind, solange man sich auf ,echte* Moufang-Mengen beschrankt.

Das Klassifikations-Programm

Die Hauptvermutung im Zusammenhang mit dem Klassifikations-Programm ist die folgende, siehe
Seite 5 in | ]:

Ein Moufang-Fundament vom 2-sphérischen Typ ist genau dann integrierbar, falls jedes
Rang-3-Residuum integrierbar ist.

In seiner Habilitationsschrift | ]| deutet B. Miihlherr an, dass die Vermutung unter der
zusétzlichen Annahme beweisbar wére, dass alle Rang-3-Residuen sphérisch sind, was natiirlich
eine starke Einschréankung ist. Allerdings gibt es bislang noch keinen veréffentlichten Beweis.
Sobald die Vermutung bewiesen ist, reduziert sich das Klassifikations-Programm auf die
Klassifikation der integrierbaren Moufang-Fundamente vom Rang 3. Die meisten Falle kénnen mit
den in | ] und | | eingefithrten Methoden abgehandelt werden. Allerdings gibt es ein
paar Ausnahmen, von denen die kompliziertesten vom Typ Cs, Ay und 443-Fundamente sind. Der
Ay- und der 443-Fall werden in dieser Arbeit gelost, wihrend es fiir den Co-Fall (unveréffentlichte)
Teilergebnisse von T. De Medts, B. Miihlherr, H. Van Maldeghem und R. Weiss gibt.

Die Klassifikation der Zwillingsgebidude mit einfachen Kanten

Obwohl die Klassifikation der integrierbaren Fundamente mit einfachen Kanten abgeschlossen ist,
machen wir keine Aussage dariiber, ob zwei Fundamente unserer Liste isomorph sind. Verwendet
man klassifizierende Invarianten und fiihrt passende Parameter ein, kann man eine Liste paarweise
nicht isomorpher Fundamente erstellen.

Ist das zugehorige Coxeter-Diagramm Gp ein Baum, so hdngt das Fundament F nur vom
definierenden Korper ab. Kreise im Diagramm sorgen fiir eine zusétzliche Abhéngigkeit von
,, Twists“, also von Automorphismen des definierenden Korpers A. Genauer:

e Ist A ein Korper, so ist ein integrierbares Fundament F durch Gr und einen Homomor-
phismus ¢ : II; (Gr) — Aut(A)/Inn(A) = Aut(A) eindeutig bestimmt, wobei II; (Gr) die
Fundamentalgruppe von Gp ist.

e Ist A ein Schiefkorper, aber kein Quaternionen-Schiefkérper, und F ein integrierbares
Fundament vom Typ A,,, so ist das Fundament durch n und ein Element von Aut(A)/Inn(A)
eindeutig bestimmt.

e Ist der definierende Kérper ein Quaternionen-Schiefkorper, so gilt ein dhnliches Resultat wie
fiir einen Korper.

Zudem konnte man die Integrierbarkeits-Beweise in einigen Punkten iiberarbeiten, sobald die
angewandte Theorie von B. Miihlherr, H. Petersson und R. Weiss vollstandig entwickelt wurde.
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Endliche Moufang-Fundamente

Die eingefiihrte Terminologie und die Methoden von | ] kénnen verwendet werden, um zu
zeigen, dass jedes lokal endliche Zwillingsgebdude vom 2-sphérischen Typ das Fixpunkt-Gebaude
einer Galois-Wirkung im Sinne von B. Rémy ist, was bedeutet, dass es algebraischen Ursprungs
ist.
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