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In this thesis we study the additive model of errors in variables, which is also known as the
deconvolution problem. The objective consists particularly in the reconstruction of the distri-
bution F' associated with a random variable X, which is observable only through a sample of
a blurred variable Y, due to an additive random error € with known distribution H. Our ini-
tial considerations yield an unbiased estimator for F' for various discrete and some continuous
distributions. A more general approach then leads us to the symmetrized model of errors in
variables. It is obtained by an additional convolution of G with the conjugate error distribu-
tion of H, thereby resulting in an error distribution of symmetric type. As a consequence the
characteristic function of X can be represented as the limit of a geometric series. By truncation
of this series we deduce an approximation of F', which is valid for arbitrary error distributions.
This approximation, termed the deconvolution function, converges to F' in many cases. To
determine the corresponding rates of convergence, techniques from complex calculus and par-
ticularly Mellin-Barnes integrals turn out to be appropriate. The latter describe a special class
of integrals that can be evaluated by residue analysis. The results are established in a more
general setting, which makes them applicable to other Laplace-type integrals. With the aid of
the deconvolution function we also construct an estimator for F. The asymptotic properties of
its variance, a peculiar integral of dimension two, can be specified by virtue of our findings from

the concluding chapter. These results rely on iterated Mellin-Barnes integrals.

In dieser Dissertation befassen wir uns mit dem additiven Modell der Fehler in den Variablen,
auch bekannt als Dekonvolutionsproblem. Dabei geht es um die Rekonstruktion der Verteilungs-
funktion F' einer Zufallsvariable X, welche aufgrund eines zufalligen additiven Fehlers € mit
bekannter Verteilung H nur in Stichproben einer gestérten Grofle Y beobachtbar ist. Der Ein-
stieg zeigt, dass F' im Fall diskreter und diverser stetiger Verteilungen erwartungstreu geschéatzt
werden kann. Ein allgemeinerer Ansatz fithrt dann zur Definition des symmetrisierten additiven
Modells der Fehler in den Variablen. Dazu wird die gestorte Verteilung G zusétzlich mit der
konjugierten Verteilung von H gefaltet, was zu einer symmetrischen Verteilung der Fehler fiihrt.
Infolgedessen lasst sich die charakteristische Funktion von X als Grenzwert einer geometrischen
Reihe darstellen. Durch deren Abbruch erhalten wir fiir beliebige Fehlerverteilungen eine Ap-
proximation von F', bezeichnet als Dekonvolutionsfunktion. Deren Konvergenz gegen F ist fiir
ein breites Spektrum an Verteilungen verifizierbar. Fiir die Berechnung der zugehdrigen Konver-
genzraten erweisen sich die Methoden der komplexen Analysis als am geeignetsten. Besonders
zielfithrend ist die Verwendung von Mellin-Barnes-Integralen, spezieller komplexwertiger Inte-
grale deren Auswertung mit dem Residuensatz erfolgt. Die présentierten Ergebnisse kénnen
unmittelbar auf allgemeinere Laplacesche Integrale angewendet werden. Basierend auf der
Dekonvolutionsfunktion konstruieren wir auflerdem einen Schétzer fiir F. Das asymptotische
Verhalten von dessen Varianz, ein eigenartiges zweidimensionales Integral, ldsst sich anhand
der Ergebnisse des finalen Kapitels genau charakterisieren. Deren Herleitung erfolgt mittels

iterierter Mellin-Barnes-Integrale.
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Preface

Unknown quantities are of major interest in many mathematical fields. From simple equations
such as 11 = z + 7, in a generalized fashion countless advanced problems arise. For instance,
the search for the zeros of a certain function, in higher dimensions the solution of equation
systems as well as eigenvalue problems and integral equations in operator theory. In view of this
variety, it is not surprising that unknown quantities also will be encountered in stochastics. But
contrary to calculus these occur twofold, since their approximation or computation need not be
an entirely numerical problem. For example, of interest might be the unknown distribution F'
of a random variable X. Then, if a finite sample of independent observations is available, F' can
be approximated by a step function. In stochastics, this procedure is rather called estimation.
Due to a contamination with some random noise, however, the variable X may not always be
observable. The area dedicated to problems of this kind is referred to as measurement errors or
errors in variables. Noises can be described in various ways. Particularly this thesis focusses on
the additive model of errors in variables also known as the deconvolution problem. In this, X
is assumed to be accessible only through the error-prone surrogate variable Y, which represents
the sum of X and an independent error e. With known distributions of € and Y, respectively
denoted by H and G, parallels to calculus can be drawn, where a representation for F'is already
available. If, however, G is only estimable, the reconstruction of F' has the calibre of a serious
problem. Then, a naive application of the techniques from calculus bears additional risks.

The additive model of errors in variables was first discussed by [Stefanski and Carroll, 1990],
who initially considered the model in terms of the associated characteristic functions, i.e., Fourier
transforms, from which they constructed a smoothed estimator for the density of X. The ap-
proach to be presented below substantially differs, due to the admissibility of arbitrary distri-
butions and the dissociation of artificial smoothing techniques.

After a more technical introduction to the additive model of errors in variables, Chapter 1
begins with the study of a setup, in which the range of X and ¢ almost surely coincides with the
positive real axis. By means of a recursion it is then possible to establish a formula for the point
probabilities, that eventually gives rise to the unknown distribution F'. In subsequent steps, the
condition of discreteness will be relaxed, and definite formulae for F' will be developed, if either
of the variables X or ¢ is of arbitrary one-sided type. A more general approach finally leads to
an integral equation that is valid for any kind of distributions. Its solution will be approximated
by an iterative procedure, which is known from Volterra-type equations. In a short discussion of
the convergence properties of the obtained approximation it will turn out that, in special cases,

the equation for the characteristic functions in the additive model of errors in variables can be

XV
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rewritten as the limit of a geometric sum.

In view of these findings, in Chapter 2 the notion of symmetrization will be introduced. It
relies on the property, that the squared modulus of a characteristic function represents the char-
acteristic function associated with a distribution, which is symmetric with respect to the real
axis. Under general assumptions, after simple manipulations of the equation for the character-
istic functions in the additive model of errors in variables, this enables an application of the
well-known formula for the geometric series. The truncation of the series at some m > 0 gives
rise to the deconvolution function, which equals a sum of m single binomial sums, that involve
multiple convolution products of distribution functions. The subsequent part of this work ba-
sically deals with the properties of the deconvolution function. In Chapter 2, for example, its
boundedness at infinity and the conformity of its finite moments with those of F' will be shown.
The deconvolution function will even turn out to possesses a density, referred to as the deconvo-
lution density, if F' or H are absolutely continuous. The examinations continue with a discussion
of the deconvolution problem from an operator theoretical perspective. In this context, it will
be pointed out, why deconvolution is in come circumstances actually not an ill-posed problem.
Chapter 2 is concluded with a study of the most important feature of the deconvolution function,
namely its convergence as m — oo to F' at continuity points.

For applications, it does not suffice to know about the convergence to zero of the bias between
the deconvolution function and its target F', but additional information on the particular rate is
required. For this reason, Chapters 3 to 6 are devoted to the topic of asymptotic expansions. An
important means for asymptotic investigations will be the representation of the deconvolution
function via the inversion formula for characteristic functions, since the convolution products
are then decomposed multiplicatively. Due to the distinguishing structure of this Fourier-type
integral, an appropriate technique for its evaluation is not obvious. In Chapter 3 more or less
accurate estimates for the rate of convergence will be presented, which can be achieved solely
with the tools of real calculus. In order to make exact statements, however, the existing litera-
ture on asymptotic expansions suggests the necessity to employ the tools of complex calculus.
Particularly a modification of the method of Mellin transforms will finally yield complete asymp-
totic expansions for the bias, in case of distributions with certain characteristic functions. An
introduction to this approach and the derivation of auxiliary results can be found in Chapter 4.
An application of the method of Mellin transforms to the bias then will be discussed in Chapter
5. As an extension of the method of Mellin transforms, in Chapter 6 the method of analytic
continuation will be introduced. It enables the asymptotic evaluation of many Laplace-type
integrals and particularly of the bias for additional types of distributions. Chapters 5 and 6
expose a large variety of admissible rates of convergence that range from logarithmic, across
algebraic, to exponential. Even oscillatory contributions to the rate are possible.

The applicability of the deconvolution function in statistics will be discussed in Chapter 7,
where an estimator for the unknown distribution F' will be constructed by means of a finite
sample of Y-observations. If there exist densities f(z)dz = F(dz) and h(z)dz = H(dz), even an

estimator for f will be provided. Each estimator appears in the shape of an integral of Fourier-
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type, whose absolute convergence holds under mild assumptions on ®.. Important quantities in
the context of estimators are expectation and variance. A study of the expectation corresponds
to a study of the bias. In contrast, the investigation of the variance primarily encompasses
a study of the effect of the magnitude of m on the growth of a certain two-dimensional inte-
gral. Accordingly, this task is substantially more complicated than the asymptotic evaluation
of the bias, yet the basic technique is analogous. This is an extension of the method of analytic
continuation, to be presented in the Chapter 8, which concludes the main part of this thesis.

2 as m — oo, but considerably

Altogether the variance will turn out to grow no faster than m
slower in most cases or it will even remain bounded.

The appendix is meant to provide an overview on the topic of integral transforms and special
functions. In Appendix A some basic properties of Fourier, Laplace and Mellin transforms and
their connection will be pointed out. Most of these results can be found in existing literature,
in different sources, but a few were developed during the work on this thesis. Finally, Appendix
B serves as an introduction to the realm of special functions. The appendix as a whole can be
considered independent from the main part, and for the understanding of Chapters 1 to 8, it

suffices to consult the single references.
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1. An Introduction to Errors in Variables

A common problem in applications is the interest in the probability for an unknown random
quantity X not to exceed a certain threshold & € R. This is represented by the distribution
function F(&) := P(X < ). Most of the time F' is unknown and needs to be estimated, for

instance with the aid of the empirical distribution function

Fn(§) = Z Lix, <¢y
k=1

for n € N and a sample X1,..., X;, ~ F of independent observations. Here, 1y, ¢ 4y for A CR
equals one if z € A and zero otherwise. However, an X-sample is only available in particularly
convenient scenarios. The actually difficult cases are those, in which F' is not even estimable. A
straightforward approach to describe such a setting is the additive model of errors in variables.
In this, it is assumed that the desired quantity is tainted with a random error ¢, leading to the

blurred variable
(1.0.1) Y=X+-=¢.

Throughout this thesis we require independence of X and e, and we suppose the distribution
H corresponding to ¢ is completely known. Moreover, for our theoretical investigations the
distribution G of the surrogate variable Y is also supposed to be completely known, but it
will eventually be replaced by its empirical analogue, to be estimated by an independent sample
Y1,...,Y, ~ G. The distributions in the additive model of errors in variables are related through

the convolution or Faltung, which refers to the integral
(1.0.2) G= / F(-—z)H(dz).

More concisely we write G = F'x H, where F' and H commute. Assuming F' possesses a density

f with respect to the Lebesgue-measure, the density corresponding to G is given by
(o)
(1.0.3) g= / f(-—2)H(dz).
—0oQ

If also H has a density, then H(dz) = h(z)dz and g = f*h with commuting f and h. Particularly

distribution functions play a pivotal role in stochastics, since their existence holds without loss
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of generality, whereas the existence of densities is limited. Hence, the demand for a means to re-
construct F'is only natural. This is known as the deconvolution problem. Due to the complicated
structure of convolution products, it is in fact a serious problem. A seemingly simplification can
be obtained in terms of characteristic functions. Regarding the random variable X, the latter

is for t € R given by the complex-valued integral

(1.0.4) Dy (t) := Ee™ = / e F(dx),

—00

and it thus constitutes the Fourier-Stieltjes transform of F'. The integral converges absolutely for
any kind of distribution, and the resulting function is unique. By virtue of inversion formulae,
F and f, provided the latter exists, can be represented in terms of ®x. Another remarkable
advantage of Fourier transforms unfolds in the context of convolutions, which thereby become
multiplicative products. Accordingly, the additive model of errors in variables equivalently can

be written in the form
(1.0.5) Oy = Dy d..

A discussion of the deconvolution problem from a calculus point of view can be found in §1.9
in [Tricomi, 1985], for example. Equation (1.0.5) is then barely problematic, since each of
the involved functions are supposed to be known, except ®x, whence a representation for ® x
immediately can be deduced upon dividing by ®.. An application of the Fourier inversion
formula finally yields f. The situation, however, essentially changes in stochastics, where at
least one side of equation (1.0.5) is merely estimable. Particularly if only ®y is estimable,
it exposes devastating consequences for errors with a vanishing characteristic function. In this
event, a division is dangerous, since the estimator for ®y does not feature the factor ®. to cancel
out. Yet, in many texts the existence of a density of X is assumed, and its recovery is attempted
similar to the technique from calculus. Indeed, most of the existing work on errors in variables,
of which [Stefanski and Carroll, 1990] and [Fan, 1991b] are the earliest contributions, relies on
equation (1.0.5). Even in later literature it is still relevant, although different methods to solve

the deconvolution problem are available, see [Meister, 2009] and [Goldenshluger and Kim, 2021].

1.1. Estimation of Densities and Distributions by Means of

Smoothing Kernels

Before we begin our investigations, we briefly summarize the approach due to Stefanski and
Carroll. For a better understanding of its origin, we first outline the history of density estimation

in error-free setups.



1.1. Estimation of Densities and Distributions by Means of Smoothing Kernels

1.1.1. A Non-Perturbed Variable

Basically the idea of Stefanski and Carroll is a modification of a slightly older technique due to
Parzen and Rosenblatt, known for estimating the density corresponding to a data sample. First,
replacing F' by F), in the integral definition (1.0.4), gives rise to the empirical characteristic

function

1 .
111 dx(t,n) = — #Xk,
( ) x(t,n) n Ze

Subject to the strong law of large numbers, ®x (t,n) — ®x(¢) almost surely as n — oo for any
t € R, and [Feuerverger and Mureika, 1977] verified the almost sure uniformity on any compact
subset of R. However, regardless of the behaviour of the target, the estimator is almost periodic
in the sense of Bohr!. An essential consequence is that, even if ®x (¢) vanishes as ¢t — 400, this
property is not shared by ®x(¢,n). This fact especially causes problems if we aim to integrate
the empirical characteristic function along an infinite segment of the real axis. To solve this issue,
[Rosenblatt, 1956] and [Parzen, 1962] independently proposed an estimator for f, by applying
the inversion formula for densities to the product ®x®;(\-), where ®; € L'(R) denotes the
Fourier transform of a suitable probability density f;. For & € R and A > 0 this leads to

[e.9]

(1.1.2) Ful(€,N) ::217r/e‘igtéx(t,n)fbf()\t)dt.

—00

The estimator particularly matches the inversion formula for functions with a non-absolutely in-
tegrable Fourier transform, which can be found in [Lukacs, 1970], [Pinsky, 2002], [Koérner, 1988]
and in equation (A.1.17). The function f; and the parameter A are frequently referred to as
the smoothing kernel and the bandwidth, respectively, where the latter specifies the smoothness

degree of fn(f, A). For any £ € R we have

o0

fl&N) = % / fr (5;95) Fy(d).

—00

It shows that the estimator is composed of the convolution of F;, with f;, and it therefore again
establishes a probability density. More precisely, if we introduce the random variable I ~ fj,
then (1.1.2) equals the probability density of the random variable X + AI. In other words, we
find ourselves in an artificial additive model of errors in variables. Some authors even admit
kernels f; € L'(R) that do not necessarily correspond to probability measures.

Now, the integral (1.1.2) converges absolutely for any A > 0. It does, however, no longer

exist for A = 0, although the sequence of integrals might approach a finite limit as A | 0. This

! According to [Bohr, 1932], a continuous function f(t), t € R, is almost periodic, if for any & > 0 there exists
L = L(g) > 0 such that any interval of length L contains a so-called translation number 7 = 7(¢), i.e., a number
7 with the property |f(t +7) — f(t)| < e for all t € R.
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is the reason, why density estimation is considered ill-posed, already in an error-free setting.
It confirms that the empirical distribution function as a step function does not have a density
with respect to the Lebesgue measure. Important questions concerning fn(§ ,A) are the rates of
convergence of the bias, properties of the variance and the optimal choice of the bandwidth for
a given sample size. Integration of (1.1.2) along a finite interval leads to a smoothed estimator

for the distribution function F', in particular for the probability P(a < X < b) with a < b.

1.1.2. Errors in Variables

If only a blurred version of the target X is observable, the estimation of distribution and density
substantially increases in difficulty. [Stefanski and Carroll, 1990] accessed this problem by taking
advantage of the product formula (1.0.5). Thereof, by division, and with ®y replaced by its

empirical analogue, they deduced for ®x the estimator

q)y(‘,n).

(1.1.3) o

Unfortunately this representation comes into conflict with the assumption of a completely known
®.. It basically intensifies the problems that are encountered in density estimation without
errors in variables, due to the disbalance of the quotient. Since ®y (¢,n) is almost periodic with
random zeros, the estimator (1.1.3) is not only non-integrable on any infinite segment of the
real axis, but in general it is also unbounded whenever infcg |®-(¢)] = 0. To circumvent these
obstacles, [Stefanski and Carroll, 1990] suggested a smoothing kernel f7, such that the product
of its Fourier transform with (1.1.3) is absolutely integrable along the real axis. Then, analogous
to (1.1.2), they employed the Fourier inversion formula, to introduce for the unknown density f
with £ € R and A > 0 the estimator

(1.1.4) fu(€,0) ::% / eiftW@I()\t)dt.

—0o0

Permissible kernels need not be probability densities. The estimator f, (&, \) is unbiased with
respect to Efn(f, A), ie.,

o0

BN =5 [ f1(557) s,

—00

where the right hand side finally tends to f(£) as A | 0, under appropriate conditions. The rate
of convergence essentially depends on the involved distributions. Furthermore, special conditions
on fr are also necessary to ensure a certain asymptotic behaviour of §,(£,\). Consistency, for
instance, was first discussed by [Fan, 1991a]. To simplify the choice of an appropriate kernel
f1, it is common to assume that the characteristic function of the error distribution vanishes at

infinity only or has a compact support. Many authors distinguish particularly between ordinary
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smooth and super smooth characteristic functions. This notion was suggested by [Fan, 1991b],
to characterize functions with algebraic and exponential behaviour at infinity, respectively. It
is, however, clearly restrictive, as it especially excludes error distributions whose characteristic
functions exhibit finite zeros.

Finally, analogous to the error-free setup, integration of (1.1.4) yields a kernel estimator for
the unknown distribution F. This technique was shortly reviewed by [Meister, 2009]. As an
alternative for the estimator obtained in this fashion, in a non-perturbed setup we refer to the
empirical distribution function. Conversely, for a setting with errors in variables we are unaware

of any alternatives that do not rely on artificial smoothing kernels.

1.2. Deconvolution: The Elementary Approach

According to (1.0.1), (1.0.2) and (1.0.5), the additive model of errors in variables can be described
in three different ways, i.e., as a sum of random variables, as a convolution integral or as a
product of characteristic functions. While most of the existing literature accesses this topic
by consideration of (1.0.5), apparently no attention is put on the plain equation (1.0.1). But
the latter perfectly illustrates the convolution of two random variables, from which, due to
the identity P(X < &) = F(£), the transition to distributions is immediate. We therefore
approach the deconvolution problem from the direction of (1.0.1), where we begin with the
possibly simplest setup and successively generalize our assumptions. A major role throughout

this section will be played by the elementary equation
(1.2.1) P(AUuB)=P(A)+P(B)-P(ANB),

which holds for arbitrary A, B € 2( in a probability space (Q,2,P). Moreover, we denote by
Ty C R the support of the indicated random variable, i.e., the set of admissible values of Y,

and by py (k) for k € R the associated probability function.

1.2.1. Some Examples for Discrete Variables

In our first scenario we assume Y and ¢ are discrete random variables with support Ty = T, =
Np. Then Tx C Ny and 0 € Tx. By discreteness, the distribution of X is known if and only if

px (k) is known for all k € Tx, and in these circumstances for £ € R we have

€]
(1.2.2) P& = px(k).
k=0

Here |£] = max{k € Z : k < &} denotes the floor function and an empty sum equals zero. To
determine the probability function px(k), by independence of X and e, for any k € Ty we
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observe:
py(k) =P =k,e € Te)
=) P(Y =ke=1)
leT.
= > px(k—Dp-(l)
leTe
k
(1.2.3) = " px(k—Dpe()
=0

The last equation incorporates the non-negativity of X. The advantage of the particular scenario
under consideration consists in the possibility to fix the error variable at a certain value with a
positive probability. For k = 1 the above equation yields py (1) = px(1)p:(0) + px (0)p:(1). But
px (0) can be derived in turn from the equation py (0) = px(0)p:(0), whence

py(1)  py(0)pe(1)
p(0)  {p.(0)}*

px(1) =

More generally, if we know px(j) for 0 < j < k —1 and p.(l) for 0 <1 < k and also py (k), then

px (k) is easily computed by virtue of the equation (1.2.3), which can be rearranged to become

D (k) d pa(l>
(1.2.4) px (k) = pj(o) —;pm—w 0

~—

3

We can even iteratively apply (1.2.4), to represent px (k) solely in terms of the probability
functions of Y and e. For this we denote by d¢,1(z) the Dirac point-measure at a € R, taking

the value one if £ = a and zero otherwise.

Theorem 1.2.1 (recovery of px in a non-negative discrete setup). Assume that X and

e are independent with Tx C Ng and T. = Ny. Forl € Ny define

J
Z H p6<2i)7 ij > 1,
zl,:..,zjeNizl

(1.2.5) p(j,0) =< =

i=1

zi=l

Observe p(j,1) =0 for 1 < j. Then, for all k € Tx we have

k

l
(1.2.6) px(k) = " py (k=Y (=1 {p-(0)} "V p(j,0).
-

=0 i

Proof. The proof uses induction on k. Starting with & = 0 we obtain from (1.2.6) the correct

result px(0) = 7;’5’((8)). Suppose now that px(s) is given by (1.2.6) for 0 < s < k — 1. Then, from
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(1.2.4) we obtain for s = k:

p=(0) — pe(0)
_ pY(k) + R (k e l) l ( 1)j+1{ 0 }—(]+2) l
=00 > > py(k—r > p=(0) (r)p(4,1)
p ( r=1 1=0 7=0

SN vk =) =)D (=17 {p(0)} I pe(k — (k= r)p(i, 1)
r=11=0 Jj=0

k—1 7o l

= py(ra =13 (=17 {pe(0)} Y4 (ke — ro)p (4, 1)
ro=0 [=0 7=0
k—1k—1 1

=33 S (=1 p(0)} U py(ra — Dpe(k — r2)p(5i 1)
1=0 ro=I 7=0
k-1 1 k-1

=333 (=17 {p(0)} I py (ra — Dpe(k — 2)p(i, 1)
=0 7=0ro=lI
k—1k—1 k—1

=>. (~17 {p=(0)} "9 py (k — 1 — (k — r2))pe(k — 2)p(4, 1)
7=0 l=j ro=l
k—1k—1 k—I

= (=17 {p(0)} 9 py (b — I = 73)pe (r3)p(s, 1)
j=0 l=j r3=1
k k—1 k-1

=3 1 {p (03I ST ST py(k — 1 ra)pe(rs)p( — 1,1)
j=1 l=j—1r3=1

k—(1-1)
(—1) {p=(0)} U+ Z > py(k—(—=1) = ra)p(ra)p(j — 1,1 - 1)

I
M=

j=1 l=j r3=1
k k k
= (=17 {p=(0)} "9SS " py (b — ra)pe(ra — (1= 1)p(j — 1,1 — 1)
j=1 =7 ra=l
k k T4
=3 1 {p 03 ST S py (k= ra)pe(ra — (U= 1)p(j — 1,1 1)
7j=1 ra=j l=j
k T4 T4
= oyl —ra) Y (=1 {p(0)} IS (g — (1= 1))p(j — 1,1 - 1)
rg=1 j=1 I=j

T4

py(k=74) > (=17 {p=(0)} UV p(j,74)

j=1

I
e

<

I
Il
—

For j = 1 the last equation is easily seen to hold. To confirm the equation for j > 2, we note
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that the definition of p(j,1) implies:

T4 T4 Jj—1
Zpe(m—(l—l))p(j—l,l—l) :Zps(m— (1—1)) Z Hps(zi)
I=j =y

21, 7z] 1€N =1

Zl 1 L ai=l—1

= Z Hpa(zi)

21,..,2;EN 1=1
J _
Zi:1 Z2i=T4

A comparison with (1.2.5) shows that the last sum equals p(j, r4), thereby verifying (1.2.6). m

The preceding theorem eventually enables a representation of F' solely in terms of the distri-

butions of Y and e.

Corollary 1.2.1 (recovery of F in a non-negative discrete setup). Under the conditions
of Theorem 1.2.1, for £ € R we have

l
(1.2.7) F(&) =Y GE-1)Y (1) {p=(0)} Y p(j, 1).

=0 7=0

Especially notice that the validity of (1.2.7) does not require any assumptions concerning the

right boundary of the support of Y.

Proof. It suffices to plug the formula for the point probabilities (1.2.6) into (1.2.2). Then some

simple rearrangements of the sums yield:

l

L&l &
=Y o (k=0 D (=LY {pe(0)} 9 (i)

k=0 =0
FSRNES| l '
=3 oy (k=1 (=1) {p(0)} Y p(j, 1)

=0 k=l

l
:ZG(Lé‘J—l)Z(—W{pe(O U (0
1=0 Jj=0

o

.

Q

But G([§] —1) = G(§ — 1) since [§ —1] = [(£ - [E]) + ([&] =D = [§] —lforany I €No.  m

Although (1.2.7) provides a tool to recover the unknown distribution F' only for a special
and particularly simple scenario, it shows that deconvolution already then is very complicated.
With these impressions we leave the purely discrete case and proceed with a slightly more general
situation. More precisely, an inspection of (1.2.7) suggests that the formula could also hold if

the distribution of X is arbitrary, whereas € remains discrete.

Example 1.2.2 (arbitrary X > 0 and non-negative discrete errors). Suppose F'is an ar-

bitrary distribution with Tx C [0,00) and T, C Ny with p-.(0) > 0. As a consequence
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Ty C |0,00) and the sum variable Y is not necessarily purely discrete, whence in general
py(0) = px(0)p-(0) > 0. However, in any case we have G(§) = F({)p:(0) for 0 < £ < 1 and
G(&) = F(§)pe(0)+ F(£—1)p-(1) for 1 < £ < 2, and so on. Analogous to (1.2.4), for £ € R this

pattern gives rise to the recursion

p=(1)
p=(0) .

a6 1£]
(1.2.8) F) = O ; F(e-1)
We will now verify by induction that the formula for F', which was derived in (1.2.7), still satisfies
this pattern. For £ < 1 this is easy to see by comparison of (1.2.8) with (1.2.7). Assume now
F(¢) for £ < K with arbitrary K € N is given by (1.2.7). Then for K < { < K + 1 we obtain
from (1.2.8), upon substituting n =i+ 1, r =n—1i, k = j+ 1 and s = 1 + r, especially since
|€ —i] = [&] —ifor i € Np:

€] pe (i)
Z F(&—1) 2-(0)
LEJ l

Z Pe(0) Z G(&—i—1) (=1) {p=(0)}"Y* p(j, 1)
=0

O

j=0
L&J N i
- 58 p3 550)) 2 G- 2 (-1 ) T p(Gn i)
G(§) S = (j+2)
=0 0) Z_;G(f—n)zgz;)(—l)” {p=(0)} p(jsn — 9)pe (i)
n—1 r
ZG €=n) D2 3 (=17 {pe(0)} U2 p(j r)pe(n — 1)
r=0 =0
n—1ln—1
ZG —n) > Y (-1 YU (5, m)pe(n — )
Jj=0 r=j
n n—1
E=m> " > (=D {p(0)} " p(k — 1,7)pe(n — 7)
k=1r=k-1
—n) Y (=1 {pe(0)} FTIN " plk — 1,5 = Dpe(n — (s — 1))
k= 1 s=k

In accordance with (1.2.5), the probabilities in the last sum satisy the following identity:

n k—1
Y plk=1,5=1)p(n—(s—1)) Zps n—(s—=1) >  JIr(z)
s=k

21402k —1EN =1
Zf 1121—5 1

:p(k,n)
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We have thus shown that F'(§) for K < ¢ < K + 1 indeed has the representation (1.2.7). Since
K was arbitrary, the formula is applicable to recover F'(§) for any & € R.

The arguments of the preceding example clearly become invalid if the error distribution is
no longer discrete. As a clue how to handle such scenarios, we consider the case converse to
Example 1.2.2.

Example 1.2.3 (discrete X > 0 and arbitrary one-sided errors). Assume Tx C Ny and,
for convenience, T, = [0, 00) with p-(0) = 0 and H(1) > 0. The generality of the latter property
is in contrast to the above examples, making the probability function of € useless. Furthermore,
again Y is a distribution of arbitrary type with Ty = [0,00) and py (0) = px(0)p-(0) = 0. The
probability px(0) is thus concealed. On the other hand, we also have G(1) = px(0)H(1) +
px(1)H(0) = px(0)H (1), whence px (0) still can be recovered. For k € Tx we may deduce more

generally
Glk) <= H(k—1i)
(1.2.9) px(k—1) = H(1) ZPX(Z)W
i=0

It must be emphasized that this formula becomes invalid if p.(0) > 0. The evaluation of px (k)
for some small k& € N gives the clue that the non-recursive formula for the point probability
(1.2.9) equals

k

l
(1.2.10) px(k) =3 G +k-1)> {HL)} " (-1)7P(j,1),
§=0

=0

where the probabilities P(j,1) for j,1 € Ny are defined by

J
H H(Zi), ifj Z 1,

. L 21, ,ZjEN\{l}i:1
(1.2.11) P =

81031, if j = 0.

It is clear that P(j,1) = 0 for [ < j. Furthermore, a comparison with (1.2.6) shows a slight
similarity with respect to the basic structure of both sums. By induction it is readily verified that
(1.2.10) indeed satisfies the recursion (1.2.9). The validity for £ = 0 is immediate. Supposing
now that the formula holds for 0, . .., k—1 with arbitrary k € N, we obtain for the k-th probability
from (1.2.9) after putting r = k —

k:+1 k H(1+7)
PX(k) ; T
k
L

k— l
Z Lt+k—r=0Y (D" {HQO)} Y H1+r)P(,0)
=0 7=0

10



1.2. Deconvolution: The Elementary Approach

This last triple sum resembles that in the proof of equation (1.2.6). Analogous manipulations
thus yield:

k k—r l
SN Gtk ==Y () {H)} O H(1+ 1) P(j, 1)
r=1 =0 7=0
k r
=> Gl+k-r)) (-1 J“ZHHT—(Z—D) (G—1,0-1)
r=1 j=1 l=j

On the one hand, for j = 1 we have

S HA+r—(1—-1)8p(l—1) = H(1+71)=P(L,r).
=1

On the other hand, for j > 2 we find:

r r 7j—1
D H(A+r—(1-1)P(F-1,1-1)=) H1+r—(1-1)) > [1HG)
l=j l=j FATTR ,ZJ 1EN\{1} =1

21 1 %i=J— 1+1-1

J
I 1 :(C)
Zl,...,ZjEN\{l}i=1
g:lzi:jJrr

:P(],T)

Collecting the above results, we arrive at (1.2.10). The formula is thus indeed valid. Summing
up, according to (1.2.2), even yields the distribution function of X. Subsequent substitution of
i=k—1l,r=k—iand s= [£] — 1 leads to:

&l & l
FE=>>"GU+k—1)Y_{H1)} ") (-1) P(j,1)
k=0 1=0 Jj=0
&l & k—i . ‘
=>">ca+0)Y {H)} M (1) P,k — i)
k=0 i=0 =0
€] €] ki ,
=Y "G +i)Y Y {HQ)Y M (“1Y P k- )
=0 k=i 7=0
€] €)—i 7 ,
=Y G+ > S HOY T (<1 PG,
=0 r=0 j=0
LSJ s r
(1.2.12) = =) Y > A{HO)Y D (1 P
s=0 r=0 j=0

Observe that the right hand side of (1.2.12) is well-defined for any distribution F, H, provided

11



1. An Introduction to Errors in Variables

H(1) > 0. It is, however, easy to see that it only equals F' if the latter is a step function. Choose
for instance 0 < £ < 1 to obtain F(§) = % Clearly, this is not always true. It does not even

remain valid if all of the above conditions stay the same but p.(0) > 0.

To summarize our findings so far, in some circumstances the deconvolution of the unknown
distribution function F' is possible. For this we essentially exploited the specific structure of the
assumed error distribution. Moreover, it is ascertainable that the derivation of each deconvo-
lution formula also requires information about the structure of F' and the result thus heavily
depends on it. Finally, the above examples can be modified to cover setups involving ran-
dom variables with more general one-sided supports. Such modifications will not be presented
here, and instead we will now treat more general scenarios of errors in variables under minimal

assumptions.

1.2.2. Derivation of an Integral Equation

Recall that in (1.2.6) and also in the Examples 1.2.2 and 1.2.3, the starting point was not X
but the sum Y, which was decomposed into X and €. More precisely, we fixed ¢ in a sense, in
order to make an exact statement on the amount of X with respect to Y. The most important
ingredient to this procedure besides the independence of X and e was the formula (1.2.1). For
a more general access to the problem of errors in variables we observe that, subject to the

elementary rules for the arithmetic of probabilities and sets, for any ¢, ¢ € R the following holds:

P(Ygg+c):P(Y55+C,Xgg,agc)+P(Y§§+c,{Xgg,egc}c)

—P(Y <€4e,X<Ee<)+P{Y <E4+e,X>EJU{Y <Edee>c))
CP(X <Ee<o)+P(Y <E4e,X>E)+P(Y <E4ce>c)

—PY <&+, X >Ee>0)
=P(X<HP (<) +P(e <&+ c— X, X > +P(X <€+c—¢g,e>0)

In the first step we separated {Y < £ + ¢} into two particular disjoint sets and were accordingly
allowed to split the probabilities. But {Y < & 4 ¢} D {X < ¢,e < ¢}, and the probability involv-
ing this set could be written as a product, due to the independence of X and . An additional
application of (1.2.1), since {Y <&+ ¢, X > &,e > ¢} = 0, finally lead to the above result. This
in turn can be rewritten in terms of integrals of distribution functions. Then, assuming ¢ € R is
such that H(c) > 0, we may divide by H(c), which leads to

G +o) / H(E +c—x) / FE—(z2—¢))
1.2.13 F¢)=———— ———F(dz) — ————H(dz).
(§,00) (c,00)
By expressing, for example, the second summand in this equation as an integral with respect to

H, we return to (1.0.2) with & replaced by £ + c¢. Hence, both integral equations are actually

equivalent. Contrary to the latter, the former is a special integral equation of the second kind

12



1.2. Deconvolution: The Elementary Approach

that slightly resembles those of Volterra-type. However, while common Volterra-type equations
involve only one integral that features the unknown function, the equation (1.2.13) consists of
two such integrals. Even more distinguishing is the fact that one of the integrals is computed
with respect to F'. Despite these differences (1.2.13) shares one obvious similarity with integral

equations of the aforementioned type. That is, the function F' emerges iteratively from

(1.2.14) G, =

It thus appears natural to adapt the standard idea for the solution of such integral equa-
tions, which is sometimes referred to as the method of successive approximations, compare
[Tricomi, 1985]. For this purpose we introduce the initial function €.(-,0) := G. and for m € N

the recursively defined functions

€m=Gue - [ HErE e dem )
(§,00)
(1.2.15) .
(e~ (z=0)m—1)
—( /) o) H(dz).

To gain an insight on the functionality of (1.2.15) we compute &.(-,1). For this we recall that
¢.(-,0) = G, equals the distribution function of Y — ¢ times the factor % > 1. Denoting by
g1 ~ H a version of ¢ that is independent of Y, the second summand in (1.2.15) for m = 1 can

be cast as follows:

HE+c—2) o 0 gy L o DG dr
e ) = g [ (et e—)Golan

(&§:00) (&,00)
——E{I{{ <Y —c}{e1 <&+ c— (Y — o)} }

o
 {H()}
_{H(lc)}E{]I{§<Y—c<§+6—51}}

1
_{H(C /G§+20z) G(&+c)H(dz)

(—o0,q]

[ GG
- [ S - e

(—OO,C]

For m = 1 we thus obtain from (1.2.15):

elen=ci-| [ L E N nw -auo| - [ “EE= D wa

13



1. An Introduction to Errors in Variables

= G(f—i—c)_ 1 i c—(z—c z
=2t {H(C)}zé GE e (= — ) H(d2)

For m = 2 analogous computations yield

= G(£+C) — 3 i c—I(z—¢C z
ee.2) =375 {H(C)}2_4 G+ e (= = H(d2)

oo oo

i {157(10)}3 / / G +c— (21 —¢) = (22 —c))H(dz1)H (dz).

The preceding examples of €.(-,m) for m = 1,2 already expose the pattern behind the recursion
(1.2.15), which will be established in the theorem below.

Theorem 1.2.2 (a non-iterative formula). Let ey, e9,... ~ H be mutually independent ver-

sions of € and also independent of Y. Then, for any m € N the function

~ (m+1 k —(k+1) :
eem =3 (1) )0 IR (-4 e - <

(1.2.16) S ;:1
o\ ! — (k1)
=2 (k) (~D)* {H(Q} P ((Y —)+ Y (e =) < 5)
=0 k=0 r=1

is the result of the m-th iteration of (1.2.15). Again we use the convention that an empty sum

equals zero.

Proof. We show that the function (1.2.16) for any m € N results from the recursive definition

(1.2.15). Therefore we apply the single sum representation and first consider the second integral
in (1.2.15):

_ [ HEAc—2)
| g em =

€
) ;;) (kT 1> (—1)F {H(c)} 2
¥ E H{£< (Y—C)Jrzk;(er—c)}H <g+c—<y_c> —Xk;(@_c)”
-3 <kT 1) (—1)F {H ()} *+2)
k=0

o0 k
<E /]I{§<(Y—c)+2(6r—c)S&—(z—c)}H(dz)

—0 r=1

14



1.2. Deconvolution: The Elementary Approach

m—1 i) N
= m k+1 —(k+
-2 <k+1>(_1) {H(c)} ( /} P((Y—C)—F;(&r—c) gg_(z_c)> H(dz)
m—1 (k7 ) .
m L et
= <k - 1) CUHAE@F TR <<Y sCRDICELE f)

m—1 m
eem =GO+ X (|1 )0 e
k=0

k
X / P((Y—c)—i—Z(sT—c)Sf—(z—c))H(dz)

r=1
—00,(]

k=0 r=1
m—1
D DN PR [C VA o100 e
k=0
k
% / IP’((Y—C)+ (er — ) <§—(z—c)> H(d)
r=1

The last equation incorporates the binomial identity (26.3.5) from [Olver et al., 2010] and thus
matches exactly the first formula in (1.2.16). Finally the second formula in (1.2.16) follows
from a simple application of the additional binomial identity (26.3.7) in [Olver et al., 2010],

accompanied by an interchange in the summation order. n

We will now see that the function (1.2.16) is closely related to our examples presented in
the earlier Section 1.2.1. In before we remind the reader about the binomial theorem, which

frequently will be referred to below and later on.

Example 1.2.4 (connection to Example 1.2.2). If X is associated with an arbitrary dis-
tribution F with Ty C [0,00) and € > 0 corresponds to a discrete distribution with T. C Ny
and p:(0) > 0, we verified in Example 1.2.2 that F' can be reconstructed by means of (1.2.7).

15



1. An Introduction to Errors in Variables

Regarding (1.2.13), under these assumptions we may choose ¢ = 0 to obtain H(c) = p-(0) and
the second term in this integral equation then equals zero. Moreover, the third term, i.e., the
integral with respect to H becomes a finite sum. Hence, the entire equation (1.2.13) is equiv-
alent to (1.2.8). This already indicates a close relation between the right hand side of (1.2.7)
and (1.2.16), which shall be confirmed by elementary manipulations of the latter. Preliminary,
subject to the non-negativity of Y, the discrete structure of € and the independence of €1, €9, . . .,

for j,k € Ny in terms of (1.2.5) we have:

) (-0} plk — 1,)

<
Il
[en}
o~
Il
()
7 N\
S

Particularly for k£ = 0 this sequence of equations still holds with P (ZT LEr = j) = 0g03(j)- In
view of these preparations, (1.2.16) for £ € R equals

k

€] m 1 i
Co€m) =3 G(e— ZZ( ) J {pe(0)} D S (t) (0e(0)} p(k — t,).
=0 1=0 k=0

t=0

Provided m > [£], after the substitution s = k — ¢, the above double sum may be rewritten as

follows:

g';;@ Qi(k o

(1.218) - ij(—ns{ps<o>}—<8+”p<s,j> fjﬁj (x ) ( )

s=0 l=s k=s

The last equation holds, since p(s,j) = 0 for s > j and since m > |[£] > j. In addition, an
application of the binomial theorem, after proper rearrangements and substitution of r = k — s,

leads to:

izl: (/i) (k ' s> (-1 = izl: = k)!ii(k: Y

l=s k=s l=s k=s

16



1.2. Deconvolution: The Elementary Approach

S5 ()

l=s

f:@l_l -

l=s

1

We have thus verified that €y(&, m) for m > [£] equivalently can be represented as the right hand
side of (1.2.7), whence &y(§,m) = F(§) for m > |£]. This especially means €y(, [£]) = F(£).

Example 1.2.5 (connection to Example 1.2.3). In Example 1.2.3 we have shown that the
distribution function associated with a discrete X > 0, which is contaminated with errors € > 0
of arbitrary type and p.(0) = 0 but H(1) > 0, can be recovered by means of (1.2.12). This
function, however, is not a solution of the integral equation (1.2.13). It is rather the solution
of a slight modification that can be obtained from (1.2.13), if X is a discrete distribution with
support Tx, and if H is an arbitrary distribution such that there exists {y € R with H(§) =
for £ < &. Then, denote k. := min{n € Tx : H(n) > 0}. If we confine to Example 1.2.3, we
have k. = 1 and for k£ € N the integral equation (1.2.13) takes on the following form:

/ H(k — 2)F(dx)

[0,k—k.]

= iH(k —2)px(z) + H()px (k — 1)
Z (I+7)px(k—=1-3)+ H(1)px(k—1)

This formula is readily confirmed to equal (1.2.9). Furthermore, since F' is a step function,

division and summation for 1 < k < [£] with { € R leads to:

€]+1 E]+1 k—1

SCEDY o - > ”H (-1
3 L&l 1
NGOty Hl+j)
—; ) z:o; ) px (1 —17)
L€) €]
(1.2.19) = 3 GS(J{)Z) - 2 HE(J{)]) (L&) =)

Hence, the function (1.2.12) is obviously a solution of (1.2.19). In addition, it is ascertainable
that the latter equation becomes invalid if F' and H do not satisfy the required properties, and
thus especially if X is not purely discretely distributed. Despite the formula (1.2.12) is not
equivalent to (1.2.16), it can be rearranged to resemble &.(£,m). For this we first note that, by

17



1. An Introduction to Errors in Variables

definition of P(j,r), for m > r analogous manipulations as in (1.2.18) yield:

ST {H@)Y T (1) PG =Y {HL)} ) (-1 Py, 1)

Jj=0 J

M

Il
=)

I
NE

klo (&) > (7) 0y 4 Pl =t

l t=0

I
o

Hence, (1.2.12) with m > [£] equivalently can be cast in the form

_Iizl:(> (1)}—(1+k)§ G(1+ €] —s) y i() DY Pk —t,r).

k=0 s=0 r=0 t=0

According to (1.2.11), the t-sum satisfies the following identity:

k k k—1 k—t
S (§) tran P - = oo + () oy X Tlae
t=0 t=0 S +EN\{1} =1

Zf 1 zi=k—t4r

k
RIS

21,2k EN  1=1
Zf 1 zi=k+r

Consequently for m > [£] we arrive at

l €] S k
(EEUINACES 9 () SN LI R SR GEN) D SIS | (3}
= s=0 3

m
=0 k=0

This evidently resembles the formula (1.2.16) with ¢ = 1. In particular, the only but essential
difference consists in the presence of the sum with respect to s, where in (1.2.16) we have the
probability of the convolutions. The argument |£| indicates the former as a step function, while
the latter is continuous whenever H is continuous. Hence, in general both expressions can not
coincide. They are also not equivalent if we simply replace the argument £ in (1.2.16) by |£].
This becomes clear if we assume X = 0, in which event F' indeed matches the conditions. Then,
a comparison, for instance with 0 < ¢ < 1, of the k-th summands in (1.2.16) and in (1.2.20) for
k = 1 shows that these can not coincide. This observation is in accordance with the fact that

both functions satisfy different integral equations.

By (1.2.16) we were able to provide a solution for the integral equation (1.2.15) that turned out
as an extension of our very first deconvolution formula. It remains, however, to determine the
general relation between this function, the unknown distribution F' and the role that is played
by the parameter m. Therefore we abandon the above sum representation, due to its compli-

cated nature as a composition of binomial coefficients and convolutions, and rather consider the

18



1.2. Deconvolution: The Elementary Approach

associated characteristic function, defined by

[e.e]

(1.2.21) Sg (t,m) = /eimec(da@,m).

—00

Its existence is guaranteed since €.(-,m) is basically a finite sum of distribution functions.
Recalling the product formula for characteristic functions, we expect (1.2.21) to take on a con-
siderably simpler form than (1.2.16). According to our convention, ®y_.(t) = e *!®y () and
. _.(t) = e7"d_(t) denote the characteristic functions of the shifted random variables Y — ¢
and € — ¢, respectively. We thus obtain for m € Ny subject to independence and by application

of the binomial theorem:

m
Pe, (tm) =) > ( ) {H(e)} " dy_o(t) {Po—c(0)}
(I)Y—c 3 - (I)E—C t :
(1.2.22) = H<C§ ) 2 {1 - H(c())}

The final sum is readily identified as a geometric sum with truncation index m € Ny. For ¢ € C

it is known to have the summability properties

m—+1

_ ) ifa# L
1=0 m+1, ifg=1

NE
).QN

(1.2.23)

By virtue of this formula, since ®._.(t) = 0 if and only if ®.(t) = 0, for (1.2.22) we obtain

m+1
(1) [1{1 e ] if ®.(t) # 0,
m+ 1, if ®.(t) = 0.

(1.2.24) B, (t,m) =

If we suppose, a necessary condition for the convergence limy, ,o €.({,m) for £ € R is the
convergence of the associated characteristic functions, according to (1.2.24), for all ¢t € R we

must require

(1.2.25) ‘1 _ Deelt)

el <1,

Then lim,, o0 P, (t,m) = Px(¢). In addition, returning to (1.2.16) we observe:

m k
lim eem) =YY" (,i) (H() D Jim P ((Y )+ -0 < 5)
=0 k=0 r=1
1 & !
- |1 )
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1. An Introduction to Errors in Variables

(1.2.26) = {1 — [1 - Htc)]mﬂ}

Depending on H(c) € (0,1], if we now let m — oo we either have convergence to unity, i.e.,
to 1 = limg_o0 F/(§), or divergence. Summarizing, we conclude that admissible values for ¢ €
R not only need to satisfy (1.2.25) but also H(c) > 3, in order to expect the convergence
limy, o0 €:(&,m) = F(§). At this point, however, we recall that Example 1.2.4 revealed the
fact that special and particularly convenient cases may arise if m = m(¢) depends? on £. We
emphasize that (1.2.24) is then not the characteristic function of &.(£,m(€)) and also (1.2.26)
becomes invalid. Rather than discussing such a dependence, or the existence of an appropriate
c and further required properties of this parameter, we quit our investigation of the formula
(1.2.16) and consider the problem of errors in variables from a new perspective, inspired by the

above findings.

2As an example, for A > 0 suppose € ~ Poiss()\), implying p.(0) = e™> and ®.(t) = =1 In these
circumstances there are intervals I C R, where |1 — {pE(O)}flfl)s(t)| > 1 for t € I. Hence, the geometric
expression (1.2.24) will not even converge for Lebesgue-almost any ¢t € R as m — oco. Alternatively, the Poisson
distribution clearly matches the assumptions of Example 1.2.2 implying F(§) = €y(&, |£]) for any distribution F'
that satisfies the required conditions.
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2. Symmetrized Additive Models of Errors in

Variables

In our previous investigations we discovered a close connection between binomial and geometric
sums and the deconvolution problem. In particular, we started with a study of the distribution

of Y and arrived at a result, according to which it is reasonable to conceive the quotient
(2.0.1) by = —

obtainable from (1.0.5) if . # 0, as the limit of a geometric series. Recall that the geometric
series, for which the sum formula was given in (1.2.23), converges only as m — oo if |¢g| < 1 and

then equals (1—¢)~!

in the limit. A comparison with (2.0.1) shows that the reciprocal character-
istic function in the present form constitutes the limit of a geometric series only if |1 — ®.(¢)] < 1
for t € R. Needless to say that there are many examples violating this condition. With (1.2.25)
the approach of the preceding chapter provides a different condition that is sufficient in order
to attribute (2.0.1) to the limit of a geometric series. This involves the additional shift ¢ € R
and the scaling parameter H(c). There are, however, more convenient methods, avoiding the
factor H(c) but aiming for simple manipulations of the quotient, to obtain a function in the
denominator whose range is the unit interval. One of them is applicable in any scenario and
essentially relies on the property that the product of an arbitrary characteristic function with its
complex conjugate establishes again a characteristic function, which is in fact non-negative and
associated with a symmetric distribution. The second method will turn out to be, in a sense, a

weaker form of the aforementioned and is only applicable in special cases.

2.1. Symmetrization by Convolution with the Conjugate Distribution

Suppose €, 9 ~ H are two independent random variables with distribution H. Then —e9 has the
distribution 1 — H((—¢)—), ¢ € R, denoted as the conjugate distribution of H, where the minus
sign to the right of the argument indicates the limit from the left. Its characteristic function is
given by ®.(—) = ®. with the wide overline signifying the complex conjugate. Moreover, the

random variable & := ¢ — €9 has the distribution

HQ=PE<q) = [ HC+aHE),  (eR
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2. Symmetrized Additive Models of Errors in Variables

Since the latter is symmetric around ¢ = 0, we refer to H as the symmetrization of H. Evidently
—&~ H and H({) =1—P (£ < —¢). The most desired property of H, however, is that, due to

the independence of € and e, the corresponding characteristic function equals the product
(2.1.1) De(t) = B [e1C7)| = 0.(1).(1) = [0.(1) 2,

which satisfies ®z(¢) € [0,1] and is even with respect to ¢ € R. Furthermore, ®z(t) = 0 if and
only if ®.(t) = 0 or equivalently if ®.(t) = ®.(—t) = 0. Hence, the set

(2.1.2) N. = {t e RU {£00} : B () = 0}

is comprised of the points at which ®z(t), ®.(t) and ®.(—t) vanish. Denoting by &1,&s,... ~ H
mutually independent versions of £, that are additionally independent of € and Y, for t € R\ IV,

we may rearrange (2.0.1) in the following form:

o0 = 55
— By (0~
= Dy (O2(-1) D (1 (1))
=0
oo 1
— o 00 Y3 () -t a0
=0 k=0
oo 1
>y ( ) ey (.-t (a0}
0

=0 k=
l

RO )

The fourth equality holds according to the binomial theorem. As a consequence of this result,

we introduce the random variable Y := Y — g5 with distribution function
oo
(2.1.3) Gle) = / G(E + 20)H(dzo) = H + F(£).
—o0
This leads to the symmetrized additive model of errors in variables, defined by
(2.1.4) Y =X +&
While the symmetrization in the context of errors in variables is new, in other fields of math-

ematics, symmetry is already known to play a major role. The most frequently encountered

examples are principal value integrals and the partial sum operator in Fourier analysis as a
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2.1. Symmetrization by Convolution with the Conjugate Distribution

special integral of that kind. It is not difficult to show that such integrals do not converge with-
out symmetry. In view of the preceding observations it is reasonable to introduce the following

notions.

Definition 2.1.1 (deconvolution function and sum). For m € Ny and £ € R the function

m l k
(2.1.5) D(Em) =Y > (fﬁ) (—)'P (Z & <E— (Y- 52>>

=0 k=0 r=1
(2.1.6) - / / SI(E — (y — =) H(d=)C/(dy)
(2.1.7) =S« H* F(§)

1s referred to as the deconvolution function. It is composed of the convolution with the deconvo-

lution sum, for ( € R defined by

m 1
(2.1 520 =Y 30 () -0 (Za < 4) ,

with 22:1 & = 0. Hence, the probabilities in (2.1.8) for which the sum is empty equal the Dirac

distribution function 1yo<cy-

It is ascertainable from the definitions (2.1.5) and (2.1.8) that the deconvolution function
and the deconvolution sum for m > 1 are associated with signed measures rather than with
probability measures. An exception occurs for m = 0 in which event S2 = L{0<.}. Moreover, if
F or H are continuous, we observe that the deconvolution function inherits continuity properties.
On the other hand SI*(¢) is never continuous at ¢ = 0, since the Dirac function with mass at
the origin appears in at least one summand in (2.1.8) for any m € Nj.

The above sum representation for the deconvolution function is problematic for both, theo-
retical investigations of its properties and numerical evaluation. The presence of probabilities
of multiple convolutions and binomial coefficients already for rather small numbers leads to
computational inaccuracies and errors, since the limit of capacity is reached. It is therefore rec-
ommended to search for a simplification of the convolution probabilities, in order to be eventually
able to simplify the sum. A useful tool in this context are integral transforms and particularly
characteristic functions, in view of the product rule, uniqueness and broad applicability. Pre-

liminary we require some frequently occuring definitions. For ¢ € R and m > 0 we refer to
(2.1.9) P-(t,m) := (1 — ®(t))™ "

as the m-power. By a simple application of the binomial and geometric sum formulae it is then

easy to show from (2.1.8), that the characteristic function of the deconvolution sum is of the
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following form:

o

Ge(t,m) := / "SI (dz)
(2.1.10) “oo
=Y (1= e(1)
=0
1-Ps(t,m
(2.1.11) R, forteR\N.
m+1, for t € N

We denote G=(t,m) as the geometric sum function, and we observe

(2.1.12) lim_Ge(t,m) = Ok

teR\ N..

The property 0 < &z < 1 implies {‘bg}_l > 1, which shows that the characteristic function

(2.1.12) never corresponds to a probability measure. Notice, however, if

(2.1.13) S8*:= lim S,

m—0o0

as long as there is no justification to interchange the order of limit and integration, we must

assume [0 €28 (dz) # é(t). In addition we also have

I=Peltm)  for ¢ € R\ N,
(2.1.14) G=(t,m)®.(—t) = d.(1) \ Ne,
07 for ¢ S NE-

According to (2.1.3), the equation for the characteristic functions in the symmetrized model of

errors in variables is given by
(2.1.15) Oy (t) = Py (t) D (—t) = Px () P:(2).

Hence, subject to (2.1.5) the characteristic function corresponding to the deconvolution function

takes on the following form:

o0

2110 Oo(t,m) := / "D (dx, m)
= (I)Y(t)gg(tv m)
(2.1.17) =Ox(t)(1 = Pe(t,m))

Below we briefly summarize some important properties of the recently introduced character-
istic functions. These basically justify the applicability of the deconvolution function for the

reconstruction of F.
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2.1. Symmetrization by Convolution with the Conjugate Distribution

Theorem 2.1.1 (properties of the deconvolution characteristic function). The charac-

teristic function associated with the deconvolution function has the boundedness property

(2.1.18) sup |Po(t,m)| <1 form >0,
teR

and it exhibits the following convergence behaviour:
(1) If t e R\ N; orift € N with ®x(t) =0, we have

(2119) lim ‘(I)Q(t, m) - (I)X(t)‘ =0.

m—0o0

The convergence is uniform on any compact interval I C R with ®x(t) =0 fort € I NN;.
(2) Provided ®x(t) =0 fort € N. and limp_,, Px(t) =0, then

m—r0o0

The first condition for the uniform convergence is necessary, whereas the second is sufficient.
In fact, this type of convergence is not trivial! and will only occur if there exists mg > 0 such

that the sequence ||®p(-,m) — x|, is bounded away from unity for m > my.

Proof. The uniform boundedness (2.1.18) is an immediate consequence of the representation
(2.1.17), since ®x and Pz are also uniformly bounded. According to this representation, for
t € R we obtain

(2.1.21) Dy (t) — Do(t,m) = D (t)P=(t, m).

Therefore |Px(t) — Po(t,m)| < 1 for t € R\ N; and the modulus equals zero if ®x(t) = 0.
The monotonicity of Pz(t, m) with respect to m > 0 for ¢ € R\ N, thus implies the pointwise
convergence (2.1.19). The uniformity on any compact subset is then merely a consequence of
Dini’s theorem, by continuity of (2.1.21) and by continuity of the limit function that holds
under the assumption ®x(t) = 0 for ¢t € I N N.. To eventually verify (2) we note that, since
limyy 00 @x(t) = 0, for any § > 0 there exists R > 0 such that

sup |®x (t)Ps(t,m)| < sup |[Px(t)| <9I
[t|>R [t|>R

for all m > 0. In view of (1), however, the convergence on [—R, R] is uniform. The proof is thus
finished. n

1

!Consider for instance the characteristic function ®z(t) = 3 cos®(t) + %eiﬁ associated with a mixture distri-

bution. Then N. = @. But for ¢ := (2k + 1)§ with k& € No we have Pe(tr,m) = (1 — %e‘ti)m+1 — 1 as k — oo.
Hence, sup,cp P=(t,m) = 1 for m > 0. If in addition ®x(t) =1, then ||®o(-,m) — x|, =1 for m > 0 implying

non-uniform convergence.
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2. Symmetrized Additive Models of Errors in Variables

Since the deconvolution function is particularly not associated with a non-negative measure,
the convergence statements from the above corollary are insufficient, to conclude the actual
convergence of D(-,m) to F. To verify this convergence for a large class of distributions will be

the task in the later sections. Before we establish some supplementary results.

2.1.1. Basic Properties of the Deconvolution Function and Sum

For u,v € L'(R) the integral w(§) := [ u( z)dr = [pv(§ — y)u(y)dy describes the
Lebesgue convolution of uw and v and it follows from Fubini’s theorem that w € L'(R). The
function w(§) is thus finite for Lebesgue-almost all £ € R. For brevity we occasionally write
w = u * v = v *u. Furthermore, for a signed measure p : B(R) — K, where B(R) refers to the
Borel o-algebra and K € {R, C}, we denote by

n
(2.1.22)  |u| (E) = sup Z |u(Ej)| :n €N, Ey,...,E, € B(R) disjoint with | JE; C E
j=1

its total variation on E € B(R), which is a measure || : B(R) — [0, 0], compare Definition
9.8 and Theorem 9.11 in [Axler, 2019]. If |u| (F) < oo we say u is of finite or bounded total
variation? on E. The sets of real- and complex-valued signed measures, respectively denoted
by M (R, B(R)) and M (C, B(R)), establish vector spaces. For py, uy € M (C,B(R)) we define
the convolution of py and py by pw (E) = [ [p Le(z — y)pu(dz)py (dy) for E € B(R). The
existence and finiteness of this integral is due to the inequality |uw (E)| < |pu| (R) |pv| (R),
which holds uniformly with respect to £ € B(R) and thus py € M(C,B(R)). If we introduce
by U(§) := uy((—o0,£]) a function of the variable £ € R, which is uniformly bounded along the
real axis, then fE ,uU (dx) fE U(dx) and ],LLU|( ) = |U|(E) for any E € B(R). Furthermore,

= [RU(E - = [ V( U(dy) or, for brevity, W = U «V =V %« U. We refer
to W(§) as the convolutlon of 51gned measures, as the Stieltjes convolution or, as in some older
texts, as the Stieltjes resultant of U and V. If we speak of convolutions without prefix, it will
always be clear from the context which notion we mean. In any case, the convolution of two
functions establishes some kind of product. Regarding densities, the space L!(R) endowed with
the operations addition and convolution is a ring, with the exception that it does not include
a neutral element with respect to convolution. The situation, however, essentially improves
if, endowed with these operations, we consider M (R,B(R)) or M (C,B(R)). Each of these

spaces especially contains the set of probability measures and particularly the measure d;gy with

*In some older texts, for instance in [Wheeden, 2015] and [Widder, 1946], the reader may encounter the
notion of functions of bounded variation. In particular, a function U is of bounded variation on [a,b] C R
if formally ff |U|(dx) = sup_ i, |U(xs) —U(zi—1)| < oo with the supremum being taken over all partitions
a=xo < xl < ...< xp =b. A comparison of this definition with (2.1.22) shows the equivalence of both notions,

, |l (B f 1 |l (dz). Moreover, any function U that is of bounded variation on R establishes a (real- or
Complex-valued) signed measure on B(R) by writing pu (E) := [, U(dzx) for E € B(R).
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2.1. Symmetrization by Convolution with the Conjugate Distribution

distribution function 1y5<.} = d703((—00,§]). But for pur, € M (C,B(R)) we have

o0

(2.1.23) L(¢) = /]1{0§U}L(dx) = (Lx1g<y) (), £ eR.

—00

In other words, the Dirac distribution function with mass at the origin establishes the neutral
element of Stieltjes convolution. The fact that this distribution is not absolutely continuous with
respect to the Lebesgue-measure explains the non-existence of a neutral element of Lebesgue

convolution.

The perception of convolution as a product, enables us to introduce convolution powers. In
particular, for k € Ny we write H** for the k-th convolution power of H, i.e., for the k-times
convolution of H with itself, where H* = L{g<¢y- Analogous to the binomial theorem for
multiplicative products, for [ > 0 we may then eventually cast the generating function of the

second sum in (2.1.8) in the following form:
(2.1.24) P

It is easy to see that the above notion is in accordance with the convention which we agreed for
the left hand side, namely that the sum for [ = 0 equals the Dirac distribution. Furthermore,

in terms of convolution powers we can write:
Lo/ B '
(2.1.25) DEm)=> > <k> (—D)FE* « G(€)

(2.1.26) =>
(2.1.27) SO =Y (1p<q—H)"(©

The last equality exposes the deconvolution sum as a special Neumann partial sum. Those are
of frequent occurence in functional analysis, especially in the context of integral equations of
Fredholm- and Volterra-type. There, they are closely related to the so-called resolvent. Sums
similar to (2.1.27) are also known from renewal theory, where they are referred to as renewal
functions or renewal measures. Such sums are, however, rather composed of convolution powers
of distributions, while the summands in (2.1.27) generally attain both signs. The particular
Neumann partial sum (2.1.27), as a sum of convolution powers of the signed measure 1<} —
H, facilitates an interesting interpretation. Observe that 1 o< — H is the difference of two
symmetric distributions. In the standard model of errors in variables (1.0.1) the distribution G

equals the convolution of F' with H, whence Y = X if and only if H = 14y<.;. As a consequence,
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2. Symmetrized Additive Models of Errors in Variables

the Dirac distribution with mass at the origin is not only associated with the neutral element of
convolution but in the context of errors in variables it constitutes the optimal error distribution.
Conversely the situation H # 1g<.) is rather problematic, because then G deviates from F'
with probability one. The expression 1(5<.y — H can be considered a measure for this deviation,
and it seems reasonable to assume that those errors in variables cause less problems whose
distribution H is most similar to 1y9<.;. We continue with some rather technical properties of

the single summands in (2.1.27).

Lemma 2.1.2. (1) Decay at infinity for l € N:

(2.1.28) lim (Lyp<y — H)" () =0

(—+oo

(2) Provided & possesses the required moments, the odd moments of (]l{og 3 ﬁ) ! (¢) vanish
forl € Ny, and

7 . —E[e?], ifl=1,
92.1.29 2 (19w — H) (d2) =
( ) _4 (o) = H)7 (@) 0, if 1 € No\ {1}.

(3) Forl €N, if H is continuous,

~(Lpoey —H)"(Q), ifCHO,

2.1.30 Loy — H)" (=¢) =
(2.1.30) (Lo<y = H)" (=0) | .

N[

Proof. The statement (1) is trivial and follows from the binomial sum representation. Re-
garding (2) it is clear that, due to symmetry, the odd moments equal zero. Moreover, equation
(2.1.29) for I = 0 is a consequence of the properties of the Dirac measure with mass at the origin.
To verify the result for [ > 1 we observe that, according to Bienaymé’s identity, for mutually

independent and identically distributed &1,&s,... ~ H the following holds:

5 (1) -0 [ k ]

k=0

o0

/Z2 (Lo<y — H)™ (d2)

|
RS
TN o~
~_
i
—
N—
EY
5
&=
™)
N

_E[?] [jqkzljo <;><_1)k k] )
el
= _E[&2] [z (1- q)l_l}
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2.1. Symmetrization by Convolution with the Conjugate Distribution

For (3) we note that the convolutions H** for k € N inherit the continuity and the symmetry
of H with H**(0) = 3. On the one hand, for ¢ # 0 this leads to:

(Tro<y — 7) (©) —]1{0<§}+Z<> 1FE™(C)

fj() [—E”hﬂ

k=0

On the other hand, for {( = 0 we obtain

l
(H{OS-} — F[)*l (0) = ]1{0§0} + %Z <]i> (—1)k = % + %(1 o 1)1.

k=1

The proof is thus complete. m

We now establish some elementary properties of the deconvolution function and sum, that

follow immediately from their definitions and the above lemma.

Lemma 2.1.3. (1) Finite behavior at infinity for m € Ny:

. m 0, Zf 60 = -
(2.1.31) lim ©(&,m) = lim S"(§) =
§—¢o §—¢o 1, if& = oo

(2) For any m € Ny we have |[ST*(£)| < 2™+ — 1 and also |D(&,m)] < 2™+ — 1, uniformly
with respect to £ € R.

(8) For m € N, provided the corresponding moments of € exist,

T 0, if j €2Ng + 1,
(2.1.32) /zﬂsgn(dz): 7€ 2o
. —-E [&?], ifj=2.

(4) For continuous H and m € Ny we have symmetry with respect to the origin:

1=82(=C), #C#0

(2.1.33) SM(¢) =
R if¢=0
(5) For m € Ny the following holds:
(2.1.34) StxH=10<y— (Lip<y - I—{)*(erl)
(2.1.35) D(,m)=F —F % (]l{og-} . I—{)*(m+1)
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2. Symmetrized Additive Models of Errors in Variables

The negativity of the second moment of the deconvolution sum confirms that it is not a
probability measure but that it necessarily attains both signs. However, recalling (2.1.7), the
necessity of this property is not surprising. This definition shows that the deconvolution function
emerges from the convolution of SZ* with the distribution G. Now, if the deconvolution sum also
would be a probability distribution it had a non-negative second moment, whence the second
moment of the deconvolution function would be greater than that of F. If, in addition, the
second moment of the deconvolution sum would not depend on m, then that of ®(-,m) would
be unchanged in the limit as m — oo. But the recovery of F' particularly requires to remove the
variance of the errors from the sum variable Y, which is thus only possible if SI* attains both

signs.

Proof. The statements in (2.1.31) are immediate consequences of (2.1.5) and (2.1.8). Moreover,

concerning the estimates in (2) we observe that

The validity of (2.1.32) follows from Lemma 2.1.2(2). Regarding (2.1.33), by continuity of H,
the identity (2.1.30) implies for ¢ # 0:

SO =<+ 3 (lo<y — H)"(O)
=1

=1

=1-8"(=()

Particularly for ¢ = 0, by (2.1.30), this equals SI*(0) = mT“ To verify (2.1.34), according to

the properties of convolution products, we observe:
S *H =S« (]1{0§~} — ﬂ{og.} +FI)

=5 (Lpoey —H)' = (1ggey — H)HY

=0 =0
=\ *(m+1
=<y — (Lo<y - 2) "
An application of this result to definition (2.1.7) finally yields (2.1.35). n

Preliminary to our upcoming investigations on the convergence of the deconvolution function
we close this section with an observation concerning discontinuities of F'. For simplicity suppose
F =1,,<. for afixed zg € R. Then ®(£,m) = S+ H(€—mp), by (2.1.7). Moreover, assuming

H is an arbitrary symmetrized continuous distribution, according to (2.1.30) and (2.1.34), for
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2.1. Symmetrization by Convolution with the Conjugate Distribution

m > 0 we have

m [ 7\ *(m 1
(2.1.36) L *H(O) :1{050} _ (]l{og-}—H) (m+1) (0) _ 5

At £ = xg we therefore observe the convergence

(2.1.37) lim (S * H) (§ = z0) # Lizy<g)

m—00

or equivalently lim,, o, ® (29, m) # F(z0). In other words, the function S * H (£ — xg) does
not converge to 1, <¢y for all £ € R. But in the above example the point { = xp is special, as it
constitutes the only discontinuity of the indicator function. Furterhmore ©(-,m) is continuous
for all m € Ny by continuity of H. Hence, the statement (2.1.37) is basically not surprising.
Indeed, if the convergence was true at £ = xy we had found a sequence of continuous functions
that converges to a discontinuous function, in particular to a step function. Instead we observe
that it converges to the mean of the left and the right side limit of F(§) at & = xg. Such an
observation is actually very common, for instance in the context of integral transforms and their

inversion formulae.

2.1.2. Moments of the Deconvolution Function

We will now investigate the moments of the deconvolution function. In the previous section we
already observed that the second moment of the deconvolution sum equals the negative second
moment of &, if it exists. Regarding higher moments, general statements are possible without
additional assumptions. In particular, we only suppose F and H have moments up to order
Kr, Ky € NgU{oo}, respectively, and denote Ko := 1 +min {Kg, Kg}. Then, H* and F * H*

for | € Ng have moments up to order Kz and (K — 1), respectively®. Furthermore, we introduce

(k1) i= / " F « H* (dx), >0,

—0o0

which implies p.(k,0) = px(k). Under the above assumptions also the function ©(&, m) has
moments up to order (Ky — 1) and, according to (2.1.35), for 0 < k < K, we have:

o0

pa(k,m)i= [ a*0(do.m)
_ 7 P (dz) — mf <m N 1> (1) 7 25 F 5 B (dx)
kS =0 e

. k
3This follows from the multinomial theorem by consideration of the expectations E{ [X + > 8_7~:| } and

r=1

l k _
E { {Z Er] } for 0 < k < Ko, | € Ng, where X ~ F and &, ~ H are mutually independent random variables.
r=1
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2. Symmetrized Additive Models of Errors in Variables

m—+1
(2.1.38) SCED S (i [CINCY)
=0

Since ®x®L constitutes the characteristic function associated with F' s H L Corollary 2 to
Theorem 2.3.1 in [Lukacs, 1970] tells us that this function may be differentiated (Kp — 1)-times
with
dk
pa(k, ) =i F | ——@x ()BL(t)| 0 <k < K.
dt t=0
This result leads us from (2.1.38), upon interchanging the order of differentiation and summation,

to a representation in terms of a well-known function:

m+1 m k
o) = (k) =i+ Y- (")) 1) | s iatin)

P t=0
k m+1 m
(k) — i [jtkq)X(t) > ( N 1) <—1>l¢>é<t>]
1=0 t=0
dk;
(2.1.39) = px (k) — i7" [dtk‘I’X(t)Pe(tvm)L_o

Indeed, the last equality involves the m-power which was defined in (2.1.9). Now, by Theorem
2.33 in [Lukacs, 1970], as t — 0 an expansion of the form*

|#£]

(2.1.40) D(t) = ca;(it)* + o {57}

m‘mﬁ

[
Il
o

holds, where co; = (25!) " 1u=(2j), p=(27) refers to the (2j)-th moment of £ and |-| equals the
floor function. Especially, as a consequence of the symmetry of H, any odd moment equals zero.
Rewrite (2.1.39) as

po(kym) =px (k) =i * | S t2m p(tm)|
(2.1.41) S 1=0
g t,m

The function p(t,m) is (Ko — 1)-times differentiable and, according to (2.1.40), it satisfies
p(0,m) = "1, Moreover, for 0 < k < min {Ko,2(m + 1) + 1}, as t — 0, it is evident from the

product rule of differentiation that

(2(m + 1))!
2(m+1)—k)!

dk;
(2.1.42) — 2+ (¢ m) =

= t2(m+1)fkp<t7 m) + o {tQ(erl)fk} _

“If K5 = oo this expansion is only absolutely convergent if it has a non-zero radius of convrgence. See p. 25
in [Lukacs, 1970].
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2.1. Symmetrization by Convolution with the Conjugate Distribution
This verifies that (2.1.41) cancels to
(2.1.43) po(k,m) = px(k), for 0 <k <min{Kyp,2(m+1)}.

At the same time it is ascertainable from (2.1.42) that this result can not be improved, since

generally
(2.1.44) o (2(m + 1),m) = px (2(m + 1)) — 2D (2(m + D)+ £0,
provided 2(m + 1) < Ky. Equivalently we may write (2.1.43) in the form

(2.1.45) lim pg(k,m) = ux(k), 0 <k < Kp.

m—o0

We have thus shown that, as m — oo any finite moment of the deconvolution function equals
the corresponding moment of F'. Finally we remark that this fact does not allow us to make any
conclusions with respect to the moments of lim,, ,, (-, m), since these are for k € Ny given
by [% @Flimp, 0 D(dz,m). It is also not possible to deduce from (2.1.45) the convergence®
lim;, 00 ©(-,m) = F. Especially recall that the deconvolution function is a signed measure,

whence statements for distribution functions become inapplicable.

2.1.3. Fourier-Type Integral Representations for the Deconvolution Function

We will now present some Fourier-type integral representations for the deconvolution function
that will be of frequent use. As we already mentioned earlier, these integrals have the advan-
tage of a clearer representation of ©(-,m) and an easier computability, which is in contrast to
the complicated sum formula given in (2.1.5). The derivation of these Fourier-type integrals
is particularly simple as they essentially follow from the common Fourier inversion formulae
for distributions. An important function in this context is the characteristic function ®, (%)
corresponding to the continuous uniform distribution on [a, b] for real numbers a < b, which was

derived in (A.1.6). In addition, a special role is played by

(2.1.46) D= {€ € R: F(¢+) # F(6-)},
(2.1.47) Dp:={{€R: Fx HY(¢+) # F x H(¢—) for some j € N},

the set of discontinuities of F' and D(-,m) for m € Ny, and by

(2.1.48) Cr =R\ Dp,
(2.1.49) Cp =R\ Dy,

the associated continuity intervals. Note that continuity of F or H implies Cp = R.

% According to Hausdorff, a distribution function is uniquely determined through its sequence of moments only
if it has a compact support. See pp. 21-23 in [Korner, 1988] and p. 60 in [Widder, 1946] for details.
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2. Symmetrized Additive Models of Errors in Variables

Theorem 2.1.2 (some Fourier-type integrals). (1) For ¢ € Cyp,

T .
11 D, (—t) — e D (1)
2.1.50 =+ — lim li Y Y22 G-(t, m)dt.
( ) D(Em) =5+ 5 Aim_ T, ; Gz(t,m)
Ty
(2) For a,b € Cyp with a < b,
T
(2.1.51) D(b,m) — D(a,m) = lim _a/@ab(—t)@@(t,m)dt.
T—oo 2T ’
-T

The verification of the requirement &, a,b, € Cp can be difficult if H has discontinuities. It
is, however, necessary for the applicability of the Fourier inversion. Although the limits of the
integrals in Theorem 2.1.2 may still exist if any of these requirements is violated, they might
not match the respective left hand side. An example that warned us to take special care at

discontinuity points of F' was already given in (2.1.37).

Proof. According to (2.1.26), for any m € Ny each summand in the sum representation for
the deconvolution function constitutes a distribution function. As a consequence we obtain by
application of the inversion theorem A.7.12 for any continuity point £ € Cgp subject to the

evenness of ®z(t) and subject to the formulae for binomial and geometric sums:

m l T .
l 11 Dy (—t) — e D (t) k
— DR 2+ — lim i P-(H) VL gt
D(&,m) ;kz_o( )( )5+ 5, Jim lim = {2:(t)}
0 e i

T )
BZtéq)X(—t) — e_ltg(I)X (t

- ;zm:u — 1)+ L i 1im )<I>5—(t) Em: (1—®(t)) dt

=0 27 ToToo 'TLLOT1 it i
T z’t,ﬁq) ( ) z‘tg@ ( )
1 1 . . e x(—t) —e” x(t
=g5+tg timl D=(1)G=(t, m)dt
2 " o T T - (1)Ge(t, m)
Ty

The interchange in the order of limit and sum is permitted by finiteness of the sum and since
the limits of the single summands exist. Writing the result in terms of the definition (2.1.15) we
arrive at (2.1.50). To eventually verify (2.1.51) we simply apply the inversion theorem A.7.10
to (2.1.26), which yields for a,b € Cp with a < b:

D(b,m) — D(a,m) = zmj i: <l> (—1)* {H*<k+1) x F(b) — H**+D & F(a)}
k=

k
=0 0
= S (0 i /T e () (@)}
o P k T—00 —it X ¢
=0 k= r

By the same arguments as before we may interchange the order of limit and sum. Finally
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2.1. Symmetrization by Convolution with the Conjugate Distribution

employing the usual sum formulae and writing the result in terms of the definitions (2.1.16) and
(A.1.6) leads to (2.1.51). n

An important means to measure the deviation of the deconvolution function from the distri-
bution of interest is the bias. Its Fourier-type integral representations are readily derived from
the above findings. For computational convenience we distinguish between the local bias and

the bias of the increments.

Corollary 2.1.4 (Fourier-type integrals for the bias). (1) If there exists 71 > 0 with

T1
(2.1.52) /Pa_(:’o)dt < o0,
0

then we may write for the local bias at £ € Cp N CF:

(2.1.53) 1 [ P(t,m)
= Jim o et oy
-T
If additionally there exists 7o > 0 with
Tl (t
(2.1.54) /’);()’dt < 0,

then F' is continuous and (2.1.53) holds for any £ € R. Moreover, the uniform bound
(2.1.55) |1D(-,m) — F||,, < ULB(m)
applies, where the uniform local bias is given by

1 o0
(2.1.56) ULB(m / ™) \@ o (1) dt.
0

s

(2) Denoting the bias of the increments for a,b € Co N Cp with a < b by

(2.1.57) BI(m,b,a) :== (D(b,m) —D(a,m)) — (F(b) — F(a)),
we have
T
(2.1.58) BI(m,b,a) = — lim b;ﬂ“ / D p(—t)Bx () Pe(t, m)dt.
=T

Again if (2.1.54) holds we have continuity of F' and validity of (2.1.58) for any pair of real
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numbers a < b. The latter is then bounded by
(2.1.59) |BI(m, b,a)| < ABI(m,b— a),

where the absolute bias of increments is given by

2 7 |sin { b0t
(2.1.60) ABI(m,b—a) == = / W 1@ x (1)| Pe(t, m)dt.
T
0

Observe that the local bias given in (2.1.53) is again a Fourier transform with respect to £ € R.
Furthermore, besides the fact that (2.1.53) depends only on one point whereas (2.1.57) depends
on two, the difference consists in the assumption concerning the integrability condition imposed
on t~ (1 — ®z(t)) in a neighborhood of ¢ = 0. Although this may be expected to hold for many
characteristic functions since we always have ®z(0) = 1, it is appearantly not naturally satisfied.

We could, however, not find any counterexamples. A sufficient condition is that, for b > 0,
(2.1.61) D) =1+0() ast|O0.

Lemma A.7.1 in the appendix specifies this property in terms of the distribution function.
Indeed, generally speaking, the behaviour of a characteristic function near the origin depends

on the tail behaviour of its distribution.

Proof. We continue from (2.1.50). A separation of the difference, which appears in the geo-

metric sum function, by Theorem A.7.12, for £ € Cp yields

Ts
1 6it£(px(—t) — 6_“5(1))((?5)
2.1.62 =F — — lim li
(2.1.62) D(&,m) €3] o A lim ;
T

Pg(t, m)dt

The principal value integral on the right hand side exists for any m > 0, subject to the binomial
theorem. Moreover, under the above conditions for fixed 75 > 0 we have absolute convergence

of the following integral:

Ty . .
it€ 4\ _ it
_/e D x ( t)t e (I)X(t)Pg(t,m)dt
0
Ty Ts
_ / PE(? m) 677‘t£@X(t)dt . / PE(? m) eztg(px(_t)dt
0 0

Ts
_ / 7)5(7;7 m) efitgq)X(t)dt

—Ty

This calculation verifies (2.1.53). Finally the existence of (2.1.54) implies the decay as t — £o0
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2.1. Symmetrization by Convolution with the Conjugate Distribution

of ®x(t), whence, according to Corollary 2 to Theorem 3.2.3 in [Lukacs, 1970], it must be
associated with a continuous distribution. But then F x H*/ is also continuous for any j € Np,
so that Cp = Cr = R and the representation (2.1.53) is applicable for all £ € R. Moreover,
the validity of (2.1.54) implies the absolute and with respect to 7 > 0 uniform convergence of
(2.1.53). Then, subject to the triangle inequality, (2.1.55) holds and the integral (2.1.56) in this
bound is finite. Analogous justifications yield the statements in (2) of Corollary 2.1.4. n

Each of the above principal value integrals can equivalently be represented as the limit of
a sequence of Laplace transforms by an additional application of Abel’s lemma for integrals.
We will occasionally make use of this equivalence for computational advantages. In fact, the
presence of the additional factor e %Il allows for an optimal exploitation of the properties of
the complex exponential function appearing in each formula. Alternatively it is, of course, also
possible to express the formulae of Theorem 2.1.2 and the bias by means of the inversion formula

from Theorem A.7.13, involving a smoothing function.

2.1.4. The Deconvolution Density

We already mentioned the continuity of the deconvolution function if F' or H is continuous.
Moreover, if one of these two distributions is absolutely continuous with respective densities f
and h, it follows from Theorem 3.3.2 in [Lukacs, 1970], that each summand in the sum represen-
tation of the deconvolution function is also absolutely continuous and thus the whole sum is. As
a consequence D (-, m) is differentiable for any m > 0 with derivative ©’(-,m). This observation
enables us to approximate the density corresponding to the distribution F' of X, provided it

exists. Therefore we introduce the deconvolution density, defined by

(2.1.63) (&, m) = / / hM—=E&+y + 2)SI(dz)G(dy).

—00 —00

That (2.1.6) is indeed an antiderivative of d(-,m) is readily confirmed by integrating the latter
along the ray (—oo,z] for x € R, where interchanges in the order of integration are permitted
subject to absolute convergence. Conversely if we started from (2.1.6), to justify the differentia-
tion under the integral sign would require additional restrictions on h. This was pointed out in
chapter 53 of [Korner, 1988]. Although we refer to 9(-,m) as the deconvolution density it must
be emphasized that it does not constitute a density in the sense of probability theory. This fol-
lows from the fact that ©(-,m) is a signed measure. Despite its negativity, however, it satisfies
[ o(z,m)de = [T D(dz,m) = 1. A more convenient representation for the deconvolution

density can be obtained by assuming continuity of h along the real axis. Then, according to the

inversion formula of Theorem A.1.3, for any £ € R we have

[e.o]

(2.1.64) h(—g):ani / D (5t) D, (t)dL.
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2. Symmetrized Additive Models of Errors in Variables

Here the function ®; € L'(R) is the Fourier transform of an approximate identity that satisfies
the conditions of Theorem A.1.3 and thus ®;(¢) is especially even with respect to ¢t € R. In
these circumstances for fixed 6 > 0 the integral (2.1.64) has the following properties:

/ BB (5t) D (t)dt| = / h(z) / M (5t)dtdz
— 5! /h(x)f1<_§_$) dx
(2.1.65) <?é£h /f[

The continuity together with the fact lim,_, 1o h(x) = 0 imply uniform boundedness of h on
the whole real axis, whence the above estimate is finite. If we therefore apply the integral rep-
resentation (2.1.64) to (2.1.63) it is permitted to interchange the order of limit and integration,
for any £ € R, m > 0 leading to:

(e m) = —— / / lim / (MU= (58) D (£)dtS™ (d2) G (dy)

%151{51 / / / HEv=2)9 1 (5t) . (t)dtST (d2) G (dy)

—00 —00 —O0

g [ e B (5t) By (— ). ()G=(t, m)dt

The last equality incorporates the definition (2.1.10) and the evenness of that function. After a

simple change of variables we arrive at

o0
(2.1.66) 2, m) = % ti [ @100y ()2 (~0)G(t m).
—o0

This is exactly the Fourier integral representation of the deconvolution density. Recall that its
validity depends solely on the properties of the error density, whereas the X-distribution can be
arbitrary. However, of course, the expression makes only sense if X actually possesses a density.
Throughout this work we pay merely little attention to the deconvolution density and confine
mostly to its integrated counterpart. Many statements concerning the former, however, are easy
to verify, once they have been shown for the deconvolution function. Similarly, techniques for the
evaluation of the deconvolution density can be adapted. Instead of intensifying this discussion

we now proceed with a different approach to symmetrize the additive model of errors in variables
(1.0.1).
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2.2. Symmetrization by Centering

2.2. Symmetrization by Centering

The idea of symmetrization can be modified by employing a constant, instead of a random,
symmetrizing variable. This is possible if in (1.0.1) the error variable £ has a characteristic

function that, for some fixed p. € R, satisfies
(2.2.1) D (t) = etH=d,(2),

where ®; has its values in the closed unit interval and is even. In other words, there exists a
random variable & := & — . associated with the symmetric distribution H := H(- + p.) whose
characteristic function ®; is even, non-negative and satisfies (2.2.1). Note that the non-negativity

is important but not necessarily satisfied by the characteristic function of any symmetric distri-

sin(¢)
P

The parameter p. is referred to as the location or shift parameter. We emphasize that p. = 0 is

bution. A counterexample is furnished by the uniform distribution with Fourier transform

permitted, in which event the error distribution itself is already symmetric with a characteristic
function that exhibits the desired properties. Now, in addition we define by V=Y - Le &

random variable with distribution G := G(- + p.) and characteristic function

(2.2.2) Dy (t) 1= e Dy (2).

Then, instead of (1.0.1) we propose the centered additive model of errors in variables
(2.2.3) YV =X+2¢,

such that the associated convolution equation in terms of characteristic functions becomes
(2.2.4) Oy (t) = Px () Pe(2).

The derivation of the deconvolution function to solve (2.2.3) is analogous to the steps in the
model (2.1.4). Details will therefore be omitted. Recall that ¢ € N; if and only if ®.(¢) = 0 which
is equivalent to ®:(¢) = 0. Thus, in accordance with (2.2.4), the definition of the geometric series

yields
(2.2.5) Dy (t) = By (t) f: (1—®:(t)", fort e R\ N,
=0

which is in fact absolutely convergent, since ®; is non-negative. This equation, for m € Ny and

& € R, gives rise to the definition of the deconvolution function

Sem) = [ TE~ (- n)Gldy)
(2.2.6) J

=T"« H+ F(§),
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2. Symmetrized Additive Models of Errors in Variables

where the deconvolution sum on the right hand side is represented by

m

o\ xl
(2.2.7) 70 =Y (To<y 1) (©).
1=0
Introducing the m-power
(2.2.8) Q:(t,m) := (1 — ®e(t))™ ",

the characteristic function of (2.2.7), again referred to as a geometric sum function, for t € R,

takes on the following form:

He(tm) =y (1— (1))

=0
(2.2.9) o
lm, it e R\ N,
m+ 1, ift € N

In terms of these definitions the characteristic function associated with (2.2.6), for t € R, is
given by:
Pz (t,m) =D (t)Hs(t,m
(2.2.10) §(t,m) =@y () He (8, m)
=®x(t) (1= Qa(t,m))

The latter satisfies boundedness and convergence properties analogous to those stated in Theo-
rem 2.1.1, which shall not be repeated here. Finally, again for convenience we aim to cast (2.2.6)

as a Fourier-type integral, which requires to define by

(2.2.11) Dy = {5 ER:FxH9(6+) # Fx H(¢—) for j € N} ,

the discontinuity points and continuity intervals of §(-,m), respectively.

Theorem 2.2.1 (integral representations for the deconvolution function). (1) For¢ €

Cs,

> .

11 D (—t) — e Dy (2)

2.2.13 = -+ — lim li Y Y 2(t,m)dt.
( ) S(Em) =5+ 5 Jim lim . Ha(t,m)

T

(2) For a,b e Cz with a <b,

b T

(2.2.14) §(b,m) —§(a,m) = Jim 2; / D, 4 (—t)D5(t, m)dt,
=T
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2.3. Errors in Variables and Operator Theory
where the characteristic function of the uniform distribution ®,, was computed in (A.1.6).

The derivation of these integral representations resembles the proof of Theorem 2.1.2 and also
shall not be repeated here. Regarding the properties of the deconvolution function (2.2.6), it
is straightforward to establish analogous statements that hold for the deconvolution function
(2.1.7). However, throughout this work we mostly study the latter, as it is applicable for a wider

class of error distributions.

2.3. Errors in Variables and Operator Theory

The symmetrized models of errors in variables (2.1.4) and (2.2.3) are special cases of (1.0.1)
with tranformed errors, respectively. It is therefore no restriction to confine our following con-
siderations to the latter. These encompass a treatment of the deconvolution problem involving
distributions from a functional analytic point of view, including the solution of the integral
equation (1.0.2), some properties of the solution and their relation to the solution of the integral
equation (1.2.13). Provided the density f associated with F' exists, the analogous equation for

the density deconvolution problem is
(231) o€) = [ sie-2)H2)

In each case we aim to recover F or f for given functions H and G or g, respectively. In other

words we are looking for the inverse operator H*(~1).

2.3.1. Derivation of Another Integral Equation

For fixed H the right hand sides of (1.0.2) and (2.3.1) can be generalized by virtue of the linear

convolution-type operator
(2.3.2) SuQ(§) = /Q(ﬁ—Z)H(dZ),

where in the first case @) is a distribution and in the second case it is a density. Observe that,
contrary to usual integral transforms, the distribution H corresponding to the kernel function
does not depend on the argument ¢ € R but is, even more distinguishing, connected with the
integrating measure. The integral is thus generally not of Lebesgue- but of Stieltjes-type. If
H is particularly discrete it equals a sum or a series. The Stieltjes convolution is a commuting

operation if ) is of bounded total variation, meaning that we can equivalently write

(2.3.3) SHQ(E) = / H(E — 2)Q(dr).
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2. Symmetrized Additive Models of Errors in Variables

In the latter form the kernel H depends on & whereas the argument function ) determines
the measure of integration. We already mentioned above that, technically speaking, in the
deconvolution problem we are interested in the invertibility of Sp, to determine (). A common
criterion for this is given by the next theorem, see Theorem 3.6-2 in [Ciarlet, 2013]. In the
following, for a vector space V we denote by L(V') the space of continuous, or equivalently
bounded, linear operators T': V' — V and by Idy the identity that maps any function of V' to
itself.

Theorem 2.3.1 (invertibility in Banach spaces). Suppose (V,||-||) is a Banach space and
T € L(V) with operator norm | T|| < 1. Then the continuous linear operator (Idy —T) : V — V
is bijective and its inverse (Idy —T)™' : V — V is also a continuous linear operator. Besides
(Idy —T) ™ =300 T" and ||(Idy —T)7'|| < (1 = ||T|))~", where T" =T o...oT stands for

the n-times iteration of T. The series representation for (Idy —T)~! is denoted as the resolvent.

According to the theorem, in order to determine the invertibility of Sz we must first specify an
appropriate Banach space V' on which our operator shall be defined and then consider Idy — S
The latter has an interesting integral representation that benefits from the fact that Sy is
of Stieltjes-type. Assume V is an arbitrary vector space such that for any Q € V we have
|Q(&)| < oo for Lebesgue almost all & € R. The Dirac distribution with mass at the origin then

enables us to write

(2.3.4) Q) = / Qe — g,

R

which is again finite Lebesgue-almost everywhere. Evidently, this convolution integral represents
the identity operator corresponding to the vector space V. We already made this observation
in the context of equation (2.1.23) in the particular case V' = M (R, B(R)). A consequence of
(2.3.4) is the possibility to cast the operator Idy — Sy in the equivalent form

(2.3.5) TyQ :=Q — SpQ = /Q( — 2)Kp(dz)
R

with the nucleus or kernel function
(2.3.6) Ky = Tio<y - H.

Similar to Sy also T}y is linear but differs from common integral operators. It does, for instance,
again not match the usual convention, according to which the kernel depends on the argument
£ eR. Yet TQ(&) = [ Ku(§ — 2)Q(dx) if Q is of bounded total variation. The operator T
plays another important role in the context of an integral equation depending on the unknown
@, which results from setting Siy@Q = P for a given function P. This shares some similarities
with a first kind Fredholm equation. In the general literature, where they most frequently occur

as Lebesgue-type integrals, they are known to bear ill-posed problems. The common approach
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2.3. Errors in Variables and Operator Theory

to solve them, especially if they involve a convolution-type operator, is by means of Fourier
analysis. Regarding the integral equation Sy@Q = P the statement of ill-posedness, however,
is too general and further distinctions are necessary. In fact, in terms of the operator Ty the

integral equation Sy = P can be rearranged to equal
(2.3.7) Q=P+ TyQ,

which, in opposition to the former, rather resembles a second kind Fredholm equation. Their
solvability essentially differs from those of the first kind. The standard approach is the method of
succesive approximations, leading to a Neumann sum, see for instance ch. II in [Tricomi, 1985].
This procedure was already applied in the context of the integral equation (1.2.15). Consider
(2.3.7) for instance in the case where @), P are replaced by F,G, respectively, i.e., consider the
deconvolution problem for distributions (1.0.2). Then, with the start function §(-,0) := G we
define the recursion §(-,m) := G + TyF(-,m — 1) for m € N. By induction it is easy to verify,
that

(2.3.8) Feom)=G*Y (Lg<y —H)™.
=0

Note that this equation employs the convention of the binomial theorem for convolutions, which
was introduced in (2.1.24). Regarding the density deconvolution problem, the transformation
of the Fredholm-type integral equation of the first kind (2.3.1) into one of the second kind
involving Ty is possible only if we keep the Stieltjes integral. It is not possible if we assume
the existence of a Lebesgue-density and write H(dz) = h(z)dz, due to the fact that 1<,
is not absolutely continuous with respect to the Lebesgue-measure. Especially note that the
associated probability function d¢py does not play the role of a density but actually equals zero
Lebesgue-almost everywhere, whence fR do1(z)dz = 0. Yet, if we keep the Stieltjes-integral in
(2.3.1) we can still deduce the second kind Fredholm-type integral equation (2.3.7) with f, g
rather than with @, P. Its solution can be approximated, analogous to (2.3.8), through the
recursion f(-,0) := ¢ and f(-,m) := g + Ty * f(-,m — 1) for m € N, which leads us to the closed

formula
- l
(2.3.9) =g+> (Lp<y—H)™.
1=0

The sums (2.3.8) and (2.3.9) resemble the resolvent appearing in Theorem 2.3.1. The essential
difference consists in the additional convolution with G and g, respectively, which will turn out

to be of major importance.

We will now derive some auxiliary results corresponding to the nucleus (2.3.6) before we

can finally discuss the applicability of Theorem 2.3.1. Being composed as the difference of two
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2. Symmetrized Additive Models of Errors in Variables

distributions it generates a signed measure. More precisely,

(2.3.10) pr(A) =Tyl = /KH(dz)
A

establishes a real-valued signed measure for A € B(R), where 1 4 is the indicator function asso-
ciated with the set A of the Borel o-algebra B(R). In accordance with the Jordan decomposition
theorem, compare Theorem 9.30 in [Axler, 2019], there exist unique mutually singular measures
F‘?—I? gy such that py = ,u;[ — - This decomposition is readily deduced by noting that on the
one hand pp(A) <0 if and only if 0 ¢ A € B(R). On the other hand, for A € B(R) with 0 € A
the function pg(A) > 0 is decreasing with respect to A. For A € B(R) we thus conclude

pifr (A) = 801 (A) (1 = pe(0))
p(A) =P € A\{0}).

(2.3.11)

By means of this representation the total variation measure equals |ug| = u;} + pp, and

lue| (R) = [ [Kg|(dz) is simply given by:

|| (R) = pify (R) + pigy (R)
=1-p.(0) +P(c #0)
(2.3.12) =2(1 - p:(0))

Additional properties of the kernel Ky (() are right continuity and, in accordance with the

asymptotic behaviour of distributions, decay as ( — +oo. Furthermore, generally | Kgl|| <1

and particularly if H is symmetric with respect to the origin we even have |[Ky||,, < 3, since
then

, if p-(0) =0,

o) -0

0

, if ps(o) >

NI—= N

>

We are eventually ready to discuss the invertibility of Sy in certain Banach spaces by means
of Theorem 2.3.1. Therefore, since the set of distributions and densities are both convex and
especially not vector spaces, we must extend to more general sets. This necessity naturally leads

us to the larger space of functions of finite total variation on R and to L!(R).

Example 2.3.1 (space of finite signed measures on B(R)). Making use of the definition
(2.1.22) for p € M (R, B(R)) we denote by ||u||py := |u| (R) the total variation norm, which is
in fact a norm. More precisely, according to Theorem 9.18 in [Axler, 2019], the space of finite
signed measures on B(R) is a Banach space if it is endowed with the total variation norm ||-||p .
Then, if for uy, € M (R, B(R)) we again denote L(§) = pr((—00,£]), also Ty L generates a signed
measure, i.e., ur,(A) := [, TgL(dv) is a signed measure for A € B(R). Regarding the norm
of the operator T on the one hand, according to Fubini’s theorem and subject to (2.3.12), the
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2.3. Errors in Variables and Operator Theory
following holds:

Tl = sup  |pryLlley
”.“L”Tvzl

~ s [ HJ L(- = 2) (Ljg<y — H) (d2)] (dy)

||HL||TV:1R

< s 121 [tz - H] @)

L =1
lerllry ® 2

= |pu| (R)
= 2(1 - p(0))

On the other hand, since d;y € M(R,B(R)) with H(S{O}HTV =1and Tyliy<.; = Th, we have

HTH]I{OS-}HTV = ||r ||y - Hence, the operator norm is exactly given by |Tx|| = |um| (R) and
Ty € L(M (R,B(R))). But it shows that ||Ty| < 1 only if p.(0) > 3. For continuous H we
observe || Ty || = 2 showing that the criterion of Theorem 2.3.1 is then never satisfied.

Example 2.3.2 (space of absolutely integrable functions). Consider the operator Ty de-
fined on the Banach space (L'(R),|-||,). It is easy to verify by means of simple estimates for
l € LY(R) that | Tglll; < |||y |ea| (R). Hence, |Tw| < |um|(R) and the operator is bounded.
But subject to (2.3.12) this estimate again does not always satisfy the condition of Theorem
2.3.1.

There is a remarkable difference between an operator having an inverse and being invertible,
which is pointed out in the introduction to section 11.5 in [Robinson, 2020]. Indeed, an operator
can have an inverse although it need not be invertible. More precisely, invertibility is a special
property, which implies the continuity and the boundedness of the inverse operator. Therefore,
the non-applicability of Theorem 2.3.1 merely suggests the unboundedness of the inverse operator
corresponding to Syr. Despite the lack of invertibility of Sy in the sense of the cited theorem,
as m — oo the sums (2.3.8) or (2.3.9) may still converge in the considered spaces for some
functions G or g. This, however, is not easily verified by simple estimates. In fact, the operator
theoretical setting seems rather inappropriate to discuss their convergence properties, whence
in a later chapter we will instead accomplish this task by means of Fourier analysis.

Finally, the fact that the kernel Ky ({) vanishes as ( — oo allows for another interesting
consideration of the space L'(R) or even of LP(R) with p > 1.

Example 2.3.3 (L?(R)-spaces). It is known that any function I € L'(R) establishes a signed
measure that is absolutely continuous with respect to the Lebesgue-measure, i.e., with L(§) =
ffoo [(x)dz we have L(dz) = l(x)dz. In these circumstances the operator (2.3.5) can be written

in the form

(2.3.13) TL() = / K (€ — 2)l(x)dz.
R
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In comparison to the the preceding representations, the above shares the most similarities with
a classical Fredholm operator. The main exception still is the right-continuity of the kernel
Ky and the non-compactness of the range of integration. Furthermore, owing to the additive
argument of Ky (€ — 2), we have Ky (¢ — 2z) ¢ L?(R?). This is a general observation concerning
convolution-type kernel functions making them inappropriate for Hilbert space theory. Despite,
if Kp(¢) decays not too slow as ( — 400 the operator can be defined on some LP(RR)-spaces,

for instance if Ky € L'(R). Integration by parts shows that this is equivalent to E {|¢|} < oc:

E{|e[}:/zH(dz) / 2H(dz)

[0,00) (~00,0)
- /(1—H(z))dz+ / H(z)dz
[0,00) (—00,0)

= [|Knull

In these circumstances the mapping Ty : LP(R) — LP(R) is continuous for any p > 1, because
for [ € LP(R), subject to Holder’s inequality, the following holds:

r P
ITHLI < / / Kp(€ — )| K — o)) ()| de| de
R LR
< / / Ky(€ — )| da / K (€ — )| )P dyde
R LR R
— Kl

This estimate yields the operator norm || Tx|| < ||Kgl[}, whence, according to Theorem 2.3.1,
the operator Sy is invertible if || Ky, < 1 or if E{|e|} < 1. The latter condition shows that

the convergence requires the errors to be extremely concentrated around the origin.

We conclude our functional analytic investigations with an extension of the above operator
that will ultimately reveal the link between many of the previously introduced deconvolution

functions.

2.3.2. Contiguous Relations Between Deconvolution Functions

For brevity we confine our discussion to (1.0.2) and omit (2.3.1). By elementary manipulations,
similar to the justification of (2.3.7), we obtain for £ € R and fixed v € R, A € C the following

equivalent representation for the integral equation (1.0.2):

(2.3.14) ANG(E+v)=F(§) - / (Ljo<e—oy — AH(E + v — 1)) F(da)
R
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We therefore define G, ) := AG(- +v) and H, ) := AH(- + v). It is easy to see that these two
functions are the scaled distributions associated with the random variables Y — v and ¢ — v,
respectively. Consequently, in contrast to (1.0.2) the equation (2.3.14) can not be expressed in

terms of random variables. Next, defining K H, = Lio<y — Hy and the operator

(2.3.15) Ty, Q= /Q(f —2)Kpg, , (dz)
R
for some function @ of bounded total variation, we can rearrange the integral equation (2.3.14)
to obtain
(2316) F = G,j’)\ + TH,,ﬂ)\F-

By means of the recursion €, ,(-,0) := G, and €,,\(-,m) = G, + Ty, ,E \(-,m — 1) for

m € N, it is straightforward to verify the closed formula

m

(2.3.17) Con(m) = Gorx Y {ljo<y — AH(-+ 1)}
=0

Evidently, comparison with (2.3.8) verifies the identity €y 1({,m) = F(§, m). Furthermore,
éc,ﬁ(fvm) = €.(&,m) provided ¢ € R is such that H(c) > 0. This follows upon writing the
probabilities in (1.2.16) in terms of convolutions of distributions accompanied by an applica-
tion of the binomial convolution theorem, compare (2.1.24). The function (2.3.17) thus indeed
generalizes the previously introduced deconvolution functions, except that of Example 1.2.3. In

addition, we have the following asymptotic relation.

Theorem 2.3.2 (finite deconvolution). Provided F' is an arbitrary distribution with F(§) =
0 for £ <0 and T. C Ny with p-(0) > 0, the deconvolution functions (1.2.16) and (2.3.8) satisfy
the identity

(2.3.18) lim §(&,m) = €(&, [£]) = F (&), for £ € R.

m—r0o0

In terms of (2.8.17) this equation is equivalent to €g1(§,m) = €, _1 (&, [&£]) as m — oo.

> pe (0)
Proof. For k>0, in (1.2.17) we have shown
i3 E ok
G«H*6 = G- <>p0 Eo(k —t, ).
&) Jgo ( ); , ) 1=(0)} o )

Upon interchanging the order of summation, for (2.3.6) we thus obtain

€] m 1 k
stem) =2 6le- DY ()03 (§) e vl - 1)

=0 1=0 k=0 t=0
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2. Symmetrized Additive Models of Errors in Variables

In (1.2.18) we considered a triple sum that is very similar to the above. Bearing in mind

p(t,7) = 0 for t > j by definition, analogous manipulations yield

lf;kZlo (,i)(l)’“‘tzk; (}) -0 st0~ 1.5
=§p<s,j><—1>5§;§( )(5) o oy,

Next, by means of the substitutions t = kK —s, n = [ — s, and according to the binomial theorem,

we obtain:

3 (1) (B ev-rmor =S5 (1) (1) oo

l=s k=s l t=0
B m—s (n—l—s)' "/ B
=3 T (4o
=3 O
n=0

Each addend in this last sum is non-negative. If we therefore apply the integral definition of
the gamma function for the factorial in the numerator, according to the monotone convergence

theorem, we may interchange the order of summation and integration, leading to:

> (n+ 5)! p 1 N
S0 = 5 Y o) [ar e
" n=0 0

sln!
n=0

The proof is thus finished. n

Similar to the preceding subsection it is possible to discuss the applicability of Theorem 2.3.1,

i.e., to discuss the invertibility of the linear operator

(2.3.19) Su, Q(E) = / Q€ — 2)H,n(d2)
R

on some Banach spaces. This requires us to examine the operator norm of Id — Sy, , = Ty, ,
We briefly confine to the space of complex-valued signed measures of finite total variation
(M(C,B(R)), ||:||7v), where ||p||py = |p| (R) for p € M(C,B(R)) with the convention (2.1.22).

First we denote by up,, the complex-valued signed measure which is generated by the kernel
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2.3. Errors in Variables and Operator Theory
Ku, . Then, for A € B(R), we can write

(2.3.20) pm, \(A) = Rum, , (A) +iSpm, , (A),

where the real and imaginary part are again signed measures, respectively given by:

R, ,(A) = / (Lio<y — RAH(- +v)) (da)
(2.3.21) !

= 310y (A) (1 = RAp-(v)) — RAP (e — v € A\ {0})

(2.3.22) Sy, (A) = —SA / H(- + v)(dz)
A

Furthermore, according to Theorem 9.18 in [Axler, 2019], (M (C, B(R)), ||-||;/) is a Banach space

and, analogous to Example 2.3.1, the operator Ty, , is continuous there with norm HTHV, N H =

\a, | (R). Now, by Theorem 2.3.1 the operator Sg,,, is invertible if the total variation on R of
(2.3.20) is less than one. To determine its magnitude we note that the imaginary part equals a
measure times the constant —3A. Furthermore, depending on the sign of A, it is ascertainable
from the second line in (2.3.21) that the real part is either the difference of two measures that
are singular with respect to each other, or equals a purely non-positive or a purely non-negative
measure. It suffices to distinguish between two particular cases. Firstly, if p.(v) =0, i.e., if v is
a continuity point of H and 0 < RA < oo, or if p.(v) > 0 and 0 < RA < {p.(v)} ', we obtain

for the total variation of pp,, on R by means of the partition R = (—o00,0) U {0} U (0, c0):

|, | (R) = |, ((—00,0))] + |, ({0})| + |, (0, 00))]

S AP £ )+ /1 2 (0) + AP {pe (1))

Notice that for any S\ € R we have:

1, | (R) = RAP (= £ ) + /1 — 20 (v) + (RN} {p- (1)} = 1 = RA2p.(v) — 1)

Hence, HTHMH < 1 is only admissible if p.(v) > % Secondly, assume p.(v) > 0 and R\ >

{p:()} !, or p.(v) > 0 and RX < 0. In these circumstances the total variation is readily

verified to equal

(R) = /{1 - R + {32}2

‘MHV, N

But again for any S\ € R we have

’IU’HV,)\ (R) Z |1 - %)\‘ °

Observe, if p.(v) > 0 then ||Ty, | < 1 only if, in addition to R\ > {p-(v)} !, we also have
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2. Symmetrized Additive Models of Errors in Variables

1 < R < 2. These constraints can only hold simultaneously if p.(v) > %, in which circumstances
Theorem 2.3.1 is applicable. Furthermore, if A < 0 and A # 0 we always have HT HMH >
1. To summarize these findings, the arbitrariness of the parameters A, v yields no obvious
advantage with respect to the invertibility of the convolution operator (2.3.19) in comparison to

the standard case A = 1, v = 0, which was considered in Example 2.3.1.

We close this section with a general reference to integral equations of the first kind before we

eventually discuss the convergence properties of the deconvolution function in the next chapter.

2.3.3. Concluding Remark: Transformation of General First Kind Fredholm-Type
Equations

For completeness we mention that the procedure applied to convert the convolution equations
(1.0.2) and (2.3.1) into equations of the second kind can basically be applied to more general first
kind equations. In particular, if for a given function f and a kernel k(-,-) we have an integral

equation
(2.3.23) fz) = /k(m,t)u(t)dt, a<x<b,

for v € R and A € C it can simply be rewritten in the form

b
(2.3.24) w(@) = M@+ 1) + |ulz) — A / k(z + v, t)u(t)dt

a

In order to conceive this as a second kind equation we introduce the primitive integral
t
(2.3.25) Ky \(z,t) := )\/k:(:n +v,8)ds
a

and the Dirac distribution function 1, <y, allowing us to represent the identity function as an

integral, so that (2.3.24) can equivalently be cast as

b
(2.3.26) (@) = Mz + ) + / u(t) (L <y — Koz, ) (d8).

a

The right hand side is an integral with respect to 1y,<., — K, (,-), which corresponds to
the kernel. Note that 1y, <¢y = Ljg<e_yy for § € R, ie., the kernel involves a convolution
component. The solution of the above transformed equation again can be approximated via

the method of successive approximations. Therefore, for brevity considering (2.3.24) merely for
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2.4. Convergence Properties of the Deconvolution Function

A=1and v =0, with m € Ny we denote

ug,1(x,0) := f(x),

b
uo,1(z,m) := f(x) + |uo1(x,m—1) — /k:(x,t)uo,l(t, m — 1)dt

a

(2.3.27)

The closed form representation of u(z, m) for m € Ny is readily verified to equal

" m+1 _
(2.3.28) up,1(z,m) = ZZ:; ( 1 )(_1)1H0 1(z, 1),

where the coefficients are

f(x), ifl=0,

(2.3.29) 5071(.%, l) = b
[ k(z,t)Z0,1 (¢, 1 — 1)dt, if 1> 1.

It is easy to confirm by induction that (2.3.28) suffices the recursion (2.3.27). For m = 0 this is
obvious. Assuming the formula (2.3.28) holds for m € Ny, for the (m+ 1)-th iteration we obtain
from (2.3.27):

b

up(z,m +1) = +Z<7j11> 1)'Z01(z,1 /xti<l+1>—)_01(tl)d

=

= f(z) + (m +1)Zg 1 (z,0) + lz; [(7?11) + <m ;r 1)} (—1)'Eo.1 (2, 1)

+ (=)™ =g 1 (z,m + 1)

Making use of the binomial identity (26.3.5) in [Olver et al., 2010] eventually results in (2.3.28),
which finishes the induction. An additional application to (2.3.28) of the binomial identity
(26.3.7) in [Olver et al., 2010] yields

m
(2.3.30) uo,1(z,m) = ZZ( ) Z0.1(z, k).
=0 k=0

Recall that the function ug 1 (x, m) only approximates the solution of (2.3.24) for A = 1 and v = 0.
It thus especially gives rise to merely one possible solution of (2.3.23). Further candidates can
be obtained for different parameter values.

2.4. Convergence Properties of the Deconvolution Function

As we mentioned earlier, the deconvolution function is associated with a signed measure, whence

the convergence of the corresponding characteristic functions is insufficient to conclude the
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2. Symmetrized Additive Models of Errors in Variables

convergence of D(-,m) to F. The aim of this section is therefore to examine

(2.4.1) lim D(§,m) = F(£)

m—0o0
in a general setup, mostly by consideration of the Fourier integral given in (2.1.50). It is then
straightforward to adapt these results to deduce the convergence of the bias of the increments

(2.4.2) lim BI(m,b,a) =0,

m—r 00

compare (2.1.57). The choice of the former rather than the latter has the advantage of a clearer
presentation, due to its dependence on merely one local parameter. Moreover, an additional
simplification occurs under the apparently mild integrability assumption (2.1.52). According to
(2.1.53), for £ € Cp N Cr and m > 0, with

T
~ 1 Pg t, m —i
(2.4.3) Ir(m,€) =g~ (t)e Py (t)dt
-T
we are then allowed to write
(2.4.4) D(,m) — F(€) = lim Ir(m, ).

In any case, the convergence (2.4.1) and (2.4.2) can only be investigated by means of the pro-
vided Fourier integral representations for &, a,b € Cp N CF, i.e., for continuity points of F x H*J
for any j € Ny. For other points the limits of the integrals on the right hand side of (2.1.50) and
(2.1.51) may still exist but will in general not match their respective left hand side. However,
actually this is not a restriction since we observed in Section 2.1.1 that the pointwise convergence
of the deconvolution function to F' might not be guaranteed at discontinuity points of F'. This is

also known from limits of sequences of distribution functions and referred to as weak convergence.

A first inspection, for instance of the Fourier integral representation (2.4.3), already suggests
that the convergence of the deconvolution function essentially depends on the involved charac-
teristic functions. Roughly speaking, one can distinguish between the integral being absolutely
and uniformly convergent with respect to T' > 0 or existing merely as a limit of a sequence of
integrals. While in the former case a strong kind of convergence is easy to verify, in the latter
case the situation can be much more difficult. Possibly the simplest scenario occurs if F' corre-
sponds to a symmetric distribution that is continuous at & = 0. In these circumstances the bias
integral (2.4.3) is immediately confirmed to equal zero at £ = 0 for any 7' > 0 without further
conditions. Hence, pointwise convergence at & = 0 is then for free. This general assumption,

however, is already insufficient to conclude the convergence at any other & # 0.
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2.4. Convergence Properties of the Deconvolution Function

2.4.1. Classes of Characteristic Functions

Before diving into our investigations on the convergence of the deconvolution function, it is
important to recall the different types of pure probability distributions. Basically this is a con-
sequence of the Lebesgue decomposition theorem, compare Theorem 1.1.3 in [Lukacs, 1970],
since each distribution function can be decomposed according to its discrete, absolutely con-
tinuous and continuously singular part. In terms of characteristic functions, this allows for the

following classification:

e The integral representation of a characteristic function ® associated with a discrete dis-
tribution is a sum or a series of complex exponential functions with coefficients equal to
the point probabilities. In these circumstances ® belongs to the class of almost periodic
functions in the sense of Bohr® and satisfies lim SUP|to0 |(t)] = 1. As a special case,
according to Theorem 2.1.4 in [Lukacs, 1970], ® is periodic if and only if the set of atoms
of the associated distribution function is the subset of a sequence of equidistant points on

the real axis. The latter are referred to as lattice distributions.

e A characteristic function ® of an absolutely continuous distribution satisfies the Riemann-
Lebesgue lemma, i.e., it satisfies limj;_,o, |®(¢)| = 0. Note that the decay need not happen

monotonically, for example in case of the rectangular or triangular distribution.

* Regarding singular distributions one can merely state limsupy_. [®(t)| € [0,1] with
the exact superior limit depending on the distribution. Particularly if the superior limit
equals zero, i.e., if ®(t) vanishes as |t| — oo, this needs to happen slower than the decay
of any function of the space L!(R). Otherwise it would be a contradiction to the inversion
formula for density functions, compare Theorem A.7.11 in the appendix or Theorem 3.2.2
in [Lukacs, 1970].

In addition, a characteristic function ® can also be a mixture or equivalently a convex combi-

nation of the above three classes, i.e., it can be decomposed in the form

3
(2.4.5) ® = a1®q + ayPac + az®, for a; >0 and Y aj =1,
j=1

where each summand represents the characteristic function of the purely discrete, purely ab-
solutely continuous and purely singular part, respectively. In particular, as a consequence of
Lebesgue’s decomposition theorem, a representation of the form (2.4.5) holds for any charac-
teristic function and only if a; = 1 for some 1 < 5 < 3, then ® corresponds to a pure distribu-

tion. Finally, according to the convolution theorem, compare Theorem 3.3.1 in [Lukacs, 1970],

5A continuous function a(t), t € R, is almost periodic if for any € > 0 there exists L = L(e) > 0 such that
any interval of length L contains a so-called translation number 7 = 7(¢), i.e., a number 7 with the property
la(t +7) —a(t)] < e for all t € R. The number 7 is thus almost a period of a. The almost periodicity of ®(t)
is easily a consequence of the approximability by a sequence of functions of that kind, uniformly with respect to
t € R. Compare with the corollary corresponding to Theorem V. on p. 33 in [Bohr, 1932].
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2. Symmetrized Additive Models of Errors in Variables

arbitrary finite products of characteristic functions yield the characteristic function of a new
distribution. But, while in case of mixture distributions, possible atoms of a discrete summand
determine the behaviour at infinity, the vanishing factor of a convolution is always dominant.
For example, according to Theorem 3.3.2 in [Lukacs, 1970], the convolution of an arbitrary with
an absolutely continuous distribution again leads to the latter type and the resulting charac-
teristic function vanishes at infinity. On the other hand, if a; > 0 in (2.4.5), the asymptotic

behaviour is completely changed to non-convergence.

2.4.2. Uniform Convergence

Summarizing the preceding subsection, there is a vast field of characteristic functions and a re-
striction to one class seems inappropriate. For example, a function ®x that vanishes at infinity
should perhaps be considered an exception rather than common. Yet, it is immediately ascer-
tainable from the Fourier integral representations (2.1.53) and (2.1.58) that such characteristic

functions yield the most convenient result, provided the decay happens fast enough.

Theorem 2.4.1 (uniform convergence). Under the conditions (2.1.52) and (2.1.54) we have
(2:46) i [9(.m)  Fl, € [0,50)
This limit equals zero if N¢ is of zero Lebesque measure or if ®x(t) =0 for any t € N.

The condition (2.1.54) holds, for instance, if ®x(t) = O {log™*(|t|)} as t — +oo for some
a > 1. Thus, Theorem 2.4.1 applies to absolutely continuous but possibly also to some singular
distributions. Moreover, the theorem reveals the effect of an error variable with a characteristic
function that has a compact support. It is then not possible to recover the distribution of the
blurred variable X, except if its characteristic function also possesses a compact support. For
a more general discussion of this case we refer to the next subsection. Finally, it is evident
from Theorem 2.4.1 that the uniform convergence to zero neither depends on the existence of
any moments nor on the support of . This is quite remarkable in view of the properties of
the deconvolution function. For instance, suppose H has moments up to order Kz and F
has moments up to order Kr, where K5z < Kr < oco. It then follows from the properties of
convolution that D(-,m) has moments up to order K 7, see Subsection 2.1.2. But if ©(-,m) — F
as m — oo, this implies that in the limit we return to a function with moments up to order
K. Similarly if F has a finite support. Then, regardless of H, the support of D(-,m) is either
infinite or increases as m increases. In this event, if the uniform convergence to zero holds, the

limit function possesses a finite support.

Proof (of Theorem 2.4.1). According to Corollary 2.1.4(1), we have:

1 Oopg t,m
o¢m - Fl, <+ [P o)
0
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2.4. Convergence Properties of the Deconvolution Function

S UL
U t T t
[0,00)\ Ve [0,00) N,

Observing 0 < Ps(t,m) < Ps(t,0), regarding the first integral it is clear that, under the condi-
tions (2.1.52) and (2.1.54), the integrand is bounded by an integrable function which does not
depend on m. In addition, limy,, o Ps(t,m) = 0 for all ¢t € [0,00) \ Ng, so that Lebesgue’s
dominated convergence theorem yields the decay of this integral. Regarding the second integral
we note that t = 0 is never included in N; since ®z(0) = 1 and that ®z(¢) is continuous along the
real axis. Hence, the denominator in the integral is bounded away from zero and the integral
is finite subject to condition (2.1.54). More precisely, it equals either zero or a finite positive

constant whose magnitude depends on N, and on ®x. This finishes the proof. n

Theorem 2.4.2 (convergence of increments). Given (2.1.54), for any pair of real numbers

a < b we have
(2.4.7) liin |BI(m, b,a)| € [0, 00).

If in addition (2.1.52) is satisfied, the convergence is uniform with respect to b — a. Finally, the

limit equals zero if N, is of zero Lebesgue measure or if ®x(t) =0 for any t € N..
Proof. The proof is analogous to that of Theorem 2.4.1 by virtue of the formula (2.1.58). m

Evidently, the convergence to zero of the uniform bias of the deconvolution function or of
the bias of its increments does not require to distinguish between different local behaviour
of @z, as long as N. remains a set of zero Lebesgue measure. The particular form of this
characteristic function will become rather important in later chapters on the discussion of exact
rates of convergence. On the other hand, the local behaviour of ®x is always crucial. Therefore,
distributions which satisfy the conditions of the preceding theorems play an outstanding role.
However, in many circumstances these may not be satisfied. For example, if F' has merely
one atom the Fourier integral representation for the deconvolution function is not absolutely
convergent. Indeed, the peculiarity in considering a general distribution F' is, that the associated
characteristic function ®x need not contribute to the absolute convergence. Thus, Lebesgue’s
dominated convergence theorem may not be applied in a straightforward way, to deduce the
convergence of the deconvolution function. Scenarios of such a general nature shall be treated

in the subsections below.

2.4.3. Errors with a Compactly Supported Characteristic Function

The convergence behaviour of the deconvolution function is particularly simple if ®z possesses
a compact support Iz C R. We will now illustrate this situation by consideration of the integral
(2.4.3), supposing validity of (2.1.52). Since ®z(t) is even with respect to ¢t € R, the assumption
of a compact support is equivalent to the existence of a finite 7; > 0 with ®z(¢) = 0 for |t| > T¢
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2. Symmetrized Additive Models of Errors in Variables

and Iz = [Tz Tg]. In these circumstances, for fixed T > Tz and £ € Co N Cp, (2.4.3) can be

decomposed into three integrals
(248) 9(57 m) - F(g) = IO(ma T€_7 E) + mo(Tg, §) + TIE;I;O m(T7 T57 ‘5)7

where we denote:

1 Pe(t,m) —ite
(2.4.9) To(m, T, €) 1= o / P o (ryar
[_TsvTE’]\NE
1 . dt
2.4.1 LE) = — it —
(2410 R Bk
[TE,TEONE
L[ o
t
2.4.11 R(T, T-,€) == — e Py (
(2411) 1.9 =5 | [+ / N
_T T=

The integral (2.4.9) is the only component where Pz(t,m) < 1. Since 0 ¢ N, the neighborhood
of t = 0 is included in its range of integration. Moreover, the integrand is uniformly bounded
with respect to m by t~!P:(t,0), which is integrable, according to (2.1.52), by finiteness of
T:. Hence, Lebesgue’s dominated convergence theorem implies the decay of the integral (2.4.9)
as m — oo. Furthermore, the finiteness of Tz combined with the continuity of the integrand
implies the finiteness of the remainder integral (2.4.10). It is even absolutely and with respect to
& uniformly convergent in any compact subset of Cp NCp. If ®z(t) # 0 for Lebesgue almost any

€ (—T%,T¢) it equals zero. Finally it remains to examine the remainder integral (2.4.11) and
its behaviour as T" — oco. The following alternative representation in terms of the sine integral
(B.1.1) holds:

is(E—x) _ e—is({—w)
R(T,1:,€) = / / , dsF(dz)

127S
—oo Tg
o0

(2.4.12) 1 / (Si((€ — 2)T) — Si((€ — 2)T2)} F(da)

The interchange in the order of integration is permitted due to the boundedness of the integrand.
Moreover, sup,cp [Si(z)| < Si(m), whence for arbitrary distributions F' the integral (2.4.12) is
uniformly bounded with respect to Tz, 7 > 0. In particular we deduce from the oddness of the

sine integral and subject to inequality (B.1.5):

Si(m

™

R Te€) < [ 19i(1 ~ o] T) = Si(l — ol T2)] F(da) <
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2.4. Convergence Properties of the Deconvolution Function

Similar to the proof of the inversion formula from Theorem A.7.12, an application of Lebesgue’s
dominated convergence theorem thus yields for £ € Cp N Cr the existence of the limit of the

sequence of integrals (2.4.12), which is

lim (T, T, 6) = 5~ F(E) + - / Si((¢ — 2)T2) F(d).

T—oo

To summarize our findings, for £ € Cp N Cr we have just verified

m—r0o0

(2.4.13) lim D(¢,m) = F(§) + Ro(T=,€) + lim R(T,T,6).

The remainder integrals appearing in this limit are uniformly bounded with respect to & in any
compact subset of Cp N Cp. Equality (2.4.13) shows that, for ®z with a compact support as
m — oo the bias between the deconvolution and the distribution function always converges to
a finite limit. The magnitude of this limit depends on & € Cy N Cf, on F' and on the range of
the support Iz. This promises a smaller magnitude if 7% is large and ® x (¢) decays as t — +oo

but not necessarily if the latter function exhibits almost periodicity.

2.4.4. Weak Convergence Properties of the m-Power

Particularly if ®z(¢) is non-increasing with respect to ¢ > 0 and vanishing at infinity, it becomes
evident that for fixed m > 0 the graph of the m-power Pz(¢,m) on the positive real axis resembles
that of a probability distribution. In such a case it is reasonable to expect, that the convergence
of the deconvolution function can be justified by weak convergence. Therefore denote ®z(c0) :=
lim; oo ®=(¢) and suppose ®:(c0) € [0, 1) exists”. Then also Pz(co,m) := lim; s P=(t, m) exists
and Pz(co,m) € (0,1]. In addition, assume Pz(t,m) is of finite total variation on [0, cc]. Since

®-(0) = 1, by definition of a characteristic function, for ¢ € [0, c0] and m > 0 we can then write
(2414) Pg(t,m) = / Pg(dv,m).
(0,¢]

If ®=(t) is once continuously differentiable on [0, 00], then (2.4.14) possesses a density with

respect to the Lebesgue measure, which is given by
(2.4.15) Pz(dv,m) = —(m + 1)®L(v)P=(v,m — 1)dv.

In any case, by continuity of ®z(¢) the function (2.4.14) is also continuous with respect to
t € [0,00] and the integral signs f[o i f(o p and fg have the same meaning. The transition

m — 00, however, requires us to employ the notion of a compact interval, especially if ®;

" According to Theorem 2.1.4 and Corollary 2 to Theorem 3.2.3 in [Lukacs, 1970], we can never have ®z(co) = 1
since then ®z was especially periodic, which would contradict the existence of the limit at infinity.

o7



2. Symmetrized Additive Models of Errors in Variables
vanishes at one of the endpoints. More precisely, we observe that

1, ift € [0,00] N Ng,
Moo 0, ifte[0,00]\ Ne.

Evidently, this function establishes a signed measure of discrete type and a point ¢ € [0, 0]
has mass one if ®z(¢) vanishes there and mass zero otherwise. In contrast to (2.4.14) the
limit measure thus exhibits discontinuities. It can be expressed in terms of indicator functions.
Therefore suppose the existence of a set of consecutive integers I = {1,2,...,2K} for some
K € N and of a non-decreasing sequence {7;},; of points from the set N. N [0, 00] with the

properties

T < 71 and Pz(t) =0 for 7, <t < 741, for odd k € I,

(2.4.17) Tk < Tk+1, for even k € I,

K
N.N[0,00] = U [m26-1, T2k)-
k=1

A segment [y, T41] for odd k € I is thus either an isolated point or a continuous interval of
the positive real axis, where ®z vanishes. Furthermore, 7 > 0 since 0 ¢ N.. A comparison with
(2.4.16) shows for ¢ € [0, 00| the validity of

K-1
(2.4.18) Pe(t, 00) = []l{tZTQk—l} _1{t>7'2k}:| + []l{t27'2K71} _]1{002t>7'2K}] :

k=1
The last indicator vanishes if 7o = co. If also o _1 = oo, the second last indicator equals one
if and only if ¢ = co. In order to be able to derive the convergence of the deconvolution function
by means of the limit statement (2.4.16), we require Pz(t, m) to be of uniformly bounded total

variation on [0, 0], i.e., we suppose that one of the following boundedness conditions holds:

sup / |Pz| (dt,m) < oo
m>0
(2.4.19) 0.
sup / (m 4 1) [BL(1)] P=(t,m — 1)dt < 0o
m>0
~ [0:00)

These are clearly equivalent under continuous differentiability of ®z(¢). Validity of (2.4.19)
eventually permits us to employ the Helly-Bray theorem, which can be found for instance as
Theorem 16.4 in ch. 1 of [Widder, 1946]. Accordingly, P=(¢,00) is of finite total variation on

[0, 00], and for all with respect to v € [0, co] continuous functions u(v) we have weak convergence,
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2.4. Convergence Properties of the Deconvolution Function

formally

(2.4.20) lim u(v)P=(dv,m) = / u(v)P=(dv, 00).

m—r0o0
[0,00] [0,00]
To evaluate the latter integral we first require an appropriate representation for the sum (2.4.18).
On the one hand for 0 < 7 < oo it is clear that 1> -y is the distribution function associated
with the Dirac measure with mass at 7, i.e., 113> -} = d4-([0,¢]). On the other hand 1+ ,y for

0 < 7 < 0o corresponds to the limit of a sequence of such measures. In particular

]l{t>’r} = 17;?01 5{T+7’]}([07 t])
n>0

In addition 64,11 ([0,00]) = 1 for any n > 0. Hence, (1,1 ([0,1]) is a sequence of functions of
bounded variation on [0, co| uniformly with respect to 7 > 0 and, again as a consequence of the

Helly-Bray theorem and by continuity of u(v), we thus have:

(2.4.21) / u(v )hm O grqmy(dv) = hm / V)07 pmy (dv) = hm u(t+n) =u(r)
[0,00] 7'>0 71>0[0 oo 17>0

To summarize these findings, the limit (2.4.20) can be written in the following form:

K-

n%iinoo u(v)Ps(dv, m) Z / (V) | Ofry, 43 (dv) — 17}1301 Ly—)
[0,00] F=1[0,00] >0
+ / ( )5{7'21( 1}(dv) ]]‘{TQK < oo} / hm 5{7'2K+77} (dv)
[0,00] [0,00] 77>0
K-1
(2.4.22) = > A{u(mor-1) — w(mor)} + u(rex 1) = Lir,p < o) u(T2K)
k=1

Before continuing with an application of this result we briefly discuss an example of a charac-
teristic function ®(¢) with infinitely many isolated zeros to point out the difficulties arising in
this context.

Assume P=(t) = 2 ( ). Then P=(t,m) has a density and the total variation on [7k, 7(k + 1)]
for k € N is readily computed. In particular, since the derivative ®L(t) on (7k,m(k + 1)) has

only one zero, denoted by tx, according to its monotonicity, we obtain:

m(k+1) t m(k+1)
/ |®L(8)| Pe(t,m — 1)dt = / B (1) P=(t, m — 1)t — / B (£YP=(t,m — 1)dt
7k 7k tr
B [_ P=(t, m)} e . [Pg(t, mq m(k+1)
m+1 ke m+ 1 ¢
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2. Symmetrized Additive Models of Errors in Variables

2

= m(l — Pg(tk, m))

Therefore the total variation on [0, 00] of an m-power which is composed of the squared sinc

function is given by

/,pa_\(dt,m) m+1/q>’ Pstm—ldt+2zl—7petkv m)).

The series on the right hand side converges for every finite m > 0 since, subject to the asymp-
totic behaviour of ®z(t), we have 1 — Pz(t,m) = O {t~?} as t — oo. But the summands are
non-negative and sup,,,>o(1 — Pz(ty,m)) = 1 for any k& € N. Consequently the total variation
of P=(t,m) on [0, 00| is not uniformly bounded, thereby violating the conditions (2.4.19) for the
application of the Helly-Bray theorem. This example suggests a general problem with m-powers
composed of functions that vanish at an infinite countable set of points.

We close this subsection with a sufficient condition for the pointwise convergence of the de-

convolution function.

Theorem 2.4.3 (pointwise convergence I). Suppose there exists a sequence Ty, ...,Tog for
K € N that satisfies (2.4.17). 1If, in addition, one of the conditions (2.4.19) holds, for any
& € CpNCF we have

K
(2.4.23) lim D(&,m) = F(&) + kZ R(Toks Tok-1, €)-
=1
The remainder integral was introduced in (2.4.11) but can also be found in equation (2.4.25)

below. It equals zero if N. has Lebesgue measure zero.

Note that the condition of the theorem is especially satisfied if ®z(t) # 0 for any finite ¢t € R
and if there exists a tg > 0 such that ®z(¢) exhibits monotonicity on |¢| > ¢y. This emphasizes the

outstanding role that is played by error distributions with monotonic characteristic functions.

Proof. Elementary manipulations of the integral (2.1.50) combined with the definitions (2.1.11)
and (2.1.15) yield

1 1 eltgq)X(—t) — 67“6(1))( (t)

Z + lim lim — 1—"Ps .

(2.4.24) DE,m) = 2+T21%0T11% 2mi / t {1 =Pe(t,m)} dt
(T1,T%]
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2.4. Convergence Properties of the Deconvolution Function

In (2.4.12) for T > S > 0 we derived the following representation for the integral (2.4.11):

T .
R(T, 5,€) = / L L
Z27Tt

(2.4.25) 5
_ ! / (Si((€ = 2)T) = Si((€ — 2)S)} F(da)

The boundedness of the sine integral, in particular sup,cg [Si(z)| < Si(7), implies the uniform
boundedness of (2.4.25) with respect to 7,S > 0. In addition, since £ € Cp N Cp, i.e., £ is

especially a continuity point of F', a comparison with the proof of the inversion theorem A.7.12

shows:

(2.4.26) R(t,0,€) := hm iﬁ(t T1,8) = —— / Si((€ — x)t)F(dx)
1

(2.4.27) MR(0,0,¢) = Tl;go%rﬁ] R(T», T1,§) = 3 F(¢)

Now, since R(T1,T1,£) = 0 for any 77 > 0 by continuity of the integrand, upon integrating by
parts the right hand side in (2.4.24) for fixed T» > T7 > 0 we arrive at:

1 Dy (—t) — e Dy (2
oo / (1 —P(t, m)} ( )t () 5
(2.4.28) (7112}
= —{1 = P=(T2,m)} R(13, T1, ¢ / R(t, Ty, &) Ps(dt, m)
[Th,T%]

Under the theorem’s conditions Pz(00, m) exists. Hence, if we combine (2.4.24), (2.4.26), (2.4.27)
and (2.4.28), we obtain

1
’D(f,m) = 5 - {1 —Pg(OO,m)}%(O0,0,é) - / %(taoag),Pé(dtvm)
[0,00]
As m — oo the second summand either vanishes or tends to unity, depending on whether or

not oo € N.. Moreover, it is obvious from (2.4.26) that 9R(¢,0,¢) is a continuous function of the

variable 0 <t < co. Hence, the limit result (2.4.22) applies and yields:

K-1
lim ©(&,m) = = —sn(oo 0,)Ncgney — O {R(T2k-1,0,€) — R(7ax, 0,6)}

m—00
k=1

- %(TQKflv 07 5) + ]l{TZK < oo}%(7-2Ka 07 g)
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K1
1
=5 = R(00,0, )T ¢ .} + Z R(Tok, Tok—1,&)
(2.4.29) 2 P

- é:):“t(7—21{—17 07 6) + ]]-{TQK < oo}m(TQKa 07 f)

The second equality is an immediate consequence of the definition (2.4.25). Finally, since oo ¢ N,
implies 7 < o0, according to (2.4.27), in this event the result (2.4.29) matches (2.4.23).
Moreover, if co € N. then necessarily g = oo and the second and the last summand in
(2.4.29) both vanish. But we always have R(12x_1,0,&) = R(0,0,&) — R(0c0, 2K —1,&), which
eventually validates (2.4.23) and concludes the proof. n

2.4.5. Test for Pointwise Convergence by Means of Alternating Sums

The essential ingredient that enabled us to establish Theorem 2.4.3 was not only the fact that
the m-power is of uniform bounded variation on [0, 00| but especially the presence of the os-
cillatory terms combined with the decreasing behaviour of the function ¢t~!. These allowed us
to make a reference to the sine integral and to verify (2.4.26) as a continuous function that is
well-defined on the closed positive segment of the real axis. Generally speaking, fluctuations sub-
stantially contribute to the existence of many Fourier-type integrals, although these may fail to
converge absolutely. In this subsection we present another approach to exploit this distinguish-
ing behaviour for the derivation of a pointwise convergence statement about the deconvolution
function. The oscillations of trigonometric functions are easily extracted either by integration
by parts or by sophisticated partitioning of the range of integration. At this point we remind the
reader of Appendix B.1, where we have shown the boundedness of the sine integral by dividing
the range of integration according to the sign of the sine function. A similar technique can be
applied, for instance, to the representation (2.4.3) for the bias of the deconvolution function.
First, for fixed T" > 0, m > 0 and £ € Cp N CF we write this as an integral along the positive

real axis only:

0
1 T
g tv —1
(2.4.30) = -3 /P(m)e Sy () dt
m
0

Regarding the contribution of ®x to the convergence of this integral we must distinguish between

oscillatory and monotonic components. Therefore we assume the existence of functions ¢x and
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2.4. Convergence Properties of the Deconvolution Function
px with ®x = ¢pxpx such that the following holds:

( .
ox(t) = [ €' Fy(dx) for t € R, where F, equals a step function with

—00

(2.431) jump points D, that is of finite total variation on R,i.e., [Fy| (R) < oc.

‘pXT(t) is continuous, of finite total variation on [Tp, co) for some Ty > 0

\ and vanishes as t — oo.

We emphasize that ¢ x (t) = 1 but also px (t) = 1 is possible, whence ®x can especially be purely

oscillatory or even constant. Moreover, the function Fy need not be a probability distribution.

For brevity we denote a(t) := @Xf(t). Under the above assumptions we obtain for T' > Ty from

integration by parts:

T t T
/PE(tt’m)e_iEtéx(t)dt: a(t)/Pg—(s,m)e_%s(ﬁX(s)ds
To To To
T t
—//Pg(s,m)eigs(bx(s)dsa(dt)
To To
T T t
(2.4.32) = a(T)/PE(s,m)e_i58¢X(s)ds—//775(5,m)e_igs(;ﬁx(s)dsa(dt)
To To To

The second equality incorporates the continuity of the integrand of the primitive integral

t
(2.4.33) B(t,m,¢) := /Pg(s,m)e_igsgbx(s)ds.
To

Clearly, for t = T, this equals zero. Furthermore, by assumption a(7) — 0 as T" — oo. A
sufficient condition for the decay of the first summand in (2.4.32) as T — oo is thus for fixed
m > 0 and £ € Cp N Cp the uniform boundedness with respect to t > 0 of (2.4.33). But in
these circumstances, since a(t) is of finite total variation on [Tp, 00), the integral with respect to
a(t) in (2.4.32) converges absolutely and uniformly with respect to T' > Ty. Combining (2.4.4),
(2.4.30) and (2.4.32) we may then write for fixed £ € Co N Cp and m > 0:

To fe’e)
(24.31)  D(E,m) — F(¢) = %% / P’f(tt’””e—iftcbx(t)dt - %% / B(t,m, €)a(dt)
0 To

The interesting task now consists in the investigation of the primitive integral (2.4.33) and
its behaviour as a function of m > 0 and ¢t > Ty. Of particular interest is the validity of
the assumption concerning its uniform boundedness. Besides additional integration by parts, a

useful tool in this context can be the procedure of Abelian summation by parts. While the former
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enables us to transform some non-absolutely convergent integrals to absolutely convergent ones,
the latter provides a formula to rearrange non-absolutely convergent to absolutely convergent
series. For N € Ny and two sequences (an)nen, and (by)nen,, according to §§182-183 on pp.
322-323 in [Knopp, 1976], the formula of Abelian summation by parts states

N

N N J
(2.4.35) Z anbn = bN+1 Z Ay — Z (bj+1 — bj) Z Ay
n=0 n=0 n=0

J=0

Since our preliminary considerations involve neither a sum nor a series, the reader may wonder
how to apply this formula to (2.4.34). As we indicated in before, it is our aim to exploit the
oscillatory behaviour of the complex exponential function appearing in (2.4.33). Therefore,
similar to the sine integral, we could straightforwardly split the range of integration according
to a half period of the function €!@=9s for z € Dp,, to obtain an alternating sum. Yet, this
approach seems to lead us to a statement about (2.4.33) that is only applicable for m-powers
with monotonicity properties. Those were, however, already covered by Theorem 2.4.3 in the
preceding section. A partition in the described manner is only one example. Another possibility

arises by supposing the existence of a constant p > 0 with the property that

(2.4.36) there exists a jz € No for which Pz(t + jp,m) is monotonic

with respect to integer j > jz for fixed 0 <t < p.

Clearly, in these circumstances the m-power and ®z both involve a periodic component and we
can divide the range of integration according to this period. A necessary condition to establish
the pointwise convergence of the deconvolution function is then presumably that the m-power
may not perturb the oscillations of the complex exponential function too much, i.e., that both

fluctuations do not come into conflict. This is confirmed by the following theorem.

Theorem 2.4.4 (pointwise convergence II). If ®x satisfies the condition (2.4.31) and Pz
satisfies the conditions (2.1.52), (2.4.36) and N is of Lebesgue measure zero, the convergence
(2.4.1) holds for any £ € Co N CF such that (x — §)p & 27Z for any x € Dp,.

A comparison with Theorem 2.4.3 reveals, contrary to monotonic m-powers, in the presence
of periodicity the pointwise convergence happens only subject to additional restrictions on the
local parameter. This must especially be kept in mind if Theorem 2.4.1 does not apply, because
otherwise the convergence is even uniform, which makes both of the aforementioned theorems

superfluous.

Proof. Under the assumptions of Theorem 2.4.4 it is easy to see that the first integral in (2.4.34)
vanishes as m — oo. It therefore suffices to show that (2.4.33) tends to zero as m — oo for any
fixed t > Ty and that it is uniformly bounded with respect to t > Ty, m > 0. The result then

follows from Lebesgue’s dominated convergence theorem. The first property is readily verified
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2.4. Convergence Properties of the Deconvolution Function

by virtue of the bound

t

(2.4.37) IB(t,m, €)] < |Fy| (R) / Po(s,m)ds.

To

But Pz(u, m) < 1 uniformly with respect to u € R and Pz(u, m) — 0 as m — oo for Lebesgue
almost any u € R. Hence, according to Lebesgue’s dominated convergence theorem, the upper
bound (2.4.37) vanishes as m — oo for any fixed t > Ty. To verify the uniform boundedness of
(2.4.33) we first define

Jo:=min{j € Nyg: j > jz and a(t) is of finite total variation on [jp, o]},
Jy:=max {j € Ng: jp <t},

and choose Ty = Jop. This implies J; > Jy for t > Ty. In accordance with this definition, we
now divide the range of integration in (2.4.33) into a countable number of segments, subject to

the periodic component of the m-power:

B(t,m,§) = /PE(S,m)e_igsng(s)ds

Jop
Ji—1 (J+1)p
= Z / P=(s,m)e z£s¢X ds+/7353m 25S(JSX( )ds
=J jp Jip
P
(2.4.38) :/eig(SJrJOp)SJt(s,m,f)ds—F/Pg(s,m)eigsqu(s)ds
0 Jip

For the second equality we performed two linear substitutions and wrote the result in terms of

Ji—Jo—1

(2.4.39) Sn(s,m, €)=Y Pels+ (Jo+ j)p.m)e Ppx (s + (Jo + j)p).
7=0

We now apply the Abelian summation formula to separate the m-power in this sum from the

oscillatory factors. For brevity we denote
(2.4.40) C(n,s,§): Ze “Ppx(s+ (Jo+5)p)-
j=0
By means of (2.4.35), from (2.4.39) we then deduce
Sy(s,m, &) = Pe(s + Jpp,m)C(Jy — Jo — 1, 5,§)
Ji—Jo—1

(2.4.41) - Z {Pz(s+ (Jo+n+1)p,m) — Ps(t + (Jo + n)p,m)} C(n,s,&).
n=0
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Finally, for finite n € Ny the trigonometric sum (2.4.40) can easily be summed up by employing

the geometric sum formula:

C(n,s, &) = / etz (s+Jop) Zei(“@j"’ﬂ,(da:)
e =0

iols 1 — ei@=&)(n+1)p
= / eir(s+Jop) — o Fy(dx)

—00

00 i { @=Op(n+1)
Sin
{ 2 } (s 25— B ()

B / sin{@}

Evidently, if (x — §)p ¢ 2nZ the denominator is bounded away from zero and |C(n,s,§)| < K
for some constant K7 > 0, uniformly with respect to n € Ny and 0 < s < p. The consequence

thereof is that the sum (2.4.41) satisfies the following bound:

’SJt (37 mag)‘ < Klpe‘(s + Jtp,m)
Ji—Jo—1
+ K Z |Pe(s + (Jo +n+1)p,m) — Pe(s + (Jo + n)p,m)|

n=0
= K1P=(s + Jip,m) + K1 [P:(s + Jip,m) — Pz(s + Jop, m)|
(2.4.42) < 3K,

For the second equality we appeal to the monotonicity of the m-power with respect to Jy + n,
while the last inequality follows from its uniform boundedness. It shows the absolute convergence
and therefore especially the boundedness of the sequence of partial sums (2.4.41), uniformly with
respect to 0 < s < p, J; > Jy and m > 0. Moreover, for the second integral in (2.4.38) the
following bound applies, uniformly with respect to t > Ty and m > 0:

[ Pelssmie S x(s)ds| < (¢ = ) |Fl (B) < oIyl (R)

o

The second inequality holds since 0 < t — Jip < p by definition. To summarize these findings,
uniformly with respect to m > 0 and t > Ty, the primitive integral (2.4.38) satisfies

|B(t,m,&)| < 3pK1 + p|Fy| (R).

Consequently, in (2.4.34) the limit m — oo can be carried out under the integral sign and the

limit value equals zero. The proof is thus finished. n

sin?(t)
t2

Examples for characteristic functions satisfying the conditions (2.4.36) are ®z(t) = or,
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2.4. Convergence Properties of the Deconvolution Function

besides products of monotonic and periodic functions, also mixtures of the form
(2.4.43) . = bdq)s,d + bcq)s,a for by > 0, b. >0, by +b. =1,

with characteristic functions ®. 4, ®. . of which the former is periodic while the latter is mono-
tonic. We emphasize, however, that the presence of periodicity is required since the positivity
of p essentially enters the proof of Theorem 2.4.4. Additional difficulties arise if ®z and thus
also the m-power possesses an almost periodic component. In the periodic case we saw that the
admissible £ € Cp N Cg depend on the period p. An analogous result for m-powers that feature
an almost periodic component must therefore be expected to incorporate information about the

translation number, which is more complicated.

2.4.6. Summability of the Deconvolution Function

A common method to improve the convergence behaviour of Fourier series is the application
of summation techniques. Since the deconvolution function is also a sum by definition, it is
reasonable to discuss the compatibility of those methods. We will not go too much into details
but rather conclude this chapter with a brief overview on the possibilities. First, for M > 0 the

Césaro means of (2.1.26) are given by:

M
D¢ (b, a, M) := M+ Z{@(bm) D(a,m)}

(2.4.44) = i < e 1) zl: < > DFH*HD 5 (F(b) — F(a))
=0

This definition is in general not a problem since it is known, if a series converges, the same
holds for the Césaro means of its partial sums with matching limits. The definition of Césaro
means, however, extends convergence in the sense that non-convergent series may be summable.
Instead of letting m — oo we now let M — oo. Similar statements apply for the Abel summation
procedure, transferring the role of m to a parameter r with r T 1. More precisely, for 0 < r < 1,
the Abel means of (2.1.26) are given by:

DA(ba a, 7") = (1 - T) Z " {®(b7 m) - @(a, m)}
m=0 l l ) N
=(1-1)_ > <k) (—DFE D s (F(b) = F(a)) > 1™
=0 k=0 m=l

(2.4.45) = i r! l) (—D)RE* D 5 (F(b) — F(a))

The third equality results from an interchange in the order of summation and an application

of the formula for geometric series. According to Lemma 2.1.3(2), the series (2.4.45) converges
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absolutely for 0 < r < % Applying the inversion formula of Theorem A.7.10 with the definition
(A.1.6), for a,b € Cp with a < b we formally obtain:

0 l o0
Dalbar) = S Y (,i) (1% [ Basl0) (20} @x ()

2 =0 k=0 —0
Cb—a [ Bas(-H)Px():(1)
(2.4.46) ~ o / 5o(0) + (L—r)(1— o0

For the second equality we again refer to the geometric series formula. The interchange in the
order of summation is admissible, for instance if ®,;,®- € LY(R). It is also admissible for any
0<r<lif®,,; Py € L'(R). In these circumstances, however, the integral converges absolutely
and uniformly with respect to 0 < r < 1 and the limit r 7 1 may eventually be performed under

the integral sign. This leads to the known convergence statement of Theorem 2.4.2.
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Convergence by Means of Real Analysis

Having provided some criteria for the convergence of the deconvolution function in the preceding
chapter, it is obvious to proceed with the examination of the rates of convergence. For this
purpose, again the four Fourier-type integrals from Corollary 2.1.4 are available, corresponding
to the local bias and the bias of the increments as well as their uniform and absolute bounds,
respectively. The discussion of techniques for the evaluation of the bias makes a great part of
this work and is our objective throughout this and subsequent chapters. In the present chapter
we mostly confine to methods of real analysis. For additional convenience we start with the
investigation of the rates occuring in the process of uniform convergence, which was established
in Theorem 2.4.1. For this, as in the corresponding proof, we employ the uniform local bias. It

was given in equation (2.1.56) by

(3.0.1) ULB(m) — i/mim) @ (8)] dt.
0

According to (2.1.55), this provides an upper bound for the maximum deviation of (-, m) from
the target distribution F'. Under the theorem’s assumptions, which shall be satisfied throughout
this chapter, the uniform local bias constitutes an absolutely and uniformly convergent integral
function of the parameter m > 0 with a non-negative integrand. Consideration of (3.0.1) instead
of the supremum of the absolute value of (2.1.53) has the advantage of simplicity. In particular,
by applying the triangle inequality we immediately removed the local parameter and any oscil-
latory contributions from the integrand. However, since the oscillations especially depend on &
this bound is presumably not too strong because for some £ € R in the local bias (2.1.53) the

fluctuations of the integrand may diminish.

3.1. Nature of the Bias Integrals

Rather incidentally we observe that, apart from a factor, each of the bias integrals for the
deconvolution function can be considered a generalization of the Riemann-Liouville integral of a
certain function, compare (B.2.23). More importantly, each of them is associated with a larger

and better known class of integral functions. This becomes evident upon writing for the m-power

(3.1.1) P(t, m) = elm+log{1-2=(0)}
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3. Approximation of the Rates of Uniform Convergence by Means of Real Analysis

which is always possible since 1 — ®z(t) equals a real-valued function in the unit interval. In
accordance with this notation, the reader who is familiar with the mathematical topic of asymp-
totic expansions will readily specify any of the bias integrals of Corollary 2.1.4 as Laplace-type.

Those are in general of the form

(3.1.2) I(m) == / e~ g (t)dt,

where P is a line segment of the complex plane, p is referred to as the phase and ¢ is denoted
as the amplitude function. Laplace-type integrals have the property that, as m — oo the main
contribution to the total value of the integral comes from a neighborhood of the points where
the integrand attains its maximum value. Those are particularly the points where the phase
function attains its minimum value. Owing to the behaviour of the exponential function, which
is the only factor showing the asymptotic parameter, at the minimum of p its value will always be
larger than elsewhere. These so-called peaks become sharper as m grows, whereas the remaining
area becomes relatively negligible. Integrals of Laplace-type are usually evaluated by Laplace’s
method or, in case of a complex-valued phase, by the method of stationary phase or by the
method of steepest descent. In some texts the notion of Laplace’s method is used synonymously
for any of the aforementioned procedures. Their aim is the local approximation of the integrand
in the neighborhoods of the minima of the phase, by the coefficients of the asymptotic expansions
of phase and amplitude function there. The exact asymptotic behaviour of I(m) as m —
oo thus substantially depends on the involved functions. A thorough discussion of Laplace’s
method, several examples and extensions can be found in [Bleistein and Handelsman, 1986] or
in [Olver, 1974]. We only give a brief overview for a real-valued phase p, a complex ¢ and an
integration path of the form P = (a,b) with real numbers a < b, to point out possible difficulties

in applications. Suppose that in this setup the following conditions hold:
(1) The functions p,q and the endpoints a, b are independent of m.

(2) b is possibly infinite but a is finite with p(t) > p(a) for all ¢ € (a,b) and for each ¢ € (a,b)
we have 'gtlfb(p(t) —p(a)) > 0, i.e., a is the unique infimum of p along the integration
c<t<

path.

(3) p' and ¢ are continuous in a neighborhood of a, except possibly at the point itself, i.e.,

both functions may be unbounded when approaching a.

(4) There exist constants P, u, A > 0 and @ € C\ {0} such that as ¢ | a we have

p(t) —pla) ~ P(t—a),

(3.1.3)
q(t) ~Qt —a)* ™,

with the first relation being differentiable. The latter condition holds for instance in case

of a continuous p’ with an asymptotic expansion as t | a, or in case of a function p that is
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analytic in a neighborhood of a. Given (3.1.3) we say p and ¢ exhibit algebraic behaviour

in a neighborhood of a.
(5) There exists an mg > 0 such that I(m) is absolutely convergent for all m > my.

According to Theorem 7.1, ch. 3 in [Olver, 1974], in these circumstances as m — oo the integral

(3.1.2) exhibits the asymptotic behaviour

A A
(3.1.4) I(m) ~ @1 () (Pm) ™ emP(@),
K K
A modification of the assumption (3.1.3) eventually yields a full asymptotic expansion rather
than only the leading term, compare ch. 3, §8 in the cited book or equation (2.3.15) in
[Olver et al., 2010].

Regarding the bias of the deconvolution function, subject to the representation (3.1.1) it

is clear that these integrals are in fact of Laplace-type with phase function

(3.1.5) p(t) = —log(1 — B(t)).

Hence, as m — oo the main contribution to the total value of the integrals comes from a neigh-
borhood of the points where the integrand and particularly the m-power attains its maximum
value. However, the applicability of Laplace’s method is limited. First, the maxima of the
m-power are often easy to localize, especially if these match the zeros of ®z. If one of the
maxima occurs at infinity, an additional substitution is required to map this maximum to a
finite point. Issues may arise from the arbitrary and complicated structure of the integrands of
the bias integrals. More precisely, if a denotes a minimum of p(¢), the involved functions may
not satisfy (3.1.3) there, for instance, if either of them locally exhibits exponential behaviour.
But exponential-type characteristic functions are frequently encountered. An important class
associated with such functions is furnished by the family of alpha stable distributions. We thus
refrain from an extensive treatment of Laplace’s method but only give a few examples to point
out the scope of applicability. Instead we aim to find different approaches for the evaluation of
the bias.

3.2. Simple Results

Let us first discuss our expectations with respect to the rate of (3.0.1) as m — oco. As we
mentioned in before, the main contribution comes from the points at which the m-power attains

its maximum value. This shall be illustrated by a brief example. For fixed T > 0 write

ULB(m):% / +/ Pg(i’m)kbx(tﬂdt.
{0<t<T} {t>T}
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3. Approximation of the Rates of Uniform Convergence by Means of Real Analysis

If T > 0 is such that ming<;<7 ®z(t) > 0, we observe that the contribution from the integral
along [0,7] is of exponential order. Regarding the integral for ¢ > T, however, this statement
becomes doubtful. In fact, the rate of this part is presumably much weaker if (T',00] N N, # 0,

since Pxz(t,m) =1 for any ¢ € N.. The situation is similar for the integral

1

(3.2.1) /(1 — 5)Mds = U;nﬁ);nﬂ.

01
For 0 < 61 < 1 it clearly vanishes with an exponential rate whose order depends on 6. As d1 | 0
the order decreases until we finally arrive at an algebraic rate of simple order for §; = 0. The
connection between (3.2.1) and (3.0.1) stems from the fact that ®z(¢) for ¢ € R maps to the
unit interval. However, as we shall see below, it is fallacious to expect the rate of ULB(m) as
m — 0o to be either of exponential or of algebraic order. Indeed, it will turn out soon that the

rates can be very diverse, especially if Laplace’s method (3.1.4) is inapplicable.

An immediate conclusion of the preceding observations concerns situations where the uni-
form local bias exhibits an exponential rate. From the monotonicity of s” with respect to
m > 1, for fixed s € [0, 1], it follows that

sup (1 — ®:(¢))" = |:SU_p (1-— @a(t))] .
teR teR

Hence, denoting by Ix C R the support of ®x, this is also the support of |®x| and under the
conditions of Theorem 2.4.1, from (3.0.1) for (2.1.55) we deduce

m
1 1— (¢
B2 oCm-Flost| sw o a-em)| [ T jex)ar
T | te[0,00)NIx t
[O,OO)OIX
It shows that, provided the characteristic function ®z attains a non-zero infimum in the support
of ®x, the rate is of exponential order. This is equivalent to the statement that ®z does not

vanish in the closure of I'y. Regardless of Ix such a case occurs, for instance, if the errors have

a Poisson distribution.

Somehow converse to the preceding scenario is the case, where ®: vanishes not only on a
countable set. For example if ®z has a compact support Iz, which does not include the support of
® . In this event our investigations of Section 2.4 have shown the presence of an additional non-
vanishing remainder term. As an illustrative example consider the functions {1 — [¢|} 1 <1)
and {1 + |¢|} !, which, according to equations (4.3.4b) and (4.3.4d) in [Lukacs, 1970], are char-
acteristic functions corresponding to absolutely continuous distributions. Assuming the former

associated with the error and the latter with the X-distribution, upon integration by parts we
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3.2. Simple Results

deduce from (3.0.1):

1 [e')
m

t 1
0 1

1 fm+2 17!
“om+n) [(m+1)(m+2) (1+t)2]0
2 g2 1 1
+ (m+1)(m+2)0/(1+t)3dt+1/t_1+tdt

1 — mlj!
2 2 )

The resulting series has non-negative summands and since m!j! < (m+1+7)!, it can be bounded
by a geometric series. Finally, assuming on the other hand, that both characteristic functions

®x and ¢ are of the given compactly supported form, we find

ULB(m

>Hr—‘

1tm1—t 1 L
0/ Tt )m+2)

Hence, the rate of uniform convergence can be quite good, even if the characteristic function of

the error variable possesses a compact support.

Classical textbooks, among those the previously cited monographs, describe integration by
parts and its modifications as a versatile technique for the derivation of asymptotic expansions
for integrals. By means of such a modification also an estimate for the order of the bias in

general settings can be deduced.

Theorem 3.2.1 (integration by parts). In addition to the assumptions of Theorem 2.4.1,

for mg > 0 suppose

(3.2.3) lim P [ox ()] =0, forto € {0,00},
Pe(t,mo) [ 950" € LV (RY).

As m — oo we then have

(324) Hi)(vm) - FHoo =0 {m_l} :
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3. Approximation of the Rates of Uniform Convergence by Means of Real Analysis

Proof. Under the above assumptions, upon integrating by parts, for m > mg we obtain:

ULB(m)zi]oP V@ (1) at
0
— m+2 0/[ tm—|—1)] %dt
_ m+2 [Ps_t;“rl |¢X(t)|]j_7f(ml+2)o7p(t’m+l) [%]/dt

_ 1)
m+2 O/P (t,m + [(I)’E(t)t

In accordance with the second requirement, Lebesgue’s dominated convergence theorem yields

the decay of the integral as m — oo. This verifies the theorem. n

With additional restrictions on the integrand and its higher derivatives, repeated integration
by parts is possible, from which more precise statements can be obtained. These restrictions,

however, become successively more complicated.

3.3. Characteristic Functions of Absolutely Continuous Distributions

Our introductory considerations suggest that we should rarely be able to provide statements
concerning the rate of convergence, valid for general characteristic functions. Of particular
interest are scenarios in which the bias integrals converge absolutely, which requires ®x(t) to
decay sufficiently fast as ¢ — +o0o. Therefore, omitting the exotic type of singular distributions,
it is necessary to distinguish between different classes of characteristic functions associated with

absolutely continuous distributions. Since for any pux € R trivially
‘I)Xfux = eii”X'q)Xa ’(I)Xfux‘ = ’(I)X| ’

we do not consider characteristic functions of shifted X-variables, as it is always possible to
combine shifts with the complex exponential function which is already present in the Fourier in-
tegral. Now, according to the common probability models, there are four classes of characteristic

functions of special importance:

e Algebraic-type characteristic functions will be denoted in the form

(3.3.1) Bx ()] = {1+ 671}, boap>0,

(3.3.2) o) ={1+o° 1t} ", 08>0,

for the distribution of X and &, respectively. Expressing ® x in terms of its modulus has the
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3.3. Characteristic Functions of Absolutely Continuous Distributions

advantage in covering a wider spectrum of characteristic functions. In fact, despite those

2_ or geometric stable distributions differ, in absolute value

corresponding to gamma-, Y
they all equal (3.3.1). Moreover, in certain cases even |®x| is a characteristic function.
On the other hand, both of the above functions constitute characteristic functions merely

for some parametrizations.

Exponential-type characteristic functions, i.e., exponential functions with a monomial in
the exponent, occur in the context of alpha stable distributions. Classical examples are

the normal and Cauchy distribution. We write

(3.3.3) O (t) = exp {—po° [t|*}, 0,a,p >0,

(3.3.4) o(t) =exp {~qo’ 11}, oB0>0.

According to Theorem 4.1.1 in [Lukacs, 1970], only if 0 < «,8 < 2 those are actually
characteristic functions. Note that stable distributions in addition may feature shift and

skewness parameters, which we omitted for the sake of clarity.

Characteristic functions with a compact support arise from distributions that possess
a density with a trigonometric contribution. Examples for such density functions are
t=2k sin2k(t) for arbitrary k € N.

Furthermore, there are characteristic functions that feature trigonometric properties and
vanish at infinity. Those occur for example in case of distributions with a compact support,
such as beta, rectangular or triangular distibutions. The latter family will be denoted in
the form

for p € N, aj,b; € R with a; < bj,

(3.3.5) ox() =] S—;

if it is associated with the distribution of X. Regarding &, this family is written as

sin??(ot)

W, fOI'quandO'>0,

(3.3.6) D:(t) =

which is in accordance with the symmetrization.

The parameters appearing in the above list have a similar meaning for any of the functions.

Particularly o and 6 are referred to as scaling parameters. Furthermore, for integer values, p

and ¢ indicate that the characteristic function arises from a p- or g-times convolution.

Of course, the preceding exposition is in no way exhaustive. Although there are necessary

and sufficient conditions, which a function needs to satisfy in order to be the Fourier transform

of a probability distribution, the whole scope is unimaginable. Neither are exponential-type

characteristic functions those with the fastest decay, nor do algebraic-type functions constitute

the class with the slowest decay. In fact, by means of Pélyas condition, compare Theorem 4.3.1
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3. Approximation of the Rates of Uniform Convergence by Means of Real Analysis

in [Lukacs, 1970], it was shown in Appendix A.7.4 that the logarithmic functions

(3.3.7) Dy (t) =log™P {6 + 95|t|°‘} , 0,a,p >0,

(3.3.8) oc(t) =log™ {e+0%1},  0.8,0>0,

establish characteristic functions if 0 < o, 8 < 1. Those are for no parametrization members of
the space L'(R).

3.4. Approximations for Error Distributions with a Monotonic

Characteristic Function

We will now present a fairly primitive approach to evaluate (3.0.1) for some of the characteristic
functions given in equations (3.3.1) to (3.3.4). These are strictly decreasing on the positive
real axis and infinitely many times continuously differentiable there. In addition (3.3.2) and
(3.3.4) map the positive real axis on the unit interval. More precisely, since ®z(0) = 1 and
lim¢ oo P(t) = 0, both functions are bijections between [0,00] and [0,1]. Each of them is
thus invertible, enabling in (3.0.1) the substitution ds = ®L(¢)dt. This leads to the Riemann-

Liouville-type integral
1
/ (1—5)"Co(s
0

where the part of the integrand that does not depend on m is referred to as

(3.4.1) ULB(m

=n~

B (1—3)‘<I>Xo<1>g1(s)|
Lo ()P N (s)

(3.4.2) Co(s) =

The function (p(s) is non-negative since ®L(¢t) < 0 by monotonicity, and it is also absolutely

integrable on the unit interval because ULB(0) < co. Moreover, under the above assumptions

oo, for s=0,

(3.4.3) d-l(s) =
0, fors=1,
and the decay of ®z implies ®~(c0) = 0. If
(1—3s)|®xo®:'(s 1— ®:(t)] |Px(t
sup CO(S): sup / ‘ X 6_1( )} :sup| 8(/)“ X( )|
0<s<1 o<s<1 —PLo -1 (s)d-1(s) >0 —PL(1)t

is finite, then (3.4.1) immediately implies ULB(m) = O {m™'}. A general impression how the
leading behaviour of the integral (3.4.1) is affected by the behaviour of (y(s) is provided by the
following consideration. Assume v : [0,1] — R{ is a continuous integrable function that satisfies

0 <wv(s) < oo for 0 < s <1. Then, depending on v(0), the function v attains a finite minimum
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3.4. Approximations for Error Distributions with a Monotonic Characteristic Function

or maximum on the closed unit interval. Consequently for by, bo, b3 > 0 we have

(3.4.4) /(1 —s)Mv(s)ds { = %2, if 0 < v(0) < oo,
0 < ify(0) = 0.

To confirm these statements it suffices to bound the integral from below, from both sides and
from above, respectively. It reveals that the exact rate of the integral (3.4.1) substantially de-
pends on the behaviour of the function (y(s) as s | 0. This observation is in accordance with
the fact that (3.4.1) constitutes an integral of Laplace-type, where the integrand attains its
maximum value in a left neighborhood of the origin. By (3.4.3) the origin corresponds to the

point at infinity in the original integral representation (3.0.1).

Since the integral (3.4.1) looks very similar to a known representation for the beta func-
tion, compare (B.3.1), it is our aim to express (p(s) in terms of algebraic functions to establish
this connection. In this process we will apply estimates that do not incur too much losses with
respect to accuracy of the estimated leading behaviour as m — oco. As a justification we refer
to the statement (3.4.4). Finally, to present our results in terms of elementary functions, we
make use of the functional equation for the gamma function combined with inequality (5.6.8) in
[Olver et al., 2010], which for m > 0 and b > 0 yields

F(m+1) mI'(m) b

(345) Tmt 146 Tmiisp) ="

A comparison with the approximation (B.2.30), obtainable by means of Stirling’s formula, verifies

the asympotic precision of this inequality.

Example 3.4.1 (algebraic-type characteristic functions). In our first example we con-
sider ®x and @z of the form (3.3.1) and (3.3.2), respectively. Then, upon substituting s = ®z(t)

we obtain

1
= @Tl(s) =g ! {1 — 5%}[3 s_i,

—q—1
(3.4.6) Y _ g

(t) = —BoPtP~1q {1 + (at)’B}
= —qfo {1 — 5111}1é sH_ﬁ.

We therefore deduce

wlR

|®x 0@ (s)| = P55 {Uo‘s/?q + 6« {1 - s%}

P

=:v1(s)

(1 —9)|Px 0B (s)

)= g e (e (s)
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3. Approximation of the Rates of Uniform Convergence by Means of Real Analysis

1

=2 58 () (1—s) {1 - 55}71.

=:v2(s)

The function v (s) satisfies

=0 P, fors=1,
v1(s) § >0, for s € (0,1),

=0~ for s=0.
Regarding vy(s) the rule of de I'Hospital shows

d
d(q_
limvy(s) = 1imM =q

1 1 d z
st sT 4 (1 — g4q )
Hence, on the unit interval this function exhibits the behaviour
=1, fors=0,

va(s) { >0, forse (0,1),

=gq, fors=1.

Consequently, in accordance with (3.4.4), neither v;(s) nor vy(s) affects the rate. Moreover, by

continuity both functions attain a maximum value on [0, 1], which yields:

1
ULB(m) = % / (1= $)™Co(s)ds
0
oPe
mqB

pa
<Z_B (m +1, gij) Joax vi(r)va(r)

Upon expressing the beta function in terms of gamma functions, see identity (B.3.2), accompa-
nied by an application of (3.4.5), it finally shows that the uniform convergence as m — oo in a

purely algebraic setup has the following order:
I9(,m) ~ Flly =0 {m™ %

In other words, the rate of decay is of algebraic order with the degree depending on the ratio
of the parameters «, 3, p, ¢, > 0, which determine the behaviour of the involved characteristic

functions at infinity.
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Example 3.4.2 (algebraic-type characteristic functions: Laplace’s method). We briefly
reconsider the preceding example to illustrate Laplace’s method. Since the characteristic func-
tion (3.3.2) vanishes only at infinity, the m-power attains its maximum value there. A simple

change of variables maps this point to the origin:

o0

ULB(m 1/73 5 1 “I)X <1)’d8
71' s

0

It is easy to see that this integral satisfies the conditions for the applicability of the estimate

(3.1.4) with mo = 0. More precisely, the phase and amplitude function as s | 0 exhibit the local

1 1

e ()} (1) o,
S S
(l

)’ ~ Qfapsapfl.

behaviour

The first of these asymptotic relations follows from the series expansion of the logarithm. From

(3.1.4), as m — oo we thus conclude

1 (oyor ap _ap
ULB(m)Nrﬁq{g} F(ﬂq>m Baq .

Notice the closeness of the estimate from the preceding Example 3.4.1 to this exact result.

We already mentioned possible difficulties in the application of Laplace’s method if exponential-
type functions are involved. Yet, this is not a problem for the procedure of simple estimates, as

the following two examples show.

Example 3.4.3 (exponential-type characteristic functions). Assume ®x and ®: as given
n (3.3.3) and (3.3.4), respectively. Then

(3.4.7)

From these identities we obtain
—1 o _—Q -1 %
Oy o d; (s)} =expq —ph°o [log{s QH ,

R O S R eI

For general «a, 8 > 0 these terms are essentially more complicated than the algebraic terms in
Example 3.4.1. In fact, as s | 0, it is ascertainable that (y(s) tends to zero slower or faster than

algebraic, depending on whether o < 8 or a > 5. An exception occurs if « = , which yields
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the following integral representation:

sPq

Gols) = 6717 (1= s) [log {571 }] e
5 ) [log {51 e

soPa

= —807"q
log (s)
1
Pp
zﬁ_l/s”ffﬁq dz

In this event (3.4.1) can be written as a double integral.
integration and applying (3.4.5) we arrive at:

Upon interchanging the order of

0
oBq
0
: 98 0P
1 _9"p_
S/I‘ —p+:c m oPa dx
w8 oPq
0
Gﬁp
"By 9B
< qmaxf‘<p+r)/m Tdx
B o0<r<i \ oPq
_%p
m a 6%p 1
< max I' | —— +r
7B o0<r<i’ \0ofq log(m)

Observe that the maximum of the gamma function is indeed finite, since the parameter-dependent
ratio in the argument is always positive. Especially I'(z) > 0 for any « > 0, whence this factor
does not affect the actual rate. As m — oo we have thus established the estimate
(3.4.8)

GB])

T oBq
1D(m) = Fll, =04 —""

)
———— Inax - T
73 log(m) o<r<1™ \ 0fq

Recall that this only holds for &« = 3. For some reason mentioned in before we were not able to

find an appropriate estimate for the function {y(s) in terms of algebraic functions for arbitrary

a, 8 > 0. This case will be thoroughly discussed in a later chapter by means of complex analysis.

Integrals involving gamma functions will be of frequent occurence in this work. If the inte-
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gration path is a segment of the real axis, we refer to them as Ramanujan-type integrals, since
he was the first to study them. See §3.3.5 in [Paris and Kaminski, 2001]. For some of them,

Ramanujan deduced representations in terms of elementary functions.

Example 3.4.4 (algebraic ®x and exponential ®:). For characteristic functions of the form
(3.3.1) and (3.3.4) a substitution as in (3.4.7) yields

|®x 0@ (s)| = {1 +6% 7 {log{s_;}}g}_p.

This is a logarithmic function of algebraic order, expressible in terms of integrals involving

algebraic functions, similar to the preceding example. First we cast (y(s) as follows:

[e3

Co(s) =B7"q7 (1 - {log{ ¢ H {1 | gag—a [log{s_%H 6}—19
e e el 1) o

ay-—p 1
=pt {1 + [log {squ H B} /sgg_ldx
0

=:v3(s)

m\@

Denoting 7 := U;q and w = % it remains to investigate the function vs(s). In order to make
use of the property 1+ log( ) = log(ez), by continuity of s = e~*, from the rule of de I'Hospital

we deduce

1+log {s~T}}¥ 1+tr)” W=l
1m{ + og{si }i = lim 7( +17) = lim 1—|— =1.
510 14 [log (s77)] t—oo 14+ 7YY  t—ooo tr

We have thus verified that

>0, for0<s<1,
=1, forse{0,1},

s) {1+ log {S_T}}WP

i.e., the product does not affect the actual rate. In addition, by continuity it has a unique finite

maximum £ > 0 on [0, 1]. Moreover, since 7 > 0 and es™” > 1 for 0 < s < 1, we may write

{1+1og{s77}} " = {log{es 7}} " = -

oo
L /y“p_ls”/e_ydy.
wp) )

To summarize our findings, the function (y(s) is bounded by a double integral:

1
Co(s) = ﬁlvg(s)/smldx
0
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1

%{l—i-log{s }} wp/sx_ldx

0

00 1
K / y“-’pfle*y / SCE*H'Z/*ldxdy
wp) ) J

Concerning (3.4.1), this estimate yields:

1
1
ULB(m) = ﬂ/u—s)%( )
0
1 00 1
< 1/(1—5)m " /y“p_le_y/s”“”y_ld:ndyds
T AT (wp)
0 0 0
[e’s) 1
= - "Jp—le_y/Bm—l—l z + Ty)dxd
ﬂﬁr(wp)/y ( : y)dxdy
0 0
7 [ T(m+ Dl + 79)
__ wp—1 _—y m + T+ TY dud
TrﬁF(wp)/y € /F(m—i—l-i—x—l—Ty) ey
0 0

In contrast to Example 3.4.3 the above Ramanujan-type integral contains an unbounded ex-
pression. That is, the function I'(z 4+ 7y) exceeds any limit as x + 7y approaches zero. We
shall see below that this behaviour essentially decreases the rate as m — oo. To show this,
we split the range of integration according to the domains on the positive real axis where the
gamma function increases and decreases, respectively. More precisely, since the gamma function
is known to increase along x > 0 into the left and right direction of ¢ &~ 1.46163, we split the

range of integration into two parts, leading to:

[y

K yi F(m+ 1)I'(z + 7y)
ULB(m) = /y ' T 1t a gy Metru<et t Matrys o) dudy
0 0
K
= 1 I
Ty wp){ 1(m) + Ix(m)}

For the first integral we obtain:

o] 1

_ I'(m+ 1) a;—l—Ty)
Li(m)= [ yP~te¥ dad
1(m) /y € Fm+1+z+71Yy) Loty <eydedy

0 0
7~ 1e min{c—7y,1}
— / ywp—le—y F<m + I)F(LC + Ty) dazdy
Fim+1+z+T1y)
0 0

82



3.4. Approximations for Error Distributions with a Monotonic Characteristic Function

¢

< /y“’pley/m(x+7y)F(:U+7'y)da:dy
0

The applied inequality makes use of the estimate (3.4.5). Assuming m > 1, we now employ the
I'-functional equation to separate the unbounded from the bounded part of the integrand. After

some simple manipulations this reveals the leading behaviour:

—1

T C C
Li(m) < / y“p_le_y/m_(”w)r(x+Ty)da:dy
0
T C c F
1
— /ywpl(mfe)y/mxmwdxdy
T+ TY
0 0
le c
1 m~"
<T'(1+2¢) / y“rT (mTe)_y/x+Tydxdy
0 0
¢ c .
I(1+2¢c / wp lmTy/ d
( ) |y il
0 0
clog(m) clog(m)
-
= {r1o “PP(1 4+ 2¢ / wp—le—y / ¢ dud
{rlog(m)} " T(1+20) [ y oy dedy
0 0

/ ;
0
= {Tlog(m)}wpf(l+2c)/y°”p_1e_y/e_x/e_(m"’y)tdtd:zdy
0 0 0
= {rlog(m)} “PT(1+ 2¢) /
0

[e.e]

— {log(m)} P T(wp)T(1 + 2¢) / (1+ 1) P Lt
0

= (wp) ™" {7 log(m)} " T(wp)I'(1 + 2c)

The third inequality incorporates the finiteness of the range of integration, so that the exponen-
tial function may be bounded by unity without affecting the rate. Finally, it remains to estimate
the integral Iy(m). This, however, is readily accomplished since ¢ > 1 and the beta function

decreases for arguments greater than unity:

00 1
= /ywp—le—y/B(m+ 1,x+7'y)]l{$+w>c}dacdy
0 0
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o] 1

< /ywp—le y/B m 41, 1)1y s cydady
0 0

< (m+1)"'T(wp)

Hence, I2(m) as m — oo exhibits a faster decay than I;(m), which shows that

5.49) D(um)— Fll. = 0 {<mp>-1 s {5 ) }

The rate of uniform convergence is therefore of logarithmic order.

Our final example ultimately shows that the above procedure yields only insufficent estimates

if the actual rate is of exponential order. This was already indicated by Example 3.4.3.

Example 3.4.5 (exponential ®x and algebraic ®z). With characteristic functions ®z and
®y as in (3.3.2) and (3.3.3), respectively, the change of variables s = ®z(¢) as in (3.4.6) yields

(0] = exp { g {13} 5 |

Co(s) =g 1B va(s) s texp {_plgo‘a_a {1 — s%}% g_ﬁq} )

In Example 3.4.1 it was shown that v2(s) does not affect the rate. Rather important is the

behaviour of v4(s). Observing that

(3.4.10) lim tPe" =0,

t—o0
for any b, p > 0, it follows that:

va(s)

: o —(1+b DN —(1+b _
lim =5~ =lim s @y 0 @1 (s)] = lim {P=(t)} 1oy (t)) =0

This implies

=0, fors=0,
v4(s
4s(b) >0, forse(0,1),
=1, fors=1.

Moreover, by continuity the function on the left hand side possesses a unique finite non-zero

maximum on [0, 1]. We thus obtain:

ULB(m

:\\H

1
/1—5mC0
0
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mqp
1 va(r) T(b+ 1D (m + 1)
< —
= TqB 02 va(r) rb T(m+b+2)

Since b > 0 was arbitrary, according to (3.4.5), as m — oo we have verified
D¢ m) = Fllo = o {m=(+1.

It shows that, if ®x is of exponential and @ is of algebraic type, the rate of uniform convergence

is of exponential order. A special case occurs if ¢ = 1 and @ = . Then, by substitution we

obtain
ULB(m) = Uﬁ(m+1)1/tmegftdt
pr ) (1+ oft)ym+l ’
0

This integral equals a confluent hypergeometric function for which an asymptotic expansion
was derived by means of Laplace’s method, for instance in subsection 10.3.2 in [Temme, 2015].
Therefore, however, additional manipulations are required which are only viable because of the

parameter restriction a = f.

Despite we were only able to estimate the exact leading behaviour of the uniform bias function
in certain cases, the preceding examples revealed the diversity of the possible results. Indeed,
apparently the rate of uniform convergence can be very different, depending on the individual
properties of the involved characteristic functions. A crucial factor is their local behaviour.
However, particularly for scenarios in which the rate can be expected exponential we only
obtained unsatisfactory results so far. It was not even ascertainable then, how the parameters
affect the exact leading behaviour. These issues can be fixed if we do not confine to real but

rather employ methods of complex analysis.

3.5. Chebyshev-Type Estimates for the Bias

We close this chapter with the presentation of another approximation method for the bias of
the deconvolution function that does not claim accuracy but rather simplicity. Contrary to
the approach of the preceding section the procedure to be presented below is applicable for
arbitrary characteristic functions, regardless of their monotonicity, decay or zeros, provided the
bias integral converges absolutely. It yields a concise overview on the controlling behaviour of
the bias for large values of the asymptotic parameter m, dismissing subsequent terms of the full
asymptotic expansion. The accuracy of the attainable estimates can be confirmed by comparison

with the exact results to be derived in Chapter 5 below.
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3. Approximation of the Rates of Uniform Convergence by Means of Real Analysis
3.5.1. Background

Throughout this section we confine to the absolute bias of the increments given by (2.1.60), yet
the procedure is equivalently applicable to (2.1.56). We remind the reader that the absolute
convergence of this integral implies continuity of ©(-,m) and of F'. Our first step is the derivation
of an integral representation for the m-power appearing in the bias integral. Therefore we first

observe that, due to the properties of ®z(t), for any ¢t € R we may write

1

(3.5.1) Po(t,m) = (m + 1) / 1{®=(t) < 5} (1 — s)™ds.

0

Hence, the single integral (2.1.60) can be separated into a double integral that is merely con-

nected through an indicator:

oo

sin {b=@
/]1{@ 0 <s}‘{t2t}‘]<bx(t)]dtds

l\')

1
(35.2)  ABI(m,b—a) = (m+1) /
™
0

Note that only the outer integral depends on the asymptotic parameter m > 0. In particular,
this is evidently an integral of Laplace-type, so that the rate as m — oo is determined from the
neighborhood where (1 — s)™ attains its maximum value, which clearly corresponds to s = 0.

Consequently, special attention needs to be put on the integral function
< : b—a
3 ==t
(3.5.3) s /H{(I)E(t) < s}w 1P x (1) dt

as s | 0. To assess the behaviour of this function as s | 0 we aim to find a precise estimate for
the indicator such that the t-dependent part is separated multiplicatively from the s-dependent
part. This in turn bounds (3.5.2) by a product of two single integrals with one of them being
deterministic, whereas the second is a function of m > 0. Since the idea of finding an optimal
bound for an indicator shares some similarities with the proof for Chebyshev’s inequality, we
refer to this approach as Chebyshev’s method.

Under the assumption (2.1.54) it is clear, since I{®z(¢) < s} < 1, that (3.5.3) is uniformly
bounded with respect to s € [0,1]. Furthermore, as s | 0 the range of integration shrinks to
the set of ¢-values where ®z(t) = 0. This requires to distinguish between three cases, which are
®-(t) vanishes nowhere or either on a discrete or on a continuous subset of [0,00]. In the first
case the function (3.5.3) equals zero for some s > 0, while in the second case it vanishes only
at s = 0. Finally, if ®z(¢) equals zero on a non-discrete set, then (3.5.3) is positive for s = 0 if
Oy (t) # 0 there.

It is readily seen that the bound I{®z(t) < s} < 1 applied to (3.5.2) does not only yield a
finite bound for the absolute bias of the increments, but one that is independent of m > 0.

This is, of course, undesired and leads to the question, which properties a useful bound should
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3.5. Chebyshev-Type Estimates for the Bias

have. In the simple case infi>o ®z(t) > C for C' > 0, we may apply I{®z(t) < s} < I{C < s}
to (3.5.2) to verify an exponential rate for ABI(m,b — a) as m — oo. Hence, without loss of
generality let inf;>o ®z(¢) = 0. Recalling that the main goal is the sophisticated manipulation of
the inequality ®z(t) < s, it is clear that equivalent inequalities can only be obtained by means
of monotonic transformations. In particular, denoting by 7'(xz) > 0 an increasing function of the
variable > 0, for t € [0,00) \ N, we have

(3.5.4) [{@:(t) < 5} <

This is true since the right hand side is always positive and especially > 1 if and only if the

indicator equals 1. However, not only monotonicity is crucial. For instance, of course
[{P:(t) < s} <exp{s— P=(t)},

but an application of this estimate yields another m-independent upper bound for ABI(m,b—a).
Similar results should be expected for any transform T'(z) that is non-vanishing as = | 0.
But since it was assumed that ®z(¢) is not bounded away from zero, this in turn implies the
unboundedness of the ¢-dependent denominator on the right hand side of (3.5.4). We therefore
conclude that, if inf;>o ®z(t) = 0, an appropriate transformation 7'(z) of the functions in the
indicator must reflect the maximum possible divergence of the reciprocal of T'(®z(t)), which is
compensable by the integrand of the dt-integral. This especially depends on the ratio between
O:(t) and |Px (1)

3.5.2. Main Result

The theorem below deals with the simplest monotonic transformations, i.e., logarithms and
powers, which often yield sufficient bounds. Indeed, the subsequent discussion will show the
applicability of this result to a large domain of characteristic functions. More extended estimates

can be derived analogously from (3.5.2).
Theorem 3.5.1 (Chebyshev-type estimate). Denote

v(t,b—a) = M | x(t)].

7t

If there exist B1, B2 > 0 satisfying

(3.5.5) I(b—a, B, Bo) = / (D)} {— log(®=(1)}* v(t, b — a)dt < oo,
0,0\,

then as m — oo we have

(3.5.6) ABI(m,b—a) = R(b—a)+ O {m_ﬁl {log(m)} ™ K(b—a, i, 52)} ;
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3. Approximation of the Rates of Uniform Convergence by Means of Real Analysis

where R(b— a) := f[O,oo)ﬁNE v(t,b—a)dt and K(b—a,B,52) :=T(1+ 51)I(b—a,p1,P2).

If (3.5.5) remains true for some Bj > 3;, the big-O may be replaced by a small-o. Moreover,
if the parameters (1, 82 can be chosen arbitrarily large, the bias exhibits an exponential-type
behaviour for large m. In particular, the convergence then happens faster than any power of
the respective term. Clearly, the admissibility of 51, 82 > 0 solely depends on the behaviour of

®:(t) and v(t) at the points where the former function vanishes.

Proof. It is easy to see that R(b — a) equals the remainder term of (3.5.2), i.e., the part that
does not depend on m. It is therefore no restriction to assume R(b—a) = 0. Regarding the part
that depends on m, we first observe that the left hand inequality below is equivalent to each

inequality on the right hand side:

{ £ }Bl for 51 >0
_ ) 1 =
(3.5.7) D(t)<s & 1< fa((tq),,(t)) 4

{ig#} , for B2 >0

Furthermore, instead of just one indicator we can easily introduce finitely many additional
indicators since [ {®z(t) < s}I[{Pz(t) < s} = [{Pz(t) < s}. We thus obtain for m + 1 > f2 by
applying each of the bounds (3.5.7) to (3.5.2):

1
(3.5.8) ABI(m,b—a) < I(b—a, 1, B2)(m+1) / (1— s)™s? {—log(s)} " ds
0

If on the one hand By = 0, the right hand side can be cast in terms of the beta function.

Accompanied by an application of the functional equation for the gamma function, we then find

D(m+2)L(1+ B1)
L'(m+2+ 61)

ABI(m,b—a) < I(b—a,p1,Bs)

By means of Stirling’s formula, compare (B.2.30), this verifies the estimate (3.5.6). If on the
other hand 35 > 0, in (3.5.8) we express the reciprocal logarithm in terms of the gamma function

and then make a reference to the beta function and its Mellin transform (4.7.19) to obtain:

o) 1
+;/xﬁ2 1/ (1—29)"s Ptz gsda
0 0

m+1 /wﬁz_lf(m+1)F(1+51 + )
(5)0 L(m+2+ P+ )

= [l (b — a, By, o) MB(B2,m, B1)

ABI(m,b — a) < I(b_ a751>ﬁ2);\n

=1(b— 751,52) dx

The Mellin transform of the beta function will be examined in Section 4.7 below. For the
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3.5. Chebyshev-Type Estimates for the Bias

moment it suffices to know that in (4.7.54), as m — oo it will be shown that

C(m+2)I'(1+ 61)
F(m+2+ p1)

Ba Mg (B2,m, 1) ~ {Hpmi1(B1))} .

But Hp,+1(a1) ~ log(m) as m — oo, according to (4.7.30) and according to the asymptotic
properties of the digamma function, compare (B.2.29). An additional application of Stirling’s

formula (B.2.30) eventually verifies the estimate (3.5.6), which concludes the proof. m

3.5.3. Applied Examples

We close this section with a discussion of several examples to illustrate the applicability of the

preceding theorem.

Example 3.5.1. Consider ®x(¢) as in (3.3.1) so that v(t,b — a) ~ §7Pt~1=% as t — co. If
®:(t) is then given by (3.3.2) it does not vanish at a finite point and satisfies ®z(t) ~ §=P9t=F4
as t — oo. Finiteness of the integral (3.5.5) is thus assured for arbitrary 0 < 31 < (8¢) 'ap and

B2 = 0. Hence, from (3.5.6), as m — oo we deduce

(3.5.9) ABI(m,b—a) = o {m’ﬁlK(b —a, B, 0)} : 0<p < %.
Furthermore, if ®z(¢) is given by (3.3.4) we choose ;1 = 0. Finiteness of (3.5.5) is then guaranteed
for 0 < B2 < B tap, and, according to (3.5.6), as m — 0o we obtain

(3.5.10) ABI(m,b—a) = o {{mg(m)}—ﬂ? K(b—a, 0,,82)} : 0< B < %.
Finally suppose ® x (t) matches (3.3.3) and ®z(t) equals (3.3.2). It is then easy to see that (3.5.5)
holds for any f1, 82 > 0, indicating an exponential-type rate of the form e=™" for some v > 0.
Already in Section 3.4 we derived asymptotic estimates for the functions that were considered
here. A comparison of these results with (3.5.9) and (3.5.10) shows the closeness of the respective
estimates. Full and exact asymptotic expansions for the functions from this particular example
will be deduced in Chapter 5 below.

Example 3.5.2 (products of two characteristic functions). Let
—q
(3.5.11) Dc(t) = {1+ a6 0%} exp { —aoeots? 11172 |

for oo1, 002, Bo1, Bo2, qo1, qo2 > 0, i.e., z(t) equals the product of (3.3.2) and (3.3.4). Moreover,
let ®x(t) be of algebraic type (3.3.1). Clearly, since v(t,b — a) ~ 07%Pt=*P~! as t — oo the
condition (3.5.5) holds only if 1 = 0 but 0 < 32 < B&lap. Therefore we again obtain the
estimate (3.5.10) with the indicated range for 3. In accordance with these observations, we
expect that the faster decay of ®z(¢) due to the additional algebraic factor does not essentially

decrease the rate compared to the case where ®z(t) equals a single exponential function.
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3. Approximation of the Rates of Uniform Convergence by Means of Real Analysis

Example 3.5.3 (countable number of zeros). Suppose ®z(¢) vanishes at a countable set of
points along the positive real axis, i.e., N-.N[0,00) = {tx : k € I} for some I C N either finite or

infinite. More precisely suppose for by, > 0 we have
D(t) ~ by |t — te]™  ast — tg,
and if co € N, for by, Too > 0, we have
D:(t) ~ boot™ "™ ast — oc.

Clearly, regarding the finiteness of the integral (3.5.5) we need not only incorporate the inte-
grand’s behaviour as t — oo but especially the behaviour around the zeros of ®z(t). Hence, for

ak, Ao € R\ {0}, pr > 0 and ps > 0 assume

v(t,b—a) ~ag |t —tx|P*  ast — ty,

v(t,b—a) ~ asct P* ast — oc.

Note that the powers p; depend on a, b since the zeros of the sine function appearing as a factor

in v(t,b — a) depend on b — a. Finally denote

% . { 14 pi }
o= 1nin .
kel Tk

Then, for 0 < f; < r* and any k € I we have

- —B1 Pr—
5. v(t,b—a) {®s ~ — ti|Pe" as t — tg,
(3.5.12) (t,b—a) {D(t)} 7 ~ apby P [t — ty, [P t—t

where py — rp81 > —1. The right hand side of (3.5.12) is thus locally integrable on [0, c0).

Moreover, if co € N, we have

(3.5.13) v(t,b— a) {B(t)} 7 ~ agb PP Pl as s 00,

P

Too

The right hand side is absolutely integrable on [k, 00) for any £ > 0, provided 51 < 2. From

Theorem 3.5.1 with 52 = 0, as m — oo, we thereby conclude

(3.5.14) ABI(m,b— a) zo{m_ﬁl}, 0 < f1 < min {r*,poo}.
Too

It shows, if ®z(¢) vanishes at some finite points, the rate of the absolute bias of increments can

only be improved if ® x(¢) also vanishes at these points. More precisely, a superior rate requires

that ®x(¢) vanishes at all these points. If this is violated for only one t; € N, the estimate

remains the same as for a characteristic function ® x () that is non-vanishing except at infinity.
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Asymptotics

The preceding chapter suggests that the applications of real analysis are often insufficient to eval-
uate the bias integrals corresponding to the deconvolution function. Hence, we will now switch
to complex analysis, which endows us with more efficient tools to handle these integrals. In
particular, we shall soon appreciate the importance of Mellin transforms. These will eventually
enable us to derive full expansions that describe the asymptotic behaviour of the bias for selected
examples. For a brief overview on the properties of Mellin transforms we refer the reader to
Appendix A.5. A more extensive treatment is provided by the monographs [Titchmarsh, 1937]
and [Paris and Kaminski, 2001] of which the latter will be our more important reference. Fi-
nally the paper [Fikioris, 2006] concisely outlines the applicability of Mellin transforms for the

asymptotic evaluation of integral functions.

4.1. An Introduction to the Method of Mellin Transforms

Mellin transforms constitute a very powerful tool, not only for the solution of integral equations
but especially in asymptotics, as was established in the early 20th century by mathematicians
like R. H. Mellin and E. W. Barnes. In comparison to Laplace’s method it is thus a fairly
new technique, bearing the advantage that its application is not restricted to a certain class
of integrals. The basic idea relies on the fact that the asymptotic behaviour of a given inte-
gral essentially depends on the structure and particularly on the singularities of the analytic
continuation corresponding to the Mellin transforms of the integrand. Therefore the first step
of the method of Mellin transforms is always, to express a given integral function in terms of
the eponymous transforms, which results in a special contour integral. Subsequent manipula-
tions of the integrand and a sophisticated deformation of the integration path finally lead to an
equivalent representation. This is typically a series expansion, either convergent or formal only.
Such a series features, for example, descending powers of the asymptotic parameter. Generally,
however, the structure of an expansion obtainable by means of the method of Mellin transforms
can be much more intricate and it need not be a power series of the asymptotic parameter. In-
deed, the method is especially able to generate expansions for integrals whose exact asymptotic

behaviour can not be described by plain algebraic functions.
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As a simple illustrative example for A > 0 we shall consider the Laplace transform

Y
(4.1.1) I, ::/ dt.
0

1+t

Assuming on the one hand we were interested in its behaviour as A — oo, the main contribution
to the integral comes from a neighborhood of the point ¢ = 0, where the integrand attains its
maximum value. If on the other hand we were interested in the behaviour of I, as A | 0, the large
t-values were of special importance since the integrand attains its minimum value as t — oc.
The standard approach for the derivation of exact asymptotic statements about the integral
I, is probably Laplace’s method. There is, however, another approach that is even applicable
for the investigation of the asymptotic behaviour of infinite sums, exploiting the possibility to
write the exponential function as an inverse Mellin transform. That is in particular, according

to (A.5.8), for t > 0 and ¢ > 0 we have validity of the so-called Cahen-Mellin representation

c+100
(4.1.2) I S N
2mi
c—100
In accordance with the exponential decay of the gamma function in the imaginary direction, this
integral is absolutely convergent. More precisely, if we write z = x + iy for =,y € R, subject to

Stirling’s formula, as |z| — oo in the sector |arg(z)| < 7 the modulus of the integrand satisfies
(4.1.3) D@+ )| ()™ ~ V2m(a? 4 y?) 53 () ey amele ),

Note that for fixed € R the argument function on the right hand side tends to £7%, respectively
as y — too. If we apply (4.1.2) to the integral (4.1.1) a formal interchange in the order of

integration yields

c+100

1 [t
(4.1.4) I, = F(z))\z/ dtdz.
0

2w ) 1+t
c—ioo
The set of admissible values for ¢ > 0 depends on the local behaviour of the integrand of the
interior integral as ¢ | 0 and as ¢ — oo, respectively. In the former direction it is O(t~%), whereas
in the latter direction we have O(t~*~1). Hence, the widest common region where (4.1.2) holds
for x = ¢ and the double integral (4.1.4) converges absolutely is the strip 0 < < 1. By Fubini’s
theorem the transition from (4.1.1) to (4.1.4) is thus valid for

(4.1.5) 0<e<l
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By inspection of (4.1.4) we immediately see that

1 o oo t_c
4.1.6 Iy <\ °— r iy)| d dt.
(116) vexon [ ala [
—00 0

This yields a first estimate for the behaviour of Iy with respect to A and shows Iy = O(A7°)
for arbitrary 0 < ¢ < 1 and A > 0. More accurate statements require to examine the interior
integral in (4.1.4) first. In the present setup it is readily identified as the beta function B(z,1—2z),
compare Example A.5.2, and by additional use of the identity (B.3.2) we can write

c+i00
(4.1.7) I = % / (T()}2T(1 — 2)A—2d-.

The situation in this setup is particularly convenient and if the interior integral in (4.1.4) had a
slightly different form it could possibly not be represented in terms of known special functions.
Preliminary to a discussion of the asymptotic properties of I it was then necessary to determine
the properties of the analytic continuation associated with the interior integral. For the beta
function these are already available.

In the literature the direct transition from (4.1.1) to (4.1.7) is referred to as Parseval’s formula
for the Mellin transform, compare eq. (3.1.4) in [Paris and Kaminski, 2001]. Moreover, integrals
of the type (4.1.7) are called Mellin-Barnes integrals, occasionally abbreviated as MB-integrals.
The notion refers to the two aforementioned pioneers in this topic. MB-integrals are special
contour integrals, characterized by the presence of at least one gamma function in the integrand
and by an integration path that partitions the complex plane in two regions without crossing any
singularities of the integrand. If the integrand only involves gamma functions with the possible
exception of an exponential term, a MB-integral is particularly of hypergeometric type. This is
the case in (4.1.7). The integration path therein evidently separates the simple poles of I'(1 — z),
which are located at the positive integers, from the double poles of the squared gamma function

at the non-positive integers.

Suppose now we are interested in the asymptotic behaviour of (4.1.7) as A\ — oco. In other
words, we are looking for an expansion that is descending with respect to the terms that depend
on A, i.e., an expansion in which each term tends to zero as A — oo with a slower rate than
the subsequent terms. The fact that the integral (4.1.7) is O(A™7") as A — oo, compare (4.1.6),
suggests that we should pay special attention to the region « > 0 since the big-O estimate decays
faster as A — oo if the fixed value x is chosen larger. Therefore we consider a finite rectangle
in the right z-half plane with edges of integer length Ni, No > 1, encircled in the clockwise

direction. Especially since the boundary of this rectangle does not run through any singularity
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of the integrand, the residue theorem and (B.2.20) yield:

c—i—z— c+N1+z— c+Ny —i% c—i—=%

2mi / / / T / {T(2)}*T(1 - 2)A %dz
criz

N N
c— 17 c+N1+172 c+N17172

N11

(4.1.8) = Z n4 1)} A1

Now, for any z > 0 and y € R such that z ¢ Ny, by virtue of the reflection formula (B.2.15) and
inequalities (4.18.5) in [Olver et al., 2010] and (B.2.32) in the appendix we deduce the following
bound:

(M()12T(1 = 292~ = A= | L&)
(4.1.9) sin(7z)
T T ™ 1
= fﬂ.z | >}\1( )|($2+y2)§_i6_2|y|+6 o2 4y?2
sinh(my

By comparison with the exact result we obtained in (4.1.3) from Stirling’s formula, the reader
may confirm the accuracy of the above bound. It shows that the integrand in (4.1.8) exhibits
exponential decay as y — Foo for fixed z > 0. Moreover, if we employ the above estimate to

the integral along the upper edge of the rectangle we obtain for A > 1:

C+Nl+i% c+N1 N |2 N
/ {T(2)}*T(1 — 2)A*dz| < r <x + 222> r <1 —z— 222) ‘ A% da
c+i%
3 c+N1
D L S L
|smh {7T }‘
2 IV )\ T C+N
V2T, e 2N e ((c 4+ Np)2 + N2) "z -1
|smh {7T }‘

Hence, as No — o0, this integral vanishes. A similar bound applies to the integral along the

lower edge. Taking into account that I'(n 4+ 1) = nl, from (4.1.8) we thus arrive at:

1 ctico ¢+ Nj—iod Ni—1
- 2 - —z — 1\ 1) 11
(4.1.10) P / + / {T(2)}°T(1 — 2)\"*dz 7;)( 1)"nIX

—100 ¢+ Nj+ioco

Identifying on the left hand side the integral along the vertical line x = ¢ as our integral (4.1.7),

we eventually obtain

Ni—1 1 c+N1+ioco
(4.1.11) Ly= ) (=1)"ax '+ o {D(z)}*T(1 — 2)A"%dz.
n=0 c+N1—i00
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Concerning the remainder integral the following bound applies:

c+Ni+ioco
(4.1.12) / {D()VT(1 - 2)A%dz| < aA—cM

+N1—i00 —00

IT(c+ N1 +1iy)|
|sin(7 (¢ + Ny + 1y))|

By comparison with (4.1.9) we readily confirm the finiteness of this upper bound. This shows the
absolute convergence of the remainder integral and in addition that it is O(A7¢""M) as A — oo.
But in the preceding sum in (4.1.11) the n-th term is ~ const x A== for 0 < n < Ny — 1.
Since 0 < ¢ < 1 we have eventually verified (4.1.11) as an asymptotic expansion as A — oo of
I. Tt is particularly of Poincaré-type, compare §1.1.2 in [Paris and Kaminski, 2001], because

by arbitrariness of N1 € N the preceding findings can be summarized in the form

N1—1
(4.1.13) Li=Y ()t o ANy
n=0

Equivalently it is also common to write
o

(4.1.14) I~ ) (D)™,
n=0

with equality if and only if the series on the right hand side converges absolutely. In the present
example this is not the case, due to the fast growth of the factorial function. The lack of
convergence is also seen from the remainder integral (4.1.11), whose integrand grows as N in-
creases. Moreover, the growth implies, if Ny is chosen too large in relation to the magnitude of
the asymptotic parameter A, the contribution from the remainder integral in (4.1.11) becomes

predominant.

By inspection of (4.1.11) we observe that the remainder integral is of similar type as the
initial integral (4.1.7), the main difference being the shifted integration path. Therefore, in
situations where the asymptotic behaviour of the integrand is sufficiently fast, for instance of
exponential order, we omit routine and elaborate calculations. Instead the transition from
(4.1.7) to (4.1.11) is then referred to as a rightward displacement of the integration path from
the vertical line x = ¢ to match the line z = ¢+ N;. Alternatively, which is ascertainable from
the above computations, this step can also be described as an encirclement of the poles in the
negative or clockwise direction by a rectangle of infinite height.

In the same fashion the method of Mellin transforms can be employed to derive an asymp-
totic expansion for I as A | 0. The estimate (4.1.6), however, suggests that we should therefore
investigate the possibility for a leftward displacement of the integration path in (4.1.7) rather
than a movement to the right direction. Indeed, since the integral is O(A™") it shows a faster
decay as A | 0 for larger negative values of the real part of z. In each case, as A = cooras A | 0,

the function A™* in the integral (4.1.7) plays the role of an asymptotic scale, compare §1.1.2
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in [Paris and Kaminski, 2001]. To explain this notion assume ¢g(\), ¢1(N),... is a sequence of
functions with respect to A € A, where A is a subregion of the complex plane. In addition, de-
note by Ag a limit point thereof, which is possibly infinite. Then the sequence ¢g(\), p1(N),, ...
establishes an asymptotic scale as A — Ag if the ratio of two subsequent terms tends to zero,
ie., if ¢pt1(N) = 0{dn(A)} for all n € Ny. The function A™* is of most frequent occurence to
define an asymptotic scale, for instance with z € Ny or z € —Np, respectively as A approaches
infinity or zero. Another simple example is given by (log\)™" for n € Ny as A — co. With the
above convention it is reasonable to speak of (4.1.14) as an expansion of I with respect to the

asymptotic scale A™" for n € Nj.

Basically our approach to adopt the method of the Mellin transform for the evaluation of
the bias integrals associated with the deconvolution function does not differ very much from
the procedure described in the above example. Once we have chosen which of the integral
representations that were given in Corollary 2.1.4 for the bias to investigate, we recast it as a
MB-integral, involving the Mellin transforms of the ingredients. Those are in any case the Mellin
transform corresponding to the m-power, representing the part that depends on the asymptotic
parameter, and the Mellin transform of the characteristic function ®x or its modulus. Clearly,
the method of Mellin transforms requires information about the behaviour of the ingredient
functions along the real axis. Only under detailed assumptions it is possible to specify singular-
ities and asymptotic behaviour of the analytic continuation associated with the involved Mellin
transforms. Therefore we distinguish between different classes of characteristic functions. For
the sake of clarity we mostly confine our first study to those of absolutely continuous distribu-
tions, in particular to the functions with simple algebraic and exponential behaviour that were
presented in Section 3.3. We will see below that it is then possible to refer the corresponding
Mellin transforms to known special functions. Preliminary we discuss some general properties
of the Mellin transforms associated with the characteristic function of the random variable X

and the m-power.

4.2. The Mellin Transform of a Characteristic Function

When working with the uniform bias function we frequently encounter the modulus of the
characteristic function ®x. Throughout our investigations we define the corresponding Mellin

transform by

[e.e]

(4.2.1) Mx(C) = /tC—l |By(t)|dt  for ¢ € Sy,
0

where Sx denotes the associated strip of analyticity., i.e., the region of the complex plane where
the integral represents an analytic function of . As a characteristic function, ® x is naturally

continuous along the real axis, whence the uniform convergence of the integral (4.2.1) in any
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compact subset of a region of the complex plane suffices to conclude Sx # ), compare Theorem

A.2.1. The latter happens to hold if for some dx > 0 as ¢ — oo we have
(4.2.2) Dy(t) =0 {t—5X} .

Then, since ®x(0) = 1, the integral (4.2.1) converges absolutely for 0 < R( < dx. Moreover, if £
denotes a compact subset of this strip with ap := min {¢ : ( € E} and by := max {R( : ( € E},
for ( € E, a constant A > 0 and a fixed T > 1 the following estimate applies:

[e. 9]

T
|Mx(¢)| < max P x (r \/tm 1dt+A/t§R<—5><—1dt
0

™ T
< max |[Px(r )\—i—A/tbO‘;det

0<r<T R¢
T
Tbo Tbo—5x
= o —+ A
Or<na<XT| X( )‘ ag + (5_)(—130

Hence, the integral (4.2.1) converges uniformly in E, and by arbitrariness we deduce
(4.2.3) Sx ={CeC:0<R(<dx}.

From (4.2.2) we ascertain that exponential decay of ® x implies that Sx matches the right ¢-half
plane. Now, according to the inversion formula for Mellin transforms, compare Theorem A.5.1

in the appendix, under appropriate conditions

xo+ico
1
(4.2.4) [@x (D) = 5 / = My (2)dz, for t > 0, o € Sx.
T
To—100

Particularly if (4.2.2) applies, the inverse Mellin integral converges absolutely provided Mx (zo-+
iy) € L'(R). In the examples to be studied below this will always be the case. Since (4.2.1)
constitutes a common Mellin transform, its continuation can be characterized by known results
or it can even be expressed in terms of well-studied special functions. A remarkable and possibly
helpful tool in this context might be Ramanujan’s master theorem which has been thoroughly
discussed in [Hardy, 1937].

The characteristic function ® x without the modulus rather occurs in the context of the local
bias. We denote the corresponding Mellin transform in the standard fashion of Appendix A.5
by M {®x}(¢) with strip of analyticity Sy {®x}. If &x = |Px| we write Mx = Mx and
Sx = S{®x}. The properties of the Mellin transforms M {®x} (¢) and (4.2.1) mostly differ
with respect to effects that are caused by possible oscillatory behaviour of ® x. Indeed, the above
estimates also verify M {®x} (¢) analytic in 0 < R( < dx if (4.2.2) holds. Finally, contrary to

its modulus the characteristic function of X can be specified in terms of its distribution function,
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which was investigated in Appendix A.5.2.

4.3. The Mellin Transform of the m-Power

The discussion of the Mellin transform of the m-power is intimately connected with the properties
of binomial series. Therefore it is only natural to start with a short introduction to this kind of

series.

4.3.1. Properties of Binomial Series

A binomial series, also known as Newton series, is generally of the form

(4.3.1) S(m):=>" <”;> (=D)L (1), m € C,

=0

where f denotes the coefficient function. Particularly for m € Ny it is known that (4.3.1) cancels
to a finite expression and is then referred to as a binomial sum. In their simplest form binomial
sums are already encountered in school. There, usually f(I) =t for some t € R and m = 2, i.e.
the binomial sum equals a polynomial of low degree. However, the series (4.3.1) with f(I) = ¢!
is also absolutely convergent for m € C and complex |t| < 1. By Satz 245 in [Knopp, 1976] it

then equals the Taylor expansion

(4.3.2) 1-tm=3" (7) (—t), larg(1 — t)| < .

1=0
Moreover, subject to Satz 247 in [Knopp, 1976] this series remains absolutely convergent on

the boundary of the unit circle, provided ®m > 0. In these circumstances, according to Abel’s

theorem for sums, from (4.3.2) we conclude

(4.3.3) i <”;> — o™, Rm > 0.

=0

Without loss of generality assume real-valuedness of the parameter m. As a consequence of
(4.3.3), binomial series with m > 0 converge absolutely for arbitrary coefficient functions f(I)
which are uniformly bounded with respect to [ € Ny. Then, however, a suitable approach for
their evaluation is not obvious. In fact, there are only few known formulae yielding a finite
expression for the sum of the series. Best-known among those are the aforementioned binomial
theorem (4.3.2) and the Gaussian summation formula!. Regarding more general coefficient
functions, further drawbacks of the representation (4.3.1) arise in the context of an asymptotic

analysis with respect to m. First, it is not immediately possible to infer the leading behaviour

!Some binomial series can be cast as a hypergeometric function of which the Gauss hypergeometric function
is best known. The summation formula mentioned in the text holds for the latter and can be found as equation
(15.4.20) in [Olver et al., 2010].
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as m — oo since rather than descending the binomial coefficient is ascending with respect to m.
Actually, as we shall see below, the large m-behaviour varies a lot and sensitively depends on
the particular form of f. Both can occur, convergence or divergence. Second, when it comes to
calculation the fast growth of the binomial coefficient substantially impedes a certain precision
for large m. Fortunately all of these issues can be fixed by transforming the sum into a contour
integral. In fact, actually a binomial series equals nothing but a sum of residues, provided f
possesses an analytic counterpart. This means, there exists a function A(—z) with z € C, which
satisfies A(l) = f(I) and is analytic in a region of the complex plane containing for a fixed

0 < r < 1 the sequence of circles
(4.3.4) Oy = {—l et —n << 7r} , l e No.

It is especially allowed that A(—z) has singularities at negative non-integer points. Similar to
f(1) we refer to A(—z) as a coefficient function. At this point, however, we must emphasize that
A(—2z) is not the same as an analytic continuation and is therefore not unique, since it coincides
with f only on a discrete set. For instance, with A(—z) also A% (—z) := A(—z)e??™ for arbitrary
n € Z are coefficient functions. Although it is not wrong to employ A (—z) instead of A(—z),
regarding further manipulations, it incurs unnecessary obstacles. Fortunately, in practice the
appropriate choice is usually evident.

According to the residue theorem, upon writing the factorials in the binomial coefficient in
terms of the gamma function, under the above assumptions for any m € R\ —N we may cast
the I-th summand of (4.3.1) in the form

L(m+1) (-1) 1 I'(m+1)I(z)
4.3.5 D=— ¢ —~—— " T2 A(_2)dz.
(4.3.5) Tmri-n 0 W 50 P Tamrig 0 A%
C’r,l
The integration path therein encircles the pole at z = —[ in the counterclockwise direction.

Note that the ratio of gamma functions in the integrand equals the beta function B(m + 1, 2),
compare (B.3.2). An application of the asymptotic estimate (B.3.6), for fixed m € R, as |z| — oo

in |arg(z)| < 7™ exposes the leading behaviour

I'(z)

(4.3.6) ’WHZ)

zo{yz\—m—l}.

Particularly if m > —1, this estimate indicates algebraic decay of the ratio of gamma functions
in the cut complex z-plane. It is therefore no restriction to even permit coefficient functions
with algebraic growth. More generally, assume A(—z) = O {|z|°} as Rz — oo for some ¢ > 0
in a region containing the sequence of circles C,; and choose m > c fix. Then, for sufficiently

large [ € N there exists a constant K > 0 such that the following bound applies to the integral
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(4.3.5):

c—m—1

do

f R o] sse [+

7l

<Kr/]rcos — 1™ g
< 2mr(l — )t

As a consequence we have absolute convergence for any m € R\ —N with m > ¢ of the series

representation

(m+1)I'(2)
4.3.7 ——— 2 A(—2)dz.
( ) QWzZy{ m+1—i—z) (=2)dz

Basically the idea of transforming binomial series into complex integrals dates back to N. E.
Noerlund?. Accordingly, in the literature expressions of the form (4.3.7) are referred to as
Noerlund-Rice integrals. Recall that the integration paths C); constitute a sequence of closed
contours, encircling the poles of I'(z) in the counterclockwise direction, excluding possible sin-
gularities of A(—z). In accordance with Cauchy’s formula, the analyticity of A(—z) allows us for
fixed N € N to coalesce the circles C,.; for 0 <1 < N —1 to a single integration path, for instance
to an oval Oy with the first N non-positive integers in its interior. This oval is encircled in the
counterclockwise direction and excludes possible singularities of A(—z). Subject to the absolute
convergence of the series (4.3.7) for fixed m > ¢, for a given § > 0 we can choose N € N large

enough to guarantee

(m+ DI (2)
5 Z?{ T+ 1t 2) ————A(—2z)dz| < 0.

At the same time, as N grows, the oval Oy approaches a loop. The series (4.3.7) can therefore
be cast as an integral of the form

(0+)
1 ['(m+ 1)I(2)
2mi F(m+1+2)

—00

(4.3.8) S(m) = A(—z)dz, m > c.

This new integration path is in particular a possibly indented loop starting at coe "™, encircling
the negative real axis at z = 0 counterclockwise and returning to ooe'™, separating the poles

of I'(z) from possible singularities of A(—z). Integration paths in the described form are also

2Noerlund worked with binomial sums in the context of finite differences. He introduced an integral repre-
sentation for those sums in equation (6) on p. 199 in [Noerlund, 1924].
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known as Hankel contours, see Fig. 4.1 below. The integral (4.3.8) is a special Mellin-Barnes

integral and in analogy to the series representation we refer to it as a binomial integral.

T
—

Figure 4.1.: Trace of the Hankel loop integration contour in the complex z-plane, compare fig. (5.9.1)
in [Olver et al., 2010].

Before pointing out how to exploit (4.3.8) for an analysis of the large m-behaviour of the
series (4.3.1) we briefly revisit the case A(—z) =t % for 0 < t < 1. Equality (4.3.8) then applies
and immediately yields the following integral representation for the binomial series (4.3.2) with
m > O

(0+)
1 T(m+ 1)0(2)
" omi Cim+1+2)

—00

(4.3.9) (1—t)™ t*dz

Since the integrand is analytic in the region to the right of the loop with sufficiently fast decay
there, a convenient deformation of the integration path is viable. Therefore we consider a
rectangle of height N > 0 and width R + ¢ for ¢, R > 0 in the complex z-plane. The rectangle
is supposed to be symmetric with respect to the real axis and its right edge runs through the
point Rz = c¢. Moreover, the left edge exhibits an indentation of height 2§ in the form of a loop
Lp for some % > 0 > 0, so that the simple poles of the gamma function at the non-positive
integers lie to its left. According to Cauchy’s theorem, the integral along this indented rectangle,
if encircled in the counterclockwise direction, equals the sum of the residues in its interior. But

the integrand is analytic in its interior, which implies

—R+i%Y  cetill il -R-if  _p_
1 Lim+1I'(2),_
4.3.10 0=— — 7%
(43.10) 2mi /+ / " / / / / Tm+ite)
Lr —R+i6 —R—&—i— c—H— c—ilY .

L) 2

We will now show that the contribution from all integrals vanishes as N, R — oo, except from
those along the loop and the right edge of the rectangle. For this purpose we choose N, R large

enough to make the estimate (4.3.6) applicable. By means of a simple substitution we then
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obtain for any 0 < ¢ <1, m > 0 and a constant A > 0:

- N
c+17

C E
/ F(Z) t*Zdz S ’F ($+22)} t*ﬂ?dm
F(m+1+2) R\r(m+1+x+z‘%)\

R+ifl

m_ 1

c 2y ~%273
SAtC/{:E +Z\i} dz

gAtC2mNm/{u2+1}_g_5 du

The integral on the right hand side converges absolutely and the whole upper bound vanishes
as N — oo. A similar estimate can be derived for the integral along the lower edge in (4.3.10),

which for m > 0 verifies

—R+ico c—ico

(4.3.11) = / / / / ::illi(z)) t*dz.

Lr —R+id ct+ico —R—ioco

Regarding the integral along the upper vertical segment of the left edge we obtain similarly from
(4.3.6) for a constant B > 0:

—R+ic0 00
I'(z) - R/ (=R +iy)
— 7y <t d
/ Tm+1+z) = T(m+1—R+iy)"”
—R+i6 4
_m_ 1
gBtR/{R2+y2} 272 gy
1)
_m_ 1
<BtRR_m/{1—|—v2} 22 dy
0

Since 0 < t < 1 this upper bound vanishes if we let R — oo for m > 0. An analogous bound
applies for the lower vertical part. Hence, as B — oo, the contribution from both vertical
segments of the left edge decays, whereas £Lr approaches a loop that runs from coe ™" to ooe'”,

encircling the negative real axis in the positive direction. Regarding equation (4.3.11) we thus

arrive at
c—100 ( )
m + 1
4.3.12 — 7t %d2.
( ) = o / / Fm+1+2) “
c+i00

By comparison with (4.3.9) we have eventually verified for arbitrary ¢,m > 0 and 0 < ¢ <1
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validity of

c+ioco
(4.3.13) (1—t)m = % m

c—100

t *dz.

Note that this equality is in accordance with the Mellin inversion theorem A.5.1 by identifying
the beta function in the integrand as the Mellin transform of the function (1 —¢)"I1{0 < ¢ < 1}.
The transition from (4.3.9) to (4.3.13) can be described as a straightening of the loop to a ver-
tical line, whereas the converse step corresponds to a bending of the line to a loop. Note that
equality (4.3.10) only holds by analyticity. If there were, for instance, any poles in the interior

of the indented rectangle, the value along its boundary was equal to the sum of residues.

The binomial integral (4.3.8) provides a more convenient frame for an asymptotic analysis
than the initial series (4.3.1). Indeed, a first inspection of the integrand suggests that the
asymptotic behaviour as m grows to infinity could be revealed by appropriate manipulations
of the integration contour. While the possibilities hereof naturally depend on the structure of
the coefficient function A(—z), the exact location of its singularities essentially affects the re-
sult. This is indicated by the ratio of gamma functions appearing in (4.3.8), which, according
to (B.3.5), possesses the leading behaviour ~ m™* as m — oo for fixed z € C\ —Ny. Clearly,
depending on the real part of z € C, with respect to m, this is descending, ascending or bounded
only. More precisely, three main cases may occur, namely £z > 0, Rz < 0 and £z = 0. As an
illustrative example we note that

1 (O+)I‘(m + 1DI(2) 1 1 [F(m + )l (ag —ia;) T'(m+ 1)I(ag + iaq)

2i L(m+1+2) (2 —a2)? +a? Z_i2a1

—00

Fm+1+4ay—ia1) T(m+1+as+iar)

for ai,as € R, a1 # 0 such that each pole is of simple order. This equality holds since, for any
m > 0 the integrand is O {|z|_m_3} as |z| — oo in |arg(z)| < m, i.e., possesses algebraic decay
in any direction of the cut complex plane. Furthermore, the loop separates the simple poles at
—Np from those at as + ia;. Hence, if we consider the loop as the left boundary of a closed
integration path with upper, right and lower boundaries at infinity, the poles at as + ta; are
encircled in the clockwise direction. The above equality thus follows from the residue theorem
since the contributions from the integrals along the boundaries at infinity vanish, subject to
the fast algebraic decay of the integrand. As another example, for a; = 0, aa € R\ =Ny and
q € {1,2} it can be shown that
(0+)
1 [ Tm+1l(z) 1 b — I'(m+ 1)T(az)
271 Cim+4+14+2) (z—ag)? C(m+ 1+ az)

—0o0

(W(m+ 1+ az) — (az))” ",

where 1) denotes the digamma function with ¢(m) ~ log(m) as m — oo, compare (B.2.12) and
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(B.2.29) in the appendix. Hence, also the order of the poles of the coefficient function is crucial.
Both examples confirm what was conjectured in before, namely that the behaviour of S(m) is
determined by the location of the singularities of A(—z), particularly by the location of their
real part. In case of poles, in the preceding examples we observed that S(m) vanishes as m — oo
with a decreasing rate if Rao lies closer to the right of the origin, whereas S(m) grows faster if
Ras is located farer away from the origin in the left z-half plane. This suggests, in situations
where A(—z) has a more complicated meromorphic form it could be helpful to decompose this
function according to the location of its singularities from Rz < 0 to Rz > 0. To conclude this
introduction to binomial sums, by inspection of (4.3.8) we make some presumptions concerning

the asymptotic behaviour of S(m) as m — oo for analytic coefficient functions of different types:

e For rational functions A(—z) with simple poles only, the rate is purely algebraic.

e If A(—2) equals a rational function with poles of order greater or equal two, the rate is
in general a mixture of algebraic and logarithmic expressions since in these circumstances

the residues involve derivatives of the beta function.

e If A(—z) constitutes a polynomial of degree p € N, the integrand in (4.3.8) possesses no
singularities other than simple poles at the non-positive integers. But these are completely
located in the interior of the loop. Furthermore, for fixed m > p the integrand vanishes
fast enough as |z| — oo in |arg(z)| < =, enabling us to expand the loop to approach
infinity in the upper, right and lower direction, where the integral eventually vanishes. As

a consequence S(m) = 0 for any m > p.

o If A(—z) is not a polynomial-type entire function it is transcendental. Since A(—z) was
allowed to have at maximum algebraic growth, the function is necessarily® bounded as
Rz — —oo. No specific statements are possible then, except provided A(—z) remains
bounded in all directions but* not as Rz — co. In this event, similar to the above example
in which we verified (4.3.13), it is permitted to bend the loop to a vertical line parallel to
the imaginary axis, which may be shifted by an arbitrary finite distance to the right. But
this implies the rate of S(m) as m — oo is ~ const x m™? for arbitrary Rz > 0. In other

words, S(m) vanishes exponentially fast.

We are now well prepared for a treatment of the Mellin transform associated with the m-power.

3This follows from the fact that transcendental entire functions, according to Liouville’s theorem, have an
essential singularity at infinity and therefore exhibit exponential behaviour in a neighborhood of infinity.

“Since infinity is an essential singularity the function is naturally unbounded in at least one direction of the
complex plane.
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4.3.2. Representations for the Mellin Transform of the m-Power

For m > 0 the m-power was given in equation (2.1.9). The associated Mellin transform is defined

as the integral

(4.3.14) M(¢,m) == /tﬁ—lpg(t,m)dt.
0

Being composed by continuous functions, the m-power is continuous along the real axis for any
fixed m > 0. According to Theorem A.2.1, the uniform convergence of the integral (4.3.14) in
any compact subset of some region of the complex (-plane therefore suffices to verify analyticity
of Mz(¢,m) in this region. Following from its non-negativity and the facts that 1 — ®z(0) = 0
and limsup;_, (1 — ®=(¢)) > 0, the m-power does not contribute to the absolute convergence
of the integral (4.3.14), except with its behaviour at the origin. Accordingly, for 6 >0 ast¢ ] 0

we suppose
(4.3.15) 1- () =0 {t‘SE’} .

As we shall see in our examples below, this condition is not a restriction, and it immediately
implies absolute convergence of (4.3.14) for —dz(m + 1) < R < 0. Then, if E is an arbitrary
compact subset in the indicated region with ap := min {R¢ : ¢ € E} and by := max {R( : ( € E},
for ( € E, a number A,, > 0 that is constant except for its dependence on m, and a fixed

0 < T < 1, we deduce the following bound:

[ee]
tW*‘SE‘(m“)—ldH/tW—ldt
T

ta0+55(m+1)—1dt s
R¢

IN

Am

Tt — 5 T

Ta0+6g(m+1) a0

Mag+0:(m+1) by

For the first inequality we especially took into account the uniform boundedness of the m-power
by unity. As a consequence of these findings for any m > 0 we have analyticity of (4.3.14) in
the strip

(4.3.17) Sme. ={(€C:—=d(m+1) < R¢ < 0}.

The monotonicity of the m-power with respect to m implies S, 5. C Sy41,5.. The joint strip

of analyticity for all m > 0 is therefore Sz := S 5.. Furthermore, in equivalence to (4.3.17) the
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function Mz(—(, m) is holomorphic in

(4.3.18) S s ={CeC:0<RC<dz(m+1)}.

m,0z °

When considering our first example in Chapter 5, it will readily turn out that it suffices to
know the integral representation for the Mellin transform of the m-power converges absolutely
for ¢ € S,,5. for any m > 0. This implies especially uniform convergence with respect to the
imaginary part, whence the function is O(1) as ¢ — oo in S,,5.. No further information
concerning the large (-behaviour of this Mellin transform are required. Instead, more important
is the derivation of an asymptotic expansion for this integral as m — oo for fixed ¢ € S;, 5.. For
this purpose it can be useful to express the m-power as a binomial integral, i..e, in accordance
with equation (4.3.13), for ¢ > 0 to write

c+1i00
(4.3.19) Po(t,m) = ﬁ m (®(t)) " ds,  t¢N..

c—ioo
Observe, however, that {®:(t)} " for fixed Rz > 0 as a function of ¢ > 0 is unbounded if
N: # . Consequently, if we plug (4.3.19) into (4.3.14) we may not interchange the order of
integration. Note that this also was not possible if we used the binomial series expansion for
the m-power instead, since the first summand therein equals unity. To circumvent this obstacle
we easily integrate (4.3.14) once by parts. Assuming N. is of Lebesgue-measure zero, ®z(t) is
continuously differentiable with respect to ¢ > 0 and denoting the associated derivative with a

prime, for m >0, To > T7 > 0 and ¢ € Sy, 5. we obtain

T2 T T2
C 2
(4.3.20) /t<17>g(t, m)dt = [ZPE(t, m)] + me1 tS®L(t)P=(t, m — 1)dt.
T
T1 Tl

Since R < 0, as Ty — oo the function in the first summand on the right hand side vanishes
at the upper limit. Moreover, as T7 | 0 the function also decays at the lower limit because
¢ € Sms. and t*P:(t,m) = O (tC+6§(m+1)) as t | 0, compare with (4.3.15). To summarize these
findings, taking the limits in (4.3.20) results in the following representation, valid for all m > 0

and ¢ € Sy, 5.:
1 [ee]
(4.3.21) M(Cm) = m; / (DL Pt m — 1)dt
0

In contrast to (4.3.14) the above integral need not be absolutely convergent® for all ( € S5

The complete set of admissible values depends on the behaviour of the derivative ®% in a neigh-

5For instance if ®- and thus also its derivative is periodic. Then it is possible to choose ¢ € S, 5. with
—1 < R¢ < 0 such that (4.3.21) is in fact not absolutely convergent, although (4.3.14) is, by definition of Sy, s..
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borhood of the origin and at infinity. For simplicity suppose for an additional parameter ns > 1

we have

PL(t) = O {t1} ast |0,
P

(4.3.22)

M~ oM

(t)=0{t™} ast— oc.

By means of bounds similar to (4.3.16), it is then possible to verify absolute convergence of the
integral (4.3.21) in

(4.3.23) s ={CEC: —dz(m+1) <RNC < nz—1}

mﬁg :

and especially uniformly in any compact subset therein for all m > 0. Since (4.3.23) always
contains the strip S, 5., according to Theorem A.2.1, the right hand side of (4.3.21) constitutes
the analytic continuation of (4.3.14), revealing a simple pole at ( = 0. The actual benefit from
the presence of the derivative ®L in the integral (4.3.21), which is unavailable in (4.3.14), is
that it will enable us to introduce the binomial integral representation for the m-power. Hence,

denote by
(4.3.24) A(C,—2) = / L) {Ba()}* dt
0

the Mellin transform of the function ¢ — t®L(t) {®z(¢)}~ for suitable z € C. The integral A(¢,0)
is readily confirmed to be absolutely convergent for instance under the assumptions (4.3.22). In
these circumstances the set S. := 86, 5. 1s non-empty, implying absolute convergence of A(¢,—2)
for all ¢ € SL and Rz < 0, especially since 0 < ®z(t) < 1 for ¢t € R. In addition, for fixed Rz <0
the integral can be verified holomorphic in SL. Notice that Sz C SL.

It will show in our examples that it is not a restriction to suppose the existence of a proper
or improper substrip S? C SL and a parameter 79 > 0, such that A(¢, —z) remains absolutely
convergent for all Rz < 79 and ¢ € SZ. Then, in (4.3.21) for any fixed { € S? we can write the
m-power as a MB-integral for 0 < ¢ < = by applying (4.3.19). More precisely, according to
(4.3.6), for m > 0 we may interchange the order of integration by absolute convergence, which

establishes the following binomial integral representation:

c+1i00
- m+1 L'(m+ 1)I'(2)
(4.3.25) M=(¢,m) = o / Tm+1+2) A(¢, —2)dz

This representation holds for any ¢ € S? and by analytic continuation in larger regions of the
complex (-plane. The integral (4.3.25) can eventually serve as a starting point for an asymptotic

analysis of Mz(-,m) as m — oo. Therefore we first note that, given a compact subset F in
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4. Mellin Transforms and their Applications in Asymptotics

Rz < v with by := max {Rz : z € E}, for fixed ¢ € S? we have

o0

Al < [ 7 [@0)] {@e(t)) ™ dt < oc.
0

The integral (4.3.24) thus converges uniformly in E. This enables a consideration of A((, —z)
as an analytic function in the half-plane Rz < ¢ for any fixed ¢ € S, compare Theorem A.2.1.
Its singularities necessarily lie in the half plane 2z > -y only. To determine their exact location,
a careful analysis is required. Depending on ® this can be quite elaborate since A((,—z) is

generally not expressible in terms of elementary functions.

As an application of the ideas presented so far, in the subsequent sections we will derive

the Mellin transforms for certain classes of characteristic functions and their modulus.

4.4. Algebraic-Type Characteristic Functions

We first assume, that |®x| is associated with the class of algebraic-type functions (3.3.1). The

integral representation for the Mellin transform (4.2.1) is then given by

o0

(4.4.1) Mx(¢) = /té‘—l {1+ 6%t} P dt.
0

According to our findings from Section 4.2, this establishes an analytic function in the strip
(4.4.2) Sx ={CeC:0< R < ap}.

Moreover, in Example A.5.2 in the appendix it was shown that (4.4.1) can be referred to the
beta function. By additional use of the identity (B.3.2) this yields:

Mx(©) =a B (S ¢

(0}

(4.4.3) () (p- <
g

The analytic continuation associated with (4.4.1) to the whole complex plane is thus meromor-
phic with simple poles at a(p + Ny) and at —aNy. Its asymptotic behaviour as |(| — oo in
larg(Q)|, larg(ap — ¢)| < 7 is readily derived by virtue of Stirling’s formula (B.2.28):

¢_1
poC 1
TP (g ane(S) il - 5) ane(p—)

1
a2

¢

(07

¢

[0}

2me P ¢

Mx(¢) ~
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4.4. Algebraic-Type Characteristic Functions
In absolute value as |¢| — oo this implies
(4.4.4) Mx(Q)] = 0 {6 | e % (@ mare(en=OH |

For appropriate arguments we can simplify (4.4.3) to finally obtain a convenient bound for this
Mellin transform. Therefore we first note for y € R and J € Ny repeated application of the

functional equation for the gamma function leads to
i 1 i 1\ 1
P Y gptT+-)=1(Z4p+: ptr—-+ 2,
« 2 « 2 N 2 «

iy 1 iy 1\ 1 1 iy !
r(-2-Js-Z)=r(-24+:2 A
< o J 2> ( oz+2)rljo< "7 a>

Hence, if 2541 == « (p +J+ %) with y € R and J € Ny we can write for the beta function in
(4.4.3):

1

; ; iy 1 _y 41 2 2N %
R e A GRS A G Y (R
(@ ’ « 1 y2
F(p) Z‘F? r=1
1 .
T2 I‘(ﬂ_‘_p_{_l) J + 1 2+£
(4.4.5) — « 2 H{(P r—3) 2a2}
1 Y

coshz () T(p)y/ 5 + ¥

For the second equality we applied the reflection formula (B.2.17). As usually J = 0 implies that
the product equals 1. The above is the most general factorization obtainable without restrictions

on p > 0. Now, by elementary calculations one can show:

2 2N = .
max{(p_'_r_;) +g‘2}2<max{1 ‘p—i—r—é‘}: 1 ifp<1

+r—1 .
yER p 2
. ifp>1

Moreover, a sharp bound for the remaining gamma function in the numerator in (4.4.5) is given

by inequality (B.2.32) and yields

iy 1 y? N2 e o
I'(=+4+p+= <V2me =S+ |p+= e 2a e3(2pt+1)
a 2 a? 2

For (4.4.5) we thus arrive at the bound

P
y? 1\21] 2 wly]
' j {*2 +(p+3) } ~ 2o
(1.4.6) \B (Ao, ”’”J“)‘ < rp(T) L o
o o 1,9 coshz (%)
4 OlQ «
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4. Mellin Transforms and their Applications in Asymptotics

where we denote

- \/571’63(2;“) J ‘p L — %‘
(447) Iﬂ?p(g]) = T rrzll max 1, W .

Clearly, the right hand side of (4.4.6) is an even function and absolutely integrable along the

whole real axis for all admissible values of the parameters.

4.5. Algebraic-Type m-Powers

Suppose Pz is given by (3.3.2). In these circumstances an expansion of the function as |¢| — 0 by
means of the binomial theorem reveals the local behaviour 1 — ®=(t) ~ o [t|°. In accordance
with our findings from Subsection 4.3.2, the integral (4.3.14) is thus for any m > 0 absolutely

convergent and holomorphic in the regions

(4.5.1) Se={CeC:—-p <R <0},
(4.5.2) Smp={CeC:—p(m+1) <RNC<0}.

Moreover, for ¢ > 0 the function (3.3.2) is infinitely many times continuously differentiable and

particularly the first derivative equals
-1
(4.5.3) OL(t) = —gBo T {1407} @a(t).

Accordingly, we can rearrange (4.3.14) by making additional use of the definition of the m-power,

which was given in (2.1.9), to find

o0

-8 dL(t)
o
45.4 Mo(¢,m) = -2 t<—5{1+aﬁtﬁ} 1— o ()" 22 g
The simple change of variables ds = ®L(¢)dt implies
1
t=c""! {57% — 1}ﬂ )
and for any ¢ € S, g the integral (4.5.4) then takes on the shape
1
—¢ ¢ $1
(4.5.5) M:((,m) = Uﬁ/s_ﬁq_l {1 — s%}ﬁ (1—s)™ds.
1 0
For brevity we introduce the integral function
1 -
S 136~
(4.5.6) 39(=¢m) == /s ! {1 - si} (1 — s)™*+lds, ¢ € St
0
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4.5. Algebraic-Type m-Powers

The function in the interior of the curved brackets is continuous and non-vanishing for 0 < s < 1.

In addition, for ¢ > 0 and |s — 1| < 1 according to the binomial theorem, we have:

1—s;:—§;<§)(5—1)j
j 00 r<1+l>

=(1-9>

j=o I (é —j> ['(2+37)

(4.5.7)
(s =1y

For integer values of ¢~ > 0 the above series cancels to a polynomial of degree ¢~ . By virtue of
(4.5.7) it is readily confirmed that (4.5.6) in fact converges absolutely for any ¢ € S, ;. Finally,

in terms of the latter definition for ¢ € S,, 3 we can write

¢
(4.5.8) M=(¢C,m) = 2—53;{[ <—;m> .

The integral (4.5.6) can be conceived as a generalization of Euler’s integral of the first kind and

for ¢ = 1 we have equality. Indeed, by comparison with (B.3.1) we readily verify J},(—¢,m) =
B(m+1+¢,—(). As a consequence, for ¢ = 1 by additional use of the identity (B.3.2) we obtain

§F<m+1+%)r(—%>
BT (m + 1)

(4.5.9) Mz(¢{,m)=0"

The right hand side immediately extends the integral definition (4.5.5) to the whole complex
¢-plane and reveals the location of the singularities. Even more remarkable, from (4.5.9) the
asymptotic behaviour of Mz((, m) with respect to both variables is easily ascertainable. On the
one hand, for fixed ¢ € S,, g subject to (B.3.5), we observe a descending character as m — oo.
On the other hand, Stirling’s formula (B.2.28), as || — oo in |arg({)|, larg(B(m +1) — ()| < 7
shows that

< _S)| = m 2% (arg(¢)—arg(B(m-+1)—C))
(4.5.10) ‘F<m+1+ﬁ>1“< B)‘_o{m e B\E & }

Unfortunately the case ¢ = 1 is apparently an exception and for other parametrizations no

references to particular special functions are known.

4.5.1. Derivation of the Binomial Integral Representation

Although we will see below that the integral (4.5.5) already furnishes the appropriate setting for
the derivation of an m-asymptotic expansion of Mz(-,m), for completeness we also deduce the

binomial integral representation (4.3.25). Given (4.5.3) the coefficient function (4.3.24) becomes

e}

—1—q(1-2
(4.5.11) A(¢,—2) = —qBd” /t<+ﬂ—1 {1 + aﬁtﬁ} N
0
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4. Mellin Transforms and their Applications in Asymptotics

By comparison with (4.3.22) we specify the region S%, where this integral is absolutely convergent

and holomorphic for any fixed 8z < 0, as the strip
(4.5.12) SL={CeC:—B<RNC<qb}.

Furthermore, after a simple substitution, similar to Example A.5.2, the integral (4.5.11) is
readily identified as Euler’s integral of the first kind again. Accompanied by another application
of (B.3.2) this yields

_CF(1+%>F<qfqu%)

(4.5.13) A(G, —2) = —qo I(14q—qz)

As a function of ¢ € C with fixed z € C and vice versa, the analytic continuation of (4.5.11)
is thus meromorphic with order and location of poles depending on the parameters and on the
second variable. The asymptotic behaviour as |z| — oo in |arg(—z)| < 7 for fixed ( is readily
specified by virtue of (B.3.6):

(4.5.14) 4(¢—2)| = 0 {la= 7}

Now, choosing S” = {( € C: — < R( < 0} we have S = Sz N SL. It is then easy to see that
the integral (4.5.11) for the coefficient function A((, —z) converges absolutely for Rz < 1 and
any fixed ¢ € SZ. Hence, according to (4.3.25), upon application of the functional equation for
the gamma function, for 0 < ¢ < 1, ¢ € S and m > 0 we obtain the following hypergeometric

integral representation:

—CP (%) C7oor(m +2)0(z)l (q —qz — %) ]

M=((, = — /
(¢,m) q0 B2mi / D(m+1+2)T(1+q—qz) z
¢\ ctico _ B ¢
(4.5.15) _ Uch (ﬂ) I(m+2)l'(z-1)r (q qz B) .
B2mi ) Fm+ 1+ 2)'(qg — g2)

The integrand is for fixed ¢ € S? with respect to z meromorphic in C with an infinite sequence of
simple poles at —Ng and at 1+ % for k£ € Ny. Note that the singularity at z = 1 is removable.
Moreover, upon combining (4.3.6) and (4.5.14) we see that as |z| — oo in in the cut z-plane the

integrand has the behaviour

I'(z—1)TI (q—qz— %)

(4.5.16) C(m+ 1+ 2)T'(q — q2)

_1-%¢
=0 {Je " Mg )

For any m > 0 it is thus permitted to displace the integration path in (4.5.15) by an arbitrary
finite distance to the right or to the left without changing the value of the integral, provided we

do not cross any singularities of the integrand. As a consequence, the path can be replaced by
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4.5. Algebraic-Type m-Powers

an arbitrary vertical line, separating the poles at —Ng from those of I'(g — gz — 871¢). This is

the case if

(45.17) D<ecl- 26

B’
Note the admissibility of this condition for any ¢ € C with ®( < ¢8. Taking into account the
large z-behaviour (4.5.16), the absolute convergence of the hypergeometric integral in (4.5.15)

remains valid for any fixed
(4.5.18) —B(m+1) <R¢ < gB

with an appropriately specified integration path. To conclude that the integral (4.5.15) for
¢ € Sy, g coincides with the integral (4.5.5), it remains to verify its analyticity in that region.
For the moment we only know that this is true for ¢ € SZ. We do not further pursue the

analyticity properties of (4.5.15) because they are irrelevant for our subsequent considerations.

4.5.2. m-Asymptotic Expansion for a Fixed Complex Argument

We proceed with the derivation of an asymptotic expansion for the integral (4.5.6). This is
surprisingly simple and does not require additional supportive results. Therefore we first observe

that, subject to the binomial theorem the following expansion holds for ( € C and 0 < s < 1:

16 K1 k
(4.5.19) fi-—si} =% <C . )(1)’“35
k=0
This series remains absolutely convergent for s = 1, however, only if R( > 1. We can thus
not simply apply it to (4.5.6) and interchange the order of summation and integration for
¢ € Spy,1. Instead we first note, subject to the reflection formula (B.2.15) and upon exploiting
the periodicity of the sine function, for ( € C\ —Nj and k € Ny we can write:
re¢)  TA—-(¢+k)sin(r(l—C+k))
I'(¢—k) I'(1—¢)sin(r(1—())
(1 - k
— (_1)k: ( <+ )
-9

(4.5.20)

Hence, expressing in (4.5.19) the binomial coefficient in terms of gamma functions and bearing

in mind z! =T'(1 + z) for z € C\ —Np, the alternating sign cancels out, and we obtain

6l ST =+ k) st
(4.5.21) {1—sq} :Z(F(I—C))kz'
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4. Mellin Transforms and their Applications in Asymptotics
Now, for any m > 0, ¢ < 0 and sufficiently large &k € N the following statement is readily
verified by comparison with definition (A.5.13) and identity (B.3.2):

/ - ¢4 k) Dom+2)T (5 -)

I'(1+k) F<m+2—|—§—ﬁ)

q
_ o fin2)

(1—
| —5)" s =

For the last equality we refer to the bound (B.3.6). The above result justifies for ¢ € S,, 1
the following interchangeability in the order of summation and integration in (4.5.6), subject to

absolute convergence:

Because the coefficients in this power series are solely gamma functions, it is of hypergeometric

type. Roughly speaking, a power series of the form

ek
k=0

is denoted a hypergeometric series if for each k& € Ny the ratio C’Z“ of subsequent coefficients

Ck, Ck+1 constitutes a rational function of the summation index k. According to (4.5.8), for
¢ € S, 3 we have just shown
¢ F(m+2)F(f—%)F<l—%+k) )

(4.5.22) Me(¢Gom) = —> 1 —.

‘15 =0 F(m+2—@+§)1“< —%) k!

By comparison with (B.3.5) of the m-dependent terms in the k-th summand of this series, as
m — 00, We perceive
I'(m + 2) <k
q
k
r <m +2- 4+ )

(4.5.23)

This indicates a decreasing character of the series (4.5.22) for large values of the parameter
m and fixed ( € S, 3. It thus establishes an expansion as m — oo of the Mellin transform

M¢z(¢,m) for any fixed ¢ € S, g, where the asymptotic scale is for k& € Ny given by the ratio of
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4.5. Algebraic-Type m-Powers

gamma functions on the left hand side in (4.5.23), related to algebraic behaviour. Series of the
above type as a function of m are termed inverse factorial expansions. In accordance with these

findings, it is reasonable to cast (4.5.22) after proper standardisation in the equivalent form

—cT(m+2)T (-5
(4.5.24) Mz(¢,m) =2 crom=2) ( ’Bq)Sj{I (—C,m>,
ap F(m+2—ﬂ%) p

where in terms of Pochhammer’s symbol (B.2.11) we denote the series by

~ (75), =0
(4.5.25) S% (—¢,m) ::Z( +q2 c) o
k=0 \TM )k

q

Clearly, according to our preceding findings, for ( € S, 1 the series converges absolutely, we have
5%, (—¢,m) = O(1) as m — oo, and if ¢ is real-valued each summand in (4.5.25) is positive. In

the special case ¢ = 1 we identify the right hand side as the Gaussian hypergeometric function

-G I_C-l].

S}{(_Cvm)ZQFl[m+2_C7

Owing to the unit argument we can apply Theorem 2.2.2 in [Andrews et al., 1999], which is
the Gaussian summation formula. This eventually results in (4.5.9). For other values of the
parameter ¢ = 1 no known summability properties are available. We must then inevitably refer

to the series (4.5.25) whenever an m-asymptotic expansion of Mz((, m) is required.

The series expansion (4.5.22) can also be obtained from the MB-integral (4.5.15). There-
fore we note that, for fixed ¢ € SZ and m > 0 the asymptotic behaviour (4.5.16) of the inte-
grand indicates the possibility to shift the integration path to the right direction of the z-plane
over some of the simple poles of the gamma function I'(q — gz — 371¢). Those are located at
1 — (Bq)~'¢ + ¢ 'Ny, according to (B.2.20), with residues

-1 k+1
Res F(q—qz—c) :qfli, k € Np.
z:lfﬁiq+§ ﬁ k!

Now, suppose ¢ € S? and consider a rectangle in the complex z-plane of infinite height whose
left and right edges are respectively given by the vertical lines #z = ¢ and Rz = Ky with
Kpe:=1—(Bg) "R+ ¢! (K + %) for K € Np. Actually the choice of Ky is arbitrary and
we only need to make sure that it does not run through any pole of the integrand. Keeping in

mind that we encircle the poles in the clockwise direction, the residue theorem for m > 0 yields

¢ & T(m+2)T (§ - %) r (%) (—1)F

e e )G

+ R%,(¢,m, K),
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with the remainder term given by

dz.

T(5) T e - (g - 02 - §)
B2mi / L(m+ 1+ 2)(q — q2)

K?RC —1300

(4.5.27) RL((,m,K):=0"

If we eventually let K — oo, it can be shown by means of simple estimates that this integral
vanishes for any fixed ¢ € S”. By additional use of (4.5.20) this leads to (4.5.22). Moreover,

appealing to the analytic continuation, this result can be extended to larger (-regions.

4.5.3. Uniform Bound with Respect to the Imaginary Part

We finally want to employ the integral representation (4.5.6) to derive a convenient bound for
M=(¢,m) that is valid in its strip of analyticity. Therefore we first note that, according to (4.5.7),

the function

(4.5.28) fq(s) =

satisfies limgyq fo(s) = %. It is thus continuous on 0 < s < 1 and especially bounded away from

1
zero. In particular, following for 0 < s < 1 from s>scif0<qg<1, we have fq(s) > 1 then.
Conversely, following for 0 < s < 1 from ¢t < tq if ¢ > 1, we have ¢(1 — sq fl 771dt >

fs dt =1 — s then. As a consequence

fq(s)zlv 1f0<¢]§17

(4.5.29)
fq(s) > gt ifg>1.

In terms of (4.5.28) we can cast (4.5.6) in the following form:

(4.5.30) /15
0

From this representation, by virtue of simple bounds, with ¢ = = + iy for ¢ € S,,,1 we deduce:

»a\m

T Sy} ds

1
9%, (~¢,m)| < / sTiTN1 = 8)™ T {fy ()} ds
0

< max {f,(s)}* ' B <m+ 1+, J”)
<s< q
Since 2 < 0 we have maxo<s<1 {fy(5)}" " = {ming<s<1 fo(s)}**. But in accordance with

the previously observed boundary properties of f,, the function attains its minimum at one of

the endpoints of the unit interval. More precisely, from (4.5.29) we conclude ming<s<i fq(s) =
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min {1, q_l}. For ¢ € S;;,,;1 we have thus proved

7$F(m+1+x)F<—§)

1
/ F(m—{—l—i—aj—%) 7

(4.5.31) 3% (=¢,m)| <w

where we denote
(4.5.32) wq = max {1,q}.

By comparison with (4.5.8) and (4.5.24) we observe that the above bound especially reflects the

asymptotic behaviour of Mz((,m) as m — oo for fixed ( in its strip of analyticity.

4.5.4. A Second m-Asymptotic Expansion for a Fixed Complex Argument

For some purposes the inverse factorial expansion (4.5.22) is inappropriate. An alternative

expansion can be obtained by virtue of Watson’s lemma. Therefore we introduce the function

—ty S .
(4.5.33) gq(t,¢) =72 { ! _te } 1 {1 -(1- e_t)E}C '

Then, starting with (4.5.6) we first make the change of variables s = 1 —e ™!, to cast the integral
for any ¢ € S;,,1 as a Laplace transform. After proper rearrangement of the integrand we arrive

at:

¢—1
e = [ [t} e

<
t a

(4.5.34) = o™y, (t,¢)dt

0\8 0\8

For fixed ¢ € S,,1 the main contribution to this integral as m — oo evidently comes from a
neighborhood of the origin. There, in a circle of radius 27 the first two factors in (4.5.33),
which constitute the generating function associated with the generalized Bernoulli polynomials,

by analyticity possess a convergent expansion in terms of integer t-powers:

S—f—l o) k
_ t q (1—1—%) —t
(4.5.35) e Qt{ } :; B, (2)( k!)
=0

1—et
Here B,g“ ) (z) denotes the generalized Bernoulli polynomial of degree k € Ny, order u € C and

argument z € C, see also equation (24.16.1) in [Olver et al., 2010] or §15.6 in [Temme, 2015]. It
is defined as the k-th derivative of the left hand side in (4.5.35) evaluated at ¢ = 0. Regarding

117
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the third factor in (4.5.33), for ¢ > 0 and ¢ € C, from (4.5.21) we deduce

OOF —C+k)ta [1—et a
(4.5.36) {1—(1—e } D T k'{ g }

»Q\»—l

The function in the curved brackets on the right hand side is again analytic in a circle of radius
27 around the origin and thus expandable in integer t-powers there. Summarizing, if we take
the product of the series (4.5.35) and (4.5.36) and arrange the ¢t-powers in descending order as
t | 0, the first term in the resulting expansion is always the same whereas the powers of the
subsequent terms depends on ¢. In other words, there exists an increasing sequence p; with
k € Ny that grows to infinity and depends on ¢ except py = 0, such that, as ¢ | 0, the function
(4.5.33) can be written in the form

(4.5.37) 9a(t,0) =>4 (OtP%.
k=0

The series converges absolutely for real 0 < t < 27, and the coefficients v, () are readily
identified as polynomials of ¢ with 7,,(¢) = 1. By means of (4.5.37) similar to Watson’s lemma,
compare Theorem 3.1, ch. 3 in [Olver, 1974], for fixed {( € S;,1 and ¢ > 0, as m — oo, it

eventually can be shown that

~q ¢ Vpi. (€) ¢
(4.5.38) I4(=¢,m) ~ma p— r (pk — q) .
k=0

This establishes an expansion of the integral (4.5.34) with respect to the asymptotic scale m Pk
for k € Ny. It must be emphasized, however, that contrary to (4.5.22) the series (4.5.38) is not
absolutely convergent but merely valid in the asymptotic sense. Moreover, both have in common
their pointwise validity with respect to ¢. Finally we remark, due to the relation of J3%(-,m) to
the beta function if ¢ = 1 the expansions (4.5.38) and (B.3.5) with z =m,a=1+and b=1
differ only by the factor I'(—().

4.6. Exponential-Type Characteristic Functions

The Mellin transforms corresponding to the modulus of characteristic functions that are of
exponential type (3.3.3) are particularly simple to determine. The integral representation (4.2.1)

then takes on the form

(4.6.1) My (¢) = / £ exp {—pO°t°} dt.
0
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Our findings of Section 4.2 enable us to conclude analyticity of this integral in the entire right

(-half plane, i.e., in
(4.6.2) Sx ={CeC:R(>0}.

Moreover, after a simple substitution the integral (4.6.1) can be referred to the gamma function,

which immediately yields the extension to the whole complex (-plane in the shape of

(4.6.3) Mx(¢) = a™ {pée}_cr <C> .

(07

The asymptotic behaviour as [(| — oo in |arg(¢)| < = is then readily specified by means of
Stirling’s formula (B.2.28):

RC_1
a 2
(&

¢

«

ére <
B g

(4.6.4) My (Q)] ~ Vama~ {pto}

A useful inequality for the gamma function is provided by (B.2.32). However, in some circum-
stances a sharper result with respect to the imaginary part is preferable, particularly to apply
Laplace’s method. For this purpose in Section 2.5 in [Paris and Kaminski, 2001] an appropriate
bound was deduced in (2.5.3). We adopt this approach for the derivation of a similar estimate.
For 7 € R, sufficiently large s > 0 and fixed a € R such that a + s > 0 is still large, according
to Stirling’s formula (B.2.28), there exists a constant K > 0 with the following property:

ID(a+s+i7)| < Ke™ |a+ s+ ir| 573 ¢~ aralatstin)

a+s

_1
4

2 2 )
— KefsSaJrsf% {1 + 7_2} e—frarg(%)
(4.6.5) § .
aT+s8s—5
a+s+17 2 e—T{arg(a-i-s-i-iT)—arg(%)}
s+1iT

The last factor on the right hand side approaches a finite positive value as 7 — 4o0o0. This is
true because the distance of the argument functions tends to zero with the same rate as 7 tends

to infinity. In particular, subject to the rule of de 'Hospital we have for 1,09 > 0:

arctan <Ull> — arctan (U%)
(4.6.6) Tlingo +7 (arg(oy £ i7) — arg(og £ i7)) = lim =09 — 01

T—>00 Ti]'

As a consequence, as T — +oo with fixed s the last two factors in (4.6.5) approach a finite
non-zero limit. Similarly as s — oo with 7 fixed. Accordingly, there exists another constant

K5 > 0 such that for sufficiently large |s + iT| we arrive at

a_ 1
2y 271 .
(4.6.7) D(a+ s +i7)| < Kae 57572 {1 ; } ese (%),
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where the phase, with the argument function in terms of the arctangent, is given by
1 2

(4.6.8) ¢(v) :=varctan (v) — 5 log (1 + v%).

A comparison of (4.6.7) with (B.2.32) shows that the main difference consists in the presence

of the arctangent in the exponent instead of its asymptote 5. This yields some convenient

simplifications with respect to the location of the saddle point when applying Laplace’s method.

4.7. Exponential-Type m-Powers

Consider a characteristic function ®z of exponential-type (3.3.4). From its series expansion
in powers of |t|6 , by comparison with Subsection 4.3.2, we ascertain absolute convergence and

analyticity of the integral (4.3.14) for any m > 0 in

(4.7.1) Se={CeC: -8 <R <0},
(4.7.2) Smp={CeC:—p(m+1) <RC<O0}.

In addition, the first derivative of ®z(¢) with respect to t > 0 is given by
(4.7.3) DL(t) = —qBoPtP1o(t).

1 1
After plugging this into (4.3.21) and substituting ¢t = ¢ o~ 's? we arrive at

0o
(4.7.4) Mo(C,m) = L {qéa}c/tge_t (1—et)" dt.
¢ 0

Since the estimate (4.3.22) applies with arbitrary s > 1, the right-hand side of (4.7.4) constitutes
the analytic continuation of (4.3.14) into the half plane R( > —g(m+1). It shows that the only
singularity therein is a simple pole located at the origin. Evidently from (4.7.4) we have a close
connection between Mz(-,m) and the gamma function. Indeed, for m = 0 this integral equals
the gamma function. Besides we also recognize a similarity between the integrand in (4.7.4) and
the generating function of the generalized Bernoulli polynomials, compare definition (24.16.1)
in [Olver et al., 2010]. More precisely, the integral can be considered its Mellin transform.

Following from (4.3.3), the series expansion of the m-power in (4.7.4) is bounded by 2" for
any m > 0. Hence, if in (4.7.4) we apply the binomial theorem, for any ¢ € Sz and m > 0
subject to absolute convergence we may interchange the order of summation and integration,
which leads to:

oo

M:(¢,m) = _mz—l {qéa}_c i <Tln) (—1)l/tge(1+l)tdt
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-ty e (5) X (vt

Particularly for m € N this series cancels to a finite sum. For general m > 0 it can be verified
holomorphic in the half plane R¢ > —5(m + 1), subject to absolute and uniform convergence in

any compact subset therein.

4.7.1. Derivation of the Binomial Integral Representation

To obtain the binomial integral representation associated with (4.7.4) we first introduce the co-

efficient function (4.3.24). According to (4.7.3), in the present setup it has the integral definition

(4.7.6) A(C,—2) = —qBo” / (B~ (1=2)q0 17 gy
0

It is easy to see that this integral converges absolutely and is holomorphic for any fixed z € C

with Rz < 1 in
(4.7.7) St={¢eC:R¢>-4}.

By virtue of a simple substitution we refer (4.7.6) to the gamma function, which immediately

gives access to its analytic continuation to the whole complex plane::

(4.7.8) A, —2z) = — {qéo}iclﬂ <1 + g) (1-— z)_l_%

Here, the argument ¢ € C determines if the analytic continuation of (4.7.6) with respect to z € C
is entire, meromorphic or multi-valued with branch points at z € {—1,00}. In the latter case
we choose the branch cut to match the axis (—oo, —1], i.e., Jarg(l — 2)| < m. Now, supposing
SZ={(eC:—5 <Rz <0} we have SZ = Sz N SL. Tt is then ascertainable from (4.7.6) that
the integral definition of A((,—z) converges absolutely for any Rz < 1 and ¢ € SZ. Hence, in
accordance with (4.3.25), upon application of the functional equation for the gamma function,

for ¢ € S and m > 0, we obtain:

c+1i00

(4.7.9) -~ {ate}” Pﬂgi) 700“17?(; -22 g(i ;5 Dy han

In the first equality the integration path is a vertical line with 0 < ¢ < 1, separating the
poles at —Nj from the branch cut at [1,00), whereas the second equality results from a simple

substitution with ¢p = ¢—1. By (4.3.6) there exists a constant A > 0, which does especially not
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4. Mellin Transforms and their Applications in Asymptotics

depend on (, such that for sufficiently large |t| in |arg(—t)| < 7 we have

T'(1+1)

< 1 —m—2-%¢  zT5¢|
N Y ()78 <At ges >
Tmarn " < Al ¢

(4.7.10)

It is thus a routine step to verify absolute convergence of the integral (4.7.9) for
(4.7.11) R > —pB(m+1),

and in addition uniformity in any compact subset therein. Consequently, appealing to Theorem
A.2.1, the representation (4.7.9) equals (4.7.4) not only for ¢ € S? but by analytic continuation
in the whole half plane (4.7.11). Finally, the integral appearing in (4.7.9) will play an important

role also in later chapters, which is the reason why we denote it for m > 0 and |arg(—t)| < 7 by

co+100
IN(e / T'(m + 2)[(1 4 t)

6 _
Fm 1210 (—t)~"Lat, RC > —(m+1).

(4.7.12) Mg (=¢,m) = —

co—100

This definition enables us to write (4.7.9) for any ¢ € S;;, 5 and m > 0 in the form

(4.7.13) M(¢,m) = 8 {q%a}_CMB <—gm) .

4.7.2. Properties of the Binomial Integral Representation

The integral (4.7.12) furnishes a good setting for a discussion of the fundamental properties
of Mz({,m). As we already mentioned earlier, the argument ( determines the type of the
continuation (4.7.8) associated with the coefficient function and thus of the integrand in (4.7.12).

This suggests a distinction between two cases:

e The integrand constitutes a meromorphic function with respect to ¢ if { € Z with R¢ >
—(m+1). Particularly if ¢ € —N there are simple poles at any integer —(m+1) <t < —1
and the integrand is analytic in the entire half plane to the right of the integration path.
According to Cauchy’s theorem, the whole integral thus equals zero. This corresponds to
the phenomenon that the series appearing in (4.7.5) also equals zero for ( € —ON with
RC > —p(m + 1). On the other hand, if ¢ € Ny the integrand has an additional pole of
order 1 + ¢ at t = 0. If we imagine the integration path cq + i7 with 7 € R as the left
edge of a rectangle of infinite height and width in the complex ¢-plane, the pole at t = 0

is encircled in the clockwise direction. Accordingly, the residue theorem yields for ¢ € No:

_ Cim+2)T(1+1t) i
My (=¢.m) =T () Bes =g =y = (=07

B (_1)1+C dS F(m + 2)F(1 + t)
(4.7.14) T ¢ ldtS T(m+2+t) |,

The derivatives can be expressed in terms of the polygamma function v*) with k € N,
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4.7. Exponential-Type m-Powers

compare (B.2.12), and the first two are given by

[d T(m+2)T(1 +1)
dt T(m+2+t)
[dz L(m+2)0(1+1¢)
dt2 T(m+2+t)

| =v—pm2)

| =m0 - wp + {500 s 00m+2)}.

To find a closed formula for derivatives of higher order seems to be cumbersome. However,
comparison of (4.7.13) and (4.7.14) with (4.7.5) gives a deeper insight about the structure
of the binomial series (4.7.5). For instance with ( = 8 and ¢ = 203, respectively, it shows

6(1) = vtm+2) = ~m+ )3 (7 ) =11+

=0

o0
m
wim+2) = o)+ {800) = 600m + )} =26m+ 1S (7 )l 0
=0
If in addition m € Ny, the polygamma functions have a nice series representation. Thus,
in this case each of the above binomial series is comprised of a finite number of single
series. For example the left hand side of the first equation then represents the (m + 1)-th

harmonic number:

m+1 0o
Zézw(mm)—zp = (m+1) Z( > (1 41)72
k=1 =0

Summarizing, the binomial series (4.7.5) has a very intricate structure.

The integrand in (4.7.12) is a multi-valued function if R( > —(m+1) and ¢ ¢ Z, exhibiting
a branch cut along the positive real axis. We may then exploit the fact that the limits of
the integrand at the upper and lower end of the branch cut differ. In particular, letting
m >0, —1 < R < 0 and ¢ = 0 we may bend the integration path to a loop, encircling
the branch cut in the negative sense, and eventually collapse this loop around the positive
real axis to result in an integral along the positive real axis. This is a routine procedure

in complex analysis and leads to the integral representation

o0

/Fm—i—? (1+2)

" Cda.
I(m+2+2x) v v

(4.7.15) Msg(—C,m

0

It converges absolutely and uniformly in any compact subset in S,, 1 for m > 0 and there,
by analytic continuation, it thus coincides with the integral (4.7.12). The representation
(4.7.15) can also be obtained from (4.7.4) without complex analysis. To show this back-
wards, in (4.7.15) we first apply the functional equation for the gamma function. Then
we introduce the integral representation for the beta function that was given in (A.3.8)

and, subject to absolute convergence, interchange the order of integration to obtain for
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¢ €Sp1and m > 0:

o0

B m+ 1 Fm+ DI +2)
Mp(=¢,m) = / Fm+2+x) v dr
0
m+1 —C Ji —(1+x)t —t\m
= — 1 —
F(l—C)/w /e (1 —e")"dtdx
0 0
1 oo
(4.7.16) = —m;/tCetﬂ — e Hmdt
0

The integral (4.7.15) can be conceived as the Mellin transform of the beta function B(m +
2, z) with respect to the second argument. We therefore denote it as the beta Mellin
transform and refer to it as an integral of Ramanujan-type, since he was apparently the first
mathematician to calculate integrals over the real-axis that involve gamma functions in the
integrand, compare §3.3.5 in [Paris and Kaminski, 2001]. However, he was concerned with
Fourier transforms of ratios of gamma functions rather than with their Mellin transforms.

In fact, the integral (4.7.15) seems to be unknown in the literature.

The representation (4.7.15) will play an important role in our subsequent discussion on the
derivation of an asymptotic expansion for Mz(¢,m) as m — oo. In before we remark, similar
to (4.7.16) or by comparison of (4.7.13) with (4.3.14) one can show that Mp(—(, m) basically
constitutes the Mellin transform of the function (1 — e~%)™*! with strip of analyticity Sy, 1.
Hence, Theorem 4.7.2 in [Bleistein and Handelsman, 1986] for any n > 0 as |I¢| — oo in Sy, 1

yields

(4.7.17) Mg(—=C,m) =0 {e—(%—")ml}.

The beta Mellin transform is therefore particularly absolutely integrable along any line that
runs parallel to the imaginary axis in its strip of analyticity. It thus follows from the inversion

formula for Mellin transforms for m > 0 and —(m + 1) < ép < 0, compare Theorem A.5.1:

50+ioo
t*Mgp(—z,m)dz, t>0

dp—100

(4.7.18) (1—eHymtl = —

This integral especially converges absolutely.

4.7.3. m-Asymptotic Expansion for a Fixed Complex Argument

Concerning the evaluation of Mp(—(,m) as m — oo we refrain from an application of the
standard expansion (B.3.5), approximating the ratio of gamma functions by a simple algebraic
power. Instead we shall employ a different expansion for a ratio of gamma functions that

involves the polygamma functions. To cover more general situations we generalize the beta
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Mellin transform by defining for fixed a > —1 the integral
1 [e.e]
4. 1 — = —_— t_(:_l @(t)m)a)dt
( 7 9) MB( <,m,CL) F(l_C)/ € )
0

which features the phase function

L(m+2)0(L+a+tt)

4.7.20 t =1
(4.7.20 pltm.a) = log — L

In accordance with (B.3.5), the integral (4.7.19) is holomorphic with respect to ¢ in S,, ; for any
m > 0, a > —1. Furthermore, a comparison with (4.7.15) shows Mgp(—(,m) = Mp(—¢,m,0).

The derivative of the phase is a difference of digamma functions

(4.7.21) %np(t, m,a)=9(1+a+t)—yp(m+2+a+1),

which, subject to (B.2.29), diverges logarithmically for fixed ¢ > 0 and @ > —1 as m — oc.
Moreover, as a function of ¢ > 0 it commences at ¥ (1+a) — ¥ (m+2+a) < 0 and monotonically
approaches the positive real t-axis at infinity. Therefore the phase function is convex and does
not possess any saddle points on [0, 00). However, it is decreasing and attains its minimum value
along the integration path at ¢ = 0. The asymptotic behaviour of Mp(—(, m,a) as m — oo is
thus determined in a neighborhood of the origin, whence the integral is of Laplace-type for any
a > —1. To ascertain the corresponding leading term we need to expand the phase function at

the origin.

4.7.3.1. An Expansion for the Beta Function

The greatest circle centered at the origin in which the phase is analytic with respect to ¢ is
controlled by the nearest singularity at ¢ = —1 — a. As a consequence, by definition of the

polygamma functions for |t| < 1+ a we can write:

o(t,m,a) = log m + g Z {W—l)(l +a)— UV (m 42+ a)}
(4.7.22) = log m +t{(1+a) —Y(m+2+a)} +t2r(t,m,a)
Here we denote:
(4.7.23) r(t,m,a) = g ® fj)! {w(j“)(l +a) — Ut (m +2 4 a)}
(4.7.24) = f; (21); {C2+j14+a)—C2+jm+2+a)}
=
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For the last equality we applied the connection formula for the Hurwitz zeta and the polygamma
function, compare eq. (25.11.12) in [Olver et al., 2010]:

(4.7.25) L(n+1)¢(n+1,a) = (—=1)" ™ (a), Ra>0,neN

Provided s > 1 and b € C\ —Nj the Hurwitz zeta function equals the Dirichlet-type series

[e.9]

1
4.7.26 b) = —_—.
(1.7.26) D)= o
n=0
Clearly, ((s,b) is uniformly bounded with respect to b > by for any by > 0 and fixed fs > 1.
Moreover, it is also uniformly bounded with respect to &s € R and especially O(b‘éﬁs) as
|s| = oo in Rs > 1, assuming b > 0 is fixed. The series (4.7.24) can therefore be transformed to
the contour integral
c+100
t*m

2i (2+ 2)sin(—m7z)

c—100

(4.7.27)  r(t,m,a) = {€2+2z14+a)—C2+2z,m+2+a)}dz,

in which the integration path is a vertical line with real part —1 < ¢ < 0. This is readily verified
by observing that as |z] — oo in Rz > —1 the integrand exhibits the following asymptotic
behaviour for any t € C, m >0, a > —1:

t*m
(2 + 2)sin(—mz2)

Rz
{C@+214+a)—C2+z,m+2+a)} = O{|1|{1’ﬂ} e'gzh%zarg(”}
a

For |t| < 1+ a with |arg(t)| < 7 it yields exponential decay, justifying a rightward displacement
of the integration path in (4.7.27) to infinity in Rz > —1 over the infinite sequence of simple
poles of the cosecant, located at the non-negative integers. Subject to the residue theorem this
returns the series (4.7.24). The C-domain of admissible ¢-values for the integral (4.7.27) is much
larger. To show this we choose ¢ = —%
(4.7.26), we have

, implying |sin(7 (¢ + iy))| = cosh(7my), and, according to

3 3 3
‘C<2+iy,1+a>C(2+iy,m+2+a>‘<2C( 1+a>, m>0, a>—1.

Applying this bound to (4.7.27) after substituting y = —i (z — ¢), and employing the triangle

inequality leads to:

—y arg(t)
|r<t,m,a>|srtr%<( 1+a)/ ‘ dy

% cosh(ﬂy)
(4.7.28) _2|t|—2<< 1+a>/ cosh( yarg(t)) "
o cosh(wy)
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It is easily seen that the absolute convergence of this integral also requires |arg(t)| < , in which
case the convergence is again uniform in any compact subset. In addition we observe that the
bound (4.7.28) does not depend on m. Finally we note that the series representation of the

exponential function implies

2
Er(tma)| < (P r(tma),

e
By definition of the phase function (4.7.20) and (4.7.22), for m > 0 and a > —1 in |arg(t)| <7

we have thus verified by analytic continuation

Pim+2)M(1+a+t) Tm+2)L(1+a) _ypimt2+a)—w(i+a)+2r(tm,a)
(4.7.29) - e .
'm+2+a+t) L(m+2+a)

The remainder function r(t,m,a) was given in (4.7.27) and is uniformly bounded with respect

to m > 0 for any a > —1. For convenience we introduce the following notation:

(4.7.30) Hpti(a) =yp(m+2+a) —¢(1+a)
0, forn=1

(4.7.31) p(m,n,a) =
w(nfl)(l ta)-— w(nfl)(m +2+a), forn>2

In the special case a = 0 we write
(4.7.32) Hp11(0) := Hppgr = p(m +2) + 1,

where 7 denotes the Euler-Mascheroni constant, see (B.2.4). For m € Nj definition (4.7.32)
equals the (m + 1)-th harmonic number. According to (B.2.29), the controlling behaviour of
(4.7.30) as m — oo is

(4.7.33) Hpt1(a) ~ log(m).

Suppose now |t| < 1+ a. Then we may employ the series representation (4.7.23) for r(t,m, a) to
expand the second exponential function in (4.7.29) in terms of Bell polynomials. In particular,

by making use of the notation (4.7.31) we have:

[e.9]

t :
exp {t2’l“(t,m,a)} = €Xp Z ﬁp(ma.]aa)
(4.7.34) =
0o 4
— Z ﬁBn(p(mv 17 CL), s ’p(ma n, a‘))

n=0
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The expression B,,(...) denotes the n-th complete exponential Bell polynomial with the first few

given by:

BO =1 Bl(l’l) = BQ(IL‘l,ZEg) :ZL‘%—I—I‘Q
(4.7.35) Bs(x1, x9,23) = 25 + 3x120 4 23

By(x1,x9,23,24) = :E‘l1 + 6$%l‘2 + 4xyx3 + 3:13% + 24

Combining the expansion (4.7.34) with (4.7.29), eventually for |t| < 1+ a in |arg(t)| < 7 and
m >0, a > —1 leads to

Tm+ 201 +att) Tm+2T(1+a) g

o0
4.7.36 = m @8N " P g(j,m, a),
(4.7.36) T(m+2+a+t) T(m+2+a) ]Z; 9(j,msa)
where we denote
. 1 .
(4.7.37) g(j,m,a) := ﬁBj(p(m, L,a),...,p(m,j,a)),
and we abbreviate g(j,m) := g(j,m,0). As a consequence of our preceding observations the

coefficients in (4.7.36) are also uniformly bounded with respect to m > 0. Equivalently, by
comparison of (4.7.29) and (4.7.36), it is ascertainable that, in accordance with Cauchy’s formula,
for any m > 0, a > —1 and j € Ny the coefficients can be written in the form

'm+2+a) 1

(4.7.38) g(jv m, a’) = F(l + (Z) % 7{ F(
c

IF'l+a+z)

eHmi1(a)z ,—j—1g,
m+2+a+z)

where the integration path C encircles the origin in the positive sense, excluding any additional
pole of the integrand. As the essential difference between (4.7.36) and the Maclaurin expansion

at the origin, which is rather given by

T(m+2)I(1+a+1) ootk[dkf(m+2)l“(1+a+t) H<ilta

4.7.39 = | dek
( ) L(m+2+4a+t) kzz(]k! dit T(m+2+a+1) [

it must be emphasized that the coefficients in the latter series are unbounded as m — oo for

any a > —1.

4.7.3.2. Application of the Expansion

To apply the preceding results for the derivation of an asymptotic expansion for Mpg(—¢, m,a),

for J € Nand ¢t,m > 0 and a > —1 we introduce the function

J-1
Tm+2)0(1+a+t) Tm+2T(1+a) 4 -

4.7.40) Gyt = —~ mi1 (@) N 4 :

( ) Gy(t,m,a) Tm 25 atl) Tmt2ia) © jgo 9(4,m, a)
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In accordance with (4.7.36), for some constants A, B > 0 and 0 < ag < 1 + a it satisfies

_D(m+2) J —Hmyi1(a)t
(4741) |Gyt m,a)| < Af<m2+§+;>t o for t € [0, a),
(;n(:ll?i;ft;—) +B (n(zni—;)a) t/lem Mm@t for ¢ > ag.

By means of (4.7.40) it is possible to telescope Mp(—(,m,a) for fixed ¢ € S;, 1 in the following

manner:

Mi(—C.m, a) = F(m+2)I'(1+a) = (j,m, a) 1 70tj—§—16—Hm+1(a)tdt

B s 11, — T(m—l—Q—{—a) ]709.]7 ) F(l—C)
= 0
+ ! /tglG(tma)dt
F (1 _ C) J Y )
0
T(m+2)0(1 + a) <= T (j
_ ¢—=Jj
The remainder term is given by
1 o0

7.4 — = 1

(4.7.43) Rj(—¢,m,a) =0 O/t G(t,m,a)dt,

and it is by definition of G ;(t,m,a) absolutely convergent for —(m + 1) < R¢ < J and readily
verified uniformly convergent in any compact subset therein. Hence, the right hand side of
(4.7.42) constitutes the analytic continuation of Mp(—(,m,a) into the strip —(m+1) < R¢ < J
for any m > 0 and a > —1. To show the asymptotic validity of this expansion for large m we

must now study the remainder integral.

4.7.3.3. Estimation of the Remainder Integral

If, for brevity we denote

r 4ITm+2)(14+a+ao+1)
4.7.44 — = t) "Rt dt
(4.7.44) Sy(—=R¢,m, a) /ao+ Tmiatatary
0
Tm+2) [
(4.7.45) Ty (=R, m, a) == m / (R g Hos (@) gy
m a

ag

for fixed m >0, —(m+1) < R < J and a > —1 we obtain by virtue of the estimates (4.7.41):

‘RJ(_Q m, a)

| < Al(m +2) /t‘] RC-1 ,—Hm1(a)t gy
“I'm+2+a)l'(1-()]
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dt

/t_g(EC T(m+2)T(1+a+t)
NI F'm+2+a+t)

BIL(m +2) J=R(=2 = Hpmt1(a)t
+F(m—i—Q—i-a,)]F 1-¢ \/t dt
F(m+2+a)\I‘(1—()]
1

O {S7(=R¢, m, a) + BT;(—R¢,m, a)}

(4.7.46) < A{Hmt1(a)}

To determine the order of (4.7.44) is slightly more difficult than in the situation of a standard
Laplace-type integral such as those covered by Watson’s lemma. The reason consists in the
particular form of the phase function (4.7.20), which is non-linear with respect to m. To solve
these difficulties we first note for any fixed ¢ € C with R¢ > —(m + 1) and 0 < ¢ < a¢ with the

arguments satisfying |arg(z)| < 7 and |arg(ap — z)| < 7 it is possible to write

c+100

(4.7.47) SJ(—%C,m,a):—% / log(2)n(—=2)dz,

c—100
where we defined

—pe—1L(m+2)I'(1 +a+ag — 2)
'm+2+a+ay—2)

(4.7.48) n(—z) = (ap — 2)

The integrand in (4.7.47) is thus a holomorphic function in the twice cut plane |arg(z)| < m and
larg(ap — z)| < m. According to (B.3.5), therein its asymptotic behaviour as |z| — oo for fixed
m > 0is

(4.7.49) log(2)n(—2) = O {1og(yz\) \z\—m—m”} .

As a consequence the integral (4.7.47) indeed converges absolutely for any fixed ¢ € C with
R( > —(m + 1). Now it is routine to show that, appealing to the large |z|-behaviour of the
integrand, the vertical integration path in (4.7.47) can be bent to a Hankel loop which encircles
the negative real axis in the counterclockwise direction and cuts the real axis somewhere on the

interval (0, ap). Equivalently we can thus write

(0+)
(4.7.50) S;(—R¢,m,a) = —% / log(z)n(—2)dz.

By analyticity of the integrand, it is reasonable to assume that the loop is composed of two

straight line segments running with a distance of § > 0 parallel to the negative real axis and a
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4.7. Exponential-Type m-Powers

circle v, of radius r > 0, whose center is the origin. Accordingly, we obtain

—r—id —o0o+1i
1
(4.7.51) Sj(—R¢,m,a) = 5 / +/+ / log(z)n(—=z)dz.
—0co—id  Vr —r4id

If, in the integrals along the lines parallel to the real axis, we make the change of variables

T = —2z F 10, respectively, we obtain for fixed r,d > 0:

—rFid [e's)
+ / log(2)n(—z)dz = i/ {log Va2 4+ 0% +iarg(—x F 25)} n(x +id)dz
—00Fid r

— /{ilog(a:) —in}n(x)dx

The last equality results from the limit § | 0 in accordance with the choice of the argument.

Moreover, regarding the circle around the origin, for r > 0 we have

™

/log(z)n(—z)dz =qr / {log(r) + i¢} n(—rei¢)ei¢d¢ — 0.

Tr —T

For the last equality we let r | 0. Following from the preceding findings, if in (4.7.51) we let
0,7 | 0 we arrive at (4.7.44). This confirms the validity of the representation (4.7.47) for any
¢ € C with ®¢ > —(m + 1). Regarding the leading behaviour as m — oo of S;(—R(, m,a) we
first note continuity of the function log(c+iy)(ag—c—iy) ™"~ with respect to y € R. Moreover,
for arbitrary ¢ > 0 it is O {|y|€7§RC*1} as y — +oo. By virtue of (B.3.6) and Corollary B.3.1,

from the representation (4.7.47) as m — oo it thus follows
(4.7.52) Sy(—=R¢,m,a) =0 {mc_ao_“} .

Finally, after a simple substitution the second remainder integral (4.7.45) can be referred to the
upper incomplete gamma function (B.2.7) and we conclude from (8.11.2) in [Olver et al., 2010]

as m — oQ:

Rema) = Lmt2)
(4.7.53) LR @) = S 2+ a)

= 0 {m== {log(m)} ' |

{Hyns1 (@)} DT = RC — 1, agHynt (a)

The big-O incorporates the asymptotic statements (4.7.33) and (B.3.6). By comparison of
(4.7.52) and (4.7.53) with (4.7.46) since 0 < ¢ < ag we have eventually verified as m — oo for
any ¢ € C with —(m + 1) < R( < J and arbitrary J € N:

|Rj(—C,m,a)| =0 {m—a {log(m)}mC—J}
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4. Mellin Transforms and their Applications in Asymptotics

Observe that the term in the big-O has a higher order as m — oo than the last addend in the
sum (4.7.42).

4.7.3.4. Expansion for the Beta Mellin Transform

Since the above result holds for arbitrary J € N and —(m+1) < ¢ < J with ¢ # 0, we deduce
from (4.7.42) for fixed ( € C\ {0} and @ > —1 as m — oc:

L(m +2)I'(1 + a) {Hpi1(a)
I'(m+2+a) —(

¢ > )
P S (Hoa(0)) 7 g, moa) (—0),

=0

(4.7.54) Mg (—¢,m,a) ~

The coefficients are a mixture of polygamma functions and {-polynomials that are expressed
in terms of the Pochhammer symbol. The right hand side of (4.7.54) represents an expansion
for the integral (4.7.19) with the asymptotic scale {H,,41(a)} 7 for j € Np, corresponding to

logarithmic decay.

4.7.4. Uniform Bound with Respect to the Imaginary Part

We close this section with the derivation of some sophisticated bounds for the beta Mellin
transform and thus also for Mz(z,m), where z = x + iy. Our first result is required to hold
uniformly with respect to y € S,, 3 in any closed subregion, and at the same time it should
reflect the asymptotic behaviour as m — co. We proceed similar to (4.7.16) with the exception

that we first apply the triangle inequality, which yields for z € S;, 1 since z < 0:

o0

1 m
IMp(—2z,m)| < mt /tzet (1—e "™ at

]

m+1 [ T(m+2)T(1+s) iy
= S S
F(—o)fal ] Tm+2+s)
0

(4.7.55) = Mg (—z,m)

A comparison with (4.7.13) shows that we have just verified

1 —x
(4.7.56) |M:(z,m)| < 8! {qga} Mg (—Z,m) , Z € Sy -
Our next aim is a bound that is absolutely integrable along ¢ + iy with respect to y € R for any
fixed real ¢ € S, 1 and also reflects the large m-asymptotic behaviour. Similar to the preceding

derivation we first consider (4.7.16) for z € S,, 1, which is

(4.7.57) Mgp(—z,m) = t7e !( Hmat,
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The product of exponential functions in the integrand is not monotonic along the positive real
line, whence the associated derivative has at least one zero there. A simple modification, however,

fixes this issue. In fact, according to the chain rule, we have:

d _,[1—e\™ L f1—et i P I S
—e = me ———— | —e
dt t t t t2 t

L—e )™ ] 1—et—tet 1—et
4.7.58 = —¢"
4738 S B
But it follows from the series expansion of the exponential function that etT_l > 1 fort >0,

implying 17;34 > et and

Consequently the derivative (4.7.58) is non-positive for t > 0, m > 0. If we now integrate by
parts the integral (4.7.57), for m > 0 and z € S, ; we arrive at:

oo

1 1—e )™
Mp(—z,m) = _mt /tz'””e_t { ¢ } dt
z t
17 d 1—et)™
(4.7.59) __m+t / prma1 & ot ¢ dt
z(m+ 1+ z) dt t
0

The modulus of the derivative in the integrand equals simply the derivative with a negative sign.

Hence, the triangle inequality leads to

—(m+1) T im d [ 1=
4.7.60 - < [t — dt.
(4.7.60) Ma(=aml < T4 2] at | t
0

Note that the upper bound depends on the imaginary part of z = x + iy only through the
rational function in front of the integral. The integral itself is a function of the real part and m.
Finally we apply (4.7.59) to the right hand side of (4.7.60) with z replaced by x, which yields

—z(m+1+x)
4.7.61 — <
(1.761) Ma(—zm)] < Tt

B (—.Z', m) .

Observe that simultaneously this bound is O {y‘Q} as y — £oo in S, 1, and as m — oo it has
the same asymptotic behaviour as the left hand side, compare (4.7.54). Hence, (4.7.61) satisfies
the desired properties. The deduction of an upper bound with the properties of (4.7.61) but
where the arguments y and m are multiplicatively separated, seems to be a very complicated

task. Several attempts have been made, none of which were fruitful.
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4.8. Mellin Transforms of Oscillatory Functions

This section is devoted to Mellin transforms of functions which are compositions of the complex
exponential function. As the kernel of the Fourier transform the latter plays an oustanding role
in the theory of characteristic functions, for example in the context of discrete distributions
of which the empirical distribution is most important, or regarding the continuous uniform

distribution.

4.8.1. Complex Exponential Function

The Mellin transform corresponding to the complex exponential function possesses the integral

definition
(4.8.1) M {emt} €)= /tc_lemtdt, a € R\ {0}.
0

Clearly, there does not exist ¢ € C for which this integral converges absolutely. Yet, the strip of
analyticity is non-empty. To show this, we first note that for fixed T' > 1 integration by parts
yields

T _ _ T
/tclemtdt = chlﬁ _ g _ g /tCQGiatdt,
1a 1a ia
! 1
If we now let T' — oo and assume 0 < R({ < 1, on the right hand side the first summand vanishes

and the integral converges absolutely. Moreover, instead of (4.8.1) we can then write

1

) ) ia -1 7 .
4.8.2 iat — t(—l zatdt_ € _ C /tC—Z Zatdt.
(482) M{e }(O / ¢ ia ia €
0 1

Now, for any 0 < ¢ < 1 the following bound applies:

|~ lal

1 oo
‘M {eiat} (g)‘ < /tﬂ?Cldt_i_ i + |C7 ]-| /t%42dt
0 1

<L+i+M
T RC al - faf (1= %)

This confirms the uniform convergence of the integral (4.8.1) in any compact subset of the region
0 < ¢ < 1. By Theorem A.2.1 we have thus verified analyticity of the indicated integral in the
strip

(4.8.3) S{e™} ={¢CeC:0<R¢<1}.
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By application of Cauchy’s theorem upon exploiting the decay of the trigonometric exponential
function in either the upper or lower t-half plane, depending on the sign of the constant in the
exponent, it is possible to cast the analytic continuation of the integral (4.8.1) in terms of the
gamma function. Therefore we first assume ¢ > 0 and 0 < ¢ < 1. This makes the function
t — t¢ for t € C multi-valued with branch points at the origin and at infinity. Since a > 0, to
maintain Riat < 0 for ¢t € C our integration path shall be a quarter annulus in the first quadrant.
This requires us to choose the branch cut of ¢ to run somewhere in the left ¢-half plane, for
(—1gita

example along the negative real axis. The function ¢t + ¢ is then analytic in Rt > 0 and

from Cauchy’s theorem we obtain for 0 < r < R:
R s
T

(4.8.4) ) .

+1 /(iy)<1eaydy + ir/(rei¢)<1eiarei¢+i¢d¢
R

[NIE]

As r | 0 the integral along the small arc is easily seen to tend to zero. Regarding the larger arc,

since % > 2 for ¢ € [0, 3] we have

. . L 2 o ¢—1 1— —Ra
(Rem)gflewRe“f’erdgb < RC / 6772 fd’ dop = R i {2 € }
a

0

R

o\
[VE]

The right hand side clearly vanishes as R — oo. Thus, if in (4.8.4) we take the limits and then

perform the change of variables x = ay, we arrive at:
0
et e + z/ “lemway
o0
)"

Me(¢,a) = (~ia)"*T(¢)

O
o\g

Observe that contour integration enabled us to represent the non-absolutely convergent integral
(4.8.1) in terms of the absolutely convergent integral for the gamma function. The proof for
a < 0 is similar and uses a quarter annulus in the fourth quadrant so that we still have Riat < 0
for ¢ € C. Summarizing these findings, by analytic continuation for any ¢ € C we have just

shown
(4.8.5) M {e} (¢) = (—ia)"*T(C), a € R\ {0}.

Finally, the fact that the integral representation (4.8.1) for the Mellin transform does not con-
verge absolutely for some arguments of its strip of analyticity bears immediate consequences

regarding the inversion formula. Indeed, the inversion theorem A.5.1 is thus inapplicable. Nev-
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ertheless, an interesting question is, for which ¢ € C we may write

c+1i00
, 1
(4.8.6) et = 5 (—tat)*I'(z)dz for a € R\ {0} and ¢ > 0.
i

To check this, we note as |z| — oo along the integration path the integrand possesses the

following behaviour:

‘(—z‘at)*zf(z)‘ -0 {|at|—§Rz |Z’§Rz—% 67§Rz+3z arg(—iat)—Sz arg(z)}

(487) . LR
-0 {|Z|Ci% egzarg(—zat)—%} ,

The integral (4.8.6) is hence absolutely convergent only for 0 < arg(t) < 7 if a > 0, and for
—7 < arg(t) < 0if a < 0. A wider range of values can be enabled by deforming the vertical line
to a loop that commences at coe "™, encircles the origin in the positive sense and then returns
to coe’™. This representation, however, has properties that correspond to the classical series
representation of the exponential function, which differ quite a lot from an integral where the
integration path is a vertical line. Probably most remarkable is the drawback that the real part

along the loop is not constant. Contrary to (4.8.1) the integral

o0

M{et —1} () = /t“ (e — 1) dt, a€ R\ {0},

0

certainly constitutes a Mellin transform with an absolutely convergent integral definition and
it is routine to verify the associated strip of analyticity as the region —1 < R( < 0. Using
integration by parts and the identity (4.8.5) we obtain

(4.8.8) M{et —1} () = —ig /tCeimdt = (—ia)"°T(¢).
0

Hence, according to the inverse Mellin formula (A.5.5), the function ¢ — 1 can be represented
by the right hand side of (4.8.6) but with —1 < ¢ < 0. Moreover, subject to (4.8.7) with the
choice —1 < ¢ < —% this inverse Mellin integral is even absolutely convergent for 0 < arg(t) <

if a > 0 and for —7 < arg(t) <0 if a < 0, i.e., especially for any real ¢ # 0.

4.8.2. Sine and Cosine

As a consequence of Euler’s formula the complex exponential function is intimately connected
with the two well-known trigonometric functions cosine and sine. It is therefore not surprising

that there is also a close connection between the corresponding Mellin transforms. In particular,
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for0 < (< 1and a€R\ {0} from (4.8.1) we deduce

oo oo o0

(4.8.9) /tc_leitadt = /tc ! cos(at)dt —l—Z/tC Lsin(at)d

0 0 0

A closer look exhibits a substantial difference between the first and the second integral on the
right hand side. While the first is again absolutely convergent for no ¢ € C, the second is in
fact absolutely convergent for —1 < R( < 0. However, similar to (4.8.1) it can be shown that
each integral converges uniformly in any compact subset of 0 < R < 1 and —1 < R( < 1,
respectively. Moreover, if we suppose 0 < ¢ < 1 from (4.8.5) and (4.8.9) we obtain upon
comparison of the real and imaginary parts the representation of the Mellin transform of the
cosine and sine, respectively in terms of the gamma function and the function itself. This leads

to the following results:
M {cos(at)} (¢) = |a|™ ¢ cos { IS } ')
Sm{cos(at)} ={C€C:0< R <1}

M {sin(at)} () = sen(a) ol “sin {5} T(C)
Sm{sin(at)} ={( € C: -1 < R( < 1}

(4.8.10)

(4.8.11)

By analytic continuation each representation remains valid for arbitrary ¢ € C. Throughout this
work the latter Mellin transform is of most frequent occurence. For later use it will be helpful
to note that, for ¢ € R and z € C as a consequence of the representation of the sine in terms of

the complex exponential function we can write:

: 2 1 2 —aSz a3z 2 2 —aSz a3z 2

sin (az)|” = 7|08 (aRz) {e —e } + sin” (a¥Rz) {e +e }
= cos? (aRz) sinh? (aSz) + sin? (aRz) cosh? (aS2)

Accordingly, a simple bound is given by:

lsin (az)|* < cosh? (aSz) {cos? (aRz) + sin? (aRz) }
(4.8.12) < e2|“z|

Moreover, subject to Stirling’s formula the asymptotic behaviour of the Mellin transform (4.8.11)

as |z| = oo in |arg(z)| < 7 strongly depends on the real part of the argument:

(4.8.13) ’F(z) sin {%H - \/ZG“Z |2 Re3 o~ Szarg()+ T

_ O{‘Z|§Rz—% e—%z}
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In fact, regarding $z — +oo the line Rz = % constitutes a transition from algebraic decay to

growth. Such a property is typical for Mellin transforms of oscillatory functions.

4.8.3. Characteristic Functions Associated with Convolutions of Continuous
Uniform Distributions

We now investigate a special type of characteristic functions that features trigonometric proper-
ties and exhibits algebraic decay at infinity. In particular, we consider the characteristic function
¢y that was given in (3.3.5). The associated random variable X is thus attributed for p € N to
a p-times convolution of uniform distributions. To derive the Mellin transform corresponding to

® x we first denote

p
(4814) dp = e_zpf H(b] _ aj)_l.
7j=1

We can then write

(4.8.15) M{Dx} (¢ 7 ﬁ - ”%‘} dt.
/ i

According to Section 4.2, the strip of analyticity is given by
(4.8.16) S{Px}={CeC:0<RC<p}.

To determine the analytic continuation of (4.8.15) we rearrange the product as a sum. Therefore

we define the set
P
(4.8.17) D, = X {aj,b;}.
j=1

Moreover, for a p-dimensional vector v € D), denote s(v) := Z;’:l

the number of components in v corresponding to lower endpoints a; for 1 < 57 < p. It is then

vj and suppose n(v) equals

ascertainable that the following holds:

p
t) _ t_pdp H |:€itbj o eitaj]
j=1
— t_pdp Z (_1)n(v)6it5(v)

veED)

(4.8.18)

This constitutes a finite sum with |D,| = 2P addends. Observe that there is a balanced number

of addends with positive and negative signs, i.e., Zver(_l)n(v) = 0. We may thus write:

—t pd Z nv) its(v)

veED)
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= t70dy 3 (~1)"0) [0 -]

vED)

= t7Pd, Z (_l)n(v) [eits(v) _ 1}

veED)
s(v)#0

Suppose now ¢ € S {®x} satisfies —1 < (—p < 0. Then we can apply the above decomposition to
(4.8.15) and subject to absolute convergence interchange the order of summation and integration.
By additional use of (4.8.8) this yields:

M{(I)X} —d Z n('u /thl ztsv_l]dt
0

vED)
s(v)#0
=dT(¢—p) Y (1" {—is(v)})"™°
veED,,
s(v)#0

(4.8.19) :e_ip;m > (=10 {—is(v) e

=103 = 4) Jep

s(v)#0
By analytic continuation the result extends to arbitrary ¢ € C and since the integral (4.8.15)
is holomorphic in 0 < R( < p, especially there the right hand side is analytic. It is evident
from (4.8.19) that the meromorphic structure of the analytic continuation corresponding to this
Mellin transform strongly depends on the values s(v). In any case, regarding R¢( < 0 there is
a sequence of poles located at ( € —Ng with some of them being removable, where the sum
n (4.8.19) equals zero. For R¢ > 0 there is only one possible pole, namely at ( = p. Its
presence particularly depends on the number of summands with s(v) # 0 whose sign is positive
or negative. If this number is balanced the pole at ( = p is removable whereas in case of an

imbalance it is not. Note that the latter implies

> (=) o,

vED)
s(v)#£0
From this we conclude, since we always have ) Dp(—l)"(”) = 0, the presence of a constant
summand in the expansion (4.8.18) of ®x. This, however, gives a weaker contribution to the
integral definition of the associated Mellin transform than any oscillatory expression e**(*) for
s(v) # 0.
By inspection of (4.8.19) we can immediately determine the Mellin transform Mpg(¢) with

strip of analyticity So of a characteristic function @ corresponding to a rectangular distribution
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on [a1,by] for aj, by € R, which is

Mp(() = *i% {(=ib) "L, 20y — (—iar) " Tgq, 20y}
So={CeC:0<RC<1}.

(4.8.20)

4.8.4. The Modulus of the Sinc Function

In the preceding subsection, particularly in (4.8.20), we established the Mellin transform of a
characteristic function ®x = P associated with a continuous uniform distribution, compare
also (3.3.5) with p = 1. We close this chapter with the derivation of the Mellin transform
corresponding to the modulus of this characteristic function and briefly point out the differences
between their analyticity properties. First we observe for a,b € R with a # b in terms of the

sinc function (A.1.7) we can write

pith _ ita qvra . [t(b—a)
(4.8.21) Gh—ap ¢ Sl{ 2 }

Accordingly, |®x(t)] = |si(Jt)| for an appropriate parameter ¢ > 0. The integral definition
(4.2.1) of the associated Mellin transform Mx thus has the strip of analyticity

(4.8.22) Sx ={CeC:0<R(<1}.

Moreover, upon introducing the gamma function by means of the identity (A.5.11), for fixed
¢ € Sx we find:

[ [sin(t)
(4.8.23) Mx(¢) _/t i
0
(4.8.24) = F{;_Coo/xuo/exﬂsm(mdtdx

Exploiting the periodicity of the sine permits us to express for x > 0 the dt-integral in terms of

elementary functions:

o0 ™

/ezt |sin(t)| dt = Z/em(tﬂrk) |sin(t)| dt
0 k=079
1 [ —xt
= m e Sln(t)dt

0
™

1 . .
- - —(z—i)t _ _—(z+i)t
2i(1 — e ™) / [6 ¢ ]dt
0
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1 ef(xfi)fr -1 e*(itﬁ*i)ﬂ' -1
T 2i(l—e ) | —(x—i)  —(x+1i)
_ 147 7™
(@224 1)(1 - @)

1 T
= coth { }
22 11 2

For the last equality we applied the definition of the hyperbolic cotangent. If we eventually plug
this result into (4.8.24), we verified

[e.9]

T
1.8.25 M th }d.
0

The hyperbolic cotangent satisfies O {1:_1} as x | 0 and O {1} as x — oo. Consequently, similar
to the original integral (4.8.23) the integral (4.8.25) is also absolutely convergent for any ¢ € Sx
only and can be verified holomorphic in Sx. In contrast, to determine the associated analytic
continuation we may now integrate by parts or employ an asymptotic expansion. However, if in

(4.8.25) we make the simple change of variables v = %, we obtain equivalently

oo UC 1
(4.8.26) Mx(Q) / coth 2U}dv.
0

From the expansion for the hyperbolic tangent at the origin, see eq. (4.33.3) in [Olver et al., 2010],
we deduce the existence of a power series expansion for the integrand in (4.8.26) as |v| — oo in

larg(v)| < §, whose leading term is

1 1
482 h{ }—f
(4.8.27) v2+1COt 9 v—l—

We thus know from Lemma 4.3.3 in [Bleistein and Handelsman, 1986] the analytic continuation
to RC > 1 of the integral (4.8.26) is meromorphic with an infinite sequence of poles. Recalling
that (4.8.20) never possesses more than one pole in this region, we conclude that the mero-
morphic structure of Mx is the price that must be paid for considering the Mellin transform
of the modulus of the oscillatory function ®x. Moreover, as a consequence of Lemma 4.7.2 in
[Bleistein and Handelsman, 1986], for arbitrary ¢ > 0, as ¢ — +oo in the half plane R¢ > 0

we observe exponential decay
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5. Derivation of Asymptotic Statements About

the Bias by Means of Mellin Transforms

We now want to employ the Mellin transforms that were determined in the preceding chapter,
to derive asymptotic statements about some of the bias integrals from Corollary 2.1.4. Our
results will provide an overview on the possible leading behaviour and on the effect of different
parameter values. While our first study is confined to the uniform local bias function, in the

second part of this chapter we also present examples where the local bias is considered.

5.1. The Uniform Bias Function

For m > 0, in equation (2.1.56) the uniform bias function was defined as
1 TP
(5.1.1) ULB(m) = 7T/Pe(i’m) |y (t)] dt.
0

Suppose validity of the conditions (4.2.2) and (4.3.15) and for sufficiently large m the existence
of zg € Sx NS, 5. with Mx(zo +iy) € R, where the indicated sets were given in (4.2.3) and
(4.3.18). It is then permitted to plug the inverse Mellin representation (4.2.4) into (5.1.1) and

interchange the order of integration, subject to absolute convergence, which yields

1 xo-+1i00
(5.1.2) ULB(m) = 5-3; / Mx (z)Mz(—z,m)dz.
xro—100

The above integral eventually furnishes the appropriate setting for a discussion of the large m-
behaviour of the uniform bias function. In further steps we need to investigate the properties of

the integrand with respect to z € C as m — oo.

5.1.1. Two Algebraic-Type Characteristic Functions

We begin our discussion with the simple scenario of two distributions that possess algebraic-
type characteristic functions, i.e., we consider (5.1.1) for |®x| and ®z as in (3.3.1) and (3.3.2),
respectively. The Mellin transform of the former function equals the beta function (4.4.3).
Regarding the Mellin transform of the m-power we refer to (4.5.8), the integral representation

(4.5.6) for the function appearing therein being valid in S,, g. Assuming m large enough such
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5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

that S(m + 1) > ap and selecting 0 < xg < ap, from (5.1.2) we deduce

xo-+100

1 FTE)T(P—2) (2
1. LB = N—a a3 [ = d
(5.1.3) ULB(m) = B / M) o (6””) >
x0—100
where for convenience we denote
o
5.1.4 A= —.
(5.1.4) :

At this point we do not recommend to employ any series or integral representations for the
function J%(-,m) accompanied by an interchange in the order of integration. The reason will
become clear in the subsequent steps. For the most comprehensive insight on our approach we

start with the simple case ¢ = 1 before admitting arbitrary ¢ > 0.

5.1.1.1. The Plain Scenario ¢ =1

According to (4.5.6), in this situation J% (-, m) equals another beta function, which is by (B.3.2)

expressible in terms of gamma functions, leading to

To+100 z oz 2 . .
(5.1.5) ULB(m)_aﬂ;ﬂQi / AZl“(a)F(p I‘CE;)FF((Ti)_i_Flg +1 B)d

To—100

If additionally « = 8 and o = 6, Barnes’ first lemma states that this integral equals a simple
ratio of gamma functions. The general evaluation procedure requires a closer inspection of the
integrand, particularly of the part that features the asymptotic parameter m. This is merely a
ratio of two gamma functions. Subject to (B.3.5), for fixed z € C, their behaviour as m — oo

can be described in the elementary form

r (m vl g) .
5.1.6 —— 2 ~m #
(5.16) T(m +1) e
which clearly corresponds to negative powers of m if £z > 0. Accordingly, for any sequence of

complex numbers {z,},.; that does not depend on m with increasing real parts and possibly

finite I C Ny, the sequence

3 (2.m) r(s)r(m+1-3)
JH —

8" T(m+1)

for n € I constitutes an asymptotic scale as m — co. For that reason our main interest concerns
the behaviour of the integrand in (5.1.5) in the region to the right of integration path, i.e. in
the half plane Rz > zp. There, according to Stirling’s formula, for fixed m > 0, as |z| — oo

we find algebraic growth in the real direction and exponential decay in any direction of the
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5.1. The Uniform Bias Function

imaginary axis, compare (4.4.4) and (4.5.10). Consequently we have freedom in displacing the
integration path by an arbitrary finite distance to the right, incorporating possibly traversed
poles. However, in Rz > 0 we find two sequences of simple poles. On the one hand there are
those at a(p + Np) generated by the factor T’ (p — g) that corresponds to Mx with residues,
compare (B.2.20):

(5.1.7) Res T ( _ 3) - aﬂ, j €N
z=a(p+j) o J!

On the other hand there is an m-dependent set of poles located at 5(m + 1 + Np) that moves
towards the right margin of the half plane &z > 0 as m — oco. By choosing m large enough we
may thus collect any finite number of poles from the first sequence without crossing any of the
m-~dependent poles. In accordance with the definition of S;% 5 that means we expand this strip
as m — oo to the right, but for fixed m we always remain therein. Let xj41 := a(p+ J + %)
for a given J € Ny and choose m sufficiently large to ensure x .1 € S, 5 Then we shift the
integration path in (5.1.5), subject to the asymptotic behaviour of the integrand, to the right,
such that the new path satisfies Rz = xyy1. Keeping in mind that we encircle the poles with

residues (5.1.7) in the negative direction, Cauchy’s theorem yields

F(p+j)r(%)1ﬂ(m+1—%) (—1)i

T G+ 1) jro A,

(5.1.8) ULB(m Z Ac(P+I)

with the remainder integral given by

T +i00
L rEre-2)r(3)r(me-3)

T j41—100

Clearly, the sum in (5.1.8) is descending as m — oo. To verify that it indeed establishes
an asymptotic expansion it thus remains to show that (5.1.9) is of faster decay than the last
summand. Therefore we substitute y = —i(z — xj4+1) which transforms (5.1.9) to an integral

along the real axis and enables us to apply the triangle inequality:

AT+ / ‘F zy+xJ+1 <p _ zy+2J+1) T (zyHBﬁJH) T <m +1— %)‘

[By(m af2m? T(p)T(m + 1)

dy

Since the arguments of the third and fourth gamma function in the numerator have a positive
real part we can easily bound them by virtue of (B.2.31). Furthermore, to the beta function we

apply the estimate (4.4.6). Accompanied by the change of variables y = awv we then arrive at:

Ty — ) % CREPESY _ iytTren
IR (m)| < /\/8;; r (x(gH) r <n;z_m1+ 1)Jﬁ+ ) ‘F( aJ+ )Il:\(zgf aJ+ )‘dy

—00
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5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

Ao(p+a+3)
< (/)T <O‘

(5.1.10) p

(p+J+1>)F(mﬂr—(ff;”b)

The constant ,(.J) was given in (4.4.7) and the integral in the upper bound (5.1.10) is evidently
absolutely convergent. A comparison with (5.1.8) confirms the higher order of the remainder
and thus verifies the asymptotic validity of our expansion as m — oo. Moreover, subject to
the algebraic growth of the integrand in (5.1.9) in the direction of the real axis, we expect the
remainder not to vanish as J — oo. The expansion (5.1.8) is thus merely of asymptotic type.

Summarizing our findings, in terms of Pochhammer’s symbol we have just shown:

st 50 35 (5) 0 (052 (-7 G
B

|
pr i B B J!
— - 1 ap
(5.1.11) = (m+1),%ZQj <m+1—6>w_
J=0 B
Here we denote the associated coefficients by
1 /o\apti) alp+37)\ (=1)7
1.+ (0 4
(5.1.12) 2 =5 (9> (p),T < 5 T

5.1.1.2. The Case of Arbitrary ¢ > 0

In order to get a clue how to proceed from (5.1.3), we note by comparison of (4.5.8) and (4.5.24)

for z € S;ﬁ we can write

o () ).

Here S%,(-,m) is given by the series (4.5.25) and accordingly as m — oo it is O(1). By means
of (B.3.5) from the above representation we ascertain a faster decay as m — oo for larger fixed
values of Rz in S;% 5 In other words, for an appropriate sequence of numbers in this region the
function J%, (-,m) can be employed to establish an asymptotic scale as m — co. This suggests
we should easily repeat the steps we performed in the case ¢ = 1 to generate an expansion for
the uniform bias in the case of arbitrary ¢ > 0. Therefore we recall that 3% (z,m) constitutes
an analytic function in the strip S;I’l that is especially uniformly bounded with respect to the
imaginary part of its argument there. The controlling behaviour of the integrand in (5.1.3)
as |z| — oo towards the imaginary direction of this region with fixed m > 0, according to
(4.4.4), is thus of exponential order. Summarizing, again the integration path may be shifted

arbitrarily inside S_ 5 bearing in mind additional contributions from crossing some singularities
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5.1. The Uniform Bias Function

of I' (p — £). Formally speaking we displace the integration path in (5.1.3) to the right direction
to match the vertical line that cuts the real axis at Rz = xy41. Again 2541 = a(p+ J + 5)
for a given J € Ng with x 741 € Sr_n, s and appropriate m, and the line does not run through any
singularity. Since the poles at a(p + j) with 0 < j < J are encircled in the clockwise direction,
subject to (5.1.7) the residue theorem for (5.1.3) yields

opinL @ +34) g (alp+7) (=1)
(5.1.14) ULB(m) = ;)A (p+) ) JH< 3 m) + Ry(m),

where the remainder integral is now equal to

LT e @re- o)
ST (o2 /s
1.1 = A —a @’y | = dz.
(5.1.15) Rotm) = / | rp) (6’m> :
TJj41—100

Observe, contrary to (5.1.8), the exact asymptotic structure of (5.1.14) stays hidden in the

integral function J% (-, m). However, from (5.1.13) we deduce

LT ()T +D) | aprs) Y 1Y
a(p+j) I ¢ (BT m
(5.1.16) ULB(m qﬁWZA ()T (m+2+ (p+J)) SH< g ) 7!

+ Rj(m).

To verify that the remainder integral (5.1.15) is of higher order than the last addend in the pre-
ceding sum remains a straightforward application of the triangle inequality, inequalities (4.4.6)
and (4.5.31), accompanied by two small changes of variables, similar to the derivation of the
bound (5.1.10). We thus find with ,(J) and w, given in (4.4.7) and (4.5.32), respectively:

ATJI+1 iy + Ty W+ Tyl \ ~ W+ T4
\RJ(m)\SOM/’ <a+ I p_TJr T TJr’m W

A i TAEAY L CIALAE)
1)

gt P (m+1- 2
(5.1.17) p
2

The last equality is a consequence of (B.3.6) as m — oo for any fixed J € Ny. But according to
a(p+j)
(B.3.5), the j-th summand in (5.1.16) for 0 < j < J satisfies ~ const x m 5 as m — 0.

Concluding our findings, in the purely algebraic scenario, as m — oo the bias function ULB(m)
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5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

has the following asymptotic expansion:

ULB(m) L i(”)a(pﬂ)l“(pﬂtj)j% <oz(p+j)’m> (_.1)3‘

afr = \0 L(p) 5 !
1 > Q3
(5.1.18) = > ]

Ba

The associated coefficients are given by

(5.1.19) 02 = q;ﬂ (‘;)”‘(p“) r <a(pB;r j)) (p)j(_;)js;g <a(pﬁ+ j)7m> _

These involve the inverse factorial series (4.5.25), absolutely convergent for sufficiently large m.

If, in addition, we denote

o L (o\Pp(op
(5.1.20) Do 1= - (9) F(BQ)’

as m — 0o we can write

0
(m + 2)a

q

(5.1.21) ULB(m) ~

5t

It shows that the dominating behaviour of the uniform local bias merely depends on the ratio of
the degrees, that specify the algebraic decay at infinity of the characteristic function of X and

&, respectively.

5.1.2. An Algebraic-Type |®x| and an Exponential-Type &

In this section we study a scenario of two characteristic functions that do not belong to the same
class. While that of the distribution of interest is assumed to have a modulus of algebraic type,
for the error distribution we postulate an exponential-type characteristic function, see (3.3.1)
and (3.3.4). Thus, in comparison with the previous subsection, ®z possesses a much faster decay,
which in turn implies that the m-power approaches unity more rapidly. The rate of ULB(m) as
m — oo therefore should be expected slower than algebraic. Nonetheless we will see that the
basic procedure to generate an expansion has many steps in common with the purely algebraic
case. The reason is that the Mellin transform of the m-power, subject to (4.7.13), can be cast
in terms of the beta Mellin transform. But in Subsection 4.7.3 we revealed the possibility to
expand the latter in powers of the digamma function whose order especially depends on the
argument. In particular, in (4.7.54) for fixed z € C\ {0} as m — oo we verified
H—>

(5.1.22) Mg(z,m) ~ ’”7“
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5.1. The Uniform Bias Function

Hence, especially for an appropriate sequence of numbers in the region S_ ,, where the right

m,1
hand side of (5.1.22) is descending, the beta Mellin transform establishes an asymptotic scale as
m — oo. This property was also shared by the function 53{[(-, m) in the preceding subsection,
which indicates the similarity between both cases.

Now, assuming an algebraic-type modulus of ® x, we know from Section 4.4 that the associated
Mellin transform is again given by the beta function (4.4.3). Then, if we choose m large enough
to have B(m 4+ 1) > ap we can pick 0 < zg < ap, located in the common strip of analyticity of

Mx (z) and Mz(—z,m). In these circumstances, if we denote

(5.1.23) A=

it follows at once from (5.1.2) that we can write

To+i00
(5.1.24) ULB(m) = 5; - / v LG )IF(]()Z;_)MB <ﬁ >dz.

In accordance with (4.4.4) and the uniform boundedness with respect to Sz of Mp (87!

z, m)
in S;L’ 55 the integrand in (5.1.24) possesses exponential decay as Sz — oo therein for any
fixed m > 0. Hence, in S;n’ 5 We may move the contour arbitrarily to the right. In this process
we only need to incorporate the poles of I’ (p — 2) with residues (5.1.7), since the remaining
integrand is analytic. Therefore, given K € Ny we choose m such that xx 1 € S;n,ﬂ’ where
rr41 i =alp+ K+ %) Then we shift the original path from Rz = z( rightwards, to match the
line whose real part is Rz = zx+1. Recalling that we encircle the poles in the negative sense,

from the residue theorem we obtain

(5.1.25) ULB(m ZAQW’“ p—;)k)MB <O‘(p;k),m> (_kll)k + R (m),

where the remainder term is given by

TR 41+1i00
1 I I'ip—2
(5.1.26) Riclm) = oo / VLG )m()z)) )MB <ﬁ >dz.

To finally verify the asymptotic character of the sum (5.1.25) as m — oo, we must find a suitable
estimate for the remainder term. For this purpose, in (5.1.26) we substitute y = —i (2 — g 4+1)

to arrive at a real-valued integral, and then apply the triangle inequality:

%y+:r:K+1 ‘ ‘I’ ( ly+ch+1

= 25 TN (0 )
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5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

For Mgp(-,m) it suffices to employ the simple bound (4.7.56). Furthermore, regarding the beta
function in the above integral we employ the estimate (4.4.6) with x,(K) denoted in (4.4.7).

Upon performing the additional change in variables av = y, we arrive at:

[Nl

| /\

S 2 7|v

Kp( ))\ZK+1M <xK+1 > / {1)2 + (p + %) } e —‘2\
2 , M 1 dv

pm B N RE coshz (7v)

_a(P;rK)_%
_0 {HmH }

The last bound holds in accordance with (4.7.54) as m — oo, which shows that the remainder

| Rrc (m))]

integral in fact exhibits a faster decay than the last term in the sum (5.1.25). Making use of
(5.1.23) we have thus verified that

a(p+k)

- ULB(m) ~ Z[qﬁa] PMa <a(p+k>,m> (_kll)k

pr B

constitutes an asymptotic expansion as m — oo. At this point, employing the integral defini-
tion of Mp(-,m) provides the highest accuracy. Instead it can also be approximated by the
asymptotic expansion (4.7.54) in terms of digamma functions. As m — oo this yields the formal

series
(5.1.28) ULB(m ;:1 Z H%

in which we denote the associated coefficients by

a(pt+k
(5.1.29) = . q%U e ( )k Z a(p + k) I

The additional coefficients g(j, m) are those in (4.7.38) with a = 0. For brevity we eventually
define

1 qap
qﬁal 1

1. =00 =
(5.1.30) 00 [0 s

enabling us to concisely describe the controlling behaviour as m — oo in the form

_ap

(5.1.31) ULB(m) ~ H,, / Zoo-

m

It shows that, in case of a characteristic function ®x with a modulus of algebraic-type and an
exponential-type @z, the exact rate of uniform convergence solely depends on the ratio of the

degrees a, p, 8 but not on q.
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5.1. The Uniform Bias Function

5.1.3. An Exponential-Type |®x| and an Algebraic-Type &

In our next setup we consider a distribution for X whose characteristic function is in absolute
value attributed to the stable class, and a distribution for & with a characteristic function of
algebraic type, compare (3.3.3) and (3.3.2). Clearly, since the decay of the former function is
faster than algebraic, our preceding findings suggest that we should expect an improved rate for
the uniform bias. In particular, the rate can be expected exponential. To justify this statement
we first note that the Mellin transforms are in the present setup given by (4.6.3) and (4.5.8),
respectively. Hence, S_, 5 C Sx for any m > 0, and, according to (5.1.2), for each x € S, the

uniform bias can be cast in the form

xo+1i00
1 z z z
1.32 LB(m) = —— AET <7) 37 (2 m) ds,
(5.1.32) ULB(m) = —— / : JH<B m) :
ro—100
where for brevity we denote
90&
(5.1.33) A=

oo’

From (4.6.4) and the uniform boundedness of 3% (z,m) with respect to Sz in the strip S, ; for
any m > 0, concerning the integrand in (5.1.32) we conclude exponential decay in each direction
of the imaginary axis there. As a consequence, arbitrary leftward and rightward displacements
of the integration path in S, | are permitted. However, in contrast to the preceding scenarios
we do not encounter any singularities in this region, regardless of the magnitude of m. The
reason is that the strip of analyticity of the Mellin transform of |®x| matches the entire half
plane Rz > 0. Recalling the capability of the function J%,(-,m) to establish an asymptotic scale,
the analyticity of the integrand in S 5 corresponds to the fact that the actual rate of ULB(m)
as m — oo is faster than anything expressible solely in terms of this function. In particular,
since ’J?{(-, m) possesses an expansion of algebraic-type, the actual rate need be faster than any
algebraic order, i.e., it is necessarily of exponential order. This claim can readily be confirmed

by a simple estimate of (5.1.32) involving (4.5.31):

zo

2 st D)T(@) Tl
[ULB(m)| < 2 5 2w;+ﬁ B a8 /‘r (xo+zy>‘dy
QT X T 6
q F(m+1—g°+ﬁ) .

_z0
~ const X m b

The constant w, was defined in (4.5.32) and the integral which features the gamma function
is clearly absolutely convergent. Moreover, the asymptotic relation holds as m — oo subject
to (B.3.5). Recalling the arbitrariness of zo € S, g, we conclude the decay of ULB(m) is in
fact faster than any reciprocal power of m. For applications the above estimate is of course

unsatisfactory. The derivation of exact statements, however, is by no means simple and can not

151



5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

be accomplished by a straightforward displacement of the integration path. Instead it requires

to introduce a sophisticated expansion for the integrand in (5.1.32).

For simplicity, we first assume ¢ = 1, in which case J%,(-,m) can be referred to as the beta
function. In particular, to the integral (5.1.32), we then apply for Mz(—z,m) the representation
(4.5.9). Accompanied by a simple change of variables, for zg € S_ 5 this yields

1 %O-Hooi . F(m+1—%)
(5.1.34) ULB(m) = 55 - / AT(2)T (5) T

@

Apart from the m-dependent simple poles at g(m + 1+ Np) the integrand in (5.1.34) possesses
always a double pole at the origin. The remaining poles are located in the left z-half plane
with multiplicities depending on the parameters «, 8 > 0. These are not relevant because we
conclude from (5.1.6) that poles in Rz < 0 lead to an expansion in ascending powers of m, which,
however, does not reflect the behaviour of ULB(m) as m — oco. Although it is not immediately

clear how to proceed from (5.1.34), the function

(5.1.35) ()T (O‘;)

evidently constitutes the key expression in this integral, since it is the only part that is inde-
pendent of m. Indeed, it turns out to be possible for large |z|-values to replace (5.1.35) by its
so-called inverse factorial expansion. For details we refer to [Paris and Kaminski, 2001]. Roughly
speaking, an inverse factorial expansion is a finite expansion with the intention to approximate
the leading behaviour of a ratio of gamma functions by a sum of single gamma functions plus a
remainder term. This eventually facilitates a reference of the integral (5.1.34) to the exponen-
tial function by virtue of the inversion formula for Mellin transforms. However, it will turn out
that this reference can not be drawn if in (5.1.34) we retain the ratio of gamma functions that
depends on m. Instead we must first employ an appropriate asymptotic expansion as m — oo
in powers of m. Such an expansion should ideally possess uniformity properties with respect to
z, and it is not recommended to employ one that holds merely for fixed z, since we integrate
along an infinite ray in the complex plane. We do not want to involve such an expansion and
rather simply estimate the controlling m-term in the integrand by means of (B.3.5). For the
derivation of the leading term of the whole integral (5.1.34) this strategy should work, since a
different kind of expansion for a function only affects the terms succeeding the dominating part,

but it does not affect the asymptotic behaviour of that function.
To keep the effort as low as possible, we abandon the integral (5.1.34) and rather restart

our investigation of (5.1.32) for arbitrary ¢ > 0. An asymptotic expansion for the integral

3%,(-,m) appearing therein was given in Subsections 4.5.2 and 4.5.4, respectively in terms of
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5.1. The Uniform Bias Function

gamma functions and simple algebraic powers. Following the above considerations, we employ
the latter to approximate the leading term of J%,(-,m), which coincides with (B.3.5) for ¢ = 1.
For this, we first transform (5.1.32) by a simple change of variables, with 0 < xg < 8(m + 1),
leading to

(5.1.36) ULB(m) = —— / AT (2) 39, <O‘Zm> dz.

Then, if in (5.1.36) we approximate the controlling behaviour by virtue of (4.5.38), for sufficiently

large m it follows that

]_ —
(5.1.37) ULB(m) ~ 2 ULB(m),

with the estimated integral defined by

20 4 joco
— 1 az _az
— —z et 5
(5.1.38) ULB(m) : 5 / AT (2)D <qﬁ> m 4 dz.
20 _joo

In accordance with this approximation, we confine our discussion of the large m-behaviour of
the uniform bias to a study of (5.1.38). We proceed from the latter integral and, appealing
to the exponential decay of the integrand in the direction of the imaginary axis, displace the
integration path towards the right, such that |z| is everywhere large. More precisely, we suppose
the real part of the new path satisfies Rz = z,,, and it is especially permitted to depend on m.
For fixed m, this yields

T +100
— 1 _az
(5.1.39) ULB(m) = 9 / ATQ(z)m 4B dz.

Of particular importance now is the function

az
5.1.40 Qz) =T(2)I <> .
( ) (2) :=T(z) 7
In the present setup the parameters that were defined in Section 2.2 in [Paris and Kaminski, 2001]

are given by

Il
/
i
S
N—
Sl

> =
I

|
Nl 9

(5.1.41)

N
I
—
+
Tl
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5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

Since |z| is large everywhere on the integration path in (5.1.39) and k > 0, according to Lemma

2.2 in [Paris and Kaminski, 2001], the following expansion holds for arbitrary J € N:

J—1
(5.1.42) Q(z) = 2m (hr") I (1A (k2 + 9 — §) + ps(2)T (kz + 0 — J)
j=0

The remainder p;(z) constitutes an analytic function of z except at the points where Q(z) has
its poles, and it satisfies ps(z) = O(1) as |z| — oo uniformly in any closed interior subsector of
larg(z)| < 7. Furthermore, the coefficients A; for j € Ny depend on the parameters only with
the first of them equal to

(5.1.43) Ay = k| ——.

The derivation of further coefficients is elaborate and applicable algorithms substantially depend
on the multiplicities of the gamma functions in (5.1.40). This shall not be discussed right here
and we merely employ the inverse factorial expansion for J = 1 to approximate the leading
term of Q(z). The first summand in (5.1.42) then has simple poles at —x~1(9 + Ng) with

corresponding residues computable by virtue of elementary calculations, see (B.2.20):

—1)n
(5.1.44) Res T'(kz+9)= /fl( ) , n € Ny
z=—k~1(94n) n!

Finally, plugging (5.1.42) with J = 1 into (5.1.39) and performing an interchange in the order

of integration and summation, for fixed m, leads to
(5.1.45) ULB(m) = 27 {AoIo(m) + I,(m)}

where, by (5.1.41), with ¥ = —1 we denote

T 100
1 1 _az
(5.1.46) Ip(m) == — / (ARE™)"T (HZ - ) m~ ahdz,
2me ' 2
1 T +100 3
- K\—2 9 70%
(5.1.47) Ii(m) : 3 / (ARE™) "% p1(2)T </<;z 2> m~ a8dz.

By inspection the first integral is readily identified as the inverse Mellin representation for the

exponential function and consequently we deduce from the inversion theorem A.5.1:

T +100

1 1 az
= Ry—Z — = T
Ip(m) o / (AhE™)TFT <I{Z 2) m~ e dz
(5.1.48) = K2 ()\h)_21~ m” 2P exp {—/ﬁ()\h)%mﬁ%}
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Finally, in order to verify the asymptotic validity of (5.1.45) we must investigate the large
m-behaviour of the remainder integral (5.1.47). Therefore, instead of a simple estimate, we

require an additional saddle point approximation. Preliminary we make the change of variables

y = —i(z — z),) and use the triangle inequality, to arrive at the bound
17 3
5149) I < e B o i) |0 (e + i) = 5 )| an
—00

To estimate the gamma function in this integral we employ (4.6.7) with s = ka,,, which puts

the integrand in a convenient setting for our saddle point approximation:

3
‘F (K.Tm 3 + Hyi)

The phase function ¢ was defined in (4.6.8). Furthermore, since 1z, is assumed large, following

21 P\ mene(5)
< Koe  Mm (Ko, )™m™ 1+ = e " \am
xm

from the properties of the remainder function, there exists an additional constant K7 > 0 such
that Ko |pi(2m +iy)| < K;. Upon combining these two bounds and making in (5.1.49) the

change of variables z,,v = y, we obtain:

l( & 2\ —KX -
ILi(m ARER)TEm e REm (g, VM2 T g 1+ 2L e mw(zi)dy
|

2 1'2
-0
K o0
(5.1.50) S e e gt [ (1 u?) e
0

The latter is a Laplacian-type integral in which the phase function has a saddle point at 0 =
¢'(v) = arctan(v), i.e., at vg = 0, with ¢”(vg) = 1 and ¢(vg) = 0. According to the Laplacian
approximation (3.1.4), with I'(3) = /7, as m — oo we thus have

0

By virtue of this estimate, from the bound which was deduced in (5.1.50), as m — oo we

conclude

K KZm—2 _a.
(5.1.51) ]Il(m)|:(’){2\/l> ()\h) e hTm .~ me 2m 96 m}_

The dominating behaviour of the sequence in the big-O comes from the term

(5.1.52) (AR) ™% 5o " ag T
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5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

In particular, if z,, — oo too fast as m — oo this factor diverges faster than e™"*m decays.
We must therefore determine, in which circumstances (5.1.52) approaches unity and is thus
asymptotically bounded. This is the case if and only if x,, = (Ah)émﬂ%ﬂ. With that choice of

sequence, from (5.1.51) we obtain
o 1 e
(5.1.53) |I1(m)| = 0O {K;_g(Ah)_;;m_giqlge—ﬁ()\h)nmnqﬁ } '

By comparison of this result with (5.1.48) we see, that the remainder integral indeed possesses a
faster decay for increasing m than the first summand in (5.1.45), which verifies the asymptotic

validity of the latter. To conclude our findings, as m — oo we have just shown

3
2

(5.1.54) TLB(m) ~ 2mm ™57 ¢ FOWF S 4 =3 (\p) =3k
It must be emphasized that a higher order approximation of the function Q(z) by means of
(5.1.42) would only unlock higher terms in the asymptotic expansion of the integral (5.1.39)
but, owing to the approximation (5.1.37), these terms are not necessarily the subsequent terms
in the expansion of the uniform local bias. Instead, later terms in the expansion of ULB(m)
would inevitably require use of a suitable expansion for the function 3%, (-, m).

Finally, from (5.1.41) we recall kK = (¢8)~!(a + ¢B), and the coefficient Ay was specified in
(5.1.43). Moreover, according to (5.1.33) and (5.1.41), the constant appearing on the right hand
side in (5.1.54) equals

gBp'e 9% ] =+
agqu )

(5.1.55) (Ah) = = [

If we therefore denote

(5.1.56) Yoo =

2 P
ma(a+ qB) acb

we deduce from (5.1.37) that the dominating term of the uniform bias as m — oo is given by

qBp ' 67
aoiP

a+gp
qap

EEET
(5.1.57) ULB(m) ~m 2+aB) exp ] mea+as 5 Yop.

The uniform bias thus tends to zero with a rate that exceeds any algebraic reciprocal power.
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5.1. The Uniform Bias Function

5.1.4. Two Exponential-Type Characteristic Functions

In this section we study the setup where the modulus of ®x and @z are both of exponential

type, i.e., we assume (3.3.3) and (3.3.4), respectively. Throughout the section we denote
po”

.
qfo”

(5.1.58) A=

Before examining the representation for the uniform bias as a MB-integral we briefly reconsider

1 1
the original definition (5.1.1). By substitution of t = 0=!¢” #x# this is readily transformed to:

st - el e e e
0

1 _am+l 3 dt
_m/(l_et) +€)\tﬁ7

0

Apart from the reciprocal t-power the integral obviously equals the beta function if and only if

«a = 3. Indeed, a simple interchange in the order of integration then yields:

1 o0 . o0
ULB(m) = B / (1—e") - e_)‘t/e_”dwdt
T
0 0

1Q7Nm+mru+m

“Br) Tm+2+r+a2)

0
L mm -
_m+2ﬁﬂ' B(L, ™ )

For the last equality we refer to the beta Mellin transform, which was defined in (4.7.19). As a
consequence, as m — oo we deduce from the expansion (4.7.54):

1

= m 24—y L)

(5.1.59) ULB(m) T(m+2+))

This verifies the rate of the uniform bias as a mixture of an algebraic and a logarithmic expression
if @« = B. Clearly, in the present setup we can equivalently apply the MB-integral representation
(5.1.2) for any a, f > 0. The associated Mellin transforms are then given by (4.6.3) and (4.7.13),
of which the latter involves the beta Mellin transform (4.7.15). Accordingly, after a simple change
of variables for 0 < zp < f(m + 1) we obtain

Z0 44
a—i—zoo

1 —z
(5.1.60) ULB(m) = 55 / AT (2) Mg (O‘;m> dz.
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5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

Following from (4.6.4) and the uniform boundedness of the beta Mellin transform with respect
to the imaginary part of its argument in its strip of analyticity, the integrand in (5.1.60) exhibits
exponential decay in the strip S~ o. This implies the possibility of arbitrary rightward or left-
ward displacements of the mtegratﬁlon path in the indicated region. However, by analyticity of
the integrand there, we do not traverse any singularities. Transferring our observations from the
preceding subsection, we thus conclude the actual rate of decay of ULB(m) as m — oo is faster
than any expression that can be represented solely by the beta Mellin transform. This is not
a contradiction to (5.1.59) since the beta Mellin transform possesses an expansion in powers of
the digamma function, which is known for its logarithmic behaviour. But the elementary rules
of calculus imply, that a combination of a logarithmic and an exponential term may exhibit
algebraic properties. Consequently, we can not immediately conclude that the integral (5.1.60)
as m — oo decays faster than any algebraic term but only that it exceeds any reciprocal loga-

rithmic order.

To derive the exact leading behaviour of the uniform bias in the present scenario or even
a few more subsequent terms of its asymptotic expansion, we proceed from (5.1.60) with a for-
mal application of the asymptotic expansion for the beta Mellin transform, which we obtained
n (4.7.54). Upon interchanging the order of summation and integration and employing the
functional equation for the gamma function, for sufficiently large m and an appropriate R € Ny

we arrive at

gc—o-l—ioo
) 7%F(z)f‘(%+r)
—Zz
(5.1.61) ULB(m g mg19(r,m) 9 / ATH,, o dz.
%)fioo &

Since the expansion (4.7.54) actually holds for fixed ¢ € C\ {0} only, we expect the index R to be
finite and to depend on the parameters, in order for the above sum to be valid in the asymptotic
sense. This will show in the sequence. In our next step, appealing to the exponential decay of
the integrand, in the r-th integral we displace the integration path as far as possible to the right
to match a line with real part Rz = z,,, along which |z| is everywhere large. For convenience
with 0 < r < R we denote

T +100
H_T az

(5.1.62) L=t [N H, Q)i

(5.1.63) Qr(z) := . (1 N az)
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5.1. The Uniform Bias Function

The described movement of the integration path for fixed m then leads to

R
(5.1.64) ULB(m) ~ 51 Zg(r, m)I.(m).

T
r=0

Regarding (5.1.62) it is our aim to introduce an inverse factorial expansion for @Q,(z). The

corresponding parameters are for 0 < r < R given by

h=1,
(5.1.65) V=19, =—-1+n,
k=1

According to Lemma 2.2 in [Paris and Kaminski, 2001], with J = 1, we can thus write
(5.1.66) Qr(z)=Tz-147r)+pu@)'(z-2+r).

For each fixed 0 < r < R the remainder function is analytic with respect to z € C, except at
the points where @, (z) has its poles. In addition, py1(z) = O(1) as |z| — oo uniformly in any
closed subsector of |arg(z)| < m. Upon plugging (5.1.66) into (5.1.62) and separating the result

in two integrals, for any 0 < r < R and fixed m, we arrive at:

Tm 100
1 _ oz
I.(m) = H;j;l% / A?H, '\T(z—1+7r)dz+ Ri(m,7)
—r(1—2)_2 %
(5.1.67) = A”_le+<1 3) P e+ Ry(m,r)

The last equality follows at once from the representation of the exponential function as an inverse

Mellin transform, and the remainder integral is given by

H_T Tm+100
(5.1.68) Ry(m,r) := ﬁ / 2 ? ;Eprl(Z)F(z —24r)dz.
LTy, —100

From Lemma 2.7 in [Paris and Kaminski, 2001], as m — oo, we ascertain that
—r(1—=2)—9a 5
(5.1.69) |Ri(m,r)| =0 {Hm:(l B) BeAHmH} .
This verifies the asymptotic character of (5.1.67) as m — oo for any fixed 0 < r < R and
a,B > 0. However, we must now take special care with respect to the validity of the sum

(5.1.64) in the asymptotic sense. On the one hand we deduce from (5.1.67) that the powers of

the digamma function appearing in (5.1.64) are only descending as m — oo if 5 > a. On the
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5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

other hand, in the special case 7 = 0 from (5.1.67) and (5.1.69) we obtain
B amp 2% k)
(5.1.70) Io(m)=A"H, e "m+s1 + O H, fe "Hmet b

Accordingly, if in the case 8 > a we designate

(5.1.71) r(a, ) :=max< k e Np: k< a ,

B -«
we have r(«a, f) > 0. In addition, for 0 < r < R the dominating term of the r-th summand in the
expansion (5.1.64) then shows a lower order of decay as m — oo than the remainder integral for
r =0, only if R = r(«, 8). We thus eventually conclude, upon combining (5.1.64) and (5.1.67),

the first terms in the expansion as m — oo of the uniform bias in the case § > « are given by:

Lo —% _ub gas 1, 7(1-%)
ULB(m) ~ B?Herle mt Z g(r, m))‘ Hm+1
r=0
4 T(Oé7ﬁ) a
_« o B —rl(1—-%2
(5.1.72) =H, [je Mma Y- fﬂn+§ B>Fr
r=0

The parameter A and the coefficients g(j, m) were given in (5.1.58) and (4.7.38), respectively,

and we denote

r—1
(5.1.73) I = )\BW g(r,m).

To describe the controlling behaviour of (5.1.72) in just one term we introduce for brevity

g°o°
5.1.74 Tan =
( ) 00 Brpfe”
and as m — oo we therefore conclude
_a pgeﬁ 5 <
(5.1.75) ULB(m) ~ Hmﬁl exp{ — = Hn‘iﬂ Too.

Subject to the properties of asymptotic expansions we know that a different expansion for the
beta Mellin transform would not change its leading behaviour. Accordingly, the first term
approximation (5.1.75) applies for arbitrary a, > 0 but only the partial expansion (5.1.72)
fails to hold in the asymptotic sense if 8 < a. Finally, from the asymptotic relation (4.7.33)
and the elementary properties of the logarithm it follows that the exponential function on the
right hand side of (5.1.75) decays slower than m™" for arbitrary k > 0 if 8 > « and conversely
vanishes faster if § < «. Only in case of equality o = f the exponential function exhibits
asymptotically a similar behaviour as m %, where the order k is determined by the ratio of the

parameters which we designated in (5.1.58) by A. This implies, although for & = § the right
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5.2. The Local Bias Function

hand side of (5.1.75) does not coincide with (5.1.59), as m — oo, both expressions approach the

limit value zero with the same rate.

5.2. The Local Bias Function

In this section we discuss how the method of Mellin transforms can be applied to derive asymp-
totic statements about the local bias function (2.1.53) if the Mellin transform associated with
the m-power has special properties. More precisely, throughout the section we assume valid-
ity of (4.3.15), implying for any m > 0 non-voidness of the strip Spn..» which was defined in
(4.3.18). Furthermore, suppose the Mellin transform Mz(—z,m) establishes an asymptotic scale
as m — oo, for any m-independent finite or infinite sequence of numbers in S;n’ 5. With increasing

real parts. In addition, with mg > 0 we assume there exists zg € S, for all m > mg, such

m,0e

that we have absolute convergence for any ¢ > 0 of the inverse Mellin integral

xo+1i00
1
(5.2.1) Pg(t,m):% / t*Mz(—z,m)dz.
xro—100

Compared with the derivation of asymptotic statements for the uniform bias, a treatment of the
local bias (2.1.53) appears essentially more elaborate because the integrand is more complicated
and the integral in general need not be absolutely convergent. Fortunately the additional effort
will pay off, since it will turn out that the effect of oscillatory terms, represented by the complex
exponential function, should not be underestimated. First, by conceiving e %!® y (t) as the
characteristic function of the random variable X — &, we recall that in (2.4.30) for £ € Co N Cp

and 7" > 0 we have shown
B T
(5.2.2) / Pe( J‘I)X_g(t)dt.
7r
0
According to (2.1.53) and (2.4.4), the local bias function can thus be cast in the form

(5.2.3) LB(m,§) = lim /7) \S(I)X_g(t)dt, §€CpNCF.

T—oo T

For the imaginary part of the characteristic function appearing in the integrand, in terms of ®x

we can write
(5.2.4) SPx—¢(t) = cos(|¢[t)IPx (t) — sgn(€) sin(|¢] ) RPx (¢).

It shows that, if ®x is even, we have ISP x_¢(t) = —sgn(§) sin(|£] t)RPx (¢). If in these circum-
stances 0 € Cp NCFr, the integral (5.2.3) vanishes at £ = 0 for any m > 0. Now, plugging (5.2.1)
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5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

into (5.2.3), upon formally interchanging the order of integration with xg € S_ m.s-> We arrive at

xo+i00

(5.2.5) LB(m, €) = % / Mo(—2,m)M {S®x_¢} (2)dz, €€ ConCp,

ro—100

where the right hand side features the Mellin transform
(526) M {\S(I)X 5} /tz (PX —¢ )dt
0

The interchange is permitted if the integral (5.2.6) converges absolutely for Rz = zy. This should
be achievable if (4.2.2) holds, in which event the strip of analyticity corresponding to (5.2.6)
matches the set (4.2.3). Moreover, F is then a continuous distribution and thus CoNCr = R. As
a consequence of the assumed property of Mz(—z,m) to define an asymptotic scale in the strip
S—

m.6e this region plays a major role in specifying the asymptotic behaviour as m — oo of (5.2.5).

Exact statements, however, do not only depend on the type of asymptotic scale but especially on
the singularities of (5.2.6). Basically we can distinguish between two cases, assuming validity of
(4.2.2) and provided the integrand in (5.2.5) admits appropriate displacements of the integration
path in the region S;% 5

e The integrand in (5.2.6) is oscillatory at infinity in the sense that it changes its signs
infinitely many times as t — oo. This is certainly the case if £ # 0 and ®x(t) is non-
oscillatory as t — oo but depends on possible cancellations if ®x features trigonometric
expressions. Then, according to Lemma 4.3.2 in [Bleistein and Handelsman, 1986], the
analytic continuation associated with the integral (5.2.6) has no singularities in Rz >
xg. This suggests exponential-type behaviour of the local bias function as m — co. In
particular, the rate as m — oo then can be expected to be of the form e P(™) with a
function p(m) whose real part grows to infinity and is determined by the asymptotic scale
associated with Mz(—z,m). Therefore, if Rp(m) grows logarithmically it can happen that

its exponential e P("™) still decays with an algebraic rate as m — oo.

e The integrand does not exhibit the described oscillatory behaviour. In these circumstances
the rate as m — oo of LB(m, &) can only be of exponential type if I®x_¢(t) decays faster

than any algebraic term as t — oo.

We briefly refer in passing to Subsection A.5.2 in the appendix, where the analytic structure of a
Mellin transform of a characteristic function and thus especially of (5.2.6) was shown to depend
on the behaviour of the associated distribution function near the origin. Finally, regarding
LB(m,¢&), subject to the preceding observations, it is reasonable to presume a weaker rate of
pointwise convergence as the oscillations of the complex exponential function die out. Note that
(5.2.3) as a function of £ € R equals a Fourier transform, so that this conjecture is in accordance

with the Riemann-Lebesgue lemma. In the subsections below we will study the local bias in
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three different scenarios and, with a few exceptions, extract the leading terms of its asymptotic

expansion.

5.2.1. Leading Behaviour for Two Algebraic-Type Characteristic Functions

We begin with an extension of the purely algebraic setup which was first presented in Subsection
5.1.1, i.e., we suppose ®x = |[Px| and P to equal (3.3.1) and (3.3.2), respectively. Especially
regarding the error distribution, for the sake of clarity we confine ourselves to the case ¢ = 1.
According to the choice of @ x, the distribution F is continuous, the integral (5.2.3) is absolutely
convergent as T' — oo for any parametrization and ®x = R®y. Thus, (5.2.3) for any £ € R

becomes

(5.2.7) LB(m, ¢) = — &8¢ /P ) sin(€] ) x (£)dt.
0

Since LB(m,&) = 0, without loss of generality we assume £ € R\ {0}. It is generally not
recommendable in (5.2.7) to first introduce the inverse Mellin transform of the sine. The reason
is that, subject to (4.8.13), we would then obtain a double integral which, due to the asymptotic
behaviour of this Mellin transform, is not absolutely convergent for any ap > 0. Instead,
following from our findings of Subsections 4.4 and 4.5, we note it is possible for any m > 0 to
choose uy € Sx and xg € S;Lﬁ such that —1 < 29 — ug < 0. Then, in (5.2.7) we may rather
represent @ x and the m-power in terms of their respective Mellin transforms, which are given by
(4.4.3) and (4.5.9). Upon eventually interchanging the order of integration subject to absolute

convergence, and applying the Mellin transform of the sine given in (4.8.11), we arrive at:

o) ug+1i00 (2T y
LB(m, &) = sgn /sm |f‘t ' ()~ (a)ar((}})’)— g) dw
0 uo—ioo
T0+100 2 .
T -)
" i / (to) B0(m + 1) dzdt
__sgn(§) u7m€wf‘ (“)T (p—2) 1 m7mgzl“ <%> r (m +1-— %)
af2ni [ I'(p) 2mi ) L(m+1)
x [ *=*"Lsin(|¢] t)dtdzdw
/
up+100 Cw w y wo-Hioo
--29 | {5} "Rl / [ o {0
ap2n?i J L[] T(p)  2mi 5
AL (m +1- %)

163



5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

ug+100

(5.28) = ;;gfgz / A (a)l?(g =) (w,m, €)du

Uy —100

Here, for brevity we write \; = X\;(€), and we denote

e =1,
(5.2.9) MN(E) =97
6L ifl =2,
xo+1i00 z
1 o [m(z—w) AT (m+1-5)

Observe that the order of integration of the integrals in (5.2.8) differs from (5.2.5). This decision
was made intentionally, because the order of integration in (5.2.5) appears rather helpful for
general statements but inappropriate for a treatment of definite examples. The reason is, since
in (5.2.5) only the exterior integral depends on m we had to analyze the interior as a function
of z € C. The strategy for which we aim was then inapplicable. That is, we start with an
approximation of (5.2.10), proceed with the evaluation of the obtained estimate for fixed w
with Rw = wg in the usual fashion known from single integrals, and then eventually apply the
obtained estimate for the leading term to (5.2.8). More precisely, with up — 1 < z¢ < wug for
xg € S;%B’ ug € Sx and fixed m we define

xo+1i00

(5.2.11) F(w,m, €) = —% / [mixn} sin {”(2_“’)} (s — w)T <;> dz.

Tro—100

Then, by virtue of (B.3.5) as m — oo for fixed w € C with Rw = uy we conclude
(5.2.12) I(w,m, &) ~ I(w,m,¢&).

The surrogate integral (5.2.11) is of standard Mellin-Barnes type. To extract its leading term
we must consider the half plane Rz > x(, where the power of m is descending. The vertical line
Rz = xg was specified to satisfy Rw—1 < Rz < Rw with Rw = ug. But the singularity at z = w
is removable, implying analyticity of the integrand in (5.2.11) in the whole half plane Rz > z.
Furthermore, subject to Stirling’s formula and (4.8.13) for fixed Rz > 0 and Rw = wg the
integrand decays exponentially fast as |Sz| — oo. It is hence possible to displace the integration
path by an arbitrary but, owing to the exponential growth as Rz — oo, finite distance to the
right. In this process we do not cross any singularities. This indicates that the integral (5.2.11)
has exponential type behaviour as m — oco. To take this into account we introduce an inverse
factorial expansion. For this, we begin with a displacement of the integration path to the right,
to match a line Rz = =, with x,, > ¢ such that |z| is large everywhere on the new path.

Moreover, after this shift of the integration path we express the sine in terms of the complex
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exponential function. We therefore define

T +100

(5.2.13) I (w,m, €) == 9 / {m%)\lejF%}_ZF(z —w)l <;) dz.

Ty —100
The integral (5.2.11) for fixed m then can be decomposed in the following manner:

(5.2.14) I(w,m,€) = —2%. e % 1 (w,m, &) — 51 (w,m, )}

We are now ready to employ the aforementioned inverse factorial expansion to approximate the
leading behaviour of the gamma functions in the integral (5.2.13). The parameters defined in

Section 2.2 in [Paris and Kaminski, 2001] for fixed w € C with Rw = ug are now given by

1
h=p?,
_ 1

In terms of these, from Lemma 2.2 in [Paris and Kaminski, 2001], we ascertain the first order

approximation

(5.2.16) I'(z—w)l (;) =21(he") " {Ag(w)T'(kz + V) + pup1(2)T(kz + 9 — 1)} .
For any fixed w € C with Rw = ug the remainder p,(z) is an analytic function of z € C, except
at the points where the left hand side of (5.2.16) has poles, and it satisfies p,1(z) = O(1) as
|z| = oo uniformly in any closed interior sector of |arg(z)| < m. Furthermore, the coefficient
Ap(w) equals
_ 14w /8

(5.2.17) Ap(w) =k —.

27
Especially note, since the integrals I* differ only with respect to the sign in the complex expo-
nential function, we can employ the inverse factorial expansion (5.2.16) for both. Accordingly,
for (5.2.13) we write

(5.2.18) [*(w,m, €) = 27 {Ao(w)fgt(w, m, €) + IF (w, m, g)} ,

where the single MB-integrals on the right hand side are given by

T +100

(5.2.19) IE(w,m, €) = 50 {m%Alhm“ejF%}_z I'(kz + 9)dz,
m

T, —100
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T 100
S 1 2 im ) %
(5.2.20) IF(w,m, €) = 3 / {mﬁl’)\lh/{“e¢7} puw1 ()T (kz + 9 — 1)dz.

Upon eventually combining (5.2.18) with (5.2.14), for fixed m we arrive at the following expan-
sion:

I(w,m, &) = —E,Ao(w) {eimwaa'(w,m,f) - emTw.fO_(w,m,f)}
(5.2.21) !

A ITW A

_z{e’igwff'(w,m,f)—e 2 f(w,m,f)}

1

To evaluate the integrals (5.2.19) we can easily apply the inversion formula for Mellin transforms,

admitting a reference to the exponential function, from which we deduce:
24 9—1 1 i % 1 s 1
I (w,m,§) = k"~ {mﬂ )qh(f?} exp {—(Alh)ﬁﬁe¢ﬂmﬂﬁ}
1 % ] 19 i 1
(5.2.22) = V1 {m?/\lh} exp {:FZ; — (Alh)fime;%mﬁﬁ}
K

The sum of the first two integrals in (5.2.21) can therefore be expressed in terms of elementary

functions, where the imaginary parts cancel out:

2K

— exp {m(ﬁ +wK) _ (Alh)}eﬁe;zmﬂlﬂ} }

9 . A
f(w,m,g) = _%,#9—1 {m%)\lh}"” Ao(w){ exp {_m('ﬂ—l—wn) _ (Alh)ime_xmfil*@}

2K

™ _iTw A ITW A
; {6 2 If'(w,m,f) —€ 2 Il (U)7m,§)}

_w_ 1
— oKV {m%/\lh} e exp {—(Alh)%/@mﬂ% cos {21}}

K
( ) x Ap(w) sin {2% (A h) = kmB= sin { 21%}
s _drw iTw
—;{6 2 11 (wamag)_e 2 Il (wamaf)}
The second equality is an immediate consequence of the identity
(5.2.24) exp {—ia — be ™"} — exp {ia — be'“} = —2isin(a — bsin(c))e o),

Observe that k=1 € (0,1) by definition, whence the exponent in (5.2.23) is always positive.
Concerning the remainder integrals defined in (5.2.20), from equation (2.5.8) below Lemma 2.7

in [Paris and Kaminski, 2001] as m — oo for any fixed w € C with Rw = up we know

1— -9

A 1 L
(5.2.25) ‘[f(w, m,g)‘ -0 {(Alh)—;’m—lﬁne—(xlh)nman } ‘
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As a consequence we have just established as m — oo for fixed w € C with Rw = ug and with

K= % the asymptotic validity of (5.2.23), which is in particular

. . v wr  Br L agm iR
(5.2.26) I(w,m,&) ~ By {m B(Ah) } 51n{2(1+ﬁ) 017 Agm }e .

The constants and coefficients appearing on the right hand side are given by

(5.2.27)

A(8) = Tsm{mw)

Observe that the exponential leading term in (5.2.26) does not depend on w.

We proceed with an attempt to employ the approximation (5.2.26) for a final estimation of
the initial double integral. Due to its pointwise validity we expect some difficulties to arise. This
guess is already confirmed by first noting as |w| — oo in |arg(w)| < 7 and |arg(ap — w)| < T,
according to (4.4.4) and (4.8.12), we have

w wy\ . W B 2| _ 1 J‘i”w;ﬁ”‘
O R R R b R e Bl IR ()

The term in the big-O tends to zero as |Sw| — oo only if @ < 2(1 4 ). Consequently, with

ug € Sx, absolute convergence of the following integral is only guaranteed for o < 2(1 + f3):

ug+1400

it = Ll @) T (- 8)
LB(m, &) =5 — / {)\zm1+ﬁ (Alh),i} a o
21 T(p)
(5.2.28) o Zioo
. wTm /87( %
X 51n{2(1+6) — 4(14'5) — \m +5}dw

Appealing to the relations (5.2.12) and (5.2.26), the right hand side of (5.2.28) furnishes an
estimate for the local bias integral in (5.2.8). More precisely, for a« < 2(1 + ) as m — oo we

conclude

_1 1 -
 g—ram 7 p 980(E) LB(m, €).

apT

(5.2.29) LB(m, &) ~ {mﬁ(hh)%}

To extract the dominating term as m — oo of @(m,{), the integrand suggests to confine our
study to the region to the right of the integration path Rw = ug. But from the above asymptotic
estimate for the integrand we deduce algebraic growth as ®w — oo and exponential decay in the

imaginary direction, subject to the indicated parameter restriction. This gives the permission
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5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

to displace the integration path by an arbitrary finite distance rightwards, say to match the line
up =« (p + %) In this process we merely traverse the simple pole of the beta function located

at w = ap with the associated residue given in (5.1.7), yielding

—~ B i 17O Tap B B -’
(5.2.30)  LB(m, &) —Oz{)\gm 5 (Arh) } 5111{2(1_'_5) T a}
u1+100

* o / {Damms umyx b r (Z)PF(Z()?; - %)

U1 —100

. wmT B _—
XSIH{2(1+,8) _4(1—|—,8) — \am 6}dw.

The boundedness of the remainder integral is readily verified by virtue of the inequalities (4.4.6)

and (4.8.12). Moreover, since u; > ap the remainder has a higher order with respect to the
asymptotic parameter m. Further rightward displacements of the integration path in (5.2.30)
are permitted and unlock higher order terms in the asymptotic expansion of Ij\B(m,f). It
must, however, be emphasized that these terms are not necessarily the subsequent terms in
the expansion of LB(m, ), because of the earlier applied approximations. To summarize our

findings, for a < 2(1 4 ) as m — oo we have just verified

o map  pm 5
2 Sln{2(1+6) (1+5) /\47”1”} NgmTHE
2ap+1 € .

6231 LBm.) ~sen(@)| X5P (k) 5 2 ma0

Before proceeding with our next example we take a short break for a comparison of this result
with the dominating term we deduced for the uniform bias function in Subsection 5.1.1. There,

according to (5.1.11), for the above setup as m — oo we have shown

(5.2.32) ULB(m) ~ ﬁlﬂ (5)"r (?) (m+1) _ap

This clearly differs from (5.2.31) by an additional oscillatory and an exponential factor. Besides,
the order of the algebraic term in (5.2.32) is slightly higher in comparison to (5.2.31). The
exponential and the oscillatory terms arise from the presence of the sine in (5.2.7), as indicated
in our introductory discussion. Furthermore, we observe an increasement in the parameters \;
and A3, A4 for larger values of |£|. This results in a faster rate and a higher frequency with respect
to the oscillations. The parameter Ay which is decreasing with respect to £ does not affect the
order of the rate. Conversely, in (5.2.31) the rate is decreasing for smaller arguments ||, thereby
confirming our guess. At £ = 0 the statement (5.2.31) does no longer hold but LB(m,0) = 0,
according to (5.2.7). As a consequence of the limitation £ # 0, inaccuracies should especially
occur if £ is located too close to the origin and m is not large enough, to yield a reliable estimate
by means of the dominating term (5.2.31). To avoid those inaccuracies, for £ in a neighborhood

of the origin we recommend use of (5.2.32).
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5.2. The Local Bias Function

5.2.2. Leading Behaviour for a Discretely Distributed X-Variable

We now examine the local bias integral (5.2.3) for a characteristic function ®x associated with
a discrete distribution. In contrast to the previous scenario we then no longer have absolute
convergence of the integral. More precisely, assume F' defines an arbitrary discrete distribution
with set of atoms D = {{ : k € Z} for some Z C Z. The corresponding characteristic function

is then almost periodic and given by a trigonometric polynomial:

(5.2.33) Ox(t) =) " F {4}

kel
Denote ay = ag(§) with ag(€) := |& — £ for k € Z and £ € Cp N Cp, which implies 0 < aj < oco.

This enables us to write

(5.2.34) SOy ¢(t) = Y sgn(& — &) sin(tay) F {&} -
keT

In order to cast (5.2.3) as a MB-integral we first recall the validity of this representation for any
fixed m > 0. In particular, due to the boundedness of F' and ©(-,m), the limit on the right
hand side of (5.2.3) is finite for any m > 0. Hence, according to Abel’s lemma A.4.1(2), we can

equivalently write
(5.2.35) LB(m, §) = lim As(m. &),

where the integral function on the right hand side is given by
T P(t,
1
(5.2.36) / @X c(t)e e,
T
0

For fixed 6 > 0 we now employ the sum representation (5.2.34) and subject to absolute conver-

gence interchange the order of summation and integration, leading to

(5.2.31) As(m, ) = - 3 F {6} sem(& — O1}(m.©)

kel

for k € 7 with

(5.2.38) I (m,€) : /’P SlIl (tay)e 0t
0

Besides the conditions imposed on the m-power in the introductory part of this section, we
suppose there exists 0 < zg < % such that we have absolute convergence of (5.2.1) for all

sufficiently large m. In these circumstances, again due to absolute convergence, for (5.2.38) we
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5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

can write

xo+1i00

5.2.39 n = —
xro—100

oo
/tz Lsin(ayt)e Ot dtdz.
0

It is a simple exercise in complex analysis to specify for fixed § > 0 in terms of known special

functions the Mellin transform

o0

(5.2.40) M {sm(akt /tz Lsin(ayt)e % dt.
0

The associated strip of analyticity is the entire half plane ®z > —1. Assuming 0 < z < 1, it

follows upon substitution of s = (§ — iax)t for any § > 0:

o0

M {Sin(akt)e_‘;t} (z) = S/tz_le_(‘s_m’“)tdt

0

(o]
= —dag)” /sz_le_sds
0

= |6 —iag| *T(2)Sexp{—izarg(d — iag)}
(5.2.41) = — [0 —iag| *T(z)sin{zarg(d — iag)}

The second equality was obtained after the described substitution, by an appropriate rotation
of the integration path similar to Subsection 4.8.1, with an argument function for s — s* whose
branch cut does not run through the right half plane. This implies analyticity of the whole
integrand there with exponential decay. Now, the right hand side of (5.2.41) constitutes an
analytic function of z € C, except for a countable set of poles which are a subset of —Nj. Hence,
it defines the analytic continuation to the whole complex plane of the integral (5.2.40) for any

§ > 0. Furthermore, regarding (5.2.39) with 0 < 29 < 3 we can now write

xo+i00
(5.2.42) D(m,¢) = _% / 16 — iag|~* Me(—2,m)D(2) sin {= arg(6 — iag)} d=.
YiwA
To—100

To eventually justify in (5.2.35) an interchange in the order of limit, summation and integration,
it remains to verify the uniform boundedness of (5.2.42) with respect to k € Z and 6 > 0. This
can be achieved by assuming £ € Cp N Cr satisfies the weak condition

24 inf .
(5.2.43) inf a; >0
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5.2. The Local Bias Function

Indeed, the condition certainly holds for any £ € Co N Cp if Dp is nowhere dense. Then, by
putting together (B.2.32) and (4.8.12) we see, for z = 2 + iy with 0 < 29 < 3 and y € R:

us 1 —i
|6 —iag| "0 |T'(2) sin {zarg(d —iag)}| < a, V2w \z|$°_% ¢ 2 W+ gy Harg(0—iax)yl

(5.2.44)
01/ x 6610

For the second inequality notice arg(d — iax) € ( oL ) for any §,ar > 0. Consequently, since
we assumed absolute convergence of the inverse Mellin integral (5.2.1), the integral (5.2.42) is

indeed uniformly bounded with respect to k € Z and § > 0 by:
_1 1
1t(m, 6] < Varay ™ E e swp ™ / M — i) dy
kel 27TZ

Furthermore, lims g arg(d — iay) = —%, from which we conclude by virtue of Lebesgue’s domi-
nated convergence theorem, upon combining (5.2.35), (5.2.37) and (5.2.42):
xo+ico
(6245 LB(m.&) =~ Y Fiaysen(e -5 [ ap Me(—zm)I()sin{ T}
2. m,§) = — K} sgn (&g 57 a"Me(—2,m)L'(2)sin | -1 dz

kel Lo—ico

Under the above assumptions this equals an absolutely convergent sum with respect to k € 7
of absolutely convergent integrals. Depending on whether or not F' is a finite distribution, the
sum is also possibly finite. Suppose the order of each integral as m — oo is increasing for large
values of ap = |{k — £|. This means, the main contribution comes from those integrals involv-
ing ap associated with F-atoms &, € Dp which have the closest distance to the given point
¢ € Cp N Cp. Note that such a property solely depends on the structure of Mz(-, m) and recall
that ap = 0 is impossible by definition of C's N Cr. Now, if larger values of a; have a positive
effect, it is clear that distributions F' with a wider span between two consecutive atoms yield
better rates of convergence as m — oo. Indeed, the difference with respect to the order between
two consecutive terms in an asymptotic expansion of (5.2.45) is then greater in comparison to a

situation where Dy is rather dense.

For a given k € T each integral in (5.2.45) can be evaluated in the usual manner. In particular,
assume Mz(—z,m) = O {e_""gz‘} as |Sz| = 0o in § 5 for some a > 0 and all sufficiently large
m, so that the Mellin transform of the m-power is able to overcome the algebraic growth of the
Mellin transform of the sine in the region Rz > %, compare (4.8.13). In this event, by increasing
m arbitrary displacements of the integration path to the right direction are viable, without en-
countering any singularities. Hence, the integrand in each integral in (5.2.45) is analytic in any
strip of finite width in Rz > 0 which indicates an exponential type rate of LB(m, &) as m — oo.
More precisely, the rate is then presumably of the form e ?(™) where the real part of the phase

p(m) grows to infinity as m — oo with a rate depending on the asymptotic scale associated with
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5. Derivation of Asymptotic Statements About the Bias by Means of Mellin Transforms

Mz(-,m).

5.2.2.1. Example: Discrete X Blurred by Errors with a Simple Algebraic-Type

Characteristic Function

Finally, as an illustrative example we again suppose ®: is a member of the algebraic type function
family (3.3.2) with ¢ = 1. For the corresponding Mellin transform we refer to (4.5.9). Then,
with an appropriate 0 < zg < min {%, B}, the MB-integral (5.2.45) for any m > 0 takes on the
form

1
B;}:F{&}%m@k—ﬂﬁhmih

keT

(5.2.46) LB(m,§) =

where for k € 7 we denote

wo+ico mal_z
(5.2.47) 19(m, €)== % / {%}_zsm {%”} ()T (;) Wdz.

To—100

We already encountered the latter integral in equation (5.2.10) of the previous Subsection 5.2.1.
Indeed, upon approximating by virtue of (B.3.5) the ratio of gamma functions which depends

on m, by comparison with (5.2.12) and (5.2.11) we conclude
(5.2.48) I2(m, &) ~ —1(0,m,ay).

The dominating term of the integral on the right hand side has been established in (5.2.26).

Accordingly, as m — oo we deduce

0 27 ag _ﬁ -3 11 —Ag(ak)mﬁ?
Rm&) ~ B\ 5 1} ™ (Bm) e
B

X sin {4(1"‘5) + )\4(ak)m1}rﬁ} .

With k =1+ % the corresponding coefficients and parameters are given by

(5.2.49)

I
As(ag) = 28 COS{Q(TE,B)} (e )75 g5,
8

B
(5.2.50) e
M(or) = L2 sin {5725 | {2} 77 BT,

It is easy to see that the rate of decay of (5.2.49) is in fact lower for integrals associated with

smaller ay, in comparison to larger values. Hence, if we define

Z(&) :={k€Z:a;(&) > ay(§) for any j € T\ {k}},
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5.2. The Local Bias Function

the controlling term of (5.2.46) comes from the integral I9(m,&) associated with the indices
k € Z(€). For a given £ € Cp N CF the set Z(§) contains exactly one element denoted by ko,
except if £ lies exactly in the middle of two subsequent F-atoms. In the former case we deduce
for the local bias as m — oo:

2 1

LB(m, &) ~ mF {€ko } sen(€ky — §) {a(’;O} T (Bm)~ T o~ (akg)m

(5.2.51)
. B 1
X — 4 A 145
sm{4(1+ﬁ) + M(ag,)m
If the set Z(£) contains two elements, the associated points ay coincide and we must thus multiply
the right hand side of (5.2.51) by the factor two.

5.2.3. A Uniformly Distributed Continuous X-Variable

We close this chapter with the study of scenarios where the random variable X is associated
with a continuous uniform distribution on the interval [—b, b] for a constant b > 0. Rather than
deriving exact results we keep our discussion general and point out some interesting observations.
In the present setup the characteristic function of X, subject to (3.3.5) in terms of the sinc
function (A.1.7) is given by ®x(t) = si(bt). Although the decay of this function as t — +oo is of
algebraic order, it will turn out that the structure of an asymptotic expansion for the local bias
substantially differs from what we would obtain if ®x was of the purely algebraic kind (3.3.1).
In fact, the presence of the sine function and its oscillatory behaviour has strong consequences.
According to our specification of ®x, we have Cp N Cr = R, and the local bias (5.2.3) at some
point £ € R is

LB(m, &) = _sen(¢ /73 sm (€| t) si(bt)dt.
0

The integral converges absolutely and equals zero for £ = 0. Elementary manipulations equiva-

lently yield

(5.2.52) LB _&

3 \

/ =(t,m)si(|&| t) si(bt)dt.
0

Suppose now the Mellin transform M:(—z,m) in S_ 5. satisfies the properties described in the
introductory part of Section 5.2, and for £ € R\ {0} denote

(5.2.53) -7 L si(|€| t) si(bt)dt.
e
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Subject to absolute convergence we can then apply (5.2.1) to (5.2.52) and interchange the order

of integration, to obtain for sufficiently large m with an integration path whose real part satisfies

O<zg <1t
é‘ xo+i00
(5.2.54) LB(m, &) = 5 / Me(—2,m) Mg (= + 1)dz
x0—100

The integral (5.2.53) is readily identified as the Mellin transform associated with the character-
istic function of a convolution of two uniformly distributed random variables, respectively on the
intervals [— |£],]¢]] and [—b,b]. It establishes a holomorphic function in the strip 0 < ¢ < 2.

Its continuation was determined in Subsection 4.8.3. The set (4.8.17) is now given by
(5.2.55) Dy ={b+[¢],b =[], =0+ [€], =0 — [£]}

According to (4.8.19), we must distinguish between two cases, which are |{| = b and [¢]| # b. We

thus conclude

¢ —2) {—i20}27¢ + {i26}>~¢

Me(Q) = ——>—
‘ HELE | {=i(o + 16012 = {ib — [€DY*C = {=i(b — [N}~ + {i(b + 1D}~

The upper line of the bracket applies if £ € {£b} and the lower line otherwise. If we designate
by E¢(¢) an entire function of the variable ¢ € C, defined by

(20)%€, if £ € {+b},

5.2.56 Ee(C) =
( ) (O (b+1E)> ¢ —b— \5“2_C, otherwise,

the function M¢(¢) can be recast in a more appropriate form:

rg-z) | [-reos{F}en et
YO TR | oo {5 010+ 2eos {5 b 6P, otermise
2 2 ’
I'¢ —2
(5.2.57) —&KM)COS{f}Eg(C)

The right hand side of (5.2.57) thus extends the integral (5.2.53) to a meromorphic function in
the complex plane, whose singularities in the region ¢ > 0 depend on the argument of the local
bias {. More precisely, the only possible singularity therein occurs at ¢ = 2, where E¢(2) # 0
if £ € {£b}. But in this event, regarding (5.2.52) we observe cancellations. The integrand is
then non-negative for any ¢ > 0, which is not the case if £ ¢ {£b}. Now, as |(| — oo in R( > 0

the function (5.2.57) exhibits a very special asymptotic behaviour. That is, as |(| — oo in
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larg(¢ — 2)| < m we observe
(5.2.58) ’F(g‘ — 2) cos (f)’ = {’C 2|9R< 3 o~ RC—SCarg(¢— 2) 4 TSl }

The fact that the exponential terms involving the imaginary part cancel out as 3¢ — +oo
requires a distinction between two regions of the complex plane. In R( < % the controlling
behaviour in any direction of the imaginary axis is algebraic decay. Upon traversing the line
RC = % this suddenly reverses to algebraic growth in R > % The exact order of decay or
growth respectively depends on (.

With (5.2.57) we can write for (5.2.54), since cos(5(z + 1)) = —sin(5z) for any z € C:

xo-+100
_sgné 1 B Tz
(5.2.59) LB(m,§) = D= — / Mz(—z,m)[(2 1)sm{ > }Eg(z—i—l)d
xro—100

A first look at the integrand shows in the strip S;l’ 5. the presence of a simple pole at z = 1 if
& € {£b} but analyticity otherwise. To overcome the indicated algebraic growth of the Mellin
transform Me(1 + z) we require exponential decay of Mz(—z,m) as Sz = oo in S ; for all
sufficiently large m. It is then permitted to displace the integration path to the right to match
an arbitrary line with real part x,, > 1, collecting the residue of the single pole at z = 1 if

¢ € {£b}. Keeping in mind that we encircle this pole in the clockwise direction, we arrive at

sgn(¢) Sgn(ﬁ)

2bm

(5.2.60) LB(m, &) = — 2 S A (-1 m)I {j¢] = b} + 2 (),

with the indicator being equal to zero or one, depending on &£, and the integral in the second

summand referring to

Tm 1100
(5.2.61) I(m) = — / Me(—z,m)T(z — 1) sm{ ; }Eg(z +1)dz.

L —100

The first summand in (5.2.60) yields the leading term as m — oo if the condition in the indicator
is true, and is solely determined by the structure of Mz(-,m). Furthermore, the analyticity of
the integrand in the new integral (5.2.61) in the subregion Rz > 1 of the strip S;% 5. suggests
an additional exponential contribution. It can be obtained by separating the sine term in two

exponential functions, so that I(m) = I'"(m) + I~ (m) with the components

Tm 4100
(5.2.62) I£(m) == 29 / Mz(—z,m)T(z — 1)ets Eg(Z-f- 1)dz.

T, —100

An approach to evaluate either of these integrals is provided by an appropriate inverse factorial

expansion, for instance.
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To summarize our observations, in case of a uniformly distributed random variable X on
[—b, b] the dominating term in the asymptotic expansion of the local bias function depends on &.
It can be represented by virtue of Mz(-,m) if £ equals either of the endpoints, in which case the
upfollowing terms in the expansion exhibit a faster decay as m — oo than Mz(—z,m) for any
fixed z €S 5. If £ € R\ {£b} the last statement already holds for the leading term, i.e., the
rate as m — oo of LB(m, &) is then of the form e P("™) for a function p(m) that is determined
by Mz(-,m).

Finally we briefly compare the results we obtained for the local bias with those for the uni-
form bias (5.1.1). In the present scenario of a random variable X ~ U[—b,b], subject to our
findings from Subsection 4.8.4, the strip of analyticity of the Mellin transform corresponding to
the modulus of @y is given by 0 < R¢ < 2. According to (5.1.2), for sufficiently large m and

0 < z1 < 2, the uniform bias thus takes on the form

x1+100

(5.2.63) ULB(m) = Mz(—z,m)Mx (z)dz.

ﬁ .
@1 —ioco
The Mellin transform Mx(z) was determined in (4.8.26). In this context it was also mentioned
that the indicated integral definition can be extended to a meromorphic function in the region
Rz > 0, possessing an infinite sequence of poles and exhibiting exponential decay as Sz —
+oo therein. We conclude that a rightward displacement of the integration path in (5.2.63) is
permitted across arbitrary but finitely many poles of Mx(z), leading to an asymptotic expansion
of ULB(m) as m — oo with asymptotic scale Mz(—z,m). This is in contrast to the results we
obtained for the local bias. Note that the situation essentially changes if we consider the uniform
local bias, assuming a random variable X associated with a triangular distribution on [—b, b].
Then ®x is given by (3.3.5) with p = 2 which implies |®x(t)| = ®x(t) = (si(bt))®. But the
properties of the squared sinc function completely differ from those of its modulus. It follows

that also the analytic structure of the corresponding Mellin transforms substantially differs.

5.3. Conclusion

The preceding investigations confirmed what was already indicated in Chapter 3, namely that
the admissible rates of convergence occuring in the process of deconvolution of distribution func-
tions essentially depend on the associated characteristic functions. In our examples considered
so far these were predominantly monotonic, revealing as a key ingredient their behaviour at
infinity. Consequently, large variations with respect to the possible results became observable,
with rates of arbitrary order. Furthermore, it turned out that neither absolute integrability of
®x along the real axis suffices to guarantee a certain level, nor does the existence of any mo-
ments of F. Instead, this is rather prescribed by the properties of ® x and the m-power, which

is respectively inherited to the analytic structure of their Mellin transforms.
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5.3. Conclusion

Concerning the uniform bias, the composition of the exact rate can be described in two steps.
First, the Mellin transform of |®x| specifies the basic structure by the location of its poles,
i.e., whether we have a power series, an exponential or a mixture type of expansion. It then
depends on the asymptotic behaviour with respect to m of the Mellin transform corresponding
to the m-power, if the result is algebraic or merely logarithmic, for instance. Thus, especially
not only one component determines the result, but for a given X there are errors which make
deconvolution more or less difficult. For example, if ®z(t) decays exponentially fast, the rate
of uniform convergence can still exceed any reciprocal power of m if ®x(¢) exhibits a faster
decay as t — oo. Even scenarios in which we encounter an error distribution with a compact
support can be quite well, provided ® x has a smaller support. Summarizing, information about
merely one distribution involved in a deconvolution problem is insufficient. For any type of error
distribution there are counterpart distributions F' with the ability to weaken the effect of errors

in variables in the sense that the rate of uniform convergence can still take a satisfactory order.

Regarding the pointwise convergence, the composition of the rate increases in complexity,
due to the possible presence of oscillatory terms. The latter describes the behaviour of a func-
tion to infinitely many times change the sign of its real and imaginary part in the process of
approaching a limit point. In our final discussion of the local bias function such a behaviour has

been shown to yield an exponential improvement of the rate of convergence.

So far we strictly considered rather well-behaved characteristic functions in the sense that
particularly the m-power was monotonic. Indeed, in all our examples ®z(t) # 0 for ¢ € R but
®(t) — 0 as t — oo. Consequently, P=(t,m) — 0 as m — oo at any t € R which implies,
the main contribution to the large m-behaviour of the Laplace-type integrals for the bias only
comes from infinity. It should be expected that the method of the Mellin transforms is always
applicable if @z is of such a type and if (4.3.15) holds, since the associated Mellin transform
Mz(-,m) then exhibits special properties. In this event, also the leading behaviour as m — oo
of the integral (4.3.14) is determined at infinity. But the argument ¢ substantially controls the
behaviour of the integrand there, which suggests that Mz(¢,m) can be employed to define an
asymptotic scale in the strip S,,s.. Speaking formally, for any sequence of numbers z, with
Zn € ST;, 5e and Rz,+1 > RNz, for all n € I and a finite or infinite I C Ny, the sequence being
independent of m, it is reasonable to presume Mz(—zp11,m) = 0 {Mz(—z,,m)} as m — oo for
any n € I. The latter property will most likely become invalid if the set N. contains a finite
point. The reason is that the kernel t*~! of the Mellin transform (4.3.14) is continuous and
non-vanishing along the positive real axis. The argument ¢ thus can not weaken the effect of a

finite point at which the m-power equals unity for all m > 0.

Transferring our observations from the above examples, we suppose exact statements con-

cerning the rate of the bias in general setups to depend on the local behaviour of the integrand
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at the points where ®z vanishes. A study of such scenarios by means of MB-integrals is the
objective of the next chapter. There, we shall also establish some general results concerning the

asymptotic behaviour of the local bias function.
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6. Asymptotic Expansions by Analytic

Continuation

Due to the apparently restricted applicability of the procedure which was presented in the pre-
ceding two chapters, it seems reasonable to consider an alternative approach for the asymptotic
evaluation of the bias. To discuss this topic, also with regard to more general settings, is the
subject of this chapter. Indeed, rather than confining ourselves to any of the bias integrals, for

A > 0, we focus on the integral

(6.0.1) Iy = / (1= W(t)) alt)dt,

P

where P denotes a possibly infinite segment of the real axis, the A-power is described as the
kernel and a(t) is referred to as the amplitude function. At the moment it suffices to assume for
t € P continuity of a(t) and ¥(t) with 0 < ¥(¢) < 1 and absolute convergence of (6.0.1). Clearly,
the latter constitutes an integral of Laplace-type, implying that the main contribution to the
rate as A — oo comes from a neighborhood of the points, where the integrand and particularly
the kernel attains its maximum value. Moreover, by means of a simple bound it is easy to verify
that the rate is certainly of exponential order if W(¢) attains a non-zero infimum along the range
of integration. Conversely, if the infimum along P equals zero, this is no longer assured. The
effect of a zero infimum on the rate as A — oo of I substantially depends on the local behaviour
of the involved functions ¥ and a. The method to be presented below enables us to handle
scenarios in which the former exhibits arbitrary exponential or algebraic behaviour there, and
at the same time a is locally of algebraic type. Despite being based on MB-integrals, it does
not require information about any Mellin transform. Furthermore, the approach is versatile and

leaves much space for modifications.

6.1. Basic ldea

Before diving into deeper technical details, we begin with an illustrative overview. Several
contour integrals are available to represent the kernel, of which the most obvious was already

introduced in equation (4.3.19), by virtue of the binomial theorem. There, for W(¢) # 0, it was
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6. Asymptotic Expansions by Analytic Continuation

established that

Sottoo
(6.1.1) vy =5 [ O R

In general ¢y > 0 is arbitrary but its choice is restricted in order to plug this integral into (6.0.1)
and interchange the order of integration. Evidently, the admissible values then depend on the

behaviour of a at the points where ¥ vanishes. Assuming a valid ¢y > 0 exists, we formally

obtain
1 So+i00 )\ 1
_|_
6.1.2 I = — t)dtd
(6.1.2) AT o / A+1+z(/ =
So—100 P

We already encountered integrals of this type in our introductory discussion on binomial series,
compare Subsection 4.3.1. There we observed by means of the saddle point approximation
(B.3.5) that the beta function appearing in the dz-integral is ~ const x A\™% as A — oo, i.e., it
exhibits a descending algebraic character with respect to A for fixed z € C with a larger real
part. In other words, for a possibly finite sequence z1, 22, . .. of complex numbers, excluding the
non-positive integers, with increasing real parts which does not depend on A, for n = 1,2, ...

the sequence

INOE I NEH
P+ 1+ 2,)

establishes an asymptotic scale as A — oo. Accordingly, we conclude that the choice of ¢y
indicates the asymptotic behaviour of Iy as A — oco. Roughly speaking we must distinguish
between three cases. If the interchange in the order of integration in (6.1.2) is invalid for any
Go > 0, the rate of decay of Iy is presumably slower than any power of A, i.e., slower than
algebraic. Conversely, if ¢9 > 0 can be chosen arbitrary, it suggests a rate faster than any power
of A. Finally, if the set of admissible ¢y > 0 has a finite upper bound, say xo > 0, we must
determine the analytic structure of the dt-integral in (6.1.2) in the half plane Rz > x(. In these

circumstances the integral
(6.1.3) M(—2) ::/{\Il(t)}_z
P

is absolutely and uniformly convergent only in the half plane Rz < xg. Clearly, (6.1.3) con-
stitutes a generalization of the Mellin transform with a different phase function, namely with
logt replaced by —log . Referring to the common notion for integral transforms, see equation
(A.0.1) in the appendix, we refer to the factor that depends on the argument z as the kernel, and
we denote M (—z) as a generating function. Its analytic structure in the extended plane Rz > x¢

depends on the functions ¥ and a. As an example for the classical Mellin transform, for an ap-
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6.1. Basic Idea

propriate function f suppose absolute and uniform convergence of the integral fooo tSLf(t)dt in
the strip 0 < R{ < z¢. To determine the analytic continuation to either direction of the complex
plane, it is common to integrate by parts or to employ a power series expansion for f at the
points where the phase function diverges for certain values 0 < R(¢ < xg. This was thoroughly
described in A.5.1 in the appendix. The purpose of the subsequent sections is to adapt these

ideas and to develop analogous procedures for the analytic continuation of (6.1.3).

Note that it is not a disaster if the interchange in the order of integration in (6.1.2) is inappli-
cable for any ¢y > 0, but it merely indicates the inappropriateness of the integral representation

(6.1.1). Then, there might rather exist 0 < —Jdp < A for which the interchange is permitted with

—dp+i0o
(6.1.4) (1— W) = 2%” / {—log {¥(t)}}* Mp(z, A — 1)dz.
—dp—100

The validity of this representation is subject to equation (4.7.18), where Mp(—z, A\ — 1) was
established as the Mellin transform corresponding to the function (1 —e~*)*. From Section 4.7.3
we recall that Mp(z, A — 1) is expandable in negative powers of the digamma function ¢(A+1),
which asymptotically exhibits a logarithmic character. As Rz attains a larger fixed value in
the strip 0 < Rz < A, these powers show a higher order. Furthermore, similar to (6.1.1) we
observe that the ¢t-dependent factor in the integral (6.1.4) becomes unbounded as ¢ approaches
a point where W(¢) vanishes. Due to the logarithm, however, the divergence happens slower
in comparison to any reciprocal power of ¥(t). With a justification analogous to that for the
use of (6.1.1), it is therefore also possible to obtain an asymptotic expansion of Iy in terms of
Mg (z, A — 1) by employing (6.1.4). The close connection to the digamma function and to the

logarithm suggests that such an expansion is of logarithmic-type.

Finally, as an alternative to (6.1.1), for completeness we mention that the kernel of I can be
represented in terms of the inverse Mellin transform associated with the exponential function,

see (A.5.8). In particular for ¢y > 0 the Cahen-Mellin integral applies, which is

So+ioco
(6.1.5) (1— W) = % / A {—log(1 — U(t))} *I'(2)dz.

As a consequence of the series expansion of the logarithm, in a neighborhood of the points where
VU is small, the function log(1 — ¥) has the same order. It is therefore merely a matter of taste
to apply (6.1.5) rather than (6.1.1), depending on whether a power series expansion of I is
preferred over an expansion of inverse factorial-type. Yet, the composition with the logarithm

in the former integral representation might bear additional difficulties.
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6. Asymptotic Expansions by Analytic Continuation

6.2. Functions with the Property of an Asymptotic Scale

Preliminary to our investigation of the particular integral I we establish an auxiliary theorem
to characterize the asymptotic behaviour of a special kind of integrals. It will be frequently
referred to throughout this chapter and avoid a repeated justification of reoccuring technical

arguments.

Theorem 6.2.1 (expansion with respect to an asymptotic scale). Consider as a func-

tion of A > 0 for fixed g9 € R the contour integral

So+i00

S(z, \)M(—z)dz,

( ) A 2i
So—100

where the integration path is supposed to run through the region of analyticity of the integrand.

Regarding the latter we assume there exists € > 0 with the following properties:

(1) For fized A > 0 the function S(z,\) is holomorphic in a strip o — € < Rz < x(A), where
X(A) = 00 as A = o0, and S(z,\) = O {272} as Sz — +oo there. Moreover, on the one
hand, for any k € Ng and fized z1, 2o in g0 — € < Rz < x(A\) with Rz; < Rza,

(6.2.2) S®) (29, 0) = 0{S(21, )}  as A — occ.

The index refers to the derivative with respect to z. On the other hand, for 0 < j < k and

fized z contained in the above strip,
(6.2.3) S (z,X) =0 {S(k)(z, )\)} as A — oo.

Finally, for o — e < x9 < x(A),
(6.2.4) / |S(xo + iy, \)|dy = O{S(x0,\)} as A — oc.

The function S(z,\) is termed an asymptotic scale.

(2) The function M(—z), independent of X\, is meromorphic in a region o —e < Rz < n, where
G < n < oo, with a finite sequence of poles p1,...,px for some K € N whose real parts
are ascending. Moreover, M(—z) is O(1) as Sz — +oo in the punctured region, uniformly

with respect to Rz in any closed vertical substrip.

In these circumstances the contour integral (6.2.1) converges absolutely and its asymptotic be-

haviour as X\ — oo is described by

K
(6.2.5) Iy~ = Res S(z,\)M(-z).

2=Pk
k=1
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6.2. Functions with the Property of an Asymptotic Scale

Proof. Without loss of generality assume x(\) > n and keep A fixed for a moment. Subject to
the assumed conditions on the integrand, a displacement of the integration path by an arbitrary
finite distance within ¢9 — € < Rz < n is viable for some € > 0. We perform a movement of
the integration path to the right across the K poles located in this region, to match some line
Rpr < sk < 1. Since these poles are encircled in the negative sense, according to the residue

theorem, this leads to

K SK +100
1
(6.2.6) Jr=—Y Res S(z, )M (—2) + 5— / S(z, )M (—z)dz.
Z=pk 271
k=1 g
SK —100
Denoting by ar € N the order of the pole pg, it follows from the elementary rules of complex

analysis for any 1 < k < K:

1wt a
BfﬁkS(Z’A)M(_Z) = (ak — 1)| dzok—1 {S(Z, A)(Z _pk) kM(_z)}
' Z=py
1 ap—1 A
= m Z 5(j)(pka)\)C(Pk;j)
g

The second equality is a conclusion from the product and the chain rule with coefficients ¢(p, 7),

which are independent of A\. From (6.2.3) for any 1 < k < K as A — oo we see that

-1
(6.2.7) Res S(z M (—z) ~ LB —D g1, )
Z=pk (ak - 1)'

Furthermore, from (6.2.2) combined with (6.2.3) we deduce for 2 < k < K as A — oo, especially

since Rpr_1 < Rpg:

S(pr—1,A) S (pg, )
S(akilil)(pk‘—lv)‘) S(pk—la)\)

= o {1 V(pr, V) |

S (p A) = §@=1=D(p, 1 X)

Hence, the sum of residues in (6.2.6) exhibits an asymptotic character for large A. Finally,

regarding the remainder integral, subject to (6.2.4) we observe:

SK+i00 00
(2 VM (=2)ds| < max|M(~x — )] [ 15(ei + iv. V)] dy
K —100 —oo

= 0{5(xK, )}

The maximum in this upper bound is finite because M (—¢x — iy) by analyticity is especially a
continuous function of y € R, and by assumption it is bounded at infinity. Upon comparison

with (6.2.7) for k = K, since sx > Rpg again by (6.2.2) and (6.2.3) we immediately confirm the
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6. Asymptotic Expansions by Analytic Continuation

asymptotic validity of the expansion (6.2.6), which finishes the proof. n

As a remarkable consequence of the preceding theorem we add an important observation.

Corollary 6.2.1 (rate exceeds the asymptotic scale). If in the situation of Theorem 6.2.1
the function M(—z) is holomorphic in the entire half plane Rz > ¢y — €, for arbitrary xo > <

as A — oo we have
J)\ = O{S((Eo,)\)} .

In other words, the exact behaviour of Jy then can not be represented solely by the asymptotic
scale S(z, N).

We close this section with an overview on some functions that satisfy the properties of S(A, z),

which were required in Theorem 6.2.1(1).

6.2.1. Mellin Transform of the Exponential Function

Possibly of most frequent occurence in asymptotics is the Mellin transform associated with the

exponential function e~*. Assume ¢y > 0 in (6.2.1) with
(6.2.8) S(z,\) =X""T (2).

The function is evidently holomorphic in Rz > 0, and it follows from the exponential decay of
the gamma function that S(z,A) = O {272} as 3z — +oo for any A > 0. Furthermore, the
property (6.2.4) is a consequence of the absolute convergence of Jy, since the modulus of the
integrand is O {A\"} as A — oco. Finally, for k € Ny and 21, 25 € C with Rzy > Rz; as A — oo

we observe

k
d*

o = (—log M)A =0 {71},

z=2z9

The validity of (6.2.2) and (6.2.3) is thus due to the product and the chain rule. Summarizing,
the function (6.2.8) satisfies the conditions of Theorem 6.2.1(1). By virtue of the functional
equation for the gamma function, it is possible to cover analogously cases of non-integer ¢y < 0

by appropriately rearranging the integrand in (6.2.1).
6.2.2. Beta Function

The integral (6.2.1) is of binomial type if

F(A+1)I'(2)

(6.2.9) S(z,\) = m,
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6.2. Functions with the Property of an Asymptotic Scale

for instance with g9 > 0. From (B.3.5) we know S(z,A) = O {z7*71} as |z| — oo for any A > 0,
and in addition for any z € C we have
d T(O\+1) T(A+1)

dzT(A+1+ z2) :_F(A+1+z)w(/\+l+z)'

The function v refers to the digamma function, see (B.2.12). Derivatives of higher order can
be obtained from the product and the chain rule in terms of the polygamma functions. Their

asymptotic behaviour as A — oo implies

d* T(A+1)

2.1 _—
(6:2.10) dzF TN+ 1+ 2)

~ (—log \)* A=,

In particular, all of the polygamma functions vanish for large values of their argument, except
the digamma function. With (6.2.10), by arguments similar to those which were employed for
(6.2.8), it is easy to verify (6.2.2) and (6.2.3). Finally, the estimate (6.2.4) can be confirmed
with the aid of Corollary B.3.1. In case of a non-integer ¢y < 0 in (6.2.1), analogous arguments
apply after an appropriate rearrangement of the integrand by means of the functional equation

for the gamma function.

6.2.3. Beta Mellin Transform
If in (6.2.1) we have g9 > 0 and
(6.2.11) S(z,A) = Mp(z, A —1),

the situation becomes slightly more complicated. Firstly, we know from (4.7.17) that the function
exhibits exponential decay as Sz — +oo in 0 < Rz < A for any fixed A > 0. Secondly, from
(4.7.54) for fixed z € C\ {0}, as A — oo, we ascertain that

H—Z
(6.2.12) Mgz, A —1) ~ 22,

z

This asymptotic relation is differentiable with respect to z. The reason is that the finite ex-
pansion (4.7.42), of which (6.2.12) constitutes the leading term, establishes an analytic function
of z. Term by term differentiation is thus permitted and particularly regarding the remainder
integral (4.7.43) we know from Theorem A.2.1 that differentiation can be performed under the
integral sign. Hence, the asymptotic expansion of any derivative of the beta Mellin transform
can be obtained by differentiation of the asymptotic series. From the product and the chain rule
we conclude, that the dominating term as A — oo of the k-th derivative for k € Ny is

i r Hy”
@MB(Z,/\ — 1) ~ (—IOgH,\) 7
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6. Asymptotic Expansions by Analytic Continuation

As a consequence of the asymptotic behaviour of the digamma function, see (4.7.33), for any

k € Ng as A — oo we can equivalently write

d" {log \}™~#
2

(6.2.13) ﬁMB(Z’ A —1) ~ (—loglog \)*

By means of this approximation it is easy to verify (6.2.2) and (6.2.3). Concerning inequality
(6.2.4), some difficulties arise. For fixed 0 < g < A and A > 0 we have

/ 1S (20 + iy, \)] dy < oo,

i.e., the integral certainly converges absolutely by (4.7.17). The difficulty consists in showing
that it is O {(logA)™™°} as A — oo. For this purpose the bound (4.7.61) appears to be useful.

It turns out, however, that it is insufficient:

2.14 < - —
(6:2.14) /|s o+ iy, V)] dy < 2o(A — o) Mo, X /W_z,

dy
/ Ve Vi

= 21‘0./\/1]3 1‘0,

It is a simple consequence of Beppo Levi’s theorem that the integral which depends on A, diverges

as A — oo. In particular, for any a,b > 0 we have:
1 2 2, 12
g(a + b) <a®+ b

By virtue of this bound, accompanied by a partial fraction decomposition we obtain for fixed
xo and sufficiently large A:
o0
dy

3/ dy
Vat+ 2/ —x0)2 + / (zo +y)( —ﬁUO‘HJ)

o0
3 /[ 1 1
A — 2x To+y A—x0+Yy
0

=3 —32330 {log(A — x0) — log(zo) }

Combining this with (4.7.54) and (4.7.33) shows that, as A — oo, the integral on the left hand
side in (6.2.14) is

[ 180+ i 0l dy = 0 {{rog} =}
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6.3. Analytic Continuation Techniques for Generating Functions

Further efforts in deriving a more accurate estimate failed. Regarding the beta Mellin transform
we were thus able to verify all the conditions of Theorem 6.2.1(1), except (6.2.4). We are,

however, brave enough to ignore this lack and assume validity of the property.

6.3. Analytic Continuation Techniques for Generating Functions

The study of the asymptotic behaviour of I is immediately connected with the determination
of the analytic continuation of a certain class of integral functions. Therefore we proceed with

a treatment of generating functions of the shape

(6.3.1) Wi (-2) = [ (o) alt)at,
P

where ¢(t) > 0 and a(t) are continuous, P is a finite segment of the real axis, and the branch
of the power satisfies arg {¢(t)} = 0 for t € P. The function ¢ is assumed to possess exactly
one zero ty along P, which coincides with either the lower or the upper endpoint, indicated by
a positive or a negative sign in the index of (6.3.1), respectively. At this zero, without loss of
generality we suppose, the behaviour of each function can be characterized by powers of t. We
can then immediately establish the following analyticity statement, which is of major importance

throughout this chapter and beyond.

Lemma 6.3.1 (kernel with algebraic behaviour). Denote by ¢(t) and c(t) respectively a
real- and a complez-valued function which is uniformly continuous on any closed subinterval of
(0, 1]. Suppose inf.<,<1 ¢(v) > 0 for all0 < e < 1, and there exist 3 >0, p > 0, v € R for which
ast | 0 we have ¢(t) ~ pt® and c(t) = O {t7}, with v > —1 if B = 0. In these circumstances the

integral

1

N(—2) = / {6(t)) % e(t)dt

0

s holomorphic in its region of absolute convergence, i.e., for 8 = 0 in the whole z-plane and for
B > 0 in the half plane Rz < WT# The computation of derivatives and residues can be performed

under the sign of integration.

Proof. By Theorem A.2.1 it remains to verify the uniform convergence. In order to accomplish

this task we notice, by assumption,

UB
M := max —— < 00,
0<v<1 ¢(v)

and we designate by E a compact subset, if 5 = 0 of C and if 8 > 0 of the half plane Rz < WT#
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6. Asymptotic Expansions by Analytic Continuation

From the series expansion of the exponential function for any z € C and 0 < t < 1 we find

s J
(B < Y m?'! AT — PRz R
=0 7
By virtue of this estimate, with z_ := min{Rz: z € E} and 24 := max{Rz : z € E}, for any

z € E we finally deduce

1
1M(—2)| < emaxtle=blz+IM pay c(w) /t7_5x+dt.
0<u<il| u”
0
By uniformity with respect to z € E the proof is finished. n

From the theory of integral functions we know that asymptotic expansions often provide
useful tools to determine the analytic continuation of integrals. This approach is particularly
viable in case of (6.3.1) if the involved functions are holomorphic, and the objective of the first
subsequent subsections is to establish an appropriate technique. For this purpose, however, we
require an auxiliary result, since we are interested in the expansion of a function in terms of

another function rather than in its ordinary power series representation.

6.3.1. A Generalized Laurent Expansion

About a century ago the Portuguese mathematician Teixeira published an article on a remarkable
generalization of the Laurent expansion. See [Teixeira, 1900] for the original French article
or §7.31 in [Whittaker and Watson, 1952] for an English translation. Another hundred years
earlier, a generalization of Taylor’s expansion was presented, which is known as the Biirmann
series. For details we refer to §7.3 in [Whittaker and Watson, 1952]. It is the aim of the present
subsection to combine these results for establishing a finite expansion of Laurent-type under a
minimum of conditions.

Suppose we have a function 6(z) that is analytic in some region of the complex plane containing
a circle R centered at the point zg, at which 6(z) is assumed to possess a zero of simple order.
Denote by I' the boundary curve of R, traversed in the positive direction and suppose that,
besides zy there lie no additional zeros of #(z) in R or on I'. Moreover, let g(z) be a function
which is analytic in some region of C including R, except possibly at zp, where it is admitted

to have multiplicity v € Z. In these circumstances the function

(6.3.2) o) = I
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6.3. Analytic Continuation Techniques for Generating Functions

is holomorphic in R and on its boundary curve I', particularly the pole at z = zy being removable.

According to Cauchy’s theorem, we can thus write for any £ € R:

Zf(_z)gdz

= 3 f 7 (> 7{ f { - eu?fé(o } o

Since the point zp is a zero of 6(z) of order one we have €'(zy) # 0. Following from the

f) =

?

(6.3.3)

inverse function theorem, see Theorem 5.7.13 in [Asmar and Grafakos, 2018], the region R can
be chosen small enough to arrange for any given { € R validity of 0(z) = 0(¢) if and only
if z = & A function with this property is also termed conformal, compare Theorem 7.1.2 in
[Asmar and Grafakos, 2018]. Then, the second integral in (6.3.3) equals zero by analyticity of

the integrand and we arrive at

(6.3.4) £6) = % 7§ Mdz.

r

Now, by virtue of the geometric sum formula (1.2.23) for any K € Ny and £ € R we can write:

f(z 1
27m]é Qd
K-

B )0’ (2) dz
(6.3.5) = kz_o{e( 7{ kHd 2+ {0() 75 PIEEELG

For convenience we denote the K-th remainder integral by

K L f(2)¢'(2) dz

(6.3.6) R (§) :==1{0(5)}" 5= :
2mi J {0(2)} 0(2) — 0(¢)

Furthermore, by additional use of the definition of f in (6.3.2), for 0 < k < K — 1 we introduce

the coefficients

(6.3.7) - 7{ o MH dz.

According to Cauchy’s theorem, there is a close connection between these coefficients and the

derivatives of the involved functions:

1 dk . o k+1
(6.3.8) k= ok [g(Z)G (Z){(e(z)}g)“““]

z=z0
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In terms of the above quantities, for arbitrary K € Ny and £ € R we arrive at the finite expansion

K-1

(6.3.9) 9(&) = > {0 +{6()}” Rk ().

k=0

The behaviour of the series as K — oo primarily depends on the properties of §(z). A conver-

gence statement can especially be established if for any £ € R we have

(6.3.10) 10(6)] < min|0(=)].

In this event the function 6(z) is one-to-one in the indicated region, because for any £ € R the

following equalities hold:

R SO R S 04O N
ori | 0(z)—0(&) " " 2mi f 0(z) 1 — % ‘
T z

I
{6(&) ?{ ————dz
kzo 271'1 {9 k“

1 H’z

ZZ Hz

The interchange in the order of summation and integration is permitted subject to uniform
convergence, whereas the third equality follows from the fact that the integrand for £ > 1
possesses an antiderivative that is analytic on I', namely % {6’(2)}%. According to the argument
principle, the preceding exposition shows, in the interior of I', just like the equality 6(z) = 0
also 6(z) — 6(£) = 0 has exactly one solution. Furthermore, if R > 0 denotes the radius of T,
from (6.3.6) we deduce

L |f 20 + Re'®)0' (29 + Re“z’)‘
min [0()] 27 |0(20 + Re'®) — 0(8)]

|Ri(§)] < de.

Hence, as K — oo the remainder vanishes. In a similar fashion it can be shown that the
preceding sum in (6.3.5) as K — oo converges absolutely and uniformly in any compact subset

of R, which verifies validity of these properties for the series

(6.3.11) F©) = e {0}
k=0

Finally, the bound (6.3.10) especially holds if 6(z) = z — 29, taking the form [£ — 2| < R.
Thus, the right hand side of (6.3.11) constitutes the Taylor expansion of f then, whose region
of validity depends on the closest singularity of this function only. By additional use of the

definition of f, a transformation to the Laurent-expansion of g is possible.

190



6.3. Analytic Continuation Techniques for Generating Functions

6.3.2. Analytic Ingredient Functions

Keeping in mind the result from the preceding subsection, we finally reconsider the generating

function (6.3.1), proceeding with a complete overview on the required assumptions:

(1) Suppose P is the finite half open segment of the real axis which connects the zero ¢y of

(t) with some real point T # ty such that ¢(t) > 0 for any ¢t € P.

(2) Let P be contained in a neighborhood of ty, where p(t) and a(t) are analytic and the

following power series are uniformly convergent:

(6.3.12) a(t) = a(jsto)(t —to)’*

NE

<.
Il
o

b(js to) (t — to)? TP

M

(6.3.13) o(t)

.
Il
o

Here b(0;tp) # 0, and by positivity of ¢(t) for ¢ € P we have (tft(gﬂo > 0. Therefore

b(0;tp) > 0 by continuity. Furthermore, necessarily ap € Ny and Gy € N, where odd Sy

can occur only if T' > tg.

As a consequence of these assumptions, since the zero tg lies isolated by analyticity, depending

on whether or not at t = ¢y the derivative ¢’ also has a zero, the function

(6.3.14) Ao(t) = 2

is holomorphic in a possibly punctured neighborhood of ty3. Moreover, if 89 > 2 we conclude
that the point tg is not only a zero but a saddle point of ¢ of order Sy — 1. Then By paths of
steepest descent emanate from tg, i.e., lines along which Sy is constant. But ¢ was assumed
to be real-valued along the integration path, whence especially P is a path of steepest descent.

Finally, if in the above setup for n € Ny we denote

ap+1 n

(6315) Xon = Bo + %a

the generating function (6.3.1) converges absolutely for any z € C with Rz < xq9, and is by
Lemma 6.3.1 holomorphic there. To access the associated analytic continuation into %z > xoo,
in a neighborhood of t3 we aim to find the Laurent expansion in terms of ¢ of the function Ay,
which will eventually facilitate a partial evaluation of the generating function by virtue of the

fundamental theorem of calculus.

6.3.2.1. Preliminaries

Besides analyticity of the underlying functions, the essential requirement for the applicability

of the generalized Laurent expansion is the conformality of ¢(t) at ¢ = to. However, it is
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ascertainable from (6.3.13) that tg is a zero of simple order only if 5y = 1. Otherwise the
function ¢(t) amplifies the angle between two curves intersecting at to by [o-times, which is
equivalent to a small neighborhood of ¢ty being mapped on a Riemann surface with S8y sheets.
On this surface ¢ attains any value [p-times. Conversely, to choose the appropriate branch
of the root we must first determine on which sheet the integration path is mapped. With

—7 < arg(t — tg) < 7 as the principal branch, we denote by

(6.3.16) wp = tli)r% arg(t — tg)
teP

the slope of the integration path at the point ty. Clearly wp € {0,7}, since P is a segment
of the real axis. Moreover, the branches of the argument associated with b(0;¢y) are given by
arg; {b(0;t9)} = 2mj for j € Z. In terms of these, from (6.3.13), we deduce

(6.3.17) tll)ntrt arg; {p(t)} = Bowp + 27j.
teP

Based on the branch of the argument arg; {((t)} with this property, and defined by continuity
elsewhere along P, we will construct any fractional powers of ¢, where j € Z is to be specified.

Particularly for the 8y roots we introduce the definition
A e '

According to (6.3.13), these are given by

1

Bo

b(] tO) (t o tO)j

b(0; to

2m) 1 >
(6.3.19) pjltite) = ¢ 50 {b(05t0)} 70 (¢ —to) { L+
j=1

~—

with the powers of the curved brackets taking their principal values. Indeed, it is easy to see

that the Syp-th power of each function satisfies (6.3.17), since

(6.3.20) tlLIg}) Boarg {¢;(t;to)} = Bowp + 2],
teP

from which, by continuity, we conclude

(6.3.21) {pit:to)}* = o),  teP,

In other words, the functions (6.3.19) are the fy-th roots of ¢(t). Observe that each of them
has a simple zero! at t = ¢y and each derivative satisfies 4,03- (to;to) # 0, whence ¢;(t;t9) maps a

neighborhood of ¢y conformally onto a subregion of the complex plane. The region of analyticity

!This would not be true if we defined the powers of ((t) by simply assuming the branch |arg {p(¢)}] < =.
1
With this choice of the argument, the function {((¢)}?o is not analytic in a neighborhood of to.
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6.3. Analytic Continuation Techniques for Generating Functions

of (6.3.19) depends on the radius of convergence of (6.3.13) and the closest zero of ¢, where the
function in the second curved bracket vanishes?. In order to choose the appropriate branch for
the functions in our generalized Laurent expansion, we note that by assumption ¢(t) > 0 for
t € P. Therefore, to confine the mapping to one Riemann sheet the modulus of the argument

(6.3.17) may not exceed 7§, which implies

(6.3.22) {0 —ﬁ;}

The two relevant branches of the [Sy-th root of ¢ are thus given by ¢ (t;t0) := o(t;to) and
w_(t;t0) == ¢ 5, (t;to). By comparison with (6.3.19) we see that these satisfy
2

(6.3.23) or(tito) = {p®)}F0,  t>t,

(6.3.24) o-(tite) = {e(®)}F0,  t<to,

provided the power on the right hand side is constructed in terms of the argument function

larg {@(t)}| <.

6.3.2.2. Derivation of the Generalized Laurent Expansion

We are now well prepared to introduce the desired expansion, which is a series representation
of Ay(t) optionally in powers of ¢, (¢;ty) or in powers of ¢_(t;ty). Therefore we first note that
Ap(t) and ¢4 (t;t9) in a neighborhood of ¢ = ty satisfy the conditions of the functions g and
0 of Subsection 6.3.1, respectively. The multiplicity at ¢ = tg of Ag(t) is readily identified by
comparison with (6.3.14) to be equal to v = y(xo0 — 1). We thus conclude from (6.3.9), for a
sufficiently small region Ry with center %y, encircled counterclockwise by a curve I'y, and any

t € Rp and N € Ny, the following finite expansion holds:

N-1
(6325) Ao(t) — Z Ci(n;to) {gpi(t;to)}n+ﬁo(x00*1) + {wi(t;to)}ﬁO(XOO*l) A(T(t’ N)

n=0

The corresponding coefficients subject to (6.3.7) are for 0 <n < N — 1 given by

w) !y (w;to)

(6326) cﬂ: 27TZ {(p:t w; to }ﬁo X00— 1)+TL+1

Moreover, due to (6.3.6) the remainder integral equals

j{ w) @y (w;to) dw
27i {o+(w; to)}ﬁo(Xoo DN o4 (w;to) — o+(t;to)

(6.3.27)  AZ(t,N) := {px(t;t0)}V

2 A necessary condition for a branch of the root of an analytic function to exist is that the function is non-zero,
compare Lemma 3.6.11 in [Wegert, 2012].
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6. Asymptotic Expansions by Analytic Continuation
According to (6.3.21) and the chain rule, the first derivative of ¢ and ¢4 (+;to) are related through

}50 .

(6.3.28) o' (w) = ﬁogp 7;2; {p+(w;tg)

By definition of A(t), for 0 <n < N — 1 instead of (6.3.26) we can thus equivalently write:

(w)

50 2m F et }ao+n+1

c+(nito) =

(6.3.29)

11 ar [ a(z)(z — to)" 1 }

~ Bonldz" | {px(ztg) 20T

z=tg

Regarding coefficients with different signs, for 0 < n < N — 1 we observe that ¢_(t;ty) =
—p4(t;to) implies

(6.3.30) c_(n;tg) = (—1)" T le, (n;tg).

For actually computing these coefficients it may be helpful to write

ot = (¢ -t { 2O

The function in the curved brackets is then holomorphic in some neighborhood of ¢ = tg but
does not vanish there. Furthermore, the branch of the root we require for the coefficients with

the positive sign in the index, for instance, can conveniently be represented in the form

(6.3.31) s (t:10) = (t o) {(M)B} ,

t—to

where the power of the function in the curved brackets attains its principal value. In view of
(6.3.29) we then arrive at:

O(n;to) = c4(n;to)

(6.3.32) _L1an a(z) (z — to)Po X"
Bon!dz" | (z—tg)2o ©(2) .
z=to
Finally, by virtue of (6.3.28) from (6.3.27) we deduce
N1 1 a(w) dw

(6.3.33) AF(t,N) = {ps+(t:to)}

Bo 27” {S%(w; t0) Y20 i (wite) — w(t;to)

6.3.2.3. Application of the Expansion

We will now employ the expansion (6.3.25) to establish the analytic continuation of the gen-

erating function (6.3.1). Therefore we assume without loss of generality that P is completely

194



6.3. Analytic Continuation Techniques for Generating Functions

located in the interior region of Rg. Then, ¢'(t) = 0 if and only if ¢t = tg, and in terms of Ay for

Rz < xoo we can write
(6.3.34) Wi (-2) = [ (o) Ao(t)s ).
7)

Recall the analyticity of the integral in Rz < xgo. Upon introducing to (6.3.34) the finite
expansion (6.3.25), for N € Ny we arrive at

N-1
(6335)  MG(—2)= Y cx(nsto) / {0 Lozt 80)y 000 o ()dt + MG (—2, N),
n=0 P

where the remainder integral is defined by

(6.3.36) MG (—2,N) = / {p(0)} 7 Lo (ts 10) X070 AT (¢, N) (t)dt.
’[)

Depending on whether % is the starting or the ending point of the integration path, we choose the
expansion with the positive or the negative sign. Keeping 0 < n < N —1 fixed, by Lemma 6.3.1
the integral appearing in the n-th summand in (6.3.35) is absolutely convergent and holomorphic
in Rz < xopn. If we assume T' > t(, by employing the identity (6.3.23) followed by an application

of the fundamental theorem of calculus, we obtain for fixed Rz < xon:

T T
/ {o(®)} L (£ 0)} 200D ol (1)t = / (Yo ()

oy
Xon — 2

This constitutes the analytic continuation to the whole complex plane of the integral represen-
tation for the n-th summand. It is composed by a product of a rational and an entire function,
exhibiting a simple pole at z = xo,. In addition, it is evidently O(]z| ") as Sz — Foco. Con-

versely, if T' < ty analogous steps involving the identity (6.3.24) for fixed Rz < o, yield

to

X0n—=2
[ o0yttt gy = LD
7 Xon — 2
Instead of (6.3.35), for Rz < xpo and N € Ny we can thus write
N-1 _
T X0n—%2
6.3.37 M (—2) ==+ c+(n;to % + —2z,N).
0 0
n—0 Xon —
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6. Asymptotic Expansions by Analytic Continuation

To eventually determine the region of validity of this expansion we must examine the remainder

integral. It was given in (6.3.36) and by virtue of (6.3.33) it can be cast in the following form:

ME (—2, N) = 510 / (o0 (i (1 1) }Po00x =D /(1)
P

1 a(w) dw
% ) ap+N . . dt
2mi ) {ipu (wit) 20N (wito) — @ (tito)
0

Since P is supposed to run in the neighborhood Ry, where ¢ (-, tg) is one-to-one, we conclude
that the denominator in the integral along the curve I'y is bounded away from zero, uniformly
with respect to £ € P and w € I'y. Moreover, the double integral depends on z only through
the power of , and as t — ¢y along P the integrand is O {(t — to)ﬁo(XON_%z)_l}. Absolute
convergence is thus guaranteed for Rz < xon. Assume 0 < ¢(t) <1 for all ¢ € P. Then, if F
denotes a compact subset of the half plane Rz < xon and zg := max {Rz : z € E}, subject to
the identities (6.3.23) and (6.3.24), for N € Ny we obtain

+0_, XoN—zE—1 ' (1) a(w) dw
005 (2, V)| < Z ()} e f o o) e |

The upper bound is finite, which confirms the uniformity of the convergence in E. A similar
bound applies for general ¢ > 0. By arbitrariness of £ and since N was an arbitrary non-
negative integer, we conclude analyticity of (6.3.36) in Rz < xon for any N € Ny. Moreover,
from the above estimate we deduce that for fixed N the remainder integral is O(1) as Sz — £o0,
uniformly with respect to Rz in any closed vertical substrip.

To summarize our findings, for arbitrary fixed N € Ny we have just verified that (6.3.37)
represents the analytic continuation of (6.3.34) to the region Rz < xon, where it is O(1) as
$z — oo uniformly with respect to Rz in any subregion. In the indicated region the expansion
is meromorphic with the n-th summand exhibiting a simple pole located at z = g, for 0 < n <

N — 1, whose residue is given by:

Res MT(—2) = Fex(nsto)
(6.3.38) 2=Xon
= —(£1)"T*O(n; to)

For the second equality we took into account the identity (6.3.30) and definition (6.3.32). Ob-
serve that neither of the above properties depends on the point 7. We merely know the existence
of T € Ry. Further details require additional investigations of the involved functions, particu-

larly of a and of ¢ (+;tp).
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6.3.3. General Ingredient Functions

The natural analogue to a generalized Laurent expansion, making use of real analysis only, would
be a Taylor expansion of one function in terms of another. There is, however, a more convenient
method to determine the analytic continuation of the generating function (6.3.1), that can even
handle scenarios in which the ingredient functions exhibit arbitrary algebraic behaviour in a
neighborhood of a point, where the function ¢ vanishes. This is integration by parts. A special
case occurs if the ingredient functions are analytic, in which event the technique below provides

an alternative to the generalized Laurent expansion.

6.3.3.1. Algebraic Local Behaviour

For simplicity, without loss of generality, we suppose the integration path P in (6.3.1) commences

at tg, i.e., the generating function is of the form

T
(6.3.39) Mt (—2) — / {o(0)} % a(t)dt.

In the technical part of this section we occasionally write
(6.3.40) Moo(—2) := MG (—2).

More precisely, concerning the integration path we assume a finite segment of the real axis,
starting at some point ¢y € R where lim;;, ¢(t) = 0, and ending at T > ¢ such that ¢(t) > 0
for any t € (t9,7T]. In addition we suppose ¢(t) and a(t) for N € N are N-times continuously
differentiable on (to, 7], and as t | to let

(6.3.41) a(t) ~ apo(t —to)™°,
(6.3.42) () ~ boo(t — to)™,

with constants agg € R\ {0}, bpo > 0. The parameters oy > —1, Sy > 0 need not be integers
but fractional numbers are admissible. Hence, ty only corresponds to a zero in the usual notion

if By is indeed an integer. Denoting

1
(6343) X00 = o + N
Bo

by Lemma 6.3.1 under the above conditions the generating function (6.3.39) is absolutely con-
vergent and holomorphic in 2z < xgg. To determine the analytic continuation to the right

direction, we introduce the functions

_ +-)B0
(6.3.44) B(t) := log {(t@(tto))}
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(6.3.45) Ago(t, 2) := eZB(t)(tf(;)m'

By assumption the first of these is N-times continuously differentiable on (tg, 7] and the limit
limy 4, B(t) is finite and non-zero. As a consequence also (6.3.45) is N-times continuously differ-
entiable there with existing non-zero limit limy 4, Ago(t, z), which, however, depends on z € C.
Particularly denote Ago(to, xo0) := limy ¢, Aoo(t, x00). It is easy to see that there exist functions
poo(t;to), po1(t;to) for which the first derivative of (6.3.45) can be arranged in the form

(6.3.46) bo(t, 2) = PO Lapoy (t:t0) + poo(t;to) } -

Throughout this section a prime always indicates the derivative with respect to t. The coefficients
poo(t;to) and po1 (t; to) of the polynomial in (6.3.46) are composed of B’(t) and of (t —to)~*a(t)
and its first derivative. For fixed z € C the function Af(t, z) is thus continuous with respect to
t € (to,T]. In terms of (6.3.45) the integral (6.3.39) with Rz < xoo reads

T
(6.3.47) M (— / (t — to)PoOo0o=2)=1 40 (¢, 2)dt,
to

and it evidently constitutes a common incomplete Mellin-type integral. If we integrate once by

parts in the usual fashion, we arrive at:

T T
(t— to)ﬁO(XOO*Z) 1 o

M (—2) = [ Agolt, 2)| — ———— / (t — tg)PoCx00=2) AL (¢, 2)dt
Bo(xo0 — 2) o Bo(xo00 — 2) /
T

(6.3.48) B )l W S B / (t — t0)P0000=2) A1 (¢ 2)dt

o Bo(z — x00) 005 Bo(z — x00) ; 0 0%
0

For the second equality we note that the integrand vanishes at t = ¢y since Rz < xog. The first
function in (6.3.48) is thus holomorphic in C with the exception of a simple pole at z = xgo. To
specify the region of analyticity of the second summand, we suppose there exists a1 > —1 such
that as t | tg we have

(6.3.49) pok(t; to) = O{(t — to)*'}, k€ {0,1}.

It is then easy to confirm absolute convergence of the integral in (6.3.48) for Rz < xoo0 + O‘%OH

To show analyticity in this region, we first define

T
(6.3.50) Wor(—2) 1= 5 / £ 1) 000D A7 (¢ .
to
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Then, in terms of the identity (6.3.46) we can write

T

/(t — t)Pox00=2) 2B {2001 (£:0) + poo (£ t0)} dt.
to

1

(6.3.51) Mo1(—z) = X

By continuity and subject to the asymptotic behaviour of ¢(t) as t | tg, the function B assumes

a finite supremum along the range of integration, which we denote by

Mp := sup |B(r)|.
to<r<T

It is thus a simple consequence of the series representation for the exponential function, that

e?RzB(t) < e\%z\MB_
Besides, following from (6.3.49) and by continuity of the coefficients of the polynomial (6.3.46),

} |

If we denote the factor in the curved brackets by P(z), we eventually deduce from (6.3.51) for
fixed Rz < xoo + O‘%:l with z # xoo:

Poo (75 t0)
(T’ — to)am

pot (3 to)

(r — toyoor | T, 5P

to<r<T

|zpo1 (t;t0) + poo (t5to)| < (t —to)*™ {M sup
to<r<T

T
P
(6.3.52) |Mo1(—2)] < emz‘MBi /(t — to)BO(XOO_%ZHO‘Oldt
Bo |z = xo0l t
0

= emz\MB P(Z) (T — tO)BO(XOO_mZ)+a01+1

Bo |z — xo00| Bo(xoo —RNz) + o1 + 1

The integrals (6.3.50) thus converge uniformly in any compact subset of the indicated region that
does not contain the point ygo. We therefore conclude from Theorem A.2.1, that the expansion
(6.3.48) establishes the analytic continuation of the generating function (6.3.39) to the extended
half plane Rz < xo0 + O‘%ﬂ“, exhibiting a simple pole at z = xg9. The corresponding residue is

readily computed from the fundamental theorem of calculus:

(6.3.53) O(0;tp) := — Res MJ(—2)
Z=X00
T
1 1 [,
= —Aoo(T, x00) — = [ Abo(t, x00)dt

Bo Bo

to
1

= %Aoo(toj X00)

Finally, by taking into account the inequality (6.3.52), it is easy to see that the expansion (6.3.48)

is O(1) as Sz — +o0o, uniformly with respect to Rz in any closed vertical substrip of its region
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of validity.

If the assumptions on the ingredient functions hold for N > 2, under certain conditions
the integration by parts procedure can be repeated to eventually unlock the continuation of the
generating function to a wider half plane. Therefore we replace (6.3.49) by a local relation to
guarantee the integral (6.3.50) to be of similar type as the initial integral (6.3.39). First, for

1 <n < N and a parameter ag, > —1 we introduce the recursively defined functions
(6.3.54) Aon(t, ) = (t — to) """ A1y (L, 2)-

These are (N — n)-times continuously differentiable on (¢g,7’]. By induction it is easy to verify,
starting from (6.3.46) and applying the product and the chain rule, for appropriate functions
P(n—1)k(t; to) the derivative on the right hand side in (6.3.54) can always be arranged in the form

(6.3.55) A1y (t2) = PO "2 pi_i(tsto).
k=0

Evidently, this sum constitutes a polynomial whose coefficients are composed of derivatives of
a and of B up to order n. According to our assumptions, the functions p(,_1)x(t;to) are thus
continuous on (tg, 7] for all 1 <n < N and 0 < k < n. Moreover, Ag(n_l)(t,z) for1<n<N
is also continuous there for any fixed z € C. To achieve continuity of Ag,(t, z) on [tg,T], in
(6.3.54) for 1 <n < N — 1 we specify the parameter ag,, > —1 such that for A # 0 as ¢t | ¢y we

have

Pn-1)k(t; o) ~ A(t — to)*",

(6.3.56)
Pn-1)k(tito) ~ O{(t —to)*"},

where the first statement holds for one while the big-O estimate holds for all 0 < £ < n, and
the constants depend on n, k. Finally, for n = N we suppose agy > —1 is such that as t | ¢y for
all 0 < k < N the coefficients satisfy

(6.3.57) pv—1)k(tito) ~ O {(t — o)™V}

Then, denoting

"L g+ 1
(6.3.58) Xon = Xoo + Y —L——,
= b
for any 1 <n < N the limit
(6.3.59) Aon(to, Xon) = lim Aon(t, xon)
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certainly exists. Under the above assumptions for 1 < n < N the integral appearing in

T
(6.3.60) Mon(—2) == —— ! /(t - tO)BU(XO(nfl)_Z)Ag(nil)(t7 2)dt
58 lH (Z - XOZ) to
=0

converges uniformly in Rz < xon, and the whole right hand side of (6.3.60) is O(1) as Sz — +oo
there, uniformly with respect to Rz in any closed vertical substrip. This is readily verified by ap-
plication of (6.3.55) and (6.3.56), analogous to (6.3.52). Following from its uniform convergence
and the properties of the integrand, the function (6.3.60) is analytic in the indicated half-plane,
except for a sequence of simple poles at z = x; for 0 <[ < n — 1. After a proper rearrangement

of the integrand, partial integration is viable for 1 <n < N — 1, yielding;:

T
Mon(—2) = —— ! (t — tg)PoCon=2)=1 Ao (¢ 2)dt
g 1:[ (z - XOZ) to
T
— BO(XOn_Z)
(6.3.61) = — (T =t) Aon (T, 2) + ! (t — to)PoXon=2) AL (¢, 2)dt

n n
syt lHo(Z — Xot) syt ZHO(Z — X01) 4

In accordance with its absolute and uniform convergence, the resulting integral exhibits analytic-
ity in $z < xg(n+1) and hence establishes the analytic continuation of the original representation
with simple poles located at z = xq, for 0 < [ < n. Definition (6.3.60) enables us to cast (6.3.61)

in the form
(T — to)ﬁo(xon—z)

gyt ﬁ (z — xo1)
=0

(6362) S)ﬁgn(—z) = — Aon(T, Z) + i)ﬁo(nﬂ)(—z), 1<n<N-1.

Combining this in turn with (6.3.40) and (6.3.48) is equivalent to repeatedly integrating the
generating function My (—z) by parts in the previously described manner (n + 1)-times with
0<n< N —1, leading to:

(T — tg)Po(xo0—2)
Bo(z — xo0)

T — t0)Po(Xok—2)
(6.3.63) == &= to) Aok(T, 2) + My(n41) (—2)

%
k=0 ghtl ZH (= — xo1)
-0

M (—2) = -

Aog(T7 Z) + 93?01(—z)

n

This function is analytic in Rz < xg(,41) With a not necessarily equidistant sequence of simple

poles. Particularly in the strip xo(,—1) < Rz < Xo(n+1) We encounter merely a single pole, which
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is of simple order. The corresponding residue is given by:

(6.3.64) O(n;to) :== — Res M (—2)

Z=X0n
AU (T, X0 ) 1
- nill - - n—1 /Aan(t’XOn)dt
BEtTT (xon — xor) By TT (Xon — Xxot) o
=0 =0
Aon(to, Xon)

= N 1;1;[: (n — 1+ Y00 Oéoz)

T

The last equation incorporates the definition of yg; for 0 <1 < n. Finally, due to the properties
of (6.3.60), the expansion (6.3.63) is O(1) as Iz — £oo, uniformly with respect to Rz in any
closed vertical substrip of the half plane z < xq(;41)-

6.4. Derivation of Asymptotic Statements on [,

We will now discuss how to employ our preceding findings for the derivation of an asymptotic
expansion for the integral I, defined in (6.0.1). Without loss of generality we assume that the
integration path P is the half open finite segment of the real axis that connects a point ¢y with
another point T' # tg such that, if we define

(6.4.1) W(to) = Jim W(1),
teP

we have 1 > W(t) > W(tp) > 0 for any ¢t € P. The function ¥(¢) thus attains its infimum value if
and only if ¢ = t3. Moreover, the functions a and ¥ are supposed to be continous on any closed
subinterval of P. Depending on the local behaviour of ¥ at ¢y, we will specify ¢ such that g
constitutes a zero of finite order. It will turn out below that one particular asymptotic scale

even yields a useful statement if U(tg) > 0.

6.4.1. An Inverse Factorial Expansion

Our first approach to evaluate the integral I, relies on the binomial integral representation for
the kernel. In order to apply our results from the earlier sections, we suppose ¥(ty) = 0. In
addition, besides the above conditions we assume on a subsegment Py C P that does not depend
on A\, the functions ¢ = ¥ and a satisfy the conditions (1) and (2) of Subsection 6.3.2, or the
conditions of §6.3.3.1 for some N € N. In these circumstances a and ¢ especially meet the
requirement (6.3.41) and (6.3.42) as t — to along P, respectively. Hence, the transition from
(6.0.1) to (6.1.2) is permitted. In particular, the integral representation (6.3.1) for the associated

generating function is then absolutely convergent and holomorphic in £z < xgp, enabling for
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0 < ¢ < xoo the following interchange in the order of integration:

1 go-i-z'oo )\ 1
_l’_
I = — W(t t)dtd
AT o / TO+1+2) /{ “
So—100

So+100

4.2 = — - —2)d
(64.2) 2mi / F()\+1+2)9ﬁ0( 2)d
So—i00
The parameter xop was defined in (6.3.15) or in (6.3.43), respectively, and is accordingly the
same, regardless in which of the two assumed scenarios we find ourselves. Now, for any closed

subinterval Ps C P we can write

(6.4.3) Wi(-2) = [ {e0} Taldt + [ {o(t) " alo)dr
Ps

P\Ps

Since p(t) # 0 for any ¢ € Ps, it is easy to see that the integral along the segment Ps constitutes
an entire function of z € C, whereas the restriction Rz < xoo for the validity of the above
representation stems solely from the integral along the first segment. But we are allowed to
choose P53 large enough to achieve Py = P \ P3. The analytic continuation of the integral along
the segment P in (6.4.3) can then be determined by virtue of the method from Subsection
6.3.2 or §6.3.3.1. In any case it is possible to continue the generating function to a meromorphic
function in the region Rz < yon, where the parameter yon was specified in (6.3.15) and (6.3.58),
respectively. In this extended half plane it was shown to possess simple poles with residues
(6.3.38) or (6.3.64), and it was verified to be O(1) as Sz — £o0o, uniformly with respect to Rz
in any closed vertical substrip. From Theorem 6.2.1, in view of the arguments from Subsection

6.2.2, as A — oo we thus deduce

(6.4.4) I\ ~ ; ?((AATE(;E:)) (£1)"T00(n; tp).

On the one hand, in the situation of Subsection 6.3.2 the positive or negative sign indicates
if the integration path P starts or ends at t = tg, respectively. Furthermore, the parameter
Xon Was given in (6.3.15), the coefficients can be found in (6.3.32) and the integer N € N can
be chosen arbitrary. On the other hand, in the situation of §6.3.3.1 the positive sign in the
expansion applies, and for the parameters xo, we refer to (6.3.58) while the coefficients O(n;tg)
were established in (6.3.64). The index N is then specified by the assumptions on the ingredient

functions.

6.4.2. A Power Series Expansion

We shall now proceed with the evaluation of (6.0.1) by making use of the Cahen-Mellin repre-

sentation for the kernel. Therefore we first observe that it is always possible to rearrange I to
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6. Asymptotic Expansions by Analytic Continuation

take on the form

(6.4.5) Iy = (1 —W(te)) / e W a(t)dt,
P
where
_ 1—W(to)
(6.4.6) o(t) = log {1—@(:)} .

In comparison with the original representation for I, the supremum along P of the kernel in
the revised integral (6.4.5) equals one, or equivalently the infimum of ¢ equals zero. Then, if
on a subsegment Py C P, independent from A, the functions ¢ and a suffice the conditions (1)
and (2) of Subsection 6.3.2 or those of §6.3.3.1 for a given N € N, to the integral (6.4.5) we are
allowed introduce the Cahen-Mellin representation (A.5.8). For 0 < ¢y < xoo this results in

So+ioco
1
L=(1- \Il(to))’\2—m, / AT (2)ME (—2)dz.
So—100

The corresponding generating function now exactly matches (6.3.1). Accordingly, it can be
extended to a meromorphic function in Rz < xon for a suitable N € N and is O(1) as 3z — oo
in this half plane, uniformly with respect to 2 in any closed vertical substrip. Again by Theorem
6.2.1 and subject to Subsection 6.2.1 we can thus establish that, as A — oo, the expansion of I
up to N leading terms is given by

N-1
(6.4.7) I~ (1= T(t0)* > AT (x0n) (£1)" 0O (ns o).
n=0

The sign indicates if the path runs to the right or to the left of the point ¢3. Regarding the
parameters Yon, the coefficients ©(n;tp) and the magnitude of the index N, the applicant is
advised to consult Subsection 6.3.2 or §6.3.3.1, respectively.

6.4.3. A Logarithmic-Type Expansion

We are finally concerned with situations in which an appropriate representation for the kernel of
I, is given by (6.1.4) in terms of the beta Mellin transform. This is the case if ¥(#p) = 0, and on
a subsegment Py C P that does not depend on A, the functions ¢ = {—log \II}_1 and a match
the requirements (1) and (2) of Subsection 6.3.2, or the conditions of §6.3.3.1 for some N € N.
By arguments similar to those of Subsection 6.4.1, appealing to Theorem 6.2.1 and Subsection

6.2.3, it is then reasonable as A — oo to conclude

N—-1
(6.4.8) Iy~ D Ma (Xon, A — 1) (£1)" 700 (n; ).

n=0
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The upper and lower sign refers to the slope of P again, and for the parameters and coefficients
we refer respectively to Subsection 6.3.2 and §6.3.3.1. In the situation of the former paragraph
the index N € N is arbitrary, whereas it is determined by the conditions on the ingredients in

the latter paragraph.

6.4.4. A First Order Approximation

For some applications merely the leading term of I is required. Hence, the purpose of this
subsection is to provide such a first order estimate. Therefore we note that, a sufficient condition
for the validity of (6.3.49) is the existence of ay, 31 > —1 for which the following holds as ¢ | t¢:

(6.4.9) ‘Z((:)) ~ Ot to)™)
(6.4.10) ZI((;) oF foto +0 {(t — )™}

This allows us to establish a theorem to characterizes the dominating behaviour of I for a fairly

large class of ingredient functions.

Theorem 6.4.1 (first order term). Suppose a and ¥ are continuous on any closed subin-
terval of (to,T] and 1 > ¥(t) > Y(tg) > 0 for any to < t < T. Furthermore, for a and an
appropriately specified ¢ assume validity of (6.3.41), (6.4.9) and of (6.3.42), (6.4.10), respec-
tively.

(1) If ¢ is given by (6.4.6), then as A — oo we have

_agtl 1
(6.4.11) I~ 22 (booA) ™ o (1 — W(to)) T <a°+> .
Bo Bo
(2) If O(tg) = 0 and ¢ = {—log U}, then as X — oo we have
gt 1
(6.4.12) I~ 2% (boo)™ P My <O‘°+,A - 1> .
Bo Bo

Proof. As a consequence of the product and the chain rule, for the first derivative of the function

(6.3.45) we compute:

) a(t) 2B(t) 1o/ 2B(t) apa(t) a'(t)
= B —
OO(tﬂ Z) (t _ to)ao =€ (t) te (t _ tQ)O‘O'H + (t _ to)ao
Bo ' (t) ap a'(t)
= Ago(t - -
i) {= 25 - 58] - 2% +
Hence, A (t,z) = O {(t - tg)mm{ﬂl’o‘l}} as t | to. Finally, for the coefficient (6.3.53) we deduce
1. ((t—ty)P }XOO a(t) 1 ago
0(0;ty) = — lim = — .
o =gl ) e T R
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6. Asymptotic Expansions by Analytic Continuation

By definition of xgp in (6.3.43) the asymptotic statements (6.4.11) and (6.4.12) immediately
follow with N =1 from (6.4.7) and (6.4.8), respectively. n

6.5. Examples

We shall now present a few examples to illustrate the applicability of the described procedures

for the evaluation of the uniform bias function.

Example 6.5.1 (simple algebraic functions). In Appendix A.7.4 it was shown that the
function (A.7.23), given by

(- 17

(6.5.1) De(t) = A+

corresponds to an absolutely continuous symmetric distribution. Letting ®x equal to (3.3.1)

with o, p € N and 6 > 0, the uniform bias function (2.1.56) takes on the following form:

1] Petm)
ULB(m) = / T gere
0
1 3 2
1 [ Pe(t,m) 1 [ Pe(t,m) 1 f Pe(L,m)
.5.2 = — _ e\t — _re\s iy /55’ ap—1
(6:5.2) 7r/t(1+9‘”t0‘)1’dt+7r/t(1+90‘ta)l’dt+7r ot ooy’ b
0 0

N

For the second equality we divided the range of integration and made a change of variables in the
integral along the interval [%, 00), to arrive at an integral along a finite segment. The separation
of the range of integration is more or less arbitrary, provided the closure of the integration path
does not contain more than one zero of the function ®:;. Furthermore, the amplitude function
must be continuous along each segment that contains a zero. The zeros are in particular located
at t = 1 and at ¢ = oo, both of second order, of which the latter in the last integral in (6.5.2)
was mapped to the point s = 0. It is our aim to establish a complete expansion of the above

uniform bias in powers of the asymptotic parameter.

Regarding the integral along the segment [%, %] we introduce the kernel
p(t;1) == —log {1 — @=(t)}
and the amplitude function
1
) i =————"—.
alt) = gaaye

1
27

and a; respectively satisfy the conditions (1) and (2) of Subsection 6.3.2. More precisely, in a

Upon considering the intervals [3,1] and [1,3] separately, we see that the functions ¢(-;1)

neighborhood of t = 1 they are both holomorphic and the latter attains a regular non-zero value.
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We conclude a; = 0, 51 = 2 whence x1, = HT" for n € Ny, where the parameter x1,, corresponds
to definition (6.3.15). We thus immediately deduce from Subsection 6.4.2, as m — oo, by adding

the expansions for the upper and lower segment of the range of integration:

ol

e\, m 1 = )
/Md“(mm—?z%*%{<—1>n+1}e<n;1>

NI

(6.5.3) = (m+1)*%§:r(%+"

n=0

) o(2m:
W@(Zm 1)

According to (6.3.32), the corresponding coefficients in terms of (6.5.1) are

, ) n+%
1 1 g 1 (z—1)
(6.5.4) O2n;1) = 55~ -m a 2-1)2
22mtdEn 12146220 | _1og (1- 235 =1

Furthermore, concerning the expansion of the last integral in (6.5.2), we first denote

©(s;0) = — log{l — & <i>}

sapfl
ao(s) = m

The amplitude function at s = 0 then has the multiplicity ag = ap — 1 and o, = %,
for n € Ny, in accordance with (6.3.15). Again, each of the functions satisfies the analyticity
properties that were required in Subsection 6.3.2. Because the point s = 0 is the lower endpoint

of the integration path, as m — oo, from (6.4.7) we eventually deduce the expansion

W

P=(tm) LT (2 +2)
6.5.5 ——s L s lgs~ (m+1)" 2 —2  279(n;0).
( ) O/(Sa+9a)p8 s (m ) nZ:;) (m+1)§ (n )

The associated coefficients are ascertainable from (6.3.32), whence
P+3

11 an 1 2

6.5.6 O(n;0) = = ——
e AT

z=0

Since the m-power is easily seen to be bounded away from unity in the first integral in (6.5.2),
its contribution is exponentially small. If we thus collect (6.5.3) and (6.5.5), as m — oo we
finally arrive at

=13+ m) g SL(F+)

ULB(m) ~ (m +1) "2 ZO gy O )+ k1) ZO I
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6. Asymptotic Expansions by Analytic Continuation

Observe that the leading term in general depends on «a,p € N, which requires a distinction
between the cases ap > 1 and ap = 1. In the first case the main contribution to the asymptotic
behaviour of ULB(m) comes from the zero at t = 1, whereas if ap = 1 both points yield an

equal contribution.

Example 6.5.2 (a convolution of a normal and a Cauchy distribution). Our second ex-
ample illustrates a logarithmic-type expansion, which can be obtained if ®z is associated with a

convolution of two important stable distributions. In particular, let
(6.5.7) D(t) = e i3t 01,09 > 0,

and let ®x possess a zero at infinity of order a« € N. Then, in the integral definition of the

uniform bias function (2.1.56) it makes sense to introduce a change of variables, leading to
w P, 1 [P (1,m) 1
_ t s\ %, m
(6.5.8) ULB(m) = — / Pelt,m) |®x ()| dt + /ss ‘Q)X <) ’ ds.
7 t s S S
0 0

On the one hand, the dominating behaviour of the first integral is readily verified to be of
exponential order. On the other hand, in the second integral we observe that the kernel attains

the value one if and only if s = 0, which is an essential singularity of @g(%). We therefore denote

(6.5.9) ©(s;0) 1= {— log Pz (2) }1 :

=s?{so1 + O'%}_l :

The latter function exhibits a double zero at s = 0. Furthermore, we define by a(s) the function
which is analytic in some neighborhood of s = 0 and coincides with ‘<I> X (%)| 571 on the segment
of the positive real axis, located in this neighborhood. The multiplicities of ¢(s;0) and of a(s)
at s = 0 are then of order 5y = 2 and oy = o — 1, respectively. As a consequence Xo, = O‘—;“ for

n € Ny, and as m — oo we deduce from (6.4.8) the expansion
1
5.1 LB(m) ~ = (5
(6.5.10) ULB(m) ~ —» Mg (5 +

Subject to (6.3.32) for n € Ny the coefficients are given by

(6.5.11) O(n;0) = - ——

~ 2nldsn | sl

_ i da {a(s) (018+0§)§+3]

s=0

Example 6.5.3 (errors composed by an exp. and an alg. factor). Note that the valid-
ity of (6.3.41) and (6.3.42) does not exclude the presence of logarithmic higher order terms.
These possibly become dominant after a few iterations of integration by parts so that the proce-

dure of §6.3.3.1 is at least able to reveal the leading terms. An an illustrative example we shall
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now evaluate the uniform bias function (2.1.56) for an error distribution whose characteristic
function for 8,q > 0 is

—q
(6.5.12) ®(t) = {cosh(t)} " {1 +of |t } .
That particularly the reciprocal of the hyperbolic cosine is in fact a characteristic function was
established on p. 88 in [Lukacs, 1970]. It confirms ®: as the product of two characteristic
functions. Regarding the X-distribution we assume ®x (t) = O {t~*} as t — oo for some a > 0,
which implies absolute convergence of the integral (2.1.56) for the uniform bias. In addition, we

suppose the modulus of ®x is once continously differentiable on [tg, c0) for some ¢y > 0, and

*(2)

satisfies (6.4.9). In the described setting the uniform bias integral can be arranged in the

the function

(6.5.13) als) = %

following form:

(6.5.14) ULB(m) = % 0] P(ttm) @ (1) dt + % 0/73 (i m> a(s)ds

More precisely, we splitted the range of integration into two parts, and in the integral along the
segment [%, oo0) we made the change of variables t = % to map the point at infinity to the origin.
It is readily confirmed that the m-power assumes the value one only in this second integral.

Since ®z decays exponentially fast in comparison with |®x/|, it is reasonable to consider:

1\ )L
©(s;0) := {—log B <s>}
_2 ~1
:s{l +slog{1 +26 - } — sqflog(s) + sqlog (35+aﬁ>}

This function shows algebraic behaviour as s | 0, in particular it is O(s). Thus, for brevity we
define

2 -1
1 s
a(s) = {l—i—slog{—i_;}—sqﬂlog(s)—i—sqlog <sﬂ—|—0’8)} )

which is O(1) as s | 0. Elementary calculations for s > 0 yield

wa<s>=—{¢z<s>}2{log{“§S} o

_1+e*%

(6.5.15)

B
_ 8, 8\, dPs
qﬁlog(s)—i—qlog(s +o0o )+sﬁ+aﬁ}'
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6. Asymptotic Expansions by Analytic Continuation

Hence, in terms of y2(s) the first derivative of ¢(s;0) for s > 0 is given by:

¢(s;0)

SO(S§ 0) /
S

¢'(5;0) = pa(s) + spn(s) = + 5p5(s) = + O {—slog(s)}

The second equality holds as s | 0, since ¢5(s) = O{—log(s)} there. By comparison with
(6.4.10) we immediately confirm validity of the condition with 5y = 1 and 1 = —¢ for arbitrary
0 > 0. From Theorem 6.4.1(2) with byy = 1, as m — oo we therefore deduce

%
(6.5.16) /735 (i, m) a(s)ds ~ Mg (ap + 1,m) agop.
0

By comparison of this result with (6.5.14) we see that the first integral in the indicated decom-

position of the uniform bias is exponentially small. Accordingly, as m — oo we conclude
ULB(m) ~ Mg (ap + 1, m) agp.

To see if further terms in this expansion can be unlocked in the fashion of §6.3.3.1, we must
investigate the derivative (6.3.46) as s | 0. But the behaviour there depends not only on the
derivative of a(s) but especially on the derivative of B(s) defined in (6.3.44), which is now

Be) = d% o { 90(58; 0) } 90,2(8; '

In accordance with our calculations in (6.5.15), the function B’(s) thus diverges logarithmically

as s | 0, thereby violating the assumptions for a repeated application of the integration by parts

procedure.

We close this chapter with two examples of kernel functions that exhibit an infinite sequence
of maxima. In these circumstances special caution is required and a straightforward application

of the statements from Section 6.4 is in general not possible.

Example 6.5.4 (triangular error distribution with a Cauchy-type factor). Consider a
scenario in which the error distribution features a component of a symmetric triangular distri-
bution, i.e., in which its characteristic function involves the squared sinc function (3.3.6). In
addition, it is assumed to possibly feature a Cauchy-type factor with scaling parameter o > 0.
Moreover, suppose X corresponds to a Cauchy distribution with scale 8 > 0. The uniform bias
(2.1.56) is then

7 -2 m+l gt
(6.5.17) ULB(m, o) = 1/{1—6”81” (t)} ° it

s t2 t

Contrary to any of the preceding examples, the function ®z thus not only decays exponentially

fast at infinity if ¢ > 0, but it evidently possesses an infinite sequence of zeros on the ray
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t > 0, located at the equidistant points 7N. Accordingly, it is tempting to divide the range of

integration, to obtain

1

6.5.18 ULB( - *“dt ULB(

(6.5.18) (m.o) =+ / . ; w(m, o),
0

where for brevity with k& € N we denote

7T(k2+%) . 9 ; m+1l  _py
(6.5.19) ULBy.(m, o) = / {1 ot SH;Z( ) } ert'
m(k=3)

In the integral in (6.5.18) along the first segment, the kernel is bounded away from unity, whence
its contribution to the rate of the uniform bias is of exponential order. We may thus confine
our investigations to the integrals ULBg(m, o). The amplitude function therein is evidently
holomorphic in a neighborhood of each zero 7k for k € N with multiplicity ap = 0. Furthermore,

we have

t2

(6.5.20) ot k) = — log {1 _ e—atsinzw} |

which is entire with respect to t € C. Besides, subject to the series expansion of the squared
sinc, the multiplicity at ¢ = wk equals Sy = 2 for any k € N. By applying the estimate (6.4.7)
to the segment to the left and to the right of the point ¢ = 7k, respectively, and adding both

expansions, as m — oo we thus arrive at

(6.5.21) ULBg(m, o) ~ (m + 1)_% i m@@n;wk).
n=0

According to (6.3.32), the associated coefficients are

1
1 d* |e? (z — mk)? "

1
2(2n)ldz2n | 2 ~log (1 p—— Sin22(2))

z

(6.5.22) O(2n; wk) =

z=7k

Finally, a straightforward attempt to establish a complete expansion of ULB(m, o) as m — oo
consists in adding the contributions of the single integrals in (6.5.21). The present scenario is
particularly convenient since the coefficients possess a finite representation. We restrict ourselves

to the dominating term as m — oo of (6.5.21), which is for each £ € N and ¢ > 0 given by

(6.5.23) ULBg(m, o) ~ (m+ 1)~ é\@ —(=o)mk,
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This result especially incorporates the facts that T'( %) = /7 and

1
= —=¢

- 2(nk)?

z

(z — wk)?

-2
log (1 —eorHLE) 2(2)>

—ork

z=7k

It is easy to see that the exponential function in (6.5.23) is only decreasing with respect to k € N
if 0 < 6. If in these circumstances we sum up by means of the formula for the geometric series
the contribution from all the zeros of ® in the uniform bias integral (6.5.18), as m — oo we

deduce:

~ -1 = —(0—0o)mk
ULB(m, o) ~ (m+1) 2\/;26
k=1
T 1

_1

Clearly, for o > 0 the geometric series fails to converge. Before we outline, why the above result
is actually legit, we remark that a similar setup has been treated in the article [Paris, 2020]
for the special case o = 0. More precisely, while (6.5.24) corresponds to the uniform bias of
the deconvolution function, the integral (3.1) in the cited article can be conceived the density

analogue. By comparison of both results we observe that the actual rate of decay as m — oo

1
[

coefficient. The reason obviously is that % does not vanish at any of the finite points, at which

remains the same but the additional factor + in the above integral merely contributes to the
the rate of the uniform bias is determined. Finally, in the cited article, possible inaccuracies
were mentioned that occur if the parameter 6 in relation to m is too small. This should also be

kept in mind when using (6.5.24).

It is reasonable to question the validity of the final asymptotic statement (6.5.24). First
we observe that the approximation for the partial integrals, which we established in (6.5.23), is
valid for all values of the parameters, since the corresponding integrand for fixed k£ € N locally
satisfies the conditions of Subsection 6.3.2. The problematic step is the summation of the single

results, which requires a further discussion. Denote the series of integrals in (6.5.18) by

1 o0 . 2t m+1 gt
(6.5.25) ULBoo(m, o) ;:/{1_egtsm ( )} ert'

t2

We aim to write this as a MB-integral by means of the binomial integral representation for the
kernel, which enables us most easily to factorize the function ®z. With the power taking its

principal value, the integrand of the generating function

(6.5.26) M(—2) = / {SmQ(t)}—z p22=1 = (0—02)t 3y
3
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is locally integrable on t > § for Rz < %, due to the zeros of the sine, and the whole integral
converges absolutely at infinity for £z < g, for any o > 0. It is thus routine to verify analyticity
of the integral in the half plane Rz < min {%, g} Especially subject to absolute convergence,

for 0 < zg < min {%, g} the following representation is admissible:

To+100
1 D(m + 2)I(2)
(6.5.27) ULBy(m, o) = o / T+ 2+ 2) M(—2)dz
xo—100

In accordance with our preceding findings, to deduce an expansion of ULBy,(m, o) as m — oo
we must specify the analytic continuation of the corresponding generating function. This is
particularly simple if ¢ = 0, since in this event we have analyticity in Rz < %, and this region is
determined by the zeros of the sine function. An expansion of ULBo(m) then can be obtained
by confining to each finite zero and eventually summing these terms. This is the reason, why the
approach from the first part of the present example works and (6.5.24) in fact holds. If o > 0 is
small enough to have 20 > o, the described procedure remains valid merely for the derivation
of a finite number of terms in the expansion of ULB.(m). It eventually fails if o > 26, in which
circumstances the generating function is analytic in Rz < g and this limited region has its origin
in the behaviour of the integrand at infinity. We must then investigate the properties of 9t(—z)
before we are able to establish an asymptotic statement. For this purpose we first observe that
it is not possible to specify a neighborhood of infinity in which the integrand is non-vanishing,
except at infinity itself. The reason is that the zeros of the sine lie dense in any neighborhood
of infinity. To circumvent this obstacle we again exploit the periodicity, which for any 6 > 0,
o > 0 leads to

o 2
M(-2) = Y [ {sin(0)} (¢ wh)pe e 0=,

k=1"x
2

Conceiving the series as a Stieltjes integral, we identify the above representation as an iterated
integral. Of these two, the convergence of the integral along (-3, §) requires Rz < %, whereas
for the convergence of the series we need &z < g. Put differently, regarding the convergence
behaviour of the generating function we were able to separate the effect of the finite zeros
from the contribution of the exponential factor. The above series finally can be replaced by
an integral upon introducing for $z < min {%, g} the identity (A.5.11), from which subject to

absolute convergence we arrive at:

Bl

oo X 2
N 1 —22 2 NV —F —(0—zo+u) (t4k)
M(—z) = (1 —22) Z/u /{sm )} e dtdu
0

=1

Wl
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% 2 _ (0 zo+u)t
1 ~ 5 / / sin? } —e”(e ora) dtdu
o3

2
T T(I-27) / == /{Sm “2 cosh {(0 — 20 + u)s} dsdu
— er zo+u) _

0
For the last equality we made the change of variables s = —t. The resulting representation
eventually furnishes a more appropriate setting for a study of the analytic continuation of the
generating function, yet, it is still an elaborate task. We shall not present further details. Instead
we close this section with a similar example, where the above procedure is applicable but does
not yield a double integral. It will reveal a very unique structure of the singularities associated
with the generating function, due to the correlation between the oscillatory and the exponential

factor.

Example 6.5.5 (discrete uniform errors with a Cauchy-type factor). In our final exam-

ple we study for parameters o, > 0 the large A-behaviour of the integral
(6.5.28) Cy = / {1—e " cos?(t )})‘e*(%dt.

This can be conceived as the uniform bias in the deconvolution problem of densities, involving
an X-distribution of Cauchy-type and an error distribution that is composed as the convolution
of a Cauchy and a discrete uniform distribution. First observe, choosing the principal branch of

the power, the generating function
(6.5.29) M(—2) = / {cos?(t)} " e 0ot

converges absolutely for Rz < min {%, g} and the convergence is uniform in any compact subset
therein, whence it establishes a holomorphic function of z there. The reason for this restriction
is that the cosine term has an infinite sequence of zeros of second order at 7T( + Np) and

—(0—oR2)t

particularly as ¢t — oo the integrand is ~ const X e . Hence, local integrability on ¢ > 0

holds if Rz < %, while absolute convergence along the entire axis requires Rz < g. In accordance

with these findings, for

(6.5.30) 0 < zp < min {; i}
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we can introduce the binomial integral representation to (6.5.28), which leads to
1 PO 1))
+ z
5.31 = — —————M(—2)dz.
(6.5.31) =5 / T 142 2z

To—100

By elementary manipulations, referring to the formula for the geometric series, accompanied by

the change in variables u = m — ¢, we can write for fixed Rz < min {%, g}:

/ {cos —(0=02)t gy

w(k+
/ cos® TE e (002t gy
7k

k=0
= 1 p— /{cos —(O—02)t gy
—e oz)m
(Gfaz g o _, .
=3 L0 /{cos e (0—0z tdt—l—/{cos e (0—o2)(m—u) gy,
sin

(6.5.32) = sinh{ —o)E) /{cos ~% cosh {(0 —02) (g - u)}du

Observe that the prefactor is a meromorphic function of z with an infinite sequence of poles with
simple order which lie at z, := Q‘Z,ﬂ for k € Z. Furthermore, the integral along the segment

[0, 7], which we define for convenience by

(6.5.33) N(—z) := /{cos(u)}_% cosh {(9 —02) (g - u) } du,
0

is holomorphic in Rz < % The whole representation (6.5.32) thus constitutes a meromorphic
function in Rz < %, and if g < 1 it yields the continuation of (6.5.29). Moreover, it is O(1) as
$z — oo, uniformly with respect to Rz in any closed vertical substrip excluding the line Rz = g.
As a consequence, in (6.5.31) the integrand is O {\z\_k_l} as 8z — +oo, and for any A > 0
in the case Q < 1 it is admitted to displace the integration path to the right over the infinite

sequence of poles located at z; for k € Z, to match a hne <Rz < 2 It is readily verified that
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6. Asymptotic Expansions by Analytic Continuation

the following holds:

R 1 I Z— 2L
es = lim
z=zsinh {(0 — 02)5} 2>z sinh {(0 — 02)5}
2 k
= (=1)kH
o))

Hence, as A — oo we conclude if o > 26:
i A+ 1 Zk)
Pt A+1+ Zk

I'(

I(
A+DT(3) [ (8 A1+ )F(§+%) K
NJ?TF(I){F<U> (- >+2Z DO+ 1+ L+ 2E) m(_zk)(_l)}

The representation in terms of the real part is especially true because zj lies in the range of

‘ﬁ(—Zk)(—l)k +0{A"}

validity of the integral definition of the beta function and of 91(—z). Subsequent terms in the
above expansion can be unlocked by determining the analytic continuation of the integral 9t(—z).
Finally, regarding further parametrizations a distinction between the cases g = % and g > % is
required, which we shall not discuss right here. Particularly in the former case, the presence of

at least one pole of order two must be expected.

6.6. Asymptotics of Special Fourier-Type Integrals

In this final section of the chapter we want to provide not a quantitative but a qualitative

statement about the large A-behaviour of the sequence of integrals
6.6.1 I(A &) :=lim Js(A
( ) ( ) 5) 51{8 (5( ) E)a

where for 7 > 0 and £ € R we denote

[e.9]

(6.6.2) JsO\€) 1= / (1= U(E) a(t)e= O+t qy

T

It is easy to see that, for example, by an application of Abel’s lemma the pointwise bias of the
deconvolution function can be cast as an integral of the above type. If in (6.6.2) for & = 0
it is permitted to perform the limit under the sign of integration, we return to (6.0.1). This,
however, will not be assumed, as we will confine to the more general case that a(t) is possibly
even unbounded as t — oo but grows no faster than algebraically. With respect to ¢ := § + i
the integral (6.6.2) constitutes a Laplace transform whose abscissa of convergence matches at
least the half-plane ¢ > 0. Therefore, taking the limit as § | 0 is equivalent to approaching
the imaginary (-axis from the right. In the preceding sections we have seen that the asymptotic

behaviour of Js(A, £) depends on local behaviour at the points, where U(¢) vanishes. Through-
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6.6. Asymptotics of Special Fourier-Type Integrals

out this section, the function is supposed not to vanish at any finite point along the range of

integration but at ¢ = co, and we agree

©(t) := —log(1 — ¥(t)).

Under the assumptions below, we will then show that the asymptotic behaviour of (6.6.1) es-

sentially benefits from the presence of the complex exponential term.

(1) a(t) is infinitely many times continuously differentiable on ¢ > 7, a(t) = O {t~“} for a
fixed o € R and a)(t) = O {t7*77} as t — oo for j € N.

(2) W(t) is infinitely many times continuously differentiable on ¢ > 7 and 0 < ¥(¢) < 1 for any

finite ¢ > 7. In addition, ¢(t) = o(1) and (%_,11 fgl((:)) = O{t 7} for j € Nas t — oo, but

there exists a # > 0 such that t9¢p(t) — oo for any ¢ > . Note that % = % log o(t).

As a consequence of the series expansion of the logarithm, ¢(t) ~ ¥(¢) as t — co. The above

conditions are sufficient to verify the following statement.

Theorem 6.6.1. Provided (1) and (2) hold and p > 0, then as X — oo for arbitrary xo > 0,

uniformly with respect to |£] > p, we have
(6.6.3) I(A€) = O {a~™}.

In other words, due to the complex exponential function, which for & # 0 exhibits oscillatory
behaviour at infinity, the sequence of integrals I(\, ) decays faster than any algebraic power as
A — oo. Notice that the function a(t) can not feature additional oscillatory factors, since its
derivatives then would not satisfy the required conditions. To see that the theorem might be
invalid for & = 0, suppose a(t) > 0 and £ = 0. In these circumstances the integrand of Js(A,0)
is non-negative and monotonic with respect to 6 > 0 for fixed A\ > 0. Hence, the monotone
convergence theorem applies, yielding the divergence of the integral already in the limit § | 0, if

a(t) is non-integrable on the ray t > 7.

Proof. First, for fixed R¢ > 0 and s > 7 we introduce the generating function
(6.6.4) Ms((, —z) = /{gp(t)}z a(t)e Ctdt.

By assumption, if Rz < 0 we have {go(t)}_%z = (1) as t — oo, whereas if Rz > 0 for any ¢ >

and hence for arbitrary v > 0, we observe

(6.6.5) (o)} = {t9p(t)} R ™ = 0 {téﬁzﬂw} .

Without incorporating the exponential function, the integrand in (6.6.4) thus exhibits at worst

algebraic growth. This implies for fixed s > 7, R( > 0 and Rz € R the absolute and uniform
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6. Asymptotic Expansions by Analytic Continuation

convergence with respect to 3¢, 3z € R of the indicated integral. Accordingly, we may employ
the Cahen-Mellin representation (6.1.5) and interchange the order of integration for fixed § > 0
and arbitrary xo > 0, leading to

xo+i00
1
(6.6.6) BE =5 / NT(2)M, (5 + i€, —2)d>
x0—100

Furthermore, by absolute convergence Js(A, &) = O(A7*0) as A — oo for fixed § > 0, uniformly
with respect to £ € R. The aim of the proof is to confirm that this statement holds uniformly
with respect to 6 > 0 and || > p. Indeed, generally the absolute convergence of M((, —z)
cannot be expected for R( = 0, particularly if this line is the boundary of the (-region of
analyticity. Now, under the above conditions N-times integration by parts of (6.6.4) for N € N,
s=7, z € Cand R¢ > 0 is permitted, and this leads to

[e.9]

N-1
- 3 [ (ot o)

t=1

(6.6.7)
1

+<N/ {tdtN {{e®)} *a(t)} dt.

To analyze the asymptotic behaviour of the involved derivatives, we first apply the Leibniz rule,
compare eq. (1.4.12) in [Olver et al., 2010], which for 0 < n < N brings us

(6.6.8) dtn e a)} = Z( ) [ - (o )}—Z} a™M(t).

Regarding the derivatives of the kernel, we must employ the extended chain rule, better known
as the formula of Faa di Bruno. It is given in eq. (1.4.13) in [Olver et al., 2010]. A sophisticated

choice of the inner and outer derivative for 0 < k < n yields

dk —z -z
pr {o)} = = {e®)} " Pu(t, 2),
(6.6.9) k -1 m
k! k Ld— o)\
Put) =SSy (L |
(t 2) Z my!. mk'( 2 7];[1 (r! dtr=1 o(t)
The sum must be taken over all my,...,my € Ny with Zle rm, = k. Evidently, the function

Py (t,z) for 0 < k < n is a polynomial of z with degree k. Each of its coefficients is a continuous
function on ¢ > 7 that, due to the conditions imposed on the derivatives of log ¢(t) but also
due to the properties of the summation indices, exhibits the asymptotic behaviour O {t‘k} as
t — oo. Combined with (6.6.5) this implies that the k-th derivative of {¢(t)} % is O {t#R=Fv=k]
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6.6. Asymptotics of Special Fourier-Type Integrals

as t — oo for arbitrary v > 0 and Rz > 0. For brevity, instead of (6.6.8), we write

(6.6.10) dtn {{go “a(t)} ()}~ Z( >Pk (t,2)a™ R (¢).

To summarize our findings, for ¥z > 0 the n-th derivative in (6.6.10) is continuous on ¢ > 7 and
@) {tm%”” *O‘*”} as t — oo with arbitrary v > 0, i.e., it grows no faster than algebraically. In
(6.6.7) at t = oo, for RC > 0 and Rz > 0 the derivatives are thus dominated by the exponential
function. However, choosing N € N for a given fixed z € C with ®z > 0 to satisfy N >
BRz — a + 1, the N-th derivative does not only decay but is especially absolutely integrable on
[7,00). In terms of (6.6.10), the expansion (6.6.7) becomes

Z<n+1{s0 gl Z()Pm )a" ()

(6.6.11) N 00
i —Ct -z (N—k)

E {o(t)} ° Pi(t,2)a (t)dt.
CN 0< >/ k

For Rz > 0 and appropriate N the integral converges absolutely and uniformly with respect to
¢ in R¢C > 0. Hence, the right hand side then defines M, ({,—z) for any %8¢ > 0 and even for
R¢ = 0 with 3¢ # 0. The point ¢ = 0 is thus a singularity. Finally, with ¢ := § 4 £ for fixed
but arbitrary 6 > 0, Rz > 0, [£| > p and N > Rz — a + 1, the triangle inequality yields

| M (6 + i€, —2)| < NZ_I W z": (Z) | P(T, 2)| ‘a(”_k)(T)‘
n=0

k=0
(6.6.12) + /jkaNO (JZ > / {0y Pe(t, )] [P0t

In accordance with the above considerations, this upper bound holds uniformly with respect to
0 >0 and [¢] > p > 0, with the integral appearing therein being absolutely convergent. Recall
that the function Py(t,z) equals a polynomial of z with degree k, whence the same holds for
the product Py(t, z)a®*)(t). The coefficients of the product are continuous functions on [r, c0)
and for n = N absolutely integrable there. Consequently, for any 0 < n < N there exist further
coefficients ¢;(t,n) > 0 such that

; z ”k 2 ej(t,n)
(6.6.13) k;)()(Pkt ’ ZH i(t,

The coefficients ¢;j(t,n) depend on the variable ¢ only. They are continuous on ¢ > 7, and as
t — oo they satisfy O {tﬁﬂ?zﬂ/—a—n} for Rz > 0 and arbitrary v > 0. Estimating (6.6.12) by
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6. Asymptotic Expansions by Analytic Continuation

means of (6.6.13) for £z > 0, we deduce the existence of coefficients d; > 0 with the property
N

(6.6.14) IM-(6+i&,—2)| <> |z['dy.
=0

The coefficients d; are uniformly bounded with respect to Sz € R, 6 > 0 and |£| > p, whence the
whole right hand side of (6.6.14) is uniformly bounded with respect to § > 0 and |£| > p. In addi-
tion, it is O {]z\N} as 3z — £00. We have therefore established an absolutely integrable uniform
bound for the generating function in (6.6.6), from which we conclude Js(\, &) = O {A\7"0} as
A — oo, uniformly with respect to § > 0 and |£| > p. By uniformity, this statement remains

true for I(\,§), thereby concluding the proof. =

It is reasonable to expect that the above statement remains true, if e79 = 0 {U(t)} as t — oo
for any ¢ > 0, or if a(t) = o {ept} as t — oo for any p > 0. In each case (6.6.6) still applies with
arbitrary xzg > 0. We were, however, not able to cover these more general cases with the above
procedure, because of the distinguishing properties of the exponential function. Instead, it was

merely possible to establish a weaker statement, if rather than (2) we suppose:

(2’) W(t) is infinitely many times continuously differentiable on ¢ > 7 and 0 < ¥(¢) < 1 for any
finite ¢ > 7. In addition, p(t) = o(1) and there exists £ < 1 with ijj—:% = O {t=7} for
j€Nast— oo but et’p(t) — oo for some 0 < ¢ < 1.

1
t2

One can show that, for instance W(t) = e~** matches (2’) but not (2). The asymptotic estimate

for I(\, §) under the modified assumption completes this section.

Theorem 6.6.2. If (1) and (2’) hold and p > 0, as X — oo, uniformly with respect to |{] > p,

we have
I(A,€) = O(1).
Proof. By (2’), as t — oo for some 0 < ¢ < 1 in Rz > 0 we observe

(6.6.15) {p®)} =0 {e"}.

Just like in (6.6.6), for fixed 6 > 0 we may therefore again introduce the Cahen-Mellin represen-
tation with arbitrary xg > 0. Now, for fixed R¢ > 0 and ¢ > 7 we integrate by parts N-times
for N € N the generating function (6.6.4) with z = 0, which yields

T et 17
(6.6.16) M, 0) = 3 S a4+ / o™ (s)e ds.
2 ¢ )

If we choose a+ N > 0, the integral on the right hand side can be estimated by O {t_o‘_Ne_%Ct}
as t — oo, uniformly with respect to 3¢ € R. For fixed z € C, £ € R and § > 0, combined with
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(6.6.15), this shows the absolute convergence of the iterated integral

(6.6.17) H(§+1i€,—=2) == /{Lp(t)}_z :00/((;) M, (6 +i&,0)dt

As a consequence of the above results, upon once integrating by parts the generating function
(6.6.4) for fixed §,Rz > 0 and £ € R, we arrive at:

(t)
M;(0+i€,—2) = |—{p(t)}~ Z/a ~(0+iE)s g /{so )}~ £ o) /a ~O0FiO)s st
t

(6.6.18) = {o(r)} F Mo(6 +i€,0) — 2H (5 + zf, —2)

If we apply this expansion to the MB-integral (6.6.6), by definition of the Cahen-Mellin integral

and according to the functional equation for the gamma function, for arbitrary xg > 0 we obtain

To+1i00
1
(6.6.19) Js(\, &) = e M ONML(5 + i€, 0) — 5 / AT (z+ )H(§ + i, —2)dz
To—100

Observe that the simple pole at z = 0 of the gamma function in the MB-integral cancels with
the zero of the second addend in (6.6.18) there. As A — oo the first term in (6.6.19) clearly
vanishes. Moreover, an expansion for M, (d +i£,0) is available by (6.6.16), which for N > 1—«
yields the existence of the limit as § | 0 uniformly with respect to |{] > p. Next, for fixed 6 > 0
we examine the integral H (0 + i€, —z) as a function of z. It does not only converge absolutely
for all z € C, but the convergence is uniform in any compact subset of the z-plane. By Theorem
A.2.1 this verifies H(J + i€, —z) as an entire function for any fixed § > 0 and £ € R. In addition,
since the convergence is even uniform in any closed vertical substrip, the function is O(1) as
Sz — +o00, uniformly with respect to Rz in any closed vertical substrip. The integrand of the
MB-integral in (6.6.19) is thus holomorphic in Rz > —1 with exponential decay as Sz — +oo
there. This enables us to shift the integration path to the left, to match the line $8z = 0, which

leads to
1 +i00

(6.6.20) T\ €)= =5 — / AT 0(2 4+ D) H (0 + i€, —2)dz + e MM (6 + i€, 0).
e

The benefit from the choice Rz = 0 is, that the kernel of H(d + i£, —z) does no longer grow as
t — oo but is O(1). For R( = 0 the whole integrand therefore at worst grows with an algebraic
order. By absolute convergence, for fixed § > 0 uniformly with respect to £ € R, the MB-integral
n (6.6.20) is O(1) as A — oo. Similar to the proof of the preceding theorem, an integration by

parts procedure shows the uniformity with respect to § > 0 and |£| > p of this statement. In
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particular, by means of the expansion (6.6.16), for arbitrary N € N and z € C we deduce

] gy <) n(0+i&,—2)  Hy(d+1i&, —2)
(6.6.21) H(S + i€, — nz;) CEeTE CERTL
where we denote
(6.6.22) H, (8 + i€, —z) := / {o(t)} 7 ZI((;))a<">(t)e—<5+if>tdt,
oo t o
(6.6.23) Hy(6+i&,—2) = [ {ot)} 7 a —(0+E)s gt
Jreri [

For 2 = 0 and 0 < n < N — 1, the integrals (6.6.22) must be integrated by parts in the fashion
of the proof of Theorem 6.6.1, to verify their uniform boundedness with respect to § > 0 and
|€| > p. This especially works because % and all its derivatives are decreasing by assumption,
for sufficiently large ¢. Finally, regarding (6.6.23), with 8z = 0 we choose N sufficiently large, to
have N > 1 — a + max {0,e}. In these circumstances the iterated integral converges absolutely
and uniformly with respect to 6 > 0 and £ € R. Altogether this yields an absolutely integrable
bound for (6.6.21) with Rz = 0, whose validity is uniform for 6 > 0 and |{| > p, from which
by (6.6.20) we conclude Js(\, &) = O(1) as A — oo, uniformly with respect to 6 > 0 and
|€] > p. This finishes the proof of Theorem 6.6.2. During the last steps it becomes clear, that
an integration path in (6.6.20) that runs in the half plane ®z > 0, would not lead to a stronger
result, because the derivatives of a and log ¢ are unable to dominate the possibly exponential

growth of the kernel of Hy,(J + i, —z) for 0 <n < N. n

6.7. Conclusion

To summarize this chapter, the method of analytic continuation enables us to evaluate a huge

class of integrals, represented by I. The technique can be concisely described in three steps:
(1) Find an appropriate representation for the kernel in I}.

(2) Expand the generating function by the order of its singularities, ascending with respect to

the real part of its argument.

(3) Deduce the asymptotic expansion of I in terms of the asymptotic scale that is determined

by the integral representation for the kernel.

With the tools that were provided in this chapter, for some scenarios a full asymptotic expansion
can be established, whereas for others only a few leading terms can be extracted. The latter is
particularly the case if higher order derivatives of the ingredient functions involve non-algebraic

expressions. Those terms indicate the presence of singularities other than simple poles. Indeed,
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it should then be expected that the analytic continuation associated with the generating func-
tion exhibits poles of order greater than one or even branch points. Neither the approach of
the generalized Laurent expansion, nor the described integration by parts technique are then
applicable. Instead we require an appropriate modification. This was also necessary if already

the leading term of any of the ingredient functions involves non-algebraic expressions.

By comparison of (6.4.7) with the statement of Watson’s lemma or of Laplace’s method,
see Theorem 3.1 or Theorem 7.1 in ch. 3 in [Olver, 1974], respectively, we ascertain a close
similarity between the first and the latter two expansions. In fact, those which we derived in the
present chapter can be conceived as generalizations of Laplace’s method. They were obtained
by employing different representations for the kernel function in I, and particularly the rep-
resentation (6.1.5) then resulted in an expansion in powers of A, which can also be established
by means of Laplace’s method, provided the ingredient functions possess an appropriate power
series expansion. In general Laplace’s method is restricted to functions that are expandable
in integer powers. It does not cover scenarios where an expansion involves arbitrary fractional
powers. In these circumstances, however, the integration by parts technique remains relevant.
Although its applicability is by far more complicated to determine a full expansion, the scope is
much larger. Furthermore, compared to Laplace’s method, the method of analytic continuation
is even capable to deduce an asymptotic expansion for the integral I, if its decay is slower than

any power of the asympotic parameter A.

In some circumstances the generalized Laurent expansion and the integration by parts proce-
dure may both be applicable. The preference then depends on the purpose. While the former
might be more convenient to construct a whole expansion, since the derivation of the coefficients
is considerably less elaborate, the latter suffices to quantify the leading behaviour by virtue of
Theorem 6.4.1. Finally, it will turn out in later chapters that the method of analytic continuation

is adaptable to evaluate iterated integrals of Laplace-type in an analogous fashion.
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7. Estimation with Errors in Variables

Throughout this chapter we denote by Yi,...,Y, for n € N a random sample of independent
observations associated with the distribution function G. Then, there are two possibilities to
estimate the deconvolution function in the centered and in the symmetrized additive model of
errors in variables, respectively. The first is a simple plug-in estimator, obtained by replacing
in (2.1.6) or (2.2.6) the G-integral with G, i.e., with the empirical distribution function. Due
to the extremely complicated structure of the deconvolution sum in terms of a Neumann partial
sum, however, this approach does not seem to be feasible for applications. One further draw-
back of the plug-in estimator consists in the fast growth of the binomial coefficient, making it
very difficult to preserve a certain accuracy. Secondly we have the Fourier-type integral rep-
resentations of Theorems 2.1.2 and 2.2.1, which give access to a more convenient estimator by
replacing the characteristic function ®y by its empirical analogue. Before constructing any of
these estimators and discussing their properties, we therefore begin with an introduction to the

empirical characteristic function.

7.1. The Empirical Characteristic Function and its Deconvolution

Analogues

The empirical characteristic function corresponding to a given n-sized Y-sample is obtained
from replacing in the integral definition of ®y the G-integral by G,, i.e., from estimating the
characteristic function by an integral with respect to the empirical distribution function. This

step results in the mean of a sum of complex-valued exponential functions:

[e.e]

Oy (t,n) == /eityGn(dy)
(7.1.1) —oo

n

_ % 3 et
j=1
According to the fact that Gy, establishes a discrete probability distribution, ®y (¢, n) represents a
characteristic function of almost periodic type due to [Bohr, 1932]. Roughly speaking an almost
periodic function approaches any value in its range infinitely many times arbitrarily close. This
property especially implies limsup,_,; ., [Py (t,n)| = 1, regardless of the actual behaviour of
®y (t) at infinity. Hence, even if G possesses a density, the Riemann-Lebesgue lemma does no

longer apply to ®y(t,n). As a consequence, any integral along an infinite segment of the real
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axis involving (7.1.1) may converge only if additional factors contribute. On the other hand,

evidently
(7.1.2) E{®y(t,n)} = Py (1), for all t € R,

and the law of large numbers states Py (¢,n) — Py (t) almost surely as n — oco. Further basic
properties were proved in [Feuerverger and Mureika, 1977]. These include that as n — oo the
empirical characteristic function converges to ®y uniformly on any compact subset of R. Along
the entire real axis, however, the convergence is uniform only if ®y is indeed almost periodic,
i.e., if G represents a discrete distribution. The convergence behaviour is not in contradiction
to the behaviour for finite sample sizes, since ®y (-, n) for fixed n € N still constitutes the su-
perposition of finitely many sine and cosine functions of different frequencies, which merge to a
non-trigonometric function only in the limit n — oco. Finally, due to the almost periodicity of
®y (-, m), the function may exhibit finite zeros whose location, however, depends on the random
Y-sample. To summarize our observations so far, according to (7.1.2), the empirical character-
istic function is an unbiased estimator for the target function, but special care must be taken
whenever it is considered in the context of integration.

An important means to measure the dispersion of the estimator (7.1.1) is the covariance

function. Keeping in mind that any characteristic function ® is complex-valued with

where the overline indicates the complex conjugate, for s,t € R we compute:

Cov {®y (s, n), by (t,n)} = E {(@Y(s,n) ~ By (s)) @y (t,n) — <I>y(t))}

=E{Py(s,n)Py(—t,n)} — Py (s)Py(—t)

— % En:E {ei(s—t)Yj} + % E E{eiSYj—itYk} — By (s)By (—1)
j=1

1<j,k<n
J#k
Since the observations Y7, ..., Y, are independent and identically distributed, it was just verified
that
1
(7.1.3) Cov{®y(s,n), Py (t,n)} = - {Py (s —t) — Py (s)Py(—1)}.

The latter naturally corresponds to the class of covariance functions, implying positive definite-

ness. In particular, if 4 denotes an arbitrary finite measure on R and u € L'(), then:
[ [ #vts = tuu@natsnas) = [ [ ettt [ erasutasci)
R JR R JR R

-,

2
G(dy) /R G(dy)

[ et
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2
¢ u(s) p(ds) G (dy)

2

- / By (s)7i(s)a(ds)
R

>0

In the third step we applied the Cauchy-Schwarz inequality. The preceding result shows that
not only (7.1.3) is positive definite but even solely the function ®y (s — t) is. If we therefore

define for an arbitrary finite measure x4 on R an integral operator by

(7.1.4) T{f}(s) = /R By (s — tyu(t)u(dt),

according to Mercer’s theorem, cf. [Rasmussen and Williams, 2006], there exists a so-called

spectral decomposition of the form
(7.1.5) y(s—1t) ZAJ@

The functions ¢; are orthonormal eigenfunctions of the operator with eigenvalues \;, i.e., the
j-th summand is a solution of the equation T'{¢;} (s) = Aj¢;(s). Most of the literature classifies
solely ®y (s —t) as a covariance kernel and confines to the treatment of integral operators of the

form (7.1.4). However, this is not a restriction since elementary manipulations show

Dy (s —t) — Dy (s ZA {6(s) — 6;(0)@y ()} {6 () — 6;(0) @y (1)},

whence a similar decomposition for the covariance function (7.1.3) follows immediately. De-
pending on the particular form of ®y and the measure p, the determination of (7.1.5) can be
very elaborate. In addition, the choice of the measure essentially affects the properties of the
components. A common approach is to first approximate the integral (7.1.4) by a sum and then
to study the convergence of the solutions. For an additional concise overview on the topic of

covariance functions we refer to chapter 4 in [Rasmussen and Williams, 2006].

Based on (2.1.15) and (2.1.16), in the symmetrized model (2.1.4) reasonable estimators for

the characteristic function of ¥ and of ©(-,m) can be introduced by

(7.1.6) Py (t,n) := D (1) Py (t,n),
(7.1.7) Qp(t,m,n) := 0y (t,n)G:(t, m),

which features the geometric sum function (2.1.11). Moreover, in the centered model (2.2.3) an

estimator for the characteristic function of ¥ and of the m-th deconvolution function, respec-
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tively, is of the form

(7.1.8) Dy (t,n) = "Dy (t,n),
(7.1.9) Oz(t,m,n) =y (t,n)He(t,m),

where the geometric sum function H:(t,m) was given in (2.2.9). The estimators (7.1.6) and
(7.1.8) are both uniformly bounded by unity with respect to ¢ € R. However, there are sub-
stantial differences regarding their particular behaviour along the real axis. Like the empirical
characteristic function associated with the Y-sample also ®y.(-,n) is almost periodic, while the
properties of ®y (-,n) depend on ®.. This implies that ®y (-,n) equals zero whenever ®. equals
zero and therefore especially vanishes at infinity if ®. does. In other words, the left hand side
of (7.1.6) is almost periodic if and only if the right hand side is, which is the case if and only
if H is a discrete distribution. Regarding (7.1.7) and (7.1.9), the geometric sum functions yield
no additional benefits with respect to the asymptotic behaviour as ¢ — 4oc0. Since the latter
are uniformly bounded with respect to t € R by m + 1, they assure that the same remains
true for (7.1.7) and (7.1.9). Summarizing, it may be possible that the characteristic function
corresponding to the deconvolution function in the symmetrized model is integrable on infinite
segments of the real axis, whereas its analogue in the centered model is only uniformly bounded
there. Besides the wider applicability of the symmetrization, the latter is perhaps the most dis-
tinguishing feature. While in the domain of characteristic functions centering merely leads to an
additional complex exponential factor, the consequence of symmetrization by convolution with
the conjugate distribution is the presence of a factor whose properties depend on the error distri-
bution. Thus, the former approach is not only weaker in the positive sense that it preserves the
variance VarY = VarY but also in the negative sense, viz that the properties of the estimator

for the characteristic function of the deconvolution function remain the same as those of ®y (-, n).

Letting first n — oo, according to the strong law of large numbers, the function ®5(t, m,n)
for any t € R and m > 0 converges G-almost surely to its expectation (2.1.17). Then letting
m — oo, the limit equals {®.(t)} " ®y (t) = ®x(t). We conclude that ®g(-,m,n) plays the role

of an estimator for ®x, and it may thus be compared with the function
Y(t, A, n) = {®c ()} Dy (t,n) @1 (ML),

which is known from the kernel approach, see equation (1.1.4). There, the Fourier transform ®;
of the kernel is not only a means to keep {(I>5}71 ®y (-, n) absolutely integrable along the real
axis, but especially to prevent the reciprocal factor from becoming unbounded for fixed A > 0.
Conversely, in the symmetrized model, according to our preceding observations, the function
®5(-,m,n) is always bounded for fixed finite m > 0. Moreover, it features the factor ®. in the
numerator, which results in an estimator that vanishes whenever ®. vanishes. If particularly the

decay at infinity happens fast enough, the estimator is even absolutely integrable along the real
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axis. The number of summands m of the geometric sum function Gz(-, m) therefore corresponds
to the bandwidth A, although it is of completely different nature. Despite these parallels, there
is a substantial difference between ®5(-,m,n) and Y(-, A, n), which is the fact that the Fourier
transform ®; of the kernel is more or less artificial and arbitrary. In addition, the standard
kernel approach is usually restricted to errors whose characteristic function ®. does not vanish
along the real axis except at infinity. All of these issues are avoided by ®5(-,m,n), since this

function is made of components only that are immediately determined by the error distribution.

We proceed with the derivation of unbiased estimators for the deconvolution function, re-

spectively, in the centered and in the symmetrized additive model of errors in variables.

7.2. Estimation in the Centered Additive Model of Errors in

Variables

In the centered model (2.2.3), the random Y-observations are transformed to Yj =Y, — pe for
1 < j < n with empirical distribution G,, := Gn(- + pe). As we mentioned in the introduction,
the corresponding straightforward estimator for the deconvolution function is of plug-in type,
and it is for £ € R obtained from (2.2.6) by replacing G(dy) by G, (dy), resulting in

(7.2.1) Sn(&m) = %ZTS"(S ~Y)).

j=1

We denote §,(&,m) as the empirical deconvolution function in the centered model. Since the
Y -observations are independent and identically distributed, for any m >0, n € N and £ € R on

the one hand we have

(7.2.2) E{Sn(&,m)} =T(&,m),

and on the other hand with the aid of Bienaymé’s identity we find

(723) Var (Gale,m)} = B { [T - 1]} - 1 stem)?,

Equation (7.2.2) confirms the unbiasedness of the above estimator with respect to the decon-
volution function §(-,m). Now, it was also emphasized earlier that we should rather employ a
Fourier-type estimator, in order to avoid the Neumann partial sum representation for the de-
convolution sum (2.2.7). Like for any Fourier inversion formula we must then take into account

discontinuities. For £ € R we therefore define

(7.2.4) Py (£):=P (H*J’{g g —YY=0foralje N0> .
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Clearly, in view of (2.2.7) the right hand side describes the probability for £ to be a continuity
point of the empirical deconvolution function §,(¢,m) for all m > 0, and for each kind of
distribution H we have Pz, (0) > P(Y # pu.). Furthermore, Pz (§) =1 for all { e Rif F or H
is continuous. Finally, similar to (2.1.50) one can show for all £ € R with Pz (£) = 1 validity of

12 itﬁq) itgq)
o (—1 —e o (T
+ — lim lim ¢ Y( n) —e Y( ")

- 2 " 2mi Totoo T110 t
T

(7.2.5) Sn(&,m) Ha(t,m)dt.

The latter integral is, however, rather inappropriate for estimation, particularly due to the fact
that it involves two limits. Hence, we rather consider the Fourier-type integral for increments.
If, for m > 0 and n € N on the right hand side of (2.2.14) we replace ®z(-,m) by ®z(-,m,n) in
terms of (7.1.9), for any a,b € R with a < b and Pz, (a) = Pz, (b) = 1 we find

T
(7.2.6) §a(b.m) — Fula,m) = Jim b — / Doy (—0) s (£, n)Ha (£, m)dL.
7

The function @, refers to the Fourier transform of the indicator corresponding to the interval
[a, b], defined in (A.1.6). It must be pointed out that neither of the integrals (7.2.5) and (7.2.6)
converges absolutely, but each of them exists merely as a limit of a sequence. By comparison
with (7.2.1) we immediately confirm that the estimator (7.2.6) is unbiased with respect to the

increments of the deconvolution function for each admissible pair a,b € R, since

Ng(mv b, a) =E {Sn(b, m) - Sn(aa m)}

7.2.7
( ) =5(b,m) — F(a,m).

Regarding the variance we observe real-valuedness of (7.2.6), whence it is irrelevant for the final
result whether or not we consider the square of this function in absolute value. Then, if we write

the square as a product, for a,b € R with a < b and P;, (a) = Pz, (b) = 1 we obtain:

o3(m,n,b,a) := Var {F,(b,m) — Fnla,m)}
—E{[(n(b:m) = Fula,m)) — (3(b,m) — Fa,m))] |

2

T
IE{ Ta lim [ ®qp(—t)He(t,m) [By (t,n) — By (1)) di }

T T—oo
-T
s
—a)?
(b4772) E{ Sli_)ngo/éa7b(—s)7{g(s,m) (@ (s,n) — Py (s)] ds
_S i
x Jim. Do p(—t)He(t, m) [y (¢, n) — Py (1)] dt}

-
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Due to the lack of absolute convergence of the above integrals, special care is required with
respect to interchanges in the order of limit and integration. To verify this step, to (7.2.6)
we apply the triangle inequality accompanied by the binomial and geometric sum formulae.
An additional reference to definition (A.1.6) in common with a reintroduction of the integral

definitions of the involved Fourier transforms then yields:

m 1 H e—ibs _ p—ias
Bl m) — Fala,m)| < -3 ( ) / T (5} by (s

=0k

~OM

1 m ( > / / / —zs (b—y—z2) _ e—is(a—y—z) -
< — ds| H"(dz)Gn(dy)
2T R ) 5
(7.2.8) < %sm)(zmﬂ _1)

The final bound results from the well known inequality (B.1.4) for the sine integral. An analogous
bound applies for §(b,m) — F(a,m). According to Lebesgue’s dominated convergence theorem,
both of the limits appearing in the variance thus can be written in front of the expectation, no

matter which order, leading to:

a%(m,n, b,a) =

T S
(b—a)* .
(72.9) =i S%Eoo Qo p(—t)He(t,m) | Pop(—5)He(s,m)
o -T -8

x Cov {®y.(s,n), By (—t,n) } dsdt

At this point we remind the reader of the complex conjugate, occuring in the definition of the

covariance, due to which from (7.1.3) for p,q € C we obtain
(7.2.10) Cov {p®y (s,n),qPy(t,n)} = % {Py (s —t) — Py (s)Py(—1)}.

Consequently, for real-valued a < b with Pg, (a) = Pg, (b) = 1 we eventually arrive at

T

s
b—a)?
(7.2.11) 75 (m;n,b,0) = (”rM;?Taz)S%goo q)a’b(_t)Hé(tvm)/(I)a,b<_8)7'[é(37m)

2. 7o) J

% e—i,ug(s-l-t) {(I)Y(S + t) _ (I)Y(,s)(I)Y (t)} dsdt.
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Observe that the parameters m,n are separated from each other. To be exact, while the sample
size n appears in the denominator of the prefactor, the double integral depends on m only.
Throughout our investigations neither of the above estimators will play a major role, since they
are associated with the centered model of errors in variables. Yet, they were included in our
presentation to point out the differences in comparison with the estimators below, which will be

applicable in the symmetrized model.

7.3. Estimation in the Symmetrized Additive Model of Errors in

Variables

We now proceed with the estimation of the deconvolution function in the symmetrized model
(2.1.4). For this purpose we denote by €91,...,e2, ~ H a sequence of n independent random
variables, which is especially independent of Y. Then, in the indicated model for each 1 < j <n
the j-th date of the Y-sample is transformed to the random variable Y] = Y; — 9. Since,
contrary to F' and G, the distribution H is known by assumption, the empirical distribution
associated with the independent random sequence Yl, e Y,, is not necessarily a step function

but is of the following form:

Gu(6) = / G + 22) H(dz)

(7.3.1) }
IS - - o)
=1

n <

In fact, Gy, is continuous if and only if H is. Regarding the deconvolution function, a unilateral

plug-in estimator is obtained from (2.1.6) by

(732) Dugm)i= > [ S~ (Y- ) Hlda),

=17

referred to as the empirical deconvolution function in the symmetrized model. Due to the random
character of the Y-sample, the above estimator is composed by a sum of independent and

identically distributed random variables. Hence, the corresponding expectation equals
(7.3.3) E{Dn(§,m)} =D(§,m),

whereas for the variance, again subject to Bienaymé’s identity, we compute

(7:3.4) Var (D, (6,m)} = 1B { [s(e - Y)T} ~Loemy,
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From (7.3.3) we ascertain that also the plug-in estimator (7.3.2) is unbiased with respect to
D(-,m). To abandon the complicated structure of the deconvolution sum according to (2.1.27),
the two subsequent paragraphs are dedicated to the derivation of a convenient Fourier-type

representation for the empirical deconvolution function and even for its possibly existing density.

7.3.1. The Empirical Deconvolution Function for Increments
First of all, for £ € R, we define by
(7.3.5) Py, (€) =P (H+«HY{{—-Y} =0 for all j € Ny)

the probability for £ to be a point of continuity of the empirical deconvolution function ©,,(£,m)
for all m > 0. Note, P, (§) =1 for all £ € R if F' or H is continuous. Thereby, for m > 0 and
n € N, analogous to (2.1.51) one verifies that the increment of ©,,(-,m) for a,b € R with a < b
and Pp, (a) = Pg, (b) = 1 can be represented by

T
(7.3.6) D,.(b,m) — Dn(a,m) = Thjﬂob; a / D p(—t)Dy (£, n)G=(t, m)dt.
-T

Again for the definition of @, we refer to (A.1.6). The alert reader will immediately notice that,
contrary to each estimator in the centered model, the integral on the right hand side certainly

converges absolutely and with respect to T' > 0 uniformly if
(7.3.7) ®,p®. € L'(R).

This statement is especially true if the error distribution has a characteristic function with a
compact support, i.e., if R\ N, is finite. In any case the above increment estimator is unbiased
with respect to the target function, i.e., for all a,b € R with a < b and Pgp_(a) =P, (b) =1 it

satisfies

pn(m,b,a) :=E{D,(b,m) — D,(a,m)}

(7.3.8)
=9(b,m) — D(a,m).

Furthermore, by arguments similar to the derivation of the variance (7.2.11) with the aid of
(7.2.10), for all a,b € R with a < b and Py, (a) = Pg, (b) = 1 we readily confirm:

o3 (m,n,b,a) := Var {D,,(b,m) — D, (a,m)}
T

S
= a lim Cbayb(—t)gg(t,m)/(I)a,b(_5>g€(s>m)
s

472 S, T—o0
=T

x Cov {®y(s,n), @y (—t,n)} dsdt
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G- [ 7
=Tl [ @06 me D) [ Gas-)Gelsm)ee=

x {By (s + 1) — By (s)Dy (1)} dsdt

If we define the squared expectation of the increment of the empirical deconvolution function

for n =1 by
(7.3.9) Ma(m, b, a) := 47°E {(Ql(b, m) — D1(a, m))2} ,

it is easy to verify for each a,b € R with a < b and Pp,(a) = Pg,(b) = 1 the Fourier-type

integral representation

T
Mg (m, b,a) := (b — a)? Jim [ @ (—)Ge(t,m) ()

(7.3.10) -

S
X /@a,b(—s)ga(s,m)@a(—syﬁy(s + t)dsdt.
s

Hence, upon separating the integral appearing in the variance above, by additional comparison
with (2.1.51) for a,b € Cp with a < b and Py (a) = Pp, (b) = 1 we arrive at

1 1
(7311) U% (m’ n, b, CL) = 2 Mg (m7 b, CL) - E {MQ(ma b, a)}2 :

ndm

Obviously the parameters m and n again occur in different factors. We refer to (7.3.10) as an
iterated integral of convolution-type, since its two single components are connected solely through
the additive argument of the function ®y (s + t). The latter is substantially more complicated
than the integral which we computed for the variance in the centered model. The reason is
the presence of the additional factor ®.(—s) corresponding to e~*<* in the other model. Both
functions are generally of completely different type. Finally, if we prefer a smoothed version of the
above principal value integral (7.3.10), we can repeatedly apply Abel’s lemma A.4.1(2), bearing
in mind that el represents the Fourier transform of a Cauchy distribution. Accordingly, for

any a,b € R with a < b and Py, (a) = Pg, (b) = 1 we can write

Mo (m,b,a) = (b—a)? lim [ e ®Hd, ,(—t)G(t,m)D.(—t)
41,0200
(7.3.12) -~
<[ € (5)Ge (s, m) (- 5) By (s + D),

where the order of the limits is arbitrary. Compared with (7.3.10) the integral representation

(7.3.12) will prove more useful to study the effects of oscillations of the integrand on the large-m
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behaviour of the whole integral.

7.3.2. The Empirical Deconvolution Density

In Section 2.1.4 we already verified, that a sufficient condition for the existence of the deconvo-
lution density (2.1.63) is the existence of a density h with H(dz) = h(z)dz. In this event, also
the estimator for the deconvolution function (7.3.2) possesses a density, to which we refer as the

empirical deconvolution density, denoted by

(7.3.13) 0,(¢,m) := ii / h(=¢+Y; + 2)S (dz), EeR.

=17

It matches definition (2.1.63), except for the integral being computed with respect to G,, instead
of G. Accordingly, it is easy to see that this function for all £ € R indeed satisfies

£
(7.3.14) Dn(&,m) = /Dn(:v,m)dx,

— 00

and that it is even unbiased with respect to the target function 9(£, m) for any £ € R, since

(7.3.15) E{0,(§,m)} =0o(&,m).

This observation becomes particularly interesting if X has a density f. In these circumstances
it enables us to construct an estimator for the unknown X-density if only a data set of Y-
observations is available. If in addition we required continuity of h along the whole real axis,
we were able to establish with (2.1.66) for 9(£,m) an integral representation of Fourier-type.

Replacing therein ®y by its empirical analogue, for any £ € R gives rise to

oo

_ L —ite _Ne.
(7.3.16) 0n(6m) = 5 lim [ 75Dy (51) Py (1, n)e(—)Ge(t, m)dt.

—00

where the smoothing function ®; satisfies the conditions of Theorem A.1.3. Observe that the
above integral converges absolutely and uniformly with respect to 6 > 0 if ®. € L!(R), in which

event the limit may be carried out under the integral sign, for £ € R yielding

[e.o]

(7.3.17) an(Em) = % / Dy (1, 1) (—t)Ge(t, m) .

—00

Concerning the variance of 9,,(§,m) at some point £ € R, with the aid of (2.1.65) an interchange

in the order of limit and integration can be justified, leading to:

Ug(m, n,§) := Var{0,(§,m)}
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o 2
:471521@ 151301/6_“5@1(5t)<1>g(—t)gg(t,m) (By (t,n) — By (1)} dt
" 4an? 5}%3101@{ / e (5at) Do (—t)Ge(t, m) { Dy (t,n) — By (t)} dt
X / e—iS&I)I((Sls)q)E(—s)ge—(s’m) {@Y(S,n) _ (I)Y(S)}ds}
(73]_8) :47::'2611}512%0/e_itg(bl((sZt)q)e(_t)gg(t,m)/e_iSSQ)[((sls)(I)e(—s)gé(S,m)

x Cov {®y(s,n), Py (—t,n)} dsdt

For £ € R and m > 0 we denote the squared expectation of the empirical deconvolution density

forn =1 by

My(m, §) = 47°E {(01(5, m))z}

= 1 THED [ (69t) Do (—1)G(t
sim | e 1(62t) @< (—1)Ge(t, m)
(7.3.19) o -
« / D (515) D (—5)G= (5, m) Dy (s + t)dsdL,

again with an arbitrary order of the limits. Then, if we finally apply the identity (7.1.3) to
(7.3.18) and separate the double integral, for any £ € R we arrive at

1
(7.3.20) ag(m,n7§) = .

My(m,€) — - {o(6,m)}?.

7.4. Nature of Integrals Involving Geometric Sum Functions

Each of the integrals encountered in the context of the deconvolution function and its estimators
exhibits a fairly distinguishing form, due to the occurrence of the geometric sum functions
H:(-,m) and G=(-,m). If we confine ourselves to the symmetrized model, these integrals can be

classified as special cases of the integral

(7.4.1) J(m) == | Ge(t,m)a(t)dt,
/

taken along a closed interval P C R U {#oo} for a continuous function a(t). Ultimately the
variance is an iterated version of J(m). It is therefore natural to start with a study of single
integrals of the above type before continuing with their two-dimensional analogues. Without

loss of generality we suppose P N N, # (). Moreover, we remind the reader of equation (2.1.10),
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according to which

m

Ge(t,m) =Y (1 —2=(1)), teR.
=0
A first inspection of J(m) suggests that the integrand, whenever being non-zero at some point
t € P, contrary to any of the bias integrals, as m — oo tends to a non-zero function. More
precisely, with respect to t € P the limit is either uniformly bounded or unbounded. We therefore
expect the sequence of integrals J(m) to approach a finite non-zero value or to exceed any limits
as m — oo. The particular result depends on the involved functions and major contributions
come from the points where ®z(¢) vanishes, i.e., from P N N.. It must, however, be remarked
that, even if the integrand of J(m) becomes unbounded as m — oo the sequence of integrals
can still converge to a finite limit, due to possible cancellations in a neighborhood of some single
points tg € N.. This phenomenon is discussed in Appendix A.4 and may occur, for instance,
similar to principal value integrals or due to oscillatory behaviour.
The importance of the points P N N. immediately follows from the definition of Gz(t,m).
Accordingly,

1<Gs(t,m) <m—+1

uniformly with respect to ¢ € R and Gz(t9, m) = m + 1 for any ¢y € N.. As a consequence, if
a(t) is absolutely integrable along P, and if P N N; is a subinterval of the real axis along which
a(t) is non-zero, we immediately derive J(m) ~ const X m as m — oco. In each other case we can
only estimate J(m) = O(m), making further investigations inevitable. In particular, although
Gz(tg,m) = m + 1 for any tg € N. regardless of the structure of ®z(¢), the behaviour as t — #
indeed depends on the structure. In order to establish exact statements we can employ our
earlier findings. First, upon displacing the integration path to the left across the pole at z = 0,
for t € R\ N. we deduce from (4.3.19) the integral representation
ctioco

1 ['(m +2)[(2)

27 F'(m+2+2)

c—100

(7.4.2) 1— P=(t,m) = {(D(t)} 7 dz, ~1<ec<O.

Hence, in view of equation (2.1.11), again for ¢ € R\ IV, and —1 < ¢ < 0 we can write
c+1i00

1 ['(m +2)[(2)

27 F(m+2+2)

c—100

(7.4.3) G=(t,m) = {®:(t)} 7 da.

Observe that the right hand side becomes unbounded as ¢t — ¢y in R\ N, with a rate of divergence
that depends on the local behaviour of ®z(¢). Contour integrals of the above type and their
application in asymptotics have been discussed in Chapter 6. Assume P denotes a half open
interval and ty € N, such that P U {to} is closed and ®z(t) # 0 for each ¢ € P. If we then apply
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(7.4.3) to J(m) accompanied by a formal interchange in the order of integration, we arrive at

. c+ioo Lo
I'(m _
(7.4.4) O /{ DY a(t)dids.
c—ioo

From Chapter 6 we know that the values —1 < ¢ < 0 for which the interchange is actually per-
mitted, essentially depend on the behaviour of a(t) as t — ty. Moreover, we pointed out there,
that the magnitude of the parameter ¢ indicates the large-m behaviour of J(m) through the beta
function in the MB-integral. Finally, we also presented the method of analytic continuation as
an efficient technique to evaluate integrals of a type similar to (7.4.4). We confined particularly
to integrals of Laplace-type that arise from J(m) if a(t) features the factor ®z(t), which then
cancels with the denominator of Gz(¢t, m). It is therefore clearly a matter of an appropriate mod-
ification only, to apply the method of analytic continuation to the integral (7.4.4). Accordingly,
to expose the controlling asymptotic behaviour of this integral, we must first determine the
analyticity properties of the generating function in some z-region, and then perform appropriate

manipulations of the path of the MB-integral.

In the symmetrized model of errors in variables the geometric sum function frequently oc-
curs as a product with the characteristic function ®.(—t). The latter downweights the negative
property of the former in a neighborhood of any ¢ty € N, since ®.(—t) — 0 as t — to. To be
exact, since Gz(tg,m) = m + 1 for each ¢ty € N, and fixed m > 0 is a finite constant value,
the product Gz(tg, m)®.(—tg) necessarily vanishes. The downweighting of ®.(—t) is, however,
limited and the product is not uniformly bounded! with respect to m > 0 as t — t( for tq € N..
This behaviour becomes obvious by applying the triangle inequality accompanied by the estimate
(B.3.7) to the binomial integral representation (7.4.3), which yields for t € R\ N, —1 < 29 <0
and m > 0:

I'(m+2) |T(xo —l—zy)\d

|G=(t,m) @ (— )I<{‘1>()}_°{27T ) T(m+2 4+ i)

T(m + 2)T(zo + 2) et 1 7 s ol it
7.4.5 D(t)} 072 — 1 2 2d
(7.4.5) S T Fmtota) 2} o | {@wo+ D +y7} 2 {ag+y7} 2 dy
At this point we recall |®.(¢)|* = ®(t). If and only if we choose zg = —3 the above bound

becomes independent of ¢, leading to

0o
D(m+2) (3) 4 1 7 T(m + 2
1Ge (8, m)®e(=1)] = — 3(2)/1+4 2 2r( 3)
(m+3) = , Y (m+3)
! An example in terms of simpler functions is furnished by f(t) := #, which equals zero at t = 0 but is

not uniformly bounded with respect to m > 0 as t — 0.
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7.4. Nature of Integrals Involving Geometric Sum Functions

For the last equality the integral was referred to the arctangent function with arctan(t) — 5 as
t — 0o, and we incorporated I'(3) = /7. Summarizing, since Gz(t,m)®.(—t) = 0 for t € N, we
have just established the inequality

V7 L(m +2)
(7.4.6) ilel]g‘gg(t, m)P.(—t)| < TW

According to Stirling’s formula, the right hand side is ~ const x m? as m — oo and thus clearly

\_/

exhibits a slower growth than solely Gz(¢t,m) for any t € N,.

In Chapter 6 we introduced an alternative to the binomial integral in the shape of the Cahen-
Mellin representation (6.1.5). A leftward displacement of the path in the indicated contour

integral across the pole at z = 0 gives rise to

c+1i00
(7.4.7) 1—"Ps(t,m) = —% L(z){=(m+1)log(1 — ®:(t))} *dz, -1 <e<0.
C—100
This integral can be employed to characterize the asymptotic behaviour of J(m) in powers of m.
Furthermore, in some circumstances neither the binomial nor the Cahen-Mellin representation
may be applicable to (7.4.1), especially if the decay of ®z(t) as t — o happens too fast. To
make a statement about the large m-behaviour of J(m) is then slightly more complicated. For

t € R it can be helpful to note
1
(7.4.8) Gz(t,m) = (m+1) / (1 —uds(t))"du.
0

If, for 0 < § < m + 1 to the right hand side we apply the inverse Mellin transform (4.7.18), we

obtain
. §+i00
G=(t,m) = m2+2, / Msg(z,m /{ log u — log ®=(t)}* dudz.
™
6—1i00

After a simple change of variables the du-integral is readily identified as an upper incomplete

gamma function, which yields

d+ioco
/ Mp(z,m)I'(1 + z, — log ®=(t))d=.

d—i00

1 m+1

(7.4.9) Gelt-m) = 50 2mi

From equation (8.11.2) in [Olver et al., 2010] as ®z(t) — 0 we know

(IDg(t)F(l + z,—log ®z(t)) ~ {—log P=(t)}*.
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Hence, compared with (7.4.3) and (7.4.7) we observe that the integrand of (7.4.9) as a function
of t exhibits a slower growth as t — tg for each tg € N.. In addition, in Section 4.7.3 we have
shown that, in the strip 0 < Rz < m + 1 the function Mp(z,m) is expandable in descending
powers of the digamma function, whose order increases for greater values of Rz > 0. Their
logarithmic decay as m — oo, however, is always dominated by the growth of the factor m + 1
in front of the integral (7.4.9). An asymptotic expansion of J(m) that is derived with the aid

of (7.4.9) is therefore of logarithmic type with an algebraically divergent leading term as m — oo.

In accordance with the above observations, we identify the convolution-type double integrals
(7.2.11), (7.3.12) and (7.3.19), which appear in the variances of the deconvolution estimators, as
iterations of two integrals of the type (7.4.1). Additional complications, however, arise in fact
due to their iterated structure. These will be pointed out in Chapter 8 below, where we will

also present definite asymptotic statements.

7.5. Properties of the Increment Estimator

Preliminary to our study of the variance we begin with a short discussion of the increment

estimator (7.3.6). For y € R we denote

(7.5.1) Xr(y,b,a,m) = / {1—Pg(t,m)}eiyt(1)2})’ba(@;)dt,

[_T1T}\NE

and without actually requiring absolute convergence we write

Bt
(7.5.2) Xoo(y,b,a,m) := lim Xp(y,b,a,m) = / {1- Pg(t,m)}ezytﬁdt.
T—o0 (Dg(t)
R\N.
Then, if we apply the definitions (2.1.14), (7.1.1) and (7.1.6) to the empirical deconvolution
function (7.3.6), for real-valued a < b with Pg, (a) = Pg, (b) =1 and m > 0 we obtain

b—a

non Z xoo(yka bv a, m)

k=1

(7.5.3) Dy (b, m) — Dy(a,m) =

It appeared useful to introduce the sum representation of ®y (-, n) and to interchange the order of
summation and integration. Apart from the presence of possible zeros we do not benefit from the
closed form of ®y (-, n), especially since it is non-vanishing at infinity. The zeros, however, depend
on the random Y-observations, whence their contribution to compensate possible zeros of the
denominator is not reliable. In addition, in the shape of (7.5.3) the estimator is easier to compute.
By (7.3.7) the integral (7.5.2) converges absolutely for all finite m > 0 if ®.®,;, € L'(R), in
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7.5. Properties of the Increment Estimator

which case H must be continuous and thus Pg, (£) =1 for all £ € R. For brevity we define

iyt q)a,b(_t) + e—zyt (I) ( )
t)’

t>0, yeR,
®. (1) B (— =0y

(7.5.4) q(t,y,b,a) :=e

which equivalently equals twice the real part of one addend. The arguments y,a,b obviously
specify the oscillatory behaviour of ¢(t,y,b,a). Regarding the properties of this function, either

of the following three statements applies:

(1) N.NR =0 and ¢(t,y,b,a) is bounded at infinity. The function is then uniformly bounded
with respect to t > 0 for any y, a,b € R, and if it vanishes at infinity, this happens slower
than ¢~

(2) N: R # 0 and q(t, y,b,a) is bounded at infinity. Then q(t, y, b, a) may still be uniformly
bounded with respect to ¢ > 0 due to cancellations, however, possibly only for some
y,a,b € R. A reason for cancellations can be, for instance, the sine function appearing as

a factor in @, .
(3) q(t,y,b,a) diverges as t — oo.

As a consequence, it seems natural to conclude that particularly in the last case the sequence of
integrals (7.5.3) certainly diverges as m — co. The discussion of Appendix A.4, however, warns

us against the defectiveness of this conclusion, which shall be confirmed in the next paragraph.

7.5.1. Unbiasedness of the Limit

Throughout this paragraph the sample size n € N is assumed to be fixed. We are then interested
in the convergence behaviour of the empirical deconvolution function as m — oo and especially

in a sufficient condition for the validity of

(7.5.5) E{D,(b,00) — D,(a,00)} = F(b) — F(a),
where for brevity we write

(7.5.6) D (b,00) — Dp(a,00) = n}gnoo {D,(b,m) — Dy (a,m)}.

In other words, we want to know if the possibly existing limit establishes an unbiased estimator
with respect to the target distribution F'. This leads us to a statement of which the first part

actually has nothing to do with the deconvolution function.

Theorem 7.5.1 (convergence of the increment estimator). Fory,a,b € R with a # b we

denote the antiderivative of q(t,y,b,a) ont >0 by

T
(7.5.7) 7(y,b,a) := /q (t,y,b,a)
0
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assuming finiteness for any T > 0.

(1) Suppose limp_, oo Qr(Y,b,a) exists G-almost surely and

(7.5.8) E {sup Q- (Y, b, a)y} < 0.

720

In these circumstances the limits on the right hand side of

(7.5.9) F,(b) —

b
n27r a)

exist G-almost surely and exhibit unbiasedness with respect to F(b) — F(a) for any pair of

continuity points a < b of F.

(2) If, in addition to (1), N. = {£o0} and the m-power Ps(-, m) satisfies one of the conditions
in (2.4.19), then G-almost surely

(7.5.10) Dy (b, 00) — Dp(a, 00) = Fy(b) — Fy(a).

The existence of the limit of the sequence of integrals Q7 (y, b, a) as T — oo essentially depends

on the oscillations of its integrand.

Proof. The first statement is basically an application of Lebesgue’s dominated convergence
theorem, compare Theorem 3.31 in [Axler, 2019]. Since |Qr(y,b,a)| < sup,>q|Q-(y,b,a)| for
any y € R and T > 0, the validity of (7.5.8) gives a G-integrable bound, whereas the G-almost
sure existence of the limit of Q7 (Y,b,a) as T — oo holds by assumption. Hence, the following

interchange in the order of limit and expectation is permissible:

E{Fn(b) —Fn(a)} _bmay, ZE{QT Yy, b,a)}

TL27T T—o00

T
b—a ..
=5 Th_rgo Qo p(—s)Px(s)ds
-T

In view of the inversion formula (A.7.27) we eventually conclude unbiasedness with respect to
F'. To verify statement (2) of Theorem 7.5.1, we rearrange the integral (7.5.2), which for each
1 <k <n and fixed m > 0 yields

%o (Vi by aym) = / (1= Pa(t,m)} q(t, Vi b, a)dt,

with the integral on the right hand side being not necessarily absolutely convergent. Under
the current assumptions the m-power clearly satisfies the properties of the function K)(t) in
Theorem A.4.1. Moreover, Q:(Y,b,a) is finite for any ¢ > 0 and the limit as t — oo exists
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7.5. Properties of the Increment Estimator

G-almost surely. The G-almost certain statement (7.5.10) thus follows at once from Theorem
A4.1(2). n

We close this section with an example for the applicability of the preceding theorem.

Example 7.5.1 (geometric stable errors). Assume the X-distribution is unspecified whereas
®.(t) = (L +[t/°)! for 0 < B < 1, i.e., we find ourselves in a setup with geometrically stable
distributed errors. Then, G is an absolutely continuous distribution and the function ¢(¢,y, b, a)

due to (A.1.6) can be cast as follows:

q(t,y,b,a) = 2(1 + [t|")R {¥' D, (1)}

_ 201+t [sin{(b—y)t} Sin{(a—y)t}}
b—a t t

In terms of the sine integral (B.1.2) and by straightforward manipulations we thus obtain

7lo—yl
*52Qba) = S0~ )7) — Silla— ) +snlb— ) b=yl * [ sy
0
Tla—yl
—sgn(a—y)|a—y|™? / P~ sin(t)dt.
0

Clearly, the first two summands on the right hand side are uniformly bounded with respect to
7 > 0 and also with respect to y € R. Furthermore, the integrals in the last two summands
exist for any 7 > 0 and y € R. Since 0 < 8 < 1 they even remain finite as 7 — oo, whence
SUpP;>0 |fOT tB-1 Sin(t)dt} < 00. By continuity of G the points a,b are of G-measure zero, from
which we eventually infer the G-almost sure existence of limp_o, Q7 (Y,b,a). Now, suppose

a,b € R are continuity points of F' and for each £ € {a,b} we have
E{|§— Ylfﬁ} = / 9) gdy < oo,
J 1€~y

which holds, for instance, if the density g associated with G is continuous in a neighborhood of

&. In this event Theorem 7.5.1 applies. By taking into account Theorem A.7.10 and the Mellin

transform of the sine function (4.8.11), from (7.5.9) we deduce G-almost surely

~

Fol0) = (o) = Gul0) = Goa) s { 57 L EO S sgnto = vi o i
(7.5.11) b=l

F n
—sin{éﬂ} Tg?;sgn(a —Y) |a—Y| 77,

and this represents an unbiased estimator for the probability P (a < X <b). Moreover, G-
almost surely ©,,(b, 00) — Dy (a,00) equals (7.5.11). Finally we observe that it is even admitted
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n (7.5.11) to let a — —oo, to arrive at an unbiased estimator for F'(b).

It should be expected and will be confirmed by the following example, that the unbiasedness
of the m-limit becomes invalid if the function ¢(-,y, b, a) is merely bounded but non-vanishing

at infinity.

Example 7.5.2 (exponentially distributed errors). Consider a scenario in which an un-
known X-distribution is blurred by an error variable ¢ ~ Exp(l). In these circumstances
. (t) = (1—it)~! and ®z(¢) = (1+t2)~L. Moreover, the distribution G is then again absolutely
continuous but ¢(t,y,b,a) does not decay at infinity. According to (A.1.6), it is particularly
given by:

q(t,y,b,a) = 2R {eiytq)ayb(—t)(l — zt)}

—, teos{(b—y)t} —cos{(a —y)t}}

= 2R (B ()} +

Since 1 — P=(t,m) = O(t~2) as t — +o00, the integral functions (7.5.2) appearing in the Fourier-
type estimator (7.5.3) are absolutely convergent. By means of the above identity it can be

separated, to become

(7.5.12) Dp(b,m) —Dy(a,m) = bn—ﬂa ° 8‘%/{1 — Pt m)} el y(—t)dt
k=1
. Z/{l—PE (t,m)} cos{(b— Yy)t} dt
k=17

n

Z/{1 —P(t,m)} cos {(a — Yi)t} dt.

1

On the one hand, under the present assumptions by Theorem 2.4.3 for all continuity points

a < bof I we know

(7.5.13) lim E{D,(b,m)—®,(a,m)} = F(b) — F(a).

m—00

On the other hand, Lebesgue’s dominated convergence theorem enables us to write
/{1 = Pe(t,m)} cos(&t)dt = 15{)1/ {1 — P=(t,m)} cos(&t)e ™ dt.
0 0

Upon separating the function in the curved brackets, for fixed § > 0 we obtain:

/ {1 = P=(t,m)} cos(§t)e "t = R / em("tar — / <(t,m) cos(&t)e " dt
0 0 0
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(52—1—52 /73 (t,m) cos(&t)edt

As § | 0 the first summand vanishes, whereas the limit of the sequence of integrals in the second
summand was shown to exist for any £ € R\ {0}. More precisely, subject to Theorem 6.6.1 this
limit exists and equals a function that eventually vanishes as m — oco. Furthermore, any £ € R
is of zero G-measure, and the m-power Pz(-,m) is readily verified to satisfy the conditions of
the function K (¢) from Theorem A.4.1 in the appendix. Hence, if in (7.5.12) we let m — oo,

G-almost surely an additional application of Theorem A.4.1(2) brings us:

nm T—>oo

T
b—
Dn(b,00) — Dy (a, 00) = lim 3% / VD, 4 (
=1 9
= Gp(b) — Gp(a)
The last equation is a consequence from the inversion theorem A.7.10, and it reveals
E{Dn(b,00) = Dn(a,00)} = G(b) — G(a).

In view of (7.5.13) this result tells us that the expectation of the G-almost certain limit of the

empirical deconvolution function does not match the limit of its expectation as m — oo.

To summarize these findings, the empirical deconvolution function is in general represented by
(7.5.3) for any m > 0. In special circumstances, however, for fixed n we may let m — oo to arrive

at a G-almost sure limit which exhibits unbiasedness with respect to the target distribution.

7.6. A First Treatment of the Variance

The variance (7.3.11) associated with the increment estimator for the deconvolution function is
basically composed of two terms. These are respectively the iterated convolution-type integral
(7.3.12) and the squared increment of the deconvolution function © (b, m) — ®(a, m). The latter
is readily identified as the expectation of the estimator, compare (7.3.8), and in terms of the
bias (2.1.57) it satisfies the identity

,u@(m, b, (I) = BI(m7 b, CL) + (F(b) - F(a))
Hence, if we assume BI(m,b,a) — 0 as m — oo, for any n € N as m — co we may conclude

(761) U%(m7n’ 1)7 a) =

n417r2 (m,b,a) — % {(F(b) — F(a))* + 0(1)} )

The exact asymptotic behaviour of the bias can be determined by virtue of our findings from

Chapter 6. Alternatively one may exploit the non-negativity of the squared term on the right
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hand side in (7.3.11), to conclude

(7.6.2) o3 (m,n,b,a) <

A2 M@ (m, b, a).

This estimate is particularly helpful for situations in which it suffices to know that in view of
(7.6.1) the neglected squared term approaches a finite limit as m — oo and finally vanishes as
n — o0o. The actual challenging part about the variance is, to make a statement on the m-
asymptotic behaviour of the iterated integral (7.3.12). Evidently, its "soul” is furnished by the
characteristic function associated with the blurred variable Y. If this function was a polynomial,
which can in fact happen only if it possesses a compact support or if trivially &y = 1, the
iterated integral could be rearranged to become a sum whose addends equal a product of two
single integrals. Although this case is barely interesting, a similar simplification may occur in a
purely discrete setup. To be exact, if X and e are both discretely distributed, the function ®y
is almost periodic and thus a trigonometric polynomial. In other words, it represents a sum or
a series of complex exponential functions. In this event the integral (7.3.11) will certainly never
converge absolutely for §; = d2 = 0, because ®. is non-vanishing at infinity. By employing the

integral definition of ®y, the indicated double integral equivalently can be cast in the form

[e.e]

M@(m,b,a>=(b—a>26}i§2me{ / e PG, (—1)Ge(t, m) Do (—t)dt
X /e“sl's””scbap(—s)ge—(s,m)%(—s)ds},

where the expectation equals a finite or an infinite sum. An attempt to investigate the asymp-
totics for large m of the right hand side can be to confine the analysis to the single integrals
that depend on m. Notice that in a purely discrete setup the Fourier integral representation has
a restricted validity for a,b € R, due to discontinuities.

If X or € is a continuous random variable, the above factorization is still valid but the re-
sulting continuity of G will most likely cause difficulties if Y lies in a neighborhood of those
points at which the oscillations of the complex exponential function diminish. We then return
to a consideration of the iterated representation (7.3.12). To avoid additional difficulties we
assume absolute and with respect to 41,02 > 0 uniform convergence of this integral. A first
inspection shows, according to the uniform boundedness of ®y (t) with respect to ¢ € R, that

these convergence properties can be achieved if
(7.6.3) .9, € L'(R).

From (7.3.7) we recall, in these circumstances even the increment estimator converges absolutely
and with respect to 7' > 0 uniformly. Finally it is clear that (7.6.3) can only hold if ®. vanishes

at infinity, and this is the case if and only if H is a continuous distribution. But for continuous
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H we remember the admissibility of the Fourier-type integral representation of the estimator
and its variance for any a,b € R with Pg, (a) = Pg, (b) = 1, i.e., for all a,b € R. More exact
criteria than (7.6.3) to assess the convergence properties of iterated integrals of the indicated
type, which take into account the local behaviour of the integrand, will be established in the
next chapter.

Now, validity of (7.6.3) enables us in (7.3.12) to interchange the order of limit and integration,
which leads to

o0

Mo (m, b,a) = (b— a)2 / Boy(—t)Ge (£, m) Do (1)
(7.6.4) - .
X / Dy 1(—5)Gz(s, m)Po(—s5)Py (s + t)dsdt.

According to our findings from Section 7.4, we expect this integral either to approach a finite
limit or to diverge as m — oo, which essentially depends on the set of points N. at which &,
vanishes and on the behaviour of the integrand there. Yet, by taking into account the uniform

boundedness of the geometric sum function a very general statement is possible.

Theorem 7.6.1 (quadratic divergence). If ®,;®. € L*(R), then 03 (m,n,b,a) = O {n"'m?}

as m — oo for any a,b € R.

In other words, a sufficient condition for the variance to grow no faster than quadratic as
m — oo is the validity of (7.6.3). This property essentially distinguishes the variance from the

bias, where no general statements about the slowest admissible rate are possible.

Proof. We continue from (7.6.4) with a simple application of the triangle inequality, incorpo-

rating sup;cg |Py (t)| < 1 and definition (A.1.6), to arrive at

[ee) 2
in fb—a
(7.6.5) Mo (m, b, a)| < 16 / W\Qs(t,m)@(—tﬂdt
0

Since |®(t)|> = ®=(t) and G=(t,m) < m + 1 uniformly with respect to t € R, we deduce

2

oo
: b—a
sin § —5—t
Mo (m,b,a)| < 16(m + 1)? /‘{ti’}‘{cbe(t)}%dt
0
But under the assumption on the integrand the latter integral converges absolutely, which by
(7.6.2) concludes the proof. =

It is needless to say that the bounds of the preceding proof certainly incur too much losses. In
fact, a thorough investigation of the variance inevitably encompasses the analysis of the nasty

double integral (7.6.4). A detailed look suggests a special role to be played by the segments along
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which one variable tends to positive infinity, while the second variable tends to negative infinity.
Indeed, if @y (t) vanishes as ¢ — +o00, the consequences of converse signs in the argument of
®y (+s+t) combined with an infinite range of integration should not be underestimated. While
elementary calculations show that it suffices for a double integral fTOO fTOO a(s+t)dsdt with 7 > 0
to converge absolutely if a(v) = O {v™%} as v — oo for a > 2, this condition becomes insufficient
if a(s +t) is replaced by a(s —t). We can, however, circumvent the difficulties with the latter
function by an appropriate decomposition of the integral (7.6.4), to be conducted below.
Having specified by Theorem 7.6.1 the worst case scenario, it is reasonable to demand in which
event the desired case of uniform boundedness of the variance with respect to m > 0 occurs.
Unfortunately, at the moment we are not yet able to provide an adequate answer. A naive
approach again consists in a simple application of the triangle inequality. If we then bound the

numerator of Gz=(¢,m) by unity, we arrive at

in { bza sin { =2
\M@(m,b,a)]§8 [ lsin{t5¢ t}’/} % H{|<1> (s 4+ 1) + | By (s — )|} dsdt.
t{P:(t s{®=(s

An additional application of the trivial bound |®y| < 1 would be devastating, since the resulting
integral was in any case divergent. Sufficient conditions for the absolute convergence of the
integral on the right hand side therefore can not be imposed merely on the basis of simple
convergence criteria for single integrals. Actually, in order to make any satisfactory statements
on the m-asymptotic behaviour of the iterated integral (7.6.4), including its uniform boundedness
with respect to m > 0, we require auxiliary tools. These will also teach us the appropriate use
of the Cahen-Mellin representation (7.4.7) for the geometric sum function, which we proposed
in Section 7.4 as a means to describe the asymptotics of integrals of this particular type. An
application accompanied by a formal interchange in the order of integration for some —1 <

ug, rg < 0 yields

xo+ico ug+100

Ma(mb) = s [ ()T [ ms )T
o e—ibtui_;o—oim e—ibs o e—ias
X / t‘bg(t) {_ lOg(]. - q)g(t))} / 8@5(8)
R\ N R\ Ne

x {—log(l — ®z(s))} " @y (s + t)dsdtdwdz.

The exact procedure to evaluate this double MB-integral is as complicated as its representation
suggests it to be. It requires exact convergence and analyticity criteria for the dsdt-integral as a
function of w for fixed z and additional results. These will thoroughly be discussed in the next
chapter. For the moment we confine to a simple estimate, which can be established with the aid

of the binomial integral representation.
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Theorem 7.6.2. If there exists —1 < xg < 0 with
Dap(t) {@=(t)} "2 € L'(R),
then o%(m,n,b,a) = O {nilm*ho} as m — oo for any a,b € R.

Proof. The proof of this theorem is similar to that of Theorem 7.6.1. Indeed, it only differs by
the fact that we apply the bound (7.4.5) for the geometric sum function to the estimate (7.6.5).
The big-O estimate then can be obtained from Stirling’s formula or from (B.3.6). n

We conclude this section with the aforementioned decomposition which, however, we carry
out for the iterated integral (7.3.12).

7.6.1. Decomposition for the Variance of the Empirical Deconvolution Function

For fixed 61,2 > 0 we denote the integral appearing in (7.3.12) by

Mo [m; 5;)’22} = (b—a)? / e~ 020D, (—1)G(t, m)D.(—t)
(7.6.6) I
X / e01slD, 1 (—5)Ge(s, m) Do (—5)Py (s + t)dsdt.

It can be separated into two double integrals along the positive real axis, to obtain

o

01, 02 _
(b—a)*Mp ’ 223?[ e 02D 4 (—1)G=(t, m) (1)
5] ]
X /e“slstba,b(—s)gg(s,m)fbe(—s)fby(s + t)dsdt]
+2R| [ e P Dy (t)G:(t, m)De(t)
/
(7.6.7) « / €015, y(—5)Ge (s, M) D (—5)By (s — t)dsdt] .

0

Moreover, if we split the range of integration of the last integral at s = ¢, we find

o0

/652t®a b( )ga t m / 518@&(} gé(s7m)@5(_s)®Y(S - t)det
0

0

= /e515<I>a,b(—s)ga(s,m)(1>a(—s)/e52t<1>a,b(t)g£(t,m)CI)E(t)q)y(s—t)dtds
0 s
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[e's) %)
+ /6_62tq)a b( )gs t m /6_515(I)ab g (Sam)q)ff(_s)q)y(s - t)det'
0 t

Subject to absolute convergence we interchanged the order of integration in the first double
integral on the right hand side. Evidently, except for the order of §; and s the first integral

equals the complex conjugate of the second. For §1,d2 > 0 we therefore define

x —ibt _ —iat
A {m; 52’22] — / e*ézt%gg(t,m)cpe(—t)

(7.6.8) oo
s 6ibs _ eias
% /e 157g5(8’m)(1)a(3)(l)y(t — s)dsdt,
S
t
01,02 i o€ e
(7.6.9) ’ 50
—ibs __ ,—ias
% /6_618Hg5(8,m)q)5(5)(b3/(8 —+ t)dsdt
S
0

Then, by means of the definition (A.1.6), and since ®(t) = ®(—t) for any characteristic function
and Rz = RNz for all z € C, from (7.6.7) we deduce

01,0 01,0 02,0 01,0
(7.6.10) Mo [m; 7 2 =2RA [m; 72| 4 2RA |m; 2| — 2R [y 2
" ba " ba " ba "ba
In order to finally abandon the function ®y (¢ — s) we observe that a simple change of variables
results in
A |: , 617 52:| /e 51t(I)Y /e (61-‘1—(52 ; e g (S’m)ée(_s)
(7.6.11) 0 0

ezb(s+t) _ eza(s—l—t)

P Ge(s +t,m)®.(s + t)dsdt.

If we describe by symmetry of a function f(s,t) the property f(s,t) = f(t,s) for each s,t > 0, it
is easy to see that the integrand of (7.6.9) perfectly fits this description. Contrary, the integrand
of (7.6.11) is highly asymmetric. Finally, for brevity we define

7.6.12 tb.a) = eibt _ giat
(7.6.12) p(t; b, a) )
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which is O(t) as t — 0 and satisfies p(t;b,a) = p(—t;b,a) for all ¢ € R. Moreover, for 0 < o <
S <ooand 0 <7 <T < oo we introduce the integrals

S
. a,0,S| p(s;b,a) 1 — Pz(s,m)
wlmi 77| = [ v / 2.(5)
><,o(s—i—t,b,a)1—775—(34-t,m)
s+t D (s+1)

oleizd] - e

S
ﬁ(S; b7 a) 1— PE(Sa m)
X / . B-(5) Oy (s + t)dsdt.

dsdt,

g

If we suppose absolute and with respect to d1,d2 > 0 uniform convergence of the integrals (7.6.9)
and (7.6.11), we may let 01,02 J 0 under the signs of integration. According to (7.6.10), from
(7.3.12) we then obtain the decomposition

~a, 0,00

(7.6.15) Mg (m, b,a) = 43‘%2[1[ b0,

] — 2RGi [m; a9, OO]

b,0,00 |

7.6.2. Decomposition of the Variance of the Empirical Deconvolution Density

Regarding the variance (7.3.20) of the empirical deconvolution density, it is easy to repeat the
preceding steps for the integral (7.3.19). Supposing its absolute and with respect to d1,d2 > 0
uniform convergence, the limits d1,ds | 0 can be taken under the signs of integration. Then, if
for £ € R and m > 0 we define

T
m,o, S i€ — Pz(s,m) 1 —Pz(s+t,m)
(7.6.16) [ ] / Loy ( / 3.(5) N E— dsdt,
T S
(7.6.17) 51[?:7‘?] :/ —Zétl_ 3 m)/e—i55W¢y(s+t)dsdt,

(e

we arrive at

(7.6.18) My(m, &) = 4R 1[ , 0r 00 } + 2Rsi [

m, 0, oo
£,0,00 '

€7O7OO

7.7. Example: Estimators for Cauchy Distributed Errors

In Section 7.5 it turned out, once we have specified the error variable €, equivalent representations
for the empirical deconvolution function can be found by elementary manipulations. Another

particularly convenient example is furnished by a setup with Cauchy-distributed errors, to which
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this section is devoted. Rather than the estimator for the unknown distribution F', however,
we first consider the empirical deconvolution density without actually supposing the existence
of a density f(z)dr = F(dx). This approach does not violate any assumptions, since 0, (-, m)
and 9(-,m) in fact exist by absolute continuity of H. Now, the occurence of Cauchy-distributed
errors implies uniform continuity of the density h on the whole real axis and ®.(t) = gitne—%!
for some p. € R and 0 > 0. Hence, the empirical deconvolution density possesses the absolutely
convergent Fourier-type integral representation (7.3.17). Moreover, we deduce ®z(t) = eoltl,
In addition, if in (7.3.16) we also choose ®;(t) = e~ !l and employ the definition of G=(t,m), the

estimator can be rearranged to become:

[e.o]

1 . (5D [ —i _
Dn(f, m) = E 2 1($1J1:101 / e (6+ 2)|t| L(E+pe Yk)gé(ty m)dt
1 & T
(7.7.1) = — N lim R [ e (0-D)t—it(E+pe—Yy) {1 —(1- efat)m+1} dt
nw £ 510 /

For fixed ¢ > % on the one hand

7 1
e~ S)t—it(E+pre— Yk)dt : ,
0/ 60— G +i(§+ pe — Yi)

whereas on the other hand, by definition of the beta function,

/6(6g)tit(§+ung)(1 - efat)m%»ldt _
0

_% i(&‘i‘ﬂe_yk))
T(m+3+2+L(E+p—-Y))

g

In terms of the digamma function, in the circle |z| < 1 we know there exists a power series
expansion of the form

1 T(m+2)(2)

Sl U il o A 2 o

Ty = (m 2 +9) 400,
from which we conclude continuity of the left hand side with respect to Rz > —% for any fixed

3z € R. Hence, as 6 | 0 from (7.7.1) we eventually obtain

) 202 T(m +2)T (=3 + £(€ + pe = Vi)
(7.7.2) 0,(&,m) = e ; {02 +4(E+ pe — V)2 + r'(m+3 +2 L(E+ pe — Vi) } ‘

An application of the asymptotic statement (B.3.5) shows, as m — oo, the right hand side
diverges with the rate ma.

Conversely, as & — oo, the function satisfies (’){\5 |7m72} as & — Zoo, which is clearly
absolutely integrable on the whole real axis. We therefore obtain the empirical deconvolution

function by computing for £ € R the integral (7.3.14) with the above representation (7.7.2) for
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0,,(-,m). While the first addend in the indicated sum is readily identified as the derivative of
the arctangent, the second has no known elementary representation. Hence, accompanied by a

simple change of variables for any £ € R we write

n n 0
(7.7.3) Dn(§,m) = _é Zarctan { 206+ pe = Vi) } - nl R / v(z; €, Yy)dx,
k=1 00

(o2 am
k=1_

where the function

L(m+2)T (=5 + L(z+ &+ pe — Vi)
D(m+3+Li(z+E+p—Y)

v(2;€,Yg) =
for each 1 < k < n is meromorphic in C with poles of simple order at z = Z;; for random

Zjg =Y —pe —E{+i0(j — %) with j € Ng. These poles lie in the upper z-half plane except the

pole z = Zj ., which is located at a random point of the line Sz = —%.
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8. Asymptotics of lterated Convolution-Type

Integrals by Analytic Continuation

The aim of this chapter is the adaption of the method of analytic continuation from Chapter
6 to special iterated integrals. We are particularly interested in the dominating m-asymptotic
properties of the variance integrals that occur in the context of the empirical deconvolution
function and density. These can be generalized as follows. On the one hand, we have an integral

whose integrand is symmetric with respect to the terms that depend on m, viz
(8.0.1) Si [ ] /{1 — (1= o)™t} / {1—(1—U(s))"} gi(s, t)dsdt,

where each of the paths P; and P, is supposed to be a half open segment of the positive real
axis with endpoints 0 < o < S < oo and 0 < 7 < T < o0, respectively. The functions 0 < ¥ <1
and ¢g; are continuous. Notice that the integrand is symmetric with respect to s and ¢ if and
only if gsi(s,t) is. On the other hand, for a continuous function ga;, we have the asymmetric

counterpart

(8.0.2) Al [m; :ﬂ = //{1— (1= W(s)™ {1 - (1= V(s +1)"""} qails, t)dsdt.

P2 P1

Both of the above integrals are clearly not of Laplacian-type. In fact, it was already pointed
out in Section 7.4, that the behaviour as m — oo of their one-dimensional analogue com-
pletely differs from what is common for Laplace-type integrals. Yet, a joint property is that
this behaviour depends on the suprema of the m-power, and particularly on the points at which
the function ¥ vanishes. Regarding iterated Laplace-type integrals, contrary to single ver-
sions, a recipe for a general treatment apparently does not exist. This was also pointed out in
[Paris and Kaminski, 2001], where several references were provided that illustrate the various
efforts. A possible reason for the difficulties in a general treatment of iterated integrals consists
in the incapability to provide criteria for their convergence. It must in fact be expected that
the convergence of the single components of an iterated integral is insufficient to conclude the
convergence as a whole. Additional conditions are essentially determined by the behaviour along
the integration paths of the factors that depend on more than a single variable of integration.
Analogous statements hold for the conditions for the analyticity of iterated integrals. To avoid

these inconveniences, bearing in mind our application field, we therefore confine to amplitude
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functions g¢si(s,t) and gai(s,t) that admit a factorization in terms of functions of the variables
s, t and s +t. The integrals (8.0.1) and (8.0.2) are then of convolution-type and our results will

immediately be applicable to either of the variance integrals.

8.1. Preliminaries

Before we come to the technical part we briefly outline our strategy. In view of our introductory
comments, we first develop elementary rules for calculus of iterated convolution-type integrals.
These will finally enable us to impose sufficient conditions for the absolute convergence of (8.0.1)
and (8.0.2), bearing in mind that, according to the binomial theorem, for any m > 0, as ¥(u) —

0, we have
(8.1.1) 1— (1= W)™ ~ (m+1)T(u).

The next step consists in a transformation to an iterated MB-integral. From Chapter 6 we
recall that this is possible by employing a suitable integral representation for the m-power.
However, contrary to integrals that feature a single m-power, an appropriate choice for integrals
that feature two m-powers is no longer solely a matter of the local behaviour of the integrand.
Actually, a wrong choice will incur substantial computational inconveniences due to the nature of
the associated asymptotic scale. As an illustrative example, for 0 < 2o < 1 and 0 < ug < 1 — xg

we shall consider the iterated MB-integral

xo-+100 ug+100
1 T(A+ 1)I(2) / T+ 1DM(w) 1
I = —_ dwdz.
AT 2mi)e / T+ 1+2) TOtltw)l—w—z %
xro—100 U9 —100

By inspection of the interior integral, to which we refer as

uo+1i00
1 / '+ 1) (w) 1
FrA+14+w)l—w-—z

dw,

Uy —100

we see that the integrand is ~ const x A™%% as A — oco. In other words, the power of the
asymptotic parameter A is descending as Rw increases in Rw > wug. According to our earlier
findings, the behaviour as A — oo of Jy(z) thus can be exposed by a rightward displacement of
the integration path. Appealing to the algebraic decay of the integrand for large |w|, we move
the integration path across the only pole at w = 1 — z and further to infinity in ®w > 0, to
deduce

(8.1.2) Ta(z) = F(Iﬁ\& Jlr)g(_l ;)Z)
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Upon plugging this identity into Iy, we arrive at the hypergeometric integral

xo+i00
1 FA+1)T(z) TN+ 1)1 - 2)
(8.1.3) =54 / PA+1+2) I(A+2—2) dz.

It is obvious that as A — oo the integrand is ~ const x A~! for each z € C\Z. An asymptotic ex-
pansion of Iy therefore can not be generated by an appropriate displacement of the line Rz = xg.
Instead an asymptotic evaluation of (8.1.3) can be conducted, for instance, by virtue of a saddle

point approximation. A similar example was treated in §5.3.3 in [Paris and Kaminski, 2001]. A

1
l—w—=z

more convenient way to evaluate I is, to abandon (8.1.2) and to identify the function
rather as a single Laplace transform of the argument w + z. An additional application of the

definition of the binomial integral (6.1.1) then for any A > 0 yields:

1 aco—Q—iooF(A l)I‘( ) uo—H'oo 00
+ Z (1—w—2)t
I, = dtdwd
AT (2mi)? / T+ 1+2) / /\—i—l—i—w /e waz
To—100 ug—100 0
= /e_t(l — e H2dt
0
_ 1
22 +1

For the last equality we wrote the beta function in terms of the gamma function and employed
the functional equation of the latter. Of course these computations fail, if the generating function

of the iterated MB-integral I does not constitute a Laplace transform. Closely related to I is

1 xo+100 ug+100
1.4 Ky = AT AT (w) ————dwd
(8.1.4) V= [ T / (1) dw,
T —100 uUQ —100

again with 0 < zg < 1 and 0 < ug < 1 — xg. Clearly, K differs from I by the asymptotic scale
in the integrand. If we denote by Ly(z) the interior MB-integral, for fixed z € C with Rz = z9
a rightward displacment of the path across the only pole at w = 1 — xg for an arbitrary finite

uyp > 1 — zq yields

U1 +100
. 1 . 1
U1 —100

Due to the fact that the asymptotic scale rather than a factorial function is a simple power,

cancellations occur upon plugging Ly(z) into (8.1.4). For an arbitrary ¢ > 1 as A — 0o we then
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find
xo-+1i00
Ky— L / F(=)T(1 — 2)dz + O {A) ~ =
AT Nom “ 2)az 3%
xro—100

For the final result we took into account the inverse Mellin transform of the function %th Al-
though the above example is somehow artificial, it warns us not to employ the binomial integral
representation for the m-powers in each of the integrals (8.0.1) and (8.0.2), since it might result
in additional difficulties that probably can be circumvented with the Cahen-Mellin representa-

tion.

In view of the above observations, we confine ourselves to the Cahen-Mellin representation
(6.1.5) for the m-power and avoid the integrals of binomial and logarithmic type (6.1.1) and
(6.1.4). Furthermore, for simplicity, we confine to functions ¥ with plain algebraic behaviour

and throughout this chapter we write

(8.1.5) (t) := —log(1 — ¥(t)).

First, upon displacing the path in (6.1.5) to the left across the pole at z = 0, it is easy to confirm
for any t € R with 0 < U(¢) < 1 validity of the equivalent representation

xo+i00
(8.1.6) 1—(1—W()"t = ~5 L(2) {(m+ 1D)p(t)} *dz, ~1 <2 <0.
i
To—100
Then, if in either of the iterated integrals (8.0.1) or (8.0.2) we cast each m-power in terms of
this contour integral, for appropriately specified integration paths —1 < zg1, g2 < 0, we obtain

integrals of the form

To2+100 z1+100
1
(8.1.7) J(m) = o) / (m+1)"*T'(22) / (m+ 1)1 (21)M (21, 22)dz1d 22,
02 —100 o1 —100

where the generating function 9(z1, 22) represents an iterated integral of convolution-type. To
be exact, it coincides with (8.0.1) or (8.0.2), except for the factor that involves the asymptotic
parameter, which is replaced by the corresponding kernel, for instance by {¢(¢)} *2. As in the
situation of a single integral, the admissible paths depend on the region of absolute convergence
of the integral representation for 9t(z1, z2). Particularly the interior path Rz; = x; is permitted
to depend on the exterior. Although integrals of the above type look much more complicated in
comparison with their single analogues, their evaluation is accomplished in the same fashion.
Having conducted the transformation to an iterated MB-integral, the next step encompasses

a thorough study of 9(z1, 22) as a function of one variable with the second fixed. If the fixed

258



8.1. Preliminaries

variable is zo with Rz9 = x99, of particular interest are the analyticity properties and the location
of the singularity that lies closest to the right of the line Rz, = x¢;, in which direction m~%#
is descending. This singularity is indicated by the simple pole of I'(z1) at z1 = 0 and by the
z1-abscissa of convergence of the integral representation for M(z1, z2). Of course a dependence
on the fixed variable z5 is possible. The determination of the closest singularity usually requires
to compute the analytic continuation of 9t(z1,22) into a region that lies to the right of the
z1-abscissa of convergence and includes it. The information about the closest singularity and a
simple bound for the asymptotic order of M(z1, z2) into both imaginary directions of its z;-region
of analyticity are sufficient, to ascertain the permission for a displacement of the integration path

in the interior MB-integral of J(m), for brevity denoted by

z01+100
1
(8.1.8) K(m, z2,x01) = 5 / (m 4+ 1) T (21)M (21, 22)dz1.
To1—100

In contrast to the single integrals from Chapter 6, under rather mild assumptions, poles of
second order will occur. For a more technical discussion, for fixed zo € C with Rz = xg9, we

assume the function
(8.1.9) F(zl)im(zl, 22)

is meromorphic in a finite strip —1 < Rz; < x for x > —1, and therein, to the right of the line
Rz1 = xo1, it exhibits a sequence of poles 211, ..., 21k for K € N, whose real parts are ascending.
The boundary y and the poles may depend on z,. If, in addition for fixed zo and a constant

p € R we have
(8.1.10) M(21,22) = O {|z1]"}

as §z; — +oo in the indicated strip, uniformly with respect to Rz; in any closed vertical
substrip, the contour integral (8.1.8) converges absolutely along any vertical line Rz = 3,
that does not run through any of the poles z1;. Furthermore, since the algebraic behaviour of
the generating function in (8.1.8) is always dominated by the exponential decay of the gamma
function in the direction of the imaginary axis, a displacement of the integration path is easily
viable. Upon moving the path to the right across the K poles of the function (8.1.9), to match
a vertical line Rz; = x5 with Rz1x < x93 < x, for 1 < k < K, we need to take into account the

corresponding residues

(8.1.11) Ry (29,m) = Res 1)

—— M (21, 29).
=2k (m + 1)71 (21,22)
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Since a rightward displacement of the path means, that the poles are encircled in the clockwise

direction, we incur a negative sign of these residues, which eventually leads to

K

(8.1.12) K(m, Zg,xol) = — Zfﬁk(Z’Q,m) + K(m, Z9, 1‘03).
k=1

The remainder term is still given by the integral (8.1.8) but with z(; replaced by the new path
Rz1 = wo3. If there exist further parameters p1,ps € R and a constant M > 0 for which the
bound

(8113) Em(zl,zg) é M ’Zl|p1 |22|p2

applies with Rz; = xp3 and Rzs = xg2, the remainder MB-integral for Rzo = g2, uniformly

with respect to Szo € R, satisfies
(8.1.14) K(m, z9,203) = O {m_m03 |22]p2} )

The evaluation of the sum of residues on the right hand side of (8.1.12) is an easy exercise
in complex calculus, particularly if each pole is of simple order. In any other case the actual
difficulty consists in computing the derivatives of the generating function 9t(z1,22). These
are required to specify its Laurent expansion in a neighborhood of z; = zj;. Fortunately,
throughout this chapter no poles of order greater than two will be encountered, whence for fixed
2o as z1 — z1x we always have an expansion of the form

M_Q(ZQ) M_1(22)

(8.1.15) Sm(zl,zg) = (2’1 — Z1k)2 + — + MO(ZQ) + 0(2’1 — Zlk)>

where we assume M_,,(z2) # 0 for at least one index n € {0,1,2}. Notice that this last
condition is not a restriction if z9 is a fixed but arbitrary point in a region, in which M_,,(z2) is
holomorphic, since the zeros of holomorphic functions occur isolated. Once we have determined
the coefficients in the above expansion and specified the location of the pole z1, the residue
(8.1.11) readily can be obtained by reference to Theorem B.2.1(2).

Finally, if the interior of the iterated MB-integral (8.1.7) is replaced by the expansion (8.1.12),

an additional estimate of the remainder integral by virtue of (8.1.14) as m — oo shows

To2-+1i00

K
1
(8.1.16) == 5 / m + 1)7%2T (29) Ry (20, m)dzg + O {m w08 =202}

k=1 202 —100

To complete the evaluation, each residue PRy (z2,m) must be studied as function of za, before
the paths of the single integrals eventually can be moved. At this point it is important to
note that there are two possible kinds of poles z1;. On the one hand, the location of z1; may

depend on the fixed second variable z5. In this event it is reasonable to assume without loss
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of generality that z1 is of first order, and the residue PRy (22, m) is readily confirmed to feature
an asymptotic scale. Hence, the integrand of the k-th term in (8.1.16) involves a product of
two asymptotic scales. Except if the sum z1; + 29 does not depend on z9, we must then always
distinguish between positivity and negativity of the real part of z1; + 22, in order to perform
appropriate displacements of the integration path. If, however, in zi; + 2o the variable 2o
cancels out, no further steps are required but the k-th integral in (8.1.16) represents a coefficient
in the asymptotic expansion of J(m) as m — oo. On the other hand, if the location of z1j
does not depend on z9, the residue Ry (z2,m) still depends on m but it does not establish an
asymptotic scale as m — oo. More precisely, the behaviour of the residue as m — oo is then
not affected by z2. In these circumstances, the k-th summand in (8.1.16) is evaluated by a
rightward displacement of the integration path. The asymptotic evaluation of J(m) as a whole
is eventually completed, if either of the single MB-integrals produces a term that is dominating

as m — oQ.

8.2. Auxiliary Results

The objective of the present section is to examine the convergence behaviour and the analyticity

properties of iterated generating functions of the type

(8.2.1) M[g’ "’S] = /e(t)/{gp(s)}C d(s)k(s + t)dsdt,
P

7, T
P2

(8.2.2) s[—g; :;] = /e(t)/d(s) {o(s + 1)} C k(s + t)dsdt.

P2 P1

Again P71, Py are half-open subintervals of the positive real axis with respective endpoints 0 <
0 <S<ooand0 <7 <T < oo along which the integrand is continuous, and ¢(r), ¢(ri+r2) > 0
for r € P1, r; € Pj, j € {1,2}, with the power functions taking their principal values. We
denote {p(s)} ¢ as a kernel of the first kind and {¢(s+ 1)} as a kernel of the second kind.
Accordingly, (8.2.1) and (8.2.2) are referred to as generating functions of the first and of the
second kind, respectively.

As a warm-up exercise we extend our findings that were established in Chapter 6 for single
integral transforms. Preliminary we introduce some important notions and definitions, which

will be of frequent use throughout this chapter.

8.2.1. Ingredient Functions with Algebraic Behaviour

First of all we adopt the term ingredient functions from one-dimensional integral transforms to
describe a few or all of the functions ¢, d, e, k appearing in the generating functions (8.2.1) and
(8.2.2). Furthermore, if for a function k() and constants kg € C\ {0}, ko € C as ¢ | 7 we have

(8.2.3) k(t) ~ ko(t — )",
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we say the function k(t) is algebraic as t | T with coefficient ko and parameter ky. Similarly, if

k(t) as t — oo for constants kg € C\ {0}, ko € C satisfies
(8.2.4) E(t) ~ kot™"°,

we refer to k(t) as algebraic at infinity with coefficient ko and parameter kg. In both cases the
requirement kg # 0 is essential.

Now, if the function ¢(t) is positive and continuous on the above interval (7, 7] and algebraic
as t | 7 for a coefficient by > 0 and a parameter Sy > 0, we denote by B, (t) the normalized

phase function, formally

(t —71)P0 }
8.2.5 B.(t) :=log { .
(3:2.5) 0 B0
The index shows the correspondence to the endpoint 7. In an analogous fashion, if k(¢) is also
continuous on the indicated interval and algebraic as ¢ | 7 with coefficient ky € C\ {0} and

parameter g € C, or if merely k(t) = O {(t — )"0}, we refer to

k(t)

(8.2.6) Kelt) = = o

as the normalized amplitude. In both definitions the term normalized basically means, the
function denoted by the capital letter is continuous on (7,7, and possesses a finite limit when
approaching 7, which is especially non-zero if the local behaviour is not only described by a

big-O estimate. In the latter case we agree, for instance

(8.2.7) K (1) := ltljn K. (t) = ko.

The above convention will also be employed if ¢(t), k(t) are continuous on any closed subinterval
of the ray t > T with a finite T" > 0, where the first of these functions is even positive, and if
@(t) ~ bot =0 and k(t) ~ kot~ as t — oo, or only k(t) = O {¢ ®*0}. In this event we define

(8.2.8) B(t) := —log {tﬁ%(t)} ;
(8.2.9) K(t) :==t"k(t).

Finally, if in addition ¢(t) is once continuously differentiable on (7, T] it possesses a normalized

phase B (t) with a derivative of order f1 > —1 as t | 7, if and only if

¢'(t) _ Bo

(8.2.10) O

+O{(t—¢)f31}.
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Moreover, at infinity the normalized phase B(t) is said to have a derivative of order 1 > 1, if

and only if

'(t
(8.2.11) AUN —@Jro{t—ﬁl}.
() t
Exactly the same notions will be employed for either of the amplitude functions. For example,
k(t) has a normalized counterpart with a derivative of order k1 € C ast | T for Rk1 > —1, if
and only if

(8.2.12) Z((f)) = v o{-n™},

and it possesses a normalized counterpart with a derivative of order k1 € C as t — oo for

Rk, > 1, if and only if

(8.2.13) ’:((f)) - _% o) {t—é}%m} .

The origin of the last definitions is clearly self-explaining. In fact, in case of (8.2.10) and (8.2.12)

as t | 7 it is easy to see:

(8:2.14) B = 2 - i&) —o{t-n"}
b - RO FO o)

Analogously in the situation of (8.2.11) and (8.2.13) as t — oo we observe:

_ B ) s
8:216) B0 = - - Sy =o{”)
(8.2.17) KW(t) = rot"ok(t) + ™K (t) = O {t—ml}

Special conventions will be employed for functions of the additive argument s + ¢t ranging along
finite intervals o < s < S and 7 < t < T. In particular, if p(u) > 0 and k(u) are continuous at
any point u € (o0 + 7,5 + T and algebraic as u | o + 7 with coefficients by > 0, kg € C\ {0}

and parameters B9 > 0, kg € C, we denote the normalized phase and amplitude respectively by

s —o—T1)%
(8.2.18) Byr(s+1t):= log{( +;(S+t) ) }
k(s+1t)

8.2.19 K, t) .= .
(8:2.19) A O S T
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Besides, assuming o < sy < S fixed, if ¢(sg+t) ~ bo(T, 50)(t—7)%(5%0) for By(7, 50), bo(T, 50) > 0,
and if k(s + t) ~ ko(T, s0)(t — 7)50(7%0) for rg(T, s0), ko (T, s0) € C with ko(T, s0) # 0, we write

‘ B (t— 7—)50(ﬂ$o)
(8.2.20) B(t, So) = log {SD(SOW} )
(8.2.21) K(t;50) = P00 D)

(t _ T)no(‘r,so) ’

and it is reasonable to refer to B(t;sg) and K (t;s0) as the normalized phase and amplitude of
@(so +t) and k(so +t) on (7,T], respectively. It is then easy to see, if B, (u) and K, (u)
possess a first derivative of order 1, Rk1 > —1 as u | o + 7, the first derivatives of B(¢;0) and

K(t; o) share this property as t | 7.

Finally, for arbitrary zi,...,z, € C with n € N and g > 0 we denote

(8.2.22) Xﬁ(zh...,zn) = mln{%zl"/’@"%zn}+ 17
_ min{Rzy,..., Nz, } — 1

(8.2.23) ng(z1, ..., 2n) 5

Both functions are evidently real valued and non-negative, respectively if Rz, > —1 and Rz, > 1
for any 1 < k <n.

8.2.2. Single Generating Functions with Convolution-Type Ingredients

In Section 6.3 we considered a special type of generating functions and discussed two techniques
to determine their analytic continuation. In the present subsection we shall extend these findings

to the generating function

S
—z2,t

(8.2.24) N[U’S} ::/{cp(s)}_z d(s)k(s + t)ds,

(e

for a fixed but arbitrary ¢ > 0 and 0 < o0 < § < co. Owing to the convolution-type argument
of the amplitude k(s + t), if (8.2.24) represents the interior of an iterated integral it appears
reasonable to treat the situation of a finite and an infinite range of integration separately. The
aim of this subsection is in particular, to point out the different roles played by k(s + t) in case
of a finite and an infinite endpoint, to specify the respective analytic continuation of the integral
by partial integration, and to provide the required quantities for calculating with fixed m > 0

the residue of the product

(8.2.25) (m + 1)_zr(zw[(—7;zﬁ
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at z = 0 if the latter point is a second order pole. The actual computation of this residue is

postponed to a later section.

8.2.2.1. A Finite Range of Integration and a Kernel of the First Kind

Concerning the ingredient functions ¢(s) and d(s), we suppose once continuous differentiability
and ¢(s) > 0 on (09, S]. Besides, ¢(s) shows algebraic behaviour as s | o for a parameter
Bo > 0 and a coefficient by > 0, and the first derivative of the normalized phase is of order
b1 > —1 as s | 0g. Moreover, we assume there exist parameters dg,d; € C with d; > —1, for

which as s | oy we have

d(s) = 0 {(s = a0) }.

(8.2.26) D'(s) =0 {(s — 00)51} ;

where D(s) := (s — 09)~%d(s) is the normalized amplitude as in (8.2.6), for brevity without the
index. We then define

(8.2.27) dp := lim D(s)

sloo

and observe dy € C. Finally, the amplitude function k(s+t) is also once continuous differentiable
with respect to s on (00, 5], and as s | o, for ko(oo,t) € C\ {0} and ko(00,t), k1(00,t) € C
with k1 (09,t) > —1, we have

k(s+t) ~ ko(oo,t)(s — 00)50("07”,

R = S+ O{(s - w0}

(8.2.28)

By inspection of (8.2.24) with o = 0y it is easy to see that, in these circumstances the function
k(s + t) only contributes to the region of absolute convergence of the indicated integral, if ¢ is
a fixed point and Rkg(0p,t) # 0. Conversely, if ¢ is a fixed but arbitrary point from an interval
[a,b] for real numbers 0 < a < b, and k(u) # 0 for some u € (o9 + a,S + b], it is reasonable

to assume ko(0p,t) = 0. In any case, by Lemma 6.3.1, the region of absolute convergence and
%Ho(o’o,t)

analyticity of (8.2.24) coincides with the half plane Rz < Rxo + 5, Where
1446
(8.2.29) Yo i= —20
Bo

Notice, however, that the exact region of analyticity may even be larger, since the parameter dg
need not be unique. Denote by B(s) the normalized phase as in (8.2.5), also for brevity without
the index 09, and refer to K (s;t) as the normalized amplitude on (oy, S], analogous to (8.2.21).

In the fashion of (6.3.48), it is then easy to deduce by partial integration for fixed z € C with
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Rz < Ryo + Froleed),

0

—2z,t (S — JO)fBO(XO*Z)JFHO(UO,t) B(S)
NLO, 5] Bo(z = x0) — Ko(00, 1) ‘ (SHK(S51)
S
+ / s — UO ﬁo (xo—2)+ro(o0,t)
(8.2.30) Bo(z = x0) — Ko(oo, ¢
X di {eZB(s)D(s)K(s; t)} ds
s
o (S — UO)ﬁo(Xo—Z)-i-Ho(ao,t) 2B(S) .
(8.2.31) = " Aol — xo) = oo D) e D(S)K(S;t)
S
z
(s — 00)60(XO_Z)+“0(UO’t)eZB(S)B'(s)D(s)K(s; t)ds
zZ— — Kkoloo, t /
Bo(z — x0) — Ko(o0 )00
1 S
+ (s — og)Poxo=2)Frole0) 2B() D/ () K (s;1)ds
Bo(z — — kol(og, t /
0(z — x0) — Ko(oo )UO
1 S
(s — 00)60(XO7Z)+”°(U°’t)eZB(s)D(S)K/(S; t)ds
Bol(z — — ko(oo, t /
0(z — x0) — Ko(0o0 )O_O

According to the definition of K(s;t), we can equivalently write

K'(s+1)
(S _ UO)KQ(O’Q,t)

k(s +1)
(s — 00)"‘0(007t)+1'

K'(s;t) = — Ko(00, 1)
Following from our assumptions on the ingredient functions, the expansion (8.2.31) thus estab-
lishes the analytic continuation of (8.2.24) into the half plane

(8.2.32) Rz < Rxo +

R 1
HO(‘ZO) + Xﬁo(ﬁl,él, K1(0'07t))'

The latter especially includes the vertical line Rz = %XO—FW’ which we recall as the abscissa
of convergence of the original representation (8.2.24). Along this line the analytic continuation
indicates the presence of a simple pole as the only singularity in the extended region. According
to (8.2.30) and subject to the fundamental theorem of calculus, the associated residue is given

by:

_ ro(og,t)
Res N[ Z’q = L Lo BB by k(501

z:X0+7KO(BGOO’t> 00, S BO
1 7 d (o0,t)
ty / — {e(XfJ*%S)’)B(S)D(s)K(s;t)} ds
S
00-0
d Lk (o0,t)
(8233) = —B—Z {bo} X0 0500 K(O’O7t)
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Here, upon taking into account the first requirement in (8.2.28) and concluding ko(og,t) =
k(oo +t) in the case ko(0p,t) = 0, by definition of K (s;t), we have

k(og+1t), if ko(oo,t) =0,
(8.2.34) K(o0;t) = (G0 +%) 0(70,7)

ko(oo,t), otherwise.

It must be emphasized that, if and only if dy = 0, the above residue equals zero and at z =
Xo + w the principal part of the Laurent expansion of A[...] vanishes. In this event, the
function is holomorphic in the whole half plane (8.2.32).

—Moo’t) the above point matches the origin of the complex z-plane.

In the situation yg =
There, the product (8.2.25) may then exhibit a pole of order no greater than two. To characterize
the corresponding residue we note, in a neighborhood of z = 0 the generating function possesses

a Laurent expansion of the form

—z,t 1d
(8.2.35) /\/‘[U;’S} = —;FEK(UO; t) + vo(t; 00, 5) + O(2),

Ho(o’o,t)

in which the residue was computed from (8.2.33) with xo+ = 0. Regarding the coefficient

v(t; 09, S) we know from Taylor’s theorem:

d —z,t
vo(t; 09, S) ::Clzzj\f[ = }

go, S =0
1 d —Boz ,zB(S)
=~ 5 5 |8 o0 P ePODES)K(S:1) |
0 z=0
1d ; d
e o —Boz zB(s) .
+ R /(5 00) I {e D(S)K(s,t)}ds By

Arbitrary derivatives of the integral function on the right hand side can be determined by
differentiation under the integral sign, subject to uniform convergence with respect to z in any
compact subset of the region (8.2.32). See also Lemma 6.3.1. But by (8.2.31) and by definition
of B(s) in (8.2.5) we deduce

S S
/ (s — ao)*ﬁOZ% {eZB(s)D(s)K(s; t)} ds = 2 / {o(8)} 2 B'(s)D(s)K (5:1)ds
g0 g0 ;
+ / {p(s)} ¢ {D'(S)K(S; t) + D(s)K'(s; t)} ds.
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We thus eventually arrive at

S

v(t; 00, 5) = DB(;S’) log {¢(S)} K(S;t) + ﬂlo/B/(s)D(s)K(s; t)ds
(8.2.36) p 70
log {¢(s)} {D'(s)K (s;t) + D(s)K'(s;t) } ds.

ﬁ

g0

8.2.2.2. An Infinite Range of Integration and a Kernel of the First Kind

The contribution of the amplitude k(s + ¢) to the absolute convergence of the integral (8.2.24)

becomes substantially more important if the upper endpoint is infinite, i.e., if
o0
—2z,1
(8.2.37) N[S,Zc;o] = /{go(s)}_z d(s)k(s + t)ds,
S

where p(u), d(u) and k(u) are once continuously differentiable on v > S > 0. Furthermore,
©(u) > 0, and at infinity each function exhibits algebraic behaviour for parameters fy > 0,
9o, ko € C and constants by > 0, do, ko € C\ {0}. Besides, each function is assumed to have a
normalized counterpart with a derivative of order (51,1, RKk1 > 1 at infinity. Notice that the
parameter ko describes not only the behaviour of k(u) at infinity but especially of k(s + t) as
s — oo for a fixed but arbitrary ¢ > 0. This is in contrast to the last paragraph, where the local
parameter of k(s + t) was seen to depend on t. As a consequence, in the present situation for
any fixed ¢t > 0 both functions f(s,t) := s k(s + t) and the normalized amplitude K (s + t)
are O(1) as s — oo for any fixed ¢t > 0. For later investigations of (8.2.37) as the interior of an
iterated integral we recommend use of K (s+t), since this function itself and all of its derivatives
again depend on s+ t, whereas f(s,t) actually possesses two arguments s and s+ t. The choice
of K(s+ t), however, makes the integration by parts procedure for analytically continuing the
above integral slightly more elaborate.

In the described setup the integral (8.2.37) for arbitrary ¢ > 0 converges absolutely and

uniformly in any compact subset of Rz < Rny, where we now denote

__ 0p—1

0-— ;

(8.2.38) X 5601
M=+ 5

and it is thus holomorphic there. Representing the ingredient functions ¢, d and k in terms of
their normalized counterparts B, D and K, see (8.2.8) and (8.2.9), upon integrating by parts
we obtain for Rz < Rng and fixed ¢ > 0:

—Z, t /Sﬁo o ,,70 162B(5)D(3) K(S+t) ds
(1+ 5
S
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So(z=m)
8.2.39 S — e G ) TE
( ) Boe—m)" (S)

1 T oy d K(s+1)
_ Bo(z—no) =) ozB(s) d
50(2—770)5/8 ds {6 (S)(1+§)“0} °

In the first equality we also factorized the integrand into a simple power of s and a function

K(S +1t)
(1+ 5)

that is bounded and non-vanishing at infinity. By virtue of the product and the chain rule we

finally arrive at

(8.2.40) N[;Zwt] _ _mew(sm(s)m
_ m Zsﬁo(ZXO)ezB(S) B/(5)D(s) m s
_ Bo(zl—no) Zsﬁo(z—xo)ezB(S)D/(s)mds
_ M S/Oosﬁo(z—Xo)ezB(S) D(S)st

__ tho Bo(z—x0)—1,2B(s) M
Bo(z = m0) S/ ’ S P

Since the derivatives of B, D and K at infinity are of order 1, Rd; and Rrki, respectively, it

becomes clear that all integrals in (8.2.40) converge absolutely for z € C with
(8.2.41) Rz < Rno + 1, (B1,01, K1, 2).

Due to the additional uniform convergence of each integral, the expansion (8.2.40) establishes
the analytic continuation of the initial integral (8.2.37) into the wider half plane (8.2.41) for any
fixed t > 0. Observe that the integrals in the above expansion are of the same type as the initial
representation, which was not the case if f(s,t) rather than K(s + t) was employed. Now, the
extended half plane (8.2.41) contains the abscissa of convergence of (8.2.37). There, particularly
at the point z = 7, the continuation (8.2.40) exhibits a simple pole. The associated residue is

readily computed from (8.2.39) with the aid of the fundamental theorem of calculus:

—z,t 1 K(S +1)
— __— omB(S) il LS
5530/\/[5, oo} & PO T
1 [ d K(s+1)
_ = | =) m0B(s) Il S
B S/ I {e D(s)(1 n z)m}ds
(8.2.42) _ —dg’O“O {bo} ™™
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In the exceptional case ng = 0, in (8.2.25) the latter singularity merges with the simple pole
of the gamma function at z = 0 to a pole of second order. To determine the residue of the

indicated product then, as z — 0 we conclude from the elementary rules of complex calculus

(8.2.43) N[_Z’ t] _ _Ldoko

S,OO —;W"i‘l/o(t S)+O( )

where the residue was again obtained from (8.2.42) with z = 7, while Taylor’s theorem yields:

w(t; S) == ZN[S oo}
z=0
_ Y d [ s eis) g K(E+1)
(8.2.44) =G {S DIy T } '

z=0
1 d d K(s+1)
o Boz & ZB(S)D
%dz/ ds {e s Ty }ds
S

According to the uniform convergence of each integral in the expansion (8.2.40), differentiation

z=0

under the integral sign is admitted. By taking into account the definition of the normalized

phase, with yo = —% this leads to

(8.2.45) w(t; S) = SBZO log{w(S)}D(S)(S(i;Q
. loe fo(s) Dy K+
& S/s {B (s)D(s) —log{e(s)} D'( )} (54 t)ro

1 Oos’“’ 0 s s 7K/(S+t)
+Bos/ log {¢(s)} D( )(SH)HO

[e.o]

50 [ 01 log {p(s)} D(s) 2T 1)

ey G

8.2.2.3. An Infinite Range of Integration and a Kernel of the Second Kind

A slight modification of the described technique is required if, under the assumptions from the

last paragraph, for fixed ¢ > 0 we consider a generating function of the form
—z,t
(8.2.46) 3 [ ;’ ] = / {o(s+1t)} *d(s)k(s+t)ds.
S

In these circumstances the integral on the right hand side for any ¢ > 0 still converges absolutely
and is holomorphic in the half plane fz < Rno with the parameter 1y that was defined in (8.2.38).
To determine an expansion of its analytic continuation in terms of integrals of the above type,

however, we must now also take into account the dependence of the kernel on the second variable.
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By appropriately integrating by parts we then obtain for Rz < ny and ¢ > 0, similar to (8.2.39)
by definition of 7g:

3[—2’,75] _ GPo(z=m) D(S K(S+1) ZB(5+1)
S Po(z = o) (1+ §)ro—foz

L
Bo(z — o)

§1-00 K(S+t) .p
8.2.48 =——" D) 2B+
( ) 60(2_770) ( )(S+t)“0_6026

1 160 vy K8+ pless)
B ,30(2 — 770) /S "D (8) (S + t)”O—ﬁoze ds

195

(8.2.47)

oy d K(s+1t)
Bo(z—no) zB(s+t)
s T {D(s)(l n %)no—ﬁoze } ds

0)\8

z

Bo(z — 10)

K(s+1)
(s + t)ro—Foz

Sl—éoD(S)B/(S —i—t) zB(s-i-t)dS

v
Bo(z — o)

51_60D(5)M623(8+0d8
(s + t)ro—Foz

D B g

t(,@oz — HQ)

_ K(s+1t) B
AV bR PS5 T e*B(st) g
Bo(z — o) (s)

(s + t)1+ro—boz

0)\8

In accordance with the order of the derivatives of B, D and K at infinity, absolute convergence

of the above integrals holds for z € C with
(8.2.49) Rz < Rno —1-7750(,31,51,/{1,2).

Since the convergence of each integral is uniform in any compact subset therein, the expansion
(8.2.48) for fixed ¢t > 0 analytically extends (8.2.46) to the region (8.2.49), where it shows a pole
of simple order at z = 19. The computation of the residue from (8.2.47) is a routine task and

leads to

(8.2.50) Res 3[

2=T0

—z,t dok
Za :| — _ 0 0 {bo}—no .
S Bo

For 19 = 0 this last pole lies at the origin, thereby leading to a second order pole of the product

(8.2.25) there. Then, in an annulus around z = 0 we find a Laurent expansion of the generating

function (8.2.46) with controlling terms

—Z,t _ 1 do]{io .
(8.2.51) 3{8]——Zﬁo+®@®+0@%

in which the coefficient of the constant summand can be computed by termwise differentiation

of the expansion (8.2.48), in particular by differentiation under the integral sign. Since 79 = 0
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implies 1 — dg = kg, this eventually brings us:

Co(t; S) = d%:ZB [z, t]

S
2=0
- - ;)(ZS%ZD(S)W&B(SH) »
_ Blojz Zsﬁozjs { D(S)W&BW)} ds y
(82.52) = SBZO (S)m log {¢(5 + 1)}
+ [310 Zs”OD’(s)m log {¢(s +1t)}ds
_ Blo Z(si)ﬁoD(S) {B'(s +t)K(s+1) = K'(s +t)log {¢(s + 1)} } ds
+ ;0 ZSHO_ID(s)m {Bo + rolog {p(s +1)}}ds

8.2.3. Convergence Tests for Iterated Convolution-Type Integrals

To characterize the convergence behaviour of iterated integrals of convolution type is slightly
more complicated in comparison with single integrals. This statement is readily confirmed if,

for p1,p2,q € R, we consider the iterated Mellin-type integral

o0 o0

/tp2/3p1(8+t)qudt.

0 0

From single integrals of this type we know, that there are two critical areas, where the integrand
vanishes or diverges, respectively near the origin and near infinity. Regarding the above iterated
integral, however, we notice four pairs of critical segments, viz as s,t | 0, as s,t — oo and as
s 1 0,t = oo as well as the converse. It is therefore reasonable to separate the integral, for a
distinction between three different pairs of integration paths. After elementary manipulations,
in each case definite conditions can be established by virtue of the criteria that are known for

the convergence of single integrals.

Lemma 8.2.1 (two zero endpoints). With 11,75 > 0 the integral

T, T
/tp2/5p1(5+t)qudt
0 0

converges absolutely if and only if p1,p2 > —1 and p1 + ps + q¢ > —2.
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Observe that the condition p; > —1 for each j € {1,2} is also required for the absolute
convergence of fOTj uPi(u + v)4du for an arbitrary fixed v > 0. Accordingly, we describe it as
the condition for the convergence of the single component of the above iterated integral. The
additional restriction p; 4+ p2 + g > —2 is irrelevant for the absolute convergence of each single

component, but it is due to the iteration

Proof. From substitution and upon formally interchanging the order of integration we obtain:

T> Ty
/tm /spl(s—{—t)qudt /tp1+p2+q+ / —|—u qdudt
0 0 0

Iy

o0 Tl
= / uP' (1 4 u)? / tp1+p2+q+1dtdu
0 0
Ty
Ty

o

= /upl(l +u)qdu/tp1+P2+q+1dt+/upl(l +u)‘1/t7’1+1’2+q+1dtdu
0

0 T 0
Ta

Ty

Ty

[tsara

_p1+p2+q+20

Tp1+p2+q+2
2

Tp1+p2+q+2 o

‘|1- + +2/u_p2_q_2(1+u)qdu
b1 Tp2T¢q 2
)

Clearly, by absolute convergence these manipulations are permitted if and only if p;,ps > —1

and p; +p2 +q > —2. n

From the case of two finite integration paths we now deduce a convergence condition if both

paths emerge from a finite point but end at infinity.

Corollary 8.2.2 (two infinite endpoints). With 11,75 > 0 the integral

/tm/sp1 (s+t)%dsdt
T

converges absolutely if and only if p1 +q < —1, p2o+qg < —1 and p1 +p2 + q < —2.
Proof. A simple change of variables in each integral maps the point at infinity to the origin,
which yields

1 1

Ty
/tm/spl (s+t)dsdt = / “h2maT 2/ P42 (g + ) dud.
T2 0 0
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The absolute convergence thus follows immediately from Lemma 8.2.1. n

The last important case can not be derived solely by means of a substitution.

Lemma 8.2.3 (a zero endpoint and an infinite endpoint). With T}, T > 0 the integral

oo T
/tp2/5p1(8+t)qudt
T, 0

converges absolutely if and only if p1 > —1 and po +q < —1.

Contrary to the preceding two criteria we notice independence of the parameters p; and p2+q.
In other words, the iterated integral in Lemma 8.2.3 converges absolutely if and only if each
of its single components does so. The reason is that there are three areas where the integrand
exhibits critical behaviour, respectively as s | 0, as t — oo and as (s,t) — co. But (s,t) — oo if
and only if £ — co. Conversely, for instance in Lemma 8.2.1 there are also three different critical
areas, namely as s | 0, as ¢t | 0 and as (s,t) | 0. However, in these circumstances (s,t) | 0
does not follow if either s | 0 or ¢ | 0. Similarly in Corollary 8.2.2 the critical areas are as
s — 00, as t — 0o and as (s,t) — oo. But (s,t) — oo happens if either of the single variables or
even both of them simultaneously tend to infinity. This leads to the respective extra restrictions
p1+p2+q > —2 and p1 + p2 + ¢ < —2, to which we occasionally refer as the supplementary

conditions for the absolute convergence of the iteration.

Proof. Again we make a change of variables, accompanied by a formal interchange in the order

of integration, which brings us:

T,
00 T )

7
/tp2 /3p1(3+t)qudt = /tp1+P2+q+1/upl(1 + u)ddudt
b 0 T> 0
= / uP' (14 u)? / tPrrPtatl gy gy,
0 Ty
Iy
)
= ; Tp1+p2+Q+2/up2q2(1+u)qdu
pAp+tq+2)|! )
Ty
Ty
_T2pl+p2+q+2/up1(1 +u)qdu}
0

The restrictions p; > —1 and p2+¢g < —1 are clearly necessary to guarantee absolute convergence
of the last two single integrals, in which circumstances the full sequence of equations remains
valid. The proof is thus finished. n
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8.2.4. Analyticity of Iterated Generating Functions

We will now employ the previously derived tests for absolute convergence, to deduce analyticity
of certain iterated generating functions. Throughout this section we denote by ¢(s,t) a function

with the following properties:

(Q) q(s,t) is uniformly continuous on any closed subset of (0, 1]?, and for Q > 0 and k1, ko, k3 €

R, uniformly with respect to (s,t) € (0,1]2, it satisfies

(8.2.53) q(s,t) < Qs™ (s +t)"2¢".

This function enables us, to confine to iterated integrals along the unit interval. It is easy to see,
that in (8.2.1) and in (8.2.2) the integration paths always can be mapped to the unit interval by
an appropriate substitution. The function k(s+t) then changes to a function of the type q(s,t).
For example, if c =1, S =00, 7=0and T = 1, and as u — oo for a parameter x € C we have
k(u) = O(u~"%). In this event, the change of variables s = 1 maps the infinite segment to the

unit interval, and uniformly with respect to (u,t) € (0,1]? we find

EOL e 00

1 < o R —Rr )
|k(L+)] <u’™(1+ ut) max nax =

Hence, (8.2.53) holds. Both of the analyticity statements to be established below basically rely
on the next lemma.

Lemma 8.2.4. If we denote the integral in Lemma 8.2.1 by I1(T1,T>) and assume its absolute
convergence, then I(T1,T2) — 0 as Tj | 0 with fized T, > 0 for each j,k € {1,2} with j # k.

Proof. From the proof of the lemma we ascertain the identity

T
Tp1+p2+Q+2 T
(T, T :2/up1 1+ w)du
71, T2) p1+p2+q+20 ( )
Tp1+p2+¢1+2
Ty
Ty

If in the first integral we make the change of variables v = %u, and if in the second by means

of the binomial theorem for 77 < % we expand the function (1 4 u)?, we obtain

p1+1pp2+q+1
Tl T2

(T, Ty) = 2+ "2
(T, 1) p1+p2+q+2

/vpl(l + %v)qdv
0

TP1 +p2+q+2
1

/up2q2(1 + u)?du
p1+p2tq+2

1
2
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TP1tp2tgt2 1
+ 1 q {2p2+q+1—k — (Q)k—pa—q—l} .
prpetaq+2=\k)k—pr—q—1 T

With the parameters p1, p2, ¢ being subject to the conditions of Lemma 8.2.1, it is easy to see
that I(7T1,T2) — 0 as Ty | 0 for any fixed 75 > 0. The proof of the converse statement is

analogous. ]

We can now easily verify the following lemmas.

Lemma 8.2.5 (analyticity of first and second kind iterated generating functions). In
addition to the condition (Q), denote by ¥(s,t) a function that is uniformly continuous with re-

spect to (s, t) € I? for each closed I C (0,1]. Furthermore, inf(, ez ¥(u,v) >0, and there exist

B1,P3 >0, o > —p1 — B3 and p > 0 such that, as (s,t) L 0 we have

(8.2.54) U(s,t) ~ ps’(s +t)%2t%,

Concerning the involved parameters, we require

K1 > —1, Zfﬁl =0,
K1+ Ky + kK3 > =2, if fi+ P2+ B3 =0,
kg > —1, ifﬁg =0.

The integral transform

1 1
(8.2.55) M(C) := / / {(s,8)} " q(s, t)dsdt
0 0

1s then holomorphic in its region of absolute convergence, viz for f1 = B2 = B3 = 0 in the whole

complez plane and otherwise in the greatest common of the half planes

=, /1 >0,
(8.2.56) RE < pHEbEt2 5y 4 By + B3 > 0,
”%;rl, B3 > 0.

Its derivatives of arbitrary order and therefore especially residues can be calculated by differen-

tiating under the sign of integration.

According to the conditions on f1, 52, 83, the function ¢ (s,t) can be a function of a single
variable only. Therefore, (8.2.55) generalizes the first and second kind generating functions
(8.2.1) and (8.2.2). As a particular example, in (8.2.2) we choose 0 =1, S = oo, 7 = 0 and
T =1, and as u — oo we assume @(u) ~ bou™? for by, 3 > 0. The substitution s = % then
results in an integral in the shape of (8.2.55) with 1 (u,t) = @(L +1). As (u,t) | 0 we then
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conclude
(L +1) ~ bouP (1 +ut) ™ ~ bou?,

which shows that v (u,t) satisfies the condition (8.2.54).

Proof. If we define the function

P (3 + t)ﬁQtﬁs

P(s,t) := .0 ,

then P(s,t) > 0 for all (s,t) € (0,1)2, and we obtain

1 1
g—P1¢
:/t 5«*4/ e e PNg(s, t)dsdt.
0 0

Due to the assumptions on ¢ (s, t), the function P(s,t) is uniformly continuous on [0, 1]?, whence

Mp = P(u,
P e T )

is finite, which for any ¢ € C yields

o |R¢) »
e%CP(SJ) < Z - ‘P(S,t)v < e|§R<|MP‘

By virtue of (8.2.53), we therefore deduce the bound

P g—BRC

melvp [ pra—pac
MO < Qe P/t 3 fs / e st
0

where by Lemma 8.2.1 the integral on the right hand side converges absolutely for all { € C if
f1 = B2 = B3 = 0 and for those ( € C subject to (8.2.56) otherwise. To verify analyticity of
M (¢), we must examine analyticity and as n — oo the convergence behaviour of the sequence

of integrals

(8.2.57) (s,t)}° q(s,t)dsdt.

:\*—‘\
S\H\H

For fixed n we conclude absolute convergence for all ( € C, by continuity of ¢(s,t) and ¢(s,t)
with respect to (s,t) € [+, 1]2. Moreover, the integrand of 90, (¢) for fixed £ <t <1l and (€ C
constitutes a continuous function of % < s < 1, but also a holomorphic function of { € C for
fixed % < s,t < 1. By Theorem 5.6.1 in [Wegert, 2012], the interior integral, which we denote
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by

1
(8.2.58) N, (C 1) = /{zp(s,t)}—@“ q(s, t)ds,

thus furnishes an entire function of ¢ for fixed % <t < 1. Furthermore,

(8.2.59) (¢, < maxg(u,v)|w(u,v) 7
(uv)€ly,1]2

Since this upper bound is finite for any ( € C, Lebesgue’s dominated convergence theorem
implies continuity of 9, (¢, t) with respect to % <t <1 for each fixed ¢ € C. To combine these
findings, again by Theorem 5.6.1 [Wegert, 2012], the iterated integral 9t,,(¢) establishes an entire
function of ¢ for any n € N. Next, we denote by Z a compact subset of C for 1 = B2 = 83 =0,
but of the half plane (8.2.56) otherwise. By Theorem 5.1.3 in [Wegert, 2012], it then remains to
show the convergence of the sequence M,,(¢) as n — oo to M(¢) uniformly in Z. For this, we

proceed with a simple application of the triangle inequality, which for any ¢ € Z yields

1 1
13— B3R gr1—B1RC
(8.2.60) () - M) < Qe | [ [ [ ] (s + pypcrs 45t
0 0 0 0

with the iterated integrals on the right hand side being absolutely convergent. In order to
apply a uniform bound, in the first iterated integral we separate the interior range of integration

according to the segments along which s + ¢ is smaller or greater than one, to obtain

1
n t

; tr3— B3R gr1—B1RC n 3= B3R gr1—B1RC ; 3= B3R¢ gr1—PF1RC
/ G5 dsdt:// G T dsdt+// G5 1 )P dsdt.
0 0 0

o\
3=

01—t

Then, with z_ := min{R(: ¢ € Z} and =4 = max{R( : ( € £}, uniformly with respect to
¢ € Z for n > 2 we find:

1
= ttff3 Bamy gr1—Pray i
/ (55 )P dsdt —i—/
0 0

1
/‘tm B3z g1 —fray
0

dsdt < dsdt

s+ t)B2RC—r2

1
3 =83y gr1—Pizy
/ (s + t)P2z——r2
t

O~

1
/tm B3RC gr1—B1RC¢
0

1-

IN

O~ O\:\~

dsdt

PR A

1

nP3Ty—r3—1 gf1—Bizy
4+ ——— max / —————ds
1+ K3 — B3x4 o<v<lt ) (s+ v)P2r——k2

2

By Lemma 8.2.4, the first summand vanishes as n — oo, whereas the decay of the second

278



8.2. Auxiliary Results

summand is obvious. A similar bound can be deduced for the second iterated integral in (8.2.60).
To summarize these findings, Theorem 5.1.3 in [Wegert, 2012] yields analyticity of 9t({) in its
region of absolute convergence. Finally, a repeated application of the second statement from

Theorem 5.6.1 for arbitrary k,n € N shows

dk

()

1
/ log (s, ) {p(s, 1)} q(s, t)dsdt.

:\H\H

S|=

But Theorem 5.1.3 establishes for any k& € Ny as n — oo the convergence

dk dk
() — (O,

(8.2.61) i i

uniformly in any compact subset within the region of analyticity of 9M({). Accordingly, arbitrary
derivatives of the limit generating function can be determined by differentiation under the inte-
gral sign. It must be emphasized, that the obtained integral representation for each derivative
again converges absolutely and is a holomorphic function of ¢ in the same region, where 9t(¢)

is holomorphic. [

A third kind of iterated generating functions to be encountered below, is covered by the final

lemma of this section.

Lemma 8.2.6 (analyticity of third kind iterated generating functions). Provided con-
dition (Q) holds and

K1 > max {0, —/ﬁg} — K3,

the integral transform

1 1
(8.2.62) £(¢) = [ 71 (s,t)dsdt
[ ]

1s absolutely convergent and holomorphic in the strip
(8.2.63) —kg < R( < K1,

and the computation of derivatives of arbitrary order and particularly of residues is permissible

under the sign of integration.

Proof. It is clear that for each n € N the integral

1 1
(8.2.64) £,(0) := /t< 1/3 q(s, t)dsdt
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represents an entire function of . The proof of its uniform convergence to £(¢) in any compact

subset of the strip (8.2.63) is easily conducted by means of the bound

1
n

! % ! H3+§RC 1 gh1— RC—1
(8.2.65) 8O-l [ [+ / ik i
0 0 0

valid for any ¢ € C from the indicated strip. An immdiate application of a uniform bound

with respect to (, however, may violate the conditions for absolute convergence. Instead, one
must first employ the identity from the proof of Lemma 8.2.1, to decompose each of the iterated
integrals in (8.2.65) to a sum of two single integrals. These integrals provide a better foundation
for a uniform bound. Their convergence to zero then can be shown in analogy to the proof of
Lemma 8.2.4, from which analyticity of £(¢) in the strip (8.2.63) follows by Theorem 5.1.3 in
[Wegert, 2012]. Moreover, again similar to the proof of Lemma 8.2.5 one readily confirms the

permission to differentiate under the integral sign. n

8.2.5. Region of Analyticity and Order of Integration

In this short section we point out, how the region of analyticity of an iterated generating function

may depend on its order of integration. As an example we consider the integral

(8.2.66) 7 / ~C (s + {)dsdt
1

for functions ¢(s) > 0, e(t) and k(s + t), which are uniformly continuous on any closed subset
of (0,1], [1,00) and (0,1] x [1,00), respectively. Moreover, ¢(s) exhibits algebraic behaviour as
s | 0 for a parameter 5y > 0 and a coefficient by > 0, whereas e(t) and k(t) are algebraic at
infinity for parameters €g, kg € C with Reg + Rro > 1 and coefficients eg, kg € C\ {0}. From
Lemma 8.2.5 we know that absolute convergence and analyticity of the above integral then holds

for any ¢ € C with R¢ < % Particularly by absolute convergence we can write equivalently

(8.2.67) e(—0) = / }C/e k(s + t)dtds,
1

which of course still represents £(—¢) in the half plane R¢ < 6—10 If, however, we define d(s) :=
J77 e(t)k(s + t)dt, this last integral becomes

(8.2.68) £(—¢) = / {o(s)}Cd(s)ds.
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By Lebesgue’s dominated convergence theorem, d(s) = O(1) as s | 0. If even d(s) = o(1) as
s} 0, and if the decay is sufficiently fast, the representations (8.2.67) and (8.2.68) will be valid
in a wider region than (8.2.66). Hence, a consideration of £(—() as an iterated integral may
confine its region of analyticity. In other words, the modulus of the integrand of the iterated
integral will in general yield a smaller region of convergence than the modulus of the integrand
of the related single integral (8.2.68). Although this is actually not surprising, it must be kept in
mind throughout our investigations of iterated generating functions. We also mention that the
point ( = ,BLO’ which the representation (8.2.66) suggests to be a singularity, is actually a point
of analyticity, if (8.2.68) represents £(—() in a region that contains the half plane ¢ < %

8.2.6. Analytic Continuation of Iterated Generating Functions

Having specified absolute convergence and analyticity criteria for iterated generating functions
of convolution-type, it is obvious to think about methods for determining their analytic con-
tinuation. Regarding single integral transforms we know about the possibility to employ an
appropriate asymptotic expansion for the amplitude function or, even more versatile, partial
integration. In view of iterated transforms it seems clear that these techniques can not im-
mediately be adopted but require some modifications. In an introductory paragraph of this
subsection we shall therefore provide an overview of the applicable modifications with the aid
of a simple iterated Mellin-type integral, before we actually transfer these techniques to general

transforms.

8.2.6.1. An Introductory Example: Iterated Mellin-Type Integrals

For0 <o < S <ooand 0 <7 <T < oo we consider the iterated Mellin-type integral

T S
g, g, S / Cl/ 55_1
8.2.69 = [ [ st
(8.2.69) MOl:C,T,T T+stt

From Subsection 8.2.3 we know that its absolute convergence essentially depends on the choice
of the endpoints. Given (8.2.69) and assuming for instance ¢ fixed, it is reasonable to study the
integral as a function of the variable £, which by Lemma 8.2.5 is then even holomorphic in its
region of absolute convergence. A special case occurs if c =7 =0and S =T = oco. In this

event (8.2.69) constitutes an iterated Mellin transform. Upon writing

§ 1 1 oo 1 1 oo 00 00 161
0 (0. ¢] t Th8ST
8.2.70 Mol 7 = ——dsdt,
(8:270) O[C,O,OO] //+//+//+// T+s+t
00 10 01 11
and applying Lemma 8.2.5 to each iterated integral, we deduce absolute convergence and analyt-

icity in 0 < R¢ < min{1,1 — RC} for fixed 0 < R < 1. To specify the analytic continuation into
a wider &-half plane is then particularly simple and, appealing to formula (A.6.4), for any fixed
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&, ¢ € C for which (8.2.70) converges absolutely, we obtain by means of elementary manipulations

570700

(8.2.71) JM%QQ%

| =rorora-e-o.

For the latter equality we especially identified the single Mellin transform of the rational function
m as a beta function, compare Example A.5.2 in the appendix. Besides the simplicity of the
above representation, the most important benefit is that it provides the analytic continuation to
the whole complex &-plane as a meromorphic function, revealing the location of the singularities.
Conversely, the situation essentially increases in difficulty if the formula (A.6.4) is unavailable.
This is always the case if in (8.2.69) both integration paths do not coincide with the positive

real axis. As an example how to proceed in such a situation we shall now examine

E,l,OO /OOC l/oo
2,72 =1 dsdt.
(8.2.72) M0|:<,1,Oo:| 1—}—5—}—255
1 1

By Corollary 8.2.2 this integral converges absolutely for &, ( € C with

R < 1,
RE < min{1,1 — R} .

(8.2.73)

For fixed ( it is even holomorphic in the indicated &-region due to its uniform convergence in
any compact subset. Speaking of absolute convergence and analyticity with respect to &, we

obviously need to incorporate the contribution of the amplitude a(s + t) := and of the

_1
1+s+t
integral function

o

8.2.74
( ) /1+s+t
1

On the one hand, the condition R8¢ < 1 is prescribed by the asymptotic behaviour of the
amplitude a(s + t), and it is required to guarantee for fixed ¢ > 1 the convergence of the single

integral

[e.o]

§61
/ds
1+s+1t

1

On the other hand, the restriction 8¢ < 1 — R corresponds to the supplementary condition
for the absolute convergence of the iterated integral. Roughly speaking it originates in the
asymptotic behaviour of f(s,{) as s — oo, which is substantially characterized by the fixed
variable (. The minimum structure of the abscissa of convergence in (8.2.73) must especially
be taken into account when calculating the analytic continuation. If we suppose for a moment

R¢ < 0 fixed, we have analyticity of (8.2.72) in ¢ < 1. If we then integrate once by parts in
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the usual fashion the interior integral for fixed 8¢ < 1 and t > 1, we obtain:

o

s6~1 s6~1 S 7
/ds: — /55 ds
1+s+t 5—11+s+t £—1 d81+s+t
1

1

[e.e]

1 1 1 1+1¢
- _ — s ds
E—-12+4+t €-1 (14 s+1)?
1
It is easy to see that the right hand side establishes the analytic continuation of the integral

on the left hand side into the region R¢ < 2 for any fixed t > 1. An application of the above
expansion to (8.2.72) yields

£, 1,00 1 /tcl 70417051 L+t
8.2.75 — ! dsdt.
( ) MO[C,l,oo e—1) 2+t -1 T Atst02®
1 1 1

Observe that the integrand of the double integral is O {tgsgfl(s + t)*2} as s,t — 00, therefore

by Lemma 8.2.5 implying absolute convergence and analyticity for fixed ¢ < 1 in the half plane
R¢ < min {2,1 — RC}. Consequently (8.2.75) represents the -analytic continuation of (8.2.72).

If RC < —1 we can repeat the standard integration by parts procedure to access a more
extended half plane. If, however, —1 < R({ < 0 it is inappropriate, because the right boundary
of the wider region ¢ < min{2,1 — R(} = 1 — R(¢ originates in the supplementary condition
for the convergence of the iterated integral. To show how to treat such a situation, we revisit
the integral (8.2.72) for arbitrary ¢ < 1, which implies absolute convergence and analyticity
in the half plane R < min{1,1 — R¢}. In order to overcome this minimum-type boundary we
propose an approach by virtue of integral transforms. Therefore we first note, according to the
Mellin inversion formula, for s,t > 0, a > 0 and 0 < ¢ < Ra we have

ctico
1 I'(z)I'(a — 2)

c—100
With a = 1 we see, the function on the left hand side reflects the asymptotic behaviour of the
amplitude function in (8.2.72) as s + ¢t — oo. To be exact, upon rearranging the indicated

integral in the form

1 ¢
(8.2.77) M| & B0 = /té‘ ! / S _SHU gear,
(¢, 1,00 s+tl4+s+t
1 1
we have 1 fs_it — 1 as s+t — oo. Now, the factorization of the integrand enables us to introduce

the integral (8.2.76) and to formally interchange the order of integration for ¢ = ¢y(&, (), leading
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to

6 1 CO(£7<)+ZOO
3 7OO:| -

¢,1,00 I(1—2)L(2,&()dz

(8.2.78) My |:
CO(§7C)_iOO

with the function in the integrand for brevity denoted by

8.2.79 L(2,6,¢) = [ 57271 [ s5F272 st ————dsdt.
( )
1 1

By Lemma 8.2.6, for fixed £, ¢ € C with R({ + () < 1 the integral £(z,&,() as a function of z

converges absolutely for and is holomorphic in
(8.2.80) RC <Rz < 1—RE.

As a consequence, with R¢ < 1 and RE < min {1, 1 — R} by taking into account the conditions
for the validity of (8.2.76), in (8.2.78) the interchange in the order of integration is permitted

for
(8.2.81) max {0, RC} < ¢p(§,¢) <min{l,1—RE}.

Such a parameter clearly always exists. The representation (8.2.78) will now serve to determine
the analytic continuation with respect to & for fixed (.

By inspection we observe that the evaluation of (8.2.78) for greater values of R¢ is closely
connected with the admissibility of greater values of R¢ for (8.2.79). The latter is in turn
equivalent to the admissibility of greater values of Rz, which are, however, denied by the presence
of the right boundary in (8.2.80). The boundary can be overcome by deriving the analytic
continuation of £(z,§, () towards the right direction of the z-plane. Assuming &,( € C with
R¢ <1 and RE < min{1,1 — R} fixed, because the restriction of Rz into this direction stems
from the interior integral in (8.2.79), we partially integrate this particular integral. Bearing in

mind

i s+t 1
dsl4+s+t (14+s+1)2’

this yields for fixed t > 1:

o0
+1

8.2.82 T P R
(5.2.82) Ne+z-10i= [0 20,

1

o
5259 B 1 1+t / sEte-1
-  fHz—124t E+2- +541)2
3 124t ¢ 1/

1
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The right hand side constitutes the analytic continuation into the half plane Rz < 2 — K¢, where

the integral converges absolutely. The only singularity therein is a simple pole with

o0

14t
8.2.84 R —1,1) =—1.
( ) Res N(€+2 T2t / 1+s+t
1
In terms of (8.2.82), instead of (8.2.79), we can write
(8.2.85) L(z,€,¢) = /tC—Z—lN(g + 2 — 1,t)dt.

1

According to the above findings, the interior integral function can be continued meromorphically

by virtue of the expansion (8.2.83), which yields

1 (o9 1+t [ oS S§+Z 1
— _ ( z—1 (—2—1
(3280) L6 =g / dt+/t / Ty
1 1

The integrals in this sum converge absolutely for ¢ < Rz and RC — 2 < Rz < 2 — RE with
R(E + ¢) < 2, respectively. Each of them represents a holomorphic function of z in its region
of absolute convergence. Hence, (8.2.86) establishes the analytic continuation of (8.2.79) to the

region
(8.2.87) RC< Rz <2-NE

for any fixed ¢ < 1 and RE < min{1,1 — R(}, exhibiting a simple pole at z = 1 — £. For the

associated residue we obtain from the fundamental theorem of calculus:

Res L /t5+< 21+t /t5+< 2/ s +t ———————dsdt
(8.2.88) 1 1 1
€+C—1

Furthermore, by absolute and with respect to &z € R uniform convergence of each integral in
(8.2.86), we see that L(z, £, () in the region (8.2.87) is O(1) as Sz — +o0, uniformly with respect
to Rz in any closed vertical substrip whose left and right boundary is still contained therein.
The uniformity with respect to 8z can be shown similar to the uniformity of convergence in any
compact subset.

We now reconsider the MB-integral representation (8.2.78), yet still with ¢ < 1 and R <
min {1,1 — RC} fixed. It is in fact easy to see by definition of ¢o(§,() that a wider range of
&-values is still denied. To change this we first note, according to the properties of the function
L(z,£,¢), that the closest singularity to the right of the vertical line Rz = ¢y(&, () especially
depends on &. If we assume without loss of generality 0 < R < min {1,1 — R(}, it is a pole of
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simple order at z = 1 — &. Moreover, since L£(z,&,() is O(1), the integrand of (8.2.78) shows
exponential decay as §z — +oo in R( < Rz < 2 — RE, due to the gamma functions. It is thus
permitted to displace the integration path rightwards across the indicated pole to match a new

vertical line with real part Rz = ¢1(&, (), where
(8.2.89) max {0, R(,1 — R} < c1(&,() <min{1,2 — RNE}.

Incorporating the fact that we encircle the pole in the clockwise direction, thereby incuring a

negative sign of the residue, by (8.2.88) from (8.2.78) we deduce

8.2.90 M = ———> 4+ M;(§ (),
(5.2.90) o[ 1% = - a0
where the second addend refers to the MB-integral
. c1(§,¢)+i00
(8.2.91) Mi(EQ) = 5 P(0(1 — 2)L(2,€,C)d=.
cl(§7C)—’iOO

At this point we finally return to a discussion of (8.2.90) as a function of { € C for fixed
R(¢ < 1. Regarding the first addend in this expansion, which equals a meromorphic function of
the variable under consideration, we notice the presence of an infinite sequence of poles at the
integers, accompanied by a pole at £ = 1 — (. Each pole is of simple order if { ¢ Z. Moreover,
concerning the MB-integral (8.2.91), we ascertain that the conditions imposed on the integration
path in (8.2.89) are admissible for R < 1 and

(8.2.92) 0 < RE < min{2,2 — RC}.

Due to the exponential decay of the gamma functions towards the imaginary direction, the
integral is then especially absolutely convergent. Now, for a given ¢ € C with R( < 1 we may

choose max {0, R(} < e < 1 and denote by X. the strip
(8.2.93) Xe={£€eC:1—-e<RE<2—¢}.

Then, e > 1 — RE and € < 2 — RE for each £ € X.. By (8.2.89) we can thus pick ¢1(§,() = ¢ for

all ¢ € X¢, and we can write

e+ic0
(8.2.94) Mi(EQ) = o / P(T(L - 2)L(z, €, C)d=.
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To verify the above integral holomorphic in the strip X, for n € N we introduce the sequence

of integrals

e+in

/ L(2)T(1 —2)L(z,&,¢)dz

e—in

1
2mi

(8.2.95) MP(E Q) =

Regarding the integrand we note that the integrals appearing in the representation (8.2.86) for
the function L(e + iy, &, ¢) converge absolutely for all y € R and

(8.2.96) RE<2—c.

By uniform convergence, the function £(e+iy, &, () is even holomorphic in this {-half plane with
the exception of the point £ = 1 — . We thereby conclude, with z = € + iy as a function of
—n < y < n the integrand of (8.2.95) is continuous for any fixed £ € X, particularly because
X, is contained in (8.2.96) and 1 — ¢ ¢ X.. In addition, for fixed —n < y < n as a function of
¢ € X the integrand is holomorphic. Hence, by Theorem 5.6.1 in [Wegert, 2012] the integral
(8.2.95) is also holomorphic in X, for each n € N. Finally we denote by X a compact subset of
the strip X, with

r_:=min{RE: € € X},
xy =max{RE: € X}.

From (8.2.86), for any y € R and £ € X, it is then easy to confirm that

o0 o0 (o) x+€1
1 1+t +
L(e+iy, &0 < ————— [ =1t /t%“l/ ————dsdt
L+ &0l s T / SR T+s+127
1 1

Especially since x4 < 2 — ¢ the preceding two integrals converge absolutely and yield a uniform
bound with respect to £ € X and y € R. Denoting that bound by the constant K > 0, for all

£ € X we eventually arrive at

Mi(E Q) ~ ME(E Q] < 5 / /|rs+zy||r<1—e—zy>|dy

By Lebesgue’s dominated convergence theorem, the right hand side tends to zero as n — oo,
uniformly with respect to £ € X. By Theorem 5.1.3 in [Wegert, 2012] this confirms the integral
(8.2.94) as a holomorphic function of the variable £ in the strip X.. But the latter can be managed
to overlap an arbitrary portion of the region 0 < R < min {1,1 — R(} by appropriately choosing
e, compare (8.2.93). We therefore conclude that the expansion (8.2.90) establishes the analytic
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continuation of the iterated Mellin-type integral (8.2.72) into the strip
(8.2.97) 0 < RE<min{2,2 — RN}

for arbitrary fixed R¢ < 1. Therein the first summand represents a meromorphic function with
two poles of simple order at & € {1,1 — (} for non-zero —1 < R < 1, or with a single first or
second order pole at £ = 1, respectively if R¢C < —1 or if { = 0. The second summand is in each

case analytic.

8.2.6.2. Two Infinite Paths and a Kernel of the First Kind

We shall now adopt the technique of the preceding paragraph to determine the analytic continua-
tion with respect to ¢ of an iterated generating function of the first kind (8.2.1) with P; = [T}, o0)
for each j € {1,2}, where T} > 0. The ingredient functions ¢(r) > 0, d(r), e(r), k(r) are assumed
once continuously differentiable on r > min {71,7%} and algebraic at infinity with coefficients
bp > 0, do, ep, ko € C\ {0} and parameters Sy > 0, dp, 0, ko € C. Furthermore, the first deriva-
tives of their normalized counterparts are supposed to be of respective order (31,9d1,e1,k1 € C

at infinity with 81, Rd1, Re1, Rr1 > 1. We then introduce the complex-valued parameters

_ o1
(8.2.98) X T

= go—1

Bo

and we require

R
(8.2.99) —% < Rgy < 0.

0

By making use of the normalized ingredients according to (8.2.8) and (8.2.9), in the above setup

the iterated generating function (8.2.1) can easily be rearranged in the following manner:

[e.o] o0

—(, Ty, 00 / o1 /Sﬂo(C—XO)—l 5

8.2.100 = [P0 lBt) | T BE D(5) K (s + t)dsdt

s2100)  m| oM ) [ g e PP s o)
T2 Tl

A quick application of Lemma 8.2.5 then immediately verifies absolute convergence and analyt-

icity for

R
(8.2.101) RC < R(xo + <o) + %
0

The right boundary of this half plane originates in the supplementary condition for the con-
vergence of the iterated integral. Our findings from the preceding paragraph thus suggest to

determine the analytic continuation by means of the method of integral transforms, for which
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purpose we define

(8.2.102) L(w, ) := /t—ﬁom—w—lE(t)/sﬁo(f—xo)w—ﬂo—lew(s)D(s)K(s+t)dsdt.

Ty T

By Corollary 8.2.2 for fixed ¢ < R(xo0 + <o) + % this integral converges absolutely, provided

(8.2.103) —BoRso < Rw < R(ko + Bo(xo — ¢))-

Moreover, in accordance with Lemma 8.2.6, we have w-analyticity of (8.2.102) in its region of

absolute convergence. Now, subject to (8.2.76), with the choice
(8.2.104) —BoRso < ug < Nk +min {0, BoR(xo — ¢)},

for any fixed ¢ € C satisfying (8.2.101) the iterated generating function (8.2.100) can be cast in

the form
(T 1 D) (o - w)
-6, 41,0 L w Ko — W
(8.2.105) M{ Ty, 00 ] =5 / T (o) L(w,()dw.
ug—100

It is easy to see that such a parameter ug indeed always exists under the required conditions
on ¢ and on ¢y. Concerning the arguments ¢ and w of L£(w,(), we notice a relation similar to
the preceding paragraph, from which we conclude the necessity to overcome the right boundary
of the region (8.2.103). Therefore we perform one step of integration by parts of the interior

integral, which yields:

T o (C—x0)+w—rKo CBT) ® 5 )
L(w,¢) = — DTy [ P B K (T + £)dt
(0.0 =~ e ) [ (VK (T +1
Ts
—~ . 7t—50<0—w—1E(t)
Bo(¢ = x0) + w — Ko
T
r d
Bo(¢—x0)+w—ro & | ¢B(s)
X /s o {e D(s)K (s + t)} dsdt
T

Tﬁo(C—Xo)-i-w—Ho
(8.2.106) = —60(5_ o E— BT D(Ty) /t—ﬁom—w—lE(t)K(T1 +t)dt

Ts
[o.¢]

1 / B —w—1
— » t~Poso—w=l p(y
Bo(¢ = x0) +w — ko ®)
n1,n27n3€{071}T2
ni+ng+nz=1
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[ee]
% /Sﬁo(C—xo)er—HoeCB(S) {¢B'(5)}™ D) (YK ™3) (s + t)dsdt
T

By taking into account the order of the derivatives of B(s), C(s) and K (s+t) as their arguments
tend to infinity, the absolute convergence and analyticity of the involved integrals follows from

Lemma 8.2.6 and was specified in Table 8.1.

# 0 single iterated

- —BoRg < Rw -

ni —Bofe < Rw < R(ko + Bolxo — ¢)) + b1 — 1 RC < R(xo + 0 + 52) + 2
ny  —BoRso < Rw < R(ko + Bolxo — ¢) +01) — 1 RC < Rxo + 0 + F2 + 2455

ng  —R(Boso + k1) < Rw < R(ko + Bolxo — ) + k1) =1 RC< R(xo + 0+ 52 mﬁj)

Table 8.1.: Table of absolute convergence for the integrals in (8.2.106). The first column refers to
the non-zero index n; for i € {1,2,3}, whereas the second and third columns describe the necessary
conditions for the convergence of each single integral and of the iterated integral as a whole.

To summarize the content of Table 8.1 in terms of (8.2.23), we can establish, for fixed { € C
subject to

Rro

(8.2.107) RC < R(xo +<0) + 500 + 115 (B, 01, 1),

the expansion (8.2.106) represents a meromorphic function of w in the strip

(8.2.108) —BoRso < Rw < Reg + BoR(xo — ¢ + 1p, (81,91, K1))-

Since g, (51,01, k1) > 0, this especially verifies the expansion for fixed ¢ € C satisfying (8.2.101)
as the analytic continuation of (8.2.102). In the extended region (8.2.108) we encounter a simple

pole, which is located at w = ko + So(xo0 — ¢). To specify the associated residue we denote

(8.2.109) AQ) = / tPolC—xo=s0)=ro=1 p(¢) it

Ts

where the integral on the right hand side converges absolutely for R( < R(xo + <o) + %. We

then obtain, according to absolute and uniform convergence:

o0

Res  L(w,¢) = —ePTD(TY) / tholC—xo—s0)=ro=1 B K (T} + t)dt
w=kro+Po(x0—¢)

Ts
Bo(¢—x0—s0)—ko—1 d ¢B(s)
~ [t E@) | & {e D(s)K (s + t)} dsdt
ds
Ty T
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o0
= ok o) ¢ [ 1y
1>
(8.2.110) = —doko {bo} " A(¢)

The second equality follows from the fundamental theorem of calculus and involves the coeffi-
cients by, dg and kg, appearing in the dominating term of the ingredient functions ¢, d and k at
infinity.

We eventually return to a study of the MB-integral (8.2.105). As we have seen in the preceding
paragraph, the pole of the expansion (8.2.106) plays a major role. If we confine the admissible
values of ¢ to the substrip of (8.2.101) given by

R
(8.2.111) Ryo < RC < Rlxo + %) + %
0
the restrictions in (8.2.104) change to
(8.2.112) —BoRso < uo < R(ko + Bo(xo — ¢))-

Moreover, in these circumstances the pole at w = kg + Bo(xo — () lies to the left of the pole of
the gamma function I'(kg — w), and it is the singularity that lies closest to the right of the line
Rw = up. It remains to examine the asymptotic behaviour of the integrand in (8.2.105) for large
|w|, in order to justify a rightward displacement of the integration path across the indicated pole.
On the one hand, due to the absolute and thus with respect to Sw € R uniform convergence of
each integral in the expansion (8.2.106), the function L(w, () is O(1) as Sw — oo, uniformly
with respect to Fow in any closed vertical substrip of (8.2.108). On the other hand, the gamma
functions in (8.2.105) decay exponentially fast as Sw — oo, uniformly with respect to Rw
in any closed vertical substrip of the complex plane. The whole integrand therefore vanishes
exponentially fast in the imaginary direction of the strip (8.2.108). As a consequence, arbitrary
displacements of the integration path in (8.2.105) are viable in the indicated strip. We decide
to move the path to the right to match a line Rw = u; with

uy > max {—LBoRso, R(ko + Lo(xo — )},
up < Rk + min {0, BoR(xo — ¢ +1,(B1,01,K1)) } -

(8.2.113)

This strip is especially non-empty for all admissible values of ¢y and ¢ € C satisfying (8.2.111). In
the process of the descibed displacement we only encounter the simple pole at w = o+ S0 (x0—C),
which is traversed in the clockwise direction, thereby leading to a negative sign of the residue.
We thus deduce from (8.2.105) and (8.2.110) for any ¢ € C subject to (8.2.111) the expansion

(€) + Mi(=¢ T, Tz),

(8.2.114) M [_Q T, 00} _ dokOF(no + Aolxo — Q)T(Bo(€ ~ x0)) o

Ty, 00 {bo}* T'(ko)
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in which the integral function in the second summand refers to

u1+100
(8.2.115) Mi(—GTy T = ZLM W

U1 —100

L(w,)dw.

We can now discuss the analyticity properties of (8.2.114) with respect to (. Concerning the
leading term we first examine the properties of the integral A(¢). It was defined in (8.2.109)

and is absolutely convergent and holomorphic in

R
(8.2.116) RC < R(xo0 +<0) + ﬁ,
0

and this half plane is readily seen to coincide with (8.2.101) still. It is routine to derive by

partial integration the analytic continuation. If we define

o0

(8.2.117) A(C) = TPl x0ms0) =m0 oy / #0(C—xo—s0)=ro Y (1) it
T>

this yields
A©)

(8.2.118) A(Q) = —

Bo(C—x0o—s0— %)

The corresponding region of absolute convergence and analyticity contains (8.2.116) and matches
in particular the half plane

o

(8.2.119) RC < Rxo +0) + 500 + 1, (21).

Hence, the right hand side of (8.2.118) establishes the analytic continuation of the initial integral
definition (8.2.109). In the extended region the only singularity is a simple pole at ¢ = T+
X0 + 0. The computation of the associated residue is postponed to a later paragraph. From the

fundamental theorem of calculus we get

K
(8.2.120) A (Xo +co+ 0) = ¢o.
Bo
In addition, arbitrary derivatives of A(¢) can be calculated by interchanging differentiation and

integration, appealing to Lemma 6.3.1. For k € N we therefore obtain

A = AF) <X0 + 60 + RD) ,
Bo

(8.2.121) o
= {Bolog(T2)}" BE(T3) +/{Bo log(t)}* E'(t)dt.
T
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Notice for each k the absolute convergence of these integrals. Finally, for ( € C subject to
(8.2.111) the definition of A({) enables us instead of (8.2.114) to write

M [—C, T, OO] _doko T'(ko+ Bolxo — ¢)I'(Bo(C — XO)>>\(C)

(8.2.122) Toooo |~ Bol(ko) {0} (C— x0— <0 — 52)

+ My (= T, To).

The first summand in the latter expansion then constitutes a meromorphic function of ¢ in the
region (8.2.119). The poles lying therein form an infinite sequence and are all of simple order with
a few possible exceptions occuring for special parametrizations. To eventually characterize the
analyticity properties of the MB-integral (8.2.115) we first recall that the vertical line ®w = uy
satisfies (8.2.113). Accordingly, the restrictions for admissible arguments ¢ € C are

o

(8.2.123) Rxo < RNC < R(xo + <o) + ﬁoo + 1, (B1, 01, K1)

In other words, for ( € C satisfying the above conditions we can find u; € R with the prop-
erty (8.2.113), and the MB-integral (8.2.115) then converges absolutely. Following from the
assumptions on the involved parameters, see also (8.2.99), it is always possible to pick a fixed

but arbitrary

(8.2.124) 0< —Rep < ¢ < K0,
Bo
If we then create a substrip Z. of (8.2.123) by
R R
(8.2.125) 7. = {z €C: Ryo+ =20 ¢ < Rz < Ryo + % + 15, (Br, 01, K1) — 5} :
0 0

by comparison with (8.2.113) it is easy to confirm validity of the choice u; = Bye for all ¢ € Z..
This yields for (8.2.115) the representation

Boe+ioco

(8.2.126) My(-GTT) = o W

,308—7;00

L(w,)dw.

The gamma functions appearing in the integrand are holomorphic for 0 < Rw < Rk and thus
especially continuous with respect to v € R for w = Spe + iv. In addition, for fixed ¢ € Z. the
function £(fpe +iv, () is also continuous with respect to v € R, particularly due to the absolute
and with respect to v € R uniform convergence of each integral in the expansion (8.2.106) and
since xo + % —¢e & Z.. Finally, L(Boe + iv,() for fixed v € R is holomorphic with respect to
¢ € Z.. We therefore conclude from Theorem 5.6.1 in [Wegert, 2012] for each n € N analyticity
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in Z. of the integral

Boe+in
b ['(w)T (ko — w)
M=) = 5 / = e
Boe—in

Next we denote by Z a closed vertical substrip of Z.. With w = fpe + v, we then ascertain
from (8.2.106) the existence of constants Ly, Ly > 0, which are uniformly bounded with respect
to ( € Z and v € R, such that

Ly + (| Ly
(Bo(¢ — x0) — ko) + Boe

(8.2.127) L, < 5

By virtue of this bound it is easy to confirm the convergence of M,,(—() as n — oo to (8.2.126),
uniformly with respect to ¢ in any compact subset of Z, which suffices to verify analyticity
of the latter MB-integral. More precisely, by Theorem 5.1.3 in [Wegert, 2012] it shows, that
(8.2.126) is a holomorphic function of ¢ in Z., and by arbitrariness of ¢ within the range (8.2.124)
we eventually have analyticity in the strip (8.2.123). Summarizing, the expansion (8.2.122)
represents the sum of two functions which are meromorphic in (8.2.119) and analytic in (8.2.123),
respectively. But since each of these regions at least overlaps with the half plane (8.2.101), the
indicated expansion represents the analytic continuation of the iterated generating function
(8.2.100) to the region

o
(8.2.128) Rxo < RC < R(xo + o) + % + 15 (Br, 01, €1, 1)

Therein, appealing to the exponential decay of the first summand in (8.2.122) and to the bound
(8.2.127), we conclude, as ¢ — =oo, uniformly with respect to R( in any closed vertical

substrip, the continuation is

_C7 T17 oo

(8.2.129) M[ T oo

| =00,

Finally, the singularities occuring in the region (8.2.128) are generated merely by the first sum-
mand of the expansion (8.2.122), to be exact by the rational function and by the gamma function
which depends on kg and on xg. In fact, the gamma function with the sole argument { — xo has
all of its singularities to the left of the boundary line R¢ = Ryg. Following from these observa-
tions, singularities of the function (8.2.122) in the strip (8.2.128) are poles only whose location
and thus also their order depends on the parameters. Of particular interest is the singularity
that lies on the abscissa of absolute convergence of the initial integral representation (8.2.100),
i.e., on the line R¢C = RN(xo + ) + Resg There, we find a pole of order 1 < J < 2 located at

Bo
¢=X0+¢s + %. Accordingly, in a neighborhood of this point the analytic continuation of the
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iterated generating function possesses a Laurent expansion of the form

J . Ko
—¢, Ty, 00 M—J<X0+57§0) K
(8.2.130) M[ T ]: o -+O(C—Xo—§0—0>,
Ty, 00 — (¢ —x0— 0 — 52) Bo
Jj=0 0
where the coefficient associated with the index j = 1 equals the residue. Two cases require
special attention. Those are J = 2 or xo + % = —¢p, in which event the indicated pole is of

second order or matches the origin of the (-plane. If J = 2 we will compute the coefficients
for j € {1,2}, whereas if xo + % = —¢y also the coefficient for j = 0 will be determined. To
accomplish these tasks the formula

1 d’ =

lim —_—
('] - j)! CHX0+<0+% dCJ_]

(C—%—Xo— gg)JM[_C’Tl’OO}

. ko =
(8.2.131) u_; (xo + 53,%) = Ty, o0

will be helpful. It is a consequence of Taylor’s theorem for holomorphic functions.

8.2.6.2.1. Coefficients for 3 # 0 and xo + % # —¢p. The pole at ( = xo0 + <0 + % is then of

simple order, whence J = 1, and, according to (8.2.120), the associated residue is given by

d060 k‘o

ﬁOF(KO) {bO}_XO_go_gi8 F(_BOQO)F(RO + /80§0)-

(8.2.132) -1 (xo + %,co) =

The indicated pole especially does not match the origin.

8.2.6.2.2. Coefficients for ¢y # 0 with xo + g—g = —¢p. In these circumstances again J = 1
and the residue is the same as in the preceding subparagraph but with ko = —S8o(x0 + <)-
In contrast, however, the indicated pole coincides with the origin. To compute the coefficient

corresponding to the constant term in (8.2.130), for (8.2.122) we write

—(, 11,00 doko ef(C—gOaXO)& + My (=¢; T, Ts),

(8.2.133) M[ Ty, 0o ] - BT (—Bo(x0 + <)) ¢

where we defined for a,b € C, with the logarithms taking their principal values,

(8.2.134) £(¢ia,b) = log T'(fo(a — ¢)) +log T(Bo(¢ — b)) — Clog {bo}

The identity (8.2.131) combined with the product and the chain rule then yields:

_ - _ doko i F(¢;—50,x0)
Ho (=<0, %0) Bol'(—=Bo(xo + s0)) d¢ {e )\(C)}

_doeoko I'(—=Boso)T'(=Boxo) [ .. AL ,
(8.2.135) =8 T(—hobm T %) {f (0; =<0, x0) + ” } + M1 (0; Ty, To)

+ M1 (0;T1,T5)
¢=0
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For the last equality we took into account (8.2.120), (8.2.121), and in terms of the digamma

function we obtain
(8.2.136) f'(0:a,b) = —Boyp(Boa) + Boyp(—Bob) — log {bo} -

8.2.6.2.3. Coefficients for ¢o = 0 with (o + g—g # 0. For this parametrization the expansion
(8.2.122) shows a second order pole at { = xo + <o + %, i.e.,, J = 2, and this point does not
coincide with the origin. Upon once applying the functional equation for the gamma function

we can write

e B0
—C,Tl,oo]_ doko e.‘]((yXO‘FBOaXO)/\(C)

(8.2.137) M[ T BTk (C—xo— 5

(1, T
IE,OO +WA41( Ca 1 2%

where for a,b € C we employed the definition

(8.2.138) 9(C;a,b) == 1og T(1 + fo(a — €)) + log T(Bo(¢ — b)) — Clog {bo}

assuming the principal branch of the logarithm. We then deduce from (8.2.131) by incorporating

(8.2.120) and (8.2.121), since the second summand in (8.2.137) is holomorphic at { = xo + B

KQ _ doko d gC;anrig,xO
s (ot 2.0) = gy 1 E 0

(=xo+3L
(8.2.139) = A )5 (o (ot oo+ o) + 22
The first derivative of g(-;a,b) is equal to
(8.2.140) 9'(¢a,b) := —Bop(1 + Bola — ¢)) + Loy (Bo(¢ — b)) —log {bo} ,

from which subject to (B.2.13) in terms of the Euler-Mascheroni constant we obtain

(8.2.141) g'(a;a,b) = Boy + Boy(Bo(a — b)) —log {bo} .

Finally, again with the aid of (8.2.131) we compute

doeoko

B3

{bo} 7%

(8.2.142) fis (XO + 5 0) _

8.2.6.2.4. Coefficients for ¢y = xg + % = 0. In case of a parametrization of the present
subparagraph, in (8.2.122) we observe the same coalescence to a second order pole as in the
preceding subparagraph, but the resulting pole matches the origin of the (-plane. Accordingly,
J =2 and the coefficients appearing in the Laurent expansion (8.2.130) are for j € {2,1} again
given by (8.2.141) and (8.2.142) but with xo + % = 0. Regarding the coefficient for j = 0, by
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(8.2.131) from (8.2.137) with xo + 32 = 0 we find:

_doko 1 d? (¢;0,x0) 1 d 2 )
o (0,0) = BT (o) 2 dC° {69 X )\(C)} + 2dc {CMU(—¢ T, o)}

(=0

— lﬂ 9(0;0,x0) '0- 2
+2¢'(0;0, x0) A" (0) + ¢"(0; 0, x0)A(0) + )\”(0)} + M1 (0; 71, T3)

The first derivative of g(-; a, b) was calculated in (8.2.140) and in terms of the trigamma function
(B.2.12) we obtain for its second

(8.2.143) 9"(¢;0,b) = BEY' (1 — BoC) + B3 (Bo(¢ — b)).

By (B.2.14) we conclude

2
(8.2.144) g"(0;0,x0) = Bg% + B3¢’ (—Boxo)-

Furthermore, the first and the second derivative of A(¢) at ¢ = xo + % + ¢o = 0 was evaluated
in (8.2.121). With A(0) = ep we eventually arrive at

1. 2 1A, A1 1", A2
(4'(0;0,x0))” +2¢'(0;0, x0)— + ¢"(0;0, x0) + —

€0 €0

1 doeoko
Ko (070) =5
(8.2.145) 2 B

+M1(0;T1,T2).

8.2.6.3. Two Infinite Paths and a Kernel of the Second Kind

The method of integral transforms can also be employed to derive the analytic continuation of
an iterated generating function of the second kind (8.2.2) with two infinite paths. This shall
be discussed below, again for ingredient functions satisfying the conditions of §8.2.6.2, with the

parameters defined in (8.2.98), however, being subject to
(8.2.146) R(xo + o) < Rxo < Reop.

In terms of the normalized phase B(r) and amplitude functions D(r), E(r) and K(r), for the

integral (8.2.2) we can write

T}, 0o i B 3 i g—Boxo—1
2.14 ¢ 0 = [ gt /D B (5 + t)dsdt.
(8.2.147) S[ G Tw)o] / (t) (5 5 1P (s)e (s +t)dsd
Ts T
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With the aid of Lemma 8.2.5 we readily confirm that the region of absolute convergence and

analyticity matches the half plane

R
(8.2.148) RC < % + Rxo + ).
0

Observe that the boundary of the region results from the supplementary condition for the
convergence of the iterated integral. Therefore, similar to the preceding paragraphs we employ
the integral transform (8.2.76) to unlock the analytic continuation. To show the validity of this

step we first note, condition (8.2.146) implies

§RXO < 07

§R§O < 07

whence R(xo + s0) < 0. Consequently, each ( that lies in the half plane (8.2.148) especially
satisfies (ko — Po¢) > 0. For fixed ¢ we may thus indeed identify a = ko9 — o and apply
formula (8.2.76). Define by

(82.149)  J(w,() = / p~Boso—w=1 gy / $P0(Cx0)+u—ro—1 1y () (CBH) ¢ (5 4 1) dislt

T2 Tl

a function which is for fixed ¢ € C subject to (8.2.148) absolutely convergent and holomorphic

with respect to w € C in
(8.2.150) —BoRsp < Rw < Reg + BoR(xo0 — ¢)-

From (8.2.147) for any ¢ € C subject to (8.2.148) we then obtain the MB-representation

ug+100
Tiyoo] 1 [(w)T (ko — Bo¢ — w)
(8.2.151) S[—C, szoo] =5 / T — foC) I (w, Q)dw,

where the integration path is a vertical line ftw = ug. Absolute convergence by (8.2.76) and by
(8.2.150) requires

(8.2.152) —BoRso < ug < Rk + FoR(x0 — ¢)-

It easily follows from (8.2.148) that this latter strip is non-empty for all permitted values of the
argument (. Note that its upper limit originates in the region of convergence of the integral
(8.2.149) only, but it is not determined by definition of the transform (8.2.76) since Ry < 0.
Now, by inspection of (8.2.149) we observe, similar to the preceding two paragraphs there is
again a close connection between the admissibility of arguments ¢ and w with a greater real

part. These can be achieved by computing the analytic continuation towards the right direction
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of the complex (w + ¢)-plane. Upon integrating by parts for (,w € C respectively subject to
(8.2.148) and (8.2.150), we find:

Bo(¢—x0)+w—ro 7
T D(Th) [ ,_5yc—w-1 B(Ti+t
J(w, () =--L /tﬁo%w E)es BT K(Ty + t)dt
(w:¢) Bo(€ — x0) +w — Ko Q T +t)
1>
1 o0
8.2.153 - /t_BOQO_w_lE t
( ) Bo(¢ — xo0) +w — Ko Z W
n1,n2,n3€{0,1}p,
ni+na+nzg=1
% /sﬁo(C—xo)+w—NoD(n1)(s)eCB(8+t) {¢B'(s + t)}n2 KM (s 4 t)dsdt
Ty

The integrals in this expansion converge absolutely for the arguments w, ¢ specified in Table 8.2,

and for fixed ( each integral even represents a holomorphic function in its w-region of absolute

convergence.
# (0 single iterated
— —BoRso < Rw -
n =B < Rw < R(ko + Folxo — () +61) — 1 RC < R(xo + <0 + 52 + 21)

ny —BoReo — B < Rw < Rko + foxo =€)+ F1 =1 RC< Rxo + <o+ 52) + Z5
ng  —R(Boso + K1) < Rw < R(ko + Polxo = ¢) + k1) =1 RC < R(xo + 0 + 52 + H=t)

Table 8.2.: Table of absolute convergence for the integrals in (8.2.153). The first column refers to
the non-zero index n; for i € {1,2,3}, whereas the second and third columns describe the necessary
conditions for the convergence of each single integral and of the iterated integral as a whole.

Accordingly, the expansion (8.2.153) establishes the analytic continuation of the integral
(8.2.149) to the strip

(8.2.154) —BoRsy < Rw < Rrg + 503%()(0 —(+ UEN (51, 01, Hl)),

for any fixed ( € C that satisfies (8.2.148). Therein it exhibits a pole of simple order at
w = Ko + Bo(xo — ¢). Again in terms of the integral function (8.2.109) the associated residue is

readily computed by means of the fundamental theorem of calculus:

[e.e]

Res J(w,¢) = —D(Ty) /tﬁo((—xa—go)—no—lE(t)GCB(ﬂ+t)K(T1 + t)dt
w=ko+Bo(x0—C)

T
Bo(C—x0—s0)—ko—1 d (B(s+t)
— [ E(t) j{pgp K@+w}®ﬁ
S
To Ty
(8.2.155) = —doko {bo} S A(Q)
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Having unlocked the continuation of J(w,() with respect to w, we shall now reconsider the
MB-representation (8.2.151) for the iterated generating function and discuss the possibility for
a displacement of the integration path. We conclude from the preceding paragraph that this
operation will enable us to enter a wider range of (-values. According to the above findings, for
fixed ¢ subject to (8.2.148) the integrand in (8.2.151) is a meromorphic function in the w-region
(8.2.154) with the singularity that lies closest to the right of the line ®w = ug being given by
the simple pole at w = rg + Bo(x0 — ¢), since xp < 0. Observe that this pole was of double order
if xo = 0 was admitted, with a substantial increasement in difficulty for computing its residue.
Due to our assumption yo < 0, however, this is a routine task. To collect the residue of the
indicated pole we ascertain from the expansion (8.2.153) that the function J(w,() is O(1) as
Sw — 400, uniformly with respect to Rw in any closed vertical substrip of (8.2.154). We may
therefore appeal to the exponential decay of the gamma functions in the MB-integral (8.2.151),
and displace the integration path to the right over the pole at w = rg + Bo(xo — ¢), to match a

line Rw = uy with

uy > max {—Bo¥go, (ko + Bo(xo — ¢))},
uy < R(ko — Bo¢) + min {0, Bo(Rxo + 1, (B1, 61, K1)} -

(8.2.156)

By taking into account the residue (8.2.155) and incorporating the fact that the pole is encircled

in the clockwise direction, for any ¢ € C subject to (8.2.148) we eventually arrive at

Tl,OO
—G o
2, QO

)

(ko + Bo(xo — C))F(_/BOXO)A
I'(ko — BoC)

(8.2.157) S[ :| = doko {b()}_C L (C) + 81(_C§ 11, T2)7

where the second summand features the MB-integral

u1+i00
(8.2.158) Si(=C; Ty, T) = % / P(w)g((zg:ggg)— ) 7w, ).

To specify the analyticity properties of the representation (8.2.157) with respect to ¢ we first
recall the integral function denoted by A(() converges absolutely and is holomorphic in ¢ <

R(xo + <) + %, compare (8.2.109). Its continuation to the half plane

Fro

(8.2.159) RC < R(xo + o) + 500 + 1 (21)

is furnished by the representation (8.2.118) in terms of the function A(¢) that was defined in
(8.2.117). Accordingly, if instead of (8.2.157) we write

A(Q) + S1(=¢;Th, 1),

(8.2.160) S[_g; Tl’oo] _doko  T'(ro+ Bolxo — ¢)I'(—Boxo)

Ty, 00| _60 {bo}¢ (€ —x0— <0 — )T (ko — BoC)

the first summand is meromorphic with respect to ¢ in the half plane (8.2.159). Candidate poles
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therein are generated by the first gamma function in the numerator and by the rational function.
Their location depends on the parameter values with possible coalescences up to second order.
Regarding the MB-integral (8.2.158) we first note that an integration path Rw = wu; that satisfies
(8.2.156) can be found for any ¢ € C subject to

Ko

(8.2.161) RC< 0 4+ Rep + min {0, Ryo + ng, (B1, 61, K1)}
0

for which we then have absolute convergence. Since Rxo < 0 and 7g, (51,91, 1) > 0 the above
half plane always contains (8.2.148). Now, in the present setup by (8.2.146) it is always possible

to choose a constant
(8.2.162) e > —Rg > 0.

The region defined by

By e
ﬂ<ﬂ%z+a<ﬂ

8.2.163 Ze =2 C:Ryo+
( ) € { X0 3 3

+ min {0, Rxo + 1g, (51, 61, Hl)}} ;

is then a substrip of (8.2.161), and by inspection of (8.2.156) we readily confirm the admissibility
of u; = Poe for all ¢ € Z.. To verify analyticity of (8.2.158) in the strip Z., in comparison to the
integral (8.2.115) from the preceding paragraph, slightly different arguments are required since
there is a dependence of the gamma functions in the integrand of the above MB-integral on the

variable (. Yet, fairly similar for n € N we introduce the sequence of integrals

Boe+in
1 I'(w)I (ko — Bo¢ — w)
(8.2.164) Sn(=¢) =5 / Ty — fod) J(w, ¢)dw.
Boe—in

For fixed { € Z. we observe analyticity of the gamma functions in the strip 0 < Rw < R(ko—05o().
But the line w = fpe + v with v € R runs therein, implying continuity with respect to v € R.
Furthermore, also J(Boe + iv,() is a continuous function of v € R for fixed ( € Z. due to
absolute and with respect to v € R uniform convergence of the expansion (8.2.153) and since
RC > % +Rxo—e. In addition, for fixed v € R the latter function is holomorphic at any ¢ € Z..
Appealing to Theorem 5.6.1 in [Wegert, 2012] we therefore conclude analyticity of (8.2.164) for
any n € N. To verify its uniform convergence as n — oo in any compact subset of Z., for an

arbitrary subset Z we denote

z_ :=min{R(:( € Z},
zy =max{R(:( € Z},
y— = min {SC: € € 7},
44 = max{SC: C € 2}
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If Z is compact, each of these constants is finite. If Z denotes a closed vertical substrip,
however, y_ = —o0, y+ = oo and the constants x_ and x4 respectively describe the left and

right boundary line. Moreover, for a clearer presentation we introduce the functions

p(C) :== R(ko — BoC),
L(¢) == (ko — BoC)-

Then, for all { € Z. the first function is positive whereas the second attains both signs. Suppose
for a moment Z is a closed vertical substrip of Z.. With these conventions, according to the
functional equation for the gamma function and the integral definition of the beta function

(A.3.8), for w = Bpe + iv and ¢ € Z the following bound applies:

(8.2.165) I'(w)l(ko — fo¢ —w)| _ ko = Po¢| | P(w)I'(1 + Ko — fo¢ — w)
o I'(ko — BoC) ko — Bo¢ — w| F(1+ﬂ0—ﬁoC)
‘/‘CO - 50@ —ﬁoat t)%no—ﬁo(%‘++5)dt

= |ko — Bo(¢ +¢) —w[

_ |50 = Bo¢| T'(Boe)T (1 +p(zy +¢))
L(1+ p(z))V/(p(C +2))% + ((C) —v)?
ko — Bo¢| T(Boe)I'(1 + p(a4 +¢))
TP+ plae)V/ (p(z4 + €))% + (1(C) — v)?

For the last inequality we observe that p({+¢) is decreasing as R( increases in Z.. In the sequence
we write r4 := p(z4 + €), where r; > 0. Next, by inspection of the expansion (8.2.153) we
ascertain the existence of constants Ji,Jo > 0 that depend on Z and are uniformly bounded

with respect to ( € Z, for which we have with w = Bype + iv and { € Z:

)| < J1+[C] J2
~ V(€ = xo0 +¢))? + (¢ = x0) — v)?
< Ji+(¢] S
~ V(e —x0+ €)%+ (¢ = x0) —v)?

(8.2.166) T (w, ¢

The last inequality takes into account the decreasing character of (p(¢ —xo+¢))? as R¢ decreases

in Z.. Writing for brevity r_ := p(x_ — xo + &) we have r_ < 0. For all { € Z this yields

1 T(Boe)T(1 + )
2r T(L+ p(as))

A dv
(8.2.167) X _4+n/ \/7«3+(L(§)—v)2\/7“3+(0(5_><0)_”)2.

It is easy to see that the latter bound still holds, of course, with different constants .Jy, Jo, if

|S1(=¢; 11, T2) — Sn(—Q)| < {J1 + | J2} |ko — BoC]

rather than a closed vertical substrip Z denotes an arbitrary compact subset of Z.. Since the

functions —¢(¢) and —¢(¢ — xo) are decreasing as I¢ — —oo, the integral along the ray v > n is
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then bounded by

T dv
n/ \/7‘3 + (e(y-) - v)Q\/TQ_ + (ly- —x0) —v)?

As n — oo the right hand side vanishes uniformly with respect to ¢ € Z. Analogous inequalities
apply for the integral along the segment v < —n. Since the additional prefactors in (8.2.167)
constitute polynomials of ¢ in absolute value, they are continuous and thus also uniformly
bounded with respect to ¢ € Z. Hence, the sequence of integrals (8.2.164) as n — oo converges
uniformly with respect to ( € Z to the integral (8.2.158) with u; = fpe. By arbitrariness of
the compact set Z, in accordance with Theorem 5.1.3 in [Wegert, 2012], we deduce analyticity
of the limit function in Z.. But for each ¢ > —R¢y the region Z. is a substrip of the half
plane (8.2.161), whence the MB-integral (8.2.158) is especially analytic there. To conclude
these findings, the expansion (8.2.160) represents the sum of a meromorphic and a holomorphic
function, respectively in the half plane (8.2.159) and (8.2.161). Each of them contains the
original region (8.2.148), from which we infer validity of the indicated expansion by analytic

continuation in the greatest common half plane

R
(8.2.168) RC < % + R + min {0, Rxo + nge (B1, 01, €1, 51)
0

The only singularities that can be found therein are some poles generated by the first summand
of the expansion. At the moment we are not interested in the associated residues. Instead we
close our investigations with the derivation of a simple estimate for the asymptotic behaviour
towards the imaginary direction. For this purpose we again describe by Z an arbitrary vertical
substrip contained in Z. with left and right boundaries x_ and z,. On the one hand, regarding
the ratio of gamma functions in the first summand of (8.2.160) we obtain by virtue of the

functional equation for a constant L € Ny such that R¢ < Rxg + % for all ¢ € Z.:

L-1

H I+ ko — BoC
I+ ko ~+ Bolxo — ¢)
! i+ mo— Boc]
<= PoRxot(] _ ot L+p(C—xo)—1dt 0 — Po
~ IP(=Boxo)| 0/ ( ) ll;‘([) |l + o + Bo(xo — ¢

= 0(1)

I'(ko + Bolxo — C))' _ ‘F(L + ko + Bo(xo —
I'(ko — BoC) (L + ko — 50C

For the inequality we introduced a well-known representation for the beta function, which is
especially applicable because Rxg < 0. The estimate in the big-O then holds as ¢ — oo
uniformly with respect to ¢ in Z. On the other hand, with the aid of the estimates (8.2.165)
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and (8.2.166) we deduce the following bound for (8.2.158) with u; = Soe:

S1(=¢; T, T3)| | | T (Boe + iv, ¢)| dv

| /\

/ IT'(Boe + iv)| |I'(ko — BoC — Boe — iv)
o ‘P(HO — ﬁOC)|

1 T(Boe)T 1+r+/ {J1+|C|J2}|'io—5od
2 T(1+p(xy)) \/r +( )\/ + (¢ = x0) — v)?

_ 1 T(Boe)l (1 +ry) / {J1 +[¢l 2} ko — BoGl
2 BQUEple)) T\ i g2y i+ (y + foxo)?

dv

For the last equality we performed the change of variables y = +({) —v. We eventually conclude
that, as ¢ — £o0, uniformly with respect to R¢ in each closed vertical substrip of Z. and thus
of the half plane (8.2.168), the function satisfies

(8.2.169) [ ¢ Tl’oo] - 0{|<|2}.

8.2.6.4. Two Finite Paths and a Kernel of the First Kind

The technique which we presented in §8.2.6.2 can be applied analogously if the first kind iterated
generating function (8.2.1) features two finite paths. Formally, for each j € {1,2} we assume
P; = (13, T3] with 0 < 7; < T < oo such that ¢(s) is continuous and positive for s € P with
algebraic behaviour as s | 71 for a coefficient by > 0 and a parameter 5y > 0. In addition, also
d(u),e(u), k(u) are supposed to be continuous along the range of their arguments with algebraic
behaviour when approaching the respective lower endpoint. The associated parameters are

denoted by 0, €9, ko € C, and the coefficients are referred to as dy, eg, kg € C \ {0}, where
(8.2.170) “1 < Rep < —1 — Reo,

which especially implies kg < —1 — Reg < 0. Furthermore, each ingredient function possesses
a normalized counterpart according to the definitions (8.2.5), (8.2.6) and (8.2.19). For brevity
we refer to these as B(u), D(u), E(u) and K (u), omitting the indices for the endpoints. Their
first derivative is assumed to be of respective order 81,361, Re1, w1 > —1 when approaching

the lower endpoint of the range of their arguments. If we denote

_ Go+l
(8.2.171) X T
X2 ‘= E?f;o_la
from (8.2.170) we conclude
R
(8.2.172) 0< Ry < —%.
0
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In the above setup the iterated integral (8.2.1) is readily rearranged to take on the form

Ts

_C7 Tlle _/ . Boxa2—1
M[ o }_ (t — )P (1)

(8.2.173) "

— )Boxa1—¢)-1
8 / (iSJr tTl)T T )—HOD(S)egB(S)K(S + t)dsdt.
o —T

T1
By Lemma 8.2.5, due to (8.2.170), absolute convergence and analyticity holds for all ¢ € C with

R
(8.2.174) RC < R(x1 + xa) + %
0

and this abscissa of convergence results from the supplementary criterion for the convergence of
the iterated integral. From Rko < 0 we conclude the applicability of the formula (8.2.76) with
a=—kgpand s — s — 71 and t — t — 1. For an appropriately specified vertical line Rw = ug
this leads to

—¢ T 1 / I'(w)I(—kKo — w)
8.2.175 = — K d
( ) M|: T2, T2 21 F(—/ﬁ‘,o) (w’ ) b
Uy —100
involving the function
T

Kw,Q) = [ (t=m)foesrormotp

T2

(8.2.176) "

< / (5 — 7)== () eCBO K (5 + ) dsdt.

T1

The latter integral is, by Lemma 8.2.1, absolutely convergent for {,w € C subject to (8.2.174)
and with

(8.2.177) —,80§RX2 —Rrg < Rw < ﬂo%(xl — C)

Taking into account the requirement for formula (8.2.76), for general ¢ € C subject to (8.2.174)
the integration path in (8.2.175) must thus satisfy

(8.2.178) —BoRx2 — ko < up < min {—Rko, SoR(x1 —¢)}.

A comparison with (8.2.172) and (8.2.174) shows that this strip is non-empty. Moreover, by
inspection of (8.2.176) we note that the variables w and ¢ in the interior integral show matching
signs, as in the preceding paragraphs, which is the reason why we easily repeat the steps that

were described there. For fixed ¢ the integral (8.2.176) represents a holomorphic function of w
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in the strip (8.2.177), and for those values of the argument we obtain from partial integration:

Ty
— (Tl — Tl)BO(Xl_C)_w ¢B(Ty) _ Box2+w+ro—1
Kw.¢) = = D(1)e / (£ — )X EWK(Ty + t)dt
1 r
- - _ Box2+w+ro—1
(8.2.179) +— D) > /(t ) E(t)

ni,n2 7”36{0’1} T
ni+na+nz=1

Ty
X /(s — 7p)Poba=0)-wCBls) {¢B'(s)}™ D) ()K" (s + t)dsdt

T1

By Lemma 8.2.1 we conclude absolute convergence of each integral in the expansion for {,w € C

with

RC < ROxa1 + xa2) + B2 + x5, (51, 61,0),

(8.2.180)
—BoRx2 — Rro < Rw < BoR(x1 — ¢ + x5, (B1,01,0)).

Appealing to the uniform convergence of each integral in this w-strip, the expansion (8.2.179)
analytically continues the original integral (8.2.176) therein, for fixed ¢ € C subject to (8.2.174).

In this wider region we notice the presence of a simple pole at w = Sy(x1 — (). If

Ts
(8.2.181) D(¢) = / (t — )Pobatxe=QOFmo—1 B(4) K (7 + t)dt,

T2

which converges absolutely for R( < R(x1 + x2) + %, we compute:

Ts

g{(es O]C(w7 () = _D(Tl)eﬁB(Tl) /(t _ 7-2)ﬁo(X1+X2*C)+N0*1E(t)K(T1 + t)dt
w=Po(x1—

T2

T T

I /(t — 1p)Polatxe=Otro—1p(4) / % {eCB(S)D(s)K(s + t)} dsdt
(8.2.182) = —do {bo} ¢ ®(C)

The integral (8.2.181) does not only converge absolutely but is even holomorphic in the half

plane ®¢ < R(x1 + x2) + %. Furthermore, one step of integration by parts suffices to verify

for fixed ¢ validity of

$(¢)
Bo(C—x1—x2—3)

(8.2.183) B(() =—
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where the function on the right hand side is equal to

(82184) ¢(C) = (T2 — 72)60(X1+X2*C)+50E(T2)K(T1 + Tg)
Ty
_ /(t - 7‘2)50(X1+X2—C)+n0 {E,(t)K(Tl +t) + E(t)K’(Tl +t)}dt.

T2
By analytic continuation the representation (8.2.183) remains true in the extended region

R
(8.2.185) RC < R(xa + x2) + % + X, (€1, K1)-

For fixed ¢ subject to (8.2.174), instead of (8.2.182) we may thus equivalently write

do —¢ o(¢)
8.2.186 R K =—1b .
(8:2:186) w0 = gy ok e T

We shall now revisit the MB-integral (8.2.175) in which we recall that the integration path

satisfies the conditions (8.2.178). If we impose the additional restriction

R Did
(8.2.187) 0 Ry < RC< R+ xe) + o,
Bo Bo
the conditions on ug become
(8.2.188) —BoRx2 — Rro < ug < foR(x1 — ),

and the singularity that lies closest to the right of the line ®w = ug is the simple pole generated
by the expansion (8.2.179). Conversely, this pole lies to the left of the pole of the gamma function
I'(—kp — w) at w = —Kg. Appealing to the exponential decay of the integrand, in (8.2.175) we
may thus perform a displacement of the integration path to the right over the simple pole at

w = Po(x1 — ¢) only, to match some vertical line fw = u; with

uyp > max {—R(Boxz + ko), BoR(x1 — )},
up < min {—Rko, BoR(x1 — ¢ + x5, (B1,01,0))} .

(8.2.189)

In this process we collect the residue (8.2.186) with a negative sign, since the pole is encircled

clockwisely, to eventually arrive at the expansion

—(,n, T do e T(Bolxa — )T (Bo(¢ — x1) — Ko)
-2
(8.2.190) M[ ™ 13 ] Bo o) L(=ro)(C —x1—x2 — 5) o T
+M1 |:_Ca T1, 1:|
T2, T
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in which the function in the second summand is given by the MB-integral

u1+100
¢, 1| i I'(w)[(—ko — w)

U1 —100

(8.2.191) M, [ D

Conceived as a function of (, the first summand of this expansion is obviously meromorphic in
the half plane (8.2.185). Moreover, an integration path Rw = u; can be found for each ( € C
that satisfies

Rro

0 <« RC < R(x1+ x2) +
Bo

Riro

(8.2.192) Rx1 + 600 + Xgo(B1, 61, 0).

To verify analyticity of the MB-integral (8.2.191) in this strip, similar to §8.2.6.2 we note, by

assumption we can always specify a constant & according to

(8.2.193) 0< -0 gy, <o 0
Bo Bo

for which we then have non-voidness of the strip
(8.2.194) Ze ={C€C:Rx1 —e <R < Rx1 + x5,(P1,61,0) —€}.

In this event, for all ( € Z. it is permitted in (8.2.191) to pick u; = Ppe, and by the same
arguments as in §8.2.6.2 it is straightforward to show analyticity of the indicated MB-integral
with respect to ¢ € Z.. Since Z, lies for any ¢ in the strip (8.2.192), by arbitrariness of € in the
range (8.2.193) we conclude analyticity of the MB-integral in this strip. If we combine all these
findings, we can establish the expansion (8.2.190) as a meromorphic function in the common
regions (8.2.185) and (8.2.192), which exactly coincides with the half plane

o

R
(8.2.195) Ryt + o2 < RC < R(x1 + x2) + BOO + ¥ (Br, 01,21, K1, 0).

Bo

Since this region in turn overlaps with (8.2.174), we eventually identify the expansion (8.2.190)
as the analytic continuation of the original integral (8.2.173). Finally, again by arguments similar
to §8.2.6.2 one readily verifies that the expansion as ¢ — 400, uniformly with respect to R¢

in any closed vertical substrip of (8.2.195), satisfies

_C7 TlaTl
T2, T

(8.2.196) M[ } = 0(0).

8.2.6.5. Two Finite Paths and a Kernel of the Second Kind

To complete this subsection, it remains to discuss the case of a second kind iterated generating
function with two finite integration paths. Therefore we consider (8.2.2) with P; = (75, 7}] and

0 <T7; <Tj < oo foreach j € {1,2}. Suppose the function ¢ is positive and continuous along the
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interval (11 + 72,17 + T»| with algebraic behaviour at the lower endpoint for a parameter 5y > 0
and a coefficient bg > 0, and the first derivative of the normalized phase is of order gy > —1
there. Furthermore, concerning the amplitude functions d(u), e(u), k(u) and the first derivatives
of their normalized analogues, we adopt the conditions from the preceding paragraph, however,
with the restriction (8.2.170) replaced by

(8.2.197) Rog, Reg > —1.

As a consequence, in terms of (8.2.171), we have Rx1, Rx2 > 0. Under the present assumptions

the iterated generating function (8.2.1) can be recast to become

Ts
71, 11 Boxa—1
G = [ (t —m)e Bt
S|: Cu TQ,T2:| /( TQ) ()
(8.2.198) 2 .
1
(S — 7-1)50)(1—1 s
- / (s+t— 1 — 79)PoCr0 D(S)egB( H)K(S + t)dsdt.

T1

Appealing to Lemma 8.2.5 we readily verify its absolute convergence and analyticity for any
¢ € C with

Rk
(8.2.199) RC < ROx1 + x2) + B—O

0
The right boundary of that region is due to the supplementary condition for the convergence
of the iterated integral. To determine the analytic continuation of (8.2.198) we first confine the
argument ( to the strip
?Rlﬁ:o §RI€0

This restriction immediately implies R(5o( — ko) > 0 and thereby enables us to employ formula

(8.2.76) with a = 5y¢ — ko, s — s — 11 and t — t — 1o. For a suitable parameter wug this yields

ug+100
1 L'(w)I'(Bo¢ — Ko — w)
(8.2.201) S[—C, mTJ =5 / T (Boc — o) H(w, ¢)dw,

with the integral function appearing therein represented by

T>
H(w, () = /(t — 72)60(X2—C)+w+n0—1E(t)

T2
(8.2.202) "

X /(8 — m)Poxi=w=l ()BT K (s ¢)dsdt.

T1
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By Lemma 8.2.1, the latter converges absolutely for ¢, w € C subject to (8.2.199) and
(8.2.203) ﬂo%(( — Xz) — Rrg < Rw < ,303%)(1,

establishing a holomorphic function of w in this region. We therefore conclude the validity of
(8.2.201) for a path Rw = wup that satisfies

(8.2.204) max {0, BoR({ — x2) — Rro} < up < min {BoRx1, R(Bo¢ — ko) } -

By comparison with the analogue functions (8.2.102), (8.2.149) and (8.2.176) from the preceding
paragraphs, the converse sign of the variables w and ( in the integral (8.2.202) becomes evident.
This can not be circumvented due to the choice of the parameter a, for which formula (8.2.76)
was applied. Yet, it does not make a difference for the further procedure. Indeed, ignoring this
observation and integrating by parts for fixed ¢, w € C subject to (8.2.199) and (8.2.203) leads

to:
T Box 7
— oX1—w
H(w, ¢) = - L= D(Th) / (t — 7y)Pola=OFwtno=1 () CBIH) K (Ty 4 £)dt
w — Box1
T2
Ts
1

8.2.205 +—_ / t — 75)Poxe—O)+wtro—1 gy
( ) w — Poxi 2 (t=m) ®)

n1,n2,n3€{0,1} 7,
ni+na+ng=1

T
X /(s — 1y )foxa—weCBls+) pm) () {¢B'(s+t)}"™ K" (s 4 t)dsdt

T1

With the aid of Lemma 8.2.5 it is easy to confirm absolute convergence of all integrals in the

above expansion for (,w € C with

RC < R(x1 + x2) + % + Xgo(B1, 01, K1),
BoR(C — x2) — Rro < Rw < Bo(Rx1 + xp,(1,0)).

(8.2.206)

Moreover, for fixed { we have analyticity in the indicated w-region. As a consequence the whole
expansion (8.2.205) is meromorphic there, with a pole of simple order at w = fyx;. Particularly
for fixed ¢ subject to (8.2.200) it establishes the analytic continuation with respect to w of
(8.2.202). To specify the residue corresponding to the pole at w = [yx1, we define

T>
(8.2.207) 0(¢) == / (t — 7o) PoCx1tx2=OFR0=1CBH) p(1) K (11 4 t)dl,

T2
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the latter integral being absolutely convergent and holomorphic in R( < R(x1+ x2)+ %. From

(8.2.205) the fundamental theorem of calculus then yields

(8.2.208) Rgs H(w, () = —dp©(Q).
wW=pPoX1

The integral (8.2.207) can be continued to a meromorphic function in the half plane

Fro

(8.2.200) RC < ROx1 + x2) + ﬁoo + x5, (B, €1, 51)

via partial integration, leading to the identity

0(¢)
Bo(C—x1—x2— %)

(8.2.210) ) =—

where the expansion on the right hand side is for brevity denoted by
(8.2.211) 0(C) := (Ty — o) ol tro CBMATY) BTy K (14 + Td)

Ts
—¢ /(t — p)Pobabxa=Obro BN B! (2 4 VE(H)K (11 + t)dt
2
Ts

- / (t — ro)olatx2=CtrooCBMAD) L BN K (1y +t) + E(t)K' (11 + )} dt.

T2

Accordingly, for fixed {, we can write

_do 0(¢)
(8.2.212) JRes H(w, ()= BC-—xi-x-%

If we confine the set of admissible arguments ¢ from (8.2.200) to the smaller strip

R R
(8.2.213) Fx1 + % <RC<ROa +x2) + $7
0 0

the right boundary of admissible values for ug is due to the simple pole of the analytic continu-

ation of H(w, () at w = fyx1. Hence, the minimum in (8.2.204) is unique, and we obtain
(8.2.214) max {0, BoR(C — x2) — Rro} < up < BoRxi-

In (8.2.201) we may then move the integration path to the right over the indicated pole, to

match a line Rw = u; that runs in the strip

uy > max {BoR(¢ — x2) — Rko, BoRx1},
up < min {Bo(Rx1 + x5,(01,0)), R(Bo¢ — ko) } -

(8.2.215)
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Since the pole is encircled in the clockwise direction, bearing in mind (8.2.212) the residue

theorem brings us the expansion

(8.2.216) S [_g; T Tl] _ _do _T(Box)T'(Bo(€ = x1) — Ko)

T, Th
72, T Bo (C—x1—x2 — BT (Bo¢ — ﬁo)a(o o [_Q ]7

T2, I’

whose second term features the initial MB-integral (8.2.201) but with a shifted integration path,

i.e., we have

T, T1:| _ 1 MHOOF(w)F(ﬁOC — Ko — w)

"1, To 2mi / I'(Bo¢ — ko) Hlw, C)dw.

U1 —100

(8.2.217) S [c

If we conceive the result (8.2.216) as a function of (, the first term is obviously meromorphic in
(8.2.209). Concerning the second summand we note, an integration path that satisfies (8.2.215)
can be found for any ¢ € C with

R R
(8.2.218) Rox1 + % < RC < R(x1 + xo) + % + x5, (51, 0).
0 0

To verify analyticity of the MB-integral (8.2.217) in this strip, we first choose a fixed but arbitrary
(8.2.219) 0 < Rx1 <e<Rx1+ x5,(01,0).

It is easy to see that this is always possible. With the aid of ¢ we then construct a strip that
lies in the interior of (8.2.218) by

ko

(8.2.220) Z. = {c eC: e

+6<§RC<§RX2+§RRO+€}.

Bo

Notice the slightly different structure of this set, compared with the sets which we defined in
the preceding paragraphs. Yet, according to (8.2.215), the line u; = fye is a permissible choice
for the path of the MB-integral (8.2.217) for all ( € Z.. Similar to §8.2.6.3 we can then verify
analyticity with respect to ( € Z. of the latter MB-integral by elaborate estimates, to finally
infer validity of this statement in the strip (8.2.218). Since the first summand in the expansion
(8.2.216) is meromorphic in (8.2.209), if we take the greatest region in common with (8.2.218),
it follows that the whole expansion is meromorphic in the strip

Firg

R
(8.2.221) Ryt + 0 < R < R(x1 + xo) + 500 + x (B1, 01, €1, 51, 0).

Bo

Therein it constitutes the analytic continuation of the integral (8.2.198) with exactly one pole,
that one being of simple order. It is generated by the rational function in the first summand.

Finally, also analogous to (8.2.169), one can show that, as ¢ — £oo, uniformly with respect
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to B¢ in any closed vertical substrip of (8.2.221), the continuation satisfies

T 2
(8.2.222) S[—C, Tz’Tz] —O{KI }

8.3. Two Finite Paths in a Symmetric-Type lterated Integral

Our first case treats the integral (8.0.1) for P; = (15,7;] with 0 < 73 < T} < oo for each

J € {1,2}, which we assume to be of the particular form

(8.3.1) Si[ Tl’Tl] /{1— (1— ()™} et /{1— (1—W(s))™ 1} c(s)a(s + t)dsdt.

72, T2

If we denote by ¢ the function (8.1.5), we require the ingredients to satisfy:

(S1) ¢ and c are continuous on (711, 71U (12, T3] with ¢ > 0, and a is continuous on [ + 79, T} +
Ty).

(S2) The functions ¢(u), c¢(u) and a(v) are algebraic as w | 71, as u | 72 and as v | 71 + 7 for

some parameters

B10, B20 > 0,
710,720 € R,
(10(1,2) >0

and with coefficients bjo > 0, cjo,ao(1,2) € C\ {0} for j € {1,2}, where the index refers
to the endpoint. Especially

(8.3.2) vjo + Bjo > —1, for j € {1,2}.

(S83) For each j € {1,2} with 8j0 > 0, the functions ¢ and c are once continuously differentiable
on (7j,T}]. Furthermore, the normalized phase Bj(u) has a first derivative of order 3;; >
—1 as u | 7, and that of Cj(u) is of order v;;1 > —1 there. The latter two functions were
introduced in (8.2.5) and (8.2.6), respectively.

(S4) If there exists j € {1,2} with 8o > 0, the function a(u) is once continuously differentiable
on (11 + 7, Ty + T3], and the normalized amplitude A;2(u) as in (8.2.19) has a first

derivative of order a;(1,2) > —1 as u | 71 + 7o.

(S5) If 510, B20 > 0 and 19 = —1, the function a(u) is even twice continuously differentiable on
(11 + 712,11 + To]. If ap(1,2) > 0, as u | 71 + 72 its second derivative satisfies

(833) a”(u) ~ ao(l, 2)&0(1, 2)(0[0(1’ 2) - 1)(U —T1 — 7'2)&0(1’2)_2.
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Conversely, if ap(1,2) = 0, its k-th derivative for k € {1,2}, a constant a1(1,2) € C\ {0}
and a1(1,2) > —1 as in (S4), as u | 71 + 7 shows the behaviour

Iai(1,2) +1)

a1(1,2)+1—k
T(a1(1,2) +2 — k '

(8.3.4) a® (u) ~ ay(1,2)

)(U—Tl—TQ)

Throughout our investigations, in some Laurent expansions, quantities will occur, particularly
constants defined by integrals, which may equal zero in rare cases. Therefore some poles may
actually have a lower order or even turn out as removable singularities. We will not mention
this each time, but describe our computations only for the non-zero case. The final statement
then remains unchanged, if it is not of the form Si|...] ~ 0.

First of all, under the above assumptions, for j € {1,2} with 8j0 > 0 we introduce the

parameters
. 1450
(8.3.5) X30= By
o 1d4v0 ao(1,2)
50 *= 5o Bjo *

By (8.3.2) and since ag(1,2) > 0, these satisfy
150 = Xjo > —1.

In the described setting, for non-identical j,k € {1,2}, we begin with a consideration of the

iterated generating function

(8.3.6) Mo[ T

Ty, T;
] = /{go(t)}_z’c c(t)/{cp(s)}_zj c(s)a(s + t)dsdt.
2k Tk, Tk
Tk Tj
Notice the symmetry of the integral with respect to j, k. By Lemma 8.2.5, if 819 = 29 = 0, it
is an entire function of z; for arbitrary fixed z, € C. If Bjo > 0 and B9 > 0, we have absolute

convergence for z;, z;, € C with

Rz < o0, if Bro =0,
(8.3.7) Rz < Xko, if Bro > 0,
. 1,2) | 14ve0—BroR®
Rzj < xjo + min {0, aoﬁ(jo )+ w0 BoBte } :

and analyticity with respect to z; there. Again because og(1,2) > 0 by assumption, for 8o > 0

it shows, for any admissible z; € C we have absolute convergence in

(838) §RZ]‘ < X;jo0-
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8.3.1. Transformation to an Iterated MB-Integral

With the aid of (8.1.1) and Lemma 8.2.1, due to the parameter restrictions (8.3.2), it is easy
to confirm absolute convergence of the integral (8.3.1) for any fixed m > 0. Our first step now
consists in an application of the Cahen-Mellin representation (8.1.6) for each of the m-powers

in (8.3.1). Again by Lemma 8.2.1, for any j,k € {1,2} with j # k, we can write

ZTgo+1i00 ( ) Ty
: ™, T 1 (2 / B
S : - CU(z) ;  oft
1 [m, To, T2] 27 / (m+ 1) {o(t)} " e(t)
Tjp—100 Tk

(8.3.9) .
X / {1—(1—(s))™} e(s)a(s + t)dsdtdzy,

where the integration path satisfies

0, if Bro =0,

(8.3.10) < ap <
min {0, xxo}, if Bro > 0.

A second application of the indicated Cahen-Mellin representation, for

0, if 8o =0,
(8.3.11) —1 < aj < Pio
min {0, xjo}, if Bjo >0,

in terms of (8.3.6) leads to

To+i00 ( ) Tj0+100 ( )
[ o, 1 (z / I'(z —2j, Tj, T
8.3.12 S ; = —_ e dzidzp.
( ) 1 |:m7 T, T2:| (271'1)2 / (m + 1)zk (m + 1)2]' MO 2, Th, Tk ZjAZL
T0—100 Tjo—100

For the moment we leave j, k unspecified. Of particular interest is in any case the singularity of
Mo]...], that lies on its z;-abscissa of convergence for fixed 2. Since the right boundary of the
half plane $z; < xjo evidently stems from the condition for the convergence of a single compo-
nent of the integral representation of Myl...], the z;-analytic continuation can be computed via

the standard integration by parts procedure.

8.3.2. An Interior Generating Function with a Kernel of the First Kind and a
Finite Path

For j, k € {1,2} with j # k and fixed 7, <t < T}, we define

(8.3.13) ﬁo{;szj] = 7{g0(5)}zj c(s)a(s + t)ds.
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If Bj0 = 0 this clearly represents an entire function of z;. Hence, without loss of generality we
assume fjp > 0. The region of absolute convergence then essentially depends on the behaviour
of a(s+1t) as s | 7j. If 7, <t < T}, is an arbitrary fixed point, by continuity we simply suppose
a(s+t) = O(1) as s | 5. If t = 73, however, by assumption we certainly have algebraic behaviour
of a(s + 7;) as s | 7; for a parameter ag(1,2) > 0. Altogether, in the case ;o > 0 the integral
(8.3.13) therefore converges absolutely and is analytic for z; € C with Rz; < x4, for

0, if e <t <Ty,
(8.3.14) o= Q0 T g

1505 if t = 7.

With ¢; € {0,1} and ¢2 € {0, 1,2}, in addition, we define the integral

—y a1
(8.3.15) Ao [q i;t sz;t T} = /(s - Tj)'BjO(Xt*Zj)*ldi {eszj(S)Cj(S)} Al92)(s: t)ds,
1,42, 25,75, L5

where g9 refers to the derivative with respect to s, and in the fashion of (8.2.21) we write

a(s+t), if m, <t < T,

a(s+7x) ey
(s—Tj)QOk(L2> , ift =T

(8.3.16) A(s;t) =

Then, upon casting in (8.3.13) the integrand in terms of the normalized ingredients, for ;o > 0

and 7. <t < T}, we observe

t— 24,1 —zi,t

(83.17) o [0})7 Zj; ijTj] —h [ij]Tj}
Considered as a function of z; € C, the integral Agl...] establishes a holomorphic function in
different regions of the complex plane. In accordance with the above discussion on a(s+1t), with
similar statements applying to its first and second derivative, these regions depend on ¢, on ¢
and on t.

Assume ¢; = 0, either with g0 = 0 and t = 7, or ¢o € {0,1} and 7, < t < Tj. In these
circumstances we have analyticity of (8.3.15) in the half plane Rz; < x;. We then integrate by
parts, or readily refer to our findings from §8.2.2.1, to access the analytic continuation into a

wider domain. By identifying

k(s+t) =a9(s+1),
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for fixed Rz; < x¢, an application of (8.2.31) leads to

Xt — Zj, T ] (T; — Tj)ﬁjo(Xt—zj) BT w
A = — % BT CA(THAD (T ¢
0|:0’qazj77_jaTj BJO(ZJ_Xt) J( j) ( j )
(8.3.18) .
T B0 =) > Ao

30N T X n1,m2€{0,1}

ni+ng=1

ﬁ%—Xt—Zjat

ni, q + na, ZjaTjajjj

From the order of the involved derivatives of the normalized phase and amplitude, we conclude
analyticity of the integral for ny = 1 in Rz; < x¢ + xg,,(Bj1,751), making use of (8.2.22).
Regarding the integral for no = 1, by continuity it follows for arbitrary ¢, that the functions
a'(s+1t) and a”(s+t) are O(1) as s | 7;. Hence, the second integral then exhibits analyticity
in Rz; < x¢ + % Since ;1,71 > —1, these regions include the half plane Rz; < x;. Thus,

introducing the parameter

(8319) Xj1 ‘= X0 + Xﬂjo(ﬂjla/—yjla 0)7

for ¢ € {0,1} and 7, <t < T}, the expansion (8.3.18) is valid in the extended region Rz; < x;1,
therein representing the analytic continuation of the original integral. If ¢ = 7, and ¢ = 0, the

last statement applies for the region Rz; < n;1, where we denote

(8.3.20) N1 = njo + X0 (@1(1,2), Bj1, vj1)-

In each case, in the extended region, the expansion (8.3.18) evidently exhibits a simple pole at
zj = Xt. According to the behaviour of Bj(s) and Cj(s) as s | 75, from (8.2.33) we immediately

obtain

Xt — Zj, t _ Cjo ~xt @) (.
8.3.21 Res A — G0y v AW (1),
( ) ngit 0|:O7 q, Zj7Tj71—jj:| B]O{ JO} (T] )

by definition (8.3.16) with

@ (7; +1t), ifr, <t<Tjand qe{0,1}
a\* (T , 1 Tg =~ 1 and q y LS
(8.3.22) AWD(75:4) = !
ap(1,2), ift=m7, and ¢ = 0.

Finally, for j € {1,2} and (; € C we introduce

(8.3.23) £, ) = By(u)Cy(u) — log {p(u)} {C(u) — G;Cs(w)},
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in terms of which we define
7

N6 73,T5) = log {(1})} G5 (1) AD T50) + [ 555,004 (551
7j

(8.3.24) .

- / log {p(5)} C;(5) A (s; t)ds.

7j

In the case x; = 0, the pole at z; = x; clearly lies at the origin of the z;-plane, and from (8.2.35)
and (8.2.36), for t = 7, with ¢ =0 or 7, <t < T}, with ¢ € {0,1}, as z; — 0 we conclude

1

(8325) A0|: Xt = 2> t :| = — 1 @A(Q)(Tj;t) + B
50

- M (t; 75, T) + O(2).
0,4q, ZjvTjaTj Zj 5]0 0( J J) (])

The above integral representation for Ad(¢; 7, T;) then especially converges absolutely.

8.3.3. z;-Analytic Continuation of the lterated Generating Function for Fixed z;

In the preceding subsection we have seen, that the interior integral of (8.3.6) for ;o > 0, which
is given by (8.3.15), can be extended meromorphically across the boundary of the half plane
Rz; < xjo by virtue of the expansion (8.3.18). In order to show that this in turn immediately

gives access to the analytic continuation of (8.3.6), we introduce the expansion

Ty,

e 7 T

(8.3.26) M, [_Za :: T;] = (T — Tj)ﬁjO(XjO*Zj)erBj(Tj)Oj(T’j) / {o(t)} " c(t)a(T; + t)dt
Tk

Ty

- ¥ / {o(B)} ™ e(t)Ao

n1,n2€{0,1} 7
ni+ns=1

1 NN
%‘FX][) Zj,t
ni, n2, 24, ijj—jj

dt.

Since a(T; + ;) = O(1) by continuity, the single integral on the right hand side is absolutely
convergent and holomorphic for z; € C either arbitrary or with Rz < xwo, respectively if Srg = 0
or fro > 0. To determine the region of convergence of the iterated integrals, by assumption (S4)

on the order of A} ,(u), particularly by rearranging (8.2.12), as u | 71 + 72, we note that
aO(]-a 2)

U—TL — To
ao(1,2)ap(1,2)(u — 71 — )LD L o(1), if ap(1,2) > 0,
O{(u—71 — 1)) if ap(1,2) = 0.

a'(u) = a(u) + O {(u e Tz)a0(1’2)+a1(1’2)}

(8.3.27) =
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By taking these properties into account, it is easy to verify with the aid of Lemma 8.2.1 absolute

convergence of the integral in (8.3.26) for n; = 1, if

0 + ; /8‘17 1)y
§R2j < Xj Xﬁgo( 315 V5 ) R
150 + Xgy0 (Bj1, yj1) + AR,

and of the integral for no = 1, if

1
Xj0+ ﬁa
§R2j < njo + W, if a0(1,2) > 0,

xjo + AL Moz Bholok - if (1, 2) = 0,

respectively for fixed z € C with Rz < xpro if Bko > 0 and arbitrary if Sxg = 0. Upon collecting
these findings, for any fixed admissible z; € C, the expansion (8.3.26) establishes an analytic

function in the half plane
(8.3.28) Rzj < na o) (2r),

where, in terms of (8.3.19), we define

(8.3.29) (o o [ i ET if ao(1,2) > 0,
-9 Na2)\2k) =
min {31, xjo + I + HE il ag(1,2) = 0.

Notice, if the minimum attains the second value, it originates in the supplementary condition
for the convergence of either of the iterated integrals. A repeated integration by parts will
then presumably not give access to a larger region of analyticity. Now, if we apply the identity

(8.3.17) accompanied by the expansion (8.3.18) to (8.3.6), we arrive at

—25, T, I 1 e T T
8.3.30 M 70 ]] = M |: VRV J:|‘
( ) 0[—2k,7k,Tk: Bio (zi —x50)" | =2k Th» T

For fixed zp € C with Rz < xgo if Bxo > 0 and arbitrary if Sig = 0, the right hand side
meromorphically extends the integral (8.3.6) into the zj-region $z; < 7(;2)(2x). Therein, it

exposes a simple pole at z; = x;o only. In terms of (8.3.13), from (8.3.21) we compute

Ty,
Res MO[_ZjaTjaTj] :/{SO(t)}—Zk c(t) Res Ao[ Xjo — Zj, t ]dt
Tk

z=x0 L =2k T, Tk xi=z0 0,0, 25,75, T;
cjo s — 2k, Tj
8.3.31 = — 2 fp 10 50[ ) ]:|‘
( ) BjO { / } Tk,Tk
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Finally, to specify the Laurent expansion near z; = 0 in the case x;o = 0, we introduce

— 2Ly Thy 1}
(8.3.32) XO[ j ;, k] = log {o(T; /{<p Ya(Tj + t)dt
VRE

/{so e /f] s,0)a(s + t)dsdt

]
Ty

/ {o®)} / log {ip(s)} C;(s)al (s + t)dsd,

7

where f;(s,0) was defined in (8.3.23). Then, if x;o = 0, from (8.3.24) and (8.3.25), in an annulus

around z; = 0 with fixed 2z, we find

—2zi, T, T 1 cio — 2, T — 2, s T
8.3.33 AR N I Y j 7/,\, s Ths Oz,
( ) MO[Zk’Tk’Tk] 2 Bjo L ks T * °l 7T +00)

8.3.4. Evaluation of the Interior MB-Integral

For fixed z; € C with Rz = xx0, we define the interior of the iterated MB-integral (8.3.12) by

Zjo+i00
75, Tj 1 I'(z)) —Z, T
8.3.34 Ilm; 7777 | :=— / M 32 Tir L d
( ) [m Zk,Tk,Tk:| 271 (m—i—l)zj 0 —Zk,Tk,Tk 3
Tjo—100
According to our preceding findings, My|...] for fixed z; € C with Rz = xpg represents an

entire function with respect to z; if Sj0 = 0. The only singularity to the right of the line
Rz; = xjo is then the simple pole at z; = 0 of I'(z;). If Bjo > 0, the integral definition of
Mol...] can be extended to the region Rz; < 71 2)(7ko) as a meromorphic function. Therein,
the only singularity is a pole of simple order on the line #z; = x,jo. Hence, in this event the
closest singularity to the right of the path $z; = z;0 depends on xjo but is a simple pole,
except if xjo = 0, in which case we observe a coalescence to a pole of order two at z; = 0.
In each case Myl...] or its analytic continuation is represented by a sum of rational functions
and integrals. These integrals converge absolutely and uniformly in any compact subset of their
region of validity. Due to their uniform convergence with respect to 3z, 3z; € R, it can even
be shown that Myl...] for fixed 2, € C with Rz = 2o is O(1) as Jz; — oo in Cif Bjo =0
or in Rz; < n1,2)(Tro) if Bjo > 0, uniformly with respect to Rz; in any closed vertical substrip.
Hence, the integrand in (8.3.34) decays exponentially fast as Jz; — do00 there.

These findings enable a displacement of the integration path to the right over the pole at
zj = 0if Bjo = 0, over the poles at z; € {0, xjo} if xjo > 0, or merely over the pole at z; = x;jo
if that point does not lie in the right z;-half plane. Each pole is then encircled clockwisely.
Analogous to (8.1.12), with the aid of Theorem B.2.1(2), by taking into account (8.3.31) and
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(8.3.33), for a suitable vertical line with Rz; = x;1, this yields

7i, T 0.7:. T
I . Jr+7 — _ s 1gy £y 1 - .
I:m7 Zk,Tk,Tk:| MO[—Zk,Tk,Tk {Bjo=0V x;0o>0}

(8.3.35) co__ Tlo) [_z’“’ 7

Bjo {bjo(m + 1)} Tk, Tk

1 —Zky T — Rk, Tk jk
- —<q +1) +9)cjol "+ X o ey o=
n {( og(m + 1) 4+ v)cjo 0[ 7o T } 0[ T {x;jo=0}

] ]I{on #0}

T
a:lerioo
1 I'(z) —2zj, 75, T}
_— o \& dzi.
+2m’ / (m+1)ZfMO — 2k, Tk, Tk “
fl?jl—iOO

If Bjo = 0, the integration path Rz; = x;1 is subject to the restrictions
(8.3.36) 0< Tj1 < 00,

whereas for 8jo > 0 the singularity that lies closest to its left is the pole at z; = x;o, i.e.,

(8.3.37) Xio < Tj1 < 1(1,2)(Zo); if xjo > 0,
3. o < ;

min {0, 7(1,2) (J?kzo)} ,Af x50 <O0.

Finally, for an integration path Rze = w9y that satisfies (8.3.10) for £ = 2, we denote

T20+100
1 ['(z2) [—20, 71
3. L = e d
(8:3.38) (m) 2mi / (m+1)= Lo | 72, T 2
X0 —100
1 T20+100 F( ) _ T
z2 —22,72,12
8.3.39 X =— X, dzo.
( ) (m) 2mi / (m+1)="" T ] =
X0 —100

Then, if we eventually plug (8.3.35) into the iterated MB-integral (8.3.12) with j = 1 and k = 2,

by means of a simple bound for the remainder integral, as m — oo it is easy to see:

) 71, T T2, T
(8.3.40) Si {m; . Tz] =1 [m; 0.7, TJ Leg0=0vyi0>0}
c10 I'(x10)
il L 1
B1o {bio(m + 1)} )T 0 20)

b
/810
+0 {m*9620*3611}

(log(m + 1) +7)cio L(m) + X(m)} Ly, = o)

For the asymptotics of the first MB-integral on the right hand side, we may again refer to (8.3.35)
with 7 =2, k = 1 and 23 = 0. We therefore proceed with a study of the single MB-integrals
L(m) and X(m).
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8.3.5. A Single MB-Integral for the Residue at z; = 19

The residue of the iterated generating function at z; = x19 produces the MB-integral (8.3.38),
whose generating function (8.3.13) was studied in §8.3.2. While the indicated integral definition
of Lo[...] is entire for oy = 0, it is holomorphic in the half plane Rzo < 19 for B0 > 0. As a
consequence of its absolute convergence, in each case Lof...] is O(1) as Szo — £oo in its region
of analyticity, whence the integration path in (8.3.38) can be replaced by an arbitrary vertical

line x99 = [y that satisfies

0, if 899 =0,
min {0, 1720} s if Bop > 0.

—1<liy<

Notice 129 > x20. In the case B9 > 0, the generating function of (8.3.38) satisfies the identity
(8.3.17), and it can be extended analytically to the wider half plane Rzo < 721. Therein, it
exhibits solely a pole of simple order at zo = 7209, whose residue by (8.3.21) and (8.3.22) equals

—Z29,T1 a0(1,2)020 _
8.3.41 Res L =——"—1b 20,
( ) 22=e7§20 0|: T2, Ts ] ﬁQO { 20}
Moreover, if 729 = 0 we ascertain from (8.3.25), that the first two terms of the Laurent expansion

at zo = 0 are given by

1
+ — (71572, T2) + O(22),

8.3.42
( ) zo  Pao 20

—Z29,T1 1 ao(l, 2)020
Lo =-—— 2=
T2, 1o

where the coefficient associated with the constant term features the function (8.3.24).

Finally, also the analytic continuation of Ly[...] is readily confirmed O(1) as Szo — +oo
in Rzo < mo1, uniformly with respect to Rzo in any closed vertical substrip. In view of the
exponential decay of the gamma function, in (8.3.38) we are therefore allowed to displace the

integration path rightwards, to match a vertical line that cuts the real axis at Rzo = I1, with

0 <l < oo, if Bog = 0,

(8.3.43) 721, if 790 > 0,
mo < b1 <

min {0,721}, if mo < 0.

Thereby we encircle in the clockwise direction the pole at zo = 199 and also the pole at zo0 = 0
if 799 > 0. Upon taking into account (8.3.41) and (8.3.42), as m — oo we arrive at

07 T1

(8344) L(m) = _£|:7_2’ T2:|]1{520=0\/7720>0}

c20 ao(1,2)I(20)

Bao {bao(m + 1) 170~ {n0 £0}
1

B20

{(og(m + 1) + 7)c20a0(1,2) + A5(715 72, T2) } Ly — o0y
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+(’){m*ll}.

The big-O estimate holds by absolute convergence of the remainder integral.

8.3.6. A Single MB-Integral for the Residue at z; = 0 if x;0 =0

If x10 = 0, we encounter the additional MB-integral (8.3.39) with generating function (8.3.32).
In order to extract its dominating behaviour as m — oo, we must first specify the analytic

continuation of this last generating function into the right direction of the zo-plane.

8.3.6.1. Analytic Continuation of the Generating Function

By definition (8.3.23), as u | 7; the function f;(u,0) for j € {1,2} and arbitrary € > 0 shows

the behaviour
fj (u,0) =0 {(u — Tj)min{ﬁjh’mfe}} '

Hence, the presence of the logarithm in fi(s,0) does not affect the zs-region of absolute con-
vergence and analyticity of (8.3.32) for k = 2. This is the whole complex plane if By = 0. If
B2o > 0, by Lemma 8.2.5 and (8.3.27), we detect these regions for each integral in the expansion
(8.3.32) as those z3 € C with

X20 if ap(1,2) > 0,
Rz < X20 + min {0, % + Xﬁzo(ﬁnﬁn)} if ap(1,2) >0,
xo0 + min {0, 521, if ao(1,2) > 0,
\XQO-Fmin{O,%}, if ap(1,2) =0

By assumption on 811,711 and a1(1,2), each of the above minima uniquely equals zero. Alto-

gether we conclude, (8.3.32) for B9 > 0 represents a holomorphic function in the region
(8.3.45) gFEZQ < X20-

Its right boundary is due to the condition for the convergence of the single integral in (8.3.32)

and of a single component of each of the iterated integrals. Now, in terms of (8.3.15) we obtain

—29, T2, T X20 — 22, 11
8.3.46 X =1 THYC{(T)HA
saa6) & 7T g femy cumno| 2 T
T
X20 — 22, S
0)A d
+/f1(8’ ) 0[07072277-23T2:| §
T1
T

X20 — 22, S
/log {p(s)} Ci(s)Ao [0, 1, 2,75, TJ o
T1
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The analytic continuation of the integral functions appearing in this representation was already
established by virtue of partial integration in the form of the expansion (8.3.18), from which for

z9 € C with Rz < x99 we obtain:

— T 1 Y C(T;
XO[ 272'17 T;; 2] T Ogﬁ{i((z;)—})@lo() : (Tp — o) P200x20=22) 022B2(12) Oy (T )a(Ty + T)
(8.3.47) 4 Joedp(T)} Gi(Th) Y A 2=+ x20 — 22, Th
/620(2'2 _XQO) n1mae{0,1} nl,n27z2,7'2,T2
ni1+ngs=1

(Tp — TZ)ﬁzo()@o—Zz)
520(22 - X20)

! 3 /f1

* B20(22 — X20)
ng,na€{0, 1}7.1
ny+ngs=1

eZsz(Tz)C2(T2)/fl(s,O)a(8+T2)d5

T1

520 +X20 — 22, 8
ng, n4, 22, 72, 1o

ds

T
e*2B2(2) 0y (Ty) / log {¢(s)} C1(s)d (s + Ty)ds

T1

(T2 _ 7-2)520(X20—22)
B0 (22 — x20)

T
: /

- log {¢(s)} Ci(s

B20(z2 — Xx20) Z {w(s)} C1(s)
ns,me€{0,1} 1,

ns+ng=1
1
« Ay %"’XZO_ZQ?S ds
ns, 1 + ng, 22, 72, T

The absolute convergence of the constant integrals is obvious. Furthermore, with the aid of
Lemma 8.2.5, (8.3.3), (8.3.4) and (8.3.27) we confirm absolute convergence and analyticity of

the first, second and third sum of parameter integrals, respectively for zo € C subject to

¢

X620 (821,721, 0), if ap(1,2) >0,
XBao (B215 72150, a0(1,2) + Br1, (1, 2) + 711), if ap(1,2) >0,
Rzo < X20 + 4 Xpao (821,721, 0,01(1,2) + Br1 + 1, 01(1,2) +y11 + 1), if ap(1,2) =0,
min {a(1,2), Xm0 (B21,721,0)}, if ap(1,2) > 0,
Xao (@1(1,2), B21,721,0), if ap(1,2) = 0.

Since these regions contain the half plane Rzo < x20, the expansion (8.3.47) represents the

analytic continuation of Xy][...] to the region

(8.3.48) Rzo < X1(1,2),
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where we denote

min {ao(1,2), Xgy (B21,721,0)}, if ao(1,2) >0,
(8.3.49) x1(1,2) := x20 + {a0(1,2), X ( )} |
Xgao (01(1,2), Ba1,721,0) if ap(1,2) =0
The above expansion is only required, to verify the existence of a continuation of Ay[...]. To

determine the residue of the pole at z3 = x20, we rather employ (8.3.46). From (8.3.21) we then
readily deduce

(8.3.50) Res Xo[

—29, T2, To| ¢
22=X20

R {bao} &1 (12511, Th),

T1, Tl

which features the constant

T
€ 1(rai 1, TY) 1= log {o(T1)} Oy (T1)a(Th + 7) + / F1(5,0)a(s + 72)ds

T1

(8.3.51) -

- /log {p(s)} C1(s)d’ (s + 12)ds.

T1

Furthermore, if x990 = 0, by (8.3.25), all of the interior integrals in (8.3.46) can be expanded as

a Laurent series in an annulus around the origin. Upon collecting equal powers of zo, we obtain

(8.3.52)

————¢ (s, 1) + —
71, 11 (rim, 1) B0~ | T2, T2

—2z,7T9, 15 1 e 1 [Tl,T1
X =
0[ } 22 B20 S0

| o

with the function in the second summand, by (8.3.24), denoted as

T

T

&o [2 Tﬂ :=C1(T1) log {@(Tl)})\g(Tl;Tg,Tg) —I—/fl(s,O))\g(s;TQ,Tg)ds
T1

T
- / log {¢(5)} C1(5)M(5: 72, T) .

T1

(8.3.53)

8.3.6.2. Evaluation of the MB-Integral

In view of our findings from the preceding paragraph, the only singularities of the integrand
of the MB-integral (8.3.39), which lie to the right of the line Rzy = w99, in C if S0 = 0 or
in the half plane Rzo < x1(1,2) if B9 > 0, are either one or two poles of simple order or a
single pole of second order. Since, in addition, we observe exponential decay of the integrand

in (8.3.39) towards any imaginary direction of the respective region of analyticity, we can move
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the integration path to the right, to match a line with real part Rz, = kq, for

0 <k < o0, if 899 =0,

(8.3.54) x1(1,2), if x20 > 0,
X20 < k1 <
min {0, x1(1,2)}, if x20 < 0.

In this process we clockwisely encircle the pole at zo = 0 if Sog = 0, at zo = 20 if x20 < 0, or
the poles at zo € {0, x20} if x20 > 0. According to Theorem B.2.1(2), by means of (8.3.50) and
(8.3.52), as m — oo this yields

07 T2, TQ
(8.3.55) X(m) = —-X |: m, T, :| ]1{520:0\/X20 >0}
€20 I'(x20)

@ {boo(m + 1) }P}*° §-1(m25 7, Tl)]l{Xm #0}

- ﬁio {(log(m + 1) +7)e20é-1(m2; 71, T1) + &o {ﬁ’ Tl] } Lixa0 =0}

T2, T
+ O {m_kl} .

The estimate for the remainder term was deduced by absolute convergence of its representation

as a MB-integral.

8.3.7. Evaluation of the Iterated MB-Integral

We will now collect our findings from the preceding subsections, to establish definite statements
on the m-asymptotic behaviour of the integral Si[...]. This essentially requires, to verify the
neglibility of the remainder terms that occur, when the single expansions for I|...], L(m) and
X(m) are plugged into (8.3.40). To avoid difficulties with the remainder term that appears in
the big-O in (8.3.40), on the one hand, we assume

(8.3.56) Bao > Bio > 0.

On the other hand, with the parameter yi; defined in (8.3.19), for 519 > 0 we suppose

« X11, if X10 > 07
(8.3.57) X10 + % <

min {0, Xll} , if x10 < 0.

Note that the last condition always applies if ag(1,2) = 0. By (8.3.5), from (8.3.56) for 519 > 0

we deduce

(8.3.58) X10 + 120 < M10 + X20-
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Moreover, according to the conditions on the path Rzo = w9y, compare (8.3.10) with k = 2, the

assumption (8.3.56) also implies

ao(1,2) _ Jmo+ Liyeofhoano if ag(1,2) > 0,

(8.3.59) X10 + 10
if ap(1,2) = 0.

B20 ai(1,2)+1 1420 —B20%20
X10 + B1o + B1o )

Hence, due to (8.3.57) and (8.3.59), instead of (8.3.37) the path of the remainder integral in
(8.3.40) can be assumed to satisfy

ao(1,2) c o< n(1,2)(T20), if x10 > 0,

B20 min {0, 1(1,2) ($20)} , if x10 < 0.

(8.3.60) X10 +

Next, we aim to express the parameters x99 and z11 in terms of the right and the left boundary
of their respective range. For this, we first note, by (8.3.10), in the case a9 > 0 for an arbitrary
g9 € (0, min {0, x20} + 1), we have x99 = min {0, x20} — 2. Secondly, if S19 > 0 by (8.3.60) for

an arbitrary

€1 € (0,77(1,2) (w20) = X10 — %) ; if x10 = 0,

€1 € (O,min {0,m(1,9)(w20) } — x10 — %) , if x10 <0,

equivalently x11 = x10 + % + e1. If we assume without loss of generality € := e — &9 > 0,

then the big-O in (8.3.40) as m — oo satisfies
(8.3.61) @) {mxma%<2162)min{0’x20}5} — 0 {mea%(QlD’Q) min{O,x2o}} '

In addition, the path of the remainder MB-integral in (8.3.35) for j = 2, k = 1 and z; = 0,
by (8.3.37), can be managed to satisfy xe; = x20 + &, provided z9; and € > 0 are chosen
appropriately. Similarly, at the same time l; = 720 + € and k1 = x20 + € are admissible,
compare (8.3.43) and (8.3.54). If B19p = 0 or By = 0, the corresponding remainder terms in
each of the above expansions vanishes faster than any negative power of m as m — oo, i.e.,
it satisfies O {m~9} for an arbitrary ¢ > 0 and is therefore exponentially small. With these
preliminaries, we are eventually ready to expose the asymptotic behaviour of (8.3.40). For a

clearer presentation we distinguish between different parametrizations.

8.3.7.1. The case 510 =0 or x19 >0

For the assumed range of the parameters, the first summand in (8.3.40) is non-zero, whereas the
third equals zero. Finally, the second summand vanishes if and only if 5190 = 0. With 820 > S10,
upon collecting (8.3.35) and (8.3.44), as m — oo we therefore deduce:

, 71, T} 0,71, Th
o {m; T2, T2] N MO[Oa T2, T2]1{6200VX20>0}
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_ I'(x20) €20 .| 0,72 1y

{bao(m + 1)1 Byy |7, Ty | 2070}

1 Oa T2 0, 71, T1

o {( og(m+1) + moc[m TJ ; 0[ N ] } -
_ I'(x10) €0, 1 07|y

{b1o(m + 1) X0 By 0|, Ty |~ 1P10> 020> 0}
+ F(XlO)P(HQO) Cl()a()(l, 2)020]1

{bio(m + 1)}X {bog(m + 1)} B19Ba0 {B10 > 0,720 #0}

I'(x10) ci0ao(1, 2)e20
- log(m + 1) 4 ) 0% 220y _
{b1o(m + 1)} (log(m +1) +7) B10B20 {B10>0,m20 =0}
I'(x10) C10

O .
_ {blo(m + 1>}X10 /810520 AO(7_17 T2, TQ)]l{ﬁl() >0, 20 = 0}
+ ]1{520=0}O {m—q}
+ 15000 {mX207¢}
+ ]1{520 > B1o > 0}0 {m‘XlO—mo—e}

ap(1,2)

+ ]l{ﬁzo > B1o > U}O {m_xm_ﬁgg_min{O,Xm}—e}

By inspection of the above expansion, the reader readily confirms the two statements below.

Theorem 8.3.1. For 19 =0 or x19 > 0, assume validity of the conditions (S1) to (S4) as well
as (8.8.56) and (8.5.57). Then, provided at least one term on the right hand side is non-zero,
as m — oo,

(1) if P20 = 0 or x20 > 0, we have

: Tl?Tl 07 TlaTl
S N ~
1 |:m’ 7—27T2:| MO |:07 7—251_’2:|

B I"(x20) CQ()£|: 0, 72
{boo(m + 1)}*° Bao [ 71, Th
B I'(x10) o . [0, T
{bio(m + 1)} 1o ° | 70, T

] {]1{,310 —=0,x20>0} T ]l{xzo SXlo}}

] IL{X1o <x20}*

(2) if x20 < 0, we have

Si [m' 7’1,T1} o I'(x20) €20 [0,7’2 }]l
’ T2, Tp {bgo(m + 1)}X20 B2 n,Th {x20 <0}

1 077—2 077—17T1
— < (1 1 L X 1 —0.
+ﬁ20 {(og(m—i— )+ 7)c20 [7'1,T1] + 0[ 0. T }} {x20 =0}

The constants in each expansion were defined in (8.3.6), (8.3.13) and (8.3.52).
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8.3.7.2. The case Y10 =0

In the present case, the first and the second summand in (8.3.40) both vanish. Upon representing

the third summand in terms of the expansions (8.3.44) and (8.3.55), as m — oo we obtain:

) 71, 11 c10 0,71
Si [m; = (log(m+1)+~v)—L {
[ Tz,TJ (log( ) 7)510 O\ 7, T

— (log(m +1) + )

:| 1{7720 >0}

I'(n20) c10a0(1,2)c20 1
{boo(m + 1)} B1oBao {20 70}
2 c10a0(1,2)c0

B10520 {m20=0}

C10 0
—— XT3m0, To) 1y, —
B10520 0(713 72, T2) 1 6 = 0

] ]1{X20 >0}

I'(x20) €20 _
~ {bgo(m + 1)} /3’10520571(72’ 75 T L a0 20)

+ (log(m +1) +7)

+ (log(m+1) + )

1 T
+X0|:07 T2, 12

1 . T1, Tl
+ BroBan {(log(m +1) +7y)ea0§-1(m2; 71, T1) + &o [72’ TJ } Lz =0}
+ O {log(m)m™"0~%}
1+ 0 {m—xzo—a}

+0 {m— min{07X20}—7a05(21(;2) —a}

Accordingly, Si]...] diverges at least logarithmically but no faster than algebraically. In partic-

ular, we can establish the following theorem.

Theorem 8.3.2. For x10 = 0, assume validity of the conditions (S1) to (S5) as well as (8.3.56)

and (8.8.57). Then, provided at least one term on the right hand side is non-zero, as m — oo,
(1) if x20 > 0, we have

T
Si [m = 1] ~ (log(m + 1) +7)Cw£0[

Oa 7-1:| 1 X |:07 7—2>T2:|
"1, Th B1o '

+7
T2, Tp Bro | T, T

(2) if x20 =0, we have

. 71, 11 c10 0,7
Si |m; ~ (loglm+1)+~)—L [
[ 72’T2] (log( ) 7)ﬁ10 0

+ (log(m + 1) + )

1
™, TJ {a0(1,2) >0}

o c10a0(1, 2)c20
B10520 {a0(12)=0}

¢
+ (log(m + 1) +7) ﬁlolﬁozo YIGE 72, 12) L {00(1,2) = 0}
1 71, 11
+ log(m 4+ 1) + v)copé— 37T, 11) + .
BroBon {( g( )+ ¥)e20é1(m2;5 71, T1) + &o [7_27TJ}
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8. Asymptotics of Iterated Convolution-Type Integrals by Analytic Continuation

(8) if x20 < 0, we have

I'(m20) c10a0(1, 2)e20
{bao(m + 1)}7720 8105920 {a0(1,2) =0}

_ F<X20) c20 .
{b2o(m + 1)}X20 5105205*1(7'27 71, Th).

N G AT
Si [m7 . TJ (log(m +1) + )

The constants can be found in (8.3.13), (8.3.24), (8.5.32), (8.3.51) and (8.5.53).

8.3.7.3. The case y19 <0

In this last case, the first and the third term in (8.3.40) are equal to zero. If we plug in the

expansion (8.3.44), as m — oo we arrive at:

Si [m: 71, Tl _ _ F(XIO) Cﬂ 07 5l 1
"7, T {bio(m + )X B 0y, Ty |~ 120> 0}
I'(x10)T'(720) croao(1, 2)eao
{bro(m + D) {bgo(m + D)} Brofag 070

I'(x10) c10a0(1,2)c20
— | +1)+~v)————————1 -
{b1o(m + 1)}X*° (log(m +1) +7) B10520 {1120 =0
I'(x10) 10

- 0(71; Ty —
{b1o(m + 1) }X1° B19B20 Ao(71i 72 T2) g =)

+0 {m_XIO_TIQO_E}

+0 {m—Xm—%—min{O,mo}—a}

For each admissible value of 199 > x20 > —1 it is easy to specify the corresponding controlling

term, which at least features algebraic growth. This gives rise to the last theorem of this section.

Theorem 8.3.3. For x10 < 0, assume validity of the conditions (S1) to (S4) as well as (8.3.56)

and (8.8.57). Then, provided at least one term on the right hand side is non-zero, as m — oo,

we have

Si |:m 7’1,T1:| - F(XIO) Cﬂ 0|:0,7'1

"1, T {b1o(m + 1)}X1° B1g " |72, Tp
I'(x10)T'(n20) cioao(1, 2)020]l

{bro(m + 1)} {bog(m + 1)} B1oS20 {20 <0}

] 11{7120 >0}

I'(x10) c10a0(1,2)c20
— lo + 1) +v)—————1 _
{b1o(m + 1)}X1° (log(m +1) +7) B10520 {n20=0}
F(Xlo) C10

_ 0,
{b1o(m + 1) }X*° BroB20 Ao(715 72, T2) L3 = 0}

For the constants in the first and in the last term, we refer to (8.3.13) and (8.3.24).
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8.4. An Infinite Interior Path in a Symmetric-Type lterated Integral

In our second scenario we study (8.0.1) for an infinite interior path and an amplitude that admits

oscillatory behaviour. For this purpose we introduce an additional argument and denote

i {m; l’féf; ;O} - / 1 (1= W)™} e te(t; po)
(8.4.1) "

X / {1—(1—0(s)™} e ®1%c(s)a(s + t)dsdt,
Ty

for &1,& € R, 11 > 0 and an arbitrary half-open path Ps with endpoints 0 < 7 < T < 00. In
particular, we assume either Py = (79, T3] for 0 < 79 < Th < 00 or Py = [T, 00) for Tp > T}.
The parameter p; € {7,000} for j € {1,2} then indicates the endpoint for which P; U {p;} is

closed, and

c(t), ifp; =1,
(8.4.2) c(t;pj) == 0 b=
c(t), if pj =o0.

In view of Section 6.6, we expect that the oscillatory terms yield special contributions at infinity.

Again with ¢ as per definition (8.1.5), we assume:

(S6) The functions ¢, a and ¢ are once continuously differentiable on [T, 00) with ¢ > 0.
Moreover, at infinity ¢, a and ¢ are of algebraic type with parameters Syg, ago > 0, yo0 € R
and coefficients bgg > 0, agp, coo € C\ {0}, which satisfy

(8.4.3) Y00 + Boo > 1.

(S7) If & = 0, or if Py = [T, 00) with £ = 0, there exist 5p1, ao1,701 > 1, describing the order
of the first derivative of B(u), A(u) and €(u) as u — oo, where the capital letters denote
the normalized ingredients, according to (8.2.8) and (8.2.9).

(S8) If & # 0, we suppose:

A0

(a) W(t) is infinitely many times continuously differentiable on ¢ > T7 with TS =

O{t‘j} for j e Nast — oo.

(b) a(u) and ¢(u) are infinitely many times continuously differentiable on v > T3, and for
any j € N as s — oo they satisfy a0)(s) = O {s7@0=J1 and sy =0 {s00=3},

(S9) If Py = (72, 5], then ¢ and ¢ are continuous there with ¢ > 0. Furthermore, each function
shows algebraic behaviour as t | 7o for parameters fSog > 0, 720 € R and coefficients
bao > 0, cop € C\ {0}, where

(8.4.4) Y20 + P20 > —1.
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If 899 > 0, we have once continuous differentiability on (72, 75| and the normalized functions

Bs(t), Ca(t) possess a first derivative of order Ba1,721 > —1 as t | 7o.

(S10) If Py = (19,Tn] with Boo > 0, & = 0 and agp + Yo = 1, the function a(u) is twice

continuously differentiable on u > 77, and as u — oo it satisfies

(8.4.5) o’ (u) ~ agocoo (o + 1)u~ 02,

Again we point out the occurence of possible zero quantities in some Laurent expansions below.
Instead of mentioning this each time, we describe our steps for the more common non-zero cases
and bear in mind that the final result will not become invalid, unless a statement of the form
Si[...] ~ 0 is obtained.

From the assumption (S7), particularly by rearranging (8.2.13), as u — oo it is easy to see
that
(8.4.6) a’(u) ~ —aooaoou_aoo_l.
Of frequent use throughout this and later sections will be the parameter ygo from (8.3.5) and
the parameters

. 00—1

X00 ‘= T3>
(8.4.7) Poo

_ oo—1 @00

1100 == 555 + Boo’

which by (8.4.3) and (8.4.4) clearly satisfy

(8.4.8) Moo > Xoo > —1,
(8.4.9) x20 > —1.

Moreover, for §; > 0 and &; € R with j € {1,2}, where ¢; > 0 if and only if P; is infinite with
& # 0, we agree

(8.4.10) Cj = 5j + Z§]
Then, if sgn(x) € {0,+1} indicates the sign of z € R, for j € {1,2} we denote

sgn(Bjo), if Pj = (75,151,

(8.4.11) 9]' =
Sgn((sj)v if Pj = [T_}v OO),

and in case of an infinite P; we conclude, 6; = 1 if and only if £; # 0. In addition, we introduce

the vector

(8.4.12) P2 = (p2,02).
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To avoid duplicate cases during our examination of the integral (8.4.1), we assume

{(7—2’0)7 (TQ, 1)7 (OO, 1)7 (OO’O)}a if 61 =1,
{(72,0), (12,1), (00,0)}, if 61 = 0.

(8.4.13) Pa €

Finally, we first consider the iterated generating function

—w, <1a Tla o0

(8.4.14) Mo[ G T

= [tomy=eecttim) [t} e S clsiats + isar
P2 T

Regarding its convergence, we must distinguish between two situations. On the one hand, if
Py = (12,5, or if Py = [Tp,00) but 6; = 1, by Corollary 8.2.2 and Lemma 8.2.3, the above
representation converges if and only if each of its single components does. This is the case for

w, z € C with

oo, if gy € {(72,0), (00, 1)},
(8.4.15) Rz < { x20, if P2 = (72, 1),

moo, if o = (00,0) A Oy =1,

oo, if 61 =1,

(8.4.16) Rw <
noo, if 01 =0 APy € {(72,0),(m2,1)}.

On the other hand, if p5 = (00, 0) and 6; = 0, with the aid of Corollary 8.2.2, we readily verify

absolute convergence for w, z € C with

Rz < noo,
(8.4.17) oo

Rw < noo + min {0, xo0 — RNz} .

By Lemma 8.2.5, for fixed z the integral (8.4.14) especially is an analytic function in its w-region

of convergence and vice versa.

8.4.1. Transformation to an Iterated MB-Integral

According to (8.1.1) and the criteria from Subsection 8.2.3, bearing in mind (8.4.3) and (8.4.4),
we have absolute convergence of (8.4.1) for any fixed m > 0 and &1,& € R. Similarly, with
¢j = 6; + i&;, compare (8.4.10), for m > 0 absolute and with respect to 41,02 > 0 even uniform
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convergence also holds for
. . Ch Tl; oo L / m+1 —Cat .
Si [m, ot T | {1— 1 =w@)" "} e e(t; p2)
P2
(8.4.18) o
X / {1-@a- \I/(s))m'H} e 5¢(s)a(s + t)dsdt.
T

By Lebesgue’s dominated convergence theorem,

01+ 1€y, T, 00

lim Si .
o) Z|:m’ 52 +i§27T7T

T
(8.4.19) Si {m LT, OO] -
51,8240

’ 5277—7T

We first derive an asymptotic expansion for (8.4.18) with fixed arguments §; > 0 for j € {1,2}.
For this, again we begin with an application of the Cahen-Mellin representation (8.1.6) for the

m-power in the exterior integral. By Subsection 8.2.3 it is easy to verify, for

0, ifﬁz S {(TQ,O),(OO,l)},
(8420) 1< .%'()(ﬁQ) < min {07X20}a if ﬁ? = (7_27 1)5

min {077700} ) if ﬁ? = (0070)7

by absolute convergence we can write

C T 1 xo(P2)+ico F( )

; 61, 41,001 L 72; Cr ot .
Si [m, o7, T } " 2mi / (m+ 1) /{SD(t)} e~ e(t; po)
(8.4.21) o (p2)—ico Py

X / {1—(1—W(s))" )} e 15¢(s)a(s + t)dsdtdz.
T

The parameters y29 and 7o evidently specify the abscissa of convergence of the integral trans-
form, established by the dsdt-integral as a function of z for fixed m > 0 and py € {(72,1), (c0,0)},
respectively.

In the particular situation p» = (00,0) with 6; = 0, we recall from (8.4.17) the minimum
structure of the w-abscissa of convergence of the integral (8.4.14) for fixed z. In order that this
minimum attains a unique value we note, since xoo < 100 and due to (8.4.8), that it is possible
instead of (8.4.20) to agree

(8.4.22) —1 < 29(00,0) < min {0, xgo} -
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If we therefore introduce the parameter

. X20, if pa = (72,1),
(8423) §0(p2) = o
xo00, if pa = (00,0),

we may require the integration path in (8.4.21) to satisfy

0, if py € {(72,0), (00,1)},
min {0, (p2)}, if po € {(72,1),(00,0)}.

(8.4.24) —1 < mo(f2) <

A second application of the Cahen-Mellin representation, for

0, if 0, = 1,
min {0,7700} s if 91 = 0,

(8.4.25) —-1< u0(91) <

then leads to

T 1 rolpR e r
Si|m; o deo) . / _Dz)
Co, 7, T (27i)? (m+1)?
xo(ﬁg)—ioo
(8.4.26) wo(B)ioo »
I'(w —w, (1,11, 00
— dwdz.
% / (m+1)wM0[ —2,(, 7, T ] waz
ug(01)—ioco
In our next step we compute the w-analytic continuation of the generating function My|...] of

this iterated MB-integral into a region that contains its w-abscissa of convergence. By (8.4.25),

in the case Rz = xo(p2) this is the line Rw = ngo.

8.4.2. An Interior Generating Function with a Kernel of the First Kind, an Infinite
Path and an Exponential Term

Preliminary we discuss some properties of the interior of the iterated integral (8.4.14). With
fixed n,q € Ng, S > 1T1,t >0 and ¢ € C, we introduce

(8.4.27) No[_“” t’c] => / {o(s)} 7 e % Sp (s, w)al 9 (s + t)ds

n,q, S

where in terms of (6.6.9) we define

(8.4.28) Stn(s,w) 1= (Z) ni <" B k)Pj(s,w)c(n—k—ﬂ(s),
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which satisfies S (s, w) = ¢(s). Clearly, Ny|[...] for n = ¢ = ¢ = 0, by assumption, converges
absolutely and is analytic in the half plane Rw < ng9. Below, we will then specify the associated
analytic continuation. Conversely, Agl...] for R¢ > 0 and n = 0 represents an entire function
with respect to w. In these circumstances for ¢ # 0 we will derive an expansion, that is
uniformly bounded with respect to ¢ > 0 and shows the convergence as ¢ | 0 to a function

of w, which is holomorphic in an arbitrary subregion of C.

8.4.2.1. A Non-Exponential Amplitude

For a treatment of the case ¢ = 0, with ¢1,¢2 € {0,1} and fixed t > 0, we additionally define

o0

w—y,t gPoo(w—x)—1 ga B(s) (
— wB(s q2) )
(8.4.29) No [777 . S] / T g {e Q(s)} A2 (s +t)ds

With respect to w € C for fixed n € C, x € R and g1 = g2 = 0, this integral is holomorphic in

Rw < x + 155);%77' Furthermore, it satisfies the identity

—w, tao w _XOOat
8.4.30 N =N .
( ) O[o,o,s} 0[1—0400,0,0,10,5}

If we suppose validity of (S7), the continuation of Ny|. . .] can be specified by reference to §8.2.2.2.
Accordingly, by (8.2.40), for ¢; = g2 = 0 partial integration yields

- Boo (w—x)
(8431> No |: lg OX7t5:| — _ S — ewB(S)C(S)E[(S:‘lt)n
n,Y,Y,w, ﬁoo(’LU—X—ﬁ) ( +)
Poo (w X7 15%(?) nl,nie{o,ll} 1, N1, N2, w, S
ni+ng=
w—=x,t

t(l1—n)N ‘

+t(1—n)No [77_1,0,0,11;,5”

By (8.2.41), the expansion on the right hand side converges absolutely and represents a mero-

morphic function in the half plane

1—Rn
Boo

(8.4.32) Rw < x + + oo (01, Bot1, 01, 2).
For x = x00 and n = 1 — ayqp, this coincides with the region fw < 7191, where we denote

(8.4.33) M01 2= 100 + Nge (@01, Bot, Y01, 2)-
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The function Ngl. ..] then exhibits a singularity only at w = 799, which is a pole of simple order.

According to (8.2.42), its residue is given by

w — X00, t apoCoo _
8.4.34 Res N = — b 00
( ) W=100 0 [1 —0400,0, 0, w,S] ,300 { 00}
Furthermore, if xgo = —% or equivalently agg + 00 = 1, there exists a Laurent expansion in

an annulus around the origin of the w-plane, which is by (8.2.43) of the form

(8.4.35)

Ny { w — Xo0, t ] _ _ L aoocoo {vi(t;8) + ta(t; )} + O(w),

1 — o, 0,0, w, S w Poo ﬁoo

where, according to (8.2.45) and by definition of the normalized ingredients, we have

(8.4.36) v1(t; S) : =5 log {p(S)} €(S)a(S +t)
- / 50 { B(5)€(s) — log {(s)} €(s)} als + t)ds

S

o0

* / 4 log {p(s)} €(s) = 1)

(s + t)x00 7
a(s + 1)
s+t

ds.

(8.4.37) ago | s*° ' log {p(s)} €(s)

01\8

These functions are, by Lebesgue’s dominated convergence theorem, continuous with respect to
t > 0. By means of v,(t;.5), we will now briefly explain why they are even once differentiable,
particularly under the sign of integration. For this we first note, for fixed s > S as a function of
t > 0 the integrand of v»(¢; S), by assumption, is once continuously differentiable with
a(s+1t) a(s+t)}

= 520" 1og {(s)} €(s) { s+t (s+1)2

da(s+1)
dt s+t

570~ log {io(5)} €(s)

Hence, due to the logarithmic divergence of log {¢(s)} at infinity and by (8.4.6), for ¢ > 0 and

arbitrary € > 0, as s — 0o we obtain the following estimate:

- d a(s +1t) C(u)
lot 1
s log {p(s)} €(s) ;== ‘ < max log {(u)} = -
a’(v) a(v) Se—i—aoo—l
X max —
v>8 |p~@0—1  y—a00 (8—|—t)0‘00+2

< const x 73

This bound holds uniformly with respect to t > 0 and is absolutely integrable on the ray

s > S. Similar arguments apply for the integrand of 14 (t;S), provided a”(u) is continuous and
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O {U_O‘OO_Q} as u — 00, in which case we have

A () = 00 {a’(u) + aooa(uu)} =0 {U_am} )
(8.4.38)

A" (u) = u® {20400 aliu) + o (0 — 1)015;) + a”(u)} =0{u?}.

By Theorem 11.62 in [Korner, 2004], this confirms the computability of the first derivative of
vj(t; S) for j € {1,2} by differentiation under the integral sign, leading to

(8.4.39) Vi (t;9) = S log {p(S)} €(S)a’ (S + t)

o

- /80‘00 {B'(s)€(s) —log {¢(s)} €(s)} a'(s + t)ds

+7 wiog fo()h (o) { T — a0 L

(S —+ t)OCOO (3 —+ t)OCOO'f‘l
S
o0

(8.4.40) ) = ago / 200~ Jog {p( )}@(5){
S

d(s+t) a(s+t)
s+t (s—l—t)z}ds'

Evidently, again by Lebesgue’s dominated convergence theorem, these derivatives are continuous
with respect to t > 0.

8.4.2.2. An Exponential Amplitude

In order to verify, under the assumption (S8), that the integral (8.4.27) for n = 0 in the case
$¢ # 0 approaches a finite limit as ¢ | 0, we first note that a repeated application of the
Leibniz rule for n,q € Ny, analogous to (6.6.10), in terms of (6.6.9) and (8.4.28), yields

d" - (@) - (a+k)
(8.4.41) A s )5+ )] = ()} 32 6T s+ ), 0)

k=0

By definition of Pj(s,w) in (6.6.9), the functions S ,(s,w) are polynomials of w € C with
degree n— k. Their coefficients depend on the variable s only, they are continuous on s > .S and,
according to our assumptions, they satisfy O {3*700“6*"} as s — oo. The k-sum in (8.4.41)
is thus again a polynomial of w € C with degree n, and its coefficients exhibit the asymptotic
behaviour O {s~®00=700""=4} a5 s — oo for any fixed ¢ > 0. Furthermore, since ¢(s) ~ bgos 2,

forweCand 0 <k <n,ass— oo for fixed t > 0 or as t — oo for fixed s > S, we conclude

(8.4.42) {p(s)} " a (g+F) (54 1) Shon(s, ) = O {Sﬁoomw—wowk_n}

(s + t)x00tatk
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Therefore, upon choosing a fixed but arbitrary ¢ € R, and

(8.4.43) no > 1+ ¢Boo — a0 — Y00 — ¢,

the n-th derivative (8.4.41) for n > ny is absolutely integrable on the ray s > S for any w € C
with ®w < ¢ and t > 0. As a consequence, the integral (8.4.27) for n > ng and Rw < ¥
converges absolutely and uniformly with respect to ¢ € C in ¢ > 0 for any ¢ € Np.

Now, from N-times integration by parts, for ¢ € Ng, t > 0, N € N, Rw < ¢ and R > 0, we

obtain

Nl_S

(8.4.44) ./\/'0[ qutSﬂ Z o {p(S)} ™ ZSkn (S, w)al M (S 4 ) +
) ) k 0

w7t7g
NO[N,q,S}

CN
According to the above observations, if N > ny and ¢ € R\{0}, this expansion, and particularly
its remainder integral, is uniformly bounded with respect to ¢ > 0. Moreover, it is easy to see
that the limit as R | 0 of each summand then exists. Since the limit in the remainder integral

may be carried out under the sign of integration, it shows

N-—1 —iSC¢ n
th[ “’“] > e (RS Sl S ) (S 1)

L0 0.9, 5 = ( k=0
1 —w, t, 13C
NG| T
T GsoN ”[ N.q,8 }

(8.4.45)

Clearly, each term in the preceding sum is an entire function of w. Moreover, with N > ng the
remainder integral can be verified to converge absolutely and uniformly in any compact subset

of the half plane Rw < 1, because

q+ ng

(8.4.46) Y < oo +
/800

By arbitrariness of ¢ we conclude that the right hand side of (8.4.45) represents a function which

is holomorphic in any subregion of the w-plane.

8.4.3. w-Analytic Continuation of the Iterated Generating Function

Recall that £ = 0 implies #; = 0. By comparison with (8.4.16) and (8.4.17) we see that then,
except if pa = (00, 0) and xoo < Rz < 1o, the w-abscissa of convergence of the iterated integral
(8.4.14) originates in the condition for the convergence of a single component. Accordingly, if

in terms of (8.4.29) we write

—Ww 0 T1 o0 _ _ W — X00 t
8.4.47 M I = )} F e et po) N ’ dt,
(8.4.47) 0[—z,C2,T,T} /{(p( el No Y 00,0, T
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the w-analytic continuation for fixed z can be obtained by a simple application of the expansion
(8.4.31). However, in view of the convergence criteria for iterated integrals, we must distinguish
between a finite and an infinite exterior path. Furthermore, despite the case of an infinite path
Py with 6; = 0, by (8.4.13), implies 03 = 0, for later purposes we also specify the analytic

continuation of the above integral for 3 = 1

8.4.3.1. A Finite Path P, or an Infinite Path P, with & # 0

It was pointed out in the introductory part of this section, that integrals of the form (8.4.47)
in case of a finite Py or in case of an infinite Py with £ # 0, converge absolutely, if and only if
each of their single components does. Their convergence is then even uniform in any compact
subset of their region of absolute convergence, whence they are holomorphic with respect to one
variable with the second variable fixed. But if we plug (8.4.31) into (8.4.47), we arrive at an
expansion in terms of a finite number of integrals, of which each iterated integral again is of
the same type as (8.4.47) itself. From §8.4.2.1 we therefore conclude, that (8.4.47) via partial
integration for fixed z € C, arbitrary if pa € {(72,0), (00, 1)} or with Rz < x99 if P2 = (72,1),
can be extended to the half plane

(8.4.48) Rw < no1.

Therein it is analytic with the exception of a simple pole at w = 799. Define for a half open path
P2 with endpoints 0 < 7 < T < oo, and with ¢(¢; p2) and v;(t; 1) according to (8.4.2), (8.4.36)
and (8.4.37), the integral transforms

(8.4.49) Po[‘z’ ﬂ = [ oy e Setmat

7, T
Pa
(8.4.50) Qo [T_;’ C;J = / {p(t)} 7 e e(t; po) {va (6 Th) + twa(t; Th) } dt.
P2

Then, by virtue of (8.4.34), from (8.4.47) we compute

(8.4.51) Res My

wW="00

—w, 0,71, 00 a00Coo _ —2,(2
) ) _ b 100 ) .
[—Z7C27T7T] Boo {boo} PO[TaT}

If ngp = 0, the point w = 1y coincides with the origin of the w-plane. In these circumstances,

by (8.4.35), the Laurent expansion as w — 0 can most concisely be described in the form

(8.4.52) Mol:_w’ 0,71, OO] _ 1 CLOOCOO,P I:—Z, C2:| 1 |: —z,(2

—Zz, C277—7T E 600 TyT +7Q0 T7T7 Tl

Boo ] +Ow).

8.4.3.2. An Infinite Path Py with & = 0 and Fixed Rz < xqo

From (8.4.17) we ascertain, for py = (00,0), #; = 0 and fixed Rz < xgp, that the w-region of
analyticity of (8.4.47) coincides with the half plane fw < g, whose right boundary is prescribed
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8.4. An Infinite Interior Path in a Symmetric-Type Iterated Integral

by the behaviour at infinity of the amplitude a(s+t). Hence, to determine the associated analytic

continuation, we can rely on §8.4.2.1 again. For brevity we define

—U),Tl
_Z7T2

(T +1)

} =00 uB(T (1) / e} e T gyam

T

(8.4.53) My {

o0

_ / {o(t)} () No

n1,n2€{0,1} 7,
ni1+ngs=1

1
W+ 5o~ Xoo, t
1 — ago, n1, no, w, Th

dt

00
+ oo / {p(t)} " te(t) No [_a:;’_ofc(;)?;vt’ TJ dt.
Ts
By Lemma 8.2.5, we then have absolute convergence and analyticity of each integral in the above
sum, if the variables satisfy the conditions of Table 8.3. In the first column, we enumerated the
four summands of the expansion in their subsequent order. The second column shows the
sufficient condition for the absolute convergence of each exterior integral for fixed arbitrary
s > Ty. Furthermore, the third column provides these conditions for each interior integral for
fixed arbitrary ¢ > T5. Finally, the fourth column shows the supplementary condition for the

convergence of the iteration.

# exterior interior iterated

1 Rz<n — —

2 Rz <noo Rw < Moo + Mpee (Bors v01)  Rw < moo + Xoo — Rz + 0y, (Bor, v01)
3 Rz <meo+ FE Rw <100 + 185 (01) Fw < noo + Xoo — Rz + Ny, (1)

4 Rz <ng §Rw<7700+ﬁ Rw < noo + xo0 — Nz

Table 8.3.: Table of absolute convergence for the integrals in (8.4.53). Each row corresponds to one
of the summands in the expansion.

Therefore, upon applying the expansion (8.4.31) to the integral (8.4.47), for fixed Rz < x00
it follows, that

—w,O,Tl,oo] 1 [ w,Tl]
8.4.54 M =M

( ) 0[—27 0,73, 00 Boo(w —m00)” |~z T
represents the analytic continuation of Mp[...] into the wider half plane
(8.4.55) Fw < min {no1, m00 + x00 — Nz},

where 701 was defined in (8.4.33). The only singularity, which the function reveals in the extended
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region, is a simple pole at w = 7gg. In terms of (8.4.49), according to (8.4.34), we have

—w, 0,717, 00 apoCoo _ —2,0
4. R =— b 100 e
(8.4.56) &%OMO{—A 0,75, OO] Boo {boo} PO[T%OO]

If moo = 0, this point lies at w = 0. In this event, for later applications it is helpful to note, that
the expansion (8.4.35) as w — 0 shows

—w, 0, T 1 —2,0 1 —z,0
(8.4.57) Mo[ w, 0, 1,00]:_ aooCoopo[ z, ] 0{ z,

_ _ O ,
—2,0,T5, 00 w Boo T3, 00 +/300 T27OO,T1]+ (w)

where in terms of (8.4.36) and (8.4.37) the function in the constant term was defined in (8.4.50).

8.4.3.3. An Infinite Path P, with & = 0 and Fixed xoo < Rz < g

For completeness we conclude this subsection with the derivation of the analytic continuation
of the generating function (8.4.14) for pa = (00,0) and fixed z € C with xo0 < Rz < 1go. In this
case, we conclude from (8.4.17) absolute convergence and analyticity of the indicated integral

in the half plane
(8.4.58) Rw < noo + xo0 — Rz,

which furnishes a proper or improper subregion of Rw < 1g9. By Corollary 8.2.2, the abscissa of
convergence is due to the supplementary condition for the convergence of the iterated integral.
To access a wider region, we must therefore rely on our findings from §8.2.6.2. For this purpose

we identify

a(s+1),
e(t) = {p(t)} " c(t),

and, by comparison with (8.2.98), we infer Sy = Boo, Xo = Xo00, S0 = Xoo — 2 and kg = aqo-
Note, for fixed z € C subject to xpo < Rz < n0o, these parameters indeed satisfy (8.2.99),
which immediately enables us to employ the result from the indicated paragraph. According to

(8.2.128), the analytic continuation of the iterated generating function (8.4.14) to the strip

(8.4.59) xo0 < Rw < 10 + Xoo — Rz + 184, (01, Bo1,Y01)5

by (8.2.122), is thus represented by the expansion

Mo {—U% 0,71, OO] _ 0000 T'(Boo(noo — w))T'(Boo(w — xo0)) 1, {w + 2 = Xoo — 7700]
—2,0,T3, 00 Boo  {boo}" T'(evo0)(w + 2 — noo — Xo0) z, Ty
—w, T
8.4.60 M .
( ) T [—z, TJ
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By (8.2.117), the integral function in the first summand is given by

o0

(8.4.61) I I:Z§T:| ::TQ/BOOEeZB(T2)Q:<T2> +/t,300£€zB(t) {ZB/<t)Q:(t) + Q:/(t)}dt.
s 42
T2

With & = w + z — ngo, the latter converges absolutely and establishes a holomorphic function in

the region

n /8017 Yo1), if 2 ;é 07
(8.4.62) Rw < noo + xo0 — Rz + oo )

V%j, if z=0,

where as Sw — Fo00, uniformly with respect to Rw in any closed vertical substrip, and if z £ 0

uniformly with respect to &z € R, we observe

(8.4.63) Hl[w—i‘Z—Xoo—??oo]: O{lz]}, ifz#0,

z,Ts o(1), ifz=0.

In addition, by (8.2.115) the MB-integral in the second summand in (8.4.60) equals

q+ioco
—w, T ': i 'O (o — C)ﬁ w, Ty
—Z, T2 ) 271 F(Ozoo) ’ z, TQ

q—1i00

(8.4.64) Ml[ }@.

Its integration path is a vertical line, whose real part R( = ¢ satisfies

q > max {Boo(Rz — x00), Boo(noo — Rw)},
q < min {ago, Boo (100 — Rw + MBoo (Bo1, Y01, 01)) } -

(8.4.65)

Finally, according to (8.2.106), the integrand of (8.4.64), in terms of (8.4.29), features the integral

function

w, 1Y Tlﬁoo(w—ﬁoo)-l—C B ) . e
L1¢ 7 ]1:— eV E(T /tooz—xoo——ez Ct)A(Ty +t)dt
[ 2, Ty Boo(w — noo) + ¢ ( 1)T (t)A(T1 + 1)
2
1 oo
(8.4.66) — tﬁoo(Z—xoo)—C—lezB(t)@(t)
Boo(w —m00) +¢ nge:{o 5
n71+n2:’1 T2
Lo 4 L
W Np |70t G b
1,11, no, w, Th
In §8.2.6.2 it was pointed out that Mpyl...] = O(w) as Sw — +oo for fixed z, uniformly with

respect to Rw in any closed vertical substrip of the region (8.4.59). Furthermore, from (8.4.66)

it is easy to confirm the existence of constants L1, Lo > 0 such that for R( = ¢, uniformly with
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respect to Sw, §z, S¢ € R, we have

L w, T1
sam e 2]

§L1—|—L2|w|

With the aid of this bound, from (8.4.64) we deduce, uniformly with respect to Sw, Jz € R:
0o

(8.4.68) M; [:f;;l] < W / IT(q + iy)| |0 (00 — ¢ — iy)| dy

—o0

The integral on the right hand side converges absolutely. Moreover, according to the well-known

integral representation (A.5.14) for the beta function, for w € C of the strip (8.4.59) we have

o0

IT'(Boo(n00 — w))I'(Boo(w — x00))] < /‘ B0 (Rw—x00)—1
I'(ao) - (1 4 u)@o0

By taking into account (8.4.63), it follows the existence of further constants Ki, K9, K3 > 0,
such that for fixed xoo < Rz < ngp and any w € C from the strip (8.4.59), uniformly with respect

to Sw, 3z € R, we have

—w,0, T
(8.4.69) ’Mo[ 1 20

< K K. K .
_Z7O,T2,OOH_ 2] + Ko+ Ks )

Regarding the singularity of the analytic continuation of My[...] on the line Rw = ngo+ x00 — Rz,
we first notice that, whenever z # 199 + X00, this line does not run through the origin of the
w-plane. If, in addition, z # xgo, we find a pole of simple order there, and in analogy to (8.2.132)

we obtain for the residue

(8.4.70) Res My [

wW="n00+X00—%

—w, 0,77, OO} _ 0o {000}2 I'(Boo(z — x00))T(Boo (100 — 2))
—2z,0,T3,00 Boor(a()o) {boo}noo—i-Xoo :

We conclude this section by calculating the first two coefficients in the Laurent expansion at

w = Noo + Xoo — 2 for z = 0 in case of some special parametrizations.

8.4.3.3.1. Laurent expansion for z = 0 and xg9 < 0 with 799 + x00 = 0. If 190 + x00 = 0, the
indicated pole is again of simple order but lies in fact at the origin. By §8.2.6.2.2, as w — 0 we
then find

M| T 0 Thoe] | amfeool” p e 1L o
%1 0,0,Ts,00 |~ Bool(cgo) 0 w et
(8.4.71) 0,T
M, |00
w07t + o)
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where the constant in the second term denotes

(8.4.72) Lxoo (T2) := —log {boo } + boo log(T5)¢(Ts) + boo /log(s)C’(s)ds.
€00 €00 i

8.4.3.3.2. Laurent expansion for z = 0 and xg9p = 0. In these circumstances the pole of the
rational function in (8.4.60) merges with that of one of the gamma functions. By §8.2.6.2.3, at

w = 100 wWe have

—w, 0, T 2 1 T:
(8.4.73) Mo[ w, 0, 1,00] _ 0002{000} { —+ po(T2) _1_0(1)}’
0,0,T3, 00 {5()0} {boo}mo (w - 7700) w — Too
with the constant in the residue given by
. Boo Boo /
(8.4.74)  po(T2) := Booy + Boot (o) — log {boo} + p log(12)€(T) + . log(s)€'(s)ds.
T3

Here, v refers to the Euler-Mascheroni constant.

8.4.4. Evaluation of the Interior MB-Integral

For fixed z € C with Rz = z¢(p2), we refer to the interior of the iterated MB-integral (8.4.26)

as

uo (91 )-i-’LOO

91 1 I‘(w) —w, Cl, Tl, o0
4. I |m; = —_— dw.
(8 75) |:m’ 2 52:| 2mi (’I?’L + 1)w MO |: —Z, C27 T, T v

ug(01)—1ioc0

In accordance with the above considerations, the original definition of the generating function
(8.4.14) for fixed z € C with Rz = z((p2) is entire with respect to w if §; = 1, but for 6; = 0
it exhibits analyticity only in the half plane Rw < ngp. In the last case, it can be extended

meromorphically to the wider region
(8.4.76) Rw < n1(p2),

where, according to (8.4.48) and (8.4.55), we denote

701, if p> € {(72,0), (12,1)},

min {no1, Moo + xo0 — zo(P2)}, if p2 = (00,0).

(8.4.77) n(p2) ==

Moreover, our study has revealed, that the only singularity of the analytic continuation in the
extended region in each case is a pole of simple order on the line Rw = 7nyg. Hence, the singu-
larity in (8.4.75), which lies closest to the right of the integration path Rw = ug(61), is a pole

of first or second order. It results from the gamma function I'(w) if 6; = 1 or if ngo > 0, from
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the generating function if 199 < 0 or from both if 799 = 0, where we observe a coalescence to a
second order pole. The case pa = (00, 0) with §; = 0 and 7o < 0 is omitted for the moment and
solved in a more convenient fashion in the last subsection. The reason is that, in this case the
presence of a second order pole at w = 0 for 799 = 0 can be avoided.

In order to justify a displacement of the path in (8.4.75), we recall that the original definition
of the iterated generating function (8.4.14) constitutes an absolutely convergent integral, which
converges uniformly with respect to Sw, 3z € R. Consequently, for §; = 1 it is easy to verify
the function O(1) as Sw — 400, uniformly with respect to Rw in any closed vertical substrip
of C. Furthermore, for #; = 0 the existence of the respective analytic continuation and its
computability by partial integration was verified in §§8.4.3.1 and 8.4.3.2. In each case, it rep-
resents an expansion in terms of absolutely convergent integrals and simple rational functions.
We thus conclude, for fixed z € C with Rz = x¢(p2), each continuation is O(1) as Sw — +oo
in Rw < n1(p2), uniformly with respect to Rw in any closed vertical substrip. Hence, the inte-
grand in (8.4.75) decays exponentially fast as Sw — +oo, in C if §; = 1, or in the half plane
Rw < n1(p2) if 61 = 0. We thereby deduce the permission, to displace the integration path to
the right over the pole at w = 0 if §; = 1, and for §; = 0 over the poles at w € {0,190} if
noo > 0, or merely over the pole at w = ngg if that point does not lie in the right w-half plane.
Bearing in mind that, in the case py = (00,0) with #; = 0 we suppose 19y > 0, and that each

pole is encircled clockwisely, for a suitable vertical line with Rw = u1 (61, p2) we then arrive at:

01 0, ¢, Ty, 00
(8.4.78) I |:m; . _,2:| =-Moy |:—Z, o, T, T:| ]]'{91 =1Vnoo >0}

n I"(n00) ao0coo pp [ =%, C2 1
{boo(m + D)™ Fog | 7,7 | 1r=0m0#0}

ap0Co0 -2z, G2
730[ T4p, =0, po = 72,700 =0
Boo 9, Ty {61 =0, p2 =72, m00 =0}

— (log(m +1) +7)

1 —Zz, CZ
79, Ty, T ]1{91 =0,p2 =72,m00=0}

~ Boo
) u (61,p2)+ico F(w) LT
w —w,G1,41, 0
s W) d
2mi (m+1)wM |: —%, C277—7T :| v

w1 (01,p2)—1i00

This expansion was obtained similar to (8.1.12), by virtue of Theorem B.2.1(2). The coefficients
appearing therein were taken from (8.4.51), (8.4.52) and (8.4.56). Moreover, the integration
path in the remainder integral is a line with arbitrary positive real part if 6; = 1, and for §; = 0

the closest singularity to its left is the pole at w = nyqq, i.e.,

0< ul(LﬁZ) < 00,

(8.4.79) . m(p2), if noo > 0,
noo < u1(0,pa) < . B .
min {0, m (pz)} , if ngg < 0.
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With z¢(p2) as in (8.4.24), we introduce the single MB-integrals

Zolfa)tioe I'(2) 0,¢1, T
. z ,61,41,00
A. ; i (m+1)7
(8 80) J<m701’p2) 211 (m + 1)ZMO |:—Z, C27 T, T:|dz,
xo(p2)—ico
; . w0 (P2)+ic0 r(2) ¢
sl K lm: %2 ] . Az 5772
(8.4.81) [m -, T} = (m+1)zpo[ nr %
zo(P2)—i00
. xo(P2)+ic0 r'(2) ¢
oy L B 462
(8.4.82) Q(m; 0s) := omi / (m+1)* < |:7'2, 13, Tl]dz'
zo(P2)—i00

An application of (8.4.78) to the iterated MB-integral (8.4.26), accompanied by a simple bound

for the remainder integral, as m — oo then shows

) (1,11, 0 -
(8.4.83) Si [m; 22 Tl T :—J(m;91,p2)11{91:1vnoo>0}

I'(100) aoocoo o [ 0, ,
{boo(m + 1)} Boo ', T {61 =0,m00 # 0}

apocoo 0
- (log(m + 1) + 7) Boo K |:m; T, T:| 11{91 =0,p2 =72,n00 =0}
1

- % Q(m, 92>]l{91 =0, p2 =T2,M00 =0}

+0 {m—xo(ﬁz)—ul(ﬁ’l»ﬁz)} .

To conclude the asymptotic evaluation, a careful analysis of the single integrals in the above

expansion remains to be accomplished.

8.4.5. A Single MB-Integral for the Residue at w =0 if & # 0, or if 79y > 0

We are now concerned with the large m-behaviour of the MB-integral J(m;#01,p3), which was
defined in (8.4.80) and occurs for ; = 1 or for ngy > 0. Its generating function equals the
iterated integral (8.4.14) evaluated at w = 0. According to (8.4.15) and (8.4.17), the latter
is absolutely convergent and holomorphic in the whole z-plane for g € {(72,0), (c0,1)} and

otherwise in the half plane Rz < 19(61, p2), for

X20, if pp = (m2,1),
(8484) [,0(01,]72) = 700, if ﬁQ = (O0,0) VAN 01 = 1,
Moo + min {0, X()()} , if pp = (OO, 0) ANB; =0.

Since, in the present subsection, &1 = 0, i.e., 61 = 0, implies 9o > 0, it is easy to see that

vo(01,P2) > <o(p2).
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In addition, the integral definition of the generating function of J(m; 61, p2) is O(1) as Sz — +oo,
uniformly with respect to Rz in any closed vertical vertical substrip of its region of analyticity,

whence the conditions (8.4.24) on the integration path xo(p2) = jo(61, p2) can be replaced by

0, if po € {(7’2,0),(00,1)},
min {0, to(01,p2)}, if P € {(72,1),(c0,0)}.

(8.4.85) —1 < jo(01,p2) <

First of all, for different values of the parameter 1(61, p2), we will determine the analytic contin-
uation into a wider region that contains the line ®w = 19(61, p2), and calculate for some n € Z

the coefficients in the Laurent expansion

0)<17T1700:| |: 01)ﬁ2 :| N
8.4.86 M = n (2 — w6y, "
(5.4.56) oS S | oy | € 40072

for brevity, with the parameter

(LO(Gl)ﬁ2)vmin {07X00})7 if ﬁ? - (OO>O) /\01 - 07

to(01,P2), otherwise.

(8.4.87) X(Ql,ﬁg) =

For this, in (8.4.14) a distinction between a finite and an infinite exterior path must be made.

8.4.5.1. z-Analytic Continuation for w = 0 and a Finite Path P,

In the case pa = (12, 1), bearing in mind ¢(¢; 72) = ¢(t), in terms of (8.4.27) we write

15
07 €15T17OO / —z —(ot 07t7 Cl
8.4.88 M = t 2le(t)N dt.
( ) 0|:_Z7 42772)T2:| {SO( )} ‘ C( ) 0 Oa 07 Tl
T2
The integral Apl...] with the above arguments is then a continuous function of 7 < t < T

that is O(1) as t | 19. Moreover, by uniform convergence with respect to 7o < ¢t < Th, its first
derivative can be found by differentiation under the sign of integration, and it is again O(1) as
t | 0. We may therefore still employ the standard integration by parts procedure from §8.2.2.1,

for

d(t) = e le(t) Ny [87’83 %} ,
k(s+t) =1.

This shows, that (8.4.88) can be extended to a meromorphic function in the half plane

(8.4.89) Rz < X21,
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where x21 was defined in (8.3.19). The only singularity therein is a simple pole at z = xa0,
whence in (8.4.86) each coefficient for n < —2 equals zero. According to (8.2.33), for the residue

we obtain

(8.4.90) o [‘91’ (72, 1)} e

_ _ 0, 72, C1
_ b XQOeCQTQN[’ : }
X20 B20 {b20} 0

0,0, T}

If x20 = 0, the point z = 20 clearly lies at the origin of the complex z-plane. From (8.2.35) and
(8.2.36) we conclude, that the constant addend in the expansion (8.4.86), in terms of (8.3.23),
is then given by

[e.9]

(8.4.91)  uo [01’ (82’ 1)} = CQB(TQ) log {p(Th)} e~ 212 /e_glsc(s)a(s + T)ds
20 4
] T> [e'¢)
+ ﬂ%/e_@tfg(t, CQ)C/e_Clsc(s)a(s—i-t)dsdt
T> o0
=L g fot)y e-ton () / e~ C5e(5)d (s + t)dsdt.
20 J 4

8.4.5.2. z-Analytic Continuation for w = 0 and an Infinite Path P,

To specify the z-analytic continuation of (8.4.14) with p5 = (00,0) for w = 0, we note that
c(t;00) = ¢(t). By comparison with the indicated definition, it is therefore easy to confirm the

identity

(8492) MO|:07<17T1700:| _M0|:_2707T27OO:|.

—Zz, 0, TQ,OO 0, Cl,Tl,OO

But the analytic continuation of this function has already been derived in Subsection 8.4.3.
Particularly in §§8.4.3.1 and 8.4.3.2, where we discussed the case §; = 1 and the case 6; = 0

with xgo > 0, this was possible via integration by parts, which eventually brought us

0, —
t1, (00, 0) }_ _WPO[TL%O}, ifn=1,

(8.4.93) u—n[
01, (00,0 0, P _
x(01, (00, 0)) ﬁioQO{TI,og,ln]v if n.=0Amng = 0.

In each of these cases, as well as in the next case, the point w = ¢y(61, (c0,0)) is a pole of
simple order, whence in (8.4.86) all coefficients for n < —2 vanish. However, in the case 6; = 0

with xgo < 0 instead of integration by parts we had to employ a different expansion, compare
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68.4.3.3. In view of (8.4.92), by (8.4.70) and (8.4.71) this yields

(8.4.94)
{co0}” T(1=700)T' (@00+v00—1) e
_gggrigz)o) }L/([))ZO}"??OOEZXO’?O ) if n=1A x00 <0,
i 0, (00, 0) _ —M{F(l— )}2 (1)
" L (m0o + X00, X00) Bool (@o0) 700) 5 Fxoo (41
+M; {8:%}, if n =0 Anoo = —Xoo-
Notice, since 61 = 6 = 0 implies 199 > 0, we have xgo = —noo if and only if xgo < 0. Finally,

in the case xgo = 0, at z = (0, (00, 0)) we certainly find a pole of order two. Accordingly, the
coefficients in (8.4.86) for n < —3 vanish and by §8.4.3.3.2 we obtain

0 0 2 1, if n=2,
(8.4.95) un[ » (00, )] _aoo{eoo}”

(77007 0) N {600}2 {bOO}noo /Lo(Tl), if n=1.

No additional coefficients are required in this last case, since z = 799 then clearly lies somewhere

in the right z-half plane.

8.4.5.3. Evaluation of the MB-Integral

To summarize these results, for py € {(m2,1), (00,0)} the integral (8.4.14) with w = 0 can be
continued analytically into the region Rz < ¢1(60;,p2), for

.

X21, if po = (m2,1),
. 701, if po = (00,0) A0y =1,
(8.4.96) L1(91,p2) = ) L
min {701,700 + X00} if Po = (00,0) A 01 =0 A x00 > 0,
1700 + X00 + Mo (@01, Bo1,Y01), if P2 = (00,0) A O =0 A xo0 < 0.

According to §§8.4.3.1, 8.4.3.2 and 8.4.5.1, the continuation can be computed via partial inte-
gration, and each representation that can be obtained in this fashion, holds in the whole region
Rw < 11(01,P2), where its only singularity is a pole of simple order at w = ¢9(01,p2). Con-
versely, the expansion (8.4.60) from §8.4.3.3, which is applicable if po = (00,0) with ; = 0 and
x00 < 0, merely covers some substrip of the above half plane. There, it was seen to exhibit a
pole of simple order at z = 10(0, (00,0)), except if xp0 = 0, in which circumstances a second
order pole will be found at this point. Since 799 > 0 then, in this special case the indicated pole
lies somewhere in the right z-half plane. Additional poles may only show up to the right of the
line Rz = 10(0, (00, 0)). If we therefore incorporate the gamma function I'(z), the integrand of
the MB-integral (8.4.80) at z = 1o(f1,p2) in each case only shows poles of order less or equal

two. Furthermore, upon exploiting the exponential decay of this gamma function, a rightward
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displacement of the integration path can be justified, to match a line Rz = j;1 (01, p2), for
(8.4.97) 0 < j1(01,p2) < o0, if po € {(72,0), (00, 1)},
for j1(01,p2) > vo(01,p2), with

min {77007 Ll(()? (007 O))} ) if LO(Oa (OO, O)) 2 0A X00 < 0;
(8.4.98)  j1(0,(00,0)) < < min {0, £1(0, (c0,0))}, if 10(0, (00,0)) < 0 A x00 < 0,
min {100 + 5k, 11(0,(00,0)) },if 19(0, (50,0)) > 0 A x00 = 0.

and otherwise with

L1(617ﬁ2)7 if L0(017ﬁ2) Z 07
min {0, ¢1(61,p2)}, if to(61,p2) <O.

(8.4.99) J1(01,p2) <

In the process of moving the path rightwards from Rz = jo(61,p2) to Rz = j1(61,p2), we
clockwisely encircle the pole at z = ¢o(61, p2), and in addition the pole at z = 0 if ¢o(61, p2) > 0.
Appealing to Theorem B.2.1(2), as m — oo the residue theorem brings us:

. 0, C1, T, 00
J(m;p) = —MO[ 0.Co.7. T ] {p2 € {(72:0). (00, 1)} Vo (61 2) > 0}

I'(eo (01, p- 7
(m(j(l)m {log(m + 1) — ¥ (20(61, §2)) } pi—2 [x

_ _Lo(B1,92)) . 1,
(m+1)ao(917[72)ufl X(Gl,ﬁ2) {t0(61,p2) #0}

01, P2 ] [ 01, D2 ]}
+<( +1) +79)pu— - Liio(61,5) =
{( og(m ) '7):“ 1 [X( ) Ho X(ela 2) {t0(61,p2) =0}

01, Pa P
+0 {m—j1(917ﬁ2)}

01, P2

8.4.100 + L
( ) (917 D2

)] Li10(01,7) # 0}

The estimate for the remainder integral in the big-O holds by absolute convergence.

8.4.6. A Single MB-Integral for the Residue at w = 7

The MB-integral K[m;...], compare (8.4.81), only appears if #; = 0. By (8.4.13), it is therefore

sufficient to consider the cases

p2 € {(7—270)7 (7—2> 1)a (0070)} :

Its generating function (8.4.49) is readily verified to be absolutely convergent and holomorphic in
the whole complex plane if py = (72,0), or in the half plane Rz < ¢o(p2) if pa € {(72,1), (00,0)}.
To specify the analytic continuation is a routine step, which can be accomplished by a quick

reference to §§8.2.2.1 and 8.2.2.2, respectively for po = (m2,1) and pa = (00,0). Accordingly,
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Pol. . .] can be continued to a meromorphic function in the half plane Rz < ¢1(p2), with

X20 + X0 (8215 721), if pp =1 AN =0,
(8.4.101) s1(P2) == X20 + Xpa0 (B21,721,0), if po =12 Al #0,
X00 + 7500 (Bo1,Y01), if py = (00,0) A G2 = 0.

The only singularity therein is a pole of simple order at z = ¢o(p2). Hence, in an annulus around

this point, we find an expansion with dominating terms

(8.4.102) Po [_TZ’TCQ] = % +7m0(0; 7, T) + O {2 — o(F2)}

in which the residue equals

-5 b X0 6_C27—27 lf Do, = T ;]- )
(8.4.103) T_1(Ph) = B20 {b20} p2 = (72,1)

_% {bOO}_XOO ) lf ﬁ? - (007 0)7

whereas the coefficients of the constant term in the cases ¢y(p2) = 0 are respectively given by

Ty
(8.4.104) mo(1; 79, Tp) = 025(2?) log {(Ty)} e~ 212 4 520 / B'(t)e=2t Oy () dt
7 T2
" B log {@(t)} e~ {Cy(t) — (2Ca(t) } dt,

T2

54105 mo0:T5,00) = S tog ()} - o T/ [B(e() ~ log {¢(H)} (1)} .

Similar to the integral definition of Py|...], in each case its analytic continuation is readily
confirmed O(1) as Yz — +o0, uniformly with respect to Rz in any closed vertical substrip of
its half plane of analyticity. Hence, there the whole integrand of (8.4.81), due to the gamma
function, vanishes exponentially fast towards the imaginary direction. We are therefore allowed,

to replace the integration path by a vertical line Rz = s1(p2), for

0< 81(7'2,0) < 00,
(8.4.106) c1(p2), if so(p2) = 0,

s(p2) < s1(P2) < ' . ‘ B
min {O, §1(p2)} , if C()(pg) < 0.

According to the residue theorem, we must then incorporate the clockwisely encircled pole at

2 = o(p2), and possibly also the pole at z = 0 if ¢o(p2) > 0, which as m — oo eventually yields
92 07 C2
(8.4.107) K [m; - T} = —7’0[7 T L = (2.0) veo(2) > 0}
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['(s0(P2))

- mﬂ_l(ﬁﬂl{%(ﬁz) #0}

+{(log(m + 1) +v)7-1(p2) — m0(02; 7, T) } Lygo () =0}
+0 {mfsl(f’b)} .

The big-O estimate again holds subject to absolute convergence of the remainder integral.

8.4.7. A Single MB-Integral for the Residue at w = 0 if 79y = 0

The MB-integral (8.4.82) only occurs if py = 79 with 6; = 0 and 79 = 0, in which case (3 = i&s.
Its generating function Qpl...] was specified in (8.4.50), and for Py = (72, T2] this becomes

Ts
(8.4.108) Qo { —% 18 } = /{cp(t)}z eii&tc(t) {vi(t; 1) + two(t; 1) } dt.
72, T, T}
T2
According to our findings from §8.4.2.1, the functions v;(t; T1), which for j € {1,2} were defined
in (8.4.36) and (8.4.37), are O(1) as t | 7. It is therefore easy, to confirm absolute convergence
and analyticity of the above representation for any z € C, if 859 = 0, or for Rz < x99, if F20 > 0.
We remind the reader, however, of Subsection 8.2.5, where it was pointed out that the exact
region of analyticity certainly will be larger, if the term in the curved brackets vanishes as t | 7».

Yet, we may still proceed in the fashion of §8.2.2.1. Upon identifying

d(t) = e te(t) {v (6 Th) + tra(t; Th) Y,
k(s +1t) 1

)

this immediately shows, that (8.4.108) can be expanded via partial integration. Thereby, we

obtain a representation, which is valid by analytic continuation in the half plane
(8.4.109) Rz < X21,

with 21 as in (8.3.19). Therein its only singularity is a pole of simple order at z = xgq, for
which, from (8.2.33), we compute

(8.4.110) Res Qg [ {boo} X0 7922 L)) (19, TY) + Tova(12; T1) } -

—z,i& | _
Z=X20

T2, T, Ty B20

Finally, if x20 = 0 the first two terms in the Laurent expansion around z = 0 of (8.4.108) can
be obtained from (8.2.35), which yields

—2, 182 Lo _igyr,
— - T T
Do [7_2’ T, T1:| . 5206 {v1(m2;T1) + Tova(m2;T1)}
1 [ i&o

+ — Wy
Bao | T2, T2, T

(8.4.111)
} + O(z),
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where the constant appearing in the second coefficient, by (8.2.36), features the sum of integrals

wo{ h ]:Zbg{so(Tg)}eif?TQCg(Ta){Vl(Tz;Tl)+T2V2(T2?T1)}
T2, T2, Th

Ts
(8.4.112) + / B(£)e~ Oy (t) {1 (£ T1) + tua(t: T1)) dt
T2
Ts

- / log { ()} e 21Ch(t) {1 (1 T1) + ton(t: Th)} dt

T2
Ts

+ i&o / log {p(t)} e_i&tC'Q(t) {ni(t;Th) + two(t; Th) } dt
Ts

— /log {o()} e 2 Cy(1) {I/i(t; Ty) + vo(t; Ty) + tvh(t; Tl)} dt.

T2

Since the integral definition of Q. ..] as well as its analytic continuation are O(1) as Sz — +oo,
uniformly with respect to Rz in any closed vertical substrip of C if 859 = 0 or of Rz < yo1 if
P20 > 0, we observe exponential decay of the integrand of (8.4.82) there, towards any imaginary
direction. In view of these properties, we are allowed to move the integration path to the right,

to match a line with real part ®z = x4, for

0 < z9 < 00, if 899 =0,

(84113) X21, if X20 > 0,

X20 < T2 <
min {0, x21}, if x20 <O.

Thereby, we merely traverse the pole at z = 0 if S99 = 0 or at z = o0 if x20 < 0, or the poles
at z € {0, x20} if x20 > 0. According to Theorem B.2.1(2), as m — oo this yields

0, 262 1
79, Ty, Ty |~ P20 =0V x20> 0}

I'(x20) €20 _igyr
{bao(m + 1)}X2° %e (2 ) o 7202705 T} g 20}

(8.4.114)  Q(m;62) = —Qo[

C .
- (log(m + 1) + 7)%672627’2 {Vl(TQ; Tl) + TQVQ(TQ; Tl)} 1{X20:0}

1 €2 1
— —Ww o
B |7, Ty, Ty | 20 =0}

+O0{m "2} .

The estimate for the remainder holds by absolute convergence of its integral representation.
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8.4.8. Evaluation of the Iterated MB-Integral

We will now collect our findings from the preceding paragraphs, to establish definite statements
on the m-asymptotic behaviour of (8.4.1). For this, we recall (8.4.19), from which in the case

01 = 09 = 0 we deduce

. 0, Tl, o0 . 0, Tl, (0. ]
8.4.115 S ; =S ;
( ) 1 |:m7 Z{QaTaT] 2|:m’ i§2a77T1|’

since ¢; = 0 for an infinite path P; implies ; = 0, by convention. According to this identity, we
continue with the expansion (8.4.83), whose remainder terms, contrary to the case of two finite
paths, will turn out negligible without additional assumptions. For a better overview we again
distinguish between different parameter values, such that at least one summand in the indicated
expansion vanishes.

First, since the parameter xo(ps) satisfies (8.4.24), if py € {(72,1), (00,0)}, for an arbitrary
g9 € (0,min {0, p(p2)} +1) we can write xo(p2) = min {0, ¢p(p2) } —e2. Conversely, zo(p2) = —e2
for e5 € (0,1), if pa € {(72,0), (00, 1)}. In addition, the integration path Rw = u1(61,p2) of the
remainder term in (8.4.83) for #; = 0 is supposed to satisfy (8.4.79), i.e., for another arbitrary

e1 € (0,m(P2) — n00), if ngo > 0,
1 € (0,min {0,71(p2)} — Mo0), if Moo <0,

we have u1(0,p2) = noo+e1. If we require € := g1 —e9 > 0, a statement analogous to (8.3.61) can
be achieved. Moreover, by choosing j1 (61, p2), s1(p2) and z2 appropriately and €1, €2 sufficiently
small, provided pa € {(12,1), (00,0)}, we can write j1(01,p2) = to(61,P2) + ¢, s1(P2) = so(P2) +¢
and o = x20 + €. Finally, the remainder term of the expansion (8.4.83) for §; = 1, that of
(8.4.100) for pa € {(72,0),(c0,1)}, as well as each remainder of the expansions (8.4.107) and
(8.4.114) for pa = (72,0), is O {m~9} for an arbitrary ¢ > 0.

8.4.8.1. Two Infinite Paths with & = & =0 and 799 > 0

We begin with the case of two infinite paths and non-oscillatory amplitudes, supposing 19 > 0.
Formally p5 = (00, 0) and #; = 0, which implies ¢ (0, (00, 0)) = 190 +min {0, x00} and ¢o(00,0) =
Xo00, by definition. Hence, from (8.4.83), (8.4.100) and (8.4.107), by (8.4.115), we obtain

A O,Tl,OO O,OaTlaOO
8 [m; 0. Ty, oo] N MO[O, 0, b, w]l{‘0(91’52)>0}

817ﬁ2
_ 1 .
e |:X(917 ﬁ2):| {0(61,72) # 0}

I(eo(01,p2)) [ 01, P2
X

(m + D@ M1 (0, 52)} Lo (01.52) £ 0
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01, p2 61, P2
SR RVt B T IRt ST
B '(100)  aoocoo [ 0,0
{boo(m + 1)}™  Fog [T, 00
T'(100)T(x0o0) oo {coo}’
{boo(m+1)}ﬁoo+Xoo {500}2 {Xxo00 #0}

B I'(00)
{boo (m + 1

:| ]l{Xoo >0}

€00

Boo

+ 77-0(0; T27 OO)}

% aOOCOO]l
00=0
Boo {x }

”m{&mm+D+w

+0 {m—bo(91:ﬁ2)_5} )
By inspection we readily verify the next theorem.

Theorem 8.4.1. For ngy > 0, assume validity of the conditions (S6) and (S7). Then, provided

at least one term on the right hand side is non-zero, as m — 0o,

(1) if xo0 > 0, we have

. O,Tl,OO 0707T1700
S ; ~
' |:Tn7 07 T2700:| MO|:07 07 T2700:|

I (100) aooCoo{ [ 0,0 } [ 0,0 ]}
- P P .
{boo(m +1)}7° Bog o\ Ty, o0 + 7 Ty, 00

The second term features the integral (8.4.49).

(2) if xoo =0, we have

T; T
Si |:m 07 17OO:| NMO |:01 07 1700:|

"0, Ty, 00 0.0. Ty, 0
2
_ {boo(féz(ioi)}noo {1og(m + 1) - ¢(7700) - ,U,()(Tl)} Cm
11(7700) M
"~ {boo(m + 1)} (log(m + 1) + 7) oy
T(noo)  @oocoo (01T o).

 {boo(m + 1)} Bog

The constants in the second and fourth term were defined in (8.4.74) and (8.4.105), re-
spectively.

(3) if xoo <0, we have

. 0,71, 00 0,0,T}, 00
Si [m; 07 T27 OO} ~ MO [0’ 07 T27 OO} ]1{7700 > —xo0}
T(100 + Xo0) @00 {coo}”

- {bOO(m+ 1)}77004-)(00 BOO

356



8.4. An Infinite Interior Path in a Symmetric-Type Iterated Integral

« I'(1 = v00)T (200 + Y00 — 1)]l
T'(co) {noo # —xo0}

aoo {coo}* {T(1 — v00) }*
/300 P(QOO) {7700=*X00}

+ (log(m +1) +7)
0, (00,0
+ ko { ((07 O) )] ]1{7700 =—Xo00}

C(n0o)T(x00)  aoo {coo}?
{boo(m + 1)}0Tx0 (5 32

The coefficient of the fourth term refers to (8.4.94).

8.4.8.2. A Finite Path P; and £ =0

In these circumstances pa € {(72,0),(m2,1)} and 6; = 0 with ¢o(0, (72,1)) = s(72,1) = Xx20-

Depending on 19, we distinguish between two cases.

8.4.8.2.1. The case ngg # 0. Then, in (8.4.83) the third and the fourth summand vanishes.
Accordingly, by additional use of (8.4.100) and (8.4.107), as m — oo we obtain:

. 0, Ty, o0 0,0,T1, 00
S ;. =M 1 1
' [m 152,7'2,T2} 0[0, 152,7'2,T2] {00 >0} {20 =0Vxz0 > 0}

C(X20) €20 —igamy pr [0 72060
18T ]1
T T P 5”0 0,0,y | Lo 0xa0#0)
07 727252

20
+ (log(m + 1) + 7)%6 15272/\/'0[ 0.0, T, ]]l{noo>07X20=0}

07 (7—27 1)
+/’L0|: 0 :|]l{7700 >0}1{X20:0}

_ I'(n00) aooCooP 0, &5 1
{bOO (m + 1)}7700 1800 0 7—27 T2 {520 =0V X20 > O}

' (m00)T" (x20) €20400€00 iy
{boo(m + 1)} {boo(m 4+ 1)}**° B0 oo {x20#0}
I (n00)
B {boo(m + 1)}7700
3 L'(no0)  aoocoo
{boo(m + 1)} Boo

+ ]1{520 :O}O {m—ﬂoo—e}
+ ]1{620 > 0,100 > O}O {m_X20—€}
+ Lipyp > O}O {m—ﬂoo—min{o,mo}_s}

€20400€00 iy
=0
B20500 Oxo =0}

70(1; 72, T2) L {yp0 — 0}

(log(m +1) +v)———

This yields the following theorem.

Theorem 8.4.2. For ngg # 0, assume validity of the conditions (S6), (S7) and (S9). Then,

provided at least one term on the right hand side is non-zero, for any &2 € R as m — oo,
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(1) if noo > 0, with either Bog = 0 or x20 > 0, we have

: 0,71, 00 0,0,T1, 00
S
: |:m 7’6277-27T2:| MO|:O7 7;5277-27T2:|
I'(x20) 20 e—i&m [0 , T2, 162

— 1
{b20<m+ )}xzo /320 0,0,T} ] {x20 <700}

B L'(00) aooCooPO[O i€
{boo(m +1)}" Boo 72, To

:|]l{5200V7700<X20}'

(2) if noo > 0 and x20 < 0 we have

. O T1 o0 Co0 _; 0 p) ng
Si|m; 7 ~ (1 1 —= o e Ty, _
i [m, i€277_27TJ (log(m + )—i—*y)ﬂme ./\/'o[ 0.0, T} ] {x20 =0}
0, (12,1
+M0[ (72, 1)

0 :| ]1{X20:0}

I'(x20) €20 —igara s | 0 T2 062
— T 1 .
{bao(m + 1) P 520 No 0,0, T} {x20 <0}

(3) if noo < 0, with either S0 = 0 or x20 > 0, we have

Si [m 0,13, 00 } ~__ T(mo) 0000 [0, ifg]
" &9, T2, T {boo(m + 1)} Byo T2, T»
(4) if noo < 0 and x20 < 0, we have
: 0, Tl’oo] '(100)T" (x20) €20a00C00 _
Sl m; . e 16272]1
|: &2, T2, T {boo(m + 1)}”00 {bgo(m + 1)}X20 B20B00 {x20 <0}
I"(100) €20a00C00 _
- log(m + 1) + ey,
{boo(m + 1)}%0( 8 ) B0 B20800 {x20 =0}

I'(100) ap0Coo

- {boo(m + 1)} B20B00 mo(1; 72, T2)]1{X20=0}'

8.4.8.2.2. The case 7pp = 0. Now, in (8.4.83) the first and the second summand vanishes, and
from (8.4.107) and (8.4.114) as m — oo we therefore deduce:

. 0,71, 00 aooC 0,1
Si [m; ) ! } = (log(m+ 1) +7) 00 00770{ 52]]1{520=0\/X20>0}

i, o, Th Boo 72, Tp
~ (log(m +1) +7) {b20(1;r5>$01))}xm 625();)()5();?0 e 00 20)
+ (og(m +1) )" S Re ™ Ly
+ (log(m + 1) + ) %)0000770(1; 72, T2) a0 = 0}
- 51)0 Qo [72?732§:2T1] 1o =0v20>0)

F(X?O) C20 ity
B i ;T T} 1
{byo(m + 1)}X20 520,6’006 {vi(m2;T1) + Tova(me; 1) } {x20 £0}
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+ (log(m + 1) + )
1 Z§2

1
* 520500w [72, T, T1] D0 =03
+ ]1{,320=0}0 {m_a}
+ 180> 03O {log(m)m_xm_a}

+ L0 > 01O {mf min{07X20}*s}

5205006 T (2 ) + mova(ma; 1)) Liys0=0}

For 20 > 0 the leading asymptotic behaviour is logarithmic growth as m — oo, which eventually

increases to logarithmic-algebraic divergence for yoq < 0.

Theorem 8.4.3. For ngy = 0, assume validity of the conditions (S6), (S7), (S9) and (S10).

Then, provided at least one term on the right hand side is non-zero, for any &2 € R as m — oo,

(1) if B2o = 0 or x20 >

S [ 0,71, 00
i|m;
i, T2, T

(2) if x20 = 0, we have

0,T;
Si[m;,’ 1, %

1527 T2, T2

(3) if x20 < 0, we have

0,T;
Si[m;_’ 1 oo

7’527 T2, T2

0, we have

0000, [0,i§2]+1g [ 0, i€ ]

~ (log(m +1) + .
] (log )+7) Boo T, To Boo " |72, To, T

} ~ (log(m + 1) + )2620&00000 —itam
B20800

+ (log(m + 1) + ) 120 7
Boo

€20

B2000

0(1; 72, T)

+ (log(m + 1) + ) =———e "™ {v(19; T) + Tor2(12; T1) }

n 1 [ 2 ]
W .
BaBoo | 7a, To, T

I"(x20) €20400€00 iy
{b20(m + 1)} B20f0o

I'(x20) €20 _igomy
- i€ T JT1)}.
{boo(m + 1) }X*° 520ﬂ00€ a(m T1) + rosa(mi Th)}

]~—mgm+n+w

8.4.8.3. An Oscillatory Amplitude with £ € R\ {0}

The derivation of m-asymptotic statements on Si[...] in the case {&; € R\ {0} requires additional

arguments. By convention this means #; = 1 and, in view of (8.4.13), we must therefore consider

the cases

P2 € {<7_270)7 (7_27 1), (007 1)7 (0070)} :
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Furthermore, with #; = 1 in (8.4.83) all but the first and the remainder term vanish, where the

latter is exponentially small. Hence, with the aid of (8.4.100), as m — oo we can write

. ClaTlaOO 07 <17T17OO
Si [m; o7, T = My 0.Co. 7. T Lipy € {(12,0), (00, 1)} V 0o (L,j52) > 0}

(8.4.116) Dlw(1,52) [ L,

(m + 1)L0(17132)M_1 X(lvﬁz)}ﬂ{m(l,ﬁz)aﬁo}

17ﬁ2 1’]72
e R N R AN S

+ 15 € (n.0), (o)} O {7}
+ ]1{52 €{(m1,1), (0070)}}0 {m—bo(l,ﬁQ)—s} ’

for an arbitrary ¢ > 0 and an appropriate ¢ > 0. Recall that to(1,p2) € {x20,n00} for pa €
{(72,1),(c0,0)}. Below we will show, that the dominating term of this expansion for fixed
d; > 0 with j € {1,2} remains the controlling term after the transition §; | 0, and that, for
infinite P;, this asymptotic statement holds uniformly with respect to §; in any subinterval of

the real axis, whose closure does not contain the origin.

Theorem 8.4.4. Assume validity of (S6) to (S9). Then, provided at least one term on the right

hand side is non-zero, for an arbitrary p > 0, as m — oo,

(1) uniformly with respect to |{1] > p and & € R, we have

Si [m z'§1,T1,oo] NlimM0[0761+i§1’TI’oo]]l _
’ 12, T2, Th 5140 0, &2, T, Th {820 =0V x20 > 0}
[0, To, 01 +i§1:|]l
0,0, T} {x20 #0}
0, 72,51+i§1]]l
0,0, T} {x20 =0}

I'(x20) €20 _iggry 1
- —= 722 lim
{bao(m + 1) ] By 507"

€20 —igamy 13
+ (log(m + 1) + ) Bag© (lslllf(l)./\/'() [
. 1, (72, 1)
T2 i
The right hand side features the integrals (8.4.27) and (8.4.91).

(2) uniformly with respect to |£1] > p, we have

i | m; 161 1100 ~ 0,01 4 &1, T1, 00
Si|m; ~ 1 1
1 |:m’ 07 TQ,OO :| 611\6’(1]M0|: 0’ O’ T2’oo {7]00>0}
I'(n00) apoCoo ;. 0, 61 + &
_ | .
{boo(m + 1)}™ By 4110 Po Ty oo | {0070}

apoCoo . 0,01 + &1
11m730|: T1 0 :|1{7700:0}

+ (log(m + 1) + ) Boy A

|:07 51 + 251

1 .
+ 2— lim Qp Tl,oo,T2:| {noo =0}*

Boo 6140

For the integral functions on the right hand side, we refer to (8.4.49) and (8.4.50).
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(8) uniformly with respect to |&1], (82| > p, we have

Si lm: Z'é-l,Tl,OO lim 0)51+i£17T1700
Vi€, Thy 00| 1.0200" 0|0, 8y + iy, Th, 00|

Proof. In its complete form, without big-O estimates, the expansion (8.4.116) features two
remainder integrals. Appealing to definition (8.4.75), the first is obtained from plugging (8.4.78)
into (8.4.26), which yields

. o (P2)+ico r(2) u1+ico T(w) T

. z w —w,G(1,41, 00

411 : = VY (4 1) dwd

BALT) - Ralmsa) = (oo / (m +1)? / (m+1)wM°[ —2,G,7, T ] o
@0 (P2)—ioo ur—ico

where the interior path Rw = uq, by (8.4.79) with u1 (1, p2) = uy, is a line with arbitrary positive
real part, whereas the exterior path Rz = xo(p2) satisfies (8.4.24). The second remainder term
in (8.4.116) results from the expansion (8.4.100) for the integral (8.3.38), and it is of the form

J1(1,p2)~+ico
(8.4.118) Rg(m;ﬁg) = — /

J1(1,p2)—ico

F(Z) 07 ClaTIaOO
(’I?’L + I)ZMO |:_Z> C_:Qv T, T:| dz’

for a path Rz = j1(1,p2), which satisfies (8.4.97) or (8.4.99). Roughly speaking, j1(1,p2) > 0
is arbitrary if po € {(72,0), (c0,1)} or ji(1,p2) = to(1,p2) + € otherwise, for an appropriate
¢ > 0. The generating function in (8.4.117) refers to the integral (8.4.14), whereas in (8.4.118)
it possibly refers to its z-analytic continuation for w = 0.

We will now show that, under the assumption (S8), the generating function (8.4.14) attains
a finite limit as §; | 0, as well as the existence of a uniform bound with respect to 6; > 0 for
(8.4.117). For this, in terms of (8.4.27), we write

—w, Cl,Tl’ oo

(8.4.119) Mo[ T

| = [toy= et 5 o
P2

The expansion (8.4.44) has revealed that the interior function has a finite limit as é; | 0 for

&1 # 0. Upon plugging this expansion into (8.4.119), we arrive at

Ni1—1 _ T
_w7 C17T1700:| e Cl 1

n1
i = T 1@ Y S (T, w)
9 y 1y k1=0

n1=0 >1

(8.4.120) My [
: / {o(t)} % e telt; pa)a™) (T1 + t)dt

P2
1 . —w, t Cl
— )} e le(t; P dt.
v {“P/M e ettt
2

We first assume ps € {(71,0), (71,1), (00,0)}, i.e., (o = i€ with & # 0 only if po = 75. Then,
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8. Asymptotics of Iterated Convolution-Type Integrals by Analytic Continuation

absolute convergence of the single integrals in (8.4.120) for Rz = xo(p2) follows immediately.
Furthermore, according to Corollary 8.2.2, Lemma 8.2.3 and due to (8.4.42), for Rz = z¢(p2)
and Rw = ji(1,p3), we have absolute and with respect to d; > 0 uniform convergence of the

iterated integral, if we choose

N1 > j1(1,92)Boo — oo — Yoo + 1.

In these circumstances, the whole right hand side of (8.4.120) is uniformly bounded with respect
to 61 > 0 if & # 0, and in the case ps = 7o even with respect to &, € R. The limits as
01 | 0 thus exist and may be computed under the signs of integration. Moreover, in §8.4.2.2
it was pointed out that, by definition of Sk, ,,(s,w), there exist coefficients f;(s,ki,n1) > 0
for 0 <1 < mny — kq, which are continuous functions of the variable s, exhibiting the behaviour
fi(s k1,ny) = O {s700tki=ml a5 5 — oo, such that

ni1—ki

(8.4.121) Sk (5,0)[ <Y Jwl fi(s, by, ma).

1=0
This estimate yields for (8.4.120) a bound similar to (6.6.14). In particular, there exist coeffi-
cients Fj(p2) > 0, which are uniformly bounded with respect to §; > 0, |£1] > p, Sw, Sz € R, and
if po = 79 also uniformly with respect to £, € R, such that for Rw = j;1(1,p2) and Rz = z¢(p2)
we have

—w C Ty, 0o N

) 17 17 l —
8.4.122 < F .
( ) ‘Mo[ ,CQ, : :H ZEO |w| l(pZ)

An application of this bound to (8.4.117) shows, that this last MB-integral possesses a limit as
01 4 0, which can be carried out under its signs of integration. Analogous arguments can be
employed for the integral Ra(m;p2), by means of an appropriate representation for its generating
function, and for the proof of the actual existence of the limit of each term in the expansions
from Theorem 8.4.4(1) and (2). The validity of these expansions then follows immediately from
the identity (8.4.19).

It remains to verify the statement of Theorem 8.4.4(3), i.e., to treat the case pa = (00, 1).
Then, the single integrals in the expansion (8.4.120) still converge absolutely for do > 0 and
Rz = xo(p2) but they need not be uniformly convergent with respect to do > 0. Furthermore,
with N; as above, also the integral in the last addend converges absolutely and with respect
to 61 > 0 uniformly merely for fixed do > 0. A uniformity statement with respect to do > 0
obviously can not be obtained by increasing N;. Instead we interchange the order of integration
and cast (8.4.120) in terms of the definition (8.4.27), which yields

=Y LMD Sk (Th, 0N

Ni—1 _ T
—w, C17T1500:| € an
n1=0 >1 k1=0

MO|: |:ZaT1aC2:|

—Zz, C27T27OO 0) klyTQ
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Ny
1 W —Crs —2, 8,
(8.4.123) + E /{(,0(8)} WG Skth(s,w)No[o s ;ﬂds.
1 kl:OTl s M1, L2

Then, a second application of the expansion (8.4.44) with N = Nj, for sufficiently large No,
leads to an expansion for (8.4.123), whose limit as ;1,52 | 0 exists. Moreover, analogous to
(8.4.122), it can be shown that the resulting expansion is uniformly bounded with respect to

01,02 > 0 for [£1], |€2] > p by a polynomial of |w| and |z|. n

8.4.8.4. Two Infinite Paths with {; =& =0 and 799 <0

We close this section with a treatment of (8.4.1) in the special case of two infinite integration
paths with non-oscillatory amplitudes and 799 < 0, which implies ¢; = (2 = 0 and xgo < 0.
This case has been omitted in before, and it is characterized by the possibility to induce in the
iterated MB-integral (8.4.26) a dependence of the interior path on the real part of the exterior
path. In particular, since xgp > —1 by (8.4.8), the integration path of the exterior MB-integral,
instead of (8.4.20), with xg = x(00,0) may satisfy

(8.4.124) Xo00 < Zo < 100-

As a consequence, for (; = (2 = 0 and fixed z € C with Rz = z, by (8.4.17), the integral defini-
tion (8.4.14) of the iterated generating function with respect to w € C is absolutely convergent

and holomorphic in the half plane
(8.4.125) Fw < noo + Xoo — Zos

wherein the origin is not contained. The representation (8.4.26) is thus admissible for ug = u(0)

subject to
(8.4.126) —1 <up < moo + Xoo — Zo-

Now, according to §8.4.3.3, the analytic continuation of (8.4.14) is furnished by the expansion
(8.4.60), which is valid in the strip

(8.4.127) Xo00 < Rw < 100 + X00 — To + 7 (01, Bo1, Y01)-

The only singularities we find therein are poles, of which the one at w = 1y + xo0o0 — 2z lies
closest to the right of the line *w = wg. Since xg > xoo, it is of simple order and lies to the left
of the point z = ngg, where a subsequent pole will be found, whenever being contained in the
strip (8.4.127). We can therefore perform a displacement of the integration path to the right,

to match a line w = u; with

(8.4.128) 00 + Xoo — o < u1 < Moo + min {0, Xoo — To + 73y, (@01, Bo1,Y01)} -
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The shift of the integration path is permitted due to the exponential decay of the integrand in

each imaginary direction of the half plane

Rw < Moo + x00 — o + 1y, (o1, Bot, Y01),

since it was pointed out in §8.4.3.3, that the analytic continuation is O(w) as Sw — oo,
uniformly with respect to Rw in its strip of validity. Taking into account the encirclement of
the pole at w = 1o + Xx00 — z in the negative direction and the residue (8.4.70), for fixed z € C
with Rz = xp, from (8.4.75) we eventually obtain

I [m; 0 ] _ oo {coo}? T(m00 + xo00 — 2)T(Boo(z — X00+))F(500(?700 —2)) (m+1)°
z, (00, 0) Bool(coo) {boo(m + 1) }pxeetmeo
u1+1i00
1 —w —w, 0,77, 00
+ o / (m+1) F(w)MO[—z,O,TQ,oo}dw'

Upon finally plugging this expansion into (8.4.26), we observe cancellations in the power of the
asymptotic parameter. An additional use of the identity (8.4.115) accompanied by an application

of the bound (8.4.69) to the remainder integral, as m — oo shows

T I 2
0,711, OO] B (a00, Boos¥00) @00 {coo} L Oy,

8.4.129 Si |m; =
( ) |: 0’ TQ; 00 {bOO(m + 1)}X00+7700 ﬁOOP(OCOO)

where for brevity, with xo0 < o < 190 < 0, we denote

xo-+100
(8.4.130) (a0, Boo, Y00) := % / I'(2)I'(noo + xo00 — 2)T'(Boo(z — x00))T' (Boo (100 — 2))dz.

In view of (8.4.128) the estimate in the big-O clearly is of higher order than the first term in
the expansion (8.4.129), thereby verifying our final theorem.

Theorem 8.4.5. For nyy < 0, under the assumptions (S6) and (S7), provided (8.4.130) is

non-zero, as m — 0O we have

Si [m 0, T17OO} (a0, Boo,700) a0 {coo}?
"0, Ty, 00 {boo(m + 1)}X00Fm0 BooT (o)
8.5. An Infinite Path of the First Kind in an Asymmetric-Type
Iterated Integral

We now investigate the m-asymptotic behaviour of the asymmetric-type iterated integral (8.0.2).
Particularly in the case of two integration paths of the same kind, compared to the setup with

an integrand of symmetric type, several inconveniences will arise, due to the odd structure. For

instance, the order in which we introduce the MB-representation for the m-powers is crucial.
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A sophisticated choice of their order may lead to simplifications. Moreover, the abscissa of
convergence of the associated generating function will substantially depend on, whether it is
conceived as a function of the first variable with the second fixed or vice versa. Converse to the
treatment of symmetric-type integrals, we first examine setups with infinite paths, whereas we
conclude the chapter with the case of two finite paths.

Consider the integral (8.0.2) with P; = [T}, 00) for j € {1,2}, where T} > 0 and 75> > 0, in
the form

o0 [e.9]

Ai [m; ?] - / a) / (s) {1— (1= W(s)™+}

(8.5.1) 2L

x {1—(1—U(s+t)™"}e(s+ t)dsdt.

The overline indicates the complex conjugate of the functions a and ¢. With ¢ as per (8.1.5),

we make the following assumptions:

(A1) With respect to r > min {77, T>} the functions ¢(r) and ¢(r) are once continuously dif-
ferentiable and () > 0. As r — oo each of them is algebraic with parameters Syg > 0,
v00 € R and coefficients byg > 0, cgg € C\ {0}, where

(8.5.2) Boo + Y00 > 1.

In addition, the first derivative of the normalized phase B(r) and of the normalized am-

plitude €(r) is of respective order 1,701 > 1 as r — 0.

(A2) Either of the two properties below holds:

(a) To > 0, and a(t) is algebraic as t — oo with parameter agy > 0 and coefficient
ago € C\ {0}. Moreover, the function is once continuously differentiable on ¢ > T5,

and at infinity its normalized counterpart is of order ag; > 1.

(b) T5 > 0, and the function a(t) is piecewise continuous on t > T5 with a finite number

of jump discontinuities, and a(t) = O {t7*0} as t — oo for all agg > 0.

Notice that (A2b) especially includes functions of the form a(t) = f(t)1{,<;<7} for a continuous
fand 0 <7 < T < oo. For brevity, frequent use will be made of the parameters (8.4.7) and of

the parameter

Y0 —1 700
8.5.3 Voo = + -,
( ) Boo Boo
where the last satisfies the identity
1
(854) 2X[)0 + % = g0-
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We remind the reader of our comments from the preceding two sections, that some of the
coeflicients in the Laurent expansions below may actually be zero, which we keep in mind but
will not be mentioned each time. Now, under the above conditions, by Corollary 8.2.2, the
integral (8.5.1) converges absolutely for any m > 0 and the corresponding iterated generating

function will be denoted by

(8.5.5) 30[_“”T1] - / a) / (o(s)} " c(s) {o(s + )} (s + t)dsdt.
T

—Z, T2
Ts
Again by Corollary 8.2.2, this double integral converges absolutely for

Rz < noo,
(8.5.6) oo

Rw < 2x00 — Rz + ﬁ min {1, ago} .
These conditions equivalently can be rewritten in the form

w e C,
(8.5.7)

Rz < min {vgo — Rw, 100, Moo + Xoo — Rw} .
It shows that a distinction between different parametrizations is clearer and easier, if we first
consider Syl.. .| for fixed z as a function of w.

8.5.1. Transformation to an Iterated MB-Integral

To proceed in the desired manner, in (8.5.1) we must first introduce the Cahen-Mellin represen-

tation (8.1.6) for the m-power of the variable s 4 ¢, which leads to

xo+100 [e'e) 0o

858 [mg]:;m [ e faw [ - a- v

To—100 Ty T

X c(8){p(s+1t)} “¢(s+t)dsdtdz,

with an integration path, by definition of the complex integral (8.1.6) and subject to absolute

convergence, that satisfies

(8.5.9) -1 <20 < Yoo,

where we define

(8.5.10) Yoo :=min {0, voo + 1, 100, Moo + Xoo + 1} .

In the case of (A2b), without loss of generality we assume 1, = min {0, 99 + 1}, since agy > 0

then can be chosen arbitrarily large. According to (8.5.6), the w-abscissa of convergence for
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fixed z € C with Rz = z¢ of (8.5.5) is given by

.
Vo(aoo) = 2X00 — 2o+ - Hlln{l, ago}
(8.5.11) Boo

= min {10, Moo + X00} — Zo-

Hence, for
(8.5.12) —1 < up < min {O, I/(](Oéo())},

we may also represent the second m-power by virtue of the Cahen-Mellin integral, from which

for (8.5.8) we finally deduce the iterated MB-integral

xo-+100

(8.5.13) Ai [ -TI] !

= — 17T
m; T, 57 / (m+1) (2) J(m, 2)dz,
xro—100

whose interior, in terms of (8.5.5), is equal to

uo+i00 T
1 —w 1

8.5.14 J(m, z) = — m—+1)""T'(w)S, ’ dw.
(85.14) m2)i= 5 [ TS|

Ug—100
Due to the special structure of the iterated generating function, in each case the path Rw = ug
of the interior MB-integral depends on the exterior. We now specify the w-analytic continuation
of Spl...] into a region that includes the line Rw = vy(apo). This suggests the necessity, to

distinguish between agg > 1 and agg < 1.

8.5.2. An Interior Generating Function with an Infinite Path and a Kernel of the
First and of the Second Kind

With w, z € C, n1,n2 € {0,1} and ¢ > 0, we define a generalized version of the interior of the
iterated generating function (8.5.5) by

( ! (’LU XOO) dn]
w XOO) z XOO . Sﬁo() " ( )
( -5.1 ) ,n ’n ’w7 ? (S+ ) 00 00 ds
dn

X
ds™2

{eZB(SH)E(s + t)} ds.

For ny = ng = 0 and fixed ¢ > 0, this integral converges absolutely, provided R(w + z) < vy,
and it establishes a holomorphic function with respect to w for fixed z € C and vice versa. Its
w-analytic continuation for fixed z was computed in §8.2.2.2, whereas its z-analytic continuation

for fixed w can be derived by reference to §8.2.2.3. Accordingly, by integration by parts it is
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8. Asymptotics of Iterated Convolution-Type Integrals by Analytic Continuation

easy to show, that

Qq | &~ X002 = X0 | _ Tfm(wfxm ¢(T1)C(Ty +t) cWB(T)+2B(T1+1)
0 t7 0, O, w, z, Tl 500 (’LU + Z — 1/00) (Tl + t)l—/BOO(Z—XOO)
1 L—l—’w—Xoo,Z—Xoo
8.5.16 — Q Boo
( ) Boo (w—i—z—l/oo){nl n;Q 5 0 t,ni, no, w, z, Th
n71+n2:71

1
W — X005, # — X00 — Boo

+t (00 —
(700 — Booz) Qo [ £.0.0,w, 2T

}

represents the analytic continuation with respect to w or z of (8.5.15) for ny = ng = 0 into the

half plane
(8517) §R<’IU + Z) < o1,
where we denote for brevity

(8.5.18) Vo1 3= 100 + Ngge (Bo1, 701, 2)-

As a function of one variable with either w or z fixed, it has exactly one pole, whose residue by
(8.2.42) and by (8.2.50) equals

Res Qo w_XOOaZ_XOO]: Res Qo [w—XOO,Z—Xoo

w=vpo—2 t,0,0,w, z, T} 2=100—wW t,0,0,w, z, T
(8.5.19) o
€00 —
=———{boo} .
Boo {boo}

If we finally conceive (8.5.15) for n; = ng = 0 and w = 0 as a function of z, in the case vpp = 0
the point z = vgg will certainly match the origin of the z-plane, i.e., if y99 = % With the aid of
§8.2.2.3 we can then immediately specify the first two terms in its Laurent expansion at z = 0,

which are

—X00; Z — X00 1]ego)® | 1
8.5.20 - - (BT + tga(5T1)} + O
s Q| e = L ) + i) + OG)

where by (8.2.51) and (8.2.52) the coefficients appearing in the second summand are given by

the absolutely convergent integrals

(8.5.21) q1 (t; Tl) = Tlc(Tl)f(Tl + t) log {(p(Tl + t)}

o0

+ /s%@(s)c(s +t)log {¢(s+1)}ds

Ty
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- /sc(s)B’(s +t)c(s + t)ds
T
T E/(s +1t)
+ [ sc(s)——="log {p(s +t)}ds,
T[ VvVs+t
(8.5.22) 57 = [ oD Lo+ Jros ot + 0 s
T

8.5.3. w-Analytic Continuation for Fixed Rz < 1 if ago > 1; and z-Analytic
Continuation for Fixed w € C with Rw > vgg — 9o if agg > 1

With the assumed parametrization, from (8.5.6) and (8.5.7) we ascertain absolute convergence

of the integral representation (8.5.5) for the iterated generating function in the region
(8523) %(’U} + Z) < Vgo,

where the function is even analytic with respect to each variable with the other fixed. Clearly,
in each case the abscissa of convergence is due to the condition for the convergence of a single

component. Accordingly, if in terms of (8.5.15) we write

o0

—w, T} _ W — X005 2 — X00
5.24 -
(8.5.24) So[_ijQ] /a(t)QO[t,O,O,w,Z,Tl :|Clt7
Ty

to determine the respective analytic continuation to an extended region, an application of the

expansion (8.5.16) suffices. For this, we first define

oo —_
—w, 1| _ Boo(w—x00) wB(T1) at)e(ni +1) 2B(T+1)
(8.5.25) S1 |: 2Ty :| =T ¢(Tr)e (T) + t)lfﬂoo(Z*XOO) © dt
Ty
o 1
n Z /a(t)QO Bog T W — X00, Z — X00 dt
t,ni, N2, w, z, T
nlynQE{Ovl}TQ
ni1+nz=1
oo 1
_ W — X005 2 — X00 — Byo
+ - ta(t 00 | dt.
(700 500Z)/ (t) Qo [ £.0,0,w, 2 Ty
T

By Corollary 8.2.2 we readily confirm absolute convergence of each integral on the right hand

side for w, z € C with

005
Rz < 7

Moo + ﬁ min {So1, Y01},
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min {290, 700 + X00} + 18, (Bo1,Y01),
Fo(w + 2) <  min {voo, 700 + Xo0} + Moo (Bo1,701),
min {Voo + /3%0,7700 + Xoo} ;

and eventually also analyticity with respect to one variable with the second fixed. Now, if for

the interior integral in (8.5.24) we employ the expansion (8.5.16), we obtain

—w, Tl ]- —w, Tl
8.5.26 S = — S .
( ) 0[—Z,T2] Boo (w + z — o) 1[—Z7T2]

On the one hand, for fixed z € C with Rz < ngg, in the case agy > 1, this represents the

w-analytic continuation into the half plane
(8.5.27) Rw < min {vp1,n00 + Xoo} — Rz.

On the other hand, for fixed w € C with Rw > g9 — ngo, again in the case agg > 1, it furnishes

the z-analytic continuation into the region
(8.5.28) Rz < min {770(), vo1 — Rw, noo + xoo0 — §Rw} .

In each extended region the function exhibits only a single singularity, and this is a simple pole.

For ¢ =0 and agp > 1 we have absolute convergence of the integral

o0

(8.5.29) AV Th) = /ecta(t)dt,

T

in terms of which from (8.5.19), for the residue of the indicated pole, we deduce

Res So |:

wW=rp0—2

—w, T1:|

—Z,TQ = Res 80|:

Z=1p0—W

—w, T1:|

2, T
(8.5.30) © 2

2

¢ _

= —m {bOO} Yoo AO(O, TQ)
Boo

Notice the independence from the fixed variable. Finally, in a later part of this section we will

require the Laurent expansion around z = 0 in the case w = 0 with vg9 = 0. According to

(8.5.20), this is given by

(8.5.31) 80[_w’ Tl] = _UCOOF.AO(O; Ty) + 1.,41[ 0 } +0(z),
-z, z Boo Boo T, 15

where we define

oo

(8.5.32) Al {TfTJ = /efta(t) {a1(t;T0) + tgo(t; Th) } dt.
T
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8.5.4. w-Analytic Continuation for Fixed Rz < 7 in the Case oy < 1

If apop < 1 and Rz < ngo, the iterated generating function (8.5.5) is by (8.5.6) holomorphic for
w € C with

Rw < noo + xo0 — RN=z.

This region is due to the supplementary condition for the convergence of the iterated integral,
and if agg = 1 it also arises from the condition for the convergence of one of its single components.
In any case, concerning the w-analytic continuation, we can appeal to §8.2.6.2, for fixed z € C

with Rz < ngo, upon identifying

ds)  =cls),
k(s+1t) =t(s+t){o(s+1t)} 7,
e(t) =a(t).

ago—1

With By = Boo this implies xo = xo00, o0 = and finally kg = 90 — Booz, and these variables

00
satisfy (8.2.99) since agp < 1 and Rz < ngp. Especially note that Rz < %. Due to the validity
of the indicated restrictions, it follows immediately from (8.2.122) and (8.2.128) that for all
z € C with Rz < ngp the analytic continuation of the iterated generating function (8.5.5) to the

strip

(8.5.33) Xoo < Rw < moo + Xoo — Rz + 15y, (01, Bo1, Y01)

is represented by the expansion

—w, T 2T —z—w))l -
50[ w, 1] _ |coo| — (Boo(ro0 — 2 — w))I" (Boo(w — X00)) Ar(w+ 7 Ty)
—2, Ty Boo {boo } (w + 2z — moo — x00)I" (Y00 — Booz)
—w, Tl
.5.34 b .
(8.5.34) + 1|:—Z,T2:|
In the first summand we denote
(8.5.35) Ay (& Ty) = TPo0Exo0=mo)g(( ) 4 / 00 (€=xo00=m00)9f’ (4 i,
T
whereas the second term is given by the MB-integral
n 1 TN (oo — ooz — Q) T
—w, 11 700 — Po0% — w, 11
8.5.36 D) = — L|¢; dc.
( ) 1[—% Tz] 2mi ) I" (700 — Boo) [C’ z, T2:| ¢
q—100
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The integration path in this latter MB-integral is the vertical line %8¢ = ¢, where

q > max {1 — ago, Boo(voo —w — 2)},

q < min {90 — BooRz, Boo(voo — R(w + 2) + 13y, (Bo1,Y01)) } 5

(8.5.37)

and, in terms of (8.5.15), the integrand features the integral function

e}

w, Ty Tlﬁoo(w+Z—V00)+C BT - —_—
L|¢ = — ¢(Ty)e” l/t_o‘oo_QthT—i—tez 1T dt
[C Z,T2] ¢ + Boo(w + 2z — voo) (1) (ME(Ti +1)
T
[o¢]
1 3 . w+Z—V00+C+1 1
8.5.38 - $00=CR (¢ Boo * Boo | 1t
( ) C+Boo(w+z—v<)o){/ (5 Q t,1,0,w, z, Ty
T
o0
¢+1 1
N w4z — Voo + ;
4 [ ¢—o00 A+ Boo * Boo dt S,
/ (0 t,0,1,w, 2, T
T

According to (8.2.129), the expansion (8.5.34) is O(w) as Sw — £oo, uniformly with respect to
Rw in any closed vertical substrip of (8.5.33), for each fixed z € C with Rz < 799. Moreover,
in accordance with the absolute convergence of the integrals in (8.5.38), there exist constants

L1, Lo, Ly > 0 for which, uniformly with respect to y, Sw, 3z € R, we have validity of

w, T L L L
(8.5.39) )L’[q—kzy, ’ 1”< 1+ [w] Lo + 2] Ls

z,To || = g+ Boo(R(w + z) — voo)

In addition, a simple application of the functional equation for the gamma function accompanied
by a rough estimate for the beta function, whose integral representation is admissible since

0 < q <70 — BooRz, leads to

‘F(q + )T (00 — Booz — q — iy) ’
I (700 — Booz)
(700 — Booz)(1 + Y00 — Booz)
(¢ +1y)(1+ g+ iy)

(8.5.40) L2+ a)T (Yoo = fooRz —q)

I' (2 + v00 — BooRz)

Observe that this bound with respect to y is absolutely integrable along the real axis. If we
eventually apply a similar estimate to the first summand in the expansion (8.5.34) and employ
the bounds (8.5.39) and (8.5.40) for the MB-integral in the second summand, for any z € C
with Rz < ngp and w € C subject to (8.5.33), we arrive at the statement

(8.5.41)

3
Z P+ Qj|w|) |2l
=0

for appropriate constants Pj,); > 0 that are uniformly bounded with respect to Sw, 3z € R.
Concerning the pole of the analytic continuation (8.5.34) on the line Rw = ngg + x00 — Rz, due

to the dependence on the fixed but arbitrary variable z, it is reasonable to assume without loss
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of generality z # noo + Xxo00, thereby omitting the possibility for this pole to lie at w = 0. Then,
if agg < 1, the pole at w = ngo + xoo — 2 is of simple order, and by incorporating

A1 (noo + xo0; T2) = Goo,
for the associated residue we obtain

(8.5.42) Res

wW=noo+X00—%2

S [—w, Tl} _ G lcool>  T(1 — o) (Boo(noo — 2))
—z,13 Boo {boo } 70 FX00 I" (v00 — Booz)

An inevitable coalescence will happen if agg = 1, which implies g9 = 100 + Xo00, and the latter
pole merges with the pole of the first gamma function in the numerator of (8.5.34). In these
circumstances, by §8.2.6.2.3 with xg + % = 1y9 — 2, in an annulus around the indicated pole,

the function shows a Laurent expansion of the form

_ - 2 ‘
(8:5:43) éi)[ 1U71E} = -t lool - { L o) 4-«9(1)},
—2 I {Boo}” {boo}"* L(w+2—wp0)?  w+2z—wgo

in which the constant in the second summand is given by

o0(2;T2) := Booy + Boo (Y00 — Booz) — log {boo}

(8.5.44) _ _
+%mmmm+?/gmmﬁ
00 2
We close this subsection with the derivation of the Laurent expansion for a particularly special

parametrization, which will be required later.

8.5.4.1. Laurent expansion for z = 0 and «agy = Y90 = %

In this case ngg = vgo = 35% and vgg + xo0 = 0. The pole at w = vyg + xoo is therefore of simple

order, located at the origin of the w-plane, and, according to §8.2.6.2.2, as w — 0 we have

—w, T . 600|600|2 {F (%)}2 1 0,717
(8.5.45) 80[ 0.7 ] = — Boo F(%) {w+U§(Tg)}+21 [0,T2:| + O(w),

with the constant in the curved brackets being equal to

(8.5.46) o2 (Ty) = 1mm+mm@mm+%/gmmw
3 ago apo 7

8.5.5. Evaluation of the Interior MB-Integral

We continue with the evaluation of the interior MB-integral (8.5.14) for fixed z € C with

Rz = x¢. The associated generating function (8.5.5) is holomorphic in the region fw < vp(ago)
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and, according to the preceding two subsections, it can be extended into the wider half plane

Rw < vi(apo), for

min {¥o1,700 + Xoo} — Zo, if agg > 1,

100 + X00 — To + Mgy, (01, Bo1,Y01), i 0 < ago < 1.

There, it is respectively represented by (8.5.26) and (8.5.34). The first has been established via
partial integration. It exposes a meromorphic structure in the indicated half plane with exactly
one pole at w = vy(agp), and that one is simple. On the other hand, (8.5.34) is valid merely in
some strip, in which we generally find at least one pole, again at w = vg(agp). It is of simple
order if 0 < agp < 1 but can merge to a second order pole for agg = 1. To summarize these
statements, in each case the generating function of the MB-integral (8.5.14) for fixed z € C with
Rz = o can be extended meromorphically into the wider half plane Rw < v (o).

In order to make out the singularity which in (8.5.14) lies closest rightwards to the line
Rw = up, we must get rid of the minimum structure of the right boundary in (8.5.12). For this,

a careful distinction between different parameter values is required. First, to (8.5.9) we add the

assumptions
—1 <y < Yoo, if 100, M00 + X00 = Voo,
max{—1,v90} < xg < , if voo < < 1o + Xoo0,
(8.5.48) { } Woo Yoo < 100 + X
max {—1,700 + X0} < 70 < Yoo, if oo + X00 < Yoo < 00,
max {—1, 00, Moo + X0} < Zo < Yoo, if Y90, M00 + X00 < Yoo-

As a consequence, from (8.5.12) we obtain

0, if 100,100 + X00 = Yoo,
(8.5.49)  —1 <wo < 4 voo — o, if voo < min {noo + X00, Yoo } »

Moo + Xoo — To, if Moo + X00 < Yoo < Voo OF Moo + Xo0 < Vo0 < Voos

or more concisely

0, if vo0, Moo + > Yoo,
(8.5.50) 1 <up < 00,7100 1 X00 = Yoo

vo(ago), otherwise.

We therefore conclude, that the closest singularity to the right of the line Rw = wug is either
the simple pole of the gamma function I'(w) at w = 0 or the pole of the analytic continuation
associated with the generating function. Due to the dependence on the location of xg we have
vo(ao) # 0. Coalescences of the poles of these two functions are therefore impossible. In other
words, at w = vg(ago) the integrand of (8.5.14) always exhibits a pole of simple order, unless

agp = 1. To collect the residue of the indicated pole we note, that the integral representation
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(8.5.5) and its respective analytic continuation are O(w) as Sw — £oo, uniformly with respect
to Rw in any closed vertical substrip of its region of validity. The exponential decay of the gamma
function in (8.5.14) thus justifies a rightward displacement of the integration path across the

pole of the integrand at w = (o) and also across that at w = 0 if vp(agp) > 0. To be exact,

suppose
min {Voo — X, 1/1(0500)} , if l/[)(Oéoo) >0 A ag <1,
min {0, Voo — X0, 1/1(0400)} , if 1/0(0(00) <0Aap <1,
min{ljoo+$*xo,l/1(1)}, if I/[)(l) >0Aag =1,
(8.5.51) I/o(aoo) <u < Poo
min{o,l/[)o—f-ﬁ—xo,l/l(l)}, if 1p(1) < 0OA ago =1,
V1 (aoo), if V[)(Oéoo) >0 A ag > 1,
min {0, I/l(ago)} , if 1/0(0(00) <0OAag > 1.

If in (8.5.14) we then displace the integration path far enough to the right, such that the new path
satisfies Rw = wuy, we gather exactly the residues corresponding to the indicated singularities,
which we encircle in the clockwise direction. By incorporating the results (8.5.30), (8.5.42) and
(8.5.43), as well as the definitions of 199 and of 709 + X00, by virtue of (B.2.21), we compute
0,7,
(8-5'52) J(mv Z) = _SO|:—z T2:|1{V007?700+X00 > Yoo }
(v — 2) |000!2Ao
{boo(m + 1)} oo
I'(vpo — 2)  Goo ool
{boo(m + 1)} {Boo}?

(O; TZ)(m + 1)2]1{6100 >1}

_l’_

{log(m + 1) — ¢ (voo — 2) — o0(2;12)}

X (m + 1)2]]'{(100 =1}

T'(1100 + Xo0 — 2)  @oo |coo|” T(1 — coo)T (Boo (1100 — 2))
{boo(m + 1)}100+X00 By I (Y00 — Booz)

X (m + 1)2]1{(100 <1}

u1+1i00 T
1 _ —w, 11
— 1) 7T (w)S ’ dw.
T om / (m + 1) (w) “[—Z,TQ] v
U1 —100

% in each but the last term of this expansion.

Observe the occurence of the factor (m + 1)
Consequently, cancellations will happen, when it is applied to the iterated MB-integral (8.5.13),
with the benefit that we merely have to evaluate one additional MB-integral that depends on

m, which for zg subject to (8.5.48) equals

xo+ico
1 _ 0,7
5. I = H~*r ’ )
(8.5.53) (m) =5 / (m+1) (2)80[_Z7 Tsz
x0—100
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Moreover, by the moment we plug the expansion (8.5.52) into the iterated MB-integral (8.5.13),

again with z( as in (8.5.48), the following hypergeometric integrals will appear:

xo+100

(8.5.54) Q(voo) = QLm / L'(2)(vpo — 2)dz
e
(8.5.55) =(v00, 1) = 5ms / L'(2)(vo0 — 2) {¢(voo — 2) + o0(2;T2) } dz
xo+100
(8.5.56) T (a0, Boos Y00) = 2%” / ()T (100 4})&(())0__2?;0(300(7700 =) 4,

Tro—100

The function og(z; T2) was introduced in (8.5.44). In terms of the latter definitions, by a suitable
bound for the remainder integral, for instance (8.5.41) in the case agy < 1, as m — oo we can

eventually verify

. 11
(8.5.57) Ai I:m; T2:| = _I(m>]1{1/0077]00 +X00 > oo }
A%0; 7o) |eool?
Q 1
Tooo(m + D™ oy (100 Leco 13
log(m—+1) @ |Coo|2Q
{boo(m + 1)} {Bgo}?
_ E(weo,Th)  aoo]cool’
{boo(m + 1)} {Byo}? taoo =1}
(1 — ag) apo \Coo|2~r
{boo(m + 1)}7700+x00 500
+ 0O {mﬂ“*xo} .

(100)L{ago =1}

(@00, B0 00) L {agy < 1}

Concerning the big-O, by definition of u; we know about the existence of ¢ > 0 with u; =

vo(ago) + €1. Hence, from (8.5.11) we conclude
(8.5.58) u1 + o = min {veo, M0 + Xo0} + €1

As we already mentioned, there is merely one integral whose asymptotics remains to be dis-
cussed, before we can make an ultimate statement on (8.5.57). This is the concern of the next
subsections and requires a consideration of (8.5.5) as a function of z. Furthermore, below a

finite representation will be established for the hypergeometric integral (8.5.54).
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8.5.6. An Interior Generating Function with an Infinite Path and a Kernel of the
Second Kind

An interchange in the order of integration in (8.5.5) results in an interior integral, which is a

special version of the integral below, that is for n € R, ni,ne € {0,1} and s > 0 defined by

o0

7, % = X00 ghoon—1 5i(n1) A" = 2B(s+t)
0. = t t dt.
(8:5.59) Ro |:S, ni, N, 2, T2:| / (s + t)l*ﬁoo(zfxoo)Ql ( )dtnz {Q(S +t)e }

Ts

With ny = ny = 0, this integral converges absolutely for Rz < xoo —n+ ﬁ and is a holomorphic
function there. According to §8.2.2.3, integration by parts yields

(8.5.60) Ry [ ", Z = Xo0 } _ T} "RU(Ty) s+ To)  pistm)
S, O? 07 Z7T2 ﬁUO (Z+77_X00 _ L) (3+T2)1_(Z_XOO)BOO

Boo

1
_ - { Z Ro
Boo (Z + 17— Xoo — %> ni,n2€{0,1}

ni+ngs=1

1
M+ By # — X00
s, N1, N2, 2, T2

}.

For n = 12200 this represents the analytic continuation of (8.5.59) with ny = ny = 0 into the
Boo

U,Z—ﬁ—XOO

— R
+ 5 (700 — Booz) Ro 5.0,0 2. T

half plane

(8.5.61) Rz < not1.

The parameter 791 was specified in (8.4.33) and is thus denoted by

101 = 700 + Moo (01, Bo1, Vo1, 2)-

In the region Rz < 71, the expansion shows exactly one pole. It is of simple order, and by
(8.2.50) we find

1};(%00 s Z = X00
S, 0, 0, Z, T2

@00C00 {boo} ™ .

(8.5.62) Res Ry
Boo

2=100

If moo = 0, i.e., for agy + o = 1, this pole meets the origin of the z-plane. For such a

parametrization we have absolute convergence for all s > 0 of the integrals

(8.5.63) p1(s; ) :=Toa(Ta)e(s + To) log {p(s + T2)}

o

+ / 1000 (£)e(s + t) log {(s + )} dt
Ts
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oo

- /ta(t)B’(s +t)c(s +t)dt

Ts

+ / i5) 8D 1oa (s + 1)) dt.

(s 4 t)r00
Ts
(85.64) pals:Ty) = T/ e A

By (8.2.52), in an annulus around the origin, we then immediately conclude the validity of the

Laurent expansion

l-apo ., _
Boo < — X00
$,0,0,2,Th

1 agoc 1
=W, - {p1(8;T2) + spa2(s; Ta)} + O(2).

(8.5.65) Ro T B

8.5.7. z-Analytic Continuation for Fixed Rw < g + ﬁ min {0, 1 — ago}

If in (8.5.5) we perform the indicated interchange in the order of integration, in terms of (8.5.59),

we arrive at

(8.5.66) So [_Z ;;1] /{so e

The assumed specifications of the argument w can be split into the inequalities Rw < xgo and

[
15200 2 — Xoo

SOOZ’TQ

Rw < vgo — noo. By (8.5.7), this shows that the above representation converges absolutely and
is analytic for Rz < 199, where the abscissa of convergence stems from the criterion for the
convergence of Ryl[...]. The corresponding analytic continuation is therefore readily determined

by employing the expansion (8.5.60). For this purpose we denote

w0, T ] ey [ g s+ T)  pemy
(8:567) K [ -z, T2:| =T, " UT) /{('0 s)} " els) (s +Ty)1- Boo(z—x00) Hds

/{so 1 e(s) Ro

n1,n2€{0, l}T1
ni+ns=1

+ (00 = Boo?) / {0(5)}™ s¢(s) Ro
Ty

87
22200 2 — Xoo

S, N1, N2, 2, T2

ds

5;100072—%—)(00
5,0,0,2,T5

ds.
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Each of these integrals converges absolutely for w, z € C with

o 1 00,

01—

Moo + Boo ’ }
b

min {Voo, Moo + Xo0 + af}.}i_l
Rz < 100 + Mg (Bo1,701),  R(w+2) < ”
Moo + 571)0,

min {Voo + ﬁ, 700 + Xoo} + 180 (Bo1,Y01)5

min {20,700 + X007}

and therein it is a holomorphic function of z for fixed w. As a consequence, writing

—w, T1:| 1 |:—'LU, T1:|
8.5.68 S =K ,
( ) D[—Z, T Boo (2 —100) | =2, T

the right hand side establishes the z-analytic continuation of (8.5.66) into the half plane
(8.5.69) Rz < min {Vo() — Rw, no1, Moo + Xoo — %w} ,

since, in view of the conditions on w € C of the present paragraph, this indeed includes the region
Rz < moo. Of special interest is again the simple pole at z = 199, which is the only singularity in
the extended half plane. The corresponding residue is readily derived from (8.5.62) and (8.5.66),

and, in terms of the integral function (8.4.49), we find

(8.5.70) Res Soy

Z=100

-z, 1> Boo

[—w,Tl} __GooCoo
N Tl, o0

_ —w, 0
{boo} ™ 7)0{ v ]
To specify the first two dominating terms of the Laurent expansion near z = 0 in the case
noo = 0, by means of the functions p;(s;7T5) defined in (8.5.63) and (8.5.64), for an half open
path P; with endpoints 0 < o < S < 0o and ¢ € C, we introduce the integral transform

—w, C

(8.5.71) Vo L’ g

] - /{90(5)}_“’ e~**c(s;p1) {pa(s; T2) + spa(s; Tz)} ds,
P1

where P; U {p1} is closed and c(s;p1) was defined in (8.4.2). Then, according to (8.5.65), if

noo = 0, as z — 0 we readily derive

—w, Ty 1 @goCoo [—w, 0] 1 [ —w, 0 ]
8.5.72 S =—= P + - + O(2).
( ) O[_szQ} z PBoo 0 Ty, 00 Booy0 Ty, 00,15 (2)

8.5.8. A Single MB-Integral for the Residue at w =0

It is easy to see that the first term in the expansion (8.5.57) is non-zero, if and only if vgg, noo +

X00 = Yoo By definition of ¥, this implies 1o, = min {0,790} and thus

(8.5.73) V00, 100 + Xoo = min {0,790} -
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Furthermore, the generating function corresponding to the MB-integral (8.5.53), which appears
in this first term, equals the original integral (8.5.5) with w = 0. By (8.5.7) it is analytic in the
half plane

(8.5.74) Rz < tho(aoo),

whose right boundary is defined in terms of the parameter

(8.5.75) o (o) := min {voo, 100, 00 + Xo0} -

Therein the function is O(1) as Sz — o0, uniformly with respect to Rz in any closed vertical
substrip. As a consequence, the condition imposed in (8.5.48) on the integration path x( of the

integral (8.5.53) can be replaced by
(8576) —1 < 29 < min {0, 1/10(0400)} .

Regarding the analytic continuation of the generating function, a distinction between different

parameter values is obviously inevitable. Throughout this subsection we assume

Qo 7 Y00,

since the case of equality incurs substantial difficulties. The reason is, that the z-abscissa of
convergence of (8.5.5) with w = 0 is then determined by the criterion for the convergence of
both single components, thereby complicating the required calculations. Fortunately this can be
circumvented, if in (8.5.1) we introduce the MB-representation for the m-powers in a different

order, which will be discussed in Section 8.6 below.

8.5.8.1. Evaluation of the MB-Integral in the case 7y > ﬁ min {aoo, Y00} with ago # Yoo

If oo + xo00 > min {rpo, Moo }, we obtain

(8.5.77) o(ao) = min {0, 100} 5

and the z-abscissa of convergence of (8.5.5) with w = 0 is hence due to the criterion for the
convergence of either of the single components. The associated z-analytic continuation into the

region Rz < 11 (), where

min {1,700, Moo + xo00}, if v00 < Moo + min {0, xo0} ,
(8578) wl(aoo) =

min {vo0, 701, Moo + Xoo}, if Moo < min {vpo, 700 + Xo0} ,

has been computed in Subsections 8.5.3 and 8.5.7 via integration by parts. It is easy to see

that, in each case the function is O(1) as Sz — +oo, uniformly with respect to Rz in any closed
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vertical substrip of the indicated half plane. Accordingly, the integrand of (8.5.53) exhibits
exponential decay in any imaginary direction. Moreover, to the right of the line £z = zg in
Rz < YP1(apo), we find no more than two poles, which lie at z € {0,vo(cgo)}. Hence, upon

moving the integration path to the right, to match a line Rz = z1, for

Y1 (o), if vo(c00) > 0,
min {0, @bl (Ozoo)} , if ¢0(a00) < 0,

(8.5.79) Yo(ago) < z1 <

we encounter one pole, except if ¥y(agp) > 0, in which case we traverse two poles. The order
of these poles is simple if ¥g(agy) # 0 and otherwise it is two. The associated residues and
Laurent coefficients have been calculated in (8.5.30), (8.5.31), (8.5.70) and (8.5.72). With the
aid of Theorem B.2.1(2), due to the absolute convergence of the remainder integral, as m — oo
this leads to:

0,71

I'(v0) lcool” 40
To)1
{boo(m + 1)} oo A0 T2)L40 200 < 00}

(8.5.80) +

Bo Boo Ty, 15

I"(n00) @00C00
{boo(m + 1)} Boo

Q0000 0,0 1 0,0
— < (1 1 — Lo
{(Og(m+ )+7) Boo PO[TLOO] +500370[T17007T2]} {0=100 < vo0}

cool? 1 0
—{<1og<m+1>+v>’0()o‘A°<o;T2>+Al[ } 10— v < o}

0,0
Tl,OO

PO{ }1{0#7700<V00}

+0 {m_xl}

8.5.8.2. z-Analytic Continuation for w = 0 if 799 < ﬁ min {ago, Y00} With ago # Y00

Under the present assumptions the integral transform (8.5.5) for w = 0, according to (8.5.7),

establishes a holomorphic function in the half plane
Fz < moo + xo0-

The right boundary of this region originates in the supplementary condition for the convergence
of the iterated integral. In order to unlock the z-analytic continuation for w = 0 of (8.5.5) to
a wider region, we aim for a reference to §8.2.6.3. Notice that the parametrization 19 + xoo =
Noo = Voo also can be treated by virtue of this method with additional elaborate calculations.
Yet, it will be examined separately in the next section.

From the restrictions on 799 we conclude aqg, vo0 < 1 and thus ygo < 0. Moreover, under the

assumptions of the present paragraph, the two parameters aqg, Yoo are unequal, implying their
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minimum is unique and

(8.5.81) b= 20

Y00
is either smaller or greater than one. By comparison with the criterion (8.2.146) it becomes
evident that we can not immediately apply our findings from §8.2.6.3 without specifying h. To

avoid the necessity to establish twice a similar statement, we first define the parameters

(8.5.82) o i1,

ago—1 :
et if h <1,

agp—1 :
(8583) G = %%0 p if h > 17

Voﬁoogl, if h < 1.

These satisfy several helpful identities such as

= S
(8.5.84) Xh t Sh =100 — 55

Xh+<h+%:)<00+7700-

In addition we introduce the functions

(8.5.85) (1) = c(u), ifh>1,
a(u), ifh <1,
(8.5.86) en (1) = a(u), if h>1,

c(u), ifh<l1.

Their normalized analogues will be referred to as Dy (u) and Ej,(u), respectively, with coefficients

at infinity denoted by dpg and ey, i.e., we agree

coo, ifh>1,
(8.5.87) dpo =

ago, if h <1,

agg, if h > 1,
(8.5.88) eno =4 "

coo, ifh<1.
If we then identify By = By and also

d(s) = dp(s),

(8.5.89) k(s+t) =t(s+1),
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in terms of the parameters of §8.2.6.3, we obtain xo = xn, <0 = ¢p and kg = 7Yoo, and for any
positive h # 1 we have validity of

(8.5.90) Xn < sn < 0.

Hence, the condition (8.2.146) holds, and we conclude the applicability of the statements of
§8.2.6.3 on the z-analytic continuation of the integral (8.5.5) for w = 0. Preliminary we introduce

some important components, of which the first is given by the parameters Sy, € {T1, T2} \ {11}

and
Ty, ifh>1,
(8.5.91) Ty =
Ty, if h<1.
We then define the integral
(8.5.92) Ap(z) i= TPoEmm0—x0) () 4 / o0 (z=m00—x00) Ft (4) it
Ty

Appealing to the integral functions (8.4.61) and (8.5.35), it satisfies the identity

Al(Z;TQ), if h >1,
(8.5.93) Ap(z) =

e ], ith <1,
As a consequence,
(8.5.94) Ap (100 + X00) = €no-

The integral (8.5.92) converges absolutely for z € C with £z < 199 + x00 and even uniformly in
any compact subset of this half plane. According to Theorem A.2.1, it is thus a holomorphic
function whose derivatives can be computed by differentiation under the integral sign, which
yields:

dJ

Anji=—=—Mn(2)

2=n00+X00
(8.5.95)

= {Boo log(Th)Y En(Th) + / {Boolog(t)} Ej,(t)dt

Ty

Moreover, similar to (8.2.153) we define the sum of iterated integrals

Boo(z—xn)+¢—00 o
Sh Dh(sh) / -8B (- =
- t=Poosh=C=1 gy (1) BERIE(S), + t)dt
Boo(z = xn) + ¢ =00 (1) (S +1)

Th

(8.5.96) Jn(¢,2) =
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o0

1
_ E t—ﬁoogh—C—lEh t
Boo(z = xn) + ¢ =00 ®)
n1,n27n3€{071}Th
ni+nz+nz=1

% /Sﬂoo(z—X}L)'i‘C—’YOO
Sh
X Dém)(S)eZB(SH) {zB'(s+1)}"™ E(HS)(S + t)dsdt.

Finally, subject to (8.2.158) we introduce the MB-integral

q+ioco
1 (O — —
300 ey gk [ OG0 e 20

q—100

jh(@ Z)dC,

in which the integration path is a vertical line R¢ = ¢ that runs for A > 1 in the strip

(8.5.98)  max {1 — ago, foo(roo — Nz)} < ¢ < —LooRz + min {00, Boo (Y00 + M5y, (Bo1,701)) } -

Conversely, for 0 < h < 1 the line R¢ = ¢ runs in the strip

> 1- ’ —-Rr R
(8.5.99) g > max {1 =00, Boo (100 — R2)}

q < —BooRz + min {00, Boo (Moo + M54, (01, Bo1,Y01)) } -

In terms of these functions, according to (8.2.160) and (8.2.168) with xo + <o + % = Moo + Xo0,

the expansion

{ 0, Th } ~ dno%o  T'(y00 + Boo(xn — Z))F(_BOOXh)Ah(z)

|-z T2] ~ Boo {boo}* (2= x00 — 100)T (700 — Booz)
+ Xi1(—2T1,T>)

(8.5.100)

constitutes the holomorphic continuation of the integral (8.5.5) for w = 0 into the wider half

plane

oo -+ min {0, xo00 + 78, (@01, Bo1,Y01)} » ith>1,

(8.5.101) Rz < 1
Voo + min {0, el 77500(04017%1,’701)} , ifh <1

Concerning its asymptotic behaviour, in (8.2.169) we pointed out that, uniformly with respect

to Rz in each closed vertical substrip of the region (8.5.101), as Sz — oo the function satisfies

0,77 | 2
(8.5.102) 80[_271,2] f(’){\z\ }

Now, by inspection of (8.5.100), the point z = x0o+700, that lies on the z-abscissa of convergence

of the original integral representation (8.5.5) for w = 0, is easily identified as a pole of order
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1 < J < 2. Hence, in an annulus around this point we find a Laurent expansion with

J . 200

0,71 -] (Xh T Boo? gh)

(8.5.103) So[ ] = =+ O(z — x00 — M00)-
—z,T» JZ_; (2 = xo00 — 100)’

Particularly the coefficient for j = 1 equals the residue. A recipe to calculate the coefficients for
0 < j < J is given by Taylor’s theorem with
1 d’/=i

(8.5.104) O—j (Xh + %,%) = (1]7 lim _— (Z — X00 — T]O())JS()[

07 Tl
— J)! z=xo00tm00 dz? I ’

—2,T5

We close this paragraph by computing the coefficients of the principal part if xoo0 + 100 # 0, and

in addition the coefficient for j = 0 if this parameter equals zero.

8.5.8.2.1. Coefficients for ¢;, # 0. The point z = xoo + 700 is then a pole of simple order.
From (8.5.100), by taking into account (8.5.84) and (8.5.94), for all positive h # 1 we obtain:

) __ dnoenoCoo  T'(=Poosn)T'(—=Booxn)
Boo {boo X0 T'(—Boo(xn + <))

Qoo lcool>  T(1 — ago)T(1 — y00)
Boo {boo X0  T'(2 — ago — Yo0)

700
-1 (Xh + By ? Sh
(8.5.105)

If x00 + 100 = 0, i.e., ago + 2700 = 2 and xp + % = —¢p, the indicated pole meets the origin of
the z-plane. Then, by (8.5.105),

_ Qoo |coo)® T(1 = ago)T(1 = 00)
Boo I'(700)

(8.5.106) 01 (—Sh,Sh) =

To calculate in this case the coefficient for 5 = 0, with the logarithm taking its principal value,

we define

(8.5.107) u(z) = log I'(—=Boo(sn + 2)) — log I'(v00 — Booz) — zlog {boo} -

This enables us for (8.5.100) to write equivalently

(8.5.108) 80[ 0, Ty ] - —dhocoor(—BOOXh)e“<Z)Ah7(z) + 51 (=2 Th, To).
—z,1> Boo z

The function u(z) is analytic in a neighborhood of z = 0 if ¢, # 0, where

(8.5.109) ' (0) = —Boot’(—Boosn) + Boo(700) — log {boo} -
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With the aid of (8.5.104) we thus deduce:

dno€ d
00 (—sh,p) = ——2 OOF(_BOOXﬂ@ {eu(z)Ah(z)} +21(0; 11, 1)

(8.5.110) Boo 2 L
. _500 |C00| F(—,Bo(ﬂh)r(—ﬂooxh) { , )\h,l } .
B BOO F(FYOO) u (O) + eno + E]_(O, Tlv TQ)

The constant Ay ; was defined in (8.5.95).

8.5.8.2.2. Coefficients for ¢;, = 0. Then x, + % = oo + Xoo0- For parameters that satisfy the
conditions of the present paragraph, we therefore observe a coalescence to a second order pole

at z = xo0 + 7Moo, i-e., J = 2. In terms of the function

(8.5.111) v(2) == log I'(1 + 700 + Boo(xn — 2)) — log I'(v00 — Booz) — 2 log {boo}

assuming the principal value of the logarithm, upon employing the functional equation for the

gamma function, we can write

"GN (2)

(8.5.112) S0 [_0;22] - fgzg‘;w—ﬁoom et e (a T Ty,
Hence, for the coefficient of the dominating term in (8.5.103), we compute

o0 . aopo |Coo|2
(8.5.113) o2 (xn+ 32,0) = o2 (e

Furthermore, by incorporating (8.5.94) and (8.5.95), we obtain

_ 2
Y00 _ apo |COO‘ / ( 700) )\h,l
(85114) 01 (Xh + Boo’ 0) - {500}2 {bOO}XOO‘H?OO {U Xh T Boo + €ho ’

The first derivative of the function v(z) equals
(8.5.115) V' (2) = —Boo (1 + Y00 + Boo(xn — 2)) + Boor (Yoo — Booz) — log {boo}

from which by (B.2.13) we calculate

(8.5.116) v <Xh + %) = BooY + Boot(—Booxn) — log {boo} -

If x00 + 100 = 0, then xp + % = 0 and the pole at z = xgo + 1go lies at the origin of the z-plane.
To specify the coefficient associated with the constant term in (8.5.103), according to (8.5.104),
we must differentiate twice (8.5.112), leading to:

dpoC 1 d?
00 (0,0) = hocoo I'(—Booxn {ev(Z)Ah(Z)}

{Boo}? )5@ +21(0; Ty, Ty)

2=0

386



8.5. An Infinite Path of the First Kind in an Asymmetric-Type Iterated Integral

oo |coo 1{ N L AR )\h2}
8.5.117 = Q00TC00F 2 ) 1/ (0))% + 20/ (0) 2L 1 o(0) + 222 4 4 sy (0,1, T
( ) (oo} 2 (v'(0)) ( )eho (0) e 1(0; T3, T3)

For the second derivative of v(z), by (B.2.14), we obtain

-2
(8.5.118) v"(0) = {Boo}’ i {Boo}* ¢’ (700)-

8.5.8.3. Evaluation of the MB-Integral in the case 7y < ﬁ min {aoo, Y00} with ago # Yoo

According to the preceding paragraph, the general properties of the expansion (8.5.100) remain

the same for each admissible value of h. That is, in particular, denoting

noo + min {0, xo00 + 780 (@01, Bo1,701)} 5 if 100 + x00 < Yoo < Moo,
(8.5.119) 41 (ago) = ¢ poo )}

Voo + min {0, A0 4 1500 (201, Bor 701)} »if 100 + X00 < 100 < Vo0,

in the half plane Rz < 1(ag) we observe the presence of poles only, whose location and
order is determined by the parameters. The pole with the smallest real part lies always at
z = Po(ano), i.e., at z = noo + xo00. It will be of first or second order, depending on whether
o(apo) < min{ngo, vp0}. As a consequence, the integrand of the MB-integral (8.5.53) may
show a third order pole at z = 9g(ago) if this point coincides with the origin of the z-plane.
Furthermore, regarding the asymptotic behaviour of the integrand, from (8.5.102) we conclude

exponential decay into any imaginary direction of Rz < 91 (o). Suppose x1 > 1g(agp) with

min {70, 00, ¢¥1(00)} , if 0 < 9g(ano) < min {no, 100}

min {0, 700, Y00, 11 (00) } , if 1bo(c00) < min {0, 100, Vo0 }
(85.120) a1 <{ 1 1 | '

min {7700 + o5 Y00 + Foo s 7#1(0400)} , if 0 < 4po(apo) = min {ngo, Voo }

min {0, 100 + ﬁ, Vo0 + ﬁv 1/11(0400)} , if 0> 1P (ano) = min {noo, vo0}

According to the residue theorem, the integral along a clockwisely traversed rectangle of infinite
height with respective left and right edges equal to Rz = xg and Rz = z1, coincides with the
sum of the residues of the poles in its interior, multiplied by a negative sign. This is solely the
pole at z = ¥p(apo), and also the pole at z = 0 in case of positivity of ¥(agp). The required
quantities for the generating function were provided in (8.5.105), (8.5.106), (8.5.110), (8.5.113),
(8.5.114) and (8.5.117). With the aid of Theorem B.2.1(2), as m — oo we therefore obtain:
07 Tl
I(m) = =S [0 T2:| ]1{7700+X00 >0}
T'(noo + Xo0) oo |coo]” T'(1 — ago)T'(1 — ~o0)
{boo(m + 1)}Xo0tm0  Byg ['(2 — apo — 700)

X L tn00 + x00 & {0, min{n00, v00}}}

(8.5.121)
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T(noo + x00)  @oo |cool?
{boo(m + 1)}X°0+7700 {500}2 {0# 00 + x00 = min{noo, vo0 } }

~ T(m0+x00)  @oo |coo|” {1/}(7700 +xoo) + ' (Xh N m) N >\hl}
{bOO(m + 1)}X00+7700 {500}2 Boo €ho

+ log(m + 1)

X 11{0 # Moo + Xoo = min{noo, v00 } }
@00 | coo)® T(1 = ago)T(1 = y00)
Boo I'(700)

X ]1{0 =100 + X00 < min{noo, vo0 } }

— 2
I'(1 — I'(1 — A
., Too lcoo]” T(1 — o) T(1 — ~o0) {u/(o) n h,l}
Boo I'(00) eno

— {log(m + 1) +~}

X ]1{0:7700 + xo00 < min{noo, v00}}
- E1(0; T, T2)1{0:7]OO + x00 < min{noo, v00}}

1 1 g T 500|000!2]l
- (Og(m+ )"”7) +E W {0 =m00 + x00 =min{noo, o0} }

oo | ool { ; )\hl}
+ (log(m +1) +7) {500}2 v'(0) + e

x 1 {0 =mn00 + x00 = min{noo, v00} }

_ 2
A A
_ M {(U’(O))2 _|_2v/(0) h,1 _|_v//(0) + }“2}
2{Boo} €ho €ho

X ]1{0 =100 + Xoo = min{noo, Yoo } }
+ 0 {mle}

The order of the remainder integral can be concluded from the absolute convergence of its

representation as a MB-integral.

8.5.9. Computation of Some Hypergeometric Integrals

This subsection is devoted to the hypergeometric integrals (8.5.54) and (8.5.55). By comparison
with the expansion (8.5.57), we ascertain their appearance in the case agy > 1. Following
thereof,

Moo + Xoo = Voo-

In addition, 799 < 0 then implies v90 < 1 — agg < 0 and therefore voy < n99. Hence, if
Moo + X00 = Yoo > Yoo, We may always conclude 9o, = 0. Upon taking these observations into

account, according to (8.5.48), the integration path in (8.5.54) and in (8.5.55) is supposed to
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satisfy

—1<29<0, if Moo + x00 > 00 > 0,
max {1,700} < 20 < Yoo, if voo < Yoo < Moo + Xo00,

max {—1, 00,100 + Xo0} < 2o < Yoo, if 90 < 100 + X00 < Yoo-

Concerning the last of these two integrals, by definition (8.5.44), in terms of (8.5.54), it is easy

to confirm

(8.5.122) E(v00, T2) = ' (100) + Boo S(Boos Y00) + s(Boo, Ta)A(vo0),

where, for brevity, we denote

xo+1i00
(8.5.123) Q' (vgo) = % / T'(2)T(voo — 2)¢(voo — 2)dz,
1 Oac;-l—ioo
(85124) S(ﬁgo, ’)/00) = Tm / F(Z)F(I/OO - Z)T,[J(’}/OO — ﬁooz)dz,
— Boo o Boo 7 -
(8.5.125) s(B00, T2) == Booy — log {boo} + = log(T2)A(T2) + —— [ log(¢)A (t)d.
apo aoo 7

The integrand in each of the integrals Q(vp) and Q' (o) decays exponentially fast towards the
imaginary direction of the complex z-plane and exhibits poles at z € —Ny and at z € vy + Np.
Since oo < min {0, vgp + 1} by definition, these properties enable us, to replace the path Rz = xg

in each of the indicated integrals by an arbitrary line which satisfies

-1 <z9 <0, if g9 > 0,
(8.5.126) ’ o0

max {—1,v90} < zg < min {0,990 + 1}, if vgo <O0.

It is easy to see that such a path can always be found if vy > —2. We will now derive a
representation in terms of simpler functions for each of the integrals Q(rgg) and Q'(rgg). For

this purpose, for arbitrary g > —2 we essentially verify a connection to the MB-integral

So+i00
(8.5.127) £lq) = 2% / ()T (g — 2)dz,

whose integration path is supposed to satisfy

(8.5.128) -2 < ¢ <min{-1,q}.
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Subject to Lebesgue’s dominated convergence theorem, particularly due to absolute and with

respect to 1 > r > 0 uniform convergence, we can write

Go+i0co

(8.5.129) (@) = lim % / P(2)T(g — 2)r*dz.

So—ioo
Now, consider this integral for fixed 0 < r < 1. In view of (8.5.128) the singularities to the left
of the integration path are given by the sequence of simple poles at z € —2 — Ny. Furthermore,
since 0 < r < 1, the integrand of f(gq) decays exponentially fast in any direction of the left
z-half plane |arg(—z)| < §. We are therefore allowed to displace the integration path by an
infinite distance to the left over the indicated sequence of poles. These are encircled in the

counterclockwise direction, which yields the absolutely convergent series representation

So+i00

—z _ - (_r)k
57 L'(2)(q—2)r ?dz = % o I'(g+ k).
S0 —100 -

For non-integer ¢ > —2 the series can be rearranged by means of the reflection formula for the
gamma function (B.2.15). Upon exploiting the periodicity of the sine, this enables us to express

the sum according to the binomial theorem:

()" T\ rk
];2 il F(q+k)_sin(7rq)zf(1—q—kk‘

k=2

03 (1)

= (){1+r 79— 1+q}

Mg

If we eventually let r T 1, we have just verified

(8.5.130) flg) =T(q) {277 = 1 +4q},

where the extension to arbitrary ¢ > —2 holds by continuity. To be exact, the original repre-
sentation of f(q) as a MB-integral and the right hand side of (8.5.130) are both continuous on
q > —2. In our next step we suppose [a,b] C (—2,00) and pick —2 < ¢p < min{—1,a}. Then, ¢
does not depend on ¢ € [a,b] and ¢y < ¢ for all ¢ € [a,b]. We may therefore apply the triangle
inequality to Euler’s integral of the second kind, for z € C with Rz = ¢y, to deduce

1 0o
IT(q — 2)| < /t“—%—ldt+/t”—%—le—tdt,
0 1

which clearly holds uniformly with respect to ¢ € [a,b]. A uniform bound for the digamma func-

tion ¢ (g —z) can be found by virtue of the integral representation (5.9.12) in [Olver et al., 2010].
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To summarize these findings, the function

I(2)LT(g - 2) = T(2)T(q — 2)(a - )

dgq
is uniformly bounded with respect to g € [a,b] by I'(so + iy) € L*(R). From Theorem 11.62 in
[Korner, 2004] we infer the permission to compute the first derivative of f(q) by differentiation

under the integral sign, to find

So+1i00
(8.5.131) Fa) = 5 / T(:)T(q — 2)ilq - 2)d=.

By arbitrariness of [a, b, this equality holds for all ¢ > —2. Conversely, differentiation of (8.5.130)
for ¢ > —2 brings us

(8.5.132) @) =T(@)y(@) {277 =1+ q} +T(q)(1 — 279 1og(2)).

In order to finally deduce an equivalent representation for the integrals Q(rpo) and Q' (vq), in
the MB-representation for each of the functions f(q) and f’(q), we displace the integration path
rightwards to obtain a sum of residues plus a remainder integral along a vertical line Rz = ¢;
with

—1<q <0, if ¢ >0,

(8.5.133)
max{—1,¢} << <min{0,¢+1}, if —2<g<0.

By comparison with (8.5.126) we see, upon identifying ¢ = vy, the remainder integral of f(q)
and of f’(q) respectively equals Q(199) and Q'(vgg). The singularities which we encounter in
the process of the described movement include the point z = —1 and possibly z = ¢, depending
on q. At these points the integrand of (8.5.127) always exhibits poles of simple order except
if ¢ = —1, in which circumstances at z = —1 a second order pole emerges. To specify the

associated residue, we require the derivative

Pz +2) —¥(-2) — -

dl(z+2)0(=2)  [(z+2)(—2) { 1 } '

dz z z

Thus, since each pole is traversed clockwisely, with ¢; as in (8.5.133), from (8.5.127) we easily

obtain

f(@=T(g+Dlys ong2-13 ~T(@l—2<qcongz -1}
1 G1+i00
g1y + 9 / I'(2)'(q — 2)d=.
61 —1%00
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In terms of the integral definition (8.5.54), with ¢ = vo, a reference to (8.5.130) for any vy > —2
yields

Q(r00) = Do) {277 =1+ voo} — T(v00 + 1) D ge > —2 A w0 £ -1}

+ T (00) 1{—2 < voo <0 A o0 # -1} T Lfugo= -1}

Moreover, concerning (8.5.131) no additional poles will be encountered upon displacing the path
from Rz = ¢y to Rz = ¢;. However, due to the digamma function, the only possible pole of
simple order lies at z = —1 if ¢ # —1. In fact, if on the one hand —2 < ¢ < 0 but ¢ # —1,
the pole at z = ¢ is of order two, and with the aid of the functional equation for the digamma

function we find:

Res I'(2)I'(¢ — 2)¥(q — 2) = —Res

I'(2)0(1+q—2) {¢(1+q_z)+1}

z=q z=q z—q Z—q
d
=—¥(MT(g) = AT +¢ - 2)}
z z=q
= —¥(q)l'(q)
If on the other hand ¢ = —1, a coalescence to a third order pole happens at z = —1, and with

(B.2.13) and (B.2.14) we compute:

ieﬁlf(z)F(—l —2)(—1—z) = —Res w {w(—z) + ! }

z=—1 (z+4+1)%z z+1
. dT(z+ 2)F(_Z)w(—z) B ﬁf(z +2)I'(—=2)
dz z dz? z
z=—1 z=—1
=2+ g

Again bearing in mind the fact that the poles are encircled clockwisely, an application of the

residue theorem leads to

f(@) =T(¢+ 1)1+ Dligs —2ngz-13 TV T2 gcong2 -1}

S1+100

- <2 + %2 - 7) Lig=—13 + = / ['(2)T'(qg — 2)Y(q — 2)dz.

211
§1—100

Appealing to definition (8.5.123) and identity (8.5.132) with ¢ = vy, for any vgo > —2 we

conclude

QO (v0) = T (v00)(v00) {27”00 -1+ 1/00} + T'(voo) (1 — 2770 log(2))
— T'(vo0 + 1)Y(1 + v00) L {ngy > —2 Avgo £ —1}
— T'(v00) ¥ (100) L {—2 < o <0 A voo £ —1}
+ (24 % =) L=
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If we rewrite the above results by elementary manipulations, for any ryg > —2 we eventually

arrive at
(85134) Q(VOO) = F(VOO)Q_VOO]I{V()O >—2Avpo ¢ {—1,0}} — F(VOO)]I{VOO >0}
- 10g(2)]1{'/00 =0} T 1Og(4)1{V00 =-1}
and in addition at
(8.5.135) Q! (w0) = T(r00) {277 (¢(v00) — 108(2)) = ©(100) } Lgvg > —2 A veo ¢ {~1,0}}
- F(Voo)w(VOO)]l{f2< voo <0 Awvgo # —1}

+ 5 10g(2) (27 4 10(2)) Ly — 0}
+ (1 + % —log?(2) — (v - 1) 10g(4)) Lugo=-13-

Upon plugging the preceding two equations into (8.5.122) a more convenient representation for

the constant Z(1gg,72) can be obtained.

8.5.10. Evaluation of the Iterated MB-Integral

We are finally ready to gather the above findings, to characterize the leading terms in the
expansion (8.5.57). For a clearer presentation, we distinguish between three cases, depending

on the presence of the first term and on the range of 7gg.

Theorem 8.5.1. Assume validity of the conditions (A1) and (A2) with coo # Yoo and

Moo > min {vpo, Moo + Xo0}

V00, Moo + Xoo = min {0, voo + 1,700,700 + Xoo + 1} .
Then, provided at least one term on the right hand side is non-zero, as m — oo,

(1) if ago > 1, we have
. Tl 07 Tl

F(VOO) |C(]0|2 0/,
{bOO(m‘l- 1)}1/00 BOO A (07T2)]l{07é’/00<7700}

|C()0|2 0 1 0
+ {(log(m + 1) + ’Y)mfl (0; Tg) + %,Al T ]1{021,00<,700}

_ I'(100) @00Co0 770[ 0,0
{boo(m + 1)} Boo T, 00

T00T 0,0 1 0,0
+{(1og(m+1)+fy)‘“}§§)°°7>o[T1 OO] +ﬁooyo[T1 . TQH

x ]l{O=?700 <voo}

] 11{0757700 <wvoo}

393
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AO(O;TQ) |CQO’2Q
{boo(m + 1)} Boo

(Voo).

The coefficients have been defined in (8.4.49), (8.5.29), (8.5.32) and (8.5.71). Further-
more, the coefficient Q(vop) was computed in (8.5.134).

(2) if 0 < apgg < 1, we have

. T 0,73
Al [m; T2:| ~ So I:Ov T2:| ]1{7700+X00 >0}
~ T(mo+x00)  @oolcool* T(1 = apo)T'(1 = y00)
{boo(m + 1) pXootmo  Fyg ['(2 — ago — Y00)

X ]1{7]00 + x00 € {0, min{noo, vo0} } }
I'(noo + xo00) aoo ]c00|2
{boo(m + 1)}X00+7700 {500}2 {0 noo + x00 = min{noo, vo0}}
(7100 + X00)
{boo(m + 1) }xeotmo

—log(m+1)

Ah1
{1/1(7700 + Xo00) + ' (Xh + %) + 6’ho}

@oo |coo ’2
{500}2 {0 # noo + xo00 =min{noo, 00} }

@00 |cool* T(1 — ago)T(1 = 00)
Boo I'(700)
X ]1{0 =100 + x00 < min{noo, 00} }

o lcoo|® T(1 — ago)T(1 — ~00) {u’(O) n Ah1 }
Boo I"(v00) €ho

+ {log(m + 1) +~}

X ]1{0 =100 + x00 < min{noo, v00} }
+ X1(0; 11, TZ)]l{O =100 + Xxoo < min{noo, Y00} }

5 T @oo |Coo\2
+ (10g(m + 1) + 7) +— 2 {0 =mn00 + x00 = min{noo, voo } }
2{foo}

6
B oo |coo]” { / )\hl}
(log(m + 1) + ) (oo v'(0) + o

X ]1{0 =100 + Xo00 =min{noo, 00} }

_ 2
A A
+ M {@/(0))2 +20/(0) 22 4+ 0"(0) + “}
2{Boo} €ho €ho
X ]1{0 =100 + Xoo = min{noo, Yoo} }
log(m+1) @ |Coo|29
{boo(m + 1)} {Boo}?
~ E(v0,T2)  ao |cool”
{boo(m + 1)} {Bgg}? faon=1)

I'(1 — apo) @oo |cool”
T (a0, Boos 1y, .
{boo(m+ 1)}7700+X00 Boo ( 005 Boo 'YOO) {a0o <1}

(100) L fago =1}
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The coefficients were specified in §8.5.8.2 and in equations (8.5.56), (8.5.122) and (8.5.134).

Proof. Under the assumptions of the theorem, the first term in the expansion (8.5.57) is non-

zero, and from (8.5.73) we deduce

Yoo = min {0,700} -
Morever, a comparison of (8.5.11) and (8.5.75) shows that

Yo(a00) = vo(aoo) + o.

As a consequence, the order as m — oo of the non-zero terms appearing in each of the expansions
(8.5.57), (8.5.80) and (8.5.121) differs at most by logarithmic factors, whereas the remainder
terms are of higher algebraic order as m — oo. Indeed, there exist u; and z; as specified in
(8.5.51), (8.5.79) and (8.5.120) as well as €1 > 0, such that u; + xo = 21 = vo(aoo) + 2o + 1.
We therefore conclude neglibility of the terms in each big-O. n

Theorem 8.5.2. Assume validity of the conditions (A1) and (A2) with co # Yoo and

noo < min {vpo, Moo + Xo0} -

Then, provided at least one term on the right hand side is non-zero, as m — oo we have

. T 0,71
Ai [m; T2:| ~ SO |:0’ T2:| ]1{7700 >0}
N I'(m00)  @ooCoo 730[ 0,0
{boo(m + 1)} Boo Ty, 00

A00Gi 0,0 1 0,0
+ {(10g(m+1)+7) %)0000770 [Tl oo} +%y0 |:T1 o TJ}]l{nooﬂ)}7

with the coefficients given in (8.4.49) and (8.5.71).

:| ]1{7700 #0}

Proof. According to the conditions of the present theorem, vgg > 109 > x00 > 0 and 1o+ x00 >
0, implying ¥ = 0 and, by (8.5.75),

wo(aoo) = 7o < min {V007 Moo + Xoo} = Vo(Oéoo) + 2.

Hence, the non-zero terms in (8.5.57) and the remainder therein, as well as the remainder in

(8.5.80) are of higher algebraic order than the non-zero terms in the last expansion. ™

We conclude this section with the simplest case, occuring if the first term in the expansion

(8.5.57) vanishes. Then, from (8.5.58) the following theorem immediately becomes obvious.

Theorem 8.5.3. Assume validity of the conditions (A1) and (A2) with

min {0, Moo + xo00} < min {0, vo0 + 1, 100, 700 + Xoo + 1} .
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Then, provided at least one term on the right hand side is non-zero, as m — oo we have

T .AO(O; Tg) ‘600‘2
. } ~ {boo(m + 1)} Boo 2000) L 000 > 1)
log(m + 1) aoo ‘600‘29
{boo(m + 1)} {Byo}?
Z(voo, To)  @oo |cool?
- v00 2 ]1{a00=1}
{boo(m + 1)} {Byo}
I'(1 — ago) [ |Coo|2T
{boo(m+ 1)}7700+X00 500

(100)Lfago =1}

(@005 B00s Y00) L{agy < 1}

For the coefficients we refer to (8.5.56), (8.5.122) and (8.5.134).

Notice that the conditions on the parameters from the last two theorems can not hold simul-

taneously.

8.6. An Infinite Path of the Second Kind in an Asymmetric-Type
Iterated Integral

We shall now treat scenarios, in which of (8.0.2) only the exterior path is certainly infinite,
whereas the interior may be finite or infinite. Moreover, the amplitude is supposed to admit

oscillatory properties. In particular, we will now study the m-asymptotic behaviour of

" i, Th
(8.6.1) 0
[ eIt {1 - (- s 4 0 et + s
T

Ai [m i1, 0, S} :—Z {1— (1= W(s))™ Y e ®15¢(s; py)

for £1,& € R, 15 > 0 and a half open path P; with endpoints 0 < ¢ < § < o0, either
Py = (m,T1] for 0 < 7 < Ty < o0 or Py = [T1,00) for T1 > 0. In addition, the parameter
p1 and the function ¢(s;p1) were specified in Section 8.4, and accordingly the first refers to the
endpoint, for which P; U {p1} is closed, while the second was introduced in (8.4.2). Finally, the

ingredients, of which ¢ was defined in (8.1.5), are supposed to satisfy the following conditions:

(A3) ¢(u) and c(u) show algebraic behaviour as u — oo for respective parameters Gyg > 0,

v00 € C and coefficients byg > 0, cog € C\ {0}, where
(8.6.2) Boo + o0 > 1.
(A4) For each k € {1,2} with Py = [T}, 00) and &, = 0, the functions ¢(u) and c¢(u) are once

continuously differentiable on uw > T} with ¢(u) > 0, and the first derivatives of their

normalized analogues B(u) and €(u) are of order 1,701 > 1 as u — o0.
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(A5) For each k € {1,2} with Py = [T, 00) and & # 0, we suppose:

Gl () _
AW o)

(a) ¢(u) is infinitely many times continuously differentiable on u > T}, with

O{u‘j} as t — oo for any 7 € N.

(b) ¢(u) is infinitely many times continuously differentiable on u > T}, with ¢ (u) =

O {u‘”oo_j} as u — oo for any j € N.

(A6) If & =0, a(t) is algebraic at infinity for a parameter aigg > 0 and a coefficient agp € C\{0}.
Moreover, it is once continuously differentiable on ¢ > 75, and the normalized amplitude

2A'(t) is of order ag; > 1 as t — 0.

(A7) If & # 0, then a(t) is infinitely many times continuously differentiable on ¢t > T5, and there
exists ago > 0, such that for any j € Ny as t — oo we have a(j)(t) =0 {t*O‘OO*j}.

(A8) If Py = (11, T1], we have continuity of ¢ and ¢ there, with ¢ > 0 and each function shows
algebraic behaviour as s | 71 for parameters $19 > 0, 710 € R and coefficients b9 > 0,
ci0 € C\ {0}, where

(8.6.3) Y10 + B1o > —1.

If B10 > 0, the normalized functions Bj(s) and Cj(s) on (71,T1] possess a continuous first

derivative of order £11,v11 > —1 as s | 7.

(A9) If Py = (71,T1] with B9 > 0, & = 0 and ago + 00 = 1, the functions p(u) and ¢(u)
are, in addition to (A3) and (A4), twice continuously differentiable on u > T5, and with a

constant co; € C\ {0} as u — oo each of them satisfies

(8.6.4) " (w) ~ booBoo(Boo + 1)u P02,

(8.6.5) C//(u) 0000 (Y00 + 1)u*700*2, if 00 # 0,

v —1 . .
—Cco1Yo1u” 101, if v00 = 0.

Observe that ¢(u) = €(u) if y90 = 0, whence condition (A4) implies ¢/(u) = O {u~7°!} as u — .
But this is especially true if ¢/(u) ~ copyu~ 71, and if this relation is once differentiable, validity of
(8.6.5) follows. Hence, the conditions (A4) and (A9), particularly for 799 = 0, do not contradict
each other. Finally, we leave it to this only remark in the introductory part, that the reader
should bear in mind, that some coefficients in the Laurent expansions below actually can be
zZero.

Throughout this section we reemploy some definitions from Section 8.4. For instance, as in
(8.4.10), we denote

(8.6.6) G = 05 i,
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with §; > 0 if and only if P; is infinite with §; # 0, and ¢; = 0 otherwise. Furthermore, we refer
to 61 and 6, as the parameters (8.4.11) and, analogously to (8.4.12), we define

(8.6.7) p1 = (p1,61).

We are then interested in the m-asymptotic behaviour of (8.6.1) for all admissible pairs of the

parameters p; and 6y, i.e., for

ﬁl € {(7—1’0)’ (7—17 1)a (OO’ 1)’ (OO’O)} )
02 c {0, 1},

(8.6.8)

where p] = (00,0) with 3 = 0 is assumed to imply
(8.6.9) 00 = Y00 # 3,

or equivalently 799 = vpo # 0 with vgo from (8.5.3). Indeed, in the case agy = Y00 = %, the
reader easily confirms the applicability of Theorem 8.5.3. Now, due to the assumptions agg > 0
and (8.6.2), from (8.6.9) we conclude

(8.6.10) Y00 > 0 and noo, v00 > Xo0 > —1, for p1 = (00,0) A b2 = 0.
With the exception of the last case, we have absolute convergence of

—w, Clv g, S

.6.11
(86 ) K:O|: —%, CQ:TQ

S 0o
] = [ e i) [ ol + )" Halo)i(s + drds,
o T

if and only if this statement applies to each single component of this iterated integral, i.e., for

w, z € C with

o0, ifﬁl € {(7—170)7(007 1)}’

(8.6.12) Fw < 1 x10, if g1 = (71,1),
voo — Rz, if p1 = (00,0) A2 =1,
oo, if 92 = 1,

noo, if 02 =0 A p1 # (00,0).

(8.6.13) Rz <

The parameter 10 was defined in (8.3.5). Finally, in the indicated special case p; = (o0, 0) with
02 = 0 and oo = ago # %, by comparison with (8.5.5) we obtain

—w, 05 Tl: 0 —w, Tl
8.6.14 K =S5 .
( ) 0|: _Z,O,TQ :| O|:_Z>T2:|
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Hence, by (8.5.7), absolute convergence of (8.6.11) holds for w, z € C with

Rw < oo,
(8.6.15)

Rz < noo + min {—Rw, 0, xo0 — Rw} .

To avoid the dependence of the z-abscissa of convergence from the fixed variable w, we then

agree
Rw < min {0, )

(8.6.16) {0 xoo}
Rz < noo-

The z-abscissa of convergence of Ky|...] in the case ; = 0 is therefore always the line Rz = 1.

8.6.1. Transformation to an Iterated MB-Integral

Under the above assumptions, the integral (8.6.1) converges absolutely for any m > 0 and
£1,& € R, and this statement, even uniformly with respect to 41,09 > 0, also applies to the

related integral

i|m; C,o,5] _ S (1 — W(s)) Y oG8 (s
A[ ’ C2,T2]' P/{l (1—w(s)™"} (55p1)
(8.6.17) ! .
X /e_Czta(t) {1 —(1—-Y(s +t))m+1}f(s + t)dtds.
Ts

Accordingly, by Lebesgue’s dominated convergence theorem, we have the permission to write

. Z'gl,O',S . . C1507S:|
8.6.18 Ai|m; = lim Ai|m,; .
( ) |: 2627 T2 :| 01,6240 |: <27 T2
Again we first begin with a discussion with the m-asymptotic behaviour of Ai[...] for fixed

d; > 0. An application of the Cahen-Mellin representation (8.1.6) for the m-power of the variable

s, according to Corollary 8.2.2 and Lemma 8.2.3, bearing in mind (8.6.10), is permissible for

0, if py € {(7‘2,0),(00,1)},

(8.6.19) 1 < (o, ) < 4 Ok iR = ()

min {0, vg0 + 1}, if p1 = (00,0) A by =1,

min {0, xo0} , if p1 = (00,0) Ay =0,
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and this leads to

ug(62,p1)+ic0

. C 7U> S 1 —w —w _—(18
Ailm U0 = o [ e nr) [ee) e s
(8.6.20) vollz) oo &
X /e—@ta(t) {1— (1= U(s+t)""} (s + t)dtdsdw.
Ty
Then, for another parameter
0, if 6y =1,
(8.6.21) —1 < wo(fy) < ?

min {0,np0}, if #2 =0,

an application of the Cahen-Mellin representation for the m-power of the variable s 4 ¢ yields

ug(02,p1)+ico

(5.6.22) A =R R O e T
ug (02,p1)—ic0
where the right hand side, in terms of (8.6.11), involves the MB-integral
20(02)+ioo
(8.6.23) H {m; w?iﬁ] = 2%” / (m +1)"*T(2)Ko [_EJZ’,C;;:%S] dz.

20 (02)—ico

8.6.2. z-Analytic Continuation of the Iterated Generating Function

The procedure for determining for fixed w and 2 = 0 the z-analytic continuation of the iterated
generating function (8.6.11) across the boundary line Rz = ngg is routine. First, by virtue of
(8.5.59), we write

—w, Cla g, S —w _—(18 153;007 Z — X00
= : ds.
(8.6.24) /Co[ O T } /{sO(S)} e *%c(s;p1) Ro 50,027 |%
P1

Now, if p1 € {(m1,0), (1,1), (00, 1)}, as we mentioned in before, we are in the convenient situation
that this iterated integral converges absolutely if and only if each of its single components
does. It is then particularly analytic with respect to each of the variables w and z. But by
Subsection 8.5.6, the interior integral, and therefore especially the iterated integral, by means

of the expansion (8.5.60), can be continued to a meromorphic function in the region

(8625) Rz < Moo + MBoo (a()lv 6017 o1, 2)7
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for any fixed admissible w € C. There, it shows only a single singularity, which is a pole of
simple order at z = ngo. From (8.5.62), with the aid of the function (8.4.49), we find

-w, (1,0,8 @00Co0 . —w, G1
8.6.26 Res I = — b 100 .
( ) z:(?ri?)o 0 [ —Z, CQ, T2 :| 600 { 00} PO [ ag, S :|

If noo = 0, this pole lies at the origin of the z-plane, and by (8.5.65) as z — 0 we obtain the

Laurent expansion

1
+——W

(8.6.27) Ko { o

—TU,CLU,S] _ 1500?0073 [—UJ, C1]
=—- 0

|: —w, Cl
—2z,C2, T z Boo o, S

g, S7 T2:| " O(Z)’

where the integral transform in the second summand, in terms of (8.5.63) and (8.5.64), is given
by (8.5.71).

Finally, if p1 = (00, 0), since 0, = 0, by assumption agy = Yoo # % Hence, due to the identity
(8.6.14) and, according to Subsection 8.5.7, in this case the function (8.5.68) for fixed w € C
with Rw < min {0, xo0} represents the z-analytic continuation of (8.6.24) into the half plane

(8.6.28) Rz < min {vgo — Rw, o1, Yoo + xo00 — Rw}.

Therein it exhibits a pole at z = vgg only, which is always of simple order and does not lie at

the origin of the z-plane. Its residue was specified in (8.5.70).

8.6.3. Evaluation of the Interior MB-Integral

According to the preceding subsection, for #; = 0 and fixed w € C with Rw = u¢(0,p7), the
z-analytic continuation of the generating function (8.6.11) into the half plane Rz < 7, (p}), where

. min {vgy — uo(0, (00, 0)), 701, Y00 + Xoo — u0(0, (00,0))}, if p1 = (o0,0),
(8.6.29) m(p1) := '
100 + Moo (@01, Bo1; Y01, 2), otherwise,

can be computed via integration by parts. In each case, the only singularity in the wider region
turned out to be a simple pole, lying on the line 8z = 1gg. Furthermore, it is easy to confirm
that KCol...] for fixed w € C with Rw = ug(02,p1) is O(1) as Iz — +oo, uniformly with respect
to Rz in any closed vertical substrip of C, if #3 = 1, and otherwise of the half plane Rz < 71 (p1).
The dominating behaviour of the integrand in (8.6.23) into each imaginary direction of the
indicated regions is therefore exponential decay, owing to the presence of the gamma function.
This enables a movement of the integration path to the right, across z = 0 or across the indicated
simple pole, which will merge to a pole of second order if 7, € {(71,0), (71,1), (00, 1)} with 63 =0
and ngp = 0. Depending on whether or not the point z = 7o lies in the left half plane, we decide
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to displace the path rightwards, to match a line Rz = x1(6s2), for

0<x1(1) < o0,

(8630) 7’]1(51)7 if 700 2 0,
Noo < 561(0) < ) . )
min {0, 71 (p1)}, if o < 0.

In this process, we clockwisely traverse the pole at z = ngg if #2 = 0, the pole of I'(z) at z = 0
if 0 = 1 or both if #; = 0 with 799 > 0. By taking into account the identity (8.6.14) and
(8.5.70), but also (8.6.26) and (8.6.27), with the aid of Theorem B.2.1(2), for fixed w € C with

Rw = ug(2,p1) we arrive at:

02 _U)aCl’U?S
(8.6.31) H [m; w,ﬁl] = —ICO[ 0.Co. T }1{92:1vn00>0}

I"(100) 50050073 —w, 1 1
{boo(m +1)}™° Boo o, 5 | 102=0Am070}

- {(log(m +1)+ 7)500600730 [—w, Cl] + 1370[ —a } }

Boo o, S Poo~ Lo, 5, T
X g9, =0 np1 # (00,0) Ao =0}
) x1(02)+ic0 ¢ S
—z _w7 1, 0-7
+ % / (m + 1) F(Z)’CO |: —Z, C25 T2 :|dz

x1 (92)—ioo
For brevity we define the following single MB-integrals, whose integration paths satisfy (8.6.19):

uo (02,p1)+i00

1 _ —_wa Cl? O-, S
. . ; Z :: By b d
(8.6.32) F(m; 02, p1) = 5 / (m +1)"“T'(w)Ko 0,6, T ] w
uo (02,p1)—i00
; . ug(02,p1)+ic0 - ¢
‘ 1 _ 1 —w —w, G1
(8.6.33) G {m a,s] =5 / (m +1)""I'(w)Po oS ]dw
up(02,p1)—i00
. uo(02,p1)+i00 - ¢
— _w’ 1
. . ; D) :: Py 1 wF
(8.6.34) Y (m; p1) 9 / (m+1) (w)Yo LT TJ dw

ug (02,p1)—100

Then, upon plugging the expansion (8.6.31) into the iterated MB-integral (8.6.22), accompanied

by a suitable bound for the remainder term, as m — oo we deduce:

= - F(m; 927ﬁ1)1{92=lv7]00 >0}

(8.6.35) Ai [m o

_C1)075:|

I'(700) @00%00 [ . o1 1,
{boo(m + 1)} Bog "o, 5] 02= 0070}

@p0Coo 0 1 -
~{togon+ 1)) 00 6 [ M|+ Lvim
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X Lo, =0 A1 # (00,0) Amoo =0}
o) {m—u0(92,ﬁl)—$1(92)}

We proceed with a study of the single MB-integrals, which appear in this expansion.

8.6.4. A Single MB-Integral for the Residue at z =0 if & # 0 or if 15 > 0

The MB-integral F(m; 02, p1) appears in the above expansion, if 2 = 1 or if 19y > 0, and its
generating function coincides with the integral (8.6.11) for z = 0. Accordingly, it is an entire
function of w, if p1 € {(71,0), (00, 1)}. In the special case p; = (00,0) with #3 = 0, where we

assumed agg = Yoo # 3, from (8.6.14) and (8.5.6), we conclude analyticity in

1
(8636) Rw < 2x00 + /87 min {1, ’ygo} .
00

By definition of v, this inequality can be rewritten in the form
(8.6.37) Rw < vyo + min {0, xo0} -

Altogether, for z = 0 the integral (8.6.11) thus constitutes a holomorphic function of w in the
region Rw < ¢g (b2, p1), with

X105 if p1 = (71,1),

(8.6.38) @0(92,]31) = 00, if ﬁl = (OO, 0) A\ 92 = 1,
yoo—i—min{(),x()o}, if p1 = (O0,0) ABy =0.

There, it is O(1) as Sw — 400, uniformly with respect to Rw in any closed vertical substrip,

implying that the path of the MB-integral (8.6.32) can be replaced by an arbitrary line with
real part ug (62, p1) = fo(f2,p1), for

- 07 lfﬁl € {(7—170)7(0071)})
(8.6.39) —1 < fo(O2,p1) <
min {0, ¢o(f2,p1)}, otherwise.
The computation of the w-analytic continuation is an easy exercise for pj = (71,1) and for

P1 = (00,0) with #3 = 1. Additional considerations are required only in the final case p; = (00, 0)
with 8, = 0.
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8. Asymptotics of Iterated Convolution-Type Integrals by Analytic Continuation

8.6.4.1. w-Analytic Continuation for z = 0 and a Finite Path Py, or an Infinite Path P;
with & #0

If the exterior path in (8.6.11) is finite, or if it is infinite but & # 0, i.e., f2 = 1, we first we
define

[e.e]

(8.6.40) R(s; (o, To) = / e~ 2t a(t)e(s + t)dt.

Ts

It is then easy to confirm, that this integral converges absolutely and uniformly with respect
to < s < 1Ty, if 65 =0 and ngg > 0, and that this statement remains true if ¢ is replaced
by the derivative ¢/. In case of an infinite P; with #3 = 1, however, it depends on 7 if the
convergence is uniform with respect to s > T7. Consequently, in general differentiation under
the sign of integration is only admitted in the first case. This is the reason, why the w-analytic
continuation of (8.6.11) for z = 0 not in each case can be computed by the method for single

integral transforms. Hence, instead we interchange the order of integration, to obtain

(8.6.41) Ko [_w’ G1, 0 S]

0,6, | / e a(t) 7)/ {p(s)} ™" e c(s; p1)e(s + t)dsdt.

b

Under the assumptions of the present paragraph, the w-region of absolute convergence and
analyticity of this iterated integral is the same as for the interior integral. But by reference
to §§8.2.2.1 and 8.2.2.2, via integration by parts, an expansion for the interior integral can be

derived, by means of which (8.6.41) can be extended to a meromorphic function in the half plane

(8.6.42) o < J X010 T X810 (Br1m1,0), i 71 = (1, 1),

Y00 + M3y, (Bo15Y01,2), if pi = (00,0) Ay = 1.

The only singularity therein is a simple pole at w = ¢¢(02, p1). Therefore, as w — ¢o(02, p1) we

find a Laurent expansion of the form

— _1(02, 7 05, 0
(8.6.43) /Co{ w,CLU,S] _ ke1(62,p1) —i—/io[ 2, 01

0,6, T | w— ¢o(6a,p1) 075} + O(w — ¢o(02,P1)),

whose coefficients are specified below. Particularly the dominating coefficient is the residue.
Keeping in mind that {; = & if p1 = 71, by (8.2.33) and (8.2.42), in terms of (8.6.40) and
(8.5.29), this is equal to

=40 {p1g} N0 e TR (115 (o, To), if Py = (71,1),
(8.644) k(O = ow 103 (113G, T2), i pr = (m, 1)

2
el fhgy 0 Ay Th), if 7 = (00,0) A 0 = L.
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8.6. An Infinite Path of the Second Kind in an Asymmetric-Type Iterated Integral

Moreover, according to (8.2.36) and (8.2.45), for the second coefficient in the above expansion,

strictly in the case ¢o(f2, 1) = 0, we obtain

(8.6.45) ;@0[7_912’;1] = Cg?e—ifm log {¢(T1)} / e~ 2a(t)e(Ty + t)dt
0 Ty b
+ Bllo/e_@ta(t)/Bi(s)e_iglscl(s)c(s—|—t)d8dt
R
— 5 [t [log ey e
Ts 1
x {(C1(s) —i&C1(s))e(s +t) + Ci(s)T (s + t) } dsdt,
Y00 s
(8.6.46) KO[T?(;O] - Tﬁloo log {(T1)} €(T1) / e~ CG(H)(T, + 1)dt
T>
- 5100 / e~ Cta(1) / 500 [B!(5)¢(s) — log {(s)} ()} e(s + t)dsdt
Ts Ty
1 [ —Gaty [ 700 E/(S—i_t)
+500/e ¢ a(t)/s log{@(s)}@(s)mdsdt
Ts Ty
Y00 i oty Ji 00— t(s+1)
+ﬁ00T/e ¢ ta(t)T/S'y Hog {p(s)} €(s) o dsdt.

8.6.4.2. w-Analytic Continuation for z = 0 and an Infinite Path P; with & =0, 190 > 0 and

oo = Y00

From the assumptions on the parameters in the present case, we conclude

1
(8.6.47) Yoo > 5

Speaking of the w-analytic continuation of the integral (8.6.11) for z = 0, in accordance with
the minimum-type boundary of the abscissa of convergence ¢¢(0, (c0,0)), we must distinguish
between two cases. In each situation, appealing to the identity (8.6.14), a reference to Section
8.5 is possible.

If v90 > 1, the required w-analytic continuation was already established in Subsection 8.5.3
in the shape of equation (8.5.26) with z = 0. The latter represents a meromorphic function in
the half plane

(8.6.48) Rw < min {vo1, 100 + X00}
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and therein it shows a pole of simple order at w = vgy. This pole always lies in the right w-half
plane. The associated residue was computed in (8.5.30).

Conversely, in the case % < v00 < 1, we can refer to our findings from Subsection 8.5.4,
according to which the expansion (8.5.34) with z = 0 represents the w-analytic continuation

into the strip

(8.6.49) Xo0 < Rw < voo + Xoo + Moo (01, Bot, Y01)-

If the pole at w = vyo + xoo is of simple order, the associated residue equals (8.5.42) with z = 0.
Particularly if vog + x00 = 0, i.e., if v90 = %, this pole lies at the origin of the w-plane, and
the first two terms of the corresponding Laurent expansion were provided in §8.5.4.1. Finally,
the pole will be of second order if and only if xg0 = 0, i.e., if 700 = 1. The associated Laurent
expansion near w = gy was established in (8.5.43), and this pole lies somewhere in the right

w-half plane.

8.6.4.3. Evaluation of the MB-Integral

In the preceding paragraphs it was pointed out that the generating function (8.6.11) for z = 0
and p1 ¢ {(71,0), (00,1)} can be extended to a meromorphic function in the half plane Rw <

¢1(02,p1), with

)
X10 + X610(611771170)) lfﬁl - (7—17 1))
. Y00 + M3y, (Bo15 Y015 2), if p1 = (00,0) Ay =1,
(8.6.50) ¢1(02,1) =5 s
min {1, Y00 + X00} if p1 = (00,0) Ay =0 A g0 > 1,
[ 200 + X00 + T80 (@01, Bo1,701), i P1 = (00,0) Afla =0 A 5 <00 < 1.

These continuations turned out to be valid in the whole half plane Rw < ¢1(62,p1) or merely
in some substrip. In the first three cases, their existence was verified via integration by parts,
which implies the presence of a single singularity in the wider region, namely of a simple pole
at w = ¢g(f2,p1). Furthermore, in the particular case p; = (00,0) with 6 = 0 and g9 < 1,
the w-analytic continuation is given by the expansion (8.5.34), which is admissible in the strip
xo0o < Rw < ¢1(0,(00,0)). Therein it shows a pole of order one or two at w = vgo + Xo0,
respectively if y99 < 1 or g9 = 1. Additional poles may only occur to the right of this pole. In
each case it can be shown that the integrand of the MB-integral (8.6.32) vanishes exponentially
fast in the imaginary direction of the half plane Rw < ¢1(62, p1) or of the whole complex w-plane
if p1 € {(71,0), (00, 1)}, thereby enabling a rightward displacement of the integration path across
a selected number of poles. Since it is our aim to collect the residue of the pole at w = 0, if

P1 € {(11,0), (00, 1)}, in this case we let

(8.6.51) 0< fl((gz,ﬁl) < o0.
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In each other case, our interest concerns the pole at w = ¢g (62, p1), whence for p; = (m1,1), for

P1 = (00,0) with 62 = 1 and for p; = (00, 0) with #; = 0 and ~pp > 1, we choose

®1(62,p1), if ¢o(62,p1) > 0,
min{07 gbl(e?vﬁl)}v if ¢0(02a7?1) < 0.

(8.6.52) bo(f2, P1) < fi(62,p1) <

For py = (00,0) with 62 = 0 and % < 00 < 1, we agree f1(0, (00,0)) > ¢0(0, (00,0)) and

min {vgo, $1(0, (00,0))}, if 2 <00 <1,
(8653) f1(0, (O0,0)) < { min {0,V00,¢1(0, (O0,0))}, if % <70 < %,
min {vgo + 5, 61(0, (50,0}, if 700 = 1.

Then, a rectangle of infinite height, with left and right edges respectively equal to Rw = fo(62, p1)
and Rw = f1(02,p1), encloses exactly the poles at w € {0, po(62,p1)} if ¢o(f2,p1) > 0 and either
of these two poles otherwise. Due to coalescences, they are up to second order. To compute the
associated residues, we refer to Theorem B.2.1(2). Assuming the described rectangle is traversed
in the negative direction, i.e., clockwisely, except in the case p; = (00, 0) with 6, = 0, according
to the residue theorem and (8.6.43), as m — oo we deduce:

- Oa Clv g, S
(8.6.54)  F(m;f2,p1) = —’CO[ 0.Co. T ] (g € (1.0, (0.1} T Ligo(@2.5) > 001}

['(¢o(62,p1)) .
Tt 1y 102 P L@ 5 20y

. 02, 0
- {(bg(m +1) +7)k-1(02,01) — ko [ j Sl] } Lg0(62,1) =0}

+0 {m*fl(%ﬁl)}

Finally, for the indicated special case, upon taking into account (8.5.30), (8.5.42), (8.5.43),
(8.5.45) and the identity (8.6.14), as m — oo we arrive at:

(8.6.55)  F(m;0,(00,0)) = —So [87 E;j ﬂ{ww%}

I"(v00) lcool® 40
A°(0;T5)1
{boo(m + 1)}V00 Boo ( 2) Doo=1y
N I'(v0) aoo |coo”

{boo(m + 1)} {By0}?
x {log(m + 1) — ¥ (v00) — 00(0; T2) } Lyg=13
T(v00 + X00)  @oo |cool?

{bOO(m + 1)}1100+X00 600

" I'(1 — 500)I" (2700 — 1)]1 ) ,
I (700) {woe (3 )\{3}}
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aoo |cool” {T (%)}21 )
Boo r(3) {700 = §}

- {log(m+ 1) +~-— 0%(T2)}

0, Ty
% [0, TJ 1{700=%}

Lo {m—ﬁ (o,<oo,o>>}

The order of the above remainder terms was concluded by absolute convergence of the corre-

sponding MB-integrals along the vertical line Rw = f1(02,p1).

8.6.5. A Single MB-Integral for the Residue at z = 7

The MB-integral (8.6.33) appears if & = 0. Its generating function Pyl...] was defined in
(8.4.49). This is an entire function of w, if p1 € {(71,0), (00, 1)}, whereas otherwise it is holo-

morphic in the half plane Rw < ¢o(p1), analogous to (8.4.23) with

. x10, if p1 = (71,1),
(8.6.56) C()(pl) =

Xoo, if p1 = (00,0).

Furthermore, refer to i (pi) as the parameter (8.4.101) with the quantities corresponding to P;
instead of those for Py. By comparison of (8.4.81) and (8.6.33), it is easy to confirm the identity

61 01
. —K . .
G[m’a,S} |:m’0',S:|
Appealing to (8.4.106) and (8.4.107), for 0 < g1(p1) < oo, if p1 € {(71,0), (00, 1)}, and otherwise

for

s1(ph), if so(p1) > 0,

min {0,<1(p1)}, if s(p1) <O,

(8.6.57) so(p1) < g1(p1) <

as m — oo we therefore conclude:

th 0, Gt
(8.6.58) G [m; - s] = —730[0 s} {1t € (7.0, (o)) T o) >0 }

I(s0(p1))

= T+ o T P L 20)

+{(log(m + 1) +y)7_1(p1) — m0(01;0,5)} Ly, (51) =0}
o) {m—m(ﬁl)}

The constants on the right hand side are those defined in (8.4.103), (8.4.104) and (8.4.105) with
the path P, replaced by P; and its associated quantities.
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8.6.6. A Single MB-Integral for the Residue at z =0 if 7790 = 0

The MB-integral (8.6.34) obviously occurs if and only if ngo = 0 and £, = 0 but pj # (c0,0). The
associated generating function (8.5.71) is therefore entire with respect to w, except if pj = (71, 1).

In this last case, with (; = iy, it takes on the form

—w, Zfl

(8.6.59) Vo [71, T,

Ty
] = [0 %) {pa(s5To) + s T s,

where the amplitude features the functions (8.5.63) and (8.5.64). By Lebesgue’s dominated
convergence theorem, their integral representations can be verified uniformly continuous with
respect to 7 < s < T, from which we conclude p;(s;T2) = O(1) as s | 71, for each j € {1,2}.
Hence, analyticity of (8.6.59) holds in the half plane ®w < x19. In order to specify the analytic
continuation, we aim for a reference to §8.2.2.1. For this, we must first justify the differentiability
of pj(s;Ty) for j € {1,2} under the sign of integration. We begin with the function for j = 2
which, by assumption, for any fixed ¢ > T5 possesses a once continuously differentiable integrand
on 11 < s <7Tj with

d [e(s+1)
ds s+t

%ﬁmmam+mﬁ

- {CIE;S: tt) N Eisjt;g } {Boo + 700 log {p(s + )} } + Y00

t(s+1t)¢'(s+1)
s+t p(s+t)

From (8.2.16) we recall, B’(u) is of order 3p1 > 1 as u — oo, if and only if

(8.6.60) :’;,((Z)) = _% L0 {u*ﬁm} )

Furthermore, from the condition on €(u) to be of order vy, > 1 at infinity, we conclude

~ —20F(u),  if y00 # 0,
=0 {U_701} , if v90 = 0.

(8.6.61) 7 (u)

Consequently, for fixed 7 < s < 77 and arbitrary small ¢ > 0, as t — oo we obtain, since

ago > 0, and because ngg = 0 and g9 + agg = 1 are equivalent:

o {c(s+t)

_ (S+t)aoo
« )ds s+t

{Boo + Y00 log (s + t)}} =0 { v (s + t)EQOO'YOOQ}

-0 {(Tl + )7 (11 + t)”’}

+00

The derivative on the left hand side is thus uniformly bounded with respect to 71 < s < T}
by a function, which is absolutely integrable along the ray ¢ > T>. A quick application of
Theorem 11.62 in [Ko6rner, 2004] therefore yields the differentiability of pa(s;T%) under the sign
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of integration. Again subject to Lebesgue’s theorem, this derivative is also uniformly continuous
on [r1,Ty]. Similar arguments apply for the function p;(s; Ty), where for B(s) and €(u), due to
(8.6.5), estimates analogous to (8.4.38) can be employed if vg9 # 0. If 7090 = 0, concerning ¢ (u)
a reference to the second assumption in (8.6.5) suffices. Altogether, we can therefore at once

apply our findings from §8.2.2.1 to the integral (8.6.59). Accordingly, upon identifying

d(s)
k(s +1)

c(s)e™ 1" {p1(s; T2) + spa(s; Ta)}
L,

it shows that the indicated integral can be continued meromorphically into the half plane
(8.6.62) Rw < x10 + X810 (711,0)-

There, we encounter merely a simple pole at w = x19, subject to (8.2.33), with residue

(8.6.63) Res

w=x10 [ il } = — 20 {19} 700 7T () (713 Ty) + apa(mis Ta) } -

71,11, 1> B1o

In the case x19 = 0, i.e., if 770 = —1, this pole lies at the origin of the w-plane. To specify the

first two terms in the associated Laurent expansion, we define

'UO[ h } i=C1(Th)e T {p1(T1; To) + Tipo(Ti; To) } log {o(T1)}

71, 11, T
Ty
(3.6.64) + [ BIOICHE S (o (s:T2) + spa(si T} ds
T1
Ty

B / log {p(s)} C}(s)e " {pu(s: o) + spa(s: To)} ds

T1
T

+i£1/10g {p(9)} Cr(s)e™™ " {pu(s: T2) + sp2(s; T2) } ds

T1
T

- /1og {0(s)} Cr(s)e™ % { i (5; Ta) + pa(s; To) + sph(s; o) } ds.

T1

Equation (8.2.35) then tells us that, in an annulus around w = 0, the integral transform (8.6.59)

exhibits the expansion

e T {p1 (113 Ta) + T1pa(115 o) }

1 &1
* B1o o [

y0|: —w, Z§1 :| _ _lcﬁ

Ty, T+
(8.6.65) 71,11, T w Bio
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Finally, since the generating function (8.5.71), or the corresponding analytic continuation, for
p1 € {(11,0), (71,1), (00,1)} is O(1) as Sw — £o0, uniformly with respect to Rw in any closed
vertical substrip of its region of validity, a rightward movement of the integration path in the
MB-integral (8.6.34) is admissible. Choosing fw = y;(p1), with

0< yl(ﬁl) < oo, if ﬁl S {(T170)7 (OO) 1)})
(8.6.66) X10 + X0 (711, 0), if x10 > 0,

X10 < y1(71,1) < . .
min {0, x10 + X8,,(711,0)}, if x10 <O,

by incorporating (8.6.63) and (8.6.65), as m — oo this leads to:

. 0,¢
(8.6.67)  Y(m;p1) = [07 S,lTJ L5, € {(m,0), (00,1)} V x10 > 0}

I'(x10) €10 _ieyr
Bl = DT ¢ T2 #0207} )

— (log(m + 1) + w%wfw {p1 (71 To) + 712 (71 T) } Lo — o)
1 3

- %UO [7'1, 11, T2:| Loao=0)

+0 {m—yl(ﬁl)}

The order of the big-O was again obtained by absolute convergence of the remainder integral.

8.6.7. Evaluation of the Iterated MB-Integral

With the findings we obtained so far, we can now reveal the m-asymptotic behaviour of the
expansion (8.6.35) which, in view of (8.6.18), will eventually characterize the asymptotics of
(8.6.1). Particularly for §; = d2 = 0, the last identity brings us

. i&1,0,8 . i€1,0,8
.6. A . = :
(8.6.68) i [m, 0.7, } Ai [m, 0.7 ] ,

since, by definition, in case of an infinite path P;, from J; = 0 we may conclude £; = 0.

8.6.7.1. A Finite Path P; and & =0

We commence with the scenario Py = (71,71] with 2 = 0, which widely resembles §8.4.8.2.
To specify the order of each remainder in the above expansions, from (8.6.30) we ascertain the
existence of a parameter 9 > 0 with z1(0) = ngo+£2. Moreover, by (8.6.19) we can find a second
parameter 0 < g1 < &2, for which ug(0, (71,0)) = —e1 and up(0, (71,1)) = min{0, x10} — €1,
respectively. Defining € := €9 — £1, we observe € > 0. A suitable choice of 1,2 and of the
parameters f1(0, (71,1)), g1(71,1) and y1 (71, 1) then enables us to write f1(0, (71,1)) = g1(71,1) =
y1(71,1) = x10+e. If B1o =0, i.e., if §; = 0, by definition, the last three parameters are supposed

to be arbitrary positive numbers, thereby verifying an exponential order of the remainder terms
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n (8.6.54), (8.6.58) and (8.6.67). An application of these expansions to (8.6.35) finally gives rise

to two theorems.

Theorem 8.6.1. For ngy # 0, assume validity of (A3), (A4), (A6) and (A8). Then, provided

at least one term on the right hand side is non-zero, for any & € R as m — oo,

(1) if noo > 0, with either $19 =0 or x10 > 0, we have

i &1, 11, T1 0,41, 71,11
Al |m ~K
{m’ 0, Ty ] 0[(LQB ]

I'(x10)
{blo(m+ 1)}X10
_ I'(100) aooCooP [0, z’fl]]l
{boo(m + 1)} Boo N7 {B10=0Vmn00 <x10}

Cl0 _
e ZflTlR(Tl;O,TQ)B{Xl()SnOO}

The coefficients were defined in (8.4.49) and (8.6.40).

(2) if noo > 0 and x10 < 0, we have

. 161, 71, 11 I'(x10) clo _
Al fmg 0|~ MR (7150, Ty)1
1[ ) 0, Ts } {blo(m+1)}X10 5106 (Tla ) 2) {x10 <0}
+ (log(m + 1) +7) ﬁ“; eTEINR(71;0, T2) Ly, —0)
0,1
+ Ko [7_17 :|]1{X10—0}'

For the coefficients we refer to (8.6.40) and (8.6.45).

(8) if noo < 0, with either $19 = 0 or x10 > 0, we have

. i1, 11, T I'(n00) @00Coo [0, &1 ]
A : ~ — P .
: {m 0,7 ] {boo(m +1)}™  Boy |7, T
The coefficient Py|...| was specified in (8.4.49).
(4) if noo < 0 and x10 < 0, we have
. &1, 11, Th I'(n00)I"(x10) €10G00C00
A . lflﬁ]l
! [m’ 0, T» } {bro(m + 1) }X*° {bgo(m + 1)}™  B10800 ‘ a0 <0
I"(n00) 1000000 _
— log(m + 1) + ey,
{boo(m + 1)}7700( B ) ) BB B10800 Do =0}
I"(100) @ooCoo

~ {boo(m + 1)}™° 510500%(1;Tl’Tl)]l{Xm:O}'

The right hand side features the coefficient (8.4.104).

Theorem 8.6.2. For nyy = 0, assume validity of (A3), (A4), (A6), (A8) and (A9). Then,

provided at least one term on the right hand side is non-zero, for any & € R as m — oo,
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(1) if Bro =0 or x10 > 0, we have

. i1, 71, Tl] @00C00 [0, &1 ] 1 [ 0, & ]
Ai |m; ~ (log(m+1) + P + —— )
{ 0, T (log( ) +7) Boo T, Th Boo” 71, Th, T

where Py[...] and Yo[...] were defined in (8.4.49) and (8.5.71).
(2) if x10 =0, we have

2 C10G00C00 o—i6im
B10800
ap0Coo

B10boo
c —&1T

+ (log(m + 1) + V)Bie ST L1 (113 To) + Tip2(; To) }
00510

Aj { 161, 1, T

m; 0.7, ] ~ (log(m+1) +7)

+ (log(m + 1) + ) mo(1; 71, T1)

n 1 v [ &1 }
BooBro © 71, T, To)
The coefficients were specified in (8.4.104), (8.5.63), (8.5.64) and (8.6.64).
(8) if x10 < 0, we have

) ifl,Tl,Tl] I'(x10) €10a00C00 _;
Ai |m; ~ —(log(m+1) + e~
[ 0.7, (og(m 4 1) ) G + U7 Brofoo

I'(x10) €10 _itym
N s T T,
{blo(m —+ 1)}X10 600/8106 {P1(7'1, 2) + 7’1p2(7'1, 2)} ,

again with (8.5.63) and (8.5.64).

8.6.7.2. Two Infinite Paths with & = & =0 and ag = Y00 # 3

In this paragraph we complete our treatment of integrals of the type (8.5.1) with non-oscillatory
amplitudes, which encompasses the case agg = Yoo # % By comparison of (8.5.1) with (8.6.1),

it is easy to see that

. 0,77, 00 . T
Ai [m; 0.7, ] =Ai {m; TJ.
Now, analogous to the preceding paragraph, due to (8.6.19) and (8.6.30), there exist g5 >
g1 > 0 such that up(0,(c0,0)) = min{0, xo0} — €1 and zo(0) = voo + €2. Without loss of
generality we assume €1, 9 small enough and appropriately chosen f1(0,(c0,0)) and g;1(c0,0)
with f1(0, (c0,0)) = v9o + min {0, xp0} + € and g1 (00, 0) = x00 + €, again for € := g9 — 1. From
(8.6.35), (8.6.55) and (8.6.58), according to (8.6.68), as m — oo we then obtain:

. _Tl - 07 Tl
Al |:m7 T2:| - SU|:0, T2:|]l{"/00>§}

B I'(v00) |Coo\2Ao
{boo(m + 1)} Boo

(0; TQ)]]'{’VOO >1}
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B I'(v00) @00 |cool?
{boo(m + 1)} {Byg}?
~ T(wo+x00) @0 leool” T(1 = 500)T (2700 — 1)
{boo(m + 1)} X% Bog T (00) {roe (M3
oo |cool” {T (%)}21
Boo I (3) {700:%}

{log(m + 1) — 9 (vo0) — 00(0; T2) } L0 =13

+ {log(m+ 1)+~ —Cf%(T2)}

0,T:
2 [0, T2:| 1{700: %}

B F(V()Q) EOOEOD,P I: 0, 0
{boo(m + 1)}VOO 500 T1, o0
I"(00)T"(x00) @00Co0

~ {boo(m + 1)} (m 4+ 1)x00 By
n I"(v00)
{boo(m + 1
B I"(v00) [N

{boo(m + 1)} Boo
+0 {mfuoofmin{[),xoo}fe}

:| 1{X00 >0}

7-1(00, 0) Ly 20}

apoCoo

Boo

7T0(0; Tl, OO)B{XOOZO}

G (log(m +1) 4 7) T-1(00, 0)L 509 = 0}

A careful inspection of this expansion for different values of the parameter oo gives rise to the
next theorem, which also incorporates the definitions (8.4.103) and (8.4.105).

Theorem 8.6.3. For agy = Yoo # 3, assume validity of (A3), (A4) and (A6). Then, provided

at least one term on the right hand side is non-zero, as m — 0o,

(1) if yo0 > 1, i.e., if voo > xo00 > 0, we have
. Ty 0,71

A : ~ S8
1 [m7 TQ] 0|:07 TQ]

3 I'(v00) \COOIQAO
{boo(m + 1)} Boo

(0; T2) L ng0 > 1)

B L(v0)  @ooCoo 0,0 14
{boo(m + 1)} Boo Ty, 00 {700 >1}
T'(y @00 |cool?
- {b()()(?’ri _ﬁoi)}yoo {log(m + 1) - 1/’(’/00) - 0-0(0; TQ)} ({)0/8’0}02‘ {’ygo:l}
00
F(Voo) ano ‘COO|2
- oo O8N v 2 H{ro=1}
Toolm + Ny (B TN FVZE A
I'(v00) Qoo Coo
— 0;7T 1 —_11.
{boo(m + 1)} {500}27T0( 1100000 =)

The coefficients were defined in (8.4.49), (8.4.105), (8.5.29) and (8.5.44).

(2) if% <0 < 1, i.e., if vgo > 0 > x00, we have

) Ty 0,17
A : ~ 1
1 [m’ Tz] 80[07 T2] {r00>3}
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_ T(wo+x00)  @ooleool” T(L = 700)T (2700 — 1) 1 ,
{boo(m + 1)}V00+X00 500 T ("}/00) {'yoo #* g}
_ 2
oo |eool” {1 (5)} ,
Boo r (%) {700 =3

+ {log(m—i— 1)+~ — U%(T2)}

0, Ty
+El[07 Tz}n{ng}

I'(v00)T'(x00) @00 \Coo|2'
{boo(m + 1) 70000 15,4}

For the coefficients we refer to (8.5.36) and (8.5.46).

(8) if 0 <00 < %, i.e., if xoo < Voo < 0, we have

T I(v0)T a 2
Ai [m 1] - (00)I"(x00) @00 |coo]

e {boo(m + 1)}re0Tx00 150517

8.6.7.3. An Oscillatory Amplitude

We will now examine the effect of an oscillatory amplitude on the m-asymptotic behaviour of
(8.6.1). Owing to the odd structure of this integral, a distinction between two cases is required.
In each case we proceed with the expansion (8.6.35), which holds for fixed 41,92 > 0. By
arguments analogous to the proof of Theorem 8.4.4, one can then justify the existence of the

termwise limits as d1, 2 | 0 and especially of the limit of each remainder integral.

Theorem 8.6.4. Assume validity of (A3) to (A6). Then, provided at least one term on the
right hand side is non-zero, for an arbitrary p > 0, as m — oo, uniformly with respect to

&1] > p, we have

i€, T, 00 : 0,1 +i&1, Ty, 00
Al [m; 0, T3 ] - %iri%lco{ 0,0, T, Lingo >0}
_ I"(100) apoCoo im P [0, o+ i&y
{boo(m +1)}"° Boo 6110 Ty, 00
@O0 . 0,01 +1i&
+ (log(m +1) + lim P,
(log )+ Boo 6140 0[ Ty, 00
0,01 + &1
Tla o, T2 {7700:0}.

] ]l{Tloo #0}

} ]1{7700 =0}

1
+ — lim Y
Boo 5140 "

The coefficients have been defined in (8.4.49) and (8.5.71).

Proof. Since both paths of (8.6.1) are infinite with & = 0 and & € R\ {0}, we conclude 03 = 0
and 0; = 1. In view of the identity (8.6.18), it suffices to show the termwise existence of each
limit as d; | 0 in the expansion (8.6.35), uniformly with respect to |{1] > p. The non-zero terms
appearing therein depend on the parameter 7yy only, whereas the remainder is O {m~"0"¢} for
fixed 61 > 0 and an appropriate € > 0. Moreover, with p; = (00, 1), in each of the expansions
(8.6.54), (8.6.58) and (8.6.67) only the first and the remainder term differs from zero. For
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brevity, we confine to a discussion of the expansion which occurs only if ngg > 0. With 8 = 0

and p; = (00, 1), it is of the form

07 Cl? T17 o0
F(m;0 1) =-K
(mi0. (00,1 =~k " 61 1 ]
1 — —w, Cl? T17 o0
— 1H)7T(w)K d
T om / (m + 1) (w) 0[ 0,0, T, ] 0
U1 —100
where u; = f1(0, (00, 1)) is an arbitrary positive number, by (8.6.51), and the generating function
equals (8.6.11) with z =0, i.e.,
T o0 o0
(8.6.70) K| 78 S T oo / a) / {o(s)} ™" e 5c(s)e(s + t)dsdt.
0,0, T
T
For ngp > 0, the above representation of Kyl...] with Rw = wu; converges absolutely for fixed

61 > 0. We will now show that it approaches a finite limit as ¢; | 0, uniformly with respect to
|€1] > p. Moreover, we will explain the existence of a uniform bound, such that the remainder
in (8.6.69) converges absolutely and uniformly with respect to §; > 0 and |£1]| > p. For this, in
terms of (6.6.9), with k& € Ny we define

k
(8.6.71) Ti(u, 2) =) <k,>Pj(u 2)eF ) (),
which satisfies Ty(u, z) = ¢(u) and

dlc
T {H{ow)} ?ew)} = {p(u)} 7 Te(u, 2).

Then, by virtue of (8.4.28), for t > 0, k € Ny and n; € N, according to the Leibniz rule, we

compute:
dsm {{so c(s) {p(s + 1)} " Th(s +1t,2)}
e ni d dm— —k1
= Z (k1> e {{o(s+t)} " Ti(s +t,2) } T {{e(s)} " e(s)}
k1=0
= {90(5)}_w {(P(S + t)}_z Z Tk+k1 (8 + t? Z)Skl,ru (Sa w)
k1=0

The sum on the right hand side constitutes a polynomial of the variables w and z with degree
ni. The coefficients are functions of the variables s +¢ and s, which are continuous on [T, c0) X

[T, 00). Furthermore, for any k € Ny, 0 < k; < nj and w, z € C, as s — oo with fixed ¢ > 0 or
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as t — oo with fixed s > 0, we observe the asymptotic behaviour

{ ()}_w{ ( —l—t)}_zT ( 4t )S ( >—O gBooRw—y00+k1—n1
p(s o(s ke (5 £.2) St (5, 0) = O (i oams

Hence, for sufficiently large ny and fixed ¢ > 0, the ni-th derivative is absolutely integrable on
s > T1, and in addition with 79 > 0, the product

dm
ds™

a(t)-—- {{w(s)} " e(s)e(s + 1)}

is absolutely integrable on [T7,00) X [T,00). Accordingly, repeated integration by parts of
the interior integral in (8.6.70) leads to an expansion that approaches a finite limit as d; | 0,
uniformly with respect to |{1| > p. By means of the triangle inequality, one can verify the
uniform boundedness with respect to §; > 0 and [£1] > p by a polynomial of |w|. Consequently,
the remainder in (8.6.69) is O {m™"1} as m — oo, and this statement remains true as d; } 0,
uniformly with respect to [£1| > p. Analogous arguments apply for the expansions (8.6.58) and
(8.6.67) and for the remainder term in the expansion (8.6.35). n

In the case & € R\ {0}, i.e., 0 = 1, it is easy to see, that merely the first and the remainder
term in the expansion (8.6.35) do not vanish, of which the last is exponentially small. The
dominating terms as m — oo are therefore produced by the expansion (8.6.54). By virtue of the
arguments from the proof of the preceding theorem, analogous to Theorem 8.4.4, it is therefore

possible to verify our concluding statements below.

Theorem 8.6.5. Assume validity of (A3) to (A8). Then, provided at least one term on the

right hand side is non-zero, for an arbitrary p > 0, as m — oo,
(1) uniformly with respect to |&2| > p and & € R, we have

Ai |:m i£17717T1:| ~ lim |: O,ifl,Tl,Tl :|]l B
Cige, Ty | 0210”0, 8y 4 i€y, Ty |00V a0 =00
Tl o ign
{bro(m + 1)} Bio

c —1€171 13 .
+ (log(m + 1) + 7)%6 &1 (15;11(1)7%(7-1; b2 + &2, To) Ly 0 =03

lim R(Tl; 92 + &2, TQ)]l{xlo #0}
6210

+ i 11 1
i B L
The coefficients can be found in (8.6.40) and (8.6.45).

(2) uniformly with respect to |€2| > p, we have

. 0,71, 00 . 0,0, T}, 00
Abm: ~ lim K . 1y,
1 |:m 182, T :| (érf(l] 0 |:0’ 5y + &y, T2:| {vo0 >0}

I'(v00) lcool” . 10 ,
- | 0 - TH)1
{boo(m + 1)} Boo b A0 + 362 To) g 203
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lcool® .. o .
log(m + 1 19000 4im A%(s o)y,
+ (log(m + 1) + ) Boo 6;¢0 (02 +i&2; T2) L (= 0

+ i 1,0 1
m — .
5200 0| Ty, 00 | (00 =0}

The right hand side features (8.5.29) and (8.6.46).
(8) uniformly with respect to |&1],|&2] > p, we have

. [ i§1,T1>OO} . [0,51+i§17T1700
Ai|lm; ™, ~ 1 ] .
7’527 T2 61,6210 07 52 + 152) TQ

8.7. Two Finite Paths in an Asymmetric-Type Iterated Integral

We are finally concerned with scenarios in which both integration paths of the iterated integral
(8.0.2) are finite, in particular P; = (7;,T;] with 0 < 7; < Tj < oo for each j € {1,2}. The

integral is then assumed to take on the form

Ts T

Al [m Tl} _ / a(t) / o(s) {1 — (1 - ()™}

(8.7.1) ' 72, T

T2 T1

x {1—-(1—¥(s+ t))m+1}6(s + t)dsdt,

where the overline indicates the complex conjugate and, with ¢ as per definition (8.1.5), we

suppose:

(A10) ¢ and ¢ are continuous on any closed subset of (71 + 12, T} 4+ T»] and of (71, 71| with ¢ > 0.

Moreover, a is continuous on |72, T5].

(A11) ¢(u), c(u) and a(v) are algebraic as u | 71, as u | 71 + 72 and as v | 75 for parameters

510>50(172) > O>
’710770(1>2) S Ra
agy > 0

and coefficients byg, bo(1,2) > 0 and c19,¢o(1,2),a20 € C\ {0}. Especially

Y10 + Bio > —1,
Y(1,2) + 5o(1,2) > —1.

(8.7.2)

(A12) If B1p > 0 or Bp(1,2) > 0, the normalized phases Bi(s) and Bj2(u) as well as the nor-
malized amplitudes C1(s) and Cj 2(u) possess a first derivative, which is continuous with
respect to 71 < s < Ty and 71+72 < u < T1+7% and of order 11,711, £1(1,2),71(1,2) > —1
as s | 7 and as u | 71 + 72. See also definitions (8.2.5), (8.2.6), (8.2.18) and (8.2.19).
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(A13) If 5yp(1,2) > 0, the normalized amplitude As(t) has a continuous first derivative on (72, T5]

with order ag; > —1 as t | m.

Again we do not point out each situation in which some coefficients in the Laurent expansions
below may equal zero. For the sake of clarity, if 519 > 0, frequent use will be made of the

parameter y10, which was defined in (8.3.5), and we also write

(8.7.3)

1,2
K10 *= X10 + <10 + Lw)

Besides, if §y(1,2) > 0, we denote

xo(1,2) == gH

(8.7.4) w(1,2) = é(j(go),

ko(1,2) = xo(1,2) +s0(1,2) + 22

and we also introduce the parameter

B
(8.7.5) b=

Then, x10, x0(1,2) > —1, ¢10,5(1,2) > 0 and especially
H0(1,2) >—-1—k.
In the described setup, preliminary to a transformation of (8.7.1) to an iterated MB-integral,
we specify the convergence behaviour of the iterated generating function
T T

(8.7.6) so{_w’ Tl’Tl} - / a(t) / {0(s)} ™" e(s) {p(s + 1)} > e(s + t)dsdt.

—Zz, T2, T2
T2

Since agp > 0, this integral converges absolutely, by Lemma 8.2.1, for all w, z € C with

70 — BroPw > —1,
a0 + 710 — BroRw +0(1,2) — Bo(1,2)Rz > —2.

(8.7.7)

The z-region of analyticity certainly depends on w, if 819 > 0, which then enables us to choose
the location of its right boundary. It thus appears beneficial, to begin with a consideration of
(8.7.6) as a function of the variable z for fixed w. Now, on the one hand, if 8y(1,2) = 0, this

constitutes an entire function of z. On the other hand, if 5y(1,2) > 0, we rearrange (8.7.7), to
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obtain

Y10 + 1> BroRw,
Rz < ko(1,2) — kRw,

(8.7.8)

and the integral (8.7.6) is especially holomorphic in this z-half plane for fixed w.

8.7.1. Transformation to an Iterated MB-Integral

According to Lemma 8.2.1, under the above assumptions absolute convergence of the integral
(8.7.1) holds for any m > 0. In view of our aim to start with a study of (8.7.6) as a function of

z for fixed w, for a constant

-1 <wug <0, if =0,
(8.7.9) ° Pro
—1 <up <min{0,x10}, if B1p >0,

we first introduce the Cahen-Mellin representation (8.1.6) for the m-power of the variable s,
which leads to

Mgl T o —w £ —w
(8.7.10) l[m’m,n]‘zmw /m<m+1> I(w) / a(t) / {p(s)}

xc(s){1—(1-U(s+ t))m‘H} ¢(s + t)dsdtdw.

If, in addition, we introduce the Cahen-Mellin representation for the m-power with the argument

s +t, in terms of (8.7.6), we arrive at the iterated MB-integral

ug-+100
. 71, T1 1 —w
Al [m; T2,T2] ~ (2mi)? / (m+ 17T w)
U9 —100
(8.7.11) i §
— —Ww, T, 41
1)7°T dzd
X / (m+1) (2)80[_2’7_2’112} zdw,
To—100

whose integration path Rz = xg, by (8.1.6) and by Lemma 8.2.1, must satisfy

-1 <29 <0, if 5p(1,2) =0,
—1 < zp < min{0, ko(1,2) — kuo}, if Bo(1,2) > 0.

(8.7.12)

Notice that such integration paths always exist. For [y(1,2) > 0 we will now compute the

z-analytic continuation of Syl...] into a region which contains the line Rz = ko(1,2) — kRw.
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8.7.2. z-Analytic Continuation of the Iterated Generating Function

Since the z-abscissa of convergence of (8.7.6) is due to the supplementary condition for the
convergence of this iterated integral, its z-analytic continuation can not be obtained by simply
integrating by parts. However, for fixed w € C with ;0 +1 > S1pRw as a function of z, it is
readily confirmed that (8.7.6) satisfies the conditions of §8.2.6.5. There we have shown that,
upon identifying Sy = So(1,2) and

S
—~
»
SN—
Il
~=
jS)
—~~
»
S~—
M

€
o)

—~
»

S~—

(8.7.13) e(t) = a(t),

which implies x1 = xo0(1,2) —kw and x2 = (1, 2), for w # 0, according to (8.2.221), the integral
(8.7.6) can be extended to a meromorphic function in the strip

Rz > xo(1,2) + 253 — kRw,

(8.7.14) Rz < ko(1,2) — kRw
+X8o(1,2) (B1(1,2), B11, 711, @21,7%(1, 2), 0).

Note that, due to the dependence on w of the function d(s) from (8.7.13), the z-analytic con-
tinuation for w = 0 may have a different region of validity. Yet, it suffices to assume w # 0. To

specify the corresponding z-analytic continuation, we first define the integral function

(8.7.15) 0 [Z, kzw} = (T — 7_2)ﬂo(1,2)(&0(1,2)—kw—z)6231,2(T1+T2)Z2(T2)61,2(7—1 + 1)
T1, T2

1>
B z/(t — 7y)Po(12)(ko(12)—kw—2) 2B1 s (ra 1)

T2

X By o(m1 + ) Ag(t)Cr (1 + t)dt
T>
_ /(t _ ) Po(12) (ko (1:2)—ku—2) B s (ra+)

T2

X {Z;(t)a,Q(Tl +1) + Ao()T) 511 + t)} dt.
It converges absolutely and is holomorphic for z € C with

Rz < ko(1,2) — kRw + xpy(1,2)(B1(1,2), 1,71 (1, 2)).
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Furthermore, following from the fundamental theorem of calculus, for arbitrary values of the

parameter xo(1,2) and w € C with y19 + 1 > BioRw, it satisfies

ko(1,2) — kw, kw
T1, T2

(8716) Q |: — 62060(1, 2) {bo(l, 2)}](311)—/{0(1,2) )

Moreover, we introduce the expansion

wle; o o _ (- 7)o (2 xo1,2) k)¢ BT 0y (7))
’ 2, TQ;TQ <_60(172)<X0(172) _kw)
Ts
(8.7.17) « /(t _ 7-2)50(172)(§o(172)—2’)+C+’70(1,2)—122(t)6231,2(T1+t)61 o(T1 +t)dt
T2
. 1
¢ = Bo(1, 2)(X0(1 2) — kw)
< 3 / )P0 =2)+CH0(L2 =17, (p)
n1,n2€{0, 1}7_2
ni+ns=1
T -
Bo(1,2)(x0(1,2)—kw)—¢C = ) ;wBi(s)
. /(8 ™) ds™ {e Cl(s)}
T1
dn zB1 2(s+t)
x {e 12T 5(s + t)} dsdt.
Finally, with the aid of the last definition, we write
T 1 OB (1,2 — %(1L,2) = ) T
71 22 —w, T1, 41 — oll, 2)z =701, — .'lU,Tl, 1
(87.18) 1[—2’, T, Th 2mi T'(Bo(1,2)z — v0(1,2)) e 2,72, Ty dc,
q—1ioo

in which the integration path satisfies

q > maX{ﬁO(la 2)(§RZ - §0(172)) - /70(1’ 2)7ﬁ0(172)(>(0(172) - kéRw)})

(8.7.19)
q < min {So(1,2)(x0(1,2) — kRw + xgy(1,2)(B11,711,0)), Bo(1,2)Rz — 70(1,2) } .

Then, according to (8.2.216), for fixed w € C with 19 + 1 > SB1oRw, in the strip (8.7.14) the

z-analytic continuation of the generating function (8.7.6) is represented by the expansion

S [—w, 1, Tl] _ T'(Bo(1,2)(x0(1,2) — kw))
—z, 79, Ty Bo(1,2) {b1o}* T'(Bo(1,2)z — 70(1,2))
T'(Bo(1,2)(z + kw — x0(1,2)) —y0(1, 2))Q [z, kw} L2 [—w, T, Tl] '

8.7.20
( ) Z—Ko(l,Q)—i—k"w T, T2 —2, T, Th

In §8.2.6.5 it was mentioned, that the analytic continuation is O(22) as Sz — oo, uniformly
with respect to Rz in any closed vertical substrip of (8.7.14). It was also pointed out that the

extended region contains exactly one pole. In the above case, it depends on the fixed variable
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w and its order is never greater than one. Assuming kw # ro(1,2), the pole does not lie at the
origin, and by virtue of (8.7.16) from (8.7.20) we deduce

—w, 71, Tl

Res So [
)—k

aaoc10co(1,2)
z=ro(1,2 2)

—Z, T2, T2:| N 50(1, 2) {blo}w {bo(l, }50(1,2)71411;
(1 + az)'(1 + y10 — Brow)
(24 v10 + az — Srow)

(8.7.21)

We conclude this paragraph with a special case, in which this pole inevitably lies at the origin
of the z-plane for any admissible value of w.
8.7.2.1. Laurent Expansion for 319 = 0 with x((1,2) =0

The case 519 = 0 implies k = 0. Hence, ro(1,2) — kw = 0 and for fixed w, as z — 0 there exists

a Laurent expansion of the form

2
—w, 71, T 821 9

S = — O
0|:—Z’ 7‘2,T2:| 2 +So+ (Z),

with coefficients s2 ; and s3. From (8.7.21) we immediately deduce

o agoc10co(1,2) T(1+ ag)l(1+ v10)
(8.7.22) 2, = 2 .
Bo(1,2) {b1o}" T(2+ v10 + 20)

Furthermore, according to the elementary rules of complex calculus, we know

d —w, 1, Ty
7.2 2= — Y
(8.7.23) o dZZSO [ . TJ

By Theorem A.2.1, arbitrary derivatives of (8.7.15) may be computed by differentiation under

the integral sign. Taking into account

t — 75)P0(1,2)
By a(m1 +t) =log {(TQ)} ,

p(r1 +t)
valid by definition (8.2.18), we thus obtain:

d z,0
8.7.24 ; T5) :=—0 ’
( ) wl(ﬁ,TQ, 2) dz [71’7_2]

2=0
= —log{p(11 + T2)} A2(T2)C12(11 + 1)
T>
~ [ Biatn + 0a(0)Cra(n + )t

T2
Ts

+ / log {io(r1 + )} { Ap(H)Cra(my + ) + A ()T oy +1) } dt

T2
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If, for brevity, we introduce the constant

wi (71372, T2)

(8.7.25) 0 (71572, T2) = Bo(1,2) {o(1 + az0) — (—0(1,2))} + —— :
a2060(1,2)

by routine calculations, it can be shown that

@20C0(1,2)08 (11572, Ta).

(Bo(1,2)(= +s0(1,2)) [ %0 ~ T(1+ ag)
= LT o)

72)2_70(172)) T1, T2 B F(_'YO(LQ))
Therefore,
9 a20¢100(1,2) T'(1 + ag0)T(1 4+ v10) o 9 [—w, 1, Tl]
S§ = — oj(m1;m,T5) + X
0 Bo(1,2) {bio}" T(24 a2 + 710) o(mim, Tz) 0,7, T

and accordingly the dominating terms in the Laurent expansion at z = 0 are

. T — 4+ oy(11; 70,1
(8.7.26) 0[_2’ 727T2] Bo(1,2) {b10}” T(2+az+710) |2 o (71572, T2)
- —w, T1 T1
22 ) 5 O .
" ! |: 07 T2, TQ :| + (Z)

8.7.3. Evaluation of the Interior MB-Integral

We proceed with the evaluation of the interior of the iterated MB-integral (8.7.11), for fixed
w € C with Rw = ug, denoted by

xo+i00
1 _ —'UJ,Tl,Tl
7.2 H(m; = — 1)~ dz.
(8.7.27) miw) =5 [ mer) (z)so[_z,m Tz] :
To—100

It is easy to see from (8.7.12), that the right boundary of the region of admissible values for
xg, except in the case fy(1,2) = 0, depends on the parameter xo(1,2), on the factor k, and if
k > 0, i.e., if B19 > 0, also on the location of the integration path of the exterior MB-integral.
Appealing to the relation

(8728) kﬁlo - H0(172)7

compare (8.7.3) and (8.7.4), it is thus reasonable instead of (8.7.9) to agree

—1<up <0, if f10 =0,
(8.7.29) max{—l, /4310} < ug < min {0, XIO}; if 810 > 0 A K190 < min {O,Xlo},
—1 < ug < min {O,Xlo}, if BIO > 0 A K19 > min {O,Xlo} .
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As a consequence, the inequalities (8.7.12) become

—1 < zp < Kko(1,2), if 5p(1,2) > 0 A P10 =0A Ko(1,2) <0,
(8.7.30) —1l<axy< /i()(l, 2) — kug, if ,30(1, 2),610 > 0 A K1p < min {O,Xlo},
-1 <29 <0, otherwise.

Observe that the first two conditions on the parameters in (8.7.30) apply if and only if
50(1,2) < kug.

Now, it was mentioned that the generating function (8.7.6) of H(m;w) is entire with respect
to z for fixed w € C with Rw = wy, if So(1,2) = 0. Furthermore, if fy(1,2) > 0, according
to Subsection 8.7.2, by virtue of the expansion (8.7.20) it can be extended to a meromorphic

function in the half plane

(8731) §RZ < 50(17 2) - kU() + Xﬁo(1,2)(ﬁ1(17 2)7/8117’7117 0421770(17 2)7 0)

This expansion was seen to hold in the strip (8.7.14), where the only singularity is a pole of
simple order at z = ko(1,2) — kw. Hence, in the first two cases in (8.7.30), the singularity that
lies closest to the right of the integration path of H(m;w) is exactly this pole. The simple pole
of I'(z) at z = 0 then lies to its right. In the third case, there are two possibilities. On the one
hand, the closest singularity may be the simple pole of the indicated gamma function, whereas
the generating function is entire or has its pole to the right of z = 0. On the other hand, and
this happens if and only if fy(1,2) > 0 and B19 = ko(1,2) = 0, these two poles will merge,
thereby incuring a second order pole.

To expose the asymptotic behaviour as m — oo of H(m;w), we perform a rightward dis-
placement of the integration path across the closest singularity. This step is clearly permitted,
since the generating function (8.7.6) and its analytic continuation in their respective regions
of analyticity are O(1) and O(2?) as Sz — o0, uniformly with respect to Rz in any closed
vertical substrip. The integrand in (8.7.27) therefore vanishes exponentially fast towards the
imaginary direction of the z-plane if 8y(1,2) = 0, or of the half plane (8.7.31) if 5y(1,2) > 0. If
Bo(1,2) = 0, we move the integration path across the pole at z = 0, to match a line Rz = x1,

for
(8.7.32) x1 > 0.

If 5p(1,2) > 0 and ko(1,2) > kug, we make a displacement across the points z € {0, ko(1,2) — kw},
where in the case of equality this set actually contains only a single point, to obtain the sum of

residues plus an integral along the line Rz = x1, for

(8.7.33) ko(1,2) — kug < z1 < Ko(1,2) — kuo + Xgy(1,2)(B1(1,2), B11,711, @21, 70(1, 2), 0).
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Finally, if 5p(1,2) > 0 and ko(1,2) < kug, the line Rz = x; is supposed to satisfy

x1 > ko(l,2) — kuyg,

(8.7.34)
1 < min {07 50(17 2) - kUO + Xﬁo(l,Z)(ﬁl(la 2)761177117 a21770(17 2)7 0)} )

and we then solely collect the residue of the pole at z = ko(1,2) — kw. Incorporating the fact
that each pole is encircled clockwisely, with the aid of Theorem B.2.1(2), according to (8.7.21)

and (8.7.26), we arrive at:

—w, 71, Tl
(8.7.35) H(m; w) = —So[ 0. 7, Ty }11{50(1,2)0\/50(1,2)%%}
F(Ko(l, 2) — kw) 62061050(1, 2)

{bo(1,2)(m + 1)} =kw Bo(1,2) {b1o}"
y I'(1 + a0)'(1 4 y10 — Prow)
['(2 + y10 + 20 — Brow)
G20c10C0(1, 2)
Bo(1,2) {b1o}"
I'(1 4 a20)I'(1 4 710)
I'(2 + a20 + 710)

Lio(1,2) # kuo}

— (log(m + 1) + v — 0 (11; 72, T2))

{B10=1ro(1,2) =0}

2 _w77—17T1
T gy | HA=R2)=0}

x1+i00
1
s | (m+1)_zr(2)50[
271

xr1—100

—w, T1, Tl
dz
—Z, T2, T2

Based on the above generating functions, we introduce the single MB-integrals

ug+1i00
- L —w —w, 71, Tl
(8.7.36) F(m) := oy / (m+1) I’(w)SO[ 0. 7. T }dw,
ug—100
ug+100
Gm: Bro) = I'(1+ a20) / T(w)T'(ko(1,2) — kw)T(1 4+ y10 — Brow)
(8.7.37) ’ 2mi 4 ['(2 + 10 + a20 — Brow)
U9 —100
x {bo(1,2)(m + 1)) £y 0 (m 4+ 1)} duw,
1 ug+1i00
(8.7.38) Zi(m) := o / {bio(m+ 1)} T'(w)dw,
Ug—100
ug+100 T
. VA i — 1 —’LUI‘ 22 —w, 71,41 )
(8.7.39) 2(m) 2mi (m+ )7 (w) 1[ 0, 72, To e

ug—100

It is not as trivial as in the case (y(1,2) = 0 but still not difficult in the case £y(1,2) > 0,
from (8.7.20) to derive with respect to Sw and Iz a bound for Syl. . .], which holds for fixed Rw

and Rz. Then, upon plugging the expansion (8.7.35) into the iterated MB-integral (8.7.11), as
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m — oo it shows that

_717T1:|
b
T2, T

(8.7.40)  Ai [m = —F(m)1g,(1,2) =0V ro(1,2) > kuo}

azoc10c0(1,2)
a20€10€0\15 ) ' "
60(1,2) G(m7 610) {r0(1,2) # kuo}

Gg0c10¢0(1,2)

ﬁ0(172)

Z1(m)L g, =ro(1,2) =0}

— (log(m+ 1)+~ — 05(71;72,T2))

(1 + ag0)T(1 + 710)
I'(2 4+ a0 + 710)

— Zo(m) L, = ko(1,2) =0}
+0 {m‘xl_“o} .

From the iterated integral with a symmetric-type integrand and two finite paths, see Section
8.3, we remember that definite statements were only possible under additional assumptions.
Below we will see, that even more assumptions are required, to verify the asymptotic validity
of the expansion (8.7.40). We shall therefore confine to the simpler cases and briefly outline,
how to proceed in the more difficult ones. For this, we first discuss the asymptotics of the single
MB-integrals (8.7.36) to (8.7.39).

8.7.4. A Single MB-Integral for the Residue at z =0

The MB-integral (8.7.36) only occurs if 8y(1,2) = 0 or if ko(1,2) > kup. The last inequality
trivially applies if 819 = 0 with k¢(1,2) > 0, or if 819 > 0 with k19 > min {0, x10}, by (8.7.29).
The associated generating function is given by the iterated integral (8.7.6) with z = 0. For
P10 = 0 this clearly constitutes an entire function of w, whereas for 19 > 0, by (8.7.7), it is

holomorphic only in
(8741) Rw < min {X107 Iilo} .

According to the minimum structure of this abscissa of convergence, we distinguish between two

parametrizations.

8.7.4.1. w-Analytic Continuation for z = 0 and y19 < K19
Under the present assumptions on the parameters

70(172)
(8.7.42) 10+ 52— >0,

and the w-region of analyticity of the integral transform (8.7.6) for z = 0 coincides with the

half plane Rw < x19. Its right boundary originates in the condition for the convergence, for
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n1 = no = 0, of the single integral

Ty
X10 — w, Brotxo—w) -1 " [ wBi(s) &(n2)
8.7.43) © = [ (s = m)Pobeommt o B0y () o) (s 4 1) ds.
( ) 0|:n17n27w7 TlaT1:| /(S Tl) ds™ ¢ 1(5) ¢ (S+ ) i
T1
More precisely, ¢(s +t) = O(1) as s | 7 for arbitrary fixed 7o < ¢t < Tb, by continuity, whence
for ny = ng = 0 and fixed 75 < ¢t < Ty the integral (8.7.43) is holomorphic in fw < x10, and we

can write

Ty

—w, 11, 11 _ X10 — w, t
8.7.44 S = t)O ds.
( ) 0|: 07 7-231—12 :| /a( ) 0|:0a 07 w, 7—17T1:| §

T2

To access the analytic continuation, integration by parts or a quick reference to §8.2.2.1 suffices.

For this, we introduce the expansion

Ts

s ] = e een iy [ + o
T2, T
T2

(8.7.45) -

- > / a(t)Oy

nl,nze{O,l}Tz
ni+ngs=1

1 _
Bo T X10 —w,t
ni, ng, 71, 11

dt.

If we then identify

k(s+t) =d(s+1t),

equation (8.2.31) immediately yields the representation

(8.7.46)

|:—’U),7'1,T1:| 1 |:—’U),7'1,T1:|
0 =S )
0, 72, Tp Bio(w — x10) T2, To

valid by analytic continuation for all w € C\ {x10} which lie in the region of analyticity of the
expansion (8.7.45). According to Lemma 8.2.5, this is exactly the half plane

Rw < x10 + min {Xﬁlo(ﬁll,’hho)a S10 + %} , o if(1,2) #0,

R < x1o -+ min { X0 (811, 711,0), 510 + 2L i 50(1,2) = 0.

10

(8.7.47)

To verify this statement, it is helpful to note that, by assumption, as v | 71 + 7o we have

IO co(1,2)70(1,2)(u — 71 — 72) 0D =1 i q0(1,2) # 0,
cl\u
:O{(U—ﬁ —7'2)71(1’2)}, if 70(1,2) = 0.
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The only singularity, which the analytic continuation shows in the wider region (8.7.47) is a pole
of simple order at w = x109. The corresponding residue for the interior of the integral (8.7.44)

can be obtained from (8.2.33), which brings us

—w, T1 T1 C10 _
8.7.48 R S ’ ’ =—— 1) X10 _ . T
( ) w=eXSlo 0|: 0, 72,T2 :| 510 { 10} ° 1(7—177-2’ 2)7

where we denote

T>
(8.7.49) 5_1(7'1;T2,T2) = /a(t)c(ﬁ +t)dt,

T2

and this integral converges absolutely, since (8.7.42) is equivalent to ago +70(1,2) > —1. In the
particular case x19 = 0, the indicated pole matches the origin of the w-plane. The derivation of
the Laurent expansion for the interior integral in (8.7.44) is then easily accomplished by virtue

of (8.2.35) and (8.2.36). In an annulus around the origin this ultimately yields

—w, T1,T1 1 C10 1 7’1,T1
8.7.50 S =——— T —_— @)
( ) 0[ 0,72, T3 ] w5105 T, 2)+ﬁ10 |:7'2,T2:| +Ow),

with the coefficient associated with the constant term being equal to

50[:;;1 =C1(T1) log {o(T1) }/ e(Ty+ 1) dt+/ /B’ )C1(s)e(s + t)dsdt
Ty T
(8.7.51) —/ ()/log{gp )} {Cl(s)e(s + ) + Ci(s)2 (s + 1)} dsdt.

8.7.4.2. w-Analytic Continuation for z = 0 and k19 < x10

Following from our assumptions on the parameters asg and (1, 2), non-positivity of the differ-
ence K10 — X10, i.e.,
'70(172)
S10 + 10 < 07

can only happen if 8y(1,2) > 0. In these circumstances, by (8.7.7), the w-region of analyticity
of the iterated generating function (8.7.6) with z = 0 is given by all w € C with

(8.7.52) Rw < K1p.

The right boundary of that region is especially determined by the supplementary condition for

the convergence of the iterated integral. The analytic continuation thus can be specified by

429



8. Asymptotics of Iterated Convolution-Type Integrals by Analytic Continuation

reference to §8.2.6.4. More precisely, if we identify Sy = [19 and

we have validity of (8.2.170), and from (8.2.171) we ascertain that x1 = x10 and x2 = s10. By
(8.2.195), the integral (8.7.6) with z = 0 therefore can be extended analytically to the strip

(8.7.53) K10 — s10 < Rw < K10 + Xpy0 (P11, 111, @21,71(1,2),0).

The corresponding representation requires some auxiliary functions. First of all, for w € C with

Rw < K10 + Xy (a21,71(1,2)), we define the absolutely convergent integral

w _ _
i) [ ] = (Ty — TQ)ﬂlo(mo_w)AQ(TQ)Cl,Z(Tl +15)
T1, T2

(8.7.54) T
- / (t — 7p)Prolm10—w) {Z;(wag(n +1) + Ao ()T o(11 + t)} dt.

T2

Due to the fundamental theorem of calculus,

K10 _
8.7.55 o = 1,2).
( ) L_l’ 7'2] as0co(1,2)
Furthermore, by analyticity, arbitrary derivatives of (8.7.54) can be calculated by differentiation
under the sign of integration. For j € N this yields:
& w
¢j(T1; 72, T2) 1= ‘I)[ }

Cdwi |,

wW=FkK10

= {—Biolog(Ty — )} Aa(T2)C1 (1 + Tb)
b

— /{—,310 log(t — Tg)}j {Zg(i)élyg(Tl + t) + Zg(t)éll’z(Tl + t)} dt

T2

(8.7.56)

In addition we introduce the expansion

w, 1, T} (T, — Tl)ﬁw(Xlo*“O*C Bi(Th)
K¢ P O (T ) e B (T
[C 72, Ts } ¢ — Bro(x10 — w) (1)
T>
(8.7.57) X / (t — )Pr09104CH20 (L2174, (1)) o (T + t)dt

T2
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1
* ¢ — Bio(x10 —w

To
) Z /(t _ 7.2)510<10+C+70(1,2)—122 (t)

n1,m2€{0,1} 1,

ni+ns=1
T
d™ _
_ ~\Bro(xio—w)—¢ wB1(s) (n2)
X /(s 7p)Prolxto ey {e ! C’l(s)}CLQ (d+t)dsdt,
T1
which furnishes a substantial part of the MB-integral
q+ico
- T 1 DO (—0(1,2) = ¢) w, 71, Th
7. 21 w, T1, L1 - ; LW T d
(8.7.58) 1[ T2, T2 2mi ) I'(—0(1,2)) K16 T, Ty ¢
q—100

in which the integration path is a vertical line R¢ = ¢, that satisfies

q > max {—f10510 — 70(1,2), Bro(x10 — Rw)},
g < min {—0(1,2), Bro(x10 — Rw + x8,, (B11,711,0)) } -

(8.7.59)

In terms of these quantities, for z = 0 the w-analytic continuation of the integral transform
(8.7.6) into the strip (8.7.53), according to (8.2.190), is established by

S [—w, 1, T1:| _ 10 D(Bro(xa0 — w))T(Bro(w — x10) — 70(L, 2))(1)[ w }
(8.7.60) 0,72 T2 Pro {b10}" T'(—0(1, 2)) (w — K10) T1, T2
+E1[—w771,T1]
o |

Therein it is O(w) as Sw — £oo, uniformly with respect to Rw in any closed vertical substrip,
and it shows at least one pole, which is located at w = k19. Depending on whether k1¢ is smaller

than or equal to x1g, its order is 1 < J < 2. Hence, as w — k19 we have

sL; (X10,<10 + w>

J
—w, 71, 11 10
8.7.61 S = } + O(w — K1g),
according to Taylor’s theorem, with
J—j _ T
1 70(112)) _ 1 i d . J w, 71,41
6762 5Ly (xos0+ ) = T, s (@ r0)"Sol o )

We close this paragraph with the computation of the principal part of the above Laurent expan-
sion for different parametrizations unless x19 = 0, for which case we also provide the coeflicient

of the constant term.
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8.7.4.2.1. Coefficients for k19 < x10. In these circumstances the indicated pole is of simple
order and by means of (8.7.55) and (8.7.60) we find

_52061060(1, 2) F(—’yo(l, 2) —1- OéQ())F(l + 0620)
Bro {b1o}™° I'(—0(1,2)) '

(87.63) sty (xio 50+ 252 ) =

10

If k19 = 0 or equivalently 2 + a19 + Y10 = —0(1,2), the pole lies at w = 0 and

_52061060(1, 2) F(l + ’)/10)F(1 + 0620)

8.7.64 sh1 (x10, —x10) =
( ) 1 (X10, —X10) B1o ['(2 + y10 + a20)

To deduce in the case k19 = 0 the coefficient for j = 0, we recast (8.7.60) in terms of the function
(8.2.134) with By = 19 and by = byg, which yields

—w, 71 T1 C10 1 . _ w —w, 71 T1
8.7.65 S ’ ’ = — ief(Uth, §10)(I)|: :| 4 Zl [ ) ) ] )
( ) 0[ 0, 72, T } B1ol'(2 + 10 + a20) w T, T2 om T
The first derivative of f(-;a,b) was obtained in (8.2.136). Defining
T1; T, T
(8.7.66) b (11572, T2) 1= —B10 {1 (1 + y10) — (1 + az0)} — log {bro} + #1(r1i o)

0o (1,2)
by (8.7.62), we thus find

_az0c10¢0(1,2) I'(1 + 710)I'(1 + a0)

8.7.67)  sp (x10, —X10) =
( ) sp (x10, —X10) B1o T'(2 + 710 + azo)

0, 71, T}
O'é(Tl;TQ,TQ)—FE%[ n 1].

T2, I

8.7.4.2.2. Coefficients for k19 = x19- The pole at w = k19 then merges with the pole of the
gamma function at w = x19 to a singularity of second order. Hence, J = 2 and we first rearrange
(8.7.60), to become

70(172)

—w, 71, T C10 1 9<w;X10,X10+ Bro )
So 0 T = 5 5€ )
(8.7.68) » T2, £2 {B10}" T(—0(1,2)) (w = Xx10) 1, T2
—w, 7, 11
21 ) ) )
* ! |: T2, T2 :|

The function ¢(+;0,b) and its first and second derivative, with Sy = S0 and by = b1g, can be
found in (8.2.138), (8.2.141) and (8.2.143). In accordance with (8.7.62), for j = 2 it is now easy
to verify, that

5.7.69 L e 0) = F0entol1,2)
( ) S 2 (Xlo ) {,8]_0}2 {b]_o}xlo

Moreover, for j = 1 we obtain

a co(1,2
(8.7.70) st (x10,0) = azocioco(1,2)

— 19 . S5 ; 7T )
o) {blo}X10< 111572, Ty)

432



8.7. Two Finite Paths in an Asymmetric-Type Iterated Integral

where

o1(115 72, T2)

(8.7.71) C1(m15 12, To) == Bro{y + (1 + az)} — log {bio} + amio(L2)

If x10 = 0, the above pole meets the origin of the w-plane. Concerning the coeflicient for j = 0,
equations (8.7.62) and (8.7.68) yield

1az0c100(1, 2) $1(715 72, T3)

1 2 /
0,0) = 0;0,— 2¢" (0;0, —
SO(’ ) 92 {,31()}2 {(g(a ) Clo)) + 29 (7 ) glO) 62060(1,2)
;72, T5) 0, 1,11
" 0:0. — (Z)Q(Th T2, El ) ) )
97 (050, =a10) + a20¢o(1,2) Tl 72, T3

If we denote

¢1(71; 72, T2)
a2060(17 2)

$2(11: 72, T3)
62050(1, 2) ’

(8.7.72) Co(Tl; T2, Tg) = {log F(l + 0420)}2 + 2 {510 ('y + 1/}(1 + a20)) — log {blo}}
+{B10}” 7: +{B10}* ¢'(1 + azo) +

we can write more concisely

G20c10C0(1,2)

(8.7.73) s0(0,0) = 2 (5ro)?

0,7, T
Co(T15 72, 1) +E%[ ! 1]-

T2, T2

8.7.4.3. Evaluation of the MB-Integral

To summarize the last two paragraphs, if we define

10

(8.7.74) 0 := { min {Xﬂm(ﬁllﬁlho), s10 + %} ,if x10 < K10 A0(1,2) =0,

X 1o (P11, 711, @21,71(1, 2), 0), if k10 < Xx10,

min {Xﬁm(ﬁllﬁn,o), 10 + M} . if x10 < K10 A0(1,2) #0,

it has shown that the generating function of the MB-integral F(m), see (8.7.36), can be extended
to a meromorphic function in the half plane Rw < min{x10,%10} + 0. Therein, its analytic
structure essentially depends on the ratio of the parameters y1g9 and k19. Firstly, if x10 < k10
the only singularity in the wider region is a simple pole at w = x19. Secondly, if k190 < x10
the analytic continuation has a pole at z = k19, which, however, is of first order if and only if
K10 # X10- Additional poles may be found to the right of this pole, causing a coalescence in case
of equality. Hence, in either case the closest singularity to the right of the integration path of
F(m) is a pole of order no greater than three.

Upon taking into account the absolute convergence of the original integral definition, by means
of (8.7.46) and (8.7.60), it can be verified that the generating function of the MB-integral (8.7.36)
and its analytic continuation for y19 < k19 are O(1) as Sw — oo, uniformly with respect to Rw

in any closed vertical substrip of their regions of validity. Conversely, in the case x19 > k10 the
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continuation is O(w). As a consequence, the integrand of (8.7.36) always exhibits exponential
decay as Sw — Zoo, thereby enabling a rightward displacement of the integration path. If
B1o = 0, we move the path, to match a line Rw = u; that runs somewhere to the right of the
simple pole at w = 0, i.e., u; > 0. Furthermore, if $19 > 0, we choose a new integration path

Rw = uy with u; = min {x10, K10} + ¢, for

d — X105 if 0 < x10 < K10,

min {0,d} — x10, if x10 < min{0, K10},

min {4, x10} — K10, if 0 < K10 < X105
(8.7.75) O<e<

min {0, J, x10} — K10, if kK10 < min {0, x10},

min {XlO + ﬁ, 5} — K10, it 0 < K10 = X105

min{O,Xm + ﬁﬁ} — K10, if K10 = Xx10 < 0.

Then, if min {x10, K10} > 0, we traverse the poles at w € {0, min {x10, K10} }, but merely one of
them otherwise. By virtue of Theorem B.2.1(2), multiplying each residue by a negative sign,
since the encountered poles are encircled in the negative direction, as m — oo this leads to:

0) 71, Tl
(8776) F<m) = _SO |:0’ To, T2:| ]1{,310 =0V min{x10, K10} >0}

I(xi0)  cwo
{bro(m + 1)}X*° %571(7’1; 725 TQ)H{O#XN < K10}

C1

1 71, T
— {(1og(m—i— 1) +7)51(;5_1(71;72,T2) + 51050[ ' 1]}1{0X10<H10}

[(k10)  T(=0(1,2) =1 — ag)l'(1 + ag)
{bro(m + 1)} I'(—0(1,2))

" Ga0c10c0(1, 2)1
510 {0#r10<Xx10}
(1 4 y10)T(1 + aa0)
['(2 + y10 + a20)

a0c10¢o(1,2)
X B1o 1{U:mo <x10}

—{log(m + 1) +~v — o(r1; 72, T2) }

0 T1 T1
o 21 ) )
! |: T2, T2
log(m + 1)F(X10) 62061050(1, 2)
{b1o(m + 1)}X*° {510}2 {07 r10 =x10}
_ I'(x10)
{blo(m +1

:| ]1{0=l-€10 <x10}

G {v(x10) + =1 (1372, T2) }

G0c10¢0(1,2) 1
x {/81[)}2 {0#Kk10=X10}

71-2

- {(log(m+1)+,y)2+6} w

2{/810}2 {02510:X10}
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G20c10C0(1,2)

{B10}”

Co(T13 T2, T2>1{O=mo =X10}

+ (log(m + 1) +7) C-1(715 72, T2) 140 = k10 = x10}

~ agoc106(1,2)
2{B10}>
+ O {m_ul}

The estimate in the big-O is due to the absolute convergence of the remainder MB-integral.

8.7.5. A Single MB-Integral for the Residue at z = r(1,2) — kw if xo(1,2) # kug

The MB-integral G(m; 1), see (8.7.37), looks fairly distinguishing in comparison to those which
we encountered in earlier sections. It is of hypergeometric type and occurs for ko(1,2) # kug. If
P10 = 0, by (8.7.29), the integration path satisfies —1 < ug < 0. In these circumstances (8.7.37)

is readily identified as the Cahen-Mellin integral, for which we know the finite representation

o — [(ko(1,2)) L1+ a)l'(1+710) f, o—bio(m+1)
(8.7.77) G(m;0) {bo(1,2)(m + 1)}%0(1,2) ['(2 + v10 + @20) {1 } '

Concerning general S19 > 0, subject to (8.7.29), the integration path of G(m; S19) is supposed
to satisfy

(8.7.78) max {—1,k10} < up < min {0, x10}, if K19 < min {0, x10},

—1 < up <min{0, x10}, if K10 > min {0, x10} -

Moreover, in terms of the parameters (8.3.5) and (8.7.3), it takes on the form

T'(Buosio) "7°°r(w>r<k(mo — W) (Brolx0 — w)
i I'(Bio(x10 + 10 — W))

G(m; =
(8.7.79) (3 o) 2mi

Uy —100

x {bo(1,2)(m + 1)}F@=510) {p0(m + 1)} % dw.

According to Stirling’s formula, the integral converges absolutely and the integrand exhibits
exponential decay in any imaginary direction of the complex w-plane. As a consequence, leftward
and rightward displacements of the integration path are permitted across an arbitrary but finite
number of poles. However, by inspection it is easy to see that the modulus of the integrand as

m — oo satisfies

~ const x m~roL2)+(k-1)FRw

It therefore depends on the magnitude of the parameter k, if the integrand is descending with

respect to m as Rw increases or decreases. Regardless of the actual parametrization, in the
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special case (19 = fo(1,2), i.e., k = 1, no further computations are required. Upon denoting

ug-+100

qﬁ[ @20, P10 } _P+ayp) 1 / { bio }w
(8780) Y10, ’yo(l, 2) ’ F(Klo) 27Tiu e bo(l, 2)
o ['(w) (k10 — w)I(1 + 910 — Blow)dw,
['(2 + v10 + a20 — Brow)
we then immediately obtain
. _ I'(k10) a0, B10
(8781) G(m7 60(17 2)) - {b0(17 2)(m + 1)}510 ¢ |:710’ 7()(17 2):| .

Besides a distinction between values of k being smaller or greater than one, in view of (8.7.78)
an additional distinction with respect to the range of 19 and x1g is necessary. Once we have
specified all these quantities plus the remaining parameters, the exact meromorphic structure
of the integrand in (8.7.79) is obvious. A complete asymptotic expansion as m — oo of this
hypergeometric integral then can be deduced by displacing the integration path towards the
appropriate direction of the complex plane. The resulting expansion features descending powers
of the asymptotic parameter up to arbitrary large order. However, due to the many possible

parametrizations, a more detailed discussion will be omitted.

8.7.6. A Single MB-Integral for the Residue at z =0 if $;0 =0 and x((1,2) =0

It is easy to see from (8.7.40) that the integrals Z;(m), which for j € {1,2} were given in
(8.7.38) and (8.7.39), are only relevant if 819 = xo(1,2) = 0. Hence, according to (8.7.29), their

integration path is a vertical line fow = ug with
-1 <uy<0.

The evaluation of both integrals is actually very simple. Regarding Z;(m) we may easily rely
on the Mellin inversion theorem, in view of which it is readily identified as the Cahen-Mellin
integral. Taking into account that the path runs to the left of w = 0 but to the right of the

point w = —1, for any m > 0 we conclude
(8.7.82) Zi(m) = -1+ e~bro(m+1)

In order to compute the MB-integral Zs(m), we must first ascertain analyticity properties and
asymptotic behaviour of its generating function, which is for z = 0 given by the integral (8.7.18).

This is in turn again a MB-integral whose integration path R( = ¢ was specified in (8.7.19).

436



8.7. Two Finite Paths in an Asymmetric-Type Iterated Integral

With 19 =0, i.e., k = 0, and also with z = 0, these conditions take on the form

q > maX{_l — Qg0 — 70(172)750(172))(0(172)}7
q < min {Bo(1,2)(x0(1,2) + xg,(1,2)(B11,711,0)), —70(1,2) } .

The path does therefore not depend on the argument w. Moreover, by inspection of the integral
(8.7.17) with z = 0 and ¢ = q+iy for y € R, we identify the latter as an entire function of w. By
virtue of simple estimates one can thus easily confirm the entireness of the whole MB-integral
(8.7.18) with respect to w for z = 0 in the special case $19p = 0. Finally, additional estimates
can be employed to expose that the integral is O(w) as Sw — Fo00, uniformly with respect to
Rw in any closed vertical vertical substrip of the complex w-plane. Consequently, in the integral
(8.7.39) it is permitted to move the integration path by an arbitrary but finite distance to the
right. We decide to perform a displacement of the path across the simple pole at the origin.
Incorporating the fact that the pole is encircled clockwisely, for an arbitrary uwy > 0, this leads

to

u1+100

21

U1 —100

0 T1 T1 1
7. Z =27
(8.7.83) 2(m) 1 [ ] 0. 7. Ty

—w,m, T
— DT(w)s2 | .
o) T3 | (DT 1[ ‘

Appealing to absolute convergence and arbitrariness of u; > 0, we infer an exponentially small

order as m — oo of the remainder on the right hand side.

8.7.7. Evaluation of the Iterated MB-Integral

We conclude this section with a collection of m-asymptotic statements on the integral (8.7.1)
for special parametrizations, continuing with the expansion (8.7.40). The case of non-zero
Bo(1,2) # Bio requires further investigations and will be omitted. Indeed, it then needs to be
shown that the remainder term in the expansion is actually negligible.

First, p(1,2) > 0 with 19 = 0 implies & = 0 and for appropriately specified uy and =1 we can
then find 1 > 0, for which the exponent in the big-O in (8.7.40) satisfies up +x1 = ko(1,2) +£1.
Furthermore, in the expansion (8.7.76) each but the first and the remainder term equals zero,
of which the latter asymptotically decays faster than any power of m. By (8.7.77), (8.7.82) and

(8.7.83), we therefore arrive at the first theorem of this section.

Theorem 8.7.1. For (y(1,2) > 0 and (19 = 0, suppose validity of the conditions (A10) to
(A18). As m — oo we then have

. 'T]_,T]_ 0) T]_,T]_
Al {m; T2, Tz] ~ S [0, 2, TJ Hrot1.2)>0)

B I'(ko(1,2)) (1 + ag0)T(1 + y10) @20¢10¢0(1, 2)
{bo(1,2)(m + 1)}012  T(2+ 10 + a20) Bo(1,2)
I'(1+ a20)T(1 4+ 710)
['(2 4 a0 + 710)

Liko1,2) £ 01

+ (log(m+1) 4+~ — 08(7’1; T2, T%))
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G20c10¢0(1,2) 1

0, 7,11
2 ) )
+Zl[0, T2,T2]]1{H0(1’2)_0}’

where the constants were defined in (8.7.18) and (8.7.25). Observe that, by assumption, the

right hand side can never be completely zero.

Conversely, if S9(1,2) = 0, in (8.7.40) only the first term is non-zero, and as m — oo the
estimate in the big-O vanishes faster than any power of m. Furthermore, for any 819 > 0, in
the expansion (8.7.76) the remainder term is obviously of higher algebraic order than each of
the preceding non-zero terms. We combine this result with the next case.

If Bo(1,2) = P10 > 0, i.e., k =1, then ko(1,2) = k19 and the third and fourth term in (8.7.40)
certainly will be zero. The exponent in the big-O, due to cancellations, for any admissible ug

and z1 and for suitable €; > 0 then satisfies
ug + 1 = /<;0(1, 2) +e1.

According to (8.7.29), we distinguish whether the ratio of k19 and min {0, x19} is smaller than
one or not. If k19p > min{0, x10}, the first term in (8.7.40) is non-zero and we must also specify
the ratio of k19 and x10. On the one hand, if kK19 > min {0, x10} and K10 > x10, the non-zero
terms in (8.7.40) are negligible in comparison to the non-zero terms of the expansion (8.7.76).
On the other hand, if x19 > k19 > min {0, x10} additional contributions come from (8.7.76) and
(8.7.81). This leads us to the next theorem.

Theorem 8.7.2. Assume validity of the conditions (A10) to (A13), with either By(1,2) =0 or

/80(172) = 510 > Oa

K10 > min {0, x10} -
Then, provided at least one term on the right hand side is non-zero, as m — oo,

(1) if Bro =0 or k19 > X10, we have

. 71, 11 0,7, T3
Al [m; T2, T2] S {0, T2, TQ] o =0via>0}

~ Thao) ao
{b1o(m + 1)}**° Bio

c 1 T, T
+ {(log(m+ 1) +7)L0571(T1;7'2,T2) + 050[ ' 1}}1&10—0}'

B1o B1 T2, T

571(71; T2, TQ)]I{Xlo #0}

(2) if x10 > K10, we have
. 71, 11 0,71, T1
' |:m’ T27T2:| 0[07 T2, T2:| {K10>0}
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B I'(K10) (=70(1,2) = 1 — ago) (1 + ag)
{bro(m + 1)} ['(—0(1,2))
az0c10c0(1,2) 1
610 {510 #0}
F(l + ’)/10)1—‘(1 + 0120)
(2 + 10 + a20)

G20c1060(1,2)
X ——— 21 _
B1o {r10=0}

+ {log(m+1) 4+~ — Ucl)(Tl;Tz,Tz)}

0, 7, T}

1 s 11y 41

+21[ 72, Th }]l{moo}

+ ['(r10) azoc10C0(1,2) a0, P01y
{bo(1,2)(m + 1)} B1o Y0, Y0(1,2) |~ o2 >0k

(8) if kK10 = X10, we have

. 71, 11 0, 71,11
Al [m; TQ,TJ ~ So {0, TQ,TQ]]I{XWO}

B log(m + 1)F(X10) 62001060(1, 2) 1
{buo(m+ 1P ()7 PR

I'(x10) .
{b1o(m + 1)}X0 {(x10) + C=1(11;72,T2)}

{B10}?
a0c10c0(1,2)
T (p)E a0

Loy 0}

7(2

+ {(1og(m+ 1) +7)? + 6}

az0c10c0(1,2)

— (log(m + 1) + ) o)

C—I(TIS T2, T2)]1{X10:0}

= co(1,2
010900 2) ¢y, To) o)

2 {B10}>
0,7, T
1 s 11, L1
+21[ 7o, T }ﬂ{xwzo}
n I'(x10) a20¢10¢0(1,2) [ a0, 1o ]]1
{bo(1,2)(m + 1) }**° B1o Yo, 70(1,2) ] 2> 00

The coefficients of the above expansions can be found in (8.7.49), (8.7.51), (8.7.58), (8.7.66),
(8.7.71), (8.7.72) and (8.7.80).

If k190 < min {0, x10}, also the first term in (8.7.40) vanishes, and (8.7.81) immediately yields

our final theorem of this chapter.

Theorem 8.7.3. For 5y(1,2) = B10 > 0 and k10 < min {0, x10}, assume validity of the condi-
tions (A10) to (A13). As m — oo we then have

T:
Ai [m; 1,1

]N L (10) dz0c100(1, 2) [ a0, B0 }
72, 1) {bo(1,2)(m + 1)} Bio Y10, 70(1,2) |
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provided the integral ¢[...], which was defined in (8.7.80), is non-zero.

8.8. Conclusion

Our findings from this chapter exposed a large diversity with respect to the asymptotic be-
haviour of the integrals (8.0.1) and (8.0.2) for convolution-type amplitude functions. However,
despite the different shape of these integrals, their dominating terms turned out to be fairly
similar in some special cases. Moreover, for each integral parallels between different kinds of
paths can be drawn. This was not obvious in the beginning but it transpired in the process of
our investigations. As a consequence, contrary to our initial doubts, it should indeed be possible
to confine alternatively to a study of each iterated integral for two finite paths. Then, in order
to enable a reference to further scenarios, one must consider amplitude functions of another
type that depend on s and on ¢ but not necessarily on s + t. It is, however, not clear if such
a generalization is actually less elaborate than our approach, since additional difficulties may
occur that are overlooked at the first glance.

The advantage of our approach certainly consists in a straightforward applicability of the
obtained results, which is in accordance with our intention. In fact, the above formulae imme-
diately can be employed to assess the m-asymptotic behaviour of the variance integrals in the
deconvolution problem, no matter if the characteristic functions of X and ¢ have a finite sup-
port, finite zeros or algebraic decay at infinity. Even distributions F' with an exponential-type

characteristic function are admitted.
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A. Integral Transforms

In this chapter we are concerned with the basic properties of some important integral transforms,

which arise as special cases of the Laplace-type integral

(A.0.1) I(t) = / @y (D F(dr),  teD,
P

where P is a segment of the real axis, p(x) equals the phase function with derivative p/(x),
F : R — C is the determining function and D C C is a subset of the complex plane. For a
fixed determining function the choice of the phase substantially affects the structure of the ker-
nel @) and thus of the resulting transform. Particularly important phases are p(x) = x and
p(z) = log(z) with the respective integration paths P being the whole real axis or merely its pos-
itive segment. Many applications confine to determining functions of the form F(dx) = f(x)dx.
Then f is referred to as the amplitude function. Moreover, the integral transform I(t) is in some
texts denoted as the generating function, a notion we will adopt. Compare for instance p. 37
in [Widder, 1946] where an explanation for this terminology is provided.

Many monographs are dedicated to integral transforms, especially to Fourier transforms,
mostly in a real-valued setting. Among those [Korner, 1988] and [Pinsky, 2002] are particularly
well-written. It is, however, worthwile not to confine to real-valuedness but to extend inte-
gral transforms to complex variables, as the textbooks of [Titchmarsh, 1937] and [Widder, 1946]
show. Elementary knowledge on complex calculus can be acquired by [Asmar and Grafakos, 2018],
[Wegert, 2012], [Fischer and Lieb, 2005] and [Behnke and Sommer, 1965].

A.1. The Fourier Transform of One Real Variable

We start our discussion by considering the generalized transform (A.0.1) with the phase p(z) = x
integrated along P = R and with a purely imaginary argument. In addition we assume F'(dz) =
f(x)dx. This leads us to the definition of the most frequently occuring integral transform, which

is the Fourier transform. It is for t € R given by

o0

(A.1.1) FA{f} (@) := / e f(z)d.

—00

Note that in the literature this definition very often differs by constants. Rather than by F we
shall occasionally denote (A.1.1) by the greek letter ®, sometimes with an additional index. The
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Fourier transform generally results in a complex-valued function, except for even functions, i.e.,
if f(z) = f(—=z), in which case the transform is real-valued. Furthermore, as a consequence of
the fact that the modulus of €@ equals one for all z € R, the assumption f € L!(R) is sufficient
to guarantee absolute convergence of the integral (A.1.1). Then, many general statements are

possible. One of the stronger kind is verified by a simple estimate with fixed § € R:

sup | F {7} ¢+ 6) ~ F {7} O] <sup [ [0 = 1] o] |7 (o)) da
teR tERfoo
= [ e |5 da

Letting 6 — 0, by Lebesgue’s dominated convergence theorem, the limit equals zero, from which
we conclude uniform continuity of the Fourier transform of any function f € L'(R). Similarly

we can show that F {f} (-) is uniformly bounded along the entire real axis, formally

(A.1.2) IFAFY Olloo < [1F1ly -

Little more effort is required to verify the convolution property of the Fourier transform. For

f1, f2 € L*(R) the convolution, also known as the Faltung, is defined as
(A.1.3) f1* fo:= / fi(- —z) fo(x)dx.

Note that fi * fo € L*(R). Integrals of this type in general have a very complicated struc-
ture, which simplifies in the Fourier domain. Indeed, subject to the functional equation of the

exponential function and the translation invariance of the Lebesgue measure, we have

(A.1.4) Flfvxfoy (t) = F{f1} (1) F{f2} (1),

i.e., the convolution becomes a product. Conversely, the amplitude function corresponding to
a product of two Fourier transforms is given by the convolution of the respective amplitude
functions. Finally, although the integrand in (A.1.1) does not decay as t — +o0, under certain
conditions, integrals of Fourier-type vanish as their argument runs along the real axis to infinity.
This leads us to a well-known statement that may not be missing in any treatment of Fourier
analysis, compare for instance Theorem 4.1 in ch. 3 in [Olver, 1974] and Theorem 2.2.4 in
[Pinsky, 2002]. For this we agree, a function is said to have a jump point at some zg € R, if
the left-sided and right-sided limits of f(z) at this point exist but these limits do not match.
Furthermore, a point zq is referred to as a removable discontinuity of f, if the left-sided and
right-sided limits of the function at xg match but do not coincide with the value f(z¢), which

is possibly even undefined.

Lemma A.1.1 (Riemann-Lebesgue). Assume for a function f : I — C one of the following
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conditions holds:

(1) The interval I = [a,b] with a,b € R is compact and f is piecewise continuous with a finite

number of removable discontinuities or jump points there.

(2) I = (a,b) witha € RU{—00}, b € RU{o0} and f is continuous on I with the exception

of a finite number of points. Moreover, f: e f(x)dx converges uniformly for all t > tq.
(3) I = (a,b) withb= —a = o0 and f € L'(R).

Then

b
: itx _
(A.1.5) tilrinoo e f(x)dx = 0.

The Riemann-Lebesgue lemma does not provide a quantitative statement on the rate of decay
of a Fourier transform. In fact this is determined by the detailed properties of the amplitude
function and can be arbitrarily slow or fast. On the other hand we can roughly characterize the
decay in terms of derivatives from integration by parts. Therefore it is necessary to split the
range of integration according to the intervals where f is differentiable. A special case occurs
if we have differentiability along the entire real line. Then Proposition 2.2.5 in [Pinsky, 2002]
applies.

Theorem A.1.1 (rate of decay). Suppose f(x) is N-times differentiable at any x € R and
f™ e L' (R) for any 1 <n < N, then the n-th derivative of f possesses the Fourier transform
(—it)"F{f} (t) and we have F {f} (t) =o0{t ™} ast — +oo.

Next we present a few selected examples for functions and their Fourier-counterparts.

Example A.1.2 (indicator). Of special importance in Fourier analysis are indicator functions
I[{a < - < b} for finite a < b. For instance, with ¢t € R we have:

1 T
(A.1.6) Dy p(t) := —— / e"I{a <z <b}dx
_eitb _ eita
~ (b—a)it
_igbta 280 {#3t}
- (b—at

From a stochastic point of view, ®,;(t) clearly constitutes the characteristic function of the

uniform distribution on [a, b]. Choosing b = —a = 1, we arrive at the sinc function
in(t
(A.1.7) si(t) = SH;( ).
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According to the power series expansion of the sine, the singularity of the sinc function at ¢t =0
is removable, making si(¢) an entire function of ¢ € C. Moreover, it is even with respect to ¢t € R
and attains its maximal value at ¢ = 0. Although si(¢) is not absolutely integrable along the

whole real axis, we will show in Appendix B.1 that the primitive integral

3
(A.1.8) Si(€) = / si(t)dt,
0

referred to as the sine integral, has some fairly nice properties.

The computation of the preceding example only required elementary manipulations. In some
cases, however, the tools of real analysis are insufficient. The Fourier transform of f may then

only be computable by means of complex analysis.

Example A.1.3 (Gauss). For o0 > 0 the amplitude function

1 o?

67 202

(A.1.9) o(z) == 5

is known as the centered Gaussian density with variance o?. The corresponding Fourier trans-

form can be derived by a simple application of the binomial theorem:

02, 0
e 2 —(—E——i2t)?
Flot =" [ F T 0
V2
7TO'_OO
oofi%t
1 _d2 / _u2d
= ——=€ (& U
/T
—oo—i%t
1 (0.9}
o742 —u?
= —=e 2 e " du
VT /
—00

The last equation is a consequence of Cauchy’s theorem and the decay of e as Rz — +oo
in C for any fixed 3z € R. Taking into account that the integral in the last equation has the
numerical value \/m, which can be verified by referring the integral to the gamma function and

applying the identity (B.2.15), we eventually arrive at
02
(A.1.10) Flo}(t)=e 77

For o = 1 the preceding equality (A.1.10) reveals that ¢ is an eigenfunction of the Fourier

transform considered as an operator, compare §2.4.4 in [Pinsky, 2002].

Example A.1.4 (Fejér’s kernel). Another function of special importance in Fourier analysis
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is Fejér’s kernel, defined by
(A.1.11) K(z) =

Evidently, K € L'(R) and the function is non-negative and even. The power series expansion of
the cosine shows the removability of the singularity at the origin by /(0) = 1, making (A.1.11)
an entire function with

0, ifxzeR\{0},

lim MK(Mz) =
M—o0 oo, ifz=0.

In order to derive the associated Fourier transform, it suffices to confine to the case t > 0. By
definition of the cosine

%¢itT _ ei(lth)x -1 1— ei(tfl)x
2 + 2

e {1 — cos(z)} =

We then compute each of the following two integrals separately by means of complex integration:

oo
it 1 — cos(x)

1

—o0
T o ite _ i(1+t)z 7 i(t—1)z
1 2e"t — e -1 1 1— eV
A.1.12 = — d — —_d
( ) s x2 T s x2 v
—Oo —Oo

The procedure is similar to the calculation of the sine integral, compare Appendix B.1, and
we therefore confine to a brief overview. For each of the two integrals we first consider an
integration contour that has the shape of a half annulus, located either in the upper or in the
lower half plane with edges running along the real axis. The half annulus is traversed in the
counterclockwise direction and is supposed to be symmetric with respect to the imaginary axis
through the origin. Its inner and outer radii are respectively denoted by 0 < r < R < oo.
Since the integrand in the first integral for ¢ > 0 exhibits exponential growth as Sz — —oo
and algebraic decay as Sx — +o00, the half annulus shall be located in the upper z-half plane.
Letting R — oo the contribution from the large arc vanishes and it remains the contribution
from the segment along the real axis and along the small arc +,. More precisely, from Cauchy’s

theorem we obtain:

9¢itT _ ez(lth)x -1 ) 2¢itz _ ez(1+t)z -1
5 dr = — lim 5 dz
x r—0 zZ
—00 Yr
(20 — (14t)! ,
= —lim 7 ( * ))/z32dz
r—0 < ]!
J=1 A
=n(l—1)
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A. Integral Transforms

Finally, in the last integral in (A.1.12) we must distinguish for ¢ > 0 between different signs of
the argument of the complex exponential function. In particular, if on the one hand ¢ > 1 the
integration path shall match the half annulus that was constructed for the first integral. If on
the other hand 0 < ¢ < 1 we choose the same integration path but reflected with respect to the

real axis. In each case we obtain

7 1 _ ilt=1)z —r(1—1t), ift>1,
_— dx =
Joooa rl—t), i0<t<l.
By evenness we have thus shown

0, if [t > 1,

Pic(t) =
1—t|, ifo<|t<1.

Moreover, since the above function is a Fourier transform it is uniformly continuous, whence
®ic(0) =1 and Px(1) = 0. This finally shows that

(A.1.13) Die(t) = (1—|tNI{-1<t <1}, teR.

We close our short list of Fourier examples with the observation that we evidently confined to
Fourier pairs that can be expressed in terms of elementary functions, i.e., in terms of monomials
and exponential functions. In many circumstances, however, for the Fourier transform associated
with a given amplitude only integral or series representations are available. A simple example

known from probability theory is furnished by the beta distribution.

The popularity of Fourier transforms is not solely justified by the convolution property but
especially by its uniqueness and invertibility, which enables the unique reconstruction of the

amplitude function under certain assumptions. This is the topic of the next section.

A.1.1. Inversion Formulae

There is a large amount of inversion formulae for Fourier transforms that mainly differ with
respect to the conditions imposed on the amplitude function. Basically these formulae can be
distinguished between two types of which, for the sake of clarity, we picked only a few to present
below. In addition we will discuss the connection between these types. First, analogous to
Fourier series, for f € L!(R) with Fourier transform F {f} (t), M > 0 and ¢ € R, we define the

partial sum operator by

M
(A1.14) Sur £(€) ::% / T (£} (¢) dt.
M
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A.1. The Fourier Transform of One Real Variable

According to the uniform boundedness of F {f} (t), this integral is absolutely convergent for
any M > 0. By Fubini’s theorem we obtain:

oo M
Spmf(g) = e_it(g_x)dtf(:c)dq:
i

(A.1.15) :i/sm(mg—x))f(x)d:c

Hence, the partial sum operator equals the convolution of f with the sinc function. Regarding
its convergence behaviour, we can for instance make the following statement, see, e.g., Theorem
2.3.7 in [Pinsky, 2002].

Theorem A.1.2 (a convergence test for the partial sum operator). If f € L'(R) is of
finite total variation on the real axis, then limps_o0 Sarf(€) = w for all £ € R. This is
especially true if f is once differentiable with f' € L*(R).

Clearly, the convergence of the partial sum operator (A.1.14) is equivalent to the existence of

a certain Cauchy-type principal value integral.

Proof. Since the sinc function is even, (A.1.15) has the following form:

sus©) =+ [ SINMIE 7)) )

71'_00 E—x
== / (F(E+2)+ F(€~ x))sm(f 2
0

By assumption f(z) := f(£+z)+ f(£ — ) is of finite total variation on R. Therefore, integration
by parts for fixed R > r > 0 yields

T

R R R &z
/f(w)sm(mdx: f(a;)/sm(Mt)dt —//SiIl(tMt)dtf(da;).

t

T T

The primitive integral appearing therein is readily identified as the sine integral (A.1.8). Ac-
cording to (B.1.6) and since f € L'(R), in the limits r | 0 and R — oo the first of the above
two summands vanishes. Moreover, since f is of finite total variation, in the second summand,
by Lebesgue’s dominated convergence theorem, we may interchange the order of limit and inte-

gration. This leads to

Suf©=-7 [ Si(Ma)f(do).
)

(0,00
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A. Integral Transforms

Another application of Lebesgue’s dominated convergence theorem eventually shows

1 o)
Jim F(R) —tim Fr)| = S5,

Jim Sy (€)= .

2

which finishes the proof. =

In the previous proof, the symmetry of the partial sum operator with respect to the limit

M > 0 is essential as the following example from §2.3.2 in [Pinsky, 2002] shows.

Example A.1.5 (asymmetric partial sum operator). Similar to (A.1.14), for M,N > 0

and ¢ € R the asymmetric partial sum operator is given by

M

Sunt© =5 [ EF (I @

—-N

To illustrate the drawbacks of this definition in comparison with its symmetric counterpart,
we assume f = [{a <. < b} for finite real numbers a < b. Then F{f} (t) = (b — a)Py(t),
according to (A.1.6), and for the integral along the segment [0, M] we obtain:

M M M

/e Ho=¢) . /Sln —sin(t(a—{))dti/cos( (b—¢)) — cos(t (a—g))dt
1t t t

0 0 0

The real part of this expression is readily identified as the sum of two sine integrals and thus

converges as M — oo for any £ € R. On the other hand we immediately note that the imaginary

part for & € {a,b} can not converge, since the integrand as ¢ — oo is then non-oscillatory and

slowly decreasing. To verify this, we suppose & ¢ {a,b}, so that Fubini’s theorem for M > 0

yields:
M b oo M
[ etm D entle =g [ (coste(v - €) - costa — )
0 0 0

M
_ / 5 / =8 —2) _ ti(a—)=2) gy

1 — eM(i(b=8§)—2) 1 _ eM(i(a—§)—2)
/ z—zb—ﬁ) z—1i(a— &)
0

dz

The real part thereof can be cast in the following form:

1 — eM(i(b=8)=2) [1—cos(M(b—¢&))e ™= —isin(M(b—&))e M| (z +i(b—&))

g " 21 (b6

z ze Mz

“Ere-or MO Do
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A.1. The Fourier Transform of One Real Variable

e—Mz

+ (b— &) sin(M(b— f))m

Each of these functions except the first has an integrable bound. Since, however, in the above
integral we consider the difference of two such functions, we still obtain overall integrability.
Furthermore, all but the first summands vanish as M — oco. Hence, Lebesgue’s dominated

convergence theorem eventually yields:

M [
—£) — — — eM(i(b—§)—2) — eM(i(a—§)—2)
lim /cos(t(b €)) — cos(t(a f))dt: T 1—e . _l-e . &
M—c0 t M—o0 z—1i(b— &) z—1i(a—§&)
0

z

- d
20— Pra-

Il
N | = 0\8

[log (b= &) +2) ~log ((a = &)* + )]

{81}

b — ¢
This confirms the logarithmic divergence of the integral for £ € {a,b}, thereby justifying the
consideration of the symmetric partial sum operator. Then, N = M and the imaginary part

vanishes, due to symmetry:

M—oo 27

0
‘ ] it(b—€) _ yit(a—€)
A}lglooSMf(ﬁ)— lim — /+/ n dt
M 0

— lim 2 (Si(M(b - €)) — Si(M(a - €)))

M—oo T
0, &¢la,b]
=41, €€ (a,b)
3. £€{a,b}

The preceding observation is not surprising, since the partial sum operator constitutes a special

principal value integral, a class of integrals for which symmetry is an essential ingredient.

In §2.3.3 in [Pinsky, 2002] it was pointed out that special care must be taken when applying
the partial sum operator to a discontinuous function. Consider for instance f = I{a < - < b}
for a < b. According to Example A.1.5, the corresponding partial sum operator converges to
unity, pointwise for £ € (a, b). If, however, we choose the null sequence s := a + §; for M >0

such that {yr € (a,b), subject to the oddness of the sine integral we obtain:

Si(m)

™

~ 1.09

Jim SyT{a < < b} (6a) = lim T (Si(M(b—a) — m)) +Si(r)) =

| =

This observation is usually referred to as the Gibbs-Wilbraham phenomenon and the constant
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A. Integral Transforms

on the right hand side is denoted the Gibbs overshoot. An attempt to reduce or even avoid this
undesired effect but also to establish Fourier inversion under weaker assumptions is summation.
More precisely, analogous to Cesaro summability for series, it is possible to consider the Cesaro-
means of the partial sum operator (A.1.14). For this we average Sy f with respect to the index

M, which means integration and normalization of (A.1.15):

M oo M
AZ/Smf(E)dm: M%r / /def(w)dw
0

—oco 0

(A.1.16) M/ WCAZSQ _x))f(x)d:c

The interchange in the order of integration is admissible by absolute convergence. The integral
(A.1.16) is again of convolution-type and involves Fejér’s kernel (A.1.11). The latter, however,
is a function of the space L'(R), contrary to the sinc function that appears in the partial sum
operator (A.1.15). The convergence of (A.1.16) can be described in a more general frame, which

is a generalization of Corollary 3 to Theorem 3.3.2 in [Lukacs, 1970].

Theorem A.1.3 (inversion by means of an approximate identity). Suppose fr is an even
non-negative function with fr(v) = O {U_2} as v — £00 and [ fr(v)dv = 1. Moreover, suppose
the derivative f; and the Fourier transform ®; are contained in LY(R). Then, for any &€ € R
such that f(x) ewist, we have

o0

J%fﬂ-;f‘(ﬁ—) - im - / 7D (M) F{f} (1) dt

—0o0

(A.1.17)

The function f; in the above theorem is sometimes termed an approximate identity, and its
Fourier transform is referred to as a smoothing kernel. A measure theoretical explanation of
the former notion will follow the proof below. A rather functional analytic clarification can be
found in [Pinsky, 2002]. A typical example for an approximate identity is Fejér’s kernel, which

corresponds to the Cesaro means of the partial sum operator, according to (A.1.16).

Proof. Under the above assumptions the partial sum operator Sysf(€) converges uniformly
with respect to & € R as M — oo, which implies the uniform continuity of the limit function.

But since f; € LY(R), according to Theorem A.1.2, the limit equals

fl(g):% / e D (t)dt.

In terms of this representation, by Fubini’s theorem and by means of some simple substitutions,
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A.1. The Fourier Transform of One Real Variable

for fixed A > 0 we obtain:

o [ €EBIONF () () dr =X / o / e~y (1t ()
:)\_l/f[ <£;$> f(x)dz
(A118) — [ £ €= 20y

Notice the similarity between this convolution-type integral and (A.1.16). To examine the
behaviour of the former as A | 0, we distinguish between the positive and the negative segment
of the real axis. More precisely, we first note that, since f7 is even we have fooo fr(v)dv = %,

which for a > 0 implies:

0 0
[ ste= st~ LE < [ (56— 20) = st oy

/IfE o)l f1(v dv+/\f€+|f1()

/ F(€— M) — F(ED)] fi(v)dv

By assumption there exists a constant A > 0 such that |f;(v)| < Av=2 as v — +oo. Hence, for

sufficiently large a > 0 we obtain:

—a\
/\fﬁ Av)| fr(v dv<A/yf§ /\v\—A/\/\f _Z)’%
e Al
_aZA/’f 2)dz < aQ)\l
/!f &R filv )dv<!f(£+)\A/ dU_A!fi&N

Finally also

0

/ 16~ o) = FEDI filo)dv < sup [7(E+2) = FEH).
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. _2 :
Summarizing, for small A and a = A3 we arrive at

0
[ ste= st~ LEL < axk iz + alsennd + sw Irte+a) - sl

1
A3 <z<0

But the right hand side vanishes as A | 0. Analogously one can show

i | [ 6~ )iy - LE —o
0

Therefore, as A | 0 the segments v < 0 and v > 0 of the integral (A.1.18) converge to the right
and left side limit of f at the point &£, respectively, which concludes the proof. n

To understand why f7 is referred to as an approximate identity we first observe that the
family of functions defined by A~! f7(A~'v) vanishes Lebesgue-almost everywhere as A | 0. More
precisely, it vanishes for any v € R except at v = 0, where it exceeds any limit as A | 0. On
the other hand the sequence of corresponding Fourier transforms ®;(At) converges to unity, i.e.,
to 1 = €. But this is the characteristic function of a certain degenerate distribution, namely
of that whose mass is concentrated at the origin. Consequently, according to the continuity
theorem, compare Theorem 3.6.1 in [Lukacs, 1970], we have limy g f:\;olv fr(u)du = I{0 <wv}
weakly, i.e., the distribution function of A=!f;(A~v) converges weakly to the identity of the
convolution product. This kind of convergence, however, requires acceptance of the concept of
weak convergence and distribution functions or, generally speaking, of signed measures. It is
not possible, to describe this convergence behaviour by arguments from L'-theory. Actually the
function I{0 < v} does not fit in this setting, since it does not possess a density but is defined
in terms of the probability function gy (v), which equals one for v = 0 and zero otherwise. An
approach to explain weak convergence without measure theoretical aspects was presented by
[Lighthill, 1958], who introduced the class of generalized functions in the center of which the
function d;py stands. Roughly speaking, generalized functions are defined as limits of convolution
integrals involving sequences of functions. This notion, however, is not compatible with measure
theory since dygy is treated in an improper fashion.

Besides Fejér’s kernel other important approximate identities are the density of the Gauss and
the Cauchy distribution. In the latter case ®;(t) = e~ !l and the integral on the right hand side
of (A.1.17) can be conceived in the sense of Abel summability for integrals, compare Lemma
A.4.1 below or Proposition 2.7.4 in [Pinsky, 2002].

It is immediate from its definition, that the partial sum operator converges if F{f} (-) is
absolutely integrable on R. The preceding theorem enables us to finally identify the associated

limit.
Theorem A.1.4. If f € LY(R) has the Fourier transform F{f}(-) € LY(R) the following
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A.1. The Fourier Transform of One Real Variable

integral representation converges absolutely and uniformly with respect to £ € R:

o0

(A119 €0 =5 [T

—00

Then f(§) is especially uniformly continuous with respect to £ € R.

In other words if f and F {f} () are absolutely integrable on R, except for a constant and for

the sign of the argument, each function is the Fourier transform of the other function.

Proof. Since F{f}(-) € L'(R) the integral (A.1.17) converges absolutely and uniformly with
respect to A > 0 and £ € R. Hence, the limit function is uniformly continuous and we are

allowed to interchange the order of limit and integration, resulting in (A.1.19). n

By additional averaging of the averaged integral (A.1.16) we obtain a different statement
about the convergence of the partial sum operator. It requires less stronger assumptions than
Theorem A.1.2 and can be found as Theorems 60.3(i) and 61.1 in [Korner, 1988].

Theorem A.1.5 (a second convergence test for the partial sum operator). If f € L'(R)
and F{f}(t) = O(t™!) as t — +oo then limM_,ooSMf(ﬁ):%.

The proof of the theorem concludes this subsection.

Proof. Ifin (A.1.16) we express the Fejér kernel in terms of its inverse Fourier transform, which
was derived in equation (A.1.13), an interchange in the order of integration for x € R and M > 0

leads to:

M
Ap(z) ::AZ/Smf(x)dm
0

- Me—m< M) F i@

In terms of this function for N > M > 0 we consider:

NAN(x) — MAM(:C)
N —

Al (z) :=
M

M

N

_ 1 —zth ‘t‘ 1 —z:ct |t|

5 [T K A =L
—-N

—-M
L /+/ — ’t’f{f}<)dt+5Mf(x)
—N M
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Denote S(z) := m and let 0 < xk < 1, implying kM < M < (14 k)M. A straightfor-
ward application of the triangle inequality then yields

(A.1.20) 1S(x) — Sarf(z)] < |S(z) — ATTHM( ‘ + }A UM (2) — Surf ()]

By assumption, for sufficiently large M there exists a constant A > 0 such that |®(¢)| < A [¢|™"
for |t| > kM. Thus, on the one hand, for the second modulus on the right hand side of (A.1.20)

we obtain:
—kM (1+r)M )M ’ ’
(14r) M — = i —zxt 1 Ttk
ALY @) - Suf@)] =5 | [+ / SO r 1y (0 ar
1+n
—rkM M
/ + / e FE LY (t) dt
—M rM
—kM (1+rk)M
<o [+ / F{F )] de
1+H
1 (I4+k)M
2
< = / tLdt
T
KM

T
oo & kM

As M — oo this vanishes. On the other hand, if we apply Theorem A.1.3 with Fejér’s kernel to
the first modulus on the right hand side in (A.1.20), it shows that:

lim |S(z) — ALY (@) = lim [S(2) = (14 k) A (@) + kA ()|

M—o0 M—o0
=0
Consequently (A.1.20) decays as M — oo and the proof is finished. n

A.2. The Fourier Transform of One Complex Variable

Under mild conditions on the ingredients many integral transforms that can be cast in the form
(A.0.1) establish analytic functions in some region of the complex plane. A criterion is provided

by the following theorem.

Theorem A.2.1 (analyticity of generating functions). Suppose the functions p(t) and a(t),

respectively real- and complex-valued, on each closed I C (0,1] are uniformly continuous and
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infier o(t) > 0. Then, if the integral

1

(=) = / (o0} alt)dt

0

converges for any z of some region R of the complex plane, and if the convergence is uniform
n any compact D C R, it represents a holomorphic function in R. In this event the derivatives
of arbitrary order can be computed by differentiation under the sign of integration. Especially if
f(2) is analytic in a subregion S C R with an isolated singularity at z = zg, the corresponding

residue of the product f(z)MM(—z) equals

1

/Reso {e(t)} % f(2)a(t)dt.

zZ=Zz

0

Proof. Under the present assumptions we conclude uniform continuity of log ¢(¢) on any closed

subinterval of (0, 1], whence Theorem 5.6.1 in [Wegert, 2012] implies for all n € N entireness of

N, (—2) = / (o0} a(t)dt.

1
n

A repeated application of this theorem tells us that for k£ € N the k-th derivative can be found

by differentiation under integral sign, yielding
1
M(~2) = [ (~log ()" {o(t)) " a(t)dr
1

But the sequence 9, (—z) was supposed to converge to 9(—z), uniformly in any compact
subset of R, from which by Theorem 5.1.3 in [Wegert, 2012] we deduce analyticity of the limit
function there. Moreover, according to the indicated theorem, even m&k)(—z) for any £k € N
converges uniformly to Sm(k)(—z). Finally, by definition, the residue is exactly the coefficient in
the Laurent expansion of f(2)M(—z) associated with the term ﬁ Since the coefficients in

the series expansion of 9(—z) result from differentiation, the proof is completed. n

The above theorem especially applies to the Fourier transform if the amplitude function f(z) is
continuous along the real axis, except for a finite number of discontinuities either removable or of
jump-type, and if it decays sufficiently fast as  — +0o. The reason is that e* = ¢@Rt=3t j ¢
for complex arguments the exponential function contains an additional factor that is unbounded

with respect to x € R. The growth of this factor can be overcome if there exist real numbers
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—a < b with the property

f(z)=0{e"} asaz— —oo,

flx)=0{e ™} aszx — 0.

(A2.1)

Under these conditions the Fourier integral representation (A.1.1) converges absolutely in the

strip
(A.2.2) Sr{f} ={teC:—-a <3t <b}.

It is then particularly simple to verify its uniform convergence in any compact subset therein.
For brevity let f be continuous along the whole real axis. Supposing £ C Sr{f} compact
and defining ap := min{S¢: ¢t € E} and by := max {3t :t € E}, for —X;, X9 > 0 there exist
constants B, A > 0 such that we have for any t € F:

X3 Xo 0o
FUrOl< [ e ip@ldes [ @l [ @) ds
—0Q X1 X2
X1 X2 00
<B / eOSV%0r 4+ max  |f(z1)] /e_gmdzn +A / e~ Cttaz gy
X1<z1<X>
—00 X1 XZ
(b—S3t) X1 -StXy _ St X —(St+a) X2
e e e e
-t A
oot Tk, @)l 3t St+a
e(b—bO)Xl 6—%tX1 - 6—%tX2 6—(ao+a)X2
<B—— A
- b — bg + X1 gilE?DS(XQ |f(x1)’ ao%n%ai)ébo St + ag + a

Identifying the function in the second summand as the hyperbolic sine function, which is espe-
cially continuous with respect to 3t € R, we see that this upper bound equals a finite constant
that is independent of ¢ € E. Hence, the convergence in E of the integral (A.1.1) is indeed
uniform. Since this was an arbitrary compact subset of Sz {f}, according to Theorem A.2.1,
the integral (A.1.1) defines an analytic function in the indicated region. For piecewise contin-
uous f the justification is similar with the exception that a distinction between the particular
continuity intervals is necessary. The set Sr {f} is referred to as the strip of analyticity, because
it constitutes an infinite strip in the complex plane, running parallel to the real axis. Only if
—a < 0 < b the real axis is contained. The criterion that was applied to verify the uniform
convergence was the simplest and can be considered an analogue of the Weierstrass M-test for
integrals. Further tests are presented, for instance, in §5.52 in [Copson, 1970]. In case of a
more general determining function f(z)dx = F(dx) appropriate criteria for analyticity can be
deduced similar to §§5.5 and 5.51 in [Copson, 1970].

An immediate consequence of (A.2.1) is that piecewise continuous amplitude functions with

a finite support result in entire Fourier transforms. Some were already given in examples A.1.2
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and A.1.4. Finally, in (A.1.1) a separation of real and imaginary part of the complex variable ¢

yields
(A.2.3) FLH() = / (RSt £

The Fourier transform of f with argument ¢ € C thus equals for fixed 3t € R the Fourier
transform of e~ f(z) with argument Rt € R. This enables us to derive properties for the
transform of a complex variable from those which were deduced for a real argument. For
instance, if the amplitude function e=>% f(z) for fixed 3t € R suffices the conditions of the
Riemann-Lebesgue lemma A.1.1, it follows that (A.2.3) vanishes as ¢t — +oo. This especially
implies, given (A.2.1) the Fourier transform of a complex variable decays towards each direction
of the real axis in the interior of its strip of analyticity. Furthermore, we can easily adopt the

inversion theorem from the Fourier transform of a real variable.

Theorem A.2.2 (complex Fourier inversion). Suppose there exists a purely imaginary num-
ber ito € Sy {f} such that e=™% f(z) is in L*(R) and satisfies at x € R the conditions for the
convergence of the partial sum operator (A.1.14), for instance the conditions of Theorem A.1.2.

Then, for any r € R we have

M—+iTg
(A.2.4) f(x):% Jim_ / e E (FY (1) dt.
—M+iTg

Moreover, if e= ™% f(z), F{f} (- +im) € L*(R) we immediately have validity of (A.2.4), the

integral being absolutely convergent.

The integral in this inversion formula is a contour integral and accordingly in some circum-

stances it can be evaluated by means of the residue theorem.

Proof. According to (A.2.3), the Fourier transform F {f} (s + i) for s € R is readily verified
as the transform corresponding to e~% f(z). But the latter satisfies the conditions for the
applicability of the inversion formula. We thus deduce from (A.1.14) by means of a simple

substitution for z € R:

M
flz) = e lim e TS F{fY (s +itp) ds

2T M—oo
-M

M+itg

=L im / e F{f}(t)dt

B 2T M—o0
—M+ito

The second statement of Theorem A.2.2 follows from Theorem A.1.4. It must, however, be

emphasized that the uniformity of the latter theorem does not apply for the integral (A.2.4),
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since the theorem was employed for the product e™™% f(x) but not for f(z) only. This finishes
the proof. n

We close this section with another example for an analytic Fourier transform.

Example A.2.1 (Laplacian density). Assume the amplitude function is given by the density
of the Laplace distribution, i.e., f(x) = e~1l. This is evidently continuous with respect to z € R
and we readily confirm the validity of (A.2.1) with a = b = 1. According to our preceding

findings, the Fourier integral representation (A.1.1), which is now given by

o0

(A.2.5) F{ ) = / 1l g,

—00

thus establishes an analytic function in the region —1 < 3t < 1. To investigate its behaviour
on the boundary &t = —1, Ot = 1 or beyond, we must determine the corresponding analytic
continuation. This basically means, we need to find a function that is analytic in a larger region
of C but coincides with (A.2.5) in a subregion of —1 < 3t < 1. In our present example this
is particularly simple, since the integral (A.2.5) can even be expressed in terms of elementary

functions. Therefore we observe for fixed ¢t € C with —1 < $t < 1:

F{ft@) = / {e"™ 4+ e "} e dx
0

1

The function on the right hand side constitutes a meromorphic function of ¢ € C with two simple
poles located at ¢t € {—i,1i}, respectively. But the strip —1 < 3¢ < 1 is contained in the larger
region C \ {—i,i}. Hence, the rational function (A.2.6) equals the desired continuation of the
integral (A.2.5). Observe that the two singularities of the analytic continuation are exactly the
purely imaginary points on the boundary of the strip of analyticity —1 < St < 1 of (A.2.5).
This is typical for analytic Fourier transforms of monotonic functions, a statement that was
presented by [Widder, 1946] for an integral transform of similar type. Finally it is easy to see
that the conditions for the absolute convergence of the inversion formula (A.2.4) apply for all

—1 < 719 <1, and for any = € R we therefore obtain

oco+iTo it
1 e
A2.7 i J— / ——dt.
( ) ¢ 2 141¢2
—00+1T09

This equality can also be verified by means of the residue theorem. For this purpose, depending
on whether z > 0 or x < 0, we consider a semicircle of radius R > 0 that is symmetric
with respect to the imaginary t-axis and whose edge runs parallel to the real t-axis and cuts

the imaginary t-axis at the point ¢ = i75. The radius is supposed to be large enough for the
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semicircle to contain the pole at t = i or at t = —i, respectively if x < 0 or > 0. According to
the residue theorem, apart from a constant the integral along this semicircle then equals e® if

T

x < 0ore®if x > 0. Letting the radius R tend to infinity, the contribution from the integral
along the arc of the semicircle vanishes, whereas the integral along the edge converges to the

right hand side of (A.2.7), which overall results in the indicated equality.

A.3. The Laplace Transform

Closely related to the Fourier transform is the bilateral Laplace transform, which is for ( € C
defined by

oo

(A.3.1) BLA{f}(C) := / e " f(z)dx.

—00

This is readily identified as the Fourier transform of f with the complex argument ¢ in (A.1.1)
equal to i(. According to our findings from the preceding subsection, it thus only exists for
amplitude functions with a certain exponential decay. An important special case of (A.3.1) is

the (unilateral) Laplace transform

(A3.2) LIN© = [ rn,
0
for which we can write
(A.3.3) LLFYHE) = / =i =RC £ £ > 0} d

Clearly, this is the Fourier transform corresponding to the amplitude function f(x)I{z > 0}
with the complex argument ¢ in (A.1.1) replaced by i¢¢. For a thorough treatment of Laplace
transforms, we refer the reader to [Widder, 1946].

The restriction to the positive real axis in (A.3.2) bears the advantage that, rather than
the bilateral Laplace transform its unilateral counterpart exhibits analyticity under fairly weak
conditions on the amplitude function. For example one can show, provided f(z) is piecewise
continuous with respect to x > 0, the only discontinuities being either removable or of jump-type,
and if

(A.3.4) fl@)=0{e ™} asz— oo,
for some a € R, that (A.3.2) establishes a holomorphic function in

(A.3.5) Sc{f} ={CeC:R¢C> —a}.
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In contrast to the Fourier transform this is no longer a strip but a half plane. The line R = —a
is referred to as the abscissa of convergence. Moreover, the Laplace also differs from the Fourier
transform by the fact that the condition (A.3.4) on the amplitude function even admits growth

when approaching infinity. A property which both transforms have in common is invertibility.

Theorem A.3.1 (inverse Laplace transform). Suppose the function e f(—y)I{y < 0} for
oo > —a satisfies the conditions of Theorem A.1.2. Then, for x > 0 the amplitude function can

be represented through the Bromwich integral

oo+iM
1
(A.3.6) fr) = lim o / em L {F} (1) dt.
oo—1M

Proof. By comparison with (A.3.3) we identify L£{f} (oo + i7) with 7 € R as the Fourier
transform of the real variable 7 corresponding to the amplitude function e?¥ f(—y)I{y < 0}.

According to Theorem A.1.2, we thus obtain from (A.1.14) for y € R, after a simple change of

variables:
. M
—y){y < — 7 00Y [ il —iyT .
Pty <0 = tim oo [ L (g (o0 +imyar
-M
1 oo+iM
= 1 _ —yt
g o [ e
oo—1M
The proof is finished if we write x = —y. .

In the present work the Laplace transform mainly occurs in the context of Abel summability
of integrals, a technique to be discussed in the next section, as a means to maximally exploit the
oscillations of Fourier-type integrals. We shall therefore spend no more time on this particular

transform and close this section with a few examples.

A few Laplace transforms can be written in terms of elementary functions, for instance
(1 —4t)~!, which is associated with the amplitude function e®*. Among those that do not admit
an elementary representation, the gamma and the beta function are possibly most studied. For

fixed Rg > 0 they are given by

(A.3.7) e Sttt =: ¢TI (q),
/

(A.3.8) e (1 —e N1 = B((, q).
/

Their abscissa of convergence is evidently 8¢ = 0. The gamma and beta function are of frequent

occurence in this work with their important properties to be discussed in Appendix B.2 and
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B.3 below. The analytic continuation with respect to their argument is readily derived since
these particular examples satisfy some remarkble identities, which are easy to verify by partial
integration. This is an exception and in general the determination of the analytic continuation
of a Laplace transform can be much more complicated. This already applies to the innocent

looking integral
(A.3.9) LUQ) = [ ate s,
0

which represents the Laplace transform of f,(z) := (1 + z)47! for fixed ¢ € R. Clearly, f,()
is a rational function for ¢ € Z but otherwise it is multi-valued. The integral (A.3.9) exhibits
analyticity in the half plane S;{f;} = {( € C:R({ > 0} and remains absolutely convergent
along the line ¢ = 0 if ¢ < 0. Since fy(x) is monotonic, Theorem 5b in ch. II in [Widder, 1946]
tells us that the purely real part on the abscissa of convergence, i.e., ( = 0, is a singular point.
The nature of this singularity depends on ¢q. It is either a pole or a branch point. To show this

we make a simple change of variables:

(A.3.10) LI Q) = ¢tes / 19T gt
¢

This representation exposes what type of function the Laplace transform (A.3.9) actually is,
namely the antiderivative of the function t9~te~*. With respect to t € C the latter is rational
for integer ¢ and otherwise multi-valued. In case of multi-valuedness we choose the argument
function subject to |arg(t)| < m. The Laplace transform under consideration is then obtained
up to an additional factor by integrating t9~te~! along an arbitrary piecewise continuous path
that runs through the region of analyticity, connecting the point ( € C with the point infinity
in R¢ > 0. This region is either C\ (—o0,0] or C\ {0}, depending on ¢. By admitting ¢ < 0
the described procedure eventually gives rise to the analytic continuation of the integral (A.3.9).
The integral appearing in (A.3.10) is in complex calculus referred to as the upper incomplete

gamma function.

A.4. Boundary Behaviour of Analytic Functions, Summability of

Divergent Integrals and Weak Convergence

In this section we point out the connection between the behaviour of an analytic function on
its boundaries and the notions of summability of integrals and weak convergence. Therefore we

consider an illustrative example, furnished for fixed p > 0 by the simple Laplace transform

o0

(A.4.1) L1} (2) = /tp_le_tht,

0
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which is of course expressible in terms of the well-known gamma function. As a function of
z € C, by Theorem A.2.1, the integral exhibits analyticity in the half-plane Rz > 0. Assuming

for a moment z > 0 real, a change of variables leads to
(A.4.2) L {t”_l} (z) =z PT(p).

This result remains true by analytic continuation for z € C\ {0} if p € N and for z € C\ (—o0, 0]
if p > 0 is non-integer with |arg(z)| < m. Suppose now, for £ € R\ {0}, we are interested in the

limit as A | 0 of the sequence of integrals

(A.4.3) L1 (AN +i€) = /tple(wrig)tdt
0

Separating the integration path into two segments, for instance into the intervals (0,1) and
(1,00), we see that the convergence of the integral is uniform with respect to A > 0 on the first
segment for any p > 0. Regarding the interval (1,00), however, the behaviour of the integrand
as A | 0 especially for arbitrary p > 1 suggests the sequence of integrals will certainly diverge.
At least in the case 0 < p < 1 one could expect the existence of a limit because the integral for
A = 0 exists in the improper sense. More precisely, for any 7' > 1, from partial integration we
obtain
—i€T i€ "

T
. -1 .
A.4.4 Lot gy — _p—1¢ £ / =2,k gy
( ) 1/ e ic + T + T e

1

Letting T' — oo the first summand vanishes, whereas the integral in the last summand converges
even absolutely since 0 < p < 1. Consequently the integral (A.4.3) for A = 0 but £ € R\ {0}

indeed converges if 0 < p < 1 in the sense that the improper integral

T
(A.4.5) ko= lim [ P le " dt
T—o0
0

exists and equals a finite constant that depends on £, p. Yet, we will see below that the sequence
of integrals (A.4.3) as A | 0 approaches a finite limit for all p > 0. Since (A.4.1) is particularly a
Laplace transform, taking the limit in (A.4.3) is equivalent to approaching the point £ from the
right z-half plane. Because i€ is located on the abscissa of convergence this requires information
about the analytic continuation corresponding to the above integral representation. But the
latter is exactly given by (A.4.2). According to the rules for complex-valued power functions,
with the branch |arg(A + i§)| < 7 this leads to:

lim £ {1} (A +i€) = Hm(\ +3¢) "(p)
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— lim |\ + €| 7P e—Parg(A+il)p
Alfoll + 1] Pe (p)

(A.4.6) = || 77 eFP3T (p)

The phase of the complex exponential function indicates the argument of —i£. According to
(A.4.6), the sequence of integrals (A.4.1) thus indeed possesses a finite limit for any £ # 0 and
especially for any p > 0. Even for p > 1 in which event the integral fooo tP~ et diverges.
The reason is that, for any fixed p > 0 the analytic continuation of (A.4.1) exhibits on the line

Rz = 0 only a singularity at Sz = 0.

Assuming 0 < p < 1 in (A.4.3), the existence of the limit as A | 0 can also be justified
by Abel’s lemma. This leads us to the topic of summability of integrals, a technique which is
usually applied to non-absolutely convergent integrals. In particular, summation methods aim
for a simplified computation or specification of a limit of an improper integral or of an integral
whose actual convergence behaviour is unclear. An example is given by (A.4.5). Summability
theorems are frequently encountered in the context of Fourier analysis and can accordingly be
found in [Pinsky, 2002], [Titchmarsh, 1937] and [Widder, 1946]. For a more general discussion
of this topic we refer to [Hardy, 1949]. As an example, below we present Abel’s lemma in the

version of Proposition 2.7.4 in [Pinsky, 2002].

Lemma A.4.1 (Abel). (1) If f(t) is locally integrable on t > 0 and the limit lim;_,o f(t) =

L exists, then

: —At —
(A.4.7) l/\lﬁ})\/e f(t)dt = L.
0

(2) If g(s) is locally integrable on s > 0 and the limit limp_, fOT g(s)ds = L equals a finite

constant, then

o0

A4 li “Ag(s)ds = L.
(A.4.8) lim [ ™ g(s)ds
0

Applying the second statement from this lemma to (A.4.5) with g(s) = sP"le ™% for 0 < p < 1
we arrive at the integral (A.4.3). Again, by referring to the gamma function the limit as A | 0
is readily confirmed to equal (A.4.6).

Finally we mention that sequences of integrals also occur in measure theory. From this per-

spective the expression (A.4.3) as A | 0 can be considered as a limit of an integral with respect

t

to a sequence of measures whose density equals the function ¢ — e~ an interpretation with
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pitfalls. To point these out, for ¢ > 0, we introduce the function

! 1— e*)\t

(A.4.9) E\(t) == /e_/\sds =
0

Clearly, E\(dt) = e~*dt. Moreover, it is easy to see that (A.4.9) for fixed A > 0 belongs to the

class of functions of finite total variation on [0, 00|, in the older literature referred to as functions

of bounded variation. Their convergence behaviour can be described as weak convergence. With
(A.4.9), instead of (A.4.3) we can write

(A.4.10) L1 (N +i€) = / tP~ e 8ty (dt).
0

Convergence properties of integrals with respect to functions of finite total variation can be
specified according to the Helly-Bray theorem. It is most frequently cited in the version for
probability distributions, compare for instance Theorem 3.5.2 in [Lukacs, 1970]. A more gen-
eral version for functions of finite total variation can be found as Theorem 16.4 in ch. 1 in
[Widder, 1946], which shall be applied below. In before we agree that, a function f(¢) is said to
be continuous on [0, 0o}, if it is continuous at any point of the interval and if f(oco) := im0 f(t)

exists.

Theorem A.4.1 (special version of the Helly-Bray theorem). For a function Ky(t) of
finite total variation on [0,00] uniformly with respect to A > 0 suppose K(0) = 0 and K :=
Ky (00) does not depend on X\ > 0, and for 0 <t < oo we have

(A.4.11) lim (1) = 0.

Then, the following statements apply:

(1) If f(t) is continuous on [0,00], we have

(A.4.12) l}%ilol/f(s)KA(ds) = K f(0).
0

(2) If g(s) is locally integrable on s > 0 and the limit imp_,~ fOT g(s)ds = L equals a finite

constant, we have

(A.4.13) l)ﬁ%/ {K — Kx(s)}g(s)ds = LK.
0

The integral on the left hand side need not converge absolutely.
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Proof. Under the assumptions of the theorem we can write K)(t) = fg K (du) and we observe

0, if0<t< oo,
(A.4.14) lim K, (t) =
MO K, ift=00

Hence, the left hand side converges weakly to the function KT {oco < t}, which equals zero for any
t > 0and K as t — co. The statement of Theorem A.4.1(1) is thus an immediate consequence of
the general Helly-Bray theorem, which can be found as Theorem 16.4 in ch. 1 in [Widder, 1946],
leading to

hm/f K,\ dS /f (5{00} dS Kf(oo)
0

Regarding the result in Theorem A.4.1(2), for fixed T, A > 0 we first obtain from partial inte-

gration:

T T T t
/ (K — Ka(s)} gls)ds = (K — K(T)} / g(s)ds + / / o(s)dsKx(dt)
0 0 0 0

If we eventually let T — oo, the first summand vanishes by assumption and we arrive at
oo t

(A.4.15) /{K Kx(s)}g(s) //g VdsK(dt).
00

Since ¢ is locally integrable the integral fo s)ds defines a function which is continuous on
[0,00). Moreover, by assumption it approaches a finite limit as ¢ — oco. Consequently, the
integral fo s)ds even denotes a continuous function on [0,00]. Letting A | 0 we can again
apply the Helly-Bray theorem to the right hand side of equation (A.4.15) to eventually arrive
at (A.4.13). n

With Ky(t) = 1 — e~ we exactly obtain the statement of the Abelian lemma A.4.1, i.e., of
the cited Proposition 2.7.4 in [Pinsky, 2002]. To apply the preceding theorem to the integral
(A.4.10), we first observe lim;, E)(¢) = 3. The function is thus not of finite total variation

on [0, co] uniformly with respect to A > 0. However, the function
(A.4.16) F\(t) := A/e—“ds =1—eM

is of finite total variation on [0,occ] uniformly with respect to A > 0 and Fj(co) = 1. In

stochastics, (A.4.16) is precisely associated with the exponential distribution with parameter
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A > 0. Moreover,
t
(A.4.17) h(t) = /sp_le_issds
0

is a continuous function at any ¢ € [0,00], especially since the limit as ¢ — oo exists with
h(oo) = K, according to equation (A.4.5). As a consequence of these considerations, Theorem

A.4.1(2) applies and we immediately obtain
(A.4.18) 1% / {1 - F\(t)} P~ te % dt = k.
0

To summarize the findings of this section, summability and weak convergence describe similar
concepts for the convergence of integrals by the tools of different topics of mathematics. But
beyond this scope sequences of integrals may still approach a finite limit by arguments of complex

calculus.

A.5. The Mellin Transform

If in (A.0.1) we choose p(z) = log(x) and P = (0, 00) we arrive at the Mellin transform. This is

in particular the integral

o0

(A.5.1) MA{f}(C) = /:cc_lf(az)d:c.

0

Necessary conditions for a piecewise continuous function f to possess a Mellin transform and
further basic properties can immediately be derived from the Fourier transform. Indeed, if in
(A.5.1) we make the change of variables u = log(x) and separate real and imaginary part of the

argument, we arrive at

[e.e]

(A5.2) MUHQ) = [ esemmens(e)au

—00

This is readily identified as the Fourier transform of a complex variable associated with the
function f(e"). Note, however, that now —i{ corresponds to the variable ¢ in (A.1.1). As a
consequence of (A.5.2), similar to the Fourier transform the presence of at least finitely many

removable or jump discontinuities and the existence of constants —a < b with the property

flz)=0{z*} asz—0,

(A.5.3)
f(z)=0{z7"} asz— oo,
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suffice to establish analyticity of the integral (A.5.1) in the strip
(A.5.4) SmA{ft={CeC:—a<RC<b}.

More precisely, in these circumstances the integral representation (A.5.1) converges absolutely
and uniformly in any compact subset of the region (A.5.4). The latter is again referred to as
the strip of analyticity of the Mellin transform but runs now parallel to the imaginary axis.
According to the requirement —a < b, the Mellin transform of constants or polynomials does

not exist, except if they are restricted to a finite subset of the positive real axis.

Another simple conclusion from the representation as a Fourier transform is the Riemann-
Lebesgue lemma, implying the decay of M {f} (¢) as ¢ — £oo in Sy {f}, provided the integral
representation converges absolutely. Regarding the asymptotic behaviour of a Mellin transform
in the direction of the real axis, general statements are only possible if a = oo or b = o0, in
which event the integral representation immediately shows its growth in the respective direction
of the endpoint. For example if b = co then M {f} (¢) ~ [ 7! f(z)dz — oo as RC — oo if
f(x) # 0 for some x > 1. Detailed asymptotic statements substantially depend on continuity
and possible analyticity of the amplitude function. These can, for instance, be deduced by em-
ploying Theorem 4.7.2 in [Bleistein and Handelsman, 1986]. Finally, a reference to the Fourier

transform is also helpful to establish an inversion formula for the Mellin transform.

Theorem A.5.1 (inverse Mellin transform). If there exists a real number oy € Sy {f} for
which e f(e*) is in L*(R) and satisfies the further condition of Theorem A.1.2, the function

f can be written as a complex-valued integral. In particular, for any t > 0 we then have

oo+iM

(A5.5) £ = lim o / ML} (2) t2dz.

If 70U f(e¥), M {f} (00 + iy) € LY(R) the validity of (A.5.5) is immediate and the integral con-

verges absolutely.

Proof. In accordance with (A.5.2), the Mellin transform with argument ( = o + i7 for 7 € R
is exactly the Fourier transform of the variable 7 of e?°" f (). The Fourier inversion theorem
A.1.2 therefore yields for u € R:

M

1 ,

w\y __ _—oou 1: —iuT .

fle")y=e 11£>n 27r/€ MAf} (og +it)dr
M

oo+iM

1
= lim — / e M{f}(z)dz
The second equality follows from a substitution. With ¢ = e" for u € R we arrive at (A.5.5).
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Finally, the second claim of Theorem A.5.1 holds subject to Theorem A.1.4. Again it must be

remarked that the uniformity statement of the cited theorem does not apply. n

We proceed with a quick overview on two important Mellin transforms before we discuss some
methods to expose the analytic structure of these transforms in wider regions of the complex

plane.

Example A.5.1 (gamma function). Possibly the most frequently occuring Mellin transform
is that of the exponential function, better known as the gamma function. For R{ > 0 it is
denoted by:

L) =M{e"}(0)

(A.5.6) = /tf—le—tdt
0

According to our preceding findings, this integral establishes an analytic function in 8¢ > 0. We
take this opportunity to outline an application of the Mellin inversion formula. A more detailed
discussion of the analyticity properties of the gamma function is postponed to Appendix B.2.
For the moment it suffices to know that the integral (A.5.6) can be extended to a meromorphic
function in the whole complex plane with an infinite sequence of simple poles at the non-positive

integers. For k € Ny the corresponding residues are given by

(-n*
K

(A.5.7) é%e_sklj(g) =

Moreover, I'(¢) exhibits exponential decay into any direction of the imaginary axis for fixed
RC € R. Subject to the inversion theorem A.5.1 this enables us to represent the exponential

function for gg,t > 0 as the absolutely convergent complex-valued integral

oo+ioco
1
A58 P I'(2)t *d
g0—100

which is known as the Cahen-Mellin integral. By analytic continuation its validity can be verified
for arbitrary ¢ € C with ¢t > 0. The reader who is unfamiliar with special functions might be
insecure how to evaluate the integral (A.5.8) or how to confirm the whole equation without
making a reference to Mellin transforms. This requires to employ the residue theorem. First
we consider for fixed ¢ > 0 a semicircle of radius R > 0 that is symmetric with respect to the
real z-axis and whose edge cuts the positive real z-axis at z = op. The radius is supposed be
sufficiently large so that the semicircle contains exactly the first N —1 negative integers including

zero. At the same time the arc I'g may not cross the N-th pole. By encircling the semicircle in
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the counterclockwise direction, according to the residue theorem, we obtain

1 oo+itR N—1 ( t)n

A5.9 — t7Fdz 4 — [ D)t Pdz =Y ~——.
( ) 2mi / L) et 27 (2) : Z n!
UO—iR FR n=0

If we eventually let R — oo it can be shown by means of Stirling’s formula that the contribution
of the integral along the arc I'r vanishes, whereas on the right hand side of equation (A.5.9)

residues from the poles at subsequent negative integers must be added. This eventually leads to

oo+ioco
! - — (—1)"
A5l — r “dz = .
(A.5.10) — / (2)t~"dz ZO u
00—100 n=

The right hand side equals exactly the well-known series representation for the complex expo-
nential function. It converges absolutely and uniformly in any compact subset of the complex
plane. This confirms that (A.5.8) holds for arbitrary ¢ € C with R¢ > 0, since this is the largest
common subregion of the complex plane where the integral and the series exhibit analyticity.
Equation (A.5.10) reveals a close connection between Mellin transforms and power series. In
fact, many power series possess an equivalent representation in terms of a complex-valued inte-
gral.

We close this example by illustrating an outstanding property of the gamma function as a
Mellin transform. For ¢ > 0 and any ¢ > 0, we have

1

A5.11 = /t“e"fdt.

Observe that this equation remains valid by analytic continuation for arbitrary ¢ € C with
Ro > 0. It thus enables us to introduce an integral representation for reciprocals. A standard
application is the derivation of an integral representation from the series for Riemann’s zeta
function. It can, however, also be employed to establish a connection between the Laplace and
the Mellin transform of a function f, provided the latter integral converges absolutely for some
R¢ < 1. Then we may apply (A.5.11) to the integral representation for the Mellin transform

and, subject to absolute convergence, interchange the order of integration, to find:

MO = [ e
0
_ F(ll—C) / 2< / e~ £ (1) dtd
0 0
(A5.12) - r(ll—oM (L a=-0
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The first part of the preceding example made it obvious that the appropriate application of
Mellin transforms requires a fundamental knowledge of complex calculus. Besides the gamma

function, the beta function is also important and of frequent occurence.

Example A.5.2 (beta function). We already encountered Euler’s beta function in equation

(A.3.8) as an example for a Laplace transform. After a simple change of variables we obtain
1
(A.5.13) B((, q) :/sC 11— s)97ds, RC, Rq > 0.
0

For fixed ¢ > 0 this evidently constitutes the Mellin transform corresponding to the function
f(s) = (1—-5)97'T{0 < s < 1}. The associated strip of analyticity matches the entire right ¢-half
plane. However, since there exist many equivalent representations, at the same time for fixed

a,p,0 > 0 the Mellin transform associated with
o(0) = (1+ 07077

can also be cast in terms of the beta function. Therefore we first consider the corresponding

integral definition
(A.5.14) Mg} (¢ /tC L1 4 0%t P at.
0

From the behaviour of the integrand we readily see that the strip of analyticity is
(A.5.15) Sv{g={CeC:0< R < ap}.

Making in (A.5.14) the changes of variables §“t* = , we arrive at:

1
Mg (¢) = =" / S5 - sy E71ds
0

—6=Ca"'B (C,p_ C)

« «

(A.5.16)

Hence, also the Mellin transform of (A.5.14) can be cast in terms of the beta function (A.5.13).

A.5.1. Analytic Continuation of Mellin Transforms

A common technique to determine the analytic continuation of a Mellin transform is, to employ

an asymptotic expansion for the amplitude function. We shall illustrate this procedure for the
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function f(z) = m with

(A.5.17) MA{f}(C

0

According to our introductory discussion on Mellin transforms, this establishes a holomorphic
function in the strip 0 < R < 1. Assume we were interested in the continuation beyond the
boundary line 8¢ = 1. This boundary is due to the behaviour of the amplitude function at
infinity. In particular, the amplitude function f(z) as x — oo can be expanded by the formula

for the geometric series, according to which we have for |z| > 1 absolute convergence of

1 oo
(A.5.18) == (-1kah
k=0

&

If we now separate the range of integration at some x; > 0 and rearrange (A.5.17), for 0 < R <

MAFH(C / dx+/ <2dx+7z<1{1i$—i}dx

0 x1
26t 1
A.5.19 = Gl —— - 1%4a
( ) /1+a; C / {1+x :c} v
0

By comparison with the criterion (A.5.3) we readily confirm analyticity of the first integral in

1, we obtain:

R¢ > 0. Furthermore, the integrand in the second integral is especially continuous on x > x;

and from (A.5.18), as x — 0o, we get

By (A.5.3) the integral thus constitutes an analytic function in the half plane $¢ < 2. Finally
the second summand in (A.5.19) equals a meromorphic function in the complex plane. To
summarize these observations, the expansion (A.5.19) establishes a meromorphic function in the
strip 0 < ¢ < 2, which is the greatest common region of analyticity of all three functions. The
only non-analytic point therein is a simple pole at {( = 1. The corresponding residue equals
the residue of the second summand there, since the remaining summands are analytic at { = 1.
According to the basic rules of complex calculus,

¢—1

(A.5.20) Res M{/}(Q) = Re at

= 1.
¢=11—-¢

Since the strip 0 < R < 1 is contained in 0 < R¢ < 2, the expansion (A.5.19) extends the

integral (A.5.17) to a meromorphic function in the indicated region. The continuation evidently
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does not depend on x1 > 0. However, it becomes invalid for x1 = 0.

Finally, the above procedure can be repeated by adding an arbitrary finite number of terms
of the expansion (A.5.18). Only if 1 > 1 we may take the whole series. The technique is even
applicable for more general expansions involving logarithmic or exponential terms, compare §4.3
in [Bleistein and Handelsman, 1986]. In any case it must be emphasized that the asymptotic
expansion for the amplitude function need not be convergent. This is also seen in the present
example if we assume x; < 1, in which event the geometric series (A.5.18) is in fact divergent

but none of the arguments for the validity of (A.5.19) is violated.

Alternatively the preceding result can be achieved by partial integration. This is slightly
more elaborate but bears the advantage that the technique can be adapted to more general
integral transforms of the form (A.0.1) with different phases. For this purpose we again divide

the range of integration at some z; > 0 and rearrange the integrand:

xr1

T
(A.5.21) MA{f} (c)—/ dx+/x<—2

1+=x

0 T

d
1+z v

Observe that we incorporated the asymptotic behaviour of the amplitude as x — oco. Contrary
to the former approach we multiplicatively separated the leading factor from the expansion
(A.5.18). The new amplitude function fa(z) := zf(z) is now constant but non-vanishing at

infinity. In particular, fo(x) — 1 as © — oco. But the derivative

1

fo(z) = A+

2 as ¢ — oo. This can also be obtained by

vanishes at infinity. More precisely, fj(x) ~ x~
differentiation of (A.5.18). If we thus integrate by parts once the second integral in (A.5.21), for

0 < R¢ < 1 we arrive at:

1

201 21 2 1™ 1 [ ot

0
y
¢—1 1 ¢ 1 ¢—1
(A.5.22) :/ T dr— i S / z dx
1+ (—11+4+x; ¢—-1J) (1+4x)?
0

1

Since the integrand in the last integral is a continuous function on & > x1, by means of standard
estimates, we can readily verify analyticity of the integral in 8¢ < 2. The whole expansion on
the right hand side of (A.5.22) is therefore again meromorphic in 0 < R¢ < 2 with a simple pole

at ¢ = 1. The corresponding residue can be computed by means of the fundamental theorem of
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calculus. By analyticity of the first summand, it is given by:

oo
T 1

Res MASHO) = =77, /(1+z)2d$

1

(A.5.23) =—1

Of course this coincides with the residue we obtained from the procedure of analytic continuation
by means of an asymptotic expansion, compare (A.5.20). This is not surprising since, subject
to the identity principle, the functions (A.5.19) and (A.5.22) are equal for 0 < R( < 2. To
conclude these findings, (A.5.22) provides another representation for the analytic continuation
of the integral (A.5.17).

Rather uncommon is the observation that, in the present setup, integration by parts is also

viable with 1 = 0 since fa(x) ~ x as « | 0. Then, instead of (A.5.22) for 0 < R¢ < 1, we obtain

¢—1
;13 dzx.
1+ z)?

(A.5.24) MO =5 [ 1
0

This integral is also meromorphic in the strip 0 < 3{ < 2 and thereby furnishes a third repre-
sentation for the continuation of the integral (A.5.17).

Obviously the described integration by parts procedure does not exploit any convergence prop-
erties of the asymptotic expansion for the amplitude function. Indeed, it suffices for f(x) to be
continuously differentiable on x > x5 for some x5 > 0 and to possess a differentiable asymptotic
expansion of purely algebraic type. This immediately indicates a drawback of the integration by
parts method, in comparison with the method of an asymptotic expansion, to be kept in mind.
To be exact, if the asymptotic expansion of f involves non-algebraic expressions, for instance
logarithms, we can make use of the second approach but the first will most likely not be effective
without further modifications.

The strategy to determine the analytic continuation to the left direction beyond the boundary

R¢ = 0 is analogous and requires to study the behaviour of the integrand as x | 0.

A.5.2. Mellin Transforms of Fourier Transforms

We now derive a remarkable identity for the Mellin transform of a Fourier transform @ associated
with a real-valued! function F of finite total variation?. Since each function of finite total
variation can be written as the difference of two monotonic functions, it is sufficient to assume
F monotonic. Moreover, we assume F'(co) = 1, whence F' equals a probability distribution and

® corresponds to the class of characteristic functions, compare Section A.7 below. In this event

'If F is complex-valued, consider real and imaginary part separately.
*Recall that F is especially of finite total variation if F(dx) = f(z)dx for f € L'(R).
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®(0) = 1, so that the existence of the integral
(A.5.25) MA@} (¢ / £1a(¢)
0

for some ¢ € C implies ¢ > 0. Suppose that this is in fact the case, i.e., there is exists b > 0
such that (A.5.25) is finite for any real 0 < ¢ < b. Then, according to Abel’s lemma A.4.1, we

have
(A.5.26) M{B}(C) = lim / K10t (1) dt.

For fixed 6 > 0 and 0 < ¢ < min {1, b} we may introduce the integral definition of ®, interchange
the order of integration and employ the property (A.5.11), to find:

(e}

t( 1 —6t(1) t( 1 —(6 ix tth(dl’)
[ ] |
(A.5.27) - T(0) / (6 — iz)~C F(da), larg (5 — iz)| < 7

—00

For fixed 6 > 0 the argument function maps to (—3% As § | 0, depending on positivity or

5. 3)-
negativity of the integration variable, it approaches the angle between the positive real and the
negative imaginary or positive imaginary axis, respectively. More precisely, according to the

rules for complex-valued power functions, for z € R we obtain:

hin(é—m) C—hm|6—m] ¢ p—Carg(d—iz)
s

<

e, itz <0

ifxz>0

Suppose that b > 0 may be chosen such that not only (A.5.25) exists but at the same time for
0 < ¢ < b we have

(A.5.28) / 12~ F(dz) < 0o

Observe that this excludes F'{0} = 0. In fact the characteristic functions of many known
distributions with F {0} # 0 such as Bernoulli or Poisson do not possess a Mellin transform.
Then at best only ®(¢) — F {0} has a Mellin transform. Or e®#®(t) for arbitrary u € R\ {0}.
Finally, plugging (A.5.27) into (A.5.26), for 0 < ( < b Lebesgue’s dominated convergence

474



A.5. The Mellin Transform

theorem applies. Since the branch point at the origin has F-measure zero, we arrive at:

0 od
= im —iz)~¢ T
M) = T(O) liy /+0/ (5 — i) < F(da)

0

(A.5.29) _ () d e3¢ / v (dz) + e3¢ / (—2)~CF(da)

0 —00

Not only does this latter representation offer some computational advantages when the F-
integral is easier to evaluate than (A.5.25). It also endowes us with an identity to determine
the analytic continuation and permitts us to describe the properties of M {®} ({) in terms of F’
itself rather than in terms of its characteristic function ®. This is what we shall discuss below.

For convenience we denote the sum of the two F-integrals in (A.5.29) by

fe'e) 0
(A.5.30) n(¢) = e3¢ | z7SF(dz) + e3¢ | (—2) SF(dx).
/ J

From a viewpoint of integral transforms each integral constitutes a Mellin-Stieltjes transform of
the distribution function F. We adopt this notion from [Widder, 1946] who similarly describes
Laplace transforms of integrals with respect to functions of bounded variation, i.e., of finite
total variation, rather than with respect to the Lebesgue measure. The origin of this definition
evidently is that we consider an integral of Stieltjes-type. Except for a prefactor the sum of in-
tegrals (A.5.30) coincides with the k-th moment of F if ( = —k for k € N, provided this moment
exists. However, we shall observe below that, despite the integral representations (A.5.30) may
not converge for negative integers, the analytic continuation of n({) can still be well-defined for
such values. We proceed with an investigation of the properties of the above Mellin-Stieltjes
transforms for different types of functions F. To establish definite statements on the analytic-
ity of Mellin-Stieltjes transforms, we advise the reader to modify the criteria of §§5.5 and 5.51
in [Copson, 1970]. Finally, since we may decompose any distribution function according to the
Lebesgue decomposition theorem into the sum of its discrete, absolutely continuous and singular

part, it is no restriction to study each kind separately.

Omitting singular distributions we first assume F' is discrete, i.e., a step function with jump
points Dp C R. In this situation each integral in (A.5.30) becomes a finite or infinite sum. If
the F-atoms are located on equidistant points along each segment of the real axis the series is
particularly of Dirichlet-type. If the set of atoms does not lie dense in a neighborhood of the
origin, i.e., especially if £y := inf {|¢| : £ € Dr} > 0, each of the two integrals in (A.5.30) is easily
seen to converge absolutely and uniformly in any compact subset of the half plane R¢ > 0 since
we have [ F(dz) =1 and thus

n(Q)] < & ™.
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In this event we expect analyticity of 7({) in the right ¢-half plane and therefore, if the Mellin
transform (A.5.25) establishes an analytic function, also of the associated analytic continuation
(A.5.29). This coincides with the statement of Lemma 4.3.2 in [Bleistein and Handelsman, 1986],
according to which the Mellin transform M {g} (¢) of an oscillatory function g is holomorphic in
R¢ > 0. But characteristic functions associated with discrete F' are almost periodic and hence

especially exhibit oscillatory behaviour at infinity?.

Assume now F'(dx) = f(x)dx, i.e., F' is absolutely continuous. Then, after a simple change of

variables in (A.5.30) we arrive at

o0 o0

(A.5.31) n(¢) = eigg/m_cf(x)dx + e_igg/m_cf(—x)dm.

0 0

These integrals constitute the Mellin transforms with argument 1—¢ of f and f(—-), respectively.
Consequently, in contrast to the common Mellin transform, regarding the singularities of 1(¢)
possible cancellations may occur. As an example let f(x) = 771(1 4 22)~!. In this event each
of the integrals in (A.5.31) is analytic in —1 < R¢ < 1. After a simple substitution these are

readily referred to the beta function:

o)

E

00 = Hex e} [T
0

_ sin{5( +1>}F< 2<)F<1;<>

=1

For the second equality we refer to (B.3.2), whereas the last equality employs the reflection for-
mula for the gamma function (B.2.17). It shows that, despite f does not have any finite moments
the function 7(¢), particularly its analytic continuation, is still well-defined for negative integer
arguments. The reason for this is the presence of the complex unit in the integral definition of
n(¢), generating zeros that cancel with the poles of the beta function, which corresponds to the
moment integral.

To determine the analytic structure of 7({) more generally, in particular to characterize
the behaviour of each Mellin transform in (A.5.31) we could simply refer to chapter 4.3 in
[Bleistein and Handelsman, 1986]. Instead, however, it seems appropriate to elaborate these

properties separately. For this purpose we first write (A.5.31) for > 0 in the following form:

r

(A.5.32) n(g):/x—C{ei;’Cf(x)+e—i§<f(—x)}dx+ /(—z’m)—Cf(x)dm

0 |z|>r

3Such a behaviour is possibly not observable if F' {0} # 0. Then a constant term appears in the characteristic
function, since f{o} e’ F(dz) = F {0} for any t € R.
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Since the integral along the segment |z| > r is absolutely convergent for 8¢ > 0 and certainly
uniformly convergent in any compact subset therein, the partition (A.5.32) exhibits that the
analytic behaviour of n(¢) in R¢ > 0 is determined solely by the behaviour of the density f in
a neighborhood of the origin*. The decomposition (A.5.32) immediately implies if f vanishes
in a neighborhood of the origin we can choose r > 0 small enough such that the first integral
equals zero and the above representation of 7(¢) converges absolutely for all ®¢ > 0. But also if
f approaches the origin from each side exponentially fast the first integral in (A.5.32) remains
absolutely convergent for arbitrary R¢ > 0. If this happens to hold only for one side, the above
integrals in 7(¢) can be absolutely convergent for any ¢ > 0 only if f vanishes in the opposite
one-sided neighborhood. Since f is assumed to be a density function, it is non-negative and
therefore oscillatory behaviour in a neighborhood of the origin with infinitely many changes
in sign are impossible. Finally if f is algebraic in a neighborhood of the origin it is easy to
construct examples such that (A.5.32) can be continued to a meromorphic function in R¢ > 0.
An exception occurs if for some p > 0 the density f possesses an absolutely convergent power

series expansion

[e.e]

(A.5.33) f(z) = ch:zk, for |z| < p.
k=0

Then, upon choosing r < p, plugging this into the first integral in (A.5.32), interchanging the

order of summation and integration, we arrive at:

/:UC {ei%Cf(:c) + e*i%Cf(_x)} dr = ch {eigC + efigC(_l)k} /x4+kdx
0 k=0 0
o0 T _ k .
(A.5.34) —9 Z Ck(w622kr1(+k
k=0

The series converges absolutely for arbitrary ¢ € C and fixed r < p. Particularly at ( = ko + 1
for kg € Ngy, where the kg-th denominator vanishes, the corresponding numerator equals zero.
This indicates possible analyticity of 7(¢) and of (A.5.29) in the half-plane ¢ > 0.
Summarizing, in case of an absolutely continuous F' the chances are good for the Mellin
transform M {®} () to be analytic in R¢ > 0 or to be analytically continuable therein if f(x)
approaches the origin exponentially fast, vanishes in a neighborhood of the origin or shows either
the former or the latter behaviour in each neighbourhood. Alternatively, analyticity of f in a

neighborhood of the origin also has a positive effect.

4This is in accordance with the method of stationary phase, compare for instance [Olver, 1974], stating the
main contribution to the asymptotic behaviour of the Fourier ®(¢) as ¢t — oo comes from the neighborhood of the
origin, where e"*® oscillates lowest. But the large t-behaviour of ®(¢) in turn determines the analytic structure of
the associated Mellin transform.
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A.6. lterated Mellin-Type Integrals of Convolution-Type Amplitudes

Analogous to the one-dimensional Mellin transform, the two-dimensional, double or iterated
Mellin transform associated with a function f(s,t) of two variables s,¢ > 0 has the integral

definition
(A.6.1) MAFHEC) = [ 571 [ 571 f (s, t)dsdt.
/<]

Depending on f(s,t), the evaluation of this integral can be more or less difficult. Our particular

interest is confined to the amplitude functions

(A.6.2) fi(s,t) :==g(s + 1),
(A.6.3) fa(s,t) :=1{s >t} g(s—1),

for a complex-valued function g(v) of one variable v > 0. Moreover, without loss of generality we
assume g possesses a one-dimensional Mellin transform M {g} (¢) with an absolutely convergent
integral representation for all ( € Sy {g}. For these functions some considerable simplifications
occur in determining the iterated Mellin transform and its region of absolute convergence, re-
spectively denoted by val C C2 for j € {1,2}. To ascertain this set for the iterated Mellin
transform of the function (A.6.2) we make two substitutions and formally interchange the order

of integration, which leads to:

Mi(§,€) =

<1 73519 (t (; + 1)) dsdt
0

ut~ 1/1&'5*4 Yo (t (u+ 1)) dtdu
0

w1+ u)(£+<)du/v§+glg(0)dv
0

LOTO v 193 €40

(¢
TTEFQ

For the last equation we referred to the beta function in terms of the identity (B.3.2) and to the
one-dimensional Mellin transform of g. For RE, R( > 0 with £ + ¢ € Sy {g} the integrals on
the right hand side are absolutely convergent and all interchanges in the order of integration are
permitted by Fubini’s theorem. Hence, the initial double integral is absolutely convergent if and
only if each of the obtained single integrals is, implying that the region of absolute convergence

of the iterated Mellin transform coincides with the intersection of the indicated three regions.
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Summarizing we have verified

I(OL()
(A.6.4) Mi(§,¢) = (£+OM{9} €+,

Shy={(£,¢0) € C? 1 RE,RC > 0 and € +C € Sar{g}}.

Similarly, concerning the iterated Mellin transform corresponding to (A.6.3), upon substituting

and formally interchanging the order of integration, we derive:

o0 o0

Ms(&,¢) = /tC_l /35_19 <t (; - 1>> dsdt

et /uélg (t(u—1))dudt
1

ut~ 1/75“C Lo (t (u—1))dtdu
0

I
H\g I—‘\g 0\8 o

o0
W — 1) €O gy / pEH1
0

_L@Ora-¢-49

Again for the last equality we introduced the beta function in terms of (B.3.2) and the one-
dimensional Mellin transform of g. The corresponding integral representations appearing in
the above equation are absolutely convergent if ¢ > 0, R(§ +¢) < 1 and £ + ¢ € Sa {g}-
Consequently we have

Mafe ) = NI =EE g e+ o).

St ={(6,¢) €C*: R¢>0and &+ ¢ € Sy {g} with R(E+¢) < 1}

(A.6.5)

Observe that the function f;(s,t) is symmetric with respect to s,t € R which is also reflected
by the associated iterated Mellin transform. On the other hand, the function f5(s,t) is highly
asymmetric and its Mellin transform exhibits a similar property. If we eventually want to con-
sider the iterated transforms as functions of £ € C for fixed ¢ € C or vice versa, additional

calculations are necessary to verify, for instance, their analyticity.

The above formulae essentially simplify the derivation of the iterated Mellin transforms by

referring to the one-dimensional counterpart. Concerning an inversion formula for (A.6.1), such
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a reference is most likely not possible. The integral

x0-+100 ug+ioco

(A.6.6) f(5.) = G / / MUF} (w, 2) st dwds,

xro—100 UQ—100

with appropriately specified ug, zg € R, was already examined in a concise article by [Reed, 1944],
appearing to be one of the first treatments of iterated Mellin transforms. However, the proof of
theorem II in this article, which we would require for our applications, is not reasonable. There
the author gives sufficient conditions for the absolute convergence of (A.6.6), including piecewise

continuity of f(s,t). The function
f(s,t) =I1{0<s<1}I{0 <t <1}

satisfies all of these conditions but since M {f} (&,¢) = (£¢)~! it is easy to see that (A.6.6) is
certainly not absolutely convergent. In fact, the proof of Theorem II in [Reed, 1944] is actually
incomplete, leaving as a conclusion the reference to the inversion formula for the two-dimensional

Fourier-transform but without a source.

A.7. Characteristic Functions

This section is devoted to the Fourier transforms of probability distribution functions. The
latter, often simply referred to as distributions, denotes a class of functions defined on the real

axis, of which each member F' satisfies the following properties:
e [ is non-decreasing: For any a < b we have F(a) < F(b).
e F' is right-continuous: F(¢+) = F(€)

e F'is bounded at infinity:

07 50 = -

£ 17 50 =0

As a consequence [, |F|(dz) = [p F(dx) =1, i.e., each distribution F is of bounded variation
or equivalently of finite total variation on R. This implies that [, F(dx) € [0, 1] for any £ C R,
showing that F' in fact establishes a probability measure. We begin this part of the appendix
with a brief overview on the important class of distributions before proceeding with their Fourier
transforms. For a more extensive treatment of the topic of characteristic functions we refer to

[Lukacs, 1970].
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A.7.1. Distributions

According to the above properties, a distribution function is always bounded and its discontinu-
ities can only be of jump-type, i.e., 1 > F(§)—F(§—) > 0. We refer to F {¢} := F(§) —F({—) as
the point probability of £ € R. Then F {£} = 0 if and only if F' is continuous at . If F'{{} >0
we denote £ as a saltus or an F-atom and note that this set is at most countable, compare
Theorem 1.1.1 in [Lukacs, 1970]. This fact enables a separation of F' into three ingredients with

a different nature.

Theorem A.7.1 (decomposition of distributions). Any distribution function F' can be de-

composed for a,b,bi,bys > 0 with a+b =1 and by 4+ bs = b in the following form:

F(§) = aFy(§) + bF(§)

(A.7.1)
= aFd(E) + blFaC(g) + bZFS(g)

Here, Fy represents the discrete part, whereas F., Fy. and Fy refer to the continuous part, each
of them being distributions on their own. More precisely, F,. is absolutely continuous and Fy is

singular.

For a proof we refer to Theorems 1.1.2 and 1.1.3 in [Lukacs, 1970]. The preceding theorem

gives rise to the following classification of distributions:

e A distribution F' is of purely discrete type if a = 1, which implies the existence of a
countable set D C R with [, F((dz) = 1. Possibly the most important member of this class
is the Dirac distribution with mass at £y € R, also known as the degenerate distribution.

It has the distribution function

07 lfg < 60’
1, it &> &o.

I{{ <&} =

This enables us to write arbitrary discrete distributions F' with jump points {; and point
probabilities F' {¢;} for j € J C Z in the form

(A72) F(&) =Y F{g{g <&,

jeJ
where > . ; F/{{;} = 1. A discrete distribution is thus a step function that is uniquely
determined by its jump points. Special discrete distributions are those with mass on a
set of equidistant points, referred to as lattice distributions. The jump points are then
also denoted as lattice points and can be written in the form a + jd for integer values j,

constant a € R and span d > 0.

e If by = 1 the distribution F' is of purely absolutely continuous type. This is equivalent

to the existence of a function f such that F' can be represented as a Lebesgue integral in
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terms of its derivative F’ = f. More precisely, F' f ¢ x)dx for any £ € R, i.e.,
F(dx) = f(x)dz. The function f is called the Lebesgue den51ty of F. As a consequence of

this integral representation, we have [, F n F(dxz) = 0 for any set IV of Lebesgue measure zero.

Conversely, any function f > 0 with fR x)dx = 1 establishes the density of a probability

distribution.

e For by = 1 we refer to F' as a purely singular distribution. In this case it is a continuous
function whose derivative equals zero Lebesgue almost everywhere. Moreover, there exists

a set N of Lebesgue measure zero with [, F(dz) =

If none of the parameters a, b;,bs equals 1, F' is said to be a mixture distribution. In this
event the function, for instance, can be continuously increasing with jump points. Throughout
this thesis we mostly confine to distributions of pure type, particularly to absolutely continuous
and discrete families.

It follows from the basic properties that new distributions can be created by means of linear
combinations of the form Z -, aiF;(€) for k € N, distributions F}; and coefficients a; > 0 that
sum to one. In calculus such sums are referred to as convex combinations. If we conceive this

operation as the addition, the multiplication analogue is given for distributions F}, F5 by the

integral
(A73) FixF(©)i= [ Fi(e - a)Fuldo).

This is the convolution or Faltung of F} and F5, the existence of the integral being an immedi-

ate consequence of the boundedness of F;. Compare also with the definition (A.1.3) for densities.

Distributions can be described more vividly by the notion of random variables. A (real)
random variable X is a real-valued function of the argument w € Q, i.e., X = X (w). Contrary
to functions from calculus the argument w is unknown, whence the particular value of X is
random. By means of a probability measure P, however, it is possible to make statements about
the probability for X to lie in a certain range. Hence, according to the definition of distributions,

each F' is related to a random variable X through the identity
(A.7.4) F&)=P(X <¢).

In other words, F(£) equals the probability for a random variable X not to exceed the threshold
& € R. We thus refer to F' as the distribution corresponding to X and write X ~ F. Random
variables are versatile. For instance, for a complex-valued function 7T'(z) of the real argument

x € R, they enable us to write

(A.7.5) E{T(X)} = / T(z)F(dz).

R
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Even the distribution itself possesses a representation of the above form with 7'(X) = I{X < ¢},
which in fact yields (A.7.4).

A.7.2. Integral Transforms of Distributions

We now give a few examples for frequently occuring functions 7'(z). The simplest examples

result in the k-th moment and the k-th absolute moment, for k € Ny, respectively denoted by
(A.7.6) px(k) =E [X’f] :

(A.7.7) pix (k) :=E [|X|k] .

The reader who is familiar with integral transforms will readily identify the first of the above
as a bilateral Mellin transform with non-negative integer arguments. According to Theorem
1.4.2 in [Lukacs, 1970], the existence of yx|(ko) for ko € N suffices, to conclude the existence of
(A.7.6) and (A.7.7) for any 0 < k < ko. Depending on the tail behaviour of F, both integrals

will only exist for kK = 0, for a finite number or for infinitely many k € Ng. This is particularly

described by the following theorem, compare p. 71 in [Cramér, 1999].

Theorem A.7.2 (Cramér). For a distribution function F' the behaviour
1= F(&) + F(=§) = 0(™™)
as € — oo for kg € N implies the existence of all moments of order k < ky.
In applications, moments play an important role to describe distributions. Yet, this character-

ization is incomplete, since a sequence of moments does not uniquely determine a distribution.

A more appropriate transform is given by the well-known Fourier-type integral
(A.7.8) Dy (t) :=E[e"X].

The absolute and with respect to ¢ € R uniform convergence of this integral for any distribution
F holds by finiteness of the total variation. Generally speaking, (A.7.8) constitutes the Fourier-
Stieltjes transform of F'. In the probabilistic context we rather refer to ®x as the characteristic
function of F'. Moreover, instead of ®x we occassionally write @, to indicate the connection

to F, or solely ® if the attribution is obvious.

A.7.3. Elementary Properties of Characteristic Functions

As an immediate consequence of its integral definition (A.7.8) the characteristic function as-

sociated with the distribution F' naturally exhibits certain properties. Indicating the complex
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conjugate by an overline, these are in particular:

p

Px(0) =1
|[Px(t)] <1
(A7.9) S By (t) = Py (—t)

® x (t) is a uniformly continuous function of t € R.

For real a # 0 and b € R the characteristic function of aX + b equals e*® y (at).

Furthermore, since @ x is defined as an integral with respect to F', which, according to Lebesgue’s
decomposition theorem A.7.1, can be a composition of up to three different types of functions,

for a,by,by > 0 with a + by + by = 1 we can always write
(A.7.10) Lii3% (t) = CL‘I)d(t) + blq)ac(t) + bzq)s(t).

Accordingly, each of the summands &4, ®,. and &, is associated with a discrete, absolutely
continuous and singular distribution, respectively. Each component possesses special charac-
teristics, which are pointed out in the main part of this work, particularly in Subsection 2.4.1.
Although most interest is confined to absolutely continuous distributions we briefly mention
a remarkable property of those of discrete type. More precisely, of lattice distributions. The

theorem below allows to infer additional general properties of characteristic functions.

Theorem A.7.3 (lattice distributions). The characteristic function ®x corresponds to a
lattice distribution if and only if it attains the value one for a non-zero real-argument, i.e.,
if there exists to € R\ {0} with |®x(to)] = 1.

This statement can be found as Theorem 2.1.4 in [Lukacs, 1970]. As a consequence, |®x ()| <
1 almost everywhere if ® x is associated with a non-degenerate distribution. Moreover, if ® x and

& both establish characteristic functions we necessarily have ®x (t) = €€ for some & € R.

Proof. Suppose F' constitutes a lattice distribution with lattice points a + jd for a € R, d > 0
and j € J for a discrete subset J C Z. According to (A.7.2), the associated characteristic
function is then given by
Ox(t) =€ Fla+ jd} e,
jeJ
Evidently, }@X(27rd_1)| = 1. Conversely assume ®x satisfies |®x (tg)| = 1 for tp € R\ {0}. We
itgc

can therefore write ® x (tg) = e"°¢ for an appropriate ¢ € R, implying

o0

/ T p(dg) = 1.

— 00
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By comparison of real and imaginary parts we conclude
o0
/ {1 = cos(to(z —¢))} F(dx) = 0.
—00

But the function in the integrand is non-negative and continuous. This shows, that the discon-
tinuities of F' must be contained in the set of zeros of the sine function, i.e., F' has jump points

at ¢+ 27t 1§ for some integers j. Hence, F is of lattice type. n

Before we present the properties of characteristic functions, we briefly outline the link to
the moments of the associated distribution. There is in fact a very close connection, which is

extensively discussed in §2.3 in [Lukacs, 1970].
Theorem A.7.4. For k € Ny the following holds:

(1) k-times differentiability of ®x(t) at t = 0 implies the existence of all moments up to order
k if k is even, but only up to order k — 1 if k is odd.

(2) If the k-th absolute moment of F exists the corresponding characteristic function has
derivatives up to order k, which can be computed by differentiating under the integral

sign:

@%)(t) = ij/ 2! "™ F(dx)

—00

The first statement can not be improved since there are indeed distributions with infinite
moments of all order, although the corresponding characteristic function is once continuously
differentiable on the entire real axis. Moreover, it must be emphasized that the existence of
moments especially depends on the differentiability at the origin only. Many distributions with
a finite sequence of moments have a characteristic function that can be differentiated infinitely
many times but merely on R\ {0}.

We proceed with Theorem 2.3.3 in [Lukacs, 1970] which gives conditions for the local approx-

imability of characteristic functions.

Theorem A.7.5. Provided the n-th absolute moment of F exists, for appropriate coefficients

¢; the associated characteristic function can be expanded ast — 0 in the form

(A.7.11) dx(t) =1+ zn: c;(it)? + o(t™).
=1

Conversely, validity of a representation of the form (A.7.11) implies the existence of all moments

of F up to order n or n—1, respectively if this is an even or an odd integer. In these circumstances
px(J

¢j = =5 ) for 1 < j<n-—1 and also for j = n if this is even.
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The existence of all moments is not sufficient to conclude the convergence of the power series

(A.7.12) () = i “); ) iy
k=0 )

Instead it is additionally required to verify the finiteness of its radius of convergence, i.e., to
show that

1
®
lim sup (|MX(k)|> =L < .

Only if this is guaranteed, ® x(t) constitutes an analytic function of ¢ in a neighborhood of the
origin and the radius of convergence then equals L~!. Finally, a noteworthy consequence of
Theorem A.7.5 is presented with Theorem 4.1.1 in [Lukacs, 1970], which states that the only
characteristic function of the form ®x () = 1 + o(t?) as t — 0 is given by ®x (t) = 1.

We proceed with a result that relates the behaviour of the distribution F' at infinity to that
of ®x in a neighborhood of the origin. This connection is already suggested by the preceding

statements on the existence of moments.

Lemma A.7.1. If F(—z)+1— F(z) = O{z=%} as ¢ — oo for a > 1 then ®x(t) =1+ O(t)
ast — 0.

Proof. Under the above conditions there exists a constant A > 0 such that F'(—z) < Az~ and

1— F(x) < Az~“ as © — oo. Hence, upon integrating by parts we obtain:

Dy (t) = /+/ " F(dx)

(—00,0) [0,00)

= [emF(:c)](_oojo) — it / e F(z)dx
(—00,0)
+ [e"(F(z) — 1)] 0.00) — it / e (F(z) — 1)dx
[0,00)
=1—it / " F(x)dx + it / e (1 — F(x))dx
(—0,0) [0,00)

Each of the two resulting integrals converges absolutely and uniformly with respect to ¢t € R,

thus completing the proof. =

The following theorem, see Theorem 3.1.1 in [Lukacs, 1970], ultimately justifies the importance

of characteristic functions.

Theorem A.7.6 (uniqueness). Two distributions coincide if and only if their characteristic

functions match.
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The proof of this elementary theorem relies on the approximability of ®x by trigonometric
polynomials. Its validity, however, can be verified more illustrative by means of inversion for-

mulae, to be discussed in Subsection A.7.5 below.

Given an arbitrary distribution F, the function F(¢) := 1 — F(—£—) constitutes a new dis-
tribution, referred to as the conjugate distribution. The corresponding random variable differs
from X by a negative sign, i.e., it is —X. By comparison with (A.7.8), this gives rise to the

characteristic function
(A.7.13) Dy (t) =Px(—t) = D_x(t).

A distribution is then referred to as symmetric if F = F. The associated finite moments of odd
order are all equal to zero. Throughout this work, symmetric distributions play a pivotal role.

According to Theorem 3.1.2 in [Lukacs, 1970], they can be characterized uniquely by a simple
property.

Theorem A.7.7 (symmetric distributions). The symmetric distributions are exactly those

with a real-valued and even characteristic function.

Before we provide an overview on the scope of the class of characteristic functions, we present

an analogue of the convolution property (A.1.4) for Fourier transforms.

Theorem A.7.8 (convolution theorem / product rule). A distribution equals the convo-
lution product of two distributions if and only if its characteristic function is composed of the

multiplication of two characteristic functions.

Proof. This statement is most easily verified by means of expectations, by exploiting the inde-

pendence of random variables. Indeed, for independent X; ~ F} and X9 ~ F, we have
E [eit(X1+X2):| _E [eitXl] E [eith] _
But X7 + X5 ~ F} x Fy. |

A.7.4. Examples for Characteristic Functions

Similar to the class of Fourier transforms the class of characteristic functions is vast. A standard
example is the Gauss distribution, which was already introduced in (A.1.9) and (A.1.10). Be-
sides, the Lévy and the Cauchy distribution are further examples of families whose characteristic
functions exhibit exponential decay. With shift parameter ;4 € R and scale ¢ > 0 the latter is
given by the pair

(A.7.14) T (- wEto?
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Those three distributions constitute special members of the class of alpha-stable distributions
with the additional similarity that their densities can be represented in terms of elementary
functions, which is an exception in this class. Somehow converse to (A.7.14) is the Laplace

distribution with mean ¢ € R and scale ¢ > 0:

1 x—
f(x) 5 e | 2Uul
g
(A.7.15) o elint
t) = ——
*) 1+ 022

This was already discussed in Example A.2.1. Further examples of families with algebraically
decreasing characteristic functions are the gamma distribution and the geometric stable distri-
butions. In their simplest parametrization, the latter are for o > 0, p =1 and 0 < 8 < 2 of the

form
(A.7.16) o(t) = {1+ |ms|ﬂ}7p

Clearly, also (A.7.15) is a member of this class. The verification of (A.7.16) as a characteristic
function was accomplished in Theorem 4.5.3 in [Lukacs, 1970]. Contrary to the aforementioned
distributions, this is a rather difficult task, since elementary representations of the corresponding
density or distribution function are unavailable and therefore supportive results are required. In
accordance with the product rule, compare Theorem A.7.8, the result (A.7.16) easily extends to
arbitrary p € N. In passing we note that geometric and alpha stable distributions are related
through the identity

1 7 -
(A.7.17) F(p/xp Le=(+lotMz gy — {1+\at|ﬂ} :
0

Finally, further typical examples for characteristic functions are given by convolutions of the uni-
form distribution. This is a continuous distribution concentrated on a compact subset [a,b] C R
for real numbers a < b. Also known as the rectangular distribution, the associated character-
istic function was already derived in equation (A.1.6). So far we only mentioned characteristic
functions corresponding to absolutely continuous distributions. For completeness but also to
illustrate the scope we give examples for two discrete and a singular distribution. The charac-

teristic function
(A.7.18) d(t) = M"Y

corresponds to the Poisson distribution with parameter A > 0. It is one of the examples in which

the integral definition of ® equals an infinite sum that possesses a finite representation. The
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situation is different for the discrete distribution associated with the Weierstrass function

o pits”

k=0
compare p. 23 in [Lukacs, 1970], which is in addition nowhere differentiable. Finally, examples
for singular distributions are always exotic. The characteristic function below is of this type
and was constructed on pp. 28-29 in [Esseen, 1945] for a non-decreasing sequence of numbers
2 < A1 < X2 <...that grows to infinity and satisfies [[ 2, (1 — %) =0

(A.7.20) o(t) = ﬁ {1 - Al + Alre“?’"}

A possible reason why standard examples for characteristic functions of absolutely contin-
uous distributions mostly encompass Gaussian, Cauchy and rectangular distribution is that
density and Fourier transform are both known and expressible in terms of elementary functions.
This is, however, misleading since readers that are unfamiliar with the topic of characteristic
functions might assume the asymptotic behaviour is always of a similar type. It is in fact not
difficult to find counterexamples. By means of Polya’s condition for instance, compare Theorem
4.3.1 in [Lukacs, 1970], one can not only show that (A.7.16) is associated with a probability
distribution for arbitrary p > 0 and 0 < 8 < 1, but it also enables us to verify many more as

characteristic functions:

e The logarithmically decaying functions
(A.7.21) o(t) :1og—p{e+aﬂ|t|ﬂ}

for p,o > 0 and 0 < 8 < 1 are characteristic functions, neither of them being absolutely
integrable on an infinite segment of the real axis. According to the product and the chain

rule, for ¢ > 0 we have:

'(t) = —plog P (e + oPt?) (e + Pt?) 1 o PP}

" (t) = (B — 1)t~ (t)
—®'(t)(p+ 1) log e + oPtP) (e + oPtP) 1 Bo PP
— ' (t)(e 4+ oPtP) Lol ptP !

The function is therefore strictly convex for the indicated parameterization, implying va-

lidity of Pélya’s condition.

e Characteristic functions that decay faster than any member of the alpha stable class are
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given by:

We close this section with an example of a distribution with known density and an even

characteristic function that possesses one zero on the positive real axis.

Example A.7.2 (a characteristic function with a finite zero). Most known characteris-
tic functions possess either none or infinitely many zeros on the finite real axis. There exist, of
course, also examples with a finite number of zeros, such as the characteristic function associated
with the density

(A.7.22) Fla) = 2@ ~Ja] +1).

In fact, f is obviously absolutely integrable on R and, since f(0) = % and the polynomial

x? — 2 + 1 has no zeros on the positive real axis, it is non-negative. Moreover, the corresponding

characteristic function is readily derived from elementary calculations:

N N
1—it  (1—dt)?  1—it

R
2 — 6t2 1—¢2 N 1
(1+¢2)3  (1+¢3)2  1+1¢2

We have thus shown

(=1

(A.7.23) °(0) = gy

This characteristic function is even and non-negative. It has zeros of double order at ¢t € {£1}.
Moreover, as a function of a complex variable it is meromorphic, exhibiting triple poles at +i
and it satisfies ®(¢) ~t~2 as |t| — oo in C.

A.7.5. Inversion Formulae

In this subsection we present a collection of formulae, to recover the distribution corresponding
to a given characteristic function. For inversion formulae concerning density functions, we refer
the reader to Subsection A.1.1, yet one additional result will be derived below. As an appropriate

framework for our presentation, analogous to the aforementioned section, we first extend the
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partial sum operator given in (A.1.14) and (A.1.15), by defining for 7" > 0 and £ € R:
. T
SrF(©) =5 [ e el

™
=T

(A.7.24) _L / ST = 2)) (g

T E—=x
—0o0

This definition, however, bears some risk since the sequence of integrals will certainly diverge as
T — oo if € is a saltus of F'. The situation can not be improved by averaging with respect to 7', as
in the context of (A.1.16). An attempt to fix the issue consists in an appropriate normalization
of the integrals (A.7.24), which essentially leads us to Theorem 3.2.3 in [Lukacs, 1970].

Theorem A.7.9 (inversion formula for atoms). For any characteristic function ®x the limit
(A.7.25) F{¢} = lim —SpF(€)
T—oo T

exists and equals the saltus of F' at & € R. Moreover, F(£) is continuous at & if and only if the

limit equals zero.

Proof. According to (A.7.24), for any 7' > 0 we have

T
U ey sin(T(€ )
—4 {w=/£} {174} « )

Due to the boundedness of the sinc function and its decay at infinity, Lebesgue’s dominated
convergence theorem yields the asserted limit as 7" — oo. The statement about the continuity

of F' is evident. -

Clearly, the result of the preceding theorem is only useful if F' possesses jump points. By
summation with respect to these jump points it can then be possible to specify the distribution
function. This is no longer viable if F' is not a step function. An inversion formula that
is applicable for any kind of distribution can be obtained by cumulation of the partial sum
operator (A.7.24) with respect to . That is, more precisely, by integration with respect to &

along a finite segment of the real axis [a,b] C R, which leads to

b —itb __ _—ita
(A.7.26) / SrF(€)dE = % / %@X(t)dt.
a =T

A convergence statement as 7' — oo corresponding to this formula can be found in many text-
books on Fourier methods in probability theory, for instance as Theorem 3.2.1 in [Lukacs, 1970)]

or, for absolutely continuous distributions, as Theorem 2.3.11 in [Pinsky, 2002].
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Theorem A.7.10 (inversion formula for increments). For any distribution F' and a,b €
R with a # b we have

T
al — sen(b — a e—itb _ e—ita
(A.7.27) F(b)—F(a)JrF{}zF{b}: Jim. & (2: ) / ——ox(t)dt
=T

If F{a} = F{b} = 0, i.e., if F is continuous at a and at b, the left hand side equals the
increment F(b) — F(a).

Proof. According to the integral definition of ®x(t), for any fixed T" > 0 we have

1 P it 1 = it (b—1) it(a—x)
e~ lith _ o—ita e—it(b—z) _ p—it(a—x
AT.2 — [T ()t = — dtF(dz).
(A.7.28) 277/ it x(t)dt =5 // it (dz)
=T —oo =T

The interchange in the order of integration is permitted, since

b—x

= /e”zdz <la—b|.

—x

e—it(b—ac) _ ¢—itla—w)

—it

Moreover, by definition of the sine function in terms of the complex exponential function, for
fixed x € R\ {a, b}, we obtain by substitution:

it t

" —it(b—x) —it(a—x) T b :
/ e —e it 2/ sin(t(b — x)) — sin(t(a — a:))dt
—1
-T 0

2S5i(T(b—x)) —2Si(T(a — x))

For the last equality we referred to the sine integral (B.1.1). Observe that this representation
remains true for any x € R. It follows from (B.1.4) and (B.1.6) that the modulus of the preceding

difference is bounded, and for any two non-identical a,b € R we have

0, ifz¢la,b,
Th_rgo (Si(T(b—z)) = Si(T(a —z))) =sgn(b—a) Z, ifx € {a,b},
m, if x € (a,b).

Therefore, by Lebesgue’s dominated convergence theorem, the integral (A.7.28) exhibits the

following convergence behaviour:

T . ) T ) .
1 e~ itb _ o—ita 1 efzt(bfz) _ efzt(afx)
im — [ =% &y (t)dt=— [ lim / , dtF(dx)
T—o00 2T —1t 2 T— o0 —1t
=T —00 =T
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(e o]

1
_ ! / lim Si(T(b— 2)) — Si(T(a — 2))F(dz)
™ T—o0
= sgn(b— a) Fga} + / F(dz) + Féb}
(a,b)
This concludes the proof n

From the last theorem we can deduce a useful statement about distributions with a density,

compare Theorem 3.2.2 in [Lukacs, 1970].

Theorem A.7.11 (inversion formula for densities). If ®x € L'(R) the distribution F is

absolutely continuous with density F' = f, given by

o0

/ e Py (t)dt.

—0o0

1
o

(A.7.29) f(€)

In these circumstances f is uniformly continuous and bounded with || f|,o < ||[®x]||;-

Proof. The continuity of F' is an immediate consequence of Theorem A.7.9, according to the

integrability of ®x, due to which for any £ € R we have:

T
. 1 —it . ”(I)XHl
= —_— < =
@)= i g | [ ot < i B0 =0
T

Moreover, with a = £ — 6 and b = £ + 0 for some 6 > 0 formula (A.7.27) yields:

Oy (t)dt

T X .
F(E+0)—F(—0) _ L / e HEHD) — emiHE0)
20 T—o0 27 —120t
=T
1 T _psin(6t)
_ €t 2 \VY)
o e 5t @X(t)dt

—00

The above integral converges absolutely and uniformly with respect to § > 0. According to the
convergence properties of the sinc function, from Lebesgue’s dominated convergence theorem we
thus deduce

P48 —F(E-08) 1 /°° e
161?01 55 =5 | ¢ O x(t)dt.

This shows the existence of the centered difference quotient on the left hand side for any & € R,
implying the differentiability of F’ with the derivative having the integral representation given on
the right hand side. In addition, the absolute convergence of the latter verifies F'(§) = f(£) as

493



A. Integral Transforms

the Fourier transform of the function ® x (¢). The former is thus naturally bounded and uniformly
continuous with respect to £ € R. Note especially that the above justifications became invalid
if we considered the non-centered difference quotient of F' due to problems with the underlying

inversion formula (A.7.27). n

The finiteness of a and of b is essential for the applicability of Theorem A.7.10. Indeed, the
integrals in (A.7.26) do not exist if either of the endpoints is infinite. A theorem that covers such
cases was presented in [Gil-Pelaez, 1951] and is apparently little known. The reason is possibly
that, in comparison to the formula for increments of Theorem A.7.10, the formula for infinite

segments is more complicated since it involves two limits.

Theorem A.7.12 (inversion formula for infinite rays). For any distribution F and £ € R,

t.

= —+ lim lim —
2 2 TrtooT1l0 27
T

(A730) M 1 1 72 eitéq)X(_t) Z—t e_itéq)x (t) d

Proof. First, for arbitrary T > T7 > 0 the following holds:

T . T,
Dy (—t) — e D (t) sin(t(§ — x))
: dt =2 ————— =" F(dzx)dt
T[ it T[R\é} t
Ts
_ sin(t(§ — z))
_2// =) 4t ()
R\{¢} T1

The interchange in the order of integration is permitted, since for 0 < 17 <t < T, we have

sin(t(¢ — 2))
t

‘ 1 1
<<
t] — T4

Furthermore, by substitution for fixed z € R\ {{} we obtain

Ty (E—a)Ts

/31n(t(§—w))dt _ / sin(z) .
t z

T (—z)T1

The integral on the left hand side is therefore bounded by 2 Si(7) uniformly with respect to
& —x. Hence, according to the convergence properties of the sine integral, Lebesgue’s dominated

convergence theorem again yields:

1 [ et (—t) — e D (1 1 R
lim lim /e x(=t) —c x( )dt = lim lim — / / wsz(dm)
Totoo Ty L0 270 it Totoo T1 0 T z
Ty R\{¢} ({—=)T1

494



A.7. Characteristic Functions

) (E—2)T> )
=— / / lim lim Sm(z)sz(dx)
s Trtoo 1110 z
fe<¢}  {a>¢} (E—2)Th
1
— L (FE) - (- F©))
We have thus eventually verified (A.7.30). n

Similar to (A.1.16) the convergence behaviour of the inversion formula (A.7.27) can be im-
proved by averaging (A.7.26). A more extended result is provided by the theorem below, which
concludes this subsection. It is an immediate analogue of Theorem A.1.3 for distributions. A for-
mula for the multivariate case with the Gaussian smoothing kernel can be found in Proposition
5.2.4 in [Pinsky, 2002].

Theorem A.7.13 (inversion by means of an approximate identity). Suppose I is a ran-
dom wvariable associated with an absolutely continuous distribution Fr whose density fr satisfies
the conditions of Theorem A.1.3. Then, for any a,b € R with a # b,

(A7.31)  F(b) — F(a) + F{a};F{b} _ 1/\%1 sgn(gﬂ— a) / e_itb__i:—ita B ()8 ()

—00

Proof. For A > 0 the distribution of the convoluted random variable X + AI is given by
Pla< X+ X <b)= / / F(b—Xv) — F(a— \v))Fr(dv).

Observe the boundedness of the integrand. Moreover, for b and analogously for a, the right-

continuity of F' yields

) F(b—), ifv >0,
lim F (b — \v) =
A0 F(b), ifv<o0.

Hence, in accordance with the symmetry of Fr, implying F7(0) = %, from Lebesgue’s dominated

convergence theorem we conclude:

F
lim P X+ M <b) =
){ﬁ)l (a< X+ <)) 2 + 5

o =P}

However, since ®; € L!(R) by Fubini’s theorem and by Theorem A.7.10 for fixed A > 0 we also
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have:
P(a< X+ M <b)= 7171 (b;l) —F <a;$> F(dz)
_ sgn(b—a) 7 70 e X —e i Irb](t)th(d:c)
27 o —it
N Sgn(Zbﬂ'_ a)_/ : Ztk—i: = 1(H)2x (t) «
(A.7.32) - Sgn(;r @) _7 6_“1)_1. :_m By (M) D x (t)dt

The proof of formula (A.7.31) is thus complete.
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With this chapter we provide a concise overview on the properties of some frequently occur-
ing special functions. Contrary to elementary functions, which encompass finite compositions
of powers, exponential functions and logarithms, special functions can only be represented as
series or integrals. An extensive encyclopedia about special functions and their properties is
available in possibly one of the less handy books, yet titled the handbook of mathematical func-
tions by [Olver et al., 2010]. Standard references for a detailed discussion including proofs of
important theorems and identities are [Andrews et al., 1999], [Copson, 1970], [Olver, 1974] and
[Whittaker and Watson, 1952].

B.1. The Sine Integral

The sine integral is defined as the primitive integral of the sinc function (A.1.7), viz

6 .
(B.1.1) Si(¢) = / sint) 4, ¢ER.
0

The boundedness of the integrand implies Si(0) = 0. Moreover, for £ > 0 and a € R\ {0},

g .
(B.1.2) Si(ag) = / Smiat) dt = sgn(a) Si(|al €).
0

This verifies the oddness of the sine integral as a function of a € R. The uniform boundedness
of (B.1.1) can be shown by means of the following decomposition for T' = 27(J(T) + 1) with
J(T) eN:

2J(T)4+1 U+

Si(T) = Z / sin(t)

m 2J(T)+1
~ [snte )y
) s t + j7T
(B.1.3) < Si(m)
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The bound is legit, because sin(t) > 0 for 0 < ¢t < 7, and since the sum is alternating with

decreasing summands. We have thus verified

(B.1.4) sup |Si(¢)| < Si(m),
£eR
(B.L.5) 0 < Si(€) < Si(n), for € > 0.

In the above decomposition of the range of integration we chose the segments according to the
sign of the sine function. If, alternatively, we had chosen a decomposition into intervals of the

length of one period, i.e., of length 27, for T' = 27J(T') we had obtained

2 J(T)

T) —
) /sm Zt+2ﬂ'j
0 j=0

Evidently, this sum is non-alternating with non-negative summands. It looks similar to the

harmonic series, which is divergent as T — oo. To show the uniform boundedness of the sine
integral, it is thus particularly important to incorporate the alternating sign of the sine function.
Finally, the sum appearing in (B.1.3) already indicates the existence of the limit as T — oo.
Its exact numerical value is usually computed by means of contour integration or by referring

(B.1.1) to other known absolutely convergent integrals.

Example B.1.1 (contour integration). The evaluation of the sine integral is a routine exer-
cise in complex analysis, exploiting the exponential decay of the complex exponential function in
the upper half plane. It that can be found in many textbooks on this topic, for instance in Ex-
ample 5.4.9 of [Asmar and Grafakos, 2018]. We will thus only sketch the proof without further
details. Consider the function z~'e'* integrated along an annulus Cy g in the upper half plane
with inner and outer radii 0 < r < R, respectively. The annulus is supposed to be symmetric
with respect to the origin such that its lower edges coincide with the segments [—R +r, —r] and
[r, R—r] of the real axis. Traversing this integration path in the positive direction, by analyticity

of the integrand, according to Cauchy’s theorem, the following holds:

0= % —dz
R T T

/ iRcos(O)efR sin(6) do — i/eir cos(@)efr sin(@)de
0

The second equality results from parametrizing the integration contour. It shows the applica-
bility of Lebesgue’s dominated convergence theorem as r | 0, yielding the limit value 7 for the

last integral, whereas the second summand vanishes as R — oco. Hence,

(B.1.6) lim Si(T) = g

T—o0
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B.1. The Sine Integral

Example B.1.2 (methods of real analysis). Techniques to compute the sine integral by
means of real analysis mostly aim to find a connection to an absolutely convergent integral.

This can be done in different ways. First, for fixed T'> 0 we deduce from (B.1.1):

T oo 0o T
= //SIH A dzdt = / m/e(Z D dtdz
0 0 0 0
1 e T i ze #T
— //2,2—*_1 — COS(T)T—H — SID(T)de
0

For a given Ty > 0 the obtained integral converges absolutely and uniformly with respect to

T > Ty. Lebesgue’s dominated convergence theorem thus yields

o
. sm
lim
T—>oo
0

For the last equality we noticed the rational function in the integrand as the derivative of the

arctangent function. This result also can be derived by noting for y > 0:

oo (o olNe o) o [o@) [o@) 1

/e_ytsm //e_xtdwsm dt = /Jm/e(i_z)tdtdzv :/2d33
1+

0 0 y Y 0 Y

From the sum representation in (B.1.3) we conclude the existence of the limit of the sine integral

as T' — oo. Hence, Abel’s summation theorem for integrals applies, leading to:

T

o0
. sin(t e Sin(t
lim yt— 7
T—0o0
0

0 0

The third method of real analysis to determine the limit value of (B.1.1) is by simply integrating
by parts once for fixed T' > 0 or, equivalently, by writing:

T 00 %)
Si(T) :/sm / “2dydt = /Wdy
0 t Y
1 r1 T
:/ —cos( )dy / —C(;S( )dy
, y? Y

By absolute convergence it is easy to see, that the interchange in the order of integration is

permitted, which shows

. . 1 cos(t) T
0
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B. Special Functions

Note, however, that the numerical value of the last integral is also a result of complex integration.

We notice the function in the integrand as Fejér’s kernel (A.1.11).

B.2. The Gamma Function

Probably the best known special function is Euler’s gamma function. It was discovered by him
in the early 18th century as a solution to the problem of extending the factorial function to
arbitrary complex numbers. For convenience we introduce the Pochhammer symbol

k—1

(B.2.1) (a)r == H(a +7), fora e Cand k € N,
§=0

also known as the rising factorials. Using this notation, Fuler’s original representation of the

gamma function is in terms of the infinite product

(B.2.2) I'(z) := lim

for z € C\ —No.

Alternatively the gamma function can be expressed as a Weierstrass product

1 z z
(B.2.3) T02) ze | | <1 + n) e n, for z € C\ —N,

n=1

where v denotes the Fuler-Mascheroni constant, that is

N
(B.2.4) y:= lim {Z ~ - log(N)} :

In applications, however, the multiplicative forms are rarely useful and instead one prefers the

so called Fulerian integral of the second kind
(B.2.5) I'(z) = /t21etdt, for z € C with Rz > 0.
0

It can be derived from (B.2.2) by proper rearrangement of the product, see for instance ch. 12.2
in [Whittaker and Watson, 1952]. Clearly, (B.2.5) is the Mellin transform of the exponential
function with strip of analyticity Rz > 0. A drawback in comparison to (B.2.2) and (B.2.3) is
that the integral only exists in the right half plane, since its lower endpoint is the origin. On

the other hand, a separation of the integration path for a > 0 yields

(B.2.6) ['(z) =7(z,a) + T'(z,a),
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B.2. The Gamma Function

where we denote by

Y(z,a) = [ t*7te tdt,

(B.2.7)

[(z,a) := [ t*"te tdt,

/a
0
7
a
respectively the lower and the upper incomplete gamma function. In the above shape, with

respect to the first argument for fixed a > 0 the function I'(z,a) is entire while y(z,a) is

analytic in Rz > 0. The series

_1)k ak-l—z

(e = 3

k=0

which can be obtained from the series expansion of the exponential function, then furnishes the
analytic continuation of v(z,a) to a meromorphic function in C with simple poles at —Ny and
residues

_1)k
k'

(B.2.8) Resk'y(z, a) = ( for k € No.

a—
Hence, the decomposition (B.2.6) in terms of a series plus an integral extends the integral
definition of I'(z) to the whole complex plane. As a consequence we immediately determine
that also the continuation of (B.2.5) is meromorphic in C with simple poles at the non-positive

integers and

_1)k
kKl

(B.2.9) ReskF(z) = ( for k € No.
—
Alternatively, partial integration subject to the restriction Rz > 0 readily yields a full integral

representation for the analytic continuation of (B.2.5), formally:

o0 [e.e]

I(z) = /tz—le‘tdt = 1/tze_tdt _Id+z)

z z
0 0

The integral on the right hand side exhibits analyticity in #z > —1 and coincides for £z > 0 with
the left hand side. Since the latter is a subregion of the former half plane, the right hand side
constitutes the analytic continuation of I'(z) into Rz > —1 with a simple pole at z = 0. Upon
repeating this procedure it is possible to analytically extend the gamma function arbitrarily into
the left half plane. The result

(B.2.10) [(1+ z) = 2T(2), for z € C,
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B. Special Functions

is called the functional equation for the gamma function. It shows that I'(z) indeed is an
extension of the factorial and that it equals the factorial function for non-negative integers,
since I'(1) = 1 and I'(n + 1) = n! for n € Ny. The functional equation also generalizes the

Pochhammer symbol (B.2.1) in terms of a ratio of gamma functions, viz

I'(a+p)

(B.2.11) (a)p = o)

for a,p € C with a # 0.

Not only for several applications the property (B.2.10) is useful but it almost uniquely defines
the gamma function. In particular, according to the Bohr-Mollerup theorem, compare §1.9 in
[Andrews et al., 1999], given a function g : (0,00) — (0, 00) such that g(1) =1, g(1+2z) = zg(zx)
and = — log g(z) is convex, it follows that g(x) = I'(z) for x > 0.

Derivatives of the gamma function are usually represented in terms of the polygamma func-

tions, which are defined by

k
(B.2.12) PpE(2) = ;L logT'(2), for k€ Nand z € C.

Sk
For k € {1,2} it is common to write ¢(z) = ¥ (2) and ¢/(z) = ¥V (z), and to refer to
those as the digamma and the trigamma function, respectively. Many expansions and integral

representations are known for the polygamma functions. Two particularly important identities

(B.2.13) Y1) =—,
(B.2.14) W(1) = 7:,

with «y referring to the Euler-Mascheroni constant (B.2.4).

B.2.1. Elementary Properties

We will now provide an overview on the essential properties of the gamma function. Besides
the functional equation (B.2.10), it is important to know the reflection formula due to Euler
(Ger.: Eulersche Ergénzungsformel), which relates the gamma function to trigonometric and

hyperbolic functions. It is given by

™

(B.2.15) M-z = for z € C.

sin(mz)’
The proof is an exercise in complex calculus. Let 0 < x < 1 be such that use of (B.2.5) is

permitted. A simple substitution, similar to the proof of Theorem B.3.1 below, yields

t:c—l

MNz)l'l—2)= / T tdt.
0
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B.2. The Gamma Function

This integral can be evaluated by contour integration, by choosing the branch 0 < arg(t) < 2w
and as integration path the boundary of an appropriately cut-out annulus, that encircles the
simple pole at t = —1. If we eventually expand the outer boundary and collapse the interior

boundary of the annulus, according to the residue theorem, we arrive at

® r—1
1-— 6(1*1)2’”} / —; — dt = el 1)

0

which is equivalent to (B.2.15) for z = z with 0 < z < 1. Appealing to the identity principle
for analytic functions, equality also holds for 0 < Rz < 1, and it can be extended to arbitrary
z € C\ Z via the functional equation (B.2.10), upon exploiting the periodicity of the sine
function.

We proceed with further properties. For z € C write 2 = = + iy with z,y € R. As a

consequence of the integral representation (B.2.5), for > 0 we have
(B.2.16) IT(2)]> =T(2)I(z),

with Z denoting the complex conjugate of z. According to the functional equation (B.2.10), this
equality remains true for all z € C\ —Ny. Particularly with « = %, by additional use of (B.2.15),

we obtain:

(B.2.17) ’r <; + yi)

() () - )

Moreover, for x = 0 the equality (B.2.16) combined with (B.2.10) and the reflection formula
(B.2.15) yields:

(B.2.18) T (yi)|? = P+ y))l(=yi) _ ™ - -

yi —yisin(ryi)  ysinh(ry)  |y|sinh(r[y])

Sometimes it is important to relate gamma functions of different argument multiples. This
is possible by virtue of the Gauss multiplication formula, however, only in special cases. In

particular, for m € N and a € C we have

(B.2.19) T(ma)(2r)"2 = m™a~2 ﬂﬁr <a + i) ,

provided none of the gamma functions is singular. For m = 2, the above identity is known as
the Legendre duplication formula. A proof can be found in §1.5 in [Andrews et al., 1999]. Next

we compute some frequently required residues involving the gamma function.
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B. Special Functions

Theorem B.2.1 (residues). (1) Fork € Ny, a € C\ {0} and b € C with az + b ¢ Ny,

—1)*
(B.2.20) Res bF(az +b) = a_l( k:') .

a

(2) Suppose A > 0 and f(z) is analytic in a punctured neighborhood of the point zy € C with
f(2) =227 o(2 = 20) fj as z — 2o, for f; € C. Then, if zo € C\ —No,

(B.2.21) Res A™*T()£(2) = —— ) {(log A — (20))f2 — f1}

2=2z0 A%0

with the digamma function 1, see (B.2.12). Moreover, if zo =0,

f-2

(B.2.22) Res A7 T'(2) f(2) = {(logA +7)? 4 — 5 } 5

— (log A +7) f-1 + fo,

where vy refers to the Euler-Mascheroni constant (B.2.4).

Proof. The first proof is easily accomplished by means of the reflection formula (B.2.15) and

de I’'Hospital’s rule, from which we deduce:

T
r b
Ee%b (a2 +b) = E{es+b I'(1 —az — b)sin(n(az + b))
_1 m (2 + 2F)

k! Z_L@ sin(m(az + b))

For the second proof we observe that, in terms of the polygamma functions (B.2.12), in a
neighborhood of zyp € C\ —Ny we find

AT (2) = LG0)

(20))(z = 20) + O {(z — 20)*} }

Conversely, upon taking into account (B.2.13) and (B.2.14), at the particular point z = 0 instead

of a Taylor we have the Laurent expansion

1 1 2
AT (2) = o (Iog)\+’y)+§ {(logA+’y)2+ 7;}2+(9{22}.

By multiplying with the expansion of f and putting the powers of z — zy in ascending order, the
definition of a residue yields (B.2.21) and (B.2.22). n

Finally, the gamma function enables an extended notion of antiderivatives in the sense of the
fundamental theorem of calculus. For a function f, continuous on [a,b], the first is given by

“Lf(x) f " f(z)dz. In an analogous fashion, for v € N, one obtains through

(B.2.23) D7f

Y
/ Y f(@)de,  for y € [a,],
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B.2. The Gamma Function

the v-th antiderivative. However, it is also permitted to choose v > 0 arbitrary, resulting in
the v-th fractional integral. In the literature those are also referred to as Riemann-Liouville
integrals. Observe that, particularly for y = 0 and a = —o0, (B.2.23) coincides with the Mellin
transform of the function f(—x), compare Appendix A.5.

B.2.2. Asymptotic Behaviour

The consideration of the logarithm in connection with the gamma function is not random but
arises naturally from its representation in terms of an infinite product, which is thus transformed
to an infinite sum. While the gamma function as a generalization of the factorial grows incredibly
fast, its logarithm is much easier to handle and more appropriate, for example, for the derivation
of asymptotic statements. A common representation for the logarithmic gamma function is given
by

(B.2.24) logl(z) = <z - 1) log(z) — 2+ %log(%r) + Q(z2), for z € C\ (—o0,0],

where log refers to the principal branch of the logarithm, i.e., log(w) = log |w| + i arg(w) with
larg(w)| < 7, and

_ By Bgm t— Ba (t — [t])

Moreover, Baj(x) signifies the 2j-th Bernoulli polynomial® such that B5;(0) = By; is the corre-
sponding Bernoulli number, where |t]| is the integer part of ¢ > 0. The derivation of (B.2.24)
is elaborate and extensively presented in Theorem D.3.2 in [Andrews et al., 1999]. We shall
not discuss any details right here. Rather important for our purposes is the observation from
(B.2.24) that as |z| — oo in |arg(z)| < m, uniformly with respect to arg(z) in any closed interior

sector, we have
(B:226) 1logT(2) = (= ) log(:) — = + 5 log(2) + mz_l _ By i {\z|1—2m}
; 2 2 < 2j(2j - 1) |

This statement can be shown by first writing (B.2.25) in the form

] S 2g+ /B2m Bom (t_ Ltj)dt.
23 2] —1 2m (t + z)2m

m—1

(B.2.27)

M

Jj=1

Upon setting 6 = arg(z) and exploiting several trigonometric identities, for |arg(z)| < m we get:

¢+ 2" = (t + |2] cos(6))* + |2/* {sin(6)}”

'For k € Ny the k-th Bernoulli polynomial By (z) is defined as the k-th derivatives with respect to t of %
evaluated at ¢ = 0.
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B. Special Functions

= (t+ |2])* — 2t |z| (1 — cos(0))

9 2
= (t+ |2])* — 4t |z| < sin B }

:(t+¢zDQ{cos(
:(t+¢z02{cos(
> 1+ 1e1 {cos (5 }

Finally, since Bag,, — Boy,(t — [t]) consitutes a continuous and periodic function of ¢ with period

NID N D

1, we obtain:

Bom — Boy, (t &)
/ 2 2 LLLJ)dt < max |BszBgm (x — |z])] {860(2 } / dt
2m (t+ 2)? 0< 2m t+ ]z|)

sec (2 2m
= max |Ba, — Bam (x — |x])] % 1-2m

2|
0<z<1 2m(2m — 1)

The uniformity with respect to 6 follows from the observation that the secant function is bounded
in |#] <7 — 6 for any 0 > 0. This completes the verification of (B.2.26).

Upon combining the preceding findings with the series expansion for the exponential function

we obtain Stirling’s formula, according to which as |z| — oo in |arg(z)| < 7 we have
(B.2.28) I(z):vM2ﬂzZ_%e_Z{1—%67{Ld_1}}.

Many more useful asymptotic relations and even expansions can be deduced from (B.2.26).
For instance, since differentiation is permitted, as |z| — oo in |arg(z)| < 7 it shows that the

behaviour of the digamma function is

e}

1 Boy,
(B.2.29) ¥(2) ~logz — o — ; SELTE
Furthermore, for m,a > 0 we have
T
(B.2.30) lim DY)y

m—oo I'(m)m®
The validity of this statement will be verified below for a more general parametrization.

B.2.3. Inequalities

In this subsection we provide a few bounds for the gamma function. The simplest estimate

follows immediately from the Eulerian integral of the second kind (B.2.5), upon application of
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B.3. The Beta Function
the triangle inequality, which yields
(B.2.31) IT(x +iy)| < T'(z), for x > 0.

This bound, however, cancels the exponential decay in the imaginary direction. Alternatively,

by means of Stirling’s formula, in §2.1.3 of [Paris and Kaminski, 2001], it was shown that
s 1
(B.2.32) IT(2)] < V2 ]z\x_% e 2Vt for z = x + iy with > 0.

Finally, inequality (5.6.7) in [Olver et al., 2010] provides a lower bound for the gamma function,

according to which

—_

I'(x)

(B.2.33) |T'(x + iy)| > -
cosh2 (my)

, for x >

2
Its proof is based on the Weierstrass product (B.2.3) and exploits that

2 -1 2 -1
Yy y 1
1+ ——— >{14+ —2 , for z > —.
{ (n+x>2} —{ (n+;)2} 2

Consequently we find:

‘F(§&>iy)‘ ~ ) I

n=1
21732 Y E
> {1+ 4%} nl_[l{ur (n+5)2}
_ Gt
r'(3)

In accordance with (B.2.17), with I' () = /7, this yields the validity of (B.2.33).

B.3. The Beta Function

It was already mentioned above that the gamma function is sometimes referred to as the second

Eulerian integral. The Fulerian integral of the first kind is given by

1
(B.3.1) B(a,b) := /sa_l(l — 5)ds, Ra, Rb > 0.
0
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B. Special Functions

It is better known as the beta function. Similar to the gamma function, its analytic continuation
can be determined from integration by parts. The easier way, however, is to apply the following

formula.
Theorem B.3.1. Fora,be C\ —Ng we have

I'(a)T'(b)

(B.3.2) B(a.) = T

Equation (B.3.2) immediately reveals that the beta function is generally of meromorphic type.

For computational convenience we mostly employ the above identity rather than writing B(a, b).

Proof (due to Poisson (1823), cf. [Andrews et al., 1999].). Assume first a,b > 0 real-
valued in order to be able to make use of the integral representation for the beta and the gamma
function. Substituting s +t = v, i.e., dt = dv, interchanging the order of integration and then

substituting s = uv, i.e., ds = vdu, we eventually arrive at:

s@1b=1e=(s+) gp

s (v — s e Yduds

0\8 0\8

f[
[+

_”/]I{s < v} s v — s)P tdsdv

/
_ / e / T{uw < v} (u0)™ (6 — uv)PLodud
0

0

The extension to a,b € C by analytic continuation is straightforward. n

B.3.1. Asymptotic Behaviour of a Ratio of Two Gamma Functions

The integral representation for the beta function can be employed to derive an asymptotic
expansion for the ratio of two gamma functions. Although this is also possible by applying
Stirling’s formula to numerator and denominator, respectively, a more convenient expansion can

be obtained by considering, for z,a,b € C with R(b — a) > 0 and Rz > 0, the integral

(B33) {_‘,((z i Z)) = F(bl_ a) O/tb_a_IC_th(t)dt
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B.3. The Beta Function

The validity of this representation is readily confirmed by comparison of (B.3.2) with (A.3.8),

and we denote

(B.3.4) Ft) == { ! _te_t }bal .

Roughly speaking, the integral (B.3.3) is of Laplace-type and as |z| — oo the main contribution
comes from a neighborhood of the origin. There, the function f(¢) possesses a power series
expansion. Since the additional conditions of Watson’s lemma are satisfied, compare Theorem

3.2 in [Olver, 1974], we have validity of the asymptotic expansion

(B.3.5) F(zw~za—b{1+(a_b)(;;b_l)Jr...}.

Despite the initial conditions on the parameters, the above result holds for arbitrary a,b € C as
|z| — oo in the sector |arg(z)| < m. This extension is justified by Theorem 3.3 in [Olver, 1974]
and by analytic continuation. For details we refer to §5 in ch. 4 in [Olver, 1974]. Regarding
(B.3.5) the pointwise validity of the expansion must be emphasized and is particularly reflected
by the coefficients, which are polynomials of a,b. Finally, for sufficiently large |z| in |arg(z)| < 7

and fixed a,b € C, we immediately conclude

(B.3.6)

B.3.2. Derivation of an Asymptotic Estimate for the First Argument of the Beta
Function that is Integrable on R with Respect to the Second Argument

The beta function is of frequent occurence in the context of binomial sums and Mellin-Barnes
integrals, as a means to measure the asymptotic behaviour. To establish simple order estimates
for integrals of this kind, we need an upper bound for the beta function that is absolutely
integrable along any infinite line, which runs parallel to the imaginary axis in the right half plane
corresponding to the first argument. At the same time the bound must reflect the asymptotic
behaviour as the second argument tends to infinity. For K € Nlet A > K — 1 and z = = + iy
with z > — K, y € R and especially z ¢ —Nj. In these circumstances, after K-times application
of the functional equation for the gamma function the following integral representation for the

beta function applies:

"K—1 -

A+ 1)I(2) 1-‘[ A=k TOA+1-K)T'(z+ K)
TA+1+2) |14 z2+k PA+1+2)
rK—1 71
= H )\;: /SA_K(]_ fs)z"'K_lds
z
L k=0 19
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B. Special Functions

To get rid of the imaginary part in the integral we employ the triangle inequality and then again

the functional equation for the gamma function, which leads to:

T\ + 1)T(z) <F()\+1— T(z+ K) H
F'A+142)| F'A+1+x) |Z+k|
'A+1)I'(z+ K)

(B.3.7)

(A +1+x) H\/W

Observe that the right hand side simultaneously satisfies O {y*K } as y — +ooin x > —K and
as A — oo we have O {\™"}, compare (B.3.5). This matches the desired properties if K > 2.

Corollary B.3.1 (asymptotic behaviour of binomial integrals). Forc € R\—Ny suppose
f(c+ iy) is continuous with respect to y € R and O {|y|“} as y — oo for some o € R. As

A — 00 we then have

c+1i00
1 F(A+1)I'(2) -
BI(A, ¢) :== — _— dz=0{X“}.
() 270 / I’()\—l-l-l—z)f(z)z A7
Proof. An application of the triangle inequality to BI(\, ¢) accompanied by the estimate (B.3.7),
for fixed K > max{—c,a+ 1} and A > K — 1, yields

BI(A, 0| < A+ 1DI(c+ K)

= 2iT(A+1+¢) _/[H\/T

Under the above conditions the integral on the right hand side converges absolutely. Further-

|f(c+iy)| dy.

more, an application of the expansion (B.3.5) exposes the asymptotic behaviour with respect to

A, which finishes the proof. =
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