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1. Introduction 

1.1. General concept and epidemiological perspectives of idiopathic pulmonary fibrosis   

Injury responses in tissues trigger multiple signaling pathways that may result in normal or 

aberrant pathologic repair, leading to overproduction of extracellular matrix (ECM) and 

connective tissue remodeling [1]. This pathobiological response causes persistent scar 

formation that disrupts tissue parenchyma, impairs organ functions, causes organ failure and 

ultimately, organ death [2]. In the lung this mechanism leads to pulmonary fibrosis which was 

characterized as diffuse fibrosing alveolitis, diffuse interstitial fibrosis and idiopathic 

pulmonary fibrosis (IPF) [3], among which the latter was documented to be common. 

Idiopathic pulmonary fibrosis is a severe restrictive interstitial lung disease with patient 

median survival of 2.5-3.5 years [4]. The disease is almost absent in individuals below age 50 

albeit reported in 0.2% of people beyond 75 years [5]. Idiopathic pulmonary fibrosis is 

predominant in males [6] and despite discrepancies in the availability of data, the prevalence 

and incidence are estimated to range from 0.5 to 27.9/100,000 and 0.2 to 8.8/100,000 

respectively [7]. Recent data also reported that 5000 people are diagnosed with IPF in the 

United Kingdom each year [8]. Interestingly, the prevalence of IPF is comparatively lower in 

south Europe than in northern parts of the continent [9] and speculations implicate 

environmental and ethnic factors [10]. Despite the above statistics, it is worth noting that the 

mortality and incidence of IPF are continually increasing  [7].  

Idiopathic pulmonary fibrosis is suggested to be related to risk factors such as environmental 

pollutants, genetic predisposition, cigarette smoking, chronic aspiration [11], exposure to 

radiotherapy and some chemotherapeutic drugs [12, 13], and latent viral infections such as 

Epstein-Barr virus and herpes virus [14, 15]. Symptoms and clinical manifestations identified 

in IPF are nonproductive coughs, progressive exertional dyspnea with scalene muscle 

hypertrophy, fine respiratory crackles and finger clubbing [6, 16]. In principle, acute 

exacerbations with no known triggering factors are suggested to be indications of the 

progression of the disease in patients [17].   

There are limited treatment regimens for IPF and novel therapeutic medications available for 

the management of the disease, that are nintedanib [18]  and pirfenidone [19], only slow IPF 

progression but do not reduce mortality, making lung transplantation the only means of 
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patient’s survival [20]. Conversely, median survival of IPF patients after lung transplantation 

is 4.5 years [21] expressing how devastating the disease is. 

 

1.2. Idiopathic pulmonary fibrosis: development and molecular overview 

This section elucidates the pathogenesis of IPF and the role of molecules involved in the 

progression of the disease. Cellular mechanisms, ECM production and histopathological 

features of IPF have been sequentially explained to give a general perspective of the disease.    

 

1.2.1. Lung injury 

Gas exchange in the lungs occurs at the alveolar capillary unit, which is composed of 

capillary endothelial cells, type I alveolar epithelial cells [22] and common basement 

membranes separated by a thin interstitium. The common basement membrane is a 

specialized form of thin extracellular matrix composed mainly of collagen IV and laminin, 

and primarily resides cells which are either separated or connected to their interstitial matrices 

[23].  

Various acute or chronic stimuli cause injurious damages to tissues, hence activate the 

initiation of an orderly complex replacement of cells during repair. Tissue repair processes 

can be either regenerative, where the same cell types replace damaged ones, or result in a scar, 

a characteristic restoration of parenchymal tissues with connective tissues [24].  Injury to the 

alveolar capillary unit results in platelet activation and degranulation, followed by the release 

of cytokines and lipid mediators that stimulate various responses from leukocytes, endothelial 

cells, fibroblasts/myofibroblasts and epithelial cells [25, 26]. Pulmonary fibrosis occurs 

during loss of type I epithelial and endothelial cells, injury and apoptosis of type II alveolar 

epithelial cells, disruption of the basement membrane, proliferation of type I alveolar 

epithelial and endothelial cells in the extracellular matrix, and recruitment and proliferation of 

fibroblasts and myofibroblasts [27-29].   

 

1.2.2. Response to inflammation and reactive oxygen species  

Following tissue and cellular injuries, inflammation ensures the removal of noxious stimuli 

and damaged tissues in order for the repair process to begin. This molecular mechanism can 

become chronic and may lead to the destruction of normal tissue [30].  
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During chronic inflammation, reactive oxygen species (ROS) are released to the site of 

inflammation and this may cause cellular and tissue damages [31]. Excess amounts of ROS 

are toxic to the body, though lower levels of ROS serve as signaling molecules that mediate 

migration, proliferation and circadian rhythm of cells [32].  

In response to oxidative and nitrosative stress, cells in the lungs release cytokines/chemokines 

and inflammatory mediators to induce the recruitment of neutrophils, activate nuclear factor-

κB (NF-κB) and activator protein-1 (AP-1), which may contribute to an increased 

uncontrolled inflammatory response and tissue damage [33, 34]. This molecular event is 

suggested to trigger the pathogenesis of IPF and other lung diseases [30], thus associates ROS 

to fibrosis [35]. Other cellular responses implicated in fibrosis include depletion of 

antioxidant defenses, genetic predisposition, endoplasmic reticulum (ER) stress in the alveolar 

epithelium, stimulation of p53-dependent DNA damage response and ROS activation of latent 

TGF-β [36]. Advances in this field have emphasized the vicious role of TGF-β in fibrosis [37] 

and treatments targeted at arresting inflammation have also proven ineffective [38].  

 

1.2.3. General signaling pathways used by TGF-β family 

TGF-βs constitute a subfamily of cytokines, expressed in three isoforms in mammalian tissues 

[39]. Among the three ligands; TGF-β1, TGF-β2 and TGF-β3, TGF-β1 is ubiquitously 

expressed and functions in numerous biological pathways essential for normal physiology and 

some disease conditions [39, 40]. TGF-β is generally synthesized as a dimer by a wide variety 

of cells in a form known as TGF-β pro-protein [41]. The dimer is initially cleaved in the Golgi 

apparatus and further released as inactive homodimeric TGF-β bound to extracellular 

proteins, together with a glycoprotein known as latent TGF-β binding protein (LTBP) [42, 

43]. Four LTBPs have been discovered, however, LTBP-3 has a specific binding selectivity to 

TGF-β1 ligand [44]. 

TGF-β potentially initiates cytoplasmic signaling after activation. The activation process is 

enhanced by retinoic acid, fibroblast growth factor-2 [45], endotoxin, bleomycin, proteolytic 

cleavage by plasmin, matrix metalloproteinases 2 and 9 [46, 47], thrombospondin-1 [48] and 

integrin [49]. The active TGF-β molecule is composed of a dimer stabilized by hydrophobic 

interactions and intersubunit disulphide bridge [50].    

Three cell surface proteins namely, TGF-β receptor I, II and III are known for TGF-β 

signaling [51, 52]. The molecular structural composition of the receptors include: an N-
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terminal extracellular ligand-binding domain, a transmembrane region and an intracellular C-

terminal serine/threonine kinase domain [53]. Seven mammalian TGF-β receptor I are known 

and named as ALK1-ALK7 (activin receptor-like kinase 1-7). The TGF-β1 ligand specifically 

induces ALK-5 during signal transduction [54]. The signaling functions of TGF-β receptor 

proteins are as follows: 1) TGF-β III modulates the binding of the TGF-β 2 molecule to the 

TGF-β receptor II, 2) TGF-β II induces TGF-β I to mediate intracellular signaling, and 3) the 

TGF-β receptor I phosphorylates Smad proteins for further signaling cascades and gene 

regulation [55, 56]. To explain this mechanism briefly, during cell signaling, activated TGF-β 

molecules bind to TGF-β receptor II dimers, resulting in the autophosphorylation of the 

receptor as well as further interaction and kinase phosphorylation of the glycine and serine-

rich domains of the TGF-β receptor I [57]. Two TGF-β receptors I and two TGF-β receptors 

II  eventually dimerize [58]. Additionally, the phosphorylation of the TGF-β receptor I 

triggers profound conformational changes in the receptor [59]. The downstream effects of 

TGF-β signaling are partly conserved in numerous cells [60] and are initiated through Smad 

and non-Smad pathways to regulate transcription, translation, biogenesis of microRNA, 

protein synthesis, and posttranslational modifications [61, 62]. 

Earlier publications have shown that the Smad proteins are the only cytoplasmic transcription 

factors directly activated after TGF-β ligands that bind to their transmembrane receptors, thus 

classifying this phenomenon as the canonical signaling pathway [53]. During canonical 

signaling, the phosphorylated TGF-β receptor I interacts with the basic patch of the MH2 

domain of Smad 2 and 3 proteins [60] to phosphorylate their serine residues at the C-terminus 

of the respective proteins. Phosphorylated Smad 2 and 3 interact with each other, resulting in 

a weaker communication between the Smad proteins and TGF-β receptor I,  which leads to 

their release into the cytoplasm [60] to form a heterooligomeric complex with Smad 4 [63].  

The complex is translocated into the nucleus for DNA binding and modulation of gene 

expression [64]. The non-Smad signaling of TGF-β includes the Ras-Erk-MAPK pathway, 

p42/p44 MAPK, c-Src, phosphoinositide 3-kinase-Akt-mTOR pathway, protein phosphatase 

2A (PP2A)/p70s6K, JNK MAPK and small GTPases Rho, Rac, and Cdc42 [62, 65-69]. 

TGF-β exerts a negative feedback on its own expression [70]. This occurs when Smad 

activation is controlled via a feedback loop regulated by TMEPAI (Trans Membrane Prostate 

Androgen-Induced gene/protein), a target gene of TGF-β signaling [71]. Transcription factors 

associated with TGF-β are AP-1, ETS (E26 Transformation Specific family), basic helix-
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loop-helix proteins, C/EBPβ, FoxH1, FoxO1, FoxO3 and FoxO4 [72-75]. Additionally, p300 

and CREB-binding proteins are classified coactivators of Smad [76, 77].  

 

1.2.4. The role of TGF-β1 in fibrosis associated signaling pathways 

The pathogenesis of IPF involves multiple cellular responses and signaling pathways, 

however, the role of TGF-β1 has been emphasized in fibrosis diseases of various organs due 

to higher expressions of TGF-β1 mRNA and protein abundance in patients and experimental 

mouse models [78-82]. Consequently, overexpression of TGF-β1 has also resulted in fibrosis 

[83, 84] and the opposite has been observed after the administration of TGF-β1 binding 

proteins and anti-TGF-β antibody [85, 86].  

TGF-β1 remains a major molecule that promotes fibrosis through the activation of fibroblasts, 

induction of epithelial/endothelial mesenchymal transition, apoptosis of epithelial and 

endothelial cells, and regulation of extracellular matrix turnover [87]. Additionally, TGF-β1 

and integrin signaling are known to modulate the differentiation of myofibroblasts [88] and 

the persistence of myofibroblast accumulation is reported to enhance the progression of 

fibrosis [89]. In fibrosis conditions, TGF-β1 induces the expression of higher levels of α-

smooth muscle actin (α-SMA) to capacitate cells with tremendous contractile abilities [90, 

91]. It is reported in lung fibroblasts that TGF-β1 causes the phosphorylation of the Y256 of 

the Neuronal Wiskott-Aldrich syndrome protein (N-WASP) by focal adhesion kinase (FAK). 

Moreover, with the support of actin-related protein (Arp2/3) complex signaling, N-WASP 

regulates α-SMA formation during myofibroblast differentiation and maturation [92]. 

Additionally, excessive proliferation of myofibroblasts results in the production of 

dysregulated amounts of ECM proteins such as collagen and fibronectin [93]. Rho-like 

GTPase, mitogen activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) 

pathways are collectively non-canonical pathways of TGF-β signaling, linked to pro-fibrotic 

cellular responses [65, 69, 84, 94]. For example, Rho-GTPase and ROCK are reported to 

regulate TGF-β-induced transdifferentiation of fibroblast to myofribroblasts [95].  

Another concept in the fibrogenic process is the cellular generation of ROS by TGF-β1 in 

pulmonary fibrosis [96]. ROS are produced by mitochondria, peroxisomes and cytochrome P-

450 as byproducts of normal cellular metabolism [97-99]. TGF-β1 increases mitochondrial 

ROS in many cells for the modulation of epithelia/mesenchymal transition [100], and 

expression of genes involved in fibrosis and myofibroblast differentiation [101]. There are 
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also exogenous sources of oxidants usually derived from cigarette smoking [102], ozone 

exposure [103], hyperoxia [104], ionizing radiation [105] and heavy metal ions[106].  

ROS alter the functions of molecules by interacting and destroying cell components such as 

lipids, proteins and DNA [107]. The imbalance caused as a result of increased accumulation 

of ROS and depletion of antioxidants introduces oxidative stress [108], a cellular process  

reported in lung diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive 

pulmonary diseases and acute respiratory distress syndrome [109].   

It has also been shown that glutathione is suppressed in cystic fibrosis [110, 111] and 

sarcoidosis [112]. Interestingly, TGF-β1 is known to decrease the expression level and 

activity of catalase, glutathione peroxidase and glutaredoxin [113-115] in airway smooth 

muscle cells and interstitial lung diseases. In IPF patients, the expression of extracellular 

superoxide dismutase is altered without any known mechanism to that effect [116]. 

Additionally, TGF-β1 suppresses extracellular superoxide dismutase in mouse lung 

fibroblasts and the overexpression of the enzyme in mouse lungs inhibits the activation of 

latent TGF-β [117]. Conversely, catalase, a key antioxidant in peroxisomes [118], is 

demonstrated to be fairly resistive to degradation due to NADPH binding, that prevents and 

reverses the formation of compound II (an inactive form of catalase) [119]. Due to the 

depletion of the cellular antioxidant system during ROS, non-enzymatic antioxidants such as 

vitamins C and E [120], carotenoids [121], and glutathione [122] have been suggested  as 

alternatives and could metabolize ROS. 

It is important to explain the various ROS generated since TGF is generally known to enhance 

ROS production. The principal step in ROS generation is the reduction of O2 to 
.
O2

−
[32]. 

Following 
.
O2

−
 production, 

•
OH

− 
and H2O2 are subsequently generated [123]. Additionally, 

•
OH

−
 is produced from H2O2 in a reaction catalyzed by iron ions, which is called Fenton 

reaction [124]. In ROS metabolism, the ROS molecules are noted to interact with nitric oxide 

(NO
•
) and peroxynitrite (ONOO

−
) [125]. The most detrimental amongst the reactive species 

described are 
•
OH

−
, ONOO

−
 as well as HOCl [126-128]. At the cellular level, H2O2 is 

produced by oxidases [108, 129]. Mitochondrially produced superoxide is dismutated by 

SOD2 which is converted further to H2O2. Hydrogen peroxide is also maintained at a balance 

by the actions of catalase and in general, intracellular glutathione peroxidases [108].  

The NADPH family of oxidases is also associated with ROS imbalances in cells. Primarily is  

NOX4, known to be expressed in human lung fibroblasts [130], which stimulates 
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myofibroblast differentiation and progresses pulmonary fibrosis [131]. In smooth muscle 

cells, the induction of NOX4 mRNA is known to occur as a result of response to TGF-β1 

stimulation [132]. It is further suggested that active TGF-β1 stimulates the increase in 

mitochondrial ROS production, induces NOXs and decreases antioxidants, leading to redox 

imbalance, fibroblast activation and fibrosis development [87].  

Apart from ROS induction by TGF-β1, other molecules influence the pathophysiology of 

fibrosis. For instance, hyaluronan, a linear glycosaminoglycan of the extracellular matrix, is 

involved in myofibroblast differentiation [133] and also regulates TGF-β1 signaling and 

response in fibroblasts [134, 135]. With regards to the former, hyaluronan and CD44 interact 

with the epidermal growth factor receptor (EGFR) to support the proliferation and 

differentiation of fibroblasts [136, 137]. The molecular interactions are as follows: hyaluronan 

first binds to CD44 to enhance the interaction of CD44 with EGFR for the initiation of signal 

transduction via the mitogen-activated protein kinase (MAPK/ERK) pathway and 

Ca
2+

/calmodulin kinase II (CaMKII) [138].  

Besides the adverse roles of TGF-β1 in fibrosis, earlier and emerging evidence have 

suggested that fibroblast growth factor [139] and prostaglandin E2 [140] reverse 

myofibroblast differentiation, expressing the need to explore this avenue for interventions 

against fibrosis.  That notwithstanding, targeting one molecular process in pulmonary fibrosis 

might not be enough to resolve the disease since other cellular processes such as pro-

inflammatory mediators are remarkably connected to the pathogenesis of IPF.   

 

1.2.5. Pro-inflammatory mediators in pulmonary fibrosis 

Inflammatory mediators are key candidates proposed to induce the initiation and progression 

of pulmonary fibrosis [141]. For example, cytokines such as macrophage inflammatory 

protein-1α (MIP-1α/CCL3) [142], MCP-1/CCL2 [143] and IL-8 are found in elevated 

amounts in IPF patients, and are implicated in chemotaxis and activation of neutrophils, 

monocytes and lymphocytes. Similarly, proangiogenic and antiangiogenic cytokines are also 

recorded at elevated levels in patients with IPF [144]. In the international literature it was 

demonstrated that IGF-1, TNF-α, FGF, VEGF, IL-1β, PDGF, and EGF [145, 146] play 

different roles in the regulation of fibrosis and tissue repair. 

High levels of TNF-α have been reported in patients with idiopathic or systemic sclerosis- 

associated pulmonary fibrosis [147, 148]. In addition, overexpression of TNF-α in the lungs 
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of mice enhanced the development of pulmonary fibrosis [149]. Although elevated amounts 

of TNF-α have been found in patients and pulmonary fibrosis models, inhibition of the 

molecule with antibodies have been suggested to progress cardiac and interstitial lung disease 

[150, 151].  

IL-1β was indicated to cause acute lung injury and also play a critical role in the development 

of pulmonary fibrosis [152]. Increased expression of TNF-α was observed in IL-1β-induced 

fibrosis, suggesting a mechanistic role of the two molecules in the pathogenesis of the disease 

[153]. Similarly, IL-1β also elevates neutrophil attraction of CXC chemokines, platelet-

derived growth factor (PDGF) and TGF-β1, leading to possible initiation of fibrosis following 

inflammation [152, 154]. 

Moreover, IL17-A increased in patients with IPF [155] and is associated with the progression 

of pulmonary fibrosis [155]. Indeed, the expression of IL17-A is linked with persistent 

neutrophilia [155] which is proposed to indicate early mortality in patients with IPF when 

abundant in bronchoalveolar lavage fluids [156]. In addition to alteration of neutrophils, some 

data have also shown the localization of macrophages in pseudo-alveoli and CD3
+
 T-helper 

cells in the interstitium of lungs expressing IL-17 [157], implying the presence of 

autoimmune reactivity [158] or a possible role of IL-17 in IPF [159]. However, IL-17 is 

functionally needed for the mediation of inflammation and destruction of extracellular fungi 

and bacteria [160].  

Th2 cytokines such as IL-4, IL-5 and IL-13 were also measured in high quantities in alveolar 

macrophages from IPF patients [161]. IL-13 receptors are upregulated in lung biopsies of 

patients with UIP (usual interstitial pneumonia) and IL-4Rα was found in elevated amounts in 

lung biopsies of NSIP (non-specific interstitial pneumonia) patients [162]. Conversely, Th1 

cytokines such as IFN-γ and IL-12 were reported to be protective and as such inhibit 

pulmonary fibrosis progression [163]. Apart from the roles cytokines play in the pathogenesis 

of fibrosis, relevant to the disease are the cellular involvements in the progression of the 

process.   

 

1.2.6. Cells involved in the pathogenesis of fibrosis 

Apoptosis and necrosis of cells occur in the alveolar of patients suffering from IPF [164, 165]. 

In principle, in the pathogenesis of IPF much has to be still revealed, however, the roles of 

epithelial cells and fibroblasts have been primarily studied in relation to the disease 

progression [166]. Moreover, in sites of excess deposition of matrix proteins, called fibrotic 
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foci, fibroblasts and myofibroblasts are accumulated [4] during fibrogenesis. The source of 

collagen producing fibroblasts in the interstitium of the lungs and fibrotic foci [167] has been 

debated over the years [168]. Suggestions have been made, implicating 

epithelial/mesenchymal transition [169] though these assertions remain to be empirically 

confirmed [157].   

The lungs of IPF patients exhibit elevated levels of connective tissue growth factor (CTGF) 

mRNA and protein in the AECs (Alveolar epithelial cells), whereas tissues from normal lungs 

have sparse CTGF-expressing AECs [170], proposing the involvement of AECs in pulmonary 

fibrosis. Supporting this notion, the alveolar epithelium of patients with IPF was reported to 

possess an increased expressions of CXCL12 [171, 172] and CCL2 [173]. These proteins are 

known ligands for CXCR4 [171, 174] and CCR2 [175] chemokine receptors present in the 

surface of  fibrocytes, suggesting an interplay between the two cell types in the pathogenesis 

of IPF.   

Furthermore, the sources of cytokines in the lungs are epithelial, mesenchymal and 

inflammatory cells, such as macrophages, B-lymphocytes, T-lymphocytes, neutrophils, 

eosinophils and platelets [176]. Interferon-γ activated macrophages secrete TNF-α, IL-6, IL-

1β, and inducible nitric oxide. T-lymphocytes were suggested to play bifunctional roles in 

fibrosis, alleviating fibrosis and also promoting the progression of the disease by producing 

Th-1 or Th-2 cytokines [176]. B-Lymphocytes produce autoantibodies against periplakin, a 

protein localized to desmosomes and intermediate filaments, in epithelial cells of IPF patients 

and this has been shown to worsen the physiological condition of the disease [177]. 

Conversely, B-cells elicit protective roles in fibrosis in transgenic mice overexpressing anti-

inflammatory cytokines and IL-9 [178, 179].  

 

1.2.7. Composition of the extracellular matrix (ECM) in the lung 

The ECM is a connecting framework of fibres and ground substances synthesized and 

released by cells via exocytosis [180]. An example is the basement membrane, which is a 

specialized type of ECM produced by epithelial, endothelial and stromal cells [181].  

Moreover, stromal cells are as well known to produce components of the interstitial matrix. 

The ECM consists of four different components: structural proteins of fibres, ground 

substances with glycosaminoglycans, proteoglycans and adhesion proteins in between the 

distinct epithelial cell types [182]. The epithelial (AECI and AECII) and endothelial cells of 
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the lung alveolar wall are also separated by a thin interstitial space [183]. It is known that two 

thirds of the dry weight of ECM is composed of Collagen fibres (type I, III, and V in the 

airway wall) and elastin [184]. The basement membrane in the lung is made up of collagen IV 

and it is documented that collagens I and II basically provide the structural integrity of the 

organ [185, 186].  The other fraction of lung ECM comprise of glycoproteins (fibronectin, 

tenascin, laminin) and ground substance components, including heparin sulfate and 

hyaluronan and entactin [185]. Collectively, the collagen fibres in the ECM give tensile 

strength [187], among which collagen type III fibers are malleable and easily broken down 

and collagen type I fibres exhibit thick cross-linked fibrils [188, 189]. Fibronectin regulates 

the morphology, motility and differentiation of cells in the lungs, as well as enhances the 

adhesion of various cells to the ECM.   

The ECM of the lung provides mechanical tensile, strength and elasticity, and maintains 

interstitial fluid dynamics [190]. Other key functions of the ECM include: 1. Provision of low 

resistance to optimum gas exchange. 2. Influence of cellular processes through the binding of 

growth factors, cytokines and chemokines. 3. Promotion of cell-surface receptor interactions 

to regulate cell morphology, cell to cell interaction, cell signaling, differentiation, 

proliferation, polarization and migration [146, 191]. and 4. Modulation of wound healing 

[192]. The broad scope of functions of the ECM makes it important for the mediation of 

almost all cellular behaviors. This makes the regulation of ECM production, degradation and 

remodeling multi-mechanistic [193]. The disruption of any of these biological processes will 

result in abnormal behavior of cells leading to failure of organ homeostasis as observed in 

tissue fibrosis [194]. Furthermore, some proteins as well as proteoglycans and 

glycosaminoglycans in ECM contribute to stiffness and also regulate cell behavior [195]. 

Interestingly, matrix stiffness of the lung induces mechanical stimuli to influence cell function 

for the progression of fibrosis [195, 196].  

 

1.2.8. Major collagen secreting cells in fibrosis  

As discussed earlier, fibroblasts are the main collagen I and extracellular matrix secreting 

cells in IPF [4, 197]. The major cell types that are responsible for collagen production during 

the pathogenesis of the disease are essential possible targets to develop therapeutic 

interventions. The lung parenchyma and circulation of IPF patients harbor an important cell 

type known as fibroblast precursor [171, 198]. The contributions of fibroblast precursors in 

IPF cannot be underemphasized since they are activated into fibroblasts or quiet cells in the 
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stroma differentiate to myofibroblasts, produce collagen type I and also release cytokines to 

induce collagen deposition [174, 199]. Increase in circulating fibroblast precursors have been 

described during exacerbations in patients with IPF [198]. 

In addition to increased matrix secretion, progression of lung fibrosis also depends on changes 

in the phenotype of fibroblasts, which render them resistant to apoptosis and induce their 

migration [200, 201]. At the molecular level, resistance to apoptosis of fibroblasts is enhanced 

by increased levels of survivin [202] or SPARC [203], elevation of STAT-3 signaling [204], 

declined release of prostaglandin E2 due to decreased induction of cyclooxygenase 2 (COX-

2) [205] and reduced forkhead box O3a (FoxO3a)  [206].  

 

1.2.9. Pathological features and diagnosis of IPF  

Controversies related to the diagnosis of IPF through surgical biopsies and high resolution 

computer tomography (HRCT) influenced the use of classical clinical disease patterns 

associated with Usual Interstitial Pneumonia (UIP) as sufficient evidence for IPF diagnosis 

[207, 208]. The lungs of patients with UIP are characterized with a timely and heterogeneous 

distribution of interstitium, a patchwork appearance due to alternating areas of scarred and 

normal lung tissues, distortion in normal lung architecture with honeycomb structures and 

thick scars at the alveolar region, and accumulation of myofibroblasts [209, 210]. The scarred 

tissues persist in subpleural/paraseptal regions of the lungs [211, 212]. The honeycomb 

structure comprises enlarged airspaces with bronchiolar epithelium and in many cases, filled 

with mucous, neutrophils and macrophages [209]. Though extensive fibroblastic foci have 

been related to poor prognosis in IPF patients, it is interesting to note that not all cases tend to 

be true [213]. 

The features described above are also used in the diagnosis of IPF coupled with the aid of two 

main diagnostic tools, namely high resolution computer tomography (HRCT) and 

histopathological studies. The classical characteristic features of UIP on HRCT used in the 

diagnosis of IPF include: subpleural abnormalities mostly at the base of the lung, reticular 

abnormalities, honeycombs with or without traction bronchiectasis and the absence of 

unrelated features of UIP [208, 214, 215].  
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1.3. Treatment and management of IPF 

Management of IPF was once based on arresting inflammation until opinions shifted to 

abnormal repair of alveolar epithelial injury [216]. In recent times, pirfenidone has been 

extensively used and it is suggested to regulate the proliferation of fibroblasts, inhibit the 

synthesis of collagen, interrupt the production of TGF-β and TNF-α, and stimulate anti-

inflammatory and anti-oxidative responses [217, 218]. Additionally, another compound, 

Nintedanib, was generated to inhibit the progression of IPF. Nonetheless, nintedanib 

unfortunately decreased respiratory function by blocking signaling pathways of vascular 

endothelial growth factor receptors, platelet-derived growth factor receptors and fibroblast 

growth factor receptors in addition to what it was intended to function against [219, 220]. 

Oxidative stress is a common biological mechanism in IPF and N-Acetylcysteine, a 

compound with antioxidative properties, has also been tried in the management of IPF.  

Additionally, it was observed that more than 90% of patients suffering from IPF presented 

with gastrooesophageal reflux disease [221], wherefore antacid drugs were used, however, 

were invariably reported to reduce the forced vital capacity of patients [222]. Furthermore, 

other non-pharmacologic approaches like long-term oxygen therapy [208], lung 

transplantation [223], and pulmonary rehabilitation [224] have helped in the management of 

patients with IPF.  

Among all the interventions available, the use of Pirfenidone and Nintedanib has shown 

promising signs by reducing the progression of IPF. Nonetheless, these compounds do not 

cure the disease and the development of IPF is progressed in some patients irrespective of 

treatments with these drugs [225]. The growing concerns to find putative therapeutic 

interventions for IPF and to prolong the lifespan of patients have resulted in numerous studies 

which are investigating the use of some known compounds for experimental and clinical trial. 

As a result, activators of peroxisome proliferator-activated receptors (PPARs) were suggested 

and studied in IPF.   
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1.4. PPARs and their potential roles in fibrosis resolution 

Peroxisome proliferator-activated receptors (PPAR) belong to the superfamily of nuclear 

hormone receptors [226, 227] that are ligand-activated to regulate gene expression for the 

modulation of multiple cellular functions. The three isotypes of PPARs in lower vertebrates 

and mammals are PPAR-α, PPAR-β/δ and PPAR-γ [228]. PPAR-γ has three isoforms namely: 

γ1, γ2 and γ3 [229, 230]. Each PPAR exhibits its own specific and distinct tissue and cell type 

distribution and also possess some ligand specificity [231, 232]. The receptors are known to 

be activated by different fatty acids, eicosanoids and many xenobiotics [233]. PPARs function 

as transcription factors [234] to regulate genes involved in the metabolism of glucose and 

lipids, adipogenesis, homeostasis, inflammation, immune response, insulin sensitivity, cell 

growth and differentiation [227, 234-240].  

The PPAR family members share similarities in their structural and functional features. They 

possess an N-terminal domain containing a ligand-independent activation function 1 [241] for 

PPAR phosphorylation, a DNA binding domain [242], a co-factor binding domain and a 

ligand-binding domain. There also exists a ligand-dependent activation function 2 at the 

ligand binding domain of the receptors [232].  

After ligand binding, PPARs form heterodimeric complexes with another ligand-activated 

nuclear receptor known as retinoid X receptor (RXR) [243]. Ligand-binding to PPARs results 

in changes in receptor conformation, release of co-repressors and recruitment of co-activators 

[232, 234]. This complex binds to a PPAR response element (PPRE) in the promoter of target 

genes [242, 244]. Transcription starts after the dissociation of related proteins, such as nuclear 

receptor corepressors (NCoR), histone deacetylases (HDAC), and G-protein pathway 

suppressor 2 (GPS2) [245, 246],  and recruitment of coactivators, including PPAR coactivator 

(PGC-1), histone acetyltransferase p300, CREB binding protein (CBP) and steroid receptor 

coactivator (SRC)-1 [243].  

The anti-fibrotic potentials of natural and synthetic ligands of PPARs have been studied in 

different organ systems. For instance, PPAR-α activation was reported to reduce fibrosis in a 

thioacetamide model of liver cirrhosis [247], attenuate cardiac and vascular fibrosis [248] and 

lung fibrosis [249]. PPAR-β/δ was suggested to support the anti-fibrotic potential of PPAR-γ 

[250]. Moreover, a wide spectrum of research data on the anti-fibrotic effects of PPAR-γ in 

the lung has been published using diverse experimental approaches to elucidate its essential 

molecular properties [251-254] though many of them are stimulating anti-inflammatory 

effects and fibrosis prevention. 
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1.4.1. Molecular mechanisms of PPARs in fibrosis  

Ligand stimulation of PPAR-α is known to exert therapeutic effects in fibrotic disease 

conditions through its interference with some cellular signaling pathways. For example, 

oleoylethanolamide activates PPAR-α to inhibit Smad 2/3 phosphorylation in TGF-β1 

stimulated hepatic stellate cells [255]. PPAR-α interacts and inhibits AP-1 and NF-κB thus 

blocks the transcription of pro-inflammatory cytokines in cystic fibrosis [256]. In the heart, 

inhibition of HMG-CoA reductase in combination with a Western diet was reported to 

increase the levels of PPAR-α and PPAR-γ which further induced the reduction of cardiac 

fibrosis in ApoE-/- mice [257]. Interestingly, a remarkable reduction in tubulointerstitial 

fibrosis was noted when PPAR-α was overexpressed in the proximal tubule of a PPAR-α 

transgenic mouse model [258]. 

The molecular effects of PPAR-β/δ in fibrotic diseases are clearly related to inflammation and 

prevention of oxidative stress. Activated PPAR-β increases the phosphorylation of 

phosphoinositide-3 kinase/protein kinase-C alpha/beta mixed lineage kinase-3 pathway, 

leading to the activation of p38 and c-Jun N-terminal kinases [259]. This mechanism 

stimulates the proliferation of hepatic stellate cells, thus modulate fibrosis and inflammatory 

responses in conditions of uncontrolled hepatic repair.  PPAR-β is also known to induce the 

expression of some TGF-β-repressed and TGF-β-activated genes [260]. TGF-β stimulates 

corepressor genes, for instance NCOR2, which complements the recruitment of SMRT and 

various corepressors to the PPRE-bound PPAR-β complex hence blocks the transcription of 

downstream genes. In cardiac fibrosis, activated TRPV1 upregulates PPAR-β to protect the 

heart from oxidative stress-induced fibrosis in mice [261]. Also, PPAR-β potentially prevents 

CTGF/MMP9-induced fibrotic changes in the heart of patients and mice by upregulating 

STAT3 expression in hyperglycemic environment [262]. No reports are available yet on the 

function of this receptor in pulmonary fibrosis.  

The involvement of PPAR-γ in fibrotic disease processes has been well delineated. It was 

reported that PPAR-γ is controlled by TGF-β1 partly through Smad3 signaling [263]. The 

study, which was done in primary murine lung fibroblasts, suggested that TGF-β1 

downregulates PPAR-γ transcription whereas in lung fibroblasts deficient in Smad3, the effect 

was reduced. Further, TGF-β1 stimulates the activation of the PPAR-γ gene promoter and 

induces the phosphorylation of PPAR-γ in primary lung fibroblasts. However, TGFβ-induced 

Akt phosphorylation is inhibited by activated PPAR-γ through post-translational and post-

transcriptional mechanisms which are independent of MAPK-p38 and PTEN, and dependent 
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on TGFβ-induced phosphorylation of FAK [264]. In mouse embryonic fibroblasts lacking 

PPAR-γ, constitutive up-regulation of collagen I and Smad activation were observed and this 

was partly due to autocrine TGF-β stimulation [265]. The study highlighted that constitutive 

phosphorylation of Smad2/3 leads to ligand-independent interaction of Smad3 with its general 

DNA recognition site and p300. This suggests that PPAR-γ may play a crucial role in 

controlling Smad-dependent Type I collagen gene expression. In cardiac fibrosis, ligand 

activated PPAR-γ interacts with TGF-β1/Smad2/3 and JNK signaling pathways to reduce the 

production of ECM and suppression of angiotensin II-induced production of PAI-1 

(plasminogen activator inhibitor-1) in rat cardiac fibroblasts, proposing a potential beneficial 

effect in cardiac fibrosis [266]. 

The link between microRNAs and PPAR-γ in fibrotic diseases explains different mechanisms 

of actions with regards to the type of tissue and the type of microRNA studied. An example is 

tubulointerstitial fibrosis in renal tissues of diabetic rats and diabetic nephropathy. Inhibition 

of PPAR-γ by miR-27a and further activation of TGF-β/Smad3 signaling promote the 

expression of connective tissue growth factor (CTGF), fibronectin and collagen I [267]. 

Conversely, in fibroblasts isolated from keloid patients, troglitazone-activated PPAR-γ 

induced the expression of miR-92b which further inhibited the expression of Axl (AXL 

Receptor Tyrosine Kinase) and TGF-β1 [268]. Additionally, it was reported that activated 

PPAR-γ upregulated IκBα [269]. This protein negatively modulates NF-kB-dependent 

inflammation in cystic fibrosis-associated liver disease in mice. 

Overall, PPARs have shown to interfere with important signaling pathways involved in the 

pathophysiology of fibrosis and metabolic diseases. Moreover, PPAR-α induced the 

proliferation of peroxisomes and also exhibited anti-fibrotic effects in primary human lung 

fibroblasts [270], hence the need to investigate further into peroxisomal functions in fibrosis 

resolution.   

 

1.5. Peroxisomes 

Peroxisomes are single membrane bound ubiquitous organelles with a fine granular electron-

lucent matrix containing metabolic enzymes and diameters ranging from 0.1–1 μm [271]. 

Though frequently spherical in hepatocytes, peroxisomes can be elongated especially in mice 

or found also in reticular forms [272]. Peroxisomes are present in all eukaryotic cells 

(ubiquitous organelles) and were initially reported in microbodies [273]. Peroxisomes possess 

several oxidases and catalase for hydrogen peroxide production and decomposition leading to 
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the suggestion of the peroxisome concept [274]. The organelle responds to cellular and 

environment changes by regulating its size, morphology, number and function [275]. The 

morphology of peroxisomes also depends on the presence of inducing stimuli such as 

hepatectomy [276], growth factors and polyunsaturated fatty acids [277]. Additionally, 

peroxisomes are also influenced by the conditions in other subcellular compartments, such as 

lipid droplets [278], domains of the plasma membrane and mitochondrial processes [279]. 

There are 32 peroxin proteins associated with peroxisomal biogenesis which are proteins 

diversely found in the cytoplasm, the peroxisomal membrane and the matrix of the organelle 

[280]. The expression of some peroxins and peroxisomal enzymes is stimulated by Fatty acid-

responsive transcription factors [281]. It is also known that the metabolic functions of 

peroxisomes are altered by changes in its specific protein composition [282].  

Over the past years, reports have indicated peroxisomal gene regulation by PPARs especially 

PPAR-α. Genes of the peroxisomal compartments regulated by PPAR-α include: 1) 

Peroxisomal β-oxidation (ABCD2, ABCD3, ACAA1A, ACOX1, MFP2) and 2) cholesterol 

and bile acids metabolism (ABDC1) [283]. PPAR-β was also shown to regulate peroxisomes 

in osteoblasts [284]. 

 

1.5.1. Peroxisomal disorders  

Peroxisomal biogenesis proteins were named peroxins that are encoded by PEX genes whose 

mutations result in peroxisomal biogenesis disorders, the diseases of the Zellweger syndrome 

spectrum (Zellweger syndrome, neonatal adrenoleukodystrophy and infantile Refsum’s 

disease). The most severe form is Zellweger syndrome also called cerebrohepatorenal 

syndrome, a devastating disease leading to liver fibrosis/cirrhosis and early death of children  

[285]. In addition to peroxisomal biogenesis disorders, the second group of the inherited 

peroxisomal diseases are the peroxisomal single enzyme deficiencies [286]. Mutation in 

ABCD1 gene encoding a transport protein for very long chain fatty acid CoA-derivatives 

results in X-linked adrenoleukodystrophy [287], a disease leading to the accumulation of 

VLCFAs, neurodegeneration and adrenal deficiency. Peroxisomes are involved in the last step 

of bile acids synthesis via their β-oxidation pathways [288] and disruption to this organelle is 

known to result in cholestasis, hepatomegaly and rise in serum enzymes [289].  Deficiencies 

in peroxisomal functions result in secondary proliferation of pleomorphic mitochondria and 

respiratory chain defects in activity (complex I and III) [290].   
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1.5.2. The biogenesis of peroxisomes and organ distribution 

Compiling evidence have shown that the regulation of peroxisome biogenesis modulates 

peroxisomal function [291]. Possible mechanisms by which peroxisomes could come into 

existence, namely: de novo generation of peroxisomal vesicles from the endoplasmic 

reticulum [292, 293] and, fusion [294] or fission of pre-existing peroxisomes [295].  

Peroxisomal fission begins with tubulation, a mechanism facilitated by activated PEX11β 

[296, 297] and the enrichment of dynamin-related Protein (DRP)-interacting proteins in its 

membrane. The peroxisomal membrane further undergoes constriction and a recruited 

dynamin-related protein enhances the fission mechanism for the formation of new 

peroxisomes in mammalian cells. Reports have also shown that DRP-interacting proteins and 

DRPs mediate the proliferation of mitochondria as well [279, 298]. After fission, peroxisomes 

are distributed in mammalian cells along the microtubules [299]. It is noteworthy that 

peroxisomes also proliferate at a rate compared to that of the cell cycle [295].   

Vesicular transport of proteins and membranes from the endosplasmic reticulum to matured 

peroxisomes was suggested to result in a coordinated membrane expansion and fission of the 

organelle [295]. However, there are clear differences between these vesicles and those 

involved in de novo formation of peroxisomes since the latter do not fuse with matured 

peroxisomes [294].  

Peroxisomes are heterogenously distributed in different organs of the body. For instance, in 

the lungs, the distribution and abundance of peroxisomal proteins depend on the type of cell 

and developmental stage of the organ [300]. Also in the mouse heart, the four chambers have 

different peroxisomal genes expression and protein abundance [301].  

 

1.5.3. Import of membrane proteins 

A majority of membrane proteins of peroxisomes are synthesized in the cytosol and are post-

translationally embedded into the peroxisomal membrane either by direct targeting of the 

protein to peroxisomes via the recognition of a membrane PTS (Peroxisomal Targeting 

Signal) in the cytosol or are invariably targeted through the endoplasmic reticulum [302]. The 

former often occurs in mammalian cells where a shuttling receptor, PEX19, forms a cargo 

complex with the membrane proteins in the cytosol and coordinates the recognition of a 

membrane PTS [303, 304]. This complex further progress to another peroxisomal membrane-
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bound protein called PEX16 for the insertion of cargo proteins into the membrane of 

peroxisomes [303, 304].  

 

1.5.4. Import of matrix proteins 

The import of matrix proteins from the cytosol to peroxisomes is coordinated by PEX5 and 

PEX7 receptors which recognize peroxisomal targeting signals 1 and 2 (PTS1 and PTS2) at 

different termini of the matrix proteins [271]. Membrane proteins imported into peroxisomes 

start with the docking of the cargo-bound import receptors (PEX5 or PEX7) on the 

peroxisomal membrane, translocation of the cargo into the peroxisomal matrix [305] and final 

release and recycling. The receptors are released back into the cytosol.  

Supporting data from some studies have revealed that the mechanisms involved in PTS1-

dependent translocation of proteins into the peroxisomal matrix are as follows: 1) Cytosolic 

soluble import receptor PEX5 binds to the cargo. 2) The complex formed by the cargo and 

import receptor resides on peroxisomes by docking on a complex of peroxins (example 

PEX13 and PEX14) on the membrane. 3) PEX5 forms a channel with the  peroxisomal 

membrane for the translocation of the cargo into the matrix and is released and recycled by 

exportomers [306, 307] or degraded by proteasomes [308] when the receptor recycling 

machinery is compromised. Reference to this mechanism, it is striking that there were no 

pores described on the peroxisomal membrane [309] though it is known that small metabolites 

are able to permeate the organelle [310]. 

 

1.5.5. α- and β-oxidation 

Peroxisomes and mitochondria cooperate in β-oxidation, detoxification of ROS [311, 312] 

and anti-viral signaling and defense [313]. Very-long chain fatty acids undergo β-oxidation 

preferably in peroxisomes [314]. Peroxisomes function in the α-oxidation of branched-chain 

fatty acids [315], a unique metabolic function absent in mitochondrion. The metabolism of 

dicarboxylic acids degradation, products of ω-oxidation, occurs via peroxisomal β-oxidation 

[316]. 

Before transport into the organelle and β-oxidation, saturated unbranched and 2-methyl-

branched fatty acids are activated to thiol-CoA derivatives and undergo a stepwise process 

catalyzed by various acyl-CoA oxidases (ACOX 1-3), multifunctional enzymes (L-

bifunctional protein and D-bifunctional protein) and thiolases in mammals [317].  
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The β-oxidation mechanisms in peroxisomes as well as in mitochondria involves four 

successive processes which include dehydrogenation of fatty acyl-CoA (done in peroxisomes 

by ACOXs and in mitochondria by acyl-CoA dehydrogenases), hydration to form 3-L-

hydroxyacyl-CoA, dehydrogenation of 3-L-hydroxyacyl-CoA, leading to the formation of 3-

ketoacyl CoA and thiolytic cleavage of the terminal acetyl-CoA group, giving rise to a new 

acyl-CoA molecule.  

Peroxisomal fatty acid oxidation results in the shortening of very long-chain fatty acids, and 

long-chain fatty acids up to chain length (> C8), which are further oxidized in the 

mitochondrion. Moreover, signaling and bioactive lipids are degraded in peroxisomes, for 

example, pro-inflammatory prostaglandins and leukotrienes. Furthermore, the β-oxidation in 

peroxisomes leads to modification of polyunsaturated fatty acids and bile acids [317-319]. 

Finally, β-oxidation precursors of ether phospholipids (plamalogens) and cholesterol are 

synthesized in this organelle.  

 

1.5.6. Antioxidative and ROS metabolism in peroxisomes 

Peroxisomes are a rich source of catalase, superoxide dismutase 1, and glutathione 

peroxidase, which degrade reactive oxygen species [320]. In contrast, peroxisomal oxidases 

during metabolism of specific substrates such as xanthine or urate (xanthine and urate 

oxidase) or D-amino acids, α-hydroxy acids or other substrates (example polyamines)  reduce 

O2 [99]. The 
•
O

-
2  produced by xanthine oxidase is converted by superoxide dismutase 

(CuZnSOD or SOD1) into O2 and H2O2 in peroxisomes [321]. In response to the 

accumulation of H2O2 in cells, catalase, glutathione peroxidase and peroxiredoxin I or V 

(PMP20) scavenge the reactive oxygen species into H2O and O2 [322, 323]. Due to the 

various oxidases present in peroxisomes, the organelle also functions in amino acid 

catabolism and polyamine oxidation [317].  

 

1.5.7. Peroxisomes in fibrosis 

In Zellweger patients, β-oxidation is compromised, leading to the accumulation of toxic C(27)  

bile acid intermediates, a condition suggested to cause liver disorders and fibrosis [324]. Our 

recent paper supported this claim by reporting that profibrotic response to TGF-β1 in primary 

human lung fibroblasts downregulated peroxisomal proteins, example PEX13 (peroxisomal 

protein) which resulted in the activation of proinflammatory mediators and the Smad 

signaling pathway, leading to the progression of fibrosis [270]. However, PPAR-α activation 

induced the proliferation of peroxisomes as well as inhibited profibrotic responses.    
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1.6. Aims of the study 

The scientific basis of the study relates to our earlier publication which reported that in vitro 

treatment of primary human lung fibroblasts with PPAR-α induced peroxisome proliferation 

and exhibited anti-fibrotic responses [270]. Additionally, it was later reported from our 

working group that PPAR-β activation induced the proliferation of peroxisomes and also 

increased catalase in primary osteoblasts [284]. The pathogenesis of IPF is influenced by 

cytokines, ROS accumulation and other pathophysiological mechanisms that can be 

modulated when peroxisomes are proliferated. This study investigated the functional 

molecular role of peroxisomes using control and IPF primary human lung fibroblasts as well 

as lung tissues from humans and a bleomycin-induced fibrosis mouse model. As a result, the 

aims of this study were as follows: 

1. To characterize markers of fibrosis in lung tissues and the relative abundance of 

different PPARs in basal and TGFβ1 stimulated control and IPF primary human lung 

fibroblasts. 

2. To assess the differences between control and IPF primary human lung fibroblast with 

regards to the expression of collagen degrading enzymes and their proliferative 

capacities. 

3. To investigate the anti-fibrotic properties of activated PPARs. 

4. To assess the role of peroxisome biogenesis in fibrosis after PPAR activation in TGF-

β1 stimulated control and IPF primary human lung fibroblasts. 

5. To determine the effects of activated PPARs on migration and invasion of lung 

fibroblasts.    

6. To explore the anti-fibrotic potential of dual PPAR agonist in primary human lung 

fibroblasts. 

7. To elucidate the functional molecular role of catalase and peroxisomes in pulmonary 

fibrosis. 
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2. Materials and methods 

2.1. Materials 

The instruments, chemicals, reagents, enzymes, drugs and consumables used for this study 

and their suppliers are outlined in the tables that follow. 

 

2.1.1. Instruments and general materials 

Table I shows the instruments and materials used for the experiments. 

Instrument Supplier 

Biocell A10 water system                                               Milli Q-Millipore, Schwalbach, Germany 

Biofuge Fresco Heraeus, Hanau, Germany 

Bio-Rad electrophoresis apparatus  

(Sub Cell GT) system 

Bio-Rad, Heidelberg, Germany 

Cary 50 Bio-UV-visible spectrophotometer Varian, Darmstadt, Germany 

Dish washing machine (G 78 83 CD)  Miele, Gütersloh, Germany 

Hera cell 240 incubator  Heraeus, Hanau, Germany 

Hera safe, clean bench KS-12  Heraeus, Hanau, Germany 

Ice machine, Scotsman AF-100 Scotsman Ice Systems, Vernon Hills, IL,USA 

iCycler PCR machine MyiQ2 optical module  Bio-Rad, Heidelberg, Germany 

Leica DMRD fluorescence microscope  Leica, Bensheim, Germany 

Leica DC 480 camera Leica, Bensheim, Germany 

Leica TP1020 embedding machine Leica, Nussloch, Germany 

Leica SM 2000R rotation microtome Leica, Nussloch, Germany 

Leica TCS SP2 confocal laser scanning 

microscope (CLSM) 

Leica, Nussloch, Germany 
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Magnetic stirrer, MR3001 Heidolph Instruments GmbH & Co.KG, 

Schwalbach,Germany 

Microtome stretching water bathType 1003 Vieth Enno, Wiesmoor, Germany 

Microwave oven MB-392445 LG, Willich, Germany 

Mini Trans-Blot® Cell Bio-Rad 

Mini-Protean 3 cell system  Bio-Rad, Heidelberg, Germany 

Multifuge 3SR centrifuge Heraeus, Hanau, Germany 

NanoDrop™ 8000  ThermoFisher 

Oven HERAEUS T 5050 EKP Heraeus, Hanau, Germany 

Paraffin tissue floating bath Medax 

pH meter E163649  IKA, Weilheim, Germany 

Pipette tips Eppendorf AG, Hamburg, Germany 

Pipettes  Eppendorf, Hamburg, Germany 

Potter-Elvehjem homogenizer B.Braun, Melsungen, Germany 

Power supply - 200, 300 and 3000 Xi  Bio-Rad, Heidelberg, Germany 

Pressure/ Vacuum Autoclave FVA/3 Fedegari, Albuzzano, Italy 

Sorvall Evolution RC centrifuge Kendro, NC, USA 

Smartspec
TM

 3000 spectrophotometer Bio-Rad, Heidelberg, Germany 

Thermo plate Medax, Kiel, Germany 

Thermo mixer HBT 130 HLC, BioTech, Bovenden, Germany 

Trans-Blot SD semi dry transfer cell  Bio-Rad, Heidelberg, Germany 

Trimmer TM60 Reichert, Wolfratshausen, Germany 

TRIO-Thermoblock Biometra, Göttingen, Germany 

Ultra-balance LA120S  Sartorius, Göttingen, Germany 
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Ultra Turrax T25 basic homogenizer Junke & Kunkel, Staufen, Germany 

Vortex M10 VWR International, Darmstadt, Germany 

Water bath shaker GFL 1083 GFL, Burgwedel, Germany 

General Material Supplier 

BioMax MR-films Kodak, Stuttgart, Germany 

Cover slips Menzel-Gläser, Braunschweig, Germany 

Culture dish (35 mm) BD Biosciences, Heidelberg, Germany 

Culture dish (60 mm) BD Biosciences, Heidelberg, Germany 

Dimethyl sulfoxide (DMSO) Invitrogen Life Technologies GmbH, Karlsruhe, 

Germany 

DMEM, low glucose, GlutaMAX™ supplement Sigma, Steinheim, Germany 

Eppendorf tubes Eppendorf AG, Hamburg, Germany 

Falcon tubes Becton Dickinson, Heidelberg, Germany 

Fetal bovine serum Thermo Fisher Scientific, Schwerte, Germany 

Filter tips Braun, Melsungen, Germany 

Microscope slides R. Langenbrinck, Emmendingen, Germany 

Microtome blade A35 Feather, Köln, Germany 

Multi-well cell culture plates (12-wells) BD Biosciences, Heidelberg, Germany 

Multi-well cell culture plates (24-wells) BD Biosciences, Heidelberg, Germany 

Multi-well cell culture plates (6-wells) BD Biosciences, Heidelberg, Germany 

Nalgene syringe filter (0.2µm) Thermo Fisher Scientific, Schwerte, Germany 

Nitrile gloves Kimberly-Clark Professional, Koblenz- 

Rheinhafen, Germany 

Paraffin Paraplast Plus, MO, USA 
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Pasteur pipettes VWR International GmbH, Darmstadt, Germany 

Penicillin-Streptomycin PAN Biotech, Aidenbach, Germany 

Phosphate-buffer saline (PBS) PAA laboratories GmbH, Pasching, Austria 

Plastic pipettes, for cell culture (sterile)  Becton Dickinson GmbH, Heidelberg, Germany 

PVDF membranes Millipore, Schwalbach, Germany 

Tissue culture plate (96-wells) Sarstedt, USA 

Syringe filters 0.22 microns Millipore GmbH, Schwalbach, Germany 

Table I. Instruments and general materials 

2.1.2. Drugs, siRNA and Chemicals  

Table II displays the suppliers of drugs and siRNAs used for treatment and transfection of 

cells, and chemicals for the experiments. 

Drug substances and compounds used for  

Treatments 

Supplier 

Arachidonic acid, docosahexaenoic acid, 

eicosapentaenoic acid 

Cayman Chemical, Ann Arbor, USA 

3-Amino-1,2,4-triazole Merck, Darmstadt, Germany 

Dual PPAR-β and -γ agonist (V6) Vitas-M, Champaign, USA 

GSK0660 (PPAR-β antagonist) Trocris bioscience, Wiesbaden-Nordenstadt, 

Germany 

GW0742 (PPAR-β agonist) Sigma-Aldrich, Steinheim, Germany 

GW6471 (PPAR-α antagonist) Sigma-Aldrich, Steinheim, Germany 

GW9662 (PPAR-γ antagonist) Trocris bioscience, Wiesbaden-Nordenstadt, 

Germany 

Hydrogen peroxide solution Merck, Darmstadt, Germany 
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MMP inhibitor (4-Aminobenzoyl-Gly-Pro-D-

Leu-D-Ala hydroxamic acid)  

Sigma-Aldrich, Steinheim, Germany 

rhTGF-β1  R&D, Minneapolis, USA 

Rosiglitazone Sigma-Aldrich, Steinheim, Germany 

Troglitazone Trocris bioscience, Wiesbaden-Nordenstadt, 

Germany 

WY14643 (PPAR-α agonist) Trocris bioscience, Wiesbaden-Nordenstadt, 

Germany 

SiRNA and reagent Supplier 

Allstars negative siRNA  Qiagen, Hilden, Germany 

ScreenFect A InCella, Berlin, Germany 

siMMP1  Ambion, Darmstadt, Germany 

Catalase siRNA GE Dharmacon, Lafayette, USA 

Chemical Supplier 

AccuGENE™ water Lonza, Basel, Switzerland  

Acrylamide  Roth, Karlsruhe, Germany 

Agarose  Roche, Grenzach-Wyhlen, Germany 

Bradford reagent  Sigma, Steinheim, Germany 

Bromophenol blue Riedel-de Haën, Seelze, Germany 

Clarity
 TM 

western ECL substrate Bio-Rad, Heidelberg, Germany 

3,3´-Diaminobenzidine-tetrahydochloride 

(DAB) 

Sigma, Steinheim, Germany 

Deoxynucleotide Mix (dNTP) 5 Prime, Hilden, Germany 

di-sodium hydrogen phosphate (Na2HPO4) Merck, Darmstadt, Germany  
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Dithiothreitol Bio-Rad, Heidelberg, Germany 

Dual luciferase reporter assay kit Promega, Mannheim, Germany 

Ethanol  Merck, Darmstadt, Germany 

Ethylene diamine tetra acetic acid (EDTA) Fluka, Neu-Ulm, Germany 

Gibco´s 0.25% Trypsin/EDTA Invitrogen Life Technologies GmbH, 

Karlsruhe, Germany 

Glutaraldehyde Serva, Heidelberg, Germany 

Glycerol  Sigma, Steinheim, Germany 

Glycine  USB Europe GmbH, Staufen, Germany 

High-Capacity cDNA Reverse Transcription 

Kit 

Thermo Fisher Scientific, Schwerte, 

Germany 

HEPES/4-(2-hydroxyethyl)-1- 

piperazineethanesulfonic acid 

Roth, Karlsruhe, Germany 

Hoechst Molecular Probes/Invitrogen 

Milk powder Roth, Karlsruhe, Germany 

Mowiol 4-88   Polysciences, Eppelheim, Germany 

N-Propyl-gallate  Sigma, Steinheim, Germany 

Paraformaldehyde (PFA)  Sigma, Steinheim, Germany 

Paraformaldehyde (PFA) Merck, Darmstadt, Germany  

Penicillin/Streptomycin  PAN Biotech, Aidenbach, Germany 

Ponceau S Serva, Heidelberg, Germany 

Potassium chloride (KCl) Merck, Darmstadt, Germany 

Potassium dihydrogen phosphate (KH2PO4) Merck, Darmstadt, Germany 



27 
 

Protease inhibitor mix M Serva, Heidelberg, Germany 

READYMATIC
®
  Fixer and replenisher Carestream Health, Stuttgart, Germany 

READYMATIC
®
 Developer and replenisher Carestream Health, Stuttgart, Germany 

RNAzol
®
 RT Sigma, Steinheim, Germany 

Sodium chloride Merck, Darmstadt, Germany 

Sodium dodecyl sulfate (SDS)  Sigma, Steinheim, Germany 

Sucrose Merck, Darmstadt, Germany 

Tetramethylethylenediamine (TEMED)  Roth, Karlsruhe, Germany 

Trishydroxymethylaminomethane (Tris)  Roth, Karlsruhe, Germany 

Triton X-100 Sigma, Steinheim, Germany 

Tween 20  Merck, Darmstadt, Germany 

Xylene  Merck, Darmstadt, Germany 

Table II. Drugs, siRNA and chemicals 

 

2.1.3. Materials for assays  

The following table shows a summary of the kits used for the respective assays done in the 

study. Table III 

 

Material Supplier 

BrdU cell proliferation assay kit  Millipore GmbH, Schwalbach, Germany 

Catalase assay kit Abnova, Heidelberg, Germany 

Dual luc reporter assay kit Promega, Mannheim, Germany 

Hydrogen peroxide assay kit Cayman Chemical, Ann Arbor, USA 

Human TGF-β1 immunoassay kit R&D systems, Minneapolis, USA 
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Matrigel (for invasion assay) Becton Dickinson, Franklin Lakes, USA 

Pierce LDH Cytotoxicity Assay kit Thermo Scientific, Rockford, USA 

PPAR reporter luciferase kit Qiagen Cignal PPAR Reporter, Hilden, Germany 

Sircol collagen assay kit Biocolor, Newtownabbey, UK 

Table III. Materials for assays 

 

2.1.4. Luciferase reporter plasmids and overexpression vector 

The reporter and overexpression plasmids in Table IV below were transfected into cells to 

study promoter activities and downstream targets.  

 

Plasmid Company/Institution 

Catalase overexpression plasmid Prof. Marc Fransen (Université catholique de Louvain, Belgium), 

Louvain-la-Neuve, Belgium 

COL1A2-luc Dr. Eunsum Jung (BioSpectrum Life Science Institute, Korea), 

Gyeonggi-do, Korea 

pRL-SV40 Vector Promega, Mannheim, Germany 

Table IV. Luciferase reporter plasmids and overexpression vector 
 

2.1.5. Buffers and solutions    

Table V shows the buffers and solutions, including their compositions. 

 

Buffer/solution Composition 

Buffer/solution composition for Western Blotting 

10X  Electrophoresis buffer  2 M glycin, 250 mM Tris and 1% SDS  

10X TBS 0.1 M NaCl and 0.1 M Tris, pH 8.0 

20X Transfer buffer  Bis-Tris-HCl buffered (pH 6.4) polyacrylamide gel, NuPAGE 

transfer buffer (Invitrogen, Heidelberg, Germany) 

5% Blocking buffer 5% fat free milk powder in 1X TBST solution 
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Cell lysis buffer (IPB) 50 mM Tris, 150 mM NaCl, 1% Triton X-100 (pH 7.4), with 1% 

protease inhibitor mix M prior to use 

Tissue homogenization buffer  

(HMB) 

50 ml 0.25 M sucrose and 5 mM MOPS (pH 7.4) + 500 μl 100 mM 

EDTA + 50 μl 100% ethanol + 5 μl 2 M DTT + 50 μl 1 M 

aminocaproic acid and 100 μl cocktail of protease inhibitors 

Resolving gel (10%) 5 ml buffer A + 1.67 ml dH2O + 3.34 ml 30% acrylamide + 7.5 μl 

TEMED + 65 μl 10% APS 

Resolving gel (Buffer A) 1.5 M Tris-HCl, pH 8.8 + 0.4% SDS 

Sample buffer (10X) 3.55 ml dH2O + 1.25 ml 0.5M Tris-HCl (pH 6.8) + 2.5 ml 50% (w/v) 

glycerol + 2.0 ml 10% (w/v) SDS + 0.05% bromophenol blue. 50 µl 

of 1M Dithiothreitol added to 200 μl of 10X Sample buffer before 

use. 

12% Stacking gel 

(for 4 SDS-PAGE gels) 

1.25 ml 30% acrylamide + 3.75 ml dH2O + 5 ml buffer B + 15 μl 

TEMED + 130 μl 10% APS 

Stacking gel (Buffer B) 0.5 M Tris-HCl, pH 6.8 + 0.4% SDS 

Stripping buffer 10% SDS + 0.5M Tris + 500 ml dH2O, pH 6.8. 

50 ml of buffer/membrane + 350μl β-mercaptoethanol + in water-

bath at 60°C for 15 min 

Transfer Buffer Bis-Tris-HCl buffered (pH 6.4) polyacrylamide gel; NuPAGE 

transfer buffer, Invitrogen, Heidelberg, Germany 

Solutions for immunofluorescence (cells and lungs) 

10X PBS 50 mM KH2PO4, 131 mM K2HPO4, 1.5 M NaCl, pH 7.4 

Anti-fading agent  2.5% N-propylgallate in 50 % glycerol + 1 X PBS 

Blocking buffer for cells 1% PBSA + 0,05% Tween 20 

Blocking buffer for tissues  4% BSA in 1X PBS, 0.05% Tween 20 

 



30 
 

Citrate buffer 1 mM C6H8O7.H20 (Buffer A) and 50 mM C6H5Na3O7.2H20 (Buffer 

B). 0.15 mM buffer A + 8.5 mM buffer B, pH 6 

Dilution buffer  1% PBSA + 0,05% Tween 20 

Fixative solution 4% PFA in 1X PBS 

Glycine + Triton X-100 

solution 

0.2% Triton X-100 in 1% glycine 

Glycine solution 1% glycine in 1X PBS 

Mounting medium 1 part of anti-fading agent in 3 parts of Mowiol 4-88 

Mowiol 4-88 solution 16.7 % Mowiol 4-88 (w/v) in 80 ml of 1X PBS (stir overnight) 

followed by the addition of 40 ml of glycerol (stir overnight; 

centrifuge at 15,000 U/min for 1 h and store supernatant at -20°C) 

Trypsin  0.1% trypsin in 1X PBS  

Washing buffer  1X PBS 

Table V. Buffers and solutions 

 

2.1.6. Medium for cell culture 

The composition of medium used to culture cells is shown in Table VI below. 

 
Component Supplier 

10% Fetal bovine serum PAA Laboratories, Cölbe, Germany 

1%  Penicillin / Streptomycin  PAN Biotech, Aidenbach, Germany 

1%  Puromycin PAN Biotech, Aidenbach, Germany 

DMEM, 4.5g/L D-glucose, GlutaMAX™ 

supplement 

Thermo Fisher Scientific, Paisley, UK 

Table VI. Medium composition for cell culture  
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2.1.7. Freezing solution 

Cells were preserved in a freezing solution prepared with the components illustrated in Table 

VII. 

 

Component Percentage 

Culture medium 70% 

Dimethyl sulfoxide (DMSO) 10% 

Fetal bovine serum 20% 

Table VII. Composition of freezing solution 
 

2.1.8. Primary and secondary antibodies  

A summary of the antibodies used in the study are outlined in Table VIII. All antibodies have 

been well characterized and previously used for experiments in the lab.  

 

Primary antibody 

against antigen 

Host  Dilution  

IF (Cells) 

Dilution 

IF (Tissues) 

Dilution  

(WB) 

Supplier 

α- Smooth muscle 

actin (α-SMA) 

Mouse, 

monoclonal 

1:2000 1:2000 1:2000 Sigma, Cat. No.: A-

2547, Darmstadt, 

Germany 

Beta-actin (β-

actin) 

Mouse, 

monoclonal 

- - 1:2000 Sigma, Cat. No.: A-

5316, Darmstadt, 

Germany 

Catalase Rabbit, 

polyclonal 

1:50 1:50 1:200 Proteintech, Cat 

No.: 21260-1-AP, 

Rosemont, USA 

Collagen I (H-197) Rabbit, 

polyclonal 

- 1:50 - Santa cruz, Cat. 

No.: sc-28657, 

Heidelberg, 

Germany 
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Collagen I Rabbit, 

polyclonal 

1:50 1:50 1:200 Proteintech, Cat. 

No.: 14695-1-AP, 

Rosemont, USA 

PEX 3p Rat, 

monoclonal 

1:300 - - Gift from Dr. 

Claudia Colasante 

(Post-doc in the 

lab) 

Glutathione 

peroxidase (GPx-

1/2) 

Mouse, 

polyclonal 

- - 1:50 Santa Cruz, Cat. 

No.: 74498, 

Heidelberg, 

Germany 

Glyceraldehyde-3-

phosphate 

dehydrogenase 

(GAPDH), rabbit 

Mouse, 

polyclonal 

- - 1:10,000 HyTest, Cat. No: 

5G4, Turku, 

Finland, 

Matrix 

metalloproteinase-

1 (MMP1) 

Rabbit, 

polyclonal 

- - 1:200 Proteintech, Cat. 

No.: 10371-2-AP, 

Rosemont, USA 

Peroxin 13 

(PEX13p), mouse 

Rabbit, 

polyclonal 

- - 1:1,000 Gift from Denis I. 

Crane; School of 

Biomol. Biophys. 

Sci., Griffith Univ., 

Nathan, Brisbane, 

Australia. 

Peroxin 14 

(PEX14p), mouse  

Rabbit, 

polyclonal 

1:1,000 - - Gift from Denis I. 

Crane; School of 

Biomol. Biophys. 

Sci., Griffith Univ., 

Nathan, Brisbane, 

Australia. 
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Peroxisome 

proliferator-

activated receptor 

alpha (PPAR-α) 

Rabbit, 

polyclonal 

- - 1:100 Santa Cruz, Cat 

No.: sc1985, 

Heidelberg, 

Germany 

Peroxisome 

proliferator-

activated receptor 

beta (PPAR-β) 

Rabbit, 

polyclonal 

- 1:250 1:1000 Abiocode, Cat No.: 

R2295-1, Agoura 

Hills, USA 

Peroxisome 

proliferator-

activated receptor 

gamma (PPAR-γ) 

Rabbit, 

polyclonal 

- - 1:100 Santa Cruz, Cat 

No.: sc-7196, 

Heidelberg, 

Germany 

TGF-β1 receptor Rabbit, 

polyclonal 

- - 1:500 Abcam, Cat. 

No.:31013, 

Cambridge, UK 

 

Secondary 

antibody 

Host  Experimental 

type 

 

Dilution Supplier 

Anti-mouse IgG-

peroxidase 

Goat WB 1:10,000 Sigma, Cat. No.: A9044, 

Darmstadt, Germany 

Anti-Mouse-IgG 

Alexa Fluor 555 

Donkey IF/IHC 1:1000 Molecular Probes/Invitrogen, 

Cat. No: A31570 

Anti-rabbit IgG-

peroxidase 

Goat WB 1:7,000 Sigma, Cat. No.: A0545, 

Darmstadt, Germany 

Anti-Rabbit-IgG 

Alexa Fluor 488 

Donkey IF/IHC 1:1000 Molecular Probes/Invitrogen, 

Cat. No: A21206 

Table VIII. Primary and secondary antibodies 
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2.1.9. Primers  

Primers used for qRT-PCR are illustrated in Table IX below. 

Table IX. Primers used for qRT-PCR 

Primer Sense primer (5’- 3’) Antisense primer (5’- 3’) Product length (bp) 

HPRT1 CCTGGCGTCGTGATTAGTGAT AGACGTTCAGTCCTGTCCATAA 131 

ACTA2 CCGGGACTAAGACGGGAATC TTACAGAGCCCAGAGCCATT 98 

COL1A1 GCCAAGACGAAGACATCCC GTTGTCGCAGACGCAGAT 107 

COL1A2 GAAGGAAAGAGAGGCCCTAATG TCCAGGAAGACCACGAGAA 96 

MMP1 CTGAGAAAGAAGACAAAGGCAAG TCATCACCTTCAGGGTTTCAG 134 

MMP2 GCTGGCCTAGTGATGATGTTAG CAGGTATTGCATGTGCTAGGT 125 

MMP3 CTCGTTGCTGCTCATGAAATTG TCAGGTCTGTGAGTGAGTGATA 100 

MMP7 TCTCTGGACGGCAGCTAT TGAGATAGTCCTGAGCCTGTT 134 

MMP8 GAATCCTTGCTCATGCCTTTC GTTGTAATTTGCGGAGGTGTT 98 

MMP9 TTTGGTGTCGCGGAGCA AAATGGGCGTCTCCCTGAAT 104 
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MMP10 CAGCGGACAAATACTGGAGAT CTTAGGCTCAACTCCTGGAAAG 98 

MMP11 TTGACCCTGTGAAGGTGAAG AAGCCATGGTCAGAGGAAAG 104 

MMP12 TTCCTTAGGTCTTGGCCATTC CACGTATGTCATCAGCAGAGAG 104 

MMP13 GTTTGCAGAGCGCTACCT CCTCTAAGCCGAAGAAAGACTG 125 

MMP14 GCCGACTAAGCAGAAGAAAGA TGTCGGCTTGGAGTTAAAGG 93 

MMP16 TCACATTCAGCACTGGAAGAC CCGCAGACTGTAGCACATAAA 97 

MMP17 CACCAAGTGGAACAAGAGGA CTTGAGGGCGTAGTACATGAG 106 

MMP19 GGGACTATGTGTGGACTGTATC ATTGTGTTCGAGGCGAGTAG 117 

PPARA  TCATCACGGACACGCTTTC CATTCGATGTTCAATGCTCCAC 106 

PPARD GGGACAGTGTTGTACAGTGTTT TCGTTGGTGCATCTGTCTTC 90 

PPARG GCAAACCCCTATTCCATGCT AGGAATCGCTTTCTGGGTCA 72 

PEX13 CCATGTAGTTGCCAGAGCAG CATCAAGGCTAGCCAGAAGC 140 

PEX14 CTGCCTTTGGCTTTGATCTC CGTGGTGTCACGGTAGTCAA 140 

ACOX1 ATTTCCTTCAGGGGAGCATC GCCAAGTGTCACATCCTGAA 137 
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ACAA1 AGCTTCTCTCGGCAGTCA CAGCACATTTCCGACACAGA 89 

AGPS AGGGGGATCGTGAGAAGGT CCAAAGCCAAGTCTCGAATG 147 

GNPAT GTGCAGAAAAACGCCTTAGC GGCTGGTTTTCCTATTGGTG 150 

CAT AGCAAACCGCACGCTAT TCAGGACATCAGCTTTCTGC 97 

GPX1 CATCAGGAGAACGCCAAGAA GCACTTCTCGAAGAGCATGA 99 

PRDX1 CCTAAGAAACAAGGAGGACTGG GAGATGCCTTCATCAGCCTTTA 107 

PRDX2 CAGACGCTTGTCTGAGGATTAC TTAACAGTGATCTGGCGAAGG 108 

PRDX3 TCGCACTCTTGTCAGACTTAAC TGGACTTGGCTTGATCTTAGTG 94 

PRDX4 TTACCCATTTGGCCTGGATTA CCTTTGAGATCTGATGGGTCAA 99 

PRDX5 GATTCGCTGGTGTCCATCTT ACATTCAGGGCCTTCACTATG 86 

PRDX6 CCAACCATCCCTGAAGAAGAA GGTGTGTAGCGGAGGTATTT 95 
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2.2. Methods 

Sample preparation and experimental procedures in this study are outlined as follows.   

2.2.1. Preparation of experimental samples 

The study was done with primary human lung fibroblasts isolated from human lung tissue 

biopsies of patients arranged for lobectomy and pneumonectomy. Additionally, paraffin 

embedded human donor lung samples were obtained from the central tissue bank of the 

University of Giessen Lung Center (UGLC) as well as human lung tissues from non-

transplanted healthy donors and IPF which were further fixed in 4% depolymerized PFA in 

PBS for 24 h at 4°C before paraffin embedding.  Cells were obtained from patients diagnosed 

with IPF and control patients who had no related lung fibrosis diseases. Lung tissue was 

acquired from patients who had agreed by written consented for their biopsies to be used for 

research purposes. All patients’ tissue samples were provided by the Giessen DZL-biobank 

(Deutsches Zentrum für Lungenforschung), UGMLC (University of Giessen and Marburg 

Lung Center) and bleomycin-induced fibrosis mouse model from Prof. Dr. Norbert 

Weissmann.  

 

2.2.2. Preparation and culture of human fibroblasts 

Cryotubes containing frozen fibroblasts obtained for the study were put in Nalgene cryobox 

filled with isopropanol, kept in -80 °C freezer overnight and finally in liquid nitrogen for 

longer storage.  

Before experiments, frozen primary human lung fibroblasts were thawed and cultured in 

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with the components in Table 

VI that is, 10% fetal bovine serum and 1%  penicillin/streptomycin (with the exception of 

puromycin). Cryotubes containing the cells were brought to room temperature and transferred 

into 15 ml Falcon tubes. Five ml of culture medium was added and further centrifuged at 200 

x g for 5 min. Cell pellets were resuspended in 2 ml of medium and pipetted into a cell culture 

dish (Table I) containing 10 ml culture medium, and placed in an incubator conditioned at 37 

°C and 5% CO2.  

Medium was aspirated and cells washed with 5 ml 1X PBS when they reached 80% 

confluency. Cells were trypsinized with 0.25% Trypsin/EDTA for 2 min, re-suspended in 

culture medium, centrifuged at 500 x g, counted and seeded (8x10
4
 cells/well or 4x10

4
 

cells/well) for experiments. The rest of the suspended cells were cultured for later use. All 
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cells used for this study were from passages 2-10 and used for experiments at 80% 

confluency.   

 

2.2.3. Lentivirus production and concentration 

This procedure was carried out at the Institute of Molecular Neurooncology and 

Neuropathology, Justus Liebig University.  The production of pGIPZ-shCatalase and pGIPZ-

non silencing control lentiviruses were done as described by Filatova and colleagues [325]. 

The human embryonic kidney cell line, HEK293T, was used as the producer line. Calcium 

phosphate was used in the transfection of second generation packaging and envelope plasmids 

(psPAX2 and pCI-VSVG), together with lentiviral plasmids, into HEK293T cells. 

Supernatant containing the lentiviruses was collected over 2 days after transfection and 

further concentrated by centrifugation at 20,000 x g for 4 h. The virus titer was determined 

using fluorescence-based titration in human GBM line G55TL.  

 

2.2.4. Generation of the catalase knockdown cell line 

Control and IPF primary human lung fibroblasts were cultured in high-glucose DMEM 

(Gibco) containing 10% FBS (Merck). To generate a catalase knockdown, the cells were 

transduced at MOI 50 with pGIPZ-shCAT (GE Dharmacon) and afterwards selected with 

puromycin. The control lines were generated using non-silencing control lentivirus.  

 

2.2.5. Treatment of ligands, compounds and recombinant TGF-β1 

Treatments of control and IPF primary human lung fibroblasts as well as catalase knockout 

cell lines were done after seeding and culturing 8x10
4
 cells/well or 4x10

4
 cells/well in 12-well 

and 24-well plates respectively. Cells were cultured for 24 h in an incubator set at 37 °C and 

5% CO2. Primary human lung fibroblasts were serum-starved and consequently stimulated 

with 5 ng/ml rhTGF-β1 for 24 h. The following treatments were done with stock solutions of 

drugs diluted in dimethyl sulfoxide (DMSO), sterile H2O and 98% ethanol, reference 

according to the experimental plan. 

PPAR agonists were added for treatment after stimulating control and IPF primary human 

lung fibroblasts with rhTGF-β1 for 24 h. WY14643 (PPAR-α agonist) were used at 100 μM, 

and GW0742 (PPAR-β agonists), Rosiglitazone (PPAR-γ agonist) and Troglitazone (PPAR-γ 

agonist) were all used at a concentration of 10 μM.  
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The antagonists of PPAR-α (GW6471), PPAR-β (GSK0660) and PPAR-γ (GW9662) were 

treated at concentrations of 10 μM, 10 nM and 10 μM respectively. The receptors were 

inhibited for 24 h and 48 h following TGF-β1 stimulation of primary human lung fibroblasts.  

Cells were challenged with the MMP1 inhibitor 4-aminobenzoyl-Gly-Pro-D-Leu-D-Ala 

hydroxamic acid at 20 μM. The dual PPAR-β and PPAR-γ agonist, STK 648389, was used at 

25 µM, 50 µM and 100 µM following TGF-β1 treatments of primary human lung fibroblasts 

for 24 h. Aminotriazole was used at 10 mM, and hydrogen peroxide (H2O2) at 50 µM, 300 

µM, 500 µM, 1 mM, 5 mM and 10 mM corresponding to the treatment plans. 

Arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid were all treated at 25 μM 

without or following TGF-β1 treatments of primary human lung fibroblasts for 24 h. 

 

2.2.6. Transfection of cells with plasmids and siRNA 

Knockdown of the MMP1 and catalase genes were done with siRNA (see Table II) using the 

ScreenFectA transfection reagent (InCella). Primary human lung fibroblasts were 

simultaneously seeded and transfected with InCella reagent according to the manufacturer’s 

instructions.  

Solutions for the transfection of cells were prepared as follows: Two separate 1.5 ml 

Eppendorf tubes were labeled, one for dilution buffer and transfection reagent, and the other 

for dilution buffer and siMMP1 or catalase siRNA. Two ul of ScreenFectA transfection 

reagent was added to 40 µl of dilution buffer in 1.5 ml Eppendorf tube, and further incubated 

at room temperature for 5 min. Forty ul of dilution buffer and 30 nmol siMMP1 or catalase 

siRNA were respectively added to another tube, and kept at room temperature for 5 min. The 

contents of the two tubes were thoroughly mixed and incubated at room temperature for 20 

min. Cells were seeded in 24-well plates and the solution containing siMMP1 or catalase 

siRNA was added in a dropwise manner. The same procedure was concurrently followed for 

scramble siRNA transfection.   

Each well contained in total 420 ml of cell suspension, culture medium, transfection reagent, 

dilution buffer and siMMP1 or catalase siRNA. Plates were gently swirled and placed in an 

incubator set at 37°C and 5% CO2 for 48-72 h. Cells were challenged with 5 ng/ml rhTGF-β1 

and drugs according to the experimental treatment process. 

Transfection of COL1A2-luc and pRL-SV40 plasmids also followed similar routine as written 

above however, 1 µl of transfection reagent and 3 µg of plasmid DNAs were used. Treatments 

of cells were done after 24 h of transfection. One μg of catalase overexpression plasmid was 

transfected into cells following a similar routine. 



40 
 

 

2.2.7. Protein isolation, sample preparation and Western blotting 

Treated, non-treated and/or siRNA transfected primary human lung fibroblasts were washed 

with phosphate buffered saline (1X PBS) and 100 µl of cell lysis buffer (IPB) (Table V) was 

added to the cell-containing wells. Plates were placed on ice and the cells were scraped off 

with a rubber policeman. The content of each well was collected into labeled 1.5 ml 

Eppendorf tubes and vortexed three times after every 10 min. The tubes were centrifuged 

(Biofuge Fresco, Heraeus, Germany) at 3,000 x g for 15 min at 4 °C. The supernatants were 

carefully pipetted into separately labelled tubes and stored in -80 °C Freezer until use. 

Bleomycin-induced lung tissues from mice were snap-frozen directly after explantation and 

stored in liquid nitrogen until use. Lung tissues were thawed and 2 g of each sample weighed 

for the homogenization process. Two milliliters of freshly prepared homogenization buffer 

containing 1% protease inhibitor mix M (SERVA, Germany) was added to 2 g lung tissues 

and further homogenized with a Potter-Elvehjem homogenizer at 1,000 rpm (1 stroke, 60s). 

lung homogenates were centrifuged (Biofuge Fresco, Heraeus, Germany) at 2,500 x g for 3 

min at 4°C and the supernatants collected for protein analysis. 

Extracted protein concentrations were later measured with Bradford reagent. Two μl of 

protein solutions were added to 498 μl of distilled water. Five hundred μl of Bradford reagent 

was added to each tube and vortexed briefly. The solutions, which included a blank (no 

protein), were transferred into labelled electroporation cuvettes and the colour change was 

measured with a spectrophotometer at a wavelength of 570 nm. Readings for samples were 

made in duplicates in reference to a standard curve. Dilution for desired protein 

concentrations of all samples was later calculated. 

Sample buffer (10X) (Table V) was added to the appropriate volumes according to the 

calculated protein concentrations in labeled 1.5 ml Eppendorf tubes at a ratio of 3:1 

respectively. The proteins were denatured by heating the Eppendorf tubes at 95 °C for 4-5min 

in a Thermostat Block. Tubes were chilled on ice for 5 min and centrifuges for 5 sec. The 

denatured proteins and 10 µl of dual color precision plus protein Standard were loaded into 

identified wells, run and separated in 10% SDS-polyacrylamide resolving gels (Table V) 

using 1X electrophoresis buffer and Bio-Rad gel electrophoresis apparatus at a voltage of 110 

on a PowerPac 200. A sandwich was made using blotting papers, ethanol-activated 

polyvinylidene membrane (PVDF) and the gel-containing proteins in 1X transfer buffer 

(Table V). A semi-dry Trans-blot apparatus was used to transfer proteins from the gel to the 

polyvinylidene membrane (PVDF) at 120 mA for 3 h.  
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Membranes were blocked in 5% non-fat milk powder in TBST for 1 h at room temperature 

and then incubated with primary antibodies at 4 °C overnight. Membranes were further 

washed in TBST 3X for 10 min and then incubated with horse radish peroxidase-linked 

secondary antibodies for 1 h at room temperature. A chemiluminescent substrate mixture, 

Clarity
 TM 

Western ECL, was prepared at a ratio of 1:1 and incubated with membranes for 5 

min and the bands visualized by the chemiluminescence and exposure on CL-X Posure
TM 

films (Table I). The exposed films were first developed with READYMATIC
®
 developer and 

replenisher and further fixed with READYMATIC
®

 fixer and replenisher. 

 

2.2.8. Immunofluorescence on cells 

Control and IPF primary human lung fibroblasts were seeded on coverslips (4x10
4
 cells/well) 

in 24-well plates and treatment routines were followed according to the experimental plans. 

After treatments, medium was removed from wells and washed with 1X PBS. All procedures 

were done at room temperature. Cells were immediately fixed with 4% paraformaldehyde and 

2% sucrose in PBS buffer, pH 7.4 for 20 min at RT, and washed three times with 1X PBS at 

10 min interval. Fibroblasts were incubated with 1% glycine in 1X PBS for 10 min followed 

by 0.2% Triton X-100 in 1% glycine for another 10 min. Cells were further blocked with 1% 

BSA in PBS/0.05% Tween 20 for 1 h to avoid non-specific binding of antibodies. All 

processes were done at room temperature.  

Blocked cells were incubated with primary antibodies of interest according to the 

concentrations stated in Table X and kept at 4 °C overnight in a moist chamber. The next 

morning, cells on coverslips were washed three times with 1X PBS at 10 min intervals. 

Secondary antibodies were diluted in 1X PBS and the cells on the coverslips incubated for 1 h 

at room temperature. Coverslips were further washed three times with 1X PBS and incubated 

with 1 μM Hoechst 33342 (1:1000 in PBS) at room temperature for 5 min to counterstain 

nuclei. Coverslips with labelled cells were embedded in Mowiol 4-88 containing N-propyl 

gallate as anti-bleaching agent and left for polymerization in a dark enclosure overnight. 

Imaging of stained cells was done with a regular fluorescence microscope (Table I) and then 

processed with Adobe Photoshop version CS5. 
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2.2.9. Immunofluorescence on tissue sections 

Paraffin-embedded lung tissue blocks from control and IPF patients were cut into 2-3 µm 

thick sections with a rotation microtome (Table I). Cut tissue sections on objective slides 

were placed in an oven set at 50 °C overnight to remove the paraffin. The sections were 

further deparaffinized with xylene and rehydrated in decreasing gradients of ethanol, each for 

3 min at room temperature. Sections were further digested with 0.01% trypsin buffer/PBS at 

37 °C for 10 min and thereafter placed in citrate buffer and microwaved at 900 W for 3-5 min. 

The lungs after antigen retrieval were subsequently blocked with 4% PBSA for 2 h at room 

temperature and incubated overnight with primary antibodies of interest (Table VIII) at room 

temperature. Unbound antibodies on the sections were intermittently washed away three times 

with 1X PBS and thereafter, the tissues incubated with appropriate secondary antibodies 

(Table VIII) at room temperature for 1 h. After antibody labelling the lung sections were 

washed three times at room temperature at 5 min intervals followed by counterstaining of 

nuclei with TOTO-3 iodide for 10 min, also at room temperature. The sections were finally 

washed three times with 1X PBS and mounted on Mowiol mixed with N-propyl gallate. 

Images were captured with a confocal laser scanning microscope (CLSM) (Table I) and 

processed with Adobe Photoshop version CS5. 

 

2.2.10. DHE staining for ROS detection 

Control and IPF primary human lung fibroblasts were seeded on coverslips. Cells were 

transfected with catalase overexpression plasmids and treated according to the experimental 

plan. For other experiments, cells were seeded and challenged with appropriate compounds. 

Fibroblasts were further incubated with 5 μM dihydroethidium (DHE) in fresh culture 

medium at 37 °C for 30 min. To detect ROS (mainly 
.
O2

−
) cells were washed with 1X PBS 

and fixed in PFA for 20 min at RT. Following fixation, cells were washed, counterstained 

with Hoechst 33342 for 10 min and further washed with 1X PBS. Coverslips were mounted 

on objective slides, images analyzed with a regular fluorescence microscope (Table I) and 

processed with Adobe Photoshop version CS5. 

 

2.2.11. Hydrogen peroxide assay 

Hydrogen peroxide released into the mediums by treated and non-treated cells was assessed 

using an assay kit from Cayman Chemical, following the protocol provided. Media from 

treated cells and controls were collected. Eighty μl of media and standards were added to 

separate wells in a 96-well plate. Ten μl of assay buffer and 10 μl of catalase solution were 
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pipetted into each labelled wells. Ten μl of enzyme reaction solution was added to each well 

and the fluorescence intensity of each well measured at 570nm. The concentrations of H2O2 

were determined as follows:  

            H2O2 conc. (μM) = [corrected sample fluorescence - (y-intercept)/Slope x Dilution]. 

Corrected sample fluorescence represents the values obtained after subtracting average 

fluorescence of blank from sample readings as well as standards. All experiments were done 

in triplicates.   

 

2.2.12. Catalase assay 

Cells were treated, homogenized in 1X PBS and centrifuged at 14,000 rpm for 10 min. 

Catalase activity was determined using an assay kit purchased from Abnova, following the 

instructions given by the manufacturer. Ten μl of samples, controls and positive controls were 

pipetted into labelled wells of a flat-bottom 96-well plate. Five μl of 50 μM H2O2 substrate 

was added to each well to initiate the catalase reaction. Plates were gently tapped and 

incubated at RT for 30 min. Standards of 400 μM, 240 μM, 120 μM and 0 of H2O2 were 

prepared and 10 μl of each transferred into different wells. Ninety μl of reaction assay buffer 

was added to the standards. Hundred μl of detection reagent, comprising assay buffer, dye 

reagent and HRP enzyme, was added to samples, controls and standard wells. The plate was 

incubated for 10 min and immediately read at a wavelength of 570 nm. Catalase activity was 

determined using a formular outlined in the protocol given by the manufacturer as illustrated: 

Catalase (U/L) = [Rsample blank - Rsample/Slope (μM
-1

) x 30 min] x n, where Rsample blank and 

Rsample represent the optical density readings of the sample blank and samples respectively. 

The slope was calculated from a generated standard curve and 30 min represents the time 

taken for the catalase reaction. The letter ‘n’ is the dilution factor used for the samples. All 

experiments were performed in triplicates. 

 

2.2.13. Isolation of total RNA, cDNA synthesis and qRT-PCR 

Total RNA was isolated from cultured control and IPF primary human lung fibroblasts after 

or without experimental treatments using RNAzol (Table II). Treatment medium was gently 

aspirated and 500 μl of RNAzol was added to each well. The contents were homogenized by 

pipetting and releasing for a few times. The homogenates were collected into labeled 1.5 ml 

Eppendorf tubes and 200 μl of RNase-free water was added to each tube, shook vigorously 

and allowed to stand for 15 min at room temperature. The tubes were centrifuged at 12,000 x 

g for 15 min and the supernatant carefully collected into freshly labeled 1.5 ml Eppendorf 
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tubes. Equal volumes of 100% isopropanol were added to the contents of the tubes and 

allowed to stand for 10 min at room temperature. The tubes were centrifuged at 12,000 x g for 

10 min and the pellets formed in the tubes were washed twice with 500 μl of 75% ethanol 

(v/v) by centrifuging at 8,000 x g for 3 min, each at room temperature. Excess ethanol in the 

tubes was carefully removed and the pellets solubilized with RNase-free water. Tubes were 

vortexed for 2-5 min at room temperature and chilled on ice for measurement of total RNA 

concentration using a Nanodrop spectrophotometer. Tubes containing total RNAs were either 

stored at -80 °C for further use or the RNAs were directly reverse transcribed into cDNAs.  

Synthesis of cDNA from isolated total RNA was done with the High Capacity cDNA Reverse 

Transcription Kit in accordance to the manufacturer’s protocol. One μg of RNA was 

calculated using the RNA concentrations obtained from Nanodrop spectrophotometer 

measurements. The synthesis of cDNA included the following components and volumes: 2 µl 

10X RT random primers, 0.8 µl of 25X dNTP Mix (100 mM), 2 µl 10X RT buffer, 1 µl 

RNase inhibitor, 1 µl MultiScribe reverse transcriptase and 3.2 µl nuclease-free water. The 

volume of the calculated RNA was added to the reaction mixture and the total volumes of the 

tubes rounded up to 20 µl using nuclease-free water. The tubes were subjected to the 

following cycles of temperatures and time periods in a Trio-Thermoblock: 25 °C for 10 min, 

37 °C for 120 min and 85 °C for 5 min. Synthesized cDNAs were either stored at -20°C or 

used for qRT-PCR.  

The regulation of the genes with the primers outlined in Table IX were investigated using 

SYBR™ Green PCR mix, nuclease-free water and diluted synthesized cDNAs, and the 

iCycler iQ5™ Real-Time PCR Detection System with the following protocol settings: initial 

cycle at 95 °C for 3 min, 42 cycles at 95 °C for 15 s, annealing temperature of 60 °C for 30 s, 

and primer extension at 72 °C for 30 s as well as 91 cycles at 50 °C - 95 °C for 10s. The cycle 

thresholds (Ct) above the baseline for the genes of interest were normalized with the reference 

gene, HPRT1, and the values for gene expression were calculated using the ∆∆Ct method 

with the following formula: 2
−∆∆Ct

 (where ∆Ct = Ct of target gene − Ct of reference gene).   

 

2.2.14. Sircol collagen assay 

Fibroblasts were treated in 24-well plates and the media collected for performance of the 

Sircol collagen assays following the instructions given by manufacturer. Two hundred μl of 

cold Isolation and Concentration Reagent was added to each 1.5 ml tube containing 1 ml of 

medium collected after experiments. The contents were thoroughly mixed by gentle inversion 

and placed in a tube rack in a container half-filled with ice-water mix.  The setup was stored 
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at 4 °C overnight and then centrifuged at 15,000 x g for 10 min on the following day. The 

supernatant was discarded and the invisible pellets at the bottom of the tubes were mixed with 

1 ml Sircol Dye Reagent. Collagen standards were also calculated from 0-50 μg, volumes 

pipetted and further mixed with 1 ml of Sircol Dye Reagent as well. The samples and 

standards were inserted into a mechanical shaker for 30 min at room temperature. The 

contents were further centrifuged at 15,000 x g for 10 min and the supernatant drained to 

expose the visible pellets. The pellets were washed with 750 μl ice-cold Acid-salt Wash 

Reagent 2X by centrifuging at 15,000 x g for 10 min. The fluid content of the tubes was 

drained followed by the addition of 250 μl of Alkali Reagent, and the tubes were vortexed to 

dissolve the pellets. Two hundred μl of the mixed solutions were pipetted into appropriate 

wells in a 96 micro well plate. The plate was read at a wavelength of 570 nm. A line of best fit 

was drawn with the figures obtained from measured standards and the collagen concentrations 

of samples extrapolated from the standard line using GraphPad prism 6.    

  

2.2.15. Dual luciferase reporter gene assay 

Plasmid transfected fibroblasts were washed with 1X PBS after treatment. One volume of 

Cell Lysis Reagent (Promega) was diluted in 4 volumes of sterile water and added to each 

well, swirled and scraped with a rubber policeman. Cell lysates were collected into 1.5 ml 

Eppendorf tubes, vortexed briefly and centrifuged at 13,000 x g for 30 s at room temperature. 

The renilla and firefly luciferase activities in each sample were measured using substrates 

provided by the manufacturer (Table III). 

 

2.2.16. BrdU cell proliferation assay 

Control and IPF primary human lung fibroblasts were seeded at 2x10
5
 cell/ml in 100 μl/well 

of cell culture media in 96-well tissue culture plates. Cells in some identified wells were 

challenged with 5 ng/ml TGF-β1 for 24 h followed by BrdU addition for 24 h. Media were 

aspirated from wells and 200 μl of fixing solution was added to each well for 30 min. Fixing 

solution was aspirated and the plate blotted dry. Wells were washed with 50 X Wash Buffer 

and 100 μl anti-BrdU monoclonal diluted antibody added to each well for 1 h. Wells were 

further washed and incubated with goat anti-mouse IgG (1:2000) at room temperature for 30 

min. Plates were washed and incubated with 100 μl of TMB Peroxidase Substrate for 30 min 

at room temperature. Hundred μl of Stopping Solution was added to each well and the colour 

change measured with spectrophotometer microplate reader at 450 nm.  
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2.2.17. Invasion and migration assays 

Primary human lung fibroblasts from IPF patients were cultured in 6-well plates and treated 

with PPAR-β and PPAR-γ ligands for 24 h and 48 h. Cells were trypsinized after treatment 

and re-suspended in DMEM (without FBS) and further in 1 mg/ml Matrigel (Beckton 

Dickinson). Hundred μl of suspended cells were pipetted onto the top insert of a modified 

Boyden chamber. Samples were incubated for 1 h at 37 °C. Six hundred μl of DMEM with 10 

% FBS and 100 μl of DMEM with 1% FBS were added to the bottom of the chamber to create 

an FBS-gradient to stimulate cell migration. The inserts were incubated for 18-24 h at 37 °C, 

5% CO2. The medium in the lower compartment of the chamber was replaced with 600 µl 

70% ethanol and incubated for 10 min at room temperature. The cells were re-hydrated by 

replacing the ethanol in the lower compartment with 600 µl 1X PBS for 10 min at room 

temperature, followed by another replacement with 600 µl of 2 µg/ml DAPI solution in PBS, 

for another 10 min at room temperature. The cells in the lower compartment of the chamber 

were washed with 1X PBS for 10 min at room temperature. Images of the upper and the lower 

compartments of the chamber were captured with a 5X objective of a fluorescence lamp. The 

PBS and medium in both parts of the chambers were aspirated. Filters were separated from 

the plastic parts of the chambers, placed on a glass slide with drops of mounting medium, and 

the slides incubated for 30 min at 37 °C overnight. Images of the filters were taken using 5x 

objective of a fluorescence lamp in a systematic fashion and the images analyzed for cell 

counts using ImageJ.  

Migration was analyzed after treating primary human lung fibroblasts from IPF patients with 

PPAR-β and PPAR-γ ligands for 24 h and 48 h as well as control. A 20 μl pipette tip was used 

to scratch a line at the bottom of each well in the 24-well plate and the closure of the space 

monitored and quantified from 0-48 h with a 5X objective of a fluorescence lamp and pictures 

taken as well.   

 

2.2.18. Human TGF-β1 Immunoassay 

Control and IPF primary human lung fibroblasts were seeded at 8x10
4
 cell/ml in 24-well cell 

culture plates. Cells were serum-starved for 24 h and cell culture media collected for 

centrifugation. Cell culture supernatants were separated from the pellets and 100 μl of each 

sample activated with 1 N HCL for 10 minutes. Samples were neutralized with 1.2 N 

NaOH/0.5 HEPES. Fifty μl Assay Diluent RD1-21 was added to microplate provided by the 

manufacturer (R &D systems, quantikine ELISA) followed by the addition of 50 μl of 

activated samples, controls and standards into labeled wells. The microplate was incubated at 
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room temperature for 2 h and contents aspirated. Microplates were thoroughly washed with a 

Wash Buffer and further blotted to remove all liquids in the wells. Hundred μl of TGF-β1 

Conjugate were added to each well and the plate incubated at room temperature for 2 h. 

Washing step was repeated as already described and 100 μl of Substrate Solution added to 

each well. Microplates were protected from light and incubated for 30 min at RT. Hundred μl 

of Stop Solution was added to each well and the colour change read at 450 nm with a 

microplate reader.  

 

2.3. Statistical analyses 

Graphical and image representation of data were obtained from at least three individual 

experiments. Analyses of data were done with ImageJ and GraphPad prism 6, and values 

expressed as means +/- standard error of the mean (SEM). In case differences between 2 

groups were of interest, the F-test was first applied to compare their variances. When the  

variances were non-equal (significantly different), the Mann-Whitney U test was further used 

to calculate p-values between groups; when the variances were equal (not significantly 

different) the unpaired student’s t-test was used to calculate p-values between groups. When 

differences between more than two groups were of interest, one-way and two-way ANOVA 

were used to check whether groups were different and the post-hoc Tukey´s multiple 

comparisons test was used to calculate p-values between individual groups. All probability (p) 

values are indicated in the figures as * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 and **** p ≤ 

0.0001. In complex figures where multiple groups were compared with each other, 

significances are indicated on the top of the lines drawn between groups and those with no 

significant differences remained unmarked.   

 

 

 

 

 

 

 

 



48 
 

3. Results 

One manuscript with effects of TGF-β1 on peroxisomes has been published in the first year of 

my doctoral thesis with me as co-author [270]. A second manuscript has been prepared with 

me as first author with the major part of the results from this study for submission to a high-

class journal (Eistine Boateng, Barbara Ahlemeyer, Vannuruswamy Garikapati, Natalia El-

Merhie, Rocio Bonilla-Martinez, Omelyan Trompak, Michael Seimetz, Gani Oruqaj, Clemens 

Ruppert, Bernhard Spengler, Norbert Weissmann, Andreas Günther, Srikanth Karnati and 

Eveline Baumgart-Vogt. Peroxisome Proliferator-activated Receptor beta/delta and Catalase 

modulate collagen synthesis in Idiopathic Pulmonary Fibrosis.). Moreover, in the process of 

literature search and database screening for this thesis, a review article was published on the 

targeting of PPAR-γ in the therapy of IPF (Eistine Boateng, Natalia El-Merhie, Omelyan 

Trompak, Srinu Tumpara, Michael Seimetz, Adrian Pilatz, Eveline Baumgart-Vogt, Srikanth 

Karnati, 2016. Targeting PPARγ in Lung fibroblasts: Prospects of therapeutic treatment for 

IPF. PVRI Chronicle 3: 2). 

 

3.1. Characterization of markers of fibrosis in human lung tissue as well as control and 

IPF primary human lung fibroblasts  

To study the consistency of pathological markers already described in fibrosis of the lung, the 

basal levels of collagen and α-SMA were investigated in lung tissues from control and IPF 

patients as well as isolated primary human lung fibroblasts. 

 

3.1.1. Human lung biopsies 

Immunofluorescence analyses of Collagen I and α-SMA in control and IPF lung biopsy 

samples showed comparatively higher levels of the proteins in IPF tissues than in control 

subjects (Figure 1).  
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3.1.2. Primary human lung fibroblasts 

Control primary human lung fibroblasts had higher α-SMA, collagen I and TGFBR1 protein 

levels (Figure 2A) than IPF fibroblasts, nevertheless, extracellular collagen revealed no 

significant differences between the two cell groups (Figure 2B). Additionally, the levels of 

active TGF-β1 released by control primary human lung fibroblasts in culture media were 

comparatively higher than the amounts released by IPF primary human lung fibroblasts 

(Figure 2C). 

 

Figure 1. Relative abundance of collagen I and α-SMA in human lung biopsies. 

Immunostainings for collagen I and α-SMA on formalin-fixed paraffin-embedded (FFPE) samples of 

3 control and 3 IPF human lung biopsies (Scale bar: 10 μm). Data represent 3 experimental repeats. 

NC- negative control. 
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3.2. Relative abundance of PPARs in human lung tissues and primary human fibroblasts 

and the effects of TGF-β1 on the nuclear receptors 

To investigate PPAR involvement in fibrosis, all nuclear receptor proteins were first 

characterized in human lung tissues and isolated control and IPF primary human lung 

fibroblasts at basal conditions. Collectively, IPF lung samples showed increased PPAR-β/δ 

(Figure 3A), and IPF fibroblasts demonstrated higher levels and expressions of PPAR-α and 

PPAR-γ than control fibroblasts (Figure 3B and 3C). Since fibrosis is marked by elevated 

levels of TGF-β1 and for that matter, control and IPF primary human lung fibroblasts were 

challenged with recombinant human TGF-β1 to mimic the pathological condition of the 

disease in vitro.  Interestingly, PPAR-β/δ was strongly induced after TGF-β1 stimulation in 

control and IPF primary human lung fibroblasts (Figure 3D), especially after 48 h, projecting 

a possible role of the receptor in pulmonary fibrosis. PPAR-α and PPAR-γ proteins were 

hardly affected under these conditions (only mildly). 

 

3.3. TGF-β1 significantly proliferated primary human lung fibroblasts, and control 

fibroblasts expressed higher levels of some members of the MMP family  

The proliferative abilities of the basal and TGF-β1 treated control and IPF primary human 

lung fibroblasts were assessed. Control primary human lung fibroblasts proliferated more than 

IPF fibroblasts (Figure 4A). Moreover, the proliferation of control primary human lung 

fibroblasts after TGF-β1 stimulation was higher compared to basal and TGF-β1 stimulated 

IPF primary human lung fibroblasts. Interestingly, TGF-β1 proliferated control and IPF 

primary human lung fibroblasts (Figure 4A). Control and IPF primary human lung fibroblasts 

were further characterized with regard to their expression of some selected MMPs (Matrix 

Metalloproteinases) since they are involved in the proteolytic degradation of collagen. 

Figure 2. Control primary human lung fibroblasts exhibited a higher fibrotic phenotype in culture.  

(A) Immunoblotting for α-SMA, COL 1, TGFBR1, pro MMP1, active MMP1 and β-actin of 5 control and 7 

IPF using homogenates of fibroblasts cultures, (n at least 3). (B) Quantification of collagen released into 

media by 5 control and 7 IPF primary human lung fibroblasts cultures. Mean values +/- SEM represent the 

collagen content in the media of cultured fibroblasts derived from control (n = 5) and IPF (n = 7) patients. 

Differences between the two groups were analyzed by the unpaired student´s t-test and were not significant 

(n.s., p > 0.05). (C) Immunoassay of active human TGF-β1 released into culture media by 5 controls and 7 

IPF primary human lung fibroblast cultures. Mean values +/- SEM represent the active human TGF-β1 in the 

medium of cultured fibroblasts derived from control (n = 5) and IPF (n = 7) patients. Differences between the 

two groups were analyzed using the unpaired student´s t-test, **p ≤ 0.01. 
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Interestingly MMP1, MMP2, MMP3, MMP8, MMP10 and MMP12 were significantly higher 

in control than in IPF primary human lung fibroblasts (Figure 4B, 4C, 4D, 4E, 4G and 4H). It 

was expected that lower expressions of MMPs might result in lower collagen degradation 

however; MMP1, MMP2, MMP3, MMP8, MMP10 and MMP12 might possibly not exhibit 

strong proteolytic degradation of collagen in primary human lung fibroblasts especially in 

controls.   

  

 

 

 

Figure 3. Relative abundance of PPARs in human lung tissues and primary human fibroblasts and the 

effects of TGF-β1 on the nuclear receptors. 

(A) Immunostainings for PPAR-β/δ of FFPE samples of 3 control and 3 IPF human lung biopsies (Scale bar: 

10 μm). NC- negative control. (B) and (C) Western blot of protein abundances and qRT-PCR of mRNA 

expressions of different PPARs in protein homogenates and total RNA of control and IPF primary human lung 

fibroblast cultures (n = 3). The unpaired student’s t-test was used to analyse results of each gene in (C) and 

data are represented as +/- SEM with n as 3, * and **** are defined as p≤ 0.05 and p≤ 0.0001 respectively. (D) 

Western blots of homogenates of lung fibroblast cultures after 24 h, 48 h and 72 h of TGF-β1 (5 ng/ml) 

stimulation, depicting the increases of PPAR-β/δ, n = 3. 
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Figure 4. TGF-β1 significantly proliferated primary human lung fibroblasts, and control fibroblasts 

expressed higher levels of some members of the MMP family. 

(A) TGF-β1 proliferated control and IPF primary human lung fibroblasts. BrdU cell proliferation assay. Groups 

were analyzed by two-way ANOVA, using the Tukey´s multiple comparisons test. Control fibroblasts (n = 5) 

and IPF fibroblasts (n = 7). (B) - (J) Gene expression profiles of selected MMPs in total RNA samples of 

control and IPF primary human lung fibroblasts. qRT-PCR, Ct values of genes were normalized with HPRT1. 

Unpaired student’s t-test was used to analyse data samples of control (n = 5) and IPF (n = 7) fibroblast cultures.     

*, **, *** and **** are defined as p≤ 0.05, p≤ 0.01, p≤ 0.001 and p≤ 0.0001 respectively. 

. 
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3.4. Activated PPAR-β/δ induces MMPs and also potentiates PPAR-α and PPAR-γ to 

exhibit anti-fibrotic responses  

To investigate the possible reason why PPAR-β/δ is induced by TGF-β1 in our in vitro model 

of fibrosis, the receptor was activated with the specific exogenous ligand GW0742. Indeed, 

the data revealed a downregulation of α-SMA in TGF-β1 treated groups after ligand 

activation of PPAR-β/δ (Figure 5A). Further, to analyze whether any effect would be noted by 

the activation of other family members, the distinct PPARs were activated with WY14643 

(PPAR-α), GW0742 (PPAR-β/δ) and rosiglitazone (PPAR-γ), as well as various combinations 

considering that the basal levels of PPAR-α and PPAR-γ were higher in IPF primary human 

lung fibroblasts. Remarkable lower abundance levels in α-SMA and collagen I were observed 

when PPAR-β/δ alone was activated (Figure 5B). Interestingly, PPAR-α and PPAR-γ also 

showed similar effects in primary human lung IPF fibroblast, however, not as strong as 

exhibited after PPAR-β/δ activation (Figure 5B). Combined activation of PPAR-α and PPAR-

γ did not result in the downregulation of α-SMA and collagen I, but combined activation of 

PPAR-β/δ with either PPAR-α or PPAR-γ did (Figure 5B).  

As a result, the molecular effects of activated PPARs on the modulation of collagen were 

analyzed in relations to MMPs (Matrix Metalloproteinases). Active MMP1 was drastically 

increased after PPAR-β/δ activation as well as its combined stimulation with PPAR-α or 

PPAR-γ (Figure 5C). Clearly, the essential receptor for the regulation of collagen I in TGF-β1 

stimulated control and IPF primary human lung fibroblasts is PPAR-β/δ, and MMPs could be 

regulated after the activation of this receptor. In spite of this, the expressions of some selected 

MMPs were analyzed after ligand activation of PPAR-β/δ in TGF-β1 stimulated primary 

human lung fibroblasts. Interestingly, MMP1, MMP3 and MMP16 were strongly upregulated 

in both cell groups (Figure 5D), while MMP10 was upregulated in primary human lung IPF 

fibroblasts alone. Activation of PPAR-β/δ also increased the expression of MMP3 and 

MMP10 in IPF primary human lung fibroblasts, which are notably lower at the basal levels 

(Figure 4D and 4G).  
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3.5. Knockdown of MMP1 is compensated by other MMPs for the degradation of 

collagen I 

The relative mRNA levels for MMP1 and MMP16 were strongly upregulated in control and 

IPF primary human lung fibroblasts (Figure 5D) after PPAR-β/δ activation. Since only a good 

MMP1 antibody was commercially available, MMP1 was silenced to ascertain whether it 

could play a significant role in fibrosis, relative to the other MMPs regulated via PPAR-β/δ 

activation. In contrast to what was expected, MMP1 knockdown decreased collagen I 

abundance and lead to strong compensatory regulation of MMP3, MMP10, MMP12 and 

MMP16 in control and IPF primary human lung fibroblasts (Figure 6B). Interestingly, though 

MMP3 was significantly reduced in IPF primary human lung fibroblasts compared to 

controls, the mRNA of the gene strongly compensated the deficiency of MMP1 in IPF 

primary human lung fibroblasts. Additionally, MMP7, MMP11, MMP13, MMP14 and 

MMP19 were also upregulated in control primary human lung fibroblasts (Figure 6B), 

showing heterogeneous responses from the cells after MMP1 knockdown. To prove these 

above-mentioned effects in control and IPF primary human lung fibroblasts and the 

Figure 5. Activated PPAR-β induces MMPs and also potentiates PPAR-α and PPAR-γ to exhibit 

anti-fibrotic responses.  

(A) Activation of PPAR-β downregulates α-SMA in control and IPF primary human lung fibroblasts. 

Control and IPF primary human lung fibroblasts were seeded, and the cultures serum-starved after 80% 

confluency, and stimulated with TGF-β1 (5 ng/ml) for 24 h, followed by PPAR-β activation with 

GW0742 for another 24 h. Whole cell lysates were collected for Western blotting and protein detection. 

Data represent 3 experimental repeats (n = 3). 

(B) PPAR-β activation regulates the degradation of collagen I. Control and IPF human lung fibroblast 

cultures were serum-starved, stimulated with TGF-β1 (5 ng/ml) for 24 h, followed by PPAR activation 

(α – WY14643, β – GW0742, γ – Rosiglitazone) for another 24 h. Whole cell lysates were collected for 

Western blotting and α-SMA, COL 1 and GAPDH protein detection. Data represent 3 experimental 

repeats (n = 3).      

(C) PPAR-β upregulates MMP1 to degrade collagen I. Control and IPF primary human lung fibroblast 

cultures were serum-starved, stimulated with TGF-β1 (5 ng/ml) for 24 h, followed by PPAR activation 

with exogenous compounds for another 24 h. Whole cell lysates were collected for Western blotting to 

detect pro MMP1, active MMP1 and β-actin. Data represent 3 experimental repeats (n = 3). 

(D) Ligand activation of PPAR-β upregulates some MMPs in control and IPF primary human lung 

fibroblasts. Control and IPF fibroblast cell cultures were treated with GW0742 for 24 h following TGF-

β1 (5 ng/ml) stimulation for 24 h. Total RNAs were extracted for qRT-PCR analyses. Ct values of genes 

were normalized with HPRT1. Groups were analyzed by two-way ANOVA, using Tukey´s multiple 

comparisons test. *, *** and **** are defined as p≤ 0.05, p≤ 0.001 and p≤ 0.0001 respectively, n = 3.  
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significance of MMPs in reversing fibrosis phenotype, a compound (4-Aminobenzoyl-Gly-

Pro-D-Leu-D-Ala hydroxamic acid, Sigma-Aldrich) specific for the inhibition of multiple 

MMPs was used. Figure 6C (lane 6) and 6D depicted that MMPs are partly regulated by 

PPAR-β/δ for the modulation of fibrosis in control and IPF primary human lung fibroblasts.  

 

3.6. The synergistic effects of PPAR-γ on PPAR-β/δ induced peroxisome biogenesis  

PPAR-γ agonists have been frequently suggested as compounds for the treatment of fibrosis 

in the lungs and other organs. Also, activators of PPARs have been reported to induce the 

proliferation of peroxisomes. In order to delineate the molecular roles of peroxisomes in lung 

fibrosis, it was demonstrated that activated PPAR-β/δ and PPAR-γ increased peroxisome 

biogenesis and proliferation using PEX13p (Figure 7A) and PEX14p (Figure 7B). Combined 

activation of PPAR-β/δ and PPAR-γ also decreased α-SMA (Figure 7A and 7B), suggesting 

the reversal of the myofibroblastic phenotype in the events of peroxisome proliferation. 

Despite an earlier report from our group on the protective role of peroxisome proliferation 

prior to TGF-β1 treatment of pulmonary fibroblasts, nothing is known on the eventual 

positive specific stimulation of this compartment after TGF-β1 treatment. To explore this 

further, it was realized that there was a significant downregulation of catalase by TGF-β1 in 

comparison to most other mRNAs for peroxisomal markers in IPF primary human lung 

fibroblasts (Figure 7C). This observation set the precedent for further work. 
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Figure 6. Knockdown of MMP1 is compensated by other MMPs for the degradation of collagen I. 

(A) and (B) Control and IPF primary human lung fibroblast cultures were stimulated with TGF-β1 (5 

ng/ml) for 24 h after 72 h of transfections with MMP1 and scramble siRNAs. Cells were further treated 

with PPAR ligands (β – GW0742, γ – Rosiglitazone) for 24 h and protein homogenates isolated for 

Western blotting. Total RNAs from MMP Sc (scrambled) and MMP1 Si (siMMP1) transfected control and 

IPF primary human lung fibroblasts were isolated for qRT-PCR. Ct values of genes were normalized with 

HPRT1. Two-way ANOVA (Sidak’s multiple comparisons test) was used to analyze data. *, ** and **** 

are defined as p≤ 0.05, p≤ 0.01 and p≤ 0.0001 respectively, n = 3. (C) and (D) MMPs are essential for the 

regulation of the fibrosis phenotype in control and IPF primary human lung fibroblasts. Control and IPF 

fibroblast cultures were treated with TGF-β1 (5 ng/ml) for 24 h. Cells were further treated with GW0742 

and MMP inhibitor (MMP inh.) altogether for 24 h. Cell lysates were harvested for Western blotting and 

protein detection (n = 3), and media for Sircol collagen assays (n = 4). Groups for Sircol collagen assays 

were analyzed by two-way ANOVA, using Tukey´s multiple comparisons test. *, **, *** and **** are 

defined as p≤ 0.05, p≤ 0.01, p≤ 0.001 and p≤ 0.0001 respectively. 
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3.7. Only the simultaneous combined treatment with PPAR-γ and PPAR-β/δ activators 

elicited a strong anti-fibrotic response in IPF cell culture  

IPF is a disease characterized by aberrant deposition of extracellular matrix into the 

interstitium for disruption of lung parenchyma. To investigate this aspect of the disease in 

vitro, the amounts of collagen released into media after treatment with the ligands were 

analyzed. It was interesting to note that combined simultaneous activation of PPAR-β/δ and 

PPAR-γ decreased endogenous and exogenous collagen compared to PPAR-γ treatment alone 

(Figure 8A and 8B). Nonetheless, it was not clear regarding the role of peroxisomes in 

pulmonary fibrosis albeit combined activation of PPAR-β/δ and PPAR-γ increased 

peroxisome biogenesis (Figure 8B) and most genes involved in peroxisomal fatty acid 

metabolism, and as well reversed the fibrosis phenotype. In contrast, TGF-β1 downregulated 

the peroxisomal antioxidative enzyme, catalase (Figure 7C). Interestingly, catalase is the most 

abundant enzyme in peroxisomes, implicating a functional role of the organelle in IPF which 

was further explored in this study.  

 

 

 

Figure 7. The synergistic effects of PPAR-γ on PPAR-β induced peroxisome biogenesis.  

(A) and (B) Activation of PPAR-β in combination with PPAR-γ exhibited anti-fibrotic responses and 

simultaneously increased peroxisome biogenesis. Control and IPF primary human lung fibroblasts 

were seeded, the cultures serum-starved and challenged with TGF-β1 (5 ng/ml) for 24 h, followed by 

24 h ligand activation of PPARs in the presence of TGF-β1. Total cell lysates were collected for 

Western blotting to detect α-SMA and PEX 13p proteins, using GAPDH as loading control. 

Immunofluorescence stainings for the analyses of the abundances of α-SMA and PEX14p were done 

after a similar treatment routine (see above) with cells cultured on cover slips (Scale bar: 10 μm). 

NC- negative control, data represent 3 experimental repeats (n = 3).  

(C) PPAR-β in combination with PPAR-γ upregulated most mRNAs encoding peroxisomal proteins 

and TGF-β1 significantly downregulated catalase in IPF primary human lung fibroblasts. Control 

and IPF fibroblast cultures were challenged with TGF-β1 and drugs as indicated in the figure, 

followed by total RNA isolation for qRT-PCR analyses. Ct values of genes were normalized with 

HPRT1. Groups were analyzed by two-way ANOVA, using Tukey´s multiple comparisons test. *, 

**, *** and **** are defined as p≤ 0.05, p≤ 0.01, p≤ 0.001 and p≤ 0.0001 respectively, n = 3. 
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Figure 8. Only the simultaneous combined treatment with PPAR-γ and PPAR-β/δ activators elicited 

a strong anti-fibrotic response in IPF cell culture. 

(A) and (B) Ligand activation of PPAR-β together with PPAR-γ strongly decreased the release of total 

collagen by TGF-β1-stimulated control and IPF primary human lung fibroblast cultures. Cells were 

seeded, the cultures serum-starved and treated with TGF-β1 (5 ng/ml) for 24 h before PPAR ligand 

treatment for another 24 h. Media were collected and analyzed for collagen content using the Sircol 

collagen assay (n = 4). In addition, fibroblasts were homogenized and total proteins isolated for Western 

blot analyses (n = 3) to detect intracellular protein levels of α-SMA, COL 1 and PEX 13p as well as β-

actin as control.  

(A) Groups of interest were analyzed by two-way ANOVA, using Tukey´s multiple comparisons test. *, 

**, *** and **** are defined as p≤ 0.05, p≤ 0.01, p≤ 0.001 and p≤ 0.0001 respectively. 
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3.8. The anti-fibrotic effect of activated PPAR-β/δ in combination with PPAR-γ is stable 

and inhibition of the receptors promoted abundance and release of collagen  

Since coupled activation of PPAR-β/δ and PPAR-γ showed potential anti-fibrotic prospects 

under TGF-β1 stimulation and also induced peroxisome biogenesis, further experiments was 

done to explore whether this effect was stable over time or not.  Indeed, in figure 9A a stable 

downregulation of collagen I and α-SMA is demonstrated in between 12 h and 48 h of 

treatments with PPAR-β/δ and PPAR-γ. PPAR-β/δ and PPAR-γ promote fatty acid 

metabolism possibly leading to peroxisome-derived endogenous activators of PPARs. It was 

therefore analyzed whether exogenous activation of PPAR-β/δ and PPAR-γ increased the 

metabolism of peroxisomal-derived lipids such as arachidonic acid (AA), docosahexaenoic 

acid (DHA), and eicosapentaenoic acid (EPA), which are potential endogenous activators of 

PPARs. Indeed, stimulation with PPAR agonists increased the synthesis of AA, DHA and EPA 

with PPAR-γ exhibiting strong effects on DHA (Figure 9B). The combination of both PPAR-

β/δ and PPAR-γ receptor agonists in TGF-β1 treated fibroblasts induced a tremendous 

increase of AA, the precursor form of DHA and EPA. Additionally, AA, DHA and EPA were 

used to treat TGF-β1 stimulated control and IPF primary human lung fibroblasts. 

Interestingly, DHA downregulated collagen I and α-SMA in control and IPF primary human 

lung fibroblasts (Figure 9C). In a separate set of experiments, it was also discovered that, the 

activation of the two receptors repressed the promoter activity of COL1A2 (Figure 9D), 

indicating a putative PPRE (Peroxisome Proliferator-activated receptor Response Element) in 

this gene region, which explains the reason for the observed anti-fibrotic responses after 

treatments.  
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3.9. Simultaneous combination of PPAR-β/δ and PPAR-γ inhibitors (antagonists) 

resulted in increased intracellular and extracellular collagen levels  

Combined inhibitions of PPAR-β/δ and PPAR-γ were effective after 48 h of treatments and 

results showed remarkable increase in collagen I and α-SMA in IPF primary human lung 

fibroblasts at that point (Figure 10A, lanes 6). Further, re-activation of the inhibited receptors 

rescued the effects of the antagonists (Figure 10A and 10B). The pattern of extracellular 

collagen modulation after treatments conformed to the endogenous regulation of collagen I in 

the cells (Figure 10B). This is the first report that has explicitly explained the effects of the 

two receptors in pulmonary fibrosis. However, a dual agonist for PPAR-β/δ and PPAR-γ (V6) 

(Figure 10C) revealed only anti-fibrotic responses intracellularly (Figure 10D), but could not 

inhibit the release of extracellular collagen (Figure 10E). The results connote the importance 

of investigating the extracellular matrix in all in-vitro experimental IPF studies.  

Figure 9. The anti-fibrotic effect of activated PPAR-β in combination with PPAR-γ is stable, and 

inhibitions of the receptors promoted abundance and release of collagen.  

(A) Reversal of fibrosis phenotype by PPAR-β and PPAR-γ activation is stable. Control and IPF primary human 

lung fibroblast cultures were serum-starved after 80% confluency, treated with TGF-β1 (5 ng/ml) for 24 h, 

followed by simultaneous PPAR-β and -γ activation for 12 h – 48 h in the presence of TGF-β1. Total proteins 

were isolated for Western blotting and α-SMA, COL 1 and β-actin proteins detection (n = 3).  

(B) Stability of anti-fibrotic properties of activated PPAR-β and PPAR-γ may be due to feedback response to 

synthesized lipids, which are natural activators of the receptors. Cells were serum-starved and treated with 

different PPAR ligands following 24 h stimulation with TGF-β1 or without TGF-β1 stimulation. Fibroblasts 

were also treated with TGF-β1 for 72 h. Media were collected after 48 h of different PPARs activation for fatty 

acid analyses of arachidonic (AA), docosahexaenoic (DHA), and eicosapentaenoic (EPA) acids. Groups of 

interest were analyzed by two-way ANOVA, using Tukey´s multiple comparisons test. **, *** and **** are 

defined as p≤ 0.01, p≤ 0.001 and p≤ 0.0001 respectively, n = 3. 

(C) Docosahexaenoic acid (DHA) elicits anti-fibrotic responses in lung fibroblasts. Control and IPF fibroblast 

cultures were serum-starved and treated with or without TGF-β1 (5 ng/ml). AA, DHA and EPA were used for 

treatment following TGF-β1 stimulation and total cell lysates were collected for Western blotting and protein  

detections of α-SMA, COL 1 and β-actin as control (n = 3). 

(D) Activated PPAR-β and PPAR-γ repressed the promoter of COL1A2 dual luciferase assays. IPF primary 

human lung fibroblasts were transfected with a COL1A2 promoter firefly luciferase reporter plasmid and a 

Renilla luciferase control plasmid for 72 h, serum-starved and treated with PPAR ligands alone or following 

TGF-β1 (5 ng/ml)  stimulation for 24 h. Control and IPF fibroblast cultures were lysed and collected for 

luciferase activity measurements. Firefly luciferase values were normalized with values of Renilla luciferase 

activity plasmids. Groups were analyzed by one-way ANOVA, using Tukey´s multiple comparisons test. * and 

** are defined as p≤ 0.05 and  p≤ 0.01 respectively, n = 3. 
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3.10. Combined activation of PPAR-β and PPAR-γ decreased the migration and invasion 

of IPF primary human lung fibroblasts 

During the pathogenesis of fibrosis, fibroblasts are known to migrate from resident and other 

parts of the lungs to the wound healing site to contribute to the repair process. In view of this, 

inhibition of fibroblast migration could be beneficial as TGF-β1 induces fibroblast 

recruitment in fibrosis. Nevertheless, it is not known whether the migration process is 

progressive or limited at a certain stage of the disease only. IPF primary human lung 

fibroblasts were used in this part of the study and it was interesting that the simultaneous 

combined activation of PPAR-β and PPAR-γ decreased the migration of the cells after 24 h 

and 48 h (Figure 11A). Moreover, the combined activation of the receptors elicited a 

significant decrease in fibroblast invasion after 48 h (Figure 11B). Contrarily, the inhibition of 

Figure 10. Simultaneous combination of PPAR-β/δ and PPAR-γ inhibitors (antagonists) resulted in 

increased intracellular and extracellular collagen levels. 

(A) Inhibitions of PPAR-β and PPAR-γ increased the fibrosis phenotype in IPF primary cultures of human lung 

fibroblasts after 48 h and the effects were rescued in both cell types (control and IPF samples) following receptor 

reactivation. Control and IPF primary human lung fibroblast cultures were serum-starved and further challenged 

with TGF-β1. PPAR-β and PPAR-γ were first, simultaneously inhibited for 24 h and 48 h, and further activated 

for 24 h (lane 7) with specific ligands and inhibitors. Cell lysates were collected for Western blotting and protein 

detection (n = 3).  

(B) PPAR-β and PPAR-γ antagonists stimulate the release of collagen from control and IPF primary human lung 

fibroblast cultures. Sircol assay analyses of collagen released into media after 72 h of TGF-β1 stimulation alone, 

48 h of combined agonists and combined antagonist treatments following TGF-β1 stimulation for 24 h and, TGF-

β1 stimulation for 24 h followed by 24 h antagonist treatments and combined further for 24 h with different 

agonist treatments. Groups of interest were analyzed by two-way ANOVA, using Tukey´s multiple comparisons 

test. *, **, *** and **** are defined as p≤ 0.05, p≤ 0.01, p≤ 0.001 and p≤ 0.0001 respectively, n = 4.  

(C), (D) and (E) The putative commercially obtained dual PPAR-β and PPAR-γ agonist (V6, a synthetic molecule) 

enhances PPRE activity but is not anti-fibrotic. IPF primary human lung fibroblasts were transfected with the 

PPRE promoter firefly luciferase reporter plasmid and the Renilla luciferase plasmid for 72 h, serum-starved and 

treated with V6 and TGF-β1 or both. Cells were lysed and collected for luciferase activity measurements (C). 

Firefly luciferase values were normalized with values of Renilla luciferase. Similar treatment routines were 

followed for (D) and (E) as indicated in the figure and total cell lysates and media collected for immunoblotting 

and Sircol collagen assays respectively. Groups of interest for (C) and (E) were analyzed by one-way ANOVA, 

using Tukey´s multiple comparisons test. *, ** and **** are defined as p≤ 0.05, p≤ 0.01 and p≤ 0.0001 

respectively. n = 3 (C) and n = 4 (E).     
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the receptors significantly increased invasion of IPF primary human lung fibroblasts after 48 h 

(Figure 11B).  

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Combined activation of PPAR-β and PPAR-γ decreased the migration and invasion of IPF 

primary human lung fibroblasts. 

(A) and (B) Migration and invasion assays of IPF primary human lung fibroblasts after treatments with 

PPAR agonists and antagonists. IPF cells were seeded, the cultures serum-starved and treated with ligands 

and inhibitors in 6-well plates. Cells in culture plates were directly used for migration assays and those for 

invasion assays were trypsinized and further assessed for invasion. Groups were analyzed by one-way 

ANOVA, using Tukey´s multiple comparisons test. * and ** are defined as p≤ 0.05 and  p≤ 0.01 

respectively, ns- not significant. Migration assay; PPAR agonists (n = 8) and PPAR antagonists (n = 6), 

Invasion assay; PPAR agonists (n = 4), PPAR antagonists (n = 3).  
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3.11. TGF-β1 downregulates catalase to trigger the progression of fibrosis  

Since figure 7C showed that TGFβ1 downregulated catalase, we hypothesized that this 

decrease might lead to the progression of fibrosis. Time-point and concentration dependent 

treatments of control and IPF primary human lung fibroblasts with TGF-β1 supported this 

claim (Figure 12A and 12C). The modulation of collagen I protein in response to increasing 

concentrations of TGF-β1 was endogenously independent of the treatment groups (Figure 

12C) however; the extracellular collagen analyzed from media was markedly increased but 

showed no significant differences between treatment groups (Figure 12C). The activity of 

catalase, after TGF-β1 stimulation of cells revealed gradual decreases with increasing 

concentrations of the recombinant cytokine, notably in IPF fibroblasts (Figure 12D). Former 

hypotheses directly linked increasing concentrations of TGF-β1 to collagen synthesis in 

fibrosis, notwithstanding the fact that the observed regulatory effects of TGF-β1 on catalase 

could also provide another paradigm in understanding the pathophysiology of fibrosis is 

essential.  

 

3.12. Catalase was downregulated in human lungs and primary fibroblasts, and 

Bleomycin administration decreased catalase in mouse lungs 

Furthermore, in this study, catalase was markedly decreased in IPF primary human lung 

fibroblasts and tissues compared to controls (Figure 13A and 13B, refer to page 72) with 

macrophages and alveolar epithelial type II cells expressing more of the protein. Bleomycin-

induced mouse lungs also showed gradual decreases in catalase with a downregulation visible 

already at day 7 and more pronounced reduction between days 14 to 28 (Figure 13C). 

Glutathione peroxidase 1 and 2 compensated for catalase deficiency in human IPF lungs 

(Figure 13D) though the proteins were abundant in marcrophages and alveolar epithelial type 

II cells. Additionally, Figure 13E also showed a decrease in peroxisomal early biogenesis by 

reduced PEX 3p in IPF primary human lung fibroblasts.  

Genes of peroxiredoxins 1, 4, 5 (PRDX 1, 4, 5) were significantly downregulated and the 

others (PRDX 2, 3 and 6) showed a tendency to decrease in IPF primary human lung 

fibroblasts (Figure 13F). The collected evidence suggests a dysregulation of catalase and other 

anti-oxidative proteins and genes for H2O2 degradation.    
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Figure 12. TGF-β1 downregulates catalase to trigger the progression of fibrosis. 

(A) and (B) TGF-β1 downregulates catalase in a time and concentration dependent manner. Control 

and IPF primary human lung fibroblasts were seeded, the cultures serum-starved and treated with 5 

ng/ml TGF-β1 at different time points (A) and various concentrations for 48 h (B). Cell lysates were 

used for Western blotting. Data represent 3 experimental repeats (n = 3). 

(C) The release of collagen into culture media by TGF-β1 stimulated primary human lung fibroblasts 

is independent of the concentration of the treatment compound. (n = 3). 

(D) Catalase activity might be directly related to the regulation of collagen. Control and IPF primary 

fibroblast cultures were serum-starved and treated with various concentrations of TGF-β1. Cells were 

collected in 1X PBS, homogenized and measured for catalase activity, n = 3.   

Groups of interest were analyzed by two-way ANOVA (C) and (D), using Tukey´s multiple 

comparisons test. *, **, *** and **** are defined as p≤ 0.05, p≤ 0.01, p≤ 0.001 and p≤ 0.0001 

respectively. 
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Figure 13 
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3.13. Overexpression of catalase elicited anti-fibrotic responses 

The role of catalase in fibrosis was assessed after overexpressing the enzyme in control and 

IPF primary human lung fibroblasts. It was clearly evident that a decrease in fibrotic markers, 

collagen I and α-SMA (Figure 14A) occurred in catalase overexpression groups via an 

unidentified molecular mechanism directly or indirectly related to the biological function of 

the enzyme. Moreover, catalase overexpression elicited an additive effect to the anti-fibrotic 

properties of PPAR-β/δ and PPAR-γ as indicated in IPF primary human lung fibroblasts 

(Figure 14A, lane 6). The reduction in the production of ROS (Figure 14B) in cells 

overexpressing catalase strongly supports the importance of ROS in fibrosis progression.  

 

 

Figure 13. Catalase is downregulated in human lungs and primary fibroblasts, and Bleomycin 

administration decreased catalase in mouse lungs.  

(A) and (B) Basal protein abundance of catalase are reduced in IPF primary human lung fibroblasts and 

IPF lung tissues compared to controls (Scale bar: 10 μm). Fibroblast cultures form 5 control (1-5) and 5 

IPF (1-5) patients (A). Lung tissues form 3 control (1-3) and 3 IPF (1-3) patients (B).  

(C) Bleomycin administration decreased catalase protein abundance in mouse lungs, n = 3. 

(D) GPx 1/2 compensate for catalase deficiency in IPF human lungs. Lung tissues from 4 control (1-4) and 

4 IPF (1-4) patients. NC – negative control, (Scale bar: 10 μm). 

(E) PEX 3p is downregulated in IPF primary human lung fibroblasts (Scale bar: 10 μm). 

(F) mRNA for PRDX1, 4 and 5 are more expressed in control compared to IPF primary human lung 

fibroblasts. Data was analyzed with the unpaired student’s t-test. * is defined as p≤ 0.05, n = 5. 
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Figure 14 

 

 

 

 

 

 

 

 

Figure 14.  Overexpression of catalase elicited anti-fibrotic responses. 

(A) and (B) Overexpression of catalase downregulated collagen and ROS production. Control and 

IPF primary human lung fibroblasts were transfected with a catalase overexpression vector for 72 

h followed by 5 ng/ml TGF-β1 stimulation for 24 h. Combined GW0742 and Rosiglitazone 

treatment was done for 48 h. Dihydroethidium staining (B), CAT - catalase overexpression vector 

(Scale bar: 10 μm). Data represent 3 experimental repeats. 
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3.14. Inhibition of catalase with 3-amino-1, 2, 4-triazole enhanced fibrotic phenotype 

Catalase appears to inhibit pulmonary fibrosis. To delineate its molecular role in the disease, 

3-amino-1, 2, 4-triazole (AT), a compound known to block the activity of catalase selectively 

was first analyzed for its inhibitory effects in control and IPF primary human lung fibroblasts. 

Indeed, 3-amino-1, 2, 4-triazole treatment potentially inhibited the activity of catalase (Figure 

15A). Additionally, intracellular collagen I and extracellular collagens increased strongly after 

AT treatment in combination with TGF-β1, even after combined activation of PPAR-β/δ and 

PPAR-γ in TGF-β1 stimulated cells, especially in IPF fibroblasts (Figure 15B and 15C). It is 

worthy to note that this effect occurs despite the strong anti-fibrotic properties of 

simultaneously activated PPAR-β/δ and PPAR-γ as already shown in Figure 9A and suggests: 

1) that a decrease in catalase in IPF fibroblasts under TGF-β1 stimulation is detrimental, and 

2) that catalase activity would be very beneficial in IPF fibroblasts under TGF-β1 stimulation. 

Additionally, inhibition of catalase increased ROS production, confirming oxidative 

imbalances during fibrosis progression (Figure 15D).  
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3.15. Stable catalase knockdown cell lines produce H2O2 and enhanced fibrosis markers 

It was observed that collagen I gene expression was upregulated in stable catalase knockdown 

cell lines (Figure 16A). In order to study the possible molecular mechanism regarding this 

phenomenon, a stable catalase knockdown cell line of control primary human lung fibroblasts 

were used for further experiments since IPF primary human lung fibroblasts (stable catalase 

knockdown cell line) could not survive in culture after few passages. It was however, unclear 

whether catalase is necessary for fibroblast survival since IPF primary human lung fibroblasts 

already had lower levels of the enzyme (see Figure 13A) and activity (see Figure 15A) 

compared to controls. Stable knockdown of catalase resulted in increased intracellular (Figure 

16B) and extracellular collagens (Figure 16C) and decreased catalase activity (Figure 16E).  

One of the main functional roles of catalase is the degradation of H2O2 into H2O and O2. 

Hydrogen peroxide effects have been well-studied in cell biology, wherefore its roles were 

also assessed in our model systems. Data from this thesis showed a reduction and increase in 

ROS in catalase overexpression and inhibition conditions respectively. That notwithstanding, 

H2O2 concentration increased at basal level and further, after treatment of stable catalase 

knockdown cell line with TGF-β1 (Figure 16D).  

The production of H2O2 after TGF-β1 treatment of human lung fibroblasts has been well 

characterized but the accumulation of the molecule in cells devoid of catalase explains its 

metabolic function as a scavenging enzyme for the molecule. Also, stable catalase knockdown 

cell lines could not survive exogenous H2O2 treatments beyond 50 µM. Treatments at this 

concentration increased the expression of α-SMA and a relative elevation in collagen I in 

CAT sh1 (Figure 16F). The data opens discussions on whether H2O2 would be an intracellular 

signaling molecule for the transdifferentiation of fibroblasts into collagen-producing 

myofibroblasts at some stages of IPF development.  

 

Figure 15.  Inhibition of catalase with 3-amino-1, 2, 4-triazole enhanced fibrotic phenotype. 

 (A), (B), (C) and (D) 3-amino-1, 2, 4-triazole potentially blocks catalase activity and leads to increases in 

fibrosis markers and ROS production. Cells were serum-starved and treated with 5 ng/ml TGF-β1 for 24 

h. GW0742, Rosiglitazone and 3-amino-1,2,4-triazole (AT) were simultaneously treated for 24 h. 

Catalase activity assay, n = 3 (A) Western blotting (B) Sircol collagen assays, n = 4 (C) Dihydroethidium 

staining, n = 3 (D) (Scale bar: 10 μm). Groups were analyzed by two-way ANOVA (A) and one-way 

ANOVA (C), using Tukey´s multiple comparisons test. *, **, *** and **** are defined as p≤ 0.05, p≤ 

0.01, p≤ 0.001 and p≤ 0.0001 respectively. 
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Figure 16 
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3.16. siRNA knockdown of catalase promoted release of extracellular collagen 

Control and IPF primary human lung fibroblasts were transfected with catalase siRNA for 48 

h and results indicated a decrease in intracellular collagen I (Figure 17A), significant increase 

in extracellular collagen released by IPF fibroblasts (Figure 17B) and upregulation of 

COL1A1 gene (17C). The data supported the role of catalase in the modulation of IPF as 

already indicated.  

 

3.17. Hydrogen peroxide induced profibrotic responses 

To further explain the role of H2O2 in IPF, control and IPF primary human lung fibroblasts 

were challenged with increasing concentrations of H2O2. Interestingly, H2O2 promoted the 

increase of collagen abundance at 10 mM in control primary human lung fibroblasts, whereas 

in IPF fibroblasts there was already a consistent increased response to collagen production 

after treatments with higher concentrations of H2O2 (> 300 μM treatment (Figure 18A). The 

disparity in the two cell groups after H2O2 treatments may be consistent with the notion that 

higher levels of catalase suppress the development of fibrosis, or catalase is gradually 

depleted by TGF-β1 to enhance fibrosis progression.  

Figure 16. Stable catalase knockdown cell lines produce H2O2 and enhanced fibrosis markers 

(A), (B), (C) and (E) The stable knockdown of catalase decreased catalase activity, and remarkably 

upregulated collagen expression, abundance and release. Stable knockdown catalase cell lines were 

seeded, cell cultures serum-starved and total RNAs extracted for qRT-PCR analyses. Cells were also 

treated with 5 ng/ml TGF-β1 for 48 h, and total cell lysates and media collected for Western blotting and 

Sircol collagen assays respectively. Stable knockdown catalase cell lines were also seeded, serum-starved 

and homogenized in 1X PBS for catalase activity. Groups were analyzed by two-way ANOVA (A) and 

one-way ANOVA (C) and (E), using Tukey´s multiple comparisons test. *, **, *** and **** are defined 

as p≤ 0.05, p≤ 0.01, p≤ 0.001 and p≤ 0.0001 respectively. n = 3 (A) and (E), and n = 4 (C). 

(D) H2O2 production increased in basal and TGF-β1 stimulated stable knockdown catalase cell lines. 

Data was analyzed with one-way ANOVA, using Tukey´s multiple comparisons test. *, **, *** and **** 

are defined as p≤ 0.05, p≤ 0.01, p≤ 0.001 and p≤ 0.0001 respectively, n = 3. 

(F) Stable knockdown catalase cell lines were seeded, serum-starved and treated with H2O2 for 24 h. 

Whole cell lysates were collected for Western blotting and protein detections. Data represent 3 

experimental repeats. 
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Figure 17. siRNA knockdown of catalase promoted release of extracellular collagen. 

(A), (B) and (C) Control and IPF primary human lung fibroblasts were seeded and transfected with 

catalase siRNA for 48 h. Total cell lysates were collected for Western blotting for catalase, α-SMA, 

COL 1 and β-actin detections. (A) Cell culture media for Sircol collagen assays (B) and total RNAs 

were extracted for qRT-PCR analyses (C). Groups were analyzed by two-way ANOVA (B) and (C), 

using Tukey´s multiple comparisons test. *, *** and **** are defined as p≤ 0.05, p≤ 0.001 and p≤ 

0.0001 respectively, n = 5 (B) and n = 3 (C).  
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Figure 18 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 18.  Hydrogen peroxide induces profibrotic responses. 

H2O2 is a regulator of intracellular abundance of collagen. Control and IPF primary human lung 

fibroblasts were seeded, the cultures serum-starved and treated with various concentrations of H2O2 

for 24 h. Whole cell lysates were collected for Western blotting and detections. Data represent 3 

experimental repeats. 
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4. Discussion 

Idiopathic pulmonary fibrosis is characterized by complex molecular mechanisms that 

interfere with the usual physiologic balance of the extracellular matrix (ECM) in the lungs 

[176]. Recent phase 3 clinical trials in IPF patients supported that the use of pirfenidone for 

one year decreased disease progression [326]. However, there is still the need to find other 

therapeutic regimens to support current ones. 

In this dissertation, the regulation of collagen, a major structural component of interstitial 

ECM [327], and of ROS metabolism in IPF were of primary focus in contrast to studies which 

manipulated the cellular phenotype of fibroblasts and cell signaling pathways induced by pro-

inflammatory and pro-fibrotic molecules in attempts to resolve IPF. Results in this thesis 

demonstrated that PPAR-β, peroxisome-derived docosahexaenoic acid and catalase are 

candidates for antifibrotic responses in IPF.  

Before establishing the general finding in this study, the consistency of markers of pulmonary 

fibrosis, behaviour of primary human lung fibroblasts under TGF-β1 induction and MMPs in 

fibrosis, weas investigated.  

  

4.1. α-smooth muscle actin is not a reliable IPF marker 

Data from the experiments done for this dissertation demonstrated that the expression of α-

SMA, a key marker used to study fibrosis, might correspond with collagen regulation in lung 

biopsies. Interestingly, α-SMA was not upregulated in IPF primary human lung fibroblasts 

compared to control fibroblasts. In the literature, the molecular characterization of fibrosis 

markers associates IPF extensively with collagen synthesis [328-330] and the use of α-SMA 

as a sole marker for studying fibrosis has been currently debated [331]. The latter publication 

revealed that co-staining of α-SMA and collagen in Bleomycin-induced fibrosis mouse 

models exhibited inconsistencies in different organs. The authors reported that all α-SMA-

positive cells remarkably expressed collagen whereas only a small population of collagen-

positive cells co-expressed α-SMA in the lung and kidney. This study also indicated that a 

population of fibroblasts that did not express α-SMA was able to secrete collagen during 

fibrogenesis. Data from this thesis provided insights on the restrictive use of α-SMA as single 

marker in fibrosis studies as control primary human lung fibroblasts expressed more α-SMA 

and TGFBRI and also secreted higher levels of active TGF-β1 than IPF groups in culture 

conditions under basal conditions. However, there were no differences between extracellular 
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collagen secreted by primary control and IPF human lung fibroblasts. This dissertation further 

delineates the irregularities of α-SMA as sole marker though during the past years many 

authors have suggested that the pathophysiology of fibrosis is characterized by excessive 

accumulation of collagen-rich ECM produced by α-SMA-positive myofibroblasts [332, 333]. 

This finding underscores the need to identify more specific markers that are solely relatable to 

cells that secrete collagen during the pathogenesis of pulmonary fibrosis, and to perform 

thorough investigation of ECM in all IPF studies. It is also therefore suggested, that metabolic 

markers, in addition to phenotype-associated ones be investigated in future studies.  

 

4.2. TGF-β1 strongly induced the proliferation of IPF fibroblasts 

It was reported that type I collagen forms a key component of the ECM during fibrosis [334], 

which provides enough evidence to focus on collagen degradation in IPF. Moreover, the 

production of collagen is mainly from fibroblasts in IPF [4, 197] and the proliferation of 

fibroblasts may plausibly promote the accumulation of interstitial proteins. Indeed, IPF 

primary human lung fibroblasts proliferated strongly in response to TGF-β1, providing a 

better understanding of the phenotypic heterogeneity between control and IPF primary human 

lung fibroblasts in this study. On the other hand, this result also justifies the importance of 

describing the metabolic differences between cells from healthy and IPF patients, to help 

develop standards and markers for IPF. The proliferative capacity of IPF primary human lung 

fibroblasts after TGF-β1 stimulation may add up to the complexities of this disease, 

suggesting molecular targeting of cell cycle pathways in addition to metabolic ones. 

 

4.3. MMPs in lung fibrosis 

Similar to this dissertation, different MMPs were variously regulated in control and IPF 

primary human lung fibroblasts as reported in another publication [335]. Interestingly, the 

inhibition of MMPs with a general blocker in this thesis was relevant in IPF and control 

fibroblasts. Moreover, basal levels of MMP1, MMP3 and MMP10 were lower in IPF primary 

human lung fibroblasts compared to controls however activated PPAR-β/δ increased their 

expressions. MMP1 knockdown cells also showed compensatory expressions of the genes 

(MMP3 and MMP10), suggesting their possible importance in regulating the pro-fibrotic 

phenotype in IPF which should be clarified in the future. Inhibitors for specific members of 

the MMP family are unfortunately not available and differential regulation of individual 

MMPs may either promote or inhibit the development of IPF [336]. However, it also has to be 

discussed that MMPs could be molecularly connected to some disease conditions which may 
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be associated to other cells in the lungs, hence local inhibition of specific MMPs may be 

detrimental to the normal biological functions of other cells in the lung cells.  

 

4.4. PPARs in the resolution of IPF and inconsistencies of experimental models  

A part of this dissertation focused on the use of PPARs in the resolution of fibrosis since 

earlier data have implicated PPARs, especially PPAR-γ, to elicit anti-fibrotic responses [251-

254]. Interestingly, the experimental models used in those studies to simulate the disease 

process in vivo were inconsistent. In one of the studies, primary human lung fibroblasts were 

simultaneously treated with TGF-β1 and PPAR-γ agonists [254]. The results only indicated 

the interference of activated PPAR-γ in TGF-β1 pathways for the reverse of pro-fibrotic 

phenotype and ultimately, collagen production. Also in another study, human lung fibroblasts 

were pre-treated with PPAR-γ agonists followed by the stimulation of human lung fibroblasts 

with TGF-β1 in vitro, and in mice with Bleomycin sulfate [251]. Pre-treatment of PPAR-γ 

agonists in this model revealed the possible anti-inflammatory potential of the receptor. 

However, it is understandable that inflammation does not automatically lead to fibrosis [337] 

and this cellular process is also required for tissue homeostasis during wound healing. 

Additionally, some groups treated after Bleomycin instillation on day 11 with troglitazone to 

investigate the role of PPAR-γ in fibrosis resolution. However, the experiments lacked an 

essential control since they did not provide evidence of tissue remodeling and of fibrosis 

phenotype on day 11 after Bleomycin administration alone, compared to the troglitazone 

treated group. In light of the two studies, more scientists started investigating PPAR-γ in 

fibrosis. The studies of the following years delineated the anti-fibrotic potential of PPAR-γ by 

co-treating its agonists in parallel to TGF-β1. Profibrogenic effects mediated by TGF-β1 were 

reported to be inhibited by PPAR-γ agonists in human lung fibroblasts [253]. However, the 

study missed to document the effects of co-treatment of these compounds on exogenously 

secreted collagen, which is primarily related to ECM deposition in vivo. In fibrosis, aberrant 

deposition of ECM contributes to disease progression and studies that focus on inhibiting the 

differentiation of fibroblast to myofibroblasts might as well have to consider that some 

fibroblasts do not express α-SMA but are able to secret collagen into the ECM [331]. Another 

study that used the co-treatment model demonstrated that rosiglitazone suppressed 

myofibroblast differentiation, indicating a preventive role of PPAR-γ in fibrosis resolution 

[252]. However, α-SMA was used in the entire study as the sole marker for fibrosis, leaving 

much questions unanswered since collagen deposition should have been investigated as most 

appropriate marker for fibrosis. 
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4.5. PPAR-β/δ is a molecular target for collagen degradation in IPF 

In reference to reports from earlier studies and their experimental approaches it is worth 

noting, that in order to understand the pathogenesis of fibrosis, experimental models should 

exactly simulate the disease process in vivo. In contrast to all other studies, in this 

dissertation, the experimental models used tried to mimic the disease process by stimulating 

primary human lung fibroblasts first with TGF-β1, followed by PPAR activation later. It is 

interesting that the regulatory effects of TGF-β1 on PPARs during the progression of IPF 

have not been published until now. Interestingly, the in vitro model used in this study 

demonstrated that PPAR-β/δ is upregulated in TGF-β1 stimulated control and IPF primary 

human lung fibroblasts. Furthermore, IPF human lung tissues expressed higher levels of 

PPAR-β/δ compared to controls. The reason for this effect is unclear but one explanation 

could be that PPAR-β/δ is possibly modulated for adaptive fibrosis response induced by TGF-

β1. Thus, it was hypothesized that PPAR-β/δ might be a strong target for lung fibrosis 

resolution compared to PPAR-α and PPAR-γ. Indeed, subsequent results supported the 

hypothesis that activated PPAR-β/δ contributes to the reversal of fibrosis phenotype. The 

regulation of collagen synthesis 1) was paralleled by upregulation of specific activation of 

PPAR-β/δ 2) and members of the MMP family. The downregulation of collagen and 

upregulation of MMP is not clear and has to be analyzed in the future. The PPAR-β/δ-

mediated molecular regulation was more pronounced on MMP1, 3 and 16 in control and IPF 

primary human lung fibroblasts, which are collagenase, stromelysin and membrane-type 

MMPs respectively. The observation highlights the potential involvements of MMPs in the 

degradation of collagen in ECM in fibrosis conditions.  

 

4.6. Combined activation of PPAR-β/δ and PPAR-γ elicited stable anti-fibrotic 

properties 

It was reported in this dissertation that combined activation of PPAR-β/δ and PPAR-γ 

exhibited strong anti-fibrotic responses and also proliferated peroxisomes. Before explaining 

the importance of peroxisome biogenesis and metabolism in fibrosis, the present study 

determined whether the anti-fibrotic properties of combined activations of PPAR-β/δ and 

PPAR-γ were relatively consistent in several aspects of the disease condition in vivo. Indeed, 

it was demonstrated that the anti-fibrotic response observed after activating both PPAR-β/δ 

and PPAR-γ was stable, reliable and repeatable and could modulate intra and extracellular 

collagens. One dimension essential for successful resolution of IPF is the reduction of excess 

ECM component secretion, especially collagen, since two-thirds of the dry weight of ECM is 
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made up of collagen fibres [184].  The findings from this dissertation also challenges earlier 

reports which suggested that activated PPAR-γ alone exerted anti-fibrotic potentials [251-

254] as most of the collagen was released into culture media after treatment with PPAR-γ 

agonists (here, rosiglitazone) as shown in the study. This dissertation is the first report 

contrasting the potentials of sole treatment with PPAR-γ agonists in fibrosis as reported in the 

last two decades. It is suggested that differences in experimental models used might be the 

reason for this outcome; however, it is critical to exactly mimic the disease condition in vitro 

in order to provide reliable results for future in vivo studies or treatment strategies. The model 

used in this study may not be perfect but fibrosis was certainly simulated in vitro in a more 

appropriate way since the initial surge and high levels of TGF-β1 in the pathogenesis of IPF 

have been very well documented [79, 80, 82]  and the involvement of TGF-β1 contributes to 

the progression of fibrosis.  

 

4.7. Peroxisomes in IPF 

Concerning the role of organelle involvement in this dissertation, it was demonstrated, that 

combined activation of PPAR-β/δ and PPAR-γ induced peroxisome biogenesis and also 

modulated other metabolic pathways of the organelle as well as the fibrosis phenotype. 

Additionally, the combined effect also elicited stronger anti-fibrotic effects than PPAR-β/δ 

alone. As a result, future studies can concentrate on finding potential dual agonists for PPAR-

β/δ and PPAR-γ to enhance both peroxisome biogenesis and stronger anti-fibrotic effects. 

This dissertation also ascertained the importance of proliferating peroxisomes in fibrosis 

conditions with much focus on the functional compartments of the organelle, especially the 

antioxidative and β-oxidative systems. Moreover, ROS production in fibrosis has been 

already documented and the antioxidative enzymes of cells are known to be depleted in the 

IPF disease condition [108, 109].   

 

4.8. Exogenous activation of PPARs increase peroxisome lipid metabolism  

Fatty acid metabolism increased after combined activation of PPAR-β/δ and PPAR-γ and the 

products and derivatives are known endogenous activators of the receptors [338]. Arachidonic 

acid, docohexaenoic acid and eicosapentaenoic acid were increased after activation of PPAR-

β/δ, PPAR-γ and both. Interestingly, all three PPAR isotypes are activated by arachidonic acid 

and docosahexanoic acid [339] and it is known that the activation of PPAR-β/δ and PPAR-γ 

promote fatty acid catabolism and lipid metabolism respectively [340, 341]. It is therefore 

hypothesized that the stability of the treatments may be due to the fact that exogenous 
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activation of both PPARs increase peroxisome fatty acid metabolism and the resulting 

metabolites further activated PPARs, establishing a stable activation loop on the receptors.  

 

4.9. Combined inhibition of PPAR-β/δ and PPAR-γ progress fibrosis phenotype 

The supportive role of PPAR-γ on PPAR-β/δ was not only limited to a single agonist of the 

former, and the inhibition of both receptors progressed fibrosis, emphasizing their importance 

in controlling fibrosis phenotype. Additionally, the inhibition of the receptors was effective 

after 48 hours of treatment as collagen was increased in control and IPF primary human lung 

fibroblasts. Also, the regulation of collagen in fibroblasts might not be the sole molecular 

responsibility of PPARs but might also be influenced by a complex interplay of different 

transcription factors or cofactors of the cells. Further, the differences between control and IPF 

primary human lung fibroblasts suggest that there may be some additional molecular 

pathways regulating collagen synthesis, release or degradation besides MMPs.   

 

4.10. Combined activation of PPAR-β/δ and PPAR-γ inhibit migration and invasion of 

IPF primary human lung fibroblasts 

In fibrosis, TGF-β1 induces fibroblast recruitment [342] and the interference of migration and 

invasion pathways of human lung fibroblasts may present a potential avenue to limit 

fibrogenesis at wound sites to enhance alveolar regeneration and restoration of the normal 

architectural components of the lungs. An earlier study has already acknowledged that PPAR-

α and PPAR-γ inhibit proliferation and migration of smooth muscle cells [343]. Additionally, 

PPAR-γ agonist treatment of umbilical vein endothelial cells stimulated migration [344], 

making it convincing that systemic activation of PPARs might have variable effects on 

different cell types. Nevertheless, the results of this thesis collectively established, that 

combined activation of PPAR-β/δ and PPAR-γ does not only elicit anti-fibrotic responses but 

also influences migration and invasion of IPF primary human lung fibroblasts.  

 

4.11. Balance in ECM is essential for fibrosis resolution 

To expound further on what has been initially discussed, peroxisome proliferation by 

combined activation of PPAR-β/δ and PPAR-γ indicated a functional biological role of the 

organelle in inhibiting fibrosis progression or even having a potential role in fibrosis 

resolution. Fibrosis is marked by multiple levels of molecular regulations which contribute, in 

part and actively in the progression of the disease, and antioxidants are considerably depleted 

in fibrotic diseases [110-112]. Disruption in the antioxidant system relates to ROS metabolism 
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in the lungs and not directly to ECM homeostasis. However, the complexities in maintaining 

ECM balance during wound healing in the lungs require multiple approaches in studying IPF. 

In the past, many molecular connections between IPF and inflammation [151, 152] as well as 

ROS metabolism [101] focused on resolving the cellular processes rather than relating them to 

ECM balance. Consequently, interventions with antioxidants such as N-acetylcysteine as a 

form of clinical management did not improve the quality of life of patients and this outcome 

might have hindered further exploration of the antioxidant system in IPF. Similarly, modern 

clinical management compounds such as nintedanib [18] and pirfenidone [19] have prolonged 

patient’s lifespan but could not prevent mortality. In as much as the molecular targeting of 

biological processes leading to IPF development is prudent, the association of these processes 

to ECM clearance is essential.  

 

4.12. Catalase contributes to ECM balance in IPF 

Metabolic profiling in IPF is important as TGF-β1 downregulated catalase and combined 

activation of PPAR-β/δ and PPAR-γ weakly upregulated the enzyme in primary human lung 

fibroblasts. To further explore reasons for this inconspicuous molecular effect, the functional 

metabolic roles of antioxidative enzymes in primary human lung fibroblasts were established 

in this study. Catalase, as well as other antioxidative enzymes, present in peroxisomes and the 

cytosol has protective effects in most of the cellular compartments. However, the link 

between catalase and collagen degradation remains unclear in this study and has to be 

elucidated in the future. It was reported that catalase protects the peroxisomal acyl-CoA β-

oxidation system and thiolase from disruption and inactivation by H2O2 respectively [345]. A 

functional peroxisomal β-oxidation system, however, is necessary to prevent eicosanoid 

accumulation and is essential for the synthesis of DHA or other PUFA which are able to trap 

ROS, leading to less NF-kB activation. Nonetheless, it was reported in cardiac fibroblasts that 

increased ROS activates MMPs and decreased the synthesis of fibrillary collagen [346].  

It was also interesting that TGF-β1 decreased catalase in a time and concentration dependent 

manner, while collagen was upregulated. This phenomenon has already been described in 

airway smooth muscle cells [114] albeit in fibrosis, catalase was only characterized in humans 

and a Bleomycin hydrochloride-induced lung fibrosis mouse model [347, 348] without 

delineating the fundamental molecular mechanisms associated with the pathogenesis of the 

disease. Besides, increasing concentrations of TGF-β1 downregulated catalase in smooth 

muscle cells [114] and Bleomycin administration caused the release of inflammatory and pro-

fibrotic cytokines and in tend, reduced catalase activity in mice [347]. Data from this thesis 
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suggest that catalase activity may be essential for the resolution of fibrosis by essentially 

metabolizing ROS which are inducers of collagen synthesis [346] or by protecting the 

synthesis of DHA via peroxisomal β-oxidation and preventing oxidation of the lipid double 

bond, which has to be analysed in the future. Peroxisome-derived PUFAs are important 

components of cellular metabolism and they modulate NOX enzymes as well. For this reason, 

catalase might have an indirect effect by protecting peroxisomal lipid products against 

oxidation and function of other compartments. 

Persistent ROS production is therefore suggested to be deterrent to collagen degradation and a 

homeostatic balance in ROS metabolism is probably required for normal healing in the lungs. 

Since ROS are generated by NOXs triggering oxidative stress in IPF fibroblasts, it is 

imperative that the activities of scavenging enzymes such as superoxide dismutase, catalase, 

glutathione peroxidases, thioredoxin, peroxiredoxins and glutathione transferase [108] are 

enhanced in IPF. In this study, it was indicative enough to expound the role of catalase in 

fibrosis since the enzyme was markedly decreased in IPF primary human lung fibroblasts 

compared to controls. This could be as a result of increased TGF-β1 production in IPF 

primary human lung fibroblasts as reported in our earlier paper [270]. Consequently, TGF-β1 

stimulates ROS production and also disrupts the anti-oxidative compartments in cells [87]. 

This study raises concerns about the regulation of catalase and its activity after TGF-β1 

stimulation of primary human lung fibroblasts.  

 

4.13. The role of H2O2 in IPF 

Results in this dissertation confirmed that higher concentrations of exogenous H2O2 increased 

intracellular collagen but α-SMA expression did not follow the regulatory pattern exhibited on 

collagen in the primary human lung fibroblasts used in this study. In view of this, fibroblasts 

expressing α-SMA do not necessarily produce collagen in IPF. Additionally, though TGF-β1 

regulates the transdifferentiation of fibroblasts into α-SMA-positive myofibroblasts, synthesis 

of collagen may not be parallel with this molecular phenotype [331] as indicated by studies in 

the last two decades.  

The modulatory effect of H2O2 on collagen questions whether the amount of the molecule in 

vivo is directly or indirectly related to the development of lung fibrosis. Even though smaller 

concentrations of H2O2 (5μM) were documented to downregulate procollagen α1(I), α2(I), 

α1(III), α1(IV) and α2(IV) [346], excessive levels of the molecule increased collagen in this 



90 
 

thesis. This underscores the need to establish a standard range for H2O2 levels for normal and 

pathologic conditions to aid early diagnosis of IPF in patients. 

Animal models for the study of pulmonary fibrosis do not present the histopathological 

phenotype of the disease as observed in humans [349]. It is arguable that the appearance of 

pathological features such as honeycomb, thick scars at the alveolar region and fibroblastic 

foci [209, 210], may take time to occur in humans and the predominantly used model for 

fibrosis induction in mice, that is Bleomycin treatment, might exhibit differential 

pathophysiological features compared to the natural development of fibrosis in humans. 

However, inferring from the possible potential of H2O2 in collagen regulation, it is proposed 

that the compound could be used to generate progressive lung fibrosis in animal model for 

IPF studies.  

 

4.14. Conclusion 

In summary, the study established that PPAR-β/δ elicits anti-fibrotic properties and is 

supported by PPAR-γ to suppress the promoter region of collagen. Thus, combined activation 

of PPAR-β/δ and PPAR-γ could serve as effective anti-fibrotic treatment model. TGF-β1 

downregulated catalase and also induced ROS production which further promoted the 

development of fibrosis. H2O2 may be a key molecule that progresses collagen production in 

fibrosis, indicating that an imbalance in ROS metabolism should be a major molecular target 

for future studies in IPF. Results of the study therefore suggested that the induction of catalase 

in IPF patients may be appropriate for the regulation of collagen intracellularly and in ECM, 

hence the need for peroxisome proliferation to increase the abundance of the enzyme and of 

β-oxidation products. The biogenesis of peroxisomes is therefore essential to increase the 

compartmental store of catalase to remedy the aberrant synthesis of collagen during wound 

healing since at very high levels of ROS, catalase translocates into the cytoplasm. 

Peroxisome-derived docosahexaenoic acid also inhibited intracellular collagen synthesis thus 

supported the role of peroxisomes in IPF as well.  
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4.15. Graphical presentation of results 

The scheme below explains the molecular mechanisms defined in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Schematic representation of the molecular involvement of PPARs and catalase in pulmonary 

fibrosis resolution. 

TGF-β1 increases PPAR-β level and activation of PPAR-β upregulates MMP1, 3 and 16 which may degrade 

synthesized collagen. Collagen and α-SMA are downregulated following the activation of PPAR-α and PPAR-β. 

Activation of PPAR-β together with PPAR-γ proliferated peroxisomes (PO) and inhibited COL1A2 promoter 

which further regulated collagen production. Catalase degraded H2O2 via redox-sensitive transcription factors to 

inhibit the induction of collagen production by the molecule. Coupled activation of PPAR-β and PPAR-γ 

regulated fatty acid metabolism and DHA stimulated the receptors, forming an activation-loop after induction of 

the receptors with synthetic drugs. [Arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic 

acid (EPA) are synthesized in peroxisomes by β-oxidation].  
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4.16. Outlook 

The investigating of the pathobiology of IPF is a broad research area and for that matter, some 

future experiments are recommended to progress knowledge in this field. There is the need to 

identify the sequence of PPRE at the promotor region of collagen 1A2 and also establish the 

protein-DNA interactions between PPARs and possible PPRE regions of all collagen 

promoters in various lung cell types involved in the pathogenesis of IPF. Future studies can 

also employ nucleotide deletion techniques to ascertain the most important sites necessary for 

the repression of the promoters.   

It is also suggested that the initiation and progression of aberrant repair after lung injuries in 

individuals is principally dependent on differences in cellular response, cell components, and 

metabolism. As a result, the probability of developing lung fibrosis may relate to these 

processes which might be different in individuals. For instance, IPF is mainly diagnosed in 

adults after age 50, hence associates aging as risk factor in developing the disease. A 

comprehensive proteomics profiling of lung tissues from young healthy adults and individuals 

aged 50 and above, might reveal potential molecules that are deteriorated with age. The 

identified molecular targets can be assessed in IPF patients and then compared to established 

standards to inform future molecular targets in IPF studies.  

Future studies in IPF are recommended to concentrate on proteins such as collagen I, III, V, 

IV and VIII including, elastin, fibronectin, tenascin, laminin, heparin sulfate and hyaluronan 

which are part of the ECM. Additionally, the modulation of collagen and ECM proteins in 

Bleomycin-induced lung fibrosis mouse model following local activation of PPAR-β/δ and 

PPAR-γ in the lung is suggested as well as treatment of explanted control and IPF lung 

biopsies in culture. Additionally, regarding the role of catalase in IPF, there is the need to 

establish the antifibrotic effects of catalase using Bleomycin-induced lung fibrosis model in 

acatalasemic mice and also elucidate whether H2O2 might be a potential profibrotic molecule 

for better phenotypic characterization of fibrosis in mouse.  

Finally, the effect of combined activation of PPAR-β/δ and PPAR-γ on migration and 

invasion may be desirous in cancer research. Combined activation of PPAR-β/δ and PPAR-γ 

could be implicated in migration and invasion pathways to understand the metastasis of cells 

and tissues in cancer. However, this suggestion might be cell type dependent.   
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5. Summary 

Idiopathic pulmonary fibrosis (IPF) is a devastating disease with median survival of patients 

of 2.5-3.5 years after diagnosis. The causes and molecular pathogenesis of persistent 

extracellular matrix production and collagen deposition in idiopathic pulmonary fibrosis still 

remains unclear. Novel treatments for this restrictive lung disease are limited, and available 

ones, e.g. nintedanib and pirfenidone, only delay the further progression of IPF. Molecular 

targets for the treatment of IPF have delineated the anti-fibrotic properties of a family of 

nuclear hormone receptors known as peroxisome proliferator-activated receptors (PPARs), 

amongst which mainly the PPAR-γ isotype was investigated. Only limited information is 

available on the roles of PPAR-α in IPF and no studies are yet available on PPAR-δ/β in 

pulmonary fibrosis. Additionally, oxidative stress, caused by an increase of reactive oxygen 

species (ROS), is an important triggering factor influencing the molecular pathogenesis of 

IPF. The prospects of antioxidants as combined therapy with other treatment regimens for IPF 

and the regulatory roles of PPARs on peroxisomal genes call for the exploration of catalase 

function, the major antioxidative enzyme in peroxisomes, in IPF fibroblasts. Also the 

influence of metabolites of peroxisomal β-oxidation in the molecular pathogenesis of IPF is 

completely unknown. In view of this, in the present study the potential roles of PPAR-

mediated peroxisomal anti-oxidative function and β-oxidation products in IPF were explored.  

Using primary human lung fibroblasts from control and IPF patients as well as lung biopsies 

from patients and bleomycin-treated mice, the beneficial anti-fibrotic properties of PPAR-β 

(and its combination with PPAR-γ), peroxisomal β-oxidation products and catalase were 

demonstrated. Control human lung fibroblasts in primary cell culture exhibited higher α-

SMA, collagen I and TGFBR1 abundance than IPF primary human lung fibroblasts, whereas 

the extracellular abundance of secreted collagen I exhibited no significant differences between 

the two cell groups under basal cell culture conditions. The levels of active TGF-β1 released 

into culture media by control fibroblasts were comparatively higher than the amounts released 

by IPF fibroblasts under these conditions. Lung tissue of different IPF patients showed 

increased PPAR-β/δ abundance and IPF fibroblasts exhibited higher levels and expressions of 

PPAR-α and PPAR-γ than control fibroblasts under basal conditions. Moreover, after TGF-β1 

stimulation PPAR-β/δ was induced in control and IPF primary human lung fibroblasts. 

Without TGF-β1 treatment all groups of control primary human lung fibroblasts proliferated 

more than IPF fibroblasts. TGF-β1 stimulation led to a highly significant increase of IPF 

fibroblast proliferation (1.91 fold higher OD values) than in control fibroblasts (1.4 fold OD 
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increase). Moreover, mRNA expression values for matrix metalloproteinases (1/2/3/8/10/12) 

were significantly lower in IPF fibroblasts compared to controls. 

Interestingly, remarkably lower abundance levels of α-SMA and collagen I were observed 

when PPAR-β/δ was activated in TGF-β1 stimulated control and IPF fibroblasts and the 

combined activation of all three PPARs elicited stronger anti-fibrotic effects. Sole PPAR-α or 

PPAR-γ activation showed similar, but weaker effects as PPAR-β/δ activation. 

Active MMP1 was strongly increased in Western blots after PPAR-β/δ activation as well as 

after its combined stimulation with PPAR-α or PPAR-γ in control and IPF primary human 

lung fibroblasts. PPAR-β/δ activation strongly upregulated MMP 1, 3 and 16-mRNAs in both 

cell groups. Unexpectedly, the MMP1-siRNA knockdown decreased collagen I abundance 

due to a strong compensatory upregulation of MMPs 3, 10, 12 and 16 in control and IPF 

primary human lung fibroblasts. Additionally, MMPs 7, 11, 13, 14 and 19 were strongly 

upregulated in control primary human lung fibroblasts.  

 

Simultaneous parallel activation of PPAR-β/δ and PPAR-γ increased peroxisome biogenesis 

and proliferation, exhibited stable decreases in α-SMA and collagen I, and increased the 

extracellular levels of peroxisome-derived arachidonic acid (AA), docosahexaenoic acid 

(DHA), eicosapentaenoic acid (EPA) and in TGF-β1 stimulated control and IPF human lung 

fibroblasts. Combined activation of PPAR-β and PPAR-γ also decreased the migration of IPF 

primary human lung fibroblasts, as well as their invasion into the lower chamber of a 

modified Boyden chamber. Docosahexaenoic acid (DHA), an endogenous ligand of PPAR-α, 

PPAR-β/δ and PPAR-γ, downregulated α-SMA and collagen I in both cell groups, suggesting 

an activation loop after combined stimulation of PPAR-β/δ and PPAR-γ with synthetic 

compounds. Combined inhibitions of PPAR-β/δ and PPAR-γ were effective after 48 h of 

treatments and resulted in a remarkable increase in collagen I and α-SMA in IPF primary 

human lung fibroblasts. A synthetic dual agonist for PPAR-β/δ and PPAR-γ (V6) revealed 

anti-fibrotic responses intracellularly but could not lower extracellular collagen levels. 

 

Interestingly, TGFβ1 downregulated catalase abundance and activity enhancing the 

progression into a fibrotic phenotype in control and IPF primary human lung fibroblasts. 

Furthermore, peroxisomal catalase and the mRNA for peroxiredoxins 1, 5 were markedly 

decreased in IPF primary human lung fibroblasts. Moreover, catalase was also decreased in 

IPF human lung biopsies. In contrast, glutathione peroxidases 1 and 2 detected with an 

antibody against both proteins were increased, possibly compensated for this deficiency 
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though it is understandable that only glutathione peroxidase 1 is in peroxisomes. Also in the 

Bleomycin-induced lung fibrosis mouse model catalase gradually decreased in the lung tissue 

starting from the seventh day after Bleomycin administration. In control and IPF primary 

human lung fibroblasts catalase overexpression elicited an additive effect to the anti-fibrotic 

properties of PPAR-β/δ and PPAR-γ and also reduced ROS production. In contrast, inhibition 

of catalase increased collagen I and ROS production. Additionally, stable catalase knockdown 

cells showed increased expression of the collagen I mRNA and protein abundance. Moreover, 

catalase siRNA knockdown in control and IPF primary human lung fibroblasts resulted in 

increased secretion of extracellular collagen and COL1A1 gene expression. 

Hydrogen peroxide concentrations increased in catalase knockdown cell lines (control primary 

human lung fibroblast) compared to experimental controls. Moreover, TGF-β1 treatment of 

catalase knockdown cell line further increased H2O2 released into the culture medium. 

Hydrogen peroxide promoted an increase of abundance of collagen only at 10 mM (highest 

concentration used in experiment) in control primary human lung fibroblasts, whereas in IPF 

fibroblasts, there was a consistent increased response to collagen production after treatments 

with lower concentrations of H2O2 (500 μM, 1 mM and 5 mM).  

In summary, PPAR-β in combination with PPAR-γ reversed the fibrotic phenotype, increased 

peroxisomal biogenesis and peroxisomal β-oxidation. Peroxisome-derived docosahexaenoic 

acid is involved in the regulation of intracellular collagen I levels and peroxisomal catalase 

plays important role in the regulation of intra- and extracellular collagen. The study therefore 

underscores potential therapeutic roles of peroxisomes in prevention of IPF progression.  
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6. Zusammenfassung 

Idiopathische Lungenfibrose (IPF) ist eine verheerende Krankheit mit medianer Überlebens-

zeit von Patienten von 2,5 bis 3,5 Jahren nach der Diagnose. Die Ursachen und molekulare 

Pathogenese der persistierenden extrazellulären Matrixproduktion und Kollagenablagerung 

bei idiopathischer Lungenfibrose sind noch unklar. Neuartige Behandlungsstrategien für diese 

restriktive Lungenerkrankung sind begrenzt und verfügbare, z.B. Nintedanib und Perfirnidon, 

verzögern nur die weitere Progression von IPF. Molekulare Ziele für die Behandlung von IPF 

haben die antifibrotischen Eigenschaften einer Familie von nukleären Hormonrezeptoren, den 

Peroxisomen-Proliferator-aktivierte Rezeptoren (PPARs), aufgezeigt, von denen 

hauptsächlich der PPAR-γ-Isotyp untersucht wurde. Über die Rolle von PPAR-α in IPF sind 

nur begrenzte Informationen verfügbar, und es liegen noch keine Studien zu PPAR-δ/β bei 

Lungenfibrose vor. Darüber hinaus ist oxidativer Stress ein wichtiger auslösender Faktor, der 

die molekulare Pathogenese von IPF beeinflusst. Das Potential von Antioxidantien in 

Kombinationstherapie mit anderen Behandlungsmöglichkeiten für IPF und die regulatorische 

Wirkung von PPARs auf peroxisomale Gene, weisen auf die notwendige Erforschung der 

Katalase-Funktion- dem wichtigsten antioxidativen Enzym in Peroxisomen - in IPF-

Fibroblasten hin. Darüber hinaus ist auch der Einfluss von Metaboliten der peroxisomalen β-

Oxidation auf die molekulare Pathogenese von IPF völlig unbekannt. Vor diesem Hintergrund 

wurden in der vorliegenden Doktorarbeit die möglichen Rollen von PPAR-vermittelter 

peroxisomaler antioxidativer Funktion und β-Oxidationsprodukten in IPF untersucht. 

Unter Verwendung von primären humanen Lungenfibroblasten von Kontroll- und IPF-

Patienten sowie Lungenbiopsien von Patienten und Bleomycin-behandelten Mäusen, wurden 

in dieser Dissertation die günstigen anti-fibrotischen Eigenschaften von PPAR-β (und seine 

Kombination mit PPAR-γ), peroxisomalen β-Oxidationsprodukten sowie Katalase gezeigt. 

Erste Ergebnisse erbrachten, dass einige Lungenbereiche, die für α-SMA - einem Marker, der 

häufig in der Literatur für aktivierte Myofibroblasten verwendet wird - angefärbt wurden, 

keine Kollagen-I-Färbungen zeigten. Darüber hinaus besaßen menschliche Lungen-

fibroblasten der Kontrollgruppen in primärer Zellkultur höhere α-SMA-, Kollagen I- und 

TGFBR1-Proteinmengen als IPF-primäre menschliche Lungenfibroblasten, wohingegen die 

extrazelluläre Menge sekretierten Kollagens I keine signifikanten Unterschiede zwischen den 

zwei Zellgruppen unter basalen Zellkulturbedingungen aufwies. Die Mengen an aktivem 

TGF-β1, die von Kontrollfibroblasten in Kulturmedien freigesetzt wurden, waren 

vergleichsweise höher als die Mengen, die von IPF-Fibroblasten unter den gleichen 
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Bedingungen freigesetzt wurden. Lungengewebe von verschiedenen IPF-Patienten wies 

erhöhte PPAR-β/δ-Abundanz auf und IPF-Fibroblasten zeigten eine erhöhte Expression von 

PPAR-α und PPAR-γ als Kontroll-Fibroblasten unter basalen Bedingungen. Darüber hinaus 

wurde PPAR-β/δ nach TGF-β1-Stimulation in primären humanen Lungen-Fibroblasten der 

Kontrolle und IPF induziert. Ohne TGF-β1-Behandlung proliferierten alle Gruppen von 

primären menschlichen Lungenfibroblasten der Kontrollgruppen stärker als IPF-Fibroblasten. 

TGF-β1-Stimulation führte zu einer hochsignifikanten Zunahme der IPF-Fibroblasten-

proliferation (1,91-fach höhere OD-Werte) als bei Kontrollfibroblasten (1,4-fache Zunahme). 

Darüber hinaus waren die mRNA-Expressionswerte für Matrixmetalloproteinasen 

(1/2/3/8/10/12) in IPF-Fibroblasten signifikant niedriger. Interessanterweise wurden stark 

erniedrigte Mengen an α-SMA und Kollagen I beobachtet, wenn PPAR-β/δ in TGF-β1-

stimulierten Kontroll- und IPF-Fibroblasten aktiviert wurde. Die Aktivierung aller drei 

PPARs rief noch stärkere anti-fibrotische Wirkungen hervor. PPAR-α- oder PPAR-γ-

Aktivierung zeigte ähnliche, jedoch schwächere Wirkungen wie PPAR-β / δ-Aktivierung. 

Aktives MMP1 war nach PPAR-β/δ-Aktivierung sowie nach kombinierter Behandlung mit 

PPAR-α oder PPAR-γ in Western-Blots stark erhöht. Die PPAR-β/δ-Aktivierung führte in 

beiden Zellgruppen zu einer stark erhöhten mRNA-Expression für MMPs 1, 3 und 16. 

Unerwarteterweise verringerte der MMP1-siRNA-Knockdown den Kollagen I-Gehalt auf-

grund einer starken kompensatorischen Hochregulierung der MMPs 3, 10, 12 und 16 in 

beiden Fibroblastengruppen (Kontrolle und IPF). Zusätzlich waren die  mRNAs der MMPs 7, 

11, 13, 14 und 19 in der Kontrollgruppe stark hochreguliert. 

Die gleichzeitige parallele Aktivierung von PPAR-β/δ und PPAR-γ induzierte die Biogenese 

und Proliferation von Peroxisomen, führte zur eindeutigen Verminderung von α-SMA und 

Kollagen I und steigerte den Metabolismus von Arachidonsäure (AA), Docosahexaensäure 

(DHA) und Eicosapentaensäure (EPA) in TGF-β1-stimulierten humanen Lungenfibroblasten 

der Kontroll- und IPF-Gruppen. Die kombinierte Aktivierung von PPAR-β und PPAR-γ 

verminderte auch die Migration von IPF-Lungenfibroblasten sowie ihre Invasion in zerkratzte 

Räume in Scratch-Assays. Behandlung mit Docosahexaensäure (DHA) verringerte die 

Mengen an α-SMA und Kollagen I beiden Zellgruppen, was auf eine Aktivierungsschleife 

nach kombinierter Stimulation von PPAR-β/δ und PPAR-γ hindeutet. Die kombinierte 

Inhibition von PPAR-β/δ und PPAR-γ war nach 48 h Behandlung wirksam und führte zu 

einer starken Zunahme von Kollagen I und α-SMA in IPF-Lungenfibroblasten. Ein 

kommerziell erhältlicher, dualer synthetischer Einzelmolekular Agonist für PPAR-β/δ und 
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PPAR-γ (V6) zeigte zwar intrazelluläre antifibrotische Reaktionen, konnte jedoch die 

extrazellulären Kollagenspiegel nicht absenken. 

Interessanterweise senkte TGF-β1 die Katalase-Abundanz und –Aktivität und führte damit zu 

einer Verstärkung des Fibrose-phänotyps in primären Kontroll- und IPF-Lungenfibroblasten. 

Darüber hinaus waren in dieser Studie die Katalase und die mRNA für peroxisomalen 

Peroxiredoxine 1 und 5 in primären IPF-Lungenfibroblasten deutlich verringert. Ferner war 

auch die Katalase-Proteinenge in menschlichen Lungenbiopsien von IPF-Patienten verringert, 

während die Glutathionperoxidasen 1 und 2 induziert warer, mösglicherweise um den 

Katalasemangel zu kompensieren. Gewebeproben von Mauslungen eines Bleomycin-

induzierten Lungenfibrosemodells zeigten ebenfalls eine allmähliche Abnahme der Katalase 

bereits nach dem siebten Tag der Bleomycin Verabreichung. Katalase-Überexpression rief 

einen additiven Effekt auf die antifibrotischen Eigenschaften von PPAR-β/δ und PPAR-γ 

hervor und reduzierte auch die ROS-Produktion in primären Lungenfibroblasten der Kontroll- 

und IPF- Gruppen. Dagegen führte die Hemmung der Katalaseaktivität zur erhöhten 

Produktion von Kollagen I und ROS. Zusätzlich zeigten stabile Katalase-Knockdown-Zellen 

erhöhte Expression des Kollagen-I-Gens und eine vermehrte Kollagen I-Protein-Abundanz. 

Der Katalase-siRNA-Knockdown in Kontroll- und IPF-Lungenfibroblasten führte auch zu 

einer erhöhten Freisetzung von extrazellulärem Kollagen und COL1A1-Genexpression. Die 

Wasserstoffperoxidkonzentration stieg in der Katalase-Knockdown-Zelllinie im Vergleich zur 

experimentellen Kontrollgruppe an. Darüber hinaus verstärkte die TGF-β1-Behandlung der 

Katalase-Knockdown-Zelllinie die Erhöhung des freigesetzten H2O2 ins Kulturmedium. In 

Kontroll-Lungenfibroblasten erhöhte nur die höchste Konzentration von  H2O2 (10 mM) die 

Kollagenfreisetzung, während in IPF-Fibroblasten bereits geringe  H2O2 Konzentrationen von 

500  μM, 1 mM und 5 mM die Kollagenmengen steigerten.  

Zusammenfassend vermindert die Behandlung mit einer Kombination von PPAR-β- und 

PPAR-γ-Aktivatoren den fibrotischen Phänotyp, erhöht die peroxisomale Biogenese und 

peroxisomale β-Oxidation. Docosahexaensäure und peroxisomale Katalase sind an der 

Regulation des fibrotischen Phänotyps von IPF-Fibroblasten und der intrazellulären 

Kollagen I-Menge beteiligt, was die mögliche therapeutische Rolle von Peroxisomen zur 

Verbinderung der IPF-Progression. 
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