WALTHER, A Uniqueness Problem for a Nonlinear Differential

Delay Equation.

The class of autonomous retarded functional differential
equations which is relatively best understood today is
given by

x(t) = of(x(t-1)) (af)

with £ : R-R satisfying xf(x) <0 for x+0, £(0) =0. If po-

sitive parameters o« are considered then (af) represents a



simple case of delayed negative feedback: A deviation
x(t-1): O from the equilibrium solution t- 0 is followed by
a move k(t): 0 in the opposite direction. The dynamics of

(o £) depend in a very subtileway onthe graph of £, and many
of the bifurcation phenomena which are of interest in dissi-
pative O0.D.E.s may be found in this small class of F.D.E.s.
Understanding (of) will also help to get a better feeling
for the equations ’

%(£) = plxy) - dlxy) (p,d)
where the functionals p,d describe autocatalytic production
and destruction respectively. p and d are défined on
C([—1,0j,R) and x_€C is given by xt(a)==x(t+a) for [t-1,t]
in the domain of x - as usual in F.D.E.s [3]. The interplay
of autocatalytic production and destruction is common to
many control processes in living systems [4].

A special and also historically important case is Hutchin-

sén's-equation for delayed logistic growth of a single spe-

cies

-nle-m)y
K

[5]. The positive solutions (which are the biologically

n{t) = rn(t)[1 r,17,K positive (n) .

meaningful ones) correspond to the set of all solutions of

(«f) with o =rT, f=£f,, f,(x) = ’I.-ex, via x(t) =log n(;t)‘

It is well known that for every o > w/2 equation (qu) has a
periodic solution x with x(-1) =0, x>0 on [-1,0), ¥<O on

an interval (O,z +1) with x(z,) =0, % >0 on (z1+1,22), and

1

x(t)==x(t+zz+1) for all real t. Numerical results strongly

suggest that x has a stable and attractive orbit in C, and



that for o« <w/2 no periodic solutions exist.

Problem: Prove uniqueness and stability properties of -x!

The tools might be available, compare [6,8]. Related results
are contained in [15,11,12,9]. Solving this problem will be
instructive for the investigatibn of a larger set of equa-
tions: fH is not an odd function -.one can give feasons that
most of the nonlinearities £ related td applications are far
from being odd - most of the more detailed: results on bifur-
cation of periodic solutions were obtained for odd functions
f only.

Another promising, possibly harder problem is to show for all
equations (af) that the set of initial conditions ¢ € C which
define slowly oscillating solutions - i.e. solutions x with
|z=2'| > 1 for every pair of zeros z #z' in some uﬁbounded
interval [tx,mi'— is open and dense. For a partial result,
see [13]. The first statement of the conjecture is in [6].

Suggestions for numerical analysis: It is desirable to im-

prove and develop_algorithms for the computation of bifur-
cation diagrams for slowly oscillating solutions of (of)
[2,10]. In particular stability properties (Floqﬁet multi-
pliers) of these periodic solutions should be studied, com-

pare [14,1].
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